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Abstract. The main goal of this work is to give some necessary and some suﬃ-
cient conditions for en domorphisms on compact manifolds without boundary to
be robustly transitive. More concretely, under what conditions a di ﬀerentiable
map, not necessarily invertible, having a de nse orbit, veriﬁ e s that a suﬃci e ntly
close perturbed map also exhibits a dense orbit.
In the case of robustly transitive diﬀeomorphisms is known that a nece s sary
cond i tion is that the tangent bundle admits a dominated splitti ng. For the
case of endomorph i s ms, that is no lo nger true. In consequence, conditions
that g uarantee robustness for transitive endomorphisms cannot depend on the
existence of decomposition of the tangent bundle.
For local diﬀeomorphisms, we show that a necessa ry condi tion for robust transi-
tivity is to be volume expanding. Although volume expanding is not a suﬃcient
cond i tion to ha ve endomorphis ms robustly transitive. Because of this, we must
ask for more hypothesis that guarantee robustness. Indeed the additional hy-
pothesis that we as k is: given an y arc in a certain region with a large enough
diameter to have a point that its f uture orbit remain s in the expanding reg i on,
which implies the existence of a locally maxima l expanding invariant set for the
original system that intersects every arc big enough.
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Introduction
One goal in dynamics is to look for conditions that guarantee that certain phenomena are
robust under perturbations, that is, some main feature of a dynamical system is shared
by a ll nearby systems. In particular, we are int erested in the hypotheses under which an
endomorphism would be robust transitive.
In the diﬀeomorphism case, there are many examples of robust transitive systems. The
best known is the transitive Anosov diﬀeomorphism; the example given by Shub in T
4
in
1971, see for instance [PS06 b]; another example is the Ma˜n´e’s Derived from an Anosov in
T
3
in [Ma˜n78]; Bonatti and D´ıaz gave some geometrical construction that induces a robust
transitive system in [BD96]. One of the newest examples is one from Bonatti-Viana that
gives a robust tr ansitive diﬀeomorphism wit h dominated splitting which is not partially
hyperbolic, see [BV00].
On the other hand, any C
1
−robust transitive diﬀeomorphism exhibits a dominated
splitting. This is not true anymore for endomorphisms (see endomorphisms version of
Bonatti-Viana example, it is explained in example 1 in section § 3.1). Therefore, conditions
that imply robust transitivity cannot hinge on the existence of splitting.
The ﬁrst question that arises is what necessary condition a robust transitive local
diﬀeomorphism has to verify. We show in the ﬁrst chapter that volume expanding would
iii
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be a C
1
necessary conditio n. However, volume expanding is not a suﬃcient condition
that g uarant ees robust transitivity for a local diﬀeomorphism, for instance a product of an
expanding endomorphism times an irrational rotation is volume expanding and transitive
but not robust transitive. Hence, we have to ask for extra conditions that allow us to
conclude the robustness, more precisely, we need a property over the initia l system that
would be robust. As we said before this pr operty cannot depend o n the existence of any
type of splitting. In fact, t he hypothesis that we require is to ask for any arc of large
enough diameter t o have a point such that its forward iterates remain in the expanding
region, implying the existence of an invariant expanding locally maximal set for the initial
system that intersects every large arc. Therefore, that topological property persists under
perturbations for a certain class of arc.
Instead of transitivity we may ask for the density of the pre-orbit of any point. This
hypothesis implies transitivity, but we do not know if the reciprocal holds. But the fact
of having just one point which pre-orbit is dense is not enough to conclude transitivity.
We must note that if the initial system ver iﬁes the density of every pre-orbit, then t he
perturbed one has “almost” density of the pre-orbit of any point.
This thesis is divided in three chapters, each one with a brief introduction giving the
main goals of every chapter. We also deﬁne many of the concepts involved thro ughout the
work and pose many questions and remarks related to our results.
In the ﬁrst chapter, we address the main problem, to ﬁnd necessar y and suﬃcient
conditions in order to have robust transitive endomorphisms. In section § 1.1.1, we present
the main result of this work:
Main Theorem Let f ∈ E
1
(T
n
) be a volume expanding map satisfying the following
properties:
1. There is an open s et U
0
in T
n
such that f |
U
c
0
is expanding and diam
ext
(U
0
) < 1.
2. {f
−k
(x)}
k≥0
is dense for every x ∈ T
n
.
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3. There exists 0 < δ
0
< diam
int
(U
c
0
) and there exists an open neighborhood U
1
of U
0
such that for every arc γ in U
c
0
with diameter larger than δ
0
, there is a point y ∈ γ
such that f
k
(y) i s not in U
1
for any k ≥ 1.
4. For every z ∈ U
c
1
, there exists ¯z ∈ U
c
1
such that f(¯z) = z.
Then, for every g close enough to f, {g
−k
(x)}
k≥0
is dense for every x ∈ T
n
.
We recommend to the reader before entering into the proof of the Main Theorem, to
give a glance to section § 1.1.2 in order to gain some insight about the proof. We want
to highlight that this theorem as it is enunciated, it is not assumed the existence of any
tangent bundle splitting. In the case that there exists a partially hyperbolic splitting
we may get the same conclusion but with wea ker hypotheses. This is given in Theorem
2 in section § 1.2. One question that arises from this formulation is: if a map satisﬁes
the hypotheses of the Main Theorem, is it true that th i s map is isotopic to an expanding
endomorphism ? The Main Theorem can be recasted in terms of the geometrical properties,
see Main Theorem Revisited in section § 1.1.8.
In the second chapter, we show some geometrical and topological consequences from
the Main Theorem. Besides, we study the existence of Markov Partitions for maps of our
type, via semiconjugation with linear expanding endomorphisms, and how it allows us to
extract some informat ion about the transitivity of the ma p isotopic to a linear expanding
endomorphism. Also, we pose some related questions.
In the third and last chapter, we construct examples of robust transitive endomor-
phisms verifying the hypotheses of the Main Theorem, the Main Theorem Revisited and
Theorem 2.
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Main Result
In this chapter, our goal is to give suﬃcient conditions to get robust transitivity for
n−dimensional torus endomorphisms.
§ 1.1 Volume expanding endomorphisms without invariant
splitting
An endomorphism of a diﬀerentiable manifold M is a diﬀerentiable function f : M → M
of class C
r
with r ≥ 1. Throug hout this work we will assume the endomorphism f to be
a local diﬀeomorphism. That means that given a ny point x, there exists a n open set V
containing x such that f from V to f(V ) is a diﬀeomorphism. For the main result we
do no t assume the existence of any invariant splitting for f. Let us denote by E
1
(M) the
space of C
1
−endomorphisms of M endowed with the usual C
1
topology.
Before entering into the Main Theorem, let us recall some deﬁnitions t hat are involved.
Deﬁnition 1.1 (Volume expanding map)
We say that a map f is vo lume expanding if there exists σ > 1 such tha t |det(Df)| > σ.
1
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Deﬁnition 1.2 (Invariant set)
We say that a set Λ ⊂ M is a forward invariant se t for f ∈ E
1
(M) if f(Λ) ⊂ Λ and it
is invariant for f if f (Λ) = Λ.
Let us intro duce some notation that we will use throughout this work: if L : V → W
is a linear isomorphism between normed vector spaces, we denote by m{L} the minimum
norm of L, i.e. m{L} = L
−1

−1
.
Deﬁnition 1.3 (Expanding map)
We say that a map f of class C
1
is expanding in U a subset of M if there exists λ > 1
such that min
x∈U
{m{D
x
f}} > λ. It is said that a compact invariant set Λ is an expanding
set for an endomorphism f if f |
Λ
is an expanding map.
Deﬁnition 1.4 (Locally maximal set)
Let Λ be an expanding set for f ∈ E
1
(M). If there is an open neighborhood V of Λ
such that Λ =

k≥0
f
−k
(V ) then Λ is said to be locally maximal (or isolated) set. V is
called the isolating block o f Λ.
Deﬁnition 1.5 (Full orbit)
A sequence {x
k
}
k∈Z
is called a full orbit for f if f(x
k
) = x
k+1
for every k ∈ Z.
Deﬁnition 1.6 (Topologically transitive)
Let Λ be an invariant set for an endomorphism f : M → M. It is said that Λ is
topologically tra nsitive if there exists a point x ∈ Λ such that its forward orbit {f
k
(x)}
k≥0
is dense in Λ. We say that f is topologically tra nsitive if {f
k
(x)}
k≥0
is dense in M for some
x ∈ M.
Lemma 1 Let f : M → M be a continuous map of a locally compact separable metric
space M into itself. The map f is topologicall y transitive if and only if for any two
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nonempty open sets U, V ⊂ M, there exists a positive integer N = N(U, V ) such that
f
N
(U) ∩ V is nonempty.
Proof. See for instance [KH95, pp.29].
Deﬁnition 1.7 (Topologically mixing)
A topological dynamical system f : M → M is called topolog i cally mixing if for a ny
two nonempty open sets U, V ⊂ M, there exists a positive integer N = N(U, V ) such that
for every k > N the intersection f
k
(U) ∩ V is nonempty.
Deﬁnition 1.8 (Locally eventually onto)
A map f ∈ E
1
(M) is called locally even tually onto if for any nonempty open set
U ⊂ M, there exists a positive integer N = N(U) such that f
N
(U) = M.
Remark 1.1 In general, it holds that if a map is locally eventually onto, then it is
topologically mixing. If a map is topologically mixing, then it is topologically transitive.
The reciprocals are not true for endomorphisms case.
Remark 1.2 For endomorphisms, if the pre-orbit of every point is dense in the ma-
nifold, then the map is transitive. Note that if there exists just one point whose pre-or bit
is dense, it is not enough to conclude that the map is transitive.
Deﬁnition 1.9 (Robustly transitive)
The set Λ
f
(U) =

n∈Z
f
n
(U) is C
r
−robustly transitive if Λ
g
(U) =

n∈Z
g
n
(U) is
transitive for every endomorphism g C
r
−close enough to f. It is said that a map f is
C
r
−robustly transitive if there exists a C
r
neighborhood U(f) such that every g ∈ U(f )
is transitive.
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Deﬁnition 1.10 (Robust non existence of splitting)
We say that f restricted to an invariant set Λ has no splitting in a C
r
−robust way if
there exists a C
r
open neighborhood U(f) o f f such that for every g ∈ U(f) the tangent
space T Λ does not admit invariant subbundles.
Theorem 1 Let f ∈ E
1
(M) be a local diﬀeomorphism and U open s et in M such that
Λ
f
(U) =

n∈Z
f
n
(U) is C
1
−robustly transitive set and it has no splitting in a C
1
−robust
way. Then f is volume expanding.
Proof. The proof of this theorem is similar to the one of Theorem 4 in [BDP03,
pp.361], nevertheless we include the main steps of the proof.
Let us consider f ∈ E
1
(M) a local diﬀeomorphism and denote by Λ
f
(U) the C
1
−robustly
transitive (nontrivial) set for f, note that U could be the ent ir e manifold. The idea
of the proof is to assume that f is no t volume expanding and show that for every
C
1
−neighborhood of f U(f) ⊂ E
1
(M), t here exists ψ ∈ U(f ) such that ψ has a sink
and therefore ψ cannot be tr ansitive.
Suppose that f is not volume expanding. Since f is onto, it cannot be uniform volume
contracting in the entire manifold, so there are points in the manifold such that we have
expansion, i.e. 1 ≤ |det(Df
k
(x))| for some k ≥ 0, but it does not expand too much, i.e.
|det(Df
k
(x))| ≤ 1 + ǫ, with ǫ small. Then there are sequences x
n
∈ Λ
f
(U), k
n
∈ N and
τ
n
> 1, with k
n
→ ∞ and τ
n
→ 1
+
, such that
1 ≤ |det(Df
k
n
(x
n
))| < τ
k
n
n
.
This is equivalent to say that
1
k
n
k
n
−1

i=0
log(| det(Df(f
i
(x
n
)))|) < log(τ
n
).
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We may take k
n
such that f
i
(x
n
) = f
j
(x
n
) for all i = j, i, j ∈ {0, . . . , k
n
}. Consider for each
n t he Dirac measure δ
n
supported in { x
n
, f(x
n
), . . . , f
k
n
(x
n
)}, i.e. δ
n
=
1
k
n

k
n
−1
i=0
δ
f
i
(x
n
)
.
As the space of probabilities is compact with the weak star to pology, there exists a subse-
quence of {δ
n
}
n
that converges to a n invariant probability measure µ such that

log |det(Df(x))|dµ(x) ≤ 0.
In fact, a classical ar gument proves tha t µ is invariant by f, since f
∗
(µ) − µ is the weak
star limit of
1
k
n
i
(δ
f
k
n
i
(x
n
i
)
− δ
x
n
i
), which converge to zero. Observe that

log |det(Df(x))|dδ
n
=
1
k
n
k
n
−1

i=0
log(| det(Df
i
(x
n
))|) =
1
k
n
log(| det(Df
k
n
(x
n
))|) ≤ log(τ
n
),
then because τ
n
→ 1
+
we deduce that

log |det(Df(x))|dµ(x) ≤ 0.
By the ergodic decomposition theorem, there is an ergodic and f−invariant measure ν
such that

log |det(Df(x))|dν(x) ≤ 0.
Using the ergodic closing lemma for nonsingular endomorphisms, given ε > 0 there is
g close to f and a g−periodic point y such that
1
m
ε
m
ε
−1

i=0
log(| det(Dg(g
i
(y)))|) < ε,
where m
ε
is the period of y. Note that if ε → 0, then m
ε
→ ∞. So, taking ε > 0
arbitrarily small and m
ε
big, using Franks’ Lemma [Fra71] we get ϕ close to g such that
ϕ
m
ε
(y) = y ∈ Λ
ϕ
(U) and
1
m
ε
m
ε
−1

i=0
log(| det(Dϕ(ϕ
i
(y)))|) < 0,
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this means t hat |det(Dϕ
m
ε
(y))| < λ < 1. Observe that we are assuming the dimension of
the manifold greater or equal to 2, so t he fact that the modulus of the jacobian of ϕ be
lower than 1 does not imply that all the eigenvalues have modulus smaller than 1.
Since Λ
ϕ
(U) is C
1
−robustly transitive, after a perturbation, we may assume that the
relative ho moclinic class H(y, ϕ, U) of y is the whole Λ
ϕ
(U). Now, consider the dense
subset Σ ⊂ Λ
ϕ
(U) consisting of all the hyperbolic periodic points of Λ
ϕ
(U) homoclinically
related to y.
If ϕ is close enough to f, then the tangent bundle does not admit a splitting a s well.
Using the idea of the proof of Lemma 6.1 in [BDP03, pp. 40 7] and, after that, Franks’
Lemma, we obtain that there exists ψ a perturbation of ϕ a nd a point p ∈ Σ such that all
the eigenvalues of Dψ
m(p)
(p) have modulus strictly lower than 1, where m(p) is the period
of p. This means that the maximal invariant set in U of ψ contains a sink, but this is a
contradiction since we choose ψ suﬃciently close to f such that Λ
ψ
(U) is still transit ive.
Remark 1.3 If Λ
f
(U) admits a splitting, then the extremal indecomposable subbun-
dle is volume expanding.
Remark 1.4 Theorem 1 implies t hat volume expanding is a necessary condition for
an endomorphism, which is local diﬀeomorphism, to be a robust transitive map. However,
volume expanding is not a suﬃcient condition that guarantees robust transitivity for a
local diﬀeomorphism. For instance, consider a product of an expanding endomorphism
times an irra tional rot ation: this map is volume expanding and transitive but not robust
transitive.
Remark 1.5 It is expected that if f is r obust ly t r ansitive and has no invariant sub-
bundles in a robust way, then f is a local diﬀeomorphism. It depends on whether the
Ergodic Closing Lemma holds even if there ar e critical points, since for maps with critical
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points already exists a version of Connecting Lemma, Closing Lemma and Franks’ Lemma,
which are the principal results involved in the proof o f Theorem 1.
Henceforth, we work in the n−torus T
n
. Since in dimension one volume expanding
endomorphism is equivalent to be expanding map, we also assume tha t the dimension n
is at least 2.
Deﬁnition 1.11 (Internal diameter)
Let U be an o pen set in T
n
. Denote by

U the lift of U restricted to a fundamental
domain. Deﬁne the internal diameter of U
c
by
diam
int
(U
c
)= min
k∈Z
n
\{0}
dist(

U,

U + k),
where dist(A, B) := inf{max
1≤i≤n
|x
i
− y
i
| : x = (x
1
, . . . , x
n
) ∈ A, y = (y
1
, . . . , y
n
) ∈ B}.
Deﬁnition 1.12 (External diameter)
Let U be an open set in T
n
. Denote by

U the lift o f U restricted to a fundamental
domain. We say that externa l diameter of U is less than 1, denoting by diam
ext
(U) < 1,
if the closure of

U is contained in the interior of [0, 1 ]
n
.
Remark 1.6 Observe t hat volume expanding implies that the map is a local diﬀeo-
morphism.
§ 1.1.1 The Main Result
Our main result gives suﬃcient conditions for volume expanding endomorphisms to be
robustly transitive, independently of the existence or not of an invariant splitting.
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Main Theorem Let f ∈ E
1
(T
n
) be a volume expanding map, n ≥ 2, satisfying the
followi ng properties:
1. There is an open s et U
0
in T
n
such that f |
U
c
0
is expanding and diam
ext
(U
0
) < 1.
2. {f
−k
(x)}
k≥0
is dense for every x ∈ T
n
.
3. There exist 0 < δ
0
< diam
int
(U
c
0
) and an open neigh borhood U
1
of U
0
such that for
every arc γ in U
c
0
with diameter larger than δ
0
, there i s a point y ∈ γ such that f
k
(y)
is not in U
1
for any k ≥ 1.
4. For every z ∈ U
c
1
there exists ¯z ∈ U
c
1
such that f(¯z) = z.
Then, f or every g close enough to f, { g
−k
(x)}
k≥0
is dense for every x ∈ T
n
.
Let us point out the following observations:
Remark 1.7 The hypothesis of external diameter less than 1 and hypothesis (4) are
technical. This means that they are necessary conditions for proving our result, but we
do not know if there exist weaker conditions that implies the thesis of o ur theorem.
Remark 1.8 The condition diam
ext
(U
0
) < 1 implies that the closure of

U
0
is contained
in the interio r of [0, 1 ]
n
, where

U
0
is the lift of U
0
restricted to [0, 1]
n
. Note that U
0
do
not need to be simply connected and could have ﬁnitely many connected components.
Actually the important fact is that the closure of the convex hull of the lift of U
0
restricted
to [0, 1]
n
is still contained in (0, 1)
n
. Moreover, diam
int
(U
c
0
) = diam
int
(U
c
0
), where U
0
is the
convex hull of

U
0
.
Remark 1.9 If f ∈ E
1
(T
n
) satisﬁes the hypotheses of the Main Theorem, then f is
topologically transitive. Indeed, as a consequence of the Main Theorem, f is C
1
robustly
topologically transitive.
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Remark 1.10 The Main Theorem is formulated fo r n−dimensional torus but we be-
lieve that it can be extended to any manifold tha t at least supports an expanding endo-
morphisms, for example nilmanifolds (see [Shu69]).
Remark 1.11 Λ
0
:=

n≥0
f
−n
(U
c
0
) is an expanding set. Moreover, we know that
given any arc γ in U
c
0
with diameter greater than δ
0
, there exists a point x ∈ γ such that
f
k
(x) is not in U
1
for any k ≥ 1. Therefore, γ ∩ Λ
0
= ∅ and Λ
0
is not trivial.
Remark 1.12 Using hypothesis (4) of the Main Theorem, given any point x ∈ U
c
1
, we
can construct a sequence {x
k
}
k≥0
such that x
0
= x, x
k
∈ U
c
1
and f(x
k+1
) = x
k
for every
k ≥ 0. We call this sequence by inverse path.
Remark 1.13 Let us denote Λ
1
:=

n≥0
f
−n
(U
c
1
). This set has t he following proper-
ties:
1. Λ
1
is an expanding set.
2. By hypothesis (3) of the Main Theorem, given any arc γ in U
c
0
with dia meter greater
than δ
0
, there exists a point x ∈ γ such that f(x) ∈ Λ
1
.
3. Since the hypothesis 0 < δ
0
< diam
int
(U
c
0
) is an open condition, we may take U
1
an
open neighborhood of U
0
such that δ
0
< diam
int
(U
c
1
) < diam
int
(U
c
0
). Then for every
arc γ in U
c
1
with diameter greater than δ
0
holds that γ ∩ Λ
1
is non empty.
4. Λ
1
is invariant, i.e. f(Λ
1
) = Λ
1
. It is clear that Λ
1
is forward invariant. So let
us prove that Λ
1
⊂ f (Λ
1
). Pick a point x ∈ Λ
1
and consider the sequence {x
k
}
k≥0
given by remark (1.12). Let us show that x
k
∈ W for any k ≥ 0, where W =
∪
n≥0
f
−n
(U
1
) = Λ
c
1
. If this is not true, there exist k ≥ 0 and n
k
≥ 0 such t ha t
f
n
k
(x
k
) ∈ U
1
. First, observe that remark (1.12) implies that f
n
(x
k
) = x
k−n
for 0 ≤
n ≤ k. In particular, f
k
(x
k
) = x
0
if k ≥ 0. And f
n
(x
k
) = f
n−k
(f
k
(x
k
)) = f
n−k
(x
0
)
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for n > k ≥ 0 . Therefore, if −k ≤ −n
k
≤ 0, then f
n
k
(x
k
) = x
k−n
k
. Since every x
k
belongs to U
c
1
, we obta in that f
n
k
(x
k
) belongs to U
c
1
which is a contradiction because
it was supposed that f
n
k
(x
k
) ∈ U
1
. If −n
k
< −k < 0, then f
n
k
(x
k
) = f
n
k
−k
(x
0
).
Since x
0
∈ Λ
1
, every positive iterat e of x
0
by f belongs to U
c
1
, thus f
n
k
(x
k
) ∈ U
c
1
,
which contradicts the fa ct that f
n
k
(x
k
) ∈ U
1
. Thus, x
k
∈ Λ
1
for every k ≥ 0.
5. In section § 1.1.3, we prove that this set is locally maximal or it is contained in an
expanding locally maximal set.
Question 1.1 If f satisﬁes the hypotheses of the Main Theorem, does this implies
that f is isotopic to an expanding endomorphism?
§ 1.1.2 Sketch of the Proof of Main Theorem
We want to prove that any small perturbation g of t he initial system f has the property
that the pre-orbit of any point is dense in the ma nif old. The mechanism to prove that
is the following: g i ven any open set V, there exist x ∈ V and k ∈ N such that g
k
(V )
contains a ball of a ﬁxed radius R
0
centered in g
k
(x). If we have the latter property, we
may conclude our claim, since given 0 < ε < R
0
for g ε/2−close to f the pre-orbit of any
point by g are ε−dense, hence g
k
(V ) intersects {g
−n
(z)} for any z. Therefore, V intersects
{g
−n
(z)} for any z.
Note that because f is expanding outside U
0
, if x is a point in U
c
0
such that its forward
orbit stays outside U
0
, then f
k
(B
r
(x)) ⊃ B
λ
k
0
r
(f
k
(x)), where λ
0
> 1 is the expanding
constant of f. The goal is to show that for any open set V , there exists a point x ∈ V
such that t he forward o r bit of some iterate f
m
(x) stay outside U
0
.
Now, working in the covering space, since U
0
has external diameter less than 1 and the
volume increases, follows tha t the diameter of the forward iterates of the lift of V grows.
Hence there is so me iterate with diameter big enough such that we may use hypothesis
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(3) to o btain such a point x. The a im is to show that this mechanism is r obust .
In order to prove the statement we use a geometrical approach:
1. Hypothesis (3 ) implies t ha t there is an expanding subset that “separates”, meaning
that a nice class of ar cs in U
c
0
intersects this set. (See Lemma 3 in section § 1.1.5)
2. Properly chosen, this set is locally maximal. (See Lemma 2 in section § 1.1.3)
3. Hence, it has a continuation conjugated to the initial one. (See Claim 1.1 in section
§ 1.1.4)
4. Therefore, that topolog ical property of separation persists. (See Lemma 4 in section
§ 1.1.5)
Finally, since the initial system has the pre-orbit of any point dense, the perturbed has
the pre-orbit o f any point “almost” dense. Then using the geometrical appro ach as above
we conclude the density of the pre- orbit of any point .
§ 1.1.3 Existence of a Locally Maximal Set for f
Lemma 2 Either Λ
1
is a locall y m aximal set or there exists Λ
∗
an expanding locally
maximal set for f such that Λ
1
⊂ Λ
∗
and Λ
∗
veriﬁes that every arc γ in U
c
0
with diameter
greater than δ
0
has a point such that the image by f belongs to Λ
∗
. Moreov e r, every arc γ
in U
c
1
with diameter greater than δ
0
intersects Λ
∗
.
Proof. We may divide the proof in two cases:
Case I . Λ
1
∩ ∂U
1
= ∅.
Let us observe that Λ
1
∩∂U
1
= ∅ implies that Λ
1
is contained in the open neighbor hood
V = int(U
c
1
). Then V is an isolating block for Λ
1
, therefore Λ
1
is locally maximal.
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Case II. Λ
1
∩ ∂U
1
= ∅.
Choose ε > 0 suﬃciently small such that the open ball B
ε
(x) is cont ained in U
c
0
for all
x ∈ Λ
1
and for every x ∈ Λ
1
, since f is a local diﬀeomorphism, there exists an open set U
x
such that f |
U
x
: U
x
→ B
ε
(x) is a diﬀeomorphism. No t e that the collection {B
ε
(x)}
x∈Λ
1
is
an open cover of Λ
1
. Since Λ
1
is compact, there is a ﬁnite subcover, let us say {B
ε
(x
i
)}
N
i=1
.
Fix λ
−1
0
< λ
′
< 1, where λ
0
is the expansion constant of f and pick N
′
greater or
equal to N, the cardinal of the ﬁnite subcover of Λ
1
, such that for every y ∈ Λ
1
, there is
i = i(y) ∈ {1, . . . , N
′
} such that B
λ
′
ε
(y) ⋐ B
ε
(x
i
), i.e. B
λ
′
ε
(y) ⊂ B
ε
(x
i
).
Let us deﬁne W =
N
′

i=1
B
ε
(x
i
) a nd

W =
N
′

i=1
B
ε
(x
i
).
By remark (1.13) Λ
1
is invariant, then we have that for every x
i
, there exists at least
one x
j
i
∈ Λ
1
such that f(x
j
i
) = x
i
. Let us consider for every 1 ≤ i ≤ N
′
all the possible
pre-images by f of x
i
that belongs to Λ
1
, i.e. recall that f is a local diﬀeomorphism,
hence for every point x ∈ M, the cardinal ♯{f
−1
(x)} = N
f
is constant, then for every
i ∈ {1, . . . , N
′
}, there exist K
i
⊂ {1 , . . . , N
f
} such that if j ∈ K
i
then x
j
i
∈ Λ
1
and
f( x
j
i
) = x
i
. Therefore fo r every i ∈ {1, . . . , N
′
} and for every j ∈ K
i
, there exist open sets
U
j
i
such that x
j
i
∈ U
j
i
and f |
U
j
i
: U
j
i
→ B
ε
(x
i
) is a diﬀeomorphism. Given i ∈ {1, . . . , N
′
},
for every j ∈ K
i
consider the inverse branches, ϕ
i,j
: B
ε
(x
i
) → U
j
i
such that
ϕ
i,j
(x
i
) = x
j
i
,
fϕ
i,j
(x) = x, ∀x ∈ B
ε
(x
i
).
Now, consider Λ
∗
=

n≥0
f
−n
(

W ). Clearly, Λ
1
⊂ Λ
∗
⊂ U
c
0
and Λ
∗
is an expanding
set. In order to show that Λ
∗
is locally maximal, it is enough to show that Λ
∗
∩ ∂

W = ∅,
which is equivalent showing that f
−1
(

W ) is contained in W. Just to make more clear what
follows, let us rewrite f
−1
(

W ) in terms of the inverse branches,
f
−1
(

W ) = f
−1
(
N
′

i=1
B
ε
(x
i
)) =
N
′

i=1

j∈K
i
ϕ
i,j
(B
ε
(x
i
)).
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So, it is enough to show that ϕ
i,j
(B
ε
(x
i
)) ⊂ B
ε
(x
m
i,j
), for some x
m
i,j
∈ {x
1
, . . . , x
N
′
}.
In fact,
ϕ
i,j
(B
ε
(x
i
)) = U
j
i
⊂ B
λ
−1
0
ε
(ϕ
i,j
(x
i
)) ⊂ B
λ
′
ε
(ϕ
i,j
(x
i
)) = B
λ
′
ε
(x
j
i
)
then, there exists m
i,j
∈ {1, . . . , N
′
} such that B
λ
′
ε
(x
j
i
) ⋐ B
ε
(x
m
i,j
), and the assertion
holds. Easily follows that Λ
∗
has the property that every arc γ in U
c
0
with diameter la rger
than δ
0
has a point such that it s image by f belongs to it.
Λ
f
Figure 1.1: Λ
f
looks like a ne t which is an expanding set that “separates”
Remark 1.14 We want to highlig ht that for diﬀeomorphisms there exist examples
of hyperbolic sets that are not conta ined in any locally maximal hyperbolic set, see for
instance [Cro02] and [Fis06]. A similar construction seems feasible for endomorphisms.
The hypothesis (4) guarantees that Λ
1
is an invariant set. Moreover, we can co nsider a
ﬁnite covering {B
ε
(x
i
)}
N
′
i=1
for Λ
1
, with x
i
∈ Λ
1
, in such a way tha t for every point y ∈ Λ
1
,
there is x
i
such that B
λ
′
ε
(y) ⊂ B
ε
(x
i
). Thus we conclude that Λ
∗
is contained in the interior
of

W and therefore the expanding set Λ
1
is either locally maxima l or is contained in a
locally maximal expanding set.
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§ 1.1.4 Continuation of the Locally Maximal Set
Deﬁnition 1.13 (δ−pseudo orbit)
The sequence {x
n
}
n∈Z
is said to be a δ−pseudo orbit for f if d(f(x
n
), x
n+1
) ≤ δ for
every n ∈ Z.
Deﬁnition 1.14 (ε−shadowed)
We say that a δ−pseudo orbit {x
n
}
n∈Z
for f is ε−shadowed by a full orbit {y
n
}
n∈Z
for
f if d(y
n
, x
n
) ≤ ε for every n ∈ Z.
Deﬁnition 1.15 (Topological conjugacy)
f : M → M is topologically conjugate to g : N → N if there exists a homeomorphism
h : M → N such that h ◦ f = g ◦ h.
In o rder to ﬁx some notation for what follows, we will denote by Λ
f
the expanding
locally maximal set f or f, it means that Λ
f
is either Λ
1
, in the case it is locally maximal,
or it is Λ
∗
given in Lemma 2; and denote by U the isolating block of Λ
f
.
Claim 1.1 There exists V
1
(f) an open neighborhood of f in E
1
(M) such that if g ∈
V
1
(f), then g is expanding on Λ
g
=

n≥0
g
−n
(U) and there exists an homeomorphism
h
g
: Λ
g
→ Λ
f
that gives the topological conjugacy and h
g
is closed to the identity.
Proof. In order to get the conj ugacy we use the Shadowing Lemma for expanding
endomorphisms, see for instance [Liu91].
Since Λ
f
is an expanding locally maximal set for f, there exists β > 0 such that f is
expansive with constant β in Λ
f
.
Fix 0 < η < β. By the endomorphism version of the Shadowing Lemma, there exists
ε > 0 such that a ny ε−pseudo orbit for f within ε of Λ
f
is uniquely η−shadowed by a full
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orbit in Λ
f
.
Take N such that
N

j=0
f
−j
(U) ⊂ {q : d(q, Λ
f
) < ε/2}.
There exists a C
0
neighborhood V(f) of f such that fo r g in V(f)
N

j=0
g
−j
(U) ⊂ {q : d(q, Λ
f
) < ε/2}
and for any x ∈

N
j=0
g
−j
(U), we may consider {x
n
}
n∈Z
a full orbit for g, where x
0
= x,
getting that {x
n
}
n
is an ε−pseudo o rbit for f.
Let Λ
g
=

n≥0
g
−n
(U). Taking an open subset V
1
(f) of V(f) small enough in the C
1
topology, then f or g ∈ V
1
(f), Λ
g
is an expanding locally maximal set for g. If g is close
enough to f, then g is also expansive with constant β. Moreover, the Shadowing Lemma
also holds fo r g.
Take g ∈ V
1
(f). Given x ∈ Λ
g
, consider {x
n
}
n∈Z
a full orbit for g, where x
0
= x.
As {x
n
}
n
is an ε−pseudo orbit for f, there exists a unique full o r bit {y
n
}
n∈Z
for f with
y
0
= y ∈ Λ
f
that η−shadows {x
n
}
n∈Z
.
Let us deﬁne h
g
: Λ
g
→ Λ
f
by h
g
(x) = y, where y is given by the Shadowing Lemma.
By the uniqueness of the shadowing point, this map is well deﬁned. The continuity of h
g
follows from the shadowing lemma.
Moreover, h
g
◦ g = f ◦ h
g
. In fact, consider the sequence {z
n
}
n∈Z
where z
n
= g(x
n
) =
x
n+1
. This ε−pseudo-orbit is η−shadowed by a unique full orbit {w
n
}
n∈Z
for f, with
w
0
= w ∈ Λ
f
. Then, for every n ∈ Z,
d(w
n
, z
n
) = d(f
n
(w
0
), x
n+1
) = d(f
n
(h
g
(z
0
)), g
n
(g(x
0
)))
= d(f
n
(h
g
◦ g( x
0
)), g
n
(g(x
0
))) = d(f
n+1
◦ f
−1
◦ h
g
◦g(x
0
), g
n+1
(x
0
)) < η
Observe that f
−1
◦ h
g
◦ g(x
0
) = w
−1
is η−shadowing x
0
. So, by uniqueness, we have
that f
−1
◦ h
g
◦ g( x
0
) = y
0
; i.e. h
g
◦ g( x) = f ◦ h
g
(x).
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Since we can apply the Shadowing Lemma for Λ
g
using the same constants as in the
construction of h
g
, we deﬁne a map h
f
: Λ
f
→ Λ
g
such that h
f
◦ f = g ◦ h
f
. In fact,
if {y
n
}
n∈Z
is a full or bit for f with y
0
∈ Λ
f
, then it is an ε−pseudo orbit for g. Hence,
this pseudo orbit is uniquely shadowed by a full orbit {x
n
}
n∈Z
for g, with x
0
∈ Λ
g
. Thus,
h
f
(y
0
) = x
0
and d(y
n
, x
n
) < η f or every n ∈ Z; moreover, h
f
is continuous and satisﬁes
h
f
◦ f = g ◦ h
f
just as h
g
.
Next, let us verify t hat h
g
is one to one. Let p
1
, p
2
∈ Λ
g
be two points such that
h
g
(p
1
) = h
g
(p
2
). Note that d(f
n
(h
g
(p
1
)), g
n
(p
1
)) < η and d(f
n
(h
g
(p
2
)), g
n
(p
2
)) < η by
construction. Then h
g
(p
1
) is η−shadowed by p
1
and p
2
, which by uniqueness gives that
p
1
= p
2
.
Finally, for y ∈ Λ
f
, consider a full orbit of h
f
(y) by g. Since d(g
n
(h
f
(y)), f
n
(y)) is
small for all n and some f f ull orbit of y shadows the g full orbit of h
f
(y), we have that
h
g
(h
f
(y)) = y. Hence, h
g
is onto and therefore is a homeomorphism.
The next claim is a version for expanding endomorphisms that was already provided
for the case of hyperbolic diﬀeomorphisms in [R ob76, Theorem 4.1]. The goal is to show
that we can extend the conjugation between f|
Λ
f
and g|
Λ
g
to an open neighborhood U of
Λ
f
in such a way that still is an homeomorphism that conjugate f|
U
and g|
U
, noting that
the conjugation is unique just in Λ
f
. We are g oing to use this extension in next section
for proving the robustness of the property of Λ
f
disconnects a “nice” class of sets.
Claim 1.2 The homeomorphism h
f
: Λ
f
→ Λ
g
in claim (1.1) can be extended as an
homeomorphism H to an open neighborhood of Λ
f
such that H ◦ f = g ◦ H.
Proof. This g eometrical proof is inspired in t he proof given by Palis in [Pal68] and
also used to prove the Grobman-Hartman Theorem in [Shu87, pp.96].
Other alternative proof consist in using inverse limit space, by this an expanding
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endomorphism becomes a hyperbolic diﬀeomorphism and so Theorem 4.1 in [Rob76] could
be applied.
The goal is to choose U an isolating neighborhood of Λ
f
and to construct an homeo-
morphism fr om U ont o itself, using the inverse branches of f and g, and a fundamental
domain D
f
for f, i.e. for every x ∈ U \ Λ
f
, there exists n ∈ N such that f
n
(x) ∈ D
f
.
Observe that the isolating block of Λ
f
is also an isolating block of Λ
g
. Now we can take
in the same way a fundamental domain for g, D
g
. After it is taken an homeomorphism H
between both fundamental domains D
f
and D
g
. Then this homeomorphism is saturated
to U \ Λ
f
by backward iteration, i.e. if x ∈ U \ Λ
f
, let n be such that f
n
(x) ∈ D
f
, take
H ◦ f
n
(x) and then g
−n
◦ H ◦ f
n
(x) where g
−n
is taken carefully using the corresponding
inverse branches.
Denote by N
f
the cardinal of {f
−1
(x)}, since f is a local diﬀeomorphism, N
f
is cons-
tant. Let K ⊂ {1, . . . , N
f
} be such that for every i ∈ K, there exist U
f
i
⊂ U and
ϕ
f
i
: U → U
f
i
inverse branch of f such that ϕ
f
i
(U) = U
f
i
and f(U
f
i
) = f ◦ϕ
f
i
(U) = U. Also,
for g as in claim (1.1), for every i ∈ K, there exist U
g
i
⊂ U and ϕ
g
i
: U → U
g
i
the inverse
branch of g such that ϕ
g
i
(U) = U
g
i
and g(U
g
i
) = g ◦ ϕ
g
i
(U) = U.
We wish to construct a n homeomorphism H on U satisfying H ◦ f = g ◦ H and
H |
Λ
f
= h
f
. We can begin as follows. Suppose t hat the restriction H : ∂U → ∂U is any
well-deﬁned orientation preserving diﬀeomorphism. The restriction of H to ∂U
f
i
is then
deﬁned as follows H(x) = ϕ
g
i
◦H ◦f (x) if x ∈ ∂U
f
i
because H conj ugate f and g. Extend
H to a diﬀeomorphism which send U \∪
i∈K
U
f
i
bounded by ∂U and ∂U
f
i
onto U \∪
i∈K
U
g
i
bounded by ∂U and ∂U
g
i
. We may assume that the Hausdorﬀ distance between U and
Λ
f
is small, see Lemma 2, then the initial H is close to the identity. Let us say that
d(H(x), x) < η, where η > 0 is given arbitr arily.
Given i, j ∈ K, denote U
f
j,i
= ϕ
f
j
◦ ϕ
f
i
(U) and U
f
2 i
= U
f
i
\

j∈K
U
f
j,i
. If x ∈ ∂U
f
j,i
then
H(x) = ϕ
g
j
◦ ϕ
g
i
◦ H ◦ f
2
(x) ∈ ∂U
g
j,i
. If x ∈ U
f
2 i
\ Λ
f
then H(x) = ϕ
g
i
◦ H ◦ f (x) ∈ U
g
2 i
.
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Doing this process inductively we have that: Given i
1
, . . . , i
n
∈ K, denote U
f
i
n
,...,i
1
=
ϕ
f
i
n
◦···◦ϕ
f
i
1
(U) and U
f
n (i
n−1
,...,i
1
)
= U
f
i
n−1
,...,i
1
\

i
n
∈K
U
f
i
n
,...,i
1
. If x ∈ ∂U
f
i
n
,...,i
1
then H(x) =
ϕ
g
i
n
◦···◦ϕ
g
i
1
◦H ◦f
n
(x). If x ∈ U
f
n (i
n−1
,...,i
1
)
\Λ
f
then H(x) = ϕ
g
i
n−1
◦···◦ϕ
g
i
1
◦H ◦f
n−1
(x).
And H(x) = h
f
(x) if x ∈ Λ
f
.
Let us prove that H is continuous.
Given x ∈ Λ
f
, let (x
n
)
n
be a sequence in U \ Λ
f
such that x
n
→ x, when n → ∞. Let
us prove that H(x
n
) → H(x), when n → ∞.
First, consider {z
k
}
k∈Z
an f −full orbit in Λ
f
such that z
0
= x and for every n ∈ N,
consider {z
n
k
}
k∈Z
a full o rbit by f associated to each x
n
using t he corresponding inverse
branches (for the backward itera t es) given by the full orbit of x, where z
n
0
= x
n
. Since f
is continuous, for every k ∈ Z, we have that z
n
k
→ z
k
when n → ∞.
Note that for every n ∈ N, there exists k
n
> 0 such that z
n
k
n
∈ U \∪
i∈K
U
f
i
. Furthermore,
z
n
k
∈ U for every k ∈ [−k
n
, k
n
]. Since H ◦ f = g ◦ H, we get that H(x
n
) ∈

k
n
k=−k
n
g
k
(U).
Hence, for η and ε as in claim (1.1) and for every n ∈ N, we have that {z
n
k
}
k
n
k=−k
n
is
a ﬁnite ε−pseudo orbit for g and it is η−shadowed by a g−orbit of H(x
n
) until k
n
for
forward itera t es and −k
n
for backward iterates.
Observe that as m goes to inﬁnity, the ﬁnite pseudo orbit y
m
n
= {z
n
k
}
m
k=−m
becomes
longer. Consider now the sequence {y
m
n
}
n
. Then y
m
n
→ {z
k
}
m
k=−m
when n → ∞. Hence,
the sets of shadowing points of the ﬁnite pseudo orbits y
k
n
n
converge to the shadowing
point of the inﬁnite pseudo orbit {z
k
}
k
, then H(x
n
) → h
f
(x) = H(x) when n → ∞.
§ 1.1.5 The Locally Maximal Set “Separates”
The main goal of this section is to show that the locally maximal set for f has a topo-
logical property that persist under perturbation, roughly speaking means that Λ
f
and Λ
g
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disconnect small open sets. We prove that Λ
f
intersects “some nice” class of arcs in U
c
1
and which Λ
g
also intersects f or all g nearby f. The ﬁrst question that a r ise is: which
arcs belong to this “nice” class?, the second questions in the context of proving the Main
Theorem is: why is this property enough? and the third question is: why do the “nice
class” exist? All these questions are answered along the section, but to give some brief
insight about the main ideas observe that:
1. These “nice” arcs have the property that we can build a “nice cylinder” (see deﬁnition
1.18) containing the initial arc and Λ
f
“separates” (see deﬁnition 1.20) this cylinder
in a “robust way”.
2. It is enough t o consider these “nice” class of arcs to ﬁnish the proof of the Main
Theorem. Suppose we have the existence of this class of a r cs and suppose that given
any open set there is an iterate by g that has a “nice” arc. Then there is a point in
this iterate which its forward orbits stay in the expanding region, hence the internal
radius growth until a ﬁxed radius in ﬁnitely many it era t es. It allows us to conclude
the density of the pre-orbit of any point by the perturbation, just noting t hat the
density of every pre-orbit by the initial map implies ε−density of the pre-orbit by
the perturbed map.
3. We show in claim (1.3) that ever y large arc admits a “nice” arc.
Let us deﬁne the concepts involved in this section.
Deﬁnition 1.16 (Cylinder)
Given γ a diﬀerentiable arc and r > 0, it is said that C(γ, r) is a cylinde r centered at
γ with radius r if
C(γ, r) :=

x∈γ
([T
x
γ]
⊥
)
r
,
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where ([T
x
γ]
⊥
)
r
denotes the ball B
r
(x) centered at x with ra dius r intersected with [T
x
γ]
⊥
the orthogonal to the tangent to γ in x.
Deﬁnition 1.17 (Simply connected cylinder)
Given γ a diﬀerentiable arc and r > 0, it is said that a cylinder C(γ, r) is simply
conn ected if it is retractile to a point.
Remark 1.15 Fixed the radius, the cylinder could be not retractile to a po int. In
this case, working in the universal covering space, consider the convex hull of its lif t and
then project it on the manifold. We call the resulting set as simply con nected cylinder as
well and denote in the same way as above.
Deﬁnition 1.18 (Nice cylinder)
Given γ an arc and r > 0, it is said that a cylinder C(γ, r) is a nice cylinder if it
is simply connected cylinder and if x
A
and x
B
are the extremal points of γ then A :=
([T
x
A
γ]
⊥
)
r
⊂ ∂C(γ, r) and B := ([T
x
B
γ]
⊥
)
r
⊂ ∂C(γ, r). In this case, we say that A and B
are the top and bottom sides of the cylinder.
Remark 1.16 Note that in general a cylinder does not have top and bottom sides
and does not be simply connected.
Hereafter, ﬁx U
2
an open set such that U
1
⊂ U
2
and δ
0
< diam
int
(U
c
2
) < diam
int
(U
c
0
).
Let d
1
= d
H
(U
2
, U
1
) > 0, where d
H
denotes the Hausdorﬀ metric, and let k ∈ N such that
δ
′
0
= δ
0
+
d
1
3k
< diam
int
(U
c
2
).
Let us denote by

U the lift of U
0
, π the projection of R
n
onto M and U
0
the convex
hull of

U ∩ [0, 1]
n
. Consider P
i
(U
0
) the projection of U
0
in the i−th coordinate in the
n−dimensional cube [0, 1]
n
. Since diam
ext
(U
0
) < 1 and remark (1.8), for every 1 ≤ i ≤ n,
there exist 0 < k
−
i
< k
+
i
< 1 such that k
−
i
< P
i
(U
0
) < k
+
i
. Note that 1 + k
−
i
− k
+
i
> δ
′
0
for
every i, because 1 + k
−
i
− k
+
i
> diam
int
(U
c
0
) by construction.
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Let R
m
i
= {x ∈ R
n
: k
−
i
+ m < x
i
< k
+
i
+ m} with m ∈ Z, 1 ≤ i ≤ n and x
i
is the
i−th coordinate of x. Thus, U
0
⊂

m∈Z,1≤i≤n
R
m
i
. Denote by L
+
i
= {x ∈ R
n
: x
i
= k
+
i
} and
L
−
i
= {x ∈ R
n
: x
i
= k
−
i
}. Let
˜
f be the lift of f.
The next claim answer the third question stated at the beginning of the section.
Claim 1.3 Let m > 2
√
n be ﬁxed. Given any arc γ in R
n
with diam(γ) > m, t here
exist an arc γ
′
⊂ γ, 1 ≤ i ≤ n and j ∈ Z such that ∂γ
′
∩ (L
+
i
+ j), ∂γ
′
∩ (L
−
i
+ j + 1)
and P
j
i
(γ
′
) ⊂ [k
+
i
+ j, k
−
i
+ j + 1]. Moreover, γ
′
admits a nice cylinder, γ
∗
= π(γ
′
) is in U
c
2
,
diameter of γ
∗
is larger than δ
0
and γ
∗
also admits a nice cylinder contained in U
c
1
.
Proof. Take γ an arc with diameter larger than m, then t he projection of γ in the
i−th coordinate contains an interval of t he kind formed by k
+
i
and 1 + k
−
i
for some i
(or formed by k
+
i
+ j and k
−
i
+ j + 1 for some j ∈ Z). If it is not true, γ would be in
a n−dimensional cube with sides smaller than k
+
i
− k
−
i
< 1 and this cube has diameter
smaller than
√
n, but t his cont r adict the fact that diam(γ) > m. Hence, we may pick an
arc γ
′
in γ such that ∂γ
′
∩ L
+
i
+ j, ∂γ
′
∩ L
−
i
+ j + 1 and P
j
i
(γ
′
) ⊂ [k
+
i
+ j, k
−
i
+ j + 1]
for some 1 ≤ i ≤ n and some j ∈ Z. Therefore, diameter of γ
′
is greater than δ
0
and in
consequence its projection in M also has diameter greater than δ
0
.
Moreover, since the property of the arc γ
′
to have a projection in between k
+
i
+ j and
k
−
i
+1 +j, we may construct a cylinder centered at γ
′
and radius
d
1
2
such that this cylinder
is “f ar” away fro m

U, so this cylinder could b e simply connected or, if it is not simply
connected cylinder, it has ho les that are diﬀerent from

U. In the case that the cylinder
is not simply connect ed, we consider the convex hull of the cylinder, since the original
cylinder is bounded by L
+
i
+ j a nd L
−
i
+ j + 1, then the convex hull stay in between these
two hyperplanes and therefore it does not intersect

U. By abuse of notation, let us denote
this set by C(γ
′
,
d
1
2
), it is a simply connected cylinder. Observe tha t by construction, this
cylinder will have top and bottom sides, thus C(γ
′
,
d
1
2
) is a nice cylinder.
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Take γ
∗
= π(γ
′
), note tha t γ
′
can be choose such that γ
∗
is cont ained in U
c
2
and the
diameter of γ
∗
is larger than δ
0
, then proj ecting the nice cylinder for γ
′
in M we obtain a
nice cylinder for γ
∗
which is denoted by C(γ
∗
,
d
1
2
). This nice cylinder ha s the property that
every arc that goes from bottom to top side has diameter at least δ
0
and all this process
can be made in such a way that the nice cylinder is in U
c
1
.
Figure 1.2: Nice cylinders
Deﬁnition 1.19 (Lateral border)
Given γ a diﬀerentiable arc and r > 0. The lateral bord e r S of the cylinder C(γ, r) is
∂C(γ, r) minus the t op and bottom sides of t he cylinder if they exist.
Deﬁnition 1.20 (Separated horizontally)
We say that a nice cylinder C(γ, r) is separated horizontally by a set Λ if there exists a
connected component of Λ such that intersects the nice cylinder across the latera l border
and C(γ, r) minus that connected component of Λ has at least two connected component.
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Now, we are going to prove that the locally maximal set for f, found in section § 1.1.3,
has the geometrical property o f separating horizont ally these nice cylinders of a certain
radius.
Lemma 3 Given any arc γ i n U
c
2
with diame ter greater than δ
0
that admits a nice
cylinder as in claim (1.3) holds that Λ
f
separates horizontally this nice cylinder.
Proof. Let us denote by T the nice cylinder associated to γ as in the statement and
let A and B denote the top and bottom sides of T respect ively. Let ε > 0 be arbitrarily
small.
Let T
′
be a bigger cylinder containing T joint together with two security regions, denote
by S
A
and S
B
, and such that the distance between the lateral border of T and the lateral
border of T
′
is small, for instance d
H
(T, T
′
) =
d
1
6k
, see ﬁgure (1.3). For security regions S
A
and S
B
we means two strips of
d
1
6k
thickness glued to the sides A and B of T , or in other
words, S
A
(respectively S
B
) is the set of points in T
c
such that the distance from these
points to A (respectively B) is less or equal to
d
1
6k
. This set T
′
was constructed in such a
way that its diameter is greater than δ
′
0
.
Since γ is in U
c
2
and diameter is greater than δ
0
, we can assure that T ∩ Λ
f
is non
empty. Consider all the connected components of T ∩Λ
f
. For every x ∈ T ∩Λ
f
, we assign
K
x
the connected component of T ∩ Λ
f
that contains x. Observe that we may deﬁne an
equivalence relatio n: x ∼ x
′
if and only if K
x
= K
x
′
. Then we pick one component from
each class, or in other words we pick just the connected components that are two by two
disjoints.
We claim that Λ
f
separates T hor izontally. If there exists one component K
x
that
separates T horizontally in more than one connected component , the assertion holds.
Suppose it does not happen, i.e. none of the K
x
separates T horizontally. Take U
x
open set in T
′
such that K
x
⊂ U
x
, ∂U
x
∩ Λ
f
= ∅, ∂U
x
is connected and ∂U
x
does not
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divides T horizontally. If there are many K
y
accumulating in one K
x
, then we could have
a same open set U
x
containing more than one connected component K
y
.
Observe that the collection {U
x
} is an open cover of T ∩Λ
f
. Since it is compact, there
is a ﬁnite sub cover {U
i
}
N
i=1
, i.e. T ∩ Λ
f
⊂ U = ∪
N
i=1
U
i
.
If the connected components of U does not separates horizontally T, it is easy to cons-
truct a curve going from A to B with diameter greater than δ
0
and empty intersection
with the U
i
’s; hence, this curve does not intersects the set Λ
f
. But this contradicts the
fact that every curve in U
c
1
with dia meter larger than δ
0
intersects Λ
f
. Then the connected
components of U separate T horizontally, denote by C
j
the connected components of T
minus these connected components of U that separates T horizontally.
Observe that every C
j
is path connected, since they are the complement of a ﬁnite
union of open sets in a simply connected set T . There exist a ﬁnite quantity of C
j
, let us
say m. We can reorder these sets enumerating from the top side. If we denote by V
j
each
of the connected compo nents of T ∩ U that separate T horizontally, we have two cases,
either C
j
is in between two consecutive V
j
and V
j+1
(or V
j−1
and V
j
) o r C
j
just intersects
one V
j
on the border.
The idea is to build a curve from top to bottom of T connecting C
j
with C
j+1
in such
a way that the diameter of the arc is greater than δ
0
but without intersecting Λ
f
, which
is an absurd because it is again in U
c
1
and has diameter greater t ha n δ
0
, then this curve
must intersects Λ
f
.
It is enough to show that we can pass from C
j
to C
j+1
without touching Λ
f
. For this,
we must observe tha t every V
j
is a union of ﬁnitely many U
i
, let us say U
i
1
, . . . , U
i
j
. Pick a
curve γ
j
in C
j
going from top to bottom, i.e. γ
j
goes from ∂V
j
to ∂V
j+1
(or ∂V
j−1
and ∂V
j
)
and γ
j
does not intersects the interior of V
j
and V
j+1
(or V
j−1
and V
j
), then there exists
i
s
∈ {i
1
, . . . , i
j
} such that γ
j
∩∂U
i
s
= ∅. After that continue this arc picking a curve follow-
ing by the border o f U
i
s
until C
j+1
, which has empty intersection with Λ
f
by construction,
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if it is not possible to do in one step, pick a nother U
i
k
and repeat the process. Note t ha t
this process ﬁnish in ﬁnitely many times. The resulting arc from j oint together all this
segment has diameter greater than δ
0
and with empty intersection with Λ
f
as we wanted.
Figure 1.3: Λ
f
splits ”horizontally” every nice cylinder in at least two connected com ponen t
Remark 1.17 In claim (1.1), remembering that d(h, id) < η, we may ﬁx η < min{
d
1
6k
, δ
0
, β}.
So for this η, there exists ε
0
> 0 given by the shadowing lemma and this determine V
1
(f)
given in claim (1.1).
Lemma 4 Given g ∈ V
1
(f) and given γ an arc in U
c
2
with diameter greater than δ
′
0
such that it admits a nice cylinder C(γ,
d
1
2
), then γ ∩ Λ
g
is not empty.
Proof. Let g ∈ V
1
(f), it means that g is an endomorphism within distance of f less
than ε
0
in the C
1
topology. Take γ an arc in U
c
2
with diameter greater than δ
′
0
such that
C(γ,
d
1
2
) is a nice cylinder.
By construction, we may assume that every a r c taken in the nice cylinder that goes
from top to bottom has diameter greater or equal to the diameter of γ. Take two security
regions inside the cylinder, in the to p and bottom sides of the cylinder respectively, with
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d
1
6k
of thickness each one, i.e. two strips glued to the top and bottom sides of the cylinder
such that each one is the set of points in the cylinder within distance to top (respectively
bottom) side less or equal to
d
1
6k
, see ﬁgure (1.4). Let us denote by C
′
the cylinder resulting
of taking out these two security strips from the original cylinder C( γ,
d
1
2
), then t he diameter
of C
′
is still greater than δ
0
.
Hence, the dia meter of γ
′
= γ ∩C
′
is greater than δ
0
and it is in U
c
1
. Lemma 3 implies
that Λ
f
separates horizontally C
′
, hence γ
′
intersects Λ
f
, let us denote by x
f
the point in
the intersection.
Since x
f
∈ Λ
f
, claim (1.1) and remark (1.17), there exists x
g
∈ Λ
g
∩B
η
(x
f
). Note that
Λ
f
separates B
η
(x
f
) in a t least two connected component. Hence, Λ
g
separates B
η
(x
f
) in
at least two connected component as well, because f |
U
and g |
U
are conjugated. There-
fore, Λ
g
must intersects γ.
Figure 1.4: Λ
g
intersects γ
§ 1.1.6 Getting Sets of Large Diameter
Lemma 5 There exist V
2
(f) and R > 0 such that for every g ∈ V
2
(f), if there is
x ∈ M such that g
n
(x) ∈ U
0
for every n ≥ 0, then there is ε
0
> 0 such that for eve ry
0 < ε < ε
0
, there exists N = N(ε) ∈ N such that B
R
(g
N
(x)) ⊂ g
N
(B
ε
(x)).
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Proof. We may pick U
3
an open subset contained in U
0
such that m{Df |
U
c
3
} > λ
′
,
with 1 < λ
′
< λ
0
. Take V
2
(f) an open subset perhaps smaller than V
1
(f) such that
m{Dg |
U
c
3
} > λ
′
holds for every g ∈ V
2
(f). Let us ﬁx R = d
H
(U
0
, U
3
) > 0.
Given 0 < ε < R, take N ∈ N such that (λ
′
)
−N
R < ε/2. Then B
(λ
′
)
−N
R
(x) ⊂ B
ε
(x).
Observe that B
R
(g
n
(x)) ∩ U
3
= ∅, for every n ≥ 0. Also,
g
k
(B
(λ
′
)
−N
R
(x)) = B
(λ
′
)
−N+k
R
(g
k
(x)) ⊂ B
R
(g
k
(x)),
for every 0 ≤ k ≤ N. In particular, g
k
(B
(λ
′
)
−N
R
(x)) ∩ U
3
= ∅, for every 0 ≤ k ≤ N. Then
g
N
(B
(λ
′
)
−N
R
(x)) = B
R
(g
N
(x)) ⊂ g
N
(B
ε
(x)).
Remark 1.18 Let us note that Lemma 5 holds for every point in Λ
g
.
Lemma 6 For every g ∈ V
2
(f) and given V an open path connected set in M, there
exists m
0
= m
0
(V, g) ∈ N such that diam(˜g
m
0
(

V )) > m, where ˜g and

V are the lift of g
and V, respectively. In particular, it contains an arc with diameter greater than m.
Proof. Let g ∈ V
2
(f) and V be an open path connected set in M. Since g is vo lume
expanding, let us say with expanding constant λ > 1, we have that vol(˜g
k
(

V )) > λ
k
vol(

V ),
for k ≥ 1. Iterating by ˜g, the volume increase and furthermore the diameter of its iterates
growth also in the cover ing space. Hence, there exists m
0
∈ N such that diam(˜g
m
0
(

V )) >
m.
Remark 1.19 For the case that V is an open connected set, observe that given a point
in V there exists an open ball centered in this point and conta ined in V such that it is
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path connected. Then we may apply Lemma 6 to this ball and obta in a similar statement
for V .
§ 1.1.7 Proof of The Main Theorem
Let f ∈ E
1
(T
n
) be such as in the statement . Lemma 2 implies that we may assume the
existence of Λ
f
an expanding locally maximal set for f.
Fix 0 < α < R, arbitra r ily small. Given x ∈ T
n
, since

i∈N
{f
−i
(x)} is dense, there
exists n
0
∈ N such that
n
0

i=0
{f
−i
(x)} is α/2-dense.
Take a neighborhood U(f) ⊂ V
2
(f), where V
2
(f) was given in Lemma 5, such that for
every g ∈ U(f) follows that
n
0

i=0
{g
−i
(x)} is α/2-close to
n
0

i=0
{f
−i
(x)}.
Hence,
n
0

i=0
{g
−i
(x)} is α-dense.
Let V be an open connected set in T
n
. By Lemma 6, there exists m
0
∈ N such that
diam(˜g
m
0
(

V )) > m. Then we may pick an arc γ in ˜g
m
0
(

V ) with diameter larger than
m and applying claim (1.3) fo llows that there exists a connected piece γ
′
of γ such that
γ
∗
= π(γ
′
) is in U
c
2
, diameter of γ
∗
is larger than δ
′
0
and it admits a nice cylinder C(γ
∗
,
d
1
2
).
By Lemma 4 follows that γ
∗
∩ Λ
g
is not empty, let y be a point in the intersection.
Hence, for this point y, there exists ε
0
= ε
0
(y) > 0 such that B
ε
0
(y) ⊂ g
m
0
(V ), by
Lemma 5 taking 0 < ε < ε
0
, we get that there exists N = N(ε) ∈ N such that
B
R
(g
N
(y)) ⊂ g
N
(B
ε
(y)) ⊂ g
m
0
+N
(V ).
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Hence, B
α
(g
N
(y)) ⊂ g
m
0
+N
(V ). Since the α−density, we have that
n
0

i=0
{g
−i
(x)} ∩ B
α
(g
N
(y)) = ∅.
Therefore, denoting by p = m
0
+ N,
n
0

i=0
{g
−i
(x)} ∩ g
p
(V ) = ∅.
Taking the p−th pre-image by g, we obtain that there is i
0
∈ N such that
i
0

i=0
{g
−i
(x)} ∩ V = ∅.
Thus, for every g ∈ U(f ) follows that

i∈N
{g
−i
(x)} is dense in T
n
for every x ∈ T
n
.
B
ε
0
(y)
B
α
(g
N
(y))
B
R
(g
N
(y))
γ
∗
Figure 1.5: Iterations by the perturbed map
§ 1.1.8 The Main Th eorem Revisited
In this section, we enunciate a weaker ver sion of the Main Theorem. Observe that using
hypothesis (3) and (4) of the Main Theorem, we showed in sections § 1.1.3 and § 1.1 .5 the
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existence of a locally maximal expanding set for f which separates large nice cylinders,
and by section § 1.1.4 follows that this geometrical property persist under perturbation,
i.e. there is a set Λ
f
locally maximal which intersects a nice class of arcs in U
c
0
and
this property also holds fo r the perturbed. The hypothesis of f being volume expanding
guarant ees that given any open set in the covering space, we are able to choose some
iterates such that it contains an arc with diamet er big enough to apply claim (1.3) and
Lemma 3. Hence, the Main Theorem may be enunciated in a weaker version as fo llows:
Main Theorem Revisited Let f ∈ E
1
(T
n
) be volume expandi ng such that the p re-
orbit of every point are dense. Suppose that there exist an open set U
0
with diam
ext
(U
0
) < 1
and Λ
f
a locally maximal expanding set for f in U
c
0
such that every arc γ in U
c
0
with
diameter large enough intersect Λ
f
. Then, the pre-orbit of every point are C
1
robustly
dense.
Remark 1.20 Observe that the Main Theorem implies the Main Theorem Revisited,
the reciprocal could be false. The hypotheses of the Main Theorem assures the existence
of a nice Λ
f
with certain geometrical properties, but there might exist weaker conditions
that guarantee the existence of such a set.
§ 1.2 Volume expanding endomorphisms with invariant
splitting
Deﬁnition 1.21 (Unstable cone family)
Given f : M → M a local diﬀeomorphism, let V be an open subset of M such that
f|
V
is a diﬀ eomor phism ont o its image. Denote by ϕ the inverse branches of f restricted
to V ; more precisely, ϕ : f(V ) → V such that f ◦ϕ(x) = x if x ∈ f(V ). A continuous cone
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ﬁeld C
u
= {C
u
x
}
x
deﬁned on V is called unstable if it is forwa r d invariant:
Df(x
′
) C
u
x
′
⊂ C
u
f(x
′
)
for every x
′
∈ V ∩ ϕ(V ).
Remark 1.21 Given a point x, there is not necessarily a unique unstable subbundle,
i.e. fo r each inverse path {x
k
}
k≥0
, it means x
0
= x and f(x
k+1
) = x
k
for k ≥ 0, there
exists an unstable direction belonging to C
u
.
Deﬁnition 1.22 (Complementary splitting )
We say that a splitting E
c
x
+ C
u
x
is comple mentary if the unstable cone C
u
x
contains an
invariant subspace whose dimension is equal to t he dimension of the manifold minus the
dimension of the central subbundle.
Deﬁnition 1.23 (Partially hyperbolic endomorphism with expanding
extremal direction)
It is said that an endomorphism f is partially h yperbolic with expandi ng extremal di-
rection provided the tang ent bundle splits into two non-trivial subbundles T M = E
c
⊕E
u
which are invariant under the t angent map Df, i.e. for every x ∈ M, there exists a com-
plementary splitting E
c
x
+ C
u
x
, where {C
u
x
}
x
is a family of unstable cones, and there exists
0 < λ < 1 such tha t for every inver se branches ϕ of f follows that
1. Dϕ(x) v < λ, for all v ∈ C
u
x
.
2. Df(x
′
) |
E
c
(x
′
)
Dϕ(x)v < λ, for all v ∈ C
u
x
, where ϕ(x) = x
′
, f ( x
′
) = x.
§ 1.2.1 Theorem 2: Splitting Version
In section § 1 .1.1, we gives suﬃcient conditions for volume expanding local diﬀeomorphisms
without invariant subbundles be robustly transitive. Now, we state a version for the
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case when tangent bundle splits into two non-trivial subbundles, one with an expanding
behavior and the other one with nonunifo r m behavior but dominat ed by the expanding
one.
Theorem 2 Let f ∈ E
1
(T
n
) be a locally diﬀeomorphism partially hyperbolic with ex-
pand i ng extremal direction satisfying the following properties:
1. {f
−k
(x)}
k≥0
is dense for every x ∈ T
n
.
2. There exist δ
0
> 0, λ
0
> 1 and k
0
∈ N such that fo r every x ∈ T
n
, if γ is a dis c
tangent to the unstable co ne C
u
x
with internal diame ter larger than δ
0
, there exists a
point y ∈ γ such that m{Df
i
|
E
c
(f
k
(y))
} > λ
i
0
, for all i > 0, for all k > k
0
.
Then, f or every g close enough to f, { g
−k
(x)}
k≥0
is dense for every x ∈ T
n
.
§ 1.2.2 Proof of Theorem 2
The proof of Theorem 2 is pretty similar to the proof given in [PS06b], where it is proved
that any partially hyperbolic diﬀeomorphism satisfying a hypothesis like the one stated
in Theorem 2 and such that the strong stable fo liation is minimal, then the strong stable
foliation is r obust ly minimal. That property says that in any compact piece of the unstable
foliation, there exists a point such that the central bundle has uniform expanding behavior
along the forward o r bit , and this is exactly what we have. The key is to prove that this
property is robust under perturbation.
Given a local diﬀeomorphism f as in the statement of Theorem 2, we want to show
that any small perturbation g preserve the property of density of the pre-orbit of any
point. Our strategy is to prove that given any disc tangent to the unstable cones for g
with large enough internal diameter has a point such that the central direction along the
forward o rbit by g is uniformly expanding.
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Observe that given any open set, since we have a direction that is indeed expanding,
the diameter along the unstable direction o f the iterates growth. Then we are able to pick
a disc inside this iterate such that the disc is t angent to the unstable cones with diameter
large enough to apply the last property. Hence, there exists a point which its forward
orbit is expanding in all direction, then there is some iterat e such that it contains a ball
of a ﬁx radius ε.
Since g is close enough to f, we have that the pre-orbit by g are ε−dense. Therefore,
given any open set, by the property of the unstable discs, there exists an iterate such that
it intersects the pre-orbit by g of any point. Thus, we conclude the density of the pre-orbit
of any point by the perturbation.
Moreover, the proof of Theorem 2 can also be performed in the spirit of Main Theorem.
In fact, it is possible to show that

l≥0
f
−l
({x : m{Df
n
|
E
c
(f
k
(x))
} > λ
n
0
, n > 0, k > k
0
})
is an invariant expanding set such that separates unstable discs. This provides a geome-
trical interpretation.
§ 1.3 Remarks About the Main Theorem and Theorem 2
On regard the similarities between Main Theorem and Theorem 2, we must note that in
both theorems we assume that f is volume expanding, since we know by Theorem 1 that
volume expanding is a necessary condition in order to have robust transitivity. Also, we
assume that the pre-orbit by f of every point is dense, actually this hypothesis is stronger
than transitivity. Moreover, this hypothesis does not depend on the existence of splitting.
Besides, in the Main Theorem we asked for large arcs to contain points such that its
forward iterations remain in the expanding region. The same is required in Theorem 2 but
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just for unstable discs, and the equivalent for the splitting ver sion to say that the forward
orbit is “in an expanding region” is that the central bundle along the forward orbit of such
points has uniform expanding behavior.
The main diﬀerence in their proof arise from the fact that in the version with splitting,
since we know that we have uniform expansion in one direction, any disc with internal
diameter larger than δ
0
and tangent to this direction, growth until length δ
1
> δ
0
in a
bounded unifor m time, independently of the disc. Note that we cannot guarantee that
this happens just having volume expansion.
Observe that in the Main Theorem is not assumed that f does not have any splitting.
In fact, it could also be partially hyperbolic. However, knowing in adva nce that the
endomorphism is partially hyperbolic then it is possible to get suﬃcient conditions f or
robust transitivity weaker than the one requires by the Main Theorem.
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Exis tence of a semiconjugation to a
linear expanding endomorphism
In this chapter, we show some consequences fr om the Main Theorem. The main goals are
to study the properties of the semiconjugation between a linear expanding endomorphism
and an isotopic endomorphism to the initial one, and the relation between the Markov
Partition and Transitivity of these maps.
§ 2.1 Dynamical Consequences: Geometrical and Topological
Deﬁnition 2.1 (Totally disconnected set)
A set Λ is said to be totally disconnected if every point is a connected component.
By Lemma 3 we have that
Corollary 1 Λ
f
is not totally disconnected. Furthermore, Λ
f
intersects eve ry large
arc in U
c
0
. If the connected components of U
0
are simply connected, then Λ
f
is a basic set.
Remark 2.1 Since hypothesis (3) o f the Main Theorem, the connected components
of ∪
n≥1
f
−n
(U
0
) have diameter less than δ
0
.
35
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Remark 2.2 The fact of Λ
f
be expanding locally maximal set implies that there exists
a Markov Partition for this set.
§ 2.2 The Case f is Isotopic to a Linear Expanding
Endomorphism E
In this section, given an endomorphism f iso topic to a linear expanding endomorphism E,
we construct the semiconjugation between these two maps and study the properties of the
semiconjugation and the relation with the existence of Markov Pa r tition for f and how
it can help us to deduce if f is tr ansitive. Moreover, we are interested in the case t hat
we know that there exists an expanding locally maximal set Λ
f
with the properties given
in the Main Theorem and how this gives some informatio n about the Markov partition.
Finally, we pose some related questions.
§ 2.2.1 Existence of the Semiconjugation
Let E : T
n
→ T
n
be a linear expanding endomorphism and let f : T
n
→ T
n
be an
endomorphism isotopic to E.
Let us remember that the lift of f is given by
˜
f =

E + p, where

E ∈ SL(n, Z) (called
the linear part) is the lift of E and p is Z
n
−periodic isotopic to a constant.
Lemma 7 There exists a semiconjugation between
˜
f and

E; i.e. there exists H : R
n
→
R
n
continuous, onto and H ◦
˜
f =

E ◦ H. Moreover, there exists a constant K
1
> 0 such
that H − I < K
1
. Also, for any m ∈ Z
n
we have that H(x + m) = H(x) + m.
Proof.
Since
˜
f =

E + p and p is bounded, ﬁxing K > p, every full orbit { x
k
}
k∈Z
for
˜
f is a
K−pseudo-orbit for

E. In fact, given x in R
n
, we may associate a full orbit {x
k
}
k∈Z
for
˜
f,
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this means that
˜
f(x
k
) = x
k+1
and x
0
= x, then for every k ∈ Z follows that


E(x
k
) − x
k+1
 = 

E(
˜
f
k
(x
0
)) −
˜
f
k+1
(x
0
) = (

E −
˜
f) (
˜
f
k
(x
0
))
≤ 

E −
˜
f = p.
Note that

E is an expanding map and linear, therefore it has global product structure
and in consequence the (endomorphism version) shadowing lemma holds f or any pseudo
orbit of

E; that is, for any K > 0, there is K
1
= K
1
(K) > 0 such that for any pseudo
orbit, 

E( x
k
) − x
k+1
 < K for every k ∈ Z, there exists a unique y ∈ R
n
such that y
K
1
−shadows { x
k
}
k∈Z
. Then for every x there is a unique point y = H(x) such that


E
k
(H(x)) −
˜
f
k
(x) < K
1
, ∀ k ∈ Z. (2.1)
As a consequence of the shadowing lemma, the map H : R
n
→ R
n
is well deﬁned and
continuous. Furthermore, H ◦
˜
f =

E ◦ H and H − I < K
1
. Hence H is onto.
Now, given m ∈ Z
n
we have that


E
k
(H(x) + m) −
˜
f
k
(x + m) = 

E
k
(H(x)) +

E
k
(m) −[

E
k
(x + m) + p
k
(x + m)]
= 

E
k
(H(x)) − [

E
k
(x) + p
k
(x)]
= 

E
k
(H(x)) −
˜
f
k
(x) < K
1
, ∀ k ∈ Z.
Then by uniqueness follows that H(x + m) = H(x) + m.
Consider π : R
n
→ T
n
the canonical projection. Let us deﬁne h : T
n
→ T
n
by
h(π(x)) = π(H(x)). Hence, we have the f ollowing
Corollary 2 There exists a semiconj uga tion between f and E, i.e. there exists a map
h : T
n
→ T
n
continuous, onto and h ◦ f = E ◦ h.
Remark 2.3 The semiconjugation h has the following properties:




[image: alt]38 2. Existence of a semiconjugation to a linear expanding endomorphism
1. f transitive implies int(h
−1
(x)) = ∅ for every x ∈ T
n
. In fact, let us suppose
that there exists a point x such that the interior of h
−1
(x) is not empty, call
U =int(h
−1
(x)), so h(U)=x. Since f is t r ansitive, there is n > 0 such that f
n
(U)∩U
is nonempty. Then h(f
n
(U)) = E
n
(h(U)) = E
n
(x), hence h(f
n
(U)∩U) = x = E
n
(x).
Therefore, x is periodic and U is an open periodic set for f, but this is not possible
since f is tra nsitive.
2. h
−1
(x) is connected. Let π(˜x) = x, by the construction of h, h
−1
(x) is connected if
and only if H
−1
(˜x) is connected. So, let us suppose that H
−1
(˜x) is not connected,
then there exist ˜z, ˜y ∈ H
−1
(˜x) in two diﬀerent connected components, i.e. there
exists L hyperplane dividing R
n
in two component such that ˜z and ˜y are in diﬀerent
components. Since H(˜z) = H(˜y) = ˜x, we have that

E
n
(H(˜z)) =

E
n
(H(y)) =

E
n
(x),
for every n ≥ 0, then H(
˜
f
n
(˜z)) = H(

f
n
(˜y)). Hence, by (2.1), 
˜
f
n
(˜z) −
˜
f
n
(˜y) ≤

˜
f
n
(˜z)−H(
˜
f
n
(˜z))+ H(

f
n
(˜y))−
˜
f
n
(˜y) < 2K
1
. On the other hand, we have that for
any ˜w ∈ L, H( ˜w) = ˜x, then H(
˜
f
n
( ˜w)) − H(
˜
f
n
(˜z) ) = 

E
n
(H( ˜w)) −

E
n
(H(˜z)) ≥
λ
n
H( ˜w) −H(˜z), with λ > 1. Since 
˜
f
n
( ˜w) −
˜
f
n
(˜z)  ≥  H(
˜
f
n
( ˜w)) −H(
˜
f
n
(˜z) )−
H(

f
n
( ˜w)) −
˜
f
n
( ˜w) − H(

f
n
(˜z)) −
˜
f
n
(˜z)  ≥ λ
n
H( ˜w) − H(˜z) − 2K
1
, we have
that the distance between
˜
f
n
(˜z) and L goes to inﬁnity and the same happen for
˜
f
n
(˜y). So, the distance between
˜
f
n
(˜z) and
˜
f
n
(˜y) cannot be bounded contradicting
that 
˜
f
n
(˜z) −
˜
f
n
(˜y) < 2K
1
. Thus, H
−1
(˜x) is connected and therefore h
−1
(x) is
connected.
§ 2.2.2 Markov Partition and Transitivity
Let us deﬁne Markov Partition for an endomorphism
Deﬁnition 2.2 (Markov partition for endomorphism)
A Markov Partition for an endomorphism E : M → M is a family P = {R
1
, . . . , R
N
}
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of compact sets covering M such that:
1. For every 1 ≤ i < j ≤ N, R
i
∩ R
j
= ∂R
i
∩ ∂R
j
.
2. For all 1 ≤ i ≤ N, E |
int(R
i
)
is injective.
3. For all 1 ≤ i ≤ N, int(R
i
) = R
i
.
4. If E(R
j
) ∩ int(R
i
) = ∅, then R
i
⊂ E(R
j
).
Remark 2.4 All expanding endomorphism has a Markov Partition.
Let P
E
be a Markov Partition of the linear map E, denote by R
i
every element of the
partition. Then T
n
=

N
i=1
R
i
. Consider the fo llowing family
P
f
:= {h
−1
(R
i
) : i = 1, . . . , N}.
Claim 2.1 P
f
is a Markov Partition for f.
Proof. Let us denote by
˜
R
i
= h
−1
(R
i
).
• First, observe that int(R
i
)∩int(R
j
) = ∅ if i = j, so int(
˜
R
i
)∩int(
˜
R
j
) = h
−1
(int(R
i
))∩
h
−1
(int(R
j
)) = ∅. Then
˜
R
i
∩
˜
R
j
= ∂
˜
R
i
∩ ∂
˜
R
j
.
• f |
int(
˜
R
i
)
is a diﬀeomorphism. Let us suppose that f |
int(
˜
R
i
)
is not an homeomorphism.
So, take x, y ∈ int(
˜
R
i
) such that f(x) = f (y). Note that h(x) and h(y) belong to int(R
i
),
where E restricted to it is injective, then E ◦ h(x) = h ◦ f (x) = h ◦ f(y) = E ◦ h(y)
imply that h(x) = h(y). Pick a curve γ in int(
˜
R
i
) from x to y, then f(γ) is a curve with
homology, and therefore h(f( γ)) has homology also. On the other hand, h(γ) does not
have homology and E |
int(R
i
)
is an homeomorphism, then E(h(γ)) = h(f (γ)) does not have
homology as well.
• int(
˜
R
i
) =
˜
R
i
holds for all 1 ≤ i ≤ N.
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• If f(
˜
R
j
) ∩int(
˜
R
i
) = ∅, then
˜
R
i
⊂ f(
˜
R
j
). Suppose that y ∈ f(
˜
R
j
) ∩int(
˜
R
i
), therefore
h(y) = h ◦f (¯y) = E ◦h(¯y) belongs to E(R
j
) ∩int(R
i
), where ¯y ∈
˜
R
j
is such that f(¯y) = y.
Then holds that R
i
⊂ E(R
j
). Given ¯z ∈
˜
R
i
, there exist z ∈ R
i
and ˆz ∈ R
j
such that
¯z ∈ h
−1
(z) and E(ˆz) = z. Then ¯z ∈ h
−1
◦ E(ˆz) = f ◦ h
−1
(ˆz) , i.e. ¯z ∈ f (
˜
R
j
).
For what follows, we study the r eﬁnement o f the partition of f induced by t he semicon-
jugation and see what information can be deduced from it , such as under which condition
on the reﬁnement can be concluded that h is an homeomorphism. Moreover, we give
necessary and suﬃcient conditions on the reﬁnement that characterize the transitivity of
f.
Given a point x ∈ T
n
, denote by P
0
(x) t he element of the partition P
f
that contains
x. Let us consider a reﬁnement of the partition,
P
f
n
(x) = {y : f
k
(y) ∈ P
0
(f
k
(x)), k = 0, . . . , n}.
Claim 2.2 P
f
n
(x) = h
−1
(P
E
n
(h(x))) for every n ∈ N.
Proof. First observe that P
E
n
(h(x)) = {z : E
k
(z) ∈ R
0
(E
k
(h(x))), k = 0, . . . , n},
where R
0
(w) denote the element of the partition for E that contains w.
Let us show ﬁrst that h
−1
(P
E
n
(h(x))) ⊂ P
f
n
(x). Given z ∈ P
E
n
(h(x)), we have that
f
k
◦ h
−1
(z) = h
−1
◦ E
k
(z) ∈ h
−1
(R
0
(E
k
(h(x)))). Since E
k
(h(x)) = h(f
k
(x)), f
k
(h
−1
(z)) ∈
P
0
(f
k
(x)).
Now, let us prove the equality. Given y ∈ P
f
n
(x) follows that E
k
(h(y)) = h(f
k
(y)) ∈
h(P
0
(f
k
(x))). Therefo r e, E
k
(h(y)) ∈ R
0
(h(f
k
(x))) = R
0
(E
k
(h(x))). Thus, the equality
holds.




[image: alt]§ 2.2 The Case f is Isotopic to a Linear Expanding Endomorphism E 41
Let us deﬁne
P
f
∞
(x) :=

n≥0
P
f
n
(x).
Claim 2.3 P
f
n
(x) is a compact connected set for every n. Moreover, P
f
∞
(x) is a com-
pact connected set.
Proof. F ir st observe that
P
f
n
(x) = P
0
(x) ∩f
−1
(P
0
(f(x))) ∩ . . . ∩ f
−n
(P
0
(f
n
(x)))
and f
−1
(
˜
R
j
) ∩
˜
R
i
is a compact connected set contained in
˜
R
i
for every 1 ≤ i, j ≤ N. Then,
we get that P
f
1
(x) is a compact connected set. Let us assume that P
f
n−1
(x) is compact and
connected, then P
f
n
(x) = P
f
n−1
(x) ∩ f
−n
(P
0
(f
n
(x))) is a compact connected set, because
f
−n
(P
0
(f
n
(x))) has one connected component in P
f
n−1
(x) and it is compact as well.
Now, since {P
f
n
(x)}
n
is a nested sequence of compact and connected sets, we have that
P
f
∞
(x) is a compact connected set.
Claim 2.4 h is a conjugacy if and only if for every x ∈ T
n
, P
f
∞
(x) = {x}.
Proof. Take z ∈ P
f
∞
(x) and suppose that z and x are not equals. Since h is a
conjugacy, h(x) = h(z). Because E is a n expanding endomorphism, let us call λ
0
> 1 the
expanding constant, d(E
k
(h(x)), E
k
(h(z))) > λ
k
0
d(h(x), h(z)). Then, there exists k
0
> 0
such that E
k
(h(z)) ∈ R
0
(E
k
(h(x))) for all k ≥ k
0
. On the other hand, z ∈ P
f
∞
(x) implies
that h(z) ∈ P
E
n
(h(x)), consequently E
k
(h(z)) ∈ R
0
(E
k
(h(x))) for all k ≥ 0. Thus, x = z.
Now let us assume that P
f
∞
(x) = {x}. We have to prove that h is one-t o-one. Consider x
and y such that h(x) = h(y). Then h(y) ∈ P
E
∞
(h(x)). Thus, y ∈ h
−1
(P
E
∞
(h(x))) = P
f
∞
(x).




[image: alt]42 2. Existence of a semiconjugation to a linear expanding endomorphism
Question 2.1 How can transitivity be recovered from the partition?
Lemma 8 If the set of points {x : P
f
∞
(x) = {x}} is dense in T
n
, then f is transitive.
Proof. Let us suppose that {x : P
f
∞
(x) = {x}} is a dense set. So, it is enough
to show that given x in t hat set, P
0
(x) t he element of the partitio n that contain it
for ﬁnitely many iterates by f cover T
n
. Observe that f
n
(P
f
n
(x)) = P
0
(f
n
(x)). Then
f
n+1
(P
f
n
(x)) = f(P
0
(f
n
(x))) = T
n
.
Remark 2.5 Actually, if the set of points {x : P
f
∞
(x) = {x}} is dense in T
n
, then f
is locally eventually onto. In fact, given V an open set, there exists z ∈ {x : P
f
∞
(x) =
{x}} ∩ V. So, P
0
(z) ∩ V = ∅. Taking n large enough we get tha t P
f
n
(z) ⊂ V. Therefore,
f
n+1
(V ) = T
n
.
Question 2.2 In the case that f is isotopic to a linear expanding endomorphism E. If
f is transitive, does it imply that the pre-orbit of any point by f are dense? does it imply
that the set {x : P
f
∞
(x) = {x}} is dense in T
n
? Do they have total (Lebesgue) measure?
Question 2.3 Knowing that there exists an expanding locally maximal set Λ with
certain geometrical properties such as the ones given by the Main Theorem. What can it
be said about the Markov Partition?
Deﬁnition 2.3 (Physical measure)
An invariant Borel probability measure µ for a dynamical system f : M → M is said
to be a physical or Sinai-Ruelle-Bowen(SRB) measure if it s basin of attra ction,
B(µ) = B( µ; f) := {z ∈ M :
1
n
n−1

i=0
δ
f
i
(z)
→ µ weakly* as n → ∞},
has positive Lebesgue measure in M.
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Question 2.4 Does there exist physical measures? If there exists, is it unique?
Question 2.5 Since f is semiconjugated to E, by the Bowen’s formula, see [Bow71], we
get that the topological entropy of f is bounded by below by the topological entropy of the
linear map. There a r e examples, such as Derived from an expanding linear endomorphism
where the central direction is one dimensional, the to pological entropy of the original map
and the semiconjugated are equal. Are there examples such as the topological entropy of
the semiconjugated map is greater than the initial map’s entropy?
Remark 2.6 The linear expanding maps preserve volume, they are Lebesgue inva-
riant.
So, this make us ask the following:
Question 2.6 Is it possible to construct a map f satisfying the hypotheses of the
Main Theorem and being volume preserving?
Remark 2.7 If f satisfy the hypotheses of the Main Theorem and assuming that f
is C
2
and volume preserving, then f is ergodic respect to Lebesgue measure.
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Exis tence of Robust Transitive
Endomorphism s
In this chapter we show that there exist examples of robust transitive endomorphisms
verifying the hypotheses o f our main results.
§ 3.1 Example 1: Applying Main Theorem
Consider E : T
n
→ T
n
an expanding endomorphism, with n ≥ 2. Note that taking a
large m > 1 , E
m
has the topological degree to the power m − th elements in the Markov
Partition, so without loss of generality we may assume that the initial map has many
elements in t he partition. More precisely, if N = deg(E), we may assume that N is large
and ther efore the Markov partition has N elements. Denote by R
i
the elements of the
partition, with 1 ≤ i ≤ N; R
i
is closed, int(R
i
) is nonempty and int(R
i
) ∩ int(R
j
) = ∅ if
i = j.
Now, consider ψ : T
n
→ T
n
a map isotopic to the identity and denote by

R
i
= ψ(R
i
)
for every i. The idea o f using this map is to deform the elements of the Markov partition
and get a new partition which elements are not all of the same size, there could be some
45
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very small, others very big.
Set U
0
an open set in T
n
such that if

U is the convex hull of the lift of U
0
, then

U ∩[0, 1]
n
is cont ained in the interior of [0, 1]
n
, i.e. diam
ext
(U
0
) < 1. Note that there exist

R
i
such
that

R
i
∩U
0
is nonempty. We ask one more condition for U
0
, there are many

R
i
contained
in U
c
0
, this condition is feasible since we asked for the initial map to have many elements
in the partition.
ψ
R
i

R
j
Figure 3.1: Deforming the initial Markov Partition
Deﬁne f
0
: T
n
→ T
n
by f
0
= ψ ◦ E. We assume that there exist p ∈ U
0
and q
i
∈ U
c
0
ﬁxed points for f
0
, with 1 ≤ i ≤ n − 1, this is possible because we may start with an
expanding map which has as many ﬁxed points as we need.
Let us suppose that p and q
i
are expanding by f
0
in all directions, it means that all
the eigenvalues associated to t hese point s are in modulus greater than 1. Pick ε > 0 small
enough such that B
ε
(q
i
) ∩ U
0
= ∅ and B
ε
(q
i
) ∩ B
ε
(q
j
) = ∅ if i = j.
Let us denote the decomposition of the tangent space as follows
T
x
(T
n
) = E
u
1
≺ E
u
2
≺ ··· ≺ E
u
n−1
≺ E
u
n
,
where ≺ denotes that E
u
i
dominates the expanding behavior of E
u
i−1
.
Next we deform f
0
by a smooth isotopy support ed in U
0
∪ (

B
ε
(q
i
)) in such a way
that:
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1. The continuation of p goes through a pitchfork bifurcation, appearing two periodic
points r
1
, r
2
, such that both are repeller and p becomes a saddle point. But the new
map f still expand volume in U
0
.
2. Two expanding eigenvalues of q
i
become complex expanding eigenvalues. More pre-
cisely, we mix the two expanding subbundles of T
q
i
(T
n
) corresponding to E
u
i
(q
i
) and
E
u
i+1
(q
i
), obtaining T
q
i
(T
n
) = E
u
1
≺ E
u
2
≺ ··· ≺ F
u
i
≺ E
u
n−1
≺ E
u
n
, where F
i
is two
dimensional and correspond to the complex eigenvalues.
3. Outside U
0
∪ (

B
ε
(q
i
)), f coincides with f
0
.
4. f is expanding in U
c
0
.
5. There exists σ > 1 such that |det(Df( x))| > σ for every x ∈ T
n
.
p
q
i
Figure 3.2: f isotopic to f
0
§ 3.1.1 Property of Large Arcs
Claim 3.1 Every large arc in U
c
0
has a point such that its forward orbits remain in
U
c
0
.
Proof. Take d t he maximum of the diameter of the elements of the par t it ion contained
in U
c
0
. Note that every a r c in U
c
0
with diameter lar ger t han d cannot be contained in the
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interior of any element of the partition, more precisely has to intersect at least two elements
of the partition. Hence, the image by f of this a rc γ has diameter 1. So there exists a
piece of f (γ) in U
c
0
intersecting at least o ne element of the partition across two parallel
sides, let us call γ
1
. Choose a pre-image of γ
1
in γ a nd call it γ
1
.
Repeating the process for γ
1
, we have that there is γ
2
a piece of f(γ
1
) verifying t he
same condition as γ
1
. Then, choose γ
2
a pre-image of γ
2
by f
2
in γ.
Thus, we construct a sequence of nested arcs in γ. The intersection is non empty, a
point in this intersection satisfy our claim.
§ 3.1.2 Remarks About Example 1
1. q
i
’s ar e ﬁxed points for f with complex expanding eigenvalues. Note that the exis-
tence of these points ensures that the ta ngent bundle does not admit any invariant
subbundle. We could also start with an expanding map having, besides p, periodic
points q
i
with complex eigenvalues. In such a case, it is enough to make p goes
through a pitchfork bifurcation.
2. This example shows that U
0
can be as big as we desired while it veriﬁes the hypothesis
of having external diameter less than 1.
3. It can be constructed in any dimension.
§ 3.2 Example 2: Applying the Main Theorem Revisited
Let us consider E : T
n
→ T
n
an expanding endomorphism, with n ≥ 2. Assume that the
initial map has many elements in the Markov partition, let us say N element s.
Denote by R
i
the elements of the partition, with 1 ≤ i ≤ N. Since E is expanding, R
i
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are closed, int(R
i
) are no nempty and int(R
i
) ∩int(R
j
) = ∅ if i = j. Choose ﬁnitely many
of these elements, {R
i
j
}
k
j=1
, such that R
i
j
∩ R
i
s
= ∅ if i
j
= i
s
, i.e. they are two by two
disjoints. Consider the pre-images of every R
i
j
, let us say E
−1
(R
i
j
) = {P
l
i
j
}
N
l=1
. Denote by
P
0
i
j
= R
i
j
. Next, we keep P
r
i
j
such that P
r
i
j
∩ P
l
i
s
= ∅ whenever 0 ≤ r = l ≤ N and i
j
= i
s
.
Finally, let us denote by {P
i
}
i
the collection of these latter subsets, so they are two by
two disjoint s.
Figure 3.3: {P
i
}
i
collec tion
Now, consider ψ : T
n
→ T
n
a map isotopic to the identity and denote by

P
i
= ψ(P
i
)
for every i.
Choose

P
i
an open connected subset such that its closure is contained in the interior
of

P
i
. Let φ
i
: T
n
→ T
n
be a map isotopic to the identity such that
• φ
i
|

P
i
is not expanding.
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• φ
i
|

P
c
i
is the identity.
Deﬁne φ : T
n
→ T
n
by
φ(x) =



φ
i
(x), if x ∈

P
i
x, if x ∈

i

P
i
Hence, φ is equal to the identity in [

i

P
i
]
c
, expands volume but is not expanding in

i

P
i
.
Once we have deﬁned all these maps, we consider the map f = φ ◦ψ ◦E from T
n
onto
itself and denote by U
0
= int(

i

P
i
). Observe tha t f veriﬁes that:
(i) f is a volume expanding endomorphism.
(ii) f is an expanding ma p in U
c
0
.
(iii) Λ
f
=

n≥0
f
−n
(U
c
0
) is an expanding locally maximal set for f which has the property
that separate large nice cylinders.
Since (i) and (ii) are immediate fr om the construction of f, we concentrate our interest
in to prove (iii).
§ 3.2.1 Λ
f
Separates Large Nice Cylinders
Note that by the construction of U
0
, we have that t he elements of the pre-orbit of U
0
are
two by two disjoints. Let us consider d
0
= max{diam
ext
(c.c.

n≥0
f
−n
(U
0
))}. Since the
deﬁnition of U
0
, 0 < d
0
< 1.
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Claim 3.2 If γ is an arc in U
c
0
with diameter 1, then γ intersects Λ
f
.
Proof. Let γ be an arc in U
c
0
such that diam(γ) = 1. Suppose that γ does not intersect
Λ
f
.
Remember that Λ
f
= T
n
\

n≥0
f
−n
(U
0
), it means that if x ∈ Λ
f
, then f
n
(x) ∈ U
0
.
Therefore, γ is contained in one pre-image of U
0
or in a union of pre-images of U
0
.
Observe that γ cannot be contained in just one pre-image of U
0
, because if it is con-
tained in f
−n
(U
0
) for some n ≥ 0, then diam(γ) < diam(f
−n
(U
0
)) < d
0
, which is absurd
because d
0
< 1.
Hence, γ should be contained in a union of pre-images of U
0
, since γ is compact we can
cover with a ﬁnite union of pre-images of U
0
. But we know that the pre- ima ges of U
0
are
two by two disjoints, hence there exist points in γ that cannot be covers by the pre-images
of U
0
. In particular, γ intersects Λ
f
.
Figure 3.4: Λ
f
looks like a Sierpinski set
Remark 3.1 We have a lready the existence of the invariant expanding locally max-
imal set Λ
f
. Moreover, by claim (3 .2) we get that this invariant set intersects every arc




[image: alt]52 3. Existence of Robust Transitive Endomorphisms
with large diameter. Then by the Main Theorem Revisited follows that this map is r obust
transitive.
§ 3.2.2 Remarks About Example 2
1. We can apply our Main Theorem R evisited to this example, obtaining in particular
that f is robustly tr ansitive.
2. The

P
i
’s can be as many and as big as we want.
3. We can construct ma ny examples starting with this initial map. In particular, we
can construct examples without invariant subbundles, such as putt ing a ﬁx point in
the complement of the U
0
with complex eigenvalues and doing a derived from an
expanding endomorphisms inside of some

P
i
.
§ 3.3 Example 3: A pplying Theorem 2
The idea of next example is to build an endomorphism in the 2-Torus which is a skew-
product and in the dynamic there is a blender. This example is more or less a standard
adaptation for endomorphisms of examples obtained in [BD96] for diﬀeomorphisms.
First, let us establish some notation before deﬁning the map. Pick 0 < a < 1/2 < b < 1
and denote I
12
= [a, 1] and I
34
= [0, b]. Note that I
12
∩ I
34
= [a, b]. This decomposition is
associated to the horizontal ﬁbers.
Next, ﬁx N > 3 and pick 0 < a
1
< b
1
< a
2
< b
2
< a
3
< b
3
< a
4
< b
4
< 1 such that
b
i
−a
i
= 1/N. Let us denote by I
i
= [a
i
, b
i
] with 1 ≤ i ≤ 4. Note that they are two by two
disjoint and do not contain 0 or 1. We associate this decomposition t o the vertical ﬁbers.
Let us call R
i
= I
12
× I
i
with i = 1, 2, and R
i
= I
34
× I
i
with i = 3, 4.
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Now, deﬁne Φ : T
2
→ T
2
by
Φ(x, y) = (ϕ
y
(x), E(y)) ,
where ϕ
y
, E : S
1
→ S
1
are deﬁned as follows:
1. E is an expanding endomorphism such that:
• E(I
i
) = [0, 1] for every i.
• There exist a
i
< c
i
< b
i
such that E(c
i
) = c
i
.
2. ϕ
y
is deﬁned by ϕ
y
(x) = f
i
(x), if y ∈ I
i
, where f
i
: S
1
→ S
1
are diﬀerentiable maps
deﬁned as follows:
• f
1
and f
2
satisfy the following properties:
(i) f
1
has two ﬁxed points, 0 and a. 0 is a repeller and a is an attr actor for f
1
.
(ii) f
2
has two ﬁxed points, 0 and a
′
, where 0 < a
′
< a. 0 is an attractor and
a
′
is a repeller for f
2
.
(iii) f
1
(I
12
) overlaps f
2
(I
12
) and f
1
(I
12
) ∪ f
2
(I
12
) = I
12
.
(iv) |f
′
1
|
I
12
| < 1 and |f
′
2
|
I
12
| < 1.
• f
3
and f
4
satisfy the following properties:
(i’) f
3
has two ﬁxed points, 0 and b
′
, where b < b
′
< 1. 0 is a repeller and b
′
is
an attractor for f
3
.
(ii’) f
4
has two ﬁxed points, b and 1. b is an attractor and 1 is a repeller for f
4
.
(iii’) f
3
(I
34
) overlaps f
4
(I
34
) and f
3
(I
34
) ∪ f
4
(I
34
) = I
34
.
(iv’) |f
′
3
|
I
34
| < 1 and |f
′
4
|
I
34
| < 1.
3. |det(Df)| = |
∂ϕ
y
∂x
E
′
| > 1.
4. E
′
≫
∂ϕ
y
∂y
.
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Hence, the horizontal ﬁbers F
i
= S
1
×c
i
are invariant by f. Moreover, by condition (4),
the image of every vertical ﬁber is almo st a vertical ﬁber, in the sense that the tangent
vector is close to a vertical one; more precisely, the unstable cones family are almost
vertical.
Next, we consider Λ
+
1
=

n≥0
Φ
−n
(R
1
∪ R
2
) and Λ
+
2
=

n≥0
Φ
−n
(R
3
∪ R
4
). Let Λ
1
=

n∈Z
Φ
−n
(R
1
∪ R
2
) and Λ
2
=

n∈Z
Φ
−n
(R
3
∪ R
4
), note that both sets are expanding
invariant locally maximal sets.
§ 3.3.1 Λ
1
and Λ
2
Separate Large Vertical Segments
Let us denote by ℓ
u
1
(p) the vertical segment passing through p and length 1.
Claim 3.3 For every p ∈ R
1
∪ R
2
, follows tha t ℓ
u
1
(p) ∩ Λ
+
1
= ∅.
Proof. Let us suppose tha t p ∈ R
1
∪ R
2
. Note that for i = 1, 2, the imag e o f L
i
=
ℓ
u
1
(p) ∩R
i
by Φ has length 1 and by property (4) of Φ follows that Φ(L
i
) is almost vertical.
Moreover, L
i
∩F
i
= ∅ and Φ(L
i
∩F
i
) ∈ F
i
⊂ R
i
with i = 1, 2. Then Φ(ℓ
u
1
(p))∩(R
1
∪R
2
) = ∅.
Take K
i
1
one connected component of Φ(ℓ
u
1
(p)) ∩ R
i
, for i = 1, 2, such that P
2
(K
i
1
) = I
i
,
where P
2
is the projection in the second coordinate. Consider the pre-image of K
i
1
by Φ
in L
i
and call it S
i
1
.
Now, iterate K
i
1
by Φ, doing a similar process we obtain K
i
2
a connected component
of Φ(K
i
1
) ∩ R
i
such that P
2
(K
i
2
) = I
i
. Again take a pre-image of K
i
2
by Φ
2
, giving a
compact segment S
i
2
⊂ S
i
1
. Repeating this process, we may construct a nested sequence
of compact segment {S
i
k
}
k
in each R
i
. Thus,

k
S
i
k
is not empty and belong to ℓ
u
1
(p)∩Λ
+
1
.
Claim 3.4 For every p ∈ R
1
∪ R
2
, follows tha t ℓ
u
1
(p) ∩ Λ
1
= ∅.
Proof. By claim (3.3), we know that there exist a point z ∈ ℓ
u
1
(p) ∩ Λ
+
1
, this means
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that Φ
n
(z) ∈ R
1
∪ R
2
for every n ≥ 0.
Then, just remain to show that there exist a sequence {z
k
}
k≥0
⊂ R
1
∪ R
2
such that
z
0
= z and Φ(z
k
) = z
k−1
. The idea o f the construction of such a sequence is to use now
the property (2-iii) of overlapping in the ho rizontal dynamics.
Knowing that Φ(R
1
) = f
1
(I
12
) × [0, 1] and Φ(R
2
) = f
2
(I
12
) × [0, 1], since property
(2-iii) we get that Φ(R
1
) ∩ Φ(R
2
) = f
1
(I
12
) × [0, 1]. Hence, z
0
∈ (R
1
∪ R
2
) ∩ Φ(R
1
) or
z
0
∈ (R
1
∪ R
2
) ∩ Φ(R
2
), then there exists z
1
∈ R
1
∪ R
2
such that Φ(z
1
) = z
0
. Repeating
this process we construct the requires sequence.
Claim 3.5 For every p ∈ R
3
∪ R
4
, follows tha t ℓ
u
1
(p) ∩ Λ
2
= ∅.
Proof. The proof is similar to claim (3.4) just making the necessary arrangement.
Claim 3.6 For every q ∈ T
2
, we have that either ℓ
u
1
(q) ∩ Λ
1
= ∅ or ℓ
u
1
(q) ∩ Λ
2
= ∅.
Proof. Given any point q ∈ T
2
, note that ℓ
u
1
(q) ∩ R
i
= ∅ for every 1 ≤ i ≤ 4. Hence,
taking p
i
∈ ℓ
u
1
(q) ∩ R
i
and noting that ℓ
u
1
(p
i
) = ℓ
u
1
(q), we may use claim (3.4) or (3.5) to
conclude that either ℓ
u
1
(q) ∩ Λ
1
= ∅ or ℓ
u
1
(q) ∩ Λ
2
= ∅.
§ 3.3.2 Remarks About Example 3
This example was constructed in the 2 -Torus with one dimensional centr al bundle, but we
can construct it in any T
n
and the dimension of the central bundle not need to be 1. Also,
we can use more than 4 dynamics in the horizontal, more precisely we put 2 blenders in
the dynamic but we can consider as many blenders as we want.
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§ 3.4 Example 4: A pplying Theorem 2
Let B
0
be an open ball in T
m
centered at 0 with r adius α < 1 and ϕ
0
: T
m
→ T
m
be a
diﬀerentiable map isotopic to the identity such that:
• ϕ
0
(0) = 0
• There exist 0 < λ
0
< λ
1
< 1 such that λ
0
< m{Dϕ
0
} < |Dϕ
0
|
B
0
| < λ
1
, i.e. ϕ
0
is a
contraction in a disk.
Let us consider D
0
the lift of B
0
to R
m
and ϕ
0
the lift of ϕ
0
. Note tha t ϕ
0
(0) = 0 a nd
λ
0
< m{D ϕ
0
} < |D ϕ
0
|
D
0
| < λ
1
. By Proposition 2.3 of Nassiri’s PhD Thesis [Nas06],
there exists k ∈ N such that for every small ε > 0, there exist c
1
, . . . , c
k
∈ B
ε
(0) and
δ > 0 such that B
δ
(0) ⊂ Orbit
+
G
(0), where G = G( ϕ
0
, ϕ
0
+ c
1
, . . . , ϕ
0
+ c
k
) and Orbit
+
G
(0)
is the set of po ints lying on some orbit of 0 under the iterated function system (IFS)
G; mo re precisely, if we denote by

φ
0
= ϕ
0
and

φ
i
= ϕ
0
+ c
i
for i = 1, . . . , k, then
Orbit
+
G
(0) is the set of sequence {

φ
Σ
l
(0)}
∞
l=1
where Σ
l
= (σ
1
, . . . , σ
l
),

φ
Σ
l
=

φ
σ
l
◦ ··· ◦

φ
σ
1
and {σ
i
}
i∈N
∈ {0, . . . , k}
N
. (For more details about IFS see Nassiri’s PhD Thesis)
Now choose p
1
, . . . , p
r
∈ T
m
such that T
m
⊂

j
B
δ
(p
j
).
If φ
i
is the projection o f

φ
i
on T
m
, deﬁne for every j the IFS G
j
= G
j
(φ
0
+ p
j
, φ
1
+
p
j
, . . . , φ
k
+ p
j
). Then B
δ
(p
j
) ⊂ Orbit
+
G
j
(0). Therefore, there exists an open set D
0
⊂ B
0
such that

φ
i
(D
0
) ⊃ D
0
, i.e. the IFS has the covering property. Hence,

i
φ
i
(B
δ
′
(p
j
)) ⊃
B
δ
′
(p
j
), with 0 < δ
′
≤ δ. Moreover, G
j
has also the overlapping property as in Example 3,
in the previous section.
Deﬁne the skew-product F : T
m
× T
n
→ T
m
× T
n
by
F (x, y) = (ψ
y
(x), E(y)) ,
where:
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• E : T
n
→ T
n
is an expanding map with (k + 1)r ﬁxed points, let us denote the ﬁxed
points by e
i
1
, . . . , e
i
r
with 0 ≤ i ≤ k.
• For every y ∈ T
n
, ψ
y
: T
m
→ T
m
is a diﬀerentiable map isotopic to the ident ity such
that ψ
e
i
j
= φ
i
+ p
j
, with 0 ≤ i ≤ k and 1 ≤ j ≤ r.
Hence, every ﬁber T
m
× {e
i
j
} is invariant by F. Set R
i
j
= B
δ
′
(p
j
) × Q
i
j
, where Q
i
j
is a
small neighborhood of e
i
j
in T
n
such that E(Q
i
j
) = T
n
and they are all disjoints for every
i, j. Note that R
i
j
are the analogous of R
i
in the previous example.
Let Λ
F
:=

n∈Z
F
n
(

i,j
R
i
j
).
§ 3.4.1 Λ
F
Separate Large Unstable Discs
Claim 3.7 Λ
F
veriﬁes that for every z ∈

i,j
R
i
j
follows that ℓ
u
1
(z) ∩ Λ
F
= ∅, where
ℓ
u
1
(z) is an unstable disc of internal diamet er 1 passing through z.
Proof. We may prove that there exists a point z ∈

i,j
R
i
j
such that F
n
(z) ∈

i,j
R
i
j
for every n ≥ 0 in a similar way as we proved claim (3.3) in previous example.
Moreover, for this z there exist z
1
∈

i,j
R
i
j
such that F (z
1
) = z. In fact, the idea is
more or less the same as in previous example, we must note that F (R
i
j
) = ψ
e
i
j
(B
δ
′
(p
j
)) ×
E(Q
i
j
) = φ
i
(B
δ
′
(p
j
)) × T
n
.
On the other ha nd, using the property of covering and overlapping follows that

i,j
R
i
j
=

i,j
B
δ
′
(p
j
) × Q
i
j
⊂

i,j
φ
i
(B
δ
′
(p
j
)) × E(Q
i
j
) = F (

i,j
R
i
j
).
Therefore, since z ∈

i,j
R
i
j
, there exist z
1

i,j
R
i
j
such that F (z
1
) = z. Inductively we can
construct a sequence {z
k
}
k≥0
⊂

i,j
R
i
j
such that z
0
= z and F (z
k
) = z
k−1
.
Thus, z ∈ ℓ
u
1
(z) ∩ Λ
F
.
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§ 3.4.2 Remarks About Example 4
This example is a generalization of Example 3. The intention here is to show that we may
apply Theorem 2 without taking into account the dimension of the central bundle and
this could be as large a s we want. Another observation is that the existence of blenders
guarant ee tha t our examples are robust transitive and this example veriﬁes the property
over the unstable discs with suﬃciently large internal diameter intersecting the invariant
expanding locally maximal set for the skew-product.
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Milhares de Livros para Download:
 
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
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Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
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Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo
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