UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ COORDENAÇÃO DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E INFORMÁTICA INDUSTRIAL - CPGEI

MARCELO DO AMARAL FERREIRA

EFEITO DA DISTÂNCIA INTERBRAQUETES SOBRE O SISTEMA DE FORÇAS EM ALÇAS DE RETRAÇÃO ORTODÔNTICA COM GEOMETRIA DELTA: ESTUDO NUMÉRICO EXPERIMENTAL

TESE

CURITIBA 2010

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

MARCELO DO AMARAL FERREIRA

EFEITO DA DISTÂNCIA INTERBRAQUETES SOBRE O SISTEMA DE FORÇAS EM ALÇAS DE RETRAÇÃO ORTODÔNTICA COM GEOMETRIA DELTA: ESTUDO NUMÉRICO EXPERIMENTAL

Tese apresentada ao Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial, da Universidade Tecnológica Federal do Paraná como requisito parcial para obtenção do título de Doutor em Ciências, Área de Concentração: Engenharia Biomédica.

Orientador: Prof. Dr. Paulo César Borges

Ficha catalográfica elaborada pela Biblioteca da UTFPR – Campus Curitiba

F383e	Ferreira, Marcelo do Amaral Efeito da distância interbraquetes sobre o sistema de forças em alças de retração ortodôntica com geometria delta : estudo numérico experimental / Marcelo do Amaral Ferreira. — 2010. 161 f. : il. ; 30.cm
	Orientador: Paulo César Borges Tese (Doutorado) — Universidade Tecnológica Federal do Paraná. Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial. Área de Concentração: Engenharia Biomédica, Curitiba, 2010 Bibliografia: f. 104-13
	 Alça de retenção ortodôntica. 2. Ortodontia. 3. Braquetes ortodônticos. 4. Engenharia biomédica. I. Borges, Paulo César, orient. II. Universidade Tecnológica Federal do Paraná. Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial. Área de Concentração em Engenharia Biomédica. III. Título.
	CDD 621.3

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba

Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial

Título da Tese Nº 54:

"Efeito da distância interbraquetes sobre o sistema de forças em alças de retração ortodôntica com geometria em delta: estudo numérico-experimental."

por

Marcelo do Amaral Ferreira

Esta tese foi apresentada, às 09h do dia 31 de março de 2010, como requisito parcial à obtenção do título de DOUTOR EM CIÊNCIAS – Área de Concentração: Engenharia Biomédica, ao Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial – CPGEI – da Universidade Tecnológica Federal do Paraná – UTFPR – Campus Curitiba. O trabalho foi aprovado pela Banca Examinadora.

Prof. Paulo César Borges, Dr. (Presidente – UTFPR)

Prof. Mildred Ballin Hecke, Dr. (UFPR)

Prof. Ulisses Coelho, Dr. (UEPG)

Prof. Jean Carlos Cardozo da Silva, Dr. (UTFPR - Pato Branco)

Prof. Marco Antonio/Luersen, Dr. (UTFPR)

Visto da coordenação:

Prof. Dr. Humberto Remígio Gamba (Coordenador do CPGEI)

Dedico este trabalho à todos aqueles que direta e indiretamente cooperaram para a realização deste trabalho.

AGRADECIMENTOS

Ao orientador deste trabalho professor Paulo César Borges (CPGEI-DAMEC) pelos enfoques dados neste trabalho e incansável dedicação, orientação e apoio.

Ao professor Marco Antônio Luersen (DAMEC) pela dedicação, disponibilidade, e explicações sobre o método dos elementos finitos.

Ao professor Cid Vicentini Silveira (Metrologia-LAMEC-DAMEC) pela valiosa cooperação nas explicações sobre métodos de medição deste trabalho.

Aos acadêmicos Roberto L. Assumpção e Guilherme Von Zeska, pelos trabalhos com elementos finitos e ajustes da plataforma.

Ao professor Ivan Canone pelas palavras de incentivo.

Aos professores do CPGEI pelo seu entusiasmo em ensinar.

À secretária Terezinha Strapasson pelos serviços administrativos.

Ninguém ignora tudo, ninguém sabe tudo. Por isso, estamos aprendendo sempre. Paulo Freire

RESUMO

FERREIRA, Marcelo do Amaral. **Efeito da distância interbraquetes sobre o sistema de forças e alças de retração ortodôntica com geometria delta: Estudo numérico experimental**. 2010. 161f. Tese de Doutorado (Tese em Engenharia Biomédica) – Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial, Universidade Tecnológica Federal do Paraná. Curitiba, 2010.

O presente trabalho estudou por meio do Método dos Elementos Finitos e por testes experimentais o efeito da distância interbraguetes, ativação e geometria (variáveis independentes) sobre o sistema de forças (Fx, Fy e Mz) produzidos por alças delta após ativação. As amostras foram produzidas com titânio-molibdênio, com secção transversal 0.017 x 0.025 polegadas (0,43mm x 0,64mm) e separadas em dois grupos (G₁ e G₂), com dez alças cada um. O grupo de alças G₁ apresenta hastes com inclinação em suas extremidades. O Grupo G2 hastes com extremidades arredondadas. Visando identificar diferenças entre as médias populacionais devidas a três possíveis causas ou fontes de variação (variáveis independentes) e as interações entre as mesmas (geometria, distância interbraguetes e ativação), utilizou-se a método de análise de variância a três critérios de classificação, modelo fatorial completo (ANOVA). O método de análise de variância aceita ou rejeita a(s) hipótese(s) H_a de igualdade das médias populacionais. Se H_0 for rejeitada, admite-se que pelo menos uma das médias é diferente das demais. Nestas condições utilizou-se o teste proposto por Games-Howell para variâncias heterogêneas, visando estabelecer comparações entre os diferentes tratamentos. Para estimar a constante elástica para os dois tratamentos (G₁ e G₂), utilizou-se a análise de regressão para verificar o grau de relacionamento entre os valores da variável resposta (força Fx) e a variável independente (ativação da alça). Os Grupos $G_1 \in G_2$ apresentaram magnitudes de força compatíveis com as descritas pela literatura (houve variação de 81,65gf até125gf para o grupo G_1 e de 92,45gf até 133,10gf para G_2 , aos 3.0mm e 4.0mm de ativação, respectivamente para Fx). As forças verticais Fy foram de 50gf e 16gf para $G_1 \in G_2$, aos 4.0mm, respectivamente, e 52,15gf e 26,95gf para $G_1 \in G_2$ aos 3.0mm de ativação, respectivamente. A constante de mola encontrada para os grupos estudados mostrou estar dentro de limites apropriados para uso clínico, resultando 27.95gf/mm para G₁ e 32.09 para G₂. A relação M/F aumentou à medida que as alças desativavam. As alças mostraram ser adequadas para a retração de caninos desde que ativadas até aos 4,0mm e reativadas após 2,0mm de desativação. A relação M/F média foi de 9,2mm aos 4,0 mm de ativação e de 13mm aos 3,0mm para G_1 enquanto que para G_2 os valores médios foram de 9,3mm aos 4,0mm de ativação e13mm aos 3,0mm. Não houve diferença significativa entre os grupos. A variável independente ativação causou diferença estatística significativa nos resultados das variáveis dependentes (Fx, Fy e Mz). As diferentes distâncias interbraquetes não influenciaram de maneira significativa o sistema de forças. A variável grupo influenciou de maneira significativa os valores de Fy e Mz.

Palavras-chave: Alças de retração ortodôntica. Elemento de viga bidimensional para amplas deflexões. Análise elástica-linear. Ortodontia.

ABSTRACT

FERREIRA, Marcelo do Amaral. Effect of interbracket distance on force system of orthodontic retraction delta springs: an experimental-numerical study. 2010. 161f. Tese de Doutorado (Tese em Engenharia Biomédica) – Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial, Universidade Tecnológica Federal do Paraná. Curitiba, 2010.

The present study tested experimentally and by Finite Element Method the effect of inter-bracket distance (IBD), activation and geometry (independent variables) on the force system (Fx, Fy, Mz) produced by delta springs after activation. The springs were produced with titanium-molybdenum 0.017 x 0.025 in (0.43mm x 0.64mm), and separated in two groups (G₁ and G₂) with ten springs each one. The springs in group G₁ presented angulated legs and in the group G₂ rounded legs. Analysis of factorial variance (ANOVA) and the Games-Howell were applied to verify the differences between the averages caused by three possible variation (inter brackets distance, geometry and activation) sources and the interactions between them. Regression analysis was also performed to obtain the spring rate. Groups G₁ and G₂ presented force magnitudes which are compatible with the ones mentioned in the literature related to the subject (varying from 81,65gf to125gf for G_1 and from 92,45gf to 133,10gf for G_2 , at 3.0mm and 4.0mm of activation, respectively for Fx). The vertical Fy forces were 50 gf and 16gf for G₁ and G₂, at 4.0mm, respectively, and 52,15 gf and 26,95 gf for G₁ and G₂ at 3.0mm of activation, respectively. The spring constants have proved to be within the levels which are appropriate for clinical use, resulting 27,95gf/mm for G₁ and 32,09 for G₂ groups. The mean moment-to-force ratio (M/F) was M/F=9,2mm at 4,0 mm of activation and 13mm at 3,0mm of activation for G₁ group, whereas for G₂ the mean values were M/F=9,3mm at 4,0mm of activation and M/F=13mm at 3,0mm. The M/F ratio incresead as the springs deactivated. There was no statistical differences between groups. IBD and geometry does not cause significative influence on force systems resulting from activations, but activation that produced statistical difference on force system (Fx, Fy and Mz).

Keywords: ANSYS. Orthodontic retraction springs. Large deflection two-dimensional beam element. Elastic plastic analysis. Orthodontics.

LISTA DE FIGURAS

Figura 1 -	Desenho esquemático de arcos dentários superiores hipotéticos	
	com situações de falta de espaço e tratamento por meio de alça	
	de retração	21
Figura 2 -	Lados de tração e compressão produzem áreas de aposição e	
	reabsorção óssea, respectivamente	22
Figura 3 -	Variação do centro de resistência de um dente em função da altura	
	da crista óssea alveolar	25
Figura 4 -	Esquema de um sistema de forças com suas componentes verticais,	
	horizontais e momentos alfa (anterior) e beta (posterior)	25
Figura 5 -	Esquema ilustrativo dos tipos de movimentos. dentários	27
Figura 6 -	Aspecto da alça de Bull	31
Figura 7 -	Aspecto da alça de Fryar	31
Figura 8 -	Aspecto da alça helicoidal vertical	32
Figura 9 -	Alça Bull modificada com helicóides e suas dimensões, desenvolvida	
	na universidade de Indiana por Yang e Baldwin	32
Figura 10 -	Aspecto da alça de Poul Gjessing para retração de caninos	33
Figura 11 -	Aspecto esquemático da alça de Poul Gjessing para retração	
	de caninos	33
Figura 12 -	Aspecto de alça com geometria de T híbrida (níquel-titânio e aço	
	inox), para a retração de canino	34
Figura 13 -	Aspecto de alça com geometria híbrida composta de um cilindro e	
	mola de compressão interna de níquel-titânio	35
Figura 14 -	Aspecto da alça adaptada nos encaixes fixo e sensível da plataforma	36
Figura 15 -	Esquema utilizado por Chen et al., para o estudo da alça triangular	37
Figura 16 -	Elemento finito de viga bidimensional com 2 nós e 3 graus de	
	liberdade por nó (2 translações e 1 rotação)	40
Figura 17 -	Desenho esquemático produzido por meio do Método dos Elementos	
	Finito da alça UTFPR Spring desenvolvida pela UTFPR	41
Figura 18 -	Alça do grupo G2 modelada no ANSYS	49

Figura 19-	Nós da malha de elementos finitos para a alça do grupo G2	50
Figura 20 -	Simulação da alça encaixada nos braquetes e condições de	
	contorno utilizadas na simulação por elementos finitos	50
Figura 21 -	Alças do grupo G_1 e suas dimensões	53
Figura 22 -	Alças do grupo G_2 e suas dimensões	54
Figura 23 -	Plataforma de medição de forças (Fx, Fy) e momento (Mz)	55
Figura 24 -	Conjunto consistindo da plataforma de ensaios, placa condicionadora	
	de sinais e placa de aquisição de dados	55
Figura 25 -	Componente interno da plataforma	56
Figura 26 -	Representação esquemática da movimentação dentária pretendida	
	simulada na plataforma	59
Figura 27 -	Plataforma, e eixo regulador da distância interbraquete (A); e	
	alça adaptada	60
Figura 28 -	Plataforma e eixo regulador deslocado em 2 mm	61
Figura 29 -	Eixo deslocado em sua totalidade (4 mm)	61
Figura 30 -	Ensaio realizado sem a presença de um eixo regulador da distância	
	interbraquetes em protótipo de alça delta	62
Figura 31 -	Alça delta e o sistema de forças desenvolvido	62
Figura 32 -	Caso clínico exibindo alça delta do Grupo G_1 com o objetivo de	
	retração do canino	63
Figura 33 -	Curva de calibração da plataforma no eixo das abscissas (Fx)	66
Figura 34 -	Curva de calibração da plataforma no eixo das ordenadas (Fy)	67
Figura 35 -	Curva de calibração da plataforma no eixo das ordenadas (Mz)	67
Figura 36 -	Comportamento de Fx para 23 mm de DIB	70
Figura 37 -	Comportamento de Fx para 19 mm de DIB	70
Figura 38 -	Comportamento de Fy para 23mm de DIB	71
Figura 39 -	Comportamento de Fy para 19mm de DIB	71
Figura 40 -	Comportamento da relação Mα/F comparando as diferentes DIB	
	utilizadas para o grupo G1	72
Figura 41 -	Comportamento da relação Mα/F comparando as diferentes DIB	
	utilizadas para o grupo G_2	72

Figura 42 -	Aspecto gráfico do comportamento das tensões de von Mises	
	para o grupo G ₂	74
Figura 43 -	Aspecto gráfico do comportamento das tensões de von Mises	
	para o grupo G1	75
Figura 44 -	Aspecto gráfico do comportamento das tensões de von Mises	
	para o grupo G ₂	75
Figura 45 -	Comportamento das retas do método experimental e do modelo	
	numérico para DIB 21mm, para Fx, grupo G_1	76
Figura 46 -	Comportamento das retas do método experimental e do modelo	
	numérico para DIB 21mm, para Fy, grupo G_1	76
Figura 47 -	Comportamento das retas do método experimental e do modelo	
	numérico para DIB 21mm, para Mz, grupo G_1	77
Figura 48 -	Comportamento das retas do método experimental e do modelo	
	numérico para DIB 21mm para Fx, grupo G2	77
Figura 49 -	Comportamento das retas do método experimental e do modelo	
	numérico para DIB 22mm, para Fy, grupo G2	78
Figura 50 -	Comportamento das retas do método experimental e do modelo	
	numérico para DIB 22mm para Mz, grupo G2	78
Figura 51 -	Comportamento das curvas da relação M/F pelo método	
	experimental e pelo modelo numérico para DIB 23mm, grupo G1	79
Figura 52 -	Comportamento das curvas da relação M/F pelo método	
	experimental e pelo modelo numérico para DIB 23mm, grupo G2	79
Figura 53 -	Comportamento das diferentes ativações para Fx	83
Figura 54 -	Comportamento dos grupos para Fx	84
Figura 55 -	Intervalo de confiança (95%) dos grupos para Fx	84
Figura 56 -	Interação entre grupos e distâncias interbraquetes para Fx	85
Figura 57 -	Intervalo de confiança das ativações para Fx	86
Figura 58 -	Comportamento das diferentes ativações para Fy	87
Figura 59 -	Comportamento dos grupos para Fy	88
Figura 60 -	Interação grupo x ativação para Fy	89
Figura 61 -	Intervalo de confiança (95%) para a média segundo os grupos	
	G ₁ e G ₂	89

Figura 62 -	Intervalo de confiança 95% para a média segundo as ativações	
	de 4mm e de 3mm	90
Figura 63 -	Intervalo de confiança (95%) para as variáveis grupo e ativação	90
Figura 64 -	Note a proximidade da região angulada da haste e a	
	proximidade do eixo (molar)	100

LISTA DE TABELAS

Tabela 1	 Comparação das relações Mα/F de alças para retração do 	
	segmento anterior descritas na literatura	28
Tabela 2	- Tipo de liga, limites elásticos (σe) e módulos de elasticidade	
	aproximados	43
Tabela 3	- Dimensões das alças e parâmetros geométricos considerados	
	(experimental)	49
Tabela 4	- Tipo de liga, secção transversal, tensão de escoamento (σe) e	
	módulo de elasticidade (E)	54
Tabela 5	- Forças em Fx segundo a ativação e a distância interbraquetes - G_1	68
Tabela 6	- Forças em Fy segundo a ativação e a distância interbraquetes - G_1	68
Tabela 7	- Forças em Mz segundo a ativação e a distância interbraquetes G1	68
Tabela 8	- Forças em Fx segundo a ativação e a distância interbraquetes - G2	69
Tabela 9	- Forças em Fy segundo a ativação e a distância interbraquetes - G2	69
Tabela 10	- Forças em Mz segundo a ativação e a distância interbraquetes G ₂	69
Tabela 11	- Sistema de forças obtido pelo método dos elementos finitos $(G_1) \dots$	73
Tabela 12	- Sistema de forças pelo método dos elementos finitos (G ₂)	74
Tabela 13	- Análise de variância - Variável resposta Fx	83
Tabela 14	- Análise de variância - Variável resposta Fy	87
Tabela 15	- Análise de variância - Variável resposta Mz	91
Tabela 16	- Correlação de Pearson para as Variáveis Fx e Ativação	91
Tabela 17	- Referência, geometria, tipo de liga, secção transversal e constante	
	elástica. Comparação de outros estudos e o presente trabalho	99

LISTA DE SIGLAS

b ₁	- Parâmetro de regressão
b _o	- Parâmetro de regressão
Cr	- Centro de resistência
C _{rot}	- Centro de rotação
Е	- Módulo de elasticidade
F/D	- Relação força-deflexão
F _{max}	- Força máxima admissível
F _{MAX}	- Força Máxima Admissível
Fx	- Força na direção horizontal
Fy	- Força na direção vertical
G.L.	- Graus de liberdade
gf	- Unidade de medida de força equivalente a 9,80665.10 ⁻³ N
gf/cm ²	- Unidade de medida de pressão e equivale a 98,06037 Pa
H0	- Hipótese nula
H1	- Hipótese de pesquisa
I	- Momento de inércia
K	- Constante de proporcionalidade
kg.m	- Unidade de medida de energia, onde 1 kg.m (9,80665 J)
kp/cm ²	- Unidade de medida de pressão onde 1kp/cm ² (98066 Pa)
L	- Comprimento (VIGA)
M/F	- Relação momento-força
MPa	- Mega Pascal (unidade de tensão)
Mr	- Módulo de resiliência
Mz	- Momento no eixo "Z", tendência rotacional
Ν	- Newton (unidade de Força)
NiTi	- Níquel-Titânio
TMA	- Titânio-Molibdênio
UFRGS	- Universidade Federal do Rio Grande do Sul
UTFPR	- Universidade Tecnológica Federal do Paraná
Δl	- Diferença entre distância inicial e final

LISTA DE EQUAÇÕES

Equação não-linear de tensão	(1)	40
Equação do modelo de regressão	(2)	64
Estatística t de Student para b $_0$	(3)	64
Regra de decisão para rejeitar b $_0$	(4)	64
Equação do modelo de regressão sem o intercepto	(5)	64
Estatística t de Student para b1	(6)	65
Regra de decisão para rejeitar b1	(7)	65

SUMÁRIO

1	INTRODUÇÃO	18
1.1	DELINEAMENTO DO TRABALHO	19
2	REVISÃO BIBLIOGRÁFICA	20
2.1	MOVIMENTAÇÃO DENTÁRIA	20
2.2	MAGNITUDES DE FORÇA EMPREGADOS NO MOVIMENTO DENTÁRIO	23
2.3	CONCEITOS BIOMECÂNICOS APLICADOS AO MOVIMENTO DENTÁRIO	24
2.3.	1 Centro de Resistência e Centro de Rotação	24
2.3.	2 Sistemas de Forças em Ortodontia (Forças horizontais, forças verticais	
	e relação momento-força M/F)	25
2.3.3	3 Configurações de Alças (Geometria e Constante Elástica)	29
2.3.4	4 Relação Força-deflexão (F/D)	37
2.3.	5 Métodos de Caracterização	38
2.3.	5.1 Transdutores	38
2.4	MÉTODO DOS ELEMENTOS FINITOS	39
2.5	AS LIGAS METÁLICAS UTILIZADAS EM ORTODONTIA	42
3	OBJETIVOS	45
3 3.1	OBJETIVOS GERAIS	45 45
3 3.1 3.2	OBJETIVOS OBJETIVOS GERAIS OBJETIVOS ESPECÍFICOS	45 45 45
3 3.1 3.2 3.3	OBJETIVOS OBJETIVOS GERAIS OBJETIVOS ESPECÍFICOS JUSTIFICATIVAS	45 45 45 45
 3.1 3.2 3.3 4 	OBJETIVOS	45 45 45 45 48
 3.1 3.2 3.3 4 4.1 	OBJETIVOS	45 45 45 45 48 48
 3.1 3.2 3.3 4 4.1 4.1. 	OBJETIVOS OBJETIVOS GERAIS OBJETIVOS ESPECÍFICOS JUSTIFICATIVAS MATERIAIS E MÉTODOS MATERIAIS. 1 Modelagem dos Protótipos pelo Método dos Elementos Finitos	45 45 45 48 48 48
 3.1 3.2 3.3 4 4.1 4.1.5 	OBJETIVOS OBJETIVOS GERAIS OBJETIVOS ESPECÍFICOS JUSTIFICATIVAS MATERIAIS E MÉTODOS MATERIAIS 1 Modelagem dos Protótipos pelo Método dos Elementos Finitos 2 Fabricação das Alças	45 45 45 48 48 48 51
 3.1 3.2 3.3 4 4.1 4.1.2 4.1.2 	OBJETIVOS OBJETIVOS GERAIS OBJETIVOS ESPECÍFICOS JUSTIFICATIVAS MATERIAIS E MÉTODOS MATERIAIS	45 45 45 48 48 48 51 52
 3.1 3.2 3.3 4.1 4.1.1 4.1.1 4.1.2 4.2 	OBJETIVOS OBJETIVOS GERAIS OBJETIVOS ESPECÍFICOS JUSTIFICATIVAS MATERIAIS E MÉTODOS MATERIAIS	45 45 45 48 48 48 51 52 54
 3.1 3.2 3.3 4 4.1 4.1.5 4.1.5 4.2 4.2.5 	OBJETIVOS OBJETIVOS GERAIS OBJETIVOS ESPECÍFICOS JUSTIFICATIVAS MATERIAIS E MÉTODOS MATERIAIS 1 Modelagem dos Protótipos pelo Método dos Elementos Finitos 2 Fabricação das Alças 3. Caracterização Dimensional das Amostras MÉTODO EXPERIMENTAL 1 1 Caracterização Mecânica da Plataforma	45 45 45 48 48 48 51 52 54 54
 3.1 3.2 3.3 4 4.1 4.1.5 4.2 4.2.5 	OBJETIVOS OBJETIVOS GERAIS OBJETIVOS ESPECÍFICOS JUSTIFICATIVAS MATERIAIS E MÉTODOS MATERIAIS 1 Modelagem dos Protótipos pelo Método dos Elementos Finitos 2 Fabricação das Alças 3. Caracterização Dimensional das Amostras MÉTODO EXPERIMENTAL 1 1 Caracterização Mecânica da Plataforma 2 Sistema de Aquisição de Dados	45 45 45 48 48 48 51 52 54 54 57
 3.1 3.2 3.3 4.1 4.1.2 4.2.2 4.2.2 4.2.3 	OBJETIVOS OBJETIVOS GERAIS OBJETIVOS ESPECÍFICOS JUSTIFICATIVAS MATERIAIS E MÉTODOS MATERIAIS 1 Modelagem dos Protótipos pelo Método dos Elementos Finitos 2 Fabricação das Alças 3. Caracterização Dimensional das Amostras MÉTODO EXPERIMENTAL 1 Caracterização Mecânica da Plataforma 2 Sistema de Aquisição de Dados 3 Calibração da Plataforma	45 45 45 48 48 48 51 52 54 54 57 57
 3.1 3.2 3.3 4.1 4.1.2 4.2.2 4.2.2 4.2.3 4.2.4 	OBJETIVOS OBJETIVOS GERAIS OBJETIVOS ESPECÍFICOS JUSTIFICATIVAS MATERIAIS E MÉTODOS MATERIAIS 1 Modelagem dos Protótipos pelo Método dos Elementos Finitos 2 Fabricação das Alças 3. Caracterização Dimensional das Amostras MÉTODO EXPERIMENTAL 1 1 Caracterização Mecânica da Plataforma 2 Sistema de Aquisição de Dados 3 Calibração da Plataforma 4 Método de Medida (Medição de Forças Fx, Fy e do Momento Mz)	45 45 45 48 48 48 51 52 54 54 57 57 58

5	RESULTADOS	66
5.1	CURVAS DE CALIBRAÇÃO DA PLATAFORMA	66
5.2	VALORES DO SISTEMA DE FORÇAS (Fx, Fy E Mz) OBTIDOS NOS	
	GRUPOS DE ALÇAS G ₁ E G ₂ APÓS ATIVAÇÃO PARA CADA UMA	
	DAS DISTÂNCIAS INTERBRAQUETES	67
5.3	ELEMENTOS FINITOS	73
5.3.	1 Sistema de Forças	73
5.3.	2 Tensões de Von Mises	74
5.4	COMPARAÇÃO ENTRE OS TESTES EXPERIMENTAL E NUMÉRICO	76
6	DISCUSSÃO	80
6.1	COMPARAÇÃO GERAL DAS AMOSTRAS	82
6.2	COEFICIENTE ESTIMADO DA CONSTANTE ELÁSTICA	91
6.3	ANÁLISE POR MEIO DOS ELEMENTOS FINITOS SOBRE AS	
	VARIÁVEIS ESTUDADAS	92
6.4	MAGNITUDE DE FORÇAS Fx RELATIVAS AOS GRUPOS $G_1 E G_2$	
	(TESTES EXPERIMENTAL E NUMÉRICO)	93
6.5	MAGNITUDE DE FORÇAS Fy RELATIVAS AOS GRUPOS $G_1 E G_2$	
	(TESTES EXPERIMENTAL E NUMÉRICO)	94
6.6	MAGNITUDE DAS RELAÇÕES MOMENTO-FORÇA (M/F _X) DOS	
	$GRUPOS\ G_1\ E\ G_2 \ldots \ldots$	96
6.7	CONSTANTE DE MOLA	99
6.8	TENSÕES DE VON MISES	100
7	CONCLUSÕES	102
REF	ERÊNCIAS	105
ANE	EXO A - SISTEMA DE FORÇAS PELO MÉTODO DOS ELEMENTOS	
	FINITOS	116
ANE	EXO B - GRÁFICOS DO COMPORTAMENTO DO SISTEMA DE FORÇAS	119
ANE	EXO C - TABELAS ESTATÍSTICAS	153

1 INTRODUÇÃO

Um dos obstáculos encontrados durante a movimentação dentária induzida por meio de aparelhos ortodônticos, se refere ao controle nas três dimensões do espaço, do(s) dente(s) a serem movimentados, pois advém desses movimentos o atrito originado entre o arco metálico que desliza na canaleta do acessório (braquetes ou tubos) colado ao dente. Além disso, surge um complexo sistema de forças que depende de fatores como os de ordem anatômica (tecidos circunvizinhos ao dente, por exemplo o periodonto); fatores geométricos (distância interbraquetes, forma e secção transversal dos braquetes e dos arcos metálicos, momento de inércia do arco metálico); tipo de material empregado (tipo de metal do arco, tipo de material do braquete, por exemplo, cerâmicos, metálicos e plásticos) e de ordem física (vetores de força responsáveis pela direção e sentido do movimento).

O sistema Edgewise (conhecido como arco de canto) apresentado no início do século XX, em 1925, no encontro da sociedade Angle, vem sendo constantemente aperfeiçoado no sentido de produzir movimentação dentária controlada. No entanto, este sistema é caracterizado por um complexo sistema de forças produzido pela curta distância interbraquetes responsável por um sistema estático indeterminado, que não permite ao clínico conhecer, os efeitos indesejáveis resultantes das diversas forças aplicadas.

A evolução do sistema permitiu a concepção de segmentar o arco metálico no sentido de se aumentar os pontos de aplicação de força, por meio da chamada Técnica do Arco Segmentado (TAS) desenvolvida por Burstone (1962). Na TAS a movimentação dos dentes ocorre por meio de alças que funcionam como molas. Esses dispositivos permitem a criação de um sistema de forças mais predictível. Alguns conceitos decorrem do uso desses dispositivos tais como o do centro de rotação e centro de resistência, ambos responsáveis pelo tipo de movimentação que se deseja, bem como alguns fatores relacionados ao sistema de forças como a relação momentoforça (M/F), a relação força-deflexão (F/D) e os níveis de força (F). Esses fatores dependem das propriedades mecânicas das ligas utilizadas na confecção das alças. Atualmente, as ligas de titânio-molibdênio são preferidas às ligas de aço inox e às ligas de cromo-cobalto utilizadas por muitos anos. À partir do momento em que são, as alças, adaptadas sobre os dentes, nos quais se apóiam por meio dos braquetes e tubos, estas produzem um sistema de forças. Depois de ativadas, estas carregam energia a qual uma vez armazenada é descarregada produzindo movimentação dos dentes. O movimento resulta em aproximação dos dentes, ou mais especificamente, dos braquetes e tubos. Com isso a distância interbraquetes diminui e o sistema de forças se altera.

Alguns trabalhos (SOLONCHE *et al.*, 1977; FERREIRA 1999; FERREIRA *et al.*, 2005; THIESEN *et al.*, 2005; CHEN *et al.*, 2007) estudaram o sistema de forças produzidos por alças de diversas geometrias e com distâncias interbraquetes fixas, desta forma as alças eram ativadas gradativamente desde o repouso até determinada ativação em milímetros. No entanto, nenhum trabalho mensurou a influência da diminuição da distância inter braquetes à medida em que a alça se desativa sobre o sistema de forças, o que simula o fechamento de espaços em boca, devido a aproximação dos dentes.

1.1 DELINEAMENTO DO TRABALHO

No capítulo 2 é descrita a biologia envolvida para a movimentação dentária por meio de conceitos de movimentação dentária. Também são descritos, nesse mesmo capítulo, os níveis de força usualmente aplicados, as configurações e as técnicas de caracterização das alças. No capítulo 3 estão descritos os objetivos do trabalho. No capítulo 4 os materiais e métodos utilizados. No capítulo 5, os resultados e o tratamento estatístico destinado a identificar as diferenças entre as médias populacionais devidas a três possíveis causas ou fontes de variação (variáveis independentes) e as interações entre as mesmas (secção transversal da alça, posição do delta e angulação). Para a estimativa da constante elástica foi feita a análise de regressão para verificar o grau de relacionamento entre os valores da variável resposta (Fx, Fy e Mz) e a variável independente (ativação da alça). No capítulo 6 é apresentada a discussão dos resultados encontrados, e no capítulo 7, as conclusões.

2 REVISÃO BIBLIOGRÁFICA

2.1 MOVIMENTAÇÃO DENTÁRIA

Os aparelhos fixos se destinam ao fechamento de espaços decorrentes de: (a) extrações planejadas com finalidade ortodôntica; (b) extrações dentárias devido a cáries extensas e cujos espaços não foram anteriormente preenchidos por próteses; (c) espaços provenientes de agenesias¹ dentárias; e (d) espaços presentes por discrepância dento-maxilar².

Dentre os dispositivos utilizados, quando se considera o fechamento de espaços, as alças de retração representam uma valiosa alternativa pelo fato de serem capazes de provocar movimentação de um ou mais dentes de maneira controlada em um sistema sem atrito. Assim sendo, muitas alças foram caracterizadas, ou seja, buscou-se conhecer os sistemas de forças decorrentes de suas ativações (abertura ou carregamento da alça) por meio da tabulação dos valores das magnitudes das forças e dos momentos de força por elas gerados.

Muitas vezes se requer a movimentação dos caninos de maneira isolada, onde há falta de espaço moderada ou severa, ou onde se requer espaço suficiente para a retração dos incisivos como nos casos de protrusão (inclinação para o lado labial) exagerada desses dentes (GJESSING, 1985). Na figura 1-A, pode-se observar que na linha de cima há falta de espaço para os incisivos se alinharem ao passo que na linha do meio há falta de espaço para o canino. Na linha de baixo o canino encontra-se em infra-vestíbulo-oclusão por falta severa de espaço. Na figura 1-B situação mostrando falta de espaço para acomodação do dente canino; e na figura 1-C, situação após início do tratamento onde foi necessária a extração do dente pré-molar para em seguida ter início a retração do canino em seu lugar, desta forma aliviando-se espaço para a retração dos incisivos ou para o alinhamento do canino.

¹ Ausência congênita de um ou mais dentes.

² A discrepância dento-alveolar pode se dar pela presença de espaços entre os dentes ou pela falta de espaço necessário para o correto posicionamento dos dentes e é de origem genética.

Figura 1 - Desenho esquemático de arcos dentários superiores hipotéticos com situações de falta de espaço e tratamento por meio de alça de retração

A movimentação dentária induzida ortodonticamente implica em proliferação celular seguida de uma série de alterações teciduais diferentes daquelas observadas microscópicamente durante o movimento dentário fisiológico (KRONFELD, 1955; NORTON; BURSTONE, 1989).

Para compreender essas alterações é preciso conhecer o periodonto em sua fisiologia e anatomia. Conforme Bhaskar (1989), o periodonto pode ser didaticamente dividido em quatro tipos de tecidos: dois de natureza mineral (o cemento e o osso alveolar), e dois de natureza fibrosa (a lâmina própria do ossos alveolar e o ligamento periodontal).

As células do ligamento periodontal desempenham importante função na homeostase da porção alveolar desse ligamento durante o movimento dentário, seja ele fisiológico iatrogênico ou terapêutico (MELSHER, 1989).

Durante o movimento dentário induzido (terapêutico) ocorre alteração da anatomia do periodonto onde se verificam áreas de tração e de compressão e intensa atividade celular responsáveis pelos processos de aposição e absorção óssea. Quatro células específicas respondem por esses processos, a saber: osteoclastos, osteoblastos,

cementoblastos e fibroblastos estas últimas com potencial de diferenciação celular. Essas células têm origem em células progenitoras, cujo sítio é o próprio ligamento periodontal. Essas células preservam a arquitetura do ligamento periodontal reajustando-o na medida em que ocorre o deslocamento do dente. Os fibroblastos são responsáveis pela produção de colágeno (RYGH, 1984; BHASKAR, 1989).

A absorção do tecido ósseo e cementário, bem como a absorção do tecido hialinizado é elaborada pelos osteoclastos, cementoclastos, macrófagos e células gigantes. Os osteoclastos parecem ter origem hematopoiética, derivados dos monócitos circulantes do sangue, enquanto se atribui uma origem desconhecida aos cementoclastos. Com relação aos macrófagos e às células gigantes, pouco se sabe sobre suas funções nos processos fisiológicos durante a movimentação dentária (BHASKAR, 1989).

O movimento dentário terapêutico acontece quando, após a aplicação de uma força ocorre aposição e absorção nas paredes alveolares em suas faces endosteais, tanto no lado de tração quanto no de compressão (Figura 2). Dessa forma, o dente não invade essas superfícies e sim juntamente com elas se desloca de maneira a manter a arquitetura do periodonto (MELSHER, 1989). O primeiro estudo histológico foi realizado por Sandestedt, citado por Oppenheim (1944) o qual encontrou áreas de hialinização e absorção à distância do local de aplicação da força. Esse fato, constatado por Sandestedt, geralmente acontece quando forças excessivas são aplicadas. Assim, o osso alveolar adjacente sofre um esmagamento, o que provoca lacunas de absorção em áreas próximas, o que leva o dente a produzir um salto ou movimento brusco, ao invés de um deslocamento lento e progressivo.

Figura 2 - Lados de tração e compressão produzem áreas de aposição e reabsorção óssea, respectivamente

2.2 MAGNITUDES DE FORÇA EMPREGADOS NO MOVIMENTO DENTÁRIO

Estudos como o de Reitan (1957), Smith e Burstone (1984) e o de Norton e Burstone (1989) investigaram qual seria o melhor nível de força para emprego em ortodontia, considerando as transformações que ocorrem nos tecidos circundantes aos dentes, como o ligamento periodontal e o osso alveolar e concluíram que as magnitudes de força mais adequados são aquelas onde os dentes se deslocavam sem causar danos a essas estruturas circundantes. As magnitudes de força consideradas ótimas, ainda hoje, não apresentam parâmetros bem definidos de suas intensidades. Como coloca Fryar (1960) "atribuímos a nossa profissão seu respaldo científico, mas então, por que a literatura ortodôntica é tão incongruente com relação a qual seria o melhor nível de força empregado para a movimentação de dentes?"

Para alguns, forças leves são pesadas para outros. Não há ainda um consenso à respeito de uma força ótima, pois estudos considerando seres humanos têm suas limitações e, além disso, a arquitetura do periodonto e da anatomia dentária é complexa. Isso sugere a complexidade em se postular qualquer relação simples entre magnitude de força e ritmo do movimento dentário (SMITH; BURSTONE, 1984).

De acordo com Reitan (1957) as forças consideradas ótimas seriam de 25gf nos movimentos de extrusão, 150gf a 250gf para movimento dos caninos superiores e de 100gf a 200gf para os caninos inferiores. Nikolai (1975) definiu força ortodôntica ótima como aquela que produz o máximo de resposta biológica desejável, com um mínimo de dano tecidual, o que resulta em movimento dentário rápido com pouco ou nenhum desconforto para o paciente. Bench, Gugino e Hilgers (1978) preconizam que forças para retração de caninos seriam da ordem de 75gf a 100gf. Norton e Burstone (1989) colocam que o melhor nível de força para emprego em ortodontia deve tomar como parâmetro fundamental as transformações que ocorrem no ligamento periodontal e o osso alveolar. Gjessing (1994) defende forças de 75gf a 260gf para a movimentação de caninos.

Shimizu (1995) coloca que forças ideais para a retração de caninos superiores seriam de 150gf ao passo que para os inferiores seriam de 120gf. Para a retração dos incisivos superiores, o referido autor coloca forças de 300gf e para os inferiores de 240gf, ao passo que incluindo os caninos aos dentes superiores a força aumentaria

para 600gf, enquanto que para os dentes ântero-inferiores considerando incisivos e caninos a força requerida para retração seria de 480gf.

2.3 CONCEITOS BIOMECÂNICOS APLICADOS AO MOVIMENTO DENTÁRIO

2.3.1 Centro de Resistência e Centro de Rotação

Segundo Kusy e Tulloch (1986) o movimento dentário depende de dois componentes de um sistema de forças. O primeiro componente, força, inclina o dente no sentido de sua aplicação. O segundo, o momento, criado por essa mesma força provoca rotação em torno do centro de resistência. O sistema de forças juntamente com variáveis biológicas específicas e as estruturas de suporte periodontal determinarão o tipo e a magnitude de movimento. Para que se possa entender a física do movimento dentário, é necessário conhecer os conceitos de centro de rotação (C_{rot}) e centro de resistência (C_{res}). De acordo com Burstone (1995), C_{rot} é o ponto a cerca do qual o dente gira após a aplicação de uma força, e poderá variar conforme o sistema de forças aplicado, bem como a altura da crista óssea alveolar (VALET; PAGIN, 1987). O C_{res} é o ponto por meio do qual a aplicação de uma força simples produzirá apenas movimento de translação.

A altura óssea alveolar irá definir o C_{res} do dente (Figura 3). Para Burstone, Steenbergen e Hanley (1995) esse ponto estaria situado a partir da crista óssea alveolar a cerca de 1/3 do comprimento radicular em dentes unirradiculares. Os movimentos de translação teoricamente teriam o C_{rot} localizado no infinito. Para os dentes multirradiculares, o C_{res} estará situado ao nível da região de furca (região interradicular).

Figura 3 - Variação do centro de resistência de um dente em função da altura da crista óssea alveolar

- Fonte: Valet e Pagin (1987).
- 1) Altura óssea alveolar normal (centro de resistência, cr localizado a cerca de 1/3 do comprimento radicular à partir do ápice radicular).
- 2) Altura óssea alveolar diminuída, a seta indica a localização mais apical do cr.
- 3) Altura óssea alveolar bastantecomprometida.
- 2.3.2 Sistemas de Forças em Ortodontia (Forças horizontais, forças verticais e relação momento-força M/F)

As forças horizontais são aquelas que atraem os dentes uns contra os outros. As forças verticais são consideradas indesejáveis uma vez que têm o potencial de alterar o plano de oclusão. São produzidas nas alças assimétricas após seu engaste (Figura 4).

Figura 4 - Esquema de um sistema de forças com suas componentes verticais, horizontais e momentos alfa (anterior) e beta (posterior) Fonte: Nanda e Burstone (1997).

As forças verticais apresentam sentidos opostos, uma extrusiva (extrui o dente ou o grupo de dentes, ou seja, conduz o dente para o lado oposto do osso alveolar), outra intrusiva (intrui o dente ou o grupo de dentes, ou seja, os conduz para o lado do osso alveolar). Nas alças simétricas estas componentes se anulam (NANDA; BURSTONE, 1997).

Após aplicar-se uma força simples perpendicularmente à coroa de um dente (sobre o braquete) tem-se uma inclinação desta coroa no sentido da força causada pelo momento resultante e ao mesmo tempo inclinação da raiz no sentido oposto, assim o centro de rotação estaria localizado no terço apical da raiz do dente. A esse movimento chamamos de inclinação não-controlada o qual não é interessante para um movimento dito controlado. Se a essa forca aplicada contrapõe-se uma forca rotatória chamada de momento de força (para que uma alça produza os momentos de força haverá necessidade de fazer inclinações em suas extremidades, anterior e posterior, como pode ser visto na figura 4) tem-se um equilíbrio no sistema de forma a produzir um movimento chamado de inclinação-controlada, na qual o centro de rotação estaria localizado no ápice radicular. Caso se aumentasse a magnitude do momento de força que equivalesse a uma força simples passando pelo centro de resistência do dente, teríamos um movimento de translação e o centro de rotação estaria localizado no infinito. Por fim, se o momento ainda fosse maior, de maneira a equivaler a uma força simples passando próxima ao ápice radicular teríamos um movimento de correção radicular, ou seja, um movimento compensatório de ajuste da posição da raiz inicialmente inclinada no movimento de inclinação-controlada, e no qual o centro de resistência estaria localizado na ponta da cúspide coronal. A figura 5 exemplifica esses tipos de movimentos. Em (A) movimento de inclinação não controlada após aplicação de uma força simples; em (B) movimento de inclinaçãocontrolada; em (C) movimento de translação; e em (D) movimento de correção radicular. A circunferência representa o centro de rotação do dente. As flechas azuis representam os vetores resultantes. A linha alaranjada, na situação A, mostra a distância d, a força f aplicada (azul), e o momento (m) em preto (m=fxd). Em D tem-se a forca f aplicada, em preto, o momento resultante (flecha curva em preto) e o momento de força (M) contrapondo-as (flecha verde); e por fim a força resultante (flecha azul)

 Figura 5 - Esquema ilustrativo dos tipos de movimentos. dentários.
 Nota: m – momento derivado da força f; M-momento de força contrário à força f; f- força aplicada ao dente.

O que determinará, portanto, o tipo de movimento produzido é a relação entre o momento de força oposto à força aplicada ao dente, ou seja, a relação momento-força (M/F). Dois tipos de relação momento-força podem ser considerados durante o movimento dentário induzido por uma alça. O primeiro se refere ao obtido sagitalmente em relação à força horizontal resultante da ativação da alça, representado por M/F e o segundo se refere ao momento que se obtém pela rotação da coroa dentária em torno de seu longo eixo, devido à mesma força horizontal, e é representado por M*/F. Os momentos alfa e beta, assim chamados, são originados pelas inclinações feitas, nas extremidades das alças de retração ortodôntica, com a finalidade de produzir momentos de força sobre os dentes. Quando além dessa inclinação há presença de uma força F perpendicular à coroa do dente produz-se um determinado tipo de movimento dentário ditado pela relação estabelecida entre a força e o momento (M/F). A tabela 1 mostra o desempenho de algumas alças de retração dos dentes anteriores (segmento anterior), descritas na literatura, estudadas experimentalmente.

	Ativação mm	Gjessing (1985) AÇO INOX 0,016 X 0,022 pol Duplo Ovoide "RETRAÇÃO CANINOS"	Raboud <i>et al.</i> (1997) TMA 0,017 X 0,025 pol T-LOOP "RETRAÇÃO CANINOS"	Burstone <i>et al.</i> (1982) TMA 0,018-0,017x0,025 T-Loop "ANTERIORES"	Braun et al. (1997) TMA 0,017 X 0,025 pol T-Loop "ANTERIORES"	Siatkowski (1997) TMA 0,017 X 0,025 pol Opus Loop 70 "ANTERIORES"	Ferreira <i>et al.</i> (2005) Mα/Fy TMA 0,016 X 0,022 pol (120°) Protótipo Delta Spring "ANTERIORES"
0		12.5		~			~
1		10.0		~			~
2			14.7	8.4		8.0/8.4	13.9
3		_	80	7.1 6.4	10.0		10.1
5		-	0.9	6.0	10.0		6.8
6		-		5.6			6.0
	Ativação mm	Ferreira et al. (2005) Ma/Fy TMA 0,017 X 0,025 pol (130°) Protótipo Delta Spring "ANTERIORES"	Sander (2000) NiTi 0,018 x 0,018 pol Hybrid Retraction Spring	Thiesen <i>et al.</i> (2005) 0,017 x 0,025 pol T –loops (180°) planos	Thiesen <i>et al.</i> (2005) 0,017 x 0,025 pol T –loops (180°) com hélices	Pulter (2005) Aço Inox 0,019 x 0,025 T-Loop com gables	Kum <i>et al.</i> (2004) TMA 0, 017 x 0,025 pol T-Loop
0	Ativação mm	Ferreira et al. (2005) Ma/Fy TMA 0,017 X 0,025 pol (130°) Protótipo Delta Spring "ANTERIORES"	Sander (2000) NiTi 0,018 x 0,018 pol Hybrid Retraction Spring	Thiesen <i>et al.</i> (2005) 0,017 x 0,025 pol T –loops (180°) planos	Thiesen <i>et al.</i> (2005) 0,017 x 0,025 pol T –loops (180°) com hélices	Pulter (2005) Aço Inox 0,019 x 0,025 T-Loop com <i>gables</i>	Kum <i>et al.</i> (2004) TMA 0, 017 x 0,025 pol T-Loop
0 1 2	Ativação mm	Ferreira et al. (2005) Ma/Fy TMA 0,017 X 0,025 pol (130°) Protótipo Delta Spring "ANTERIORES"	Sander (2000) NiTi 0,018 x 0,018 pol Hybrid Retraction Spring - 10	Thiesen <i>et al.</i> (2005) 0,017 x 0,025 pol T –loops (180°) planos	Thiesen <i>et al.</i> (2005) 0,017 x 0,025 pol T –loops (180°) com hélices	Pulter (2005) Aço Inox 0,019 x 0,025 T-Loop com <i>gables</i>	Kum <i>et al.</i> (2004) TMA 0, 017 x 0,025 pol T-Loop
0 1 2 3	Ativação mm	Ferreira et al. (2005) Ma/Fy TMA 0,017 X 0,025 pol (130°) Protótipo Delta Spring "ANTERIORES" 0 16.0 10.6	Sander (2000) NiTi 0,018 x 0,018 pol Hybrid Retraction Spring - 10 10 10	Thiesen <i>et al.</i> (2005) 0,017 x 0,025 pol T –loops (180°) planos 33 17,5 12 5	Thiesen <i>et al.</i> (2005) 0,017 x 0,025 pol T –loops (180°) com hélices 19,8 11,0 9 0	Pulter (2005) Aço Inox 0,019 x 0,025 T-Loop com <i>gables</i> 8,9 6,4	Kum <i>et al.</i> (2004) TMA 0, 017 x 0,025 pol T-Loop ~8 ~8 ~8 ~8
0 1 2 3 4	Ativação mm	Ferreira et al. (2005) Ma/Fy TMA 0,017 X 0,025 pol (130°) Protótipo Delta Spring "ANTERIORES" 16.0 10.6 8.8	Sander (2000) NiTi 0,018 x 0,018 pol Hybrid Retraction Spring - 10 10 10 10 10	Thiesen <i>et al.</i> (2005) 0,017 x 0,025 pol T –loops (180°) planos 33 17,5 12,5 9,9	Thiesen <i>et al.</i> (2005) 0,017 x 0,025 pol T –loops (180°) com hélices 19,8 11,0 9,0 7,8	Pulter (2005) Aço Inox 0,019 x 0,025 T-Loop com <i>gables</i> 8,9 6,4	Kum <i>et al.</i> (2004) TMA 0, 017 x 0,025 pol T-Loop ~8 ~8 ~8 ~8 ~8 ~8
0 1 2 3 4 5	Ativação mm	Ferreira et al. (2005) Ma/Fy TMA 0,017 X 0,025 pol (130°) Protótipo Delta Spring "ANTERIORES" 0 16.0 10.6 8.8 7.3	Sander (2000) NiTi 0,018 x 0,018 pol Hybrid Retraction Spring - 10 10 10 10 10 10	Thiesen <i>et al.</i> (2005) 0,017 x 0,025 pol T –loops (180°) planos 33 17,5 12,5 9,9 8,3	Thiesen <i>et al.</i> (2005) 0,017 x 0,025 pol T –loops (180°) com hélices 19,8 11,0 9,0 7,8 6,8	Pulter (2005) Aço Inox 0,019 x 0,025 T-Loop com <i>gables</i> 8,9 6,4 -	Kum <i>et al.</i> (2004) TMA 0, 017 x 0,025 pol T-Loop ~8 ~8 ~8 ~8 ~8 ~8 ~8

Tabela 1 - Comparação das relações Mα/F de alças para retração do segmento anterior descritas na literatura

Os sistemas de forças originados de aparelhos ortodônticos têm sido estudados por meios de sistemas estáticos (BRAUN; GARCIA, 2002; BRAUN, SJURSEN, LEGAN, 1997; CHOY *et al.*, 2000), como exemplo as alças de geometria simples, os *cantilevers* e as barras palatinas; também por meio de sistemas complexos, como exemplo as alças de geometria complexa (NÄGERL *et al.*, 1991; FERREIRA, 1999; PEYTON; MOORE, 1933; SOLONCHE; BURSTONE; VANDERBY JR., 1977; FRYAR, 1960; FERREIRA *et al.*, 2000; RINALDI; JOHNSON, 1995); por meio de abordagens analíticas (YANG; BALDWIN, 1974; BURSTONE, 1982; RINALDI; JOHNSON, 1995; BURSTONE; STEENBERGEN; HANLEY, 1995; SIATKOWSKI, 1997; RABOUD *et al.*, 1997; RHEE; CHU; ROW, 1997; FERREIRA; LUERSEN; BORGES, 2007); ou ainda por meio de sistemas dinâmicos como exemplo os *typodonts* (manequins) (BURSTONE; STEENBERGEN; HANLEY, 1995). Os métodos numéricos são mais recentes e emergiram na área médica devido à ciência da computação. Esta tecnologia permite que

especialistas conheçam por meio de técnicas digitais, o comportamento mecânico de um corpo o qual é submetido a certas tensões. Em métodos experimentais, o corpo de evidência é submetido a testes mecânicos, os quais devem determinar o sistema de forças e a correspondente variação estatística. Uma vez realizados os testes experimentais, estes devem ser comparados aos testes numéricos, assim os métodos experimentais têm sido empregados para reproduzir os modelos numéricos permitindo mais precisão na análise de seus comportamentos. A calibração dos modelos, e o refinamento dos experimentos podem fornecer melhor compreensão do comportamento mecânico dos protótipos desenvolvidos antes de aplicá-los clinicamente (NÄGERL *et al.*, 1991).

Idealmente se deveriam realizar cálculos numéricos, para estudar os corpos de prova, alterá-los, se necessário, buscando novas geometrias, novos materiais, enfim, qualquer modificação no sentido de se obter um protótipo melhor, e então, proceder aos testes experimentais. Dessa forma, pode-se até mesmo evitar gastos desnecessários com testes experimentais repetidamente, o que é, sem dúvida, mais oneroso que os analíticos.

Em geral, materiais metálicos seguem a lei de Hooke. Contudo, se as forças ou o deslocamento não forem proporcionais, o sistema é chamado não-linear e necessita uma análise mais complexa. Ligas metálicas que são menos resistentes à flexão podem ser flexionadas mais amplamente, sem deformação plástica, e esta é uma característica dos sistemas não-lineares. Apesar de muitas alças, de retração ortodôntica haver sido estudada, apenas poucas delas foram testadas analítica e experimentalmente.

2.3.3 Configurações de Alças (Geometria e Constante Elástica)

As alças de retração ortodôntica foram desenvolvidas com finalidade de fechar espaços³ provenientes de extrações planejadas, em casos onde há falta de espaço suficiente para acomodação dos dentes lado a lado. As geometrias das alças de

³ Espaços provenientes de extrações planejadas com o objetivo de conseguir espaço nos arcos dentários e com isso obter-se melhor oclusão dentária.

retração ortodôntica vêm sendo aprimoradas por meio de estudos científicos, analíticoexperimentais e tomando-se por base as propriedades mecânicas das ligas metálicas utilizadas para a confecção das alças, dentre elas a constante elástica.

A escolha de materiais como o titânio-molibdênio (β-titânio) cujo módulo de elasticidade é menor que o das ligas em aço inoxidável e cromo-cobalto são de fundamental importância para a confecção de alças com propriedades elásticas aceitáveis para o trabalho dentro de níveis de força compatíveis com a biologia do movimento dentário.

Hooke, por volta de 1660, ao estudar o comportamento de molas, verificou que o deslocamento ΔI da mola era diretamente proporcional à intensidade da força F correspondente. Para comportamentos elásticos de molas, a relação $K = F/\Delta I$ é constante e denominada de constante elástica de mola. Alças ou molas cujos valores da constante elástica são altos causam alteração repentina das forças de carregamento ou descarregamento, ao passo que nas alças ou molas onde a constante de mola é baixa as forças são mais constantes em relação às ativações ou desativações. A constante elástica é dependente do tipo de liga metálica e da secção transversal (BURSTONE; KOENIG, 1976; FERREIRA, 1999). A literatura científica mostra valores de constante elástica que varia de 33gf/mm (BURSTONE; STEENBERGEN e HANLEY, 1995) a 800gf/mm em alças de geometria em lágrima (SCELZA NETO; MUCHA; CHEVITARESE, 1984). Inicialmente as alças eram testadas experimentalmente, considerando a força armazenada por unidade de ativação (constante elástica). O módulo de elasticidade (E) é um índice de rigidez do material, assim sendo guanto maior é esse módulo, maior é a resistência à deflexão, ou seja, a carga acumulada por milímetro de ativação.

Mais tarde, com a evolução desses dispositivos foi necessário considerar suas componentes verticais, os momentos alfa (região anterior) e beta (região posterior) e a relação momento-força (M/F) (YANG; BALDWIN, 1974; BURSTONE, 1982; BRAUN; MARCOTTE, 1995). Muitos são os métodos utilizados para o estudo das alças, dentre eles os testes de tração (KOENIG et al., 1980; RABOUD et al., 1997; FERREIRA, 1999; FERREIRA et al., 2005); também por meio de programas numéricos (MAZZA; MAZZA, 1997); e pelo Método dos Elementos Finitos (HASKELL; SPENCER; DAY, 1990; FERREIRA et al., 2000; ORLOWSKI et al., 2001); além de avaliação clínica (GJESSING, 1985; HASKELL; SPENCER; DAY, 1990).

As alças foram sendo desenvolvidas ao longo dos últimos cinquenta anos, como exemplo, as clássicas alças retangulares verticais, com *loop* fechado, desenvolvidas por Bull (1951) de aço inox com secção transversal 0,021 x 0,026 polegadas (Figura 6); as alças verticais helicoidais para a retração de caninos e para a retração dos dentes anteriores, estudadas por Fryar (1960) de aço inox e secção transversal 0,008 x 0,021 polegadas (Figura 7).

Figura 6 - Aspecto da alça de Bull Fonte: Bull (1951).

Figura 7 - Aspecto da alça de Fryar Fonte: Fryar (1960).

Mais tarde estas alças seriam modificadas por Burstone, Baldwin e Lawless (1961) – figura 8.

Figura 8 - Aspecto da alça helicoidal vertical Fonte: Burstone *et al.* (1961).

As alças verticais foram estudadas por meio de métodos analíticos e experimentais por Yang e Baldwin (1974); estes autores compararam variações do *loop* vertical e do *bull-loop* conforme mostra a figura 9 (muito utilizados na Universidade de Indiana, naquela época) feitas de aço inox de secção transversal 0,017 x 0,022 polegadas (0,43mm x 0,56mm), experimentalmente, por meio de um dispositivo eletromecânico para medição da constante de mola, forças aplicadas e resultantes deflexões. As alças foram também estudadas através do método dos elementos finitos (MEF).

Figura 9 - Alça *Bull* modificada com helicóides e suas dimensões, desenvolvida na universidade de Indiana por Yang e Baldwin

Fonte: Yang e Baldwin (1974).

Gjessing (1985) desenvolveu uma alça em aço inox com secção transversal de 0,016 x 0,022 polegadas (0,41mm x 0,59mm) com geometria de hélice em duplo ovóide a qual apresenta 160gf quando a hélice dupla estava ativada em 1mm (Figura 10). A constante elástica chegou a 45g/mm. Segundo o autor a geometria de uma alça de fechamento de espaços deve incorporar momentos anti-rotação (da coroa em torno de seu longo eixo, ou dobra de primeira ordem) e anti-inclinação (no plano sagital, ou dobra de segunda ordem), que concorrentes à força dirigida sobre a superfície vestibular do canino e os quais são criados por meio de dobras realizadas nas extremidades das alças. Essas dobras podem ser visualizadas na figura 11.

Figura 10 - Aspecto da alça de Poul Gjessing para retração de caninos

Fonte: Gjessing (1985).

Nota: A flecha indica o sentido de ativação. As flechas curvas indicam os momentos gerados pelas extremidades da alça.

Figura 11 - Aspecto esquemático da alça de Poul Gjessing para retração de caninos Fonte: Gjessing (1985).

Falkner *et al.* (1989) encontraram que o aumento gradativo da altura da alça, como ocorre, por exemplo, na alça em geometria de T, como preconizada por Burstone (1982) pode produzir altos valores na relação momento-força (M/F) ao passo que a incorporação de helicóides na região entre T e as hastes horizontais pouco acrescenta em termos de melhoras nas propriedades mecânicas decorrentes desta geometria.

Bourauel *et al.* (1997) estudaram parâmetros geometricos e mecânicos em alças em T modificadas, feitas de níquel-titânio, com secção transversal de 0,016 x 0,022 polegadas (0,41mm x 0,56mm) e cujas extensões horizontais (base) era feita de aço inox com secção transversal 0,017 x 0,025 polegadas (0.43mm x 0.63mm). Houve apenas 5% de reprodutibildade dos parâmetros geométricos (raio, força de distalização, relação momento-força (M/F), e a razão entre força e flexão). Os autores enfatizam que não havia um comportamento constante e havia necessidade de caracterização individual das alças feitas de maneira híbrida (Figura 12).

(niquei-titanio e aço inox), para a de canino Fonte: Bourauel *et al.* (1997).

Sander (2000) desenvolveu uma nova alça híbrida de retração ortodôntica com canaleta vertical 0,018 x 0,018 polegadas (0,46mm x 0,46mm) e canaleta horizontal 0,022 polegadas (0,56mm). Esta nova alça contém uma mola espiral de compressão feita de níquel-titânio, protegida por um cilindro metálico (2,2mm diâmetro), o que evita ulcerações na mucosa bucal. A alça é ativada por meio de uma liga 0,017 x 0,025 polegadas (0,43mm x 0,45mm) de aço inox. Não há a presença de *loops* e de
acordo com o autor, esta alça é capaz de produzir movimento de corpo por durante 4,0mm de desativação e com controle radicular. Segundo o autor, as forças variam de 100gf a 150gf aproximadamente (Figura 13).

Figura 13 - Aspecto de alça com geometria híbrida composta de um cilindro e mola de compressão interna de níquel-titânio
Fonte: Sander (2000).
Nota: A - antes da retração do canino e B - logo após a retração.

Ferreira *et al.* (2005) desenvolveram protótipos de alças de retração, com secções transversais de 0,016 x 0,022 polegadas e 0,017 x 0,025 polegadas, de titânio-molibdênio, com o objetivo de promover movimentos dos grupos de dentes com diferentes tipos de ancoragem. Foram encontrados valores de força compatíveis com os descritos na literatura e de menor magnitude que as alças em T, e momentos de força adequados para um bom controle da posição dentária no lado beta (posterior). As alças apresentaram constante elástica de aproximadamente 34gf/mm. A alça adaptada na plataforma pode ser visualizada na figura 14, onde Fy representa as forças horizontais no sentido da tração e Fx as forças verticais. A flecha curva representa o momento.

Figura 14 - Aspecto da alça adaptada nos encaixes fixo e sensível da plataforma Fonte: Ferreira *et al.* (2005).

Thiesen *et al.* (2005) estudaram o efeito da incorporação das inclinações (*gables*) e de circunvoluções em alças com geometria de T e secções transversais 0,017 x 0,025 polegadas (0,43mm x 0,045mm) e 0,019 x 0,025 polegadas (0,48 x 0,45mm). Um transdutor capaz de medir forças e momentos foi utilizado. Os autores encontraram que alças em T com *gables,* produziram maiores relações momento-força e que a incorporação de circunvoluções pareceu ser desnecessária.

Pulter (2005) estudaram o efeito de alças dupla chave de aço inoxidável com secções transversais 0,48 x 0,64mm e alças de retração versátil de 0,51 x 0,64mm, por meio de uma plataforma de ensaios. As alças foram ativadas desde o repouso até 2,5mm e colhidas as forças em Fx e encontraram que em 2,5mm as magnitudes de forças foram da ordem de 1000gf e constantes elásticas variando de k=543gf/mm até k=514gf/mm, para as alças dupla chave e, de k=483gf/mm para as alças versáteis. O autor concluiu que a geometria tem influencia nos valores encontrados nas constantes elásticas e que a presença de helicóides ajuda a diminuir esses valores, os quais refletem efeitos deletérios sobre os tecidos de suporte dentário.

Chen *et al.* (2007) estudaram o sistema de forças decorrentes da ativação de 10 alças triangulares em quatro diferentes posições em um total de 40 medições, considerando distância intebraquete de 12,7 milímetros. As alças foram construídas em aço inox com secção tranversal de 0,016 x 0,022 polegadas (0,41mm x 0,56mm), apresentavam inclinações em suas extremidades (*gables*) de 15^o e foram verificadas no repouso e em ativações de 1,6 milímetros e 3,3 milímetros. As alças foram estudadas por meio de uma célula de carga capaz de medir seis diferentes posições

(Fx, Fy, Fz e Mx, My e Mz) que atuavam sobre um braquete. Os autores concluíram que existem outras forças atuantes, além dos momentos de força e das forças horizontais resultantes da ativação das alças e esta complexa interrelação é afetada pela posição da alça (Figura 15).

Figura 15 - Esquema utilizado por Chen *et al.*, para o estudo da alça triangular

Fonte: Chen et al. (2007).

Nota: Em A pode-se observar o sistema de forças decorrente da ativação da alça estudada. Em B o aspecto da alça adaptada no transdutor e suas dimensões.

2.3.4 Relação Força-deflexão (F/D)

A relação força-deflexão em uma alça de retração depende dos seguintes fatores:

- 1. Geometria da alça (forma da alça e secção transversal);
- 2. Tipo de liga metálica (natureza metálica).

Uma alça cuja relação força-deflexão seja alta armazenará uma carga muito grande por unidade de ativação, o que implicará em forças demasiadamente excessivas, causando dor, perda de ancoragem (pelas forças de atrito), e reabsorção do osso alveolar (KLUMP *et al.*, 1994). Por outro lado, uma alça cuja relação força-deflexão seja adequada, permitirá ao operador ativar a alça em 2,0mm ou 3,0mm, sem, contudo chegar a uma carga excessiva. Ressalta-se ainda que em alças com alta relação força-deflexão, o operador teoricamente teria que fazer uma ativação muito pequena (décimo de milímetro) para chegar a uma carga aceitável, sendo que na clínica é praticamente impossível obter este alto grau de precisão, tornando a margem

de erro muito ampla (BURSTONE; STEENBERGEN; HANLEY, 1995). A força elástica máxima é a maior força, ou momento de uma força, que se pode aplicar a um fio metálico sem produzir deformação permanente. É a propriedade que limita a manipulação dos fatores responsáveis pela resistência à deflexão, pois, caso as forças ultrapassarem a força elástica máxima a tensão mecânica no fio ultrapassa a tensão de escoamento, e este sofre deformações permanentes (também chamadas de deformações plásticas) perdendo assim parte de suas propriedades elásticas. Caso uma alça apresentar uma força elástica máxima muito baixa, facilmente sofrera deformaçõe plástica pelas forças da mastigação. Essa propriedade responde proporcionalmente à terceira potência do diâmetro da liga (de secção circular) e à tensão limite de proporcionalidade da liga metálica do fio (característica intrínseca do material). É inversamente proporcional ao raio das circunvoluções, ou seja, aumentando-se o raio das circunvoluções com o intuito de se baixar a resistência à deflexão, diminui-se também a força máxima admissível (F_{MAX}) (BURSTONE; KOENIG, 1976).

Assim, escolhendo materiais para a alça como o titânio-molibdênio (β-titânio) cujo módulo de elasticidade (E) é menor que o das ligas em aço inoxidável, pode-se diminuir a constante elástica e a resistência à deflexão. Além do mais apresenta maior capacidade de armazenar energia (energia potencial), o que possibilita uma maior amplitude de ativação (abertura da alça).

2.3.5 Métodos de Caracterização

2.3.5.1 Transdutores

Dentre os métodos de caracterização das alças os mais utilizados atualmente são os transdutores constituídos por sensores de deformação sensíveis na ordem 1µm/m. Os sensores podem medir deslocamentos extremamente pequenos (nanômetros). São constituídos de fios muito finos (25µm) que deformados dentro de seu limite elástico provocam alteração em sua resistividade, comprimento e diâmetro. Assim, transformam um tipo de energia em outro, incluindo deformação, deslocamento, pressão, aceleração, deslocamento, força e temperatura. A deformação pode ser por tração, compressão, torção, cisalhamento ou axial.

Manhartsberger, Morton e Burstone (1989) estudaram alças T por meio de um transdutor capaz de medir forças uniplanares no sentido da tração (Fx), forças perpendiculares a estas (Fy) e momentos (Mz), desenvolvido na Universidade de Connecticut e conhecido como *spring tester*.

Hoenigl *et al.* (1995) estudaram alças T através de um transdutor movido por computador capaz de medir o sistema de forças composto por forças horizontais (Fx), verticais (Fy) e os momentos (Mz).

As máquinas universais necessitam de adaptações para um encaixe mais preciso quando o corpo de prova a ser estudado são alças ou fios ortodônticos.

Thiesen *et al.* (2005) estudaram alças T modificadas utilizando uma máquina de testes universal (Instron) modelo TTDML acoplado a um transdutor de momentos (Mz) e um micrômetro.

Ferreira *et al.* (2005) utilizaram um transdutor de deslocamento capaz de medir forças no sentido da tração, forças perpendiculares às de tração e momentos, de forma uniplanar. Conhecido como plataforma, o transdutor continha 12 sensores (*strain gages*) colados em uma estrutura de alumínio. Dispositivos de dimensões maiores também conhecidos como plataformas têm sido utilizados como meios de se estudar o comportamento muscular em ensaios que simulam movimento (desempenho de corrida nos atletas) (FAIRBURN *et al.*, 2000; DESJARDINS; GAGNON, 2001). Também nos estudos em pacientes com patologias que envolvem a tremulação, no domínio da neurologia (FARROW *et al.*, 2001).

Chen *et al.* (2007) mediram alças por meio de uma célula de carga capaz de medir força (+/- 0,05 N) e momentos (+/- 0,0015 N.m) ao longo de três eixos mutuamente perpendiculares (ver Figura 15).

2.4 MÉTODO DOS ELEMENTOS FINITOS

O método dos elementos finitos foi desenvolvido na década de 1960 tornandose uma ferramento muito útil na análise estrutural de peças e motores, na indústria aeronautica, na engenharia civil, na medicina e em vários outros segmentos. Neste método o corpo a ser estudado é divido em partes a serem estudadas individualmente. Na análise estática de tensões e deformações, a equação que representa o corpo em estudo toma a seguinte forma (COOK; MALKUS; PLESHA, 1988):

$$[K] \{u\} = \{F\}$$
⁽¹⁾

onde:

[K] é a matriz de rigidez

 $\{u\}$ é o vetor de deslocamentos nodais, e

 $\{F\}$ o vetor força

Depois de solucionado o sistema (1), obtendo-se os deslocamentos nodais $\{u\}$, pode-se obter as tensões e esforços no corpo. Uma forma bastante utilizada para analisar o comportamento de alças é por meio de elementos finitos de viga com três nós e seis graus de liberdade por nó, conforme mostra a Figura 16. Devido à magnitude dos deslocamentos obtidos serem grandes para a geometria em estudo, o problema é do tipo não-linear. Portanto, a matriz [K] depende do vetor $\{u\}$, caracterizando um sistema de equações não lineares.

Figura 16 - Elemento finito de viga bidimensional com 2 nós e 3 graus de liberdade por nó (2 translações e 1 rotação)

Ferreira *et al.* (2004) desenvolveram um protótipo de alça para retração ortodôntica por meio do Método dos Elementos Finitos (MEF) e a testaram expe-

rimentalmente. As alças foram ativadas até 9,0mm onde alcançaram seu limite de escoamento (Figura 17).

Figura 17 - Desenho esquemático produzido por meio do Método dos Elementos Finito da alça UTFPR Spring desenvolvida pela UTFPR Fonte: Ferreira, Luersen e Borges (2004).

Coimbra *et al.* (2008) estudaram por meio do MEF alças com geometria *tear drop loop* (alça em lágrima) com secção transversal 0,019 x 0,025 polegadas (0,048mm x 0,064mm) e três diferentes alturas. Evidenciaram que a região superior do loop, cujo módulo de elasticidade (E) era de 157,6 GPa, alcançou os níveis mais altos de tensão em relação as demais estruturas da alça (variando de 1201 MPa até 1352 MPa, para 0,5mm de ativação). Neste estudo as alças foram ativadas até 2,0mm.

No presente trabalho foram considerados elementos finitos de viga com três nós e seis graus de liberdade por nó. Devido à magnitude dos deslocamentos obtidos serem grandes para a geometria em estudo, o problema é do tipo não-linear. Portanto, a matriz [*K*] depende do vetor {*u*}, caracterizando um sistema de equações não lineares. O módulo de elasticidade (E) para este estudo foi de 70 GPa (10,1 x 10⁶ psi), e a tensão de escoamento (σ_e) igual a 1240 MPa (180 x 10³ psi). As alças foram ativadas até 4,0mm.

2.5 AS LIGAS METÁLICAS UTILIZADAS EM ORTODONTIA

A Ortodontia clássica, do século passado, utilizava fios de ouro, aço inoxidável e cromo-cobalto. Os fios em aço inox são ainda amplamente utilizados, em virtude do baixo custo, além da elevada tensão de escoamento, se comparados aos de ouro. Entretanto, estes materiais apresentam um alto módulo de elasticidade (rigidez) e consequentemente pequenas deflexões representam uma grande redução da força aplicada (energia armazenada total). A rigidez de um fio ortodôntico é diretamente proporcional ao módulo de elasticidade do material (E), também à secção transversal, e é inversamente proporcional à distância interbraquetes. Na abordagem clássica, estes conceitos eram utilizados, valendo-se de secções transversais progressivas de forma a evitarem-se esforços muito elevados na fase de alinhamento e nivelamento dos dentes, e sem mudar o tipo de liga, normalmente o aço inoxidável da série 300.

Nos anos setenta Ricketts (1976) introduziu as ligas de CrCo, comercializadas com o nome de *Blue Elgiloy* (Rocky Mountain Orthodontics, Denver, Colo). O módulo de elasticidade (E) das ligas de aço inox são similares aos encontrados para as ligas de cromo-cobalto (CrCo) e da ordem de três vezes superior aos encontrados para ligas de níquel-titânio e titânio-molibdênio. A tabela 2 apresenta os valores encontrados para as ligas utilizadas em ortodontia.

As ligas de titânio têm sido empregadas no âmbito da medicina e odontologia para a confecção de próteses ortopédicas e odontológicas, implantes dentários e outros dispositivos devido aos seus baixos módulos de elasticidade e excelentes propriedades mecânicas, resistência à corrosão além de serem biocompatíveis. A liga mais utilizada de titânio como biomaterial é o Ti 6AI 4V. O módulo de elasticidade das ligas de titânio é cerca de duas a quatro vezes superiores ao do osso humano, ao passo que as ligas de titânio-molibdênio mostram um módulo de elasticidade inferior ao das ligas de aço inox e cerca de duas vezes superior ao das ligas de níquel-titânio.

As ligas de titânio-molibdênio (beta-estabilizadas) foram introduzidas em Ortodontia há cerca de 30 anos, por meio dos estudos de Burstone e Goldberg (1980), mostrando propriedades mecânicas intermediárias entre as ligas de aço inox e de níquel-titânio. Apesar de apresentarem boa resistência à corrosão, são mais susceptíveis a esse processo do que as ligas de cromo-cobalto. Essas ligas podem ser utilizadas em uma ampla variedade de aplicações, desde a fase inicial de alinhamento dos dentes passando pela fase intermediária (ex. fechamento de espaços com alças em T), ou mesmo na fase final do tratamento ortodôntico (ex.dobras artísticas, pequenos movimentos, torques). Apesar da ampla flexibilidade e formabilidade, apresentam um alto coeficiente de atrito (BURSTONE; GOLDBERG, 1980). As ligas de titânio-molibdênio também conhecidas como β-titânio (beta-estabilizada) apresentam uma estrutura cristalina cúbica de corpo centrado. Essas ligas representam uma forma alotrópica beta, formada em altas temperaturas, e estabilizada em temperatura ambiente pela adição de outros elementos tais como o molibdênio, o zircônio e o estanho. Conforme a microestrutura essas ligas recebem especificações tais como alfa, quase-alfa, alfa-beta, quase-beta e beta (β-titânio), as quais são em realidade metaestáveis, quando submetidas em tratamentos térmicos, pode ocorrer a precipitação da fase alfa a partir de beta. Este processo confere maior resistência à liga. Já as ligas do tipo alfa não respondem a nenhum tipo de tratamento térmico (METALS HANDBOOOK, 1975). A tabela 2 mostra diferentes tipos de material e algumas de suas características mecânicas.

Tabela 2 - Tipo de liga, límites elas	alicos (de) e modulos de elasticidade	aproximados
Tipos de Liga	Limite Elástico (MPa)	Módulo de Young (E) (GPa)
Aço inoxidável Titânio-molibdênio Cromo-cobalto Níquel-titânio	1720 ⁽¹⁾ / 1543-1966 [†] 1240 ⁽¹⁾ 1380 ⁽²⁾ / 769-1254 [†] 1792 ⁽¹⁾ 1650 ⁽¹⁾	193 ⁽¹⁾ 65-100 [†] 193 ⁽¹⁾ 33 ⁽¹⁾

abola - Tipo do liga, initioo olaotico (co) o inicadico do clasticidado aproxima	abela 2 -	Tipo de liga,	limites elásticos	(oe) e módulos de	elasticidade	aproximado
--	-----------	---------------	-------------------	-----	----------------	--------------	------------

Fontes: Raboud (1997); (1) Burstone (1979); (2) Verstrynge et al.[†] (2006).

As ligas de titânio-molibdênio são meta-estáveis em temperatura ambiente e apresentando os seguintes elementos adicionados ao titânio: molibdênio, vanádio, nióbio, tântalo, manganês, ferro, cromo, cobalto, níquel e cobre.

Em estudo realizado por Verstrynge, Van Humbeeck e Willems (2006) sobre ligas de aço e inox e titânio-molibdênio com diversos tipos de tratamento industrial e encontrou-se que para as ligas de titânio-molibdênio a tensão de escoamento ficou em torno de 926 MPa (variando de 769 até 1254 MPa) para fios de secção transversal 0,017 x 0,025 polegadas, enquanto que o módulo de Young que variou de 65 GPa até 100 GPa, sendo que para as convencionais esse valor é de 70 GPa. Para as

ligas de aço inox esses valores variaram de 1543 MPa até 1966 MPa para a tensão de escoamento e de 166 GPa até 184 GPa para o módulo de Young sendo, portanto, cerca de duas vezes mais altos que os das ligas de titânio-molibdênio por eles estudadas. Segundo esses mesmos autores as propriedades mecânicas das ligas metálicas variam em função de sua microestrutura e composição química as quais são afetadas pelos processos de manufatura.

3 OBJETIVOS

Os objetivos a serem alcançados durante o desenvolvimento do tema proposto podem ser subdivididos em objetivos gerais e objetivos específicos, conforme se descreve a seguir.

3.1 OBJETIVOS GERAIS

Os objetivos gerais da tese são:

- Aumentar o conhecimento na área de engenharia biomédica, especificamente na caracterização das alças ortodônticas.
- b) Desenvolver duas diferentes geometrias de alças com parte central em delta, utilizando os resultados das simulações via MEF.

3.2 OBJETIVOS ESPECÍFICOS

- a) Determinar experimentalmente o sistema de forças decorrente das ativações das alças obtidas via MEF.
- b) Estudar o efeito da distância interbraquetes sobre o sistema de forças.
- c) Comparar as curvas de comportamento elástico das alças obtidas, experimentalmente e através das simulações via MEF.

3.3 JUSTIFICATIVAS

O presente trabalho busca conhecer o efeito da distância interbraquetes durante a desativação das alças medindo esse efeito de milímetro em milímetro, de maneira sequencial, assim, pode-se conhecer o efeito das diferentes ativações (desde o repouso até 4,0mm) para diferentes distâncias interbraquetes, e o efeito que esta causa sobre o sistema de forças decorrentes da ativação da alça, o que até o presente momento não foi realizado. As alças descritas na literatura mostram que os valores das relações momento-força (M/F) variam de acordo com a ativação, mas praticamente não se alteram com a distância interbraquetes (HOENIGL *et al.*, 1995). Outros trabalhos (HOENIGL *et al.*, 1995; CHEN *et al.*, 2007; KUHLBERG; PRIEBE, 2003) estudam o efeito da distância interbraquetes, no entanto, não de maneira sequencial, ou seja, as alças são interpostas em distâncias interbraquetes previamente estabelecidas, e não são alteradas de forma sequenciada mantendo a mesma alça durante o processo de desativação. As medições são realizadas adaptando-se as alças em distâncias interbraquetes fixas, ou com diferentes ativações para diferentes distâncias interbraquetes.

Didaticamente o movimento dentário tem sido descrito como uma sequência de: inclinação controlada, translação e correção radicular, os quais acontecem durante o descarregamento de uma alça de retração previamente carregada ou ativada. Na inclinação controlada um dente inclina-se ao local deixado por um dente extraído, vizinho a ele ou a um espaço previamente existente. Esse tipo de inclinação caracteriza-se por uma inclinação na qual o ápice radicular serve de pivô ou centro de rotação (M/F em torno de 7mm), depois com a continuação do descarregamento (fechamento ou desativação) da alça, o dente passa ao movimento de translação (M/F em torno de 10 a 11mm) e por fim para um movimento de correção radicular (M/F em torno de 12 a 13mm) no qual o dente compensa a inclinação inicial (inclinação controlada) desinclinando a raiz. No entanto, a passagem de um tipo a outro ocorre de maneira sequencial de pouco movimento, cerca de 1mm de um tipo de movimento para outro.

As alças com geometria delta portam-se de maneira mais segura durante sua desativação uma vez que suas hastes ou extremidades (anterior e posterior) se entrecruzam dando maior sustentabilidade e impedindo que a alça se incline para o lado da bochecha ou da gengiva, o que provocaria lesões nestes tecidos, ou seja, a alça delta apresenta um melhor controle sagital no espaço. A alça mais estudada na atualidade, a alça em T apresenta suas hastes verticais afastadas no momento em que se inicia a ativação, o que gera uma torção em sua estrutura dificultando seu ajuste na cavidade bucal, levando ao clínico muitas vezes ter que inserir torques compensatórios no corpo da alça para evitar seu contato com a mucosa jugal ou com a gengiva, o que poderia desqualificá-la, em termos de seus valores médios esperados, ou pela perda da eficiência em produzir determinado movimento, devido à introdução de tensões residuais e/ou escoamento, além de alterar sua geometria originalmente preparada para produzir determinado sistema de forcas. O ideal seria obter uma alca capaz de mostrar uma maior constância na relação momento-força. Como o ideal está longe de ser alcançado quando se insere uma alça sobre um dente, em um meio biológico, como no meio bucal, alicerçado pelo periodonto, busca-se experimentalmente obter uma alça capaz de pelo menos apresentar maior constância dos valores da relação momento-força durante a sua desativação e que este estivesse na maior parte do tempo em torno de 10mm. O desenvolvimento de um protótipo com geometria delta já foi testado anteriormente (ver Figura 17) e foi verificado que produziu forças apropriadas para utilização clínica, bem como um sistema de forcas adequado, porém com limitações no que se refere às relações momento-força, na região alfa (anterior). As alças T também não evidenciaram as relações momento-força em relação à distância interbraguetes de maneira seguenciada, simulando o deslocamento dos dentes durante o fechamento dos espaços, o que daria uma informação útil no que se refere a alças em desenvolvimento. O presente trabalho analisou o efeito da distância interbraquetes de forma sequenciada simulando passo-a-passo o fechamento do espaço, assim pode-se analisar o que acontece com os dentes ao serem deslocados pelas alças e o efeito que a desativação das alças produz no sistema de forças por elas criado após o carregamento (ativação).

4 MATERIAIS E MÉTODOS

Neste capítulo descrevem-se a fabricação das alças ortodônticas com diferentes geometrias utilizadas bem como as técnicas experimentais utilizadas na caracterização.

O desenvolvimento deste trabalho pode ser dividido nas seguintes etapas:

- 1. modelagem dos protótipos pelo Método dos Elementos Finitos;
- 2. fabricação das alças;
- 3. caracterização dimensional das amostras;
- 4 calibração da plataforma
- 5. caracterização mecânica (ensaios);
- 6. análise dos resultados.

4.1 MATERIAIS

4.1.1 Modelagem dos Protótipos pelo Método dos Elementos Finitos

A ideia básica do MEF é dividir o corpo ou domínio em estudo em subregiões, chamadas elementos finitos. A partir disso são montadas equações matemáticas governantes do fenômeno em estudo para cada sub-região (elemento finito). Posteriormente são unidas as equações de cada elemento, de forma a preservar a continuidade, obtendo-se uma única equação que representa todo o corpo em estudo.

Depois de solucionado o sistema (1), obtendo-se os deslocamentos nodais $\{u\}$, pode-se obter as tensões e esforços no corpo. Uma forma bastante empregada para analisar o comportamento de alças é por meio de elementos finitos de viga. No presente trabalho foi utilizado o elemento do ANSYS denominado BEAM3, o qual é um elemento de viga bidimensional, com 2 nós e 3 graus de liberdade por nó.

As dimensões das alças simuladas foram ajustadas no sentido de serem mais eficientes na produção do sistema de forças e permitirem trabalho dentro da faixa elástica (Tabela 3).

Especificação	Tolerâncias	Alças G1 experimental	Alças G ₂ experimental
Helicóide (diâmetro do raio)	+/- 0.1	2,0mm	2,0mm
Altura (mm)	+/- 0.1	9,0mm	9,0mm
Ângulo Δ (°)	+/- 1°	40°	40°
Ângulo α (°)	+/- 1°	45°	45°
Ângulo β (°)	+/- 1°	39°	39°
Ângulo γ (°)	+/- 1°	64°	64°
Ângulo δ (°)	+/- 1°	71°	62°
Comprimento (mm)	+/- 0,5	28mm	28mm
Secção Transversal	-	0.017 x 0.025 pol.	0.017 x 0.025 pol.

Tabela 3 - Dimensões das alças e parâmetros geométricos considerados (experimental)

A figura 18 ilustra a malha de elementos finitos e a figura 19 os nós da malha para a alça do grupo G₂. A figura 20 apresenta a alça encaixada nos braquetes, antes da ativação, e as condições de contorno utilizadas na simulação.

Figura 18 - Alça do grupo G2 modelada no ANSYS

Figura 19 - Nós da malha de elementos finitos para a alça do grupo G2

Figura 20 - Simulação da alça encaixada nos braquetes e condições de contorno utilizadas na simulação por elementos finitos

Devido à magnitude dos deslocamentos obtidos serem grandes para a geometria em estudo, o problema é do tipo não-linear. Portanto, a matriz [K] depende do vetor {u}, caracterizando um sistema de equações não lineares. O módulo de elasticidade (E) utilizado neste estudo foi de 70 GPa (10,1 x 10⁶ psi), e a tensão de escoamento (σ e) igual a 1240 MPa (180 x 10³psi), valores estes adotados para ligas de titâniomolibdênio convencionais (RABOUD *et al*, 1997; VERSTRYNGE, VAN HUMBEECK, WILLEMS, 2006). Inicialmente a alça é encaixada nos suportes e em seguida ativada até 4mm, com incrementos de 1mm, cada um desses incrementos representando um passo de carga. O ponto onde é aplicada a ativação está ilustrado na figura 20. Os deslocamentos impostos para realizar o encaixe da alça nos suportes é realizado em um passo de carga, dividido em 10 sub-passos.

O problema apresenta não-linearidade geométrica. Assim, a matriz [K] depende do vetor $\{u\}$, caracterizando (1) como um sistema de equações não-lineares. Como método para a solução das equações não-lineares e critério de convergência, foram utilizados os padrões (default) do ANSYS, exceto o número máximo de iterações de equilíbrio dentro de cada passo, que foi alterado para 300 (NEQIT = 300).

4.1.2 Fabricação das Alças

As alças foram confeccionadas por um mesmo operador, utilizando-se um alicate específico para a construção de alças ortodônticas, do tipo 134 (R.M.O.) e sobre um gabarito, em papel milimetrado (Probus), depois de sua geometria ser desenhada por meio do programa Auto-Cad. As alças foram então analisadas dimensionalmente em termos de sua reprodutibilidade por meio de um aparelho de projeção de perfil (Projection Screen 560 x 460 mm, magnificência 0,5%; fundo de escala 60,1 mm, com resolução linear X, Y igual a 1µm e a resolução angular de 1 minuto. Henri Hauser SA, Bienne, Suiça). Só foram ensaiadas as alças cujas dimensões angulares e lineares estavam dentro de um limite de tolerância estabelecido (Tabela 3). As alças foram inspecionadas também com respeito à ausência de dobras indesejáveis de terceira ordem (que levam ao torque no sentido vestíbulo-lingual). Os equipamentos e materiais usados nas calibrações e medições foram fornecidos pelo Laboratório de Metrologia (LAMEC), e Laboratório de Calibração Mecânica (LACAM) da Universidade Tecnológica Federal do Paraná (UTFPR).

4.1.3. Caracterização Dimensional das Amostras

As amostras deste estudo foram constituídas por dois grupos de alças conforme suas geometrias: 1) grupo G_1 de alças cuja geometria está representada na figura 21, destinadas à retração de caninos, com extremidades assimétricas, retas e anguladas; e 2) grupo G_2 de alças, cuja geometria está representada na figura 22, e que são destinadas à retração de caninos e que apresentam extremidades assimétricas e arredondadas. Cada grupo é constituído de dez alças. Tanto no grupo G_1 como no grupo G_2 as alças apresentam secção transversal 0,017 x 0,025 polegadas (0,43mm x 0,64mm) por ser a secção transversal mais usualmente utilizada para a retração de caninos. As dimensões e parâmetros geométricos podem ser vistos na tabela 3.

Foram definidos os seguintes parâmetros geométricos das alças:

- 1. secção transversal;
- 2. ângulo delta Δ (porção central da alça);
- 3. ângulos das hastes as quais variam conforme a geometria da alça em:
 - Ângulo alfa α (°)
 - Angulo beta β (°)
 - Angulo gama γ (°)
 - Angulo sigma δ (°)
- 4. comprimento;
- 5. altura.

Essas variáveis foram escolhidas por serem de extrema importância no que se refere ao desempenho de alças de fechamento de espaços em ortodontia, como vem sendo demonstrado pela literatura ao longo dos anos.

Figura 21 - Alças do grupo G_1 e suas dimensões

Figura 22 - Alças do grupo G2 e suas dimensões

As propriedades mecânicas da liga utilizada podem ser encontradas na tabela 4.

Tabala 1	Tine de line	a a a a ã a transvera al	tomoño do concomento	(a maádula da alastisidada (- \
1 20612 4 -	TIDO DE IIDA.	seccao transversal	Tensão de escoamenio	(σe)	e modulo de elasticidade (F)
		oooçao nanoronoan,		(00)	e meddie de eldelleiddie (-/

Tipo de Liga	Secção Transversal	Tensão de Escoamento (σe)	Módulo de Elasticidade (E)
	(mm ²)	(MPa)	(GPa)
Titânio-molibdênio (ß-titânio)	0.43mm x 0.64mm	1240	70
	(0,017 x 0,025-pol)	(180 x 10³psi)	(10 x 10 ⁶ psi)

Fonte: Raboud et al. (1997); Verstrynge, Van Humbeeck e Willems (2006)

4.2 MÉTODO EXPERIMENTAL

4.2.1 Caracterização Mecânica da Plataforma

A célula de carga designada de plataforma (Figura 23) utilizada no presente trabalho foi desenvolvida em conjunto com o departamento de Engenharia Mecânica da UFRGS (DILLENBURG; SCHNEIDER; LUSA, 2001), destina-se à medição de forças e momentos produzidos por alças ortodônticas de retração em mesmo plano, tendo sofrido modificações no sentido de atender os novos objetivos que conduzirão o presente trabalho.

Figura 23 - Plataforma de medição de forças (Fx, Fy) e momento (Mz)

A célula de carga (plataforma), a placa condicionadora de sinais e a fonte de alimentação podem ser visualizadas na figura 24.

Figura 24 - Conjunto consistindo da célula de carga (plataforma de ensaios), placa condicionadora de sinais e placa de aquisição de dados

A célula de carga consiste de uma viga, constituída em alumínio em cruz contendo extensômetros (Figura 25) capaz de suportar forças de até 1kgf. Em cada braço da viga foram adaptados extensômetros (componente ativo que varia sua resistência com a deformação a que são submetidos, capaz de medir deformações da ordem de 1μ m/m). Os extensômetros foram montados em ponte completa de Wheatstone para a medição de Fx, Fy e de Mz. Ainda as seguintes características:

- 1. Tensão de alimentação da fonte de 15V.
- 2. As escalas da placa de aquisição (A/D) utilizadas são de 5V.

Figura 25 - Componente interno da plataforma Fonte: Dillenburg *et al.* (2001). Nota: Viga em cruz contendo doze extensômetros.

Cada alça testada foi engastada em suas extremidades sendo uma delas móvel (permitia a ativação da alça) e outra sensível (transdutor). A presença de um eixo regulador da distância interbraquete simulou a aproximação dos dentes com o fechamento de espaços, tal como acontece em clínica. Com isso, foi correlacionado o deslocamento livre da alça com as componentes de força (Fx, Fy) e com o momento (Mz) produzidos na extremidade que estava engastada na plataforma. Desta forma, podem-se estimar os esforços aplicados pelas alças ortodônticas em dentes, para a correção das posições dos mesmos.

A ativação das alças produziu deformação dos extensômetros o que por sua vez gerou diferentes resistências as quais foram transformadas em sinais elétricos por meio de um módulo condicionador de sinais MCS 1000, alimentado por uma fonte de 15 volts (*Tektronix PS 280 DC Power Supply*). O módulo amplifica os sinais, diminuindo assim o ruído para que seja feita a leitura das variações dos sinais emitidos pelos extensômetros após o carregamento das alças. Possui o módulo 8 canais independentes, dos quais foram utilizados três para o condicionamento dos sinais analógicos e permitem a conexão dos sinais em ponte completa de *Wheatstone*. Os sinais elétricos analógicos são digitalizados por uma placa de aquisição de dados DAC 801-QUATECH. Então o programa *DASY-lab*[®] versão 7.0 (*National Instruments Company*) coleta os sinais da placa de aquisição de dados.

4.2.3 Calibração da Plataforma

Por meio da aplicação dos pesos mediu-se a tensão elétrica que a plataforma fornece para então se obterem as curvas de calibração de Fx, Fy e de Mz. A calibração de Fx e Fy foi realizada aplicando-se cargas nas respectivas direções (onde são sensíveis as pontes de Fx e de Fy). Foram aplicados pesos determinados de 50gf, 75gf, 100gf, 150gf, 200gf, 250gf, 300gf e 400gf. Para a calibração do momento Mz utilizou-se um binário de forças por meio de um braço de alavanca de 10mm, para aplicar um momento conhecido em torno do eixo z. As componentes x ou y serão anuladas pela ação do binário (duas forças de mesma intensidade e direções opostas e paralelas).

Ajustou-se o zero da plataforma para que seja igual ao zero do amplificador, balanceando os desequilíbrios da ponte de *Wheatstone* (até o mais próximo possível de zero). Os valores obtidos foram utilizados para obtenção das curvas de calibração e os coeficientes angulares (O coeficiente angular é importante no cálculo da sensibilidade da plataforma, a qual pode ser determinada para cada esforço a que ela é sensível, para tanto se utilizam os coeficientes angulares das relações lineares entre tensão e carga já se descontando o efeito do ganho de cada canal utilizado na calibração), por meio do método dos mínimos quadrados. A média para cada peso era registrada pelo programa por meio de 10 leituras de onde se extraia a média e em seguida o processo inverso foi realizado colhendo-se as leituras da mesma forma. O processo foi repetido três vezes.

4.2.4 Método de Medida (Medição de Forças Fx, Fy e do Momento Mz)

As alças foram testadas por meio de ensaios de tração na plataforma de ensaios. Assim, foram adaptadas por meio de suas extremidades anterior e posterior de forma a permanecerem em um mesmo plano, portanto, sem diferença entre as alturas dos encaixes. As alças foram fixadas aos braquetes por meio de fio de amarril de aço inox recozido 0,008 polegadas (MORELLI, São Paulo, Brasil) e suas extremidades foram dobradas em 90° para evitar o escorregamento durante as ativações. Para cada alça adaptada foi medido o sistema de forças resultante. As alças foram avaliadas em cinco diferentes distâncias interbraquetes (DIB) separadas de milímetro em milímetro. A DIB foi alterada por meio de um eixo contendo um braquete, de forma que para cada posição do eixo, cada alça foi medida individualmente desde 4mm até o repouso (ensaio de descarregamento) em intervalos de 1mm. Foram então, testadas as alças nas seguintes posições: DIB 23mm - para o eixo na posição inicial; DIB 22mm – para o eixo deslocado em 1mm; DIB 21mm – para o eixo deslocado em 2mm; DIB 20mm – para o eixo deslocado em 3mm, e DIB 19mm – para o eixo deslocado em 4mm. Desta forma, para cada posição do eixo e ativação os valores foram colhidos e interpretados.

Essa metodologia permitiu estudar a influência da distância interbraquetes sobre o sistema de forças e também conhecer a relação momento-força (M/F) na região alfa (anterior) representada pelo apoio sensível (braquete do canino). A figura 26 mostra, esquematicamente, a sequência idealizada para o estudo do efeito de diferentes distâncias interbraquetes. O eixo contendo o braquete corresponde ao dente molar. A distância interbraquete de 23mm está delimitada pela linha que passa pelo centro do braquete do molar e pelo centro do braquete do canino. Na sequência a DIB vai diminuindo o que pode ser notado pela alteração de posição do eixo (representado pelo dente molar). Os valores correspondentes à largura do dentes molar, segundo prémolar e canino estão representadas acima das suas coroas, respectivamente 11mm, 7mm e 8mm. O espaço vazio representa o espaço da extração do primeiro pré-molar, espaço este que será fechado pelo movimento dos dentes: molar e segundo prémolar. A figura 27 mostra a plataforma e a alça adaptada em seus engastes, para uma distância interbraquete de 23mm.

Figura 26 - Representação esquemática da movimentação dentária pretendida simulada na plataforma

As alças que não correspondiam aos parâmetros descritos na tabela 3 foram descartadas. Foi utilizada a distância interbraquetes de 23mm, conforme preconizado por Burstone (1982). Os braquetes representativos do dente canino (apoio sensível) e do apoio não-sensível (móvel), medem uma largura mesio-distal

de 4mm e não apresentam angulação (Morelli, Edgewise Standard, São Paulo, Brasil), enquanto que o braquete representativo do dente molar (eixo) mede uma largura mesio-distal de 2mm e também não apresenta angulação (Morelli, Edgewise Standard, São Paulo, Brasil).

Figura 27 - Plataforma, e eixo regulador da distância interbraquete (A); e alça adaptada Nota: A flecha azul indica o sentido de regulagem da distância interbraquete; a flecha branca indica o engaste móvel, a flecha vermelha indica o sentido da ativação da alça e a flecha laranja indica o engaste sensível.

A função do eixo é de simular o deslocamento dos dentes posteriores (molar e pré-molar) à medida que a alça é desativada a cada milímetro de desativação. A figura 28 mostra que o eixo foi avançado em dois milímetros simulando a mesialização (movimento para a região anterior do arco dentário) dos dentes posteriores. A figura 29 mostra o eixo deslocado em 4mm, portanto, com uma distância interbraquete de 19mm. Nesta posição deve-se considerar que o fechamento do espaço foi completo, ou seja, molar e pré-molar deslocaram-se em direção anterior até que o pré-molar entre em contato com o canino.

Figura 28 - Plataforma e eixo regulador deslocado em 2 mm Nota: DIB de 21mm.

Figura 29 - Eixo deslocado em sua totalidade (4 mm) Nota: Nesta situação a DIB é de 19,0mm (G_1).

Este estudo considerou as forças horizontais e verticais (Fx e Fy) e o momento (Mz), produzidos por um protótipo aperfeiçoado em relação ao protótipo previamente estudado no qual não foi considerada a diminuição da distância interbraquetes sobre a alça, mas tão-somente a abertura da alça e o sistema de forças resultantes (FERREIRA *et al.*, 2005) – ver figura 30.

Figura 30 - Ensaio realizado sem a presença de um eixo regulador da distância interbraquetes em protótipo de alça delta Fonte:Ferreira *et al.* (2005).

As forças Fx representaram as forças decorrentes da ativação da alça, na direção horizontal, enquanto que as forças Fy denotaram as forças verticais, perpendiculares às Fx. Os momentos Mz representaram a expressão da tendência rotacional devido às inclinações das extremidades da alça. A figura 31 mostra o sistema de forças (Fx, Fy e Mz) desenvolvido pela alça delta.

Figura 31 - Alça delta e o sistema de forças desenvolvido

A figura 32 mostra a alça delta destinada à retração de caninos em um caso clínico o que vem a ilustrar os esquemas anteriores. O canino está representado como o apoio sensível na plataforma, o molar e o pré-molar (segundo pré-molar) representam o eixo deslizante.

Figura 32 - Caso clínico exibindo alça delta do Grupo G₁ com o objetivo de retração do canino

Nota: As flechas azuis denotam o binário que ocorre no tubo de encaixe após inserção da alça em sua extremidade. As flechas roxas mostram os sentidos do fechamento de espaços. As flechas verdes indicam as forças indesejáveis verticais, a flecha vermelha indica o sentido de ativação da alça e as flechas curvas os momentos resultantes das inclinações das extre-midades da alça.

4.2.5 Análise de Experimentos

Visando identificar diferenças entre as médias populacionais devidas a três possíveis causas ou fontes de variação (variáveis independentes) e as interações entre as mesmas (geometria, distância interbraquete e ativação), utilizou-se a análise de variância a três critérios de classificação, modelo fatorial completo. O método de análise de variância aceita ou rejeita a(s) hipótese(s) H₀ de igualdade das médias populacionais. Se H₀ for rejeitada, admite-se que pelo menos uma das médias é diferente das demais. Nestas condições utilizou-se o teste proposto por Games-Howell para variâncias heterogêneas visando estabelecer comparações múltiplas entre os diferentes tratamentos.

Para estimar a constante elástica para os dois tratamentos (G₁ e G₂), utilizou-se a análise de regressão para verificar o grau de relacionamento entre os valores da variável resposta (força Fx) e a variável independente (ativação da alça).

O método utilizado para calcular a constante elástica (modelo de HOOKE) foi um teste de hipótese para o modelo de regressão $Y_i = f(X_i)$, dado por:

$$Y_i = b_0 + b_1 X_i + e_i$$
, $i = 1, 2, ..., n$ (2)

em que:

Y_i = medida da variável resposta para a i-ésima ativação da alça;

f = relação funcional;

 X_i = variável independente (ativação da alça);

 b_0 , b_1 = parâmetros de regressão;

 e_i = erro aleatório, e;

n = número de observações.

Visando testar se para a alça em estado de repouso $(X_i = 0)$ a força exercida é zero $(Y_i = 0)$, testou-se primeiramente a hipótese:

 $H_0: b_0 = 0$ $H_1: b_0 \cdot 0$

Utilizando a estatística "t" de Student dada por:

$$t_o = \frac{b_0 - 0}{\sqrt{QM_{erro} \left[\frac{1}{n} + \frac{x}{S_{xx}}\right]}}$$
(3)

que tem distribuição "t" de Student, com (n - 2) graus de liberdade sob a hipótese H₀ (WERKEMA; AGUIAR, 1996), uma vez que (n - 2) é o número de graus de liberdade em que se baseia a estimativa da variância (DRAPER; SMITH, 1966). Para um teste com nível de significância α , a hipótese nula deve ser rejeitada se:

$$|t_0| \rangle t_{\frac{\alpha}{2}}, n-2$$
 (4)

Quando a hipótese H_0 foi aceita, ajustou-se novamente o modelo, porém, desta vez, sem o coeficiente b_0 , forçando a reta a passar pela origem:

$$Y_i = b_1 X_i + e_i, i = 1, 2, ..., n$$
 (5)

As hipóteses referentes aos coeficientes parciais de regressão das equações ajustadas para o modelo (2) e (5), para todos os dois tratamentos, foram testadas por meio do teste t de Student, enquanto o grau de ajustamento da regressão foi indicado pelo coeficiente de determinação R^2 (coeficiente de determinação múltipla) e pelo erro padrão da estimativa (S_{vx}).

Utilizando a estatística "t" de Student dada por:

$$t_o = \frac{b_1}{\sqrt{\frac{QM_{erro}}{S_{xx}}}}$$
(6)

que tem distribuição "t" de Student, com (n – 1) graus de liberdade sob a hipótese H₀ (KMENTA, 1978). Para um teste com nível de significância α , a hipótese nula deve ser rejeitada se:

$$\left| t_{0} \right| > t_{\frac{\alpha}{2}}, n-1 \tag{7}$$

A partir dos modelos previamente estabelecidos, estimou-se a equação (1), por meio do método de mínimos quadrados ordinários, para todos os tratamentos analisados. Para todas as duas equações ajustadas, o coeficiente linear β_0 foi estatisticamente não significante a um nível de probabilidade maior que 5%, onde o coeficiente linear β_0 mostrou-se estatisticamente significante a um nível de probabilidade menor que 5%. Para os tratamentos em que β_0 mostrou-se estatisticamente não significante, procedeu-se ao ajuste da equação (5), excluindo o intercepto.

Após a exclusão do intercepto, em todos os ajustes o coeficiente angular β_1 mostrou-se estatisticamente significante e diferente de zero, a um nível de probabilidade menor que 5%.

Com relação ao poder explicativo dos modelos, indicado pelo coeficiente de determinação R^2 , $F \in S_{yx}$, os quatro valores melhoraram com a exclusão do intercepto e indicam alto poder explicativo.

5 RESULTADOS

Os resultados obtidos estão apresentados na seguinte ordem:

- Curvas de calibração da plataforma.
- Valores do sistema de forças (Fx, Fy e Mz) obtidos nos grupos de alças
 G₁ e G₂ após ativação para cada uma das distâncias interbraquetes.
- Análise por meio dos elementos finitos sobre as variáveis estudadas.
 Comparação entre os testes experimental e numérico

5.1 CURVAS DE CALIBRAÇÃO DA PLATAFORMA

As curvas de calibração encontram-se nas figuras 33, 34 e 35. Os gráficos representam no eixo y a tensão em milivolts (mv) e o eixo x os pesos em gramasforça (gf). Foi realizada a análise de regrsão linear para os dados tabulados e a reta estimada foi obtida pelo método dos mínimos quadrados obtida por meio do programa *Estat-D*⁺ (AKAMINE; YAMAMOTO, 1998).

Figura 33 - Curva de calibração da plataforma no eixo das abscissas (Fx)

Figura 34 - Curva de calibração da plataforma no eixo das ordenadas (Fy)

Figura 35 - Curva de calibração da plataforma no eixo das ordenadas (Mz)

5.2 VALORES DO SISTEMA DE FORÇAS (Fx, Fy E Mz) OBTIDOS NOS GRUPOS DE ALÇAS $G_1 \in G_2$ APÓS ATIVAÇÃO PARA CADA UMA DAS DISTÂNCIAS INTERBRAQUETES

Os valores médios (Fx, Fy e Mz) em função das ativações e DIB para os grupos $G_1 e G_2$ podem ser encontrados nas tabelas 5 a 10.

Tabela 5 - Forcas em Ex segundo a ativação e a distância interbraguetes	- C	à1
---	-----	----

	i x seguire	io a alivaç	ao c a uis		ibiaquetee															
Variável	$FxG_{1\text{DIB}}$	FxG _{1DIB}	FxG _{1DIB}	FxG _{1DIB}	$FxG_{1\text{DIB}}$	FxG_{1DIB}	FxG_{1DIB}	FxG _{1DIB}	$FxG_{1\text{DIB}}$	$FxG_{1\text{DIB}}$	FxG_{1DIB}	FxG _{1DIB}	FxG _{1 DIB}	$FxG_{1\text{DIB}}$	FxG _{1DIB}	FxG _{1DIB}	$FxG_{1\text{DIB}}$	FxG_{1DIB}	FxG_{1DIB}	FxG _{1DIB}
	23 mm (1,0)	23 mm (2,0)	23mm(3,0)	23 mm(4,0)	22 mm (1,0)	22 mm (2,0)	22mm(3,0)	22 mm(4,0)	21 mm (1,0)	21 mm (2,0)	21mm(3,0)	21 mm(4,0)	20 mm (1,0)	20 mm (2,0)	21mm(3,0)	20 mm(4,0)	19 mm (1,0)	19 mm (2,0)	19mm(3,0)	19 mm(4,0)
Valor (gf)amostra#1	22	59	86	126	18	36	103	123	10	52	92	123	8	18	63	114	9	20	60	120
Valor (gf)amostra#2	23	50	101	150	20	58	108	140	26	37	82	126	21	40	63	107	29	74	142	195
Valor (gf)amostra#3	27	37	84	131	30	61	106	161	31	43	88	142	29	73	110	163	27	64	119	170
Valor (gf)amostra#4	31	29	74	120	31	65	97	184	31	40	90	175	31	45	94	183	28	56	98	181
Valor (gf)amostra#5	27	68	76	133	27	38	89	172	31	42	93	178	31	42	92	179	30	73	126	173
Valor (gf)amostra#6	28	62	75	174	30	55	92	128	22	54	99	147	28	55	117	201	31	69	117	191
Valor (gf)amostra#7	26	31	68	109	29	47	88	96	30	46	62	96	29	41	87	106	31	51	85	111
Valor (gf)amostra#8	24	37	56	95	25	34	50	84	32	51	68	79	32	49	62	85	18	47	56	79
Valor (gf)amostra#9	26	37	65	100	29	48	71	104	22	41	66	87	30	37	64	104	31	46	55	94
Valor (gf)amostra#10	30	43	76	95	29	49	68	86	29	47	55	78	27	36	56	74	28	35	58	103
Valor médio	26,4	45,3	76,1	123,3	26,8	49,1	87,2	127,8	26,4	45,3	79,5	123,1	26,6	43,6	80,8	131,6	26,2	53,5	91,6	141,7

Tabela 6 - Forças em Fy segundo a ativação e a distância interbraquetes - G1

Variável	$FyG_{1\text{DIB}}$	$FxG_{1\text{DIB}}$	FyG _{1DIB}	FyG _{1DIB}	FyG _{1 DIB}	FyG _{1DIB}	FyG _{1DIB}	FyG _{1DIB}	FyG _{1 DIB}	FyG _{1DIB}	FyG _{1DIB}	FyG _{1DIB}	$FyG_{1\;DIB}$	FyG _{1DIB}	FyG _{1DIB}	FyG _{1DIB}	FyG _{1 DIB}	FyG _{1DIB}	FyG _{1DIB}	FyG _{1DIB}
	23 mm (1,0)	23 mm (2,0)	23mm(3,0)	23 mm(4,0)	22 mm (1,0)	22 mm (2,0)	22mm(3,0)	22 mm(4,0)	21 mm (1,0)	21 mm (2,0)	21mm(3,0)	21 mm(4,0)	20 mm (1,0)	20 mm (2,0)	20mm(3,0)	20 mm(4,0)	19 mm (1,0)	19 mm (2,0)	19mm(3,0)	19 mm(4,0)
Valor (gf)amostra#1	55	55	52	52	58	55	52	52	55	55	50	52	69	62	60	85	71	62	57	60
Valor (gf)amostra#2	55	55	52	52	58	55	52	52	55	55	49	52	40	46	46	46	78	74	60	50
Valor (gf)amostra#3	50	55	52	50	58	55	52	50	57	51	48	69	69	67	62	57	69	69	57	50
Valor (gf)amostra#4	50	55	52	48	59	55	52	48	58	50	50	50	69	67	60	55	71	69	62	60
Valor (gf)amostra#5	50	55	52	46	60	55	52	46	56	51	50	46	69	64	60	53	69	69	64	64
Valor (gf)amostra#6	55	55	52	52	58	55	55	52	55	50	52	46	67	64	64	62	69	64	64	64
Valor (gf)amostra#7	67	57	43	46	59	55	55	52	55	55	49	52	69	69	69	67	74	74	74	67
Valor (gf)amostra#8	48	57	55	50	58	55	55	52	55	55	49	52	69	67	83	78	74	74	71	64
Valor (gf)amostra#9	55	55	52	52	59	55	52	52	55	55	52	52	80	78	76	76	76	76	61	64
Valor (gf)amostra#10	55	55	52	52	58	55	52	52	55	50	52	52	69	64	64	62	74	67	67	62
Valor médio	54	55,4	51,4	50	58,5	55	52,9	50,8	55,6	52,7	50,1	52,3	67	64,8	64,4	64,1	72,5	69,8	63,7	60,5

Tabela 7 - Forças em Mz segundo a ativação e a distância interbraquetes G1

Variável	$MzG_{1\;\text{DIB}}$	$MzG_{1\text{DIB}}$	$MzG_{1\text{DIB}}$	MzG_{1DIB}	$MzG_{1\;\text{DIB}}$	$MzG_{1\text{DIB}}$	$MzG_{1\text{DIB}}$	$MzG_{1\text{DIB}}$	$MzG_{1\;DIB}$	$MzG_{1\text{DIB}}$	$MzG_{1\text{DIB}}$	$MzG_{1\text{DIB}}$	$MzG_{1 \; \text{DIB}}$	MzG_{1DIB}	MzG_{1DIB}	$MzG_{1\text{DIB}}$	$MzG_{1 \; \text{DIB}}$	$MzG_{1\text{DIB}}$	$MzG_{1\text{DIB}}$	MzG _{1DIB}
Valiavei	23 mm (1,0)	23 mm (2,0)	23mm(3,0)	23 mm(4,0)	22 mm (1,0)	22 mm (2,0)	22mm(3,0)	22 mm(4,0)	21 mm (1,0)	21 mm (2,0)	21mm(3,0)	21 mm(4,0)	20 mm (1,0)	20 mm (2,0)	20mm(3,0)	20 mm(4,0)	19 mm (1,0)	19 mm (2,0)	19mm(3,0)	19 mm(4,0)
Valor (gf)amostra#1	588	762	1110	1248	762	1110	1892	1371	936	1110	1284	1248	501	849	1023	1197	849	849	1023	1110
Valor (gf)amostra#2	1023	1110	1197	1110	936	1023	1023	1458	849	936	1284	1371	936	1197	1197	1371	1023	1110	1284	1110
Valor (gf)amostra#3	849	936	1023	1110	762	849	849	849	415	589	675	675	1110	1197	1284	1284	1023	1110	1197	1197
Valor (gf)amostra#4	762	936	1110	1110	849	936	936	936	849	936	1023	936	849	936	1023	936	936	836	1023	849
Valor (gf)amostra#5	936	1023	1110	1110	1023	1197	1197	1184	1023	1110	1110	1110	1023	1023	936	936	1110	1023	1023	936
Valor (gf)amostra#6	1197	1371	1248	1110	1110	1110	1110	1110	1023	1023	849	675	849	762	762	936	936	1023	762	936
Valor (gf)amostra#7	849	762	849	934	762	849	849	1023	762	849	936	1284	762	936	1197	1371	762	936	1284	1458
Valor (gf)amostra#8	589	675	762	849	502	675	675	849	589	675	762	936	589	675	936	1284	589	762	1110	1284
Valor (gf)amostra#9	589	762	762	1248	675	762	849	1371	589	675	762	1284	589	675	762	1197	589	675	1023	1197
Valor (gf)amostra#10	762	849	1023	1023	502	589	762	1023	502	589	849	1110	502	675	1023	1110	502	762	1023	1110
Valor médio	814,4	918,6	1019,4	1085,2	788,3	910	1014,2	1117,4	753,7	849,2	953,4	1062,9	771	892,5	1014,3	1162,2	831,9	908,6	1075,2	1118,7

Tabela 8 - Forças em Fx segundo a ativação e a distância interbraquetes - G ₂	
--	--

	i x seguite	io a alivaç	40 0 4 413		ibiaqueiei	5 Q2														
Variável	$FxG_{2\text{DIB}}$	FxG _{2 DIB}																		
	23 mm (1,0)	23 mm (2,0)	23mm(3,0)	23 mm(4,0)	22 mm (1,0)	22 mm (2,0)	22mm(3,0)	22 mm(4,0)	21 mm (1,0)	21 mm (2,0)	21mm(3,0)	21 mm(4,0)	20 mm (1,0)	20 mm (2,0)	21mm(3,0)	20 mm(4,0)	19 mm (1,0)	19 mm (2,0)	19mm(3,0)	19 mm(4,0)
Valor (gf) amostra#1	31	90	132	160	29	64	126	133	31	97	140	170	30	50	64	108	26	30	60	120
Valor (gf)amostra#2	31	64	132	160	32	64	126	134	17	106	150	185	28	41	74	108	30	41	76	120
Valor (gf)amostra#3	28	51	54	143	13	48	100	146	30	53	92	149	26	41	95	153	23	33	105	152
Valor (gf)amostra#4	29	60	105	153	32	41	101	152	28	60	112	174	22	69	129	198	29	67	122	192
Valor (gf)amostra#5	23	37	91	149	17	51	95	172	30	41	90	138	26	45	70	122	20	68	75	135
Valor (gf)amostra#6	24	42	82	115	21	36	80	118	24	39	84	117	17	37	72	111	22	40	80	119
Valor (gf)amostra#7	20	35	72	108	21	36	72	111	27	62	94	114	25	41	55	123	27	483	85	128
Valor (gf)amostra#8	20	53	90	137	13	43	57	104	27	50	52	104	30	51	60	90	23	38	59	90
Valor (gf)amostra#9	28	45	81	106	22	31	57	95	29	47	81	106	36	52	66	97	40	52	74	101
Valor (gf)amostra#10	38	68	102	130	49	79	94	136	32	70	108	147	18	51	100	142	19	49	85	113
Valor médio	27,2	54,5	94,1	136,1	24,9	49,3	90,8	130,1	27,5	62,5	110,3	140,4	25,8	47,8	78,5	125,2	25,9	46,6	82,1	127

Tabela 9 - Forças em Fy segundo a ativação e a distância interbraquetes - G2

Variável	$FyG_{2\text{DIB}}$	$FxG_{2\text{DIB}}$	FyG _{2 DIB}	$FyG_{2\text{DIB}}$	FyG _{2 DIB}															
	23 mm (1,0)	23 mm (2,0)	23mm(3,0)	23 mm(4,0)	22 mm (1,0)	22 mm (2,0)	22mm(3,0)	22 mm(4,0)	21 mm (1,0)	21 mm (2,0)	21mm(3,0)	21 mm(4,0)	20 mm (1,0)	20 mm (2,0)	20mm(3,0)	20 mm(4,0)	19 mm (1,0)	19 mm (2,0)	19mm(3,0)	19 mm(4,0)
Valor (gf) amostra#1	51	40	30	14	54	56	49	16	43	36	28	15	18	12	3	1	29	17	10	1
Valor (gf)amostra#2	50	50	39	14	44	49	49	18	46	35	20	19	19	12	3	2	29	18	12	3
Valor (gf)amostra#3	48	40	10	12	44	44	30	18	41	36	41	13	18	13	3	2	29	17	13	3
Valor (gf)amostra#4	35	41	15	13	45	30	20	19	45	23	23	15	19	10	3	1	24	19	11	1
Valor (gf)amostra#5	40	21	11	16	38	25	12	16	40	32	23	15	17	14	5	1	30	17	14	3
Valor (gf)amostra#6	50	32	32	17	47	35	24	19	45	36	25	19	18	12	7	2	29	19	12	4
Valor (gf)amostra#7	47	38	33	13	44	40	22	15	43	37	29	17	19	12	2	2	27	19	10	4
Valor (gf)amostra#8	42	23	15	15	52	30	32	18	44	47	25	15	17	12	3	1	28	17	10	1
Valor (gf)amostra#9	43	36	35	17	34	33	20	19	49	46	25	17	19	12	2	1	30	15	11	2
Valor (gf)amostra#10	45	32	34	19	50	40	27	16	45	45	20	16	18	12	3	1	28	14	10	4
Valor médio	45,1	35,3	25,4	15	45,2	38,2	28,5	17,4	44,1	37,3	25,9	16,1	18,2	12,1	3,4	1,4	28,3	17,2	11,3	2,6

Tabela 10 - Forças em Mz segundo a ativação e a distância interbraquetes G2

Variável	$MzG_{2\text{DIB}}$	MzG_{2DIB}	$MzG_{2\text{DIB}}$	$MzG_{2\text{DIB}}$	$MzG_{2\text{DIB}}$	$MzG_{2\text{DIB}}$	$MzG_{2\text{DIB}}$	$MzG_{2\text{DIB}}$	MzG_{2DIB}	$MzG_{2\text{DIB}}$	$MzG_{2\text{DIB}}$	$MzG_{2\text{DIB}}$	MzG_{2DIB}							
	23 mm (1,0)	23 mm (2,0)	23mm(3,0)	23 mm(4,0)	22 mm (1,0)	22 mm (2,0)	22mm(3,0)	22 mm(4,0)	21 mm (1,0)	21 mm (2,0)	21mm(3,0)	21 mm(4,0)	20 mm (1,0)	20 mm (2,0)	20mm(3,0)	20 mm(4,0)	19 mm (1,0)	19 mm (2,0)	19mm(3,0)	19 mm(4,0)
Valor (gf) amostra#1	887	1056	1248	1458	936	1110	1371	1545	762	762	762	936	849	849	849	963	849	849	1023	1110
Valor (gf)amostra#2	887	1067	1248	1458	936	1110	1248	1458	936	1371	1631	1718	849	849	1197	1197	936	936	1110	1248
Valor (gf)amostra#3	887	1054	1197	1458	936	1110	1197	1248	848	1023	1110	1197	936	936	1023	1110	762	936	1023	1023
Valor (gf)amostra#4	889	1052	1371	1631	936	1110	1371	1545	936	1110	1110	1458	848	1110	1248	1458	936	1110	1197	1371
Valor (gf)amostra#5	887	1009	1110	1371	675	848	1023	1248	675	848	1023	1197	588	762	963	1110	501	762	936	1023
Valor (gf)amostra#6	856	1078	1197	1371	936	1248	1248	1248	849	1023	1110	1248	849	1023	1197	1197	849	1023	1110	1110
Valor (gf)amostra#7	882	963	1197	1197	762	1023	1110	1197	1023	1110	1197	1197	675	849	963	1110	762	936	1110	1110
Valor (gf)amostra#8	848	1065	1110	1197	502	762	1023	1110	502	762	1023	1023	589	762	1023	1197	589	762	936	1197
Valor (gf)amostra#9	867	1078	963	1197	589	762	849	1197	1023	1197	1197	1197	849	963	963	1197	849	849	963	963
Valor (gf)amostra#10	879	1098	963	963	849	963	1023	1023	849	963	1023	1023	1023	1197	1371	1545	1023	1110	1110	1197
Valor médio	876,9	1052	1164	1330	805,7	1004	1146	1281	840	1016	1118	1219	805,5	930	1074	1205	805,6	927,3	1051	1135,2

As figuras 36 e 37 mostram o comportamento das retas de Fx para 23mm e 19mm de distância interbraquetes para alças do grupo G_1 . Os demais gráficos para Fx encontram-se no Anexo B.

Figura 36 - Comportamento de Fx para 23 mm de DIB (G1)

Figura 37 - Comportamento de Fx para 19 mm de DIB (G1)
O comportamento das retas de Fy para o grupo G_1 pode ser observado nas figuras 38 e 39 para 23mm e 19mm de DIB. Os demais gráficos para Fy encontram-se no Anexo B.

Figura 38 - Comportamento de Fy para 23mm de DIB

Figura 39 - Comportamento de Fy para 19mm de DIB

A comparação das relações M/F obtidas experimentalmente em função da ativação e considerando as diferentes distâncias interbraquetes pode ser vista nas figuras 40 e 41. Os gráficos das relações M/F dos grupos G₁ e G₂ encontram-se no Anexo B.

Figura 40 - Comportamento da relação Mα/F comparando as diferentes DIB utilizadas para o grupo G₁

Figura 41 - Comportamento da relação Mα/F comparando as diferentes DIB utilizadas para o grupo G₂

5.3.1 Sistema de Forças

O método dos elementos finitos permitiu conhecer o comportamento das variáveis independentes e seu efeito sobre as variáveis dependentes. A tabela 11 mostra os valores encontrados para o grupo G_1 e a tabela 12 os resultados referentes ao grupo G_2 . Os valores estão expressos em Newtons (N) e em gramas-força (gf) para cada DIB.

ATIVAÇÃO					D	IB				
(mm)	2	23	2	22	2	21	2	20	1	9
(G ₁)	Fy(N)	Fy(gf)								
0	-0,369	-37,633	-0,492	-50,166	-0,642	-65,476	-0,642	-65,476	-0,986	-100,46
0,5	-0,340	-34,629	-0,466	-47,453	-0,620	-63,195	-0,620	-63,195	-0,979	-99,831
1	-0,312	-31,792	-0,440	-44,866	-0,599	-61,028	-0,599	-61,028	-0,974	-99,256
1,5	-0,285	-29,053	-0,415	-42,351	-0,578	-58,893	-0,578	-58,893	-0,968	-98,634
2	-0,259	-26,415	-0,391	-39,907	-0,557	-56,787	-0,557	-56,787	-0,961	-97,943
2,5	-0,234	-23,880	-0,368	-37,533	-0,537	-54,708	-0,537	-54,708	-0,953	-97,171
3	-0,210	-21,446	-0,346	-35,229	-0,517	-52,658	-0,517	-52,658	-0,945	-96,301
3,5	-0,188	-19,114	-0,324	-32,998	-0,497	-50,634	-0,497	-50,634	-0,935	-95,322
4	-0,166	-16,884	-0,303	-30,837	-0,477	-48,638	-0,477	-48,638	-0,924	-94,223
ATIVAÇÃO					D	IB				
mm	23		22		21		20		19	
(G ₁)	Fx(N)	Fx(gf)								
0	0,011	1,093	0,042	4,287	0,091	9,320	0,158	16,120	0,255	26,040
0,5	0,133	13,54	0,164	16,68	0,212	21,61	0,279	28,406	0,377	38,462
1	0,258	26,08	0,287	29,27	0,334	34,09	0,400	40,822	0,500	50,925
1,5	0,385	39,25	0,413	42,09	0,459	46,77	0,524	53,405	0,623	63,496
2	0,514	52,42	0,541	55,14	0,585	59,66	0,649	66,161	0,747	76,181
2,5	0,626	63,78	0,671	68,40	0,714	72,75	0,776	79,100	0,873	88,989
3	0,779	79,45	0,804	81,91	0,844	86,08	0,905	92,236	1,000	101,93
3,5	0.916	93,33	0,938	95,65	0,977	99,64	1,036	105,58	1,129	115.03
	-)		,		,		,			- ,

Tabela 11 - Sistema de forças obtido pelo método dos elementos finitos (G1)

ATIVAÇÃO					D	IB				
mm	2	23	2	2	2	21	2	0	1	9
(G ₂)	Fy(N)	Fy(gf)	Fy(N)	Fy(gf)	Fy(N)	Fy(gf)	Fy(N)	Fy(gf)	Fy(N)	Fy(gf)
0 0,5 1 1,5 2 2,5 3 3,5 4	0,461 -0,411 -0,364 -0,318 -0,273 -0,229 -0,186 -0,144 -0,103	-46,96 -41,92 -37,11 -32,41 -27,82 -23,34 -18,96 -14,69 -10,52	-0,607 -0,558 -0,511 -0,465 -0,420 -0,375 -0,332 -0,288 -0,247	-61,92 -56,89 -52,10 -47,39 -42,78 -38,25 -33,80 -29,34 -25,15	-0,042 0,004 0,049 0,092 0,135 0,177 0,217 0,257 0,296	-4,26 0,448 5,001 9,414 13,75 18,00 22,16 26,21 30,15	-0,269 -0,224 -0,180 -0,137 -0,095 -0,053 -0,011 -0,029 -0,069	-27,41 -22,80 -18,36 -13,97 -9,648 -5,378 -1,171 -2,966 -7,027	-0,377 -0,334 -0,292 -0,251 -0,211 -0,169 -0,129 -0,089 -0,049	-38,40 -34,03 -29,80 -25,59 -21,46 -17,25 -13,12 -9,034 -4,987
ATIVAÇÃO	DIB									
mm	23		22		21		20		19	
(G ₂)	Fx(N)	Fx(gf)	Fx(N)	Fx(gf)	Fx(N)	Fx(gf)	Fx(N)	Fx(gf)	Fx(N)	Fx(gf)
0 0,5 1 1,5 2 2,5 3 3,5 4	0,087 0,208 0,335 0,464 0,595 0,730 0,866 1,006 1,148	8,878 21,19 34,10 47,27 60,69 74,37 88,31 102,51 116 98	0,099 0,220 0,344 0,471 0,601 0,733 0,868 1,005 1 146	10,05 22,37 35,05 48,00 61,21 74,69 88,44 102,46 116,77	0,044 0,178 0,307 0,443 0,580 0,720 0,862 1,006 1,152	4,516 18,15 31,29 45,12 59,16 73,41 87,87 102,53 117 42	0,073 0,200 0,329 0,462 0,596 0,733 0,872 1,013 1,157	7,419 20,35 33,58 47,058 60,760 74,695 88,866 103,27 117 93	0,089 0,214 0,342 0,472 0,605 0,740 0,877 1,017 1,159	9,052 21,81 34,86 48,14 61,65 75,39 89,38 103,61 118,10
•	1,110	110,00	1,110	110,77	1,102	,	1,107	117,00	1,100	110,10

Tabela 12 - Sistema de forças pelo método dos elementos finitos (G2)

5.3.2 Tensões de Von Mises

As figuras 42 e 43 apresentam os valores máximos das tensões de Von Mises para os grupos G_1 e G_2 em função das ativações. Também foram consideradas as diferentes distâncias interbraquetes. A linha pontilhada representa a tensão de escoamento. A figura 44 mostra as tensões de von Mises para a alça do grupo G_2 ativada em 4mm para uma distância interbraquete de 22mm. As tabelas A.1 e A.2 (Anexo A) mostram os valores de tensões de von Mises obtidos.

Figura 42 - Aspecto gráfico do comportamento das tensões de von Mises para o grupo G₂

Figura 43 - Aspecto gráfico do comportamento das tensões de von Mises para o grupo G2

Figura 44 - Aspecto gráfico do comportamento das tensões de von Mises para o grupo $G_{\rm 2}$

5.4 COMPARAÇÃO ENTRE OS TESTES EXPERIMENTAL E NUMÉRICO

As figuras 45 a 52 mostram o comportamento das variáveis dependentes (Fx, Fy e Mz) em função da ativação comparando os métodos experimental e numérico.

Figura 45 - Comportamento das retas do método experimental e do modelo numérico para DIB 21mm, para Fx, grupo G₁

Figura 46 - Comportamento das retas do método experimental e do modelo numérico para DIB 21mm, para Fy, grupo G_1

Figura 47 - Comportamento das retas do método experimental e do modelo numérico para DIB 21mm, para Mz, grupo G_1

Figura 48 - Comportamento das retas do método experimental e do modelo numérico para DIB 21mm para Fx, grupo G₂

Figura 49 - Comportamento das retas do método experimental e do modelo numérico para DIB 22mm, para Fy, grupo G_2

Figura 50 - Comportamento das retas do método experimental e do modelo numérico para DIB 22mm para Mz, grupo G₂

Figura 51 - Comportamento das curvas da relação M/F pelo método experimental e pelo modelo numérico para DIB 23mm, grupo G₁

Figura 52 - Comportamento das curvas da relação M/F pelo método experimental e pelo modelo numérico para DIB 23mm, grupo G₂

Os demais gráficos relativos ao sistema de forças de ambos os grupos encontram-se no Anexo B (Figuras B-1 a B-67).

6 DISCUSSÃO

Os experimentos foram realizados por meio de um dispositivo eletrônico, conhecido como plataforma de ensaios, já previamente utilizado em estudo anterior com o protótipo da alça delta de retração ortodôntica (FERREIRA et al., 2005), no qual não foi considerada a distância interbraquetes. No presente trabalho foi realizada modificação caracterizada por um eixo móvel o qual contém um braquete. O objetivo do eixo é simular o fechamento de espaço de forma sequenciada e com isso verificar se o efeito da distância interbraquete atua ou não sobre o sistema de forças à medida que o espaço entre os dentes se fecha, ou seja, se as diferentes distâncias interbraquetes modificam o sistema de forças resultantes da ativação da alça. Poucos trabalhos mediram o sistema de forças com diferentes distâncias interbraquetes, no entanto, as alças eram estudadas para diferentes distâncias interbraquetes (21, 24, 27 e 30 mm) sem uma alteração gradativa e seguencial (HOENIGL et al., 1995). Kuhlberg e Priebe (2003) utilizaram a distância interbraquetes de 24 mm e adaptaram a alça a esta distância para, então, avaliar o sistema de forças. Khun et al.,(2006) utilizaram a distância interbraquetes de 12,7 mm e mudaram apenas as posições das alças dentro desta distância. Ferreira et al., (2005) testaram alças delta, em ensaios de tração, sem levar em consideração a aproximação dos dentes, e sim apenas as relações momento-forca obtidas pela simples ativação da alça. No referido estudo não havia, portanto, a presença de um eixo móvel que regulava diferentes distâncias interbraquetes, ou seja, não havia a simulação do deslocamento de um ou mais dentes para verificar o sistema de forças.

A idealização de uma alça envolve o estudo de seus parâmetros geométricos, tais como helicóides, altura da alça, comprimento de fio utilizado para a confecção da alça, secção transversal, e a incorporação de dobras compensatórias em suas extremidades as quais geram momentos. Evidentemente o material utilizado também influenciará as variáveis geométricas uma vez que podem alterar o módulo de elasticidade (E) do material, assim como também sua conformação geométrica pode alterar o seu momento de inércia (I).

Uma das dificuldades em relação ao uso de alças está relacionada ao fato que há necessidade de estudos prévios sobre o sistema de forças desenvolvido.

Disto, decorre que as alças precisam ser caracterizadas previamente ao seu emprego clínico. Apesar do fato de que muitas alças estão disponíveis ao emprego clínico, poucas foram testadas analítica e experimentalmente. O emprego da simulação computacional via método dos elementos finitos está no fato de se poder simular diversas situações com uma determinada geometria, podendo-se alterá-la afim de se chegar àquela que produz um melhor sistema de forças, antes de testá-la experimentalmente (RABOUD *et al.*, 1997; SIATKOWSKI, 1997; FERREIRA *et al.*, 2000; FERREIRA *et al.*, 2005). Métodos computacionais, portanto, podem ser antecedidos dos testes experimentais, pois estes primeiros permitem idealizar uma determinada configuração, modificando variáveis, caso seja necessário, além de ser um método menos dispendioso que o experimental.

Outra dificuldade está relacionada à adaptação da alça na boca, pelo fato desta muitas vezes produzir ulcerações na mucosa bucal bem como no tecido gengival, notadamente após sua ativação, devido ao torque muitas vezes incorporado, ou à deformação imposta por certos tipos de alimentos, ou ainda ao comportamento nãolinear do dispositivo. Observa-se que algumas alças, em função de sua geometria, ao serem ativadas, cruzam suas hastes verticais, o que sugere melhor sustentação, no sentido de que não inclinam para o lado dos tecidos o que seria um efeito desejável. Até o momento não existem estudos clínicos e ou experimentais que esclareçam esta questão de estática, porém fato baseado em evidência demonstra esse achado. Com respeito ainda à geometria, as alças, devem manter altura entre 6 a 10mm, no máximo, o que depende também da anatomia do fundo de vestíbulo de cada paciente (CHEN *et al.*, 2007).

As alças preconizadas no presente trabalho apresentam hastes que se sustentam durante a ativação devido a sua geometria em delta e apresentam alturas que se encontram dentro do padrão anatômico desejado (9mm).

Atualmente, são preferidas as alças confeccionadas de titânio-molibdênio por apresentarem uma relação força-deflexão menor, em relação às alças de aço inox e de cromo-cobalto, e por manterem uma constante elástica de baixa magnitude, e que apresentem secção transversal quadrada ou retangular, o que permite melhor controle sagital e transversal da alça. Evita-se assim, o *play* (espaço ou folga entre o fio da alça e a canaleta do braquete) que ocorre após a ativação das alças, principalmente com aquelas cuja secção transversal é retangular. Com respeito à geometria Nanda e Burstone (1997) colocam que as alças simétricas produzem forças verticais de menor magnitude, se comparadas às assimétricas, mas isso também dependerá da geometria da alça.

Foi realizada a análise estatística considerando o teste de normalidade de Shapiro-Wilk a um nível de significância de 5%, a análise de variância (ANOVA) para Fx, Fy e Mz segundo grupo, DIB, ativação, e as interações entre elas. Depois foram realizadas as comparações múltiplas de Games-Howell para Fx, Fy e Mz segundo: grupo x DIB; grupo x ativação; DIB x ativação; e grupo x DIB x ativação e então foi calculado o coeficiente estimado da constante elástica. A análise estatística considerou as ativações de 3mm e de 4mm pelo fato de serem mais representativas no que se refere às magnitudes de forças encontradas para a movimentação de caninos. Para efeito da análise estatística também forma consideradas as distâncias interbraquetes de 23mm e 22mm.

6.1 COMPARAÇÃO GERAL DAS AMOSTRAS

Para a o estudo da distribuição das variáveis dependentes foi utilizado o teste de normalidade de Shapiro-Wilk (SHAPIRO; WILK, 1965), indicado para amostras em número inferior a 30, no qual foram comparadas as variáveis independentes (grupo, distância interbraquete e ativação) como pode ser visto na tabela C.1 (Anexo C). Apesar de alguns grupos não apresentarem distribuição normal, observa-se que a distribuição das variáveis é simétrica onde média e mediana são próximas, então recomenda-se a utilização de teste paramétrico ANOVA para a comparação das variáveis dependentes segundo grupo (G), distância interbraquete (DIB) e ativação. As tabelas C.2 até C.8 (Anexo C) mostram as estatísticas descritivas para as variáveis Fx, Fy e Mz.

O teste de Shapiro-Wilk constatou que para Fy, considerando o grupo G₁, as DIB 23mm e 22mm, e as ativações de 4mm e de 3mm que não houve distribuição normal dos valores. O mesmo ocorreu para a variável Mz em relação ao grupo G₁ para as DIB de 23mm e 22mm e ativação 3mm (Tabela C.3, Anexo C). Os valores das médias, medianas, e erro padrão das variáveis dependentes com relação às variáveis independentes com intervalo de confiança para a média de 95% (estatísticas descritivas de Fx, Fy e Mz) estão dispostos nas tabelas C.2 à C.8 (Anexo C). A ANOVA a três critérios evidenciou a diferença para um nível de significância p≤0,05 mostrando que existe diferença significativa na resposta das variáveis estudadas com confiabilidade superior a 95%. A tabela 13 mostra a ANOVA a três critérios evidenciando que apenas para a variável ativação houve efeito na variável resposta Fx, ou seja, houve diferença estatística significante nos valores médios de Fx segundo a ativação.

Tabela 13 - Anál	ise de variânci	a - Variável	resposta Fx
------------------	-----------------	--------------	-------------

Fontes de Variação	G.L.	Soma de Quadrado	Q Médio do Resíduo	F	Р
Grupo	1683,6125	1	1683,6125	2,9053892	0,0926
DIB	49,6125	1	49,6125	0,0856157	0,7707
Ativação	35743,5125	1	35743,5125	61,682136	0,0000
Grupo * DIB	775,0125	1	775,0125	1,3374294	0,2513
Grupo * Ativação	52,8125	1	52,8125	0,0911379	0,7636
DIB * Ativação	108,1125	1	108,1125	0,1865684	0,6671
Grupo * DIB * Ativação	19,0125	1	19,0125	0,0328096	0,8568
Erro	41722,5	72	579,4791667		
Total Corrigido	80154,1875	79			

A figura 53 mostra a interação entre as ativações para Fx. À medida que a alça desativa de 4mm para 3mm a força média cai de 129,33gf para 87,05gf (Tabela C.4, Anexo C).

Figura 53 - Comportamento das diferentes ativações para Fx

Figura 54 - Comportamento dos grupos para Fx

A figura 54 mostra a diferença entre os grupos para força média de Fx. Pode-se notar que o grupo G_2 guarda as maiores forças médias. Considerando agora também as ativações obteve-se para G_1 a 4mm de ativação, a média de 125,5gf e a 3mm, a média de 81,6gf (Tabela C.6, Anexo C). A figura 55 mostra que o intervalo de confiança a 95% para a variável grupo não há diferença estatística significativa entre eles.

Figura 55 - Intervalo de confiança (95%) dos grupos para Fx

Para a variável grupo (G), a distância interbraquetes (DIB) e a ativação, obteve-se para o grupo G₁ a média de 123gf (DIB 23mm e ativação 4mm); 76,10gf (DIB 22mm e ativação 3mm); 127,80gf (DIB 22mm e ativação 4mm); e 87,20gf (DIB 22mm e 3mm de ativação). Para o grupo G₂ os valores médios de Fx quando se observa o comportamento do grupo interagido com a ativação obteve-se para 4mm o valor de 133gf e para 3mm o de 92,45gf. Considerando-se a DIB e a ativação os valores foram de 136gf (DIB 23mm, para 4mm de ativação); 94,10gf (DIB 23mm, para 3mm de ativação); 130,10gf (DIB 22mm, e 4mm de ativação); e 90,80gf (DIB 22mm e 3mm de ativação) – ver tabela C.8, Anexo C.

A figura 56 evidencia a interação entre os grupos G_1 e G_2 e distâncias interbraquetes (DIB) de 23mm e 22mm. Para o grupo G_1 as forças médias apresentadas nas DIB 23mm e 22mm são menores sendo que se comparadas com o grupo G_2 essas forças médias se alteram mais

Média de Fx segundo Grupo x DIB

Figura 56 - Interação entre grupos e distâncias interbraquetes para Fx

A figura 57 mostra que a variável ativação não mostra o mesmo intervalo para as ativações de 4mm e de 3mm, logo conclui-se que houve diferença estatística significativa para os valores médios de Fx segundo a variável ativação para um nível de confidência de 95%.

Figura 57 - Intervalo de confiança das ativações para Fx

A análise de Games-Howell faz as comparações múltiplas 2x2 para evidenciar quem diferiu de quem (Tabelas C.9 até C.20, Anexo C). Nota-se que apenas nas comparações que envolvem a ativação aparecem valores de p≤0,05. Assim, os valores médios de Fx considerando o grupo G₁ a 4mm de ativação mostrou ser diferente de forma significativa dos grupos G₁ a 3mm e G₂ a 3mm. O grupo G₁ a 3mm mostrou ser diferente do grupo G₁ a 4mm e G₂ a 4mm. O grupo G₂ a 4mm mostrou ser diferente dos grupos G₁ e G₂ a 3mm, e por fim o grupo G₂ foi diferente dos grupos G₁ e G₂ a 4mm. Para as três variáveis (grupo x DIB x ativação) obteve-se que não houve diferença estatística significativa para os diferentes grupos (G₁ e G₂) para as mesmas DIB e mesmas ativações o que vem a corroborar que não houve diferença significativa entre os grupos G₁ e G₂ para os valores médios de Fx.(ver Tabelas C.9 até C.12, Anexo C). Para as forças médias de Fy a ANOVA indicou haver diferença estatisticamente significante para as variáveis, grupo e ativação, e existindo interação entre elas (Tabela 14).

Fontes de Variação	G.L.	Soma de Quadrado	Q Médio do Resíduo	F	Р
Grupo	17641,8	1	17641,8	463,88489	0,00000
DIB	76,05	1	76,05	1,9997078	0,16164
Ativação	781,25	1	781,25	20,542692	0,00002
Grupo * DIB	12,8	1	12,8	0,3365715	0,56363
Grupo * Ativação	405	1	405	10,649332	0,00169
DIB * Ativação	2,45	1	2,45	0,0644219	0,80036
Grupo * DIB * Ativação	0	1	0	0	1,00000
Erro	2738,2	72	38,03055556		

Tabela 14 - Análise de variância - Variável resposta Fy

A figura 58 mostra os valores médios da variavel Fy segundo a ativação. À medida que a alça desativa de 4mm para 3mm as forças média de Fy aumentam.

Figura 58 - Comportamento das diferentes ativações para Fy

A figura 59 mostra os valores médios da variavel Fy segundo o grupo para força média de Fy. Pode-se notar que o grupo G_1 guarda as maiores forças médias. Observa-se que as retas obtidas de G_1 e G_2 divergem. A ANOVA mostra que houve diferença entre os grupos.

Figura 59 - Comportamento dos grupos para Fy

As forças médias de Fy considerando apenas as ativações de 4mm e de 3mm obteve-se valores de 33,40gf e de 39,55gf, respectivamente. Considerando os grupos obteve-se 51,28gf para o G₁ e de 21,58gf para o G₂ (Tabela C.2, Anexo C). Considerando o grupo G₁ para 4mm de ativação a força média foi de 50,40gf ao passo que para 3mm houve aumento para 52,15gf. O grupo G₂ passou de 16,20gf para 26,95gf, respectivamente dos 4mm aos 3mm de ativação (Tabela C.6). A figura 60 mostra as forças médias para Fy considerando o grupo e a ativação, variáveis essas que interagem, pois, p<0,05 indica diferença estatisticamente significante nos valores médios de Fy segundo grupo e ativação (ver Tabela 6). Contrariamente às forças Fx, as forças para Fy diminuíram no grupo G₂. Pode-se notar que os comportamentos são próximos, embora as médias encontradas na DIB 23mm sejam ligeiramente maiores. Média de Fy segundo Grupo x Ativação

Figura 60 - Interação grupo x ativação para Fy

A figura 61 descreve para o intervalo de confiança para 95% o comportamento gráfico dos grupos. Deve-se observar que os intervalos estão muito separados, mas a comprovação de que houve diferença entre os grupos pode ser confirmada pela ANOVA. A figura 62, mostra o intervalo para as diferentes ativações estudadas de 4mm e de 3mm. Deve-se notar que os pontos médios não estão próximos, logo houve diferença estatisticamente significativa, o que pode ser comprovado pela ANOVA.

A figura 63 apresenta o intervalo de confiança para a interação das variáveis grupo e ativação para o qual também houve diferença estatística significativa. No entanto, para um mesmo grupo por exemplo, G₁ não houve diferença para as diferentes ativações de 4mm e 3mm, o mesmo ocorrendo para o grupo G₂.

Figura 61 - Intervalo de confiança (95%) para a média segundo os grupos $G_1 e G_2$

Figura 62 - Intervalo de confiança 95% para a média segundo as ativações de 4mm e de 3mm

Figura 63 - Intervalo de confiança (95%) para as variáveis grupo e ativação

Segundo a análise de Games-Howell não houve diferença estatisticamente significante quando comparadas as variáveis grupo - distância interbraquete (DIB) para grupo G₁ e DIB de 23mm com G₁ DIB 22mm; G₁ DIB 22mm com G₁ DIB 23mm; G₂ DIB 23mm e G₂ DIB 22mm; e por fim entre G₂ DIB 22mm e G₂ DIB 23mm (Tabela C.13, Anexo C). O mesmo ocorreu para as variáveis grupo - ativação para o grupo G₁ com ativação de 4mm; e com o grupo G₁ com ativação de 3mm (Tabela C.14, Anexo C). Considerando a DIB e ativação nenhuma das comparações se mostrou significativa (Tabela C.15, Anexo C). A tabela, em anexo, C.16 descreve as interações das três variáveis independentes sobre sua significância, ou seu efeito, sobre Fy.

Com respeito à variável dependente momento (Mz) e suas relações com as variáveis independentes temos que a ANOVA demonstrou que há diferença estatística nos valores médios do momento (Mz) causadas pelas variáveis independentes grupo e ativação quando examinadas separadamente (Tabela 15).

Tabela 15	- Análise de	variância	- Variável	resposta Mz
-----------	--------------	-----------	------------	-------------

Fontes de Variação	G.L.	Soma de Quadrado	Média Quadrado	F	Р
Grupo	404274,6125	1	404274,6125	9,7184074	0,00262
DIB	6826,5125	1	6826,5125	0,1641034	0,68661
Ativação	370600,3125	1	370600,3125	8,9089067	0,00387
Grupo * DIB	495,0125	1	495,0125	0,0118997	0,91344
Grupo * Ativação	53302,8125	1	53302,8125	1,2813529	0,26140
DIB * Ativação	285,0125	1	285,0125	0,0068515	0,93426
Grupo * DIB * Ativação	4455,1125	1	4455,1125	0,107097	0,74442
Erro	2995117,5	72	41598,85417		

As análises de Games-Howell para as variáveis comparadas podem ser encontradas no Anexo C (C.17 a C.20).

6.2 COEFICIENTE ESTIMADO DA CONSTANTE ELÁSTICA

Foi constatado que houve correlação (correlação de Pearson) entre Fx (variável dependente) e ativação (variável independente), ou seja, existe correlação estatisticamente diferente de zero forte entre Fx e ativação para os dois grupos, como pode ser constatado pela tabela 16.

Tabela 16 - Correlação de Pearson para as Variáveis Ex e Ativação						
Variável 1 x Variável 2 n Correlação Valor p						
FxG₁ & Ativação G₁(mm) FxG₂ & Ativação G₂(mm)	40 40	0,90834 0,91698	0,00000 0,00000			

Tabala 16 Carrolação do Boarcon para os Variávois Ex o Ativoção

A ANOVA mostra que existe regressão entre ativação e Fx, uma vez que p<0,01 (Tabela C.21, Anexo C). A análise de regressão para Fx (G1) em função da ativação mostrou que as variações na ativação explicam 82,5% das variações em. Fx, na qual o grau de associação entre ativação e FxG₁ foi de 90,83%. A constante de mola para o grupo G₁ foi de 27,95gf/mm variando de 25,9gf/mm a 29,9gf/mm (Tabela C.22). O cálculo da ANOVA mostrou que existe regressão entre ativação e FxG₁, uma vez que p<0,01. A partir dos modelos previamente estabelecidos, estimou-se a equação (1), por meio do método de mínimos quadrados ordinários, para todos os tratamentos analisados. Para todas as equações de G₁ e G₂ ajustadas, o coeficiente linear β_0 foi estatisticamente não significante a um nível de probabilidade maior que 5%. Procedeu-se ao ajuste da equação excluindo o intercepto (ver Tabelas C.23 e C.25, Anexo C).

Após a exclusão do intercepto, em todos os ajustes o coeficiente angular β_1 mostrou-se estatisticamente significante e diferente de zero, a um nível de probabilidade menor que 5%. Nas tabelas C.23 a C.26, em anexo, são apresentadas as estimativas dos modelos ajustados com e sem o coeficiente linear β_0 , o valor do coeficiente de determinação R_2 , a estatística F e o erro padrão da estimativa (S_{yx}). Com relação ao poder explicativo dos modelos, indicado pelo coeficiente de determinação R_2 , F e S_{yx} , os valores melhoraram com a exclusão do intercepto e indicam alto poder explicativo. Com relação ao grupo G₂ também houve correlação estatisticamente diferente de zero e forte entre Fx e ativação e a análise de regressão para Fx (G₂) em função da ativação mostrou que as variações na ativação explicam 84% das variações em Fx e o grau de associação foi de 91,69 (Tabela C.26, Anexo C). A ANOVA mostra que realmente existe regressão entre ativação e Fx, uma vez que p<0,01 para ambos os grupos (Tabela C.27, Anexo C). A constante de mola para o grupo G₂ foi de 32gf/mm variando de 29,8gf/mm a 34gf/mm (Tabela C.28, Anexo C).

6.3 ANÁLISE POR MEIO DOS ELEMENTOS FINITOS SOBRE AS VARIÁVEIS ESTUDADAS

Considerando apenas os grupos, as alças do grupo G_1 apresentaram magnitudes de força média de 115,6gf, enquanto que as alças do grupo G_2 apresentaram 117,4gf, para ativação de 4,0mm. Para o grupo e as diferentes distâncias interbraquetes (DIB) conjuntamente obteve-se discreto aumento das magnitudes de força à medida que a distância interbraquetes diminuía, assim para a DIB 23mm o valor obtido foi de 107gf passando a 128,3gf para DIB de 19mm para o grupo G_1 .Para

o grupo G₂ houve variação de 116gf até 118gf. Para as alças do grupo G₁ os valores das forças em Fy aumentaram em módulo à medida que a DIB diminuiu, passando de 16,8gf (DIB de 23mm) para 94,22gf (DIB de 19mm). A magnitude de força média para Fy foi de 51,8gf, ao longo das diferentes DIB. Para o grupo G₂ as forças de Fy apresentaram um aumento na magnitude e depois uma queda dos valores à medida que se aproximava da DIB 19mm. Para o grupo G₂ a magnitude de força média ao longo das diferentes DIB foi de 15,7gf. No capítulo 5 estão apresentados os gráficos do comportamento do sistema de forças, assim as figuras 45, 46 e 47 mostram as retas do comportamento experimental e do modelo numérico para DIB 21mm, grupo G₁. Em algumas DIB as retas mostraram estar mais próximas e em outras mais separadas quando confrontados o método experimental e o numérico. A figura 48 mostra o comportamento da curva representativa de Fx com DIB 21mm (G_2), enguanto que a figura 49 mostra o comportamento de Fy com DIB 22mm (G_2). A figura 50 mostra o comportamento para Mz com DIB 22mm (G₂). As figuras 51 e 52 mostram o comportamento das relações momento-força ($M\alpha/F$) na DIB 23mm para os grupos $G_1 e G_2$.

6.4 MAGNITUDE DE FORÇAS Fx RELATIVAS AOS GRUPOS G₁ E G₂ (TESTES EXPERIMENTAL E NUMÉRICO)

As forças em Fx representam o carregamento da alça no sentido de sua ativação (sentido da tração). A magnitude de força para a retração de caninos não é unânime e segundo a literatura varia de 75gf até 260gf. A magnitude adequada dependerá de fatores tais como as dimensões radiculares do canino bem como do seu suporte ósseo.

O teste experimental mostrou que as alças pertencentes ao grupo G_1 apresentaram uma média de 125,5gf para as ativações de 4mm, enquanto que para as alças do grupo G_2 o valor foi ligeiramente superior, 133gf. O método numérico mostrou valores de 115,6gf e 117,4gf para o mesmo grupo e ativação, assim também demonstrou leve aumento da magnitude força para o grupo G_2 Os gráficos das figuras 45 e 48 mostram que as curvas seguem um mesmo padrão. Para 3mm

de ativação, a mesma tendência foi observada, na qual o grupo G_1 apresentou 81,6gf e o grupo G_2 ficou com 92,45gf, enquanto que para o método numérico obteve-se os valores de 87,8gf para o grupo G_1 e 88,5gf para o grupo G_2 aos 3,0 mm de ativação. Os referidos valores estão de acordo com os achados de outros estudos (REITAN, 1957; FRYAR, 1960; BENCH *et al.*, 1977; QUIN; YOSHIKAWA, 1985; GJESSING, 1994).

6.5 MAGNITUDE DE FORÇAS FY RELATIVAS AOS GRUPOS G1 E G2 (TESTES EXPERIMENTAL E NUMÉRICO)

As forças Fy representam as forças perpendiculares às forças de Fx e são decorrentes da posição excêntrica do corpo principal da alça, deslocado para anterior, no caso de alças destinadas à retração de caninos ou dentes anteriores em conjunto, o que leva maior controle do movimento dentário desses dentes, uma vez que aumenta a relação M/F na região anterior (VIECILLI, 2006). As forças Fy são indesejáveis uma vez que representam forças que poderiam alterar a altura do dente e com isso o plano oclusal, assim devem ser de baixa magnitude. Ocorrem também devido à inserção das alças em seus engastes. Embora essas forças sofram influência da distância interbraquetes uma vez que à medida que a alça fecha (desativa) esta distância se altera e com ela também o ângulo formado entre as extremidades da alça, no presente trabalho, as diferentes distâncias interbraquetes não influenciaram de maneira significativa as forças em Fy, mas tão somente a geometria e a ativação explicaram alterações significativas sobre Fy.

O fator mais importante reside no fato de que essas forças podem provocar a extrusão (movimento de deslocamento dos dentes no sentido contrário ao de sua inserção periodontal e o que leva a contatos prematuros e alteração no plano da oclusão), no entanto, esses movimentos podem ser controlados, ou evitados, por meio do uso de dispositivos, tais como, a barra palatina, o aparelho extra-bucal occipital, os parafusos de ancoragem temporária ou o botão de Nance. Muitas vezes essas forças são representadas antecedidas de sinal negativo apenas por uma questão de referencial. Poucos trabalhos apresentam resultados referentes às forças verticais (BURSTONE, 1982). No presente trabalho as forças em Fy encontradas mostraram ser pouco superiores aos achados de Ferreira *et al.* (2005), nos quais as forças variaram de -34gf (3,0mm de ativação) até -44gf (6,0mm de ativação), no entanto, de menor magnitude quando comparados aos valores encontrados por Burstone (1982) para alças híbridas (0,018-0,017x 0,025 polegadas), com geometria T, destinadas à retração de caninos, nas quais as magnitudes de força variaram de -63,3gf até -113,5gf, para ativações de 6mm até o repouso, respectivamente. As alças dos grupos G₁ e G₂ apresentaram valores de em média de -51,28gf e -21,58gf. Assim, para Fy o grupo G₂ mostrou valores de menor magnitude, o que pode ser interpretado como a geometria do grupo G₁, devido às suas angulações mais agudas provocarem maior flexão e com isso maior magnitude das forças em Fy. O sinal negativo é apenas um referencial.

Os menores valores relatados na literatura foram descritos por Manhartsberger, Norton e Burstone (1989) os quais pesquisaram alças T, titânio-molibdênio, TMA[®]-Ormco) e encontraram forças verticais de -2,8gf no repouso e de -11,6gf aos 7mm de ativação.

Viecilli (2006) investigou por meio de um software (*LOOP* software, dHAL *Orthodontic Software, Athens, Greece*) alças T (0,017 x 0,025 polegadas, de titâniomolibdênio e encontrou forças verticais variando de -33,9gf até -15,7gf para ativações partindo do repouso até 7mm, respectivamente. No referido estudo o autor simulou a correção angular que se submetem os braquetes no decorrer do movimento dos dentes compensando essas angulações por meio do programa utilizado.

Os valores obtidos pelo método experimental para o grupo G₁, considerando as variáveis interagidas grupo-ativação ficaram em média -50,40gf para 4mm e -52,15gf para 3mm de ativação, enquanto que para o grupo G₂ esses valores variaram de -16,20gf aos 4mm, para -26,95 aos 3mm de ativação. Para o método numérico estes valores foram de -51,8 gf para o grupo G₁ e de -15,2 gf para o grupo G₂, aos 4mm de ativação considerando as diferentes DIB. Considerando ativação de 3mm, para o grupo G₁ os valores foram de -55,2gf e -17,4gf para o grupo G₂. À medida que a alça desativou de 4mm para 3mm houve aumento dos valores médios de Fy o que poderia ser explicado possivelmente pela geometria da alça em delta que ao estar mais tracionada aos 4mm diminui o vetor de força resultante vertical, e ao relaxar este expressaria mais a componente vertical, o que também foi verificado no estudo numérico. Analisando individualmente as retas obtidas pelo método experimental tem-se que a comparação entre os métodos experimental e numérico mostrou que as retas apresentaram-se mais distanciadas entre si do que em Fx, no entanto, mantendo certo paralelismo, ou seja, um mesmo padrão de comportamento. Em resultados, as figuras 45 e 49 exemplificam esses achados.

6.6 MAGNITUDE DAS RELAÇÕES MOMENTO-FORÇA (M/F_X) DOS GRUPOS $G_1 \to G_2$

De um modo geral nota-se que as alças expressam uma sequência de movimentos adequados para a movimentação dos caninos, ao sítio da extração, conforme descritos por Burstone (1962), Burstone, Steenbergen e Hanley (1995), e Siatkowski (1997). São estes movimentos relatados como: 1. inclinação controlada, no qual o canino inclina sua coroa para o local da extração; 2. translação, no qual o dente ou o conjunto de dentes se movimenta em corpo, sem sofrer inclinação; e por fim 3. movimento de raiz, no qual o dente recupera a inclinação da coroa pela inclinação da raiz. Um movimento de translação seria o ideal, porém de difícil execução devido ao meio circundante que é complexo e de difícil caracterização, além do que se altera de indivíduo para indivíduo. Chen et al. (2007) colocam que alças com geometria T, de aco inox (0,016 x 0,022 polegadas) incorporando-se inclinações em suas extremidades (gables) ocorre o aumento da relação força-deflexão o que também acontece para a relação M/F quando essas alças são tratadas termicamente, o que é comumente realizado em alças de aço inox. Também os momentos produzidos serão de igual magnitude e anularão as componentes verticais desde que apresentem inclinações iguais em suas extremidades.

Thiesen *et al.* (2005) estudaram as alças T de titânio-molibdênio de secções transversais 0.019 x 0.025 polegadas e de 0.017 x 0.025 polegadas e encontraram que a inserção de inclinações nas extremidades das alças contribuem para o aumento da relação M/F corroborando os achados de Chen *et al.* (2007). Ainda colocam que com essas inclinações as forças horizontais aumentam uma vez que ao

inseri-las em seus engastes as alças incorporam tensões residuais que contribuem para esse incremento.

Não há uma alça ideal até o presente momento, mas há muitas diferentes geometrias a escolher, assim cabe ao clínico optar por aquela que ele melhor domina, de fácil ativação, e que produza forças leves, porém, capazes de movimentar o(s) dente(s) com eficiência e que seja confortável para seu paciente.

Com respeito às relações momento-força (M α /F) as alças do grupo G₁ como as do grupo G₂ como era de se esperar mostrou diminuição da relação M α /F na medida em que a alça era ativada, pois a força aplicada no sentido da tração (abertura da alça) aumenta sua magnitude mais do que o momento.

A relação $M\alpha/F$ média das alças do grupo G₁, considerando todas as distâncias interbraquetes para 4mm foi de 9,2mm. Para as alças do grupo G₂ esse valor foi de 9,3mm. Esses valores permitem extrapolar clinicamente que o efeito da extremidade anterior (alfa) das alças levaria a um movimento de inclinação-controlada à translação. Aos 3mm de ativação, a relação momento-força foi de 13,2mm e 13,1mm, para os grupos G₁ e G₂ respectivamente, denotando que haveria força resultante capaz de promover movimento de translação tendendo à correção radicular. Para a ativação de 2mm os valores da relação Ma/F foram mais altos podendo levar a uma componente na região do ápice radicular, compatível com movimento de inclinação radicular o qual pode corrigir essa inclinação a uma mais favorável quando necessário, como exemplos em casos em que um dente canino mostra uma raiz com comprimento maior que a média e onde este apresentaria forte inclinação distal (sentido de inclinação posterior) de coroa. Do que foi exposto nos resultados pode-se inferir que a distância interbraquete não mostrou influência estatística significativa sobre os momentos de força, mas sim as variáveis ativação e grupo-ativação. Os valores da relação M/F encontrados mostraram ser pouco superiores aos descritos na literatura. Conforme os resultados obtidos, as alças, poderiam ser ativadas até 4mm e reativadas após 2mm de desativação. Pode-se deduzir que para casos onde os caninos se encontrassem com inclinação exagerada para distal essas alças poderiam em um primeiro tempo levar a um movimento de inclinação controlada (M α /F=9,2mm), aos 4mm, e depois de um milímetro de desativação causar a translação (Mα/F=13mm) e, então, aos 2mm, a correção radicular (Mα/F=15mm), dessa forma permitindo uma movimentação controlada para o dente (canino).

No estudo de Martins *et al.* (2008), com alças T de titânio-molibdênio e secção transversal 0,017 x 0,025 polegadas, compreendendo alças com extremidades em *V-bends* e outras com extremidades encurvadas encontraram que as alças cujas inclinações eram curvas mostraram maiores magnitudes de força e também maiores relações M/F. As relações M/F variaram de 5,8mm até 38mm para as alças encurvadas e de 4,7mm até 28,3mm para as alças em V. Valores muito altos, acima de 15 ou 16 mm de relação M/F levariam a um movimento de inclinação indesejável no qual Cres e Crot coincidiriam.

O exame do comportamento das relações M/F considerando a ativação e a distância interbraquetes (Figuras 40 e 41) mostra que para os grupos G₁ e G₂ as curvas estão muito próximas seguindo um mesmo padrão, sendo que nos grupos G₁ e G₂ para a distância interbraquetes 19mm os valores da relação M/F são ligeiramente maiores, ao longo da desativação, enquanto que para o grupo G₂ a relação M/F mostrou-se de menor magnitude para a distância interbraquete 21mm ao longo da desativação das alças desse grupo.

Quando comparados, os métodos experimental e numérico, as alças do grupo G_1 mostraram que na medida em que a distância interbraquetes diminuiu, as curvas se afastaram. Mostraram ser mais próximas com distância interbraquete de 23mm. Para o grupo G_2 as curvas mostraram ser mais próximas para todas as diferentes distâncias interbraquetes.

O presente trabalho focaliza como um dos seus objetivos o estudo da distância interbraquetes (DIB) e seu efeito sobre o sistema de força produzido nas extremidades da alça e o efeito das diferentes distâncias interbraquetes passo-a-passo, à medida que diminuem. Com isso, comprova-se que à medida que o espaço entre os dentes é fechado, o momento na extremidade anterior da alça aumenta, no entanto, as diferentes DIB não influenciaram o sistema de forças de forma significativa. As alças do grupos G_1 e G_2 mostraram magnitudes de força equivalentes e com a mesma tendência de comportamento.

6.7 CONSTANTE DE MOLA

A constante de mola representa o valor acrescido a cada milímetro de ativação da alça. Assim sendo, valores altos representariam forças cada vez maiores por unidade de ativação inviabilizando uma alça para aplicação terapêutica, pois forças exageradas provocam estagnação do fluxo sanguíneo e consequente formação de regiões hialinizadas e necróticas. Uma alça deve produzir forças ditas leves de baixa magnitude, mas que possam provocar movimento biológico compatível em termos biomecânicos. A literatura cita valores situados entre 11gf/mm até 114gf/mm. Esses valores variam conforme a geometria e o tipo de liga, utilizados. Os valores encontrados no presente trabalho mostram ser biomecanicamente compatíveis para utilização em alças de titânio-molibdênio retangulares quando comparadas com os achados da literatura. A tabela 17 mostra estes valores. Pode-se perceber que fatores tais como a geometria (design e secção transversal) e tipo de liga influenciam a constante de mola.

P	-			
Referência	Geometria	Liga	Secção Transversal (pol.)	Constante Elástica (gf/mm)
Fryar, 1960 (Clínico)	Vertical Helicoidal	Aço Inox	0,008 x 0,020	11
Yang and Baldwing, 1974 (MEF e Experimental)	Bull loop	Aço Inox	0,017 x 0,022	57
Yang and Baldwing, 1974 (MEF e Experimental)	Vertical loop	Aço Inox	0,017 x 0,022	114
Ricketts, 1976 (Clínico)	Double Delta Loop	Cr-Co	0,016 x 0,022	100
Burstone, 1982 (Clínico)	T-loop (híbrido-duas secções transversais soldadas)	Titânio-Molibdênio	0,018-0,017 x 0,025	55
Ferreira, 1999 (Experimental)	Duplo Delta	Titânio-Molibdênio	0,017 x 0,025	85
Ferreira, 2005 (Experimental)	Protótipo Delta Spring	Titânio-Molibdênio	0,017 x 0,025	34
Ferreira 2007 (MEF)	Protótipo Delta Simétrico	Titânio-Molibdênio	0,016 x 0,022	40
Presente trabalho, 2010 (Experimental)	Alça Delta Assimétrica G1	Titânio-Molibdênio	0,017 x 0,025	27,5
Presente trabalho, 2010 (Experimental)	Alça Delta Assimétrica G2	Titânio-Molibdênio	0,017 x 0,025	32

Tabela 17 - Referência, geometria, tipo de liga, secção transversal e constante elástica. Comparação de outros estudos e o presente trabalho

6.8 TENSÕES DE VON MISES

No capítulo 5 pode-se observar a figura 44 a qual mostra a alça modelada por meio do método dos elementos finitos e as tensões de Von Mises resultantes da ativação em 4mm e DIB 22mm (G₂). Nota-se que a tensão de escoamento não foi atingida e, portanto, segundo as simulações numéricas, não ocorrem deformações plásticas.

As tabelas 12 e 13 mostram que à partir da distância interbraquetes 21mm o grupo G_1 passa a ter valores de tensão de Von Mises superiores às do grupo G_2 , o que pode ser inferido à diferença entre as geometrias e pelo fato de que na DIB 21mm a haste angulada do grupo G_1 está mais próxima do eixo representativo do molar, ou seja, pela diminuição da haste em região angulada, o que leva a maior concentração de esforços (Figura 64).

Figura 64 - Note a proximidade da região angulada da haste e a proximidade do eixo (molar) Nota: Nesta situação a DIB é de 21,0mm (G₁).

Os grupos de alças estudados mostraram operar em regime elástico uma vez que não ultrapassaram a tensão de escoamento (1240 MPa). Dentre os grupos estudados, o grupo G₁ apresentou as maiores tensões de Von Mises, apresentando tensão máxima de 1179 MPa com 4mm de ativação e 19mm de DIB, e a menor com

613 MPa com a alça adaptada em seus encaixes e sem ativação no sentido de tração (ativação).

As alças do grupo G₂ apresentaram como maior tensão 857,7 MPa aos 4mm e DIB 22mm e a menor de 428 MPa com a alça adaptada em seus encaixes e sem ativação no sentido de tração (ativação).

As tensões de modo geral foram maiores para as maiores ativações o que parece plausível, no entanto, as alterações das distâncias interbraquetes da maior (23mm) para a menor (19mm) não mostrou uma alteração lógica, ou sequencial, o que pode ser devido à geometria complexa das alças e que poderia provocar maiores tensões em regiões mais encurvadas da haste horizontal da alça.

Quando se comparam métodos experimentais com numéricos algumas diferenças podem ocorrer no que se refere às curvas de comportamento do objeto estudado. No presente trabalho essas diferenças podem ser vistas no exame dos gráficos apresentados nas figuras 47 e 49 (Capítulo 5). Estas diferenças podem ocorrer devido a vários fatores, dentre eles: 1) a propriedade do material (módulo de Young) da liga pode ser pouco diferente daquela analizada pelo método numérico; 2) alterações cristalográficas na estrutura do material e tensões residuais são usualmente impostos durante a manufatura das alças pelo trabalho a frio, causando regiões de deformação plástica; Essas tensões não foram considerados na simulação numérica; 3) as condições de contorno na simulação numérica podem não ser exatamente as mesmas da simulação experimental, por exemplo, em uma simulação numérica, os pontos de restrição são imóveis ao passo que nas simulação experimentais há alguma mobilidade e até mesmo algum atrito durante a ativação de uma alça. O uso de um método experimental conjuntamente com um numérico é uma ferramenta de extrema utilidade para a caracterização de alças ortodônticas.

7 CONCLUSÕES

As alças estudadas neste trabalho mostraram ser, em sua maioria, viáveis para o uso clínico, se tornando, portanto, mais um dispositivo que poderá fazer parte das opções disponíveis para a movimentação ortodôntica. Deste trabalho conclui-se que:

- As alças dos G₁ e G₂ produziram magnitudes de forças horizontais compatíveis com as relatadas na literatura, logo, compatíveis com uma movimentação biomecânica de caninos, e cujas médias foram de 125,5gf e de 133gf, respectivamente para ativação de 4,0mm e de 81,6gf e 92,45gf para os 3mm de ativação.
- 2. Todos os grupos de alças produziram forças verticais aceitáveis para utilização. As médias foram de 50,40gf para 4mm e 52,15gf para 3mm de ativação para as alças do grupo G₁, enquanto que para o grupo G₂ esses valores variaram de 16,20gf aos 4mm, para 26,95 aos 3mm de ativação.
- Para Fy o grupo G₂ mostrou valores de menor magnitude, o que pode ser interpretado como a geometria do grupo G₁, devido às suas angulações mais agudas provocarem maior flexão e com isso maior magnitude das forças em Fy.
- Houve diferença estatística significativa entre os valores médios de Fy entre os grupos G₁ e G₂.
- As alças estudadas mostraram capacidade de gerar um sistema de forças capaz de produzir movimentação dentária de forma controlada e eficiente, em função das relações Mα/F encontradas entre 2mm e 4mm de ativação.
- 6. A relação Mα/F média das alças do grupo G₁ considerando todas as distâncias interbraquetes para 4mm foi de 9,2mm e de 13,2mm para 3mm de ativação. Para as alças do grupo G₂ o valor foi de 9,3mm para 4mm e de 13,1mm para 3mm. Para 2mm de ativação os valores da relação M/F ficaram em torno de 15 mm para ambos os grupos.
- A relação Mα/F tendeu a aumentar à medida que as alças desativaram pelo fato da força em Fx diminuir mais que os momentos à medida em que a alça se fecha.

- 8. Comprovou-se que à medida que o espaço entre os dentes é fechado, o momento na extremidade anterior da alça aumenta, no entanto, as diferentes DIB não influenciaram o sistema de forças de forma significativa. As alças do grupos G₁ e G₂ mostraram magnitudes de força equivalentes e com a mesma tendência de comportamento.
- 9. As alças deveriam ser ativadas em 4mm (DIB 23mm) e reativadas após 2mm de fechamento da alça (DIB 21mm) então, novamente reativadas em 4mm sendo que após 2mm de fechamento da alça (DIB 19mm) o espaço estaria completamente fechado. Dessa forma, a alça produziu movimento controlado de translação passando a correção radicular após 2mm de fechamento o que se repetiu após nova ativação de 4mm e fechamento de 2mm. Poderia-se também optar por ativar a alça em 1mm a cada 1mm de fechamento, durante todo o percurso (da DIB 23mm até a DIB 19mm) o que levaria a apenas movimentos de translação.
- A variável independente ativação causou diferença estatística significativa nos resultados das variáveis dependentes (Fx, Fy e Mz).
- 11. A variável independente ativação causou diferença estatística significativa nos valores médios de Fx.
- 12. As variáveis independentes ativação, grupo, e a interação grupo-ativação influenciaram os valores médios de Fy.
- As variáveis independentes grupo e ativação influenciaram os valores médios obtidos para Mz.
- Houve diferença estatística entre os grupos G₁ e G₂ sobre os valores de Fy e de Mz.
- 15. As diferentes distâncias interbraquetes não influenciaram de maneira significativa o sistema de forças (Fx, Fy e Mz).
- 16. Nenhum dos grupos estudados atingiu a tensão de escoamento implicando, portanto, que as alças operaram em regime elástico na faixa de ativação estudada.
- 17. As alças do grupo G1 apresentaram as maiores tensões de von Mises.
- A constante de mola para o grupo G₁foi de 27,95gf/mm variando de 25,9gf/mm a 29,9gf/mm. Para o grupo G₂ foi de 32gf/mm variando de 29,8gf/mm a 34gf/mm.

- A tensão de Von Mises aumentou à medida que a DIB diminuiu, possivelmente devido a concentração de esforços na alça G₁ devido à sua geometria mais angulada.
- 20. As alças do grupo G₂ seriam preferíveis às alças do grupo G₁ pelo fato dessas últimas apresentarem maior concentração de esforços com menores DIB e por apresentarem menores valores de Fy.
- Estudos futuros são desejáveis no sentido de aprimorar estes dispositivos à luz da ciência atual.

SUGESTÕES PARA TRABALHOS FUTUROS

A continuidade da presente pesquisa aponta para os seguintes possíveis temas:

- Estudo do efeito da distância interbraquetes para as alças delta simétricas com secções transversais 0,016 x 0,022 polegadas e 0,017 x 0,025 polegadas.
- Estudo numérico e experimental das alças dos grupos estudados (G₁ e G₂) para ativações mais amplas, no entanto, diminuindo suas inclinações laterais a fim de evitar o escoamento.
- 3 Estudar a influência das forças verticais com a geometria da alça, assim deselvolver uma alça cuja geometria produza mínimas forças verticais (Fy).
- Estudar por meio de radiografias e fotografias clínicas o efeito da distância interbraquetes após ativação das alças em pacientes que necessitarem de extração de pré-molares por motivo terapêutico.
- 5. Continuar o desenvolvimento das alças dos grupos estudados, numericamente e experimentalmente.

REFERÊNCIAS

ANGLE, E. H. **Treatment of malocclusion of the teeth**. 7.ed. Philadephia: S.S. White, 1907.

AKAMINE, T. C.; YAMAMOTO, R. K. **Estudo Dirigido de Estatística**. São Paulo: Érika, 1998.

BARROWES, J. K. Archwire flexibility and deformation. **J Clin Orthod**, v.16, n.12, p.803-11, 1982.

BENCH, R. W.; GUGINO, C. F.; HILGERS, J. J. Bioprogressive therapy. Part 6: forces used in bioprogressive therapy. **J Clin Orthod**, v.12, n.2, p.123-39, 1978.

BHASKAR, S. N. **Histologia e embriologia oral**. 10.ed. São Paulo: Artes Médicas, 1989.

BONNEFONT, R.; GUYOMARD, F. Rappel des notions de mécanique utilisables en orthopédie dento-faciale. **Rev Orthop Dento Faciale**, v.13, n.1, p.5-26, 1979.

BOURAUEL, C.; DRESCHER, D.; EBLING, J.; BROOME, D.; KANARACHOS, A. Superelastic nickel titanium alloy retraction springs - an experimental investigation of force systems. **Eur J Orthod**, v.19, n.5, p.491-500, 1997.

BRAUN, S.; GARCIA, J. L. Gable bend revisited. **Am J Orthod Dentofacial Orthop**, v.122, n.5, p.523-7, 2002.

BRAUN, S.; MARCOTTE, M. R. Rationale of the segmented approach to orthodontic treatment. **Am J Orthod Dentofacial Orthop**, v.108, n.1, p.1-8, 1995.

BRAUN, S.; SJURSEN, R. C.; LEGAN, H. L. On the management of extraction sites. **Am J Orthod Dentofacial Orthop**, v.112, n.6, p.645-655, 1997.

BULL, H. L. Obtaining facial balance in the treatment of Class II, division 1. **Angle Orthod**, v.21, n.3, p.139-148, 1951.

BURSTONE, C. J. Rationale of the segmented arch. **Am J Orthod Dentofacial Orthop**, v.65, p.805-822, 1962.

_____. The segmented arch approach. **Am J Orthod Dentofacial Orthop**, v.82, n.5, p.361-378, 1982.

BURSTONE, C. J.; BALDWIN, J. J.; LAWLESS, D. T. The Application of continuous forces to orthodontics. **Angle Orthod**, v.31, n.1, p.1-14, 1961.

BURSTONE, C. J.; FARZIN-NIA, F. Production of low friction and colored TMA by ion implantation. **J Clin Orthod**, v.24, p.453-461, 1995.

BURSTONE, C. J.; GOLDBERG, A. J. TMA - a new orthodontic alloy. **Am J Orthod**, v.77, n.2, p.121-132, 1980.

BURSTONE, C. J.; KOENIG, H. A. Optimizing anterior and canine retraction. **Am J Orthod**, v.70, n.1, p.1-19, 1976.

BURSTONE, C. J.; STEENBERGEN, E.; HANLEY, K. **Modern edgewise mechanics** and the segmented arch technique. Farmington, Conn: University of Connecticut Health Center, 1995.

CALLEGARI-JACQUES, S. M. **Bioestatística**: princípios e aplicações. São Paulo: Artmed, 2003.

CASH, A.; CURTIS, R.; GARRIGIA-MAJO, D.; McDONALD, F. A comparative study of the kinetic and static frictional resistance of titanium molybdenum alloy archwires in stainless steel brackets. **Eur J Orthod**, v.26, n.1, p.105-111, 2004.

CATALOGUE, Rocky Mountain Orthodontics. Denver, CO. USA, 1996.

CHEN, J.; BULUCEA, I.; KATONA, T. R. C.; OFNERCHEN, S. Complete orthodontic load systems on teeth in a continuous full archwire: the role of triangular loop position. **Am J Orthod Dentofacial Orthop**, v.132, n.2, p.143.e1-8, 2007.

CHOY, K. *et al.* Effect of root and bone morphology on the stress distribution in the periodontal ligament. **Amer. J. Orthodont. Dentofacial. Orthop.**, v.117, n.1, p.98-105, Jan. 2000.

COIMBRA, M. E. R.; PENEDO, N. D.; GOUVÊA, J. P.; ELIAS, C. N.; ARAÚJO, M. T. S.; COELHO, P. G. Mechanical testing and finite element analysis of orthodontic tear drop loop. **Am J Orthod Dentofacial Orthop**., v.133, p.188.e9-188.e13, 2008.
COOK, R. D.; MALKUS, D. S.; PLESHA, M. E. Concepts and Applications of Finite Element Analysis. 3.ed. New York: John Wiley & Sons, 1988.

DESJARDINS, P.; GAGNON, M. A force platform for large human displacement. **Med Eng Phys**, v.23, n.2, p.143-146, 2001.

DILLENBURG, J. A.; SCHNEIDER, A.; LUSA, I. **Projeto de construção de medição de forças e de momentos produzidos por uma mola ortodôntica**. Porto Alegre: UFRGS, 2001.

DRAPER, N. R; SMITH, H. **Applied regression analysis**. New York: John Wiley & Sons, 1966. 407p.

EWOLDSEN, N.; DEMKE, R. S. A review of orthodontic cements and adhesives. **Am J** Orthod Dentofacial Orthop, v.120, n.1, p.45-48, 2001.

FAIRBURN, P. S.; PALMER, R.; WHYBROW, J.; FIELDEN, S.; JONES, S. A prototype system for testing force platform dynamic performance. **Gait Posture**, v.12, n.1, p.25-33, 2000.

FALKNER, M. G.; FUCHSHUBER, P.; HABERSTOCK, D.;MIODUCHOWSKI, A. A parametric study of the force/moment systems produced by T-loop retraction springs. **J Biomech**, v.22, n.6-7, p.637-647, 1989.

FARROW, T. F.; Y. ZHENG, Y.; WILKINSON, I.D.; SPENCE, S.A.; DEAKIN, J.F.; TARRIER, N.; GRIFFITHS, P.D.; WOODRUFF, P.W. Investigating the functional anatomy of empathy and forgiveness. **NeuroReport**, v.12, n.11, p.2433-2438, 2001.

FERREIRA, M. A. The wire material and cross-section effect on double delta closing loops regarding load and spring rate magnitude: An in vitro study. **Am J Orthod Dentofacial Orthop**, v.115, n.3, p.275-82, 1999.

FERREIRA, M. A.; BORGES, P. C. Biomateriais em ortodontia: características, aplicação e inovações. **Revista Nacional da Associação Brasileira de Odontologia**, v.16, n 1, p.45-53, maio/jun. 2008.

FERREIRA, M. A.; CATO, C. K.; BORGES, P. C. Análise do desempenho de alças de retração ortodôntica através do método dos elementos finitos. Anais. X SBIS 2006. Florianópolis, Brasil. Outubro, 2000.

FERREIRA, M. A.; LUERSEN, M. A.; BORGES, P. C. Alguns aspectos da mecânica das alças de retração ortodôntica. **Rev Dent Press Ortodon e Ortop Facial**, Maringá, v.13, n.3, p.112-123, 2008.

FERREIRA, M. A.; LUERSEN, M. A.; BORGES, P. C. Análise do desempenho mecânico de um protótipo de alça de retração ortodôntica através do método dos elementos finitos. **Actas do 2.º Encontro Nacional de Biomecânica**. Évora, Portugal, 2007. p.367- 372.

FERREIRA, M. A.; OLIVEIRA, F. T.; IGNÁCIO, S. A.; BORGES, P. C. Experimental force definition system for a new orthodontic retraction spring. **Angle Orthod**, v.75, p.334-343, 2005.

FERREIRA, M. A.; ORLOWSKI, R.; LUERSEN, M. A.; BORGES, P. B. Análise do desempenho de alças de retração ortodôntica via método dos elementos finitos. **Anais do XVII Congresso brasileiro de engenharia biomédica.** Florianópolis, Brasil, 2000. p.178-183.

FERREIRA, M. A.; IGNÁCIO, S. A.; LUERSEN, M. A.; BORGES, P. C. Efeito da secção transversal em um protótipo de alça de retração ortodôntica de geometria complexa através do método dos elementos finitos. **Rev Clín Pesq Odontol**, v.1, p.25-30, 2004.

FRYAR, G. M. Load deflection determinations of specific wire configurations. Indiana. [Master Thesis], Indianapolis, Ind: University of Indiana, 1960.

GJESSING, P. Biomechanical design and clinical evaluation of a new canine retraction spring. **Am J Orthod Dentofacial Orthop**, v.87, n.5, p.353-62, 1985.

_____. A universal retraction spring. J Clin Orthod., v.28, n.4, p.222-242, 1994.

GOLDBERG, D.; BURSTONE, C. J. An evaluation of beta titanium alloys for use in orthodontic appliance. **J Dent Res**, v.58, n.2, p.593-99, 1979.

GRABER, T. M. Current Orthodontic Concepts and Techniques. 2.ed. St Louis: Mosby Company, 1969.

GUÉNIN, G. Effect memoire de forme et phenomenes associes. **Rev Orthop Dento Faciale**, v.22, p.17-28, 1988.

HASKELL, B. S.; SPENCER; W. A.; DAY, M. Auxiliary springs in continuous arch treatment: Part I. An analytical study employing the finite element method. **Am J Orthod Dentofacial Orthop**, v.98, n.5, p.387-397, 1990.

HOENIGL, K. D.; FREUDENTHALER, J.; MARCOTTE, M.R.; BANTLEON, H-P. The centered T-loop – a new way of preactivation. **Am J Orthod Dentofacial Orthop**, v.108, n.2, p.149-153, 1995.

JARABAK, J. R.; FIZZELL, J. A. **Technique and treatment with light wire edgewise appliances**. 2.ed. St. Louis: Mosby Company, 1972.

KAPILA, S.; SACHDEVA, R. Mechanical properties and clinical applications of orthodontic wires. **Am J Orthod Dentofacial Orthop**, v.96, n.2, p.100-109, 1989.

KELLY, C. K. In: BABOIAN, R. (Ed.). **Corrosion tests and standards**:application and interpretation. 2th ed. West Conshohocken, PA: ASTM International, 2007.

KLUMP, P.; DUNCANSON, M. G.; NANDA, R. S.; CURRIER, G. F. Elastic energy/ stiffness ratios for selected orthodontic wires. **Am J Orthod Dentofacial Orthop**, v.106, n.6, p.588-596, 1994.

KMENTA, J. Elementos de econometria. São Paulo: Atlas, p. 686, 1978.

KOENIG, H. A.; VANDERBY, R.; SOLONCHE, D. J.; BURSTONE, C. J. Force systems from orthodontic appliances: an analytical and experimental comparision. **J Biomech Eng**, v.102, n.4, p.294-300, 1980.

KRISHNAN, V.; KUMAR, K. J. Mechanical properties and surface characteristics of three archwire alloys. **Angle Orthod**, v.74, n.6, p.825-831, 2004.

KRONFELD, R. Histopatologia dos dentes. Rio de Janeiro: Científica, 1955.

KULA, K.; PHILLIPS, C.; PROFFIT, W. R. Effect of ion implantation of TMA archwires on the rate of orthodontic sliding space closure. **Am J Orthod DentoFacial Orthop**, v.114, n.5, p.557-580, 1998.

KHULBERG, A. J.; PRIEBE, D. Testing force systems and biomechanical – measured tooth movements from differential moment closing loops. **Angle Orthodontist**, v.73, n.3, p.270-80, 2003.

KUM, M.; QUICK, A.; HOOD, J. A.; HERBISON, P. Moment to force ratio characteristics of three Japanese NiTi and TMA dosing loops. **Aust Orthod J**, v.20, n.2, p.107-114, 2004.

KUSY, R. P.; TULLOCH, J. F.Moment to force ratios in mechanics of tooth movement. **Am J Orthod Dentofacial Orthop**, v.90, n.2, p.127-131, 1986.

KUSY, R.; GREENBERG, A. R. Effects of composition and cross section on the elastic properties of orthodontic wires. **Angle Orthod**, v.51, n.4, p.325-341, 1981.

KUSY, R.; TOBIN, E. J.; WHITLEY, J. Q.; SIOSHANSI, P. Frictional cefficients of ionimplanted alumina against ion-implanted beta-titanium in the low load, low velocity single pass regime. **Dent Mater**, v.8, n.3, p.167-72, 1992.

LEÃO, L. A. T. **Avaliação de molas de fechamento de espaços em ortodontia**: ensaios em laboratório. 1992. Dissertação (Mestrado) - Faculdade de Odontologia -UFRJ, Rio de Janeiro, 1992.

MANHARTSBERGER, C.; MORTON, J. Y.; BURSTONE, C. J. Space closure in adult patients using the segmented arch technique. **Angle Orthod**, v.59, n.3, p.205-210, 1989.

MARTINS, R. P.; BUSCHANG, P. H.; VIECILLI, R.; SANTOS-PINTO, A. Curvature versus V-bends in a group B titanium T-loop spring. **Angle Orthod**, v.78, n.3, p.517-523, 2008.

MAZZA, D.; MAZZA, M. Specialized spring design in segmented edgewise orthodontics. **Am J Orthod Dentofacial Orthop**, v.112, n.6, p.684-693, 1997.

MELING, T. R.; ODERGAARD, J. The effect of the short-term temperature changes on the mechanical properties of rectangular nickel titanium arch wires tested in torsion. **Angle Orthod**, v.68, n.4, p.369-76, 1998.

MELSEN, B. Management of severely compromised orthodontic patients. In: NANDA, R. (Ed.). **Biomechanics in Clinical Orthodontics**. Philadelphia: WB Saunders, 1997. p.294-319.

MELSHER, A. H. An overview of the anatomy and physiology of the periodontal ligament. In: NORTON, L. A.; BURSTONE, C. J. **The Biology of Tooth Movement**. Florida: Boca Raton: CRC Press, 1989.

METALS HANBOOK. **Sources book on heat treating**: VII - Material and Processes American Society for Materials. Ohio: Metals Park, 44073, 1975.

MULLIGAN, T. F. Common Sense Mechanics. J Clin Orthod, v.13, n.12, p.808-15, 1979.

NÄGERL, H.; BURSTONE, C. J.; BECHER, B.; MESSENBURG, D. K. Center of rotation with transverse forces: an experimental study. **Am J Orthod Dentofacial Orthop**, v.99, n.4, p.337-345, 1991.

NANDA, R.; BURSTONE, C. J. **Biomechanics in clinical orthodontics**. USA: W.B. Saunders, 1997.

NEUMANN, P.; BOURAUEL, C.; JÄGER, A. Corrosion and permanente fracture resistance of coated and conventional orthodontic wires. **J Mater Sci Mater Med**, v.13, n.2, p.141-147, 2002.

NIKOLAI, R. J. Optimum orthodontic force theory. **Am J Orthod Dentofacial Orthop**, v.68, n.3, p.290-302, 1975.

NORTON, L. A.; BURSTONE, C. J. **The biology of tooth movement**. Flórida: CRC Press, Inc. Boca Raton, 1989.

OPPENHEIM, A. A possibility for physiologic orthodontic movement. **Am J Orthod Oral Surg**, v.30, n.6, p.277-332, 1944.

ORLOWSKI, R. T. C.; FERREIRA, M. A.; LUERSEN, M. A.; BORGES, P. B. **Desempenho de alças ortodônticas utilizando o método dos elementos finitos**. Curitiba: CEFET-Pr, 2001.

PEYTON, F. A.; MOORE, G. R. Flexibility studies on gold alloy wires and orthodontic appliance. **Int J Orthod**, v.19, n.9, p.903-919, 1933.

PROSOSKI, R. R.; MICHAEL, D. B.; ERICSON, L. C. Friction and roughness of nickeltitanium arch wire. **Am J Orthod Dentofacial Orthop**, v.100, n.4, p.341-348, 1991.

PULTER, M.J. **Caracterização mecânica e microestrutural de alças ortodônticas pré-fabricadas e destinadas ao fechamento de espaços**. 2005. Dissertação (Mestrado) - Universidade Tecnológica Federal do Paraná, Curitiba, 2005. QUIN, R. S.; YOSHIKAWA, D. K. A reassessment of force magnitude in orthodontics. **Am J Orthod**, v.88, n.3, p.252-260, 1985.

RABOUD, D. W.; FAULKNER, M. G.; LIPSETT, A. W.; HABERSTOCK, D. L. Threedimensional effects in retraction appliance design. **Am J Orthod Dentofacial Orthop**, v.112, n.4, p.378-392, 1997.

REITAN, K. Some factores determining the evaluation of forces in orthodontics. **Am J Orthod Dentofacial Orthop**, v.43, n.1, p.32-45, 1957.

RHEE, J.; CHU, Y.; ROW, J. A comparison between friction and frictionless mechanics with a new typodont simulation system. **Am J Orthod Dentofacial Orthop**, v.119, n.3, p.292-299, 1997.

RICKETTS, R. M. Bioprogressive therapy as an answer to orthodontic needs. Part II. **Am J Orthod Dentofacial Orthop**, v.70, n.3, p.241-268, 1976.

RINALDI, T. C.; JOHNSON, B. E. An analytical evaluation of a new spring design for segmented space closure. **Angle Orthod**, v.65, n.3, p.187-198, 1995.

ROSSOUW, P. E.; KAMELCHUK, L. S.; KUSY, R. P. A fundamental review of variables associated with low velocity frictional dynamics. **Semin Orthod**, v.9, n.4, p.223-235, 2003.

RYAN, R.; WALKER, G.; FREEMAN, K.; CISNEROS, G. J. The effects of ion implantation on rate of tooth movement: An in vitro model. **Am J Orthod Dentofacial Orthop**, v.112, n.1, p.64-68, 1997.

RYGH, P. **Malocclusion and the periodontium**. Center for human growth and development. Michigan: Ann Arbor, 1984.

SANDER, F. G. Biomechanical investigation of the hybrid retraction spring. **J Orofac Orthop**, v.61, n.5, p.341-51, 2000.

SCELZA NETO, P.; MUCHA, J. N.; CHEVITARESE, O. Mola de fechamento de espaços em ortodontia em forma de "lágrima": desempenho em tração. **Rev Bras Ortodontia**, n.5, set./out. 1984.

SCHWARZ, A. M. Tissue changes incidental to orthodontic tooth movement. **Int J Orthod**, v.18, p.331-352, 1932.

SHAPIRO, S. S.; WILK, M. B. (1965). An analysis of variance test for normality (complete samples). **Biometrika**, v.52, n. 3-4, p. 591–611, 1965.

SHIMIZU, R. H. **Fechamento de espaços após exodontias de primeiros prémolares**. 1995. Dissertação (Mestrado) - Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, 1995.

_____. Estudo dos sistemas de forças de alças ortodonticas para fechamento de espaços. 1999. Tese (Doutorado) - Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, 1999.

SIATKOWSKI, R. E. Continuous archwire closing loop design, optimization, and verification. Part I. **Am J Orthod Dentofacial Orthop**, v.112, n.4, p.393-402, 1997.

SMITH, R. J.; BURSTONE, C. J. Mechanics of tooth movements. **Am J Orthodont**, v.85, n.4, p.294-307, 1984.

SOLONCHE, D. J.; BURSTONE, C. J.; VANDERBY JR, R. A device for determining the mechanical behavior of orthodontic appliances. **IEEE Trans Biomed Eng**, v.24, n.6, p.538-539, 1977.

SOUZA, R. S.; PINTO, A. S.; SHIMIZU, R. H.; SAKMA, M. T.; GANDINI JR., L.G. Avaliação do sistema de forças gerado pela alça T de retração pré-ativada segundo o padrão UNESP-Araraquara. **Rev Dent Press Ortodon Ortop Maxilar**, v.8, n.5, p.113-122, 2003.

SOUZA, S. A. **Ensaios mecânicos de materiais metálicos**. São Paulo: Edgard Blücher, 1984.

THIESEN, G.; REGO, M. V. N. N.; MENEZES, L. M.; SHIMIZU, R. H. Force systems yielded by different designs of T-loop. **Aust Orthod J**, v.21, n.2, p.103-110, 2005.

VALET, R.; PAGIN, J. The center of resistance. **Rev Orthop Dento Faciale**, v.21, p.115-29, 1987.

VERSTRYNGE, A.; VAN HUMBEECK, J.; WILLEMS, G. In-vitro evaluation of the material characteristics of stainless steel and beta-titanium orthodontic wires. **Am J Orthod Dentofacial Orthop**, v.130, n.4, p.460-470, 2006.

VIECILLI, R. F. Self-corrective T- loop design for differential space closure. **Am J Orthod Dentofacial Orthop**, v.129, n.1, p.48-53, 2006.

YANG, T. Y.; BALDWIN, J. J. Analysis of space closing springs in orthodontics. **J Biomech**, v.7, n.5, p.21-28, 1974.

YARROW, K.; BROWN, P.; GRESTY, M. A.; BRONSTEIN, A. M. Force platform recordings in the diagnosis of primary orthostatic tremor. **Gait Posture**, v.13, n.1, p.27-34, 2001.

WERKEMA, M. C. C.; AGUIAR, S. **Análise de regressão**: como entender o relacionamento entre as variáveis de um processo. Belo Horizonte: Fundação Christiano Ottoni, 1996. 328p.

ANEXOS

ANEXO A

SISTEMA DE FORÇAS PELO MÉTODO DOS ELEMENTOS FINITOS

ALÇA G₁			23					22			21					
Ativação (mm)	Fx(N)	Fy(N)	Mz(N.mm)	Mz/Fx	Tensão(MPa)	Fx(N)	Fy(N)	Mz(N.mm)	Mz/Fx	Tensão(MPa)	Fx	Fy	Mz	Mz/Fx	Tensão	
0	0,011	-0,369	-5,469	-509,988	613,310	0,042	-0,492	-4,807	-114,269	657,711	0,091	-0,642	-4,069	44,499	746,018	
0,5	0,133	-0,340	-6,178	-46,361	627,921	0,164	-0,466	-5,481	-33,488	695,488	0,212	-0,620	-4,690	22,114	772,003	
1,0	0,258	-0,312	-6,875	-26,637	641,783	0,287	-0,440	-6,139	-21,375	714,313	0,334	-0,599	-5,296	15,833	796,928	
1,5	0,385	-0,285	-7,559	-19,630	654,787	0,413	-0,415	-6,788	-16,435	732,099	0,459	-0,578	-5,893	12,842	820,697	
2,0	0,514	-0,259	-8,231	-16,005	666,966	0,541	-0,391	-7,425	-13,727	748,891	0,585	-0,557	-6,481	11,073	843,310	
2,5	0,626	-0,234	-8,890	-14,207	678,360	0,671	-0,368	-8,051	-11,997	764,718	0,714	-0,537	-7,059	9,890	864,775	
3,0	0,779	-0,210	-9,534	-12,232	689,008	0,804	-0,346	-8,666	-10,784	779,612	0,844	-0,517	-7,628	9,033	885,101	
3,5	0,916	-0,188	-10,165	-11,102	698,952	0,938	-0,324	-9,268	-9,877	793,604	0,977	-0,497	-8,188	8,377	904,305	
4,0	1,054	-0,166	-10,780	-10,226	708,232	1,076	-0,303	-9,858	-9,164	806,732	1,113	-0,477	-8,739	7,852	922,406	
ALÇA G ₁ Ativação (mm)	20							19								
	Fx(N)	Fy(N)	Mz(N.mm)	Mz/Fx	Tensão(MPa)	Fx(N)	Fy(N)	Mz(N.mm)	Mz/Fx	Tensão(MPa)						
0	0.158	0.000														
0.5	-,	-0,602	-3,361	-21,250	811,120	0,255	-0,986	-2,644	-10,350	879,144						
,	0,279	-0,802 -0,786	-3,361 -3,919	-21,250 -14,064	811,120 844,729	0,255 0,377	-0,986 -0,979	-2,644 -3,124	-10,350 -8,280	879,144 920,628						
1,0	0,279 0,400	-0,802 -0,786 -0,771	-3,361 -3,919 -4,459	-21,250 -14,064 -11,135	811,120 844,729 876,462	0,255 0,377 0,500	-0,986 -0,979 -0,974	-2,644 -3,124 -3,578	-10,350 -8,280 -7,162	879,144 920,628 961,505						
1,0 1,5	0,279 0,400 0,524	-0,802 -0,786 -0,771 -0,756	-3,361 -3,919 -4,459 -4,990	-21,250 -14,064 -11,135 -9,524	811,120 844,729 876,462 907,396	0,255 0,377 0,500 0,623	-0,986 -0,979 -0,974 -0,968	-2,644 -3,124 -3,578 -4,020	-10,350 -8,280 -7,162 -6,454	879,144 920,628 961,505 1001,000						
1,0 1,5 2,0	0,279 0,400 0,524 0,649	-0,802 -0,786 -0,771 -0,756 -0,741	-3,361 -3,919 -4,459 -4,990 -5,512	-21,250 -14,064 -11,135 -9,524 -8,492	811,120 844,729 876,462 907,396 937,071	0,255 0,377 0,500 0,623 0,747	-0,986 -0,979 -0,974 -0,968 -0,961	-2,644 -3,124 -3,578 -4,020 -4,454	-10,350 -8,280 -7,162 -6,454 -5,959	879,144 920,628 961,505 1001,000 1040,000						
1,0 1,5 2,0 2,5	0,279 0,400 0,524 0,649 0,776	-0,802 -0,786 -0,771 -0,756 -0,741 -0,725	-3,361 -3,919 -4,459 -4,990 -5,512 -6,026	-21,250 -14,064 -11,135 -9,524 -8,492 -7,766	811,120 844,729 876,462 907,396 937,071 965,446	0,255 0,377 0,500 0,623 0,747 0,873	-0,986 -0,979 -0,974 -0,968 -0,961 -0,953	-2,644 -3,124 -3,578 -4,020 -4,454 -4,879	-10,350 -8,280 -7,162 -6,454 -5,959 -5,589	879,144 920,628 961,505 1001,000 1040,000 1077,000						
1,0 1,5 2,0 2,5 3,0	0,279 0,400 0,524 0,649 0,776 0,905	-0,802 -0,786 -0,771 -0,756 -0,741 -0,725 -0,709	-3,361 -3,919 -4,459 -4,990 -5,512 -6,026 -6,533	-21,250 -14,064 -11,135 -9,524 -8,492 -7,766 -7,221	811,120 844,729 876,462 907,396 937,071 965,446 992,493	0,255 0,377 0,500 0,623 0,747 0,873 1,000	-0,986 -0,979 -0,974 -0,968 -0,961 -0,953 -0,945	-2,644 -3,124 -3,578 -4,020 -4,454 -4,879 -5,299	-10,350 -8,280 -7,162 -6,454 -5,959 -5,589 -5,299	879,144 920,628 961,505 1001,000 1040,000 1077,000 1112,000						
1,0 1,5 2,0 2,5 3,0 3,5	0,279 0,400 0,524 0,649 0,776 0,905 1,036	-0,802 -0,786 -0,771 -0,756 -0,741 -0,725 -0,709 -0,693	-3,361 -3,919 -4,459 -4,990 -5,512 -6,026 -6,533 -7,034	-21,250 -14,064 -11,135 -9,524 -8,492 -7,766 -7,221 -6,791	811,120 844,729 876,462 907,396 937,071 965,446 992,493 1018,000	0,255 0,377 0,500 0,623 0,747 0,873 1,000 1,129	-0,986 -0,979 -0,974 -0,968 -0,961 -0,953 -0,945 -0,935	-2,644 -3,124 -3,578 -4,020 -4,454 -4,879 -5,299 -5,716	-10,350 -8,280 -7,162 -6,454 -5,959 -5,589 -5,299 -5,065	879,144 920,628 961,505 1001,000 1040,000 1077,000 1112,000 1146,000						

Tabela A.1 - Sistema de forças pelo método dos elementos finitos (G1)

ALÇA G₂			23				22			21					
Ativação (mm)	Fx(N)	Fy(N)	Mz(N.mm)	Mz/Fx	Tensão(MPa)	Fx(N)	Fy(N)	Mz(N.mm)	Mz/Fx	Tensão(MPa)	Fx(N)	Fy(N)	Mz(N.mm)	Mz/Fx	Tensão(MPa)
0	0,087	-0,461	-6,324	-72,610	732,6	0,099	-0,607	-5,764	-58,427	813,737	0,044	-0,042	-7,827	176,674	428,442
0,5	0,208	-0,411	-7,144	-34,360	735,8	0,220	-0,558	-6,555	-29,865	822,700	0,178	-0,004	-8,765	49,216	428,525
1,0	0,335	-0,364	-7,973	-23,830	740,4	0,344	-0,511	-7,355	-21,386	830,720	0,307	-0,049	-9,609	31,297	459,485
1,5	0,464	-0,318	-8,808	-18,993	743,0	0,471	-0,465	-8,162	-17,331	837,637	0,443	-0,092	-10,518	23,763	503,340
2,0	0,595	-0,273	-9,649	-16,205	744,8	0,601	-0,420	-8,975	-14,945	843,510	0,580	-0,135	-11,435	19,703	547,632
2,5	0,730	-0,229	-10,496	-14,385	745,8	0,733	-0,375	-9,795	-13,367	848,392	0,720	-0,177	-12,358	17,160	592,202
3,0	0,866	-0,186	-11,348	-13,098	746,1	0,868	-0,332	-10,622	-12,243	852,342	0,862	-0,217	-13,286	15,413	637,020
3,5	1,006	-0,144	-12,206	-12,137	745,8	1,005	-0,288	-11,456	-11,397	855,426	1,006	-0,257	-14,218	14,135	682,046
4,0	1,148	-0,103	-13,070	-11,389	744,9	1,146	-0,247	-12,297	-10,734	857,716	1,152	-0,296	-15,154	13,156	727,229
ALÇA G₂ Ativação (mm)	20						19								
	Fx(N)	Fy(N	N) Mz(ľ	N.mm)	Mz/Fx	Tensão(MPa)	Fx(N)	Fy	(N)	Mz(N.mm)	Mz/Fx	Tensão(MF	Pa)		
0	0,073	-0,26	69 -7	,065	-97,075	792,552	0,089	-0,	377	-6,726	-75,732	653,358	3		
0,5	0,200	-0,22	24 -7	,906	-39,591	793,897	0,214	-0,	334	-7,538	-35,216	654,914	1		
1,0	0,329	-0,180 -		,757	-26,579	796,156	0,342	,342 -0,292		-8,358 -24,432		656,482			
1,5	0,462	-0,137 -		,617	-20,832	798,438	0,472	-0,	251	-9,185	-19,446 658,058		3		
2,0	0,596	-0,09	95 -10	,484	-17,589	800,742	0,605	-0,	211	-10,019	-16,565	661,829	9		
2,5	0,733	-0,05	53 -11	,357	-15,499	803,067	0,740	-0,	169	-10,861	-14,684	671,424	1		
3,0	0,872	-0,01	11 -12	2,237	-14,037	805,415	0,877	-0,	129	-11,711	-13,356	679,720)		
3,5	1,013	0,02	29 -13	8,124	-12,954	807,789	1,017	-0,	089	-12,568	-12,364	687,720)		
4,0	1,157	0,06	59 -14	,017	-12,116	810,187	1,159	-0,	049	-13,434	-11,595	702,443	3		

Т

Tabela A.2 - Sistema de forças pelo método dos elementos finitos (G₂)

ANEXO B

GRÁFICOS DO COMPORTAMENTO DO SISTEMA DE FORÇAS

Figura B.1 - Força Fx (gf) DIB 22mm

Figura B.2 - Força Fx (gf) DIB 23mm

Figura B.3 - Força Fx (gf) DIB 21mm

Figura B.4 - Força Fx (gf) DIB 20mm

Figura B.5 - Força Fx (gf) DIB 19mm

Figura B.6 - Força Fy (gf) DIB 23mm

Figura B.7 - Força Fy (gf) DIB 22mm

Figura B.8 - Força Fy (gf) DIB 21mm

Figura B.9 - Força Fy (gf) DIB 20mm

Figura B.10 - Força Fy (gf) DIB 19mm

Figura B.11 - Força Mz (gf) DIB 23mm

Figura B.12 - Força Mz (gf) DIB 22mm

Figura B.13 - Força Mz (gf) DIB 21mm

Figura B.14 - Força Mz (gf) DIB 20mm

Figura B.15 - Força Mz (gf) DIB 19mm

Figura B-16 - Força Fx (gf) DIB 23mm

Figura B.17 - Força Fx (gf) DIB 22mm

Figura B.18 - Força Fx (gf) DIB 21mm

Figura B-19 - Força Fx (gf) DIB 20mm

Figura B.20 - Força Fx (gf) DIB 19mm

Figura B.21 - Força Fy (gf) DIB 23mm

Figura B.22 - Força Fy (gf) DIB 22mm

Figura B.23 - Força Fy (gf) DIB 21mm

Figura B.24 - Força Fy (gf) DIB 20mm

Figura B.25 - Força Fy (gf) DIB 19mm

Figura B.26 - Força Mz (gf.mm) DIB 23mm

Figura B.27 - Força Mz (gf) DIB 22mm

Figura B.28 - Força Mz (gf.mm) DIB 21mm

Figura B.29 - Força Mz (gf.mm) DIB 20mm

Figura B.30 - Força Mz (gf.mm) DIB 19mm

Figura B.31 - Força Fx (gf) DIB 23mm

Figura B.32 - Força Fx (gf) DIB 22mm

Figura B.33 - Força Fx (gf) DIB 21mm

Figura B.34 - Força Fx (gf) DIB 20mm

Figura B.35 - Força Fx (gf) DIB 19mm

Figura B.36 - Força Fy (gf) DIB 23mm

Figura B.37 - Força Fy (gf) DIB 22mm

Figura B.38 - Força Fy (gf) DIB 21mm

Figura B.39 - Força Fy (gf) DIB 20mm

Figura B.40 - Força Fy (gf) DIB 19mm

Figura B.41 - Força Mz (gf.mm) DIB 23mm

Figura B.42 - Força Mz (gf.mm) DIB 22mm

Figura B.43 - Força Mz (gf.mm) DIB 21mm

Figura B.44 - Força Mz (gf.mm) DIB 20mm

Figura B.45 - Força Mz (gf.mm) DIB 19mm

Figura B.46 - Força Fx (gf) DIB 23mm

Figura B.47 - Força Fx (gf) DIB 22mm

Figura B.48 - Força Fx (gf) DIB 21mm

Figura B.49 - Força Fx (gf) DIB 20mm

Figura B.50 - Força Fx (gf) DIB 19mm

Figura B.51 - Força Fy (gf) DIB 23mm

Figura B.52 - Força Fy (gf) DIB 22mm

Figura B.53 - Força Fy (gf) DIB 21mm

Figura B.54 - Momento de Força Mz(gf.mm) DIB 22mm

Figura B.55 - Força Mz (gf.mm) DIB 21mm

Figura B.56 - Momento de Força Mz(gf.mm) DIB 20mm

Figura B.57 - Força Mz (gf.mm) DIB 19mm

Figura B.58 - Relação M/F (mm) DIB 23mm Grupo G1

Figura B.59 - Relação M/F (mm) DIB 22mm Grupo G1

Figura B.60 - Relação M/F (mm) DIB 21mm Grupo G1

Figura B.61 - Relação M/F (mm) DIB 20mm Grupo G1

Figura B.62 - Relação M/F (mm) DIB 19mm Grupo G1

Figura B.63 - Relação M/F (mm) DIB 22mm Grupo G2

Figura B.64 - Relação M/F (mm) DIB 21mm Grupo G2

Figura B.65 - Relação M/F (mm) DIB 20mm Grupo G2

Figura B.66 - Relação M/F (mm) DIB 19mm Grupo G2

Figura B.67 - Relação M/F (mm) DIB 20mm Grupo G2

Figura B.68 - Relação M/F (mm) Comparação DIB Experimental (G1)

Figura B.69 - Relação M/F (mm) Comparação DIB Experimental (G2)

ANEXO C TABELAS ESTATÍSTICAS

Tabela C.T -	reste de normalidade de Snapiro-W	lik		
Variável	Grupo x DIB x Ativação	Estatistica	gl	Valor p
	G1 DIB 23 mm AT 4 mm	0,9290	10	0,4386
	G1 DIB 23 mm AT 3 mm	0,9630	10	0,8199
	G1 DIB 22 mm AT 4 mm	0,9339	10	0,4875
Ev	G1 DIB 22 mm AT 3 mm	0,9141	10	0,3104
FX	G2 DIB 23 mm AT 4 mm	0,9051	10	0,2487
	G2 DIB 23 mm AT 3 mm	0,9468	10	0,6306
	G2 DIB 22 mm AT 4 mm	0,9778	10	0,9526
	G2 DIB 22 mm AT 3 mm	0,9250	10	0,4001
	G1 DIB 23 mm AT 4 mm	0,7777	10	0,0179
	G1 DIB 23 mm AT 3 mm	0,5486	10	0,0000
	G1 DIB 22 mm AT 4 mm	0,6467	10	0,0002
Ev	G1 DIB 22 mm AT 3 mm	0,5942	10	0,0000
i y	G2 DIB 23 mm AT 4 mm	0,9528	10	0,7022
	G2 DIB 23 mm AT 3 mm	0,8415	10	0,0545
	G2 DIB 22 mm AT 4 mm	0,8526	10	0,0623
	G2 DIB 22 mm AT 3 mm	0,8876	10	0,1593
	G1 DIB 23 mm AT 4 mm	0,8881	10	0,1616
	G1 DIB 23 mm AT 3 mm	0,8967	10	0,2015
	G1 DIB 22 mm AT 4 mm	0,9158	10	0,3232
M-	G1 DIB 22 mm AT 3 mm	0,7874	10	0,0197
IVIZ	G2 DIB 23 mm AT 4 mm	0,8946	10	0,1909
	G2 DIB 23 mm AT 3 mm	0,8046	10	0,0165
	G2 DIB 22 mm AT 4 mm	0,9541	10	0,7168
	G2 DIB 22 mm AT 3 mm	0,9133	10	0,3045

Tabela C.1 - Teste de normalidade de Shapiro-Wilk

Tabela C.2 - Estatísticas descritivas

	Grupo	n	Mádia	Modiana	Desvio	Erro Podrão	I.C. 95% para a Média		
	Grupo		ivieula	Weulana	Padrão	EIIU Faulau	L.I.	L.S.	
Fx	G1	40	103,60	96,50	32,81	5,19	93,11	114,09	
	G2	40	112,78	109,50	30,59	4,84	102,99	122,56	
Ev.	G1	40	51,28	52,00	2,52	0,40	50,47	52,08	
⊢у	G2	40	21,58	18,00	9,83	1,55	18,43	24,72	
Mz	G1	40	1.059,05	1.066,50	226,97	35,89	986,46	1.131,64	
	G2	40	916,88	936,00	190,95	30,19	855,81	977,94	

Tabela C.3 - Estatísticas descritivas

	DIB	n	Mádia	Mediana	Desvio	Erro Padrão	I.C. 95% para a Média	
	010		Wedia	Mediana	Padrão	LITOT AUTAO	L.I.	L.S.
Ev	DIB 23 mm	40	107,40	103,50	31,55	4,99	97,31	117,49
FX	DIB 22 mm	40	108,98	103,50	32,53	5,14	98,57	119,38
Ev	DIB 23 mm	40	35,45	41,00	16,93	2,68	30,04	40,86
гу	DIB 22 mm	40	37,40	43,50	16,34	2,58	32,18	42,62
Mz	DIB 23 mm	40	978,73	1.023,00	185,19	29,28	919,50	1.037,95
	DIB 22 mm	40	997,20	949,50	252,73	39,96	916,37	1.078,03

Tabela C.4 - Estatísticas descritivas

	Ativação	n	Mádia	Mediana	Desvio	Erro Padrão	I.C. 95% para a Média		
	Alivação		INICUIA	Wediana	Padrão		L.I.	L.S.	
Fx	AT 4 mm	40	129,33	130,50	26,35	4,17	120,90	137,75	
	AT 3 mm	40	87,05	87,00	21,08	3,33	80,31	93,79	
Ev.	AT 4 mm	40	33,30	32,50	17,46	2,76	27,72	38,88	
гу	AT 3 mm	40	39,55	49,00	15,18	2,40	34,70	44,40	
Mz	AT 4 mm	40	1.056,03	1.110,00	179,39	28,36	998,65	1.113,40	
	AT 3 mm	40	919,90	936,00	238,03	37,64	843,77	996,03	

Tabela C.5 - Estatísticas descritivas

	n	Média	Mediana	Desvio	Erro Padrão	I.C. 95% p	ara a Média
		INICUIA	Mediana	Padrão	LIIUT adiao	L.I.	L.S.
G1 DIB 23 mm	20	99,70	95,00	31,05	6,94	85,17	114,23
G1 DIB 22 mm	20	107,50	100,00	34,83	7,79	91,20	123,80
G2 DIB 23 mm	20	115,10	111,50	30,90	6,91	100,64	129,56
G2 DIB 22 mm	20	110,45	107,50	30,90	6,91	95,99	124,91
G1 DIB 23 mm	20	50,70	52,00	2,83	0,63	49,38	52,02
G1 DIB 22 mm	20	51,85	52,00	2,08	0,47	50,87	52,83
G2 DIB 23 mm	20	20,20	18,50	9,51	2,13	15,75	24,65
G2 DIB 22 mm	20	22,95	19,00	10,19	2,28	18,18	27,72
G1 DIB 23 mm	20	1.052,30	1.110,00	150,48	33,65	981,87	1.122,73
G1 DIB 22 mm	20	1.065,80	1.023,00	288,10	64,42	930,96	1.200,64
G2 DIB 23 mm	20	905,15	936,00	190,67	42,63	815,91	994,39
G2 DIB 22 mm	20	928,60	936,00	195,44	43,70	837,13	1.020,07
	Grupo x DIB G1 DIB 23 mm G1 DIB 22 mm G2 DIB 23 mm G2 DIB 23 mm G1 DIB 23 mm G1 DIB 23 mm G2 DIB 23 mm G2 DIB 23 mm G1 DIB 23 mm G1 DIB 23 mm G2 DIB 23 mm G2 DIB 23 mm G2 DIB 22 mm	Grupo x DIB n G1 DIB 23 mm 20 G1 DIB 22 mm 20 G2 DIB 23 mm 20 G2 DIB 23 mm 20 G1 DIB 23 mm 20 G2 DIB 23 mm 20 G2 DIB 23 mm 20 G1 DIB 23 mm 20 G2 DIB 23 mm 20 G1 DIB 22 mm 20 G2 DIB 23 mm 20 G2 DIB 22 mm 20	Grupo x DIB n Média G1 DIB 23 mm 20 99,70 G1 DIB 22 mm 20 107,50 G2 DIB 23 mm 20 115,10 G2 DIB 23 mm 20 115,10 G2 DIB 23 mm 20 50,70 G1 DIB 23 mm 20 51,85 G2 DIB 23 mm 20 22,92 G1 DIB 23 mm 20 22,95 G1 DIB 23 mm 20 1.052,30 G1 DIB 23 mm 20 1.052,30 G1 DIB 23 mm 20 1.065,80 G2 DIB 23 mm 20 905,15 G2 DIB 23 mm 20 9028,60	Grupo x DIB n Média Mediana G1 DIB 23 mm 20 99,70 95,00 G1 DIB 22 mm 20 107,50 100,00 G2 DIB 23 mm 20 115,10 111,50 G2 DIB 23 mm 20 10,45 107,50 G1 DIB 23 mm 20 50,70 52,00 G1 DIB 23 mm 20 51,85 52,00 G2 DIB 23 mm 20 20,20 18,50 G2 DIB 23 mm 20 22,95 19,00 G1 DIB 23 mm 20 1.052,30 1.110,00 G1 DIB 23 mm 20 1.052,30 1.110,00 G1 DIB 23 mm 20 1.052,30 1.23,00 G1 DIB 23 mm 20 905,15 936,00 G2 DIB 23 mm 20 905,15 936,00 G2 DIB 22 mm 20 928,60 936,00	Grupo x DIB n Média Mediana Desvio Padrão G1 DIB 23 mm 20 99,70 95,00 31,05 G1 DIB 22 mm 20 107,50 100,00 34,83 G2 DIB 23 mm 20 115,10 111,50 30,90 G2 DIB 23 mm 20 110,45 107,50 30,90 G2 DIB 23 mm 20 50,70 52,00 2,83 G1 DIB 23 mm 20 51,85 52,00 2,08 G2 DIB 23 mm 20 20,20 18,50 9,51 G2 DIB 23 mm 20 22,95 19,00 10,19 G1 DIB 23 mm 20 1.052,30 1.110,00 150,48 G1 DIB 23 mm 20 1.052,80 1.023,00 288,10 G2 DIB 23 mm 20 905,15 936,00 190,67 G2 DIB 22 mm 20 928,60 936,00 195,44	Grupo x DIB n Média Mediana Desvio Padrão Erro Padrão G1 DIB 23 mm 20 99,70 95,00 31,05 6,94 G1 DIB 22 mm 20 107,50 100,00 34,83 7,79 G2 DIB 23 mm 20 115,10 111,50 30,90 6,91 G2 DIB 22 mm 20 110,45 107,50 30,90 6,91 G1 DIB 23 mm 20 50,70 52,00 2,83 0,63 G1 DIB 23 mm 20 51,85 52,00 2,88 0,47 G2 DIB 23 mm 20 20,20 18,50 9,51 2,13 G2 DIB 22 mm 20 22,95 19,00 10,19 2,28 G1 DIB 23 mm 20 1.052,30 1.110,00 150,48 33,65 G1 DIB 23 mm 20 1.065,80 1.023,00 28,10 64,42 G2 DIB 23 mm 20 905,15 936,00 190,67 42,63 G2 DIB 22 mm 20 928,60	Grupo x DIB n Média Mediana Desvio Padrão Erro Padrão I.C. 95% p. G1 DIB 23 mm 20 99,70 95,00 31,05 6,94 85,17 G1 DIB 23 mm 20 107,50 100,00 34,83 7,79 91,20 G2 DIB 23 mm 20 115,10 111,50 30,90 6,91 100,64 G2 DIB 23 mm 20 110,45 107,50 30,90 6,91 95,99 G1 DIB 23 mm 20 50,70 52,00 2,83 0,63 49,38 G1 DIB 23 mm 20 51,85 52,00 2,08 0,47 50,87 G2 DIB 23 mm 20 20,20 18,50 9,51 2,13 15,75 G2 DIB 23 mm 20 22,95 19,00 10,19 2,28 18,18 G1 DIB 23 mm 20 1.052,30 1.110,00 150,48 33,65 981,87 G1 DIB 23 mm 20 1.052,30 1.110,00 150,48 33,65 981,87

Tabela C.6 - Estatísticas descritivas

	Grupo x Ativação	n	Mádia	Mediana	Mediana Desvio Padrão	Erro Padrão	I.C. 95% pa	ara a Média
	Glupo x Alivação		INICUIA	Wediana	Padrão	LITOT adrao	L.I.	L.S.
	G1 AT 4 mm	20	125,55	124,50	30,38	6,79	111,33	139,77
Ev	G1 AT 3 mm	20	81,65	80,00	16,49	3,69	73,93	89,37
LY L	G2 AT 4 mm	20	133,10	135,00	21,73	4,86	122,93	143,27
	G2 AT 3 mm	20	92,45	92,50	24,06	5,38	81,19	103,71
	G1 AT 4 mm	20	50,40	52,00	2,30	0,52	49,32	51,48
Ev	G1 AT 3 mm	20	52,15	52,00	2,48	0,55	50,99	53,31
гу	G2 AT 4 mm	20	16,20	16,00	2,21	0,50	15,16	17,24
	G2 AT 3 mm	20	26,95	28,50	11,51	2,57	21,56	32,34
	G1 AT 4 mm	20	1.101,30	1.110,00	175,88	39,33	1.018,99	1.183,61
	G1 AT 3 mm	20	1.016,80	1.023,00	266,56	59,60	892,05	1.141,55
Mz	G2 AT 4 mm	20	1.010,75	1.023,00	175,52	39,25	928,60	1.092,90
	G2 AT 3 mm	20	823,00	849,00	159,63	35,69	748,29	897,71

Tabela C.7 - Estatísticas descritivas

	DIB v Ativação	n	Média	Mediana	Desvio	Erro Padrão	I.C. 95% para a Média		
	DID X Alivação		Media	Mediana	Padrão	LITOT AUTAO	L.I.	L.S	
	DIB 23 mm AT 4 mm	20	129,70	130,50	23,45	5,24	118,73	140,67	
Ev	DIB 23 mm AT 3 mm	20	85,10	81,50	21,14	4,73	75,20	95,00	
LY L	DIB 22 mm AT 4 mm	20	128,95	130,50	29,58	6,61	115,11	142,79	
	DIB 22 mm AT 3 mm	20	89,00	93,00	21,38	4,78	78,99	99,01	
	DIB 23 mm AT 4 mm	20	32,50	32,50	18,10	4,05	24,03	40,97	
E 17	DIB 23 mm AT 3 mm	20	38,40	41,00	15,56	3,48	31,12	45,68	
гу	DIB 22 mm AT 4 mm	20	34,10	32,50	17,23	3,85	26,04	42,16	
	DIB 22 mm AT 3 mm	20	40,70	50,50	15,10	3,38	33,63	47,77	
	DIB 23 mm AT 4 mm	20	1.044,90	1.110,00	148,51	33,21	975,39	1.114,41	
Mz	DIB 23 mm AT 3 mm	20	912,55	936,00	197,79	44,23	819,98	1.005,12	
	DIB 22 mm AT 4 mm	20	1.067,15	1.023,00	209,14	46,76	969,27	1.165,03	
	DIB 22 mm AT 3 mm	20	927,25	849,00	277,61	62,07	797,33	1.057,17	

	Crupa v DIR v Ativasão		Mádia	Madiana	Desvio	Erro Dodrão	I.C. 95% p	ara a Média
	Grupo x DIB x Alivação	п	wedia	Mediana	Padrão	Ello Paulao	L.I.	L.S.
	G1 DIB 23 mm AT 4 mm	10	123,30	123,00	25,39	8,03	105,13	141,47
	G1 DIB 23 mm AT 3 mm	10	76,10	75,50	12,38	3,91	67,25	84,95
	G1 DIB 22 mm AT 4 mm	10	127,80	125,50	35,95	11,37	102,09	153,51
Ev	G1 DIB 22 mm AT 3 mm	10	87,20	90,50	18,78	5,94	73,77	100,63
ΓX	G2 DIB 23 mm AT 4 mm	10	136,10	140,00	20,60	6,52	121,36	150,84
	G2 DIB 23 mm AT 3 mm	10	94,10	90,50	24,71	7,81	76,42	111,78
	G2 DIB 22 mm AT 4 mm	10	130,10	133,50	23,50	7,43	113,29	146,91
	G2 DIB 22 mm AT 3 mm	10	90,80	94,50	24,61	7,78	73,20	108,40
G1 DIB 23 mm	G1 DIB 23 mm AT 4 mm	10	50,00	51,00	2,49	0,79	48,22	51,78
	G1 DIB 23 mm AT 3 mm	10	51,40	52,00	3,10	0,98	49,18	53,62
	G1 DIB 22 mm AT 4 mm	10	50,80	52,00	2,15	0,68	49,26	52,34
E	G1 DIB 22 mm AT 3 mm	10	52,90	52,00	1,45	0,46	51,86	53,94
гу	G2 DIB 23 mm AT 4 mm	10	15,00	14,50	2,21	0,70	13,42	16,58
	G2 DIB 23 mm AT 3 mm	10	25,40	31,00	11,23	3,55	17,37	33,43
	G2 DIB 22 mm AT 4 mm	10	17,40	18,00	1,51	0,48	16,32	18,48
	G2 DIB 22 mm AT 3 mm	10	28,50	25,50	12,19	3,85	19,78	37,22
	G1 DIB 23 mm AT 4 mm	10	1.085,20	1.110,00	124,10	39,24	996,43	1.173,97
	G1 DIB 23 mm AT 3 mm	10	1.019,40	1.066,50	173,20	54,77	895,50	1.143,30
	G1 DIB 22 mm AT 4 mm	10	1.117,40	1.066,50	222,09	70,23	958,52	1.276,28
	G1 DIB 22 mm AT 3 mm	10	1.014,20	892,50	346,39	109,54	766,41	1.261,99
Mz	G2 DIB 23 mm AT 4 mm	10	1.004,60	1.066,50	165,99	52,49	885,86	1.123,34
	G2 DIB 23 mm AT 3 mm	10	805,70	892,50	164,97	52,17	687,68	923,72
	G2 DIB 22 mm AT 4 mm	10	1.016,90	1.023,00	193,39	61,16	878,55	1.155,25
	G2 DIB 22 mm AT 3 mm	10	840,30	849,00	160,97	50,90	725,15	955,45

Tabela C.8 - Estatísticas descritivas

Tabela C.9 - Games-Howell (Fy)

(I) Grupo x DIB	(J) Grupo x DIB	Diferença de	Erro Padrão	Valor p	Interval de Confiança 95% para diferença de médias		
		medias (1-5)			L.I.	L.S.	
	G1 DIB 22 mm	-7,8	10,43365001	0,8771	-35,8462472	20,2462472	
G1 DIB 23 mm	G2 DIB 23 mm	-15,4	9,795004097	0,4062	-41,71406657	10,91406657	
	G2 DIB 22 mm	-10,75	9,795964529	0,6933	-37,0666444	15,5666444	
	G1 DIB 23 mm	7,8	10,43365001	0,8771	-20,2462472	35,8462472	
G1 DIB 22 mm	G2 DIB 23 mm	-7,6	10,41011654	0,8844	-35,58447559	20,38447559	
	G2 DIB 22 mm	-2,95	10,41102022	0,9919	-30,93684637	25,03684637	
	G1 DIB 23 mm	15,4	9,795004097	0,4062	-10,91406657	41,71406657	
G2 DIB 23 mm	G1 DIB 22 mm	7,6	10,41011654	0,8844	-20,38447559	35,58447559	
	G2 DIB 22 mm	4,65	9,770895288	0,9639	-21,59926784	30,89926784	
	G1 DIB 23 mm	10,75	9,795964529	0,6933	-15,5666444	37,0666444	
G2 DIB 22 mm	G1 DIB 22 mm	2,95	10,41102022	0,9919	-25,03684637	30,93684637	
	G2 DIB 23 mm	-4,65	9,770895288	0,9639	-30,89926784	21,59926784	

Tabela C.10 -	Games-Howell	(F	X))
---------------	--------------	----	----	---

(I) Grupo x Ativação	(J) Grupo x Ativação	Diferença de	Erro Padrão	Valor p	Interval de Confiança 95% para diferença de médias		
Alivação		medias (1-0)			L.I.	L.S.	
G1 AT 4 mm	G1 AT 3 mm	43,9	7,729557079	0,0000	22,85381385	64,94618615	
	G2 AT 4 mm	-7,55	8,35192225	0,8028	-30,09333714	14,99333714	
	G2 AT 3 mm	33,1	8,665403079	0,0027	9,765357359	56,43464264	
G1 AT 3 mm	G1 AT 4 mm	-43,9	7,729557079	0,0000	-64,94618615	-22,85381385	
	G2 AT 4 mm	-51,45	6,100118636	0,0000	-67,89147966	-35,00852034	
	G2 AT 3 mm	-10,8	6,522733524	0,3624	-28,42650969	6,826509691	
G2 AT 4 mm	G1 AT 4 mm	7,55	8,35192225	0,8028	-14,99333714	30,09333714	
	G1 AT 3 mm	51,45	6,100118636	0,0000	35,00852034	67,89147966	
	G2 AT 3 mm	40,65	7,249455515	0,0000	21,16545299	60,13454701	
G2 AT 3 mm	G1 AT 4 mm	-33,1	8,665403079	0,0027	-56,43464264	-9,765357359	
	G1 AT 3 mm	10,8	6,522733524	0,3624	-6,826509691	28,42650969	
	G2 AT 4 mm	-40,65	7,249455515	0,0000	-60,13454701	-21,16545299	

Tabela C.11 - Games-Howell (Fx)

Tabela C.TT - Galiles-						
(I) DIB x Ativação	(J) DIB x Ativação	Diferença de	Erro Padrão	Valor p	Interval de Con diferença	fiança 95% para de médias
		medias (1-5)			L.I.	L.S.
	DIB 23 mm AT 3 mm	44,6	7,059521379	0,0000	25,62568396	63,57431604
DIB 23 mm AT 4 mm	DIB 22 mm AT 4 mm	0,75	8,440371344	0,9997	-21,97834979	23,47834979
	DIB 22 mm AT 3 mm	40,7	7,095625042	0,0000	21,63052426	59,76947574
	DIB 23 mm AT 4 mm	-44,6	7,059521379	0,0000	-63,57431604	-25,62568396
DIB 23 mm AT 3 mm	DIB 22 mm AT 4 mm	-43,85	8,130635697	0,0000	-65,79649904	-21,90350096
	DIB 22 mm AT 3 mm	-3,9	6,724229559	0,9375	-21,96458011	14,16458011
	DIB 23 mm AT 4 mm	-0,75	8,440371344	0,9997	-23,47834979	21,97834979
DIB 22 mm AT 4 mm	DIB 23 mm AT 3 mm	43,85	8,130635697	0,0000	21,90350096	65,79649904
	DIB 22 mm AT 3 mm	39,95	8,162002786	0,0001	17,9252854	61,9747146
	DIB 23 mm AT 4 mm	-40,7	7,095625042	0,0000	-59,76947574	-21,63052426
DIB 22 mm AT 3 mm	DIB 23 mm AT 3 mm	3.9	6,724229559	0.9375	-14,16458011	21,96458011
	DIB 22 mm AT 4 mm	-39,95	8,162002786	0,0001	-61,9747146	-17,9252854
DID 22 IIIIII AT 5 IIIIII	DIB 22 mm AT 4 mm	-39,95	8,162002786	0,0001	-61,9747146	-17,9252

Tabela C.12 - Games-Howell (Fx)

(I) Grupo x DIB x	(J) Grupo x DIB x	Diferença de médias (I-J)	Erro Padrão	Valor p	Interval de Confiança 95% para diferença de médias	
Alivaçau	Alivação	medias (1-5)			L.I.	L.S.
	G1 DIB 23 mm AT 3 mm	47,2	8,93370646	0,0027	15,32350855	79,07649145
	G1 DIB 22 mm AT 4 mm	-4,5	13,91789416	1,0000	-52,60980296	43,60980296
	G1 DIB 22 mm AT 3 mm	36,1	9,987603427	0,0362	1,681273482	70,51872652
G1 DIB 23 mm AT 4 mm	G2 DIB 23 mm AT 4 mm	-12,8	10,3413947	0,9092	-48,25538228	22,65538228
	G2 DIB 23 mm AT 3 mm	29,2	11,20466173	0,2162	-9,02596935	67,42596935
	G2 DIB 22 mm AT 4 mm	-6,8	10,94176504	0,9980	-44,15217791	30,55217791
	G2 DIB 22 mm AT 3 mm	32,5	11,18217828	0,1294	-5,650363413	70,65036341
	G1 DIB 23 mm AT 4 mm	-47,2	8,93370646	0,0027	-79,07649145	-15,32350855
	G1 DIB 22 mm AT 4 mm	-51,7	12,02243274	0,0187	-95,84333507	-7,556664931
	G1 DIB 22 mm AT 3 mm	-11,1	7,112196098	0,7652	-35,81230345	13,61230345
G1 DIB 23 mm AT 3 mm	G2 DIB 23 mm AT 4 mm	-60	7,601023323	0,0000	-86,61530397	-33,38469603
	G2 DIB 23 mm AT 3 mm	-18	8,739310931	0,4825	-49,10542904	13,10542904
	G2 DIB 22 mm AT 4 mm	-54	8,399603165	0,0004	-83,76006099	-24,23993901
	G2 DIB 22 mm AT 3 mm	-14,7	8,710466246	0,6948	-45,69108148	16,29108148
	G1 DIB 23 mm AT 4 mm	4,5	13,91789416	1,0000	-43,60980296	52,60980296
	G1 DIB 23 mm AT 3 mm	51,7	12,02243274	0,0187	7,556664931	95,84333507
	G1 DIB 22 mm AT 3 mm	40,6	12,82497563	0,0958	-4,873222158	86,07322216
G1 DIB 22 mm AT 4 mm	G2 DIB 23 mm AT 4 mm	-8,3	13,10237468	0,9976	-54,36839901	37,76839901
	G2 DIB 23 mm AT 3 mm	33,7	13,79391976	0,2857	-14,07549556	81,47549556
	G2 DIB 22 mm AT 4 mm	-2,3	13,58123706	1,0000	-49,52050737	44,92050737
	G2 DIB 22 mm AT 3 mm	37	13,77566292	0,1966	-10,72691656	84,72691656
	G1 DIB 23 mm AT 4 mm	-36,1	9,987603427	0,0362	-70,51872652	-1,681273482
	G1 DIB 23 mm AT 3 mm	11,1	7,112196098	0,7652	-13,61230345	35,81230345
	G1 DIB 22 mm AT 4 mm	-40,6	12,82497563	0,0958	-86,07322216	4,873222158
G1 DIB 22 mm AT 3 mm	G2 DIB 23 mm AT 4 mm	-48,9	8,815705682	0,0006	-79,00360184	-18,79639816
	G2 DIB 23 mm AT 3 mm	-6,9	9,814105495	0,9957	-40,66426684	26,86426684
	G2 DIB 22 mm AT 4 mm	-42,9	9,512856797	0,0058	-75,53885124	-10,26114876
	G2 DIB 22 mm AT 3 mm	-3,6	9,788428543	0,9999	-37,2677777	30,0677777
	G1 DIB 23 mm A1 4 mm	12,8	10,3413947	0,9092	-22,65538228	48,25538228
	G1 DIB 23 mm A1 3 mm	60	7,601023323	0,0000	33,38469603	86,61530397
	G1 DIB 22 mm A1 4 mm	8,3	13,10237468	0,9976	-37,76839901	54,36839901
G2 DIB 23 mm AT 4 mm	G1 DIB 22 mm A1 3 mm	48,9	8,815/05682	0,0006	18,79639816	79,00360184
	G2 DIB 23 mm AT 3 mm	42	10,17393183	0,0123	7,160696111	76,83930389
	G2 DIB 22 mm AT 2 mm	45.0	9,883656543	0,9983	-27,7845509	39,7845509
	G2 DIB 22 mm AT 4 mm	40,0	11 20466172	0,0062	67 40506005	0,04003001
	GI DIB 23 mm AT 2 mm	-29,2	11,20400173	0,2162	-07,42596935	9,02596935
	G1 DIB 23 mill AT 3 mill	-33.7	13 703010931	0,4625	-13,10342904	14 07540556
G2 DIB 23 mm AT 3 mm	G1 DIB 22 mm AT 3 mm	-55,7	9 814105495	0,2037	-26 86426684	40 66426684
CZ DID 23 IIIII AT 3 IIIII	G2 DIB 23 mm AT 4 mm	-42	10 17393183	0,007	-20,00420004	-7 160696111
	G2 DIB 22 mm AT 4 mm	-36	10,78362957	0.0578	-72 79722371	0 797223709
	G2 DIB 22 mm AT 3 mm	3.3	11.0274909	1.0000	-34.31827395	40.91827395
	G1 DIB 23 mm AT 4 mm	6.8	10.94176504	0.9980	-30,55217791	44,15217791
	G1 DIB 23 mm AT 3 mm	54	8.399603165	0.0004	24.23993901	83,76006099
	G1 DIB 22 mm AT 4 mm	2,3	13,58123706	1,0000	-44,92050737	49,52050737
G2 DIB 22 mm AT 4 mm	G1 DIB 22 mm AT 3 mm	42,9	9,512856797	0,0058	10,26114876	75,53885124
	G2 DIB 23 mm AT 4 mm	-6	9,883656543	0,9983	-39,7845509	27,7845509
	G2 DIB 23 mm AT 3 mm	36	10,78362957	0,0578	-0,797223709	72,79722371
	G2 DIB 22 mm AT 3 mm	39,3	10,76026642	0,0310	2,584221302	76,0157787
	G1 DIB 23 mm AT 4 mm	-32,5	11,18217828	0,1294	-70,65036341	5,650363413
	G1 DIB 23 mm AT 3 mm	14,7	8,710466246	0,6948	-16,29108148	45,69108148
	G1 DIB 22 mm AT 4 mm	-37	13,77566292	0,1966	-84,72691656	10,72691656
G2 DIB 22 mm AT 3 mm	G1 DIB 22 mm AT 3 mm	3,6	9,788428543	0,9999	-30,0677777	37,2677777
	G2 DIB 23 mm AT 4 mm	-45,3	10,14916526	0,0062	-80,04863601	-10,55136399
	G2 DIB 23 mm A1 3 mm	-3,3	11,0274909	1,0000	-40,91827395	34,31827395
	G2 DIB 22 mm AT 4 mm	-39,3	10,76026642	0,0310	-76,0157787	-2,584221302

Tabela C.13 - Games-Howell (Fy)

(I) Grupo x DIB	(J) Grupo x DIB	Diferença de	Erro Padrão	Valor p	Interval de Confiança 95% para diferença de médias	
		medias (1-5)			L.I.	L.S.
	G1 DIB 22 mm	-1,15	0,785979108	0,4700	-3,269931322	0,969931322
G1 DIB 23 mm	G2 DIB 23 mm	30,5	2,219174811	0,0000	24,34508786	36,65491214
	G2 DIB 22 mm	27,75	2,364846718	0,0000	21,18117152	34,31882848
	G1 DIB 23 mm	1,15	0,785979108	0,4700	-0,969931322	3,269931322
G1 DIB 22 mm	G2 DIB 23 mm	31,65	2,17748648	0,0000	25,57628049	37,72371951
	G2 DIB 22 mm	28,9	2,325770953	0,0000	22,40650431	35,39349569
	G1 DIB 23 mm	-30,5	2,219174811	0,0000	-36,65491214	-24,34508786
G2 DIB 23 mm	G1 DIB 22 mm	-31,65	2,17748648	0,0000	-37,72371951	-25,57628049
	G2 DIB 22 mm	-2,75	3,117079436	0,8140	-11,12574299	5,625742994
	G1 DIB 23 mm	-27,75	2,364846718	0,0000	-34,31882848	-21,18117152
G2 DIB 22 mm	G1 DIB 22 mm	-28,9	2,325770953	0,0000	-35,39349569	-22,40650431
	G2 DIB 23 mm	2,75	3,117079436	0,8140	-5,625742994	11,12574299

Tabela C.14 - Games-Howell (Fy)

(J) Grupo x Ativação	Diferença de	Erro Padrão	Valor p	Interval de Confiança 95% para diferença de médias	
	medias (1-0)			L.I.	L.S.
G1 AT 3 mm	-1,75	0,756289418	0,1128	-3,782234618	0,282234618
G2 AT 4 mm	34,2	0,714511243	0,0000	32,28035024	36,11964976
G2 AT 3 mm	23,45	2,625657812	0,0000	16,11713819	30,78286181
G1 AT 4 mm	1,75	0,756289418	0,1128	-0,282234618	3,782234618
G2 AT 4 mm	35,95	0,742949315	0,0000	33,95296767	37,94703233
G2 AT 3 mm	25,2	2,633538744	0,0000	17,85224589	32,54775411
G1 AT 4 mm	-34,2	0,714511243	0,0000	-36,11964976	-32,28035024
G1 AT 3 mm	-35,95	0,742949315	0,0000	-37,94703233	-33,95296767
G2 AT 3 mm	-10,75	2,621846477	0,0028	-18,07570305	-3,424296948
G1 AT 4 mm	-23,45	2,625657812	0,0000	-30,78286181	-16,11713819
G1 AT 3 mm	-25,2	2,633538744	0,0000	-32,54775411	-17,85224589
G2 AT 4 mm	10,75	2,621846477	0,0028	3,424296948	18,07570305
	(J) Grupo x Ativação G1 AT 3 mm G2 AT 4 mm G2 AT 3 mm G1 AT 4 mm G2 AT 3 mm G1 AT 4 mm G1 AT 4 mm G1 AT 3 mm G1 AT 4 mm G1 AT 3 mm G1 AT 3 mm G2 AT 3 mm G2 AT 4 mm	(J) Grupo x Ativação Diferença de médias (l-J) G1 AT 3 mm -1,75 G2 AT 4 mm 34,2 G2 AT 3 mm 23,45 G1 AT 4 mm 1,75 G2 AT 4 mm 35,95 G2 AT 3 mm 25,2 G1 AT 4 mm -34,2 G1 AT 3 mm -35,95 G2 AT 3 mm -10,75 G1 AT 4 mm -23,45 G1 AT 3 mm -23,45 G1 AT 4 mm -34,2 G1 AT 3 mm -23,45 G1 AT 4 mm 10,75	(J) Grupo x Ativação Diferença de médias (I-J) Erro Padrão G1 AT 3 mm -1,75 0,756289418 G2 AT 4 mm 34,2 0,714511243 G2 AT 3 mm 23,45 2,625657812 G1 AT 4 mm 1,75 0,756289418 G2 AT 3 mm 23,45 2,625657812 G1 AT 4 mm 1,75 0,756289418 G2 AT 3 mm 25,2 2,633538744 G1 AT 4 mm -34,2 0,714511243 G1 AT 3 mm -35,95 0,742949315 G2 AT 3 mm -10,75 2,621846477 G1 AT 4 mm -23,45 2,625657812 G1 AT 4 mm -23,45 2,625657812 G1 AT 4 mm -23,45 2,623538744 G1 AT 4 mm -23,45 2,623538744 G2 AT 4 mm 10,75 2,621846477	(J) Grupo x Ativação Diferença de médias (l-J) Erro Padrão Valor p G1 AT 3 mm -1,75 0,756289418 0,1128 G2 AT 4 mm 34,2 0,714511243 0,0000 G2 AT 3 mm 23,45 2,625657812 0,0000 G1 AT 4 mm 1,75 0,756289418 0,1128 G2 AT 3 mm 23,45 2,625657812 0,0000 G1 AT 4 mm 1,75 0,756289418 0,1128 G2 AT 3 mm 25,2 2,633538744 0,0000 G1 AT 4 mm -34,2 0,714511243 0,0000 G1 AT 3 mm -35,95 0,742949315 0,0000 G1 AT 3 mm -35,95 0,742949315 0,0000 G1 AT 3 mm -32,45 2,625657812 0,0000 G1 AT 3 mm -23,45 2,625657812 0,0000 G1 AT 3 mm -25,2 2,63358744 0,0000 G1 AT 3 mm -23,45 2,625657812 0,0000 G1 AT 3 mm -25,2 2,63358744 0,00000 G1 AT 3 mm	(J) Grupo x Ativação Diferença de médias (I-J) Erro Padrão Valor p Interval de Cond diferença de médias (I-J) G1 AT 3 mm -1,75 0,756289418 0,1128 -3,782234618 G2 AT 4 mm 34,2 0,714511243 0,0000 32,28035024 G2 AT 3 mm 23,45 2,625657812 0,0000 16,11713819 G1 AT 4 mm 1,75 0,756289418 0,1128 -0,282234618 G2 AT 4 mm 35,95 0,742949315 0,0000 33,95296767 G2 AT 3 mm 25,2 2,633538744 0,0000 17,85224589 G1 AT 4 mm -34,2 0,714511243 0,0000 -36,11964976 G1 AT 3 mm -35,95 0,742949315 0,0000 -36,11964976 G1 AT 3 mm -10,75 2,621846477 0,0028 -18,07570305 G1 AT 4 mm -23,45 2,626557812 0,0000 -30,78286181 G1 AT 4 mm -23,45 2,626557812 0,0000 -32,54775411 G2 AT 4 mm 10,75 2,621846477 0,0028 -32,54775411

Tabela C.15 - Games-Howell (Fy)

(I) DIB x Ativação	(J) DIB x Ativação	Diferença de	Erro Padrão	Valor p	Interval de Confiança 95% para diferença de médias	
		medias (1-0)			L.I.	L.S.
	DIB 23 mm AT 3 mm	-5,9	5,337503852	0,6885	-20,25365752	8,453657522
DIB 23 mm AT 4 mm	DIB 22 mm AT 4 mm	-1,6	5,587768597	0,9917	-16,61305092	13,41305092
	DIB 22 mm AT 3 mm	-8,2	5,270873292	0,4158	-22,38064655	5,980646551
	DIB 23 mm AT 4 mm	5,9	5,337503852	0,6885	-8,453657522	20,25365752
DIB 23 mm AT 3 mm	DIB 22 mm AT 4 mm	4,3	5,191237557	0,8407	-9,652615942	18,25261594
	DIB 22 mm AT 3 mm	-2,3	4,848494069	0,9643	-15,32589084	10,72589084
	DIB 23 mm AT 4 mm	1,6	5,587768597	0,9917	-13,41305092	16,61305092
DIB 22 mm AT 4 mm	DIB 23 mm AT 3 mm	-4,3	5,191237557	0,8407	-18,25261594	9,652615942
	DIB 22 mm AT 3 mm	-6,6	5,122704878	0,5759	-20,37271119	7,172711186
	DIB 23 mm AT 4 mm	8,2	5,270873292	0,4158	-5,980646551	22,38064655
DIB 22 mm AT 3 mm	DIB 23 mm AT 3 mm	2,3	4,848494069	0,9643	-10,72589084	15,32589084
	DIB 22 mm AT 4 mm	6,6	5,122704878	0,5759	-7,172711186	20,37271119

(I) Grupo x DIB x	(J) Grupo x DIB x	Diferença de médias (I-J)	Erro Padrão	Valor p	Interval de Confiança 95% para diferença de médias	
Alivação	Alivação	medias (1-0)			L.I.	L.S.
	G1 DIB 23 mm AT 3 mm G1 DIB 22 mm AT 4 mm	-1,4 -0,8	1,257864151 1,041366623	0,9452 0,9928	-5,714168827 -4,361587107	2,914168827 2,761587107
	G1 DIB 22 mm AT 3 mm	-2,9	0,912262146	0,0899	-6,103717456	0,303717456
G1 DIB 23 mm AT 4 mm	G2 DIB 23 mm AT 4 mm	35	1,054092553	0,0000	31,39803071	38,60196929
	G2 DIB 23 mm AT 3 mm	24,6	3,636848453	0,0009	10,92584089	38,27415911
	G2 DIB 22 mm AT 4 mm	32,6	0,921351664	0,0000	29,37515796	35,82484204
	G2 DIB 22 mm AT 3 mm	21,5	3,933474574	0,0047	6,66667118	36,33332882
	G1 DIB 23 mm A1 4 mm	1,4	1,257864151	0,9452	-2,914168827	5,714168827
	G1 DIB 22 mm AT 4 mm	0,6	1,192569588	0,9995	-3,527633939	4,727633939
	G1 DIB 22 mm AT 3 mm	-1,5	1,081665383	0,8479	-5,373886319	2,373886319
G1 DIB 23 mm AT 3 mm	G2 DIB 23 mm AT 4 mm	36,4	1,203698006	0,0000	32,24211362	40,55788638
	G2 DIB 23 mm AT 3 mm	26	3,682993951	0,0005	12,28943628	39,71056372
	G2 DIB 22 mm AT 4 mm	34	1,089342309	0,0000	30,11201448	37,88798552
	G2 DIB 22 mm AT 3 mm	22,9	3,97617907	0,0028	8,036469857	37,76353014
	G1 DIB 23 mm AT 4 mm	0,8	1,041366623	0,9928	-2,761587107	4,361587107
	G1 DIB 23 mm AT 3 mm	-0,6	1,192569588	0,9995	-4,727633939	3,527633939
	G1 DIB 22 mm AT 3 mm	-2,1	0,819891592	0,2397	-4,943895689	0,743895689
G1 DIB 22 mm AT 4 mm	G2 DIB 23 mm AT 4 mm	35,8	0,975249256	0,0000	32,47281232	39,12718768
	G2 DIB 23 mm AT 3 mm	25,4	3,614784456	0,0007	11,73942487	39,06057513
	G2 DIB 22 mm A1 4 mm	33,4	0,829993307	0,0000	30,52918524	36,27081476
	G2 DIB 22 mm AT 3 mm	22,3	3,913083467	0,0037	7,477993013	37,12200699
	G1 DIB 23 mm AT 4 mm	2,9	0,912262146	0,0899	-0,303717456	6,103717456
	G1 DIB 23 mm A1 3 mm	1,5	1,081665383	0,8479	-2,373886319	5,373886319
	G1 DIB 22 mm A1 4 mm	2,1	0,819891592	0,2397	-0,743895689	4,943895689
G1 DIB 22 mm A1 3 mm	G2 DIB 23 mm AT 4 mm	37,9	0,835995747	0,0000	34,99390174	40,80609826
	G2 DIB 23 mm AT 3 mm	27,5	3,5/9/2686/	0,0004	13,85554678	41,14445322
	G2 DIB 22 mm AT 2 mm	35,5	0,00080/08/	0,0000	33,24539141	37,75460859
	G2 DIB 22 IIIIII AT 3 IIIIII	24,4	3,000/21002	0,0020	9,591569945	39,20041000
	GT DIB 23 mm AT 2 mm	-35	1,004092000	0,0000	-30,00190929	-31,39003071
	G1 DIB 23 mm AT 4 mm	-30,4	0.075240256	0,0000	-40,00700000	-32,24211302
G2 DIB 23 mm AT 4 mm	G1 DIB 22 mm AT 3 mm	-33,8	0,975249250	0,0000	-39,12710700	-32,47201232
	G2 DIB 23 mm AT 3 mm	-10.4	3 618471132	0,0000	-40,00003020	3 262665075
	G2 DIB 22 mm AT 4 mm	-24	0.845905169	0 1535	-5 331874548	0 531874548
	G2 DIB 22 mm AT 3 mm	-13.5	3 916489358	0.0812	-28 32375334	1 323753339
	G1 DIB 23 mm AT 4 mm	-24.6	3 636848453	0,0009	-38 27415911	-10 92584089
	G1 DIB 23 mm AT 3 mm	-26	3 682993951	0,0005	-39 71056372	-12 28943628
	G1 DIB 22 mm AT 4 mm	-25.4	3.614784456	0.0007	-39.06057513	-11,73942487
G2 DIB 23 mm AT 3 mm	G1 DIB 22 mm AT 3 mm	-27.5	3.579726867	0.0004	-41,14445322	-13.85554678
	G2 DIB 23 mm AT 4 mm	10,4	3,618471132	0,1805	-3,262665075	24,06266508
	G2 DIB 22 mm AT 4 mm	8	3,582054035	0,4106	-5,645307554	21,64530755
	G2 DIB 22 mm AT 3 mm	-3,1	5,239698889	0,9986	-20,9883953	14,7883953
	G1 DIB 23 mm AT 4 mm	-32,6	0,921351664	0,0000	-35,82484204	-29,37515796
	G1 DIB 23 mm AT 3 mm	-34	1,089342309	0,0000	-37,88798552	-30,11201448
	G1 DIB 22 mm AT 4 mm	-33,4	0,829993307	0,0000	-36,27081476	-30,52918524
G2 DIB 22 mm AT 4 mm	G1 DIB 22 mm AT 3 mm	-35,5	0,660807587	0,0000	-37,75460859	-33,24539141
	G2 DIB 23 mm AT 4 mm	2,4	0,845905169	0,1535	-0,531874548	5,331874548
	G2 DIB 23 mm AT 3 mm	-8	3,582054035	0,4106	-21,64530755	5,645307554
	G2 DIB 22 mm AT 3 mm	-11,1	3,882868356	0,1883	-25,90914039	3,709140391
	G1 DIB 23 mm AT 4 mm	-21,5	3,933474574	0,0047	-36,33332882	-6,66667118
	G1 DIB 23 mm AT 3 mm	-22,9	3,97617907	0,0028	-37,76353014	-8,036469857
	G1 DIB 22 mm AT 4 mm	-22,3	3,913083467	0,0037	-37,12200699	-7,477993013
G2 DIB 22 mm AT 3 mm	G1 DIB 22 mm AT 3 mm	-24,4	3,880721582	0,0020	-39,20841006	-9,591589943
	G2 DIB 23 mm AT 4 mm	13,5	3,916489358	0,0812	-1,323753339	28,32375334
	G2 DIB 23 mm AT 3 mm	3,1	5,239698889	0,9986	-14,7883953	20,9883953
	G2 DIB 22 mm AT 4 mm	11,1	3,882868356	0,1883	-3,709140391	25,90914039

Tabela C.16 - Games-Howell (Fy)

Tabela C.17 - Games-Howell (Mz)

(I) Grupo x DIB	(J) Grupo x DIB	Diferença de	Erro Padrão	Valor p	Interval de Confiança 95% para diferença de médias	
		medias (1-5)			L.I.	L.S.
	G1 DIB 22 mm	-13,5	72,67960331	0,9977	-211,6607611	184,6607611
G1 DIB 23 mm	G2 DIB 23 mm	147,15	54,31358147	0,0482	0,881482839	293,4185172
	G2 DIB 22 mm	123,7	55,15497305	0,1313	-24,910602	272,310602
	G1 DIB 23 mm	13,5	72,67960331	0,9977	-184,6607611	211,6607611
G1 DIB 22 mm	G2 DIB 23 mm	160,65	77,25170327	0,1809	-48,32341841	369,6234184
	G2 DIB 22 mm	137,2	77,84556236	0,3089	-73,22659843	347,6265984
	G1 DIB 23 mm	-147,15	54,31358147	0,0482	-293,4185172	-0,881482839
G2 DIB 23 mm	G1 DIB 22 mm	-160,65	77,25170327	0,1809	-369,6234184	48,32341841
	G2 DIB 22 mm	-23,45	61,05384487	0,9804	-187,4741619	140,5741619
	G1 DIB 23 mm	-123,7	55,15497305	0,1313	-272,310602	24,910602
G2 DIB 22 mm	G1 DIB 22 mm	-137,2	77,84556236	0,3089	-347,6265984	73,22659843
	G2 DIB 23 mm	23,45	61,05384487	0,9804	-140,5741619	187,4741619

Tabela C.18 - Games-Howell (Mz)

(I) Grupo x	(J) Grupo x Ativação	Diferença de	Erro Padrão	Valor p	Interval de Confiança 95% para diferença de médias	
Alivação		medias (1-5)			L.I.	L.S.
	G1 AT 3 mm	84,5	71,4088193	0,6414	-108,6854433	277,6854433
G1 AT 4 mm	G2 AT 4 mm	90,55	55,56101317	0,3746	-58,71331094	239,8133109
	G2 AT 3 mm	278,3	53,10967302	0,0000	135,5619763	421,0380237
	G1 AT 4 mm	-84,5	71,4088193	0,6414	-277,6854433	108,6854433
G1 AT 3 mm	G2 AT 4 mm	6,05	71,36520142	0,9998	-187,0291913	199,1291913
	G2 AT 3 mm	193,8	69,47375877	0,0421	5,268355044	382,331645
	G1 AT 4 mm	-90,55	55,56101317	0,3746	-239,8133109	58,71331094
G2 AT 4 mm	G1 AT 3 mm	-6,05	71,36520142	0,9998	-199,1291913	187,0291913
	G2 AT 3 mm	187,75	53,05101195	0,0057	45,1720968	330,3279032
	G1 AT 4 mm	-278,3	53,10967302	0,0000	-421,0380237	-135,5619763
G2 AT 3 mm	G1 AT 3 mm	-193,8	69,47375877	0,0421	-382,331645	-5,268355044
	G2 AT 4 mm	-187,75	53,05101195	0,0057	-330,3279032	-45,1720968

Tabela C.19 - Games-Howell (Mz)

(I) DIB x Ativação	(J) DIB x Ativação	Diferença de	Erro Padrão	Valor p	Interval de Confiança 95% para diferença de médias	
		medias (1-5)			L.I.	L.S.
	DIB 23 mm AT 3 mm	132,35	55,30662733	0,0970	-16,75323222	281,4532322
DIB 23 mm AT 4 mm	DIB 22 mm AT 4 mm	-22,25	57,3565109	0,9798	-177,0952228	132,5952228
	DIB 22 mm AT 3 mm	117,65	70,39952807	0,3566	-74,13362579	309,4336258
	DIB 23 mm AT 4 mm	-132,35	55,30662733	0,0970	-281,4532322	16,75323222
DIB 23 mm AT 3 mm	DIB 22 mm AT 4 mm	-154,6	64,36592552	0,0939	-327,5417289	18,34172894
	DIB 22 mm AT 3 mm	-14,7	76,21874165	0,9974	-220,449455	191,049455
	DIB 23 mm AT 4 mm	22,25	57,3565109	0,9798	-132,5952228	177,0952228
DIB 22 mm AT 4 mm	DIB 23 mm AT 3 mm	154,6	64,36592552	0,0939	-18,34172894	327,5417289
	DIB 22 mm AT 3 mm	139,9	77,71899957	0,2903	-69,60950102	349,409501
	DIB 23 mm AT 4 mm	-117,65	70,39952807	0,3566	-309,4336258	74,13362579
DIB 22 mm AT 3 mm	DIB 23 mm AT 3 mm	14,7	76,21874165	0,9974	-191,049455	220,449455
_	DIB 22 mm AT 4 mm	-139,9	77,71899957	0,2903	-349,409501	69,60950102

Tabela C.20 - Games-Howe	ell (Mz)
--------------------------	----------

(I) Grupo x DIB x	(J) Grupo x DIB x	Diferença de	Erro Padrão	Valor p	Interval de Co para diferenç	onfiança 95% a de médias
Alivaçau	Alivação	medias (1-5)			L.I.	L.S.
	G1 DIB 23 mm AT 3 mm	65,8	67,37952211	0,9717	-166,8825511	298,4825511
	G1 DIB 22 mm AT 4 mm	-32.2	80.45247044	0.9999	-315.7206268	251 3206268
	G1 DIB 22 mm AT 3 mm	71	116 3546876	0 9979	-354 9998679	496 9998679
G1 DIB 23 mm AT 4 mm	G2 DIB 23 mm AT 4 mm	80.6	65 53930119	0.9115	-145 1029555	306 3029555
	G2 DIB 23 mm AT 3 mm	279.5	65.28175685	0.0096	54,76845474	504,2315453
	G2 DIB 22 mm AT 4 mm	68.3	72.66487001	0.9766	-184,7288198	321,3288198
	G2 DIB 22 mm AT 3 mm	244,9	64,2730028	0,0242	23,95917239	465,8408276
	G1 DIB 23 mm AT 4 mm	-65,8	67,37952211	0,9717	-298,4825511	166,8825511
	G1 DIB 22 mm AT 4 mm	-98	89,06469559	0,9481	-403,9688697	207,9688697
	G1 DIB 22 mm AT 3 mm	5,2	122,4676828	1,0000	-430,7657847	441,1657847
G1 DIB 23 mm AT 3 mm	G2 DIB 23 mm AT 4 mm	14,8	75,86382537	1,0000	-244,0503942	273,6503942
	G2 DIB 23 mm AT 3 mm	213,7	75,6414422	0,1494	-44,40870012	471,8087001
	G2 DIB 22 mm AT 4 mm	2,5	82,09813234	1,0000	-277,9621671	282,9621671
	G2 DIB 22 mm AT 3 mm	179,1	74,77258113	0,3005	-76,13405618	434,3340562
	G1 DIB 23 mm AT 4 mm	32,2	80,45247044	0,9999	-251,3206268	315,7206268
	G1 DIB 23 mm AT 3 mm	98	89,06469559	0,9481	-207,9688697	403,9688697
	G1 DIB 22 mm AT 3 mm	103,2	130,11892	0,9910	-349,9210461	556,3210461
G1 DIB 22 mm AT 4 mm	G2 DIB 23 mm AT 4 mm	112,8	87,68078467	0,8917	-189,1586676	414,7586676
	G2 DIB 23 mm AT 3 mm	311,7	87,48844368	0,0399	10,28848136	613,1115186
	G2 DIB 22 mm AT 4 mm	100,5	93,12/35008	0,9532	-217,8977195	418,8977195
	G2 DIB 22 mm AT 3 mm	277,1	86,73833575	0,0805	-22,20282333	576,4028233
	GI DIB 23 mm AT 4 mm	-/1	110,3546876	0,9979	-496,9998679	354,9998679
	GI DIB 23 mm AT 4 mm	-5,2 102 0	122,40/0828	1,0000	-441,105/84/	430,7657847
G1 DIB 22 mm AT 3 mm	G2 DIB 22 mm AT 4 mm	-103,2	121 /6/0/60	1,0000	-330,3210401	149,9210401 143 6664000
	G2 DIB 23 mm AT 3 mm	208 5	121,4049409	0.6774	-424,4004999	642 3110751
	G2 DIB 22 mm AT 4 mm	-27	125 4532449	1 0000	-444 8385859	439 4385859
	G2 DIB 22 mm AT 3 mm	173.9	120,7863909	0.8240	-258,9352316	606.7352316
	G1 DIB 23 mm AT 4 mm	-80.6	65.53930119	0.9115	-306.3029555	145,1029555
	G1 DIB 23 mm AT 3 mm	-14.8	75.86382537	1.0000	-273.6503942	244.0503942
	G1 DIB 22 mm AT 4 mm	-112,8	87,68078467	0,8917	-414,7586676	189,1586676
G2 DIB 23 mm AT 4 mm	G1 DIB 22 mm AT 3 mm	-9,6	121,4649469	1,0000	-443,6664999	424,4664999
	G2 DIB 23 mm AT 3 mm	198,9	74,00694412	0,1889	-53,56181069	451,3618107
	G2 DIB 22 mm AT 4 mm	-12,3	80,59468552	1,0000	-287,9822955	263,3822955
	G2 DIB 22 mm AT 3 mm	164,3	73,11866307	0,3713	-85,15837935	413,7583794
	G1 DIB 23 mm AT 4 mm	-279,5	65,28175685	0,0096	-504,2315453	-54,76845474
	G1 DIB 23 mm AT 3 mm	-213,7	75,6414422	0,1494	-471,8087001	44,40870012
	G1 DIB 22 mm AT 4 mm	-311,7	87,48844368	0,0399	-613,1115186	-10,28848136
G2 DIB 23 mm AT 3 mm	G1 DIB 22 mm A1 3 mm	-208,5	121,3261/65	0,6774	-642,3110/51	225,3110751
	G2 DIB 23 mm AT 4 mm	-198,9	74,00694412	0,1889	-451,3618107	53,50181069
	G2 DIB 22 mm AT 2 mm	-211,2	72 9970049	0,2101	-400,220003	214 0610022
	G1 DIR 22 mm AT 4 mm	-34,0	72,0079040	0,9997	201 2000100	104 700010933
	G1 DIB 23 mm AT 3 mm	-00,3	82 09813234	1 0000	-321,3200190	277 9621671
	G1 DIB 22 mm AT 4 mm	-100 5	93 12735008	0.9532	-418 8977195	217 8977195
G2 DIB 22 mm AT 4 mm	G1 DIB 22 mm AT 3 mm	27	125 4532449	1 0000	-439 4385859	444 8385859
	G2 DIB 23 mm AT 4 mm	12.3	80.59468552	1.0000	-263,3822955	287.9822955
	G2 DIB 23 mm AT 3 mm	211,2	80,38539115	0,2101	-63,82680301	486,226803
	G2 DIB 22 mm AT 3 mm	176,6	79,56834937	0,3867	-95,89259131	449,0925913
	G1 DIB 23 mm AT 4 mm	-244,9	64,2730028	0,0242	-465,8408276	-23,95917239
	G1 DIB 23 mm AT 3 mm	-179,1	74,77258113	0,3005	-434,3340562	76,13405618
	G1 DIB 22 mm AT 4 mm	-277,1	86,73833575	0,0805	-576,4028233	22,20282333
G2 DIB 22 mm AT 3 mm	G1 DIB 22 mm AT 3 mm	-173,9	120,7863909	0,8240	-606,7352316	258,9352316
	G2 DIB 23 mm AT 4 mm	-164,3	73,11866307	0,3713	-413,7583794	85,15837935
	G2 DIB 23 mm AT 3 mm	34,6	72,8879048	0,9997	-214,0610933	283,2610933
	G2 DIB 22 mm A1 4 mm	-1/6,6	/9,56834937	0,3867	-449,0925913	95,89259131

Tabela C.21 - ANOVA-Fx de G₁= f(G₁)

Tabela 0.21 - ANOVA-FX de G1= I(G1)								
	S.Q	g.l	Q.M.	F	Valor p			
Regressão Residual Total	234360,75 12014,25 246375	1 39 40	234360,75 308,0576923	760,769	0,00000			

Tabela C.22 - Constante de mola G1

	Coefici	ente β_1	+	Valor p	Intervalo de Confiança (95% β_1)	
	Estimativa	Erro padrão	L L	valor p	LI	LS
Ativação G1(mm)	27,95	1,013340503	27,58204	0,00000	25,90032537	29,99967463

Tabela C.23 - Ajuste do modelo passando pela origem

Tabela 0.23 - Ajuste do modelo passando pela origem							
Modelo	Modelo R		R ² ajustado	S _{YX}			
	0,975313242	0,951235921	0,94998556	17,55157236			

Tabela C.24 - Análise de regressão - Fx G1 em função da Ativação

Modelo	R	R ²	R ² ajustado	S _{YX}
1	0,9083	0,8251	0,8205	16,9797

Tabela C.25 - Ajuste do modelo passando pela origem

Modelo	R	R ²	R ² ajustado	S _{YX}	
	0,978197826	0,956870987	0,955765115	18,89932618	

Tabela C.26 - Análise de regressão - Fx G2 em função da Ativação

Modelo	R	R ²	R ² ajustado	S _{YX}	
	0,916983169	0,840858131	0,836670188	18,27935995	

Tabela C.27 - ANOV	/A-Fx de G ₂ = f(G ₂)					
Modelo		S.Q	g.l.	Q.M	F	Valor p
	Regressão Residual Total	67087,845 12697,13 79784,975	1 38 39	67087,845 334,135	200,7807	0,00000

Tabela C.28 - Constante de mola G₂

	Coeficiente β_1		+	Valor p	Intervalo de Confiança (95% β_1)	
	β_{I}	Erro padrão	ι	ναιοι μ	LI	LS
Ativação G2 (mm)	32,09666667	1,091153106	29,41536	0,00000	29,88960119	34,30373215

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo