

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

TESE DE DOUTORADO

SÍNTESE DIASTEREOSSELETIVA E ESTUDO ESPECTROSCÓPICO DA (1R, 3R, 3'R, 4R)-3-[(3-PIRIDINIL)-HIDROXIMETIL]-1,7,7-TRIMETIL BICICLO[2.2.1]HEPTAN-2-ONA, DO REGIOISÔMERO (4-PIRIDINIL) E SEUS PRODUTOS DE REDUÇÃO ASSIMÉTRICA

João Pessoa – PB - Brasil Dezembro /2010

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

TESE DE DOUTORADO

SÍNTESE DIASTEREOSSELETIVA E ESTUDO ESPECTROSCÓPICO DA (1R, 3R, 3'R, 4R)-3-[(3-PIRIDINIL)-HIDROXIMETIL]-1,7,7-TRIMETIL BICICLO[2.2.1]HEPTAN-2-ONA, DO REGIOISÔMERO (4-PIRIDINIL) E SEUS PRODUTOS DE REDUÇÃO ASSIMÉTRICA

Hermesson Jales Dantas*

Tese apresentada ao Centro de Ciências Exatas e da Natureza da Universidade Federal da Paraíba como requisito para a obtenção do título de Doutor em Química, área de concentração em Química Orgânica.

Orientador: Mário Luiz Araújo de Almeida Vasconcellos Co-orientadora: Juliana Alves Vale

*Bolsista (CNPq)

João Pessoa – PB - Brasil Dezembro /2010 D192s Dantas, Hermesson Jales. Síntese diastereosseletiva e estudo espectroscópico da (1R, 3R, 3'R,4R)-3-[3-piridinil0-hidroximetil]-1,7,7-trimetil biciclo[2.2.1] heptan-2-ona, do regioisômero (4-piridinil e seus produtos de redução assimétrica / Hermesson Jales Dantas. João Pessoa , 2010. 146f. :II. Tese (Doutorado) – UFPB/CCEN Orientador: Mário Luiz Araújo de Almeida Vasconcellos Co-orientadora: Juliana Alves Vale
1. Química Orgânica. 2. Síntese Diastereoseletiva. 3. Estudo espectroscópicos. 4. Derivados da R-(+) Cânfora.

UFPB/BC

CDU: 547(043)

Síntese Diastereosseletiva e Estudo Espectroscópico da (1R, 3R, 3'R, 4R)-3-[(3-Piridinil)-Hidroximetil]-1,1,7-Trimetil Biciclo [2.2.1]Heptan-2-ona, do Regioisômero (4-Piridinil) e seus Produtos de Redução Assimétrica.

Aprovada pela banca examinadora:

Luíz Araújo de Almeida Vasconcellos **Aário** Orientador/Presidente Profa. Dra. Juliana Alves Vale 2ª. Orientadora Prof. Dr. Sebastião José de Melo Examinador Bu Prof. Dr. Bruno Freitas Lira Examinador Mmoreia and rof. Dr. José Arimatéja Nóbrega Examinador Prof. Dr. José Rodrigues de Carvalho Filho

Examinador

Aos meus pais,

Por todo o carinho, atenção e pelas palavras de incentivo nesta longa jornada, enfim todo o amor.

Agradecimentos

Ao professor Mario Vasconcelos pela orientação, pela confiança no meu trabalho e sobretudo pela amizade.

A professora Juliana Alves pela orientação, empenho e amizade.

Aos amigos do laboratório LASOM: Saulo(Zé Maranhão), Júnior, Fabio, Ticiano(Tici), Suervy(Chuchu), Edilson(Pedro de Lara), Sara, Natalia, Yen, Priscila, Ramon e Fernanda.

A mamãe 2 (Inaci) pela alegria transmitida e fé.

Aos amigos de velhos tempos: Junior, Fabio, Marcolany, Leo, Walber, Felício, Rogério, Vania, Nilson e Gil.

Aos amigos acadêmicos: Roberlucia, Marcos, Soraia, Cristiano, Manuel Calixto, Denis e Nilton.

Aos meus irmãos que sempre estiveram comigo.

Ao CNPq por ter concedido a bolsa.

Ao Presidente da República Luis Inácio Lula da Silva por ter incentivado e investido nas universidades e na pesquisa.

Aos amigos da Babilônia de Macau-RN.

A todos que indiretamente contribuíram para realização desse trabalho!

RESUMO

Desenvolvemos neste trabalho a síntese de novos ligantes e / ou organocatalisadores quirais em potenciais para serem inicialmente utilizados na reação de Morita-Baylis-Hillman e / ou em outras reações enantiosseletivas. As preparações dos guatro compostos guirais inéditos (31, 32, 33, 34) foram realizadas a partir dos aldeídos piridinicos comerciais derivados e da R-(+)-cânfora (21a). Os adutos quirais (31 e 32) foram obtidos pela reação entre 21a e o aldeído 35 ou 36 em bons rendimentos químicos (80%-85%). A síntese de 31 foi feita em 86% de excesso de diastereoisomérico. Os novos Dióis **33** e **34** foram preparados a partir da redução diastereosseletiva dos correspondentes aldóis **31** e 32, em altos rendimentos (88-90%) e 33 foi preparado em d.e. = 77%. A determinação dos excessos diastereoisoméricos foi feita a partir de estudos de RMN de hidrogênio. Apresentamos também aqui, estudos espectroscópicos de forma rigorosa, a partir de técnicas de espectroscopia de ¹H e ¹³C, incluindo COSY H,H; HETCOR e NOESY. A avaliação preliminar de **31** como organocatalisador foi investigado através da reação de Morita-Baylis-Hillman entre o acrilato de metila ou acrilonitrila e o pnitrobenzaldeído. Esta tese "abre fonteiras", para o nosso grupo de pesquisas, na área de síntese enantiosseletiva.

Palavras-chave: Síntese Diastereosseletiva, Estudos espectroscópicos, Derivados da R-(+)-Cânfora.

ABSTRACT

We developed in this study the total synthesis of new potential ligands and / or chiral organocatalysts to be initially used in the Morita-Baylis-Hillman reaction and / or in other enantioselective reactions. The preparation of four new chiral unpublished compounds (**31**, **32**, **33**, **34**) derivatives of pyridine and of R-(+)-camphor (**21a**) were performed. The chiral aldol adducts (31 and 32) were obtained by the reaction between 21a and aldehyde 35 or 36 in god chemical yields (80%-85%). The synthesis of **31** was done in 86% of diastereoisomeric excess. The new diois 33 and 34 were prepared from diastereoselective reduction of the corresponding aldol of **31** and **32** in high yield (88-90%) and **33** was prepared in de=77%. Determination of were performed from hydrogen NMR studies. We also present here, a toughly studies from spectroscopic techniques of ¹H and ¹³C NMR, including COSY H,H; HETCOR and NOESY. The preliminary evaluation of **31** as organocatalysts was investigated from the Morita-Baylis-Hillman reaction between the methyl acrylate or acrylonitrile and *p*-nitrobenzaldehyde. This theory opens borders, for our group of researches, in the area of synthesis enantiosselective.

Keywords: Diastereoselective synthesis, Spectroscopy studies, 1R-(+)-Camphor derivatives.

LISTA DE FIGURAS

Figura 1.1 Configuração absoluta e resposta biológica	02
Figura 1.2 Isômeros da Talidomida	03
Figura 1.3 Geração talidomida (acessado em: < <u>http://pt.wikipedia.</u>	
org/wiki/Talidomida> acessado em:27 de agosto de 2010	04
Figura 1.4 Rotas para obter compostos enantimiomericamente puros	05
Figura 1.5 Indução assimétrica na reação entre HCN e benzaldeído.	
Asterisco em azul indica o centro assimétrico gerado	07
Figura 1.6 A evolução da organocatálise nos últimos anos. (ScinFider®	
www.scifinder.com, acessado em: 06 de setembro de 2010)	09
Figura 1.7 Estrutra da L-Prolina	10
Figura 1.8 Estado de transição proposto, envolvendo formação de	
intermediário carbonolamina	13
Figura 1.9 Estado de transição proposto, envolvendo formação do	
derivado enamínio	13
Figura 1.10 Estado de transição proposto, contendo duas moléculas de L-	
Prolina	14
Figura 1.11 Mecanismo proposto por List e Barbas III	15
Figura 1.12 Mecanismo para acilação de álcool pela Catálise de	
DMAP	16
Figura 1.13 Reação de obtenção do DMAP quiral (-)-20a e (-)-20b	17
Figura 1.14 Cânfora 21 e sua numeração oficial do carbonos	19
Figura 1.15 Formas Enantioméricas da Cânfora e o seu precursor	
sintético d-(+)-borneol (natural)	20
Figura 1.16 Reação de MBH assimétrica catalisada por β -ICD 30a	23
Figura 3.1 Algumas piridinas substituídas e suas relativas	
nucleofilicidades	29
Figura 3.2 Comparação das nucleofilicidades de piridinas com outros	
nucleofilos	30
Figura 3.3 Aldeídos piridínicos 35 e 36	31
Figura 4.1 Resultado na síntese de 31	35
Figura 4.2 Análise por CCDA, eluente = hexano/acetato de etila $(1:1)$;	

A= padrão aldeído piridinico 35	36
Figura 4.3 Cromatograma (CGMS) da reação aldólica após separação dos	
diastereoisômeros, TR= 18,8 min	37
Figura 4.4 Espectro de massas da reação aldolica após separação dos	
diastereoisômeros; Produto majoritário TR= 18,8 min	37
Figura 4.5 Espectro de massas (CG-MS) Principais fragmentos propostos	
neste trabalho para o produto majoritário da reação aldólica e suas	
respectivas abundâncias relativas	38
Figura 4.6 Mass Spectrometry Data Center Collection (C) 2008; MS	
número de espectro 151971	39
Figura 4.7 Expansão do espectro de RMN ¹ H do aldol, ed=86%	41
Figura 4.8 Possível formação de quatro diastereoisômeros possíveis	43
Figura 4.9 Correlação do ângulo teórico e o valor da constante de	
Karplus	44
Figura 4.10 Conformações mais estaveis das estruturas <i>exo-1</i> e <i>exo-2</i>	4 5
calculadas pelo programa Gaussian 2009	45
Figura 4.11 Conformações mais estáveis das estruturas endo-1 e endo-2	
calculadas pelo programa Gaussian 2009	46
Figura 4.12 Espectro Infravermelho do aldol 31	47
Figura 4.13 Ligação de hidrogênio intramolecular em 41 e 42, R = Ph, p-	
NO ₂ Ph; <i>p</i> -MeOPh; Et; $R_1 = H$, OH, <i>o</i> -alquil, i-pr	50
	F 4
Figura 4.14 Equilibrio conformacional dos sin e anti aldois	51
Figura 4.15 Medidas de RMN ¹ H do P _{maj} em campo de 200 MHz	52
Figura 4.16 Correlação de Karplus	53
Figura 4.17 Diastereoisômeros possíveis para serem P _{maj}	54
Figura 4.18 Composto majoritário 31	54
Figura 4.19 Espectro de NOESY do produto majoritário caracterizado	
completamente como 31	54

Figura 4.20 Preparação do diol 33 e 33a	59		
Figura 4.21 Análise por CCDA. eluente = Hexano/acetato de etila (1:1); A = padrão aldol 31 , B = Diastereoisômero majoriário puro; C = Diastereoisômero minoritário puro. D=produto bruto da redução do 31	60		
Figura 4.22 Cromatograma do P_{maj} da redução de 31 , após purificação por CC. Espectro de massas deste P_{maj} , que apresenta o sinal $m/e=241$, entre outros sinais bem caractrísticos da série	61		
Figura 4.23 Infravermelho do diol 33	62		
Figura 4.24 Conformações mais estáveis das estruturas dos dois dióis <i>exo-exo e exo-endo</i> (oriundas da redução da cetona 31 , que foi separada por cromatografia em coluna) calculadas pelo programa Gaussian 2009	63		
Figura 4.25 Relação ângulo diedro $H_{11}-H_{10}-H_{12}-H_{13}$ (<i>exo-exo</i>) = 7° <i>e</i> $H_{12}-C_{11}-C_{10}-H_{40}$ (<i>exo-endo</i>) = 131.6° com a constante de Karplus	64		
Figura 4.26 Espectro de expansão do diol majoritário e minoritário da redução de 31	65		
Figura 4.27 Ataque do íon hidreto			
Figura 4.28 Resultado da síntese estereosseletiva de 32-32c Figura 4.29 Análise por CCDA do produto bruto da reação aldólica da			
R(+)-cânfora 21a Figura 4.30 Cromatograma da reação de formação do32 ou 32a	67		
(FR=17.5 min.)	68		
Figura 4.31 Expansão do espectro de RMN-1H do diastereoisômero 32	68		
Figura 4.32 Conformação mais estável da estrutura do aldol 32, calculadas pelo programa Gaussian 2009, pela teoria DFT, no nível de cálculo B3LYP/6-311++G(d,p)	60		
Figura 4 33 Composto 32	69		
Figura 4.34 Expansao espectro de NUESY do composto 32	70		
Figura 4.35 Expansão do espectro COSY (H,H) do composto 32	71		

Figura 4.36 Reação de redução do aldol 32	71
Figura 4.37 Expansão do espectro de RMN- ¹ H do H ^{3'} do diol 34	72
Figura 4.38 Conformações mais estáveis das estruturas dos dois dióis <i>exo-exo</i> 34 (oriunda da redução da cetona 32 , que foi separada por cromatografia em coluna) calculada pelo programa Gaussian 2009, pela teoria DFT, no nível de cálculo B3LYP/6-311++G(d,p)	72
Figura 4.39 Reação Enantiosseletiva de Morita-Baylis-Hillman do <i>p</i> - nitrobenzaldeído com o acrilato de metila	73
<i>p</i> -nitrobenzaldeído com o acrilato de metila	75
Figura 5.1 Aldol 31	83
Figura 5.2 Diol 33	98
Figura 5.3 Aldol 32	108
Figura 5.4 Diol 34	129

LISTA DE TABELA

Tabela 1.1 L-Prolina e derivados da L-Prolina testados na reação	
aldólica assímetrica entre a acetona com o 4-nitrobenzaldeído ^a	11
Tabela 1.2 Reação de adição de Michael catalizada por (-)-20a,b	18
Tabela 1.3 Custos de algumas substâncias naturais. Catalogo Handbook	
of Fine Chemical	20
Tabela 4.1 Razões entre os adutos 37:38: a) rendimentos referentes a	
mistura isomérica; b) razões determinadas por RMN ¹ H	49
Tabela 4.2 Jvic (3J) em Hexanéis ^a	53
Tabela 4.3 Tabela de resultados da reação enantiosseletiva de Morita-	
Morita-Baylis-Hillman do p-nitrobenzaldeído com o acrilato de metila	73
Tabela 4.4 Tabela de resultados da reação enantiosseletiva de Morita-	
Baylis-Hillman do p-nitrobenzaldeído com acrilonitrila	75

LISTA DE ESQUEMA

Esquema 1.1	Catálise da reação aldólica através da amina quiral	10
Esquema 1.2	Reação aldólica organocatalisada com amina quiral 7	12
Esquema 1.3	Resultados obtidos por List e Barbas III na reação	14
Esquema 1.4	Esquema geral para a reação de MBH	22
Esquema 1.5	Mecanismo geral da reação de MBH	23
Esquema 3.1	Análise Retrossintética	33
Esquema 4.1	L Formação do Enolato E	42
Esquema 4.2	Estados de transição para os quatro possíveis aldóis	
diastereoisomé	ricos	48
Esquema 4.3	Síntese de Albizati	49
Esquema 4.4	Mecanismo de redução de carbonilas por NaBH ₄	56
Esquema 4.5	Reduções de cicloexanos substituídoas: R = o-alquil	56
Esquema 4.6	Trajetória de Burgi-Dunitz	58
Esquema 4.7	Reduções diastereosseletivas do 31	58
Esquema 4.8	Face de ataque côncava e convexa	58

LISTA DE ESPECTROS

Espectro 6.1 Espectro de RMN ¹ H (CDCl ₃ , 200 MHz) de 31	86
Espectro 6.2 Expansão do Espectro RMN- ¹ H (CDCI ₃ , 200 MHz) de 31 região de 6.00 a 8.70 ppm	87
Espectro 6.3 Expansão do Espectro RMN- ¹ H (CDCl ₃ , 200MHz) de 31 na região de 2.00 a 5.20 ppm	88
Espectro 6.4 Expansão do Espectro RMN- ¹ H (CDCl ₃ , 200MHz) de 31 na região de 0.20 a 2.00 ppm	88
Espectro 6.5 Espectro de RMN ¹³ C-APT (50 MHz, CDCl ₃) de 31	89
Espectro 6.6 Expansão do Espectro de RMN 13 C-APT (50 MHz, CDCl ₃) de 31 na região de 0,000 a 34,000 ppm	90
Espectro 6.7 Expansão do Espectro de RMN 13 C-APT (50 MHz, CDCl ₃) de 31 na região de 40,000 a 85,000 ppm	90
Espectro 6.8 Expansão do Espectro de RMN 13 C-APT (50 MHz, CDCl ₃) de 31 na região de 40,000 a 85,000 ppm	91
Espectro 6.9 Espectro Bidimensional de COSY H, H de 31	92
Espectro 6.10 Espectro Bidimensional de NOESY H, H de 31	93
Espectro 6.11 Espectro Bidimensional de HMQC de 31	94
Espectro 6.12 Cromatograma da reação de obtenção do aldol 31.	95
Espectro 6.13 Espectro de Infravermelho do 31 em cm ⁻¹	96
Espectro 6.14 Espectro de massa do 31	97
Espectro 6.15 Espectro de RMN- ¹ H (CDCl ₃ , 200 MHz) do diol 33	100
Espectro 6.16 Expansão do espectro de RMN- ¹ H (CDCl ₃ , 200MHz) de 33 na região de 3,8 a 5,50 ppm	101
Espectro 6.17 Espectro de RMN-H ¹ (50 MHz, CDCl ₃) do 33	102
Espectro 6.18 Espectro do Espectro de RMN 13 C-APT(50MHz, CDCl ₃) de 33 na região dee 0,000 a 39,000 ppm	103
Espectro 6.19 Expansão do Espectro de RMN 13 C-APT (50 MHz, CDCl ₃) de 33 na região de 45,000 a 85,000 ppm	103
Espectro 6.20 Expansão do Espectro de RMN ¹³ C-APT (50 MHz,	

CDCl ₃) de 33 na região de 45,000 a 85,000 ppm	104
Espectro 6.21 Espectro de Infravermelho do diol 33 em cm ⁻¹	105
Espectro 6.22 Cromatograma da reação bruta do diol	106
Espectro 6.23 Espectro de massa do diol 33	107
Espectro 6.25 Espectro de RMN- ¹ H (CDCl ₃ , 200 MHz) do 32	111
Espectro 6.26 Expansão do Espectro RMN- ¹ H (CDCI ₃ , 200MHz) de 32 na região de 7.00 a 9.00 ppm	112
Espectro 6.27 Expansão do Espectro RMN- ¹ H (CDCl ₃ , 200MHz) de 32 na região de 2.00 a 5.50 ppm	112
Espectro 6.28 Expansão do Espectro RMN- ¹ H (CDCl ₃ , 200MHz) de 32 na região de 0.00 a 2.00 ppm	113
Espectro 6.29 Espectro de RMN 13 C-APT (50 MHz, CDCl ₃) de 32	114
Espectro 6.30 Expansão do Espectro de RMN 13 C-APT (50 MHz, CDCl ₃) de 32 na região de 100,000 a 231,000 ppm	115
Espectro 6.31 Expansão do Espectro de RMN 13 C-APT (50 MHz, CDCl ₃) de 32 na região de 50,000 a 93,000 ppm	115
Espectro 6.32 Expansão do Espectro de RMN 13 C-APT (50 MHz, CDCl ₃) de 32 na região de 10,000 a 45,000 ppm	116
Espectro 6.33 Espectro Bidimensional de COSY H, H de 32	117
Espectro 6.34 Expansão do Espectro Bidimensional de COSY H, H de 32	118
Espectro 6.35 Espectro Bidimensional de NOESY do 35	119
Espectro 6.36 Expansão do Espectro Bidimensional de NOESY do 32 Espectro 6.37 Espectro Bidimensional de HMQC do 32 Espectro 6.38 Expansão do Espectro Bidimensional de HMQC do	120 121
32 Espectro 6.39 Expansão do Espectro Bidimensional de HMQC do	122
Espectro 6.40 Espectro Bidimensional de HMBC do 32 Espectro 6.41 Expansão do Espectro Bidimensional de HMBC do	123 124
54	120

Espectro	6.42 Expansão do Espectro Bidimensional de HMBC do	
32		126
Espectro	6.43 Espectro de massa do 32	127
Espectro	6.44 Espectro Infravermelho do 32 em cm ⁻¹	128
Espectro	6.45 Espectro de RMN- ¹ H (CDCl ₃ ,500 MHz) do 34	131
Espectro	6.46 Expansão do Espectro de RMN- ¹ H (CDCl ₃ , 500 MHz)	
do 34 em	0.550 a 2.200 ppm	132
Espectro	6.47 Expansão do Espectro de RMN- ¹ H (CDCl ₃ , 500 MHz)	
do 34 em	2.200 a 5.200 ppm	133
Espectro	6.48 Expansão do Espectro de RMN- ¹ H (CDCl ₃ , 500 MHz)	
do 34 em	8.550 a 6.000 ppm	134
Espectro	6.49 Espectro de RMN ¹³ C-APT (125 MHz, CDCl ₃) de 37	135
Espectro	6.50 Expansão do Espectro de RMN ¹³ C-APT (125 MHz,	
CDCl ₃) de	34 na região de 0,000 a 40,000 ppm	136
Espectro	6.51 Expansão do Espectro de RMN ¹³ C-APT (125 MHz,	
CDCl ₃) de	34 na região de 40,000 a 90,000 ppm	137
Espectro	6.52 Expansão do Espectro de RMN ¹³ C-APT (125 MHz,	
CDCl ₃) de	34 na região de 100,000 a 150,000 ppm	138
Espectro	6.53 Espectro de Infravermelho do diol 34 em cm ⁻¹	139

LISTA DE ABREVIATURA

- AMBH Adutos de Morita-Baylis-Hillman
- **CCDA -** Cromatografia de camada delgada analítica
- CGMS- Cromatografia gasosa acoplada com espectrômetro de massas
- CLAE Cromatografia líquida de alta eficiência
- **CNPq -** Conselho Nacional de Desenvolvimento Científico e Tecnológico
- δ Deslocamento químico
- **d** Dubleto

DABCO - 1,4 - diazabiciclo [2.2.2]octano

dd - Duplo dubleto

- **ddd** Duplo dubleto duplo
- ed excesso diastereoisomérico
- ee excesso enantiomérico
- ESI-MS Espectrometria de massas com ionização electrospray
- FR Fator de retenção cromatográfico
- Hz Hertz
- IBH Ligação de hidrogênio intramolecular

IUPAC - União internacional de química pura e aplicada (do inglês, *International Union of Pure and Applied Chemistry*)

- J Constante de acoplamento escalar
- LDA- diisopropil amideto de lítio

m – multipleto

ppm - partes por milhão

RMBH – Reação de Morita-Baylis-Hillman

RMN – Ressonância Magnética Nuclear

- **s** Singleto
- sex sexteto
- **sl –** Singleto largo
- t tripleto
- TMS Tetrametilsilano
- U.V. Ultravioleta visível
- vic vicinal

SUMÁRIO

1 INTRODUÇÃO	01
1.1 Importâncias das Substâncias Enantiomericamente Puras (SEP)	01
1.1.1 Tragédia da Talidomida	02
1.2 Catálise Assimétrica	05
1.2.1 Organocatálise	06
 1.2.1.1 Organocatálise de Aminas Quirais nas Reações Aldólica, Anelação de Robinson, Manich, adição de Michael, de MBH e Dominó	12 16 17 18 22 52 28 31 32 35 42 56 71 73 81
6.1 Materiais e Métodos 6.2 Experimentos e Espectros	81 83
6.2.1 Preparação do (1R, 3S,3 ['] R,4R) –3-[(3-Piridinil) hidroximetil- 1,7,7-trimetilbiciclo [2.2.1]heptan-2-ona (31) 6.2.2 Preparação do (1R,3S,3R, 3 ['] R,4R) – 3 -[(3-Piridinil)	84
hidroximetil-1,7,7-trimetilbiciclo [2.2.1]heptan-2-ol (33)	99
1,7,7-trimetilbiciclo [2.2.1]heptan-2-ona (32) 6.2.4 Preparação do (1R,3S,3 ['] R,4R) – 3 -[(4-Piridinil) hidroximetil-	109
1,7,7-trimetilbiciclo [2.2.1]heptan-2-ol (34) REFERÊNCIAS	130 141

1 INTRODUÇÃO

1.1 Importância das Substâncias Enantiomericamente Puras (SEP)

Em uma breve análise na literatura publicada nos últimos anos em revistas científicas de química orgânica, química farmacêutica, farmacológica, medicinal e outras áreas afins, vêm se evidenciando um crescente interesse por substâncias enantiomericamente puras (SEP). Esta tendência é observada, tanto na comunidade acadêmica quanto no setor químico industrial. Atualmente a maior demanda por SEP provém principalmente das indústrias farmacêuticas, seguida pelas indústrias de defensivos agrícolas. A origem dessa demanda está intrinsecamente ligada ao número crescente de estudos relacionando propriedades biológicas com quiralidade molecular. Sendo assim, a causa deste desenvolvimento singular origina-se no fato que diferentes enantiômeros de uma mistura racêmica interagem diferentemente com sistemas biológicos (BARREIRO *et al*, 1997), ou seja, a propriedade química que diferencia dois enantiômeros é a sua distinta reatividade perante substâncias que sejam, elas próprias quirais.

Os seres vivos são formados, em grande parte, por substâncias quirais de baixo peso molecular, e por macromoléculas constituídas de monômeros quirais. Em adição à quiralidade dos monômeros e como conseqüências delas, as macromoléculas apresentam uma quiralidade resultante do arranjo tridimensional em suas estruturas terciárias (CHAMPBEL, 1991).

Como conseqüência de sua estrutura molecular quiral, os seres vivos são capazes de diferenciar pares de enantiômeros. O mesmo fenômeno está também envolvido no reconhecimento molecular, pelo organismo, do sabor e aroma. Sabe-se que estas propriedades organolépticas são extremamente dependentes da quiralidade. Por exemplo, a (S)-carvona **1**, um monoterpeno, tem cheiro de alcavária enquanto que (R)-carvona **2**, tem um odor de hortelã. Já o adoçante

artificial não calórico aspartame, com configuração absoluta (S,S)-**3**, tem sabor doce, enquanto que seu epímero (S,R)-**4** tem sabor amargo (Figura 1.1).

Figura 1.1 Configuração absoluta e resposta biológica.

1.1.1 Tragédia da Talidomida

Em primeiro de outubro de mil novecentos e cinquenta e sete chegou ao mercado alemão a (±)-Talidomida (Figura 1.2), a qual foi comercializada como um <u>sedativo</u> e <u>hipnótico</u> com poucos efeitos colaterais. A indústria farmacêutica que a desenvolveu acreditou que o medicamento era tão seguro que era propício para prescrever a mulheres grávidas, para combater enjôos matinais. Foi rapidamente prescrita a milhares de mulheres e espalhada para todas as partes do mundo (46 países), sem circular no mercado norte-americano. No final

dos anos 1950, foram descritos na Alemanha, Reino Unido e Austrália os primeiros casos de malformações congênitas onde crianças passaram a nascer com <u>focomielia</u>, mas não foi imediatamente óbvio o motivo para tal doença. Os bebês nascidos desta tragédia são chamados de "<u>bebês da talidomida</u>", ou "geração talidomida" (Figura 1.3). Em 1962, quando já havia mais de 10.000 casos de defeitos congênitos a ela associados em todo o mundo, a Talidomida foi removida da lista de remédios indicados.

Figura 1.2 Isômeros da Talidomida.

Contudo, considerou-se durante muito tempo que uma mistura racêmica biologicamente ativa, um dos enantiômeros seria responsável pela ação (eutômero) e o outro inativo (distômero). Ficou evidenciado posteriormente que apenas o isômero R (eutômero, **5**) apresentava as propriedades sedativas e hipnótica propostas pelo medicamento. Por outro lado, o isômero S (distômero, **6**) apresentava uma forte atividade teratogênica (FABROS et al, 1990).

Figura 1.3 *Geração talidomida* (acessado em: <<u>http://pt.wikipedia.</u> <u>org/wiki/Talidomida> acessado em:27</u> de agosto de 2010).

Diante desses fatos ocorridos, o licenciamento pela *Food and Drug Administration* (FDA) para a comercialização de novos medicamentos na sua forma racêmica é somente permitido, após cuidadosas avaliações farmacológicas dos enantiômeros isoladamente e sendo comprovado que o distômero não possui efeito colateral prejudicial à saúde do paciente. No Brasil, a proibição da Talidomida somente aconteceu em 1965 e no mesmo ano, um médico israelense percebeu que o remédio era muito eficiente no tratamento de pacientes com hanseníase (Lepra). Como o Brasil é um dos países do mundo com grande número de casos de Lepra, a talidomida continua a ser vendida e consumida.

Um enantiômero puro pode ser preparado por três caminhos principais, que consiste do uso de um composto quiral, da separação de materiais racêmicos e de sínteses assimétricas (Figura 1.4) (QUEIROZ, 2002).

Figura 1.4 Rotas para obter compostos enantiomericamente puros.

1.2 Catálise Assimétrica

A Catálise assimétrica é uma das categorias para obtenção de compostos enantiomericamente puros, e esta mesma é subdividida em catálise organometálica, catálise enzimática (biocatálise) e organocatálise.

Pasteur, em seus trabalhos pioneiros, demonstrou a existência de dois tipos de cristais, em amostra de tártarato de sódio e amônia racêmica, obtidas em laboratório, sendo por isso considerado fundador da disciplina estereoquímica. Pasteur separou, com auxílio de pinças e lupa, os dois tipos de cristais e verificou que os cristais de um tipo eram imagem especular não-sobreponíveis do outro (propriedade denominada de enantiomerismo ou quiralidade)(PILLI, 2001)

Até então, por volta de 1970, a maioria dos químicos orgânicos recorria à técnica de resolução de racematos, quando era necessário obter compostos enantiomericamente puros. Posteriormente, o uso de matérias-primas quirais produzidos pela natureza passou a ser a abordagem mais empregada até a segunda metade daquela década, quando se iniciou o desenvolvimento de reagentes quirais que permitiram a obtenção exclusiva de um enantiômero a partir de matéria-prima aquiral, processo esse denominado de síntese assimétrica.

Como já comentamos, vale a pena ressaltar que a importância de se descobrir novas rotas de síntese assimétrica decorre, entre outras, do fato de formas enantioméricas de um produto natural ou sintético interagir, na maioria das vezes, de forma diferente com sistemas biológicos formados a partir de moléculas quirais (aminoácidos, carboidratos etc.) e, por essa razão, poderem apresentar propriedades biológicas e farmacológicas distintas.

1.2.1 Organocatálise

A organocatálise por definição consiste em um processo no qual orgânicas, de moléculas baixo peso molecular (compostos normalmente por C, H, O, N, S e P), catalisam reações orgânicas, sem necessitar da presença de qualquer traço de metal. Em especial, na síntese assimétrica, essa forma de catálise se apresenta como uma poderosa ferramenta para a preparação de substâncias complexas e seletivas (COELHO e AMARANTE, 2009). Até recentemente, os catalisadores utilizados na produção de compostos orgânicos enantiomericamente enriquecidos em esfera acadêmica e industrial (BLASER et al, 2005) eram exclusivamente baseados em duas categorias, sendo elas: complexos de metais de transição (organometálica) e enzimas (biocatálise). No entanto, a organocatálise tem despontado nos últimos anos como uma terceira metodologia, sendo considerada uma das abordagens mais promissoras para controle de reações químicas, em especial em síntese catalítica

6

assimétrica. Além do mais, trabalhos recentes mencionam os dias atuais como a "idade de ouro" da organocatálise, com grandes possibilidades de aplicação industrial (HOUK e LIST, 2004) e (BLASER *et al*, 2005).

O primeiro relato (Figura 1.5) de uma reação orgânica assimétrica organocatalisada data de 1912, onde se observou que os alcalóides quinina e quinidina eram capazes de uma pequena indução assimétrica na reação entre HCN e benzaldeído (FISKE *et al*, 1912). A área permaneceu sem expressão até o ano 2000, onde se reportou que a L-Prolina era capaz de um alto grau de indução assimétrica em reações aldólicas (LIST *et al*, 2000).

Figura 1.5 Indução assimétrica na reação entre HCN e benzaldeído. *Asterisco em azul indica o centro assimétrico gerado.

Estando ciente do grande desenvolvimento de catalisadores organometálicos e enzimas, assim como de sua eficiência, surge então questão do que do uso е pesquisa área de а por na organocatalisadores e quais suas vantagens. Na tentativa de responder a essas questões, podemos argumentar que a busca por novos métodos que permitam preparar moléculas orgânicas com maior rendimento, maior eficiência, menor tempo, menor número de transformações, menor toxidade e melhor seletividade é constante no

meio acadêmico e científico. Em escala industrial, o custo da produção é também um fator muito importante. Por exemplo, o encarecimento de um fármaco está relacionado à obtenção do mesmo em sua forma enantiomericamente pura na síntese assimétrica. Este é um fator importante, já que alguns fármacos devem apresentar particularidade em sua estrutura, o que é de fundamental importância na atividade biológica. Além da indústria farmacêutica, são também necessários métodos eficientes para a preparação industrial de compostos enantiomericamente enriquecidos área de na agroquímicos, intermediários sintéticos, entre outros. Há importantes vantagens no uso de organocatalisadores (BLASER et al, 2005). Essas pequenas moléculas orgânicas com atividade catalítica são geralmente estáveis, de baixo custo, não tóxicas e podem estar prontamente disponíveis para a utilização. Além do mais, as condições de reação são mais amenas quando comparadas a outros tipos de catálise, ou seja, não é necessário atmosfera de argônio, o meio não precisa ser totalmente não é necessário anidro normalmente, aquecimento e, ou resfriamento. Desta forma, a organocatálise se mostra um processo simples e prático, sendo um grande atrativo para a indústria farmacêutica, pois nestes casos não se tolera a contaminação por metais no produto final.

O interesse da comunidade química no assunto pode ser facilmente comprovado pela recente explosão de publicações que tratam desse tema. Em uma consulta no SciFinder® utilizando *organocatalysis* como palavra chave mostra a evolução desse tema nos últimos anos Figura 1.6.

Figura 1.6 A evolução da organocatálise nos últimos anos. (ScinFider® <u>www.scifinder.com</u>, acessado em: 06 de setembro de 2010).

Na pesquisa por novos catalisadores, os homens vêm explorando o desenvolvimento de catalisadores que possam levar a níveis de comparáveis àqueles observados seletividade para processos catalisados por enzimas, as quais são proteínas de elevado nível de organização (YOON е JACOBSEN, 2003). Neste âmbito, а organocatálise pode ser considerada como uma "versão mínima" das enzimas (LIST et al, 2000).

Em relação à interação entre as moléculas existentes na reação, podemos classificar a organocatálise como catálise covalente ou não covalente. Na catálise covalente, temos a formação de um intermediário entre o catalisador e o substrato. Um exemplo é a reação que envolve ativação nucleofílica de um grupo carbonílico por uma amina secundária através da formação de enaminas com cetonas. Podemos mencionar, como um exemplo, a catálise de reações aldólicas através da L-Prolina, a qual funciona como um organocatalisador (Esquema 1.1) (LIST *et al*, 2000).

Esquema 1.1 Catálise da reação aldólica através da amina quiral.

A L-Prolina (Figura 1.7) é um aminoácido natural, comercializado com o centro assimétrico controlado (quiralidade), e uma variedade de reações podem ser mediada através deste simples aminoácido. Dentre esta variedade de reações, temos as reações catalíticas assimétricas aldólicas, que são importantes na formação de ligação C-C.

Figura 1.7 Estrutra da L-Prolina.

Em estudos desenvolvidos pelo grupo de Barbas III e colaboradores (LIST *et al*, 2000) os catalisadores comerciais derivados da L-Prolina foram testados em reações aldólicas assimétricas de acetona com 4-nitrobenzaldeído. O resultado de seu trabalho é mostrado na Tabela 1.1, que inclui também a própria L-Prolina.

Catalisadores	Rendimento (%)	ee (%)
CO ₂ H	68	76
	67	73
	85	78
Нолл,	50	62

Tabela 1.1 L-Prolina e derivados da L-Prolina testados na reação aldólica assímetrica entre a acetona com o 4-nitrobenzaldeído^a

a- Adaptação de LIST et al, 2000.

Várias substâncias orgânicas vêm sendo desenvolvidas com objetivo de serem utilizadas como organocatalisadores. Desde os derivados de fósforo, guanidinas, alcalóides, uréias, entre outras, vem sendo utilizada como sucesso em inúmeras transformações químicas Em particular, a utilização das aminas como organocatalisadores. fornecem **0**S produtos desejados com excelente grau de estereosseletividade. Muitas das aminas são produtos naturais abundantes ou podem ser sintetizados com alguma facilidade. Algumas das principais reações catalisadas por aminas quirais, e principalmente por aminas secundárias cíclicas, cinchonas e derivados, dando ênfase a formação de ligações C-C, dentre elas a reação aldólica, de Mannich, adições conjugadas, cicloadições, alguilações, Morita-Baylis-Hillman e dominó (COELHO e AMARANTE, 2009).

1.2.1.1 Organocatálise de Aminas Quirais nas Reações Aldólica, Anelação de Robinson, Manich, adição de Michael, de MBH e Dominó

1.2.1.1.1 Reação Aldólica e a Anelação de Robinson

A reação aldólica (cuja versão que conduz a formação de produtos de ciclização denomina-se anelação de Robinson) são umas das reações mais utilizadas em química na formação de novas ligações carbono-carbono. A primeira reação aldol enantiosseletiva, utilizando aminas quirais, foi descrita na década de 70 (Esquema 1.2)(EDER *et al*, 1971).

Esquema 1.2 Reação de anelação de Robinson organocatalisada com amina quiral **7.**

Diante desses resultados, Parrish e Eder propuseram dois mecanismos distintos para racionalizar a estereosseletividade obtida no processo (EDER *et al*, 1971) e (PARRISH e HAJOS, 1974). A primeira proposta envolve a adição nucleofílica da L-Prolina **7** na cetona **8** e a subseqüente formação de um enol, que pode assumir um arranjo espacial cíclico estabilizado por ligações de hidrogênio (Figura 1.8).

Figura 1.8 Estado de transição proposto, envolvendo formação de intermediário carbonolamina.

Alternativamente, outra proposta foi atribuída pelos autores, ao qual um intermediário atuaria com nucleofilo na formação da ligação C-C, com concomitante transferência de hidrogênio para a ligação (C-H--H), conduzindo a um derivado enamínio no estado de transição (Figura 1.9).

Figura 1.9 Estado de transição proposto, envolvendo formação do derivado enamínio.

Em seguida, em um trabalho feito por Agami e colaboradores, foi proposta uma terceira alternativa mecanística, na qual duas moléculas de L-Prolina **7** participam do estado de transição dessa reação. A proposta de Agami baseou-se em estudos cinéticos de efeitos nãolineares, que evidenciaram que a reação se processava com um cinética de segunda ordem com relação a L-Prolina (Figura 1.10)(AGAMI *et al*, 1984).

Figura 1.10 Estado de transição proposto, contendo duas moléculas de L-Prolina.

Até a década de 90, essas propostas mecanisticas ficaram sem contestação. Foi quando List e Barbas III demonstraram, pela primeira vez, que a catálise com a L-Prolina **7** também pode ser aplicada em versões intermoleculares das reações aldólicas. Assim eles descreveram a síntese dos produtos de condensação aldólica **10-14**, obtidos pela reação entre aldeídos e cetonas, alifáticos e aromáticos, catalisados pela (S)-L-Prolina **7** (Esquema 1.3)(NOTZ e LIST, 2000).

Esquema 1.3 Resultados obtidos por List e Barbas III na reação.

Diante dos resultados obtidos, List e Barbas III propuseram um novo mecanismo para essa transformação, como alternativa àqueles propostos por Parrish-Eder e Agami. Neste mecanismo é ressaltada a presença da enamina intermediária **16**, proveniente do íon imínio **15**, atuando como nucleófilo. Além disso, pode-se notar a atuação da L-Prolina como *co*-catalisador, devido à presença da porção carboxila de ácido, que age como ácido de Brönsted, realizando uma ligação de hidrogênio entre a carbonila do aldeído e o grupo carboxila da L-Prolina, conduzindo a estabilização o estado de transição **17** (Figura 1.11)(LIST *et al*, 2000).

Figura 1.11 Mecanismo proposto por List e Barbas III.

1.3 Catálise Nucleofílica

Ambos, ácido e base de Bronsted, são capazes de catalisarem reações químicas, assim como ácido e base de Lewis. Entre estas quatro opções, as bases de Lewis, que podem atuar como catálisadores nucleofílicos, são as menos apreciadas na literatura. Entretanto, uma diversidade de bases de Lewis (fosfinas terciárias, aminas terciárias, piridinas e imidazolas) vem sendo descritas como catalisadores nucleofílicos. Esses compostos aceleram muitas reações, por exemplo, a adição de álcool à cetona e a acilação de álcool por anidrido (FU, 2000).

A acilação do álcool por anidrido, catalisada pela 4-N,Ndimetilaminopiridina (DMAP) é talvez o exemplo mais frequentemente encontrado da catálise nucleofílica. O mecanismo pela qual DMAP acelera este processo fornece uma ilustração de como os nucleófilos podem catalisar transformações químicas (Figura 1.12). Na presença de DMAP, a acilação tipicamente ocorre de varias ordem de magnitude, mais rápido do que em sua ausência (BERRY *et al*, 2001)

Figura 1.12 Mecanismo para acilação de álcool pela Catálise de DMAP. **A** é um agente acetilante mais reativo do que quando se usa anidrido acético.
1.3.1 Derivados da piridina quirais em Catálise nucleofílica

Em 2004, Kotsuki relatou a utilização de piridinas quirais catalíticas na reação de adição de Michael envolvendo cetona e nitroolefinas. Esses derivados de DMAP quiral foram preparados da sulfanamida **18** (derivado da L-prolina) em tratamento com reagente piridinil-lítio, formando as sulfanamidas litiadas **19a** e **19b** (Figura 1.13). A hidrólise resultante do sal sob condições ácidas forneceu o catalisador (-)-**20 a** e (-)-**20 b** com moderado a alto rendimento (50-80%; duas etapas).

Figura 1.13 Reação de obtenção do DMAP quiral (-)-20a e (-)-20b.

Os catalisadores (-)-**20a** e (-)-**20b** tiveram êxitos para promover reação de adição de Michael das cetonas com oleofinas (Tabela 1.3). Esses catalisadores forneceram altos rendimentos (92-100%) e altos níveis de diastereosseletividade (>93:7) e enantiosseletividade (88-99% ee) nesses adutos de Michael desejados, quando acido 2,4-dinitrobenzenossulfônio foi usado como um aditivo (WURZ, 2007).

Tabela 1.2: Reação de adição de Michael catalisada por (-)-20

$ \begin{array}{c} $								
Entre	catalisador	Х	Ar	sin:anti	% ee ^a	rend. %		
1	20a	CH_2	Ph	98:2	95	98		
2	20b	CH_2	Ph	98:2	99	95		
3	20a	CH_2	1-Naftil	97:3	98	92		
4	20b	CH_2	1-Naftil	97:3	93	100		
5	20a	CH_2	Tienil	94:6	88	92		
6	20b	CH_2	Tienil	93:7	90	98		
7	20a	S	Ph	99:1	96	95		
8	20b	S	Ph	98:2	92	98		

a) excesso entaniomérico do diastereoisomero sin

1.4 Cânfora e seus derivados

A Cânfora (**21**, Figura 1.14) é uma substância quiral amplamente utilizada como precursor de diversos auxiliares de quiralidade, ligantes, catalisadores e bases quirais. É uma substância altamente versátil, sendo facilmente modificada em qualquer um dos seus dez átomos de carbono. A funcionalização em posições aparentemente desativadas é possível em virtude de conhecido rearranjos catiônicos característicos do sistema biciclico[2.2.1]heptano (ARMER *et al*, 1993).

(1R,4R)-1,7,7-trimetilbiciclo[2.2.1]heptan-2-ona

Figura 1.14 Cânfora 21 e sua numeração oficial dos carbonos.

Este monoterpenóide é natural, podem ser isolada, por exemplo, do óleo essencial de *Lippia alba* (BARROS *et a*l, 2007) sendo abundante e barato, também devido a sua fácil preparação a partir do D-(+)-borneol, produto também natural (Figura 1.15). O D-(+)borneol pode ser encontrado abundantemente em várias espécies de Artemisia, Dipterocarpaceae, *Balsamifera blumea* e *Galanga kaempferia* (WONG *et al*, 2006).

A Cânfora vem atraindo considerável interesse como material de partida para a preparação de derivados que venham a ser usados em síntese assimétrica. Este terpenóide encontra-se comercialmente disponível nas duas formas enantioméricamente puras (Figura 1.15) e o seu custo é atraente quando comparado com outros produtos quirais usados em síntese enantiosseletivas (Tabela 1.3).

Figura 1.15 Formas Enantioméricas da Cânfora e o seu precursor sintético D-(+)-borneol (natural).

Tabela 1.3 Custos de algumas substâncias naturais com a cânfora. *Catalog Handbook of Fine Chemical*®, valores em reais.

Substâncias	Massa (g/mol)	Preço por Mol \$	Cas Number
D-Alinina	89,09	278	338-69-2
R-(-)2-amino-1-butanol	89,14	1725	5856-53-3
(+) borneol	154	15250	464-43-7
(1R)-(+) Cânfora	152,23	437	464-49-3
(1S)-(-) Cânfora	152,23	3384	464-48-2
D-(+) Gliceraldeido	90,08	52727	453-17-8
DL-Gliceraldeido	90,08	28000	56-82-6
L-(+)-Ácido láctico	90,08	351	79-334
(+)-α-Pineno	136,23	1175	7785-70-8
(-)-α-Pineno	136,23	1275	7785-26-4
(-)-b-Pineno	136,23	3000	18172-67-3

As funcionalidades dos carbonos C_2/C_3 ; C_2/C_{10} e C_3 (veja na figura 1.14) contribuíram para preparação de vários Ligantes precursores de catalisadores organometálicos quirais e organocatalisadores em diversos tipos de reações, sendo descritos de bons a ótimos enantiocontroles. Cabe mencionar de forma destacada o (-) e (+) DAIB **29a** e **29b** (quadro 1.1.) que revolucionou a área de catálise

assimétrica e laureou o seu descobridor, R. Noyori, ao prêmio Nobel de química em 2001. Alguns dos derivados da cânfora empregados em catálise assimétrica estão descrito no quadro 1.1.

Quadro 1.1: Alguns derivados de cânfora em síntese assimétrica. a) Adição de Michael (TZENG *et al*, 2008), b) Reação Aldol (CHEN *et al*, 2009), c) Adicão Aliborano a aldeídos (HALL *et al*, 2005), d) Adição Catalítica de organozinco (NOYORI, 1990; PINHEIRO & FERREIRA, 1998).

1.5 Reação de Morita-Baylis-Hillman (MBH): desenvolvimento de versões assimétricas

A reação de Morita-Baylis-Hillman (MBH), conhecida desde 1968, também está incluída na classe de reações utilizadas na formação de uma nova ligação carbono-carbono (BASAVAIAH et al, 2003). Essa transformação apresenta uma das maiores eficiências de átomos entre as reações orgânicas conhecidas na atualidade, além de ser um exemplo de uma reação organocatalítica. Essa reação que consiste em uma condensação entre carbonos eletrofílicos de uma substância carbonilada (geralmente, um aldeído) e a posição a de uma olefina ativada (derivado acrílico) por grupos retiradores de elétrons, catalisada por uma amina terciária ou fosfina, leva à formação de uma nova ligação σ C-C em um produto altamente funcionalizado, de grande potencialidade sintética (Esquema 1.4)(AMARANTE *et al*, 2008).

Esquema 1.4 Esquema geral para a reação de MBH.

O mecanismo mais aceito para as reações de MBH envolve quatro etapas (Esquema 1.5) (SANTOS *et al*, 2006). Na primeira, ocorre uma adição de Michael do catalisador (amina terciária I ou fosfina) ao sistema α,β -insaturado II, gerando o zwitterion III. A condensação aldólica entre III e o aldeído IV gera o alcóxido V, que sofre uma transferência de próton, fornecendo o enolato VI. Neste estágio, a decomposição deste intermediário gera o produto β -hidroxia-metileno carbonilado VII, com regeneração do catalisador I.

Esquema 1.5: Mecanismo geral da reação de MBH.

Hatakeyama e colaboradores (IWABUCHI et al, 1999 e NAKANO, 2004) descreveram um método elegante para preparação de adutos de MBH com **30b** (Figura 1.16) em alta enantiosseletividade. A metodologia consistiu no emprego da β -isocupreidina(β -ICD) **30a** no acoplamento entre o alceno ativado **30** e aldeídos, alifáticos e aromáticos.

Figura 1.16 Reação de MBH assimétrica catalisada por β-ICD 30a.

Capítulo 2

Objetivos

2 OBJETIVOS

- 2.1 Objetivos Específicos
 - Sintetizar inicialmente dois novos potenciais ligantes e/ou organocatalisadores quirais (**31** e **32**) derivados da R-(+)cânfora **21a**, mediante a reação aldólica diastereosseletiva com aldeídos piridínicos

Estudar com detalhes a redução assimétrica dos aldóis 31 e 32 para obtenção também diastereosseletiva dos correspondentes dióis 33 e 34;

Caracterizar em detalhes as estruturas bidimensionais e tridimensionais mediante estudos de RMN ¹H e ¹³C, principalmente por análises aprofundadas nos espectros de HMQC, COSY e NOESY.

- Caracterizar experimentalmente possíveis ligações de Hidrogênio Intramolecular (IHBs) nos compostos sintetizados, usando a espectroscopia na região do Infravermelho.
- Corroborar esta caracterização de IHBs, baseando em resultados in silico de otimização de geometrias moleculares, usando B3LYP/6-311++G(d,p) como nível de cálculo.
- Caracterizar os quatros novos potenciais Ligantes/ organocatalizadores (31, 32, 33 e 34) quirais sintetizados, por CG-MS de baixa resolução;
- Determinar excesso diastereoisomérico (ed) para os aldóis 31 e
 32 e os dióis 33 e 34 por RMN de ¹H.
- Iniciar uma investigação sobre o poder organocatalítico destas novas moléculas, aplicando-as como organocatalizadores nucleofílicos, inicialmente na reação de Morita-Baylis-Hillman, usando como técnicas de ativação a irradiação por microondas.

Capítulo 3:

Estratégia

3. ESTRATÉGIA

3.1 As Nucleofilicidades Absolutas (N) entre Derivados de Piridinas e outros Nucleófilos

Em química, um nucleófilo (de *núcleo* e do grego φιλοσ, *phile*, amor) é um reagente que forma uma ligação química com seu parceiro de reação (um eletrófilo) doando elétrons para este. O termo nucleófilo e eletrófilo foi introduzido por Christopher Kelk Ingold em 1929 (CAREY e SUNDBERG, 2007). Como nucleófilos doam elétrons, eles são, por definição, bases de Lewis. Todas as moléculas ou íons com um par de elétrons livres podem atuar como nucleófilos.

Cabe ressaltar, que nucleofilicidade não é sinônimo de basicidade. Nem toda base forte é, um bom nucleófilo. Por exemplo: o t-butóxido é uma base forte, mas um péssimo nucleófilo, devido a impedimentos estéricos ao ataque nucleofílico.

Medidas empíricas de nucleofilicidade são obtidas comparando as taxas relativas de reação de um reagente padrão com vários nucleófilos. Uma medida de nucleofilicidade é a nucleofílica constante ou *nucleofilicidade absoluta N*, originalmente definida por (SWAIN e SCOTT, 1953). Tomando a metanólise do iodeto de metila como a reação padrão, eles definiram *N* como:

$$N_{CH_{3I}} = \text{Log} (k_{nucl}/k_{CH_{3}OH}) \text{ em metanol a } 25^{\circ}\text{C.}$$
 (Equação 3.1)

Valores de N > 0 indicam que a substância avaliada é mais nucleofílico que o metanol e N < 0 menos nucleofílica que o metanol (CAREY e SUNDBERG, 2007).

Desta forma, as piridinas substituídas na posição 2 não são eficientes como nucleófilos (por exemplo, a 2,4,6-trimetilpiridina ou 2,4,6-colidina, que é ótima base e péssimo nucleófilo) (Figura 3.1).

Escolhemos como estratégia para este trabalho, a preparação de piridinas quirais, somente substituídas nas posições 3 e 4, diferentemente do trabalho desenvolvido anteriormente pelo nosso grupo, onde 2-piridinas foram preparadas para serem usados como ligantes de metais (bases de Lewis) e para serem organocatalizadores (MELLÃO *et al.*, 1998).

Figura 3.1 Algumas piridinas substituídas e suas relativas nucleofilicidades.

São entendidos muito poucos os relatos que comparam nucleofilicidades entre as piridinas substituídas em diferentes posições. Em 2007, o grupo de professor Mayr e colaboradores (BROTZEL, 2007) descreveram um trabalho cinético em detalhes, comparando as nucleofilicidades absolutas (*N*) de diversas piridinas substituídas com outros nucleófilos e estes resultados estão resumidos na Figura 3.2.

Figura 3.2 Comparação das nucleofilicidades de piridinas com outros nucleófilos.

Podemos notar neste quadro, que a nucleofilicidade absoluta da piridina (enquadrada em azul) é aproximadamente igual a 13, sendo este valor muito maior que o do metanol e próximo da nucleofilicidade absoluta do tri(4-clorofenil)fosfina e da trifenilfosfina (enquadradas respectivamente em verde e em vermelho), considerando no meio de diclorometano como solvente (aprótico). Uma vez que fosfinas foram usadas por Morita como catalisadores nucleofílicos no seu clássico artigo, precursor da reação de Morita-Baylis-Hillman (RMBH), considerar a nucleofilicidade de piridinas substituídas quirais nos pareceu uma boa estratégia.

A RMBH pode ser efetuada tanto em meio prótico como aprótico (BASABAIAH et al, 2007). O mecanismo desta reação depende muito

do tipo de solvente utilizado, tendo uma natureza dualística, determinada por Coelho e colaboradores (AMARANTE *et al*, 2009). Desta forma, acreditamos que, com a presença do grupo hidroxila (OH) em todos os compostos **31**, **32**, **33** e **34**, o que comprovadamente aumenta a velocidade da RMBH (BASABAIAH et al, 2007), o uso da técnica de aceleração de reação por irradiação por microondas e o estudo da influência do solvente, estas moléculas podem vir a apresentar poder catalítico satisfatório como organocatalisadores na RMBH.

3.2 Estudos para a Obtenção dos Novos Catalisadores Quirais

A primeira parte desse trabalho será a obtenção dos aldóis **31** e **32** à partir da Cânfora **21a**. Para alcançar os objetivos citados anteriormente, utilizamos dois eletrófilos diferentes; um aldeído com o nitrogênio na posição 3 (**35**) e outro aldeído piridínico com o nitrogênio na posição 4 (**36**), conforme a figura 3.3.

Figura 3.3 Aldeídos piridínicos 35 e 36.

Em sequência, tentaremos obter os dióis **33** e **34** à partir dos aldóis (**31** e **32**) obtidos na primeira etapa.

3.3 Derivados Quirais da Piridina

Um dos maiores desafios hoje para a reação de Morita-Baylis-Hiilman é o desenvolvimento de estratégias que conduzam eficientemente ao controle do centro estereogênio formado em seus adutos, seja através de auxiliares de quiralidade ou de catalisadores quirais, como já mencionado na introdução desse trabalho.

O nosso trabalho está focado no desenvolvimento de novos organocatalisadores e ou ligantes quirais em potencial, derivados na piridina e da cânfora (porção quiral) que possam induzir a quiralidade aos adutos de Morita-Baylis–Hillman (Quadro 3.1).

Quadro 3.1 Quiralização da piridina.

A *quiralização* da piridina vem sendo efetuada na literatura de diferentes formas (para um exemplo recente ver, SONG e YAO, 2010). Escolhemos, porém, o uso da cânfora como transferidor de quiralidade, devido ao grupo possui experiência na síntese de auxiliares de quiralidade derivados de terpenos naturais abundantes como o β -pineno (VASCONCELLOS *et al*, 1991; bem como a não natural cânfora (MELLÃO e VASCONCELLOS, 1996) (**21a**).

Assim, a piridina *quiralizada*, idealizada por nós, tem a sua porção quiral oriunda da R-(+)-cânfora (**21a**) e a análise retrossintética encontra-se no esquema 3.1 a seguir.

Esquema 3.1 Análise Retrossintética.

A análise retrossintética acima nos mostra os catalisadores quirais idealizados **31** e **32** (aldóis) e **33** e **34** (dióis). Os aldóis **31** e **32** podem ser originados da reação aldólica entre **21a** (R(+)-cânfora) (VASCONCELLOS *et al*, 1998) com **35** e **36** respectivamente. Em seguida, a preparação dos dióis (**33 e 34**) pode ser efetuada pela redução dos correspondentes aldóis **31** e **32**, com o controle cinético estereosseletivo (MARTINS, 2009).

Capítulo 4:

Resultados e

Discussão

4 RESULTADOS E DISCUSSÕES

4.1 Rota sintética 1a

Uma vez já definida a estratégia de trabalho, iniciou-se à parte experimental, com a propósito de preparar o produto da reação aldólica **31** e o seu estereoisômero de forma seletiva.

Para este fim, nos partimos da cetona **21a** a qual foi submetida à desprotonação cinética pelo uso de uma base forte (LDA) em THF anidro (um solvente aprótico) a baixa temperatura (controle cinético) (MELLÃO e VASCONCELLOS, 1996), seguido do acoplamento com 3– piridinacarboxaldeído **35** (Figura 4.1).

1) 1,5 LDA, THF, -78 °C, 1,5 h

O produto da reação foi elucidado por métodos cromatográficos, espectroscópicos e espectrométricos (ver parte experimental).

Cabe destacar, que até este momento, não sabíamos a estrutura, nem a estereoquímica absoluta do produto majoritário e minoritário (**Pmaj.** e **Pmin.**) desta reação, que iremos cronologicamente discorrendo, daqui em diante.

Inicialmente, podemos observar na análise por CCDA, mostrada na figura 4.2, a indicação do desaparecimento total do aldeído **35**, o que evidenciou o término da reação (compare o "spot" D versus o A).

A =Padrão do aldeído **35**. Rf = 0,50

 $B = P_{maj}$ após separação por CC Rf = 0,33

 $C = P_{min}$ após separação por CC Rf = 0,17

D = Mistura reacional bruta $P_{maj} + P_{min}$ (antes da separação por CC)

Figura 4.2 Análise por CCDA, eluente = hexano/acetato de etila (1:1); A= padrão aldeído piridinico **35**; B= P_{maj} após separação cromatográfica por coluna relâmpago; C= P_{min} após separação cromatográfica por coluna relâmpago.D= produto bruto da reação aldólica da R(+)-cânfora $P_{mai}+P_{min}$.

Esta CCDA mostrada na figura 4.2 foi efetuada após a separação minuciosa entre os dois produtos detectados em proporções desiguais $(P_{mai}+P_{min})$, como evidenciado no "spot D".

Uma análise por CG-MS foi efetuada no produto majoritário (P_{maj}) , após a separação cromatográfica por coluna. O cromatograma do P_{maj} está mostrado na figura 4.3. Este indicou um sinal majoritário com Tr de 18.8 min. Os sinais em Tr de 11.5 min e Tr de 6.5 min mostraram ser traços de aldeído e cânfora respectivamente, mediante a análise o espectro de massas.

Por outro lado, o correspondente espectro de massas do produto majoritário P_{maj} comprovou que este é um dos produtos aldólicos isoméricos (*exo-1*, **31**; *exo-2*, **31a**; *endo-1*, **31b** ou *endo-2*, **31c**), apresentando o pico [M-18] = 241 *m/z* (Figura 4.4) entre vários outros picos, onde propomos interpretações de fragmentações possíveis para eles na figura 4.5.

Figura 4.3 Cromatograma (CG-MS) da reação aldólica após separação dos diasteroisômeros, Tr= 18,8min.

Figura 4.4: Espectro de massas da reação aldólica após separação dos diastereoisômeros; Produto majoritário Tr= 18,8 min.

Figura 4.5 Espectro de massas (CG-MS). Principais fragmentos propostos neste trabalho para o produto majoritário da reação aldólica e suas respectivas abundâncias relativas.

Na figura 4.6 apresentamos o espetro de massas para a Cânfora, copiado e adaptado do site NIST.

Espectro de Massas (electron ionization, 70 e.V.)

Figura 4.6 Mass Spectrometry Data Center Collection (C) 2008; MS número de espectro 151971. Adaptada de: NIST <u>http://webbook.nist.gov/ chemistry</u>, acessado em 4 de novembro de 2010).

Em complemento, os principais fragmentos encontrados no estudo de espectrometria de massas para o R-(+)- canfora já foram descritos. Em trabalho recente, Negri e colaboradores reinvestigaram o espectro da cânfora, em um estudo fitoquímico. Os principais fragmentos encontrados Negri, correspondentes por е suas abundâncias relativas, são: m/z=152 [M+] (25%); (M⁺-CH₃) (5%), m/z = 108 (137 - COH) (45%), m/z = 95 (100%), m/z = 81 (75%)(NEGRI e ROGRIGUES, 2010). Note que alguns fragmentos intrínsecos da cânfora, são de mesma massa aos fragmentos proposto por nós (por exemplo, m/z=108), explicando, provavelmente o porque de este ser o pico base no produto majoritário.

As análises por RMN ¹H, cujas expressões estão mostradas na figura conclusivas 4.7, foram para a determinação do excesso diastereoisomérico (d.e.) desta mistura de produtos. Assim, o dubleto referente ao hidrogênio carbinólico e arílicos H_3' em P_{maj} ($\delta = 4,92$ ppm) do diatereoisômero majoritário, aparecem acompanhado com sinais dos respectivos hidrogênios H₃′ do diastereoisômero minoritário P_{min} ($\delta = 4,83 \ ppm$). A integração relativa destes sinais determinou o excesso diastereisomérico (ed=86%) como mostrada na figura 4.7. As constantes de acoplamento dos dois produtos detectados ($P_{maj} + P_{min}$) foram muito semelhantes (~10Hz).

Entretanto, a determinação da configuração absoluta do produto majoritário (\mathbf{P}_{maj}) ainda não estava totalmente determinada e será discutida adiante.

Figura 4.7 Expansão do espectro de RMN ¹H do aldol, ed=86%.

4.1.1 Possibilidades Estruturais para os aldóis

Para a R(+)-cânfora **21a**, o único enolato possível de ser formado é o de geometria *E*, uma vez que **21a** possui uma estrutura bicíclica que lhe confere rigidez conformacional, tornando impossível a formação do enolato Z (Esquema 4.1).

Esquema 4.1: Formação especifica do Enolato E.

A reação de aldeídos piridínicos contendo faces enantiotópicas, teoricamente permite a formação de quatro produtos (**31**, **31a**, **31b** e **31c**), uma vez que dois novos centros assimétricos (asteriscos em azul) foram gerados em $C_3 e C_3$ ' (Figura 4.8).

31b (*endo-1*)

31c (endo-2)

Figura 4.8 Possível formação de quatro diastereoisômeros possíveis.

Teoricamente, quatro diastereoisômeros são possíveis de serem formados. Entretanto, conforme observamos na figura 4.7, somente dois destes isômeros foram detectados por RMN ¹H, havendo sempre um grande excesso entre um deles.

Cálculos teóricos obtidos na teoria DFT, usando B3LYP/6-311++G(d,p) como nível de cálculo indicaram que o distereoisômero mais estável é o **31** (*exo-1*) (Figura 4.10).

Na conformação mais estável para **31**, nós calculamos o ângulo diedral entre os átomos H_{26} - C_9 - C_4 - H_{22} (a numeração intrínseca do programa Gaussian2009®) igual a 177º que nos arremete a uma constante de acoplamento teórica de J = 10-12,5 Hz, considerando o gráfico de correlação de Karplus (figura 4. 9).

Este valor teórico de constante de acoplamento está de acordo com os dois possíveis produtos *exo-1* ou *exo-2* compatíveis com o valor obtido experimentalmente para o diastereoisômero majoritário (J= 10,2 Hz), o que ainda não define a estrutura majoritária ser realmente a **31** ou **31a** (*exo-1* ou *exo-2*).

Entretanto, fica claro que entre o produto detectado (\mathbf{P}_{maj} e \mathbf{P}_{min}) mostrados na figura 4.7, que têm J=10,2 Hz e 10,0 z respectivamente, não pode ser o produtos *endo-2*, pois seu valor teórico de J é muito menores que 10 Hz, considerando a correlação de Karplus. Note na figura 4.11 que o ângulo diedral H₂₂-C₄-C₁₁-H₃₅ é de 80° e o J teórico~2Hz, muito longe do valor experimental. Por outro lado, ainda não se pode descartar a possibilidade do \mathbf{P}_{maj} ser o *endo-1* (H₂₂-C₄-C₁₁-H₃₅ = 7°, J teórico 10-11Hz).

Cabe destacar neste ponto, que observamos na figura 4.10, para a conformação de mais baixa energia calculada para **31** (*exo-1*), caracteriza-se uma ligação de hidrogênio intramolecular (FILHO *et al*, 2007) entre o oxigênio (*8*) e hidrogênio (27) com comprimento de 2.03 A^o o que não ocorre no mínimo conformacional de *exo-2*.

Figura 4.9 Correlação do ângulo teórico e o valor da constante de Karplus.

Figura 4.10 Conformações mais estáveis das estruturas *exo-1* e *exo-2* calculadas pelo programa Gaussian 2009, pela teoria DFT, no nível de cálculo B3LYP/6-311++G(d,p). Exo-1 mais estável que Exo-2. As numerações são arbitrariamente adicionadas pelo programa Gaussview 4.1, não tendo nenhuma relação com a numeração oficial da IUPAC.

Figura 4.11 Conformações mais estáveis das estruturas *endo-1* e *endo-2* calculadas pelo programa Gaussian 2009, pela teoria DFT, no nível de cálculo B3LYP/6-311++G(d,p). Endo-1 mais estável que endo-2. As numerações são arbitrariamente adicionadas pelo programa Gaussview 4.1, não tendo nenhuma relação com a numeração oficial da IUPAC.

Somando estes resultados teóricos, com análise de cromatografia em camada fina analítica (CCDA) mostrada na figura 4.2, indica-se que *exo-1* ou *endo-1* poderiam ser o P_{maj} detectado, pois a menor polaridade relativa (maior Fr) do *exo-1* (**31**), (em relação

ao *exo-2*) é compatível com a formação de uma IHB (FILHO *et al*, 2007), tornando a interação do composto com a sílica menor, como explicitado na figura 4.2.

Por fim, a caracterização da IHB foi efetivada pela análise na região do infravermelho, que constatou um alargamento da banda de absorção em 3220 cm⁻¹, característico de Ligação de hidrogênio intramolecular (SILVERSTEIN, 2006; FILHO *et al.*, 2007), confirmando mais ainda que nosso produto majoritário pudesse ser ou o **31** (*exo-1*) ou o **31b** (*endo-1*).

Figura 4.12 Espectro Infravermelho do aldol 31.

As interações face-face entre o enolato *E* com os aldeídos, podem ser do tipo "like" (lk, *si-si, re-re*) ou do tipo "unlike" (ul, *si-re, re-si*) (ELIEL & WILWN, 1994) os possíveis estados de transição que conduziriam aos quatro distareoisômeros (figura 4.14), estão mostrados mais adiante no esquema 4.2.

Esquema 4.2: Estados de transição propostos para os quatro possíveis aldóis diastereoisoméricos.

Albizati e colaboradores (VAILLANCOURT *et al*, 1991) descreveram a reação do enolato da cânfora com aldeído variados. Esta reação de condensação aldólica produz predominantemente um aduto **37** (*exo*) e o aduto **38** (*endo*) como minoritário (esquema 4.3).

Esquema 4.3: Síntese de Albizati.

Os outros diastereoisomeros não foram detectados por análises espectroscópicas nem por análise por CLAE. Este fenômeno foi detalhadamente investigado e foi descoberto, que todos os aldeídos examinados exibiram seletividade para o aduto exo **38** (tabela 4.1).

Entrada	Aldeído, R	rd(%) ^a	37:38 ^b
1	Me	82	3,3
2	Et	64	3,2
3	i-Pr	63	3,1
4	t-Bu	80	7,6
5	Ph	85	11,0
6	PhCH ₂	91	1,6
7	2-furil	89	4,4

Tabela 4.1 Razões entre os adutos 37:38: a) rendimentos referentes a mistura isomérica; b) razões determinadas por RMN ¹H

Como podemos ver na tabela 4.1, a razão **37**:**38** é pouco influenciada pelo o volume do grupo alquil (entrada: 1, 2, 3) sendo a maior modificação para o anel fenílico (entrada:5).

Estes dados também sugerem que o nosso produto principal da reação aldólica, seja o **31**(exo-1) (Ar=3-piridinil).

Heatcock e colaboradores (HEATHCOCK *et al*, 1979) demonstraram que os compostos β -hidroxicarbonílicos do tipo **39** e **40** admitem a formação de ligação de hidrogênio intramolecular, como mostrado nas estruturas **41** e **42** (Figura 4.13).

Figura 4.13 Ligação de hidrogênio intramolecular em **41** e **42**, R = Ph, *p*-NO₂Ph; *p*-MeOPh; Et; $R_1 = H$, OH, *o*-alquil, i-pr.

Nestes casos, as configurações relativas dos adutos aldólicos no $C\alpha$ e $C\beta$ são normalmente determinadas com base nas constantes de acoplamento entre H_a e H_b ; admitindo-se esta formação de ligação de hidrogênio intramolecular. Cada um dos diastereoisômeros (*Sin* e *Anti*) terá equilíbrio conformacional, mostrado na figura 4.14.

Figura 4.14 Equilíbrio conformacional dos sin e anti aldóis.

Podemos observar que tanto para o confôrmero **43** e **44** os hidrogênios **Ha** e **Hb** estão numa relação sinclinal, resultante em uma pequena constante de acoplamento para o aduto sin (J = 0-4 Hz).

Por outro lado, para o aduto *anti*, o equilíbrio conformacional favorece o confôrmero **45**, devido a interação 1-3-diaxial entre R e R₁. Nesta conformação a relação entre Ha e Hb é antiperiplanar, resultando em uma constante de acoplamento maior (J = 7 - 12 Hz). Em analogia a este relato da literatura, com as análises das constantes de acoplamento do nosso aldol principal é **31**, mas não podíamos descartar ainda totalmente a possibilidade de ser o **31b** (*endo-1*) (figura 4.15).

J: H^{3} , $H^{3} = 10,2 Hz$

Figura 4.15 Medidas de RMN ¹H do P_{maj} em campo de 200 MHz (ver parte experimental).

Como podemos observar na figura 4.15, o valor da constante de acoplamento para o aldol **31** ou **31b** pode ser de J = 10,2 Hz entre H₃ e H₃[']. Esse valor sugere uma relação próxima ao *antiperiplanar* entre H₃ e H₃['] com um ângulo diedral próxima de 177⁰ ou uma relação próxima ao *sinperiplanar* próxima de 7°. Além da distância (em número de ligações) entre os núcleos, outro fator que tem grande influência no valor de J é o ângulo θ entre as ligações. Karplus (CONSTANTINO, 2008) demonstrou o caso dos acoplamentos entre hidrogênios vicinais, tabela 4.2, mostrando que o valor de J depende fortemente do valor do ângulo diedro entre as ligações envolvidas (Figura 4.12). Admitindo a formação de ligação de hidrogênio intramolecular, acreditamos que o diastereoisômero observado **P**_{maj} para o aldol são o **31** (exo-1) ou **31b** (endo-1) (Figura 4.17).
Tabela 4.2 J_{vic} (J³) em Hexanéis^a

Hidrogênio que se acoplam (relação entre conformações)	Símbolo	Valor(Hz)	Faixa(Hz)
Axial-axial	J _{aa}	10	8 a 12
Axial-equatorial	J _{ae}	3,9	2 a 6
Equatorial-equatorial	J_{ee}	2,7	2 a 5

^a(CONSTANTINO, 2008)

Figura 4.16 Correlação de Karplus.(acessado em 20/08/2010: <u>http://www.</u>cbs.cnrs.fr/MAJ/FORMATIONS/COURS/RMN/cours/canet1/canet1-4.html).

31(exo) Jab ~ 10 Hz

Figura 4.17 Diastereoisômeros possíveis para serem P_{maj}.

Para finalizar toda essas especulações e concluir sem nenhuma dúvida, avançamos mais a nossa análise tridimensional, observando um sinal forte entre os hidrogênios da *metila 8* e o H_3 (figura 4.18, P_{maj} **31**) no espectro de NOESY (Figura 4.19) determinou a configuração *S* no *carbono 3*. A ausência destes acoplamentos, no mesmo espectro, entre os hidrogênios do anel piridínico e as metilas, confirma a estereoquímica *R* no *carbono 3*'.

Figura 4.18 Composto majoritário 31.

Figura 4.19 Espectro de NOESY do produto majoritário caracterizado completamente como **31**.

4.2 Rota sintética da 2a

A introdução de um átomo de hidrogênio em uma ligação C=O pode ser feita mediante ataque nucleofílico de um hidreto ao carbono eletrofílico. No esquema 4.4, mostramos uma proposta de mecanismo para a redução de aldeídos e cetonas com o NaBH₄.

Inicialmente a complexação do oxigênio com o cátion Na⁺ aumenta a eletrofilicidade do carbono (catálise por ácido de Lewis) e ocorre como etapa rápida antes da transferência de hidreto. Essa transferência leva à formação rápida do alcóxido **A**, seguida da formação do monoalcoxiboidreto **B**. Esse intermediário também é um agente redutor, podendo reduzir outras moléculas de R₂C=O até a formar o tetralcoxiboroidreto **C**, que é solvatado (reação com o próprio solvente) ou hidrolisado pela adição de H₂O ou solução saturada de NaOH, liberando o álcool (COSTA *et al*, 2003).

Esquema 4.4: Proposta de mecanismo da redução de carbonilas por NaBH₄.

estereoquímica redução Α da por hidretos tem sido detalhadamente derivados cicloexanóis. estudada nos Alguns reagentes conduzem predominantemente a cicloexanóis com a hidroxila axial, enquanto outros levam ao isômero equatorial. Alcoóis com a hidroxila em axial são normalmente formados quando o sistema redutor é volumoso devido ao fato da aproximação equatorial ser menos impedida estericamente (Esquema 4.5).

Hidretos menos impedidos conduzem preferencialmente a álcoois equatoriais (MELLÃO & VASCONCELLOS, 1996).

Esquema 4.5 Reduções de cicloexanos substituídos: R = *o*-alquil.

Uma vez que a velocidade de reação depende de um choque bimolecular entre $R_2C=O$ e o agente redutor, e sendo a reação irreversível (controle cinético), com isso, a face menos impedida estericamente reagirá mais rapidamente e levará ao produto majoritário.

Nos sistemas bicíclicos rígidos, como em 47 ou 21a, a estereosseletividade é fortemente influenciada pelo efeito estérico, mesmo quando hidretos pouco volumoso são utilizados. A aproximação do ânion tetraidroborato deve ocorrer ao longo da trajetória de Burgi-Dunitz (ângulo de aproximação á carbonila~107°) (Esquema 4.6) (ALVES, 2010). Esse ataque pode acontecer pelo lado côncavo (ataque endo) ou pelo lado convexo (ataque exo). Dois efeitos devem ser considerados na análise desses resultados: o impedimento estérico causado pela ponte do sistema bicíclico no lado convexo desfavorece o ataque exo, e o impedimento estérico dos hidrogênios axiais do lado côncavo, desfavorece o ataque endo. No primeiro caso em 47 (Esquema 4.7), o ataque exo é favorecido, pois não há impedimento muito significativo pela ponte bicíclica metilênica (CH₂). Esse ataque é favorecido em detrimento do ataque endo, pois, nesse último, o hidreto enfrenta impedimento estérico dos hidrogênios axiais da face côncava (A) (Esquema 4.7). No segundo caso em 21a, a metila em C-8 no lado convexo da estrutura da cânfora oferece um enorme bloqueio estérico ao ataque exo. Mesmo sentindo as interações dos hidrogênios axiais, o ataque *endo* é amplamente favorecido (**B**) (Esquema 4.8).

Esquema 4.8 Face de ataque côncava e convexa.

Como já discutida na estratégia de trabalho, a rota 2 é promissora para preparação do diol **33**. Esse aldol que por sua vez, foi preparado em bons rendimentos e ótimas diastereosseletividade a partir **31** (ver discussão da rota 1)

Usamos como agente de redução o borohidreto de sódio (NaBH₄) em condições usuais, não sendo necessária usar condições anidras, e nem atmosfera inerte. O uso de LiAlH₄ aumentaria substancialmente o custo operacional da reação.

Inicialmente em nosso trabalho submetemos **31** a reação de redução com NaBH₄ usando uma mistura THF:H₂O como solvente. As condições para o preparo do diol **33** estão representados na figura 4.20.

Figura 4.20 Preparação do diol 33 e 33a.

O isolamento reacional (ver detalhes na parte experimental) conduziu diretamente a formação de um sólido branco em 100% de rendimento (considerando a massa teórica do produto).

Inicialmente a análise por CCDA indicou o desaparecimento total do aldol **31** e o aparecimento de duas manchas, que revelam fortemente na câmara de U.V., com possibilidade de serem os dióis diastereoisoméricos **33** +**33a**.

A separação dos dois diastereoisômeros foi conseguida pelo uso de cromatografia em coluna relâmpago e os produtos separados foram reavaliados por CCDA (Figura 4.21).

Eluente, 1:1 Acetato de etila/hexano

Figura 4.21 Análise por CCDA. eluente = Hexano/acetato de etila (1:1); A = padrão aldol **31**, B = Diastereoisômero majoritário puro; C = Diastereoisômero minoritário puro. D=produto bruto da redução do **31**.

Subsequentemente, o produto majoritário (P_{maj}) da redução de **31**, após purificação por cromatografia em coluna relâmpago, foi analisado por CG-MS. Podemos notar na figura 4.22 a presença de um pico principal com Tr =18.1 min, que foi caracterizado como um dos dióis diastereoisoméricos **33** ou **33a**, mediante a sua análise no espectro de massas (figura 4.22). Todos os outros fragmentos foram característicos dos produtos. Os outros picos são relativos a coprodutos de estruturas não determinadas.

Figura 4.22 Cromatograma do P_{maj} da redução de **31**, após purificação por CC. Espectro de massas deste P_{maj} , que apresenta o sinal m/z=241, entre outros sinais bem característicos da série.

A confirmação do sucesso da reação de formação do diol **33** + **33a** pode ser comprovado pela análise de espectroscopia no infravermelho (figura 4.23), onde observamos a ausência do grupo carbonila (C = O cm⁻¹) na faixa 1700 a 1750 cm⁻¹ e o aparecimento de banda muito intensa e larga em 3444 cm⁻¹ característica dos dióis.

Figura 4.23 Infravermelho do diol 33.

De acordo com a figura 4.20, só são possíveis a formação de dois dióis diastereoisoméricos a partir da redução aldol **31**. Semelhante ao já discutido na figura 4.10, novos estudos *in silico* em B3LYP/6-311++G(d,p) como nível de cálculo foram efetuados para os dióis *exo-exo* e para o *exo-endo* (Figura 4.24).

Figura 4.24 Conformações mais estáveis das estruturas dos dois dióis *exoexo e exo-endo* (oriundas da redução da cetona **31**, que foi separada por cromatografia em coluna) calculadas pelo programa Gaussian 2009, pela teoria DFT, no nível de cálculo B3LYP/6-311++G(d,p) A *exo-exo* é mais estável que *exo-endo*. As numerações são arbitrariamente adicionadas pelo programa GaussView 4.1., não tendo nenhuma relação com a numeração oficial da IUPAC.

A estrutura que apresentou ser a mais estável foi *exo-exo*, que apresenta um ângulo diedral entre os átomos $H_{11}-C_{10}-C_{12}-H_{13}$ igual 7°, o que corresponderia a uma constante de acoplamento J = 10,8 Hz; e a correlação *exo-endo* dos átomos $H_{12}-C_{11}-C_{10}-H_{40}$ dando um ângulo

diedro de 131.6° , o que corresponderia a uma constante de acoplamento, J=8.4 Hz, conforme a figura 4.25.

Figura 4.25 Relação ângulo diedro H_{11} - C_{10} - C_{12} - H_{13} (*exo-exo*) = 7° *e* H_{12} - C_{11} - C_{10} - H_{40} (*exo-endo*) = 131.6° com a constante de Karplus

O valor experimental obtido de J = 11,2 Hz do acoplamento entre H₂ e H₃ em δ =5,14 *ppm* está muito mais próximo de 10.8 Hz que de 8.4 Hz, não deixando dúvida que a relação entre H₂/H₃ ser a <u>cis</u> (próximo a *sinperiplanar*) e o produto majoritário (**P**_{maj}) foi assinalado como sendo o **33**.

O valor da diastereosseletividade de **33** P_{maj} / **33a** P_{min} foi medida pela integração relativa entre os hidrogênios correspondentes a H_3' do diastereoisômero majoritário com o H_3' do diastereoisômero minoritário (δ = 5,14 *ppm* e 5,11 *ppm*, respectivamente, 88,2:11,8, ed= 76,4%) na figura 4.26.

Figura 4.26 Espectro de expansão do diol majoritário e minoritário da redução de **31**.

A estrutura *exo-exo* apresentou um comprimento de ligação em 2,0 A^o entre H_{32} e O_{29} característica de uma ligação de hidrogênio intramolecular (IHB), e conseqüentemente um alargamento na banda de absorção no infravermelho observado no espectro 6.22(ver parte experimental). Por outro lado, a distância entre os átomos H_{29} e O_{41} mostrou ser > 3,0 Å, o que descarta a existência de uma IHB no produto *exo-endo.*

Estas conclusões estão também coerentes com os resultados obtidos na CCDA. No diastereoisômero **33** (*cis*), há uma forte tendência de formação de ligação de hidrogênio intramolecular, diminuindo sua interação com as hidroxilas da fase estacionária (sílica). Por outro lado, o **33a** (**Bmin**.) não forma IHB, conseqüentemente interagindo mais com as hidroxilas da sílica, mediante pontes de hidrogênio intermolecular. E desta forma, a observação que **B min**. é mais polar que o **B maj**. completa todo o nosso raciocínio.

Em relato da literatura (MELLÃO e VASCONCELLOS, 1996), a seletividade observada na redução com borohidreto de sódio pode ser razoavelmente interpretado, envolvendo um ataque do íon hidreto ocorre preferencialmente pelo lado menos impedido do aldol **31** (Figura 4.27).

Figura 4.27 Ataque do íon hidreto.

4.3 Estudo sintético da Rota 1b

Uma vez já definida a estratégia de trabalho, e seguindo a mesma seqüência da rota 1a, nos iniciamos esta parte experimental com a propósito de preparar o aldol **32**. Desta forma, partimos da cetona **21a** a qual foi submetida à desprotonação pelo uso de uma base forte (LDA) em THF (solvente aprótico) a baixa temperatura (controle cinético), seguido do acoplamento com 4– piridinacarboxaldeído **36** (Figura 4.28).

Figura 4.28 Resultado da síntese estereosseletiva de 32-32c.

Tomando como base os resultados apresentados anteriormente, que nos levou ao completo assinalamento da configuração absoluta do aldól **31**, acreditávamos que a geometria do produto majoritário da reação entre **21a** com o aldeído **36** fosse conduzir, semelhantemente, ao produto com geometria **32**. Entretanto, discorremos a seguir, todos os detalhes que nos fizeram assinalar inequivocamente esta configuração absoluta.

Inicialmente, a análise feita por CCDA (figura 4.29) do produto da reação do **21a** (R)-(+)-cânfora com o aldeído piridínico **36**, revelou duas manchas características da formação dos isômeros **32** e **32a**. O isômero majoritário (\mathbf{P}_{maj}) possui menor fator de retenção, enquanto o isômero minoritário (\mathbf{P}_{min}) possui um maior fator de retenção na placa de sílica. Esta CCDA foi efetuada após a separação dos produtos diastereoisoméricos por CC relâmpago.

Figura 4.29 Análise por CCDA do produto bruto da reação aldólica da R(+)cânfora **21a**. Eluente = Hexano/acetato de etila (1:1); A =**36** padrão do aldeído piridinico; **32** ou **32a** = P_{maj} . , **32** ou **32a** = P_{min} .

Após esta purificação por CC, foi efetuada uma análise por CGMS do Pmaj purificado, indicando um sinal a Tr=17.5 min. figura 4.30. Os outros traços de produtos não são isômeros.

Figura 4.30 Cromatograma da reação de formação do 32 ou 32a (Tr=17.5 min).

Analisando a expansão feita no espectro RMN⁻¹ do \mathbf{P}_{maj} , nos observamos uma constante de acoplamento experimental de J=10 Hz em $\delta = 4,89 \ ppm$ (figura 4.31). Semelhantemente ao discutido na rota 1a, este valor em Hz está razoavelmente condizente com a geometria calculada para o diedro H_{28} - C_{27} - C_{10} - H_{11} de 136.1° (figura 4.32) se baseando no gráfico de correlação de Karplus.

Figura 4.31 Expansão do espectro de RMN-1H do diastereoisômero 32.

Figura 4.32 Conformação mais estável da estrutura do aldol 32, calculadas pelo programa Gaussian 2009, pela teoria DFT, no nível de cálculo B3LYP/6-311++G(d,p).

Entretanto, novamente determinamos a geometria de um diastereoisômero majoritário na análise acurada por NOESY. No Espectro NOESY do composto **32** (figura 4.34), percebemos um sinal forte entre os hidrogênios da *metila* 8 e o H_3 ' e também com os hidrogênios do anel aromático e H_3 ' (e espectro de expansão NOESY), que culminou na determinação da configuração do carbono 3, como sendo S (Figura 4.33). A ausência destes acoplamentos, no mesmo espectro, entre os hidrogênios do anel piridínico e as metilas, confirma a estereoquímica *R* no *carbono* 3'.

32

Figura 4.33 Composto 32.

Figura 4.34 Expansão espectro de NOESY do composto 32.

E ainda, examinando a expansão no espectro COSY (H,H) figura 4.35, enxergamos um sinal forte entre H_3 e H_3 , e que conseqüentemente está ocorrendo um acoplamento entre eles, elucidando de forma clara, a forma estrutural do aldol **32**.

Figura 4.35 Expansão do espectro COSY (H,H) do composto 32.

4.4. Estudo sintético da Rota 2b

Para obtenção do diol **34**, submetemos **32** a reação redução com NaBH₄ usando uma mistura THF:H₂O como solvente. As condições para o preparo do diol **34** estão mostradas na figura 4.36.

Figura 4.36 Reação de redução do aldol 32.

Cabe destacar, que neste único caso, a geometria do diol **34** (figura 4.38) o valor experimental da constante de acoplamento entre $H_3 e H_{3'} (J = 8 Hz) e$ o valor calculado do diedro H_{13} - C_{12} - C_{27} - $H_{28} 173^{\circ}$, não estão muito adequados ao diastereoisômero **34**, onde esperaríamos valores experimentais um pouco maiores (10-11 Hz). Entretanto, estes tipos de variações são comuns considerando que os cálculos foram efetuados em meio gasoso e não em meio solvatado, como na grande maioria dos casos na literatura.

Figura 4.37 Expansão do espectro de RMN-¹H do **H**^{3'} do diol **34**.

Figura 4.38 Conformações mais estáveis das estruturas dos dois dióis *exoexo* **34** (oriunda da redução da cetona **32**, que foi separada por cromatografia em coluna) calculada pelo programa Gaussian 2009, pela teoria DFT, no nível de cálculo B3LYP/6-311++G(d,p) A *exo-exo* é mais estável que *exo-endo*. As numerações são arbitrariamente adicionadas pelo programa GaussView 4.1., não tendo nenhuma relação com a numeração oficial da IUPAC.

4.5 Estudo Preliminar em Organocatálise

Continuando os nossos objetivos, partirmos para aplicação das novas moléculas quirais sintetizadas **31**, **32**, **33** e **34**, como possíveis organocatalisadores na reação enantiosseletiva de Morita-Baylis-Hillman. E seguindo esse raciocínio, iniciamos os nossos testes com o aldol **31** (organocatalisador) na reação mostrada na figura 4.39, variando alguns parâmetros como quantidade de catalisador, cocatalisador, solvente e temperatura. Os resultados estão mostrados na tabela 4.3.

Figura 4.39 Reação Enantiosseletiva de Morita-Baylis-Hillman do *p*-nitrobenzaldeído com o acrilato de metila.

Tabela 4.3 Tabela de resultados da reação enantiosseletiva de Morita-Baylis-Hillman do *p*-nitrobenzaldeído com o acrilato de metila

Entrada	Cat.	Co-cat	Solvente	Co-	T(°C)	Tempo	Rend.
	(%mol)	(%ymol)	(CH₃CN)	solvente			(%)
01	0,1	-	-	-	50	1h	NR
02	0,1	-	-	-	100	1h	NR
03	0,1	-	1mL	-	50	1h	NR
04	0,1	-	1mL	-	100	1h	NR
05	0,3	-	1mL	-	50	1h	NR
06	0,3	-	1mL	-	100	1h	NR
07	0,1	-	1mL	1mL(H ₂ O)	50	1h	NR
08	0,1	-	1mL	1mL(H ₂ O)	100	1h	NR
09	0,1	-	1mL	2mL(H ₂ O)	50	1h	NR
10	0,1	-	1mL	2mL(H ₂ O)	100	1h	NR

11	0,1	-	1mL	3mL(H ₂ O)	50	1h	NR
13	0,1	-	1mL	3mL(H ₂ O)	100	1h	NR
14	0,1	-	1mL	4mL(H ₂ O)	50	1h	NR
15	0,1	-	1mL	4mL(H ₂ O)	100	1h	NR
16	0,1	-	1mL	5mL(H ₂ O)	50	1h	NR
17	0,1	-	1mL	5mL(H ₂ O)	100	1h	NR
18	0,1	0,1	1mL	-	50	1h	NR
18	0,1	0,1	1mL	-	100	1h	NR
19	0,3	0,1	1mL	-	50	1h	NR
20	0,3	0,3	1mL	-	100	1h	NR
21	0,3	0,3	1mL	-	50	1h	NR
22	0,5	0,3	1mL	-	50	1h	NR
22	0,5	0,3	1mL	-	100	1h	NR
23	0,1	0,1	1mL	1mL(H ₂ O)	50	1h	NR
24	0,1	0,1	1mL	1mL(H ₂ O)	100	1h	NR
25	0,1	0,1	1mL	2mL(H ₂ O)	50	1h	NR
26	0,1	0,1	1mL	2mL(H ₂ O)	100	1h	NR
27	0,1	0,1	1mL	3mL(H ₂ O)	50	1h	NR
28	0,1	0,1	1mL	3mL(H ₂ O)	100	1h	NR
29	0,1	0,1	1mL	4mL(H ₂ O)	50	1h	NR
30	0,1	0,1	1mL	4mL(H ₂ O)	100	1h	NR
31	0,1	0,1	1mL	5mL(H ₂ O)	50	1h	NR
32	0,1	0,1	1mL	5mL(H ₂ O)	100	1h	NR
33	0,3	0,1	1mL	1mL(H ₂ O)	50	1h	NR
34	0,3	0,1	1mL	1mL(H ₂ O)	100	1h	NR
35	0,3	0,1	1mL	2mL(H ₂ O)	50	1h	NR
36	0,3	0,1	1mL	2mL(H ₂ O)	100	1h	NR
37	0,3	0,1	1mL	3mL(H ₂ O)	50	1h	NR
38	0,3	0,1	1mL	3mL(H ₂ O)	100	1h	NR
39	0,3	0,1	1mL	4mL(H ₂ O)	50	1h	NR
40	0,3	0,1	1mL	4mL(H ₂ O)	100	1h	NR
41	0,3	0,1	1mL	5mL(H ₂ O)	50	1h	NR
42	0,3	0,1	1mL	5mL(H ₂ O)	100	1h	NR
43	0,3	0,3	1mL	5mL(H ₂ O)	50	1h	NR
44	0,3	0,3	1mL	5mL(H ₂ O)	100	1h	NR
45	0,5	0,3	1mL	5mL(H ₂ O)	100	1h	NR
46*	0,1	0,1	1mL	-	0	2dias	NR

47*	0,1	0,1	1mL	-	0	10dias	NR
-----	-----	-----	-----	---	---	--------	----

* sem microondas; NR= Nenhuma reação observada; co-catalisador= Lprolina; h = Horas

Figura 4.40 Reação Enantiosseletiva de Morita-Baylis-Hillman do *p*-nitrobenzaldeído com o acrilonitrila.

Tabela 4.4: Tabela de resultados da reação enantiosseletiva de Morita-Baylis-Hillman do *p*-nitrobenzaldeído com acrilonitrila

Entrada	Cat.	Co-cat	Solvente	Co-	T(°C)	Tempo	Rend.
	(%mol)	(%ymol)		solvente			(%)
01*	0,3mmol	-	-	-	0	20min	NR
02	0,3mmol	-	-	-	100	1 h	NR
03	0,5mmol	-	-	-	100	1 h	NR
04	0,5mmol	0,1mmol	-	-	100	1 h	NR
05	0,5mmol	0,1mmol	-	-	100	1 h	NR
06	0,3mmol	-	DMSO(1mL)	-	100	1 h	NR
07	0,3mmol	-	DMSO(1mL)	0,1mL H ₂ O	100	1 h	NR
08	0,3mmol	-	DMSO(1mL)	0,2mL H ₂ O	100	1 h	NR
09	0,3mmol	-	DMSO(1mL)	-	100	1 h	NR
10	0,3mmol	-	DMSO(2mL)	0,1mL H ₂ O	100	1 h	NR
11	0,3mmol	-	DMSO(2mL)	0,2mL H ₂ O	100	1 h	NR
13	0,3mmol	-	DMSO(2mL)	0,3mL H ₂ O	100	1 h	NR
14	0,3mmol	-	DMSO(2mL)	0,4mL H ₂ O	100	1h	NR
15	0,3mmol	-	DMSO(2mL)	0,5mL H ₂ O	100	1h	NR
16	0,3mmol	-	DMSO(3mL)	0,1mL H ₂ O	100	1 h	NR

* sem microondas; NR= Nenhuma reação observada; co-catalisador= L prolina; h = Horas.

Conforme descrito na tabela 4.3 e 4.4, empregamos a nossa molécula **31(exo-1)** como possível organocatalisador na reação de Morita-Morita-Baylis-Hillman, e perante os resultados observados não ocorreu nenhuma atividade catalítica empregando especificamente esse catalisador, mesmo variando significativamente alguns parâmetros, tais como: temperatura, solvente, co-solvente, catalisador e co-catalisador.

Capítulo 5:

Conclusões e

Perspectivas

5 CONCLUSÕES E PERSPECTIVA

- Neste trabalho desenvolvemos de forma eficiente е estereosseletiva а síntese de quatro novos potencias organocatalisadores quirais 31, 32, 33 e 34, derivados da 1-R(+)-cânfora (**21a**) um reagente de baixo custo e origem natural;
- Na obtenção das moléculas 33 e 34, foi realizada uma reação de redução das moléculas 31 e 32 com NaBH₄, respectivamente, e desta forma conseguimos obter os dois dióis pela rota 2 com rendimentos acima de 90% e em altos excessos diastereoisoméricos;
- Aprofundamos, de forma inédita, estudos espectroscópicos unidimensionais e bidimensionais para esta classe de moléculas, incluindo as técnicas COSY, HETCOR e NOESY.
- Realizamos testes catalíticos preliminares para molécula **31** na reação de Morita-Baylis-Hillman com intuito de verificarmos a efetividade do catalisador como nucleófilo e termos adutos quirais. Entretanto, até o momento, não observamos poder catalítico como esperado pela nossa estratégia.
- Uma vez que desenvolvemos a síntese de novos aminoálcoois e diois quirais, estas novas moléculas serão investigadas como ligantes em potencial para formação de catalisadores organometálicos e investigadas em outras reações assimétricas.

- Como perspectivas, pretendemos aumentar o poder catalítico destas moléculas, pela adição de grupos doadores de elétrons no anel piridínico.
- Este presente estudo abre fronteiras para o desenvolvimento da catálise assimétrica no nosso grupo de pesquisas e outros pósgraduandos já estão continuando este trabalho.

Capítulo 6:

Parte Experimental

6 PARTE EXPERIMENTAL

6.1 Materiais de Métodos

Neste trabalho foram utilizados aldeídos adquiridos da Aldrich®, Acros®, solventes da Tedia® e da Vetec®, onde todos continham grau de pureza adequado. A 1(+)-R cânfora foi utilizada sem purificação prévia (comercial, Aldrich chem co).

Alguns solventes utilizados para fins sintéticos e preparativos foram previamente tratados por processo descritos na literatura.

THF – A remoção de água foi feita mediante refluxo em Na (metálico) na presença da benzofenona como indicador com subsequente destilação a pressão normal.

Aldeído piridinicos - Seco com hidreto de cálcio.

A remoção dos solventes no decorrer dos processos de isolamento foi feita em rotaevaporador Fisatom.

Em todos os casos, a completa remoção de traços de solventes foi feita em sistema de alto vácuo, com pressão variando de 5 a 0,1 mmHg.

Nas cromatografias em camada fina analítica (CCDA) foram utilizadas cromatofolhas de alumínio em gel sílica $60F_{254}$ (Whatman). Para as cromatografias em coluna tipo relâmpago (ou flash) foram utilizadas colunas de vidro (2x20 cm e 1x20cm) com sílica 60 de granulação 40-60 µm (silicycle) sobre pressurização media, usando pressurizador de nebulizadores comuns.

Os métodos de revelação empregados para visualização em CCDA foram luz ultravioleta (254nm) e borrifação de solução de fosfomolibdênica 7% em etanol.

Os espectros na região (IV) foram obtidos em um espectrofotômetro IR PRESTIGE-21, SHIMADZU, de feixe duplo. Os valores para as absorções foram referidos em número de onda, utilizando como unidade o centímetro recíproco (cm⁻¹).

81

Os espectros de massa de baixa resolução por impacto de elétrons foram obtido em um aparelho de CGMS-QP2010 da SHIMADZU.

Os espectros de RMN foram obtidos de uma aparelho Varian Mercury Spectra AC 20 (200mHz para ¹H e 50 mHz para C¹³) em clorofórmio deuterado (CDCl₃) utilizando-se o tetrametilsilano (TMS) com referência interna. Os valores de deslocamento químico foram referidos em ppm e em relação ao TMS e as constantes de acoplamento em Hertz(Hz).

Os desdobramentos químicos referentes a cada acoplamento dos hidrogênios foram expressos da seguinte forma: singleto (s), singleto largo(sl), dubleto (d), tripleto(t), sexteto (sex), dubleto (sex), duplo dubleto (dd), duplo duplo dubleto (ddd) e multipleto (m). Os deslocamentos químicos (δ) foram medidos em partes por milhão (ppm) e as constantes de acoplamento (J) em Hertz (Hz). As multiplicidades dos sinais dos carbonos observados pelo uso da técnica de APT para a ressonância de 50 MHz, onde são colocados em fase "para cima" carbonos quartenários e metilenos em fase " para baixo" carbonos de metino e metila.

As medidas de rotação ótica específica foram efetuadas em um polarímetro PDA 9300 ACAPEC , sendo o caminho ótico de 0,1 dm.

82

6.2 Experimentais e Espectros

6.2.1 Preparação do (1R, 3S,3'R,4R) –3-[(3-Piridinil) hidroximetil-1,7,7-trimetilbiciclo [2.2.1]heptan-2-ona **(31)**

Em um balão de 250 mL, previamente seco foi adicionado 12 ml de THF seco e adicionado LDA (2M) ao balão a -78 °C sob argônio. Uma solução de 1520 mg (10 mmol) de R-(+)-Cânfora 21a em 6 mL de THF seco foi adicionada gota a gota (tempo de adição = 15 minutos). Após a adição, a solução foi agitada por 1,5h e em seguida foi adicionado com uma solução de 27,3 mmol de 3-piridina carboxaldeido (2,6 mL) em 20 mL de THF seco e então agitado por mais 1 hora. Após este tempo, a reação foi interrompida nesta temperatura, pela adição de 100 mL de uma solução saturada de NH₄Cl. O banho refrigerante foi então retirado e a mistura de solventes (THF-H₂O) foi removida sob pressão reduzida. O resíduo obtido foi então ressuspenso em 40 mL CH₂Cl₂. A fase orgânica foi então lavada com uma solução satura de NaCl 10% (3X25mL). A fase orgânica foi seca com Na₂SO₄ anidro, filtrada e evaporada no evaporador rotatório. O resíduo foi purificado por Cromatografia Flash usando eluente uma mistura 5% de AcOEt:Hexano, obtendo-se um sólido (1,50g, 60%).

CCDA – (50% AcOEt: Hexano) – $Rf_{31a} = 0,35 \ [\alpha]_D^{26} = +162(C = 10, CH_2Cl_2)$

RMN ¹**H** - (200 MHz; CDCl₃, δ=ppm): 0,89(s,3H); 0,94(s,3H); 1,02(s,3H); 1,14-1,25(m, 1H); 1,37-195(m, 4H); 2,19(d, J=10Hz, 1H); 4,66(s, OH); 4,83(d, J=10Hz, 1H, Diast. Min.); 4,92(d, J=10Hz, 1H, Diast. Maj.); 7,25-7,33(m,1H); 7,71(dt, J=7,8Hz, 1H); 8,52(d, J=1,6Hz, 1H); 8,54(d, J=1,6Hz, 1H).

RMN ¹³C - APT (CDCl₃, 50 MHz, δ ppm): 9,09(CH₃); 20,31(CH₃); 22,25(CH₃); 28,85(CH₂); 29,19(CH₂); 45,40(CH); 46,95(C); 58,39(C); 60,57(CH); 74,13(CH); 123,75(CH); 134,29(CH); 137,24(C); 148,58(CH); 149,47(CH); 222.56(C).

IV (cm⁻¹)– 3220 (OH⁻¹); 1759 (C=O de cetona cíclica); 1050(C–O)

EM- (70 ev) m/e (%): $M^{+.} - 18 = 241(3,15\%); 198(3,00\%);$ 152(14,70%); 130(13,64%); 124,15(13,88%); 108 (100%); 95 (40,52%); 78(25,39).

Espectro 6.1 Espectro de RMN ¹H (CDCl₃, 200 MHz) de 31.

Espectro 6.2 Expansão do Espectro RMN-¹H (CDCl₃, 200 MHz) de **31** região de 6.00 a 8.70 ppm.

Espectro 6.3 Expansão do Espectro RMN-¹H (CDCl₃, 200MHz) de **31** na região de 2.00 a 5.20 ppm.

Espectro 6.4 Expansão do Espectro RMN-¹H(CDCl₃, 200MHz) de **31** na região de 0.20 a 2.00 ppm.

Espectro 6.5 Espectro de RMN ¹³C-APT (50 MHz, CDCl₃) de **31**.

Espectro 6.7 Expansão do Espectro de RMN ¹³C-APT (50 MHz, CDCl₃) de **31** na região de 40,000 a 85,000 ppm.

Espectro 6.8 Expansão do Espectro de RMN ¹³C-APT (50 MHz, CDCl₃) de **31** na região de 40,000 a 85,000 ppm.

Espectro 6.9 Espectro Bidimensional de COSY H, H de **31**.

Espectro 6.10 Espectro Bidimensional de NOESY H, H de **31**.

Espectro 6.11 Espectro Bidimensional de HMQC de **31**.

Espectro 6.12 Cromatograma da reação de obtenção do aldol **31**.

Espectro 6.13 Espectro de Infravermelho do **31** em cm⁻¹.

Espectro 6.14 Espectro de massa do 31.

6.2.2. Preparação do (1R,3S,3R, 3'R,4R) – 3 3-[(3-Piridinil) hidroximetil-1,7,7-trimetilbiciclo [2.2.1]heptan-2-ol **(33)**

Em um balão de 50 mL foi pesado 100 mg (0,4 mmol) de 31 e em seguida dissolvido em 5mL de THF e 1mL de H₂O. Em seguida foi pesada 151 mg (4,34 mmol) de NaBH₄ e adicionada ao balão e deixado sob agitação constante a 0 °C por 6H. Após esse tempo, a reação foi interrompida nesta temperatura, pela adição 3 ml de uma solução saturada de NH₄Cl. A mistura de solventes (THF-H₂O) foi removida sob pressão reduzida. O resíduo obtido foi então ressuspenso em 40 mL CH₂Cl₂. A fase orgânica foi então lavada com uma solução satura de NaCl 10% (3X25mL). A fase orgânica foi seca com Na₂SO₄ anidro, filtrada e evaporada no evaporador rotatório. O resíduo foi purificado por cromatografia flash usando eluente uma mistura 5% de AcOEt:Hexano, obtendo-se um líquido amarelo (100mg, 100%).

CCDA – (70% AcOEt: Hexano) – $Rf_{33} = 0,19$

RMN ¹**H** - (200MHz; CDCl₃, δ =ppm): 0,77(s, 3H); 0,957(s, 3H); 1,27(s, 3H); 1,30-1,72(m, 5H); 3,985(d, J = 8Hz, 1H); 4,07(s,OH); 5,11(d, J = 12,6 Hz, 1H), 5,14(d, J=11,2 Hz, 1H); 5,28(s, OH); 7,45-7,50(dd, J = 5,8Hz, J = 5,8Hz, 1H); 7,94(d, J= 7,8Hz, 1H); 8,49-8,57(t, 2H).

RMN¹³-C-APT (CDCl₃, 50 MHz, δ ppm): 11,26(CH₃); 20,89(CH₃); 21,38(CH₃); 29,56(CH₂), 32,87(CH₂); 47,01(CH); 49,89(C); 58,14(CH); 63,93(C); 72,36(CH); 82,11(CH), 125,01(CH); 137(CH); 141,95(C); 146,37(CH); 146,35(CH).

IV cm⁻¹ – 3441 (OH⁻¹)

MS (70 ev) m/e (%): M^{+.} - 18 = 241(81,00%); 226(38,00%); 213(39,10%); 198(63,64%); 158(48,30%); 130 (100%); 93 (60,52%); 93(60,00%); 55(59,05%); 41(67,00%).

Espectro 6.15 Espectro de RMN-¹H (CDCl₃, 200 MHz) do diol **33**.

Espectro 6.16 Expansão do espectro de RMN-¹H (CDCl₃, 200MHz) de **33** na região de 3,8 a 5,50 ppm.

Espectro 6.17 Espectro de RMN-H¹ (50 MHz, $CDCI_3$) do **33**.

Espectro 6.18 Expansão do Espectro de RMN ¹³C-APT (50 MHz, CDCl₃) de **33** na região de 0,000 a 39,000 ppm.

Espectro 6.19 Expansão do Espectro de RMN ¹³C-APT (50 MHz, CDCl₃) de **33** na região de 45,000 a 85,000 ppm.

Espectro 6.20 Expansão do Espectro de RMN ¹³C-APT (50 MHz, CDCl₃) de **33** na região de 45,000 a 85,000 ppm.

Espectro 6.21 Espectro de Infravermelho do diol **33** em cm⁻¹.

6.22 Cromatograma da reação bruta do diol.

6.23 Espectro de massa do diol 33.

Figura 5.3: Aldol 32

6.2.3 Preparação do (1R,3S,3[']R,4R) – 3 3-[(4-Piridinil) hidroximetil-1,7,7-trimetilbiciclo [2.2.1]heptan-2-ona **(32)**

Em um balão de 250 mL, previamente seco foi adicionado 12 ml de THF seco e adicionado LDA (2M) a -78 °C sob argônio. Uma solução de 1500 mg (10 mmol) de R-(+)-cânfora 21a em 6 mL de THF seco foi adicionada gota a gota (tempo de adição = 15 minutos). Após a adição, a solução foi agitada por 1,5h e em seguida foi adicionado uma solução de 27,3 mmol de 4-piridina carboxaldeído (2,6 mL) em 20 mL de THF seco e então agitado por mais 1 hora. Após este tempo, a reação foi interrompida nesta temperatura, pela adição de 100 mL de uma solução saturada de NH₄Cl. O banho refrigerante foi então retirado, e o excesso de THF (THF-H₂O) foi removida sob pressão reduzida. O resíduo obtido foi então ressuspenso em 40 mL CH₂Cl₂. A fase orgânica foi então lavada com uma solução satura de NaCl 10% (3x25mL). A fase orgânica foi seca com Na₂SO₄ anidro, filtrada e evaporada no evaporador rotatório. O resíduo foi purificado por cromatografia flash usando eluente mistura 5% uma de AcOEt:Hexano, obtendo-se um sólido (1,65g, 67%).

CCDA - (30% AcOEt:Hexano) - $Rf_{33} = 0,24 \ [\alpha]_D^{26} = +111,87 \ (C = 10, CH_2Cl_2)$

RMN¹ H - (200MHz; CDCl₃, δ=ppm): 0,93 (s, 3H); 0,97 (s, 3H); 1,06 (s, 3H); 1,16-1,25(m, 4H); 2,13 (d, 1H, J = 10Hz); 4,81 (s, OH); 4,89 (d,1H, J = 10Hz); 7,18(d, 2H, J = 5,8Hz); 8,61(d, 2H, J = 6Hz).

RMN ¹³**C**-APT (CDCl₃, 50 MHz, δ ppm): 17,45(CH₃); 28,65(CH₃); 30,65(CH₃); 37,15(CH₂); 37,49(CH₂); 39,58(C); 53,70(CH); 55,32(C); 83,49(CH); 129,73(CH); 130,05(CH); 158,25(CH), 158,25(CH); 158,80(C); 230,75(C).

IV (cm⁻¹) – 3448(OH⁻¹); 1728(C=O).

EM- (70 ev) m/e (%): M^{+.} 18 = 241(4,85%), 198(6,91%), 152(35,13%), 108(100%), 95(50,27%), 83(22,4%), 67(16,63%), 55(39,14%), 41(42,89%).

6.25 Espectro de RMN-¹H (CDCl₃, 200 MHz) do **32**.

6.26 Expansão do Espectro RMN-¹H (CDCl₃, 200MHz) de **32** na região de 7.00 a 9.00 ppm.

6.27 Expansão do Espectro RMN- 1 H(CDCl₃, 200MHz) de **32** na região de 2.00 a 5.50 ppm.

6.28 Expansão do Espectro RMN- 1 H(CDCl₃, 200MHz) de **32** na região de 0.00 a 2.00 ppm.

6.29 Espectro de RMN 13 C-APT (50 MHz, CDCl₃) de **32**.

6.30 Expansão do Espectro de RMN 13 C-APT (50 MHz, CDCl₃) de **32** na região de 100,000 a 231,000 ppm.

6.31 Expansão do Espectro de RMN ¹³C-APT (50 MHz, CDCl₃) de **32** na região de 50,000 a 93,000 ppm.

6.32 Expansão do Espectro de RMN 13 C-APT (50 MHz, CDCl₃) de **32** na região de 10,000 a 45,000 ppm.

6.33 Espectro Bidimensional de COSY H, H de **32**.

6.34 Expansão do Espectro Bidimensional de COSY H, H de 32.

6.35 Espectro Bidimensional de NOESY do 35.

Espectro 6.36 Expansão do Espectro Bidimensional de NOESY do 32.

Espectro 6.37 Espectro Bidimensional de HMQC do 32.

Espectro 6.38 Expansão do Espectro Bidimensional de HMQC do 32.

Espectro 6.39 Expansão do Espectro Bidimensional de HMQC do 32.

Espectro 6.40 Espectro Bidimensional de HMBC do 32.

Espectro 6.41 Expansão do Espectro Bidimensional de HMBC do **32**.

Espectro 6.42 Expansão do Espectro Bidimensional de HMBC do 32.

Espectro 6.43 Espectro de massa do 32.

Espectro 6.44 Espectro Infravermelho do **32** em cm⁻¹.

6.2.4 Preparação do (1R, 3S, 3'R,4R) 3-[(4-Piridinil) hidroximetil-1,7,7-trimetilbiciclo [2.2.1]heptan-2-ol **(34)**

Na preparação do diol **34**, seguiu o mesmo procedimento da preparação do diol **33** já descrito. Em um balão de 50 mL foi pesado 100 mg (0,4 mmol) de **32** e em seguida dissolvido em 5mL de THF e 1mL de H₂O. Em seguida foi pesada 151 mg (4,34 mmol) de NaBH₄ e adicionada ao balão e deixado sob agitação constante a 0 °C por 6H. Obtendo-se uma massa de 83 mg com 83% rendimento.

CCDA – (30% AcOEt: Hexano) – $Rf_{37} = 0,23 \ [\alpha]_D^{26} = 64,01 \ (C = 10, CH_2Cl_2).$

RMN ¹H - (500MHz; CDCl₃, δ = ppm): 0,74(s, 3H); 0,91(s, 3H); 1,23(s, 3H); 1,56-1,40(m,2H); 1,85-1,89(t, 1H); 3,66-3,69(s,OH); 3,93(d, J =8Hz, 1H); 5,10(d, J=11 Hz, 1H); 7,38-7,45(dd, J = 5,5Hz, J = 6Hz, 2H); 8,43-847(dd, J = 5,5Hz, J = 6Hz, 2H).

IV cm⁻¹ – 3445 (OH⁻¹), 1091 C-OH(álcool secundário)

RMN ¹³**C**-APT (CDCl₃, 50 MHz, δ ppm): 11,21(CH₃); 21,76(CH₃); 21,88(CH₃); 29,52(CH₂), 32,83(CH₂); 47,01(CH); 49,81(C); 57,91(CH); 67,22(C); 81,91(CH); 82,11(CH), 125,01(CH); 137(CH); 147,21(C); 146,37(CH); 156,61(CH).

MHz) do **34** em 0.550 a 2.200 ppm.

em 2.200 a 5.200 ppm.

Espectro 6.48 Expansão do Espectro de RMN-¹H (CDCl₃, 500 MHz) do **34** em 8.550 a 6.000 ppm.

Espectro 6.49 Espectro de RMN ¹³C-APT (125 MHz, CDCl₃) de 37.

Espectro 6.50 Expansão do Espectro de RMN 13 C-APT (125 MHz, CDCl₃) de **34** na região de 0,000 a 40,000 ppm.

Espectro 6.51 Expansão do Espectro de RMN ¹³C-APT (125 MHz, CDCl₃) de **34** na região de 40,000 a 90,000 ppm.

Espectro 6.52 Expansão do Espectro de RMN ¹³C-APT (125 MHz, CDCl₃) de **34** na região de 100,000 a 150,000 ppm.

Espectro 6.53 Espectro de Infravermelho do diol **34** em cm⁻¹.

Referências

Bibliográficas

REFERÊNCIAS

AGAMI, C.; MEYNIER, F.; PUCHOT, C.; GUILHEM, F.; PASCARD, C.; *Tetrahedron*, 40, 1031, 1984.

ALVES, P.B.; VICTOR, M. M.; *Química Nova*, v34, 10, 2010.

AMARANTE, G. W.; REZENDE, P.; CAVALLARO, M.; COELHO, F.; *Tetrahedron Letter.*, 49, 3744, 2008.

AMARANTE,G. W.; MILAGRE, H. M.; VAZ, S. B.; VILACHA, G. F.; BRUNO, R.; EBERLIN, M. N.; COELHO, F.; *J. Org. Chem.* v.74, 3031-3037, 2009.

ARMER, B.; BEGLEY, M.J.; COX, P.J.; PERDAD, A.; SIMPKINS, N.S.: Journal Chemical Society Perkin Trans 1, 3099, 1993.

BARREIRO, E.J.; FERREIRA, V. F.; COSTA, P.R.R.; *Química Nova*, 20, 647-659, 1997.

BARROS, F. M. C.; ZAMBARDA, E. O. B. M.; HEINZMANN, C. A. M. *Química Nova*, V. 32 (4) 861-867, 2009.

BASAVAIAH, D.; RAO, P. D.; SATYANARAYANA, T.; *Chem. Rev.*, 103, 811, 2003.

BERRY, D. J.; DIGIOVANNA, C. V, METRICK, S. S.; MURUGAN, R.; Catalysis by 4-dialkylaminopyridines. <u>Arkivoc</u>, 201–226 (2001)

BLASER, H.U.; PUGIN, B.; SPLINDLER, F.: *Journal of Molecular Catalysis A:* Chemical, v 231, p. 1-20, 2005.

BROTZEL, F.; KEMPF B.; SINGER T.; ZIPSE H.; MAYR, H.: Nucleophilicities and Carbon Basicities of Pyridines, *Chem. Eur. J.* 13 (3)336 – 345, 2007.

SWAIN C. G.; SCOTT, C. B.; Quantitative Correlation of Relative Rates. Comparison of Hydroxide Ion with Other Nucleophilic Reagents toward Alkyl Halides, Esters, Epoxides and Acyl Halides; *J. Am. Chem. Soc.*, v. 75, pp 141–147, 1953.

CAREY, F. A.; SUNDBERG, R. J.; Advanced Organic Chemistry: parte A, 5^a ed., Springer, pp 409, 2007.

CHAMPBELL, S. F.; Molecular Recognition and Drug Design, *Química Nova*, 14, 196-203, 1991.

CHEN, K.; HUANG, C.T.; CHEN, H.Y; TZEN, Z.H.: *Tetrahedron Letters*, 49, 4134, 2008.

COELHO. F.; AMARANTE, G.W.: *Química Nova*, v.32, n. 2, 467-481, 2009.

CONSTANTINO, M.G.; Química Orgânica Curso Básico Universitário, Vol 3, LTC, 2008.

CORRELAÇÃO DE KARPLU, <u>www.cbs.cnrs.fr/MAJ/FORMATIONS/COURS</u> /RMN/cours/canet1/canet1-4.html; acessado em 20/08/2010.

COSTA, P.R.R.; ; PILLI, R.; PINHEIROS, S.; VASCONCELLOS, M.L.A.A. A.; Substâncias Carboniladas e Derivados, Editora Bookman, 2003.

BASAVAIAH, D.; RAO, A. J.; SATYANARAYANA, T.; Recent Advances in the Baylis–Hillman Reaction and Applications, *Chem. Rev.* v.103, 811-892, 2003.

BASAVAIAH, D.; RAO, K. V.; REDDY, R. J.; Chem. Soc. Rev., 36, 1581, 2007.

EDER, U.; SAUER, G.; WIECHERT, R.; *Angewdte Chemie International Edition*, 10, 496, 1971.

ELIEL, L.; WILWN, S.H.; *Stereochemistry of Organic Compounds*, Ed. Jonh Wiley e Sons, New York, 1994.

FABROS, S.; SMITH, R.L.; WILLIAN, R.T.; Nature, 13,29, 1990.

FILHO, E. B. A.; VENTURA, E.; DO MONTE, S. A.; OLIVEIRA, B. G.; JUNIOR, C. G. L.; ROCHA, G. B.; VASCONCELLOS, M. L. A. A.; Synthesis and conformational study of a new class of highly bioactive compounds, *Chem. Phys. Lett.* V. 449, 336-340, 2007.

FISKE, W.S.; BREDIG, G.; *Biochemisch Zeitschrift*, v.46, p7-23, 1912.

FU, G. C.: Acc. Chem. Res. 33, 412, 2000.

HAAL, G. D.; St-ONGE, M.; LANCHANCE, H.: *Journal Organic Chemistry*, 70, 4180, 2005.

HEATHCOCK, C. H.; PIRRUNG, M. C.; SOHN, J. E.; *Journal Organic Chemistry*, 44, 4294, 1979.

HOUK, K. N.; LIST, B.: *Accounts of Chemical Research*, v.37, p.487, 2004.

IWABUCHI, Y.; NAKATANI, M.; YOKOYAMA, N.; HATAKEYAMA, S.; *J. Am. Chem. Soc.*, 121, 10219, 1999.

LIST, B.; LERNER, R.A.; BARBAS III, C.F.: *Journal of the American Society*, v.122, 2395-2396, 2000.

MARTINS, D.L., *Revista Virtual de Química*, vol.1, n 3, 2009.

MELÃO, M.L.; Sínstese Estereosseletiva e Estudo Espectroscopico de Novos Derivados da 1-(R)-(+)-Cânfora, Tese de Doutorado, UFRJ, 1996.

MELLÃO, M.; VASCONCELLOS M. L. A. A.; New Camphor Derivatives for Enantioseletive Synthesis. *Tetrahedron: Asymmetry*, v. 7, 1607-1610, 1996.

NAKANO, A.; KAWAHARA, S.; AKAMATSU, S.; MOROKUMA, K.; NAKATANI, M.; IWABUCHI, Y.; TAKAHASHI, K.; ISHIHARA, J.; HATAKEYAMA, S.; *Tetrahedron*, 62, 381, 2006. NEGRI, G.; RODRIGUES, E.; *Brazilian Journal of Pharmacognosy*, 20(3): 310, 2010.

NOTZ, W.; LIST, B.; J. Am. Chem. Soc., 122, 7386,2000.

NOYORI, R.; Science, v. 248, p. 1194-1199, 1990.

PARRISH, D.R.; HAJOS, Z. G.; *Journal Organic Chemistry*, 39, 1615, 1974.

PILLI, R. A.; Química Nova na Escola, n 14, 2001.

PINHEIRO, S.; FERREIRA, V. F.: Química Nova, 21(3), 1998.

QUEIROZ, N.; Síntese Enantiosseletiva de Amidas e Ésteres Catalisada por Lipases, UFSC, Tese, 2002.

SANTOS, L. S.; Neto, B. A.; CONSORTI, C. S.; PAVAM, C. H.; ALMEIDA, W. P.; COELHO, F.; EBERLIN, M. N.; DUPONT, J.; *J. Phys. Org. Chem.*, 19, 731, 2006.

SCINFIDER- <u>www.scifinder.com</u>, acessado em: 06 de setembro de 2010.

SILVERSTEIN, R.M.; WEBSTER, F. X.; KIEMLE, D. J.; *Identificação Espectrometria de Compostos Orgânicos*, LTC, 2006.

SONG, X-N; YAO, Z-J; Short asymmetric synthesis of (S,S)-PDP using I-prolinol derivative as economic starting material, Tetrahedron, v 66 (14) pp. 2589-2593, 2010.

SWAIN, C.G.; SCOTT, C.B.; J. Am. Chem. Soc., 75, 141, 1953.

Talidomida. Disponívelem<<u>http://pt.wikipedia.org/wiki/Talidomida</u>>. Acessado em: 27 de agosto de 2010.

VAILLANCOURT, V.; AGHARAHIMI, M.R.; SUNDRAN, V. N.; RICHOU, O.; FAULKNER, D.J.; ALBIZATI, K.J.; *Journal Organic Chemistry*, 56, 378, 1991.

VASCONCELLOS M. L. A. A.; D'ANGELO, J. ; DESMAELLE, D. ; <u>COSTA</u>, <u>P. R. R.</u> ; POTIN, D.; New chiral auxiliaries derived from β -pinene: Their use in the Asymmetric Reduction of β -keto-esters. *Tetrahedron: Asymmetry* v. 2, p. 353-356, 1991.

VASCONCELLOS, M.L.A.A; MELLÃO, M.L.; BARREIROS, U.G.; BRANCO, M.C.; GAMBARDELLA, M.T.P.; RAMOS, O.F.; RIBEIRO, M.; Synthetic Communication, 28(21), 4077, 1998.

WONG, K. C. *ET AL.*; ONG, K. S.; LIM, C. L.; "Compositon of the essential oil of rhizomes of *kaempferia galangal*; *Flavour and Fragrance Journal* **7** (5): 263–266, 2006.

WURZ, R. P., Chem. Rev., 107, 5570, 2007.

YOON, T. P.; JACOBSEN, E.N.: Science, v. 299, 1691-1693, 2003.

TZENG, Z.; CHEN, H.; HUAN, C.; CHEN, K.; *Tetrahedron Letters*, 49, 4134, 2008.

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo