Download PDF
ads:
REJANE CORRÊA MARQUES
AMAMENTAÇÃO EXCLUSIVA E ESTENDIDA COMO UM FATOR
DE PROTEÇÃO À EXPOSIÇÃO AO MERCÚRIO DERIVADO DE
VACINAS CONTENDO TIMEROSAL
TESE SUBMETIDA À UNIVERSIDADE FEDERAL DO RIO
DE JANEIRO VISANDO A OBTENÇÃO DO GRAU DE
DOUTOR EM CIÊNCIAS
Universidade Federal do Rio de Janeiro
Centro de Ciências da Saúde
Instituto de Biofísica Carlos Chagas Filho
2 0 0 7
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
ii
Rejane Corrêa Marques
AMAMENTAÇÃO EXCLUSIVA E ESTENDIDA COMO UM FATOR DE PROTEÇÃO
À EXPOSIÇÃO AO MERCÚRIO DERIVADO DE VACINAS CONTENDO
TIMEROSAL
Tese apresentada ao Programa de Pós-
Graduação em Ciências Biológicas (Biofísica)
do Instituto de Biofísica Carlos Chagas Filho,
Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessários à obtenção
do título de Doutor em Ciências.
Orientador: Prof. Dr. Olaf Malm
Co-orientador: Prof. Dr. José Garrofe Dórea
Rio de Janeiro
2007
ads:
iii
FOLHA DE APROVAÇÃO
Rejane Corrêa Marques
AMAMENTAÇÃO EXCLUSIVA E ESTENDIDA COMO UM FATOR DE PROTEÇÃO
À EXPOSIÇÃO AO MERCÚRIO DERIVADO DE VACINAS CONTENDO
TIMEROSAL
Rio de Janeiro, 19 de dezembro de 2007.
________________________
Orientador: Prof. Dr. Olaf Malm
(IBCCF/UFRJ)
________________________
Co-orientador: Prof. Dr. José Garrofe Dórea
(DN/UnB)
________________________
Revisor: Prof. Dr. Jean Remy Davee Guimarães
(IBCCF/UFRJ)
________________________
Prof
a
. Dr
a
. Leny Alves Cavalcante
(IBCCF/UFRJ)
________________________
Prof. Dr. Wolfgang Christian Pfeiffer
(IBCCF/UFRJ)
________________________
Prof. Dr. João Paulo Machado Torres
(IBCCF/UFRJ)
iv
DEDICATÓRIA
A Francisca (in memoriam), que me ensinou com
seu exemplo de perseverança e cuja compreensão
da vida e amor ao próximo transcende o limite das
palavras;
Ao meu companheiro, Jean, e meu filho, Franco
que me mostram todos os dias o quanto o amor
vale a pena.
v
AGRADECIMENTOS
Embora uma tese de doutorado seja uma obra coletiva, a responsabilidade de
escrevê-la e o estresse daí decorrentes são essencialmente individuais. Várias
pessoas contribuíram para que este trabalho. A todas elas minha incondicional
gratidão. Corro o risco de não fazer jus ao agradecimento. Será difícil demonstrar o
encanto das energias e impulsos trocados. Por tudo isso eu enfatizo, muito além do
protocolo, um significado: o da construção de uma verdadeira rede de afeto e
solidariedade. Devo contar que este não foi um percurso fácil. Por vezes pareceu
interminável, principalmente pelos percalços pessoais de toda ordem que me
atropelaram. Esses entraves, longe de ofuscarem a caminhada, acrescentaram-lhe
brilho. E, ao invés de me deterem, estimularam-me ainda mais. Nesses três anos
arrisquei-me em uma nova cidade, novo ambiente de trabalho, novos amigos. Dei
asas à imaginação, ao meu conhecimento, minha capacidade. Imagine o significado
disso para uma pessoa inquieta, indócil como eu. Gostei até de aprender que
existem pessoas que se identificam, ou não. Porém, o que eu mais gostei foi
aprender que o esforço vale à pena. Hoje eu sei. O mais importante é aprender a
aprender. Céus! Como existem coisas a serem aprendidas! Não sei se o que sinto
hoje é diferente de antes... Mas eu gostei muito.
Vamos aos agradecimentos...
Às mães e crianças participantes deste estudo, minha profunda gratidão.
À Universidade Federal de Rondônia (UNIR) e ao Instituto de Biofísica Carlos
Chagas Filho (IBCCF/UFRJ), pela oportunidade de crescimento intelectual.
Olaf Malm, pela orientação e oportunidade oferecida, pelo bom convívio nestes três
anos de trabalho. Com você tive a oportunidade de enriquecer meu conhecimento.
Obrigado pelas suas palavras sempre otimistas de certeza no nosso sucesso e,
sobretudo, pelo carinho e paciência.
José Garrofe Dórea, por sempre demonstrar que acredita no meu potencial, pelo
apoio dado nas discussões sobre os rumos deste trabalho, pelos ensinamentos
sobre arte e ciência, por todo o tempo dedicado a mim, por entender minhas dúvidas
e angústias; pelo esforço conjunto, e, principalmente, pela parceria, amizade,
carinho e orientação. Você é mais que um orientador. Muito obrigado.
Ao meu bom menino Franco, minha maior razão para todo esse esforço, meu
carinho, minha paixão e meu colo, que este seja motivo de orgulho e coragem na
sua transformação em um grande homem. Obrigado pela paciência com o meu
nervosismo, por compreender as minhas faltas, pelos inúmeros finais de semana
passados dentro de casa para me dar apoio, pela falta de assistência nas provas do
colégio e faculdade, pelos milhares de beijos que me deu e pelo amor que tem por mim.
Jean Remy, minha melhor companhia nas montanhas, florestas, rios e mar. Meu
porto seguro em todas as aventuras, até nas mais ousadas. Comungar com você na
crença de que a ciência e a ética devem caminhar juntas na construção de uma
sociedade mais íntegra, é uma dádiva. Obrigado por enfrentar ao meu lado todos os
obstáculos e pelo amor que nos une. Nenhuma palavra pode definir o sentido que
você tem na minha vida.
vi
Minha família, meus queridos; por estar ao meu lado mesmo quando estou distante.
Pela rara paciência com a qual enfrentaram esta travessia, nem sempre tranqüila,
mas sempre cercada de apoio, compreensão e amor. Amo vocês.
Papai e mamãe (in memoriam), meus exemplos, luta, dignidade, amor, solidariedade
e respeito. Como vocês me fazem falta! O espírito de superação e sobrevivência dos
dois me acompanha.
Katiane Guedes Brandão, Rayson Corrêa Marques e Verusca Gomes dos Santos,
meus parceiros desde o início desse trabalho, quando ninguém, além de nós quatro,
acreditava nele. Por estarem sempre dispostos a me ajudar e pela maneira
carinhosa com que sempre o fizeram. Este trabalho não existiria sem vocês. Somos
uma grande equipe.
Aos meus amigos queridos, Eduardo, Roberto e Liliane, pela dedicação, pelo apoio
nos momentos mais difíceis e pela compreensão nas minhas ausências em
aniversários, jantares, cinemas e mesas de bar.
Wanderley Rodrigues Bastos pela amizade, parcerias, ensinamentos e ajuda no
trabalho; pela forma sua forma carinhosa de tratar todos a sua volta.
José Vicente Elias Bernardi, pela parceria, incentivo e ajuda (empolgada) com as
análises estatísticas que eu, invariavelmente, não entendia, mas você estava
sempre disposto a explicar.
Mauro César Geraldes, pelo carinho, acolhimento, proteção e compreensão nos
momentos cruciais desta jornada. Pelo modo alegre e irreverente com que leva a vida
e trata a todos a sua volta; pela amizade e parceria nos trabalhos, viagens e festas.
João Paulo Machado Torres e Márlon Freitas Fonseca, pela postura confiante e
receptiva com me receberam e pelos momentos de cooperação e amizade que
desfrutei. O doutorado teria sido mais difícil sem vocês.
Ao Departamento de Enfermagem (UNIR), pela liberação para realizar essa
maravilhosa jornada que não foi apenas de doutoramento, mas de crescimento
intelectual, pessoal, profissional e de formação de uma rede de parcerias e
verdadeiras amizades.
A UNESCO, Ministério da Saúde, CNPq e CAPES cujos apoios financeiros
possibilitaram a realização deste trabalho.
Aos Professores do IBCCF com quem tive o prazer de aprender, nas disciplinas,
seminários, reuniões e no dia-a-dia do doutorado.
Aos colegas do Laboratório de Radioisótopos, pelos excelentes momentos de
trocas: Renata, Dani Botaro e Kasper, Marianna, Larissa, Natasha, Cláudio, Márcio,
Rodrigo, Antonio, Sérgio, Laílson, Ronaldo, Bete, Ricardo, Madalena, Giselle...
SAUDADES!
vii
EPÍGRAFE
Aqui nessa casa ninguém quer a sua boa educação.
Nos dias que tem comida, comemos comida com a
mão.
E quando a polícia, a doença, a distância ou alguma
discussão nos separam de um irmão, sentimos que
nunca acaba de caber mais dor no coração.
Mas não choramos à toa.
Aqui nessa tribo ninguém quer a sua catequização,
falamos a sua língua, mas não entendemos o seu
sermão.
Nós rimos alto, bebemos e falamos palavrão, mas
não sorrimos à toa.
Aqui nesse barco ninguém quer a sua orientação.
Não temos perspectiva, mas o vento nos dá a direção.
A vida que vai à deriva é a nossa condução.
Mas não seguimos à toa.
Volte para o seu lar. Volte para lá!
ARNALDO ANTUNES
viii
RESUMO
MARQUES, Rejane Corrêa: Amamentação exclusiva e estendida como fator de
proteção à exposição ao mercúrio derivado de vacinas contendo timerosal. Rio
de Janeiro, 2007. Tese (Doutorado em Ciências Biológicas Biofísica) Instituto de
Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de
Janeiro, 2007.
Crianças são expostas ao mercúrio (Hg) proveniente das mães (através da
placenta e aleitamento materno), do ambiente (alimentos), e em muitas partes do
mundo, das vacinas contendo timerosal (VCT) recebidas durante a imunização. O
timerosal contém 49.6% etilmercúrio (EtHg) por peso. Devido às incertezas
associadas a um possível aumento de déficits neurodesenvolvimentais entre
crianças imunizadas, as vacinas conservadas com timerosal não são usadas desde
2004 nos Estados Unidos da América (EUA) e na União Européia (UE), mas são
amplamente produzidas e utilizadas em países em desenvolvimento, caso do Brasil.
Nós investigamos o impacto do timerosal no cabelo de crianças que receberam VCT
de acordo com o calendário de imunização preconizado pelo Ministério da Saúde do
Brasil. Usando o Hg total no cabelo como marcador de exposição pós-natal ao Hg
orgânico (Hg inorgânico e MeHg do leite materno; EtHg do timerosal) nós estudamos
sua associação com a escala de Gesell (QD) mensurada aos 6, 36 e 60 meses e a
influência da amamentação exclusiva no crescimento e desenvolvimento de crianças
de Porto Velho, Rondônia. As vacinas forneceram uma exposição EtHg de 12,5 μg
ao nascimento (mínima) a 37,5 μg aos seis meses (máxima), podendo perfazer um
total de 325 μg de Hg em cinco anos. Enquanto as mães apresentaram as
concentrações mais altas de Hg no parto, as crianças apresentaram valores mais
altos aos seis meses após completar o esquema de imunização com VCT para o
período. Posteriormente, a tendência descendente do Hg no cabelo demonstrado
pelas crianças coincidiu com o desmame e menos freqüentemente com o período de
vacinação. O tempo de amamentação e o Hg no cabelo foram, cada um,
significativamente correlacionados com QD, mas de maneiras opostas: o tempo de
amamentação foi positiva e significantemente associado com o QD aos cinco anos;
as concentrações de Hg no cabelo foram negativa e significativamente
correlacionadas com QD aos seis meses (r=-0.3329; p=0.0022) e cinco anos (r=-
0.8029; p=0.0106), mas não aos 36 meses (r=-0.1722; p=0.1218). O resultado dos
QD aos cinco anos dependeu do QD aos três anos, que por sua vez, foi influenciado
pelas variáveis do desenvolvimento e de exposição ao Hg. O QD aos seis meses foi
significantemente influenciado pela exposição pré-natal (Hg no cabelo materno e
infantil) e pós-natal aos seis meses. Nós acreditamos que o aleitamento materno é
uma importante estratégia para a proteção do SNC de crianças frente aos desafios
da exposição precoce ao Hg. O presente estudo foi financiado pelo Ministério da
Saúde do Brasil (MS) e Organização das Nações Unidas para Educação, Ciência e
Cultura (UNESCO), processo SC27824/2005/914-BRA2000-Decit-PRODOC.
Palavras-chave: Timerosal; etilmercúrio; vacinas; crianças; aleitamento materno;
neurodesenvolvimento; Escala de Gesell.
ix
ABSTRACT
MARQUES, Rejane Corrêa: Amamentação exclusiva e estendida como fator de
proteção à exposição ao mercúrio derivado de vacinas contendo timerosal. Rio
de Janeiro, 2007. Tese (Doutorado em Ciências Biológicas Biofísica) Instituto de
Biosica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de
Janeiro, 2007.
Children are exposed to Hg from mothers (via placenta and lactation),
environment (food), and in many parts of the world by thimerosal-containing vaccines
(TCV) during immunization. Thimerosal contains 49.6% Hg by weight. Because of
uncertainties associated with a possible rise in neurodevelopmental deficits among
vaccinated children, TCV have not been used since 2004 in the USA and the EU but are
widely produced and used in other developing countries. This longitudinal study (birth to
5 years) investigated the impact of thimerosal on the total Hg in hair of breast-fed infants
that received TCV according to the immunization schedule recommended by the
Ministry of Health of Brazil. Using total HHg as a marker of post-natal organic Hg
exposure (inorganic and methylmercury from breast milk, and ethylmercury from
thimerosal) we studied its association with Gesell schedules measured at 6m, 36m and
60m, and the influence of exclusive breastfeeding on growth of this sample of children
from Porto Velho, Western Amazon. TCV provided an ethylmercury (EtHg) exposure of
12.5 μgHg (minimum) up to 37.5 μgHg (maximum). The cumulative exposure by age 5
years could reach 325 μgHg. While mothers had the highest HHg concentrations at
childbirth, infants showed the highest HHg values at 6 months after the recommended
six shots of immunization with TCV; after that, the downward trend in HHg shown by
children coincided with both weaning and less frequent vaccination period (5 years).
Length of lactation and HHg were each significantly correlated with Gesell scores, but in
opposite ways: length of lactation was positive and significantly correlated with all Gesell
scores at 60m; HHg concentrations were negative and significantly correlated with
Gesell scores at 6m (r=- 0.3329; p=0.0022) and 60m (r=-0.8029; p=0.0106), but not at
36m (r=- 0.1722; p=0.1218). The DQ outcome at 60m depended on DQ at 36m that in
turn was influenced by infants developmental and Hg exposure variables. DQ at 6m was
significantly influenced by prenatal (maternal and infant HHg at birth) and post-natal Hg
exposure at 6 months. Until a more refined approach to recognize sensitive children to
TCV-EtHg exposure, the ND benefit of breastfeeding should suffice to recommend it in
situations of uncertainty. United Nations Educational, Scientific, and Cultural
Organization (UNESCO) and Ministry of Health of Brazil (MS) supported this work, grant
SC27824/2005/914BRA2000 Decit PRODOC.
Key words: Thimerosal, ethylmercury neurodevelopment, vaccines, Gesell scores,
breastfeeding.
x
LISTA DE ILUSTRAÇÕES
LISTA DE FIGURAS
FIGURA 1.ESTRUTURA QUÍMICA DO TIMEROSAL .................................................................................................. 20
FIGURA 2. ESTRUTURA QUÍMICA DO ETHG .......................................................................................................... 20
FIGURA 3.THE COW-POCK OR THE WONDERFUL EFFECTS OF THE NEW .......................................................... 25
FIGURA 4. CERTIFICADO DE VACINAÇÃO COMPULSÓRIA DE WALTER WILLIAN CHARLES VICENT. ..................... 26
FIGURA 5. CERTIFICADO DE VACINAÇÃO BEM-SUCEDIDA DE WALTER CHARLES WILLIAN VICENT. ................................................ 27
FIGURA 6. GRÁFICO DAS REIVINDICAÇÕES APRESENTADAS JUNTO AO PROGRAMA DE COMPENSAÇÕES AS
INJÚRIAS VACINAIS DOS ESTADOS UNIDOS (US VACCINE INJURY COMPENSATION PROGRAM), NO
PERÍODO DE 1989-2007. ............................................................................................................................ 30
LISTA DE QUADROS
QUADRO 1. DOSE DE MERCÚRIO EM VACINAS PARA USO INFANTIL .................................................................. 33
QUADRO 2. LIMITES DE EXPOSIÇÃO AO METILMERCÚRIO NA DIETA DE UM INDIVÍDUO ADULTO. ....................... 34
QUADRO 3. EXPOSIÇÃO AO MERCÚRIO DE VACINAS PEDIÁTRICAS CONSERVADAS COM TIMEROSAL. ................. 35
QUADRO 4. FONTES DE DADOS EPIDEMIOLÓGICOS PRIMÁRIOS INVESTIGANDO POSSÍVEIS ASSOCIAÇÕES
ENTRE VACINAS CONSERVADAS COM TIMEROSAL E APARECIMENTO DE SINTOMAS NEUROLÓGICOS. ....... 44
xi
LISTA DE SIGLAS E ABREVIATURAS
AAP AMERICAN ASSOCIATION OF PEDIATRICS
AIG ADEQUADO PARA A IDADE GESTACIONAL
ANVISA AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA
ATSDR AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY
CDC NATIONAL CENTER FOR DISEASE CONTROL AND HEALTH PROMOTION
CEP COMITÊ DE ÉTICA EM PESQUISA COM SERES HUMANOS
DDA DISTÚRBIO DO DÉFICIT DE ATENÇÃO
DHHS DEPARTMENT OF HEALTH AND HUMAN SERVICES
dT VACINA DUPLA ADULTO DIFTERIA-TÉTANO
DT VACINA DUPLA INFANTIL DIFTERIA-TÉTANO
DTP VACINA TRÍPLICE BACTERIANA (DIFTERIA, TÉTANO E COQUELUCHE)
DTP + HIB VACINA QUÁDRUPLA BACTERIANA, ASSOCIANDO DTP À Hib
EDGA ESCALA DESENVOLVIMENTAL DE GESELL E AMATRUDA
EtHg ETILMERCÚRIO
EUA ESTADOS UNIDOS DA AMERICA
FDA FOOD AND DRUGS ADMINISTRATION
GIG GRANDE PARA A IDADE GESTACIONAL
Hep B VACINA CONTRA HEPATITE B
Hg MERCÚRIO
Hib Haemophilus Influenzae tipo b
IOM INSTITUTE OF MEDICINE
ISRC IMMUNIZATION SAFETY REVIEW COMMITTEE
LOAEL - NÍVEL MAIS BAIXO EM QUE EFEITO ADVERSO FOI OBSERVADO
MeHg METILMERCÚRIO
SRC ou MMR VACINA TRÍPLICE VIRAL (SARAMPO, RUBÉOLA E CAXUMBA)
MS MINISTÉRIO DA SAÚDE
NCHS NATIONAL CENTER FOR HEALTH STATISTICS
ND NEURODESENVOLVIMENTAIS
OMS ORGANIZAÇÃO MUNDIAL DA SAÚDE
OPAS ORGANIZAÇÃO PAN-AMERICANA DE SAÚDE
xii
PC PERÍMETRO CEFÁLICO
PIG PEQUENO PARA A IDADE GESTACIONAL
PNI PROGRAMA NACIONAL DE IMUNIZAÇÃO BRASILEIRO
PUFA POLYUNSATURED FATTY ACIDS.
QD QUOCIENTE DE DESENVOLVIMENTO
QI QUOCIENTE DE INTELIGÊNCIA
RN RECÉM-NASCIDO
SIDA SÍNDROME DA IMUNO DEFICIÊNCIA HUMANA ADQUIRIDA
SNC SISTEMA NERVOSO CENTRAL
TDAH TRANSTORNO DE DÉFICIT DE ATENÇÃO E HIPERATIVIDADE
UE UNIÃO EUROPÉIA/COMUNIDADE EUROPÉIA
UFRJ UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
UNESCO ORGANIZAÇÃO DAS NAÇÕES UNIDAS PARA EDUCAÇÃO, CIÊNCIA
E CULTURA
UNIR FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA
VCT VACINAS CONSERVADAS COM TIMEROSAL
VICP VACCINE INJURY COMPENSATION PROGRAM
xiii
Sumário
DEDICATÓRIA .......................................................................................................................................... IV
AGRADECIMENTOS ................................................................................................................................. V
EPÍGRAFE ................................................................................................................................................ VII
RESUMO .................................................................................................................................................. VIII
ABSTRACT ................................................................................................................................................ IX
LISTA DE ILUSTRAÇÕES ......................................................................................................................... X
LISTA DE FIGURAS ....................................................................................................................................... X
LISTA DE QUADROS ..................................................................................................................................... X
LISTA DE SIGLAS E ABREVIATURAS .................................................................................................. XI
SUMÁRIO ................................................................................................................................................... XIII
1 INTRODUÇÃO ................................................................................................................................. 15
1.1 TIMEROSAL ..................................................................................................................................... 20
1.2 VACINAS .......................................................................................................................................... 22
1.2.1 Eventos Adversos e Vacinas Conservadas com Timerosal ................................................. 29
1.2.2 Quantificando o timerosal das vacinas pediátricas (Marques et al., 2007b) ........................ 32
1.3 LIMITES DE EXPOSIÇÃO AO MERCÚRIO: LIMITAÇÕES E CERTEZAS .................................................. 33
1.4 A PLAUSIBILIDADE BIOLÓGICA ........................................................................................................... 35
1.4.1 A farmacocinética e toxicologia do MeHg e do EtHg ............................................................ 38
1.4.2 Reações de hipersensibilidade após exposição a baixas doses de timerosal .................. 40
1.4.3 Evidências da relação dose-resposta na exposição a altas doses de EtHg ..................... 40
1.5 TIMEROSAL E DISTÚRBIOS DO DESENVOLVIMENTO NEUROLÓGICO ................................................. 41
1.5.1 Estudos Laboratoriais 42
1.5.2 Estudos Epidemiológicos 43
2 A HIPÓTESE .................................................................................................................................... 45
2.1 AS VACINAS SÃO SEGURAS? .............................................................................................................. 45
2.1.1 CONTROVÉRSIAS ATUAIS SOBRE A SEGURANÇA DAS VACINAS ......................................................... 49
2.2 DILEMA: COMUNGAR NO DOGMA OU SEGUIR O INSTINTO CIENTÍFICO? ............................................. 54
3 OBJETIVOS ..................................................................................................................................... 56
3.1 OBJETIVO GERAL ............................................................................................................................... 56
3.2 OBJETIVOS ESPECÍFICOS................................................................................................................... 56
4 MATERIAL E MÉTODOS ................................................................................................................ 57
4.1 CARACTERIZAÇÃO DA AMOSTRA ....................................................................................................... 57
4.2 A AVALIAÇÃO DO DESENVOLVIMENTO INFANTIL ................................................................................ 59
4.3 EXPOSIÇÃO ESTIMADA AO MERCÚRIO DAS VACINAS (TIMEROSAL INJETADO) E ALEITAMENTO
MATERNO .......................................................................................................................................................... 61
4.4 DETERMINAÇÃO DO NÍVEL DE EXPOSIÇÃO AO MERCÚRIO ................................................................. 61
4.5 ANÁLISE ESTATÍSTICA ........................................................................................................................ 62
4.6 CONSIDERAÇÕES ÉTICAS .................................................................................................................. 62
5 RESULTADOS ................................................................................................................................. 63
xiv
6 DISCUSSÃO .................................................................................................................................... 69
7 CONCLUSÕES ................................................................................................................................ 77
REFENCIAS BIBLIOGFICAS ..................................................................................................... 78
ANEXOS ...................................................................................................................................................... 90
ARTIGO 1. MATERNAL MERCURY EXPOSURE AND NEURO-MOTOR DEVELOPMENT IN BREASTFED INFANTS
FROM PORTO VELHO (AMAZON), BRAZIL......................................................................................................... 91
ARTIGO 2. HAIR MERCURY IN BREAST-FED INFANTS EXPOSED TO THIMEROSAL-PRESERVED VACCINES .. 101
ARTIGO 3. TIME OF PERINATAL IMMUNIZATION, THIMEROSAL EXPOSURE AND NEURODEVELOPMENT AT 6
MONTHS IN BREASTFED INFANTS .................................................................................................................... 107
ARTIGO 4. PRINCIPAL COMPONENT ANALYSIS AND DISCRIMINATION OF VARIABLES ASSOCIATED WITH PRE-
AND POST-NATAL EXPOSURE TO MERCURY ................................................................................................... 116
ARTIGO 5. CHANGES IN CHILDREN HAIR-HG CONCENTRATIONS DURING THE FIRST 5 YEARS: MATERNAL,
ENVIRONMENTAL AND IATROGENIC MODIFYING FACTORS.............................................................................. 125
ARTIGO 6. MATERNAL FISH CONSUMPTION IN THE NUTRITION TRANSITION OF THE AMAZON BASIN:
GROWTH OF EXCLUSIVELY BREASTFED INFANTS DURING THE FIRST 5 YEARS ............................................. 133
TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO .................................................................. 149
QUESTIONÁRIO MÃES E RECÉM-NASCIDOS ................................................................................................... 150
QUESTIONÁRIO PARA CRIANÇAS 6 MESES ................................................................................................... 152
TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO .................................................................. 154
QUESTIONÁRIO PARA CRIANÇAS DE 3 A 5 ANOS .......................................................................................... 155
ETAPAS DO DESENVOLVIMENTO INFANTIL SEGUNDO GESELL ...................................................................... 157
APÊNDICE .............................................................................................................................................. 158
CALENDÁRIO BÁSICO DE VACINAÇÃO DA CRIANÇA 2007 ........................................................................................... 158
1 INTRODUÇÃO
O mercúrio (Hg) é encontrado no ambiente em diversas formas químicas: Hg
elementar, inorgânico, e orgânico (etil-, metil-, alquil-, ou fenil-Hg). A química do Hg
modula sua toxicidade e metabolismo. Enquanto o Hg inorgânico atua principalmente
nos rins, o Hg metálico volátil e, sobretudo, o metilmercúrio (MeHg) afetam o sistema
nervoso central (SNC). As atuais questões sobre a toxicidade do Hg estão focadas
nos prováveis danos neurológicos em baixos níveis de exposição. Conquanto a
exposição a algum nível de Hg seja universal, a avaliação quantitativa mostrou que
os três maiores contribuidores da exposição ao Hg para a população geral são: dieta
(basicamente peixe), amálgama dental e alguns produtos farmacológicos (Clarkson
e Magos, 2006; Dórea, 2007; Marques et al., 2007a).
As formas químicas do Hg são cruciais no entendimento e na avaliação da
exposição infantil e do risco de toxicidade. A vulnerabilidade do rebro humano em
desenvolvimento é a mais importante janela para os insultos dos compostos de Hg
(Castoldi, 2003; Dórea, 2007). A gênese e o desenvolvimento do SNC durante a
gravidez e lactação podem ser afetados por múltiplas causas, variando de nutrição
materna a exposição a substâncias tóxicas. Nesta janela de tempo específica, o Hg
pode afetar funções neurocomportamentais. A exposição moderada pode resultar
em sintomas de atraso (não observados ao nascimento) no andar e falar, além da
persistência de reflexos perinatais (Davidson et al., 1998; Grandjean et al., 1997;
WHO, 1976; 1990). Pondera-se que a exposição materna ao MeHg (do consumo de
peixes) pode afetar o neurodesenvolvimento, diminuir a inteligência e provocar
16
alteração do comportamento da prole (Clarkson, 1998; Grandjean et al., 2006). O
recém-nascido (RN) é particularmente vulnerável a estes efeitos porque seu SNC
ainda está se desenvolvendo.
Outra fonte de preocupação relacionada ao Hg é o seu uso, na forma de
timerosal, como agente anti-séptico de escolha para prevenir a contaminação
bacteriológica em vacinas, apresentando concentração de timerosal até 0,01%
(Amanna e Slifka, 2005). Como o etilmercúrio (EtHg) recebido na vacinação não é
parte da alimentação, ele pode atravessar a barreira e detoxificação do sistema
entero-hepático, não sendo fisiologicamente processado, podendo migrar para o
cérebro (Cory-Slechta, 2005; Dórea, 2007; Marques et al., 2007a). Devido a sua
lipossolubilidade, o EtHg pode se acumular em seres humanos e cruzar a barreira
hematoencefálica e placentária, apresentando uma meia-vida curta no sangue. Pode
depositar-se no SNC, onde é transformado posteriormente em Hg inorgânico
acumulando-se no cérebro animal e humano (Clarkson, 2002).
Em rao da limitada base de informação dispovel, concluiu-se que os efeitos
nocivos do EtHg podem ser análogos àqueles do MeHg, outro organomercurial de
conhecida neurotoxicidade (Malm, 2001; Clarkson et al., 2007). É fato que o Hg é
tóxico para o cérebro humano em desenvolvimento, e, por isso, evitar a exposição
durante os períodos críticos do desenvolvimento do SNC tem sido alvo de estratégias
de saúde pública. Para proteger crianças dos efeitos nocivos do Hg há recomendações
para se evitar a ingestão de peixes durante a gravidez (Cohen et al., 2005, Dórea,
2007) e, apesar do uso de vacinas conservadas com timerosal (VCT) ter sido banido
nos Estados Unidos (EUA) e União Européia (UE), a Organização Mundial da Saúde
(OMS) consideram-nas seguras para uso pediátrico (CDC, 2001; WHO, 2000, 2007).
Sem uma sistemática síntese do conhecimento, as restrições para o consumo
17
de peixe se tornaram regra para prevenir os efeitos neurotóxicos do metilmercúrio
(MeHg) em recém-nascidos (Cohen et al., 2005; Dorea, 2007). Contudo, o consenso
precedeu as evidências no caso de exposição à EtHg de VCT, quando o Comitê de
Avaliação sobre Segurança da Imunização do Instituto de Medicina dos EUA
(Immunization Safety Review Committee IOM/ISRC) concluiu que a hipótese de
que as VCT poderiam estar associadas com desordens neurodesenvolvimentais
(DN) era biologicamente plausível (US CDC, 1999; 2001). Apesar dos estudos
epidemiológicos não mostrarem associações entre VCT e autismo, base para as
preocupações referentes a outras DN.
A capacidade de um recém-nascido de lidar com o Hg é modulada pelo seu
grau de imaturidade, ou seja, limitada pela produção da bile e função renal, vias
metabólicas subdesenvolvidas. Essas injúrias são acentuadas mais tarde por
diversos fatores associados com a exposição ao Hg: fonte (formas químicas de Hg
inorgânica e orgânica), rota (enteral/aleitamento materno versus parenteral/VCT) e
via (intrínseco na matriz protéica do leite humano vs. extrínseco na forma química
pura-EtHg) (Dorea, 2007).
RN e crianças (especialmente aquelas de países menos desenvolvidos)
representam a população de maior risco para DN (devido à imaturidade anatômica,
fisiológica e bioquímica) e aquelas mais expostas ao Hg quando imunizadas com
VCT e após consumo de peixe materno (Marques et al., 2007b). Devido à grande
variabilidade na suscetibilidade infantil e circunstâncias modificáveis (desenvolvimento
anatômico e funcional), um risco presumível de DN transitória sutil como seqüela
de VCT. Entretanto, como os efeitos sutis da exposição ao Hg sobre o SNC podem
se manifestar muito tempo depois da exposição e, porquanto este problema está
vinculado à ausência de marcadores apropriados (de exposição e efeito), sérias
18
dificuldades em estabelecer causa e efeito (ou mesmo relações). Por isso, a coneo
entre DN e exposição precoce a esquemas de vacinação com VCT continua intricada
(Marques et al., 2007c; 2007d; 2007e). Portanto, isto é importante para distinguir
casos de baixo risco e alto risco (relacionados com a varião na imaturidade ou
suscetibilidade de crianças a termo).
A breve duração da amamentação é considerada um fator de risco para sinais
de distúrbio do déficit de atenção (DDA) e de hiperatividade. Presume-se que haja
um ganho de 3.2 pontos no quociente de inteligência QI (após ajustamento para o
QI materno) entre seis meses e 15 anos (Anderson, et al., 1999; Dorea, 2007). O
risco irrefutável da dose de timerosal (0.01%) usado nas vacinas infantis é
mascarado pela insuficiência de conhecimento científico sobre a toxicocinética e
toxicodinâmica do EtHg em crianças com diferentes taxas de maturidade (Dorea,
2007, Marques et al., 2007e). Interações complexas são entraves para definir se a
segurança da dose de EtHg é superestimada devido a interação antagonista com o
aleitamento materno ou subestimada devido a alimentação alternada e outras co-
exposições em RN e crianças (Dórea, 2007; Marques et al., 2007d; 2007e).
Os estudos recentes associando exposição ao Hg e DN em crianças
dependeram das concentrações desse metal no cabelo. O cabelo é composto de
uma proteína complexa formada por aminoácidos que se ligam ao MeHg. Admite-se
que a ocorrência de DN é resultado do consumo de peixe contaminado com MeHg,
que rapidamente de liga ao cabelo (Cernichiari et al., 2007). Além disso, estudos
epidemiológicos direcionados para a exposição ao consumo de peixes têm usado
concentrações de Hg no cabelo como um indicador confiável.
Entretanto, durante os primeiros cinco anos de vida, crianças podem ser
expostas ao Hg nas mudanças das suas fontes de alimentação: do leite materno (ou
19
fórmulas) para dietas de desmame e, mais tarde, de outras fontes alimentares (que
podem incluir o peixe) quando passar a se alimentar com ―comida de adulto‖. Essas
crianças podem ser expostas, também, a outra forma de Hg: ao EtHg quando
imunizadas com vacinas conservadas com timerosal (Marques et al., 2007a, 2007e).
Crianças amazônicas são expostas a MeHg via transferência placentária e
leite materno (Barbosa et al., 1998; Barbosa e Dorea, 1998; Marques et al., 2007f).
Neste contexto, o aumento no risco de DN associado à MeHg naturalmente presente
nos peixes dos rios amazônicos foi fortemente sugerido (Grandjean et al., 1999). A
probabilidade do aumento de DN nestes estudos foi baseada nas concentrações de
Hg no cabelo (biomarcador de consumo de peixe). Nós levantamos a hipótese que,
pelo menos nos primeiros seis meses de vida, as concentrações de Hg no cabelo
podem ser influenciadas pelo pesado calendário vacinal (com vacinas conservadas
com timerosal) (Marques et al., 2007a). Além disso, durante os primeiros cinco anos,
a susceptibilidade a fatores modificadores permanece desconhecida, mas as
mudanças fisiológicas e alimentares (amamentação, desmame e dieta familiar
tradicional) provavelmente influenciam essas mudanças (Marques et al., 2007e).
As incertezas sobre a segurança das VCT e a controvérsia sobre a associação
entre o EtHg das vacinas e DN, incluindo autismo, são questões polêmicas que
envolvem tanto os cientistas quanto a sociedade (Bernard et al., 2001; Bigham e
Copes, 2005; Clements e Mcintyre; 2006; Coleman, 2003; COMED, 2007; Geier e
Geier, 2007a; Malm, 2001; Mutter et al., 2005; Marques et al., 2007b; 2007c; 2007d).
Por isso, vacinas VCT não são administradas em crianças norte-americanas desde
2002 e européias desde 2004. Contudo, por recomendação da OMS, o timerosal
ainda é amplamente utilizado como conservantes de vacinas produzidas para os
países em desenvolvimento, como o Brasil (Migowski, 2007; Marques et al., 2007b).
20
1.1 TIMEROSAL
O timerosal (ou tiomersal) é um composto organomercurial proveniente do sal
sódico do ácido o (etilmercuritio) benzóico que contém 49.6% etilmercúrio (EtHg) por
peso. É um cristalino de cor branca a amarelo-clara, solúvel em água e em
metanol, e insolúvel em éter e benzeno (Prado et al., 2004). É representado pela
fórmula estrutural C
9
H
9
HgNaO
2
S e sua estrutura química é a seguinte:
Figura 1.Estrutura Química do Timerosal
Também conhecido como: ―thiomersal‖ (Europa), ―thimerosol‖, ―thimerosal‖
(EUA), ―merthiolate‖, mertiolate, tiomersal, timerosol, etilmercúrico de sódio e
mertiolato de sódio, foi historicamente adicionado a vacinas como agente
antimicrobiano (0.005 a 0.01%). Transforma-se no organismo em EtHg (CH3-CH2-
Hg+) e tiosalicilato, sendo um composto químico altamente instável (Figura 2).
Figura 2. Estrutura química do EtHg
A fórmula patenteada pela Eli Lilly Company é utilizada como adjuvante
farmacotécnico com função de conservante em produtos farmacêuticos, sendo
21
amplamente empregada em vacinas e em líquidos protetores de lentes oftálmicas
(Geier et al., 2007; Prado et al., 2004; Migowski, 2007). Durante vários anos, este
fármaco foi usado como agente bacteriostático e fungistático tópico, sendo
apresentado na forma de tintura (solução hidroalcoólica a 0,1%), geralmente,
indicado para anti-sepsia de pequenas escoriações e ferimentos. A literatura é
significativa sobre as propriedades anti-sépticas do timerosal, comparando-o com os
outros compostos químicos empregados como anti-sépticos e concluindo que sua
ação é moderada (Litter, 1986; Prado et al.; 2004).
O timerosal, usado para uso tópico, chegou a ser um dos medicamentos de
maior venda livre, pelo fato de ser único no mercado e estar aliado a uma forte
propaganda que prometia muito mais eficácia do que realmente tinha (Ball et al.,
2001; Geier et al., 2007; Prado et al., 2004; Rodrigues e Saito; 1991; Valle et al.,
1991). A avaliação risco/benefício ficava evidente quando se comparava o
coeficiente fenólico do timerosal com os demais anti-sépticos. Litter (1986) cita que o
coeficiente fenólico da polivinilpirrolidonaiodo é 200, enquanto o timerosal apresenta
40. Prado et al. (2004) descreve que o fármaco tem pouca atividade contra bactérias
gram-negativas, sendo as Pseudomonas e Staphylococcus aureus resistentes aos
derivados de amônio quaternário.
No Brasil, em 8 de junho de 2001, o Diário Oficial da União publicou a
resolução nº 528, do Ministério da Saúde (de 17 de abril do mesmo ano), que
suspendeu a venda de produtos à base de timerosal (como o mertiolate e o
mercurocromo) em todo o país. A Agência Nacional de Vigilância Sanitária (ANVISA)
proibiu o uso desse composto alegando tratar-se de uma substância mercurial que,
segundo diretrizes internacionais, ofereceria risco de toxicidade aos usuários. Em
seu comunicado à imprensa, a ANVISA diz que a decisão foi tomada ―tendo em vista
22
a tendência mundial da diminuição da exposição de seres humanos a produtos à
base de derivados de mercúrio‖, e determina à imediata ―proibição da utilização de
derivados de mercúrio em medicamentos fabricados no Brasil, exceto vacinas‖. O
comunicado esclarece ainda que ―o tiomersal (derivado de mercúrio) não será usado
como remédio, mas apenas como conservante de vacinas, por recomendação da
Organização Mundial de Saúde‖. (grifo meu)
A retirada abrupta do timerosal por exigência da ANVISA veio trazer a público
uma série de questionamentos, entre eles, por qual razão este fármaco ficou tanto
tempo no mercado, se desde 30 de junho de 1980 existia a Portaria n. 07/Dimed
(DO n. 125 de 7/7/1980), revogada pela Portaria 10/80, proibindo a fabricação de
medicamentos contendo substâncias compostas de Hg isoladas ou associadas e
dava prazo de 30 dias para as empresas modificarem a formulação sob pena de
revogação do respectivo registro. O fabricante do produto referência (Merthiolate), ao
tomar conhecimento da Resolão 528/2001 da ANVISA, imediatamente substituiu o
timerosal por um composto derivado de amônio quaternário, o cloreto de benzalcônio,
que segundo Prado et al. (2004) tamm apresenta fracas propriedades anti-sépticas.
1.2 VACINAS
Entre as intervenções de saúde pública que tiveram maior impacto sobre a
saúde das pessoas estão a água potável e as vacinas. Graças a pioneiros como
Edward Jenner e Louis Pasteur, as vacinas evitam doenças e morte de milhões de
pessoas no mundo inteiro, todos os anos. Porém, ainda um longo caminho a
percorrer. Quando se discute a medicina moderna, poucos temas são tão polêmicos
quanto à vacinação. É uma história repleta de jogos políticos, grandes empresas, pais
desesperados, crianças doentes e morrendo, conflitos de interesse e a seguraa
23
nacional que envolve a controvérsia do aborto, uma vez que muitas vacinas são
criadas utilizando células de fetos abortados (Allen, 2007; Kennedy, 2005; Moreira,
2002, Temporão, 2003; Weisberg, 2007).
O assunto é polêmico.
A oposição às vacinas não é algo realmente "novo". E apesar de contestada
desde suas origens, a vacina acumula defensores entre a maioria dos profissionais
de saúde, cientistas e autoridades que atuam na esfera da saúde coletiva, bem
como uma quantidade significativa de ferrenhos adversários. Hoje, as vacinas e os
protocolos tradicionais de imunização estão sob fogo cruzado e as pessoas tem se
perguntado se os riscos são dignos dos benefícios que elas proporcionam. Contudo,
é inegável que as vacinas são a parte de benéfica de uma estratégia global de
saúde preventiva que reduziu grandemente as mortes por doenças infecciosas e
levou à erradicação da varíola, a eliminação da poliomielite na maioria dos países e
ao controle de muitas outras doenças, incluindo sarampo, rubéola, tétano e difteria
(Allen, 2007; Moulin, 2003; Ponte, 2003; Stewart e Devlin, 2006; Weisberg, 2007).
Então, não é surpreendente que haja um debate atual sobre a segurança e a
importância das vacinas, pois isso acontecia antes mesmo da primeira vacina ser
introduzida. A vacina foi desenvolvida a partir de uma antiga técnica praticada na
Ásia a ―variolização‖ que consistia em infectar um paciente são com um fluido de
uma pústula de varíola humana. Isto geralmente reduzia a severidade da infecção,
pois causava uma manifestação moderada e controlada da varíola, tornando os
inoculados imunes à doença (Stewart e Devlin, 2006; Wilson e Marcuse, 2001).
Esta prática foi introduzida no Reino Unido, em 1721, por Lady Mary Wortley
Montagu, esposa de um diplomata britânico na Turquia. Lá, ela notou que algumas
senhoras não tinham cicatrizes da doença. Prontamente, ela inoculou seus dois
24
filhos e se tornou uma ativista da variolização (Stewart e Devlin, 2006; Weisberg,
2007; Wilson e Marcuse, 2001). A popularidade da variolização aumentou pouco a
pouco, apesar da forte oposição de muitos médicos que igualavam a técnica ao
assassinato de uma criança, ao expô-la a doença (Stewart e Devlin, 2006). Benjamin
Franklin inicialmente se opôs a variolização, mas mudou de idéia após seu filho de 4
anos, não vacinado, morrer em decorrência da varíola. Ele escreveu em sua
autobiografia que "lamentou amargamente" não ter vacinado seu filho (Stewart e
Devlin, 2006; Weisberg, 2007).
A vacinação foi, inicialmente, realizada em 1796 por Edward Jenner. Ele
observou que ordenhadores de vaca mostravam-se imune à varíola. Todas essas
pessoas tinham se contaminado com cowpox, uma doença do gado semelhante à
varíola, pela formação de pústulas, mas que não causava a morte dos animais. Após
uma série de experiências, constatou que estes indivíduos mantinham-se refratários
à varíola, mesmo quando inoculados com o vírus. Com o pus retirado de uma pústula
de uma ordenhadora que apresentava cowpox, ele inoculou o filho de seu jardineiro.
O garoto contraiu uma infecção benigna e, dias depois, estava recuperado. Meses
depois, expôs Phipps a um pus varioloso e o menino, felizmente, não desenvolveu a
doença (Jenner, 1798).
Era a descoberta da vacina.
Jenner publicou sua pesquisa em 1798, Variolae Vacciniae, mas persistia uma
grande oposição na classe médica e na população em geral (Stewart e Devlin, 2006;
Wilson e Marcuse, 2001). Grupos religiosos alertavam para o risco da degeneração
da raça humana pelo contágio com material bovino, apelidado de ―vacalização‖ ou
―minotaurização‖ (Fig. 3). Essa generalizada oposição a vacina obrigatória de Jenner
foi deflagrada por rumores e boatos que atribuíam as mais variadas complicações a
25
vacinação: de febres, amputação do braço e até mesmo a morte por ―envenenamento
do sangue meses mais tarde‖.
As semelhanças entre a oposição à vacina contra a varíola e as controvérsias
atuais em torno da vacinação são óbvias.
Figura 3.The Cow-Pock or The Wonderful Effects of the New
1
No mundo inteiro se criou leis para a vacinação obrigatória, como o ato do
parlamento inglês para promover a expansão e tornar compulsória a prática da
vacinação (Act to further extend and make compulsory the practice of vaccination),
de 1853. Este ato obrigava a toda criança ser vacinada dentro de três meses após o
nascimento. No registro de nascimento da criança, os pais eram notificados sobre a
obrigatoriedade da vacinação para se obter os registros de nascimento, casamento
e morte (Fig. 4). Se a vacinação fosse bem-sucedida, um certificado de vacinação
era entregue (Fig. 5).
1
De James Gillray (1757-1815), foi publicado na Inglaterra em 12 de junho de 1802 pela Anti-Vaccine Society. O
quadro mostra Edward Jenner entre pacientes no Small Pox and Inoculation Hospital, em St Pancras (Londres),
e sugere a transformação de indivíduos vacinados em vacas, após a vacinação.
26
Figura 4. Certificado de vacinação compulsória de Walter Willian Charles Vicent
2
.
2
Retirado de Stewart e Devlin, 2006.
27
Figura 5. Certificado de vacinação bem-sucedida de Walter Charles Willian Vicent.
3
3
Retirado de Stewart e Devlin, 2006.
28
O experimento clínico de Jenner de imunização com o vírus da varíola e a
publicação de sua pesquisa, deu origem a imunologia, mas nem um entendimento
das bases de sua eficácia, nem a aceitação universal da sua prática foi seguido. Ao
contrário, ceticismo e alarme público e científico é, sempre, a primeira reação (Allen,
2007; Bazin, 2001; Wilson e Marcuse, 2001).
A vacina jenneriana é um exemplo excepcional de empirismo científico, mas
também um símbolo sujeito a diversos significados e apropriações. A fluidez da
significação, traduzida na diferença entre discurso, regulamentação e prática, longe
dos rigores do laboratório bacteriológico que se consolidaram depois de 1880, faz da
vacinação um palco significativo de métodos e dinâmicas sociais inscritos nas
práticas da saúde (Porto e Ponte, 2003; Saavedra, 2004; Wilson e Marcuse, 2001).
Acusada de desviar a atenção e investimentos de problemas econômicos e
sociais básicos cujos impactos prevaleceriam sobre o quadro sanitário e qualidade
de vida da população, também é criticada por aqueles que defendem que o uso
continuado de uma substância biologicamente ativa é incerto e generalizante quando
se considera a multiplicidade e variabilidade do organismo humano (Ponte, 2003). O
debate envolve grupos religiosos, políticos e científicos, dos mais variados matizes
(Clements e Mcintyre, 2006; COMED, 2007; Geier e Geier, 2006a; Moulin, 2003;
Ponte; 2003; Temporão, 2003) e por vezes, ao longo da história, tem aproximado
oponentes de posições mais convergentes, quando grupos antivacinistas afirmam não
serem contra a vacinação e sim contra a vacinação sistemática, corroborando com
aqueles que, acreditando no uso das vacinas pelas autoridades de saúde pública
como algo imprescindível, admitem a flexibilização dos índices de cobertura vacinal,
reduzindo-os em alguns casos à vacinação de bloqueio (Moulin, 2003; Ponte, 2003).
As vacinas são, provavelmente, o principal instrumento de saúde pública
29
posto à disposição dos tomadores de decisão, apesar da oposição que sofre desde
suas origens. O século passado foi ameaçado pelo fantasma das grandes epidemias
que atingiriam milhões de indivíduos devido à intensa movimentação das pessoas; à
devastação florestal, à eclosão de guerras e à possibilidade do uso de patógenos
em atentados terroristas e em conflitos entre nações (Ponte, 2003; Temporão, 2002;
Wilson e Marcuse, 2001).
Nos últimos anos houve um grande número de publicações sobre o
desenvolvimento e o uso de vacinas para evitar o surgimento epidemias cada vez
mais abrangentes (Clements e Mcintyre, 2006; COMED, 2007; Moulin, 2003, Ponte,
2003; Temporão, 2003; WHO, 2006c). Contribuem para esse processo previsões
bastante pessimistas de segmentos da epidemiologia que acreditam, por exemplo,
que o mundo será, em futuro próximo, assolado por uma pandemia de influenza que
ceifará milhares de vidas e arruinará a economia de muitos países. Verdadeiras ou
falsas tais previsões passaram a povoar o imaginário de setores da opinião pública,
fortalecendo a posição daqueles que defendem a ampliação do uso de vacinas.
Se Shakespeare tinha razão ao escrever que o mundo é um palco, então,
certamente há muitos atores neste palco. E eles estão freqüentemente interpretando
diferentes scripts. Na verdade, eles têm interesses muito diferentes.
1.2.1 Eventos Adversos e Vacinas Conservadas com Timerosal
A utilização de conservantes em vacinas foi instituída logo após a ocorrência
de acidentes trágicos de contaminação de frascos multidoses sem conservantes. Na
Austrália, em janeiro de 1928, durante a campanha de vacinação contra a difteria, de
21 crianças vacinadas por via subcutânea, 12 morreram nas 24-48 horas devido à
infecção por estafilococos (Zambrano, 2004). Em 1968 os EUA instituíram o uso de
conservantes (incluindo o timerosal) em frascos de vacinas multidoses, exceto as de
30
vírus vivos atenuado, como a SRC (tríplice viral, contra sarampo, rubéola e caxumba),
pólio oral e febre amarela (Bernier et al., 1981; Simon et al., 1993; Migowsk, 2007).
A vacina mais arrolada a eventos adversos pós-vacinais é o componente
pertussis da vacina tríplice bacteriana DTP ou quádrupla bacteriana que associa a
DTP à vacina Hib. O pertussis é responsável por eventos adversos, que, mesmo
raros, podem ser graves (Edlich et al., 2007; Fombonne, 2001; Geier e Geier, 2006a;
2007b; Maya e Luna, 2006). Evidências preliminares sugerem que o timerosal pode
estar associado a dificuldades na aquisição da linguagem, ao Transtorno de Déficit de
Atenção e Hiperatividade (TDAH) ou Distúrbio de Déficit de Atenção (DDA) (Blaxill,
2004; Doja e Roberts, 2006; Mutter et al., 2005). Milhares de famílias registraram
queixa junto ao Programa de Compensação as Injúrias Vacinais (VICP) do governo
norte-americano (figura 6) e, atualmente, todos os fabricantes e distribuidores de
VCT estão sendo processados nos EUA (Kennedy JR, 2005; Sugarman, 2007).
Figura 6. Gráfico das reivindicações apresentadas junto ao Programa de Compensações as Injúrias
Vacinais dos Estados Unidos (US Vaccine Injury Compensation Program), no período de 1989-2007
4
.
4
Retirado de Sugarman, 2007. Vacinações após 1988 (Post-1988) são aquelas que ocorreram em ou após 1 de
outubro de 1988; vacinações pré-1988 são aquelas que ocorreram antes de 1 de outubro de 1988 (pre-1988). Os
dados são da Administração dos Serviços e Recursos de Saúde dos EUA (US Health Resources and Services
Administration).
31
Desde o dia 11 de junho de 2007, em Washington, um Tribunal Federal de
Reclamações (Court of Federal Claims) está sendo confrontado com uma questão
controversa e altamente emocional: saber se vacinas podem ter causado autismo
em milhares de crianças norte-americanas. O processo envolve queixas de milhares
de famílias que atribuem às vacinas a responsabilidade pelo autismo diagnosticado
nos seus filhos. A maioria dessas famílias afirma que o timerosal das vacinas é o
responsável pelas disfunções na interação social e de comunicação de suas
crianças, fruto da alteração do espectro autista (COMED, 2007; Edlich, 2007; US
Vaccine Court, 2007).
Esse é um dos mais importantes processos judiciais na história médica norte-
americana. Ali, um júri especial composto de três juízes começou a ouvir as
evidências para apoiar ou refutar a hipótese de que o Hg em vacinas causou
autismo ou sintomas semelhantes ao autismo em crianças. É a primeira vez em que
a evidência sobre o dano autista das vacinas é analisada em uma corte legal.
Tecnicamente, este não é, de todo, um julgamento. É um "Autism Proceeding
Omnibus", sem culpados. Os juízes não são chamados de juízes, mas "Special
Masters"; as famílias demandantes e seus advogados são denominados de
―peticionários‖. E o réu, denominado "inquirido", não é uma droga potente, e sim, o
Departamento de Saúde e Serviços Humanos dos EUA (United States Department
of Health and Human Services DHHS), representado pelos bempagos advogados
do Ministério de Justiça Norte-Americano.
Os três juízes do Tribunal de Vacinação (Vaccine Court) mergulharam nas
águas intensas e contraditórias da querela vacina-autismo, sabendo que devem
emergir do outro lado, cada um com sua própria decisão sobre o nexo causal. Por
fim, devem emitir juízo sobre algumas das 4900 queixas.
32
Em sua defesa o CDC apresentou um estudo onde foram avaliados quatro
anos da sua vasta base de dados sobre eventos adversos pós-vacinais e não se
encontrou qualquer ligação entre timerosal e autismo (US Vacinne Court, 2007). O
outro lado foi impedido de ver os dados brutos originais, de modo a reproduzir o que
os pesquisadores do CDC descobriram. A reprodução exata dos dados originais é
impossível porque, de algum modo, "desapareceram" e não estão mais disponíveis
para a re-análise, num provável crime de violação da lei federal norte-americana de
qualidade dos dados (COMED, 2007, Marques, 2008).
Conceitos importantes em vacinas (Bigham e Copes, 2005; Clements, 2004)
Thimerosal-free (livre de timerosal): Indica que a vacina não conm timerosal,
como conservante ou remanescente do processo de fabricação da mesma.
Preservative-free (livre de conservante): Indica que não se adicionou timerosal
como conservante na vacina, mas ele foi usado no processo de fabricação.
Podem estar presentes traços de Hg (< que 0,5 µg/0,5 mL) no produto final.
Redução do timerosal: Indica que estão tentando diminuir expressivamente a
quantidade de timerosal. A vacina não pode ser considerada ―isenta de timerosal‖.
1.2.2 Quantificando o timerosal das vacinas pediátricas (Marques et al., 2007b)
O timerosal tem aproximadamente 50% de Hg por peso. Uma solução de
0,01% (1 parte por 10.000) de timerosal contém 50 μg de Hg por dose 1 mL ou 25
μg de Hg por dose de 0,5 mL (Quadro 1). Por exemplo, cada dose da vacina
combinada DTP+Hib disponível no calendário oficial de imunizações brasileiro
(Brasil, 2007) pode conter entre 25 a 50 µg de Hg/dose (0,5 mL), dependendo do
fabricante. A vacina pediátrica contra a hepatite B (Hep B) tem 12,5 a 25 µg de
Hg/0,5 mL, também a depender do laboratório fabricante.
33
QUADRO 1. Dose de mercúrio em vacinas para uso infantil
VACINA
Concentração de Timerosal
5
Hg μg/0.5 ml
DTaP
.01%
25
DTP
.01%
25
DT
.01%
25
dT
.01%
25
TT
.01%
25
DTwP-Hib
.01%
25
Hib
.01%
25
Hep B
.005%
12.5
Influenza
.01%
25
Antimeningocócica
.01%
25
Antipneumocócica
.01%
25
1.3 Limites de Exposição ao Mercúrio: Limitações e Certezas
Atualmente não limites de toxicidade estabelecidos para o EtHg. Os
estudos sobre toxicidade consideram que o MeHg e EtHg podem ser equivalentes
(Bigham e Copes, 2005; Clarkson, 2003, 2007; Magos, 1985; US ATSDR, 1999; US
EPA, 1997). Entretanto, os limites de toxicidade fixados para o MeHg se referem a
uma exposição crônica, por via alimentar e em população adulta, não para uma
administração subcutânea ou intramuscular em RN e crianças, população mais
sensível que a adulta para a exposição a metais pesados. Ou seja, estamos
utilizando limites de exposição crônica por via oral, provenientes de exposição
ambiental ao Hg, frente a exposições intermitentes por via subcutânea e
intramuscular de timerosal, que por sua vez, gera EtHg.
As exposições intermitentes e altas podem presumir um risco maior do que
baixas doses diárias. Por outro lado, se desconhece qual a quantidade de EtHg se
pode considerar segura em uma única dose (caso das VCT), ainda que Magos
(1985, 2001, 2003) tenha interpolado dados de relatos de caso publicados. Embora
5
Uma concentração de 1:10,000 é equivalente a concentração 0.01%. Uma concentração de 1:10,000 contém 25
microgramas de Hg por cada 0.5ml.
34
nenhum nível de ingestão diária tolerável tenha sido proposto para o EtHg, várias
agências publicaram limites máximos de exposição ao MeHg que fornecem uma
orientação para ―tomadores de decisão‖ no governo de populações cronicamente
expostas. No geral, esses limites são propostos com o objetivo de proteger o feto.
Os limites máximos de exposição são calculados das concentrações no cabelo
ou sangue que estão em um estado constante e são propostos para a aplicação em
longo prazo. Para fins de comparação, apresentamos no Quadro 2 os limites de
referência das seguintes Agências Internacionais de Saúde: OMS (WHO, 1996),
Environmental Protection Agency (US EPA, 1997), Food and Drugs Administration
(US FDA, 1982), Agency for Toxic Susbtances Disease Registry (US ATSDR, 1999).
QUADRO 2. Limites de exposição ao metilmercúrio na dieta de um indivíduo adulto.
Environmental Protection Agency (EPA)
0,1 µg/kg/dia
Agency for Toxic Susbtances Disease Registry (ATSDR)
0,3 µg/kg/dia
Food and Drug Administration (FDA)
0,4 µg/kg/dia
Organização Mundial da Saúde (OMS)
3,3µg/kg/semana=0,47µg/kg/dia
Os limites máximos de exposição não representam os níveis absolutos acima
do qual a toxicidade ocorre. Como estas recomendações são propostas para
exposições crônicas, de longo prazo, não para uma exposição máxima de um único
dia, deve-se tomar cuidado ao avaliar exposições calculadas sobre uma base
apropriada de tempo. Uma vez que as diretrizes para os limites de exposição são
derivadas de dados científicos similares, as diferenças entre agências refletem as
variadas suposições e fatores de incerteza que são aplicados na transformação dos
dados científicos em recomendações de políticas públicas. Após essas ressalvas,
atualmente a única possibilidade de estimar os limites de exposição ao EtHg das
VCT é utilizando os valores descritos para MeHg.
Não obstante diferirem em suas margens de segurança, os limites de
exposição ao MeHg reconhecidos pelas agências internacionais são todos da mesma
35
ordem de magnitude: microgramas/kilo/dia (µg/kg/dia). Para elucidar os cálculos de
exposição, adotamos como exemplo uma criança do sexo masculino, no percentil 50
de média de peso corporal, de acordo com a idade. Este cenário supõe que aos seis
meses a criança recebeu todas as vacinas do calendário preconizado pela OMS e
Ministério da Saúde do Brasil (MS), que corresponde a uma dose cumulativa de EtHg
de 187.5 µg
-1
. A exposição ao Hg do nascimento até os 18 meses pode chegar a
212,5 µg
-1
se todas as vacinas que conm timerosal forem administradas (Quadro 3).
QUADRO 3. Exposição ao mercúrio de vacinas pediátricas conservadas com timerosal.
Idade da criaa/
Pesodio
a
Vacina
Timerosal/Hg
g/dose)
Exposição
ao Hg
b
OMS
c
ATSDR
c
EPA
c
FDA
c
0 meses/3,4 kg
Hep B
25/12,5
3,68
7,83
12, 27
36,80
9,20
1 mês/4, 5 kg
Hep B
25/12,5
2,78
5,91
9,27
27,80
6,95
2 meses/5,6 kg
DTP
50/25
4,46
9,49
14,87
44,60
11,15
2 meses/5,6 kg
Hib
50/25
4,46
9,49
14,87
44,60
11,15
Aos 2 meses a administração
da DTP e Hib é simultânea
d
37,5
6,70
14,26
22,33
67,00
16,75
4 meses/7 kg
DTP
50/25
3,57
7,60
11,90
35,70
8,93
4 meses 7 kg
Hib
50/25
3,57
7,60
11,90
35,70
8,93
Aos 4 meses a administração
da DTP e Hib é simultânea
d
37,5
5,36
11,40
17,87
53,60
13,40
6 meses/8,3 kg
Hep B
25/12,5
1,51
3,21
5,03
15,10
3,78
6 meses/8,3 kg
DTP
50/25
3,01
6,40
10,03
30,10
7,53
6 meses/8,3 kg
Hib
50/25
3,01
6,40
10,03
30,10
7,53
Aos 6 meses a administração da
Hep B, DTP, Hib é simultânea
d
62,5
7,49
15,94
24,97
74,90
18,73
18 meses/11,2 kg
DTP
50/25
2,23
4,74
7,43
22,30
5,58
a
Percentil 50;
b
μg de Hg/kg/dia;
c
Número de vezes que supera o limite de segurança estabelecido pelas agências em
μg/kg/dia;
d
no Brasil, desde 2002 foi implantada a vacina tetravalente DTP + Hib, com 50 μg de timerosal.
1.4 A Plausibilidade Biológica
Desde 1999, duas abordagens diferentes foram seguidas com relação às VCT
nos programas de imunização infantil. Os EUA, UE e outros países desenvolvidos
adotaram medidas para eliminar a exposição infantil ao Hg das vacinas. Desde
36
2004, nenhumas das vacinas monovalentes ou multivalentes de rotina
recomendadas e usadas para proteger crianças em idade pré-escolar nos EUA ou
na UE contêm timerosal. A eliminação do timerosal dos programas rotineiros de
imunização infantil nestas jurisdições foi alcançada, essencialmente, pelo uso
exclusivo da monodose (dose única), formato das vacinas sem conservantes (AAP,
1999; EMEA, 1999; 2000; IOM, 2004; US CDC, 1999; 2000).
Contudo, a maioria dos países ainda usa VCT em seus programas de
imunização infantil, uma vez que a OMS continua a defender o uso do timerosal nas
vacinas pediátricas, incluindo para a administração em crianças desnutridas,
prematuras ou com baixo peso. A base da posição da OMS é que os estudos
farmacocinéticos e epidemiológicos não apresentaram evidências convincentes da
toxicidade do EtHg pela exposição através das VCT. E argumenta que o uso destas
vacinas, particularmente nas regiões com elevadas cargas de doenças, provou-se
altamente eficaz na proteção de crianças (WHO, 2006a; 2007).
As duas diferentes abordagens quanto à questão do timerosal nas vacinas
continuam a gerar confusão entre os pais e trabalhadores de saúde que administram
vacinas. Mesmo nas jurisdições aonde timerosal foi eliminado das vacinas infantis
administradas rotineiramente, ainda VCT que podem ser recomendadas para
algumas crianças de alto risco. Por exemplo, vacinas contra influenza, doença de
Lyme, doença pneumocócica invasiva ou contra a raiva humana (Fombonne et al.,
2006; Geier e Geier, 2007a; COMED, 2007).
Diversas publicões científicas relacionam o aumento no número de casos de
DN tais como atraso na linguagem, alterações de conduta e síndrome autista a
maior exposição que sofre a população infantil ao Hg orgânico das vacinas, devido a
um calendário de imunização cada vez mais repleto de VCT (Bernard, 2001; Blaxill,
37
2004; Blaxill et al., 2004; Doja e Roberts, 2006; Geier e Geier, 2006a; 2007b; Herman
et al., 2006; Maya e Luna, 2006; Mutter et al., 2005; Shevell e Fombonne, 2006).
O estudo realizado pelo IOM, publicado em 1 de outubro de 2001, concluiu
que a evidência científica era imprópria para aceitar ou descartar uma relação de
causa e efeito entre a exposição de crianças ao timerosal presente nas vacinas
infantis e transtornos do desenvolvimento neurológico como, síndrome autista,
transtornos de hiperatividade e atrasos da linguagem, pois seria necessário realizar
mais estudos para se estabelecer ou rechaçar uma relação causal (US CDC, 2001).
Contudo, concluíram que DN relacionadas à exposição ao Hg de VCT é uma hitese
biologicamente plausível. Além disso, recomendou esforços para abolir o timerosal
das vacinas como medida preventiva de saúde pública para reduzir a exposição ao
Hg em RN e crianças. Dois anos depois um estudo epidemiológico mostrou um
incremento no risco relativo de sofrer de DN e enfermidades cardíacas com doses
maiores de Hg. Isto indicaria que quanto maior a dose de Hg maior a probabilidade
de sofrer danos durante o desenvolvimento neurológico (Geier e Geier, 2003a).
A plausibilidade da associação entre a exposição ao EtHg derivado das VCT
e efeitos para a saúde foi baseado no seguinte:
Presumidas similaridades na farmacocinética e efeitos toxicológicos do EtHg e
do MeHg.
Reações de hipersensibilidade após baixas doses de exposição a produtos
contendo timerosal.
Aumentos mensuráveis de Hg no sangue de crianças após imunização com
VCT.
Evidência de um efeito dose-resposta a altas doses de exposições ao EtHg tanto
alimentares quanto ocupacionais, agudas ou crônicas.
38
1.4.1 A farmacocinética e toxicologia do MeHg e do EtHg
Preocupações a respeito da segurança do timerosal (que contém EtHg) foram
baseadas em estudos que sugerem efeitos adversos em crianças com exposição in
utero ao MeHg em níveis antes considerados seguros (Grandjean, 1997; US CDC,
1999; 2000; WHO, 1991). A similaridade da farmacocinética e toxicológica foi
postulada em função das estruturas químicas e efeitos para a saúde similar em
doses elevadas. O metabolismo e mecanismos toxicológicos de ação do EtHg e
MeHg são complexos e diferenças significantes na farmacocinética entre esses dois
compostos estão sendo reconhecidas.
Duas diferenças importantes são a meia-vida significantemente mais curta do
EtHg no sangue e menor movimento de EtHg através da barreira hematoencefálica.
Magos (2003) estimou uma meia-vida corrigida alometricamente de 18 dias para o
Hg administrado como timerosal, que estava dentro de 10% dos níveis mensurados
de Hg no sangue relatados por Pichichero et al. (2002). Os dados apresentados por
Magos indicam que a acumulação transiente do Hg no sangue é resultado da
vacinação com VCT nos intervalos de dose de 4-6 semanas comumente indicados
para imunização infantil em países em desenvolvimento.
Os efeitos toxicológicos da exposição ao MeHg in utero são relevantes para o
EtHg?
Estudos de longitudinais são baseados na exposição ao MeHg. Esses estudos
acompanharam crianças cronicamente expostas no período pré-natal e pós-natal
(via alimentar) a baixas doses de Hg e foram realizados nas ilhas Seychelles
(Davidson et al., 1998; Myers, et al., 2003), nas ilhas Faroes (Grandjean et al., 1997,
1999, 2007), e na Nova Zelândia (Crump et al., 1998). Nas Seychelles, as exposições
crônicas in utero e em baixas doses resultaram de mães que tinham uma dieta
39
essencialmente baseada em peixes, enquanto o consumo de peixes das mães das
Ilhas Faroes mudava intermitentemente para o consumo de carne e gordura de
baleias piloto.
O estudo das Seychelles usou cabelo materno e da criança para avaliar a
exposição pré-natal e infantil ao Hg e escalas neurodesenvolvimentais para avaliar
os efeitos, não encontrando nenhum dano neurológico em crianças até os nove anos
de idade (Myers, et al., 2003). O estudo das Faroes usou sangue umbilical e cabelo
infantil para avaliar a exposição pré e pós-natal ao Hg, respectivamente, e testes
neurodesenvolvimentais de domínio específico para avaliar os efeitos, relatando
déficits neurológicos sutis em escores de memória, atenção e linguagem entre as
crianças testadas quando completaram sete anos de idade. Segundo os autores, a
exposição pós-natal ao Hg foi menos preditora desses efeitos do que a exposição
pré-natal. Os resultados dos testes neurocomportamentais não foram consistentes
para predizer disfunções tardias (Grandjean et al., 1997, 2007). O estudo da Nova
Zelândia correlacionou a exposição pré-natal ao MeHg estimado de análises de
amostras maternas coletadas durante a gravidez com resultados de testes
psicológicos e educacionais aplicados em crianças de seis e sete anos de idade. Um
possível efeito sutil do Hg foi detectado após a exclusão de um par mãe-filho “outlier”
das análises (Crump et al., 1998).
A exposição infantil ao Hg de VCT difere da exposição dos estudos das Ilhas
Faroes, Seychelles e Nova Zelândia em diversos aspectos-chaves. Primeiro, as
circunstâncias da exposição são diferentes da exposição pós-natal associada
apenas com a vacinação infantil. Em segundo lugar, a rota de exposição (parenteral
vs oral) é diferente, e terceiro, a exposição da vacinação é intermitente, enquanto
nesses três estudos é contínua.
40
1.4.2 Reações de hipersensibilidade após exposição a baixas doses de
timerosal
O timerosal é associado a reações alérgicas dérmicas de contato
(hipersensibilidade tardia). Entre 1% a 16% dos indivíduos testados exibiram alergia
dérmica. Hipersensibilidade imediata (anafilaxia) e desordens imunes
(glomerulonefrite) também foram relatadas em associação com exposição aos
produtos contendo timerosal (Bigham e Copes, 2005, Cox e Forsyth, 1988; Ellis,
1947; Forstrom et al., 1980; Geier et al., 2007).
1.4.3 Evidências da relação dose-resposta na exposição a altas doses de EtHg
Na China no início dos anos 1980, o consumo do arroz tratado com EtHg
causou uma multiplicidade de sintomas neurológicos incluindo fraqueza, vertigens,
torpor, parestesia e ataxia, identificados nas pessoas moderadamente afetadas em
níveis de exposição de 0.5
mg/kg de peso. Nascimento et al. (1990) não apenas
relatou uma morte em conseqüência da ingestão de timerosal, como também
advertiu sobre o onipresente perigo do envenenamento por timerosal. Magos (2001)
relatou que nenhum efeito adverso foi observado em níveis de Hg no sangue entre
140 e 650 ng/L em cinco adultos, avaliados 11-22 dias após exposição a doses
variadas de EtHg de alimentos contaminados, infusão ou aplicação tópica de
produtos farmacêuticos contendo EtHg. O LOAEL (níveis mais baixos em que efeitos
adversos foram observados) no sangue foi de 1000 ng/L. Embora as relações dose-
resposta tenham sido construídas de exposições pré-natal ao MeHg, nenhuma
relação dose-resposta foi estabelecida para exposições pós-natal a EtHg nas doses
utilizadas em vacinas.
41
1.5 Timerosal e Distúrbios do Desenvolvimento Neurológico
O Centro para Prevenção e Controle de Doenças dos EUA (CDC) entre o final
dos anos 1980 e durante os anos 1990 expandiu o número de doses de VCT a
serem administradas em crianças americanas. A vacinação de rotina foi
gradualmente ampliada de uma administração de cinco doses da vacina contra DTP
para, no final, incluir três doses da vacina hep B (a primeira dose administrada nas
primeiras 24h de vida), e de quatro doses da Hib. Adicionalmente, o CDC também
passou a indicar que três doses da vacina contra influenza fossem administradas a
populações infantis específicas (a primeira dose administrada aos seis meses de
idade). Logo, segundo o calendário de imunização americano, a exposição total ao
Hg das VCT poderia ter sido de 200 µg de Hg nos primeiros seis meses da vida
(Geier e Geier, 2003; Marques, 2008).
O IOM, por determinação do congresso americano, realizou no início dos anos
1990 um estudo que envolveu queixas contra a vacina contra coqueluche. O grupo
investigou dezoito tipos de efeitos adversos associados à vacina, entre os quais morte
súbita de bebês, agitação e espasmos, encefalite, meningite, autismo, anafilaxia e
diabetes. Após vinte meses avaliando estudos de casos, estatísticas epidemiogicas,
experiências com animais e estudos laboratoriais, a comissão descartou toda e
qualquer relação causal entre a vacina e autismo. Reconheceu evidências de que
ela pode provocar agitação, encefalite e choque anafilático e deixou sem resposta o
resto das perguntas alegando insuficiência de dados (COMED; Sugarman, 2007).
Vários autores afirmam que o papel do Hg nos danos ao sistema neurológico
e imunológico associados a atrasos de desenvolvimento está comprovado (Doja e
Roberts, 2006; Holmes et al., 2003; Geier e Geier, 2006b; 2007a; 2007b; Mutter et
al., 2004, Walker et al., 2006). Mesmo assim, os laboratórios produtores continuam
42
enviando milhões de doses de VCT (sob os auspícios da OMS) para países em
desenvolvimento, onde a regulamentação e fiscalização de medicamentos não
proíbem o uso de timerosal como conservante (WHO, 2002; 2007).
1.5.1 Estudos Laboratoriais
Estudos em humanos: mudanças do Hg no sangue as o uso de VCT em crianças
Os estudos em Rochester (EUA) sugerem que a meia-vida do EtHg é de
apenas 7 dias comparados aos 40-50 dias para o MeHg e é excretado no
intestino, não se acumulando ativamente no corpo. Pichichero et al. (2002)
comparou amostras de fezes, sangue e urina de crianças entre 2 e 6 meses de
idade, expostas a VCT (DTP e Hep B, algumas receberam Hib) e controles que
receberam vacinas livres de timerosal. A administração de VCT não elevou os níveis
sanguíneos de Hg acima do limite considerado seguro. O EtHg parece ser eliminado
rapidamente do sangue através das fezes após injeção parenteral de VCT. Os
autores, porém, não conseguiram medir quanto do EtHg cruzou a barreira
hematoencefálica (impossibilidade virtual em humanos, sobretudo crianças) nem se
houve algum dano neurológico decorrente da imunização. Eles concluíram que o
timerosal nas doses usadas em vacinas oferece pouco risco para crianças a termo,
mas não deve ser administrado ao nascimento em crianças prematuras e de baixo
peso ao nascer (não incluídas no estudo).
Stajich et al. (2000) descreveram que a imunização com uma única dose da
vacina Hep B (12.5 µg/g
-1
de EtHg), resultaram em aumento no nível médio de Hg no
sangue de prematuros quando medido 2-3 dias após a vacinação. Ainda que os
prematuros tenham recebido doses mais altas (µg/kg) que as crianças a termo, as
concentrações sanguíneas de Hg pré-vacinação entre prematuros e a termo foram
mais altas que a razão de correspondência da concentração de Hg sanguíneo pós-
43
vacinação. Isto indicaria que os prematuros excretaram uma proporção maior da
dose de Hg/kg de peso do que crianças a termo. Para os autores, permanece incerto
se os níveis mais altos de Hg no sangue, subseqüentes a imunização com VCT,
detectados nas crianças prematuras ou de baixo-peso oferecem qualquer risco
toxicológico mensurável.
Pichichero e Stajich supõem que a menor massa corporal aumentaria em
proporção às concentrações de timerosal. Assim, é provável que todo o EtHg
tenha sido excretado pelo corpo quando a dose vacinal seguinte for administrada; e
os níveis de pico são determinados pela quantidade de EtHg administrada. Logo, a
pergunta seguinte é qual a proporção (se houver) de Hg no sangue cruza a barreira
hematoencefálica, que níveis de EtHg norebro são alcaados, e se o nível é lesivo.
Estudos em modelos animais
Burbacher et al. (2005) mediram a distribuição sistêmica e no cérebro do Hg
total e inorgânico em macacos não expostos ao timerosal e compararam-nos com
macacos expostos ao EtHg. Os níveis de Hg no sangue em macacos evidenciaram
que a meia-vida do EtHg é muito mais curta quando comparado ao MeHg.
1.5.2 Estudos Epidemiológicos
A literatura anterior a 1999 consiste, principalmente, de estudos não
toxicológicos do MeHg e de síndromes clínicas associadas a aplicação tópica de
produtos farmacêuticos contendo timerosal. Desde 1999, houve um aumento
esperado nos estudos sobre avaliação de danos neurodesenvolmentais causados
pelo timerosal. Porém, apenas 12 publicações apresentaram dados novos
expressivos ou novas abordagens para dados existentes. Seis concluíram que não
evidências de insulto neurológico ou psicológico relacionado ao Hg de VCT. Em
44
contraposição, Geier e Geier publicaram 6 artigos apontando que essa relação
existe. Como poucos artigos originais e o debate científico em torno do assunto
se articula neles, cada um foi revisado e sumarizado no Quadro 4.
QUADRO 4. Fontes de dados epidemiológicos primários investigando possíveis associações
entre vacinas conservadas com timerosal e aparecimento de sintomas neurológicos.
Autor (s)
Tipo de Estudo
Ligação com alterações
neurodesenvolvimentais
Possíveis associações
Andrews
(2004)
Coorte
retrospectiva
Não confirmado
Convulsões, espasmos
Heron et al.
(2004)
Coorte
Prospectiva
Não confirmado
Nenhuma
Haviid et al.;
(2003)
Coorte
retrospectiva
Não confirmado
Nenhuma
Madsen
(2003)
Coorte
retrospectiva
Não confirmado
Nenhuma
Verstraeten et
al. (2003)
Coorte
retrospectiva
Inconclusivo: Não
confirmado
Desordens na linguagem,
na fala, déficit de atenção,
convulsões, espasmos.
Stehr- Green
(2003)
Ecológico
Não confirmado
Nenhuma
Geier (2003a;
2003b; 2004a;
2005; 2006a;
2006b)
Coorte ecológica
e retrospectiva
Ligação confirmada em
seis artigos
Diversas associações
confirmadas
45
2 A HIPÓTESE
2.1 As vacinas são seguras?
O método introduzido por Jenner, em 1796, veio a ser chamada de
―vacinação‖, de Vacca, a palavra latina para vacas e a substância usada para
vacinar foi chamada de ―vacina‖. Vacinas são injeções que contém uma parte ou o
todo de um patógeno que aumenta a resposta imune, mas não deve causar a doença.
São administradas para induzir o desenvolvimento da resposta imune e proteger o
indivíduo contra um patógeno ou toxina (Prescott, 1996); para trabalhar estimulando
o corpo a produzir anticorpos, proteínas que defendem o corpo de uma invasão de
genes perigosos. Agora, mais de 200 anos depois, avançamos de uma época em
que a vacinação era um evento raro, e as teorias de Jenner sobre a imunização não
eram amplamente aceitas, para os anos 2000, quando as vacinas se tornaram tão
banais que a maioria das crianças recebe várias delas antes de chegarem ao
primeiro aniversário. Seres humanos em todo o mundo, de todas as idades são
vacinados contra muitas doenças O resultado dessa vacinação em massa tem sido
uma acentuada diminuição das doenças que assolaram a população mundial.
Entretanto, nas últimas décadas um número significante pessoas tem se
preocupado com a segurança das vacinas. Este movimento vem da apreensão de
que algumas vacinas podem ter complicações, muitas vezes sérias, com seqüelas
permanentes. As cepas virais atenuadas usadas nas vacinas contra poliomielite,
sarampo, rubéola e varicela tem o potencial para transformar-se em cepas mais
virulentas e causar sérias enfermidades em crianças ou cuidadores susceptíveis.
46
Como qualquer vacina tem o potencial de aumentar uma resposta anafilática em
indivíduos alérgicos, essas preocupações têm levado muitos pais a recusarem
vacinar suas crianças. Somam-se a isso, as baixas taxas de vacinação em
populações que tem dificuldade de acesso aos serviços de saúde e uma fração
crescente de crianças que estão novamente suscetíveis a essas doenças.
A maioria das pessoas acredita que as vacinas são seguras e eficazes. Como
dito antes, elas certamente ajudaram a erradicar ou reduzir a ocorrência de doenças
letais, como a varíola, pólio e coqueluche. Contudo, devem-se creditar às vacinas o
declínio dessas doenças ou elas são ineficazes e a ausência ou diminuição destas
foi devido à melhoria nas condições de vida?
Esta é a uma das controvérsias que o mundo enfrenta hoje.
Médicos, microbiologistas e outros profissionais da saúde irão atribuir o
declínio nos casos relatados de doenças ao aumento da vacinação em massa. Para
eles, é muito melhor vacinar e correr o risco de complicações de uma vacina que não
vacinar. Os ativistas contra a imunização dizem que isso não vale à pena, pois os
índices de mortalidade já tinham começado a declinar significativamente antes das
vacinas se tornarem disponíveis. E defendem que injetar um patógeno letalmente
conhecido em um hospedeiro saudável é como colocar um revólver e puxar o gatilho
esperando que ele não dispare.
O que nos é divulgado é que o controle das epidemias nos dias atuais é
resultado da vacinação em massa. Em 1967, a OMS recebeu registro de 131.000,00
casos de varíola, em 42 países. Em maio de 1980 a varíola foi oficialmente
considerada erradicada no mundo como resultado das campanhas de imunização
em massa (Scheibner, 1993). Com esta descoberta nós fomos aconselhados a
encerrar os programas de vacinação contra a varíola. A utilidade das vacinas foi
47
comprovada e o sucesso alcançado.
Mas foi isso mesmo?
As estatísticas de muitos países indicam que a varíola estava declinando
antes dos programas de vacinação tornarem-se obrigatórios (Miller, 1993). Isto pode
ser atribuído à melhoria na educação, renda, condições sanitárias e em outras
reformas governamentais que levaram a melhoria na qualidade de vida das pessoas.
Não obstante, uma vez que os programas de imunização se tornaram compulsórios,
mortes por doenças evitáveis por vacina diminuíram.
Todavia, vejamos o exemplo da varíola: a probabilidade de a varíola ser fatal
é cinco vezes maior tanto em indivíduos vacinados quanto em não vacinados
(Scheibner, 1993). A vacina não deveria supostamente proteger contra a doença?
Similarmente à varíola e a poliomielite, a ocorrência de coqueluche também
teve uma diminuição nos casos e mortes associadas à doença (Moulin, 2003). A
doença é causada por uma bactéria que afeta o sistema respiratório, acarretando
severos ataques de tosse, febre e circulação inadequada de oxigênio (Miller, 1993).
Muitos acreditam que a incidência da coqueluche diminuiu devido à melhoria nas
condições de vida, mais que ao uso de uma vacina eficaz. A vacina contra a
coqueluche, chamada DTP, protege também contra a difteria e o tétano. Diversos
estudos afirmam que a DTP pode causar danos cerebrais. Entretanto, O CDC e a
associação médica norte-americana continuam afirmando que não evidências de
que a DTP produza danos cerebrais (Freed et al., 1996, US CDC, 1999; 2000; 2001).
Se vacinas são eficazes por que as estatísticas mostram um aumento nas
taxas de ocorrência de muitas doenças após o início da vacinação? E se as vacinas
são ineficazes, por que a varíola foi totalmente erradicada e a incidência de outras
doenças foi grandemente reduzida desde o início do desenvolvimento das vacinas?
48
Quem está correto?
A controvérsia sobre a vacinação tem origem em um conflito conceitual na
área da saúde que marcou o século XIX e remonta aos famosos debates entre dois
notáveis cientistas: Louis Pasteur e Claude Bernard. Bernard formulou a teoria
segundo a qual a causa de uma doença estava em elementos ambientais, externos
e internos, não passando de uma perda de equilíbrio do corpo gerada por diversos
fatores. Para ele, o corpo é um "terreno" onde os microorganismos podem ou não
atuar de forma lesiva, dependendo das condições que encontram. A doença seria
um sinal do esforço do organismo para reequilibrar-se. Pasteur é autor da teoria
segundo a qual cada doença possui uma causa única, um vírus ou bactéria que
invade o organismo e ali produz um tipo especifico de devastação (Allen, 2007;
Bordenave, 2003; Capra, 2001; Moulin, 2003).
Pasteur venceu a disputa. Ele foi um debatedor talentoso e soube tirar proveito
do surgimento das epidemias daquele tempo para comprovar a coerência do seu
conceito de causação específica. Desde então, todo um modelo centrado na
microbiologia e, recentemente, na biologia molecular, fundamentou os procedimentos
de saúde modernos, incluindo às vacinações em massa. Capra (2001) afirma que,
mais tarde, Pasteur reconheceu a importância do "terreno" para as enfermidades,
tendo ressaltado a influência dos fatores ambientais e dos estados mentais na
resistência às infecções.
Pasteur ou Bernard? No mundo atual, ao que tudo indica, ficou ainda mais
difícil resolver velhas incertezas. Os muitos interesses que envolvem o assunto
gerarão ainda mais questionamentos e críticas mordazes antes que se chegue a
algum acordo. A resposta aos nossos questionamentos não chegará até que haja
pesquisas suficientes e imparciais em relação aos efeitos reais das vacinas.
49
2.1.1 Controvérsias atuais sobre a segurança das vacinas
A comunidade científica tem sido confrontada com as acusações de encobrir
provas de que o Hg em vacinas infantis causa autismo (Allen, 2007; Bernard et al.,
2001; Blaxill et al., 2003; Colgrove e Bayer, 2003; Kennedy Jr, 2005; Nature
Neuroscience, 2001). O timerosal, um conservante de vacinas à base de Hg, está
sob vigilância e investigação pública e profissional e seu uso questionado devido
à crescente conscientização da sua presença em vacinas infantis (Dórea, 2007;
Fombrone, 2006; Geier e Geier, 2007a; Marques et al., 2007b). A principal alegação
é que o composto exporia crianças aos prováveis efeitos neurológicos atribuídos ao
Hg. O uso do mercúrio um conhecido neurotóxico em vacinas não é novo. Ele é
usado para evitar contaminação por fungos e bactérias desde os anos 30, reduzindo
o risco de contaminação na abertura e manipulação dos frascos multidoses (Edlich
et al., 2007; Geier e Geier, 2006; US CDC, 1999; 2000; WHO, 2003).
Nos últimos tempos parece ter aumentado ou pelo menos se tornado mais
visível a ocorrência de eventos adversos de determinadas vacinas, como DPT e
Hep B (Zetterstro, 2004; Geier, 2004; Geier e Geier, 2007, Maya e Luna, 2006). Os
registros de eventos adversos variam da simples irritabilidade ao desenvolvimento
da doença que se pretendia evitar. registro de casos extremos em que a
vacinação resultou em morte (Brasil, 2007; Edilich et al., 2007; Geier e Geier, 2007b,
Sanford e Kimmel, 2002).
O sítio do governo americano para relatos de eventos adversos pós-vacinais
recebeu 108.000 queixas entre janeiro e outubro de 2000, encaminhadas para
averiguação técnica. A maioria dos relatos dizia respeito a desconfortos leves, como
febres e indisposição passageiras, que os cientistas costumam desconsiderar.
Mesmo assim, as referências a complicações colaterais graves, inclusive mortes, em
50
14% das denúncias levou o Serviço de Saúde dos EUA a redobrar a vigilância sobre
os fabricantes de vacinas e a interferir nas normas de produção (US CDC, 1999; US
DHHS, 2007). Outros países também fecharam o cerco às vacinas nos últimos anos,
baixando medidas preventivas (EMEA, 1999; 2000).
Um mero crescente de estudos independentes associa a exposição ao Hg a
problemas neurológicos em milhões de pessoas. De reduções imperceptíveis do QI
a DN mais debilitantes (Geier e Geier, 2007b; Maya e Luna, 2006; Mutter et al., 2004;
Trasande et al., 2005). Por outro lado, uma série de outros estudos ligados ao
establishment da saúde garante que a apreensão é infundada (Clements e Mcintyre,
2006; Fombonne et al., 2006; Migowsk, 2007; Pichichero et al., 2002; Shevell e
Fombonne, 2006; Thompson et al., 2007; Trollfors et al., 2006), que a pequena
quantidade contida nas vacinas seria facilmente eliminada pelo organismo.
É difícil acreditar que níveis de mercúrio 60 a 250 vezes mais elevados do
que os níveis de resíduos perigosos (ATSDR, 2001; EPA, 1997; FDA, 1982; WHO,
2006) sejam chamados de "minúsculos", como querem os defensores do timerosal.
É notório: todas as diretrizes publicadas para exposição ao Hg foram extrapoladas.
Os EUA e países europeus proibiram o uso do timerosal em vacinas. E
apesar da OMS declarar queo há nível seguro para Hg, continua a recomendar sua
utilização nas fórmulas vacinais. Agora, se quantidadeé a palavra-chave, convém
lembrar que a quantidade de VCT foi triplicada no começo dos anos 1990, por
recomendação da própria OMS (WHO, 2006; 2007). Em 1999, quando a Associação
Americana de Pediatria (AAP) e o Departamento de Saúde dos EUA (DHHS)
reuniram-se para revisar e avaliar os riscos do timerosal em vacinas infantis a
hipótese inicial era: se o EtHg e MeHg são quimicamente similares, por conseguinte
devem ter os mesmos efeitos toxicológicos (Magos, et al., 1985; Clarkson, 2007).
51
Assim, a pergunta que precisava ser respondida era: ―O EtHg comporta-se da
mesma maneira que o Hg elementar e o MeHg, se acumula e causa os mesmos
efeitos ou efeitos similares?‖ A pergunta é crucial – pois, se a resposta for ―sim‖, então
não há argumentos: vacinas não devem conter Hg. Pode-se contra-argumentar que a
pergunta não poderia ser respondida por que dados sobre a toxicidade da exposição
humana a baixas doses de EtHg não estavam disponíveis em 1999. Contudo, foram
presumidos como similares àqueles causados por outros compostos organomercuriais
(Ball et al., 2001; Bigham e Copes, 2005; Blaxill et al., 2004; Halsey, 1999; Halsey e
Goldman, 2003).
A controvérsia do timerosal começou de maneira inesperada com uma
―epifania
6
que os limites de exposição para MeHg foram excedidos nas vacinas
infantis. Após a apreensão inicial dos prováveis riscos para a saúde das crianças
relacionados ao Hg nas vacinas, veio a ―constatação‖ de que o que se sabia sobre a
toxicologia do EtHg era insuficiente, a despeito do considerável conhecimento
disponível sobre o MeHg. A literatura sobre o assunto estava limitada a casos de
timerosal aplicado topicamente em doses que excediam, em muito, quaisquer vacinas
(Cox e Forsyth, 1988; Fagan, 1997). Os epidemiologistas e ―cientistas de bancada‖ logo
começaram a publicar seus artigos trazendo a luz difereas entre o perfil toxicológico
do MeHg e do EtHg, e a comprovação da segurança do conservante nas vacinas.
Ainda assim, a opinião pública permaneceu incrédula. Um conjunto de circunsncias
desde 1999 conspirou para criar um ambiente de descrença na população.
O mainstreamcientífico sobre imunização e Hg foi exaustivamente citado
pelos grupos de pressão que eram contrários a remoção do produto das vacinas,
sempre assegurando que não existia comprovação científica da relação entre DN e
6
Epifania: manifestação ou percepção da natureza ou do significado essencial de uma coisa (diciorio Houaiss).
52
o Hg das vacinas. E embora os críticos do timerosal tenham proposto que alguns
dos sintomas do autismo e outras DN fossem análogos aos sintomas associados a
exposições ao Hg, peritos como Nelson e Bauman (2003) discordaram, indicando
que as diferenças clínicas e neuropatológicas entre o autismo e a intoxicação por Hg
extrapolam as similaridades e são limitadas a sintomas não específicos, tais como
ansiedade, depressão e medos irracionais. As conclusões dos experts ofereciam
fortes evidências contra a plausibilidade biológica e epidemiológica da causação.
A reação da opinião pública foi contrária a da comunidade científica.
Mas, se timerosal não tem relação causal com o aumento dos casos de
autismo (Coury e Nash, 2003; Clements e Mcintyre, 2006; Doja e Roberts, 2006;
Thompson et al., 2007), ele causa o que? Coury e Nash (2003) afirmam que a
epidemiologia das desordens do espectro autista mudou. Um aumento na
prevalência foi notado durante as duas décadas passadas. O que não está claro é a
causa deste aumento. Múltiplos fatores parecem ser responsáveis. Entre eles às
mudanças nos critérios diagnósticos e maior consciência por parte dos cuidadores e
pais. Portanto, mais pesquisas são necessárias para ajudar a esclarecer a incidência
e prevalência das DN e sua etiologia. Neste ínterim, epidemiologistas e
toxicologistas precisam centrar atenção em assegurar que todas as evidências
possíveis sejam examinadas e que possam acrescentar novas descobertas sobre a
segurança ou não do timerosal em vacinas.
Halsey declarou em 1999 que muitos dos argumentos contra as vacinas estão
fundamentados em hipóteses não comprovadas ou em elos causais com provas
insuficientes, mas que gradualmente está se dando conta de que existe um risco
real para as crianças; e Clarkson, no mesmo documento, admite que talvez tenha
que rever os resultados de seus estudos sobre Hg em crianças de Seychelles,
53
levando em consideração as VCT administradas, a época, nas crianças avaliadas
por seu grupo (COMED, 2007).
Geier e Geier (2006a; 2006b; 2006c) afirmam que há uma relação direta entre
o Hg nas vacinas das crianças e autismo, contradizendo afirmações do governo norte-
americano de que não relação comprovada entre os dois. Os dados mostram que
desde que o Hg foi removido das vacinas infantis, o aumento nas taxas registradas
de autismo e outras DN nas crianças não só parou como caiu drasticamente: até 35%
nos EUA. Utilizando o próprio banco de dados do governo, os cientistas analisaram
casos registrados de DN em crianças, inclusive autismo, antes e depois da remoção
timerosal. Esses resultados contradizem diretamente as recomendações de 2004 do
IOM, que reavaliou as informações acerca da segurança das vacinas do programa
de vacinação norte-americano. Ainda que sem disposição de excluir ou corroborar
uma relação causal entre Hg e autismo, o comitê interdisciplinar do IOM concluiu que
não há necessidade de mais estudos (IOM, 2004).
Então lembremos. Se já é consenso científico (corroborado pela OMS) que:
a) o mercúrio é tóxico;
b) nos primeiros meses de vida crianças são mais suscetíveis a interferências
no desenvolvimento neurológico causado pela exposição ao mercúrio; e
c) prevenir exposição ao mercúrio durante os períodos críticos do
desenvolvimento do SNC deve ser objeto de estratégias de saúde pública;
Causa estranheza a posição da OMS, que avaliza as recomendações para
restrição ao consumo de peixes durante a gravidez, com o intento de proteger
crianças dos efeitos danosos do mercúrio, mas ―permite‖ injetar a substância em
crianças. Ora, se parece razoável minimizar a exposição de fetos e crianças a fontes
de exposição ao mercúrio, outras duas questões permanecem sem resposta: por
54
que continuar usando vacinas com mercúrio quando existem alternativas? E a
vacina hepatite B, administrada nas primeiras horas de vida, não representa um
risco ainda maior para recém-nascidos?
Atualmente a maioria das vacinas Hep B disponíveis para países em
desenvolvimento inclusive em preparações monodoses contém timerosal
(Clements, 2004; Geier e Geier, 2007; Marques et al.; 2007b). O mesmo se em
relação às vacinas DTP e Hib, administradas em três doses a partir do segundo mês
de vida. Não obstante a OMS garanta a segurança do uso desse composto à base
de Hg em vacinas pediátricas e para grávidas, em janeiro de 2005, começou a
promover estudos em modelos animais para avaliar este aspecto (Clements e
Mcintyre, 2006; WHO, 2005).
A luz dos fatos há uma quantidade substancial de criaas que recebem doses
de mercúrio das vacinas infantis conservadas com timerosal por uma quantidade de
anos, que o composto ainda é adicionado rotineiramente às vacinas administradas
a crianças no mundo inteiro. Nos EUA e UE, por exemplo, a vacina influenza, bem
como as dT e DT (difteria-tétano), meningite, e tétano monovalente continuam
usando o conservante, a despeito das medidas de eliminação do uso do composto
em vacinas (Geier e Geier, 2007c).
2.2 Dilema: comungar no dogma ou seguir o instinto científico?
Críticas as vacinas devem ser feitas com cuidado e responsabilidade, a fim de
evitar a um problema maior de saúde blica: a queda nos índices de vacinação.
Usar os efeitos nocivos do timerosal para clamar contra as campanhas de vacinação
fere o bom senso, pois colocaria em risco um programa de saúde bem-sucedido,
trazendo muitos prejuízos à população, como o retorno das epidemias do passado.
55
É fato. Por isso, será necessário mais tempo até que todas as dúvidas sejam
esclarecidas e as opiniões hoje antagônicas afluam para um novo entendimento. Não
há resposta fácil. Mas a questão é: há dúvidas e desconfiança onde antes parecia só
haver certezas e tranqüilidade.
O que deve se deixar claro é que nem todos os que fazem restrições às
vacinas querem abolir o seu uso. O ponto consensual é o de que está na hora dos
centros tradicionais de pesquisas se disporem a investigar os problemas relacionados
às vacinas e reavaliar as práticas atuais nessa área. E é essa uma das maiores
complicações.
Sabemos que as vacinas têm benefícios globais. Quem nos diz o que seríamos
hoje se não fosse à descoberta das vacinas? Do que reconheço, talvez eu não
pudesse estar hoje, aqui, escrevendo sobre esta questão. Mas, isto não compensa o
fato de que muitas crianças são mortas ou lesadas após receber vacinas. muitas
vacinas seguras disponíveis para uso atualmente, porém, elas não são utilizadas. E
por quê? Porque a comunidade médica continua a defender as vacinas antigas
porque elas são menos dispendiosas e as empresas farmacêuticas produtoras das
vacinas vão perder dinheiro, visto que as vacinas mais seguras são mais caras e
levam mais tempo para serem produzidas.
Para manter a confiança do público nas vacinas, devemos garantir que a sua
segurança é levada a sério e que, quando indicado, ações são tomadas no seu
devido tempo para reduzir o potencial de risco.
E o debate está apenas começando.
56
3 OBJETIVOS
3.1 Objetivo Geral
Avaliar as implicações da exposição ao mercúrio derivado de vacinas
conservadas com timerosal (VCT) e da dieta (incluindo aleitamento materno) nos
atrasos desenvolvimentais de crianças.
3.2 Objetivos Específicos
Avaliar a exposição pré e pós-natal ao mercúrio sobre o desenvolvimento
neuropsicomotor de crianças.
Avaliar qual o papel da dieta no processo de acumulação do mercúrio no
cabelo de crianças.
Verificar se durante o calendário de vacinação recomendado no Brasil pode-
se superar os limites de exposição diária ao mercúrio estabelecido pela
Organização Mundial de Saúde e outras agências internacionais.
Analisar os níveis de exposição ao mercúrio no cabelo de crianças.
Verificar se a exposição ao Hg das vacinas conservadas com timerosal afetou
o crescimento e desenvolvimento de crianças.
57
4 MATERIAL E MÉTODOS
4.1 Caracterização da Amostra
Os dados iniciais deste estudo não foram coletados com o objetivo de avaliar
o impacto da imunização nas DN. O protocolo de pesquisa inicial foi concebido para
avaliar o crescimento e desenvolvimento das crianças expostas ao Hg no período
pré-natal e até o sexto mês de vida através da alimentação materna (pré-natal) e
aleitamento (MARQUES, 2002). Quando o trabalho de investigação foi iniciado não
estávamos cônscios da questão das VCT (anexo 1 e 2). A amostra inicial constituiu-
se de cem crianças nascidas nas maternidades do Hospital de Base Ary Pinheiro,
Hospital Pan-Americano e Regina Pacis, e suas respectivas mães. Os referidos
estabelecimentos de saúde estão localizados na cidade de Porto Velho, Rondônia.
Foram selecionadas todas as grávidas que concordaram em participar do
estudo. As crianças deveriam alimentar-se exclusivamente com leite materno até os
seis meses de idade. Os dados da ficha dos pacientes foram obtidos com a mãe ou
responsável legal após prévia autorização por escrito (anexo 7) e nos registros
hospitalares. Na mãe, avaliamos hábitos alimentares, antecedentes pessoais (pré-
natal, parto, abortos, natimortos, recém-nascidos malformados, doenças) e familiares
(passado em garimpo, ingestão de alimentos potencialmente contaminados, e outros),
na busca de fatores de risco para exposição ao Hg ou que poderiam afetar o
desenvolvimento de seus filhos (anexos 8 e 9).
Os recém-nascidos (RN) foram submetidos a exame de rotina ao nascer,
realizados pelo pediatra e/ou enfermeira presentes no momento do parto para
58
verificação: 1) do índice de Apgar
7
no 1º e 5º minutos (avaliação da vitalidade); 2) da
presença de reflexos, 3) da maturidade (prematuro, a termo ou pós-maduro); 4) do
peso, estatura, perímetro torácico e cefálico; 5) classificão quanto ao peso: pequeno
para a idade gestacional (PIG), adequado para a idade gestacional (AIG) e grande
para a idade gestacional (GIG); 6) ausculta do tórax e coração e verificação de
anormalidades grosseiras e malformações congênitas.
Os dados antropométricos, peso, estatura e perímetro cefálico (PC), foram
comparados aos dados tabulados pela OMS, enquadrados nos z-escores e percentis
apropriados (WHO, 2006a), utilizando-se o programa ANTRHO 2005. Os gráficos de
crescimento têm sido usados para traçar o crescimento físico de crianças desde 1977
e passaram por duas amplas revisões (WHO, 2000; 2006b). Consistem de uma série
de curvas, ilustrando a distribuição de crianças de acordo com as medidas do corpo
selecionadas. São considerados os mais apropriados para aplicação clínica,
representando um instrumento fundamental na avaliação do crescimento de crianças
(Kuczmarski et al., 1998; WHO, 2006a).
Aos seis meses de idade, 86 crianças compareceram ao exame clínico e
neuropsicomotor programado, quando amostras de cabelo foram novamente
coletadas. Para fins de avaliação usamos apenas 82 pares de mãe-filho. Maiores
detalhes aparecem nos anexos 1 e 2. A avaliação foi realizada nos meses de maio e
junho de 2001, aos sábados, no horário das 8 às 12 horas, e das 14 às 18 horas. As
mães foram convidadas a levar suas crianças ao prédio central da Fundação
Universidade Federal de Rondônia (UNIR) para a realização do exame físico e do
7
A maioria dos hospitais utiliza um sistema de índices (classificação) elaborado pela Dra. Virgínia Apgar em 1952,
para fazer uma avaliação clínica das condições físicas do recém-nascido com 1 minuto após o nascimento e
novamente com 5 minutos. Essa avalião inclui freqüência cardíaca, esforço respiratório, tônus muscular,
irritabilidade reflexa e cor. Cada sinal pontua de 0 a 2 pontos. A contagem de 7 a 10 indica RN vigoroso, de 4 a 6
RN moderadamente deprimido, de 0 a 3 gravemente deprimido (Ziegel e Cranley, 1986).
59
desenvolvimento neuropsicomotor. Ao chegar ao local, mãe e filho (a) eram levados
a uma sala preparada com balança, mesas e cadeiras, mesa de exame, fitastricas,
tesouras inox, brinquedos, material para acondicionamento do cabelo coletado, fichas
dos gráficos de crescimento e desenvolvimento e questionários de cada criança. Nos
meses de novembro e dezembro de 2003 e 2005, as crianças submeteram-se à nova
avaliação física para verificão dos dados antropométricos e do desenvolvimento
neuropsicomotor. Novos questionários, readequados para a idade, foram aplicados.
Os dados contidos nos questionários incluem dados sobre hábitos alimentares,
situação vacinal, antecedentes pessoais e familiares, e foram obtidos após nova
autorização (Anexos 10 e 11).
Nessa fase, a coleta foi realizada de modo a atender a disponibilidade de
cada mãe. Inicialmente, as avaliações foram realizadas na Policlínica Hamilton
Raulino Gondim, bairro Tancredo Neves, visando atender as mães residentes em
bairros próximos. A seguir, as moradoras dos bairros centrais foram convidadas a
levar suas crianças ao prédio central da UNIR. Para as mães que faltaram à
avaliação foi realizado visita domiciliar. Em cada avaliação, novas amostras de
cabelo eram coletadas para estimativa da exposição ao mercúrio.
4.2 A Avaliação do Desenvolvimento Infantil
Na avaliação do desenvolvimento neuropsicomotor, consideramos como
padrão de normalidade a Escala Desenvolvimental de Gesell e Amatruda (EDGA)
(Gesell, 2003; Gessel e Amatruda, 2002). No estudo da conduta motora avaliamos
as reações posturais, prensa palmo-plantar, locomoção e coordenação dos
movimentos. Na conduta adaptativa testamos à capacidade construtiva, que é
influenciada pelo desenvolvimento motor. Na conduta linguagem, avaliamos todas
60
as formas de visíveis e audíveis de comunicação. Na conduta pessoal-social
avaliamos as reações individuais da criança frente às pessoas e estímulos,
dependendo do temperamento da criança e condições ambientais. A EDGA faz uso
de tabelas que permitem obter um ―quociente de desenvolvimento‖ (QD) em cada
um dos quatro campos avaliados e um geral. O QD é a relação entre a idade
maturacional (derivada do desempenho comportamental da criança nas provas) e a
idade real (cronológica), expressa em proporção:
QD = IDADE MATURACIONAL X 100
IDADE CRONOLÓGICA
As tabelas são usadas para checar a presença ou a ausência de
comportamentos significativos, representados por sinais de positivo (+) e negativo (),
respectivamente. Os dados são comparados à escala elaborada a partir de condutas
padrão apresentadas por crianças em determinadas faixas etárias. Deste modo, ao
realizarmos comparações quantitativas e qualitativas, comparamos o estado de
desenvolvimento com o comportamento adequado para a idade e determinamos se
e em que grau ele se desvia. O QD de uma criança perfeitamente média é 100.
Valores entre 85 e 68 são considerados limítrofes e tem implicações em termos de
acompanhamento. QD abaixo de 68 indica atraso significativo em uma ou mais áreas
do desenvolvimento.
Os materiais necessários foram confeccionados ou comprados, considerando
as especificações descritas na escala. O tempo necessário para a aplicação das
provas foi 20 a 30 minutos, aproximadamente, dependendo da colaboração da
criança. As idades chaves com os comportamentos esperados para os quatros
setores do teste de Gesell são apresentadas no anexo 12.
61
4.3 Exposição estimada ao mercúrio das vacinas (timerosal injetado) e
aleitamento materno
A exposição ao Hg derivado de vacinas baseou-se no Calendário de
Imunização do PNI. Até os seis meses todos os lactentes receberam o esquema de
imunização completo. Após esse período as mães foram orientadas sobre a
importância da vacinação e a seguir as recomendações dos serviços de saúde. Entre
as vacinas tomadas pelas crianças durante os 5 anos do estudo algumas foram
conservadas com 0,01% timerosal. A concentração de Hg nas doses recebidas
através de vacinas foi de 12,5 (hep B) ou 25 µg Hg/0.5 mL (outras vacinas).
O esquema de vacinação com VCT e respectivas dosagens de Hg, como
indicado pelo fabricante, é apresentado nos anexos 2 a 4. Nós usamos os dados de
concentrações de Hg no leite (adaptado derea, 2004), para estimar a exposição ao
Hg durante o período em que as crianças estavam sob amamentação exclusiva
média do peso infantil × média da ingestão diária de leite materno (140 mL/kg) ×
número de dias × média da concentração de Hg no leite materno (1,9 µg/L) e
discutimos os resultados nos anexos 2, 4, 5 e 6.
4.4 Determinação do nível de exposição ao mercúrio
Os níveis de Hg total foram verificados em amostras de cabelo (5 a 10 g) da
mãe e filho (nascimento, seis meses, três e cinco anos), sangue materno (4,5 mL),
placenta e cordão umbilical (5 g/peso úmido), coletadas na época do parto. As
amostras foram analisadas pelo método de espectrofotometria de absorção atômica
pela técnica de vapor frio. As técnicas e metodologias anaticas aplicadas no estudo
estavam de acordo com as do Laboratório de Biogeoquímica Ambiental da UNIR
(Bastos et al., 1998). Mais detalhes aparecem nos anexos 1 a 6.
62
4.5 Análise Estatística
A análise e interpretação dos dados foram feitas através de estatística
multivariada (regressão logística, análise dos componentes principais, por
correspondência e prospecção de dados) e os testes de significância baseados em
permutação. Para testar as diferenças entre grupos aplicamos métodos apropriados
para cada caso. Os dados serão apresentados na forma de tabelas, ilustrações e
gráficos, e comparados à bibliografia existente sobre o assunto. Detalhamento deste
tópico é apresentado nos anexos 1 a 6.
4.6 Considerações Éticas
Para a primeira fase do estudo, o protocolo deste projeto foi aprovado pelo
Comitê de Ética em Pesquisa com Seres Humanos do Núcleo de Medicina Tropical
da Universidade Federal do Pará (CEP/NMT/UFPA) para o período de 2000 a 2001.
Para as fases seguintes, a pesquisadora submeteu novo protocolo de pesquisa ao
Comitê de Ética em Pesquisa com Seres Humanos do Núcleo de Saúde da
Fundação Universidade Federal de Rondônia CEP/NUSAU/UNIR, tendo sido
aprovado para o período de 2003 a 2007. Não houve danos à dimensão física,
psíquicas, morais, intelectuais, sociais, culturais ou espirituais dos participantes, em
qualquer fase da pesquisa e dela decorrente, ou mesmo dano associado ou
decorrente deste estudo científico. O estudo cumpriu todas as exigências da
resolução CNS 196/96.
63
5 RESULTADOS
Os dados descritivos das mães e RN são apresentados no anexo 1. Os dados
demográficos mostram uma ampla variação do status socioeconômico. A maioria
das mulheres foi recrutada de um hospital público (n: 61; Hospital de Base) enquanto
39% vieram de dois hospitais privados (n:13, Hospital Panamericano; n: 26, Hospital
Regina Pacis). Uma proporção substancial (39%) dessas mães eram priparas.
Para verificar alterações do desenvolvimento intra-uterino avaliamos as características
físicas, habilidade funcional e sinais neuromusculares dos RN.
Na avaliação estatística dos parâmetros antropométricos pelo teste Anova,
verificou-se a homogeneidade dos resultados entre os dois sexos. Os dados
antropométricos de mães e RN são apresentados nos anexos 1, 2, 3 e 6. Nove RN
estavam abaixo das curvas de referência do NCHS para o peso. Após seis meses de
aleitamento materno exclusivo, quatro crianças apresentaram sobrepeso e apenas
três meninos apresentaram estatura pequena para idade.
Os dados de exposição ao Hg são apresentados nos anexos 1 a 6. O
consumo de peixe materno (Hg no cabelo) não dependeu da renda mensal ou
educação (anos). Os níveis de Hg no cabelo materno variaram amplamente (0.2
µg.g
-1
to 62.4 µg.g
-1
), refletindo extremos de consumo de peixe. Mulheres que
relataram baixo consumo de peixe (<2 refeições/semana) apresentaram
concentrações medianas de Hg no cabelo mais baixas (3.5 µg.g
-1
) que o outro grupo
(5.7 µg.g
-1
). A maioria das amostras de cabelo (57%) apresentou níveis de Hg
abaixo de 6 µg.g
-1
. A concentração mediana de Hg no cordão umbilical (7.5 ng/g)
64
estava próxima à mediana de Hg na placenta. A análise de Hg no cabelo do RN
mostrou que 92% apresentavam concentrações <6 µg.g
-1
. Os coeficientes de
correlação entre variáveis maternas e dos RN estão sumarizados no anexo 1.
As avaliações do desenvolvimento neuropsicomotor das crianças aos seis
meses são apresentadas nos anexo 1, 2, 4 e 5. A maioria das crianças (74%)
apresentou desenvolvimento normal e 26% atraso desenvolvimental em ou mais
setores da EDGA: 1% apresentou atraso motor, 9% déficit na linguagem, e 16%
tiveram atraso em dois ou mais setores (7% motor, linguagem, adaptativo, e 9%
motor, linguagem). Após a identificação (e remoção) de variáveis redundantes, foi
aplicada uma Análise de Correspondência para identificar grupos de variáveis
associadas. A associação (co-ocorrência) é caracterizada pela posição similar nos
dois planos dimensionais apresentados na Fig. 1, anexo 1 (Marques et al., 2007a).
A exposição pós-natal ao Hg derivada da amamentação e das VCT é ilustrada
na tabela 1, anexo 5. Houve uma grande evolução nos perfis de desenvolvimento
quando as crianças estavam mais velhas. Comparando com as avaliações dos seis
meses, o mesmo número de crianças permaneceu com QD abaixo de 75% em três
anos, mas os centis elevaram-se (anexo 5). A relação entre PC e QD não foi
significantemente correlacionada (Tabela 3, anexo 4).
Apresentamos os QD (aos 6 meses) relacionando-os com a dose de timerosal
ao nascimento nos anexos 2, 3, 4, e 5; não houve correlação significativa. Porém, os
QD foram significativamente correlacionados com duração do aleitamento materno
(anexo 5). Os resultados das análises de regreso múltipla são apresentados nas
Tabelas 3 a 5, anexo 4. Os modelos demonstraram que os atrasos desenvolvimentais
foram transitórios.
Este estudo extraiu informações da assimetria associada com mudanças nas
65
concentrações de Hg no cabelo materno e infantil em amostragens específicas:
nascimento (exposição fetal), seis meses de aleitamento materno exclusivo, 36
meses (desmame) e 60 meses (pré-escola). A distribuição do Hg no cabelo em
lactentes seguiu um padrão diferente de suas mães (Fig. 1 a 4, anexo 5).
Mudanças metabólicas pós-parto, desenvolvimento infantil e dietas de transição
e, provavelmente, Hg das VCT contribuem para a assimetria das mudanças do Hg
no cabelo entre mães e crianças. É importante notar que a exposição à VCT a partir
da primeira vacina tomada ao nascimento (0 dia) é a maior e a mais desafiadora das
doses. Neste momento a pequena massa corporal dos neonatos tem um impacto
equivalente ao dobro das doses (da DTP, hep B) aos seis e doze meses de idade. A
estimativa da exposição ao Hg do leite materno foi possível até o sexto mês,
quando as mães foram cuidadosamente monitoradas e psicologicamente apoiadas a
manter o aleitamento materno exclusivo. Contudo, não houve associação significante
entre o Hg do cabelo e a duração do aleitamento, tanto para as mães quanto para as
crianças. A maior média de Hg no cabelo aos seis meses coincidiu tanto com a
exposição ao Hg, ao leite materno, quanto com o pesado cronograma vacinal. Além
disso, a distribuição de Hg em lactentes seguiu um padrão diferente de suas mães
(figura 2, anexo 5).
Após seis meses, crianças em aleitamento exclusivo receberam uma carga de
imunização (cinco tipos de vacinas; até 150 µg de Hg) que mostrou um incremento
das concentrações de Hg superiores ao nascimento, aos três e cinco anos de idade.
As concentrações de Hg em suas respectivas mães foram mais altas no parto. A
freqüência de consumo de peixes é apresentada e discutida nos anexo 1, 4 e 5.
Usando o Hg total no cabelo como marcador de exposição pós-natal ao Hg
orgânico (Hg inorgânico e MeHg do leite materno; EtHg do timerosal) nós estudamos
66
sua associação com a escala de Gesell mensurada aos seis meses, três e cinco
anos de idade. O Hg no cabelo aos seis meses respondeu aos eventos relacionados
à exposição ao Hg e amamentação.
A maioria dos atrasos desenvolvimentais observados aos seis meses foram
superados com o crescimento; aos cinco anos 87% das crianças apresentavam QD
adequados (>85). O tempo de amamentação e o Hg no cabelo foram, cada um,
significantemente correlacionados com QD, mas de maneiras opostas: o tempo de
amamentação foi positiva e significantemente associado com o QD aos cinco anos; as
concentrações de Hg no cabelo foram negativa e significativamente correlacionadas
com QD aos 6 meses (r=-0.3329; p=0.0022) e cinco anos (r=-0.8029; p=0.0106), mas
não aos 36 meses (r=-0.1722; p=0.1218). O resultado dos QD aos 5 anos dependeu
do QD aos 3 anos, que por sua vez, foi influenciado pelas variáveis do desenvolvimento
e de exposição ao Hg. O QD aos 6 meses foi significantemente influenciado pela
exposição pré-natal (Hg no cabelo materno e infantil) e pós-natal aos seis meses.
Enquanto as mães apresentaram as mais altas concentrações de Hg no cabelo
à época do parto, as crianças apresentaram os mais altos valores aos seis meses,
coincidindo com período em que o calenrio vacinal com VCT é mais intenso. Depois
disso, a tendência de diminuição no cabelo da criança coincidiu tanto com o período
do desmame quanto com o período de vacinação menos freqüente (cinco anos). A
amamentação estendida (até 36 meses) não foi significantemente associada com o
Hg no cabelo materno ou infantil. Porém, foi observada associação significante
(Spearman’s r) entre as concentrações de Hg no cabelo da mãe e da criança ao
nascimento (r = 0.3534; P = 0.001), seis meses (r = 0.4793; P < 0.0001), três anos (r
= 0.0122; P = 0.012) e cinco anos (r = 0.0357; P = 0.005). Mudanças metabólicas
maternas no pós-parto, desenvolvimento infantil, dietas de transição e provável Hg
67
de VCT contribuem para a assimetria das mudanças entre mães e crianças.
É importante notar que a exposição ao Hg a partir da primeira VCT recebida ao
nascimento (0 dia) é a maior e a mais desafiadora das doses. Neste momento a
pequena massa corporal dos neonatos recebe um impacto equivalente ao dobro das
doses (DTP e hep B) aos seis e 12 meses. A estimativa da exposição ao Hg do leite
materno foi possível até 6 meses, quando mães foram cuidadosamente
monitoradas e psicologicamente apoiadas para manter-se em aleitamento materno
exclusivo. Na verdade, a maioria das mães (66%) amamentou por 12 meses e
algumas relataram amamentar até 60 meses (figura 1, anexo 5).
Não encontramos associação estatisticamente significativa entre o Hg no
cabelo (mãe e filho) e a duração do aleitamento. A média de Hg no cabelo aos seis
meses coincidiu tanto com a exposição ao Hg do leite materno quanto com o pesado
cronograma de vacinação. A distribuição do Hg no cabelo de lactentes seguiu um
padrão diferente de suas mães (figura 2, anexo 5). Houve uma grande melhoria nos
QD quando as crianças estavam mais velhas. Comparando com as medidas dos seis
meses, o mesmo número de crianças permaneceu abaixo de 75% aos três anos, mas
os centis subiram. Nenhuma correlação significativa foi observada entre Hg no cabelo
da mãe (exposição pré-natal) e QD aos seis meses. Entretanto, a exposão pós-natal
(Hg no cabelo da criança) foi significantemente correlacionada com os QD aos seis
meses (r=-0.3329; P=0.0022) e 60 meses (r=-0.8029; P=0.0106), mas não aos 36
meses (r=-0.1722; P=0.1218).
Entre os seis e 36 meses, não houve somente mudanças nas práticas de
alimentação (desmame) associadas às mudanças na exposição ao Hg, mas também
nas doses e intervalos de vacinação.
Nós investigamos o crescimento do PC e sua associação com os QD. O
68
percentual de aumento do PC e QD não foram significantemente correlacionados
(Tabela 1 e 3, anexo 4). O mecanismo de crescimento somático que rege o PC foi
independente do neurodesenvolvimento funcional. O crescimento cerebral durante
diferentes períodos de alimentação (aleitamento materno exclusivo e desmame) e a
intensidade da exposição ao EtHg não foram significativamente correlacionadas.
Atrasos no neurodesenvolvimento ocorreram independentemente da exposição pré -
natal ao Hg ou do percentual de aumento pós natal do PC, mas foram
influenciados pela amamentação e concentrações Hg no cabelo.
No anexo 3 e 6 apresentamos a escala de Gesell (aos seis meses) em função
da dose de timerosal ao nascimento e não houve correlação significativa. No entanto,
os QD foram significativamente correlacionados com a duração da amamentação
(figura 5, anexo 6). Correlações positivas e significantes foram observadas para o QD
motor (r= 0.3118; P=0.0044), linguagem (r= 0.3093; P=0.0047), QD adaptativo (r=
0.3246; P=0.0029), QD pessoal social (r= 0.3272; P= 0.0027) e para o QD total
(r=0.3479; P=0.0014).
Aos seis meses o QD foi significantemente influenciado pelo pré-natal (Hg no
cabelo materno e do RN) e exposição pós-natal aos seis meses. Neste modelo as
interações de variáveis relacionadas às concentrações de Hg ao nascimento (pré-
natal) e aos cinco anos, bem como a duração da amamentação, idade gestacional e
peso ao nascer, não foram afetados significativamente pelo QD total. Além disso,
também é possível inferir que os níveis de Hg no cabelo aos seis meses podem
responder a eventos relacionados à exposição ao Hg, ou seja, aleitamento materno
e VCT (anexos 4 e 5).
69
6 DISCUSSÃO
Assumindo que o cabelo é o melhor integrador da exposição passada ao
MeHg, um dos achados deste estudo é que o marcador de consumo de peixe (Hg no
cabelo materno) foi significantemente correlacionado com Hg no cabelo da criança
coletado no nascimento. Essa significante correlão permaneceu até os seis meses.
Contudo, o atraso motor observado em crianças com altos níveis de Hg no cabelo
não indicaram uma relação dose-resposta: os mais altos valores foram encontrados
em crianças do grupo considerado normal. Na figura 1, anexo 1, os mais altos níveis
de renda e educação estão posicionados no grupo #2. Esses achados sugerem a
ocorrência de algumas condições protetoras que não estão presentes em famílias
desprivilegiadas. A situação de pobreza e baixo nível educacional da família
provavelmente requerem suporte para o desenvolvimento ideal da mãe e filho. A
média de Hg de 7.4 µg/g
-1
no cabelo dessas mulheres é mais baixa que os valores
relatados para mulheres ribeirinhas (8.39.4 µg/g
-1
) de outros estudos apresentados
e discutidos no anexo 1.
A amostra de mulheres acompanhadas neste estudo, não é homogênea, nem
cultural nem socioeconomicamente. Entretanto, como não houve insultos pré-natais
severos que pudessem distorcer os padrões iniciais do neurodesenvolvimento, os
atrasos observados aos seis meses estavam dentro do esperado para a população
brasileira (Paine e Pasquali, 1983). Mesmo em populações homogêneas há variações
nos resultados neurocomportamentais. Dodge et al. (1975) discutiram as limitações
de confiabilidade de uma única função como avaliadora de um insulto sobre o
70
desenvolvimento normal. Quando se levam em consideração as avaliações dos três
e cinco anos, observam-se atrasos no desenvolvimento não correlacionados com
parâmetros socioeconômicos ou culturais. Estudos associando Hg e resultados
neurodesenvolvimentais de crianças algumas vezes não fazem referência ao status
do aleitamento materno. Por causa do papel fundamental da amamentação no
desenvolvimento neuropsicomotor é importante ressaltar esses estudos.
Componentes específicos como os ácidos graxos poliinsaturados da série
Omega 3 (PUFA), presentes no leite materno, mas não em fórmulas, que são
essenciais para o desenvolvimento e organização neuronal tem explicado escores
cognitivos e desenvolvimentais favoveis ao aleitamento materno (Agostoni et al.,
2001). Por isso, quando a amamentação é considerada em estudos de exposição ao
Hg, inequívocos benefícios para o desenvolvimento das crianças amamentadas
(Grandjean et al., 1994; Jensen et al., 2005; Marques et al.; 2007a).
Em estudos neurodesenvolvimentais com crianças durante o período de
amamentação, freqüentemente não levam em conta a exposição iatrogênica das
vacinas. Redwood et al. (2001) revisou exposição ao Hg devido ao timerosal (EtHg).
O timerosal contribui com até 25 µg/g
-1
por dose; 12.5-40% dependendo da vacina.
Durante o esquema de imunização, crianças podem receber vacinas ao nascimento
(12.5 µg/g
-1
), um (12,5 µg/g
-1
), dois (62.5 µg/g
-1
), quatro (50 µg/g
-1
) e seis (62.5 µg/g
-1
)
meses que podem expô-la a um total de 207.5 µg/g
-1
de EtHg durante o primeiro
semestre de vida (Marques et al., 2007b; 2007c).
O impacto causado pelo EtHg injetado num organismo imaturo é um ponto
importante a se considerar. Especula-se que a remoção do timerosal das vacinas não
produziria mais que 50% de redução na exposição de Hg infância (Bigham e Copes,
2005). Esta redução poderia ocorrer no leite humano com concentrões de Hg
71
superiores ao valor médio (figura 1, anexo 2) e mais freqüentemente com fórmulas,
que geralmente contêm concentrações de Hg mais elevadas (Dórea e Donangelo,
2006). Além do mais, este cenário assume uma discutível equivalência de um bolus
(Hg injetado) versus a integração (de seis meses) do Hg no leite ingerido e não
contempla os princípios da neurotoxicidade do Hg: a forma química, a dose, a via de
administração, os fatores atenuantes de neurotoxicidade do aleitamento e os fatores
neurotóxicos do período perinatal (peso ao nascer/prematuridade).
As esperadas implicações metabólicas dessas rotas de exposição e formas
químicas de Hg extremamente diferentes (EtHg injetado vs Hg ingerido no leite), bem
como as doses de Hg são difíceis de decifrar. Temos a alteração nas interações
fisiológicas de uma dose diária de Hg intrínseco auto ajustada (inorgânico e MeHg)
na amamentação contra o impacto total de uma dose extrínseca de EtHg. No que se
refere à amamentação, o Hg do leite ocorre num contexto de benefícios comprovados
em uma ampla gama de circunstâncias atenuantes da neurotoxicidade. Neste estudo,
nós observamos um aumento relativo do Hg no cabelo. Este achado reforça uma
ligação entre o EtHg do timerosal e aumento de Hg no cabelo, sustentando à
utilização do Hg no cabelo de crianças vacinadas como um fator de confundimento
da exposição ao Hg de fontes maternas.
A possível associação entre VCT e autismo está ganhando atenção científica.
Mutter et al. (2004, 2005) discutiram a epidemiologia e o mecanismo das DN
associadas ao Hg e sugerem que efeitos do MeHg encontrado em peixes são menos
tóxicos quando comparados a fontes iatrogênicas de Hg. É necessário, novamente,
advertir que estudos epidemiológicos relacionando autismo e VCT não têm levado em
consideração o aleitamento materno. Aliás, um estudo sugerindo que o início do
desmame precoce pode contribuir para a etiologia do autismo (Tanoue e Oda, 1989).
72
Os perfis de distribuição das concentrações de Hg no cabelo materno e infantil
durante os primeiros cinco anos revelaram diferenças no tipo de exposição. A
cronologia da amostragem de Hg no cabelo da criança correspondeu aos eventos
associados à dieta (que incluiu amamentação) e calenrio de imunizão. Nós
encontramos uma clara tendência do Hg no cabelo da criança coincidindo com o
calendário vacinal, mas não podemos provar uma relação causa-efeito. A ocorrência
do EtHg nas VCT e de dietas de transição do desmame podem ter contribuído para
o padrão de mudanças do Hg no cabelo infantil. A média nos níveis de Hg no cabelo
infantil aos 5 anos é equivalente à materna, refletindo provavelmente exposição às
mesmas fontes dietéticas de Hg. Uma vez que os lactentes foram expostos a doses
mais altas de EtHg durante os primeiros seis meses, o aumento nos níveis de Hg no
cabelo da criança pode ser resultado das taxas mais elevadas de transferência do
EtHg no cabelo, em comparação com períodos subseqüentes da amostragem.
A flutuação do Hg no cabelo materno é uma questão importante, com
implicações para políticas de saúde pública. Além disso, nós identificamos a entrada
de outras fontes orgânicas de Hg. Contudo, nossa limitada capacidade analítica para
determinar o EtHg no cabelo derivado das VCT é uma importante limitação na
interpretação desses aspectos dos resultados.
Uma variedade de fatores intervenientes associados à imaturidade infantil e ao
tempo de exposição complica a avaliação dos efeitos da exposição precoce ao Hg
sobre neurodesenvolvimento. Os efeitos no SNC respondem a fatores relacionados
ao hospedeiro (susceptibilidade genética, estado nutricional e condição do SNC), a
exposição (dose, freqüência e duração) e a formas químicas específicas de Hg
(inorgânicos e orgânicos). Essas interações governam a reatividade química, a
biotransformação e, eventualmente, a toxicocinética e toxicodinâmica do EtHg em
73
lactentes. Ainda que não possamos ter certeza se o Hg no cabelo das crianças veio
das vacinas ou de fontes maternas, estudos em animais já mostraram que o EtHg foi
incorporado ao crescimento do cabelo de forma semelhante ao MeHg (Fang e Fallin,
1973; 1976; Zareba, 2007).
Um problema comum frente aos efeitos tóxicos do Hg ou à susceptibilidade em
veis subclínicos é a dificuldade de reconstruir com precio respostas às fontes após
a exposição. Isto é especialmente o caso com lactentes e acompanham mudanças
nas dietas integradas com fontes de Hg (que podem incluir EtHg extrínseco), como no
presente estudo. Além disso, existem as considerações éticas relacionadas com a
amamentação e vacinação que limitam comparações de grupo (sem tais
características), tornando estudos de exposição particularmente difíceis de realizar.
A associação transitória entre dosagem de EtHg das VCT e DN observados
baseia-se no pressuposto que: a) a amamentação estava igualmente presente
durante um período mínimo de seis meses em todas as crianças e exerceu um efeito
protetor do SNC; b) durante o aleitamento materno exclusivo todas as vacinas foram
igualmente administradas a todas as crianças; c) a exposição a todas as formas de
Hg podem ter como resultado que a formas orgânicas podem ser encontradas no
cabelo (e incluir o EtHg). Nós usamos Hg total no cabelo como um substituto para as
três possíveis formas de exposição ao Hg: do leite (Hg inorgânico e MeHg) e
imunização (EtHg das VCT). Nossos modelos de regressão foram bem sucedidos
em diferenciar os efeitos negativos da exposição ao Hg dos resultados do
neurodesenvolvimento (talvez relacionados com a amamentação).
Usando a análise dos componentes principais (PCA) foi possível identificar
hierarquias e posições de variáveis inter-relacionadas que identificaram riscos
variáveis de exposição associados com escalas de DN aos seis meses. Deste modo,
74
nossos resultados podem explicar o aparente conflito relatado por Thompson et al.
(2007): seu modelo estatístico foi insuficiente para discriminar resultados
contrastantes de danos e benefícios no mesmo sistema neurológico, levando à
associações inconsistentes entre a exposição ao timerosal das vacinas e os testes
neuropsicológicos.
Embora não haja evidência de associação entre autismo e VCT, permanecem
as questões relativas a outras DN. Andrews et al. (2004) estudaram crianças inglesas
retrospectivamente no que se refere à DTP/DT recebida em ts e quatro meses: foram
observados resultados significativos para o aumento dos riscos de espasmos com o
aumento das doses de VCT. Também foram observadas associações negativas
significantes para atrasos desenvolvimentais inespecíficos, atraso geral e déficit de
atenção em relação à exposição VCT.
Os estudos retrospectivos de crianças norte-americanas mostraram resultados
diferentes (Geier e Geier, 2003; 2006; Verstraeten et al.; 2003). Estes estudos foram
baseados em dados projetados para eventos pós-vacinais e coletados no sistema de
notificação de efeitos adversos do governo norte-americano (Vaccine Adverse Effects
Reporting System-VAERS) e no Sistema de Ligação dos Dados Vacinais (Vaccine
Data Link System-VDS) e utilizaram estratégias diferentes de investigação.
Quando os efeitos protetores do aleitamento materno estão ausentes,
insuficientes ou diminuídos no período do desenvolvimento, os riscos de atrasos ou
DN são aumentados. Portanto, é surpreendente que estudos sobre VCT associando
efeitos neurodesenvolvimentais e práticas de aleitamento materno não tenham sido
realizados. Na verdade, apenas Heron e Golding (2004) ajustaram diversas variáveis,
incluindo amamentação em seu estudo epidemiológico. Após este ajustamento, eles
interpretaram os resultados como ausência de associação entre VCT e DN. Até agora,
75
estudos epidemiológicos retrospectivos (de países que suprimiram a utilização de
VCT em crianças) têm fornecido pistas de possíveis relações entre VCT e DN. Estas
pistas devem ser seguidas com estudos que sejam direcionados para fatores de
modificação relacionados a práticas de alimentação materna (exposição pré-natal e
dieta) e infantil, especialmente nos países que continuam a utilizar timerosal.
A imunização conferida pelas VCT está no centro do controle e prevenção
das doenças infecciosas (salvando vidas e evitando sofrimento desnecessário). Esta
proteção imprescindível é reforçada quando a criança é amamentada. O aleitamento
materno tem demonstrado um efeito imuno-modulador (Pabst et al., 1997) que confere
significativamente níveis mais altos de anticorpos da DTP ao lactente do que para
aquelas crianças que são alimentadas com fórmula (Hahn-Zoric et al., 1990; Silfverdal
et al., 2007). Os estímulos imunológicos moderados das vacinas podem causar febre
e respostas anoréticas, assim, o aleitamento materno protege contra ingestão de
energia diminuída, essencial para o desenvolvimento infantil (Lopez-Alarcon et al.,
2007). A amamentação parece aliviar o trauma da dor causada pelas inoculações
(Efe e Ozer, 2007).
Incertezas sempre devem beneficiar as crianças. Países ricos (geralmente com
baixas taxas de amamentação), que podem pagar vacinas livres de timerosal optaram
pela retirada VCT. Nos países que utilizam VCT, a abordagem do ―benefício da
vida‖ deve incluir práticas protetoras do SNC contra DN transitórias associadas com
exposição pós-natal ao Hg. Neste contexto a estratégia de apoio ao aleitamento
materno exclusivo deveria acontecer junto com a vacinação infantil.
Ademais, nossos resultados mostram que atrasos no desenvolvimento
neuropsicomotor podem estar associados às iniqüidades em saúde e situação
socioeconômica desprivilegiada. Cory-Slechta (2005) discutiu o baixo status
76
socioeconômico como um fator de risco para resultados adversos à saúde e
disfunções comportamentais tanto em adultos quanto em crianças. Baixo status
socioeconômico está associado com altos níveis de retardo mental, desordens do
aprendizado e déficits de atenção e linguagem em crianças. Rice (2005) argumentou
que a mais alta incidência de doença e disfunções que acompanham baixo status
socioeconômico é devido ao alto estresse ambiental vivenciado por tais populações:
uma injúria crônica associada a dificuldades econômicas resultando em prolongada
elevação dos níveis de cortisol.
77
7 CONCLUSÕES
1. A dose e via parenteral da exposição ao etilmercúrio derivado das vacinas
modulam o aumento relativo do mercúrio no cabelo de crianças amamentadas
aos seis meses de idade.
2. Mudanças nos metabolismo materno pós-parto, desenvolvimento infantil e
dietas de transição, e o mercúrio das vacinas conservadas com timerosal
contribuem para a assimetria das mudanças nas concentrações de mercúrio
entre mães e crianças.
3. Em crianças amamentadas, diferenças na exposição inicial ao etilmercúrio
das vacinas conservadas com timerosal, não podem predizer atrasos clínicos
do neurodesenvolvimento aos seis meses. Nós acreditamos que o aleitamento
materno foi importante para a proteção do SNC das crianças frente aos
desafios da exposição precoce ao mercúrio.
4. As desordens neurodesenvolvimentais em crianças imunizadas com vacinas
conservadas com timerosal são sensíveis à duração da amamentação e
exposição ao mercúrio (que inclui fontes maternas). Portanto, controlar a
amamentação é um aspecto importante nos estudos epidemiológicos sobre
vacinas conservadas com timerosal e desordens neurodesenvolvimentais.
5. Por fim, sugerimos que o aleitamento materno exclusivo deve ser parte
complementar de uma estratégia preventiva contra possíveis atrasos
transitórios do neurodesenvolvimento associados com exposição pós-natal ao
mercúrio nas quais as vacinas conservadas com timerosal representam uma
carga adicional.
78
REFENCIAS BIBLIOGRÁFICAS
AGOSTONI, C., MARANGONI, F., GIOVANNINI, M., GALLI, C., RIVA, E. Prolonged
breast-feeding (six months or more) and milk fat content at six months are associated
with higher developmental scores at one year of age within a breast-fed population.
Adv. Exp. Med. Biol. 501, 137-141. 2001.
AMANNA I, SLIFKA MK. Public fear of vaccination: separating fact from fiction. Viral
Immunol 18:307315. 2005.
ALLEN, A. Vaccine: The Controversial Story of Medicine’s Greatest Lifesaver.
Norton: 2007. 512 pp.
AMERICAN ACADEMY OF PEDIATRICS (AAP). Thimerosal in vaccinesan
interim report to clinicians. Disponível em: http://www.aap.org/new/thimpublic.htm.
acessado em 18 de outubro de 2005.
AMERICAN PSYCHIATRIC ASSOCIATION (APA). Diagnostic and statistical manual
of mental disorders. 4
th
ed. Washington D.C: American Psychiatric Association; 1994.
ANDERSON JW, JOHNSTONE BM, REMLEY DT. Breast-feeding and cognitive
development: a meta-analysis. Am J Clin Nutr 70:525-535. 1999.
ANDREWS N, MILLER E, GRANT A, STOWE J, OSBORNE V, TAYLOR B:
Thimerosal exposure in infants and developmental disorders: a retrospective cohort
study in the United Kingdom does not support a causal association. Pediatrics.
114(3):584-591. 2004
BALL, L.K Ball R, Pratt RD. An assessment of thimerosal use in childhood vaccines.
Pediatrics, 107:114754. 2001.
BASTOS, W. R., MALM, O.; PFEIFFER, W. C., CLEARY, D., Establishment and
analytical quality control of laboratories for Hg determination in biological and
geological samples in the Amazon, Brasil Ciência Cultura: 50, 255-260. 1998.
BARBOSA,A C; DÓREA,JG. Indices of mercury contamination during breast feeding in
Amazon Basin. Environmental Toxicology and Pharmacology, v.6, p.71-79, 1998.
BARBOSA, AC.; SILVA, SRL; DÓREA, JG. Concentration of mercury in hair of
Indigenous mothers and infants from the Amazon Basin. I. Arch. Environmental
Contam. Toxicology, 34:100-105, 1998.
BAZIN, H. The ethics of vaccine usage in society: lessons from the past. Curr. Opin.
Immunol. 13, 505510. 2001.
BERNARD, S., ENAYATI, A., REDWOOD, L., ROGER, H., BINSTOCK, T. Autism: A
novel form of mercury poisoning. Med. Hypoth. 56:462471. 2001
BERNIER RH, FRANK JA, NOLAN TF JR. Abscesses complicating DPT vaccination.
Am J Dis Child. 135(9): 826-8. 1981.
79
BIGHAM, M; COPES, R. Thiomersal in Vaccines Balancing the Risk of Adverse
Effects with the Risk of Vaccine-Preventable Disease. Drug Safety, 28 (2). 2005.
BLAXILL, M. F. What’s going on? The question of time trends in autism. Public
Health Rep. 119:536551. 2004
BLAXILL, M. F., REDWOOD, L., BERNARD, S. Thimerosal and autism? A plausible
hypothesis that should not be dismissed. Med. Hypoth. 62:788794. 2004.
BORDENAVE, G. Review: on the shoulders of giants. Louis Pasteur (18221895).
Microbes and Infection, 5:553560. 2003
BRASIL. MINISTÉRIO DA SAÚDE. Secretária de Políticas de Saúde. Saúde da
Criança. Acompanhamento do Crescimento e Desenvolvimento Infantil. Série
cadernos de atenção básica n.11. Série A Normas e Manuais Técnicos n. 173.
Brasília 2002 100p. Acesso em: 11 de abril, 2007. Disponível on-line:
http://dtr2001.saude.gov.br/bvs/publicacoes/crescimento_desenvolvimento.pdf.
BRASIL. MINISRIO DA SAÚDE. Secretaria de Vigilância em Saúde. Programa
Nacional de Imunizações: 30 anos. Editora MS. Brasília: Ministério da Sde, 2003.
BRASIL. MINISTÉRIO DA SAÚDE. Secretária de Políticas de Saúde. Manual de
Vigilância Epidemiológica de Eventos Adversos Pós-Vacinação. 2007. Brasília,
DF 160p. (no prelo). Acessado em junho de 2007. Disponível em:
http://portal.saude.gov.br/portal/arquivos/pdf/manual_pni_consulta.pdf.
BURBACHER; T.M., SHEN, D.D.; LIBERATO, N.; GRANT, K.S.; CERNICHIARI E,
CLARKSON; T: Comparison of Blood and Brain Mercury Levels in Infant Monkeys
Exposed to Methyl mercury or Vaccines Containing Thimerosal. Environmental
Health Perspectives. National Institutes of Environmental Health Sciences; 2005.
CAPRA, F. O Ponto de Mutação Editora. Cultrix. Ed. 22, 447p. 2001
CASTOLDI, A.F., COCCINI, T., MANZO, L. Neurotoxic and molecular effects of
methylmercury in humans. Rev. Environ. Health. 18, 19-31. 2003.
CERNICHIARI, E, MYERS, GJ, BALLATORI, N., ZAREBA, G, VYAS, J, CLARKSON,
T, 2007. The biological monitoring of prenatal exposure to methylmercury.
Neurotoxicology. doi:10.1016/j.neuro.2007.02.009, in press.
CLARKSON, T.W. Methylmercury and fish consumption: weighing the risks. CMAJ,
158: 1465-6, 1998.
CLARKSON TW. The three modern faces of mercury. Environ Health Perspect.
110 (suppl 1):11-23. 2002
CLARKSON TW, MAGOS L, MYERS GJ. The toxicology of mercury: current
exposures and clinical manifestations. N Engl J Med; 349 (18): 1731-7. 2003
CLARKSON TW; MAGOS L. The Toxicology of Mercury and Its Chemical
Compounds. Critical Reviews in Toxicology, 36:609662, 2006.
CLARKSON, TW; VYAS, JB; BALLATORI, N. Mechanisms of Mercury Disposition n
the Body. Am. J. Ind. Med. Oct;50(10):757-64.2007.
CLEMENTS CJ. The evidence for the safety of thiomersal in newborn and infant
vaccines. Vaccine. 22(15-16):1854-1861. 2004
CLEMENTS CJ, BALL LK, BALL R, PRATT RD: Thiomersal in vaccines: is removal
warranted? Drug Saf. 24(8):567-574. 2001
80
CLEMENTS, CJ; MCINTYRE, PB. When science is not enough a risk/benefit profile
of thiomersal-containing vaccines. Expert Opin. Drug Saf. 5(1):17-29. 2006.
COALITION FOR MERCURY-FREE DRUGS (COMED). Citizen petition requesting
certain actions with respect to vaccines and other drug products, containing
added mercury, in order to reduce the health risk to susceptible fetuses, newborns,
children, adolescents and adults. Washington, US. Docket N
o
- 2007p. 2007.
COLEMAN, E. Ethylmercury in Vaccines. Pediatrics;111;922-923. 2003.
COLGROVE,J; BAYER, R. ―Could It Happen Here? Vaccine Risk Controversies and
the Specter of Derailment,‖ Health Affairs 24, no. 3 (2005): 729739. 2005.
CORY-SLECHTA, D.A. Studying Toxicants as Single Chemicals: Does this Strategy
Adequately Identify Neurotoxic Risk? Neurotoxicology. 26, 491510. 2005.
COURY DL, NASH PL: Epidemiology and etiology of autistic spectrum disorders
difficult to determine. Pediatr. Ann. 32(10):696-700. 2003.
COX NH, FORSYTH A. Thimerosal allergy and vaccination reactions. Contact
Dermatitis. 18(4):229-233. 1988.
CRUMP KS, KJELLSTROM T, SHIPP AM, et al. Influence of prenatal mercury
exposure upon scholastic and psychological test performance: benchmark analysis
of a New Zealand cohort. Risk Anal 1998; 18 (6): 701-13.1998.
DAVIDSON PW, MYERS GJ, COX C et al.: Effects of prenatal and postnatal
methylmercury exposure from fish consumption on neurodevelopment. Outcomes at
66 months of age in the Seychelles Child Development Study. JAMA 280(8):701-
707. 1998
DEER, B. Revealed: MMR research scandal. The Sunday Times (London). 2004
DODGE, P.R., PRENSKY, A.L., FEIGIN, R.D. Nutrition and the Developing Nervous
System. The C.W. Mosby Company, Saint Louis, pp. 1538. 1975.
DOJA A, ROBERTS W. Immunizations and autism: a review of the literature. Can J
Neurol Sci. 2006 Nov; 33(4):341-6. 2006.
DOREA, J.G. Fish are central in the diet of Amazonian riparians: should we worry
about their mercury concentrations? Environ. Res. 92, 232-244. 2003.
DOREA, J.G. Cassava cyanogens and fish mercury are high but safely consumed in
the diet of native Amazonians. Ecotoxicol. Environ. Saf. 57, 248256. 2004.
DOREA, J.G. Mercury and lead during breast-feeding. Br J Nutr 92:2140. 2004
DOREA, J.G., MOREIRA, M.B., EAST, G., BARBOSA, A.C. Selenium and mercury
concentrations in some fish species of the Madeira River, Amazon Basin, Brazil. Biol.
Trace Elem. Res. 65, 211-220. 1998.
DOREA, J.G., BARBOSA, A.C., FERRARI, I., SOUZA, J.R. Mercury in hair and in
fish consumed by riparian women of the Rio Negro, Amazon, Brazil. Int. J. Environ.
Health Res. 13, 239248. 2003.
DOREA, J.G., SOUZA, J.R., RODRIGUES, P., FERRARI, I., BARBOSA, A.C. Hair
mercury (signature of fish consumption) and cardiovascular risk in Munduruku and
Kayabi Indians of Amazonia. Environ. Res. 97, 208218. 2005a.
DOREA, J.G., BARBOSA, A.C., FERRARI, I., SOUZA, J.R. Fish consumption (Hair
81
Mercury) and nutritional status of Amazonian Amer-Indian Children. American
Journal of Human Biology. 17, 507-514. 2005b
DOREA, J.G. Exposure to Mercury during the First Six Months via Human Milk and
Vaccines: Modifying Risk Factors. American Journal of Perinatology, v. 24, p.387-
400, 2007.
DURSTON S, HULSHOFF POL HE, CASEY BJ, GIEDD JN, BUITELAAR JK, VAN
ENGELAND H. Anatomical MRI of the developing human brain: what have we
learned? J Am Acad Child Adolesc Psychiatry; 40:10121020. 2001.
EDLICH, RF; OLSON,DM; OLSON,BM; GREENE,JA; GUBLER,KD; WINTERS,KL;
KELLEY,AR; BRITT, LD; LONG, WB. Update on the national vaccine injury
compensation program. The Journal of Emergency Medicine, Vol. 33, No. 2, pp.
199211, 2007
EFE E, OZER ZC. The use of breast-feeding for pain relief during neonatal
immunization injections. Appl Nurs Res 20:10-16. 2007
ELLIS, F. A. The sensitizing factor in Merthiolate. J. Allergy, 18:212213. 1947.
FAGAN DG, PRITCHARD JS, CLARKSON TW, GREENWOOD MR: Organ mercury
levels in infants with omphaloceles treated with organic mercurial antiseptic. Arch.
Dis. Child. 52:962-964. 1977.
FANG SC, FALLIN E. Uptake, distribution, and metabolism of inhaled ethylmercuric
chloride in the rat. Arch Environ Contam Toxicol;1:347361. 1973
FREED, GARY L., MD, MPH; KATZ, SAMUEL L., MD; CLARK, SARAH J., MPH.
Safety of Vaccinations. Journal of the American Medical Association.
276(23):1869-1872. 1996
FOMBONNE E. Is there an epidemic of autism? Pediatrics. 107:411-2. 2001.
FOMBONNE E, ZAKARIAN R, BENNETT A, MENG L, MCLEAN-HEYWOOD D.
Pervasive developmental disorders in Montreal, Quebec, Canada: prevalence and
links with immunizations. Pediatrics. Jul;118(1):e139-50. 2006.
FORSTROM, L., HANNUKSELA, M., KOUSA, M., LEHYMUSKALLIO, E. Merthiolate
hypersensitivity and vaccination. Contact Dermatitis 6:241245. 1980.
GEIER DA, GEIER MR. Thiomersal in Childhood Vaccines, Neurodevelopment
Disorders, and Heart Disease in the United States. Journal of American Physicians
and Surgeons Vol 8 Number 1 Spring. 2003a
GEIER DA, GEIER MR. An assessment of the impact of thimerosal on childhood
neurodevelopmental disorders. Pediatr. Rehabil. 6(2):97-102. 2003b
GEIER DA, GEIER MR: Neurodevelopmental disorders after thimerosal containing
vaccines: a brief communication. Exp Biolo Med. 228(6):660-4. 2003c
GEIER DA, GEIER MR. Neurodevelopmental disorders following thiomersal-
containing childhood immunizations: a follow-up analysis. Int. J. Toxicol. 23(6):369-
376. 2004a.
GEIER DA, GEIER MR: A comparative evaluation of the effects of MMR
immunization and mercury doses from thimerosal-containing childhood vaccines on
the population prevalence of autism. Med. Sci. Monit. 10(3):PI33-PI39. 2004b.
GEIER DA, GEIER MR. A two-phaseepidemiological study of the safety of
82
thimerosalcontaining vaccines: a follow-up analysis. Med. Sci. Monit. 11(4):CR160-
CR1170. 2005.
GEIER DA, GEIER MR. An assessment of downward trends in neurodevelopmental
disorders in the United States following removal of thimerosal from childhood
vaccines. Med Sci Monit. 12(6): CR231-239. 2006a.
GEIER, D. A., AND GEIER, M. R. A clinical trial of combined anti-androgen and anti-
heavy metal therapy in autistic disorders. Neuro. Endocrinol. Lett. 27:833838. 2006b.
GEIER, D. A., AND GEIER, M. R. A meta-analysis epidemiological assessment of
neurodevelopmental disorders following vaccines administered from 1994 through
2000 in the United States. Neuro. Endocrinol. Lett. 27:401413. 2006c
GEIER, D. A., GEIER, M. R. A prospective assessment of porphyrins in autistic
disorders: a potential marker for heavy metal exposure. Neurotoxicol. Res. 10:57
64. 2006d
GEIER, D. A., GEIER, M. R. A case-series of children with apparent mercury toxic
encephalopathies manifesting with clinical symptoms of regressive autistic disorders.
J. Toxicol. Environ. Health A. 70:837851. 2007a.
GEIER, D. A., GEIER, M. R. A prospective study of Thimerosal containing Rho(D)-
immune globulin administration as a risk factor for autistic disorders. J. Matern. Fetal
Neonatal Med. 20:385390. 2007b.
GEIER, D. A., SYKES, L. K; GEIER, M. R. A review of thimerosal (merthiolate) and
its ethylmercury breakdown product: specific historical considerations regarding
safety and effectiveness. Journal of Toxicology and Environmental Health, Part
B, 10:575596, 2007.
GESELL A. A criança de 0 a 5 anos. 6rd ed., Martins Fontes, São Paulo, pp. 20-
300. 2003
GESELL, A., AMATRUDA, C.S. Psicologia do Desenvolvimento do Lactente à
criança pequena, bases neuropsicológicas e comportamentais. 1rd ed.,
Atheneu, São Paulo, pp. 30-106. 2000.
GRANDJEAN, P., JORGENSEN, P.J., WEIHE, P. Human milk as a source of
methylmercury exposure in infants. Environ. Health Perspect. 102, 7477. 1994.
GRANDJEAN, P; WHEIHE, P; WHITE, R. F; DEBES, F; ARAKI, S;YOKOYAMA, K;
MURATA, K; SORENSEN, N; DAHL, R.; JORGENSEN, P.J. Cognitive deficit in 7-
yearsold children with prenatal exposure to methylmercury. Neurotoxicol. Teratol.
n.19, p.417-428, 1997.
GRANDJEAN, P.; BUDTZ JORGENSEN, E.; WHITE, R. F. et al. Methylmercury
exposure biomarkers as indicators of neurotoxicity in children aged 7 year. American
Journal of Epidemiology, v.150, n.3, USA, p.301-304, 1999.
GRANDJEAN,P; BELLINGER,D; BERGMAN, A; CORDIER, S; DAVEY-SMITH, G;
ESKENAZI, B; GEE, G; GRAY,K; HANSON, M; HAZEL, P; HEINDEL, JJ; HEINZOW,
B; HERTZ-PICCIOTTO, I; HU, H, HUANG, T T-K; JENSEN, K; LANDRIGAN, PJ;
MCMILLEN, C; MURATA, K; RITZ, B; SCHOETERS, G; SKAKKEBÆK, NE;
SKERFVING, S; WEIHE P. The Faroes Statement: Human Health Effects of
Developmental Exposure to Chemicals in Our Environment. Basic & Clinical
Pharmacology & Toxicology,102, 7375. 2007.
83
HALSEY, NA. Limiting Infant Expousure to Thiomersal in Vaccines and other sources
of Mercury. JAMA, November 10, Vol 282, N
o
18. 1999.
HALSEY NA, GOLDMAN LR. Mercury in infants given vaccines containing
thiomersal. Lancet. 361(9358):698-699. 2003.
HAHN-ZORIC M, FULCONIS F, MINOLI I, MORO G, CARLSSON B, BOTTIGER M,
RAIHA N, HANSON LA. Antibody responses to parenteral and oral vaccines are
impaired by conventional and low protein formulas as compared to breast-feeding.
Acta Paediatr Scand. 79:11371142. 1990
HVIID A, STELLFELD M, WOHLFAHRT J, MELBYE M. Association between
thimerosal-containing vaccine and autism. JAMA 2003; 290 : 1763-6.
HERMAN, LM; GERBERT, DA; LARSON, LW; LÉGER, MM; MCNELLIS, R;
O'DONOGHUE, DL; ULSHAFER, C; VAN DYKE, EM. Vaccines, thimerosal, and
neurodevelopmental outcomes. Journal of American Academy of Physician
Assistants. vol.19, n. 1. 2006.
HERON J, GOLDING J: ALSPAC STUDY TEAM. Thimerosal exposure in infants and
developmental disorders: a prospective cohort study in the United Kingdom does not
support a causal association. Pediatrics 114(3):577-583. 2004.
HOLMES, AS; BLAXILL, MF; HALEY, BE. Reduced Levels of Mercury in First Baby
Haircuts of Autistic Children. International Journal of Toxicology, 22:277285, 2003.
HORNIG M, CHIAN D, LIPKIN WI. Neurotoxic effects of postnatal thimerosal are
mouse strain dependent. Mol Psychiatry 9:833845. 2004
HVIID A, STELLFELD M, WOHLFAHRT J, MELBYE M: Association between
thimerosalcontaining vaccine and autism. JAMA. 290(13):1763-1766. 2003.
INHAMUNS, A.J., FRANCO, M.R.B. Composition of total, neutral, and phospholipids
in Mapara (Hypophthalmus sp.) from the Brazilian Amazonian area. J. Agric. Food
Chem. 49, 4859-4863. 2001
INSTITUTE OF MEDICINE (IOM). Immunization safety review: vaccines and
autism. Washington (DC): National Academies Press, 2004.
JENNER, E. An enquiry into the causes and effects of the varriolae vaccinae; a
disease discovered in some of the western counties of England, particularly
Gloucestershire, and known by the name of the cowpox; 1798. The Jenner
Museum. Disponível: www.jennermuseum.com; acessado: agosto de 2007.
JENSEN, T.K., GRANDJEAN, P., JORGENSEN, E.B., WHITE, R.F., DEBES, F.,
WEIHE, P. Effects of breast feeding on neuropsychological development in a
community with methylmercury exposure from seafood. J. Expo. Anal. Environ.
Epidemiol. 15, 423430. 2005.
JOINT STATEMENT OF THE AMERICAN ACADEMY OF PEDIATRICS (AAP) AND
THE UNITED STATES PUBLIC HEALTH SERVICE (PHS). Timerosal in Vacinnes.
Pediatrics. 104:568-569. 1999.
KENNEDY JR, RF. Deadly Immunity. Rolling Stone, 2005. Disponível em:
http://rollingstone.com/politics/story . Acessado em 20 de junho de 2006.
KUCZMARSKI, R.J., OGDEN C.L., GRUMMER-STRAWN, L.M., FLEGAL, K. M.,
GUO, S. S., WEI, R., MEI, Z., CURTIN, L.R., ROCHE, A.F., JOHNSON, C. L. CDC
growth charts: United States. Advance data from vital and health statistics.
84
Hyattsville, Maryland: National Center for Health Statistics. 314, 1-28. 2000.
LITTER, M. Antiinfecciosos locales. Anti-sépticosfungicidas e parasiticidas
externos. In: Farmacologiaexperimental y clinica. 7. ed. Buenos Aires: El Ateneo,
1986. p. 1397-1443
LOPEZ-ALARCON M, GARZA C, DEL PRADO M, GARCIA-ZUNIGA PA, BARBOSA
L. Breastfeeding's protection against illness-induced anorexia is mediated partially by
docosahexaenoic acid. Eur J Clin Nutr. 2007.
LOWE, I., SOUTHERN, J. 1994. The antimicrobial activity of phenoxyethanol in
vaccines. Lett. Appl. Microbiol. 18:115116.
LUMAN, ET; FIORE, AE; STRINE, TW; BARKER, LE. Impact of Thimerosal-Related
Changes in Hepatitis B Vaccine Birth-Dose Recommendations on Childhood
Vaccination Coverage Journal of American Physicians and Surgeons v 11, n1. 2004
MADSEN KM, LAURITSEN MB, PEDERSEN CB et al.: Thimerosal and the
occurrence of autism: negative ecological evidence from Danish population-based
data. Pediatrics. 112(3 Pt 1):604-606. 2003
MAGOS L. Review on the toxicity of ethylmercury, including its presence as a
preservative in biological and pharmaceutical products. J Appl Toxicol; 21: 1-5. 2001.
MAGOS L. Neurotoxic character of thimerosal and the allometric extrapolation of
adult clearance half-time to infants. J Appl Toxicol; 23: 263-9. 2003.
MAGOS L, CLARKSON TW. Overview of the clinical toxicity of mercury. Ann Clin
Biochem; 43: 25768. 2006.
MAGOS L, BROWN AW, SPAROW S, et al. The comparative toxicology of ethyl- and
methylmercury. Arch Toxicol 1985; 57 (4): 1985
MALM, O. Autismo é associado a uso excessivo de vacinas. Ciência Hoje. vol. 30 nº
175. 2001.
MARQUES RC Uma casa dividida: preocupações públicas e a segurança das
vacinas. Ciência Hoje. In press. 2008.
MARQUES RC, DOREA JG, BASTOS WR, REBELO MF, FONSECA MF, MALM O.
Maternal mercury exposure and neuro-motor development in breastfed infants from
Porto Velho (Amazon), Brazil. Int J Hyg Env Health. 210:51-60. 2007a.
MARQUES, R.C., DOREA, J.G., BASTOS, W.R., FONSECA, M.F., MALM, O. Hair
mercury in breast-fed infants exposed to thimerosal preserved vaccines. Eur. J.
Pediatr., 166:935-941. 2007b
MARQUES RC, DOREA JG, MANZATTO AG, BASTOS WR, BERNARDI JVB, MALM
O. Time of perinatal immunization, thimerosal exposure and neurodevelopment at six
months in breastfed infants. Acta Paediatr. Acta Paediatr 96:864-868. 2007c.
MARQUES RC, BERNARDI JV, DOREA JG, BASTOS WR, MALM O. Principal
component analysis and discrimination of variables associated with pre- and post-
natal exposure to mercury. Int J Hyg Env Health (in press). 2007d
MARQUES, R.C., DOREA, J.G., BASTOS, W.R., MALM, O. Changes in children hair-
Hg concentrations during the first 5 years: Maternal, environmental and iatrogenic
modifying factors. Regulatory Toxicology and Pharmacology. 49. 1724. 2007e
MARQUES RC, DOREA JG, BERNARDI JVB BASTOS WR; MALM O. Maternal fish
85
consumption in the nutrition transition of the Amazon Basin: Growth of exclusively
breastfed infants during the first 5 years. Annals of Human Biology. In press. 2007f
MARQUES, R. C. Avaliação da exposição ao mercúrio e seus compostos sobre
o desenvolvimento neuropsicomotor em crianças de Porto Velho-RO. Belém,
2002, 102p. Dissertação (Mestrado em Doenças Tropicais), Núcleo de Medicina
Tropical, Universidade Federal do Pará, Brasil.
MAYA,L; LUNA; F. El timerosal y las enfermedades del neurodesarrollo infantil. An
Fac Med., Lima; 67(3). 2006.
MIGOWSKI, E. Vacinas: riscos e benefícios. Um guia prático e rápido. São
Paulo. Editora BSB, 2007. 260p
MILLER, NEIL Z. Vaccines: Are they really safe and effective? New Atlantean
Press: Santa Fe, NM. 32, 45. p 17-20, 1993.
MILLER, NEIL Z. Immunization: Theory vs. Reality. New Atlantean Press, Santa Fe,
NM, p 131.1996.
MOREIRA, MS. Política de Imunização no Brasil: processo de introdução de
novas vacinas. Dissertação de Mestrado. Rio de Janeiro. Escola Nacional de
Saúde Pública. Fundação Oswaldo Cruz. Ministério da Saúde, 2002.
MOULIN, A. M. A hipótese vacinal: por uma abordagem crítica e antropológica de
um fenômeno histórico. História, Ciências, Saúde. Manguinhos, vol. 10 (supl. 2):
499-517, 2003.
MURCH SH, ANTHONY A, CASSON DH, MALIK M, BERELOWITZ M, DHILLON
AP, et al. Retraction of an interpretation. Lancet. 2004; 363:750.
MUTTER, J, NAUMANN, J, SADAGHIANI, C, SCHNEIDER, R, WALACH, H.
Alzheimer Disease: Mercury as pathogenetic factor and apolipoprotein E as a
moderator. Neuroendocrin. Lett. 25, 275-283. 2004
MUTTER, J., NAUMANN, J., SADAGHIANI, C., WALACH, H., DRASCH, G. Mercury
and autism: Response to the letter of K. E. v. Muhlendahl [Int. J. Hyg. Environ. Health
208 (2005) 435]. Int. J. Hyg. Environ. Health. 208, 437438. 2005
MYERS GJ, DAVIDSON PW, COX C, SHAMLAYE CF, PALUMBO D, CERNICHIARI
E, SLOANE-REEVES J, WILDING GE, KOST J, HUANG LS, CLARKSON TW:
Prenatal methylmercury exposure from ocean fish consumption in the Seychelles
child development study. Lancet, 361:1686-1692. 2003.
NASCIMENTO, LO; LORENZI FILHO, G; ROCHA-ADOS, S. Lethal mercury poisoning
due to ingestion of Merthiolate. Rev. Hosp. Clin. Fac. Med. Sao Paulo 45: 216218.
1990.
NATURE NEUROSCIENCE. Editorial: A mercurial debate over autism. v.8, n.9,
september, 2005.
NELSON KB, BAUMAN ML. Thiomersal and autism? Pediatrics. 111:674-679. 2003.
PABST HF, SPADY DW, PILARSKI LM, CARSON MM, BEELER JA, KREZOLEK
MP. Differential modulation of the immune response by breast- or formula-feeding of
infants. Acta Paediatr 86:1291-1297. 1997.
PATRICK, L. Mercury toxicity and antioxidants: Part 1: role of glutathione and alpha-
lipoic acid in the treatment of mercury toxicity. Altern. Med. Rev. 7, 456-471, 2002.
86
PICHICHERO, ME; CERNICHIARI E; LOPREIATO J; TREANOR J. Mercury
concentrations and metabolism in infants receiving vaccines containing thiomersal: a
descriptive study. Lancet 360:1737-1741. 2002
PONTE, C. F. Vacinação, controle de qualidade e produção de vacinas no Brasil a
partir de 1960. História, Ciências, Saúde. Manguinhos, vol. 10 (suplemento 2): 619-
53, 2003.
PORTO, A; PONTE, CF. Vacinas e campanhas: as imagens de uma história a ser
contada. História, Ciências, Saúde. Manguinhos, vol.10 suppl.2, p.725-742. 2003.
PRADO, MJVP; OLIVEIRA, RC; FERREIRA, SRF; VIEIRA; RCPA; PINHO; JJRG. A
retirada do timerosal do mercado farmacêutico e sua substituição pelos derivados de
amônio quaternário. Avaliação do risco/benefício. Lecta, v. 22, n. 1/2, p. 37-47,
jan./dez. 2004.
PRESCOTT, HARLEY, AND KLEIN. Microbiology (Third Edition), Wm. C. Brown
Publishers, Chicago. 1996. p 588.
REDWOOD, L., BERNARD, S., BROWN D. Predicted Mercury Concentrations in Hair
From Infant Immunizations: Cause for Concern. Neurotoxicology. 22, 691-697, 2001.
RICE, D.C. Assessing the effects of environmental toxicant exposure in developmental
epidemiological studies: issues for risk assessment. Neurotoxicology. 26, 483-489.
2005.
RODRIGUES, M.; SAITO, T. Avaliação da eficácia antimicrobiana do timerosal e
fenol em alguns produtos imunobiológicos. Rev. Farm. Bioq. Univ. São Paulo, v.
27, n. 2, p. 127-136, 1991.
SAAVEDRA, M. Percursos da vacina na Índia portuguesa séculos XIX e XX. Hist.
cienc. saude-Manguinhos, vol.11 suppl.1 Rio de Janeiro 2004
SANFORD R. KIMMEL, M.D., Vaccine Adverse Events: Separating Myth from
Reality. American Family Physician. 1, v. 66, n. 11. 2002.
SCHEIBNER, VIERA. Vaccination. New Atlantean Press, Santa Fe, NM. p 205-210.
SHEVELL M, FOMBONNE E. Autism and MMR vaccination or thimerosal exposure:
an urban legend? Can J Neurol Sci. Nov;33(4):339-40. 2006
SIMON PA, CHEN RT, ELLIOT JA, SCHWARTZ B. Outbreak of pyogenic abscesses
after diphteria and tetanus toxoids and pertussis vaccinnation. Pediatr Infect Dis J;
12(5): 368-71. 1993.
SILFVERDAL SA, EKHOLM L, BODIN L. Breastfeeding enhances the antibody
response to Hib and Pneumococcal serotype 6B and 14 after vaccination with
conjugate vaccines. Vaccine. 25:1497-1502. 2007
STAJICH GV, LOPEZ GP, HARRY SW, et al. Iatrogenic exposure to mercury after
hepatitis B vaccination in preterm infants. J Pediatr. 136: 679-681. 2000.
STEHR-GREEN P, TULL P, STELLFELD M, MORTENSON PB, SIMPSON D:
Autism and thimerosal containing vaccines: lack of consistent evidence for an
association. Am. J. Prev. Med. 25(2):101-106. 2003
STEUERWALD, U; WEIHE, P; JORGENSEN, PJ; BJERVE, K; BROCK, J;
HEINZOW, B; BUDTZ-JORGENSEN, E; GRANDJEAN, P. Maternal seafood diet,
methylmercury exposure, and neonatal neurologic function. The Journal of
87
Pediatrics, v.136 (5) p.599-605, 2000.
STEWART, AJ; DEVLIN, PM. The history of the smallpox vaccine. Journal of
Infection. 52, 329334. 2006.
SUGARMAN, S.D. Cases in Vaccine Court Legal Battles over Vaccines and
Autism. n engl j med 357;13. september 27, 1275-7p. 2007
TANOUE, Y., ODA, S. Weaning time of children with infantile autism. J. Autism. Dev.
Disord. 19, 425-434. 1989.
TAYLOR B, MILLER E, FARRINGTOM CP, PETROPOULOS MC, FAVOT-MAYAUD
I, LI J. et al. Autism and measles, mumps and rubella vaccine: no epidemiological
evidence for a causal association. Lancet. 353:2026-29; 1999.
TEMPORÃO, JG. O Complexo Industrial da Saúde: Público e Privado na
Produção e Consumo de Vacinas no Brasil. Tese de Doutorado, Rio de Janeiro:
Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro. 2002.
TEMPORÃO, JG. O mercado privado de vacinas no Brasil: a mercantilização no espaço
da prevenção. Cad. Saúdeblica, Rio de Janeiro, 19(5):1323-1339, set-out, 2003.
THE EUROPEAN AGENCY FOR THE EVALUATION OF MEDICINAL PRODUCTS
(EMEA). Human Medicines Evaluation Unit. EMEA public statement on thiomersal
containing medicinal products: 8 July 1999; EMEA/20962/99. Disponível em:
http://www.eudra.org/emea.html. Acessado em: dezembro de 2006.
THE EUROPEAN AGENCY FOR THE EVALUATION OF MEDICINAL PRODUCTS
(EMEA). Human Medicines Evaluation Unit. EMEA Position Statement Recent
developments concerning thiomersal in vaccines: 29 June 2000; EMEA/CPMP1578/
00. Disponível em: http://www.eudra.org/emea.html. Acessado em: dezembro de 2006.
THE NATIONAL ADVISORY COMMITTEE ON IMMUNIZATION (NACI). Thimerosal:
updated statement .Canada Communicable Disease Report;33(ACS-6):1-13. 2007
THOMPSON WW, PRICE C, GOODSON B, SHAY DK, BENSON P, HINRICHSEN
VL, LEWIS E, ERIKSEN E, RAY P, MARCY SM, DUNN J, JACKSON LA, LIEU TA,
BLACK S, STEWART G, WEINTRAUB ES, DAVIS RL, DESTEFANO F. Early
thimerosal exposure and neuropsychological outcomes at 7 to 10 years. N Engl J
Med. Sep 27;357(13):1281-92. 2007
TRASANDE L, LANDRIGAN PJ, SCHECHTERS C. Public health and economic
consequences of methylmercury toxicity to the developing brain. Env Health Persp;
113:590-6. 2005.
TROLLFORS, B; KNUTSSON, N; TARANGER, J.; MARK, A; BERGFORS, A; SUNDH,
V; LAGERGA,T. Diphtheria, tetanus and pertussis antibodies in 10-year-old children
before and after a booster dose of three toxoids: implications for the timing of a booster
dose. Eur J Pediatr; 165: 1418. 2006.
US CENTERS FOR DISEASE CONTROL AND PREVENTION (US CDC).
Thimerosal in vaccines: a joint statement of the American Academy of Pediatrics and
Public Health Service. MMWR Morb Mortal Wkly Rep; 48 (26): 563-5. 1999.
US CENTERS FOR DISEASE CONTROL AND PREVENTION. (US CDC). Notice to
readers: summary of the joint statement on thimerosal in vaccines. MMWR Morb
Mortal Wkly Rep; 49 (27): 622, 631. 2000.
US CENTERS FOR DISEASE CONTROL AND PREVENTION (US CDC). Joint
88
statement: AAP and PHS. Concerning removal of thimerosal from vaccines. 2001.
Disponível em: www.cdc.gov/nip/vacsafe/concerns/thimerosal/joint_statement_00.htm.
Acessado em: 21 de setembro de 2007]
US DEPARTMENT OF HEALTH AND HUMAN SERVICES (US DHHS). NATIONAL
VACCINE INJURY COMPENSATION PROGRAM (VICP). Rockville, M. D: Health
Resources and Services Administration. Acessado em setembro de 2007. Disponível
em: http://www.hrsa.gov/vaccinecompensation/.
US FOOD AND DRUG ADMINISTRATION (FDA). Center for Biologics Evaluation
and Research. Thimerosal in vaccines. Acessado em abril de 2006. Disponível em:
http://www.fda.gov/cber/vaccine/thimerosal.html.
US FOOD AND DRUGS ADMINISTRATION (US FDA). Mercury Containing Drug
Products for Topical Antimicrobial Over-the-Counter Human Use; Establishment
of a Monograph. Federal Register. 47(2): 436-442 (January 5 1982). 1982.
US COURT OF FEDERAL CLAIMS. VACINNE COURT. OFFICE OF SPECIAL
MASTERS. Omnibus autism proceeding. Claims for vaccine injuries resulting in
autism spectrum disorder or a similar neurodevelopmental disorder. Various
petitioners. Washington, D.C. United States. 2007. Acessado no período de maio a
outubro de 2007. Disponível em: ftp://autism.uscfc.uscourts.gov/autism/index.html
VALLE, LBS; OLIVEIRA-FILHO, RM; DELUCIA,R; OGA, S. Farmacologia integrada.
In: DEMUSI, M. Antissépticos, desinfetantes, esterilizantes. São Paulo: Atheneu. v.
2, p. 575-606. 1991.
VERSTRAETEN T, DAVIS RL, DESTEFANO F, LIEU TA, RHODES PH, BLACK SB,
SHINEFIELD H, CHEN RT; VACCINE SAFETY DATALINK TEAM. Safety of thimerosal-
containing vaccines: a two-phased study of computerized health maintenance
organization databases. Pediatrics 112:1039-1048. 2003.
WALKER, SJ; SEGAL, J; ASCHNER, M. Cultured lymphocytes from autistic children
and non-autistic siblings up-regulate heat shock protein RNA in response to
thimerosal challenge. NeuroToxicology 27 685692. 2006.
WEISBERG, SS. Vaccine preventable diseases: current perspectives in historical
context, Part I. Dis Mon; 53(9): 422-66. 2007.
WILSON, CB; MARCUSE, EK. Vaccine safetyvaccine benefits: science and the
public’s perception. Nature Reviews. Immunology. v. 1, p.160-4. 2001.
WORLD HEALTH ORGANIZATION (WHO). Environmental Health Criteria 1:
Mercury. Geneva, Switzerland, WHO, 1976.
WORLD HEALTH ORGANIZATION (WHO). Environmental Health Criteria 101
Methylmercury. Geneva. WHO, 99p. 1990.
WORLD HEALTH ORGANIZATION (WHO). Group on the Growth Reference
Protocol, 1998. A growth curve for the 21st century: the WHO multicentre
growth reference study. WHO, Geneva. 1998.
WORLD HEALTH ORGANIZATION (WHO). Global Advisory Committee on Vaccine
safety, 20-21 June 2002. Wkly Epidemiol Rec; 77(47): 389-90. 2002.
WORLD HEALTH ORGANIZATION (WHO). Global Advisory Committee on Vaccine
Safety: statement on thiomersal, 2003. Acessado em fevereiro de 2006. Disponível
em: http://www.who.int/vaccine_safety/topics/thiomersal/statement200308/en/index.html.
89
WORLD HEALTH ORGANIZATION (WHO). Thiomersal: neuro-behavioural studies
in animal models. Wkly. Epidem. Rec.80: 3-7. 2005
WORLD HEALTH ORGANIZATION (WHO). WHO Multicentre Growth Reference
Study Group. WHO Child Growth Standards: length/height-for-age, weight-for-
age, weight-for-length, weight-for-height and body mass index-for-age: methods
and development. Geneva: World Health Organization, 2006a.
WORLD HEALTH ORGANIZATION (WHO). WHO Multicentre Growth Reference
Study Group. WHO Child Growth Standards based on length/height, weight and age.
Acta Paediatr Suppl. 450:7685. 2006b
WORLD HEALTH ORGANIZATION (WHO). WHO vaccine-preventable diseases
monitoring system, 2006 global summary. Expanded Programme on
Immunization of the Department of Immunization, Vaccines and Biologicals. WHO
Document Production Services, Geneva, Switzerland. 2006c.
WORLD HEALTH ORGANIZATION (WHO). Statement on Thiomersal. WHO Global
Advisory Committee on Vaccine Safety. Geneva, World Health Organization. 2006d.
Disponível em: http://www.who.int/vaccine_safety/topics/thiomersal. Acessado em:
15 de fevereiro de 2007.
WORLD HEALTH ORGANIZATION (WHO). Preventing disease through healthy
environments. Exposure to mercury: a major public health concern. WHO
Document Production Services, Geneva, Switzerland, 2007.
YOSHIDA, H. Problems with eradicating polio World Health Organization's Global
Polio Eradication Initiative Brief Article. Science News. Nov 25, 2000.
ZAMBRANO, B. Consideraciones generales sobre el mercurio, el timerosal, y su uso
en vacunas pediátricas. Rev Med Uruguay. 20: 4-11. 2004.
ZAREBA G, CERNICHIARI E, HOJO R, NITT SM, WEISS B, MUMTAZ MM, JONES
DE, CLARKSON TW. Thimerosal distribution and metabolism in neonatal mice:
comparison with methyl mercury. J Appl Toxicol. 27:511-518. 2007.
ZETTERSTRO, R. Flawed reports of immunization complications: consequences for
child health. Acta Pædiatr. 93. 2004.
ZIEGEL, E.E.; CRANLEY, M. S. Enfermagem obstrica. 8ª ed., Guanabara Koogan,
Rio de Janeiro, 1986. 696p
90
ANEXOS
Int. J. Hyg. Environ.-Health 210 (2007) 5160
Maternal mercury exposure and neuro-motor development in breastfed
infants from Porto Velho (Amazon), Brazil
Rejane Correˆ a Marques
a,b,Ã
, Jose
´
Garrofe Do
´
rea
c
, Wanderley Rodrigues Bastos
a
,
Mauro de Freitas Rebelo
b
,Ma
´
rlon de Freitas Fonseca
b
, Olaf Malm
b
a
Fundac¸a˜o Universidade Federal de Rondo
ˆ
nia, Porto Velho, RO, Brazil
b
Laborato
´
rio de Radioisotopos Eduardo Penna Franca, Instituto de Biofı
´
sica Carlos Chagas Filho, Universidade Federal do Rio de
Janeiro, CCS, Bl, G, IBCCF, Cidade Universitaria, Ilha do Funda˜o, 21941-900 Rio de Janeiro, RJ, Brazil
c
Universidade Federal de Brası
´
lia, Brası
´
lia, DF, Brazil
Received 15 March 2006; received in revised form 14 August 2006; accepted 14 August 2006
Abstract
Fish is an important item in the diet of Amazonians, and per se is their best single source of essential nutrients.
Rapid urbanization and migration are bringing changes in dietary habits of Amazonians. Exposure to fis h-Hg during
pregnancy and lactation were studied in 100 women and newborns from Porto Velho. Tissue-Hg concentrations and
neurodevelopment (Gesell Developmental Schedules) were asses sed at birth and at 6 months in exclusively breastfed
infants. Maternal mean frequency of fish consumption was low (o2 meals/week; range 0–47 meals/week) compared
to Amazonian standards. Women consuming o2 fish meals/week showed less median hair-Hg (3.5 mgg
À1
) than
women that consumed X2 fish meals/week (5.7 mg g). Median total Hg in maternal hair (5.4 mgg
À1
) was higher than in
newborns (1.6 mgg
À1
). Significant correlation was observed between maternal hair-Hg and infant hair-Hg at birth
(r ¼ 0:353; po0:01) and at six months (r ¼ 0:510; po0:01). Placenta-Hg was also significantly correlated to mate rnal
hair-Hg (r ¼ 0:321; po0:01), newborn hair-Hg (r ¼ 0:219; po0:05), mate rnal blood-Hg (r ¼ 0:250; po0:01) and to
umbilical cord-Hg (r ¼ 0:857; po0:01). Most infants (74%) had normal Gesell Schedules but among the 26% showing
neuro-motor development delays only six (7%) had multiple (motor, language, and adap tative) delays. The infants
with multiple delays were born from mothers with range of hair-Hg comparable to mothers of normally developed
infants. Coincidentally, mothers of infants with multiple delays also showed the lowest range of income and level of
education. Fish consumption, income, and level of education varied greatly among these breastfeeding urban mothers.
It seems that development delays of exclusively breastfed infants are a component of the health inequalities that
accompanies socioeconomic disadvantages.
r 2006 Elsevier GmbH. All rights reserved.
Keywords: Amazon; Fish consumption; Neuro-motor development; Breastfeeding; Hair-Hg
Introduction
Mercury is listed among the most toxic substances in
industrialized countries. One-third of emissions are
estimated to originate from natural sources and the
ARTICLE IN PRESS
www.elsevier.de/ijheh
1438-4639/$ - see front matter r 2006 Elsevier GmbH. All rights reserved.
doi:10.1016/j.ijheh.2006.08.001
Ã
Corresponding author. Laborato
´
rio de Radioisotopos Eduardo
Penna Franca, Instituto de Biofı
´
sica Carlos Chagas Filho, Universi-
dade Federal do Rio de Janeiro, CCS, Bl. G. IBCCF, Cidade
Universita
´
ria, Ilha do Funda
˜
o, 21941-900 Rio de Janeiro, RJ, Brazil.
Tel./fax: +55 21 2561 5339.
E-mail address: [email protected] (R.C. Marques).
other two-thirds from anthropogenic sources (Patrick,
2002). Environmental Hg is found in various chemical
forms: elemental Hg, inorganic Hg, and organic Hg
(ethyl-, methyl-, alkyl-, or phenyl-Hg). The chemistry of
Hg modulates its toxicity and metabolism. While
inorganic Hg acts mainly on the kidneys, volatile
metallic Hg and especially methylmercury (MeHg)
primarily affect the central nervous system (CNS). The
vulnerability of the developing human brain is the most
important window for harmful Hg compounds (Castoldi
et al., 2003). Dietary intake of fish and seafood products
is the main source of MeHg exposure. Fish MeHg is
easily absorbed by gastrointestinal tract and rapidly
enters the blood stream. It is distribut ed throughout the
body within 3–4 days. It is estimated that 5% of dietary
MeHg is found in the blood and 10% in the brain,
with a half-life ranging between 45 and 70 days
(Castoldi et al., 2003).
Fish is an important item in the diet of Amazonians,
and per se is their best source of essential nutrients. Fish
is a fundamental complement for native Amazonians on
protein-poor starchy food diets (70–80% of dietary
energy from cassava); its protein content is well digested
and has a high biological value (Dorea, 2004). Further-
more, besides its nutrient content, fish flesh can enhance
absorption of Zn and Fe (Dorea, 2004). According to
Inhamuns and Franco (2001), Amazonian fish contain
omega-3 polyunsaturated fatty acids (PUFA; decosa-
hexanoic [22:6] acid and eicosapentaenoic [20:5] acid)
essential for infant neurodevelopment. Decosahexanoic
acid is an essential component of nervous system cell
membranes that is delivered to the fetus and post-natally
into milk. However, fish is also a bioconcentrator of
natural MeHg. Fortunately, Amazonian fish are, on the
other hand, a good source of selenium (Dorea et al.,
1998), known to counteract the toxic effects of Hg;
significant correlations between Hg and Se in hair were
reported in Amazonians (Vasconcellos et al., 2000;
Campos et al., 2 002).
A legitimate concern arising from the large amounts
of metallic Hg (used to extract gold) discarded in the
Amazonian environment prompted fish-H g studies that
were summarized by Dorea (2003). Amazon fish
bioconcentrate MeHg originated from naturally occur-
ring Hg in the rainforest (Barbosa et al., 2003). It is now
known that Amazon soils are rich in Hg and those
constitute a natural source of Hg for methylation
(Fadini and Jardim, 2001; Bastos et al., 2006). However,
while deforestation (along with agricultural projects)
and alluvial-gold extraction have brought about vast
changes in the environment of West-Amazonia, urban
development has brought changes in the traditional
lifestyles of human populations.
Fish consumption is part of the cultural adaptation of
indigenous ‘‘ribeirinhos ’’ (riverine populations). Amazo-
nian women (especially Rio Negro ribeirinhos ) depend-
ing heavily on fish consumption have showed hair-Hg
that is amon g the highest of the world (Barbosa et al.,
1998). Despite this no neurological problems involving
fish consumption or other neurotoxic substance in foods
like cassava products have been described (Dorea,
2004). Neuro-behavioral tests suggested that riverine
children of East Amazonia presented alterations asso-
ciated with high hair-Hg concentrations (Grandjean
et al., 1999), but a recent study reported no significant
difference (Tavares et al., 2005). In the French-
Guyanese Amazon, Cordier et al. (2002) rep orted no
major neurologic signs in Amerindian children of three
different levels of fish-Hg exposure (regions with high,
intermediate and low fish consumption). Nevertheless,
but they observed that after adjusting for some potential
confounders, there were dose-dependent (regions) ef-
fects, which were increased deep tendon reflexes, poor
coordination of the legs, and decreased performance in
the Stanford-Binet Copying score.
Tissue accumul ation and toxicity are not equivalent in
the case of Hg; MeHg accumulation is greater in the
kidney than in the brain, but the brain appears to be the
key target (Cory-Slechta, 2005). It is a point of fact that
the CNS formation and development during pregnancy
and lactation can be affected by multiple causes, ranging
from maternal nutrition to neurotoxic-substance expo-
sure. In this specific time window, Hg exposure can
affect neurobehavioral functions. Mild exposure may
result in delayed symptoms (not observed at birth), such
as difficulty in walking and talking, and persistence of
abnormal perinatal reflexes (World Health Organization
(WHO), 1990; Myers and Davidson, 1998).
Our objectives were: (a) to study fish-Hg exposure of
urban Amazonian mothers; (b) to associate maternal
exposure (hair-Hg) with tissue-Hg and factors relevant
to neuro-motor development of breastfed infants; and
(c) to examine the association between generated
dimensions of infant neurodevelopment and maternal
socioeconomic and Hg exposure features.
Materials and methods
Porto Velho is the capital of the state of Rondonia
(West Amazonia). Until the 1960s it was a traditional
Amazonian city but after agricultural projects in the
southwest region of the state followed the opening of
roads, there was also a great influx of prospectors for
exploring alluvial gold along the banks of the Rio
Madeira basin. Since then, Porto Velho has experienced
significant demographic changes with people coming
from many other Brazilian regions.
The research protocol was approved by the Ethics
Committee of Studies for Humans of the Universidade
Federal de Rondonia. Pregnant mothers were intro-
duced to the study and invited to participate by a nurse
ARTICLE IN PRESS
R.C. Marques et al. / Int. J. Hyg. Environ.-Health 210 (2007) 51–6052
during their routine visits to the Pre-natal Clinics of
three hospitals of Porto Velho: Hospital de Base,
Hospital Panamericano and Hospital Regina Pacis.
Potential participants received plain-language informa-
tion about the study and a written consent form was
presented and signed by the volunteering mother; the
written consent stated that participation was voluntary,
their confidentiality was assured and that they could
withdraw from the study at any time. Mothers were
selected among those in good health, reporting no illness
or complaints at the time of the study and who were
willing to breast feed. Excluding factors were occupa-
tional exposure to toxic chemicals and hereditary
neurological illnesses. One hundred mother s between
the ages of 15 and 45 years were recruited among those
that manifested the intention of exclusively breastfeed-
ing up to 6 months of age.
For each mother a complete clinical evaluation was
obtained from medical records and at the time of the
first interview a questionnaire was applied to assess
socioeconomic and educational status. The question-
naire also evaluated food habits, frequency of fish
consumption, and intention of breastfeeding. While at
the maternity wards, we co llected samples of cord blood,
placenta and hair from mothers and respective infants
(fetal hair). Maternal blood (4.5 mL), placenta (three
different aliquots) and umbilical cord sample (5–10 g)
were stored in nitric-acid clean vessels, refrigerated and
taken to the laboratory and frozen at À20 1C until
analysis. Hair strands were cut from the occipital region
and placed in plast ic bags, with the root end stapled on a
paper sheet.
The newborns were clinicall y examined with special
attention to vitality, perinatal reflexes, maturity, and
congenital malformations; weight, length, head circum-
ference, and Apgar scores were recorded. Anthropo-
metric data at birth (weight, length and head
circumference) were compared with data tabulated by
US National Center for Health Statistics—(NCHS)
after its adaptation by the WHO for world-wide use
(World Health Organization (WHO) Group on the
Growth Referen ce Protocol, 1998; Kuczmarski et al.,
2000). The software for calculating pediatric anthro-
pometry (ANTHRO 1.02, 1999) from the Centers for
Diseases Control and Prevention was used.
At 6 months of age, only 86 of the 100 original
mother–infant pairs reported for the programmed
clinical and neurobehavioral examination when hair
samples were collected again. Five mothers had moved
out of the state, five did not report and could not be
found, and four bab ies had died within the first month.
Because two mothers developed gestational diabetes and
two others developed pre-eclamptic toxem ia, we used
only data from 82 mother–infant pairs. Children
received the full immunization scheme in accordance
with Brazilian vaccination program.
The infants’ development assessment was conducted
at the age of 6 months by trained professionals using the
Gesell Developmental Schedules (Gesell, 20 03; Gesell
and Amatruda, 2000). The Gesell Schedules included all
reactions (voluntary, spontaneous or learned) and
reflexes. We also evaluated postural reactions, hand
pressure, locomotion and coordination, constructive
ability (which is influenced by motor development),
visible and audible communication, individual reactions
regarding people and stimulations (depending mainly on
the temperament of the child and the surroundings). The
results were expressed as developmental scores for the
Motor Skills, Language Development, Adaptive Beha-
vior, and Personal Social behaviors.
Hg determination
Sample preparation and Hg determination were done
according to routine procedures previously established
at the Universidade Federal do Rio de Janeiro (Bastos et
al., 1998). We followed routine procedures of the
laboratory after adaptation of analytical protocol used
for Hg determ ination in previous studies analyzing
blood, hair and fish-flesh matrices (Bastos et al., 1998;
Malm et al., 1989, 1998). Briefly, the hair samples were
comminuted with stainless steel scissors, weighed, and
digested before analysis. Blood samples were digested
with concentrated HNO
3
(3 mL) and KMnO
4
(5%;
6 mL) using a microwave oven system for 35 min (CEM-
Coorporation, MDS 2000, Matthews, NC, USA).
Placenta and umbilical cord samples were weighed and
digested with HNO
3
:H
2
SO
4
(1:1; 5mL) and KMnO
4
(5%; 4 mL) using a digestion block at 80 1C for 1 h
(Tecnal Ltd., Piracicaba, Sa
˜
o Paulo, Brazil). Human
hair samples were washed with EDTA 0.01%, dried in
an oven at 50 1C, weighed and digested with 5 mL of
HNO
3
:H
2
SO
4
(1:1) and 4 mL of 5% KMnO
4
using a
digestion block at 80 1C for 40 min. The determination
of total Hg in the digested samples was done by cold
vapor atomic absorption spectrometry with a flow
injection system-FIMS (CV-AAS, Perkin-Elmer—FIMS
400, Ueberlingen, Germany). All glasswa re used in the
analytical protocol was washed clean, rinsed with 5%
EDTA and double distilled, and left to rest in 5% HNO
3
overnight. Then it was rinsed again in double-distilled
water, and dried at 100 1C for 12 h. Precision an d
accuracy of Hg determinations were assured by the use
of internal standards, use of triplicate analyses of
samples and certified reference materials (IAEA-085
and 086, Vienna, Austria) with recoveries of 92%.
Statistical analysis
A multivariate correspondence model was used to
analyze maternal factors (tissue Hg, socio-economic
ARTICLE IN PRESS
R.C. Marques et al. / Int. J. Hyg. Environ.-Health 210 (2007) 51–60 53
status) that might affect the infant’s social and adaptive
abilities, gross motor ability or the fine motor ability;
this step was done with statistical software (Statsoft,
2002, Tulsa, AZ, USA). Variables used for the analysis
are listed in Table 1. Afterwards, correlation analysis
was used to compare the tissue-Hg concentrations
between mothers and respective neonates (SPSS for
Windows 14.0, 2005, Chicago, USA).
Results
Descriptive data of mothers and infants are presented
in Tables 1–5. The demographics summarized in Table 1
show a wide range of socioeconomic status (SES). Most
of the 100 mothers were enrolled from a public hospital
(n ¼ 61, Hospital de Base) while 39% were from
corporate middle-class hospitals (n ¼ 13, Hospital Pa-
namericano; n ¼ 26, Hospital Regina Pacis); a substan-
tial proportion (39%) of these mothers were primiparas.
The median income was US$125, and 64% did not have
indoor plumbing, thus indicating that the majority of
mothers were socioeconomically underprivileged. Irre-
spective of income and education, 57% reported that
they consumed fish up to once a week, 4% reported
more than 7 fish servings a week and only 5% reported
not consuming fish (Table 1). Anthropometric data of
mothers and infants are shown in Table 2. Nine
newborns were below and two were above NCHS
reference cu rves for weight. After 6 months of exclusive
breastfeeding four children were overweight and only
three boys presented short length.
Mercury exposure data are presented in Tables 3–5.
Tissue Hg concen trations as a function of reported
ARTICLE IN PRESS
Table 1. Socioeconomic characteristics of the 100 mothers enrolled in the study
Characteristics Minimum Median Maximum Percentage
Mother education (years) 0 8 18
Income (US$)/m 16.67 125.00 1250.00
Type of home
Owned 57
Rental 14
Living with relatives 29
Persons/household 2 5 14
No electricity 20
Water supply
Running water 36
Well 61
Local rivers 3
Fish-eating habits
Fish meals (week) 0 1 14
0–1/week 57
2–7/week 43
Fish-eating sources
Market fish 53
Local rivers 42
No fish 5
Table 2. Biodata of the 82 mother–infant pairs
Minimum Median Maximum
Maternal data
Pre-natal
Age (years) 15 22 40
Weight(kg) 43 55 68.5
Height (m) 1.51 1.61 1.7
BMI (kg m
À2
) 17.40 21.19 26.56
Gestational age (w) 36 39.5 43
Pregnancy, n
a
128
At the end of pregnancy
Weight(kg) 53 69 85
BMI (kg m
À2
) 22.35 26.53 32.39
Infant data
Birth
Weight (g) 2200 3200 4370
Length(cm) 46 50 55
Head circumference(cm) 30 34 39
Six months
Weight (g) 6110 7000 8500
Length(cm) 61 68 73
Head circumference (cm) 40 43 45
a
Primiparas ¼ 39.
R.C. Marques et al. / Int. J. Hyg. Environ.-Health 210 (2007) 51–6054
frequency of fish consumption are shown in Table 3.In
this study, maternal fish consumption (hair-Hg) did not
depend on monthly income or years of education; mean
income and education were very close between the
groups. The maternal hair-Hg concentrations varied
widely (0.2–62.4 mgg
À1
) reflecting extremes of reported
fish consumption. Indeed mothers that reported low
fish-consumption ( o2 servings a week) showed a lower
median hair-Hg concentrations (3.5 mgg
À1
) than the
other group (5.7 mgg
À1
). Most of the maternal hair-Hg
concentrations (57%) were below 6 mg g; 34% of hair
samples showed Hg concentrations between 6 and
15 mgg
À1
and 9% showed hair-Hg greater than
15 mgg
À1
. The statistics of Hg concentrations in mothers
and infants are shown in Table 4. The median umbilical
cord-Hg concentration (7.5 ng g
À1
) was close to the
median placenta-Hg concentration. Fetal hair-Hg of the
82 newborns showed that 92% were o6 mg g; 7% were
between 6 and 15 mgg
À1
and only 1% was 415 mgg
À1
.
Correlation coefficients among maternal and infant Hg-
variables are summarized as follows: significant non-
parametric correl ations (Spermans) were observed
between maternal hair-Hg and infant hair-Hg at birth
(r ¼ 0:353; po0:01) and at 6 months (r ¼ 0:510;
po0:01). Placenta-Hg was also significantly correlated
with maternal hair-Hg (r ¼ 0:321; po0:01), newborn
hair-Hg (r ¼ 0:219; po0 :05), maternal blood-Hg
(r ¼ 0:250; po0:05), and with umbilical cord-Hg
(r ¼ 0:857; po0:01).
The assessment of neuro-motor development of
breastfed 6-month-old infants is summarized in Table 5.
Most infants (74%) showed normal schedules and 21
children (26%) exhibited developmental delay in one or
more features of the Gesell Schedules: 1% showed
motor impairment, 9% had language deficits, and 16%
had multiple impairments (7% motor, language, adap-
tative, and 9% motor, language). There were no
children who presented developmental delay in the
personal social behavior. There were no children who
presented developmental delay in the social ability. The
26% of infants showing neuromotor delays showed
higher median hair-Hg values; these infants were born
from mothers that had median hair-Hg concentrations
also higher than mothers of normally developed infants.
However, infants with multiple delays were born from
mothers that also showed the lowest median income.
The infants with higher median fetal hair-Hg showed
even higher median hair-Hg at 6 months (Table 5).
Multivariate analysis was performed to iden tify
groups of related variables. After identification (and
removal) of redundant variables by Cluster Analysis,
Correspondence Analysis was applied to identify groups
of associated variables. Association (co-occurrence) is
characterized by similar position in the two-dimensional
(2D) plane depicted in Fig. 1. The first dimension is
characterized by the infant groups which showed the
most delayed development (adaptive, motor and lan-
guage) and the greatest hair-Hg concentrations (group
#1 and group #3). In contrast with a group of normal
children from high income families and more educated
mothers (group #2). The second dimension is mainly
characterized by the highly exposed neonates (group #1,
with high hair-Hg) in contrast with another group of
infants with mild delay in Gessel scores (group #4).
Discussion
Assuming that hair strands are the best integrator of
past MeHg exposure, the main finding of this study is
that the marker of fish consumption (maternal hair-Hg)
significantly correlated with fetal hair-Hg; this signifi-
cant association lasted until 6 months of lactation.
Notably, delay in neuromotor developm ent observed in
infants with higher median hair-Hg did not indicate a
dose response relationship: the highest hair-Hg values
were found in the normal infant group (Table 5).
ARTICLE IN PRESS
Table 3. Maternal income, education and tissue Hg concentrations as a function of reported frequency of fish consumption
Fish
servings/w
N Blood [Hg]
(mgL
À1
)
Hair [Hg]
(mgg
À1
)
Umbilical cord
(mgg
À1
)
Placenta
(mgg
À1
)
Income
(US$)
Education
(y)
0–1 57 0.6 (0.01–10)
a
3.5 (0.2–28.7) 8.1 (0.53–58.1) 8 (0.7–50.4) 125 (50–1250) 8 (0–18)
X2 43 0.5 (0.01–10) 5.7 (0.16–62.4) 6.5 (0.1–43.7) 7.9 (0.2–56.3) 125 (17–1250) 8 (4–17)
a
Median (MinÀMax); w ¼ week; y ¼ year.
Table 4. Total Hg concentrations in tissues of mothers and
infants
Minimum Median Maximum
Mothers
Umbilical cord (ng g
À1
) 0.12 7.44 43.74
Placenta (ng g
À1
) 0.37 8.10 56.28
Blood (mgL
À1
) 0.01 0.55 9.97
Hair (mgg
À1
) 0.39 5.40 62.43
Infant’s hair Hg (mgg
À1
)
Fetal 0.05 1.59 19.65
Six months 0.02 1.81 32.95
R.C. Marques et al. / Int. J. Hyg. Environ.-Health 210 (2007) 51–60 55
In Fig. 1, the highest income and educational levels were
clustered in group #2. These finding suggests the
occurrence of some protective conditions which were
not present in underpriv ileged families. Poorer and less
educated families mo re probably lack mother–fetus
pairs ideal development support.
The mean hair-Hg of these mothers (7.4 mgg
À1
)is
lower than reported values for ribeirinho mothers
(8.3–9.4 mgg
À1
) of the Rio Tapajo
´
s(Pinheiro et al.,
2005), breastfeeding mothers (14.3 mgg
À1
) of the Rio
Madeira (Barbosa et al., 1997) and the Rio Negro
(Dorea et al., 2003). In the ribei rinho women of the Rio
Negro consuming at least one fish-based meal a day
median hair-Hg (18.3 mgg
À1
) was much higher than that
of women in the present study (Dorea et al., 2003). In
ribeirinho women of the Rio Madeira, the mean
breastmilk-Hg concentration was 5.8 ng g
À1
and infant
hair-Hg was 9.8 mgg
À1
(Barbosa et al., 1997). There
were indications that MeHg transfer was higher during
pregnancy than during breastfeedi ng. Nevertheless,
there are no reports of clinical signs of neuropathologies
in that population associated with fish consumption. A
recent study of urban mothers from Paramaribo
(Surinamese Amazon) showed a much lower concentra-
tion (0.8 mgg
À1
) of hair-Hg (Mohan et al., 2005). In
non-traditional urban pregnant-women of Alta
Floresta (southern Amazonia) the mean hair-Hg con-
centrations was also 1.2 mgg
À1
(range, 0.05–8.2 mgg
À1
).
ARTICLE IN PRESS
Table 5. Frequency distribution of neurodevelopment (Gesell Schedules) of infants at 6 months of age and summary of
corresponding markers of Hg exposure and socioeconomic status
Gesell Scale N
[%]
Infant hair Hg,
0m, (mgg
À1
)
Infant hair Hg,
6m, (mgg
À1
)
Mother hair Hg
(mgg
À1
)
Income
(US$)
Mother
education (y)
Normal 61 [74] 1.4 (0.05–9.3) 1.6 (0.01–33) 4.28 (0.39–62.43) 145.8 (16.7–1250) 8 (4–18)
Motor (M) 1 [1] 0.62 1.7 10.56 375 11
Language (L) 7 [9] 1.59 (0.3–3.5) 2.8 (0.9–26.9) 7.29 (1.30–28.73) 145.8 (50–525) 8 (5–16)
M and L 7 [9] 2.3 (0.6–7.4) 5.6 (1.2–15.1) 10.34 (2.14–12.48) 104.16 (70–125) 8 (4–11)
M, L and A
a
6 [7] 6.4 (2.3–19.7) 6.9 (0.4–18.1) 5.74 (3.32–20.77) 104.16 (83.3–208.3) 6.5 (6–11)
Overall 82 [100] 1.6 (0.05–19.7) 1.8 (0.02–33) 5.40 (0.39–62.43) 125 (16.7–1250) 8 (0–18)
Median (MinÀMax); m ¼ month; y ¼ year.
a
A ¼ Adaptive.
1.5
AD:D
If>9
MT:D
LG:D
Nn < 9
AD:L
LG:L
MT:L
$400
$200
$100
WL>5
12ySch
Nn < 6
LG:N
$800
$1200
AD:N
MT:N
18ySch
#2
8ySch
Nn < 3
4ySch
If<9
If<3
If<6
WL<5
#4
#3
Nn>9
#1
1.0
0.5
0.0
-0.5
-1.0
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Dimension 1; Ei
g
envalue: 0.40 (16.06% of inertia)
Dimension 2; Eigenvalue: 0.26 (10.44% of inertia)
Fig. 1. Multivariate analysis (anthropometrics parameter, performance in Gesell schedule and socioeconomics status). MT—Motor,
LG—Language, AD—Adaptive, N—Normal, D—Delay, L—Borderline, If—infant Hg-hair, Nn—newborn Hg-hair, ySch—
mother education in year, $—income, WL—weight-for-length percentile.
R.C. Marques et al. / Int. J. Hyg. Environ.-Health 210 (2007) 51–6056
This population is formed by non-fish eaters that
migrated from the South of Brazil during the gold rush
(Hacon et al., 2000).
The studied sample of Porto Velho women is not
homogenous, neither culturally or socioeconomically.
Therefore, because there were no severe prenatal insults
that could distort early pattern of neurodevelopment, the
observed delays were within expected rates for Brazilians
(Paine and Pasquali, 1983). Even in homogenous popula-
tions there are variations in neurobehavioral outcomes.
Dodge et al. (1975) have discussed the limitations of the
reliability of a single function as the evaluator of an insult
on normal development. In our case there were only six
cases of retardation of all milestones.
Regarding prenatal Hg exposure, our results (Gesell
Schedules) are consistent with the absence of neurode-
velopmental abnormalities in early childhood rep orted
in Peruvian mothers (Pacific coast) with comparable
mean hair-Hg levels (8.3 mgg
À1
; range 1.2–30 mgg
À1
)
during pregnancy (Marsh et al., 1995). A larger long-
itudinal study with 708 Seychellois infants also reported
that in utero exposure to MeHg (from a maternal fish
diet) caused no adverse outcomes in neurological and
psychological development at 6 months of age (Myers et
al., 1995). In that study maternal hair-Hg ranged from
0.5 to 26.7 mgg
À1
(Myers et al., 1995). Neurodevelop-
mental and Hg-associated studies of infants and young
children sometimes do not make references to breast-
feeding status. Because of the fundamental role of
breastfeeding and neuromotor development it is im-
portant to emphasize such studies. Only 6% of the
breastfed infants in the present study showed adaptive
behavior delays. Specific components (PUFA) present in
breast milk, but not in infant formulas, which are
essential for neuronal development and organization
have accounted for cognitive an d developmental scores
in favor of breastfeeding (Agostoni et al., 2001).
Therefore, when breastfeeding is considered in mater-
nal-Hg contamination studies, there are clearly benefits
for the neurodevelopment of the breastfed infants
(Grandjean et al., 1994; Jensen et al., 2005).
Although we collected fetal hair at birth, infant
exposure to maternal Hg (consumed as fish-MeHg)
during pregnancy is better assessed with maternal hair-
Hg. Indeed, maternal hair-Hg was significantly corre-
lated with fetal hair-Hg, which is in agreement with
other Amazonian studies of women with high (Barbosa
and Do
´
rea, 1998) and low (Mohan et al., 2005) fish
consumption. Lindow et al. (2003) also found significant
correlation betw een maternal hair-Hg and fetal hair-Hg
in a group of mothers predominantly exposed to dental
amalgam-Hg. There are several drawbacks in fetal hair-
Hg as a reliable indicator of intra-uterine exposure. Not
all infants are born with hair; hair starts to grow at the
18–20th week of development at the front al and the
parietal regions and is likely to fall by the time of birth.
Also, oc cipital hair is likely to grow at the time of birth
and to fall after 12 weeks. Furthermore, hair density,
length and texture are dependent upon factors such as
race and sex. Fetal hair-Hg in the present study was
higher (2.4 mgg
À1
) than for newborns (1.6 mgg
À1
)of
urban Surinamese mothers (Mohan et al., 2005).
Studies involving non-occupational maternal Hg
exposure (fish consumption) during pregnancy and
infant ne uro-motor develop ment are complicate to
design because of the confounding factors. This is
further complicated when mothers are exposed to
neurotoxic substances other than MeHg present in fish
(Stewart et al., 2003). Nevertheless, maternal fish intake
during pregnancy was associated with higher develop-
mental scores for language comprehension, and social
activities (Daniels et al., 2004). A recent study by Oken
et al. (2005) in low fish-eating American mothers
showed that the mean visual recognition memory was
higher at six months in infants born to mothers that ate
42 fish servings/week but had less than 1.2 of hair-Hg
during pregnancy, clearly suggesting an interaction
between positive effects of fish eating and negative
effects of Hg contamination. Although the multivariate
model adjusted for breastfeeding duration, Oken et al.
(2005) failed to ad dress the organic Hg effects currently
debated in vaccinated infants.
Fetal Hg exposure is exclusively derived from
maternal contamination. However, during breastfeed-
ing, iatrogenic Hg exposure (vaccines) is frequent but
has not been taken into consideration in infant
neurodevelopmental studies. Redwood et al. (2001)
reviewed Hg exposure due to Thimerosal (Thiomersal,
ethylmercurithiosalicate-TMS), a preservative found in
many infant vaccines. TMS contains 49.6% ethyl
mercury-EtHg (by weight) contributing 25 mg of EtHg
per dose; 12.5–40% depending on the vaccine (Redwood
et al., 2001). During an immunization schedule, infants
may receive vaccines at birth (12.5 mgEtHg), two
(62.5 mgEtHg), four (50 mgEtHg) and six (62.5 mgEtHg)
months that could expose them to a total of
207.5 mgEtHg during the first 6 months of life. The
possible associati on of vaccinations (conta ining TMS)
and autism spectrum disorde rs (ASD) is gaining
scientific attention. Mutter et al. (2004, 2005) discussed
the epidemiology and mechanism of Hg-associated
developmental (behavioral) disorders and suggested that
effects of MeHg found in fish are less toxic compared to
iatrogenic sources of Hg. They argued that the vaccine
situation resembles the epidemic of acrodynia in the last
century which affected up to 1 of 500 infants. After
removing teething powder, which contained Hg as
calomel (Hg
2
Cl
2
), acrodynia disappeared. They also
argued that in 1953 immunizations with TMS-contain-
ing vaccines preceded the onset of acrodynia in several
cases. It should be noticed that epidemiologic al studies
relating ASD and vaccine-TMS have not considered
ARTICLE IN PRESS
R.C. Marques et al. / Int. J. Hyg. Environ.-Health 210 (2007) 51–60 57
breastfeeding. However, there is one study indicating
that early weaning could contribute to the etiology of
autism (Tanoue and Oda, 1989).
Mercury in the umbilical cord is not frequently
assessed, but one such study (Murata et al., 2004)
reported that maternal hair-Hg concentration was
significantly correlated with the MeHg in the umbilical
cord obtained from 49 newborns. This is closely in line
with our present study. Besides easier sampling and
processing, umbilical cord may be collected 1 week after
birth. A retrospective study (babies born between 1950
and 1965) of the Minamata crisis in Japan showed that
the 24 patients diagnosed with Minamata disease had
umbilical cord Hg concentrations of 1.63 mgg
À1
(Akagi
et al., 1998). This is higher than values that we (in the
present study) and others (Daniels et al., 2004) found in
low fish eating mothers.
Although fish consumption has been monitored for
riverine populations this is the first study reporting fish
consumption of urban Amazonian mo thers. In Amazo-
nian populations hair-Hg is a surrogate of fish
consumption of adu lts (Dorea et al., 2005a) and children
(Dorea et al., 2005b). The Brazilian Amazon population
showing elevated hair-Hg exposure is mainly indigenous
and ribeirinho. The impor tance of subsistence fishing for
ribeirinho communities has shown to be proportional to
their distance from urban centers (Alves et al., 2006). In
remote communities of the Rio Madeira subsistence on
fish is also well characterized by mean hair-Hg
concentrations 416 mgg
À1
. We recently showed that
these communities may consume fish twice a day (Bastos
et al., 2005). In the present study, fish consumption of
the Porto Velho mothers is greatly decreased probably
as a result of urbanization and migratory fluxes from
other parts of the country. However, hair-Hg is much
higher than in Paramaribo women (Mohan et al., 2005).
This study also shows that neuro-motor development is
not associated with fish consumption but could be
placed with health inequalities and social deprivation.
Indeed, Cory-Slechta (2005) discussed low SES itself as
a known risk factor for adverse health outcomes and
behavioral dysfunctions both in adults and children.
Low SES is associated with higher levels of mental
retardation, learning disorders and language and atten-
tion deficits in children. Rice (2005) argued that the
higher incidence of disease and dysfunction accompany-
ing low SES is due to the greater environmental stresses
experienced by such populations: a chronic strain
associated with persistent economic hardships resulting
in protracted elevation of cortisol levels.
Acknowledgements
We are greatly in debt to the mothers for their
participation in the study, to the staff and Directors
(Marineˆ s R. dos Santos Cezar, Tereza Cristina Ramos,
Daniele Brasil, Katia Wendt, and Laura Jane Marques)
of the Hospitals (Hospital de Base Ary Pinheiro,
Hospital Panamericano and Hospital Regina Pacis),
the staff of the UNIR and UFRJ. This work was
supported by UNESCO, Ministe
´
rio da Sau´ de do Brasil
and The National Research Council of Brazil-CNPq
(PNOPG project-55.0882/01-4) and the RIOMAR
Foundation.
References
Agostoni, C., Marangoni, F., Giovannini, M., Galli, C., Riva,
E., 2001. Prolonged breast-feeding (six months or more)
and milk fat content at six months are associated with
higher developmental scores at one year of age within a
breast-fed population. Adv. Exp. Med. Biol. 501, 137–141.
Akagi, H., Grandjean, P., Takizawa, Y., Weihe, P., 1998.
Methylmercury dose estimation from umbilical cord con-
centrations in patients with Minamata disease. Environ.
Res. 77, 98–103.
Alves, M.F.A., Fraiji, N.A., Barbosa, A.C., Lima, D.S.S.,
Souza, J.R., Do
´
rea, J.G., Cordeiro, G.W.O., 2006. Fish
consumption, mercury exposure and serum antinuclear
antibody in amazonians. Int. J. Environ. Health 16,
255–262.
Barbosa, A.C., Do
´
rea, J.G., 1998. Indices of mercury
contamination during breast feeding in the Amazon Basin.
Environ. Toxicol. Pharmacol. 6, 71–79.
Barbosa, A.C., Souza, J.R., Garcia, M.A., 1997. Mercury
contamination in hair of riverine populations of Apiaca
´
s
Reserve in the Brazilian Amazon. Water Air Soil Pollut. 97,
1–8.
Barbosa, A.C., Silva, S.R.L., Do
´
rea, J.G., 1998. Concentra-
tion of mercury in hair of Indigenous mothers and infants
from the Amazon Basin. I. Arch. Environ. Contam.
Toxicol. 34, 100–105.
Barbosa, A.C., Souza, J., Dorea, J.G., Jardim, W.F., Fadini,
P.S., 2003. Mercury biomagnification in a tropical black
water, Rio Negro, Brazil. Arch. Environ. Contam. Toxicol.
45, 235–246.
Bastos, W.R., Malm, O., Pfeiffer, W.C., Cleary, D., 1998.
Establishment and analytical quality control of laboratories
for Hg determination in biological and geological samples
in the Amazon, Brazil. Cieˆ nc. Cult. 50, 255–260.
Bastos, W.R., Gomes, J.P.O., Oliveira, R.C., Almeida, R.,
Nascimento, E.L., Bernardi, J.V.E., Lacerda, L.D., Sil-
veira, E.G., Pfeiffer, W.C., 2006. Mercury in the environ-
ment and riverside population in the Madeira River Basin,
Amazon, Brazil. Sci. Total Environ. 368, 344–351.
Campos, M.S., Sarkis, J.E.S., Muller, R.C.S., Brabo, E.D.,
Santos, E.D., 2002. Correlation between mercury and
selenium concentrations in Indian hair from Rondonia
State, Amazon region, Brazil. Sci. Total Environ. 287,
155–161.
Castoldi, A.F., Coccini, T., Manzo, L., 2003. Neurotoxic and
molecular effects of methylmercury in humans. Rev.
Environ. Health 18, 19–31.
ARTICLE IN PRESS
R.C. Marques et al. / Int. J. Hyg. Environ.-Health 210 (2007) 51–6058
Cordier, S., Garel, M., Mandereau, L., Morcel, H.H.,
Doineau, P., Gosme-Seguret, S., Josse, D., White, A.,
Amiel-Tison, C., 2002. Neurodevelopmental investigations
among methylmercury-exposed children in French Guiana.
Environ. Res. 89, 1–11.
Cory-Slechta, D.A., 2005. Studying toxicants as single
chemicals: does this strategy adequately identify neurotoxic
risk? Neurotoxicology 26, 491–510.
Daniels, J.L., Longnecker, M.P., Rowland, A.S., Golding, J.,
2004. Fish intake during pregnancy and early cognitive
development of offspring. Epidemiology 15, 394–402.
Dodge, P.R., Prensky, A.L., Feigin, R.D., 1975. Nutrition and
the Developing Nervous System. The C.W. Mosby
Company, Saint Louis, pp. 1–538.
Dorea, J.G., 2003. Fish are central in the diet of Amazonian
riparians: should we worry about their mercury concentra-
tions? Environ. Res. 92, 232–244.
Dorea, J.G., 2004. Cassava cyanogens and fish mercury are
high but safely consumed in the diet of native Amazonians.
Ecotoxicol. Environ. Saf. 57, 248–256.
Dorea, J.G., Moreira, M.B., East, G., Barbosa, A.C., 1998.
Selenium and mercury concentrations in some fish species
of the Madeira River, Amazon Basin, Brazil. Biol. Trace
Elem. Res. 65, 211–220.
Dorea, J.G., Barbosa, A.C., Ferrari, I., Souza, J.R., 2003.
Mercury in hair and in fish consumed by riparian women of
the Rio Negro, Amazon, Brazil. Int. J. Environ. Health
Res. 13, 239–248.
Dorea, J.G., Souza, J.R., Rodrigues, P., Ferrari, I., Barbosa,
A.C., 2005a. Hair mercury (signature of fish consumption)
and cardiovascular risk in Munduruku and Kayabi Indians
of Amazonia. Environ. Res. 97, 208–218.
Dorea, J.G., Barbosa, A.C., Ferrari, I., Souza, J.R., 2005b.
Fish consumption (hair mercury) and nutritional status of
Amazonian Amer-Indian children. Am. J. Hum. Biol. 17,
507–514.
Fadini, P.S., Jardim, W.F., 2001. Is the Negro River Basin
(Amazon) impacted by naturally occurring mercury? Sci.
Total Environ. 275, 71–82.
Gesell, A., 2003. A crianc¸ a de 0 a 5 anos, 6th ed. Martins
Fontes, Sa
˜
o Paulo, pp. 20–300.
Gesell, A., Amatruda, C.S., 2000. Psicologia do Desenvolvi-
mento—do Lactente a
`
crianc¸ a pequena, bases neuropsico-
lo
´
gicas e comportamentais, 1st ed. Atheneu, Sa
˜
o Paulo, pp.
30–106.
Grandjean, P., Jorgensen, P.J., Weihe, P., 1994. Human milk
as a source of methylmercury exposure in infants. Environ.
Health Perspect. 102, 74–77.
Grandjean, P., White, R.F., Nielsen, A., Cleary, D., de
Oliveira Santos, E.C., 1999. Methylmercury neurotoxicity
in Amazonian children downstream from gold mining.
Environ. Health Perspect. 107, 587–591.
Hacon, S., Yokoo, E., Valente, J., Campos, R.C., da Silva,
V.A., de Menezes, A.C., de Moraes, L.P., Ignotti, E., 2000.
Exposure to mercury in pregnant women from Alta
Floresta-Amazon basin, Brazil. Environ. Res. 84, 204–210.
Inhamuns, A.J., Franco, M.R.B., 2001. Composition of total,
neutral, and phospholipids in Mapara (Hypophthalmus sp.)
from the Brazilian Amazonian area. J. Agric. Food Chem.
49, 4859–4863.
Jensen, T.K., Grandjean, P., Jorgensen, E.B., White, R.F.,
Debes, F., Weihe, P., 2005. Effects of breast feeding on
neuropsychological development in a community with
methylmercury exposure from seafood. J. Expo. Anal.
Environ. Epidemiol. 15, 423–430.
Kuczmarski, R.J., Ogden, C.L., Grummer-Strawn, L.M.,
Flegal, K.M., Guo, S.S., Wei, R., Mei, Z., Curtin, L.R.,
Roche, A.F., Johnson, C.L., 2000. CDC Growth Charts:
United States. Advance Data from Vital and Health
Statistics, vol. 314. National Center for Health Statistics,
Hyattsville, MD, pp. 1–28.
Lindow, S.W., Knight, R., Batty, J., Haswell, S.J., 2003.
Maternal and neonatal hair mercury concentrations: the
effect of dental amalgam. BJOG 110, 287–291.
Malm, O., Pfeiffer, W.C., Souza, C.M.M., 1989. Utilizac¸ a
˜
odo
acesso
´
rio de gerac¸ a
˜
o de vapor frio para ana
´
lise de mercu´ rio
em investigac¸ o
˜
es ambientais por espectrofotometria de
absorc¸ a
˜
o atoˆ mica. Cieˆ nc. Cult. 41, 88–92.
Malm, O., Pfeiffer, W.C., Cleary, D., 1998. Establishment and
analytical quality control of laboratories for Hg determina-
tion in biological and geological samples in the Amazon,
Brazil. Cieˆ nc. Cult. 50, 255–260.
Marsh, D.O., Turner, M.D., Smith, J.C., Allen, P., Richdale,
N., 1995. Fetal methylmercury study in a Peruvian fish-
eating population. Neurotoxicology 16, 717–726.
Mohan, S., Tiller, M., Van Der Voet, G., Kanhai, H., 2005.
Mercury exposure of mothers and newborns in Surinam: a
pilot study. Clin. Toxicol. (Phila.) 43, 101–104.
Murata, K., Sakamoto, M., Nakai, K., Weihe, P., Dakeishi,
M., Iwata, T., Liu, X., Ohno, T., Kurosawa, T., Kamiya,
K., Satoh, H., 2004. Effects of methylmercury on neuro-
development in Japanese children in relation to the
Madeiran study. Int. Arch. Occup. Environ. Health 77,
571–579.
Mutter, J., Naumann, J., Sadaghiani, C., Schneider, R.,
Walach, H., 2004. Alzheimer disease: mercury as pathoge-
netic factor and apolipoprotein E as a moderator.
Neuroendocrin. Lett. 25, 275–283.
Mutter, J., Naumann, J., Sadaghiani, C., Walach, H., Drasch,
G., 2005. Mercury and autism: Response to the letter of K.
E. v. Muhlendahl [Int. J. Hyg. Environ. Health 208 (2005)
435]. Int. J. Hyg. Environ. Health. 208, 437–438.
Myers, G.J., Davidson, P.W., 1998. Prenatal methylmercury
exposure and children: neurologic, developmental, and
behavioral research. Environ. Health Perspect. 106,
841–847.
Myers, G.J., Marsh, D.O., Davidson, P.W., Cox, C.,
Shamlaye, C.F., Tanner, M.A., Choi, A., Cernichiari, E.,
Choisy, O., Clarkson, T.W., 1995. Main neuro-develop-
mental study of Seychellois children following in utero
exposure to methylmercury from a maternal fish diet:
outcome at six months. Neurotoxicology 16, 653–664.
Oken, E., Wright, R.O., Kleinman, K.P., Bellinger, D.,
Amarasiriwardena, C.J., Hu, H., Rich-Edwards, J.W.,
Gillman, M.W., 2005. Maternal fish consumption, hair
mercury, and infant cognition in a US Cohort. Environ.
Health Perspect. 113, 1376–1380.
Paine, P.A., Pasquali, L., 1983. Is motor development really
more advanced in Third World infants? Percept. Mot. Skills
57, 729–730.
ARTICLE IN PRESS
R.C. Marques et al. / Int. J. Hyg. Environ.-Health 210 (2007) 51–60 59
Patrick, L., 2002. Mercury toxicity and antioxidants: Part 1:
role of glutathione and alpha-lipoic acid in the treatment of
mercury toxicity. Altern. Med. Rev. 7, 456–471.
Pinheiro, M.C., Muller, R.C., Sarkis, J.E., Vieira, J.L., Oikawa,
T., Gomes, M.S., Guimara
˜
es, G.A., do Nascimento, J.L.,
Silveira, L.C., 2005. Mercury and selenium concentrations
in hair samples of women in fertile age from Amazon
riverside communities. Sci. Total Environ. 349, 284–288.
Redwood, L., Bernard, S., Brown, D., 2001. Predicted mercury
concentrations in hair from infant immunizations: cause for
concern. Neurotoxicology 22, 691–697.
Rice, D.C., 2005. Assessing the effects of environmental
toxicant exposure in developmental epidemiological stu-
dies: issues for risk assessment. Neurotoxicology 26,
483–489.
Stewart, P.W., Reihman, J., Lonky, E.I., Darvill, T.J., Pagano,
J., 2003. Cognitive development in preschool children
prenatally exposed to PCBs and MeHg. Neurotoxicol.
Teratol. 25, 11–22.
Tanoue, Y., Oda, S., 1989. Weaning time of children
with infantile autism. J. Autism Dev. Disord. 19,
425–434.
Tavares, L.M.B., Camara, V.M., Malm, O., Santos, E.C.,
2005. Performance on neurological development tests by
riverine children with moderate mercury exposure in
Amazonia, Brazil. Cad. Saude Publ. 21, 1160–1167.
Vasconcellos, M.B.A., Bode, P., Paletti, G., Catharino,
M.G.M., Ammerlaan, A.K., Saiki, M., Fa
´
varo, D.I.T.,
Byrne, A.R., Baruzzi, R., Rodrigues, D.A., 2000. Determi-
nation of mercury and selenium in hair samples of Brazilian
Indian populations living in the Amazonic region by NAA.
J. Radioanal. Nucl. Chem. 244, 81–85.
World Health Organization (WHO), 1990. Methylmercury,
vol. 101. WHO, Geneva.
World Health Organization (WHO) Group on the Growth
Reference Protocol, 1998. A growth curve for the 21st
century: the WHO multicentre growth reference study.
WHO, Geneva.
ARTICLE IN PRESS
R.C. Marques et al. / Int. J. Hyg. Environ.-Health 210 (2007) 51–6060
ORIGINAL PAPER
Hair mercury in breast-fed infants exposed
to thimerosal-preserved vaccines
Rejane C. Marques & José G. Dórea &
Márlon F. Fonseca & Wanderley R. Bastos & Olaf Malm
Received: 10 July 2006 / Revised: 9 October 2006 / Accepted: 28 October 2006 / Published online: 20 January 2007
#
Springer-Verlag 2007
Abstract Because of uncertainties associated with a possi-
ble rise in neuro-developmental deficits among vaccinated
children, thimeros al-preserved vaccines have not been used
since 2004 in the USA (with the exception of thimerosal-
containing influenza vaccines which are routinely recom-
mended for administration to pregnant women and children),
and the EU but are widely produced and used in other
countries. We investigated the impact of thimerosal on the
total Hg in hair of 82 breast-fed infants during the first
6 months of life. The infants received three doses of the
hepatitis-B vaccine (at birth, 1 a nd 6 mont hs) and three
DTP (diphtheria, tetanus, and pertussis) doses at 2, 4 and
6 months, according to the immunization schedule recom-
mended by the Ministry of Health of Brazil. The thimerosal
in vaccines provided an ethylmercury (EtHg) exposure of
25 μgHg at birth, 30, 60 and 120 days, and 50 μgHg at
180 days. The exposure to vaccine-EtHg represents 80% of
that expected from total breast milk-Hg in the first month
but only 40% of the expected exposure integrated in the
6 months of breastfeeding. However, the Hg exposure
corrected for body weight at the day of immunization was
much higher from thimerosal- EtHg (5.7 to 11.3 μgHg/kg
b.w.) than from breastfeedi ng (0.266 μgHg/kg b.w.). While
mothers showed a relative decreas e (57%) in total hair-Hg
during the 6 months lactation there was substantial increase
in the infants hair-Hg (446%). We speculate that dose and
parenteral mode of thimerosal-EtHg exposure modulated
the relative increase in hair-Hg of breast-fed infan ts at
6 months of age.
Keywords Thiomersal
.
Ethyl-mercury
.
Methyl-mercury
.
Breastfeeding
.
Immunization
Abbreviations
EtHg ethyl-mercury
MeHg methyl-mercury
DTP difteria tetanus and pertussis
PUFA polyunsatured fatty a cids
DHA docosahexaenoic acid
EPA eicosopentanoic acid
GSH glutathione
Introduction
Great strides in the control of epidemics have been made
possible by the effective production and safe use of vaccines.
The elimination of polio, measles and other scourges are the
hallmark of successful immunization programs. However, in
the earlier days of vaccine production there were several
tragic incidents that caused death in vaccinated children [1].
To reduce the risk of bacterial contamination, many
countries require a preservative in vaccines. The antiseptic
agent of choice to prevent bacterial growth is sodium
ethylmercurithiosalicylate (thiomersal), also known as thi-
merosal (USA). Thimerosal contains 49.6% Hg by weight
and has been used since the 1930s at the preservative level
Eur J Pediatr (2007) 166:935941
DOI 10.1007/s00431-006-0362-2
R. C. Marques
:
W. R. Bastos
Fundação Universidade Federal de Rondônia,
Porto Velho, RO, Brazil
R. C. Marques
:
M. F. Fonseca
:
O. Malm
Instituto de Biofísica Carlos Chagas Filho,
Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brazil
J. G. Dórea (*)
Universidade de Brasília,
C.P. 04322 Brasília, DF, Brazil
in vaccines. Some vaccines contain thimerosal at a concen-
tration of 0.01%; thus a vaccine dose of 0.5 ml contains
50 μg of thimerosal or approximately 25 μgofHg[1].
The amount of EtHg received from vaccinations by
infants up to 6 months old is an additional exposure to Hg
frequently found in human milk and formulas [10 ].
However, because the vaccine-Hg dose (extrinsic EtHg),
unlike intrinsic milk-Hg, is not part of a food, it bypasses
the barrier and detoxifying entero-hepatic system, and not
being physiologically processed, it may instead migrate to
the brain . The uncertainties about the safety of thimerosal-
preserved vaccines and controversy about whether EtHg
might be associated with neurodevelopmental disorders
(including autistic spectrum disorder) are debatable issues
that have involved both scientists and society [32]. Because
Hg toxic effects are manifested long after the exposure, it is
necessary to have reliable markers of Hg exposure.
However, depending on the elapsed time, one of the
difficulties in studying neurotoxic effect of vaccine-thimer-
osal is that post-exposure to vaccine-EtHg may not leave
Hg traces to be measured.
The organic Hg form of thimerosal is ethyl-Hg which, like
methyl-Hg (MeHg), can also bind to protein matrices. In vitro
studies showed that the neuronal and glial cell toxicity of
MeHg and EtHg are both mediated by glutathione depletion
[15]. Although chemically and toxicologically related, ethyl-
Hg and methyl-Hg have differences in metabolism. Com-
pared to EtHg, MeHg binds more avidly to cysteine-groups
and is more slowly metabolized. Thus, thimerosal-derived
EtHg half-life in the blood of infant monkeys was 2.1 and
8.6 days after exposure (i.m. injection), significantly shorter
than the 21.5 days elimination half-life of MeHg exposure
by gavage [6]. Additionally, it was observed that the
concentration of inorganic mercury in the brains of
thimerosal-EtHg exposed monkeys was more than double
that found in the MeHg exposed monkeys, and it was
observed that the inorganic mercury in the brains of the
thimerosal-EtHg exposed monkeys showed no significant
decline 120 days after exposure. Pichichero et al. [26]
estimated that half-life of EtHg in human infants is 6 days
compared with 40 to 50 days for MeHg. Furthermore,
concentrations of Hg were low in urine after vaccination,
but were high in stools of thimerosal-exposed infants.
Conversion to inorganic Hg is expected to yield high
urine-Hg; thus, stool Hg elimination is a feature also found
in MeHg metabolism. In such a scenario, the neurotoxic
effects of thimerosal-EtHg evaluated by post-exposure
markers such as hair-Hg can be compromised.
Stajich et al. [31] studied thimerosal-EtHg metabolism in
preterm human infants by measuring total Hg levels in
blood before and after the hepatitis-B vaccination. A
significant increase in Hg was seen in both preterm and
term infants. Additionally, preterm infants had greater than
tenfold higher mean Hg levels at the baseline reading
compared with term infants. Although this difference was
not statistically significant, Stajich et al. [31] speculated
that it might indicate that preterm infants may not be able to
metabolize Hg efficiently. Indeed we have shown that
larger babies, as measured by liver weight, had signifi cantly
higher mean liver Cu concentrations, an indicator of
metallothionein [16], than smaller babies [9]. Either
immaturity of the liver could be responsible for less
metallothionein to bind inorganic Hg or a difference in
body composition of infants with less body mass could
metabolize EtHg at a slower rate [31].
There are no studies that measured hair-Hg in infants at the
time of vaccination, but Redwood et al. [29] developed models
that predicted increases in hair-Hg concentrations after a full
immunization schedule within the first 6 months of life. They
assumed that neonates up to 6 months of age have low Hg
excretion due to immature hepatic function, low bile
production, and insufficient glutathione which binds the Hg.
Substances that accumulate in the body should be looked
at specifically. In the case of Hg, not only the chemical
form but also the exposure route , as well as the modifying
effect of changing metabolism (body weight with accom-
panying blood volume and organ maturity) are critical for
newborns. Therefore, we compared the exposure to injected
EtHg in vaccines with the expected exposure to breast-milk
Hg and examined the hair-Hg of breastfeeding mother-
infant pairs after the recommended immunization schedule
of the first 6 months.
Materials and methods
The research protocol to study the effects of Hg contam-
ination of urban (Porto Velho, Brazil) mothers on neuro-
development of pre-school children was approved by the
Ethics Committee of Studies for Humans of the Universi-
dade Federal de Rondonia and details appeared elsewhere
[21]. In this study we used data from our previous study
which was not collected with the purpose of evaluating the
impact of immunization on hair-Hg, since when the
research project started we were not aware of the EtHg
issue in pediatric vaccines. Briefly, pregnant mothers were
introduced to the study and invited to participate during
their routine visits to the pre-natal clinics of three hospitals
in Porto Velho (Hospital de Base, Hospital Panamericano
and Hospital Regina Pacis). Only Hospital de Base is a
state-run facility that receives mostly poor mothers.
Plain-language information about the study was pre-
sented and a written consent form signed by the volunteer-
ing mother. The written consent stated that participation
was voluntary with assured confidentiality and the right to
withdraw from the study at any time. Potential participants
936 Eur J Pediatr (2007) 166:935941
were selected among mothers in good health, reporting no
illness or complaints at the time of the study and who were
willing to breast feed and adhere to the post-natal
attendance of the pediatric clinic for the regular immuniza-
tion program. One hundred mothers between the ages of 15
and 45 years were recruited.
At birth the infants were clinically examined with special
attention to vitality, perinatal reflexes, maturity, and
congenital malformations; weight, length, head circumfer-
ence, and Apgar scores were recorded. Ant hropometric data
(weight, length, and head circumference) were recorded and
samples of hair from the mothers and infants (fetal hair)
were collected. Mothers followed the immunization sched-
ule recommended by the Ministry of Health of Brazil and
returned at 30, 60, 120 and 180 days. Only 86 mother-
infan t pairs reported for the programme d clinical and
immunization at 6 months of age when infants were
weighed and measured for length, and hair-samples were
again collected from mothers and infants. Because Hospital
de Base is a publi c health facility, only the babies born at
this hospital (66%) received the hepatitis-B vaccine within
the first day postpartum. Babies born at the Hospital
Panamericano and the Hospital Regina Pacis received the
hepatitis-B vac cine immediately after the mothers dis-
charge (24 days postpartum). At this time the mothers
were taken under our supervision to a state-run clinic where
vaccines are distributed free.
Estimated exposure to Hg from vaccines (injected
thimerosal) and breastfeeding
Differences in infants weight at birth and at 6 months were
used to estimate daily weight gain and integrated gain at 30,
60, 120 and 180 days. As stated by manufacturers, vaccines
contained 0.01% Thimerosal; the Hg concentration of the
doses delivered through vaccines was 25 μgHg/0.5 mL for
hepatitis-B (Korea Green Cross Corporation, Kiheung-Eup
Yougin-Goon Kiyunggi-Do, Korea; Euvax B injectable, LG
Life Sciences, Jeonbuk-Do, Korea) and difteria, tuberculo-
sis and pertussis-DTP (Triple Antigen, Serum Institute of
India Ltd., India; Vacina Tríplice, Instituto Butanta, São
Paulo, Brazil).
We used the data of breast milk-Hg concentratio ns
(adapted from Dorea [8]) with the same approach as
Bigham and Copes [4] to estimate Hg exposure during
breastfeeding: infant mean weight × mean daily breast milk
consumption (140 mL/kg) × number of days × mean total
Hg concentrati on in breast milk (1.9 μg/L).
Hair Hg determinations
Hair sample preparation and Hg determination were done
according to routine procedures previ ously established at
the Universidade Federal do Rio de Janeiro [ 3]. We
followed routi ne laboratory procedures after adapting the
analytical protocol used for Hg determination in previous
studies analyzing blood, hair and fish-flesh matrices [3, 19,
20]. Briefly, the hair samples were comminuted with
stainless steel scissor s, weighed an d digested befo re
analysis. Blood samples were digested with concentrated
HNO
3
(3 mL) and KMnO
4
(5%, 6 mL) using a microwave
oven system for 35 min (CEM-Corporation, MDS 2000,
Matthews, North Carolina, USA). Placenta and umbilical
cord samples were weighed and digested with HNO
3
:
H
2
SO
4
(1:1, 5 mL) and KMnO
4
(5%, 4 mL) using a
digestion block at 80°C for 1 h (Tecnal Ltd., Piracicaba,
São Paulo, Brazil). Human hair samples were washed with
EDTA 0.01%, dried in an oven at 50°C, weighed and
digested with 5 mL of HNO
3
:H2SO
4
(1:1) and 4 mL of 5%
KMnO
4
using a digestion block at 80°C for 40 min. The
determination of total Hg in the digested samples was done
by cold vapor atomic absorption spectrome try with a flow
injection system-FIMS (CV-AAS, Perkin-Elmer-FIMS 400,
Ueberlingen, Germany). Glassware used in the analytical
protocol was washed clean, rinsed with 5% EDTA and
double distilled, and left to rest in 5% HNO
3
overnight.
Then it was rinsed again in double distilled water, and dried
at 100°C for 12 h. Precision and ac curacy of Hg
determinations wer e assured by the use of internal stan-
dards, use of triplicate analyses of samples and certified
reference material s (IAEA-085 and 086, Vienna-Austria)
with recoveries of 92%.
Statistical analysis and data summarization (mean, SD)
were performed using SAS software (SAS Institute, Cary,
NC, USA). For the statistical test, p<0.05 was considered
significant.
Results
The anthropometry a nd the hair-Hg concentrations of
infants and mothers are shown in Table 1, while the
immunization schedule and exposure to the injected
thimerosal as well as the expected exposure to total Hg in
breast milk are shown in Table 2.
The mean birth weight was slightly higher for girls, but
there was a relatively higher weight gain for boys at
6 months. Every child received a cumulative dose of
150 μg/Hg (as Thimerosal-EtHg) distributed in five boluses
during the first 6 months of life. An adaptation of world
data on human milk-Hg concentrations [8] showed that the
median mean Hg concentration is 1.9 ngHg/mL (Fig. 1).
The estimated total Hg intake integrated over the first
180 days of breastfeeding showed a cumulati ve exposure of
290 μg of total-Hg (Fig. 2). Comparatively, the integrated
EtHg exposure in the first month was 80% of that from
Eur J Pediatr (2007) 166:935941 937
breast milk but declined to 40% at 180 days (Fig. 2). At
two months the infants increased body weight by 60% but
received an integrated EtHg challenge threefold higher than
in the perinatal days (Table 2).
Per unit of body weight the amount of EtHg/kg b.w.
given to newborn babies (before hospital discharge) was
higher than at any other time (Fig. 3), even at 6 months
when infants had increased body weight by more than
100%. The corrected exposure to thimerosal (EtHg) and
breast-milk Hg per unit of body weight is shown in Fig. 3.
Considering a milk volume transfer of 140 mL/kg b.w., and
considering the median breast-milk Hg concentration of
1.9 ngHg/mL (Fig. 1), the exposure to breast-milk Hg was
0.266 μgHg/kg b.w. at any time after the first immunization
at 0 days. Excluding the small volumes of milk intake at
birth (day 0 o f first vaccine), this corresponds to a small
percentage (4.7 to 8.1%) o f the EtHg doses injected
between 30 and 180 days.
Because of the variability in hair-Hg concentrations, the
relative changes from 0 days (birth) to 180 days were
calculated and shown in Fig. 4. While mothers had a mean
decrease of 40% and 45%, their girls and boys had,
respectively, increased hair-Hg concentrations by as much
as 398.3% and 487.1%.
Another notable feature is the time of exposure to EtHg
shown in Fig. 5. A distinct pattern is shown as a function of
the immunization policy regarding the dispensation of
vaccines. The infants that received the first vaccine within
the first 24 hours after birth were all from the only public
hospital in Porto Velho (Hospital de Base). Because the
other two hospitals (Panamericano and Regina Pacis) are
privately owned and operated, the infants are vaccinated in
Table 2 Infant immunization schedule, type of vaccine, and Hg
intake during the first 6 months
Age,
days
Vaccine Body
weight, g
Breast
milk
b
Type
a
μgHg/
dose
Hg intake,
μg
0 Hp-B 25.0 3,233.17 0
30 Hp-B 25.0 3,862.87 30.83
60 DTP 25.0 4,492.56 44.65
90 5,067
120 DTP 25.0 5,751.95 91.80
150 6,327
180 DTP+ Hp-B 50.0 7,011.34 111.90
Total
c
150.0 279.18
a
Hp-B: Hepatitis B (assumed 0.01%Thimerosal/dose, Korea Green
Cross Corporation, Kiheung-Eup Yougin-Goon Kiyunggi-Do, Korea;
Euvax B injectable, 0.01%Thimerosal, LG Life Sciences, Jeonbuk-
do, Korea); DTP (Serum Institute of India Ltd; Vacina Tríplice,
0.01%Thimerosal/dose; Instituto Butanta, São Paulo, Brazil)
b
Integrated total Hg intake (estimated from Dorea [8])
c
Total exposure of the respective Hg chemical forms
Table 1 Mean (and SD) of anthropometry, hair-Hg concentrations
and Gesell scores of infants
Girls Boys
N 38 44
Birth weight, g 3,177.50 (450.8) 3,281.25 (393.4)
Weight at 180 d 7,012.63 (508.7) 7,010.23 (417.3)
Weight gain, g 3,835.13 (434.2) 3,728.98 (382.8)
Weight gain/d 21.31 (2.4) 20.72 (2.1)
Hair [Hg], μg/g
Birth 2.58 (3.7) 2.32 (2.4)
180 days 4.14 (5.9) 3.9 (5.3)
Mean increase at 6 m 1.55 (5.8) 1.27 (5.3)
Relative increase, % 398.28 (541.9) 487.08 (1,515.0)
Maternal hair [Hg] μg/g
Delivery, 0 days 7.14 (6.8) 7.55 (10.2)
180 days 2.97 (3.1) 3.38 (4.4)
Mean decrease at 6 m 4.17 (4.0) 4.16 (6.2)
Relative decrease, % 39.94 (16.2) 45.50 (23.1)
Fig. 1 Distribution of mean total mercury concentrations in studies of
different parts of the world (adapted from Dorea [8])
100
300
500
0 180
0 180
0 180 0 180
Da
y
s of lactation
Girls' mothers
Girls Boys' mothers Boys
Relative change, %
Fig. 2 Estimation of the integrated total-Hg intake during the first
180 days of breastfeeding
938 Eur J Pediatr (2007) 166:935941
immunization clinics run by the Ministry of Health after the
hospital discharge.
Discussion
Unlike breast-milk intake, there are no body-weight dosing
adjustments for vaccines; therefore, neonates and young
infants (up to 60 days) with less blood volume are exposed
to more injected EtHg than older infants from 120 to
180 days (Table 2). Over the first 6 mont hs, the estimated
accrual of total Hg exposure from breast milk was higher
than the five doses of injected EtHg (Table 2). However,
differing from parenteral EtHg in vaccines, breast-fed
infants were exposed to enteral Hg (intrinsic to the breast
milk matrix) amortized over 6 months. Because the mean
frequency of feeds/day is 5.5 [30], the milk-Hg exposure in
the breastfed infant occurs in several small daily suckling
episodes. This type of exposure amounts to only 4.7%
8.1% of the vaccine-Hg bolus (per kg/b.w.) taken on the
day of the immunization. Furthermore, the ingested milk-
Hg is hindered by all gastrointestinal barriers, metabolic
and detoxifying mechanisms (albeit immat ure) attendant to
enteral feeding. Coupled with that, another attenuating
factor is the tendency of human milk Hg to decrease during
initial lactation [8], i.e., from day four to 6 weeks after
delivery [5]. Additionally, central to the toxic effects of Hg
during early life is the unique chemical composition of
human milk with its specific neurotoxic attenuating factors.
Neurodevelopment is rapid in the postnatal period and
substantial amounts of long-chain polyunsatured fatty acids
(PUFAs) are critical to neurite growth and proper brain
development. The benefi cial PUFAs are docosahexaenoic
acid (DHA=22:6n-3) and e icosopentanoic a cid (EPA=
20:5n-3). DHA is an essential component of nervous-
system cell-membranes and is transported across the
placenta and across the mammary gland into milk. During
the critical window of early life, significant amounts of
PUFAs are provided via breast milk and then avidly
incorporated into membranes throughout the infants
nervous system [22]. Indeed, post-natal DHA is positively
correlated with visual and language development in breast-
fed infants [14].
Another mitigating factor against Hg-induced neurotox-
icity is the intracellular defense provided by glutathione
(GSH). Mercury has a high affinity for thiol (sulfhydryl
groups), the thiol-c ontaining antioxidant of GSH [15].
According to Cai and Sauve [7], thimerosal is a poorly
membrane-permeable hydrophilic-molecule that oxidizes
SH groups with a high affinity. It reduces SS bonds of
molecules such as GSH. Therefore, the po tential protective
effect of GSH against Hg toxicity can be compromised in
situations limiting cysteine nutrition. Indeed, James et al.
[15] showed that thimerosal-induced cytotoxicity was
associated with depletion of intracellular GSH. Because
brain cells cannot synthesize cysteine, (the rate limiting
amino acid for GSH synthe sis) it is depend ent on the liver
to synthesize and export cysteine to the brain for intracel-
lular glutathione synthesis [15]. Human milk contains a
high am ount of bioavailable cysteine and differences
between breast-fed and formula-fed infants have been
reported with respect to cysteine concentrations and its
metabolites [23].
The safety of thimerosal vaccines is assumed on the
basis of the faster metabolism of EtHg compared to MeHg
[6]. While we do not know if the infants hair-Hg in this
study was derived from the vaccines thimerosal, it can be
stated that there was an asymmetric change in infants hair-
Hg compared to the mothers hair in the same period. We
0
2
4
6
8
DTwP
0
180
60 120
Hepatitis B
Da
y
s of lactation
30
90
DTwP +
0
2
4
6
8
150
Injected ethylmercury,
µ
g/kg body weight
Estimated breast-milk Hg
exposure,
µ
g/kg body
weight
Hepatitis B
Fig. 3 Infants vaccine schedule and injected ethyl-Hg (as Hg), and
estimated total Hg in breast milk ( adapted from Dorea [8]) during
the first 180 days of life
Fig. 4 Relative hair-Hg
changes (%) from birth (0 days)
to 180 days in mothers
according to infant gender
Eur J Pediatr (2007) 166:935941 939
have reported that fish-eating riverine mothers showed
higher hair-Hg concentrations than their respective breast-
fed infants [2]. In line with these observations it has been
shown that maternal hair-Hg concentration was higher than
fetal hair-Hg [28]. Recently, Lindow et al. [17] reported
higher fetal hair-Hg concentrations in babies of mothers
exposed to dental amalgam restoration either before or
during pregnancy; they showed maternal/fetal Hg ratios>1
in most samples (66%). However, contrary to these studies,
Mohan et al. [24] reported that 80% of newborns had
higher hair-Hg than their mothers. Nevertheless, the mean
increase in hair-Hg concentrations we found at 6 months is
compatible with the levels predicted by Redwood et al.
[29].
Holmes et al. [12] describe that mothers from autistic
children received more mercury during pregnancy than
mothers from healthy controls and also hair-Hg differences
between autistic and control infants at the time of their first
haircut (1124 months). They speculated that hair excretion
patterns among autistic infants were significantly reduced
relative to controls. Furthermore, they claimed that hair-Hg
in control infants were significantly correlated to Hg
exposure through prenatal maternal dental amalgam
fillings, but that correlations were absent in the autistic
group. Contrary to that, older (47 years old) autistic
children showed higher hair-Hg concentrations than age-
matched controls [11]. Hair-Hg association with behavioral
disorders has also been extended to interactions with zinc
deficien cy [13]. However, the assessment of hair-Hg
concentrations after immunizations containing thimerosal
(EtHg) is incomplete without speciation of the Hg forms.
Nevertheless, our total hair-Hg results are in line with
previous work. Barbosa and Dorea [2] estimated that mean
concentration of Hg in breast milk of riverine women
(living near rivers, high fish eaters) with higher hair-Hg
(14.3 ppm) would give an exposure to breast-fed infants
(mean hair Hg, 9.8 ppm) of 0.64 μg/kg body weight. In the
present study the urban mothers are low fish eaters and
show much lower mean hair-Hg concentration (7.5 ppm).
The neurotoxicity of administered MeHg is well known
and seems to be higher than EtHg, the Hg metabolite of
thimerosal [18]. There is limited information on human
metabolism of EtHg and even less information is available
for infant metabolism of thimerosal. Because there are no
known studies of intrinsically incorporated EtHg in food
matrices, comparing parenteral vaccine-EtHg to the breast
milk-Hg (intrinsic-Hg) metabolism is challenging. The
decomposition rate of EtHg is higher than MeHg because
of the molecule size. Qvarnstrom et al. [27] reported that
the carbon-Hg bond in C
2
H
5
Hg
+
is less stable than that in
CH
2
Hg
+
. In addition, the efficiency of the blood-brain
barrier is directly proportional to the size of the organic
radical [18].
Infant Hg exposure in early life can only happen through
milk diets [10]. However, given the variation (24 to 67 h
postpartum) of the onset of lactation [25], for many infants
a high exposure to parenteral EtHg (25 μg) preceded the
much lower (Fig. 2) enteral total-Hg (intrinsic to the human
milk matrix). A second point is the impact caused by
injected EtHg in an immature organism. It has been
speculated that the removal of thimeros al from vaccines
would produce no more than a 50% reduction of Hg
exposure in infancy [4]. This reduction could only happen
with human milk Hg concentrations greater than the median
value (Fig. 1) and more frequently with formulas, which
usually contain higher Hg concentrations [10]. Further-
more, this scenario assumes a debatable equivalency of a
bolus (injected Hg) versus the integration (over 6 months)
of inges ted milk-Hg; it does not contemplate the tenet s of
Hg neurotoxicity: chemical form, dose, route of adminis-
tration, attenuating neurotoxic factors of breast feeding, and
enhancing neurotoxic factors of the perinatal period (birth
weight/prematurity).
The expected metabolic consequences of such extremely
different exposure routes and Hg chemical forms (injected
EtHg versus ingested milk-Hg) as well as Hg dose are
difficult to disentangle; we have the changing physiological
interactions of a self-adjusted daily dose of intrinsic Hg
(inorganic and MeHg) in breastfeeding against the full
impact of an extrinsic dose of EtHg. With regard to
breastfeeding, milk-Hg occurs in a context of proven
benefits in a broad array of neurotoxic mitigating factors.
In this study, we observed a relative increase in hair-Hg.
This finding reinforces a mechanistic connection between
thimerosal-EtHg and hair-Hg increase, supporting the use
of hair-Hg in vaccinated children as a confounder of
neurobehavioral maternal-Hg contamina tion.
Fig. 5 Percent distribution of the time-after-birth interval of the first
vaccine (hepatitis B)
940 Eur J Pediatr (2007) 166:935941
Acknowledgements We are greatly in debt to the mothers for their
participation in the study, to the staff and directors (Marinês R. dos
Santos Cezar, Tereza Cristina Ramos, Daniele Brasil, Katia Wendt,
Katiane G. Brandão, Laura Jane Marques) of the Hospitals (Hospital
de Base Ary Pinheiro, Hospital Panamericano and Hospital Regina
Pacis), Dr. Cezar Augusto Bezerra B. de Araújo (State Coordinator of
the PNI-MS), the staff of the Fundação Universidade Federal de
Rondônia and the Universidade Federal do Rio de Janeiro.
This work was supported by United Nations Educational, Scientific
and Cultural Organization - UNESCO, Ministério da Saúde do Brasil
(SC27824/2005/914BRA 2000 Decit PRODOC ) and The National
Research Council of Brazil-CNPq (PNOPG project-55.0882/01-4
PPG7, project-556985/2005-2).
References
1. Amanna I, Slifka MK (2005) Public fear of vaccination:
separating fact from fiction. Viral Immunol 18:307315
2. Barbosa AC, Dórea JG (1998) Indices of mercury contamination
during breast feeding in the Amazon Basin. Environ Toxicol
Pharmacol 6:7179
3. Bastos WR, Malm O, Pfeiffer WC, Cleary D (1998) Establish-
ment and a nalytical quality control of laboratories for Hg
determination in biological and geological s ample s in th e
Amazon, Brasil. Ciênc Cult 50:255260
4. Bigham M, Copes R (2005) Thiomersal in vaccines: balancing the
risk of adverse effects with the risk of vaccine-preventable
disease. Drug Saf 28:89101
5. Bjornberg KA, Vahter M, Berglund B, Niklasson B, Blennow M,
Sandborgh-Englund G (2005) Transport of methylmercury and
inorganic mercury to the fetus and breast-fed infant. Environ
Health Perspect 113:13811385
6. Burbacher TM, Shen DD, Liberato N, Grant KS, Cernichiari E,
Clarkson T (2005) Comparison of blood and brain mercury levels
in infant monkeys exposed to methylmercury or vaccines
containing thimerosal. Environ Health Perspect 113:10151021
7. Cai S, Sauve R (1997) Effects of thiol-modifying agents on a
KCa
þ
2
ÀÁ
channel of intermediate conductance in bovine aortic
endothelial cells. J Membr Biol 158:147158
8. Dorea JG (2004) Mercury and lead during breast-feeding. Br J
Nutr 92:2140
9. Dorea JG, Brito M, Araujo MO (1987) Concentration of copper
and zinc in liver of fetuses and infants. J Am Coll Nutr 6:491495
10. Dorea JG, Donangelo CM (2006) Early (in uterus and infant)
exposure to mercury and lead. Clin Nutr 25:369376
11. Fido A, Al-Saad S (2005) Toxic trace elements in the hair of
children with autism. Autism 3:290298
12. Holmes AS, Blaxill MF, Haley BE (2003) Reduced levels of
mercury in first baby haircuts of autistic children. Int J Toxicol
22:277285
13. Hu LW, Bernard J, Che J (2003) Neutron activation analysis of
hair samples for the identification of autism. Trans Am Nucl Soc
89:681682
14. Innis SM, Gilley J, Werker J (2001) Are human milk long-chain
polyunsaturated fatty acids related to visual and neural develop-
ment in breast-fed term infants? J Pediatr 139:532 538
15. James SJ, Slikker W 3rd, Melnyk S, New E, Pogribna M, Jernigan
S (2005) Thimerosal neurotoxicity is associated with glutathione
depletion: protection with glutathione precursors. Neurotoxicology
26:18
16. Klein D, Scholz P, Drasch GA, Muller-Hocker J, Summer KH
(1991) Metallothionein, copper and zinc in fetal and neonatal
human liver: changes during development. Toxicol Lett 56:6167
17. Lindow SW, Knight R, Batty J, Haswell SJ (2003) Maternal and
neonatal hair mercury concentrations: the effect of dental
amalgam. BJOG 110:287291
18. Magos L (2003) Neurotoxic character of thimerosal and the
allometric extrapolation of adult clearance half-time to infants. J
App Toxicol 23:263269
19. Malm O, Branches FJP, Akagi H, Castro MB, Pfeiffer WC,
Harada M, Bastos WR, Kato H (1995) Mercury and methylmer-
cury in fish and human hair from the Tapajós River Basin, Brazil.
Science Total Environ 175:141150
20. Malm O, Pfeiffer WR, Souza CMM (1989) Utilização do
acessório de geração de vapor frio para análise de mercúrio em
investig ações ambientais por espectrofotometria de absorção
atômica. Ciênc Cult 41:8892
21. Marques RC, Dórea JG, Bastos WR, Rebelo MF, Fonseca MF, Malm
O (2006) Maternal mercury exposure and neuro-motor development
in breastfed infants from Porto Velho (Amazon), Brazil. Int J Hyg
Env Health (available online DOI 10.1016/j.ijheh.2006.08.001)
22. Marszalek JR, Lodish HF (2005) Docosahexaenoic acid, fatty
acid-interacting proteins, and neuronal function: breastmilk and
fish are good for you. Annu Rev Cell Dev Biol 21:633657
23. Minet JC, Bisse E, Aebischer CP, Beil A, Wieland H, Lutschg J
(2000) Assessment of vitamin B-12, folate, and vitamin B-6 status
and relation to sulfur amino acid metabolism in neonates. Am J
Clin Nutr 72:751757
24. Tiller M, van der Voet G, Kanhai H (2005) Mercury exposure of
mothers and newborns in Surinam: a pilot study. Clin Toxicol
43:101104
25. Perez-Escamilla R, Chapman DJ (2001) Validity and public health
implications of maternal perception of the onset of lactation: an
international analytical overview. J Nutr 131:3021S3024S
26. Pichichero ME, Cernichiari E, Lopreiato J, Treanor J (2002)
Mercu ry concentrations and metabolism in infants receiving
vaccines containing thiomersal: a descriptive study. Lancet
360:1737
1741
27. Qvarnstrom J, Lambertsson L, Havarinasab S, Hultman P, Frech
W (2003) Determination of methylmercury, ethylmercury, and
inorganic mercury in mouse tissues, following administration of
thimerosal, by species-specific isotope dilution GC-inductively
coupled plasma-MS. Anal Chem 75:41204124
28. Razagui IB, Haswell SJ (2001) Mercury and selenium concen-
trations in maternal and neonatal scalp hair: relationship to
amalgam-based dental treatment received during pregnancy. Biol
Trace Elem Res 81:119
29. Redwood L, Bernard S, Brown D (2001) Predicted mercury
concentrations in hair from infant immunizations: cause for
concern. Neurotoxicology 22:691697
30. Sievers E, Oldigs HD, Santer R, Schaub J (2002) Feeding patterns
in breast-fed and formula-fed infants. Ann Nutr Metab 46:243248
31. Stajich GV, Lopez GP, Harry SW, Sexson WR (2000) Iatrogenic
exposure to mercury after hepatitis B vaccination in preterm
infants. J Pediatr 136:679681
32. Zimmerman RK, Wolfe RM, Fox DE, Fox JR, Nowalk MP, Troy
JA, Sharp LK (2005) Vaccine criticism on the World Wide Web. J
Med Internet Res 7(2):e17
Eur J Pediatr (2007) 166:935941 941
Acta Pædiatrica ISSN 0803-5253
REGULAR ARTICLE
Time of perinatal immunization, thimerosal exposure and
neurodevelopment at 6 months in breastfed infants
Rejane C Marques
1,2
, Jos´eGD´orea ([email protected])
3
, Angelo G Manzatto
1
, Wanderley R Bastos
1
, Jos´e VE Bernardi
1
, Olaf Malm
2
1.Funda¸ao Universidade Federal de Rondˆonia, Porto Velho, RO, Brasil
2.Instituto de Biof´ısica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
3.Universidade de Bras´ılia, Bras´ılia, DF, Brasil
Keywords
Breastfeeding, Ethylmercury, Neurodevelopment,
Thimerosal, Vaccines
Correspondence
Jos´eG.D´orea, C.P.04322, Universidade de Bras´ılia,
70919-970, Bras´ılia, DF, Brazil.
Received
25 December 2006; revised 17 February 2007;
accepted 26 February 2007
DOI:10.1111/j.1651-2227.2007.00288.x
Abstract
Aim: Brazilian newborns immunized with hepatitis-B (thimerosal containing vaccine, TCV) receive the
first dose within 24 h if delivered in public hospitals, but at a later time if born in private hospitals. We
compared neurodevelopment (ND) in infants born in a state hospital (immunized within 24 h) and
in privately run hospitals (immunized 2–4 days postnatally).
Methods: We used the Gesell Developmental Schedules in 82 healthy exclusively breastfed infants at
6 months to assess motor skills, language development, comprehension capacity and social skills.
Results: Compared to the group immunized 2–4 days after hospital discharge, the group immunized
within 24 h showed no significant difference in ND delays. Despite the variation in gestational age
(range 36–42 weeks) and TCV-ethylmercury (EtHg) dose (5.7–11.3 gHg/kg b.w.) at birth, time of
exposure to TCV showed no significant association with ND. Gesell Developmental Score was not
significantly correlated with total parenteral EtHg/unit of body mass neither with the relative increase
in hair-Hg (as an additional challenge to prenatal Hg exposure).
Conclusion: In breastfed infants, differences in early exposure to TCV-EtHg cannot portend clinical
neurodevelopment delays at 6 months. We speculate that breastfeeding remains a significant strategy to
improve central nervous system protection of infants facing early exposure challenges.
INTRODUCTION
Despite the universal use of thimerosal-containing vac-
cines (TCV) in immunization of children, our knowledge
of the toxicokinetics (TK) and toxicodynamics (TD) of their
Hg metabolite (ethylmercury—EtHg) is derived mostly from
methylmercury (MeHg) studies. The mechanistic signifi-
cance of thimerosal neurotoxicity through EtHg is unques-
tionable, but its toxicological significance is the result of
direct demonstration in animal and theoretical models. Our
ability to understand the safety of TCV-EtHg is still unsat-
isfactory; although there is no proven direct association of
neurodevelopmental disorders in children immunized with
TCV-EtHg, its plausibility has been shown by neurotoxic dis-
asters caused by organic Hg compounds (1). However, there
are no studies pointing to neurologic disorders being an
unambiguous result of TCV-EtHg; rather, the associative
studies have so far emerged amid intense scientific debate.
Rodier (2) and many others have discussed the vulnera-
bility of the young brain to neurotoxic substances over the
early neonatal period. Compared to other organs, the infant
brain takes an unusually long period to form. Besides the
blood–brain barrier (BBB), which is not fully developed until
the middle of the first year of life, neuron proliferation and
migration also continue in the postnatal period. Addition-
ally, myelin production, along with development of receptors
and transmitter systems, is part of the great postnatal activ-
ity of the central nervous system (CNS). Organic Hg com-
pounds are among the neurotoxic substances with effects
that depend on the neuron structure at time of exposure (2).
Coincidently, during the first 6 months, Brazilian infants are
impacted by a heavy vaccination schedule: six i.m. injections
of TCV (Hepatitis-B at 0, 30 and 180 days; DTP at 60, 120
and 180 days) containing 0.01% of thimerosal as preserva-
tive (25 gHg/dose).
Nursing infants are exposed to Hg from formulas and
breast milk (3); however, the extent of exposure during
breastfeeding depends on the maternal Hg that diffuses into
milk. The amount of Hg in the blood of the nursing mother
enters breast milk at a rate (inorganic Hg more than MeHg)
that depends on its protein-binding capacity. Oskarsson et al.
(4) observed that, compared to organic Hg (MeHg), there
was a more efficient transfer of inorganic Hg from blood to
breast milk. They estimated that infant exposure from breast
milk ranges up to 0.3 gHg/kg/day; approximately 50% was
inorganic Hg. While the breast milk Hg exposure is propor-
tional to milk intake, it is amortized in several sucking events
during the day; furthermore, the newborn is not exposed un-
til lactation is established and during this time breastfeeding
is acting on the CNS priming. On the other hand, TCV are
given immediately after parturition by parenteral route. In
our infants, five vaccines are given in the first 6 months, two
of them given at the same time (180 days) and providing a
double dose of TCV (50 gHg/dose). Indeed, breastfed vac-
cinated infants have shown a substantial increase in hair-Hg
concentrations during the first 6 months (5).
864
C
2007 The Author(s)/Journal Compilation
C
2007 Foundation Acta Pædiatrica/Acta Pædiatrica 2007 96, pp. 864–868
Marques et al. Early vaccination, thimerosal and neurodevelopment
Guidelines to EtHg use as vaccine preservatives are de-
rived from MeHg toxicity studies. These guidelines from var-
ious countries vary from 0.1 to 0.4 g/kg of MeHg for adults
(1). Harry et al. (6) found that in immature mice, when EtHg
was injected, either as the chloride or as thimerosal, less of
the actual delivered dose reached the brain as compared to
an injection of MeHg. They concluded that MeHg does not
appear to be a good model for EtHg-containing compounds.
Therefore, serum transport of MeHg and EtHg can modulate
toxic differences (in the neonate) by regulating the relative
levels of free forms transported and available to cross the
BBB. Additionally, there are differences in initial weight loss
that are more pronounced in breastfed infants. Macdonald
et al. (7) identified neonatal median time of maximum weight
loss around 2.7 days. Clearly, this can further increase dif-
ferences in TCV-EtHg exposures.
The inability of the neonatal liver to secrete bile, coupled
with an immature renal system, mean that Hg excretion
takes longer than in adults. This is particularly relevant for
the breastfed infant; because maternal milk usually comes in
at between 2–4 days after birth, for breastfed infants this is
the time of the lowest expected bowel output (8). Together
with lower albumin binding capacity, the immaturity of the
transport-protein system in neonates enhances the risk of
mercury toxicity. Perinatal immaturity of the CNS and of
other physiological functions (detoxifying enzymes, renal
and gastrointestinal organs) that interferes with Hg binding
and excretion is well established. Additionally, both birth
weight (9) and gestational age (10) are positively associated
with childhood psychometric intelligence. The TCV-EtHg
impact on CNS remains unstudied; gestational age and birth
weight are modulators of TK and TD of TCV. The parenteral
delivery of TCV-EtHg, albeit in very small quantities, reaches
the neonate circulation very quickly and gains unimpeded
access to the immature BBB and the blood cerebrospinal
fluid barrier (BCSFB). Therefore, the early postnatal days
are important windows of opportunity for CNS insults.
Neurodevelopment delay can occur in infants exposed to
prenatal maternal neurotoxic substances; its etiology is mul-
tifactorial and includes Hg. Given the immaturity of new-
borns, after an acute parenteral exposure of thimerosal, there
is more chance of infants accumulating Hg more readily and
excreting it more tardily. When there are differences in time
of first exposure there might be additional risk factors; there
is, therefore, more likelihood of heightening the risks of
untoward neurological effects. Special population groups,
such as term neonates, have a variety of constitutional mod-
ifying risk factors: (a) parenteral exposure at very early time;
(b) sequence of high magnitude EtHg exposures (first days,
1, 2, 4 and 6 months); (c) differences in maturity at birth (ges-
tational ages 36–42 weeks); (d) differences in body mass at
birth and (e) additivity of TCV-EtHg to prenatal Hg exposure
gradients (especially in fish-eating Amazonian populations).
Because of the complexity of studying neurodevelopment
and ethical issues involving study design with TCV we
took advantage of an existing research project and analysed
recorded data of early and relatively later TCV-EtHg expo-
sure of breastfed infants. Therefore, our primary aim was to
compare the effect of time differences in the first exposure to
TCV on ND at 6 months. Our secondary aim was to identify
modifying factors associated with prenatal Hg exposure.
MATERIALS AND METHODS
The data used in this study were not collected with the pur-
pose of evaluating the impact of immunization on ND. In a
parent publication (11) we described the protocol to assess
growth and development of children exposed to prenatal
background Hg; when the research project started we were
not aware of the TCV issue in paediatric vaccines. The par-
ent publication (11) dealt with prenatal Hg exposure; after
that, when studying the changes in hair Hg concentrations
(5, 11) we realized that because Hospital de Base is a public
health facility, only the babies born at this Hospital (66%)
received the hepatitis-B vaccine within the first day post-
partum. Babies born at the Hospital Panamericano and the
Hospital Regina Pacis received the hepatitis-B vaccine im-
mediately after the mother’s discharge (2–4 days postpar-
tum). This appeared as an opportunity to study differences
in timing of immunization and ND outcomes; additionally,
Hospital de Base as a state-run facility receives mostly poor
mothers.
The previous publications detailed the characteristics of
the population of Porto Velho (West Amazonia); the re-
search protocol was approved by the Ethics Committee
of Studies for Humans of the Universidade Federal de
Rondonia (11). Briefly, pregnant mothers between the ages
of 15 and 45 years were enrolled as volunteers; mothers
were in good health, reporting no illness or complaints and
were willing to breastfeed. They were introduced to plain-
language information about the study, and a written consent
form was presented and signed by the volunteering mother.
Mothers were selected by a nurse during their routine visits
to the Prenatal Clinics (Hospital de Base, Hospital Panamer-
icano and Hospital Regina Pacis). Hospital de Base is a
state run facility while Hospital Panamericano and Hospital
Regina Pacis are not. Excluding factors were occupational
exposure to toxic chemicals and hereditary neurological
illnesses.
After birth, the newborns were clinically examined with
special attention to vitality, perinatal reflexes, maturity and
congenital malformations; weight, length, head circumfer-
ence and Apgar scores were recorded. While in the mater-
nity wards, we collected samples of hair from mothers and
respective infants (fetal hair); the hair sampling was repeated
at 6 months. Hair strands were cut from the occipital region
and placed in plastic bags, with the root end stapled on a
paper sheet. These samples were analysed by routine labo-
ratory procedures described in previous publications (5,11).
The mothers were closely monitored by nurses to guaran-
tee full support for breastfeeding and pre and postnatal care;
immunization scheme followed the Brazilian vaccination
program. The first vaccine (Hepatitis B) was taken either
before hospital discharge (in Hospital de Base) or a few
days latter, and at 30, 60, 120 and 160 days. After hospi-
tal discharge the mothers were taken under our supervision
to a state-run clinic where vaccines are distributed free.
C
2007 The Author(s)/Journal Compilation
C
2007 Foundation Acta Pædiatrica/Acta Pædiatrica 2007 96, pp. 864–868 865
Early vaccination, thimerosal and neurodevelopment Marques et al.
At 6 months of age, only 82 of the 100 original mother–
infant pairs reported for the programmed clinical and neu-
robehavioural examination when infants were weighed and
measured for length, and hair samples were collected again
(5,11).
The neurodevelopment tests were conducted by trained
professionals using the Gesell Developmental Schedules
(12,13). These tests included all reactions (voluntary, spon-
taneous or learned) and reflexes. We also evaluated postural
reactions, hand pressure, locomotion and coordination,
constructive ability (which is influenced by motor develop-
ment), visible and audible communication, individual reac-
tions regarding people and stimulations (depending mainly
on the temperament of the child and the surroundings). The
results were expressed as developmental scores for the Adap-
tive Ability, Language and Motor deficiencies (gross motor
ability), and Social/Emotional ability.
Estimated exposure to EtHg from vaccines (injected
thimerosal):
Integrated weight gains at 30, 60, 120 and 180 days were
estimated from differences in infants’ weight at birth and
at 6 months. Differences in infants’ weight at birth and at
6 months were used to estimate daily weight gain and in-
tegrated gain at 30, 60, 120 and 180 days. As stated by
manufacturers, vaccines contained 0.01% thimerosal; the Hg
concentration of the doses delivered through vaccines was
25 gHg/0.5 mL for hepatitis-B (Korea Green Cross Cor-
poration, Kiheung-Eup Yougin-Goon Kiyunggi-Do, Korea;
Euvax B injectable, LG Life Sciences, Jeonbuk-Do, Korea)
and diphtheria, tetanus and pertussis-DTP (Triple Antigen,
Serum Institute of India Ltd., India; Vacina Tr
´
ıplice, Instituto
Butanta, S
˜
ao Paulo, Brazil). The exposure to EtHg derived
from vaccines was based on the current national immuniza-
tion program of the Ministry of Health of Brazil.
Statistical analysis
Statistical analysis for testing differences between groups
was done using the Statistica (StatSoft, Inc., v.6.0) statis-
tical package. One-way analysis of variance was used with
Tukey’s procedure. The Shapiro-Wilk test of normality was
applied and data transformed when required. For the associ-
ation between variables Pearson’s correlation was calculated
and tested for significance; we accepted a value of <0.05 as
statistically significant.
RESULTS
Parameters and outcome differences due to timing of the
first dose of TCV (hepatitis-B) are shown in Table S1; no
significant differences were observed in neurodevelopmen-
tal scores at 6 months. The doses of Hg derived from injected
thimerosal varied greatly as a function of birth weight. Al-
though they may seem comparable between groups, actually
because the estimation was based on birth weight, the infants
that took the vaccine at a later time (mean of 3 days) were
probably underestimated due to obligatory neonatal weight
loss. As a function of body mass, the mean TCV-EtHg peri-
natal dose was equivalent to the two vaccine (third dose
of hepatitis-B and third dose of DTP) doses (50 gHg) at
6 months when infants had double their body weight. De-
spite differences in socio-economic status between women
delivering at the public hospital and at private run facilities,
no significant differences were observed in infant anthro-
pometry (and relative TCV dose) at birth or at 6 months.
Because of variation in body mass gain during the first
6 months there was an asymmetry of TCV-EtHg exposure
at time of immunization; this is illustrated by percentage
distributions in Figure S1 (a, b and c). During this period
(six shots, 150 gHg) there was considerable variation in
individual thimerosal exposure as a function of body mass.
The exposure to TCV-EtHg on the first and last vaccination
day (birth and 180 days) exceeds the recommended tolerable
daily intake of MeHg for adults. The amount of Hg per unit of
integrated body-mass gained over 4 months (Fig. S1c) shows
how high the immunized infant can be exposed to EtHg.
Despite a wide variation in birth weight, the correlation of
first dose of EtHg with Gesell scores was not statistically
significant (Fig. S2a).
Continuous variables were analysed as single linear cor-
relations; Pearson correlations were not statistically signif-
icant and are illustrated in the scatter plots of Figures S2
and S3. The hair-Hg representing antenatal (fetal hair-Hg
at 0 day) and postnatal (hair-Hg of 180 days) Hg exposure
events are plotted as percent change during the study period
(Fig. S3). The percentage increase in hair-Hg concentrations
was not significantly correlated with Gesell scores (Fig. S2a);
it should also be noted that that the change in hair-Hg was
not dependent of changes in body mass (Fig. S2b). Indeed,
Gesell scores at 6 months (Fig. S2c) were independent of
body mass increase.
DISCUSSION
The main finding of this work is that differences in time
of the first exposure to TCV (hepatitis-B) did not pre-
dispose infants to clinical neurodevelopment delays at 6
months. Furthermore, percent change in hair-Hg (prenatal
to 6 months hair-Hg, after the additional load of 150 gHg)
was not significantly correlated with neurodevelopment de-
lays of these breastfed infants. The effect-modifiers of NDD
risk considered in this study [(a) time of exposure of first
EtHg challenge, (b) sensitivity due to immaturity (birth
weight/gestational length) and (c) prenatal Hg exposure]
could have been overruled by breastfeeding.
The maturation of the infant brain is a process that extends
over a long period; during this time, brain fine structure and
functioning are susceptible to neurotoxic substances. Mer-
cury is one of such substance and the earlier the exposure
the higher the risk of adverse effects. We realize that the rel-
atively small amount of thimerosal in vaccines is unlikely
to cause overt clinical neurological alterations (at least in
non-susceptible populations). However, given the time dif-
ferences (0 day versus 3 days), maturation gradients related
to gestational age (36–42 weeks) and attendant birth weight,
these results shed some light on the uncertainties raised
866
C
2007 The Author(s)/Journal Compilation
C
2007 Foundation Acta Pædiatrica/Acta Pædiatrica 2007 96, pp. 864–868
Marques et al. Early vaccination, thimerosal and neurodevelopment
by theoretical models. Furthermore, because TCV-EtHg is
quickly excreted through stools (14) possible differences due
to bile production, bowel movements that could coincide
with differences in time of immunization did not seem to
affect neurological landmarks.
Thimerosal has been used in vaccines since the 1930s
without dispute but since then breastfeeding rates have
fallen considerably. While the adverse effects of TCV-
immunization on children have not been satisfactorily
demonstrated, the absence and/or limited duration of
breastfeeding has been amply demonstrated to negatively
affect neurodevelopment in short- and long-term studies.
It is recognized that the consequences of early exposure
to mercury can be subtle and may be evident after a pro-
longed latency (15–17). Therefore, a causal relationship
between EtHg (from vaccines) exposure and an adverse neu-
rological effect is difficult to establish in the relatively short
time of 6 months, especially when infants had the benefit of
breastfeeding. Nevertheless, the lack of a linear correlation
between neurodevelopment delays with parameters related
to gestational age/birth weight (Fig. S2) indicates that either
infant sensitivity to small doses of injected thimerosal lies
beyond these clinical tests or may manifest itself at a later
time.
The Gesell developmental quotient seems adequate in
gauging neurodevelopmental changes; it was able to detect
differences in mean gross motor development at 1 year of age
between term-infants fed formula with alpha-linolenic acid
(18). The 6-month old breastfed infants in this study were not
susceptible to identifiable effects caused by TCV-EtHg. It is
plausible that estimates of the actual neurotoxic risk from
TCV-EtHg exposure could be overruled by the CNS protec-
tive functions of breastfeeding. It is worth noting that the
small number of observations did not provide the necessary
material for multivariate analysis that could adjust important
confounding factors. Therefore, suboptimal neural develop-
ment due to TCV, if present in the more susceptible individ-
uals, could only be detected in much larger epidemiological
studies. Indeed, subtle NDD which amortized against the
broad spectrum of the Brazilian population could reach sig-
nificant numbers. Indeed, the large number of infants born
annually in Brazil (3.7 million) has national DTP coverage
of 90% in 72% of the Brazilian districts (19).
We can predict outcomes of positive effects of breastfeed-
ing on neuromotor development, but can only indicate the
possibility that NDD may occur as a result of TCV-EtHg.
Furthermore, breastfeeding has been shown to have an im-
munomodulating effect (20) and to significantly increase an-
tibody levels of DTP to a greater degree than in those that are
formula fed (21). Although it is possible that untoward events
in neurodevelopment may not be detected at 6 months, it is
also possible that breastfeeding could act as a modifying-risk
factor. At this young age, few cognitive skills are available
to the infant; the basic neuronal constitution that modu-
lates motor and perception involves time-critical processes.
Therefore, adaptive functions or acquisition of skills that
might be compromised by neurotoxic insults may take much
longer than 6 months, to manifest themselves. Indeed we had
a small number of individuals with a considerable overdose
of thimerosal-EtHg (Fig. S1a). In such individuals, subtle
neurodevelopment may lag behind but impairments could
be detected only in large epidemiological studies.
Although postnatal exposure to toxic metals can occur as
a result of milk feedings (3), exposure to EtHg occurs only
through immunization with TCV. However, contrary to for-
mula feeding, breastfeeding carries an established advantage
of CNS-priming substances and maternal stimuli that aid
infant neurodevelopment; together these neuroprotective ef-
fects of breastfeeding have a lifelong benefit on CNS integrity
and general health status. Studies of perinatal events related
to neurodevelopment and breastfeeding are rare. Radzymin-
ski (22) has noted that intact and functioning CNS is crucial
for breastfeeding behaviour. His study compared breastfeed-
ing behaviours and neurobehaviours at birth and at 24 h of
age in neonates of mothers who received epidural analge-
sia during labor and controls; the higher the infant scored
in relation to neurobehavioural functioning, the higher the
infant scored on breastfeeding behaviours.
The NDD effects of thimerosal depend on the interplay
between TK and TD of EtHg. In infants, these features have
not been sufficiently studied (particularly in neonates with a
wide range of birth weight and maturation—gestational age);
in the neonate, the fast surge of serum thimerosal could be
a factor regulating the relative levels of free forms of EtHg
available to cross the BBB. On the other hand, the TD of
thimerosal have been based on animal (mostly small rodent)
models due to ethical difficulties in conducting such studies
in humans. The lack of even observational studies, like the
present, has made our understanding of the TK and TD of
thimerosal depends on expert opinion (23). Therefore, it is
reassuring to have the opportunity to observe no clinical
neurodevelopment delay as a result of early immunization
timing. However, it is important to emphasize that breast-
feeding could have played a role in overruling subtle effects
that such early impact of EtHg might have caused. Therefore,
it is recommendable that breastfeeding should be considered
as a frontline procedure to minimize uncertainties related to
neurotoxic effects of early TCV-EtHg exposure.
CONCLUSION
This paper draws on information derived from a singular sit-
uation in which breastfed infants, opportunistically divided
into early (<1 day) and late (mean of 3 days) thimerosal-
EtHg exposure groups, did not show untowards effects on
developmental landmarks at 6 months.
ACKNOWLEDGEMENTS
We are greatly in debt to the mothers for their participa-
tion in the study, to the staff and Directors (Marin
ˆ
es R. S.
Cezar, Tereza C. Ramos, Daniele Brasil, Katia Wendt, Laura
J. Marques) of the Hospitals (Hospital de Base Ary Pinheiro,
Hospital Panamericano and Hospital Regina Pacis), Katiane
G. Brand
˜
ao, Dr. Cezar Augusto B. B. de Ara
´
ujo (State
Coordinator of the PNI-MS), the staff of the Fundac¸
˜
ao
Universidade Federal de Rond
ˆ
onia and the Universidade
C
2007 The Author(s)/Journal Compilation
C
2007 Foundation Acta Pædiatrica/Acta Pædiatrica 2007 96, pp. 864–868 867
Early vaccination, thimerosal and neurodevelopment Marques et al.
Federal do Rio de Janeiro. This work was supported
by United Nations Educational, Scientific and Cultural
Organization UNESCO (SC27824/2005/914-BRA2000-
Decit-PRODOC), Minist
´
erio da Sa
´
ude do Brasil and The
National Research Council of Brasil-CNPq (PNOPG
project-55.0882/01–4; PPG7, project-556985/2005–2). The
initial study protocol was planned and conducted by Rejane
Marques; the conception of the present study was by
Jose Dorea and data analysis by Angelo G. Manzatto and
Jos
´
e Bernardi; Wanderley Bastos and Olaf Malm were re-
sponsible for Hg determinations and analytical quality con-
trol. All the coauthors contributed to the interpretation of
the data and the final version of the manuscript. All the au-
thors vouch for the accuracy and completeness of the re-
ported data and declare no conflict of interest.
References
1. Clarkson TW, Magos L. The toxicology of mercury and its
chemical compounds. Crit Rev Toxicol 2006; 36: 609–62.
2. Rodier PM. Developing brain as a target of toxicity. Environ
Health Perspect 1995; 103(Suppl 6): 73–6.
3. Dorea JG, Donangelo CM. Early (in uterus and infant)
exposure to mercury and lead. Clin Nutr 2006; 25: 369–76.
4. Oskarsson A, Schultz A, Skerfving S, Hallen IP, Ohlin B,
Lagerkvist BJ. Total and inorganic mercury in breast milk in
relation to fish consumption and amalgam in lactating women.
Arch Environ Health 1996; 51: 234–41.
5. Marques RC, D
´
orea JG, Bastos WR, Fonseca MF, Malm O.
Hair mercury in breast-fed infants exposed to thimerosal-
preserved vaccines. Eur J Pediatr 2007b; in press, doi:10.1007/
s00431-006-0362-2.
6. Harry GJ, Harris MW, Burka LT. Mercury concentrations in
brain and kidney following ethylmercury, methylmercury and
Thimerosal administration to neonatal mice. Toxicol Lett
2004; 154: 183–9.
7. Macdonald PD, Ross SR, Grant L, Young D. Neonatal weight
loss in breast and formula fed infants. Arch Dis Child Fetal
Neonatal Ed 2003; 88: F472–6.
8. Lawrence RA, Lawrence RM. (1999). Breastfeeding: a guide
for the medical profession. 5th ed. St. Louis: Mosby.
9. Lawlor DA, Clark H, Smith GD, Leon DA. Intrauterine
growth and intelligence within sibling pairs: findings from the
Aberdeen children of the 1950s cohort. Pediatrics 2006; 117:
e894–902.
10. Lawlor DA, Bor W, O’Callaghan MJ, Williams GM, Najman
JM. Intrauterine growth and intelligence within sibling pairs:
findings from the Mater-University study of pregnancy and its
outcomes. J Epidemiol Community Health 2005; 59: 279–82.
11. Marques RC, D
´
orea JG, Bastos WR, Rebelo MF, Fonseca MF,
Malm O. Maternal mercury exposure and neuro-motor
development in breastfed infants from Porto Velho (Amazon),
Brazil. Int J Hyg Env Health 2007a; 210: 51–60.
12. Gesell A, 2003. A crianc¸ade0a5anos. 6rd ed., S
˜
ao Paulo:
Martins Fontes, 20–300.
13. Gesell A, Amatruda CS, 2000. Psicologia do Desenvolvimento
– do Lactente
`
a crianc¸a pequena, bases neuropsicol
´
ogicas e
comportamentais. 1st ed. S
˜
ao Paulo: Atheneu, 30–106.
14. Pichichero ME, Cernichiari E, Lopreiato J, Treanor J. Mercury
concentrations and metabolism in infants receiving vaccines
containing thiomersal: a descriptive study. Lancet 2002; 360:
1737–41.
15. Rice DC. Evidence for delayed neurotoxicity produced by
methylmercury. Neurotoxicology 1996; 17: 583–96.
16. Harada M. Minamata disease: methylmercury poisoning in
Japan caused by environmental pollution. Crit Rev Toxicol
1995; 25: 1–24.
17. Amin-Zaki L, Majeed MA, Greenwood MR, Elhassani SB,
Clarkson TW, Doherty RA. Methylmercury poisoning in the
Iraqi suckling infant: a longitudinal study over five years.
J Appl Toxicol 1981; 1: 210–4.
18. Voigt RG, Jensen CL, Fraley JK, Rozelle JC, Brown FR III,
Heird WC. Relationship between omega3 long-chain
polyunsaturated fatty acid status during early infancy and
neurodevelopmental status at 1 year of age. J Hum Nutr Diet
2002; 15: 111–20.
19. WHO. Immunization profile – Brazil. 2005 (Available at
http://www.who.int/countries/bra/en/, accessed Nov/18/
2006).
20. Pabst HF, Spady DW, Pilarski LM, Carson MM, Beeler JA,
Krezolek MP. Differential modulation of the immune response
by breast- or formula-feeding of infants. Acta Paediatr 1997;
86: 1291–7.
21. Hahn-Zoric M, Fulconis F, Minoli I, Moro G, Carlsson B,
Bottiger M, et al. Antibody responses to parenteral and oral
vaccines are impaired by conventional and low protein
formulas as compared to breast-feeding. Acta Paediatr Scand
1990; 79: 1137–42.
22. Radzyminski S. Neurobehavioral functioning and
breastfeeding behavior in the newborn. J Obstet Gynecol
Neonatal Nurs 2005; 34: 335–41.
23. Magos L. Neurotoxic character of thimerosal and the
allometric extrapolation of adult clearance half-time to infants.
J Appl Toxicol 2003; 23: 263–9.
Supplementary material
The following supplementary material is available for this
article:
Table S1 Mean (range) of anthropometry, pre and perinatal
Hg exposure, and Gesell Scores of infants
Figure S1 Percent distribution of Thimerosal-EtHg/ unit of
body weight at birth (a—first dose of hepatite-B, 25 gHg)
and at 180 days (b—third dose of hepatite-B and third dose of
DTP, 50 gHg); (c) percent distribution of Thimerosal-EtHg
(second dose of hepatite-B, first and second dose of DTP,
75 gHg)/weight gain between first and last vaccines.
Figure S2 Plot illustrating correlation between Gesell scores
and (a) dose of injected TCV-EtHg as function of body mass
(r =−0.1724; p = 0.1214), (b) between relative change in
hair-Hg at 6 months (r = 0.0753; p = 0.5037) and (c) relative
weight gain at 6 months (r =−0.1185; p = 0.2892).
Figure S3 Plot illustrating correlation between change in
hair-Hg at 6 months and respective change in body mass
(r =−0.0287; p = 0.7988).
This material is available as part of the online article from:
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1651-
2227.2007.00288.x
(This link will take you to the article abstract).
Please note: Blackwell Publishing is not responsible for the
content or functionality of any supplementary materials sup-
plied by the authors. Any queries (other than missing mate-
rial) should be directed to the corresponding author for the
article.
868
C
2007 The Author(s)/Journal Compilation
C
2007 Foundation Acta Pædiatrica/Acta Pædiatrica 2007 96, pp. 864–868
Table S1. Mean (range) of anthropometry, pre- and perinatal Hg exposure, and Gesell
Scores of infants.
Schedule
Within 24 hours
48 to 96 hours
N
53
29
Birth weight, kg
3.2 (2.2-4.4)
3.3 (2.5-4.1)
Gestational age, d
39.4 (36-43)
39.2 (37-41)
Prenatal Hg exposure
Fetal hair [Hg], µg/g
2.1 (0.1-12.9)
3.0 (0.1-19.7)
Maternal hair [Hg] µg/g
7.1 (0.4-62.4)
7.8 (0.6-30.5)
Perinatal Hg exposure
Thimerosal, µgHg/kg
1
8.0 (5.7-11.3)
7.7 (6.1-10.0)
2
Outcome at six months
Body weight, kg
7.0 (6.1-8.5)
7.0 (6.4-8.0)
Thimerosal, µgHg/kg
7.2 (5.9-8.2)
7.2 (6.3-8.0)
Gesell Scores, quotient
Motor
76.0 (0-100)
72.5 (0-100)
Language
71.0 (0-100)
62.0 (0-100)
Adaptive ability
81.4 (0-100)
83.2 (20-100)
Social
85.6 (70-100)
87.0 (70-100)
General
78.5 (18-100)
76.2 (23-100)
Mean differences were not statistically significant.
1
Estimated from birth weight (5,11).
2
Likely to be underestimated because of obligatory perinatal weight loss
(approximately 10%).
Table S1. Mean (range) of anthropometry, pre- and perinatal Hg exposure, and Gesell
Scores of infants.
Figure S1. Percent distribution of Thimerosal-EtHg/ unit of body weight at birth (a first
dose of hepatite-B, 25 µgHg) and at 180 days (b - third dose of hepatite-B and third dose of
DTP, 50 µgHg); (c) percent distribution of Thimerosal-EtHg (second dose of hepatite-B,
first and second dose of DTP, 75 µgHg)/weight gain between first and last vaccines.
4 6 8 10 12
0
50
100
(a)
Thimerosal, gHg/kg b.w. at birth
Distribution, %
4 6 8 10 12
0
50
100
Thimerosal, gHg/kg b.w. at 180 days
Distribution, %
(b)
10 20 30 40
0
50
100
Thimerosal, gHg/kg b.w. gained
Distribution, %
(c)
2
Figure S2. Plot illustrating correlation between Gesell scores and (a) dose of injected TCV-
EtHg as function of body mass (r=-0.1724; P=0.1214), (b) between relative change in hair-
Hg at six months (r=0.0753; P=0.5037) and (c) relative weight gain at six months (r=-
0.1185; P=0.2892).
5.0 7.5 10.0 12.5
0
50
100
(a)
Thimerosal, gHg/kg b.w.
Gesell score, %
0 1000 2000 3000 4000
0
50
100
150
Hair-Hg increase, %
Gesell score, %
(b)
0 100 200 300
0
50
100
150
Weight gain, %
Gesell score, %
(c)
3
Figure S3. Plot illustrating correlation between change in hair-Hg at six months and
respective change in body mass (r=-0.0287; P=0.7988).
0 1000 2000 3000 4000
0
100
200
300
Hair-Hg change, %
Body mass change, %
Int. J. Hyg. Environ. Health 211 (2008) 606614
Principal component analysis and discrimination of variables associated
with pre- and post-natal exposure to mercury
Rejane C. Marques
a,b
, Jose
´
V.E. Bernardi
a
, Jose
´
G. Do
´
rea
c,Ã
,
Wanderley R. Bastos
a
, Olaf Malm
b
a
Fundac¸a˜o Universidade Federal de Rondo
ˆ
nia, Porto Velho, RO, Brazil
b
Instituto de Biofı
´
sica Carlos Chagas Filho,Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
c
Department of Nutrition, Universidade de Brası
´
lia, C.P. 04322, Campus - Asa Norte, 70919-970 Brası
´
lia, DF, Brazil
Received 28 December 2006; received in revised form 25 April 2007; accepted 12 September 2007
Abstract
The varia nce of variables associated with neurodevelopment at 1 80 days, pre-natal variables (Hg in placenta, blood
and hair) and post-natal Hg exposure (including Thimerosal-containing vaccines, TCV) were exami ned in 82
exclusively breastfed infants using principal component analysis (PCA). This mult ivariate method was applied to
identify hierarchy and sets of interrelated variables. The PCA yielded a two-factor solution, explaining 92% of
variance and summarizing most of the relevant information in the dataset matrix: the first component represented birth
weight and vaccine (first doses of Hepatitis B and DTP) variability and explained 57% of variance; the second
component represented a gradient of neurodevelopm ent (Gesell scores) and explained 35% of variance. The third
component explained only 3% of the remaining 8% variance. Beside CNS priming by breastfeeding, infant
development (birth weight) and time of immunization with TCV should be considered in epidemiological studies. PCA
can classify sets of variables related to vaccination and neuromotor development schedu les, clearly discriminating
between earlier and later TCV exposures of exclusively breastfed infants. In conclusion, the incommensurable concept
of the chance of toxic risk caused by TCV-EtHg exposure against the proven benefit of immunization is in no way
disputed here. However, infant neurodevelopmental (ND) disorders linked to Thimerosal-Hg stands in need of proof,
but PCA points to the pos sibility of identifying exposure risk variables associated with ND schedules.
r 2007 Elsevier GmbH. All rights reserved.
Keywords: Thimerosal; Ethylmercury; Methylmercury; Vaccines; Breastfeeding; Neurodevelopment; Infants
Introduction
Mercury’s most widely recognized effects are neuro-
logical; the developing central nervous system (CNS) of
fetus, infants and young children are vulnerable to these
effects. Fetal exposure to methylmercury (MeHg, from
fish consumption) is thought to lower intelligence and
alter behavior. The Harvard Center for Risk Analysis
panel quantified the impact of chronic MeHg exposure
on cognitive development (Cohen et al., 2005) and
concluded that pre-natal MeHg exposure sufficient to
increase maternal ha ir-Hg by 1 mg/g at parturition
decreases intelligence quotient by 0.7 points (Cohen
et al., 2005). However, neurological effects of post-natal
ARTICLE IN PRESS
www.elsevier.de/ijheh
1438-4639/$ - see front matter r 2007 Elsevier GmbH. All rights reserved.
doi:10.1016/j.ijheh.2007.09.008
Ã
Corresponding author. Tel.: +55 61 3368 3575;
fax: +55 61 3368 5853.
E-mail address: [email protected] (J.G. Do
´
rea).
Hg exposure are more difficult to evaluate. In infants,
Hg exposure occurs through milk feeding (inorganic Hg
and MeHg) and during immunization with Thimer osal
containing vaccines (TCV), which metabolize into ethyl
mercury (EtHg).
During the 1990s, there were several reports claiming
that immunization with TCV could increase autism and
other neurodevelopmental disorders (NDD). The pre-
ponderance of epidemiologic evidence does not support
an association between TCV and autistic disorders
(Parker et al., 2004), but biological plausibility is well
defended (Mutter et al., 2005). Therefor e, the epidemio-
logical interest in NDD (including autism) and associa-
tion with TCV continues to be studied with conflicting
results (Verstraeten et al., 2003; Geier and Geier, 2004,
2006a, b, c; Heron et al., 2004; Andrews et al., 2004).
While risk of pre-natal Hg exposure has prompted
issues of fish consumption advisories, efforts to decrease
children’s exposure to Hg have included a ban on the
use of TCV by industrialized countries; as a precau-
tionary measure, the USA and EU countries have
shifted from TCV to Thimer osal-free vaccines.
Although the WHO considers TCV safe for use in
underdeveloped countries, uncertainty about the possi-
bility of links between TCV and NDD will continue;
banning immun ization of children with TCV was
recognition by advanced nations that NDD have a
tendency to occur.
There are many studies showing that fetal exposure
to neurotoxicants is overruled by breastfeeding.
Furthermore, the link between NDD and TCV, or
more often, its absence as seen in some epidemiological
studies involves a failure to properly address the
weight of compromising circumstances related to
breastfeeding absence, insufficient quantity or dura-
tion. The immunized infant is exposed to EtHg in
Thimerosal by a parenteral route which is different from
exposure to Hg (organic and inorganic) in human milk.
While Hg exposure in breast milk is buffered by the
enterohepatic barrier, the regulatory mechanisms of
the gastrointestinal tract are bypassed by injected
Thimerosal.
The first 6 months of life are marked by significant
qualitative (organ maturity, priming of the nervous
system, function of enzymes) and quantitative (tissue
differentiation, organ and body growth) changes.
Therefore, this relatively short period of life is impacted
by a high load of EtHg from immunizations; the smaller
body mass and blood volume of neonates are important
modulators of the toxicokinetics and toxicodynamics of
Thimerosal, especially at times of more vulnerability of
the blood–brain barrier (BBB). Newborns and infants
requiring immunization (in Brazil and many countries)
are still exposed to EtHg through TCV. Although the
use of TCV is considered safe, uncertainties related to
sub-clinical NDD in population studies await statistical
evaluation (Magos and Clarkson, 2006). Indeed, studies
that ignored colinearity or the many confounders
(related to pre- and post-natal exposure and infant
development) have produced rather incongruent results
such as a negative correlation between Thimerosal dose
and risk of neurological disorders (Andrews et al., 2004;
Heron et al., 2004).
PCA is a simple multivariate method useful to extract
relevant information from complex datasets. It is the
objective of the present study (a continuation of part I,
Marques et al., 2007a) to use powerful PCA to
discriminate variables associated with neurodevelop-
ment outcomes, pre- and post-natal Hg exposure and it
is expected that one can learn about the main factors
that influence variation in neurodevelopment of normal
breastfed ch ildren.
Materials and methods
As part of the study protocol to assess growth and
development of infants exposed to pre-natal back-
ground maternal-Hg load, we took advantage of the
study already published (Marques et al., 2007a) to focus
on variable interactions. During the review process of
the parent publication (Marques et al., 2007a), it was
brought to our attention that the possible post-natal
exposure include the vaccines given to infants which
were the type preserved in Thimerosal. We investigated
the origin of the vaccines and were informed that all
vaccines in the Br azilian immunization program con-
tained Thimerosal within the permitted limits (0.01%).
In order to evaluate metabolic aspect s related to our
main marker of organic Hg exposure (hair Hg
concentrations) in infants, we addressed these issues in
a second publication (Marques et al., 2007b).
The parent publication (Marques et al., 2007a)
dealing with pre-natal Hg exposure described in details
the characteristics of the population of Porto Velho
(State of Rondoˆ nia, West Amazonia). Mothers between
the ages of 15 and 45 years were selected by a nurse
during their routine visits to the Pre-natal Clinics
(Hospital de Base, Hospital Panamericano and Hospital
Regina Pacis), among those in good health, reporting no
illness or complaints. Excluding factors were occupa-
tional exposure to toxic chemicals and hereditary
neurological illnesses. Pregnant mothers who were
willing to breastfeed were introduced to the study’s
plain-language infor mation, and a written consent form
was presented and signed by the volunteer mother.
Confidentiality was assured as well as freedom to
withdraw from the study at any time. The mothers were
closely monitored by nurses to guarantee full support of
breastfeeding and pre- and post-natal care including the
full immunization schedules recommended by the
Brazilian immunization program.
ARTICLE IN PRESS
R.C. Marques et al. / Int. J. Hyg. Environ. Health 211 (2008) 606–614 607
After birth, the newborns were clinically examined
with special attention to vitality, perinatal reflexes,
maturity, and congenital malformations; weight, length,
head circumference, and Apgar scores wer e recorded.
While on the maternity wards, we collected samples of
placenta, blood and hair from mothers and respective
infants (fetal hair); the hair sampling was repeated at 6
months. Hair strands were cut from the occipital region
and placed in plastic bags, with the root end stapled on a
paper sheet. Sample preparation and Hg de terminations
in hair and blood were done according to routine
procedures (Marques et al., 2007a).
After hospital discharge the mothers and the children
were monitored for the programmed post-natal visits
and immunization scheme in accordance with the
Brazilian vaccination program. At 6 months of age,
mother–infant pairs reported for the programmed
clinical and neurobehavioral examination when hair
samples were collected again. Infants were again
weighed and measured for length and hair-samples were
again collected from mothers and infants. Integrated
weight gains at 30, 60 and 120 days were estimated from
differences between infants’ weight measured at birth
and at 6 months. In this study we used only datasets of
82 mother–infant pairs of the initial 100 enrollment; due
to various causes we had drop outs and incomplete data
in 18 pairs (Marques et al., 2007a).
The neurodevelopment tests were conducted by
trained professionals using the Gesell Developmental
Schedules (Gesell, 2003 ; Gesell and Amatruda, 2000).
These tests included all reactions (voluntary, sponta-
neous or learned) and reflexes. We also evaluated
postural reactions, hand pressure, locomotion and
coordination, constructive ability (which is influenced
by motor development), visible and audible commu-
nication, individual reactions regarding people and
stimulations (depending mainly on the temperament of
the child and the surroundings); using a ppropriate
measurements we compare the child developmental
stage with that exp ected for the respective age (qualita-
tive and quantitative). The results (as percentages) were
expressed as developmental quotients (DQ) for the
Adaptive Behavior, Language Development, Gross
Motor Skills and Personal/Social Behaviors.
Estimated exposure to injected Thimerosal-Hg (EtHg)
from vaccines: Mothers followed the immunization
schedule recommended by the Ministry of Health of
Brazil. The first dose of Hepatitis B vaccine was taken
by neo nates before hospital discharge and the subse-
quent two doses (at 30 and 180 days) as well as the three
doses of DTP at 60, 120 and 180 days (Table 1). Only
the babies born at the state-run hospital (Hospital de
Base, 66%) received the Hepatitis B vaccine within the
first day postpartum. Babies born at the Hospital
Panamericano and the Hospital Regina Pac is received
the Hepatitis B vaccine immediately after the mother’s
discharge (2–4 days postpartum). At this time, the
mothers were taken unde r our supervision to a state-run
clinic where immunizations are done.
The calculated exposure to EtHg was estimated as
Thimerosal-Hg derived from vaccines used in the
current national immunization program of the Ministry
of Health of Brazil. The Hg concentration of the doses
delivered through vaccines (containing 0.01% Thimer-
osal as stated by manufacturers) was 25 mg/0.5 mL for
Hepatitis B (Korea Green Cross Corporation, Kiheung-
Eup Yougin-Goon Kiyunggi-Do, Korea; Euvax B
injectable, LG Life Sciences, Jeonbuk-Do, Korea) and
for DTP (Triple Antigen, Serum Insti tute of India Ltd.,
India; Vacina Trı
´
plice, Instituto Butanta
˜
,Sa
˜
o Paulo,
Brazil).
Statistical analysis
A principal component analysis (PCA) model was
used for the measured variables to gain information
with fewer varia bles. This mathematical model calcu-
lates new variables (principal components) that account
for the variability in the data and enables the study of
covariances or correlations between variables. Thus, the
principal components are linear combinations of the
original variables. The combination of variables that
explains the greatest amount of variability is the first
ARTICLE IN PRESS
Table 1. Infant anthropometry, neurodevelopment schedules
and markers of prenatal Hg exposure
Characteristics Mean7S.D.
Infant anthropometry
Weight at birth (g) 3233.177421.56
Length at birth (cm) 49.7772.43
Head circumference at birth (cm) 33.8872.29
Weight at 6 month (g) 7011.347458.98
Length at 6 month (cm) 67.6072.59
Head circumference at 6 month (cm) 42.5871.08
Pre-natal Hg exposure
Maternal blood Hg (mg/L) 6.03714.07
Placenta Hg (ng/g) 10.7579.82
Umbilical cord Hg (ng/g) 10.5479.93
Maternal hair Hg at delivery (mg/g) 7.3678.73
Infant hair Hg at birth ( mg/g) 2.4473.04
Infant hair Hg at 6 month (mg/g) 3.8475.55
Maternal hair Hg 6 month (mg/g) 3.1973.85
Neurodevelopmental schedules
Motor DQ 74.82731.95
Language DQ 67.87736.23
Adaptive DQ 82.01719.62
Personal social DQ 86.10710.21
Total DQ 77.70722.24
DQ, development quotient.
R.C. Marques et al. / Int. J. Hyg. Environ. Health 211 (2008) 606–614608
principal component. The subsequent ones (second and
third principal component) describe the maximum
amount of remaining variability; they must be indepen-
dent of the first principal component. For this multi-
variate model we used the appro ach discussed by others
(Ludwing and Reynolds, 1988; Reyment and Jo
¨
reskog,
1996).
The main steps of the analysis were:
(i) Transformation of the data: PCA standardize the
original matrix assuming means as zero and
standard deviations as one. The purpose of this step
is to derive a small number of linear combinations
(principal components) that retain as much of the
information in the original variables as possible; this
allows many variables to be summarized in a few,
jointly uncorrelated principal components. The
result is considered goo d if we obtain a high
proportion of the total variance explained by a few
principal components. Commensurate with the
analysis done in principal components analysis, we
also treated the variables as active and supplemen-
tary variables. The supplementary variables can be
projected onto the vector subspace generated by the
factors.
We used the STATISTICA package (StatSoft, Inc.,
Data Analysis Software System, version 6, www.
statsoft.com, 2001, Tulsa, OK 74104, USA) on the
following variables: (1) birth weight, (2) length at
birth, (3) head circumference at birth, (4) mate rnal
blood-Hg concentration at delivery, (5) Placenta-Hg
concentration, (6) umbilical cord-Hg concentration,
(7) maternal hair-Hg concentration at delivery,
(8) infant hair-Hg concentration at birth, (9) infant
hair-Hg concentration at 6 months, (10) maternal
hair-Hg concentration at 6 months, (11) infant
weight at 6 months, (12) infant length at 6 months,
(13) head circumference at 6 months, (14) motor DQ
at 6 months, (15) language DQ at 6 months,
(16) adaptative DQ at 6 months, (17) personal and
social DQ at 6 months, (18) total DQ at 6 months,
(19) Thimerosal-Hg (Hepatitis B 1st dose)/kg b.w. at
birth, (20) Thimerosal-Hg (Hepatitis B 2nd dose)/kg
b.w. at 30 days, (21) Thimerosal-Hg (DTP 1st dose)/kg
b.w. at 60 days, (22) Thimerosal-Hg (DTP 2nd
dose)/kg b.w. at 120 da ys, (23) Thimerosal-Hg
(3rd dose of Hepatitis B and DTP)/kg b.w. at 180
days, (24) integrated mean Thimerosal-Hg/kg b.w.
at 180 days; we did not use varimax rotation or any
other additional factor analysis.
(ii) Construction of two-dimensional graph (Fig. 1): This
step organizes the variables on the appropriate
vector basis allowing visual inspection of the data
in a two-dimensional score plot that reveals patterns
hidden in the dataset. To visualize the separation of
groups, Fig. 1 shows score plots of the first two PCs
and the values of the PC loadings. Plots of loadings
(PC1 and PC2) on these data allow us to recognize
groups of samples with similar behavior and the
existing association among the original variables.
Results
The summary, as mean and S.D., of the chosen
variables is shown in Tables 1 and 2. These variables
include pre- and post-natal Hg exposure, infant anthro-
pometry and neu rodevelopment scores (Table 1); pre-
natal Hg exposure is represented by hair-Hg of mother
and infants at birth, Hg concentrations in placenta and
umbilical cord. Post-natal Hg exposure is represented by
infant hair-Hg at 6 months and immunization doses of
TCV-Hg (as EtHg) during the first 6 months (Table 2).
Higher Thimerosal-Hg dose per unit of body mass is
shown at birth (when newborns had the smallest body
mass) and 6 months (when they were injected with two
doses of TCV third shot of both Hepatitis B and
DTP).
The main component analysis was used to explore the
data matrix order; this can help determine the weight
(importance) of parameters in the total variability
through vector size and loads and respective percentual
contributions. The result of PCA gives two significant
principal components (eigenvalues 41), which explain
92% of the variation in the data (57% and 35%,
respectively). The classification of loads (Tables 3–5)
points to the post-natal Hg exposure (immunization
ARTICLE IN PRESS
Active
Supplementary
-1.0 -0.5 0.0 0.5 1.0
-1.0
-0.5
0.0
0.5
1.0
Factor 2 : 34.79%
1
18
16
15
14
19
17
13
12
11
9
8
10
7
6
4
3
2
22
23
5
21
24
20
Fig. 1. Scatter plot of loadings of PCA (principal component
analysis) dataset. The identities of the responses and the
neurodevelopment variables are indicated by the plot labels.
R.C. Marques et al. / Int. J. Hyg. Environ. Health 211 (2008) 606–614 609
schedules of newborns and infants): two vaccine s within
the first month (0 and 30 days) and the high Thimerosal-
Hg dose (in the third dos e of Hepatitis B and DTP) at
180 days. The analyzed variables and respective loads
are listed in Table 3; the first component (57% of
variance) is accounted for by variables with the highest
loads: (1) birth weight (0.90), (19) Thimerosal-Hg
(Hepatitis B 1st dose)/kg b.w. at birth (À0.90), (20)
Thimerosal-Hg (Hepatitis B 2nd dose)/b.w. at 30 days
ARTICLE IN PRESS
Table 2. Infant immunization schedule, type of vaccine, and Thimerosal-Hg/dose (EtHg) during the first 6 months
Age (days) Type
a
mgHg/dose
b
Infant weight (kg)
c,d
mgHg/kg
d
0 Hp-B 25.0 3.23 (0.42) 7.87 (1.09)
30 Hp-B 25.0 3.86 (0.35) 6.53 (0.61)
60 DTP 25.0 4.49 (0.31) 5.59 (0.38)
120 DTP 25.0 5.75 (0.32) 4.37 (0.23)
180 DTP+Hp-B 50.0 7.01 (0.46) 7.16 (0.44)
Total 150.0 6.30 (0.45)
a
Hp-B: Hepatitis B (Korea Green Cross Corporation, Kiheung-Eup Yougin-Goon Kiyunggi-Do, Korea; Euvax B injectable, LG Life Sciences,
Jeonbuk-do, Korea); DTP (Serum Institute of India Ltd.; Vacina Trı
´
plice, Instituto Butanta, Sa
˜
o Paulo, Brazil). These vaccines contained 0.01%
Thimerosal/dose as stated by manufactures.
b
Vaccine dose: 0.5 mL; Hg mass is approximately 50% of the Thimerosal.
c
Estimated from Marques et al. (2007a).
d
Mean (and standard deviation).
Table 3. Principal component loads indicating variability percentages of measured parameters (factor-variable correlations (factor
loadings), based on active and supplementary variables
a
)
Factor 1 Factor 2 Factor 3
1. Weight at birth 0.898249 0.362923 0.064494
14. Index of motor development 0.493417 À0.796391 0.139435
15. Index of language development 0.517388 À0.771637 0.235206
16. Index of adaptative development 0.470206 À0.757382 À0.440593
18. Index of general development 0.534355 À0.841893 0.049363
19. TCV-Hg (Hepatitis B 1st dose, birth)/kg b.w. À0.897585 À0.361978 À0.057133
20. TCV-Hg (Hepatitis B 2nd dose, 30 days)/kg b.w. À0.930730 À0.364520 0.000802
21. TCV-Hg (DTP 1st dose, 60 days)/kg b.w. À0.902208 À0.331506 0.075336
24. Total Thimerosal-Hg/kg b.w. at 180 days À0.917511 À0.336700 0.054712
2. Length at birth
a
0.319748 0.229549 À0.096108
3. Head circumference at birth
a
0.484365 0.053901 À0.012174
4. Maternal blood-Hg at delivery
a
À0.204777 0.163233 0.338478
5. Placenta-Hg
a
À0.174918 0.030322 À0.219712
6. Umbilical cord-Hg
a
À0.132638 0.015406 À0.069268
7. Maternal hair-Hg at delivery
a
À0.001043 0.088459 À0.046659
8. Infant hair-Hg at birth
a
À0.051069 0.468469 0.092115
9. Infant hair-Hg at 6 months
a
À0.126927 0.329956 0.120974
10. Maternal hair-Hg at 6 months
a
À0.001800 0.055173 0.043098
11. Infant weight at 6 months
a
0.142328 À0.019707 À0.245993
12. Infant length at 6 months
a
0.537043 0.124353 À0.134842
13. Head circumference at 6 months
a
0.568066 À0.055300 À0.132429
17. Index of personal and social development
a
0.372902 À0.650683 0.005994
22. TCV-Hg (DTP 2nd dose-120 days)/kg b.w.
a
À0.537471 À0.140750 0.209801
23. TCV-Hg (Hepatitis B and DTP 180 days)/kg b.w.
a
À0.138998 0.030978 0.242526
TCV: thimerosal-containing vaccines; DTP: diphtheria, tetanus, pertussis.
a
Supplementary variables are illustrated in Fig. 1 (Eigenvalues o1).
Table 4. Eigenvalues of correlation matrix and related
statistics of active variables only individual and cumulative
percent contributions
Eigenvalue % Total Cumulative Cumulative
1 5.152354 57.24837 5.152354 57.2484
2 3.130954 34.78837 8.283307 92.0367
3 0.287416 3.19351 8.570724 95.2303
R.C. Marques et al. / Int. J. Hyg. Environ. Health 211 (2008) 606–614610
(À0.93), (21) Thimerosal-Hg (DTP 1st dose)/kg b.w. at
60 days (À0.90), (24) mean Thimerosal-Hg/kg b.w. at
180 days (À0.92). The second component, which
explained 35% of the variation, is accounted for
by the following variables: (14) motor DQ (À0.80),
(15) language DQ (À0.78), (16) total DQ (À0.84),
(18) adaptative DQ (À0.76). This can be interpreted as a
gradient of varia bility among variables; positive signs
mean that variables increase together while a negative
sign means that as one increases the other decreases. It
should also be conceptualized that the sign of the birth-
weight variable is the opposite of those of Thimerosal
doses because these are derived from the former (they
are reciprocals). The third component explained 3% of
the remaining 8% variability. Further details in Table 4
illustrate the percentage of variance explained by
components. Components one and two explain 92% of
total variance, accounting, respectively, for 57% and
35% of the variation. Table 5 summarizes the factor
contribution of the active variables.
Most of the variation is explained by two-dimensional
scattergram (Fig. 1); plotting the values for the first two
principal components of the data points gives the
essential features of the multidimensional scatter (PC1
and PC2, whose eigenvalues are 41, represents the main
variables). Fig. 1 illustrates the separation of the
observational variables: the variables associated with
ND sched ules and immunizations (as function of body
weight) are at opposite quadrant.
Discussion
The main finding of this work is to show that PCA
discriminated variability of early vaccine schedule and
neurodevelopment outcomes from variables that in-
cluded pre- and post-natal Hg exposure; immunizations
given within 60 days were extracted as the first principal
component. Multivariate models involving many vari-
ables are often difficult to interpret because plots and
lists of loadings can become too overwhelming to
comprehend. In order to handle a large number of
variables, PCA reorganizes the variables, reducing the
dimensions of the origi nal dataset. In other words,
without a significant loss of information, this approach
describes a shorter list of variables. In this dimension,
PCA clearly discriminated the first set of vaccines taken
at an earlier time (first and second doses of Hepatitis B
at birth and 30 days, and first DTP at 60 days).
Although all vaccines contained the same dose of
Thimerosal-Hg, the amount of EtHg/kg b.w. given
varied as a function of body mass change: newborn
babies (within the first days) received doses of TCV-
EtHg comparable to those of 6 months old (double the
amount of vaccine-Hg in the two shots given at 6
month). Although these doses of Thimerosal (EtHg) per
unit of body mass represented the highest TCV
exposures, they ended up in different components.
However, it should be kept in mind that a point of
concern can be raised in respect to birth weight (as well
as body mass development) and the given TCV-Hg dose.
Birth weight and weight adjusted Hg produced close co-
linearity (opposite sign factor-loadings but nearly
identical high values Table 3). For studies intending
to use PCA co-linearity, such as this type, it can bias
regression models. Nevertheless, it points to the
necessity to view the first 6 months in its proper
perspective.
Differences in infant growth and maturati on (tissue
differentiation) between a 1-day-old neonate and a
6-month-old infant (who has doubled its original body
mass and already acquired functional abilities) set them
apart in terms of the toxicodynamics of Hg exposure.
Infants of this age range are not just small children,
but a heterog eneous population with a wide range of
physiological, metabolic and anatomical differences. It
is essential to consider the dynamic complexity of early
post-natal development to unde rstand the spectrum of
differentiation that determines the heterogeneity of this
group. At one end we have a neonate (‘‘external fetus’’)
with the highest degree of immaturity and that is defined
as ‘‘born at term and normal’’ only by gestational age,
ARTICLE IN PRESS
Table 5. Discrimination of variables with percent contributions
Factor 1 Factor 2 Factor 3
1. Birth weight 0.156598 0.042068 0.014472
14. Index of motor development 0.047252 0.202571 0.067645
15. Index of language development at 6 months 0.051955 0.190173 0.192479
16. Index of adaptative development 0.042911 0.183212 0.675405
18. Index of general development 0.055419 0.226380 0.008478
19. TCV-Hg (Hepatitis B 1st dose, birth)/kg b.w. 0.156367 0.041849 0.011357
20. TCV-Hg (Hepatitis B 2nd dose, 30 days)/kg b.w. 0.168129 0.042439 0.000002
21. TCV-Hg (DTP 1st dose, 60 days)/kg b.w. 0.157982 0.035100 0.019747
24. Total Thimerosal-Hg/kg b.w. at 180 days 0.163387 0.036208 0.010415
TCV: thimerosal containing vaccines; DTP: diphtheria, tetanus, pertussis.
R.C. Marques et al. / Int. J. Hyg. Environ. Health 211 (2008) 606–614 611
not by markers of immaturity. At the other end,
6-month-old infants are more functional and differen-
tiated (anatomically, biochemically and physiologically).
Therefore, there are implications for Thimerosal-EtHg
during the first post-natal 24 weeks in term babies
(defined as born between 36 and 42 weeks) with such a
relatively wide (6 weeks) range of gestational age
difference.
During the first 6 months, the fast changes in size,
body composition, and organ function dramatically
affect pharmacokinetics; this is also likely to affect
pharmacodynamics. During this time infants are ex-
posed to Hg in breast milk (Dorea, 2004); such exposure
is amortized against a proportional milk intake
(as a function of body weight). Any form of breast-
milk Hg (inorganic Hg and methyl-Hg, MeHg) is
complexed into the milk–protein matrix and its absorp-
tion and toxicity are attenuated by entero-hepatic
barriers. Concomitantly, CNS is primed by components
naturally present in breast milk. Contrary to the
enteral breast-milk Hg, the parente ral route of TCV
leads to a disproportionate EtHg exposure (per unit of
body mass) at different stages of development (highest
immediately after birth). The parenteral TCV exposure
bypasses the enteral barriers and metabolic defenses,
gaining ready access to the systemic venous system and
thus reachi ng the brain within seconds. Magos et al.
(1989) showed in rat models that circulation time
between Hg absorption site and brain is an important
toxicity factor. Indeed, a peak value of mercury appears
to be the determinant of toxic damage in population
studies (Clarkson and Strain, 2004); depending on post-
natal immaturity, this is likely to occur with injected
Thimerosal (EtHg).
Stajich et al. (2000) speculated that infants with less
body mass could metabolize EtHg at a slower rate than
larger infants and that immaturity of the liver could be
responsible for less metallothionein available to bind
inorganic Hg. However, the reanalysis of their data by
Magos (2003) reached the opposite conclusion: ‘‘pre-
term infants handled ethylmercury load more efficiently
than term infants.’’ Regardless of these toxicokinetic
differences, the vulnerability of the developing nervous
system is expecte d to be higher in the ne onatal period
than at 180 days. Both Stajich et al. (2000) and Magos
(2003) referred specifically to the toxicokinetics of EtHg
and by no means referred to its toxicodynamics.
The decision to eliminate Thimerosal in vaccines
(claimed as a precautionary measure) by some countries
was based on g uidelines for MeHg. Although the
guidelines for MeHg are not equivalent to guidelines
for EtHg (Thimerosal-Hg metabolite), the current
assumption is that the health risks from exposure to
MeHg and EtHg are the same (NIAID, 2005). This is
debatable in the context of the breastfed infant: while
breastfed infants are exposed to MeHg (in lower
amounts than inorganic Hg) only enterally, TCV-EtHg
exposure is a bolus parenteral exposure.
Because we are dealing with exposure to a pure
substance by a parenteral route impacting an immature
organism, there are specific considerations. The first
impact of vaccine-EtHg for some newborns comes
within hours of birth (Marques et al., 2007b). Newborns
show important differences in body weight and tissue
differentiation that affect toxicokinetics. Even in term
infants, the blood–brain barrier (BBB) is not complete
until after 6 months of age (Adinolfi, 1985). Therefore,
the pharmacokinetic and pharmacodynamic of Thimer-
osal (EtHg) are modified by infant development, thus
representing a challenge to infant toxicology. It has been
experimentally shown that both genetic and brain
maturation are critical determinants of post-natal
Thimerosal-related sequelae. Equiva lent EtHg dosing
and timing of exposure caused behavioral disruption in
control mice but not in a strain resistant to autoimmu-
nity (Hornig et al., 2004). However, because only 3% of
neurodevelopmental (ND) disabilities are attributed to
environmental neurotoxic substances (Grandjean and
Landrigan, 2006), a large population study would be
required to detect a post-natal Hg exposure effect
caused by TCV. Furtherm ore, in situations of universal
exposure such as Hg in vaccines, increased risk of ND
disabilities is more complex because of chance of
interactions with pre-natal exposure to MeHg in fish
eating populations.
It should be stressed that neurodevelopmental vari-
ables in this study were obtained from infants whose
CNS were primed by exclusive breastfeeding. Breast-
feeding has consistently shown efficient CNS priming
that could affect the toxicodynamics of TCV-EtHg. The
counteractive effects of breastfeeding on NDD have
been reported in infants pre-natally exposed to MeHg
(Grandjean et al., 1995; Jensen et al., 2005). Breastfeed-
ing predicts faster CNS maturation rates (Hart et al.,
2003), higher neurodevelopment scores (Vestergaard
et al., 1999), and better intellectual achievements
(Victora et al., 2005).
So far, studies that examined NDD effects of vaccine-
EtHg exposure have not taken breastfeeding into
consideration. One study, however, provides an oppor-
tunity to speculate; in 7-year-old Faroese children,
breastfeeding was associated with marginally better
neuropsychological performance (Jensen et al., 2005).
Hair mercury concentration at age of 1 year (adjusted
confounder), did not change the positive effects of
breastfeeding. These Danish children were born between
1986 and 1987 and probably also received the TCV
(125 mgEtHg, three vaccine doses) still in use at that time
(Hviid et al., 2003).
The full range of options used in epidemiological
studies of infant exposure to TCV (EtHg) and the short-
and long-term effects on neurodevelopment should
ARTICLE IN PRESS
R.C. Marques et al. / Int. J. Hyg. Environ. Health 211 (2008) 606–614612
consider breastfeeding as an important covariate. Multi-
variate models such as PCA do not establish cause and
effect association between variables, but are useful tools
to sort them. In our study it was possible to line up
vectors that discriminated and classified the immuniza-
tion schedules (first principal component) and neurode-
velopmental scores (second principal component).
Because there were no adverse effects of pre-natal Hg
exposure in this group of breastfed infants (Marques
et al., 2007a), neuro development interaction with early
immunization of infants should also consider birth
weight (or surrogates of fetal development such as
gestational age). This might help devise epidemiological
studies with sufficient refinement to include variables
that can more precisely account for the complexity of
early post-natal development and Hg exposure. There
are no cause–effects relations between early Thimerosal-
Hg exposure and neurodevelopmenta l deficits, but the
challenge of understanding such complex interactions
may benefit from the present findings.
Conclusion
The chance of harm caused by TCV-EtHg exposure
against the proven benefit of immunization is in no way
argued by these results. Infant NDD linked to Thimer-
osal-Hg stands in need of proof; however, the present
work points to the possibility of identifying modifiable
NDD-risk factors associated with infant development
and TCV-EtHg dosing.
Acknowledgments
We are greatly in debt to the mothers for their
participation in the study; Dr. Angelo Gilberto Man-
zatto, Cezar Augusto Bezerra B. de Arau´ jo, MSc, MD
Marineˆ s Rodrigues dos Santos Cezar, MSc, Tereza
Cristina Ram os, Katiane Guedes Branda
˜
o, Rayson
Correa Marques and the staffs of the Fundac¸ a
˜
o
Universidade Federal de Rondoˆ nia and the Universi-
dade Federal do Rio de Janeiro. This work was
supported by United Nations Educational, Scientific
and Cultural Organization UNESCO (SC27824/2005/
914-BRA2000-Decit-P RODOC), Ministe
´
rio da Sau´ de
do Brasil and The Nation al Research Council of Brasil-
CNPq (PNOPG project-55.0882/ 01-4; PPG7, project-
556985/2005-2).
References
Adinolfi, M., 1985. The development of the human blood-
CSF-brain barrier. Dev. Med. Child Neurol. 27, 532–537.
Andrews, N., Miller, E., Grant, A., Stowe, J., Osborne, V.,
Taylor, B., 2004. Thimerosal exposure in infants and
developmental disorders: a retrospective cohort study in
the United Kingdom does not support a causal association.
Pediatrics 114, 584–591.
Clarkson, T.W., Strain, J.J., 2004. Methyl mercury: loaves
versus fishes. Seychelles Med. Dent. J. 7, 61–66.
Cohen, J.T., Bellinger, D.C., Shaywitz, B.A., 2005. A
quantitative analysis of prenatal methyl mercury exposure
and cognitive development. Am. J. Prev. Med. 29, 353–365.
Dorea, J.G., 2004. Mercury and lead during breast-feeding. Br.
J. Nutr. 92, 21–40.
Geier, D., Geier, M.R., 2004. Neurodevelopmental disorders
following thimerosal-containing childhood immunizations:
a follow-up analysis. Int. J. Toxicol. 23, 369–376.
Geier, D.A., Geier, M.R., 2006a. An evaluation of the effects
of thimerosal on neurodevelopmental disorders reported
following DTP and Hib vaccines in comparison to DTPH
vaccine in the United States. J. Toxicol. Environ. Health A
69, 1481–1495.
Geier, D.A., Geier, M.R., 2006b. An assessment of downward
trends in neurodevelopmental disorders in the United
States following removal of thimerosal from childhood
vaccines. Med. Sci. Monit. 12, CR231–CR239.
Geier, D.A., Geier, M.R., 2006c. A meta-analysis epidemio-
logical assessment of neurodevelopmental disorders follow-
ing vaccines administered from 1994 through 2000 in the
United States. Neuro Endocrinol. Lett. 5, 27(4) [Epub
ahead of print].
Gesell, A., 2003. A crianc¸ a de 0 a 5 anos, 6th ed. Martins
Fontes, Sa
˜
o Paulo, pp. 20–300.
Gesell, A., Amatruda, C.S., 2000. Psicologia do Desenvolvi-
mento do Lactente a
`
crianc¸ a pequena, bases neuropsico-
lo
´
gicas e comportamentais, first ed. Atheneu, Sa
˜
o Paulo,
pp. 30–106.
Grandjean, P., Weihe, P., White, R.F., 1995. Milestone
development in infants exposed to methylmercury from
human milk. Neurotoxicology 16, 27–33.
Grandjean, P., Landrigan, P.J., 2006. Developmental neuro-
toxicity of industrial chemicals. Lancet 368 (9553),
2167–2178.
Hart, S., Boylan, L.M., Carroll, S., Musick, Y.A., Lampe,
R.M., 2003. Brief report: breast-fed one-week-olds demon-
strate superior neurobehavioral organization. J. Pediatr.
Psychol. 28, 529–534.
Heron, J., Golding, J., ALSPAC Study Team, 2004. Thimer-
osal exposure in infants and developmental disorders: a
prospective cohort study in the United Kingdom does not
support a causal association. Pediatrics 114, 577–583.
Hornig, M., Chian, D., Lipkin, W.I., 2004. Neurotoxic effects
of postnatal thimerosal are mouse strain dependent. Mol.
Psychiatry 9, 833–845.
Hviid, A., Stellfeld, M., Wohlfahrt, J., Melbye, M., 2003.
Association between thimerosal-containing vaccine and
autism. JAMA 290, 1763–1766.
Jensen, T.K., Grandjean, P., Jorgensen, E.B., White, R.F.,
Debes, F., Weihe, P., 2005. Effects of breast feeding on
neuropsychological development in a community with
methylmercury exposure from seafood. J. Expo. Anal.
Environ. Epidemiol. 15, 423–430.
ARTICLE IN PRESS
R.C. Marques et al. / Int. J. Hyg. Environ. Health 211 (2008) 606–614 613
Ludwing, J.A., Reynolds, J.F., 1988. Statistical Ecology: A
Primer on Methods and Computing. Wiley Interscience
Publication, New York, p. 325.
Magos, L., 2003. Neurotoxic character of thimerosal and the
allometric extrapolation of adult clearance half-time to
infants. J. App. Toxicol. 23, 263–269.
Magos, L., Clarkson, T.W., 2006. Overview of the clinical
toxicity of mercury. Ann. Clin. Biochem. 43, 257–268.
Magos, L., Clarkson, T.W., Hudson, A.R., 1989. The effects
of dose of elemental mercury and first-pass circulation time
on exhalation and organ distribution of inorganic mercury
in rats. Biochem. Biophys. Acta 991, 85–89.
Marques, R.C., Do
´
rea, J.G., Bastos, W.R., Rebelo, M.F.,
Fonseca, M.F., Malm, O., 2007a. Maternal mercury
exposure and neuro-motor development in breastfed
infants from Porto Velho (Amazon), Brazil. Int. J. Hyg.
Environ. Health 210, 51–60.
Marques, R.C., Do
´
rea, J.G., Fonseca, M.F., Bastos, W.R.,
Malm, O., 2007b. Hair mercury in breast-fed infants
exposed to thimerosal-preserved vaccines. Eur. J. Pediatr.
[Epub ahead of print, doi:10.1007/s00431-006-0362-2 ].
Mutter, J., Naumann, J., Schneider, R., Walach, H., Haley, B.,
2005. Mercury and autism: accelerating evidence? Neuro
Endocrinol. Lett. 26, 439–446.
NIAID. 2005. National Institute of Allergy and Infectious
Diseases Supported Studies on Mercury. Thimerosal and
Vaccine Safety (http://www.niaid.nih.gov/factsheets/
thimerosalqa.htm; available on line April 11, 2006).
Parker, S.K., Schwartz, B., Todd, J., Pickering, L.K., 2004.
Thimerosal-containing vaccines and autistic spectrum
disorder: a critical review of published original data.
Pediatrics 114, 793–804.
Reyment, R.A., Jo
¨
reskog, K.G., 1996. Applied Factor
Analysis in the Natural Sciences. Cambridge University
Press, p. 383.
Stajich, G.V., Lopez, G.P., Harry, S.W., Sexson, W.R.,
2000. Iatrogenic exposure to mercury after hepatitis
B vaccination in preterm infants. J. Pediatr. 136,
679–681.
Vestergaard, M., Obel, C., Henriksen, T.B., Sorensen, H.T.,
Skajaa, E., Ostergaard, J., 1999. Duration of breastfeeding
and developmental milestones during the latter half of
infancy. Acta Paediatr. 88, 1327–1332.
Verstraeten, T., Davis, R.L., DeStefano, F., Lieu, T.A.,
Rhodes, P.H., Black, S.B., Shinefield, H., Chen, R.T.,
Vaccine Safety Datalink Team, 2003. Safety of thimerosal-
containing vaccines: a two-phased study of computerized
health maintenance organization databases. Pediatrics 112,
1039–1048.
Victora, C.G., Barros, F.C., Horta, B.L., Lima, R.C., 2005.
Breastfeeding and school achievement in Brazilian adoles-
cents. Acta Paediatr. 94, 1656–1660.
ARTICLE IN PRESS
R.C. Marques et al. / Int. J. Hyg. Environ. Health 211 (2008) 606–614614
Changes in children hair-Hg concentrations during the first 5
years: Maternal, environmental and iatrogenic modifying factors
Rejane C. Marques
a,b
, Jose
´
G. Do
´
rea
c,
*
, Wanderley R. Bastos
a
, Olaf Malm
b
a
Fundac¸a
˜
o Universidade Federal de Rondo
ˆ
nia, Porto Velho, RO, Brazil
b
Instituto de Biofı
´
sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
c
Universidade de Brası
´
lia, C.P. 04322, 70919-970 Brası
´
lia, DF, Brazil
Received 21 February 2007
Available online 10 May 2007
Abstract
Children are exposed to Hg from mothers (via placenta and lactation), environment (food), and in many parts of the world by thi-
merosal-containing vaccines (TCV) during immunization. Neurodevelopment studies based on infant hair-Hg (HHg) have been designed
without explicit attention to the factors associated with changes in infant physiology and Hg sources of exposure. A longitudinal study of
changes in HHg concentrations from birth to 5 years was done in a sample of children from Porto Velho (Rondonia), Brazilian Amazo-
nia. The study extracted information from the asymmetry associated with maternal and infant HHg changes at specified sampling: birth
(fetal exposure), 6 months of exclusive breastfeeding, 36 months (weaning) and 60 months (pre-school). The distribution of HHg in
breastfed infants followed a pattern different from their mothers. While mothers had the highest HHg concentrations at childbirth,
infants showed the highest HHg values at 6 months after the recommended full schedule (six shots) of immunization with TCV; after
that, the downward trend in HHg shown by children coincided with both weaning and less frequent vaccination period (5 years).
Extended lactation (up to 36 months) was not significantly associated with HHg of infants or mothers; however, significant association
(Spearman’s r) between maternal and infant HHg concentration was seen at birth (r = 0.3534; P = 0.001), 6 months (r = 0.4793;
P < 0.0001), 3 years (r = 0.0122; P = 0.012) and 5 years (r = 0.0357; P = 0.005). Maternal postpartum metabolic changes, infant devel-
opment and transitional diets and possibly Hg from TCV contribute to the asymmetry of HHg changes between mothers and children.
Ó 2007 Published by Elsevier Inc.
Keywords: Vaccines; Thimerosal; Hair-Hg; Breastfeeding; Fish consumption; Amazon; Neuro-motor development
1. Introduction
Current studies associating Hg exposure and neurode-
velopmental disorders (NDD) in children rely on the metal
concentrations in hair. Hair is composed of a pro tein com-
plex formed from amino acids that avidly binds to methyl-
Hg (MeHg). The assumption is that the occurrence of
NDD results from consuming fish contaminated with
MeHg, which avidly binds to hair (Cernichiari et al.,
2007). Indeed, epidemiologic studies dealing with MeHg
exposure from fish consumption have used HHg concen-
trations as a reliable indicator. However, during the first
years of life, infants can be exposed to Hg in their changing
food sources: from breast milk (or formulas) to weaning
foods, and at a latter age, from other dietary sources (that
might include fish) when eating adult food. Young children
can also be exposed to other forms of organic Hg (ethyl-
mercury—EtHg) when immunized with thimerosal (Mar-
ques et al., 2007a).
Children of fish-eating populations of the Amazon
Basin are exposed to maternal MeHg via placental transfer
and breast milk (Barbosa et al., 1998; Barbosa and Do
´
rea,
1998; Marques et al., in press). In this context, the increase
in the risk of NDD has been strongly suggested to be asso-
ciated with MeHg naturally present in fish from the Ama-
zonian rivers (Grandj ean et al., 1999). The possibility of
0273-2300/$ - see front matter Ó 2007 Published by Elsevier Inc.
doi:10.1016/j.yrtph.2007.05.001
*
Corresponding author. Fax: +55 61 368 5853.
E-mail address: [email protected] (J.G. Do
´
rea).
www.elsevier.com/locate/yrtph
Available online at www.sciencedirect.com
Regulatory Toxicology and Pharmacology 49 (2007) 17–24
NDD raised by these studies has relied on HHg concentra-
tions (biomarkers of fish consumption). Indeed, variability
in HHg of riverine and Amerindian populations has been
correctly assumed to be a function of fish consumption.
Barbosa et al. (1995) have shown important differences in
urine and HHg concentrations due to occupational expo-
sure (gold miners) and fish consumption for native Amazo-
nians. However, we have recently raised the possibility
that, at least for the first 6 months of life, HHg concentra-
tions may be influenced by the heavy immunization (with
TCV) schedule of urban populations ( Marques et al.,
2007a). Indeed, during the infant’s first years, susceptibility
to modifying factors remains unknown, but physiolo gical
and dietary changes (breast milk, weaning and habitual
family diets) are likely to influence HHg changes.
Body retention of mercury and its hair uptake depend
on dietary and physiological factors. In children, there
are drastic physiological changes during the first years
that affect the toxic okinetics of Hg. Mercury is taken
up from the bloodstream during hair formation. New-
born hair essentially represents Hg exposure during fetal
development. During the first 6 months, at least in
breastfed infants, the origi n of Hg is still maternal, but
it is not through the fetal circulation but enteral through
breast milk. Enteral exposure to Hg from weaning food
has not been explored for fish-eating populations, but
it is expected to be different from an adult’s diet. How-
ever, for children with access to health services, another
source of Hg exposure has been unaccounted for in fish-
eating populations, that is, immunization with TCV
(Marques et al., in press).
Easy collection and preservation make the minimally
invasive HHg sampling a method of choice in evaluating
MeHg exposure from fish consumption. Indeed, HHg has
made it possible to estimate fish consumption more reliably
than with conventional dietary recall methods (Richardson
and Currie, 1993; Gosselin et al., 2006); it has been conve-
niently applied in differentiating occupational and environ-
mental (fish intake) exposures (Barbosa et al., 1995) and to
overcome difficulties of communication involving cross-
cultural studies of Amazonian Amer-Indians (Dorea
et al., 2005) and isolated co mmunities of riverine popula-
tions (Alves et al., 2006).
Ponce et al. (1998) compared Hg exposure estimates
based on self-reported fish intake and measured fish-Hg
concentrations and HHg concentrations; they showed bias
and random error as components of uncertainty regarding
HHg exposure estimates. Indeed, Canuel et al. (2006) dem-
onstrated significant regional differences in HHg kinetics;
therefore, generalization of HHg models needs to take into
account not only the organic form of Hg and source of
exposure but also physiological differences and genetic
diversities of individuals within populations.
Both immunization (primary prevention) and breast-
feeding (secondary prevention) share desirable health out-
comes: prevention of infectious diseases (vaccines) and
long-term health CNS and general health indicators war-
ranted by breastfeeding. However, such health-related pro-
cedures are also the initial way infants and young children
are exposed to Hg (Marques et al., in press). Infant routes
of Hg exposure entail a varie ty of sources and a corre-
sponding chemical species: placenta (MeHg), breast mil k
(MeHg and inorganic Hg), TCV (EtHg) and weaning foods
(MeHg and inorganic Hg); each source of exposure is part
of a unique set of events at specific time which influences
substantially the toxicokinetics of Hg.
The underlying metabolic pathways attendant on the
changing anatomical and physiological functions of early
infancy, as well as the interactions among sources (Hg
forms, dos e and duration) make young children a heter-
ogeneous population in respect to the toxicokinetics of
Hg. Additionally, during this time there are special cir-
cumstances of intens e iatrogenic exposure during the
immunization with TCV that still prevails in some coun-
tries; these interactions are likely determinants of Hg
retention in children’ hair. The data collected for this
study were conceived for evaluating the neurodevelop-
ment of children exposed to pre-natal exposure Hg from
maternal fish consumption (Marques et al., 2007a).
When the research project started we wer e not aware
of the TCV issue in pediatric vaccines; this was brought
up during the revision process of the parent publication
(Marques et al., 2007a). Because we had all records of
immunization we could conceptualize the assessment of
thimerosal-Hg in the young children. Therefore, we took
advantage of our cohort to study longitudinal changes in
HHg of mothers and respective children from birth to
key ages of 6, 36 and 60 months.
2. Materials and methods
2.1. Sample description
The city of Porto Velho, capital of the state of Rondonia (West
Amazonia), has experienced significant demographic changes with people
coming from many other Brazilian regions. During the last 30 years, it has
changed from a traditional Amazonian city to one under the impact of
heavy migration brought by agricultural projects in the south-west region
and especially the influx of prospectors seeking alluvial gold along the
banks of the Rio Madeira basin. The present population has both tradi-
tional families that base their diets on fish and starchy foods and city
dwellers with more cosmopolitan food habits. In this changing environ-
ment, we investigated the health status of breastfed infants with special
reference to food habits and possible Hg exposure due to fish
consumption.
The research protocol was approved by the Ethics Committee for
Human Studies of the Universidade Federal de Rondonia and details have
already been published (Marques et al., 2007a,b).
2.2. Study protocol
Mothers were introduced to the study and invited to participate by a
nurse during their routine visits to the Pre-natal Clinics of three hospitals
in Porto Velho: Hospital de Base, Hospital Panamericano and Hospital
Regina Pacis. One-hundred and sixty potential participants received
plain-language information about the study and a written consent form
was presented and signed by the 155 that agreed to participate—115 were
eligible; the written consent stated that participation was voluntary, their
18 R.C. Marques et al. / Regulatory Toxicology and Pharmacology 49 (2007) 17–24
confidentiality was assured and that they could withdraw from the study
at any time. Mothers (between the ages of 15 and 45 years) were selected
among those in good health, reporting no illness or complaints at the time
of the study and who were willing to breastfeed up to 6 months of age.
Excluding factors were occupational exposure to toxic chemicals and
hereditary neurological illnesses. While at the maternity wards, we col-
lected samples of hair from mothers and respective infants (fetal hair).
Hair strands were cut from the occipital region and placed in plastic bags,
with the root end stapled on a paper sheet; newborn hair was sampled in
sufficient amount. Hair samples were again taken at the follow-up visits at
6, 36 and 60 months.
2.3. Hair-Hg analysis
Sample preparation and analytical procedures were done according
to our standardized protocol for Hg determination in hair as described
elsewhere (Marques et al., 2007a). Hair analysis was done on the first
centimeter closest to root end. Sample preparation and Hg determina-
tion were done according to routine procedures previously established
at the Universidade Federal do Rio de Janeiro (Bastos et al., 1998).
We followed routine procedures after adaptation of analytical protocol
used for Hg determination in previous studies. Briefly, the hair samples
were comminuted with stainless steel scissors, weighed, and digested
before analysis. Human hair samples were washed with EDTA 0.01%,
dried in an oven at 50 °C, weighed and digested with 5 mL of
HNO
3
:H2SO
4
(1:1) and 4 mL of 5% KMnO
4
using a digestion block
at 80 °C for 40 min. The determination of total Hg in the digested sam-
ples was done by cold vapor atomic absorption spectrometry with a
flow injection system-FIMS (CV-AAS, Perkin-Elmer—FIMS 400,
Ueberlingen, Germany).
All glassware used in the analytical protocol was washed clean,
rinsed with 5% EDTA and double distilled, and left to rest in 5%
HNO
3
overnight. Then it was rinsed again in double distilled water,
and dried at 100 °C for 12 h. Precision and accuracy of Hg determina-
tions were assured by the use of internal standards, use of triplicate
analyses of samples and certified reference materials (IAEA-085 and
086, Vienna, Austria) with recoveries of 92%. The limit of detection
for the procedure was determined at <0.01 lg/g and there was hair-
Hg determination below the limits.
2.4. Immunization vaccines and schedule
Infants up to 6 months of age received the full immunization scheme
recommended by the Brazilian immunization program. After that time
mothers were oriented about the importance of immunization and
followed recommendations of available pediatric services. Among the
vaccines taken by infants during the 5 years of the study some were pre-
served with 0.01% thimerosal (which metabolizes into EtHg). The Hg con-
centration of the doses delivered through vaccines was 25 lg Hg/0.5 mL.
The immunization schedule with TCV and respective intake of Hg as sta-
ted by manufacturers is summarized in Table 1. These were: hepatitis-B
(Korea Green Cross Corporation, Kiheung-Eup Yougin-Goon
Kiyunggi-Do, Korea; Euvax B injectable, LG Life Sciences, Jeonbuk-
Do, Korea), diphtheria, tetanus and pertussis-DTP (Triple Antigen,
Serum Institute of India Ltd, India; Vacina Trı
´
plice, Instituto Butanta,
Sa
˜
o Paulo, Brazil), Hib: Haemophilus influenzae type b (HibTITER
Ò
,
Lederle-Praxis), Flu: influenza (VAXIGRIP, Pasteur Me
´
rieux Connaught,
Sao Paulo, Brazil). Children that were immunized against Hib within the
first year (two doses) received the booster dose 6–12 months after the last
dose, otherwise received only one dose in the second year of life. The rec-
ommendation for the Flu vaccine is to be taken between the ages of 6 and
35 months in two doses of 0.25 mL (1 month apart) and one single dose
(0.5 mL) the following year; although the vaccines were taken the ages
given represent approximations of the recommended date.
The exposure to EtHg derived from vaccines was based on the current
national immunization program of the Ministry of Health of Brazil (Table
1). After 6 months only 20 of the 82 infants were given a fourth dose of
DTP between 9 and 12 months. We estimated breast-milk Hg exposure
from weight gain up to 6 months, when the infants were exclusively breast-
fed, and discussed it elsewhere (Marques et al., 2007a).
2.5. Statistical analysis
Of the 100 original enrolled mothers, only complete data of 82 mother–
infant pairs could be obtained at the end of the study (Marques et al., in
press). The statistical packages contained in Excel and Prism were used for
data summarization (means, standard deviation, changes in mean Hg con-
centrations) and correlation analysis. Repeated measurements analysis
was run to test sampling effect on HHg on infant and maternal HHg con-
centrations; this statistical analysis was performed using SAS release 9.1.3
(SAS Institute Inc., Cary, North Carolina). We accepted a value of <0.05
as statistically significant.
3. Results
A summary of the estimation of Hg forms in each of
the exposure media (TCV and breast milk) that can con-
tribute to HHg is shown in Table 1. During the first 6
months, infants received up to six shots of TCV (and were
exposed to 150 lg Hg from thimerosal); the TCV corre-
sponded to Hepatitis B and DTP; subsequently the immu-
nization with TCV were for influenza and Hib with a
coverage ranging from 2.5 to 25% of the children. Age
of children corresponds to recommended vaccination
schedules, but only 6-month-olds had the full schedule
of immunization and the corres ponding EtHg exposure.
It is important to note that the exposure to TCV-Hg from
the first vaccine taken at birth (0 day) is the highest and
the most challenging dose; at this time the small body
mass of neonates takes an impact equivalent to the double
doses (of DTP and hepatitis B) at 6 and 12 months. The
estimation of total Hg exposure from breast milk was
possible only up to 6 months when mothers were closely
monitored and psychologically supported to keep on with
exclusive breastfeeding; indeed, most mothers (66%)
breastfed for 12 months and some reported to breastfeed
up to 60 months (Fig. 1). However, the effect of lactation
on HHg concentrations of mothers (excreting Hg for 60
months) and children (absorbing Hg) over the 36 months
is illustrated in Fig. 1: there was no statistically significant
association between HHg and length of lactation, either
for mothers or for children.
Table 2 summarizes HHg concentrations of children and
mothers during the study period. The higher mean HHg at
6 mo nths coincided with both Hg exposure from breast
milk and the heavy vaccine schedule. Indeed, the distribu-
tion of HHg in infants follo wed a different pattern of their
mothers (Fig. 2). After 6 months, exclusively breastfed
infants receiving a full load of immunization (five types
of vaccine, 150 lg Hg) showed an expansion of HHg con-
centrations greater than HHg at birth and at 3 and 5 years
of age. HHg in their respective mothers showed the highest
concentrations at childbirth, but a similar pattern at 6
months and 3 years later. Fr equency of fish consumption
(0–1 servings/week vs. compared to 2–7 servings/week)
was presented and discussed previously (Marques et al.,
R.C. Marques et al. / Regulatory Toxicology and Pharmacology 49 (2007) 17–24 19
2007a); in these urban mothers fish consumption depended
on the species available at market (season and price are
strong determinants).
Fig. 3 can be interpreted as difference in Hg transfer
rates between placenta and mammary gland. The profile
of ratios of mother:infant HHg clearly indica te that moth-
ers’ decreases while infants’ increases. However, the associ-
ation between maternal and infant HHg (Spearman’s r)
illustrated in Fig. 4 was significant at all times: statistical
significant association between maternal and infant HHg
concentration was seen at birth (r = 0.3534; P = 0.001), 6
months (r = 0.4793; P < 0.0001); Spearman’s r values at 3
years (r = 0.0122; P = 0.012) and 5 years (r = 0.0357;
P = 0.005) although significant were low and indicative
of less perfect correlations. Indeed, sampling time was sta-
Table 1
Children immunization schedule, type of vaccines, and corresponding EtHg intake (as Hg) during the first 60 months
Age (months)
a
Vaccine Breast milk
c
% coverage Type
b
lg Hg/dose lg Hg/day
0 100 Hp-B 25.0 0
1 100 Hp-B 25.0 30.83
2 100 DTP 25.0 44.65
3 100
4 100 DTP 25.0 91.80
5 100
6 100 DTP + Hp-B 50.0 111.90
Total Hg injected 150.0
8 2.4 Hib 25.0 NE
10 8.5 Hib 25.0 NE
12 8.5 Hib + Flu 50.0 NE
15 25.5 DTP 25 NE
24 10 Flu 12.5 NE
36 5.0 Flu 12.5 NE
48 2.4 Flu 25 NE
NE, not estimated.
a
All 82 infants had a full immunization schedule during the first 6 months; the fourth dose of DTP was taken after the first year only by 25.5%. The Hib
and influenza vaccines taken after 6 months were at the recommended age by the specified percentage of the children; the age of immunization after 6
months are approximations based on current recommendations.
b
Hp-B: Hepatitis B (0.01% thimerosal/dose, Korea Green Cross Corporation, Kiheung-Eup Yougin-Goon Kiyunggi-Do, Korea; Euvax B injectable,
0.01% thimerosal [LG Life Sciences, Jeonbuk-do, Korea]); DTP (Serum Institute of India Ltd; Vacina Trı
´
plice, 0.01% thimerosal/dose [Instituto Butanta,
Sa
˜
o Paulo, Brazil]); Hib: Haemophilus influenzae type b (HibTITER
Ò
, 0.01% thimerosal/dose, Lederle-Praxis); Flu: influenza (VAXIGRIP 0.01%
thimerosal/dose, Pasteur Me
´
rieux Connaught, Sao Paulo, Brazil). Children that were immunized against Haemophilus influenzae type b (Hib) within the
first year (two doses) received the booster dose 6–12 months after the last dose, otherwise received only one dose in the second year of life. The
recommendation for the anti-flu vaccine is to be taken between the ages of 6 and 35 months in two doses (1 month apart) of 0.25 mL and one single dose
(0.5 mL) the following year; although the vaccines were taken the ages given represent approximations of the recommended date.
c
Integrated total Hg intake adapted from Marques et al. (2007a); we used the data of breast milk-Hg concentrations (adapted from Dorea (2004))to
estimate Hg exposure during breastfeeding: infant mean weight · mean daily breast milk consumption (140 mL/kg) · number of days · mean total Hg
concentration in breast milk (1.9 lg/L).
0 10 20 30 40 50 60
0
5
10
15
20
Length of lactation, months
Maternal hair [Hg] μg/g
0 10 20 30
0
10
20
30
Length of lactation, months
Infant hair [Hg] μg/g
0 10 20 30 40 50 60
0
50
100
Length of lactation, months
Distribuiton, %
Fig. 1. Length of lactation and its impact on hair-Hg concentrations of mothers and infants.
Table 2
Mean hair-Hg concentrations (SD) in children and respective mothers
during the first 5 years
Children Mothers
N 82 82
Hair [Hg] lg/g, birth 2.4 (3.0) 7.4 (8.7)
Hair [Hg] lg/g, 6 months 3.8 (5.5) 3.2 (3.8)
Hair [Hg] lg/g, 36 months 2.6 (3.7) 2.8 (3.2)
Hair [Hg] lg/g, 60 months 2.6 (3.5) 2.6 (3.0)
20 R.C. Marques et al. / Regulatory Toxicology and Pharmacology 49 (2007) 17–24
tistically significant for mothers (<0.0001) but not for chil-
dren (0.0987).
The distribution of HHg in infants followed a pattern
different from their mothers. While mothers had the highest
concentrations of HHg at birth, breastfed children experi-
ence the highest HHg concentrations after the heaviest
schedule (six shots) of immunization with TCV. Extended
lactation (>36 months) was not significantly associated
with changes in HHg of infants or mothers; both maternal
and children HHg followed a downward trend.
4. Discussion
The profiles of distribution of maternal and infant HHg
concentrations during the first 5 years revealed differences
in type of Hg exposure. The chronology of infant hair sam-
pling matched events associated with diet (that included
breastfeeding) and immunization schedules. We found a
clear trend in infant HHg coinciding with vaccine schedule
but cannot prove a cause–effect relationship. The intercur-
rence of TCV-EtHg and the transitional weaning diets may
have co ntributed to the pattern of infant HHg changes.
Different cumulative distribution of HHg (mother:infant)
ratios extracted information in response to short-term
changes in source and dose of Hg exposure: the effects of
the short-term but heavy schedule of immunization with
TCV were likely modifying facto rs.
Based on HHg concentrations, the urban mothers in this
study had a much lower consumption of fish than Amazo-
nian ‘‘ribeirinho’’ women; we reported before that 57/82 of
these mothers ate at most one fish meal a week showed a
lower mean hair-Hg concentration than mothers that con-
sumed more than 2 times a week (Marques et al., in press).
HHg concentrations were lower than those observed for
0 5 10 15 20 25 30
0
20
40
60
80
100
Birth
6m
36m
60m
Infant hair [Hg], μg/g
Distribution, %
0 5 10 15 20 25 30
0
20
40
60
80
100
Birth *
6m
36m
60m
Maternal hair [Hg], μg/g
Distribution, %
Fig. 2. Frequency distribution of maternal and infant hair-Hg concentrations at specified sampling times; maternal outlier:
*
=62lg Hg/g.
0 10 20 30
0
50
100
Birth
Six months
Ratios of maternal:infant hair-Hg
Distribution, %
a a'
b b'
Fig. 3. Frequency distribution of maternal:infant hair-Hg ratios and
outliers: a = 52, a
0
= 158; b = 140, b
0
= 151.
0 5 10 15 20 25 30
0
10
20
30
*
*
Maternal hair [Hg] μg/g Maternal hair [Hg] μg/g
Maternal hair [Hg] μg/g
Maternal hair [Hg] μg/g
(Birth)
Infant hair [Hg] μg/gInfant hair [Hg] μg/g
Infant hair [Hg] μg/gInfant hair [Hg] μg/g
0 10 20 30
0
10
20
30
(Six months)
0 10 20 30
0
10
20
30
(36 months)
0 10 20 30
0
10
20
30
(60 months)
Fig. 4. Scatter plot of correlation of infant and maternal hair-Hg concentrations at specified sampling.
R.C. Marques et al. / Regulatory Toxicology and Pharmacology 49 (2007) 17–24 21
‘‘ribeirinho’’ women of the Rio Madeira in 1991 by Barbosa
et al. (1998). Mean HHg concentrations of studies in fish-eat-
ing Amazonians have been reported to vary between 6.5 and
34.2 ppm (Barbosa et al., 2001); however, adjusting for
inherent HHg variability or long-term studies of HHg
changes (within individuals) are rare. Because of HHg vari-
ability, the effects of pregnancy and lactation may not impact
the mean HHg deposition in Amazonian high fish eaters
(Barbosa et al., 2001) but the relative changes (percent
adjusted) within mothers show that it decreases during preg-
nancy (Barbosa et al., 1998); thus, in agreement with the
present findings. The percent decline in maternal HHg con-
centrations observed in this and previous study (Barbosa
et al., 1998) may reflect the metabolic changes associated
with lactation which includes transfer of Hg to milk.
Events related to pregnancy and lactation accelerate
maternal-Hg metabolism ( Greenwood et al., 1978), but Hg
transfer rates in utero (pregnancy) and ex utero (breast-feed-
ing) differ depending on the organic (MeHg) or inorganic Hg
form (Dorea, 2004). As discussed elsewhere (Dorea, 2004)
both Hg forms are equally transferred through milk but
MeHg is more readily transferred across the placent a than
inorganic Hg. Indeed, inorganic Hg absorption through
milk is not a significant source of Hg exposure to breastfed
infants (Sandborgh-Englund et al., 2001). But, compared
to inorganic Hg, Bjornberg et al. (2005) reported that MeHg
seems to contribute more to infant exposure via breast milk;
additionally, total Hg in breast milk decreased significantly
from day 4 to 6 weeks, remaining unchanged thereafter
(Bjornberg et al., 2005 ). Studies of lactating mothers (after
the accidental poisoning in Iraq) showed that the milk-Hg
was 5% of blood-Hg but the organic fraction of milk-Hg
was only 3% of blood-MeHg (Bakir et al., 1973); this indi-
cates that the placenta plays a greater role in Hg transfer than
the mammary gland (Bjornberg et al., 2005). The HHg ratios
clearly showed differences in Hg transfer rates between preg-
nancy and lactation (Fig. 3).
In the present study, the length of breastfeeding does not
seem to be a significant determ inant of HHg concentrations
of mother s or infants, thus showing that the mammary gland
is a more effective barrier for Hg transfer than the placenta.
Indeed, we had showed that during lactation mothers
increased HHg to pre-pregnancy levels (Barbosa et al.,
1998). Studies relating length of breastfeeding with HHg
concentrations of mothers and infants are rare and results
of correlation analysis are not always concurrent. There
are differences between populations: infants’ HHg and dura-
tion of breastfeeding were significant correlated in the Amer-
Indians (of eastern Amazonia) but not in the ‘‘ribeirinhos’’ of
Rio Madeira studied by Barbosa et al. (1998).
The Hg found in hair of breastfed infants comes from
both exogenous (breast milk) and endogenous (metabolic
turnover of fetal tissues) sources; because of postnatal
hair change and growth, the contribution of residual fetal
tissue may become negligible at a certain age: nonetheless,
HHg in breastfed infants (if immunized with thimerosal-
free vaccines) originates from maternal sources. This close
association between maternal and children HHg remains
longer after breastfeeding: at weaning and at 5 years
(Fig. 2). Irresp ective of the level of HHg the mother–
infant dyad remains in very close association; this indi-
cates that dietary characteristics (type of fish or frequency
of consumption) are strong within families (Fig. 2). These
observations are in agreement with results obtained with
high fish-eating population living at the banks of the
Rio Madeira. Barbosa et al. (1998) reported a statistically
significant correlation between ‘‘ribeirinho’’ mothers and
breastfed infants’ HHg of older age. This significant cor-
relation was reported by some (in Madrid—Gonzalez
et al., 1985) but not by others (Fujita and Takabatake,
1977). Nevertheless, our finding of significant association
between maternal and fetal hair is in agreement with stud-
ies in other parts of Amazonia (Mohan et al., 2005)and
in low fish-eating mothers of other countries (
Sikorski
et al., 1986; Lindow et al., 2003).
The mean HHg values of our breastfed children are
lower than the means reported for 1-year-olds of several
Eastern Amazonian communities of the Rio Tapajo
´
s(Pin-
heiro et al., 2007 ). Although there are no studies of infant
HHg (due to breastfeeding and TCV) our mean values
(Table 2) are within HHg concentrations predicted from
Redwood et al. (2001) TCVl-exposure model. All infants
in our study received a substantial load of parenteral EtHg
concentrated in the first 6 months; only a small percentage
(2.5–25%) of children received an equivalent load
(175 lg Hg) distributed over 42 months at a much older
age (12–48 months) and larger body weight. The profile
of the mother:infant HHg ratios indicates that the breast-
fed infants’ hair retains more Hg than the fetus (Fig. 4 );
however, since we do not have speciation of Hg chemical
forms (EtHg or MeHg), it can not be solely attributed to
TCV. Our findings suggest that the significant association
between mothers’ and infants’ HHg at all sampling times
reflect the family environmental exposure through fish-Hg.
Neonate metabolic pathways and attendant excretion
rates of Hg vary according to stage of development
mainly because of differences in gut development and bile
secretion as well as source of Hg exposure. The wider
distribution (greater variability) of infant HHg at 6
months can be attributed to the fact that in addition
to Hg from breast milk, HHg values can be influenced
by the EtHg breakdown from TCV, thus increasing
organic Hg exposure. Predictive models of hair-Hg con-
centrations in infants have assumed low or no Hg excre-
tion up to 6 months (Redwood et al., 2001). Therefore,
positive Hg balance in infants contrasting with negative
balance of mothers can be interpreted from Fig. 4. Nev-
ertheless, additional research is necessary to understand
the relationship between infant early development
(weight gain and tissue differentiation), and differences
in the metabolism of Hg from such distinct sources
Hg intrinsic to breast milk and parenteral EtHg from
TCV. The physiological barriers that breast-milk Hg
has to cross are bypassed by parenteral-administered
22 R.C. Marques et al. / Regulatory Toxicology and Pharmacology 49 (2007) 17–24
thimerosal-EtHg. This particular aspect of HHg change
was discussed in the parent publication (Marques et al.,
2007a).
After exclusive (up 6 months) and extended breastfeeding
(36 months), infant mean HHg values declined toward the
maternal values; this reflects both, decreased Hg exposure
from weaning foods and a greatly reduced frequency of
TCV-EtHg exposure (Table 1). Overall, the decrease in
infant HHg during weaning was relatively less compared to
maternal HHg; but the mean HHg of infants at 5 years is
equivalent to maternal HHg, thus possibly reflecting expo-
sure to the same dietary Hg sources . Since infants were
exposed to higher doses of EtHg during the first 6 months,
infant’s increase in HHg may result from higher transfer
rates of EtHg-to-hair compared to subsequent sampling
periods. HHg speciation that could differentiate MeHg from
EtHg would be necessary to ascertain the origin of total
HHg.
Fluctuation in maternal HHg concentrations has been an
unverified event that might occur as a result of altered metab-
olism during pregnancy. Because the epidemiological evi-
dence suggests a causal link between exposure to fish-Hg
and NDD, avoidance of fish consumption during pregnancy
and lactation has been warranted for NDD prevention
(Ronchetti et al., 2006). The Harvard Center for Risk
Analysis panel used maternal HHg to quantify the impact
of pre-natal MeHg chronic exposure on infant cognitive
development; the panel concluded that MeHg exposure
sufficient to increase maternal HHg by 1 lg/g decreases
intelligence quotient by 0.7 points (Cohen et al., 2005).
Therefore, fluctuation in maternal HHg is an important issue
with implications for public he alth policies.
The strengths of this study include its prospective design
and the high rate of retention of mother–infant pairs at key
chronological sampling: birth (fetal exposure), 6 months of
exclusive breastfeeding, 36 months (weaning) and 60 months
(pre-school); additionally we identified input of other
organic Hg sources. However, our limitation in analytical
capability to determine the TCV-EtHg in hair is an impor-
tant constraint in interpreting these aspects of the results.
A common problem faced by Hg toxic effects or susceptibil-
ity at sub-clinical levels is the difficulty of accurately recon -
structing responses to sources after the exposure event.
This is especially the case with young infants and accompa-
nying changes in diets intertwined with attendant sources
of Hg (which might include extrinsic EtHg) such as in the
present study; additionally, there are ethical considerations
related to breastfeeding and immunization that limit group
(without such life-saving features) comparisons, thus mak-
ing exposure studies uniquely difficult.
5. Conclusion
Unverified changes in maternal and infant HHg are
important issues relating this marker to studies of expo-
sure, effects and susceptibility. Maternal postpartum meta-
bolic changes, infant development and transitional diets
and possibly Hg from TCV contribute to the asymmetry
of HHg changes between mothers and children.
Acknowledgments
We are greatly in debt to the mothers for their participa-
tion in the study, to Prof. Edina Myazaki (for helping with
statistical an alysis), to the staff and Directors (Marine
ˆ
sR.
dos Santos Cezar, Tereza Cristina Ramos, Daniele Brasil,
Katia Wendt, Katiane G. Branda
˜
o, Laura Jane Marques)
of the Hospitals (Hospital de Base Ary Pinheiro, Hospital
Panamericano and Hospital Regina Pacis), Dr. Cezar
Augusto Bezerra B. de Arau
´
jo (State Coordinator of the
PNI-MS), the staff of the Fundac¸a
˜
o Universidade Federal
de Rondo
ˆ
nia and the Universidade Federal do Rio de Ja-
neiro. This work was supported by United Nations Educa-
tional, Scientific and Cultural Organization—UNESCO,
Ministe
´
rio da Sau
´
de do Brasil (SC27824/2005/
914BRA2000 Decit PRODOC) and The National Re-
search Council of Brazil-CNPq (PNOPG project-55.0882/
01-4; PPG7, project-556985/2 005-2).
References
Alves, M.F.A., Fraiji, N.A., Barbosa, A.C., Lima, D.S.S., Souza, J.R.,
Do
´
rea, J.G., Cordeiro, G.W.O., 2006. Fish consumption, mercury
exposure and serum antinuclear antibody in amazonians. Int. J.
Environ. Health 16, 255–262.
Bakir, F., Damluji, S., Amin-Zair, H., et al., 1973. Methylmercury
poisoning in Iraq. An interuniversity report. Science 181, 230–
240.
Barbosa, A.C., Do
´
rea, J.G., 1998. Indices of mercury contamination
during breast feeding in the Amazon Basin. Environ. Toxicol.
Pharmacol. 6, 71–79.
Barbosa, A.C., Boischio, A.A., Ponce, G.E., Ferrari, I., Gonc¸alves, A.S.,
Silva, P.R.M., Cruz, T.M.E., 1995. Mercury contamination in the
Brazilian Amazon. Environmental and occupational aspects. Water
Air Soil Pollut. 80, 109–121.
Barbosa, A.C., Silva, S.R., Dorea, J.G., 1998. Concentration of mercury
in hair of indigenous mothers and infants from the Amazon basin.
Arch. Environ. Contam. Toxicol. 34, 100–105.
Barbosa, A.C., Jardim, W., Dorea, J.G., Fosberg, B., Souza, J., 2001. Hair
mercury speciation as a function of gender, age, and body mass index
in inhabitants of the Negro River Basin, Amazon, Brazil. Arch.
Environ. Contam. Toxicol. 40, 439–444.
Bastos, W.R., Malm, O., Pfeiffer, W.C., Cleary, D., 1998. Establishment
and analytical quality control of laboratories for Hg determination in
biological and geological samples in the Amazon, Brasil. Cie
ˆ
nc. Cult.
50, 255–260.
Bjornberg, K.A., Vahter, M., Berglund, B., Niklasson, B., Blennow, M.,
Sandborgh-Englund, G., 2005. Transport of methylmercury and
inorganic mercury to the fetus and breast-fed infant. Environ. Health
Perspect. 113, 1381–1385.
Canuel, R., de Grosbois, S.B., Atikesse, L., Lucotte, M., Arp, P.,
Ritchie, C., Mergler, D., Chan, H.M., Amyot, M., Anderson, R.,
2006. New evidence on variations of human body burden of
methylmercury from fish consumption. Environ. Health Perspect.
114, 302–306.
Cernichiari, E., Myers, G.J., Ballatori, N., Zareba, G., Vyas, J., Clarkson,
T., 2007. The biological monitoring of prenatal exposure to methylmer-
cury. Neurotoxicology. doi:10.1016/j.neuro.2007.02.009, Epub ahead of
print.
R.C. Marques et al. / Regulatory Toxicology and Pharmacology 49 (2007) 17–24 23
Cohen, J.T., Bellinger, D.C., Shaywitz, B.A., 2005. A quantitative analysis
of prenatal methyl mercury exposure and cognitive development. Am.
J. Prev. Med. 29, 353–365.
Dorea, J.G., 2004. Mercury and lead during breast-feeding. Br. J. Nutr.
92, 21–40.
Dorea, J.G., Barbosa, A.C., Ferrari, I., De Souza, J.R., 2005. Fish
consumption (hair mercury) and nutritional status of Amazonian
Amer-Indian children. Am. J. Hum. Biol. 17, 507–514.
Fujita, M., Takabatake, E., 1977. Mercury levels in human maternal and
neonatal blood, hair and milk. Bull. Environ. Contam. Toxicol. 18,
205–209.
Gonzalez, M.J., Rico, M.C., Hernandez, L.M., Baluja, G., 1985. Mercury
in human hair: a study of residents in Madrid, Spain. Arch. Environ.
Health 40, 225–228.
Gosselin, N.H., Brunet, R.C., Carrier, G., Bouchard, M., Feeley, M., 2006.
Reconstruction of methylmercury intakes in indigenous populations
from biomarker data. J. Exp. Sci. Environ. Epidemiol. 16, 19–29.
Grandjean, P., White, R.F., Nielsen, A., Cleary, D., de Oliveira Santos,
E.C., 1999. Methylmercury neurotoxicity in Amazonian children
downstream from gold mining. Environ. Health Perspect. 107,
587–591.
Greenwood, M.R., Clarkson, T.W., Doherty, R.A., Gates, A.M., Amin-
Zaki, L., Elhassani, S., Majeed, M.A., 1978. Blood clearance half-
times in lactating and nonlactating members of a population exposed
to methylmercury. Environ. Res. 16, 48–54.
Lindow, S.W., Knight, R., Batty, J., Haswell, S.J., 2003. Maternal and
neonatal hair mercury concentrations: the effect of dental amalgam.
BJOG 110, 287–291.
Marques, R.C., Do
´
rea, J.G., Bastos, W.R., Rebelo, M.F., Fonseca, M.F.,
Malm, O., 2007a. Maternal mercury exposure and neuro-motor
development in breastfed infants from Porto Velho (Amazon), Brazil.
Int. J. Hyg. Environ. Health 210, 51–60.
Marques, R.C., Do
´
rea, J.G., Bastos, W.R., Fonseca, M.F., Malm, O., in
press. Hair mercury in breast-fed infants exposed to thimerosal-
preserved vaccines. Eur. J. Pediatr., (doi: 10.1007/s00431-006-0362-2).
Mohan, S., Tiller, M., van der Voet, G., Kanhai, H., 2005. Mercury
exposure of mothers and newborns in Surinam: a pilot study. Clin.
Toxicol. 43, 101–104.
Pinheiro, M.C., Crespo-Lopez, M.E., Vieira, J.L., Oikawa, T., Guimara
˜
es,
G.A., Arau
´
jo, C.C., Amoras, W.W., Ribeiro, D.R., Herculano, A.M.,
do Nascimento, J.L., Silveira, L.C., 2007. Mercury pollution and
childhood in Amazon riverside villages. Environ. Int. 33, 56–61.
Ponce, R.A., Bartell, S.M., Kavanagh, T.J., Woods, J.S., Griffith, W.C.,
Lee, R.C., Takaro, T.K., Faustman, E.M., 1998. Uncertainty analysis
methods for comparing predictive models and biomarkers: a case study
of dietary methyl mercury exposure. Regul. Toxicol. Pharmacol. 28,
96–105.
Redwood, L., Bernard, S., Brown, D., 2001. Predicted mercury concen-
trations in hair from infant immunizations: cause for concern.
Neurotoxicology 22, 691–697.
Richardson, G.M., Currie, D.J., 1993. Estimating fish consumption rates
for Ontario Amerindians. J. Expo. Anal. Environ. Epidemiol. 3, 23–38.
Ronchetti, R., Zuurbier, M., Jesenak, M., Koppe, J.G., Farah Ahmed, U.,
Ceccatelli, S., Pia Villa, M., 2006. Children’s health and mercury
exposure. Acta Paediatr. 95, 36–44.
Sandborgh-Englund, G., Ask, K., Belfrage, E., Ekstrand, J., 2001.
Mercury exposure in utero and during infancy. J. Toxicol. Environ.
Health 63, 317–320.
Sikorski, R., Pszkowski, T., Szprengier-Juszkewicz, T., 1986. Mercury in
neonatal hair. Sci. Total Environ. 57, 105–110.
24 R.C. Marques et al. / Regulatory Toxicology and Pharmacology 49 (2007) 17–24
This article was downloaded by:[Dórea, José Garrofe]
On: 24 July 2008
Access Details: [subscription number 795282175]
Publisher: Informa Healthcare
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK
Annals of Human Biology
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713723502
Maternal fish consumption in the nutrition transition of
the Amazon Basin: Growth of exclusively breastfed
infants during the first 5 years
Rejane C. Marques
a
; José Garrofe Dórea
b
; José V. E. Bernardi
a
; Wanderley R.
Bastos
a
; Olaf Malm
a
a
Universidade Federal de Rond nia, Porto Velho, Brazil
b
University of Brasilia, Nutrition, Faculdade de Ciencias da Sa de, Brasilia,
70919-970 Brazil
First Published: July 2008
To cite this Article: Marques, Rejane C., Dórea, José Garrofe, Bernardi, José V.
E., Bastos, Wanderley R. and Malm, Olaf (2008) 'Maternal fish consumption in the nutrition transition of the Amazon
Basin: Growth of exclusively breastfed infants during the first 5 years', Annals of Human Biology, 35:4, 363 — 377
To link to this article: DOI: 10.1080/03014460802102495
URL: http://dx.doi.org/10.1080/03014460802102495
PLEASE SCROLL DOWN FOR ARTICLE
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
Annals of Human Biology, July–August 2008; 35(4): 363–377
ORIGINAL ARTICLE
Maternal fish consumption in the nutrition transition of the
Amazon Basin: Growth of exclusively breastfed infants
during the first 5 years
REJANE C. MARQUES
1
, JOSE
´
GARROFE DO
´
REA
2
,
JOSE
´
V. E. BERNARDI
1
, WANDERLEY R. BASTOS
1
, & OLAF MALM
1
1
Universidade Federal de Rondo
ˆ
nia, Nursing, Porto Velho, Porto Velho, Brazil, and
2
University of Brasilia, Nutrition, Faculdade de Ciencias da Sau
´
de, C.P. 04 322, Brasilia,
70919-970 Brazil
(Received 31 January 2008; revised 18 March 2008; accepted 31 March 2008)
Abstract
Background: Changes in fish-eating habits due to rapid urbanization in Western Amazon was used as
model to investigate whether maternal fish-intake rate impacts on children’s weight and height during
the first 5 years.
Aim: The study examined the growth of 82 breastfed children, and maternal fish consumption
(hair mercury concentrations, HHg) during pregnancy and lactation.
Subjects and methods: Fish consumption in mothers and children was estimated through HHg.
The children were measured and weighed at birth and at 6 (exclusive breastfeeding), 36 and
60 months.
Results: Fish consumption rate (HHg) had no significant impact on children’s growth at the specified
ages (p ¼ 0.35). After 6 months of exclusive breastfeeding, children had the highest proportion of
Z-scores <À1 SD; however, weaning (with extended breastfeeding) had a substantial impact in moving
up the attained growth at 3 years. The duration of breastfeeding was significantly correlated with
attained Z-scores for weight-for-age (r ¼ 0.26; p ¼ 0.02) and weight-for-height (r ¼ 0.22; p ¼ 0.04) but
not for height-for-age. At 3 years most children had improved Z-scores (>À1 SD) for height-for-age
(70/82), weight-for-age (74/82) and weight-for-height (74/82). At 5 years, all but one child attained
Z-scores >À1.
Conclusion: The apparently good nutritional status of subjects is more likely due to a well balanced diet
composition than to only one dietary protein source fish.
Keywords: Nutrition transition, Amazon, growth, breastfeeding, fish
Correspondence: Jos Garrofe Do
´
rea, University of Brasilia, Nutrition, Faculdade de Ciencias da Sau
´
de, C.P. 04 322, Brasilia,
70919-970, Brazil. E-mail: [email protected]
ISSN 0301–4460 print/ISSN 1464–5033 online ß 2008 Informa UK Ltd.
DOI: 10.1080/03014460802102495
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
Introduction
The population that inhabits the Amazon Basin shows a wide diversity: Currently, native
peoples living traditional lifestyles (in dense forests) contrast with a new urbanization profile.
Piperata (2007) has recently described differences between traditional lifestyles and those found
among the new Amazonian populations. The more urbanized environment caused by recent
Amazonian growth is exemplified in the city of Porto Velho. Gradually replacing riverside
communities, the new inhabitants no longer depend on the traditional dominance of fish as the
source of animal protein, but instead use markets for their food supply. This fast urbanization
has changed the traditional food supply chain and, as a consequence, the typical diet has shifted
away from high fish consumption (Dorea 2004) to dependency on industrial or mass processed
foods (Piperata 2007). The key challenge in studies of nutrition transition is the ability to
characterize which dietary item has substantially changed and its impact on health.
Fish is an abundant natural resource in Amazonian Rivers that is well utilized by riverside
populations (Dufour 1991); in traditional communities its consumption is high and this
tends to increase the farther these communities are from urban centres (Alves et al. 2006). In
the context of traditional riverine diet, the high protein content of fish balances high starchy
food consumption (Dorea 2004). Fish are a good source of sulphur amino acids and
bioavailable iodine, both crucial to counterbalance cassava goitrogens and low iodine foods
produced in iodine-depleted soils of tropical rain forests (Dorea 2004). Indeed, dietary fish
enhances absorption of zinc (Garcia-Arias et al. 1993) and iron from plant foods (Layrisse
et al. 1990; Gibson and Hotz 2001); dietary fish has been positively associated with women’s
iodine status (Zollner et al. 2001) and children’s ferritin stores (Michaelsen et al. 1995;
Gunnarsson et al. 2007). Additionally, Amazonian fish is a good source of selenium (Dorea
et al. 1998), known to counteract the toxic effects of Hg. Other essential nutrients, such as
zinc, are significantly higher in protein foods like fish when compared to food with low
protein content (Terres et al. 2001).
As a specific source of omega-3 polyunsaturated fatty acids (Inhamuns and Bueno Franco
2001), fish is nutritionally important for people living on cassava-dominant diets, especially
during breastfeeding (Rocquelin et al. 1998). Tanzanian women with high intakes of
freshwater fish (as the only animal lipid source) had milk arachidonic acid (AA) and
docosahexaenoic acid (DHA) contents that were well above present recommendations for
infant formulae (Muskiet et al. 2006); such findings inspired Muskiet et al. to hypothesize
that the ‘optimal homeostasis’ of AA and DHA is lacking in Western diets and is causing
subtle signs of unbalanced maternal glucose homeostasis. Indeed, breast-milk DHA of
women from the marine region was higher compared to other regions and twice as high as
any reported previously; it was comparable to the amounts found in the milk of women fed
fish oil (Ruan et al. 1995).
Fish protein has good biological value (Sikka et al. 1979) that is well utilized by children
(Hofvander 1973); porridge containing dried fish has been successfully used to treat
undernourished children (Greco et al. 2006). It is not surprising that per se, addition of fish
powder supported growth just as well as a nutritional supplement fortified with vitamins and
minerals (Lartey et al. 1999). The effects of maternal fish consumption on infant growth may
start early during pregnancy; Olsen et al. (1993) noticed that the weight and length of the
newborn increased with the frequency of seafood meals consumed in pregnancy. After
reporting that infant size at birth increased with fish consumption, Thorsdottir et al. (2004)
hypothesized that constituents of fish and fish oil might affect birth size. Indeed, increasing
fish intake during pregnancy might increase foetal growth rate (Rogers et al. 2004) and
cognitive functions (Hibbeln et al. 2007) of British infants.
364 R. C. Marques et al.
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
Fish are complex nutrient-dense foods with exceptional functional characteristics:
Increasing maternal fish intake during pregnancy from once a week to 2.5 times per week
decreased the risk of eczema at age 1 year by 37%, and the risk of positive skin prick test at
age 6 years by 35% (Romieu et al. 2007). Furthermore, regular fish consumption in infancy
(before age 1) is associated with a reduced risk of allergic disease and sensitization to food
and inhalant allergens during the first 4 years of life (Kull et al. 2006).
One underappreciated problem in dietary surveys is error in recalling meal size. This has
been documented in several settings where portions and cultural standards could be
favourable; Nelson et al. (1996) showed that small portion sizes tended to be overestimated,
and large portion sizes underestimated. That is the reason many studies use intake biomarkers
to evaluate the extent of protein misreporting (Kipnis et al. 2002; Subar et al. 2003). Using
hair mercury (HHg) we accomplish reduction of intraindividual and interindividual variability;
this is particularly important in longitudinal studies subjected to seasonal variations in urban
socio-economically limited populations. These variations are amply documented in the
epidemiologic literature (Wu et al. 1986). The methylmercury (MeHg) consumed in fish is
easily absorbed, binds to protein sulphydril groups, and accumulates preferentially in human
hair; the proportion of blood to HHg is estimated at 250 times (Clarkson 2002). This
particular characteristic of hair, coupled with its easy collection and preservation, makes HHg
a first-choice marker of fish consumption in Amazonian populations (Barbosa et al. 1997,
1998; Dorea et al. 2003); the attendant changes in fish consumption rates for native
Amer-Indians have been successfully assessed by HHg determination (Dorea et al. 2005a,b).
Mean daily fish consumption rates of subsistence communities from the Rio Tapajo
´
s have
shown a variation of 115–171 g day
À1
(Passos et al. 2007); this is in close agreement with
170 g day
À1
derived from HHg concentrations of Rio Negro mothers (Dorea et al. 2003).
It should be noticed that that carnivorous fishes are more likely to have higher mercury content
than non-carnivorous fishes (Dorea 2003).
The importance of adequately supplying protein during pregnancy and lactation to ensure
full reproductive success is well recognized. Traditionally Amazonians have relied heavily on
fish to complement their starch-based diet (Giugliano et al. 1978). Population studies
dealing with nutrition transition in the Amazon are rare, and the most recent one has
focused on nutritional outcomes (Piperata 2007). In a previous publication we reported
mothers as moderate or high fish consumers (Marques et al. 2007); however, our present
construct is not typical of a nutrition survey. This study was created to test a selected aspect
(shift of fish consumption) in the nutrition transition in the Amazon Basin and its impact on
growth of breastfed children.
Materials and methods
Background
The nutrition transition of Porto Velho is typical of many conurbations along the most
remote Brazilian frontier. Agricultural projects and a gold rush have changed the face of this
Rio Madeira city in the last 30 years, attracting people from different parts of the country.
Incomers brought different food habits, and rapid urbanization accompanied social and
economic trends that impacted on fish consumption. During the last 30 years the city of
Porto Velho, capital of the state of Rondonia (Western Amazonia), has experienced
significant demographic changes; as a result of gold prospecting and agricultural
development it has changed its traditional Amazonian characteristics. With people coming
Nutrition transition and growth of children 365
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
from many other Brazilian regions, the present population has both traditional families that
base their diets on fish and starchy foods and city dwellers with more cosmopolitan food
habits. In this changing environment, we investigated the growth of a sample of urban
breastfed infants with special reference to family fish consumption.
The study protocol was approved by the Ethics Committee of Studies for Humans of the
Universidade Federal de Rondonia. During routine visits to the pre-natal clinics of three
hospitals in Porto Velho pregnant mothers between the ages of 15 and 45 years were initially
recruited; the mothers were selected among those in good health, reporting no illness or
complaints at the time of the study and who were willing to breastfeed. Excluding factors
were occupational exposure to toxic chemicals and hereditary neurological illnesses. Written
consent (stating that participation was voluntary and confidentiality was assured) was signed
by the participant mother, who could withdraw from the study at any time.
This is part of an ongoing cohort study conceived to study (a) fish Hg exposure of urban
Amazonian mothers; (b) to associate maternal tissue Hg with factors relevant to neuro-
motor development of breastfed infants; and (c) to examine the association between
generated dimensions of infant neurodevelopment and maternal socio-economic and Hg
exposure features. A component of the study focusing on the 6-month-old infants has
already been published (Marques et al. 2007). Briefly, recruitment of 100 mothers began in
2000; detailed information concerning diet and anthropometry (and infant growth and
development) was completed for 82 mother–infant pairs. For each mother a complete
clinical evaluation was obtained from medical records. The newborns were clinically
examined with special attention to vitality, perinatal reflexes, maturity, and congenital
malformations; weight, length, head circumference, and Apgar scores were recorded.
Data collection
We recorded the maternal diet only during the first post-selection visit; this constitutes an
assessment of the principal fish consumption characteristics at the time of the study.
Participants were interviewed about diet; a questionnaire that could identify frequency and
preference of fish was completed. Eighty-two women carried out their intention of
breastfeeding exclusively for 6 months, and some extended lactation to 36 months.
Exclusive breastfeeding was supported throughout the first 6 months and defined according
to the WHO: ‘the infant received breast milk only and allowed supplementation of drops and
syrups such as vitamins, minerals, and medicines’.
At birth and at ages of 6, 36 and 60 months anthropometric measurements of mothers and
infants were taken; weight and height were measured by trained nurses and monitored
regularly according to standard procedures. Weight (kg) and height (cm) of mothers were
measured at each observation and were used to calculate body mass index (BMI, weight/
height
2
). Length of newborn babies and of 6-month-old infants was measured in recumbent
position with a 0.1 cm stadiometer. At 36 months and 60 months the children were measured
and weighed barefoot and dressed in underwear only; standing height was measured to the
nearest 0.1 cm and weight was measured to the nearest 0.1 kg with an electronic scale.
Both recumbent length (at birth and 6 months) and standing height (at 36 months and 60
months) were measured for all children. At the same time as recording anthropometry, data
were collected on feeding practices, child morbidity, perinatal factors, and socio-economic,
demographic and environmental characteristics. Z-scores for attained weight-for-age,
length-for-age, BMI-for-age and weight-for-length were based on the WHO
Child Growth Standards (WHO Multicentre Growth Reference Study Group 2006).
366 R. C. Marques et al.
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
Therefore, the weight-for-height Z-scores (WHZ) were calculated using EPI-INFO (version
4.1; Centers for Disease Control and Prevention, Atlanta) and the WHO recommended
growth curves. Infant growth rate up to 6 months was estimated as weight gain percentage
(IWG%) after Xiong et al. (2007): (infant weight birth weight)/birth weight  100. At the
specified age, we also collected samples of hair from mothers and respective children during
the anthropometric measurements.
Hair Hg determination
Hair sample preparation and analytical procedures were carried out according to
our standardized laboratory procedure for Hg determination (Marques et al. 2007).
Briefly, the hair samples were comminuted with stainless steel scissors, weighed, and
digested before analysis. Human hair samples were washed with EDTA 0.01%, dried in an
oven at 50
C and weighed. Samples were then digested using a digestion block at 80
C for
40 min with concentrated HNO
3
(3 mL) and KMnO
4
(5%; 6 mL) in a microwave oven
system for 35 min (CEM-Coorporation, MDS 2000, Matthews, NC, USA). The
determination of total Hg in the digested samples was done by cold vapour atomic
absorption spectrometry with a flow injection system FIMS (CV-AAS, Perkin-Elmer, FIMS
400, Ueberlingen, Germany).
All glassware used in the analytical protocol was washed clean, rinsed with 5% EDTA and
double distilled, and left to rest in 5% HNO
3
overnight. Then it was rinsed again in double
distilled water, and dried at 100
C for 12 h. Precision and accuracy of Hg determinations
were assured by the use of internal standards, use of triplicate analyses of samples and
certified reference materials (IAEA-085 and 086, Vienna, Austria) with recoveries of 92%.
The limit of detection for the procedure was determined at <0.01 mgg
À1
and there was no
HHg determination below the limits.
Statistical analysis
The statistical packages, contained in Excel and Prism, were used for data summarization
(means, standard deviation, changes in variables) and correlation analysis. The Shapiro–
Wilk test of normality was applied and data transformed when required. Statistical analysis
to test children’s attained growth at 0, 6, 36 and 60 m was carried out using the Statistica
(StatSoft, Inc., v.6.0) statistical package. During data analysis, children were classified into
two groups on the basis of reported maternal fish consumption (Marques et al. 2007). The
General Linear Model of Statistica used a factorial design with repeated measured factors.
Pearson’s (p) correlation was also used to examine the strength of association between the
fish consumption marker (HHg) and anthropometric measures. A value of <0.05 was
accepted as statistically significant.
Results
A previous publication has already partially discussed results of maternal fish consumption
and infant neurodevelopment at 6 months (Marques et al. 2007); the influence of maternal
fish consumption rates on mean HHg concentrations was not statistically significant (Table I).
These contemporary urban mothers purchased fish from open markets and food stores.
Nutrition transition and growth of children 367
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
Only 34 of them showed explicit fish species preference: Pacu (Mylossoma spp.; 58%),
Tambaqui (Colossoma spp.; 35%), Jaraqui (Semaprochilodus spp.) and Jatuarana (Brycon spp.)
(33%), Dourado (Brachyplatystoma flavicans; 30%), Tucunare
´
(Cichla spp.) and Curimata˜
(Prochilodus nigricans) (28%); other species <30% (Filhote Brachyplatystoma filamentosum;
Piranha - Serrasalmus spp., and Surubim Pseudoplatystoma spp.).
Both infant HHg at birth and at 6 months represent Hg transferred through placenta
and breast milk, whereas in children at 5 years, HHg concentrations are the result
of exposure to fish in the family diet; only during the weaning period or extended lactation
are children exposed to both sources, breast milk and family diet. Only at birth and
6 months did HHg concentrations substantially increase in both mothers and infants.
Attained Z-scores summarized in Table II showed no statistically significant (p ¼ 0.36)
effect of fish consumption rate (repeated measurement analysis). Also, no statistically
significant correlation was noticed between HHg and respective attained Z-scores
(Figure 1).
Infant characteristics at birth as a function of frequency of maternal fish consumption rates
shown in Table III were adapted from a previous publication (Marques et al. 2007). Mean
birth weights (3.21 vs 3.29 kg), as well as other variables, were nearly identical. The
summary of attained growth and length/height (Z-scores) as a function of fish consumption
Table II. Summary (means) of attained growth and length/height (Z-scores) as a function of
maternal fish consumption; no statistically significant difference between groups (p ¼ 0.36).
Fish servings, groups
0–1 per week (n ¼ 49) !2 per week (n ¼ 33)
Mean SD Mean SD
Weight-for-age
Birth
À0.23673 0.93 À0.02576 0.93
Weight-for-age
6 months
À0.87061 0.69 À0.61364 0.62
Weight-for-age
36 months
0.50041 0.98 0.64061 0.94
Weight-for-age
60 months
0.35653 0.46 0.27636 0.59
Length-for-age
Birth
0.20755 0.91 0.20758 1.08
Height-for-age
6 months
0.31224 1.30 0.46909 1.37
Height-for-age
36 months
0.10612 0.97 0.27606 0.91
Height-for-age
60 months
À0.69245 0.65 À0.52788 0.62
Weight-for-length
Birth
À0.57 1.15 À0.23 1.15
Weight-for-height
6 months
À1.31 1.17 À1.07 1.31
Weight-for-height
36 months
0.63 1.24 0.70 0.95
Weight-for-height
60 months
1.15 0.74 0.87 0.76
Table I. Maternal and infant HHg (mean Æ SD; values in parentheses are SD) concentrations (mgg
À1
)asa
frequency of fish consumption of mothers.
Fish servings
Birth 6 months 3 years 5 years
per week n Mother Infant Mother Infant Mother Infant Mother Infant
0–1 49 6.02 1.97 2.61 3.09 2.39 2.53 2.23 2.50
(5.54) (2.31) (2.48) (4.56) (2.59) (4.16) (2.43) (3.81)
!2 33 9.35 3.14 4.06 4.96 3.39 2.63 3.10 2.84
(11.8) (3.80) (5.09) (6.67) (3.92) (2.96) (3.79) (3.12)
p 0.09 0.08 0.09 0.13 0.21 0.91 0.21 0.66
368 R. C. Marques et al.
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
is shown in Table II and the profiles of attained Z-scores are shown in Figure 2. The
cumulative differences between linear and ponderal Z-score outcomes are clear. At birth,
most children showed adequate Z-scores (>À1) for length-for-age (74/82), weight-for-age
(68/82) and weight-for-length (56/82). However, attained growth at 6 months showed
remarkable differences; the infants grew much more in height than in weight. After 6 months
of exclusive breastfeeding the proportion of infants with attained growth (Z-scores <À1) was
14/82, 36/82 and 52/82, respectively, for length-for-age, weight-for-age, and weight-for-
length. Most children showed Z-scores (>À1) for height-for-age (70/82), weight-for-age
(74/82) and weight-for-height (74/82). However, it should be noted that only one child had a
Z-score <À2 for length-for-age during breastfeeding, but five showed stunting at 36 months.
Malnutrition (weight-for-age <À2) was seen in only two breastfed infants. All but one child
attained Z-scores <À1 at 60 months. Part of the nutritional outcome due to the quality of the
weaning diets was due to extended lactation.
0 5 10 15 20 25 30
5.0
2.5
0.0
2.5
*
*
Infant hair [Hg] µg/g
(Birth)
Weight-for-height Z-score
0 5 10 15 20 25 30
5.0
2.5
0.0
2.5
(Six months)
Infant hair [Hg] µg/g
Weight-for-height Z-score
0 10 20 30
2.5
0.0
2.5
5.0
(36 months)
Infant hair [Hg] µg/g
Weight-for-height Z-score
0 10 20 30
2
1
0
1
2
3
(60 months)
Infant hair [Hg] µg/g
Weight-for-height Z-score
Figure 1. Association between infant HHg and Z-scores (weight-for-height) at 6, 36 and 60 months.
Table III. Maternal and infant characteristics (mean Æ SD) as a function of reported frequency of fish consumption
(adapted from Marques et al. 2007).
Fish servings
per week n
Gestation
(weeks)
Length at
birth (cm)
Infant weight
at birth (kg)
Infant weight
at 6 months (kg) IWG%*
0–1 49 39.3 Æ 1.3 50.0 Æ 1.7 3.21 Æ 0.4 6.97 Æ 0.5 121 Æ 3
!2 33 39.4 Æ 1.4 49.9 Æ 1.9 3.29 Æ 0.4 7.07 Æ 0.5 119 Æ 4
p 0.76 0.76 0.41 0.32 0.82
*IWG%: Infant weight gain at 6 months divided by birth weight.
Nutrition transition and growth of children 369
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
Exclusive breastfeeding for 6 months was accomplished by all mothers. After that, many
mothers extended breastfeeding throughout the first year (Figure 3); 10 extended even
further and there was one child still breastfeeding at 5 years. The duration of breastfeeding
did seem to interact with the dietary patterns of weaning; there was significant correlation
with attained Z-scores at 36 months for weight-for-age (r ¼ 0.26; p ¼ 0.02) and weight-for-
length (r ¼ 0.22; p ¼ 0.04) but not for length-for-age (Figure 3). There was a wide spread in
birth weight (range: 2.2–4.3 kg); however, exclusive breastfeeding substantially reduced (by
50%) the range of body mass at 6 months (6.1–8.5 kg). Indeed, the IWG% was inversely
proportional to birth weight in a very high and significant correlation (r ¼À0.88; p ¼ 0.00)
illustrated in Figure 4.
4 3 2 1 0 1 2 3 4
0
50
100
Birth
6 meses
3 years
5 years
(a)
Height-for-age Z-score
Distribution, %Distribution, %Distribution, %
4 3 2 1 0 1 2 3 4
0
50
100
Birth
6 month
s
3 years
5 years
Birth
6 months
3 years
5 years
(b)
Weight-for-age Z-score
4 3 2 1 0 1 2 3 4
0
50
100
(c)
Weight-for-height Z-score
Figure 2. Cumulative frequency of Z-scores of attained growth during sampling times.
370 R. C. Marques et al.
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
The possible taxing of mothers caused by milk demanded to sustain increased infant
growth is illustrated in Figure 5; maternal BMI showed no significant association with
breastfeeding duration. Mothers with higher BMI at the end of pregnancy had returned to
pre-pregnancy levels at 6 months (exclusive breastfeeding) and 3 years (extended
breastfeeding). Figure 5 illustrates that the BMI profile is indistinguishable between
pre-pregnancy, 6 and 36 months post-natal.
Discussion
Quality of the diet for pregnant and lactating women is a key issue in public health nutrition,
especially in poor communities with economic constraints. The mothers of Porto Velho,
0 20 40 60
2.5
0.0
2.5
5.0
Length of lactation, months
(a)
Weight-for height Z-score
0 20 40 6
0
2.5
0.0
2.5
5.0
Length of lactation, months
BMI/age Z-score
(c)
0 20 40 60
2
1
0
1
2
3
(b)
Len
g
th of lactation, months
Weight-for-age Z-scores
0 20 40 60
3
2
1
0
1
2
(d)
Len
g
th of lactation, months
Height-for-age Z-scores
Figure 3. Length of lactation and attained growth.
2 3 4 5
0
100
200
300
Birth wei
g
ht, k
g
Relative IWG, %
(6 months)
0 1 2 3 4 5
2
1
0
1
2
Birth wei
g
ht, k
g
W/A Z-scores
(5 years)
Figure 4. Relative infant weight gain (IWG% infant weight gain divided by birth weight) at
6 months and weight-for-age Z-score (W/A) as a function of birth weight.
Nutrition transition and growth of children 371
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
with respect to levels of dietary fish consumption, showed no significant impact on the
attained growth of their young children; this indicates that changes from traditional
fish-dominated diet to other animal or vegetal-source food have occurred without
consequences for infant development. By examining the longitudinal growth of their
children it was revealed that mothers’ milk, irrespective of level of fish consumption, could
compensate for low birth-weights; furthermore, the length of lactation (beyond 6 months)
was an important nutritional supplement measurable at 3 years (Figure 2).
Fish is a differentiator of the survival strategy of some Amazonian villages (Dorea et al.
2005b); it is consumed more in isolated communities (Alves et al. 2006). Early dietary
studies of poor Amazonian families showed that they can consume 151 g fish per day
comprising 37% of their dietary protein (Giugliano et al. 1978). HHg is a specific and
reliable indicator of fish consumption that has been used to study Amazonian populations
and successfully employed to quantify the amount of freshwater fish consumed (Dorea et al.
2003). Our study showed that in urban population, no longer following traditional food
habits, HHg was higher (although not significantly) in the group reporting higher fish
consumption rate. Therefore, HHg can be valuable to understand fish-MeHg exposure as
well as to trace beneficial outcomes of fish consumption in Amazonians (Dorea et al.
2005a,b). However, because of concerns for neurodevelopmental disorders due to
intrauterine exposure to MeHg, recommendations to reduce fish intake have been made
(Cohen et al. 2005). For economically stressed families, especially in regions accustomed to
high frequency of fish consumption, such recommendations may not take into account the
effect that reducing fish consumption will have on the nutritional status of vulnerable infants
and young children. Indeed, Arnold et al. (2005) have questioned whether it is worth
curtailing fish Hg exposure because this can tax the consumption of an important source of
nutrients; beneficial effects on foetal neurological outcome have been shown as a result of
maternal fish consumption (Hibbeln et al. 2007). Additionally, animal-source foods have
been less appreciated in studies of economically strained urban families in developing
nations. We, therefore, took into consideration the changing habits arising from fast
urbanization of an Amazonian city to assess the role of HHg (marker of fish consumption)
and outcomes of exclusively breastfed-infant development.
We speculate that dominance of fish consumption, although important for some specific
nutrients, was successfully replaced by other animal-food sources. The lack of significant
association between HHg and WHZ (especially at 5 years) indicates that difference in
protein quality (fish vs other sources) was not a determinant of attained growth in these
children. This is in agreement with our studies in Amer-Indian children inhabiting the banks
0 10 20 30 40
0
10
20
30
Length of lactation, months
MaternalBMI
(b)
0 10 20 30 40
0
50
100
Birth
Pre-pregnancy
6 months
36 months
(a)
Maternal BMI
Distribution, %
Figure 5. Maternal BMI (body mass index); (a) profile changes during the study; (b) scatter plot as a
function of length of lactation.
372 R. C. Marques et al.
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
of the Xingu-basin Rivers in Eastern Amazonia (Dorea et al. 2005a); in these subsistence-
level communities of indigenous people a clear change in dominance of fish consumption
between the tribes (Kayabi and Munduruku) was not associated with infant growth; other
factors like infectious diseases, may influence the health of subjects.
Infant weight at birth (intrauterine growth rate) is directly influenced by maternal
constitutional (size) and environmental factors (nutrition). Weight and linear growth of
breastfed infants are influenced by human-milk output and nutritional profile (Fornes and
Dorea 1995); although genetic factors may be significant, infant postnatal growth is also
greatly influenced by illnesses. In the case of exclusive breastfeeding, weight gain is indirectly
a result of breastfeeding protection against the nutritional consequences of illness; by
decreasing the number of days with gastrointestinal and respiratory tract illnesses (Launer
et al. 1990), infant food efficiency is optimized with growth maximization.
Infant growth is the key to assessing nutritional status; while cross-sectional growth data
are useful to identify infants whose weight and length outcomes are considered substandard
they are limited in assessing the dynamics of breastfeeding in support of the growing child.
In this context monitoring infant growth to understand true growth potential is better when
based on longitudinal data (Xiong et al. 2007). Several papers have drawn attention to the
supposition that infants born with low birth weight may remain lighter and shorter (Xiong
et al. 2007); however, in our study, breastfeeding showed a growth rate inversely
proportional to birth weight. Overall, our results showed an accelerated rate of length
gain in the first few months. These results are in agreement with others (Cole et al. 2002),
showing that prolonged and exclusive breastfeeding accelerated weight and length gain in
early weeks. Infants in our study showed an apparent increase in thinness at 3 years but no
detectable deficit at 5 years.
The infants with lower birth weight or small size reflected poor intrauterine growth
(or shorter gestational age); however, in the present study, they grew at a faster rate during
exclusive breastfeeding. At 5 years, it was not the birth weight but the rate of change in body
mass that modulated the attained growth. The very high linear correlation (Figure 4)
between birth weight and IWG% indicates a catch-up process. We do not yet understand
how the compensatory mechanism operates in breastfeeding to promote the faster move-up
of centiles in the smaller babies. Considering that the breast-milk nutrients originated from
the (same) maternal sources, higher rates of growth indicate more efficient transfer of
nutrients (mother) or more efficient utilization (infant) or, most probably, both.
Differences in placental function (birth weight) and milk supply (postnatal growth) with
regard to maternal nutrient transfer are not yet understood. Weaver (2006) has
differentiated rapid weight-gain catch-up (after intrauterine restriction) and accelerated
growth as a result of excessive energy intake in formula-fed infants. In our study, however,
the self regulating (breastfeeding) milk supply does not seem to lead to an excessive energy
intake; but the same mother, who apparently produced a smaller foetus, is capable of
compensating post-natal infant growth through breast milk. After birth, the (active) infant is
apparently more efficient in nutrient acquisition (sucking) and utilization than the (passive)
foetus. Indeed, Karaolis-Danckert et al. (2006) recently reported that relatively smaller and
lighter babies grow faster than their larger-at-birth counterparts; they appeared to diverge in
growth patterns as early as 6 months. In their study only 30% of fast growers were breastfed
for more than 4 months.
Rich in nutrients, hormones and complex non-nutritional factors, human milk is better
suited to meet specific requirements for infant development; such a complexity of bioactive
substances and neuro-stimulation factors modulates neonatal adaptation and provides
protection and immunity; exclusive breastfeeding is also finely tuned to regulate infant
Nutrition transition and growth of children 373
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
growth (Weaver 2006). In certain circumstances, infant growth is associated with breast-
milk fat content (Fornes and Dorea 1995); however, in regard to birth weight, breast-milk’s
intrinsic nutritional-attributes are not sufficient to explain the inverse relationship of infant
growth and birth weight.
In epidemiological studies the differences in attained growth between bottle- and breast-
fed infants have been attributed to reverse causality (feeding choice influenced by child
health/weight). Cole et al. (2002) discussed reverse causality in the context of feeding-mode
differences: ‘slow-growing infants who are ‘falling off’ their growth curve trajectories may be
deliberately supplemented or weaned in an effort to reverse those trends’. Apparently, this is
not the case in our study; our infants showed an inverse correlation (birth weight vs IWG%,
Figure 4) and a direct association of extended breastfeeding (beyond 6 m) and attained
Z-scores at 3 years (Figure 4). It is amply reported that in the developing world, absence of
or insufficient breastfeeding or early weaning are all frequently associated with diarrhoea and
other infections that can tax growth rate.
In poor urban environments in underdeveloped countries breastfeeding is intertwined
with maternal capability to lactate and infant growth rate and health. Regardless of whether
the mother lactates or not, postpartum weight and body fat changes are maternal
physiological occurrences. We (Fornes and Dorea 1995) have shown that poor urban
mothers (in Goiania, Brazil) can sustain a successful exclusive breastfeeding of 3 months
with BMI values comparable to the present study. The socio-economically disadvantaged
urban mothers of that study, taxed by milk supply demanded by the growing infant, did not
show significant BMI changes (from 15 to 90 days) but showed significant differences in
subcutaneous fat change (Fornes and Dorea 1995). Indeed our study did not show
significant association between maternal BMI (at 36 months) and attained infant weight.
Collectively, there is a distinct pattern of postpartum changes in body weight and adiposity
between affluent and socially disadvantaged mothers (in developing countries): Lactating
mothers in less developed countries lose subcutaneous fat when measured singly (triceps,
more sensitive) or as a sum of several skin-fold measurements. Comparing different studies
of different countries it was shown that these effects tend to occur mainly during the second
trimester of lactation, but will occur in the first semester of lactation in circumstances of
relative maternal malnutrition (Dorea 1997). This is in agreement with the changes observed
in the BMI of the mothers in the present study: The profile between pre-pregnancy and at 6
months and 3 years are indistinguishable.
Fish is important in the diets and health of many poor people suffering from vitamin and
mineral deficiencies, and yet we lack studies of its consumption by populations most
vulnerable to nutrient deficiencies (Roos et al. 2007). The unique feature of this study is to
be able to evaluate the impact of a dietary item (fish consumption) on critical periods of
infant development (gestation, breastfeeding) which is sensitive to the maternal effects of
nutritional factors. Although HHg the signature of fish consumption was not significantly
associated with infant growth, the study revealed that extended breastfeeding had a
statistically significant impact on profiles of attained height and weight at 3 years thus
indicating that breastfeeding can be an important modifying factor of weaning.
Conclusion
Fish consumption rates can be traced through HHg; this biomarker showed that nutrient
intakes in tandem with maternal fish consumption rate had no impact on outcomes of growth
374 R. C. Marques et al.
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
and development of breastfed children. In the food transition scenario of Porto Velho,
regardless of the animal-source food, the habitual plane of nutrition of these urban mothers
was sufficient to sustain satisfactory Z-scores for weight and height at 5 years.
Acknowledgements
We are greatly in debt to the mothers for their participation in the study, to the staff
and Directors (Marine
ˆ
s R. S. Cezar, Tereza C. Ramos, Daniele Brasil, Katia Wendt,
Laura J. Marques) of the Hospitals (Hospital de Base Ary Pinheiro, Hospital Panamericano
and Hospital Regina Pacis), Katiane G. Branda
˜
o and the staff of the Fundac¸a
˜
o Universidade
Federal de Rondo
ˆ
nia. This work was supported by United Nations Educational, Scientific
and Cultural Organization UNESCO (SC27824/2005/914-BRA2000-Decit-PRODOC),
Ministe
´
rio da Sau
´
de do Brasil and The National Research Council of Brasil CNPq
(PNOPG project-55.0882/01-4; PPG7, project-556 985/2005-2).
References
Alves MFA, Fraiji NA, Barbosa AC, Lima DSS, Souza JR, Dorea JG, Cordeiro GWO. 2006. Fish consumption,
mercury exposure and serum antinuclear antibody in Amazonians. Int J Environ Health Res 16:255–262.
Arnold SM, Lynn TV, Verbrugge LA, Middaugh JP. 2005. Human biomonitoring to optimize fish consumption
advice: Reducing uncertainty when evaluating benefits and risks. Am J Public Health 95:393–397.
Barbosa AC, Silva SRL, Dorea JG. 1998. Concentration of mercury in hair of indigenous mothers and infants from
the Amazon Basin. I. Arch Environ Contam Toxicol 34:100–105.
Barbosa AC, Souza JR, Garcia MA. 1997. Mercury contamination in hair of riverine populations of Apiaca’s
Reserve in the Brazilian Amazon. Water Air Soil Pollut 97:1–8.
Clarkson TW. 2002. The three modern faces of mercury. Environ Health Perspect 110:(Suppl 1)11–23.
Cohen JT, Bellinger DC, Shaywitz BA. 2005. A quantitative analysis of prenatal methyl mercury exposure and
cognitive development. Am J Prev Med 29:353–365.
Cole TJ, Paul AA, Whitehead RG. 2002. Weight reference charts for British long-term breastfed infants. Acta
Paediatr 91:1296–1300.
Dorea JG. 1997. Changes in body weight and adiposity during lactation. Nutr Res 17:379–389.
Dorea JG. 2003. Fish are central in the diet of Amazonian riparians: Should we worry about their mercury
concentrations?. Environ Res 92:232–244.
Dorea JG. 2004. Cassava cyanogens and fish mercury are high but safely consumed in the diet of native
Amazonians. Ecotoxicol Environ Saf 57:248–256.
Dorea JG, Moreira MB, East G, Barbosa AC. 1998. Selenium and mercury concentrations in some fish species of
the Madeira River, Amazon Basin, Brazil. Biol Trace Elem Res 65:211–220.
Dorea JG, Barbosa AC, Ferrari I, Souza JR. 2003. Mercury in hair and in fish consumed by riparian women of the
Rio Negro, Amazon, Brazil. Int J Environ Health Res 13:239–248.
Dorea JG, Barbosa AC, Ferrari I, Souza JR. 2005a. Fish consumption (hair mercury) and nutritional status of
Amazonian Amer-Indian children. Am J Hum Biol 17:507–514.
Dorea JG, Souza JR, Rodrigues P, Ferrari I, Barbosa AC. 2005b. Hair mercury (signature of fish consumption) and
cardiovascular risk in Munduruku and Kayabi Indians of Amazonia. Environ Res 97:208–218.
Dufour DL. 1991. Diet and nutritional status of Ameridians: A review of the literature. Cad Saude Publica
7:481–502.
Fornes NS, Dorea JG. 1995. Subcutaneous fat changes in low-income lactating mothers and growth of breast-fed
infants. J Am Coll Nutr 14:61–65.
Garcia-Arias MT, Castrillon AM, Navarro MP. 1993. Bioavailability of zinc in rats fed on tuna as a protein source
in the diet. J Tr Elem Electrol Health Dis 7:29–36.
Gibson RS, Hotz C. 2001. Dietary diversification/modification strategies to enhance micronutrient content and
bioavailability of diets in developing countries. Br J Nutr 85:S159–S166.
Nutrition transition and growth of children 375
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
Giugliano R, Shrimpton R, Arkcoll DB, Giugliano LG, Petrere M Jr. 1978. Diagno
´
stico da realidade alimentar e
nutricional do Estado do Amazonas 1978. Acta Amaz 8:(Suppl. 2)5–54.
Greco L, Balungi J, Amono K, Iriso R, Corrado B. 2006. Effect of a low-cost food on the recovery and death rate of
malnourished children. J Pediatr Gastroenterol Nutr 43:512–517.
Gunnarsson BS, Thorsdottir I, Palsson G. 2007. Associations of iron status with dietary and other factors in 6-year-
old children. Eur J Clin Nutr 61:398–403.
Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, Golding J. 2007. Maternal seafood consumption
in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): An observational cohort
study. Lancet 369:(9561)578–585.
Hofvander Y. 1973. Growth of infants fed a formula containing fish protein concentrate (FPC). Upsala J Med Sci
78:60–64.
Inhamuns AJ, Bueno Franco MR. 2001. Composition of total, neutral, and phospholipids in Mapara
(Hypophthalmus sp.) from the Brazilian Amazonian area. J Agric Food Chem 49:4859–4863.
Kipnis V, Midthune D, Freedman L, Bingham S, Day NE, Riboli E, Ferrari P, Carroll RJ. 2002. Bias in dietary-
report instruments and its implications for nutritional epidemiology. Public Health Nutr 5:915–923.
Kull I, Bergstrom A, Lilja G, Pershagen G, Wickman M. 2006. Fish consumption during the first year of life and
development of allergic diseases during childhood. Allergy 61:1009–1015.
Lartey A, Manu A, Brown KH, Peerson JM, Dewey KG. 1999. A randomized, community-based trial of the effects
of improved, centrally processed complementary foods on growth and micronutrient status of Ghanaian
infants from 6 to 12 mo of age. Am J Clin Nutr 70:391–404.
Layrisse M, Martı
´
nez-Torres C, Me
´
ndez-Castellano H, Taylor P, Fossi M, Lo
´
pez de Blanco M,
Landaeta-Jime
´
nez M, Jaffe W, Leets I, Tropper E, et al. 1990. Relationship between iron bioavailability
from diets and prevalence of iron deficiency. Food Nutr Bull 12:301–309.
Launer LJ, Habicht JP, Kardjati S. 1990. Breast feeding protects infants in Indonesia against illness and weight loss
due to illness. Am J Epidemiol 131:322–331.
Karaolis-Danckert N, Buyken AE, Bolzenius K, Perim de Faria C, Lentze MJ, Kroke A. 2006. Rapid growth
among term children whose birth weight was appropriate for gestational age has a longer lasting effect on body
fat percentage than on body mass index. Am J Clin Nutr 84:1449–1455.
Marques RC, Do
´
rea JG, Bastos WR, Rebelo MF, Fonseca MF, Malm O. 2007. Maternal mercury exposure and
neuro-motor development in breastfed infants from Porto Velho (Amazon), Brazil. Int J Hyg Env Health
210:51–60.
Michaelsen KF, Milman N, Samuelson G. 1995. A longitudinal study of iron status in healthy Danish infants:
Effects of early iron status, growth velocity and dietary factors. Acta Paediatr 84:1035–1044.
Muskiet FA, van Goor SA, Kuipers RS, Velzing-Aarts FV, Smit EN, Bouwstra H, Dijck-Brouwer DA,
Boersma ER, Adders-Algra M. 2006. Long-chain polyunsaturated fatty acids in maternal and infant nutrition.
Prostaglandins Leukot Essent Fatty Acids 75:135–144.
Nelson M, Atkinson M, Darbyshire S. 1996. Food photography II: Use of food photographs for estimating portion
size and the nutrient content of meals. Br J Nutr 76:31–49.
Olsen SF, Grandjean P, Weihe P, Videro T. 1993. Frequency of seafood intake in pregnancy as a determinant of
birth weight: Evidence for a dose dependent relationship. J Epidemiol Community Health 47:436–440.
Passos CJ, Mergler D, Fillion M, Lemire M, Mertens F, Guimaraes JR, Philibert A. 2007. Epidemiologic
confirmation that fruit consumption influences mercury exposure in riparian communities in the Brazilian
Amazon. Environ Res 105:183–193.
Piperata BA. 2007. Nutritional status of Ribeirinhos in Brazil and the nutrition transition. Am J Phys Anthropol
133:868–878.
Rocquelin G, Tapsoba S, Dop MC, Mbemba F, Traissac P, Martin-Prevel Y. 1998. Lipid content and essential
fatty acid (EFA) composition of mature Congolese breast milk are influenced by mothers’ nutritional status:
Impact on infants’ EFA supply. Eur J Clin Nutr 52:164–171.
Rogers I, Emmett P, Ness A, Golding J. 2004. Maternal fish intake in late pregnancy and the frequency of low birth
weight and intrauterine growth retardation in a cohort of British infants. J Epidemiol Community Health
58:486–492.
Romieu I, Torrent M, Garcia-Esteban R, Ferrer C, Ribas-Fito N, Anto JM, Sunyer J. 2007. Maternal fish intake
during pregnancy and atopy and asthma in infancy. Clin Exp Allergy 37:518–525.
Roos N, Wahab MA, Chamnan C, Thilsted SH. 2007. The role of fish in food-based strategies to combat vitamin A
and mineral deficiencies in developing countries. J Nutr 137:1106–1109.
Ruan C, Liu X, Man H, Ma X, Lu G, Duan G, De Francesco CA, Connor WE. 1995. Milk composition in women
from five different regions of China: The great diversity of milk fatty acids. J Nutr 125:2993–2998.
376 R. C. Marques et al.
Downloaded By: [Dórea, José Garrofe] At: 14:40 24 July 2008
Sikka KC, Singh R, Gupta DP, Duggal SK. 1979. Comparative nutritive value of fish protein concentrate (FPC)
from different species of fishes. J Agric Food Chem 27:946–949.
Subar AF, Kipnis V, Troiano RP, Midthune D, Schoeller DA, Bingham S, Sharbaugh CO, Trabulsi J, Runswick S,
Ballard-Barbash R, et al. 2003. Using intake biomarkers to evaluate the extent of dietary misreporting in a
large sample of adults: The OPEN study. Am J Epidemiol 158:1–13.
Terres C, Navarro M, Martin-Lagos F, Gimenez R, Lopez H, Lopez MC. 2001. Zinc levels in foods from
southeastern Spain: Relationship to daily dietary intake. Food Addit Contamin 18:687–695.
Thorsdottir I, Birgisdottir BE, Halldorsdottir S, Geirsson RT. 2004. Association of fish and fish liver oil intake in
pregnancy with infant size at birth among women of normal weight before pregnancy in a fishing community.
Am J Epidemiol 160:460–465.
Weaver LT. 2006. Rapid growth in infancy: Balancing the interests of the child. J Pediatr Gastroenterol Nutr
43:428–432.
WHO Multicentre Growth Reference Study Group. 2006. WHO Child Growth Standards based on length/height,
weight and age. Acta Paediatr Suppl 450:76–85.
Wu ML, Whittemore AS, Jung DL. 1986. Errors in reported dietary intakes. I. Short-term recall. Am J Epidemiol
124:826–835.
Xiong X, Wightkin J, Magnus JH, Pridjian G, Acuna JM, Buekens P. 2007. Birth weight and infant growth:
Optimal infant weight gain versus optimal infant weight. Mat Child Health J 11:57–63.
Zollner H, Below H, Franke G, Piek M, Kramer A. 2001. Present alimentary supply of iodine in Western
Pomerania. Deut Lebens-Runds 97:376–380.
Nutrition transition and growth of children 377
149
(Anexo 7)
TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO
Projeto: Avaliação da Exposição ao Mercúrio e Seus Compostos Sobre o
Desenvolvimento Neuropsicomotor em Crianças de Porto Velho RO.
Estou sendo orientado (a) quanto ao estudo Avaliação da Exposição ao Mercúrio e
Seus Compostos Sobre o Desenvolvimento Neuropsicomotor em Crianças de Porto
Velho RO, cujos dados serão colhidos nas pacientes do Centro Obstétrico do
Hospital de Base Ary Pinheiro, Maternidade Regina Pacis e Hospital Panamericano.
Este estudo tem por objetivo estudar a exposição por mercúrio nos recém-nascidos
da comunidade. É importante que se estude a mãe e o filho, pois a exposição é
passada de mãe para filho e continuada por alimentos contaminados, entre eles o
peixe. Esta exposição pode levar a problemas de saúde em crianças e adultos. O
estudo será feito com perguntas de importância para o estudo da exposição e
análise dos seguintes materiais: cortes de pedaços de cabelo da mãe e recém-
nascido, amostra de sangue e leite materno, sangue e pedaço de cordão umbilical e
placenta. Os participantes devem ser moradores da cidade de Porto Velho. A
pesquisa será realizada sem riscos para quem participa, uma vez que o exame
clínico não machuca, o cabelo cresce de novo e será utilizado material descartável
para coleta de sangue. Os materiais acima citados serão estudados na busca da
quantidade de mercúrio no corpo. Os pesquisadores comprometem-se a utilizar os
materiais e dados coletados exclusivamente para os fins previstos no protocolo e a
publicar os resultados, sejam eles favoráveis ou não.
Rejane Corrêa Marques
Endereço: Rua 27, casa 14, condomínio Fabiane Asfuri,
Bairro: Jardim das Mangueiras II, Porto Velho RO.
Telefone: 225-5436/216-8550.
Estou ciente de que não sou obrigado (a) a participar ou deixar nenhum familiar
participar, e que posso desistir a qualquer momento da pesquisa. Concordo com o
que foi dito, permitindo que meu filho (a) e eu participemos da pesquisa. E estou
recebendo cópia deste papel assinado por mim e pela pesquisadora.
Nome da mãe e/ou responsável pela criança: .____________________________
Porto Velho, ________de __________________de 2000.
150
(Anexo 8)
Questionário mães e recém-nascidos
UNIVERSIDADE FEDERAL DE RONDÔNIA UNIR
Projeto: Avaliação da Exposição ao Mercúrio e Seus Compostos Sobre o
Desenvolvimento Neuropsicomotor em Crianças de Porto Velho RO.
Área de atuação: Porto Velho (RO)
Ficha n.º :................. Data....../......./........
MÃE
Nome:.....................................................................................................................................
Data de nascimento:....../...../......... Idade:.......... Cor: branca( ) parda( ) negra( ) índia ( )
Lugar de nascimento:.............................................................................................................
Endereço Atual:...............................................................................FONE:............................
Pré-natal: sim( ) não( ) Início:........................ Local:........................................................
Início dos movimentos fetais:............................. Intensidade:...............................................
Intercorrências/Terapêutica:..................................................................................................
Trabalho durante a gestação:................................................................................................
Tipo de parto: ( )normal ( )fórceps ( )cesárea: Indicação:....................................................
DUM: ....../....../......... IG: ........semanas DPP:............ Informante:...........................
RECÉM-NASCIDO:
Sexo: ( ) feminino ( ) masculino Peso:................g Estatura:...........cm PC:........cm
Condições do RN ao nascer: Apgar 1º minuto.............5º minuto................
Circular de coro: ( )não ( )sim Reanimado: ( )não ( )sim: ( )O
2
nasal ( )ambu ( )entubação
Amniorrexe prematura: ( ) não ( )sim quanto tempo:..............horas
Uso de antibiótico pré-parto: ( )não ( )sim tipo:......................................................................
Dose:........................................... Tempo de uso:.................................................................
Eliminou mecônio antes da expulsão: ( )não ( )sim
Maturidade: ( )a termo ( )prematuro ( )pós-maduro IG pelo Índice de capurro:.....sem e....dias
Classificação quanto ao peso: ( )AIG ( ) PIG ( ) GIG
Medicação na sala de parto: ( )não ( )sim; especificar a medicação:.................................
Internação no berçário: ( ) não ( ) sim: período: ..............................................................
Intercorrências no berçário:...................................................................................................
Malformação: ( )não ( )sim qual: ...........................................................................................
Observações:.........................................................................................................................
Condições de alta do RN: ( )com a mãe ( )do berçário para o ambulatório ( )TFD
ANTECEDENTES FAMILIARES MATERNOS:
Tipagem sangüínea: ( )O ( )A ( )B ( )AB Fator Rh: ( )Positivo ( )Negativo
Pais consangüíneos: ( ) sim ( ) não
Gesta:............... Para.............. Abortos......... (espontâneos:............... provocados:.......)
Tipo de parto: ( ) normais ( )cesarianas ( ) complicações: ....................................................
( )Natimortos ( )Prematuro ( )malformados tipo de malformações:...............................
Antecedentes patológicos:
( )malária ( )leishmaniose ( )chagas ( )amebíase ( )esquistossomose ( )diabetes ( )filis
( )hepatite ( )toxoplasmose ( )rubéola ( )citomegalovírus ( )HIV ( )caxumba ( )tuberculose
151
Outras:...................................................................................................................................
Educação Materna (anos): ..................... Renda mensal familiar: R$.................................
Quanto tempo mora no endereço atual:.........................
Trabalho em garimpo: ( )não ( )sim período:...........................
Quantas refeições faz por dia:.......... Come peixe: ( )não ( )sim, quantidade/dia:................
Freqüência: ........... Tipo:.............................................................. Procedência:.......................
Usa medicamentos: ( )não ( )sim, qual:.............................. Quanto tempo:.......... Dose/dia:........
Contato com substâncias praguicidas ou semelhantes: ( )não ( )sim Quais:............................
Uso de drogas narcóticas: ( )o ( )sim, Qual:........................................ tempo de uso:..........
Usa xampu: ( )o ( )sim, marca:............. Tinge os cabelos: ( )o ( ) sim, periodicidade:......
Ingere bebida alcoólica: não ( ) sim( ) Freqüência: .............. Quantidade/dia:.................
Tipo de bebida.......................................................................................................................
Viagens ao exterior: ( )não ( )sim : país..........................................período:..........................
ANTECEDENTES FAMILIARES PATERNOS:
Saúde: ( )normal ( )com problemas; quais:............................................................................
Educação Paterna (anos): ................. Trabalho em garimpo: ( )não ( )sim período:..............
Quantas refeições/dia:.......... Come peixe: ( )não ( )sim quantidade/dia:............................
Qual tipo:............................................................................ Procedência:............................
Usa medicamentos: ( )não ( )sim qual:....................... Quanto tempo:.......... dose/dia:............
Ingere bebida alcoólica: não ( ) sim( ) Freqüência: .................... Quantidade/dia:................
Tipo de bebida.......................................................................................................................
Uso de drogas narcóticas: ( )não ( )sim tipo de droga:........................tempo de uso:...........
IRMÃOS DO REM-NASCIDO: Número total:........... Sexo e idade em ordem decrescente:
Idade
Sexo
Saúde dos irmãos: ( )boa ( )com problemas, quais:....................................................
CONDIÇÕES DE MORADIA DA FAMÍLIA:
Situação da residência: ( )própria ( )alugada ( )de parentes ( )cedida pelo empregador
( )madeira ( )alvenaria ( )mista ( )enchimento ( )em terreno alagado
No de moradores:............................ Entra luz em todos os cômodos: ( ) sim ( ) não
Presença de insetos e roedores: ( )não ( )sim, qual:.........................................................
Destino das fezes: ( )fossa seca ( )enterrado ( )céu aberto ( )rio ( )fossa negra
Abastecimento de água: ( )rio ( )encanada ( )Poço ( )torneira pública ( ) outra:...................
NÍVEIS DE MERCÚRIO ENCONTRADOS:
No cabelo da mãe:...........................................
No cabelo do recém nascido:...........................
No sangue da mãe:...........................................
No sangue umbilical:...........................................
No cordão umbilical:........................................
Na placenta:......................................................
No leite materno: ...............................................
Avaliador:........................................................................
152
(ANEXO 9)
Questionário Para Crianças 6 meses
UNIVERSIDADE FEDERAL DE RONDÔNIA UNIR
Projeto: Avaliação da Exposição ao Mercúrio e Seus Compostos Sobre o
Desenvolvimento Neuropsicomotor em Crianças de Porto Velho RO.
Ficha n.º _______ Data ___/___/____
IDENTIFICAÇÃO
Nome: __________________________________________________________________
Data de nascimento: ___/___/____ Idade:_____ Sexo: ( )Masc ( )Fem Cor:_________
Endereço Atual:___________________________________________________________
Informante/Responsável:________________________ Telefone para Contato:_________
Nome da mãe: ______________________________________ Profissão: ____________
Nome do Pai: _________________________________Profissão:___________________
SAÚDE
História Vacinal
Apresentou cartão de vacinação: ( )sim ( )não
Vacinas
Datas
BCG
Anti-Hepatite B
DPT
Outras
Antecedentes patológicos:__________________________________________________
HISTÓRIA ALIMENTAR
Tempo de amamentação:_________________ n.º de refeições/dia:_________________
Alimentos mais freqüentes:__________________________________________________
Come Peixe: ( )não ( )sim, tipo de peixe:_______________________________________
Freqüência:______Quantidade:______ Procedência/peixe:_________________________
EDUCAÇÃO:
Freqüenta creche: ( )sim ( )não Tempo de permanência na creche:_________horas
Educação Paterna (anos):__________ Educação Materna (anos):____________
Renda Familiar:__________________________
Irmãos (total):.....................
Idade
Sexo
153
Saúde dos irmãos: ( )boa ( )com problemas, quais:..................................................
CONDIÇÕES DE MORADIA DA FAMÍLIA:
Situação da residência: ( )própria ( )alugada ( )de parente/amigos ( )cedida pelo empregador
( )madeira ( )alvenaria ( )enchimento ( )em terreno alagado
Presença de insetos e roedores:( )não ( )sim, qual:_______________________________
Quantos moram na casa:____________ Entra luz em todos os cômodos: ( )sim ( )não
Destino das fezes: ( )fossa seca ( )enterrado ( )céu aberto ( )rio ( ) fossa negra
Abastecimento de água: ( )rio ( )encanada ( )Poço ( )torneira pública ( )outra:__________
EXAME FÍSICO
Mãe:
Peso:___________ Altura:_______ Paridade:_________
Criança:
Peso:___________ Altura:_______ PC:_______
Permanece sentado: ( )sim ( )não Idade que começou a sentar:_____________
Engatinha: ( )sim ( )não Idade que começou a engatinhar:_________________
Outros achados:__________________________________________________________
Impressão diagnóstica:_____________________________________________________
DESENVOLVIMENTO NEUROPSICOMOTOR:
Idade cronológica:___________
CONDUTA
Idade (meses)
%
MOTORA
ADAPTATIVA
LINGUAGEM
compreensiva
expressiva
PESSOAL-SOCIAL
Níveis de Hg no cabelo da criança:__________________________________________
Níveis de Hg no cabelo da mãe:_____________________________________________
Avaliador:___________________________
154
(Anexo 10)
UNIVERSIDADE FEDERAL DE RONDÔNIA UNIR
UNIVERSIDADE DE BRASÍLIA UnB
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO UFRJ
Projeto: Avaliação da exposição ao mercúrio e suas repercussões sobre o
desenvolvimento neuropsicomotor em crianças de Porto Velho
TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO
Estou sendo orientada (o) quanto ao estudo ―Avaliação da Exposição ao Mercúrio e
suas Repercussões Sobre o Desenvolvimento Neuropsicomotor em Crianças de
Porto Velho RO‖, cujos dados serão colhidos com o objetivo estudar a exposição
por mercúrio nas crianças da comunidade. É importante que se estude as crianças,
pois a exposição pode ser passada de mãe para filho e continuada por alimentos
contaminados, entre eles o peixe. Esta exposição pode levar a problemas de saúde
em crianças e adultos. O estudo será feito com exame físico completo, perguntas de
importância para o estudo da exposição e amostras de cabelo da criança. A
pesquisa será realizada sem riscos para os participantes, uma vez que o exame
clínico não machuca e o cabelo cresce de novo. O material acima citado será
estudado na busca da quantidade de mercúrio no corpo. A pesquisadora
compromete-se a utilizar o material e dados coletados exclusivamente para os fins
previstos no protocolo e a publicar os resultados, sejam eles favoráveis ou não.
Rejane Corrêa Marques
Endereço: Laboratório de Biogeoquímica
Br 364, km 9,5, Campus UNIR.
Telefone: (69) 2182-2122
Estou ciente de que não sou obrigada (o) a participar ou deixar nenhum familiar
participar, e que posso desistir a qualquer momento da pesquisa, tendo sido
informada (o) dos endereços para contato com a pesquisadora. Concordo com o que
foi dito, permitindo que meu filho (a) e eu participemos da pesquisa, e estou
recebendo cópia deste papel assinado por mim e pela pesquisadora.
Nome da mãe e/ou responsável pela criança______________________________
Porto Velho,_____ de ____________ de 200__.
155
(ANEXO 11)
Questionário Para Crianças de 3 a 5 anos
UNIVERSIDADE FEDERAL DE RONDÔNIA UNIR
UNIVERSIDADE DE BRASÍLIA UnB
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO UFRJ
Projeto: Avaliação da exposição ao mercúrio e suas repercussões sobre o
desenvolvimento neuropsicomotor em crianças de Porto Velho
Ficha n.º _______ Data ___/___/____
IDENTIFICAÇÃO
Nome: ______________________________________________________________
Data de nascimento: ___/___/____ Idade:_____ Sexo: ( )Masc ( )Fem
Lugar de nascimento: __________________________________________________
Endereço Atual:_______________________________________________________
Nome da mãe: ___________________________________ Profissão: ___________
Nome do Pai: ____________________________________ Profissão:____________
FONE:_______________Informante:______________________________________
SAÚDE
História Vacinal: Apresentou carteira: ( )sim ( )não
Vacinas
Datas
BCG
Anti-Hepatite B
DPT + Hib
Anti-polio
Anti-Sarampo
Anti-Amarílica
Triplice viral s
Outras
Teve alguma reação não esperada após receber alguma vacina? ( ) sim ( )não
Se sim, qual (s)_____________________________________________________
Usou algum tipo de remédio: ( )sim ( )não) Qual:_________________________
DOENÇAS:
( )parasitoses ( )catapora ( )dengue ( )hepatite ( ) pneumonia ( ) malária
outras:______________________________________________________________
HISTÓRIA ALIMENTAR
Tempo de amamentação (meses):_________________N.º de refeições/dia:_______
Alimentos mais freqüentes:______________________________________________
Come Peixe: ( )não ( )sim, tipo de peixe:___________________________________
Freqüência do consumo de peixe:________ Quantidade/dia:____________
156
Consome enlatado: ( )sim ( )não Quais:__________________________________
Come ovos de aves domésticas: ( )sim ( ) não tipo de ave:_______________
EDUCAÇÃO
Educação Paterna (anos):_________ Educação Materna (anos):_______________
Renda Familiar:_____________________________________
Freqüenta creche/escola: ( )sim ( )o Tempo de permanência no local:______horas
Qual o meio de informação que a criança dispõe:____________________________
Irmãos: número total:..................... Sexo e idade em ordem decrescente:
Idade
Sexo
Saúde dos irmãos: ( )boa ( )com problemas, Quais:_______________________
CONDIÇÕES DE MORADIA DA FAMÍLIA:
Situação da residência: ( )própria ( )alugada ( )de parente/amigos ( )cedida pelo
empregador ( )madeira ( )alvenaria ( )enchimento ( )em terreno alagado
Presença de insetos e roedores:( )não ( )sim, qual:_________________________
Quantos moram na casa:_____ Entra luz em todos os cômodos: ( )sim ( )não
Destino das fezes: ( )fossa seca ( )enterrado ( )céu aberto ( )rio ( ) fossa negra
Abastecimento de água: ( )rio ( )encanada ( )Poço ( )torneira pública ( ) outra:______
EXAME FÍSICO:
Peso:___________ Altura:_______ PC:_______
Idade que começou a andar:_______ Idade que começou a falar:____________
Outros achados:____________________________________________________
___________________________________________________________________
___________________________________________________________________
DESENVOLVIMENTO NEUROPSICOMOTOR:
Idade Cronológica: ______
CONDUTA
Idade (meses)
%
MOTORA
ADAPTATIVA
LINGUAGEM
compreensiva
expressiva
PESSOAL-SOCIAL
Quociente de Desenvolvimento (QD) = ____________________
Impressão diagnóstica:_______________________________________________
Avaliador:_______________________________________
157
(ANEXO 12)
Etapas do desenvolvimento infantil segundo Gesell
Idade
Adaptativo
Motor Grosseiro
Motor Fino
Linguagem
Pesssoal-Social
4
semanas
Seguimento restrito do
olhar
Reflexo tônico-cervical
Punhos fechados
¾
Olha para a face do
examinador
16
semanas
Olha para chocalho na
mão
Postura simétrica
Mãos abertas;
arranha e agarra
Sorri; vocaliza
socialmente
Brinca com as mãos;
reconhece a mamadeira
28
semanas
Transfere o cubo de mão
Senta; projeta-se para frente
apoiando nas mãos;
sustenta peso com MMII
Agarra o cubo com
as mãos; tenta pegar
objetos pequenos
Vocaliza para
brinquedos; emite
sons consonantais
Brinca com os pés; Toca
na imagem no espelho
40
semanas
Segura mamadeira;
segura objetos pequenos
Senta-se sem ajuda;
engatinha; fica de pé
Solta objetos; aponta
com o dedo em
direção a objeto
Palavra-frase; imita
sons da fala
Brinca de jogos simples de
berçário; come biscoito
com as mãos
52
semanas
Coloca cubo dentro do
copo; tenta torre com 2
cubos
Anda com ajuda; dá alguns
passos sem apoio
Preensão em pinça
Fala 2-3 palavras;
reconhece objeto pelo
nome
Coopera no vestir-se;
brinca com a bola
18 meses
Retira pequeno objeto do
copo; rabisca
espontaneamente
Anda com equilíbrio;
agacha-se
Torre de 3 cubos;
folheia 2-3 páginas
de livro de uma só
vez
Jargões; reconhece
figuras
Usa a colher derramando;
puxa o brinquedo andando
24 meses
Constrói torre com 6
cubos; imita círculo com
lápis
Corre com equilíbrio; chuta
bola
Torre com 6 cubos;
folheia páginas 1 por
vez
Usa frases;
compreende ordens
simples diretas
Coloca partes simples da
vestimenta; brinca com
bonecos
36 meses
Imita ponte com 3 cubos;
copia círculo
Fica num pé só; pula
Torre com 10 cubos;
segura o lápis de
forma adequada
Fala formando
sentenças; responde a
questões simples
Usa a colher
adequadamente; coloca
sapatos; aguarda a vez
48 meses
Imita portão com 5 cubos;
copia linhas cruzadas
Pula num pé só; pulo amplo
Traços entre linhas
Usa conjunções;
compreende
preposições
Lava e enxuga a face;
brinca de forma interativa
60 meses
Conta 10 objetos; copia
triângulo
Pula no pé só
alternadamente
¾
Fala sem dislalias;
pergunta ―por que?‖
Veste-se sem auxílio;
pergunta o significado das
palavras
158
APÊNDICE
Calendário Básico de Vacinação da Criança 2007
IDADE
VACINAS
DOSES
DOENÇAS EVITADAS
Ao nascer
BCG - ID
dose única
Formas graves de tuberculose
Vacina contra hepatite B (1)
1ª dose
Hepatite B
1 mês
Vacina contra hepatite B
2ª dose
Hepatite B
2 meses
Vacina tetravalente (DTP + Hib)
(2)
1ª dose
Difteria, tétano, coqueluche, meningite e outras
infecções causadas pelo Haemophilus influenzae
tipo b
VOP (vacina oral contra pólio)
1ª dose
Poliomielite (paralisia infantil)
VORH (Vacina Oral de
Rotavírus Humano) (3)
1ª dose
Diarréia por Rotavírus
Vacina tetravalente (DTP + Hib)
2ª dose
Difteria, tétano, coqueluche, meningite e outras
infecções causadas pelo Haemophilus influenzae
tipo b
4 meses
VOP (vacina oral contra pólio)
2ª dose
Poliomielite (paralisia infantil)
VORH (Vacina Oral de
Rotavírus Humano) (4)
2ª dose
Diarréia por Rotavírus
6 meses
Vacina tetravalente (DTP + Hib)
3ª dose
Difteria, tétano, coqueluche, meningite e outras
infecções causadas pelo Haemophilus influenzae
tipo b
VOP (vacina oral contra pólio)
3ª dose
Poliomielite (paralisia infantil)
Vacina contra hepatite B
3ª dose
Hepatite B
9 meses
Vacina contra febre amarela (5)
dose inicial
Febre amarela
12 meses
SRC (tríplice viral)
dose única
Sarampo, rubéola e caxumba
15 meses
VOP (vacina oral contra pólio)
reforço
Poliomielite (paralisia infantil)
DTP (tríplice bacteriana)
1º reforço
Difteria, tétano e coqueluche
4 - 6 anos
DTP (tríplice bacteriana
2º reforço
Difteria, tétano e coqueluche
SRC (tríplice viral)
reforço
Sarampo, rubéola e caxumba
10 anos
Vacina contra febre amarela
reforço
Febre amarela
(1) A primeira dose da vacina contra a hepatite B deve ser administrada na maternidade, nas primeiras 12 horas de vida do
recém-nascido. O esquema básico se constitui de 03 (três) doses, com intervalos de 30 dias da primeira para a segunda dose e
180 dias da primeira para a terceira dose.
(2) O esquema de vacinação atual é feito aos 2, 4 e 6 meses de idade com a vacina Tetravalente e dois reforços com a Tríplice
Bacteriana (DTP). O primeiro reforço aos 15 meses e o segundo entre 4 e 6 anos.
(3) É possível administar a primeira dose da Vacina Oral de Rotavírus Humano a partir de 1 mês e 15 dias a 3 meses e 7 dias
de idade (6 a 14 semanas de vida).
(4) É possível administrar a segunda dose da Vacina Oral de Rotavírus Humano a partir de 3 meses e 7 dias a 5 meses e 15
dias de idade (14 a 24 semanas de vida). O intervalo mínimo preconizado entre a primeira e a segunda dose é de 4 semanas.
(5) A vacina contra febre amarela está indicada para crianças a partir dos 09 meses de idade, que residam ou que irão viajar
para área endêmica (estados: AP, TO, MA MT, MS, RO, AC, RR, AM, PA, GO e DF), área de transição (alguns municípios
dos estados: PI, BA, MG, SP, PR, SC e RS) e área de risco potencial (alguns municípios dos estados BA, ES e MG). Se
viajar para áreas de risco, vacinar contra Febre Amarela 10 (dez) dias antes da viagem.
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo