Download PDF
ads:
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CENTRO DE CIÊNCIAS DA SAÚDE
PROGRAMA DE PÓS-
GRADUAÇÃO EM FARMÁCIA
Desenvolvimento Tecnológico e Avaliação In Vitro de
Matrizes Hidrofílicas de
Norfloxacino Contendo
Polioxietile
no e Hidroxipropilmetilcelulose
Paulo Renato de Oliveira
Florianópolis
2010
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CENTRO DE CIÊNCIAS DA SAÚDE
Desenvolvimento Tecnológico e Avaliação In Vitro de
Norfloxacino Contendo
no e Hidroxipropilmetilcelulose
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
ads:
Desenvolvimento Tecnológico e Avaliação In Vitro de
Matrizes Hidrofílicas de Norfloxacino Contendo
Polioxietileno e Hidroxipropilmetilcelulose
por
Paulo Renato de Oliveira
Tese apresentada ao Programa de Pós-Graduação em Farmácia da
Universidade Federal de Santa Catarina como requisito parcial à
obtenção do grau de Doutor em Farmácia.
Orientador: Prof. Dr. Marcos A. Segatto Silva
Florianópolis
2010
AGRADECIMENTOS
A Deus, pelos dons, caminhos, oportunidades e amigos que tive.
Ao Prof. Marcos Segatto por aceitar um “estranho no ninho”, pela
confiança no meu trabalho e pela orientação na formação acadêmica
(ciências farmacêuticas) e humana (ciência? filosofia? da vida).
Às Prof
as
. Simone Cardoso e Silvia Cuffini, sempre prontas a ajudar e
não deixar desanimar, tanto no laboratório como fora dele (histórias e
risadas!).
Aos Prof
es
. Eloir Schenkel, Flávio Reginatto e Celso Spada pela
amizade e ensinamentos em tantas reuniões.
Aos amigos e colegas de laboratório Lari, Silvinha, Rafa, Bruno, Gis,
Monika, Fabio, Hellen, Amarilis, Andrea TN, Andrea C$, Cinira, Chari,
Gabi, Geison, Cacá, Carlos, Solomon, pelo companheirismo, ajuda,
ensinamentos, desabafos, churrascos e tragos. Com certeza a amizade
não termina aqui!
À minha IC Cassiana Mendes, cuja ajuda, parceria, confiança e bom
humor foram de fundamental importância para a realização do trabalho.
Ringrazio il Prof. Paolo Colombo per l’opportunità di lavorare a Parma
e per aver guidato sapientemente la mia ricerca. Ringrazio tutti i miei
amici italiani, Fabio, Luca, Salvo, Camillo, Edo, Laura, Leti, La Robe,
(e tanti altri) con i quali oltre alle ore di laboratorio (ho imparato tanto!)
ho condiviso bevute di birra, vino, cene (si mangia bene in Italia) ed
sogni in cinque mesi indimenticabili della mia vita.
À Colorcon, Elofar, União Química, Farmacopéia Brasileira, Allcrom,
pela apoio e disponibilidade no fornecimento de materiais necessários à
realização deste trabalho.
Aos meus pais (Valmorim e Clara) e minha irmã Elenise, pelo apoio,
carinho e confiança.
À Larissa, amore mio, por estar na minha vida, fazendo tudo ter sentido.
Te amo!!
Ao CNPQ e CAPES pelo apoio financeiro.
À UFSC e PGFAR por possibilitarem a realização deste trabalho.
A todos que contribuíram de alguma forma para a realização deste
trabalho.
Se la vita ti sorride... ha una paresi!!
“Um homem precisa viajar. Por sua conta, não por meio de histórias,
imagens, livros ou TV. Precisa viajar por si, com seus olhos e pés, para
entender o que é seu. Para um dia plantar as suas próprias árvores e
dar-lhes valor. Conhecer o frio para desfrutar o calor. E o oposto.
Sentir a distância e o desabrigo para estar bem sob o próprio teto. Um
homem precisa viajar para lugares que não conhece para quebrar essa
arrogância que nos faz ver o mundo como o imaginamos, e não
simplesmente como é ou pode ser. Que nos faz professores e doutores
do que não vimos, quando deveríamos ser alunos, e simplesmente ir
ver”
Amyr Klink
RESUMO
O norfloxacino é um fármaco antimicrobiano amplamente utilizado para
o tratamento de infecções do trato urinário. A posologia indicada
normalmente é de 400 mg a cada 12 horas. Este trabalho teve como
objetivo desenvolver formulações de liberação prolongada contendo
norfloxacino para administração em dose única diária, com conseqüente
melhora na terapêutica. Durante a etapa de pré-formulação, estudos de
compatibilidade entre fármaco e excipientes não demonstraram
mudança significativa no perfil termoanalítico dos compostos, sugerindo
ausência de incompatibilidade. Metodologia analítica por cromatografia
líquida de alta eficiência foi desenvolvida e validada para o doseamento
e avaliação da estabilidade das formulações. Os comprimidos foram
obtidos através da compressão direta utilizando dois tipos de polímeros
hidrofílicos: hidroxipropilmetilcelulose (HPMC) ou polioxietileno
(POE), de diferentes massas moleculares, e em duas concentrações (20 e
30%), foram utilizados para obter as matrizes hidrofílicas. Através dos
estudos de estabilidade foi possível verificar que o teor não foi
influenciado pela temperatura e umidade, porém o revestimento ou
emblistagem das formulações em material adequado é necessário para
impedir a fotodegradação do fármaco. Os estudos de dissolução
demonstraram que conforme o aumento da massa molecular e da
concentração do polímero na formulação, o sistema hidrofílico apresenta
um mecanismo de liberação que muda de Super Caso-II (mais
dependente do relaxamento das cadeiras poliméricas e erosão da matriz)
para Transporte Anômalo (dependente da difusão do fármaco e
relaxamento/erosão matricial). As formulações que apresentaram melhor
desempenho in vitro foram HPMC K100 LV 30%, HPMC K4M 20%,
POE N60K 20% e POE N60K 30%. Os sistemas Dome Matrix
®
acoplados na configuração “void” demonstraram capacidade de
flutuação in vitro por aproximadamente 240 min, indicando possível
liberação prolongada e local-específica (estômago) in vivo. Este
resultado é de grande relevância terapêutica, uma vez que o fármaco
apresenta maior solubilidade em meio ácido. O trabalho desenvolvido
demonstra que os sistemas matriciais podem apresentar melhor
performance in vivo em comparação aos comprimidos convencionais de
liberação imediata disponíveis atualmente no mercado.
Palavras-chave: norfloxacino; liberação prolongada; comprimido
matricial; hidroxipropilmetilcelulose; polioxietileno; Dome Matrix
®
ABSTRACT
Norfloxacin is an antibacterial drug mainly used for the treatment of
urinary tract infections. The recommended dosage is 400 twice daily.
The aim of this research was to develop extended-release tablets for
once-a-day administration, with subsequent improvement of
therapeutics. Compatibility studies between the drug and excipients did
not evidenced difference in thermo-analytical profile of compounds, this
way suggesting the absence of incompatibility. A stability-indicating
liquid chromatographic method was developed and validated for the
assay of formulations. The matrix tablets were successfully obtained by
direct compression. Two polymers: hydroxypropylmethylcellulose and
poly(ethylene oxide), with different molecular weights, and in two
concentrations (20 and 30%) were used to obtain the formulations.
Stability studies showed that the assay was not influenced by
temperature and humidity, however tablet film-coating or opaque
blistering are necessary to ensure the photostability. Dissolution studies
showed that with the increase in molecular weight and concentration of
polymer in the formulation, the dissolution mechanism changed from
Super Case-II (a more polymer relaxation or erosion dependent) to
Anomalous Transport (drug-diffusion and polymer relaxation/erosion
dependent). The formulations containing HPMC K100 LV 30%, HPMC
K4M 20%, PEO N60K 20%, and PEO N60K 30% demonstrated a better
in vitro dissolution profile. Dome Matrix
®
systems assembled in “void”
configuration were able to float in vitro for up to 240 min, indicating a
possible in vivo extended and site-specific drug delivery system. This
result is of great therapeutic interest since norfloxacin is more soluble in
acid medium. The developed research demonstrated that matrix systems
could provide a better in vivo performance compared to the norfloxacin
conventional immediate-release tablets available in the market.
Keywords: norfloxacin; extended-release; matrix tablet;
hydroxypropylmethylcellulose; poly(ethylene oxide); Dome Matrix
®
SUMÁRIO
Lista de tabelas
............................................................................ xvii
Lista de figuras
............................................................................ xix
Lista de
abreviaturas
.................................................................. xxiii
Introdução
.................................................................................... 1
Objetivos
Objetivo geral................................................................................ 3
Objetivos específicos.................................................................... 3
Capítulo 1
Revisão bibliográfica.................................................................... 5
1. Norfloxacino............................................................................. 7
2. Formas farmacêuticas de liberação modificada........................ 10
3. Caracterização e estabilidade.................................................... 18
Capítulo 2
Caracterização térmica e estudos de compatibilidade
fármaco/excipiente........................................................................
23
Introdução..................................................................................... 25
Publicação científica:
Thermal characterization and
compatibility studies of norfloxacin for development of
extended release tablets.................................................................
27
Capítulo 3
Desenvolvimento e validação de metodologia analítica............... 41
Introdução..................................................................................... 43
Publicação científica:
Liquid chromatographic determination of
norfloxacin in extended release tablets........................................
44
Capítulo 4
Formulação, estabilidade e avaliação in vitro de comprimidos
de liberação prolongada contendo Norfloxacino.........................
67
Introdução.................................................................................... 69
Publicação científica:
Formulation, stability and in vitro
dissolution studies of norfloxacin extended-release matrix
tablets..
71
Capítulo 5
Desenvolvimento de sistemas Dome Matrix
®
de Norfloxacino... 99
Introdução..................................................................................... 101
Publicação científica:
Assembled modules technology for site-
specific prolonged delivery of norfloxacin...................................
103
Discussão geral
............................................................................ 127
Conclusõe
s
.................................................................................... 133
Referências
................................................................................... 137
xvii
LISTA DE TABELAS
Capítulo 1
Tabela 1. Tipos de polioxietileno disponíveis e respectivos massas
moleculares aproximadas.................................................................
13
Tabela 2. Tipos de hidroxipropilmetilcelulose disponíveis e
respectivas viscosidades...................................................................
14
Capítulo 3
Table 1. Inter-day and between-analysts precision data of the
method……………………………………………………………..
57
Table 2. Accuracy of the method…………………………………. 57
Table 3. Chromatographic conditions and range investigated
during robustness testing…………………………………………..
59
Capítulo 4
Table 1. Composition of tablets containing hydroxypropylmethyl
cellulose (HPMC) or poly(ethylene oxide) (PEO)………………...
75
Table 2. Pharmacopeial characteristcs of norfloxacin matrix
tablets……………………………………………………………
80
Table 3. Assay results of accelerated stability test………………... 81
Table 4. Assay results of photostability test………………………. 82
Table 5. Difference factor (ƒ1) and similarity factor (ƒ2)
calculated for uncoated and coated norfloxacin matrix tablets……
88
Table 6. Coefficients of determination (r
2
) obtained from
dissolution of norfloxacin uncoated formulations according to
different mathematical models…………………………………….
89
Table 7. Coefficients of determination (r
2
) obtained from
dissolution of norfloxacin coated formulations according to
different mathematical models…………………………………….
89
xviii
Capítulo 5
Table 1. Composition of the norfloxacin male and female modules 107
Table 2. Difference factor (ƒ1) and similarity factor (ƒ2)
calculated for the male and female modules……………………
113
Table 3. Mathematical modeling and drug release kinetics from
Dome Matrix
®
modules using Korsmeyer et. al and Peppas and
Sahlin equations...............................................................................
116
xix
LISTA DE FIGURAS
Capítulo 1
Figura 1. Estrutura química do norfloxacino.................................... 8
Figura 2. Diagrama simplificado do mecanismo de ação das
fluorquinolonas (RANG et al., 2008)...............................................
8
Figura 3. Diferentes protonações do norfloxacino dependentes do
pH: (a) neutra, (b) cation, (c) zwitterion e (d) anion (MUSA et al.,
2009).................................................................................................
9
Figura 4. Diagrama dos diferentes frontes existentes em um
sistema matricial hidratado (LOPES; LOBO; COSTA, 2005).........
12
Figura 5. Estrutura química do polioxietileno.................................. 13
Figura 6. Estrutura química da hidroxipropilmetilcelulose.............. 14
Figura 7. Representação de sistema flutuante (BARDONNET et
al., 2006)...........................................................................................
15
Figura 8. Módulos individuais da Dome Matrix e módulos
acoplados nas configurações “piled”, à esquerda e “void”, à
direita (LOSI et al., 2006)................................................................
16
Capítulo 2
Figure 1. Chemical structure of NFX (A), HPMC (B) and PEOs
(C)………………………………………………………………….
28
Figure 2. DSC and TG/DTG curves of norfloxacin (A), Polyox
WSR 301 (B), Polyox WSR N80 (C), and Methocel K100 LV CR
(D) in dynamic nitrogen atmosphere (50 mL min
-1
) and heating
rate of 10 ºC min
-1
………………………………………………...
32
Figure 3. SEM of NFX (A), Polyox WSR 301 (B), Polyox WSR
N80 (C), and Methocel K100 LC CR (D). The photomicrograph
A was taken at a magnification of 50x, and B, C and D of
100x………………………………………………………………..
33
Figure 4. X-ray diffraction spectra of NFX (A), Polyox WSR 301
(B), Polyox WSR N80 (C), and Methocel K100 LC CR (D)……...
34
xx
Figure 5. DRIFT spectra of Norfloxacin (A), Polyox WSR 301
(B), Polyox WSR N80 (C), and Methocel K100 LC CR (D)……...
35
Figure 6. (A) TG curves obtained for the non-isothermic study of
NFX at 2.5, 5, 10, 15, and 20 ºC min
-1
. (B) Isothermal TG curves
of NFX obtained between 230 and 270 ºC, with a temperature
increment of 10 ºC…………………………………………………
35
Figure 7. DSC curves of NFX and excipients obtained in dynamic
nitrogen atmosphere (50 mL min
–1
) and heating of rate 10 °C
min
-1
………………………………………………………………..
36
Capítulo 3
Figure 1. Chemical structure of norfloxacin……………………… 45
Figure 2. LC chromatograms of norfloxacin (A) developed
formulation (1 µg/mL). (B) Decarboxylated degradant. (C) After
acidic condition. (D) After basic condition. (E) After photolytic
condition. (F) After oxidative condition. (G) After neutral
condition...........................................................................................
53
Figure 3. Mass spectra for (A) norfloxacin and (B) decarboxylated
degradant…………………………………………………………..
55
Figure 4. Normal plot of residuals and outlier T values for
responses (A) peak area RSD%, (B) assay, and (C) peak
symmetry…………………………………………………………..
60
Capítulo 4
Figure 1. Norfloxacin blistered matrix tablets: uncoated (A) and
coated (B)………………………………………………………….
80
Figure 2. Norfloxacin blistered matrix tablets after photostability
study: uncoated (A) and coated (B)………………………………..
82
Figure 3. Norfloxacin released vs. time of matrix tablets
containing HPMC K100 LV: 20% uncoated; 20% coated; 30%
uncoated; 30% coated………………...............................................
84
Figure 4. Norfloxacin released vs. time of matrix tablets
containing HPMC K4M: 20% uncoated; 20% coated; 30%
xxi
uncoated; 30% coated……………………………………............... 84
Figure 5. Norfloxacin released vs. time of matrix tablets
containing HPMC K100M: 20% uncoated; 20% coated; 30%
uncoated; 30% coated……………………………………………...
85
Figure 6. Norfloxacin released vs. time of matrix tablets
containing PEO N60K: 20% uncoated; 20% coated; 30%
uncoated; 30% coated……………………………………………...
85
Figure 7. Norfloxacin released vs. time of matrix tablets
containing PEO 301: 20% uncoated; 20% coated; 30% uncoated;
30% coated.......................................................................................
86
Figure 8. Norfloxacin released vs. time of matrix tablets
containing PEO 303: 20% uncoated; 20% coated; 30% uncoated;
30% coated.......................................................................................
86
Capítulo 5
Figure 1. Norfloxacin Dome Matrix
®
modules and assemblage: 1-
Male. 2- Female. 3- Void configuration assembled modules……...
108
Figure 2. Norfloxacin fraction released vs. time of Dome Matrix
®
modules containing 20% of HPMC: female module; male module;
void configuration............................................................................
111
Figure 3. Norfloxacin fraction released vs. time of Dome Matrix
®
modules containing 30% of HPMC: female module; male module;
void configuration............................................................................
112
Figure 4. Norfloxacin fraction released vs. time of Dome Matrix
®
modules containing 20% of PEO: female module; male module;
void configuration............................................................................
112
Figure 5. Norfloxacin fraction released vs. time of Dome Matrix
®
modules containing 30% of PEO: female module; male module;
void configuration............................................................................
113
Figure 6. Norfloxacin Fickian released fraction vs. time of Dome
Matrix
®
modules containing 20% of HPMC: female module; male
module; void configuration and 30% of HPMC: female module;
male module; void configuration.....................................................
117
Figure 7. Norfloxacin Fickian released fraction vs. time of Dome
xxii
Matrix
®
modules containing 30% of PEO: female module; male
module; void configuration..............................................................
119
Figure 8. Resultant weight vs. time of Dome Matrix
®
20% HPMC
K4M and 20% PEO N60K modules assembled in void
configuration....................................................................................
121
xxiii
LISTA DE ABREVIATURAS
µg Micrograma
ASC Área sob a curva da concentração plasmática versus
tempo
bioMEMS Sistemas bio-micro-eletro-mecânico
C
max
Concentração plasmática máxima
Da Daltons
DNA Ácido desoxirribonuclêico
DPR Desvio padrão relativo
DRIFT Infravermelho com transformada de Fourier de
reflexão difusa
DSC Calorimetria exploratória diferencial
h Hora
HPMC Hidroxipropilmetilcelulose
ITU Infecção do trato urinário
mg Miligrama
mL Mililitro
POE Polioxietileno
SEM Microscopia eletrônica de varredura
t
½
Tempo de meia-vida
TG Termogravimetria
t
max
Tempo para atingir a concentração plasmática máxima
XRPD Difração de raio-x de pó
1
INTRODUÇÃO
O norfloxacino pertence ao grupo das quinolonas, sendo um
agente antibacteriano de amplo espectro contra patógenos Gram-
positivos e Gram-negativos. É indicado terapeuticamente principalmente
para o tratamento de infecções do trato urinário. Seu mecanismo de ação
está baseado na inibição da enzima DNA girase e da topoisomerase IV,
inibindo a replicação do DNA bacteriano. A posologia recomendada
normalmente é de 400 mg a cada 12 horas e a duração do tratamento
varia de acordo com o diagnóstico (MANDELL, 1988; VAN
BAMBEKE et al., 2005; RANG et al., 2008; BOLON, 2009).
Recentemente a ANVISA, com intuído de diminuir o uso
indiscriminado de antibióticos e o surgimento de microorganismos
resistentes, determinou que a venda de medicamentos a base de
antimicrobianos somente poderá ser efetuada mediante receita de
controle especial, ficando uma via retida na farmácia (BRASIL, 2010).
O estudo de formulações contendo antibióticos que objetivam o
aumento da aderência do paciente ao tratamento, a manutenção da
eficácia terapêutica minimizando ou evitando concentrações plasmáticas
sub ou supraterapêuticas e a diminuição do surgimento de
microorganismos resistentes é de grande relevância, uma vez que
infecções bacterianas são bastante comuns e atingem milhões de pessoas
anualmente. Em termos mercadológicos, os comprimidos representam a
forma farmacêutica mais consumida, além disso, é a mais adequada para
produção em escala industrial possibilitando menor custo efetivo
(ALLEN; POPOVICH; ANSEL, 2007).
O estudo de propriedades no estado sólido e de compatibilidade
fármaco-excipientes são pré-requisitos no desenvolvimento racional de
medicamentos, pois diferentes formas cristalinas podem exibir distintas
propriedades físico-químicas, alterando a biodisponibilidade e
conseqüentemente a terapêutica (GIRON, 2002; AALTONEN et al.,
2009). O desenvolvimento e a validação da metodologia analítica
utilizada fornecem dados para assegurar a confiabilidade dos resultados
obtidos (SHABIR, 2003; BRASIL, 2003; ICH, 2005; STÖCKL, 2009).
Posteriormente estudos de perfil de dissolução e estabilidade são
realizados para avaliar a liberação do fármaco e a qualidade do produto
em desenvolvimento ou acabado.
As formas farmacêuticas de liberação prolongada objetivam o
aumento do tempo de ação farmacológica de substâncias ativas, a
diminuição de reações adversas, a redução da administração diária, a
2
manutenção da eficácia terapêutica, a otimização da aderência ao
tratamento e a não permissão ou minimização do aparecimento de
flutuação nas concentrações plasmáticas (AULTON, 2005; ALLEN;
POPOVICH; ANSEL, 2007; HOFFMAN, 2008). Possibilitam, também,
obter a mesma eficácia clínica com o decréscimo dos custos do
tratamento, sendo uma alternativa econômica quando comparada com
formas de dosagem de liberação imediata (SAKS; GARDNER, 1997).
O desenvolvimento de sistemas matriciais é ainda o modelo de
referência para inovações em liberação prolongada de fármacos na
industria farmacêutica devido ao fato de serem considerados confiáveis
em termos de liberação e facilidades de formulação e fabricação
(COLOMBO et al., 2009). Nestes sistemas, o mecanismo de liberação
do fármaco e sua cinética podem ser governados pelo intumescimento e
difusão do fármaco ou pelo intumescimento e erosão do polímero,
dependendo da porcentagem e da massa molecular do polímero utilizado
e das características fisico-químicas do fármaco (COLOMBO et al.,
2000; CONTI et al., 2007; OMIDIAN; PARK, 2008; PARK et al.,
2010). Dos agentes poliméricos disponíveis para a obtenção de
comprimidos matriciais, destacam-se o polioxietileno e a
hidroxipropilmetilcelulose, pois apresentam, entre outras características,
boa compressibilidade, boa capacidade de intumescência e atoxicidade.
Além da utilização de diferentes polímeros, o emprego de novas
tecnologias de fabricação representa alternativa para obtenção de formas
farmacêuticas diferenciadas, possibilitando melhor resultado
terapêutico. Um exemplo de nova tecnologia é a Dome Matrix
®
, onde
módulos individuais “male” e “female” são obtidos utilizando punções
especiais, e posteriormente pode-se acoplar os mesmos em diversas
combinações, formando inclusive sistemas flutuantes. Esta tecnologia
tem como característica possibilitar uma grande flexibilidade na
formulação e posterior liberação do fármaco (LOSI et al., 2006;
STRUSI et al., 2008; STRUSI et al., 2010).
Neste contexto, o presente estudo propõe o desenvolvimento e
avaliação in vitro de matrizes hidrofílicas e sistemas Dome Matrix
®
de
liberação modificada contendo norfloxacino.
3
OBJETIVOS
Objetivo geral
Desenvolvimento tecnológico de comprimidos matriciais de
liberação prolongada e sistemas Dome Matrix
®
flutuantes de
norfloxacino contendo os polímeros hidrofílicos polioxietileno (POE) e
hidroxipropilmetilcelulose (HPMC).
Objetivo específicos
Verificar as características físico-químicas do norfloxacino e dos
polímeros POE e HPMC, obtendo resultados que servirão de
referência para avaliações da qualidade;
Avaliar a compatibilidade entre o norfloxacino e diversos
excipientes farmacêuticos para o desenvolvimento racional das
matrizes;
Desenvolver e validar metodologia indicativa da estabilidade por
cromatografia líquida em fase reversa;
Produzir matrizes hidrofílicas de liberação prolongada de
norfloxacino através da compressão direta, utilizando polímeros de
diferentes massas moleculares e em duas concentrações;
Realizar revestimento e emblistagem, para avaliar a influência
destes na estabilidade das matrizes;
Obter módulos individuais Dome Matrix
®
“male” e “female” e
formar sistema flutuante;
Avaliação das propriedades físico-químicas (farmacopéicas) dos
comprimidos;
Caracterizar as formulações quanto aos seus perfis de dissolução;
Comparar o modelo cinético de liberação do norfloxacino a partir
dos comprimidos matriciais através da aplicação de modelos
dependentes e independentes;
Avaliar a relação entre os diferentes polímeros e concentrações
com o mecanismo de liberação do fármaco;
Estudar a estabilidade acelerada em câmara climática e
fotoestabilidade das formulações desenvolvidas.
4
5
CAPÍTULO 1 – Revisão bibliográfica
6
7
1. NORFLOXACINO
A infecção do trato urinário (ITU) é afecção muito comum e
caracteriza-se pela presença de microorganismos, principalmente
bactérias, nas vias urinárias, seja na bexiga, próstata, sistema coletor ou
rins. A incidência é maior em mulheres, principalmente devido às
condições anatômicas como uretra mais curta e maior proximidade do
ânus com a uretra e o vestíbulo vaginal, o que possibilita a colonização
destes por enterobactérias (principalmente Escherichia coli)
(KRIEGER, 2002; WAGENLEHNER; NABER, 2006). As ITU
destacam-se não somente pela sua freqüência como também pela
possibilidade de complicações graves, como a insuficiência renal e a
septicemia. Aproximadamente 15% de todos os antibióticos prescritos
nos Estado Unidos são dispensados para tratamento de ITU, com um
custo estimado anual superior a 1 bilhão de dólares. Além disso, o custo
direta e indiretamente associado a esta enfermidade está estimado em
mais de 1,6 bilhões de dólares ao ano (WAGENLEHNER; NABER,
2006).
A classe de antibióticos das quinolonas, desde sua descoberta na
década de 60, tem sido extensivamente estudada e utilizada
clinicamente, pois apresenta uma série de vantagens, tais como
combinação de alta potência e amplo espectro de ação, boa
biodisponibilidade, formulações orais e intravenosas, altos níveis
plasmáticos, grande volume de distribuição e relativamente baixos
efeitos colaterais (ANDERSSON; MACGOWAN, 2003).
O norfloxacino (Figura 1), comercializado desde 1986,
pertencente ao grupo das quinolonas, é um agente bactericida de amplo
espectro contra patógenos Gram-positivos e Gram-negativos. Seu
mecanismo de ação está baseado na inibição da topoisomerase II (uma
DNA-girase bacteriana), enzima que produz um supernovelo negativo
no DNA, permitindo sua transcrição ou replicação (Figura 2) (RANG et
al., 2008). É indicado terapeuticamente principalmente para o
tratamento de infecções do trato urinário (cistite, pielite, cistopielite,
pielonefrite, prostatite crônica, epididimite). Também é indicado para o
tratamento de gastroenterites bacterianas, uretrite, faringite, proctite ou
cervicite gonocócicas, febre tifóide e na profilaxia da sepse em pacientes
com neutropenia intensa e da gastroenterite bacteriana. A posologia
recomendada normalmente é de 400 mg a cada 12 horas e a duração do
tratamento varia de acordo com o diagnóstico (MANDELL, 1988;
CHRISTIAN, 1996; EMMERSON; JONES, 2003).
8
Figura 1. Estrutura química do norfloxacino.
Figura 2.
Diagrama simplificado do mecanismo de ação das
fluorquinolonas (RANG et al., 2008).
Quimicamente, o norfloxacino é denominado como ácido 1
6-fluor-1,4-diidro-4-oxo-7-(1-piperazinil)-3-
quinolino carboxílico
(Figura 1)
. É um cristalino branco a amarelo claro, pouco solúvel em
água, metanol, etanol, acetato de etila e acetona,
facilmente solúvel em
ácido acético, ligeiramente solúvel em clorofórmio e insolúvel em éter
etílico. Possui massa molecular de 319,34 Daltons, fórmula molecular
C
16
H
18
FN
3
O
3
(F. BRAS. IV, 2001).
A relação estrutura-atividade
das quinolonas é bastante
estud
ada, o átomo de flúor na posição 6 proporciona maior potência
contra organismos Gram-
negativos e o núcleo piperazínico na posição 7
é responsável pela atividade antipseudomonas
e aumento da ação contra
Diagrama simplificado do mecanismo de ação das
Quimicamente, o norfloxacino é denominado como ácido 1
-etil-
quinolino carboxílico
. É um cristalino branco a amarelo claro, pouco solúvel em
facilmente solúvel em
ácido acético, ligeiramente solúvel em clorofórmio e insolúvel em éter
etílico. Possui massa molecular de 319,34 Daltons, fórmula molecular
das quinolonas é bastante
ada, o átomo de flúor na posição 6 proporciona maior potência
negativos e o núcleo piperazínico na posição 7
e aumento da ação contra
9
Gram-positivos do norfloxacino (VAN BAMBEKE et al., 2005;
BOLON, 2009).
O NFX, composto anfótero, apresenta dois sítios de protonação,
o nitrogênio 4’ do anel piperazinil (básico) e o grupo carboxila
quinolona (ácido) (Figura 3), consequentemente apresenta duas
constantes de equilíbrio, com valores de pKa de aproximadamente 8,5 e
6,5, respectivamente. De acordo com o pH, este fármaco apresentará
diferentes formas. Em pH neutro será predominatemente um zwitterion
(com o grupo carboxílico deprotonado e o nitrogênio 4’ protonado). Em
pH 10, mais de 90% estará na forma aniônica. A forma catiônica é
obtida em pH igual ou inferior a 4,5 (YU; ZIPP; DAVIDSON, 1994;
MUSA et al., 2009). O norfloxacino exibe maior solubilidade em pH
inferior a 4,5 e superior a 8.
Figura 3. Diferentes protonações do norfloxacino dependentes
do pH: (a) neutra, (b) cation, (c) zwitterion e (d) anion (MUSA et al.,
2009).
Após administração oral de dose de 400 mg de norfloxacino, no
mínimo 30-40% é absorvida, a concentração plasmática máxima
atingida (C
max
) é de aproximadamente 1,5 µg/mL sendo obtida após 1
hora (t
max
). O tempo de meia-vida (t
½
) é de 3-4 horas com excreção
predominantemente renal através da filtração gromerular e secreção
tubular. A área sob a curva da concentração plasmática versus tempo
(ASC) é de 6,4 µg.h/mL. A administração concomitante com alimentos
e antiácidos pode diminuir a absorção (GADEBUSH; SHUNGU, 1991;
AL-RASHOOD et al., 2001).
10
O local preferencial de absorção do norfloxacino ou a proporção
de fármaco absorvido em cada parte do trato gastrointestinal não estão
descritos na literatura. Devido a sua alta solubilidade em meio ácido, a
solubilização no estômago e absorção neste local ou na parte proximal
do intestino delgado parecem ter grande influência para a
biodisponibilidade e efeito farmacológico dos comprimidos de liberação
convencional.
2. FORMAS FARMACÊUTICAS DE LIBERAÇÃO
MODIFICADA
As formas farmacêuticas de liberação prolongada objetivam o
aumento do tempo de ação farmacológica de substâncias ativas, a
diminuição de reações adversas, a redução da administração diária, a
manutenção da eficácia terapêutica, a otimização da aderência ao
tratamento e não permissão ou minimização do aparecimento de
flutuação nas concentrações plasmáticas (AULTON, 2005; ALLEN;
POPOVICH; ANSEL, 2007; HOFFMAN, 2008). Possibilitam, também,
obter a mesma a eficácia clínica com o decréscimo dos custos do
tratamento, sendo uma alternativa econômica quando comparada com
formas de dosagem de liberação imediata (SAKS; GARDNER, 1997).
Atualmente diversos sistemas de liberação modificadas de
fármacos são estudados, desde os baseados em polímeros hidrofílicos
biocompatíveis (mais relacionados aos processos “clássicos” de
produção de medicamentos), passando pelos micro e nano-estruturados
e chegando aos avançados sistemas bio-micro-eletro-mecânico
(bioMEMS), onde sistemas microeletrônicos são produzidos com
material biocompatível (por exemplo, polimetilmetacrilato) podendo ser
programados para liberar o fármaco, contido em reservatório, de acordo
com mudanças fisiológicas detectadas pelo sistema (COLOMBO et al.,
2009).
Uma alternativa na otimização do esquema posológico é o
desenvolvimento de formas de liberação modificadas, mais
especificamente, de um sistema matricial monolítico. Este sistema
tecnológico compreende a mistura comprimida de um fármaco e um
polímero hidrofílico. A formulação de fármacos em sistemas matriciais
inertes é um dos métodos de referência utilizados para o
desenvolvimento de liberação prolongada de fármacos, principalmente
devido a apresentar vantagens como: facilidade de manufatura e custo
11
reduzido de produção, uma vez que se utilizam equipamentos e
processos convencionais (tais como a compressão direta e granulação),
baixa influência das variáveis fisiológicas no processo de dissolução do
princípio ativo, facilidade no controle de liberação, versatilidade na
incorporação de substâncias ativas (inclusive em grandes quantidades)
(LOPES; LOBO; COSTA, 2005; COLOMBO et al., 2009).
Resumidamente, após a dissolução do fármaco na superfície do
comprimido na água ou no suco gástrico, o polímero hidrofílico hidrata-
se e intumesce rapidamente, formando uma camada externa de gel, com
propriedades ideais para controlar a liberação do fármaco. A camada de
gel torna-se uma barreira à entrada de mais água e à transferência de
fármaco, sendo que a liberação do fármaco ocorre na medida em que o
polímero passa do estado vítreo (matriz seca) para o gelatinoso
(COLOMBO et al., 1996; COLOMBO et al., 2000; SIEPMANN;
PEPPAS, 2001; LOPES; LOBO; COSTA, 2005; OMIDIAN; PARK,
2008). A liberação do fármaco, se solúvel, ocorre por difusão pela
camada de gel, e se for insolúvel, é liberado por erosão, seguida de
dissolução. Após a erosão, a nova superfície torna-se hidratada e forma
uma nova camada de gel (COLOMBO et al., 1996; BETTINI et al.,
2001; CONTI et al., 2007). Em uma observação macroscópica do
processo de intumescimento, podem ser verificadas três distintas áreas
(frontes). O primeiro fronte, o de intumescimento, pode ser observado
pela clara separação da região intumescida da região vítrea. O segundo
fronte, chamado de fronte de erosão, é a delimitação externa do sistema.
E o terceiro fronte, chamado de difusão, é caracterizado pela região
compreendida entre os frontes de intumescimento e erosão (Figura 4)
(COLOMBO et al., 1996; BETTINI et al., 2001; LOPES; LOBO;
COSTA, 2005). A formação do gel é importante para a resistência da
matriz e é controlada pela concentração, viscosidade e estrutura química
do polímero no estado gélico. A rápida formação dessa camada externa
é essencial para a estabilidade do sistema (SIEPMANN; PEPPAS, 2001;
LOPES; LOBO; COSTA, 2005; CONTI et al., 2007; PARK et al.,
2010).
12
Figura 4. Diagrama dos diferentes frontes existentes em um
sistema matricial hidratado (LOPES; LOBO; COSTA, 2005).
Dos agentes poliméricos disponíveis para a obtenção de
comprimidos matriciais, o POE (Figura 5) é um polímero bastante
utilizado devido à sua boa compressibilidade, não nico, intumescível,
e de fácil manipulação. Para a produção de comprimidos, POE pode ser
usado como um excipiente até a concentração de 5-85% (HELLER et
al., 2002; PETROVIC et al., 2009; ROWE; SHESKEY; QUINN, 2009).
Devido a sua natureza não iônica, o pH do meio não exerce significativa
influência na solubilidade e, consequentemente, no perfil de dissolução
para o POE. Qualquer alteração pH dependente será devido ao fármaco
ou outros componentes da formulação (KIM, 1995, DOW, 2002). O
mecanismo de liberação pode ser governado pelo intumescimento e
difusão do fármaco ou pelo intumescimento e erosão do polímero,
dependendo da porcentagem e da massa molecular do POE usado. Os
tipos de POE disponíveis encontram-se descritos na tabela 1. No que
tange à sua concentração na formulação e sua massa molecular, os
dados de literatura demonstram haver uma relação direta entre estes
fatores e a liberação do fármaco a partir dos comprimidos (KIM, 1995;
MAGGI et al., 2002). Geralmente, para produtos de baixa massa
molecular o mecanismo que impera na liberação do fármaco é a razão de
erosão do polímero, uma vez que, para massa molecular alta, o
intumescimento do material polimérico é o passo dominante na cinética
de liberação controlada (APICELLA et al., 1993;
MAGGI et al., 2002;
JAMZAD; TUTUNJI; FASSIHI, 2005; JAMZAD;
FASSIHI, 2006).
Figura 5.
Estrutura química do polioxietileno
Tabela 1. Tipos de polioxietileno disponíveis e respectiv
moleculares aproximada
s (ROWE; SHESKEY; QUINN, 2009).
Polioxietileno Massa
molecular (Da)
WSR N-10 100 000
WSR N-80 200 000
WSR N-750 300 000
WSR N-3000 400 000
WSR 205 600 000
WSR 1105 900 000
WSR N-12K 1 000 000
WSR N-60K 2 000 000
WSR 301 4 000 000
WSR Coagulant 5 000 000
WSR 303 7 000 000
A HPMC, conhecida t
ambém como hipromelose (Figura 6
hoje o polímero mais comumente utilizado no desenvolvimento de
sistemas matriciais de liberação de fármacos. A HPMC K, a mais
amplamente utilizada como recurso para extensão da liberação de
fármacos, está disponível em diferentes massas moleculares e é
classificada de acordo com sua viscosidade (Tabela 2)
.
que o POE, a HPMC tem características não iônicas, não sofrendo
influência significativa do pH do meio na
solubilidade e
camada gélica formada (DOW, 2000).
13
MAGGI et al., 2002;
FASSIHI, 2006).
Estrutura química do polioxietileno
.
Tabela 1. Tipos de polioxietileno disponíveis e respectiv
as massas
s (ROWE; SHESKEY; QUINN, 2009).
molecular (Da)
ambém como hipromelose (Figura 6
) é
hoje o polímero mais comumente utilizado no desenvolvimento de
sistemas matriciais de liberação de fármacos. A HPMC K, a mais
amplamente utilizada como recurso para extensão da liberação de
fármacos, está disponível em diferentes massas moleculares e é
.
Da mesma forma
que o POE, a HPMC tem características não iônicas, não sofrendo
solubilidade e
viscosidade da
14
Onde R: H, CH
3
, ou CH
3
CH(OH)CH
2
Figura 6.
Estrutura química da hidroxipropilmetilcelulose
Tabela 2. Tipos de hidroxipropilmetilcelulose disponíveis e respectiva
viscosidades (2%, p/v, 20 ºC) (ROWE; SHESKEY; QUINN, 2009).
Hidroxipropilmetilcelulose Viscosidade (mPa s)
Methocel K3 Premium LV 3
Methocel K100 Premium LVEP 100
Methocel K4M Premium 4 000
Methocel K15M Premium 15 000
Methocel K100M Premium 100 000
Dois aspectos conferem uma adequada performance à HPMC
em relação à extensão da liberação de
fármacos, a rápida formação da
camada gélica durante e hidratação e a viscosidade relacionada ao tipo
de HPMC. Uma vez que a camada de gel é formada, a viscosidade dessa
regula a razão da liberação do fármaco. Essa regulação esta relacionada
principalmente
à propriedade de dissolução e difusão do fármaco na
camada hidratada do polímero, quando este tem características
hidrofílicas. Por outro lado, fármacos com características lipofílicas
terão sua liberação regulada preferencialmente pela erosão da matriz
polimérica. Entretanto, sabe-
se que ambos os mecanismos de liberação
atuam sinergicamente, salvo as proporcionalidades decorrentes das
características de solubilidade do fármaco em questão (
SIEPMANN
PEPPAS, 2001; LOPES; LOBO; COSTA, 2005;
OMIDIAN
2008).
De uma maneira geral,
o POE apresenta uma hidratação e
geleificação mais rápida que a HPMC, sendo o fármaco mais facilmente
dissolvido no meio e a matriz hidrofílica mais susceptível à erosão.
Consequentemente, há redução da eficiência do POE em relaç
controle da liberação do fármaco, o que pode ser corrigido com a
Estrutura química da hidroxipropilmetilcelulose
.
Tabela 2. Tipos de hidroxipropilmetilcelulose disponíveis e respectiva
s
viscosidades (2%, p/v, 20 ºC) (ROWE; SHESKEY; QUINN, 2009).
Dois aspectos conferem uma adequada performance à HPMC
fármacos, a rápida formação da
camada gélica durante e hidratação e a viscosidade relacionada ao tipo
de HPMC. Uma vez que a camada de gel é formada, a viscosidade dessa
regula a razão da liberação do fármaco. Essa regulação esta relacionada
à propriedade de dissolução e difusão do fármaco na
camada hidratada do polímero, quando este tem características
hidrofílicas. Por outro lado, fármacos com características lipofílicas
terão sua liberação regulada preferencialmente pela erosão da matriz
se que ambos os mecanismos de liberação
atuam sinergicamente, salvo as proporcionalidades decorrentes das
SIEPMANN
;
OMIDIAN
; PARK,
o POE apresenta uma hidratação e
geleificação mais rápida que a HPMC, sendo o fármaco mais facilmente
dissolvido no meio e a matriz hidrofílica mais susceptível à erosão.
Consequentemente, há redução da eficiência do POE em relaç
ão ao
controle da liberação do fármaco, o que pode ser corrigido com a
15
quantidade e a massa molecular do POE utilizado (MAGGI; BRUNI;
CONTE, 2000; JAMZAD; FASSIHI, 2006).
A tecnologia existente hoje permite modular a liberação de
fármacos no trato gastro-intestinal a partir de sistemas farmacêuticos ao
longo de períodos que podem chegar a 24 h. Porém, para alguns
fármacos, prolongamento do tempo de retenção gástrica em
determinadas circunstâncias pode ser útil para aumentar sua
biodisponibilidade e efeito terapêutico. No caso de fármacos absorvidos
principalmente no estômago ou na parte proximal do intestino delgado
ou ainda no caso de fármacos que sejam degradados em pH alcalino as
vantagens deste tipo de dispositivos tornam-se evidentes
(BARDONNET et al., 2006; BARROCAS et al., 2007). De acordo com
Bardonnet et al. (2006) estes sistemas podem ser classificados em:
sistemas flutuantes, sistemas expansíveis, sistemas muco-adesivos e
sistemas magnéticos.
Os sistemas flutuantes, onde a forma farmacêutica flutua no
suco gástrico (figura 7), são muito promissoras, uma vez que nesta
situação o sistema fica fisicamente afastado do piloro, dificultando seu
esvaziamento gástrico. Várias estratégias podem ser adotadas para esta
flutuação, por exemplo: sistemas hidrodinamicamente equilibrados,
sistemas de baixa densidade, sistemas geradores de gás (principalmente
CO
2
) (BARDONNET et al., 2006) e mais recentemente, sistemas Dome
Matrix
®
.
Figura 7. Representação de sistema flutuante (BARDONNET et
al., 2006)
16
Em 2006 foi apresentada tecnologia inovadora para sistemas de
liberação modificada, caracterizada por grande flexibilidade na
produção, chamada Dome Matrix
®
(LOSI et al., 2006). Nesta tecnologia,
módulos individuais são acoplados e a liberação será influenciada pela
maneira com que estes módulos estão conectados entre si e pelas suas
composições individuais. Cada módulo tem a forma de um disco com as
bases curvas (uma côncava e outra convexa), conforme demonstrado na
Figura 8. Neste artigo é apresentada a Dome Matrix
®
obtida com
polímero hidrofílico HPMC. A forma não usual deste sistema foi
projetada para permitir o encaixe de uma base côncava em uma convexa
adjacente, formando desta maneira a configuração “piled”. Outra forma
possível de encaixe são dois módulos unidos pela base côncava, neste
caso haverá um espaço interno vazio, esta configuração é denominada
de “void”. Desta forma a dose medicamentosa pode ser facilmente
ajustada ou vários sistemas de liberação podem ser montados (STRUSI
et al., 2010).
Figura 8. Módulos individuais da Dome Matrix e módulos acoplados
nas configurações “piled”, à esquerda e “void”, à direita (LOSI et al.,
2006).
Quando a configuração “void” é obtida, devido à cavidade vazia
no interior do sistema matricial, é obtido um sistema flutuante. Nesta
configuração a velocidade de dissolução do fármaco é
significativamente menor em comparação com a liberação a partir de
módulos individuais (não-unidos). Isto indica que existem diferenças
biofarmacêuticas relevantes entres os módulos individuais e acoplados.
Além disso, a geometria do sistema tem influência no intumescimento
da matriz e consequentemente na liberação.
17
A presença de uma base côncava e uma convexa na matriz não
altera totalmente a cinética de liberação em comparação com
formulação de base lisa (convencional). A diferença na liberação
também está relacionada à maior área superficial inicial da Dome
Matrix
®
. Entretanto, quando as bases individuais são analisadas, a
velocidade de liberação e a cinética são diferentes. O comportamento de
intumescimento das bases curvas origem a diferentes velocidades e
mecanismos de liberação. Como diferentes módulos podem ser
combinados, incluindo aqueles com base lisa, o objetivo de aumentar a
flexibilidade na produção de comprimidos pode ser atingido. Além
disso, a velocidade de liberação pode ser modificada utilizando módulos
fabricados com polímeros de diferentes massas moleculares, que
resultam em matrizes com diferentes viscosidades.
O comportamento da configuração “void” na obtenção de uma
matriz flutuante foi estudado in vitro e in vivo (STRUSI et al., 2008). A
flutuação in vitro do sistema inicia imediatamente após imersão em água
e é mantida por mais de 5 horas. Estudos in vivo confirmaram os dados
in vitro, onde o sistema manteve-se no estomago de humanos por 214,5
± 54,2 minutos. A flutuação in vivo está correlacionada com os dados
obtidos in vitro, uma vez que o sistema somente é eliminado quanto
todo o conteúdo estomacal é eliminado, e não porque o sistema perde
sua capacidade de flutuação. De fato, a ingestão de alimentos e água
prolonga o tempo de residência no estômago.
Dessa maneira os módulos Dome Matrix
®
acoplados na
configuração “void” podem oferecer vantagens para fármacos que se
beneficiem de um tempo prolongado de residência gástrica. Este tempo
de permanência maior no estômago seria importante para uma
formulação de liberação prolongada contendo norfloxacino, uma vez
que ele é pouco solúvel em água, mas facilmente solúvel em soluções
ácidas (F. BRAS. IV, 2001), o que pode favorecer a absorção e
consequentemente a biodisponibilidade do medicamento, inclusive com
possibilidade de redução da dosagem em cada sistema matricial.
Em relação ao tratamento utilizando antibióticos, a pesquisa de
novas formas de liberação de fármacos é de grande importância, pois a
resistência dos microorganismos a estes fármacos, seus efeitos adversos
e a não aderência do paciente ao tratamento constituem problemas
terapêuticos importantes. Na maioria dos tratamentos as concentrações
plasmáticas sub e supraterapêuticas são responsáveis pela resistência
microbiana e efeitos adversos, respectivamente. Assim, para que estas
flutuações nas concentrações plasmáticas sejam minimizadas ou
18
eliminadas devem ser propostas alternativas terapêuticas, tais como,
modificação da forma farmacêutica vinculada ao fármaco, que é o
objeto de estudo deste projeto.
Algumas formulações farmacêuticas do norfloxacino em β-
ciclodextrinas, dispersões sólidas de PEG-6000, nanopartículas,
lipossomas, oligopeptídeos, sistema de liberação dérmica utilizando
quitosana e complexo com alumínio foram estudadas (GUYOT et al.,
1995; FAWAZ et al., 1996; MONTERO et al., 1996; COESSENS;
SCHACHT; DOMURADO, 1997; JEON et al., 2000; ROSEEUW et al.,
2003; DENKBAS et al., 2004; KAMAL et al, 2007; BREDA et al.,
2009). Entretanto, não existem relatos de desenvolvimento de
comprimidos matriciais de liberação prolongada contendo o antibiótico
norfloxacino.
3. CARACTERIZAÇÃO E ESTABILIDADE
Utilizando métodos de análise térmica como a calorimetria
exploratória diferencial (DSC) e termogravimetria (TG), é possível
inferir sobre as características térmicas da amostra, assim como sobre a
estabilidade, a identificação através da faixa de fusão e pureza pela
respectiva entalpia de fusão. Além disso, observações referentes ao
aparecimento, mudança ou desaparecimento de eventos endotérmicos ou
exotérmicos característicos em misturas binárias homogêneas
fármaco:excipiente (1:1, m/m) pode sugerir a interação entre os
compostos e uma possível incompatibilidade. Desta forma a DSC é uma
importante ferramenta para o estudo de pré-formulação de
medicamentos (BUCKTON; RUSSEL; BEEZER, 1991; GIRON, 2002;
LIZARRAGA; ZABALETA; PALOP, 2007). Os padrões de difração de
raios-X de e/ou monocristal de uma substância permitem identificá-
la, bem como fornecem informações sobre sua estrutura espacial, grau
de cristalinidade e polimorfismo (STEPHENSON; FORBES;
REUTZEL-EDENS, 2001;
NEWMAN; BYRN, 2003; RODRÍGUEZ-
SPONG et al., 2004; SHAH; KAKUMANU; BANSAL, 2006;
AALTONEN, 2009). Métodos de avaliação microscópica como a
microscopia eletrônica de varredura possibilitam a avaliação de
fármacos através da observação da homogeneidade da amostra e
determinação do tamanho e forma das partículas. O polimorfismo e a
estabilidade do norfloxacino, bem como a estrutura cristalina do
norfloxacino anidro, hidratos (dihidrato, sesquihidrato) e alguns co-
19
cristais estão descritos na literatura (ŠUŠTAR; BUKOVEC;
BUKOVEC, 1993; FLORENCE et al., 2000; BARBAS et al., 2006;
BASAVOJU; BOSTRÖM; VELAGA, 2006; ROY et al., 2008;
BARBAS; PROHENS; PUIGJANER, 2007; PUIGJANER et al., 2010).
A cromatografia líquida tem sido empregada para determinação
quantitativa de fármacos em matérias primas, formas farmacêuticas
acabadas, estudos de dissolução, estudos de estabilidade e em matriz
biológica, pois é uma técnica bastante conhecida e dominada, possuindo
características de resolução, precisão e exatidão significativas. O
desenvolvimento de métodos cromatográficos envolve a avaliação e
otimização de condições, incluindo etapas de preparação da amostra,
separação cromatográfica, detecção e quantificação. A validação é
necessária para demonstrar, através de estudos experimentais, que o
método atende às exigências das aplicações analíticas, assegurando a
confiabilidade e reprodutibilidade dos resultados obtidos (SHABIR,
2003; BRASIL, 2003; ICH, 2005; AHUJA, 2007; BRASIL, 2008;
STÖCKL; D’HONDT; THIENPONT, 2009; BOUABIDI et al., 2010).
Com relação ao norfloxacino, estão descritos na literatura
metodologias para sua quantificação, incluindo algumas para avaliação
da estabilidade, por exemplo: por cromatografia líquida
(PARASRAMPURIA; GUPTA, 1990; CHEN; LIU; WU, 1993;
HUSSAIN; CHUKWUMAEZE-OBIAJUNWA; MICETICH, 1995;
RAO; NAGARAJU, 2004; MOHAMMAD et al., 2007), fluorimetria
(STANKOV et al., 1993; DJURAJEVIC; JELIKIC-STANKOV;
STANKOV, 1995; EL WALILY; BELAL; BAKRY, 1996),
espectrofotometria (EL KHATEEB; RAZEK; AMER, 1998; EL
WALILY et al., 1999; RAHMAN; AHMAD; AZMI, 2004), eletroforese
capilar de zona e quimiluminescência (ALNAJJAR; ABUSEADA;
IDRIS, 2007a; ALNAJJAR; IDRIS; ABUSEADA, 2007b; LIU et al.,
2010), absorção atômica, condutimetria e colorimetria (RAGAB;
AMIN, 2004).
A absorção de fármacos após administração oral depende da sua
liberação da forma farmacêutica, da dissolução ou solubilização sob
condições fisiológicas e de permeabilidade através do trato
gastrintestinal. Os estudos de dissolução in vitro fornecem informações
úteis tanto para a pesquisa e desenvolvimento quanto para a produção e
controle de qualidade. A avaliação do perfil de dissolução permite a
comparação de produtos de diferentes fabricantes, otimização de
formulações e avaliação da influência de alterações realizadas na
20
formulação (MOORE; FLANNER, 1996; COSTA; LOBO, 2001;
DOKOUMETZIDIS; MACHERAS, 2006; AZARMI et al., 2007).
A estabilidade é o período de tempo em que uma forma
farmacêutica mantém suas propriedades dentro de limites pré-
estabelecidos. O produto deve preservar suas características
farmacotécnicas, organolépticas e microbiológicas, além de eficácia
terapêutica e ausência de toxicidade. Todos os fármacos estão sujeitos a
alguma forma de decomposição química ou física. Algumas classes
químicas são mais vulneráveis e tendem a se decompor mesmo em
condições brandas. A escolha dos excipientes também pode influenciar
na estabilidade física, química e biodisponibilidade. Desta forma, deve-
se respeitar a compatibilidade com os excipientes escolhidos, os quais
são componentes importantes contidos nas formulações que podem
significar melhorias das características, mas podem também reduzir a
eficácia de algumas preparações.
A segurança de um fármaco e da forma farmacêutica sólida na
qual está veiculado é afetada por vários fatores, como temperatura,
umidade, luz e ar, que aumentam a velocidade das reações intrínsecas. O
conhecimento do mecanismo de degradação é importante para definir
prazo de validade e condições de armazenagem específicas. Para
mimetizar o tempo de análise da degradação química e/ou física dos
comprimidos, submete-os a condições típicas de estresse, denominado
estudo acelerado de estabilidade. No Brasil, país classificado na região
climática IV (quente e úmido), as formulações são avaliadas após
permanecerem durante seis meses a 40 ± 2 ºC e 75 ± 5% de umidade
relativa. Um medicamento é considerado estável se suas características
físicas e químicas não sofrerem mudanças, restando acima de 90% da
concentração inicial (ICH, 1996; BRASIL, 2005; WHO, 2009).
Na exposição prolongada à luz, alguns grupos funcionais do
norfloxacino se decompõem (CÓRDOBA-BORREGO; CÓRDOBA-
DÍAZ; CÓRDOBA-DIAZ, 1999; MUSA; ERIKSSON, 2009). Além
disso, seu aquecimento prolongado em meio ácido produz um produto
de degradação descarboxilado, que está relacionado a precipitações em
formulações injetáveis e que também pode ser encontrado como
impureza em algumas matérias-primas (EL KHATEEB; RAZEK;
AMER, 1998; BORREGO; DIAZ; DIAZ, 1999; ALNAJJAR; IDRIS;
ABUSEADA, 2007b). A partir dos resultados dos estudos de
estabilidade, o formulador pode obter informações importantes sobre a
necessidade do revestimento da forma farmacêutica, tipo de embalagem
necessária para a comercialização do produto final, etc. Além disso, os
21
estudos de estabilidade podem comprovar uma incompatibilidade
fármaco/excipiente sugerida no estudo de pré-formulação.
Dessa maneira, a completa caracterização das matérias-primas de
fármacos e excipientes, o estudo minucioso do processo tecnológico
empregado na obtenção de um comprimido de liberação prolongada,
bem como a avaliação da qualidade do produto final, são etapas
fundamentais para que o produto tenha características tais que seja
viável sua produção em larga escala, com melhora na qualidade de vida
do paciente.
22
23
CAPÍTULO 2 - Caracterização térmica e estudos de
compatibilidade fármaco/excipiente.
24
25
INTRODUÇÃO
A caracterização no estado sólido de fármaco e excipientes é
etapa essencial para o desenvolvimento racional de um novo
medicamento. Os resultados obtidos por diversas técnicas servem como
parâmetros para a aquisição de matérias-primas com adequada
qualidade e para garantir a homogeneidade e reprodutibilidade na
produção industrial da formulação final, assegurando sua eficácia,
segurança e qualidade. Além disso, o polimorfismo e diferenças de
cristalinidade de fármacos devem ser investigados, uma vez que
diferentes formas cristalinas podem apresentar diferentes propriedades
físicas e sico-químicas que alteram a biodisponibilidade e terapêutica.
(BYRN et al., 2001; STEPHENSON; FORBES; REUTZEL-EDENS,
2001; GIRON et al., 2002).
No desenvolvimento de formulações é fundamental avaliar se
interação química e/ou física entre o princípio-ativo e excipientes,
uma vez que estas interações podem afetar negativamente a estabilidade
e a biodisponibilidade da formulação final. Não existe protocolo padrão
determinando como realizar estudos de compatibilidade (KISS et al.,
2006; BRUNI et al., 2010). Normalmente métodos termoanalíticos
como DSC e TG são utilizados. Outras técnicas também podem ser
aplicadas para melhor compreensão e confirmação dos resultados
obtidos. De maneira geral, os estudos de compatibilidade são realizados
comparando-se o perfil termoanalítico do fármaco com o obtido de uma
mistura preparada na proporção 1:1 (p/p) fármaco:excipiente. O
surgimento, mudança ou desaparecimento de eventos térmicos são
considerados como interação, o que pode indicar uma possível
incompatibilidade (BRUNI et al., 2002; MURA; GRATTERI; FAUCCI,
2002; BERNARDI et al., 2009; BRUNI et al., 2010).
Neste capítulo são apresentados resultados da caracterização do
norfloxacino, POE e HPMC por DSC, TG, SEM, XRPD e DRIFT, bem
como o cálculo da energia de ativação do fármaco por método
isotérmico e não-isotérmico. Também são demonstrados estudos de
compatibilidade entre o norfloxacino e alguns excipientes que poderiam
compor a formulação matricial final.
26
27
Thermal Characterization and Compatibility Studies of Norfloxacin
for Development of Extended Release Tablets
P. R. Oliveira*, L. S. Bernardi, F. S. Murakami, C. Mendes and M. A. S.
Silva
Department of Pharmaceutical Sciences, Health Science Centre, Federal
University of Santa Catarina, 88040-900, Florianópolis-SC, Brazil
*Author for correspondence: prenato.oliveira@gmail.com
Abstract
Norfloxacin (NFX) is a synthetic antibacterial drug. The development of
extended release tablets improves the patients’ comfort and compliance,
resulting in lower discontinuation of the therapy; with consequently
decrease in bacterial resistance. In the present work, the thermal
behavior of NFX was investigated using TG and DSC techniques.
Isothermal and non-isothermal methods were employed to determine
kinetic data of decomposition process. Compatibility studies between
NFX and pharmaceutical excipients, including three hydrophilic
polymers were carried out in order to develop a new formulation of
NFX to obtain extended release tablets with an approved quality.
Keywords: Norfloxacin, Thermal characterization, Kinetic Studies,
Compatibility Studies
28
Introduction
Norfloxacin, chemically known as 1-ethyl-6-fluoro-1,4-
dihydro-4-oxo-7-(1-piperazinyl)-1-ethyl-fluoro-1.4-dihydro-4-oxo-7-(1-
piperazinyl)-3-quinoline-carboxylic acid (Fig. 1A) [1]. It is currently
used as a broad spectrum antibacterial drug, being the firstly selected
drug for the treatment of diseases caused by Campylobacter, E. coli,
Salmonella, Shigella and V. cholera [2-3]. The drug is also used for the
treatment of gonorrhoea as well as infection of eyes and urinary tract
[2]. Resistance in Gram-negative bacteria has become common, making
the therapeutic decisions more difficult. Increasing bacterial resistance
to currently available quinolones has reduced their effectiveness and
may compromise future use of this class of drugs [4-5].
The development of controlled-release formulations is a
successful area in the pharmaceutical industry because expenses of new
drug development are very high, and novel innovation is at an all-time
low. Hydrophilic matrices are one of the most used controlled delivery
systems in the world, due to the simple technology and low cost. Among
the various hydrophilic polymers employed, hydroxypropyl
methylcellulose (HPMC, Fig. 1B) is the most commonly used, due to its
versatility, compatibility with many drugs and safety [6] Nevertheless,
high molecular mass polyethylene oxides (PEOs, Fig. 1C) have been
proposed as an alternative to HPMC [7].
Figure 1. Chemical structure of NFX (A), HPMC (B) and PEOs (C).
29
Thermoanalytical techniques measure changes in physical
and/or chemical properties of the sample as a function of temperature.
There are many possible applications in pharmaceutical industry, for
example, identification, characterization of active and inactive
ingredients, routine analysis, quality control and stability study [8-9,].
Kinetic parameters (activation energy, frequency factor and reaction
order) can be measured by thermoanalytical methods according to
progress of reactions [10-12]. The successful formulation of a stable
and effective solid dosage form depends on the careful selection of the
excipients [8,13] and on the characterization of solid-state properties
using appropriate analytical methodologies [14-16]. The compatibility
studies using thermal analysis present advantageous to readily available
knowledge of any physical and chemical interactions between drugs and
excipients which might give rise to changes in chemical nature, stability,
solubility, absorption and therapeutic response of drugs [12]. In
particular differential scanning calorimetry has been proposed as a rapid
method for evaluating physicochemical interactions between
components of the formulation through comparison of thermal curves of
pure substances with curve obtained from a 1:1 mixture, and therefore
selecting excipients with suitable compatibility [10,15,17-21].
The aim of this study was to perform the physicochemical solid-
state characterization of norfloxacin and different polymers, to analyze
the kinetic parameters under isothermal and non-isothermal conditions,
and to carry out compatibility studies, to begin the development of a
new formulation of NFX extended release tablets.
Experimental
Materials
Norfloxacin (NFX) bulk material was kindly donated by União
Química Farmacêutica Nacional (Embu-Guaçu, SP, Brazil). The
polymers tested were: Polyox WSR N80 NF, Polyox WSR 301 NF, and
Methocel K100 Premium LV CR (all from Colorcon do Brasil, São
Paulo, Brazil). The pharmaceutical excipients tested were
microcrystalline cellulose, magnesium stearate, colloidal silicon dioxide,
lactose monohydrated and Opadry II White.
30
Methods
Differencial Scanning Calorimetry (DSC) and Thermogravimetric (TG)
Analysis
The DSC curves were obtained on Shimadzu DSC-60 cell
(Kyoto, Japan) using aluminum crucibles with about 1.5 mg of samples.
The temperature range was from 30 to 500 ºC at a heating rate of 10 ºC
min
-1
in dynamic N
2
atmosphere with the flow rate of 50 mL min
-1
. The
DSC equipment was preliminarily calibrated with standard reference of
indium (m.p. 156.6
o
C; H
fus
=-28.54 J g
-1
) and zinc (m.p. 419.5
o
C).
The compatibility studies were performed with binary mixtures of NFX
and each excipient (1:1; m/m). TG experiments were measured on
Shimadzu thermobalance model TGA-50 (Kyoto, Japan) in the
temperature range of 30–800 °C, using platinum crucibles with
approximately 4 mg of samples, under dynamic N
2
atmosphere (50 mL
min
–1
) at a heating rate of 10 °C min
–1
. The equipment was preliminarily
calibrated with standard reference of calcium oxalate. Non-isothermal
kinetic investigation of NFX was performed from TG data by
application of Ozawa’s method [22]. The graph of mass loss versus
temperature of five TG curves was obtained at different heating rates
(2.5, 5.0, 10, 15, and 20 °C min
–1
), under N
2
atmosphere. For isothermal
method, the temperature was from 230 to 270 °C, with 10 °C
temperature increment, in N
2
atmosphere. A graphic of lnt vs 1/T (K
–1
)
was plotted and linear regression was applied.
X-ray powder diffraction (XRPD)
For characterization of crystallinity, X-ray diffraction patterns
were obtained on a Siemens diffractometer model D 5000, with tube of
CuKα, voltage of 40 kV and current of 40 mA, in the range of 3–40 (2θ)
with a pass time of 1 second.
Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT)
The DRIFT spectra were measured in a Shimadzu
spectrophotometer (Prestige), in a scan range of 400 - 4000 cm
-1
with an
average of over 32 scans at a spectral resolution of 4 cm
-1
in KBr. A
background spectrum was obtained for each experimental condition.
Scanning Electron Microscopy (SEM)
The photomicrographs of NFX and the polymers were observed
by using a Phillips scanning electron microscope, model XL30. Samples
31
were mounted onto metal stubs using double-side adhesive tape,
vacuum-coated with gold (350 Å) in a Polaron E 5000 and directly
analyzed under SEM (N=50, 200, and 1000).
Results and discussion
DSC curve of norfloxacin (Fig. 2A) showed a sharp
endothermic event (T
peak
) at 219.4 °C (H
fusion
= -101.51 J g
-1
)
corresponding to melting point followed by an exothermal event. The
decomposition was defined in two major endothermic stages. This was
confirmed by TG/DTG curves that indicated thermal decomposition in
the following temperature range: 330–376 °C (m=47.4 %) and 421-
455 °C (m=27.8 %). The DSC curve of Polyox WSR 301 (Fig. 2B)
and Polyox WSR N80 (Fig. 2C) showed sharp endothermic peaks at
69.3 °C (H
fusion
= -162.70 J g
-1
) and 65.3 °C (H
fusion
= -180.36 J g
-1
),
respectively, corresponding to melting event. The TG/DTG curves
indicated one thermal decomposition step in the temperature range of
397–433 °C (m=95.9 %) for Polyox WSR 301 and 394–432 °C
(m=95.8 %) for Polyox WSR N80. The similarity of these thermal
decomposition profiles can be explained by the same polymer chemical
structure; the only difference is the molecular mass, 4,000,000 Da
(Polyox WSR 301) and 200,000 Da (Polyox WSR N80). Different
molecular masses usually are tested in the development of extended
release tablets because its increase leads to an increase in gel strength,
which tends to decrease the diffusion of the drug from the matrix. DSC
curve of Methocel K100 LV (Fig. 2D) showed a broad endothermic
event between 93-140 °C (H = -120.97 J g
-1
) and TG/DTG curves
indicated thermal decomposition in the temperature range of 360–394°C
(m=83.6 %).
Based on the photomicrographs obtained from scanning
electron microscopy, orthorhombic crystals were observed for NFX
(Fig. 3A). A particle size variation can be visualized for both Polyox
samples (Fig. 3B and 3C). An amorphous characteristic was observed
for Methocel K100 (Fig. 3D).
32
Figure 2. DSC and TG/DTG curves of norfloxacin (A), Polyox WSR
301 (B), Polyox WSR N80 (C), and Methocel K100 LV CR (D) in
dynamic nitrogen atmosphere (50 mL min
-1
) and heating rate of 10 ºC
min
-1
.
33
Figure 3. SEM of NFX (A), Polyox WSR 301 (B), Polyox WSR N80
(C), and Methocel K100 LC CR (D). The photomicrograph A was taken
at a magnification of 50x, and B, C and D of 100x.
X-ray powder diffraction studies were performed in order to
obtain more information about the crystalline characteristics. The 2θ
values of the diffraction peaks (Fig. 4) for NFX were 2θ = 7.87, 9.93,
10.63, 11.98, 13.38, 14.98, 16.08, 18.88, 20.78, and 25.08. For both
Polyox polymers, only two intensive peaks were observed: 2θ = 19.13
and 23.33. For Methocel K100, only two broad peaks, with low
intensity, between 2θ = 5.7-13.3 and 15.53–25.5, were observed,
indicating an amorphous state for this polymer.
34
Figure 4. X-ray diffraction spectra of NFX (A), Polyox WSR 301 (B),
Polyox WSR N80 (C), and Methocel K100 LC CR (D).
The IR spectra of quinolones are more representative in the
region 1800–1300 cm
−1
[23]. The IR spectrum (Fig. 5) of NFX exhibits
a stretching vibration band at about 1716 cm
−1
(–COOH stretching) and
1631 cm
−1
(pyridone keto). For Polyox WSR 301 and N80, it was
observed bands in 2915 and 1465 cm
-1
(streching –CH
2
-) and intense
bands in 1150 1085 cm
-1
, which is attributed to asymmetric axial
deformation C–O–C, characteristic of aliphatic ethers, confirming the
identification of the polymers. Methocel K100 IR spectra showed
absorption bands at 3440 cm
-1
(O-H stretching), 2904 cm
-1
(C-H
stretching), 1643 cm
-1
(C=O), and 1066 cm
-1
(C-O-C).
35
Figure 5. DRIFT spectra of Norfloxacin (A), Polyox WSR 301 (B),
Polyox WSR N80 (C), and Methocel K100 LC CR (D).
For non-isothermic study, the superposition of the TG curves of
NFX is shown in Fig. 6A. Ozawa’s method was applied in order to
determine the activation energy (Ea), Arrhenius frequency factor (A)
and order of reaction at the beginning of first thermal decomposition
step at around 300 to 350 °C. The Ea, calculated was 126 kJ mol
–1
, the
Arrhenius frequency factor was 4.029 x 10
9
min
-1
and order of reaction
followed a zero order reaction (n = 0).
Figure 6. (A) TG curves obtained for the non-isothermic study of NFX
at 2.5, 5, 10, 15, and 20 ºC min
-1
. (B) Isothermal TG curves of NFX
obtained between 230 and 270 ºC, with a temperature increment of 10
ºC.
36
The isothermal TG curves of NFX are illustrated in Fig. 6B.
These curves were used to obtain a graphic of lnt vs. the reciprocal of
temperature 1/T (K
–1
). From this linear regression method, the equation
obtained was y= –16.098x + 26.382 (R=0.9982). The activation energy
calculated from the product of 16.098 with the molar gas constant
(R=8.314) and was Ea=134 kJ mol
–1
. This result is in agreement with
the value obtained from the dynamic method. The selection of adequate
excipients for a new formulation is based on the characteristics of the
drug and its compatibility with other components. Moreover, excipients
can influence the dissolution profile affecting the bioavailability of the
drug. The results from the compatibility studies between NFX and
excipients are shown in Fig. 7, where the DSC curves can be considered
as superposition of the curves of pure compounds indicating that there is
no interaction, and therefore no physical-chemical incompatibility.
Figure 7. DSC curves of NFX and excipients obtained in dynamic
nitrogen atmosphere (50 mL min
–1
) and heating of rate 10 °C min
-1
.
Conclusion
The thermal behaviour and the solid-state characterization of
NFX and the polymers were carried out by means of TG, DSC, DRIFT,
SEM, and XRPD. The obtained isothermal and non-isothermal kinetic
parameters can be used as reference values for the routine quality
control of NFX. The results demonstrated the applicability of DSC as a
37
fast screening tool for selection of adequate excipients at the early stages
of pre-formulation studies. No interaction was observed for NFX and
the tested excipients, making feasible the development of a high quality
formulation of NFX extended release tablets.
Acknowledgments
The authors wish to thank CNPq and CAPES for the support.
38
References
[1] Andersson MI, MacGowan AP. Development of the quinolones. J
Antimicrob Chemoth 2003;51:Suppl S1:1-11.
[2] Emmerson AM, Jones AM. The quinolones: decades of development
and use. J Antimicrob Chemoth 2003;51:Suppl S1:13-20.
[3] Van Bambeke F, Michot J-M, Van Eldere J, Tulkens PM.
Quinolones in 2005: an update. Clin Microbiol Infect 2005;11:256-80.
[4] Sheng W-H, Chen Y-C, Wang J-T, Chang S-C, Luh K-T, Hsieh W-
C. Emerging fluoroquinolone-resistance for common clinically
important gram-negative bacteria in Taiwan. Diagn Micr Infec Dis
2002;43:141-7.
[5] Alexiou Z, Mouktaroudi M, Koratzanis G, Papadopoulos A, Kavatha
D, Kanellakopoulou K, Giamarellou H, -Bourboulis EJG. The
significance of compliance for the success of antimicrobial prophylaxis
in recurrent lower urinary tract infections: the Greek experience. Int J
Antimicrob Ag 2007;30:40-3.
[6] Siepmann J, Peppas NA. Modeling of drug release from delivery
systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug
Deliver Rev 2001;48:139-57.
[7] Maggi L, Bruni R, Conte U. High molecular weight polyethylene
oxides (PEOs) as an alternative to HPMC in controlled release dosage
forms. Int J Pharm 2000;195:229-38.
[8] Gombás A, Szabó-Révész P, Kata M, Regdon G, Erõs I.
Quantitative Determination of Crystallinity of α-Lactose Monohydrate
by DSC. J Therm Anal Cal 2002;68:503-10.
[9] Giron D. Applications of Thermal Analysis and Coupled Techniques
in Pharmaceutical Industry. J Therm Anal Cal 2002;68:335-57.
[10] Cides LCS, Araújo AAS, Santos-Filho M, Matos JR. Thermal
behaviour, compatibility study and decomposition kinetics of
39
glimepiride under isothermal and non-isothermal conditions. J Therm
Anal Cal 2006;84:441-5.
[11] Tiţa B, Marian E, Tiţa D, Vlase G, Doca N, Vlase T. Comparative
kinetic study of decomposition of some diazepine derivatives under
isothermal and non-isothermal conditions. J Therm Anal Cal
2008;94:447-52.
[12] Felix FS, Cides da Silva LC, Angnes L, Matos JR. Thermal
behavior study and decomposition kinetics of salbutamol under
isothermal and non-isothermal conditions. J Therm Anal Cal
2009;95:877-80.
[13] Medeiros ACD, Correia LP, Simões MOS, Macêdo RO.
Technological quality determination of pharmaceutical disintegrant by
DSC cooling and DSC photovisual. J Therm Anal Cal 2007;88:311-5.
[14] Gandhi R, Pillai O, Thilagavathi R, Gopalakrishnan B, Kaul CL,
Panchagnula R. Characterization of azithromycin hydrates. Eur J Pharm
Sci 2002;16:175-84.
[15] Abbas D, Kaloustian J, Orneto C, Piccerelle P, Portugal H, Nicolay
A. DSC and physico-chemical properties of a substituted
pyridoquinoline and its interaction study with excipients. J Therm Anal
Cal 2008;93:353-60.
[16] Ramos LA, Cavalheiro ÉTG. Thermal behavior of loratadine. J
Therm Anal Cal 2007;87:831-4.
[17] Araújo AAS, Storpirtis S, Mercuri LP, Carvalho FMS, Santos-Filho
M, Matos JR. Thermal analysis of the antiretroviral zidovudine (AZT)
and evaluation of the compatibility with excipients used in solid dosage
forms. Int J Pharm 2003;260:303-14.
[18] Mura P, Gratteri P, Faucci MT. Compatibility studies of
multicomponent tablet formulations. DSC and experimental mixture
design. J Therm Anal Cal 2002;68:541-51.
40
[19] Mora PC, Cirri M, Mura P. Differential scanning calorimetry as a
screening technique in compatibility studies of DHEA extended release
formulations. J Pharm Biomed Anal 2006;42:3-10.
[20] Santos AFO, Basílio Jr ID, de Souza FS, Medeiros AFD, Pinto MF,
de Santana DP, Macedo RO. Application of thermal analysis in study of
binary mixtures with metformin. J Therm Anal Cal 2008;93:361-4.
[21] Misra M, Misra AK, Panpalia GM. Interaction study between
pefloxacin mesilate and some diluents using DSC supported with
isothermal method. J Therm Anal Cal 2007;89:803-8.
[22] Ozawa T. Thermal analysis review and prospect. Thermochim
Acta 2000;355:35-42.
[23] Shaikh AR, Giridhar R, Yadav MR. Bismuth-norfloxacin complex:
synthesis, physicochemical and antimicrobial evaluation. Int J Pharm
2007;332:24-30.
41
CAPÍTULO 3 Desenvolvimento e validação de metodologia
analítica.
42
43
INTRODUÇÃO
A análise do fármaco é necessária nas diversas fases do
desenvolvimento farmacêutico, como estudos de formulação e controle
de qualidade da forma farmacêutica. Após o desenvolvimento analítico
a validação da metodologia é necessária para atestar, de forma
documentada, que o procedimento fornece resultados reprodutíveis,
precisos, exatos, específicos e confiáveis, adequados aos fins
pretendidos (SHABIR, 2003; BRASIL, 2003; ICH, 2005; STÖCKL,
2009).
Para atingir o objetivo de se avaliar a estabilidade de
formulações farmacêuticas, o método analítico deve demonstrar
adequada capacidade de separar e, se possível, identificar os produtos de
degradação formados. Para tanto, submete-se o fármaco a diversas
condições de stress, tais como: hidrólise ácida, hidrólise básica, fotólise,
oxidação, temperatura (ICH, 2005; BRASIL, 2005; ALSANTE et al.,
2007; BRASIL 2008). Desta forma, procura-se demonstrar que se
alguma substância for formada, o método será capaz de separar e até
quantificar.
O presente capítulo tem como objetivo demonstrar os resultados
do desenvolvimento e validação de metodologia analítica para
quantificação de norfloxacino em sistemas matriciais de liberação
prolongada. Com o objetivo de avaliar se o método é adequado para os
ensaios de estabilidade (em mara climática, fotoestabilidade) foi
realizado estudo de especificidade em condições de stress e a produção
de um produto de degradação (norfloxacino descarboxilado) de acordo
com procedimento descrito na literatura (EL KHATEEB; RAZEK;
AMER, 1998).
44
Liquid Chromatographic Determination of Norfloxacin in Extended
Release Tablets
Paulo R. Oliveira*
a
, Larissa S. Bernardi
a
, Cassiana Mendes
a
, Simone G.
Cardoso
a
, Maximiliano S. Sangoi
b
, and Marcos A. S. Silva
a
a Department of Pharmaceutical Sciences, Health Science Centre,
Federal University of Santa Catarina, 88040-900, Florianópolis-SC,
Brazil.
b Faculty of Pharmacy, Federal University of Rio Grande do Sul,
90610-000, Porto Alegre-RS, Brazil.
* Corresponding author: prenato.oliveir[email protected]
Abstract
A stability indicating reversed-phase liquid chromatography
method is developed and validated for the determination of norfloxacin
in a new formulation of extended release tablets. The LC method is
carried out on a Luna C
18
column (150 x 4.6 mm), maintained at 40 ºC.
The mobile phase is composed of phosphate buffer 0.04 M, pH 3.0
/acetonitrile (84:16, v/v), run at a flow rate of 1.0 mL/min, and detection
at 272 nm. The chromatographic separation was obtained within 10 min
and it is linear in the concentration range of 0.05-5 µg/mL. Validation
parameters such as the specificity, linearity, precision, accuracy, and
robustness were evaluated, giving results within the acceptable range.
Moreover, the proposed method was successfully applied for the assay
of norfloxacin in the developed formulations.
Keywords: Norfloxacin, Extended release, Liquid chromatography,
Method validation.
45
Introduction
Norfloxacin, chemically known as 1-ethyl-6-fluoro-1,4-
dihydro-4-oxo-7-(1-piperazinyl)-1-ethyl-fluoro-1.4-dihydro-4-oxo-7-(1-
piperazinyl)-3-quinoline-carboxylic acid (Figure 1) (1), is currently used
as a broad spectrum antibacterial drug, being the first choice drug for the
treatment of diseases caused by Campylobacter, E. coli, Salmonella,
Shigella and V. cholera (2,3). The drug is also used for the treatment of
gonorrhea as well as infection of eyes and urinary tract (2). Resistance
in Gram-negative bacteria has become common, making the therapeutic
decisions more difficult. Increasing bacterial resistance to currently
available quinolones has reduced their effectiveness and may
compromise future use of this class of drugs (4,5).
Figure 1. Chemical structure of norfloxacin.
The development of controlled-release formulations is a
successful area in the pharmaceutical industry because expenses of new
drug development are very high, and true innovation is at an all-time
low. Hydrophilic matrices are one of the most used controlled delivery
systems in the world, due to the simple technology and low cost. Among
the various hydrophilic polymers employed, hydroxypropyl
methylcellulose (HPMC) is the most commonly used, due to its
versatility, compatibility with many drugs and safety (6). Nevertheless,
high molecular weight polyethylene oxides (PEOs) have been proposed
as an alternative to HPMC (7). The correct choice of the hydrophilic
polymer, molecular weight and quantity in the matrix formulation can
46
provide an appropriate combination of swelling, dissolution or erosion
mechanisms to control drug release kinetics (8,9).
Moreover, drug release at a constant rate is often desirable, to
maintain the plasmatic levels of the drug in the therapeutic range,
thereby avoiding the peak and valley profile characteristics of
conventional dosage forms in a multidose regime (10), which, for
antibiotics, is very important, mainly in combination with a better
patient compliance to the therapy, to avoid the discontinuation of the
treatment and the development of resistant microorganisms.
Analytical methods have been published for the determination
of NFX in pharmaceuticals by means of spectrophotometry, liquid
chromatography (LC) and capillary electrophoresis, and some of them
are listed in the references (11-16).
As the excipients (including polymeric ones) and the
technological process can affect the stability of the active
pharmaceutical ingredient and the evaluation of the stability-indicating
capability of LC methods becoming mandatory by the surveillance
agencies (17,18), the aim of the present work was to develop and
validate a stability-indicating method for the quality assessment of the
new formulation of norfloxacin extended release tablets.
Experimental
Chemical and reagents
Norfloxacin reference standard was kindly provided by
Brazilian Pharmacopeia and norfloxacin raw material was from União
Química Farmacêutica Nacional (Embu-Guaçu, SP, Brazil). The
polymers used in this study, Polyox
®
WSR N80, Polyox
®
WSR 301,
Polyox
®
WSR 303, Polyox
®
N60K, Methocel
®
K100 LV, Methocel
®
K100M, and Methocel
®
K4M were kindly provided by Colorcon do
Brazil Ltda (São Paulo, SP, Brazil). Others excipients used were:
microcrystalline cellulose (Microcel
®
102, Blanver, Itapevi, SP, Brazil),
magnesium stearate (M. Cassab, São Paulo, SP, Brazil), and colloidal
silicon dioxide (Aerosil
®
, Labsynth, Diadema, SP, Brazil). HPLC-grade
acetonitrile was purchased from Tedia (Fairfield, OH, USA). For all the
analyses, ultrapure water was purified using a Milli-Q Gradient System
(Millipore, Bedford, USA).
47
Samples
The composition of each NFX tablet formulation was: NFX
(700 mg), polymer (20 or 30%), magnesium stearate (1%), colloidal
silicon dioxide (0.5%), and microcrystalline cellulose (qs 1,07 g). For
the production of the extended release tablets, NFX and excipients were
mixed for 10 min and then compressed by direct compression (Fellc
compressing model F-10/8, São Paulo, SP, Brazil).
Methods
Liquid chromatography (LC)
A Shimadzu LC system (Shimadzu, Kyoto, Japan) was used
equipped with a SCL-10A
VP
system controller, LC-10 AD pump, DGU-
14A degasser, CTO-10AS
VP
column oven, SPD-10A
VP
UV detector, and
a SPD-M10A
VP
photodiode array detector. The detector was set at 272
nm and peak areas were integrated automatically by computer using a
Shimadzu Class VP
V 6.12 software program. The experiments were
carried out on a reversed-phase Phenomenex (Torrance, USA) Luna C
18
column (150 mm x 4.6 mm I.D., with a particle size of 5 µm and pore
size of 100 Å). A security guard holder (4.0 mm x 3.0 mm I.D.) was
used to protect the analytical column. The LC system was operated
isocratically at 40 ºC using a mobile phase of phosphoric acid 0.04 M,
pH 3.0/acetonitrile (84:16, v/v). This was filtered through a 0.45 µm
membrane filter and run at a flow rate of 1.0 mL/min. The injection
volume was 20 µL for both standard and samples.
Diffuse Reflectance Infrared Fourier Transform Spectroscopy
(DRIFT)
The DRIFT spectra were measured in a Prestige
spectrophotometer (Shimadzu, Kyoto, Japan), in a scan range of 400 -
4000 cm
-1
with an average of over 32 scans at a spectral resolution of 4
cm
-1
in KBr. A background spectrum was obtained for each
experimental condition.
Mass spectrometry (MS)
The MS experiments were performed on a triple quadrupole
mass spectrometer (Micromass, Manchester, UK), model Quattro LC,
equipped with an electrospray ionization (ESI) source in positive mode,
set up in scan mode, using a Masslynx (v 3.5) software program. The
48
samples were introduced into the mass spectrometer by direct infusion
at 10 µL/min, diluted in mobile phase. The best response for NFX was
obtained with electrospray capillary potential of 3 kV, cone voltage of
30 V, RF lens voltage of 0.3 V, source temperature of 120 ºC, and ESI
probe temperature of 400 ºC. The mass spectrometry data were acquired
in the m/z range between 100 and 550 amu.
Procedure
Preparation of reference solutions
The stock solutions of norfloxacin were prepared by weighing
50 mg, transferred to individual 50 mL volumetric flasks, dissolved with
0.2 mL of acetic acid glacial, and diluted to volume with mobile phase,
obtaining a concentration of 1 mg/mL. The stock solutions were stored
at 2-8 °C protected from light. Working standard solutions were
prepared daily by diluting the stock solutions to an appropriate
concentration in mobile phase.
Preparation of decarboxylated norfloxacin (DCN)
The hydrolysis of NFX during prolonged heating of its acid
solution yields a decarboxylated degradant (DCN), which was prepared
based on a described procedure (11). 250 mg of NFX was refluxed with
70 ml of hydrochloric acid 2 M at 150 °C for 48 h, protected from light.
Then, the solution was cooled and adjusted to pH 7.5 with sodium
hydroxide 2 M. After that, the solution was evaporated under vacuum to
dryness. The residue was extracted with ethanol and filtered. To verify
the identity of the obtained product, a sample was analyzed by means of
DRIFT, LC-MS, and the proposed LC method.
Preparation of sample solutions
To prepare the sample stock solution, the obtained extended
release tablets were crushed to a fine powder. An appropriated amount
was transferred into an individual 50 mL volumetric flask, dissolved
with 0.2 mL of acetic acid glacial, and diluted to volume with mobile
phase, obtaining a concentration of 1 mg/mL of the active
pharmaceutical ingredient. This solution was stored at 2-8 °C protected
from light. Working sample solutions were prepared daily by diluting
the sample stock solutions to an appropriate concentration in mobile
phase.
49
Validation of the method
Analytical method development and validation play a major
role in the discovery, development, and manufacture of pharmaceuticals
(19). The International Conference on Harmonization (ICH) (20)
requires the stress testing to be carried out to elucidate the inherent
stability characteristics of the active substance. A stability-indicating
method is the one that quantifies the drug and also resolves its
degradation products (17,18,21). The method was validated to quantify
NFX in a new formulation of extended release tablets by the
determination of the following parameters: specificity, linearity,
accuracy, precision, robustness, and quantitation and detection limits.
Specificity
In order to determine the specificity of the method, a placebo
solution was analyzed to evaluate the absence of interference from the
formulation excipients (including the polymers) on the NFX peak.
Moreover, the specificity was determined by subjecting a sample
solution (1 mg/mL) to accelerated degradation by acidic, basic, neutral,
oxidative, and photolytic conditions. After the procedures, the samples
were diluted in mobile phase to a final concentration of 1 µg/mL. A
sample solution in 5 M hydrochloric acid and 5 M sodium hydroxide,
both refluxed at 100 ºC for 24 h, were used for the acidic and basic
hydrolysis, respectively. The oxidative degradation was induced by
storing the sample solution in 30% hydrogen peroxide, at ambient
temperature for 24 h, protected from light. Photodegradation was
induced by exposing the samples to 200 watt hours/square meter of near
ultraviolet light. Then, the specificity of the method was established by
determining the peak purity of norfloxacin in degradated samples using
a PDA detector.
Linearity and range
Linearity was determined by constructing three independent
calibration curves. For the construction of each calibration curve seven
standard concentrations of NFX in the range of 0.05–5 µg/mL were
prepared in mobile phase. Three replicates of 20 µL injections were
made for the standard solution to verify the repeatability of the detector
response at each concentration. The peak areas of the chromatograms
were plotted against the concentrations of NFX to obtain the calibration
curve. The seven concentrations of the standard solutions were
50
subjected to regression analysis by the least squares method to calculate
calibration equation and correlation coefficient.
Precision and accuracy
The precision of the method was determined by repeatability
and intermediate precision. Repeatability was examined by six
evaluations of the same concentration sample, on the same day, under
the same experimental conditions. The intermediate precision was
assessed by carrying out the analysis on three different days (inter-days)
and also by other analysts performing the analysis in the same
laboratory (between-analysts). The accuracy was evaluated by the
recovery of known amounts (0.3, 0.5 and 0.7 µg/mL) of the reference
substance added to a sample solution (containing 0.50 µg/mL of NFX
and tablet excipients) to obtain solutions with final concentrations of
0.80, 1.0, and 1.2 µg/mL, corresponding to 80, 100, and 120% of the
nominal analytical concentration, respectively. The accuracy was
calculated as the percentage of the drug recovered from the formulation
matrix.
Limits of quantitation (LQ) and detection (LD)
The LQ was taken as the lowest concentration of analyte in a
sample that can be determined with acceptable precision and accuracy,
and the LD was taken as the lowest absolute concentration of analyte in
a sample that can be detected but not necessarily quantified. The LD and
LQ were calculated from the slope and the standard deviation of the
intercept of the mean of three calibration curves, determined by a linear
regression model, as defined by ICH.
Robustness
Two approaches are possible to evaluate robustness, either an
one-variable-at-a-time (OVAT) procedure or an experimental design
procedure. The OVAT procedure varies the levels of one factor while
keeping the other factors at nominal levels, to evaluate the effect of this
former factor on the method response(s). When applying an
experimental design, the effect of a given factor is calculated at several
level combinations of the other factors. Thus, in an experimental design,
a reported factor effect is an average value for the whole domain, and it
represents more globally what is happening around the nominal situation
(22-24).
51
The robustness was determined by analyzing the same samples
under a variety of conditions of the method parameters, such as: flow
rate, column temperature, changing the mobile phase composition and
pH. The response surface method (RSM) design was applied to evaluate
the relationships between one or more measured responses. Moreover,
the D-optimal criteria was used to select design points to minimize the
variance associated to the estimates of specified model coefficients, with
a low number of experiments.
System suitability
The system suitability was carried out to evaluate the resolution
and reproducibility of the system for the analysis to be performed, using
six replicate analyses of the drug at a concentration of 1 µg/mL. The
parameters evaluated were peak area, retention time, theoretical plates,
and asymmetry.
Analysis of the extended release tablets
For the quantitation of NFX in the extended release tablets,
twenty tablets of each batch were separated, accurately weighed and
crushed to a fine powder. An appropriate amount of each tablet was
transferred into an individual 50 mL volumetric flask, dissolved with 0.2
mL of acetic acid glacial, sonicated for 15 min, diluted with mobile
phase (sonicated again for 15 min), and diluted to volume, obtaining the
NFX final concentration of 1 mg/mL (stock solutions). For the analysis,
the stock solutions were diluted to appropriate concentrations with
mobile phase. An aliquot of 20 µL was injected for the analysis and the
amount of each drug per tablet calculated against the respective
reference standard.
Results and discussion
To obtain the best chromatographic conditions, the mobile
phase was optimized to provide adequate peak symmetry and
sensitivity. Potassium phosphate, sodium phosphate, sodium acetate,
formic acid, and phosphoric acid buffers were tested. Methanol was
tested as the organic solvent; however a broad and non-symmetric peak
was obtained. The use of phosphoric acid 0.04 M (pH 3.0) in
combination with acetonitrile, which was optimized to 16%, at 40 ºC,
resulted in a relatively short retention time of 6.6 min, better peak
52
symmetry (1.11), and a simple mobile phase (without salt buffer
addition). For the selection of the best wavelength detection a PDA
detector was used. The optimized conditions of the LC method were
validated for the analysis of NFX in the developed tablets and a typical
chromatogram obtained by the proposed LC method is shown in Figure
2A.
A stability-indicating method is defined as an analytical method
that accurately quantitates the active ingredients without interference
from degradation products, process impurities, excipients, or other
potential impurities. Forced degradation studies should be the first step
in method development. The presence of degradants and impurities in
pharmaceutical formulations can result in changes in their chemical,
pharmacological and toxicological properties affecting their efficacy and
safety. Therefore, the adoption of stability-indicating methods is always
required to control the quality of pharmaceuticals during and after the
production. This greatly contributes to the possibility of improving drug
safety (17,18, 25,26).
53
Figure 2. LC chromatograms of norfloxacin (A) developed formulation
(1 µg/mL). (B) Decarboxylated degradant. (C) After acidic condition.
(D) After basic condition. (E) After photolytic condition. (F) After
oxidative condition. (G) After neutral condition. Chromatographic
conditions: Luna C
18
column (150 x 4.6 mm, 5 µm), 40 ºC; mobile
54
phase: phosphate buffer 0.04 M, pH 3.0 /acetonitrile (84:16, v/v); flow
rate: 1.0 mL/min; detection: 272 nm.
For NFX, its decarboxylated degradant has a particular
significance since the pharmacological activity of the drug depends on
the carboxylic group (27). On the other hand, this degradant was
recorded as impurity in the bulk form and precipitate in the injection
formulation (11). The prepared degradant (DCN) and the intact drug
were submitted to FTIR, MS and LC analysis. The spectrum scan of
NFX standard exhibited a strong stretching vibration band at 1715 cm
−1
together with a broad band around 2500–3500 cm
−1
characterizing
carbonyl and hydroxyl moieties of the carboxylic group, respectively.
These two bands, in the spectrum of DCN, corresponded in position to
that obtained for NFX standard, but the relative intensity decreased,
indicating decarboxylation. The mass spectra obtained is shown in
Figure 3A, with characteristic signal on m/z 320 amu for NFX[H
+
] and
m/z 361 amu for NFX[CH
3
CN-H
+
], which is an adduct produced with
NFX and acetonitrile (41 Da) from the mobile phase. Adduct is defined
as an ion formed through the interaction between two species, usually an
ion and a molecule, containing all the atoms of one specie plus one or
several atoms of the other (28). In Figure 3B is shown the signal on m/z
276 amu for DCN[H
+
], supporting the identity of the degradation
product. Moreover, the degraded sample was analyzed by the proposed
LC method (Figure 2B) and its retention time was used to assume the
identity of this product in the samples subjected to stress studies.
55
Figure 3. Mass spectra for (A) norfloxacin and (B) decarboxylated
degradant.
The specificity of the analytical method for NFX was indicated
in Figure 2, where the excipients did not interfere on NFX peak. Under
acidic condition, one additional peak was observed with the same
retention time of DCN, thus confirming its identity. The basic and
photolytic conditions generated one additional peak. Under oxidative
56
and neutral conditions there was no change in the area and no additional
peak was detected. The studies with the PDA detector showed that the
norfloxacin peak was free from any coeluting peak, with values of peak
purity index higher than 0.9999, thus demonstrating that the proposed
method is specific.
The calibration curves constructed for norfloxacin were found
to be linear in the 0.05–5 µg/mL
range. The value of the determination
coefficient calculated (r
2
=0.9999, y=186846 ± 1960x 951.8 ± 890.6,
where, x is concentration and y is the peak absolute area) indicated the
linearity of the calibration curve for the method. The validity of the
assay was verified by means of ANOVA, which demonstrated
significant linear regression and non-significant linearity deviation (P <
0.01).
The precision evaluated as the repeatability of the method was
studied by calculating the relative standard deviation (RSD) for six
determinations of the concentration of 1 µg/mL performed on the same
day and under the same experimental conditions. The RSD value
obtained was 0.98%.
The intermediate precision was assessed by analyzing two
samples of the pharmaceutical formulation on three different days (inter-
day); the RSD values obtained were 0.59% and 0.39%. Between-
analysts precision was determined by calculating the RSD for the
analysis of two samples of the pharmaceutical formulation by three
analysts; the values were found to be 0.05% and 0.28% (Table 1).
57
Table 1. Inter-day and between-analysts precision data of the method.
Sample
Inter-day
Between-analysts
Day
Recovery
a
(%)
RSD
b
(%)
Analysts
Recovery
a
(%)
RSD
b
(%)
1
1 99.99
0.59
A 100.00
0.05
2 101.07
B 99.91
3 100.96
C 100.00
2
1 99.06
0.39
A 101.72
0.28
2 99.63
B 101.15
3 98.88
C 101.46
a
Mean of three replicates
b
RSD = Relative standard deviation
The accuracy was assessed from three replicate determinations of three
different added standard solutions containing 0.3, 0.5 and 0.7 µg/mL of
NFX. The results are shown in table 2, with a mean value of 99.90% and
RSD of 0.97%, demonstrating that the method is accurate within the
desired range.
Table 2. Accuracy of the method.
Added
Concentration
g/mL)
Mean concentration
found
a
g/mL)
RSD
b
(%)
Accuracy
(%)
0.30 0.30 1.09 100.48
0.50 0.50 1.16 100.23
0.70 0.69 0.40 98.70
a
Mean of three replicates
b
RSD = Relative standard deviation
58
For the calculation of the LD and LQ, the calibration equation
for NFX was generated by using the mean values of the three
independent calibration curves. The mean of the slope and the standard
deviation of the intercept of the independent curves were 186846 and
951.8 respectively. The values calculated for the LD and LQ were 0.01
and 0.05 µg/mL, respectively. The LQ evaluated experimentally for
NFX was also 0.05 µg/mL and was included in the calibration curve of
the method.
To evaluate the robustness of an analytical method usually the
OVAT approach is applied, however it is not recommended. The most
important reason is that when the factors are examined in given
intervals, the effects are estimated for a smaller domain around the
nominal levels with the OVAT than with the experimental design
approach. Moreover, the OVAT approach requires more (too many)
experiments, especially when the number of examined factors becomes
larger, and secondly, the importance of factor interactions cannot be
taken into account (22,23). The experimental ranges of the selected
variables evaluated are given in Table 3. The analysis of variance
ANOVA was performed and the model terms (variables) were not
significant (P > 0.05). The normal plot of residuals and outlier T for the
responses evaluated are shown in Figure 4, and the results demonstrated
that the method was robust. Moreover, the stability of the analytical
solution was analyzed and it was found to be stable up to 48 h (99.65%,
assay).
59
Table 3. Chromatographic conditions and range investigated during
robustness testing.
Experi-
mental
Factors Responses
a
ACN
(%)
Flow
(ml/min)
pH Temp
(
o
C)
RSD
(%)
Assay
(%)
Peak
Symmetry
1 18.00 1.00 2.7 45.00 0.43 99.78 1.09
2 16.00 1.20 3.3 35.00 0.31 100.48 1.10
3 16.00 1.20 2.7 45.00 0.35 99.84 1.09
4 14.00 1.00 3.3 45.00 0.35 100.23 1.10
5 16.00 1.20 3.3 45.00 0.49 99.99 1.09
6 14.00 1.00 2.7 35.00 0.54 100.17 1.11
7 14.00 0.80 3.0 35.00 0.41 100.05 1.11
8 14.00 0.80 2.7 40.00 0.28 100.56 1.10
9 14.00 1.20 3.0 35.00 0.89 100.02 1.10
10 18.00 0.80 3.0 35.00 0.52 100.41 1.10
11 18.00 0.80 3.3 40.00 0.17 99.61 1.09
12 16.00 1.20 2.7 35.00 0.44 100.41 1.10
13 14.00 1.00 3.3 45.00 0.22 99.76 1.08
14 18.00 1.00 2.7 45.00 0.31 100.12 1.09
15 14.00 0.80 3.0 35.00 0.70 100.34 1.10
16 16.00 0.80 2.7 35.00 0.63 99.90 1.09
17 18.00 1.00 2.7 35.00 0.38 100.37 1.09
a
Mean of three replicates
60
Figure 4. Normal plot of residuals and outlier T values for responses
(A) peak area RSD%, (B) assay, and (C) peak symmetry.
61
The system suitability results showed that the parameters were
within the suitable range. The RDS values calculated for peak area and
retention time were 0.98 and 0.15%, respectively. The mean asymmetry
and theoretical plates ± RSD were 1.11 ± 0.34% and 8226 ±1.3%,
respectively.
The LC method validated in this paper was applied for the
determination of norfloxacin in the new extended release formulations,
without prior separation of the excipients. The values obtained ranged
from 99.43 to 102.35%.
Conclusion
The results of the validation studies showed that the LC method
is specific, accurate and possesses significant linearity and precision
characteristics without any interference from the formulation excipients
and degradation products. Moreover, the proposed method was
successfully applied for the quantitative analysis of norfloxacin in the
developed extended release dosage forms.
Acknowledgments
The authors wish to thank CAPES and CNPq for the financial
support, and Allcrom for kindly providing the Phenomenex analytical
column.
62
References
1. M.I. Andersson and A.P. MacGowan. Development of quinolones. J.
Antimicrob. Chemoth. 51: Suppl. S1, 1-11 (2003).
2. A.M. Emmerson and A.M. Jones. The quinolones: decades of
development and use. J. Antimicrob. Chemoth. 51: Suppl. S1, 13-20
(2003).
3. F. Van Bambeke, J.-M. Michot, J. Van Eldere and P.M. Tulkens.
Quinolones in 2005: an update. Clin. Microbiol. Infect. 11: 256-280
(2005).
4. W.-H. Sheng, Y.-C. Chen, J.-T. Wang, S.-C. Chang, K.-T. Luh and
W.-C. Hsieh. Emerging fluoroquinolone-resistance for common
clinically important gram-negative bacteria in Taiwan. Diagn. Micr.
Infec. Dis. 43: 141-147 (2002).
5. Z. Alexiou, M. Mouktaroudi, G. Koratzanis, A. Papadopoulos, D.
Kavatha, K. Kanellakopoulou, H. Giamarellou and E.J.G.-Bourboulis.
The significance of compliance for the success of antimicrobial
prophylaxis in recurrent lower urinary tract infections: the Greek
experience. Int. J. Antimicrob. Ag. 30: 40-43 (2007).
6. J. Siepmann and N.A. Peppas. Modeling of drug release from
delivery systems based on hydroxypropyl methylcellulose (HPMC).
Adv. Drug Deliver. Rev. 48: 139-157 (2001).
7. L. Maggi, R. Bruni and U. Conte. High molecular weight
polyethylene oxides (PEOs) as an alternative to HPMC in controlled
release dosage forms. Int. J. Pharm. 195: 229-238 (2000).
8. J. Heller, J. Barr, Y.S. Ng, K.S. Abdellauoi and R. Gurny. Poly(ortho
esters): synthesis, characterization, properties and uses. Adv. Drug
Deliver. Rev. 54: 1015-1039 (2002).
9. C.M. Lopes, J.M.S. Lobo and P. Costa. Formas farmacêuticas de
liberação modificada: polímeros hidrofílicos. Braz. J. Pharm. Sci. 41:
143-154 (2005).
63
10. Y. Sun, Y. Peng, Y. Chen and A.J. Shukla. Application of artificial
neural networks in the design of controlled release drug delivery
systems. Adv. Drug Deliver. Rev. 55: 1201-1215 (2003).
11. S.Z. El Khateeb, S.A.A. Razek and M.M. Amer. Stability-indicating
methods for the spectrophotometric determination of norfloxacin. J.
Pharm. Biomed. Anal. 17: 829-840 (1998).
12. I.A. Darwish, M.A. Sultan and H.A. Al-Arfaj. Novel selective
kinetic spectrophotometric method for determination of norfloxacin in
its pharmaceutical formulations. Talanta. 78: 1383-1388 (2009).
13. M. Córdoba-Borrego, M. Córdoba-Díaz and D. Córdoba-Díaz.
Validation of a high-performance liquid chromatographic method for
the determination of norfloxacin and its application to stability studies
(photo-stability study of norfloxacin). J. Pharm. Biomed. Anal. 18: 919-
926 (1999).
14. L.A. Shervington, M. Abba, B. Hussain and J. Donnelly. The
simultaneous separation and determination of five quinolone antibiotics
using isocratic reversed-phase HPLC: application to stability studies on
an ofloxacin tablet formulation. J. Pharm. Biomed. Anal. 39: 769-775
(2005).
15. A. Alnajjar, A.M. Idris and H.H. AbuSeada. Development of a
stability-indicating capillary electrophoresis method for norfloxacin and
its inactive decarboxylated degradant. Microchem. J. 87: 35-40 (2007).
16. Z. Yang, X. Wang, W. Qin and H. Zhao. Capillary electrophoresis-
chemiluminescence determination of norfloxacin and prulifloxacin.
Anal. Chim. Acta. 623: 231-237 (2008).
17. K.M. Alsante, A. Ando, R. Brown, J. Ensing, T.D. Hatajik, W. Kong
and Y. Tsuda. The role of degradant profiling in active pharmaceutical
ingredients and drug products. Adv. Drug Deliver. Rev. 59: 29-37
(2007).
18. M. Bakshi and S. Singh. Development of validated stability-
indicating assay methods critical review. J. Pharm. Biomed. Anal. 28:
1011-1040 (2002).
64
19. G.A. Shabir, W.J. Lough, S.A. Arain and T.K. Bradshaw.
Evaluation and application of best practice in analytical method
validation. J. Liq. Chromatogr. Related Technol. 30: 311-333 (2007).
20. International Conference on Harmonisation (ICH), Harmonised
tripartite guideline: validation of analytical procedures: text and
methodology Q2 (R1) (2005).
21. J.R. Bhinge, R.V. Kumar and V.R. Sinha. A simple and sensitive
stability-indicating RP-HPLC assay method for the determination of
aceclofenac. J. Chromatogr. Sci. 46: 440-444 (2008).
22. B. Dejaegher and Y.V. Heyden. Ruggedness and robustness testing.
J. Chromatogr. A. 1158: 138-157 (2007).
23. M. Zeaiter, J.-M. Roger, V. Bellon-Maurel and D.N. Rutledge.
Robustness of models developed by multivariate calibration. Part I: The
assessment of robustness. Trends Anal. Chem. 23: 157-170 (2004).
24. P. Barmpalexis, F.I. Kanaze and E. Georgarakis. Developing and
optimizing a validated isocratic reversed-phase high-performance liquid
chromatography separation of nimodipine and impurities in tablets using
experimental design methodology. J. Pharm. Biomed. Anal. 49: 1192-
1202 (2009).
25. R.N. Rao and A.N. Raju. Development and validation of a reversed-
phase HPLC method for separation and simultaneous determinations of
process-related substances of mirtazapine in bulk drugs and
formulations. J. Chromatogr. Sci. 47: 223-230 (2009).
26. S. Görög. Drug safety, drug quality, drug analysis. J. Pharm.
Biomed. Anal. 48: 247-253 (2008).
27. D.J. Abraham. Bruger’s medicinal chemistry and drug discovery,
Vol. 5, 6th ed. John Wiley and Sons, Inc., Hoboken, New Jersey, 2003,
pp. 584-585.
65
28. E. de Hoffmann and V. Stroobant. Mass spectrometry: principles
and applications, 2nd ed. John Wiley and Sons, Inc., Hoboken, New
Jersey, 2001, p. 364.
66
67
CAPÍTULO 4 Formulação, estabilidade e avaliação in vitro de
comprimidos de liberação prolongada contendo Norfloxacino.
Publicação científica: Oliveira, P.R.; Bernardi, L.S.; Mendes, C.; Silva,
M.A.S. Formulation, stability and in vitro dissolution studies of
norfloxacin extended-release matrix tablets. Manuscrito em preparação.
68
69
INTRODUÇÃO
A tecnologia de produção de sistemas matriciais de liberação
prolongada é relativamente simples, possibilitando inclusive sua
obtenção por compressão direta (COLOMBO et al., 2009). O estudo do
tipo de polímero utilizado, da sua massa molecular e concentração na
formulação é etapa fundamental para o desenvolvimento destes
sistemas, objetivando uma liberação adequada in vivo (LOPES; LOBO;
COSTA, 2005; JAMZAD; FASSIHI, 2006).
A estabilidade de produtos farmacêuticos depende de fatores
ambientais como temperatura, umidade, luz e de outros relacionados ao
próprio produto como propriedades físicas e químicas do fármaco, além
do processo de fabricação. A estabilidade acelerada é realizada para
estudar a degradação química e/ou mudanças físicas de um produto
farmacêutico, utilizando condições forçadas de armazenamento. Como o
Brasil está classificado em zona IV (clima quente e úmido), este estudo
é realizado em câmara climática em temperatura de 40 ± 2 ºC e umidade
relativa de 75 ± 5% (BRASIL, 2005; WHO, 2009). A estabilidade da
formulação frente à luz UV também deve ser avaliada (ICH, 1996;
BRASIL, 2008). Os resultados obtidos o utilizados para estabelecer
prazo de validade e recomendar condições de armazenamento. Neste
capítulo, além dos comprimidos, avaliou-se a influência do revestimento
e da embalagem na estabilidade.
O ensaio de perfil de dissolução é de fundamental importância
no desenvolvimento de comprimidos de liberação prolongada
(JORGENSEN; BHAGWAT, 1998; CHEN et al., 2010; MOURÃO et
al., 2010), pois através dele pode-se avaliar o resultado das alterações
realizadas na formulação e planejar a etapa seguinte. A partir da analise
dos perfis é possível saber a cinética e o mecanismo de liberação do
fármaco a partir da matriz, bem como a relação destes com a
composição da formulação.
As equações utilizadas nesta etapa para avaliação da cinética
foram: zero-ordem (COSTA; LOBO, 2001), primeira-ordem (COSTA;
LOBO, 2001), Higuchi (HIGUCHI, 1963; COSTA; LOBO, 2001) e
Korsmeyer-Peppas (COSTA; LOBO, 2001; KORSMEYER et al.,
1983). Além disso, através da equação de Korsmeyer-Peppas pode-se
calcular o mecanismo de liberação predominante: difusão fickiana,
transporte Caso-II (relaxamento e erosão das cadeias poliméricas),
transporte anômalo (combinação dos dois mecanismos citados) ou
70
transporte super Caso-II (aumento da plasticidade das cadeias
poliméricas, relaxamento e erosão poliméricas).
71
Formulation, stability and in vitro dissolution studies of norfloxacin
extended-release matrix tablets
Paulo Renato Oliveira*, Larissa Sakis Bernardi, Cassiana Mendes,
Marcos A. Segatto Silva.
Department of Pharmaceutical Sciences (J/K - 207), Health Science
Centre, Federal University of Santa Catarina, 88040-900, Florianópolis-
SC, Brazil.
* Corresponding author: prenato.oliveir[email protected]
72
Abstract
The aim of this research was to develop a new hydrophilic matrix
system containing norfloxacin (NFX) and to carry out stability and in
vitro release studies. Extended-release tablets are usually intended for
once-a-day administration with benefits to the patient and lower
discontinuation of the therapy, which for antibacterial drugs is very
important since it can result in a decrease of bacterial resistance.
Formulations were developed with hydroxypropylmethylcellulose
(HPMC) and poly(ethylene oxide) (PEO) as hydrophilic polymers, with
different molecular weights (MWs) and concentrations (20 and 30%).
The tablets were found to be stable (6 months at 40 ± 2 ºC and 75 ± 5%
relative humidity) and the film-coating process is recommended to avoid
NFX photodegradation. The dissolution profiles demonstrated an
extended-release of NFX for all developed formulations, however for
those containing high MW polymers, at the end of the analysis, the drug
was not completely released. Dissolution curves analyzed using the
Korsmeyer exponential equation showed that drug release was
controlled by both drug diffusion and polymer relaxation or erosion
mechanisms. A more erosion controlled system was obtained for the
formulations containing lower MW and amount of polymer. With the
increase in MW and amount of polymer in the formulation, the gel layer
became stronger and the dissolution was more drug-diffusion dependent
(with decreasing in exponent n values). Formulations containing
intermediate MW polymers or high concentration (30%) of low MW
polymers demonstrated a combination of extended and complete in vitro
drug release. This way, these formulations could provide an increased
bioavailability in vivo.
Keywords: Norfloxacin; hydroxypropylmethylcellulose; poly(ethylene
oxide); hydrophilic polymers; extended-release; dissolution studies.
73
1. Introduction
Hydrophilic matrix tablets are among the most popular orally
administered controlled release systems. Despite having been around
since four decades, matrices are still the reference starting point for
innovations in drug delivery. It can be due to the fact that they are
considered quite reliable in terms of drug delivery, simple technology
and low-cost of manufacture. Moreover, matrices can be continuously
innovated as new materials for formulation become commercially
available [1-5].
The matrix tablets are usually composed of active
pharmaceutical ingredients (APIs) and hydrophilic swellable polymers.
When the system is exposed to the aqueous medium, water will be
absorbed and a gel layer will be formed. This viscous gel layer may
hinder water penetration and become the rate-controlling step during gel
formation. The gel strength is important in the matrix performance and
is dependent on the chemical structure, concentration and viscosity of
the polymer used. Depending on the mechanical properties of the gel
layer, drug release is controlled by different mechanisms and kinetics.
Polymer swelling, drug dissolution, drug diffusion, and matrix erosion
are the basic phenomena leading to the drug release from swellable
matrices [6-12]. Additionally, drug load and solubility can influence the
release mechanism and kinetics.
Hydroxypropylmethylcellulose (HPMC) is a propylene glycol
ether of methylcellulose and is widely used as a matrix former in oral
controlled release tablet formulations [1]. One of its most important
characteristics is the high swellability, which has a significant effect on
the release kinetics of an incorporated drug. Furthermore, HPMC is
compatible with numerous drugs, accommodates high levels of drug
loading and can be easily incorporated to form matrix tablets by direct
compression or granulation [9,13-16]. The availability of a wide range
of viscosity grades also allows the formulator to modify the release of
drugs from HPMC matrix tablets according to therapeutic need.
High molecular weight poly(ethylene oxide) (PEOs) have been
proposed as an alternative to HPMC in controlled release dosage forms
[17]. They are important polymers for the pharmaceutical industries
mainly because of their non-toxicity, high water-solubility and
swellability, insensitivity to the pH of the biological medium and ease of
production. PEOs swell and form a compact gel layer on the surface of
74
the tablet which is responsible for the controlled drug release [17-22].
They are also available in a wide range of molecular weights, thus
allowing the formulator to control the mechanism of drug release to
achieve the therapeutic goal.
Norfloxacin (NFX) is a synthetic broad spectrum antibacterial
drug being the firstly selected drug for the treatment of diseases caused
by Campylobacter, E. coli, Salmonella, Shigella and V. cholera [23,24].
The drug is also used for the treatment of urinary tract infections as well
as gonorrhoea and infection of eyes [23]. The recommended dosage is
usually 400 mg twice daily. The half-life of NFX in serum and plasma is
3-4 hours and only approximately 30-40% of an oral dose is absorbed
[25,26]. Increasing bacterial resistance to currently available antibiotics,
including the quinolone class, has reduced their effectiveness, making
the therapeutic decisions more difficult and may compromise future use
of this class of drugs [27-31].
The development of an extended release formulation that could
improve the bioavailability of NFX and reduce the administration
schedule may improve the patients’ comfort and compliance, resulting
in lower discontinuation of the therapy; with consequently decrease in
bacterial resistance. The correct choice of the hydrophilic polymer,
molecular weight and quantity in the matrix formulation can provide an
appropriate combination of polymer swelling, erosion or drug diffusion
mechanisms to control drug release. Thus, the aim of this work was to
develop and carry out stability and in vitro dissolution studies of a new
formulation of norfloxacin extended-release tablets.
2. Materials and Methods
2.1 Materials
Norfloxacin (NFX) was purchased from Zhejiang Neo-Dankong
pharmaceutical (Zhejiang, China). Hydroxypropylmethylcellulose
(HPMC) K100 LV (apparent viscosity: 100 mPa s, 2% in water at 20
ºC), HPMC K4M (4 000 mPa s), HPMC K100M (100 000 mPa s), and
poly(ethylene oxide) (PEO) N60K (2 000 kDa), PEO 301 (4 000 kDa)
and PEO 303 (7 000 kDa) were kindly donated by Colorcon (São Paulo,
Brazil). The pharmaceutical excipients used were: microcrystalline
cellulose (Microcel 102, Blanver, Itapevi, Brazil), magnesium stearate
(M. Cassab, São Paulo, Brazil), and colloidal silicon dioxide (Aerosil®,
Labsynth, Diadema, Brazil).
75
2.2 Methods
2.2.1 Preparation of matrix tablets
A powder blend containing NFX, polymer and microcrystalline
cellulose was prepared and mixed for 15 min, followed by addition of
magnesium stearate and colloidal silicon dioxide with a further 5 min
mixing. The modules having the composition reported in Table 1 were
prepared by direct compression using a 19 x 8 mm punch set. (Fellc
compressing model F-10/8, São Paulo, Brazil).
Table 1. Composition of tablets containing hydroxypropylmethyl
cellulose (HPMC) or poly(ethylene oxide) (PEO).
Composition For one tablet For one tablet
Norfloxacin 700 mg 700 mg
Polymer
HPMC K100 LV
HPMC K4M
HPMC K100M
PEO N60K
PEO WSR 301
20 % 30 %
PEO WSR 303
Magnesium stearate 1 % 1 %
Colloidal silicon dioxide 0.5 % 0.5 %
Microcrystalline cellulose q.s. q.s.
Total weight 1.07 g 1.07 g
2.2.2 Characterization of tablet formulation
Tablets were characterized by weight, hardness, friability,
dimension, and loss on drying according to pharmacopeial limits
[33,34]. The average weight was obtained for at least 20 units. Hardness
was determined for at least 10 tablets using a Hardness Tester (298-AT,
Nova Ética, Vargem Grande Paulista, Brazil), and adopting a minimum
hardness of 3 kgf as the acceptance criterion. For each formula, friability
was evaluated for a sample of 20 tablets, using the acceptance criterion
of a maximum loss of 1.5% of the initial weight. Dimension was
evaluated measuring 10 tablets with a paquimeter. Loss on drying was
carried out with 2 g of sample, in vacuum, at 105 ºC for 2 h.
76
2.2.3 Tablet coating and blistering
A tablet coating solution was formed by adding 30 g of Opadry
II White (Colorcon, São Paulo, Brazil) to 120 g of purified water and
stirring for 2 min. An amount corresponding to 50% of each formulation
batch was placed in a Rama Cota RD conventional coating machine.
Tablets were preheated until the bed temperature reached 45 °C. Pan
rotation was set to 40 rpm and tablets were coated using a Binks Model
460 spray gun operating at 2 Bar. The coating solution was pumped at a
rate of 5.9-9.6 g/min using a peristalic pump. Tablet bed temperature
was maintained between 42-45 °C during the spray coating process.
After coating, an amount of coated and uncoated tables were blistered in
transparent PVC blister and sealed with an aluminium foil.
2.2.4 NFX tablets assay
NFX quantification assay was carried out according to a
previously validated method [35]. Briefly, the LC system was operated
isocratically at 40 ºC using a mobile phase composed by phosphoric
acid 0.04 M, pH 3.0/acetonitrile (84:16; v/v), eluted at a flow rate of 1.0
mL/min. A reversed-phase Phenomenex (Torrance, USA) Luna C
18
column (150 mm x 4.6 mm I.D., with a particle size of 5 µm and pore
size of 100 Å) was used and the detector was set at 272 nm. The
injection volume was 20 µL.
To prepare the sample stock solution, the manufactured
extended-release tablets were crushed to a fine powder. An appropriated
amount was transferred into an individual 50 mL volumetric flask,
dissolved with 0.2 mL of glacial acetic acid, and diluted to volume with
mobile phase, obtaining a concentration of 1 mg/mL of the API. The
NFX standard stock solutions were prepared by weighing 50 mg,
transferred to 50 mL volumetric flasks, dissolved with 0.2 mL of acetic
acid glacial, and diluted to volume with mobile phase, obtaining a
concentration of 1 mg/mL. Both sample and standard stock solutions
were stored at 2-8 °C protected from light. Working solutions were
prepared daily by diluting the stock solutions to an appropriate
concentration in mobile phase.
2.2.5 Stability tests
The manufactured tablets were submitted to accelerated
stability test. Samples of each batch (non-coated, coated, with and
without blister) were maintained for 6 months in a accelerated stability
chamber (420 CLD, Nova Ética, Vargem Grande Paulista, Brazil) at 40
77
± 2 ºC and 75 ± 5% relative humidity [36,37]. For photostability tests,
samples were exposed to an overall illumination of not less than 1.2
million lux [38]. The illumination was measured with a Digital Lux
Meter (MLM-1011, Minipa, São Paulo, Brazil). Protected samples
(wrapped in aluminium foil) were used as dark controls to evaluate the
contribution of thermally induced change to the total observed change.
2.2.6 Drug release study
Drug release studies were performed based on pharmacopeial
methods using USP apparatus II Vankel 7000 dissolution tester (Varian
Technology Group, Cary, USA), with paddle rotation of 75 rpm, in 900
ml of buffer pH 4.0 at 37.0 ± 0.5 °C [33,34]. At specified time intervals,
5 mL samples were withdrawn, filtered and quantified in a UV
spectrophotometer (Varian Cary 50 bio, Cary, USA) at the wavelength
278 nm.
2.2.7 Analysis of drug release
The analysis of the values obtained in dissolution tests is easier
when mathematical formulas that express the dissolution results as a
function of some of the dosage forms characteristics are used. NFX
release kinetic was evaluated according to the following models: zero
order, first order, Higuchi, and Korsmeyer-Peppas.
Additionally, the
difference factor (ƒ1) and similarity factor (ƒ2) were used to compare
the dissolution profiles.
2.2.7.1 Zero-order model
Drug dissolution from pharmaceutical dosage forms that do not
disaggregate and release the drug slowly (assuming that area does not
change and no equilibrium conditions are obtained) following a 'steady-
state release' can be represented by the following equation (eq. 1) [39]:
(eq. 1)
Where Qt is the fraction of drug released at time t, Q
0
is the initial
amount of drug in the solution (most times Q
0
= 0); k
0
is the zero-order
release constant. The pharmaceutical dosage forms following this profile
release the same amount of drug by unit of time and it is the ideal
method of drug release in order to achieve a pharmacological prolonged
action.
t o o
Q Q k t
= +
78
2.2.7.2 First-order model
The drug dissolution is assumed to decline exponentially and
the release rate is proportional to the residual amount of drug in the
dosage form (eq. 2) [39]:
(eq. 2)
Where Qt is the fraction of drug released at time t, Q
0
is the initial
amount of drug in the solution; k
1
is the first-order release constant. The
pharmaceutical dosage forms following this dissolution profile release
the drug by unit of time in a way that is proportional to the amount of
drug remaining in its interior.
2.2.7.3 Higuchi model
The most widely used model to describe drug release from
matrices, derived from Higuchi for a planar matrix. It describes the drug
release mechanism as a diffusion process based on Fick’s law,
dependent on the square root of time (eq. 3) [39,40].
(eq. 3)
Where Qt is the fraction of drug released at time t and K
H
is the Higuchi
dissolution constant.
2.2.7.4 Korsmeyer-Peppas model
This model is generally used to analyze the release of
pharmaceutical polymeric dosage forms when the release mechanism is
not well known or when more than one type of release phenomena could
be involved (eq. 4) [39,41].
(eq. 4)
where Mt/M is the fraction of drug released, k is the kinetic constants
characteristic of the drug/polymer, n is the diffusional exponent for drug
release. Dissolution values in the range of 5 60% were used to fit
release data.
1
0
log log
2.303
t
k t
Q Q= +
t H
Q K t
=
n
t
M
kt
M
=
79
2.2.7.5 Difference factor (ƒ1) and similarity factor (ƒ2)
The relevance of the difference between the release curves were
assessed using difference factor ƒ1 and similarity factor ƒ2, calculated
by eq. (5) and (6), respectively [42,43]:
(eq. 5)
(eq. 6)
where Rt and Tt are the percentages released at each time point.
An ƒ1 value up to 15 (0-15) and ƒ2 value between 50 and 100 implies
similarity between two release profiles. Only one more point after the
85% of drug has released was used for the equation.
3. Results and Discussion
Norfloxacin matrix tables were successfully obtained by direct
compression (Fig. 1). Different polymers and molecular weights did not
interfere in the technological process. The pharmacopeial characteristics
of the manufactured tablets are summarized in Table 2. These results
demonstrated that the tablets were reliable on hardness and friability,
which are important characteristics for the further step of coating.
Consistent hardness of the tablet surface enables the coating to
“lock” into the surface. If the surface is too soft, the impingement of the
solution can erode the tablet. Too hard a surface will not allow the
solution to impinge and adhere, and the coating will peel away. Both of
these coating defects can also occur by over- or under-applying the
coating solution or by applying the coating with too much or too little
force [44-47]. The film-coating (Opadry II) applied on the NFX tablets
surface is non-functional, however it can improve the final quality by
protecting the hygroscopic polymer from absorbing humidity and
preventing photodegradation of the drug. NFX coated tablets showed an
uniform, smooth and shiny surface, without coating defects (Fig. 1).
From Table 2, it can be observed that the weight and hardness increased
about 3% and 9%, respectively, demonstrating the influence of the
coating process. The loss on drying analysis (Table 2) showed that the
1 1
1 ( ) / .100
n n
i i
f Rt Tt Rt
= =
=
0.5
2
1
1
2 50.log 1 ( ) .100
n
i
f Rt Tt
n
=
= +
80
coated tablets have a lower amount of volatile matter, probably due to
the loss of water absorbed during the coating process at 42-45 °C.
Figure 1. Norfloxacin blistered matrix tablets: uncoated (A) and coated
(B).
Table 2. Pharmacopeial characteristcs of norfloxacin matrix tablets.
Formulation Weight
(g)
a
Hardness
(KgF)
b
Water Loss
(%)
Friability
(%)
a
Uncoat.
Coated
Uncoat.
Coated
Uncoat
Coated
Uncoat.
HPMC K100LV 20%
1.1154
1.1472
16.3 17.0 7.75 7.29 0.021
HPMC K100LV 30%
1.1025
1.1321
14.8 16.4 7.93 7.60 0.014
HPMC K4M 20% 1.1033
1.1314
13.1 15.1 7.08 6.60 0.034
HPMC K4M 30% 1.0795
1.1119
13.0 14.5 7.29 7.11 0.018
HPMC K100M 20% 1.1048
1.1351
17.3 17.9 6.68 5.85 0.022
HPMC K100M 30% 1.0967
1.1277
14.3 16.2 7.02 7.21 0.024
PEO N60K 20% 1.0858
1.1193
14.2 15.7 7.02 5.08 0.017
PEO N60K 30% 1.0854
1.1131
16.9 17.7 6.77 5.64 0.021
PEO 301 20% 1.0831
1.1162
16.6 18.8 7.16 6.91 0.018
PEO 301 30% 1.1014
1.1306
16.0 17.5 7.09 7.01 0.023
PEO 303 20% 1.0748
1.1090
14.4 15.6 6.13 5.55 0.024
PEO 303 30% 1.0734
1.1077
14.6 15.8 5.51 4.22 0.019
a
mean of twenty determinations;
b
mean of ten determinations
A
B
81
The assay determination of NFX demonstrated that all
formulations were in the range from 99.43 to 102.35% (Table 3).
Therefore, the coating process did not influence on the assay of the
drug.
Table 3. Assay results of accelerated stability test.
Formulation Time zero After 6 months
Blister Without blister
Uncoat
(%)
Coated
(%)
Uncoat
(%)
Coated
(%)
Uncoat
(%)
Coated
(%)
HPMC K100LV 20%
101.98
101.09 101.16
101.51
102.03
101.18
HPMC K100LV 30%
101.47
101.81 101.87
103.01
100.87
101.74
HPMC K4M 20% 101.45
100.42 100.44
102.98
101.92
101.08
HPMC K4M 30% 100.88
99.31 99.12 99.45 99.91 98.09
HPMC K100M 20% 102.35
101.74 99.14 101.25
103.22
102.80
HPMC K100M 30% 102.25
101.58 99.66 99.31 99.02 101.80
PEO N60K 20% 102.06
101.72 102.89
98.47 101.44
100.26
PEO N60K 30% 99.43 99.92 98.49 99.05 99.44 99.03
PEO 301 20% 99.48 99.35 101.24
97.51 101.75
100.31
PEO 301 30% 99.71 100.50 99.03 100.49
100.61
100.36
PEO 303 20% 99.98 99.50 99.79 97.11 100.62
97.36
PEO 303 30% 99.95 99.36 99.16 97.78 99.10 99.35
Accelerated stability testing was carried out to provide evidence
of how the quality of the manufactured tablets may change with time
under the influence of environmental factors such as temperature and
humidity. Brazil, being considered with hot and humid climate is
classified in the region IV [36]. According to this classification, the
accelerated stability study was carried out for 6 months in a climatic
chamber at 40 ± 2 ºC and 75 ± 5% relative humidity. The obtained
results are shown in Table 3. All formulations were considered stable
since after 6 months a change from the initial assay of 5% or more was
not observed [36]. The presence of coating and/or blister did not
influence in the stability of the developed tablets. Additionally, the
chromatographic profiles did not show any additional degradation peak.
Light testing should be an integral part of stress testing and
recommends evaluation of the photostability of a formulation to
demonstrate that light exposure does not result in unacceptable changes
82
[36,38]. For this study, the following formulations were selected:
HPMC K100 LV (20 and 30%) and PEO N60K (20 and 30%). At the
end of the exposure period (about five days), equivalent of not less than
1.2 million lux, samples were examined for changes in appearance and
for assay. It was observed a color change from pale-yellow to dark-
yellow in NFX raw material and uncoated tablets. The transparent
blister (primary packing) did not have any protecting influence in the
formulations (Fig. 2). Prolonged exposure of NFX bulk drug, tablets and
specially in solution under direct sunlight or fluorescent light results in
the formation of ethylenediamine degradation product [48,49]. Since the
chromatograms did not show additional peaks and a significant decrease
of drug content was not observed (Table 4), it seems that the
ethylenediamine degradant requires an exposure time and/or intensity
higher than the used in this research to be significantly formed.
Nonetheless, to prevent drug exposure to light and degradation, it would
be recommended the coating process or light-protective blister for the
formulations.
Table 4. Assay results (%) of photostability test.
Formulation Blister Without blister
Uncoated
(%)
Coated
(%)
Uncoated
(%)
Coated
(%)
HPMC K100LV 20% 100.80 99.22 100.30 99.71
HPMC K100LV 30% 100.25 100.36 99.96 100.60
PEO N60K 20% 98.78 100.35 99.54 99.26
PEO N60K 30% 98.17 100.79 99.36 99.06
Figure 2. Norfloxacin blistered matrix tablets after photostability study:
uncoated (A) and coated (B).
A
B
83
Two concentrations (20 and 30%) of different MWs HPMC or
PEO polymers were used to manufacture the NFX matrix tablets used in
this study (Table 1). The dissolution test was carried out under sink
conditions, defined as the volume of medium being at least three times
higher than that necessary to obtain a saturated solution of the drug [33].
Samples were withdrawn from the dissolution medium at the following
times: 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 24 h. The first time
point at 0.5 h was included to study if the product presents a burst effect
(with an excessive early drug release), while the final time point shows
whether or not the intended dose is fully delivered.
NFX release profiles are shown in Fig. 3 – Fig. 8. The polymers
used have different average MWs and therefore they differ in
controlling drug release from matrix tablets. An extended-release of
NFX was obtained for all formulations manufactured, demonstrating
that the mechanical strength of the viscous-gel layer was strong enough
to maintain its integrity and drug release. Faster dissolution was
obtained for formulations containing lower MW polymer and
concentration (20%) (Fig. 3, Fig. 6). The tablets containing HPMC
K100 LV showed the fast dissolution profile, with complete drug release
at about 6 – 8 h (Fig. 3).
84
Figure 3. Norfloxacin released vs. time of matrix tablets containing
HPMC K100 LV: 20% uncoated(); 20% coated (); 30% uncoated
(); 30% coated ().
Figure 4. Norfloxacin released vs. time of matrix tablets containing
HPMC K4M: 20% uncoated(); 20% coated (); 30% uncoated ();
30% coated ().
0
20
40
60
80
100
0 2 4 6 8 10
Norfloxacin Released (%)
Time (h)
0
20
40
60
80
100
0 5 10 15 20 25
Norfloxacin Released (%)
Time (h)
85
Figure 5. Norfloxacin released vs. time of matrix tablets containing
HPMC K100M: 20% uncoated(); 20% coated (); 30% uncoated
(); 30% coated ().
Figure 6. Norfloxacin released vs. time of matrix tablets containing PEO
N60K: 20% uncoated(); 20% coated (); 30% uncoated (); 30%
coated ().
0
20
40
60
80
100
0 5 10 15 20 25
Norfloxacin Released (%)
Time (h)
0
20
40
60
80
100
0 5 10 15 20 25
Norfloxacin Released (%)
Time (h)
86
Figure 7. Norfloxacin released vs. time of matrix tablets containing PEO
301: 20% uncoated(); 20% coated (); 30% uncoated (); 30%
coated ().
Figure 8. Norfloxacin released vs. time of matrix tablets containing PEO
303: 20% uncoated(); 20% coated (); 30% uncoated (); 30%
coated ().
0
20
40
60
80
100
0 5 10 15 20 25
Norfloxacin Released (%)
Time (h)
0
20
40
60
80
100
0 5 10 15 20 25
Norfloxacin Released (%)
Time (h)
87
For the formulations containing HPMC K100M (20 and 30%,
Fig. 5) and PEO 303 30% (Fig. 8), the NFX release was not complete at
24 h. Due to the high MW and/or concentration of polymer in the
formulations, the swelling was too slow and the gel strength was very
high, resulting the central part of the tablet not being fully wetted or
hydrated (a “dry core”), with incomplete drug release. Probably, these
formulations would exhibit an inadequate performance in vivo, since an
incomplete polymer gelification and drug release would be obtained
while passing through stomach and small intestine.
It seems that the coating process somehow influenced the NFX
dissolution profile (Fig. 3 – Fig. 8), and a relation with the polymer MW
could be suggested. In general, coated formulations exhibited faster drug
release than uncoated ones. The faster NFX release may be due to the
coating process temperature that resulted in lower residual humidity
tablets (Table 2) and consequently a faster water uptake and polymer
swelling in the dissolution medium.
For HPMC K100 LV formulations, due to the lower MW, water
uptake, polymer hydration and gelification is faster than dissolution of
the coating film. In this case, the coating may have worked as a
“barrier”, and drug release was delayed. For PEO 301 and PEO 303 the
dissolution profiles were overlapped, demonstrating no influence of the
coating. It can be explained since high MW polymers forms a stronger
gel layer, with lower water uptake rate and drug release, hence
influencing drug diffusion and dynamics of matrix erosion. However,
the influence of the coating process was not relevant based on the
difference (ƒ1) and similarity (ƒ2) parameters calculated (Table 5).
88
Table 5. Difference factor (ƒ1) and similarity factor (ƒ2) calculated for
uncoated and coated norfloxacin matrix tablets.
Formulation ƒ1 ƒ2
HPMC K100LV 20% 5.47 71.72
HPMC K100LV 30% 8.50 62.32
HPMC K4M 20% 9.22 70.03
HPMC K4M 30% 14.23 66.36
HPMC K100M 20% 9.22 73.89
HPMC K100M 30% 9.27 77.02
PEO N60K 20% 13.77 56.35
PEO N60K 30% 14.66 57.81
PEO 301 20% 2.00 91.85
PEO 301 30% 3.12 88.95
PEO 303 20% 4.90 83.40
PEO 303 30% 2.76 93.30
Dissolution profiles were analyzed for zero-order, first-order
and Higuchi models with the equations up to 12 h of drug release,
except for HPMC K100 LV 20 and 30% formulations where the
equations were analyzed for up to 6 and 8 h, respectively. The analysis
according to Korsmeyer-Peppas was carried out with the diffusional
exponential equation up to 60% of drug released [41]. Calculation of the
exponent n identifies the prevalent mechanism of release. For
cylindrical systems, n = 0.45 indicates diffusion-controlled (Fickian)
drug release and n = 0.89 indicates swelling/erosion-controlled drug
release (Case-II transport). Values of n between 0.45 and 0.89 can be
regarded as an indicator for the superposition of both phenomena,
indicating that the drug delivery was not controlled only by diffusion,
but also by significant polymer relaxation or erosion mechanisms
(anomalous transport). The n > 0.89 values reveals a super case-II
transport. This mechanism could result from an increased plasticization
at the relaxing boundary (gel layer) and is also related to polymer
relaxation and erosion mechanisms [41,50].
In general, data of all matrices provided better fit to Korsmeyer-
Peppas model (Table 6 and Table 7). None formulation fitted to Higuchi
equation, this way demonstrating that NFX release mechanism was not
only a diffusion process dependent on the square root of time.
89
Table 6. Coefficients of determination (r
2
) obtained from dissolution of
norfloxacin uncoated formulations according to different mathematical
models.
Formulation Zero order
First order
Higuchi
Korsmeyer-Peppas
r
2
r
2
r
2
r
2
n
HPMC K100LV 20%
0.9794 0.9247 0.9685 0.9952 0.9623
HPMC K100LV 30%
0.9794 0.8538 0.9681 0.9985 0.9761
HPMC K4M 20% 0.9943 0.9916 0.9604 0.9963 0.7115
HPMC K4M 30% 0.9834 0.9954 0.9801 0.9986 0.6593
HPMC K100M 20%
0.9866 0.9962 0.9744 0.9978 0.6838
HPMC K100M 30%
0.9759 0.9909 0.9878 0.9995 0.6422
PEO N60K 20% 0.9976 0.9302 0.9372 0.9994 0.9485
PEO N60K 30% 0.9978 0.9513 0.9127 0.9990 1.0027
PEO 301 20% 0.9978 0.9591 0.9180 0.9978 0.8900
PEO 301 30% 0.9978 0.9795 0.9308 0.9971 0.8771
PEO 303 20% 0.9935 0.9934 0.9598 0.9982 0.7863
PEO 303 30% 0.9932 0.9931 0.9589 0.9979 0.7866
Table 7. Coefficients of determination (r
2
) obtained from dissolution of
norfloxacin coated formulations according to different mathematical
models.
Formulation Zero order
First order
Higuchi
Korsmeyer-Peppas
r
2
r
2
r
2
r
2
n
HPMC K100LV 20%
0.9827 0.9719 0.9649 0.9990 0.9283
HPMC K100LV 30%
0.9898 0.9571 0.9588 0.9999 0.8867
HPMC K4M 20% 0.9833 0.9981 0.9807 0.9998 0.7270
HPMC K4M 30% 0.9784 0.9921 0.9821 0.9984 0.7041
HPMC K100M 20%
0.9829 0.9973 0.9794 0.9994 0.7404
HPMC K100M 30%
0.9755 0.9917 0.9825 0.9980 0.7406
PEO N60K 20% 0.9759 0.9716 0.9685 0.9975 0.9892
PEO N60K 30% 0.9955 0.9766 0.9468 0.9992 1.0019
PEO 301 20% 0.9970 0.9593 0.9277 0.9979 0.8522
PEO 301 30% 0.9911 0.9586 0.9216 0.9917 0.8550
PEO 303 20% 0.9934 0.9889 0.9553 0.9968 0.7803
PEO 303 30% 0.9924 0.9898 0.9538 0.9975 0.7757
90
The formulations containing PEO demonstrated also a good fit
to zero-order kinetics. The exponent n calculated (Table 6, Table 7) for
Korsmeyer-Peppas equation confirmed this to PEO N60K (n between
0.94 - 1.0) and to PEO 301 (n about 0.87), indicating super case-II and
case-II transport mechanism, respectively, as also evidenced by quasi-
linear release profiles (Fig. 6 and Fig. 7). It can be due to the lower MW
of these polymers in comparison to PEO 303. In the case of low
viscosity gelling agents, erosion of the swollen polymer is the major
release factor, generally leading to zero-order release kinetics [13]. For
the tablets containing PEO 303, the exponent n obtained (about 0.78)
indicated that drug delivery was controlled by diffusion and polymer
relaxation/erosion mechanisms. Moreover, the dissolution kinetic
equation fit was very similar to zero and first-order release.
HPMC K100LV formulations demonstrated a similar release
profile to PEO N60K, where a super case-II transport mechanism was
obtained due to the dissolution of polymeric matrix and relaxation of the
polymer chain, with zero-order release. Most of matrix tablets
containing HPMC K4M and HPMC K100M fitted better to first-order
than to zero-order kinetic (Table 6 and Table 7). Moreover, the n
exponent calculated (between 0.64 0.74) indicated the significant
influence of both drug diffusion and polymer relaxation/erosion to drug
release. It can be explained base on the fact that high viscosity polymers
can form a mechanically stable gel and polymer
dissolution/disintegration will be lower [13]. Therefore, the diffusion-
controlled mechanism will have more influence on drug release from the
swollen matrix.
Based on the dissolution profiles, HPMC K100 LV 30%,
HPMC K4M 20%, PEO N60K 20%, and PEO N60K 30% matrices
presented a combination of polymer type, MW, concentration, and
complete drug release that could result in a formulation able to resist to
the destructive forces within the gastro-intestinal tract, providing a
superior in vivo performance. In fact, the results obtained confirm that
gels showing lower strength and texture, usually derived from low MW
polymers, have lower resistance to the fluid erosion action and the
release of the active molecule is mainly due to polymer relaxation and
chains disentanglement, leading to drug delivery kinetic towards an
erosion/relaxation mechanism, with exponent n 0.89. On the other
hand, when the MW or polymer concentration is increasing, the gel
layer formed will be concomitantly characterized by higher strength and
consistence, being less susceptible to erosion and chains
91
disentanglement, with drug release mechanism tending to diffusion
(with decreasing exponent n values).
4. Conclusions
In this study the development of a stable extended-release
dosage form containing norfloxacin was demonstrated. The film-coating
of tablets was necessary to avoid a photo-induced color changing of the
active pharmaceutical ingredient. The dissolution studies showed that
according to the increase in polymer molecular weight and
concentration, the matrix changed from a more erodible system (with
zero-order release) to a system with dissolution controlled by drug
diffusion and polymer relaxation/erosion mechanisms. The formulations
containing intermediate molecular weight HPMC or PEO or high
concentration (30%) of low molecular weight polymers (HPMC K100
LV 30%, HPMC K4M 20%, PEO N60K 20%, and PEO N60K 30%) are
more promising, since a combination between gel structure and
complete in vitro drug release was obtained. This prolonged and
complete in vitro release profile is expected to lead to an increased
bioavailability, however in vivo studies are necessary to confirm this
possibility. Based on an improved bioavailability combined with a
reduced frequency of administration, an improved patient compliance
and decreased bacterial resistance could be achieved.
Acknowledgements
The authors would like to thank CAPES for the financial
support and Colorcon do Brasil for kindly donating the polymers and
providing the equipments necessary for coating and blistering processes.
92
References
1. J. Siepmann, N.A. Peppas, Modeling of drug release from delivery
systems based on hydroxypropyl methylcellulose (HPMC), Adv. Drug
Deliv. Rev. 48 (2001) 139–157.
2. C. Ferrero, M.R. Jiménez-Castellanos, The influence of carbohydrate
nature and drying methods on the compaction properties and pore
structure of new methyl methacrylate copolymers, Int. J. Pharm. 248
(2002) 157–171.
3. F. Fichtner, G. Frenning, G. Alberdon, Drug release from compacted
single inert matrix agglomerates, J. Drug Deliv. Sci. Technol. 17 (2007)
273–277.
4. P. Colombo, F. Sonvico, G. Colombo, R. Bettini, Novel Platforms for
Oral Drug Delivery, Pharm. Res. 26 (2009) 601-611.
5. I. Fuertes, I. Caraballo, A. Miranda, M. Millán, Study of critical
points of drugs with different solubilities in hydrophilic matrices, Int. J.
Pharm. 383 (2010) 138-146.
6. J.S. Park, J.Y. Shim, N.K.V. Truong, J.S. Park, S. Shin, Y.W. Choi, J.
Lee, J-H. Yoon, S.H. Jeong, A pharma-robust design method to
investigate the effect of PEG and PEO on matrix tablets, Int. J. Pharm.
393 (2010) 80-88.
7. S. Conti, L. Maggi, L. Segale, E.O. Machiste, U. Conte, P. Grenier,
G. Vergnault, Matrices containing NaCMC and HPMC 2. Swelling and
release mechanism study, Int. J. Pharm. 333 (2007) 143-151.
8. H. Omidian, K. Park, Swelling agents and devices in oral drug
delivery, J. Drug Del. Sci. Tech. 18 (2008) 83-93.
9. S. Chirico, A. Dalmoro, G. Lamberti, G. Russo, G. Titomanlio,
Analysis and modeling of swelling and erosion behavior for pure HPMC
tablet, J. Control. Release 122 (2007) 181-188.
93
10. P. Colombo, R. Bettini, P. Santi, N.A. Peppas, Swellable matrices
for controlled drug delivery: gel-layer behavior, mechanisms and
optimal performance, PSTT 3 (2000) 198-204.
11. P. Colombo, R. Bettini, P. Santi, A. De Ascentiis, N.A. Peppas,
Analysis of the swelling and release mechanisms from drug delivery
systems with emphasis on drug solubility and water transport, J.
Control. Release 39 (1996) 231–237.
12. R. Bettini, P.L. Catellani, P. Santi, G. Massimo, N.A. Peppas, P.
Colombo, Translocation of drug particles in HPMC matrix gel layer:
effect of drug solubility and influence on release rate, J. Control.
Release 70 (2001) 383–391.
13. S. Conti, L. Maggi, L. Segale, E.O. Machiste, U. Conte, P. Grenier,
G.Vergnault, Matrices containing NaCMC and HPMC 1. Dissolution
performance characterization, Int. J. Pharm. 333 (2007) 136–142.
14. C.L. Li, L.G. Martini, J.L. Ford, M. Roberts, The use of
hypromellose in oral drug delivey, J. Pharm. Pharmacol. 57 (2005) 533-
546.
15. K.C. Sung, P.R. Nixon, J.W. Skoug, T.R. Ju, P. Gao, E.M. Topp,
M.V. Patel, Effect of formulation variables on drug and polymer release
from HPMC-based matrix tablets, Int. J. Pharm. 14 (1996) 53-60.
16. M. Ghimire, L.A. Hodges, J. Band, B. O’Mahony, F.J. McInnes,
A.B. Mullen, H.N.E. Stevens, In-vitro and in-vivo erosion profiles of
hydroxypropylmethylcellulose (HPMC) matrix tablets, J. Control.
Release 147 (2010) 70-75.
17. L. Maggi, R. Bruni, U. Conte, High molecular weight polyethylene
oxides (PEOs) as an alternative to HPMC in controlled release dosage
forms, Int. J. Pharm. 195 (2000) 229-238.
18. N. Wu, L. Wang, D.C. Tan, S.M. Moochhala, Y. Yang,
Mathematical modeling and in vitro study of controlled drug release via
a highly swellable and dissoluble polymer matrix: polyethylene oxide
with high molecular weights, J. Control. Release 102 (2005) 569-581.
94
19. J.F. Pinto, K.F. Wunder, A. Okoloekwe, Evaluation of the potential
use of Poly(ethylene oxide) as tablet- and extrudate-forming material,
AAPS PharmSci 6 (2004) 1-10.
20. M. Dimitrov, N. Lambov, Study of verapamil hydrochloride release
from compressed hydrophilic Polyox-Wsr tablets, Int. J. Pharm. 189
(1999) 105-111.
21. J. Petrovic, S. Ibric, G. Betz, J. Parojcic, Z. Duric, Application of
dynamic neural networks in the modeling of drug release from
polyethylene oxide matrix tablets, Eur. J. Pharm. Sci. 38 (2009) 172-
180.
22. J. Heller, J. Barr, Y.S. Ng, K.S. Abdellauoi, R. Gurny, Poly(ortho
esters): synthesis, characterization, properties and uses, Adv. Drug
Deliv. Rev. 54 (2002) 1015-1039.
23. A.M., Emmerson, A.M. Jones, The quinolones: decades of
development and use, J. Antimicrob. Chemother. 51 (2003) 13–20.
24. F. Van Bambeke, J-M. Michot, J. Van Eldere, P.M. Tulkens,
Quinolones in 2005: an update, Clin. Microbiol. Infect. 11 (2005) 256–
280.
25. L. Mandell, M. Bergeron, T. Marrie, L. Nicolle, D. Scheifele, S.
Shafran, Norfloxacin: a new quinolone, Can. Med. Assoc. J. 139 (1988)
305-307.
26. Noroxin tablets package insert, (2009) Available at:
http://www.merck.com/product/usa/pi_circulars/n/noroxin/noroxin_pi.p
df.
27. W-H. Sheng, Y-C. Chen, J-T. Wang, S-C. Chang, K-T. Luh, W-C.
Hsieh, Emerging fluoroquinolone-resistance for common clinically
important gram-negative bacteria in Taiwan, Diagn. Micr. Infec. Dis. 43
(2002) 141-147.
28. Z. Alexiou, M. Mouktaroudi, G. Koratzanis, A. Papadopoulos, D.
Kavatha, K. Kanellakopoulou, H. Giamarellou, E.J. Giamarellos-
Bourboulis, The significance of compliance for the success of
95
antimicrobial prophylaxis in recurrent lower urinary tract infections: the
Greek experience, Int. J. Antimicrob. Ag. 30 (2007) 40-43.
29. R. Isturiz, Global resistance trends and the potential impact on
empirical therapy, Int. J. Antimicro. Ag. 32, S4 (2008) S201-S206.
30. J.L. Martinez, A. Fajardo, L. Garmendia, A. Hernandez, J.F.
Linares, L. Martínes-Solano, M.B. Sánchez, A global view of antibiotic
resistance, FEMS Microbiol. Ver. 33 (2009) 44-65.
31. G. Taubes, The bacteria fight back, Science 321 (2008) 356-361.
32. C.M. Lopes, J.M.S. Lobo, P. Costa, Formas farmacêuticas de
liberação modificada: polímeros hidrofílicos, Braz. J. Pharm. Sci. 41
(2005) 143-154.
33. UNITED STATES PHARMACOPEIA, The (USP) 30 ed.
Rockville, United States Convention, 2007.
34. FARMACOPÉIA BRASILEIRA, IV ed., São Paulo: Atheneu, 1988.
35. P.R. Oliveira, L.S. Bernardi, C. Mendes, S.G. Cardoso, M.S. Sangoi,
M.A.S. Silva, Liquid chromatographic determination of norfloxacin in
extended-release tablets, J. Chromatogr. Sci. 47 (2009) 739-744.
36. World Health Organization, Annex 2: Stability testing of active
pharmaceutical ingredients and finished pharmaceutical products, WHO
Technical Report Series, No 953 (2009) 87-130.
37. BRAZIL, Agência Nacional de Vigilância Sanitária (ANVISA),
Resolução- RE 1, de 29 de julho de 2005, Guia para a realização de
estudos de estabilidade, Brasília, DF.
38. ICH - International Conference on Harmonisation of technical
requirements for registration of pharmaceuticals for human use, Stability
testing: photostability testing of new drug substances and products,
Q1B, 1996.
39. P. Costa, J.M.S. Lobo, Modeling and comparison of dissolution
profiles, Eur. J. Pharm. Sci. 13 (2001) 123-133.
96
40. T. Higuchi, Mechanism of sustained-action medication. Theoretical
analysis of rate of release of solid drugs dispersed in solid matrices, J.
Pharm. Sci. 52 (1963) 1145-1149.
41. R.W. Korsmeyer, R. Gurny, E.M. Doelker, P. Buri, N.A. Peppas,
Mechanism of solute release from porous hydrophilic polymers, Int. J.
Pharm. 15 (1983) 25-35.
42. J.W. Moore, H.H Flanner, Mathematical comparison of dissolution
profiles, Pharm. Tech. 20 (1996) 64–74.
43. FDA Guidance for industry ‘‘Dissolution testing of immediate
release solid oral dosage forms”, US Department of Health and Human
Services, CDER, 1997.
44. M. Ruotsalainen, J. Heinamaki, H. Guo, N. Laitinen, J. Yliruusi, A
novel technique for imaging film coating defects in the film-core
interface and surface of coated tablets, Eur. J. Pharm. Biopharm. 56
(2003) 381-388.
45. S. García-Muñoz, D.S. Gierer, Coating uniformity assessment for
colored immediate release tablets using multivariate image analysis, Int.
J. Pharm. 395 (2010) 104-113.
46. H. Khan, J.T. Fell, G.S. Macleod, The influence of additives on the
spreading coefficient and adhesion of a film coating formulation to a
model tablet surface, Int. J. Pharm. 227 (2001) 113-119.
47. A. Kalbag, C. Wassgren, S.S. Penumetcha, J.D. Pérez-Ramos, Inter-
tablet coating variability: residence time in a horizontal pan coater,
Chem. Eng. Sci. 63 (2008) 2881-2894.
48. M. Córdoba-Borrego, M. Córdoba-Díaz, D. Córdoba-Diaz,
Validation of a high-performance liquid chromatographic method for
the determination of norfloxacin and its application to stability studies
(photo-stability study of norfloxacin). J. Pharm. Biomed. Anal. 18
(1999) 919-926.
49. K.A.K. Musa, L.A. Eriksson, Theoretical assessment of norfloxacin
redox and photochemistry. J. Phys. Chem. A 113 (2009) 10803-10810.
97
50. P.L. Ritger, N.A. Peppas, A simple equation for description of
solute release. II. Fickian and anomalous release from swellable devices.
J. Control. Release 5 (1987) 37–42.
98
99
CAPÍTULO 5 – Desenvolvimento de sistemas Dome Matrix
®
de
Norfloxacino.
100
101
INTRODUÇÃO
Dentre os sistemas gastro-retentivos de fármacos, os sistemas
flutuantes apresentam a vantagem de manter a forma farmacêutica
fisicamente afastada do piloro dificultando seu esvaziamento gástrico
(BARDONNET et al., 2006). Um sistema com esta característica foi
desenvolvido pelo grupo do Prof. Paolo Colombo, na Università degli
Studi di Parma Italia. Este sistema, denominado Dome Matrix
®
,
basicamente consiste em dois comprimidos com uma base côncava e
uma convexa ligados entre si de forma que exista uma câmara com ar no
seu interior, sendo esta responsável pela flutuação (LOSI et al., 2006).
O norfloxacino apresenta uma maior solubilidade em meio
ácido (F. BRAS. IV, 2001) consequentemente, uma maior permanência
no estômago pode resultar em maior biodisponibilidade para o fármaco.
Esta representa uma outra estratégia para melhorar a resposta in vivo
alterando a formulação farmacêutica, sem alterar quimicamente o
fármaco. Com este sistema, uma maior biodisponibilidade para o
norfloxacino pode ser obtida a partir de uma permanência do sistema no
estômago (maior solubilidade do fármaco no meio ácido), combinada a
uma liberação prolongada, obtida através da utilização de polímeros
hidrofílicos (HPMC e POE) na formulação.
Neste estudo avaliou-se a dissolução de módulos individuais e
na configuração flutuante “void” em fluido gástrico simulado, bem
como estudos de flutuação in vitro, prevendo o comportamento in
vivo destas formulações.
102
103
Assembled Modules Technology for Site-specific Prolonged Delivery of
Norfloxacin
Paulo Renato Oliveira
a
, Larissa Sakis Bernardi
a
, Orazio Luca Strusi
b
,
Salvatore Mercuri
b
, Marcos A. Segatto Silva
a
, Paolo Colombo
b
, Fabio
Sonvico
b*
.
a
Department of Pharmaceutical Sciences, Federal University of Santa
Catarina, Quality Control Laboratory, J/K 207, 88040-900,
Florianópolis-SC, Brazil.
b
Department of Pharmacy, University of Parma, Viale G.P. Usberti
27/A, Parma, Italy
* Corresponding author. Dipartimento Farmaceutico. Università degli
Studi di Parma, Viale G.P. Usberti 27/A, 43125, Parma, Italy. Tel.: +39
0521905086; fax: +39 0521905006.
E-mail address: Fabio.sonv[email protected]
104
Abstract
The aim of this research was to design and study norfloxacin (NFX)
release in floating coditions from compressed hydrophilic matrices of
hydroxypropylmethylcellulose (HPMC) or poly(ethylene oxide) (PEO).
Module assembling technology for drug delivery system manufacturing
was used. Two differently cylindrical base curved matrix/modules,
identified as female and male, were assembled in void configuration by
friction interlocking their concave bases obtaining a floating release
system. Drug release and flotation behavior of this assembly was
investigated. Due to the higher surface area exposed to the release
medium, faster release was observed for individual modules compared
to their assembled configuration, independently on the polymer used
and concentration. The release curves analyzed using the Korsmeyer
exponential equation and Peppas & Sahlin binomial equation showed
that the drug release was controlled both by drug diffusion and polymer
relaxation or erosion mechanisms. However, convective transport was
predominant with PEO and at low content of polymers. NFX release
from PEO polymeric matrix was more erosion dependent than HPMC.
The assembled systems were able to float in vitro for up to 240 min,
indicating that this drug delivery system of norfloxacin could provide
gastro-retentive site-specific release for increasing norfloxacin
bioavailability.
Keywords
Norfloxacin; Dome Matrix
®
; Release Modules; Floating dosage form
Graphical Abstract
105
1. Introduction
Modified-release formulations are valuable developments in
pharmaceutical industry since, if compared to the new drug application
expenses, product innovation remains affordable. Among the different
approaches adopted for oral prolonged-release dosage forms,
hydrophilic matrices are the most used delivery systems, due to the
simple technology and manufacturing [1-4].
An innovative drug delivery platform based on hydrophilic
matrices, named module-assembling technology (Dome Matrix
®
), has
been presented [5]. In this technology, release modules made as
swellable polymeric matrices are fixed together in a firm structure
forming the drug delivery system. The individual module in its typical
shape is a cylindrical tablet having one concave and one convex base,
designed for allowing their assembling by inserting the convex into
concave base. In dependence on modules assemblage, different system
configurations can be made. Piled configurations are obtained by
stacking two or more modules convex base into concave base. A
peculiar assembly obtained by sticking the concave base of one module
to the concave base of another module made feasible the construction of
floating systems intended to keep the drug release into the stomach. This
configuration, named “void”, is characterized by an inner empty space
that makes buoyant the assembly [6]. Referring to the module
assembling for delivery system manufacturing, two differently shaped
matrix/modules, identified as female and male, have been constructed.
The friction interlocking of the complementary concave bases of these
modules drives their assemblage in void configuration.
Using this technology, the individual dose administered can be
easily adjusted or, if the composition of modules is different, multiple
release kinetics can be achieved. In addition, module assemblage can
allow the delivery of two drugs in a single unit at a specific time and at a
proper rate and duration, characterizing the flexibility of the Dome
Matrix
®
technology [7].
Norfloxacin (NFX) is a synthetic broad-spectrum antibacterial
drug firstly selected for the treatment of diseases caused by
Campylobacter, E. coli, Salmonella, Shigella and V. cholera [8, 9]. The
drug is mainly used for the treatment of urinary tract infections. [8].
Development of bacterial resistance to currently available antibiotics,
due to the lack of patient compliance, suggests an appropriate dosing of
quinolonic drugs [10-14]. NFX is very slightly soluble in water;
106
however, its solubility increases sharply at pH below 4.0 and above
10.0, due to the amphoteric nature of the drug [15, 16]. The
recommended dosage is usually 400 mg twice daily. The half-life of
NFX in serum and plasma is 3-4 hours; only approximately 30-40% of
an oral dose is absorbed and the fecal recovery accounts for 30% of the
administered dose [15].
Since NFX is more soluble in acidic media and better absorbed
from the upper part of the gastrointestinal tract, a prolonged gastric
residence of dose form is expected to lead to an increased dissolution
rate. Dome Matrix
®
modules assembled in void configuration floated for
up to 4 hrs on gastric content (6). Based on the gastro-retention
evidence, the development of a gastro-retentive site-specific drug
delivery system of NFX could improve the drug bioavailability and
simplify the administration schedule. This would favor the patient
convenience and compliance and result in less erratic absorption,
hampering bacterial resistance development.
Thus, the aim of this work was to design and study a floating
norfloxacin prolonged delivery system manufactured with Dome
Matrix
®
modules. In this paper, the formulations and the performances
of the NFX non-assembled modules made with two different polymers
(HPMC and PEO) at two concentrations (20 and 30 % w/w) and the
corresponding void configurations have been examined. In vitro studies
on floatation behavior and the release profile of the system have been
carried out.
2. Materials and Methods
2.1 Materials
Norfloxacin was purchased from Zhejiang Neo-Dankong
Pharmaceutical (Zhejiang, China). Hydroxypropylmethylcellulose
(Methocel K4M, viscosity 2% (p/v) solution 4000 mPa s) and poly-
(ethylene oxide) (Polyox N60K, MW 2 x 10
6
Da, viscosity 2% (p/v)
solution 3060 mPa s) were kindly donated by Colorcon (Gallarate,
Italy). Magnesium stearate (Eigemann & Veronelli S.p.A., Milan, Italy),
colloidal silicon dioxide (Aerosil
®
, Evonik Degussa S.p.A., Ravenna,
Italy), and talc (A.C.E.F., Fiorenzuola D’Arda, Italy) were
pharmacopoeia grade. The compatibility of NFX with excipients was
described elsewhere [17]. NaCl anhydrous (A.C.E.F., Fiorenzuola
107
D’Arda, Italy), HCl 37% and NaOH anhydrous (Carlo Erba S.p.A.,
Milan, Italy) were used to prepare the simulated gastric fluid.
2.2 Methods
2.2.1 Matrix modules preparation
NFX, hydrophilic polymer and talc were blended in a Turbula
®
mixer (WAB, Basel, Switzerland) for 15 min, followed by the addition
of magnesium stearate and colloidal silicon dioxide with a further 5
minutes mixing. The modules composition is reported in Table 1. Male
and female modules were prepared by direct compression in a single
punch tableting machine (EKO Korsch, Berlin, Germany) equipped with
special sets of cylindrical punches of 7.4 mm diameter, having the tip
surface concave or convex. In the assembling procedure, one male and
one female module were manually interlocked concave-to-concave
bases to give rise to a void configuration system (Figure 1).
Table 1. Composition of the norfloxacin male and female modules
Composition
Polymer 20%
mg
Polymer 30%
mg
Norfloxacin 100 100
HPMC K4M or PEO N60K 20 30
Talc 4.8 5.2
Magnesium stearate 1.2 1.3
Colloidal silicon dioxide 0.6 0.7
Total weight 126.6 137.2
108
Fig. 1 Norfloxacin Dome Matrix
®
modules and assemblage: 1- Male. 2-
Female. 3- Void configuration assembled modules.
2.2.2 In vitro drug release
Drug release studies were performed using USP apparatus II
(Erweka DT6R, Heusenstamm, Germany) with paddle rotation of 50
rpm, in 900 ml of simulated gastric fluid without pepsin (USP 29) at
37.0±0.5 °C. At specified time intervals, 5 mL samples were withdrawn,
filtered and quantified by a validated UV spectrophotometric method
(Jasco V530, Tokyo, Japan) at the wavelength 278 nm.
Drug release data were analyzed according to Korsmeyer Eq.
(1) [18] and Peppas and Sahlin Eq. (2) [19]:
(1)
(2)
n
t
M
kt
M
=
2
m m
t
d r
M
k t k t
M
= +
109
where M
t
/M
is the fraction of drug released, k is the kinetic constants
characteristic of the drug/polymer combination, n is the diffusional
exponent for drug release, k
d
and k
r
are diffusion and relaxation rate
constants, respectively, and m is the purely Fickian diffusion exponent
for a device of any geometrical shape that exhibits controlled release.
The value of 0.425 was used in this analysis according to the aspect
ratio of the matrix. These mathematical models are capable of
describing the solute release kinetics and mechanism from polymeric
hydrophilic matrices and were used to fit release fractions in the range
of 5–60%. The Peppas and Sahlin equation allows the calculation of the
fraction of drug released due to Fickian mechanism, F, as in Eq. (3):
(3)
Release curves were compared using difference factor ƒ1 and similarity
factor ƒ2, calculated by Eq. (4) and (5), respectively [20, 21]:
(4)
(5)
where Rt and Tt are the percentages released at each time point. ƒ1
value up to 15 (0-15) and ƒ2 value between 50 and 100 implies
similarity between two release profiles.
2.2.3 Floatation behavior
The flotation characteristics of the void assembled modules
were assessed using an apparatus constructed according to Timmermans
and Moes [22]. A digital camera pictured the swollen system during the
1
1
m
r
d
F
k
t
k
=
+
1 1
1 ( ) / .100
n n
i i
f Rt Tt Rt
= =
=
0.5
2
1
1
2 50.log 1 ( ) .100
n
i
f Rt Tt
n
=
= +
110
immersion in the medium for determining the volume of the floating
object. The resultant-force due to the sinking of the system in simulated
gastric fluid without enzyme (USP 29) at 37 ± 0.5 °C was measured
during time by the weighing part of the apparatus (precision 0.1 mg).
The resultant-force is the difference between the buoyancy and gravity
forces both acting on the system submerged in water, according to the
following equation Eq. (6):
(6)
where F
result
is the resultant force, d
f
is the density of the medium in
which the object is sunk, d
s
is the apparent density of the solid, g is the
gravity acceleration and V the volume of the object. This force was
measured as weight by the balance inserted in the apparatus.
3. Results and discussion
3.1 In vitro drug release
The modules have been designed to allow their assemblage by
interlocking the curved bases of disc. Two differently shaped Dome
Matrix
®
modules were manufactured in this study to obtain NFX
prolonged release floating drug delivery systems i.e., a “female” module
and “male” module (Figure 1). In particular, as the picture shows, the
protrusion on the concave base rim of male module , was designed in
order to fit the concavity on the concave base of the module without
protrusion on the rim, i.e., female. Thus, facing the concave base of
male module to the concave base of the female one and exerting a light
pressure, the two modules interlock by clicking giving rise to one-piece
assembled system characterized by the presence of an empty internal
space.
The norfloxacin release profiles of the Dome Matrix
®
modules
and their assemblies are shown in Figures 2-5. The release of NFX
observed for the female modules, independently on the polymer used
and its concentration, was faster compared to the male modules.
However, the curves were found pretty similar based on the difference
(ƒ1) and similarity (ƒ2) parameters calculated (Table 2). This difference
between the two shapes of modules was already observed with other
( ) .
result f s
F d d g V
=
drugs having different solubility and formulated as hydrophilic matrices
with HPMC [7
, 23]. Moreover, even when inert polymers or compounds
were used to obtain the modules (such as Tapioca starch derivatives
[23]), the female module showed a faster release profile than the male.
Apart the different initial surface area, the release differe
also assigned to the swelling kinetics of the two modules. The male and
female modules have different concavity size due to the protrusion on
the rim of male concave base. We observed that the swelling determined
the fill-up with jellified po
lymer of the concavity of the male module
but not of the female module that has a larger concavity. As a
consequence, the female module erodes/dissolves more quickly than the
male one. Finally, the individual modules exhibited no floatation.
Fig. 2
Norfloxacin fraction released vs. time of Dome Matrix
containing 20% of HPMC: female module (Ο); male module (
configuration (
) (mean values ± standard deviation, n=6)
111
drugs having different solubility and formulated as hydrophilic matrices
, 23]. Moreover, even when inert polymers or compounds
were used to obtain the modules (such as Tapioca starch derivatives
[23]), the female module showed a faster release profile than the male.
Apart the different initial surface area, the release differe
nce has to be
also assigned to the swelling kinetics of the two modules. The male and
female modules have different concavity size due to the protrusion on
the rim of male concave base. We observed that the swelling determined
lymer of the concavity of the male module
but not of the female module that has a larger concavity. As a
consequence, the female module erodes/dissolves more quickly than the
male one. Finally, the individual modules exhibited no floatation.
Norfloxacin fraction released vs. time of Dome Matrix
®
modules
); male module (
); void
) (mean values ± standard deviation, n=6)
112
Fig. 3
Norfloxacin fraction released vs. time of Dome Matrix
containing 30% of HPMC: female module (Ο); male module (
configuration () (mean values ± standard deviation, n=6)
Fig. 4
Norfloxacin fraction released vs. time of Dome Matrix
containing 20% of PEO: female module (Ο); male module (
configuration () (mean values ± standard deviation, n=6)
Norfloxacin fraction released vs. time of Dome Matrix
®
modules
); male module (
); void
Norfloxacin fraction released vs. time of Dome Matrix
®
modules
); male module (
); void
Fig. 5
Norfloxacin fraction released vs. time of Dome Matrix
containing 30% of PEO: female module (Ο); male module (
configuration () (mean values ± standard deviation,
n=6)
Table 2. Difference factor (ƒ1) and similarity factor (ƒ2) calculated
for the male and female modules
Formulation ƒ1 ƒ2
HPMC K4M 20% 4.84
71.41
HPMC K4M 30% 6.37
64.96
PEO N60K 20% 13.86
50.18
PEO N60K 30% 7.54
58.54
The release studies of the void configuration demonstrated that
NFX release rate was significantly slowed down in comparison to the
release of individual modules, independently on the polymer and
concentration. The void assembled modules containing 20% HPM
released about 80% of drug in 270 min maintaining the floatation up to
240 min (Figure 2). In correspondence of this last time, assembled
modules disintegrated completely with the consequent impairment of
floatation capacity. This was evidently reflecte
d by the release profile
that in between 200-
250 minutes had a sudden increase of fraction
113
Norfloxacin fraction released vs. time of Dome Matrix
®
modules
); male module (
); void
n=6)
Table 2. Difference factor (ƒ1) and similarity factor (ƒ2) calculated
71.41
64.96
50.18
58.54
The release studies of the void configuration demonstrated that
NFX release rate was significantly slowed down in comparison to the
release of individual modules, independently on the polymer and
concentration. The void assembled modules containing 20% HPM
C,
released about 80% of drug in 270 min maintaining the floatation up to
240 min (Figure 2). In correspondence of this last time, assembled
modules disintegrated completely with the consequent impairment of
d by the release profile
250 minutes had a sudden increase of fraction
114
release rate. The significant increase in the NFX release values standard
deviations after 200 minutes indicates the variability of the void
configuration disintegration time. The floating capability of the Dome
Matrix
®
in void configuration was already studied in humans, showing
that the system remained in the stomach after a light standard meal for
214.5 ± 54.2 min [6]. The prolonged gastric residence could be
beneficial for NFX absorption that due to the favored dissolution in acid
can be quickly absorbed in stomach or in the first intestinal tract [24,
25].
The assembled modules containing 30% HPMC had a different
performance in terms of release and floatation. The void configuration
system remained floating until 480 minutes, the end of the release
experiment (Figure 3). At 210 min, which corresponded to the average
time of void configuration gastro-residence, about 55% of NFX was
released. The 80% release was achieved at about 400 min; at this time,
the system could already be eliminated from the stomach.
High molecular weight poly-(ethylene oxide) have been
proposed as an alternative to HPMC. The correct choice of this
hydrophilic polymer molecular weight and quantity in the matrix
formulation can provide an appropriate combination of swelling,
dissolution or erosion mechanisms to control drug release kinetics [26-
29]. For the formulations containing PEO, the drug release rate of
individual modules was faster than the correspondent modules made
with HPMC. The same was also observed with the void configurations
in comparison to the release of the HPMC assembled modules (Figures
4 and 5).
However, similarly to HPMC system, the void assembled
modules made with 20% PEO maintained the floating characteristic up
to 240 min. After this time, assembled systems completely disintegrated
with impairment of floating capacity. Despite the different polymer, also
with this polymer the disintegration of the assembled system was
reflected by an evident slope increase in the profile fraction released
versus time after 200 min (Figure 4). Similarly, the increase in standard
deviation of NFX release values due to the variability of disintegration
time can be observed. The floatation time corresponded to about 80%
NFX released.
Compared to HPMC composition, the Dome Matrix
®
modules
containing 30% PEO (Figure 5) showed faster release rate for both the
modules than for the assembly. The floating time was prolonged until
115
330 min by the higher polymer concentration. At 210 min, about 60% of
NFX was released and the 80% release was achieved at about 300 min.
3.2 Analysis of drug release
The release profiles were analyzed with the Korsmeyer
diffusional exponential equation up to 60% of drug released [18].
Release data analysis was carried out also with the Peppas and Sahlin
equation in order to calculate the Fickian fraction released of each
profile [19]. Parameter values are listed in Table 3. Calculation of the
exponent n identifies the prevalent mechanism of release. For planar
systems, n = 0.5 indicates diffusion-controlled (Fickian) drug release
and n = 1.0 indicates swelling/erosion-controlled drug release (Case-II
transport). Values of n between 0.5 and 1.0 can be regarded as a
superposition of both phenomena, indicating that the drug delivery was
not controlled only by diffusion, but also significantly by polymer
relaxation or erosion mechanisms (anomalous transport). In general, the
data of all release systems studied provided good fit to the different
models (Table 3), supporting the adaptability of both models to fit the
release data with the systems and polymers studied.
116
Table 3. Mathematical modeling and drug release kinetics from
Dome Matrix
®
modules using Korsmeyer et. al and Peppas and
Sahlin equations (mean values ± SD; n=6).
Modules Korsmeyer et. al equation
Peppas and Sahlin equation
n ± 95% CI r
2
k
d
x 10
3
k
r
x 10
3
r
2
HPMC K4M 20%
Male 0.686 ± 0.044 0.9994 29 ± 7.6 9.1 ± 1.2
0.9992
Female 0.758 ± 0.021 0.9996 17 ± 3.6 13 ± 0.8 0.9995
Void 0.688 ± 0.011 0.9986 14 ± 3.4 4.5 ± 0.5
0.9996
HPMC K4M 30%
Male 0.767 ± 0.040 0.9983 16 ± 6.9 9.4 ± 1.3
0.9999
Female 0.732 ± 0.049 0.9998 15 ± 5.6 12 ± 1.2 0.9981
Void 0.718 ± 0.014 0.9998 14 ± 1.8 4.2 ± 0.3
0.9995
POE N60K 20%
Male 0.841 ± 0.025 0.9977 -4.8 ± 3.4 16 ± 0.7 0.9979
Female 0.921 ± 0.029 0.9995 -17 ± 5.2 22 ± 1.0 0.9993
Void 0.816 ± 0.014 0.9993 -0.4 ± 2.0 7.4 ± 0.3
0.9997
POE N60K 30%
Male 0.679 ± 0.015 0.9911 18 ± 3.4 11 ± 0.7 0.9940
Female 0.742 ± 0.024 0.9975 15 ± 6.1 15 ± 1.3 0.9983
Void 0.670 ± 0.013 0.9982 15 ± 1.4 4.9 ± 0.2
0.9996
In the case of HPMC modules, the n values from Korsmeyer
equation were in the range 0.686 - 0.767 indicating anomalous (non-
Fickian) transport as evidenced by the quasi-linear release profiles [33].
The k
d
and k
r
values for male and female modules revealed the
relevance of drug diffusion or polymer relaxation and erosion.
Calculations showed that the fraction of drug released due to Fickian
mechanism was the lowest for the female module compared to the male
module and void assembly (Figure 6). Fickian fraction released was
very similar for formulations containing 20 and 30% of HPMC
assembled in void configuration. This result fits well with the similar n
exponents obtained with Korsmeyer equation (Table 3). The
contribution of Fickian diffusion to NFX release was around 50% for
the assembled system at the beginning of the release experiment and
tended to decrease with time. The percentages of drug released by
Fickian mechanism for individual modules, were lower than 40% with
the exception of the male module containing 20% of HPMC that
behav
ed similarly to the assembled system. Considered that the
difference between the assembled system and the individual modules is
the non-
accessibility of the concave bases to the release medium after
the assemblage, it seems straightforward to consider that
penetration, chain disentanglement, build-up of gel-
layer thickness and
erosion of the matrix occurred differently affecting the balance between
Fickian and relaxation release mechanism. These results corresponded
to a relevant anomalous Fickian r
elease typical of swellable matrices
due to an important contribution of the polymer swelling and erosion
mechanisms to drug delivery.
Fig. 6
Norfloxacin Fickian released fraction vs. time of Dome Matrix
modules containing 20% of HPMC: female module (
(); void configuration (
) and 30% of HPMC: female module (
male module (); void configuration (
) (mean values ± standard
deviation, n=6)
In the case of PEO polymer, n diffusional exponents for the
PEO concentration of 20% were in the range 0.816 -
0.921, indicating a
release mechanism very close to Case II transport. The negative values
of k
d
and the high values of k
r
in Peppas and Sahlin equation indicate
117
Fickian mechanism for individual modules, were lower than 40% with
the exception of the male module containing 20% of HPMC that
ed similarly to the assembled system. Considered that the
difference between the assembled system and the individual modules is
accessibility of the concave bases to the release medium after
the assemblage, it seems straightforward to consider that
solvent
layer thickness and
erosion of the matrix occurred differently affecting the balance between
Fickian and relaxation release mechanism. These results corresponded
elease typical of swellable matrices
due to an important contribution of the polymer swelling and erosion
Norfloxacin Fickian released fraction vs. time of Dome Matrix
®
); male module
) and 30% of HPMC: female module (
);
) (mean values ± standard
In the case of PEO polymer, n diffusional exponents for the
0.921, indicating a
release mechanism very close to Case II transport. The negative values
in Peppas and Sahlin equation indicate
118
that the drug release is predominantly controlled by polymer relaxation
or erosion [30]. Due to the negative values of k
d
obtained, the Fickian
release fraction was not calculated in this case. Likely, the PEO gel
layer was weaker in comparison to HPMC and could be more rapidly
removed by the dissolution medium; therefore, NFX/PEO matrix system
is more susceptible to the erosion process. In general, PEO polymer is
considered more soluble than HPMC, but, its molecular weight and
amount in the formulation allow tailoring the drug release kinetics [26,
27, 29, 31].
For the 30% PEO concentration, the diffusional exponents
between 0.670 - 0.742 indicated anomalous Fickian transport profiles
[32, 33]. The similarity between k
d
and k
r
values revealed that the drug
release was controlled by drug diffusion and polymer relaxation and
erosion mechanisms. Figure 7 showed that also in this case the fraction
of drug released due to Fickian mechanism was the lowest for the
female module. Fickian fraction release values for void configuration
were very similar to those obtained for 20 and 30% of HPMC
assembled in the same configuration, confirming also the n diffusional
exponents obtained (Table 3). As observed for HPMC, the NFX release
due to Fickian contribution initially was about 50% and decreased with
time (Figure 7). It was impressive to see the linearity of the release
profiles obtained with this polymer considered that a quasi-linear
dissolution profile (Fig. 4 and Fig. 5) could be observed up to 80% of
NFX released.
Fig. 7
Norfloxacin Fickian released fraction vs. time of Dome Matrix
modules containing 30% of PEO: female module (Ο); male module (
void configuration (
) (mean values ± standard deviation, n=6)
3.3 In vitro floatation behavior of assembled modules
Originally, the dome-
shaped modules were designed for
facilitating th
eir assembly by insertion of the convex base into the
concave in the aim to build up a pile. The possibility to proceed to a
different module assembly was discovered later when glue or
ultrasounds were used to firmly attach the modules by creating links
be
tween the flat surfaces of the concave base rims held in contact. In
this study, two new types of dome modules described elsewhere [6],
having the rim of concavity modified in order to favor a firm concave
to-concave assembly by simple interlocking were us
ed (see Figure 1).
The floatation behavior of the void assembled NFX system, made of
two swellable modules, was studied in vitro. In particular, it was
determined the force required to hold the system submerged in water
and its variation over time, accordi
ng to [6, 22]. The individual male and
female modules never floated.
Based on the floating time observed in the dissolution profiles,
two formulations (20% HPMC and 20% PEO) were selected for this
study. The floatation behavior, expressed as resultant
-
versus time, is shown in Figure 8. The profiles show that the systems did
119
Norfloxacin Fickian released fraction vs. time of Dome Matrix
®
Ο); male module (
);
) (mean values ± standard deviation, n=6)
shaped modules were designed for
eir assembly by insertion of the convex base into the
concave in the aim to build up a pile. The possibility to proceed to a
different module assembly was discovered later when glue or
ultrasounds were used to firmly attach the modules by creating links
tween the flat surfaces of the concave base rims held in contact. In
this study, two new types of dome modules described elsewhere [6],
having the rim of concavity modified in order to favor a firm concave
-
ed (see Figure 1).
The floatation behavior of the void assembled NFX system, made of
two swellable modules, was studied in vitro. In particular, it was
determined the force required to hold the system submerged in water
ng to [6, 22]. The individual male and
Based on the floating time observed in the dissolution profiles,
two formulations (20% HPMC and 20% PEO) were selected for this
-
weight variation
versus time, is shown in Figure 8. The profiles show that the systems did
120
not float immediately but it started to float between 5-10 min after
submersion in medium; at 10 min a positive resultant-weight of
approximately 4 and 2 mg was measured for PEO and HPMC,
respectively. Then, the resultant-weight values increased attaining peak
values of approximately 42 mg for HPMC and 45 mg for PEO, both at
125 min. After this peak, the resultant-weight had a continuous slow
decrease for HPMC, while an abrupt decrease was observed for PEO.
This PEO profile could anticipate the beginning of disintegration system
manifested by a partial exit of air bubbles from the inside of the void
module. The buoyancy variation during time can be explained as the
volume and weight change of the immersed system due to water uptake
and swelling. Therefore, the augmentation of resultant-weight over time
was due to the swelling of the system, which reinforced the capability of
the system to float. The gastric residence time demonstrated in vivo
(214.5 ± 54.2 min) was derived from an experiment after a standard
meal without any additional food [6]. In case where a prolonged gastric
residence time is requested and the food intake after drug administration
is allowed, a more durable Dome Matrix
®
system could be constructed.
In this case, formulations containing higher amount of polymers (HPMC
or PEO) should be studied.
Fig. 8 Resultant weight vs. time of Dome Matrix
®
20% HPMC K4M
() and 20% PEO N60K () modules assembled
in void configuration
(mean values ± standard deviation, n=3)
4. Conclusion
This study revealed a prolonged linear release of norfloxacin in
simulated gastric fluid when the drug is formulated in Dome Matrix
modules with hydroxypropylmethylcellulose but
, in particular, with
poly(ethylene oxide). Two modules, “male and female” have been
manufactured and were interlocked to form the “void” configuration.
This assembly exhibited in vitro floatation up to 240 min, while the
individual male and female modules
never floated. The mechanism of
NFX release from Dome Matrix
®
modules and void assemblies was
mainly governed by the swelling and erosion of the polymer matrix. The
diffusive contribution to drug release was lower than 50% and decreased
during release time. In conclusion, a site-
specific prolonged drug
delivery system of norfloxacin was achieved when the modules were
assembled in the void configuration; the release kinetics was strongly
linear, independently on floating conditions. However, in vivo studies
are necessary to confirm the possibility for this linear release gastro
retentive system to increase norfloxacin bioavailability and reduce dose
administration.
121
20% HPMC K4M
in void configuration
This study revealed a prolonged linear release of norfloxacin in
simulated gastric fluid when the drug is formulated in Dome Matrix
®
, in particular, with
poly(ethylene oxide). Two modules, “male and female” have been
manufactured and were interlocked to form the “void” configuration.
This assembly exhibited in vitro floatation up to 240 min, while the
never floated. The mechanism of
modules and void assemblies was
mainly governed by the swelling and erosion of the polymer matrix. The
diffusive contribution to drug release was lower than 50% and decreased
specific prolonged drug
delivery system of norfloxacin was achieved when the modules were
assembled in the void configuration; the release kinetics was strongly
linear, independently on floating conditions. However, in vivo studies
are necessary to confirm the possibility for this linear release gastro
-
retentive system to increase norfloxacin bioavailability and reduce dose
122
Acknowledgments
The authors wish to thank the Brazilian agency CNPq (National
Counsel of Technological and Scientific Development) for the financial
support.
123
References
[1] J. Siepmann, N.A. Peppas, Modeling of drug release from delivery
systems based on hydroxypropyl methylcellulose (HPMC), Adv.
Drug Deliv. Rev. 48 (2001) 139-157.
[2] C. Ferrero, M.R. Jiménez-Castellanos, The influence of
carbohydrate nature and drying methods on the compaction
properties and pore structure of new methyl methacrylate
copolymers, Int. J. Pharm. 248 (2002) 157-171.
[3] F. Fichtner, G. Frenning, G. Alberdon, Drug release from
compacted single inert matrix agglomerates, J. Drug Deliv. Sci.
Technol. 17 (2007) 273-277.
[4] P. Colombo, F. Sonvico, G. Colombo, R. Bettini, R., Novel
Platforms for Oral Drug Delivery, Pharm. Res. 26 (2009) 601-611.
[5] E. Losi, R. Bettini, P. Santi, F. Sonvico, G. Colombo, K. Lofthus,
P. Colombo, N.A. Peppas, Assemblage of novel release modules
for the development of adaptable drug delivery systems, J. Control.
Release 111 (2006) 212-218.
[6] O.L. Strusi, F. Sonvico, R. Bettini, P. Santi, G. Colombo, P. Barata,
A. Oliveira, D. Santos, P. Colombo, Module assemblage
technology for floating systems: In vitro flotation and in vivo
gastro-retention, J. Control. Release 129 (2008) 88-92.
[7] O.L. Strusi, P. Barata, D. Traini, P.M. Young, S., Mercuri, G.
Colombo, F. Sonvico, R. Bettini, P. Colombo, Artesunate-
clindamycin multi-kinetics and site-specific oral delivery system
for antimalaric combination products, J. Control. Release 146
(2010) 54-60.
[8] A.M. Emmerson, A.M. Jones, The quinolones: decades of
development and use, J. Antimicrob. Chemother. 51 (2003) 13-20.
[9] F. Van Bambeke, J-M. Michot, J. Van Eldere, P.M. Tulkens,
Quinolones in 2005: an update, Clin. Microbiol. Infect. 11 (2005)
256-280.
124
[10] W-H. Sheng, Y-C. Chen, J-T. Wang, S-C. Chang, K-T. Luh, W-C.
Hsieh, Emerging fluoroquinolone-resistance for common clinically
important gram-negative bacteria in Taiwan, Diagn. Microbiol.
Infect. Dis. 43 (2002) 141-147.
[11] Z. Alexiou, M. Mouktaroudi, G. Koratzanis, A. Papadopoulos, D.
Kavatha, K. Kanellakopoulou, H. Giamarellou, E.J. Giamarellos-
Bourboulis, The significance of compliance for the success of
antimicrobial prophylaxis in recurrent lower urinary tract
infections: the Greek experience, Int. J. Antimicrob. Agents. 30
(2007) 40-43.
[12] R. Isturiz, Global resistance trends and the potential impact on
empirical therapy, Int. J. Antimicrob. Agents. 32 S4 (2008) S201-
S206.
[13] G. Taubes, The bacteria fight back, Science 321 (2008) 356-361.
[14] J.L. Martinez, A. Fajardo, L. Garmendia, A. Hernandez, J.F.
Linares, L. Martínes-Solano, M.B. Sánchez, A global view of
antibiotic resistance, FEMS Microbiol. Rev. 33, (2009) 44-65.
[15] L. Mandell, M. Bergeron, T. Marrie, L. Nicolle, D. Scheifele, S.
Shafran, Norfloxacin: a new quinolone, Can. Med. Assoc. J. 139
(1988) 305-307.
[16] K. Dua, M.V. Ramana, U.V.S. Sara, M. Himaja, A. Agrawal, V.
Garg, K. Pabreja, Investigation of enhancement of solubility of
Norfloxacin β-cyclodextrin in presence of acidic solubilizing
additives, Curr. Drug Deliv. 4 (2007) 21-25.
[17] P.R. Oliveira, L.S. Bernardi, F.S. Murakami, C. Mendes, M.A.S.
Silva, Thermal characterization and compatibility studies of
norfloxacin for development of extended release tablets, J. Therm.
Anal. Calorim. 97 (2009) 741-745.
[18] R.W. Korsmeyer, K. Gurny, E. Doelker, P. Buri, N.A. Peppas,
Mechanisms of solute release from porous hydrophilic polymers,
Int. J. Pharm. 15 (1983) 25-35.
125
[19] N.A. Peppas, J.J., Sahlin, A simple equation for the description of
solute release. III. Coupling of diffusion and relaxation, Int. J.
Pharm. 57 (1989) 169-172.
[20] J.W. Moore, H.H. Flanner, Mathematical comparison of
dissolution profiles, Pharm. Tech. 20 (1996) 64-74.
[21] FDA Guidance for industry ‘‘Dissolution testing of immediate
release solid oral dosage forms”, 1997, US Department of Health
and Human Services, CDER.
[22] J. Timmermans, A.J. Moes, A.J., Measuring the resultant-weight of
an immersed test material: I. Validation of an apparatus and a
method dedicated to pharmaceutical applications, Acta Pharm.
Technol. 36 (1990) 171-175.
[23] M. Casas, O.L. Strusi, M.R. Jiménez-Castellanos, P. Colombo,
Tapioca starch graft copolymers and Dome Matrix
®
modules
assembling technology. I. Effect of module shape on drug release,
Eur. J. Pharm. Biopharm. 75 (2010) 42-47.
[24] S. Arora, J. Ali, A. Ahuja, R.K. Khar, S., Baboota, Floating drug
delivery Systems: a review, AAPS PharmSciTech. 6 (2005) E372-
E390.
[25] A. Streubel, J. Siepmann, R. Bodmeier, Gastroretentive drug
delivery systems, Expert Opin. Drug Deliv. 3 (2006) 217-233.
[26] L. Maggi, R. Bruni, U. Conte, U., High molecular weight
polyethylene oxides (PEOs) as an alternative to HPMC in
controlled release dosage forms, Int. J. Pharm. 195 (2000) 229-238.
[27] J. Heller, J. Barr, Y.S. Ng, K.S. Abdellauoi, R. Gurny, R.,
Poly(ortho esters): synthesis, characterization, properties and uses,
Adv. Drug Deliv. Rev. 54 (2002) 1015-1039.
126
[28] C.M. Lopes, J.M.S. Lobo, P. Costa, Formas farmacêuticas de
liberação modificada: polímeros hidrofílicos, Braz. J. Pharm. Sci.
41 (2005) 143-154.
[29] S. Jamzad, R. Fassihi, Development of a controlled release low
dose class II drug-Glipizide, Int. J. Pharm. 312 (2006) 24-32.
[30] P. Colombo, R. Bettini, P.L. Catellani, P. Santi, N.A. Peppas, N.A.,
Drug volume fraction profile in gel phase and drug release kinetics
in hydroxypropylmethylcellulose matrices containing a soluble
drug, Eur. J. Pharm. Sci. 9 (1999) 33-40.
[31] L. Maggi, L. Segale, M.L. Torre, E.O. Machiste, U. Conte, U.,
Dissolution behaviour of hydrophilic matrix tablets containing two
different polyethylene oxides (PEOs) for the controlled release of a
water-soluble drug. Dimensionality study, Biomaterials 23 (2002)
1113-1119.
[32] P.L. Ritger, N.A. Peppas, A simple equation for description of
solute release. I. Fickian and anomalous release from non-swellable
devices in the form of slabs, spheres, cylinders or disc, J. Control.
Release 5 (1987) 23-36.
[33] P.L. Ritger, N.A. Peppas, A simple equation for description of
solute release. II. Fickian and anomalous release from swellable
devices, J. Control. Release 5 (1987) 37-42.
127
DISCUSSÃO GERAL
128
129
O norfloxacino é um agente antibacteriano amplamente
utilizado para o tratamento de infecções no trato urinário. Normalmente
a posologia indicada é de 400 mg duas vezes ao dia (MANDELL, 1988;
CHRISTIAN, 1996; EMMERSON; JONES, 2003) e não se encontra
disponível comercialmente formulação de liberação prolongada, para
administração em dose única diária. Para o desenvolvimento racional de
medicamentos, as etapas de caracterização das matérias-primas e
estudos de pré-formulação são de fundamental importância, pois através
da investigação da compatibilidade entre fármaco-excipiente é possível
selecionar excipientes adequados para proceder com o desenvolvimento
farmacotécnico (BRUNI et al., 2002; GIRON et al., 2002; BRUNI et al.,
2010).
A caracterização do norfloxacino e excipientes, bem como os
estudos de compatibilidade, foram apresentados na forma de publicação
científica no capítulo 2. Através de DSC pode-se avaliar que o fármaco
apresenta ponto de fusão de aproximadamente 219 ºC, seguido de
evento exotérmico, sem perda de massa (observado por TG). Como não
evento endotérmico antes da fusão, pode-se inferir que a matéria-
prima é a forma anidra e não dihidrato ou sesquihidrato. A degradação
do fármaco ocorre em duas etapas sucessivas em temperaturas entre
330–376 ºC e 421–455 ºC. Através das imagens obtidas por SEM e dos
padrões de XRPD demonstrou-se alto grau de cristalinidade para a
amostra, o que é importante para o desenvolvimento de comprimidos,
umas vez que substâncias amorfas tendem a ser menos estáveis em
relação às cristalinas. O polímero hidrofílico POE também demonstrou
características cristalinas, com reflexões bem definidas, e a HPMC
mostrou-se amorfa.
O norfloxacino apresenta três formas anidras (A, B e C) e suas
temperaturas de fusão são 219 ºC (A), 212 ºC (B) e 207 ºC (C)
(BARBAS; PROHENS; PUIGJANER, 2007). A estrutura cristalina da
forma A foi determinada por difração de raio-x de monocristal, sendo
triclínica, grupo espacial P-1 (BASAVOJU, S.; BOSTRÖM, D.;
VELAGA, 2006; PUIGJANER et al., 2010). Baseando-se
principalmente no ponto de fusão (219 ºC) e no perfil termoanalítico
pode-se inferir que a forma utilizada nesta tese é a forma A.
Para o estudo de compatibilidade, uma vez que não se
encontram relatos de interação/incompatibilidade do norfloxacino,
selecionaram-se os excipientes farmacêuticos que possivelmente
comporiam a formulação final. Utilizou-se mistura física fármaco-
excipiente na proporção 1:1 (p/p) e analisou-se através de DSC. As
130
curvas obtidas foram consideradas como superposição das curvas
individuais dos compostos da mistura, não sendo observados
deslocamentos ou desaparecimento do ponto de fusão do norfloxacino,
demonstrando ausência de incompatibilidade.
A cromatografia líquida possibilita a separação e quantificação
de diferentes componentes de uma formulação farmacêutica através da
escolha adequada dos parâmetros do sistema como colunas, fase móvel
e método de detecção. Apesar de existir método farmacopeico para
comprimidos de norfloxacino de liberação imediata (F. BRAS. IV,
2001), este requer um tempo de estabilização da coluna analítica por 8
horas e não pode ser utilizado para estudos de estabilidade sem prévia
avaliação. Além disso, como se trata de nova formulação, é necessário
método analítico adequado. Desta maneira, desenvolveu-se e validou-se
procedimento para a determinação de norfloxacino nos comprimidos
matriciais conforme demonstrado no capítulo 3. A metodologia
consistiu na utilização de coluna C
18
mantida a 40 ºC, detecção no UV a
272 nm, fase móvel composta por tampão fosfato 0,04 M (pH 3,0) e
acetonitrila na proporção 84:16 (v/v), com vazão de 1,0 mL/min.
Na avaliação da especificidade foi possível a identificação de
um composto de degradação, o norfloxacino descarboxilado. Além
disso, nos cromatogramas obtidos, os picos dos produtos de degradação
encontraram-se resolvidos em relação ao pico do norfloxacino,
demonstrando a especificidade e que o procedimento também pode ser
usado como indicativo da estabilidade. O método apresentou-se linear
na faixa de 0,5-5 µg/mL (r
2
= 0,9999). Os dados obtidos para a
repetibilidade (DRP 0,98), precisão intermediária (DRP 0,59) e
exatidão (99,90% ± 0,97%) estão dentro dos valores preconizados. A
avaliação da robustez através da superfície de resposta demonstrou que
mudanças pequenas e deliberadas em diversos fatores não influenciaram
significativamente a metodologia. Desta forma, demonstrou-se que o
método proposto cumpre os requisitos preconizados pela literatura,
podendo ser empregado para a análise pretendida.
O desenvolvimento, estudos de estabilidade e avaliação in vitro
de formulações com tecnologia de liberação prolongada contendo
norfloxacino foi apresentado como publicação científica no capítulo 4.
A partir do estudo de pré-formulação, além dos polímeros hidrofílicos
POE e HPMC, foram selecionados como excipientes a celulose micro-
cristalina (diluente), o estearato de magnésio (lubrificante) e o dióxido
de silício coloidal (deslizante, absorvente).
131
Para o desenvolvimento das formulações avaliou-se o processo
de granulação via seco e via úmida, porém não se observou diferença
entre estes e a compressão direta na obtenção dos comprimidos. Dessa
forma, optou-se pelo processo de compressão direta, devido a maior
simplicidade e rapidez. Devido ao fato da liberação prolongada ser
obtida através dos polímeros hidrofílicos, foram avaliados dois tipos
(POE e HPMC) de diversas massas moleculares e duas concentrações
(20 e 30%) nas formulações. Os valores de concentração foram
selecionados pois estão na faixa normalmente utilizada na indústria
farmacêutica para a fabricação de comprimidos de liberação prolongada.
Dessa forma a obtenção dos comprimidos por compressão direta e a
quantia de polímero na formulação levaram em conta uma possível
transposição para escala industrial.
O equivalente a 50% do total de comprimidos produzidos foi
submetido ao processo de revestimento. Para estudar a influencia da
presença de blister, realizou-se a emblistagem de comprimidos
revestidos e não revestidos. A avaliação da qualidade foi determinada
segundo as características farmacopéicas de variação de peso, dureza,
friabilidade e perda por dessecação e os resultados obtidos estão de
acordo com os valores preconizados.
O estudo de estabilidade acelerada, realizado em condições
recomendadas para zona climática IV (40 ± 2 ºC e 75 ± 5% umidade
relativa) por 6 meses (BRASIL 2005, WHO, 2009) demonstrou que não
houve alteração na aparência ou teor de principio ativo. Porém, na
avaliação da fotoestabilidade, foi evidenciada a necessidade do
revestimento dos comprimidos ou a presença de blister opaco, uma vez
que houve alteração na coloração dos comprimidos.
Os perfis de dissolução foram realizados utilizando método
baseado nas farmacopéias brasileira e americana, utilizando tampão pH
4 (F. BRAS. IV, 2001; USP 30, 2007). Os resultados in vitro
demonstraram que conforme aumentava-se a massa molecular e a
concentração do polímero hidrofílico, a liberação do fármaco tornava-se
mais lenta, inclusive com algumas formulações apresentando
incompleta dissolução após 24 horas.
Através da análise dos perfis pela equação de Korsmeyer-
Peppas (KORSMEYER et al., 1983) pode-se concluir que a liberação do
norfloxacino foi controlada pela difusão do fármaco e
intumescimentos/erosão do sistema matricial. Quando o comprimido
continha menor concentração e/ou menor massa molecular do polímero
o mecanismo de liberação predominante, indicado pelo valor do
132
expoente n 0,89, era o Caso-II ou Super Caso-II (intumescimento do
polímero, relaxamento da matriz ou liberação mediante erosão). Quando
aumentava-se a massa molecular e/ou a concentração de polímero na
matriz o mecanismo de liberação mudava para transporte anômalo (0,45
< n > 0,89), mostrando crescente influência da difusão do fármaco na
dissolução.
As formulações contendo POE ou HPMC de massas
moleculares intermediárias (HPMC K4M 20%, POE N60K 20% e POE
N60K 30%) ou alta concentração de baixa massa molecular (HPMC
K100 LV 30%) foram consideradas mais promissoras para futuros testes
in vivo, pois resultaram em combinação entre dissolução total do
norfloxacino e estrutura da camada gelatinosa formada. Baseado na
liberação prolongada e total do fármaco, uma melhor biodisponibilidade
é esperada. Para melhor compreensão e correlação com o que poderá
ocorrer in vivo, estudos em diferentes pHs ou em fluidos gástrico e
intestinal simulados estão sendo planejados como continuação desta
tese. Dependendo dos resultados obtidos as formulações poderão ser
otimizadas, inclusive com a possibilidade da utilização de polímeros de
diferentes massas moleculares na mesma formulação para obtenção do
perfil de liberação adequado.
Além da fabricação de sistemas matriciais utilizando
compressoras com punções convencionais, a inovação tecnológica
permite a renovação e a otimização destas técnicas clássicas. Um
exemplo disso foi o desenvolvimento dos sistemas de acoplamento
Dome Matrix
®
. Baseado nesta tecnologia, foi estudada a possibilidade
de obter sistema flutuante para liberação prolongada e local específica
de norfloxacino, conforme descrito no capítulo 5. Utilizou-se duas
concentrações, 20 e 30% de HPMC e, pela primeira vez, POE. Módulos
individuais “male” e “female” foram obtidos por compressão direta
utilizando punções especiais (LOSI et al., 2006). O acoplamento destes
permitiu a obtenção da configuração flutuante “void”, devido a presença
de ar no interior do sistema.
Além das formulações demonstradas neste capítulo (contendo
HPMC K4M e POE N60K, ambos a 20 e 30%) foram produzidas outras
(contendo 20 e 30%) de: HPMC K100 LV, HPMC K15M, POE N12K e
POE 301. Para os polímeros de baixa massa molecular (HPMC K100
LV e POE N12K) obteve-se dissolução in vitro muito rápida e pouco
tempo de flutuação. Ao contrário, com os polímeros de massa molecular
mais alta (HPMC K15M e POE 301) a velocidade de dissolução era
demasiada lenta, tanto para os módulos individuais como para o sistema
133
flutuante. A dosagem de 200 mg para a configuração “void” é inferior à
recomendada normalmente para adultos de 400 mg. Porém, devido a
esta tecnologia estar ainda em desenvolvimento, outros punções com
capacidade superior (e inferior) de carga estavam sendo desenvolvidos
quando da realização desta etapa. Diferentes processos tecnológicos
como granulação a seco e via úmida não resultaram em melhora em
comparação à compressão direta.
Nos estudos de dissolução observou-se maior velocidade de
liberação do norfloxacino nos módulos individuais em relação à
configuração flutuante, o que pode ser explicado devido à maior área
superficial em contato com o meio. Esta característica já havia sido
observada com outros fármacos de diferentes solubilidades e formulados
como matrizes hidrofílicas (CASAS et al., 2010; STRUSI et al., 2010)
Os perfis de dissolução analisados de acordo com as equações de
Korsmeyer-Peppas e Peppas-Sahlin demonstraram que a liberação era
controlada tanto pela difusão do fármaco como pelo intumescimento e
erosão da matriz. Da mesma forma que para os comprimidos descritos
no capítulo 4, os sistemas Dome Matrix
®
fabricados com POE e menor
concentração de polímero apresentam mecanismo de liberação mais
dependente da erosão, o que pode ser evidenciado pelos perfis de
dissolução quase lineares e nos maiores valores do expoente n obtidos.
A HPMC K4M apresenta uma viscosidade média de 4000 mPa s (2%;
p/v) que pode ser considerada semelhante a do POE N60K (3060 mPa s,
2%, p/v). Dessa forma fica evidente o caráter mais erodível do POE em
relação à HPMC, o que está de acordo com o descrito por Jamzad e
Fassihi (2006). A contribuição da difusão de fick para a liberação do
norfloxacino era inicialmente menor que 50% e diminuía de acordo com
o tempo.
Os módulos na configuração “void” iniciaram a flutuar em
menos de 10 minutos e mantiveram esta capacidade por pelo menos 240
minutos, o que está de acordo com o tempo médio de permanência
estudado in vivo de 214, 5 ± 54,2 minutos (STRUSI et al., 2008). Com o
aumento da concentração de polímero na formulação, aumenta-se a
capacidade flutuante do sistema. A flutuação in vitro obtida sugere um
sistema gastro-retentivo in vivo, o que poderia aumentar a
biodisponibilidade do norfloxacino, uma vez que este fármaco é mais
solúvel em meios ácidos, com conseqüente redução da posologia.
134
135
CONCLUSÕES
136
137
As matérias-primas de norfloxacino e polímeros (HPMC e POE)
foram caracterizadas e os resultados obtidos podem ser utilizados
como parâmetros de controle de qualidade para futuros estudos;
Estudos de pré-formulação foram realizados e não observou-se
incompatibilidade entre fármaco e excipientes;
O método desenvolvido e validado, por cromatografia líquida em
fase reversa, foi utilizado para análise de norfloxacino nas matrizes
desenvolvidas e estudos de estabilidade;
Comprimidos matriciais foram obtidos por compressão direta e
cumpriram com as características farmacopéicas preconizadas;
O processo de revestimento tem influencia sobre o perfil de
dissolução dos comprimidos, porém esta não foi considerada
biofarmaceuticamente relevante;
Os estudos de estabilidade sugerem que as formulações são
estáveis frente à temperatura e umidade, porém o revestimento e/ou
presença de blister opaco deve ser recomendado para prevenir a
fotodegradação do princípio-ativo;
As formulações contendo POE ou HPMC de massas moleculares
intermediárias (HPMC K4M 20%, POE N60K 20% e POE N60K
30%) ou alta concentração de baixa massa molecular (HPMC K100
LV 30%) apresentaram melhor perfil de liberação in vitro;
O mecanismo de liberação do norfloxacino depende da
concentração e massa molecular do polímero utilizado;
Sistemas Dome Matrix
®
acoplados na configuração “void”
permitiram flutuação in vitro, sugerindo liberação local específica
(gastro-retentiva) in vivo para o fármaco;
Estudos in vivo são necessários para confirmar a possibilidade de
aumento na biodisponibilidade e redução do regime posológico do
norfloxacino através do uso de sistemas matriciais e Dome
Matrix
®
.
138
139
REFERÊNCIAS
140
141
AALTONEN, J.; ALLESO, M.; MIRZA, S.; KORADIA, V.;
GORDON, K.C.; RANTANEN, J. Solid form screening A review.
European Journal of Pharmaceutics and Biopharmaceutics, v. 71, p.
23-37, 2009.
AHUJA, S.S. Assuring quality of drugs by monitoring impurities.
Advanced Drug Delivery Reviews, v. 57, p. 3-11, 2007.
ALLEN, L.V.J.; POPOVICH, N.G.; ANSEL, H.C. Formas
Farmacêuticas e Sistemas de Liberação de Fármacos. 8 ed, Artmed:
São Paulo, 2007, 775p.
ALNAJJAR, A.; ABUSEADA, H.H.; IDRIS, A.M. Capillary
electrophoresis for the determination of norfloxacin and tinidazole in
pharmaceuticals with multi-response optimization. Talanta, v. 72, p.
842–846, 2007a.
ALNAJJAR, A.; IDRIS, A.M.; ABUSEADA, H.H. Development of a
stability-indicating capillary electrophoresis method for norfloxacin and
its inactive decarboxylated degradant. Microchemical Journal, v. 87, p.
35-40, 2007b.
AL-RASHOOD, K.A.; AL-KHAMIS, K.I.; EL-SAYED, Y.M.; AL-
BELLA, S.; AL-YAMANI, M.A.; ALAM, S.M.; DHAM, R.
Bioequivalence evaluation of norfloxacin 400 mg tablets (Uroxin® and
Noroxin®) in healthy human volunteers. Biopharmaceutics & Drug
Disposition, v. 21, p. 175-179, 2001.
ALSANTE, K.M.; ANDO, A. BROWN, R. ENSING, J.; HATAJIK,
T.D.; KONG, W.; TSUDA, Y. The role of degradant profiling in active
pharmaceutical ingredients and drug products. Advanced Drug
Delivery Reviews, v. 59, p. 29-37, 2007.
ANDERSSON, M.I.; MACGOWAN, A.P. Development of the
quinolones. Journal of Antimicrobial Chemotherapy, v. 51, supl. S1,
p. 1-11, 2003.
APICELLA, A.; CAPPELLO, B.; DEL NOBILE, M.A.; LA
ROTONDA, M.I.; MENSITIERI, G.; NICOLAIS, L. Poly(ethylene
142
oxide) (PEO) and different molecular weight PEO blends monolithic
devices for drug release. Biomaterials, v. 14, p. 83-90, 1993.
AULTON, M.E. Delineamento de formas farmacêuticas. 2 ed.,
Artmed: São Paulo, 2005, 677 p.
AZARMI, S.; ROA, W.; LÖBENBERG, R. Current perspectives in
dissolution testing of conventional and novel dosage forms.
International Journal of Pharmaceutics, v. 328, p. 12-21, 2007.
BARDONNET, P.L.; FAIVRE, V.; PUGH, W.J.; PIFFARETTI, J.C.;
FALSON, F. Gastroretentive dosage forms: overview and special case
of Helicobacter pylori. Journal of Controlled Release, v. 111, p. 1-18,
2006.
BARBAS, R.; MARTI, F.; PROHENS, R.; PUIGJANER, C.
Polymorphism of norfloxacin: evidence of the enantiotropic eelationship
between polymorphs A and B. Crystal Growth & Design, v. 6, p.
1463-1467, 2006.
BARBAS, R.; PROHENS, R.; PUIGJANER, C. A new polymorph of
norfloxacin – Complete characterization and relative stability of its
trimorphic system. Journal of Thermal Analysis and Calorimetry, v.
89, p. 689-692, 2007.
BARROCAS, P.M.C.; SANTOS, D.F.G.; FERREIRA, D.C.; COELHO,
P.M.B.S.; OLIVEIRA, R.C.S.; VEIGA, F.J.B. Sistemas farmacêuticos
gastrorretentivos flutuantes. Brazilian Journal of Pharmaceutical
Sciences, v. 43, p. 325-334, 2007.
BASAVOJU, S.; BOSTRÖM, D.; VELAGA, S.P. Pharmaceutical
cocrystal and salts of norfloxacin. Crystal Growth & Design, v. 6, p.
2699-2708, 2006.
BERNARDI, L.S.; OLIVEIRA, P.R.; MURAKAMI, F.S.; SILVA,
M.A.S.; BORGMANN, S.H.M.; CARDOSO, S.G. Characterization of
venlafaxine hydrochloride and compatibility studies with
pharmaceutical excipients. Journal of Thermal Analysis and
Calorimetry, v. 97, p. 729-733, 2009.
143
BETTINI, R.; CATELLANI, P.L.; SANTI, P.; MASSIMO, G.;
PEPPAS, N.A.; COLOMBO, P. Translocation of drug particles in
HPMC matrix gel layer: effect of drug solubility and influence on
release rate. Journal of Controled Release, v. 70, p. 383–391, 2001.
BOLON, M.K. The newer fluoroquinolones. Infectious Disease Clinics
of North America, v. 23, p. 1027-1051, 2009.
BORREGO, M.C.; DIAZ, M.C.; DIAZ, D.C. Validation of a high-
performance liquid chromatographic method for the determination of
norfloxacin and its application to stability studies (photo-stability study
of norfloxacin). Journal of Pharmaceutical and Biomedical Analysis,
v. 18, p. 919–926, 1999.
BOUABIDI, A.; ROZET, E.; FILLET, M.; ZIEMONS, E.;
CHAPUZET, E.; MERTENS, B.; KLINKENBERG, R.; CECCATO,
A.; TALBI, M.; STREEL, B.; BOUKLOUZE, A.; BOULANGER, B.;
HUBERT, Ph. Critical analysis of several analytical method validation
strategies in the framework of the fit for purpose concept. Journal of
Chromatography A, v. 1217, p. 3180-3192, 2010.
BRASIL. Agência Nacional de Vigilância Sanitária (ANVISA). Informe
técnico 1, de 15 de julho de 2008. Esclarecimento sobre o item 2.9
do anexo da Resolução RE 1 de 29/07/2005, que trata do Guia
para Realização dos Estudos de Estabilidade. Brasília, DF.
BRASIL. Agência Nacional de Vigilância Sanitária (ANVISA).
Resolução- RE 1, de 29 de julho de 2005. Guia para a realização de
estudos de estabilidade. Brasília, DF.
BRASIL. Agência Nacional de Vigilância Sanitária (ANVISA).
Resolução- RE 899, de 29 de maio de 2003. Guia para validação de
métodos analíticos e bioanalíticos. Brasília, DF.
BRASIL. Agência Nacional de Vigilância Sanitária (ANVISA).
Resolução da diretoria colegiada- RDC Nº 44, de 26 de outubro de
2010. Dispõe sobre o controle de medicamentos à base de
substâncias classificadas como antimicrobianos, de uso sob
prescrição médica, isoladas ou em associação e outras
providências. Brasilia, DF.
144
BREDA, S.A.; JIMENEZ-KAIRUZ, A.F.; MANZO, R.H.; OLIVERA,
M.E. Solubility behavior and biopharmaceutical classification of novel
high-solubility ciprofloxacin and norfloxacin pharmaceutical
derivatives. International Journal of Pharmaceutics, v. 371, p. 106-
113, 2009.
BRUNI, G.; AMICI, L.; BERBENNI, V. MARINI, A.; ORLANDI, A.
Drug-excipient compatibility studies. Search of interaction indicators.
Journal of Thermal Analysis and Calorimetry, v. 68, p. 561-573,
2002.
BRUNI, G.; BERBENNI, V.; MILANESE, C.; GIRELLA, A.;
MARINI, A. Drug excipients compatibility studies in binary and ternary
mixtures by physic-chemical techniques. Journal of Thermal Analysis
and Calorimetry, v. 102, p. 193-201, 2010.
BUCKTON, G.; RUSSEL, S.J.; BEEZER, A.E. Pharmaceutical
calorimetry: a selective review. Thermochimica Acta, v. 193, p. 195-
214, 1991.
CASAS, M.; STRUSI, O.L.; JIMÉNEZ-CASTELLANOS, M.R.;
COLOMBO, P. Tapioca starch graft copolymers and Dome Matrix
®
modules assembling technology. I. Effect of module shape on drug
release. European Journal of Pharmaceutics and Biopharmaceutics,
v. 75, p. 42-47, 2010.
CHEN, C.; LIU, X.; WU, R. HPLC method for the determination of
norfloxacin glutamate and glucuronate in solid and liquid dosage forms
and its application to stability testing. Journal of Pharmaceutical and
Biomedical Analysis, v. 11, p. 717–721, 1993.
CHEN, M-L.; SHAH, V.P.; GANES, D.; MIDHA, K.K.; CARO, J.;
NAMBIAR, P.; ROCCI Jr., M.L.; THOMBRE, A.G.;
ABRAHAMSSON, B.; CONNER, D.; DAVIT, B.; FACKLER, P.;
FARREL, C.; GUPTA, S.; KATZ, R.; MEHTA, M.; PRESKORN, S.H.;
SANDERINK, G.; STAVCHANSKY, S.; TEMPLE, R.; WANG, Y.;
WINKLE, H.; YU, L. Challenges and opportunities in establishing
scientific and regulatory standards for assuring therapeutic equivalence
of modified-release products: Workshop summary report. European
Journal of Pharmaceutical Sciences, v. 40, p. 148-153, 2010.
145
CHRISTIAN, J.S. The quinolone antibiotics. Infectious Diseases
Update, v.3, p. 87-92, 1996.
COESSENS, V.; SCHACHT, E. H.; DOMURADO, D. Syntesis and in
vitro stability of macromolecular prodrugs of norfloxacin. Journal of
Controlled Release, v. 47, p. 283-291, 1997.
COLOMBO, P.; BETTINI, R.; SANTI, P.; DE ASCENTIIS, A.;
PEPPAS, N.A. Analysis of the swelling and release mechanisms from
drug delivery systems with emphasis on drug solubility and water
transport. Journal of Controlled Release, v. 39, p. 231-237, 1996.
COLOMBO, P.; BETTINI, R.; SANTI, P.; PEPPAS, N.A. Swellable
matrices for controlled drug delivery: gel-layer behavior, mechanisms
and optimal performance. Pharmaceutical Science & Technology
Today, v. 3, p. 198-204, 2000.
COLOMBO, P.; SONVICO, F.; COLOMBO, G.; BETTINI, R. Novel
platforms for oral drug delivery. Pharmaceutical Research, v. 26, p.
601-611, 2009.
CONTI, S.; MAGGI, L.; SEGALE, L.; MACHISTE, E.O.; CONTE, U.;
GRENIER, P.; VERGNAULT, G. Matrices containing NaCMC and
HPMC 2. Swelling and release mechanism study. International
Journal of Pharmaceutics, v. 333, p. 143-151, 2007.
CÓRDOBA-BORREGO, M.; CÓRDOBA-DÍAZ, M.; CÓRDOBA-
DIAZ, D. Validation of a high-performance liquid chromatographic
method for the determination of norfloxacin and its application to
stability studies (photo-stability study of norfloxacin). Journal of
Pharmaceutical and Biomedical Analysis, v. 18, p. 919-926, 1999.
COSTA, P.; LOBO, J.M.S. Modeling and comparison of dissolution
profiles. European Journal of Pharmaceutical Sciences, v. 13, p. 123-
133, 2001.
DENKBAS, E.B.; ÖZTÜRK, E.; ÖZDEMIR, N.; KEÇECI, K.
Norfloxacin-loaded chitosan sponges as wound dressing material.
Journal of Biomaterials Applications, v.18, p. 291-303, 2004.
146
DJURAJEVIC, P.T.; JELIKIC-STANKOV, M.; STANKOV, D.
Fluorescence reaction and complexation equilibria between norfloxacin
and aluminium (III) ion in chloride medium. Analytica Chimica Acta,
v. 300, p. 253–259, 1995.
DOKOUMETZIDIS, A; MACHERAS, P. A century of dissolution
research: from Noyes and Whitney to the biopharmaceutics
classification system. International Journal of Pharmaceutics, v. 321,
p. 1-11, 2006.
DOW Chemical company, Using methocel cellulose ethers for
controlled release of drugs in hydrophilic matrix systems, 2000.
DOW Chemical company, Polyox water-soluble resins NF in
pharmaceutical applications, 2002.
EL KHATEEB, A.Z.; RAZEK, S.A.A.R; AMER, M.M. Stability-
indicating methods for the spectrophotometric determination of
norfloxacino. Journal of Pharmaceutical and Biomedical Analysis, v.
17, p. 829–840, 1998.
EL WALILY, A.F.M.; BELAL, S.F.; BAKRY, R.S. Spectrophotometric
and spectrofluorimetric determination of ciprofloxacin and norfloxacin
by ternary complex formation with eosin and palladium (II). Journal of
Pharmaceutical and Biomedical Analysis, v. 14, p. 561–569, 1996.
EL WALILY, A.F.M.; RAZAK, O.A.; BELAL, S.F.; BAKRY, R.S.
Determination of norfloxacin spectrophotometrically using 2,4-
dinitrofluorobenzene. Journal of Pharmaceutical and Biomedical
Analysis, v. 21, p. 1069–1076, 1999.
EMMERSON, A.M.; JONES, A.M. The quinolones: decades of
development and use. Journal of Antimicrobial Chemotherapy, v. 51,
supl. S1, p. 13-20, 2003.
FARMACOPÉIA BRASILEIRA, IV ed., Parte II. Terceiro fascículo.
São Paulo: Atheneu, 2001
FAWAZ, F.; BONINI, F.; GUYOT, M.; BILDET, J., MAURY, M.;
LAGUENY, A.M. Bioavailability of norfloxacino from PEG 6000 solid
147
dispersion and cyclodextrin inclusion complexes in rabbits.
International Journal of Pharmaceutics, v. 132, p. 271-275, 1996.
FLORENCE, A.J.; KENNEDY, A.R.; SHANKLAND, N.; WRIGHTA,
E.; AL-RUBAYI, A. Norfloxacin dihydrate. Acta Crystallographica
Section C, v. C56, p. 1372-1373, 2000.
GADEBUSH, H.H.; SHUNGU, D.L. Norfloxacin, the first of a new
class of fluoroquinolones antimicrobials, revisited. International
Journal of Antimicrobials Agents, v.1, p.3-28, 1991.
GIRON, D. Applications of thermal analysis and coupled techniques in
pharmaceutical industry. Journal of Thermal Analysis and
Calorimetry, v. 68, p. 335-357, 2002.
GUYOT, M.; FAWAZ, F.; BILDET, J.; BONINI, F.; LAGUENY, A.-
M. Physicochemical characterization and dissolution of
norfloxacin/cyclodextrin inclusion compounds and PEG solid
dispersions. International Journal of Pharmaceutics, v. 123, p. 53-63,
1995.
HELLER, J.; BARR, J.; NG, Y.S.; ABDELLAUOI, K.S.; GURNY, R.
Poly(ortho esters): synthesis, characterization, properties and uses.
Advanced Drug Delivery Reviews, v. 54, p. 1015-1039, 2002.
HIGUCHI, T. Mechanism of sustained-action medication. Theoretical
analysis of rate of release of solid drugs dispersed in solid matrices.
Journal of Pharmaceutical Sciences, v.52, p. 1145-1149, 1963.
HOFFMAN, A. S. The origins and evolution of “controlled” drug
delivery systems. Journal of Controlled Release, v. 132, p. 153-163,
2008.
HUSSAIN, M.S.; CHUKWUMAEZE-OBIAJUNWA, V.; MICETICH,
R.G. Sensitive High performance liquid chromatographic assay for
norfloxacin utilizing fluorescence detection, Journal of
Chromatography B, v. 663, p. 379-384, 1995.
ICH - International Conference on Harmonisation of technical
requirements for registration of pharmaceuticals for human use:
148
Guideline on validation of analytical procedure: Text and Methodology,
Q2(R1), 2005.
ICH - International Conference on Harmonisation of technical
requirements for registration of pharmaceuticals for human use,
Stability testing: photostability testing of new drug substances and
products, Q1B, 1996.
JAMZAD, S.; FASSIHI, R. Development of a controlled release low
dose class II drug-Glipizide. International Journal of Pharmaceutics,
v. 312, p. 24–32, 2006.
JAMZAD, S.; TUTUNJI, L.; FASSIHI, R. Analysis of macromolecular
changes and drug release from hydrophilic matrix systems.
International Journal of Pharmaceutics, v. 292, p. 75–85, 2005.
JEON, H.-J.; JEONG, Y.-I.; JANG, M.-K.; PARK, Y.-H.; NAH, J.-W.
Effect of the solvent on the preparation of surfactant-free poly(DL-
lactide-co-glycolide) nanoparticles and norfloxacin release
characteristics. International Journal of Pharmaceutics, v. 207, p. 99-
108, 2000.
JORGENSEN, E.D.; BHAGWAT, D. Development of dissolution tests
for oral extended-release products. Pharmaceutical Science &
Technology Today, v. 1, p. 128-135, 1998.
KAMAL, D.; RAMANA, M.V.; SINGH, S.U.V.; HIMAJA,
M.; ABHINAV, A.; VAIBHAV, G.; KAVITA, P. Investigation of
enhancement of solubility of norfloxacin β-cyclodextrin in presence of
acidic solubilizing additives. Current Drug Delivery, v. 4, p. 21-25,
2007.
KIM, C.J. Drug release from compressed hydrophilic POLYOX-WSR
tablets. Journal of Pharmaceutical Science, v. 84, p.303-306, 1995.
KISS, D.; ZELKÓ, R.; NOVÁK, Cs; ÉHEN, Zs. Application of DSC
and NIRS to study the compatibility of metronidazole with different
pharmaceutical excipients. Journal of Thermal Analysis and
Calorimetry, v. 84, p. 447-451, 2006.
149
KORSMAYER, R.W.; GURNY, R.; DOELKER, E.M.; BURI, P.;
PEPPAS, N.A. Mechanism of solute release from porous hydrophilic
polymers. International Journal of Pharmaceutics, v. 15, p. 25-35,
1983.
KRIEGER, J.N. Urinary tract infections: what’s new? The Journal of
Urology, v. 168, p. 2351-2358, 2002.
LIU, Y-M.; MEI, L.; YUE, H-Y.; SHI, Y-M, LIU, L-J. Highly sensitive
chemiluminescence detection of norfloxacin and ciprofloxacin in CE
and its applications. Chromatographia, v. 72, p. 337-341, 2010.
LIZARRAGA, E.; ZABALETA,C.; PALOP, J.A. Thermal stability and
decomposition of pharmaceutical compounds. Journal of Thermal
Analysis and Calorimetry, v. 89, p. 783-792, 2007.
LOPES, C.M.; LOBO, J.M.S.; COSTA, P. Formas farmacêuticas de
liberação modificada: polímeros hidrofílicos. Revista Brasileira de
Ciências Farmacêuticas, v. 41, p. 143-154, 2005.
LOSI, E.; BETTINI, R.; SANTI, P.; SONVICO, F.; COLOMBO, G.;
LOFTHUS, K.; COLOMBO, P.; PEPPAS, N.A. Assemblage of novel
release modules for the development of adaptable drug delivery
systems. Journal of Controlled Release, v. 111, p. 212-218, 2006.
MAGGI, L.; BRUNI, R.; CONTE, U. High molecular weight
polyethylene oxides (PEOs) as an alternative to HPMC in controlled
release forms. International Journal of Pharmaceutics, v, 195, p. 229-
238, 2000.
MAGGI, L.; SEGALE,L.; TORRE, M.L.; MACHISTE, E.O.; CONTE,
U. Dissolution behaviour of hydrophilic matrix tablets containing two
different polyethylene oxides (PEOs) for the controlled release of a
water-soluble drug. Dimensionality study. Biomaterials, v. 23, p.1113-
1119, 2002.
MANDELL, L. Norfloxacin: a new quinolone. Canadian Medical
Association Journal, v. 139, p. 305-307, 1988.
150
MOHAMMAD, M.A.-A; ZAWILLA, N.H.; EL-ANWAR, F.M.; EL-
MOGHAZY ALY, S.M. Stability Indicating Methods for the
Determination of Norfloxacin in Mixture with Tinidazole. Chemical
and Pharmaceutical Bulletin, v. 55, p. 1-6, 2007.
MONTERO, M.T.; SAIZ, D.; SITGES, R.; ZQUEZ, J.L.;
BORRELL, J.H. Influence of physicochemical properties of
fluoroquinolones on encapsulation efficiency in liposomes.
International Journal of Pharmaceutics, v. 138, p.113-120, 1996.
MOORE, J. W.; FLANNER, H.H. Mathematical comparation of
dissolution profiles. Pharmaceutical. Technology, v. 20, p. 64-74,
1996.
MOURÃO, S.C.; SILVA, C. BRESOLIN, T.M.B.; SERRA, C.H.R.;
PORTA, V. Dissolution parameters for sodium diclofenac-containing
hypromellose matrix tablet. International Journal of Pharmaceutics,
v. 386, p. 201-207, 2010.
MUSA, K.A.K.; ERIKSSON, L.A. Theoretical assessment of
norfloxacin redox and photochemistry. Journal of Physical Chemistry
A, v. 113, p. 10803-10810, 2009.
NEWMAN, A.W.; BYRN, S.R. Solid-state analysis of the active
pharmaceutical ingredient in drug products. Drug Discovery Today, v.
8, p. 898-905, 2003.
OMIDIAN, H.; PARK K. Swelling agents and devices in oral drug
delivery. Journal of Drug Delivery Science and Technology, v. 18, p.
83-93, 2008.
PARASRAMPURIA, J.; GUPTA, V.D. Quantification of ciprofloxacin
hydrochloride and norfloxacin in tablets using high performance liquid
chromatography. Drug Development and Industrial Pharmacy, v. 16,
p. 1597–1604, 1990.
PARK, J.S.; SHIM, J.Y.; TRUONG, N.K.V.; PARK, J.S.; SHIN, S.;
CHOI, Y.W.; LEE, J.; YOON, J-H.; JEONG, S.H. A pharma-robust
design method to investigate the effect of PEG and PEO on matrix
151
tablets. International Journal of Pharmaceutics, v. 393, p. 79-87,
2010.
PETROVIC, J.; IBRIC, S.; BETZ, G.; PAROJCIC, J.; DURIC, Z.
Application of dynamic neural networks in the modeling of drug release
from polyethylene oxide matrix tablets. European Journal of
Pharmaceutical Sciences, v. 38, p. 172-180, 2009.
PUIGJANER, C.; BARBAS, R.; PORTELL, A.; FONT-BARDIA, M.;
ALCOBÉ, X. Revisiting the solid state of Norfloxacin. Crystal Growth
& Design, v. 10, p. 2948-2953, 2010.
RAGAB, G.H.; AMIN, A.S. Atomic absorption spectroscopic,
conductometric and colorimetric methods for determination of
fluoroquinolone antibiotics using ammonium reineckate ion-pair
complex formation. Spectrochimica Acta Part A, v. 60, p. 973–978,
2004.
RAHMAN, N.; AHMAD, Y.; AZMI, S.N.H. Kinetic
spectrophotometric method for the determination of norfloxacin in
pharmaceutical formulations. European Journal of Pharmaceutics
and Biopharmaceutics, v. 57, p. 359–367, 2004.
RANG, H.P.; DALE, M.M.; RITTER, J.M.; FLOWER, R.J.
Farmacologia. 6 ed, Elsevier: Rio de Janeiro, 2008, 848p.
RAO, R. N.; NAGARAJU, V. Separation and determination of synthetic
impurities of norfloxacin by reversed-phase high performance liquid
chromatography. Journal of Pharmaceutical and Biomedical
Analysis, v. 34, p. 1049–1056, 2004.
RODRÍGUEZ-SPONG, B.; PRICE, C.P.; JAYASANKAR, A.;
MATZGER, A.J.; RODRÍGUEZ-HORNEDO, N. General principles of
pharmaceutical solid polymorphism: a supramolecular perspective.
Advanced drug delivery reviews, v. 56, p. 241-274, 2004.
ROSEEUW, E.; COESSENS, V.; BALAZUC, A.-M.;
LAGRANDERIE, M.; CHAVAROT, P.; PESSINA, A.; NERI, M.G.;
SCHACHT, E.; MARCHAL, G.; DOMURADO, D. Synthesis,
degradation, and antimicrobial properties of targeted macromolecular
152
prodrugs of Norfloxacin. Antimicrobial Agents And Chemotherapy,
v. 47, p. 3435–3441, 2003.
ROWE, R.C.; SHESKEY, P.J.; QUINN, M. Handbook of
pharmaceutical excipients. 6 ed, Pharmaceutical Press and American
Pharmacists Association: Washington, 2009, 944 p.
ROY, S.; GOUD, N.R.; BABU, N.J.; IQBAL, J.; KRUTHIVENTI,
A.K.; NANGIA, A. Crystal structures of Norfloxacin hydrates. Crystal
Growth & Design, v. 8, p. 4343-4346, 2008.
SAKS, S.R.; GARDNER, L.B. The pharmacoeconomic value of
controlled-release dosage forms. Journal of Controlled Release, v. 48,
p. 237-242, 1997.
SHABIR, G. A. Validation of high-performance liquid chromatography
methods for pharmaceutical analysis, understanding the differences and
similarities between validation requirements of the US Food and Drug
Administration, the US Pharmacopeia and the International Conference
on Harmonization. Journal of Chromatography A, v. 987, p. 57-66,
2003.
SHAH, B.; KAKUMANU, V.K.; BANSAL, A.K. Analytical techniques
for quantification of amorphous/crystalline phases in pharmaceutical
solids. Journal of Pharmaceutical Sciences, v. 95, p. 1641-1665, 2006.
SIEPMANN, J.; PEPPAS, N.A. Modeling of drug release from delivery
systems based on hydroxypropyl methylcellulose (HPMC). Advanced
Drug Delivery Reviews, v. 48, p. 139–157, 2001.
STANKOV, M.; STANKOV, D.; MILICEVIC, Z.; VESELINOVIC, D.;
DJURDJEVIC, P. Fluorometric and derivative spectrophotometry
determination of norfloxacino. Spectroscopy Letters, v. 26, p. 1709–
1714, 1993.
STEPHENSON, G.A.; FORBES, R.A.; REUTZEL-EDENS, S.M.
Characterization of the solid state: quantitative issues. Advanced Drug
Delivery Reviews, v. 48, p. 67-90, 2001.
153
STÖCKL, D.; D’HONDT, H.; THIENPONT, L.M. Method validation
across the disciplines—Critical investigation of major validation criteria
and associated experimental protocols. Journal of Chromatography B,
v. 877, p. 2180-2190, 2009.
STRUSI, O.L.; BARATA, P.; TRAINI, D.; YOUNG, P.M.; MERCURI,
S.; COLOMBO, G.; SONVICO, F.; BETTINI, R.; COLOMBO, P.
Artesunate-clindamycin multi-kinetics and site-specific oral delivery
system for antimalaric combination products. Journal of Controlled
Release, v. 146, p. 54-60, 2010.
STRUSI, O.L.; SONVICO, F.; BETTINI, R. ; SANTI, P.; COLOMBO,
G.; BARATA, P.; OLIVEIRA, A.; SANTOS, D.; COLOMBO, P.
Module assemblage technology for floating systems: In vitro and in vivo
gastro-retention. Journal of Controlled Release, v. 129, p. 88-92,
2008.
ŠUŠTAR, B.; BUKOVEC, N.; BUKOVEC, P. Polymorphism and
stability of norfloxacin, (1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-
piperazinil)-3-quinolinocarboxylic acid. Journal of Thermal Analysis
and Calorimetry, v. 40, p. 475-481, 1993.
UNITED STATES PHARMACOPEIA, The (USP) 30 ed. Rockville,
United States Convention, 2007.
VAN BAMBEKE, F.; MICHOT, J.-M.; VAN ELDERE, J.; TULKENS,
P.M. Quinolones in 2005: an update. Clinical Microbiollgy and
Infection, v. 11, p. 256-280, 2005.
VELAGA, S.P.; BASAVOJU, S.; BOSTRÖM, D. Norfloxacin
saccharinate-saccharin dihydrate cocrystal A new pharmaceutical
cocrystal with an organinc counter ion. Journal of Molecular
Structure, v. 889, p. 150-153, 2008.
WAGENLEHNER, F.M.E.; NABER, K.G. Treatment of bacterial
urinary tract infections: presence and future. European Urology, v. 49,
p. 235-244, 2006.
154
World Health Organization, Annex 2: Stability testing of active
pharmaceutical ingredients and finished pharmaceutical products,
WHO Technical Report Series, No 953 p. 87-130, 2009.
YU, X.; ZIPP, G.L.; DAVIDSON, G.W.R. The effect of temperature
and pH on the solubility of quinolone compounds: estimation of heat of
fusion. Pharmaceutical Research, v. 11, p. 522-527, 1994.
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo