CARACTERIZAÇÃO QUÍMICA E MORFOMETRIA EM *Sisyrinchium micranthum* CAV. (IRIDACEAE)

MALVINA SPERB INDRUSIAK

Dissertação submetida ao Programa de Pós-Graduação em Botânica como requisito parcial para obtenção do grau de Mestre.

Comissão Examinadora:
Profa. Dra. Tatiana Teixeira de Souza-Chies
Departamento de Botânica/UFRGS
Profa. Dra. Mara Rejane Ritter
Departamento de Botânica/UFRGS
Profa. Dra. Helena Regina Pinto Lima
Departamento de Botânica/UFRRJ

ORIENTADOR: DR. GERALDO LUIZ GONÇALVES SOARES

CO-ORIENTADORA: DRA. LILIAN EGGERS

Porto Alegre, Maio/2010
Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.
AGRADECIMENTOS

Ao meu orientador, Prof. Geraldo Soares, por ser orientador no sentido mais pleno da palavra. Pela paciência, compreensão e amizade.

À Prof. Lilian Eggers por me ensinar praticamente tudo sobre as Iridaceae, pelo auxílio a campo e pela co-orientação.

Ao colega e amigo Tiago Alves por todos os conselhos, acadêmicos ou não, pelo interesse e apoio constantes.

À Carolina Schlindwein pelo auxílio inestimável nas análises de bancada, prestado sempre com prontidão, amizade e gentileza.

Ao Prof. Arthur Germano Fett Neto por gentilmente disponibilizar o uso do Laboratório de Fisiologia Vegetal para o desenvolvimento deste estudo.

A toda equipe do Laboratório de Ecologia Química e Quimiotaxonomia pelo auxílio prestado, pela amizade e pelos momentos de descontração.

Ao grupo de Iridaceae pelo auxílio a campo, pelos conselhos, sugestões e pelo café.

Aos meus pais e irmãs, por serem quem são.

Ao meu namorado, Daniel, pelo carinho e compreensão, pelos momentos de descontração e por toda a paciência.

Ao Programa de Pós-graduação em Botânica da UFRGS, pela oportunidade.

Ao CNPq pelo auxílio financeiro.

A todas pessoas que, de uma maneira ou de outra, ajudaram a tornar mais suave este caminho.
ARTIGO: FLAVONÓIDES COMO MARCADORES QUÍMICOS DE
SISYRINCHIUM MICRANTHUM CAV. (IRIDACEAE).

6. INTRODUÇÃO .. 14

7. MATERIAL E MÉTODOS
 7.1. LEVANTAMENTO DO PERFIL FLAVONOÍDICO ... 15
 7.2. ANÁLISE DE SIMILARIDADE .. 16
 7.3. MATERIAL BOTÂNICO .. 16
 7.4. ANÁLISE QUÍMICA ... 17

8. RESULTADOS
 8.1. PERFIL FLAVONOÍDICO ... 18
 8.2. ANÁLISE DE SIMILARIDADE .. 19
 8.3. ANÁLISE QUÍMICA ... 20

9. DISCUSSÃO .. 21

10. CONSIDERAÇÕES FINAIS ... 25
ARTIGO: CARACTERIZAÇÃO MORFOLÓGICA E MORFOMETRIA EM *SISYRINCHIUM MICRANTHUM* CAV.

13. INTRODUÇÃO .. 41

14. MATERIAL E MÉTODOS

14.1. MATERIAL BOTÂNICO .. 41

14.2. ANÁLISE MORFOMÉTRICA .. 42

15. RESULTADOS .. 43

16. DISCUSSÃO ... 49

17. REFERÊNCIAS BIBLIOGRÁFICAS ... 58

18. ANEXOS ... 59
1. RESUMO:

Sisyrinchium micranthum Cav. (*Iridaceae*) é uma espécie que apresenta grande variabilidade morfológica, aspecto que dificulta a seleção de caracteres taxonômicos eficientes para sua determinação. Suas flores podem ser amarelas, rôseas ou lilases, com diferentes intensidades de cor. Na região Sul do Brasil ocorrem três morfotipos caracterizados pelo porte: *pequeno*, *média* e *grande*. Com o objetivo de contribuir na caracterização desta espécie foram realizados estudos quimiotaxonômicos, quimioecológicos e morfométricos.

A análise do perfil flavonóico de *Iridaceae* revela uma família quimicamente distinta de outras monocotiledôneas, principalmente pela ocorrência de isoflavonas e C-glicosilflavonas. Espécies de *Sisyrinchium*, são caracterizadas pela presença de C-glicosilflavonas e ausência de antocianinas mono e dioxigenadas. Esse padrão químico é bastante coerente com o posicionamento de *Sisyrinchium* na tribo Sisyrinchieae e na subfamília Iridoideae. Uma outra característica peculiar desses *taxa* é a baixa produção de flavonóis. As análises de similaridade e de componentes principais (PCA) permitiram delimitar um grupo produtor de flavonóides sem oxigrupos em C₃, onde se posicionaram quase todos os gêneros de Iridoideae, e um grupo produtor de flavonóides oxigenados em C₃, que compreendeu gêneros de Crocoideae, Nivenioideae e Aristeoideae. A análise fitoquímica de indivíduos de *S. micranthum* indicou a presença de flavonas e uma grande concentração de flavonóides totais em indivíduos de flores amarelas, os quais têm preferência por ambientes expostos a condições de solos pobres e alta irradiação solar, e é possível que as plantas de flores amarelas sejam quimiotipos da espécie.

A análise morfométrica mostrou que os morfotipos formam grupos consistentes. O morfotipo grande se caracteriza pelo porte ereto e pelo arranjo diferenciado das brácteas da inflorescência. Os morfotipos médio e pequeno são mais parecidos entre si, sendo diferenciados principalmente pelas flores. O morfotipo médio tem flores mais semelhantes às do grande, enquanto o morfotipo pequeno apresenta flores menores e com menos elaióforos. Apesar da estatística sustentar a separação dos morfotipos, ainda são necessários estudos de cruzamento para se fazer qualquer declaração no sentido de confirmar possíveis subespécies. Estudos químicos também mostram um grande potencial para a melhor delimitação desses morfotipos em vista da química peculiar de *S. micranthum*.
2. Abstract:

Sisyrinchium micranthum Cav. is a Brazilian native species that presents a huge morphologic variability which hampers the selection of efficient taxonomic characters for its determination. Its flowers normally have various shades of yellow, pink or purple. In southern Brazil, this species presents three different morphotypes which are characterized by their size: *small*, *medium* and *big*. Aiming to contribute on the characterization of the species, chemotaxonomic, chemoecological and morphometric studies were conducted.

The analysis of the flavonoidic profile reveals Iridaceae as a chemically very distinct family among other monocotyledons, specially due to the occurrence of isoflavones and C-glycosylflavones. *Sisyrinchium* species are characterized by the presence of C-glycosylflavones and absence of mono and dioxygenated anthocyanins. This chemical pattern agrees quite well with the position of the genus inside the Sisyrinchieae tribe and in the Iridoideae subfamily. These taxa are also distinctive by their low levels of flavonol production. The similarity and principal components (PCA) analysis allowed the delimitation of two groups. One group produces flavonoids without oxygroups in C₃, within which are positioned most genera of Iridoideae. The other group produces flavonoids oxygenated in C₃, which comprehended genera from Crocoideae, Nivenioidae and Aristeoideae. The phytochemical analysis accuses the presence of flavones and a great concentration of flavonoids in plants with yellow flowers, which grow preferably in sites with poor/dry soils and high solar radiation. It is possible that these yellow flowered plants are chemotypes of the species.

The morphometric analysis shows the tree morphotypes as consistent groups. The morphotype *big* is characterized by its upright carry and by the unique disposition of the inflorescence's bracts. The morphotypes *medium* and *small* are more alike, being differentiated mostly by its flowers. The morphotype *medium*’s flowers are more similar to the morphotype *big*’s whilst the morphotype *small* exhibits smaller flowers with less elaiophores. Despite the statistic results which sustains the circumscription of the morphotypes, breeding studies are still imperative for the discussion of the species circumscription. Chemical studies show as well a great potential in order to support the delimitation of these morphotypes considering *S. micranthum*’s peculiar chemistry.
3. INTRODUÇÃO:

3.1 A FAMÍLIA IRIDACEAE JUSS.

Pertencente à ordem Asparagales (APGIII, 2009), esta família é composta principalmente por plantas herbáceas que frequentemente apresentam rizomas, cormos ou bulbos que possibilitam sua sobrevivência em estações desfavoráveis. Estas monocotiledôneas são facilmente reconhecidas por suas características florais. As flores são diclamídeas homoclamídeas, tipicamente trímeras, com três estames e ovário ínfero. As tépalas são algumas vezes grandes e vistosas, razão pela qual boa parte de seus representantes apresentam interesse ornamental (Dahlgren et al., 1985).

É uma das famílias de monocotiledôneas mais expressivas em número de espécies, com 65-75 gêneros e 2028 espécies espalhadas por todos os continentes, com exceção da Antártica (Goldblatt, 2001; Goldblatt et al., 2008). Atualmente, é dividida em sete subfamílias: Isophysidoideae, Patersonioideae, Geosiridoideae, Aristeoideae, Nivenioideae, Crocoideae e Iridoideae (Goldblatt et al., 2008). No Brasil, a família está representada por 14 gêneros e 110 espécies, entre nativas e exóticas (Capellari Jr., 2002).

No estado do Rio Grande do Sul, as espécies de Iridaceae ocorrem principalmente nos campos naturais e tornam-se conspicuas na primavera, quando florescem. Atualmente, são conhecidos nove a dez gêneros nativos. No entanto, o número total de espécies não está ainda devidamente avaliado. Até agora, estão confirmadas 36 espécies nativas para o Rio Grande do Sul. Destas, cinco espécies são de Calydorea Herb., cinco de Cypella Herb., duas de Gelasine Herb., três de Herbertia Sweet, uma de Kelissa Ravenna, uma de Neomarica Sprague, uma de Onira Ravenna, uma de Trimezia Salisb. e cerca de 17 espécies de Sisyrinchium L. (Eggers, 2009; com. pes.). O gênero Sympa Ravenna ainda necessita confirmação de novas ocorrências, tendo em vista que o mesmo não apresentou mais registro de coleta após a descrição original. Estudos sobre as Iridaceae do estado revelam-se necessários, pois seu ambiente natural vem sofrendo forte ação antrópica (Tacuatiá, 2008) e ainda não se conhece todas as espécies de sua flora.
3.2 O GÊNERO SISYRINCHIUM L.

O gênero *Sisyrinchium*, circunsrito na subfamília Iridoideae, possui cerca de 200 espécies e sua distribuição compreende todo continente americano. Entretanto, já foram registradas ocorrências na Europa (Parent, 1980) e no Japão (Yamaguchi e Hirai, 1987), onde ocorrem como adventícias, uma vez que a América do Sul é indicada como centro de origem e dispersão de *Sisyrinchium* por Johnston (1938).

As espécies deste gênero são plantas de pequeno a médio porte, perenes ou anuais. Apresentam folhas planas ou cilíndricas e escapos florais com inflorescências cimosas terminais ou axilares. As flores são actinomorfas, com tépalas livres, de coloração creme, violácea, azul, rosa ou amarela, em algumas espécies apresentando coloração diferenciada na fauce da corola e nas nervuras das tépalas. O androceu apresenta os filetes parcial ou totalmente unidos formando um tubo estaminal (Chukr e Capellari Jr., 2003; Goldblatt et al., 1998). Outra característica importante para algumas espécies do gênero é a presença de elaióforos (tricomas glandulares produtores de óleos, utilizados por alguns polinizadores) na base do tubo estaminal (Cocucci e Vogel, 2001).

O gênero *Sisyrinchium* constitui num táxon complexo, e nem sempre as espécies são facilmente diferenciadas devido ao fato de ser difícil a seleção de características adequadas para a separação das mesmas (Henderson, 1976).

3.3 SISYRINCHIUM MICRANTHUM CAV.

Uma espécie que demonstra grande variabilidade e que dificulta a seleção de caracteres taxonômicos eficientes é *Sisyrinchium micranthum* Cav. No Brasil, ela ocorre nos estados do Rio Grande do Sul, Santa Catarina, Paraná, São Paulo e Rio de Janeiro (Chukr e Capellari Jr., 2003). Além disto, é amplamente distribuída entre Argentina e México e ocorre na Austrália, Malásia e Ilhas Fiji, provavelmente naturalizada (Innes, 1985). *Sisyrinchium micranthum* ocorre em ambientes variados, como campos, matas e locais antropizados, sendo muito comum encontrá-la em canteiros e gramados crescendo de forma espontânea.
Esta espécie apresenta folhas e escapos florais planos, com inflorescências terminais e flores de coloração amarelo viva, amarelo pálida, ebúrnea, branca, rósea ou lilás, quase sempre com as nervuras das tépalas pigmentadas fortemente de roxo. Tanto as tépalas quanto as nervuras apresentam uma grande variação na intensidade de sua coloração. Os filetes destas flores apresentam-se unidos de 1/2 a 2/3 de sua extensão, formando um tubo estaminal, e apresentam uma grande densidade de elaióforos na base (Chukr e Capellari Jr., 2003).

Observações de campo permitem reconhecer no Rio Grande do Sul pelo menos três morfotipos de *S. micranthum* que ocorrem de forma isolada ou conjunta e apresentam uma grande variação quanto ao porte, apresentando-se como os tipos denominados *pequeno*, *médio* e *grande*. Os tipos *pequeno* e *médio* são bastante semelhantes quanto ao hábito e características vegetativas, mas diferem quanto ao tamanho, sendo o tipo *pequeno* notavelmente menor e com flores com cerca de metade do diâmetro e fauce mais alargada que as do tipo *médio*. Já o tipo *grande* apresenta um porte muito maior, sendo de hábito ereto. Além disto, as brácteas florais neste tipo são mais longas, estreitas e próximas entre si e as flores apresentam a fauce mais estreita e com uma coloração tipicamente amarela. Quanto à distribuição, o tipo *grande* ocorre preferencialmente na região dos Campos de Cima da Serra. Os tipos *médio* e *pequeno* têm a ocorrência mais ampla, sendo o *médio* o mais comum.

Apesar de *Sisyrinchium* ser um gênero bastante estudado, não existem muitos trabalhos sobre as espécies brasileiras. Dados importantes referentes à quantidade de DNA e determinações de número cromossômico já foram publicados, a maioria deles relativos às espécies norteamericanas. Estes dados mostram uma forte tendência à poliploidia e a provável origem de algumas espécies por hibridação interespecífica (Kenton et al., 1986; Rudall et al., 1986; Goldblatt e Takei, 1997).

A poliploidização exerce forte influência sobre a diversificação da espécie (Goldblatt e Takei, 1997). Dados recentes para *S. micranthum* revelaram que esta espécie apresenta populações com mais de um nível de
ploidia, o que proporciona uma grande variação na morfologia destas plantas e dificulta sua identificação (Tacuatiá, 2008).

O presente estudo está vinculado ao projeto “Biologia e Evolução de Sisyrinchium L. (Iridaceae)”. Estudos de cunho quimioecológico e quimiotaxonômico permitem inferências quanto à taxonomia, biologia e status evolutivo de um grupo, principalmente quando aliados a informações morfológicas e genéticas (Gottlieb et al. 1996).

4. REFERÊNCIAS BIBLIOGRÁFICAS:

5. OBJETIVOS:

5.1 OBJETIVO GERAL

O presente trabalho visa caracterizar a espécie *Sisyrinchium micranthum* através da análise do seu perfil flavonoídico, verificando a concordância de dados químicos e a filogenia de Iridaceae. Pretende-se também verificar o papel ecológico dos flavonóides através da análise da variação quantitativa de flavonóides totais em algumas populações do Rio Grande do Sul. Para complementar a caracterização desta espécie, pretende-se realizar análise...
morfométrica dos três morfótipos mais abundantes de *S. micranthum* (*pequeno, médio e grande)*.

5.2 Objetivos Específicos

- Elaborar o perfil flavonoidico de Iridaceae.
- Analisar o padrão de distribuição de flavonóides e o grau de similaridade da química flavonoidica de *Sisyrinchium* com os demais géneros de Iridaceae.
- Avaliar o teor de flavonóides em plantas de diferentes populações de *S. micranthum*.
- Comparar dados morfológicos dos três diferentes morfotipos de *S. micranthum*.
FLAVONÓIDES COMO MARCADORES QUÍMICOS DE
SISYRINCHIUM MICRANTHUM CAV. (IRIDACEAE)

Artigo a ser submetido à Biochemical Systematics and Ecology
Autores: Malvina S. Indrusiak, Tiago L.S. Alves e Geraldo L.G. Soares
6. INTRODUÇÃO

A família Iridaceae já foi relativamente bem estudada quanto à química micromolecular (metabólitos secundários) principalmente em espécies não nativas do Brasil. Com base nestes estudos, pode-se afirmar que é uma família quimicamente distinta de outras famílias de monocotiledôneas pela diversidade de seu perfil fenólico e pela presença de substâncias incomuns nessas angiospermas, tais como bisflavonóides, isoflavonóides e quinonas (Williams et al. 1986). Dentre os seus metabólitos secundários merecem destaque os flavonóides, que provavelmente se constituem no seu melhor marcador quimiotaxonômico pela diversidade química e pela ampla distribuição. Destes, destacam-se em Iridaceae as antocianinas, os flavonóis, as flavonas, as isoflavonas e as C-glicosilflavonas (Harborne e Williams, 2000b).

Os flavonóides são derivados fenólicos cujo esqueleto básico é formado por 15 carbonos provenientes de duas vias metabólicas secundárias: as rotas do chiquimato e do acetato (Figura 1). Estes metabólitos apresentam uma grande diversidade estrutural cuja biossíntese tem sido amplamente estudada (Davies e Schwinn, 2006). Soares (1996) observou que os flavonóides se dividem em dois grandes ramos biogenéticos: os flavonóides sem oxigrupos na posição 3 (rota biossintética das flavonas – ramo C₃H) e flavonóides com oxigrupos na posição 3 (rota biossintética dos flavonóis – ramo C₃OR) (Figura 2). Na maioria das dicotiledôneas a relação entre a produção de derivados flavonóídicos desses dois ramos é um bom indicador de status evolutivo (Soares e Kaplan, 2001). Esse tipo de análise ainda não foi feito para monocotiledôneas.

São atribuídas aos flavonóides uma série de funções ecológicas, tais como: proteção contra radiação ultravioleta; proteção contra herbivoria; proteção contra insetos, fungos, vírus e bactérias; atração de polinizadores e ação antioxidante (Harborne e Williams, 2000a; Iwashina, 2003). Provavelmente esses derivados fenólicos tiveram um papel decisivo na evolução de linhagens vegetais. Esse fato pode ser verificado na importância dos flavonóides na colonização do ambiente terrestre pelas plantas (Gottlieb et al., 1996).
O sistema de Dahlgren (1980) foi o primeiro sistema para classificação de angiospermas que utilizou dados químicos. Neste trabalho são citadas várias classes de micromoléculas utilizadas como marcadores, dentre as quais muitas são flavonóides. Muito embora Dahlgren não tenha se utilizado de caracteres químicos em sua abordagem às monocotiledôneas, estudos posteriores provaram que flavonóides são aliados preciosos na resolução de problemas taxonômicos deste grupo de plantas (Silva, 2007; Harborne e Williams, 1994). Estas substâncias têm um grande valor taxonômico por serem abundantes no reino vegetal, pela produção e acúmulo nos tecidos vegetais que se dá sem tanta influência do meio e pela frequente ocorrência de estruturas espécie específicas. Além disto, contribuem para sua utilização como ferramenta taxonômica fatores como a facilidade de identificação e a estabilidade das moléculas, podendo mesmo serem extraídos de espécimes de herbário coletados há décadas (Harborne e Williams, 2000a). Devido a estes fatores e à sua abundância em Iridaceae, flavonóides apresentam-se como bons marcadores químicos para estudos ecológicos e taxonômicos em espécies dessa família.

7. MATERIAL E MÉTODOS:

7.1. LEVANTAMENTO DO PERFIL FLAVONOÍDICO

Os dados obtidos nessa pesquisa bibliográfica foram utilizados para compor um banco de dados sobre a ocorrência de flavonóides em Iridaceae. Cada diferente flavonóide citado como ocorrente para um determinado gênero foi contabilizado como uma ocorrência. A partir desse banco de dados foi elaborado o perfil flavonoídico de cada tribo. (Gottlieb et al. 1996; Soares, 1996).
7.2. Análise de Similaridade

Os dados obtidos através do levantamento foram utilizados na composição de uma matriz n x t, onde as colunas (t) são as OTUs (unidades taxonômicas operacionais - no caso, gêneros de Iridaceae) e as linhas (n) são as unidades de caracteres (no caso, tipos flavonoídicos). Assim sendo, cada entrada (Xnt) representa o número total de ocorrências de um determinado tipo flavonoídico para um gênero de Iridaceae.

Essa matriz foi convertida em outra, na qual a presença de um determinado caractere químico é representado por "1" e a ausência por "0". Essa matriz binária foi posteriormente utilizada para o cálculo do coeficiente de similaridade Jaccard e para a realização de uma análise de componentes principais (PCA).

O coeficiente de Jaccard é um método muito adequado para este tipo de dado, pois ele não considera combinações negativas. Ou seja, a ausência de um caráter em duas OTUs que estão sendo comparadas não é interpretada como similaridade. Esta análise é comumente utilizada em trabalhos de taxonomia química (Brower e Zar, 1977).

Esta mesma planilha foi modificada para a PCA. As OTUs passaram a ser tribos de Iridaceae. Esta técnica já foi utilizada por Alves (2009) como uma complementação à análise de similaridade pelo coeficiente de Jaccard. A PCA consiste em uma análise multivariada que comprime o espaço amostral e forma agrupamentos definidos pelas variáveis utilizadas. Com base nesta análise, pode-se definir qual o marcador mais importante para a formação dos agrupamentos.

Para a realização destas análises utilizou-se o programa PAST versão 1.92 (Paleontological Statistics), sendo que a elaboração da planilha da matriz de ocorrências foi feita utilizando-se o programa EXCEL.

7.3. Material Botânico

Foram coletadas amostras de populações dos três morfotipos de S. micranthum de diferentes populações nos estados do Rio Grande do Sul, Santa Catarina e Paraná nos meses de outubro e novembro do ano de 2008 (Tabela1).
Para a análise química foi coletado um volume de partes aéreas suficiente para perfazer o peso fresco necessário à análise. As plantas coletadas foram armazenadas em envelopes de papel e mantidas refrigeradas para as análises de material fresco.

Além das amostras para análise, um indivíduo de cada população amostrada foi coletado para a confecção de exsicatas que foram integradas à coleção do Herbário ICN da Universidade Federal do Rio Grande do Sul. O número dos vouchers, e o local de coleta das plantas amostradas constam na Tabela 1.

7.4. ANÁLISE QUÍMICA

- Prospecção fitoquímica para detecção de derivados polifenólicos e flavonóides em *S. micranthum*:

Amostras de 1 a 2 g de partes aéreas dos tipos médio lilás, médio amarelo, médio rosa, pequeno lilás, pequeno ebúrneo e pequeno amarelo de *S. micranthum* provenientes do Morro Santana (Porto Alegre, RS), e do médio amarelo e médio lilás provenientes da Reserva de Itapuã (Viamão, RS) foram submetidas a extração com água em banho maria (100°C) e, em seguida submetidas a testes para a detecção de fenólicos e flavonóides (Harborne, 1998).

Para a detecção de taninos condensados ou hidrolizáveis, o extrato aquoso resultante foi submetido a reação com solução de gelatina 1% e FeCl₃ 1% (aquoso). A formação de precipitado branco é positivo para taninos. A presença de taninos hidrolisáveis é assinalada pelo desenvolvimento de cor verde na presença do FeCl₃. Por outro lado, a presença de taninos condensados resulta em coloração azul arroxeada.

Para detecção de flavonóides foram utilizadas a reação de Shinoda e a reação com FeCl₃ e vapores de amônia revelada com luz UV. O mesmo extrato aquoso utilizado para a detecção de taninos foi extraído com n-butanol. A fração n-butanólica resultante foi extraída com metanol. Ao extrato metanólico (10 mL) foram adicionadas gotas de 0,5 mL HCl concentrado e 0,1 g de magnésio. O aparecimento de precipitado vermelho, geralmente intenso, indica a presença de flavonóis. O aparecimento de coloração violácea indica a
presença de flavanonas. A presença de flavonas é evidenciada pela coloração alaranjada (Harborne, 1998).

- Análise Quantitativa do Teor de Flavonóides:

Cinco amostras de partes aéreas frescas pesando aproximadamente 0,04 g foram submetidas a extração em 10 ml de etanol 90% por pelo menos 3 dias. A concentração de flavonóides totais foi determinada em alíquotas deste extrato segundo metodologia de Zhishen et al. (1999) com modificações.

8. RESULTADOS:

8.1. PERFIL FLAVONOÍDICO

As espécies de *Sisyrinchium* produzem predominantemente C-glicosilflavonas e apenas antocianinas com anel B trioxigenado (OH, OMe, ou OGlI nas posições 3’, 4’ e 5’ - padrão delphinidina) foram detectadas nestas plantas. Até o momento flavonóis e outros derivados flavonoídicos hidroxilados em C₃ não foram isolados de espécies desse gênero (Tabela 2).

Este registro químico é bem compatível com o observado para a maioria dos gêneros estudados de Sisyrinchiae e demais tribos de Iridoideae, que tendem a produzir mais derivados da rota biossintética das flavonas (C₃H) e poucos flavonóides da rota biossintética dos flavonóis (C₃OR) (Figura 3). As plantas deste grupo frequentemente têm C-glicosilflavonas e/ou isoflavonas como o principal tipo flavonoidico isolado. Este comportamento químico é mais claramente observável nos três gêneros de Iridoideae melhor estudados (*Belamcanda* Adans., *Iris* L. e *Sisyrinchium*), porém mesmo os gêneros com poucos estudos já começam a delinear esta tendência (Tabela 2).

Em Iridoideae, flavonóis são restritos até o momento aos gêneros *Dites* Salisb., *Iris*, *Belamcanda* e *Homeria* Vent., da tribo Irideae, e *Cipura* Aubl. e *Cypella* Herb., da tribo Tigridieae.

Ainda na tribo Irideae deve-se destacar a ocorrência de isoflavonas para dois gêneros: *Iris*, que obteve 175 ocorrências, seguido de *Belamcanda*, com 30. Os únicos registros de isoflavonas em Iridaceae fora de Irideae foram para o gênero *Patersonia* R. Br..
Todas antocianinas encontradas na subfamília Iridoideae têm o padrão delfinidina. Antocianinas com anel B monoxigenado em 4’ (padrão pelargonidina) e dioxigenado em 3’, 4’ (padrão cianidina) estão totalmente ausentes até o momento nesse grupo.

A subfamília Crocoideae, bem como Aristeoideae e Nivenioideae, mostraram maior quantidade e diversidade de ocorrências de flavonóides C₃OR (flavonóis, antocianinas e proantocianidinas) (Figura 4). Aqui aparecem também as antocianinas padrão pelargonidina e padrão cianidina que estão ausentes em Iridoideae.

Os gêneros *Isophysys* e *Patersonia* apresentaram ocorrência de bisflavonas.

A Figura 5 resume bem o padrão de ocorrência de derivados C₃H e C₃OR na família Iridaceae. Iridoideae destaca-se das demais subfamílias devido à alta relação flavona/flavonol, uma vez que nesta subfamília os derivados C₃H somam mais de 80% das ocorrências. As demais subfamílias estudadas (à exceção de Isophysidoideae) mostram uma maior quantidade e diversidade de compostos C₃OR.

8.2. ANÁLISE DE SIMILARIDADE

As OTUs utilizadas na análise de grupamento com o índice de similaridade de Jaccard foram os gêneros de Iridaceae. No dendrograma resultante pode-se observar a formação de dois grandes grupos: produtores de metabólitos C₃H, com alta relação flavona/flavonol e, com baixa relação flavona/flavonol (Figura 6).

No grupo de produtores de metabólitos C₃OR aparecem os gêneros de Crocoideae, Nivenioideae e Aristeoideae, além do gênero *Belamcanda*.
Na PCA, as tribos de Iridaceae pertencentes à subfamília Iridoideae foram separadas das tribos da subfamília Crocoideae pelo componente 1 (Figura 7). Croceae e Irideae foram afastadas de seus grupos pelo componente 2. O eixo 1 explica 33,416% da variância e o eixo 2 explica 19,742% da variância.

Quando analisadas somente as tribos de Iridoideae e Crocoideae, a formação dos grupos está em concordância com as subfamílias (Figura 8). Apenas Croceae e Irideae ficam afastados dos agrupamentos. Nesta análise os eixos 1 e 2 explicam 57% da variância.

É interessante notar que tanto na análise de similaridade quanto na PCA Patersonia ficou no grupo de Iridoideae. Além disto Isophysis T. Moore sempre ficou muito distante dos demais grupos, mostrando baixa similaridade química com o restante da família.

8.3. ANÁLISE QUÍMICA

- **Detecção de derivados polifenólicos:**

 A reação em solução de gelatina resultou na formação de um precipitado branco, indicando presença de taninos. A adição de FeCl₃ aquoso provocou o desenvolvimento de uma coloração azul arroxeada, indicando que os taninos presentes nas amostras são taninos condensados (proantocianidinas). A reação de Shinoda resultou no aparecimento de uma coloração alaranjada, indicando presença de flavonas.

 As amostras provenientes de plantas com flores amarelas desenvolveram uma coloração mais intensa para a reação de Shinoda, indicando uma maior concentração de flavonas em relação às amostras de flores lilases e róseas (Tabela 3).

- **Análise Quantitativa do Teor de Flavonóides:**

 A análise de concentração total de flavonóides revelou duas amostras com uma concentração visivelmente maior que as demais, ambas amostras provenientes de plantas de flores amarelas coletadas no município de Caçapava do Sul, RS. Estas plantas apresentaram concentração total de 2,204 mg/ml (morfotipo pequeno com flores amarelas) e 2,155 mg/ml (morfotipo
média com flores amarelas). A concentração das demais amostras variou de 1,639 a 1,09 mg/ml (Figura 9).

9. Discussão:

Com base no levantamento realizado, pode-se afirmar que Iridoideae se sobressai como um grupo quimicamente distinto do restante da família pelo grande número de ocorrências de derivados flavônicos, baixa ocorrência de flavonóis e por uma produção expressiva de isoflavonas, um tipo de flavonóide raro em monocotiledôneas (Harborne e Williams, 2000b) (Figura 5). Em levantamentos anteriores de flavonóides de Iridaceae já se observou que C-glicosilflavonas, juntamente com flavonóis, são os flavonóides mais comuns em folhas de iridáceas, sendo que as primeiras são o principal componente flavonóide foliar em quatro das cinco tribos da subfamília Iridoideae: Irideae, Tigrideae, Sisyrinchieae e Trimezieae, sendo as duas últimas caracterizadas pela ausência de flavonóis (Williams e Harborne, 1985).

Outra característica marcante de Iridoideae é a baixa diversidade de antocianinas. Neste grupo foram encontradas somente ocorrências de antocianinas padrão delfinidina, estando aparentemente ausentes antocianinas comuns nas outras subfamílias de Iridaceae tais como pelargonidina, cianidina e seus derivados. Para o gênero *Sisyrinchium* foram registradas apenas duas ocorrências de antocianinas, ambas formas glicosiladas de petunidina.

O padrão químico encontrado no gênero *Sisyrinchium* é, portanto, compatível com seu posicionamento dentro da tribo Sisyrinchieae, como um gênero sem produção de flavonóis, e da subfamília Iridoideae, pela alta produção de C-glicosilflavonas e pela ausência de antocianinas dos padrões pelargonidina e cianidina.

Soares e Kaplan (2001) observaram que em dicotiledôneas a predominância de produção de flavonas em relação à de flavonóis está associada a famílias mais derivadas, e neste caso geralmente mais herbáceas. Iridaceae possui no geral uma maior produção de flavonóides do ramo produtor de flavonas, C3H. Dentro de Iridaceae, Iridoideae é a subfamília que manifesta de maneira mais clara essa tendência química. O gênero *Sisyrinchium* é um
bom exemplo dessa química predominantemente flavônica. Os resultados obtidos até o momento com *S. micranthum* confirmam esse fato. É importante ressaltar que a ocorrência de C-glicosilflavonas confere um forte componente adaptativo a relação C₃H/C₃OR (e consequentemente na relação flavona/flavonol). Isso foi observado por Soares (1996).

O dendrograma de similaridade (Figura 6) salientou a dicotomia entre produtores de derivados C₃H e C₃OR. Com apenas uma exceção, todos os gêneros de Iridoideae ficaram agrupados. Neste grupo também ficou posicionado o gênero *Patersonia*, basal em Iridaceae. Isso pode ter ocorrido devido às ocorrências de isoflavonas e C-glicosilflavonas neste gênero, que é o único onde estes dois marcadores ocorrem concomitantemente além de *Iris*, que aparece como o gênero mais similar a *Patersonia*.

A importância das flavonas C-glicosiladas na delimitação dos grupos fica ainda mais evidente devido ao posicionamento dos gêneros *Belamcanda* (Iridoideae), *Gladiolus*, *Crocus*, *Romulea*, *Freesia* e *Hesperantha* (Crocoideae). Enquanto *Belamcanda* é o único gênero de Iridoideae com zero ocorrências de C-glicosilflavonas neste levantamento, os únicos gêneros de Crocoideae para os quais foi registrada esta ocorrência foram os gêneros que no dendrograma ficaram dentro do grupo com alta produção de flavonóides C₃H.

Esta dicotomia entre produção do ramo C₃H e produção do ramo C₃OR também apareceu nas duas PCA, que confirmaram esta tendência de agrupamento ao formar dois grupos facilmente distinguíveis, um com as tribos de Iridoideae e outro com as tribos de Crocoideae.

Em ambos os diagramas (Figuras 7 e 8) pode-se perceber que tanto Irideae quanto Croceae ficam distantes dos grupos formados pelas outras tribos de suas respectivas subfamílias. Isto pode ter acontecido devido ao fato de estas subfamílias serem melhor amostradas devido ao maior número de estudos para estas plantas, especialmente as dos gêneros *Crocus* e *Iris*. Outro motivo pelo qual este resultado pode ocorrer é a possibilidade de estas tribos terem uma diversidade de caracteres maior que as demais, mas existem poucos estudos para muitos dos gêneros estudados para que esta afirmação seja feita categoricamente.
Ao comparar estas análises à filogenia atual para Iridaceae (Goldblatt, 2008) nota-se que o grupo químico de alta produção de derivados C₃OR formado por Aristeoideae, Nivenioideae e Crocoideae na análise de grupamento aparece também na filogenia.

Embora Isophysiidoideae e Patersonioideae (os grupos mais basais) apresentem uma química predominantemente flavônica, similar à de Iridoideae, esses grupos produzem predominantemente bisflavonas que são considerados marcadores basais do ramo produtor de flavonas (C₃H) (Harborne e Williams, 2000b). É possível que a ativação da oxigenação em C₃ seja o evento químico que melhor descreve a divergência entre Crocoideae e Iridoidae. Mais uma vez o perfil químico de Sisyrinchium posiciona muito bem esse gênero.

A relação flavona/flavonol é considerada indicativa do status evolutivo de um grupo entre as dicotiledôneas (Soares e Kaplan, 2001) e este pode ser também o caso destas monocotiledôneas. É fato que Iridoideae apresenta uma alta relação flavona/flavonol e também é considerado o grupo mais derivado dentro da família. A confirmação da validade desse indicador evolutivo para Iridaceae depende de maiores estudos em outras monocotiledôneas além da avaliação quantitativa da lignina nesses grupos, uma vez que a relação flavona/flavonol tende a ser inversamente proporcional à lenhosidade.

Quanto à composição específica do perfil flavonóídico de S. micranthum, os resultados das análises de concentração total e da reação de Shinoda indicam um padrão de acúmulo de flavonas relacionado à cor das flores. Enquanto os resultados da análise de flavonóides totais mostraram que as populações MA/C e PA/C continham uma quantidade de flavonóides consideravelmente maior que as outras, o resultado da reação de Shinoda para detecção de flavonas também indicou uma concentração maior de flavonas nas plantas com flores amarelas em relação às demais cores de flor. Estas duas populações foram coletadas sobre um afloramento rochoso (MA/C) e no acostamento de uma estrada não pavimentada (PA/C).

Dados de coleta sugerem um padrão de ocorrência distinto para S. micranthum de acordo com a coloração floral. Assim como ocorre em Caçapava do Sul, populações provenientes de ambientes com substrato pobre e com alta exposição solar tendem a apresentar predominância de espécimes

Os vários tons de amarelo conferidos por flavonóides em flores de angiospermas são associados à presença de chalconas, auronas ou flavonas (Zuanazzi e Montanha, 2007). Em nenhum levantamento químico em Iridaceae foram encontradas quantidades significativas de chalconas ou auronas. Os resultados desse trabalho sugerem que os indivíduos de flores amarelas possam se constituir em quimiotipos de alta produção de flavonóides totais, dentre os quais predominam flavonas C-glicosiladas. As flores destes indivíduos apresentam uma guia no centro da tépala e a fauce pigmentadas fortemente de roxo (Figura 10). Esta coloração é conferida por antocianinas.

C-glicosilflavonas são flavonóides cujo resíduo de açúcar se encontra ligado à aglicona através de uma ligação carbono-carbono nas posições 6 e/ou 8 do anel A. De maneira distinta aos derivados O-glicosilados a formação das C-glicosilflavonas ocorre necessariamente num estágio inicial da biossíntese dos flavonóides, a partir de chalconas ou flavanonas (Saleh, 1979) (Figura 11). Estes glicosídeos são os únicos flavonóides encontrados em algas, mais especificamente em carofíceas (Markham e Porter, 1969), apresentam elevada abundância em briófitas e praticamente desaparecem das linhagens subsequentes de plantas terrestres até o surgimento das angiospermas (Soares, 1996). Pelo seu papel antioxidante e protetor UV, aliado à sua estabilidade estrutural, foram provavelmente substâncias decisivas para a conquista do inóspito ambiente terrestre pelos primeiros grupos de plantas (Gottlieb, 1996; Valant-Vetschera, 1985). Posteriormente, as C-glicosilflavonas tiveram substitutos em seu papel antioxidante e protetor contra raios UV, tais como os flavonóis, as flavonas e as antocianinas, com padrão diversificado de glicosilação envolvendo a formação de ligações do tipo éter (C-O-C) entre o resíduo de açúcar e hidroxilas fenólicas posicionadas nos anéis A e/ou B (Soares, 1996).
Devido ao papel executado pelas C-glicosilflavonas, as plantas de flores amarelas têm uma vantagem adaptativa em ambientes de solos pobres com déficit hídrico e/ou alta irradiação solar em relação às plantas de flores lilases ou róseas da mesma espécie. As partes pigmentadas por antocianinas das flores amarelas provavelmente foram mantidas com fins reprodutivos, uma vez que funcionam como guias para os elaióforos.

10. CONSIDERAÇÕES FINAIS:

É possível que as plantas de flores amarelas consistam em quimiotipos de *S. micranthum*. Estudos mais detalhados da composição química dos diferentes morfotipos da espécie podem vir a confirmar esta hipótese, bem como auxiliar na delimitação dos morfotipos *pequeno*, *médio* e *grande*, uma vez que os dados químicos aqui descritos se mostram congruentes com o esperado para o grupo e com a filogenia atual de Iridaceae.
11. REFERÊNCIAS BIBLIOGRÁFICAS:

12. ANEXOS:

Figura 1: Esqueletos básicos de flavonóides (A: flavona) e isoflavonóides (B: isoflavona) mostrando a nomenclatura dos anéis e a numeração dos carbonos frequentemente substituídos em flavonóides isolados em Iridaceae. Nos flavonóides o anel B encontra-se ligado no carbono 2 do anel C. Nos isoflavonóides o anel B encontra-se ligado no carbono 3 do anel C.
Figura 2: Diagrama biossintético representando a formação dos principais marcadores flavonoidicos de Iridaceae. Bisflavonas não foram representadas, pois há poucos dados sobre sua biossíntese. Entre parêntese se encontram representados tipos estruturais precursors, porém ainda não isolados de espécies da família. As chalconas iniciam o ramo produtor de flavonas (C3H). Os diidroflavonóides iniciam o ramo produtor de flavonóis (C3OH). A letra R representa uma grande diversidade de substituintes (H, OH, metoxila, glicosídeo, acilglicosídeo). R_2 representa glicosídeo, alquilglicosídeo, ou H. R_3 representa H ou OH. ISOF= isoflavonas, CHAL=chalconas, CGFN= C-glicosilflavonas, HFON= diidroflavonas, FONA= flavonas, DHFL= diidroflavonóis, FNOL= flavonóis, ANTO= antocianinas, PANT= proantocianídinas.
Figura 3: Ocorrência de flavonóides C$_3$H e C$_3$OR em tribos de Iridoideae. Os números em parênteses correspondem ao total de ocorrências para cada grupo.

Figura 4: Ocorrência de flavonóides C$_3$H e C$_3$OR em tribos de Crocoideae. Os números em parênteses correspondem ao total de ocorrências para cada grupo.

Figura 5: Ocorrência de metabólitos secundários em subfamílias de Iridaceae. Os números em parênteses correspondem ao total de ocorrências para cada grupo. Chave: ISOF= Isoflavona; CGFN= C-glicosilflavona; ANTO= Antocianina.
Figura 6: Dendrografo de similaridade dos gêneros de Iridaceae, evidenciando a formação de dois grandes grupos: um à esquerda, com maior produção de metabólitos C₃H e outro à direita, com maior produção de metabólitos C₃OR.
Figura 7: Diagrama de ordenamento das tribos e subfamílias de Iridaceae.
Figura 8: Diagrama de ordenamento das tribos de Iridoideae e Crocoideae.
Figura 10: Flores dos acessos MA/C (A) e PA/C (B), evidenciando coloração roxa da fauce e guias.

Figura 11: Esquema das relações biossintéticas entre O-glicosilflavonas e C-glicosilflavonas.
(I= O-glicosiltransferase, II= C-glicosiltransferase).
Tabela 1: Número de registro, variante morfológica e procedência das plantas de *Sisyrinchium micranthum* analisadas.

<table>
<thead>
<tr>
<th>Nº reg.</th>
<th>Tipo e Cor</th>
<th>Estado e Município</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC 431</td>
<td>Grande lilás</td>
<td>RS, Caçapava do Sul</td>
</tr>
<tr>
<td>ESC 455</td>
<td>Grande lilás</td>
<td>RS, São Francisco de Paula</td>
</tr>
<tr>
<td>ESC 455</td>
<td>Grande lilás</td>
<td>RS, São Francisco de Paula</td>
</tr>
<tr>
<td>ESC 386</td>
<td>Grande amarelo</td>
<td>PR, Palmas</td>
</tr>
<tr>
<td>ESC 459</td>
<td>Médio lilás</td>
<td>RS, Caçapava do Sul</td>
</tr>
<tr>
<td>ESC 425</td>
<td>Médio lilás</td>
<td>RS, Osório</td>
</tr>
<tr>
<td>ESC 413</td>
<td>Médio lilás</td>
<td>RS, Viamão</td>
</tr>
<tr>
<td>ESC 418</td>
<td>Médio lilás</td>
<td>RS, Viamão</td>
</tr>
<tr>
<td></td>
<td>- Médio lilás</td>
<td>RS, Porto Alegre</td>
</tr>
<tr>
<td>ESC 397</td>
<td>Médio lilás</td>
<td>SC, Haiópolis</td>
</tr>
<tr>
<td>ESC 460</td>
<td>Médio amarelo</td>
<td>RS, Caçapava do Sul</td>
</tr>
<tr>
<td>ESC 462</td>
<td>Médio rosa</td>
<td>RS, Caçapava do Sul</td>
</tr>
<tr>
<td>ESC 426</td>
<td>Médio branco</td>
<td>RS, Osório</td>
</tr>
<tr>
<td>ESC 461</td>
<td>Pequeno amarelo</td>
<td>RS, Caçapava do Sul</td>
</tr>
<tr>
<td>ESC 416</td>
<td>Pequeno amarelo</td>
<td>RS, Viamão</td>
</tr>
</tbody>
</table>

ESC indica o nome dos coletores = Eggers e Souza-Chies
<table>
<thead>
<tr>
<th>Subfamília</th>
<th>Tribo</th>
<th>Gênero</th>
<th>CGFN</th>
<th>DHFN</th>
<th>FONA</th>
<th>TRIC</th>
<th>BFON</th>
<th>DHFL</th>
<th>FNOL</th>
<th>MYRI</th>
<th>PELA</th>
<th>CYAN</th>
<th>DELF</th>
<th>PROC</th>
<th>PROD</th>
<th>PROP</th>
<th>ISOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patersonioideae</td>
<td>Patersonia</td>
<td>7 0 5 0 4 0 59 14 0 0 0 4 4 0 2</td>
<td></td>
</tr>
<tr>
<td>Nivenioideae</td>
<td>KIattia</td>
<td>0 0 0 0 0 0 8 2 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Nivenioideae</td>
<td>Nivenia</td>
<td>0 0 0 0 0 0 7 1 0 0 0 0 1 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Nivenioideae</td>
<td>Witsenia</td>
<td>0 0 0 0 0 0 3 1 0 0 0 0 1 1 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Watsonieae</td>
<td>Lapeirousia</td>
<td>0 0 0 0 0 0 9 2 0 0 1 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Watsonieae</td>
<td>Pillansia</td>
<td>0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Watsonieae</td>
<td>Watsonia</td>
<td>0 0 0 0 0 0 4 1 9 0 0 1 1 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Gladioleae</td>
<td>Melasphaeraulis</td>
<td>0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Gladioleae</td>
<td>Gladiolus</td>
<td>4 0 13 4 0 0 14 0 8 10 21 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Freesieae</td>
<td>Crocosmia</td>
<td>0 0 0 0 0 0 4 3 0 2 0 1 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Freesieae</td>
<td>Freesia</td>
<td>2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Croceae</td>
<td>Babiana</td>
<td>1 0 0 0 0 0 5 3 0 0 5 1 2 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Croceae</td>
<td>Chasmanthe</td>
<td>0 0 0 0 0 0 3 1 0 2 0 0 1 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Croceae</td>
<td>Crocus</td>
<td>15 1 18 2 0 2 46 2 0 25 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Croceae</td>
<td>Dierama</td>
<td>0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Croceae</td>
<td>Hesperanthera</td>
<td>2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Croceae</td>
<td>Ixia</td>
<td>0 0 0 0 0 0 2 1 0 0 0 1 1 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Croceae</td>
<td>Romulea</td>
<td>1 0 1 1 0 0 12 1 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Croceae</td>
<td>Sparaxis</td>
<td>0 0 0 0 0 0 6 1 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Crocoideae Croceae</td>
<td>Tritonia</td>
<td>0 0 0 0 0 0 6 2 1 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Iridoideae Diplarreneae</td>
<td>Diplarrenae</td>
<td>2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 2: Ocorrências de flavonóides para gêneros de Iridaceae.
<table>
<thead>
<tr>
<th>Subfamília</th>
<th>Tribo</th>
<th>Gênero</th>
<th>CGFN</th>
<th>DHFN</th>
<th>FONA</th>
<th>TRIC</th>
<th>BFON</th>
<th>DHFL</th>
<th>FNOL</th>
<th>MYRI</th>
<th>PELA</th>
<th>CYAN</th>
<th>DELF</th>
<th>PROC</th>
<th>PROD</th>
<th>PROP</th>
<th>ISOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoideae</td>
<td>Irideae</td>
<td>Dietes</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Irideae</td>
<td>Hermodactylis</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Irideae</td>
<td>Iris</td>
<td>87</td>
<td>15</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>20</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Irideae</td>
<td>Belamcanda</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Irideae</td>
<td>Homeria</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Irideae</td>
<td>Gynandriris</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Irideae</td>
<td>Galaxia</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Sisyrichieae</td>
<td>Libertia</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Sisyrichieae</td>
<td>Phaioleps</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Sisyrichieae</td>
<td>Orthrosanthus</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Sisyrichieae</td>
<td>Sisyrinchium</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Sisyrichieae</td>
<td>Solenomelus</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Sisyrichieae</td>
<td>Taipeinia</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Trimezieae</td>
<td>Trimezia</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Trimezieae</td>
<td>Neomarica</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Tigridieae</td>
<td>Calydorea</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Tigridieae</td>
<td>Cipura</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Tigridieae</td>
<td>Cypella</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Tigridieae</td>
<td>Eleutherine</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Tigridieae</td>
<td>Ennealophus</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Tigridieae</td>
<td>Herbertia</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Indoideae</td>
<td>Tigridieae</td>
<td>Tigridia</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Chave: CGFN= C-glicosilflavona; DHFN= dihidroflavona; FONA= flavona; TRIC= tricina; BFON= biflavona; DHFL= dihidroflavonol; FNOL= flavonol; MYRI= miricetina; PELA= padrão pelargonidina; CYAN= padrão cianidina; DELF= padrão delfinidina; PROC= procianidina; PROD= prodelfinidina; PROP= propelargonidina; ISOF= isoflavona.
Tabela 3: Resultado da prospecção fitoquímica para detecção de derivados polifenólicos em *Sisyrinchium micranthum*.

<table>
<thead>
<tr>
<th>Reagente</th>
<th>Morfotipo</th>
<th>Coloração</th>
<th>Intensidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelatina 1%</td>
<td>médio lilás</td>
<td>precipitado branco</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>médio rosa</td>
<td>precipitado branco</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>médio amarelo</td>
<td>precipitado branco</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>pequeno lilás</td>
<td>precipitado branco</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>pequeno amarelo</td>
<td>precipitado branco</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>médio lilás</td>
<td>precipitado branco</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>médio amarelo</td>
<td>precipitado branco</td>
<td>+</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>médio lilás</td>
<td>azul arroxeado</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>médio rosa</td>
<td>azul arroxeado</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>médio amarelo</td>
<td>azul arroxeado</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>pequeno lilás</td>
<td>azul arroxeado</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>pequeno amarelo</td>
<td>azul arroxeado</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>médio lilás</td>
<td>azul arroxeado</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>médio amarelo</td>
<td>azul arroxeado</td>
<td>+</td>
</tr>
<tr>
<td>HCl/Mg (Shinoda)</td>
<td>médio lilás</td>
<td>alaranjado</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>médio rosa</td>
<td>alaranjado</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>médio amarelo</td>
<td>alaranjado</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>pequeno lilás</td>
<td>alaranjado</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>pequeno amarelo</td>
<td>alaranjado</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>médio lilás</td>
<td>alaranjado</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>médio amarelo</td>
<td>alaranjado</td>
<td>+++</td>
</tr>
</tbody>
</table>
CARACTERIZAÇÃO MORFOLÓGICA E MORFOMETRIA EM
SISYRINCHIUM MICRANTHUM CAV. (IRIDACEAE)

Artigo a ser submetido à Revista Brasileira de Biociências
Autores: Malvina S. Indrusiak, Lilian Eggers
13. INTRODUÇÃO

Atualmente tem se dado grande importância a caracteres moleculares para a resolução de problemas envolvendo relações inter e intraespecíficas. Embora eles já tenham se mostrado muito úteis, deve-se tomar cuidado para não desprezar caracteres fenotípicos, os quais possibilitam a identificação de plantas in loco.

Estudos morfométricos têm sido usados para ajudar a esclarecer problemas taxonômicos em diversos grupos de monocotiledôneas (Henderson, 2006). Um exemplo disto são os trabalhos de Oliveira et al. (2008) em que a taxonomia do complexo *Raddia brasiliensis* Bertol. foi resolvida com base em estudos morfométricos de diferentes morfotipos de *R. brasiliensis*, e o de Naczi et al. (1998), que dividiu o complexo *Carex wildenowii* Willdenow em três espécies, em um estudo que aliou estudos morfológicos, geográficos e ecológicos.

É importante salientar que em ambos os estudos os resultados obtidos pela análise morfométrica foram corroborados por estudos complementares, como a abordagem genética em *Raddia brasiliensis* e ambiental em *Carex wildenowii*.

14. MATERIAL E MÉTODOS:

14.1. MATERIAL BOTÂNICO

As coletas necessárias para este estudo foram realizadas nos estados do Rio Grande do Sul, Santa Catarina e Paraná nos meses de outubro e novembro do ano de 2008. Em campo foram coletadas treze populações de *S. micranthum*, as quais foram caracterizadas in loco como morfotipos pequeno, médio e grande (Tabela 1). Dez indivíduos de cada população foram prensados para medição e um para testemunho, o qual foi depositado no Herbário ICN, Instituto de Biociências, UFRGS. Para a análise das estruturas florais, pelo menos dez flores foram amostradas e conservadas em uma solução de álcool e glicerol (70%:30%).
Tabela 1: Número de registro, variante morfológica e procedência das plantas de *Sisyrinchium micranthum* analisadas.

<table>
<thead>
<tr>
<th>Nº reg.</th>
<th>Morfotipo e cor de flor</th>
<th>Estado e Município</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC 386</td>
<td>Grande amarelo</td>
<td>PR, Palmas</td>
</tr>
<tr>
<td>ESC 409</td>
<td>Grande lilás</td>
<td>SC, Campo Belo do Sul</td>
</tr>
<tr>
<td>ESC 431</td>
<td>Grande lilás</td>
<td>RS, Caçapava do Sul</td>
</tr>
<tr>
<td>ESC 455</td>
<td>Grande lilás</td>
<td>RS, São Francisco de Paula</td>
</tr>
<tr>
<td>ESC 456</td>
<td>Grande lilás</td>
<td>RS, São Francisco de Paula</td>
</tr>
<tr>
<td>ESC 459</td>
<td>Médio lilás</td>
<td>RS, Caçapava do Sul</td>
</tr>
<tr>
<td>ESC 404</td>
<td>Médio lilás</td>
<td>SC, Santa Cecília</td>
</tr>
<tr>
<td>ESC 425</td>
<td>Médio lilás</td>
<td>RS, Osório</td>
</tr>
<tr>
<td>ESC 311</td>
<td>Pequeno lilás</td>
<td>SC, Jaraguá do Sul</td>
</tr>
<tr>
<td>ESC 369</td>
<td>Pequeno lilás</td>
<td>PR, Guarapuava</td>
</tr>
<tr>
<td>ESC 439</td>
<td>Pequeno lilás</td>
<td>RS, Bagé</td>
</tr>
<tr>
<td>ESC 342</td>
<td>Pequeno ebúrneo</td>
<td>PR, Jaguariaíva</td>
</tr>
<tr>
<td>ESC 461</td>
<td>Pequeno ebúrneo</td>
<td>RS, Caçapava do Sul</td>
</tr>
</tbody>
</table>

ESC indica o nome dos coletores = Eggers e Souza-Chies

14.2. ANÁLISE MORFOMÉTRICA

Foram realizadas medições de caracteres morfológicos das partes aéreas vegetativos e reprodutivos das plantas coletadas (Anexo 1). Os caracteres avaliados foram escolhidos com base em Chukr e Capellari Jr. (2003). As medidas da parte vegetativa foram realizadas a olho nu, com uma régua milimetrada. As medidas da parte reprodutiva foram realizadas com auxílio de microscópio estereoscópico, com uma escala milimetrada. Estas medidas foram tomadas no Laboratório de Sistemática de Angiospermas, Departamento de Botânica da UFRGS. Posteriormente foram calculadas a média e desvio padrão para cada caractere em cada população.

Os dados obtidos foram padronizados para escala Z através das médias e desvios padrão de cada um dos caracteres para a realização de análise de agrupamento. Utilizou-se distância euclidiana quadrática e método Ward, com
o emprego do programa SPSS versão 16. Nesta análise, o agrupamento é feito com base na dissimilaridade entre as amostras, estimada pela distância. Ela tem por objetivo descobrir o agrupamento natural dos mesmos. Este tipo de análise é comumente utilizada em estudos de morfometria. Devido ao seu caráter exploratório, esta análise não é inferencial, ela simplesmente procura por padrões no conjunto de dados, não sendo necessária a formação de grupos a priori (Henderson, 2006). Foram feitas três análises, nas quais foram incluídos (1) os caracteres vegetativos e florais, (2) os caracteres vegetativos somados às características do escapo floral e brácteas e (3) somente os caracteres florais.

As análises foram realizadas com o suporte do Núcleo de Assessoria Estatística (NAE), Instituto de Matemática, UFRGS.

15. RESULTADOS:

Em observações a campo notou-se uma série de características peculiares aos indivíduos caracterizados como morfotipos pequeno, médio e grande. As plantas do morfotipo grande, além de serem notavelmente maiores que as plantas dos demais morfotipos, apresentam o porte ereto (Figura 1). Sua inflorescência apresenta brácteas mais longas e largas que ficam unidas de maneira a formar um tubo através do qual passam os pedicelos das flores (Figura 2).

As plantas dos morfotipos médio e pequeno no ambiente natural apresentam os caules decumbentes. Nestas plantas, cada bráctea floral tem uma porção superior única, aparentemente resultante da fusão dos dois lados da bráctea, sendo evidente na base um dobramento pela nervura central o qual esconde os pedicelos florais. Outra característica marcante é que as duas brácteas que envolvem a inflorescência são afastadas uma da outra, de maneira a formar um “V”, conforme pode ser visualizado na Figura 2. Embora compartilhem estas características acima, as plantas do morfotipo pequeno são bem menores que as do morfotipo médio.

Figura 2: Detalhe das brácteas da inflorescência nos morfotipos grande (A), médio (B) e pequeno (C). Fotografias: M. Indrusiak

As flores do morfotipo grande normalmente apresentam uma coloração branca ou amarelada na porção distal das tépalas. A base das mesmas tem cor amarela até a fauce, seguida de coloração arroxeada que se estende pelas nervuras. São muito raras plantas com flores de outras cores. Dentre todos
morfológicos, é o morfotipo médio que apresenta a maior gama de cores de flor, desde tons de roxo, rosa, amarelo ou branco. As flores das plantas do morfotipo pequeno foram observadas sempre em três cores: lilás, ebúrneo e amarelo vivo. Nestes dois últimos morfotipos, a base das tépalas é sempre amarela, seguida de coloração roxa, bordô ou marrom (Figura 3).

Na Figura 4 pode-se observar a diferença entre os caracteres avaliados para os morfotipos pequeno, médio e grande. Os valores médios e extremos dos caracteres avaliados dos morfotipos podem ser visualizados no Anexo 2 e os valores para cada população encontram-se no Anexo 3.

No morfotipo grande, as flores do acesso ESC 386 diferenciaram-se da maioria das flores das populações amostradas por apresentarem uma distribuição peculiar dos tricomas ao longo do tubo estaminal. Além de uma área de alta concentração de tricomas, típica para todo o grupo, visualizou-se uma área totalmente nua entre esta e a inserção das tépalas. Além disto, na porção distal do tubo estaminal, percebeu-se a ocorrência esparsa de tricomas até a porção livre do mesmo. A porção nua apresentou comprimento médio de
0,2 mm (DP de 0,07 mm) e a extensão do tubo estaminal com tricomas esparsos de 0,52 mm (DP de 0,13 mm). As flores do acesso ESC 431 exibiram também esta porção nua entre as tépalas e a área densa, mas não apresentaram a porção de tricomas esparsos. Nestas flores, a porção nua apresentou comprimento médio de 0,14 mm (DP de 0,084 mm). Outra característica distinta foi a presença de brácteas florais com a nervura mediana evidentemente mais saliente que nas demais.

Os acessos ESC 404 e ESC 425, caracterizados como morfotipo médio, apresentaram particularidades quanto à forma da porção livre do estilete. Enquanto o primeiro apresentou a base da porção livre mais engrossada que as demais populações, o segundo apresentou as extremidades dos ramos do estilete fortemente recurvadas para cima.

Dentre as populações amostradas do morfotipo pequeno, os acessos ESC 311 e ESC 342 não apresentaram tricomas na face adaxial das tépalas externas.

Na análise de agrupamento que utilizou os caracteres vegetativos e florais houve a formação de três grandes grupos bem delimitados, condizentes com os três morfotipos previamente definidos (Figura 5). O grupo que mostrou menos similaridade com os demais foi o que reuniu os indivíduos do morfotipo grande. Dentro dos grupos dos morfotipos ocorreram alguns subgrupos. No grupo do morfotipo pequeno formaram-se dois grupos menores, um deles correspondendo aos indivíduos dos acessos ESC 311, ESC 369 e ESC 439 e o outro com os indivíduos dos acessos ESC 342 e ESC 461. No grupo do morfotipo grande formaram-se cinco subgrupos de pequena dissimilaridade. O menos similar aos demais foi formado pelos indivíduos do acesso ESC 386. Outro grupo foi formado pelos indivíduos dos acessos ESC 455 e ESC 456. Os indivíduos do acesso ESC 431 formaram um grupo só de uma população. O quarto grupo foi formado pelos indivíduos do acesso ESC 409 e por um indivíduo do acesso ESC 456. O quinto acesso foi formado por um indivíduo do acesso ESC 431 e um indivíduo do acesso ESC 311, este último referente a uma planta do morfotipo pequeno. Este agrupamento não se repetiu nas demais análises realizadas e, por ser um agrupamento incoerente, foi considerando um erro de análise. O grupo do morfotipo médio não teve formação de subgrupos, indicando igual similaridade entre populações de diferentes procedências.
Figura 4: Média das medidas de cada caractere para cada morfotipo. Para os caracteres vegetativos a unidade de medida utilizada foi centímetro. Para os caracteres florais a unidade de medida utilizada foi milímetro. O significado das abreviaturas se encontra no Anexo 1.
Figura 5: Dendrograma de similaridade para os indivíduos de *S. micranthum* calculado com os caracteres vegetativos e florais.
A análise na qual só foram utilizados os caracteres vegetativos apresentou resultados semelhantes à análise anterior (Figura 6). Também aqui os indivíduos do morfotipo grande formaram um grupo de menor similaridade em relação aos outros indivíduos, que, desta vez, não formaram grupos distintos para cada morfotipo. Apenas um indivíduo do morfotipo grande agrupou fora do seu grupo característico.

Na análise em que só foram utilizados os caracteres florais formaram-se novamente os três grupos correspondentes aos morfotipos pequeno, médio e grande. Desta vez, o grupo menos similar aos demais foi o grupo do morfotipo pequeno (Figura 7). Nesta análise, os indivíduos dos acessos ESC 342 e ESC 461 formaram grupos separados. Os demais grupos observados no dendrograma foram os mesmos formados na análise completa.

Nas duas análises que utilizaram caracteres florais o grupo formado pelos indivíduos do morfotipo pequeno foi subdividido em grupos distintos para os acessos correspondentes às plantas com flores lilases e ebúrneas. Na Figura 8 pode-se observar a diferença nos caracteres avaliados para as plantas de flores lilases e ebúrneas.

16. Discussão:

O dendrograma obtido pela análise que utilizou os caracteres vegetativos e florais foi o que melhor indicou a separação entre os morfotipos, apresentando ainda subgrupos coerentes com os pontos de coleta e/ou coloração de flor (Figura 5). No dendrograma que utilizou somente os dados vegetativos, houve uma separação adequada do morfotipo grande (Figura 6) e no dendrograma que utilizou somente os dados de florescimento, o morfotipo pequeno foi o que se destacou (Figura 7).

Os subgrupos formados no grupo do morfotipo grande na análise estatística que utilizou os caracteres vegetativos e florais mostram que os morfotipos pequeno e médio formam grupos bastante homogêneos quanto a coloração de flor, sem distinção entre as populações das diferentes localidades amostradas, o que não acontece com o morfotipo grande. Os quatro subgrupos formados neste último são correspondentes a cada uma das quatro populações
Figura 6: Dendrograma de similaridade para indivíduos de *S. micranthum* calculado somente com caracteres vegetativos.
Figura 7: Dendograma de similaridade para indivíduos de *S. micranthum* calculado somente com caracteres florais.
Figura 8: Média das medidas de cada caractere para as plantas com flores ebúrneas e para as plantas com flores lilases do morfotipo pequeno. Para os caracteres vegetativos a unidade de medida utilizada foi centímetro. Para os caracteres florais a unidade de medida utilizada foi milímetro. O significado das abreviaturas se encontra no Anexo 1.
do morfotipo grande analisadas. Destes, o mais dissimilar é o ESC 386, coletado em Palmas (PR), o qual apresentava flores de tépalas aparentemente mais curtas e mais largas do que os demais. Os demais acessos, embora agrupem os indivíduos em suas populações, se apresentam em um mesmo ponto de corte no dendrograma.

Os acessos do morfotipo médio não apresentaram qualquer agrupamento indicativo das populações. Isto pode ser devido a uma homogeneidade maior dos caracteres, mesmo em plantas ocorrentes em diferentes localidades. No entanto, deve-se salientar que esta análise compreendeu apenas indivíduos de flores lilases. Este morfotipo pode apresentar também flores róseas, amarelas ou brancas, menos frequentes que as lilases. Para qualquer afirmação mais conclusiva a respeito da sua variabilidade deve-se realizar estudos que levem em conta observações referentes a estas plantas com diferentes cores de flor.

Os acessos do morfotipo pequeno formaram grupos que evidenciaram plantas de cor de flor lilás (ESC 311, ESC 369 e ESC 439) e ebúrneas (ESC 342 e ESC 461) e que incluem populações de localidades distintas (Figuras 5 e 7). Estas duas variantes apresentaram diferenças notáveis tanto em caracteres vegetativos quanto reprodutivos, como pode ser observado na Figura 8. As plantas lilases apresentaram porte maior, tanto em comprimento de folhas e de entrenós quanto em número de escapos florais ou inflorescências. As flores, por sua vez, mostraram tépalas maiores em aproximadamente 2 mm.

A análise dos dados vegetativos mostrou que o agrupamento formado pelos indivíduos do morfotipo grande tem maior dissimilaridade do que o agrupamento constituído pelas plantas dos demais morfotipos. As partes vegetativas dos morfotipos pequeno e médio são muito semelhantes (Figura 4) e, embora as plantas do morfotipo pequeno tenham uma tendência a serem menores que as do morfotipo médio, é comum encontrar plantas do morfotipo pequeno cujas partes vegetativas são do mesmo tamanho que as das plantas do morfotipo médio ou mesmo o contrário. Observando os resultados das análises estatísticas completa e de dados vegetativos, podemos confirmar que os morfotipos pequeno e médio são mais similares entre si e menos similares ao grande (Figuras 5 e 6). Desta forma, a análise com dados vegetativos é
relevantemente somente para a distinção do morfotipo *grande*. Para diferenciar os morfotipos *pequeno e médio*, é fundamental observar suas flores.

Enquanto as flores do morfotipo *médio* são mais parecidas com as flores do morfotipo *grande*, as flores do morfotipo *pequeno* são diferentes das dos demais morfotipos. Elas são notavelmente menores, com relação ao comprimento e largura das têpalas externas e internas, como pode ser visualizado na Figura 4. A porção do tubo estaminal coberta por elaióforos apresenta uma densidade de tricomas menor e os ramos do estilete não se abrem completamente, ficando ocultos entre as anteras. Nos outros morfotipos, tanto os ramos do estilete quanto a porção livre dos estames se abrem de maneira a formar um ângulo quase reto em relação ao tubo estaminal, intercalando-se para não sobrepor um ramo de estilete a um estame. Além disto, observações realizadas a campo durante as expedições de coleta revelaram que, comparativamente, as flores do morfotipo *pequeno* abrem após a antese dos morfotipos *grande e médio* e fecham antes do fim do período de abertura floral dos mesmos. Considerando tais peculiaridades como flores pequenas, com menor recompensa ao polinizador (em decorrência da quantidade reduzida de elaióforos), estiletes dificilmente acessíveis a polinizadores e reduzido tempo de abertura floral, pode-se conjecturar que as plantas do morfotipo *pequeno* sejam autoférteis. Estudos de biologia floral que estão sendo conduzidos por L. O. Tacuatiá (2010; com. pes.) têm revelado que, em experimento de autopolinização espontânea e induzida, estas plantas produzem frutos.

Esta dissimilaridade entre as flores do morfotipo *pequeno* e as flores dos demais morfotipos também é confirmada pela análise estatística. Quando foi realizada a análise somente dos caracteres florais, o resultado mostrou que as flores do morfotipo *pequeno* são menos similares que as dos demais morfotipos (Figuras 4 e 7).

Ravenna (2001b) descreveu resumidamente a subespécie típica de *S. micranthum*, como plantas baixas e delgadas, de 5 a 15 cm de altura, folhas com 1,5 a 2,5 mm de largura e têpalas de no máximo 3 mm de largura. Para esta subespécie, apresentou três formas: com flores azuladas e nervação violeta (fma. *micranthum*), com flores amareladas (fma. *flava*) e com flores
ebúrneas (fma. *eburneochracea*), ambas com nervação marrom. Para o autor, as formas diferem somente pela coloração, não sendo apresentada nenhuma característica adicional. Todas as formas foram relatadas por Ravenna (2001a, 2001b) como ocorrentes no sul do Brasil. Com base nesta descrição, acredita-se que esta subespécie corresponda às plantas que neste trabalho são referidas como morfotipo *pequeno*. Além das plantas deste morfotipo exibirem as medidas concordantes com o descrito para a subespécie, foram reconhecidas nelas estas mesmas variações de coloração. Com base nas observações realizadas a campo, julga-se que as plantas deste morfotipo são as únicas a apresentar uma morfologia diferenciada correspondente à cor de flor. As plantas de flores lilases têm as tépalas mais longas e finas, além de exibirem tépalas patentes. As plantas de flores ebúrneas têm flores menores, tépalas mais curtas que as flores lilases e perigônio com tépalas que não ficam patentes e aparentam ter um grau de abertura menor (Figuras 8 e 9). Apesar destes indícios, esta hipótese não pode ser confirmada devido à brevidade da descrição publicada pelo autor e à impossibilidade de consulta aos tipos da subespécie.

A alta variabilidade de *S. micranthum* foi destacada por Chukr e Capellari Jr. (2003) com relação à coloração de flor e porte de indivíduos. Para o estado de São Paulo, os autores relataram a ocorrência de flores de cor lilás, amarela, branca ou com matizes variegados e porte mediano de indivíduos. As medidas de comprimento de folha apresentadas pelos autores correspondem aos valores do morfotipo *médio* aqui discutidos. No entanto, o comprimento das brácteas florais é distinto, sendo maiores do que os valores revelados neste estudo para o morfotipo médio. As diferenças nos valores encontrados e o desconhecimento da metodologia empregada por Chukr e Capellari Jr. (2003) para medição e conservação do material analisado (flores oriundas de exsicatas ou conservadas em líquido) não permitem estabelecer uma correspondência entre padrões de diferenciação morfológica de *S. micranthum* provenientes das populações ocorrentes no sudeste e sul do Brasil.
Este trabalho confirma que *S. micranthum* é uma espécie de grande variabilidade morfológica, a qual está presente mesmo dentro dos grupos formados pelos morfotipos. Apesar da existência de uma subespécie descrita e da comprovação estatística da consistência dos morfotipos, considera-se que é precipitado falar em novas espécies. Johnston (1938) relatou que pode haver hibridação entre duas espécies de *Sisyrinchium* denominadas de *S. micranthum* e *S. laxum* Otto ex Sims nas localidades em que a área de ocorrência natural das mesmas se sobrepõem. *Sisyrinchium laxum* foi caracterizada por este autor como uma espécie mais robusta do que *S. micranthum*, o que pode ser confirmado pela diferenciação das mesmas na chave dicotômica (Johnston, 1938). No entanto, *S. laxum* foi sinonimizado para *S. inidifolium* HBK (Baker, 1892), sendo que esta última espécie também faz parte dos sinônimos de *S. micranthum*. Com base no exposto, a variabilidade de *S. micranthum* é de longa data reconhecida e cruzamentos entre plantas de
diferentes morfologias são relatados como ocorrentes. Assim, somente estudos detalhados de cruzamentos controlados e análise de progênie podem ser conclusivos para a circunscrição da espécie. Estes estudos estão sendo conduzidos e, somados a este trabalho, podem vir a definir tipos morfológicos passíveis de serem reconhecidos.
17. REFERÊNCIAS BIBLIOGRÁFICAS:

Anexo 1: Caracteres medidos para análise morfométrica.

<table>
<thead>
<tr>
<th>Caráterer</th>
<th>Abreviação utilizada</th>
<th>Unidade de medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprimento da folha basal</td>
<td>C. Fo. Bas.</td>
<td>cm</td>
</tr>
<tr>
<td>Largura da folha basal</td>
<td>L. Fo. Bas.</td>
<td>cm</td>
</tr>
<tr>
<td>Número de inflorescências por escapo</td>
<td>N. Inf./Esc.</td>
<td>-</td>
</tr>
<tr>
<td>Número de entrenós por escapo</td>
<td>N. Ent./Esc.</td>
<td>-</td>
</tr>
<tr>
<td>Comprimento do entrenó basal</td>
<td>C. Ent. Bas.</td>
<td>cm</td>
</tr>
<tr>
<td>Comprimento do pedúnculo da inflorescência</td>
<td>C. Pedu.</td>
<td>cm</td>
</tr>
<tr>
<td>Comprimento da folha caulinar inferior</td>
<td>C. Fo. Caul.</td>
<td>cm</td>
</tr>
<tr>
<td>Largura da folha caulinar inferior</td>
<td>L. Fo. Caul.</td>
<td>cm</td>
</tr>
<tr>
<td>Comprimento da bráctea involucral externa</td>
<td>C. Brac. Ext.</td>
<td>cm</td>
</tr>
<tr>
<td>Largura da bráctea involucral externa</td>
<td>L. Brac. Ext.</td>
<td>cm</td>
</tr>
<tr>
<td>Comprimento da bráctea involucral interna</td>
<td>C. Brac. Int.</td>
<td>cm</td>
</tr>
<tr>
<td>Largura da bráctea involucral interna</td>
<td>L. Brac. Int.</td>
<td>cm</td>
</tr>
<tr>
<td>Comprimento da porção do pedicelo da flor acima das brácteas involucrais</td>
<td>C. Pedi.</td>
<td>cm</td>
</tr>
<tr>
<td>Comprimento da tépala externa</td>
<td>C. Tep. Ext.</td>
<td>mm</td>
</tr>
<tr>
<td>Largura da tépala externa</td>
<td>L. Tep. Ext.</td>
<td>mm</td>
</tr>
<tr>
<td>Comprimento da tépala interna</td>
<td>C. Tep. Int.</td>
<td>mm</td>
</tr>
<tr>
<td>Largura da tépala interna</td>
<td>L. Tep. Int.</td>
<td>mm</td>
</tr>
<tr>
<td>Comprimento da porção unida do tubo estaminal</td>
<td>T.E. Un.</td>
<td>mm</td>
</tr>
<tr>
<td>Comprimento da porção livre do tubo estaminal</td>
<td>T.E. Liv.</td>
<td>mm</td>
</tr>
<tr>
<td>Comprimento da porção com tricomas do tubo estaminal</td>
<td>T.E. Tric.</td>
<td>mm</td>
</tr>
<tr>
<td>Largura da porção com tricomas do tubo estaminal</td>
<td>L. T.E. Tric.</td>
<td>mm</td>
</tr>
<tr>
<td>Comprimento da antera</td>
<td>C. Ant.</td>
<td>mm</td>
</tr>
<tr>
<td>Comprimento da porção unida do estilete</td>
<td>C. Esti. Un.</td>
<td>mm</td>
</tr>
<tr>
<td>Comprimento da porção livre do estilete</td>
<td>C. Esti. Liv.</td>
<td>mm</td>
</tr>
<tr>
<td>Comprimento do ovário</td>
<td>C. Ov.</td>
<td>mm</td>
</tr>
<tr>
<td>Largura do ovário</td>
<td>L. Ov.</td>
<td>mm</td>
</tr>
</tbody>
</table>
Anexo 2: Valor mínimo, média e valor máximo de cada caractere para os morfotipos *grande*, *médio* e *pequeno*. O significado das abreviaturas e as unidades de medida se encontram no Anexo 1.

<table>
<thead>
<tr>
<th>Morfotipo Caráctere</th>
<th>Grande</th>
<th>Médio</th>
<th>Pequeno</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Fo. Bas.</td>
<td>(5,90-) 17,34 (-42,00)</td>
<td>(2,80-) 6,45 (-16,50)</td>
<td>(1,80-) 5,65 (-15,10)</td>
</tr>
<tr>
<td>L. Fo. Bas.</td>
<td>(0,10-) 0,26 (-0,50)</td>
<td>(0,10-) 0,18 (-0,40)</td>
<td>(0,10-) 0,16 (-0,50)</td>
</tr>
<tr>
<td>N. Inf./Esc.</td>
<td>(1,00-) 2,64 (-8,00)</td>
<td>(1,00-) 2,15 (-8,00)</td>
<td>(1,00-) 1,96 (-8,00)</td>
</tr>
<tr>
<td>N. Ent./Esc.</td>
<td>(1,00-) 2,80 (-5,00)</td>
<td>(2,00-) 2,78 (-5,00)</td>
<td>(1,00-) 2,03 (-5,00)</td>
</tr>
<tr>
<td>C. Ent. Bas.</td>
<td>(3,70-) 14,00 (-33,00)</td>
<td>(1,00-) 3,06 (-9,10)</td>
<td>(1,00-) 3,65 (-7,70)</td>
</tr>
<tr>
<td>C. Pedu.</td>
<td>(5,70-) 12,50 (-20,10)</td>
<td>(1,20-) 4,82 (-12,65)</td>
<td>(2,00-) 4,89 (-10,20)</td>
</tr>
<tr>
<td>C. Fo. Caul.</td>
<td>(5,00-) 11,88 (-24,50)</td>
<td>(2,20-) 4,73 (-13,40)</td>
<td>(2,30-) 4,73 (-14,10)</td>
</tr>
<tr>
<td>L. Fo. Caul.</td>
<td>(0,10-) 0,30 (-0,50)</td>
<td>(0,10-) 0,17 (-0,40)</td>
<td>(0,10-) 0,22 (-0,44)</td>
</tr>
<tr>
<td>C. Brac. Ext.</td>
<td>(2,50-) 3,14 (-4,10)</td>
<td>(1,40-) 1,96 (-2,80)</td>
<td>(1,20-) 2,07 (-3,20)</td>
</tr>
<tr>
<td>C. Brac. Int.</td>
<td>(2,60-) 3,11 (-3,80)</td>
<td>(1,40-) 1,79 (-2,50)</td>
<td>(1,00-) 1,71 (-2,40)</td>
</tr>
<tr>
<td>L. Brac. Ext.</td>
<td>(0,25-) 0,34 (-0,70)</td>
<td>(0,15-) 0,19 (-0,25)</td>
<td>(0,10-) 0,17 (-0,30)</td>
</tr>
<tr>
<td>L. Brac. Int.</td>
<td>(0,20-) 0,22 (-0,40)</td>
<td>(0,15-) 0,22 (-0,30)</td>
<td>(0,10-) 0,19 (-0,30)</td>
</tr>
<tr>
<td>C. Pedi.</td>
<td>(0-) 0,70 (-1,50)</td>
<td>(0-) 0,39 (-1,10)</td>
<td>(0-) 0,02 (-0,50)</td>
</tr>
<tr>
<td>C. Tep. Ext.</td>
<td>(10,20-) 13,81 (-20,00)</td>
<td>(10,50-) 13,54 (-15,50)</td>
<td>(5,20-) 7,42 (-9,70)</td>
</tr>
<tr>
<td>C. Tep. Int.</td>
<td>(10,00-) 13,29 (-18,80)</td>
<td>(10,40-) 12,75 (-15,00)</td>
<td>(5,50-) 7,08 (-8,80)</td>
</tr>
<tr>
<td>L. Tep. Ext.</td>
<td>(3,00-) 4,41 (-6,00)</td>
<td>(3,20-) 3,84 (-4,80)</td>
<td>(1,50-) 1,87 (-2,30)</td>
</tr>
<tr>
<td>L. Tep. Int.</td>
<td>(1,80-) 3,38 (-4,50)</td>
<td>(2,90-) 3,63 (-5,00)</td>
<td>(1,30-) 1,54 (-2,00)</td>
</tr>
<tr>
<td>T.E. Un.</td>
<td>(1,40-) 1,66 (-2,20)</td>
<td>(0,90-) 1,07 (-1,60)</td>
<td>(0,80-) 0,98 (-1,20)</td>
</tr>
<tr>
<td>T.E. Liv.</td>
<td>(0,20-) 0,57 (-0,80)</td>
<td>(0,60-) 0,74 (-1,00)</td>
<td>(0,40-) 0,54 (-0,80)</td>
</tr>
<tr>
<td>T.E. Tric.</td>
<td>(0,80-) 1,05 (-1,40)</td>
<td>(0,40-) 0,72 (-1,00)</td>
<td>(0,40-) 0,53 (-0,70)</td>
</tr>
<tr>
<td>L. T.E. Tric.</td>
<td>(0,80-) 1,03 (-1,30)</td>
<td>(0,80-) 0,97 (-1,20)</td>
<td>(0,30-) 0,63 (-0,80)</td>
</tr>
<tr>
<td>C. Ant.</td>
<td>(0,50-) 1,25 (-2,00)</td>
<td>(0,60-) 0,99 (-1,60)</td>
<td>(0,40-) 0,67 (-0,80)</td>
</tr>
<tr>
<td>C. Esti. Liv.</td>
<td>(0,60-) 0,78 (-1,00)</td>
<td>(0,70-) 0,96 (-1,20)</td>
<td>(0,40-) 0,62 (-0,80)</td>
</tr>
<tr>
<td>C. Esti. Un.</td>
<td>(1,40-) 1,83 (-2,20)</td>
<td>(1,00-) 1,12 (-1,40)</td>
<td>(0,80-) 1,09 (-1,40)</td>
</tr>
<tr>
<td>C. Ov.</td>
<td>(1,20-) 1,51 (-2,00)</td>
<td>(1,00-) 1,17 (-1,40)</td>
<td>(0,60-) 1,04 (-1,40)</td>
</tr>
<tr>
<td>L. Ov.</td>
<td>(0,80-) 1,17 (-1,40)</td>
<td>(0,70-) 0,92 (-1,20)</td>
<td>(0,50-) 0,82 (-1,20)</td>
</tr>
</tbody>
</table>
Anexo 3: Média ± desvio padrão das medidas de cada população amostrada. O tamanho e coloração de tépalas dos acessos se encontram na Tabela 1 e o significado das abreviações e as unidades de medida se encontram no Anexo 1.

<table>
<thead>
<tr>
<th>Morfotipo</th>
<th>Grande</th>
<th>Médio</th>
<th>Pequeno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acesso</td>
<td>ESC 386</td>
<td>ESC 409</td>
<td>ESC 431</td>
</tr>
<tr>
<td>C. Fo. Bas.</td>
<td>21,00 ± 9,70</td>
<td>17,13 ± 5,30</td>
<td>18,86 ± 6,76</td>
</tr>
<tr>
<td>L. Fo. Bas.</td>
<td>0,30 ± 0,12</td>
<td>0,27 ± 0,06</td>
<td>0,29 ± 0,05</td>
</tr>
<tr>
<td>N. Inf./Esc.</td>
<td>6,63 ± 1,11</td>
<td>4,16 ± 0,53</td>
<td>4,39 ± 0,53</td>
</tr>
<tr>
<td>C. Ant.</td>
<td>0,79 ± 0,26</td>
<td>0,86 ± 0,33</td>
<td>0,93 ± 0,40</td>
</tr>
<tr>
<td>C. Esti. Liv.</td>
<td>0,43 ± 0,17</td>
<td>0,48 ± 0,23</td>
<td>0,53 ± 0,29</td>
</tr>
<tr>
<td>C. Esti. Un.</td>
<td>0,43 ± 0,17</td>
<td>0,48 ± 0,23</td>
<td>0,53 ± 0,29</td>
</tr>
<tr>
<td>L. Ov.</td>
<td>1,36 ± 0,07</td>
<td>1,29 ± 0,09</td>
<td>0,94 ± 0,11</td>
</tr>
</tbody>
</table>
Livros Grátis
(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo