TEXTO PARA DISCUSSÃO Nº 716

MODELOS DE PREVISÃO PARA A EXPORTAÇÃO DAS PRINCIPAIS COMMODITIES BRASILEIRAS

Alexandre Samy de Castro* José Luiz Rossi Júnior*

Rio de Janeiro, abril de 2000

-

^{*} Da Diretoria de Estudos Macroeconômicos do IPEA.

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

MINISTÉRIO DO PLANEJAMENTO, ORÇAMENTO E GESTÃO

Martus Tavares - Ministro Guilherme Dias - Secretário Executivo

Presidente

Roberto Borges Martins

Diretoria

Eustáquio J. Reis Gustavo Maia Gomes Hubimaier Cantuária Santiago Luís Fernando Tironi Murilo Lôbo Ricardo Paes de Barros

Fundação pública vinculada ao Ministério do Planejamento Orçamento e Gestão, o IPEA fornece suporte técnico e institucional às ações governamentais e disponibiliza, para a sociedade, elementos necessários ao conhecimento e à solução dos problemas econômicos e sociais dos país. Inúmeras políticas públicas e programas de desenvolvimento brasileiro são formulados a partir de estudos e pesquisas realizados pelas equipes de especialistas do IPEA.

TEXTO PARA DISCUSSÃO tem o objetivo de divulgar resultados de estudos desenvolvidos direta ou indiretamente pelo IPEA, bem como trabalhos considerados de relevância para disseminação pelo Instituto, para informar profissionais especializados e colher sugestões.

ISSN 1415-4765

SERVIÇO EDITORIAL

Rio de Janeiro - RJ

Av. Presidente Antônio Carlos, 51 – 14º andar – CEP 20020-010

Telefax: (21) 220-5533 E-mail: editrj@ipea.gov.br

Brasília - DF

SBS Q. 1 Bl. J, Ed. BNDES - 10° andar - CEP 70076-900

Telefax: (61) 315-5314 E-mail: editbsb@ipea.gov.br

© IPEA, 2000

É permitida a reprodução deste texto, desde que obrigatoriamente citada a fonte. Reproduções para fins comerciais são rigorosamente proibidas.

SUMÁRIO

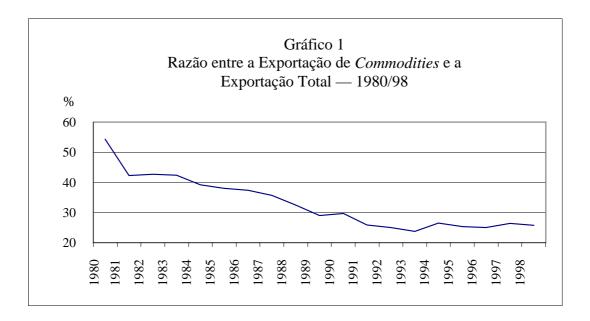
RESUMO

٨	BS'	$\mathbf{r}\mathbf{p}$	٨	\sim	Г
$\overline{}$	D'J	1 1	\boldsymbol{H}	.	ı

1 - INTRODUÇÃO
2 - O MERCADO DAS <i>COMMODITIES</i> BRASILEIRAS
3 - METODOLOGIA 8
4 - RESULTADOS
4.1 - Soja 11 4.2 - Café 12 4.3 - Açúcar 13 4.4 - Alumínio 14 4.5 - Carne Bovina 15 4.6 - Suco de Laranja 16 4.7 - Cacau 17 4.8 - Minério de Ferro 18 4.9 - Fumo 19
5 - ANÁLISE DA CAPACIDADE PREDITIVA
6 - CONCLUSÕES
APÊNDICE A
APÊNDICE B
APÊNDICE C
BIBLIOGRAFIA

RESUMO

Este trabalho estima equações para o valor exportado e o preço externo das principais *commodities* brasileiras — café, açúcar, soja, minério de ferro, carne bovina, alumínio, cacau, suco de laranja e fumo —, que representam em torno de 25% do total das exportações brasileiras. Estimam-se modelos Vetoriais Auto-Regressivos (VAR) irrestritos e modelos em diferenças restritos. Testa-se a inclusão de algumas variáveis exógenas, quais sejam, as importações dos países industrializados, a taxa Libor e a taxa de câmbio real efetiva do dólar *vis-à-vis* uma cesta de moedas. Em seguida, compara-se a capacidade preditiva de ambos os modelos. No caso do valor exportado, os modelos VAR apresentam capacidade preditiva igual ou superior à dos modelos restritos, com exceção do suco de laranja. O mesmo se repete no caso do preço externo, com exceção do ferro e do cacau.


ABSTRACT

This paper estimates equations for the value of exports and external price of the main Brazilian commodities. Those commodities are: coffee, soy, sugar, iron ore, meat, aluminum, cocoa, orange juice and tobacco, which amount to 25% of total Brazilian exports. We estimate unrestricted Vector Autoregressions (VAR) and restricted models in first differences. We test for the inclusion of a few exogenous variables, namely imports of industrialised countries, the Libor rate and the real effective exchange rate of the US dollar. Then we compare the models in terms of forecasting capacity. We find that both for the value of exports and the external prices the unrestricted VAR has a higher forecating accuracy, except for the value of exports of orange juice and for prices of iron ore and cocoa.

1 - INTRODUÇÃO

A adoção, em janeiro de 1999, do regime de câmbio flutuante criou a expectativa de uma melhoria na balança comercial brasileira, devido ao aumento das exportações e à queda das importações. Contudo, alguns especialistas tendem a afirmar que esta recuperação do saldo comercial não se dará, principalmente, pelo efeito das *commodities* sobre a exportação, já que seus preços vêm caindo no mercado internacional, atingindo um patamar de 30% nos últimos 12 meses.

Não se pode negar a importância das *commodities* na pauta de exportação brasileira. O Gráfico 1 mostra que, embora apresentando uma trajetória descendente, as principais *commodities* ainda representam, aproximadamente, 25% da exportação brasileira, tendo atingido seu ápice nos anos 70, quando representavam cerca de 70% das exportações.

Não só a participação das *commodities* na pauta exportadora tem mudado nos últimos tempos, mas também sua importância. Como mostra a Tabela 1, no período 1977/79, o café era a principal *commodity* exportada pelo país, representando 18% da pauta de exportações brasileiras. Já na década de 80, este produto passou a representar 9,5% das exportações totais, caindo para o segundo lugar, sendo ultrapassado pela soja, que passou a ser a principal *commodity*, de exportação brasileira, com 10% de participação nas exportações. Na década de 90, o café voltou a cair de importância, agora ultrapassado pelo minério de ferro, que com participação de 6,22% alcançou o segundo lugar na exportação. Neste mesmo período, a soja manteve sua posição de liderança com 8,46% na exportação total.

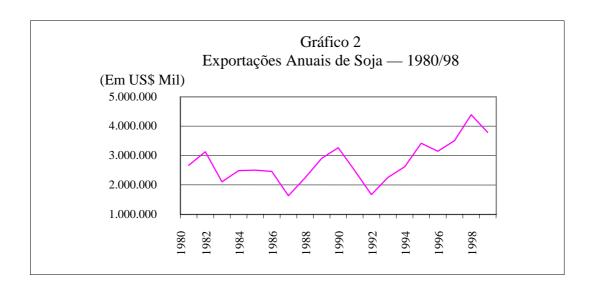
Dentre os outros produtos, cabe realçar a queda da participação do cacau, que passou de 5,81% no período 1977/79 para 0,56% na década de 90. Ao contrário, o

minério de alumínio passou de uma participação ínfima de 0,10% na década de 70 para 2,99% nos anos 90.

Tabela 1 **Participação das** *Commodities* **na Exportação Total**

(Em %)

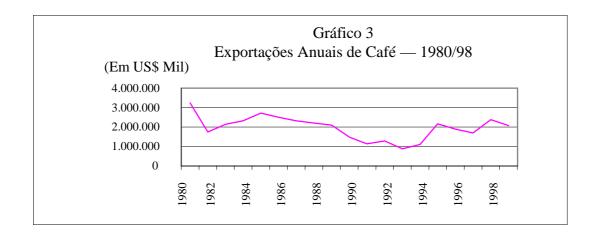
	1977/79	1980/89	1990/98
Soja	13,42	10,00	8,46
Cacau	5,81	2,39	0,56
Café	18,18	9,50	4,60
Suco de Laranja	1,98	3,11	2,76
Minério de Ferro	8,05	6,95	6,22
Açúcar	3,04	2,48	2,52
Frango	0,38	1,03	1,39
Bovino	1,35	1,84	1,26
Fumo	1,80	1,70	1,87
Minério de Alumínio	0,10	1,62	2,99
Total	54,12	40,62	32,63

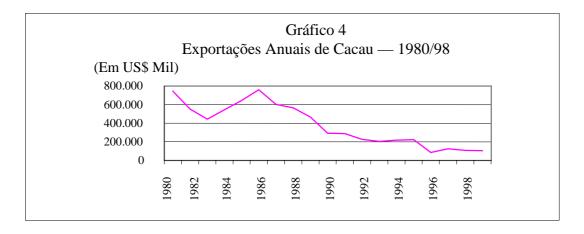

O trabalho tem como objetivo estimar as equações para o valor exportado e o preço das principais *commodities* brasileiras, e está estruturado da seguinte forma: a Seção 2 analisa os mercados das principais *commodities* brasileiras; a Seção 3 apresenta a metodologia adotada no trabalho; em seguida, na Seção 4, são apresentados os resultados das estimações das equações de valor exportado e de preço; já na Seção 5 é feita uma análise da capacidade preditiva dos modelos; e na Seção 6 estão as conclusões do trabalho.

2 - O MERCADO DAS COMMODITIES BRASILEIRAS

Atualmente, a principal *commodity* de exportação brasileira é a soja. Até a segunda metade da década de 60, o mercado de soja, que abrange grão, farelo e óleo, foi amplamente dominado pelos Estados Unidos, que produziam mais de 80% da soja mundial. Com o aumento das cotações internacionais, países como Brasil e Argentina passaram a exercer um importante papel nas exportações mundiais. Nos dias de hoje, o Brasil ocupa a segunda posição no mercado mundial da soja, com os Estados Unidos mantendo sua posição de liderança. Segundo o relatório anual do Departamento de Agricultura dos Estados Unidos (Usda), a safra de 1998/99 norte-americana foi de 79,87 milhões de toneladas e a brasileira de 31 milhões.

O grão e o farelo da soja são utilizados em sistemas de criação como ração para os animais em países desenvolvidos, tendo seu mercado caracterizado por uma demanda estável no tempo. O óleo de soja, ao contrário, tem como principais demandantes no mercado internacional as nações subdesenvolvidas sendo usado como fonte energética e por isso apresenta demanda com maior instabilidade.

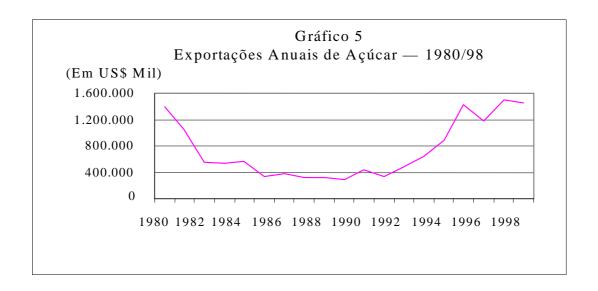

O Gráfico 2 mostra que a soja brasileira passou durante a década de 80 um período de arrefecimento do crescimento do valor exportado, causado, dentre outros motivos, pela ocorrência de quebras de safra devido a razões climáticas, à adoção de cotas de exportação para manter a estabilidade interna de preços e ao declínio dos preços internacionais. Já o final da década marcou uma recuperação no valor exportado com um aumento dos preços internacionais e o desenvolvimento de novas áreas de cultivo, principalmente no cerrado brasileiro.



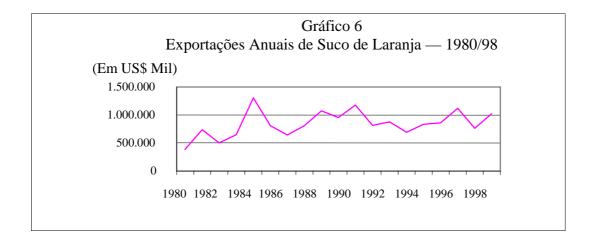
Embora tenha caído de importância como *commodity* de exportação brasileira, o Brasil continua sendo o principal produtor mundial de café. A participação brasileira no mercado caiu de quase 50% em 1950 para menos de 30% nos dias atuais (27% em 1998). O Gráfico 3 mostra que, durante a década de 80, houve um declínio progressivo do valor exportado de café. Segundo Melo, Santana e Alves (1994), o Acordo Internacional de Café (AIC) foi a principal causa desta queda, pois o estabelecimento de quotas para as exportações dos países signatários não permitiu que o país pudesse aproveitar os períodos de alta no mercado internacional. Além disso, o Brasil foi cedendo ano a ano sua participação nas exportações mundiais, a fim de manter o acordo, que foi rompido, porém, em 1989. Conseqüentemente, na década de 90 observa-se uma recuperação da cultura cafeeira. Hoje, o Brasil tenta dar mais dinamismo à Organização Internacional de Comércio (OIC) com maior integração entre produtores e consumidores e entre o setor público e a iniciativa privada.

Dentre todas as *commodities* brasileiras, o cacau é a que apresentou a maior queda relativa no valor exportado nas últimas décadas. Desde 1985, como se observa no Gráfico 4, a cultura cacaueira passa por uma séria crise. São inúmeras as causas para o fato. Internamente, os cacaueiros do sul da Bahia, principal região produtora no país, foram assolados por pragas como "vassoura-de-bruxa" e "podridão-parda". O clima adverso no período 1986/89 provocou a queda da produção e o endividamento dos produtores. Externamente, houve uma queda dos

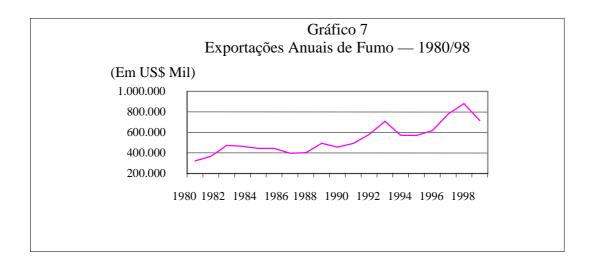
preços internacionais devido ao excesso de oferta ocasionado pelo surgimento de novos países produtores, principalmente no Sudeste Asiático. Além disso, a estrutura do mercado internacional de cacau confere o mais alto grau de ciclos de baixa renda dentre todas as *commodities*.



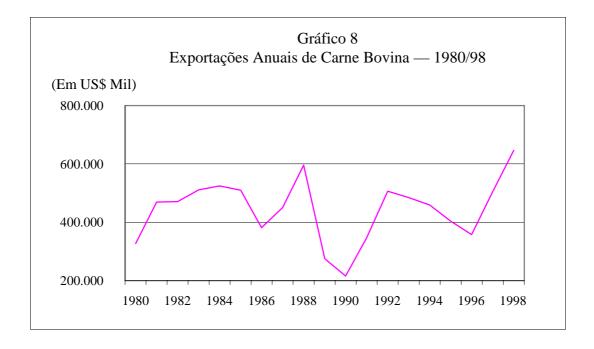
O mercado internacional de açúcar apresenta algumas características diferentes dos outros produtos. Primeiramente, a maior volatilidade-preço dentre todas as *commodities*; além disso, uma grande dependência na produção e na comercialização com relação às políticas governamentais.

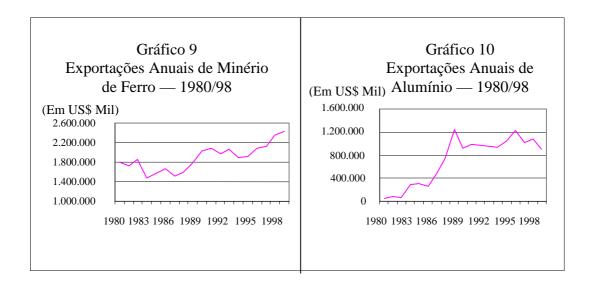

O açúcar produzido nos países desenvolvidos (em geral da beterraba) é fortemente subsidiado e sujeito a políticas protecionistas de controle de produção e preços. Por outro lado, a produção dos países em desenvolvimento (a partir da cana) em geral está sujeita à taxação doméstica, às BNT e às cotas tarifárias dos países desenvolvidos. Além disso, países como o Brasil regulam o mercado interno com o objetivo de incentivar as destilarias a preencher suas cotas na produção de álcool destilado. A estrutura do mercado de açúcar inclui mercados controlados: os Acordos Internacionais do Açúcar (AIA), que visam à estabilidade de preços através da formação de estoques reguladores e fixação de cotas de exportação; os mercados preferenciais e garantidos; e o Mercado Livre Mundial, atualmente

representando a maior parcela do mercado mundial. Por fim, não se deve desprezar o avanço dos adoçantes alternativos nos mercados desenvolvidos (a participação do açúcar neste mercado teria caído de 79% em 1970 para 41% em 1988).


O Brasil é o maior produtor mundial de cana-de-açúcar. O Gráfico 5 mostra que até 1992 houve uma queda do valor exportado de açúcar. A causa primordial foi o aumento da demanda por álcool combustível ocasionada pelo aumento do preço do petróleo, fazendo com que o governo estabelecesse cotas de produção e inúmeros subsídios para a produção de álcool em detrimento da produção açucareira. A partir de 1992, com a queda do preço do petróleo no mercado mundial, há uma recuperação da produção de açúcar. Observa-se que no período da safra 1991/92 a produção dividia-se em 72% para o álcool e 28% para o açúcar; já na safra 1996/97 passou a ser de 58% para o álcool e 42% para o açúcar.

O mercado de suco de laranja brasileira tem como característica básica estar voltado quase que exclusivamente para o mercado externo. O consumo de suco concentrado no mercado interno oscila de 5% a 10% da quantidade produzida. Atualmente, o Brasil é o maior supridor mundial de suco de laranja, sendo os Estados Unidos seu principal concorrente. Ao mesmo tempo, os Estados Unidos, junto com a Alemanha, são os principais importadores do suco brasileiro. Essa simultânea posição americana de concorrente e importadora de suco de laranja deve-se ao fato de o produto brasileiro ser utilizado pelos Estados Unidos para mistura ou *blend* com seus produtos devido à alta relação *brix*/acidez total do nosso suco. A exportação brasileira de suco de laranja teve um salto significativo na década de 70, atingindo um aumento de 143,3% no período 1970/75. Como mostra o Gráfico 6, a partir da década de 80, as exportações passaram a ter um comportamento oscilatório, sendo bastante dependente das geadas no estado americano da Flórida e das pressões dos agricultores americanos para adoção de um controle sobre o produto brasileiro.


A obtenção de trabalhos mais detalhados sobre o funcionamento dos mercados internacionais de fumo restringiu-se à análise dos dados, visualizados no Gráfico 7, mostrando que a cultura do fumo vem apresentando uma consistente expansão no valor exportado desde o fim da década de 80.


O mercado da carne bovina se divide em dois diferentes sistemas de cotas. Na cota Gatt, a participação de cada país não é fixada, havendo uma menor incidência de tributos, o que propicia melhores preços para o exportador. Já a cota Hilton fixa a participação de cada país no mercado exportador de carne.

A carne bovina apresentou, durante a década de 80, grande instabilidade de exportação — neste período o Brasil foi ultrapassado pela Argentina como maior fornecedor de carne para a Europa. Na década de 90, observa-se uma recuperação da exportação de carne, principalmente nos últimos anos. Hoje, o Brasil retomou a primeira posição como exportador para a Europa e, segundo dados da Secretaria de Comércio Exterior (Secex), foi o item da pauta de exportações agropecuárias de maior avanço no período pós-desvalorização. Importante realçar que, atualmente, a carne de frango apresenta um papel tão importante quanto a carne

bovina, mas a falta de uma série temporal dos dados não permite sua modelagem (ver Gráfico 8).

Os Gráficos 9 e 10 mostram o comportamento do valor exportado dos dois principais minérios de exportação brasileiros: ferro e alumínio.

O mercado de minério de ferro, caracterizado por poucos produtores e poucos consumidores, tem a maior parte das transações internacionais feita através de contratos de longo prazo. Do lado da demanda, a Europa e o Japão dominam o mercado, com as compras feitas através de organizações das indústrias.

Os contratos de longo prazo são, em geral, de um ou mais anos, com renegociação de preços semestrais. Os preços dos contratos negociados pelo Brasil e pela Austrália — os dois maiores produtores — servem de referência para os demais mercados. Muitas siderúrgicas na Europa e nos Estados Unidos estão ligadas ao desenvolvimento das minas, tanto através da integração vertical quanto de propriedade ou assistência técnica e financeira.

Além disso, o minério de ferro não é uma *commodity* homogênea com relação à composição. Assim, a estrutura de preços é complexa: as vendas de diferentes qualidades de minérios requerem uma vasta faixa de preços que leve em conta estas diferenças. O preço CIF de Roterdã é o preço-base para as negociações na Europa devido ao fato de este porto ser a maior porta de entrada do produto no continente. Nos últimos tempos, o excesso de oferta mundial do produto e a competição entre os exportadores de minério de ferro têm levado a uma substituição dos contratos de longo prazo por negociações em contratos com preço *spot*.

O alumínio pode ser considerado o principal substituto do minério de ferro, sendo o metal não-ferroso mais utilizado no mundo. Atualmente, o Brasil é o quinto maior produtor de alumínio do mundo. A principal característica deste mercado é a presença de um pequeno número de empresas produtoras e um grande número de consumidores, devido ao alto custo de produção, principalmente no que se refere à utilização da energia elétrica, o que exige uma alta escala de produção. Além disso, o mercado de alumínio é muito sensível às flutuações econômicas, pois é utilizado como fator intermediário na produção de bens. Logo uma diminuição na produção de bens de consumo imediatamente é sentida no mercado de alumínio. O Gráfico 10 mostra um grande salto na exportação brasileira de alumínio na década de 80, cuja causa foi identificada como sendo a alta do preço do produto no mercado internacional. A composição das exportações brasileiras de alumínio, segundo a Associação Brasileira de Alumínio (Abal), é constituída de alumínio primário e ligas (87,34%), produtos semi-elaborados e manufaturados (9,03%) e sucata (3,62%).

3 - METODOLOGIA

A análise econométrica adotada consiste das seguintes etapas:

- Inicialmente, faz-se o teste de raiz unitária das séries utilizadas. O teste utilizado foi o de Dickey-Fuller Aumentado (ADF) com e sem a inclusão de tendência determinística. Os testes são realizados, pois a presença de raiz unitária altera a conclusão sobre alguns deles e permite outras formas de modelagem.
- Estima-se um VAR (forma reduzida) irrestrito, com preço e valor exportado endógenos e as demais variáveis exógenas. Nesta etapa, busca-se encontrar uma especificação congruente com os dados, partindo de uma ordem de

defasagens de dois anos (sete defasagens), reduzindo-as seqüencialmente. O número de defasagens escolhido é o que minimiza os critérios de informação de Schwarz e Hannan-Quinn, sujeito à restrição de que os resíduos não sejam autocorrelacionados.

- Em seguida, são realizados testes de precedência temporal (Causalidade de Granger) para avaliar a possibilidade de se excluir variáveis exógenas. Devese ressaltar que, no caso de variáveis integradas, a verdadeira distribuição do referido teste não é uma qui-quadrado. Porém, dado num mesmo ponto da distribuição, os *p*-valores da distribuição verdadeira são maiores do que os da qui-quadrado. Assim, pode-se confiar na distribuição qui-quadrado caso não se rejeite a hipótese nula (exclusão das exógenas), mas, no caso de rejeição, a inferência não é válida [ver Toda e Phillips (1994)].
- Uma vez definida a especificação do VAR (número de defasagens e variáveis exógenas incluídas), testa-se para co-integração.
- Estima-se, então, um sistema nas primeiras diferenças, com ou sem termo de correção de erros. Testam-se, seqüencialmente, restrições sobre a dinâmica. Utiliza-se um teste de sobreidentificação para se observar a validade das restrições impostas ao modelo. O teste compara a verossimilhança do modelo restrito com o sistema (no caso, um VAR em diferenças). Adicionalmente, aplicam-se testes de diagnóstico para avaliar a congruência do modelo restrito.
- Por fim, compara-se a capacidade preditiva do modelo restrito com a do VAR irrestrito, através da análise do coeficiente de Theil (Theil-U). Daí resultam recomendações sobre o melhor modelo para a previsão das exportações das commodities.

Todas as especificações adotadas incluem o valor exportado e os preços internacionais da *commodity* como variáveis endógenas e um conjunto de variáveis composto pela taxa de juros Libor, a taxa de câmbio real efetiva do dólar em relação a uma cesta de moedas e as importações dos países industrializados como exógenas. A utilização dos preços internacionais em dólar assume a validade da paridade entre os preços domésticos e os externos. Estudos como o de Cavalcanti e Ribeiro (1998) demonstram que, para a estimação de equações de exportação de produtos básicos, a taxa de câmbio não explica o valor exportado, o que valida a utilização dos preços internacionais.

A taxa de juros Libor reflete o custo de oportunidade da manutenção de estoques, variável de grande importância no contexto dos mercados de *commodities*, Palaskas e Varangis incluem variáveis de taxa de juros a fim de explicar o comportamento de longo prazo do mercado de *commodities*. A taxa de câmbio real efetiva do dólar afeta diretamente o preço internacional das *commodities*, em geral com denominação em dólares americanos. Desta maneira, uma valorização do dólar encarece o valor das *commodities*. Já a importação dos países

industrializados é uma *proxy* para o nível da demanda internacional pelas *commodities*, afetando tanto o preço quanto o volume exportado.

Deve-se ressaltar que as abordagens adotadas têm como objetivo estimar modelos na forma reduzida, sem a preocupação de identificar uma forma estrutural. Desta maneira, são abordagens puramente estatísticas, logo o valor estimado dos parâmetros não deve ser interpretado à luz dos fundamentos teóricos.

4 - RESULTADOS

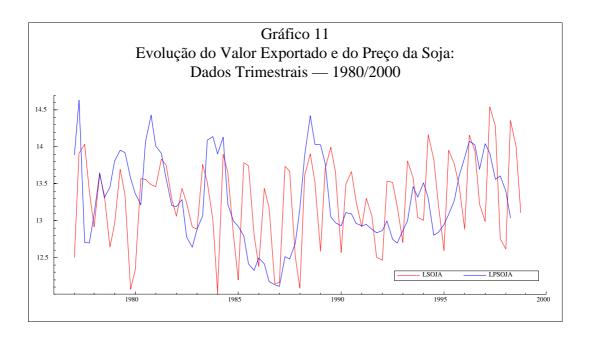
Os dados de valor exportado (US\$ FOB) por grupos de produtos foram extraídos da publicação *Balança Comercial Brasileira*, da Secex, MDIC. Estes foram deflacionados pelo IPA dos Estados Unidos. Os dados de preço externo, bem como a taxa Libor, as importações dos países industrializados e a taxa de câmbio real efetiva do dólar foram extraídos do *International Financial Statistics* (IFS), do FMI.¹

A Tabela 2 apresenta os resultados para o teste ADF de raiz unitária para valor e preço das *commodities* de exportações brasileiras. O teste foi realizado com e sem a inclusão de uma tendência linear, mas ambos com a inclusão de uma constante. Para a maioria dos casos, os resultados sugerem a não-estacionariedade das variáveis. Somente houve rejeição para o caso do preço da soja, mas observando que com a inclusão da tendência o teste não rejeita a existência de raiz unitária, esta é tratada também como uma variável com raiz unitária.

Tabela 2 **Resultados do Teste de Raiz Unitária**

C Pr	Valor		Preço	1
Commodity	ADF (c)	ADF (c, t)	ADF (c)	ADF (c, t)
Soja	-2,623 (4)	-3,411 (4)	-3,462 (3)*	-3,064 (3)
Cacau	-0,753 (4)	-2,723 (4)	-1,378 (2)	-1,425 (2)
Café	-2,122 (2)	-2,087 (2)	-2,684 (3)	-2,762 (3)
Suco de Laranja	-2,750 (3)	-3,234 (3)	-3,183 (4)	-3,210 (4)
Minério de Ferro	-2,486 (2)	-2,452 (6)	-2,818 (4)	-2,824 (4)
Açúcar	-0,856 (3)	-2,190 (3)	-2,588 (3)	-3,043 (1)
Bovino	-2,602 (2)	-3,265 (4)	-2,213 (5)	-2,402 (5)
Fumo	-2,620 (4)	-3,102 (4)	-2,546 (1)	-2,799 (5)
Alumínio	-1,872 (2)	-1,727 (5)	-2,677 (2)	-2,712 (1)

Obs.:ADF (c) e ADF (c, t) significam, respectivamente, os resultados do teste ADF com constante e com constante e tendência determinística. Os resultados indicam os valores críticos do teste segundo Mackinnon e a ordem de defasagens do teste. Maiores explicações, ver Doornik e Hendry (1992).


_

^{*} Denota estatística significativa a 5%.

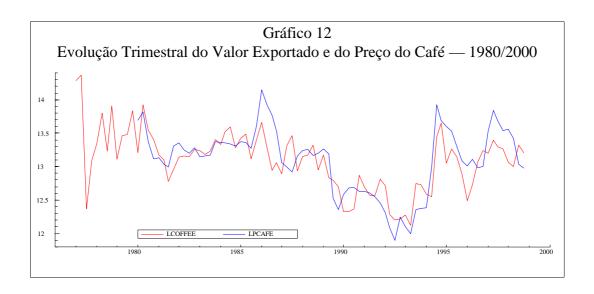
O Apêndice A contém uma descrição detalhada dos dados, inclusive a notação das variáveis utilizadas.

4.1 - Soja

O Gráfico 11 mostra a evolução trimestral do valor exportado e dos preços da soja. Especifica-se um VAR com quatro defasagens, a partir da metodologia definida. Incluem-se no sistema, além de *dummies* sazonais determinísticas, as seguintes variáveis *dummies*: 82q2, 84q1, 93q3, 91q4, 97q4.

Os testes de precedência apresentados na Tabela 3 mostram que na equação de exportação o preço não é significativo. Esse fato pode ser explicado pelo controle exercido nas exportações de soja na década de 80.

Por outro lado, os testes mostram que todas as variáveis exógenas são significativas na primeira e/ou segunda defasagem. Já na equação de preço, a exportação parece ser apenas marginalmente significativa, o que implica ser o Brasil um tomador de preços no mercado mundial. Também a taxa de câmbio real efetiva do dólar não foi significativa, de acordo com os testes de precedência.


Tabela 3 Soja: Testes de Precedência Temporal — 1980(1)/1998(2)

H ₀ : X Não Causa Y	Equação	(Y)
Variável (X)	Valor	Preço
Valor	-	3.7744 [0,4374]
Preço	1.894 [0,7553]	-
Importações dos Países Industrializados	12.104 [0,0166]*	11.642 [0,0202]*
Taxa de Câmbio Real Efetiva do Dólar	11.65 [0,0202]*	7.8582 [0,0969]
Taxa Libor	10.77 [0,0293]*	10.178 [0,0375]*

^{*} Denota estatística significativa a 5%.

4.2 - Café

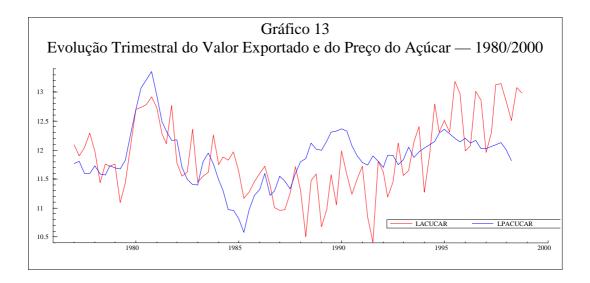
O Gráfico 12 mostra a evolução trimestral do logaritmo do valor exportado pelo Brasil e do preço do café no mercado internacional. Os critérios de informação utilizados mostram que o VAR do café deve ter seis defasagens. Quando eliminamos mais defasagens, os resíduos apresentam autocorrelação serial. O sistema inclui duas variáveis *dummies*, para o terceiro trimestre de 1990 e 1994, que captam efeitos do Plano Collor e do Plano Real.

Analisando a Tabela 4, os testes de precedência sugerem que não se deve descartar *a priori* nenhuma variável da equação do valor exportado. Os resultados do VAR, no Apêndice, mostram que os preços defasados do café são altamente significativos na equação do valor exportado; as importações mundiais são significativas apenas na quinta e na sexta defasagens; a Libor, por sua vez, apresenta um efeito contemporâneo positivo; e o câmbio real efetivo do dólar tem um efeito negativo bastante defasado.

Tabela 4
Café: Testes de Precedência Temporal — 1982(2)/1998(3)

H ₀ : X Não Causa Y	Equação(Y)		
Variável(X)	Valor	Preço	
Valor	-	25.014 [0,0003]**	
Preço	38.81[0,0000]**	-	
Importações dos Países Industrializados	13.032 [0,0425]*	9.6137 [0,1419]	
Taxa de Câmbio Real Efetiva do Dólar	14.567 [0,0239]*	7.333 [0,2911]	
Taxa Libor	21.33 [0,0016]**	12.53 [0,0511]	

Obs.: Estatísticas qui-quadrado com seis graus de liberdade.


^{*} e ** Denotam, respectivamente, estatísticas significativas a 5% e 1%.

Além disso, os testes também sugerem que não podemos excluir as exportações brasileiras da equação do preço, corroborando a idéia de que o Brasil afeta o preço internacional do café. De fato, os coeficientes das exportações brasileiras na equação do preço externo (ver Apêndice B) são altamente significativos. Dentre as variáveis exógenas, apenas a Libor parece ter um efeito significativo sobre o preço do café.

Os testes de Johansen para co-integração (não-reportados) apontam a existência de um único vetor (1;-0,9), que é incluído no VAR em diferenças (VECM).

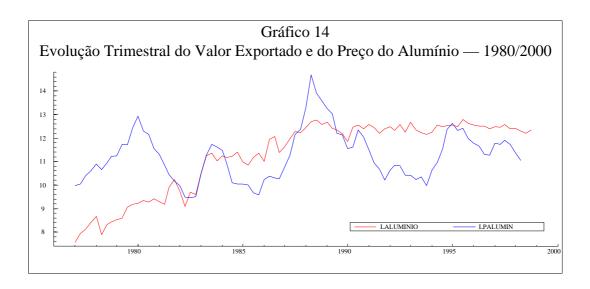
4.3 - Açúcar

O Gráfico 13 mostra a evolução do logaritmo do valor exportado e do preço do açúcar. A especificação do VAR escolhido inclui sete defasagens. Este fato corrobora a observação de alguns autores que afirmam que o mercado de açúcar é um dos de maior tempo de resposta a alterações de mercado.

Os testes de diagnóstico do VAR apresentam indícios de autocorrelação serial, difícil de ser eliminada mesmo após a inclusão de muitas defasagens (ver Apêndice B).

Os testes de precedência temporal apresentados na Tabela 5 sugerem que os preços do açúcar não precedem as exportações do produto e vice-versa. Além disso, os testes sugerem que as importações dos países desenvolvidos e a taxa de câmbio real do dólar precedem o preço internacional do açúcar. Preços parecem não anteceder as exportações e vice-versa. Uma vez que a Libor não se revelou significativa em ambas as equações, optamos por excluí-la do sistema. Os testes de co-integração apontam a existência de um vetor de co-integração.

Tabela 5 **Açúcar: Testes de Precedência Temporal — 1982(2)/1998(3)**


H ₀ : X Não Causa Y	Equação(Y)		
Variável(X)	Valor	Preço	
Valor	-	4.7469 [0,6908]	
Preço	9.7569 [0,2028]	-	
Importações dos Países Industrializados	10.425 [0,1658]	14.699 [0,0401]*	
Taxa de Câmbio Real Efetiva do Dólar	11.203 [0,1300]	14.87 [0,0377]*	
Taxa Libor	6.6137 [0,4702]	9.6382 [0,2100]	

Obs.: * Denota estatística significativa a 5%.

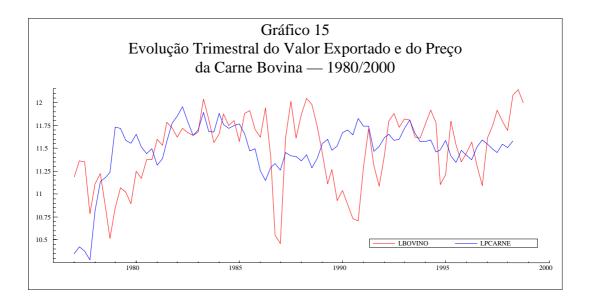
Os índices de Theil-U, apresentados na tabela, são maiores que 1 para ambas as equações de preço, restrita e irrestrita. Este resultado sugere que ambos os modelos são piores para previsão do que um simples passeio aleatório. De fato, as peculiaridades do processo de formação de preços do açúcar implicam que as variáveis ditas exógenas em nossa análise não acrescentam informação que melhore as previsões do preço do produto.

4.4 - Alumínio

O Gráfico 14 apresenta a evolução do logaritmo do valor das exportações e do preço externo do alumínio.

De acordo com os testes apresentados na Tabela 6, não se pode afirmar que as exportações brasileiras de alumínio não afetam o preço externo do produto. Os testes de precedência sugerem-nos que poderíamos descartar a taxa de câmbio real efetiva do dólar em ambas as equações. Porém, quando o fazemos, o sistema apresenta problemas de autocorrelação serial, que podem estar indicando má especificação. Por isso, opta-se por manter a taxa de câmbio real efetiva do dólar.

O vetor de co-integração estimado se assemelha a uma relação de demanda de longo prazo, uma vez que as exportações em valor são tanto maiores quanto menores forem os preços internacionais.


Tabela 6 **Alumínio: Testes de Precedência Temporal — 1982(2)/1998(3)**

H ₀ : X Não Causa Y	Equaçã	Equação(Y)		
Variável(X)	Valor	Preço		
Valor	-	15.423 [0,0309]*		
Preço	29.12 [0,0001]**	-		
Importações dos Países Industrializados	7.987 [0,3337]	14.888 [0,0375]*		
Taxa de Câmbio Real Efetiva do Dólar	8.873 [0,2619]	11.945 [0,1024]		
Taxa Libor	20.12 [0,0053]**	5.9231 [0,5488]		

Obs.: As estatísticas têm distribuição qui-quadrado com sete graus de liberdade. Os valores entre colchetes são os p-valores da estatística sob H_0 .

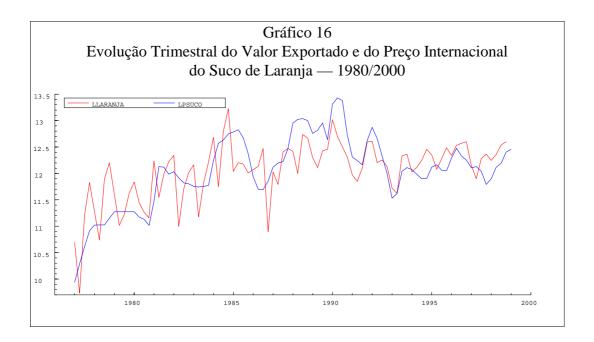
4.5 - Carne Bovina

O Gráfico 15 apresenta o logaritmo das exportações e do preço externo de carne bovina.

Inicialmente, estima-se um VAR com quatro defasagens. Neste caso, os testes de precedência mostram que podem excluir a Libor do sistema. Após a exclusão daquela variável, estima-se o VAR novamente. Os testes de precedência temporal apresentados na Tabela 7 mostram que, na equação das exportações, podem-se excluir os preços. Na equação dos preços, podem-se excluir as exportações e as importações dos países industrializados.

^{*} e ** denotam, respectivamente, estatísticas significativas a 5% e 1%.

Tabela 7


Carne Bovina: Testes de Precedência Temporal — 1982(2)/1998(3)

H ₀ : X Não Causa Y	Equação(Equação(Y)		
Variável(X)	Valor	Preço		
Valor	-	3.4777 [0,4813]		
Preço	6.2644 [0,1803]	-		
Importações dos Países Industrializados	16.508 [0,0024]**	8.0064 [0,0913]		
Taxa de Câmbio Real Efetiva do Dólar	12.045 [0,0170]*	12.415 [0,0145]*		

Obs.: As estatísticas têm distribuição qui-quadrado com três graus de liberdade. Os valores entre colchetes são os p-valores da estatística sob H_0 .

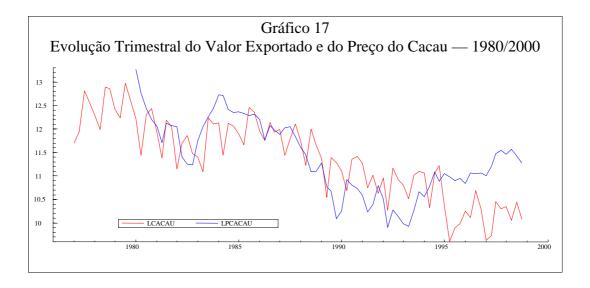
4.6 - Suco de Laranja

O Gráfico 16 apresenta o logaritmo das exportações e do preço externo do suco de laranja.

Os testes de precedência apresentados na Tabela 8 revelam que as exportações brasileiras de suco de laranja não precedem os preços externos do produto. Na equação do valor, as variáveis exógenas são apenas marginalmente significativas. Na equação do preço externo, somente as importações dos países industrializados revelam-se significativas; a taxa de câmbio real efetiva do dólar parece ser marginalmente significativa, e a Libor, não-significativa. Decidiu-se excluir apenas a taxa Libor do sistema.

^{*} e ** Denotam, respectivamente, estatísticas significativas a 5% e 1%.

Tabela 8 **Suco de Laranja: Testes de Precedência Temporal — 1982(1)/1998(3)**


H ₀ : X Não Causa Y	Equação	Equação(Y)		
Variável(X)	Valor	Preço		
Valor	-	1.486 [0,8291]		
Preço	14.017 [0,0072]**	-		
Importações dos Países Industrializados	8.2152 [0,1448]	13.79 [0,0170]*		
Taxa de Câmbio Real Efetiva do Dólar Taxa Libor	9.4967 [0,0908] 9.735 [0,0831]	9.6525 [0,0857] 3.7071 [0,5923]		

Obs.: As estatísticas têm distribuição qui-quadrado com 4/5 graus de liberdade. Os valores entre colchetes são os p-valores da estatística sob H_0 .

A estimação do VAR, apresentada no Apêndice B, aponta uma sensibilidade muito elevada das exportações em relação às importações dos países industrializados, indicando uma elasticidade-renda da demanda por suco de laranja bastante elevada. A taxa de câmbio real efetiva defasada afeta positivamente o preço do suco de laranja, isto é, quando o dólar se desvaloriza, o preço do suco em dólares aumenta.

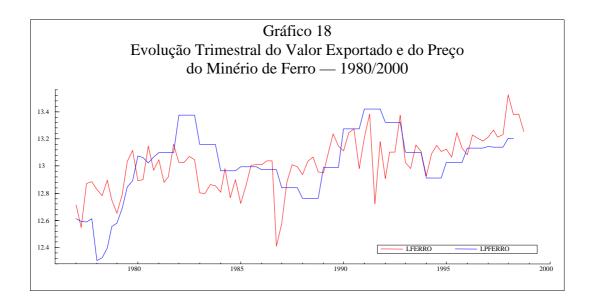
4.7 - Cacau

O Gráfico 17 apresenta a evolução do valor das exportações e do preço externo do cacau. Nota-se uma tendência declinante no valor exportado, decorrente de perturbações na oferta, associadas a pragas, especialmente após 1995.

Os testes de precedência na Tabela 9 mostram que, dentre as variáveis exógenas, apenas a taxa de câmbio real efetiva do dólar não pode ser excluída do sistema sem perda de informação. Portanto, a especificação final do VAR inclui apenas esta variável exógena. Em particular, a equação do preço, tanto para o VAR

^{*} e ** Denotam, respectivamente, estatísticas significativas a 5% e 1%.

quanto para o modelo em diferenças, apresenta um Theil-U maior que 1, mostrando que o modelo é muito ruim para a previsão dos preços.


Tabela 9 **Cacau: Testes de Precedência Temporal — 1981(1)/1998(3)**

H ₀ : X Não Causa Y	Equação(Y)		
Variável(X)	Valor	Preço	
Valor	-	0.64102 [0,9584]	
Preço	15.064 [0,0046] **	-	
Importações dos Países Industrializados	1.5046 [0,8258]	6.72 [0,1514]	
Taxa de Câmbio Real Efetiva do Dólar Taxa Libor	12.439 [0,0144] * 7.7349 [0,1018]	4.4868 [0,3441] 6.005 [0,1988]	

Obs.: As estatísticas têm distribuição qui-quadrado com quatro graus de liberdade. Os valores entre colchetes são os p-valores da estatística sob H_0 .

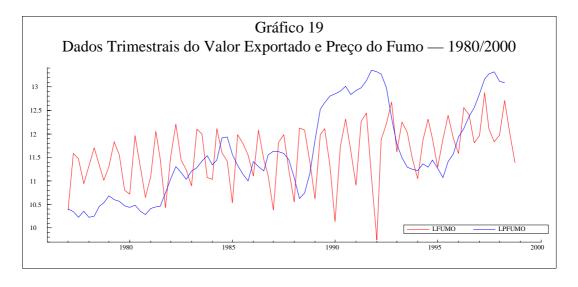
4.8 - Minério de Ferro

O Gráfico 18 apresenta a evolução do logaritmo do valor exportado e do preço externo do minério de ferro.

A estimação do modelo VAR aponta resultados consistentes com as características deste mercado. Valores exportados e preços parecem não apresentar qualquer precedência mútua. Isto pode ser explicado pelo fato de os contratos de longo prazo definirem preços e quantidades simultaneamente. O valor exportado parece responder significativamente a flutuações na demanda internacional, cuja *proxy* são as importações dos países industrializados.

^{*} e ** Denotam, respectivamente, estatísticas significativas a 5% e 1%.

Os testes de precedência apresentados na Tabela 10 mostram, de fato, que poderíamos eliminar todas as variáveis na equação do valor, com exceção das importações dos países industrializados. Já na equação dos preços, a Libor é a única variável significativa.


Tabela 10 Minério de Ferro: Testes de Precedência Temporal — 1979(4)/1998(2)

H ₀ : X Não Causa Y	Equaç	Equação(Y)		
Variável(X)	Valor	Preço		
Valor	-	1.1249 [0,7711]		
Preço	0.96503 [0,8097]	-		
Importações dos Países Industrializados	23.258 [0,0001]**	8.9657 [0,0620]		
Taxa de Câmbio Real Efetiva do Dólar	4.0631 [0,3975]	3.6677 [0,4528]		
Taxa Libor	7.3172 [0,1200]	13.708 [0,0083]**		

Nota: A estatística do teste segue uma distribuição Chi^2(3) para valor e preço e Chi^2(4) para as demais variáveis. A hipótese nula do teste é que todos os coeficientes das variáveis defasadas sejam iguais a zero.

4.9 - Fumo

O Gráfico 19 apresenta a evolução do logaritmo do valor exportado e do preço externo do fumo.

Os testes de precedência, apresentados na Tabela 11, mostram que as variáveis exógenas parecem não acrescentar informação para prever as exportações de fumo. Apenas o preço externo do fumo parece ser marginalmente significativo na equação do valor exportado. Assim sendo, tenta-se estimar um VAR bivariado, com as variáveis de exportação e preço externo, apenas. Contudo, o sistema apresenta autocorrelação serial e não-normalidade, o que indica problemas na especificação do sistema, provavelmente decorrentes da omissão de variáveis

^{**} Denota estatística significativa a 1%.

relevantes. Tal como já assinalado, há dificuldade em se analisar as condicionantes do mercado internacional do fumo.

Tabela 11 **Fumo: Testes de Precedência Temporal — 1979(4)/1998(2)**

H ₀ : X Não Causa Y	Equaçã	Equação(Y)			
Variável(X)	Valor	Preço			
Valor	-	4.4903 [0,2132]			
Preço	6.0057 [0,1113]	-			
Importações dos Países Industrializados	3.8997 [0,2725]	1.8713 [0,5995]			
Taxa de Câmbio Real Efetiva do Dólar	2.2372 [0,5247]	2.3155 [0,5096]			
Taxa Libor	2.0416 [0,5638]	3.0329 [0,3866]			

Obs.: A estatística do teste segue uma distribuição Chi^2(3). A hipótese nula do teste é que todos os coeficientes das variáveis defasadas sejam iguais a zero.

5 - ANÁLISE DA CAPACIDADE PREDITIVA

Nesta seção, compara-se a capacidade preditiva do modelo VAR com a do modelo em primeiras diferenças para cada uma das *commodities* analisadas. Adotamos como medida da capacidade preditiva de cada modelo o U de Theil (1966). Esta medida compara o erro quadrático médio do modelo em questão com o erro quadrático médio de um passeio aleatório (*random walk*).

A Tabela 12 apresenta os Theil-U das equações do valor exportado e do preço externo em nível irrestrito, e em primeiras diferenças restrito. A evidência mais clara contida na tabela é que quase sempre o modelo VAR revela-se superior em termos de capacidade preditiva. Para as equações de valor exportado, apenas o suco de laranja parece ser previsível com maior acuidade a partir do modelo restrito. Para as demais *commodities*, a imposição de restrições não acrescenta informação que melhore as previsões. Da mesma forma, nas equações de preço externo, apenas para o cacau e o minério de ferro as restrições traduzem-se em melhoria de capacidade preditiva. No caso dos preços do minério de ferro é evidente que a característica dos contratos de venda, de longa duração com renegociações semestrais, faz com que as restrições contenham estas informações, relevantes para a previsão dos preços externos.

Tabela 12 Comparação da Capacidade Preditiva: Theil-U VAR *versus* VECM/ Modelo em Diferenças Restritos

(Em %)

	Valor		Preço		
	VAR	VECM	VAR	VECM	
Café	20,85	40,38	32,82	36,81	
Açúcar	32,39	47,60	110,88	118,60	
Alumínio	81,77	116,16	71,89	70,66	
Bovinos	60,53	57,47	57,34	79,49	
Cacau	39,74	49,37	125,33	102,77	
Ferro	62,25	105,03	110,28	54,46	
Soja	15,82	24,75	62,06	67,37	
Suco de Laranja	96,54	88,61	81,24	81,19	

6 - CONCLUSÕES

Os resultados encontrados induzem às seguintes conclusões sobre os modelos de previsão para a exportação das principais *commodities* brasileiras:

- Apenas no caso do café e do alumínio, as exportações brasileiras defasadas não se revelaram não-significativas na equação do preço internacional. Para as demais variáveis, as exportações brasileiras parecem não preceder (causar no sentido de Granger) os preços internacionais.
- As commodities cujos mercados mundiais estão ou estiveram sujeitos à intervenção governamental ou privada por parte dos países produtores e/ou consumidores apresentaram modelos de preço internacional com problemas de diagnóstico, devido à incapacidade de o conjunto de variáveis escolhido explicar a dinâmica dos preços. Isto é claramente observável no caso do preço internacional do açúcar e aparentemente nos preços do cacau e do minério de ferro. A capacidade preditiva medida pelo Theil-U desses modelos é bastante pobre, mesmo após a imposição de restrições.
- O teste de sobreidentificação para a imposição de restrições sobre o VAR em diferenças revelou-se inapropriado, visto que, sem exceção, todos os modelos restritos apresentaram resíduos autocorrelacionados.
- A comparação do Theil-U do VAR irrestrito com os modelos em diferenças restritos revela que o primeiro sempre apresenta capacidade preditiva superior (isto é, um Theil-U menor) ao segundo, com exceção dos casos do valor exportado do suco de laranja e dos preços internacionais do cacau e do minério de ferro.

APÊNDICE A

Variável	Notação*	Descrição	Fonte
Importação dos Países Industrializados	MWIND	US\$ mil	IMF-IFS
Taxa Libor	LIBOR	%/ano	IMF-IFS
Taxa de Câmbio Real Efetiva do Dólar	USEER	Índice 1990=100	IMF-IFS
Preço da Carne	PCARNE	US\$ cents per pound	IMF-IFS
Preço da Soja	PSOJA	US\$ per metric ton,DLR/MT SOYBEANS,#2BULK CIFRTR	IMF-IFS
Preço do Açúcar	PACUCAR	R SUGAR CARIBBEAN (N.Y.)90=100	IMF-IFS
Preço do Minério de Ferro	PFERRO	DLR/MT IRON ORE CIF NSEA PRTS	IMF-IFS
Preço do Café	PCAFÉ	Brasil - US\$ milhões	IMF-IFS
Preço do Alumínio	PALUM	ALUMINUM CANADA/UK, 1990=100	IMF-IFS
Preço do Cacau	PCACAU	US\$/ton.curta	IMF-IFS
Preço do Fumo	PFUMO	US\$ TOBACCO –US\$ cents per pound	IMF-IFS
Preço do Suco de Laranja	PSUCO	Frozen Orange Juice, PPI – US\$ – index number	
IPA dos Estados Unidos	IPAUS	Index number – 1990=100	IMF-IFS
Valor da Exportação			
Soja	SOJA		
Açúcar	ACUCAR		
Café	CAFE		
Cacau	CACAU		
Minério de Ferro	FERRO	US\$ FOB	Secex
Alumínio	ALUM		
Carne Bovina	BOV		
Fumo	FUMO		
Suco de Laranja	SUCO		

^{*} As variáveis precedidas por DL denotam a primeira diferença do logaritmo.

APÊNDICE B

Modelos VAR

B1) VAR - CAFÉ

The present sample is: 1982 (1) to 1998 (3)

URF Equation 1 for LCOFFEE							
Variable	Coefficient	Std.Error	t-value	t-prob			
LCOFFEE_1	0,394410	0,171290	2,303	0,0289			
LCOFFEE_2	-0,552060	0,180210	-3,063	0,0048			
LCOFFEE_3	-0,025621	0,173880	-0,147	0,8839			
LCOFFEE_4	-0,191830	0,151870	-1,263	0,2170			
LCOFFEE_5	-0,393530	0,151620	-2,596	0,0149			
LCOFFEE_6	-0,189000	0,150920	-1,252	0,2208			
LPCAFE_1	0,771060	0,236740	3,257	0,0029			
LPCAFE_2	-0,472060	0,324630	-1,454	0,1570			
LPCAFE_3	1,370400	0,351280	3,901	0,0005			
LPCAFE_4	-0,935220	0,409170	-2,286	0,0300			
LPCAFE_5	0,824700	0,378160	2,181	0,0378			
LPCAFE_6	0,198340	0,246290	0,805	0,4274			
Constant	31,771000	13,423000	2,367	0,0251			
LMWIND4_	1,158500	1,900500	0,610	0,5471			
1							
LMWIND4_	0,860770	1,937100	0,444	0,6602			
2							
LMWIND4_	-0,356220	1,959000	-0,182	0,8570			
3							
LMWIND4_	0,242990	1,907800	0,127	0,8996			
4							
LMWIND4_	3,733600	1,994600	1,872	0,0717			
5							
LMWIND4_	-4,722200	1,456100	-3,243	0,0031			
6							
LIBOR	0,132150	0,050545	2,615	0,0142			
LIBOR_1	-0,086919	0,060708	-1,432	0,1633			
LIBOR_2	-0,021170	0,048343	-0,438	0,6648			
LIBOR_3	0,046874	0,048782	0,961	0,3448			
LIBOR_4	-0,165610	0,053303	-3,107	0,0043			
LIBOR_5	0,035553	0,051503	0,690	0,4957			
LIBOR_6	0,031213	0,028683	1,088	0,2858			
LUSEER	-1,169300	1,702500	-0,687	0,4979			
LUSEER_1	0,798160	2,231400	0,358	0,7233			
LUSEER_2	3,716200	2,214900	1,678	0,1045			
LUSEER_3	-1,802900	2,325200	-0,775	0,4446			
LUSEER_4	1,124800	2,408400	0,467	0,6441			
LUSEER_5	2,879500	2,455000	1,173	0,2507			
LUSEER_6	-5,209300	1,868100	-2,789	0,0094			
d903	-0,670610	0,259760	-2,582	0,0154			
d943	0,522740	0,231930	2,254	0,0322			
Seasonal_1	-0,143830	0,165030	-0,872	0,3909			
Seasonal_2	-0,298240	0,264060	-1,129	0,2683			
LMWIND4	-1,529700	1,554500	-0,984	0,3335			
Seasonal	-0,595850	0,281830	-2,114	0,0435			

\sigma = 0,166299 0,774346570

UKF Equati	on 2 for I	LPCAFE
Variable	Coefficient	Std,En

Variable	Coefficient	Std,Error	t-value	t-prob
LCOFFEE_1	0,2573600	0,107070	2,404	0,0231
LCOFFEE_2	-0,0762680	0,112650	-0,677	0,5039
LCOFFEE_3	0,2460600	0,108680	2,264	0,0315
LCOFFEE_4	-0,1532100	0,094928	-1,614	0,1178
LCOFFEE_5	-0,2037500	0,094772	-2,150	0,0403
LCOFFEE_6	0,0938960	0,094338	0,995	0,3281
LPCAFE_1	0,7727800	0,147980	5,222	0,0000
LPCAFE_2	-0,2779700	0,202920	-1,370	0,1816
LPCAFE_3	0,3243500	0,219570	1,477	0,1508
LPCAFE_4	-0,5187200	0,255760	-2,028	0,0522
LPCAFE_5	0,4190900	0,236380	1,773	0,0871
LPCAFE_6	-0,0184490	0,153950	-0,120	0,9055
Constant	-10,0620000	8,390200	-1,199	0,2405
_MWIND4_1	0,9711400	1,187900	0,817	0,4205
_MWIND4_2	-0,7035100	1,210800	-0,581	0,5659
_MWIND4_3	1,1012000	1,224500	0,899	0,3762
_MWIND4_4	1,8842000	1,192500	1,580	0,1253
_MWIND4_5	-1,3447000	1,246800	-1,079	0,2900
_MWIND4_6	-0,2868700	0,910150	-0,315	0,7549
LIBOR	0,0900770	0,031594	2,851	0,0081
LIBOR_1	-0,0540130	0,037947	-1,423	0,1657
LIBOR_2	-0,0063598	0,030218	-0,210	0,8348
LIBOR_3	-0,0170240	0,030492	-0,558	0,5811
LIBOR_4	-0,0436990	0,033318	-1,312	0,2003
LIBOR_5	0,0541480	0,032193	1,682	0,1037
LIBOR_6	-0,0109280	0,017929	-0,610	0,5471
LUSEER	-1,1654000	1,064200	-1,095	0,2828
LUSEER_1	0,4912500	1,394800	0,352	0,7273
LUSEER_2	0,0517260	1,384500	0,037	0,9705
LUSEER_3	0,7431300	1,453400	0,511	0,6132
LUSEER_4	1,8473000	1,505400	1,227	0,2300
LUSEER_5	-0,9956200	1,534500	-0,649	0,5218
LUSEER_6	-0,4675100	1,167700	-0,400	0,6919
d903	0,0343400	0,162370	0,211	0,8340
d943	0,8133700	0,144980	5,610	0,0000
Seasonal_1	0,0703800	0,103160	0,682	0,5007
Seasonal_2	-0,1123200	0,165050	-0,680	0,5018
LMWIND4	-1,3546000	0,971650	-1,394	0,1743
Seasona	0,0090277	0,176160	0,051	0,9595

 $sigma = 0,103948 \quad RSS = 0,3025464697$

 $loglik = 330,33162 \ log| \backslash Omega| = -9,86065 \ | \backslash Omega| =$ 5,21887e-005 T = 67 log|Y'Y/T| = -6,71374

 $R^2(LR) = 0.957015 R^2(LM) = 0.684355$

LCOFFEE:Portmanteau 8 lags= LPCAFE :Portmanteau 8 lags= LCOFFEE :AR 1- 5 F(5, 23) = LPCAFE :AR 1-5 F(5, 23) = LCOFFEE :Normality Chi^2(2)= LPCAFE :Normality Chi^2(2)= LCOFFEE :ARCH 4 F(4, 20) = LPCAFE :ARCH 4 F(4, 20) = LCOFFEE: Xi^2 F(24, 3) = LPCAFE :Xi^2 F(24, 3) = Vector portmanteau 8 lags= Vector AR 1-5 F(20, 34) =Vector normality Chi^2(4)= Vector Xi 2 F(72, 3) =

17,855 14,948 0,58582 [0,7107] 1,4239 [0,2531] 0,168 [0,9194] 0,010545 [0,9947] 0,37659 [0,8226] 0,24352 [0,9102] 0,077956 [1,0000] 0,074001 [1,0000] 40,453 1,096 [0,3961] 0,17711 [0,9963] 0,035328 [1,0000]

B2) VAR - AÇÚCAR

The present sample is: 1980 (4) to 1998 (2)

URI						URF Equation 2 for LPACUCAR			
	n 1 for LACU		. 1		Variable	Coefficient	Std,Error	t-value	t-prob
Variable	Coefficient	,	t-value	t-prob	LACUCAR_1	-0,0472050	0,063552	-0,743	0,4624
LACUCAR_1	0,2182600	0,14165	1,541	0,1321	LACUCAR_2	-0,0076200	0,067503	-0,113	0,9107
LACUCAR_2	-0,0537410	0,15046	-0,357	0,7230	LACUCAR_3	0,0070646	0,063610	0,111	0,9122
LACUCAR_3	0,2375700	0,14178	1,676	0,1025	LACUCAR_4	0,0375140	0,061340	0,612	0,5447
LACUCAR_4	0,2931100	0,13672	2,144	0,0389	LACUCAR_5	-0,0244250	0,065317	-0,374	0,7106
LACUCAR_5	0,1803900	0,14559	1,239	0,2234	LACUCAR_6	0,0801150	0,066589	1,203	0,2368
LACUCAR_6	0,1537400	0,14842	1,036	0,3072	LACUCAR_7	0,0214660	0,060496	0,355	0,7248
LACUCAR_7	-0,1243300	0,13484	-0,922	0,3627	LPACUCAR_1	0,9743200	0,171160	5,692	0,0000
LPACUCAR_1	0,3497400	0,38151	0,917	0,3654	LPACUCAR_2	-0,3227600	0,240660	-1,341	0,1883
LPACUCAR_2		0,53642	-0,650	0,5200	LPACUCAR_3	0,3433500	0,225160	1,525	0,1360
LPACUCAR_3	1,0110000	0,50187	2,014	0,0515	LPACUCAR_4	-0,5049300	0,231520	-2,181	0,0358
LPACUCAR_4	-0,8373300	0,51604	-1,623	0,1134	LPACUCAR 5	0,3119300	0,245900	1,269	0,2127
LPACUCAR_5	-0,0076435	0,54809	-0,014	0,9890	LPACUCAR 6	-0,0547290	0,228550	-0,239	0,8121
LPACUCAR_6	-0,3184300	0,50942	-0,625	0,5359	LPACUCAR_7	-0,1574600	0,151120	-1,042	0,3044
LPACUCAR_7	0,0559420	0,33683	0,166	0,8690	LUSEER	-0,6978800	1,234200	-0,565	0,5753
LUSEER	-0,6763200	2,75100	-0,246	0,8072	LUSEER 1	-1,3889000	1,750600	-0,793	0,4327
LUSEER_1	2,1863000	3,90190	0,560	0,5787	LUSEER 2	2,4680000	1,685400	1,464	0,1518
LUSEER_2	-0,9730000	3,75670	-0,259	0,7971	LUSEER_3	-0,6327600	1,597400	-0,396	0,6944
LUSEER_3	-0,0547610	3,56050	-0,015	0,9878	LUSEER_4	0,9304900	1,482900	0,627	0,5343
LUSEER_4	4,9523000	3,30540	1,498	0,1428	LUSEER 5	-1,8475000	1.423700	-1,298	0,2027
LUSEER_5	-6,8153000	3,17340	-2,148	0,0385	LUSEER 6	0.2670400	1,453400	0,184	0,8553
LUSEER_6	1,0940000	3,23960	0,338	0,7376	LUSEER 7	-0.4117400	0.959910	-0.429	0,6705
LUSEER_7	0,0299280	2,13960	0,014	0,9889	LMWIND4	-0,2359100	1,169800	-0,202	0,8413
LMWIND4	-2,0366000	2,60740	-0,781	0,4399	LMWIND4 1	-0,9684100	1,631400	-0,594	0,5565
LMWIND4_1	6,0073000	3,63630	1,652	0,1072	LMWIND4 2	1,3702000	1,677600	0,817	0,4194
LMWIND4_2	-4,9749000	3,73920	-1,330	0,1917	LMWIND4 3	0,5709100	1,592800	0,358	0,7221
LMWIND4_3	0,7451700	3,55030	0,210	0,8349	LMWIND4 4	-1,1815000	1,389500	-0,850	0,4008
LMWIND4_4	3,2139000	3,09710	1,038	0,3063	LMWIND4 5	-0,5743900	1,380800	-0,416	0,6799
LMWIND4_5	-2,4245000	3,07780	-0,788	0,4360	LMWIND4 6	1,6879000	1,370300	1,232	0,2260
LMWIND4_6	-5,6352000	3,05430	-1,845	0,0733	LMWIND4 7	-1,0104000	0,842290	-1,200	0.2381
LMWIND4_7	5,4118000	1,87740	2,883	0,0066	d971	0.0235270	0,187050	0.126	0,9006
d971	-0,7141200	0,41692	-1,713	0,0953	Seasonal	0,1859900	0,239500	0.777	0,4425
Seasonal	-1,1968000	0,53384	-2,242	0,0312	Seasonal 1	-0,1048400	0,165750	-0,633	0,5311
Seasonal_1	-0,0259580	0,36945	-0,070	0,9444	Seasonal 2	-0,0737520	0,213640	-0,345	0,7319
Seasonal_2	-0,5274900	0,47619	-1,108	0,2753	Constant	16,0200000	7,593300	2,110	0,0419
Constant	-4,6679000	16,92500	-0,276	0,7843	Constant	10,0200000	.,575500	2,110	0,0117

 $sigma = 0.325728 \quad RSS = 3.819552669$

 $\sigma = 0,146135 \quad RSS = 0,7688008127$

 $\begin{array}{l} loglik = 264,74024 \;\; log||Omega| = -7,45747 \;\; ||Omega| = 0,000577114 \;\; T = 71 \\ log|Y'Y/T| = -2,90509 \\ R^2(LR) = 0,989458 \;\; R^2(LM) = 0,882063 \end{array}$

correlation of actual and fitted LACUCAR LPACUCAR 0,93512 0,96784

B3) VAR - ALUMÍNIO

The present sample is: 1980 (4) to 1998 (2)

					URF Equation 2 for LPAI	UM		
URF Equation					Variable Coefficient	Std,Error	t-value	t-prob
Variable	Coefficient	Std,Error	t-value	t-prob	LALUM 1 -0,05080100	0,050794	-1,000	0,3258
LALUM_1	0,1174000	0,152220	0,771	0,4470	LALUM 2 -0,07724700	0,046847	-1,649	0,1103
LALUM_2	-0,1281100	0,140390	-0,913	0,3693	LALUM 3 -0,09497100	0.047053	-2,018	0,0532
LALUM_3	0,0721970	0,141010	0,512	0,6127	LALUM_4 -0,01574300	0,049580	-0,318	0,7532
LALUM_4	-0,1570700	0,148580	-1,057	0,2995	LALUM 5 -0,00510150	0,047881	-0,107	0,9159
LALUM_5	0,1014000	0,143490	0,707	0,4856	LALUM 6 0,04436100	0.047587	0,932	0,3592
LALUM_6	0,3695700	0,142610	2,592	0,0150	LALUM_7 0,13899000	0,047367	2,884	0,0075
LALUM_7	0,3406700	0,144430	2,359	0,0255	LPALUM 1 0,87056000	0,150520	5,784	0,0000
LPALUM_1	0,7895200	0,451080	1,750	0,0910	LPALUM 2 -0,01517100	0,213720	-0.071	0,9439
LPALUM_2	0,3329600	0,640470	0,520	0,6072	LPALUM 3 0,42134000	0,213720	1,940	0,9439
LPALUM_3	-0,1256400	0,650750	-0,193	0,8483	LPALUM 4 -0,37089000	0,217130	-1,658	0,0023
LPALUM_4	0,1603300	0,670300	0,239	0,8127	LPALUM 5 -0,01696700	0,223070	-0,073	0,1084
LPALUM 5	-0,1667200	0,698590	-0,239	0,8131	LPALUM 6 0,17854000	0,233120	0,726	0,4741
LPALUM 6	0.0077733	0.737340	0,011	0,9917	LPALUM_6 0,17834000 LPALUM 7 -0,29540000	0,246040	-1,841	0,4741
_	-0,7901700	0,480980	-1,643	0,1116	Constant 4,26630000	3,395000	1,257	0,0763
	-3,9663000	10,174000	-0,390	0,6996	MWIND4 1 -0,86256000	0,982890	-0,878	0,2193
LMWIND4 1		2,945500	-0,276	0,7847	MWIND4_1 -0,86236000 MWIND4 2 -0,28892000	0,982890	-0,878	0,3876
LMWIND4 2	4,6041000	2,901800	1,587	0,1238		,		0,7676
LMWIND4 3		2,641500	-0,713	0,4819	_MWIND4_3 -0,39632000	0,881450 0,813380	-0,450 0,729	0,6564
LMWIND4 4		2,437500	-0,623	0,5380	_MWIND4_4 0,59275000			
LMWIND4 5	,	2,319500	-0,864	0,3949	_MWIND4_5 -0,86851000	0,773990	-1,122	0,2713
MWIND4 6	2,1366000	2,391900	0,893	0,3793	MWIND4_6 -0,49425000	0,798160	-0,619	0,5408
LMWIND4_7	0,4161100	1,647800	0,253	0,8025	_MWIND4_7 0,51722000	0,549850	0,941	0,3549
LIBOR	0,0077515	0,059253	0,131	0,8969	LIBOR -0,01894900	0,019772	-0,958	0,3461
	-0.0142560	0.052656	-0,271	0,7886	LIBOR_1 0,00660930	0,017571	0,376	0,7096
_	-0,0089005	0,053798	-0,165	0,8698	LIBOR_2 -0,01170800	0,017952	-0,652	0,5196
_	-0,0610040	0,057342	-1,064	0,2965	LIBOR_3 0,01014400	0,019135	0,530	0,6002
LIBOR_5 LIBOR 4	0,0242180	0,062402	0,388	0,7009	LIBOR_4 -0,01653900	0,020823	-0,794	0,4337
LIBOR 5	0,0162430	0,058694	0,277	0,7840	LIBOR_5 0,00042970	0,019586	0,022	0,9827
_	-0,0491390	0,055574	-0,884	0,3841	LIBOR_6 0,02888500	0,018545	1,558	0,1306
LIBOR_5	0,1214200	0,038205	3,178	0,0036	LIBOR_7 0,00035970	0,012749	0,028	0,9777
_	-1,1767000	2,049100	-0,574	0,5704	LUSEER 0,84817000	0,683770	1,240	0,2251
LUSEER 1	0,6197800	3,019800	0,205	0,8389	LUSEER_1 -0,05038000	1,007700	-0,050	0,9605
LUSEER 2	1,9225000	2,928800	0,656	0,5169	LUSEER_2 -0,77814000	0,977330	-0,796	0,4326
LUSEER_3	0,3959400	2,932600	0,030	0,8936	LUSEER_3 -0,09428100	0,978580	-0,096	0,9239
	-3.9435000	2,932000	-1,350	0,1879	LUSEER_4 0,26160000	0,974980	0,268	0,7904
_	-1,2780000	2,755500	-0,464	0,1879	LUSEER_5 -0,17694000	0,919480	-0,192	0,8488
LUSEER_6	2,4092000	2,838100	0,849	0,4031	LUSEER_6 -1,84880000	0,947060	-1,952	0,0610
LUSEER_6 LUSEER 7	1,0766000		0,849	0,5850	LUSEER_7 1,59390000	0,650230	2,451	0,0207
_		1,948600 0,270170	-0,553	0,5850	Seasonal_1 0,16653000	0,090153	1,847	0,0753
Seasonal_1 Seasonal 2	-0,1494800 0,2570100	0,270170	-0,553 0,690	0,3843	Seasonal_2 0,27651000	0,124280	2,225	0,0343
Seasonal_2 Seasonal	0,2570100	0,372450	1,081	0,4958	Seasonal 0,24863000	0,146370	1,699	0,1005
	-,	,	-0,379		LMWIND4 1,73950000	0,620020	2,806	0,0090
	-0,7048300	1,858000		0,7073	d882 0,33752000	0,096468	3,499	0,0016
d882	0,0465630	0,289090	0,161	0,8732				

sigma = 0.205839 RSS = 1.186352448

sigma = 0.0686873 RSS = 0.1321023094

```
\begin{array}{ll} loglik = 368,49049 & log|\label{eq:comega} | -10,38 & |\label{eq:comega} | = 3,10468e-005 & T = 71 \\ log|Y'Y/T| = -6,86237 & R^2(LR) = 0,970331 & R^2(LM) = 0,781022 \\ \end{array}
```

correlation of actual and fitted LALUM LPALUM 0,99174 0,98406

LALUM :Portmanteau 8 lags= 5,1944 7,3207 LPALUM :Portmanteau 8 lags= 0,38434 [0,8543] LALUM :AR 1- 5 F(5, 23) = 0,28227 [0,9180] 1,0269 [0,5984] LPALUM :AR 1- 5 F(5, 23) = LALUM :Normality Chi^2(2)= 10,352 [0,0056] ** 0,31797 [0,8626] LPALUM :Normality Chi^2(2)= LALUM :ARCH 4 F(4, 20) = LPALUM :ARCH 4 F(4, 20) = 0,19136 [0,9401] LALUM : Xi^2 F(28, -1) = -0,047847 [0,0000] ** -0,0097251 [0,0000] ** LPALUM : $Xi^2 F(28, -1) =$ Vector portmanteau 8 lags= 27,116 Vector AR 1-5 F(20, 34) = 0,86136 [0,6307] Vector normality Chi^2(4)= 11,382 [0,0226] Vector Xi^2 Chi^2(84) = 83,785 [0,4861] Testing for vector error autocorrelation from lags 1 to 1 $Chi^2(4) = 2,477 [0,6488]$ and F-form(4,50) = 0,22374 [0,9239]

B4) VAR - CARNE BOVINA

EQ(24) Estimating the unrestricted reduced form by OLS (using commd.in7) The present sample is: 1981 (4) to 1998 (2)

URF Equation	1 for LBOVINO			
Variable	Coefficient	Std.Error	t-value	t-prob
LBOVINO_1	1.0229	0.13334	7.671	0.0000
LBOVINO 2	-0.41275	0.18381	-2.246	0.0298
LBOVINO_3	0.021180	0.18621	0.114	0.9100
LBOVINO_4	0.0072298	0.13265	0.055	0.9568
LPCARNE_1	0.16843	0.75676	0.223	0.8249
LPCARNE_2	-0.35126	0.90026	-0.390	0.6983
LPCARNE_3	1.7367	0.86372	2.011	0.0505
LPCARNE_4	-1.2318	0.67174	-1.834	0.0735
LUSEER	-3.6795	1.5442	-2.383	0.0216
LUSEER_1	7.2148	2.4008	3.005	0.0044
LUSEER_2	-0.43128	2.5666	-0.168	0.8673
LUSEER_3	-6.4452	2.8765	-2.241	0.0301
LUSEER_4	3.6958	1.7514	2.110	0.0406
LMWIND4	-3.7873	1.3414	-2.823	0.0071
LMWIND4_1	8.0402	2.1501	3.739	0.0005
LMWIND4_2	-2.1853	2.3438	-0.932	0.3562
LMWIND4_3	-5.3072	2.6400	-2.010	0.0506
LMWIND4_4	3.4057	1.5610	2.182	0.0345
d902	-0.88481	0.23891	-3.704	0.0006
Seasonal_2	-0.18772	0.23828	-0.788	0.4350
Constant	-3.1134	8.0252	-0.388	0.6999
Seasonal	-0.31982	0.24512	-1.305	0.1988
Seasonal_1	0.093791	0.14700	0.638	0.5267

\sigma = 0.208465 RSS = 1.912142366

```
URF Equation 2 for LPCARNE
Variable Coefficient
LBOVINO_1 -0.044543
LBOVINO_2 0.034672
                                                                        Std.Error t-value t-prob
0.027341 -1.629 0.1104
0.037688 0.920 0.3626
0.038181 -0.754 0.4548
LBOVINO_2
LBOVINO_3
                                          0.034672
                                           0.028792
LBOVINO_4
                                     -0.0014246
                                                                             0.027199
                                                                                                           -0.052
                                                                                                                               0.9585
LPCARNE_1
LPCARNE_2
                                       0.82373
-0.42679
                                                                                0.15517
0.18459
                                                                                                             5.309
                                                                                                                                0.0000
                                                                                                           -2.312
                                                                                                                                0.0255
LPCARNE_3
LPCARNE_4
                                        0.42865
-0.15474
                                                                                0.17710
0.13774
                                                                                                           2.420
-1.123
                                                                                                                                0.0197
                                                                                                                                0.2673
                                                                               0.13774
0.31663
0.49226
0.52626
0.58982
0.35912
0.27505
0.44087
                                                                                                                               0.1197
0.0490
0.0468
LUSEER
                                        0.50244
-0.99651
                                                                                                          1.587
-2.024
LUSEER
LUSEER_1
LUSEER_2
LUSEER_3
LUSEER_4
                                        -0.99651
1.0767
-0.33498
-0.39095
0.35468
-1.0249
1.0862
-0.53104
                                                                                                         2.046 0.0468

-0.568 0.5730

-1.089 0.2822

1.290 0.2039

-2.325 0.0248

2.260 0.0288

-0.981 0.3320

0.070 0.9449

0.343 0.7329

1.027 0.3101

3.024 0.0041

2.034 0.0480

0.217 0.8295
                                                                                                             2.046
LMWTND4
LMWIND4_1
LMWIND4_2
LMWIND4_3
                                                                  0.44087
0.48058
0.54132
0.32006
0.048987
0.048857
1.6455
0.050259
0.030141
LMWIND4_4
                                          0.022246
0.016823
d902
Seasonal_2 0.050167
Constant 4.9768
Seasonal 0.10221
Seasonal_1 0.0065302
```

\sigma = 0.0427445 RSS = 0.0803920188

correlation of actual and fitted LBOVINO LPCARNE 0.88745 0.89429

```
LBOVINO:Portmanteau 8 lags= 6.1748

LPCARNE:Portmanteau 8 lags= 7.6934

LBOVINO:AR 1-5 F(5, 39) = 1.2344 [0.3117]

LPCARNE:RAR 1-5 F(5, 39) = 1.6903 [0.1599]

LBOVINO:Normality Chi^2(2)= 0.73916 [0.6910]

LPCARNE:Normality Chi^2(2)= 1.5053 [0.4711]

LBOVINO:ARCH 4 F(4, 36) = 0.046473 [0.9957]

LPCARNE:ARCH 4 F(4, 36) = 0.59819 [0.6663]

LPCARNE:RACH 4 F(4, 36) = 0.11006 [1.0000]

LPCARNE:Xi^2 F(37, 6) = 0.2594 [0.9956]

Vector portmanteau 8 lags= 20.845

Vector AR 1-5 F(20, 66) = 0.95465 [0.5249]

Vector normality chi^2(4) = 2.2209 [0.6952]

Vector Xi^2 F(111, 12) = 0.14212 [1.0000]

Testing for vector error autocorrelation from lags 1 to 1
   1 Chi^2(4) = 3.094 [0.5422] and F-form(4,82) = 0.48951 [0.7434]
```

B5) VAR - CACAU

The present sample is: 1981 (1) to 1998 (3)

URF Equatio	n 1 for LCAC	CAU			URF Equation 2	2 for LPCACA	II		
Variable	Coefficient	Std,Error	t-value	t-prob	Variable	Coefficient	Std.Error	t-value	t-prob
LCACAU_1	0,1170300	0,13261	0,882	0,3816	LCACAU 1	0.0379790	0,058080	0,654	0,5160
LCACAU_2	-0,1338600	0,12117	-1,105	0,2744	LCACAU 2	0,0406330	0,053067	0.766	0,4473
LCACAU_3	-0,1066900	0,12159	-0,877	0,3843	LCACAU 3	-0.0200840	0.053253	-0.377	0.7076
LCACAU_4	-0,1338900	0,10424	-1,284	0,2047	LCACAU 4	0.0085216	0.045653	0,187	0,8527
LPCACAU_1	0,8228100	0,32900	2,501	0,0156	LPCACAU 1	0,8983300	0,144090	6,234	0,0000
LPCACAU_2	0,0094220	0,44648	0,021	0,9832	LPCACAU 2	-0,2521000	0,195540	-1,289	0,2030
LPCACAU_3	0,4569200	0,43820	1,043	0,3019	LPCACAU_2	0,0891430	0,193340	0,464	0,6442
LPCACAU_4	0,3107300	0,32682	0,951	0,3461	LPCACAU 4	-0.0625250	0,191920	-0,437	0,6641
LUSEER	-1,7114000	0,89820	-1,905	0,0623	LUSEER	-0.4491600	0,393380	-1,142	0,3588
LUSEER 1	2,5948000	1,39740	1,857	0,0690	LUSEER 1	0.6580400	0,593380	1.075	
LUSEER 2	-1,5400000	1,38630	-1,111	0,2718	LUSEER_1 LUSEER 2	0,3359800	0.607170	,	0,2872
LUSEER 3	-0.4828400	1,32080	-0,366	0,7162	_	- ,	-,	0,553	0,5824
LUSEER 4	1,5922000	0,89956	1,770	0,0826	LUSEER_3	-0,0875030	0,578460	-0,151	0,8803
S952	-1,3322000	0.23635	-5,636	0.0000	LUSEER_4	-0,1253100	0,393970	-0,318	0,7517
d951	-0.8891600	0.23375	-3,804	0,0004	S952	0,1335300	0,103510	1,290	0,2028
Seasonal 1	-0.4186000	0.13302	-3.147	0.0027	d951	0,1243600	0,102380	1,215	0,2300
Seasonal 2	0,3146200	0,13151	2,392	0,0204	Seasonal_1	-0,0162360	0,058260	-0,279	0,7816
Constant	0.5481900	0,82184	0,667	0,5077	Seasonal_2	0,0543820	0,057597	0,944	0,3494
Seasonal	-0.0695990	0,14126	-0,493	0,6243	Constant	0,0344310	0,359940	0,096	0,9242
Beasonai	-0,0073770	0,14120	-U, + 93	0,0243	Seasonal	-0.0163220	0.061865	-0.264	0.7930

\sigma = 0,21256 RSS = 2,349444949

sigma = 0.0930935 RSS = 0.4506527672

 $\begin{array}{l} loglik = 300,87723 \;\; log||Omega| = -8,47542 \;\; ||Omega| = 0,000208533 \;\; T = 71 \\ log|Y'Y/T| = -7,1102 \end{array}$

 $R^2(LR) = 0.744675 R^2(LM) = 0.43192$

correlation of actual and fitted LCACAU LPCACAU 0,96890 0,95619

LCACAU :Portmanteau 8 lags= 5,0412
LPCACAU :Portmanteau 8 lags= 5,281
LCACAU :AR 1 - 5 F(5, 47) = 0,2897 [0,9163]
LPCACAU :AR 1 - 5 F(5, 47) = 0,75327 [0,5879]
LCACAU :Normality Chi^2(2)= 0,98011 [0,6126]
LCACAU :Normality Chi^2(2)= 0,98011 [0,6126]
LCACAU :ARCH 4 F(4, 44) = 1,3985 [0,2502]
LCACAU :Xi^2 F(16, 35) = 0,27004 [0,9964]
LPCACAU :Xi*2 F(16, 35) = 0,78377 [0,6924]
LCACAU :Xi*3 F(44, 7) = 0,13249 [1,0000]
LPCACAU :Xi*3 F(44, 7) = 0,25432 [0,9979]
Vector portmanteau 8 lags= 25,829
Vector AR 1-5 F(20, 82) = 0,79983 [0,7066]

 $\begin{array}{lll} \mbox{Vector AR 1-5 } F(20,82) = & 0,79983 \, [0,7066] \\ \mbox{Vector normality Chi}^2(4) = & 1,3474 \, [0,8533] \\ \mbox{Vector Xi}^2 F(48,98) = & 0,44752 \, [0,9987] \\ \mbox{Vector Xi}^*Xj \ F(132,15) = & 0,1639 \, [1,0000] \\ \end{array}$

B6) VAR - MINÉRIO DE FERRO

The present sample is: 1980 (4) to 1998 (2)

URF Equation	n 1 for LFERI	RO		
Variable	Coefficient	Std,Error	t-value	t-prob
LFERRO_1	0,3020400	0,103660	2,914	0,0059
LFERRO_2	0,0690540	0,101410	0,681	0,4999
LFERRO_3	-0,1467600	0,104290	-1,407	0,1673
LFERRO_4	-0,0434610	0,098929	-0,439	0,6629
LFERRO_5	0,0689900	0,107290	0,643	0,5240
LPFERRO_1	0,5180300	0,404140	1,282	0,2075
LPFERRO_2	0,3579500	0,431330	0,830	0,4117
LPFERRO_3	-0,6761300	0,431340	-1,568	0,1251
LPFERRO_4	0,8464400	0,457180	1,851	0,0717
LPFERRO_5	-0,8560900	0,411450	-2,081	0,0441
LIBOR	-0,0170730	0,013498	-1,265	0,2134
LIBOR_1	0,0111410	0,020429	0,545	0,5886
LIBOR_2	0,0096318	0,020608	0,467	0,6428
LIBOR_3	-0,0103140	0,019065	-0,541	0,5916
LIBOR_4	0,0184310	0,017117	1,077	0,2882
LIBOR_5	-0,0206010	0,013151	-1,566	0,1253
LMWIND4	-0,9319000	0,444180	-2,098	0,0424
LMWIND4_	1,8295000	0,645520	2,834	0,0072
1				
LMWIND4_	-0,9965300	0,636070	-1,567	0,1253
2				
LMWIND4_	-0,4195200	0,632650	-0,663	0,5112
3				
LMWIND4_	1,0916000	0,629240	1,735	0,0907
4				
LMWIND4_	-0,4649600	0,428560	-1,085	0,2846
5				
D831	-0,1980500	0,127500	-1,553	0,1284
D864	-0,6308300	0,107050	-5,893	0,0000
D951	0,2342300	0,114190	2,051	0,0470
D981	0,4445900	0,103890	4,279	0,0001
D891	0,0900970	0,109720	0,821	0,4165
D913	-0,5339800	0,118160	-4,519	0,0001
Constant	6,2771000	2,609600	2,405	0,0210
Seasonal	-0,2394700	0,104390	-2,294	0,0273
Seasonal_1	-0,0028860	0,059244	-0,049	0,9614
Seasonal_2	-0,0136680	0,110350	-0,124	0,9021

sigma = 0.0917161 RSS = 0.3280616431

URF Equation	2 for LPFERRO)		
Variable	Coefficient	Std,Error	t-value	t-prob
LFERRO_1	0,019199000	0,0257300	0,746	0,4600
LFERRO_2	0,031916000	0,0251720	1,268	0,2123
LFERRO_3	-0,044702000	0,0258860	-1,727	0,0921
LFERRO_4	0,013683000	0,0245570	0,557	0,5806
LFERRO_5	0,002455300	0,0266320	0,092	0,9270
LPFERRO_1	0,839050000	0,1003200	8,364	0,0000
LPFERRO_2	-0,154290000	0,1070700	-1,441	0,1575
LPFERRO_3	-0,057456000	0,1070700	-0,537	0,5946
LPFERRO_4	0,795610000	0,1134800	7,011	0,0000
LPFERRO_5	-0,537890000	0,1021300	-5,267	0,0000
LIBOR	0,000159280	0,0033506	0,048	0,9623
LIBOR_1	-0,015674000	0,0050710	-3,091	0,0037
LIBOR_2	0,020719000	0,0051153	4,050	0,0002
LIBOR_3	9,2525 e-005	0,0047324	0,020	0,9845
LIBOR_4	0,002297600	0,0042489	0,541	0,5918
LIBOR_5	0,002341900	0,0032645	0,717	0,4774
LMWIND4	0,139830000	0,1102600	1,268	0,2122
LMWIND4_1	0,025675000	0,1602300	0,160	0,8735
LMWIND4_2	-0,262790000	0,1578900	-1,664	0,1040
LMWIND4_3	0,187050000	0,1570400	1,191	0,2408
LMWIND4_4	0,078723000	0,1561900	0,504	0,6171
LMWIND4_5	-0,105020000	0,1063800	-0,987	0,3296
D831	-0,238040000	0,0316490	-7,521	0,0000
D864	0,008045300	0,0265720	0,303	0,7637
D951	0,135570000	0,0283450	4,783	0,0000
D981	0,040770000	0,0257890	1,581	0,1220
D891	0,128190000	0,0272350	4,707	0,0000
D913	-0,006670400	0,0293300	-0,227	0,8213
Constant	-1,518300000	0,6477600	-2,344	0,0243
Seasonal	-0,004298500	0,0259120	-0,166	0,8691
Seasonal_1	0,028708000	0,0147060	1,952	0,0581
Seasonal_2	0,023558000	0,0273910	0,860	0,3950

 $sigma = 0.022766 \quad RSS = 0.02021333892$

 $loglik = 483,24755 \ log| \backslash Omega| = -13,6126 \ | \backslash Omega| = 1,22495e-$ 006 T = 71

log|Y'Y/T| = -8,2532 $R^2(LR) = 0,995296$ $R^2(LM) = 0,911547$

correlation of actual and fitted LFERRO LPFERRO 0,93097 0,98334

LFERRO :Portmanteau 8 lags=5,3691

LFERRO :Portmanteau 8 lags= 9,8104 LPFERRO :Portmanteau 8 lags= LFERRO :AR 1-5 F(5, 34) =1,1225 [0,3671] LPFERRO :AR 1- 5 F(5, 34) =1,0389 [0,4109] LFERRO :Normality Chi^2(2)=2,4071 [0,3001] LPFERRO :Normality Chi^2(2)= 8,6127 [0,0135] * LFERRO :ARCH 4 F(4, 31) =0,96099 [0,4427] 0,074925 [0,9893] LPFERRO :ARCH 4 F(4, 31) = Vector portmanteau 8 lags= 33,655 Vector AR 1-5 F(20, 56) = 0,97553 [0,5033] Vector normality Chi^2(4)= 9,6522 [0,0467] Testing for vector error autocorrelation from lags 1 to 1 $\,$

B7) VAR - SOJA

The present sample is: 1980 (1) to 1998 (2)

URF Equation	URF Equation	URF Equation 2 for LPSOJA							
Variable	Coefficient	Std,Error	t-value	t-prob	Variable	Coefficient	Std,Error	t-value	t-prob
LSOJA_1	0,402340	0,119740	3,360	0,0017	LSOJA_1	-0.0102040	0.0276040	-0,370	0,7135
LSOJA_2	-0,394620	0,126990	-3,107	0,0034	LSOJA 2	0.0539170	0,0292770	1.842	0,0726
LSOJA_3	-0,082482	0,138670	-0,595	0,5552	LSOJA 3	-0.0395080	0.0319700	-1,236	0,2234
LSOJA_4	0,301060	0,120100	2,507	0,0161	LSOJA_4	0,0167940	0,0276880	0,607	0,5474
LPSOJA_1	0,610260	0,492220	1,240	0,2219	LPSOJA 1	1,0192000	0,1134800	8,982	0,0000
LPSOJA_2	-0,541790	0,673700	-0,804	0,4258	LPSOJA 2	-0,0162000	0,1553100	-0,104	0,9174
LPSOJA_3	0,304190	0,677000	0,449	0,6555	LPSOJA 3	-0.1778100	0.1560700	-1,139	0,2610
LPSOJA_4	0,180470	0,536400	0,336	0,7382	LPSOJA 4	-0.2449400	0.1236600	-1.981	0,0542
d822	-0,709090	0,294160	-2,411	0,0204	d822	-0,0242270	0,0678140	-0,357	0,7227
LIBOR	0,148070	0,038980	3,799	0,0005	LIBOR	0,0080342	0,0089865	0,894	0,3764
LIBOR_1	-0,067870	0,052651	-1,289	0,2044	LIBOR_1	-0.0156550	0.0121380	-1,290	0,2042
LIBOR_2	-0,080433	0,056451	-1,425	0,1616	LIBOR 2	-0,0024008	0,0130140	-0,184	0,8545
LIBOR_3	0,048706	0,054898	0,887	0,3800	LIBOR 3	0.0294630	0,0126560	2,328	0,0248
LIBOR_4	-0,012413	0,031537	-0,394	0,6959	LIBOR 4	-0.0134090	0.0072705	-1,844	0,0722
LUSEER	-4,883900	1,513600	-3,227	0,0024	LUSEER	-0,1207100	0,3489400	-0,346	0,7311
LUSEER_1	7,114600	2,440200	2,916	0,0057	LUSEER_1	-0,0026414	0,5625600	-0,005	0,9963
LUSEER_2	-1,135100	2,522500	-0,450	0,6550	LUSEER 2	1.0464000	0,5815300	1,799	0,0791
LUSEER_3	-0,979590	2,696700	-0,363	0,7182	LUSEER 3	-0,7675800	0,6217100	-1,235	0,2238
LUSEER_4	-0,042888	1,652100	-0,026	0,9794	LUSEER 4	-0.2115400	0.3808800	-0,555	0,5816
LMWIND4	-3,798900	1,373700	-2,765	0,0084	LMWIND4	-0,2831100	0,3166900	-0,894	0,3764
LMWIND4_1	4,989600	2,068200	2,412	0,0203	LMWIND4 1	0,1655800	0,4768100	0,347	0,7301
LMWIND4_2	-1,592200	2,156500	-0,738	0,4644	LMWIND4 2	1.0004000	0,4971500	2,012	0,0506
LMWIND4_3	-0,481720	2,272000	-0,212	0,8331	LMWIND4 3	-0.4406000	0.5237900	-0.841	0,4050
LMWIND4_4	1,460000	1,328900	1,099	0,2782	LMWIND4 4	-0,4192100	0,3063600	-1,368	0,1785
d833	0,196270	0,255410	0,768	0,4465	d833	0.3219800	0,0588830	5,468	0,0000
d933	-0,110650	0,275950	-0,401	0,6905	d933	0.1904900	0.0636160	2,994	0,0046
d974	-0,647720	0,250640	-2,584	0,0133	d974	0,0395520	0,0577820	0,685	0,4974
d914	-0,827500	0,265380	3,118	0,0033	d914	0,0657680	0,0611800	1,075	0,2885
Constant	-8,073400	8,581000	-0,941	0,3522	Constant	1,6139000	1,9783000	0,816	0,4192
Seasonal	-0,550690	0,309650	-1,778	0,0826	Seasonal	0.0975680	0.0713860	1,367	0,1790
Seasonal_1	0,418640	0,214900	1,948	0,0581	Seasonal	0,0405370	0,0495430	0,818	0,4178
Seasonal_2	-0,472700	0,308950	-1,530	0,1335	Seasonal_2	0,0033998	0,0712250	0,048	0,9622

 $\label{eq:sigma} \\ \mbox{\langlesigma=0,213559$} \quad RSS = 1,915507352$

 $\label{eq:rss} \mbox{$\backslash$ sigma = 0,0492336} \quad RSS = 0,1018058175$

```
\begin{split} & loglik = 381,97563 \;\; log||Omega| = -10,3237 \;\; ||Omega| = 3,28465e-005 \;\; T = 74 \\ & log|Y'Y/T| = -6,36133 \\ & R^2(LR) = 0,980981 \;\; R^2(LM) = 0,837362 \end{split}
```

correlation of actual and fitted LSOJA LPSOJA 0,96181 0,96121

LSOJA :Portmanteau 8 lags= 9,046 LPSOJA :Portmanteau 8 lags= 2,8735 LSOJA :AR 1- 5 F(5, 37) = 1,1318 [0,3609] LPSOJA :AR 1-5 F(5, 37) = 0,83758 [0,5317] LSOJA :Normality Chi^2(2)= 1,9372 [0,3796] LPSOJA :Normality Chi^2(2)= 3,045 [0,2182] LSOJA :ARCH 4 F(4, 34) = 0,16539 [0,9545] LPSOJA :ARCH 4 F(4, 34) = 0,85179 [0,5026] Vector portmanteau 8 lags= 29,89 1,0221 [0,4514] Vector AR 1-5 F(20, 62) =4,8749 [0,3004] Vector normality Chi^2(4)= Testing for vector error autocorrelation from lags 1 to 1 $\text{Chi}^2(4) = 8,2533 [0,0827]$ and F-form(4,78) = 1,1738 [0,3289]

B8) VAR - SUCO DE LARANJA

The present sample is: 1982 (1) to 1998 (3)

quation 1	1 for LLARA	NJA			URF Equation	2 for LPSUCC	`		
able	Coefficient	Std,Error	t-value	t-prob	Variable	Coefficient	Std,Error	t-value	
.ARANJA_1	-0,099658	0,16844	-0,592	0,5573	LLARANJA 1	0.0352490	0.029773	1.184	
LARANJA_2	-0,413390	0,16457	-2,512	0,0160	LLARANJA 2	-0.0140390	0.029089	-0.483	
LARANJA_3	-0,349920	0,16709	-2,094	0,0425	LLARANJA 3	-0,0214480	0.029534	-0,726	
LARANJA_4	-0,140420	0,16421	-0,855	0,3975	LLARANJA 4	-0.0180540	0.029025	-0.622	
LARANJA_5	-0,281740	0,15187	-1,855	0,0708	LLARANJA 5	-0,0487880	0,026844	-1,817	
LPSUCO_1	1,790500	0,90066	1,988	0,0535	LPSUCO 1	1.0221000	0.159200	6,420	
LPSUCO_2	-0,254740	1,27000	-0,201	0,8420	LPSUCO 2	-0,2543900	0,224470	-1,133	
LPSUCO_3	1,562800	1,22850	1,272	0,2105	LPSUCO 3	-0.0721700	0.217150	-0.332	
LPSUCO_4	-1,647700	1,15060	-1,432	0,1597	LPSUCO 4	-0,0519940	0,203380	-0,256	
LPSUCO_5	1,267200	0,77375	1,638	0,1091	LPSUCO 5	0,3673600	0.136760	2,686	
LUSEER	-0,326430	2,32720	-0,140	0,8891	LUSEER	0,5053100	0.411350	1,228	
LUSEER_1	5,044400	3,56480	1,415	0,1646	LUSEER 1	0.7667300	0,630100	1,217	
LUSEER_2	-3,707600	3,58370	-1,035	0,3069	LUSEER 2	-1,6031000	0.633440	-2,531	
LUSEER_3	4,227200	3,81600	1,108	0,2744	LUSEER 3	0.8137000	0.674510	1,206	
LUSEER_4	-5,411700	3,85050	-1,405	0,1674	LUSEER 4	-0.4523300	0.680600	-0,665	
LUSEER_5	1,560000	2,50630	0,622	0,5371	LUSEER 5	-0.1277400	0,443000	-0,288	
LMWIND4	1,169800	2,11330	0,554	0,5829	LMWIND4	0,5818700	0,373540	1,558	
LMWIND4_1	1,854800	3,21390	0,577	0,5670	LMWIND4 1	0.5181200	0.568080	0.912	
LMWIND4_2	-1,174800	3,18620	-0,369	0,7142	LMWIND4 2	-1.4577000	0.563180	-2,588	
LMWIND4_3	2,712400	3,40750	0,796	0,4306	LMWIND4 3	0.7748400	0.602290	1,286	
LMWIND4_4	-2,734700	3,43810	-0,795	0,4310	LMWIND4 4	0.0889970	0.607710	0,146	
LMWIND4_5	-0,780770	2,25840	-0,346	0,7313	LMWIND4 5	-0.5932300	0.399180	-1,486	
Constant	-18,658000	12,92000	-1,444	0,1563	Constant	3,4158000	2,283700	1,496	
Seasonal	-0,068903	0,42283	-0,163	0,8714	Seasonal	0.0129040	0.074737	0,173	
Seasonal_1	-0,137710	0,27241	-0,506	0,6159	Seasonal 1	0.1060400	0.048151	2,202	
Seasonal_2	-0,099583	0,42954	-0,232	0,8178	Seasonal_2	0,0263450	0,075923	0,347	

\sigma = 0,312778 RSS = 4,011024361

 $\label{eq:sigma} \mbox{$\langle$ sigma = 0,0552856$ } \mbox{$RSS = 0,1253162382$ }$

```
\begin{split} & loglik = 311,47683 \;\; log||Omega| = -9,29782 \;\; ||Omega| = 9,16241e-005 \;\; T = 67 \\ & log|Y'Y/T| = -6,3143 \\ & R^2(LR) = 0,949385 \;\; R^2(LM) = 0,683742 \end{split}
```

LLARANJA:Portmanteau 8 lags= 3,0258 LPSUCO :Portmanteau 8 lags= 2,6693 LLARANJA:AR 1- 5 F(5, 36) = 0,22443 [0,9496] 0,63015 [0,6779] 0,068044 [0,9666] LPSUCO :AR 1- 5 F(5, 36) = LLARANJA:Normality Chi^2(2)= LPSUCO :Normality Chi^2(2)= 3,1981 [0,2021] LLARANJA:ARCH 4 F(4, 33) = 0,80518 [0,5307] LPSUCO :ARCH 4 F(4, 33) = 1,9157 [0,1311] Vector portmanteau 8 lags= 8,7841 Vector AR 1-5 F(20, 60) = 0,5547 [0,9278] Vector normality Chi^2(4)= 2,3613 [0,6696] Testing for vector error autocorrelation from lags 1 to 1 $Chi^2(4) = 7,9049 [0,0951]$ and F-form(4,76) = 1,2293 [0,3055]

Testes de Autocorrelação Serial dos Resíduos^a

Com- plexo	Teste	Distri- buição	VAR		Distri- buição	VECM restrito		
F		0 3.13	Valor	Preço		Valor	Preço	
Café	AR(1) AR(5)	qui(1) F(5, 23)	1.7918 [0.1807] 0.585892 [0.7107]	0.18245 [0.6693] 1.4239 [0.2531]	F(4, 17)	10.183 [0.0014]** 1.4529 [0.2600]	16.37 [0.0001]** 1.9506 [0.1482]	
Açúcar	AR(1) AR(5)	qui(1) F(5, 31)	0.022938 [0.8796] 2.6708 [0.0404]*	0.16059 [0.6886] 2.1219 [0.0891]	F(5, 29)	17.479 [0.0000]** 4.0028 [0.0070]**	23.626 [0.0000]** 10.624 [0.0000]**	
Alumínio	AR(1) AR(5)	qui(1) F(5, 23)	0.37934 [0.5380] 0.38434 [0.8543]	0.62926 [0.4276] 0.28227 [0.9180]	F(5, 26)	19.224 [0.0000]** 3.4481 [0.0160]*	11.615 [0.0007]** 1.613 [0.1917]	
Carne Bovina	AR(1) AR(5)	qui(1) F(5, 39)	0.20461 [0.6510] 1.2344 [0.3117]	2.3528 [0.1251] 1.6903 [0.1599]	F(5, 40)	4.273 [0.0388]* 0.6634 [0.6533]	5.5739 [0.0182]* 0.89273 [0.4952]	
Cacau	AR(1) AR(5)	qui(1) F(5, 47)	0.02889 [0.8650] 0.2897 [0.9163]	0.13207 [0.7163] 0.75327 [0.5879]	F(5, 41)	11.435 [0.0007]** 3.5209 [0.0097]**	12.844 [0.0003]** 2.4021 [0.0533]	
Minério de Ferro	AR(1) AR(5)	qui(1) F(5, 38)	2.5881 [0.1077] 1.3004 [0.2843]	1.4661 [0.2260] 0.46707 [0.7983]	F(4, 30)	15.757 [0.0001]** 2.6352 [0.0535]	14.978 [0.0001]** 3.7905 [0.0131]*	
Soja	AR(1) AR(5)	qui(1) F(5, 37)	1.0417 [0.3074] 1.1318 [0.3609]	1.4478 [0.2289] 0.83758 [0.5317]	F(5, 43)	12.788 [0.0003]** 2.6886 [0.0336]*	9.2987 [0.0023]** 3.6258 [0.0080]*	
Suco de Laranja	AR(1) AR(5)	qui(1) F(5, 35)	0.46541 [0.4951] 0.30463 [0.9068]	3.4921 [0.0617] 0.76507 [0.5812]	F(5, 32)	18.161 [0.0000]** 3.6916 [0.0095]**	23.058 [0.0000]** 4.3819 [0.0038]**	

^aOs números entre colchetes são os p-valores da estatística.

^{*} e ** Denotam, respectivamente, níveis de significância de 5% e 1%.

APÊNDICE C

Testes de Sobreidentificação para as Restrições nos Modelos em Primeiras Diferenças*

_/	сиса	v
$\overline{}$	\mathbf{u}	,

Valor	Preço	Estatística
DLMWIND(-5) DLUSEER(-1),(-2)	DLMWIND(-2),(-6)	
DLPAÇÚCAR(-2),(-4),(-5)	DLPAÇÚCAR(-2)	
DLAÇÚCAR(-4)	DLAÇÚCAR(-3),(-4),(-5),(-6)	Ch: A2(17) 0.927591 [1.0000]
	SEAS(-2) DLMWIND(-1),(-5)	$Chi^2(16) = 0.827581 [1.0000]$
DLUSEER	DLUSEER(-1),(-5)	
	DLPAÇÚCAR(-6)	
		$Chi^2(22) = 2,66355 [1,0000]$
DLMWIND	SEAS	Ch: A2(24) 2.52094 [1.0000]
DLMWIND(-3)	DLUSEER(2)	Chi^2(24) = 3,53984 [1,0000]
DLACUCAR(-5),(-6)	DLMWIND(-4)	
DLPACUCAR(-6)	SEAS(-1)	
		$Chi^2(31) = 13,6898 [0,9970]$
DLUSEER(-3)	DLMWIND	
SEAS(-1)		Chi^2(34) = 17,2631 [0,9924]
DLUSEER(-6)	DLMWIND(-3)	Ciii 2(34) = 17,2031 [0,7724]
DLMWIND(-4)		Chi^2(37) = 22,4468 [0,9715]
DLPAÇÚCAR(-1)	DLAÇÚCAR(-1)	
DI HOEED/ 5)	DLUSEER(-3)	$Chi^2(40) = 28,563 [0,9114]$
DLUSEER(-5)	DLPAÇÚCAR(-5) CIAÇÚCAR(-1)	$Chi^2(42) = 33,577 [0,8198]$
	CONSTANT	Chi^2(44) = 36,1785 [0,7930]
	DLPAÇÚCAR(-1),(-3)	$Chi^2(46) = 39,2636 [0,7484]$
	DLPAÇÚCAR(-4)	
	DLUSEER(-4)	Chi^2(48) = 45,7759 [0,5644]
Alumínio		
Valor	Preço	Estatística
DLUSEER	DLALUM(-1)	
DLUSEER(-1)	DLPALUM(-5)	
DLMWIND(-1),(-3),(-4)	DLUSEER(-2),(-4),(-5)	
DLIBOR		
DLIBOR(-1),(-2),(-4) SEAS		
SEAS(-2)		$Chi^2(16) = 11,4161 [0,7831]$
DLUSEER(-6)	DLPALUM(-1),(-2)	
	DLIBOR(-1)	$Chi^2(20) = 13,5218 [0,8539]$
DLPALUM(-5)	DLIBOR(-6)	
DLUSEER(-3),(-5) DLMWIND(-5)		Chi^2(25) = 15,2457 [0,9354]
DLALUM(-6)	DLUSEER(-3)	Ciii 2(23) = 13,2437 [0,7334]
DLPALUM(-3)	DLMWIND(-3),(-5)	
DLMWIND(-6)		$Chi^2(31) = 21,6521 [0,8936]$
D882	DLPALUM(-4)	Chi^2(33) = 27,6263 [0,7317]

Bovino

Valor	Preço	Estatística
DLPBOV(-1),(-2) D913 SEAS(-1) DLBOV(-3)	DLUSEER(-3) DLMWIND(-3) D902, D944 DLBOV(-3)	Chi^2(8) = 1,63793 [0,9902]
	DLPBOV(-1) DLUSEER(-2) DLBOV(-2)	Chi^2(12) = 4,36952 [0,9758]
	DLMWIND(-2) DLBOV(-1)	Chi^2(14) = 5,78448 [0,9716] Chi^2(15) = 7,28543 [0,9492]
Soja		
Valor	Preço	Estatística
DLPSOJA(-3) DLMWIND(-1) D833,D933	DLSOJA(-3) DLPSOJA(-3) DLIBOR DLUSEER(-1) DLMWIND(-3) D974, D822	Chi^2(11) = 3,25782 [0.9869]
DLPSOJA(-1) DLIBOR(-3)	DLUSEER D914	Cir 2(11) = 3,23702 [0,7007]
DLUSEER(-3)		$Chi^2(16) = 9,45659 [0,8934]$
DLIBOR(-1)	DLMWIND	$Chi^2(18) = 13,3431 [0,7708]$
DLMWIND	DLSOJA(-2) DLUSEER(-2)	$Chi^2(21) = 18,6147 [0,6098]$
CONSTANTE	($Chi^2(22) = 20,4287 [0,5562]$
DLUSEER		$Chi^2(23) = 21,2654 [0,5649]$
DLMWIND(-3)		Chi^2(24) = 23,6026 [0,4845]
Suco de Laranja		
Valor	Preço	Estatística
DLLARAN(-1),(-3)	DLUSEER(-4)	
DLMWIND(-2)	D851	
D874881, D973	SEAS	
SEAS		$Chi^2(9) = 0.890086 [0.9997]$
DLPSUCO(-1)	DLPSUCO(-3)	
DLUSEER(-4)	DLUSEER(-3)	
SEAS(-2)	DLMWIND(-3)	
	D864	$Chi^2(16) = 5,66149 [0,9914]$
DLUSEER(-2)	DLLARAN(-3) CONSTANTE	
	Cilaran	Chi^2(20) = 28,1986 [0,1048]
DLUSEER(-1),(-3)	DLLARAN(-1)	Cir 2(20) = 20,1700 [0,1010]
DLMWIND(-1)	DLUSEER(-2)	
D901	($Chi^2(26) = 34,6067 [0,1204]$
DLPSUCO(-2)	DLMWIND	, , - , , <u>L , </u>
DLUSEER	SEAS(-2)	
DLMWIND		$Chi^2(31) = 39,2075 [0,1479]$
DLLARAN(-2)	DLLARAN(-4)	
DLPSUCO(-3)	DLUSEER	$Chi^2(35) = 44,4942 [0,1305]$
DLLARAN(-2)	DLLARAN(-4)	
DLPSUCO(-3)	DLUSEER	$Chi^2(36) = 45,1814 [0,1403]$
		Chi^2(36) = 45,1814 [0,1403]

-					
•	a	r	1	1	•

Valor	Preço	Estatística
D894, D902	D951, D952, D971	$Chi^2(5) = 3,67434 [0,5972]$
SEAS	DLCACAU(-2)	$Chi^2(10) = 6,13747 [0,8036]$
DLUSEER(-2), (-3)	CONSTANTE	$Chi^2(13) = 6,70647 [0,9166]$
CONSTANTE	DLCACAU(-1)	2(13) = 0,700 17 [0,5100]
CONSTRUIL	DLPCACAU(-1)	
	DLUSEER(-1)	$Chi^2(17) = 8,74871 [0,9478]$
DI CACALI(2)		$CIII \ 2(17) = 6,74871 \ [0,9478]$
DLCACAU(-3)	DLPCACAU(-3)	CL:A2/20) 12 (052 [0.9400]
DLUSEER		Chi^2(20) = 13,6053 [0,8499]
Café		
Valor	Preço	Estatística
DLCAFÉ(-4)	DLCAFÉ(-2)	
DLIBOR(-1)	DLPCAFÉ(-3)	
DLUSEER(0),(-1)	DLUSEER(-3)	
DLMWIND(0),(2),(-3),(-5)	DLMWIND(-3)	
SEAS(-2)	D961	Chi^2(14) = 1,98098 [0,9999]
DLCAFÉ(-3),(-5)	DLPCAFÉ(-5)	Cm 2(14) = 1,70070 [0,7777]
DLPCAFÉ(-5)	DLIBOR(-3)	
DLIBOR(-5)	` '	
	DLMWIND(-1)	CI:(A2(22) 7.9(755.10.009(1
SEAS(-1)	SEAS	$Chi^2(23) = 7,86755 [0,9986]$
DLUSEER(-3),(-5)	DLIBOR(-5)	CU:42/25) 10.2400 F0.00051
D. C. D. C.	SEAS(-2)	$Chi^2(27) = 10,2488 [0,9985]$
DLCAFÉ(-2)	DLCAFÉ(-4)	
DLUSEER(-4)	DLPCAFÉ(-1)	
DLMWIND(-4)	DLIBOR(-1),(-2)	
	DLUSEER	
	D901	$Chi^2(36) = 16,5112 [0,9978]$
DLMWIND(-1)	DLCAFÉ(-1)	
	DLMWIND	$Chi^2(39) = 23,0056 [0,9805]$
SEAS	DLUSEER(-1)	Chi^2(41) = 27,2157 [0,9516]
Ferro		
Valor	Preço	Estatística
		Estatistica
DLMWIND(-2),(-3),(-4)	DLFERRO(-2),(-3)	
SEAS(-1)	D864	
DLIBOR(0),(-3)	D904	
	DLIBOR(0),(-2)	$Chi^2(12) = 1,60046 [0,9998]$
DLPFERRO(-1),(-3)	DLMWIND(-1),(-4)	
D891	SEAS(-2)	
DLIBOR(-4)	D913	$Chi^2(20) = 7,23246 [0,9959]$
DLPFERRO(-2)	DLPFERRO(-1)	
DLIBOR(-1)	DLMWIND(-3)	
	SEAS	$Chi^2(25) = 14,6768 [0,9486]$
DLFERRO(-4)	DLPFERRO(-2)	V / / / / / / / / / / / / / / / / / / /
D951	DLIBOR(-3)	
	CONSTANTE	$Chi^2(30) = 24,3474 [0,7561]$
DLMWIND	SEAS(-1)	Chi ² (35) = $34,1981$ [0,5066]
	52/10(1)	Cm 2(33) = 34,1701 [0,3000]

^{*} A primeira e a segunda colunas indicam as variáveis excluídas a cada estimação do modelo, nas equações do valor exportado e do preço externo, respectivamente. A terceira coluna apresenta a estatística de teste correspondente às restrições e seu p-valor.

BIBLIOGRAFIA

- BORREL, B. *How a change in Brazil's sugar policies would affect the world sugar market*. World Bank, Apr. 1991 (Policy, Research and External Affairs Working Paper).
- CAVALCANTI, M. A. F. H., RIBEIRO, F. J. As exportações brasileiras no período 1977/96: desempenho e determinantes. IPEA, 1998 (Texto para Discussão, 545).
- DOORNIK, J. A., HENDRY, D. F. Pc give 7: an interactive econometric modelling system. Oxford: Institute of Economics and Statistics, University of Oxford, 1992.
- MELO, F. H., SANTANA, J. A., ALVES, D. *Acordos internacionais de produtos de base os casos do cacau e do café*. Brasília: IPEA, ago. 1994 (Estudos de Política Agrícola, 23).
- NASCIMENTO, F. R. (coord.). *A crise da lavoura cacaueira: sua natureza e soluções*. Brasília: IPEA, out. 1994 (Estudos de Política Agrícola, 26).
- OLIVEIRA, B. A. *Mercados de soja em grão, farelo e óleo. Uma evidência empírica.* Rio de Janeiro: FGV/EPGE, 1985 (Dissertação de Mestrado).
- PRIOVOLOS, T. *An econometric model of the iron ore industry*. 1897 (World Bank Staff Commodity Working Papers, 19).
- STALDER, S. H. G. M. *Análise da participação do Brasil no mercado internacional de açúcar*. Piracicaba: USP, Escola Superior de Agricultura Luiz de Queiroz, 1997 (Tese de Doutorado).
- TODA, H. Y., PHILLIPS, P. C. B. Vector autoregression and causality: a theoretical overview and simulation study. *Econometric Review*, v. 13, n. 2, p. 259-285, 1994.

Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

<u>Baixar</u>	livros	de	Adm	inis	tra	ção

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciência da Computação

Baixar livros de Ciência da Informação

Baixar livros de Ciência Política

Baixar livros de Ciências da Saúde

Baixar livros de Comunicação

Baixar livros do Conselho Nacional de Educação - CNE

Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos

Baixar livros de Economia

Baixar livros de Economia Doméstica

Baixar livros de Educação

Baixar livros de Educação - Trânsito

Baixar livros de Educação Física

Baixar livros de Engenharia Aeroespacial

Baixar livros de Farmácia

Baixar livros de Filosofia

Baixar livros de Física

Baixar livros de Geociências

Baixar livros de Geografia

Baixar livros de História

Baixar livros de Línguas

Baixar livros de Literatura

Baixar livros de Literatura de Cordel

Baixar livros de Literatura Infantil

Baixar livros de Matemática

Baixar livros de Medicina

Baixar livros de Medicina Veterinária

Baixar livros de Meio Ambiente

Baixar livros de Meteorologia

Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Música

Baixar livros de Psicologia

Baixar livros de Química

Baixar livros de Saúde Coletiva

Baixar livros de Serviço Social

Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo