
FRANCISCA REGINA RODRIGUES NETO

ORIENTAÇÃO DE CULTURAS APTAS ÀS CONDIÇÕES DO ESTADO DO PIAUÍ, SEGUNDO AS DISTRIBUIÇÕES ESPACIAL E TEMPORAL DA CHUVA

Tese Apresentada à Universidade Federal de Viçosa, como Parte das Exigências do Curso de Meteorologia Agrícola, para Obtenção do Título de "Magister Scientiae".

VIÇOSA

MINAS GERAIS - BRASIL

JULHO - 1991

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Ficha catalográfica preparada pela Área de Catalogação e Classificação da Biblioteca Central da UFV

 \mathbf{T}

Rodrigues Neto, Francisca Regina.

R6960 1991 Orientação de culturas aptas as condições do Estado do Piauí, segundo as distribuições espacial e temporal da chuva. Viçosa, UFV, 1991. 48p. ilust.

Tese (M.S.) - UFV

1. Precipitação (Meteorologia) - Piauí. 2. Chuva - Níveis de probabilidade. 3. Culturas agrícolas - Aspectos meteorológicos - Piauí. I. Universidade Federal de Viçosa. II. Título.

CDD 18.ed. 551.577 CDD 19.ed. 551.577

FRANCISCA REGINA RODRIGUES NETO

ORIENTAÇÃO DE CULTURAS APTAS ÀS CONDIÇÕES DO ESTADO DO PIAUÍ, SEGUNDO AS DISTRIBUIÇÕES ESPACIAL E TEMPORAL DA CHUVA

Tese Apresentada à Universidade Federal de Viçosa, como Parte das Exigências do Curso de Meteorología Agricola, para Obtenção do Título de "Magister Scientiae".

APROVADA: 3 de maio de 1991.

Prof. Dirceu Teixeira Coelho (Conselheiro)

Prof. Helio Alves Vieira

Prof. Rubens Leite Vianello

(Orientador)

A Deus;

Aos meus país, Antonio e Itelvina; Aos meus irmaõs;

> Aos meus avós: João e Ana (in memoriam), Caetano e Raimunda,

> > Dedico.

BIOGRAFIA

FRANCISCA REGINA RODRIGUES NETO, filha de Antonio Bernardo Neto e Itelvina Rodrigues de Santana Neto, nasceu em Floriano, Piauí, em 08 de março de 1960.

Em julho de 1985, licenciou-se em Geografia pela Universidade Federal do Piauí.

Em março de 1986, ingressou~se na Fundação Centro de Pesquisas Econômicas e Sociais do Piauí.

No primeiro semestre de 1988, iniciou o curso de Mestrado em Meteorologia Agrícola, na Universidade Federal de Viçosa.

AGRADECIMENTO

À Universidade Federal de Viçosa, por intermédio do Departamento de Engenharia Agrícola, pela minha inclusão em seu programa de Pós-graduação.

Ao PROINE/CNPq, pela concessão de ajuda financeira.

À Secretaria de Planejamento do Estado do Piauí-Fundação Centro de Pesquisas Econômicas e Sociais do Piauí, pela oportunidade concedida para a realização do Curso.

Ao Professor Rubens Leite Vianello, a minha gratidão e reconhecimento pela orientação dada, ensinamentos transmitidos e pelo incentivo dado, para conclusão deste trabalho.

Aos Professores Conselheiros, Gilberto Chohaku Sediyama e Dirceu Teixeira Coelho, pela constante dedicação e pelas sugestões apresentadas.

Aos professores Adil Rainier Alves, Hélio Alves
Vieira e José Maria Nogueira da Costa, pelos ensinamentos e
amizade.

Aos Professores Mário Adelmo Varejão Silva e José Swami Pais de Melo, pela ajuda na obtenção dos dados junto à SUDENE.

Aos Professores Celia Campos Braga e Milcíades Gadelha de Lima pelo incentivo e amizade.

Aos senhores José Francisco Rufino, José Wilson, Pedro Marwell, pela aquisição de dados junto à COMDEPI.

Aos amigos Francisco Ataíde Coelho, Heluzimar Carvalho de Araújo, Sebastião Oliveira Costa, Sônia Maria Fernandes e Maria Margarida Fonteles, pelo estímulo e amizade.

Aos amigos Atílio Aléssio, Isabel Maria de Andrade, Júlio Lucatto Junior, Renato Skaf dos Santos, pela convivência diária e amizade.

Ao estudante Jarbas Peixoto Junior, pela colaboração na fase de processamento dos dados.

As demais pessoas que, direta ou indiretamente, contribuíram para que os objetivos deste estudo fossem atingidos.

CONTEÚDO

	Página
LISTA DE QUADROS	. viii
LISTA DE FIGURAS	. >
EXTRATO	. xii
1. INTRODUÇÃO	. 1
2. REVISÃO DE LITERATURA	. 3
3. MATERIAL E MÉTODO	. 9
3.1. Classificação dos Anos, Segundo o Regime Pluviométrico Observado	
3.2. Critérios de Enquadramento das Culturas ao Regime Pluviométrico	
3.3. Probabilidade dos Totais Trimestrais e Semes- trais de Precipitação	
3.4. Traçado dos Campos de Precipitação e Exigên- cias de Irrigação	

		Pagina
4.	RESULTADOS E DISCUSSÃO	16
	4.1. Trimestres mais Chuvosos	. 22
	4.2. Semestres mais Chuvosos	. 29
	4.3. Aptidão Agrícola	. 35
5.	RESUMO E CONCLUSÕES	. 43
BII	BLIOGRAFIA	. 45

LISTA DE QUADROS

QUADRO		Págin
1,	Identificação dos Postos Meteorológicos	10
2	Demanda de Água para Algumas Culturas no Estado do Piauí (Uso Consuntivo). Unidade: Altura da Lâmina d'água em mm	L
3	Valores de Precipitação Dependente (mm), no Trimestre mais Chuvoso, para Diferentes Níveis de Probabilidade, Calculados Segundo a Distribuição Gama Incompleta, a Partir de Dados Observados, Incluindo-se Alguns Postos dos Estados Limítrofes ao Piauí	; i ;
4	Valores de Precipitação Dependente (mm), no Semestre mais Chuvoso, para Diferentes Níveis de Probabilidade, Calculados Segundo a Distribuição Gama Incompleta, a Partir de Dados Observados, Incluindo-se Alguns Postos dos Estados Limítrofes ao Piauí	;), ;
5	Número de Anos Otimistas, Normais e Pessimistas em Relação ao Trimestre e Semestre mais Chuvosos, Segundo a Distribuição Gama Incompleta	5 1

6	Valores de Precipitação Dependente (mm), ao Nível de 75% de Probabilidade, Calculada	
	Segundo a Distribuição Gama Incompleta, a	
	Partir de Dados Observados, Referentes aos	
	Trimestres mais Chuvosos, Incluindo-se Alguns	
	Postos dos Estados Limítrofes ao Piauí	20
7	Valores de Precipitação Dependente (mm), ao	
	Nível de 75% de Probabilidade, Calculada	
	Segundo a Distribuição Gama Incompleta, a	
	Partir de Dados Observados, Referentes aos	
	Semestres mais Chuvosos, Incluindo-se Alguns	
	Postos dos Estados Limítrofes ao Piauí	21
	TOSCOS COS ESCACOS CIMILITOTES AO TIAGI	L 1
8	Classificação Mensal da Demanda de Água, para	
U	as Culturas de Feijão e de Milho, ao Nível de	
	75% de Probabilidade, Referente ao Trimestre	
	mais Chuvoso	22
	mais thuvoso	EJ
9	Classificação Mensal da Demanda de Água, para	
,	as Culturas de Feijão e de Milho, ao Nível de	
	75% de Probabilidade, Referente ao Semestre	
	mais Chuvoso	24
	mais chuvoso	- 4
10	Classificação Mensal da Demanda de Água, para a	
10	ALC HE COUNTY THE	
	Cultura de Arroz, ao nível de 75% de	
	Pobabilidade, Referente ao Trimestre mais	
	Chuvoso	25
11	Classificação Mensal da Demanda de Água, para a	
	Cultura de Arroz, ao Nível de 75% de	
	Probabilidade, Referente ao Semestre mais	
		26
	Chuvoso	_0

LISTA DE FIGURAS

Página

FIGURA

1	Campo de Altura de Precipitação Dependente (mm), no Trimestre mais Chuvoso, ao Nível de 25% de Probabilidade, Baseado em Dados Observados e Ajustados, Segundo a Distribuição Gama Incompleta, para o Estado do Piauí	27
2	Campo de Altura de Precipitação Dependente (mm), no Trimestre mais Chuvoso, ao Nível de 50% de Probabilidade, Baseado em Dados Observados e Ajustados, Segundo a Distribuição Gama Incompleta, para o Estado do Piauí	
3	Campo de Altura de Precipiatação Dependente (mm), no Trimestre mais Chuvoso, ao Nível de 75% de Probabilidade, Baseado em Dados Observados e Ajustados, Segundo a Distribuição Gama Incompleta, para o Estado do Piauí	30
4	Campo das Precipitações Médias (mm), dos Trimestres mais Chuvosos, para o Estado do Piauí, Baseado em Dados Observados nos Locais Indicados	31
5	Campo de Altura de Precipitação Dependente (mm), no Semestre mais Chuvoso, ao Nível de 75% de Probabilidade, Baseado em Dados Observados e Ajustados, Segundo a Distribuição Gama Incompleta, para o Estado do Piauí	38

6	campo de Altura de Precipiatação Dependente (mm), no Semestre mas Chuvoso, ao Nível de 50% de Probabilidade, Baseado em Dados Observados e Ajustados, Segundo a Distribuição Gama Incompleta, para o Estado do Piauí	33
7	Campo de Altura de Precipitacao Dependente (mm) no Semestre mais Chuvoso, ao Nível de 25% de Probabilidade, Baseado em Dados Observados e Ajustados, Segundo a Distribuição Gama Incompleta, para o Estado do Piauí	34
8	Campo das Precipitações Médias (mm), nos Semestres mais Chuvosos, para o Estado do Piauí, Baseado em Dados Observados nos Locais Indicados	36
9	Classificação Mensal da Demanda de Água para a Cultura do Arroz, de Acordo com o Trimestre mais Chuvoso, ao Nível de 75% de Probabilidade, Calculado Segundo a Distribuição Gama Incompleta, a partir de Dados Observados, Incluindo-se os Postos Limítrofes ao Estado do Piauí	3 <i>7</i>
10	Classificação Mensal da Demanda de Água para a Cultura do Arroz, de Acordo com o Semestre mais Chuvoso, ao Nível de 75% de Probabilidade, Calculado Segundo a Distribuição Gama Incompleta, a Partir de Dados Observados, Incluindo-se os Postos Limítrofes ao Estado do Piauí	38
11	Classificação Mensal da Demanda de Água para a Cultura de Feijão e de Milho, de Acordo com o Trimestre mais Chuvoso, ao Nível de 75% de Probabilidade, Calculado Segundo a Distribuição Gama Incompleta, a Partir de Dados Observados, Incluindo-se os Postos Limítrofes ao Estado do Piauí	40
12	Classificação Mensal da Demanda de Água para a Cultura de Feijão e de Milho, de Acordo com o Semestre mais Chuvoso, ao Nível de 75% de Probabilidade, Calculado Segundo a Distribuição Gama Incompleta, a Partir de Dados Observados, Incluindo-se os Postos Limítrofes ao Estado do Piauí	41

EXTRATO

RODRIGUES NETO, Francisca Regina, M.S., Universidade Federal de Viçosa, julho de 1991. <u>Orientação de Culturas Aptas às Condições do Estado do Piauí, Segundo as Distribuições Espacial e Temporal da Chuva</u>. Professor Orientador: Rubens Leite Vianello. Professores Conselheiros: Dirceu Teixeira Coelho e Gilberto Chohaku Sediyama.

O presente trabalho é um estudo de orientação de culturas, aptas às condições do Estado do Piauí, baseado em análise de séries pluviais. Foram selecionadas 49 localidades, constantes do acervo pluviométrico disponível para o Estado do Piauí e Estados limítrofes, correspondentes a postos pluviométricos.

Os dados mensais de precipitação pluvial foram ajustados à distribuição gama incompleta, com os parâmetros α e β , estimados pelo método de máxima verossimilhança. Utilizou-se o teste de Kolmogorov-Smirnov para verificar a eficiência do ajustamento proposto e a aproximação de

Newton-Raphson para a solução da função de distribuição gama.

Adotaram-se critérios relacionados com os trimestres e semestres mais chuvosos, correspondentes a níveis de precipitação dependentes de 75, 50 e 25%, de probabilidade, com o objetivo de classificar os anos, segundo o regime pluviométrico observado. Levando-se em consideração a demanda de água das culturas (uso consuntivo), foram utilizados os seguintes critérios para classificar as localidades, quanto à aptidão agrícola: aptas, parcialmente aptas e inaptas.

Os resultados obtidos permitirão aos administradores tomar decisões quanto ao plantio de culturas agrícolas em diferentes localidades do Estado, bem como da necessidade ou não de irrigação suplementar ou total.

1. INTRODUÇÃO

O Estado do Piauí está situado entre 2° 44' e 10° 53' de latitudes Sul e entre 40° 29' e 46° 00' de longitude ocidental, ocupando 250.934 km² (16,20%) dos 1.548.672 km² que constituem o nordeste brasileiro.

Em função das precipitações e das temperaturas, o Estado conta com dois tipos de clima bem definidos (classificação climática de Köppen): quente e úmido (AW), com chuvas de novembro a maio e temperaturas mais elevadas de agosto a setembro, predominante ao norte, nordeste e oeste do Estado; quente e semi-árido (Bsh), com precipitações inferiores a 750 mm, predominantemente no sudeste do Estado.

O Estado tem na agricultura a sua maior fonte de renda interna, da qual as principais culturas são: arroz, feijão, milho e mandioca. A agricultura, apesar de tão importante para o Estado, é baseada no sistema de subsistência e praticada com baixo nível de tecnologia.

Por serem as lavouras piauienses praticamente desprovidas de recursos de irrigação, são marcantemente dependentes da água das chuvas. Dessa forma, a atividade agrícola nesse Estado, bem como em quase todo o nordeste brasileiro, tem sido prejudicada pela má distribuição das chuvas, principalmente no caso das culturas pouco resistentes à seca e das culturas de ciclos mais longos, mais expostas às irregularidades climáticas. Portanto, a altura das chuvas e suas variações ao longo do tempo e do espaço são os principais fatores limitantes da produção e da produtividade agrícola na região. Considerando esta relação de dependência, este trabalho objetivou o estudo da distribuição pluviométrica ao longo do tempo e do espaço, bem como a representação de seus valores observados por meio de um modelo probabilístico que, combinado com o uso consuntivo de água pelas culturas, permitiu identificar condições favoráveis ou desfavoráveis, em cada local, para o Estado do Piauí, para a prática das culturas mais importantes, contribuindo assim para a organização racionalização agrícola no Estado, no que tange interdependência da produção com a ocorrência de chuvas.

2. REVISÃO DE LITERATURA

Para realizar estudos climatológicos, os dados originais devem ser analisados quanto à homogeneidade. Inúmeros fatores podem invalidar uma série climatológica: o deslocamento da estação, a troca no período de observação, trocas de instrumentos, mudança de critérios de observações, etc. Estatisticamente, uma série é considerada homogênea se esta é uma amostra representativa de uma única população. Se uma série não é homogênea, devem ser realizados ajustamentos, tais que as estimativas estatísticas obtidas sejam válidas para a população (VIANELLO, 1988).

Existem inúmeros métodos para testar a homogeneidade de séries climatológicas, destacando-se os seguintes: "run test", é um teste não paramétrico, que consiste em contar o número de "u", isto é, seqüência de valores abaixo e acima da mediana na série natural dos dados; análise da duplamassa, que testa a consistência dos dados pluviométricos, quando se dispõe de duas séries ou mais. Este método

consiste em acumular os dados de precipitação de uma determinada estação e compará-los com os dados também acumulados de uma estação considerada padrão, que pode ser a média de estações vizinhas e em áreas homogêneas; método gráfico, plotam-se as precipitações observadas em duas estações vizinhas, identificando-se os respectivos eixos. Traça-se uma reta passando pela origem, tal que a soma das distâncias dos pontos à reta seja a mesma dentro de cada semi-plano.

Para determinar a homogeneidade relativa existem os critérios de "Helmert" e de "Abbe" (VIANELLO, 1988).

Inúmeros autores têm sugerido o uso da distribuição gama incompleta, para o estudo de probabilidades de ocorrência de chuvas acumuladas em períodos mensais, em diferentes condições climáticas, como se descreve a seguir.

BARGER e THOM (1949) foram os primeiros a aplicar a distribuição gama incompleta como modelo teórico capaz de representar a distribuição dos totais mensais e anuais observados.

HARGREAVES (1973), baseado em Thom, ajustou as séries aos dados de precipitação de 723 estações do Nordeste do Brasil. O autor substituiu, pelo valor médio, as falhas encontradas nas séries temporais dos registros pluviométricos, reduzindo, deste modo, a variância.

AZEVEDO (1974), usando a distribuição gama incompleta, estudou a variabilidade das precipitações pluviométricas mensais e anuais, envolvendo 403 estações,

distribuídas em todo o Brasil, e obteve resultados satisfatórios.

MIELKE (1975) desenvolveu um novo procedimento iterativo para, a partir das equações obtidas pelo método de máxima verossimilhança, avaliar os parâmetros da distribuição gama.

Jaccon, citado por BRAGA (1984), usando os totais anuais de precipitação do Estado da Paraíba, demostrou que a distribuição desses totais, em vários casos, pode ser representada pela distribuição gama incompleta sendo, para determinadas localidades, comprovadamente o melhor modelo probabilístico.

BRAGA (1984) elaborou um estudo sobre a ocorrência de lâminas de precipitação para o trimestre e o semestre mais chuvosos no Estado do Rio Grande do Norte, com o objetivo de discriminar três diferentes condições de pluviosidade, designadas como "pessimistas", "normais" e "otimistas", a níveis de probabilidade previamente estabelecidos.

SILVA (1985), com base no processo iterativo proposto por MIELKE (1975), elaborou um estudo probabilístico dos totais mensais para o Estado do Ceará.

De acordo com THOM (1966), a função densidade de probabilidade da distribuição gama é:

$$f(Y) = \frac{1}{\Gamma(\alpha) \beta^{\alpha}} Y^{(\alpha-1)} e^{-Y/\beta}$$
 eq. 1

 $com \alpha > 0, \beta > 0 e \Gamma (\alpha) > 0,$

em que:

 α = parâmetro de forma (adimensional);

 β = parâmetro de escala (mm); e

Y = total de precipitação (mm); o termo Γ (α) representa a função gama, ou seja:

$$\Gamma(\alpha) = \int_0^\infty t^{(\alpha-1)} e^{-t} dt$$
 eq. 2

THOM (1958), descrevendo e analisando dois processos para a estimativa dos parâmetros da distribuição gama, através do método dos momentos e de máxima verossimilhança, concluiu que este último método fornece estimativas mais confiáveis, para totais mensais de precipitação. O autor obteve a seguinte expressão simplificada:

$$\hat{\alpha} = \frac{1 + \sqrt{1 + 4A/3}}{4A}$$
 eq. 3

onde:

$$A = \ln \frac{1}{Y} - \frac{1}{-\Sigma} \ln \frac{N}{j}$$

$$= \ln \frac{1}{Y} - \frac{1}{-\Sigma} \ln \frac{N}{j}$$

$$= q. 4$$

em que:

N = número de anos;

Y = altura de chuva, em mm; e

ln = logarítmo natural.

Parâmetro de escala

$$\beta = -\frac{1}{\alpha}$$
 eq. 5

SEDIYAMA et alii (1978) e MELO (1989) demonstram que a integração da equação 1 no intervalo 0 (Y < Y $_0$ fornece as probabilidades de ocorrência de precipitação igual ou inferior a um dado valor de Y $_0$ (mm):

$$P_{Y} (Y \leqslant Y_{\emptyset}) = \int_{Q}^{Y_{\emptyset}} f_{Y} (Y) dY$$
 eq. 6

De acordo com Thom, citado por NIMER (1979) e MELO (1989), substituindo a variável Y por $b = Y/\beta$, tem-se:

$$P_{Y} (Y \leqslant Y_{\emptyset}) = \frac{1}{\Gamma(\alpha)} \int_{0}^{Y_{\emptyset}} b^{(\alpha-1)} e^{-b} db \qquad eq. 7$$

Segundo Thom, citado por AZEVEDO (1974) e NIMER (1979), a expansão da equação anterior em série permite determinar as probabilidades p_{γ} (Y \leq Y₀), com suficiente aproximação:

$$P_{Y} (Y \leq Y_{\emptyset}) = \frac{b^{\alpha}}{\Gamma(\alpha+1) e^{b}} \left[1 + \frac{b}{(\alpha+1)} + \frac{b^{2}}{(\alpha+1) (\alpha+2)} + \ldots \right]$$
eq. 8

Weaver e Miller, citados por FRIZZONE (1979),
MAROUELLI (1983), MELO (1989) e outros, tomando por base as
aproximações apresentadas na equação 8, desenvolveram um

eq. 9

programa de computação capaz de determinar totais de precipitação associados a níveis de probabilidades P_{γ} (Y \leq Y₀), mediante a extração das raízes da equação pelo método de Newton-Rapheson, chegando à seguinte equação:

$$b_{i+1} = b_{i} - \left[\frac{b_{i}}{\hat{\alpha}} - \left(1 + \frac{b_{i}}{(\hat{\alpha}+1)} + \frac{b_{i}^{2}}{(\hat{\alpha}+1)(\hat{\alpha}+2)} + \frac{b_{i}^{3}}{(\hat{\alpha}+1)(\hat{\alpha}+2)} + \frac{b_{i}^{3}}{(\hat{\alpha}+1)(\hat{\alpha}+2)(\hat{\alpha}+2)(\hat{\alpha}+3)} + \frac{b_{i}^{3}}{b_{i}^{(\hat{\alpha}-1)}} + \frac{b_{i}^{3}}{b_{i$$

Na presente pesquisa, utilizou-se desta última formulação, considerando-a satisfatória para os objetivos almejados.

q

3. MATERIAL E MÉTODO

O estudo teve início com base em 334 séries de dados pluviométricos, localizadas no Estado do Piauí e Estados limítrofes. Após processá-las computacionalmente, o número de séries confiáveis e homogêneas reduziu-se para 49. Os principais motivos que conduziram a tão drástica redução foram as seguintes: dubiedades preliminarmente apontadas pela SUDENE, séries incompletas, heterogeneidade, etc.

Para testar a homogeneidade dos dados observados, utilizou-se neste trabalho o "run test", já descrito anteriormente.

Os dados mensais de precipitação e a demanda de água para as culturas do arroz, feijão e milho foram fornecidos, respectivamente, pela Superintendência do Desenvolvimento do Nordeste - SUDENE e pela Companhia de Desenvolvilmento do Piauí - COMDEPI.

Deve-se salientar que, para superar a escassez espacial dos dados e melhor assegurar a representatividade

em cada posto pluviométrico, optou-se pela utilização das séries com mais de vinte anos de observações, independentemente da data de início das observações.

O Quadro 1 identifica os postos meteorológicos usados nesta pesquisa.

QUADRO 1 - Identificação dos Postos Meteorológicos

Número do Posto	Código Nacional	Estado	Post o	Município
1	1143009	BAHIA	BOQUEIRÃO	BARRA
2	942020	BAHIA	CAMPESTRE	PILÃO ARCADO
3	941011	BAHIA	CASA NOVA	CASA NOVA
4	1145002	BAHIA	FORMOSA DO RIO PRETO	FORMOSA DO RIO PRETO
5	942013	BAHIA	SALINA DO BREJO	REMANSO
6	740006	CEARÁ	CAMPOS SALES	CAMPOS SALES
7	540002	CEARÁ	COUTINHO	INDEPENDÊNCIA
8	440005	CEARÁ	CROATÁ	GUARACIABA DO NORTE
9	340016	CEARÁ	GRANJA	GRANJA
10	440017	CEARÁ	NOVA RUSSAS	NDVA RUSSAS
11	440018	CEARÁ	PORANGA	PORANGA
12	340030	CEARÁ	TIANGUÁ	TIANGUÁ
13	340031	CEARÁ	UBAJARA	UBAJARA
14	341016	CEARÁ	VIÇOSA DO CEARÁ	VIÇOSA DO CEARÁ
15	542000	PIAU1	ALTOS	ALTOS
16	642001	PIAU1	AMARANTE	AMARANTE
17	442000	PIAUI	BARRAS	BARRAS
18	542003	PIAUÍ	BENEDITINOS	BENEDITINOS
19	442004	PIAU1	CAMPO MAIOR	CAMPO MAIDR
56	441002	PIAUÍ	CAPITÃO DE CAMPOS	CAPITÃO DE CAMPOS
21	541003	PIAUÍ	CASTELO DO PIAUÍ	CASTELO DO PIAUÍ
22	942003	PIAUÍ	FARTURA	DIRCEU ARCOVERDE
23	643006	PIAUÍ	FLORIANO	FLORIANO
24	641004	PIAUÍ	IPIRANGA DO PIAUÍ	IPIRANGA DO PIAUÍ
25	741004	PIAUÍ	JAICÓS	JAICÓS
26	442008	PIAUÍ	JOSÉ DE FREITAS	JOSÉ DE FREITAS
27	743004	PIAUÍ	LANDRI SALES	LANDRI SALES
28	241000	PIAUÍ	LUIZ CORREIA	LUIZ CORREIA
29	342004	PIAUÍ	LUZILĀNDIA	LUZILÂNDIA
30	542007	PIAU1	MONSENHOR GIL	MONSENHOR GIL
31	641006	PIAU1	MONSENHOR HIPÓLITO	MONSENHOR HIPÓLITO
32	842004	PIAU1	MOREIRA	DOM INOCÉNCIO
33	742002	PIAUÍ	OEIRAS	OEIRAS
34	841005	PIAUÍ	PAULISTANA	PAULISTANA

QUADRO 1, Cont.

Número do	Código			
Posto	Nacional	Estado	Posto	Municipio
35	441005	PIAUÎ	PEDRO II	PEDRO II
36	741006	PIAU1	PICOS	PICOS
37	640000	PIAU1	PIO IX	PIO IX
38	341009	PIAU1	PIRACURUCA	PIRACURUCA
39	441006	PIAUÍ	PIRIPIRI	PIRIPIRI
40	342006	PIAU1	PORTO	PORTO
41	842007	PIAU1	S. JOÃO DO PIAUÍ	S. JOÃO DO PIAUÍ
42	942004	PIAU 1	S. LOURENÇO	S. RAIMUNDO NONATO
43	541011	PIAUİ	S. VICENTE	S. MIGUEL DO TAPUIO
44	741010	PIAUÍ	SIMPLÍCIO MENDES	SIMPLÍCIO MENDES
45	542012	PIAUÍ	TERESINA	TERESINA
46	442011	PIAUÍ	UNIÃO	UNIÃO
47	641010	PIAU1	VALENÇA DO PIAUÍ	VALENÇA DO PIAUÍ
48	740014	PERNAMBUCO	ARARIPINA	ARARIPINA
49	940006	PERNAMBUCO	PETROLINA	PETROLINA

3.1 Classificação dos Anos. Segundo o Regime Pluviométrico Observado

Com base na classificação empírica, utilizada por BRAGA (1984), adotaram-se os seguintes critérios:

- a) Ano "pessimista" aquele cuja precipitação observada, no trimestre e semestre mais chuvosos, foi pelo menos igual ou inferior àquela precipitação dependente ao nível de 75% de probabilidade;
- b) Ano "normal" aquele cuja precipitação observada, no trimestre e semestre mais chuvosos, foi aquela precipitação dependente entre os níveis de 25% e 75% de probabilidade;

c) Ano "otimista" - aquele cuja precipitação observada, no trimestre e semestre mais chuvosos, foi pelo menos igual ou superior àquela precipitação dependente, ao nível de 25% de probabilidade.

3.2. <u>Critérios de Enquadramento das Culturas ao Regime</u> Pluviométrico

Para a análise de aptidão das culturas de arroz, feijão e milho tomou-se, mês a mês, dentro do trimestre ou semestre mais chuvoso, a precipitação esperada, ao nível de 75% de probabilidade. SAMANI e HARGREAVES (1985) definem precipitação dependente provável ("dependable ou precipitation") como a precipitação mínima esperada a um dado nível de probabilidade, com base em uma análise de longa série de registro de precipitações. O nível de 75% de probabilidade, ou a quantidade de precipitação que pode ser esperada em três anos, dentre quatro considerados, tem sido admitido como um razoável valor para condições de clima úmido. O próprio autor esclarece que, para determinadas culturas ou situações especiais, esse valor pode não ser o mais apropriado.

Levando-se em consideração a demanda de água das culturas (uso consuntivo) para o Estado do Piauí (Quadro 2), foram utilizados os seguintes critérios para classificar as localidades, quanto à aptidão para o cultivo, em condição de sequeiro:

- a) Aptas quando a precipitação dependente, ao nível de 75% de probabilidade, for igual ou superior ao uso consuntivo, não ocorrendo, portanto, necessidade de irrigação;
- b) Parcialmente aptas quando a precipitação dependente, ao nível de 75% de probabilidade, for superior a 50% do uso consuntivo, exigindo-se assim irrigação suplementar;
- c) Inaptas quando a precipitação dependente, ao nível de 75% de probabilidade, for inferior a 50% do uso consuntivo, exigindo-se, assim, irrigação total.

QUADRO 2 - Demanda de Água para Algumas Culturas no Estado do Piauí, (Uso Consuntivo). Unidade: altura da lâmina d'água em mm

Culturas	Jan	Fev	Mar	Abr	Mai	Jun	Ju1	Ago	Set	Out	Nov	Dez
Feijão	140	111	110	104	100	109	126	151	167	177	168	158
Milho	140	111	110	104	100	109	126	151	167	177	168	158
Arroz	156	123	122	115	111	121	140	168	185	197	187	176

FONTE: Companhia de Desenvolvimento do Estado do Piauí - COMDEPI (1989).

3.3. <u>Probabilidade dos Totais Trimestrais e Semestrais de</u> Precipitação

Os totais mensais de precipitação foram arranjados de acordo com o ano agrícola, que se inicia, na região, no mês de dezembro. Em seguida, calculou-se a freqüência relativa em relação ao trimestre ou semestre de cada ano.

Além do programa desenvolvido para a seleção dos postos, segundo critérios de homogeneidade e duração da série climatológica, elaborou-se um programa de computador para calcular os totais trimestrais e semestrais de chuva, correspondentes às probabilidades de 90, 80, 75, 70, 60, 50, 30, 25, 20 e 10%, utilizando-se das equações 01 a 09.

Para testar o ajustamento do modelo probabilístico teórico, a cada série pluviométrica selecionada, utilizou-se o teste Kolmogorov-Smirnov, ao nível de 10% de significância.

Considerando o grande número de informações geradas, tornou-se inviável inserir no texto todos os resultados obtidos, limitando-se àqueles indispensáveis ao alcance dos objetivos propostos.

3.4. <u>Tracado dos Campos de Precipitação e Exigências de</u> <u>Irrigação</u>

Para a obtenção dos campos de precipitação para os trimestres e semestres mais chuvosos, correspondentes aos totais de precipitação para níveis selecionados de

probabilidade, traçaram-se, a partir dos pontos isolados, as isoietas, permitindo, assim, maior clareza do campo da distribuição de totais pluviométricos. Ressalta-se que, para melhor definição da tendência da direção das curvas, nos limites do Estado, foram usados os resultados obtidos para os postos dos Estados limítrofes.

Combinando-se as classificações das localidades, quanto à aptidão para as culturas, com as necessidades de irrigação, visando a prática agrícola em toda a área estudada, organizaram-se tabelas que, combinadas com as cartas geográficas, mostram as necessidades de irrigação, mês a mês, tanto em escala trimestral quanto semestral. Para tal, adotaram-se os seguintes critérios, para cada mês e cada cultura de interesse:

- a) Sem irrigação quando a precipitação dependente (provável ao nível de 75% de probabilidade) for igual ou superior à necessidade hídrica da cultura;
- b) Irrigação suplementar quando a precipitação dependente, ao nível de 75% de probabilidade, for superior a 50% da necessidade hídrica e inferior à necessidade plena;
- c) Irrigação total quando a precipitação dependente, ao nível de 75% de probabilidade, for inferior a 50% da necessidade hídrica da cultura, no mês em questão.

4. RESULTADOS E DISCUSSÃO

Os Quadros 3 e 4 correspondem, respectivamente, aos valores mínimos de precipitação dependente nos trimestres e semestres mais chuvosos, para diferentes níveis de probabilidades. A partir da classificação dos anos observados, de acordo com os critérios apresentados no item 3.1., calculou-se, para os trimestres e semestres mais chuvosos, os valores apresentados no Quadro 5, que mostra a percentagem de anos considerados "otimistas", "normais" e "pessimistas", para cada posto meteorológico.

Utilizando-se os critérios de enquadramento das culturas ao regime pluviométrico, possibilitou-se mostrar os valores de precipitação dependente, calculados mês a mês ao nível de 75% de probabilidade, para os trimestres e semestres mais chuvosos (Quadros 6 e 7).

Baseando-se nas exigências hídricas das culturas de arroz, feijão e milho e nas precipitações dependentes ao nível de 75% de probabilidade, apresentaram-se os

QUADRO 3 - Valores de Precipitação Dependente (mm), no Trimestre mais Chuvoso, para Diferentes Níveis de Probabilidade, Calculados Segundo a Distribuição Gama Incompleta, a Partir de Dados Observados, Incluindo-se Alguns Postos dos Estados Limítrofes ao Piauí

Ν _G	Municipio	90%	80%	75X	70X	60X	50X	40X	30X	25X	20%	10X
í	BARRA	280,8	338,0	361.7	383,9	426,3	468,7	513.9	565.3	595,2	629,6	726,5
2	PILÃO ARCADO		263,7									766,8
3	CASA NOVA	-		9	133,3			253,1		341,2		
4	FORMOSA DO RIO PRETO		385,6		429,5							744,6
5	REMANSO				182,1							461,B
6	CAMPOS SALES								480,2			639,8
7	INDEPENDÊNCIA				277,3					518,8		681,4
8	GUARACIABA DO NORTE				296,6				473,6	503,5	538,3	637,3
9	GRANJA				518,9		661,1	738,3	827,2	879,4	940,0	1112,2
10	NOVA RUSSAS		366,9		430,8							
11	PORANGA		552,4									1390,3
12	TIANGUÁ		535,6									1200,5
13	UBAJARA		674,5									1410,7
14	VIÇOSA DO CEARÁ		643,5									1249,7
15	ALTOS											1309,4
16	AMARANTE											1566,7
17	BARRAS				738,1							
18	BENEDITINOS		663,0						1021,2			
19	CAMPO MAIOR	539,2	613,3	643,2	670,9	722,9	773,9	827,3	887,0	921,3	960,6	1069,8
20	CAPITÃO DE CAMPOS	442,1	558,8	608,3	655,2	746,1	838,5	938,3	1053,4	1121,0	1199,6	1423,1
21	CASTELO DO PIAUÍ	399,2	478,7	511,6	542,4	601,2	659,9	722,3	793,3	834,5	882,6	1015,5
22	DIRCEU ARCOVERDE	164,2	216,7	239,4	261,1	303,7	347,6	395,5	451,5	484,6	523,4	634,7
23	FLORIANO	290,5	351,8	377,3	401,2	446,9	492,8	541,7	597,4	629,8	667,3	772,8
24	IPIRANGA DO PIAUÍ	293,7	344,1	364,7	383,9	420,3	456,3	494,4	537,4	562,2	590,8	670,4
25	JAIC O S	242,0	289,6	309,3	327,7	362,9	398,0	435,2	477,6	502,2	530,5	610,1
98	JOSÉ DE FREITAS	603,6	697,8	736,1	771,6	838,8	905,0	974,6	1052,9	1098,0	1149,7	1293,7
27	LANDRI SALES	360,8	421,6	446,4	469,6	513,4	556,7	602,5	654,1	683,9	718,1	813,6
28	LUIZ CORREIA	205,9	309,8	357,7	404,9							
29	LUZILĀNDIA	201,8	306,0		402,0				865,0			
30	MONSENHOR GIL	587,3	680,7		754,0							
31	HONSENHOR HIPÓLITO	182,8	235,1	257,5	278,7							
32	DOM INOCÉNCIO	218,3	256,3		286,4				402,7			
33	OEIRAS		376,5						583,5			
34	PAULISTANA	171,3	212,0	229,0	245, 1	276,1	307,4	341,0	379,5	402,0	428,0	501,8
35	PEDRO II											1245,6
36	PICOS											709,3
37	PIO IX				301,5							
38	PIRACURUCA				<i>67</i> 8,5							
39	PIRIFIRI				709,6							
40	PORTO				792,3							
41	S. JOĂO DO PIAUÍ				294,8							
42	S. RAIMUNDO NONATO				193,9							
43	S. HIGUEL DO TAPUIO				412,9							
44	SIMPLICID MENDES				322,7							
45	TERESINA				572,6							
46	UNIÃO				352,5							
47	VALENÇA DO PIAUI				420,7							
48	ARARIPINA											690,8
49	PETROLINA	66,6	76,6	110,1	123,4	150,2	1/6,6	c10,4	£48,4	E/1,3	570,5	377,5

QUADRO 4 - Valores de Precipitação Dependente (mm), no Semestre mais Chuvoso, para Diferentes Níveis de Probabilidade, Calculados Segundo a Distribuição Gama Incompleta, a Partir de Dados Observados, Incluindo-se Alguns Postos dos Estados Limítrofes ao Piauí

И _С	Municipio	90 X	8 6 %	75X	7 6 %	60X	50X	40X	30X	25 X	20X	10X
<u>i</u>	BARRA	535,1	620,1	654,6	686,8	74 7,5	807,5	870,6	941,6	982,5	1029,5	1160,2
2	PILĂO ARCADO	402,1	492,7	530,6	566,2	634,7	703,6	777,3	861,6	910,8	967,7	1128,5
3	CASA NOVA	217,9	275,7	300,2	323,4	368,4	414,1	463,6	520,6	554,1	593,€	703,7
4	FORMOSA DO RIO PRETO	605,8	676,4	794,6	730,6	779,2	826,6	875,8	930,7	962,1	998,€	1099,7
5	REMANSO	276,4	337,7	363,3	387,3	433,5	479,8	529,4				765,2
E	CAMPOS SALES	323,3	397,7	428,8	458,2	514,5	571,3	632,2	701,8	742,5	789,6	922,7
7	INDEPENDÊNCIA	262,2	336,8	368,6	398,9			583,6		764,6		904,5
8	GUARACIABA DO NORTE	289,0	363,1		424,1				674,7			
9	GRANJA	469,1	592,8		695,6							
10	NOVA RUSSAS	399,1	499,9		582,6							
íí	PORANGA	644,3	808,3		943,1							
12	TIANGUÁ	634,1	766,1	820,9	872,3	970,5	1068,9	1173,8	1293,3	1362,8	1443,0	1668,7
13	UBAJARA	799,6	957,7	1023,3	1084,8	1202,1	1319,2	1443,7	1585,2	1667,4	1762,2	2028,3
14	VIÇOSA DO CEARÁ	748,0	884,9	941,2	993,7	1093,6	1192,9	1298,0	1417,1	1486,6	1565,3	1787,3
15	ALTOS	767,1			1059,3							
16	AMARANTE				866,3							
17	BARRAS				1079,4							
18	BENEDITINOS				1120,5							
19	CAMPO HAIDR				998,7							
20	CAPITÃO DE CAMPOS	635.0	797,3									
21	CASTELO DO PIAUÍ	604,4		15					1111,9			
55	DIRCEU ARCOVERDE	406,6	50 000 00 1		539,2							
23	FLORIANO	521,0			689,7							
24	IPIRANGA DO PIAUÍ	461,4						744,8			878,5	
25	JAICÓS	396,9	461,0						764,4			870,2
26	JOSÉ DE FREITAS				1127,1							1830,8
27	LANDRI SALES	685,9	782,4	821.4	857,5	925.4	992.1	1061,9	1140,1	1185,0	1236,4	1379,5
28	LUIZ CORREIA	305,0	445,4						1162,6			
29	LUZILĀNDIA	727,8	853.1		952,2							
30	HONSENHOR GIL		1684.6		1189,6							
31	MONSENHOR HIPÓLITO	272,4	343,7	373,9	402,5	457,9	514,1	574,8	644,8	685,9	733,6	
32	DOM INOCÉNCIO	383,1	448,1					641,6		728,8		867,8
33	OEIRAS	558,5	635,0	665,8		748,0		855,6		952,5	992,9	1105,5
34	PAULISTANA	295,4		381,9	25 2400 20 \$ 0000	451,1			600,2	632,3	669,4	773,6
35	PEDRO II				712,1	819,4	929,1	1048,2	1186,5	1268,6	1362,9	1634,5
36	PICOS				398,8							
37	PIO IX	318,5	389.5	419,1	447,0	500,6	554,4	612,0	677,8	716,2	760,6	885,9
38	PIRACURUCA	716.8	865.7	927.5	985,5	1096.3	1207.3	1325,5	1460,2	1538,6	1629,0	1883,4
39	PIRIPIRI	702.9	961.6	986.4	1067,2	1224.2	1384.6	1558.4	1759,9	1878,5	2016,5	2410,9
40	PORTO	911.8	1059.7	1119.9	1175,9	1281.8	1386.5	1496,7	1620,9	1692,5	1774,6	2003,6
41	S. JOÃO DO PIAUÍ				516,9							
42	S. RAIMUNDO NONATO	354.6	424.8	453.1	479,7	530.3	580.7	634.3	695.1	730,4	771,0	885,0
43	S. MIGUEL DO TAPUIO	385.9	489.3	533.2	574,9	655.7	737.9	826.8	929,4	789,7	1659,8	1259,4
A A	SIMPLÍCIO MENDES	429.3	487.9	511.5	533,4	574.5	614.7	656,8	703,9	731,6	761,9	848,1
45	TERESINA				836,4							
46	UNIÃO	439.1	568.8	624.5	677,6	781.1	887,2	1002,6	1136,6	1215,6	1307,7	1571,5
47	VALENÇA DO PIAUÍ				627,6							
48	ARARIPINA				412,1							
49	PETROLINA	104 1	220 3	247 3	244 3	297 1	330.6	365,4	465.9	429.5	456.9	534.3

QUADRO 5 - Número de Anos Otimistas, Normais e Pessimistas em Relação ao Trimestre e Semestre mais Chuvosos, Segundo a Distribuição Gama Incompleta

	Percent	agem/Tri	mestre		Percen	tagem/Se	mestre
NΩ	OTIM	NORM	PESS	TOTAL	OTIM	NORM	PESS
1	3 <i>7</i>	3 <i>7</i>	26	35	26	28	46
5	34	29	3 <i>7</i>	35	23	26	51
3	36	39	25	61	31	18	51
4 5	33 43	30 22	45 27	36 30	28 37	30 6	42 5 <i>7</i>
6	38	25	40	65	28	29	43
7	33	17	50	30	30	13	5 <i>7</i>
8	32	20	48	25	32	16	52
9	27	28	45	47	28	23	49
10	34	23	43	61	26	28	46
11	32	26	42	31	29	26	45
12	26	33	41	66	26	29	45
13	38	20	42	65	29	28	43
14	24	29	47	66	24	24	52
15	35	23	42	26	27	31	42
16	19	39	42	26	19	35	46
1 <i>7</i> 18	31 27	28 31	41 42	26 26	22 19	38 31	40
19	31	31	38	39	31	26	50 43
50	23	31	46	26	31	19	50
21	28	31	41	61	25	26	49
55	38	27	35	26	53	23	54
23	28	36	36	42	26	36	38
24	35	27	38	26	19	23	58
25	29	28	43	76	22	24	54
26	21	36	43	61	23	25	52
27	33	25	42	24	21	25	54
28	27	33	40	45	22	31	47
29	2 <i>7</i>	46	27	26	31	31	38
30 31	23 31	35 31	42 38	26 26	19 19	19 31	62 50
35	54	11	35	26	27	31	42
33	29	29	42	48	25	19	56
34	36	24	40	25	24	32	44
35	33	22	45	45	27	29	44
36	2 <i>7</i>	23	50	26	19	2 <i>7</i>	54
3 <i>7</i>	29	28	43	58	24	36	40
38	25	32	43	47	23	32	45
39	27	30	43	37	32	19	49
40	33	29	38	48	25	31	44
41	30	3 <i>7</i>	33	33	24	27	49
42 43	43 27	38 54	19 19	26 26	15 19	50 42	35 39
43	27	31	42	26	31	15	54
45	55	59	19	35	31	41	28
46	26	26	48	47	53	56	51
47	35	23	45	44	25	32	43
48	33	25	42	24		21	46
49	29	44	2 <i>7</i>	48	2 <i>7</i>	29	44

QUADRO 6 - Valores de Precipitação Dependente (mm), ao Nível de 75% de Probabilidade, Calculada Segundo a Distribuição Gama Incompleta, a Partir de Dados Observados, Referentes aos Trimestres mais Chuvosos, Incluindo-se Alguns Postos dos Estados Limítrofes ao Piauí

No	Jan	Fev	Har	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1	 55		-			-		_	-	-	68	99
5	53	-	-	-	-	-	-	-	-	-	50	57
3	16	19	33			-	-	-	-	-	-	-
4	88	-	-	-	_	-	-	-	-	-	105	112
5	18	25	55	-			-		-		-	-
6	40	47	97	-	-	-	-	-	-	-	-	-
7	-	40	81	43	_	-	-	-	-		-	-
8	-	46	94	65	-	-	-	-	-	-	-	-
9	-	112	165	125	-	-		-	-	-	-	-
10	-	59	148	106	-	-	-	-	-	-	-	-
11	-	108	184	187	-	-	-	-	-	-	_	
12	-	128	213	168	-	-	-	-	-	-	-	-
13	-	158	251	231	-	-	-	-	-	-	_	-
14	-	149	240	203	-	-	-	-	-	-	-	_
15	-	162	233	130	-	-	-	-	-	-	-	-
16	62	94	148	_	-	_	-	-	-	-	-	
17	-	182	239	198		_	-	-	_	-	_	-
18	-	109	166	172	-	-	_	_	-	-	-	-
19	-	141	230	139	_	-	_	-	_	-	_	-
20	_	93	163	112	_	-	_	-	_	-	_	-
21	-	34	80	95	-	-	-	-	_	-	_	-
55	_	41	45	24	_	-	_	-	_	-	-	
23	91	115	93	-	_	-	-	_		_	_	_
24	101	83	89	-	-	-		-	-	_	-	_
25	60	48	90	_	-	-	_	-	-	_	_	-
26	-	166	274	192	-	-	-	-	_	-		-
27	133	114	109	-		-	_	_	-	-	-	-
28	-	72	125	83	_	_	_	_	-	-	-	
29	_	-	126	123	89	-	_	-	-	-	-	
30	_	142	264	161	-	_	-	-	_	_	-	
31	_	56	68	45		_	~	_	_	_	_	
32	46	51	73	-	_	_	_			<u></u>	_	_
33	107	128	102	_	-	_	_	_	-		_	
34	36	50	73	_	_	1-	-	-	-	_	_	
		86	150	120	_	_	_	-	_	_	-	
35 36	25	36	78	-	_	_	_	-	_	-	_	
37	-	61	84	44	_	-	_	_	-	_	_	
38	_	107	218	196	-	_	-	_	_	_	-	
39	_	127	255	183	_	_	_	-	-	_	_	
40	_	127	252	229	-	_	_	-	-		_	
41	64	52	56	-	_	-	_	_	_	_	-	1
42	-	28	45	55	-	_	-	_	-	_	_	
43	_	74	96	79	=	_	-		-	_	_	
44	47	106	84	-	_	-	-		_	-	-	
45	-	122	205	121	-	_	_	-	_	-	_	
	_	72	102	81	_	-	_	_	_	_	_	
46				01	_	_	_	-		_	_	
47	99 50	96	107 84	_	_	_	_	_	_	-	_	
48	59	42		-	-			S101			<u></u>	
49	13	17	21	-	-	-	-	-	_	_	_	

QUADRO 7 - Valores de Precipitação Dependente (mm), ao Nível de 75% de Probabilidade, Calculada Segundo a Distribuição Gama Incompleta, a Partir de Dados Observados, Referentes aos Semestres mais Chuvosos, Incluindo-se Alguns Postos dos Estado Limítrofes ao Piauí

N _O	Jan	Fev	Mar	Abr	Mai	 Jun	Jul	Ago	 Set	Out	Nov	Dez
1	 55	67	53	23							68	99
5	23	20	3 <i>7</i>	9		_	_	_	_		50	57
3	16	19	33	6	_	_	-	_	_	_	13	53
4	68	75	64	_		_	_	_	-	28	105	112
5	18	25	55	6	_	-	_	_	_	-	55	28
6	40	47	97	42		_	-	_	_	_	4	12
7	24	40	81	43	7	_	_	_	_	_		4
8	16	46	94	65	22	_	_	_	_	_	_	3
9	43	112	165	125	45	8	-	-	_	_	_	_
10	20	59	148	106	31	4	_	_	_	-	_	_
11	25	108	184	187	104	36	-	_	_	_	-	_
12	53	128	213	168	70	_	-		_	_	_	9
13	66	158	251	231	94	27	_	_	-	_	_	_
14	69	149	240	203	80		_	-	_	_	_	14
15	149	162	233	130	39	_	_	_	_	_	_	47
16	62	94	148	78	_	_		_	_	_	25	41
17	123	182	239	198	86	_	-	_		_		14
18	156	109	166	172	31	_	_		_	_	_	56
19	102	141	230	139	36	_	_	_	_		_	32
20	67	93	163	112	42	_	_	_		_	_	18
21	20	34	80	62	11	2	_	-	_		_	-
55	47	41	45	24	11	_	_	_	_	_	23	42
23	91	115	93	55	_	_	_	_	_	_	46	50
			89	39	_	_	_	0.000	-		13	
24	101	83	90		_	_	_	_	_	_	13	45 25
25	60	68	274	34 192	- 48	_	_		_			35
26	132	166				_	_	_	_	_	 95	36
27	133	114	109	58	- 29	- 5	_	_				82
28	30	72	125	83		31	_	_	, -	_	_	-
29	109	140	126	123	98		_	_	_	-	-	-
30	146	142	264	161	45	-	-	_	_	_		93
31	39	56	68	45	-	_	-	_	_	_	2	5
32	46	51	73	24	_	_	_	_	_	_	42	47
33	107	128	102	44	_	_	_	_	_	_	35	51
34	36	50	73	15	-	_	-	-		-	12	33
35	70	86	150	120	20	_	-	_	_	_	_	8
36	25	36	78	10	_		-	-	_	-	5	6
37	34	61	84	44	8	-	-	-	-	-	_	10
38	89	107	218	196	81	-	-	_	-	_		14
39	107	127	255	183	72	_	-		_	-	_	18
40	94	127	252	229	110	_	_	_		-	-	18
41	64	52	56	15	_	-	-	_	_	_	19	56
42	45	28	45	22	-	-	-		_	_	31	44
43	56	74	96	79	15	-		-	_	_	_	16
44	47	106	84	23	-	_	_	_	-	-	24	48
45	89	122	205	121	17	_	-	_	-		_	55
46	30	72	102	81	73	_	_		_	-	-	12
47	99	96	107	37	-	_	_	_	_	-	13	26
48	59	42	84	В	-	-	_	_		-	5	11
49	13	17	21	6	_	-	~	_	_	-	8	18

Guadros 8, 9, 10 e 11 que expressam, para cada localidade, a demanda mensal de irrigação para os trimestres e semestres mais chuvosos que correspondem, em última análise, aos seríodos de cultivos nas diversas regiões do Estado do Piauí. Como se vê, em alguns municípios, a precipitação mensal dentro do trimestre (ou semestre) mais chuvoso é tão reduzida que o cultivo só é possível utilizando-se irrigação total.

4.1. Trimestres mais Chuvosos

A Figura 1 mostra o campo de altura trimestral de chuva esperada, ao nível de 25% de probabilidade. Vérificase, claramente, um aumento da lâmina mínima de precipitação para o trimestre, situando-se os maiores valores nas microrregiões do Baixo Parnaíba, no Litoral Piauiense, em Teresina e em parte da microrregião de Campo Maior. Para melhor visualização, deve-se utilizar o encarte que se encontra na sobrecapa.

Observa-se ainda que, na parte central do estado e a Leste, a precipitação dependente ao nível de 25% de probabilidade não ultrapassa a 700 mm no trimestre mais chuvoso.

Chama-se atenção para a região sul do Estado que, em virtude da inexistência de dados, não possibilitou aplicação da metodologia adotada nesta pesquisa.

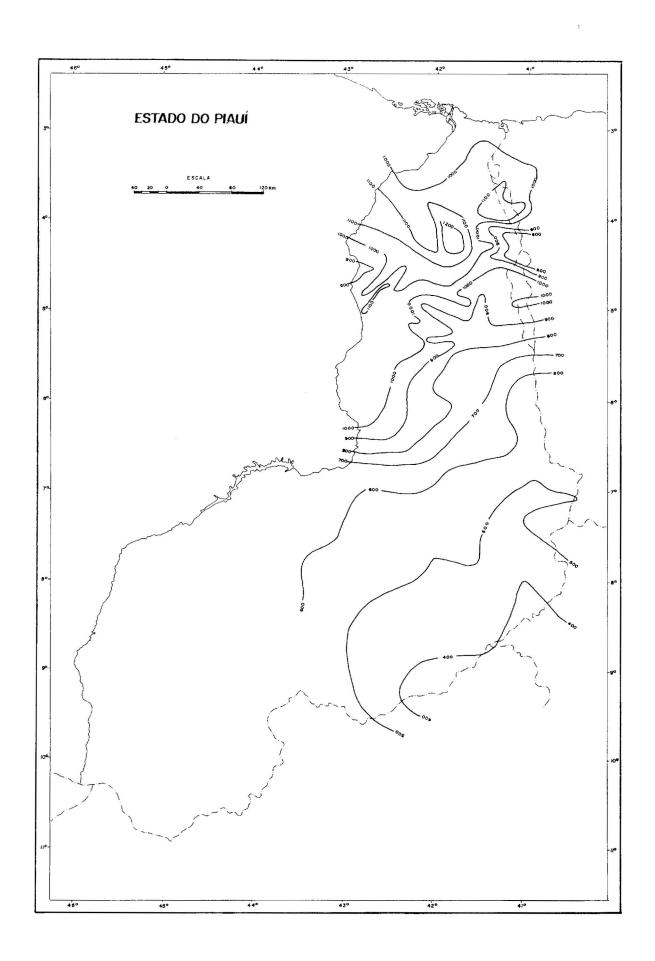
Em relação à Figura 2, que corresponde ao campo de altura trimestral de chuva dependente, ao nível de 50% de probabilidade, os mais elevados valores de precipitação

QUADRO 8 - Classificação Mensal da Demanda de Água, para as Culturas de Feijão e de Milho, ao Nível de 75% de Probabilidade, Referente ao Trimestre mais Chuvoso

N-	Jan	Fev	Mar	Abr	Hai	Jun	Jul	Ago	Set	Dut	Nov	Dez
1	TOTAL	_'	_	-	-	-			-		TOTAL	SUPL
2	TOTAL	-	-	-	-	-	-	-	-	-	TOTAL	TOTAL
3	TOTAL	TOTAL	TOTAL	-	1	_	-	-	~	_	_	-
4	TOTAL	-	-	-	-	_	_	-	-	-	SUPL	SUPL
5	TOTAL	TOTAL	SUPL	-	-	-	_	_	-	-	_	-
6	TOTAL	TOTAL	SUPL	-	-	-	-	-	-	-	-	-
7	_	TOTAL	SUPL	TOTAL	_	-	_	_	-	_	_	-
8	-	TOTAL	SUPL	SUPL	-	-	-	-	-	_	-	-
9	-	SEM	SEM	SEM	-	-	_	-	-	-	-	-
10	-	SUPL	SEM	SEM	-	-	-	-	-	-	-	-
11	_	SUPL	SEM	SEM	-	-	_	-	-	-	-	-
12	-	SEM	SEM	SEM	-	-	-	=	=	-	-	-
13	-	SEM	SEM	SEM	-	-	-	-	-	-	_	-
14	-	SEM	SEM	SEM	-	-	-	-	-	-	-	-
15		SEM	SEM	SEM	-	_	-	-	_	-		-
16	TOTAL	SUPL	SEM	-	-	-	-	-	-	-	-	-
17	=	SEM	SEM	SEM	-		_	_	_	_	-	_
18	-	SUPL	SEM	SEM	-	-	-	-	-	-	-	_
19	-	SEM	SEM	SEM	-	-	-	-	-	-	-	_
20	-	SUPL	SEM	SEM	_	-	_	-	-	_	-	-
21	_	TOTAL	SUPL	SUPL	_	-	-	_	_	-	-	-
55	-	TOTAL	TOTAL	TOTAL	_	-	_	-	-	_	-	-
23	SUPL	SEM	SUPL	-	-	-	_	_	_	_	-	_
24	SUPL	SUPL	SUPL	_	- '	_	_	_	_	_	_	-
25	TOTAL	SUPL	SUPL	_	-	_	_	_	_	-	-	_
26		SEM	SEM	SEM	-	_	_	_	-	_	-	-
27	SUPL	SEM	SUPL	_	=	-	-		=	-	-	*
58	-	SUPL	SEM	SUPL	-	-	_	-	-	-	-	-
29	-	-	SEM	SEM	SUPL	_	_	-	-	-	_	_
30	-	SEM	SEM	SEM	-	_	-	_	_	-	-	-
31	-	SUPL	SUPL	TOTAL	-	-	_	-	_	_	-	_
35	TOTAL	TOTAL	SUPL	_	-	_	_	_	_	_	_	_
33	SUPL	SEM	SUPL	-	-	_	-	-	-	_	- 1	-
34	TOTAL	TOTAL	SUPL	_	_	_	_	-	_	_		-
35	-	SUPL	SEM	SEM	-	-	_	-	-		_	-
36	TOTAL	TOTAL	SUPL	-	-	-	-	-	-	-	-	-
37	_	SUPL	SUPL	TOTAL	_	_	_	_	-	_	-	_
38	-	SUPL	SEM	SEM	=	_	-	V _	=	v _	-	-
39	-	SEM	SEM	SEM	_		-	-	-	-	-	-
40	-	SEM	SEM	SEM	-	_	-	-	-	-	-	-
41	TOTAL	TOTAL	SUPL	-	-	-	-	-	-	-	-	-
42	-	TOTAL	TOTAL	TOTAL	-	-	-	-	144	-	-	-
43		SUPL	SUPL	SUPL	-	-	-	_	-	_	-	_
44	TOTAL	SUPL	SUPL	-	-	-	-	-	-	-	-	-
45	-	SEM	SEM	SEM	i.—	-	-	-	-	-	-	-
46	-	SUPL	SUPL	SUPL	-	-	-	-	-	_	-	-
47	SUPL	SUPL	SUPL	_	-	_	_	_	-	-	-	-
48	TOTAL	TOTAL	SUPL	_	-	-	-	-	_	-	-	-
49	TOTAL	TOTAL	TOTAL	_	_	-		_	_	_		_

QUADRO 9 - Classificação Mensal da Demanda de Água, para as Culturas de Feijão e de Milho, ao Nível de 75% de Probabilidade, Referente ao Semestre mais Chuvoso

No	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1	TOTAL	SUPL	TOTAL	TOTAL	_	_	_	-	-	_	TOTAL	SUPL
2	TOTAL	TOTAL	TOTAL	TOTAL	-	-	_	-	-	~	TOTAL	TOTAL
3	TOTAL	TOTAL	TOTAL	TOTAL	-	-	-	-	-	-	TOTAL	TOTAL
4	TOTAL	SUPL	SUPL	-	-	-	~	-	-	TOTAL	SUPL	SUPL
5	TOTAL	TOTAL	SUPL	TOTAL	-	-	-	_	-	-	TOTAL	TOTAL
6	TOTAL	TOTAL	SUPL	TOTAL		-	-	-	-	-	TOTAL	TOTAL
7	TOTAL	TOTAL	SUPL	TOTAL	TOTAL	-	-	-	-	_	_	TOTAL
8	TOTAL	TOTAL	SUPL	SUPL	TOTAL	-	-	-	-	-	-	TOTAL
9	TOTAL	SEM	SEM	SEM	TOTAL	TOTAL	-	_	-	-	-	-
10	TOTAL	SUPL	SEM	SEM	TOTAL	TOTAL	-	-	-	-	-	-
11	TOTAL	SUPL	SEM	SEM	SEM	TOTAL	-	-	-	-	=	-
12	TOTAL	SEM	SEM	SEM	SUPL	-	-	-	-	-	-	TOTAL
13	TOTAL	SEM	SEM	SEM	SUPL	TOTAL	-	=	-	_	-	_
14	TOTAL	SEM	SEM	SEM	SUPL	-	-	-	-	-	-	TOTAL
15	SEM	SEM	SEM	SEM	TOTAL	-	-	-	-	-	-	TOTAL
16	TOTAL	SUPL	SEM	SUPL	-	-	_	-	-	-	TOTAL	TOTAL
17	SUPL	SEM	SEM	SEM	SUPL	1-	-	-	-	-	-	TOTAL
18	SEM	SUPL	SEM	SEM	TOTAL	-	-	_	-	-	-	TOTAL
19	SUPL	SEM	SEH	SEM	TOTAL	-	-	-	-	-	-	TOTAL
20	TOTAL	SUPL	SEM	SEM	TOTAL	-	=	-	-	-	-	TOTAL
21	TOTAL	TOTAL	SUPL	SUPL	TOTAL	TOTAL	-	-	-	-	-	-
55	TOTAL	TOTAL	TOTAL	TOTAL	-	-	-	-	-	-	TOTAL	TOTAL
53	SUPL	SEM	SUPL	SUPL	-	-	-	_	-	-	TOTAL	TOTAL
24	SUPL	SUPL	SUPL	TOTAL	-	-	-	-	-	-	TOTAL	TOTAL
25	TOTAL	SUPL	SUPL	TOTAL	-	-	-	_	-	-	TOTAL	TOTAL
56	SUPL	SEM	SEM	SEM	TOTAL	-	-	-	_	-	-	TOTAL
27	SUPL	SEM	SUPL	SUPL	TOTAL	TOTAL	-	_	-	_	SUPL -	SUPL
58	TOTAL	SUPL	SEM	SUPL	TOTAL	TOTAL	-	_	-	-	_	-
29	SUPL	SEM	SEM	SEM	SUPL	TOTAL	_	_	-	-	_	SUPL
30	SEM TOTAL	SEM	SEM	SEM	TOTAL	-	-	_	-	-	TOTAL	TOTAL
31		SUPL	SUPL SUPL	TOTAL	_	_	_	_	_	_	TOTAL	TOTAL
32	TOTAL	TOTAL SEM	SUPL	TOTAL	_		_	_		_	TOTAL	TOTAL
33 34	SUPL TOTAL	TOTAL	SUPL	TOTAL TOTAL		_	_	_	_	_	TOTAL	TOTAL
35	SUPL	SUPL	SEM	SEM	TOTAL	_	_	_	_	_		TOTAL
36	TOTAL	TOTAL	SUPL	TOTAL	IUIAL	_	_	_	_	_	TOTAL	TOTAL
37	TOTAL	SUPL	SUPL	TOTAL	TOTAL	_	_	_	_	_	-	TOTAL
38	SUPL	SUPL	SEM	SEH	SUPL	_	_	_	-	_	_	TOTAL
39	SUPL	SEM	SEM	SEM	SUPL	_	_	-	_	_	_	TOTAL
40	SUPL	SEM	SEM	SEM	SEM	-	-	-	_	_	_	TOTAL
41	TOTAL	TOTAL	SUPL	TOTAL	_	_	~	_	_	_	TOTAL	TOTAL
42	TOTAL	TOTAL	TOTAL	TOTAL	_	_	_	_	_	_	TOTAL	TOTAL
43	TOTAL	SUPL	SUPL	SUPL	TOTAL	-	_	_	-	-	-	TOTAL
44	TOTAL	SUPL	SUPL	TOTAL	-	, = ,	_	_	-	-	TOTAL	TOTAL
45	SUPL	SEM	SEM	SEM	TOTAL	_	_	-	-	-	-	TOTAL
46	TOTAL	SUPL	SUPL	SUPL	SUPL	_	-	_	-	_	-	TOTAL
47	SUPL	SUPL	SUPL	TOTAL	-	-	_	-	~	-	TOTAL	TOTAL
48	TOTAL	TOTAL	SUPL	TOTAL	-	-	-	-	-	-	TOTAL	TOTAL
49	TOTAL	TOTAL	TOTAL	TOTAL	-	-	-	-	-	-	TOTAL	TOTAL


QUADRO 10 - Classificação Mensal da Demanda de Água, para a Cultura de Arroz, ao Nível de 75% de Probabilidade, Referente ao Trimestre mais Chuvoso

Ν°	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1	TOTAL	-	-	-	_	-	_	-	_	-	TOTAL	SUPL
2	TOTAL	-	-	' -	-	-	-	-	-	-	TOTAL	TOTAL
3	TOTAL	TOTAL	TOTAL	-	-	-	-	-	-	-	-	-
4	TOTAL	-	-	-	-	-	-	-	-	-	SUPL	SUPL
5	TOTAL	TOTAL	TOTAL	-	-	-	-	-	-	_	-	-
6	TOTAL	TOTAL	SUPL	-	-	-	-	~	-	-	-	_
7	-	TOTAL	SUPL	TOTAL	~	•	-	-	-	_	-	-
8	-	TOTAL	SUPL	SUPL	-	-	-	-	_	-	-	-
9	-	SUPL	SEM	SEM	-	-	-	-	-	-	-	-
10	-	TOTAL	SEM	SUPL	-	-	-	-	-	-	-	-
11	-	SUPL	SEM	SEH		-	-	_	-	-	-	-
12	-	SEM	SEH	SEH	-	-	-	-	_	-	•	-
13	-	SEM	SEM	SEM	-	-	-	-	-	-	-	-
14	-	SEM	SEM	SEM	-	~		-	_	-	-	-
15	-	SEM	SEM	SEM	-	-	-	-	_	-	-	-
16	TOTAL	SUPL	SEM	-	-	-	-		-	-	-	-
17	-	SEM	SEM	SEM	-	-	-	-	-	-	-	-
18	-	SUPL	SEM	SEM	-	-	-	-	-	-	-	-
19	-	SEM	SEM	SEM	-	-	-	-	-	-	-	-
20	-	SUPL	SEM	SUPL	-	_	-	-	-	-	-	-
21	-	TOTAL	SUPL	SUPL	-	_	-	-	-	-	-	-
55	-	TOTAL	TOTAL	TOTAL	-	-	-	-			-	_
23	SUPL	SUPL	SUPL	-	-	-		-	-	-	-	_
24	SUPL	SUPL	SUPL	-	-	-	-	-	-	-	_	_
25	TOTAL	SUPL	SUPL	-	_	-	-	-	_	-	-	-
26	-	SEM	SEM	SEH	_	-	-	-	_	_	-	-
27	SUPL	SUPL	SUPL	-	-	-	-	_	_	_	_	_
58	-	SUPL	SEM	SUPL	-	-	_	_		-	_	_
29	-	-	SEM	SEH	SUPL	_	_		-	-	_	_
30	-	SEH	SEM	SEM		_	-	_	_	_	-	-
31	-	TOTAL	SUPL	TOTAL	_	_	_	-	-	-	-	_
32	TOTAL	TOTAL	SUPL	-	-	-	-	_	-	-	_	_
33	SUPL	SEM	SUPL	-	_	-	-	-	_	_	_	_
34	TOTAL	TOTAL	SUPL	-	-	·-	-	_	_		-	_
35	-	SUPL	SEM	SEM	-	-	-	_	-	_	_	-
36	TOTAL	TOTAL	SUPL	-	-	_	-		-	-	-	_
37	-	TOTAL	SUPL	TOTAL	_	-	_	_	-	-	-	-
38	-	SUPL	SEM	SEM	-	-	-	-	_	-	-	-
39	-	SEM	SEM	SEM	-	_	_	_	_	_	_	_
40	-	SEM	SEM	SEM	_	-	-	_	_	-	-	_
41	TOTAL	TOTAL	TOTAL	-	-	-	-	-	-	-	-	-
42	-	TOTAL	TOTAL	TOTAL	_	_	_	_	_	-	_	_
43	-	SUPL	SUPL	SUPL	-	_	_	_	_	-	-	_
44	TOTAL	SUPL	SUPL	-	-	-	-	-	-	_	-	~
45	-	SUPL	SEM	SEM	-	-	_	-	_	-	_	_
46	-	SUPL	SUPL	SUPL	-	-	_	_	_	_	-	_
47	SUPL	SUPL	SUPL	-	-	_	_	-	-	-	-	_
48	TOTAL	TOTAL	SUPL	-	_	-	-	-	-	-	-	-
49	TOTAL	TOTAL	TOTAL	-		-	_	-	_	_	-	_

QUADRO 11 - Classificação Mensal da Demanda de Água, para a Cultura de Arroz, ao Nível de 75% de Probabilidade, Referente ao Semestre mais Chuvoso

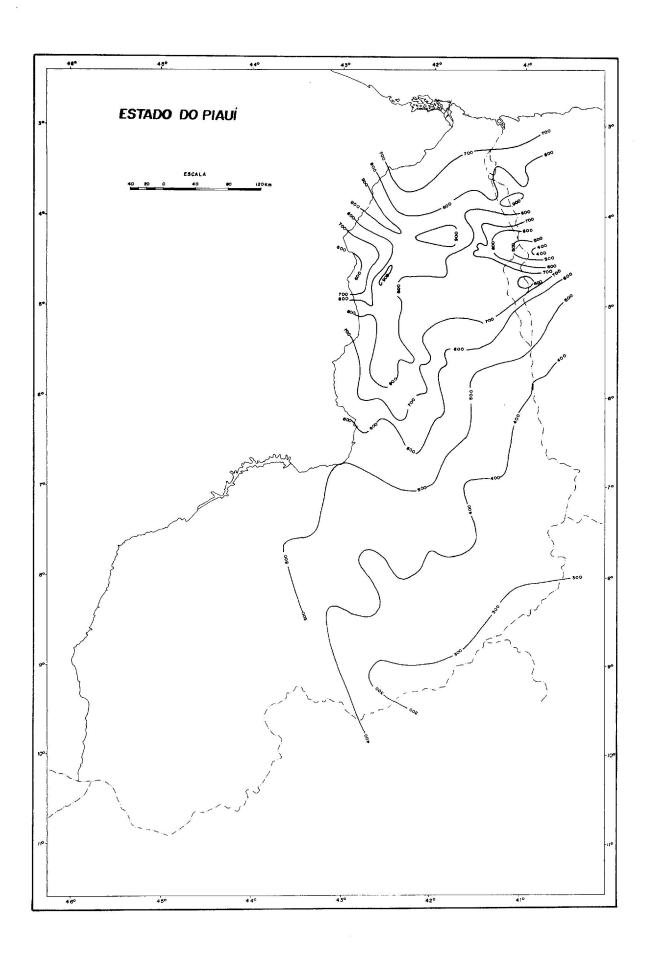

N _O	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1	TOTAL	SUPL	TOTAL	TOTAL	-	-	_	-	_	~	TOTAL	SUPL
2	TOTAL	TOTAL	TOTAL	TOTAL'	-	-	· -	-		_	TOTAL	TOTAL
3	TOTAL	TOTAL	TOTAL	TOTAL	-	-	-	-	-	-	TOTAL	TOTAL
4	TOTAL	SUPL	SUPL	-	-	-	-	-	-	TOTAL	SUPL	SUPL
5	TOTAL	TOTAL	TOTAL	TOTAL	-	-	-	=	-	-	TOTAL	TOTAL
6	TOTAL	TOTAL	SUPL	TOTAL	-	-	_	-	-	-	TOTAL	TOTAL
7	TOTAL	TOTAL	SUPL	TOTAL	TOTAL	-	-	-	-	-	-	TOTAL
8	TOTAL	TOTAL	SUPL	SUPL	TOTAL	-	-	-	-	-	-	TOTAL
9	TOTAL	SUPL	SEM	SEM	TOTAL	TOTAL	-		-	-	-	-
16	TOTAL	TOTAL	SEM	SUPL	TOTAL	TOTAL	-	-	-	-	-	-
11	TOTAL	SUPL	SEM	SEM	SUPL	TOTAL	-	_	-	-	-	-
12	TOTAL	SEM	SEM	SEM	SUPL	-	-	-	-	-	-	TOTAL
13	TOTAL	SEM	SEM	SEM	SUPL	TOTAL	1-	_	-	_	-	-
14	TOTAL	SEM	SEH	SEM	SUPL	-	-	-	_	-	-	TOTAL
15	SUPL	SEM	SEM	SEM	TOTAL	-	-	_	_	_	-	TOTAL
16	TOTAL	SUPL	SEM	SUPL	-	-	-	-	_		TOTAL	TOTAL
17	SUPL	SEM	SEM	SEM	SUPL	-	-	_	-	-	-	TOTAL
18	SEM	SUPL	SEM	SEM	TOTAL	_	-	-	-	-	-	TOTAL
19	SUPL	SEH	SEH	SEM	TOTAL	_	-	-	-	-	_	TOTAL
50	TOTAL	SUPL	SEM	SUPL	TOTAL	_	_	_	_	-	-	TOTAL
21	TOTAL	TOTAL	SUPL	SUPL	TOTAL	TOTAL	_	-	-	-	-	_
55	TOTAL	TOTAL	TOTAL	TOTAL	-	-	-	-	-	_	TOTAL	TOTAL
23	SUPL	SUPL	SUPL	TOTAL	_	_	_	_		_	TOTAL	TOTAL
24	SUPL	SUPL	SUPL	TOTAL	_	_	_	-	-	-	TOTAL	TOTAL
25	TOTAL	SUPL	SUPL	TOTAL	-	-	-	-	_	_	TOTAL	TOTAL
26	SUPL	SEM	SEM	SEM	TOTAL	_	_	-	_	-	-	TOTAL
27	SUPL	SUPL	SUPL	SUPL		-		_		_	SUPL	TOTAL
28	TOTAL	SUPL	SEM	SUPL	TOTAL	TOTAL	-	_	-	_	-	-
29	SUPL	SEM	SEM	SEM	SUPL	TOTAL	_	_	_	_	_	_
30	SUPL	SEM	SEM	SEM	TOTAL	-	-	_	_		_	SUPL
31	TOTAL	TOTAL	SUPL	TOTAL	- TOTAL	_	_	_	_	_	TOTAL	TOTAL
			SUPL		_	_	-	_	_	-	TOTAL	TOTAL
32	TOTAL SUPL	TOTAL SEM	SUPL	TOTAL TOTAL	_	_	_	_		_	TOTAL	TOTAL
34			SUPL	TOTAL		_	_	_		_	TOTAL	TOTAL
	TOTAL	TOTAL			TOTAL	_	_	_	_	_	-	TOTAL
35 36	TOTAL	SUPL	SEM SUPL	SEM TOTAL	TOTAL	_	_	_	_	_	TOTAL	TOTAL
	TOTAL	TOTAL		TOTAL	TOTAL	_	_	_	_	_	-	TOTAL
37	TOTAL	TOTAL	SUPL		SUPL	_	-		_	_	-	TOTAL
38 39	SUPL SUPL	SUPL SEM	SEM SEM	SEM SEM	SUPL	_	_		_	-	_	TOTAL
				SEM	SUPL	_	_	_	_	_	_	TOTAL
40	SUPL	SEM	SEM			_			_	-	TOTAL	TOTAL
41	TOTAL	TOTAL	TOTAL	TOTAL	-	-	_	_	_	-	TOTAL	TOTAL
42	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL		5 7	_	_	_	-	TOTAL
43	TOTAL	SUPL	SUPL	SUPL	TOTAL	-	-		_		TOTAL	
44	TOTAL	SUPL	SUPL	TOTAL	- TOTAL		-	10000	-	-	TUTAL	TOTAL TOTAL
45	SUPL	SUPL	SEM	SEM	TOTAL	~	-	_	-		_	
46	TOTAL	SUPL	SUPL	SUPL	SUPL	-	-	_	1.	-		TOTAL
47	SUPL	SUPL	SUPL	TOTAL	-	-	-	_	-	-	TOTAL	TOTAL
48	TOTAL	TOTAL	SUPL	TOTAL	-	-	_	_	-	-	TOTAL	TOTAL
49	TOTAL	TOTAL	TOTAL	TOTAL	-	-	_	-	-	_	TOTAL	TOTAL

FIGURA 1 - Campo de Altura de Precipitação Dependente (mm), no Trimestre mais Chuvoso, ao Nível de 25% de Probabilidade, Baseado em Dados Observados e Ajustados, Segundo a Distribuição Gama Incompleta, para o Estado do Piauí.

. .

FIGURA 2 - Campo de Altura de Precipitação Dependente (mm), no Trimestre mais Chuvoso, ao Nível de 50% de Probabilidade, Baseado em Dados Observados e Ajustados, Segundo a Distribuição Gama Incompleta, para o Estado do Piauí.

concentram-se na microrregião de Teresina, não ultrapassando a 1000 mm.

A Figura 3 representa o campo de altura trimestral de precipitação dependente ao nível de 75% de probabilidade. A área onde se verificam os valores mais elevados de precipitação trimestral situa-se na microrregião de Teresina, alcançando 800 mm. Os valores diminuem para leste do Estado.

A Figura 4 apresenta os valores médios de precipitação pluvial dos trimestres mais chuvosos, que ocorrem com maior freqüência entre janeiro e abril. Estes resultados mostraram-se compatíveis com aqueles obtidos pela SUDENE (1980), MARQUES (1981), LIMA (1983), CLIMANÁLISE (1986), e NIMER (1989).

4.2. <u>Semestres mais Chuvosos</u>

As Figuras 5, 6 e 7, referentes aos níveis de 75, 50 e 25% de probabilidade, respectivamente, permitem obter resultados quanto ao campo de altura de chuva esperada nos semestres mais chuvosos.

Ressalta-se que as maiores lâminas esperadas, ao nível de 75% de probabilidade, são encontradas nas microrregiões de Teresina, do Baixo Parnaíba Piauiense e do Litoral Piauiense, abrangendo uma pequena parte da microrregião do Médio Parnaíba.

A ocorrência de valores bem mais elevados, ao nível de 50%, acha-se exatamente na porção centro-oeste, que vai

FIGURA 3 - Campo de Altura de Precipitação Dependente (mm), no Trimestre mais Chuvoso, ao Nível de 75% de Probabilidade, Baseado em Dados Observados e Ajustados, Segundo a Distribuição Gama Incompleta, para o Estado do Piauí.

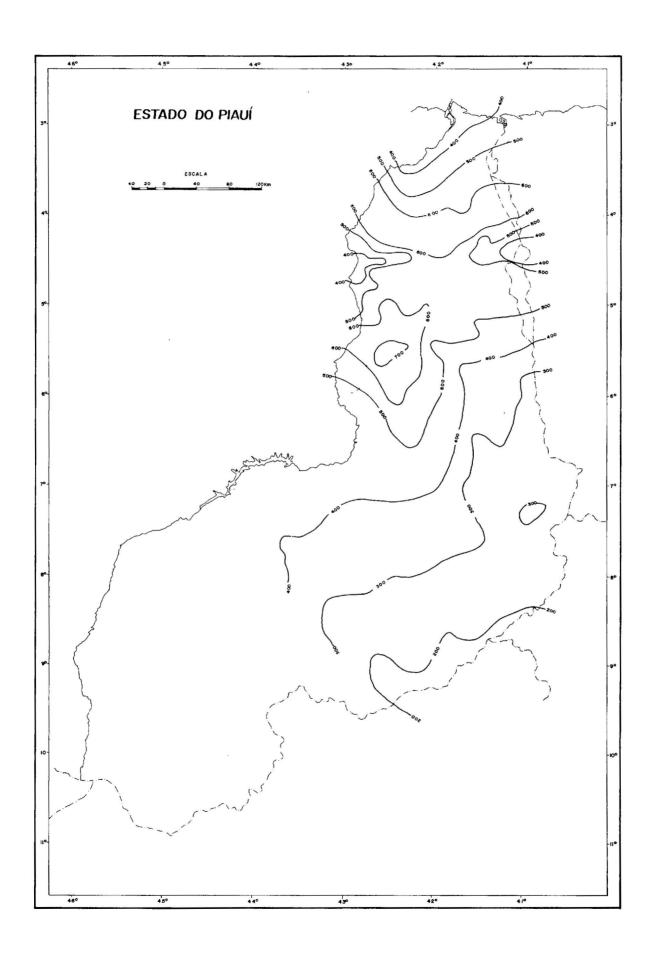


FIGURA 4 - Campo das Precipitações Médias (mm), dos Trimestres mais Chuvosos, para o Estado do Piauí, Baseado em Dados Observados nos Locais Indicados (*).

(*) A Combinação das Três Letras em cada Localidade Indentifica as Iniciais dos Meses mais Chuvosos. Para Identificar as Microrregiões Geográficas e os Municípios, Recomenda-se Sobrepor ao Campo o Encarte Disponível no Interior da Sobrecapa.

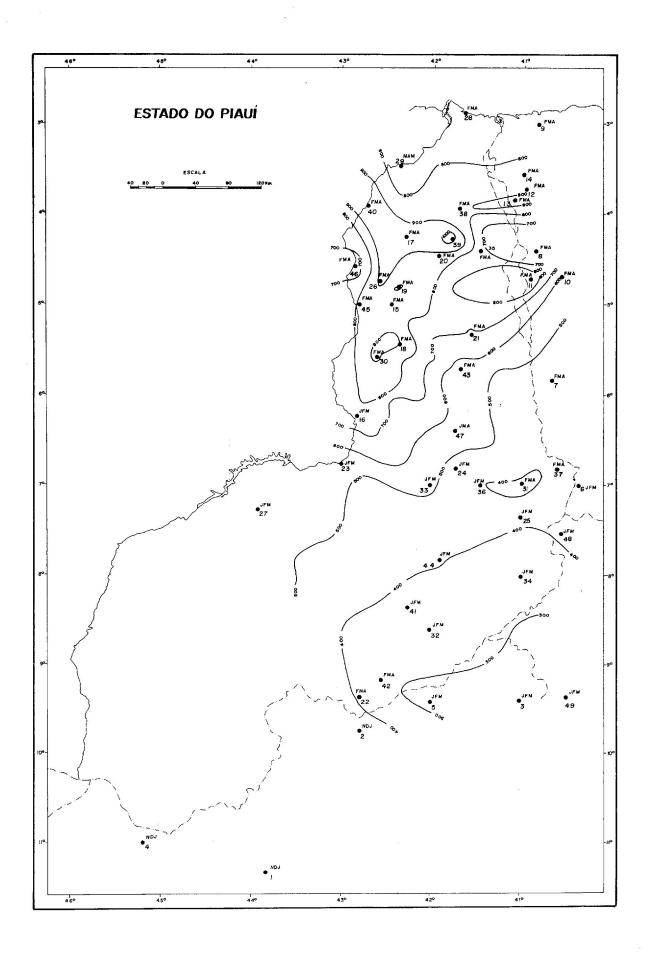


FIGURA 5 — Campo de Altura de Precipitação Dependente (mm), no Semestre mais Chuvoso, ao Nível de 75% de Probabilidade, Baseado em Dados Observados e Ajustados, Segundo a Distribuição Gama Incompleta, para o Estado do Piauí.

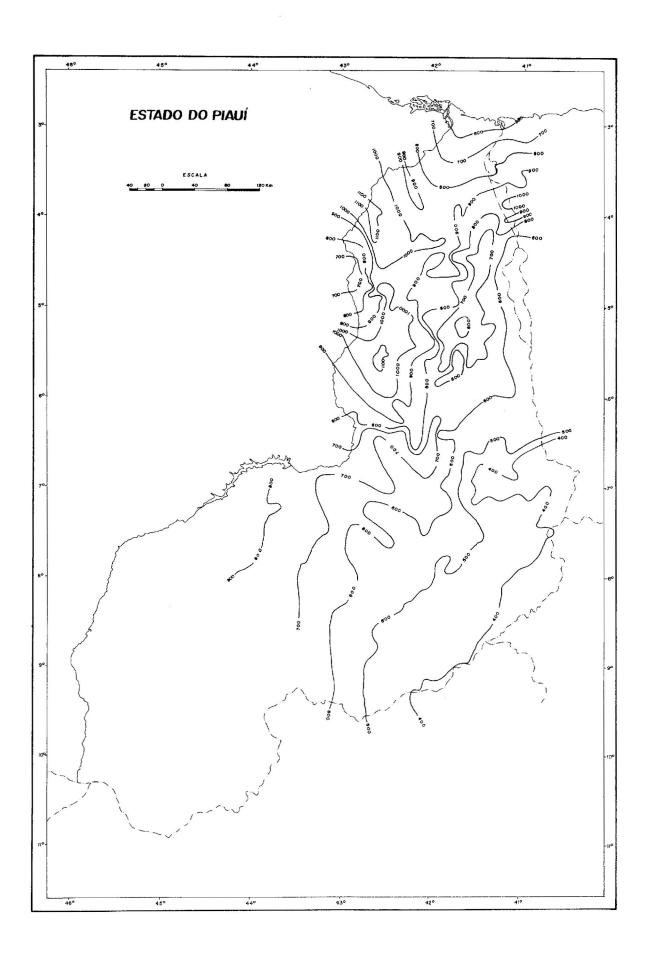


FIGURA 6 - Campo de Altura de Precipitação Dependente (mm), no Semestre mais Chuvoso, ao Nível de 50% de Probabilidade, Baseado em Dados Observados e Ajustados, Segundo a Distribuição Gama Incompleta, para o Estado do Piauí.

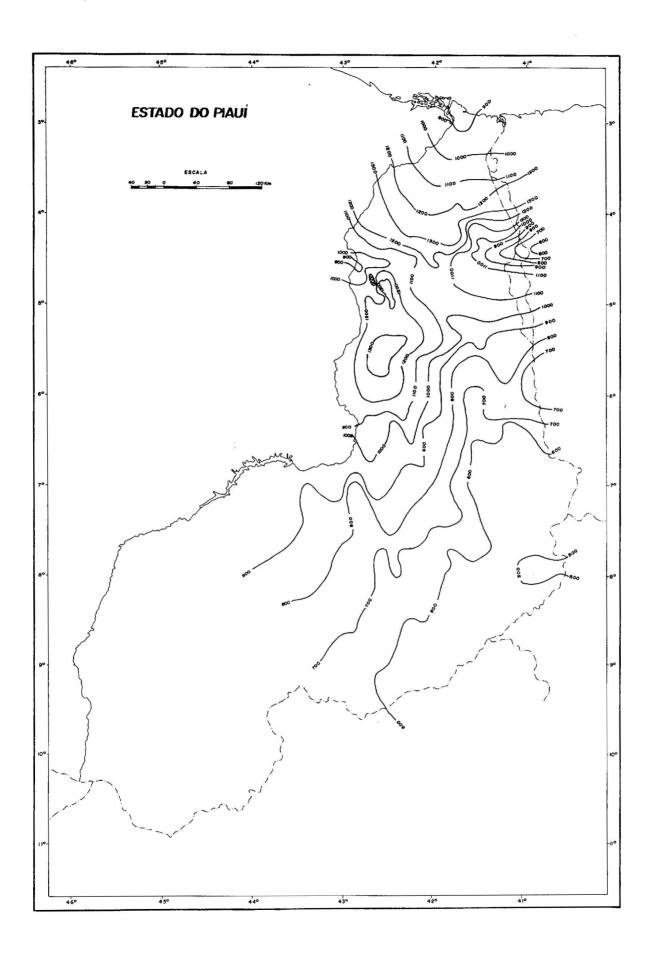
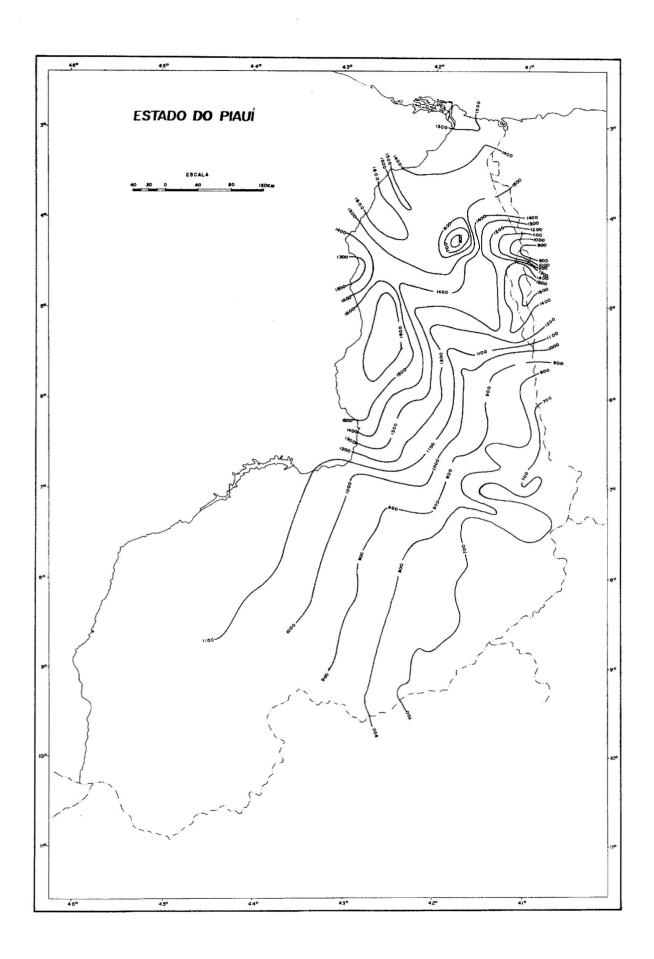



FIGURA 7 - Campo de Altura de Precipitação Dependente (mm), no Semestre mais Chuvoso, ao Nível de 25% de Probabilidade, Baseado em Dados Observados e Ajustados, Segundo a Distribuição Gama Incompleta, para o Estado do Piauí.

das microrregiões do Médio Parnaíba e de Campo Maior até o litoral do Estado.

A Figura 7 mostra a precipitação dependente, ao nível de 25% de probabilidade, nos semestres mais chuvosos que, a partir da microrregião do Médio Parnaíba, tendem a crescer até o litoral e a diminuir para o leste.

A Figura 8 mostra os valores médios de precipitação pluvial para os semestres mais chuvosos, que correspondem aos meses de dezembro a maio, no centro-norte; de janeiro a junho, no litoral; e de novembro a abril no centro-sul e oeste.

De modo geral, observa-se, em todos os campos de precipitação, valores mais elevados nas microrregiões de Teresina, do litoral Piauiense e parte da região de Campo Maior. Tais valores mais elevados de precipitação ocorrem em virtude da influência de correntes perturbadas de norte, que são representadas pelo deslocamento da Zona de Convergência Intertropical (ITCZ), sistema de correntes perturbadas de oeste, representadas por linhas de instabilidades tropicais (IT). Além disso, o acréscimo de precipitação resultante de influência orográfica é gerado pela serra da Ibiapaba, na divisa do Piauí com o Ceará, conforme NIMER (1989).

4.3. Aptidão Agrícola

As Figuras 9 e 10 referem-se à cultura do arroz, de acordo com os critérios adotados para a classificação da aptidão agrícola, dentro dos trimestres e semestres mais

FIGURA 8 - Campo das Precipitações Médias (mm), nos Semestres mais Chuvosos, para o Estado do Piauí, Baseado em Dados Observados nos Locais Indicados (*).

(*) A Combinação das Letras Identifica as Iniciais dos Meses mais Chuvosos. Para Identificar as Microrregiões Geográficas e os Municípios, Recomenda-se Sobrepor ao Campo o Encarte Disponível no Interior da Sobrecapa.

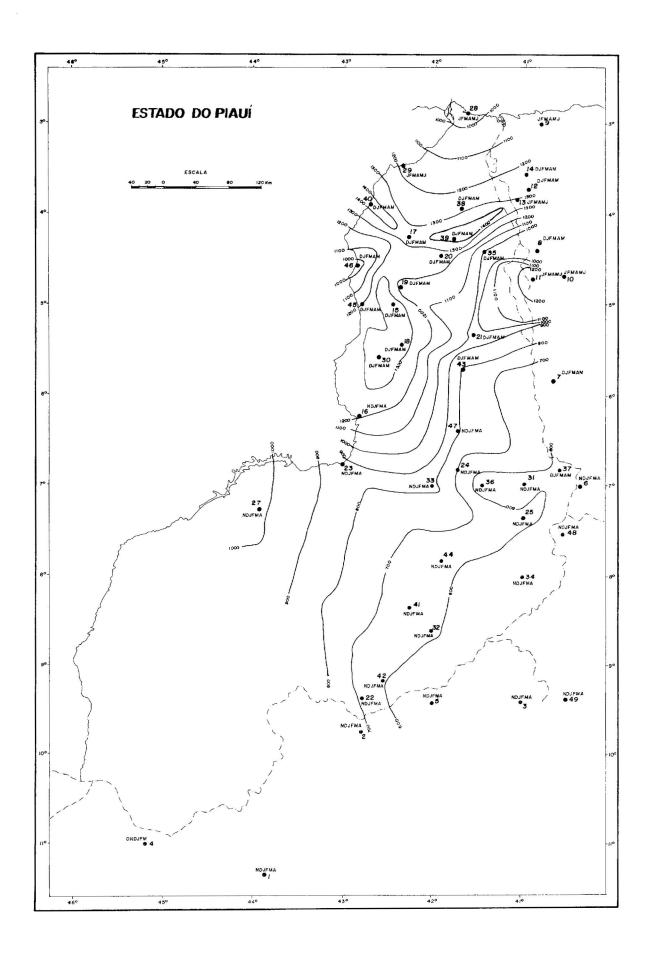
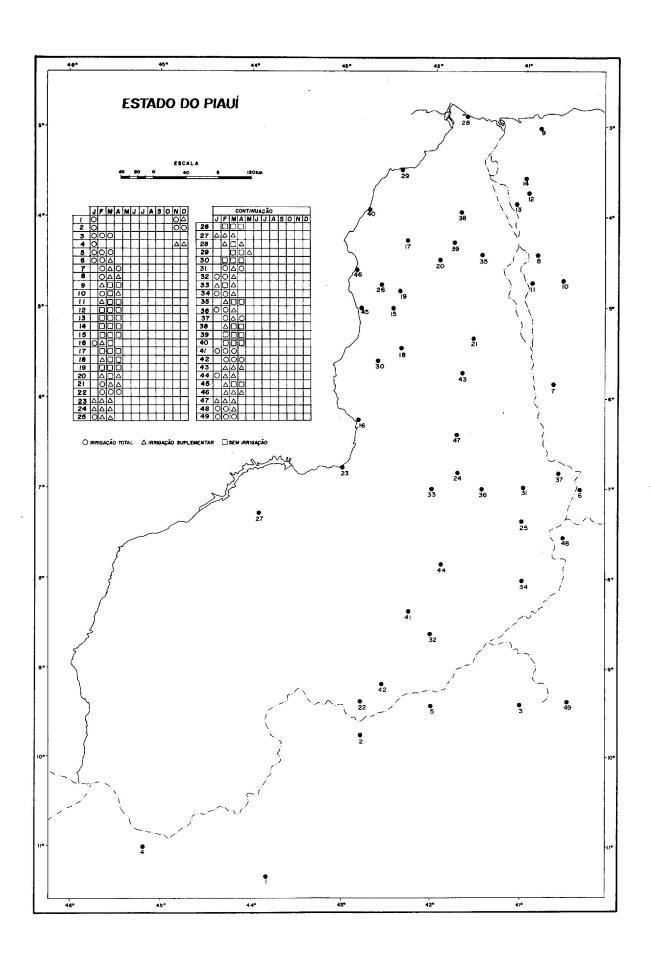



FIGURA 9 - Classificação Mensal da Demanda de Água para a Cultura do Arroz, de Acordo com o Trimestre mais Chuvoso, ao Nível de 75% de Probabilidade, Calculado Segundo a Distribuição Gama Incompleta, a partir de Dados Observados, Incluindo-se os Postos Limítrofes ao Estado do Piauí.

ð

FIGURA 10 - Classificação Mensal da Demanda de Água para a Cultura do Arroz, de Acordo com o Semestre mais Chuvoso, ao Nível de 75% de Probabilidade, Calculado Segundo a Distribuição Gama Incompleta, a Partir de Dados Observados, Incluindo-se os Postos Limítrofes ao Estado do Piauí.

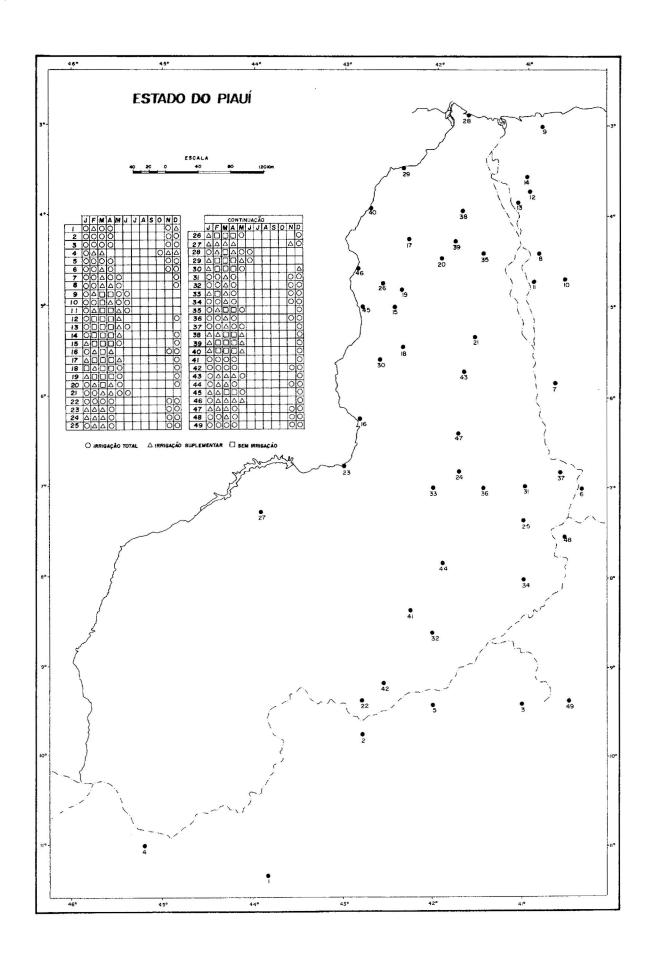


FIGURA 11 - Classificação Mensal da Demanda de Água para a Cultura de Feijão e de Milho, de Acordo com o Trimestre mais Chuvoso, ao Nível de 75% de Probabilidade, Calculado Segundo a Distribuição Gama Incompleta, a Partir de Dados Observados, Incluindo-se os Postos Limítrofes ao Estado do Piauí.

u

chuvosos. Levando-se em consideração o ciclo de 120 dias para a referida cultura, verifica-se, por exemplo, que a mesma é viável no município de Altos, pois somente em janeiro tem-se irrigação suplementar (região apta).

No município de Dirceu Arcoverde, por outro lado, a cultura do arroz não é viável, pois a precipitação do trimestre e do semestre mais chuvosos, no período de novembro a abril, determina a necessidade de irrigação total em todos os meses (região inapta).

Em Landri Sales, observa-se que no trimestre e semestre mais chuvosos, com período de novembro a abril, somente dezembro exige irrigação total; no restante dos meses necessita-se de irrigação suplementar, sendo, portanto, considerada parcialmente apta.

No que diz respeito às Figuras 11 e 12, a mesma classificação anteriormente mencionada é feita, porém para as culturas do milho e feijão, no tocante ao trimestre e semestre mais chuvosos. Considerando-se ciclo de 70 e 120 dias, para milho verde e para produção de grãos, respectivamente, nota-se, no município de Altos, que a precipitação dependente é suficiente, caracterizando-se, portanto, como uma região apta. Para o feijão, ciclo de 75 dias, as mesmas considerações anteriores são válidas.

Quanto ao município de Dirceu Arcoverde, a situação é a mesma descrita anteriormente, para a cultura do arroz.

Em Landri Sales, existe uma pequena diferença, isto é, não há necessidade de se irrigar em fevereiro; contudo, no restante dos meses, exige-se irrigação suplementar,

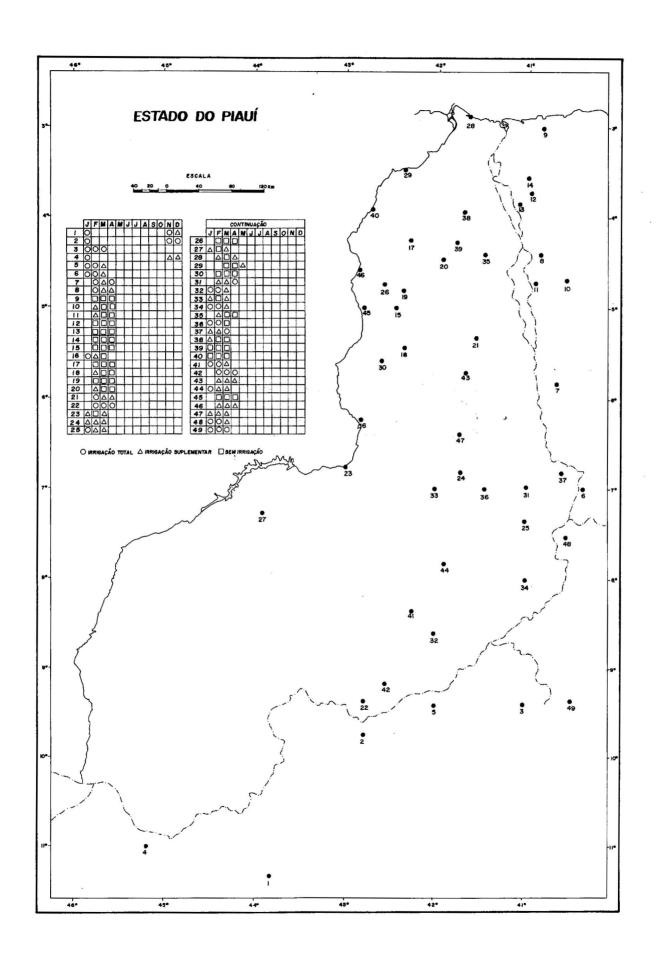
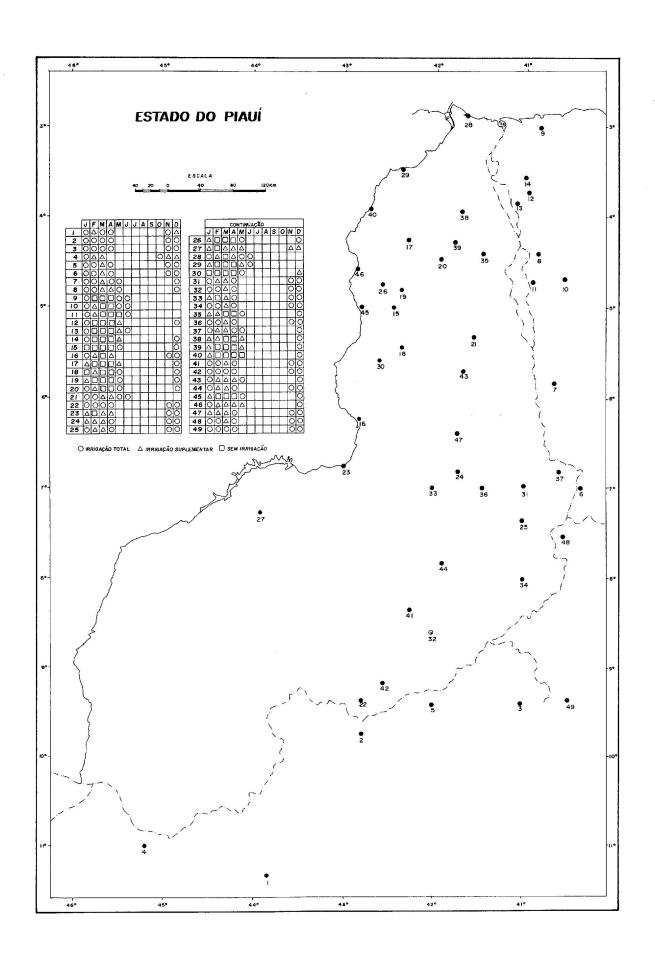



FIGURA 12 - Classificação Mensal da Demanda de Água para a Cultura de Feijão e de Milho, de Acordo com o Semestre mais Chuvoso, ao Nível de 75% de Probabilidade, Calculado Segundo a Distribuição Gama Incompleta, a Partir de Dados Observados, Incluindo-se os Postos Limítrofes ao Estado do Piauí.

ť

indicando assim que para ambas as culturas a região é parcialmente apta.

As análises realizadas permitem afirmar, ainda, que as culturas acima citadas podem ser realizadas com pequenos investimentos em sistemas de irrigação, nos municípios de Altos, Barras, Beneditinos, Luzilândia, Monsenhor Gil, Piripiri e Porto. Nestes municípios, torna-se necessária a irrigação suplementar, no máximo, em um mês.

A margem de risco em um ano agrícola considerado pessimista é maior nos municípios de São Miguel do Tapuio, Pio IX, Picos, Jaicós, Paulistana, São Raimundo Nonato, Dom Inocêncio e Dirceu Arcoverde, isto porque tais localidades apresentam características semi-áridas, tornando possível o cultivo somente com o uso de irrigação total.

5. RESUMO E CONCLUSÕES

A nível de planejamento agrícola, a chuva constituise em elemento de destaque, uma vez que, a partir do
conhecimento de suas distribuições temporal e espacial,
pode-se indicar as culturas mais adequadas e a exigência de
irrigação suplementar, quando necessária, visando sempre a
melhor produtividade.

Os resultados obtidos na presente pesquisa permitem concluir que o uso da distribuição gama incompleta satisfaz plenamente a análise que se pretendeu, ou seja, o estudo das precipitações do Estado do Piauí para fins de determinação de localidades aptas, parcialmente aptas e inaptas, para as culturas do feijão, do arroz e do milho, bem como o planejamento da irrigação suplementar para o Estado. Ademais, nada impede que se apliquem os resultados das análises estatísticas realizadas para outras culturas, desde que se conheçam as necessidades hídricas das mesmas.

Para o sul do Estado, infelizmente, os dados coletados, até o momento, não permitem ainda análises semelhantes. É necessário que se implante uma rede de estações com maior densidade para todo o Estado, principalmente para o sul, área mais carente de observações.

Com base nos critérios adotados na classificação da aptidão agrícola, evidencia-se a necessidade de planejamentos adequados, frente à conhecida irregularidade da distribuição temporal das chuvas, sem os quais as atividades agrícolas no Estado do Piauí tornam-se de alto risco.

Os resultados obtidos nesta pesquisa representam um importante instrumento de planejamento agrícola, pois cobrem quase todo o Estado, tendo-se trabalhado com metodologia científica confiável e coloca-se à disposição dos administradores vasta gama de informações sobre o comportamento das chuvas e suas expectativas, em diversos níveis de probabilidade.

BIBLIOGRAFIA

BIBLIOGRAFIA

- AZEVEDO, D. da C. <u>Chuvas no Brasil: regime, variabilidade e probabilidades mensais e anuais</u>. Brasília, Ministério da Agricultura/DNM, 1974. 41p.
- BARGER, G.L. & THOM, H.C.S. Evaluation of Drought Hazard. Agronomy Journal, 41 (11): 519-526, 1949.
- BRAGA, C.C. <u>Contribuição ao estudo da chuya no Estado do Rio Grande do Norte</u>. Campina Grande, UFPB. 1984. 84p. (Tese M.S.).
- CLIMANÁLISE; Monitoramento e análise climática. Brasília, INEMET, 1986. Número especial.
- COMPANHIA DE DESENVOLVIMENTO DO PIAUÍ. <u>Demanda de água, para algumas culturas no Estado do Piauí</u>. Projeto de Irrigação de Piracuruca. Teresina, 1989. v. 3.
- FRIZZONE, J.A. <u>Análise de cinco modelos para o cálculo da distribuição e frequência de precipitação na região de Vicosa-MG</u>. Viçosa, MG, Impr. Univ., 1979. 100p. (Tese, M.S.).
- HARGREAVES, G.A. Monthly precipitation probabilities for northeast Brazil. Logan, Utah State University, 403p. 1973.
- LIMA, M.G. Critérios climatológicos para a delimitação do semi-árido no Estado do Piauí. <u>Ciências Agrárias</u>, <u>1</u>(1):33-61, 1983.

- MARQUES, V.S. <u>Estudos da energética e do fluxo de vapor d'água na atmosfera sobre o nordeste brasileiro</u>. São José dos Campos, INPE, 1981. 129p. (Tese M.S.).
- MAROUELLI, W.A. <u>Análise de distribuição das probabilidades</u> de irrigação, visando ao manejo da irrigação suplementar. Viçosa, MG, Impr. Univ., 1983. 123p. (Tese M.S.).
- MASSEY, F.J. The Kolmogorov-Smirnov test for goodness of fit. <u>Journal of American Meteorological Association</u>, 46. 68-78, 1980.
- MELO, S.P. Modelo versátil para estimar as probabilidades de dias chuvosos em intervalos mensais e de alturas diárias de chuva. Viçosa, MG, Impr. Univ., 1989. 93p. (Tese M.S.).
- MIELKE, P.W. Another family, of distributions for describing and analizing precipitation data. <u>Journal of Applied Meteorology</u>, (12): 275, 1973.
- Convenient beta distribution likelihood techniques for describing and comparing meteorological data. <u>Journal Applied Meteorology</u>, (15): 181-3, 1975.
- Simple iterative procedures for two-parameter gamma distribution maximum. Likelihood estimates. <u>Journal Applied Meteorology</u> (15): 181-3, 1976.
- NIMER, E. <u>Pluviometria e recursos hídricos de Pernambuco e</u> Paraíba. Rio de Janeiro, IBGE, 1979. 117p.
- . <u>Climatologia do Brasil</u>. 2. ed. Rio de Janeiro, IBGE, DRNEA, 1989. 442p.
- SAMANI, Z.A. & HARGREAVES, G.H. <u>A crop water evaluation</u> <u>manual for Brazil</u>. Logan, Utah, Utah State University, 1985. 87p.
- SEDIYAMA, G.C.; CHAMCELLOR, W.J.; BURKHARDT, T.H.; GOSS, J.R. Simulação de parâmetros climáticos para a época de crescimento das plantas. <u>Ceres.</u>, <u>25</u> (141): 455-66, 1978.
- SILVA, R.A. <u>Probabilidade de chuva no Estado do Ceará</u>. Fortaleza, UFC, 1985. 105p. (Tese M.S.).
- SUPERINTENDÊNCIA PARA O DESENVOLVIMENTO DO NORDESTE. <u>Plano de aproveitamento integrado dos recursos hídricos do nordeste do Brasil</u>. Fase I. Recife, 1980. v. 2. (Estudo climatológico).
- THOM, H.C.S. A note on gamma distribution. Monthly Weather Review, 86 (4): 117-22, 1958.
- Some methods of climatological analysis. Geneve, WMD, 1966. 53p. (Technical Note, 81).

VIANELLO, R.L. <u>Preparação de dados metereorológicos para</u> <u>fins de análise estatística</u>. Viçosa,MG, UFV/Departamento de Engenharia Agrícola. 1988. 18p. (Apostila).

DE VICOLO UNIVERSIDALL OCE SNO ESTADO DO PIAUL ATT ANTICO DIVISÃO POLÍTICO ADMINISTRATIVA - MESO E MICRORREGIÕES GEOGRÁFICAS 1990 BOLAC 20 HORTE PINNEKOL (DEC. ASGRASSISO DO COUTRO-MOSTE PIAMELEC (DET) REGILO 105 CACIPO 11/10/R (U19) MICRORAGINO OD LIÉDIO PLANTACIÓN PLANTACIÓN MICRORAGENAS OF VALENÇO (O PLANTÁDO) THE RESORDER OF PRODUCT OF CONTRACTOR STATE 7 . BICROR: CO 100 CO 100 PORTE 300 PRESIDENCE (CO 100 D) 9 . MICHORRESIAS DE ALOSIANO (OSO) 10. HICKOLOGICO SE SEO GENERO CONTO (OSS) 12. HICKORGENIC 2 IS CHARBOS DO SETREMO SIA. M MESOPRENÃO DO REMIESTE DESCRIPTOR TO BOX 13. MICRORREGIÃO DE PIOS (CCG)
14. LISTORREGIÃO DE PIO IX (029)
15. MICRORREGIÃO DO ALTO MÉ DIO CANINDE (100) 400 EA COPERT CONVENÇÕES CAPITAL CIDADE LIMITE ESTADUAL
LIMITE DE MESORRE LIMITE DE MICRORREGIÃO 420 450 430

> JUNIVERSIDADE ILDERAL DE VIÇÕEA BIBLIOTECA CENTRAL

Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

<u>Baixar</u>	livros	de	Adm	inis	tra	ção

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciência da Computação

Baixar livros de Ciência da Informação

Baixar livros de Ciência Política

Baixar livros de Ciências da Saúde

Baixar livros de Comunicação

Baixar livros do Conselho Nacional de Educação - CNE

Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos

Baixar livros de Economia

Baixar livros de Economia Doméstica

Baixar livros de Educação

Baixar livros de Educação - Trânsito

Baixar livros de Educação Física

Baixar livros de Engenharia Aeroespacial

Baixar livros de Farmácia

Baixar livros de Filosofia

Baixar livros de Física

Baixar livros de Geociências

Baixar livros de Geografia

Baixar livros de História

Baixar livros de Línguas

Baixar livros de Literatura

Baixar livros de Literatura de Cordel

Baixar livros de Literatura Infantil

Baixar livros de Matemática

Baixar livros de Medicina

Baixar livros de Medicina Veterinária

Baixar livros de Meio Ambiente

Baixar livros de Meteorologia

Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Música

Baixar livros de Psicologia

Baixar livros de Química

Baixar livros de Saúde Coletiva

Baixar livros de Serviço Social

Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo