Tese apresentada à Pró-Reitoria de Pós-Graduação e Pesquisa do Instituto Tecnológico de Aeronáutica, como parte dos requisitos para obtenção do título de Mestre em Ciências no Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica, área de Física e Química de Materiais Aeroespaciais.

Roberta Jachura Rocha

PROPRIEDADES DE MOLÉCULAS COM POTENCIAL ENERGÉTICO: POTENCIAL DE IONIZAÇÃO DA HIDRAZINA E TERMOCINÉTICA DAS REAÇÕES N₂H₂ + H E N₂H₄ + O

Tese aprovada em sua versão final pelos abaixo assinados:

José Atílio Fritz Fidel Rocco Orientador Francisco Bolivar Correto Machado

Orientador

Prof. Dr. Celso Massaki Hirata Pró-Reitor de Pós-Graduação e Pesquisa

Campo Montenegro São José dos Campos, SP – Brasil 2010

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Dados Internacionais de Catalogação-na-Publicação (CIP) Divisão de Informação e Documentação

Rocha, Roberta Jachura Propriedades de Moléculas com Potencial Energético: Potencial de Ionização da Hidrazina e Termocinética das Reações N₂H₂ + H e N₂H₄ + O. São José dos Campos, 2010. 176f.

Tese de Mestrado – Curso de Pós-Graduação em Engenharia Aeronáutica e Mecânica, área de Física e Química dos Materiais Aeroespaciais – Instituto Tecnológico de Aeronáutica, 2010. Orientadores: Prof. Dr. José Atílio Fritz Fidel Rocco e Prof. Dr. Francisco Bolivar Correto Machado.

1. Hidrazina. 2. Termoquímica. 3. Química Teórica. I. Departamento de Ciência e Tecnologia Aeroespacial. Instituto Tecnológico de Aeronáutica. Divisão de Ciências Fundamentais. II. Departamento de Química.

REFERÊNCIA BIBLIOGRÁFICA

ROCHA, Roberta Jachura. **Propriedades de Moléculas com Potencial Energético: Potencial de Ionização da Hidrazina e Termocinética das Reações N₂H₂ + H e N₂H₄ + O**. 2010. 176f. Tese de Mestrado em Engenharia Aeronáutica e Mecânica – Instituto Tecnológico de Aeronáutica, São José dos Campos.

CESSÃO DE DIREITOS

NOME DO AUTOR: Roberta Jachura Rocha TÍTULO DO TRABALHO: Propriedades de Moléculas com Potencial Energético: Potencial de Ionização da Hidrazina e Termocinética das Reações $N_2H_2 + H e N_2H_4 + O$. TIPO DO TRABALHO/ANO: Tese de Mestrado / 2010

É concedida ao Instituto Tecnológico de Aeronáutica permissão para reproduzir cópias desta tese e para emprestar ou vender cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta tese pode ser reproduzida sem a sua autorização (do autor).

Roberta Jachura Rocha

Departamento de Química – ITA. Praça Marechal Eduardo Gomes, 50 – Vila das Acácias. CEP 12228-900 – São José dos Campos – SP – Brasil.

PROPRIEDADES DE MOLÉCULAS COM POTENCIAL ENERGÉTICO: POTENCIAL DE IONIZAÇÃO DA MOLÉCULA HIDRAZINA E TERMOCINÉTICA DAS REAÇÕES N₂H₂ + H E N₂H₄ + O

Roberta Jachura Rocha

Composição da Banca Examinadora:

Prof.	Dr. Koshun Iha	Presidente - ITA
Prof.	Dr. José Atílio Fritz Fidel Rocco	Orientador - ITA
Prof.	Dr. Francisco Bolivar Correto Machado	Orientador - ITA
Profa.	Dra. Elizabete Yoshie Kawachi	Membro Interno - ITA
Profa.	Dra. Maria Esther Sbampato	Membro Externo - IEAv
	_	

Ao meu pai, para sempre o meu maior incentivador, cujos ensinamentos e amor estarão comigo por todos os dias da minha vida. À minha família e às pessoas queridas, que fazem tudo valer a pena.

AGRADECIMENTOS

Aos meus orientadores, Prof. Dr. Francisco Bolivar Correto Machado e Prof. Dr. José Atílio Fritz Fidel Rocco. Pela orientação, atenção dedicada e confiança mútua. Por todo o ensinamento transmitido e pelo respeito e amizade que surgiram durante este período.

Ao Prof. Dr. Orlando Roberto Neto, que sempre me auxiliou muito proveitosamente em todas as minhas pesquisas.

Aos colegas de pesquisas do ETER. Aos amigos das *happy* e "*unhappy*" *hours*. Que por muitas vezes fizeram as dificuldades serem minimizadas, não só pelas contribuições aos estudos e projetos, mas, principalmente, pelas palavras (ou músicas!) e momentos de amizade.

Aos professores e funcionários do Departamento de Química, pelo ambiente amigável e solícito. Em especial ao Sílvio, que proporcionou meu primeiro contato com o ITA, e ao Prof. Dr. Koshun Iha, por todos os seus conselhos.

Aos professores do Instituto Tecnológico de Aeronáutica, os responsáveis pelo meu aprendizado no período do mestrado.

Aos membros da Banca, pela atenção despendida.

Ao Instituto Tecnológico de Aeronáutica e Departamento de Química por todo o suporte.

E ao CNPq, pelo apoio financeiro ao projeto.

RESUMO

Esta dissertação de mestrado tem como principal objetivo o estudo de duas reações de abstração de hidrogênio, uma delas envolvendo a molécula *trans*-diazeno em sua reação com hidrogênio atômico $(N_2H_2 + H \rightarrow N_2H + H_2)$, e a outra reação envolvendo a molécula hidrazina com oxigênio atômico $(N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH)$. A reação do *trans*-diazeno com o hidrogênio é considerada uma etapa elementar dos mecanismos propostos para a decomposição da hidrazina (N_2H_4) , que é uma molécula amplamente utilizada em uma variada gama de aplicações, como, por exemplo, antioxidantes e combustível para lançadores de satélites e foguetes. A outra reação de hidrazina envolve o oxigênio atômico, que é o principal constituinte em ambientes de órbita terrestre baixa. Esta reação geralmente ocorre quando há escape de hidrazina não queimada dos motores das naves que voam em regiões de órbita terrestre baixa (LEO – *Low Earth Orbit*). Outro objetivo deste trabalho foi o estudo do potencial de ionização da molécula hidrazina. Foram caracterizadas teoricamente as estruturas geométricas de alguns confôrmeros da molécula hidrazina neutra e do seu cátion.

Nestes estudos, os cálculos de estrutura eletrônica foram realizados utilizando diversos métodos da química quântica molecular, tais como os métodos de orbitais moleculares MP2, CCSD(T), CASSCF/MRCI e os métodos da teoria do funcional da densidade MPWB1K, BHandHLYP e BB1K. Para os estudos cinéticos das reações, empregou-se a teoria do estado de transição variacional (TETV) com correções do efeito do tunelamento com os métodos de Wigner, ZCT (*Zero Curvature Tunneling*) e SCT (*Small Curvature Tunneling*).

As duas reações estudadas são exotérmicas e espontâneas e apresentam barreiras clássicas de potencial relativamente baixas. Para a reação do diazeno, os nossos melhores resultados que estão baseados na metodologia monoconfiguracional CCSD(T)/MRE e na metodologia multiconfiguracional CASSCF/MRCI+Q, apresentam valores de barreira clássica de potencial e de energia eletrônica de reação na faixa de 2,9 a 3,3 kcal/mol e de -37,3 a -38,1 kcal/mol, respectivamente. Para a constante de velocidade da reação, nosso melhor resultado baseado na aproximação CVT/SCT a 300 K é igual a 3,0 x 10^{-12} cm³ mol⁻¹s⁻¹. Para a reação da hidrazina com oxigênio atômico, dois caminhos reacionais de abstração de hidrogênio foram estudados, e os nossos melhores resultados, baseados nas metodologias CCSD(T)/CBS//BB1K/aug-cc-pVTZ e CCSD(T)/CBS//MP2/aug-cc-pVTZ, para a energia eletrônica de reação encontram-se na faixa de -20,7 a -21,2 kcal/mol, e para as barreiras de potencial clássicas, nas faixas de 2,0 a 2,5 kcal/mol e de 4,6 a 5,1 kcal/mol para a formação dos estados de transição TS(a) e TS(b), respectivamente. Para a constante de velocidade da reação nossos resultados a 298 K de aproximadamente $0,9 \times 10^{-11}$ cm³ mol⁻¹s⁻¹, estão em excelente concordância com os valores experimentais existentes. No estudo do potencial de ionização da molécula de hidrazina, nossos melhores resultados baseados nas metodologias CCSD(T)/MRE e CASSCF/MRCI indicam para valores entre 8,07 a 7,81 eV, em excelente concordância com o resultado experimental de 8,1 ± 0,15 eV.

ABSTRACT

This aim of this work is the study of two hydrogen abstraction reactions, one of them involving the *trans*-diazene molecule in the reaction with an atomic hydrogen $(N_2H_2 + H \rightarrow N_2H + H_2)$, and the other is the reaction of hydrazine molecule with atomic oxygen $(N_2H_4 + O(^3P) \rightarrow N_2H_3 + OH)$. The *trans*-diazene reaction with atomic hydrogen is regarded as one of the elementary steps of the proposed mechanisms for the hydrazine (N_2H_4) decomposition. This molecule is widely used in a wide range of applications, for example, antioxidants, fuels for aerospace, launchers and rockets. The other reaction of hydrazine involves the atomic oxygen, which is the main constituent of the low earth orbit (LEO) environment. This reaction usually occurs when there is leakage of unburned hydrazine from the spacecrafts engines flying at the LEO. Another objective of this work is to study the ionization potential of hydrazine molecule. In this study, the geometrical structures of the cation and of the conformers of neutral hydrazine molecule were theoretically characterized.

In these studies, electronic structure calculations were performed using various methods of molecular quantum chemistry such as MP2, CCSD(T), CASSCF/MRCI and methods of density functional theory (DFT) MPWB1K, BHandHLYP and BB1K. In order to study the reaction chemical kinetics, it was employed the variational transition state theory (VTST) approach including tunneling corrections with the Wigner (W), zero curvature tunneling (ZCT) and small curvature tunneling (SCT) methods.

The two studied reactions are exothermic and spontaneous, with relatively low potential barriers. For the reaction of diazene, our best results based on the monoconfigurational methodology CCSD(T)/MRE and on the multiconfigurational methodology CASSCF/MRCI+Q, indicates values of the classical potential barrier and electronic energy of the reaction in the range of 2.9 to 3.3 kcal/mol, and of -37.3 to -38.1 kcal/mol, respectively.

For the rate constants of the reaction, our best results based on the CVT/SCT approach at 300 K is equal to $3.0 \times 10^{-12} \text{ cm}^3 \text{ mol}^{-1} \text{s}^{-1}$. For the reaction of hydrazine with atomic oxygen, two reaction paths of hydrogen abstraction were studied, and our best results, based on the methodologies CCSD(T)/CBS//BB1K/aug-cc-pVTZ and CCSD(T)/CBS//MP2/aug-cc-pVTZ, for the electronic energy of reaction is in the range of -20.7 to -21.2 kcal/mol, and for the classical potential barriers, in the range of 2.5 to 5.1 kcal/mol for the formation of the transition states TS(a) and TS(b), respectively. For the rate constants of the reaction, our results at 298 K, are approximately equal to $0.9 \times 10^{-11} \text{ cm}^3 \text{ mol}^{-1} \text{s}^{-1}$ in excellent agreement with the experimental values. In the study of ionization potential of the hydrazine molecule our best results based on the methodologies CCSD(T)/MRE and CASSCF/MRCI indicate a value between 8.07 to 7.81 eV, which is in excellent agreement with the experimental result of 8.1 ± 0.15 eV.

LISTA DE FIGURAS

Figura 1: Gráfico da dependência linear de k com T , de acordo com a equação de
Arrhenius
Figura 2: Representação esquemática da Superfície de Energia Potencial (SEP)30
Figura 3: Perfil energético de uma reação química segundo a teoria do estado de transição
(TST – <i>Transition State Theory</i>)
Figura 4: Perfil de uma reação ao longo do caminho de mínima energia
Figura 5: Estrutura de equilíbrio da molécula <i>trans</i> -N ₂ H ₂ 74
Figura 6: Estrutura de equilíbrio da molécula produto N ₂ H77
Figura 7: Estrutura de equilíbrio do produto H ₂ 79
Figura 8: Conformação do estado de transição N ₂ H ₃ 80
Figura 9: Curva de coordenada de reação intrínseca para a reação $N_2H_2(trans) + H$,
calculada com o método MP2/cc-pVTZ91
Figura 10: Curva de coordenada de reação intrínseca para a reação $N_2H_2(trans) + H$,
calculada com o método MPWB1K/cc-pVTZ91
Figura 11: Variação da constante de velocidade (k) obtida com os cálculos TST, TST/ZCT e
TST/W, em função da temperatura (T), para a reação $N_2H_2(trans) + H$ 101
Figura 12: Variação da constante de velocidade (k) obtida com os cálculos CVT, CVT/ZCT e
CVT/SCT, em função da temperatura (T), para a reação $N_2H_2(trans) + H$ 104
Figura 13: Curvas do caminho de mínima energia (V _{MEP}) e da energia potencial adiabática do
estado fundamental (V_a^o), em função das coordenadas de reação s
Figura 14: Estrutura de equilibrio da molecula nidrazina (N_2H_4) 108

Figura 15: Estrutura de equilíbrio da molécula N ₂ H ₃	
Figura 16: Estrutura de equilíbrio da molécula OH	112
Figura 17: Estrutura de equilíbrio do estado de transição N ₂ H ₃ O - TS(a)	113
Figura 18: Estrutura de equilíbrio do estado de transição N ₂ H ₃ O - TS(b)	115
Figura 19: Curva de coordenada de reação intrínseca para a reação $N_2H_4 + c$	$O(^{3}P)$, no
caminho de formação do estado de transição TS(a), calculada com o método BB pVTZ	1K/aug-cc- 124
Figura 20: Curva de coordenada de reação intrínseca para a reação $N_2H_4 + c$	$O(^{3}P)$, no
caminho de formação do estado de transição TS(b), calculada com o método BB	lK/aug-cc-
pVTZ	
Figura 21: Variação da constante de velocidade (k) obtida com os cálculos TST	, TST/W e
TST/ZCT, juntamente aos resultados experimentais, em função da temperatura ((T), para a
reação $N_2H_4 + O({}^3P)$	134
Figura 22: Curvas do caminho de mínima energia (V _{MEP}) e da energia potencial ad	iabática do
estado fundamental (V_a^G) , em função das coordenadas de reação s, com a formação) do estado
de transição TS(a)	136
Figura 23: Curvas do caminho de mínima energia (V_{MEP}) e da energia potencial ad	iabática do
estado fundamental (V_a^G) , em função das coordenadas de reação s, com a formação) do estado
de transição TS(b)	137
Figura 24: Estrutura de equilíbrio do $N_2H_4^+$ em sua conformação C_{2v}	
Figura 25: Estrutura de equilíbrio do $N_2H_4^+$ em sua conformação C_{2h}	
Figura 26: Estrutura de equilíbrio do $N_2H_4^+$ em sua conformação D_{2h}	140

LISTA DE TABELAS

Tabela 1: Parâmetros geométricos do reagente trans-N2H2	75
Tabela 2: Parâmetros geométricos do produto N ₂ H	78
Tabela 3: Distância de equilíbrio do produto H2	79
Tabela 4: Parâmetros geométricos do estado de transição N ₂ H ₃	81
Tabela 5: Frequências Vibracionais Harmônicas do reagente <i>trans</i> -N ₂ H ₂	83
Tabela 6: Frequências Vibracionais Harmônicas do produto N2H	85
Tabela 7: Frequência Vibracional Harmônica do produto H ₂	86
Tabela 8: Frequências Vibracionais Harmônicas do estado de transição N ₂ H ₃	88
Tabela 9: Barreiras clássicas de potencial (V^{\neq}) , barreiras de potencial com correção	o do
ponto-zero (V_0^{\neq}) , energias eletrônicas (ΔE) e entalpias (ΔH_0^0) da rea	ação
$N_2H_2(trans) + H$	93
Tabela 10: Energia eletrônica da reação (ΔE) e barreira clássica de potencial (V^{\neq})	95
Tabela 11: Energias eletrônicas clássicas (ΔE) e barreiras clássicas de potencial (V^{\neq}) da
reação $N_2H_2(trans) + H$ com inclusão de orbitais Kohn-Sham	97
Tabela 12: Comparação das constantes de velocidade da reação $N_2H_2(trans) + H$ obtid	las a
partir dos resultados dos cálculos de estrutura eletrônica CCSD(T) e CASCC	F e
MPWB1K	.100
Tabela 13: Constantes de velocidade da reação $N_2H_2(trans) + H$ obtidas com a te	eoria
CVT	.103
Tabela 14: Energias de ativação da reação $N_2H_2(trans) + H$.105

Tabela 15. Parâmetros geométricos da molécula reagente N2H4	109
Tabela 16. Parâmetros geométricos do produto N2H3	111
Tabela 17: Distância de equilíbrio do produto OH	112
Tabela 18: Parâmetros geométricos do estado de transição N2H3O - TS(a)	114
Tabela 19: Parâmetros geométricos do estado de transição N2H3O - TS(b)	116
Tabela 20: Frequências vibracionais harmônicas do reagente N2H4	118
Tabela 21: Frequências vibracionais harmônicas do produto N ₂ H ₃	119
Tabela 22: Frequência vibracional harmônica do produto OH	120
Tabela 23: Frequências vibracionais harmônicas do estado de transição N ₂ H ₃ O - TS(a)	121
Tabela 24: Frequências vibracionais harmônicas do estado de transição N ₂ H ₃ O - TS(b)	123
Tabela 25: Barreiras de potencial com e sem correção da energia do ponto zero, V^{\neq} e	$V_0^{\neq},$
para os dois caminhos reacionais (a e b), energias eletrônicas de reação, ΔE , entalpi	as de
reação, ΔH_0^0 , e variação da energia livre de Gibbs, ΔG , da re	eação
$N_2H_4 + O(^3P)$	127
Tabela 26: Constantes de velocidade da reação $N_2H_4 + O(^3P)$	133
Tabela 27: Geometrias de equilíbrio do íon $N_2H_4^+$ nas conformações C_{2v} , C_{2h} e D_{2h}	141
Tabela 28: Frequências vibracionais harmônicas da conformação C_{2h} do íon $N_2H_4^+$	143
Tabela 29: Frequências vibracionais harmônicas da conformação D_{2h} do íon $N_2H_4^+$	144
Tabela 30: Energias totais do cátion $N_2H_4^+$ e os potenciais de ionização referentes ao e	stado
fundamental da molécula N2H4	146

LISTA DE ABREVIATURAS E SIGLAS

AE - Todos os elétrons - "All Electrons"

CASSCF – Campo Autoconsistente Multiconfiguracional – "Complete Active Space Self-Consistent Field"

CBS - Conjunto Base Completo - "Complete Basis Set"

CCSD(T) – Coupled Cluster com Excitações Simples, Duplas e Contribuições de Triplas

CI - Interação de Configurações - "Configuration Interaction"

CTST – Teoria do Estado de Transição Convencional – "Conventional Transition-State Theory"

CVT - Teoria Variacional Canônica - "Canonical Variational Theory"

DFT - Teoria do Funcional da Densidade - "Density Functional Theory"

GGA - Aproximação do Gradiente Generalizado - "Generalized Gradient Aproximation"

 $\mathrm{HF}-\mathrm{Hartree}\operatorname{-Fock}$

HK – Hohenberg e Kohn

ISPE - Correções Interpoladas - "Interpolated Single Point Energy Correction"

IRC - Coordenada de Reação Intrínseca - "Intrinsic Reaction Coordinates"

KS – Kohn e Sham

LDA - Aproximação da Densidade Local - "Local Density Aproximation"

LEO – Órbita Terrestre Baixa – "Low Earth Orbit"

LSDA – Aproximação da Densidade e de Spin Local – "Local Spin and Density Aproximation"

MCSCF – Campo Autoconsistente Multiconfiguracional – "Multiconfigurational Self-Consistent Field"

MEP – Caminho de Mínima Energia – "Minimum Energy Path" MMH – Monometil Hidrazina MP2 - Teoria da Perturbação em Segunda Ordem Møller-Plesset

MRCI – Interação de Configurações com Múltiplas Referências – "Multirefence Configuration Interaction"

MRCI+Q – Interação de Configurações com Múltiplas Referências com inclusão da correção de Davidson

- MRE Melhores Resultados Estimados
- PES Superficie de Energia Potencial "Potential Energy Surface"
- RHF Hartree-Fock Restrito "Restricted Hartree-Fock"
- SCF Campo Auto Consistente "Self Consistent Field"
- SCT Tunelamento de Pequena Curvatura "Small Curvature Tunneling"
- TS Estado de Transição "Transition State"
- TST Teoria do Estado de Transição "Transition-State Theory"
- UDMH Dimetil Hidrazina "Unsymmetrical Dimethyl Hydrazine"
- UHF Hartree-Fock não Restrito "Unrestricted Hartree-Fock"
- VTST Teoria do Estado de Transição Variacional "Variational Transition State Theory"
- W Correção do Tunelamento de Wigner
- ZCT Tunelamento de Curvatura Zero "Zero Curvature Tunneling"

SUMÁRIO

I – INTRODUÇÃO	
2 – METODOLOGIA	27
2.1 – A Teoria do Estado de Transição (TST)	27
2.2 – Métodos da Química Quântica	
2.2.1 – O Método Hartree-Fock	40
2.2.2 – Métodos de Correlação Eletrônica	43
2.2.3 – Teoria de Perturbação de Møller-Plesset (MP2)	44
2.2.4 – Método Coupled Cluster (CC)	50
2.2.5 - Método de Campo Autoconsistente Multiconfiguracional (MCSCF) e In	nteração
de Configurações com Múltiplas Referências (MRCI)	54
2.2.6 – Teoria do Funcional da Densidade (DFT)	59
3- METODOLOGIA: DETALHES COMPUTACIONAIS	68
4 – RESULTADOS E DISCUSSÕES	72
4.1 – Abstração do Átomo de Hidrogênio da Molécula Diazeno, em sua Reaç	ao com
Hidrogênio Atômico	72
4.1.1 – Avaliação do Caráter Multiconfiguracional	72
4.1.2 – Conformação Geométrica das Espécies Participantes da	Reação
$N_2H_2(trans) + H \rightarrow N_2H + H_2$	73
4.1.3 – Frequências Vibracionais Harmônicas	82
4.1.4 – Cálculos de Coordenada da Reação Intrínseca	90
4.1.5 – Termodinâmica da Reação $N_2H_2(trans) + H \rightarrow N_2H + H_2$	92
4.1.6 – Cinética da Reação $N_2H_2(trans) + H \rightarrow N_2H + H_2$	98

4.2 – Abstração do Átomo de Hidrogênio da N	Molécula Hi	drazina, em sua	a Rea	ção com
Oxigênio Atômico (O(³ P))				107
4.2.1 – Conformação Geométrica das	Espécies	Participantes	da	Reação
$N_2H_4 + O(^3P) \rightarrow N_2H_3 + OH \dots$				
4.2.2 – Freqüências Vibracionais Harmônicas.				117
4.2.3 – Cálculos de Coordenada da Reação Int	rínseca			
4.2.4 – Termodinâmica da Reação $N_2H_4 + O($	$({}^{3}P) \rightarrow N_{2}H$	$T_3 + OH$		126
4.2.5 – Cinética da reação $N_2H_4 + O(^3P) \rightarrow N_2$	$N_2H_3 + OH$.			132
4.3 – Cálculo do Potencial de Ionização da Molé	cula Hidrazi	na (N ₂ H ₄)		
4.3.1 – Geometria dos Confôrmeros do Cátion N	N ₂ H ₄ ⁺			
4.3.2 – Frequências Vibracionais Harmônicas				
4.3.3 – Potenciais de Ionização				145
5 – CONCLUSÕES				149
6 – REFERÊNCIAS BIBLIOGRÁFICAS				153

1. INTRODUÇÃO

As atividades de pesquisa desenvolvidas neste trabalho tiveram como objetivo o estudo de propriedades de moléculas com potencial energético. Mais especificamente, estudou-se o potencial de ionização da molécula hidrazina e a termocinética de duas reações de abstração de hidrogênio. A primeira reação refere-se à abstração do átomo de hidrogênio da molécula diazeno (N₂H₂), por meio de sua reação com hidrogênio atômico $(N_2H_2(trans) + H \rightarrow N_2H + H_2)$. Na segunda, o enfoque é dado à abstração de hidrogênio molécula hidrazina (N_2H_4) oxigênio da em sua reação com atômico $(N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH)$. Estes estudos foram realizados utilizando métodos da química quântica molecular e da dinâmica química molecular. Desta forma, estruturas conformacionais, espectroscopia vibracional, dados termodinâmicos e cinéticos das reacões foram caracterizados, entre outras propriedades. Consequentemente, foi também objetivo do trabalho compreender os fundamentos teóricos dos métodos utilizados em todos os cálculos.

Sabe-se que as reações químicas são transformações onde as ligações químicas são formadas ou rompidas, transformando os compostos reagentes em produtos com conservação dos elementos químicos iniciais e, com isso, conservando-se a massa. O estudo de processos colisionais reativos envolvendo átomos e moléculas constitui a essência da dinâmica química de reações e é, atualmente, um dos campos de maior desenvolvimento da cinética química [1]. Muitos fenômenos que ocorrem na natureza, tais como: processo de combustão química, formação e decomposição de ozônio na estratosfera terrestre, este muito importante nas questões ambientais, as reações que ocorrem no meio estelar, sendo essenciais para entender a constituição do universo, e as reações envolvidas em mecanismos cinéticos na síntese de novos materiais [2] podem ser entendidos através do cálculo das propriedades dinâmicas e cinéticas de sistemas moleculares reativos.

Os principais fatores macroscópicos que influenciam o curso das reações são essencialmente dois: a variação da energia livre do sistema, que atua no controle termodinâmico da reação, e a velocidade de conversão de reagentes em produtos, que está relacionada ao controle cinético. Considerando a estrutura molecular, é possível fazer uma abordagem com foco nos conceitos fundamentais, como comprimentos de ligações, ângulo de torção, análise conformacional, superfícies de energia potencial, estruturas de mínimo e máximo de energia, estrutura do estado de transição e modos vibracionais relacionados à quebra e formação de ligações [3].

Os métodos da química quântica e da dinâmica química molecular são ferramentas importantes a serem utilizadas para a análise, a interpretação e o entendimento de variados sistemas com interesses químicos, físicos e biológicos. Cada vez mais se torna possível o estudo em complexos sistemas moleculares envolvendo reações químicas e espectroscopia eletrônica e vibracional, através do crescente desenvolvimento de modernos computadores, bem como de métodos numéricos e metodologias apropriadas que tornam possível uma melhor descrição da correlação eletrônica. Um foco essencial da dinâmica química é a determinação de valores de barreiras de potencial, energias das reações químicas, geometrias dos reagentes, produtos e dos estados de transição e das suas frequências harmônicas.

Compostos de nitrogênio têm um papel crucial na química de combustão. A reação de diazeno com o átomo de hidrogênio, $N_2H_2(trans) + H \rightarrow N_2H + H_2$, faz parte dos mecanismos propostos para a decomposição da molécula hidrazina. A hidrazina é uma molécula que desperta grande interesse, pois, juntamente com seus derivados, formam um importante grupo de moléculas com aplicações em uma ampla variedade de processos químicos. Ela pode ser utilizada como combustível líquido em foguetes e lançadores de

satélites [4], como inibidora de corrosão em estruturas de aço e ferro [5], e também como intermediária para a produção de outras classes úteis de compostos orgânicos e inorgânicos, como antioxidantes, em emulsões fotográficas, constituintes de plásticos, na indústria farmacêutica e como inseticidas, além de outras aplicações.

A molécula diazeno (N₂H₂) tem sido objeto de muitos estudos teóricos [6 - 10]. Em sua forma 1,2-HN=NH, a molécula é geralmente aceita como sendo planar, porém são possíveis os isômeros *cis* e *trans*. O diazeno ainda se apresenta como o isômero NNH₂, ou *iso*-N₂H₂, onde os dois hidrogênios se ligam a um mesmo átomo de nitrogênio. Destes três isômeros, a forma *trans*-N₂H₂ é a mais estável, com uma diferença de energia igual a 5,1 kcal/mol e 24,0 kcal/mol em relação às espécies *cis*-N₂H₂ e *iso*-N₂H₂, respectivamente [11]. Apesar da importância das reações envolvendo o diazeno, como por exemplo, na pirólise de amônia [12, 13] e em processos de combustão de moléculas contendo nitrogênio [14, 15], ainda não há informações experimentais disponíveis para as reações de N₂H₂ com os radicais H e OH.

Na abstração de um átomo de hidrogênio da molécula N₂H₂ através de sua reação com um hidrogênio atômico, ocorre simultaneamente a quebra da ligação N-H, enquanto que uma nova ligação H-H é formada. A reação $N_2H_2(trans) + H \rightarrow N_2H + H_2$ é uma reação exotérmica que já se encontra bem caracterizada na literatura através de cálculos *ab initio* de alto nível de estrutura eletrônica e de dinâmica molecular [16 - 21]. Trata-se, portanto, de uma reação selecionada para serem testadas diferentes metodologias de dinâmica molecular, acopladas com o tratamento da estrutura eletrônica por vários métodos da química quântica molecular, com valores apurados para constantes de velocidade com base na Teoria do Estado de Transição Convencional (CTST) [22] e na Teoria do Estado de Transição Variacional (VTST) [23].

Estudos teóricos acerca desta reação, explorando os parâmetros termodinâmicos, as geometrias e frequências vibracionais do estado de transição, reagentes e produtos da reação, foram realizados recentemente no grupo do Prof. F. B. C. Machado [24]. Em outros estudos teóricos, podem ser encontradas as propriedades termodinâmicas desta reação, como aquelas obtidas por Page et al. utilizando o método CASSCF/MRCI [17]. Também, Pople et al. realizou estudos da energética da reação utilizando o método G2 [16], e Mebel et al. utilizou o método MP2/6-31G** para realizar cálculos da energética da reação, bem como das frequências vibracionais e das geometrias do estado de transição [19]. Chuang et al. [25] estudou esta mesma reação empregando diversos métodos de estrutura eletrônica com base em métodos monoconfiguracionais de única referência. A barreira clássica de potencial (V^{\neq}) estimada em seu trabalho possui valores entre 3 a 5 kcal/mol, e a energia eletrônica de reação (ΔE) valores de -37 a -38 kcal/mol. Em um estudo mais recente, Lynch e Truhlar [26] estabeleceram um banco de dados acerca de reações de abstração de hidrogênio, e na reação da molécula diazeno com hidrogênio atômico, o valor da barreira clássica de potencial foi estimado em 5,9 kcal/mol, e a energia eletrônica da reação, igual a -35,1 kcal/mol. Como estes valores diferem de forma significativa daqueles anteriormente obtidos, esta reação foi retirada do banco de dados do grupo do Prof. Truhlar [27]. Assim, a caracterização rigorosa das propriedades termodinâmicas e cinéticas torna-se mais um fator motivador.

No presente estudo, foram utilizados diversos métodos da química molecular, como a Teoria da Perturbação em Segunda Ordem de Møller-Plesset (MP2) [28, 29], o método de Campo Autoconsistente Multiconfiguracional (CASSCF - *Complete Active Space Self-Consistent Field*) [30, 31], o método Interação de Configurações com múltiplas referências (MRCI - *Multirefence Configuration Interaction*) [32, 33], o método "*Coupled Cluster*" com excitações simples, duplas, e com contribuições de triplas (CCSD(T)) [34], e métodos da Teoria do Funcional da Densidade (DFT - *Density Functional Theory*) [35], entre os quais os funcionais híbridos MPWB1K [36], BHandHLYP [37] e BB1K [38]. Os conjuntos de funções de base utilizados pertencem à hierarquia de bases de correlação consistente cc-pVDZ, cc-pVTZ, cc-pVQZ e cc-pCVTZ de Dunning [39, 40]. Foi estimada a correlação caroço-valência, e a extrapolação para limite do conjunto base completo CBS (*Complete Basis Set*) utilizando a extrapolação de Halkier et al. [41] também foi realizada.

Utilizando os parâmetros estruturais e de energia dos reagentes, produtos e do estado de transição da reação, foram calculadas as suas propriedades cinéticas com a utilização da Teoria do Estado de Transição Variacional com correções interpoladas (VTST-ISPE – *Variational Transition State Theory with Interpolated Single-Point Energy corrections*) [42], mais especificamente a Teoria Variacional Canônica (CVT – *Canonical Variational Theory*) com as aproximações dos efeitos de tunelamento ZCT (*Zero Curvature Tunneling*) e SCT (*Small Curvature Tunneling*).

O estudo da reação de abstração de um átomo de hidrogênio da molécula hidrazina em sua reação com oxigênio atômico, $N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH$, tem como uma de suas motivações o fato de que reações entre o oxigênio com diaminas, hidrazina e hidrazinas substituídas são importantes reações elementares nos mecanismos propostos da combustão de motores bipropelentes geralmente utilizados em motores-foguetes. A hidrazina é um dos raros compostos endotérmicos e hipergólicos, ou seja, sua decomposição pode levar a auto-ignição ou detonação sem a presença de oxidante (O_2 , por exemplo) [43], cuja facilidade de ignição e re-ignição o torna ideal para sistemas de manuseio de satélites e espaçonaves, sendo muito utilizada para pequenas correções de trajetórias através de micropopulsores. Sendo a hidrazina um propelente líquido, os motores utilizados devem ser mais complexos do que aqueles de propelentes sólidos, pois o sistema possui peças móveis, válvulas, e exige um nível de complexidade tecnológica maior para que haja um controle fino efetivo. Porém, apresenta inúmeras vantagens, como a possibilidade de controle da taxa de queima, tornando possível o domínio de tais veículos de forma a ligar ou desligar o mecanismo de acordo com o necessário, permitindo também a reativação da ignição. Os combustíveis hipergólicos mais comuns incluem a monometilhidrazina (MMH - monomethyl hydrazine), dimetilhidrazina (UDMH - unsymmetrical dimethyl hydrazine) e Aerozine 50, uma mistura de 50% UDMH e 50% hidrazina, cujo oxidante é tipicamente N₂O₄ (NTO - nitrogen tetroxide) ou ácido nítrico [44]. Desta forma, a hidrazina e seus derivados possuem grande emprego como combustíveis de ônibus espaciais, assim como de outras naves e veículos espaciais onde são utilizados em jatos de controle de atitude [45], e que operam em órbita terrestre baixa (LEO - Low Earth Orbit), ambiente de 160 a 2000 km acima da superfície terrestre. Portanto, os fenômenos químicos que ocorrem neste ambiente são de fundamental interesse, uma vez que quantidades substanciais de combustíveis provenientes da instrumentação espacial podem ser emitidas na órbita a altas velocidades, o que acarreta colisões com as espécies naturais deste ambiente [46], pois, embora a maior parte do combustível seja consumida na câmara destes foguetes, pode haver escape de fragmentos não queimados. A atmosfera ambiente nas altitudes de órbita LEO consiste principalmente de oxigênio atômico [47, 48], e os fragmentos de escape tendem a se degradar primeiramente na reação que ocorre com o oxigênio O(³P) [49]. Desta forma, os componentes não queimados das reações da hidrazina lançados pelas naves espaciais, juntamente com os constituintes naturais do ambiente LEO, contribuem para a reatividade descrita acima. De fato, a recente emissão de hidrazina interceptando um satélite americano em fevereiro de 2008 gerou uma oportunidade de monitorar a emissão dos produtos da reação $N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH$ em LEO [50]. Embora alguns estudos experimentais [50-54] tenham observado emissões moleculares na faixa dos espectros ultravioleta (UV) e do visível em chamas de foguetes e fumaças contendo oxigênio atômico/diaminas, o entendimento da série de reações químicas envolvidas encontra-se bastante incompleto.

Os caminhos da reação $N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH$ estudados neste trabalho são as duas rotas para a abstração de um átomo de hidrogênio da molécula hidrazina, que procedem através da quebra das fracas ligações N-H. Porém, a colisão de hidrazina com o átomo de oxigênio O({}^3P) pode também conduzir à quebra da ligação N-N, ou ainda ao caminho onde ocorre a remoção de um hidrogênio sem que haja subsequente ligação com o oxigênio. Estes dois últimos caminhos foram caracterizados recentemente por Troya et al. [55], utilizando o método MP2/aug-cc-pVDZ.

Neste estudo, os cálculos de estrutura eletrônica foram realizados utilizando os métodos MP2 [28, 29], BB1K [38] e MPWB1K [36] para otimização de geometrias e frequências vibracionais. Os parâmetros termodinâmicos foram refinados através de cálculos pontuais (*single-point*) utilizando o método CCSD(T) [34] e os conjuntos bases cc-pVTZ e cc-pVQZ de Dunning [39]. Em seguida, os parâmetros cinéticos foram calculados utilizando a teoria do estado de transição (TST) com as aproximações para os efeitos de tunelamento W e ZCT. Nossos resultados foram comparados aos estudos experimentais disponíveis na literatura [12, 49, 56-58], cujos esforços estão concentrados na determinação das constantes de velocidade.

O terceiro enfoque deste trabalho consistiu essencialmente no estudo das estruturas conformacionais de equilíbrio, da espectroscopia vibracional e do potencial de ionização da molécula hidrazina (N_2H_4) em seu estado fundamental e de seu cátion, a partir dos métodos da química quântica molecular, possibilitando compreender os aspectos envolvendo a ligação química e a estrutura eletrônica da molécula hidrazina neutra e do cátion.

Sabe-se que o conhecimento da estrutura geométrica é aspecto fundamental para o entendimento dos processos espectroscópicos e da dinâmica das espécies químicas moleculares [5]. No caso da molécula hidrazina neutra (N₂H₄) e de seu cátion (N₂H₄⁺), suas estruturas podem ser representadas por vários confôrmeros, que possuem simetrias C₂, C_{2h}, C_{2v} e D_{2h}. O estado eletrônico fundamental da molécula hidrazina apresenta a forma *gauche* (simetria C₂), caracterizada por cálculos *ab initio* [5–10, 24] e por estudos experimentais [12 – 20]. Entretanto, a geometria mais estável do íon hidrazina (N₂H₄⁺) é prevista teoricamente para ter simetria C_{2h} [16, 59], embora a estrutura D_{2h} possua energia eletrônica quase degenenerada.

Estudos teóricos acerca do estado fundamental da hidrazina, explorando a geometria e frequências vibracionais dessa molécula, incluindo uma revisão completa dos estudos prévios, foram realizados no grupo do Prof. F. B. C. Machado [24, 60]. Outros estudos principais acerca da molécula neutra e do cátion, avaliando o potencial de ionização da molécula hidrazina, também têm recebido diversas contribuições, tanto experimentais [5, 61-64], quanto teóricas [16, 59]. Experimentalmente, seu potencial de ionização varia entre 8,1 a 8,74 eV [5, 61-64]. Teoricamente, entretanto, os valores obtidos são menores do que os experimentais. Pople et al. [16], por exemplo, obteve com o cálculo G2 um potencial de ionização igual a 8,09 eV. Também, Habas et al. [59] utilizou os métodos MCSCF e MP2 com os conjuntos de funções base tripla-zeta (TZP) para estudar a geometria, as frequências vibracionais, e alguns estados eletrônicos da molécula neutra e do seu cátion, e com o uso do método CASPT2, obteve um valor ainda mais baixo para seu potencial de ionização, igual a 7,64 eV.

Tem havido um crescente interesse em métodos teóricos quânticos como ferramentas complementares a medidas experimentais. Cálculos que combinam a metodologia "*Coupled Cluster*" com um conjunto adequado de funções de base [65, 66] permitem o cálculo de

valores de distâncias de ligações que alcançam grande exatidão, apresentando erros menores do que 0,001 Å para moléculas cuja estrutura eletrônica seja bem descrita por uma função de onda de única referência [67]. Neste estudo, foram utilizados os métodos da química molecular *Coupled Cluster* com excitações simples, duplas, e com contribuições de triplas (CCSD(T)) [34], e o método do campo autoconsistente multiconfiguracional seguido pelo método interação de configurações com excitações simples e duplas a partir de um conjunto de referências CASSCF/MRCI (*Complete Active Space Self-consistent Field / Multirefence Configuration Interaction*) [30-33]. Os conjuntos de funções base utilizados pertencem à hierarquia de bases de correlação consistente cc-pVDZ, cc-pVTZ, cc-pVQZ e cc-pVCTZ de Dunning [39, 40].

Os cálculos CASSCF e MRCI foram realizados com o emprego do programa MOLPRO [68]. Para os demais cálculos, foram utilizados os programas GAUSSIAN 98 [69] e GAUSSIAN 03 [70]. Os cálculos cinéticos das reações foram realizados com o uso do programa POLYRATE 9.3 [71].

2. METODOLOGIA

2.1. A TEORIA DO ESTADO DE TRANSIÇÃO (TST)

Parte dos fundamentos teóricos da metodologia utilizada neste estudo será descrita com base nas informações obtidas na literatura pelos trabalhos de Simon et al. [72], de Truhlar et al. [22, 73, 74] e O. Roberto-Neto [75], além dos demais artigos referenciados nesta seção.

O modelo teórico proposto por Svante Arrhenius, desenvolvido com base nas equações de Van't Hoff (1984) para permitir o entendimento de como se procedem as reações químicas, e quão rápidas elas são, sugere que a constante da velocidade (*k*) para uma reação varia em função da temperatura (T) de acordo com a seguinte relação empírica:

$$k(T) = A.e^{(-Ea/RT)}$$
(2.1)

onde A é o fator pré-exponencial, Ea é a energia de ativação da reação, e R é a constante universal dos gases.

A energia de ativação é interpretada como a mínima energia necessária a ser fornecida para que a reação aconteça, no sentido de permitir que as colisões dos reagentes sejam efetivas na formação dos produtos. Geralmente, os valores da energia de ativação são parâmetros obtidos por meio de um gráfico de Arrhenius que mostra a dependência linear de *k* com T, pela curva de log $k \times 1/T$, como ilustra a Figura 1.

Figura 1. Gráfico da dependência linear de $k \operatorname{com} T$, de acordo com a equação de Arrhenius.

O parâmetro *A*, dado pela ordenada à origem, em 1/T = 0, não é adimensional, tem as mesmas dimensões da constante de velocidade, que variam de acordo com a ordem de reação. O parâmetro *Ea*, obtido pela inclinação da reta, é justamente a mais importante contribuição de Arrhenius: a proposição de que os processos químicos são ativados, ou seja, precisam de determinada energia de ativação para ocorrer. Desta forma, processos com baixa energia de ativação ocorrem rapidamente, enquanto processos com elevada energia de ativação ocorrem mais lentamente e, portanto, quanto maior a energia de ativação, menos provável será a transformação de reagentes em produtos.

Entretanto, a constante de velocidade k não provê detalhes moleculares acerca da reação, pois seu valor é obtido a partir da média de eventos microscópicos no sentido dos reagentes para os produtos e vice-versa, e estes eventos possuem velocidades relativas, fases vibracional e rotacional, além de parâmetros de impacto. Assim, para chegarem à formação dos produtos, as moléculas dos reagentes se aproximam, colidem, trocam energia, quebram e/ou formam ligações. Por isto, houve a necessidade de uma teoria que permitisse o estudo da dinâmica das reações sob o ponto de vista microscópico.

Os primeiros esforços com esta finalidade começaram logo no início do século XX, quando, em 1927, Heitler e London propuseram um tratamento quântico da molécula de hidrogênio [76]. Em seus trabalhos, procuravam não somente entender a estrutura de equilíbrio, mas também como a interação entre os átomos de hidrogênio em diferentes distâncias ocorria. Em 1931, Henry Eyring e Michael Polanyi [77], com base nas equações de London e na tentativa de combinar termodinâmica, cinética química, mecânica quântica e a teoria da ligação de elétrons de valência, realizaram cálculos semi-empíricos da Superfície de Energia Potencial (*Potential Energy Surface*) da reação H + H₂, descrevendo o caminho percorrido pelos núcleos desde o estado dos reagentes até o estado de produto, passando por uma região limite de mais alta energia denominada Estado de Transição (TS - *Transition State*) ou complexo ativado.

Para estudar teoricamente uma reação, devem ser seguidas as etapas que consistem em determinar as propriedades eletrônicas do sistema em questão. O estudo da estrutura eletrônica requer o cálculo da energia total do sistema de acordo com os princípios de mecânica quântica e, logo em seguida, a minimização da mesma com relação às coordenadas dos núcleos. A determinação da energia total é um problema que envolve muitas partículas e necessita de aproximações, como por exemplo, a aproximação que envolve o tratamento em separado dos núcleos e elétrons de um sistema, a aproximação de *Born-Oppenheimer*. Para o tratamento da interação elétron-elétron, outras aproximações são atualmente aplicadas. Dessa forma, têm-se subsídios para determinar as propriedades cinéticas do sistema, através da Teoria do Estado de Transição (TST - *Transition State Theory*) [22]. E também através dos cálculos das energias eletrônicas do sistema, pode-se construir a Superfície de Energia Potencial (PES) da reação, que fornecerá todas as informações do sistema. O próximo passo é determinar as propriedades cinéticas e dinâmicas.

É muito importante, entretanto, construir a PES com razoável precisão, pois uma diferença de 1 kcal/mol na barreira de ativação afeta por um fator de 5,6 os valores das

constantes de velocidade na temperatura ambiente (298 K), enquanto que uma diferença de 2 kcal/mol causa um erro, aproximado, de um fator de 31 [78].

A localização de uma estrutura de transição é, muitas vezes, mais difícil de determinar do que no caso de um mínimo. Esta estrutura de transição encontrada é um máximo em uma única direção da energia potencial conhecido como ponto de sela de ordem 1. A Figura 2 representa todas as possíveis configurações de um sistema ao longo de uma PES.

Figura 2. Representações esquemáticas da Superfície de Energia Potencial (PES) [79].

Assumindo que a reação seja unidimensional, ao longo de uma coordenada de reação, assim como mostra a Figura 3, então o complexo ativado (representado pelo símbolo ‡) é o estado de um sistema localizado no topo (ou próximo) da barreira de energia potencial. A estrutura de transição é caracterizada por ter uma, e somente uma, frequência negativa que representa a configuração de máximo da curva e que liga os reagentes aos produtos.

Figura 3. Perfil energético de uma reação química segundo a Teoria do Estado de Transição (TST – *Transition State Theory*).

Na TST, para os reagentes se transformarem em produtos, eles devem adquirir energia suficiente para exceder a barreira de ativação, onde se encontra representado o estado de transição TS (Figura 3). A coordenada de reação representa a mudança angular e nas distâncias de ligação que ocorrem na reação química durante o processo de formação dos reagentes a produtos. Na PES, essa visão é ampliada (Figura 2), pois não é mostrado apenas o caminho de mínima energia em que os reagentes, estado de transição (região que contém *Ea*) e os produtos estão inclusos, como também todas as possibilidades de rearranjo destes átomos.

Em 1935, com base nos trabalhos de Arrhenius, Polanyi e Wigner, Eyring [73, 81] propôs a Teoria do Complexo Ativado, e Polanyi e Evans denominaram-na de Teoria do Estado de Transição (TST), ao seu conjunto de modelos teóricos para o cálculo de constantes de velocidade de reações que ocorrem em apenas uma etapa molecular. A TST convencional (ou não variacional) tornou-se uma das teorias mais utilizadas em química e figura em livros de texto para estudantes universitários, sendo considerado um dos modelos teóricos aplicados com maior sucesso nos cálculos das velocidades de reação absoluta [81, 82]. No entanto,

sabe-se que Eyring inicialmente encontrou problemas na publicação da TST. Assim escreveu o *referee* de seu trabalho submetido para publicação: "Pensei seriamente no problema, e fiquei convencido de que o método de tratamento é falso e o resultado incorreto". O editor da revista, com base nestes argumentos, rejeitou o artigo, porém, graças à intervenção de Hugh S. Taylor e Eugene Wigner, o artigo acabou recebendo o aceite para publicação. A TST foi então publicada por Henry Eyring e por Meridith Gwynne Evans e Michael Polanyi, mas foi Eyring, somado a diversos colaboradores, quem mais contribuiu para o seu desenvolvimento e progresso [83]. Essa teoria posteriormente foi denominada de CTST (*Conventional Transition-State Theory*), e se baseia em cinco princípios:

1) Os sistemas que conseguirem ultrapassar a hipersuperfície que separa reagentes dos produtos (região do estado de transição) em direção aos produtos não retornam formando moléculas reagentes novamente.

2) A distribuição de energia entre as moléculas de reagente ocorre de acordo com as leis da distribuição estatística de Maxwell-Boltzmann.

 A reação ocorre em estados eletronicamente adiabáticos, no estado fundamental, sem a presença de acoplamentos vibrônicos.

4) Uma reação química pode ser tratada satisfatoriamente dentro de um universo clássico, onde os efeitos quânticos de tunelamento ou de reflexão não clássico são ignorados nos cálculos das barreiras de potencial. Estes efeitos são introduzidos posteriormente.

5) Mesmo na ausência de equilíbrio entre reagentes e produtos, a estrutura do estado de transição evolui e se transforma na estrutura dos produtos.

Na TST, a velocidade da reação é determinada pela passagem dos reagentes através do máximo de energia AB^{\ddagger} . Para determinar a velocidade em que isto acontece, vamos admitir que o estado de transição AB^{\ddagger} está em equilíbrio com os reagentes A e B, como mostra a equação (2.2) que fornece a constante de equilíbrio (K^{\ddagger}):

$$K^{\ddagger} = \frac{[AB^{\ddagger}]}{[A][B]}$$
(2.2)

onde $[AB^{\dagger}]$ é a concentração da espécie ativada, e [A] e [B] são as concentrações das espécies A e B, respectivamente. Assim, a concentração do estado de transição é:

$$[AB^{\dagger}] = K^{\dagger}[A][B] \tag{2.3}$$

Em seguida, determinamos a velocidade da reação em relação à formação dos produtos e obtemos a seguinte equação de velocidade:

$$\frac{d[C]}{dt} = k^{\ddagger}[AB^{\ddagger}]$$
(2.4)

Substituindo a $[AB^{\ddagger}]$ fornecida pela equação (2.3) na equação (2.4), chegamos à expressão:

$$\frac{d[C]}{dt} = k^{\ddagger} K^{\ddagger}[A][B]$$
(2.5)

Sabendo-se que a equação de velocidade de segunda ordem é dada por:

$$v = -\frac{d[A]}{dt} = k[A][B]$$
(2.6)

Como
$$\frac{d[C]}{dt} = -\frac{d[A]}{dt}$$
, igualando as equações (2.5) e (2.6) temos:

$$k = k^{\ddagger} K^{\ddagger} \tag{2.7}$$

 k^{\ddagger} é diretamente proporcional à frequência (f) do modo vibracional responsável por converter o complexo ativado em produto. Sabendo-se que todas as vibrações não conduzem necessariamente à formação de produto, é incluída uma constante de proporcionalidade (c)para ter em conta este efeito. Assim, k^{\ddagger} também pode ser escrita como:

$$k^{\ddagger} = cf \tag{2.8}$$

Para a constante de equilíbrio K^{\ddagger} dependente da temperatura, a mecânica estatística conduz uma expressão dependente da temperatura dada por:

$$K^{\ddagger} = \frac{k_B T}{h f} K^{\ddagger}$$
(2.9)

onde k_B é a constante de Boltzmann, T é a temperatura, h é a costante de Planck, f é a freqüência vibracional efetiva do TS na formação de produtos e K^{\ddagger} ' é a constante de equilíbrio relacionada à energia livre de Gibbs. $\frac{k_B T}{h}$ é vista como a constante de decaimento

do TS, que a 25°C corresponde a $6 \times 10^{12} s^{-1}$. Este valor é o mesmo para todos os estados de transição que evoluem para produtos.

De acordo com a termodinâmica, $\Delta G = -RT \ln K_{eq}$. Se a variação da energia livre de Gibbs for aplicada à etapa de formação do TS, temos:

$$\Delta G^{\ddagger} = -RT \ln K^{\ddagger}$$
 (2.10)

Portanto:

$$K^{\ddagger \prime} = e^{-(\Delta G^{\ddagger})/RT}$$
(2.11)

Substituindo (2.11) em (2.9):

$$K^{\ddagger} = \frac{k_{B}T}{hf} e^{-(\Delta G^{\ddagger})/RT}$$
(2.12)

Combinando as expressões para $k^{\ddagger}(2.8)$ e $K^{\ddagger}(2.12)$ na equação (2.7), pode-se escrever uma nova expressão da constante de velocidade, dada por:

$$k = c \frac{k_B \cdot T}{h} \cdot e^{-\frac{(\Delta G^*)}{RT}}$$
(2.13)

Sabendo-se que $\Delta G = \Delta H - T\Delta S$, obtemos a equação de Eyring, que é a equação fundamental da TST, vinculada a um tratamento termodinâmico:
$$k = c \frac{k_B T}{h} e^{-\frac{(\Delta H^{\neq})}{RT}} e^{\frac{(T\Delta S^{\neq})}{R}}$$
(2.14)

Posteriormente, foram propostas extensões a CTST, denominadas de TST Generalizadas, devido à necessidade de aprimoramentos da CTST. Uma delas é a Teoria do Estado de Transição Variacional (VTST – *Variational Transition-State Theory*) [23]. A essência desta teoria consiste em considerar a divisão da SEP em diferentes posições ao longo do caminho de reação (Figura 4), ao invés de se concentrar no que ocorre no estado de transição da PES, como realizado pela TST convencional. Dessa forma, podemos calcular as velocidades de cruzamento através destas várias superfícies separadoras. Uma vez que múltiplos cruzamentos através dessas superfícies tendem a gerar velocidades calculadas maiores do que elas realmente são, a menor velocidade estará próxima do valor correto.

Figura 4. Perfil da reação ao longo do caminho de mínima energia, mostrando duas superfícies separadoras no estado ativado, separadas por uma distância *d* [79].

A VTST ainda se subdivide em:

- TST Variacional Microcanônica (μVTST *Microcanonical Variational Transition State Theory*).
- TST Variacional Canônica (CVTST Canonical Variational Transition State Theory).
- TST Variacional Canônica Aperfeiçoada (ICVTST Improved Canonical Variational Transition State Theory).

Conforme mostrado por Truhlar e colaboradores [22, 74, 75], a CVTST localiza o estado de transição numa posição de máximo na superfície de energia de Gibbs em lugar do máximo na superfície de energia potencial.

O procedimento geral para o cálculo teórico da cinética reacional é realizado, primeiramente, utilizando um programa que otimize as estruturas dos pontos estacionários, onde são calculadas as Hessianas (cálculos de frequências) para cada um destes pontos estacionários. Em seguida, realiza-se o cálculo de uma MEP (*Minimum Energy Path*), por exemplo, um cálculo de coordenadas intrínsecas da reação, identificando-se, assim, os pontos relevantes para os quais são realizados cálculos das frequências vibracionais generalizadas. Por fim, elabora-se um arquivo de entrada em um programa de cálculo de constantes.

Neste estudo, para calcular as constantes de velocidade das reações, utilizamos o programa POLYRATE 9.3 [71], que inclui também diversas aproximações semiclássicas para calcular os coeficientes de transmissão, como exemplo: os métodos unidimensionais de Wigner (W) e Eckart (ECK), e os multidimensionais de curvatura zero (ZCT - *Zero Curvature Tunneling*) e de pequena curvatura (SCT - *Small Curvature Tunneling*), que consideram os efeitos de tunelamento da reação. É sabido também que o método ZCT é um caso limitado do método SCT [82]. O método de Eckart é um caso especial de cálculo ZCT onde a energia potencial de tunelamento é ajustada por uma função de Eckart. Esta metodologia não requer

cálculos *ab initio* a não ser os de reagentes, produtos, e estado de transição. Utiliza o método de curvatura zero, e o termo $k^{\ddagger}(T)$ é calculado com uma curva aproximada do potencial adiabático do estado fundamental V_a^G baseada em uma função de Eckart. Para isto, são incluídos cálculos da MEP, que conectam as estruturas de transição aos reagentes e produtos. A energia potencial clássica ao longo da MEP, $V_{MEP}(s)$, é aproximada por parâmetros que são calculados utilizando as energias dos reagentes (R), da estrutura de transição (‡), dos produtos (P) e as frequência imaginária da estrutura de transição [84].

Na correção de tunelamento de Wigner (W), é assumido um potencial parabólico:

$$V(x) = V_o - \frac{1}{2}mw^{\ddagger}x^2$$
 (2.15)

onde V_o é a energia no topo da barreira, e w^{\ddagger} é a frequência imaginária do estado de transição. O coeficiente de transmissão na correção de Wigner é então dado por:

$$k(T) = 1 + \frac{1}{24} [\hbar w^{\ddagger} \beta]^{2}$$
(2.16)

Dessa forma, as constantes de velocidade de reação com a correção de Wigner assumem um potencial parabólico para o movimento nuclear na região da superfície potencial próxima do estado de transição.

2.2 . MÉTODOS DA QUÍMICA QUÂNTICA

Nesta seção, parte dos fundamentos teóricos das metodologias utilizadas nos cálculos

de estrutura eletrônica deste estudo será descrita com base nas informações obtidas pelos livros Métodos de Química Teórica e Modelagem Molecular [85], *Introduction to Computational Chemistry* [86], *Physical Chemistry* [87], e demais fontes referenciadas nesta seção.

Para o estudo teórico de sistemas físicos e químicos, que a química teórica representa como conjuntos de elétrons e núcleos interagindo eletrostaticamente entre si, temos como ponto inicial a resolução da equação de Schröedinger, descrita na equação (2.17) a seguir:

$$H\Psi = E\Psi \tag{2.17}$$

Essa equação depende basicamente do número de elétrons, do número de núcleos, suas cargas e da separação entre estas partículas, e se torna simplificada com uma Hamiltoniana de 5 termos, que leva em conta a energia cinética dos N elétrons, a energia cinética dos núcleos e as energias potenciais das interações entre elétrons, elétron-núcleo e entre núcleos. Porém, a sua resolução apresenta grandes dificuldades à medida que se aumenta o número de variáveis e os acoplamentos entre elas. Dessa maneira, utilizam-se técnicas de aproximação para a sua resolução. A primeira aproximação que se faz é a aproximação *Born-Oppenheimer*, que estabelece o conceito de separabilidade entre os movimentos eletrônico e nuclear. Como os núcleos são milhares de vezes mais pesados que os elétrons, os elétrons em uma molécula são considerados uma densidade de probabilidade de carga que sente o campo de núcleos como se estes fossem estáticos. Desta forma, o operador Hamiltoniano é simplificado, e o termo de energia cinética dos núcleos da equação (2.18), K_N , deve ser negligenciado, enquanto o termo de repulsão núcleo-núcleo, V_{NN} , é um termo constante.

$$H = K_N + K_e + V_{NN} + V_{Ne} + V_{ee}$$
(2.18)

Com o uso da equação de Born-Oppenheimer, a primeira etapa para a descrição do movimento eletrônico através dos denominados métodos de primeiros princípios (*ab initio*) é realizada utilizando o método de Hartree-Fock.

2.2.1. O MÉTODO HARTREE-FOCK

Apesar da aproximação de *Born-Oppenheimer*, a resolução da equação de Schröedinger ainda apresenta grandes dificuldades na medida em que se aumentam as variáveis e acoplamentos, pois Ψ depende das coordenadas de elétrons e núcleos, e mesmo com a separação de seus movimentos, a repulsão eletrônica impossibilita uma solução exata. Douglas Hartree, portanto, sugeriu que uma função de onda dependente das coordenadas de N elétrons fosse simplificada por um produto de funções, cada uma dependente das coordenadas espaciais e spin de um único elétron, os chamados spins-orbitais moleculares (χ). Porém, esta função de onda, denominada produto de Hartree, não satisfaria o principio da indistinguibilidade que exige que a função de onda, que descreve um sistema de muitos elétrons, seja antissimétrica perante a troca das coordenadas de dois desses elétrons. Como a antissimetria é uma característica dos determinantes, Fock e Slater propuseram expandir a função de onda num conjunto completo de funções conhecidas como determinantes de Slater [88], conforme a equação abaixo:

$$\Phi_{0} = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_{1}(x_{1}) & \chi_{2}(x_{1}) & \cdots & \chi_{N}(x_{1}) \\ \chi_{1}(x_{2}) & \chi_{2}(x_{2}) & \cdots & \chi_{N}(x_{2}) \\ \vdots & \vdots & & \vdots \\ \chi_{1}(x_{N}) & \chi_{2}(x_{N}) & \cdots & \chi_{N}(x_{N}) \end{vmatrix}$$
(2.19)

onde o fator $\frac{1}{\sqrt{N!}}$ é uma constante de normalização para Φ_0 , admitindo χ 's como ortonormais. Esta simplificação pela aproximação do determinante único substitui o problema de encontrar uma função de onda dependente das coordenadas de N elétrons pelo problema de se achar N funções de onda de um elétron (os spins-orbitais moleculares).

O método de Hartree-Fock [89] descreve a função de onda como um produto antissimetrizado de spins-orbitais. Partindo-se do princípio variacional, procura-se encontrar o melhor conjunto de spins-orbitais que possa minimizar a energia do sistema, obtendo assim a melhor aproximação ao estado fundamental de um sistema de N elétrons. Portanto, considerando um conjunto de spins-orbitais { χ_a }, deve ser encontrada a equação de Hartree-Fock que define o melhor conjunto de spins-orbitais, dada na seguinte forma:

$$[h(1) + \sum_{b \neq a} J_b(1) - \sum_{b \neq a} K_b(1)] \chi_a(1) = \varepsilon_a \chi_a(1)$$
(2.20)

onde $h(1) = -\frac{1}{2}\nabla_1^2 - \sum_A \frac{Z_A}{r_{1A}}$ é o operador que representa a energia cinética e a energia potencial de atração entre o núcleo e o elétron 1, e ε_a é a energia orbital do spin-orbital χ_a . As interações elétron-elétron na equação acima estão representadas pelos termos que envolvem somatórias sobre *b*, sendo o primeiro destes o operador coulômbico (*J_b*), e o outro o operador de troca (*K_b*). Analisando separadamente cada um desses operadores, temos primeiramente que o operador coulômbico é definido como:

$$J_{b}(1) = \int |\chi_{b}(2)|^{2} r_{12}^{-1} dx_{2}$$
(2.21)

Desta maneira, o elétron em χ_a experimenta o potencial coulômbico acima descrito. Supondo que o elétron 2 ocupe o orbital χ_b , o potencial sentido pelo elétron 1 e associado com a posição instantânea do elétron 2 é reposto por um potencial médio, considerando a probabilidade $|\chi_b(2)|^2 dx_2$ que o elétron 2 ocupe um determinado elemento de volume dx_2 .

Ainda nesta mesma análise, o operador de troca é definido por:

$$f = h(1) + \sum_{b} J_{b}(1) - \sum_{b} K_{b}(1)$$
(2.22)

Observa-se que as restrições dos somatórios anteriormente impostas foram eliminadas. O operador de Fock é definido como a soma do potencial eletrônico efetivo, v_{HF} , com o operador Hamiltoniano de um elétron h(1). Sendo este potencial dado por:

$$\nu_{\rm HF}(1) = \sum_{b} J_{b}(1) - K_{b}(1)$$
(2.23)

Partindo do principio variacional, minimiza-se a energia do determinante único, obtendo os elementos da matriz de Fock pelo método dos multiplicadores de Langrange, levando a um valor mínimo de energia. Com a diagonalização da matriz de Fock, obtém-se o único conjunto de spins-orbitais $\{\chi_a\}$ que satisfaz a equação de autovalores $f |\chi_a\rangle = \varepsilon_a |\chi_a\rangle$, denominados orbitais canônicos.

A equação é então resolvida de modo iterativo, através de ciclos autoconsistentes (SCF – *Self Consistent Field*), e o cálculo se finaliza quando a diferença entre a energia de uma iteração para a outra se mantém dentro de um limite pré-estabelecido.

Como a solução exata desta equação somente é possível para átomos, introduz-se então um conjunto de funções base para a expansão dos spins-orbitais, e com a aproximação do conjunto base e o limite Hartree-Fock, os spins-orbitais se aproximam dos spins-orbitais Hartree-Fock "exatos".

O método HF, além de ser capaz de fornecer uma boa solução aproximada para o problema de muitos elétrons, tem a vantagem de servir como um ponto de partida para outros métodos: os semi-empíricos, que incluem aproximações adicionais para reduzirem o custo computacional, mesclando teoria com resultados experimentais para construir superfícies de energia potencial; e os métodos de correlação eletrônica denominados pós-Hartree-Fock, que utilizam a solução Hartree-Fock como ponto de partida e acrescentam correções que aproximem o cálculo da solução exata.

2.2.2. MÉTODOS DE CORRELAÇÃO ELETRÔNICA

O método HF apresenta certa deficiência associada à expansão em um conjunto de funções-base finito, pois um conjunto de funções de base completo deve possuir um número infinito de funções, o que torna impossível sua utilização em um cálculo real. Outra limitação deve-se ao fato de que uma função de onda antissimétrica geral pode ser escrita em termos de um conjunto completo de determinantes, porém no método Hartree-Fock apenas um

determinante é considerado. Isso significa que o potencial efetivo a que cada elétron está sujeito, o chamado potencial autoconsistente, considera suas interações com os outros elétrons através de uma média, e assim são perdidos os detalhes das interações particulares entre cada par de elétrons.

A diferença entre a energia exata (não-relativística) e a energia de HF é chamada de energia de correlação eletrônica, conforme a equação a seguir:

$$E_{corr} = E_{exata} - E_{HF} \tag{2.24}$$

Embora a energia de correlação seja frequentemente muito pequena em relação à energia total do sistema, ela é essencial para a descrição de vários processos eletrônicos onde seu valor é da ordem de grandeza das propriedades de interesse químico, e sendo assim, sua exclusão inviabilizaria uma descrição mais exata dos resultados.

Nesta seção, de maneira resumida, estão apresentados os fundamentos teóricos das metodologias utilizadas neste trabalho, também denominadas métodos pós-HF, que incluem a correlação eletrônica.

2.2.3. TEORIA DE PERTURBAÇÃO DE MØLLER-PLESSET (MP2)

Nos métodos de teoria de perturbação, o problema a ser resolvido deve diferir apenas um pouco de um problema de resolução já conhecida, ou seja, a solução de um dado problema deve ser próxima à solução de um problema já resolvido. Isto é descrito matematicamente por definir um operador hamiltoniano do sistema, sendo constituído por duas partes: um hamiltoniano de referência H_0 não-perturbado, ou operador de ordem zero; e uma perturbação H', ou operador da perturbação. É necessário que o termo que representa a perturbação seja pequeno em relação ao hamiltoniano não-perturbado.

O operador hamiltoniano de um sistema não degenerado e não dependente do tempo pode ser descrito da seguinte forma:

$$H = H_0 + \lambda H' \tag{2.25}$$

Nesta equação, λ é um parâmetro variável que determina a ordem de grandeza da perturbação, H_0 é o operador de ordem zero e H' é o operador da perturbação.

A função de onda perturbada é escrita como:

$$\Psi = \Psi_0 + \lambda \Psi_1 + \lambda^2 \Psi_2 + \dots + \lambda^k \Psi_k = \sum_{k=0}^{\infty} \lambda^k \Psi_k$$
(2.26)

De maneira similar para a energia E_n do sistema, temos:

$$E_n = \sum \lambda^k E_k \tag{2.27}$$

Na teoria de perturbação de Møller-Plesset (MP), a escolha para a Hamiltoniana nãoperturbada é a soma dos operadores de Fock, e a equação de Schrödinger perturbada pode ser escrita como:

$$(H_0 + \lambda H')\Psi_n = E_n\Psi_n \tag{2.28}$$

onde E é a energia do sistema perturbado. Se λ for igual a zero, então $H = H_0$ e $E = E_0$, que é o sistema não-perturbado. Conforme a perturbação vai diferindo de zero para um valor finito, a nova energia e função de onda também mudam continuamente e podem ser escritas como expansões de Taylor em potências do parâmetro de perturbação (λ):

$$E = \lambda^{0} E_{0} + \lambda^{1} E_{1} + \lambda^{2} E_{2} + \lambda^{3} E_{3} + \dots$$
 (2.29)

$$\Psi = \lambda^0 \Psi_0 + \lambda^1 \Psi_1 + \lambda^2 \Psi_2 + \lambda^3 \Psi_3 + \dots$$
 (2.30)

As funções de onda Ψ_1 , Ψ_2 , Ψ_3 , e os autovalores E_1 , E_2 , E_3 ... são as correções em primeira, segunda, terceira, etc. ordem. Desta forma, combinando as equações (2.29) e (2.30) com a equação (2.28), e agrupando os termos de mesma potência, obtêm-se:

$$\lambda^{n}: H_{0}\Psi_{n} + H'\Psi_{n-1} = \sum_{i=0}^{n} E_{i}\Psi_{n-i}$$
(2.31)

A correção de energia em n-ésima ordem é então obtida multiplicando-se à esquerda e integrando por Φ_0 , que é a função de onda do sistema não-perturbado, para se obter:

$$E_n = \left\langle \Psi_0 \mid H' \mid \Psi_{n-1} \right\rangle \tag{2.32}$$

Portanto, deve-se notar que é necessária a função de onda da (n-1)-ésima ordem para se calcular a energia da n-ésima ordem.

A função de onda Ψ_n deve ser expandida em termos de um conjunto de funções base:

$$\Psi_n = \sum_n c_n \Psi_n \tag{2.33}$$

e a correção em primeira ordem em (2.31) se torna:

$$(H_0 - E_0) \left(\sum_n c_n \Psi_n \right) + (H' - E_1) \Psi_0 = 0$$
 (2.34)

Multiplicando a equação (2.34) à esquerda por Φ_0 e integrando, obtém-se a expressão para a correção de primeira ordem da energia:

$$E_1 = \left\langle \Psi_0 \mid H' \mid \Psi_0 \right\rangle \tag{2.35}$$

A equação (2.35) mostra que a correção de primeira ordem em energia é uma média do operador perturbado sobre a função de onda não-perturbada. Através de fórmulas análogas podemos encontrar as correções para a perturbação em segunda ordem. Substituindo $\Psi_2 = \sum_n c_n \Psi_n$ na equação (2.31) para a correção em segunda ordem obtêm-se as expressões para E_2 . Usando a condição de normalização intermediária $c_0 = d_0 = 0$, a perturbação de energia em segunda ordem é dada por:

$$(H_{0} - E_{0})\left(\sum_{n} d_{n}\Psi_{n}\right) + (H' - E_{1})\sum_{n} c_{n}\Psi_{n} = E_{2}\Psi_{0}$$
(2.36)

$$d_{0}E_{0} - d_{0}E_{0} + \sum_{n} c_{n} \langle \Psi_{0} | H' | \Psi_{0} \rangle = E_{2}$$
(2.37)

$$E_{2} = \sum_{n} \left\langle \Psi_{0} \mid H' \mid \Psi_{0} \right\rangle = E \sum_{k=0} \frac{\left\langle \Psi_{0} \mid H' \mid \Psi_{0} \right\rangle \left\langle \Psi_{k} \mid H' \mid \Psi_{0} \right\rangle}{E_{0} - E_{k}}$$
(2.38)

A última expressão na igualdade (2.38) é obtida multiplicando e integrando à esquerda por uma função qualquer Ψ_k que não seja Ψ_0 . A correção de energia em segunda ordem é escrita em termos das funções de onda de primeira ordem (c_n) e de elementos de matriz do operador perturbação sobre as funções de onda não-perturbadas.

No caso particular da teoria de Møller-Plesset, a escolha do hamiltoniano nãoperturbado H_0 é soma dos operadores de Fock:

$$H_{0} = \sum_{i} f_{i} = \sum_{i} \left[h_{i} + v_{i}^{HF} \right]$$
(2.39)

onde h_i é o operador que representa a energia cinética do caroço e a energia potencial de atração entre núcleo e o elétron *i*, e v_i^{HF} é o potencial eletrônico Hartree-Fock efetivo definido em termos dos operadores de Coulomb e de Troca.

A perturbação H' é dada por:

$$H' = \sum_{i < j} r_{ij}^{-1} - \sum_{i} v_i^{HF}$$
(2.40)

A função de onda Hartree-Fock é uma autofunção do hamiltoniano não-perturbado, ou seja, $H_0 |\Psi_0\rangle = E_0 |\Psi_0\rangle$, e substituindo H_0 pela sua expressão em (2.39) de acordo com a teoria Hartree-Fock, obtém-se que $E_0 = \sum_a \varepsilon_a$, onde ε_a é a energia orbital.

Usando a função de onda Hartree-Fock, a energia em primeira ordem E_1 , de acordo

com a equação (2.35), é:

$$E_1 = \langle \Psi_0 | H' | \Psi_0 \rangle \tag{2.41}$$

$$E_{1} = \langle \Psi_{0} \mid \sum_{i < j} r_{ij}^{-1} \mid \Psi_{0} \rangle - \langle \Psi_{0} \mid \sum_{i} v_{i}^{HF} \mid \Psi_{0} \rangle$$

$$(2.42)$$

Desta forma, podemos concluir que a soma da energia de ordem zero, que é a soma das energias orbitais ε_a , com a energia de primeira ordem corresponde à energia Hartree--Fock: $E_{HF} = E_0 + E_1$. Portanto, a energia de correlação é introduzida apenas a partir da perturbação em segunda ordem com esta escolha de H_0 .

A solução de mais baixa energia para o problema não-perturbado é a função de onda Hartree-Fock. Soluções em energias mais altas devem ser representadas por determinantes de Slater excitados.

A correção de energia em segunda ordem, equação (2.38), envolve elementos de matriz do operador perturbação entre a referência Hartree-Fock e todos os possíveis estados excitados. Desde que a perturbação é um operador de dois elétrons, todos os elementos de matriz que envolvem excitações triplas, quádruplas, etc. são zero. Deste modo, a correção de energia em segunda ordem, que é a primeira contribuição para a energia de correlação, envolve uma soma sobre todos os determinantes duplamente excitados, o que está representado na equação (2.43), onde se demonstra a promoção de dois elétrons dos orbitais ocupados i, j para os orbitais virtuais a, b.

$$E_{2} = \sum_{i < j} \sum_{a < b} \frac{\langle \Phi_{0} | H' | \Phi_{ij}^{ab} \rangle \langle \Phi_{ij}^{ab} | H' | \Phi_{0} \rangle}{E_{0} - E_{ij}^{ab}}$$
(2.43)

Empregando-se uma função de onda Hartree-Fock suficientemente bem descrita, o método MP2 tipicamente recupera cerca de 80-90% da energia de correlação do sistema, podendo realizar cálculos com custos computacionais relativamente baixos, sendo esta uma das grandes vantagens do método MP2. Outro aspecto positivo é o fato de ele ser consistente no tamanho (*size-extensive*), ou seja, a soma das energias dos fragmentos que formam o sistema molecular é igual à energia dos mesmos fragmentos quando tratados em distâncias internucleares bem maiores, porém interagentes. Uma desvantagem do método MP2 é não haver garantia sobre o valor da energia obtida, pois é possível que o autovalor fornecido seja menor ou maior do que a energia exata, diferentemente do procedimento variacional como no método Interação de Configurações, que será visto adiante, onde a energia obtida sempre é superior à energia exata. Mas este fato se minimiza uma vez que, em geral, o interesse sobre o sistema químico está nas diferenças de energias e não em seus valores absolutos.

Com o desenvolvimento da teoria de perturbação de muitos corpos, ficou claro que o avanço para ordens superiores da teoria da perturbação seria mais convenientemente desenvolvido com a utilização da técnica "Coupled Cluster", descrita a seguir.

2.2.4. MÉTODO COUPLED CLUSTER (CC)

O método *Coupled Cluster* tem se tornado nos últimos anos um dos métodos de correlação eletrônica mais amplamente utilizados, pelo fato de proporcionar resultados bastante exatos, especialmente, para funções de onda que são descritas adequadamente por uma única configuração de referência, onde certas contribuições da série de perturbação podem ser eficientemente somadas até ordem infinita.

O fundamento da teoria *Coupled Cluster* é baseado em representar a função de onda eletrônica da seguinte maneira:

$$|\Psi_e\rangle = e^T |\Phi_0\rangle \tag{2.44}$$

onde $|\Phi_0\rangle$ é uma função monoconfiguracional, usualmente a função de onda Hartree-Fock, e *T* é o chamado operador *cluster*, definido como:

$$T = T_1 + T_2 + T_3 + \dots, (2.45)$$

O operador T_n , atua sobre a função de onda Hartree-Fock gerando determinantes excitados:

$$T_{1}\Phi_{0} = \sum_{i}^{oc.} \sum_{a}^{vir.} t_{i}^{a}\Phi_{i}^{a}$$
(2.46)

$$T_2 \Phi_0 = \sum_{i < j}^{oc.} \sum_{a < b}^{vir.} t_{ij}^{ab} \Phi_{ij}^{ab}$$
(2.47)

Nestas expressões, i,j são spins-orbitais ocupados, enquanto a,b são spins-orbitais virtuais a serem ocupados após excitações. Os coeficientes t_i^a, t_{ij}^{ab} são denominados amplitudes.

O operador exponencial da equação (3.45) pode ser escrito da seguinte forma:

$$e^{T} = 1 + T_{1} + \left(T_{2} + \frac{1}{1}T_{1}^{2}\right) + \left(T_{3} + T_{2}T_{1} + \frac{1}{6}T_{1}^{3}\right) + \left(T_{4} + T_{3}T_{1} + \frac{1}{2}T_{2}^{2} + \frac{1}{2}T_{2}T_{1}^{2} + \frac{1}{24}T_{1}^{4}\right) + \dots \quad (2.48)$$

Os primeiros parênteses correspondem às excitações duplas, onde o termo T_2 é chamado de termo conectado e T_1^2 é o termo desconectado. Os parênteses a seguir dizem

respeito a excitações triplas e quádruplas.

A expressão para a energia *Coupled Cluster* (E_{cc}) deve ser obtida substituindo a função de onda (2.48) na equação de Schröedinger, multiplicando à esquerda por Φ_0^* e integrando:

$$\langle \Phi_0 | He^T | \Phi_0 \rangle = E \langle \Phi_0 | e^T | \Phi_0 \rangle$$
(2.49)

$$\langle \Phi_0 | He^T | \Phi_0 \rangle = E \langle \Phi_0 | 1 + T_1 + T_2 + ... | \Phi_0 \rangle$$
 (2.50)

$$E_{cc} = \langle \Phi_0 | He^T | \Phi_0 \rangle \tag{2.51}$$

Como o operador hamiltoniano contém somente integrais de um e dois elétrons, na equação abaixo a expansão de e^{T} inclui apenas as excitações simples e duplas:

$$E_{cc} = \langle \Phi_0 | H | (1 + T_1 + T_2 + 1/2 T_1^2) \Phi_0 \rangle$$
(2.52)

$$E_{cc} = \langle \Phi_0 | He^T | \Phi_0 \rangle + \langle \Phi_0 | H | T_1 \Phi_0 \rangle + \langle \Phi_0 | H | T_2 \Phi_0 \rangle + \frac{1}{2} \langle \Phi_0 | H | T_1^2 \Phi_0 \rangle$$
(2.53)

$$E_{cc} = E_0 + \sum_i \sum_a t_i^a \langle \Phi_0 | H | \Phi_i^a \rangle + \sum_{i < j} \sum_{a < b} (t_{ij}^{ab} + t_i^a t_j^b - t_i^b t_j^a) \langle \Phi_0 | H | \Phi_{ij}^{ab} \rangle$$
(2.54)

O primeiro elemento de matriz é zero, de acordo com o teorema de Brillouin. A energia de correlação C*oupled Cluster* é, então, determinada pelas amplitudes simples e duplas e pelas integrais de dois elétrons. As equações para as amplitudes são determinadas multiplicando a equação de Schröedinger à esquerda e integrando por um determinante unicamente excitado $(\Phi_m^e)^*$:

$$\langle \Phi_m^e | He^T | \Phi_0 \rangle = E_{cc} \langle \Phi_m^e | e^T \Phi_0 \rangle$$
(2.55)

Desenvolvendo a equação (2.55) de modo a obter as amplitudes, é possível calcular a energia e a função de onda.

Os procedimentos *Coupled Cluster* devem sempre ser truncados, pois caso todos os operadores fossem incluídos na expansão da função de onda, teríamos o equivalente a um cálculo *full CI*. Na prática, isso é impossível até mesmo para sistemas relativamente pequenos. O procedimento CCSD *(Coupled Cluster* Simples e Duplas), por exemplo, utiliza o operador *Cluster* T = $T_1 + T_2$.

Um aspecto importante do método *Coupled Cluster* é que excitações de ordem maior que o truncamento do operador T fazem parte da equação de amplitude. A inclusão destes termos é que faz com que o método seja consistente no tamanho.

Para se obter a precisão química requerida de um bom método, em geral, torna-se necessário ir além da aproximação CCSD. O método CCSDT é muito dispendioso computacionalmente, e o custo computacional é proporcional a n⁸, onde n é o número de orbitais moleculares, o que toma muito caro o uso de um conjunto base adequado. Para uma comparação, o método CCSD é um processo iterativo com custo computacional proporcional a n⁶. Para evitar este alto custo computacional do cálculo CCSDT, e também incluir os efeitos de excitações conectadas mais altas, diferentes aproximações têm sido propostas, sendo uma delas o método CCSD(T). Neste método, os efeitos de excitações triplas conectadas são estimados utilizando a Teoria de Perturbação e incluindo ao cálculo CCSD.

O custo computacional do método CCSD(T) é de um processo iterativo com custo proporcional a n⁶ (CCSD) mais dois passos equivalentes a n⁷. É importante ressaltar que o procedimento CCSD(T) tem reproduzido valores em energia de cálculos *full* CCSDT. Portanto, o método CCSD(T) proporciona a melhor combinação entre custo computacional e exatidão nos resultados, permitindo a utilização de grandes conjuntos base.

O método Coupled Cluster é um método monoconfiguracional, ou seja, a função de

onda é descrita como uma única configuração, geralmente o determinante Hartree-Fock. Deste modo, os resultados serão melhores se a função de onda de ordem zero for suficientemente bem descrita.

2.2.5. MÉTODO DE CAMPO AUTOCONSISTENTE MULTICONFIGURACIONAL (MCSCF) E INTERAÇÃO DE CONFIGURAÇÕES COM MÚLTIPLAS REFERÊNCIAS (MRCI)

O método do Campo Autoconsistente Multiconfiguracional (MCSCF - *Multi-Configuration Self-Consistent Field*) é semelhante ao método interação de configurações no aspecto onde os coeficientes dos determinantes são otimizados variacionalmente, mas existe uma flexibilização adicional onde os orbitais moleculares que compõem os determinantes são também otimizados.

Como normalmente este método está limitado a certo número de determinantes, ele não é totalmente adequado caso a intenção seja obter boa parte da energia de correlação, pois a relaxação dos orbitais moleculares não é muito favorável nesse sentido. Nesse caso, seria mais útil aumentar o número de determinantes e manter fixos os orbitais moleculares. A função com um único determinante Hartree-Fock normalmente fornece bons resultados na descrição da estrutura eletrônica, mas em muitos casos ela falha, e desse modo o método MCSCF pode ser utilizado como uma ferramenta no caso da necessidade do uso de funções de onda multi-determinantais, que possibilitam uma descrição mais acurada de algumas situações que não são bem descritas com um único determinante, mas sim com uma combinação dos mesmos.

A maior dificuldade do método MCSCF consiste em selecionar os orbitais necessários para descrever corretamente a estrutura eletrônica. Essa seleção é importante, pois não existe a necessidade de realizar a otimização de todos os orbitais de um sistema, o que torna o processo computacional muito dispendioso. Uma aproximação bastante utilizada é a Teoria do Campo Autoconsistente com Espaço Ativo Completo (CASSCF - *Complete Active Space Self-Consistent Field*) [30, 31], um caso particular do método MCSCF, onde a função de onda é escrita como uma combinação linear de um conjunto $\{\phi_n\}$ de funções de configuração:

$$\Psi = \sum_{i=0}^{n} c_i \phi_i = c_1 \phi_1 + c_2 \phi_2 + \dots + c_n \phi_n$$
(2.56)

São incluídas nesta expansão somente configurações de mesma simetria espacial e de spin do estado em estudo. Sua idéia básica é otimizar não só os coeficientes da expansão, mas também o conjunto de orbitais que definem as funções de configuração (ϕ_i). Essa função multiconfiguracional será sempre necessária quando o determinante HF não descrever corretamente o estado de um sistema.

As configurações do cálculo CASSCF são geradas a partir da separação dos orbitais moleculares em orbitais ocupados e virtuais. Uma vez que o sucesso do cálculo depende da escolha correta dos orbitais que irão gerar as configurações de interesse, este conjunto de orbitais (virtuais e ocupados) é classificado de acordo com quatro subconjuntos: o grupo dos orbitais de caroço (*core*), que são os orbitais moleculares mais internos e representam os elétrons que não participam da quebra e formação das ligações químicas, portanto, permanecem inalterados em sua forma original (por exemplo, a obtida com o método SCF); o grupo dos orbitais ativos que, contrariamente aos orbitais de caroço, relacionam-se diretamente com os fenômenos oriundos das ligações químicas, e novamente serão otimizados; o grupo dos orbitais inativos, que embora não participem diretamente dos processos descritos, serão otimizados para melhorar a descrição do problema; e por fim, há o

grupo dos orbitais virtuais (secundários), que são os orbitais menos energéticos de um cálculo RHF e não serão ocupados.

A seleção dos orbitais que farão parte do espaço ativo deve ser feita cuidadosamente e manualmente, levando em conta o problema químico a ser estudado e a disponibilidade computacional. Portanto, o método CASSCF irá utilizar as distinções nos grupos acima para construir sua expansão considerando os orbitais do caroço e do espaço inativo, ambos duplamente ocupados, sendo apenas otimizados os inativos. Os orbitais do espaço virtual serão mantidos vazios, e finalmente ocorrerá a otimização dos orbitais que compõe o espaço ativo. Um cálculo do tipo Interação de Configurações (*full CI*) é realizado com uma distribuição dos elétrons no espaço ativo de todas as formas possíveis nos orbitais deste espaço, e todas as configurações de simetria adequada são selecionadas no cálculo MCSCF. O cálculo *full CI* realizado com os orbitais ativos limita bastante o número de elétrons, e nos orbitais selecionados são, geralmente, menos do que 10 ou 12. Com este número reduzido, fica clara a necessidade de se escolher com muito cuidado os orbitais a serem otimizados.

Normalmente, para cada orbital ocupado selecionado para o espaço ativo, existe um orbital molecular correspondente, de modo que os números de elétrons e orbitais se tornem próximos. O critério de energia na seleção dos orbitais muitas vezes é utilizado. Os orbitais ocupados mais altos e os orbitais virtuais mais baixos obtidos em um cálculo RHF normalmente são os mais importantes a serem incluídos no espaço ativo. Um problema surge quando se utiliza uma base atômica muito extensa, pois passa a existir um número muito grande de orbitais virtuais com energias baixas, dificultando a escolha. Outro problema é que, se o sistema apresenta um caráter multiconfiguracional, a função de onda estará qualitativamente errada. A seleção dos orbitais ativos a partir de funções de onda inadequadas pode levar a resultados inadequados. Uma maneira de resolver esse problema consiste na utilização de orbitais naturais. Os orbitais naturais são aqueles que diagonalizam a matriz

densidade, sendo os autovalores iguais ao número de ocupação do orbital. Orbitais com ocupações diferentes de 0 ou 2 para um sistema de camada fechada são normalmente os mais importantes para serem incluídos no espaço ativo. Como a função RHF fornece apenas valores de 0 ou 2, é necessária a realização de um cálculo que inclua correlação eletrônica para a obtenção de números diferentes de 0 ou 2.

O grande cuidado exigido na seleção correta dos orbitais a serem usados no espaço ativo para o método MCSCF, de modo a fornecer uma descrição correta da estrutura eletrônica do sistema de estudo, faz com que a utilização desse método não seja uma "caixa preta", onde todos os processos são realizados automaticamente, como no caso do Hartree-Fock ou MP2.

Desta forma, dentro do formalismo multiconfiguracional, há o chamado método Interação de Configurações (CI – *Configuration Interaction*), que consiste basicamente em escrever a função de onda como uma combinação linear de determinantes, assim como na equação (2.51). Mas diferentemente do método MCSCF, apenas os coeficientes de expansão são determinados variacionalmente, uma vez que os orbitais moleculares empregados para construir os determinantes de Slater excitados, convenientemente definidos e que podem corresponder ou não aos orbitais HF, são mantidos fixos.

Com o uso dos multiplicadores de Lagrange para a minimização da energia, e admitindo que a função de onda CI seja normalizada, é obtida a seguinte equação matricial:

$$\begin{pmatrix} H_{00} - E & H_{01} & \cdots & H_{0j} & \cdots \\ H_{10} & H_{11} - E & \cdots & H_{1j} & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ H_{j0} & \cdots & \cdots & H_{jj} - E & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \cdots \\ a_j \\ \cdots \\ a_j \\ \cdots \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \cdots \\ 0 \\ \cdots \end{pmatrix}$$
(2.57)

onde H_{ij} é uma matriz hermitiana definida pela expressão:

$$H_{ij} = \left\langle \phi_i \mid H \mid \phi_j \right\rangle \tag{2.58}$$

Na metodologia CI, a solução da equação de Schröedinger é reduzida à construção dos elementos de matriz H_{ij} , entre as Funções de Configuração do Estado (FCE) ou, simplesmente, Funções de Configuração (FC). A equação (2.57) pode ser escrita simplificadamente na forma (H - EI)a = 0 ou Ha = Ea, e consiste em buscar os autovalores da matriz H, ou seja, diagonalizá-la. Como a abordagem CI é variacional, a energia (autovalor) mais baixa será um limite superior à do estado fundamental. O segundo autovalor mais baixo encontrado irá corresponder à energia do primeiro estado excitado e, de maneira análoga, o terceiro autovalor corresponde ao do segundo estado excitado, e assim sucessivamente.

Durante a determinação dos elementos de matriz H_{ij} , duas regras são de grande importância: as regras de Slater-Condon e o teorema de Brillouin. A primeira diz que os elementos H_{ij} são diferentes de zero se os dois determinantes diferirem em zero, um ou dois spins orbitais moleculares. O segundo diz que o elemento de matriz entre o determinante de referência HF e os determinantes unicamente excitados é zero.

Um cálculo interação de configurações segue, portanto, algumas etapas. Primeiramente, é definida a geometria molecular e a base de funções atômicas, e os cálculos são realizados sobre a base atômica. Ocorre então a construção de orbitais moleculares φ_i , havendo transformação das integrais sobre a base atômica para a molecular. A seguir, é realizado o cálculo CASSCF, com construção de orbitais naturais médios e do espaço de funções de referência. Assim, geram-se as funções de configuração e a construção dos elementos da Hamiltoniana, que é então diagonalizada. Desta forma, obtém-se o cálculo das propriedades eletrônicas.

Há dois grandes grupos de métodos CI, aqueles que consideram somente as configurações geradas pela excitação de elétrons de um único determinante, o determinante HF, e o segundo grupo, que compreende os métodos que utilizam uma função do tipo MCSCF ou CASSCF como referência. Este último é denominado MRCI (*Multireference Configuration Interaction*) [32, 33], que apesar de seu alto custo computacional, pode fornecer cálculos mais exatos. Sua implementação em códigos como MOLPRO [68] e GAMESS [88, 89], por exemplo, tem tornado o método cada vez mais difundido e acessível para a comunidade de químicos quânticos.

2.2.6. MÉTODO DO FUNCIONAL DA DENSIDADE (DFT)

A Teoria do Funcional da Densidade (DFT - *Density Functional Theory*) [35] tornouse, nos últimos anos, uma importante ferramenta que é cada vez mais utilizada no estudo de sistemas químicos e físicos, como moléculas, sólidos e aglomerados.

Tradicionalmente, os métodos *ab initio* utilizam a função de onda para obter informações do sistema. No entanto, quando há aumento no número de átomos do sistema, qualquer erro na superposição entre a função de onda exata e a função de onda aproximada de um átomo leva a um erro exponencial na superposição entre a função de onda exata total do sistema molecular, e a função de onda aproximada total do sistema molecular. Isto constitui uma espécie de "barreira" na aplicação dos métodos que caracterizam o sistema através da função de onda, conforme há aumento no número de partículas envolvidas.

Um funcional é uma função que recebe como argumento outra função. Uma

característica da metodologia DFT é que, para atingir resultados mais exatos, utiliza o conceito de densidade eletrônica ($\rho(r)$) em substituição ao conceito de função de onda. Fazse então necessária a escolha correta do funcional que relacione energia à densidade eletrônica, diferentemente dos outros métodos *ab initio*, onde os resultados podem ser sistematicamente melhorados, principalmente com a escolha adequada do conjunto de funções de base.

O método DFT busca determinar a estrutura eletrônica de um sistema químico baseado na distribuição eletrônica e define que, dada uma função de densidade eletrônica do sistema, a energia do estado fundamental é dada pelo mínimo variacional da energia como funcional da densidade de carga. Sendo assim, para cada função densidade de carga eletrônica $\rho(\mathbf{r})$, existe um valor de energia do sistema $E[\rho(r)]$ de correspondência biunívoca. A minimização do funcional $E[\rho(r)]$ resulta no melhor valor de energia do sistema, ou seja, da energia do estado fundamental, cumprindo assim o princípio variacional de que a energia será mínima para a densidade real do sistema. Por isso, é necessária a escolha de um funcional que conecte corretamente a energia à densidade eletrônica, não conhecida em princípio.

A densidade eletrônica é descrita pela equação:

$$\rho(r) = \int \cdots \int \psi(r_1, r_2, \cdots, r_n)^* \psi(r_1, r_2, \cdots, r_n) dr_2, dr_3, \cdots, dr_n$$
(2.59)

em que $\psi(r_1, r_2, \dots, r_n)$ é a solução do estado fundamental da Hamiltoniana não relativística do sistema considerado.

Os diversos estudos concentrados sobre métodos DFT trouxeram grande progresso, especialmente no início dos anos 90, com o desenvolvimento de eficientes funcionais de correlação eletrônica, possibilitando desta forma que tais funcionais sejam comparáveis às mais rigorosas e sofisticadas metodologias *ab initio*, porém requerendo apenas uma fração de seus tempos computacionais e menor utilização de espaço de memória, principalmente quando a questão envolve grandes sistemas moleculares. Também, a inserção eficiente da DFT em pacotes de cálculos de estrutura eletrônica não-comerciais, como por exemplo, GAMESS [90, 91], NWCHEM [92] e outros, contribuiu significativamente para a popularização e expansão do método.

No primeiro modelo adotado para o estudo de sistemas atômicos e moleculares, na década de 1920, considerou-se os elétrons como constituintes de um gás uniforme que não interagiam entre si, tornando-se conhecido como modelo de Thomas-Fermi-Dirac (TFD) [93, 94]. Esse modelo fornece expressões para a energia cinética e de troca, porém, não fornece valores exatos de energia, pois representa inadequadamente a energia cinética como função da densidade, não prevendo também a existência da ligação química. Para que seja corrigida essa limitação, é necessário que seja considerado um gás não uniforme.

A estrutura moderna da teoria do funcional da densidade (DFT) nos sistemas moleculares veio da década de 1960, com o trabalho de Hohenberg e Kohn [35] e com a adoção proposta por Kohn e Sham [95] da linguagem de orbitais para representar a densidade eletrônica. Em 1964, Hohenberg e Kohn forneceram a base teórica para a aproximação DFT, mostrando que a energia é um funcional da densidade, e que a densidade do sistema minimizaria este funcional, ou seja, que determinada propriedade de um sistema pode ser calculada a partir da densidade eletrônica. Sendo assim, a densidade, em princípio, conteria a mesma informação que a função de onda. Essa correspondência entre a densidade eletrônica de um sistema e sua energia pode ser entendida através dos teoremas de Hohenberg e Kohn (HK).

1) Primeiro Teorema de HK

Estabelece que, para n-elétrons interagentes, há apenas o único funcional $\rho(r)$ da densidade eletrônica, além de uma constante aditiva. Portanto, demonstra que a densidade eletrônica de um sistema determina seu potencial externo V_{ex} e seu número de elétrons N; consequentemente, a Hamiltoniana de um sistema.

$$\rho(r) = \int \rho(r) dr \tag{2.60}$$

Uma vez que este teorema estabelece que a densidade do estado fundamental seja suficiente para a obtenção das demais propriedades do sistema, torna-se necessário assegurar que essa densidade ρ de fato se associa ao estado fundamental. Segue-se então o segundo teorema de HK.

2) Segundo Teorema de HK

Estabelece que, quando a densidade tentativa é a densidade exata do estado fundamental, o funcional que gera a energia do sistema irá fornecer sua menor energia. Portanto, havendo qualquer aproximação da densidade eletrônica $\rho(r)$, a energia total será sempre maior ou igual à energia exata do sistema, ou seja:

$$E[\rho(r)] \ge E[\rho(r)] = E_{\rho} \tag{2.61}$$

Entretanto, os postulados apresentados por Hohenberg e Kohn não explicavam a obtenção do funcional que gerasse a energia total do estado fundamental. Assim, a forma completa deste funcional não era conhecida.

Contudo, o passo mais importante foi dado no ano seguinte, quando Kohn e Sham demonstraram que a partir da teoria do funcional da densidade é possível escrever uma equação para os orbitais de uma partícula dos quais a densidade é obtida, sugerindo, desta forma, uma maneira de aproximar os orbitais desconhecidos.

Assim, a partir do formalismo adotado por Kohn e Sham, foi obtida a energia em termos de um funcional da densidade eletrônica, sugerida como uma soma de três termos: a energia cinética $T[\rho(r)]$, a atração entre os núcleos e elétrons $E_{ne}[\rho(r)]$ que inclui a repulsão núcleo-núcleo, e a repulsão eletrônica $J[\rho(r)]$ que pode ser dividida nos termos de energia de Coloumb e de troca, como na teoria HF.

Um ponto determinante deste formalismo é o cálculo da energia cinética real de um sistema, pois sua idéia básica consiste em separar a energia cinética em dois termos, sendo que um deles representa a energia quase por completo, podendo ser resolvido exatamente, e o segundo termo corresponde a uma pequena correção, que é incorporada no termo de energia de correlação e troca $E_{xc}[\rho(r)]$, fundamental na metodologia DFT. A energia fica descrita da seguinte forma:

$$E_{DFT}[\rho(r)] = T[\rho(r)] + E_{ne}[\rho(r)] + J[\rho(r)] + E_{xc}[\rho(r)]$$
(2.62)

O funcional de correlação e troca é constituído na soma do funcional de correlação $(E_x[\rho])$ com o funcional de troca $(E_c[\rho])$, conforme a seguinte expressão:

$$E_{xc}[\rho(r)] = E_{x}[\rho(r)] + E_{c}[\rho(r)]$$
(2.63)

A energia de troca e correlação no DFT representa correções quânticas sem análogos não-clássicos na energia de repulsão eletrônica, além da correção para a energia cinética devido à interação eletrônica, ou seja, a influência que um elétron exerce sobre o movimento dos outros.

A teoria do funcional da densidade permite a escolha da forma do funcional para a energia de correlação e troca. Portanto, um grande desafio do método é justamente obter este termo. Uma vez conhecido este funcional, a resolução do sistema se torna autoconsistente, assim como ocorre no método Hartree-Fock. Porém, diferentemente do método Hartree-Fock, se for usada a expressão exata de $E_{xc}[\rho(r)]$ a energia exata é obtida com a inclusão da correlação eletrônica, que é um elemento complexo nos métodos *ab initio* tradicionais e responsável pela maior parte do custo computacional, sendo incluída no método DFT apenas com uma fração do custo computacional envolvido nos demais métodos *ab initio*.

Assim, muitos estudos foram realizados para o desenvolvimento destes funcionais, porém a preferência por um funcional pode variar em relação ao sistema molecular estudado. Uma vez que o funcional de troca e correlação $E_{xc}[\rho(r)]$ é conhecido, o potencial de troca e correlação $V_{xc}(r)$ pode ser obtido imediatamente. A resolução da equação, como já dito, é feita de maneira autoconsistente. Primeiro, determina-se um funcional de troca e correlação. A seguir, é inserida uma função tentativa para a densidade eletrônica, e o conjunto de orbitais de Kohn-Sham para essa densidade eletrônica é calculado. Com estes novos orbitais, calculase uma nova densidade eletrônica, e assim seguem as iterações até que a densidade eletrônica ou o funcional de correlação eletrônica atinjam determinado critério de convergência, tipicamente na ordem de 10^{-6} para a energia, ou 10^{-4} para a densidade eletrônica.

Esses funcionais que constituem o termo de correlação e troca podem ser basicamente de dois tipos: os funcionais locais, que dependem apenas da densidade eletrônica, e os funcionais corrigidos pelo gradiente da densidade eletrônica, que, conforme sugere o nome, dependem tanto da densidade eletrônica quanto do gradiente da densidade eletrônica.

A Aproximação da Densidade Local (LDA - Local Density Aproximation) é o modelo mais simples para representar o termo de correlação e troca, onde a densidade é tratada como um gás uniforme de elétrons. Quando a densidade dos elétrons de spin opostos é diferente, é utilizada a Aproximação da Densidade e de Spin Local (LSDA - Local Spin and Density Aproximation), uma generalização direta da LDA para incluir a dependência do spin eletrônico nos funcionais. Porém, como os sistemas moleculares em geral não consistem de um gás de elétrons homogêneo, a aproximação LSDA difere bastante dos sistemas eletrônicos reais, que são não homogêneos, pois possuem variação espacial da densidade eletrônica. Os métodos da Aproximação do Gradiente Generalizado (GGA - Generalized Gradient Aproximation) ainda são locais, mas consideram este efeito, fazendo com que a energia de correlação e troca não dependa apenas da densidade eletrônica, mas também do gradiente da densidade eletrônica. Por isso, essa metodologia é ocasionalmente chamada de não localizada. Muitos funcionais que utilizam essa metodologia obtiveram bastante sucesso nos últimos anos. O desenvolvimento do método GGA se deu em duas linhas principais: uma de natureza empírica, proposta inicialmente por Becke, que tem como exemplos os métodos Becke88 (B) [96], Perdew-Wang (PW) [97], Perdew-Wang modificado (m-PW) [98] e OptX (O) [99], e outra linha que considera correções associadas a princípios quânticos básicos, como de escala ou de limites para altas e baixas densidades, que possui como exemplos os funcionais Becke86 (B86) [100], Perdew86(P) [101], Perdew-Burke-Ernzerhof (PBE) [102] e Perdew-Burke-Ernzerhof modificado (mPBE) [103].

Os resultados da segunda linha de funcionais não atingem a mesma exatidão dos funcionais interpolados para as propriedades às quais estes se dispõem, ou seja, para a energia de atomização e barreiras em reações moleculares. Porém, seus resultados não são inexatos, são, no entanto, mais eficazes para predizer propriedades onde os métodos de interpolação apresentam dificuldades, como as propriedades moleculares no estado sólido.

Em geral, os métodos GGA fornecem valores de geometrias e das frequências vibracionais para moléculas estáveis de mesma qualidade, ou melhores, do que os obtidos através da teoria de perturbação de segunda ordem de Møller-Plesset (MP2), porém com custo computacional na mesma ordem de grandeza de cálculos Hartree-Fock. No caso de sistemas de caráter multiconfiguracional, onde normalmente o método MP2 não fornece bons resultados, a metodologia GGA produz resultados equivalentes ao método *Coupled Cluster*, porém com um custo computacional bastante menor.

Outra classe de funcionais de desenvolvimento mais recente e promissores são os métodos *meta-GGA* (*m-GGA*), que dependem de termos que tipicamente incluem a densidade de energia cinética, consistindo em derivadas dos orbitais Kohn-Sham ocupados. Estes métodos estabelecem melhora significativa nas propriedades físico-químicas. No entanto, a dificuldade em resolver as equações de Kohn-Sham aumenta consideravelmente, além de possuírem instabilidades numéricas desafiadoras. Os métodos B95 [104] e KCIS [105] são exemplos destes funcionais.

Existem ainda os funcionais de densidade híbridos (*H-GGA*), que utilizam uma combinação de contribuições de funcionais LSDA, GGA e ainda de troca exata HF. Os parâmetros de peso utilizados em sua otimização possuem contribuição empírica, pois são parâmetros tomados a partir de interpolações com resultados experimentais. Os funcionais híbridos promoveram uma significativa melhora nos resultados GGA, e são hoje amplamente utilizados, como por exemplo, os funcionais B3LYP [106], B3PW91 [107] e MPW1K [108, 109].

A mais nova classe de funcionais em corrente desenvolvimento são os híbridos que utilizam como ponto de partida os funcionais meta-GGA, chamados *HM-GGA*. Tais funcionais dependem do funcional de troca Hartree-Fock, da densidade eletrônica e de seu gradiente, além da densidade de energia cinética. Exemplos de funcionais desta categoria são:

3. METODOLOGIA: DETALHES COMPUTACIONAIS

Os cálculos das estruturas eletrônicas dos três estudos envolvidos neste trabalho, o estudo do potencial de ionização da molécula hidrazina e o estudo de abstração de hidrogênio das reações $N_2H_2(trans) + H \rightarrow N_2H + H_2$ e $N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH$, foram realizados da seguinte forma:

Para a reação $N_2H_2(trans) + H \rightarrow N_2H + H_2$, todos os pontos estacionários (reagentes, produtos e estado de transição) foram otimizados com a utilização do método *Coupled Cluster* com excitações simples e duplas e contribuições de triplas (CCSD(T)) [34], com a Teoria de Perturbação em segunda ordem (MP2) [28, 29], com métodos da Teoria do Funcional de Densidade (DFT) MPWB1K [36], BHandHLYP [37] e BB1K [38], e com o método multiconfiguracional CASSCF (*Complete Active Space Self-Consistent-Field*) [30, 31]. As geometrias obtidas por este último método foram utilizadas em cálculos de geometria fixa (*Single-Point*) com emprego do método de multireferência MRCI (*Multireference Configuration Interaction*) [32, 33]. Correções para a inclusão de correlação de excitações mais altas (quádrupla) nos cálculos MRCI foram realizadas por meio da chamada correção de Davidson denotada por MRCI+Q [110-113]. As funções de base utilizadas são os conjuntos base de Dunning cc-pVXZ (core correlation-consistent polarized Valence "X" zeta, X=D, T e Q) [39].

A contribuição da correlação dos elétrons mais internos (caroço) foi estimada utilizando o método CCSD(T) e realizando cálculos correlacionando somente os elétrons de valência, conhecidos como FC (*frozen core*), e cálculos correlacionando todos os elétrons, denotado AE (*all electrons*). Nestes cálculos, empregou-se a base cc-pCVTZ de Woon e Dunning [40]. Esta base possui funções com expoentes otimizados para a correlação do

caroço e assim é possível estimar os efeitos de correção dos elétrons mais internos. Também, estimou-se a contribuição para o limite do conjunto de base completa (CBS - *Complete Basis Set*), utilizando o método de extrapolação proposto por Halkier et al. [41], segundo a seguinte expressão:

$$E_{CBS} = [E(n) \times n^{3}] - [E(n-1) \times (n-1)^{3}] / n^{3} - (n-1)^{3}$$
(3.1)

onde n é igual a 4, quando são consideradas as funções de base cc-pVQZ e cc-pVTZ. A equação (3.1) foi também utilizada para a extrapolação de distâncias, dos ângulos de ligações e das frequências vibracionais.

Baseado na metodologia proposta por Martin e Taylor [66], foram considerados os nossos melhores resultados, com relação aos métodos de uma referência, aqueles obtidos com o método CCSD(T) que incluem tanto a extrapolação CBS quanto a correlação caroçovalência, denominados ao longo do texto como Melhores Resultados Estimados (MRE), segundo a expressão:

$$E_{MRE} = E_{CBS}(FC) + E(cc-pCVTZ, AE) - E(cc-pCVTZ, FC)$$
(3.2)

No estudo da reação $N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH$, os pontos estacionários foram otimizados com o emprego dos métodos MP2 [28, 29] e da Teoria do Funcional de Densidade com os funcionais BB1K [38] e MPWB1K [36]. Os conjuntos de funções de base utilizadas são as bases cc-pVXZ e aug-cc-cpVXZ (X=D, T e Q) de Dunning [39]. Realizaram-se também cálculos *Single-Point* utilizando o método CCSD(T) [34] na geometria fixa obtida com os métodos MP2 e BB1K, e a seguir os resultados foram extrapolados para o limite do conjunto de base completa (CBS), descrito na equação (3.1).

Os cálculos dos parâmetros cinéticos das duas reações $(N_2H_2(trans) + H \rightarrow N_2H + H_2 \text{ e } N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH)$ foram realizados com a utilização da teoria do estado de transição variacional (VTST). Como ponto de partida, foram empregadas as geometrias otimizadas dos estados de transição, e conectando-os até seus reagentes e produtos, realizou-se o cálculo do caminho de mínima energia (MEPs - *Minimum Energy Path*) [84] para as duas reações, através de coordenadas cartesianas com um fator de escala onde a massa reduzida μ é de 1 amu.

O caminho reacional da reação de abstração *trans*-N₂H₂ + H foi calculada com o método MPWB1K, com um passo de 0,01 amu^{1/2} bohr. Obteve-se as constantes de velocidade desta reação utilizando a teoria do estado de transição variacional (VTST) [23] com correções interpoladas da energia *Single-Point* (VTST-ISPE) [42] que é também denominado como método de dinâmica direta-dual (*dual-level dynamics*), uma aproximação que faz uso simultâneo de dois níveis de cálculos. Para os cálculos denominados como menor nível (*lower-level*), os gradientes e Hessianas foram gerados com a metodologia MPWB1K/cc-pVTZ ao longo de todo o caminho reacional, e os cálculos de estrutura eletrônica de nível mais alto (*higher-level*), que se relacionam apenas aos pontos estacionários, foram obtidos com os valores dos nossos melhores resultados CCSD(T)/MRE para as barreira e energias reacionais, geometrias e frequências vibracionais.

Para a reação $N_2H_4 + O$, os dois caminhos da mínima energia de reação (MEP) foram descritos com o método BB1K/aug-cc-pVTZ, com o passo de 0,05 amu^{1/2} bohr. Os cálculos de estrutura eletrônica dos pontos estacionários foram obtidos com os valores termodinâmicos, geometrias e frequências vibracionais do cálculo BB1K/aug-cc-pVTZ.

Os fatores de simetria [80, 114] para as reações direta e reversa equivalem a 2 e 1, respectivamente, para ambas as reações. As constantes de velocidade VTST foram corrigidas com a aproximação de curvatura zero ZCT (*Zero Curvature Tunneling*) [36, 115] e também com a correção de Wigner (TST/W) [116] para o tunelamento. Para o caso da reação de abstração de hidrogênio da molécula diazeno, a aproximação de pequena curvatura SCT (*Small Curvature Tunneling*) [115, 117, 118] também foi empregada.

Para o estudo do potencial de ionização da hidrazina, as moléculas de hidrazina neutra e cátion foram otimizadas em todas as suas possíveis conformações utilizando os métodos CCSD(T) e CASSCF. Cálculos *Single-Point* utilizando a geometria CASSCF também foram realizados com o método de multireferência MRCI (*Multireference Configuration Interaction*). Os conjuntos de funções de base utilizadas são aquelas de Dunning cc-pVXZ (*X=D, T e Q*) [39]. A contribuição da correlação do caroço através dos cálculos CCSD(T), foi estimada correlacionando somente os elétrons de valência (FC), e correlacionando todos os elétrons (AE), conforme já descrito acima, com o emprego da base cc-pCVTZ de Woon e Dunning [40]. Foi realizada a extrapolação para o limite do conjunto de base completa (CBS) utilizando a equação (3.1) também foi realizada para os cálculos CASSCF/MRCI e CCSD(T). Desta forma, como nos cálculos anteriores, os nossos melhores Resultados Estimados (MRE) monoconfiguracional foram obtidos via equação (3.2), que incluem tanto a extrapolação CBS, como a correlação caroço-valência.

Para os cálculos de estrutura eletrônica, foram utilizados os programas MOLPRO [69] e GAUSSIAN [69, 70]. Os cálculos cinéticos foram obtidos com o emprego do programa POLYRATE [71].
4.1. ABSTRAÇÃO DO ÁTOMO DE HIDROGÊNIO DA MOLÉCULA DIAZENO, EM SUA REAÇÃO COM HIDROGÊNIO ATÔMICO

Neste estudo, foram inicialmente caracterizadas as geometrias das moléculas participantes da reação de abstração de um átomo de hidrogênio da molécula diazeno $N_2H_2(trans) + H \rightarrow N_2H + H_2$, bem como do estado de transição referente a esta reação. As frequências vibracionais harmônicas, as propriedades termodinâmicas e os parâmetros cinéticos da reação também estão apresentados nesta seção.

4.1.1. AVALIAÇÃO DO CARÁTER MULTICONFIGURACIONAL

Conforme explicado anteriormente, os cálculos de estrutura eletrônica dos pontos estacionários da reação $N_2H_2(trans) + H \rightarrow N_2H + H_2$ foram obtidos com métodos monoconfiguracionais e multiconfiguracionais. Desta forma, fez-se necessário estimar o caráter multiconfiguracional da função de onda de cada uma das espécies. Primeiro, fez-se uso do diagnóstico $\tau 1$, método que permite avaliar os efeitos de correlação não-dinâmica na função de onda eletrônica [119], onde um valor de $\tau 1$ maior do que 0,044 é aceito na literatura como diagnóstico de caráter multiconfiguracional da funçãos de base cc-pVQZ, foram obtidos valores de $\tau 1$ iguais a 0,012, 0,001, 0,044 e 0,027 para as espécies moleculares N₂H₂, H₂, N₂H e o estado de transição N₂H₃, respectivamente. A avaliação do caráter multiconfiguracional das funções de onda eletrônica moleculares também foi realizada com o diagnóstico de multirreferência M de

Oksana et al. [121]. Os valores de diagnóstico M foram obtidos através do cálculo CASSCF/cc-pVQZ para as espécies N_2H_2 , H_2 , N_2H e o estado de transição N_2H_3 , sendo respectivamente iguais a 0,086, 0,025, 0,083 e 0,086. Valores do diagnóstico M menores do que 0,05 e entre 0,05 – 0,10 indicam, respectivamente, um caráter multiconfiguracional pequeno e moderado. Além disto, a configuração de referência Hartree-Fock nas funções de onda CASSCF/MRCI/cc-pVQZ de reagentes, produtos e do estado de transição tem coeficientes iguais a 0,93, 0,99, 0,93 e 0,92 para as moléculas N_2H_2 , H_2 , N_2H e o estado de transição de referência Kartree-Fock nas funções de coeficientes iguais a 0,93, 0,99, 0,93 e 0,92 para as moléculas N_2H_2 , H_2 , N_2H e o estado de transição N $_2H_3$, respectivamente. Todos estes diagnósticos indicam que o método de única referência *Coupled Cluster* é satisfatório para o estudo desta reação. Porém, os resultados obtidos com metodologias de multireferência, no caso, CASSCF e MRCI, nos asseguram estimar com maior exatidão as propriedades reacionais.

4.1.1. CONFORMAÇÃO GEOMÉTRICA DAS ESPÉCIES PARTICIPANTES DA REAÇÃO $N_2H_2 + H \rightarrow N_2H + H_2$

Nas Tabelas 1 a 3, a seguir, estão apresentadas as estruturas de equilíbrio para os pontos de mínimos do reagente e dos produtos da reação, obtidas pelos níveis de cálculo CCSD(T), MP2 e CASSCF, juntamente com os resultados obtidos pela extrapolação CBS (equação 3.1). A correlação caroço-valência foi estimada usando o método CCSD(T), que juntamente com a inclusão da extrapolação CBS (equação 3.2), foram considerados os melhores resultados estimados (MRE) para cálculos monoconfiguracionais. Também, encontram-se apresentados nestas tabelas os resultados obtidos com diversos métodos da teoria do funcional da densidade (DFT): BHandHLYP, B3LYP, MPWB1K e BB1K. Para a análise das representações gráficas das estruturas moleculares, recorreu-se ao programa GaussView 3.0 [122], que permitiu efetuar o perfil 3D das moléculas participantes da reação.

Na molécula diazeno, *trans*-N₂H₂, cada átomo de nitrogênio se encontra ligado a um átomo de hidrogênio, e os nitrogênios se ligam entre si com uma dupla ligação que não sofre rotação facilmente, sendo então possível encontrá-la nas formas de isômeros geométricos *cis* e *trans*. O diazeno, reagente desta reação, está em sua forma *trans*, mais estável que seu confôrmero *cis*, apresentando simetria C_{2h} , cuja estrutura se encontra ilustrada na Figura 5.

Figura 5. Estrutura do reagente *trans*-N₂H₂.

Conforme dito anteriormente, esta molécula já se encontra bem caracterizada na literatura por sua importância na participação como reagente em sínteses orgânicas. A Tabela 1 a seguir apresenta os resultados da sua geometria otimizada com cálculos de diferentes metodologias.

Método	N-N ()	H-N ()	H-N-N(graus)
CCSD(T)/cc-pVDZ	1,264	1,045	105,0
CCSD(T)/cc-pVTZ	1,254	1,031	105,7
CCSD(T)/cc-pVQZ	1,249	1,030	106,1
CCSD(T)(AE)/cc-pCVTZ	1.251	1,030	105,9
CCSD(T)/cc-pCVTZ	1,253	1,031	105,8
CCSD(T)/CBS	1,245	1,029	106,3
CCSD(T)/MRE	1,243	1,028	106,4
MP2/cc-pVDZ	1,266	1,041	104,7
MP2/cc-pVTZ	1,256	1,028	105,4
MP2/cc-pVQZ	1,252	1,027	105,8
MP2/CBS	1,249	1,026	106,1
BHandHLYP/cc-pVTZ	1,220	1,020	107,3
BB1K/cc-pVTZ	1,222	1,023	107,0
MPWB1K/cc-pVTZ	1,221	1,023	107,0
CASSCF/cc-pVDZ	1,265	1,053	105,1
CASSCF/cc-pVTZ	1,259	1,043	105,7
CASSCF/cc-pVQZ	1,257	1,042	105,9
CASSCF/CBS	1,256	1,041	106,0
MP2/6-31G* ^a	1,266	1,036	105,4
MP2/6-31G** ^b	1,267	1,032	105,1
CASSCF/AVQZ 2006 °	1,256	1,042	106,0
Exp. Infravermelho ^d	1,252	1,028	106,9
Exp. Campo de força harmônico ^e	1,247	1,030	106,3

Tabela 1. Parâmetros geométricos do reagente *trans*-N₂H₂.

^a Referência [16] ^b Referência [19] ^c Referência [11] ^d Referência [123] ^e Referência [21]

Em todos os cálculos, verifica-se uma diminuição no comprimento das ligações N-N e H-N e um aumento no valor do ângulo da ligação H-N-N conforme se aumenta o conjunto base. Comparado aos dados experimentais, todos os resultados calculados com os funcionais BHandHLYP, MPWB1K e BB1K subestimam as distâncias de ligações e superestimam o ângulo H-N-N. Os resultados MP2, tanto com a base cc-pVQZ quanto com a extrapolação CBS estão em boa concordância com os resultados experimentais, principalmente os obtidos através do campo de força harmônico no estudo de Trombetti et al. [21]. Vale salientar que o aumento do conjunto base melhora consideravelmente os resultados quando os comparamos aos resultados experimentais. Podemos verificar que ocorre uma maior discrepância nos resultados com bases menores, como também é o caso dos resultados calculados por Pople et al. [16] e Mebel et al. [19], utilizando, respectivamente, as bases 6-31G* e 6-31G**. Os valores CASSCF superestimam as distâncias das ligações e subestimam o ângulo de ligação. Contrariamente, obtiveram os maiores valores de distâncias de ligações, porém com os menores ângulos da ligação H-N-N. Os resultados obtidos com o uso da metodologia CCSD(T), como esperado, apresentam excelente concordância com os dados experimentais. Verifica-se que os resultados CBS tendem a subestimar as distâncias de ligações, pois os resultados cc-pVTZ ainda não são convergentes e provavelmente os resultados cc-pVQZ podem ser considerados até melhores que os CBS. A inclusão da correlação caroço-valência afeta muito pouco os resultados das distâncias e do ângulo. Comparados aos dados experimentais que usam o campo de força harmônico [21], nossos resultados CCSD(T)/MRE diferem por 0,004 e 0,002 Å nas distâncias N-N e N-H, e por 0,3° no ângulo H-N-N.

Um dos produtos desta reação é a molécula N_2H , que possui simetria C_s e cuja conformação está ilustrada na Figura 6.

Figura 6. Estrutura da molécula N₂H.

Para a molécula N₂H, até onde sabemos, não há resultados experimentais que caracterizem sua geometria. Como observado para a molécula N₂H₂, aumentando o conjunto de funções de base, os valores das distâncias de ligações diminuem e o ângulo H-N-N aumenta. Os menores valores para as ligações H-N e N-N são encontrados com a metodologia MP2, enquanto o método CASSCF fornece os maiores valores das ligações. Quanto ao ângulo H-N-N, o método CASSCF fornece os menores valores, enquanto que o método MP2, utilizando tanto as bases de Dunning quanto a base 6-31G, fornece os valores mais altos. Os valores obtidos com os funcionais DFTs são os que, no geral, mais se aproximam aos resultados obtidos pelo cálculo CCSD(T)/MRE, apesar de o ângulo N-N, no caso dos DFTs, ser menor em cerca de 0,01 Å. Também, como observado para a molécula diazeno, a correlação caroço-valência é pouco importante, ela diminui os valores das distâncias de 0.002 Å e aumenta o ângulo de 0.2°. Nossos melhores resultados, CCSD(T)/MRE, indicam que os valores das distâncias N-N e N-H devem ser iguais a 1,172 e 1,048 Å e o ângulo H-N-N igual a 117,1°.

Método	N-N ()	H-N ()	H-N-N (graus)
CCSD(T)/cc-pVDZ	1,194	1,065	115,2
CCSD(T)/cc-pVTZ	1,180	1,051	116,3
CCSD(T)/cc-pVQZ	1,177	1,050	116,6
CCSD(T)(AE)/cc-pCVTZ	1,177	1,050	116,4
CCSD(T)/cc-pCVTZ	1,179	1,052	116,2
CCSD(T)/CBS	1,174	1,050	116,9
CCSD(T)/MRE	1,172	1,048	117,1
MP2/cc-pVDZ	1,151	1,062	120,0
MP2/cc-pVTZ	1,143	1,049	120,9
MP2/cc-pVQZ	1,141	1,047	121,3
MP2/CBS	1,140	1,046	121,6
BHandHLYP/cc-pVTZ	1,158	1,040	116,6
BB1K/cc-pVTZ	1,159	1,044	117,0
MPWB1K/cc-pVTZ	1,158	1,043	117,0
CASSCF/cc-pVDZ	1,191	1,088	115,0
CASSCF/cc-pVTZ	1,183	1,080	115,8
CASSCF/cc-pVQZ	1,181	1,079	115,9
CASSCF/CBS	1,180	1,078	116,0
MP2/6-31G** ^a	1,151	1,050	120,2
MP2/6-31G* ^b	1,150	1,057	121,3
CCSD(T)/aVTZ ^c	1,183	1,052	116,4

Tabela 2. Parâmetros geométricos do produto N₂H.

^a Referência [19] ^b Referência [16] ^c Referência [124]

A molécula H₂ é o gás mais leve conhecido, forma misturas explosivas com o ar e já se encontra bem caracterizada na literatura. Aparece nesta reação como um dos produtos. O hidrogênio molecular apresenta simetria D_{2h} e sua conformação está ilustrada na Figura 7. Os resultados da sua geometria de equilíbrio encontram-se na Tabela 3.

Figura 7. Estrutura do produto H₂.

Método	H-H ()
CCSD(T)/cc-pVDZ	0,761
CCSD(T)/cc-pVTZ	0,743
CCSD(T)/cc-pVQZ	0,742
CCSD(T)/CBS/MRE	0,741
MP2/cc-pVDZ	0,754
MP2/cc-pVTZ	0,737
MP2/cc-pVQZ	0,736
MP2/CBS	0,735
BHandHLYP/cc-pVTZ	0,736
BB1K/cc-pVTZ	0,739
MPWB1K/cc-pVTZ	0,739
CASSCF/cc-pVDZ	0,748
CASSCF/cc-pVTZ	0,755
CASSCF/cc-pVQZ	0,755
CASSCF/CBS	0,754
Experimental ^a	0,741

Tabela 3. Distância de equilíbrio do produto H₂.

^aReferência [125]

Comparado ao resultado experimental publicado por Huber e Herzberg [125], a distância de equilíbrio H-H é subestimada tanto pelos métodos DFTs como pelo MP2, no entanto o método CASSCF superestima o valor para esta ligação, sendo o valor obtido com a

extrapolação CASSCF/CBS 0,013 maior do que o valor experimental, igual a 0,741 . Os valores obtidos pelo método CCSD(T) usando a extrapolação CBS é exatamente igual ao valor experimental. Para a molécula H₂, o resultado CCSD(T)/MRE é igual ao valor CCSD(T)/CBS, pois no caso não há contribuição da correlação do caroço.

Na Tabela 4, apresentam-se as distâncias de ligação e ângulos da estrutura de equilíbrio do ponto de sela (ou estado de transição), ilustrado pela Figura 8.

Figura 8. Conformação do estado de transição N₂H₃.

Método	N-N	H3-N1	H4-N2	H4-H5	H3-N-N	H4-N-N	H5-H4-N
CCSD(T)/cc-pVDZ	1,246	1,046	1,111	1,252	105,6	105,9	172,7
CCSD(T)/cc-pVTZ	1,233	1,033	1,107	1,218	106,5	106,5	171,5
CCSD(T)/cc-pVQZ	1,228	1,032	1,111	1,205	106,9	106,8	171,3
CCSD(T)(AE)/cc-pCVTZ	1,229	1,032	1,107	1,218	106,6	106,7	171,2
CCSD(T)/cc-pCVTZ	1,232	1,033	1,107	1,219	106,5	106,5	171,5
CCSD(T)/CBS	1,224	1,032	1,114	1,196	107,2	106,9	171,2
CCSD(T)/MRE	1,222	1,030	1,114	1,195	107,3	107,1	171,0
BHandHLYP/cc-pVTZ	1,209	1,022	1,068	1,341	107,9	108,2	173,3
BB1K/cc-pVTZ	1,210	1,025	1,070	1,361	107,6	107,9	173,9
MPWB1K/cc-pVTZ	1,209	1,025	1,072	1,340	107,6	107,9	173,5
MP2/cc-pVDZ	1,180	1,045	1,146	1,117	107,6	107,6	172,9
MP2/cc-pVTZ	1,173	1,033	1,143	1,091	108,5	107,9	172,1
MP2/cc-pVQZ	1,171	1,032	1,145	1,084	108,9	108,1	171,3
MP2/CBS	1,170	1,031	1,146	1,079	109,2	108,2	170,7
CASSCF/cc-pVDZ	1,245	1,056	1,164	1,196	105,8	106,2	173,7
CASSCF/cc-pVTZ	1,238	1,047	1,163	1,177	106,5	106,7	172,8
CASSCF/cc-pVQZ	1,236	1,046	1,164	1,172	106,7	106,9	172,5
CASSCF/CBS	1,235	1,045	1,165	1,168	106,9	106,9	172,3
MP2/6-31G** ^a	1,277	1,034	1,190	1,012	105,3	105,7	172,7

Tabela 4. Parâmetros geométricos do estado de transição N_2H_3 . (Distâncias em , ângulos em graus).

^a Referência [19]

O estado de transição desta reação apresenta estrutura planar, e o ângulo H5-H4-N2 desvia apenas cerca de 8° do plano utilizando os métodos CCSD(T) e MP2, 7° com os métodos CASSCF e BHandHLYP, e cerca de 6° com MPWB1K e BB1K. A geometria do estado de transição é bastante semelhante à estrutura das moléculas reagentes. A ligação H-H a ser formada é ainda bastante alongada no estado de transição (N₂H₃), sendo cerca de 47% maior do que a ligação H-H na molécula H₂ calculada com o método MP2/CBS, 61% maior com o cálculo CCSD(T)/MRE, 81% maior com o método MPWB1K e cerca de 55% maior

com o método CASSCF/CBS. A ligação H-N a ser rompida é cerca de 8% maior que na estrutura da molécula reagente *trans*-diazeno com os métodos MP2 e CCSD(T), 5% com o funcional MPWB1K, e 6% com o método CASSCF.

Como esperado, os cálculos CCSD(T) com a base cc-pCVTZ correlacionando apenas os elétrons de valência resultam em valores muito próximos aos obtidos com a base cc-pVTZ. Já a inclusão da correlação dos elétrons do caroço, com os cálculos cc-pCVTZ (AE), proporcionou uma diminuição nos valores das distâncias de ligação, embora haja um pequeno aumento para os valores dos ângulos de ligação, com exceção do ângulo H3-H2-N2.

4.1.3. FREQUÊNCIAS VIBRACIONAIS HARMÔNICAS

É consenso a necessidade de se determinar com boa exatidão as geometrias e as frequências vibracionais do estado de transição, com o propósito de caracterizar os pontos estacionários como mínimos (número de frequências imaginárias = 0) ou pontos de sela (número de frequências imaginárias = 1), e também para calcular a velocidade da reação com resultados confiáveis [126]. Nas tabelas 5 a 7, a seguir, estão apresentados os valores das frequências vibracionais harmônicas para os produtos e reagentes envolvidos na reação, calculadas com os métodos MP2, CASSCF e CCSD(T), juntamente com os resultados extrapolados para o limite CBS, e com os métodos DFTs BHandHLYP, MPWB1K e BB1K.

Método]	Frequênci	as (cm ⁻¹))	
	Au (rock.)	Bu (wagg.)	Ag (stret.)	Ag (scis.)	Ag	\mathbf{Bu}
CCSD(T)/cc-pVDZ	1317	1343	1569	1614	3223	3250
CCSD(T)/cc-pVTZ	1328	1350	1559	1622	3270	3302
CCSD(T)/cc-pVQZ	1328	1349	1567	1619	3279	3310
CCSD(T)(AE)/cc-pCVTZ	1331	1351	1563	1622	3269	3303
CCSD(T)/cc-pCVTZ	1329	1350	1558	1621	3263	3296
CCSD(T)/CBS	1327	1349	1573	1618	3285	3317
CCSD(T)/MRE	1329	1350	1579	1619	3291	3323
MP2/cc-pVDZ	1339	1344	1527	1616	3283	3314
MP2/cc-pVTZ	1346	1347	1511	1621	3322	3356
MP2/cc-pVQZ	1345	1346	1521	1619	3326	3360
MP2/CBS	1344	1345	1528	1618	3329	3363
BHandHLYP/cc-pVTZ	1401	1403	1664	1764	3394	3430
BB1K/cc-pVTZ	1379	1383	1637	1750	3355	3389
MPWB1K/cc-pVTZ	1383	1387	1642	1760	3363	3397
CASSCF/cc-pVDZ	1316	1353	1549	1620	3095	3123
CASSCF/cc-pVTZ	1325	1357	1529	1623	3119	3153
CASSCF/cc-pVQZ	1325	1357	1531	1621	3127	3160
CASSCF/CBS	1325	1357	1532	1620	3133	3165
MP2/6-31G ^a	1349	1360	1525	1628	3353	3382
CCSD(T)/aVTZ ^b	1306	1334	1547	1604	3233	3263
Exp. Campo de força	1316	1320	1529	1583	3128	3120
harmônico ^c						

Tabela 5. Frequências Vibracionais Harmônicas do reagente *trans*-N₂H₂.

^aReferência [16] ^bReferência [124]

^cReferência [21]

A molécula diazeno apresenta seis modos de vibração, descritos na Tabela 5. Em gerla, os valores teóricos são superestimados quando comparados aos resultados experimentais obtidos por Demaison et al. que utiliza o campo de força harmônico [21]. Os resultados obtidos com os funcionais DFTs são aqueles que apresentam a maior discrepância em relação aos valores experimentais, e os obtidos com o método CASSCF são os que apresentam a melhor concordância, diferindo não mais do que 45 cm⁻¹. Os resultados MP2/CBS e CCSD(T)/CBS estão em boa concordância para os quatro primeiros modos, diferindo no máximo por 44 cm⁻¹, porém apresentam significativas diferenças para os dois últimos modos, diferindo em até 243 cm⁻¹ com o método MP2 e em até 197 cm⁻¹ com o CCSD(T).

Na Tabela 6, estão apresentados os valores das frequências vibracionais harmônicas obtidos para a molécula N_2H .

Método	Freqüências (cm ⁻¹)						
	A' (scis.)	A' (<i>a-str</i> .)	A' (<i>s-str</i> .)				
CCSD(T)/cc-pVDZ	1102	1829	2835				
CCSD(T)/cc-pVTZ	1111	1851	2892				
CCSD(T)/cc-pVQZ	1092	1862	2881				
CCSD(T)(AE)/cc-pCVTZ	1108	1859	2885				
CCSD(T)/cc-pCVTZ	1111	1851	2877				
CCSD(T)/CBS	1078	1870	2872				
CCSD(T)/MRE	1075	1878	2881				
MP2/cc-pVDZ	1025	2820	2963				
MP2/cc-pVTZ	1041	2825	2975				
MP2/cc-pVQZ	1042	2821	2979				
MP2/CBS	1043	2818	2982				
BHandHLYP/cc-pVTZ	1157	1977	3025				
BB1K/cc-pVTZ	1135	1971	2972				
MPWB1K/cc-pVTZ	1136	1979	2988				
CASSCF/cc-pVDZ	1081	1768	2718				
CASSCF/cc-pVTZ	1123	1715	2416				
CASSCF/cc-pVQZ	1123	1714	2424				
CASSCF/CBS	1123	1713	2427				
MP2/6-31G** ^a	1050	2895	3015				
B3LYP/aVTZ ^b	1108	1803	2891				

Tabela 6. Frequências Vibracionais Harmônicas do produto N₂H.

^aReferência [19] ^bReferência [124]

A molécula N₂H apresenta três modos vibracionais, o menor representa a deformação angular (scissoring), e os dois maiores valores são as vibrações de estiramento anti-simétrico e simétrico da molécula, respectivamente. Até onde sabemos, não há dados experimentais de frequências disponíveis para a molécula N2H. Comparando os resultados teóricos, há uma boa concordância entre os resultados calculados com os diferentes métodos empregados e também com o valor obtido com o método B3LYP/aVTZ por Dixon et al. [124]. A exceção se encontra para os resultados calculados com o métodolo MP2, incluindo os de Mebel et al. com a base 6-31G** [19], com valores bem maiores, principalmente para o estiramento simétrico, que são cerca de 1000 cm⁻¹ maiores do que aqueles obtidos pelos demais métodos.

A Tabela 7 apresenta os valores das frequências harmônicas para a molécula de hidrogênio H₂, produto desta reação. O H₂, por ser uma molécula diatômica, apresenta uma única frequência, que representa a vibração de estiramento da ligação H-H.

Método	Freqüência (cm ⁻¹) (<i>stretching</i>)
CCSD(T)/cc-pVDZ	4383
CCSD(T)/cc-pVTZ	4408
CCSD(T)/cc-pVQZ	4520
CCSD(T)/CBS/MRE	4601
MP2/cc-pVDZ	4501
MP2/cc-pVTZ	4527
MP2/cc-pVQZ	4521
MP2/CBS	4517
BHandHLYP/cc-pVTZ	4530
BB1K/cc-pVTZ	4485
MPWB1K/cc-pVTZ	4490
CASSCF/cc-pVDZ	4579
CASSCF/cc-pVTZ	4228
CASSCF/cc-pVQZ	4226
CASSCF/CBS	4225
Experimental ^a	4401

Tabela 7. Frequência Vibracional Harmônica do produto H₂.

^aReferência [125]

Os valores das frequências vibracionais obtidos com o cálculo CASSCF são menores do que aqueles obtidos pelos demais métodos, excluindo-se o resultado obtido com a base ccpVDZ, que é muito alto em relação aos demais resultados do mesmo método. O resultado obtido com o método de extrapolação CCSD(T)/MRE forneceu o mais alto valor encontrado, de 4601 cm⁻¹, e o cálculo CCSD(T)/cc-pVQZ forneceu o valor de 4520 cm⁻¹, praticamente igual ao resultado MP2/cc-pVQZ, de 4521 cm⁻¹, os quais diferem por ~119 cm⁻¹ do resultado experimental publicado por Herzberg et al. [125]. Percebe-se que, com o método MP2 e uso da base cc-pVTZ o resultado já se encontra convergido em relação ao valor obtido com a base cc-pVQZ. Este fato não ocorre com os resultados CCSD(T) e, desta forma, a extrapolação CBS se afasta do resultado quádrupla-zeta com este método. Os métodos DFTs superestimam em pelo menos 84 cm⁻¹ os valores das frequência obtidos, em relação ao valor experimental, igual a 4395 cm⁻¹ [125]. O resultado obtido com o método BHandHLYP, de 4530 cm⁻¹, assemelha-se aos valores apresentados pelos métodos MP2 e CCSD(T).

Na Tabela 8 estão apresentadas as frequências vibracionais harmônicas calculadas para o estado de transição envolvido nesta reação.

Método	Frequências (cm ⁻¹)								
	A'	A'	A"	А'	A'	A'	A"	А'	А'
CCSD(T)/cc-pVDZ	1259i	337	437	1307	1309	1502	1598	1754	3221
CCSD(T)/cc-pVTZ	1345i	356	515	1298	1315	1500	1587	1723	3264
CCSD(T)/cc-pVQZ	1433i	367	513	1287	1310	1490	1573	1713	3268
CCSD(T)(AE)/cc-pCVTZ	1670i	329	468	1298	1308	1490	1580	1723	3257
CCSD(T)/cc-pCVTZ	1365i	328	465	1298	1305	1488	1578	1718	3251
CCSD(T)/CBS	1498i	376	512	1280	1306	1483	1562	1706	3270
CCSD(T)/MRE	1503i	376	514	1280	1308	1485	1563	1711	3275
MP2/cc-pVDZ	2441i	426	594	1296	1478	1566	1600	2907	3260
MP2/cc-pVTZ	2531i	427	602	1288	1487	1547	1580	2976	3291
MP2/cc-pVQZ	2567i	423	596	1281	1493	1536	1569	2985	3297
MP2/CBS	2593i	420	592	1276	1497	1528	1561	2992	3301
BHandHLYP/cc-pVTZ	648i	308	447	1363	1368	1579	1758	2235	3387
BB1K/cc-pVTZ	670i	301	437	1345	1347	1550	1750	2253	3349
MPWB1K/cc-pVTZ	724i	308	447	1345	1348	1550	1755	2194	3359
CASSCF/cc-pVDZ	2451i	395	575	1234	1286	1347	1530	1632	3547
CASSCF/cc-pVTZ	2559i	394	581	1227	1284	1348	1519	1617	3553
CASSCF/cc-pVQZ	2583i	392	579	1227	1282	1349	1515	1619	3553
CASSCF/CBS	2601i	391	578	1227	1281	1350	1512	1620	3553
MP2/6-31G ^a	2431i	448	644	1246	1381	1474	1509	2601	3367
MNDO/SRP ^b	2039i	397	499	988	1179	1339	1463	1553	3133

Tabela 8. Frequências Vibracionais Harmônicas do estado de transição N₂H₃.

^aReferência [19]

^bReferência [17]

O estado de transição N₂H₃ fica, portanto, caracterizado como um ponto de sela, por apresentar apenas uma frequência imaginária, que nos fornece a informação sobre a curvatura no topo da superfície de potencial e representa a vibração de estiramento da ligação O-H sendo formada.

Nos resultados obtidos com os diferentes métodos, ocorrem variações acentuadas entre os valores de suas frequências vibracionais. As diferenças significativas foram encontradas para os valores das frequências imaginárias, que chega a ser de 1953 cm⁻¹ entre o valor obtido pelo cálculo BHandHLYP/cc-pVTZ e pela extrapolação CASSCF/CBS. Os valores obtidos com os métodos DFTs foram os menores encontrados em relação aos demais métodos, não passando de 724i cm⁻¹, obtido pelo cálculo MPWB1K/cc-pVTZ.

Empregando-se as extrapolações CBS, houve a tendência de aumento em todos os valores de frequência imaginária, o que indica que os valores cc-pVQZ estão distantes dos valores cc-pVTZ. Em geral, os valores mais altos de frequências harmônicas foram obtidos com o método MP2 e CASSCF, que forneceram valores de frequências muito próximos entre si, superestimando as frequências harmônicas quando comparado aos outros métodos. Por exemplo, para as frequências imaginárias, os resultados obtidos pelos métodos CASSCF/CBS e CCSD(T)/MRE, são iguais a 2601i cm⁻¹ e 1503i cm⁻¹, respectivamente. Com a utilização do método CCSD(T), todos os valores obtidos da frequência imaginária também foram baixos comparados àqueles obtidos utilizando os métodos CASSCF e MP2, diferindo em pelo menos 1000 cm⁻¹. No entanto, para as outras frequências, as diferenças são menores, diferindo não mais do que 195 cm⁻¹ para a vibração de estiramento da ligação N-N, em relação ao cálculo BHandHLYP. A exceção é o valor encontrado para a vibração de estiramento da ligação N2-H4 a ser rompida, que difere consideravelmente dos valores obtidos com os métodos MP2 e DFTs, assemelhando-se, porém, aos obtidos com o método CASSCF. Esta diferença chega a ser de 1281 cm⁻¹ em relação ao cálculo MP2/MRE, cuja frequência é igual a 2992 cm⁻¹, sendo que com o cálculo CCSD(T)/MRE, esta frequência possui valor igual a 1711 cm⁻¹, e igual a 1620 cm⁻¹ com o cálculo CASSCF/CBS. Conforme discutido acima, as análises do caráter multiconfiguracional do estado de transição mostram que este tem um caráter entre pequeno e moderado. O diagnóstico 71 de Lee e Taylor realizado para este estado de transição, para estimar os efeitos não dinâmicos da função de onda eletrônica, demonstram

que o método de única referência, no caso o método CCSD(T) a ser avaliado, apresenta bom desempenho [41]. Outros resultados teóricos neste mesmo trabalho de Truhlar, utilizando os métodos MNDO e AM1-SRP, fornecem valores de frequência imaginária iguais a 3192i cm⁻¹ e 2291i cm⁻¹, respectivamente.

4.1.1. CÁLCULOS DE COORDENADA DA REAÇÃO INTRÍNSECA

Buscando descrever com mais detalhes a reação através do estudo da dinâmica das reações, também foram realizados os cálculos das curvas de coordenada de reação intrínseca (IRC – *Intrinsic Reaction Coordinate*), que fornece o caminho reacional que os reagentes seguem na formação dos produtos, ou seja, permite traçar os caminhos de energia mínima partindo-se da estrutura do estado de transição em direção aos reagentes e produtos, certificando-se assim da correlação entre as estruturas do estado estacionário e dos pontos de mínimo da reação. Este caminho da reação foi obtido utilizando os métodos MP2 e MPWB1K, ambos com o emprego da base de Dunning cc-pVTZ. Neste procedimento IRC, utilizou-se um passo de 0,01 amu¹²/bohr. As Figuras 9 e 10 ilustram as curvas IRC obtidas pelos métodos MP2 e MPWB1K, empregando-se 40 e 200 pontos nos cálculos, respectivamente.

Figura 9. Curva de coordenada de reação intrínseca para a reação $N_2H_2(trans) + H \rightarrow N_2H + H_2$, calculada com o método MP2/cc-pVTZ.

Figura 10. Curva de coordenada de reação intrínseca para a reação $N_2H_2(trans) + H \rightarrow N_2H + H_2$, calculada com o método MPWB1K/cc-pVTZ.

As duas curvas evidenciam a conexão entre as estruturas calculadas das espécies que participam da reação. Porém, na Figura 9, observa-se um percurso mais suave da curva e uma visível menor barreira de potencial, conforme discussão a seguir dos dados termodinâmicos da reação na Tabela 9, onde a barreira reacional obtida com o método MP2/cc-pVTZ apresenta valor igual a 12,4 kcal/mol, e os valores de barreiras obtidas com os cálculos MPWB1K/cc-pVTZ é igual a 1,5 kcal/mol. Desta forma, o cálculo de coordenada de reação intrínseca IRC confirma a estrutura encontrada para o estado de transição como sendo a que conecta reagentes aos produtos, comprovando a correlação entre as estruturas das moléculas caracterizadas na reação.

4.1.5. TERMODINÂMICA DA REAÇÃO $N_2H_2 + H \rightarrow N_2H + H_2$

A reação $N_2H_2(trans) + H \rightarrow N_2H + H_2$ é exotérmica e possui uma barreira clássica de potencial (V^{\pm}) bastante baixa. As propriedades termodinâmicas calculadas para esta reação estão apresentadas na Tabela 9, juntamente com as demais propriedades termodinâmicas desta reação, que são a energia eletrônica de reação (ΔE), a entalpia da reação, ou energia eletrônica de reação com a correção da energia do ponto zero (ΔH_0^0), e as alturas da barreira de potencial para a reação direta, definidas como a diferença de energias eletrônicas entre os reagentes e o estado de transição, calculadas com e sem correção da energia do ponto zero (V^{\pm}) e (V_0^{\pm}), respectivamente.

Método	ΔE	V^{\neq}	V_0^{\neq}	ΔH_0^0
CCSD(T)/cc-pVDZ	-37,39	3,29	2,55	-40,49
CCSD(T)/cc-pVTZ	-37,76	3,37	2,12	-40,86
CCSD(T)/cc-pVQZ	-37,50	3,32	1,90	-40,75
CCSD(T)(AE)/cc-pCVTZ	-37,95	3,39	1,98	-41,06
CCSD(T)/cc-pCVTZ	-37,96	3,39	1,98	-41,07
CCSD(T)/CBS	-37,32	3,28	1,74	-40,68
CCSD(T)/MRE	-37,30	3,28	1,73	-40,67
MP2/cc-pVDZ	-28,03	13,51	14,52	-29,63
MP2/cc-pVTZ	-29,44	12,44	13,43	-31,06
MP2/cc-pVQZ	-29,32	12,26	13,21	-30,97
MP2/CBS	-29,23	12,13	13,05	-30,89
BHandHLYP/cc-pVTZ	-41,49	0,50	-0,38	-44,9
BB1K/cc-pVTZ	-39,67	1,10	0,81	-42,49
MPWB1K/cc-pVTZ	-38,64	1,51	0,62	-41,99
CASSCF/cc-pVDZ	-24,87	8,68	12,85	-28,02
CASSCF/cc-pVTZ	-36,82	9,61	14,10	-40,56
CASSCF/cc-pVQZ	-36,56	9,86	12,38	-39,35
CASSCF/CBS	-36,37	10,03	11,13	-38,47
MRCI/cc-pVTZ//CASSCF/cc-pVTZ	-39,7	4,2	2,4 ^a	$-42,4^{a}$
MRCI/cc-pVQZ//CASSCF/cc-pVQZ	-39,6	4,3	2,6 ^b	-42,3 ^b
MRCI/CBS//CASSCF	-39,4	4,4	2,7	-42,3
MRCI+Q/cc-pVTZ//CASSCF/cc-				
pVTZ	-38,5	2,8	1,0 ^a	-42,3ª
MRCI+Q/cc-pVQZ//CASSCF/cc-				
pVQZ	-38,3	2,8	1,1 ^b	-41,0 ^b
MRCI+Q/CBS//CASSCF	-38,1	2,9	1,1 ^{a,b}	$-40,2^{a,b}$

Tabela 9. Barreiras clássicas de potencial (V^{*}), barreiras de potencial com correção do ponto-zero (V_0^{\neq}), energias eletrônicas (ΔE) e entalpias (ΔH_0^0) da reação (kcal/mol).

^aFrequências vibracionais do ponto-zero calculadas com o método CASSCF/cc-pVTZ ^bFrequências vibracionais do ponto-zero calculadas com o método CASSCF/cc-pVQZ

Os métodos DFTs, comparados aos demais métodos, apresentam os valores mais baixos para as barreiras de potencial da reação com e sem a correção da energia do ponto zero. Os maiores valores são aqueles obtidos com o método MP2 e CASSCF. Nossos melhores resultados, obtidos com os cálculos CCSD(T)/MRE e MRCI+Q/CBS//CASSCF leva-nos a concluir que a barreira de potencial com e sem a inclusão da energia do ponto zero devem ter valores entre 2,9 a 3,3 kcal/mol e 1,1 a 1,7 kcal/mol, respectivamente. Para a energia eletrônica de reação (Δ E) os melhores resultados apontam para valores entre -37,3 kcal/mol (CCSD(T)/MRE) e -38,1 kcal/mol (MRCI+Q/CBS//CASSCF). Em um trabalho prévio, Chuang et al. [24] previu valores de ΔE entre -37 a -38 kcal/mol e entre 3 a 5 kcal/mol para V^{\pm} . Outros resultados da literatura são menos rigorosos [15-17, 19]. Os nossos melhores resultados para a entalpia da reação (ΔH) indicam valores entre -40,2 e -40,7 kcal/mol.

Conforme discutido anteriormente, nossos melhores resultados utilizando o método multiconfiguracional são aqueles obtidos com o método MRCI+Q. Estes cálculos foram realizados utilizando as geometrias calculadas com o método CASSCF. Com o objetivo de verificar a importância da geometria nos resultados das propriedades termodinâmicas, também realizamos vários cálculos MRCI utilizando as estruturas geométricas otimizadas com os métodos CASSCF, CCSD(T), BB1K e MPW1K. Os resultados estão apresentados na Tabela 10.

Método	ΔE	V^{\neq}
MRCI/cc-pVTZ//CASSCF/cc-pVTZ	-39,7	4,2
MRCI/cc-pVQZ//CASSCF/cc-pVQZ	-39,6	4,3
MRCI/CBS//CASSCF	-39,4	4,4
MRCI+Q/cc-pVTZ//CASSCF/cc-pVTZ	-38,5	2,8
MRCI+Q/cc-pVQZ//CASSCF/cc-pVQZ	-38,3	2,8
MRCI+Q/CBS//CASSCF	-38,1	2,9
MRCI/cc-pVTZ//CCSD(T)/MRE	-39,9	4,3
MRCI/cc-pVQZ//CCSD(T)/MRE	-39,7	4,4
MRCI/CBS//CCSD(T)/MRE	-39,6	4,5
MRCI+Q/cc-pVTZ//CCSD(T)/MRE	-38,8	3,0
MRCI+Q/cc-pVQZ//CCSD(T)/MRE	-38,6	3,0
MRCI+Q/CBS//CCSD(T)/MRE	-38,4	3,0
MRCI/cc-pVTZ//BB1K/cc-pVTZ	-40,1	3,7
MRCI/cc-pVQZ//BB1K/cc-pVTZ	-39,9	3,7
MRCI/CBS//BB1K/cc-pVTZ	-39,7	3,8
MRCI+Q/cc-pVTZ//BB1K/cc-pVTZ	-38,9	2,7
MRCI+Q/cc-pVQZ//BB1K/cc-pVTZ	-38,6	2,7
MRCI+Q/CBS//BB1K/cc-pVTZ	-38,4	2,6
MRCI/cc-pVTZ//MPWB1K/cc-pVTZ	-40,1	3,8
MRCI/cc-pVQZ//MPWB1K/cc-pVTZ	-39,9	3,9
MRCI/CBS//MPWBB1K	-39,7	3,9
MRCI+Q/cc-pVTZ//MPWB1K/cc-pVTZ	-38,9	2,7
MRCI+Q/cc-pVQZ//MPWB1K/cc-pVQZ	-38,6	2,7
MRCI+Q/CBS//MPWB1K	-38,4	2,7

Tabela 10. Energia eletrônica da reação (ΔE) e barreira clássica de potencial (V^{\neq}) (em kcal/mol) da reação $N_2H_2 + H \rightarrow N_2H + H_2$.

Comparando os resultados MRCI+Q/CBS com o emprego das geometrias CASSCF e CCSD(T), as barreiras clássicas de potencial da reação diferem de apenas 0,1 kcal/mol, e são

respectivamente iguais a 2,9 e 3,0 kcal/mol. No entanto, utilizando as geometrias calculadas pelos métodos BB1K e MPWB1K, notamos que há uma diminuição da barreira, com valores iguais a 2,6 e 2,7 kcal/mol, respectivamente. Para a energia eletrônica de reação, a mudança da geometria praticamente não altera os resultados, ou seja, ela é igual a –38,1 kcal/mol com a geometria CASSCF e igual a –38,4 kcal/mol com as geometrias CCSD(T)/MRE, BB1K e MPWB1K.

Para o cálculo monoconfiguracional CCSD(T), também realizamos vários cálculos das propriedades termodinâmicas utilizando as metodologias restrita e não-restrita com os orbitais moleculares provenientes de cálculos Hartree-Fock e com os orbitais Kohn-Sham obtidos pelo método B3LYP. Os resultados encontram-se apresentados na Tabela 11.

Método	ΔE	V^{\neq}
RB3LYP/RCCSD(T)/cc-pVTZ	-37,8	3,1
RB3LYP/RCCSD(T)/cc-pVQZ	-37,6	3,1
RB3LYP/RCCSD(T)/CBS	-37,4	3,1
RB3LYP/UCCSD(T)/cc-pVTZ	-38,1	2,9
RB3LYP/UCCSD(T)/cc-pVQZ	-37,8	2,9
RB3LYP/UCCSD(T)/CBS	-37,6	2,9
RHF/RCCSD(T)/cc-pVTZ	-37,7	3,5
RHF/RCCSD(T)/cc-pVQZ	-37,4	3,5
RHF/RCCSD(T)/CBS	-37,2	3,5
RHF/UCCSD(T)/cc-pVTZ	-38,0	3,0
RHF/UCCSD(T)/cc-pVQZ	-37,5	3,0
RHF/UCCSD(T)/CBS	-37,1	2,9
UHF/UCCSD(T)/cc-pVTZ	-37,8	3,3
UHF/UCCSD(T)/cc-pVQZ	-37,5	3,3
UHF/UCCSD(T)/CBS	-37,3	3,3
RB3LYP/RCCSD(T)/cc-pVTZ//CCSD(T)/cc-pVTZ	-37,9	3,1
RB3LYP/RCCSD(T)/cc-pVQZ//CCSD(T)/cc-pVQZ	-37,6	3,1
RB3LYPC/RCCSD(T)//CCSD(T)/CBS	-37,4	3,1
RB3LYP/UCCSD(T)/cc-pVTZ/CCSD(T)/cc-pVTZ	-38,1	2,9
RB3LYP/UCCSD(T)/cc-pVQZ/CCSD(T)/cc-pVQZ	-37,8	2,9
RB3LYP/UCCSD(T)//CCSD(T)/CBS	-37,6	2,9
RHF/RCCSD(T)/cc-pVTZ//UCCSD(T)/cc-pVTZ	-37,7	3,4
RHF/RCCSD(T)/cc-pVQZ//UCCSD(T)/cc-pVQZ	-37,4	3,4
RHF/RCCSD(T)//UCCSD(T)/CBS	-37,2	3,4
RHF/UCCSD(T)/cc-pVTZ//UCCSD(T)/cc-pVTZ	-38,1	3,0
RHF/UCCSD(T)/cc-pVQZ//UCCSD(T)/cc-pVQZ	-37,8	2,9
RHF/UCCSD(T)//UCCSD(T)/CBS	-37,6	2,9

Tabela 11. Energias eletrônicas clássicas (ΔE) e barreiras clássicas de potencial (V^{\neq}) (em kcal/mol) da reação $N_2H_2 + H \rightarrow N_2H + H_2$.

Uma comparação entre os resultados dos cálculos CCSD(T)-KS/CBS e CCSD(T)/CBS mostram que a escolha dos orbitais praticamente não altera os resultados. Desta forma, a utilização dos orbitais Kohn-Sham praticamente não alterou os resultados obtidos com os orbitais Hartree-Fock. Esta conclusão já havia sido constatada em um estudo anterior realizado por Truhlar et al., que estabeleceu um banco de dados onde é analisado justamente o efeito da inclusão de orbitais Kohn-Sham nos valores de barreiras de potencial, em diversos modelos de reações químicas [127]. Os cálculos CCSD(T) restritos tendem a fornecer um pequeno aumento na barreira de potencial, em relação ao cálculo CCSD(T) não restrito.

4.1.6. CINÉTICA DA REAÇÃO $N_2H_2 + H \rightarrow N_2H + H_2$

Conforme já exposto, as aproximações aos métodos de dinâmica química, como a Teoria Variacional do Estado Transição (TVET), estão relacionadas à determinação da energia da reação, da geometria e frequências harmônicas dos estados de transição e das demais espécies participantes da reação. As constantes de velocidade da reação foram então calculadas utilizando a Teoria do Estado de Transição (TST) e a TVTE empregando a aproximação interpolação da Teoria do Estado de Transição Variacional (IVTST-0). Até onde se sabe, ainda não existem dados experimentais cinéticos para esta reação. Portanto, os cálculos serão apresentados comparados apenas a outros resultados teóricos disponíveis na literatura.

Conforme dito anteriormente, os resultados de frequência, geometria e os dados termodinâmicos de uma reação devem estar bem descritos para que os resultados de sua cinética sejam os melhores possíveis. Os resultados obtidos com o método CCSD(T) mostram-se muito bons para caracterizar as geometrias das moléculas envolvidas na reação,

porém o método CASSCF nos fornece valores aparentemente melhores para suas frequências vibracionais. Portanto, nos cálculos da cinética reacional, com o propósito de avaliar a influência das variações nos valores destas propriedades entre os métodos, foram utilizados os dados geométricos e de frequências vibracionais obtidos tanto com o cálculo CCSD(T)/MRE como com CASSCF/CBS, obtendo-se assim a constante de velocidade da reação (k) na faixa de temperatura de 298 a 2000 K, com o emprego da teoria TST e as aproximações dos efeitos de tunelamento ZCT (*Zero Curvature Tunneling*) e Wigner (W). Também comparamos os valores de k obtidos através dos dados MPWB1K/cc-pVTZ e o uso da teoria TST com a aproximação dos efeitos de tunelamento ZCT (*Zero Curvature Tunneling*). Os resultados encontram-se apresentados na Tabela 12. A Figura 11 ilustra a variação no valor das constantes de velocidade (k) em função da temperatura (T).

Os dados termodinâmicos utilizados foram a barreira clássica de potencial $V^{\pm} = 3,3$ kcal/mol e a energia eletrônica da reação $\Delta E = -37,3$ kcal/mol obtidos com o cálculo CCSD(T)/CBS, os valores de $V^{\pm} = 2,9$ kcal/mol e $\Delta E = -38,1$ kcal/mol obtidos com o cálculo MRCI+Q//CASSCF/CBS, e de $V^{\pm} = 1,5$ kcal/mol e $\Delta E = -38,6$ kcal/mol obtidos com o cálculo MPWB1K/cc-pVTZ.

Tabela 12. Comparação das constantes de velocidade (em cm³ mol⁻¹ s⁻¹) da reação $N_2H_2(trans) + H$ obtidas a partir dos resultados dos cálculos de estrutura eletrônica CCSD(T), CASCCF e MPWB1K. Os números em parênteses representam o expoente em base 10.

T (<i>K</i>)	TST ^a	TST/W ^a	TST/ZCT ^a	TST ^b	TST/W ^b	TST/ZCT ^b	TST/ZCT ^c
298	0,2(-11)	0,5(-11)	0,4(-11)	0,1(-11)	1,0(-11)	0,6(-11)	1,9(-11)
400	0,4(-11)	0,8(-11)	0,6(-11)	0,3(-11)	1,5(-11)	0,8(-11)	2,6(-11)
500	0,7(-11)	1,2(-11)	0,9(-11)	0,6(-11)	1,9(-11)	1,1(-11)	3,3(-11)
600	1,0(-11)	1,6(-11)	1,3(-11)	0,9(-11)	2,4(-11)	1,5(-11)	4,1(-11)
800	1,9(-11)	2,5(-11)	2,2(-11)	1,8(-11)	3,5(-11)	2,4(-11)	5,9(-11)
1000	3,1(-11)	3,7(-11)	3,4(-11)	3,0(-11)	4,7(-11)	3,6(-11)	8,1(-11)
1500	7,4(-11)	8,0(-11)	7,6(-11)	7,2(-11)	9,0(-11)	7,8(-11)	15(-11)
2000	13(-11)	14(-11)	14(-11)	13(-11)	15(-11)	14(-11)	24(-11)

^aDados obtidos a partir dos cálculos CCSD(T)/MRE para frequências, geometrias e energética da reação.

^bDados obtidos a partir dos cálculos de frequências e geometrias CASSCF/CBS e energética MRCI+Q//CASSCF/CBS.

^cDados obtidos a partir dos cálculos MPWB1K/cc-pVTZ para frequências, geometrias e energética da reação.

Pode-se verificar que os resultados MRCI/CASSCF e CCSD(T) se assemelham bastante, especialmente os valores de TST puro, quando não há qualquer correção para os efeitos de tunelamento. Ou seja, as diferenças entre os valores de geometrias e de frequência não foram tão significativas para os resultados cinéticos da reação. Isso também se explica pelo fato de que os valores termodinâmicos utilizados para estes cálculos cinéticos são bastante próximos entre si: o método MRCI//CASSCF/CBS fornece uma barreira reacional apenas 0,4 kcal/mol maior em comparação ao resultado CCSD(T)/MRE utilizado.

Figura 11. Variação da constante de velocidade (k) obtida com os cálculos TST, TST/ZCT e TST/W, em função da temperatura (T), para a reação $N_2H_2(trans) + H$.

Observa-se que o cálculo TST/ZCT com uso dos dados MPWB1K obtém valores de *k*, a temperatura ambiente, apenas 5,4 vezes menor e 3,1 vezes menor quando comparado aos cálculos altamente correlacionados CCSD(T)/MRE e MRCI+Q//CASSCF/CBS, respectivamente. Quando estes valores são comparados em altas temperaturas, são ainda mais próximos. Por exemplo, a 2000 K, *k* é apenas 1,7 vezes menor em relação aos cálculos CCSD(T)/MRE e MRCI+Q//CASSCF/CBS. Portanto, em casos onde o custo computacional é grande, os cálculos DFTs que apresentem bons resultados termodinâmicos podem ser utilizados como uma boa estimativa para a obtenção dos cálculos cinéticos. Esta aproximação foi realizada na reação de hidrazina com oxigênio atômico, que se encontra discutida adiante.

Com o propósito de realizar um cálculo mais detalhado da cinética reacional, foi aplicada a teoria VTST-ISPE (*Variational Transition State Theory with Interpolated Single-Point Energy corrections*) com as aproximações dos efeitos de tunelamento SCT (*Small Curvature Tunneling*). Para este cálculo cinético, os dados termodinâmicos são aqueles obtidos pelo método monoconfiguracional CCSD(T)/MRE, e os resultados das geometrias e frequências vibracionais de reagentes, produtos e estado de transição são os obtidos com o método MPWB1K/cc-pVTZ. Este DFT foi o método selecionado para descrever as propriedades relatadas acima por se tratar de um cálculo não dispendioso e que fornece bons resultados termodinâmicos para a reação.

Para a obtenção dos parâmetros cinéticos da reação, o valor correspondente à barreira clássica de potencial (V^{*}) é de 3,3 kcal/mol, e à energia eletrônica reacional (ΔE) é de -37,3 kcal/mol, resultados obtidos através do cálculo CCSD(T)/MRE, que também forneceu os dados para as geometrias e frequências vibracionais harmônicas dos pontos estacionários da reação, gerando assim os cálculos de nível mais alto da cinética VTST-ISPE. Os cálculos denominados como menor nível foram obtidos com a metodologia MPWB1K/cc-pVTZ ao longo de todo o caminho reacional. As constantes de velocidade obtidas para as temperaturas de 298 K a 1000 K encontram-se na Tabela 13. A variação de *k* com o aumento da temperatura encontra-se ilustrada na Figura 12.

T (<i>K</i>)	CVT	CVT/ZCT	CVT/SCT	CVT ^a	CVT/SCT ^a	CVT ^b	CVT/ZCT ^b
300	0,2(-11)	0,3(-11)	0,3(-11)	0,003(-11)	0,04(-11)	0,003(-11)	0,03(-11)
400	0,4(-11)	0,5(-11)	0,5(-11)	0,02(-11)	0,5(-11)	0,02(-11)	0,07(-11)
500	0,7(-11)	0,8(-11)	0,8(-11)				
600	1,0(-11)	1,1(-11)	1,2(-11)	0,2(-11)	0,8(-11)	0,1(-11)	0,3(-11)
800	1,9(-11)	2,0(-11)	2,1(-11)				
1000	3,1(-11)	3,2(-11)	3,3(-11)	1,0(-11)	1,9(-11)	0,9(-11)	1,1(-11)
1500	7,3(-11)	7,4(-11)	7,4(-11)	3,4(-11)	4,3(-11)	3,1(-11)	3,3(-11)
2000	13(-11)	13(-11)	13(-11)	7,3(-11)	7,7(-11)	6,7(-11)	6,6(-11)

Tabela 13. Constantes de velocidade (em cm³ mol⁻¹ s⁻¹) da reação $N_2H_2(trans) + H$ obtidas com a teoria CVT. Os números em parênteses representam o expoente em base 10.

^a[18] V^{\neq} e ΔE são iguais a 5,91 kcal/mol e -33,6 kcal/mol, respectivamente.

^b[20] V^{\neq} e ΔE são iguais a 4,29 kcal/mol e -37,3 kcal/mol, respectivamente.

Uma vez que o valor para a barreira clássica de potencial empregado no cálculo das constantes de velocidades apresentados na Tabela 13 é menor, os valores de *k* obtidos neste trabalho são maiores do que aqueles obtidos pelos cálculos existentes na literatura.

Os estudos teóricos acerca das constantes de velocidade se baseiam na teoria do estado de transição TST. Page et al. obtiveram os cálculos de estruturas com o método CASSCF/ccpVDZ e energias MRCI [17], e Truhlar et al. empregaram o cálculo CASSCF//MRCI//ccpVDZ///NDO-SRP [18, 20]. A teoria do estado de transição também foi empregada por Pople et al. [16] cujos cálculos de estruturas foram obtidos pelo método MP2/6-31G(d,p) e as energias com o método G2M(MP2). Portanto, torna-se difícil avaliar a qualidade dos resultados dos cálculos cinéticos, pois, conforme já dito, os estudos existentes têm usado diferentes valores tanto para as estruturas das moléculas, quanto para as alturas das barreiras reacionais, obtidas com diferentes metodologias. Por exemplo, os valores empregados para a altura da barreira clássica de potencial e para a energia eletrônica da reação são iguais a 4,29 kcal/mol e –37,34 kcal/mol [20], 5,91 kcal/mol e –33,6 kcal/mol [18], e 4,1 kcal/mol e –37,46 kcal/mol [19].

Figura 12. Variação da constante de velocidade (k) obtida com os cálculos CVT, CVT/ZCT e CVT/SCT, em função da temperatura (T), para a reação $N_2H_2(trans) + H$.

Porém, em nosso estudo utilizamos cálculos mais rigorosos do que aqueles disponíveis na literatura, através de metodologias mais confiáveis, e sendo assim, os resultados esperados como os mais exatos para a cinética desta reação são os que estão apresentados na Tabela 13 com a correção SCT dos efeitos de tunelamento. Como exemplo, o nosso melhor resultado para a constante de velocidade da reação baseado na aproximação CVT/SCT, a 300 K, é igual a $3,0 \times 10^{-12}$ cm³ mol⁻¹s⁻¹.

Método	300 - 400	400 - 500	600 - 800	1000 - 1500	1500 - 2000
TST	2,05	2,31	3,10	5,09	6,98
CVT	2,07	2,32	3,10	5,09	6,98
CVT/ZCT	1,45	1,83	2,80	4,94	6,90
CVT/SCT	1,35	1,74	2,74	4,90	6,87

Tabela 14. Energias de ativação (em kcal/mol) da reação H + trans-N₂H₂.

A curva de energia potencial ao longo do caminho de mínima energia (V_{MEP}) e a curva do potencial vibracional adiabático do estado fundamental (V_a^G) desta reação estão dadas na Figura 13, mostrando uma variação suave ao longo de quase todo o caminho da reação. Conforme esperávamos, as curvas V_{MEP} e V_a^G apresentam um comportamento semelhante às curvas obtidas com o cálculo IRC, mostradas nas Figuras 8 e 9.

Figura 13. Curvas do caminho de mínima energia (V_{MEP}) e da energia potencial adiabática do estado fundamental (V_a^G), em função das coordenadas de reação *s*.

4.2. ABSTRAÇÃO DO ÁTOMO DE HIDROGÊNIO DA MOLÉCULA HIDRAZINA, EM SUA REAÇÃO COM OXIGÊNIO ATÔMICO (O(³P))

Este estudo concentra-se na reação de abstração de hidrogênio que ocorre a partir da colisão entre um átomo de oxigênio com um dos átomos de hidrogênio da molécula hidrazina. A hidrazina é uma molécula que apresenta conformação C₂, e desta forma, a colisão do átomo de oxigênio poderá ocorrer por dois caminhos reacionais distintos. Uma possibilidade é o átomo de oxigênio colidir com o hidrogênio H_{i} , (i = in, ou seja, o átomo está posicionado para dentro do plano) da molécula hidrazina, formando um estado de transição arbitrariamente denominado TS(a), ou então a colisão do oxigênio atômico pode ocorrer com um hidrogênio H_0 (o = out, posiciona-se para fora do plano), que irá gerar a formação do estado de transição denominado por TS(b). Como realizado para a reação do diazeno com hidrogênio, também foi realizada uma análise do caráter multiconfiguracional das funções de onda utilizando o diagnóstico τ1. Os valores de τ1 calculados com o método CCSD e a base aug-cc-pVTZ para as espécies participantes da reação são iguais a 0,009, 0,037, 0,036, 0,020 e 0,010 para as moléculas N₂H₄, N₂H₄O (TS(a)), N₂H₄O (TS(b)), N₂H₃ e OH, respectivamente. Estes valores indicam que todas estas espécies não possuem um caráter multiconfiguracional significativo. Espécies moleculares com valores de $\tau 1$ menores que 0,044 são aceitas para serem bem descritas utilizando funções de onda monoconfiguracionais [120].
4.2.1. CONFORMAÇÃO GEOMÉTRICA DAS ESPÉCIES PARTICIPANTES DA REAÇÃO $N_2H_4 + O \rightarrow N_2H_3 + OH$

Nesta seção estão apresentadas as geometrias de equilíbrio do reagente e produtos da reação $N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH$, e dos dois estados de transição provenientes desta reação. Todos os cálculos foram realizados com o emprego da metodologia MP2 e com os conjuutos base cc-pVDZ e aug-cc-pVTZ, e dos métodos do funcional da densidade BB1K e MPWB1K com a base aug-cc-pVTZ.

Na Tabela 15, estão apresentados os resultados da geometria da molécula reagente hidrazina (N₂H₄), de simetria C₂, cuja conformação encontra-se ilustrada na Figura 14.

Figura 14. Estrutura de equilíbrio da molécula hidrazina (N₂H₄).

A molécula hidrazina apresenta simetria C_2 , e já se encontra bem caracterizada na literatura por sua grande empregabilidade e importância participando como reagente em sínteses orgânicas, conforme já citado anteriormente. Os átomos de hidrogênio designados H5 e H3 estão denominados na tabela abaixo, como H_i (*in*), átomos cuja posição espacial é para

Método	N-N	N-H _i	N-H _o	N-N-H _i	N-N-H _o	H-N-H
MP2/cc-pVDZ	1,438	1,025	1,021	110,8	105,8	105,2
MP2/aug-cc-pVTZ	1,435	1,013	1,010	111,7	107,1	107,7
BB1K/aug-cc-pVTZ	1,407	1,005	1,002	112,8	108,6	108,6
MPWB1K/aug-cc-pVTZ	1,406	1,005	1,002	112,8	108,6	108,6
CCSD(T)/cc-pVQZ+CV ^a	1,434	1,013	1,010	111,3	106,8	107,3
$UQCISD/6-31^{++}G(d,p)^{b}$	1,433	1,017	1,013	111,9	107,3	107,7
Exp. Difração de elétrons ^c	1,449	1,022	1,022	112	112	
Exp. Microondas ^d	1,447	1,008	1,008	109,2	113	
Exp. Infravermelho ^e	1,446	1,016	1,016		108,9	106
Exp. (DE+ IV) ^f	1,449	1,021	1,021	112	106	109,5 [°]

Tabela 15. Parâmetros geométricos da molécula reagente N_2H_4 . (Ângulos em graus, distâncias de ligações em Å).

^a Referência [60], CV= correlação caroço-valência.

^b Referência [128]

^c Referência [129]

^dReferência [130]

^eReferência [131]

^f Referência [132], DE=difração de elétrons, IV=infravermelho.

Comparado aos resultados experimentais também apresentados na Tabela 15, os quais foram obtidos pelos estudos de Morino et al. [129], Tsunekawa [130] e Tsuboi et al. [131] e Kohata et al. [132], os resultados obtidos com os métodos BB1K e MPWB1K subestimam os valores das distâncias de ligação da hidrazina, conforme era o esperado. No entanto, eles superestimam os valores dos ângulos, exceto para o valor do ângulo H-N-H obtido por Tsunekawa [130]. Os resultados obtidos com o método MP2 nos mostram a tendência das ligações N-N e H-N diminuírem com o aumento das funções de base, enquanto ocorre um aumento no valor dos ângulos das ligações H-N-N e H-N-H, aproximando-se dos valores experimentais, em especial com os resultados obtidos por Tsuboi et al. [131]. Também, os resultados obtidos com o método MP2/aug-cc-pVTZ estão em boa concordância com os valores teóricos obtidos por Li et al. [128], e em especial com os resultados CCSD(T)/cc-pVTZ+CV, que incluem também a correlação caroço-valência que são, até onde sabemos, os resultados teóricos existentes mais acurados [60].

A Tabela 16 apresenta os resultados para a geometria do produto N_2H_3 , de simetria C_1 , e sua conformação encontra-se ilustrada na Figura 15.

Figura 13. Estrutura de equilíbrio da molécula N₂H₃.

Método	N-N	N1-H3	N1-H4	N2-H5	N-N-	N-N-	N-N-	H3-N1-
					H3	H4	Н5	H4
MP2/cc-pVDZ	1,351	1,021	1,017	1,031	119,1	112,2	104,5	112,4
MP2/aug-cc-pVTZ	1,340	1,009	1,006	1,019	120,9	114,2	105,8	115,6
BB1K/aug-cc-pVTZ	1,328	1,002	0,999	1,012	120,9	114,4	106,5	115,3
MPWB1K/aug-cc-	1,327	1,002	0,999	1,012	120,9	114,5	106,5	115,3
pVTZ								
QCISD/6-31G(d,p) ^a	1,362	1,014	1,010	1,025	118,3	111,8	104,5	112,7
CCSD(T)/aVDZ ^b	1,368	1,021	1,017	1,033	119,0	112,5	105,8	

Tabela 16. Parâmetros geométricos do produto N₂H₃. (Ângulos em graus, distâncias de ligações em Å).

^a Referência [133] ^b Referência [124]

Para esta molécula, até onde sabemos, não há disponíveis na literatura resultados experimentais que caracterizem sua geometria. Porém, os resultados método MP2 levam a uma diminuição das distâncias das ligações e a um aumento dos ângulos das ligações H-N-N e H-N-H, à medida que aumenta o conjunto de funções de base. Os métodos DFTs, MPWB1K e BB1K, são os que fornecem os menores valores para as distâncias das ligações H-N e N-N, Os resultados CCSD(T)/aVDZ, calculados por Dixon et al. [124], apresentam os maiores valores das ligações. Baseado na experiência com a molécula hidrazina [60], verificamos que os resultados CCSD(T) com a base dupla-zeta superestimam as distâncias, e com o aumento do conjunto base as distâncias tendem a diminuir, levando a resultados mais acurados como aqueles realizados com a metodologia CCSD(T)/cc-pVQZ+CV. Quanto aos ângulos das ligações, os resultados QCISD/6-31G(d,p) de Zhang et al. [133], em geral, apresentam os menores valores. Os resultados DFTs e principalmente os resultados MP2/augcc-pVTZ, estão em boa concordância com os resultados CCSD(T). Desta forma, acredita-se que nossos resultados geométricos MP2/aug-cc-pVTZ são acurados e adequados para serem usados em cálculos pontuais com o método CCSD(T). Embora os parâmetros geométricos obtidos com o funcional BB1K estejam em menor concordância com os resultados CCSD(T), eles também devem ser testados nos cálculos pontuais CCSD(T), conforme discutido abaixo.

A molécula OH aparece como produto desta reação, e se encontra bem caracterizada na literatura. A molécula tem simetria linear C_{2v} , cuja estrutura está ilustrada na Figura 16. Os resultados para sua conformação de equilíbrio encontram-se apresentados na Tabela 17.

Figura 16. Estrutura de equilíbrio da molécula OH.

Método	O-H (Å)
MP2/cc-pVDZ	0,975
MP2/aug-cc-pVTZ	0,970
BB1K/aug-cc-pVTZ	0,964
MPWB1K/aug-cc-pVTZ	0,964
Experimental ^a	0,970

Tabela 17. Distância de equilíbrio do produto OH.

^a Referência [125]

Comparado ao resultado experimental publicado por Herzberg [125], os métodos MPWB1K e BB1K subestimam os valores da ligação O-H em 0,06 Å, enquanto que o método MP2 com o uso da base cc-pVDZ superestima o valor da ligação em 0,05 Å, porém, com a melhora em seu conjunto de funções de base, o cálculo MP2/aug-cc-pVTZ obtém o valor de

0,970 Å, que é exatamente igual ao valor experimental desta ligação. Utilizando o método CCSD(T)/aug-cc-pVTZ, o valor da ligação O-H é igual a 0,973 Å, ou seja, superestima a ligação em 0,03 Å, comparando-o ao resultado experimental.

Nas Tabelas 18 e 19 a seguir, estão apresentadas as distâncias de ligação e ângulos das estruturas de equilíbrio dos dois pontos de sela N₂H₃O, denominados por TS(a) e TS(b), cujas estruturas se encontram ilustradas nas Figuras 17 e 18, respectivamente. Estas estruturas mostram as posições de interação com o átomo de oxigênio, consequentemente com a quebra da ligação N-H_i com formação da ligação O-H_i, e a quebra da ligação N-H_o formando-se a ligação O-H_o. Em todos os cálculos, os dois estados de transição apresentam simetria C₁.

Figura 17. Estrutura de equilíbrio do estado de transição N₂H₃O - TS(a)

Parâmetros	MP2/ cc-pVDZ	MP2/aug-cc-	BB1K/aug-cc-	MPWB1K/
geométricos		pVTZ	pVTZ	aug-cc-pVTZ
N1-N2	1,408	1,403	1,375	1,374
N2-H4	1,027	1,016	1,007	1,007
N2-H6	1,021	1,010	1,001	1,001
N1-H5	1,026	1,015	1,004	1,004
N1-H3	1,111	1,094	1,053	1,054
Н3-О7	1,369	1,370	1,536	1,536
N2-N1-H5	105,8	111,5	109,0	109,0
N2-N1-H3	111,4	111,4	113,4	113,1
N1-N2-H4	111,5	105,8	114,4	114,3
N1-N2-H6	107,1	107,1	109,9	109,9
H5-N1-H3	103,0	100,2	108,1	108,1
H4-N2-H6	106,7	109,0	110,3	110,3
N1-H3-O7	144,6	111,0	141,2	138,6
H5-N1-N2-H6	179,8	179,8	174,6	175,1

Tabela 18. Parâmetros geométricos do estado de transição $N_2H_3O - TS(a)$. (Distâncias de ligação em Å e ângulos em graus).

O estado de transição TS(a) desta reação apresenta estrutura bem próxima da planar. Sua geometria se assemelha à estrutura do reagente hidrazina. A distância internuclear da ligação O-H a ser formada é ainda maior do que a distância da ligação H-N a ser quebrada. Esta ligação O-H a ser formada no estado de transição N₂H₃O, que aparece alongada, é cerca de 41% maior que a ligação O-H na molécula OH calculada com o método MP2, tanto com o conjunto de funções de base aug-cc-pVTZ, quanto com cc-pVDZ, e 59% maior com os cálculo BB1K/aug-cc-pVTZ e MPWB1K/aug-cc-pVTZ, enquanto que a ligação H-N a ser rompida tem valor de apenas cerca de 3% maior que na estrutura da molécula hidrazina com os cálculos BB1K e MPWB1K, e com a metodologia MP2 essa ligação é 8% maior.

Como esperado, os cálculos com o método MPWB1K resultam em valores muito próximos aos obtidos com o método BB1K. Pode ser observado pela metodologia MP2 que,

com o aumento do conjunto base, as distâncias de ligação diminuem ao mesmo tempo em que ocorre aumento no valor dos ângulos calculados. As ligações obtidas com os métodos BB1K e MPWB1K apresentam valores menores em relação àqueles fornecidos pelo método MP2, com exceção da ligação a ser formada O-H, sendo quase 0,2 Å maior neste caso. Os ângulos encontrados com os métodos DFTs também são, em geral, maiores do que os obtidos pelo método MP2, excluindo-se apenas aquele onde também aparece o átomo de oxigênio, N1-H3-O7. Entretanto, como observado para as espécies N₂H₄ e N₂H₃, os métodos mostram boa concordância entre si. Até onde sabemos, não existem outras caracterizações deste estado de transição disponíveis na literatura para efeito de comparação.

Figura 18. Estrutura de equilíbrio do estado de transição N₂H₃O - TS(b)

O estado de transição TS(b) também foi caracterizado previamente por Troya et al. [55], que utilizou em seu estudo os cálculos BHandHLYP/6-31G e MP2/aug-cc-pVDZ. Seus resultados encontram-se na Tabela 19, juntamente com aqueles realizados neste estudo.

Parâmetros	MP2/cc-	MP2/aug-cc-	BB1K/	MPWB1K/	BHandHLY	MP2/
geométricos	pVDZ	pVTZ	aug-cc-	aug-cc-	P/6-31G ^a	aug-cc-
			pVTZ	pVTZ		pVDZ ^a
N1-N2	1,423	1,409	1,374	1,373	1,39	1,42
N2-H4	1,021	1,010	1,000	1,000		
N2-H6	1,022	1,010	1,002	1,001		
N1-H3	1,027	1,016	1,007	1,002		
N1-H5	1,118	1,103	1,063	1,061	1,10	1,11
Н5-О7	1,340	1,351	1,488	1,492	1,39	1,35
N2-N1-H5	105,5	106,3	111,2	111,3		
N2-N1-H3	107,0	109,4	110,8	110,9		
N1-N2-H4	109,7	112,6	114,5	114,6		
N1-N2-H6	106,1	108,4	110,9	110,9		
H5-N1-H3	100,8	104,0	104,7	104,8		
H4-N2-H6	106,4	109,9	111,7	111,7		
N1-H5-O7	147,6	147,6	155,6	170,9	149,8	147,1
H3-N1-N2-H6	138,5	126,7	129,4	128,9		

Tabela 19. Parâmetros geométricos do estado de transição $N_2H_3O - TS(b)$. (Distâncias de ligação em Å e ângulos em graus).

^a Referência [55]

A estrutura geométrica do estado de transição TS(b), conforme descrito anteriormente, diferencia-se da estrutura do estado de transição TS(a) pela colisão do átomo de oxigênio ocorrer com o hidrogênio situado na posição espacial para fora do plano da molécula hidrazina. Neste caso, o valor do ângulo diedro está cerca de 50° fora do plano. Porém, a geometria apresentada para o estado de transição TS(b) também permanece muito próxima à estrutura da molécula reagente hidrazina, assemelhando-se ainda mais à sua estrutura do que no caso do estado de transição TS(a). A distância internuclear da ligação O-H a ser formada ainda é maior do que a distância da ligação H-N a ser quebrada, sendo um pouco mais curta neste caso, chegando a uma diferença de quase 0,5 Å na ligação O-H deste estado de transição

TS(b), comparado ao TS(a), com o método MPWB1K/aug-cc-pVTZ. Esta ligação permanece alongada, cerca de 37% maior que a ligação O-H na molécula OH calculada com o método MP2 e conjunto de funções de base cc-pVDZ, 39% maior com método MP2 e funções de base aug-cc-pVTZ, 54% maior com o método BB1K e cerca de 55% maior com o método MPWB1K, ambos com a base aug-cc-pVTZ. A ligação H-N a ser rompida neste caso tem valores apenas cerca de 9% maior que na estrutura da molécula hidrazina com o método MP2 com os conjuntos de funções de base cc-pVDZ e aug-cc-pVTZ, e com os funcionais BB1K/aug-cc-pVTZ, e MPWB1K/aug-cc-pVTZ esta ligação é 6% maior. Comparado ao resultado MP2/aug-cc-pVDZ de Troya et al. [55], o aumento do conjunto base para tripla-zeta praticamente não altera os resultados, aumenta a distância N-N por 0,01 Å e diminui o valor do ângulo por 0,5 graus.

4.2.2. FREQUÊNCIAS VIBRACIONAIS HARMÔNICAS

Conforme discutido anteriormente, uma boa exatidão na avaliação das frequências vibracionais do estado de transição é muito importante para assegurar que os cálculos de velocidades da reação sejam confiáveis e também para assegurar a caracterização dos pontos estacionários mínimos ou pontos de sela.

Os valores das frequências vibracionais harmônicas para produtos e reagentes envolvidos na reação se encontram apresentados nas Tabelas 20 a 22, calculadas com os métodos MP2 e BB1K com emprego das funções de base de Dunning cc-pVDZ e aug-cc-pVTZ.

Frequências	Métodos								
	MP2/cc-	MP2/aug-cc-	BB1K/aug-	MPWB1K/	CCSD(T)/	Exp. ^b			
	pVDZ	pVTZ	cc-pVTZ	aug-cc-	cc-pVTZ ^a				
				pVTZ					
A (tors.)	406	422	470	471	398	371			
A (wag.)	885	827	834	832	878	896			
B (wag.)	1076	999	979	977	1086	914			
A (stret.)	1154	1128	1175	1176	1134	1035			
B (twis.)	1326	1303	1330	1330	1323	1284			
A (twis.)	1370	1337	1361	1360	1366	1285			
B (scis.)	1677	1674	1714	1713	1670	1579			
A (scis.)	1691	1686	1726	1725	1684	1598			
B (s-stret.)	3468	3509	3584	3585	3412	3274			
A(s-stret.)	3479	3513	3590	3590	3430	3293			
A (a-stret.)	3591	3621	3686	3687	3537	3334			
B (a-stret.)	3597	3624	3691	3692	3578	3336			

Tabela 20. Frequências vibracionais harmônicas (em cm⁻¹) do reagente N₂H₄.

^a Referência [60] ^b Referência [134]

A molécula hidrazina apresenta 12 modos de vibrações, descritos na Tabela 20. Os valores teóricos em geral superestimam os valores experimentais obtidos por Yamaguchi et al. [134] através de espectro infravermelho, com exceção dos valores da vibração de balanço da ligação dos hidrogênios no ângulo NH₂ A (*wagging*) que são subestimados em 44 cm⁻¹ e em 51 cm⁻¹ pelos cálculos BB1K/aug-cc-pVTZ e MP2/aug-cc-pVTZ, respetivamente. Os resultados dos diferentes métodos demonstram boa concordância entre si. Os métodos DFTs são os que obtêm os valores mais altos das frequências vibracionais, e desta forma, estão mais distantes dos valores experimentais. Esta diferença é de até 356 cm⁻¹ com o cálculo MPWB1K/aug-cc-pVTZ, em comparação ao resultado experimental da vibração de estiramento assimétrico das ligações dos dois átomos de hidrogênio ao átomo de nitrogênio,

B (*a-stretching* NH₂), que é igual a 3336 cm⁻¹. O método MP2 foi o que, em geral, forneceu os resultados mais próximos aos experimentais, diferindo não mais do que 297 cm⁻¹ com o cálculo MP2/aug-cc-pVTZ em relação ao resultado experimental da vibração de estiramento simétrico A (*s-stretching* NH₂), igual a 3336 cm⁻¹. Os resultados MP2 são semelhantes também aos valores obtidos com o cálculo mais correlacionado utilizando a metodologia CCSD(T)/cc-pVTZ, obtido por um estudo anterior do grupo do professor Francisco B. C. Machado [60]. Vale salientar que não estão sendo utilizados fatores de escala.

Frequências			Métodos		
(cm^{-1})	MP2/cc-	MP2/aug-cc-	BB1K/aug-	MPWB1K/	UQCISD/6-
	pVDZ	pVTZ	cc-pVTZ	aug-cc-pVTZ	31G(d,p) ^a
A (wag.)	653	527	537	533	638
A (wag.)	758	738	715	715	727
A (twis.)	1156	1147	1164	1164	1159
A (stret.)	1297	1289	1320	1321	1238
A (rock.)	1503	1494	1511	1510	1501
A (scis.)	1663	1672	1699	1699	1685
A (stret.)	3457	3499	3547	3548	3446
A (s-stret.)	3519	3552	3612	3613	3538
A (a-stret.)	3675	3704	3753	3754	3678

Tabela 21. Frequências vibracionais harmônicas do produto N₂H₃.

^a Referência [128]

A molécula N_2H_3 apresenta 9 modos vibracionais, descritos na Tabela 21, e até onde se sabe, não há dados experimentais disponíveis na literatura a fim de se realizar uma comparação. Porém, percebe-se que, em geral, há uma boa concordância entre os valores dos métodos MP2 e DFTs utilizados, sendo que os resultados diferem por não mais que 61 cm⁻¹, diferença obtida entre os cálculos MP2/aug-cc-pVTZ e MPWB1K/aug-cc-pVTZ para o valor da vibração de estiramento simétrico, A (*s-stretching* NH₂). Os resultados concordam também com os valores teóricos obtidos por Li et al. [128] empregando o método UQCISD/6-31+G(d,p), que são especialmente próximos aos obtidos com o método MP2, com o uso do conjunto de funções de base cc-pVDZ. Como esperado e já discutido anteriormente, os resultados das frequências vibracionais obtidos com o método MP2 convergem adequadamente sem ser necessária uma melhora muito grande em seu conjunto de funções de base.

As frequência vibracionais harmônicas da molécula OH estão apresentados na Tabela 22.

Frequência	Métodos								
(cm^{-1})	MP2/cc-	MP2/aug-	MPWB1K/	Exp. ^a					
	pVDZ	cc-pVTZ	cc-pVTZ	aug-cc-pVTZ					
SG (stret.)	3790	3793	3848	3848	3738				

Tabela 22. Frequência vibracional harmônica do produto OH.

^aReferência [125]

A molécula OH apresenta uma única frequência de vibração, do estiramento da ligação O-H (*stretching*). Os valores calculados para esta frequência vibracional harmônica apresentam boa concordância entre os métodos, apresentando uma variação em seus valores de apenas 1,5% entre si, sendo os resultados obtidos com os métodos DFTs um pouco maiores do que aqueles obtidos com o MP2. Porém, o método MP2 apresenta valores mais próximos ao valor experimental, publicado por Herzberg [125], diferindo deste por apenas 55 cm⁻¹ no cálculo MP2/aug-cc-pVTZ. Nota-se que, com o aumento no conjunto de funções de base, não houve melhoras no resultado do cálculo MP2, permanecendo bastante próximos os resultados obtidos com as bases cc-pVDZ e aug-cc-pVTZ. Os métodos funcionais MPWB1K e BB1K apresentaram resultados que diferem do valor experimental por 110 cm⁻¹.

Nas Tabelas 23 e 24 estão caracterizadas as frequências vibracionais harmônicas calculadas com os métodos MP2 e BB1K para os dois estados de transição que se encontram envolvidos nesta reação, TS(a) e TS(b), respectivamente. Ambos os estados de transição ficam comprovadamente caracterizados como pontos de sela, cada um apresentando uma frequência imaginária, além de seus outros 14 modos vibracionais.

Métodos							
MP2/cc-pVDZ	MP2/aug-cc-	BB1K/aug-	MPWB1K/aug-				
	pVTZ	cc-pVTZ	cc-pVTZ				
2161i	2133i	383i	397i				
139	97	88	72				
306	283	257	264				
524	546	592	590				
805	760	814	810				
925	865	864	857				
1134	1100	1185	1185				
1195	1207	1263	1265				
1367	1381	1441	1443				
1480	1538	1656	1663				
1675	1667	1716	1717				
1691	1691	2593	2596				
3458	3478	3563	3560				
3537	3555	3660	3660				
3613	3631	3709	3709				
	MP2/cc-pVDZ 2161i 139 306 524 805 925 1134 1195 1367 1480 1675 1691 3458 3537 3613	Méto MP2/cc-pVDZ MP2/aug-cc- pVTZ 2161i 2133i 139 97 306 283 524 546 805 760 925 865 1134 1100 1195 1207 1367 1381 1480 1538 1675 1667 1691 1691 3458 3478 3537 3555 3613 3631	MétodosMP2/cc-pVDZMP2/aug-cc- pVTZBB1K/aug- cc-pVTZ2161i2133i383i1399788306283257524546592805760814925865864113411001185119512071263136713811441148015381656167516671716169116912593345834783563353735553660361336313709				

Tabela 23. Frequências vibracionais harmônicas do estado de transição N₂H₄O – TS(a).

Para o estado de transição TS(a), os resultados calculados para a frequência imaginária com os métodos MP2 e DFTs diferem consideravelemente. Os resultados obtidos com os métodos BB1K e MPWB1K apresentam valores muito baixos comparados àqueles obtidos

utilizando os demais métodos, mostrando uma grande interferência das demais vibrações em seus valores da frequência que representa a vibração do estiramento (*stretching*) da ligação O-H, ou seja, da frequência imaginária. Esta interferência não é tão significativa na frequência imaginária obtida pelo método MP2, que apresenta um valor que é aproximadamente 1800 cm⁻¹ maior do que o fornecido pelo método BB1K. Até onde sabemos, para este estado de transição, não há outros resultados disponíveis na literatura para comparação. Para as demais frequências, os resultados obtidos com as duas metodologias são bem próximas, com exceção da frequência de deformação angular NH₂ (*scissoring*) que, com o método MP2 e uso das bases cc-pVDZ e aug-cc-pVTZ, é igual a 1691 cm⁻¹, sendo 905 cm⁻¹ menor do que o valor obtido com o método MP2 e as bases cc-pVDZ e aug-cc-pVTZ, como os obtidos com os funcionais BB1K/aug-cc-pVTZ e MPWB1K/aug-cc-pVTZ, diferem em não mais do que 183 cm⁻¹.

Frequências	s Métodos						
(cm^{-1})	MP2/cc-pVDZ	MP2/aug-cc-	BB1K/aug-cc-	MPWB1K/aug-			
		pVTZ	pVTZ	cc-pVTZ			
А	2628i	2614i	512i	518i			
А	144	119	221	195			
А	165	243	256	243			
А	391	415	460	437			
А	808	746	680	679			
А	933	812	962	938			
А	1135	1126	1200	1194			
А	1213	1209	1318	1301			
А	1311	1353	1603	1504			
А	1470	1459	1705	1613			
А	1673	1634	1986	1709			
А	1701	1674	2220	2258			
А	3516	3535	3623	3623			
А	3525	3545	3630	3630			
А	3629	3655	3738	3737			

Tabela 24. Frequências vibracionais harmônicas do estado de transição N₂H₄O – TS(b).

Para o estado de transição denominado TS(b), assim como foi verificado nos dados das frequências vibracionais harmônicas do estado de transição TS(a), há uma significativa variação entre os resultados obtidos para as frequências vibracionais imaginárias com os métodos MP2 e os DFTs. O método MP2 fornece um valor mais alto para a frequência imaginária. Porém, neste caso do estado de transição TS(b), a diferença entre os métodos é um pouco menor em comparação ao TS(a), e chega a cerca de 1100 cm⁻¹. Até onde sabemos, também não há na literatura dados disponíveis de frequências vibracionais harmônicas para este estado de transição. Os demais resultados, das frequências reais, apresentam boa concordância entre os métodos. Os valores obtidos com o método BB1K são, em geral, um

pouco maiores do que aqueles fornecidos pelos outros métodos. O método MP2 oferece os menores valores para as frequências, exceto para a vibração de deformação angular NH2 (*wagging*), que com o cálculo MP2/aug-cc-pVTZ é 66 cm⁻¹ maior do que o valor obtido com o método BB1K.

4.2.3. CÁLCULOS DE COORDENADA DA REAÇÃO INTRÍNSECA

Nas Figuras 19 e 20 estão ilustradas as curvas IRC calculadas com 90 pontos utilizando o método BB1K/aug-cc-pVTZ para os dois caminhos reacionais que envolvem os estados de transição TS(a) e TS(b), respectivamente.

Figura 19. Curva de coordenada de reação intrínseca para a reação $N_2H_4 + O({}^3P)$, no caminho de formação do estado de transição TS(a), calculada com o método BB1K/aug-cc-pVTZ.

Figura 20. Curva de coordenada de reação intrínseca para a reação $N_2H_4 + O({}^3P)$, no caminho de formação do estado de transição TS(b), calculada com o método BB1K/aug-cc-pVTZ.

Traçando-se os caminhos de energia mínima partindo-se da estrutura do estado de transição em direção aos reagentes e produtos, a reação $N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH$ encontra-se bem descrita pelas curvas IRC das Figuras 17 e 18, que elucidam o comportamento exotérmico da reação. Por se tratarem de uma mesma reação de abstração de hidrogênio, a diferença entre os dois caminhos reacionais pode ser percebida na barreira de potencial mais alta a ser alcançada quando ocorre a formação do ponto de sela TS(b), conforme será visto na discussão dos resultados da energética reacional, mostrados na Tabela 25. Este fato demonstra o favorecimento de a reação ocorrer com a formação do estado de transição TS(a).

As curvas IRC certificam, portanto, a correlação entre as estruturas dos estados estacionários, TS(a) e TS(b), e dos pontos de mínimo dos dois caminhos reacionais apresentados para a reação.

4.2.4. TERMODINÂMICA DA REAÇÃO $N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH$

A Tabela 25 apresenta as energias eletrônicas clássicas dos dois caminhos da reação (ΔE), suas barreiras reacionais sem e com correção da energia do ponto zero (V^{*} e V_{0}^{*} , respectivamente), as entalpias (ΔH) e as energias livres de Gibbs (ΔG), calculadas com os métodos MP2, MPWB1K e BB1K, e CCSD(T). Os cálculos CCSD(T) foram realizados com geometrias fixas obtidas pelos métodos MP2/aug-cc-pVTZ e BB1K/aug-cc-pVTZ (*Single-Point*) com as bases aug-cc-pVTZ e aug-cc-pVQZ. Estes resultados foram extrapolados para o limite da base completa (CBS), que também estão incluídos na Tabela 25 juntamente com os do trabalho de Troya et al. [55] obtidos com a extrapolação CBS de cálculos CCSD(T) *Single-Point* com as bases cc-pVTZ e cc-pVQZ sobre a geometria obtida pelo método MP2 e a base aug-cc-pVDZ.

Tabela 25. Barreiras de potencial com e sem correção da energia do ponto zero, $V^{\neq} = V_0^{\neq}$, para os dois caminhos reacionais (a e b), energias eletrônicas de reação, ΔE , entalpias de ΔH_0^0 , e variação reação, da energia livre de Gibbs, ΔG , reação da $N_2H_4 + O(^3P) \rightarrow N_2H_3 + OH$ (valores em kcal/mol).

Método	$V^{\neq}(a)$	$V_0^{\neq}(\mathbf{a})$	$V^{\neq}(\mathbf{b})$	$V_0^{\neq}(\mathbf{b})$	ΔE	ΔH_0^0	ΔG
MP2/cc-pVDZ	10,28	7,61	12,69	9,68	-9,26	-12,47	-14,24
MP2/aug-cc-pVTZ	9,12	6,48	11,37	8,34	-14,49	-17,67	-19,45
CCSD(T)/aug-cc-pVTZ//	2,45	-0,19 ^d	5,05	2,02 ^d	-15,82	-19,00 ^d	
MP2/aug-cc-pVTZ							
CCSD(T)/aug-cc-pVQZ//	2,19	-0,45 ^d	4,77	1,74 ^d	-16,82	$-20,00^{d}$	
MP2/aug-cc-pVTZ							
CCSD(T)/CBS//MP2/	2,00	-0,64	4,57	1,54	-17,54	-20,73	
aug-cc-pVTZ							
MPWB1K/aug-cc-pVTZ	0,41	-0,65	3,36	1,82	-17,03	-20,51	-22,31
BB1K/aug-cc-pVTZ	1,26	0,20	4,15	3,38	-16,88	-20,36	-22,16
CCSD(T)/aug-cc-pVTZ//	2,81	1,76 ^e	5,49	4,72 ^e	-16,06	-19,54 ^e	
BB1K/aug-cc-pVTZ							
CCSD(T)/aug-cc-pVQZ//	2,61	1,56 ^e	5,28	4,51 ^e	-16,99	-20,47 ^e	
BB1K/aug-cc-pVTZ							
CCSD(T)/CBS//BB1K/	2,47	1,41	5,12	4,35	-17,66	-21,15	
aug-cc-pVTZ							
MP2/aug-cc-pVDZ ^a				8,69		-16,26	
BHandH/6-31G* ^a				-4,50		-17,32	
CCSD(T)/CBS//MP2/				1,25		-20,80	
aug-cc-pVDZ ^a							
Experimental ^b						-25,9	
Experimental ^c						-26,3	

^a Referência [55]
 ^b Referência [49]
 ^c Referência [57]
 ^d Frequências vibracionais do ponto zero calculadas com o método MP2/aug-cc-pVTZ.

^e Frequências vibracionais do ponto zero calculadas com o método BB1K/aug-cc-pVTZ.

Todos os resultados confirmam que a reação é exotérmica, com valor da entalpia da reação, obtida com o cálculo CCSD(T)/CBS//BB1K/aug-cc-pVTZ, igual a -21,2 kcal/mol, resultado mais próximo dos resultados experimentais. Porém, este valor ainda difere dos experimentais por cerca de 4 a 5 kcal/mol. O melhor resultado de Troya et al., com o cálculo CCSD(T)/CBS//MP2/aug-cc-pVDZ, é igual a $\Delta H = -20,80$ kcal/mol [55]. Todos os outros resultados CCSD(T)/CBS também obtém um valor de ∆H inferior a -21 kcal/mol, o que nos leva a inferir que os valores experimentais para a entalpia da reação, aproximadamente igual a -26 kcal/mol, parecem bastante altos. Acreditamos que esta diferença seja devida ao rearranjo que ocorre entre produtos, pois a dedução experimental é que a reação se estabiliza na forma $N_2H_4 + O({}^3P) \rightarrow N_2H_2 + H_2O$, e contribuição com uma menor de $N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH$. Esta primeira reação, onde ocorre remoção "simultânea" de dois átomos de hidrogênio, já foi reportada por Foner et al. [135, 136]. Em seu experimento de feixe molecular cruzado de alta intensidade, os produtos principais da reação da hidrazina com oxigênio atômico são identificados através de seus relativos sinais de massa iônica. O produto de massa igual a 30 (N₂H₂) foi identificado numa medida 25 vezes maior do que aquele de massa 31 (N₂H₃). Isto sugere que a reação que mantém N₂H₃ e OH como produtos seja um processo de menor ocorrência, retratando como principal produto da reação a molécula cis-diazeno (N₂H₂), o que indica um imediato rearranjo dos átomos a partir da abstração do primeiro hidrogênio.

O cálculo MP2 fornece os menores valores para a entalpia da reação, mas a utilização da base aug-cc-pVTZ aumenta o valor de ΔH em 5,2 kcal/mol em relação ao com a base cc-pVDZ, porém seu resultado, igual a –17,7 kcal/mol, permanece o mais distante em relação aos resultados experimentais. Os valores da entalpia da reação calculados com os métodos MPWB1K/aug-cc-pVTZ e BB1K/aug-cc-pVTZ são iguais a ΔH = –20,5 kcal/mol e ΔH =

-20,4 kcal/mol, respectivamente, resultados bastante semelhantes aos valores obtidos com os cálculos *Single-Point* CCSD(T)/CBS, diferindo destes por não mais de 0,8 kcal/mol.

Conforme discutido na reação anterior, os métodos DFTs utilizados nestes cálculos fornecem resultados para a termodinâmica das reacões mais próximos aos valores experimentais e aos resultados obtidos com métodos mais rigorosos, porém os valores das barreiras reacionais são subestimados. Já o cálculo MP2 tende a superestimar os valores das barreiras, fato tipicamente observado em outras reações de abstração de hidrogênio [137]. Assim, para as barreiras de potencial, os valores CCSD(T) são um pouco maiores do que os obtidos com os métodos DFTs, sendo os resultados BB1K os mais próximos ao método CCSD(T). Os valores de barreiras clássicas de potencial (V^{*}) dos dois caminhos da reação indicam que TS(a) possui energia total mais baixa, ocorrendo através de uma menor barreira clássica de potencial, sendo, portanto, o caminho reacional que forma este estado de transição o mais favorável para que a reação ocorra. Porém, a diferença entre os dois caminhos é pequena, sendo menor do que 3.0 kcal/mol em todos os cálculos realizados, ou seja, de apenas 2,89 kcal/mol com o método BB1K/aug-cc-pVTZ, 2,95 kcal/mol com MPWB1K/aug-cc-2,25 com MP2/aug-cc-pVTZ, 2,94 pVTZ, de kcal/mol de kcal/mol com CCSD(T)/CBS//BB1K/aug-cc-pVTZ, e de 2,57 kcal/mol com CCSD(T)/CBS//MP2/aug-ccpVTZ. Os resultado obtidos com o método MPWB1K/aug-cc-pVTZ apresentam uma barreira muito baixa para TS(a), de forma que, quando incluída a correção da energia do ponto zero, esta barreira torna-se negativa. Em geral, a correção da energia do ponto zero diminui os valores de barreiras reacionais [80]. O estudo teórico realizado por Troya et al. [55] refere-se apenas à barreira de reação que leva ao estado de transição TS(b). Seu resultado obtido com o método CCSD(T)/CBS//MP2/aug-cc-pVDZ pVDZ para $V_0^{\neq}(b) = 1,25$ kcal/mol, é muito próximo do nosso cálculo MPWB1K, V_0^{\neq} (b) = 1,82 kcal/mol. Troya et al. [55] comenta que barreiras negativas correspondem a barreiras verdadeiras (positivas) em superfícies clássicas de potencial (sem correção da energia do ponto zero), mas que após a correção da energia do ponto zero resultam em energias mais baixas para os reagentes. Os nossos resultados obtidos com o método MP2 apresentaram altos valores para as barreiras dos dois caminhos reacionais, mas podemos observar que, com a melhoria no conjunto de funções de base, estes valores tendem a diminuir.

Em relação aos nossos melhores resultados termodinâmicos para esta reação, obtidos com os métodos CCSD(T)/CBS//MP2/aug-cc-pVTZ e CCSD(T)/CBS//BB1K/aug-cc-pVTZ, esperamos que o resultados das barreiras clássicas de potencial estejam entre os limites de 2,00 a 2,47 kcal/mol na formação de TS(a), e entre 4,57 a 5,12 kcal/mol na formação de TS(b). Os resultados das barreiras reacionais, obtidos com os cálculos CBS, não diferem mais do que 0,58 kcal/mol entre si, porém, quando incluída a correção da energia do ponto zero, esta diferenca chega a 2,79 kcal/mol. Podemos notar neste estudo, assim como nos resultados obtidos por Troya et al. [55], que os valores de barreiras obtidas com o cálculo CCSD(T)/CBS//MP2/aug-cc-pVTZ, ou seja, quando incluem a correção da energia do ponto zero calculada pelo método MP2, $V_0^{\neq}(a) = -0.64$ e $V_0^{\neq}(b) = 1.54$ kcal/mol, são muito menores do que quando é utilizado o cálculo CCSD(T)/CBS//BB1K/aug-cc-pVTZ, que incluem as energias do ponto zero calculadas com o método BB1K e obtém os mais altos valores para ambas as barreiras, $V_0^{\neq}(a) = 1,41$ kcal/mol e $V_0^{\neq}(b) = 4,35$ kcal/mol. Uma vez que a correção da energia do ponto zero no cálculo CCSD(T) Single-Point está relacionada ao método utilizado na otimização da geometria fixa empregada, este fato se evidencia na diferença obtida pelo cálculo CCSD(T)/CBS//MP2/aug-cc-pVTZ entre as barreiras clássicas e as barreiras que incluem a correção da energia do ponto zero, que é de 2,36 kcal/mol para TS(a) e de 3,03 kcal/mol para TS(b), sendo que, com o método CCSD(T)/CBS//BB1K/augcc-pVTZ, esta diferença é de apenas 1,06 e 0,77 para TS(a) e TS(b), respectivamente. Foi concluído, desta forma, que isto não se deve às diferenças entre as geometrias obtidas com os métodos MP2 e DFTs, mas sim à grande influência da inclusão da correção da energia do ponto zero que o método MP2 fornece para os dois estados de transição, pois, conforme foi observado nas Tabelas 22 e 23, os seus valores de frequências imaginárias são muito maiores do que aqueles obtidos com o método BB1K. De acordo com nossas experiências prévias, é esperado que o método CCSD(T) forneça valores de frequências imaginárias maiores do que as obtidas pelos cálculos DFTs e menores do que com MP2, e desta forma, os valores de barreiras com a correção da energia do ponto zero permaneceriam entre os dois limites, de -0,64 kcal/mol a 1,41 kcal/mol e de 1,54 kcal/mol a 4,32 kcal/mol, para as barreiras de formação de TS(a) e TS(b), respectivamente. Observamos que o método BB1K obtém valores dentro da faixa esperada dos dois cálculos CCSD(T)/CBS, sendo $V_0^{\neq}(a) = 0,20$ kcal/mol e V_0^{\neq} (b) = 3,38 kcal/mol. Como é conhecido, o método BB1K foi parametrizado para fornecer bons resultados em cálculos de termodinâmica de reações envolvendo os elementos do grupo principal do primeiro e segundo períodos da tabela periódica [38]. Vale salientar que estes cálculos têm um baixo custo computacional. Assim, ao utilizarmos nos cálculos da cinética reacional os parâmetros termoquímicos obtidos com o método BB1K/aug-cc-pVTZ, espera-se obter resultados comparáveis àqueles que utilizem os dados termoquímicos de resultado obitidos com métodos altamente correlacionados, como aqueles obtidos com o método CCSD(T)/CBS//BB1K/aug-ccpVTZ.

4.2.5. CINÉTICA DA REAÇÃO $N_2H_4 + O(^3P) \rightarrow N_2H_3 + OH$

Os parâmetros cinéticos da reação $N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH$ foram calculados utilizando a teoria do estado de transição (TST), como codificado no programa POLYRATE 9.3 [71]. Desta forma, para os dois caminhos reacionais, os valores das taxas de velocidade da reação (k) e energias de ativação (Ea) foram obtidos. As correções dos efeitos de tunelamento Zero Curvature Tunneling (ZCT) e Wigner (W) também foram incluídas. Os dados termodinâmicos, das coordenadas geométricas, e das frequências de produtos, reagentes e dos estados de transição TS(a) e TS(b) utilizados são aqueles obtidos através dos cálculos BB1K/aug-cc-pVTZ. Ou seja, utilizaram-se os seguintes valores: $\Delta E = -16.9$ kcal/mol, $V^{\neq}(a) = 1,3$ kcal/mol e $V^{\neq}(b) = 4,2$ kcal/mol. Como discutido acima, o método BB1K foi selecionado por obter bons resultados termodinâmicos e requerer um pequeno custo computacional. Como afirmado anteriormente, a utilização dos dados termoquímicos pelo método CCSD(T)/CBS//BB1K/aug-cc-pVTZ proporcionam valores para constante de velocidade próximos dos valores BB1K, na realidade, ligeiramente menores. Ou seja, em 298K na aprovimação TST, o valor com os dados BB1K é igual a 0,9 x 10⁻¹¹ cm³ mol⁻¹s⁻¹, enquanto que os valores com os dados CBS é igual a $0,2 \times 10^{-11} \text{ cm}^3 \text{ mol}^{-1}\text{s}^{-1}$, e a 2000K os resultados são respectivamente iguais a $1.5x \ 10^{-10} \ \text{cm}^3 \ \text{mol}^{-1}\text{s}^{-1}$ e $1.2 \ x10^{-10} \ \text{cm}^3 \ \text{mol}^{-1}\text{s}^{-1}$. Desta forma, apresentaremos e discutiremos os resultados em outras temperaturas e com outras metodologias, apenas com os resultados da termoquímica provenientes dos cálculos BB1K.

A constante de velocidade total da reação (k), obtida pela soma dos valores das constantes dos dois caminhos reacionais, encontra-se apresentada na Tabela 26 na faixa de temperatura que varia de 200 a 2000 K, juntamente com resultados de estudos experimentais

existentes. Na Figura 21, está ilustrada a variação da constante de velocidade (k) em função da temperatura (T).

T (<i>K</i>)	TST	TST/W	TST/ZCT	Exp. ^a	Exp. ^b	Exp. ^c	Exp. ^d
200	0,6(-11)	0,7(-11)	0,6(-11)				
250	0,7(-11)	0,9(-11)	0,8(-11)	1,3(-11)	0,9(-11)		
298	0,9(-11)	1,0(-11)	0,9(-11)	1,8(-11)	0,6(-11)	1,0(-11)	0,3(-11)
350	1,1(-11)	1,2(-11)	1,1(-11)	2,5(-11)	0,5(-11)		
400	1,3(-11)	1,4(-11)	1,3(-11)	3,1(-11)	0,4(-11)		
500	1,7(-11)	1,7(-11)	1,7(-11)		0,3(-11)		
600	2,2(-11)	2,3(-11)	2,2(-11)		0,2(-11)		
800	3,3(-11)	3,4(-11)	3,3(-11)				
1000	4,8(-11)	4,8(-11)	4,8(-11)				
1500	9,3(-11)	9,3(-11)	9,3(-11)				
2000	15(-11)	15(-11)	15(-11)				

Tabela 26. Constantes de velocidade (cm³ mol⁻¹s⁻¹) da reação $N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH$.

^a Referência [44]

^b Equação da referência [57] ^c Referência [56] ^d Referência [139]

Até onde se sabe, ainda não se encontram disponíveis na literatura resultados teóricos acerca da cinética da reação $N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH$, para nenhum de seus caminhos reacionais. Experimentalmente, a 298 K existem quatro resultados para a constante de velocidade desta reação, que variam de 0,3 a $1,8 \times 10^{-11}$ cm³ mol⁻¹s⁻¹ [44, 56, 57, 138]. Os resultados deste trabalho estão em perfeita concordância com o resultado de Lang et al. [56], igual a $1,0 \times 10^{-11}$ cm³ mol⁻¹s⁻¹, que é exatamente igual ao nosso resultado obtido pelo método TST/W.

Figura 21. Variação da constante de velocidade (k) obtida com os cálculos TST, TST/W e TST/ZCT, juntamente aos resultados experimentais, em função da temperatura (T), para a reação $N_2H_4 + O({}^3P)$.

Em outras faixas de temperaturas há dois resultados experimentais, aqueles obtidos por Gehring et al. [44] na faixa de temperatura de 243 - 463 K e os obtidos por Vaghjiani et al. [57] na faixa de temperatura de 252 - 640 K. Os resultados de Vaghjiani et al. [57] apresentam uma dependência negativa da velocidade de reação com a temperatura e seus valores variam de 0,3 a $0,9 \times 10^{-11}$ cm³ mol⁻¹s⁻¹ para as temperaturas de 252 a 640 K. Já as constantes de velocidades obtidas por Gehring et al. [44] na faixa de 243 - 463 K crescem com a temperatura e variam de 1,3 a $3,1 \times 10^{-11}$ cm³ mol⁻¹s⁻¹. Os nossos resultados na faixa de 250 - 600 K variam de 0,8 a $2,2 \times 10^{-11}$ cm³ mol⁻¹s⁻¹, ou seja, valores intermediários aos resultados experimentais, porém aumentando com a temperatura. No entanto, todos os estudos, tanto experimentais como os nossos resultados teóricos, relatam uma dependência fraca da reação com a temperatura, e a ausência do efeito da pressão sobre esta. Vale salientar também que as correções dos efeitos de tunelamento para a reação, a correção de Wigner

TST/W e, especialmente, a correção TST/ZCT, não são contribuições significativas, pois seus resultados permanecem próximos aos do cálculo TST puro.

Tendo em vista uma análise comparativa, realizamos também os cálculos cinéticos através do método TST/ZCT utilizando os dados de coordenadas geométricas, frequências e parâmetros termoquímicos, de $\Delta E = -14,5$ kcal/mol, $V^{\pm}(a) = 9,1$ kcal/mol e $V^{\pm}(b) = 4,2$ kcal/mol, obtidos com o método MP2/aug-cc-pVTZ. A 298 K, o valor da constante de velocidade é igual a $1,4\times10^{-14}$ cm³ mol⁻¹s⁻¹, valor bem menor do que aquele obtido com os dados de estrutura eletrônica calculados pelo método BB1K $(1,0\times10^{-11} \text{ cm}^3 \text{ mol}^{-1}\text{s}^{-1})$, que é exatamente igual ao resultado experimental de Lang et al. [56]. Com base nestes resultados, mais uma vez, torna-se evidente a importância de uma energética reacional bem descrita na determinação das constantes térmicas de velocidade, pois valores muito mais altos das barreiras clássicas de potencial, como os obtidos com o método MP2, resultaram em valores de *k* quase 10⁴ vezes menores.

A formação de TS(a) acontece com velocidade mais rápida, o que indica ser realmente este o caminho mais favorável para a ocorrência da reação em relação ao que forma TS(b), pois, a 298 K, as constantes térmicas de velocidade obtidas pelo cálculo TST/ZCT são de $k(a) = 9,10 \times 10^{-12} \text{ cm}^3 \text{ mol}^{-1}\text{s}^{-1}$ e $k(b) = 3,20 \times 10^{-14} \text{ cm}^3 \text{ mol}^{-1}\text{s}^{-1}$. Sendo k = k(a) + k(b), o caminho reacional de TS(a) determina a velocidade com que ocorrerá a reação, pois a contribuição de k(b) é muito menor. O valor experimental de k indica uma combinação das velocidades nas quais os caminhos reacionais estão ocorrendo simultaneamente.

As curvas de energia potencial ao longo do caminho de mínima energia (V_{MEP}) e a curva do potencial vibracional adiabático do estado fundamental (V_a^G) da reação, com a formação do estado de transição TS(a) e formação do estado de transição TS(b), estão dadas, respectivamente, nas Figuras 22 e 23, mostrando para ambos os caminhos uma suave variação ao longo de toda a reação.

Figura 22. Curvas do caminho de mínima energia (V_{MEP}) e da energia potencial adiabática do estado fundamental (V_a^G), em função das coordenadas de reação *s*, com a formação do estado de transição TS(a).

Figura 23. Curvas do caminho de mínima energia (V_{MEP}) e da energia potencial adiabática do estado fundamental (V_a^G), em função das coordenadas de reação *s*, com a formação do estado de transição TS(b).

4.3. CÁLCULO DO POTENCIAL DE IONIZAÇÃO DA MOLÉCULA HIDRAZINA (N₂H₄)

O confôrmero mais estável da molécula hidrazina em seu estado fundamental possui simetria C_2 (também denominada como *gauche*), caracterizado neste estudo, e também caracterizado por cálculos *ab initio* anteriores [59, 60, 129, 139-143] e estudos experimentais [130-132, 144-148]. Alguns parâmetros da geometria otimizada da molécula hidrazina foram apresentados na Tabela 13, quando da discussão da reação da hidrazina com oxigênio atômico. Esses parâmetros são as ligações r_{NN}, r_{NHo} e r_{NHi}, os ângulos θ_{N-N-Hi} , θ_{N-N-Ho} e $\theta_{Ho-N-Hi}$ e o ângulo diedro $\theta_{Hi-N-N-Ho}$, onde, conforme dito anteriormente, o e i indicam o átomo de hidrogênio nas posições para fora e para dentro, respectivamente, com respeito ao eixo de simetria C_2 .

Como discutido anteriormente, o diagnóstico $\tau 1$ valida o uso de métodos de única referência, como o CCSD(T), para descrever todos os confôrmeros calculados, tanto para a espécie neutra como para o cátion, quando este apresenta valores menores do que 0,044. Com o uso do método CCSD e o conjunto de funções de base cc-pVQZ, os valores de $\tau 1$ obtidos foram de 0,008 para a molécula neutra N₂H₄, e de 0,011 para os dois confôrmeros C_{2h} e D_{2h} do cátion N₂H₄⁺, o que demonstra que estas espécies não possuem um caráter multiconfiguracional significativo. No entanto, resolveu-se também utilizar o método multiconfiguracional (MRCI//CASSCF) para calcular o potencial de ionização da hidrazina.

4.3.1. GEOMETRIA DOS CONFÔRMEROS DO CÁTION N₂H₄⁺

A geometria do cátion da molécula hidrazina $(N_2H_4^+)$, a partir de evidências experimentais [5, 61-64], levam a uma estrutura planar (simetria D_{2h}). No entanto, cálculos

teóricos, tanto a nível MP2 [16] quanto MCSCF [59], concluem que a estrutura C_{2h} deveria ser a mais estável, porém quase degenerada em relação à estrutura planar. As estruturas conformacionais do cátion, C_{2v} , C_{2h} e D_{2h} , encontram-se ilustradas nas Figuras 24 a 26, a seguir.

Figura 24. Estrutura de equilíbrio do $N_2H_4^+$ em sua conformação C_{2v} .

Figura 25. Estrutura de equilíbrio do $N_2H_4^+$ em sua conformação C_{2h} .

Figura 26. Estrutura de equilíbrio do $N_2H_4^+$ em sua conformação D_{2h} .

A molécula neutra hidrazina em seu estado fundamental, de simetria C₂, teve sua conformação representada na Figura 14.

Na Tabela 27, apresentam-se os parâmetros geométricos do cátion da molécula hidrazina, calculados nas suas simetrias C_{2h} , C_{2v} e D_{2h} , com os métodos CCSD(T) e CASSCF, juntamente com resultados anteriores calculados pelo método MCSCF/TZP [59].

MÉTODO	Simetria	N-N	H-N	H-N-N	H-N-Hi
CCSD(T)/cc-pVDZ	$C_{2h} \ C_{2v} \ D_{2h}$	1,320 1,335 1,315	1,024 1,032 1,022	117,6 114,1 119,3	119,0 104,5 121,5
CCSD(T)/cc-pVTZ	$\begin{array}{c} C_{2h} \\ C_{2v} \\ D_{2h} \end{array}$	1,312 1,332 1,310	1,012 1,022 1,011	118,4 114,0 119,2	120,4 104,6 121,6
CCSD(T)/cc-pCVTZ	$egin{array}{cc} C_{2h} \ C_{2v} \ D_{2h} \end{array}$	1,312 1,332 1,309	1,012 1,022 1,011	118,4 114,0 119,2	120,4 104,6 121,6
CCSD(T)/cc-pCVTZ (AE)	$egin{array}{cc} C_{2h} \ C_{2v} \ D_{2h} \end{array}$	1,309 1,330 1,307	1,011 1,021 1,010	118,6 114,0 119,2	120,6 104,6 121,5
CCSD(T)/cc-pVQZ	C_{2h} C_{2v} D_{2h}	1,309 1,329 1,307	1,011 1,021 1,010	118,7 114,0 119,2	120,7 104,6 121,6
CCSD(T)/CBS	C_{2h} C_{2v} D_{2h}	1,307 1,327 1,305	1,010 1,020 1,009	118,8 114,0 119,2	120,9 104,6 121,5
CCSD(T)/MRE	$egin{array}{cc} C_{2h} \ C_{2v} \ D_{2h} \end{array}$	1,304 1,325 1,303	1,009 1,019 1,008	119,0 114,0 119,2	121,1 104,6 121,4
CASSCF/cc-pVDZ	${ m C}_{2h} { m D}_{2h}$	1,325 1,319	1,029 1,026	117,5 119,2	119,2 121,6
CASSCF/cc-pVTZ	$\begin{array}{c} C_{2h} \\ D_{2h} \end{array}$	1,324 1,317	1,020 1,017	117,4 119,2	119,3 121,7
CASSCF/cc-pVQZ	${ m C}_{2h} { m D}_{2h}$	1,323 1,317	1,019 1,016	117,4 119,2	119,3 121,7
CASSCF/CBS	$C_{2h} \\ D_{2h}$	1,322 1,317	1,018 1,015	117,4 119,2	119,3 121,7
MCSCF/TZP ^a	$C_{2h} \\ C_{2v} \\ D_{2h}$	1,319 1,325 1,318	0,999 1,002 0,999	118,0 118,5 119,1	120,5 121,0 121,8

Tabela 27. Geometrias de equilíbrio do íon $N_2H_4^+$ nas conformações C_{2v} , C_{2h} e D_{2h} . (Distâncias de ligações em Å, e os ângulos em graus).

^a Referência [59]

Conforme veremos adiante, a simetria C_{2v} apresenta valores de energia mais elevados do que os outros dois confôrmeros C_{2h} e D_{2h} , que são estruturas quase degeneradas, e por este motivo está pouco inserida no foco desta discussão.

O confôrmero de simetria C_{2h} está fora do plano por até 20° em relação ao confôrmero planar de simetria D_{2h}. A barreira de potencial, formada pela variação angular (0° a 20°), é muito baixa, de tal forma que o nível vibracional referente à energia do ponto zero encontrase acima do máximo determinado pelos limites da variação angular. Em suas três diferentes simetrias, C_{2h}, C_{2v} e D_{2h}, todos os confôrmeros do cátion hidrazina apresentam uma típica redução nas distâncias de ligações de seus átomos com a melhora no conjunto de funções de base. Para os ângulos, seus valores aumentaram com a melhora da base, atingindo seus valores mais altos com a extrapolação CBS, que expande as funções de base além do nível spdfg. O método CASSCF com a base tripla-zeta já fornece bons resultados para os cálculos das conformações geométricas, de forma que contribuição da extrapolação CBS não é muito acentuada. No cálculo CCSD(T), incluindo-se a correlação do caroço com o uso da base ccpCVTZ, obtemos distâncias de ligação ainda menores, como já era esperado. No entanto, os ângulos do confôrmero C_{2h} sofrem uma pequena mudança com a inclusão da correlação do caroço. Nossos melhores resultados são obtidos com o emprego da extrapolação MRE, de acordo com a equação (3.2), que inclui a extrapolação CBS e a correlação caroço-valência. Comparando estes resultados obtidos com os resultados utilizando o método MCSCF/TZP [59], verificam-se algumas diferenças, como no caso dos ângulos calculados na simetria C_{2v}, que difere em até 16,4° no ângulo H-N-H, em relação ao cálculo CCSD(T)/MRE. Para as distâncias de ligações, a maior diferença está na ligação H-N na conformação C_{2v}, onde o valor MCSCF/TZP [59] difere de 0,017 Å em relação ao valor do cálculo CCSD(T)/MRE.

4.3.2. FREQUÊNCIAS VIBRACIONAIS HARMÔNICAS

As frequências harmônicas vibracionais para os confôrmeros do cátion hidrazina de simetrias C_{2h} (²A_g), e D_{2h} (²B_{2g}) foram calculadas utilizando o método CCSD(T). Os resultados se encontram nas Tabelas 28 e 29, juntamente com dados da literatura calculados com o método MP2/TZP [59]. Conforme já discutido, o confôrmero C_{2v} possui energia total mais elevada do que a apresentada para os demais confôrmeros, tornando-se desta forma menos relevante no foco deste estudo e, sendo assim, seus cálculos de frequências vibracionais harmônicas não estão inclusos nesta discussão.

	cc-pVDZ	cc-pVTZ	cc-pVQZ	CBS	cc-pCVTZ	cc-pCVTZ	MRE	MP2/cc-
						(AE)		pVTZ ^a
A_{u}	3661	3679	3683	3685	3677	3683	3691	3644
B_{g}	3645	3662	3666	3669	3660	3666	3675	3631
A_{g}	3522	3544	3548	3551	3544	3550	3557	3510
\mathbf{B}_{u}	3499	3523	3527	3531	3522	3527	3536	3489
$\mathbf{B}_{\mathbf{u}}$	1601	1627	1627	1626	1627	1629	1628	1625
$\mathbf{B}_{\mathbf{g}}$	1409	1413	1415	1416	1414	1414	1416	1348
A_{u}	1039	1035	1036	1037	1036	1036	1037	1039
A_{u}	626	613	609	606	614	613	605	586
$\mathbf{B}_{\mathbf{u}}$	592	523	501	486	524	513	475	462
A_{u}	3661	3679	3683	3685	3677	3683	3691	3644
$\mathbf{B}_{\mathbf{g}}$	3645	3662	3666	3669	3660	3666	3675	3631
A_{g}	3522	3544	3548	3551	3544	3550	3557	3510

Tabela 28. Frequências vibracionais harmônicas (em cm⁻¹) da conformação C_{2h} do íon $N_2H_4^+$.

^b Referência [59]
	cc-pVDZ	cc-pVTZ	cc-pVQZ	CBS	cc-pCVTZ	cc-pCVTZ	MRE	MP2/cc-
						(AE)		pVTZ ^a
Au	367i	256i	225i	203i	262i	242i	183i	399i
$\mathbf{B}_{\mathbf{g}}$	3693	3695	3697	3699	3693	3697	3703	3651
A_{g}	3677	3679	3677	3676	3677	3681	3680	3633
B_{u}	3549	3559	3558	3557	3558	3563	3562	3506
B_u	3520	3532	3528	3525	3531	3535	3529	3483
B_{g}	1694	1710	1701	1695	1709	1711	1697	1697
A_{u}	1594	1622	1630	1636	1623	1625	1638	1614
A_{u}	1443	1431	1432	1433	1430	1434	1437	1397
B_u	1390	1403	1400	1398	1403	1405	1400	1394
A_{u}	1015	1025	1015	1008	1024	1026	1010	1037
B_{g}	588	591	590	589	589	590	590	567
A_{g}	328	394	406	415	396	406	425	369

Tabela 29. Frequências vibracionais harmônicas (em cm⁻¹) da conformação D_{2h} do íon $N_2H_4^+$.

^b Referência [59]

Os cálculos para a molécula hidrazina neutra, em sua conformação do estado fundamental (C_2), foram apresentados na Tabela 20. Para o cátion, não é possível uma comparação com resultados experimentais, pois até onde sabemos, não há dados experimentais disponíveis na literatura.

Correlacionando apenas os elétrons de valência, os resultados parecem convergir utilizando o conjunto de função base quádrupla-zeta para a maioria das frequências harmônicas. A diferença vinda da extrapolação CBS difere não mais do que 7 cm⁻¹, exceto para as duas mais baixas frequências em ambos os confôrmeros C_{2h} e D_{2h} , com a maior diferença sendo 36 cm⁻¹. No confôrmero C_{2h} , elas correspondem aos modos de vibração A_g e B_u , e na conformação D_{2h} elas correspondem aos modos B_{2g} e B_{3u} , respectivamente.

Incluindo a correlação do caroço, todas as frequências se elevam de forma uniforme, exceto nos modos A_g e B_u da simetria C_{2h} , e no modo B_{2g} da simetria D_{2h} . Para estas duas mais baixas frequências, a correlação do caroço foi maior importante. Nossos melhores resultados, obtidos com a extrapolação CCSD(T)/MRE apresentam, em geral, valores mais altos do que os resultados do método MP2/TZP [59], como esperado.

As frequências calculadas mostram uma frequência imaginária para a estrutura D_{2h} , o que não ocorre com o confôrmero C_{2h} , o que permite caracterizar o confôrmero C_{2h} como o estado fundamental do cátion, e a conformação D_{2h} como um estado de transição da molécula.

4.3.3. POTENCIAIS DE IONIZAÇÃO

Na Tabela 30 estão apresentadas as energias totais calculadas para os três confôrmeros, juntamente com as diferenças de energia em relação ao estado fundamental da molécula hidrazina. Estes cálculos foram obtidos com o uso do método CCSD(T) e dos cálculos de geometria fixa (*Single-Point*) utilizando o método MRCI a partir da geometria obtida com o cálculo CASSCF.

Método	Simetria	Energia	$\Delta E(eV)$
CCSD(T)/cc-pVDZ	C _{2h}	-111,294599	7,523
	C_{2v}	-111,270875	8,169
	D_{2h}	-111,294030	7,539
CCSD(T)/cc-pVTZ	C_{2h}	-111,408979	7,884
	C_{2v}	-111,384069	8,562
	D_{2h}	-111,408855	7,888
CCSD(T)/cc-pCVTZ	C_{2h}	-111,413058	7,887
	C_{2v}	-111,388167	8,565
	D_{2h}	-111,412932	7,891
CCSD(T)/cc-pCVTZ (AE)	C_{2h}	-111,517176	7,878
	C_{2v}	-111,492017	8,562
	D_{2h}	-111,517086	7,880
CCSD(T)/cc-pVQZ	C_{2h}	-111,442025	7,998
	C_{2v}	-111,416904	8,682
	D_{2h}	-111,441957	8,000
CCSD(T)/CBS	C_{2h}	-111,466139	8,081
	C_{2v}	-111,440864	8,761
	D_{2h}	-111,466112	8,082
CCSD(T)/MRE	C_{2h}	-111,570257	8,072
	C_{2v}	-111,544714	8,767
	D_{2h}	-111,570266	8,072
CASSCF/cc-pVDZ	C_{2h}	-111,072527	6,797
-	D_{2h}	-111,071084	6,836
CASSCF/cc-pVTZ	C_{2h}	-111.106540	6,897
1	D_{2h}	-111,105610	6,922
CASSCF/cc-pVOZ	C _{2h}	-111 114915	6,936
r (D_{2h}	-111.113998	6,961
MRCI//CASSCE/cc-nVDZ	Cab	-111 283348	7 400
	D_{2h}	-111 282754	7,416
MDCL//CASSCE/as #VT7	C	111,200270	7 666
MRCI//CASSCF/cc-pv1Z	C_{2h}	-111,388352	7,000
	D_{2h}	-111,387703	7,004
MRCI//CASSCF/cc-pVQZ	C_{2h}	-111,418579	7,750
	D_{2h}	-111,418697	7,747
MRCI/CASSCF/CBS	C_{2h}	-111,440637	7,812
	D_{2h}	-111,441315	7,793

Tabela 30. Energias totais do cátion $N_2H_4^+$ (hartrees) e os potenciais de ionização (eV) referentes ao estado fundamental da molécula N_2H_4 .

Foram otimizadas as geometrias da molécula neutra (simetria C_2) e do confôrmero do cátion hidrazina através do método CASSCF. Os potenciais de ionização adiabáticos (¹A $C_2 \rightarrow {}^{2}A_{g} C_{2h}$) calculados com o método multiconfiguracional MRCI//CASSCF são iguais a 7,666, 7,750 e 7,812 eV utilizando, respectivamente, os conjuntos de funções de base ccpVTZ, cc-pVQZ e a extrapolação CBS. Estes valores são ligeiramente menores do que os resultados obtidos com o método CCSD(T). Os valores experimentais para o potencial de ionização variam entre 8,1 a 8,74 eV [5, 61-64]. O valor de 8,74 eV parece ser bastante alto, como já foi discutido por Gibson et al. [64], que mencionou o valor de 8,36 eV de Akopyan et al. [61] como o mais confiável. No entanto, nossos resultados concordam melhor com o menor valor experimental, de 8,1 ± 0,15 eV [63]. Nosso melhor resultado para o potencial de ionização, obtido com a extrapolação CCSD(T)/MRE, é igual a 8,07 eV. Coincidentemente, o valor obtido pelo método G2, igual a 8,09 eV [16], está em excelente concordância com o resultado CCSD(T)/MRE. Como esperado, o valor obtido pelo método MCSCF/CASPT2 com base tripla-zeta (TZP), igual a 7,64 eV [59], é semelhante aos nossos resultados MRCI/CASSCF.

Percebemos, em todos os métodos de cálculo utilizados, que quando ocorre uma melhora no conjunto de funções de base, há um aumento dos potenciais de ionização estudados. A melhora no conjunto base também reduz a diferença entre as energias totais dos dois confôrmeros. No método CCSD(T), utilizando a base cc-pVDZ a diferença equivale a 0,016 eV, e com a base cc-pVQZ esta diferença chega a 0,002 eV. Com o método CASSCF/MRCI, a diferença também diminui, de 0,016 eV na base cc-pVDZ a 0,003 eV na base cc-pVQZ. Estas diferenças são menores do que a precisão destes métodos, o que mostra que as duas estruturas são quase degeneradas. A maior diferença entre as energias destas estruturas é encontrada no cálculo CASSCF, porém também tende a diminuir com a melhora na função de base, sendo igual a 0,025 eV e 0,039 eV com as bases quádrupla-zeta e dupla-

zeta, respectivamente. Entretanto, todos os cálculos de frequências mostram que o confôrmero de simetria D_{2h} possui uma frequência imaginária (como já discutido na Tabela 29), o que não ocorre com o de simetria C_{2h} , caracterizando, desta forma, o confôrmero C_{2h} como o estado fundamental da molécula e o D_{2h} como uma estutura de transição.

5. CONCLUSÕES

Neste trabalho, foram utilizados métodos da química quântica molecular e da teoria de estado de transição a fim de se obter os valores das propriedades termoquímicas e das constantes de velocidade para as duas reações de abstração de hidrogênio estudadas, uma sendo da molécula diazeno em sua reação com hidrogênio atômico, e a outra da molécula hidrazina reagindo com oxigênio atômico. Também, utilizaram-se métodos da química quântica molecular para calcular o potencial de ionização da molécula hidrazina.

Na reação onde ocorre abstração de um átomo de hidrogênio da molécula diazeno, $N_2H_2(trans) + H \rightarrow N_2H + H_2$, foi possível utilizar vários métodos de estrutura eletrônica, desde métodos baseados na teoria do funcional da densidade (BB1K, MPWB1K), como também métodos ab initio monoconfiguracionais (MP2, CCSD(T)) e multiconfiguracionais (CASCF, MRCI). O estado de transição que ocorre nesta reação foi calculado, e através das curvas de coordenadas intrínsecas da reação, confirmou-se que sua estrutura conecta o caminho reacional entre reagentes, produtos e estado de transição. Também foi encontrada uma frequência imaginária para este estado de transição, o que caracteriza sua condição de ponto de sela. Sua conformação apresenta boa concordância com os resultados teóricos já existentes, mostrando-se mais próxima à estrutura dos reagentes que dos produtos. Os valores obtidos para as geometrias e frequências de reagentes e produtos também são de boa qualidade quando comparados aos valores teóricos já existentes na literatura.

Não há resultados experimentais disponíveis acerca desta reação, porém os dados que descrevem sua termodinâmica concordam com os valores da literatura, mostrando se tratar de uma reação exotérmica e com baixa barreira de potencial. Através dos melhores resultados estimados para cálculos monoconfiguracionais, baseado na metodologia CCSD(T)/MRE, que

inclui a extrapolação para o limite de conjunto base completo (CBS) e o efeito da correlação caroco-valência, e utilizando o método multiconfiguracional CASSCF/MRCI+Q, acredita-se que os valores para a barreira clássica de potencial e para a energia eletrônica clássica da reação devem estar, respectivamente, nas faixas de 2,9 a 3,3 kcal/mol e de -37,3 a -38,1 kcal/mol. Vale salientar que o resultado obtido com o funcional MPWB1K/aug-ccpVTZ para a barreira clássica de potencial, igual 1,5 kcal/mol, está um pouco subestimado, porém mais próximo a outros métodos em relação a essa faixa, e o valor para a energia eletrônica clássica da reação, igual a -38,6 kcal/mol, aproxima-se ao valor obtido com o método CASSCF/MRCI+Q. Como esperado, também foi confirmada a importância de se obter grande exatidão na convergência dos valores das barreiras de potencial para os posteriores cálculos das taxas de constantes de velocidade. Por exemplo, a 300 K, nossos resultados IVTST-0/ZCT da constante de velocidade (V^{\neq} = 3,3 kcal/mol) é ao menos 7 vezes maior do que o resultados de cálculos anteriores (V^{\neq} = 5,9 kcal/mol [16]). Nosso melhor resultado, baseado na aproximação CVT/SCT, para a constante de velocidade a 300 K é igual a 3,0 x 10^{-12} cm³ mol⁻¹s⁻¹. Os principais resultados decorrentes deste estudo foram colocados na forma de um artigo científico, em fase final de redação, a ser submetido para publicação [149].

No estudo dos dois caminhos reacionais da reação entre o oxigênio atômico e a molécula hidrazina, $N_2H_4 + O({}^3P) \rightarrow N_2H_3 + OH$, foram caracterizados dois estados de transição, denominados TS(a) e TS(b), relativos à possibilidade de colisão do átomo de oxigênio ocorrer com o hidrogênio cuja conformação é para dentro do plano (H_i), ou para fora do plano (H_o), respectivamente. Os resultados termodinâmicos de ambos os caminhos reacionais mostram ser esta reação de abstração de hidrogênio exotérmica, apresentando dois caminhos reacionais com barreiras baixas e próximas entre si, sendo que a reação ocorre

favoravelmente no caminho de formação de TS(a). Nas duas reações de abstração, percebe-se a tendência de o método MP2 superestimar as barreiras de potencial, enquanto que os métodos DFTs tendem a subestimá-las, em relação aos resultados obtidos com o método CCSD(T). Nossos melhores resultados obtidos com os cálculos CCSD(T)/CBS forneceram valores de entalpia igual a –21,2 kcal/mol, e barreiras clássicas de potencial na faixa de 2,00 a 2,47 kcal/mol e de 4,57 a 5,12 kcal/mol na formação de TS(a) e TS(b), respectivamente. Os valores de barreiras de potencial obtidos com o cálculo CCSD(T)/CBS//MP2/aug-cc-pVTZ, quando incluem a correção da energia do ponto zero (V_0^{\pm}), são muito menores do que os obtidos com o cálculo CCSD(T)/CBS//BB1K/aug-cc-pVTZ. Isto se deve à grande diferença entre os valores de frequências imaginárias obtidas pelos métodos DFTs e MP2.

Observamos que os resultados obtidos pelo método BB1K/aug-cc-pVTZ encontram-se dentro das faixas dos valores termodinâmicos fornecidas pelos cálculos CCSD(T)/CBS, com V_0^{*} (a) = 0,20 kcal/mol e V_0^{*} (b) = 3,38 kcal/mol, sendo, portanto, os dados selecionados para a utilização nos cálculos da cinética reacional. Os resultados obtidos para a constante de velocidade térmica da reação (*k*), em todos os métodos calculados, mostram uma dependência positiva com a temperatura e, a 298 K, nossos valores, aproximadante iguais a $k = 0.9 \times 10^{-11}$ cm³ mol⁻¹s⁻¹, concordam especialmente com o resultado experimental de $k = 1.0 \times 10^{-11}$ cm³ mol⁻¹s⁻¹ [57]. Até onde sabemos, não há outros valores teóricos acerca da cinética desta reação disponíveis na literatura. Fica novamente demonstrada a importância de se obter valores bastante acurados na descrição das propriedades energéticas reacionais, sobretudo das barreiras de potencial, para os cálculos das constantes de velocidade, uma vez que os valores de *k* a 298 K, calculados através de dados obtidos com o método MP2, são cerca de 10⁴ menores do que aqueles partindo-se dos resultados do método BB1K, que nos forneceu barreiras cerca de 7 kcal/mol mais baixas. A experiência prévia, obtida com a reação da

molécula diazeno, forneceu-nos os subsídios para concluirmos quais as metodologias e valores a serem utilizados nos cálculos cinéticos, a fim de que obtivéssemos os melhores resultados possíveis para este estudo. Os principais resultados decorrentes deste estudo, estão sendo colocados em forma de artigo científico a ser submetido para publicação [150].

No estudo do potencial de ionização da molécula hidrazina, utilizamos o conjunto de funções de bases cc-pVDZ, cc-pVTZ, cc-pVQZ e cc-pCVTZ de Dunning, e os métodos CCSD(T), CASSCF, CASSCF /MRCI, MP2 e B3LYP, com o propósito de obter valores otimizados da geometria de equilíbrio, frequências vibracionais harmônicas e do potencial de ionização da molécula hidrazina. Os resultados das geometrias da molécula neutra utilizando estes métodos são de boa qualidade comparados aos valores experimentais existentes e aos valores calculados com métodos teóricos altamente correlacionados. Os potenciais de ionização calculados, melhores que outros resultados teóricos existentes na literatura, também estão em excelente concordância com o resultado experimental mais recente, igual a 8,1 eV [63], sendo que, com o cálculo CCSD(T)/MRE, o valor obtido neste estudo é igual a 8,07. Com o método multiconfiguracional MRCI/CASSCF/CBS, este valor é de 7,81 eV. Desta forma, concluimos que a conformação mais estável do cátion hidrazina possui simetria C_{2h}, embora o confôrmero D_{2h} seja quase degenerado, em concordância com os resultados teóricos obtidos anteriormente, sendo que a diferença entre as energias das duas estruturas é de apenas 0,001 eV e 0,019 eV com os métodos CCSD(T)/MRE e MRCI/CASSCF/CBS, respectivamente. Porém, a molécula N₂H₄⁺ cuja conformação é D_{2h} apresentou uma frequência imaginária, indicando que se trata de uma estrutura de transição, fato que não ocorre com o confôrmero C_{2h}. Os principais resultados deste estudo foram publicados recentemente [151].

6. REFERÊNCIAS BIBLIOGRÁFICAS

[1] LEVINE, R. D.; BERNSTEIN, R. B. Molecular reactions dynamics and chemical reactivity. New York: Oxford University, 1987.

[2] DUGNE, O.; PROUHET, S.; GUETTE, A.; NASLAIN, R.; BERNARD, C. On a thermodynamic approach to the chemical phenomena involved in the formation of a BN interphase by CVD/CVI from a BF₃-NH₃ precursor. Journal of Alloys and Compounds, v. 176, p.187–213, 1991.

[3] ARQUIMEDES, M.; VENTURA, E.; MONTE, S. A.; BRAGA, C. F.; CARVALHO, A.
B.; ARAÚJO, R. C. M. U.; SANTANA, O. L. O ensino de reações orgânicas usando química computacional. Química Nova, 2008, 31 v.

[4] AUDRIETH, L. F.; OGG, B. A. **The chemistry of hydrazine.** John Wiley & Sons I: New York, 1951, 244p.

[5] SYAGE, J. A.; COHEN, R. B.; STEADMAN, J. Spectroscopy and dynamics of jet-cooled hydrazines and ammonia. I. Single-photon absorption and ionization spectra. **The Journal of Chemical Physics**, v. 97, p. 6072, 1992.

[6] JENSEN, H. J. A.; JORGENSEN, P.; HELGAKER, T. The ground-state potential-energy surface of diazene. Journal of the American Chemical Society, v. 109, p. 2895–2901, 1987.

[7] CASEWIT C. J.; GODDARD, W. A. Thermochemistry of trans-diimide and 1,1-diazene - ab initio studies. Journal of the American Chemical Society, v.102, p. 4057–4062, 1980.

[8] WHITELEGG, D.; WOOLEY, R. G. A theoretical study of the frequency-spectra and thermochemistry of the isomers of N₂H₂. **Journal of Molecular Structure**, v. 209, p. 23–31, 1990.

[9] BRANDEMARK, U.; SIEGBAHN, P. E. M. Dissociation of diimide. Theoretica Chimica Acta, v. 66, p. 217–232, 1984.

[10] WALCH, S. P. Theoretical characterization of selected regions of the ground state potential surface of N₂H₂. **The Journal of Chemical Physics**, v. 91, p. 389–394, 1989.

[11] BICZYSKO, M.; POVEDA, L. A.; VARANDAS, A. J. C. Accurate MRCI study of ground-state N2H2 potential energy surface. Chemical Physics Letters, v. 424, p. 46–53, 2006.

[12] DEAN, A. M.; CHOU, M. S.; STERN, D. Kinetics of rich ammonia flames.International Journal of Chemical Kinetics, v. 16, p. 633–653, 1984.

[13] DAVIDSON, D. F.; KOHSE-HOINGHAUS K.; CHANG, A. Y.; HANSON, R. K. A pyrolysis mechanism for ammonia. International Journal of Chemical Kinetics, v. 22, p. 513–535, 1990.

[14] MILLER J. A.; BOWMAN C. T. Mechanism and modeling of nitrogen chemistry in combustion. **Progress in Energy and Combustion Science**, v. 15, p. 287–338, 1989.

[15] BOZELLI, J. W.; DEAN A. M. Gas Phase Combustion Chemistry. 2. ed. New York:W. C. Gardiner, 2000, 543p.

[16] POPLE, J. A.; CURTISS, L. A. The energy of N₂H₂ and related-compounds. The Journal of Chemical Physics, v. 95, p. 4385–4388, 1991.

[17] LINDER, D. P.; DUAN, X.; PAGE, M. Thermal rate constants for $R+N_2H_2 \rightarrow RH+N_2H$ (R=H, OH, NH₂) determined from multireference configuration interaction and variational transition state theory calculations. **The Journal of Chemical Physics**, v. 104, p. 6298–6307, 1996.

[18] CHUANG, Y-Y.; TRUHLAR, D. G. Improved dual-level direct dynamics method for reaction rate calculations with inclusion of multidimensional tunneling effects and validation for the reaction of H with *trans*-N₂H₂. **The Journal of Physical Chemistry A**, v. 101, p. 3808–3814, 1997.

[19] HWANG, D-Y.; MEBEL, A. M. Reaction mechanism of N₂/H₂ conversion to NH₃: A theoretical study. **The Journal of Physical Chemistry A**, v. 107, p.2865–2874, 2003.

[20] CHUANG, Y-Y.; TRUHLAR, D. G. Reaction-path dynamics with harmonic vibration frequencies in curvilinear internal coordinates: $H + trans-N_2H_2 \rightarrow N_2H + H_2$. The Journal of Chemical Physics, v. 107, p.83–89, 1997.

[21] DEMAISON, J.; HEGELUND, F.; BÜRGER, H. Experimental and ab initio equilibrium structure of *trans*-diazene HNNH. Journal of Molecular Structure, v.413–414, p.447–456, 1997.

[22] TRUHLAR, D. G.; GARRETT, B. C. Variational transition-state theory. Accounts of Chemical Research, v. 13, p.440–448, 1980.

[23] GONZÁLEZ-LAFONT, A.; TRUONG, T. N.; TRUHLAR, D. G. Interpolated variational transition-state theory – Pratical methods for estimating variational transition-state properties and tunneling contributions to chemical-reaction rates from electronic-structure calculations. **The Journal of Chemical Physics**, v. 95, p.8875–8894, 1991.

 [24] PELEGRINI, M. Estudo Teórico da Estrutura Molecular, da Espectroscopia
 Vibracional e da Reatividade de Hidrazinas e Aminas. 2007. 131f. Tese (Doutorado em Física) –Instituto Tecnológico de Aeronáutica, São José dos Campos.

[25] CHUANG, Y.-Y.; COITIÑO, E. L.; TRUHLAR, D. G. How should we calculate transition states geometries for radical reactions? The effect of spin contamination on the prediction of geometries for open-shell saddle points. **The Journal of Physical Chemistry A**, v. 104, p. 446–450, 2000.

[26] LYNCH, B. J.; TRUHLAR, D. G. How well can hybrid density functional methods predict transition state geometries and barrier heights? The Journal of Physical Chemistry A, v. 105, p.2936–2941, 2001.

[27] ZHAO, Y.; LYNCH, B. J. TRUHLAR, D. G. Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics. **Physical Chemistry Chemical Physics**, v. 7, p.43–52, 2005.

[28] MØLLER, C.; PLESSET, M. S. Note on an approximation treatment for many-electron systems. **Physical Review**, v. 46, p.618–622, 1934.

[29] POPLE, J. A.; BINKLEY, J. S. SEEGER, R. Closed shell 2nd order Moller-Plesset and MP2 gradient. International Journal of Quantum Chemistry, Quantum Chemistry Symposium, v. 10, p.1, 1976.

[30] KNOWLES, P. J.; WERNER, H.-J. An efficient second-order MCSCF method for long configuration expansions. **Chemical Physics Letters**, v. 115 p.259–267, 1985.

[31] WERNER, H.-J.; KNOWLES, P. J. A second order multiconfiguration SCF procedure with optimum convergence. **The Journal of Chemical Physics**, v. 82, p.5053, 1985.

[32] WERNER, H.-J.; KNOWLES, P. J. An efficient internally contracted multiconfiguration–reference configuration interaction method. **The Journal of Chemical Physics**, v. 89, p.5803–1815, 1988.

[33] KNOWLES P. J.; WERNER H.-J.; An efficient method for the evaluation of coupling coefficients in configuration interaction calculations. Chemical Physics Letters, v. 145, p.514–522, 1988.

[34] RAGHAVACHARI, K.; TRUCK, G. W.; POPLE J. A.; HEADGORDON, M. A fifthorder perturbation comparison of electron correlation theories. **Chemical Physics Letters**, v. 157, p.479–483, 1989.

[35] HOHENBERG, P.; KOHN, W. Inhomogeneous electron gas. Physical Review B, v. 136.p.864–871, 1964.

[36] TRUHLAR, D. G.; ISAACSON, A. D.; SKODGE, R. T.; GARRETT, B. C. Incorporation of quantum effects in generalized-transition-state theory. **The Journal of Physical Chemistry**, v. 86, p.2252–2261, 1982.

[37] BECKE, A. D. A new mixing of Hartree–Fock and local density-functional theories. **The Journal of Chemical Physics**, v. 98, p.1372–1377, 1993.

[38] ZHAO, Y.; LYNCH, B. J. TRUHLAR, D. G. Development and assessment of a new hybrid density functional model for thermochemical kinetics. **The Journal of Physical Chemistry A**, v. 108, p.2715–2719, 2004.

[39] DUNNING JR, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. **The Journal of Chemical Physics**, v. 90, p.1007–1023, 1989.

[40] WOON, D. E.; DUNNING JR, T. H. Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. The Journal of Chemical Physics, v. 103, p.4572–4585, 1995.

[41] HALKIER, A.; HELGAKER, T.; JØRGENSEN, P.; KLOPPER, W.; KOCH, H.; OLSEN, J.; WILSON, A. K. Basis-set convergence in correlated calculations on Ne, N₂, and H₂O. **Chemical Physics Letters**, v. 286, p.243–252, 1998.

[42] CHUANG, Y. -Y.; CORCHADO, J. C.; TRUHLAR, D. G. Mapped interpolation scheme for Single-Point energy corrections in reaction rate calculations and a critical evaluation of dual-level reaction path dynamics methods. **The Journal of Physical Chemistry A**, v. 103, p.1140–1149, 1999.

[43] KONNOV, A. A.; DE RUYCK, J. Kinetic modeling of the decomposition and flames of hydrazine. **Combustion and Flames**, v. 124, p.106–126, 2001.

[44] ISHIGURO, Y.; GUIMARÃES, L. Missões Espaciais e a Energia Nuclear. Parte II.Foguetes Químicos. Divisão de Energia Nuclear IEAv, 2008.

[45] VIERECK, R. A.; BERNSTEIN, L. S.; MENDE, S. B.; MURAD, E.; PIKE, C. P.; SWENSON, G. R. Visible spectra of thruster plumes from the space shuttle primary reaction control system. Journal of Spacecraft and Rockets, v. 30, p.724–730, 1993.

[46] REDDY, R. M. Effect of low earth orbit atomic oxygen on spacecraft materials. Journal of Materials Science, v. 31, p.281–307, 1995.

[47] GEHRING, M.; HOYERMANN, H.; WAGNER, G.; WOLFRUM, J. Reaction of atomic oxygen with hydrazine. Berichte der Bunsen-Gesellschaft fur Physikalische Chemie, v. 73, p.921–956, 1969. GEHRING, M.; HOYERMANN, H.; SCHACKE, H.; WOLFRUM, J. Direct studies of some elementary steps for the formation and destruction of nitric-oxide in the H-N-O system. **Symposium International of Combustion Process**, v. 14, p.99, 1972.

[48] ROBLE, R. G. Energetics of the mesosphere and thermosphere. In the upper mesosphere and lower thermosphere: A review of experiment and theory (Geophysical Monograph). Johnson, R. M., Killeen, T. L., 1995, 87 v.

[49] VAGHJIANI, G. L. Discharge flow-tube studies of $O({}^{3}P)+N_{2}H_{4}$ reaction: The rate coefficient values over the temperature range 252–423 K and the $OH(X {}^{2}\mathbf{I})$ product yield at 298 K. The Journal of Chemical Physics, v. 104, p.5479–5489, 1996.

[50] US DEPARTAMENT OF DEFENSE. DoD succeeds in intercepting non-functioning satellite. Disponível em:

 $<\!\!http://www.defense.gov/Releases/Release.aspx?ReleaseID=\!11704\!\!>.$

Acesso em: Novembro 2009.

[51] BERNESTEIN, L. S.; DUFF, J. W.; FRANKEL, D. S.; GERSH, M. E.; KOLB, C. E.;
LYONS, R. B.; ROBERTSON, D. C.; ELGIN, J. B.; MCINTYRE, A.; WHEELER, N. B.;
HUFFMAN, R. E.; FRANKEL, D. E.; LeBLANC, F. J.; BAISLEY, V. C.; LARRABEE, J.
C. MSMP TEM-2 Infrared and ultraviolet radiation data analysis. ARI-RN-225,
Aerodyne Research, Inc., 1981.

[52] PAULSEN, D. E.; DUFF, J. W.; LYONS, R. B.; GERSH, M. E.; KOLB, C. E.; FRANKEL, D. E.; ELGIN, J. B.; McINTYRE, A.; CORMIER, R.; WHEELER, N. B.; MILLER, W. B.; HOFFMAN, R. E. **MSMP TEM-3 Infrared and ultraviolet radiation data analysis**. ARI-RN-227, Aerodyne Research, Inc., 1984.

[53] ORIENT, O. J.; MARTUS, K. E.; CHUTJIAN, A.; MURAD, E. Optical emission generated by collisions of 5 eV O(³P) atoms with surface-adsorbed hydrazine. **The Journal of Chemical Physics**, v. 97, p.4111–4115, 1992.

[54] ORIENT, O. J.; CHUTJIAN, A.; MURAD, E. Observation of CH A \rightarrow X, CN B \rightarrow X, and NH A \rightarrow X Emissions in gas-phase collisions of fast O(³P) atoms with hydrazines. The Journal of Chemical Physics, v. 101, p.8297–8301, 1994.

[55] TROYA, D.; MOSCH, M.; O'NEILL, K. J. Ab initio and dynamics study of the $O(^{3}P) + NH_{3}$ and $O(^{3}P) + N_{2}H_{4}$ reactions at hyperthermal collisions energies. Journal of Physical Chemistry A, v. 113, p.13863–13870, 2009.

[56] LANG, V. I. Rate constants for reactions of hydrazine fuels with $O(^{3}P)$. The Journal of Physical Chemistry, v. 96, p.3047–3050, 1992.

[57] VAGHJIANI, G. L. Reaction kinetics of $O({}^{3}P)$ and OH with diamine rocket fuels. **American Institute of Aeronautics and Astronautics**, Joint Propulsion Conference & Exhibit 34°, Cleveland, OH; UNITED STATES; p.13–15, 1998.

[58] VAGHJIANI, G. L. Gas phase reaction kinetics of O atoms with (CH₃)₂NNH₂, CH₃NHNH₂, and N₂H₄, and branching ratios of the OH product. The Journal of Physical Chemistry A, v. 105, p.4682–4690, 2001.

[59] HABAS, M. P.; BARAILLE, I.; LARRIEU, C.; CHAILLET, M. Ab initio calculation of the electronic spectrum and ionization potentials of hydrazine. **The Journal of Chemical Physics**, v. 219, p.63–71, 1997.

[60] MACHADO, F. B. C.; ROBERTO-NETO, O. An ab initio study of the equilibrium geometry and vibrational frequencies of hydrazine. **Chemical Physics Letters**, v. 352, p.120–126, 2002.

[61] AKOPYAN, M. E.; VILESOV, F. I. Kinetika i Kataliz 4, v. 39, 1963.

[62] AKOPYAN, M. E.; VILESOV, F. I.; TERENIN, A. N. Bulletin Acad. Science URSSPhys. Ser. v. 27, p. 1504, 1963.

[63] MEOT-NER, M.; NELSEN, S. F.; WILLI, M. R.; FRIGO, T. B. Special effects of an unusually large neutral to radical cation geometry change. Adiabatic ionization energies and proton affinities of alkylhydrazines. Journal of the American Chemical Society, v. 106, p.7384–7389, 1984.

[64] GIBSON, S. T.; GREENE, J. P.; BERKOWITZ, J. Photoionization of the amidogen radical. **The Journal of Chemical Physics**, v. 83, p.4319–4328, 1985.

[65] MARTIN, J. M. L. On the performance of the correlation consistent basis set for the calculation of total atomization energies, geometries, and harmonic frequencies. **The Journal of Chemical Physics**, v. 100, p.8186–8193, 1994.

[66] MARTIN, J. M. L.; TAYLOR, P. R. The geometry, vibrational frequencies, and total atomization energy of ethylene. A calibration study. **Chemical Physics Letters**, v. 248, p. 336–344, 1996.

[67] PARTRIDGE, H.; BAUSCHLICHER JR, C. W. The dissociation energies of CH_4 and C_2H_2 revisited. **The Journal of Chemical Physics**, v. 103, p.10589–10596, 1995.

[68] WERNER, H.-J.; KNOWLES, P. J.; AMOS, R. D.; BERHARDSSON, R.; BERNING, A.; CELANI, P.;COOPER, D. L.; DEEGAN, M. J. O.; DOBBYN, A. J.; ECKERT, F.;

HAMPEL, C.; HETZER, G.; KORONA, T.; LINDH, R.; LLOYD, A. W.; MCNICHOLAS, S. J.; MANBY, F. R.; MEYER, W.; MURA, M. E.; NICKLASS, A.; PALMIERI, P.; PITZER, R.; RAUHUT, G.; SCHUTZ, M.; STOLL, H.; STONE, A. J.; TARRONI, R.; THORSTEINSSON, T. **MOLPRO 2002.6**. Um pacote de programas *ab initio*. 2002.

[69] FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; ZAKRZEWSKI, V. G.; MONTGOMERY JR., J. A.; STRATMANN, R. E.; BURANT, J. C.; DAPPRICH, S.; MILLAM, J. M.; DANIELS, A. D.; KUDIN, K. N.; STRAIN, M. C.; FARKAS, O.; TOMASI, J.; BARONE, V.; COSSI, M.; CAMMI, R.; ENNUCCI, B.; POMELLI, C.; ADAMO, C.; CLIFFORD, S.; OCHTERSKI, J.; PETERSSON, G. A.; AYALA, P. Y.; CUI, Q.; MOROKUMA, K.; MALICK, D. K.; RABUCK, A. D.; RAGHAVACHARI, K.; FORESMAN, J. B.; CIOSLOWSKI, J.; ORTIZ, J. V.; STEFANOV, B. B.; LIU, G.; LIASHENKO, A.; PISKORZ, P.; KOMAROMI, I.; GOMPERTS, R.; MARTIN, R. L.; FOX, D. J.; KEITH, T.; AL-LAHAM, M. A.; PENG, C. Y.; NANAYAKKARA, A.; GONZALEZ, C.; CHALLACOMBE, M.; GILL, P. M. W.; JOHNSON, B.; CHEN, W.; WONG, M. W.; ANDRES, J. L.; HEAD-GORDON, M.; REPLOGLE, E. S.; POPLE J. A. GAUSSIAN 98, Revision A.7. Pittsburgh PA, 1998.

[70] FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; MONTGOMERY, J. A.; VREVEN, T. JR.; KUDIN, K. N.; BURANT, J. C.; MILLAM, J. M.; IYENGAR, S. S.; TOMASI, J.; BARONE, V.; MENNUCI, B.; COSSI, M.; SCALMANI, G.; REGA, N.; PETERSSON, G. A.; NAKATSUJI, Y.; HADA, H.; EHARA, M. X.; TOYOTA, M.; FUKUDA, K.; HASEGAWA, R.; ISHIDA, J.; NAKAJIMA, M.; HONDA, T. J.; KITAO, O.; NAKAI, H. A.; KLENE, M.; KNOX LI, J. E.; HRATCHIAN, H. P.; CROSS, ADAMO, J. B. C.; JARAMILLO;

GOMPERTS, R.; STRATMANN, E.; YAZYEV, O.; AUSTIN, J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; AYALA, P. Y.; MOROKUMA, K.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; ZAKRZEWSKI, V. G; DAPPRICH, S.; DANIELS, A. D.; STRAIN, M. C.; FARKAS, O.; MALICK, D. K.; RABUCK, A. D.; RAGHAVACHARI, K.; FORESMAN, J. B.; ORTIZ, J. V.; CUI, Q.; BABOUL, A. G.; CLIFFORD, S.; CIOSLOWSKI, J.; STEFANOV, B. B.; LIU, G.; LIASHENKO, A.; PISKORZ, P.; KOMAROMI, I.; MARTIN, R. L.; FOX, D. J.; KEITH, T.; AL-LAHAM, M. A.; PENG, C. Y.; NANAYAKKARA, A.; CHALLACOMBE, M.; GILL, P. M. W.; JOHNSON, B.; CHEN, W.; WONG, M. W.; GONZALEZ, C.; POPLE, J. A. **GAUSSIAN 03**, Revision C.02. Wallingford CT, 2004.

[71] CORCHADO, J. C.; CHUANG, Y.-Y.; FAST, P. L.; VILLA, J.; HU, W.-P.; LIU, LYNCH, G. C.; JACKELS, C. F.; MELISSAS, V. S.; LYNCH, B. J.; ROSSI, I.; COITIÑO, E. L.; FERNANDEZ-RAMOS, A.; PU, J.; ALBU, T. V.; STECKLER, R.; GARRETT, A. D.; ISAACSON, A. D.; TRUHLAR, D. G. POLYRATE version 9.3. University of Minnesota, Minneapolis, MN, 2003.

[72] SIMONS, J.; JØRGESEN, P.; TAYLOR, H.; OZMENT, J. Walking on potential energy surfaces. **The Journal of Physical Chemistry**, v. 87, p.2745–2753, 1983.

[73] GARRETT, B. C.; TRUHLAR, D. G. Generalized transition state theory. Canonical variational calculations using the bond energy-bond order method for bimolecular reactions of combustion products. Journal of the American Chemical Society, v. 101, p.5207–5217, 1979.

[74] GARRETT, B. C.; TRUHLAR, D. G. Variational transition state theory. Primary kinetic isotope effects for atom transfer reactions. Journal of the American Chemical Society, v.102, p.2559–2570, 1980.

[75] ROBERTO-NETO, O. Elementos da dinâmica química ao nível da teoria variacional do estado de transição com correções interpoladas. **Química Nova**, v. 22, p.737–743, 1999.

[76] HEITLER, W.; LONDON, F. Zeitschrift f^{*} ur Physikalische, v.44, p.455–472, 1927. Em: ZEWAIL, A. H. Femtochemistry: Atomic-scale dynamics of the chemical bond. **The Journal** of Physical Chemistry A, v.104, p.5660–5694, 2000.

[77] EYRING, H.; POLANYI, M. On simple gas reaction. Zeitschrift für Physikalische Chemie B, v. 12, p.279–311, 1931.

[78] TRUHLAR, D.; HASE, W.; HYNES, J. Current status of transition-state theory. **The Journal of Physical Chemistry**, v. 87, p.2664–2682, 1983.

[79] Computational Science and Engineering: Transition State Theory and Variational Transition State Theory. Disponível em:

<http://cse-online.net/twiki/bin/view/Main/KineticTheory#1_Background>.

Acesso em: Outubro 2009.

[80] LAIDLER, K. J. Chemical Kinetics. New York: Harper & Row, Publishers, 1987, 3 ed.

[81] TRUHLAR, D. G.; GARRETT, B. C.; KLIPPENSTEIN, S. Current status of transitionstate theory. **The Journal of Physical Chemistry**, v. 100, p.12771–12800, 1996. [82] TUCKER, S. C.; TRUHLAR, D. G. Dynamical formulation of transition state theory: Variational transition states and semi-classical tunneling. Em: New Theoretical Concepts for Understanding Organic Reactions; BERTRÁN, J.; CSIZMADIA, I. G. Kluwer Academic Publishers. Netherland, p.291–346, 1989.

[83] FORMOSINHO, S. Nos bastidores da ciência, 20 anos depois. Coimbra: Imprensa da Universidade de Coimbra, 2007, 1 ed.

[84] TRUHLAR, D. G.; KUPPERMANN, A. Exact tunneling calculations. Journal of the American Chemical Society, v. 93, p.1840–1851, 1971.

[85] MORGON, N. H.; COUTINHO, K. Métodos de química teórica e modelagem molecular. São Paulo: Livraria da Física: 2007, 1 ed.

[86] JENSEN, F. Introduction to computational chemistry. London: John Wiley & Sons, 1999.

[87] LEVINE, I. N. Physical Chemistry. New York: Mc Graw Hilll, 2002, 5 ed.

[88] SLATER, J. C. The theory of complex spectra. **Physical review**, v. 34, p.1293–1322, 1929.

[89] SZABO, A.; OSTLUND, N. S. Modern quantum chemistry: introduction to advanced structure theory. New York: McGraw-Hill, 1989.

[90] SCHMIDT, M. W.; BOATZ, J. A.; BALDRIDGE, K. K.; KOSEKI, S.; GORDON, M.S.; ELBERT, S. T.; LAM, B. GAMESS, Program N. 115, Indiana University, Bloomington, IN.

[91] GUEST, M. F.; KENDRICK, J.; VAN LENTHE, J. H.; SHOEFFEL, K.; SHERWOOD,P. GAMESS-UK Users Guide and Reference Manual. Daresbury Laboratory: Computing for Science (CFS) Ltd, 1994.

[92] ANCHELL, J.; APRA, E.; BERNHOLT, D.; BOROWSKI, P.; CLARK, T.; CLERC, D.; DACHSEL, H.; DEEGAN, M.; DUPUIS, M.; DYALL, K.; FANN, G.; FRUCHTL, H.; GUTOWSKI, M.; HARRISON, R.; HESS, A.; JAFFE, J.; KENDALL, R.; KOBAYASHI, R.; KUTTEH, R.; LIN, Z.; LITTLEFIELD, R.; LONG, X.; MENG, B.; NICHOLS, J.; NIEPLOCHA, J.; RENDALL, A.; STAVE, M.; STRAATSMA, T. P.; TAYLOR, H.; THOMAS, G.; WOLINSKI, K.; WONG, A. NWChem, A Computational Chemistry Package for Parallel Computers, Version 3.0. Richland: Pacific Northwest National Laboratory, WA 99352–0999, 1997.

[93] THOMAS, L. H. The calculation of atomic fields. Proceedings of the Cambridge Philosophical Society, v. 23, p.542–548, 1927.

[94] FERMI, E. Z. Physik, v. 48, p.73, 1928.

[95] KOHN, W.; SHAM, L. J. Self-consistent equations including exchange and correlation effects. **Physical Review**, v. 140, p.1133–1138, 1965.

[96] BECKE, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. **Physical Review A**, v.38, p.3098–3100, 1988.

[97] PERDEW, J. P.; WANG, Y. Accurate and simple density functional for the electron exchange energy - generalized gradient approximation. **Physical Review B**, v. 33, p.8800–8802, 1986.

[98] ADAMO, C.; BARONE, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. **Journal of Chemical Physics**, v. 108, p.664–675, 1998.

[99] HANDY, N. C.; COHEN, A. J. Left-right correlation energy. **Molecular Physics**, v. 99, p.403–412, 2001.

[100] BECKE, A. D. Density functional calculations of molecular-bond energies. Journal of Chemical Physics, v. 84, p.4524–4529, 1986.

[101] PERDEW, J. P. Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas. **Physical Review B**, v. 33, p.8822–8824, 1986.

[102] PERDEW, J. P.; BURKE, K.; ERNZERHOF, M. Generalized gradient approximation made simple. **Physical Review Letters**, v. 77, p.3865–3868, 1996.

[103] ADAMO, C.; BARONE, V. Physically motivated density functionals with improved performances: The modified Perdew-Burke-Ernzerhof model. Journal of Chemical Physics, v. 116, p.5933–5940, 2002. [104] BECKE, A.D. Density-functional thermochemistry. 4. A new dynamical correlation functional and implications for exact-exchange mixing. Journal of Chemical Physics, v. 104, p.1040–1046, 1996.

[105] KRIEGER, J. B. et al. Electron Correlation and Material Properties. Plenum: New York, 1999.

[106] LEE, C. T.; YANG, W. T.; PARR, R. G. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron-density. **Physical Review B**, v. 37, p.785– 789, 1988.

[107] PERDEW, J.P. Unified theory of exchange and correlation beyond the local density approximation. Eletronic Structure of Solids '91: Berlin, Akademie Verlag, v. 991. p.11–20, 1991.

[108] LYNCH, B. J.; FAST, P. L.; HARRIS, M.; TRUHLAR, D. G. Adiabatic connection for kinetics. Journal of Physical Chemistry A, v. 104, p.4811–4815, 2000.

[109] LYNCH, B. J.; ZHAO, Y.; TRUHLAR, D. G. Effectiveness of diffuse basis functions for calculating relative energies by density functional theory. Journal of Physical Chemistry A, v. 107, p.1384–1388, 2003.

[110] LANGHOFF, S. R.; DAVIDSON, E. R. Configuration interaction calculations on the nitrogen molecule. International Journal of Quantum Chemistry, v. 8, p.61–72, 1974.

[111] BRUNA, P. J.; PEYERIMHOFF, S. D.; BUENKER, R. S. The ground state of the CN⁺ ion: a multi-reference CI study. **Chemical Physics Letters**, v. 12, p.278–284, 1980.

[112] RAWLINGS, D. C.; DAVIDSON, E. R. Theoretical investigations of the electronic states of porphyrins. II. Normal and hyper phosphorus porphyrins. International Journal of Quantum Chemistry, v. 26, p.251–274, 1094.

[113] SCHWENKE, D. W.; STECKLER, R.; BROWN, F. B.; TRUHLAR, D. G. Estimation of higher-order correlation effects on the potential energy surface for the F+H₂ reaction in the saddle point vicinity. **The Journal of Chemical Physics**, v. 86, p.2443–2444, 1987.

[114] FERNÁNDEZ-RAWEUS, A.; ELLINGSON, B.A.; MEANA-PAÑEALA, R.;
 MARQUES, J. M. C.; TRUHLAR, D. G. Symmetry numbers and chemical reaction rates.
 Theoretical Chemistry Accounts, v. 118, p.813–826, 2007.

[115] GARRETT, B. C.; TRUHLAR, D. G.; GREV, R. S.; MAGNUSON, A. W. Improved treatment of threshold contributions in variational transition-state theory. **The Journal of Physical Chemistry**, v. 84, p.1730–1748, 1980.

[116] WIGNER, E. Calculation of the rate of elementary association reactions. **The Journal** of Chemical Physics, v. 5, p.720–725, 1937.

[117] TRUHLAR, D. G.; ISAACSON, A. D.; SKODJE, R. T.; GARRETT, B. C. Incorporation of quantum effects in generalized-transition-state theory. **The Journal of Physical Chemistry**, v. 86, p.2252–2261, 1982.

[118] LU, D.-H.; TRUONG, N.; MELISSAS, V. S.; LYNCH, G. C.; LIU, Y.-P.; GARRETT,
B. C.; STECKLER, R.; ISAACSON, A. D.; RAI, S. N.; HANCOCK, G. C.; LAUDERDALE,
J.; JOSEPH, T.; TRUHLAR, D. G. POLYRATE 4: A new version of a computer program for
the calculation of chemical reaction rates for polyatomics. Computer Physics
Communications, v. 71, p.235–262, 1992.

[119] LEE, T. J.; TAYLOR, P. R. Journal of Quantum Chemistry Symposium, v. 23, p.199, 1989.

[120] RIENSTRA-KIRACOFE, J. C.; ALLEN, W. D.; SCHAEFER III, H. F. The $C_2H_5 + O_2$ reaction mechanism: High-level ab initio characterizations. **The Journal of Physical Chemistry A**, v. 104, p.9823–9840, 2000.

[121] TISHCHENKO, O.; ZHENG, J.; TRUHLAR, D. G. Multireference Model Chemistries for Thermochemical Kinetics. Journal of Chemical Theory and Computation, v. 4, p.1208–1219, 2008.

[122] DENNINGTON II, R.; KEITH, T.; MILLAM, J.; EPPINNETT, K.; HOVELL, W. L..;GILLILAND, R. GaussView Version 3.0, Semichem, Inc., ShawneeMission, 2003.

[123] CARLOTTI, M.; JOHNS, J. W. C.; TROMBETTI, A. The v_5 fundamental bands of N_2H_2 and N_2D_2 . Canadian Journal of Physics, v. 52, p. 340–344, 1974.

[124] MATUS, M. H.; ARDUENGO, A. J. III; DIXON, D. A. The heats of formation of diazene, hydrazine, $N_2H_3^+$, $N_2H_5^+$, N_2H , and N_2H_3 , and the methyl derivatives CH3NNH,

CH₃NNCH₃, and CH₃HNNHCH₃. **The Journal of Physical Chemistry A**, v. 110, p.10116– 10121, 2006.

[125] HUBER, K. P.; HERZBERG, G. Molecular spectra and molecular structure constants of diatomic molecules. New York: Van Nostrand-Reinhold, 1979.

[126] FERNÁNDEZ-RAMOS, A.; MILLER, J. A.; KLIPPENSTEIN, S. J.; TRUHLAR, D.G. Modeling the kinetics of bimolecular reactions. Chemical Reviews, v. 106, p.4518–4584, 2006.

[127] ZHENG, J.; ZHAO, J.; TRUHLAR, D. G. The DBH24/08 database and its use to assess electronic structure model chemistries for chemical reaction barrier heights. Journal of Chemical Theory and Computation, v. 5, p.808–821, 2009.

[128] ZHANG, X.; LI, Q. S. Direct dynamics study of the reaction of N₂H₄ with F atoms: A Hydrogen Abstraction Reaction? **The Journal of Physical Chemistry A**, v. 110, p.11636–11644, 2006.

[129] MORINO, Y.; IIJIMA, T.; MORATA, Y. An electron diffraction investigation on the molecular structure of hydrazine. Bulletin of the Chemical Society of Japan, v. 33, p.46–48, 1960.

[130] TSUNEKAWA, S. Microwave-spectrum of hydrazine-1,2-D2. Journal of the Physical Society of Japan, v. 41, p.2077–2083, 1976.

[131] TSUBOI, M.; OVEREND, J. Amino wagging and inversion in hydrazines. ^RR branch of the antisymmetric wagging band of NH₂NH₂. **Journal of Molecular Spectroscopy**, v. 52, p.256–268, 1974.

[132] KOHATA, K.; FUKUYAMA, T.; KUCHITSU, K. Molecular structure of hydrazine as studied by gas electron diffraction. The Journal of Physical Chemistry, v. 86, p.602–606, 1982.

[133] LI, Q. S.; ZHANG, X. Direct dynamics study of the hydrogen abstraction reactions $N_2H_4 + R \rightarrow N_2H_3 + RH$ ($R = NH_2$, CH_3). The Journal of Physical Chemistry, v. 125, p.064304-1-064304-12, 2006.

[134] YAMAGUCHI, A.; ICHISIMA, I.; SHIMANOUCHI, T.; MIZUSHIMA, S. Far infrared spectrum of hydrazine. **Spectrochimica Acta**, v. 16, p.1471–1485, 1960.

[135] FONER, S. N.; HUDSON, R. L. Mass spectrometry of very fast reactions: Identification of free radicals and unstable molecules formed in atom-molecule reactions. **The Journal of Chemical Physics**, v. 49, p.3724–3725, 1968.

[136] FONER, S. N.; HUDSON, R. L. Mass spectrometry studies of atom-molecule reactions using high-intensity crossed molecular beams. **The Journal of Chemical Physics**, v. 53, p.4377–4386, 1970.

[137] LAYFIELD, J. P.; OWENS, M. D.; TROYA, D. Theoretical study of the dynamics of the $H+CH_4$ and $H+C_2H_6$ reactions using a specific-reaction-parameter semiempirical Hamiltonian. **The Journal of Chemical Physics**, v. 128, p.194302-1–194302-12, 2008.

[138] SHANE, E. C.; BRENNEN, W. Chemiluminescence of the atomic oxygen-hydrazine reaction. **The Journal of Chemical Physics**, v. 55, p.1479–1480, 1971.

[139] SCHMITZ, B. K.; EULER, W. B. A comparative theoretical study of hydrazine.Journal of Molecular Structure: THEOCHEM, v. 257 p.227–242, 1992.

[140] CHUNG-PHILLIPS, A.; JEBBER, K. A. Ab initio studies of critical conformations in ethane, methylamine, methanol, hydrazine, hydroxylamine, and hydrogen peroxide. **The Journal of Chemical Physics**, v. 102, p.7080–7887, 1995.

[141] MA, B.; LII, J.-H.; CHEN, K.; ALLINGER, N. L. Quantum mechanical and molecular mechanics (MM3) studies of hydrazines. Journal of Physical Chemistry, v. 100, p.11297–11304, 1996.

[142] NEUMANN, R.; NOBES, R. H.; HANDY, N. C. Exchange functionals and potentials.Molecular Physics, v. 87, 1–36, 1996.

[143] SONG, L.; MIU, M.; WU, W.; ZHANG, Q; MO, Y. Origins of rotational barriers in hydrogen peroxide and hydrazine. Journal of Chemical Theory and Computation, v. 1, p.394–402, 2005.

[144] DURIG, J. R.; FUSH, S. F.; MERCER, E. E. Vibrational spectrum of hydrazine-*d*₄ and a Raman study of hydrogen bonding in hydrazine. **The Journal of Chemical Physics**, v. 44, p.4238–4247, 1966.

[145] HAMADA, Y.; HIRAKAWA, A. Y.; TAMAGAKE, K.; TSUBOI, M. Amino wagging and inversion in hydrazines. Antisymmetric wagging band of NH₂NH₂. Journal of Molecular Spectroscopy, v. 35, p.420–435, 1970.

[146] TSUNEKAWA, S.; KOJIMA, T. Microwave spectrum of hydrazine-d₄. Journal of the Physical Society of Japan, v. 44, p.1925–1930, 1978.

[147] TANAKA, N.; HAMADA, Y.; SUGAWARA, Y.; TSUBOI, M.; KATO, S.; MOROKUMA, K. Force field in the hydrazine molecule from ab initio MO calculation. Journal of Molecular Spectroscopy, v. 99, p.245–262, 1983.

[148] OHASI, N.; LAFFERTY, W. J.; OLSON, W. B. Fourier transform spectrum of the torsional band of hydrazine. Journal of Molecular Spectroscopy, v. 117, p.119–133, 1986.

[149] ROCHA, R. J.; PELEGRINI, M.; FERRÃO, L. F. A.; CARVALHO, E. F. V.; ROBERTO-NETO, O.; MACHADO, F. B. C.; TRUHLAR, D. G. Barrier height, reaction energy, and kinetics of the H + *trans*-N₂H₂ reaction. A ser submetido ao Journal of Chemical Physics, 2010.

[150] ROCHA, R. J.; ROCCO, J. A. F. F.; IHA, K.; ROBERTO-NETO, O.; MACHADO, F. B. C. Barriers height and rate constants of the $O + N_2H_4$ hydrogen abstraction reactions. A ser submetido ao Journal of Chemical Physics, 2010.

[151] ROCHA, R. J.; PELEGRINI, M.; ROBERTO-NETO, O.; MACHADO, F. B. C. An ab initio study of the ionization potential of hydrazine. Journal of Molecular Structure: **THEOCHEM**, v. 849, p.98–102, 2008.

FOL	HA DE REGIST	RO DO DOCUMENTO	0
^{1.} CLASSIFICAÇÃO/TIPO	^{2.} DATA	^{3.} REGISTRO N°	^{4.} N° DE PÁGINAS
DM	08 de outubro de 2	010 DCTA/ITA/DM-065/2	2010 176
^{5.} TÍTULO E SUBTÍTULO: Propriedades de Moléculas Termocinética das Reações N ₂ l	com Potencial En $H_2 + H e N_2H_4 + O.$	ergético: Potencial de Io	onização da Hidrazina e
^{6.} AUTOR(ES):			
Roberta Jachura Rocha 7. INSTITUIÇÃO(ÕES)/ÓRGÃO(S)) INTERNO(S)/DIVISÃO	(ÕES):	
Instituto Tecnológico de Aeror	autica - ITA		
^{8.} PALAVRAS-CHAVE SUGERIDAS	S PELO AUTOR:		
Materiais Energéticos, Cinética 9 PALAVRAS-CHAVE RESULTANT	a Reacional, Termoques de INDEXAÇÃO:	uímica, Química Teórica	
Moléculas diatômicas: Estrutu	res eletrônica: Cinét	tica das reações: Potencial	l de ionização: Hidrazina
Termoquímica; Físico-Química	a; Química	nea das reações, rotenetar	t de tomzação, indiazma
^{10.} APRESENTAÇÃO:		X Nacio	onal Internacional
ITA, São José dos Campos. Cu	rso de Mestrado. Pro	ograma de Pós-Graduação e	m Engenharia Aeronáutica
e Mecânica. Area de Física e	Química dos Mate	eriais Aeroespaciais. Orient	tadores: Francisco Bolivar
Lorreto Machado e Jose Atilio	Fritz Fidel Kocco. L	Jefesa em 15/09/2010. Publi	Icada em 2010.
ntarogenio, uma deias envoivenac N2H + H2), e a outra reação env OH). A reação do trans-diazeno o para a decomposição da hidrazin aplicações, como, por exemplo, a de hidrazina envolve o oxigênio a reação geralmente ocorre quando de órbita terrestre baixa (LEO – ionização da molécula hidrazina. F da molécula hidrazina neutra e do Nestes estudos, os cálcul quântica molecular, tais como os r teoria do funcional da densidad empregou-se a teoria do estado d métodos de Wigner, ZCT (<i>Zero Cl</i> As duas reações estudar relativamente baixas. Para a reaçã monoconfiguracional CCSD(T)/N valores de barreira clássica de pot -38,1 kcal/mol, respectivamente. aproximação CVT/SCT a 300 K atômico, dois caminhos reacionai baseados nas metodologias CC energia eletrônica de reação encc clássicas, nas faixas de 2,0 a 2,5 H TS(b), respectivamente. Para a co 0 9×10 ⁻¹¹ cm ³ mol ⁻¹ s ⁻¹ estão em	o a molecula trans-dia: olvendo a molécula hi com o hidrogênio é cc a (N2H4), que é uma ntioxidantes e combusi tômico, que é o princip há escape de hidrazina Low Earth Orbit). O Foram caracterizadas te seu cátion. los de estrutura eletrôn nétodos de orbitais mo e MPWB1K, BHand e transição variaciona <i>urvature Tunneling</i>) e S das são exotérmicas e ão do diazeno, os noss <i>M</i> RE e na metodolo, encial e de energia elet Para a constante de é igual a $3,0x10^{-1}$ s de abstração de hidi SD(T)/CBS//BB1K/aug ontram-se na faixa de ccal/mol e de 4,6 a 5,1 postante de velocidade excelente concordânc	zeno em sua reação com nidro drazina com oxigênio atômico onsiderada uma etapa elementa molécula amplamente utiliza tível para lançadores de satélit pal constituinte em ambientes não queimada dos motores da utro objetivo deste trabalho poricamente as estruturas geom ica foram realizados utilizando pleculares MP2, CCSD(T), CA HLYP e BB1K. Para os es l (TETV) com correções do e SCT (<i>Small Curvature Tunneli</i> , espontâneas e apresentam ba os melhores resultados que es gia multiconfiguracional CA rônica de reação na faixa de 2 velocidade da reação, nosso 1^2 cm ³ mol ⁻¹ s ⁻¹ . Para a reaçã rogênio foram estudados, e os g-cc-pVTZ e CCSD(T)/CBS -20,7 a -21,2 kcal/mol, e p kcal/mol para a formação dos da reação nossos resultados a	genio atomico (N2H2 + H →) (N2H4 + O(3P) → N2H3 + ar dos mecanismos propostos ida em uma variada gama de tes e foguetes. A outra reação de órbita terrestre baixa. Esta is naves que voam em regiões foi o estudo do potencial de iétricas de alguns confôrmeros o diversos métodos da química SSCF/MRCI e os métodos da tudos cinéticos das reações efeito do tunelamento com os ng). arreiras clássicas de potencia stão baseados na metodologia SSCF/MRCI+Q, apresentam 2,9 a 3,3 kcal/mol e de -37,3 a melhor resultado baseado na tio da hidrazina com oxigênio s nossos melhores resultados S//MP2/aug-cc-pVTZ, para a para as barreiras de potencia s estados de transição TS(a) o a 298 K de aproximadamento

^{12.} GRAU DE SIGILO:

(X) OSTENSIVO () RESERVADO () CONFIDENCIAL () SECRETO

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo