

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Diretoria de Pesquisa e Pós-Graduação

Programa de Pós-Graduação em Modelagem Matemática e Computacional

QUADRATURA DE GAUSS ITERATIVA COM BASE NOS POLINÔMIOS ORTOGONAIS CLÁSSICOS

Dissertação de Mestrado, submetida ao Programa de Pós-Graduação em Modelagem Matemática e Computacional, como parte dos requisitos exigidos para a obtenção do título de Mestre em Modelagem Matemática e Computacional.

Aluno: Lourenço de Lima Peixoto (Licenciado em Matemática - UFU)
Orientador: Prof. Dr. João Francisco de Almeida Vitor (CEFET-MG)
Co-Orientador: Prof. Dr. Frederico Ferreira Campos, filho (UFMG)

Belo Horizonte, 9 de dezembro, 2008.

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Agradecimentos

Primeiramente a Deus, pela oportunidade de realizar este trabalho.

Aos meus queridos pais Antônio Carlos e Márcia, ao Geraldinho e à Melina. Sem vocês eu nada seria.

À minha tia Marta pelo apoio desde os tempos da faculdade.

Aos demais familiares e amigos que, de perto ou de longe, também acompanharam-me nos momentos difíceis.

Agradeço pela compreensão de todos vocês durante os muitos períodos de minha ausência em virtude deste trabalho.

Ao caro professor João Francisco pelo estímulo e por acreditar em mim desde o começo. Especialmente, por permitir que minha pesquisa percorresse o campo da Análise Numérica, assunto que despertou-me interesse desde a graduação.

Ao estimado professor Frederico pela amizade, por todo incentivo desde o primeiro instante, pela dedicação, pela sintonia, pela força e por tudo mais que me fez crescer. A ele, toda minha gratidão.

Aos meus colegas Neila, Tatiane, José Hélio, Emerson, Sinaide, José Sérgio, Bruno, Marta e outros.

À vida por ter colocado todas essas pessoas no meu caminho.

A todos, meu sinceros agradecimentos.

À CAPES pelo auxílio financeiro.

"Os nossos problemas não podem ser resolvidos no mesmo nível de pensamento com os quais os criamos."

Albert Einstein

Resumo

Freqüentemente as integrais definidas são usadas como ferramentas essenciais na resolução de problemas de natureza matemática, física, computacional, dentre outras. No entanto, é comum deparar-se com integrais de funções que não possuem antiderivada explícita ou cuja antiderivada não é simples de se obter. Nestas situações é conveniente fazer uso das quadraturas. A quadratura de Gauss utiliza os zeros dos polinômios ortogonais como sendo os pontos do somatório e os coeficientes deste último são obtidos por resultados relacionados aos polinômios. Neste trabalho, são apresentados os polinômios ortogonais clássicos e as quadraturas de Gauss com base sobre estes: Gauss-Legendre, Gauss-Laguerre, Gauss-Laguerre generalizada, Gauss-Hermite, Gauss-Jacobi, Gauss-Chebyshev de 1^a e de 2^a espécies e Gauss-Gegenbauer. São desenvolvidos os algoritmos para as quadraturas e suas respectivas implementações. Para a obtenção dos zeros e dos coeficientes são apresentadas duas classes de algoritmos, as quais têm eficiências comparadas em cada uma das quadraturas. Elabora-se um método que identifica a quadratura com os respectivos algoritmos mais eficientes. Fundamentado num esquema de integração iterativo e não-adaptativo proposto por Campos (2007), apresenta-se a quadratura iterativa de Gauss: uma regra de integração que fornece o resultado de uma quadratura com uma tolerância predefinida para o erro. Sobre a quadratura iterativa são realizados vários cálculos de integrais com diversos tipos de funções.

Palavras-chave: polinômios ortogonais, quadratura de Gauss, integração iterativa.

Abstract

Frequently the definite integrals are used like essential tools in the resolution of problems of mathematical, physical, computational nature, among others. Although, it is common to come across integrals of functions that have not explicit antiderivative or whose antiderivative is not simple to be obtained. In these situations it is convenient the use of the quadratures. The Gaussian quadrature uses the zeros of the orthogonal polynomials like being the points of the sum and the coefficients of this last are obtained by results related to the polynomials. This work presents the classical orthogonal polynomials and then Gaussian quadrature based on these: Gauss-Legendre, Gauss-Laguerre, generalized Gauss-Laguerre, Gauss-Hermite, Gauss-Jacobi, Gauss-Chebyshev of 1st and of 2nd kinds and Gauss-Gegenbauer. The algorithms are developed for the quadratures and it's respective implementations. For the attainment of zeros and of the coefficients two classes of algorithms are presented, and they have efficiencies compared in each one of quadratures. It elaborates a method that identifies the quadrature in respect with a more efficient algorithms. Based on a scheme of integration iterative and nonadaptive introduced by Campos (2007), it presents the iterative Gaussian quadrature: a rule of integration that supplies the result of a quadrature with one tolerance predefined for the error. Upon the iterative quadrature several calculations of integrals are carried out with several types of functions.

Keywords: orthogonal polynomials, Gaussian quadrature, iterative integration.

$Sum{{\acute{a}}rio}$

Lista de Figuras		p.ix	
Li	Lista de Tabelas		p. xiii
1	Introdução		
	1.1	A quadratura numérica	p. 1
	1.2	A relação entre polinômios ortogonais e quadratura de Gauss	р. 3
		1.2.1 Diferentes algoritmos para zeros e coeficientes	p. 3
	1.3	O erro de uma quadratura	p. 4
	1.4	Descrição dos próximos capítulos	p. 5
2	Pol	inômios ortogonais	р.б
	2.1	Propriedades	р.б
	2.2	Polinômios de Legendre	p. 23
	2.3	Polinômios de Laguerre generalizados	p. 28
	2.4	Polinômios de Laguerre	p.32
	2.5	Polinômios de Hermite	p.34
	2.6	Polinômios de Jacobi	p.37
	2.7	Polinômios de Chebyshev de 1ª espécie	p. 41
	2.8	Polinômios de Chebyshev de 2 ^a espécie $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	p.46
	2.9	Polinômios de Gegenbauer	p. 50
3	Inte	erpolação e quadratura de Hermite	p. 54

	3.1	Interp	olação de Hermite	p. 54
	3.2	Quadr	ratura de Hermite	p. 58
4	Qua	adratu	ra de Gauss	p.60
	4.1	Teorei	mas	p.60
	4.2	Quadr	ratura de Gauss-Legendre	p.68
	4.3	Quadr	ratura de Gauss-Laguerre generalizada	p.69
	4.4	Quadr	ratura de Gauss-Laguerre	р. 70
	4.5	Quadr	ratura de Gauss-Hermite	p. 71
	4.6	Quadr	ratura de Gauss-Jacobi	p. 72
	4.7	Quadr	ratura de Gauss-Chebyshev de 1ª espécie	р. 73
	4.8	Quadr	ratura de Gauss-Chebyshev de 2ª espécie	p. 75
	4.9	Quadr	ratura de Gauss-Gegenbauer	p. 77
5	Alg	oritmo	os e implementações da quadratura de Gauss	p.80
	5.1	Algori	itmos para zeros x_i e coeficientes H_i	p.80
	5.2	Trans	ferência de intervalos	p.89
		5.2.1	Quadraturas de Gauss no intervalo $[c,d]$	p.89
		5.2.2	Quadratura de Gauss no intervalo $[c,\infty)$	p.91
	5.3	Algori	itmos para integração numérica	p.92
	5.4	Imple	mentações	p.96
		5.4.1	Algumas considerações sobre o erro	p.96
		5.4.2	Gauss-Legendre	p.97
		5.4.3	Gauss-Laguerre generalizada	p.98
		5.4.4	Gauss-Laguerre	p.99
		5.4.5	Gauss-Hermite	p. 100
		546	Gauss-Jacobi	р. 101

		5.4.7	Gauss-Chebyshev de 1 ^a espécie	p. 102
		5.4.8	Gauss-Chebyshev de 2ª espécie	p. 103
		5.4.9	Gauss-Gegenbauer	p. 104
	5.5	Algori	tmos e implementações via matriz de Jacobi	p. 105
		5.5.1	Implementações	p. 109
	5.6	Valida	ção dos algoritmos para zeros e coeficientes	p. 113
	5.7	A esco	lha do método mais eficiente	p. 116
		5.7.1	Método mais eficiente para integração numérica	p. 118
		5.7.2	Casos especiais de integrando no infinito	p. 119
6	Qua	adratuı	ra iterativa	p. 121
	6.1	Algori	tmo gauss_iterativo	p. 121
	6.2	Progra	ama QUAD_ITER	p.126
		6.2.1	Um caso especial	p. 131
7	Con	ıclusõe	s gerais e futuros trabalhos	p. 133
	7.1	Contri	buição da quadratura iterativa	p. 133
	7.2	Contri	buições práticas deste trabalho	p. 134
	7.3	Zeros	e coeficientes da quadratura de Gauss	p. 135
	7.4	Compa	arações entre quadraturas	p. 136
	7.5	Trabal	hos futuros	p. 137
R	e ferê :	ncias		p. 140

Lista de Figuras

	\int^{b}	
1	$\int_{a} f(x) dx = \text{área.} \qquad \dots \qquad $	p. 2
2	Aproximação da integral por retângulos de base H_i e altura $f(x_i)$	p. 3
3	Polinômios de Legendre de grau até 5	p. 25
4	Polinômios de Laguerre generalizados de grau até 5 com $\alpha = 1$	p.30
5	Polinômios de Laguerre de grau até 5	p. 33
6	Polinômios de Hermite de grau até 4	p.35
7	Polinômios de Chebyshev de 1 ^a espécie de grau até 5	p. 42
8	Polinômios de Chebyshev de 2 ^a espécie de grau até 5	p. 47
9	Algoritmo para x_i e H _i de Gauss-Legendre	p.82
10	Algoritmo para x_i e H _i de Gauss-Laguerre generalizada	p.83
11	Algoritmo para x_i e H _i de Gauss-Laguerre	p.84
12	Algoritmo para x_i e H _i de Gauss-Hermite	p.85
13	Algoritmo para x_i e H _i de Gauss-Jacobi	p.86
14	Algoritmo para x_i e H _i de Gauss-Chebyshev de 1 ^a espécie	p.87
15	Algoritmo para x_i e H _i de Gauss-Chebyshev de 2 ^a espécie	p.87
16	Algoritmo para x_i e H _i de Gauss-Gegenbauer	p.88
17	Transferência do intervalo $[c, d]$ para $[-1, 1]$ onde $x = \frac{2t - c - d}{d - c}$	p.89
18	Transferência do intervalo $[c,\infty)$ para $[0,\infty)$ onde $x=t-c.$	p.92
19	Algoritmo para quadratura de Gauss-Legendre	p.93
20	Algoritmo para quadratura de Gauss-Laguerre generalizada	p.93
21	Algoritmo para quadratura de Gauss-Laguerre	р.93

22Algoritmo para quadratura de Gauss-Hermite.p. 9423Algoritmo para quadratura de Gauss-Jacobi.p. 9424Algoritmo para quadratura de Gauss-Chebyshev de l° espécie.p. 9425Algoritmo para quadratura de Gauss-Chebyshev de 2° espécie.p. 9526Algoritmo para quadratura de Gauss-Chebyshev de 2° espécie.p. 9527
$$\int_{0}^{2\pi} t sen(t) dt$$
 via Gauss-Legendre.p. 9728 $\int_{0}^{2} t sen(15t) dt$ via Gauss-Legendre.p. 9729 $\int_{0}^{\infty} e^{-t} tsen(t) dt$ via Gauss-Laguerre generalizada.p. 9830 $\int_{0}^{\infty} e^{-t} csen(3t) dt$ via Gauss-Laguerre.p. 9831 $\int_{\pi}^{\infty} e^{-t} cos(3t) dt$ via Gauss-Laguerre.p. 9932 $\int_{\pi}^{\infty} e^{-t} cos(3t) dt$ via Gauss-Laguerre.p. 10034 $\int_{-\infty}^{\infty} sech^3(t) dt$ via Gauss-Hermite.p. 10034 $\int_{-\infty}^{2} sech^4(t) dt$ via Gauss-Jacobi.p. 10135 $\int_{0}^{\frac{1}{2}} \frac{t^{\frac{3}{2}}}{\sqrt{\frac{1}{2}-t}} dt$ via Gauss-Jacobi.p. 10136 $\int_{0}^{\frac{1}{2}} \frac{t^{\frac{3}{2}}}{\sqrt{\frac{1}{2}-t}} dt$ via Gauss-Jacobi.p. 10137 $\int_{0}^{1} \frac{t^{\frac{1}{2}}}{\sqrt{(1-t)t}} dt$ via Gauss-Jacobi.p. 10238 $\int_{0}^{1} \frac{t^{\frac{3}{2}}}{\sqrt{(1-t)t}} dt$ via Gauss-Chebyshev de 1° espécie.p. 10239 $\int_{0}^{1} \sqrt{(1-t)t} t^{\frac{7}{2}} dt$ via Gauss-Chebyshev de 2° espécie.p. 10340 $\int_{0}^{1} \sqrt{(1-t)t} t^{\frac{9}{2}} dt$ via Gauss-Chebyshev de 2° espécie.p. 103

41	$\int_0^1 ((1-t)t)^{\frac{3}{2}} t^{\frac{7}{2}} dt \text{ via Gauss-Gegenbauer.}$	p. 104
42	$\int_{0}^{1} ((1-t)t)^{2} t^{\frac{5}{3}} dt \text{ via Gauss-Gegenbauer.}$	p. 104
43	Algoritmo para x_i e H _i de Gauss-Legendre pela matriz \mathbf{J}_r	p. 105
44	Algoritmo para x_i e H _i de Gauss-Laguerre generalizada pela matriz \mathbf{J}_r .	p. 106
45	Algoritmo para x_i e H _i de Gauss-Laguerre pela matriz \mathbf{J}_r	p. 106
46	Algoritmo para x_i e H _i de Gauss-Hermite pela matriz \mathbf{J}_r	p. 106
47	Algoritmo para x_i e H _i de Gauss-Jacobi pela matriz \mathbf{J}_r	p. 107
48	Algoritmo para x_i e \mathbf{H}_i de Gauss-Chebyshev de 1ª espécie pela matriz \mathbf{J}_r	p. 107
49	Algoritmo para x_i e H _i de Gauss-Chebyshev de 2 ^a espécie pela matriz \mathbf{J}_r .	p. 108
50	Algoritmo para x_i e H _i de Gauss-Gegenbauer pela matriz \mathbf{J}_r	p. 108
51	Percentual de zeros com precisão 10^{-15} e 10^{-14} em zero_h_hermite .	p. 114
52	Percentual de zeros com precisão 10^{-15} a 10^{-12} em zero_h_laguerre .	p. 115
53	Procedimento para escolha do método mais eficiente.	p. 119
54	Diferença e erro relativos em Gauss-Legendre.	p. 122
55	Diferença e erro relativos em Gauss-Laguerre generalizada	p. 122
56	Diferença e erro relativos em Gauss-Lagurre	p. 123
57	Diferença e erro relativos em Gauss-Hermite	p. 123
58	Diferença e erro relativos em Gauss-Jacobi	p. 123
59	Diferença e erro relativos em Gauss-Chebyshev de 1ª espécie	p. 124
60	Diferença e erro relativos em Gauss-Chebyshev de 2ª espécie	p. 124
61	Diferença e erro relativos em Gauss-Gegenbauer	p. 124
62	Algoritmo para quadratura iterativa.	p. 126
63	$\int_{0}^{10} e^{-t^2} dt \text{ via Gauss-Legendre.}$	p. 128
64	$\int_{-3}^{4} \frac{(4-t)\operatorname{sen}(e^{2t})}{\sqrt{t+3}} dt \text{ via Gauss-Jacobi.}$	p. 128

65	$\int_{-2}^{10} \frac{\cos(t^3) \sin(3t^2)}{\sqrt{(10-t)(t+2)}} dt \text{ via Gauss-Chebyshev de 1}^{a} \text{ espécie.} \dots \dots$	p. 129
66	$\int_0^9 \sqrt{(9-t)t} \cos(e^t) dt \text{ via Gauss-Chebyshev de } 2^a \text{ espécie. } \dots \dots$	p. 129
67	$\int_{-1}^{8} \frac{e^{\operatorname{sen}(5t^2)}}{\sqrt[5]{(8-t)(t+1)}} dt \text{ via Gauss-Gegenbauer.} \dots \dots$	p. 130
68	$\int_{2}^{\infty} \frac{2e^{-t^2}}{\sqrt{\pi}} dt \text{ via Gauss-Laguerre.}$	p. 130
69	$\int_{-\infty}^{\infty} e^{-t^2(t^2+1)} t^4 dt \text{ via Gauss-Hermite.} \qquad \dots \qquad $	p. 131
70	Integral nula via QUAD_ITER	p. 131
71	1/3 de Simpson composta × Gauss-Legendre	p. 136
72	Comparações entre convergências	p. 137

Lista de Tabelas

1	Quadraturas de Gauss	p.90
2	Erro $E_{r,g}$ das quadraturas de Gauss	p.91
3	$\int_0^{2\pi} t \operatorname{sen}(t) dt \text{ via Gauss-Legendre pela matriz } \mathbf{J}_r. \ldots \ldots \ldots \ldots$	p. 109
4	$\int_0^{2\pi} t \operatorname{sen}(15t) dt \text{ via Gauss-Legendre pela matriz } \mathbf{J}_r$	p. 109
5	$\int_0^\infty e^{-t} t \operatorname{sen}(t) dt \text{ via Gauss-Laguerre generalizada pela matriz } \mathbf{J}_r$	p. 109
6	$\int_0^\infty e^{-t} t \sin(3t) dt \text{ via Gauss-Laguerre generalizada pela matriz } \mathbf{J}_r. \dots$	p. 110
7	$\int_{\pi}^{\infty} e^{-t} \cos(t) dt \text{ via Gauss-Laguerre pela matriz } \mathbf{J}_r. \ldots \ldots \ldots$	p.110
8	$\int_{\pi}^{\infty} e^{-t} \cos(3t) dt \text{ via Gauss-Laguerre pela matriz } \mathbf{J}_r$	p. 110
9	$\int_{-\infty}^{\infty} \operatorname{sech}^{3}(t) dt \text{ via Gauss-Hermite pela matriz } \mathbf{J}_{r}. \ldots \ldots \ldots$	p.110
10	$\int_{-\infty}^{\infty} \operatorname{sech}^{4}(t) dt \text{ via Gauss-Hermite pela matriz } \mathbf{J}_{r}. \ldots \ldots \ldots$	p. 110
11	$\int_0^{\frac{1}{2}} \frac{t^{\frac{5}{2}}}{\sqrt{\frac{1}{2}-t}} dt \text{ via Gauss-Jacobi pela matriz } \mathbf{J}_r. \dots \dots \dots \dots$	p. 111
12	$\int_0^{\frac{1}{2}} \frac{t^{\frac{7}{2}}}{\sqrt{\frac{1}{2}-t}} dt \text{ via Gauss-Jacobi pela matriz } \mathbf{J}_r. \dots \dots \dots \dots$	p. 111
13	$\int_0^1 \frac{t^{\frac{7}{2}}}{\sqrt{(1-t)t}} dt \text{ via Gauss-Chebyshev de 1}^a \text{ espécie pela matriz } \mathbf{J}_r. .$	p. 111
14	$\int_0^1 \frac{t^{\frac{9}{2}}}{\sqrt{(1-t)t}} dt \text{ via Gauss-Chebyshev de 1}^{\mathfrak{a}} \text{ espécie pela matriz } \mathbf{J}_r. .$	p. 111
15	$\int_0^1 \sqrt{(1-t)t} \; t^{\frac{7}{2}} dt$ via Gauss-Chebyshev de 2ª espécie pela matriz $\mathbf{J}_r.$.	p. 112

16	$\int_0^1 \sqrt{(1-t)t} t^{\frac{9}{2}} dt$ via Gauss-Chebyshev de 2 ^a espécie pela matriz \mathbf{J}_r .	p. 112
17	$\int_0^1 ((1-t)t)^{\frac{3}{2}} t^{\frac{7}{2}} dt \text{ via Gauss-Gegenbauer pela matriz } \mathbf{J}_r. \dots \dots$	p. 112
18	$\int_0^1 ((1-t)t)^2 t^{\frac{5}{3}} dt \text{ via Gauss-Gegenbauer pela matriz } \mathbf{J}_r. \ldots \ldots$	p. 112
19	w(t) em cada intervalo de integração	p.116
20	w(t) do tipo Jacobi	p. 117
21	Comparação entre diferença e erro relativos.	p. 121
22	Diferença e erro relativos com valores de r não consecutivos	p. 125

1 Introdução

O objetivo deste trabalho é versar sobre os seguintes aspectos relacionados às quadraturas de Gauss: as principais ferramentas teóricas (definições, teoremas, corolários etc.) envolvidos neste método; a aplicabilidade no cálculo de integrais com intervalos finitos, semi-infinitos e duplamente infinitos, incluindo integrais com singularidades nos extremos de integração; os algoritmos e implementações para a integração; a comparação entre as eficiências de dois algoritmos e o erro cometido pela quadratura. Por fim, é apresentada a quadratura iterativa de Gauss – um esquema de integração iterativo e não-adaptativo que objetiva fornecer o resultado da quadratura com uma tolerância predefinida para o erro.

Neste capítulo são apresentados um resumo sobre a origem das quadraturas além da relação entre a quadratura de Gauss e os polinômios ortogonais. A questão do erro cometido pela aproximação também é apresentada. A Seção 1.4 apresenta os conteúdos que serão tratados nos próximos capítulos.

1.1 A quadratura numérica

Os problemas de quadratura consistem em aproximar a área de uma figura dada construindo outra figura geométrica de mesma área. Estes problemas já eram de interesse desde os tempos do matemático grego Arquimedes (287-212 a.C.). Inscrevendo e circunscrevendo polígonos regulares com cada vez mais lados em um círculo, Arquimedes chegou à conclusão de que π estava entre $\frac{223}{71}$ e $\frac{22}{7}$ ou que, até a segunda casa decimal, π era dado por 3,14. Por meio de aproximações como esta os antigos calculavam áreas de figuras planas. Ao longo dos séculos, especialmente no século XVII, com o advento do cálculo diferencial e integral, por Isaac Newton e Gottfried Wilhelm Leibniz, o cálculo de comprimentos, áreas e volumes foi recebendo um tratamento mais refinado (Eves, 2004).

Um dos principais conceitos do cálculo integral, a integral definida $\int_a^b f(x) dx$, é dada

pelas medidas das áreas entre a curva f(x) e o eixo x, acima deste (Figura 1), menos as áreas entre a curva f(x) e o eixo x, abaixo deste, em [a, b].

Do *Teorema Fundamental do Cálculo* tem-se que o valor da integral definida é dado por

$$\int_a^b f(x) \, dx = F(b) - F(a),$$

onde F(x) é a primitiva (ou antiderivada) de f(x). Se a antiderivada é prontamente obtida e suficientemente simples, o cálculo da integral está resolvido. Este processo de resolução é chamado de processo analítico e envolve uma série de regras normalmente estudadas nos cursos de Cálculo. Por outro lado, F(x) pode ser de difícil obtenção e requerer muitas operações sucessivas, ou ainda, a primitiva pode não ser expressa por uma combinação finita de outras funções algébricas, logarítmicas ou exponencias, como no caso em que $f(x) = e^{-x^2}$. Nestas situações, é indispensável recorrer a métodos de aproximação.

Os métodos que tratam de aproximar integrais envolvem uma combinação linear¹ de avaliações do integrando

$$\int_{a}^{b} f(x) dx \approx H_{1}f(x_{1}) + H_{2}f(x_{2}) + \ldots + H_{r}f(x_{r}), \qquad -\infty \le a < b \le \infty.$$
(1.1)

Os valores x_1, x_2, \ldots, x_r são chamados de nós ou abscissas e os números reais H_1, H_2, \ldots, H_r são os respectivos coeficientes. O somatório na equação (1.1) consiste em aproximar a integral pela soma das áreas² de retângulos de base H_i e altura $f(x_i)$. Num sentido mais amplo, este somatório é uma quadratura (Figura 2).

Segundo Davis e Rabinowitz (1984), integração numérica é o estudo de como o valor numérico de uma integral pode ser encontrado. Assim, a expressão no lado direito de (1.1) é uma integração numérica, também chamada de *regra de integração, quadratura*

 $^{^1 {\}rm Combinações}$ não lineares ocorrem ocasionalmente.

²Assumindo a existência de áreas negativas caso $f(x_i) < 0$.

Figura 2: Aproximação da integral por retângulos de base H_i e altura $f(x_i)$.

mecânica ou quadratura numérica, como será tratada neste trabalho.

1.2 A relação entre polinômios ortogonais e quadratura de Gauss

Na quadratura de Gauss, as abscissas x_i do somatório são tomadas como sendo os zeros de um polinômio ortogonal. Uma seqüência de polinômios ortogonais é definida com uma função peso (também denominada por *medida*) w(x) sobre um intervalo real [a, b]. Os polinômios ortogonais que serão apresentados neste trabalho são: os polinômios de Jacobi (incluindo casos particulares de Legendre, de Chebyshev³ de 1^a e de 2^a espécies e de Gegenbauer), de Hermite e de Laguerre generalizados.

A quadratura de Gauss está diretamente associada a esses polinômios pela função peso w(x) e pelo intervalo de integração [a, b] da seguinte forma:

$$\int_a^b w(x)f(x) dx \approx \operatorname{H}_1 f(x_1) + \operatorname{H}_2 f(x_2) + \ldots + \operatorname{H}_r f(x_r), \qquad -\infty \le a < b \le \infty.$$

1.2.1 Diferentes algoritmos para zeros e coeficientes

Este trabalho apresenta dois métodos diferentes que são usados freqüentemente na obtenção dos zeros x_i e coeficientes H_i : um é baseado no método de Newton e o outro no cálculo de autovalores e autovetores. Serão comparadas as eficiências de ambos os métodos para as quadraturas de Gauss tratadas neste trabalho.

 $^{^3\}mathrm{Adota}$ -se esta versão inglesa do nome russo, há também a versão T
schebyscheff, do alemão.

1.3 O erro de uma quadratura

Como em toda aproximação, o erro cometido é sempre um parâmetro cobiçado. O erro E_r cometido numa quadratura surge do fato de que o somatório é aproximadamente igual à integral:

$$\int_a^b w(x)f(x) \, dx = \sum_{i=1}^r \mathcal{H}_i f(x_i) + E_r$$

É por intermédio de uma estimativa de E_r que o cálculo da quadratura torna-se significativo. Sem este parâmetro não é possível estabelecer um grau de confiança no resultado. O erro também é utilizado na comparação da precisão de diferentes métodos.

A fórmula de E_r da quadratura de Gauss é um parâmetro de difícil tratamento em virtude do cálculo da derivada de alta ordem. É possível estimar este parâmetro por meio da teoria de diferenças divididas ou por meio de integrais de funções analíticas no plano complexo, todavia, persistirão os cálculos e operações excessivas.

Por outro lado, numa quadratura convergente qualquer, existe uma forma mais prática para se estimar o erro E_r cometido na aproximação com r abscissas, através do cálculo do módulo da diferença entre os resultados da quadratura com $r \in s$ abscissas, sendo s > r:

$$E_r \approx \left| \sum_{j=1}^s \mathcal{H}_j f(x_j) - \sum_{i=1}^r \mathcal{H}_i f(x_i) \right|, \qquad s > r.$$
(1.2)

Usualmente, as estimativas para o erro nos esquemas de integração têm fundamento na aproximação (1.2). Um esquema de integração pode ser classificado como adaptativo ou não-adaptativo e iterativo ou não-iterativo. Num esquema adaptativo, a quantidade de abscissas do somatório e a localização delas no eixo real está condicionada à natureza do integrando, enquanto que, no esquema não-adaptativo, as abscissas independem de sua natureza. Num esquema iterativo são obtidas aproximações sucessivas para a integral até que a tolerância especificada seja satisfeita. No esquema não-iterativo uma primeira aproximação é usada para produzir uma segunda que, por sua vez, é dada como o resultado final (Davis e Rabinowitz, 1984).

Segundo Berntsen e Espelid (1991), desde que o primeiro algoritmo de integração automática⁴ foi concebido, em 1963, por McKeeman⁵, muitos novos e sofisticados algoritmos

⁴Um programa de integração automática calcula uma integral sendo fornecidos os limites de integração, a rotina para avaliar a função f(x), uma tolerância ϵ para o erro e o limite máximo de iterações. O parâmetro de saída é o valor da integral quando a tolerância ϵ for satisfeita ou quando o número máximo de iterações for atingido.

⁵McKeeman, W. M. Certification of algorithm 145. Adaptative numerical integration by Simpson's rule. *Commun. ACM 6* (1963), 167-168.

de tais integrações, dentre adaptativos e não-adaptativos, têm sido desenvolvidos. Por exemplo, Campos (2007) apresenta um algoritmo de integração automática cujo esquema é iterativo e não-adaptativo para a quadratura de Gauss-Legendre.

Com base no esquema proposto por Campos, este trabalho apresenta a quadratura iterativa de Gauss: um esquema iterativo e não-adapatativo que fornece o resultado da integração dada uma tolerância para o erro. Este método é utilizável em todos os casos das quadraturas de Gauss de medidas clássicas.

1.4 Descrição dos próximos capítulos

O Capítulo 2 destina-se a abordar os principais aspectos teóricos sobre os polinômios ortogonais que têm implicações sobre a quadratura de Gauss, além de apresentar os polinômios ortogonais clássicos.

O Capítulo 3 introduz a interpolação e a quadratura de Hermite, conceitos essenciais para a formulação da quadratura de Gauss.

O Capítulo 4 é dedicado à apresentação das fórmulas das quadraturas de Gauss com medidas clássicas.

No Capítulo 5 são apresentados os algoritmos para as quadraturas e são realizados experimentos numéricos. São ainda comparadas as eficiências de dois tipos de algoritmos usados numa quadratura de Gauss, discute-se a aplicabilidade das quadraturas para uma dada integral. Dentre os algoritmos apresentados, é elaborado um método capaz de identificar a quadratura e o respectivo algoritmo mais eficiente.

No Capítulo 6 são apresentados a quadratura iterativa e o programa QUAD_ITER que calcula a integral via quadratura iterativa de Gauss por intermédio do método proposto no Capítulo 5. Com este programa são realizados experimentos com integrais impróprias e de difícil obtenção.

As conclusões e propostas para futuros trabalhos constam do Capítulo 7, seguido das referências bibliográficas.

2 Polinômios ortogonais

Historicamente, os polinômios ortogonais têm origem na teoria de frações contínuas. Esta relação é de grande importância e é um dos possíveis pontos de partida para o tratamento dos polinômios ortogonais (Andrade e Bracciali, 2005). No presente trabalho, a abordagem destes polinômios surge com a fórmula de Rodrigues.

Este capítulo é dividido em duas partes: a primeira destina-se a apresentar a fórmula de Rodrigues e algumas propriedades dos polinômios ortogonais que terão implicações na quadratura de Gauss, a segunda parte apresenta os polinômios de Jacobi (incluindo casos particulares de Legendre, de Chebyshev de 1^a e 2^a espécies e de Gegenbauer), de Hermite, de Laguerre e de Laguerre generalizado.

Tais polinômios foram considerados por Szegö (1975) como sendo polinômios ortogonais clássicos. A obra clássica de Szegö (1975) é considerada a melhor referência sobre o assunto dissertando sobre os polinômios ortogonais de medidas clássicas e sobre os polinômios ortogonais no círculo unitário. Especificamente serão expostos somente os principais resultados dos polinômios ortogonais que dizem respeito à quadratura de Gauss. Os empregos destes polinômios à Análise Aplicada são muitas e novas aplicações surgem a todo momento (Bracciali e Andrade, 2006).

As principais obras consultadas para as definições, teoremas e corolários apresentados neste capítulo foram Szegö (1975), Hildebrand (1974), Wilf (1978) e Bracciali e Andrade (2006). Procurou presevar-se, na medida do possível, as notações que constam da obra de Hildebrand (1974).

2.1 Propriedades

Seja $\alpha(x)$ uma função real limitada, não decrescente e com infinitos pontos de aumento sobre o intervalo finito ou infinto [a, b], tal que os momentos

$$\mu_k = \int_a^b x^k \, d\alpha(x), \qquad k = 0, 1, 2, \dots,$$

existem e são finitos. Então, se $\alpha(x)$ for contínua, $d\alpha(x) = w(x) dx$. No senso deste trabalho, w(x) é chamada de função peso (ou medida) com a propriedade $w(x) \ge 0$ e também é diferente da função identicamente nula em [a, b].

Seja \mathbb{P}_r o espaço de todos polinômios algébricos de grau menor ou igual a r.

Definição 2.1 (Seqüência de polinômios ortogonais) Uma seqüência de polinômios $\{\phi_r(x)\}_{r=0}^{\infty}$ pertencentes ao \mathbb{P}_n é uma seqüência de polinômios ortogonais em relação à função peso w(x) sobre o intervalo real $[a, b]^1$, se

(i)
$$\phi_r(x) = \sum_{i=0}^r A_{r,i} x^i \text{ possuir grav exatamente } r, \text{ isto } \acute{e}, A_{r,r} \neq 0,$$

(ii) $\langle \phi_k(x), \phi_r(x) \rangle = \int_a^b w(x) \phi_k(x) \phi_r(x) \, dx = \begin{cases} 0, & se \quad r \neq k, \\ \gamma_{\phi_r} \neq 0, & se \quad r = k. \end{cases}$

O termo $A_{r,i}$ representa o coeficiente em x^i do polinômio $\phi_r(x)$. O coeficiente dominante $A_{r,r}$ também é denotado por A_r . Quando $A_r = 1$, o polinômio $\phi_r(x)$ é chamado de polinômio ortogonal mônico denotado por $\psi_r(x)$.

Uma vez que a função peso $w(x) \ge 0$ no intervalo [a, b], segue que

$$\gamma_{\phi_r} = \int_a^b w(x) [\phi_r(x)]^2 \, dx > 0.$$
(2.1)

Definição 2.2 (Seqüência de polinômios ortonormais) Uma seqüência $\{\phi_r(x)\}_{r=0}^{\infty}$ é chamada de seqüência de polinômios ortonormais, denotada por $\{\phi_r^*(x)\}_{r=0}^{\infty}$ se, na Definição 2.1, $\gamma_{\phi_r} = 1$.

Teorema 2.1 Os polinômios $\phi_0(x)$, $\phi_1(x)$, ..., $\phi_k(x)$, pertencentes a uma seqüência de polinômios ortogonais $\{\phi_i(x)\}_{i=0}^k$, são linearmente independentes no \mathbb{P}_k .

Demonstração: Sejam B_i , i = 0, 1, ..., k, constantes reais tais que $\sum_{i=0}^k B_i \phi_i(x) = 0$. Logo, para cada polinômio $\phi_j(x)$, $0 \le j \le k$, tem-se que

$$\int_{a}^{b} w(x) \left(\sum_{i=0}^{k} B_{i} \phi_{i}(x) \right) \phi_{j}(x) dx = 0,$$

¹Caso $a = -\infty$ ou $b = \infty$, assume-se, sem perda de generalidade, que o intervalo é aberto neste(s) extremo(s).

$$\sum_{i=0}^{k} B_i \int_a^b w(x)\phi_i(x)\phi_j(x) \, dx = 0.$$

Pela Definição 2.1, tem-se que

$$\int_{a}^{b} w(x)\phi_{i}(x)\phi_{j}(x) dx = 0 \quad \text{para} \ i \neq j, \quad \text{e} \quad \gamma_{\phi_{j}} = \int_{a}^{b} w(x)\phi_{j}(x)\phi_{j}(x) dx > 0.$$

Logo,

$$\sum_{i=0}^{k} B_i \int_a^b w(x)\phi_i(x)\phi_j(x) \, dx = B_j \gamma_{\phi_j} = 0.$$

Portanto, $B_j = 0, j = 0, 1, ..., k$.

O teorema anterior garante que os polinômios ortogonais $\phi_i(x)$, i = 0, 1, ..., r formam uma base para \mathbb{P}_r . Isto também também se deve ao fato de que os polinômios são de graus diferentes.

Seja $q_{r-1}(x)$ um polinômio arbitrário de grau r-1 ou menor. Pelo Teorema 2.1, $q_{r-1}(x)$ é uma combinação linear dos polinômios ortogonais pertencentes a $\{\phi_i(x)\}_{i=0}^{r-1}$, isto é, $q_{r-1}(x) = \sum_{i=0}^{r-1} \mathcal{B}_i \phi_i(x)$. Por outro lado, pela Definição 2.1,

$$\sum_{i=0}^{r-1} \mathcal{B}_i \int_a^b w(x) \phi_i(x) \phi_r(x) dx = 0,$$

$$\int_a^b w(x) \sum_{i=0}^{r-1} \mathcal{B}_i \phi_i(x) \phi_r(x) dx = 0,$$

$$\int_a^b w(x) q_{r-1}(x) \phi_r(x) dx = 0.$$
 (2.2)

Agora, seja q_r um polinômio de grau r, então, $q_r(x) = \sum_{i=0}^r \mathcal{B}_i \phi_i(x), \ \mathcal{B}_r \neq 0$. Neste sentido,

$$\int_{a}^{b} w(x) q_{r}(x) \phi_{r}(x) dx = \int_{a}^{b} w(x) \sum_{i=0}^{r} \mathcal{B}_{i} \phi_{i}(x) \phi_{r}(x) dx,$$

$$= \sum_{i=0}^{r} \mathcal{B}_{i} \int_{a}^{b} w(x) \phi_{i}(x) \phi_{r}(x) dx,$$

$$\int_{a}^{b} w(x) q_{r}(x) \phi_{r}(x) dx = \mathcal{B}_{r} \int_{a}^{b} w(x) \phi_{r}(x) \phi_{r}(x) = \mathcal{B}_{r} \gamma_{\phi_{r}} \neq 0.$$
(2.3)

Os resultados dados pelas equações (2.2) e (2.3) mostram que dada uma seqüência

 $\{\phi_r(x)\}_{r=0}^{\infty}$, pode-se afirmar que

$$\int_{a}^{b} w(x)q(x)\phi_{r}(x) dx = \begin{cases} 0, & \forall q(x) & \text{de grau } r-1 \text{ ou menor,} \\ \mathcal{B}_{r}\gamma_{\phi_{r}} \neq 0, & \forall q(x) & \text{de grau } r. \end{cases}$$

A recíproca da afirmação acima é verdadeira. De fato, basta tomar $q(x) = \phi_i(x)$, para $i = 0, 1, \ldots, r - 1$, e $q(x) = \mathcal{B}_r \phi_r(x)$.

Teorema 2.2 Sejam $\{\varphi_r(x)\}_{r=0}^{\infty}$ e $\{\phi_r(x)\}_{r=0}^{\infty}$ duas seqüências de polinômios ortogonais com relação à função peso w(x) no intervalo [a, b]. Então,

$$\varphi_i(x) = \mathcal{C}_i \phi_i(x), \quad \mathcal{C}_i \in \mathbb{R}^*, \ i \in \mathbb{N}.$$

Demonstração: Uma vez que $\phi_0(x)$, $\phi_1(x)$, ..., $\phi_i(x)$ formam uma base para o espaço vetorial dos polinômios de grau menor ou igual a *i*, pode-se expressar $\varphi_i(x)$ como uma combinação linear desses polinômios, isto é, $\varphi_i(x) = \sum_{j=0}^i C_j \phi_j(x)$, $C_i \neq 0$. Por outro lado, pela equação (2.2),

$$\int_{a}^{b} w(x)\varphi_{0}(x)\phi_{i}(x) \, dx = \int_{a}^{b} w(x)\varphi_{1}(x)\phi_{i}(x) \, dx = \dots = \int_{a}^{b} w(x)\varphi_{i-1}(x)\phi_{i}(x) \, dx = 0.$$

Assim, para k = 0, 1, ..., i - 1,

$$0 = \int_a^b w(x)\varphi_i(x)\phi_k(x)\,dx = \sum_{j=0}^i \mathcal{C}_j \int_a^b w(x)\phi_j(x)\phi_k(x)\,dx = \mathcal{C}_k \gamma_{\phi_k}.$$

Contudo, $\gamma_{\phi_k} > 0$, então $\mathcal{C}_k = 0, k = 0, 1, \dots, i-1$. Portanto, $\varphi_i(x) = \mathcal{C}_i \phi_i(x)$.

O teorema anterior mostra que os polinômios de mesmo grau de duas seqüências de polinômios ortogonais definidas com a mesma função peso w(x) e com o mesmo intervalo [a, b] são iguais exceto por um fator constante. Particularmente, no caso dos polinômios mônicos $\psi_r(x)$, a constante é o coeficiente dominante A_r de $\phi_r(x)$, implicando que

$$\psi_r(x) = \frac{\phi_r(x)}{A_r}.$$
(2.4)

A norma de um polinômio $\phi_k(x)$ pertencente a uma seqüência de polinômios ortogonais $\{\phi_r(x)\}_{r=0}^{\infty}$ é dada por

$$\| \phi_k(x) \| = \sqrt{\langle \phi_k(x), \phi_k(x) \rangle}$$

e, segundo a notação adotada, a norma fica definida por

$$\sqrt{\gamma_{\phi_k}} = \sqrt{\int_a^b w(x) \, [\phi_k(x)]^2 \, dx}.$$
(2.5)

Para encontrar uma seqüência de polinômios ortonormais $\{\phi_r^*(x)\}_{r=0}^{\infty}$, basta dividir cada polinômio por sua norma:

$$\phi_r^*(x) = \frac{\phi_r(x)}{\sqrt{\gamma_{\phi_r}}}.$$
(2.6)

Além disto, a menos do sinal de A_r , uma seqüência de polinômios ortonormais construída a partir dos polinômios ortogonais $\phi_r(x)$ ou dos polinômios mônicos $\psi_r(x)$ é sempre a mesma:

$$\psi_r^*(x) = \frac{\psi_r(x)}{\sqrt{\gamma_{\psi_r}}} = \frac{\frac{\phi_r}{A_r}}{\sqrt{\int_a^b w(x) \left[\frac{\phi_r(x)}{A_r}\right]^2 dx}} = \frac{\phi_r}{\sqrt{\int_a^b w(x) [\phi_r(x)]^2 dx}} = \frac{\phi_r(x)}{\sqrt{\gamma_{\phi_r}}} = \phi_r^*(x).$$

Definindo

$$V_r^{(r)}(x) = \frac{d^r V_r(x)}{dx^r} \equiv w(x)\phi_r(x), \qquad (2.7)$$

a equação (2.2) toma a forma

$$\int_{a}^{b} V_{r}^{(r)}(x)q_{r-1}(x) \, dx = 0, r \ge 1.$$
(2.8)

Desenvolvendo (2.8) pelo emprego da integração por partes,

$$\int_{a}^{b} V_{r}^{(r)}(x) q_{r-1}(x) \, dx = V_{r}^{(r-1)}(x) q_{r-1}(x) \Big|_{a}^{b} - \int_{a}^{b} V_{r}^{(r-1)}(x) q_{r-1}'(x) \, dx \tag{2.9}$$

e repetindo o processo para a integral do termo do lado direito na igualdade acima, obtém-se

$$\int_{a}^{b} V_{r}^{(r-1)}(x) q_{r-1}'(x) \, dx = V_{r}^{(r-2)}(x) q_{r-1}'(x) \Big|_{a}^{b} - \int_{a}^{b} V_{r}^{(r-2)}(x) q_{r-1}''(x) \, dx.$$

Analogamente, para a integral do termo do lado direito das expressões resultantes,

$$\int_{a}^{b} V_{r}^{(r-2)}(x) q_{r-1}''(x) \, dx = V_{r}^{(r-3)}(x) q_{r-1}''(x) \Big|_{a}^{b} - \int_{a}^{b} V_{r}^{(r-3)}(x) q_{r-1}^{(3)}(x) \, dx,$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$b^{b} V_{r}^{(1)}(x) q_{r-1}^{(r-1)}(x) \, dx = V_{r}(x) q_{r-1}^{(r-1)}(x) \Big|_{a}^{b} - \int_{a}^{b} V_{r}(x) q_{r-1}^{(r)}(x) \, dx = V_{r}(x) q_{r-1}^{(r-1)}(x) \Big|_{a}^{b},$$

pois $q_{r-1}^{(r)}(x) = 0$. Conseqüentemente, substituindo as r-1 igualdades acima em (2.9),

$$\int_{a}^{b} V_{r}^{(r)}(x)q_{r-1}(x) dx = \left(V_{r}^{(r-1)}(x)q_{r-1}(x) - V_{r}^{(r-2)}(x)q_{r-1}'(x) + V_{r}^{(r-3)}(x)q_{r-1}''(x) + \dots + (-1)^{r-1}V_{r}(x)q_{r-1}^{(r-1)}(x) \right) \Big|_{a}^{b}.$$

Deste modo (2.8) torna-se

$$\left(V_r^{(r-1)}(x)q_{r-1}(x) - V_r^{(r-2)}(x)q_{r-1}'(x) + V_r^{(r-3)}(x)q_{r-1}''(x) + \dots + (-1)^{r-1}V_r(x)q_{r-1}^{(r-1)}(x)\right)\Big|_a^b = 0.$$
(2.10)

Por outro lado, da identidade (2.7), obtém-se a **fórmula de Rodrigues**²,

$$\phi_r(x) \equiv \frac{1}{w(x)} \frac{d^r V_r(x)}{dx^r},\tag{2.11}$$

Como o lado direito da fórmula de Rodrigues é um polinômio de grau r, sua derivada de ordem r + 1 é igual a zero, implicando que $V_r(x)$ deve satisfazer à equação diferencial

$$\frac{d^{r+1}}{dx^{r+1}} \left\{ \frac{1}{w(x)} \frac{d^r V_r(x)}{dx^r} \right\} = 0, \qquad (2.12)$$

em [a, b]. Esta equação terá 2r condições de contorno, obtidas em (2.10),

$$V_r(a) = V'_r(a) = V''_r(a) = \dots = V_r^{(r-1)}(a) = 0,$$
(2.13)

$$V_r(b) = V'_r(b) = V''_r(b) = \dots = V_r^{(r-1)}(b) = 0,$$
(2.14)

tendo em vista que (2.10) deve ser satisfeita para $q_{r-1}(a), q_{r-1}(b), q'_{r-1}(a), q'_{r-1}(b)$ e demais valores dependentes de $q_{r-1}(x)$. As condições acima são estabelecidas desde que $r \ge 1$.

Uma vez que as condições de contorno são independentes de $q_{r-1}(x)$, a solução de (2.12) também o será, mantendo a generalidade do polinômio $q_{r-1}(x)$. Portanto, a solução da equação diferencial (2.12), com as 2r condições de contorno, fornece o polinômio $\phi_r(x)$ de grau $r \in \mathbb{N}$ (como dado na equação (2.11)). Em outras palavras, ela fornece a seqüência de polinômios ortogonais $\{\phi_r(x)\}_{r=0}^{\infty}$ com relação à função peso w(x) sobre o intervalo [a, b]. Nota-se também que as únicas condições independentes do polinômio $q_{r-1}(x)$ que satisfazem (2.10) são exatamente aquelas em (2.13) e (2.14).

 $^{^2\}mathrm{A}$ fórmula recebe este nome em homenagem ao matemático Benjamin Olinde Rodrigues (1795-1851) que a formulou.

Teorema 2.3 Sendo o polinômio $\phi_r(x)$ pertencente à uma seqüência de polinômios ortogonais, então ele possui r zeros reais, distintos e contidos no intervalo (a, b).

Demonstração: Desde que $r \ge 1$ então pode-se afirmar que

$$\int_{a}^{b} w(x)\phi_{r}(x)\phi_{0}(x) dx = 0 \implies \phi_{0}(x)\int_{a}^{b} w(x)\phi_{r}(x) dx = 0,$$

pois $\phi_0(x)$ é uma constante. Assim, $\int_a^b w(x)\phi_r(x) dx = 0$. Além disto, como w(x) é de sinal constante em [a, b], então $\phi_r(x)$ deverá mudar de sinal pelo menos uma vez em (a, b). Portanto, $\phi_r(x)$ possui, no mínimo, um zero de multiplicidade ímpar em (a, b).

Agora sejam d_1, \ldots, d_m os zeros reais de $\phi_r(x)$ de multiplicidade ímpar, e_1, \ldots, e_m , contidos em (a, b), onde $m \leq r$. Suponha que m < r, então,

$$(x-d_1)(x-d_2)\dots(x-d_m)\phi_r(x) = A_{r,r}(x-d_1)^{e_1+1}(x-d_2)^{e_2+1}\dots(x-d_m)^{e_m+1}\rho_{r-m}(x),$$

onde $A_{r,r} \neq 0$ é o coeficiente dominante de $\phi_r(x)$, $e_i + 1$ é um número par e $\rho_{r-m}(x)$ é um polinômio de grau no máximo r - m cujos zeros são complexos, reais de multiplicidade par pertencentes a (a, b) ou reais de multiplicidade qualquer não pertencentes ao intervalo (a, b). Logo, $\rho_{r-m}(x)$ não muda de sinal em (a, b) e, conseqüentemente, o produto dado por $(x - d_1)(x - d_2) \dots (x - d_m)\phi_r(x)$ também não muda de sinal em (a, b).

Entretanto, desde que m < r, o produto $(x-d_1)(x-d_2)\dots(x-d_m)$ será um polinômio de grau menor do que r. Em virtude de (2.2),

$$\int_{a}^{b} w(x)(x-d_{1})(x-d_{2})\dots(x-d_{m})\phi_{r}(x) \, dx = 0.$$

Mas como w(x) não muda de sinal em [a, b], o restante do integrando constituirá um polinômio que deverá mudar de sinal pelo menos uma vez em (a, b). Neste sentido, mnão poderá ser menor que r, implicando que m = r, conseqüentemente, $\phi_r(x)$ não possui qualquer zero complexo, ou real de multiplicidade par pertencente a (a, b) ou, ainda, real de multiplicidade qualquer não pertencente a (a, b).

Portanto, $\phi_r(x)$ é um polinômio cujos zeros somam r, isto é, todos os zeros são reais de multiplicidade 1 e contidos no intervalo (a, b).

Teorema 2.4 (Fórmula de recorrência de três termos para $\{\phi_r(x)\}_{r=0}^{\infty}$) Cada seqüência de polinômios ortogonais $\{\phi_r(x)\}_{r=0}^{\infty}$ satisfaz uma fórmula de recorrência de três termos da forma com a_r , b_r e c_r sendo constantes, $r \ge 0$ e $\phi_{-1}(x) \equiv 0$.

Demonstração: Seja $\phi_r(x)$ um polinômio da forma

$$\phi_r(x) = A_{r,r}x^r + A_{r,r-1}x^{r-1} + \ldots + A_{r,1}x + A_{r,0},$$

Pelo Teorema 2.1 todo polinômio de grau r+1 pode ser expresso como combinação linear dos polinômios $\phi_0(x)$, $\phi_1(x)$, ..., $\phi_r(x)$, $\phi_{r+1}(x)$, então,

$$x\phi_r(x) = C_{r+1}\phi_{r+1}(x) + C_r\phi_r(x) + \ldots + C_1\phi_1(x) + C_0\phi_0(x),$$

$$x\phi_r(x) = \sum_{i=0}^{r+1} C_i\phi_i(x),$$
(2.16)

onde C_i é o coeficiente de $\phi_i(x)$ com $C_{r+1} \neq 0$. Desde que $j \leq r-2$,

$$\int_a^b w(x) \, x \, \phi_j(x) \, \phi_r(x) \, dx = 0.$$

Substituindo (2.16) na expressão anterior,

$$\int_{a}^{b} w(x) \phi_{j}(x) \left(\sum_{i=0}^{r+1} C_{i} \phi_{i}(x)\right) dx = 0,$$

$$\sum_{i=0}^{r+1} C_{i} \int_{a}^{b} w(x) \phi_{j}(x) \phi_{i}(x) dx = 0.$$
 (2.17)

Assim, para cada $i \neq j$, tem-se $C_i \int_a^b w(x) \phi_j(x) \phi_i(x) dx = 0$ e a equação (2.17) se desenvolve em

$$C_j \int_a^b w(x) \, [\phi_j(x)]^2 \, dx = 0.$$

Como $\int_{a}^{b} w(x) [\phi_j(x)]^2 dx = \gamma_{\phi_j} > 0$, resta que $C_j = 0, \qquad j \le r - 2.$

Empregando o resultado (2.18) no desenvolvimento da expressão (2.16),

$$x\phi_r(x) = C_{r+1}\phi_{r+1}(x) + C_r\phi_r(x) + C_{r-1}\phi_{r-1}(x),$$

$$\phi_{r+1}(x) = \frac{x\phi_r(x)}{C_{r+1}} - \frac{C_r\phi_r(x)}{C_{r+1}} - \frac{C_{r-1}\phi_{r-1}(x)}{C_{r+1}},$$

(2.18)

$$\phi_{r+1}(x) = \left(\frac{x}{C_{r+1}} - \frac{C_r}{C_{r+1}}\right)\phi_r(x) - \frac{C_{r-1}\phi_{r-1}(x)}{C_{r+1}},$$

onde, definindo-se $a_r \equiv \frac{1}{C_{r+1}}$, $b_r \equiv \frac{C_r}{C_{r+1}}$ e $c_r \equiv \frac{C_{r-1}}{C_{r+1}}$, fica demonstrada a equação (2.15).

A determinação do coeficiente a_r pode ser feita observando a equação (2.16), pela qual,

$$x(A_{r,r}x^{r} + \ldots + A_{r,0}) = C_{r+1}(A_{r+1,r+1}x^{r+1} + \ldots + A_{r+1,0}) + C_{r}\phi_{r} + \ldots + C_{0}\phi_{0}$$

Considerando a igualdade entre os coeficientes do termo de grau r+1 na expressão anterior,

$$A_{r,r} = C_{r+1}A_{r+1,r+1} \implies C_{r+1} = \frac{A_{r,r}}{A_{r+1,r+1}}.$$

Como $a_r \equiv \frac{1}{C_{r+1}},$
 $a_r = \frac{A_{r+1,r+1}}{A_{r,r}}.$ (2.19)

Os coeficientes b_r e c_r serão tratados a partir do teorema a seguir.

Teorema 2.5 (Identidade de Christoffel-Darboux) Cada seqüência $\{\phi_r(x)\}_{r=0}^{\infty}$ obedece à seguinte relação

$$\sum_{k=0}^{r} \frac{\phi_k(x)\phi_k(y)}{\gamma_{\phi_k}} = \frac{\phi_{r+1}(x)\phi_r(y) - \phi_r(x)\phi_{r+1}(y)}{a_r\gamma_{\phi_r}(x-y)}.$$

Demonstração: Multiplicando-se a equação (2.15) por $w(x) \phi_{k+1}(x)$ e, em seguida, integrando-a em (a, b), obtém-se

$$\int_{a}^{b} w(x) \left[\phi_{k+1}(x)\right]^{2} dx = a_{k} \int_{a}^{b} w(x) x \phi_{k}(x) \phi_{k+1}(x) dx - b_{k} \int_{a}^{b} w(x) \phi_{k}(x) \phi_{k+1}(x) dx - c_{k} \int_{a}^{b} w(x) \phi_{k-1}(x) \phi_{k+1}(x) dx.$$

Como, na expressão anterior, os dois últimos termos do lado direito são nulos devido à ortogonalidade, esta se reduz a

$$\gamma_{\phi_{k+1}} = a_k \int_a^b w(x) \, x \, \phi_k(x) \, \phi_{k+1}(x) \, dx.$$
(2.20)

Por outro lado, multiplicando-se (2.15) por $w(x) \phi_k(x)$ e, da mesma forma, integrando tal

expressão em (a, b),

$$\int_{a}^{b} w(x) \phi_{k}(x) \phi_{k+1}(x) dx = a_{k} \int_{a}^{b} w(x) x [\phi_{k}(x)]^{2} dx - b_{k} \int_{a}^{b} w(x) [\phi_{k}(x)]^{2} dx$$
$$-c_{k} \int_{a}^{b} w(x) \phi_{k-1}(x) \phi_{k}(x) dx,$$
$$0 = a_{k} \int_{a}^{b} w(x) x [\phi_{k}(x)]^{2} dx - b_{k} \gamma_{\phi_{k}},$$
$$b_{k} = \frac{a_{k}}{\gamma_{\phi_{k}}} \int_{a}^{b} w(x) x [\phi_{k}(x)]^{2} dx.$$
(2.21)

Ainda uma vez, ao se repetir o mesmo procedimento, multiplicando $w(x) \phi_{k-1}(x)$ por (2.15),

$$\int_{a}^{b} w(x) \phi_{k-1}(x) \phi_{k+1}(x) dx = a_{k} \int_{a}^{b} w(x) x \phi_{k-1}(x) \phi_{k}(x) dx$$
$$-b_{k} \int_{a}^{b} w(x) \phi_{k-1}(x) \phi_{k}(x) dx - c_{k} \int_{a}^{b} w(x) [\phi_{k-1}(x)]^{2} dx,$$
$$0 = a_{k} \int_{a}^{b} w(x) x \phi_{k-1}(x) \phi_{k}(x) dx - c_{k} \gamma_{\phi_{k-1}}.$$
(2.22)

Substituindo k por k-1 em (2.20) e rearranjando os termos,

$$\int_{a}^{b} w(x) \, x \, \phi_{k-1}(x) \, \phi_{k}(x) \, dx \, = \, \frac{\gamma_{\phi_{k}}}{a_{k-1}}$$

Usando a igualdade anterior em (2.22),

$$c_k = \frac{a_k \gamma_{\phi_k}}{a_{k-1} \gamma_{\phi_{k-1}}}.$$
 (2.23)

Dividindo a equação (2.15) por $a_k \gamma_{\phi_k}$ e, posteriormente, usando a igualdade (2.23),

$$\frac{\phi_{k+1}(x)}{a_k\gamma_{\phi_k}} = \frac{x\phi_k(x)}{\gamma_{\phi_k}} - \frac{b_k\phi_k(x)}{a_k\gamma_{\phi_k}} - \frac{\phi_{k-1}(x)}{a_{k-1}\gamma_{\phi_{k-1}}},$$
$$\frac{x\phi_k(x)}{\gamma_{\phi_k}} = \frac{\phi_{k+1}(x)}{a_k\gamma_{\phi_k}} + \frac{\phi_{k-1}(x)}{a_{k-1}\gamma_{\phi_{k-1}}} + \frac{b_k\phi_k(x)}{a_k\gamma_{\phi_k}}.$$

Multiplicando a equação anterior por $\phi_k(y)$, onde y é um parâmetro arbitrário,

$$\frac{x\phi_k(x)\phi_k(y)}{\gamma_{\phi_k}} = \frac{\phi_k(y)\phi_{k+1}(x)}{a_k\gamma_{\phi_k}} + \frac{\phi_{k-1}(x)\phi_k(y)}{a_{k-1}\gamma_{\phi_{k-1}}} + \frac{b_k\phi_k(x)\phi_k(y)}{a_k\gamma_{\phi_k}}, \quad (2.24)$$

permutando $y \operatorname{com} x \operatorname{em} (2.24)$,

$$\frac{y\phi_k(y)\phi_k(x)}{\gamma_{\phi_k}} = \frac{\phi_k(x)\phi_{k+1}(y)}{a_k\gamma_{\phi_k}} + \frac{\phi_{k-1}(y)\phi_k(x)}{a_{k-1}\gamma_{\phi_{k-1}}} + \frac{b_k\phi_k(y)\phi_k(x)}{a_k\gamma_{\phi_k}}$$
(2.25)

e subtraindo (2.25) de (2.24), será obtido

$$(x-y)\frac{\phi_{k}(x)\phi_{k}(y)}{\gamma_{\phi_{k}}} = \frac{\phi_{k+1}(x)\phi_{k}(y) - \phi_{k}(x)\phi_{k+1}(y)}{a_{k}\gamma_{\phi_{k}}} - \frac{\phi_{k}(x)\phi_{k-1}(y) - \phi_{k-1}(x)\phi_{k}(y)}{a_{k-1}\gamma_{\phi_{k-1}}}$$

Tomando k = 0, 1, ..., r no resultado anterior e somando as equações resultantes, verificase o cancelamento dos termos situados no lado direito destas, com exceção do primeiro termo da r-ésima equação, reduzindo o somatório a

$$\sum_{k=0}^{r} (x-y) \frac{\phi_k(x)\phi_k(y)}{\gamma_{\phi_k}} = \frac{\phi_{r+1}(x)\phi_r(y) - \phi_r(x)\phi_{r+1}(y)}{a_r \gamma_{\phi_r}}$$

e, finalmente, a

$$\sum_{k=0}^{r} \frac{\phi_k(x)\phi_k(y)}{\gamma_{\phi_k}} = \frac{\phi_{r+1}(x)\phi_r(y) - \phi_r(x)\phi_{r+1}(y)}{a_r\gamma_{\phi_r}(x-y)}.$$

O limite quando y tende a x na identidade de Christoffel-Darboux implica que

conduzindo aos seguintes corolários:

Corolário 2.5.1

$$\sum_{k=0}^{r} \frac{[\phi_k(x)]^2}{\gamma_{\phi_k}} = \frac{1}{a_r \gamma_{\phi_r}} \left[\phi_r(x) \phi_{r+1}'(x) - \phi_{r+1}(x) \phi_r'(x) \right].$$

Corolário 2.5.2 Dois polinômios pertencentes a $\{\phi_r(x)\}_{r=0}^{\infty}$ de graus consecutivos, $\phi_k(x)$ e $\phi_{k+1}(x)$, não possuem zeros em comum.

Demonstração: Sem perda de generalidade, sejam os polinômios $\phi_k(x) \in \phi_{k+1}(x)$ mônicos, ou seja, com coeficientes dominantes $A_k = A_{k+1} = 1$. Isto implica que $a_k = 1$, em virtude de (2.19). Uma vez que $\gamma_{\phi_k} > 0$, o Corolário 2.5.1 implica que

$$\phi_k(x)\phi'_{k+1}(x) - \phi_{k+1}(x)\phi'_k(x) > 0.$$
(2.26)

Sejam $x_{k,i} \in x_{k,i+1}$ dois zeros consecutivos de $\phi_k(x)$ tais que $x_{k,i} < x_{k,i+1}$. Então, avaliando (2.26) nestes dois valores,

$$\phi_{k+1}(x_{k,i})\phi'_k(x_{k,i}) < 0$$
 e $\phi_{k+1}(x_{k,i+1})\phi'_r(x_{k,i+1}) < 0.$

Por outro lado, como $\phi'_k(x_{k,i})$ e $\phi'_k(x_{k,i+1})$ possuem sinais opostos, então $\phi_{k+1}(x_{k,i})$ e $\phi_{k+1}(x_{k,i+1})$ também. Logo, existe pelo menos um zero de $\phi_{k+1}(x)$ no intervalo $(x_{k,i}, x_{k,i+1})$.

O coeficiente b_r do Teorema 2.4 é dado por (2.21). Assim,

$$\begin{split} b_r &= \frac{a_r}{\gamma \phi_r} \int_a^b w(x) \, x \, [\phi_r(x)]^2 \, dx, \\ &= \frac{a_r}{\gamma \phi_r} \int_a^b w(x) \, x \, \phi_r(x) \phi_r(x) \, dx, \\ &= \frac{a_r}{\gamma \phi_r} \int_a^b w(x) \, x \, \phi_r(x) \Big(A_{r,r} x^r + A_{r,r-1} x^{r-1} + \ldots + A_{r,0} \Big) \, dx, \\ &= \frac{a_r}{\gamma \phi_r} \int_a^b w(x) \, \phi_r(x) \Big(A_{r,r} x^{r+1} + A_{r,r-1} x^r + \ldots + A_{r,0} x \Big) \, dx, \\ &= \frac{a_r}{\gamma \phi_r} \left(A_{r,r} \int_a^b w(x) \phi_r(x) x^{r+1} \, dx + A_{r,r-1} \int_a^b w(x) \phi_r(x) x^r \, dx, \right] \end{split}$$

$$+A_{r,r-2}\int_{a}^{b}w(x)\phi_{r}(x)x^{r-1}\,dx\,+\,\ldots\,+\,A_{r,0}\int_{a}^{b}w(x)\phi_{r}(x)x\,dx\bigg),$$
$$b_{r} = \frac{a_{r}}{\gamma\phi_{r}}\left(A_{r,r}\int_{a}^{b}w(x)\phi_{r}(x)x^{r+1}\,dx\,+\,A_{r,r-1}\int_{a}^{b}w(x)\phi_{r}(x)x^{r}\,dx\,\right).$$

Aplicando a equação (2.7) na expressão anterior, tem-se que

$$b_r = \frac{a_r}{\gamma_{\phi_r}} \left(A_{r,r} \int_a^b V_r^{(r)}(x) x^{r+1} dx + A_{r,r-1} \int_a^b V_r^{(r)}(x) x^r dx \right),$$

e integrando por partes r vezes, analogamente ao que foi realizado com a equação (2.8),

$$b_{r} = \frac{a_{r}}{\gamma_{\phi_{r}}} \left\{ A_{r,r} \left[\left(V_{r}^{(r-1)}(x) x^{r+1} - \ldots + (-1)^{r-1}(r+1) r \cdot \ldots \cdot 3 V_{r}(x) x^{2} \right) \Big|_{a}^{b} + (-1)^{r} (r+1)! \int_{a}^{b} V_{r}(x) x \, dx \right] + A_{r,r-1} \left[\left(V_{r}^{(r-1)}(x) x^{r} - r V_{r}^{(r-2)}(x) x^{r-1} + \ldots + (-1)^{r-1} r! V_{r}(x) x \right) \Big|_{a}^{b} + (-1)^{r} r! \int_{a}^{b} V_{r}(x) \, dx \right] \right\}.$$

A partir das condições de contorno (2.13) e (2.14), a expressão anterior se reduz a

$$b_r = (-1)^r \frac{a_r}{\gamma_{\phi_r}} r! \left(A_{r,r}(r+1) \int_a^b V_r(x) x \, dx + A_{r,r-1} \int_a^b V_r(x) \, dx \right).$$
(2.27)

Por sua vez, γ_{ϕ_r} é desenvolvido, a partir de sua definição dada em (2.1), como

$$\begin{split} \gamma_{\phi_r} &= \int_a^b w(x) \, [\phi_r(x)]^2 \, dx > 0, \\ &= \int_a^b w(x) \, \phi_r(x) \, \phi_r(x) \, dx, \\ &= \int_a^b w(x) \, \phi_r(x) \left(A_{r,r} x^r + A_{r,r-1} x^{r-1} + \ldots + A_{r,0} \right) dx, \\ &= A_{r,r} \int_a^b w(x) \phi_r(x) x^r dx + A_{r,r-1} \int_a^b w(x) \phi_r(x) x^{r-1} dx + \ldots \\ &+ A_{r,0} \int_a^b w(x) \phi_r(x) \, dx, \end{split}$$

$$\gamma_{\phi_r} = A_{r,r} \int_a^b w(x) \phi_r(x) x^r \, dx.$$

Novamente, partindo de (2.7), $\gamma_{\phi_r} = A_{r,r} \int_a^b V_r^{(r)}(x) x^r dx$. Integrando por partes r vezes, analogamente ao caso efetuado na equação (2.8),

$$\gamma_{\phi_r} = A_{r,r} \bigg[\bigg(V_r^{(r-1)}(x) x^r - r V_r^{(r-2)}(x) x^{r-1} + \ldots + (-1)^{r-1} r! V_r(x) x \bigg) \Big|_a^b + (-1)^r r! \int_a^b V_r(x) \, dx \bigg].$$

Pelas condições de contorno (2.13) e (2.14),

$$\gamma_{\phi_r} = (-1)^r r! A_r \int_a^b V_r(x) \, dx > 0.$$
(2.28)

A fórmula de recorrência de três termos para os polinômios mônicos $\psi_r(x)$ é dada pelo Teorema 2.4 usando que $A_r = 1$ nos seus coeficientes a_r , b_r e c_r . Estes coeficientes são dados por (2.19), (2.21) e (2.23), respectivamente, ficando demonstrado o seguinte teorema.

Teorema 2.6 (Fórmula de recorrência de três termos para $\{\psi_r(x)\}_{r=0}^{\infty}$) Cada seqüência de polinômios mônicos $\{\psi_r(x)\}_{r=0}^{\infty}$ satisfaz a uma fórmula de recorrência de três termos da forma

$$\psi_{r+1}(x) = (x - \alpha_r) \psi_r(x) - \beta_r \psi_{r-1}(x), \qquad r \ge 0, \tag{2.29}$$

 $\psi_{-1}(x) \equiv 0, \quad \psi_0(x) = 1, \text{ onde }$

$$\alpha_r = \frac{1}{\gamma_{\psi_r}} \int_a^b w(x) \, x \, [\psi_r(x)]^2 \, dx, \ r \ge 0,$$
(2.30)

$$\beta_r = \frac{\gamma_{\psi_r}}{\gamma_{\psi_{r-1}}}, \quad r \ge 1.$$
(2.31)

Reescreve-se α_r , notando que $\psi_r(x) = \frac{\phi_r(x)}{A_r} e \gamma_{\psi_r} = \frac{\gamma_{\phi_r}}{A_r^2}$ e notando também a forma de b_r em (2.21),

$$\alpha_r = \frac{A_r^2}{\gamma_{\phi_r}} \int_a^b w(x) x \left[\frac{\phi_r(x)}{A_r}\right]^2 dx = \frac{1}{\gamma_{\phi_r}} \int_a^b w(x) x \left[\phi_r(x)\right]^2 dx,$$

$$\alpha_r = \frac{b_r}{a_r}.$$
(2.32)

Reescreve-se β_r notando que $\gamma_{\psi_r} = \frac{\gamma_{\phi_r}}{A_r^2}$ e $a_{r-1} = \frac{A_r}{A_{r-1}}$,

$$\beta_r = \frac{A_{r-1}^2 \gamma_{\phi_r}}{A_r^2 \gamma_{\phi_{r-1}}},$$

$$\beta_r = \frac{\gamma_{\phi_r}}{a_{r-1}^2 \gamma_{\phi_{r-1}}}.$$
(2.33)

Teorema 2.7 (Fórmula de recorrência de três termos para $\{\psi_r^*(x)\}_{r=0}^{\infty}$) Cada seqüência de polinômios ortonormais $\{\psi_r^*(x)\}_{r=0}^{\infty}$ satisfaz a uma fórmula de recorrência de três termos da forma

$$\sqrt{\beta_{r+1}}\psi_{r+1}^* = (x - \alpha_r)\psi_r^*(x) - \sqrt{\beta_r}\psi_{r-1}^*(x), \qquad r \ge 0, \tag{2.34}$$

$$\psi_0^*(x) = \left(\int_a^b w(x) \, dx\right)^{-\frac{1}{2}},\tag{2.35}$$

sendo $\psi_{-1}^*(x) \equiv 0$, α_r como em (2.30) e β_r como em (2.31).

Demonstração: Inserindo $\psi_r(x) = \psi_r^*(x) \sqrt{\gamma_{\psi_r}}$ em (2.29) e dividindo por $\sqrt{\gamma_{\psi_{r+1}}}$,

$$\psi_{r+1}^{*}(x) = (x - \alpha_{r}) \sqrt{\frac{\gamma_{\psi_{r}}}{\gamma_{\psi_{r+1}}}} \psi_{r}^{*}(x) - \beta_{r} \sqrt{\frac{\gamma_{\psi_{r-1}}}{\gamma_{\psi_{r+1}}}} \psi_{r-1}^{*}(x),$$

que, de (2.31), pode ser escrita como

$$\psi_{r+1}^{*}(x) = (x - \alpha_{r}) \frac{\psi_{r}^{*}(x)}{\sqrt{\beta_{r+1}}} - \beta_{r} \frac{\psi_{r-1}^{*}(x)}{\sqrt{\beta_{r+1}\beta_{r}}}$$

Multiplicando a equação anterior por $\sqrt{\beta_{r+1}}$, obtém-se (2.34). O valor inicial $\psi_0^*(x)$ é obtido pela normalização de $\psi_0(x) = 1$.

Pela fórmula de recorrência para os polinômios ortonormais (2.34), tem-se que

$$x\psi_r^*(x) = \sqrt{\beta_r}\psi_{r-1}^* + \alpha_r\psi_r^*(x) + \sqrt{\beta_{r+1}}\psi_{r+1}^*,$$

e fazendo $r = 0, 1, \dots, R - 1$, tem-se, respectivamente,

$$\begin{aligned} x\psi_0^*(x) &= \alpha_0\psi_0^*(x) + \sqrt{\beta_1}\psi_1^*, \\ x\psi_1^*(x) &= \sqrt{\beta_1}\psi_0^* + \alpha_1\psi_1^*(x) + \sqrt{\beta_2}\psi_2^*, \\ x\psi_2^*(x) &= \sqrt{\beta_2}\psi_1^* + \alpha_2\psi_2^*(x) + \sqrt{\beta_3}\psi_3^*, \end{aligned}$$

$$\begin{aligned} \vdots & \vdots \\ x\psi_{R-1}^*(x) &= \sqrt{\beta_{R-1}}\psi_{R-2}^* + \alpha_{R-1}\psi_{R-1}^*(x) + \sqrt{\beta_R}\psi_R^*, \end{aligned}$$

ou, na forma matricial,

$$x \begin{bmatrix} \psi_{0}^{*}(x) \\ \psi_{1}^{*}(x) \\ \psi_{2}^{*}(x) \\ \vdots \\ \psi_{R-1}^{*}(x) \end{bmatrix} = \begin{bmatrix} \alpha_{0} & \sqrt{\beta_{1}} & & & 0 \\ \sqrt{\beta_{1}} & \alpha_{1} & \sqrt{\beta_{2}} & & & \\ & \sqrt{\beta_{2}} & \alpha_{2} & \sqrt{\beta_{3}} & & \\ & & \ddots & \ddots & \ddots & \\ 0 & & & \sqrt{\beta_{R-1}} & \alpha_{R-1} \end{bmatrix} \begin{bmatrix} \psi_{0}^{*}(x) \\ \psi_{1}^{*}(x) \\ \psi_{1}^{*}(x) \\ \vdots \\ \psi_{2}^{*}(x) \\ \vdots \\ \psi_{R-1}^{*}(x) \end{bmatrix} + \sqrt{\beta_{R}} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \psi_{R}^{*}(x) \\ \psi_{R}^{*}(x) \end{bmatrix},$$

$$(2.36)$$

na qual a matriz quadrada de ordem R, simétrica e tridiagonal é a matriz de Jacobi \mathbf{J}_R . Sendo $\Psi_{R-1}(x)$ o vetor $(\psi_0^*(x), \psi_1^*(x), \dots, \psi_{R-1}^*(x))^T$, então a equação matricial pode ser expressa como

$$x \Psi_{R-1}(x) = \mathbf{J}_R \Psi_{R-1}(x) + \sqrt{\beta_R} \psi_R^*(x) \mathbf{u}_{R-1}, \qquad (2.37)$$

sendo \mathbf{u}_{R-1} o vetor unitário com 1 na última posição e zero nas demais. Seja $x_{R,i}$ o *i*-ésimo zero de $\psi_R^*(x)$. Avaliando a equação (2.37) em $x_{R,i}$,

$$x_{R,i} \Psi_{R-1}(x_{R,i}) = \mathbf{J}_R \Psi_{R-1}(x_{R,i}).$$

Uma vez que $\psi_0^*(x) = \left(\int_a^b w(x) \, dx\right)^{-\frac{1}{2}} > 0$, então o vetor $\Psi_{R-1}(x_{R,i})$ é não-nulo. Assim, $x_{R,i}$, $i = 0, 1, \ldots, R-1$ são autovalores da matriz de Jacobi \mathbf{J}_R . Deste modo, fica demonstrado o seguinte teorema:

Teorema 2.8 Os autovalores $x_{R,0}, x_{R,1}, \ldots, x_{R,R-1}$ da matriz de Jacobi \mathbf{J}_R são os zeros de $\psi_R^*(x)$ e o autovetor correspondente a $x_{R,i}$ é $(\psi_0^*(x_{R,i}), \psi_1^*(x_{R,i}), \ldots, \psi_{R-1}^*(x_{R,i}))^T$.

Corolário 2.8.1 Seja \mathbf{v}_i o autovetor normalizado da matriz de Jacobi correspondente ao autovalor $x_{R,i}$,

$$x_{R,i}\mathbf{v}_i = \mathbf{J}_R\mathbf{v}_i, \qquad \mathbf{v}_i^T\mathbf{v}_i = 1,$$

e seja $\mathbf{v}_{i,1}$ denotando seu primeiro componente. Então,

$$\frac{\mathbf{v}_{i,1}^2}{[\psi_0^*(x)]^2} = \frac{1}{\sum_{j=0}^{R-1} [\psi_j^*(x_{R,i})]^2}.$$
(2.38)
Demonstração: Como \mathbf{v}_i está normalizado, $\mathbf{v}_i = \Psi_{R-1}(x_{R,i}) \left(\sum_{j=0}^{R-1} [\psi_j^*(x_{R,i})]^2 \right)^{-\frac{1}{2}}$, comparando o primeiro componente de ambos os vetores,

$$\mathbf{v}_{i,1} = \frac{\psi_0^*(x)}{\sqrt{\sum_{j=0}^{R-1} [\psi_j^*(x_{R,i})]^2}}$$

Elevando os dois lados da equação anterior ao quadrado, obtém-se (2.38).

Teorema 2.9 Se [a, b] for um intervalo simétrico com relação à origem e a função peso w(x) for uma função par, então $\phi_r(x)$ será uma função par ou ímpar de acordo com r par ou ímpar, respectivamente.

Demonstração: Sem perda de generalidade, suponha que o polinômio $\phi_r(x)$ seja mônico, isto é, $A_{r,r} = 1$. Uma vez que $\phi_r(x) = \sum_{i=0}^r A_{r,i} x^i$, então o sistema linear de ordem r dado por $\int_a^b w(x)\phi_r(x)x^i dx = 0$, para i = 0, 1, ..., r - 1, determina $A_{r,i}, i = 0, ..., r - 1$. Em outras palavras, o sistema determina $\phi_r(x)$. Fazendo x = -x no sistema,

$$\begin{split} &\int_{a}^{b} w(-x)\phi_{r}(-x)(-x)^{i}(-1) \, dx &= 0, \\ &(-1)^{i+1} \int_{a}^{b} w(-x)\phi_{r}(-x)x^{i} \, dx &= 0, \\ &\int_{a}^{b} w(-x)\phi_{r}(-x)x^{i} \, dx &= 0, \qquad i = 0, 1, ..., r-1 \end{split}$$

Mas, por hipótese, tem-se que w(x) é uma função par no intervalo simétrico [a, b] com relação à origem, isto é, $w(x) = w(-x) \quad \forall x \in [a, b]$. Daí,

$$\int_{a}^{b} w(x)\phi_{r}(-x)x^{i} dx = 0, \qquad i = 0, 1, ..., r - 1.$$
(2.39)

O sistema linear (2.39), determina $\phi_r(-x)$ cujo coeficiente dominante é $(-1)^r$. Por outro lado, $\{\phi_r(x)\}_{r=0}^{\infty}$ e $\{\phi_r(-x)\}_{r=0}^{\infty}$ são duas seqüências de polinômios ortogonais sobre o mesmo intervalo e com a mesma função peso. Assim, pelo Teorema 2.2, $\phi_r(-x)$ é igual a $\phi_r(x)$, exceto por uma constante evidente \mathcal{C} . Logo, $\phi_r(-x) \equiv \mathcal{C} \phi_r(x)$ e comparando os coeficientes em x^r dos polinômios $\phi_r(x)$ e $\phi_r(-x)$, obtém-se

$$\phi_r(-x) \equiv (-1)^r \phi_r(x).$$

Portanto, $\phi_r(x)$ é uma função par ou ímpar de acordo com r par ou ímpar, respectivamente.

Sob as hipóteses do teorema anterior, os zeros de $\phi_r(x)$ são simétricos em relação à origem, uma vez que $\phi_r(x)$ é uma função par ou ímpar, implicando no seguinte corolário:

Corolário 2.9.1 Se [a, b] for um intervalo simétrico com relação à origem e a função peso w(x) for uma função par, então os zeros de $\phi_r(x)$ serão simétricos com relação à origem.

Se w(x) for função par e o intervalo [a, b] for simétrico com relação à origem, então, pelo Teorema 2.9, a função $\phi_r(x)$ é par ou ímpar, de acordo com r par ou ímpar, respectivamente. Conseqüentemente, $[\phi_r(x)]^2$ é função par, pois o quadrado de toda função par ou ímpar é sempre par. Daí, $x[\phi_r(x)]^2$ torna-se função ímpar, implicando que $\int_a^b w(x) x[\phi_r(x)]^2 dx = 0$. Portanto, por (2.21), $b_r = 0$ e, por (2.32), $\alpha_r = 0$. Este resultado está apresentado no seguinte corolário:

Corolário 2.9.2 Se w(x) for uma função par e[a,b] for um intervalo simétrico com relação à origem, então $b_r = \alpha_r = 0, r \ge 0.$

2.2 Polinômios de Legendre

No caso de uma seqüência de polinômios ortogonais definida com relação à função peso w(x) = 1, sobre o intervalo [-1, 1], a equação diferencial (2.12) se reduz a

$$\frac{d^{2r+1}V_r(x)}{dx^{2r+1}} = 0, (2.40)$$

com 2r condições de contorno

$$V_r(\pm 1) = V'_r(\pm 1) = V''_r(\pm 1) = \dots = V_r^{(r-1)}(\pm 1) = 0.$$
 (2.41)

Observando que (2.40) trata-se de uma equação diferencial homogênea de coeficiente constante igual a 1, então, sua solução pode ser dada por $V_r = k_{2r}x^{2r} + k_{2r-1}x^{2r-1} + \ldots + k_0$, onde as constantes k_i são as soluções de um sistema linear homogêneo dado pelas 2rcondições de contorno acima.

Em particular, quando r = 1 tem-se

$$V_1(x) = k_2 x^2 + k_1 x + k_0$$
 e $V_1(\pm 1) = 0$,

dando origem ao sistema

$$\begin{cases} k_2 + k_1 + k_0 = 0 \\ k_2 - k_1 + k_0 = 0, \end{cases}$$

cuja solução é $k_2 = -k_0, k_1 = 0$ e $k_0 \in \mathbb{R}$. Daí, $V_1(x) = -k_0 x^2 + k_0$, isto é,

$$V_1(x) = k_0(1 - x^2). (2.42)$$

Para o caso em que r = 2,

$$V_2(x) = k_4 x^4 + k_3 x^3 + k_2 x^2 + k_1 x + k_0$$
 e $V_2(\pm 1) = V_2'(\pm) = 0$

resultando no sistema

$$k_4 + k_3 + k_2 + k_1 + k_0 = 0$$

$$k_4 - k_3 + k_2 - k_1 + k_0 = 0$$

$$4k_4 + 3k_3 + 2k_2 + k_1 = 0$$

$$-4k_4 + 3k_3 - 2k_2 + k_1 = 0,$$

cuja solução
é $k_4=k_0,\,k_3=k_1=0,\,k_2=-2k_0$ e $k_0\in\mathbb{R}.$ Daí,

$$V_2(x) = k_4 x^4 - 2k_0 x^2 + k_0 = k_0 (x^4 - 2x^2 + 1),$$

a qual pode ser apresentada por

$$V_2(x) = k_0(1 - x^2)^2. (2.43)$$

Por indução, partindo dos resultados (2.42) e (2.43), é obtida a expressão para o caso geral $V_r(x) = K_r(1-x^2)^r$, onde K_r é uma constante real. De fato, pela regra de Leibniz³ (Abramowitz e Stegun, 1972),

$$\frac{d^{j}}{dx^{j}} \Big\{ K_{r}(1-x^{2})^{r} \Big\} = K_{r} \sum_{i=0}^{j} {j \choose i} \frac{d^{j-i}}{dx^{j-i}} \Big\{ (1+x)^{r} \Big\} \frac{d^{i}}{dx^{i}} \Big\{ (1-x)^{r} \Big\}, \qquad j = 0, ..., r-1.$$

O termo do lado direito da expressão acima é nulo se $x = \pm 1$. Ou seja, $V_r^{(j)}(\pm 1) = 0$ para j = 0, ..., r - 1, satisfazendo as 2r condições em (2.41).

Assim, pela fórmula de Rodrigues (2.11),

$$\phi_r(x) = K_r \frac{d^r}{dx^r} \Big\{ (1 - x^2)^r \Big\}.$$
(2.44)

³ou Leibnitz.

Tomando $K_r = \frac{(-1)^r}{2^r r!}$ obtém-se o **polinômio de Legendre** $P_r(x)$ de grau r,

$$P_r(x) = \frac{(-1)^r}{2^r r!} \frac{d^r}{dx^r} \Big\{ (1-x^2)^r \Big\},$$
(2.45)

ou fórmula de Rodrigues para $P_r(x)$ (Szegö, 1975). A seqüência dos polinômios ortogonais de Legendre é representada por $\{P_r(x)\}_{r=0}^{\infty}$.

Os seis primeiros polinômios de Legendre são

$$P_0(x) = 1, P_1(x) = x,$$

$$P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}, P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x,$$

$$P_4(x) = \frac{35}{8}x^4 - \frac{15}{4}x^2 + \frac{3}{8}, P_5(x) = \frac{63}{8}x^5 - \frac{35}{4}x^3 + \frac{15}{8}x.$$

A Figura 3 apresenta os gráficos dos seis polinômios anteriores no intervalo [-1, 1]. Verifica-se que seus zeros são reais, distintos e estão contidos no intervalo (-1, 1), como foi demonstrado no Teorema 2.1. Observa-se que os zeros são simétricos, pois w(x) = 1 é uma função par e o intervalo [-1, 1] é simétrico com relação à origem (Corolário 2.9.1). Também é possível observar que os zeros destes polinômios se entrelaçam.

Figura 3: Polinômios de Legendre de grau até 5.

Aplicando-se o binômio de Newton ao polinômio de Legendre $P_r(x)$, em (2.45),

$$P_r(x) = \frac{(-1)^r}{2^r r!} \frac{d^r}{dx^r} \Big\{ (-1)^r x^{2r} + (-1)^{r-1} r x^{2r-2} + \ldots + 1 \Big\},$$

cujo coeficiente dominante é

$$A_r = \frac{(-1)^r}{2^r r!} \frac{(-1)^r (2r)!}{r!} = \frac{(2r)!}{2^r (r!)^2}.$$
 (2.46)

A partir de (2.28) calcula-se

$$\gamma_{\phi_r} = (-1)^r r! A_r \int_a^b V_r(x) dx, \qquad (2.47)$$
$$= (-1)^r r! \frac{(2r)!}{2^r (r!)^2} \int_{-1}^1 \frac{(-1)^r}{2^r r!} (1-x^2)^r dx,$$
$$\gamma_{\phi_r} = \frac{(2r)!}{2^{2r} (r!)^2} \int_{-1}^1 (1-x^2)^r dx. \qquad (2.48)$$

Calcula-se a integral acima ao provar-se por indução que $\int_{-1}^{1} (1-x^2)^r dx = \frac{2^{2r+1}(r!)^2}{(2r+1)!}$. De fato,

$$r = 0 \quad \Rightarrow \quad \int_{-1}^{1} dx = 2 = \frac{2^{0+1}(0!)^2}{(0+1)!},$$

$$r = 1 \quad \Rightarrow \quad \int_{-1}^{1} (1-x^2) dx = \frac{4}{3} = \frac{2^{2+1}(1!)^2}{(2+1)!},$$

$$r = 2 \quad \Rightarrow \quad \int_{-1}^{1} (1-x^2)^2 dx = \frac{16}{15} = \frac{2^{4+1}(2!)^2}{(4+1)!}.$$

Considerando-se a expressão para r = j, restará provar a validade para o caso em que r = j + 1. Deste modo,

$$\int (1-x^2)^{j+1} dx = \int \frac{-u^{j+1}}{2\sqrt{1-u}} du$$

onde $u = 1 - x^2 \Rightarrow du = -2x dx$ e $x = \sqrt{1 - u}$. (O caso $x = -\sqrt{1 - u}$ é análogo).

Uma vez que $\int \frac{-u^{j+1}}{2\sqrt{1-u}} du = \frac{u^{j+1}\sqrt{1-u}}{2j+3} - \frac{j+1}{2j+3} \int \frac{u^j}{\sqrt{1-u}} du$, (Leithold, 1994), tem-se que

$$\int_{-1}^{1} (1-x^2)^{j+1} dx = \frac{(1-x^2)^{j+1}x}{2j+3} \Big|_{-1}^{1} + \frac{2(j+1)}{2j+3} \int_{-1}^{1} (1-x^2)^j dx,$$

$$= \frac{2(j+1)}{2j+3} \frac{2^{2j+1}(j!)^2}{(2j+1)!},$$

$$= \frac{2^{2j+2}(j+1)(j!)^2}{(2j+3)(2j+1)!},$$

$$= \frac{2^{2j+2}(j+1)(j!)^2}{(2j+3)(2j+1)!} \cdot \frac{2(j+1)}{2(j+1)},$$

$$\int_{-1}^1 (1-x^2)^{j+1} dx = \frac{2^{2j+3}[(j+1)!]^2}{(2j+3)!},$$

como queria-se demonstrar.

Portanto, (2.48) torna-se

$$\gamma_{\phi_r} = \frac{(2r)!}{2^{2r}(r!)^2} \frac{2^{2r+1}(r!)^2}{(2r+1)!},$$

$$\gamma_{\phi_r} = \frac{2}{2r+1}.$$
 (2.49)

De acordo com o Teorema 2.4, os polinômios de Legendre podem ser obtidos segundo uma fórmula de recorrência de três termos, a partir de a_r , b_r e c_r , dados pelas equações (2.19), (2.27) e (2.23). Por (2.19),

$$a_r = \frac{2r+1}{r+1}.$$
 (2.50)

Como w(x) = 1 e o intervalo [-1, 1] é simétrico, o Corolário 2.9.2, implica que

$$b_r = 0. (2.51)$$

Por (2.23),

$$c_r = \frac{r}{r+1}.\tag{2.52}$$

Finalmente, usando (2.50), (2.51) e (2.52) no Teorema 2.4, tem-se a fórmula de recorrência para a seqüência dos polinômios ortogonais de Legendre,

$$P_{r+1}(x) = \frac{2r+1}{r+1} x P_r(x) - \frac{r}{r+1} P_{r-1}(x), \quad r \ge 0,$$
(2.53)

 $P_{-1}(x) \equiv 0, \quad P_0(x) = 1.$

O *i*-ésimo zero $x_{r,i}$ de $P_r(x)$ é dado por (Davis e Rabinowitz, 1984)

$$x_{r,i} = \left(1 - \frac{1}{8r^2} + \frac{1}{8r^3}\right) \cos\left(\frac{(4i-1)\pi}{4r+2}\right) + O(r^{-4}),$$

com $x_{r,1} > x_{r,2} > ... > x_{r,r}$. Portanto,

$$x_{r,i} \approx \cos\left(\frac{(4i-1)\pi}{4r+2}\right), \quad i = 1, 2, ..., r,$$
 (2.54)

onde $x_{r,1} > x_{r,2} > \dots > x_{r,r}$.

Pela fórmula anterior nota-se que $x_{r,i}$ pertence ao intervalo (-1, 1), como mostrou o Teorema 2.3.

Uma fórmula envolvendo a derivada do polinômio de Legendre (Szegö, 1975) é

$$(1 - x^2)P'_r(x) = (r+1)xP_r(x) - (r+1)P_{r+1}(x) = -rxP_r(x) + rP_{r-1}(x).$$
(2.55)

Os polinômios ortonormais de Legendre $P_r^*(x)$ são dados pela normalização $\frac{P_r(x)}{\sqrt{\gamma_{\phi_r}}}$,

$$P_r^*(x) = \sqrt{\frac{2r+1}{2}} P_r(x)$$

A equação de recorrência para a seqüência dos polinômios ortonormais de Legendre $P_r^*(x)$ é dada pelo Teorema 2.7, notando as formas de $\alpha_r \in \beta_r$ nas equações (2.32) e (2.33). Assim,

$$\sqrt{\beta_{r+1}}P_{r+1}^*(x) = x P_r^*(x) + \sqrt{\beta_r} P_{r-1}^*(x), \qquad r \ge 0, \tag{2.56}$$

sendo $P_{-1}^*(x) \equiv 0$, $P_0^*(x) = \frac{\sqrt{2}}{2}$,

$$\alpha_r = \frac{b_r}{a_r} = 0, \quad r \ge 0, \tag{2.57}$$

$$\beta_r = \frac{\gamma_{\phi_r}}{a_{r-1}^2 \gamma_{\phi_{r-1}}} = \frac{r^2}{4r^2 - 1}, \quad r \ge 1.$$
(2.58)

2.3 Polinômios de Laguerre generalizados

No caso de uma seqüência de polinômios ortogonais definida sobre o intervalo $[0, \infty)$, com $w(x) = e^{-x}x^{\alpha}$, onde $\alpha > -1$, tem-se que a equação diferencial (2.12) toma a forma

$$\frac{d^{r+1}}{dx^{r+1}} \left\{ e^x x^{-\alpha} \, \frac{d^r V_r(x)}{dx^r} \right\} = 0, \qquad (2.59)$$

 $\operatorname{com} 2r \operatorname{condições} \operatorname{de} \operatorname{contorno}$

$$V_r(0) = V'_r(0) = V''_r(0) = \dots = V_r^{(r-1)}(0) = 0,$$
 (2.60)

$$V_r(\infty) = V'_r(\infty) = V''_r(\infty) = \dots = V_r^{(r-1)}(\infty) = 0.$$
 (2.61)

Afirma-se que $V_r(x) = K_r e^{-x} x^{\alpha+r}$, onde K_r é uma constante, pois empregando a regra de Leibniz ao termo interno às chaves na equação (2.59),

$$e^{x}x^{-\alpha} \frac{d^{r}}{dx^{r}} \Big\{ K_{r} e^{-x}x^{\alpha+r} \Big\} = K_{r} e^{x}x^{-\alpha} \sum_{i=0}^{r} {r \choose i} \frac{d^{r-i}}{dx^{r-i}} \Big\{ x^{\alpha+r} \Big\} \frac{d^{i}}{dx^{i}} \Big\{ e^{-x} \Big\}$$
$$= K_{r} e^{x}x^{-\alpha} \sum_{i=0}^{r} \frac{(-1)^{i}r!}{i!} {r+\alpha \choose r-i} e^{-x}x^{\alpha+i},$$
$$e^{x}x^{-\alpha} \frac{d^{r}}{dx^{r}} \Big\{ K_{r} e^{-x}x^{\alpha+r} \Big\} = K_{r} \sum_{i=0}^{r} \frac{(-1)^{i}r!}{i!} {r+\alpha \choose r-i} x^{i}.$$

Ficando demonstrado que $e^x x^{-\alpha} \frac{d^r}{dx^r} \{K_r e^{-x} x^{\alpha+r}\}$ é um polinômio de grau r e que $V_r(x) = K_r e^{-x} x^{\alpha+r}$ satisfaz (2.59).

Empregando novamente a regra de Leibniz,

$$\frac{d^j}{dx^j} \Big\{ K_r \, e^{-x} x^{\alpha+r} \Big\} = K_r \, \sum_{i=0}^j \frac{(-1)^i j!}{i!} \binom{r+\alpha}{j-i} e^{-x} x^{\alpha+r-j+i}, \qquad j=0,...,r-1,$$

que se anula em x = 0, pois $\alpha + r - j + i > 0$, o que satisfaz (2.60). Por outro lado, cada um de seus termos pode ser representado pela forma $\frac{x^l}{e^x}$, onde l > 0, a menos de uma constante. Como $\lim_{x\to\infty} \frac{x^l}{e^x} = 0$, as condições de contorno em (2.61) são também satisfeitas.

Assim, pela fórmula de Rodrigues (2.11),

$$\phi_r(x) = K_r e^x x^{-\alpha} \frac{d^r}{dx^r} \Big\{ e^{-x} x^{\alpha+r} \Big\}.$$
 (2.62)

Escolhendo $K_r = \frac{1}{r!}$ obtém-se o **polinômio de Laguerre generalizado** $L_r^{\alpha}(x)$ de grau r,

$$L_{r}^{\alpha}(x) = \frac{1}{r!} e^{x} x^{-\alpha} \frac{d^{r}}{dx^{r}} \Big\{ e^{-x} x^{\alpha+r} \Big\}, \qquad (2.63)$$

ou fórmula de Rodrigues para o polinômio $L_r^{\alpha}(x)$. A seqüência dos polinômios ortogonais de Laguerre generalizados é representada por $\{L_r^{\alpha}(x)\}_{r=0}^{\infty}$.

Os seis primeiros polinômios de Laguerre generalizados com $\alpha=1$ são

$$L_0^1(x) = 1, \qquad L_1^1(x) = -x + 2,$$

$$L_2^1(x) = \frac{1}{2}x^2 - 3x + 3, \qquad L_3^1(x) = -\frac{1}{6}x^3 + 2x^2 - 6x + 4,$$

$$L_4^1(x) = \frac{1}{24}x^4 - \frac{5}{6}x^3 + 5x^2 - 10x + 5, \quad L_5^1(x) = -\frac{1}{120}x^5 + \frac{1}{4}x^4 - \frac{5}{2}x^3 + 10x^2 - 15x + 6$$

A Figura 4 apresenta os gráficos destes polinômios no intervalo [0, 8].

Figura 4: Polinômios de Laguerre generalizados de grau até 5 com $\alpha = 1$.

Aplicando-se a regra de Leibnitz ao polinômio de Laguerre generalizado $L_r^{\alpha}(x)$, em (2.63),

$$L_r^{\alpha}(x) = \sum_{i=0}^r \frac{(-1)^i}{i!} \binom{r+\alpha}{r-i} x^i$$

cujo coeficiente do termo de grauié dado por

$$A_{r,i} = \frac{(-1)^{i}}{i!} \binom{r+\alpha}{r-i}.$$
 (2.64)

De (2.28) calcula-se

$$\gamma_{\phi_r} = (-1)^r r! A_r \int_a^b V_r(x) \, dx, \qquad (2.65)$$

$$= (-1)^{r} r! \frac{(-1)^{r}}{r!} \int_{0}^{\infty} \frac{1}{r!} e^{-x} x^{\alpha+r} dx,$$

$$= \frac{1}{r!} \int_{0}^{\infty} e^{-x} x^{\alpha+r} dx,$$

$$\gamma_{\phi_{r}} = \frac{\Gamma(\alpha+r+1)}{r!},$$
 (2.66)

onde $\Gamma(t) = \int_0^\infty e^{-x} x^{t-1} dx$ é a função Gama tal que $\Gamma(t) = (t-1)!$.

De acordo com o Teorema 2.4 os polinômios de Laguerre generalizados podem ser determinados segundo uma fórmula de recorrência de três termos, a partir de a_r , b_r e c_r , obtidos segundo as equações (2.19), (2.27) e (2.23). De (2.19) tem-se

$$a_r = -\frac{1}{r+1}.$$
 (2.67)

De (2.27),

$$b_{r} = (-1)^{r} \frac{-\frac{1}{r+1}}{\frac{\Gamma(\alpha+r+1)}{r!}} r! \left[\frac{(-1)^{r}}{r!} (r+1) \int_{0}^{\infty} \frac{1}{r!} e^{-x} x^{\alpha+r+1} dx + \frac{(-1)^{r-1}}{(r-1)!} (r+\alpha) \int_{0}^{\infty} \frac{1}{r!} e^{-x} x^{\alpha+r} dx \right],$$

$$= \frac{(-1)^{r+1} (r!)^{2}}{(r+1)\Gamma(\alpha+r+1)} \left[\frac{(-1)^{r} (r+1)\Gamma(\alpha+r+2)}{(r!)^{2}} + \frac{(-1)^{r-1} (r+\alpha)\Gamma(\alpha+r+1)}{r!(r-1)!} \right],$$

$$= -(\alpha+r+1) + \frac{r(r+\alpha)}{r+1},$$

$$b_{r} = -\frac{\alpha+2r+1}{r+1}.$$
(2.68)

De (2.23),

$$c_r = \frac{\alpha + r}{r+1}.\tag{2.69}$$

Finalmente, usando (2.67), (2.68) e (2.69) no Teorema 2.4, tem-se a equação de recorrência para $L_r^{\alpha}(x)$

$$L_{r+1}^{\alpha}(x) = \left(-\frac{x}{r+1} + \frac{\alpha + 2r + 1}{r+1}\right) L_{r}^{\alpha}(x) - \frac{\alpha + r}{r+1} L_{r-1}^{\alpha}(x), \quad r \ge 0, \qquad (2.70)$$
$$L_{-1}^{\alpha}(x) \equiv 0, \quad L_{0}^{\alpha}(x) = 1.$$

O *i*-ésimo zero $x_{r,i}$ de $L_r^{\alpha}(x)$ é dado por (Davis e Rabinowitz, 1984)

$$x_{r,i} = \frac{j_{\alpha,i}^2}{4\mathcal{K}} \left(1 + \frac{2(\alpha^2 - 1) + j_{\alpha,i}^2}{48\mathcal{K}^2} \right) + O(r^{-5}),$$

onde $\mathcal{K} = r + \frac{\alpha + 1}{2}$ e $j_{\alpha,i}$ é o *i*-ésimo zero positivo da função de Bessel $J_{\alpha}(x)$.

Uma fórmula envolvendo a derivada de $L_r^{\alpha}(x)$ (Szegö, 1975) é

$$xL_r^{\alpha'}(x) = rL_r^{\alpha}(x) - (\alpha + r)L_{r-1}^{\alpha}(x).$$
(2.71)

Os polinômios ortonormais de Laguerre generalizados $L_r^{\alpha*}(x)$ são obtidos segundo a normalização $\frac{L_r^{\alpha}(x)}{\sqrt{\gamma\phi_r}}$,

$$L_r^{\alpha*}(x) = \sqrt{\frac{r!}{\Gamma(\alpha+r+1)}} L_r^{\alpha}(x).$$

A equação de recorrência para a seqüência dos polinômios ortonormais de Laguerre generalizados $L_r^{\alpha*}(x)$ é dada pelo Teorema 2.7, notando as formas de α_r e β_r nas equações (2.32) e (2.33). Assim,

$$\sqrt{\beta_{r+1}}L_{r+1}^{\alpha*}(x) = (x - \alpha_r)L_r^{\alpha*}(x) + \sqrt{\beta_r}L_{r-1}^{\alpha*}(x), \qquad r \ge 0,$$
(2.72)

sendo $L_{-1}^{*}(x) \equiv 0$, $L_{0}^{\alpha*}(x) = \frac{1}{\sqrt{\Gamma(\alpha+1)}}$, $\alpha_{r} = \frac{b_{r}}{a_{r}} = \alpha + 2r + 1$, $r \ge 0$, (2.73)

$$\beta_r = \frac{\gamma_{\phi_r}}{a_{r-1}^2 \gamma_{\phi_{r-1}}} = r(\alpha + r), \quad r \ge 1.$$
(2.74)

2.4 Polinômios de Laguerre

Definindo $\alpha = 0$ na seqüência $\{L_r^{\alpha}(x)\}_{r=0}^{\infty}$, obtém-se os **polinômios de Laguerre** $L_r(x)$, um caso particular dos polinômios de Laguerre generalizados. Desta forma, os polinômios de Laguerre são definidos no intervalo $[0, \infty)$ com a função peso $w(x) = e^{-x}$.

A fórmula de Rodrigues para este caso é

$$L_r(x) = \frac{1}{r!} e^x \frac{d^r}{dx^r} \Big\{ e^{-x} x^r \Big\}.$$

Os seis primeiros polinômios de Laguerre são

$$L_{0}(x) = 1, \qquad L_{1}(x) = -x + 1,$$

$$L_{2}(x) = \frac{1}{2}x^{2} - 2x + 1, \qquad L_{3}(x) = -\frac{1}{6}x^{3} + \frac{3}{2}x^{2} - 3x + 1,$$

$$L_{4}(x) = \frac{1}{24}x^{4} - \frac{2}{3}x^{3} + 3x^{2} - 4x + 1, \quad L_{5}(x) = -\frac{1}{120}x^{5} + \frac{5}{24}x^{4} - \frac{5}{3}x^{3} + 5x^{2} - 5x + 1.$$

A Figura 5 apresenta os gráficos dos polinômios acima no intervalo [0, 8].

Figura 5: Polinômios de Laguerre de grau até 5.

A fórmula de recorrência de três termos para $L_r(x)$ é

$$L_{r+1}(x) = \left(-\frac{x}{r+1} + \frac{2r+1}{r+1}\right)L_r(x) - \frac{r}{r+1}L_{r-1}(x), \quad r \ge 0, \qquad (2.75)$$

 $L_{-1}(x) \equiv 0, \quad L_0(x) = 1.$

Uma fórmula envolvendo a derivada de $L_r(x)$ (Szegö, 1975) é

$$xL'_{r}(x) = r(L_{r}(x) - L_{r-1}(x)).$$
(2.76)

Por (2.66), a norma dos polinômios ortogonais de Laguerre $\gamma_{\phi_r} = 1$, isto é, eles são

ortonormais e $L_{r+1}(x) = L_{r+1}^*(x)$. Deste modo, pelo Teorema 2.7, tem-se que

$$\sqrt{\beta_{r+1}}L_{r+1}^*(x) = (x - \alpha_r)L_r^*(x) + \sqrt{\beta_r}L_{r-1}^*(x), \qquad r \ge 0, \tag{2.77}$$

$$L_{-1}^{*}(x) \equiv 0, \quad L_{0}^{*}(x) = 1,$$

$$\alpha_r = 2r + 1, \quad r \ge 0, \tag{2.78}$$

$$\beta_r = r^2, \quad r \ge 1. \tag{2.79}$$

2.5 Polinômios de Hermite

Quando a seqüência de polinômios ortogonais $\{\phi_r(x)\}_{r=0}^{\infty}$ é definida com $w(x) = e^{-x^2}$ sobre intervalo $(-\infty, \infty)$, tem-se que a equação diferencial (2.12) toma a forma

$$\frac{d^{r+1}}{dx^{r+1}} \left\{ e^{x^2} \, \frac{d^r V_r(x)}{dx^r} \right\} = 0, \qquad (2.80)$$

com 2r condições de contorno

$$V_r(\pm\infty) = V'_r(\pm\infty) = V''_r(\pm\infty) = \dots = V_r^{(r-1)}(\pm\infty) = 0.$$
 (2.81)

Afirma-se que $V_r(x) = K_r e^{-x^2}$, onde K_r é uma constante, pois aplicando a regra de Leibniz ao termo interno às chaves em (2.80),

$$\frac{d^r}{dx^r} \Big\{ K_r e^{-x^2} \Big\} = K_r e^{-x^2} r! \sum_{i=0}^{\lfloor r/2 \rfloor} \frac{(-1)^{i-r}}{i!} \frac{(2x)^{r-2i}}{(r-2i)!}.$$

Ficando demonstrado que $e^{x^2} \frac{d^r}{dx^r} \left\{ K_r e^{-x^2} \right\}$ é um polinômio de grau r e também que $V_r(x) = K_r e^{-x^2}$ satisfaz a equação (2.80). Por outro lado, cada um dos termos de $\frac{d^j}{dx^j} \left\{ K_r e^{-x^2} \right\}$, j = 0, 1, ..., r - 1, são da forma $\frac{x^l}{e^{x^2}}$, para algum l natural, a menos de uma constante. Como $\lim_{x \to \pm \infty} \frac{x^l}{e^{x^2}} = 0$, então as condições de contorno (2.81) são satisfeitas.

Assim, pela fórmula de Rodrigues (2.11),

$$\phi_r(x) = K_r e^{x^2} \frac{d^r}{dx^r} \Big\{ e^{-x^2} \Big\}.$$

Com $K_r = (-1)^r$ obtém-se o **polinômio de Hermite** $H_r(x)$ (Szegö, 1975) de grau r,

$$H_r(x) = (-1)^r e^{x^2} \frac{d^r}{dx^r} \Big\{ e^{-x^2} \Big\}, \qquad (2.82)$$

cuja seqüência é representada por $\{H_r(x)\}_{r=0}^{\infty}$.

Os seis primeiros polinômios de Hermite são

$$H_0(x) = 1, H_1(x) = 2x,$$

$$H_2(x) = 4x^2 - 2, H_3(x) = 8x^3 - 12x,$$

$$H_4(x) = 16x^4 - 48x^2 + 12, H_5(x) = 32x^5 - 160x^3 + 120x.$$

A Figura 6 apresenta os gráficos dos cinco primeiros polinômios acima no intervalo [-2, 2]. Verifica-se que os zeros são reais e distintos, como mostrou o Teorema 2.3. Além disto, percebe-se que os zeros são simétricos com relação à origem, pois $w(x) = e^{-x^2}$ é uma função par sobre o intervalo $(-\infty, \infty)$, conforme o Corolário 2.9.1. Nota-se que os zeros se entrelaçam.

Figura 6: Polinômios de Hermite de grau até 4.

A forma fechada do polinômio de Hermite (Szegö, 1975) é

$$H_r(x) = r! \sum_{i=0}^{\lfloor r/2 \rfloor} \frac{(-1)^i}{i!} \frac{(2x)^{r-2i}}{(r-2i)!}$$

4

cujo coeficiente dominante é

$$4_r = 2^r. (2.83)$$

De (2.28) calcula-se

$$\gamma_{\phi_r} = (-1)^r r! A_r \int_a^b V_r(x) dx, \qquad (2.84)$$
$$= (-1)^r r! 2^r \int_{-\infty}^\infty (-1)^r e^{-x^2} dx,$$
$$\gamma_{\phi_r} = 2^r r! \int_{-\infty}^\infty e^{-x^2} dx.$$

Para calcular a integral acima, denota-se $I = \int_{-\infty}^{\infty} e^{-x^2} dx$. Conseqüentemente,

$$I^{2} = \left(\int_{-\infty}^{\infty} e^{-x^{2}} dx\right) \left(\int_{-\infty}^{\infty} e^{-y^{2}} dy\right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^{2}+y^{2})} dx dy.$$

Esta integral dupla pode ser calculada em termos de coordenadas polares, isto é,

$$I^{2} = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^{2}} r \, dr \, d\theta,$$

$$= 2\pi \int_{0}^{\infty} e^{-r^{2}} r \, dr,$$

$$I^{2} = 2\pi \left[\frac{-e^{-r^{2}}}{2} \right]_{0}^{\infty} = \pi \implies I = \sqrt{\pi}.$$

Portanto,

$$\gamma_{\phi_r} = 2^r r! \sqrt{\pi}. \tag{2.85}$$

De acordo com o Teorema 2.4 os polinômios de Hermite podem ser determinados segundo uma fórmula de recorrência de três termos, a partir de a_r , b_r e c_r , obtidos segundo as equações (2.19), (2.21) e (2.23). De (2.19) tem-se

$$a_r = 2. (2.86)$$

Desde que $w(x) = e^{-x^2}$ e o intervalo $(-\infty, \infty)$ é simétrico com relação à origem, o Corolário 2.9.2 conduz a

$$b_r = 0. (2.87)$$

De (2.23),

$$c_r = 2r. (2.88)$$

Notando os resultados (2.86), (2.87) e (2.88) no Teorema 2.4, tem-se a equação de recor-

rência para $H_r(x)$,

$$H_{r+1}(x) = 2xH_r(x) - 2rH_{r-1}(x), \quad r \ge 0,$$
(2.89)

 $H_{-1}(x) \equiv 0, \quad H_1(x) = 0.$

Pela fórmula de Rodrigues para o polinômio de Hermite, tem-se que

$$\frac{d^{r}}{dx^{r}} \left\{ e^{-x^{2}} \right\} = (-1)^{r} e^{-x^{2}} H_{r}(x),$$

$$\frac{d^{r+1}}{dx^{r+1}} \left\{ e^{-x^{2}} \right\} = (-1)^{r} (-2x e^{-x^{2}} H_{r}(x) + e^{-x^{2}} H_{r}'(x)),$$

$$(-1)^{r+1} e^{-x^{2}} H_{r+1}(x) = (-1)^{r} (-2x e^{-x^{2}} H_{r}(x) + e^{-x^{2}} H_{r}'(x)),$$

$$H_{r}'(x) = 2x H_{r}(x) - H_{r+1}(x).$$
(2.90)

Por outro lado, pela equação de recorrência para $H_r(x)$, tem-se que

$$2rH_{r-1}(x) = 2xH_r(x) - H_{r+1}(x).$$
(2.91)

Notando (2.90) e (2.91) obtém-se uma relação envolvendo a derivada do polinômio de Hermite

$$H'_{r}(x) = 2rH_{r-1}(x) = 2xH_{r}(x) - H_{r+1}(x).$$
(2.92)

Os polinômios ortonormais de Hermite $H_r^*(x)$ são dados segundo a normalização $\frac{\pi^{-\frac{1}{4}}H_r(x)}{\sqrt{2^r r!}}$. A equação de recorrência para a seqüência de tais polinômios é dada pelo Teorema 2.7, notando as formas de α_r e β_r nas equações (2.32) e (2.33),

$$\sqrt{\beta_{r+1}}H_{r+1}^*(x) = x H_r^*(x) + \sqrt{\beta_r} H_{r-1}^*(x), \qquad r \ge 0,$$
(2.93)

sendo $H_{-1}^*(x) \equiv 0$, $H_0^*(x) = \pi^{-\frac{1}{4}}$,

$$\alpha_r = \frac{b_r}{a_r} = 0, \quad r \ge 0, \tag{2.94}$$

$$\beta_r = \frac{\gamma_{\phi_r}}{a_{r-1}^2 \gamma_{\phi_{r-1}}} = \frac{r}{2}, \quad r \ge 1.$$
(2.95)

2.6 Polinômios de Jacobi

No caso em que a seqüência de polinômios ortogonais é definida com a função peso $w(x) = (1-x)^{\alpha}(1+x)^{\beta}$, onde $\alpha > -1$ e $\beta > -1$, sobre o intervalo [-1, 1], tem-se que a

equação diferencial (2.12) torna-se

$$\frac{d^{r+1}}{dx^{r+1}} \left\{ (1-x)^{-\alpha} (1+x)^{-\beta} \frac{d^r V_r(x)}{dx^r} \right\} = 0, \qquad (2.96)$$

 $\operatorname{com} 2r \operatorname{condições} \operatorname{de} \operatorname{contorno}$

$$V_r(\pm 1) = V'_r(\pm 1) = V''_r(\pm 1) = \dots = V_r^{(r-1)}(\pm 1) = 0.$$
 (2.97)

Afirma-se que $V_r(x) = K_r(1-x)^{r+\alpha}(1+x)^{r+\beta}$, onde K_r é uma constante, pois aplicando a regra de Leibniz ao termo entre chaves da equação (2.96),

$$\frac{d^{r}}{dx^{r}} \Big\{ K_{r}(1-x)^{r+\alpha}(1+x)^{r+\beta} \Big\} = K_{r} \sum_{i=0}^{r} {r \choose i} \frac{d^{r-i}}{dx^{r-i}} \Big\{ (1-x)^{r+\alpha} \Big\} \frac{d^{i}}{dx^{i}} \Big\{ (1+x)^{r+\beta} \Big\},$$

$$\frac{d^{r}}{dx^{r}} \Big\{ K_{r}(1-x)^{r+\alpha}(1+x)^{r+\beta} \Big\} = K_{r} \sum_{i=0}^{r} (-1)^{r-i} {r \choose i} (r+\alpha)(r+\alpha-1) \dots (i+\alpha+1)$$

$$\times (r+\beta)(r+\beta-1) \dots (r+\beta-i+1)(1-x)^{i+\alpha}$$

$$\times (1+x)^{r-i+\beta},$$

ficando demonstrado que $(1-x)^{-\alpha}(1+x)^{-\beta}\frac{d^r}{dx^r}\left\{K_r(1-x)^{r+\alpha}(1+x)^{r+\beta}\right\}$ é um polinômio de grau r e que $V_r(x) = K_r(1-x)^{r+\alpha}(1+x)^{r+\beta}$ satisfaz à equação (2.96). Ainda pela regra de Leibniz, os termos de $\frac{d^j}{dx^j}\left\{K_r(1-x)^{r+\alpha}(1+x)^{r+\beta}\right\}, j = 0, ..., r-1$, são da forma $(1-x)^{r+\alpha-j+i}(1+x)^{r-i+\beta}$. Estes termos se anulam em $x = \pm 1$, pois $r + \alpha - j + i > 0$ e $r - i + \beta > 0$. Assim, as condições de contorno (2.97) são satisfeitas.

Portanto, da fórmula de Rodrigues em (2.11),

$$\phi_r(x) = K_r(1-x)^{-\alpha}(1+x)^{-\beta} \frac{d^r}{dx^r} \Big\{ (1-x)^{r+\alpha}(1+x)^{r+\beta} \Big\}.$$
 (2.98)

Tomando $K_r = \frac{(-1)^r}{2^r r!}$, o **polinômio de Jacobi** $P_r^{(\alpha,\beta)}(x)$, (Szegö, 1975) de grau r é dado por

$$P_r^{(\alpha,\beta)}(x) = \frac{(-1)^r}{2^r r!} (1-x)^{-\alpha} (1+x)^{-\beta} \frac{d^r}{dx^r} \Big\{ (1-x)^{r+\alpha} (1+x)^{r+\beta} \Big\},$$

cuja seqüência é representada por $\{P_r^{(\alpha,\beta)}(x)\}_{r=0}^{\infty}$. Um caso particular deste resultado é o polinômio de Legendre $P_r(x)$ com a escolha $\alpha = \beta = 0$.

Uma forma fechada de (2.98) é (Szegö, 1975)

$$\phi_r(x) = (-1)^r K_r 2^r r! \sum_{i=0}^r \binom{r+\alpha+\beta+i}{i} \binom{r+\alpha}{r-i} \left(\frac{x-1}{2}\right)^i, \quad (2.99)$$

des
de que $r+\alpha+\beta\in\mathbb{R}-\mathbb{Z}_-^*$ em decorrência do domínio da função
 $\Gamma(t).$ Seu coeficiente dominante é

$$A_r = (-1)^r K_r \frac{\Gamma(2r + \alpha + \beta + 1)}{\Gamma(r + \alpha + \beta + 1)}, \qquad r + \alpha + \beta \in \mathbb{R} - \mathbb{Z}_-^*.$$
(2.100)

Portanto, o coeficiente dominante do polinômio de Jacobi $P_r^{(\alpha,\beta)}(x)$ é

$$A_r = \frac{1}{2^r r!} \frac{\Gamma(2r + \alpha + \beta + 1)}{\Gamma(r + \alpha + \beta + 1)}, \qquad r + \alpha + \beta \in \mathbb{R} - \mathbb{Z}_{-}^*.$$
(2.101)

A partir de (2.100) calcula-se (2.28),

$$\begin{aligned} \gamma_{\phi_r} &= (-1)^r r! A_r \int_a^b V_r(x) \, dx, \\ &= (-1)^r r! (-1)^r K_r \frac{\Gamma(2r+\alpha+\beta+1)}{\Gamma(r+\alpha+\beta+1)} \int_{-1}^1 K_r (1-x)^{r+\alpha} (1+x)^{r+\beta} \, dx, \\ \gamma_{\phi_r} &= K_r^2 r! \frac{\Gamma(2r+\alpha+\beta+1)}{\Gamma(r+\alpha+\beta+1)} \int_{-1}^1 (1-x)^{r+\alpha} (1+x)^{r+\beta} \, dx, \end{aligned}$$

mas tem-se que $\int_{-1}^{1} (1-x)^{r+\alpha} (1+x)^{r+\beta} dx = 2^{2r+\alpha+\beta+1} \frac{\Gamma(r+\alpha+1) \Gamma(r+\beta+1)}{\Gamma(2r+\alpha+\beta+2)},$ (Kythe e Schäferkotter, 2005), resultando

$$\gamma_{\phi_r} = K_r^2 2^{2r+\alpha+\beta+1} r! \frac{\Gamma(2r+\alpha+\beta+1)}{\Gamma(r+\alpha+\beta+1)} \frac{\Gamma(r+\alpha+1)\Gamma(r+\beta+1)}{\Gamma(2r+\alpha+\beta+2)},$$

$$\gamma_{\phi_r} = K_r^2 \frac{2^{2r+\alpha+\beta+1} r!}{2r+\alpha+\beta+1} \frac{\Gamma(r+\alpha+1)\Gamma(r+\beta+1)}{\Gamma(r+\alpha+\beta+1)},$$
(2.102)

 $\operatorname{com} r + \alpha + \beta \in \mathbb{R} - \mathbb{Z}_{-}^{*}.$

Portanto, o coeficiente γ_{ϕ_r} associado ao polinômio de Jacobi $P_r^{(\alpha,\beta)}(x)$ é

$$\gamma_{\phi_r} = \frac{2^{\alpha+\beta+1}}{(2r+\alpha+\beta+1)r!} \frac{\Gamma(r+\alpha+1)\Gamma(r+\beta+1)}{\Gamma(r+\alpha+\beta+1)}, \quad r+\alpha+\beta \in \mathbb{R} - \mathbb{Z}_{-}^*.$$
(2.103)

Nota-se que $r + \alpha + \beta \notin \mathbb{R} - \mathbb{Z}_{-}^{*}$ apenas quando $\alpha + \beta = -1$ e r = 0. Para este caso tem-se, de (2.99), que $\phi_{0}(x) = K_{0}$, então $A_{0} = K_{0}$. Conseqüentemente, por (2.28),

$$\gamma_{\phi_0} = K_0^2 2^{\alpha + \beta + 1} \frac{\Gamma(\alpha + 1) \Gamma(\beta + 1)}{\Gamma(\alpha + \beta + 2)}.$$
(2.104)

A equação de recorrência do polinômio de Jacobi pode ser determinada a partir de

 $a_r, b_r \in c_r, \text{ em } (2.19), (2.27) \in (2.23).$ De (2.19),

$$a_r = \frac{(2r+\alpha+\beta+2)(2r+\alpha+\beta+1)}{2(r+1)(r+\alpha+\beta+1)}, \qquad r \ge 1.$$
(2.105)

Por (2.23),

$$c_r = \frac{(2r + \alpha + \beta + 2)(r + \alpha)(r + \beta)}{(r+1)(r + \alpha + \beta + 1)(2r + \alpha + \beta)}, \qquad r \ge 1.$$
 (2.106)

A priori, o termo c_r deveria ser válido apenas para $r \ge 2$ em virtude do termo A_{r-1} que está presente em a_{r-1} e em $\gamma_{\phi_{r-1}}$. No entanto, A_{r-1} é cancelado no produto $a_{r-1}\gamma_r$, o que torna c_r válido para $r \ge 1$.

O termo b_r para $P_r^{(\alpha,\beta)}(x)$ é obtido de forma diferente da fórmula em (2.27). Primeiramente, observa-se que na fórmula de recorrência (2.15), o termo em x^r , do lado direito é $(A_{r,r-1}a_r - A_rb_r)x^r$ e do lado esquerdo é $A_{r+1,r}x^r$. Desta maneira, impondo a igualdade entre os termos,

$$b_r = \frac{A_{r,r-1}a_r - A_{r+1,r}}{A_r}.$$
(2.107)

Pela forma fechada em (2.99), com $K_r = \frac{(-1)^r}{2^r r!}$ tem-se

$$A_{r+1,r} = \frac{\Gamma(2r+\alpha+\beta+2)(\alpha-\beta)}{2^{r+1}r!\Gamma(r+\alpha+\beta+2)}, \qquad A_{r,r-1} = \frac{\Gamma(2r+\alpha+\beta)(\alpha-\beta)}{2^{r}(r-1)!\Gamma(r+\alpha+\beta+1)}, \qquad r \ge 1.$$
(2.108)

Notando (2.101), (2.105) e (2.108) em (2.107), obtém-se

$$b_r = \frac{(2r+\alpha+\beta+1)(\alpha^2-\beta^2)}{2(r+1)(r+\alpha+\beta+1)(2r+\alpha+\beta)}, \qquad r \ge 1.$$
(2.109)

Portanto, pelo Teorema 2.4, a equação de recorrência para $P_r^{(\alpha,\beta)}(x)$ é

$$2(r+1)(r+\alpha+\beta+1)(2r+\alpha+\beta)P_{r+1}^{(\alpha,\beta)}(x) = (2r+\alpha+\beta+1)\left[(2r+\alpha+\beta+2) \times (2r+\alpha+\beta)x + \alpha^2 - \beta^2\right]P_r^{(\alpha,\beta)}(x) -2(r+\alpha)(r+\beta)(2r+\alpha+\beta+2)P_{r-1}^{(\alpha,\beta)}(x),$$
(2.110)

$$\forall r \ge 1, P_0^{(\alpha,\beta)}(x) = 1, P_1^{(\alpha,\beta)}(x) = \frac{1}{2}(\alpha + \beta + 2)x + \frac{1}{2}(\alpha - \beta)$$

Duas relações envolvendo a derivada do polinômio $P_r^{(\alpha,\beta)}(x)$ são (Szegö, 1975):

$$(2r+\alpha+\beta+2)(1-x^2)P_r^{(\alpha,\beta)\prime}(x) = (r+\alpha+\beta+1) \\ \times \Big[(2r+\alpha+\beta+2)x+\alpha-\beta\Big]P_r^{(\alpha,\beta)}(x)$$

$$-2(r+1)(r+\alpha+\beta+1)P_{r+1}^{(\alpha,\beta)}(x), \quad (2.111)$$

$$(2r + \alpha + \beta)(1 - x^{2})P_{r}^{(\alpha,\beta)'}(x) = -r\left[(2r + \alpha + \beta)x + \beta - \alpha\right]P_{r}^{(\alpha,\beta)}(x) + 2(r + \alpha)(r + \beta)P_{r-1}^{(\alpha,\beta)}(x), \qquad (2.112)$$

Os polinômios ortonormais de Jacobi $P_r^{(\alpha,\beta)*}(x)$ são obtidos segundo a normalização $\frac{P_r^{(\alpha,\beta)}(x)}{\gamma_{\phi_r}}$, para $r \ge 1$. A equação de recorrência para a seqüência $\{P_r^{(\alpha,\beta)*}(x)\}_{r=0}^{\infty}$ é dada pelo Teorema 2.7, notando as formas de α_r e β_r nas equações (2.32) e (2.33),

$$\sqrt{\beta_{r+1}} P_{r+1}^{(\alpha,\beta)*}(x) = (x - \alpha_r) P_r^{(\alpha,\beta)*}(x) + \sqrt{\beta_r} P_{r-1}^{(\alpha,\beta)*}(x), \qquad r \ge 0, \qquad (2.113)$$

sendo
$$P_{-1}^{(\alpha,\beta)*}(x) \equiv 0$$
, $P_0^{(\alpha,\beta)*}(x) = \sqrt{\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1}\Gamma(\alpha+1)\Gamma(\beta+1)}},$
 $\alpha_r = \frac{b_r}{\alpha_r} = \frac{\beta^2 - \alpha^2}{(2^{\alpha+\beta+1}\Gamma(\alpha+1)\Gamma(\beta+1))}, \quad r \ge 1,$ (2.114)

$$r = \frac{b_r}{a_r} = \frac{\beta^2 - \alpha^2}{(2r + \alpha + \beta)(2r + \alpha + \beta + 2)}, \quad r \ge 1,$$
 (2.114)

$$\alpha_0 = \frac{b_0}{a_0} = \frac{\beta - \alpha}{\alpha + \beta + 2}, \qquad (2.115)$$

$$\beta_r = \frac{\gamma_{\phi_r}}{a_{r-1}^2 \gamma_{\phi_{r-1}}} = \frac{4r(r+\alpha)(r+\beta)(r+\alpha+\beta)}{(2r+\alpha+\beta+1)(2r+\alpha+\beta-1)(2r+\alpha+\beta)^2}, \quad r \ge 2, \quad (2.116)$$

$$\beta_1 = \frac{\gamma_{\phi_1}}{a_0^2 \gamma_{\phi_0}} = \frac{4(1+\alpha)(1+\beta)}{(\alpha+\beta+3)(\alpha+\beta+2)^2}.$$
(2.117)

2.7 Polinômios de Chebyshev de 1^a espécie

Quando a seqüência $\{\phi_r(x)\}_{r=0}^{\infty}$ for definida com $w(x) = \frac{1}{\sqrt{1-x^2}}$ sobre o intervalo [-1, 1], obtém-se um caso particular da seqüência dos polinômios de Jacobi quando sua função peso é escolhida com $\alpha = \beta = -\frac{1}{2}$. Nesta situação, obtém-se, de (2.98), a seguinte relação

$$\phi_r(x) = K_r \sqrt{1 - x^2} \frac{d^r}{dx^r} \left\{ (1 - x^2)^{r - \frac{1}{2}} \right\}.$$

Tomando $K_r = \frac{(-2)^r r!}{(2r)!}$, obtém-se a fórmula de Rodrigues para o **polinômio de** Chebyshev de 1^a espécie $T_r(x)$ (Szegö, 1975), de grau r,

$$T_r(x) = \frac{(-2)^r r!}{(2r)!} \sqrt{1-x^2} \frac{d^r}{dx^r} \Big\{ (1-x^2)^{r-\frac{1}{2}} \Big\},$$

cuja seqüência é representada por $\{T_r(x)\}_{r=0}^\infty.$ De (2.99) obtém-se sua forma fechada,

$$T_r(x) = \frac{2^{2r}(r!)^2}{(2r)!} \sum_{i=0}^r \binom{r-1+i}{i} \binom{r-\frac{1}{2}}{r-i} \left(\frac{x-1}{2}\right)^i, \quad \forall r \ge 1.$$
(2.118)

Os seis primeiros polinômios de Chebyshev de 1ª espécie são

$$T_0(x) = 1$$

$$T_1(x) = x,$$

$$T_2(x) = 2x^2 - 1,$$

$$T_3(x) = 4x^3 - 3x,$$

$$T_4(x) = 8x^4 - 8x^2 + 1,$$

$$T_5(x) = 16x^5 - 20x^3 + 5x.$$

A Figura 7 mostra os gráficos dos seis polinômios acima no intervalo [-1, 1]. Verifica-se que os zeros são reais, distintos e contidos no interior deste intervalo, conforme mostrou o Teorema 2.3. Nota-se também que os zeros são simétricos, pois os polinômios $T_r(x)$ são funções pares ou ímpares (Corolário 2.9.1). Além disto, percebe-se que os zeros se entrelaçam.

Figura 7: Polinômios de Chebyshev de 1^a espécie de grau até 5.

De (2.100) obtém-se o coeficiente dominante do polinômio de Chebyshev de 1^a espécie

$$A_r = \frac{2^r r}{2r} = 2^{r-1}, \quad \forall r \ge 1.$$
 (2.119)

Calcula-se γ_{ϕ_r} em (2.102),

$$\gamma_{\phi_r} = \left(\frac{(-2)^r r!}{(2r)!}\right)^2 \frac{2^{2r} r!}{2r} \frac{\Gamma(r+\frac{1}{2}) \Gamma(r+\frac{1}{2})}{\Gamma(r)}$$

Mas a função $\Gamma(t)$ possui a seguinte propriedade (Abramowitz e Stegun, 1972)

$$\Gamma\left(t+\frac{1}{2}\right) = \frac{(2t-1)(2t-3)\dots 5\cdot 3\cdot 1}{2^t}\sqrt{\pi}, \qquad t \in \mathbb{N}.$$
 (2.120)

Conseqüentemente,

$$\begin{split} \gamma_{\phi_r} &= \frac{2^{4r-1}(r!)^3}{r(2r!)^2} \frac{(2r-1)^2(2r-3)^2 \dots 5^2 \cdot 3^2 \cdot 1^2}{2^{2r}(r-1)!} \pi, \\ &= \frac{2^{2r-1}(r!)^2}{(2r!)^2} (2r-1)^2 (2r-3)^2 \dots 5^2 \cdot 3^2 \cdot 1^2 \pi, \\ &= 2^{2r-1} (r!)^2 \frac{(2r-1)^2(2r-3)^2 \dots 5^2 \cdot 3^2 \cdot 1^2}{(2r)^2(2r-1)^2(2r-2)^2 \dots 4^2 \cdot 3^2 \cdot 2^2 \cdot 1^2} \pi, \\ &= 2^{2r-1} (r!)^2 \frac{\pi}{(2r)^2(2r-2)^2 \dots 4^2 \cdot 2^2}, \\ &= 2^{2r-1} \frac{r^2(r-1)^2(r-2)^2 \dots 3^2 \cdot 2^2 \cdot 1^2}{(2r)^2(2(r-1))^2(2(r-2))^2 \dots (2\cdot3)^2 \cdot (2\cdot2)^2 \cdot (2\cdot1)^2} \pi, \\ &= \frac{2^{2r-1}}{2^{2r}} \frac{r^2(r-1)^2(r-2)^2 \dots 3^2 \cdot 2^2 \cdot 1^2}{r^2(r-1)^2(r-2)^2 \dots 3^2 \cdot 2^2 \cdot 1^2} \pi, \\ \gamma_{\phi_r} &= \frac{\pi}{2}, \quad \forall r \ge 1. \end{split}$$

$$(2.121)$$

De (2.104),

$$\gamma_{\phi_0} = \left(\frac{(-2)^0 0!}{0!}\right)^2 2^0 \frac{\Gamma(\frac{1}{2}) \Gamma(\frac{1}{2})}{\Gamma(1)},$$

contudo $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, implicando que $\gamma_{\phi_0} = \pi$.

Para obter a equação de recorrência de três termos do Teorema 2.4, tem-se que, de (2.19)

$$a_r = 2, \qquad \forall r \ge 1. \tag{2.122}$$

Uma vez que $w(x) = \frac{1}{\sqrt{1-x^2}}$ é uma função par e o intervalo [-1,1] é simétrico com

relação à origem, então, pelo Corolário 2.9.2,

$$b_r = 0. (2.123)$$

De (2.23),

$$c_r = 1, \qquad \forall r \ge 1. \tag{2.124}$$

Pelo Teorema 2.4, com (2.122), (2.123) e (2.124), tem-se a equação de recorrência para $T_r(x)$,

$$T_{r+1}(x) = 2xT_r(x) - T_{r-1}(x), \quad \forall r \ge 1.$$
 (2.125)

Os polinômios de Chebyshev de 1^a espécie também se apresentam na forma trigonométrica $T_r(x) = T_r(\cos(\theta)) = \cos(r\theta)$, onde $-1 \le x \le 1$. Para perceber este fato, introduz-se a mudança de variável $x = \cos(\theta)$. Segue que

$$\begin{aligned} x &= -1 \quad \Rightarrow \quad \cos(\theta) = -1 \quad \Rightarrow \quad \theta = \pi, \\ x &= 1 \quad \Rightarrow \quad \cos(\theta) = 1 \quad \Rightarrow \quad \theta = 0, \\ x &= \cos(\theta) \quad \Rightarrow \quad dx = -\operatorname{sen}(\theta) \, d\theta, \\ w(\cos(\theta)) &= \frac{1}{\sqrt{1 - \cos^2(\theta)}} = \frac{1}{\sqrt{\operatorname{sen}^2(\theta)}} = \frac{1}{\operatorname{sen}(\theta)}, \quad 0 < \theta < \pi \end{aligned}$$

Assim, a equação (2.2) assume a forma

$$-\int_{\pi}^{0} \frac{\phi_r(\cos(\theta))q_{r-1}(\cos(\theta))\sin(\theta)}{\sin(\theta)} d\theta = 0 \implies \int_{0}^{\pi} \phi_r(\cos(\theta))q_{r-1}(\cos(\theta)) d\theta = 0.$$

Desde que $\cos(k\theta)$ pode ser representado por um polinômio de grau k em $\cos(\theta)$ e, reciprocamente, qualquer polinômio de grau k em $\cos(\theta)$ pode ser desenvolvido como uma combinação linear dos termos 1, $\cos(\theta)$, $\cos(2\theta)$, ..., $\cos(k\theta)$, segue que a condição anterior é satisfeita se, e somente se,

$$\int_0^{\pi} \phi_r(\cos(\theta)) \cos(k\theta) \, d\theta = 0, \qquad k = 0, 1, \dots, r-1$$

Afirma-se que $\phi_r(\cos(\theta)) = K_r \cos(r\theta)$, onde K_r é constante. De fato, notando o produto de cossenos, $\cos(u)\cos(v) = \frac{1}{2}(\cos(u+v) + \cos(u-v))$, tem-se que

$$\int_0^{\pi} K_r \cos(r\theta) \cos(k\theta) \, d\theta = \frac{K_r}{2} \left(\int_0^{\pi} \cos[(r+k)\theta] \, d\theta + \int_0^{\pi} \cos[(r-k)\theta] \, d\theta \right), (2.126)$$
$$= \frac{K_r}{2} \left(\frac{\sin[(r+k)\theta]}{(r+k)} + \frac{\sin[(r-k)\theta]}{(r-k)} \right) \Big|_0^{\pi},$$

$$\int_0^{\pi} K_r \cos(r\theta) \cos(k\theta) d\theta = 0, \qquad k = 0, 1, \dots, r-1.$$

Retornando para a variável x tem-se $\phi_r(x) = K_r \cos(r \arccos(x))$. Fazendo $K_r = 1$ tem-se o polinômio de Chebyshev de 1^a espécie de grau r (Szegö, 1975),

$$T_r(x) = \cos(r \arccos(x)), \quad -1 \le x \le 1 \qquad \text{ou} \qquad T_r(\cos(\theta)) = \cos(r\theta), \quad 0 \le \theta \le \pi.$$
(2.127)

Segundo o Teorema 2.3 os r zeros $x_{r,i}$ de $T_r(x)$, i = 1, 2, ..., r, pertencem ao intervalo (-1, 1). Então é possível encontrar uma fórmula para o *i*-ésimo zero, pois a forma trigonométrica deste polinômio está definida neste intervalo. Desta forma,

$$\cos(r \arccos(x_{r,i})) = 0,$$

$$r \arccos(x_{r,i}) = \frac{\pi}{2} + (i-1)\pi, \quad i = 1, 2, ..., r,$$

$$\arccos x_{r,i} = \frac{\pi}{2r} + \frac{(i-1)\pi}{r} = \frac{(2i-1)\pi}{2r},$$

$$x_{r,i} = \cos\left(\frac{(2i-1)\pi}{2r}\right), \quad i = 1, 2, ..., r,$$
(2.128)

onde $x_{r,1} > x_{r,2} > \dots > x_{r,r}$.

Os polinômios ortonormais de Chebyshev de 1^a espécie $T_r^*(x)$ são dados pela normalização $\sqrt{\frac{2}{\pi}} T_r(x), r \ge 1$. A equação de recorrência para a seqüência $\{T_r^*(x)\}_{r=0}^{\infty}$ é dada pelo Teorema 2.7, notando as formas de α_r e β_r nas equações (2.32) e (2.33),

$$\sqrt{\beta_{r+1}} T^*_{r+1}(x) = x T^*_r(x) + \sqrt{\beta_r} T^*_{r-1}(x), \qquad r \ge 0, \tag{2.129}$$

sendo $T_{-1}^*(x) \equiv 0$, $T_0^*(x) = \pi^{-\frac{1}{2}}$,

$$\alpha_r = \frac{b_r}{a_r} = 0, \quad r \ge 0, \tag{2.130}$$

$$\beta_r = \frac{\gamma_{\phi_r}}{a_{r-1}^2 \gamma_{\phi_{r-1}}} = \frac{1}{4}, \quad r \ge 2,$$
(2.131)

$$\beta_1 = \frac{\gamma_{\phi_1}}{a_0^2 \gamma_{\phi_0}} = \frac{1}{2}.$$
(2.132)

2.8 Polinômios de Chebyshev de 2^a espécie

Se a seqüência $\{\phi_r(x)\}_{r=0}^{\infty}$ for definida com $w(x) = \sqrt{1-x^2}$, no intervalo [-1,1], temse um caso particular da função de ponderação do polinômio de Jacobi quando $\alpha = \beta = \frac{1}{2}$. Neste caso obtém-se de (2.98) a seguinte relação

$$\phi_r(x) = K_r \frac{1}{\sqrt{1-x^2}} \frac{d^r}{dx^r} \Big\{ (1-x^2)^{r+\frac{1}{2}} \Big\}.$$

Com a escolha $K_r = \frac{(-2)^r (r+1)!}{(2r+1)!}$, obtém-se o polinômio de Chebyshev de 2^a espécie $U_r(x)$ de grau r (Szegö, 1975),

$$U_r(x) = \frac{(-2)^r (r+1)!}{(2r+1)!} \frac{1}{\sqrt{1-x^2}} \frac{d^r}{dx^r} \Big\{ (1-x^2)^{r+\frac{1}{2}} \Big\},$$

ou fórmula de Rodrigues para $U_r(x)$ cuja seqüência é representada por $\{U_r(x)\}_{r=0}^{\infty}$.

De (2.99) obtém-se sua forma fechada,

$$U_r(x) = \frac{2^{2r}(r+1)(r!)^2}{(2r+1)!} \sum_{i=0}^r \binom{r-1+i}{i} \binom{r-\frac{1}{2}}{r-i} \left(\frac{x-1}{2}\right)^i.$$
 (2.133)

Os seis primeiros polinômios de Chebyshev de 2ª espécie são

$$U_0(x) = 1,$$
 $U_1(x) = 2x$

$$U_2(x) = 4x^2 - 1, \qquad \qquad U_3(x) = 8x^3 - 4x,$$

$$U_4(x) = 16x^4 - 12x^2 + 1,$$
 $U_5(x) = 32x^5 - 32x^3 + 6x^4$

A Figura 8 mostra os gráficos dos seis polinômios acima com seus zeros no interior do intervalo [-1, 1], conforme mostrou o Teorema 2.3. Percebe-se a simetria dos zeros com relação à origem, uma vez que estes polinômios são funções pares ou ímpares, de acordo com o Corolário 2.9.1. Verifica-se também que os zeros se entrelaçam.

De (2.100) obtém-se o coeficiente dominante do polinômio de Chebyshev de 2ª espécie,

$$A_r = (-1)^r \frac{(-2)^r (r+1)!}{(2r+1)!} \frac{\Gamma(2r+2)}{\Gamma(r+2)} = 2^r.$$
(2.134)

Figura 8: Polinômios de Chebyshev de 2^a espécie de grau até 5.

Calcula-se γ_{ϕ_r} em (2.102),

$$\begin{split} \gamma_{\phi_r} &= \left(\frac{(-2)^r (r+1)!}{(2r+1)!}\right)^2 \frac{2^{2r+2} r!}{2r+2} \frac{\Gamma(r+\frac{1}{2}+1) \Gamma(r+\frac{1}{2}+1)}{\Gamma(r+2)}, \\ &= \frac{2^{2r} \left[(r+1)!\right]^2}{\left[(2r+1)!\right]^2} \frac{2^{2r+2} r!}{(2(r+1))} \frac{\Gamma^2 \left[(r+1)+\frac{1}{2}\right]}{(r+1)!}, \\ &= \frac{2^{4r+1} (r!)^2}{\left[(2r+1)!\right]^2} \frac{(2r+1)^2 (2r-1)^2 (2r-3)^2 \dots 5^2 \cdot 3^2 \cdot 1^2}{2^{2r+2}} \pi, \\ &= 2^{2r-1} (r!)^2 \frac{(2r+1)^2 (2r-1)^2 (2r-3)^2 \dots 5^2 \cdot 3^2 \cdot 1^2}{(2r+1)^2 (2r)^2 (2r-1)^2 (2r-2)^2 \dots 4^2 \cdot 3^2 \cdot 2^2 \cdot 1^2} \pi, \\ &= 2^{2r-1} (r!)^2 \frac{\pi}{(2r)^2 (2r-2)^2 \dots 4^2 \cdot 2^2}, \\ &= 2^{2r-1} \frac{r^2 (r-1)^2 (r-2)^2 \dots 2^2 \cdot 1^2}{(2r-1)^2 (2(r-2))^2 \dots 2^4 \cdot 2^2} \pi, \\ &= \frac{2^{2r-1}}{2^{2r}} \frac{r^2 (r-1)^2 (r-2)^2 \dots 2^2 \cdot 1^2}{r^2 (r-1)^2 (r-2)^2 \dots 2^2 \cdot 1^2} \pi, \\ &= \frac{2^{2r-1}}{2^{2r}} \frac{r^2 (r-1)^2 (r-2)^2 \dots 2^2 \cdot 1^2}{r^2 (r-1)^2 (r-2)^2 \dots 2^2 \cdot 1^2} \pi, \\ &= \frac{\pi}{2}. \end{split}$$

Para obter a equação de recorrência de três termos do Teorema 2.4, tem-se que, de (2.19)

$$a_r = 2. \tag{2.136}$$

Uma vez que $w(x) = \sqrt{1 - x^2}$ é uma função par e [-1, 1] é um intervalo simétrico com relação à origem, então, pelo Corolário 2.9.2,

$$b_r = 0.$$
 (2.137)

De (2.23) tem-se

$$c_r = 1.$$
 (2.138)

Pelo Teorema 2.4, com os resultados (2.136), (2.137) e (2.138), tem-se a equação de recorrência para $U_r(x)$,

$$U_{r+1}(x) = 2xU_r(x) - U_{r-1}(x).$$
(2.139)

Os polinômios de Chebyshev de 2^a espécie também se apresentam na forma trigonométrica $U_r(x) = U_r(\cos(\theta)) = \frac{\sin[(r+1)\theta]}{\sin(\theta)}$, onde -1 < x < 1. Para perceber este fato, introduz-se a mudança de variável $x = \cos(\theta)$. Deste modo,

$$\begin{aligned} x \to -1 &\Rightarrow & \cos(\theta) \to -1 &\Rightarrow & \theta \to \pi, \\ x \to 1 &\Rightarrow & \cos(\theta) \to 1 &\Rightarrow & \theta \to 0, \\ x &= & \cos(\theta) &\Rightarrow & dx = -\operatorname{sen}(\theta) \, d\theta, \\ w(\cos(\theta)) &= & \sqrt{1 - \cos^2(\theta)} = \sqrt{\operatorname{sen}^2(\theta)} = \operatorname{sen}(\theta). \end{aligned}$$

Deste modo a equação (2.2) toma a forma

$$-\int_{\pi}^{0} \operatorname{sen}(\theta) \,\phi_r(\cos(\theta)) q_{r-1}(\cos(\theta)) \operatorname{sen}(\theta) \,d\theta = 0,$$
$$\int_{0}^{\pi} \phi_r(\cos(\theta)) q_{r-1}(\cos(\theta)) \operatorname{sen}^2(\theta) \,d\theta = 0.$$

Desde que $\cos(k\theta)$ pode ser representado por um polinômio de grau k em $\cos(\theta)$ e, reciprocamente, qualquer polinômio de grau k em $\cos(\theta)$ pode ser desenvolvido como uma como combinação linear dos termos 1, $\cos(\theta)$, $\cos(2\theta)$, ..., $\cos(k\theta)$, segue que a condição anterior é satisfeita se, e somente se,

$$\int_0^{\pi} \phi_r(\cos(\theta)) \cos(k\theta) \sin^2(\theta) d\theta = 0, \quad k = 0, 1, ..., r - 1$$

Afirma-se que $\phi_r(\cos(\theta)) = K_r \frac{\sin[(r+1)\theta]}{\sin(\theta)}$, onde K_r é constante. De fato,

$$K_r \int_0^{\pi} \frac{\operatorname{sen}[(r+1)\theta]}{\operatorname{sen}(\theta)} \cos(k\theta) \operatorname{sen}^2(\theta) d\theta = K_r \int_0^{\pi} \operatorname{sen}[(r+1)\theta] \operatorname{sen}(\theta) \cos(k\theta) d\theta,$$

e fazendo uso do produto dos senos, $sen(u) sen(v) = \frac{1}{2}(cos(u-v) - cos(u+v))$, a integral anterior torna-se

$$\frac{K_r}{2} \int_0^\pi (\cos(r\theta) - \cos[(r+2)\theta] \cos(k\theta) \, d\theta = \frac{K_r}{2} \int_0^\pi \cos(r\theta) \cos(k\theta) \, d\theta$$
$$-\frac{K_r}{2} \int_0^\pi \cos[(r+2)\theta] \cos(k\theta) \, d\theta,$$

mas analogamente à resolução de (2.126), as duas integrais do lado direito da equação anterior se anulam, levando ao resultado

$$\frac{K_r}{2} \int_0^\pi (\cos(r\theta) - \cos[(r+2)\theta] \cos(k\theta) \, d\theta = 0, \qquad k = 0, 1, ..., r - 1$$

Retornando para a variável x, tem-se $\phi_r(x) = K_r \frac{\operatorname{sen}[(r+1)\operatorname{arccos}(x)]}{\sqrt{1-x^2}}$. Escolhendo-se $K_r = 1$ obtém-se o polinômio de Chebyshev de 2ª espécie de grau r (Szegö, 1975),

$$U_r(x) = \frac{\operatorname{sen}[(r+1)\operatorname{arccos}(x)]}{\sqrt{1-x^2}}, \ -1 < x < 1 \quad \text{ou} \quad U_r(\cos(\theta)) = \frac{\operatorname{sen}[(r+1)\theta]}{\operatorname{sen}(\theta)}, \ 0 < \theta < \pi.$$
(2.140)

Desde que os r zeros $x_{r,i}$ de $U_r(x)$, i = 1, 2, ..., r, pertencem ao intervalo (-1, 1)(Teorema 2.3), torna-se possível encontrar uma fórmula para o *i*-ésimo zero, pois a forma trigonométrica deste polinômio está definida neste intervalo. Assim,

$$\frac{\operatorname{sen}[(r+1)\operatorname{arccos}(x_{r,i})]}{\sqrt{1-x_i^2}} = 0.$$

$$\operatorname{sen}\left[\left(r+1\right)\operatorname{arccos}(x_{r,i})\right] = 0$$

$$(r+1) \arccos(x_{r,i}) = i\pi, \quad i = 1, 2, ..., r,$$

$$\arccos(x_{r,i}) = \frac{i\pi}{r+1},$$

 $x_{r,i} = \cos\left(\frac{i\pi}{r+1}\right), \quad i = 1, 2, ..., r,$ (2.141)

onde $x_{r,1} > x_{r,2} > \dots > x_{r,r}$.

Os polinômios ortonormais de Chebyshev de 2^a espécie $U_r^*(x)$ são dados pela normalização $\sqrt{\frac{2}{\pi}} U_r(x)$. A equação de recorrência para a seqüência $\{U_r^*(x)\}_{r=0}^{\infty}$ é dada pelo Teorema 2.7, notando as formas de α_r e β_r nas equações (2.32) e (2.33),

$$\sqrt{\beta_{r+1}} U_{r+1}^*(x) = x U_r^*(x) + \sqrt{\beta_r} U_{r-1}^*(x), \qquad r \ge 0, \qquad (2.142)$$

sendo $U_{-1}^*(x) \equiv 0$, $U_0^*(x) = \sqrt{\frac{2}{\pi}}$,

$$\alpha_r = \frac{b_r}{a_r} = 0, \quad r \ge 0,$$
(2.143)

$$\beta_r = \frac{\gamma_{\phi_r}}{a_{r-1}^2 \gamma_{\phi_{r-1}}} = \frac{1}{4}, \quad r \ge 1.$$
(2.144)

2.9 Polinômios de Gegenbauer

Quando a seqüência de polinômios ortogonais for definida com $w(x) = (1 - x^2)^{\mu - \frac{1}{2}}$, com $\mu > -\frac{1}{2}$ e $\mu \neq 0$, sobre o intervalo [-1, 1], tem-se um caso particular da função de ponderação do polinômio de Jacobi quando $\alpha = \beta = \mu - \frac{1}{2}$. Neste caso obtém-se de (2.98) a seguinte relação

$$\phi_r(x) = K_r (1 - x^2)^{\frac{1}{2} - \mu} \frac{d^r}{dx^r} \Big\{ (1 - x^2)^{r + \mu - \frac{1}{2}} \Big\}.$$

Fazendo $K_r = \frac{(-1)^r}{2^r r!} \frac{\Gamma(\mu + \frac{1}{2}) \Gamma(r + 2\mu)}{\Gamma(2\mu) \Gamma(r + \mu + \frac{1}{2})}$, obtém-se o **polinômio de Gegenbauer** $C_r^{\mu}(x)$ (Szegö, 1975) de grau r,

$$C_r^{\mu}(x) = \frac{(-1)^r}{2^r r!} \frac{\Gamma(\mu + \frac{1}{2}) \Gamma(r + 2\mu)}{\Gamma(2\mu) \Gamma(r + \mu + \frac{1}{2})} (1 - x^2)^{\frac{1}{2} - \mu} \frac{d^r}{dx^r} \Big\{ (1 - x^2)^{r + \mu - \frac{1}{2}} \Big\},$$

ou fórmula de Rodrigues para $C_r^{\mu}(x)$. Esta classe de polinômios também recebe o nome de *polinômios ultraesféricos* (Szegö, 1975).

De (2.99) obtém-se sua forma fechada. Uma outra representação da mesma pode ser encontrada em Szegö (1975),

$$C_r^{\mu}(x) = \frac{1}{\Gamma(\mu)} \sum_{i=0}^{\lfloor r/2 \rfloor} (-1)^i \frac{\Gamma(r-i+\mu)}{i!(r-2i)!} (2x)^{r-2i}.$$

Os quatro primeiros polinômios de Gegenbauer são

$$C_0^{\mu}(x) = 1, \qquad C_1^{\mu}(x) = 2\mu x,$$

$$C_2^{\mu}(x) = 2\mu(1+\mu)x^2 - \mu, \qquad C_3^{\mu}(x) = \frac{4}{3}\mu(\mu+2)(\mu+1)x^3 - 2\mu(1+\mu)x.$$

De (2.100) obtém-se o coeficiente dominante do polinômio de Gegenbauer

$$A_r = \frac{1}{2^r r!} \frac{\Gamma(\mu + \frac{1}{2}) \,\Gamma(2r + 2\mu)}{\Gamma(2\mu) \,\Gamma(r + \mu + \frac{1}{2})}.$$
(2.145)

De (2.102) calcula-se

$$\gamma_{\phi_r} = \left(\frac{(-1)^r}{2^r r!} \frac{\Gamma(\mu + \frac{1}{2}) \Gamma(r + 2\mu)}{\Gamma(2\mu) \Gamma(r + \mu + \frac{1}{2})}\right)^2 \frac{2^{2r+2\mu} r!}{(2r+2\mu)} \frac{\Gamma(r + \mu + \frac{1}{2}) \Gamma(r + \mu + \frac{1}{2})}{\Gamma(r+2\mu)},$$

$$= \frac{1}{2^{2r} (r!)^2} \frac{\Gamma^2(\mu + \frac{1}{2}) \Gamma^2(r + 2\mu)}{\Gamma^2(2\mu) \Gamma^2(r + \mu + \frac{1}{2})} \frac{2^{2r+2\mu} r!}{2(r+\mu)} \frac{\Gamma^2(r + \mu + \frac{1}{2})}{\Gamma(r+2\mu)},$$

$$\gamma_{\phi_r} = \frac{2^{2\mu-1}}{(r+\mu)r!} \frac{\Gamma^2(\mu + \frac{1}{2}) \Gamma(r+2\mu)}{\Gamma^2(2\mu)}.$$
(2.146)

Para obter a fórmula de recorrência para o polinômio de Gegenbauer, tem-se de (2.19),

$$a_{r} = \frac{\frac{1}{2^{r+1}(r+1)!} \frac{\Gamma(\mu + \frac{1}{2}) \Gamma(2r + 2\mu + 2)}{\Gamma(2\mu) \Gamma(r + \mu + \frac{3}{2})}}{\frac{1}{2^{r}r!} \frac{\Gamma(\mu + \frac{1}{2}) \Gamma(2r + 2\mu)}{\Gamma(2\mu) \Gamma(r + \mu + \frac{1}{2})}},$$

$$= \frac{\frac{1}{2(r+1)} \frac{(2r + 2\mu + 1)(2r + 2\mu)(2r + 2\mu - 1)!}{(r + \mu + \frac{1}{2})(r + \mu - \frac{1}{2})!}}{\frac{(2r + 2\mu - 1)!}{(r + \mu - \frac{1}{2})!}},$$

$$= \frac{1}{2(r+1)} \frac{2(r + \mu + \frac{1}{2}) 2(r + \mu)}{(r + \mu + \frac{1}{2})},$$

$$a_{r} = \frac{2(r + \mu)}{r + 1}.$$
(2.147)

Pelo Corolário 2.9.2,

$$b_r = 0.$$
 (2.148)

De (2.23) tem-se

$$c_{r} = \frac{\frac{2(r+\mu)}{r+1} \frac{2^{2\mu-1}}{(r+\mu)r!} \frac{\Gamma^{2}(\mu+\frac{1}{2})\Gamma(r+2\mu)}{\Gamma^{2}(2\mu)}}{\frac{\Gamma^{2}(2\mu)}{r}},$$

$$= \frac{\frac{2(r+\mu-1)}{r} \frac{2^{2\mu-1}}{(r+\mu-1)(r-1)!} \frac{\Gamma^{2}(\mu+\frac{1}{2})\Gamma(r+2\mu-1)}{\Gamma^{2}(2\mu)}}{\frac{\Gamma^{2}(2\mu)}{r}},$$

$$c_{r} = \frac{r+2\mu-1}{r+1}.$$
(2.149)

Finalmente, pelo Teorema 2.4, com os resultados (2.147), (2.148) e (2.149), tem-se a equação de recorrência para $C_r^{\mu}(x)$,

$$C_{r+1}^{\mu}(x) = \frac{2(r+\mu)}{r+1} x C_r^{\mu}(x) + \frac{1-r-2\mu}{r+1} C_{r-1}^{\mu}(x).$$
(2.150)

Quando $0 < \mu < 1$ e $\mu \neq \frac{1}{2}$ há aproximações trigonométricas para os zeros não negativos do polinômio de Gegenbauer (Szegö, 1975):

$$x_{r,i} \approx \cos\left(\frac{\pi}{2}\left(\frac{i-(1-\mu)/2}{r+\mu} + \frac{i}{r+1}\right)\right), \qquad \mu > \frac{1}{2},$$
 (2.151)

$$x_{r,i} \approx \cos\left(\frac{\pi}{2}\left(\frac{i - (1 - \mu)/2}{r + \mu} + \frac{i + \mu - \frac{1}{2}}{r + 2\mu}\right)\right), \qquad \mu < \frac{1}{2}, \tag{2.152}$$

 $i = 1, 2, ..., \lfloor (r+1)/2 \rfloor$, onde $x_{r,1} > x_{r,2} > ... > x_{r,\lfloor (r+1)/2 \rfloor} \ge 0$.

Uma relação envolvendo a derivada do polinômio de Gegenbauer é (Szegö, 1975)

$$(1 - x^2)C_r^{\mu\prime}(x) = -rxC_r^{\mu}(x) + (r + 2\mu - 1)C_{r-1}^{\mu}(x) = (r + 2\mu)xC_r^{\mu}(x) - (r + 1)C_{r+1}^{\mu}(x).$$
(2.153)

Os polinômios ortonormais de Gegenbauer $C_r^{\mu*}(x)$ são dados pela normalização $\frac{C_r^{\mu}(x)}{\sqrt{\gamma\phi_r}}$. A equação de recorrência para a seqüência $\{C_r^{\mu*}(x)\}_{r=0}^{\infty}$ é dada pelo Teorema 2.7, notando as formas de α_r e β_r nas equações (2.32) e (2.33),

$$\sqrt{\beta_{r+1}} C_{r+1}^{\mu*}(x) = x C_r^{\mu*}(x) + \sqrt{\beta_r} C_{r-1}^{\mu*}(x), \qquad r \ge 0, \qquad (2.154)$$

sendo $C_{-1}^{\mu*}(x) \equiv 0$, $C_0^{\mu*}(x) = \frac{\sqrt{\Gamma(2\mu+1)}}{2^{\mu}\Gamma(\mu+\frac{1}{2})}$, $\alpha_r = \frac{b_r}{a_r} = 0$, $r \ge 0$, (2.155)

$$\beta_r = \frac{\gamma_{\phi_r}}{a_{r-1}^2 \gamma_{\phi_{r-1}}} = \frac{r(r+2\mu-1)}{4(r+\mu)(r+\mu-1)}, \quad r \ge 1.$$
(2.156)

3 Interpolação e quadratura de Hermite

Neste capítulo são tratadas a interpolação e a quadratura de Hermite. A quadratura de Gauss será desenvolvida a partir destes conceitos. Inicialmente são apresentados alguns conceitos básicos sobre polinômios interpoladores.

Um polinômio de grau r-1 é determinado por r parâmetros. Se f(x) for uma função contínua e se forem conhecidos os valores de f(x) para $x = x_1, x_2, ..., x_r$, então é possível determinar um polinômio de grau r-1 que passe pelos r pontos de f(x). Este polinômio é chamado de polinômio interpolador.

O polinômio interpolador de Hermite, além de possuir os mesmos valores de f(x) em r pontos, também assume o mesmo valor da primeira derivada de f(x) nestes pontos. Portanto, este polinômio terá grau 2r - 1, uma vez que é determinado a partir de 2rparâmetros: os valores de f(x) e f'(x) em $x = x_1, x_2, ..., x_r$.

Em geral, as quadraturas são construídas a partir de polinômios interpoladores. As quadraturas exatas, para o caso em que f(x) é um polinômio de grau até r - 1, são denominadas por quadraturas interpolatórias (Krylov, 1962), como será o caso da quadratura de Hermite.

A principal obra consultada para o desenvolvimento deste capítulo foi Hildebrand (1974).

3.1 Interpolação de Hermite

Seja f(x) uma função contínua sobre o intervalo $[a, b], -\infty \le a < b \le \infty$. Sendo conhecidos os valores de f(x) e f'(x) em $x_1, x_2, ..., x_r$ é possível construir um polinômio interpolador de grau 2r-1 que coincida com f(x) e f'(x) nestas r abscissas. Tal polinômio interpolador pode ser definido como

$$y(x) = \sum_{k=1}^{r} h_k(x) f(x_k) + \sum_{k=1}^{r} \bar{h}_k(x) f'(x_k), \qquad (3.1)$$

onde $h_i(x)$ e $\bar{h}_i(x)$ são polinômios de grau 2r - 1, com i = 1, 2, ..., r. A interpolação requerida pressupõe que $y(x_j) = f(x_j)$, implicando

$$h_i(x_j) = \delta_{ij} \qquad e \qquad \bar{h}_i(x_j) = 0, \tag{3.2}$$

e também pressupõe que $y'(x_j) = f'(x_j)$, implicando

$$h'_i(x_j) = 0 \qquad e \qquad \bar{h}'_i(x_j) = \delta_{ij}, \qquad (3.3)$$

onde δ_{ij} é o delta de Kronecker

$$\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j, \end{cases} \quad j = 1, 2, ..., r.$$

Sejam os polinômios

$$\pi(x) \equiv (x - x_1)(x - x_2) \dots (x - x_r), \tag{3.4}$$

е

$$l_i(x) = \frac{\pi(x)}{(x - x_i)\pi'(x_i)},$$
(3.5)

$$l_i(x) \equiv \frac{(x-x_1)\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_r)}{(x_i-x_1)\dots(x_i-x_{i-1})(x_i-x_{i+1})\dots(x_i-x_r)},$$
(3.6)

com a propriedade $l_i(x_j) = 0$, $\forall i \neq j$. Segundo a definição de $l_i(x)$, em (3.6), tem-se $l_i(x_i) = 1$ e, de uma forma mais geral,

$$l_i(x_j) = \delta_{ij}.\tag{3.7}$$

Como $l_i(x)$ é um polinômio de grau r-1 o polinômio $[l_i(x)]^2$ terá grau 2r-2 e $[l_i(x_j)]^2 = \delta_{ij}$.

Por outro lado, os polinômios $h_i(x) \in \bar{h}_i(x)$ possuem grau 2r - 1 e são da forma

$$h_i(x) = r_i(x)[l_i(x)]^2$$
 e $\bar{h}_i(x) = s_i(x)[l_i(x)]^2$, (3.8)

onde $r_i(x)$ e $s_i(x)$ são polinômios de grau 1. Para $i \neq j$, (3.8) satisfaz (3.2) e (3.3).

Utilizando as condições (3.2) e (3.3), com i = j, em (3.8),

$$h_i(x_i) = r_i(x_i)[l_i(x_i)]^2 \qquad \Rightarrow \qquad r_i(x_i) = 1, \tag{3.9}$$

$$h'_{i}(x_{i}) = r'_{i}(x_{i})[l_{i}(x_{i})]^{2} + 2r_{i}(x_{i})l_{i}(x_{i})l'_{i}(x_{i}) \qquad \Rightarrow \qquad r'_{i}(x_{i}) + 2l'_{i}(x_{i}) = 0, \quad (3.10)$$

$$\bar{h}_i(x_i) = s_i(x_i)[l_i(x_i)]^2 \qquad \Rightarrow \qquad s_i(x_i) = 0, \tag{3.11}$$

$$\bar{h}'_i(x_i) = s'_i(x_i)[l_i(x_i)]^2 + 2s_i(x_i)l_i(x_i)l'_i(x_i) \qquad \Rightarrow \qquad s'_i(x_i) = 1.$$
(3.12)

De (3.11) e (3.12), obtém-se os coeficientes linear e angular de $s_i(x)$,

$$s_i(x) = x - x_i.$$
 (3.13)

A equação (3.10) fornece o coeficiente angular de $r_i(x)$, a saber $-2l'_i(x_i)$. Utilizando este resultado em (3.9) obtém-se o coeficiente linear, $1 + 2x_i l'_i(x_i)$. Conseqüentemente,

$$r_i(x) = 1 - 2l'_i(x_i)(x - x_i).$$
(3.14)

Substituindo os resultados (3.13) e (3.14) em (3.8) obtém-se o **polinômio interpo**lador de Hermite,

$$y(x) = \sum_{k=1}^{r} h_k(x) f(x_k) + \sum_{k=1}^{r} \bar{h}_k(x) f'(x_k), \qquad (3.15)$$

no qual

$$h_i(x) = [1 - 2l'_i(x_i)(x - x_i)][l_i(x)]^2$$
 e $\bar{h}_i(x) = (x - x_i)[l_i(x)]^2$. (3.16)

Teorema 3.1 O erro $E_r(x)$ na interpolação de Hermite é dado por

$$E_r(x) = \frac{f^{(2r)}(\xi(x))}{(2r)!} [\pi(x)]^2,$$

onde $\xi(x)$ está no interior de algum intervalo real.

Demonstração: Tem-se $E_r(x) = f(x) - y(x)$. O erro $E_r(x)$ na interpolação é igual a zero em x_i , assim como $E'_r(x)$, pois

$$E'_{r}(x) = f'(x) - y'(x) = f'(x) - \sum_{k=1}^{r} h'_{k}(x)f(x_{k}) - \sum_{k=1}^{r} \bar{h}'_{k}(x)f'(x_{k}),$$
$$E'_{r}(x_{i}) = f'(x_{i}) - \sum_{k=1}^{r} h'_{k}(x_{i})f(x_{k}) - \sum_{k=1}^{r} \bar{h}'_{k}(x_{i})f'(x_{k}),$$

e, uma vez que $h_k'(x_i) = 0$ e $\bar{h}_k'(x_i) = \delta_{ij}$,

$$E'_r(x_i) = f'(x_i) - f'(x_i) = 0.$$

Por outro lado, de acordo com (3.4), $[\pi(x)]^2$ e sua derivada, $2\pi(x)\pi'(x)$, anulam-se em x_i . Deste modo, seja uma função F(x) definida por

$$F(x) = E_r(x) - C[\pi(x)]^2, \qquad (3.17)$$

onde C é uma constante. A função F(x) é contínua e possui derivadas contínuas, pois é resultado da subtração de duas funções contínuas, cujas derivadas são contínuas. Além disto, a função F(x) é combinação linear de $E_r(x)$ e $[\pi(x)]^2$, implicando na seguinte igualdade $F(x_i) = F'(x_i) = 0$. Seja $\bar{x} \neq x_i$ tal que $F(\bar{x}) = 0$ a partir da qual é determinada a constante C.

Seja \overline{I} um intervalo fechado sendo limitado pela maior e pela menor das abscissas $x_1, x_2, \ldots, x_r, \overline{x}$. Como estas r + 1 abscissas são raízes de F(x), então F'(x) se anula em, pelo menos, r abscissas intermediárias no interior do intervalo \overline{I} . Entretanto, como F'(x) também é nula nas r abscissas x_1, x_2, \ldots, x_r , então pode-se afirmar que: F'(x) possui, no mínimo, 2r raízes pertencentes ao intervalo \overline{I} ; que F''(x), por sua vez, possui, no mínimo, 2r - 1 raízes no interior do intervalo \overline{I} ; $F^{(3)}(x)$, no mínimo, 2r - 2 raízes no interior de \overline{I} e assim por diante. Conseqüentemente, $F^{(2r)}(x)$ possui pelo menos uma raiz no interior de \overline{I} . Denota-se por $\overline{\xi}(x)$ a função cuja imagem é o conjunto formado por estas últimas abscissas.

Como y(x), em (3.1), é um polinômio de grau 2r-1, então $y^{(2r)}(x) = 0$ e a derivada de ordem 2r da equação $F(x) = f(x)-y(x)-C[\pi(x)]^2$ é dada por $F^{(2r)}(x) = f^{(2r)}(x)-C(2r)!$. Conseqüentemente,

$$F^{(2r)}(\bar{\xi}(x)) = f^{(2r)}(\bar{\xi}(x)) - C(2r)!,$$
$$C = \frac{f^{(2r)}(\bar{\xi}(x))}{(2r)!}.$$

Como $F(\bar{x}) = 0$, fica implicado que, em (3.17), $E_r(\bar{x}) = \frac{f^{(2r)}(\xi(x))}{(2r)!} [\pi(\bar{x})]^2$. Por outro lado, desde que ambos lados desta equação se anulam quando \bar{x} é identificado como x_i , esta equação fica verdadeira tanto para \bar{x} quanto para x_i . Portanto, suprimindo as barras,
pode-se reescrevê-la da seguinte forma

$$E_r(x) = \frac{f^{(2r)}(\xi(x))}{(2r)!} [\pi(x)]^2,$$

onde $\xi(x)$ está no interior do intervalo I que, por sua vez, é tal que $\{x_1, \ldots, x_r\} \subset I$.

3.2 Quadratura de Hermite

Na seção anterior foi definido o polinômio interpolador de Hermite, em (3.15) e (3.16) e o seu termo de erro no Teorema 3.1. Apresenta-se uma quadratura associada à função peso $w(x) \ge 0$ no intervalo $[a, b], -\infty \le a < b \le \infty$ denominada **quadratura de Hermite**,

$$\int_{a}^{b} w(x)f(x) \, dx = \sum_{k=1}^{r} \mathbf{H}_{k}f(x_{k}) + \sum_{k=1}^{r} \overline{\mathbf{H}}_{k}f'(x_{k}) + E_{r}, \qquad (3.18)$$

com os coeficientes¹ H_k e \overline{H}_k definidos por

$$H_i = \int_a^b w(x)h_i(x) \, dx = \int_a^b w(x)[1 - 2l'_i(x_i)(x - x_i)][l_i(x)]^2 \, dx, \qquad (3.19)$$

е

$$\overline{\mathbf{H}}_{i} = \int_{a}^{b} w(x)\bar{h}_{i}(x) \, dx = \int_{a}^{b} w(x)(x-x_{i})[l_{i}(x)]^{2} \, dx, \qquad (3.20)$$

e com o erro dado por

$$E_r = \frac{1}{(2r)!} \int_a^b f^{(2r)}(\xi(x)) w(x) [\pi(x)]^2 \, dx, \qquad (3.21)$$

onde $a < \xi(x) < b$, desde que as abscissas x_1, \ldots, x_r estejam contidas em [a, b].

Como f(x) é contínua e o produto $w(x)[\pi(x)]^2$ não muda de sinal em [a, b], então, pelo Teorema do Valor Médio Ponderado para Integrais, existe um número $\xi \in (a, b)$ tal que

$$E_r \equiv \frac{1}{(2r)!} \int_a^b f^{(2r)}(\xi(x)) w(x) [\pi(x)]^2 \, dx = \frac{f^{(2r)}(\xi)}{(2r)!} \int_a^b w(x) [\pi(x)]^2 \, dx.$$

Definição 3.2 (Grau de precisão) O grau de precisão de uma fórmula de quadratura é o maior natural η tal que a fórmula é exata para $f(x) = x^k, \forall k \in \{0, 1, ..., \eta\}$.

¹Normalmente estes números são chamados de *pesos da quadratura*, mas para evitar ambigüidade adota-se o nome *coeficientes* para referir a H_i , pois o nome *peso* é atribuído à função w(x).

Baseado na Definição 3.2, tem-se que o grau de precisão da fórmula da quadratura de Hermite é exatamente 2r - 1. O erro desta quadratura $E_r = \frac{f^{(2r)}(\xi)}{(2r)!} \int_a^b w(x) [\pi(x)]^2 dx$ é nulo se, e somente se, f(x) for um polinômio de grau menor ou igual a 2r - 1, tendo em vista que o integrando é uma função que não muda de sinal em [a, b], ou seja, a integral definida nunca pode ser igual a zero.

As quadraturas com o grau de precisão da quadratura de Hermite são consideradas quadraturas de grau máximo de precisão.

4 Quadratura de Gauss

Neste capítulo apresenta-se a quadratura de Gauss. O alemão Carl Friedrich Gauss (1777-1855), tentando aperfeiçoar as técnicas de Newton-Cotes¹, formulou a regra de quadratura que hoje leva seu nome para o caso em que w(x) = 1 usando as frações contínuas. A generalização para funções peso arbitrárias surgiu mais tarde, em 1877, com a contribuição de E. B. Christoffel (Gautschi, 2003) e também com Chebyshev.

Os resultados aqui são conseqüentes dos conceitos relacionados à quadratura de Hermite. A quadratura de Gauss é também interpolatória, como a de Hermite, sem necessitar, entretanto, das avaliações das derivadas de f(x). Contudo, ela preservará o grau máximo de precisão 2r - 1.

A Seção 4.1 apresenta os teoremas que estabelecem a quadratura de Gauss e os teoremas que garantem a convergência deste método. As seções seguintes apresentam as quadraturas de Gauss de medidas w(x) clássicas, isto é, as quadraturas com base nos polinômios ortogonais clássicos. A teoria destes polinômios será amplamente usada e os resultados A_r e γ_{ϕ_r} das Seções 2.2 a 2.9 são fundamentais.

As principais obras consultadas para os teoremas foram Hildebrand (1974), Wilf (1978), Davis e Rabinowitz (1984) e Krylov (1962).

4.1 Teoremas

Teorema 4.1 O polinômio $\pi(x)$, definido em (3.4), pertence à seqüência de polinômios ortogonais com relação a w(x) sobre o intervalo [a,b] se, e somente se, a fórmula da quadratura de Hermite, (3.18) a (3.21), puder se reduzir à forma

$$\int_a^b w(x)f(x)\,dx = \sum_{k=1}^r \mathbf{H}_k f(x_k) + E_r$$

¹Este resultado consta de sua célebre obra: Methodus nova integralium valores per approximationem inveniendi. *Commentationes Societatis Regiae Scientarium Gottingensis Recentiores*, 1814.

Demonstração: Se $\pi(x)$ pertencer a uma seqüência de polinômios ortogonais com relação à w(x) sobre o intervalo [a, b], então, $\int_{a}^{b} w(x)\pi(x)u_{r-1}(x) dx = 0$, sendo $u_{r-1}(x)$ um polinômio de grau r-1 ou menor. Como $l_i(x)$, dado em (3.5), possui grau r-1, então

$$\int_{a}^{b} w(x)\pi(x)l_{i}(x) dx = 0.$$
(4.1)

Ao reescrever a equação (3.20) notando (3.5),

$$\overline{H}_{i} = \int_{a}^{b} w(x)(x-x_{i}) \frac{[\pi(x)]^{2}}{(x-x_{i})^{2} [\pi'(x_{i})]^{2}} dx,$$

$$= \frac{1}{\pi'(x_{i})} \int_{a}^{b} w(x) \pi(x) \frac{\pi(x)}{(x-x_{i})\pi'(x_{i})} dx,$$

$$\overline{H}_{i} = \frac{1}{\pi'(x_{i})} \int_{a}^{b} w(x) \pi(x) l_{i}(x) dx.$$
(4.2)

Notando o resultado (4.1) em (4.2), ocorre que $\overline{\mathbf{H}}_i = 0$, isto é, a fórmula da quadratura de Hermite se reduz a $\int_a^b w(x)f(x) \, dx = \sum_{k=1}^r \mathbf{H}_k f(x_k) + E_r.$

Por outro lado, suponha que a fórmula da quadratura de Hermite seja da forma

$$\int_a^b w(x)f(x)\,dx = \sum_{k=1}^r \mathbf{H}_k f(x_k) + E_r$$

Seja $f(x) = \pi(x)u_{r-1}(x)$ um polinômio de grau 2r - 1 ou menor. Então, por meio da Definição 3.2, $E_r = 0$. Como $\pi(x_i) = 0$, tem-se que $f(x_i) = 0$. Conseqüentemente,

$$\int_{a}^{b} w(x)f(x) dx = \sum_{k=1}^{r} H_{k}f(x_{k}) = 0,$$
$$\int_{a}^{b} w(x)\pi(x)u_{r-1}(x) dx = 0,$$

isto é, $\pi(x)$ pertence a $\{\phi_r(x)\}_{r=0}^{\infty}$.

Partindo da definição de H_i dada em (3.19),

$$H_{i} = \int_{a}^{b} w(x)[1 - 2l'_{i}(x_{i})(x - x_{i})][l_{i}(x)]^{2} dx,$$

$$H_{i} = \int_{a}^{b} w(x)[l_{i}(x)]^{2} dx - 2l'_{i}(x_{i}) \int_{a}^{b} w(x)(x - x_{i})[l_{i}(x)]^{2} dx,$$

mas, de acordo com o Teorema 4.1, tem-se que

$$H_i = \int_a^b w(x)[l_i(x)]^2 dx - 2l'_i(x_i)\overline{H}_i$$
$$H_i = \int_a^b w(x)[l_i(x)]^2 dx.$$

Observa-se que a fórmula de quadratura numérica do Teorema 4.1 é função apenas dos valores de f(x) em $x_1, ..., x_r$, sendo independente das derivadas nestas abscissas, preservando, contudo, o grau de precisão 2r - 1. Esta fórmula de quadratura é denominada **quadratura de Gauss**

$$\int_{a}^{b} w(x)f(x) \, dx \, = \, \sum_{k=1}^{r} \mathcal{H}_{k}f(x_{k}) + E_{r}, \tag{4.3}$$

com o coeficiente

$$H_i = \int_a^b w(x) [l_i(x)]^2 dx, \qquad (4.4)$$

e erro

$$E_r = \frac{f^{(2r)}(\xi)}{(2r)!} \int_a^b w(x) [\pi(x)]^2 \, dx, \qquad (4.5)$$

onde $\xi \in (a, b)$, desde que x_1, \ldots, x_r estejam contidos em [a, b].

Verifica-se que o polinômio $\pi(x)$, sob as hipóteses do Teorema 4.1, é um caso particular de $\phi_r(x)$ com coeficiente dominante $A_r = 1$. Desta maneira, o Teorema 2.3 garante que todas os zeros de $\pi(x)$, x_1, x_2, \ldots, x_r , estão contidos no interior em (a, b). Assim, x_1, x_2, \ldots, x_r são os zeros² de $\phi_r(x)$ cujo coeficiente dominante é A_r . Logo, sua forma fatorada é dada por $\phi_r(x) = A_r(x - x_1)(x - x_2) \ldots (x - x_r)$. Conseqüentemente,

$$\pi(x) = \frac{\phi_r(x)}{A_r}.$$
(4.6)

Com esta última igualdade, reescreve-se a equação (4.5),

$$E_r = \frac{f^{(2r)}(\xi)}{(2r)!} \int_a^b w(x) \left[\frac{\phi_r(x)}{A_r}\right]^2 dx,$$
$$E_r = \frac{1}{A_r^2} \frac{f^{(2r)}(\xi)}{(2r)!} \int_a^b w(x) [\phi_r(x)]^2 dx,$$

²Para simplificar a notação, o *i*-ésimo zero do polinômio $\phi_r(x)$, de grau r, será denotado por x_i , $i = 0, \ldots, r$.

e, notando a definição de γ_{ϕ_r} dada em (2.1),

$$E_r = \frac{\gamma_{\phi_r}}{A_r^2} \frac{f^{(2r)}(\xi)}{(2r)!}, \qquad \xi \in (a,b).$$
(4.7)

Teorema 4.2 Na quadratura de Gauss é válido que

$$H_i = \int_a^b w(x) [l_i(x)]^2 dx = \int_a^b w(x) l_i(x) dx.$$

Demonstração: Considerando $f(x) = l_i(x)$ na quadratura de Gauss (4.3),

$$\int_{a}^{b} w(x)l_{i}(x) dx = \sum_{k=1}^{r} H_{k}l_{i}(x_{k}) + E_{r},$$

e, como definido em (3.7), $l_i(x_k) = 1$, se k = i e $l_i(x_k) = 0$, se $k \neq i$. Então,

$$\int_a^b w(x)l_i(x)\,dx = \mathbf{H}_i + E_r,$$

e, como $l_i(x)$ possui grau r-1, tem-se $E_r = 0$, resultando em $\int_a^b w(x)l_i(x) dx = H_i$. Por outro lado, pela quadratura de Gauss, em (4.4), $H_i = \int_a^b w(x)[l_i(x)]^2 dx$, resultando em

$$H_i = \int_a^b w(x) [l_i(x)]^2 dx = \int_a^b w(x) l_i(x) dx.$$

Com a finalidade de obter explicitamente o coeficiente H_i , faz-se uso da identidade de Christoffel-Darboux (Teorema 2.5),

$$\sum_{k=0}^{r} \frac{\phi_k(x)\phi_k(y)}{\gamma_{\phi_k}} = \frac{\phi_{r+1}(x)\phi_r(y) - \phi_r(x)\phi_{r+1}(y)}{a_r\gamma_{\phi_r}(x-y)},$$

Ao substituir y por x_i , onde x_i é um zero de $\phi_r(x)$, a identidade de Christoffel-Darboux torna-se

$$\frac{A_r \phi_{r+1}(x_i)}{A_{r+1} \gamma_{\phi_r}} \frac{\phi_r(x)}{x - x_i} = -\sum_{k=0}^r \frac{\phi_k(x) \phi_k(x_i)}{\gamma_{\phi_k}}$$

Multiplicando a igualdade anterior por $w(x)\phi_0(x)$ e integrando o resultado em [a, b],

$$\frac{A_r\phi_{r+1}(x_i)}{A_{r+1}\gamma_{\phi_r}}\int_a^b \frac{w(x)\phi_0(x)\phi_r(x)}{x-x_i}\,dx = -\int_a^b \sum_{k=0}^r w(x)\phi_0(x)\,\frac{\phi_k(x)\phi_k(x_i)}{\gamma_{\phi_k}}\,dx.$$

Expandindo o somatório e utilizando-se da ortogonalidade dos polinômios,

$$\frac{A_r\phi_{r+1}(x_i)}{A_{r+1}\gamma_{\phi_r}} \int_a^b \frac{w(x)\phi_0(x)\phi_r(x)}{x-x_i} dx = -\frac{\phi_0(x_i)}{\gamma_{\phi_0}} \int_a^b w(x)[\phi_0(x)]^2 dx,$$

$$\frac{A_r\phi_{r+1}(x_i)}{A_{r+1}\gamma_{\phi_r}} \int_a^b \frac{w(x)\phi_0(x)\phi_r(x)}{x-x_i} dx = -\phi_0(x_i).$$

No entanto, $\phi_0(x)$ é uma constante, implicando que $\phi_0(x) = \phi_0(x_i)$, resultando em

$$\int_{a}^{b} w(x) \frac{\phi_{r}(x)}{x - x_{i}} dx = -\frac{A_{r+1}\gamma_{\phi_{r}}}{A_{r}\phi_{r+1}(x_{i})}.$$
(4.8)

Todavia, combinando (3.5) e (4.6),

$$l_i(x) = \frac{\pi(x)}{\pi'(x_i)(x - x_i)} = \frac{\phi_r(x)}{\phi'_r(x_i)(x - x_i)},$$

e utilizando a expressão acima na segunda forma de H_i do Teorema 4.2,

$$\mathbf{H}_{i} = \frac{1}{\phi_{r}'(x_{i})} \int_{a}^{b} w(x) \frac{\phi_{r}(x)}{x - x_{i}} dx$$

Logo, por (4.8),

$$H_{i} = -\frac{A_{r+1}\gamma_{\phi_{r}}}{A_{r}\phi_{r}'(x_{i})\phi_{r+1}(x_{i})}.$$
(4.9)

Avaliando a fórmula de recorrência do Teorema 2.4 no zero x_i de $\phi_r(x)$,

$$\phi_{r+1}(x_i) = (a_r x_i - b_r) \phi_r(x_i) - c_r \phi_{r-1}(x_i),$$

$$\phi_{r+1}(x_i) = -c_r \phi_{r-1}(x_i),$$

substituindo o valor de $c_r = \frac{a_r \gamma_{\phi_r}}{a_{r-1} \gamma_{\phi_{r-1}}},$

$$\phi_{r+1}(x_i) = -\frac{\frac{A_{r+1}}{A_r}\gamma_{\phi_r}}{\frac{A_{r}}{A_{r-1}}\gamma_{\phi_{r-1}}}\phi_{r-1}(x_i),$$

$$\phi_{r+1}(x_i) = -\frac{A_{r+1}A_{r-1}}{A_r^2}\frac{\gamma_{\phi_r}}{\gamma_{\phi_{r-1}}}\phi_{r-1}(x_i).$$
 (4.10)

Ao substituir o resultado (4.10) em (4.9) encontra-se outra forma de H_i ,

$$H_{i} = \frac{A_{r+1}\gamma_{\phi_{r}}}{A_{r}\phi_{r}'(x_{i})} \frac{A_{r}^{2}}{A_{r+1}A_{r-1}} \frac{\gamma_{\phi_{r-1}}}{\gamma_{\phi_{r}}} \frac{1}{\phi_{r-1}(x_{i})},$$

$$H_{i} = \frac{A_{r}\gamma_{\phi_{r-1}}}{A_{r-1}\phi_{r}'(x_{i})\phi_{r-1}(x_{i})}.$$
(4.11)

Notando o Corolário 2.5.1 com $x = x_i$, sendo x_i o *i*-ésimo zero de $\phi_r(x)$, e a forma de H_i em (4.9), tem-se que

$$\sum_{k=0}^{r} \frac{\phi_k(x_i)}{\gamma_{\phi_k}} = -\frac{A_r \phi_r'(x_i) \phi_{r+1}(x_i)}{A_{r+1} \gamma_{\phi_r}} = \frac{1}{H_i}$$

Sem perda de generalidade, se $\phi_k(x)$ for ortonormal, então $\gamma_{\phi_k} = 1$ e $\phi_k^*(x) = \psi_k^*(x)$. Portanto,

$$\sum_{k=0}^{r} \psi_k^*(x_i) = \frac{1}{\mathrm{H}_i}.$$
(4.12)

,

Pelo Corolário 2.8.1, obtém-se a implicação

$$\mathbf{H}_i \,=\, \frac{\mathbf{v}_{i,1}^2}{[\psi_0^*(x)]^2},$$

estabelecendo o seguinte Teorema:

Teorema 4.3 Os r zeros x_i da quadratura de Gauss são os autovalores da matriz de Jacobi (equação (2.36))

$$\mathbf{J}_{r} = \begin{bmatrix} \alpha_{0} & \sqrt{\beta_{1}} & & 0 \\ \sqrt{\beta_{1}} & \alpha_{1} & \sqrt{\beta_{2}} & & \\ & \sqrt{\beta_{2}} & \alpha_{2} & \sqrt{\beta_{3}} & \\ & & \ddots & \ddots & \ddots \\ 0 & & & \sqrt{\beta_{r-1}} & \alpha_{r-1} \end{bmatrix}$$

sendo α_i , i = 0, 1, ..., r - 1 e β_i , i = 1, 2, ..., r - 1 dados pelos termos da equação de recorrência dos polinômios ortonormais e os coeficientes H_i são são dados por

$$\mathbf{H}_i = \frac{\mathbf{v}_{i,1}^2}{[\phi_0^*(x)]^2},$$

sendo $\mathbf{v}_{i,1}$ o primeiro componente do autovetor normalizado \mathbf{v}_i correspodente ao autovalor x_i .

O notável resultado anterior é considerado o método mais elegante na obtenção dos zeros e coeficientes para a quadratura de Gauss (Wilf, 1978).

O teorema anterior também implica que os coeficientes H_i da quadratura de Gauss são todos positivos. **Teorema 4.4** Se o intervalo [a, b] for finito e f(x) for contínua em [a, b], então

$$\lim_{r \to \infty} \sum_{k=1}^{r} H_k f(x_k) = \int_a^b w(x) f(x) \, dx.$$
(4.13)

Demonstração: Desde que f(x) é contínua em [a, b], o Teorema de Weierstrass garante que, dado qualquer $\epsilon > 0$, é posssível encontrar um polinômio P(x) tal que

$$|f(x) - P(x)| < \epsilon, \qquad \forall x \in [a, b].$$

$$(4.14)$$

Assim,

$$\left| \int_{a}^{b} w(x)f(x) \, dx - \sum_{k=1}^{r} \mathcal{H}_{k}f(x_{k}) \right| \leq \left| \int_{a}^{b} w(x)f(x) \, dx - \int_{a}^{b} w(x)P(x) \, dx \right| \\ + \left| \int_{a}^{b} w(x)P(x) \, dx - \sum_{k=1}^{r} \mathcal{H}_{k}P(x_{k}) \right| \\ + \left| \sum_{k=1}^{r} \mathcal{H}_{k}P(x_{k}) - \sum_{k=1}^{r} \mathcal{H}_{k}f(x_{k}) \right|.$$

De acordo com (4.14),

$$\left|\int_{a}^{b} w(x)f(x)\,dx - \int_{a}^{b} w(x)P(x)\,dx\right| < \epsilon \int_{a}^{b} w(x)\,dx$$

е

$$\left|\sum_{k=1}^{r} \mathbf{H}_{k} P(x_{k}) - \sum_{k=1}^{r} \mathbf{H}_{k} f(x_{k})\right| < \epsilon \sum_{k=1}^{r} \mathbf{H}_{k} = \epsilon \int_{a}^{b} w(x) \, dx$$

Se n for o grau do polinômio P(x), então para $2r - 1 \ge n$,

$$\int_{a}^{b} w(x)P(x) dx = \sum_{k=1}^{r} \mathbf{H}_{k}P(x_{k}),$$

e para tal valor de r,

$$\left| \int_a^b w(x) P(x) \, dx \, - \, \sum_{k=1}^r \mathcal{H}_k f(x_k) \right| \, < \, 2 \, \epsilon \, \int_a^b w(x) \, dx,$$

o que prova (4.13).

O teorema anterior garante a convergência das quadraturas de Gauss em intervalos limitados. Este resultado também pode decorrer como conseqüência de um caso geral de convergência para funções analíticas no plano complexo (Krylov, 1962). Os próximos teoremas mostram sob que condições as quadraturas de Gauss em intervalos infinitos podem convergir. As demonstrações destes resultados, juntamente com suas generalizações, são dadas por Uspensky³, citado por Davis e Rabinowitz (1984).

Teorema 4.5 Considere a família de quadraturas do tipo

$$\sum_{k=1}^{r} H_k f(x_k) = \int_0^\infty e^{-x} x^\alpha f(x) \, dx + E_r, \qquad \alpha > -1$$

Se, para todos valores suficientemente grandes de x, a função f(x) satisfizer a desigualdade

$$|f(x)| \le \frac{e^x}{x^{\alpha+1+\rho}}, \qquad para \ algum \ \rho > 0,$$

então

$$\lim_{r \to \infty} \sum_{k=1}^r \mathcal{H}_k f(x_k) = \int_0^\infty e^{-x} x^\alpha f(x) \, dx.$$

Este teorema garante a convergência das quadraturas com funções peso de Laguerre generalizado e o próximo se aplica nas quadraturas de Gauss-Hermite. É importante observar que as condições de convergência de tais teoremas são suficientes mas não necessárias. Por exemplo, Davis e Rabinowitz (1984) apresentam exemplos de quadraturas que convergem fortemente mas cujas funções não satisfazem as condições dos teoremas. Por isto, toma-se a liberdade de realizar experimentos com as quadraturas de Gauss-Hermite, Gauss-Laguerre e Gauss-Laguerre generalizada sem verificar as condições de convergência.

Teorema 4.6 Considere a família das quadraturas do tipo

$$\sum_{k=1}^{r} H_k f(x_k) = \int_{-\infty}^{\infty} e^{-x^2} f(x) \, dx + E_r.$$

Se, para todos valores suficientemente grandes de |x|, a função f(x) satisfizer a desigualdade

$$|f(x)| \le \frac{e^{x^2}}{|x|^{1+\rho}}, \qquad para \ algum \ \rho > 0,$$

então

$$\lim_{r \to \infty} \sum_{k=1}^{r} \mathcal{H}_k f(x_k) = \int_{-\infty}^{\infty} e^{-x^2} f(x) \, dx$$

³Uspensky, J. V. On the convergence of quadrature formulas related to an infinite interval, *Trans.* Amer. Math. Soc. **30** (1928) 542-559.

4.2 Quadratura de Gauss-Legendre

O polinômio de Legendre $P_r(x)$, definido com w(x) = 1 em [-1, 1], possui coeficiente dominante $A_r = \frac{(2r)!}{2^r (r!)^2}$ e $\gamma_{\phi_r} = \frac{2}{2r+1}$ como dados em (2.46) e (2.49). Sob estas condições a quadratura de Gauss torna-se

$$\int_{-1}^{1} f(x) \, dx = \sum_{k=1}^{r} \mathbf{H}_{k} f(x_{k}) + E_{r},$$

sendo x_i o *i*-ésimo zero de $P_r(x)$ e onde, por (4.9),

$$H_i = -\frac{2}{(r+1)P'_r(x_i)P_{r+1}(x_i)}$$
(4.15)

ou, por (4.11),

$$H_i = \frac{2}{rP'_r(x_i)P_{r-1}(x_i)}$$
(4.16)

e, por (4.7),

$$E_r = \frac{2^{2r+1}(r!)^4}{(2r+1)[(2r)!]^3} f^{(2r)}(\xi), \qquad \xi \in (-1,1).$$
(4.17)

Fazendo-se $x = x_i$ em (2.55),

$$(1 - x_i^2)P'_r(x_i) = (r+1)x_iP_r(x_i) - (r+1)P_{r+1}(x_i) = -rx_iP_r(x_i) + rP_{r-1}(x_i),$$

$$(1 - x_i^2)P'_r(x_i) = -(r+1)P_{r+1}(x_i) = rP_{r-1}(x_i).$$
(4.18)

Notando (4.18) reescreve-se os coeficientes em (4.15) e (4.16) do seguinte modo

$$H_i = \frac{2}{(1 - x_i^2)(P'_r(x_i))^2}.$$
(4.19)

Como $P_r(x)$ é função par ou ímpar e os zeros do polinômio de Legendre são simétricos com relação à origem, então $(P'_r(x_i))^2 = (P'_r(x_{r+1-i}))^2$. Logo, $H_i = H_{r+1-i}$, ou seja, os coeficientes H_i são também simétricos com relação à origem.

Por outro lado, notando a equação de recorrência para os polinômios ortonormais de Legendre, (2.56) a (2.58), tem-se, pelo Teorema 4.3, que

$$\mathbf{H}_{i} = 2 \, \mathbf{v}_{i,1}^{2}, \tag{4.20}$$

sendo $\mathbf{v}_{i,1}$ o primeiro componente do autovetor \mathbf{v}_i normalizado da matriz de Jacobi

$$\mathbf{J}_{r} = \begin{bmatrix} 0 & \sqrt{\beta_{1}} & 0 & 0 \\ \sqrt{\beta_{1}} & 0 & \sqrt{\beta_{2}} & \\ & \sqrt{\beta_{2}} & 0 & \sqrt{\beta_{3}} & \\ & & \ddots & \ddots & \ddots & \\ & & & \sqrt{\beta_{r-1}} & 0 \end{bmatrix}, \ \beta_{m} = \frac{m^{2}}{4m^{2} - 1}, \quad m = 1, \dots, r - 1. \quad (4.21)$$

4.3 Quadratura de Gauss-Laguerre generalizada

O polinômio de Laguerre generalizado $L_r^{\alpha}(x)$, definido com $w(x) = e^{-x}x^{\alpha}$, $\alpha > -1$, em $[0, \infty)$, possui coeficiente dominante $A_r = \frac{(-1)^r}{r!}$ e $\gamma_{\phi_r} = \frac{\Gamma(\alpha + r + 1)}{r!}$, em (2.64) e (2.66). Sob estas condições a quadratura de Gauss torna-se

$$\int_0^\infty e^{-x} x^\alpha f(x) \, dx = \sum_{k=1}^r \mathcal{H}_k f(x_k) + E_r,$$

sendo x_i o *i*-ésimo zero de $L_r^{\alpha}(x)$ e onde, por (4.9),

$$\mathbf{H}_{i} = \frac{\Gamma(\alpha + r + 1)}{(r+1)!L_{r}^{\alpha'}(x_{i})L_{r+1}^{\alpha}(x_{i})},$$

ou, por (4.11),

$$\mathbf{H}_{i} = -\frac{\Gamma(\alpha+r)}{r!L_{r}^{\alpha\prime}(x_{i})L_{r-1}^{\alpha}(x_{i})}$$
(4.22)

e, por (4.7),

$$E_r = \frac{r!\Gamma(\alpha + r + 1)}{(2r)!} f^{(2r)}(\xi), \qquad \xi \in (0, \infty).$$
(4.23)

Fazendo $x = x_i$ em (2.71),

 $x_i L_r^{\alpha'}(x_i) = r L_r^{\alpha}(x_i) - (\alpha + r) L_{r-1}^{\alpha}(x_i),$

$$L_{r-1}^{\alpha}(x_i) = -\frac{x_i L_r^{\alpha'}(x_i)}{(\alpha+r)}$$

e utilizando este resultado em (4.22),

$$\mathbf{H}_{i} = -\frac{\Gamma(\alpha + r)}{r!L_{r}^{\alpha\prime}(x_{i}) \left(\frac{-x_{i}L_{r}^{\alpha\prime}(x_{i})}{(\alpha + r)}\right)},$$

$$\mathbf{H}_{i} = \frac{\Gamma(\alpha + r + 1)}{r! x_{i} (L_{r}^{\alpha'}(x_{i}))^{2}}.$$
(4.24)

Por outro lado, notando a equação de recorrência para os polinômios ortonormais de Laguerre generalizados, (2.72) a (2.74), tem-se, pelo Teorema 4.3, que

$$\mathbf{H}_{i} = \Gamma(\alpha + 1) \mathbf{v}_{i,1}^{2}, \qquad (4.25)$$

sendo $\mathbf{v}_{i,1}$ o primeiro componente do autovetor \mathbf{v}_i normalizado da matriz de Jacobi

$$\mathbf{J}_{r} = \begin{bmatrix} \alpha_{0} & \sqrt{\beta_{1}} & & & 0 \\ \sqrt{\beta_{1}} & \alpha_{1} & \sqrt{\beta_{2}} & & & \\ & \sqrt{\beta_{2}} & \alpha_{2} & \sqrt{\beta_{3}} & & \\ & & \ddots & \ddots & \ddots & \\ & 0 & & \sqrt{\beta_{r-1}} & \alpha_{r-1} \end{bmatrix}, \quad \alpha_{m} = \alpha + 2m + 1, \quad m = 0, \dots, r - 1, \\ \beta_{m} = m(\alpha + m), \quad m = 1, \dots, r - 1.$$

$$(4.26)$$

4.4 Quadratura de Gauss-Laguerre

Esta quadratura é um caso particular da quadratura de Gauss-Laguerre generalizada quando $\alpha = 0$, portanto, sua fórmula de quadratura é

$$\int_0^\infty e^{-x} f(x) \, dx \, = \, \sum_{k=1}^r \mathbf{H}_k f(x_k) + E_r,$$

sendo x_i o *i*-ésimo zero de $L_r(x)$ e onde, por (4.24),

$$H_i = \frac{1}{x_i (L'_r(x_i))^2}$$
(4.27)

e, por (4.23),

$$E_r = \frac{(r!)^2}{(2r)!} f^{(2r)}(\xi), \qquad \xi \in (0,\infty).$$
(4.28)

Notando a equação de recorrência para os polinômios ortornormais de Laguerre, (2.72) a (2.79), pelo Teorema 4.3, tem-se que

$$\mathbf{H}_i = \mathbf{v}_{i,1}^2, \tag{4.29}$$

sendo $\mathbf{v}_{i,1}$ o primeiro componente do autovetor \mathbf{v}_i normalizado da matriz de Jacobi

$$\mathbf{J}_{r} = \begin{bmatrix} \alpha_{0} & \sqrt{\beta_{1}} & & & 0 \\ \sqrt{\beta_{1}} & \alpha_{1} & \sqrt{\beta_{2}} & & & \\ & \sqrt{\beta_{2}} & \alpha_{2} & \sqrt{\beta_{3}} & & \\ & & \ddots & \ddots & \ddots & \\ & & & \sqrt{\beta_{r-1}} & \alpha_{r-1} \end{bmatrix}, \quad \alpha_{m} = 2m+1, \quad m = 0, \dots, r-1 \quad (4.30)$$

4.5 Quadratura de Gauss-Hermite

O polinômio de Hermite $H_r(x)$ definido com $w(x) = e^{-x^2}$ no intervalo duplamente infinito possui coeficiente dominante $A_r = 2^r$ e $\gamma_{\phi_r} = 2^r r! \sqrt{\pi}$, em (2.83) e (2.66). Desta forma, a quadratura de Gauss torna-se

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx = \sum_{k=1}^{r} \mathcal{H}_k f(x_k) + E_r,$$

sendo x_i o *i*-ésimo zero de $H_r(x)$ e onde, por (4.9),

$$\mathbf{H}_{i} = -\frac{2^{r+1}r!\sqrt{\pi}}{H'_{r}(x_{i})H_{r+1}(x_{i})}$$
(4.31)

ou, por (4.11),

$$H_i = \frac{2^r (r-1)! \sqrt{\pi}}{H'_r(x_i) H_{r-1}(x_i)}$$
(4.32)

e, por (4.7),

$$E_r = \frac{r!\sqrt{\pi}}{2^r} \frac{f^{(2r)}(\xi)}{(2r)!}, \qquad \xi \in (-\infty, \infty)$$
(4.33)

Da relação (2.92) segue que

$$H'_{r}(x_{i}) = 2rH_{r-1}(x_{i}) = 2x_{i}H_{r}(x_{i}) - H_{r+1}(x_{i}),$$

$$H'_{r}(x_{i}) = 2rH_{r-1}(x_{i}) = -H_{r+1}(x_{i}).$$
(4.34)

Notando (4.34) reescreve-se os coeficientes em (4.31) e (4.32) do seguinte modo

$$H_i = \frac{2^{r+1} r! \sqrt{\pi}}{(H'_r(x_i))^2}.$$
(4.35)

Como $H_r(x)$ é função par ou ímpar e os zeros do polinômio de Hermite são simétricos com relação à origem, então $(H'_r(x_{r+1-i}))^2 = (H'_r(x_i))^2$. Logo, $H_i = H_{r+1-i}$, ou seja, os coeficientes H_i são também simétricos com relação à origem. Por outro lado, notando a equação de recorrência para os polinômios ortonormais de Hermite, (2.93) a (2.95), tem-se pelo Teorema 4.3 que

$$\mathbf{H}_i = \sqrt{\pi} \, \mathbf{v}_{i,1}^2, \tag{4.36}$$

sendo $\mathbf{v}_{i,1}$ o primeiro componente do autovetor \mathbf{v}_i normalizado da matriz de Jacobi

4.6 Quadratura de Gauss-Jacobi

O polinômio de Jacobi $P_r^{(\alpha,\beta)}(x)$ é definido sobre o intervalo [-1,1] com função peso $w(x) = (1-x)^{\alpha}(1+x)^{\beta}, \alpha > -1$ e $\beta > -1$. O seu coeficiente dominante é

$$A_r = \frac{1}{2^r r!} \frac{\Gamma(2r + \alpha + \beta + 1)}{\Gamma(r + \alpha + \beta + 1)}$$

e o termo

$$\gamma_{\phi_r} = \frac{2^{\alpha+\beta+1}}{(2r+\alpha+\beta+1)r!} \frac{\Gamma(r+\alpha+1)\Gamma(r+\beta+1)}{\Gamma(r+\alpha+\beta+1)},$$

ambos com $r + \alpha + \beta \in \mathbb{R} - \mathbb{Z}_{-}^{*}$, em (2.101) e (2.103).

Como explicado na Seção 2.6, para que $r + \alpha + \beta \in \mathbb{R} - \{-1, -2, ...\}$, é suficiente que $r \neq 0$. Desde que uma quadratura pressupõe o número de zeros $r \geq 1$, então as expressões acima para $A_r \in \gamma_{\phi_r}$ são sempre válidas. Assim, a quadratura de Gauss torna-se

$$\int_{-1}^{1} (1-x)^{\alpha} (1+x)^{\beta} f(x) \, dx = \sum_{k=1}^{r} \mathbf{H}_{k} f(x_{k}) + E_{r},$$

sendo x_i o *i*-ésimo zero de $P_r^{(\alpha,\beta)}(x)$ e onde, por (4.9),

$$H_{i} = -\frac{2^{\alpha+\beta}}{(r+1)!} \frac{(2r+\alpha+\beta+2)}{(r+\alpha+\beta+1)} \frac{\Gamma(r+\alpha+1)\Gamma(r+\beta+1)}{\Gamma(r+\alpha+\beta+1)P_{r}^{(\alpha,\beta)}(x_{i})P_{r+1}^{(\alpha,\beta)}(x_{i})}$$
(4.38)

ou, por (4.11),

$$H_{i} = \frac{2^{\alpha+\beta}}{r!} \frac{(2r+\alpha+\beta)}{(r+\alpha+\beta)} \frac{\Gamma(r+\alpha)\Gamma(r+\beta)}{\Gamma(r+\alpha+\beta)P_{r}^{(\alpha,\beta)}(x_{i})P_{r-1}^{(\alpha,\beta)}(x_{i})}$$
(4.39)

e, por (4.7),

$$E_{r} = \frac{2^{2r+\alpha+\beta+1}r!}{(2r)!} \frac{\Gamma(r+\alpha+1)\Gamma(r+\beta+1)\Gamma(r+\alpha+\beta+1)}{(2r+\alpha+\beta+1)[\Gamma(2r+\alpha+\beta+1)]^{2}} f^{(2r)}(\xi), \quad \xi \in (-1,1).$$
(4.40)

Avaliando (2.111) e (2.112) em x_i e usando o fato de que $P_r^{(\alpha,\beta)}(x_i) = 0$,

$$(2r + \alpha + \beta + 2)(1 - x_i^2)P_r^{(\alpha,\beta)'}(x_i) = -2(r+1)(r + \alpha + \beta + 1)P_{r+1}^{(\alpha,\beta)}(x_i), \quad (4.41)$$

$$(2r + \alpha + \beta)(1 - x_i^2)P_r^{(\alpha,\beta)'}(x_i) = 2(r + \alpha)(r + \beta)P_{r-1}^{(\alpha,\beta)}(x_i), \qquad (4.42)$$

Notando (4.41) e (4.42) em (2.111) e (2.112), respectivamente, os coeficientes H_i tornam-se iguais a

$$H_{i} = \frac{2^{\alpha+\beta+1}}{r!} \frac{\Gamma(r+\alpha+1)\Gamma(r+\beta+1)}{\Gamma(r+\alpha+\beta+1)(1-x_{i}^{2})(P_{r}^{(\alpha,\beta)}(x_{i}))^{2}}.$$
(4.43)

Entretanto, notando a equação de recorrência para os polinômios ortonormais de Jacobi, (2.113) a (2.117), tem-se, pelo Teorema 4.3, que

$$\mathbf{H}_{i} = \frac{2^{\alpha+\beta+1}\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} \mathbf{v}_{i,1}^{2}, \qquad (4.44)$$

sendo $\mathbf{v}_{i,1}$ o primeiro componente do autovetor \mathbf{v}_i normalizado da matriz de Jacobi

$$\mathbf{J}_{r} = \begin{bmatrix} \alpha_{0} & \sqrt{\beta_{1}} & & 0\\ \sqrt{\beta_{1}} & \alpha_{1} & \sqrt{\beta_{2}} & & \\ & \sqrt{\beta_{2}} & \alpha_{2} & \sqrt{\beta_{3}} & & \\ & & \ddots & \ddots & \ddots & \\ & & & \sqrt{\beta_{r-1}} & \alpha_{r-1} \end{bmatrix}, \quad \alpha_{0} = \frac{\beta - \alpha}{\alpha + \beta + 2}, \quad (4.45)$$

$$\alpha_m = \frac{\beta^2 - \alpha^2}{(2m + \alpha + \beta)(2m + \alpha + \beta + 2)}, \quad m = 1, \dots, r - 1,$$
(4.46)

$$\beta_m = \frac{4m(m+\alpha)(m+\beta)(m+\alpha+\beta)}{(2m+\alpha+\beta+1)(2m+\alpha+\beta-1)(2m+\alpha+\beta)^2}, \quad m = 2, \dots, r-1.$$
(4.47)

4.7 Quadratura de Gauss-Chebyshev de 1^a espécie

O polinômio de Chebyshev de 1^a espécie $T_r(x)$, definido com $w(x) = \frac{1}{\sqrt{1-x^2}}$ no intervalo [-1,1], possui coeficiente dominante $A_r = 2^{r-1}$ e $\gamma_{\phi_r} = \frac{\pi}{2}$, dados em (2.119) e (2.121). Utiliza-se os resultados da Seção 2.7 válidos para $r \ge 1$. Com isto, segue a quadratura de Gauss

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) \, dx = \sum_{k=1}^{r} \mathbf{H}_k f(x_k) + E_r,$$

sendo x_i o *i*-ésimo zero de $T_r(x)$ e onde, por (4.9),

$$\mathbf{H}_{i} = -\frac{\pi}{T_{r}'(x_{i})T_{r+1}(x_{i})} \tag{4.48}$$

ou, por (4.11),

$$H_i = \frac{\pi}{T'_r(x_i)T_{r-1}(x_i)}.$$
(4.49)

Além disso, por (4.7),

$$E_r = \frac{2\pi}{2^{2r}(2r)!} f^{(2r)}(\xi), \qquad \xi \in (-1, 1).$$
(4.50)

Pelo Teorema 2.3, tem-se que $x_i \in (-1, 1)$. Por outro lado, se $x_i = \cos(\theta_i)$, então, é válido que $\theta_i \in (0, \pi)$. Deste modo, por (2.127),

$$T_r(x_i) = \cos(r\theta_i) = 0 \implies \operatorname{sen}(r\theta_i) = \pm 1$$

Segue que

$$T_{r+1}(x_i) = \cos[(r+1)\theta_i] = \cos(r\theta_i)\cos(\theta_i) - \sin(r\theta_i)\sin(\theta_i)$$

= $\mp \operatorname{sen}(\theta_i)$
$$T_{r+1}(x_i) = \mp \sqrt{1 - x_i^2}.$$
 (4.51)

Analogamente,

$$T_{r-1}(x_i) = \pm \sqrt{1 - x_i^2}.$$
 (4.52)

Novamente por (2.127),

$$T'_r(x) = -\operatorname{sen}(r\operatorname{arccos}(x))\left(\frac{-r}{\sqrt{1-x^2}}\right)\,dx \quad \Longrightarrow \quad T'_r(x) = \frac{r\operatorname{sen}(r\operatorname{arccos}(x))}{\sqrt{1-x^2}}\,dx.$$

Conseqüentemente,

$$T'_{r}(x_{i}) = \frac{r \operatorname{sen}[r \operatorname{arccos}(\cos(\theta_{i}))]}{\sqrt{1 - \cos^{2}(\theta_{i})}} = \frac{r \operatorname{sen}(r\theta_{i})}{\operatorname{sen}(\theta_{i})},$$
$$T'_{r}(x_{i}) = \frac{\pm r}{\sqrt{1 - x_{i}^{2}}}.$$
(4.53)

Notando (4.51), (4.52) e (4.53), tem-se que os coeficientes em (4.48) e (4.58) tornam-se

uma constante

$$\mathbf{H}_i = \frac{\pi}{r}.\tag{4.54}$$

Por outro lado, notando a equação de recorrência para os polinômios ortonormais de Chebyshev de 1^a espécie, (2.129) a (2.132), tem-se, pelo Teorema 4.3, que

$$\mathbf{H}_i = \pi \, \mathbf{v}_{i,1}^2, \tag{4.55}$$

sendo $\mathbf{v}_{i,1}$ o primeiro componente do autovetor \mathbf{v}_i normalizado da matriz de Jacobi

$$\mathbf{J}_{r} = \begin{bmatrix} 0 & \sqrt{\beta_{1}} & & & 0 \\ \sqrt{\beta_{1}} & 0 & \sqrt{\beta_{2}} & & \\ & \sqrt{\beta_{2}} & 0 & \sqrt{\beta_{3}} & \\ & & \ddots & \ddots & \ddots \\ & & & \sqrt{\beta_{r-1}} & 0 \end{bmatrix}, \quad \beta_{1} = \frac{1}{2}, \quad (4.56)$$

$$\beta_{m} = \frac{1}{4}, \quad m = 2, \dots, r - 1.$$

4.8 Quadratura de Gauss-Chebyshev de 2^a espécie

O polinômio de Chebyshev de 2^a espécie $U_r(x)$ definido com $w(x) = \sqrt{1-x^2}$ no intervalo [-1,1], possui coeficiente dominante $A_r = 2^r$ e $\gamma_{\phi_r} = \frac{\pi}{2}$, em (2.134) e (2.135). Com estes resultados, a quadratura de Gauss torna-se

$$\int_{-1}^{1} \sqrt{1 - x^2} f(x) \, dx = \sum_{k=1}^{r} \mathbf{H}_k f(x_k) + E_r,$$

sendo x_i o *i*-ésimo zero de $U_r(x)$ e onde, por (4.9),

$$\mathbf{H}_{i} = -\frac{\pi}{U_{r}'(x_{i})U_{r+1}(x_{i})} \tag{4.57}$$

ou, por (4.11),

$$H_i = \frac{\pi}{U'_r(x_i)U_{r-1}(x_i)}.$$
(4.58)

Por (4.7), tem-se que

$$E_r = \frac{\pi}{2^{2r+1}} \frac{f^{(2r)}(\xi)}{(2r)!}, \qquad \xi \in (-1,1).$$
(4.59)

Pelo Teorema 2.3, tem-se $x_i \in (-1, 1)$. Por outro lado, se $x_i = \cos(\theta_i)$, então $\theta_i \in (0, \pi)$. Deste modo, por (2.140),

$$U_r(x_i) = \frac{\operatorname{sen}[(r+1)\theta_i]}{\operatorname{sen}(\theta_i)} = 0 \quad \Longrightarrow \quad \operatorname{sen}[(r+1)\theta_i] = 0 \quad \Longrightarrow \quad \cos[(r+1)\theta_i] = \pm 1.$$

Decorre que

$$U_{r+1}(x_i) = \frac{\operatorname{sen}((r+1)+1)\theta_i}{\operatorname{sen}(\theta_i)} = \frac{\operatorname{sen}[(r+1)\theta_i]\cos(\theta_i) + \operatorname{sen}(\theta_i)\cos[(r+1)\theta_i]}{\operatorname{sen}(\theta_i)},$$

$$U_{r+1}(x_i) = \pm \frac{\operatorname{sen}(\theta_i)}{\operatorname{sen}(\theta_i)} = \pm 1.$$
(4.60)

Analogamente,

$$U_{r-1}(x_i) = \mp 1. \tag{4.61}$$

Desde que $x = \cos(\theta)$, então $dx = -\sin(\theta) d\theta \Rightarrow d\theta = -\frac{dx}{\sin(\theta)}$. Então, por (2.140),

$$U'_r(x) = \frac{(r+1)\cos[(r+1)\theta]\sin(\theta) - \sin[(r+1)\theta]\cos(\theta)}{\sin^2(\theta)} d\theta,$$
$$U'_r(x) = -\frac{(r+1)\cos[(r+1)\theta]\sin(\theta) - \sin[(r+1)\theta]\cos(\theta)}{\sin^3(\theta)} dx.$$

Conseqüentemente,

$$U'_{r}(x_{i}) = -\frac{(r+1)\cos[(r+1)\theta_{i}]\sin(\theta_{i}) - \sin[(r+1)\theta_{i}]\cos(\theta_{i})}{\sin^{3}(\theta_{i})},$$

$$= \mp \frac{(r+1)\sin(\theta_{i})}{\sin^{3}(\theta_{i})},$$

$$U'_{r}(x_{i}) = \mp \frac{r+1}{\sin^{2}(\theta_{i})}.$$
Mas, desde que $x_{i} = \cos\left(\frac{i\pi}{r+1}\right)$ em (2.141), conclui-se que

$$U'_r(x_i) = \mp \frac{r+1}{\operatorname{sen}^2\left(\frac{i\pi}{r+1}\right)}.$$
(4.62)

Observando os resultados (4.60), (4.61) e (4.62), os coeficientes em (4.57) e (4.58) tornamse iguais a

$$\mathbf{H}_{i} = \frac{\pi}{r+1} \operatorname{sen}^{2} \left(\frac{i\pi}{r+1} \right).$$
(4.63)

Como sen $\left(\frac{i\pi}{r+1}\right) = \operatorname{sen}\left(\frac{(r+1-i)\pi}{r+1}\right)$, então $\mathbf{H}_i = \mathbf{H}_{r+1-i}$.

Por outro lado, notando a equação de recorrência para os polinômios $U_r^*(x)$, (2.142) a (2.144), tem-se, pelo Teorema 4.3, que

$$H_i = \frac{\pi}{2} \mathbf{v}_{i,1}^2, \tag{4.64}$$

sendo $\mathbf{v}_{i,1}$ o primeiro componente do autovetor \mathbf{v}_i normalizado da matriz de Jacobi

$$\mathbf{J}_{r} = \begin{bmatrix} 0 & \sqrt{\beta_{1}} & 0 & 0 \\ \sqrt{\beta_{1}} & 0 & \sqrt{\beta_{2}} & 0 \\ & \sqrt{\beta_{2}} & 0 & \sqrt{\beta_{3}} & 0 \\ & & \ddots & \ddots & \ddots \\ 0 & & & \sqrt{\beta_{r-1}} & 0 \end{bmatrix}, \ \beta_{m} = \frac{1}{4}, \quad m = 1, \dots, r-1.$$
(4.65)

4.9 Quadratura de Gauss-Gegenbauer

O polinômio de Gegenbauer $C_r^{\mu}(x)$ definido com $w(x) = (1 - x^2)^{\mu - \frac{1}{2}}$, onde $\mu > -\frac{1}{2}$ e $\mu \neq 0$, no intervalo [-1, 1], possui coeficiente dominante

$$A_{r} = \frac{1}{2^{r} r!} \frac{\Gamma(\mu + \frac{1}{2}) \Gamma(2r + 2\mu)}{\Gamma(2\mu) \Gamma(r + \mu + \frac{1}{2})},$$

е

$$\gamma_{\phi_r} = \frac{2^{2\mu-1}}{(r+\mu)r!} \frac{\Gamma^2(\mu+\frac{1}{2})\,\Gamma(r+2\mu)}{\Gamma^2(2\mu)},$$

em (2.145) e(2.146). Com estes resultados, segue a quadratura de Gauss

$$\int_{-1}^{1} (1-x^2)^{\mu-\frac{1}{2}} f(x) \, dx = \sum_{k=1}^{r} \mathbf{H}_k f(x_k) + E_r,$$

sendo x_i o *i*-ésimo zero de $C_r^{\mu}(x)$ e onde, por (4.9),

$$\mathbf{H}_{i} = -\frac{2^{2\mu-2}}{(r+1)!(r+\mu)} \frac{(2r+2\mu+1)(2r+2\mu)}{(r+\mu+\frac{1}{2})} \frac{\Gamma^{2}(\mu+\frac{1}{2})\Gamma(r+2\mu)}{\Gamma^{2}(2\mu)C_{r}^{\mu\prime}(x_{i})C_{r+1}^{\mu}(x_{i})},$$

$$= -\frac{2^{2\mu-2}}{(r+1)!(r+\mu)} \frac{2(r+\mu+\frac{1}{2})2(r+\mu)}{(r+\mu+\frac{1}{2})} \frac{\Gamma^{2}(\mu+\frac{1}{2})\Gamma(r+2\mu)}{\Gamma^{2}(2\mu)C_{r}^{\mu\prime}(x_{i})C_{r+1}^{\mu}(x_{i})},$$

$$\mathbf{H}_{i} = -\frac{2^{2\mu}}{(r+1)!} \frac{\Gamma^{2}(\mu+\frac{1}{2})}{\Gamma^{2}(2\mu)} \frac{\Gamma(r+2\mu)}{C_{r}^{\mu\prime}(x_{i})C_{r+1}^{\mu}(x_{i})}.$$
(4.66)

Notando que (Abramowitz e Stegun, 1972)

$$\frac{\Gamma^2(\mu + \frac{1}{2})}{\Gamma^2(2\mu)} = \frac{4\pi}{2^{4\mu}\Gamma^2(\mu)},\tag{4.67}$$

segue que

$$\mathbf{H}_{i} = -\frac{4\pi}{2^{2\mu}(r+1)!} \frac{\Gamma(r+2\mu)}{\Gamma^{2}(\mu)C_{r}^{\mu}(x_{i})C_{r+1}^{\mu}(x_{i})}.$$
(4.68)

O coeficiente H_i também pode ser definido por (4.11),

$$\begin{split} \mathbf{H}_{i} &= \frac{2^{2\mu-2}}{r!(r+\mu-1)} \frac{(2r+2\mu-1)(2r+2\mu-2)}{(r+\mu-\frac{1}{2})} \frac{\Gamma^{2}(\mu+\frac{1}{2})\Gamma(r+2\mu-1)}{\Gamma^{2}(2\mu)C_{r}^{\mu\prime}(x_{i})C_{r-1}^{\mu}(x_{i})}, \\ &= \frac{2^{2\mu-2}}{r!(r+\mu-1)} \frac{2(r+\mu-\frac{1}{2})2(r+\mu-1)}{(r+\mu-\frac{1}{2})} \frac{\Gamma^{2}(\mu+\frac{1}{2})\Gamma(r+2\mu-1)}{\Gamma^{2}(2\mu)C_{r}^{\mu\prime}(x_{i})C_{r-1}^{\mu}(x_{i})}, \\ \mathbf{H}_{i} &= \frac{2^{2\mu}}{r!} \frac{\Gamma^{2}(\mu+\frac{1}{2})}{\Gamma^{2}(2\mu)} \frac{\Gamma(r+2\mu-1)}{C_{r}^{\mu\prime}(x_{i})C_{r-1}^{\mu}(x_{i})}. \end{split}$$

Contudo, por (4.67),

$$\mathbf{H}_{i} = \frac{4\pi}{2^{2\mu}r!} \frac{\Gamma(r+2\mu-1)}{\Gamma^{2}(\mu)C_{r}^{\mu}(x_{i})C_{r-1}^{\mu}(x_{i})}.$$
(4.69)

O erro é dado por (4.7),

$$E_r = \frac{2^{2(\mu+r)}r!\Gamma(r+2\mu)\Gamma^2(r+\mu+\frac{1}{2})}{2(r+\mu)(2r)!\Gamma^2(2r+2\mu)}f^{(2r)}(\xi), \qquad \xi \in (-1,1).$$
(4.70)

Fazendo $x = x_i$ em (2.153),

$$(1 - x_i^2)C_r^{\mu\prime}(x_i) = -rx_iC_r^{\mu}(x_i) + (r + 2\mu - 1)C_{r-1}^{\mu}(x_i) = (r + 2\mu)x_iC_r^{\mu}(x_i) - (r + 1)C_{r+1}^{\mu}(x_i),$$

$$(1 - x_i^2)C_r^{\mu\prime}(x_i) = (r + 2\mu - 1)C_{r-1}^{\mu}(x_i) = -(r + 1)C_{r+1}^{\mu}(x_i).$$

Observando o resultado anterior os coeficientes (4.68) e (4.69) tornam-se iguais a

$$H_i = \frac{4\pi}{2^{2\mu} r!} \frac{\Gamma(r+2\mu)}{\Gamma^2(\mu)(1-x_i^2)(C_r^{\mu\prime}(x_i))^2}.$$
(4.71)

Como os polinômios de Gegenbauer são funções pares ou ímpares e os zeros são simétricos com relação à origem, então $(C_r^{\mu\prime}(x_i))^2 = (C_r^{\mu\prime}(x_{r+1-i}))^2$. Logo, $H_i = H_{r+1-i}$

Por outro lado, notando a equação de recorrência para os polinômios $C_r^{\mu*}(x)$, (2.154) a (2.156), tem-se, pelo Teorema 4.3, que

$$H_{i} = \frac{2^{2\mu}\Gamma(\mu + \frac{1}{2})}{\Gamma(2\mu + 1)} \mathbf{v}_{i,1}^{2}, \qquad (4.72)$$

sendo $\mathbf{v}_{i,1}$ o primeiro componente do autovetor \mathbf{v}_i normalizado da matriz de Jacobi

$$\mathbf{J}_{r} = \begin{bmatrix} 0 & \sqrt{\beta_{1}} & & 0 \\ \sqrt{\beta_{1}} & 0 & \sqrt{\beta_{2}} & & \\ & \sqrt{\beta_{2}} & 0 & \sqrt{\beta_{3}} & & \\ & & \ddots & \ddots & \ddots & \\ 0 & & & \sqrt{\beta_{r-1}} & 0 \end{bmatrix}, \beta_{m} = \frac{m(m+2\mu-1)}{4(m+\mu)(m+\mu-1)}, \quad m = 1, \dots, r-1.$$
(4.73)

5 Algoritmos e implementações da quadratura de Gauss

Os capítulos anteriores mostraram que as fórmulas de quadratura de Gauss consistem de um somatório que avalia f(x) nos zeros x_i do polinômio ortogonal junto dos coeficientes H_i . Há diversas formas para se obter x_i e H_i . Este trabalho apresenta duas formas: uma é por meio dos autovalores e autovetores da matriz de Jacobi e a outra é calculando os zeros por meio do método de Newton e os coeficientes por meio de fórmulas. Este capítulo destina-se à implementação dos algoritmos para integração e irá utilizar estes dois métodos diferentes a fim de comparar a eficiência entre eles.

O capítulo inicia-se com os algoritmos para zeros e coeficientes que não usam a matriz de Jacobi seguido dos algoritmos para integração, compondo as Seções 5.1 a 5.3. A Seção 5.4 apresenta experimentos numéricos para cada quadratura de Gauss usando estes algoritmos. A Seção 5.5 apresenta os algoritmos para x_i e H_i com uso da matriz \mathbf{J}_r e sobre eles serão realizados os mesmos experimentos. A Seção 5.6 destina-se a validar os algoritmos para zeros e coeficientes e, na Seção 5.7, é desenvolvido um esquema para a escolha dos algoritmos mais eficientes para uma determinada integral.

5.1 Algoritmos para zeros x_i e coeficientes H_i

Os algoritmos para o cálculo dos r zeros x_i dos polinômios ortogonais e dos coeficientes H_i das respectivas quadraturas, sem fazer uso da matriz de Jacobi (Figuras 9 a 16), serão agora tratados.

O parâmetro de entrada é o número r de zeros do polinômio ortogonal e, quando existentes, os parâmetros α , $\beta \in \mu$. Os parâmetros de saída são o vetor X com os zeros x_i e o vetor H com os coeficientes H_i .

Os algoritmos seguem a seguinte rotina:

- 1. Aproximação inicial para o zero;
- 2. Refinamento pelo método de Newton;
- 3. Cálculo do zero e do respectivo coeficiente.

Somente os casos dos zeros dos polinômios de Chebyshev dispensam o método de Newton, pois possuem fórmulas trigonométricas (2.128) e (2.141) para gerá-los diretamente. Para os demais algoritmos, as aproximações iniciais dos zeros para o método de Newton são propostas por Stroud e Secrest¹ citado por Press *et al* (1997), exceto as aproximações para os zeros do polinômio de Legendre, dadas por (2.54).

Os r zeros x_i , exceto para os polinômios de Laguerre, de Laguerre generalizado e de Jacobi, são simétricos com relação à origem (Corolário 2.9.1) e, nesses casos, é necessário calcular apenas os zeros não negativos.

As fórmulas para os coeficientes H_i utilizadas nos algoritmos de cada quadratura são aquelas em (4.19), (4.24), (4.27), (4.35), (4.43), (4.54), (4.63) e (4.71). As mesmas estão em Szegö (1975).

Os coeficientes (4.19), (4.35), (4.63) e (4.71) possuem a propriedade $H_i = H_{r+1-i}$, então, nestes casos, o valor de H_i também é atribuído a H_{r+1-i} . Excepcionalmente, os coeficientes H_i de Chebyshev de 1^a espécie (4.54), para um dado r, são todos iguais.

¹Stroud, A.H., e Secrest, D. 1966, Gaussian Quadrature Formulas (Englewood Cliffs, NJ: Prentice-Hall).

Algoritmo zero h legendre {**Objetivo** Calcular os zeros x_i e os coeficientes H_i de Gauss-Legendre} parâmetro de entrada r {número de zeros} parâmetros de saída $X \in H$ {zeros e coeficientes} $\{X(1) \in o \text{ menor } e X(r) \in o \text{ maior zero}\}$ início algoritmo 1 $m \leftarrow |(r+1)/2|$ {os zeros são simétricos, calcula-se apenas os não negativos} $\mathbf{2}$ para $i \leftarrow 1$ até m faça $x \leftarrow \cos(\pi * (i - 0.25)/(r + 0.5))$ 3 {aproximação do *i*-ésimo zero não negativo, por (2.54), $x_i > x_{i+1}$ } 4 repita 5 $p1 \leftarrow 1$ 6 $p2 \leftarrow 0$ 7 para $j \leftarrow 0$ até r-1 faça 8 $p3 \leftarrow p2$ 9 $p2 \leftarrow p1$ $p1 \leftarrow ((2 * j + 1) * x * p2 - j * p3)/(j + 1)$ 10{polinômio de Legendre no ponto x, por (2.53)} 11 fim para $pp \leftarrow r * (x * p1 - p2)/(x^2 - 1)$ 12{derivada do polinômio de Legendre no ponto x, por (2.55)} $x1 \leftarrow x$ {método de Newton para se calcular os zeros} 1314 $x \leftarrow x1 - (p1/pp)$ se $|x-x1| < 10^{-15}$ então interrompa 1516fim se 17fim repita 18 $X(r+1-i) \leftarrow x \{\text{zero não negativo}\}$ 19 $X(i) \leftarrow -x \{ \text{zero simétrico} \}$ 20 $H(r+1-i) \leftarrow 2/((1-x^2) * pp^2) \{(4.19)\}$ 21 $H(i) \leftarrow H(r+1-i) \{ \mathbf{H}_i = \mathbf{H}_{r+1-i} \}$ 22fim para fim algoritmo

Figura 9: Algoritmo para $x_i \in H_i$ de Gauss-Legendre.

Algoritmo zero h laguerre gen {**Objetivo** Calcular os zeros x_i e os coeficientes H_i de Gauss-Laguerre generalizada} parâmetros de entrada r e α {número de zeros e parâmetro $\alpha > -1$ } parâmetros de saída $X \in H$ {zeros e coeficientes} $\{X(1) \in o \text{ menor } e X(r) \in o \text{ maior zero}\}$ início algoritmo para $i \leftarrow 1$ até r faça 1 $\mathbf{2}$ se i=1 então $x \leftarrow (1+\alpha) * (3+0.92*\alpha)/(1+2.4*r+1.8*\alpha) \{x_i < x_{i+1}\}$ 3 4senão, se i=25 $x \leftarrow X(1) + (15 + 6.25 * \alpha)/(1 + 0.9 * \alpha + 2.5 * r)$ 6 senão 7 $ai \leftarrow i - 2$ 8 $x \leftarrow X(i-1) + ((1+2,55*ai)/(1,9*ai) + 1,26*ai*\alpha/(1+3,5*ai))$ $(X(i-1) - X(i-2))/(1+0.3 * \alpha)$ 9 fim se 10para $k \leftarrow 1$ até 10 faça {máximo de 10 iterações no método de Newton} 11 $p1 \leftarrow 1$ 12 $p2 \leftarrow 0$ 13 para $j \leftarrow 0$ até r-1 faça 14 $p3 \leftarrow p2$ 15 $p2 \leftarrow p1$ 16 $p1 \leftarrow ((-x + \alpha + 2 * j + 1) * p2 - (\alpha + j) * p3)/(j + 1)$ {polinômio de Laguerre generalizado no ponto x, por (2.70)} 17fim para 18 $pp \leftarrow (r * p1 - (r + \alpha) * p2)/x$ {derivada do polinômio de Laguerre generalizado no ponto x, por (2.71)} 19 $x1 \leftarrow x$ {método de Newton para se calcular os zeros} 20 $x \leftarrow x1 - (p1/pp)$ se $|x - x1| < 10^{-15}$ então interrompa 2122fim se 23fim para 24 $X(i) \leftarrow x$ $H(i) \leftarrow \Gamma(\alpha + r + 1)/(r! * x * pp^2) \{(4.24)\}$ 2526fim para fim algoritmo

Figura 10: Algoritmo para $x_i \in H_i$ de Gauss-Laguerre generalizada.

```
Algoritmo zero h laguerre
{Objetivo Calcular os zeros x_i e os coeficientes H_i de Gauss-Laguerre}
parâmetro de entrada r {número de zeros}
parâmetros de saída X \in H {zeros e coeficientes}
\{X(1) \in o \text{ menor } e X(r) \in o \text{ maior zero}\}
início algoritmo
1
      para i \leftarrow 1 até r faça
\mathbf{2}
          se i=1 então
3
             x \leftarrow 3/(1+2,4*r) \{x_i < x_{i+1}\}
4
          senão, se i=2 então
5
             x \leftarrow X(1) + \frac{15}{(1+2,5*r)}
6
          senão
7
             ai \leftarrow i - 2
             x \leftarrow X(i-1) + (1+2.55*ai)/(1.9*ai)*(X(i-1) - X(i-2))
8
9
          fim se
          para k \leftarrow 1 até 10 faça {máximo de 10 iterações no método de Newton}
10
11
             p1 \leftarrow 1
             p2 \leftarrow 0
12
13
             para j \leftarrow 0 até r-1
                 p3 \leftarrow p2
14
15
                 p2 \leftarrow p1
16
                 p1 \leftarrow ((-x+2*j+1)*p2-j*p3)/(j+1)
                 {polinômio de Laguerre no ponto x, por (2.75)}
17
             fim para
             pp \leftarrow r * (p1 - p2)/x
18
             {derivada do polinômio de Laguerre no ponto x, por (2.76)}
19
             x1 \leftarrow x {método de Newton para se calcular os zeros}
20
             x \leftarrow x1 - (p1/pp)
             se |x-x1| < 10^{-15} então interrompa
21
22
             fim se
23
          fim para
24
          X(i) \leftarrow x
25
          H(i) \leftarrow 1/(x * pp^2) \{(4.27)\}
26
     fim para
fim algoritmo
```

Figura 11: Algoritmo para x_i e H_i de Gauss-Laguerre.

```
Algoritmo zero h hermite
\{ \mathbf{Objetivo} \ \text{Calcular os zeros } x_i \text{ e os coeficientes } \mathbf{H}_i \text{ de Gauss-Hermite} \}
parâmetro de entrada r {número de zeros}
parâmetros de saída X \in H {zeros e coeficientes}
\{X(1) \in o \text{ maior } e X(r) \in o \text{ menor zero}\}
início algoritmo
      m \leftarrow |(r+1)/2| {os zeros são simétricos, calcula-se apenas os não negativos}
1
\mathbf{2}
      para i \leftarrow 1 até m faça
3
           se i=1 então
               x \leftarrow \sqrt{2 * r + 1} - 1.85575 * (2 * r + 1)^{-0.16667} \{x_i > x_{i+1}\}
4
           senão, se i=2 então
5
6
               x \leftarrow x - 1,14 * r^{0,426}/x
7
           senão, se i=3 então
               x \leftarrow 1,86 * x - 0,86 * X(1)
8
9
           senão, se i = 4 então
10
               x \leftarrow 1.91 * x - 0.91 * X(2)
11
           senão
               x \leftarrow 2 * x - X(i-2)
12
13
           fim se
           para k \leftarrow 1 até 10 faça {máximo de 10 iterações no método de Newton}
14
15
              p1 \leftarrow 1
              p2 \leftarrow 0
16
17
               para j \leftarrow 0 até r-1 faça
18
                  p3 \leftarrow p2
19
                  p2 \leftarrow p1
20
                  p1 \leftarrow 2 * (x * p2 - j * p3)
                  {polinômio de Hermite no ponto x, por (2.89)}
21
               fim para
22
               pp \leftarrow 2 * r * p2
               {derivada do polinômio de Hermite no ponto x, por (2.92)}
23
               x1 \leftarrow x \{ \text{método de Newton para se calcular os zeros} \}
               x \leftarrow x1 - (p1/pp)
24
              se |x-x1| < 10^{-15} então interrompa
25
               fim se
26
27
           fim para
28
           X(i) \leftarrow x
29
           X(r+1-i) \leftarrow -x \{\text{zero simétrico}\}
           H(i) \leftarrow \sqrt{\pi} * 2^{r+1} * r!/pp^2 \{(4.35)\}
30
31
           H(r+1-i) \leftarrow H(i) \{ \mathbf{H}_i = \mathbf{H}_{r+1-i} \}
32
      fim para
fim algoritmo
```

Figura 12: Algoritmo para $x_i \in H_i$ de Gauss-Hermite.

```
Algoritmo zero h jacobi
\{ \mathbf{Objetivo} \ Calcular \text{ os zeros } x_i \in \mathbf{os coeficientes } \mathbf{H}_i \text{ de Gauss-Jacobi} \}
parâmetros de entrada r, \alpha \in \beta {número de zeros e parâmetros \alpha, \beta > -1}
parâmetros de saída X \in H {zeros e coeficientes}
\{X(1) \in o \text{ maior } e X(r) \in o \text{ menor zero}\}
início algoritmo
        para i \leftarrow 1 até r faça
1
2
             se i=1 então
3
                  ar \leftarrow \alpha/r \{x_i > x_{i+1}\}
                  br \leftarrow \beta/r
4
                   r1 \leftarrow (1+\alpha) * (2,78/(4+r^2) + 0,768 * ar/r)
5
                  r2 \leftarrow 1 + 1,48 * ar + 0,96 * br + 0,452 * ar^2 + 0,83 * ar * br
6
                  x \leftarrow 1 - r1/r2
7
             senão, se i=2 então
8
9
                  r1 \leftarrow (4,1+\alpha)/((1+\alpha)*(1+0,156*\alpha))
10
                  r2 \leftarrow 1 + 0.06 * (r - 8) * (1 + 0.12 * \alpha)/r
                  r3 \leftarrow 1 + 0.012 * \beta * (1 + 0.25 * |\alpha|/r)
11
12
                  x \leftarrow x - (1 - x) * r1 * r2 * r3
13
              senão, se i=3 então
14
                  r1 \leftarrow (1,67 + 0,28 * \alpha)/(1 + 0,37 * \alpha)
                  r2 \leftarrow 1 + 0.22 * (r - 8)/r
15
                  r3 \leftarrow 1 + 8 * \beta / ((6, 28 + \beta) * r^2)
16
                  x \leftarrow x - (X(1) - x) * r1 * r2 * r3
17
18
             senão, se i=r-1\, então
19
                  r1 \leftarrow (1+0.235 * \beta)/(0.766 + 0.119 * \beta)
                  r2 \leftarrow 1/(1+0.639 * (r-4)/(1+0.71 * (r-4)))
20
                   r3 \leftarrow 1/(1+20*\alpha/((7,5+\alpha)*r^2))
21
22
                  x \leftarrow x + (x - X(r - 3)) * r1 * r2 * r3
23
              senão, se i = r então
24
                  r1 \leftarrow (1+0.37 * \beta)/(1.67 + 0.28 * \beta)
25
                  r2 \leftarrow 1/(1+0.22*(r-8)/r)
                  r3 \gets 1/(1 + 8 * \alpha/((6, 28 + \alpha) * r^2))
26
                  x \leftarrow x + (x - X(r-2)) * r1 * r2 * r3
27
28
              senão
                  x \leftarrow 3 \ast X(i-1) - 3 \ast X(i-2) + X(i-3)
29
30
             fim se
31
             alpbet \leftarrow \alpha + \beta
32
              repita
                  temp \leftarrow 2 + alpbet
33
34
                  p1 \gets (\alpha - \beta + temp * x)/2
                  p2 \leftarrow 1
35
                   para j \leftarrow 1 até r-1 faça
36
37
                       p3 \gets p2
38
                       p2 \leftarrow p1
                       temp \gets 2*j + alpbet
39
40
                       a \gets 2*(j+1)*(j+alpbet+1)*temp
41
                       b \leftarrow (temp+1) * ((temp+2) * temp * x + \alpha^2 - \beta^2)
42
                       c \leftarrow 2 * (j + \alpha) * (j + \beta) * (temp + 2)
                       p1 \leftarrow (b * p2 - c * p3)/a {polinômio de Jacobi no ponto x, por (2.110)}
43
                  fim para
44
45
                  temp \leftarrow 2 * r + alpbet
                  pp \leftarrow (r * (\alpha - \beta - temp * x) * p1 + 2 * (r + \alpha) * (r + \beta) * p2)/(temp * (1 - x^2))
46
47
                     {derivada do polinômio de Jacobi no ponto x, por (2.112)}
48
                   x1 \leftarrow x \ \{ \texttt{método de Newton para calcular os zeros} \}
                  x \leftarrow x1 - (p1/pp)
se |x - x1| < 10^{-15} então interrompa
49
50
51
                  fim se
52
              fim para
53
              X(i) \leftarrow x
              H(i) \leftarrow 2^{(alpbet+1)} * \Gamma(\alpha + r + 1) * \Gamma(\beta + r + 1)/(r! * \Gamma(r + alpbet + 1) * (1 - x^2) * pp^2) \{(4.43)\}
54
55
       fim para
fim algoritmo
```

Figura 13: Algoritmo para $x_i \in H_i$ de Gauss-Jacobi.

Algoritmo zero_h_chebyshev_1 {**Objetivo** Calcular os zeros x_i e os coeficientes H_i de Gauss-Chebyshev de 1^a espécie} parâmetro de entrada r {número de zeros} parâmetros de saída $X \in H$ {zeros e coeficientes} $\{X(1) \in o \text{ menor } e X(r) \in o \text{ maior zero}\}$ início algoritmo $m \leftarrow |(r+1)/2|$ {os zeros são simétricos, calcula-se apenas os não negativos} 1 2para $i \leftarrow 1$ até m faça 3 $X(i) \leftarrow -\cos\left(((2*i-1)*\pi)/(2*r)\right) \{(2.128)\}$ $X(r+1-i) \leftarrow -X(i)$ {zero simétrico} 4 5 $H(i) \leftarrow \pi/r \{(4.54)\}$ 6 $H(r+1-i) \leftarrow H(i) \{ \mathbf{H}_i = \mathbf{H}_{r+1-i} \}$ 7fim para fim algoritmo

Figura 14: Algoritmo para x_i e H_i de Gauss-Chebyshev de 1^a espécie.

Algoritmo zero h chebyshev 2 {**Objetivo** Calcular os zeros x_i e os coeficientes H_i de Gauss-Chebyshev de 2^a espécie} parâmetro de entrada r {número de raízes} parâmetros de saída $X \in H$ {raízes e coeficientes} $\{X(1) \in a \text{ menor } e X(r) \in a \text{ maior raiz}\}$ início algoritmo $m \leftarrow |(r+1)/2|$ {os zeros são simétricos, calcula-se apenas os não negativos} 1 $\mathbf{2}$ para $i \leftarrow 1$ até m faça 3 $X(i) \leftarrow -\cos((i * \pi)/(r+1)) \{(2.128)\}$ 4 $X(r+1-i) \leftarrow -X(i)$ {zero simétrico} 5 $H(i) \leftarrow (\pi/(r+1)) * (\operatorname{sen}((i*\pi)/(r+1)))^2 \{(4.63)\}$ 6 $H(r+1-i) \leftarrow H(i) \{ \mathbf{H}_i = \mathbf{H}_{r+1-i} \}$ 7 fim para fim algoritmo

Figura 15: Algoritmo para x_i e H_i de Gauss-Chebyshev de 2^a espécie.

```
Algoritmo zero h gegenbauer
{Objetivo Calcular os zeros x_i e os coeficientes H_i de Gauss-Gegenbauer}
parâmetros de entrada r e \mu {número de raízes e parâmetro \mu > -\frac{1}{2}, \mu \neq 0}
parâmetros de saída X \in H {raízes e coeficientes}
\{X(1) \in a \text{ maior } e X(r) \in a \text{ menor raiz}\}
início algoritmo
1
      m \leftarrow |(r+1)/2| {os zeros são simétricos, calcula-se apenas os não negativos}
\mathbf{2}
      mi = \mu - 0, 5
3
      para i \leftarrow 1 até m faça
4
           se 0 < \mu < 1 e \mu \neq 0,5 então
5
               se \mu > 0.5 então
                   x \leftarrow \cos(\pi/2 * ((i - (1 - \mu) * 0.5)/(r + \mu) + i/(r + 1))) \{(2.151)\}
6
7
               senão
8
                   x \leftarrow \cos(\pi/2 * ((i - (1 - \mu) * 0.5)/(r + \mu) + (i + \mu - 0.5)/(r + 2 * \mu))) \{(2.152)\}
9
               fim se
10
           senão, se i = 1 então
               mur \leftarrow mi/r \{x_i > x_{i+1}\}
11
               r1 \leftarrow (1+mi) * (2,78/(4+r^2) + 0,768 * mur/r)
12
13
               r2 \leftarrow 1 + 2,44 * mur + 1,282 * mur^2
14
               x \leftarrow 1 - r1/r2
15
           senão, se i=2 então
16
               r1 \leftarrow (4, 1 + mi)/((1 + mi) * (1 + 0, 156 * mi))
17
               r2 \leftarrow 1 + 0.06 * (r - 8) * (1 + 0.12 * mi)/r
18
               r3 \leftarrow 1 + 0.012 * mi * (1 + 0.25 * |mi|/r)
19
               x \leftarrow x - (1-x) * r1 * r2 * r3
20
           senão, se i=3 então
21
               r1 \leftarrow (1,67 + 0,28 * mi)/(1 + 0,37 * mi)
22
               r2 \leftarrow 1 + 0.22 * (r - 8)/r
23
               r3 \leftarrow 1 + 8 * mi/((6,28 + mi) * r^2)
24
               x \leftarrow x - (X(1) - x) * r1 * r2 * r3
25
           senão
               x \leftarrow 3 * X(i-1) - 3 * X(i-2) + X(i-3)
26
27
           fim se
28
           repita
29
               p1 \leftarrow 1
30
               p2 \leftarrow 0
               para j \leftarrow 0 \, \operatorname{at\acute{e}} r - 1 então
31
32
                   p3 \leftarrow p2
33
                   p2 \leftarrow p1
34
                   p1 \leftarrow (2 * (j + \mu) * x * p2 + (1 - j - 2 * \mu) * p3)/(j + 1)
                    {polinômio de Gegenbauer no ponto x, por (2.150)}
35
               fim para
36
               pp \leftarrow (-r * x * p1 + (r + 2 * \mu - 1) * p2)/(1 - x^2)
                {derivada do polinômio de Gegenabuer no ponto x, por (2.153)}
37
               x1 \leftarrow x \{ \text{método de Newton para calcular os zeros} \}
38
               x \leftarrow x1 - (p1/pp)
               se |x-x1| < 10^{-15} então interrompa
39
40
               fim se
41
           fim repita
42
           X(i) \leftarrow x
43
           X(r+1-i) \leftarrow -x
           H(i) \leftarrow 4 * \pi * \Gamma(r + 2 * \mu) / (2^{(2*\mu)} * r! * \Gamma^2(\mu) * (1 - x^2) * pp^2) \{(4.71)\}
44
45
           H(r+1-i) \leftarrow H(i)
46
      fim para
fim algoritmo
```


5.2 Transferência de intervalos

Nesta seção mostra-se que as quadraturas de Gauss com função peso do tipo de Jacobi e de Laguerre podem ser utilizadas para o cálculo de integrais em intervalos [c, d] e $[c, \infty)$, respectivamente. A Tabela 1 mostra as integrais e os respectivos intervalos nos quais as quadraturas de Gauss são utilizadas e a Tabela 2 mostra o erro $E_{r,g}$ nestes casos. Sem perda de generalidade, as tabelas apresentam todas as quadraturas de Gauss na variável t com integrando w(t)g(t), sendo w(t) a função peso.

5.2.1 Quadraturas de Gauss no intervalo [c, d]

A integral $\int_{c}^{a} (d-t)^{\alpha} (t-c)^{\beta} g(t) dt$, com $\alpha, \beta > -1$, pode ser transformada em uma integral no intervalo [-1, 1] utilizando a mudança de variáveis (Figura 17), onde

 $t = \frac{(d-c)x+c+d}{2} \iff x = \frac{2t-c-d}{d-c},$

Figura 17: Transferência do intervalo [c, d] para [-1, 1] onde $x = \frac{2t - c - d}{d - c}$.

do seguinte modo:

$$\int_{c}^{d} (d-t)^{\alpha} (t-c)^{\beta} g(t) \, dt = \left(\frac{d-c}{2}\right)^{\alpha+\beta+1} \int_{-1}^{1} (1-x)^{\alpha} (1+x)^{\beta} f(x) \, dx, \tag{5.1}$$

 $\begin{array}{l} {\rm com} \ f(x) = g \left(\frac{(d-c)x+c+d}{2} \right), \, {\rm desde \ que} \\ \\ {(d-t)^{\alpha}} = \left(d - \frac{(d-c)x+c+d}{2} \right)^{\alpha} = \left(\frac{d-c-(d-c)x}{2} \right)^{\alpha} = \left(\frac{d-c}{2} \right)^{\alpha} (1-x)^{\alpha}, \\ \\ {(t-c)^{\beta}} = \left(\frac{(d-c)x+c+d}{2} - c \right)^{\beta} = \left(\frac{d-c+(d-c)x}{2} \right)^{\beta} = \left(\frac{d-c}{2} \right)^{\beta} (1+x)^{\beta}, \end{array}$

$$dt = \frac{(d-c)}{2} \, dx.$$

Tomando $\alpha \in \beta$ iguais a 0, $-\frac{1}{2}$, $\frac{1}{2} \in \mu - \frac{1}{2}$, com $\mu > -\frac{1}{2} \in \mu \neq 0$, na equação (5.1), obtém-se, respectivamente,

$$\int_{c}^{d} g(t) dt = \frac{(d-c)}{2} \int_{-1}^{1} f(x) dx, \qquad (5.2)$$

$$\int_{c}^{d} \frac{1}{\sqrt{(d-t)(t-c)}} g(t) dt = \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} f(x) dx,$$
(5.3)

$$\int_{c}^{d} \sqrt{(d-t)(t-c)}g(t) dt = \left(\frac{d-c}{2}\right)^{2} \int_{-1}^{1} \sqrt{1-x^{2}}f(x) dx,$$
(5.4)

$$\int_{c}^{d} [(d-t)(t-c)]^{\mu-\frac{1}{2}}g(t) dt = \left(\frac{d-c}{2}\right)^{2\mu} \int_{-1}^{1} (1-x^{2})^{\mu-\frac{1}{2}}f(x) dx,$$
(5.5)

com $f(x) = g\left(\frac{(d-c)x+c+d}{2}\right)$. As equações (5.1) a (5.5) mostram que algumas integrais em [c, d] podem ser transformadas em integrais das quadraturas de Gauss-Jacobi, Gauss-Legendre, Gauss-Chebyshev de 1^a e 2^a espécies e Gauss-Gegenabuer, a menos de constantes, respectivamente. Ou seja, estas quadraturas são utilizadas para o cálculo de integrais da forma $\int_{c}^{d} w(t)g(t) dt$, levando a uma generalização destas quadraturas quanto à função peso e ao intervalo de integração, como mostra a Tabela 1, na qual o intervalo é [c, d].

Tabela 1: Quadraturas de Gauss.

Intervalo	Integral	Quadratura		
	$\int_{c}^{d} g(t) dt$	Gauss-Legendre		
	$\int_{c}^{d} (d-t)^{\alpha} (t-c)^{\beta} g(t) dt, \alpha, \beta > -1$	Gauss-Jacobi		
[c,d]	$\int_{c}^{d} \frac{1}{\sqrt{(d-t)(t-c)}} g(t) dt$	Gauss-Chebyshev de 1 ^a espécie		
	$\int_{c}^{d} \sqrt{(d-t)(t-c)}g(t) dt$	Gauss-Chebyshev de 2 ^a espécie		
	$\int_{c}^{d} [(d-t)(t-c)]^{\mu-\frac{1}{2}} g(t) dt, \mu > -\frac{1}{2}, \mu \neq 0$	Gauss-Gegenbauer		
$[0,\infty)$	$\int_0^\infty e^{-t} t^\alpha g(t) dt, \alpha > -1$	Gauss-Laguerre generali- zada		
$[c,\infty)$	$\int_{c}^{\infty} e^{-t} g(t) dt$	Gauss-Laguerre		
$(-\infty,\infty)$	$\int_{-\infty}^{\infty} e^{-t^2} g(t) dt$	Gauss-Hermite		

Observando que

$$f'(x) = \frac{d}{dx}f(x) = \frac{dt}{dx}\frac{d}{dt}g(t) = \frac{d-c}{2}g'(t)$$

então

$$f^{(2r)}(x) = \left(\frac{d-c}{2}\right)^{2r} g^{(2r)}(t).$$
(5.6)

Notando a igualdade (5.6) nas fórmulas de erro das quadraturas de intervalo [-1, 1]: (4.17), (4.40), (4.50), (4.59) e (4.70), obtém-se as fórmulas de erro $E_{r,g}$ para o intervalo [c, d], como mostra a Tabela 2.

Quadratura	$E_{r,g}$				
Gauss-Legendre	$\frac{(d-c)^{2r+1}(r!)^4}{(2r+1)[(2r)!]^3} g^{(2r)}(\tau), \ \tau \in (c,d)$				
Gauss-Laguerre generalizada	$\frac{r!\Gamma(\alpha+r+1)}{(2r)!} g^{(2r)}(\tau), \ \tau \in (0,\infty)$				
Gauss-Laguerre	$\frac{(r!)^2}{e^c(2r)!} g^{(2r)}(\tau), \ \tau \in \ (c,\infty)$				
Gauss-Hermite	$\frac{r!\sqrt{\pi}}{2^r}\frac{g^{(2r)}(\tau)}{(2r)!},\;\tau\in(-\infty,\infty)$				
Gauss-Jacobi	$\frac{(d-c)^{2r+\alpha+\beta+1}r!}{(2r)!} \frac{\Gamma(r+\alpha+1)\Gamma(r+\beta+1)\Gamma(r+\alpha+\beta+1)}{(2r+\alpha+\beta+1)[\Gamma(2r+\alpha+\beta+1)]^2} g^{(2r)}(\tau), \ \tau \in (c,d)$				
Gauss-Chebyshev de 1ª espécie	$\frac{2\pi (d-c)^{2r}}{2^{4r}(2r)!} g^{(2r)}(\tau), \ \tau \in \ (c,d)$				
Gauss-Chebyshev de 2 ^a espécie	$\frac{\pi (d-c)^{2r+2}}{2^{4r+3}} \frac{g^{(2r)}(\tau)}{(2r)!}, \ \tau \in \ (c,d)$				
Gauss-Gegenbauer	$\frac{(d-c)^{2r+2\mu}r!\Gamma(r+2\mu)\Gamma^2(r+\mu+\frac{1}{2})}{2(r+\mu)(2r)!\Gamma^2(2r+2\mu)}g^{(2r)}(\tau),\ \tau\in(c,d)$				

Tabela	2:	Erro	E_{ra}	das	quadraturas	de	Gauss
1 0000100			-1.0	~~~~		~~~	0.000000

5.2.2 Quadratura de Gauss no intervalo $[c,\infty)$

A integral $\int_{c}^{\infty} e^{-t}g(t) dt$ pode ser transformada em uma integral no intervalo $[0, \infty)$ utilizando a mudança de variáveis $t = x + c \iff x = t - c$ (Figura 18)

do seguinte modo:

$$\int_{c}^{\infty} e^{-t}g(t) dt = e^{-c} \int_{0}^{\infty} e^{-x} f(x) dx, \qquad (5.7)$$

com f(x) = g(x + c), desde que $e^{-t} = e^{-c}e^{-x}$ e dt = dx. A equação (5.7) mostra que uma integal em $[c, \infty)$ pode ser transformada em uma integral da quadratura de

Figura 18: Transferência do intervalo $[c, \infty)$ para $[0, \infty)$ onde x = t - c.

Gauss-Laguerre, a menos de constante. Isto é, esta quadratura é utilizada para o cálculo de integrais da forma $\int_{c}^{\infty} e^{-t}g(t) dt$, generalizando o intervalo de integração de Gauss-Laguerre, como mostra a Tabela 1 na qual intervalo é $[c, \infty)$.

Observando que
$$f'(x) = \frac{d}{dx} f(x) = \frac{dt}{dx} \frac{d}{dt} g(t) = g'(t)$$
, então,
 $f^{(2r)}(x) = g^{(2r)}(t).$
(5.8)

Notando a igualdade (5.8) na fórmula de erro da quadratura de Gauss-Laguerre (4.28), obtém-se a fórmula de erro $E_{r,g}$ desta quadratura no intervalo $[c, \infty)$ como apresenta a Tabela 2.

5.3 Algoritmos para integração numérica

Os algoritmos para integração numérica utilizam o cálculo dos zeros x_i e dos coeficientes H_i. As quadraturas de Gauss-Legendre, Gauss-Jacobi, Gauss-Chebyshev de 1^a e 2^a espécies e Gauss-Gegenbauer podem ser usadas para cálculos de integrais em intervalos [c, d], assim como Gauss-Laguerre em $[c, \infty)$, como apresentou a Subseção 5.2. A Tabela 1 mostra as integrais e os respectivos intervalos nos quais as quadraturas de Gauss são utilizadas. Os algoritmos seguem a seguinte rotina:

- 1. Recebe os zeros e coeficientes;
- 2. Efetua o somatório da quadratura.

O parâmetro de entrada do algoritmo de integração constitui-se do número r de zeros, dos limites de integração e dos parâmetros associados ($\alpha, \beta \in \mu$), quando necessário. A função g(t) deve ser especificada de acordo com a linguagem de programação adotada. O parâmetro de saída é o valor da integração *integral*.

Algoritmo quad legendre {**Objetivo** Integrar w(t)g(t) via Gauss-Legendre} parâmetros de entrada $r, c \in d$ {número de zeros e limites de integração} parâmetro de saída integral {valor da integral} início algoritmo integral $\leftarrow 0$ 1 $\mathbf{2}$ $X \leftarrow x_i, H \leftarrow H_i, i = 1, \dots, r \{ \text{recebe zeros e coeficientes} \}$ 3 $e1 \leftarrow (d-c)/2$ $e2 \leftarrow (d+c)/2$ 4 5para $i \leftarrow 1$ até r faça 6 $t \leftarrow e1 * X(i) + e2$ 7 $y \leftarrow g(t)$ {avaliar g(t)} 8 $integral \leftarrow integral + y * H(i)$ 9 fim para 10 $integral = e1 * integral \{(5.2)\}$ fim algoritmo

Figura 19: Algoritmo para quadratura de Gauss-Legendre.

Algoritmo quad laguerre gen {**Objetivo** Integrar w(t)g(t) via Gauss-Laguerre generalizada} parâmetros de entrada r e α {número de zeros e parâmetro $\alpha > -1$ } parâmetro de saída *integral* {valor da integral} início algoritmo 1 integral $\leftarrow 0$ 2 $X \leftarrow x_i, H \leftarrow H_i, i = 1, \dots, r \{ \text{recebe zeros e coeficientes} \}$ 3 para $i \leftarrow 1$ até r faça 4 $y \leftarrow g(X(i))$ {avaliar g(X(i))} 5 $integral \leftarrow integral + y * H(i)$ 6 fim para fim algoritmo

Figura 20: Algoritmo para quadratura de Gauss-Laguerre generalizada.

```
Algoritmo quad laguerre
{Objetivo Integrar w(t)g(t) via Gauss-Laguerre}
parâmetros de entrada r \in c {número de zeros e limite inferior}
parâmetro de saída integral {valor da integral}
início algoritmo
1
      integral \leftarrow 0
2
      X \leftarrow x_i, H \leftarrow H_i, i = 1, \dots, r  {recebe zeros e coeficientes}
3
      para i \leftarrow 1 até r faça
4
          t \leftarrow X(i) + c
5
          y \leftarrow q(t) {avaliar q(t)}
6
          integral \leftarrow integral + y * H(i)
7
      fim para
      integral \leftarrow e^{-c} * integral \{(5.7)\}
8
fim algoritmo
```

Figura 21: Algoritmo para quadratura de Gauss-Laguerre.
Algoritmo quad_hermite
{ Objetivo Integrar $w(t)g(t)$ via Gauss-Hermite}
parâmetro de entrada r {número de zeros}
parâmetro de saída integral {valor da integral}
início algoritmo
$1 integral \leftarrow 0$
2 $X \leftarrow x_i, H \leftarrow H_i, i = 1, \dots, r $ {recebe zeros e coeficientes}
3 para $i \leftarrow 1$ at é r faça
4 $y \leftarrow g(X(i))$ {avaliar $g(X(i))$ }
5 $integral \leftarrow integral + y * H(i)$
6 fim para
fim algoritmo

Figura 22: Algoritmo para quadratura de Gauss-Hermite.

```
Algoritmo quad jacobi
{Objetivo Integrar w(t)g(t) via Gauss-Jacobi}
parâmetros de entrada r, \alpha, \beta, c e d {número de zeros, parâmetros \alpha, \beta > -1
e limites de integração}
parâmetro de saída integral {valor da integral}
início algoritmo
1
      integral \leftarrow 0
2
      X \leftarrow x_i, H \leftarrow H_i, i = 1, \dots, r  {recebe zeros e coeficientes}
      e1 \leftarrow (d-c)/2
3
4
      e2 \leftarrow (d+c)/2
5
      para i \leftarrow 1 até r faça
6
          t \leftarrow e1 * X(i) + e2
7
          y \leftarrow g(t) {avaliar g(t)}
          integral \gets integral + y * H(i)
8
9
      fim para
      integral = e1^{(\alpha+\beta+1)} * integral \{(5.1)\}
10
fim algoritmo
```

Figura 23: Algoritmo para quadratura de Gauss-Jacobi.

```
Algoritmo quad chebyshev 1
{Objetivo Integrar w(t)g(t) via Gauss-Chebyshev de 1<sup>a</sup> espécie}
parâmetros de entrada r, c e d {número de zeros e limites de integração}
parâmetros de saída integral {valor da integral}
início algoritmo
      integral \leftarrow 0
1
\mathbf{2}
      X \leftarrow x_i, H \leftarrow H_i, i = 1, \dots, r \{\text{recebe zeros e coeficientes}\}
3
      e1 \leftarrow (d-c)/2
      e2 \leftarrow (d+c)/2
4
5
      para i \leftarrow 1 até r faça
6
          t \leftarrow e1 * X(i) + e2
7
          y \leftarrow g(t) {avaliar g(t)}
8
           integral \leftarrow integral + y * H(i) \{(5.3)\}
9
      fim para
fim algoritmo
```

```
Figura 24: Algoritmo para quadratura de Gauss-Chebyshev de 1<sup>ª</sup> espécie.
```

Algoritmo quad chebyshev 2 {**Objetivo** Integrar w(t)g(t) via Gauss-Chebyshev de 2^a espécie} **parâmetros de entrada** $r, c \in d$ {número de zeros e limites de integração} parâmetros de saída integral {valor da integral} início algoritmo $integral \leftarrow 0$ 1 2 $X \leftarrow x_i, H \leftarrow H_i, i = 1, \dots, r$ {recebe zeros e coeficientes} 3 $e1 \leftarrow (d-c)/2$ 4 $e2 \leftarrow (d+c)/2$ 5para $i \leftarrow 1$ até r faça 6 $t \leftarrow e1 * X(i) + e2$ $y \leftarrow g(t)$ {avaliar g(t)} 7 8 $integral \leftarrow integral + y * H(i)$ 9 fim para integral $\leftarrow e1^2 * integral \{(5.4)\}$ 10fim algoritmo

Algoritmo quad gegenabuer {**Objetivo** Integrar w(t)g(t) via Gauss-Gegenbauer} parâmetros de entrada $r, \mu, c \in d$ {número de zeros, parâmetro $\mu > -\frac{1}{2}, \mu \neq 0$ e limites de integração} parâmetros de saída integral {valor da integral} início algoritmo integral $\leftarrow 0$ 1 $\mathbf{2}$ $X \leftarrow x_i, H \leftarrow H_i, i = 1, \dots, r \{\text{recebe zeros e coeficientes}\}$ $e1 \leftarrow (d-c)/2$ 3 $e2 \leftarrow (d+c)/2$ 4 5para $i \leftarrow 1$ até r faça $\mathbf{6}$ $t \leftarrow e1 * X(i) + e2$ 7 $y \leftarrow q(t)$ {avaliar q(t)} $integral \leftarrow integral + y * H(i)$ 8 9 fim para $integral \leftarrow e1^{(2*\mu)} * integral \{(5.5)\}$ 10 fim algoritmo

Figura 26: Algoritmo para quadratura de Gauss-Gegenbauer.

5.4 Implementações

Com a finalidade de validar os algoritmos para $x_i \in H_i$ da Seção 5.1 e os algoritmos para integração da Seção 5.3, são apresentados os resultados de implementações para integrais tais como aquelas descritas na Tabela 1, para vários valores de r. É necessário ressaltar que a escolha da função g(t) estará condicionada à resolução analítica da integral que será efetuada para fins de comparação com o resultado numérico da quadratura *integral*. O erro relativo *erro* também é exibido. O parâmetro tempo(s) é o tempo médio, em segundos, demandado na execução de um determinado r. Este parâmetro é calculado pela média aritmética dos tempos de 3000 execuções do algoritmo (para $2 \le r \le 100$) e de 10 execuções para $r \ge 500$. O processador utilizado em todos experimentos realizados ao longo deste trabalho é Intel[®] CoreTM 2 Duo.

5.4.1 Algumas considerações sobre o erro

Os resultados das implementações são comparados com o resultado analítico por meio do erro relativo:

 $erro relativo = \frac{|resultado analítico - resultado da quadratura|}{|resultado analítico|}$

A preferência do erro relativo sobre o erro absoluto

erro absoluto = |resultado analítico - resultado da quadratura|

se justifica na independência da magnitude dos resultados, diferentemente do erro absoluto que pode não ser significativo caso os resultados sejam maiores do que 1.

Na prática, realizando uma aproximação com o uso de computadores, surgem os erros cometidos pelo truncamento e pelo arredondamento. O erro de truncamento ocorre devido à aproximação de uma fórmula por outra, pois, para avaliar uma função matemática no computador, somente operações aritméticas e lógicas podem ser requeridas, por serem operações que ele é capaz de efetuar. Deste modo, para avaliar uma função como sen(x), o computador usa uma série finita envolvendo apenas as operações aritméticas, enquanto que, o valor exato é dado pela série infinita, levando a um truncamento. O erro de arredondamento ocorre porque um número na base decimal, para o computador, é representado na base binária sendo armazenado em um número finito de *bits*. Neste caso, as operações pelo computador são realizadas nesta base tendo em vista a limitação do número de *bits* gerando os arredondamentos (Campos, 2007).

Contudo, fica claro que em todas as implementações dos algoritmos deste trabalho, o

erro calculado nas aproximações é o erro $E_{r,g}$ da quadratura que, por sua vez, é influenciado pelos erros de truncamento e arredondamento.

5.4.2 Gauss-Legendre

A quadratura de Gauss-Legendre calcula integrais da forma $\int_c^d g(t) dt$. Os experimentos são

(i)
$$\int_{0}^{2\pi} t \operatorname{sen}(t) dt$$
, (ii) $\int_{0}^{2\pi} t \operatorname{sen}(15t) dt$.

Implementa-se o algoritmo da Figura 19 para vários valores de r, c = 0 e $d = 2\pi$ com $g(t) = t \operatorname{sen}(t)$ e $g(t) = t \operatorname{sen}(15t)$, respectivamente. As resoluções analíticas são

(i)
$$\int_0^{2\pi} t \operatorname{sen}(t) dt = \left(\operatorname{sen}(t) - t \cos(t)\right) \Big|_0^{2\pi} = -2\pi \approx -6,283185307179586,$$

(ii)
$$\int_{0}^{2\pi} t \operatorname{sen}(15t) dt = \left(\frac{\operatorname{sen}(15t)}{225} - \frac{t \cos(15t)}{15}\right) \Big|_{0}^{2\pi} = -\frac{2\pi}{15} \approx -0,418879020478639.$$

Os resultados das implementações acompanhados dos respectivos gráficos dos integrandos estão nas Figuras 27 e 28.

r	integral	erro	tempo(s)
2	-11,061607516437542	$4,778 \times 10^{0}$	$2,756 \times 10^{-4}$
4	-6,333516813159698	$5,033 imes10^{-2}$	$4,368\times10^{-4}$
8	-6,283185315806970	$8,627 \times 10^{-9}$	$7,956\times10^{-4}$
12	-6,283185307179582	$4,441 \times 10^{-15}$	$1,201 \times 10^{-3}$
16	-6,283185307179588	$1,776 \times 10^{-15}$	$1,524 imes10^{-3}$
24	-6,283185307179582	$4,441 \times 10^{-15}$	$2,257 \times 10^{-3}$
32	-6,283185307179583	$3,553 \times 10^{-15}$	$2,990 \times 10^{-3}$
40	-6,283185307179584	$2,665 \times 10^{-15}$	$3,739 imes10^{-3}$
50	-6,283185307179585	$1,776 \times 10^{-15}$	$4,732 \times 10^{-3}$
64	-6,283185307179585	$1,776 \times 10^{-15}$	$6,006 \times 10^{-3}$
100	-6,283185307179588	$1,776 \times 10^{-15}$	$9,558 imes10^{-3}$

r	integral	erro	tempo(s)	
'	integrat	CITO	tempo(s)	
2	-9,982389445556954	$9,564 \times 10^{0}$	$3,380 \times 10^{-4}$	
4	-0,174884867026902	$2,440 \times 10^{-1}$	$5,408\times10^{-4}$	
8	-1,040354978844508	$6,215 \times 10^{-1}$	$9,932 \times 10^{-4}$	5*t)
12	4,176084918712063	$4,595 \times 10^0$	$1,492\times10^{-3}$	en (1
16	1,126806236160534	$1,546 \times 10^0$	$1,908\times10^{-3}$	= t*s
24	-1,926958102526059	$1,508 \times 10^0$	$2,829\times10^{-3}$	g(t) =
32	-0,419056065363738	$1,770 \times 10^{-4}$	$3,754 imes10^{-3}$	v(t)*
40	-0,418879020508601	$2,996 \times 10^{-11}$	$4,690 \times 10^{-3}$	-
50	-0,418879020478643	$3,941 \times 10^{-15}$	$5,933 \times 10^{-3}$	
64	-0,418879020478638	$8,327 \times 10^{-16}$	$7,524\times10^{-3}$	
100	-0,418879020478624	$1,499 \times 10^{-14}$	$1,199\times10^{-2}$	

Figura 28: $\int_0^{2\pi} t \operatorname{sen}(15t) dt$ via Gauss-Legendre.

5.4.3 Gauss-Laguerre generalizada

Esta quadratura calcula integrais da forma $\int_0^\infty e^{-t} t^\alpha g(t) dt$, $\alpha > -1$. Os experimentos para este caso são

(i)
$$\int_0^\infty e^{-t} t \operatorname{sen}(t) dt$$
, (ii) $\int_0^\infty e^{-t} t \operatorname{sen}(3t) dt$

O algoritmo da Figura 20 é implementado para vários valores de $r \in \alpha = 1$ com $g(t) = \operatorname{sen}(t) \in g(t) = \operatorname{sen}(3t)$, respectivamente. As resoluções analíticas são

(i)
$$\int_0^\infty e^{-t} t \operatorname{sen}(t) dt = -\frac{1}{2} e^{-t} (t \cos(t) + \cos(t) + t \operatorname{sen}(t)) \Big|_0^\infty = \frac{1}{2} = 0.5,$$

(ii)
$$\int_{0}^{\infty} e^{-t} t \sin(3t) dt = -\frac{1}{50} e^{-t} (15t \cos(3t) + 3\cos(3t) + 5t \sin(3t) - 4\sin(3t)) \Big|_{0}^{\infty},$$

(ii)
$$\int_{0}^{\infty} e^{-t} t \sin(3t) dt = \frac{3}{50} = 0,06.$$

Os resultados das implementações acompanhados dos respectivos gráficos dos integrandos estão nas Figuras 29 e 30.

0.35

					1.1	$- \langle X \rangle$						
r	integral	erro	tempo(s)) c).3 -							
2	0,541499482284950	$4,150 \times 10^{-2}$	$2,912 \times 10^{-4}$		25		l:					
4	0,519921378126607	$1,992\times 10^{-2}$	$4,472\times10^{-4}$	0	20							
8	0,499954172469353	$4,583 \times 10^{-5}$	$8,216 \times 10^{-4}$	Ê C).2	<u> </u>	·:/	·····:				
12	0,499999993121657	$6,878 \times 10^{-9}$	$1,196\times10^{-3}$	*1*se	15					· · · · · · · · · · · · · · · · · · · ·		
16	0,50000000339152	$3,392 \times 10^{-10}$	$1,638 imes10^{-3}$		10							
24	0,500000000000003	$3,109 \times 10^{-15}$	$2,579 \times 10^{-3}$).1 -							
32	0,500000000000000000000000000000000000	$3,886 \times 10^{-16}$	$3,619 imes10^{-3}$	(£)	05							
40	0,500000000000000000000000000000000000	$4,441 \times 10^{-16}$	$5,044 imes10^{-3}$				1					
50	0,500000000000000000000000000000000000	$0,000 \times 10^0$	6.422×10^{-3}		0	• • • • • • • • • •		A				
64	0,4999999999999999999999999999999999999	$5,551 \times 10^{-16}$	$1,000 \times 10^{-2}$	-0	05			\mathbf{X}				
100	0,4999999999999999999999999999999999999	$7,772 \times 10^{-16}$	$1,999\times 10^{-2}$					Ĭ				
	•		·	-C).1 Li 0		2	4		i6	8	10
		c^{∞}							t			

r	integral	erro	tempo(s)
2	-0,273996367128327	$3,340 \times 10^{-1}$	$3,276\times10^{-4}$
4	0,753697292524765	$6,937 \times 10^{-1}$	$5,252 \times 10^{-4}$
8	-0,035688078760915	$9,569\times10^{-2}$	$9,880 \times 10^{-4}$
12	-0,102560149593333	$1,626\times10^{-1}$	$1,503 imes10^{-3}$
16	0,072914023437567	$1,291 \times 10^{-2}$	$1,997 \times 10^{-3}$
24	0,058739191643045	$1,261\times 10^{-3}$	$3,104 \times 10^{-3}$
32	0,060106240548962	$1,062\times 10^{-4}$	$4,326 \times 10^{-3}$
40	0,059991795934407	$8,204 \times 10^{-6}$	$5,949 \times 10^{-3}$
50	0,059999020545767	$9,795 \times 10^{-7}$	$7,613 \times 10^{-3}$
64	0,06000002824856	$2,825 \times 10^{-9}$	$1,143 \times 10^{-2}$
100	0,06000000000031	$3,068 \times 10^{-14}$	$2,273\times10^{-2}$

Figura 30: $\int_0^\infty e^{-t} t \operatorname{sen}(3t) dt$ via Gauss-Laguerre generalizada.

5.4.4 Gauss-Laguerre

As integrais para esta quadratura são da forma $\int_{c}^{\infty} e^{-t}g(t) dt$. Os experimentos são

(i)
$$\int_{\pi}^{\infty} e^{-t} \cos(t) dt$$
, (ii) $\int_{\pi}^{\infty} e^{-t} \cos(3t) dt$.

Implementa-se o algoritmo da Figura 21 para vários valores de $r \in c = \pi$, sendo $g(t) = \cos(t) \in g(t) = \cos(3t)$, respectivamente. As resoluções analíticas são

(i)
$$\int_{\pi}^{\infty} e^{-t} \cos(t) dt = \frac{e^{-t}}{2} (\sin(t) - \cos(t)) \Big|_{\pi}^{\infty} = -\frac{1}{2e^{\pi}} \approx -0,021606959131886,$$

(ii)
$$\int_{\pi}^{\infty} e^{-t} \cos(3t) dt = \frac{e^{-t}}{10} (\cos(3t) - 3\sin(3t)) \Big|_{\pi}^{\infty} = -\frac{1}{10e^{\pi}} \approx -0,004321391826377.$$

Os resultados das implementações acompanhados dos respectivos gráficos dos integrandos estão nas Figuras 31 e 32.

				0.005		!	!	!	!	!	!	٦
r	integral	erro	tempo(s)	0		/						_
2	-0,024640955052807	$3,034 \times 10^{-3}$	$2,340 \times 10^{-4}$	-0.005		i/						
4	-0,021714721915837	$1,078 \times 10^{-4}$	$3,848 \times 10^{-4}$	0.01		/			-			
8	-0,021607011259739	$5,213 \times 10^{-8}$	$7,176 \times 10^{-4}$	-0.01 E								
12	-0,021606958489553	$6,423 \times 10^{-10}$	$1,108 \times 10^{-3}$	8 –0.015 .≠	/							• -
16	-0,021606959133696	$1,810 \times 10^{-12}$	$1,404 \times 10^{-3}$	ω μ -0.02								
24	-0,021606959131886	$6,245 \times 10^{-17}$	$2,101 \times 10^{-3}$	() () () () () () () () () () () () () (
32	-0,021606959131886	$8,674 \times 10^{-17}$	$2,834 \times 10^{-3}$	(j) =0.025								
40	-0,021606959131886	$1,735 \times 10^{-16}$	$3,583 \times 10^{-3}$	-0.03	••••							-
50	-0,021606959131886	$6,939 \times 10^{-17}$	$5,018 \times 10^{-3}$	-0.035								
64	-0,021606959131886	$2,325 \times 10^{-16}$	$6,089 \times 10^{-3}$	0.04								
100	-0,021606959131886	$1,665 \times 10^{-16}$	$1,092 \times 10^{-2}$	-0.04	1							
				-0.045		4	5	6	7	8	9	10
								t				

Figura 31: $\int_{\pi}^{\infty} e^{-t} \cos(t) dt$ via Gauss-Laguerre.

0.02

r	integral	erro	tempo(s)	0.01		\int	<u>\</u>						
2	0,011168936341233	$1,549 \times 10^{-2}$	$2,860 \times 10^{-4}$	0.01			$\langle \rangle$						
4	-0,023347450107100	$1,903 \times 10^{-2}$	$4,836 \times 10^{-4}$	0					\sim	<u> </u>			_
8	-0,005568706069011	$1,247 \times 10^{-3}$	$8,892 \times 10^{-4}$	(3*t)				\checkmark					
12	-0,002570531115081	$1,751 \times 10^{-3}$	$1,362 \times 10^{-3}$	8 –0.01				: 					
16	-0,004233010447646	$8,838 \times 10^{-5}$	$1,742 \times 10^{-3}$	÷									
24	-0,004326659715571	$5,268 \times 10^{-6}$	$2,584 \times 10^{-3}$	÷ –0.02									
32	-0,004321099539422	$2,923 \times 10^{-7}$	$3,484 \times 10^{-3}$	w(t)*,									
40	-0,004321407335112	$1,551 \times 10^{-8}$	$4,420 \times 10^{-3}$	-0.03					•••			• • • • • • • • • •	• • •
50	-0,004321389932670	$1,894 \times 10^{-9}$	$6,011 \times 10^{-3}$										
64	-0,004321391824483	$1,894 \times 10^{-12}$	$7,394 \times 10^{-3}$	-0.04	- /	••••			•••				• • •
100	-0,004321391826377	$3,123 \times 10^{-17}$	$1,277 \times 10^{-2}$										
				-0.05	3	4		5	6	7	8	9	1

5.4.5 Gauss-Hermite

Nesta quadratura as integrais são do tipo $\int_{-\infty}^{\infty} e^{-t^2} g(t) dt$. Os experimentos são

(i)
$$\int_{-\infty}^{\infty} \operatorname{sech}^{3}(t) dt$$
, (ii) $\int_{-\infty}^{\infty} \operatorname{sech}^{4}(t) dt$.

Implementa-se o algoritmo da Figura 22 com $g(t) = e^{t^2} \operatorname{sech}^3(t)$ e $g(t) = e^{t^2} \operatorname{sech}^4(t)$ para vários valores de r, respectivamente. As resoluções analíticas são

grandos estão nas Figuras 33 e 34.

				1	.			·····				
r	integral	erro	tempo(s)									
2	1,458809914545095	$1,120 \times 10^{-1}$	$4,888 \times 10^{-4}$	0.0				$/\pm$				
4	1,553681762799978	$1,711 \times 10^{-2}$	$8,476 \times 10^{-4}$	0.8			/					
8	1,569877940077360	$9,184 \times 10^{-4}$	$1,596\times10^{-3}$	€ ^{0.7}			/		1			
12	1,570710842814076	$8,548 \times 10^{-5}$	$2,527 imes10^{-3}$	်မှု 0.6			····/				•••••	• • • •
16	1,570785436484143	$1,089 \times 10^{-5}$	$3,115 imes10^{-3}$	ຶ " 0.5	<u> </u>							
24	1,570796011694501	$3,151 \times 10^{-7}$	$4,607 \times 10^{-3}$	(±) 6 *_ 0.4			. /					
32	1,570796311844880	$1,495\times10^{-8}$	$6,131 imes10^{-3}$	(1) ×								
40	1,570796325810249	$9,846 \times 10^{-10}$	$7,639 imes10^{-3}$	0.3		/			j j	<u>, </u>		
50	1,570796326749253	$4,564 \times 10^{-11}$	$1,005 \times 10^{-2}$	0.2			· · · · · · · · · · · · · · · · · · ·		÷			
64	1,570796326793932	$9,643 \times 10^{-13}$	$1,223\times 10^{-2}$	0.1								
100	1,570796326794895	$1,332 \times 10^{-15}$	$1,972\times 10^{-2}$	0		·						
				2.	5 –2	-1.5 -1	-0.5	; 0 (0.5 1	1.5	2	2.5
								t t				

Figura 33: $\int_{-\infty}^{\infty} \operatorname{sech}^{3}(t) dt$ via Gauss-Hermite.

r	integral	erro	tempo(s)
2	1,157242076523935	$1,761 \times 10^{-1}$	$4,888 \times 10^{-4}$
4	1,298181249968242	$3,515\times10^{-2}$	$8,372\times10^{-4}$
8	1,330782129703722	$2,551 \times 10^{-3}$	$1,596 \times 10^{-3}$
12	1,333047147655743	$2,862 \times 10^{-4}$	$2,538 \times 10^{-3}$
16	1,333291591344918	$4,174\times10^{-5}$	$3,115 \times 10^{-3}$
24	1,333331867429140	$1,466 \times 10^{-6}$	$4,618 \times 10^{-3}$
32	1,333333253410583	$7,992 \times 10^{-8}$	$6,136 \times 10^{-3}$
40	1,333333327466142	$5,867 \times 10^{-9}$	$7,670 \times 10^{-3}$
50	1,333333333030054	$3,033 \times 10^{-10}$	$1,019\times 10^{-2}$
64	1,333333333326102	$7,231 \times 10^{-12}$	$1,226 \times 10^{-2}$
100	1,3333333333333333331	$2,665 \times 10^{-15}$	$2,032\times 10^{-2}$

Figura 34: $\int_{-\infty}^{\infty} \operatorname{sech}^{4}(t) dt$ via Gauss-Hermite.

5.4.6 Gauss-Jacobi

A quadratura de Gauss-Jacobi calcula integrais da forma $\int_c^d (d-t)^{\alpha} (t-c)^{\beta} g(t) dt$, com $\alpha > -1$ e $\beta > -1$. Os experimentos são

(i)
$$\int_0^{\frac{1}{2}} \frac{t^{\frac{5}{2}}}{\sqrt{\frac{1}{2}-t}} dt$$
, (ii) $\int_0^{\frac{1}{2}} \frac{t^{\frac{7}{2}}}{\sqrt{\frac{1}{2}-t}} dt$.

Implementa-se o algoritmo da Figura 23 com vários valores de r, $\alpha = -\frac{1}{2}$, $\beta = 0$, c = 0 e $d = \frac{1}{2}$, com $g(t) = t^{\frac{5}{2}}$ e $g(t) = t^{\frac{7}{2}}$, respectivamente. As resoluções analíticas são

$$\begin{aligned} \text{(i)} \quad \int_{0}^{\frac{1}{2}} \frac{t^{\frac{5}{2}}}{\sqrt{\frac{1}{2} - t}} \, dt &= \left(\frac{5 \operatorname{arcsen} \left(\sqrt{2t}\right)}{64} - \sqrt{\frac{1}{2} - t} \left(\frac{t^{\frac{5}{2}}}{6} + \frac{5t^{\frac{3}{2}}}{48} + \frac{5t^{\frac{1}{2}}}{64} \right) \right) \Big|_{0}^{\frac{1}{2}} &= \frac{5\pi}{128} \approx 0,122718463030851, \\ \\ \text{(ii)} \quad \int_{0}^{\frac{1}{2}} \frac{t^{\frac{7}{2}}}{\sqrt{\frac{1}{2} - t}} \, dt &= \left(\frac{35 \operatorname{arcsen} \left(\sqrt{2t}\right)}{1024} - \sqrt{\frac{1}{2} - t} \left(\frac{t^{\frac{7}{2}}}{8} + \frac{7t^{\frac{5}{2}}}{96} + \frac{35t^{\frac{3}{2}}}{768} + \frac{35t^{\frac{1}{2}}}{1024} \right) \right) \Big|_{0}^{\frac{1}{2}}, \\ \\ \text{(ii)} \quad \int_{0}^{\frac{1}{2}} \frac{t^{\frac{7}{2}}}{\sqrt{\frac{1}{2} - t}} \, dt &= \left(\frac{35\pi}{2048} \approx 0,053689327575997. \end{aligned}$$

Os resultados das implementações juntamente com os respectivos gráficos dos integrandos estão nas Figuras 35 e 36.

5.4.7 Gauss-Chebyshev de 1ª espécie

Esta quadratura calcula integrais da forma $\int_c^d \frac{1}{\sqrt{(d-t)(t-c)}} g(t) dt$. Os experimentos são

(i)
$$\int_0^1 \frac{t^{\frac{7}{2}}}{\sqrt{(1-t)t}} dt$$
, (ii) $\int_0^1 \frac{t^{\frac{9}{2}}}{\sqrt{(1-t)t}} dt$.

O algoritmo da Figura 24 é implementado para vários valores de r, c = 0 e d = 1 com $g(t) = t^{\frac{7}{2}}$ e $g(t) = t^{\frac{9}{2}}$, respectivamente. As resoluções analíticas são

(i)
$$\int_0^1 \frac{t^{\frac{7}{2}}}{\sqrt{(1-t)t}} dt = -\frac{2}{35} \left(5t^3 + 6t^2 + 8t + 16\right) \sqrt{1-t} \Big|_0^1 = \frac{32}{35} \approx 0,914285714285714,$$

(ii)
$$\int_{0}^{1} \frac{t^{\frac{9}{2}}}{\sqrt{(1-t)t}} dt = -\frac{2}{315} \left(35t^{4} + 40t^{3} + 48t^{2} + 64t + 128\right) \sqrt{1-t} \Big|_{0}^{1} = \frac{256}{315} \approx 0,812698412698413.$$

Os resultados das implementações juntamente com os gráficos dos integrandos estão nas Figuras 37 e 38.

r	integral	erro	tempo(s)
2	0,904346602435046	$9,939 \times 10^{-3}$	$2,444 \times 10^{-4}$
4	0,914279039765571	$6,675 \times 10^{-6}$	$4,212 \times 10^{-4}$
8	0,914285694422971	$1,986 \times 10^{-8}$	$7,852 \times 10^{-4}$
12	0,914285713546231	$7,395 \times 10^{-10}$	$1,222 \times 10^{-3}$
16	0,914285714212872	$7,284 \times 10^{-11}$	$1,518 \times 10^{-3}$
24	0,914285714282905	$2,810 \times 10^{-12}$	$2,267 \times 10^{-3}$
32	0,914285714285434	$2,802 \times 10^{-13}$	$3,000 \times 10^{-3}$
40	0,914285714285667	$4,685 \times 10^{-14}$	$3,728 \times 10^{-3}$
50	0,914285714285706	$7,772 \times 10^{-15}$	$4,753 \times 10^{-3}$
64	0,914285714285713	$1,110 \times 10^{-15}$	$5,933 \times 10^{-3}$
100	0,914285714285714	$2,220\times10^{-16}$	$9,490 \times 10^{-3}$

r	integral	erro	tempo(s)
2	0,770573104975677	$4,213 \times 10^{-2}$	$2,496 \times 10^{-4}$
4	0,812701165209337	$2,753 \times 10^{-6}$	$4,316 \times 10^{-4}$
8	0,812698414219070	$1,521 \times 10^{-9}$	$8,112 \times 10^{-4}$
12	0,812698412722430	$2,402 \times 10^{-11}$	$1,222 \times 10^{-3}$
16	0,812698412699723	$1,310 \times 10^{-12}$	$1,570 \times 10^{-3}$
24	0,812698412698435	$2,220 \times 10^{-14}$	$2,319 \times 10^{-3}$
32	0,812698412698414	$1,221 \times 10^{-15}$	$3,094 \times 10^{-3}$
40	0,812698412698413	$1,110 \times 10^{-16}$	$3,822 \times 10^{-3}$
50	0,812698412698413	$0,000 imes 10^0$	$4,940 \times 10^{-3}$
64	0,812698412698413	$1,110 \times 10^{-16}$	$6,100 \times 10^{-3}$
100	0,812698412698413	$1,110 \times 10^{-16}$	$9,760 \times 10^{-3}$

Figura 38:
$$\int_0^1 \frac{t^{\frac{9}{2}}}{\sqrt{(1-t)t}} dt$$
 via Gauss-Chebyshev de 1^a espécie.

5.4.8 Gauss-Chebyshev de 2ª espécie

Esta quadratura calcula integrais da forma $\int_{c}^{d} \sqrt{(d-t)(t-c)}g(t) dt$. Os experimentos são (i) $\int_{0}^{1} \sqrt{(1-t)t} t^{\frac{7}{2}} dt$, (ii) $\int_{0}^{1} \sqrt{(1-t)t} t^{\frac{9}{2}} dt$.

O algoritmo da Figura 25 é implementado para vários valores de r, c = 0 e d = 1, com $g(t) = t^{\frac{7}{2}}$ e $g(t) = t^{\frac{9}{2}}$, respectivamente. As resoluções analíticas são

(i)
$$\int_0^1 \sqrt{(1-t)t} t^{\frac{7}{2}} dt = -\frac{2}{3465} (315t^4 + 280t^3 + 240t^2 + 192t + 128)(1-t)^{\frac{3}{2}} \Big|_0^1$$
,
(i) $\int_0^1 \sqrt{(1-t)t} t^{\frac{7}{2}} dt = \frac{256}{3465} \approx 0,073881673881674$,

(ii)
$$\int_{0}^{1} \sqrt{(1-t)t} t^{\frac{9}{2}} dt = -\frac{2}{9009} (693t^{5} + 630t^{4} + 560t^{3} + 480t^{2} + 384t + 256)(1-t)^{\frac{3}{2}} \Big|_{0}^{1},$$

(ii)
$$\int_{0}^{1} \sqrt{(1-t)t} t^{\frac{9}{2}} dt = \frac{512}{9009} \approx 0,056832056832057.$$

As Figuras 39 e 40 mostram os resultados das implementações além de exibir os gráficos dos integrandos.

r	integral	erro	tempo(s)	
2	0,073271162674102	$6,105 \times 10^{-4}$	$2,496 \times 10^{-4}$	0.2 -
4	0,073881364762652	$3,091 \times 10^{-7}$	$4,212\times 10^{-4}$	SN
8	0,073881673386660	$4,950 \times 10^{-10}$	$7,956 \times 10^{-4}$	د. ** 1015-
12	0,073881673870529	$1,115 \times 10^{-11}$	$1,212\times10^{-3}$	1.000 (min)
16	0,073881673880944	$7,298 \times 10^{-13}$	$1,534 \times 10^{-3}$	(- L))
24	0,073881673881659	$1,495 \times 10^{-14}$	$2,288 \times 10^{-3}$	₩ 0.1 €
32	0,073881673881673	$9,159 \times 10^{-16}$	$3,021 \times 10^{-3}$	(t)*g
40	0,073881673881674	$9,714 \times 10^{-17}$	$3,770 \times 10^{-3}$	≥ 0.05
50	0,073881673881674	$1,388 \times 10^{-17}$	$4,659 \times 10^{-3}$	
64	0,073881673881674	$1,388 \times 10^{-17}$	$5,985 \times 10^{-3}$	
100	0,073881673881674	$4,163 \times 10^{-17}$	$9,313 \times 10^{-3}$	0
				0 0.2

r	integral	erro	tempo(s)
2	0,054186381611634	$2,646 \times 10^{-3}$	$2,548 \times 10^{-4}$
4	0,056832203207983	$1,464 \times 10^{-7}$	$4,316 \times 10^{-4}$
8	0,056832056880266	$4,821 \times 10^{-11}$	$8,164\times10^{-4}$
12	0,056832056832540	$4,829 \times 10^{-13}$	$1,238 \times 10^{-3}$
16	0,056832056832075	$1,801 \times 10^{-14}$	$1,596 \times 10^{-3}$
24	0,056832056832057	$1,735 \times 10^{-16}$	$2,361\times10^{-3}$
32	0,056832056832057	$6,939 \times 10^{-18}$	$3,110 \times 10^{-3}$
40	0,056832056832057	$1,388 \times 10^{-17}$	$3,890 \times 10^{-3}$
50	0,056832056832057	$6,939 \times 10^{-18}$	$4,867 \times 10^{-3}$
64	0,056832056832057	$0,000 \times 10^{0}$	$6,167 \times 10^{-3}$
100	0,056832056832057	$0,000 imes 10^0$	$9,688\times10^{-3}$

Figura 40: $\int_0^1 \sqrt{(1-t)t} t^{\frac{9}{2}} dt$ via Gauss-Chebyshev de 2^a espécie.

5.4.9 Gauss-Gegenbauer

A quadratura de Gauss-Gegenbauer calcula integrais do tipo $\int_{c}^{d} ((d-t)(t-c))^{\mu-\frac{1}{2}}g(t) dt,$ com $\mu > -\frac{1}{2}$. Os experimentos são

(i)
$$\int_0^1 ((1-t)t)^{\frac{3}{2}} t^{\frac{7}{2}} dt$$
, (ii) $\int_0^1 ((1-t)t)^2 t^{\frac{5}{3}} dt$

O algoritmo da Figura 26 é implementado com vários valores de r, c = 0 e d = 1, com $g(t) = t^{\frac{7}{2}}$ e $g(t) = t^{\frac{5}{3}}$, respectivamente. O parâmetro μ é igual a 2 no primeiro caso e igual a $\frac{5}{2}$ no segundo. As resoluções analíticas são

(i)
$$\int_{0}^{1} ((1-t)t)^{\frac{3}{2}} t^{\frac{7}{2}} dt = -\frac{2}{45045} (3003t^5 + 2310t^4 + 1680t^3 + 1120t^2 + 640t + 256)(1-t)^{\frac{5}{2}} \Big|_{0}^{1} = \frac{512}{45045} \approx 0,011366411366411,$$

(ii) $\int_{0}^{1} ((1-t)t)^2 t^{\frac{5}{3}} dt = \frac{3}{2380} (119t^2 - 280t + 170)t^{\frac{14}{3}} \Big|_{0}^{1} = \frac{27}{2380} \approx 0,011344537815126.$

As Figuras 41 e 42 mostram os resultados das implementações além de exibir os gráficos dos integrandos.

r	integral	erro	tempo(s)
2	0,011303284254782	$6,313 \times 10^{-5}$	$3,744 \times 10^{-4}$
4	0,011366388367433	$2,300\times10^{-8}$	$5,668\times10^{-4}$
8	0,011366411345456	$2,096 \times 10^{-11}$	$1,019 \times 10^{-3}$
12	0,011366411366111	3.003×10^{-13}	$1,534\times10^{-3}$
16	0,011366411366398	$1,363 \times 10^{-14}$	$1,950 imes10^{-3}$
24	0,011366411366411	$7,286 \times 10^{-17}$	$2,881 \times 10^{-3}$
32	0,011366411366411	$7,633 imes 10^{-17}$	$3,791 imes10^{-3}$
40	0,011366411366411	$2,238 \times 10^{-16}$	$4,690 \times 10^{-3}$
50	0,011366411366411	6.765×10^{-17}	$5,964 \times 10^{-3}$
64	0,011366411366412	$2,064 \times 10^{-16}$	$7,540\times10^{-3}$
100	0,011366411366411	$2,706 \times 10^{-16}$	$1,189\times10^{-2}$

r	integral	erro	tempo(s)
2	0,011337205790095	$7,332 \times 10^{-6}$	$3,640 \times 10^{-4}$
4	0,011344447002547	$9,081 \times 10^{-8}$	$5,772 \times 10^{-4}$
8	0,011344537138860	$6,763 \times 10^{-10}$	$1,040 \times 10^{-3}$
12	0,011344537785463	$2,966 \times 10^{-11}$	$1,581 \times 10^{-3}$
16	0,011344537812214	$2,912 \times 10^{-12}$	$1,960 \times 10^{-3}$
24	0,011344537815028	$9,789 \times 10^{-14}$	$2,891\times10^{-3}$
32	0,011344537815118	$8,302 \times 10^{-15}$	$3,832 \times 10^{-3}$
40	0,011344537815125	$1,244 \times 10^{-15}$	$4,774 \times 10^{-3}$
50	0,011344537815126	$1,648 \times 10^{-16}$	$6,011 \times 10^{-3}$
64	0,011344537815126	$2,689 \times 10^{-16}$	$7,623 \times 10^{-3}$
100	0,011344537815126	$3,816 \times 10^{-17}$	$1,193\times10^{-2}$

Figura 42: $\int_0^1 ((1-t)t)^2 t^{\frac{5}{3}} dt$ via Gauss-Gegenbauer.

5.5 Algoritmos e implementações via matriz de Jacobi

O Teorema 4.3 mostra que é possível calcular os zeros x_i e os coeficientes H_i por meio dos autovalores e autovetores da matriz de Jacobi

$$\mathbf{J}_{r} = \begin{bmatrix} \alpha_{0} & \sqrt{\beta_{1}} & & 0\\ \sqrt{\beta_{1}} & \alpha_{1} & \sqrt{\beta_{2}} & & \\ & \sqrt{\beta_{2}} & \alpha_{2} & \sqrt{\beta_{3}} & \\ & & \ddots & \ddots & \\ 0 & & & \sqrt{\beta_{r-1}} & \alpha_{r-1} \end{bmatrix}$$

onde os parâmetros α_i , i = 0, 1, ..., r-1, e β_i , i = 1, 2, ..., r-1, são os termos da equação de recorrência dos polinômios ortonormais. Estes são calculados pelas fórmulas (2.32) e (2.33) que, por sua vez, dependem apenas de resultados relacionados aos polinômios ortogonais. A obra de Golub and Welsch (1967) apresenta um procedimento para o cálculo dos autovalores e autovetores da matriz de Jacobi e é referência em vários textos que tratam do assunto. São apresentados os algoritmos para x_i e H_i com uso da matriz \mathbf{J}_r para cada quadratura de Gauss (Figuras 43 a 50). Os parâmetros de entrada são o número r de zeros e, se existentes, os parâmetros α , β ou μ . Os parâmetros de saída são os vetores X e H com os zeros x_i e os coeficientes H_i, respectivamente.

Os algoritmos seguem a rotina:

- 1. Calcula os elementos da matriz de Jacobi;
- 2. Calcula os autovalores e os primeiros componentes dos autovetores normalizados, respectivamente, obtendo os zeros e os coeficientes.

```
Algoritmo matriz legendre
{Objetivo Calcular x_i \in H_i pela matriz \mathbf{J}_r para Gauss-Legendre}
parâmetro de entrada r {número de zeros}
parâmetros de saída X \in H {vetores com zeros e coeficientes}
início algoritmo
       J \leftarrow \mathsf{matriz} \mathsf{quadrada} \mathsf{e} \mathsf{nula} \mathsf{de} \mathsf{ordem} r
1
2
       para m \leftarrow 1 até r-1 faça
            J(m, m+1) \leftarrow m * 1/\sqrt{(4 * m^2 - 1)} {diagonal de \sqrt{\beta_m}, por (4.21)}
\mathbf{3}
4
            J(m+1,m) \leftarrow J(m,m+1) {diagonal simétrica}
5
       fim para
6
       X, v \leftarrow autovalores e autovetores normalizados de J, respectivamente
7
       para i \leftarrow 1 até r faça
            H(i) \leftarrow 2 * (v(i,1))^2 \{(4.20)\}
8
9
       fim para
fim algoritmo
```

Figura 43: Algoritmo para x_i e H_i de Gauss-Legendre pela matriz \mathbf{J}_r .

Algoritmo matriz laguerregen {**Objetivo** Calcular $x_i \in H_i$ pela matriz \mathbf{J}_r para Gauss-Laguerre generalizada} parâmetros de entrada r e α {número de zeros e parâmetro $\alpha > -1$ } parâmetros de saída $X \in H$ {vetores com zeros e coeficientes} início algoritmo $J \leftarrow \mathsf{matriz} \mathsf{ quadrada} \mathsf{ e} \mathsf{ nula} \mathsf{ de ordem} r$ 1 $\mathbf{2}$ para $m \leftarrow 1$ até r-1 faça 3 $J(m,m) \leftarrow \alpha + 2 * m + 1 \{\alpha_0 \ a \ \alpha_{r-2}, \text{ por } (4.26)\}$ $J(m, m+1) \leftarrow \sqrt{((\alpha+i)*i)}$ {diagonal de $\sqrt{\beta_m}$, por (4.26)} 4 $J(m+1,m) \leftarrow J(m,m+1)$ {diagonal simétrica} 56 fim para 7 $J(m,m) \leftarrow \alpha + 2 * r - 1 \ \{\alpha_{r-1}, \text{ por } (4.26)\}$ 8 $X, v \leftarrow$ autovalores e autovetores normalizados de J, respectivamente 9 $k \leftarrow \Gamma(\alpha + 1)$ 10para $i \leftarrow 1$ até r faça $H(i) \leftarrow k * (v(i,1))^2 \{(4.25)\}$ 11 12fim para fim algoritmo

Figura 44: Algoritmo para x_i e H_i de Gauss-Laguerre generalizada pela matriz \mathbf{J}_r .

Algoritmo matriz laguerre {**Objetivo** Calcular $x_i \in H_i$ pela matriz \mathbf{J}_r para Gauss-Laguerre} parâmetro de entrada r {número de zeros} **parâmetros de saída** $X \in H$ {vetores com zeros e coeficientes} início algoritmo $J \leftarrow matriz quadrada e nula de ordem r$ 1 $\mathbf{2}$ para $m \leftarrow 1$ até r-1 faça 3 $J(m,m) \leftarrow 2 * m + 1 \{\alpha_0 \ a \ \alpha_{r-2}, \text{ por } (4.30)\}$ 4 $J(m, m+1) \leftarrow i \{ \text{diagonal de } \sqrt{\beta_m}, \text{ por } (4.30) \}$ 5 $J(m+1,m) \leftarrow J(m,m+1)$ {diagonal simétrica} 6 fim para 7 $J(m,m) \leftarrow 2 * r - 1 \ \{\alpha_{r-1}\}$ $X, v \leftarrow$ autovalores e autovetores normalizados de J, respectivamente 8 para $i \leftarrow 1$ até r faça 9 10 $H(i) \leftarrow (v(i,1))^2 \{(4.29)\}$ 11fim para fim algoritmo

Figura 45: Algoritmo para $x_i \in H_i$ de Gauss-Laguerre pela matriz J_r .

```
Algoritmo matriz hermite
{Objetivo Calcular x_i \in H_i pela matriz J_r para Gauss-Hermite}
parâmetro de entrada r {número de zeros}
parâmetros de saída X \in H {vetores com zeros e coeficientes}
início algoritmo
      J \leftarrow matriz quadrada e nula de ordem r
1
2
      para m \leftarrow 1 até r-1 faça
3
          J(m, m+1) \leftarrow \sqrt{(m/2)} \{ \text{diagonal de } \sqrt{\beta_m}, \text{ por } (4.37) \}
          J(m+1,m) \leftarrow J(m,m+1) {diagonal simétrica}
4
5
      fim para
6
      X, v \leftarrow autovalores e autovetores normalizados de J, respectivamente
7
      para i \leftarrow 1 até r faça
          H(i) \leftarrow \pi^{0,5} * (v(i,1))^2 \{(4.36)\}
8
9
      fim para
fim algoritmo
```

Figura 46: Algoritmo para x_i e H_i de Gauss-Hermite pela matriz \mathbf{J}_r .

Algoritmo matriz jacobi {**Objetivo** Calcular $x_i \in H_i$ pela matriz \mathbf{J}_r para Gauss-Jacobi} **parâmetros de entrada** r, $\alpha \in \beta > \{$ número de zeros e parâmetros $\alpha, \beta > -1 \}$ **parâmetros de saída** $X \in H$ {vetores com zeros e coeficientes} início algoritmo $J \leftarrow \mathsf{matriz} \mathsf{quadrada} \mathsf{e} \mathsf{nula} \mathsf{de} \mathsf{ordem} r$ 1 $\mathbf{2}$ $J(1,1) \leftarrow (\beta - \alpha)/(\alpha + \beta + 2) \{\alpha_0, \text{ por } (4.45)\}$ 3 se r>1 então $J(1,2) \leftarrow 2 * \sqrt{(\alpha+1) * (\beta+1)/((\alpha+\beta+3) * (\alpha+\beta+2)^2)} \{\sqrt{\beta_1}, \text{ por } (4.45)\}$ $\mathbf{4}$ $J(2,1) \leftarrow J(1,2)$ $J(r,r) \leftarrow (\beta^2 - \alpha^2) / ((2*r + \alpha + \beta - 2)*(2*r + \alpha + \beta)) \{\alpha_{r-1}, \text{ por } (4.45)\}$ 56 para $m \leftarrow 2$ até r-1 faça 7 $J(m,m) \leftarrow (\beta^2 - \alpha^2) / ((2 * m + \alpha + \beta - 2) * (2 * m + \alpha + \beta))$ 8 $\{\alpha_1 \ a \ \alpha_{r-2}, \text{ por } (4.46)\}$ $J(m, m+1) \leftarrow 2 * \sqrt{m * (m+\alpha) * (m+\beta) * (m+\alpha+\beta)}$ 9 $/\sqrt{((2*m+\alpha+\beta-1)*(2*m+\alpha+\beta+1)*(2*m+\alpha+\beta)^2)}$ $\{\sqrt{\beta_2} \text{ a } \sqrt{\beta_{r-1}}, \text{ por } (4.47)\}$ $J(m+1,m) \leftarrow J(m,m+1) \text{ {diagonal simétrica}} \}$ 10fim para 11 12fim se $X, v \leftarrow$ autovalores e autovetores normalizados de J, respectivamente 13 $k \leftarrow 2^{\alpha + \beta + 1} * \Gamma(\alpha + 1) * \Gamma(\beta + 1) / \Gamma(\alpha + \beta + 2)$ 14para $i \leftarrow 1$ até r faça 15 $H(i) \leftarrow k * (v(i,1))^2 \{(4.44)\}$ 1617fim para fim algoritmo

Figura 47: Algoritmo para x_i e H_i de Gauss-Jacobi pela matriz \mathbf{J}_r .

```
Algoritmo matriz chebyshev 1
{Objetivo Calcular x_i \in H_i pela matriz \mathbf{J}_r para Gauss-Chebyshev de 1<sup>a</sup> espécie}
parâmetro de entrada r {número de zeros}
parâmetros de saída X \in H {vetores com zeros e coeficientes}
início algoritmo
       J \leftarrow \mathsf{matriz} \mathsf{quadrada} \mathsf{e} \mathsf{nula} \mathsf{de} \mathsf{ordem} r
1
\mathbf{2}
       se r>1 então
             J(1,2) \leftarrow \sqrt{(0,5)} \{\sqrt{\beta_1}, \text{ por } (4.56)\}
3
             J(2,1) \leftarrow J(1,2)
5
6
            para m \leftarrow 2 até r-1 faça
7
                 J(m, m+1) \leftarrow 0.5 \{\sqrt{\beta_2} \ a \ \beta_{r-1}, \ por \ (4.56)\}
8
                 J(m+1,m) \leftarrow J(m,m+1) {diagonal simétrica}
9
            fim para
10
       fim se
11
       X \leftarrow \text{autovalores de } J
       para i \leftarrow 1 até r faça
12
13
            H(i) \leftarrow \pi/r \{(4.55)\}
14
       fim para
fim algoritmo
```

Figura 48: Algoritmo para x_i e H_i de Gauss-Chebyshev de 1^a espécie pela matriz \mathbf{J}_r

Algoritmo matriz chebyshev 2 {**Objetivo** Calcular $x_i \in H_i$ pela matriz \mathbf{J}_r para Gauss-Chebyshev de 2^a espécie} parâmetro de entrada r {número de zeros} **parâmetros de saída** $X \in H$ {vetores com zeros e coeficientes} início algoritmo $J \leftarrow matriz quadrada e nula de ordem r$ 1 2 se r>1 então 3 para $m \leftarrow 1$ até r-1 faça 4 $J(m, m+1) \leftarrow 0.5$ {diagonal de $\sqrt{\beta_m}$, por (4.65)} $J(m+1,m) \leftarrow J(m,m+1)$ {diagonal simétrica} 5 fim para 6 7 fim se 8 $X, v \leftarrow$ autovalores e autovetores normalizados de J, respectivamente 9 $k \leftarrow \pi/2$ 10para $i \leftarrow 1$ até r faça $H(i) \leftarrow k * (v(i,1))^2 \{(4.64)\}$ 11 12fim para fim algoritmo

Figura 49: Algoritmo para x_i e H_i de Gauss-Chebyshev de 2^a espécie pela matriz \mathbf{J}_r .

Algoritmo matriz gegenbauer {**Objetivo** Calcular $x_i \in H_i$ pela matriz \mathbf{J}_r para Gauss-Gegenbauer} parâmetros de entrada r e μ {número de zeros e parâmetro $\mu > -0.5, \mu \neq 0$ } **parâmetros de saída** $X \in H$ {vetores com zeros e coeficientes} início algoritmo $J \leftarrow \mathsf{matriz} \mathsf{quadrada} \mathsf{e} \mathsf{nula} \mathsf{de} \mathsf{ordem} r$ 1 $\mathbf{2}$ se $r>1\ {\rm ent}{\rm \tilde{a}}{\rm o}$ 3 para $m \leftarrow 2$ até r-1 faça $J(m, m+1) \leftarrow \sqrt{m * (m+2 * \mu - 1)/((m+\mu) * (m+\mu - 1))}/2$ 4 {diagonal de $\sqrt{\beta_m}$, por (4.73)} 5 $J(m+1,m) \leftarrow J(m,m+1)$ {diagonal simétrica} 6 fim para 7fim se 8 $X, v \leftarrow$ autovalores e autovetores normalizados de J, respectivamente 9 $k \leftarrow 2^{2*\mu} * \Gamma(\mu + 0.5) / \Gamma(2*\mu + 1)$ 10 para $i \leftarrow 1$ até r faça $H(i) \leftarrow k * (v(i,1))^2 \{(4.72)\}$ 11 12fim para fim algoritmo

Figura 50: Algoritmo para x_i e H_i de Gauss-Gegenbauer pela matriz \mathbf{J}_r .

5.5.1 Implementações

Com os algoritmos das quadraturas numéricas (Figuras 19 a 26) são realizados os mesmos experimentos da Seção 5.4 com x_i e H_i obtidos, desta vez, pela matriz \mathbf{J}_r .

As Tabelas 3 a 18 mostram os resultados dos experimentos juntamente com o tempo tempo_jac, em segundos, demandado pela execução. O parâmetro tempo_jac é calculado pela média aritmética dos tempos demandados por várias execuções para cada valor de r, sendo 3000 execuções para $2 \le r < 500$, 10 execuções para $500 \le r \le 750$ e 1 execução para $r \ge 1000$. O erro relativo é dado por erro_jac. Paralelamente é mostrado o erro relativo erro e o tempo tempo das implementações das Subseções 5.4.2 a 5.4.9.

Tabela 3: $\int_{0}^{2\pi} t \operatorname{sen}(t) dt$ via Gauss-Legendre pela matriz \mathbf{J}_{r} .

r	$erro_jac$	erro	$tempo_jac(s)$	tempo(s)
12	$1,776 \times 10^{-15}$	$4,441 \times 10^{-15}$	$1,295\times10^{-3}$	$1,201\times10^{-3}$
50	$7,105 imes 10^{-15}$	$1,776 imes 10^{-15}$	$7,077\times10^{-3}$	$4,732\times10^{-3}$
100	$4,441 \times 10^{-15}$	$1,776 \times 10^{-15}$	$2,190\times10^{-2}$	$9,558 \times 10^{-3}$
500	$4,619 \times 10^{-14}$	$4,441 \times 10^{-15}$	$9,672\times10^{-1}$	$5,616\times10^{-2}$
750	$2,753 \times 10^{-14}$	$1,776 \times 10^{-15}$	$3,468 \times 10^0$	$9,360 \times 10^{-2}$
1000	$2,487 \times 10^{-14}$	$7,105 \times 10^{-15}$	$8,309 imes 10^0$	$1,326\times10^{-1}$
1500	$0,000 \times 10^0$	$1,776 \times 10^{-14}$	$2,884 imes 10^1$	$2,293\times 10^{-1}$
2000	$2,665 \times 10^{-14}$	$4,441 \times 10^{-15}$	$6,770 imes 10^1$	$3,323\times10^{-1}$

Tabela 4: $\int_0^{2\pi} t \operatorname{sen}(15t) dt$ via Gauss-Legendre pela matriz \mathbf{J}_r .

r	$erro_jac$	erro	$tempo_jac(s)$	tempo(s)
12	$4,595 \times 10^{0}$	$4,595 \times 10^{0}$	$1,565 \times 10^{-3}$	$1,492 \times 10^{-3}$
50	$1,893 \times 10^{-14}$	$3,941 \times 10^{-15}$	$8,294\times10^{-3}$	$5,933 \times 10^{-3}$
100	$3,075 \times 10^{-14}$	$1,499 \times 10^{-14}$	$2,414\times10^{-2}$	$1,199 \times 10^{-2}$
500	$1,960 \times 10^{-14}$	$7,383 \times 10^{-15}$	$9,734 \times 10^{-1}$	$7,176 \times 10^{-2}$
750	$1,872 \times 10^{-13}$	$7,827 \times 10^{-15}$	$3,462 imes 10^0$	$1,076 \times 10^{-1}$
1000	$1,040 \times 10^{-13}$	$5,496\times10^{-15}$	$8,376 imes10^{0}$	$1,638\times10^{-1}$
1500	$7,710 imes 10^{-14}$	$2,054\times10^{-15}$	$2,875 imes10^1$	$2,683 \times 10^{-1}$
2000	$2,814 \times 10^{-13}$	$4,996 \times 10^{-15}$	$6,778 imes10^1$	$3,822 \times 10^{-1}$

Tabela 5: $\int_0^\infty e^{-t} t \operatorname{sen}(t) dt$ via Gauss-Laguerre generalizada pela matriz \mathbf{J}_r .

r	$erro_jac$	erro	$tempo_jac(s)$	tempo(s)
12	$6,878 \times 10^{-9}$	$6,878 \times 10^{-9}$	$1,113 \times 10^{-3}$	$1,196 \times 10^{-3}$
50	$0,000 \times 10^0$	$0,000 \times 10^0$	$6,422\times10^{-3}$	$6,422 \times 10^{-3}$
100	$7,772 \times 10^{-16}$	$7,772 \times 10^{-16}$	$2,041\times 10^{-2}$	$1,999 \times 10^{-2}$
500	$1,665 \times 10^{-16}$	não resolveu	$1,075 \times 10^0$	_
1000	$2,220 \times 10^{-16}$	não resolveu	$9,986\times10^{0}$	_

Tabela 6: $\int_0^\infty e^{-t} t \operatorname{sen}(3t) dt$ via Gauss-Laguerre generalizada pela matriz \mathbf{J}_r .

r	$erro_jac$	erro	$tempo_jac(s)$	tempo(s)
12	$1,626 \times 10^{-1}$	$1,626 \times 10^{-1}$	$1,503 \times 10^{-3}$	$1,503 \times 10^{-3}$
50	$9,795 \times 10^{-7}$	$9,795 \times 10^{-7}$	$7,597\times10^{-3}$	$7,613 \times 10^{-3}$
100	$3,068 \times 10^{-14}$	$3,068 \times 10^{-14}$	$2,292\times 10^{-2}$	$2,273 \times 10^{-2}$
500	$1,256 \times 10^{-15}$	não resolveu	$1,058 \times 10^0$	_
1000	$1,596 \times 10^{-16}$	não resolveu	$9,890 \times 10^0$	_

Tabela 7: $\int_{\pi}^{\infty} e^{-t} \cos(t) dt$ via Gauss-Laguerre pela matriz \mathbf{J}_r .

r	erro_jac	erro	$tempo_{jac(s)}$	tempo(s)
12	$6,423 \times 10^{-10}$	$6,423 \times 10^{-10}$	$1,144 \times 10^{-3}$	$1,108 \times 10^{-3}$
50	$2,776 \times 10^{-17}$	$6,939 \times 10^{-17}$	$6,256\times10^{-3}$	$5,018\times10^{-3}$
100	$0,000 \times 10^0$	$1,665 \times 10^{-16}$	$1,975\times10^{-2}$	$1,092 \times 10^{-2}$
500	$2,776 \times 10^{-17}$	não resolveu	$1,033 imes 10^0$	_
1000	$6,939 \times 10^{-18}$	nao resolveu	$9,541 \times 10^0$	_

Tabela 8: $\int_{\pi}^{\infty} e^{-t} \cos(3t) dt$ via Gauss-Laguerre pela matriz \mathbf{J}_r .

r	$erro_jac$	erro	$tempo_jac(s)$	tempo(s)
12	$1,751 \times 10^{-3}$	$1,751 \times 10^{-3}$	$1,383\times10^{-3}$	$1,362\times10^{-3}$
50	$1,894 \times 10^{-9}$	$1,894 \times 10^{-9}$	$7,368\times10^{-3}$	$6,011\times 10^{-3}$
100	$5,638 \times 10^{-17}$	$3,123 \times 10^{-17}$	$2,209\times10^{-2}$	$1,277\times 10^{-2}$
500	$8,674 \times 10^{-18}$	não resolveu	$1,078 \times 10^0$	—
1000	$9,541 \times 10^{-18}$	não resolveu	$9,722 \times 10^0$	—

Tabela 9: $\int_{-\infty}^{\infty} \operatorname{sech}^{3}(t) dt$ via Gauss-Hermite pela matriz \mathbf{J}_{r} .

r	$erro_jac$	erro	$tempo_jac(s)$	tempo(s)
12	$8,548 \times 10^{-5}$	$8,548 \times 10^{-5}$	$2,236 \times 10^{-3}$	$2,527\times10^{-3}$
50	$4,564 \times 10^{-11}$	$4,564 \times 10^{-11}$	$1,081 \times 10^{-2}$	$1,005 \times 10^{-2}$
100	$1,998 \times 10^{-15}$	$1,332 \times 10^{-15}$	$2,954 \times 10^{-2}$	$1,972 \times 10^{-2}$
200	$2,220 \times 10^{-16}$	não resolveu	$1,108 \times 10^{-1}$	_
300	$0,000 \times 10^{0}$	não resolveu	$2,870 \times 10^{-1}$	—

Tabela 10: $\int_{-\infty}^{\infty} \operatorname{sech}^{4}(t) dt$ via Gauss-Hermite pela matriz \mathbf{J}_{r} .

r	erro_jac	erro	$tempo_jac(s)$	tempo(s)
12	$2,862 \times 10^{-4}$	$2,862 \times 10^{-4}$	$2,382 \times 10^{-3}$	$2,538\times10^{-3}$
50	$3,033 \times 10^{-10}$	$3,033 \times 10^{-10}$	$1,149 \times 10^{-2}$	$1,019 \times 10^{-2}$
100	$3,553 \times 10^{-15}$	$2,665 \times 10^{-15}$	$3,046 \times 10^{-2}$	$2,032 \times 10^{-2}$
200	$4,441 \times 10^{-16}$	não resolveu	$1,123 \times 10^{-1}$	_
300	$0,000 \times 10^0$	não resolveu	$2,855 \times 10^{-1}$	_

Tabela 11: $\int_0^{\frac{1}{2}} \frac{t^{\frac{5}{2}}}{\sqrt{\frac{1}{2}-t}} dt$ via Gauss-Jacobi pela matriz \mathbf{J}_r .

	•			
r	$erro_jac$	erro	$tempo_jac(s)$	tempo(s)
12	$4,972 \times 10^{-10}$	$4,972 \times 10^{-10}$	$1,498\times10^{-3}$	$2,257\times10^{-3}$
50	$2,495 \times 10^{-14}$	$2,502 \times 10^{-14}$	$7,530\times10^{-3}$	$8,554\times10^{-3}$
100	$1,804 \times 10^{-16}$	$2,914 \times 10^{-16}$	$2,326\times 10^{-2}$	$1,745 \times 10^{-2}$
500	$4,163 \times 10^{-17}$	$5,360 \times 10^{-14}$	$9,157\times10^{-1}$	$1,139\times10^{-1}$
750	$2,914 \times 10^{-16}$	$1,524\times10^{-14}$	$3,246 imes 10^0$	$1,872\times10^{-1}$
1000	$9,714 \times 10^{-17}$	$8,354 \times 10^{-15}$	$7,839 imes 10^0$	$2,496\times10^{-1}$
1500	$1,388\times10^{-17}$	$2,204\times10^{-13}$	$2,716 imes10^1$	$4,524 \times 10^{-1}$
2000	$2,220 \times 10^{-16}$	$9,256 \times 10^{-15}$	$6,505\times10^{1}$	$6,599 \times 10^{-1}$

Tabela 12: $\int_0^{\frac{1}{2}} \frac{t^{\frac{7}{2}}}{\sqrt{\frac{1}{2}-t}} dt$ via Gauss-Jacobi pela matriz \mathbf{J}_r .

	V V			
r	$erro_jac$	erro	$tempo_jac(s)$	tempo(s)
12	$6,098 \times 10^{-12}$	$6,098 \times 10^{-12}$	$1,446 \times 10^{-3}$	$2,231 \times 10^{-3}$
50	$1,388 \times 10^{-17}$	$3,469 \times 10^{-17}$	$7,602\times10^{-3}$	$8,585 \times 10^{-3}$
100	$1,388 \times 10^{-17}$	$2,290 \times 10^{-16}$	$2,228\times10^{-2}$	$1,758 \times 10^{-2}$
500	$6,245 \times 10^{-17}$	$2,340 \times 10^{-14}$	$9,142\times10^{-1}$	$1,076 \times 10^{-1}$
750	$1,596 \times 10^{-16}$	$7,577 \times 10^{-15}$	$3,220 imes 10^0$	$1,794 \times 10^{-1}$
1000	$1,318 \times 10^{-16}$	$4,198 \times 10^{-15}$	$7,833 imes 10^0$	$2,465 \times 10^{-1}$
1500	$1,388\times10^{-17}$	$9,624\times10^{-14}$	$2,744 imes 10^1$	$4,337 \times 10^{-1}$
2000	$1,110\times10^{-16}$	$4,524\times10^{-15}$	$6,577\times10^{1}$	$6,365\times10^{-1}$

Tabela 13: $\int_0^1 \frac{t^{\frac{7}{2}}}{\sqrt{(1-t)t}} dt$ via Gauss-Chebyshev de 1^a espécie pela matriz \mathbf{J}_r .

r	$erro_jac$	erro	$tempo_jac(s)$	tempo(s)
12	$7,395 \times 10^{-10}$	$7,395 \times 10^{-10}$	$1,331 \times 10^{-3}$	$1,222 \times 10^{-3}$
50	$7,772 \times 10^{-15}$	$7,772 \times 10^{-15}$	$7,332\times10^{-3}$	$4,753 \times 10^{-3}$
100	$2,220 \times 10^{-16}$	$2,220\times10^{-16}$	$2,278\times 10^{-2}$	$9,490 \times 10^{-3}$
500	$5,551 \times 10^{-16}$	$6,661 \times 10^{-16}$	$9,734\times10^{-1}$	$4,524 \times 10^{-2}$
750	$0,000 \times 10^0$	$2,220 \times 10^{-16}$	$3,446 \times 10^0$	$7,488 \times 10^{-2}$
1000	$8,882 \times 10^{-16}$	$8,882 \times 10^{-16}$	$8,377 \times 10^0$	$9,984 \times 10^{-2}$
1500	$1,110 \times 10^{-16}$	$3,331 \times 10^{-16}$	$2,836 imes 10^1$	$1,466 \times 10^{-1}$
2000	$5,551 \times 10^{-16}$	$4,441 \times 10^{-16}$	$6,728 imes 10^1$	$1,950 \times 10^{-1}$

Tabela 14: $\int_0^1 \frac{t^{\frac{9}{2}}}{\sqrt{(1-t)t}} dt$ via Gauss-Chebyshev de 1^a espécie pela matriz \mathbf{J}_r .

r	$erro_jac$	erro	$tempo_jac(s)$	tempo(s)
12	$2,402 \times 10^{-11}$	$2,402 \times 10^{-11}$	$1,342\times10^{-3}$	$1,222 \times 10^{-3}$
50	$0,000 \times 10^0$	$0,000 imes 10^0$	$7,556\times10^{-3}$	$4,940 \times 10^{-3}$
100	$2,220 \times 10^{-16}$	$1,110 \times 10^{-16}$	$2,344\times 10^{-2}$	$9,760 \times 10^{-3}$
500	$1,110 \times 10^{-16}$	$2,220 \times 10^{-16}$	$9,766 \times 10^{-1}$	$4,680 \times 10^{-2}$
750	$1,110 \times 10^{-16}$	$3,331 \times 10^{-16}$	$3,469 imes 10^0$	$6,864 \times 10^{-2}$
1000	$2,220 \times 10^{-16}$	$5,551 \times 10^{-16}$	$8,268 \times 10^0$	$9,360 \times 10^{-2}$
1500	$6,661 \times 10^{-16}$	$8,882 \times 10^{-16}$	$2,861 imes 10^1$	$1,420 \times 10^{-1}$
2000	$1,110 \times 10^{-16}$	$1,110 \times 10^{-16}$	$6,744 imes 10^1$	$1,903 \times 10^{-1}$

Tabela 15: $\int_0^1 \sqrt{(1-t)t} t^{\frac{7}{2}} dt$ via Gauss-Chebyshev de 2^a espécie pela matriz \mathbf{J}_r .

r	$erro_jac$	erro	$tempo_jac(s)$	tempo(s)
12	$1,115 \times 10^{-11}$	$1,115 \times 10^{-11}$	$1,388 \times 10^{-3}$	$1,212 \times 10^{-3}$
50	$1,388 \times 10^{-16}$	$1,388 \times 10^{-17}$	$7,332\times10^{-3}$	$4,659\times10^{-3}$
100	$1,388 \times 10^{-16}$	$4,163 \times 10^{-17}$	$2,203\times10^{-2}$	$9,313\times10^{-3}$
500	$3,469 \times 10^{-16}$	$4,163 \times 10^{-17}$	$9,812\times10^{-1}$	$4,212 \times 10^{-2}$
750	$2,776 \times 10^{-16}$	$2,776 imes 10^{-17}$	$3,371 imes 10^0$	$6,864\times10^{-2}$
1000	$1,110 \times 10^{-16}$	$8,327\times10^{-17}$	$8,315 imes10^{0}$	$9,048\times10^{-2}$
1500	$1,388 \times 10^{-16}$	$6,939\times10^{-17}$	$2,836 imes10^1$	$1,404 \times 10^{-1}$
2000	$1,943 \times 10^{-16}$	$4,163 \times 10^{-17}$	$6,694\times10^{1}$	$1,856\times10^{-1}$

Tabela 16: $\int_{0}^{1} \sqrt{(1-t)t} t^{\frac{9}{2}} dt$ via Gauss-Chebyshev de 2^a espécie pela matriz \mathbf{J}_{r} .

r	$erro_jac$	erro	$tempo_jac(s)$	tempo(s)
12	$4,829 \times 10^{-13}$	$4,829 \times 10^{-13}$	$1,394\times10^{-3}$	$1,238\times10^{-3}$
50	$1,041 \times 10^{-16}$	$6,939 \times 10^{-18}$	$7,420\times10^{-3}$	$4,867\times10^{-3}$
100	$9,714 \times 10^{-17}$	$0,000 \times 10^0$	$2,256\times10^{-2}$	$9,688 imes 10^{-3}$
500	$2,567 \times 10^{-16}$	$1,388\times10^{-17}$	$9,766\times10^{-1}$	$5,148\times10^{-2}$
750	$2,012 \times 10^{-16}$	$0,000 imes 10^0$	$3,424 imes 10^0$	$7,800\times10^{-2}$
1000	$1,180 imes 10^{-16}$	$0,000 imes 10^0$	$8,174 imes10^{0}$	$9,984\times10^{-2}$
1500	$2,012 \times 10^{-16}$	$4,857 \times 10^{-17}$	$2,827 imes 10^1$	$1,544\times10^{-1}$
2000	$1,943 \times 10^{-16}$	$4,163 \times 10^{-17}$	$6,669 imes 10^1$	$1,903\times10^{-1}$

Tabela 17: $\int_0^1 ((1-t)t)^{\frac{3}{2}} t^{\frac{7}{2}} dt$ via Gauss-Gegenbauer pela matriz \mathbf{J}_r .

r	erro_jac	erro	$tempo_jac(s)$	tempo(s)
12	$3,003 \times 10^{-13}$	$3,003 \times 10^{-13}$	$1,357\times10^{-3}$	$1,534 \times 10^{-3}$
50	$1,388\times10^{-17}$	$6,765 \times 10^{-17}$	$7,441\times 10^{-3}$	$5,964 \times 10^{-3}$
100	$6,939\times10^{-18}$	$2,706 \times 10^{-16}$	$2,228\times 10^{-2}$	$1,189 \times 10^{-2}$
500	$2,602 \times 10^{-17}$	$4,522\times10^{-15}$	$9,734\times10^{-1}$	$7,332 \times 10^{-2}$
750	$1,388 \times 10^{-17}$	$6,386 \times 10^{-15}$	$3,416 \times 10^0$	$1,092 \times 10^{-1}$
1000	$1,735 \times 10^{-17}$	$2,498 \times 10^{-15}$	$8,284 \times 10^0$	$1,560 \times 10^{-1}$
1500	$8,674 \times 10^{-18}$	$8,446 \times 10^{-15}$	$2,816 imes10^1$	$2,402 \times 10^{-1}$
2000	$9,021 \times 10^{-17}$	$1,327\times10^{-14}$	$6,667 imes 10^1$	$3,416 \times 10^{-1}$

Tabela 18: $\int_0^1 ((1-t)t)^2 t^{\frac{5}{3}} dt$ via Gauss-Gegenbauer pela matriz \mathbf{J}_r .

r	$erro_jac$	erro	$tempo_jac(s)$	tempo(s)
12	$2,966 \times 10^{-11}$	$2,966 \times 10^{-11}$	$1,373\times10^{-3}$	$1,581\times10^{-3}$
50	$1,613\times10^{-16}$	$1,648\times10^{-16}$	$7,405\times10^{-3}$	$6,011\times 10^{-3}$
100	$5,204 \times 10^{-18}$	$3,816\times10^{-17}$	$2,228\times 10^{-2}$	$1,193\times10^{-2}$
500	$1,041 \times 10^{-17}$	$4,937 \times 10^{-15}$	$9,812 \times 10^{-1}$	$6,708 \times 10^{-2}$
750	$1,214 \times 10^{-17}$	$5,208 \times 10^{-15}$	$3,460 \times 10^0$	$1,123\times10^{-1}$
1000	$6,072 \times 10^{-17}$	$6,816 \times 10^{-15}$	$8,299 imes 10^0$	$1,591\times10^{-1}$
1500	$5,725 \times 10^{-17}$	$1,728 \times 10^{-14}$	$2,816 imes10^1$	$2,340 \times 10^{-1}$
2000	$3,123 \times 10^{-17}$	$1,680 \times 10^{-14}$	$6,727 \times 10^1$	$3,526\times10^{-1}$

Conclui-se que numa integração com o emprego da matriz de Jacobi \mathbf{J}_r o tempo necessário é superior àquele apresentado na estratégia anterior, onde foi utilizado o método de Newton, principalmente para valores muito grandes de r. Por exemplo, com exceção de Gauss-Hermite, Gauss-Laguerre e Gauss-Laguerre generalizada, o tempo gasto pela matriz \mathbf{J}_r em r = 2000 zeros é superior a 1 minuto, enquanto que, o outro método gastou menos de 1 segundo. Esta disparidade é conseqüência do alto custo computacional no cálculo dos autovalores e autovetores da matriz de Jacobi, ao passo que, os outros métodos calculam os zeros e os coeficientes da quadratura pelo método de Newton quando não possuem fórmulas diretas para eles (Figuras 14 e 15). Além disto, quando os zeros são simétricos, o método de Newton é usado somente para os zeros não negativos, enquanto que, a matriz de Jacobi calcula todos zeros separadamente. Todavia, para integrações de Gauss-Hermite, Gauss-Laguerre e Gauss-Laguerre generalizada, a matriz de Jacobi é indispensável, pois os outros métodos falham a partir de um determinado valor de r, o que será tratado na Seção 5.6. Por isto, os experimentos apresentados a seguir fazem uso da matriz de Jacobi somente nas quadraturas de Gauss-Hermite, Gauss-Laguerre e Gauss-Laguerre generalizada.

Os autovalores e autovetores foram calculados pela função eig do MATLAB. Caso os algoritmos que usam a matriz de Jacobi sejam utilizados numa outra linguagem de programação, sugere-se as rotinas DSTEQR ou DSTEDC do LAPACK (Anderson *et al*, 1999), baseadas nos algoritmos QR com deslocamento implícito e algoritmo divide e conquista de Cuppen, respectivamente.

5.6 Validação dos algoritmos para zeros e coeficientes

Os algoritmos para determinação de x_i e H_i que são baseados no método de Newton, requerem boas aproximações iniciais para x_i , exceto no caso de Gauss-Chebyshev de 1^a e 2^a espécies que, por sua vez, possuem uma fórmula geradora os zeros x_i . Estes algoritmos para Gauss-Hermite, Gauss-Laguerre e Gauss-Laguerre generalizada apresentam um limite máximo para o número r de zeros. No caso de Gauss-Laguerre e Gauss-Laguerre generalizada, com $\alpha = 1$, o número máximo de zeros é r = 365, pois quando $r \geq 366$, ocorre que p1 (linha 16 das Figuras 10 e 11) é calculado pela subtração de dois valores superiores ao maior número de ponto flutuante representável pelo computador, que é aproximadamente $1,7977 \times 10^{308}$ para variáveis de 8 bytes (Campos, 2000), resultando em falha do algoritmo². No caso de Gauss-Hermite, para $r \geq 114$, o valor de pp^2 também

²Ocorrem falhas como esta para diversos valores de α em Gauss-Laguerre generalizada.

é superior a este valor (linha 30 da Figura 12), neste caso é aconselhável que r seja, no máximo, 113.

Ressalta-se que o método de Newton para os zeros dos polinômios de Laguerre, Laguerre generalizado e de Hermite é usado até 10 vezes porque alguns zeros x_i podem requerer muitas iterações para serem refinados com a precisão 10^{-15} . Os zeros em tais algoritmos são obtidos com o método de Newton que, por sua vez, fornece os zeros quando for atendida a precisão ou, então, ao fim da 10^a iteração. A Figura 51 mostra o percentual de zeros que seriam calculados pelo método de Newton quando fosse atendida a precisão deste método, caso o parâmetro de precisão fosse 10^{-15} e 10^{-14} em **zero_h_hermite** (linha 25 da Figura 12) para cada valor de $r \leq 113$.

Figura 51: Percentual de zeros com precisão 10^{-15} e 10^{-14} em **zero** h hermite.

Por exemplo, na Figura 51 (a) tem-se que, para r = 80, cerca de 97,5% destes 80 zeros foram calculados com a precisão 10^{-15} e os demais zeros foram obtidos na 10^{a} iteração do método de Newton (linhas 14 a 27 da Figura 12). Em (b), tem-se que para todos valores de r, 100% dos zeros foram calculados com precisão 10^{-14} . Portanto, a Figura 51 mostra que o algoritmo **zero_h_hermite** (com precisão 10^{-15} e máximo de 10 iterações no método de Newton) fornece, no mínimo, 90% dos zeros com precisão de 10^{-15} e os outros zeros são obtidos na 10^{a} iteração, sendo fornecidos com precisão de 10^{-14} .

Agora, a Figura 52 mostra o percentual dos zeros que seriam calculados pelo método de Newton quando fosse atendida a precisão deste método caso este parâmetro fosse 10^{-15} , 10^{-14} , 10^{-13} e 10^{-12} em **zero_h_laguerre**³ em cada valor de $r \leq 365$ (linha 21 da Figura 11). Verifica-se que este algoritmo (com precisão 10^{-15} e máximo de 10

³O algoritmo zero_h_laguerre_gen, $1 < \alpha \le 8$, apresenta percentuais muito próximos aos de zero_h_laguerre.

iterações no método de Newton) fornece mais de 75% dos zeros com precisão de 10^{-15} e o restante dos zeros é obtido na 10^{a} iteração sendo fornecidos com precisão de, no mínimo, 10^{-12} .

Figura 52: Percentual de zeros com precisão 10^{-15} a 10^{-12} em **zero** h laguerre.

Os demais algoritmos que utilizam o método de Newton foram testados para r até 20.000 e não apresentaram nenhuma restrição (inclusive os casos **zero_h_chebyshev_1** e **zero_h_chebyshev_2**). Por isto, não restringe-se o número de iterações no método de Newton de tais algoritmos.

Os algoritmos que usam a matriz de Jacobi não apresentaram limites para o número de zeros uma vez que, essencialmente, calculam autovalores e autovetores. Todavia, como foi mostrado, demandam mais tempo de execução do que os outros algoritmos.

5.7 A escolha do método mais eficiente

As quadraturas de Gauss com base nos polinômios ortogonais de medidas clássicas distinguem-se, primeiramente, quanto ao intervalo de integração: finito [c, d], semi-infinito $[c, \infty)$ ou duplamente infinito $(-\infty, \infty)$. Havendo mais de uma quadratura para um tipo de intervalo, ela será definida ao especificar-se a função peso w(t). Para isto, inicialmente, é necessário reescrever a função integrando F(t) na seguinte forma

$$F(t) = w(t)g(t), \tag{5.9}$$

sendo w(t) contínua no intervalo aberto e g(t) contínua no intervalo fechado de integração.

A priori, a função g(t) poderia ser descontínua nos extremos de integração, pois a quadratura faz avaliações desta função em pontos interiores deste intervalo. Porém, se g(t) fosse descontínua, ela não poderia ser bem aproximada por um polinômio e o método da quadratura não seria eficiente. Por isto, assume-se que g(t) deve ser contínua no intervalo fechado de integração.

A Tabela 19 mostra como deverá ser w(t) para cada tipo de intervalo: [c, d], $[c, \infty)$ e $(-\infty, \infty)$. A função w(t), nos intervalos [c, d] e $[0, \infty)$, serve para atender às possíveis singularidades de F(t) nos extremos de integração.

Intervalo	w(t)		
[c,d]	$(d-t)^{\alpha}(t-c)^{\beta}, \alpha > -1 \in \beta > -1$		
$[c,\infty)$	$\left\{ \begin{array}{ll} e^{-t}t^{\alpha}, \ \alpha > -1, & {\rm se} \ c = 0, \\ e^{-t}, & {\rm se} \ c \neq 0 \end{array} \right.$		
$(-\infty,\infty)$	e^{-t^2}		

Tabela 19: w(t) em cada intervalo de integração.

Uma vez encontrada w(t), a função g(t) é obtida pela equação (5.9).

Se o intervalo for duplamente infinito, a função peso é do tipo de Gauss-Hermite, ficando definida a quadratura.

Se o intervalo for semi-infinito $[c, \infty)$, a função w(t) é do tipo de Gauss-Laguerre ou Gauss-Laguerre generalizada. Neste caso, se c = 0, usa-se a generalizada, cuja função peso colabora para a suavidade de g(t) porque possui parâmetro $\alpha > -1$; caso $c \neq 0$, só será possível utilizar Gauss-Laguerre (Subseção 5.2.2).

Por fim, se o intervalo for limitado, a função w(t) é do tipo de Jacobi e deve-se usar uma

das quadraturas apresentadas na Tabela 1 com intervalo [c, d] que são casos particulares da função peso de Jacobi. Elas se distinguem conforme os valores dos parâmetros $\alpha \in \beta$, segundo a Tabela 20.

$\alpha > -1 \neq \beta > -1$	quadratura	
$\alpha = \beta = 0$	Gauss-Legendre	
$\alpha=\beta=-\tfrac{1}{2}$	Gauss-Chebyshev de 1ª espécie	
$\alpha = \beta = \frac{1}{2}$	Gauss-Chebyshev de 2ª espécie	
$\alpha = \beta \neq 0, \pm \frac{1}{2}$	Gauss-Gegenbauer, $\mu = \alpha + \frac{1}{2}$	
$\alpha \neq \beta$	Gauss-Jacobi	

Tabela 20: w(t) do tipo Jacobi.

Há dois fatores que determinaram a escolha das quadraturas mais eficientes: a convergência da quadratura e os algoritmos mais eficientes.

A questão da convergência está associada ao comportamento da função g(t): como a fórmula de erro da quadratura de Gauss apresenta derivada de ordem 2r da função g(t)(Tabela 2), então o método de Gauss é exato para polinômios de grau até 2r - 1. Logo, quanto melhor g(t) puder ser aproximada por um polinômio, melhor será a convergência da quadratura. Em outras palavras, quanto mais suave for g(t), melhor será a convergência e a função peso tem por finalidade deixar g(t) mais simples e mais suave. Para isto, basta reescrever o integrando na forma $w(t)g(t) \operatorname{com} w(t)$ assumindo uma das formas mostradas na Tabela 19. Davis e Rabinowitz (1984) apresentam um bom exemplo do decrescimento da convergência quando a suavidade de g(t) decresce ao utilizar Gauss-Legendre nas integrais:

(i)
$$\int_0^1 g(t) dt$$
, onde $g(t) = \begin{cases} (t+2)^{-1}, & \text{se } 0 \le t \le e-2, \\ 0, & \text{se } e-2 \le t \le 1, \end{cases}$
(ii) $\int_0^1 \sqrt{t} dt$ e (iii) $\int_0^1 \sqrt{t^3} dt$.

A primeira integral apresenta baixíssima convergência e a segunda converge mais lentamente do que a terceira. A obra referenciada aponta que a qualidade da convergência está diretamente ligada com a suavidade de g(t): a função da primeira integral não é contínua em [0, 1]; na segunda integral, \sqrt{t} é contínua em [0, 1], mas a sua derivada não o é; na última integral, $\sqrt{t^3}$ é contínua em [0, 1], mas a segunda derivada desta função não o é. É evidente que a primeira função deveria ser integrada em dois intervalos separadamente. Por outro lado, as singularidades de g(t) poderiam ser evitadas reescrevendo o integrando na forma w(t)g(t) como na Tabela 19 e depois identificando os parâmetros $\alpha \in \beta$:

(ii)
$$\int_0^1 \sqrt{t} \, dt = \int_0^1 (1-t)^0 (t-0)^{\frac{1}{2}} \, dt \to \text{Gauss-Jacobi com } g(t) = 1, \ \alpha = 0 \ \text{e} \ \beta = \frac{1}{2}$$

(iii) $\int_0^1 \sqrt{t^3} \, dt = \int_0^1 (1-t)^0 (t-0)^{\frac{3}{2}} \, dt \to \text{Gauss-Jacobi com } g(t) = 1, \ \alpha = 0 \ \text{e} \ \beta = \frac{3}{2}.$

Nestes casos, como g(t) são funções constantes, o método de Gauss-Jacobi fornece resultados exatos, uma vez que, para r = 1, tem-se que $g^{2r}(t) = g^2(t) = 0$, ou seja, o erro $E_{r,g} = 0$.

Há ainda a questão dos algoritmos para as integrais de intervalo limitado que determinou a elaboração da Tabela 20. A quadratura de Gauss-Jacobi deve ser usada somente nos casos em que $\alpha \neq \beta$, uma vez que as outras quadraturas são elaboradas especificamente para determinados valores de α e β , cujos algoritmos são mais eficientes do que o de Gauss-Jacobi: os algoritmos de funções peso de Chebyshev possuem fórmulas para gerar diretamente os zeros e basicamente efetuam um somatório para a integração (Figuras 14, 15, 24 e 25); os zeros de Gauss-Legendre e Gauss-Gegenbauer, $0 < \mu < 1, \mu \neq \frac{1}{2}$, possuem boas aproximações trigonométricas e o método de Newton é usado somente $\lfloor (r + 1)/2 \rfloor$ vezes (Figuras 9 e 16); os zeros para Gauss-Jacobi são todos refinados através do método de Newton com aproximações iniciais mais grosseiras (Figura 13) e, além disto, as fórmulas deste algoritmo requerem mais adições e multiplicações do que nos outros casos. Concluindo, fica claro que usar Gauss-Jacobi nos casos em que $\alpha = \beta$ seria contraproducente diante das outras quadraturas. O mesmo procede para Gauss-Gegenbauer quando $\alpha = \beta = 0$ ou $\alpha = \beta = \frac{1}{2}$ que seriam os casos das funções pesos de Chebyshev de 1^a espécie e Legendre.

Portanto, para escolher a quadratura mais convergente cujo algoritmo é mais eficiente basta reescrever o integrando na forma w(t)g(t) e, caso necessário, definir os parâmetros $\alpha \in \beta$.

5.7.1 Método mais eficiente para integração numérica

Reunindo as conclusões sobre a quadratura melhor convergente e o respectivo algoritmo mais eficiente com a validação dos algoritmos para x_i e H_i (Seção 5.6), elaborou-se um algoritmo para identificar a quadratura com o respectivo método para cálculo dos zeros e coeficientes da forma mais eficiente, dados a função F(t) = w(t)g(t) e os parâmetros: $c, d, \alpha \in \beta$.

```
1
     se intervalo for [c, d] então
2
        se \alpha = \beta então
3
          se \alpha = 0 então
            quad legendre com zero h legendre
4
5
          senão se \alpha = -0.5 então
6
             quad chebyshev 1 com zero h chebyshev 1
7
          senão se \alpha = 0.5 então
8
             quad chebyshev 2 com zero h chebyshev 2
9
          senão
10
             quad gegenbauer com zero h gegenbauer
11
          fim se
12
        senão
13
          quad jacobi com zero h jacobi
14
        fim se
15
     senão se o intervalo for [c,\infty) então
16
        se c=0 então
17
          quad laguerre gen com matriz laguerre gen
18
        senão
19
          quad laguerre com matriz laguerre
20
        fim se
21
     senão {o intervalo será (-\infty,\infty)}
22
        quad hermite com matriz hermite
23
     fim se
```


5.7.2 Casos especiais de integrando no infinito

Há casos de integrais com intervalos de integração semi-infinito ou duplamente infinito em que o integrando F(t) não tem nada a ver com a função peso, por exemplo:

$$\int_{-\infty}^{\infty} \frac{1}{1+t^2} dt \quad e \quad \int_{1}^{\infty} \frac{\cos(\pi t/2)}{\sqrt{t}} dt.$$

Nestas situações, deve-se usar $g(t) = \frac{F(t)}{w(t)}$, ou seja,

$$g(t) = \frac{e^{t^2}}{(1+t^2)}$$
 e $g(t) = \frac{e^t \cos(\pi t/2)}{\sqrt{t}},$

para ter

$$\int_{-\infty}^{\infty} e^{-t^2} \frac{e^{t^2}}{(1+t^2)} dt \qquad e \qquad \int_{1}^{\infty} e^{-t} \frac{e^t \cos(\pi t/2)}{\sqrt{t}}$$

nas quadraturas de Gauss-Hermite e Gauss-Laguerre, respectivamente. Este tratamento foi realizado, por exemplo, nos experimentos de Gauss-Hermite (Subseção 5.4.5). Entretanto, há ressalvas: o valor de r não pode ser muito alto – os valores dos zeros do

polinômio de Hermite (pertencentes a $(-\infty, \infty)$) crescerão em módulo à medida que raumenta e e^{t^2} tenderá ao infinito rapidamente, levando a falhas nas avaliações de g(t)no somatório. O mesmo tipo de falha ocorrerá em Gauss-Laguerre e Gauss-Laguerre generalizada, pois seus zeros (pertencentes a $(0, \infty)$) farão com que e^t tenda ao infinito. Experimentos executados com integrando deste tipo mostram que há falhas se r for maior que 380 em Gauss-Hermite e for maior que 190 no caso de Gauss-Laguerre. Conclui-se que as integrais de intervalos semi ou duplamente infinito que não apresentam as funções pesos de Hermite e de Laguerre⁴ correm o risco de não serem resolvidas com as respectivas quadraturas de Gauss.

Todavia, é possível evitar tais restrições nestas quadraturas, aproximando a integral dada por uma soma de integrais com limites finitos:

$$\int_0^\infty F(t) \, dt = \int_0^{d_1} F(t) \, dt \, + \, \int_{d_1}^{d_2} F(t) \, dt \, + \, \dots \, + \, \int_{dn-1}^{d_n} F(t) \, dt, \tag{5.10}$$

sendo interrompida na *n*-ésima integral quando esta estiver próxima de zero. Cada uma das integrais é calculada com a quadratura de Gauss de limite [c, d]. Para integrais com limite duplamente infinito:

$$\int_{-\infty}^{\infty} F(t) dt = \int_{-\infty}^{0} F(t) dt + \int_{0}^{\infty} F(t) dt,$$

recaindo no caso anterior da equação (5.10).

A obra de Davis e Rabinowitz (1984) apresenta uma bela explanação sobre aproximações de integrais com intervalo infinito, inclusive mostrando integrais em tais intervalos que podem ser calculadas com uso de integrais com intervalos finitos por meio de mudanças de variáveis.

 $^{^4\}mathrm{O}$ mesmo se dá para vários valores de α em Gauss-Laguerre generalizada.

6 Quadratura iterativa

Este capítulo apresenta a técnica da quadratura iterativa. Trata-se de um esquema de integração iterativo e não adaptativo, proposto por Campos (2007) para a quadratura de Gauss-Legendre. Este método pode ser aplicado com sucesso às outras quadraturas de Gauss, conforme mostram os experimentos realizados.

6.1 Algoritmo gauss iterativo

As Tabelas 27 a 42 da Seção 5.4 mostram que as quadraturas de Gauss tendem a aproximar as integrais com grau crescente de precisão à medida que o número de zeros raumenta. Isto era esperado tendo em vista os teoremas que garantem as convergências (Teoremas 4.4, 4.5, 4.6 e observações). Ilustrando melhor este fato, a Tabela 21 exibe o

erro relativo_i =
$$\frac{|\text{resultado analítico} - integral_i|}{|\text{resultado analítico}|}$$
e a diferença relativa_i =
$$\frac{|integral_i - integral_{i-1}|}{|integral_i|}$$

entre dois resultados consecutivos do experimento (i) da Subseção 5.4.2: $\int_0^{2\pi} t \operatorname{sen}(t) dt$ para $2 \le r \le 14$.

r	integral	erro relativo	diferença relativa
2	-11,061607516437542	1.000×10^{0}	_
3	-5,524853467979552	$1,207 \times 10^{-1}$	$1,002 \times 10^{0}$
4	-6,333516813159698	$8,011 \times 10^{-3}$	$1,277 \times 10^{-1}$
5	-6,281330066094324	$2,953 \times 10^{-4}$	$8,308\times10^{-3}$
6	-6,283228993156375	$6,953 \times 10^{-6}$	$3,022\times 10^{-4}$
7	-6,283184591799723	$1,139 \times 10^{-7}$	$7,067 \times 10^{-6}$
8	-6,283185315806970	$1,373 \times 10^{-9}$	$1,152 \times 10^{-7}$
9	-6,283185307099724	$1,271 \times 10^{-11}$	$1,386 \times 10^{-9}$
10	-6,283185307180163	$9,174 \times 10^{-14}$	$1,280 \times 10^{-11}$
11	-6,283185307179575	$1,838 \times 10^{-15}$	$9,358 \times 10^{-14}$
12	-6,283185307179582	$7,068 \times 10^{-16}$	$1,131 imes 10^{-15}$
13	-6,283185307179578	$1,272 \times 10^{-15}$	$5,654\times10^{-16}$
14	-6,283185307179584	$4,241 \times 10^{-16}$	$8,481 \times 10^{-16}$

Tabela 21: Comparação entre diferença e erro relativos.

Verifica-se pela Tabela 21 que a diferença relativa está bem próxima do erro da iteração anterior, isto é,

diferença relativa_i \approx erro relativo_{i-1}.

Por exemplo, a diferença relativa em r = 4, é de $1,277 \times 10^{-1}$ que é muito próxima do erro relativo em r = 3, dado por $1,207 \times 10^{-1}$. A fim de evidenciar esta aproximação, apresenta-se os gráficos de

 $r \times \log_{10} |\mathrm{erro}\ \mathrm{relativo}|$ e $r \times \log_{10} |\mathrm{diferença}\ \mathrm{relativa}|$

para todos experimentos da Seção 5.4:

Figura 54: Diferença e erro relativos em Gauss-Legendre.

Figura 55: Diferença e erro relativos em Gauss-Laguerre generalizada.

Figura 56: Diferença e erro relativos em Gauss-Lagurre.

Figura 57: Diferença e erro relativos em Gauss-Hermite.

Figura 58: Diferença e erro relativos em Gauss-Jacobi.

Figura 59: Diferença e erro relativos em Gauss-Chebyshev de 1ª espécie.

Figura 60: Diferença e erro relativos em Gauss-Chebyshev de 2^a espécie.

Figura 61: Diferença e erro relativos em Gauss-Gegenbauer.

Além de evidenciarem que a diferença relativa se aproxima do erro relativo anterior, as Figuras 54 a 61 mostram que a partir de um determinado valor de r, o resultado da quadratura *integral* estabiliza em torno na precisão do computador (aproximadamente 10^{-16}). Por exemplo, no caso das duas implementações de Gauss-Legendre (Figura 54), o número r necesário de zeros para esta precisão estava em torno de r = 12 e r = 44. Nota-se também que quando o integrando w(t)g(t) de uma quadratura tornava-se mais oscilatório, o número r para a precisão de 10^{-16} aumentava, como mostram as Figuras 54, 55 e 56. Contudo, uma vez que a diferença relativa entre valores de r consecutivos¹ se aproxima do erro antecessor, nota-se que o mesmo ocorre para valores não consecutivos, como indica a Tabela 22.

r	integral	erro relativo	dif. relativa
3	-5,524853467979552	$1,207\times10^{-1}$	—
5	-6,281330066094324	$2,953\times10^{-4}$	$1,204\times10^{-1}$
8	-6,283185315806970	$1,373\times10^{-9}$	$2,953\times10^{-4}$
13	-6,283185307179578	$1,272 \times 10^{-15}$	$1,373\times10^{-9}$
21	-6,283185307179584	$4,241 \times 10^{-16}$	$8,481 \times 10^{-16}$
34	-6,283185307179582	$7,068 \times 10^{-16}$	$2,827 \times 10^{-16}$
55	-6,283185307179582	$7,068 \times 10^{-16}$	$0,000 imes 10^0$

Tabela 22: Diferença e erro relativos com valores de r não consecutivos.

Mediante todas constatações de que a diferença relativa é um bom estimador para o erro cometido na integração anterior², Campos (2007) apresenta um algoritmo para o cálculo da integral definida de uma função por meio da quadratura de Gauss-Legendre utilizando um esquema iterativo e não-adaptativo aliado à seqüência de Fibonacci:

"Inicialmente, a integral é calculada com n = 8 pontos e depois com n = 13 pontos. Se a diferença relativa entre os dois valores da integral for menor ou igual a uma dada tolerância então o processo termina. Caso contrário, o valor de n é incrementado, seguindo uma série de Fibonacci, e a integral é calculada novamente. O processo repete até que a diferença relativa entre os dois últimos valores da integral seja menor ou igual à tolerância predefinida" ou quando atingir o número máximo de iterações dado.³

Denomina-se por quadratura iterativa a quadratura obtida por meio do processo iterativo apontado acima. Com base no algoritmo citado por Campos, apresenta-se um algoritmo iterativo para todas quadraturas de Gauss. Os parâmetros de entrada da quadratura iterativa são a tolerância toler, o número máximo de iterações itermax, os limites de integração e os parâmetros associados (α , β ou μ) quando necessários. A função g(t)

 $^{{}^{1}}r_{i} = r_{i-1} + 1$

 $^{^2 \}mathrm{Esta}$ estimativa está fundamentada na aproximação em (1.2).

³De acordo com a notação adotada, deve-se entender n pontos por r zeros.

deve ser especificada de acordo com a linguagem de programação escolhida. Os parâmetros de saída são o resultado da quadratura iterativa *integral_iter* e a menor diferença relativa obtida *delta*.

```
Algoritmo gauss iterativo
{Objetivo Integrar F(t) = w(t)g(t) iterativamente por uma das quadraturas de Gauss}
parâmetros de entrada toler e itermax {tolerância e número máximo de iterações}
parâmetros de entrada adicionais c, d, \alpha, \beta ou \mu {parâmetros da quadratura}
parâmetros de saída integral iter e delta
{valor da integral e menor diferença relativa obtida}
início algoritmo
       iter \leftarrow 1; r1 \leftarrow 5; r2 \leftarrow 8
1
\mathbf{2}
       int \leftarrow \mathsf{quadratura} \ \mathsf{de} \ \mathsf{Gauss}(c, d, \alpha, \beta, \mu) \ (\text{Figuras 19 a } 26)
3
       escreva iter, r2, int
4
       repita {sucessivos cálculos das integrais}
           iter \leftarrow iter +1; r \leftarrow r1 + r2;
5
\mathbf{6}
           integral iter \leftarrow quadratura de Gauss(c, d, \alpha, \beta, \mu) (Figuras 19 a 26)
7
           se integral iter \neq 0 então
               delta \leftarrow |(integral \ iter - int)/(integral \ iter)|
8
           senão
9
10
               delta \leftarrow |(integral \ iter - int)|
11
           fim se
12
           escreva iter, r, integral\_iter, delta
13
           se delta \leq toler ou iter = itermax então interrompa
14
           fim se
15
           int \leftarrow integral \quad iter; \ r1 \leftarrow r2; \ r2 \leftarrow r
16
      fim repita
fim algoritmo
```

Figura 62: Algoritmo para quadratura iterativa.

6.2 Programa QUAD ITER

O algoritmo para quadratura iterativa pode ser usado com qualquer algoritmo que forneça um resultado de integração via quadratura de Gauss (linhas 2 e 6 da Figura 62). Denomina-se por QUAD_ITER o programa que calcula a integral por meio da quadratura iterativa usando os algoritmos para integração e os algoritmos para zeros e coeficientes segundo o esquema da Figura 53.

Com o QUAD_ITER são realizados experimentos com integrais cujas soluções são não triviais. As integrais de intervalo finito são:

(i)
$$\int_{0}^{10} e^{-t^{2}} dt$$
, (ii) $\int_{-3}^{4} \frac{(4-t)\operatorname{sen}(e^{2t})}{\sqrt{t+3}} dt$, (iii) $\int_{-2}^{10} \frac{\cos(t^{3})\sin(3t^{2})}{\sqrt{(10-t)(t+2)}} dt$,
(iv) $\int_{0}^{9} \sqrt{(9-t)t} \cos(e^{t}) dt$, (v) $\int_{-1}^{8} \frac{e^{\operatorname{sen}(5t^{2})}}{\sqrt[5]{(8-t)(t+1)}} dt$.

As integrais de intervalo semi-infinito e duplamente infinito são:

(vi)
$$\int_{2}^{\infty} \frac{2e^{-t^2}}{\sqrt{\pi}} dt$$
 (complementar da função Erro (Abramowitz, 1972)),
(vii) $\int_{-\infty}^{\infty} e^{-t^2(t^2+1)} t^4 dt.$

Primeiramente, reescreve-se o integrando na forma w(t)g(t) segundo a Tabela 19 ficando definida quadratura com os respectivos algoritmos por intermédio do esquema na Figura 53.

$$\begin{aligned} \text{(i)} & \int_{0}^{10} (10-t)^{0} (t-0)^{0} e^{-t^{2}} dt & \to \text{ Gauss-Legendre, } g(t) = e^{-t^{2}}, \\ \text{(ii)} & \int_{-3}^{4} (4-t)(t+3)^{-\frac{1}{2}} \operatorname{sen}(e^{2t}) dt & \to \text{ Gauss-Jacobi, } g(t) = \operatorname{sen}(e^{2t}), \ \alpha = 1, \ \beta = -\frac{1}{2}, \\ \text{(iii)} & \int_{-2}^{10} (10-t)^{-\frac{1}{2}} (t+2)^{-\frac{1}{2}} \cos(t^{3}) dt \to \text{ Gauss-Chebyshev de } 1^{a} \operatorname{espécie, } g(t) = \cos(t^{3}), \\ \text{(iv)} & \int_{0}^{9} (9-t)^{\frac{1}{2}} (t-0)^{\frac{1}{2}} \cos(e^{t}) dt \to \text{ Gauss-Chebyshev de } 2^{a} \operatorname{espécie, } g(t) = \cos(e^{t}), \\ \text{(v)} & \int_{-1}^{8} (8-t)^{-\frac{1}{5}} (t+1)^{-\frac{1}{5}} e^{\operatorname{sen}(5t^{2})} dt \to \text{ Gauss-Chebyshev de } 2^{a} \operatorname{espécie, } g(t) = \cos(e^{t}), \\ \text{(v)} & \int_{-1}^{8} (8-t)^{-\frac{1}{5}} (t+1)^{-\frac{1}{5}} e^{\operatorname{sen}(5t^{2})} dt \to \text{ Gauss-Gegenbauer, } g(t) = e^{\operatorname{sen}(5t^{2})}, \ \mu = -\frac{3}{10}, \\ \text{(vi)} & \int_{-\infty}^{\infty} e^{-t^{2}} e^{-t^{2}t} dt \to \text{ Gauss-Laguerre, } g(t) = \frac{2e^{-t^{2}+t}}{\sqrt{\pi}}, \\ \text{(vii)} & \int_{-\infty}^{\infty} e^{-t^{2}} e^{-t^{4}} t^{4} dt \to \text{ Gauss-Hermite, } g(t) = e^{-t^{4}} t^{4}, \end{aligned}$$

Uma vez encontrada a função g(t) e parâmetros de entrada adicionais $(c, d, \alpha, \beta, \mu)$ é realizada a implementação do algoritmo da Figura 62 com os parâmetros *itermax* = 20, $toler = 10^{-10}$ nos experimentos (ii) e (v) e $toler = 10^{-13}$ nos demais. Os parâmetros de saída a cada iteração, juntamente com o gráfico de cada um dos integrandos, estão apresentados nas Figuras 63 a 69.

Figura 64:
$$\int_{-3}^{4} \frac{(4-t)\operatorname{sen}(e^{2t})}{\sqrt{t+3}} dt$$
 via Gauss-Jacobi.

Figura 67: $\int_{-1}^{8} \frac{e^{\operatorname{sen}(5t^2)}}{\sqrt[5]{(8-t)(t+1)}} dt$ via Gauss-Gegenbauer.

6.2.1 Um caso especial

Os resultados da quadratura iterativa *integral_iter*, *delta* e parâmetros de saída a cada iteração devem ser observados em conjunto caso o número máximo de iterações seja atingido com *delta* relativamente grande. Isto ocorrerá sempre que a integral $\int_a^b F(t) dt$ for nula:

$$\int_0^{2\pi} \sin(t) \, dt = \cos(0) - \cos(2\pi) = 0.$$

No presente caso, o programa QUAD_ITER indicaria a quadratura de Gauss-Legendre com $g(t) = \cos(t), c = 0, d = 2\pi$ e os parâmetros de saída com $toler = 10^{-13}$ e itermax = 8 seriam:

Figura 70: Integral nula via QUAD_ITER.

Numa primeira análise, o parâmetro *delta* mostraria que o resultado não tem uma boa margem de confiança. Contudo, observando as iterações sucessivas vê-se claramente que a integral converge para zero. Portanto, caso delta seja insignificante, até para valores grandes de r, é necessário fazer uma análise conjunta dos resultados para verificar se é o caso da integral nula. Caso a $integral_iter$ não convirja, pode ser que a quadratura necessite de um número maior para r e então, itermax deverá ser aumentado. Por outro lado, se a integral for de limites infinitos, é possível que a quadratura não convirja e, nesse caso, devem ser verificados os Teoremas 4.5 e 4.6 sobre convergência.

7 Conclusões gerais e futuros trabalhos

Este trabalho foi dividido em duas partes distintas: a primeira é teórica e dedicada aos polinômios ortogonais e à quadratura de Gauss. A segunda diz respeito ao emprego desta teoria na elaboração de algoritmos para integração numérica. Nela discutiu-se também a eficácia de diferentes algoritmos e apresentou-se um esquema de integração iterativo e não-adaptativo denominado por quadratura iterativa.

No presente capítulo apresentam-se as conclusões, contribuições e propostas para futuros trabalhos.

7.1 Contribuição da quadratura iterativa

A derivada de alta ordem presente nas fórmulas de erro das quadraturas de Gauss tornam estas fórmulas um parâmetro de precisão de pouca utilidade. Por exemplo, ao estimar o erro na aproximação de $\int_{-1}^{1} \frac{t \cos(3t)}{\sqrt{1-t^2}} dt \operatorname{com} r = 5$ zeros via Gauss-Chebyshev de 1^a espécie pela sua fórmula de erro

$$E_{r,g} = \frac{2\pi}{2^{10}(10)!} \frac{d^{10}}{dt^{10}} \{ t \cos(3t) \}, \qquad t \in (-1,1),$$

o cálculo da derivada poderia ser mais trabalhoso do que a própria aproximação. Por outro lado, sabendo que a quadratura de Gauss converge, tem-se que quanto maior for o número r de zeros, melhor será a precisão do resultado. Mas quantos zeros são necessários para a precisão requerida? No caso dos experimentos de Gauss-Legendre, o número de zeros necessário para se ter uma precisão com aproximadamente 15 dígitos estava em torno de 12 e 44, respectivamente (Figura 54). Em outros experimentos, também com precisão de 15 dígitos, o valor de r necessário foi mais alto, por volta de 100, para Gauss-Hermite (Figura 57). E além disso, para integrandos mais oscilatórios, o número r aumentava consideravelmente (Figuras 64 a 67). Por isto, um algoritmo que calcula uma integral via quadratura de Gauss, desprovido de um bom estimador para o erro cometido, fornece um resultado que nem sempre pode ser confiável na medida do esperado. Todavia, existem problemas de cálculos de integrais que não necessitam de uma precisão tão alta, demandando um valor mais baixo para r, o que implica em um tempo menor de execução. Portanto, o valor ideal para o número r deve ser o menor possível capaz de atender à precisão requerida.

A quadratura iterativa é um esquema iterativo e não-adaptativo que calcula a integral seguindo a seqüência de Fibonacci até que a diferença relativa entre os dois últimos valores da integral seja menor ou igual a uma tolerância predefinida ou quando atingir o número máximo de iterações. Este esquema iterativo objetiva fornecer um resultado mais concreto quando comparado com o método original que, por sua vez, fornece um resultado apenas com o parâmetro $E_{r,g}$ para a precisão. Em Campos (2007) este esquema iterativo foi usado para a quadratura de Gauss-Legendre e este trabalho aplicou com êxito este esquema para todas as outras quadraturas de Gauss de medidas clássicas.

Desde que a quadratura convirja, este esquema iterativo também poderá ser usado especialmente naquelas quadraturas de alta convergência, em outras palavras, nas quadraturas de com grau máximo de precisão. A quadratura iterativa também pode ser usada no cálculo das integrais múltiplas.

7.2 Contribuições práticas deste trabalho

Duas contribuições práticas deste trabalho podem ser destacadas. A primeira é relacionada ao trabalho de Da Costa (1998). A segunda concretizou-se na criação do software QUAD_ITER escrito em MATLAB.

O sistema INTEGRE elaborado por Da Costa (1998) é uma poderesa ferramenta usada na decisão da escolha do(s) algoritmo(s) para uma dada função integrando, sendo esta escolha baseada nas informações coletadas no processo de análise dessa função. Nele é possível calcular integrais mais complexas e que usualmente não seriam resolvidas pelos métodos de Gauss com medidas w(t) clássicas. Este sistema utiliza os algoritmos NR12, NR13 e NR14 (Press *et al*, 1997) para o cálculo de x_i e H_i para as quadraturas de Gauss-Laguerre generalizada, Gauss-Hermite e Gauss-Jacobi, respectivamente. Tais algoritmos também usam o método de Newton como os que foram apresentados: **zero_h_laguerre_gen**, **zero_h_hermite** e **zero_h_jacobi** e não diferem muito destes. Como foi mostrado, os dois primeiros são impraticáveis para valores grandes de r (Seção 5.6) e os algoritmos NR12 e NR13 também apresentam um número máximo de iterações. Portanto, assim como **zero_h_laguerre_gen** e **zero_h_hermite**, os algoritmos NR12 e NR13 deveriam ser preteridos por **matriz_laguerre_gen** e **matriz_hermite**. A opção por NR14, só deveria ser feita caso $\alpha \neq \beta$. Portanto, a título de sugestão, poder-se-ia acoplar ao INTEGRE a rotina da Figura 53 com os respectivos algoritmos, que identificaria o método mais adequado para a determinação dos zeros e coeficientes.

Reunindo o presente estudo sobre as quadraturas de Gauss com a quadratura iterativa, elaborou-se um software, denominado QUAD_ITER em MATLAB para calcular uma integral F(t) em um intervalo finito [c, d], semi-infinito $[c, \infty)$ ou duplamente infinito $(-\infty, \infty)$. O QUAD_ITER calcula diversos tipos de integrais, inclusive integrais sem antiderivada explícita e integrais impróprias. Ele poderá atuar como subrotina em outros programas que necessitem do cálculo de integrais. Alternativamente, este software também pode ser usado com fins educacionais na disciplina Cálculo Numérico.

7.3 Zeros e coeficientes da quadratura de Gauss

Primeiramente, ressalta-se que o estudo levantado sobre as propriedades dos polinômios ortogonais contribuiu efetivamente para elaboração dos algoritmos, principalmente para os zeros e coeficientes.

O cálculo dos zeros e coeficientes pela matriz de Jacobi, embora seja correntemente usuado e mais elegante (Gautschi, 2003 e Gautschi, 1994), é computacionalmente mais caro do que os outros métodos apresentados (Figuras 9 a 16) que se mostraram muito mais velozes. Além disto, o método que usa a matriz de Jacobi não é, definitivamente, o mais preciso. Em casos especiais, como Gauss-Legendre, há meios mais precisos e mais eficientes, como mostra Swarztrauber (2002) ao comparar o método da matriz de Jacobi com outros dois métodos. Por outro lado, dentre os algoritmos apresentados, a matriz de Jacobi mostrou-se mais vantajosa nos casos das quadraturas de Gauss-Laguerre, Gauss-Laguerre generalizada e Gauss-Hermite porque os outros algoritmos falham a partir de um determinado valor de r.

Portanto, dentre os algoritmos para o cálculo dos zeros e coeficientes apresentados neste trabalho, é aconselhável utilizá-los segundo o esquema da Figura 53 que indica o uso da matriz de Jacobi apenas nos casos de Gauss-Laguerre, Gauss-Laguerre generalizada e Gauss-Hermite. Finalmente, a localização destes zeros sobre o eixo real não diz respeito somente às quadraturas, eles possuem outros empregos tais como aplicações na eletrostática, na análise de freqüência etc. (Bracciali e Andrade, 2006).

7.4 Comparações entre quadraturas

As fórmulas de erro da quadratura de Newton-Cotes fechada com r + 1 pontos para a integral $\int_{c}^{d} g(t) dt$, sendo g(t) contínua em [c, d], são do tipo (Isaacson e Keller, 1966):

$$E_{r+1} = \frac{h^{r+3}g^{(r+2)}(\xi)}{(r+2)!} \int_0^r s^2(s-1)\dots(s-r)\,ds, \quad \text{se } r \text{ for par, ou}$$
$$E_{r+1} = \frac{h^{r+2}g^{(r+1)}(\xi)}{(r+1)!} \int_0^r s(s-1)\dots(s-r)\,ds, \quad \text{se } r \text{ for impar, com } h = \frac{d-c}{r},$$

cujo grau de precisão pode ser no máximo r + 1, assim como as fórmulas abertas com r + 1 pontos. As fórmulas compostas de Newton-Cotes basicamente subdividem o intervalo de integração aplicando o método em cada subintervalo separadamente com o intuito de minimizar o erro. Apesar disto, o erro das fórmulas compostas também possuem grau, no máximo, r + 1. Com isto, espera-se que as quadraturas de Gauss sejam mais eficientes, pois com r + 1 pontos elas terão grau 2r + 1. As quadraturas de Gauss que se ajustam ao integrando de Newton-Cotes são as que têm medida de Jacobi com $\alpha, \beta \geq 0$. A fim de comparar graficamente a eficiência entre a regra do 1/3 de Simpson composta e Gauss-Legendre usando o mesmo número de pontos, apresenta-se o gráfico de $r \times \log_{10} \left(\frac{|método - exato|}{|exato|} \right)$, sendo método o resultado gerado pela regra e exato o resultado gerado por meio do programa QUAD_ITER com toler = 10^{-15} . As integrais são aquelas dos experimentos da Subseção 5.4.2: $\int_{0}^{2\pi} t \operatorname{sen}(t) dt = \int_{0}^{2\pi} t \operatorname{sen}(15t) dt$.

Figura 71: 1/3 de Simpson composta × Gauss-Legendre.

Como era esperado, é evidente a superioridade do método de Gauss-Legendre que apresenta resultados que se estabilizam em torno da precisão do computador próximos a r = 12 e r = 44, enquanto que, a regra de Simpson está longe de fornecer um resultado aceitável com r = 100. Existem diversas técnicas que buscam aperfeiçoar as fórmulas de Newton-Cotes. Todavia, nem tais métodos conseguem superar os de alta ordem de Gauss (Dehghan, Masjed-Jamei e Eslanchi, 2006). Conclui-se, assim como já indicado por Campos (1999), que é muito questionável o fato do método de Gauss ser freqüentemente preterido pelas regras de Newton-Cotes. Agora, apresenta-se um gráfico como o anterior na Figura 72 (a), desta vez, comparando também com a quadratura de Gauss-Chebyshev de $2^{\rm a}$ espécie para a integral $\int_{0}^{10} \sqrt{(10-t)t} \operatorname{sen}(t) dt$.

Figura 72: Comparações entre convergências.

Novamente a regra de Newton-Cotes encontra-se muito aquém e é notável a supremacia de Gauss-Chebyshev sobre Gauss-Legendre para este integrando. Este exemplo reforça a metodologia da escolha da quadratura mais convergente apresentada na Seção 5.7 que indicaria Gauss-Chebyshev de 2^a espécie para esta integral. Veja a mesma diferença no caso de Gauss-Laguerre e Gauss-Laguerre generalizada, para $\int_0^{\infty} t^{\frac{1}{2}} e^{-t} \operatorname{sen}(t) dt$, na Figura 72 (b), onde a quadratura recomendada seria Gauss-Laguerre generalizada.

7.5 Trabalhos futuros

A proposição de Gauss sobre uma fórmula de quadratura com grau máximo de precisão surgiu no início do século XIX. Quando Kronrod, em 1965, tentava estimar o erro da quadratura de Gauss, acabou deparando-se com um método que aumentava o grau de precisão para 3r - 1. A idéia por trás deste método consiste basicamente em usar as rabscissas da quadratura de Gauss e, adicionalmente, r + 1 novos pontos. O método de Gauss-Kronrod pode ser usado em algumas quadraturas de Gauss de intervalos finitos. A fórmula de Gauss-Kronrod para as quadraturas de Chebyshev de 1^a e 2^a espécies atinge grau de precisão 4r - 1. Existem ainda outros métodos mais sofisticados com base nas quadraturas de Gauss: Gauss-Lobatto, Gauss-Radau e Gauss-Turán (Gautschi, 2003). Esta última quadratura leva em conta as derivadas de várias ordens da função integrando. Gauss-Lobatto e Gauss-Radau usam os extremos do intervalo como pontos extras no somatório da quadratura, maximizando o grau de exatidão. Há também as quadraturas de Gauss com base nos polinômios ortogonais de medidas não-clássicas, uma delas é a de medida $w(x) = \log(x)$ que resolve integrais com singularidade logarítmica.

Os polinômios de Chebyshev de 3ª e 4ª espécies (Gautschi, 2003) têm medidas

$$w(x) = \frac{\sqrt{1+x}}{\sqrt{1-x}}$$
 e $w(x) = \frac{\sqrt{1-x}}{\sqrt{1+x}},$

respectivamente, sobre o intervalo [-1, 1]. Estas medidas w(x) são casos particulares da função peso de Jacobi quando $\alpha = -\beta = \pm \frac{1}{2}$. Um estudo semelhante ao apresentado neste trabalho poderia ser feito sobre estes dois polinômios buscando elaborar algoritmos mais eficientes do que o da quadratura de Gauss-Jacobi com tais valores de $\alpha \in \beta$. O mesmo procederia para os polinômios de Hermite generalizados de medida $w(x) = |x|^{2\mu} e^{-x^2}$, com $\mu > -\frac{1}{2}$ sobre o intervalo $(-\infty, \infty)$.

Nos experimentos da quadratura iterativa foram apresentados quatro casos de integrandos fortemente oscilatórios cujas integrais foram resolvidas com sucesso. Entretanto, as integrais com função peso oscilatória possuem métodos específicos de resolução (Hildebrand, 1974). Por outro lado, o método de Gauss iterativo foi útil para integrandos muito oscilatórios que inclusive apresentavam singularidades nos extremos. Nestes casos, seria curioso confrontar a eficiência do método iterativo em relação a um método cuja função peso é oscilatória.

As quadraturas de Gauss também são utilizadas para o cálculo de integrais múltiplas (Stroud, 1971) e propõe-se investigar a utilidade da quadratura iterativa nestas integrais.

É importante ressaltar que, tal como a quadratura iterativa apresentada, existem muitos outros métodos que estimam o erro cometido numa quadratura de Gauss que também são baseados em esquemas de integração iterativos. Por exemplo, a obra de Davis e Rabinowitz aponta um esquema iterativo e não-adaptativo baseado em Gauss-Kronrod, um esquema não-iterativo e adaptativo sobre a regra do ponto médio, um esquema iterativo e adaptativo sobre a regra de Simpson, dentre outros adaptativos. A biblioteca IMSL (International Mathematical and Statistical Libraries) contém a função QDAG que é um esquema de integração não-iterativo e adaptativo baseado na regra de 21 pontos de Gauss-Kronrod (21 = 10 zeros + 11 pontos adicionais) que compara com a quadratura de Gauss clássica com os 10 zeros para estimar o erro. A vantagem em se utilizar os 10 zeros em cada fórmula decorre do fato de que a função necessita ser avaliada em apenas 21 pontos, enquanto que, se a quadratura de Gauss clássica fosse utilizada em 10 e depois em 21 zeros, somar-se-iam 31 avaliações da função. A biblioteca NAG (Numerical Algorithms Group) inclui a sub-rotina D01AHF que é um esquema adaptativo usando 1,3,5,7,15,31,63,127 e 255 zeros sobre as quadraturas de Gauss, esta regra é devida a Patterson¹ (Burden e Faires, 2003).

Concluindo, existe um vasto campo de estudos sobre as quadraturas de Gauss. Uma proposta para futuros trabalhos é pesquisar métodos mais robustos que vêm sendo elaborados sobre as quadraturas de Gauss a fim de identificar qual deles é o mais eficiente para uma dada integração aliando isto aos esquemas de integração iterativos. Propõe-se confrontar a eficiência da quadratura iterativa com outros esquemas de integração. Também seria interessante usar o esquema iterativo proposto por Campos (2007) de forma adaptativa, por exemplo, aplicando este esquema separadamente nos subintervalos de integração. Outra proposta seria aprofundar o estudo levantado sobre os polinômios ortogonais que foi iniciado neste trabalho. Os polinômios ortogonais são ferramentas essenciais para solução de muitos problemas e vêm contribuindo nos estudos relacionados a equações diferenciais, frações contínuas, estabilidade numérica, algoritmos rápidos e super-rápidos, com aplicações que abrangem da Teoria dos Números à Teoria da Aproximação, da Combinatória à Representação de Grupos, da Mecância Quântica à Física Estatística e da Teoria de Sistemas ao Processamento de Sinais (Bracciali e Andrade, 2006).

¹Patterson, T.N.L. The optimum addition of points to quadrature formulae. Mathematics of Computation **22**, 104 (1968).

Referências

Abramowitz, M. e Stegun, I.A. *Handbook of Mathematical Functions*. Dover, New York, 1972.

Askey, R. Orthogonal Polynomials and Special Functions. Society for Industrial and Applied Mathematics, Philadelphia, 1975.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A. e Sorensen, D. *LAPACK Users' Guide.* 3^a ed. SIAM, Philadelphia, 1999.

Andrade, E.X.L., Bracciali, C.F. *Frações Contínuas: propriedades e aplicações.* ed SBMAC, São Carlos, 2005.

Berntsein, J. e Espelid, T.O. Error estimation in automatic quadrature routines, ACM Trans. Math. Softw. Vol 17 N° 2 (1991), 233-252.

Bracciali, C.F. e Andrade, E.X.L. Zeros de Polinômios Ortogonais: Interpretação Eletrostática e Análise de Freqüências, publicação da III Bienal da Sociedade Brasileira de Matemática, UFG, 2006.

Burden, R.L. e Faires, J.D. Análise Numérica. Thomson, São Paulo, 2003.

Campos, F.F. Algoritmos Numéricos. 2ª ed. LTC, Rio de Janeiro, 2007.

Campos, F.F. Introdução ao Matlab, apostila DCC-UFMG, 2000.

Campos, F.F. Por que não integração numérica via Gauss-Legendre?. V Encontro Regional de Matemática Aplicada e Computacional, 1999, Belo Horizonte. Anais do V Encontro Regional de MAC, 1999.

Da Costa Jr., A.E. Integre – Um sistema acoplado para o cálculo de integrais com análise de funções numéricas. Dissertação de Mestrado, UNIVERSIDADE FEDERAL DO CEARÁ, 1998.

Davis, P.J. e Rabinowitz, P. Methods of Numerical Integration. 2. ed. Orlando, San Diego, 1984.

Dehghan, M., Masjed-Jamei, M. e Eslahchi, M.R. On numerical improvement of open Newton-Cotes quadrature rules, *Applied Mathematics and Computation* 175 (2006), 618-627.

Dehghan, M., Masjed-Jamei, M. e Eslahchi, M.R. The semi-open Newton-Cotes quadrature rule and its numerical improvement, *Applied Mathematics and Computation* 171 (2005), 1129-1140.

Eves, H. Introdução à História da Matemática. Unicamp, Campinas, 2004.

Gautschi, W. Algorithm 726: ORTHPOL – A Package of Routines for Generating Orthogonal Polynomials and Gauss-Type Quadrature Rules. ACM Transactions on Mathematical Software Vol 20 N° 1 (1994), 21-62.

Gautschi, W. Orthogonal Polynomials: Computation and Approximation. 1^a ed. Oxford University Press, 2003.

Golub, G.H. e Welsch, J.H. Calculation of Gauss Quadrature Rules. Stanford University, Technical Report 81 (1967).

Hildebrand, F.B. Introduction to Numerical Analysis. 2^a ed. McGraw-Hill, New York, 1974.

Isaacson, E. e Keller, H.B. Analysis of Numerical Methods. John Wiley and Sons, New York, 1966.

Jackson, D. Fourier Series and Orthogonal Polynomials. The Mathematical Association of America, Washington, 1941.

Krylov, V.I. Approximate Calculation of Integrals. MacMillian, New York, 1962.

Kythe, P.K. e Schäferkotter, M.R. Computational Methods for Integration. Chapman & Hall/CRC, Florida, 2005.

Leithold, L. *O Cálculo com Geometria Analítica Vol. 1 e 2*. 3^a ed. Harbra, São Paulo, 1994.

Press, W.H., Teulosky, S.A., Vetterling, W.T. e Flannery, B.P. *Numerical Recipes.* 2^a ed. Cambridge University Press, 1997.

Ralston, A. e Rabinowitz, P. A First Course in Numerical Analysis. 2^a ed. Dover, New York, 1978.

Stroud, A.H. Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs, 1971.

Swarztrauber, P.N., On computing the points and weights for Gauss-Legendre quadratures. *SIAM J. Sci. Comput.* 24(3) (2002), 945-954.

Szegö, G. Orthogonal Polynomials. 4^a ed. American Mathematical Society Colloquium Publications, Vol. 23, Providence, RI, 1975.

Wilf, H.S. *Mathematics for the Physical Sciences*. Dover Publications, Inc., New York, 1978.

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo