

MINISTÉRIO DE EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DA AMAZÔNIA EMBRAPA – AMAZÔNIA ORIENTAL

ARMAZENAMENTO DE CARBONO E VALORAÇÃO ECONÔMICA EM SISTEMAS DE USO-DA-TERRA COMPARADOS COM O DE CULTIVO DA COCA (*Erythroxylon coca* Lam.) NO DISTRITO DE JOSÉ CRESPO E CASTILLO, PERU

JORGE RÍOS ALVARADO

BELÉM 2007

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

MINISTÉRIO DE EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DA AMAZÔNIA EMBRAPA – AMAZÔNIA ORIENTAL

ARMAZENAMENTO DE CARBONO E VALORAÇÃO ECONÔMICA EM SISTEMAS DE USO-DA-TERRA COMPARADOS COM O DE CULTIVO DA COCA (*Erythroxylon coca* Lam.) NO DISTRITO DE JOSÉ CRESPO E CASTILLO, PERU

JORGE RÍOS ALVARADO

Tese apresentada à Universidade Federal Rural da Amazônia e Embrapa – Amazônia Oriental, como parte das exigências para a obtenção do Grau de Doutor em Ciências Agrárias: Área de Concentração Agroecossistemas da Amazônia.

Orientador:

Dr. JONAS BASTOS DA VEIGA

Co-orientador:

Dr. ANTONIO CORDEIRO DE SANTANA

BELÉM 2007

Alvarado, Jorge Rios

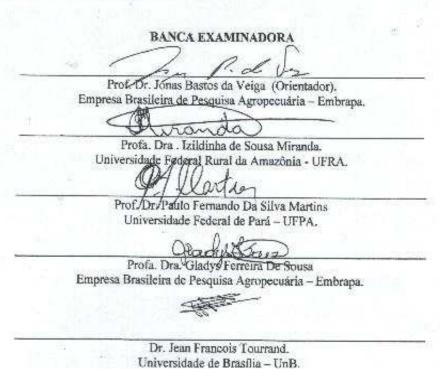
Armazenamento de carbono e valoração econômica em sistemas de uso-da-terra comparados com o de cultivo da coca (*Erythroxylon coca* Lam.) no Distrito de José Crespo e Castillo, Peru/ Jorge Rios Alvarado.

- Belém, (PA). 2007.

125 f.il.

Tese (Doutorado em Agroecossistemas da Amazônia)

- Universidade Federal Rural da Amazônia, Belém, 2007.
- 1. Sistemas agroflorestais. 2. avaliação econômica. 3. Distrito de José Crespo e Castillo (Peru) I. Título.


CDD-634.99

JORGE RÍOS ALVARADO

ARMAZENAMENTO DE CARBONO E VALORAÇÃO ECONÔMICA EM SISTEMAS DE USO-DA-TERRA COMPARADOS COM O DE CULTIVO DA COCA (Erythroxylon coca Lam.) NO DISTRITO DE JOSÉ CRESPO E CASTILLO, PERU

Tese apresentada na Universidade Federal Rural da Amazônia, como parte das exigências para a obtenção do Grau de Doutor em Ciências Agrárias. Área de Concentração: Agroecossistemas da Amazônia.

Aprovado 28 de novembro de 2007.

DEDICATÓRIA

À minha adorável mãe ELSA com muito amor, por sua compreensão.

À minha querida esposa AÍDA, com muito amor pelo sacrifício na execução dos meus estudos.

> Aos meus adorados filhos FRANK JONEL e ROSA ELSA, com todo o meu carinho.

À memória de meu querido pai LAIZAMÓN.

Aos meus sogros ROSA e AMADOR, com muito afeto e gratidão.

AGRADECIMENTOS

O autor agradece à seguintes pessoas e instituições:

- Comunidade Européia Projeto ALFA (América Latina Formação Acadêmica), pelo financiamento dos estudos de Doutorado.
- Universidade Nacional Agrária da Selva de Tingo Maria, Peru, em especial a Faculdade de Zootecnia, pelo apoio dispensado.
- Universidade Federal Rural da Amazônia e Embrapa Amazônia Oriental, parceiros do Curso de Doutorado em Ciências Agrárias em Belém, Pará, Brasil, pelo apoio.
- Convênio Embrapa Cirad, em Belém, Pará pelo apoio incondicional.
- Projeto Floagri UNAS, pelo apoio dado.
- Produtores dos sistemas agrossilvipastoris do distrito de José Crespo e Castillo,
 Huanuco, Peru, por suas contribuições ao presente trabalho.
- Dr. Jonas Bastos da Veiga e Dr. Antônio Cordeiro de Santana, brilhantes orientadores da presente pesquisa.
- Professores do curso de Doutorado em Ciências Agrárias, Área de Concentração em Agrossistemas da Amazônia, da Universidade Federal Rural da Amazônia e da Embrapa Amazônia Oriental, por suas contribuições à formação do autor.
- Dr. Paulo Contente, pelo apoio na análise estatística.
- Srs. Anthony Yquice e Felix Tuanama pelo apoio no trabalho de campo.
- MSc. Rafael Robles por seu apoio na geração do mapa geográfico do trabalho.
- MSc. Barland Huamán e Franco Valencia Chamba pelo apoio na análise econométrica.
- Seguintes amigos da turma de doutorado pelos momentos inesquecíveis na fase de minha vida como estudante em Belém, Pará, Brasil: Eliane Abreu, Iracema Cordeiro, Aderaldo Gazel, Paulo Bittencourt, Lourdes Oliveira, Paulo Lins, Carmem Costa, Ideme Gómez, Manoel Tavares, Elessandra e Tienne.
- A todas as pessoas que, de uma maneira ou outra, contribuíram na execução da presente pesquisa.

SUMÁRIO

	Pg
Sumário	6
Lista de figuras	8
Lista de tabelas	9
Lista de apêndices	10
Resumo	12
Abstract	13
CONTEXTUALIZAÇÃO	15
1. CAPÍTULO I: QUANTIFICAÇÃO DE CARBONO EM SISTEMAS DE USO-	
DA-TERRA NO DISTRITO DE JOSÉ CRESPO E CASTILLO, PERU	18
RESUMO	18
ABSTRACT	18
1.1. INTRODUÇÃO	19
1.2. METODOLOGIA	21
1.2.1. Caracterização da área de estudo	21
1.2.2. Métodos	22
1.3. RESULTADOS E DISCUSSÃO	26
1.3.1. Biodiversidade dos sistemas	26
1.3.2. Armazenamento de carbono nos sistemas	29
1.3.2.1. Carbono na biomassa aérea e total	30
1.3.2.2. Carbono no solo	33
1.3.3. Comparação das taxas de armazenamento de carbono do cultivo de coca com	
as dos outros sistemas de uso-da-terra	34
1.3.4. Comparação das taxas de armazenamento de carbono da capoeira com as dos	
outros sistemas de uso-da-terra	35
1.4. CONCLUSÕES	36
2. CAPÍTULO II: VALORAÇÃO ECONÔMICA DE SISTEMAS DE USO-DA-	
TERRA MEDIANTE VALOR PRESENTE LIQUIDO (VPL) NO DISTRITO	
DE JOSÉ CRESPO E CASTILLO, PERU	37
RESUMO	37
A DCTD A CT	25

2.1. INTRODUÇÃO	39
2.2. METODOLOGIA	41
2.2.1 Caracterização da área de estudo	41
2.2.2 Métodos	41
2.3. RESULTADOS E DISCUSSÃO	44
2.3.1. Análise de custos	44
2.3.2. Análise do valor presente liquido (VPL)	46
2.3.3. Análise da taxa interna de retorno (TIR)	50
2.3.4. Análise da relação beneficio custo $R_{B/C}$	50
2.3.5. Análise de sensibilidade	50
2.4. CONCLUSÕES	52
3. CAPÍTULO III: COMPARAÇÃO DIFERENCIAL DOS BENEFÍCIOS EM	
FUNÇÃO DE PREÇO E IDADE DE SISTEMAS DE USO-DA-TERRA NO	
DISTRITO DE JOSÉ CRESPO E CASTILLO, PERU	53
RESUMO	53
ABSTRACT	53
3.1. INTRODUÇÃO	54
3.2. METODOLOGIA	56
3.2.1 Caracterização da área de estudo	56
3.2.2. Métodos	56
3.3. RESULTADOS E DISCUSSÃO	59
3.3.1. Análise da utilidade em função dos sistemas de uso-da-terra	59
3.3.2. Análise das utilidades em função da faixa de idade dos sistemas de uso-da-	
terra	64
3. 4. CONCLUSÕES	
4. CONGIDED A CÔEC EINAIG	69
4. CONSIDERAÇÕES FINAIS	
5. REFERENCIAS	70

LISTA DE FIGURAS

		Pg.
Figura 1.1	Localização geográfica da área de estudo no distrito de José Crespo e	
	Castillo, Peru	21
Figura 3.1	Regressão das utilidades em função do preço dos sistemas de uso-da-	
	terra	61
Figura 3.2	Heterocedasticidade das utilidades em função do preço dos sistemas de	
	uso-da-terra em José Crespo e Castillo, 2006	62
Figura 3.3	Regressão da utilidade em função do preço US \$ e da idade dos sistemas	
	de uso-da-terra	66
Figura 3.4	Heterocedasticidade das utilidades em função do preço das faixas de	
	idade dos sistemas de uso-da-terra em José Crespo e Castillo, 2006	68

LISTA DE TABELAS

		Pg.
Tabela 1.1	Principais características dos sistemas de uso-da-terra e da capoeira	
	avaliados no distrito de José Crespo e Castillo, Peru. 2006	23
Tabela 1.2	Distribuição das espécies nos sistemas estudados em José Crespo e	
	Castillo	26
Tabela 1.3	Taxa anual de armazenamento de carbono na biomassa aérea, no solo e total	
	nos sistemas estudados no distrito de José Crespo e Castillo, 2006	30
Tabela 1.4	ANOVA das faixas etárias de armazenamento de carbono total dos sistemas	
	estudados	33
Tabela 2.1	Custos de produção por sistemas de uso-da-terra estudados em José Crespo	
	e Castillo em (US \$) e (%)	44
Tabela 2.2	Receitas por venda de madeira e cultivos em (US \$/ha) e (%) nos sistemas	
	de uso-da-terra estudados em Jose Crespo e Castillo, 2006	46
Tabela 2.3	Análise econômica do VPL (valor presente liquido), TIR (taxa interna de	
	retorno), $R_{B/C}$ (relação beneficio custo) dos sistemas estudados em Jose	
	Crespo e Castillo, 2006	46
Tabela 2.4	Análise de sensibilidade dos sistemas de uso-da-terra considerando o	
	aumento de 10% no custo e a queda de 10% no preço	51
Tabela 3.1	Resultados do valor presente liquido (VPL) do carbono armazenado nos	
	sistemas de uso-da-terra na faixa de idade	59

LISTA DE APÊNDICES

Apêndice 1	Formato das entrevistas interativas para avaliação econômica e	79
Apêndice 2	caracterização dos sistemas de uso-da-terra	80
Apêndice 2.1	Sistema silvipastoril Echinochloa polystachya HBK	80
Apêndice 2.2	Sistema capoeira 12 anos	82
Apêndice 2.3	SAF cacau tradicional	87
Apêndice 2.4	SAF cítrico 15 anos	91
Apêndice 2.5	SAF cítrico 30 anos	93
Apêndice 2.6	SAF cacau melhorado 3m x 3m	94
Apêndice 2.7	Sistema silvipastoril Paspalum conjugatum Berg	97
Apêndice 2.8	SAF pupunha	99
Apêndice 2.9	Sistema coca	101
Apêndice 2.10	SAF café	102
Apêndice 3.	Custos de produção de SUT e análise econômica na área de estudo.	106
Apêndice 3.1	Custo de produção de sistema coca tecnologia tradicional	108
Apêndice 3.2	Custo de produção de SAF cacau melhorado 3m x 3m	109
Apêndice 3.3	Custo de produção de SAF cacau tradicional 4m x 4m	111
Apêndice 3.4	Custo de produção de SAF cítrico 30 anos	112
Apêndice 3.5	Custo de produção de SAF cítrico 15 anos	113
Apêndice 3.6	Custo de produção do SSP <i>Echinochloa polystachya</i> HBK	115
Apêndice 3.7	Custo de produção do SSP Paspalum conjugatum Berg	116
Apêndice 3.8	Custo de produção de SAF pupunha	117
Apêndice 3.9	Custo de produção de SAF café	118

Apêndice 3.10	Custo de produção de sistema capoeira	119					
Apêndice 4	ANVA do total de armazenamento de carbono por faixa de idade	120					
Apêndice 5	Resultados de análise comparando média de armazenamento de carbono no solo, biomassa aérea e total por anos dos sistemas com a coca	110					
Apêndice 6	Resultados de análise comparando média de armazenamento de carbono no solo, biomassa aérea e total por anos dos sistemas com a capoeira.						
Apêndice 7	Análise da regressão da utilidade em função dos sistemas de uso-daterra em José Crespo e Castillo, 2007						
Apêndice 8	Test de White de heteroscedasticidad para o modelo da utilidade em função dos sistemas de uso-da-terra em José Crespo e Castillo, 2007 1						
Apêndice 9	Análise da regressão com correção de heterocedasticidade da utilidade em função dos sistemas de uso-da-terra em José Crespo e Castillo,						
Apêndice 10	Análise de regressão das utilidades em função das idades dos sistemas						
Apêndice 11	de uso-da-terra em José Crespo e Castillo, 2007	121					
Apêndice 12	Crespo e Castillo, 2007						
	Crespo e Castillo, 2007	122					

Armazenamento de carbono e valoração econômica em sistemas de uso-da-terra comparados com o de cultivo da coca (*Erythroxylon coca* Lam) no distrito de Jose Crespo e Castillo, Peru.

RESUMO

A Amazônia peruana teve um desenvolvimento marcado pela agricultura migratória e por cultivos agrícolas como a coca, mamão e pecuária, produzindo fortes impactos negativos de ordem social, econômica e ambiental. Os objetivos do estudo foram quantificar o estoque de carbono, valorar economicamente e analisar as utilidades em função dos preços e idade de alguns sistemas de uso-da-terra (SUT), comparando-os com o cultivo da coca (Erythroxylon coca Lam.) no distrito de José Crespo Castillo. Além do cultivo da coca, avaliaram-se 9 SUT sendo uma capoeira de 12 anos e oito sistemas agroflorestais (SAF), incluindo sistemas silvipastoris (SSP): Dois SAF de cítricos (Citrus sinensis L.), de 30 e 15 anos; dois de cacau (Theobroma cacao L.), tradicional e melhorado; um de pupunha (Bactris gasipaes Kunth.); um de café (Coffea arabica L.); um SSP de Echinochloa polystachya HBK.; um de Paspalum conjugatum Berg. Usou-se a metodologia d quantificar o carbono. A análise econômica estimou o valor presente líquido (VPL). Excetuando-se a coca, os sistemas mostraram uma grande diversidade florística, o que permite armazenar diferentes quantidades de carbono que são relacionadas à idade dos sistemas, sendo aqueles com até cinco anos (SAF café, SAF pupunha, SSP melhorado) os que apresentaram maior acúmulo de carbono que os mais velhos. Com respeito ao seqüestro de carbono, total e acima do solo, os SAF são muito similares, mas variam do cultivo da coca com respeito ao sequestro de carbono no solo. Os indicadores econômicos VPL, TIR, Rb/c dos sistemas estudados são positivos, mas a sua estabilidade varia quando há alterações do preço e custo. Essas alterações são mínimas quando comparadas com o custo de oportunidade de 14 %, indicando estabilidade econômica no SAF cítrico de 30 anos, SAF pupunha, SAF café, SAF cacau melhorado e tradicional, capoeira e SSP Echinochloa polystachya, diferente da coca, SAF cítrico de 15 anos e SSP Paspalum conjugatum que mostram instabilidade com efeitos econômicos negativos. Comparando-se os benefícios ou utilidades em função do preço e idade, observa-se que, no caso de se fomentar esses sistemas, os benefícios de armazenar carbono aumentam em ate 58 % por ano nos sistemas com idade de 1 a 15 anos (SAF pupunha, SAF café, coca), a um preço mínimo de US \$ 6,75/T de carbono/ano como linha base para pagamento por serviços ambientais. O beneficio do armazenamento do carbono e os valores econômicos dos sistemas tendem a diminuir com a idade.

Palavras-chaves: Sistemas agroflorestais, Serviços ambientais, avaliação econômica.

Carbon storage and economic valuation of land-use systems compared with coca Erythroxylon coca Lam crop in the district of Jose Crespo and Castillo, Peru.

ABSTRACT

The peruvian Amazon has been submitted to an uncontrolled development by migratory agriculture and exploitation of different kinds of crops as coca, papaya, and livestock, producing strong negative impacts of social, economic and environmental order. The objectives of this study were to quantify the carbon stock, to evaluate economically and to analyze the utilities as function of the prices and ages of land-use systems (LUS), comparing them with the coca Erythroxylon coca Lam crop in José Crespo and Castillo district. Besides coca crop, nine LUS were evaluated -12-years-secondary forest and eight agroforest systems (AFS), including silvopastoral system (SPS): Two AFS of citrus citrus sinensis L., of 30 and 15 years; two of cocoa *Theobroma cacao* L traditional and inproved; one of *Bactris gasipaes* Kunth; one of coffee Coffee arabica L; one SPS Echinochloa polystachya HBK; one of Paspalum conjugatum Berg. It was used the methodology to quantify carbon. The economic analysis was evaluated by liquid present value (LPV). Excepting coca crop, the LUS show, a high plant diversity that allows to store different amounts of carbon, according to the age of the systems. The LUS up to five years old (AFS of coffee, AFS pupunha, SPS Echinochloa polystachya) showed higher carbon sequestration than those older. As total and above ground carbon sequestration is concerned, the AFS are very similar, but they vary from the coca crop whit respect to carbon sequestration in the soil. The economic indicators: VAN, TIR, Rb/c, of the studied systems were positive, but their stability varies with the price and cost. The variation is minimum when compared to the opportunity cost of 14%, indicating an economic stability in the in the AFS of citrus of 30 years, of pupunha, of coffee, of cocoa, improved and traditional, capoeira and SPS of Echinochloa polystachya different from coca crop, SAF of citrus of 15 years and SSP of Paspalum conjugatum that showed instability with negative economic effects. Comparing the benefits or utilities as function of prices and ages, it was observed that, if the systems are to be implemented, the benefits from stocking carbon increased up to 58 % per year in the sistems with 1 to 15 years, with a minimum price of US \$ 6,75/t de de carbon/year as base line to pay for environment services. The benefits of carbon sequestration and the economic value of the systems tended to decrease with the age.

Key words: Agroforestry system, environment services, economic evaluation.

CONTEXTUALIZAÇÃO

A Amazônia peruana abrange uma área de 759,052 km², representando aproximadamente 60% do território nacional e 15% da Amazônia continental (INSTITUTO NACIONAL DE DESARROLLO, 2002). Nessa região, nos últimos anos, a exploração dos recursos naturais tem sido descontrolada, produzindo efeitos de ordem social, cultural, econômica e com fortes impactos ambientais. Entre as atividades extrativistas incluem-se as explorações de hidrocarbonetos, extração madeireira e agricultura de corte-e-queima da floresta primária, tanto para cultivo de subsistência como para cultivo de coca, sendo que a instalação dos sistemas de exploração agrícola ocorre logo após o desmatamento da floresta primária.

Como conseqüência do plantio da coca, ocorrem contaminações das fontes de água (rios e igarapés) devido à adição de produtos químicos usados na produção da droga (RIOS et al., 2003). Este cenário tem limitado o desenvolvimento da região, gerando problemas como poluição, degradação dos solos, pobreza, analfabetismo e acúmulo de CO₂ na atmosfera, contribuindo para o efeito estufa, responsável pelo aquecimento global e a perda inestimável da flora e fauna (FEARNSIDE, 2003). É provável que a mudança climática contribua para a ocorrência de incêndios florestais que provocam grande impacto nas florestas amazônicas, por meio do impacto da variação climática regional, como a corrente El Nino.

É importante analisar o contexto ambiental amazônico, considerando os fatores endógenos e exógenos. Como fator endógeno, as políticas públicas, orientadoras do desenvolvimento rural, devem articular os mecanismos que promovam o equilíbrio ambiental através do seqüestro de carbono e promover os sistemas agroflorestais (SAF), levando em conta as suas restrições, limitações e demandas. Como fator exógeno, está o conjunto dos acordos climáticos do Protocolo de Kyoto e aqueles com a comunidade financeira, que devem visar uma governança global que seja capitalizada por todos os países em prol da população mundial.

Promover o equilíbrio ambiental é uma tarefa dos políticos, da ciência e da sociedade em geral, por conseguinte deve se evitar os danos ambientais e promover as contribuições econômicas para a sociedade pelo armazenamento do carbono (CHAMBINI, 2002), entre outros serviços ambientais. As florestas primárias e secundárias desempenham um papel ambiental importante, especialmente no ciclo do carbono, pela armazenagem de grandes quantidades deste elemento na vegetação e no solo e por assimilarem carbono da atmosfera através da fotossíntese.

Quando existem perturbações naturais ou antrópicas, como incêndios ou usos de sistemas agrícolas inadequados (como o sistema de corte-e-queima), ocorrem mudanças nas reservas e nos fluxos do carbono florestal, mudando o ciclo do carbono e seu potencial para modificar o clima e aquecer a terra (SCHIMEL, 1995).

Uma política para fazer frente à mudança climática deve levar em consideração as dinâmicas do ciclo terrestre do carbono, já que o uso-da-terra está associado às mudanças na cobertura da terra e, portanto, à mudança nos depósitos de carbono (LUDEVID, 1998). Os solos podem perder até 50% do carbono quando as florestas são convertidas em agricultura permanente, do mesmo modo quando são convertidas em pastagens (ARISTIZABAL; GUERRA, 2002).

Entre as formas de controlar os níveis de carbono atmosférico, podem ser citados o manejo e a reabilitação de florestas, os sistemas agroflorestais, alguns sistemas de cultivos e criações, assim como as práticas que promovem o aumento do carbono orgânico no solo (STUART; MOURA, 1998). Para melhor entender esse processo, é importante se conhecer os tipos de condições resultante da conversão dos ecossistemas naturais. Segundo Aristizabal e Guerra (2002) existem sete tipos de condições: (i) cultivos permanentes, (ii) cultivos rotacionais, (iii) pastagens produtivas, (iv) terras cultivadas abandonadas, (v) pastagens abandonadas, (vi) florestas exploradas, com retirada de madeira e (vii) florestas plantadas.

As zonas rurais apresentam uma alta degradação dos recursos naturais originando altos índices de desflorestamento, podendo estar ligada a um ou mais dos seguintes pontos: (i) causas culturais, (ii) organização social existente, (iii) tradição dos produtores, (iv) conflitos de posse da terra e (v) acesso aos recursos. Por isso, deve-se redefinir a estratégia de desenvolvimento rural e considerar a necessidade do seqüestro de carbono nos países em desenvolvimento ou em vias de desenvolvimento.

É importante assinalar que o impacto econômico do cultivo da coca na Amazônia peruana tem sido favorecido pelos altos preços da folha de coca, no comércio ilegal, mas não no legal que é controlado pelo Estado. A economia da coca prospera devido à demanda de mercado e ao pequeno controle da produção, porém apresenta efeitos negativos como o desflorestamento e a erosão, principalmente por ser cultivado em áreas com extrema inclinação topográfica. O cultivo da coca, de acordo com Rios e Menacho (2000), vem ocasionando problemas políticos, sociais (terrorismo, narcotráfico) e ambientais (erosão, solos degradados, poluição da água e solo).

Nesse contexto é importante definir quais são as implicações de se estabelecer mecanismos de pagamentos pelo seqüestro de carbono, conhecendo-se a valoração econômica dos sistemas de uso-da-terra, e determinar a forma de diminuir os problemas citados, fixando e mantendo, pelo maior tempo possível a biomassa vegetal (ARÉVALO et al., 2003)

A ausência de infra-estrutura, crédito e conhecimento para promover as práticas sustentáveis de manejo de cultivos tropicais por parte da população migrante, assim como a falta de mercados para os produtos, o caráter primário da organização socioeconômica e os altos custos de produção, resultam numa preferência pelos cultivos convencionais de baixa qualidade, fato que reforça a pobreza regional.

Na Amazônia peruana é fundamental determinar o potencial de armazenar carbono dos sistemas agroflorestais (SAF) e da capoeira, em comparação com o cultivo da coca, para evidenciar a importância e promover a geração de políticas públicas de pagamento pela fixação de carbono, como alternativa aos cultivos ilícitos.

Essas políticas devem resultar em um melhor manejo agrícola e mais adequado ordenamento do território, melhorando a qualidade de vida da população, criando mecanismo de compensação dos serviços ambientais e evitando a fragmentação das terras e a deterioração dos recursos naturais.

O presente estudo analisa o potencial do armazenamento de carbono em diferentes sistemas de uso-da-terra com a finalidade de permitir aos produtores agregar valor ambiental aos seus sistemas de produção, possibilitar investimento em projetos ambientais e outros projetos a serem realizados no futuro e, como conseqüência, vir a mitigar o aquecimento global.

Neste contexto, esta pesquisa objetiva demonstrar que os sistemas agroflorestais conduzidos no distrito de José Crespo e Castillo no Peru têm diferentes potenciais para armazenar carbono e gerar ganhos econômicos, sendo possível selecionar, entre eles, alguns que possam ser priorizados nas políticas públicas, como alternativas ao cultivo da coca. Para isso, quantificou-se: 1) Armazenamento de carbono em alguns sistemas de uso-da-terra em comparação com o cultivo da coca e a capoeira (CAPITULO I), 2) Foram comparados os sistemas estudados pelo valor presente liquido (VPL) (CAPITULO II), 3) e em função das utilidades, preços e das suas idades (CAPÍTULO III).

18

CAPÍTULO I: QUANTIFICAÇÃO DO CARBONO EM SISTEMAS DE USO-DA-TERRA NO DISTRITO DE JOSÉ CRESPO E CASTILLO, PERU.

Resumo: O estudo teve como objetivo estimar o estoque de carbono em alguns sistemas de uso-da-terra (SUT) em comparação com o do cultivo da coca (*Erythroxylon coca* Lam.). Alem do cultivo da coca, avaliaram-se 9 SUT, sendo uma capoeira de 12 anos, e oito sistemas agroflorestais (SAF), incluindo os sistemas silvopastoris (SSP): dois SAF de cítro (*Citrus sinensis* L.), de 30 anos e 15 anos; dois de cacau (*Theobroma cacao* L.), tradicional e melhorado; um de pupunha (*Bactris gasipaes* Kunth.); um de café (*Coffea arabica* L.); um SSP de *Echinochloa polystachya* HBK; um de *Paspalum conjugatum* Berg. A metodologia usada foi do quantificação de carbono. À exceção da coca, os SUT mostraram uma grande diversidade florística, que permite armazenar diferentes quantidades de carbono conforme a idade dos sistemas. Os SUT com até cinco anos SAF de café, SAF de pupunha e SSP de *Echinochloa polystachya* apresentaram maior acúmulo de carbono que aqueles mais velhos. Quanto ao armazenamento total de carbono e aquele na biomassa aérea, os SAF são muito semelhantes, mas diferem da coca quanto ao armazenamento de carbono no solo.

Palavras-chave: Estoque de carbono, sistemas agroflorestais, coca.

Abstract: The objective of this study was to estimate the amount of carbon sequestered in some land-use systems (LUS) in comparison to coca (*Erythroxylon coca* Lam.) crop. Besides coca crop. Nine LUS were evaluated 12 years secondary forest, and eight agroforestry systems (AFS), including the silvopastoral systems (SPS): two AFS of citrus (*Citrus sinensis* L.), of 30 and 15 years; two of cocoa (*Theobroma cacao* L.), traditional and improved; one of pupunha (*Bactris gasipaes* Kunth.), one of coffee (*Coffea arabica* L.); one SPS of *Echinochloa polystachya* HBK. and of *Paspalum conjugatum* Berg. It was used the methodology to quantify carbon. Excepting coca crop, the LUS show, a high plant diversity, that allows to store different amounts of carbon, according to the age of the systems. The LUS up to five years old (AFS of coffee, AFS of pupunha, SPS of *Echinochloa polystachya*) showed higher carbon sequestration than those older. As total and above ground carbon sequestration is concerned, the AFS are very similar, but they vary from the coca crop with respect to carbon sequestration in the soil.

Key words: Carbon sequestration, Agroforestry system, coca crop

1.1. INTRODUÇÃO

O desflorestamento da Amazônia vem gerando desequilíbrios ecológicos, perda de biodiversidade e degradação dos solos. Esses problemas são potencializados pela mudança climática do planeta devido ao efeito estufa, causado pela acumulação de CO₂ na atmosfera, o que induz ao aumento da temperatura, mudanças no regime de chuvas, redução da evapotranspiração, no transporte extra-regional de fumaça e poeira, no aumento da nebulosidade, do frio, etc (FEARNSIDE, 2003).

Tem se desenvolvido uma consciência geral sobre a importância de diminuir ou reverter esse processo através de pesquisas e das políticas públicas, visando encontrar soluções que sejam social, econômica e ambientalmente sustentáveis (ARÉVALO et al., 2003). Uma forma de diminuir os impactos ambientais é reduzir as emissões de carbono, seqüestrando-o, fixando-o e mantendo-o, pelo maior tempo possível, na biomassa vegetal e na matéria orgânica do solo.

As capoeiras são importantes seqüestradoras de carbono, no entanto, há alternativas de uso-da-terra como os sistemas agroflorestais (SAF) e o reflorestamento que também armazenam carbono em quantidades consideráveis e que proporcionam bens e serviços ambientais. No contexto dos SAF, são poucos os estudos sobre seqüestro de carbono, rendimento, economia, sombra, espécies de árvores, arranjos e espaçamentos, com a finalidade de melhorar a produção, a produtividade e manter um ambiente saudável.

Assim, existe um grande interesse em conhecer o potencial de armazenamento de carbono nos SAF, especialmente na região amazônica peruana que tem zonas de vida muito frágeis devido às altas precipitações e à elevada declividade do solo (RIOS et al., 2003). Esse potencial pode ser tomado como base para projetos em mecanismos de desenvolvimento limpo (MDL) e mercado de carbono indicados no protocolo de Kyoto (UNFCCC, 2005).

Em outros países como a Costa Rica, o governo, através do Decreto N° 30962 (MINAE, 2003), reconhece os SAF pelos serviços ambientais que brindam à sociedade e apóia os produtores com pagamento por esses serviços, como é o caso do seqüestro de carbono, pelo fato deles melhorarem o ambiente e conservarem a diversidade.

As florestas primárias e secundárias cumprem um papel ambiental importante no manejo sustentável do ciclo do carbono porque armazenam grandes quantidades deste elemento na vegetação e no solo, através da fotossíntese. Essa fixação de carbono pode se constituir uma alternativa para auxiliar os produtores rurais, tanto na esfera econômica, quanto no social e ambiental.

Quando existe perturbação por causas humanas ou naturais como incêndios naturais ou usos inadequados dos sistemas de uso (corte-queima), ocorrem mudanças nas reservas e nos fluxos do carbono florestal, mudando o ciclo do carbono que, por sua vez modifica o clima e aquece a terra (SCHIMEL, 1995). Para fazer frente às mudanças climáticas devem ser levadas em consideração as dinâmicas do ciclo terrestre do carbono, tendo como base o manejo florestal, o uso-da-terra, o reflorestamento e a reabilitação de florestas, já que estes sistemas contribuem para o controle dos níveis de CO₂ atmosférico (STUART; MOURA, 1998).

As concentrações crescentes de CO₂ na atmosfera, nos últimos 150 anos, elevaram-se em 30 % principalmente pelo consumo de energia fóssil, queima da floresta, fumaça das indústrias e pela pecuária de ruminantes (ACOSTA, 2001); sendo a pecuária de ruminantes responsável por 3% do aumento do CO₂ da atmosfera.

Nesse contexto, presume-se que os sistemas agroflorestais, identificados no distrito de José Crespo e Castillo, diferem no potencial de armazenar carbono e acredita-se que alguns deles podem ser uma alternativa ao cultivo da coca, considerando-se o pagamento dos serviços ambientais quando fomentado pelas políticas públicas. Desse modo, o objetivo desse estudo é estimar a quantidade de carbono em alguns sistemas agroflorestais em comparação com a capoeira e com o cultivo da coca naquele distrito.

1.2. METODOLOGIA

1.2.1. Caracterização da Área de Estudo

Os usos-da-terra estudados se localizam em cinco propriedades e duas instituições de pesquisa de José Crespo e Castillo, distrito com 2.829,67 km², província de Leôncio Prado, departamento de Huanuco, Peru. Os locais dessas propriedades estão contidos nas seguintes coordenados UTM: eixo X entre 18L 360000 e 420000, eixo Y entre 8980000 e 9080000 da bacia média da margem direita do rio Huallaga em uma altitude de 540 manm. A umidade relativa média do ar é de 83,8 %, a temperatura anual média de 26,0 °C e a precipitação média anual de 4.000 mm. De acordo com o mapa ecológico do Peru, localiza-se em duas zonas de vida, floresta úmida tropical (bh-T) e floresta muito úmida pré-montanha tropical (bmh-PT), na Amazônia alta, conforme PROJETO ESPECIAL ALTO HUALLAGA (2002) (Figura 1.1).

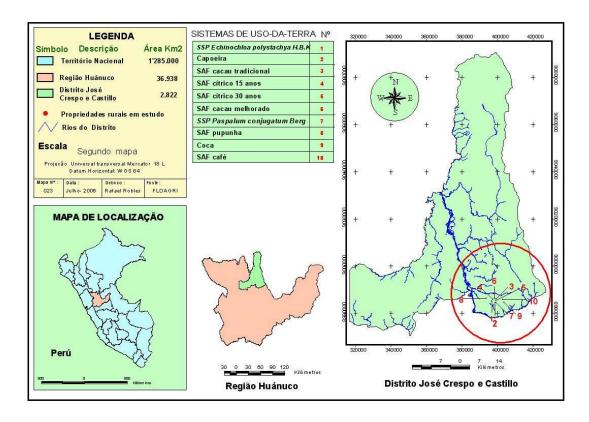


Figura 1.1. Localização geográfica da área de estudo no Distrito de José Crespo e Castillo, Peru.

Os solos da região são ácidos, pobres em nutrientes e apresentam alta saturação de alumínio; o relevo apresenta uma topografia ondulada e acidentada, e a colinas baixas, os

vales são pequenos e aptos para o desenvolvimento florestal e agropecuário (RIOS et al., 2007).

Quanto à posse da terra, 78 % dos produtores não têm título. Quanto ao uso-da-terra, 5,28 % das áreas trabalhadas são usados com monocultura, 7,74 % com cultivos permanentes de ciclo longo, 2,28 % com pastagens e 14,4 % com floresta; 65,42 % da área total são unidades de conservação e 4,34 % são de corpos de água e zonas urbanas (PROJETO ESPECIAL ALTO HUALLAGA, 2002).

A área de estudo passou por dois períodos de desmatamento, um antes da década de 70 liderado pela colonização com base na exploração madeireira e plantios de seringueira, banana, mandioca, café e cacau, orientados à economia de subsistência. Outro, depois da década de 70, mais intenso, com base na formação de pastagem e plantio ilícito de coca, este último chegando a um incremento anual de 12,5 % com práticas da agricultura migratória (INSTITUTO NACIONAL DE RECURSOS NATURALES Y AMBIENTE, 1997). Os produtos comercializáveis mais importantes hoje são, gado de corte e de leite, café, cacau, milho, arroz, mamão, feijão, mandioca, banana, cítricos, frutas e coca.

Escolheu-se o distrito de José Crespo e Castillo nesta pesquisa por apresentar maior quantidade de propriedades rurais com sistemas agroflorestais (SAF) com boas condições de se desenvolver a pesquisa. Até o ano de 1989, funcionou nesse distrito, a Estação Experimental Tulumayo, pertencente ao Instituto Nacional de Pesquisas Agropecuárias (INIA), onde foram desenvolvidos trabalhos com SAF. Esse instituto foi desativado por problemas de terrorismo, sendo que muito dos ex-trabalhadores compraram terras perto da Estação, onde estabeleceram SAF similares aos experimentais.

1.2.2. Métodos

As características e a história dos sistemas estudados foram levantadas junto aos donos das propriedades através de um questionário (Apêndice 1). Foram selecionados no estudo dez sistemas de uso-da-terra, sendo oito sistemas agroflorestais, uma capoeira e um plantio de coca. A Tabela 1.1 resume as principais características desses usos-da-terra.

Os usos-da-terra foram grupados em três faixas etárias: de um a cinco anos (SAF café, SAF pupunha e SSP *Echinochloa polystachya*), de 12 a 15 anos (capoeira, SAF cítrico 15 anos e SSP *Paspalum conjugatum*) e de 30 a 35 anos (SAF cítrico 30 anos, SAF cacau melhorado e tradicional).

lø l

Tabela 1.1. Principais características dos sistemas de uso-da-terra e da capoeira avaliados no distrito de José Crespo e Castillo, Peru. 2006.

Duanui		D		B 11	Arranjo	Densid.	Nome Científico		A 1444 - 1		G 1
Sistemas	Proprie- tário	Área (ha)	Idade (anos)	Papel das árvores	Espacial das árvores	(árvore/ ha)	Espécies arbóreas	Cultivos e espaç. ou pastagem	Altitude (manm)	Local	Coordena- das
SAF e SSP											
SAF cítrico 30 anos	Calixto Adriano C	2,0	30	Madeira	Disperso	50	Zanthoxilum sp, Calycopyllum spruceanum, Cuararibea witti e Guazuma crinita.	Citrus sinensis L. 6m x 6m	629	Santa Lucia	UTM 18L: 0387432 8990651
SAF cacau Tradicional	Calixto Adriano C	2,0	35	Madeira	Disperso	210	Guazuma crinita, NN, Schizolobioum amazonicum, Calycopyllum spruceanum.	Theobroma cacau L. 4 m x 4 m	632	Santa Lucia	UTM 18L: 0387524 8990706
SAF cacau melhorado	Calixto Adriano C.	2,5	30	Madeira	Disperso	120	Guazuma crinita, NN , Calycopyllum spruceanum, Terminalia oblonga.	Theobroma cacau L. 3m x 3 m	629	Santa Lucia	UTM 18L: 0387438 8990681
SAF cítrico 15 anos.	Calixto Adriano C	1,5	15	Madeira	Disperso	90	Guazuma crinita, Calycopyllum spruceanum, Genipa americana.	Citrus sinensis L. 6m x 6m.	629	Santa Lucia	UTM 18L: 0387427 8990643
SSP Paspalum conjugatum Berg	Faculdade Zootecnia- UNAS	6,0	15	Sombra e madeira	Disperso	220	Terminalia oblonga, Guazuma crinita, Couma macrocarpa, Genipa americana, Inga sp.	Paspalum conjugatum Berg.	627	Tulumayo	UTM 18L: 0387240 8990194
Capoeira	Centro Pesquisa Tulumayo	10,0	12	Madeira, remédios, semente, resina, etc.	Disperso	990	Inga sp, Couma macrocarpa, Byrsonia chrysophylla, Guazuma crinita, Erytrina edulis, Piper sp, Astrocarpum sp, Calycopyllum spruceanum, Tachigalia paniculata, Bixa orellana, Aniba gigantifolia, Schizolobioum amazonicum, Ficus sp, Guarea sp, Terminalia oblonga, Chorisia insignis, Cecropia.	-	630	Tulumayo	S 9°07′57,5" N 6°01′45,8"
SAF pupunha	Faculdade RNR-UNAS	1,0	5	Madeira	Ordenado	100	Guazuma crinita, Citrus cinensis e Anacardium occidentale.	Bactris gasipaes Kunth. 6m x 6m	626	Tulumayo	UTM 18L: 0384717 8991505
SAF café	Anselmo Cenepo	1,0	3	Sombra e madeira	Disperso	140	Inga sp, Pona, Pouteria caimito, Bactris gasipaes, Ficus sp.	Coffea arábica L. 1m x 1m	701	Santa Lucia	UTM 18L: 0390569 8990292
SSP Echinochloa polystachya HBK.	Faculdade Zootecnia- UNAS	3,0	3	Sombra e madeira	Disperso	170	Couma macrocarpa, Byrsonia chrysophylla Guazuma crinita, Tabebuia sp, Erytrina edulis, Astrocarpum sp, Calycopyllum sp.	Echinochloa polystachya HBK.	630	Tulumayo	S 9°07′55,5" N 6°01′48,9"
Coca	Anselmo Cenepo	1,0	1	-	-	-	, , , , , , , , , , , , , , , , , , , ,	Erytroxilon coca Lam. 1m x 0,5 m	728	Santa Lucia	UTM 18L: 0390932 8989828

24

Em cada área foram demarcadas aleatoriamente duas parcelas de 5 m x 100 m onde foi

feito um inventário florestal para avaliar a biomassa. Foram identificados as espécies e

medidos a altura e o diâmetro à altura do peito (DAP) das árvores de 2,5 a 30 cm de DAP,

considerando as árvores vivas e as mortas, caídas e em pé (Apêndice 2).

A amostragem da biomassa arbustiva de indivíduos menores de 2,5 cm de DAP e do

estrato herbáceo, assim como da liteira e da biomassa morta, foi feita em cinco áreas

amostrais de 1m x 1m, ao acaso, em cada uma das parcelas. Para a determinação de matéria

seca, todas as amostras foram secas em estufa a 75 °C. A biomassa vegetal total dos sistemas

de uso-da-terra foi avaliada segundo Arévalo et al. (2003), cuja fórmula é:

 $BVT_{(t/ha)} = (BAVT + BTAMP + BTACM + BAH + Bh)$

Onde:

BVT = Biomassa vegetal total

BAVT

= Biomassa total de árvores vivas

D.T. 4.3.4E

BTAMP = Biomassa total de árvores mortas em pé

BTACM = Biomassa total de árvores mortas caídas

-----r

DITION

= Biomassa arbustiva e herbácea

BAH Bh

= Biomassa da liteira

O carbono da biomassa vegetal total se determinou segundo Arévalo et al. (2003) cuja

fórmula é:

 $C BVT_{(t/ha)} = BVT * 0.45$

Onde:

BVT

= Biomassa vegetal total

0,45

= Constante

Também se determinou os valores de carbono total no solo. Para isso, nas duas parcelas o

solo foi amostrado nas profundidades de 0-10, 10-20, 20-40, 40-100 cm. A densidade

25

aparente do solo foi determinada utilizando-se cilindros de volume conhecido (93,59 cm³), pesados e secos em estufa a 75°C, até peso constante segundo. Foram obtidos segundo

(ARÉVALO et al., 2003), através da fórmula:

$$CS_{(t/ha)} = (Ds* \%C)/100$$

Onde:

CS = Carbono no solo

Ds = Densidade do solo

%C = Percentagem de carbono medido em laboratório

100 = Fator de conversão

O carbono total dos sistemas de uso-da-terra foram calculados segundo (ARÉVALO et al., 2003) pela fórmula:

$$CT_{(t/ha)} = CBVT + CS$$

Onde:

CBVT = Carbono da biomassa vegetal total

CS = Carbono no solo

A comparação de médias de carbono no solo, na biomassa aérea e total dos diferentes sistemas de uso-da-terra foi feita pela comparação com o cultivo da coca e capoeira segundo os objetivos do trabalho. Alem disso se fez análise de variância pela comparação com as faixas etárias dos sistemas estudados (1-5 anos, 12-15 anos e 30-35 anos), e a prova de Tukey.

1.3. RESULTADOS E DISCUSSÃO

1.3.1. Biodiversidade dos sistemas

A diversidade de espécies nos sistemas avaliados é mostrada na Tabela 1.2 onde se observa que os SAF café, SSP *Echynochloa polystachya* e a capoeira tem a maior diversidade influenciando no armazenamento de carbono, alem são sistemas jovens, com alta dinâmica fotossintética e rápido crescimento, como assinalam Dixon et al. (1994), Dourojeani (1990), Lopez (1998) e Lama (2002). Os SAF com baixa diversidade de maior idade, que apresentam árvores com maior DAP, permitem maior armazenamento de carbono ao longo da vida, porém menor captura anual devido esses sistemas estarem mais próximos do equilíbrio (ETCHEVERS et al., 2001).

Tabela 1.2. Distribuição das espécies nos sistemas estudados em José Crespo e Castillo.

Sistemas e		Espécies	% de	Usos
N° espécies	Nome comum	Nome cientifico	Indiví	
			duos	
SAF cítrico	Laranja	Citrus sinensis L.	62,5	Fruta
30 anos	Hualaja	Zanthoxylum juniperinum Poepp.	6,3	Lenha
(5)	Bolaina	Guazuma crinita Mart.	12,5	Madeira, caixa
	Capirona	Calycophyllum spruceanum (Bent) Hook.	12,5	Madeira
	Sacha sapote	Quararibea cordata Vischer.	6,2	Madeira
SAF cítrico	Laranja	Citrus sinensis L	55,6	Fruta
15 anos	Bolaina	Guazuma crinita Mart.	14,8	Madeira, caixa
(5)	Capirona	Calycophyllum spruceanum (Bent) Hook.	14,8	Madeira, lenha
	Jagua	Genipa americana L.	3,7	Madeira e fruta
	Lima	Citrus sp.	11,1	Fruta
SAF cacau	Cacau	Theobroma cacao L.	74,6	Alimento, medicina
tradicional	Bolaina	Guazuma crinita Mart.	4,8	Madeira, caixa
(6)	Capirona	Calycophyllum spruceanum (Bent) Hook.	12,8	Madeira, lenha
	Llambo	Macrolobium acaciifolium (Benth.) Benth.	3.1	Madeira, lenha,
	pashaco			caixa
	Pashaco, parica	Schizolobioum parahyba var. amazonicum	3.1	Madeira, lenha,
		Huber ex Ducke (Barneby.)		caixa
	Leite caspi	Couma macrocarpa Barb. Rodr.	1,6	Madeira

SAF cacau	Cacau	Theobroma cacao L.	83,0	Alimento, medicina
melhorado	Bolaina	Guazuma crinita Mart.	Madeira, caixa	
(5)	Capírona	Calycophyllum spruceanum (Bent) Hook.	Madeira, lenha	
	Yacuchapana	Terminalia oblonga (Ruiz & Pav.) Stend.	1,5	Madeira, lenha
	Leite caspi	Couma macrocarpa Barb. Rodr.	Madeira, lenha	
SAF	Pupunha	Bactris gasipaes Kunth.	68,8	Alimento
pupunha	Bolaina	Guazuma crinita Mart.	9,4	Madeira, caixa
(4)	Cashu, caju	Anacardium occidentale L.	3.1	Fruta
	Laranja	Citrus sinensis L.	18,7	Fruta
	Kudzu	Pueraria phaseoloides (Roxb.) Benth.	-	Cobertura do solo
SAF café	Café	Coffea arabica L.	82,6	Alimento, medicina
(9)	Pona	Iriartea ventricosa Mart.	5,5	Poste
	Caimito, abiu	Pouteria caimito (R. & P.) Radek.	0,9	Fruta
	Guaba, ingá	Inga edulis Mart.	1,8	Alimento
	Pupunha	Bactris gasipaes Kunth.	0,9	Alimento
	Cacau	Theobroma cacao L.	3,6	Alimento
	Miconia	Miconea amoena Triana.	0,9	Madeira
	Laranja	Citrus sinensis L.	2,9	Fruta
	Oje	Ficus anthelmintico Mart.	0,9	Medicinal
Coca (1)	Coca	Erythroxylon coca Lam.	100,0	Medicinal, mascar
SSP	Canarana	Echynochloa polystachya HBK	-	Alimento de gado
Echynochlo	Quillosisa	Byrsonima chrysophylla H.B.K	15,0	Movel
a	Leite caspi	Couma macrocarpa Barb. Rodr.	25,0	Lenha, caixa
polystachya	Tabuebuia, ipê	Tabebuia cassinoides Dc.	10,0	Móvel
HBK	Huicungo	Astrocarpum murumuru Mart.	Teto, alimento	
(10)	Bolaina	Guazuma crinita Mart	5,0	Madeira, caixa
	Anonilla, ata	Annona squamosa L.	5,0	Fruta
	Capirona	Calycophyllum spruceanum (Bent) Hook.	20,0	Madeira
	Cético imbaúba	aúba Cecropia engleriana Sneth.		Caixa.lenha
	Eritrina alta	Erythrina poeppigiana (Walp.) O. F. Cook	5,0	Madeira branca
SSP	Torurco	Paspalum conjugatum Berg.	-	Alimento de gado
221	Torureo		•	1
Paspalum	Yacuchapana	Terminalia oblonga (Ruiz & Pav.) Stend.	4,5	Madeira
		Terminalia oblonga (Ruiz & Pav.) Stend. Guazuma crinita Mart	4,5 43,0	Madeira Madeira, caixa
Paspalum	Yacuchapana			

	Guaba	Inga edulis Mart.	4,5	Lenha, alimento		
Capoeira 12	Eritrina	Erythina peruviana Krukoff.	4,8	Cerco, alimento		
anos	Shimbillo	Inga marginata Willd.	9,3	Lenha, alimento		
(29)	poroto			gado		
	Matico	Piper hoehnei Yunck	0,9	Medicinal		
	Ojé	Ficus anthelmintico Mart.	0,9	Medicinal		
	Ojé negro	Ficus insipida Willd.	0,9	Medicinal		
	Achiote	Bixa orellana L.	1,9	Medicinal, alimento		
	urucum					
	Tangarana	Tachigalia paniculata Aubi.	1,9	Madeira		
	Moena	Aniba gigantifolia (Britton & Killip) Irvin	1,9	Madeira		
	Bolaina	Guazuma crinita Mart	2,8	Madeira, caixa		
	Pashaco, parica	Schizolobioum parahyba var. amazonicum	2,8	Lenha, fixação de		
		Huber ex Ducke (Barneby.)		nutrientes no solo		
	Pona	Iriartea ventricosa Mart.	1,9	Poste		
	Huicungo	Astrocarpum murumuru Mart.	10,3	Teto, fruto		
	Capirona	Calycophyllum spruceanum (Bent) Hook	0,9	Madeira		
	Umbauba	Cecropia engleriana Sneth.	6,5	Medicinal		
	Quillosisa	Byrsonima chrysophylla H.B.K	5,6	Madeira		
	Ocuera	Vernonia scorpioides (Klatt.) King &	5,6	Lenha		
		H.Rob				
	Atadijo	Trena micrantha (L.) Blume.	0,9	Artesanato		
	Eritrina alta	Erythrina poeppigiana (Walp.) O. F. Cook	1,9	Madeira		
	Requia	Guarea allamand ex Linnaeus.	3,6	Madeira		
	Bolaina negra	Guazuma crinita Mart	1,0	Madeira, caixa		
	Ishanga alta	Urera baccifera (L.)	1,0	Medicinal		
	Yacuchapana	Terminalia oblonga (Ruiz & Pav.) Stend.	0,9	Madeira		
	Huimba	Chorisia insignis Kunth	0,9	Madeira		
	Moena canela	Ocotea longifolia HBK.	2,8	Madeira		
	Leite caspi	Couma macrocarpa Barb. Rodr.	1,9	Madeira branca		
	Anonilla	Annona squamosa L.	3,8	Fruta		
	Palo blanco	Enterolobium scamburgkii (Benth.) Bent.	0,9	Madeira		
	Quinilla, balata	Manilkara bidentata (A . DC.) Chev	0,9	Madeira		
	Leite caspi	Couma macrocarpa Barb. Rodr.	20,6	Madeira, lenha		

A biodiversidade contribui tornar a capoeira e os SAF mais valiosos tanto economicamente como ambientalmente Santana (2005), daí a importância de ser protegida. Proteger requer a compreensão do processo de desmatamento e as mudanças de políticas de modo que os atores sejam motivados a manter a biodiversidade em vez de eliminá-la (FEARNSIDE, 2003). Segundo o observado na tabela 1.2 é muito importante a variedade e tipo de espécies adaptadas à zona pelo desenvolvimento eficiente dos cultivos e das árvores nos sistemas estabelecidos, assim como pelo uso que representa seja como madeira, fruta, espécies não moderáveis, medicinal, semente (PESO; IBRAHIM, 1999).

Segundo as espécies encontradas nos sistemas estudados se pode observar que a *Guazuma crinita* e *Calycophyllum spruceanum* são as que mais persistem, pelo crescimento natural na zona e nos sistemas, quando es talado rebrota rapidamente, tem pouco dossel e são espécies que pode ser aproveitado pelo produtor entre dois a três anos, alem de ter a madeira muita demanda no mercado e gera ingressos adicionais (RIOS et al., 2007).

A capoeira e os SAF são o maior reservatório natural da diversidade vegetal, onde cada um de seus diferentes ambientes florestais possui um contingente florístico muito rico. As múltiplas inter-relações entre seus componentes bióticos e abióticos formam um conjunto de ecossistemas altamente complexo e de equilíbrio ecológico extremamente frágil (OLIVEIRA; AMARAL, 2004).

Os riscos para a biodiversidade em florestas, capoeiras amazônicas se tem por desmatamento, exploração madeireira, incêndios, fragmentação da floresta, depleção ou extinção da fauna, invasão por espécies exóticas, mudanças climáticas. Por essa ração deve-se manter o valor da biodiversidade, fixando penalidades pela destruição e compreender que deve-se conservar em diferentes formas, floresta, capoeira, o SAF (FEARNSIDE, 2003).

1.3.2. Armazenamento de carbono nos sistemas.

Na Tabela 1.3 são apresentados os valores médios da taxa anual de armazenamento de carbono na biomassa aérea, no solo e total nos sistemas estudados.

Tabela 1.3. Taxa anual de armazenamento de carbono na biomassa aérea, no solo e total nos sistemas estudados no Distrito de José Crespo e Castillo, 2006.

Sistemas de uso-da-terra	Faixa Idade (anos)	Carbono na biomassa aérea. (1)	Carbono no solo (2)	Carbono Total	Relação (2) / (1)
		1	t/ha ⁻¹ /ano		
Cultivo da coca	1	66,52	13,84	80,36	0,208
SAF café	3	33,73	3,96	37,69	0,117
SAF pupunha	5	28,27	1,91	30,18	0,068
SSP Echinochloa polystachya	3	23,54	4,58	28,12	0,195
Capoeira	12	8,86	1,06	9,92	0,120
SAF cítrico	15	6,65	0,83	7,48	0,125
SAF cítrico	30	5,02	0,37	5,40	0,074
SSP Paspalum conjugatum	15	4,14	0,35	4,49	0,085
SAF cacau melhorado	30	3,30	0,43	3,72	0,130
SAF cacau tradicional	35	3,07	0,21	3,27	0,068

1.3.2.1. Carbono na biomassa aérea e total

Pode-se observar que a taxa de carbono armazenado na biomassa aérea varia de 3,07 t/ha⁻¹/ano no SAF cacau tradicional 35 anos a 66,52 t/ha⁻¹/ano no sistema coca. Acrescido do que é armazenado anualmente no solo esse valor vão de 3,27 a 80,36 t/ha⁻¹/ano, provavelmente em razão de diferenças da fertilidade do solo dos diversos sistemas, do maior armazenamento de carbono em alguns sistemas em pleno sol, como se verifica em cultivos associados com árvores (MORA, 2001) e à maior quantidade de carbono encontrado na liteira (LOPEZ, 1998). O maior valor encontrado no sistema coca foi possivelmente, por ter sido plantado numa área de floresta recém-aberta, com carbono remanescente da vegetação original (VARGAS; VALDIVIA, 1999).

No sistema coca da região não se observou relação com arranjo agroflorestal. Segundo os produtores as árvores prejudicam a produção de folha de coca, tornando a folha delgada com cor verde claro e com rendimento e qualidade inferior, possivelmente pela pouca luz para realizar a fotossíntese e armazenar carbono (EWEL, 1990).

Os sistemas mais novos (SAF café de 3 anos, SAF pupunha de 5 anos e SSP *Echinochloa polystachya* de 3 anos) apresentaram, assim como o cultivo de coca, taxas anuais de armazenamento de carbono na biomassa aérea e total respectivamente de 23 a 28 t.C/ha⁻¹/ano, por tanto mais elevadas que a dos sistemas mais velhos, possivelmente por serem sistemas ainda jovens, em franco desenvolvimento (ÁVILA, 1995), com maior dinâmica fotossintética.

Isso permite maior armazenamento como assinalam Dixon et al. (1994), Dourojeani (1990), Lopez (1998) e Lama (2002). Alem disso se deve considerar que a densidade nos referidos SAF que foram de 140, 100, 170 arvores por hectare respectivamente, a vigor das espécies e as espécies de rápido desenvolvimento (AGUILAR, 2000). Contudo, os resultados aqui encontrados para biomassa aérea como sistemas mais jovens são muito superiores aos de SAF café na Costa Rica com 9,67 t.C/ha⁻¹/ano (Ávila, 2000), por (Palm, 2000) com 10,4 t.C/ha⁻¹/ano e no Brasil com 11,75 a 15 t.C/ha⁻¹/ano (MAGAÑA, 2004).

Nos sistemas de idade intermediária (SSP *Paspalum conjugatum* de 15 anos, capoeira 12 anos e SAF cítrico de 15 anos) a taxa de armazenamento de carbono é muito semelhante, com pequenas variações de 4,14 a 8,86 t C/ha⁻¹/ano para biomassa aérea e 4,49 a 9,92 para carbono total. Isso deve estar ligado ao efeito competitivo da biodiversidade de espécies, ao espaçamento dos cultivos agrícolas com as árvores e ao dinamismo dos ciclos biogeoquímicos (Dixon et al., 1994; Dourogeani, 1990; Lopez, 1998); ou ainda as implicações fisiológicas ou maior biomassa radicular (LOPEZ, 1998). Além disso, vale ressaltar que a capoeira armazena mais carbono que as florestas primárias e maduras (PALM, 2000; EWEL, 1990).

Já os sistemas de maior idade (SAF cítrico de 30 anos, SAF cacau melhorado de 30 anos e SAF cacau tradicional de 35 anos), apresentam taxas de armazenamento de carbono que vão de 3,07 a 5,02 t/ha⁻¹/ano para biomassa aérea e 3,27 a 5,40 t/ha⁻¹/ano de carbono total, considerada baixas, possivelmente por já se encontrarem perto do clímax (Etchevers et al., 2001; Callo, 2001; Ewel, 1990; Lopez, 1998; Ruiz, 2002).

Referente à relação do carbono no solo com o carbono na biomassa aérea encontrada na presente pesquisa, observa-se que o carbono no solo se encontra entre 6,8% e 20,8% dentro os parâmetros de (10 a 30%) no caso da biomassa no solo encontrada por Lopez (1998), Bernardus (2001) e que dita variação assinala que é devido a uma serie de fatores como tipo de espécies arbóreas e arbustivas, ao tipo de raízes, fisiologia da planta, pelo crescimento rápido, fertilidade do solo, capacidade fotossintética, e à densidade das espécies agroflorestais.

Através dela se identificam três faixas etárias dos sistemas estudados. O sistema coca (1 ano) detém a maior taxa de carbono armazenado, possivelmente por ser um cultivo com alta eficiência fotossintética, densidade de plantas por hectare. Contudo por suas condições peculiares (área recém derrubada) deve ser considerado em separado (VARGAS; VALDIVIA, 1999).

Na faixa de 3 a 5 anos, o SAF café (3 anos), o SAF pupunha (5 anos) e SSP *Echynochloa polystachya* (3 anos) armazenam boa quantidade de carbono total, em razão da idade jovem e do porte do componente arbóreo, o que reforça a importância ecológica das árvores, seu desenvolvimento fisiológico (PACHECO et al., 1998). Similar sucesso foi observado no SAF pupunha que, apesar de *Guazuma crinita* não ter-se desenvolvido bem pelo excesso de umidade no solo, correspondeu a segunda maior taxa de armazenamento de carbono no estudo. Possivelmente esse desempenho se justifique pela cobertura da leguminosa *Pueraria phaseoloides* que tem um grande potencial de incorporar nitrogênio no solo e promover a capacidade produtiva do mesmo (PESO; IBRAHIM, 1999).

Na faixa etária de 12 a 15 anos, estão a capoeira (12 anos), o SAF cítrico (15 anos) e o SSP *Paspalum conjugatum* (15 anos). Os dois primeiros apresentam taxas de armazenamento equivalentes, possivelmente em razão da similitude das árvores que foram estabelecidas por regeneração natural nos sistemas, da densidade e idade das árvores de cultivos, dos arranjos e do manejo do sistema (DOUROJEANI, 1990; DIXON et al., 1994).

Esses componentes são manejados pelo produtor, considerando seu rápido crescimento, copa pequena, espécie adaptada à região, preferentemente leguminosa, para não competir com o cultivo e evitar a sombra (CALLO, 2001). Contudo o SSP *Paspalum conjugatum* apresentam valores de biomassa aérea e carbono total inferior ao do SAF cítrico de 30 anos que se inclui na faixa etária de 30 a 35 anos, o que indica certa deficiência em relação a sua faixa etária. Na faixa de 30 a 35 anos, além do SAF cítrico (30 anos), estão o SAF cacau melhorado (30 anos) e o SAF cacau tradicional (35 anos) que juntamente com o SSP *Paspalum* apresentam taxas muito superiores as obtida em pastagem melhorada porem em processo de degradação e com a idade de 20 anos apresentados por Ruiz (2002). Essa diferença pode ser atribuída à variação na densidade de árvores, ao tipo de espécie florestal e ao manejo adotado na criação de gado de corte e de leite (ÁVILA, 1995). De qualquer modo deve-se considerar a importância dos SSP assinalada por Da Veiga (2004), pelos aspectos de produção de madeira, forragem, frutos, pela ciclagem de nutrientes e pela sombra que diminui o stress dos animais, aumentando a produção de carne e leite, além de conservar o solo.

Os sistemas foram agrupados nas três faixas etárias com a finalidade de compará-los em função da idade (Tabela 1.4 e apêndice 4), tendo se encontrada diferença estatística (Teste de Tukey, p<0,05) entre a faixa etária de 3 a 5 anos e 12 a 15 anos com as demais faixas as quais não diferiram entre si. Logo as plantas dos sistemas de faixa etária de 3 a 5 anos possuem maiores capacidades de armazenar carbono pelo dinamismo no desenvolvimento e

aceleração na seqüencialidade de seus ciclos biogeoquímicos, como assinalam Callo (2001) e Etchevers et al. (2001).

A idade é importante em longo prazo, tanto os SAF como a capoeira madura não podem continuar crescendo em biomassa, muito embora desequilíbrios ao longo de períodos de anos ou décadas ainda sejam importante para entender a dinâmica de carbono global, inclusive o esclarecimento do chamado sumidouro (FEARNSIDE, 2003).

Tabela 1.4. ANVA das faixas etárias de armazenamento de carbono total dos sistemas estudados.

Faixa etária dos sistemas	Idade	Taxa anual de armazenamento
Anos		(t/ha ⁻¹ /ano)
3 a 5	(A)	32,00 a
10 a 15	(B)	9,33 a
30 a 35	(C)	4,13 b

Os valores seguidos pela mesma letra não diferem entre si ($\alpha = 0.05$).

1.3.2.2. Carbono no solo

Os valores da taxa de armazenamento de carbono no solo, até a profundidade de um metro dos sistemas estudados mostrados na tabela 1,3 variaram de 0,21 a 13,84 t/ha⁻¹/ano. Esses valores correspondem a valores de 7 a 20% do encontrado na biomassa aérea. Em geral os valores segue o mesmo comportamento ligado a faixa etária com alguma variação: o SAF pupunha de 5 anos apresenta um valor muito baixo (apenas 7%) para sua idade, enquanto o SAF cacau melhorado (de 30 anos) um valor muito alto (13%).

A taxa de armazenamento de carbono encontrada nos sistemas mais jovem se deve ao vigor da planta à presença de espécies de rápido crescimento como *Byrsonima chrysophylla*, *Couma macrocarpa, Guazuma crinita, Tabebuia cassinoides, Calycophyllum spruceanum, Cecropia engleriana* (AGUILAR, 2000). Resultados idênticos foram encontrados por (FISHER; TRUJILLO, 1999), (BERNARDUS, 2001) e (CALLO, 2001). O SSP *Echinochloa polystachya* (três anos) apresentou a maior quantidade de carbono no solo, possivelmente em razão da boa qualidade nutritiva dos solos onde se desenvolvem espécies arbóreas e arbustivas, como *Erytrina edulis* nas cercas vivas (CENTRO AGRONÔMICO TROPICAL DE INVESTIGACION Y EXTENSIÓN, 1998; PESO; IBRAHIM, 1999) e sua estrutura radicular (BERNARDUS, 2001). Os SSP recuperam e estabilizam o carbono no solo e na

parte aérea, mediante a produção da madeira, produtos não madeireiros e permite a geração de serviços ambientais (TRATADO DE COOPERACIÓN AMAZÓNICA, 1999). Contudo, os resultados encontrados para os dois SSP estudados, especialmente o *Paspalum conjugatum* (15 anos) são muito inferiores aos obtidos por Fisher e Trujillo (1999) de 7 t/ha⁻¹/ano em pastagens de *Brachiaria decumbens* e de 11 t/ha⁻¹/ano em pastagens de *Brachiaria humidicola* avaliando carbono no solo a um metro de profundidade.

A capoeira de 12 anos e SAF cítricos 15 anos (Tabela 1.3.) apresentam taxas anuais de armazenamento de carbono no solo elevados considerando suas idade mais avançadas (respectivamente 1,06 e 0,83 t/ha⁻¹/ano) o que pode ser atribuído a sua biodiversidade e sistema radicular (BERNARDUS, 2001; CALLO, 2001) e alto conteúdo de liteira, galhos, folhas das árvores e arbustos (DIXON et al., 1994).

O SAF cítrico 30 anos, SSP *Paspalum conjugatum* (15 anos), SAF cacau melhorado (30 anos) e SAF cacau tradicional (35 anos), são os que armazenaram a menor quantidade de carbono no solo (valores de 0,21 a 0,37 t/ha⁻¹/ano), (tabela 1.3). Esses resultados são muito inferiores aos obtidos por Callo (2001), em SAF cacau tradicional (8,7 t/ha⁻¹/ano) possivelmente pelas condições de idade do sistema os quais neste estudo se encontra perto do clímax quando as plantas armazenam pouco carbono. Os sistemas de raízes das árvores e cultivos em SAF podem influenciar positivamente nos solos agrícolas pela interceptação da lixiviação de nutrientes, promovendo melhora física dos solos e aumento da qualidade de macroporos que conduzem a uma melhor infiltração da água (SCHROTH; LEHMANN, 1995; SCHROTH et al., 1993).

1.3.3. Comparação das taxas de armazenamento de carbono do cultivo de coca com as dos outros sistemas de uso-da-terra.

Os resultados da comparação entre as taxas de armazenamento anual de carbono no solo, na biomassa aérea e total dos sistemas estudados, com a de cultivo da coca são amostrados no apêndice 4. Observa-se, que não se tem diferença significativa entre o cultivo de coca e os demais sistemas, com relação ao carbono do solo houve diferença significante entre o cultivo da coca e os sistemas SSP *Paspalum conjugatum* (15 anos), SAF cacau tradicional (35 anos), SAF cítricos (15 anos), SAF pupunha (5 anos) e SAF café (3 anos). Essas diferenças possivelmente se devem aos sistemas mais antigos, como o SAF cacau tradicional, pela menor capacidade de armazenar carbono, através da biomassa das folhas caídas, galhos, serapilheira e raízes das diversas espécies arbóreas e cultivadas (CALLO,

2001), a medida que se aproximam do clímax. Nos sistemas mais jovens esse fato pode estar ligado a fatores que tanto podem se relacionar a funcionalidade dos sistemas, como é o caso das raízes das plantas (FISHER; TRUJILLO, 1999; BERNARDUS, 2001), como a interações negativas entre os componentes (arbóreo, herbáceo) do sistema e as condições de solo, de clima ou de manejo, como é o caso da carga animal excessiva no sistema silvopastoril (PESO; IBRAHIM, 1999). Este fato pode ter ocorrido no caso do SSP *Paspalum conjugatum* (15 anos), que se apresenta com taxa inferior aos sistemas de mesma faixa etária.

1.3.4. Comparação das taxas de armazenamento de carbono da capoeira com as dos outros sistemas de uso-da-terra.

No Apêndice 5, apresenta-se o resultado da comparação entre as taxas de armazenamento de carbono no solo, na biomassa aérea e total dos sistemas de uso-da-terra estudados com a de capoeira. A taxa de armazenamento de carbono da capoeira quando comparada com os demais sistemas mostra diferencia significativa apenas quanto ao solo e somente em relação ao SSP *Paspalum conjugatum*. Provavelmente porque a capoeira possui uma grande biodiversidade de espécies arbóreas e arbustivas (Tabela 1.2) o que lhe confere uma elevada capacidade de armazenar mais carbono no solo e também pelo fato do SSP *Paspalum conjugatum* vim apresentando uma baixa capacidade de armazenar carbono pela sua baixa produção de pastagens (CALLO, 2001; PESO; IBRAHIM, 1999).

O estoque de carbono no solo nos sistemas instalados após a capoeira pode ser diminuído até um novo nível de equilíbrio, mais baixo no decorrer de um longo período de tempo, porque as raízes profundas das árvores na capoeira são uma fonte de entrada de carbono no solo, e pode-se esperar que a substituição da capoeira por pastagem, com raízes pouco profundas mude o equilíbrio entre as entradas de carbono e a oxidação nas camadas mais profundas do solo (FEARNSIDE, 1992). É o caso do SSP *Paspalum conjugatum* que tem se mostrado com baixa produção de capim, com fraca taxa de armazenamento de carbono ao mesmo tempo em que as espécies arbóreas do sistema aportam pouca biomassa no solo (PESO; IBRAHIM, 1999).

1.4. CONCLUSÕES.

- Os diversos sistemas estudados mostram grande diversificação em quanto a sua composição florística em face de idênticas funções que apresentam tais como sombra, melhoramento do solo, papel de cerca viva, confirmando o fato de que um sistema diversificado o armazenamento de carbono varia ainda mais na capoeira que tem um dinamismo fotossintético muito importante.
- A intensidade do armazenamento de carbono total esta ligada sobre tudo à idade e que os sistemas com ate cinco anos SAF de café, SAF de pupunha e SSP de *Echinochloa* polystachya apresentaram maior acúmulo de carbono que aqueles mais velhos.
- Os sistemas de idades aproximadas apresentam armazenamento de carbono total e carbono na biomassa aérea semelhante, mas variam quanto ao carbono do solo em 6 a 28%.
- O total do carbono no solo tem variado entre o cultivo da coca e os sistemas estudados (menores de cinco anos) sugere que este comportamento e mais sensível ao processo de armazenamento por o manejo.
- Quanto ao armazenamento total de carbono e aquele na biomassa aérea, os SAF são muito semelhantes, mas diferem da coca quanto ao armazenamento de carbono no solo.

CAPÍTULO II: VALORAÇÃO ECONÔMICA DE SISTEMAS DE USO-DA-TERRA MEDIANTE VALOR PRESENTE LIQUIDO (VPL) NO DISTRITO DE JOSÉ CRESPO E CASTILLO, PERU.

Resumo: O estudo teve como objetivo estimar a valoração econômica de alguns sistemas de uso-da-terra (SUT) mediante o valor presente líquido (VPL). Além do cultivo da coca (Erythroxylon coca Lam.), avaliaram-se 9 SUT, sendo uma capoeira de 12 anos, e oito sistemas agroflorestais (SAF), incluindo os sistemas silipastoris (SSP): dois SAF de citro (Citrus sinensis L.), de 30 e 15; dois de cacau (Theobroma cacao L.), tradicional e melhorado; um de pupunha (Bactris gasipaes Kunth.); um de café (Coffea arabica L.); um SSP de Echinochloa polystachya HBK., um de Paspalum conjugatum Berg. A metodologia constou de entrevistas interativas na avaliação das propriedades, patrimônio, aspectos técnicos e econômicos dos SUT. Os indicadores econômicos VPL, TIR, Rb/c dos sistemas estudados são positivos, mas a sua estabilidade varia quando há alterações do preço e custo. Essas alterações são mínimas quando se compara com o custo de oportunidade de 14%, indicando estabilidade econômica no SAF de cítro de 30 anos, SAF de pupunha, SAF de café, SAF de cacau melhorado e tradicional, capoeira e SSP de Echinochloa polystachya, diferente da coca, SAF de cítro de 15 anos e SSP de Paspalum conjugatum que mostram instabilidade com efeitos econômicos negativos.

Palavras-chave: Análise econômica, sistemas agroflorestais, coca.

Abstract: The objective of the study was to estimate the economic performance of some land-use system (LUS) by liquid present value (VPL). Besides coca *Erythroxylon coca* Lam. crop, nine LUS were evaluated -12 years-secondary forest, and eight agroforestry systems (AFS), including the silvopastoral systems (SPS): two AFS of citrus (*Citrus sinensis* L.), of 30 and 15 years; two of cocoa (*Theobroma cacao* L.), traditional and improved; one of pupunha (*Bactris gasipaes* Kunth.); one of coffee (*Coffea arabica* L.), one SPS of *Echinocloa polystachya* HBK.; one of *Paspalum conjugatum* Berg. The methodology included interactive interviews in order to evaluate the farm, patrimonio; technical and economic aspects to the LUS. The economic indicators LVP, IRT, Rb/c, of the studied systems were positive, but their stability varies with the price and cost. The variation is minimum when compared with the opportunity cost of 14%, indicating an economic stability in the AFS citric de 30 years, AFS of pupunha, AFS of coffee, AFS of cocoa improved and traditional capoeira and SPS inproved, different from coca crop, SAF of citrus of 15 years and SSP of *Paspalum c*. that showed instability with negative economic effects.

Key words: Economic analysis, agroforestry system, coca crop.

2.1. INTRODUÇÃO.

A adoção de sistemas agroflorestais (SAF) na Amazônia tem sido indicada como uma das muitas maneiras de desenvolver o setor rural pela maior geração de renda no produtor, diversificação de produtos agropecuários que podem ajudar a reduzir a pobreza rural e proteger ao meio-ambiente. A adoção de SAF deve ter um incentivo dos governos através de políticas públicas em forma de créditos, fomento, extensão e capacitação, fazendo chegar aos produtores os benefícios econômicos, sociais, ambientais (RIOS et al., 2003).

Um dos principais meios para garantir a conservação e uso sustentável da capoeira e sistemas de uso da terra é demonstrando que geram ingressos econômicos significativos no produtor a partir se sua integração à cadeia produtiva e de mercado, esses fundamentos têm uma questão teórica e metodológica centrada não somente na estabilidade de crescimento econômico em longo prazo, como também na relação entre padrões de produção e consumo (GLAVER; PIZARRO, 2002). No entanto, deve-se ter presente que os recursos naturais não são reservas inesgotáveis que o homem pode destruir para satisfazer suas necessidades.

Segundo o informe encomendado pelo governo britânico a uma equipe multidisciplinar de cientistas e técnicos liderados pelo economista Nicholas Stern, a evidência científica aponta para o incremento dos riscos de impactos sérios e irreversíveis causados pela maneira usual do funcionamento da economia na produção agropecuária e florestal (LABARTA; WHITE, 2005). Calculam que os impactos de mudanças climáticas afetaram mais aos paises pobres, por depender da agricultura, que é a atividade econômica mais sensível a essas mudanças.

As maiores incertezas frente a projetos florestais são a valoração dos benefícios ambientais, já que até o momento não existe um mercado consolidado que determine os preços do seqüestro do carbono, nem regras claras frente aos métodos e formas de valorar este beneficio ambiental.

Analisando os SAF, Labarta e White, (2005) aponta três perspectivas: a do agente financeiro que visa rentabilidade dos projetos e a capacidade de pagamento dos produtores, a do produtor que necessita satisfazer suas demandas com garantia, e a do ambiente com a finalidade de sua proteção e garantir o desenvolvimento sustentável.

Os níveis de avaliação econômica dos SAF dependem dos indicadores financeiros como valor presente líquido (VPL), taxa interna de retorno (TIR), relação custo benéfico (Rc/b) e condições de mercado, além dos indicadores do produtor (retorno do capital, mão-de-obra, terra, e tempo) e das avaliações de impacto ambiental (valoração de beneficio e custo ambiental). Do ponto de vista econômico, também, precisa-se conhecer o potencial de

produção de espécies madeiráveis e não madeiráveis dos sistemas de uso-da-terra, como componente de diversificação da receita nas propriedades rurais, em termos de quantidade de carbono armazenado na biomassa (BROWN, 1997).

Um dos problemas na valoração econômica dos sistemas de uso-da-terra é a dificuldade de quantificar a fixação do carbono e à falta de um mercado estabelecido. Isso justifica a existência de uma grande variação das estimativas de preços conforme o método de quantificação e a natureza dos projetos (conservação de reservas, SAF, manejo florestal, estabelecimento de plantações florestais) (ORTIZ et al., 1998).

As variações de preço no armazenamento de carbono são muitas. Por exemplo, nos Estados Unidos da América Winjum (1992) estimaram um custo de US \$ 5,00 t C, expertos calculam uma media de US \$ 20,00 t C. Outros paises, como a Costa Rica negociam com Noruega um preço de US \$ 10,00 t C (ORTIZ et al., 1998) em floresta primária, capoeira e SAF estimaram US \$ 18,30 t C, US \$ 43,50 t C e US \$ 20,00 t C, respectivamente.

O INTERGUBERNAMENTAL PANEL ON CLIMATE CHANGE (1996) fez revisão dos custos de proteção de florestas e desmatamento na Amazônia Brasileira, omitindo custos de oportunidade do terreno e determinaram em US \$ 0,50 e US \$ 15,00 t.C. Na Costa Rica, Ramírez, (1998) encontrou na floresta tropical custo de US \$ 35,00 t.C assinalando que a floresta sem tratamento é a melhor opção para uma proposta de carbono em comparação com outras opções. Em Pucallpa Peru, Baldoceda (2002) estimou US \$ 13,60 t C no caso da floresta secundaria.

Para este estudo testamos a hipótese de que os sistemas de uso-da-terra estudados têm bom desempenho econômico e é possível selecionar alguns como alternativos ao cultivo da coca. Neste sentido, o trabalho objetivou estimar a valorização econômica de alguns sistemas de uso-da-terra, no distrito de José Crespo e Castillo, Peru, utilizando a metodologia de valor presente líquido (VPL), taxa interna de retorno (TIR), relação custo benéfico (Rc/b) e análise de sensibilidade.

2.2. METODOLOGIA.

2.2.1. Caracterização da área de Estudo.

Ver Capítulo I, página 21.

2.2.2. Métodos.

Com o intuito de levantar as informações detalhadas sobre a história e as características dos sistemas de uso-da-terra incluídos no estudo, usou-se a entrevista interativa através de um questionário (Apêndice 1). Este foi aplicado aos informantes-chaves, proprietários dos imóveis selecionados, os proprietários de casas comerciais de produtos agropecuários e de industrias de móveis, palitos de dente, palitos de picolé, caixas de frutas, de empresas de transporte, comércio de venda de madeira.

A análise econômica foi feita utilizando-se dados das atividades do produtor, no aspecto socioeconômico, o uso-da-terra atual, o histórico da área, os custos de produção de produtos agropecuários, os insumos agropecuários e os efeitos ambientais do sistema, assim como sobre os temas adicionais, aspectos técnicos, econômicos, potencialidades, mercado e comercialização, custos de mão-de-obra familiar, transporte, comercialização, apoio financeiro e preço.

Os dados obtidos foram sistematizados na tabela de custos de produção dos sistemas (custo do cultivo, custo especial, custos gerais), que foram contrastadas com as produções por cultivo, floresta e preço, com a finalidade de obter finalmente as análises econômicas dos sistemas (Valor presente liquido VPL, taxa interna de retorno TIR, relação beneficio custo Rc/b e análises de sensibilidade).

Os sistemas de uso-da-terra selecionados foram cultivo da coca, capoeira e oito SAF mostrados na Tabela 1.1, (página 23) que resume as informações gerais sobre as características das áreas estudadas.

O valor econômico da floresta foi obtido com base no cálculo de biomassa florestal, tendo em conta indicadores de volume em pé tabelar multiplicado pelo custo médio de US \$ 0,09, mostrados no apêndice 1.2, que foram somados às receitas dos sistemas de uso-da-terra. Os dados encontrados determinaram o orçamento unitário por hectare de cultivos agrícolas e pastagem, considerando-se entradas (venda de produtos agropecuários, valor residual dos bens de capital), e as saídas (despesas com investimento e despesas com operações ou custeio) (SANTANA, 1995).

Avaliou-se o valor presente liquido na determinação do lucro das atividades levando-se em conta os retornos no tempo. O VPL é o valor atual do fluxo de benefícios incrementais líquidos dos sistemas e é usado na comparação entre os sistemas agrícolas e determinar a renda liquida do produtor conforme SANTANA (1995) que também considera o lucro e o valor do dinheiro no tempo.

Os dados obtidos determinaram o orçamento por hectare dos sistemas considerando-se as entradas (venda de produtos agropecuários, valor residual dos bens de capital), e as saídas (despesa de investimento e de operações ou custeio) (SANTANA, 1995, 2005). A taxa de desconto utilizada foi de 14 % ao ano por ser a taxa usada financeiramente no Peru. Na determinação do valor presente liquido (VPL) usou-se a seguinte fórmula:

$$VPL = \sum_{t=0}^{n} \left(\frac{R_{t} - C_{t}}{(1+i)^{t}} \right) = \sum_{t=1}^{n} \left(R_{t} \cdot \frac{1}{(1+i)^{t}} \right) - \sum_{t=1}^{n} \left(C_{t} \cdot \frac{1}{(1+i)^{t}} \right)$$

Onde:

VPL = Valor presente liquido

R_t = Fluxo de receitas do sistema no ano t

 C_t = Fluxo de custo do sistema no ano t

n = Número de anos do sistema (t = 1, 2,... n)

i = Taxa de juros em longo prazo

No caso da taxa interna de retorno (TIR) a fórmula utilizada foi:

$$\sum_{t=0}^{n} \text{Re } ceita_{t} . (1+TIR)^{-t} = \sum_{t=0}^{n} Custo_{t} . (1+TIR)^{-t}$$

A relação beneficio-custo foi determinada pela fórmula:

$$R_{b/c} = \frac{\sum_{t=0}^{n} \operatorname{Re} ceita_{t}.(1+i)^{-t}}{\sum_{t=0}^{n} Custo_{t}.(1+i)}$$

A análise de sensibilidade se determinou com as formulas da TIR para simular uma alteração **C** nos custos e **D** nas receitas. Testou-se a variação do TIR quando o custo de produção sofre um aumento de 10% ou se o preço do produto cai em 10%, para analisar o grau de sensibilidade dos sistemas estudados com essas mudanças segundo SANTANA (2005). As fórmulas utilizadas foram:

a) Alteração no custo de produção de magnitude C.

$$\sum_{t=0}^{n} \operatorname{Re} ceita_{t} \cdot (1+TIR)^{-t} = \sum_{t=0}^{n} Custo_{t} \cdot (1+C) \cdot (1+TIR)^{-t}$$

b) Alteração no preço do produto de magnitude D.

$$\sum_{t=0}^{n} \text{Re } ceita_{t} (1-d) (1+TIR)^{-t} = \sum_{t=0}^{n} Custo_{t} (1+TIR)^{-t}$$

Os termos são:

TIR = Taxa interna de retorno

R_t = Fluxo de receitas do sistema no ano t

 C_t = Fluxo de custo do sistema no ano t

n = Número de anos do sistema (t = 1, 2,... n)

i = Taxa de juros em longo prazo

2. 3. RESULTADOS E DISCUSSÃO.

2.3.1. Análise de custos.

A Tabela 2.1 apresenta os dados correspondentes aos custos de produção por cultivos, custos especiais, custos gerais e totais, que permitem uma visão mais ampla dos custos na avaliação econômica dos sistemas de uso-da-terra como assinala SANTANA (2005). Existem sistemas que tem maiores custos como o cultivo da coca e SAF cítrico 30 anos, SAF cacau melhorado, SAF cítrico 15 anos, SAF pupunha, SSP *Echynochloa polystachya*, SAF café, SAF cacau tradicional, e com baixo custo como SSP *Paspalum conjugatum* e capoeira. Isso em razão do plano diferenciado de manejo de cada sistema de cultivo que permite um manejo planificado de orçamento de acordo as atividades (RIOS, 1995).

Tabela 2.1. Custos de produção por sistemas de uso-da-terra estudados em José Crespo e Castillo, em (US \$) e (%).

Sistemas	Custos cultivo US \$/ha	%	Custos especiais US \$/ha	%	Custos gerais US \$/ha	%	Total US \$/ha
Coca	795,08	56,54	495,00	35,20	116,11	8,26	1406,17
SAF cítrico 30 anos	284,82	31,45	502,67	55,51	118,12	13,04	905,61
SAF cacau melhorado	112,11	13,44	613,00	73,51	108,77	13,05	833,88
SAF cítrico 15 anos	239,37	30,00	454,27	56,95	104,05	13,05	797,69
SAF pupunha	402,99	52,97	295,00	38,77	62,82	8,26	760,81
SSP Echynochloa polystachya	401,79	53,90	246,36	33,05	97,22	13,05	745,37
SAF café	518,13	70,81	153,20	20,94	60,42	8,25	731,75
SAF cacau tradicional	112,11	13,44	440,00	69,30	82,82	17,26	634,93
SSP Paspalum conjugatum	63,63	80,00	12,12	15,23	3,79	4,77	79,54
Capoeira	3,03	55,29	2,00	36,50	0,45	8,21	5,48

As receitas também cumprem um papel importante na conjugação das fórmulas estabelecidas e determinar o valor presente líquido, taxa interna de retorno, relação benéfico custo, inclusive as análises de sensibilidade, por isso na Tabela 2.2 demonstra-se a porcentagem das receitas por cultivos e madeira em cada sistema de uso-da-terra.

Tabela 2.2. Receitas por venda de madeira e cultivos em (US \$/ha) e (%), nos sistemas de uso-da-terra estudados em José Crespo e Castillo, 2006.

Sistemas	Madeira US \$/ha	%	Cultivos US \$/ha	%	TOTAL US \$/ha
Coca lícita	0	0	660,00	100,00	660,00
Coca ilícita	0	0	2608,69	100,00	2608,69
SAF cítrico 30 anos	119,44	4,70	2415,00	95,30	2534,44
SAF pupunha	0,93	0,03	2339,07	99,97	2340,00
SAF cítricos 15 anos	95,18	5,80	1540,00	94,20	1635,18
SAF cacau melhorado	86,80	6,10	1343,32	93,90	1430,12
SAF café	53,96	4,00	1304,69	96,00	1358,65
SAF cacau tradicional	154,27	14,60	903,45	85,40	1057,72
SSP Echinochloa polystachya.	39,54	4,80	783,20	95,20	822,74
Capoeira	212,76	100,00	0	0	212,76
SSP Paspalum conjugatum	47,86	63,10	27,95	36,90	75,81

Analisando-se a Tabela 2.2, onde se consigna a receita pela venda de produtos agropecuários e florestais no estudo, os sistemas com alta receita são a coca ilícita, seguida do SAF cítrico 30 anos, SAF pupunha, SAF cítricos 15 anos, SAF cacau melhorado, SAF café e SAF cacau tradicional, geralmente pela boa produção (cultivos e espécies madeiráveis e não-madeiráveis). No caso da coca lícita a receita é baixa por sua pouca produção de folha, por ser de recente instalação, e baixo preço no mercado. Ao contrário a coca ilícita tem pouca produção e alto preço no mercado, usado na elaboração de droga, tem sua receita triplicada (RIOS et al., 2003).

Com receita média está o SSP *Echinochloa polystachya*, a capoeira e SSP *Paspalum conjugatum* visto que suas receitas são por baixa produção de pastagem, madeira, e baixo preço. Estes valores econômicos não têm maior importância se é que não se pode realizar no mercado em curto prazo, e que o investimento privado possa compreender melhor as possibilidades de investir em conservação da floresta amazônica e SAF em largo prazo, e se possa usar como política publica, com pagamento por serviços ambientais (ÁVILA 2000; RIOS et al., 2003) por ter alta performance ambiental.

Em termos de rentabilidade econômica os SAF têm a mão-de-obra familiar como componente importante, pois não ocasiona desembolsos econômicos aos produtores, e são assumidas pela família. As rentabilidades desses sistemas de uso-da-terra são maiores que nos sistemas de mono cultivos, como assinala (RODIGHERI, 1997; RIOS; MENACHO, 2000).

Soma-se ainda que os SAF são menos vulneráveis aos riscos climáticos que freqüentemente causam perdas consideráveis aos cultivos anuais.

É importante assinalar que no cultivo da coca se utiliza muito a mão-de-obra contratada, especialmente para colheita e cultivo, principalmente em época de inverno, por que a coca se não for colhida e seca a tempo torna-se escura e seu custo no mercado é menor. (RIOS et al., 2003).

A maior quantidade de mão-de-obra utilizada encontra-se no sistema coca pelo manejo do sistema de cultivo, seguindo-se o SAF café, SAF pupunha, SSP *Echinochloa polystachya* em vista dos contratos na colheita, eliminação de ervas daninhas, controle de enfermidades, etc. Com uso médio de mão-de-obra estão os SAF cítricos (30 e 15 anos), SAF cacau (tradicional e melhorado), e com baixo uso de mão-de-obra o SSP *Paspalum conjugatum* e a capoeira, resultados muito coincidentes aos encontrados por Rios et al. (2003, 2007) na zona do Alto Huallaga no Peru.

2.3.2. Análise do valor presente liquido (VPL).

A análise econômica dos diferentes sistemas de uso-da-terra encontrado no estudo foi mostrada na Tabela 2.3. E se refere ao valor presente líquido, taxa interna de retorno e a relação beneficio custo nos sistemas estudados, com uma taxa de juros em longo prazo de 14% ao ano, como proposto por Santana (2005).

Tabela 2.3 Análise econômica do VPL (Valor presente liquido), TIR (Taxa interna de retorno), Rb/c (Relação beneficio custo), dos sistemas estudados em José Crespo e Castillo, 2006.

Sistemas	VPL	TIR	R _{B/C}
	(US \$/ha)	%	
Coca lícita	-654,60	-0,53	-0,46
Coca ilícita	1054,82	85,00	1,85
SAF cítricos 30 anos	728,55	41,57	1,92
SAF pupunha	662,20	60,12	1,99
SAF café	587,73	48,94	1,92
SAF cacau melhorado	279,17	23,88	1,38
Capoeira	262,12	396,34	55,50
SAF cítricos 15 anos	151,79	21,41	1,22
SSP Echinochloa polystachya	138,79	30,02	1,21
SAF cacau tradicional	98,32	18,64	1,18
SSP Paspalum conjugatum	1,67	15,67	1,02

Um VPL US \$ 662,20 no SAF pupunha, por exemplo, indica que ao final do empreendimento, sobram líquidos US \$ 662,20 para novos investimentos nas propriedades rurais, a TIR de 60,12% indica que este SAF é viável até essa taxa de juros muito mais elevados que o custo de oportunidade de 14 % por ano, o que torna o SAF viável e que a Rb/c de 1,92 indica que para cada US \$ 1 investido, ao final retorna US \$ 0,92 ou 92% no caso do cítricos de 15 anos.

Ao realizar a análise econômica dos diferentes sistemas estudados se observa alto valor presente liquido no cultivo da coca ilícita em razão do alto preço da folha de coca que é vendida a pessoas que elaboram cocaína. Igualmente alto VPL nos SAF cítrico 30 anos, SAF pupunha e SAF café, devidos ao alto preço no mercado do produto, maior renda, produção e ao maior DAP das arvores, previsão de argumentos socioeconômicos que relevem sua versatilidade circunstancial como assinala Ávila, (2000); com mediano VPL o SAF cacau melhorado, a capoeira, SAF cítrico 15 anos, SSP *Echinochloa polystachya* e SAF cacau tradicional; e com baixo VPL o SSP *Paspalum conjugatum*.

Isso indica a importância das árvores nos sistemas de uso-da-terra especialmente os SAF que ofertam vantagem comparativa em relação a outras monoculturas, que imitam a biodiversidade do bosque, permitindo maior cobertura do solo, uma produção baseada na produção diversificada e que permite uma economia mais estável ao produtor (PUERTA, 2003). A tabela 2.2, evidencia as receitas por vendas de madeira e cultivos.

Os SAF com os componentes árvores e cultivos contribuem para melhorar a economia do produtor pela variedade de ingressos econômicos que tem e as vantagens comparativas. Alguns produtores que manejam sistemas extrativistas e monoculturas, consideram a árvore como um produto de extração que dificulta à agricultura e pecuária e não consideram em seu sistema produtivo, apesar da valoração econômica que oferece os SAF tem sustentação microeconômico baseado na economia da produção de cultivos e árvores (ÁVILA, 2000).

O SSP *Echinochloa polystachya* constitui uma opção que aperfeiçoa o retorno gerando maiores receitas líquidas ao produtor (RUIZ, 2002). O resultado obtido no estudo mostra muito maior renda líquida da pecuária obtida na Amazônia brasileira (Mato Grosso) que foi de 138,91 reais, em Ji-Paraná (Rondônia) 132,87 reais; em Paragonimas no Pará 95,39 e 102,98 Reais; em Redenção (Pará) 65,83 reais (DA VEIGA, 2004).

No caso dos sistemas silvipastoris estudados nota-se que as árvores encontradas são de regeneração natural, manejado e trabalhado pelos produtores, que as consideram como parte da estratégia econômica futura e como parte do processo dinâmico, que contribui

economicamente ao produtor coincidindo com o indicado por Instituto Nacional de Desarrollo (2002).

As árvores aportam uma série de serviços como alimento no consumo humano (frutos, sementes), alimento de animais (folhas, frutos, sementes, cortiça, raízes, madeira), energia (lenha, aceites, látex, resinas), medicinais, materiais de construção (indústria, postes, fibras), cercas vivas, sombra (gado, humanos, cultivos), manejo do solo (conservação da fertilidade e controle da erosão), manejo da água (absorção, retenção da água, melhoramento da drenagem, controle de inundações e proteção dos rios), proteção contra ventos (FAO, 1997), e produtos de valor comercial que podem valorizar as terras ao melhorar seu valor estético (MUHAMMAD et al., 2003).

Em relação ao cultivo da folha de coca, o VPL, TIR, e $R_{b/c}$, são negativos no primeiro ano quando se leva em conta o preço oficial do Estado (ENACO - Empresa Nacional Comercializados de Coca no Peru). Estes preços, no entanto, podem ser positivo e duplicar ou triplicar dependendo do preço da coca no mercado ilícito com certos riscos no produtor. Em estudos realizados por Rios et al., (2003) verifica-se alta rentabilidade a partir do segundo ano em cocais novos legais, não existindo nesta região cultivo que supere sua rentabilidade.

As capoeiras por outro lado, apresentaram valores econômicos altos, têm maior eficiência no armazenamento de carbono total por acumulo da biomassa aérea e no solo, oferecem maior rentabilidade por ter custos de manejo quase zero, além da grande biodiversidade que apresenta (LOPEZ, 1998). Somam-se ainda, os valores econômicos que apresentam as espécies madeiráveis e não madeiráveis no mercado local, regional e nacional no caso do Peru (RIOS et al., 2007). É importante o aproveitamento do potencial econômico dos produtos florestais não madeireiros que são fundamentais na economia familiar de subsistência especialmente em épocas de crise como fruta, sementes, resinas, flores, raízes, cortiça, que não se traduz em dinheiro, como os encontrados na pesquisa e que influencia nas receitas nos valores de VAN, TIR, relação beneficio custo. Estes valores são coincidentes aos obtidos por Winjum (1992).

A rentabilidade dos SAF na Amazônia peruana tem muitas variáveis como limitações de solos, pequenas áreas instaladas de SAF de 1 a 3 ha. Entretanto a complementaridade se mostra com a agricultura, a pecuária e floresta, que tem pouco risco (ÁVILA, 2000). Também se observou a consciência ambiental dos produtores pela proteção que realizam à água, o solo. Muitos delas têm reservas de floresta e capoeiras pelos benefícios que apresentam, alem de manejarem áreas produtivas de acordo com o tipo de solo.

A alta taxa em VPL, TIR e R_{b/c} mostrada pela capoeira na Tabela 2.3, deve-se à diversidade de espécies vegetais predominantes e muitas delas tem potencial econômico que interatuam propiciando sucessão vegetal harmônica que é seqüestradora e transformadora de energia solar. Esta é porta de entrada de energia e carbono à cadeia armazenadora de carbono. É provedora de refúgio na fauna silvestre, agente antierosão, regulador do clima local, redutor da contaminação, fonte de matéria prima, fonte de matéria espiritual e cultural por seu valor estético, recreativo e educativo (WINJUM, 1992)

Os tomadores de decisões nos diferentes setores da economia no Peru, como o Ministério de Pesca, Ministério de Agricultura, INRENA (Instituto Nacional de Recursos Naturais e Ambientais), Ministério de Economia e Finanças, como autoridades ambientalistas, que olha os SAF, e as áreas naturais protegidas, devem utilizar estes resultados da pesquisa no desenho de novos instrumentos de gestão e potenciar ligar o funcionamento de um sistema de informação bioeconômica que permite ser usado, no futuro, no Sistema de Contabilidade Nacional (SCN).

Precisa uma verificação de campo mediante sistemas de informação geográfica (SIG), na obtenção de dados básicos da propriedade rural do produtor e dessa maneira poder receber um certificado de emissões reduzidas (CER) e obter os benefícios econômicos pelo pagamento de serviços ambientais propostos no Protocolo de Kyoto (EDISA, 2003; MUHAMMAD et al., 2003) mostram que os pagamentos podem ser variados de US \$ 10,00 a US \$ 70,00 anuais por ponto adicional, num espaço de 4 anos, como se faz na Costa Rica, Colômbia e Nicarágua. Com isso se busca identificar a capacidade dos produtores de manter e incrementar usos sustentáveis da terra ainda depois que termine o pagamento.

Na instalação de sistemas agroflorestais precisa conhecer e identificar as espécies vegetais que predominam em cada uma das regiões, não só como valor econômico da madeira, das resinas, de lenha, de plantas medicinais, de alimento no gado, da biodiversidade genética, do ecossistema, e paisagem, na valorização do potencial econômico real e com a finalidade de aproveitar seletivamente na instalação e manejo do SAF (MUHAMMAD et al., 2003).

No caso de SSP, Muhammad et al. (2003) propõe 28 sistemas de uso-da-terra, com os índices de seqüestro de carbono, conservação da biodiversidade e total, que são reconhecidos pelo Fundo Global Ambiental (GEF). Muitos são parecidos aos encontrados na presente pesquisa como SAF café, SSP com *Echinochloa polystachya*, SSP com *Paspalum conjugatum*, que toma grande importância para pagamento por carbono.

2.3.3. Análise da taxa interna de retorno (TIR).

A TIR mostra que a maior rentabilidade se tem no sistema coca ilícita, capoeira, e no SAF pupunha, SAF café, SAF cítrico de 30 anos, SSP *Echinochloa polystachya*, SAF cacau (melhorado e tradicional), SAF cítrico 15 anos e SSP *Paspalum conjugatum*, devido possivelmente a pouca mão-de-obra usada na produção, aos recursos madeireiros, qualidade das espécies que finalmente superam ao 14% da taxa de juros que reflete o custo de oportunidade do capital (SANTANA, 2005; MUHAMMAD et al., 2003).

A rentabilidade encontrada no estudo é boa na Amazônia peruana. Isto por tratar-se de uma agricultura tradicional de baixa renda, em unidade de produção pequena, com predominância da mão-de-obra familiar, com tecnologia de produção predominantemente tradicional, produção de autoconsumo e excedente ao mercado, produção diversificada, produções a baixa escala, e com impacto ambiental de moderado a alto. Estes resultados são coincidentes com os observados por Rios (1999); Rios e Menacho (2000) e Santana (2005).

2.3.4. Análise da relação beneficio custo, (Rb/c).

Na Tabela 2.3 observa-se que a relação beneficio custo foi maior em capoeira 12 anos, possivelmente pela maior quantidade de espécies madeiráveis e não madeiráveis existente e pouco gastos. Outros SAF economicamente importantes são os SAF pupunha, SAF café, SAF cítrico 30 anos, SAF cacau melhorado, SAF cítrico 15 anos, SSP *Echinochloa polystachya*, SAF cacau tradicional. A soma das receitas atualizada nestes SAF é maior do que a soma dos custos atualizados à taxa i, portanto tem viabilidade econômica (SANTANA, 2005). Sistema com baixo beneficio custo é o SSP *Paspalum conjugatum*, possivelmente por ter pouca produtividade da pastagem e os tipos de árvores são de baixo custo no mercado, porém com bom serviço ambiental (MUHAMMAD et al., 2003).

2.3.4. Análise de sensibilidade.

A análise de sensibilidade indicada na Tabela 2.4, permite medir em que proporção uma alteração pré-fixada em um ou mais itens do fluxo de caixa dos sistemas de uso-da-terra altera o resultado final (SANTANA, 2005). Neste caso se considerou um aumento de 10% no preço e uma queda de 10% nos custos de produção, para observar o grau de sensibilidade dos sistemas de uso-da-terra a essas mudanças.

O sistema capoeira, os SAF cítricos 30 anos, SAF café, SAF cacau (tradicional e melhorado), SAF pupunha são mais estáveis as mudanças com variações mínimas ao mudar o

preço e custo dos produtos agropecuários. Na alterações do custo de produção, embora a diferença seja pequena, os resultados indicam que os sistemas apresentam forte estabilidade, uma vez que a redução na taxa interna de retorno foi inferior às mudanças nos fluxos de receitas e de custos, no entanto é viável economicamente. Isto é uma garantia adicional de estabilidade que os sistemas apresentam diante de riscos e incertezas, segundo Santana (2005). No SAF cítrico 15 anos, SSP *Paspalum conjugatum* e coca se observa uma queda de quase 50%, o que mostra pouca estabilidade e valores negativos por debaixo do custo de oportunidade 14%.

Tabela 2.4. Análise de sensibilidade dos sistemas de uso-da-terra considerando o aumento de 10% no custo e a queda de 10% no preço.

Sistemas	TIR	Custo	Preço	
	%	+10%	- 10%	
SAF cítrico 30 anos.	41,57	33,33	32,47	
SAF pupunha.	60,12	49,55	48,47	
SAF cítrico 15 anos.	21,41	13,77	12,97	
Coca.	(0,53)	(-)	(-)	
SAF cacau melhorado.	23,88	17,18	16,48	
SAF café.	48,94	40,77	38,88	
SAF cacau tradicional.	18,64	17,18	15,19	
SSP Echinochloa polystachya	30,02	17,83	19,09	
Capoeira 12 anos.	528,10	466,16	459,82	
SSP Paspalum conjugatum.	15,67	7,84	7,02	

2.4 CONCLUSÕES.

- Em termos gerais os indicadores econômicos VAN, TIR, Rb/c e análise de sensibilidade dos sistemas de uso-da-terra estudados são positivos, as alterações são mínimas quando se compara com o custo de oportunidade de 14%, indicando estabilidade econômica no SAF de cítro de 30 anos, SAF de pupunha, SAF de café, SAF de cacau melhorado e tradicional, capoeira e SSP de *Echinochloa polystachya*, diferente da coca, SAF de cítro de 15 anos
- O SSP Paspalum conjugatum Berg, sistema coca de um ano e SAF cítrico 15 anos tem instabilidade às mudanças econômicas com efeitos econômicos negativos.
- Economicamente a capoeira mostra altos índices de valor presente liquido, taxa interna de retorno e relação beneficio custo, é muito estável às mudanças econômicas, pelo que representa um sistema importante a manter.

CAPÍTULO III: COMPARAÇÃO DIFERENCIAL DOS BENEFÍCIOS EM FUNÇÃO DE PREÇO E IDADE DE SISTEMAS DE USO-DA-TERRA NO DISTRITO DE JOSÉ CRESPO E CASTILLO, PERU.

Resumo: Este estudo objetivou comparar as utilidades em função dos preços e idade de alguns sistemas de uso-da-terra (SUT) no distrito de José Crespo e Castillo. Além do cultivo da coca (*Erythroxylon coca* Lam.), avaliaram-se 9 SUT, sendo uma capoeira de 12 anos, e oito sistemas agroflorestais (SAF), incluindo os sistemas silipastoris (SSP): dois SAF de citro (*Citrus sinensis* L.), de 30 e 15; dois de cacau (*Theobroma cacao* L.), tradicional e melhorado; um de pupunha (*Bactris gasipaes* Kunth.); um de café (*Coffea arabica* L.); um SSP de *Echinochloa polystachya* HBK., um de *Paspalum conjugatum* Berg. Utilizou-se a metodologia para avaliar o armazenamento de carbono. A performance econômica foi avaliada pelo valor presente líquido (VPL), utilizando-se regressão. Comparando-se benefícios ou utilidades em função do preço e idade, observou-se que, no caso de se fomentar os sistemas, os benefícios de armazenar carbono aumentam em até 58 % por ano nos sistemas com idade de 1 a 15 anos (SAF de pupunha, SAF de café, coca), a um preço mínimo de US \$ 6,75/T de carbono/ano como linha base no pagamento por serviços ambientais. O beneficio do armazenar do carbono e os valores econômicos dos sistemas tendem a diminuir com a idade.

Palavras-chave: Valoração econômica, sistemas agroflorestais.

Abstract: The objective of this study was to compare the utilities of some land-use systems (LUS) as function of prices and age in the district of José Crespo e Castillo. Besides coca *Erythroxylon coca* Lam. crop, nine LUS were evaluated -12 years-secondary forest, and eight agroforestry systems (AFS), including the silvopastoral systems (SPS): two AFS of citrus (*Citrus sinensis* L.), of 30 and 15 years; two of cocoa (*Theobroma cacao* L.), traditional and improved; one of pupunha (*Bactris gasipaes* Kunth.); one of coffee (*Coffea arabica* L.), one SPS of *Echinocloa polystachya* HBK.; one of *Paspalum conjugatum* Berg. To evaluate carbon sequestration an special methodology was used. The economic value was evaluated by means of the liquid present value (LPV), using regression. Comparing the benefits or utilities as function of price and age, it was obersved that, if the systems, are to be implemented, the benefits from stock carbon increased up to 58 % per year in the sistems with 1 to 15 years, with a minimum price of US \$ 6,75/ton de carbon/year as base line to pay for environment services. The benefits of carbon sequestration and the economic value of the systems tended to decrease with the age.

Key words: Economic valuation, agroforestry system.

3.1. INTRODUÇÃO

Do ponto de vista ambiental e de conservação, a pobreza da maioria da população amazônica é preocupante, devido à pressão na expansão da fronteira agropecuária (agricultura migratória e pecuária extensiva) em busca de novas terras de cultivo com desmatamento desordenado para satisfazer a crescente demanda de alimentos e matérias primas, tanto para consumo interno como para exportação, tendo como conseqüência uma série de problemas ambientais, sociais e econômicos.

É importante pôr em funcionamento os mecanismos propostos pelo protocolo de Kyoto no comércio de direitos de emissão, permitindo que os países desenvolvidos reduzam as emissões de gases do efeito estufa e compartilhe projetos conjuntos com países em desenvolvimento (BALDOCEDA, 2002). Para isso necessita-se de informação básica de armazenamento de carbono e de avaliações econômicas de diferentes sistemas de uso-da-terra que subsidiem a implementação de propostas para a solução dos problemas mencionados.

As práticas agroflorestais se dividem em dois grupos, as seqüenciais como as capoeiras e as simultâneas com o cultivo em arranjos (NAIR, 1993). Leakey (1996) identifica 18 formas diferentes de práticas agroflorestais, cada uma com suas variações, e por isso considera os sistemas agroflorestais (SAF) tecnologias que formam vários sistemas de uso-da-terra, por que integram as árvores em forma seqüencial ou simultânea com cultivos ou gado, e que são usados para desenvolver formas sustentáveis de uso-da-terra.

Os SAF proporcionam benefícios como aumento na produção e produtividade total dos sistemas, pela variedade de produção e serviços (alimento, lenha, postes, medicinais, sombra, madeiras diversas, frutos), pelo aumento da sustentabilidade, pela regulação do micro clima, pela oferta de sombra que reduz diretamente a radiação, quebra-vento, barreira a doenças, controle de ervas daninhas e pragas, pela melhoria da fertilidade do solo com aumento da matéria orgânica, ciclagem de nutrientes, por proporcionar cobertura do solo, reduzir o impacto da chuva, aumentar a porosidade do solo, controlar a erosão, diminuir a necessidade de fertilizantes para os cultivos anuais, controlar a lixiviação (YARED, 2004).

Com a destruição das florestas não se perdem somente as árvores e os animais, mas também os benefícios proporcionados pela vegetação, aumentando a vulnerabilidade das populações humanas que induz ao corte ilegal da floresta, as atividades de extração florestal, mineral e petrolífera, agricultura migratória, plantio de coca e cultivos ilegais como papoula, coleção de flora, caça indiscriminada e biopirataria (WINROCK INTERNATIONAL, 2005).

No campo agrícola e florestal são muitos os estudos realizados para avaliar os SAF, com a finalidade de melhorar as condições socioeconômicas e ambientais dos produtores. Neste sentido, os SAF, como seqüestradores e armazenadores de carbono, adquirem maior relevância (ARISTIZABAL; GUERRA, 2002). Os sistemas de uso-da-terra variam na capacidade de seqüestrar carbono, em função do tipo de manejo das culturas envolvidas, das espécies arbóreas e arbustivas, do clima, das zonas de vida e das condições dos solos.

O cultivo da folha de coca é um problema grande na Amazônia peruana por ser cultivado em áreas de declive pronunciado, que provoca alta erosão e degradação dos solos, e sujeitas a precipitações superiores aos 3000 mm (RIOS et al., 2003; RIOS; MENACHO, 2000). Existem poucos estudos sobre o armazenamento de carbono no solo, na biomassa aérea e total em coca, em comparação com outros sistemas de uso da terra e não se conhece a relação do seqüestro de carbono com os custos de produção, de modo a permitir melhor avaliação das alternativas ecológicas, econômicas e sociais para um manejo sustentável no tempo.

Existem quatro formas de cenários: como uma visão que imagina o futuro desejado, como uma projeção que considera o futuro previsto, como rumo que estabelece o futuro previsto, e como uma alternativa para a análise dos períodos futuros (WALLENBERG, 2000).

A conseqüência do cultivo da coca sobre o ambiente da Amazônia é de grande significado a nível local, regional e mundial, pelas alterações dos recursos naturais e do meio, pela demanda de pasta básica de cocaína nos países industrializados, pelo consumo interno de cocaína e outras drogas, etc (DOUROGEANI, 1990). Outro problema é a poluição das águas e solo no preparo da droga, já que os insumos como acido sulfúrico, carbonatos, querosene, cal e acetona são lançadas aos rios e igarapés, afetando a flora e fauna aquática e do solo (RIOS et al., 2003).

O presente estudo objetivou comparar o diferencial das utilidades ou benefícios em função do preço e idade dos sistemas de uso-da-terra no distrito de José Crespo e Castillo, para que as entidades do governo elaborem políticas públicas relacionadas ao pagamento de serviços ambientais, e como alternativa ao cultivo de coca.

56

3.2. METODOLOGIA.

3.2.1. Caracterização da área de Estudo

Ver Capítulo I, página 21.

3.2,2. Métodos

Inicialmente se fez o cálculo de armazenamento de carbono nos sistemas de uso-da-terra estudados levando em conta a metodologia seguida por Arévalo et al. (2003), indicada no Capitulo I, pagina 21 e referindo-se os métodos indicados na pagina 22.

Em seguida se fez a análise econômica em termos de valor presente liquido (VPL), considerando-se a metodologia indicada nos métodos pagina 31-33, Capitulo II.

Levou-se em conta três grupos de axcordo com as faixas de idade dos sistemas: A = de um a cinco anos (SAF café, SAF pupunha, e SSP *Echinochloa polystachya*), B = de 12 a 15 anos (capoeira, SAF cítrico e SSP *Paspalum conjugatum*) e C = de 30 a 35 anos (SAF cítrico, SAF cacau melhorado e SAF cacau tradicional).

De acordo com os dados foram realizados dois tipos de análise da utilidade obtida pelo de armazenamento de carbono e pelo valor presente liquido (VPL) de cada um dos sistemas de uso-da-terra, um em função dos sistemas e outro em função da idade de desenvolvimento dos sistemas. Para isso se utilizou o modelo de regressão simples, sendo a formula:

$$lnY = c + b lnX + \epsilon_i$$

Onde:

ln = Logaritmo natural

Y = Variável dependente (utilidade)

X = Variável independente (sistemas e idades)

b = Variação porcentual

c = Armazenamento mínimo de carbono.

Em base aos objetivos da pesquisa de determinar a sensibilidade dos preços e dos sistemas na utilidade, utilizou-se o modelo de elasticidade constante considerando a seguinte equação logarítmica:

$$\begin{split} lnU &= \beta_0 + \beta_1 \; lnP + \beta_2 \, S1i + \beta_3 \, S2i + \beta_4 \, S3i \; + \beta_5 \, S4i + \beta_6 \, S5i + \beta_7 \, S6i + \beta_8 \, S7i + \beta_9 \, S8i + \beta_{10} \\ &\quad S9i + \beta_{11} \, S10i + \epsilon_i \end{split}$$

Onde:

lnU = Variável dependente, logaritmo natural da utilidade

lnP = Variável independente, logaritmo natural do preço

S1.... S10= Sistemas de uso-da-terra (variáveis independentes ou explicativas)

i = É a i-ésima observação de cada variável dependente e independente

ε = Termo de erro aleatório

 β_0 = É o intercepto ou valor médio de Y quando X_1 e X_2 forem iguais a zero

 β_1 ..., β_{11} = São as elasticidades preço da utilidade, mede as mudanças no valor médio de Y

ln = Logaritmo natural

Na comparação da utilidade pela idade utilizou-se o modelo de elasticidade constante expresso na seguinte equação logarítmica:

$$lnU = \beta_0 + \beta_1 lnP + \beta_2 EAi + \beta_3 EBi + \beta_4 ECi + \epsilon_i$$

Onde:

lnU = Variável dependente, logaritmo natural da utilidade

lnP = Variável independente, logaritmo natural da idade

EA = Idade de um a cinco anos

EB = Idade de 12 a 15 anos

EC = Idade de 30 a 35 anos

i = É a i-ésima observação de cada variável dependente e independente

ε = Termo de erro aleatório

 β_0 = É o intercepto ou valor médio de Y quando X_1 e X_2 forem iguais a zero

 $\beta_{1(i=1,2,3)} = S$ ão as elasticidades preços das idades, mede as mudanças no valor médio de Y

ln = Logaritmo natural

Executou-se o teste de heterocedasticidade proposto por White (1980), citado por Santana (2003) para determinar a heterocedasticidade quanto as variâncias do erro de estimação não é constante; e, homocedasticidade, quando as variâncias do erro de estimação são constantes. Considerou-se a seguinte equação:

$$\begin{split} lnU_{i} &= \beta_{0} + \beta_{1} \; lnP_{i} + \beta_{2} \, S_{1} + \beta_{3} \, S_{2} + \beta_{4} \, S_{3} + \beta_{5} \, S_{4} + \beta_{6} \, S_{5} + \beta_{7} \, S_{6} + \beta_{8} \, S_{7} + \beta_{9} \, S_{8} + \beta_{10} \, S_{9} + \beta_{11} \\ &S_{10} + \epsilon_{i} \end{split}$$

Para obter o erro estimado ($\acute{\epsilon}^2_i$) e checar o modelo auxiliar proposto por White (1980), citado por Santana (2003) usou-se a seguinte equação:

$$\begin{split} \boldsymbol{\acute{\epsilon}^2}_i &= \boldsymbol{f} \; (\text{lnPi}, \, \text{S1}, \, \text{S2}, \, \text{S3}, \, \text{S4}, \, \text{S5}, \, \text{S6}, \, \text{S7}, \, \text{S8}, \, \text{S9}, \, \text{S10}, \, \text{lnP}^2 \mathbf{i}, \, \text{S}^2 \mathbf{1}, \, \text{S}^2 \mathbf{2}, \, \text{S}^2 \mathbf{3}, \, \text{S}^2 \mathbf{4}, \, \text{S}^2 \mathbf{5}, \, \text{S}^2 \mathbf{6}, \, \text{S}^2 \mathbf{7}, \\ & \alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \alpha_5 \quad \alpha_6 \quad \alpha_7 \quad \alpha_8 \quad \alpha_9 \quad \alpha_{10} \, \alpha_{11} \quad \alpha_{12} \quad \alpha_{13} \quad \alpha_{14} \quad \alpha_{15} \quad \alpha_{16} \quad \alpha_{17} \quad \alpha_{18} \quad \alpha_{19} \\ & \mathbf{S}^2 \mathbf{8}, \, \mathbf{S}^2 \mathbf{9}, \, \mathbf{S}^2 \mathbf{10}) \\ & \alpha_{20} \quad \alpha_{21} \quad \alpha_{22} \end{split}$$

Deste modelo se calculou o R² auxiliar e se formulou as seguintes hipóteses:

$$\begin{aligned} &\text{Ho}: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = \dots & \alpha_{22} = 0 \end{aligned} \quad \begin{aligned} &\text{Homocedasticidade} \\ &\text{Ha}: \alpha_1 \neq \alpha_2 \neq \alpha_3 \neq \alpha_4 \neq \alpha_5 \neq \dots & \alpha_{22} \neq 0 \end{aligned} \quad \begin{aligned} &\text{Heterocedasticidade} \end{aligned}$$

Finalmente se construiu (X^2_C) qui-quadrado para contrastar a prova da hipótese:

$$X_C^2 = R^2$$
 auxiliar x N ~ $X_{t 22gl}^2 \alpha$

3. 3. RESULTADOS E DISCUSSÃO.

Os resultados gerais obtidos da análise econômica mediante o valor presente líquido e a quantidade de carbono armazenado pelos sistemas de uso-da-terra, por faixa de idade (A, B, C) são mostrados na Tabela 3.1, os quais foram usados na avaliação do modelo de regressão.

Tabela 3.1. Resultados do valor presente líquido (VPL), carbono armazenado nos sistemas de uso-da-terra estudados por faixa de idade.

Sistemas	Sistema Nº	VPL. US \$/ha ⁻¹	C. armazenado t/ha ⁻¹ /ano	Faixa de idade
SAF cítrico 30 anos	S1	728,55	5,40	С
SAF pupunha 5 anos	S2	662,20	30,18	A
Capoeira 12 anos	S3	262,12	9,92	В
SAF café 3 anos	S4	587,73	37,69	A
SAF cacau tradicional 35 anos	S5	98,32	3,27	С
SAF cacau melhorado 30 anos	S6	279,17	3,72	С
SAF cítricos 15 anos	S7	151,79	7,48	В
SSP Paspalum conjugatum	S8	138,79	4,49	В
Coca 1 ano	S 9	(654,60)	80,36	A
SSP Echinochloa polystachya	S10	1,69	28,12	A

3.3.1. Análise da utilidade em função dos sistemas de uso-da-terra.

Os resultados da análise do modelo logarítmico de regressão múltipla da utilidade em função dos sistemas de uso-da-terra são apresentados no apêndice 7 e o resultado do modelo é a seguinte:

Para analisar e compreender melhor os resultados da pesquisa desenvolveu-se uma análise estatística e econômica.

A interpretação estatística da análise assinala que os parâmetros são estatisticamente diferentes de zero, a 1% de probabilidade de erro, atestando a veracidade dos postulados teóricos, pois os valores calculados para a estatística t são superiores aos valores críticos da referida estatística.

O coeficiente de determinação ajustado para graus de liberdade, da ordem de 0,9186 indica que 91,86 % das variações nas utilidades são explicadas pelas variações simultâneas nos sistemas de uso-da-terra, o que indica que o modelo utilizado é bom devido a significação estatística que apresenta os indicadores individuais e globais.

O Fc = 224,6786 é estatisticamente significativa a 1% de probabilidade de erro. O resultado de Durbin e Watson stat é de 1,5052 (próximo a 2) indica ausência de autocorrelação serial do erro de estimação.

A média da variável dependente indica um valor de US \$. 6,75 por armazenar uma tonelada de carbono por ano, o que indica que se pode pagar por serviços ambientais no mínimo esta quantidade.

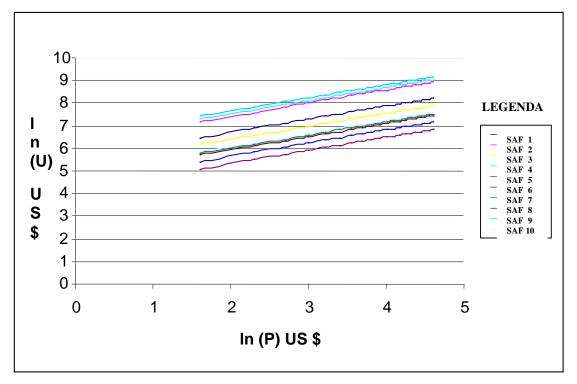


Figura 3.1. Regressão das utilidades em função do preço dos sistemas de uso-da-terra.

A interpretação econômica dos resultados indica que os sinais dos coeficientes de regressão estão coerentes com a teoria do consumidor, assim o coeficiente de elasticidade-preço da utilidade do beneficio dos sistemas agroflorestais é 0,579783, indicando que se o preço de armazenar carbono aumenta em 100 % o beneficio aumenta em 57,98 % em um ano.

As variações dos sistemas de uso-da-terra em função do preço se indicam no apêndice 7 e na Figura 3.1. Pode-se notar que as variáveis S2 pupunha (0,5643), S4 café (0,6759) e S9 coca (0,7932) são inelásticas e significativas quando se mede a sensibilidade em termos de elasticidade, indicando sim se implementa esses sistemas a utilidade o beneficio aumentaram em 56,43 %, 67,59 % e 79,32 % respectivamente por ano. No entanto as variáveis S1 cítricos 30 anos (-0,1572), S3 capoeira (-0,4785), S5 cacau 35 anos (-1,5355), S6 cacau 30 anos (-0,9294), S7 cítricos 15 anos (-0,8579) e S8 SSP *Paspalum conjugatum* (-1,2067) são inelástica que indicam que se implementam esses sistemas são desenvolvidos se terá uma diminuição em 15,72 %, 47,85 %, 153,55 %, 92,94 %, 85,79 % e 120,67 % respectivamente em um ano.

O resultado da prova de regressão da figura 3.1 corrigida é a que se apresenta no apêndice 9, onde se observa o mesmo modelo assinalado anteriormente na análise das utilidades em função dos preços dos sistemas de uso-da-terra. Tem-se a mudança de correção dos níveis de significação do erro estatístico e t estatístico e desta maneira ajusta o nível de significação dos parâmetros, alem observa-se melhora só em S1 cítrico 30 anos (de 6,73 % a 13,55 %), os demais sistemas não têm câmbios significativos, indicando uma consistência do modelo.

O teste de heterocedasticidade proposto por White (1980), citado por Santana (2003), mostrado no apêndice 8 e figura 3.2, indica que a estatística Fc (obs*R²) não são diferentes de zero ao nível de 1% conforme indicam os resultados. Portanto, não há presença de heterocedasticidade na regressão de demanda de carbono nos sistemas, pois a probabilidade de rejeição da hipótese nula (de que os resíduos são homocedásticos) é superior a obs*R² = 46,97 e se encontra na área de rechaço como conseqüência se rejeita a hipótese de não heterocedasticidade aceitando a hipótese de homocedasticidade. Em conseqüência a esses resultados não precisa de uma análise de autocorrelação, por que isso é necessario quando o erro de um período esta correlacionada ao erro do período anterior que se da em dados de corte longitudinal.

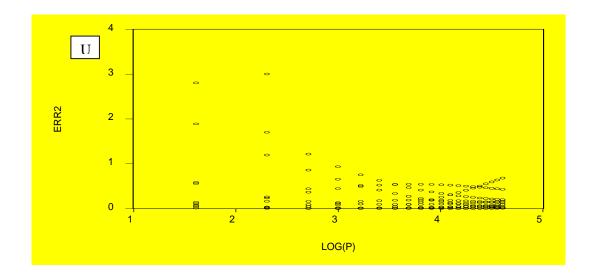


Figura 3.2. Heterocedasticidade das utilidades em função do preço dos sistemas de uso-daterra em José Crespo e Castillo, 2006.

Os resultados mostram o grande potencial dos SAF com elasticidade inelástica de armazenar carbono e o valor econômico que mostra o VPL motivado pelo dinamismo e grande capacidade fotossintética das espécies arbóreas para produzir biomassa, tanto no solo como na parte aérea e sua biodiversidade de espécies, coincidentes com o indicado por FAO (2006) e Ávila (2000). Entanto os sistemas com elasticidades inelásticas negativas indicam que a partir deste sistema, não é possível obter maiores benefícios pelo armazenamento de carbono, não é significativo em termos de melhoras no benefício de sua implantação, isso demonstra que por mais que se tenham pagamentos maiores, não terão maior oportunidade de crescimento com a quantidade de carbono que armazena comparado com os outros sistemas. Alem do benefício do armazenamento de carbono o VPL apresenta uma queda por que as tendências de crescimento são menores, em função, possivelmente, de menores capacidades destes sistemas em armazenar carbono e pela pouca diversidade dos produtos madeiráveis e não madeiráveis que estão ligados ao baixo VPL (HOMMA, 2001; e TRATADO DE COOPERACIÓN AMAZÓNICA, 1999).

Segundo Arévalo et al. (2003) o carbono armazenado esta em função da heterogeneidade dos sistemas com base nas condições do solo, clima, além das arvores com raízes mais profundas que incrementam mais carbono. São os SAF os que armazenam mais

carbono que as florestas (GUTIERRES; LOPERA, 2001), pela maior quantidade de biomassa em comparação com os monocultivos.

Analisando-se os sistemas agroflorestais quanto à sua capacidade de armazenar carbono e nas utilidades que apresentam, há necessidade do Estado oferecer estímulos que permitam uma direção ao mercado sustentável em base a políticas públicas com assistência técnica, tecnologia, crédito, incentivos, acesso a recursos, regulamentação, com instrumentos de controle RECABARREN; VERGARA (2004); (GUTIERREZ; LOPERA, 2001).

O preço de US \$ 6,75 encontrado no estudo, assinala que pode pagar por serviços ambientais como mínimo essa quantidade já que se encontra perto à média dos pagamentos que realizam outros paises por línea base que é de US \$.10,00/t de C que paga Costa Rica (MUHAMMAD et al., 2003). Existem variações de preços nos diferentes países de acordo com o tipo de sistema com US \$ 15,00, US \$ 20,00, US \$ 8,00 como assinala Ramirez, (1998). Nasir et al. (2002) assinala que as variações econômicas devem-se a uma serie de fatores como oferta, demanda, transação do carbono.

Na América Latina o modelo tradicional de produção pecuária baseia-se em pastagens sem árvores, contribuído à destruição das florestas naturais gerando sérios problemas ambientais como degradação dos solos, perda de biodiversidade, contaminação de solo e água (MUHAMMAD et al., 2003). A combinação de pastos com árvores e arbustos de alto valor nutricional conhecido como SSP, oferece uma opção que gera serviços ambientais e contribui para melhorar a qualidade de vida de quem depende da pecuária (MUHAMMAD et al., 2003). Isso se observa nos sistemas silvipastoris com pastagem melhorada da pesquisa com tendência a ter melhor desempenho no futuro, com pagamentos por serviços ambientais (RIOS et al., 2003).

Recentemente, ganharam importância as normas ambientais, que são requisitos indispensáveis nos processos produtivos e produtos destinados aos mercados tanto nacionais como internacionais. Esta norma, dada sua fiscalização e interesse da sociedade, estão causando impactos positivos junto às instituições que esta implementando as normas da serie ISO 9000 (qualidade total de produto processado) e ISO 14000 (qualidade ambiental) e outras normas para produtos orgânicos que os SAF proporcionam ao mercado pelo não uso de pesticidas, adubos e que o Estado deve programar políticas publicas em salvaguarda da comunidade, onde deve inclui o seqüestro de carbono, (SANTANA, 2005).

3.3.2. Análise das utilidades em função da faixa de idade dos sistemas de uso-da-terra.

Os resultados da análise do modelo logarítmicos das utilidades em função das idades dos sistemas de uso-da-terra são apresentados no apêndice 10, sendo o resultado do modelo a seguinte:

A interpretação estatística é que os parâmetros são estatisticamente diferentes de zero, a 1% de probabilidade de erro, atestando a veracidade dos postulados teóricos, pois os valores calculados na estatística t são superiores aos valores críticos da referida estatística.

Os resultados da análise do modelo logarítmico de regressão múltipla da utilidade em função dos sistemas de uso-da-terra são apresentados no apêndice 4.

O coeficiente de determinação ajustado para graus de liberdade, da ordem de 0,7403 indica que 74,03% das variações nas utilidades são explicadas pelas variações simultâneas nas idades dos sistemas de uso-da-terra, o que indica que o modelo utilizado é bom devido a significância estatística que apresenta os indicadores individuais e globais.

O F = 189,1696 é estatisticamente significativa a 1% de probabilidade de erro. O resultado de Durbin e Watson stat é de 2,246163 indica ausência de autocorrelação serial do erro de estimação.

A média da variável dependente indica um custo de US \$. 6,75 o que assinala que pode pagar por serviços ambientais como mínimo essa quantidade por ano.

As variações das idades dos sistemas de uso-da-terra em função dos preços se indicam no apêndice 10 e na figura 3.3. Onde pode observar segundo a interpretação econômica dos resultados que os sinais dos coeficientes de regressão estão coerentes com a teoria do consumidor, assem o coeficiente de elasticidade-preço da utilidade do beneficio das idades dos sistemas agroflorestais é 0,58483, indicando que se o preço de armazenar carbono aumenta em 100% o beneficio aumentara em 58,48% em um ano.

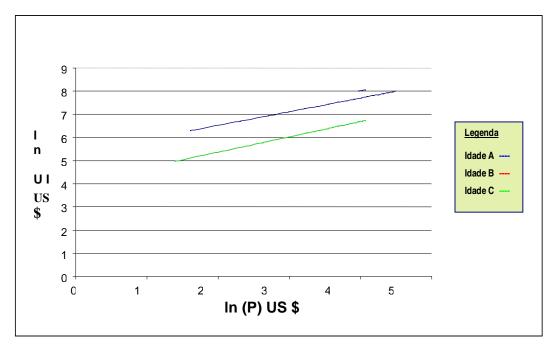


Figura 3.3. Regressão da utilidade em função do preço US \$ e da idade dos sistemas de usoda-terra.

As variáveis A um a cinco anos (1,3523) e B 10 a 15 anos (0,026355) são significativas e são elásticas, que indicam que se o preço de armazenar carbono aumenta em 100% o beneficio aumentara em 135% e 2,63% respectivamente por ano. Entanto a variável C 30 a 35 anos (-0,026355) são inelástica que indica uma diminuição em 2,63%.

O resultado da prova de regressão da figura 3.3 corrigida é a que se apresenta no apêndice 12, onde se observa o mesmo modelo assinalado anteriormente na análise das utilidades em função das faixas de idade dos sistemas de uso-da-terra. Tem-se mudança de correção dos níveis de significação do erro estatístico e t estatístico e desta maneira ajusta o nível de significação dos parâmetros, alem observa-se melhora só na idade C de 30 a 35 anos (de 76,53 % a 76,99 %) entretanto os demais sistemas não têm câmbios significativos, indicando uma consistência do modelo.

O teste de heterocedasticidade proposto por White (1980), citado por Santana (2003), mostrado no apêndice 10 e figura 3.4, indica que a estatística Fc (obs*R²) não são diferentes de zero ao nível de 1% conforme indicam os resultados. Portanto, não há presença de heterocedasticidade na regressão de demanda de carbono nos sistemas, pois a probabilidade de rejeição da hipótese nula (de que os resíduos são homocedásticos) é superior a 42,38

(Apêndice 11) e se encontra na área de rejeição como conseqüência se rejeita a hipótese de não heterocedasticidade aceitando a hipótese de homocedasticidade.

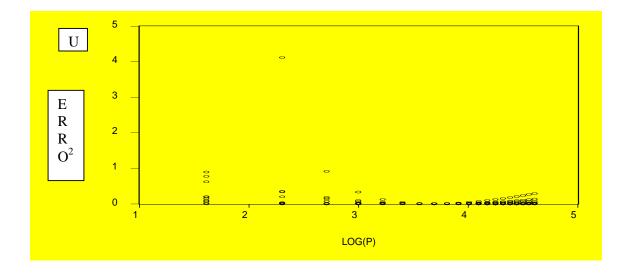


Figura 3.4. Heterocedasticidade das utilidades em função do preço e da faixa de idade dos sistemas de uso-da-terra em José Crespo e Castillo. 2006.

Pesquisas amostraram que os países tropicais em desenvolvimento oferecem algumas oportunidades para compensar carbono (baixo custo da terra e mão-de-obra, apesar de altos custos de transação e riscos) em relação a países desenvolvidos (GUTIERREZ; LOPERA, 2001). Isso é uma oportunidade dos governos locais, regionais e nacionais para melhorar a economia dos produtores que manejam SAF implementando políticas que facilitem o pagamentos de serviços ambientais que complementarão as vantagens dos SAF, nos aspectos econômico, social e ambiental.

O desenvolvimento da tecnologia apropriada aos sistemas de uso-da-terra na Amazônia ainda está por ser pesquisado, já que é o principal vetor do aumento da produtividade das atividades locais e por meio dos sistemas agroflorestias, são incrementados os retornos econômicos e as remunerações pelo trabalho (SANTANA, 2003). Os principais problemas que os produtores estão enfrentando são: a falta de informação e orientação técnicas, o baixo nível de qualificação de pessoal, a falta de recursos financeiros, e a deficiente geração de ciência e tecnologia aplicada. Essa situação contribui para que os produtores usem o cultivo da coca como alternativa econômica (RIOS et al., 2003).

Muhammad et al. (2003) reporta que os serviços ambientais são efeitos e produtos úteis para a sociedade e a vida, e são gerados pelos ecossistemas e agroecossistema, tais como a regulação da qualidade de água, captura e armazenamento de carbono atmosférico, conservação da biodiversidade biológica, controle da erosão, prevenção de desastres naturais e beleza cênica, entre outros. Portanto a redução do desmatamento e da queima, e a geração de emprego e renda dependem da adoção de SAF jovens, se o objetivo é reduzir os impactos ambientais negativos deixados pelos cultivos ilegais da coca, e o uso intensivo de monoculturas. No entanto, essa adoção depende de políticas públicas com base em pesquisas realizadas na Amazônia.

No presente trabalho avaliou-se dois tipos de sistemas silvipastoris, um melhorado de três anos e outro com pastagem degradada de 15 anos que estão incluídos nos 28 SUT indicados por Muhammad et al. (2003) que vão desde capoeiras bem conservadas até pastagem degradada com pouca vegetação arbórea, arbustiva, com valores e atributos diferentes dentro do enfoque de serviços ambientais. Isso permite orientar os proprietários, administradores, técnicos e funcionários públicos na indicação do sistema de uso-da-terra mais apropriado e no planejamento de transformação produtiva e ambiental realista, metódica e rápida sobre quais sistemas devam receber pagamentos por serviços ambientais. O custo de incrementar carbono pelo desenvolvimento de árvores em pastagem vai de US \$ 3,2 a US \$ 26,4 por t de carbono (RUIZ, 2002).

Os resultados da pesquisa comprovaram que plantações com SAF de idades jovens, são alternativas econômicas, ecológicas e sociais viáveis para o fortalecimento da agricultura familiar devido ao aumento da produção, do nível de emprego, e da rentabilidade dos sistemas comparados com o cultivo da coca. Isso permite elaborar medidas que assegurem e aumentem a oferta da diversidade de produtos agropecuários e florestais, além da conservação, recuperação de solos, a despoluição, da água e da prevenção da floresta nativa remanescente (ROBERT, 2002).

Com a ratificação do protocolo de Kioto (Convención Marco de las Naciones Unidas sobre cambio climático, 2005), a possibilidade de receber pagamentos de serviços ambientais como o armazenamento e seqüestro de carbono, aumenta e, por consiguiente a adoção de SAF pode melhorar a competitividade econômica das propriedades rurais por ser uma opção que maximiza o ingresso (ótimo econômico). Ruiz (2002) assinala que os SAF podem duplicar o ingresso esperado dos produtores.

Os créditos de C, são obtenidos por diferencia de emissões nas atividades de línea de base (espécies, idades, densidade, localização geográfica, e uso do solo) que é matéria do presente estudo e atividades do projeto MDL, para logo planificar até quando se vai aproveitar as arvores para calcular a adicionalidade durante o período (INTERGUBERNAMENTAL PANEL ON CLIMATE CHANGE, 2005, 2004).

3.4. CONCLUSÕES.

- Em relação à utilidade os SAF pupunha, SAF café e coca são os sistemas mais promissores a partir de sua instalação, pelo potencial de armazenar carbono e utilidades. Os demais sistemas estudades geram benefícios negativos, uma vez que sua implementação não gerou benefício.
- Em relação à utilidade, as faixas de idade B e A apresentaram efeito positivo à
 evolução dos benefícios de armazenar carbono por anos, no entanto o sistema com
 idade C são aqueles que induzem ao decrésimo do beneficio do armazenamento
 do carbono e do valor econômico.
- As sugestões para a elaboração de políticas públicas a serem formuladas pelo governo peruano são: estimular programas de incentivos dos sistemas agroflorestais como SAF pupunha, SAF café, e SAF cítricos e SSP melhorado, de preferência em idades de 1 a 15 anos e do manejo de capoeiras com pagamento pelo potencial de seqüestrar carbono e pela contribuição com a biodiversidade e o meio ambiente.

4. CONSIDERAÇÕES FINAIS.

- o Em contraste ao cultivo da coca os sistemas de uso-da-terra estudados mostraram uma grande diversidade florística que permite armazenar diferentes quantidades de carbono. Isso vai depender da idade dos sistemas, sendo aqueles com até cinco anos (SAF café, SAF pupunha, SSP melhorado) os que apresentaram maior acúmulo de carbono que aqueles mais velhos. Tanto os valores de carbono armazenado no total como na biomassa aérea foram semelhante nos sistemas agroflorestais mas diferiram em relação ao carbono armazenado no solo pela coca.
- Os indicadores econômicos VPL, TIR, Rb/c dos sistemas de uso-da-terra estudados são positivos, mais sua estabilidade varia quando ocorrem alterações de preço e custo. Essas alterações são mínimas quando se compara com o custo de oportunidade de 14%, indicando estabilidade econômica no SAF cítrico 30 anos, SAF pupunha, SAF café, SAF cacau melhorado e tradicional, capoeira e SSP *Echinochloa polystachya*. Mais isso não acontece no sistema coca, SAF cítrico 15 anos e SSP *Paspalum conjugatum* que mostram instabilidade com efeitos econômicos negativos.
- Comparando os benefícios ou utilidades em função de preço e idade, observa-se que no caso de implementar sistemas com idades de 1 a 15 anos os benefícios de armazenar carbono aumentam até 58%/ano a um preço mínimo de US \$ 6,75/ t de carbono por ano como línea base para pagamento por serviços ambientais. Nestes sistemas incluem os SAF pupunha, SAF café e coca. Sistemas mais velhos induzem ao decrescimento do beneficio do armazenamento do carbono e o valor econômico.
- O A coca é um cultivo importante porem não mais importante que os sistemas agroflorestais, por melhorar as condições do solo, o conforto para os cultivos e animais, a diversificação das espécies madeiráveis e não madeiráveis, o armazenamento de carbono, além de contribuírem no âmbito social, econômico e ambiental favorecendo a sustentabilidade das propriedades rurais.

5. REFERÊNCIAS.

ACOSTA, M. Un método para la medición del carbono almacenado en la parte aérea del suelo con vegetación natural e inducida en terrenos en ladera en México. Valdivia. Chile, 2001. 62p.

AGUILAR, C. A. Evaluación de sistemas agroforestales con café asociado con *Eucalyptus deglupta* ó *Terminalia ivorensis* e implicaciones metodológicas. Turrialba: CATIE, 2000. 73p. Tesis Mg. Sc.

ALBRETCH, A.; KANDJI, S, T. Carbon sequestration in **Tropical Agroforestry System Agriculture**, **Ecosystems and environment**, v. 99, n. 1-3, p.15-27, 2003.

ARÉVALO, L.; ALEGRE, J.; PALM, CH. Manual para la determinación de las reservas total de carbono en diferentes sistemas de uso de la tierra en Perú. Lima: CCIAR-MINAG, 2003. 35p.

ARISTIZABAL, H. J.; GUERRA, M. A. Estimación de la tasa de fijación de carbono en el sistema agroforestal nogal cafetalero (*Cordia alliadora*) – cacao (*Theobroma cacao L*) – plátano (*Musa paradisiaca*). Bogotá: Universidad Distrital Francisco José de Caldas, 2002. p. 25-47.

ÁVILA, M. A. Sistemas silvopastoriles, una alternativa para mejorar la calidad de vida de pequeños y medianos productores. **Agrofloresteria de las Américas,** Costa Rica, n.7,p.1-5, 1995.

ÁVILA, G. Fijación y almacenamiento de carbono en sistemas café bajo sombra, café a pleno sol, SSP y pastura a pleno sol. Turrialba: CATIE, 2000. 99p. Tesis MSc em Agricultura Sostenible.

AZQUETA, D. Valoración económica de la calidad ambiental. España: Mac Graw Hill, 1999. 299 p.

BALDOCEDA, A. R. Valoración económica del servicio ambiental de captura de C0₂ en la zona de Neshuya – Curimaná Pucallpa. En valoración de la diversidad biológica y servicios ambiental en el Perú. Lima: Edigrafasa SRL, 2002. p. 15-29.

BATJES, N. H. Carbon Total and nitrogen in the soils of the world, European J. **Soil Sci.**, v.47, p. 151-163, 1996.

BEER, J.; HARVEY, C.; IBRAHIM, M.; HARMAND, J, M.; SOMARRIBA, E.; JIMENEZ, F. Servicios ambientales de los sistemas agroforestales. **Agroforestería en las Américas**, v.10, n. 37-38, p. 80-87, 2003.

BERNARDUS, H.; JONG. J. Cambios en el uso del suelo y flujos de carbono en los altos de México. Valdivia: 2001. 54p.

BROWN, S.; LUGO, A. E. A new estimate based on forests. **Biomass in Tropical forest,** v. 223, p. 1290-1293, 1984.

- BROWN, S. Estimating biomass and biomass change of tropical forests. A primer. A Forest Resources Assessment publication. **FAO Forestry.** Paper n.134. p. 1-18, 1997.
- BUDOWSKI, G. Secuestro de carbono, gestión forestal en América latina. **Revista Floresta y Desarrollo**. Lima, n. 20-21, 1999.
- CALLO, D. Cuantificación de carbono secuestrado por algunos SAFs y testigos en tres pisos ecológicos en la amazonía del Perú. México: FCAUAC, 2001, 72p. (Doutorado em Medio ambiente)- Facultad de Ciencias y ambiente Universidad Autónoma de Chapingo, México.
- CEDISA, Experiencias agroforestales en el Cumbaza. San Martín: Textos SAC, 150p. 2003.
- CENTRO AGRONOMICO TECNOLOGICO DE INVESTIGACION E EXTENCION. CATIE. **Proyecto secuestro de carbono**. Costa Rica, 1998.
- CHAMBINI, C. P. Valoración económica de captura de CO₂, mediante simulación aplicando a la zona boscosa del río Inambari y Madre de Dios. Perú: CONAM, 2002.143p.
- DA VEIGA, B. J. Sustentatibilidade do uso-da-terra em ecossistemas de floresta tropical úmida. Belém, PA: UFRA, 2004. p. 4.
- DIXON, J. A.; FALLOW, S. L.; CARPENTER, R. A.; SHERMAN, P. B. **Análisis económico de impactos ambientales.** Turrialba: CATIE, 1994. p. 17-21.
- DOUROJEANNI, R. Amazonía ¿Que hacer?. Iquitos: Centro de estudios tecnológicos de la amazonía, 1990.v 1, 450p.
- ETCHEVERS, J.; ACOSTA, M.; MONREAL, C.; QUEDNOW, K.; JIMENES, L. Simposium Internacional Medición y monitoreo de la captura de carbono en ecosistemas forestales. Valdivia: Anais, 2001. 45p.
- EWEL, J. Tropical succession: manifold routes to maturity. **Biotrópica**, v.12, n. 2-7, 1990.
- FAO. 2006. Disponível:http://www.fao.org.FAOSTAT,1977.>Acessado em: 14 ago. 2005.
- FEARNSIDE, P. M. **A floresta Amazônica nas mudanças globais**. Manaus: INPA, 2003.134 p.
- FEARNSIDE, P. M. Forest biomass in Brazilian Amazonian: comments on the estimate by Brown and Lugo. **Interciencia**, 1992. 17, 19-27
- FISHER, M, J.; TRUJILLO, W. Fijación de carbono en pastos tropicales en sabanas de suelos ácidos neotropicales. **In Seminario Internacional Intensificación de la ganadería Centroamericana: Beneficios económicos y ambientales.** (1999, Turrialba, Costa Rica). Turrialba, CR, FAO-CATIE, SIDE. 1999. p. 115-135.

GUTIERRES, V. V.; LOPERA, A. G. Valorización económica de la fijación de carbono en plantaciones de *Pinus patula*. In: Simposium Internacional Medición y monitoreo de la captura de carbono en ecosistemas forestales, 18-22 de octubre 2001, Valdivia: Anais, 2001. p.12-14

GLAVER, M.; PIZARRO, R. Valoración económica: Aproximación a un balance. En valoración de la diversidad biológica y servicios ambiental en el Perú. INRENA, IRG, USAID. Edit. Edigrafasa. SRL. Lima, Perú. 2002. p. 3-11

HOMMA, A. K. Amazônia: Desenvolvimento sustentável como segunda natureza In: Barros, A, C. (Org.). Sustentabilidade e democracia para as políticas publicas na Amazônia. Rio de Janeiro: FASE/IPAM, 2001. p.103-113

INSTITUTO NACIONAL DE RECURSOS NATURALES Y AMBIENTE. **Estudio nacional de la diversidad biológica**. Diagnósticos regionales de la diversidad biológica. NR-77-OGANFES. Vol. II – III - IV. Lima Perú. 1997. p. 63 – 64, p.135, p. 212 – 225.

INSTITUTO NACIONAL DE DESARROLLO. **Plan De desarrollo sostenible en la amazonía.** OGE. Huallaga. INADE Org. DPGA. Lima. Perú, 2002. 380p

INTERGUBERNAMENTAL PANEL ON CLIMATE CHANGE. (IPCC). (en línea). Disponível em:http://www.ipcc-nggip.iges.or.jp/public/public.htm. Acessado em: 12 abr.2005

IPCC. Climate Change. Radioactive Forcing of Climate Change and an evaluation of the IPCC IS92. Emission Scenarios. Cambridge: Cambridge University Press. 1995. 339p.

IPCC. Climate Change. Impacts, adaptations and mitigation of climate change: **Scientific Technical Analysis**. Cambridge: University Press. 1996. 878p.

IPCC. 2004. Climate Change. Spatial Report on Emissions Scenarios. Disponível em: http://grida.no/climate/ipcc. Acessado em: 12 maio 2006.

LEAKEY, R. Reconsiderando la definición de agroforestería. **Agro Forestry Today,** v. 8, n. 5-6, p. 8, 1996.

LABARTA, R. A.; WHITE, D. S. Critérios e instrumentos para avaliação de sistemas agroflorestais: Rentabilidade econômica. Michigan State University. **Workshop Sistemas agroflorestais como alternativa à degradação ambiental na Amazônia.** Belém e Tome-Açu. PA, 19-28 janeiro 2005. p. 15-16.

LAMA, D. D. 2002, Agroforestería con café y cacao, Contribución al alivio de la pobreza. ADEX. Desarrollo alternativo, Convenio ADEX-USAID. p.3-5.

LOPEZ, M. A. Aporte de los sistemas silvopastoriles al secuestro de carbono en el suelo. Programa de Enseñanza para el desarrollo y conservación. Turrialba: CATIE, 1998.15p. Tese de mestrado em agroforestería.

- LUDEVID, M. **El cambio global en el medio ambiente**. Mexico: Grupo editorial Alfa e Omega, 1998. 332p.
- MAGAÑA, M. S. Cuantificación de carbono almacenado en la biomasa aérea y el mantillo em SAFs de café em SE. Costa Rica. **Agroforestería de las Américas**, n. 41-42, 2004.
- MINAE. Ministério del ambiente. Decreto Ejecutivo N 30962. **La Gaceta**. San José, 3 fev. 2003.
- MORA, V. Fijación, emisión y balance de gases de efecto invernadero en pasturas en monocultivo y en sistemas silvopastoriles de fincas lecheras intensivas de las zonas altas de Costa Rica. Turrialba: CATIE, 2001. 119p. Tesis Mag. Sc.
- MORAES, J. L. Conteúdos de carbono e nitrogênio e tipologia de horizontes nos solos da bacia amazônica. Piracicaba: USP, 1991. 84p. Tese apresentada na Universidade de São Paulo.
- MUHAMMAD, I. E. M.; RAMIREZ, A. Z.; MEJIA, C.; CASASOLA, F. **Usos de la tierra:** guía para el pago de servicios ambientales en el Proyecto Enfoques Silvopastoriles para el manejo de Ecosistemas. Cali: CAZTIE.-CIPAV, 2003. 97p.
- NASIR, R.; WANDER, S.; CAMPOS, J. Servicios de los ecosistemas forestales, ¿Podriam ellos pagar para detener la deforestación?. Turrialva: CIAT, 2002. 37p. (CIAT. Información Técnica n 331).
- NAIR, P. K. R. An introduction to Agro forestry. Dordrecht: Kluwer Academia Publishers, 1993. 499p.
- NIKLITSCHEK, M. Una revisión de las metodologías de valoración económica para los recursos renovables y el medio ambiente. Chile: Universidad de Consepción, 1991. 322p. Proyecto CEPAL/ICLARM.
- OLIVERA, A, N, D.; AMARAL, I. L. Floristica e fissiologia de uma floresta de vertiente na amazônia central, Amazonas, Brasil. **Acta amazônica**, v.24, p. 21-34, 2004.
- ORLANDER, J. Las opciones forestales en el mecanismo de desarrollo limpio un resumen de los principales temas para los países andinos. Ecuador: Anais, 2000.124p.
- ORTIZ, R.; RAMÍREZ, O.; FINEGAN, B. Mitigation service of Costa Rica secondary forests as economic alternative for joint implementation initiatives. Tuirrialba: CATIE, 1998. p. 3-9.
- PALM, C. Carbon sequestration and trace emissions in flash-and-burn and alternative land-uses in the humid tropics. ASB. Climate change working group, final reports phase II Nairobi, K. E. Disponível em: http://www.asb.cgiar.org/wg.climatechange.shtm. Acessado em: 7 dez. 2000.
- PESO, D.; IBRAHIM, M. **Módulos de enseñanza agroforestal.** 2 ed. Costa Rica: CATIE, 1999. n.2, p. 30-40.

- PROYECTO ESPECIAL ALTO HUALLAGA. Compendio Estadístico Agropecuario del Alto Huallaga. Tingo María: PEAH-MINAG. 2002.159p.
- PUERTA, T. R. Determinación de biomasa primaria y evaluación de estratos de parcelas agroforestales en Castillo Grande. Tingo María: FRNR-UNAS, 2003. 46p.
- RAMÍREZ, R. Evaluación económica del servicio ambiental de almacenamiento de carbono: el caso de una floresta húmedo tropical bajo diferentes estrategias del manejo sostenible. En análisis económicos de impactos ambientales.Costa Rica: CATIE, 1998. p. 4-7. Editado por J.A. Dixon, S.L.Fallon, R.A. Carpenter, R. A y P.B. Sherman.
- RECAVARREN, S. O; VERGARA, P. J. **Determinación de biomasa forestal aérea en el sector Ahuashiyacu.** Tarapoto: UNSM, 2004. 60p.
- RIOS, A. J. Evaluación de sistemas de producción agraria en predios con suelos degradados por cultivos de coca en Tingo María. Huancayo: UNCP, 1995. 98p. Tesis Mag. Sc.
- RIOS, A. J. Análisis de los sistemas de producción en el Alto Huallaga. **Revista Pura Selva**, p.15, 1999.
- RIOS, A. J.; MENACHO, M. T. Sistemas de producción agro-silvo-pastoriles en la **Provincia de Leoncio Prado**. Perú: CIUNAS, 2000. 42p.
- RIOS, A. J.; VALENCIA, CH. F.; MUÑOZ, B. M. Expansión y trayectoria de la ganadería en la Amazonía: Alto Huallaga. Tingo Maria: IAI, 2003.142p.
- RIOS, A. J.; VALENCIA, CH. F.; MUÑOZ, B. M. **Diagnóstico de la microcuenca de Aucayacu margen derecha**. Perú: UNAS, 2007. 217p. Proyecto Floagri.
- ROBERT, M. Captura de carbono en suelos para un mejor mejo de la tierra. Disponivel em: http://www.fao.org/DOCREP/005/y2779s/y2779s00.htm. acesso em: nov. 2006.
- RODIGHERI, M. R. Rentabilidade econômica comparativa entre plantios florestais e sistemas agroflorestais, com erva-mate, eucalipto e pinus e os cultivos de feijão, milho, soja e trigo. Belém, PA: Embrapa, 1997. 36p. (Embrapa. Circular Técnica, 26).
- RUIZ, G. A. Fijación y almacenamiento de carbono en sistemas silvopastoriles y competitividad económica en Matiguás. Nicarágua: CATIE, 2002. p. 16-21. Tesis Maestria.
- SANTANA, A. C. Manual de elaboração e avaliação de projetos de investimentos rurais. Belém, PA: BASA. FCAP, 1995. 27p.
- SANTANA, A. C. Elementos de Economia, Agronegócio e desenvolvimento local. Belém, PA: UFRA, 2005. p. 63-67. (UFRA Serie Acadêmica, 01).

- SANTANA, A, C. **Métodos quantitativos em economia:** elementos e aplicações. Belém, PA: UFRA, 2003. 484p.
- SCHIMEL, D. CO₂ and the carbon cycle. In: J. T. Houghton, et al, climate change 1994. Irradiative forcing of climate change and an evaluation of the IPCC IS92. 1999. Emission scenarios. **Published for IPCC**. Cambridge University Press. 1995. p 35-71.
- SCHROT, G.; LEHMANN, J. Contrasting effects of roots and mulchn from three agroforestry tree species on yield of alley cropped maize. **Agriculture, Ecosysrems and environment**, v.54, p. 89-100, 1995.
- SCHROEDER, P. E.; DIXON, R. K.; WINJUN, J. **Ordenación forestal y agrosilvicultura para reducir el dióxido de carbono atmosférico,** USA: UNASYLVA. v.44, p:52-60, 1993.
- STUART, M.; MOURA, P. Climate change mitigation by forestry: a review of international initiatives. Policy that works for forest and people. **Series.** n. 8. London: 1998. p. 26-28.
- TRATADO DE COOPERACIÓN AMAZÓNICA. Estrategias para implementar las recomendaciones de la prepuesta de Pucallpa sobre el desarrollo sostenible de floresta secundario en la región amazónica. Pucallpa: TCA, 1999. v1, 71p.
- U. S. ENVIRONMENTAL PROTECTION AGENCY. **Options for Reducing Methane Emissions Internationally.** Disponível em: http://www.epa.gov>. Acessado em: 22 nov. 2005.
- UNFCCC. Convención marco de las Naciones Unidas sobre cambio climático. **Protocolo de Kyoto**. Disponivel em: http://unfccc.int/cdm/rules/modproced.htlm>. Acessado em: 22 nov. 2005.
- VARGAS, C. I.; VALDIVIA. M. Compendio de sistemas agroforestales. Tingo Maria: UNAS, 1999. 130p.
- WALLENBERG, E. D. **Anticipating change:** scenarios as a tool for adaptive forest management: a Guide. USA: Centre for International Forestry Research Bagov, 2000. p. 14-17.
- WINJUM, J. Estimating the global potential of forest and agro forest management practices to sequester carbon, water, air, and soil pollutions. 1992. 64: 213-228.
- WINROCK INTERNATIONAL. **Carbon monitored, program publications**. Revised. June 2006. Disponível em: <www.winrock.org/REEP/forest>. Acessado em: 5 out. 2005.
- YARED, J. **Fundamentos de sistemas agroflorestais**. Belém, PA: UFRA, 2004. 15p. Paper do curso de Doutorado.
- YOUNG, A. **Agroforestry For soil management.** Wallingford: CAB International, 1997. 214p.

Apêndices

Apêndice 1. Formato de entrevista interativa para avaliação econômica e caracterização dos sistemas de uso-da-terra.

Registro	N-	Localidad	le :	Departamento	:
Província	:	Distrito	:	Entrevistador:	
Data :		Hora			

- **l Caracterização do Informante:** Nome, Lugar de nascimento, idade, sexo, estado civil, grado de instrução, anos de estádia em selva, situação da propriedade, participação familiar, número de itegrantes da família por idades, aporte de mão-de-obra familiar, mora na propriedade o não.
- **Il Relato complementar:** Atividades à que se dedica incluindo a família em hectares e número de animais, experiências e vivência anterior e atual na zona, quais são seus receitas pelas atividades.

Aspecto sócio econômico, tipo de vivenda, quantidade de mão-de-obra utilizada na propriedade incluindo contratos e trabalhos, limitações, produtivas, pago por mão-de-obra, planifica sua produção, gastos, atividades produtivas, financeiras, que vende quanto e a que preço, tem casa na cidade, médio de transporte, pertence a alguma organização, projeto que tipo, recebe apoio.

Uso atual da terra, área total, e atividade produtiva, (floresta, capoeira, pasto, cultivos, animais, etc), tipo de propriedade, produção pelas atividades, monocultura e cultivos associados, floresta, capoeira, que manejo faz para realizar atividade produtiva, anos de permanência de áreas de cultivo, seqüências de cultivos que usa produção para o mercado e auto consumo incluindo quantidades, recebe o não capacitação para manejo de cultivos, floresta, cria.

III. Custo de produção e rendimentos de cultivos, tipo de comercialização, como é o transporte da produção tipo e preço.

IV. Ambiente.

* Quantas hectares de floresta tive ao chegar à parcela, quantas hectares derruba por ano, seguirá desmatando, que pensa da floresta, capoeiras, pensa deixar floresta para o futuro, que obtêm da floresta, recebe capacitação em manejo de florestas, que pensa das árvores na pecuária, semia árvores em sua parcela que espécies e por que, gostaria apoio em reflorestamento, como pensa fazer com a mão-de-obra, quanto solicitaria você como apoio econômico por hectare para reflorestamento, realiza manejo de floresta e de capoeira, que produtos usa da floresta (folia, fruto, madeira, lenha, semente, cerco, fibra, cortesã) em umidade por espécie, preço, consumo, venta, qual é o custo de produção.

V. Temas para comentar e sugestões (valorizar)

* Preservação de espécies, corta ventos, sombra, árvores como purificador do ambiente, clima, água, valor cultural das plantas, erosão, preservação de flora e fauna, paisagem, conhece algo sobre danos ambientais por derruba de florestas e queima, compensação por seqüestro do carbono a produtores que preservem o floresta. * Esta interessado em conservar alguma área permanente de floresta o capoeira.

Apêndice. 2. Dados básicos de armazenamento de carbono em diferentes sistemas de uso-da-terra, em José Crespo e Castillo, Peru. 2006

2.1). Sistema silvipastoril Echinochloa polystachya HBK.

N° /Parcela	Coord	enada	as Y	Nome Comum	Circ (cm)	dap (cm)	Hc (m)	Ht (m)	AB (m ²)	Vol (m³)	Vol (pt)	BAV (kg/arv.)	BAV (t/ha)	C t/ha
1-	1 2,0	00	1,00	Quillosisa	142,50	45,36	10,00	22,00	0,16	1,0503	231,08	1839,55	36,79	16,556
2-	1 1,0	00	10,00	Leche caspi	70,00	22,28	6,00	14,00	0,04	0,1521	33,46	304,55	6,09	2,741
3-	1 4,0	00	34,00	Quillosisa	94,00	29,92	10,00	15,00	0,07	0,457	100,55	642,06	12,84	5,779
4-	1 3,0	00	43,0	Quillosisa	96,50	30,72	10,00	15,00	0,07	0,4817	105,97	686,14	13,72	6,175
5-	1 1,5	50	52,00	Tabuebuia	50,00	15,92	0,00	5,00	0,02	0		130,00	2,60	1,170
6-	1 4,0	00	76,00	Huicungo (P)	101,00	32,15	0,00	2,5	0,08	0		770,00	15,40	6,930
7-	1 2,0	00	78,00	Huicungo (P)	103,50	32,94	0,00	10,00	0,09	0		819,14	16,38	7,372
8-	1 2,5	50	79,00	Tabuebuia	36,00	11,46	0,00	7,00	0,01	0		56,62	1,13	0,510
9-	1 4,0	00	78,00	Bolaina negra	48,50	15,44	3,00	7,00	0,02	0,0365	8,03	120,36	2,41	1,083
10-	1 1,0	00	85,00	Anonilla	98,00	31,19	3,00	9,00	0,08	0,149	32,79	713,45	14,27	6,421
Total					•									54,737

	_	Coordena	ıdas	- Nome	Circ	dap	Hc	Ht	AB	Vol	Vol	BAV	BA	C
N° /Parcel	la	x	Y	Comum	(cm)	(cm)	(m)	(m)	(\mathbf{m}^2)	(m ³)	(pt)	(kg/arv.)	(t/ha)	t/ha
	1-2	1,50	0,50	Leche caspi	74,00	23,55	2,00	10,00	0,04	0,0566	12,46	350,52	7,01	3,15
	2-2	3,00	23,00	Capirona	44,00	14,01	5,00	8,00	0,02	0,0501	11,02	94,08	1,88	0,85
	3-2	4,00	28,00	Leche caspi	54,00	17,19	3,00	7,00	0,02	0,0452	9,95	157,95	3,16	1,42
	4-2	2,50	45,00	Cético	75,00	23,87	0,00	8,00	0,04		0,00	362,63	7,25	3,26
	5-2	2,00	62,00	Eritrina alta	165,00	52,52	8,00	12,00	0,22	1,1266	247,85	2665,60	53,31	23,99
	6-2	5,00	83,00	Leche caspi	50,00	15,92	3,00	8,00	0,02	0,0388	8,53	130,00	2,60	1,17
	7-2	2,00	84,00	Leche caspi	61,00	19,42	6,00	9,00	0,03	0,1155	25,41	215,00	4,30	1,94
	8-2	3,00	0,00	Capirona	11,00	3,501	0,00	3,00	0,00			2,82	0,06	0,03
					12,50	3,979	0,00	3,00	0,00			3,90	0,08	0,04
	9-2	1,00	92,00	Capirona	19,00	6,048	0,00	3,00	0,00			11,24	0,22	0,10
TOTAL												5037,81	100,76	35,95
MEDIA														45,34

A.1.- Arvore morto em pé C. t/ha.

	Coorden	adas							
N°	x	y	— Nome Comum	Circ (cm)	dap (cm)	Ht (m)	BAV (kg/arvore)	BA (t/ha)	C t./ha
11	3,00	8,00	Quillosisa	67,5	21,49	1,32	277,78	5,56	2,50

A.2- Carbono no solo C.t/ha.

Estratos cm	PS do solo em cilindro (gr/cc)	Volumem do cilindro	DA (gr/cc)	Peso volume do solo t/ha.	CO gr/kg	CO no solo t/ha	CO Solo a 1 m
0 a-10	152,10	96,60	1,575	1574,534	3,27	5,149	15,981
10 a 20	165,60	96,56	1,715	1714,996	1,63	2,795	
20 a 40	164,70	94,68	1,740	3479,087	1,01	3,514	
40 a 100	163,99	93,54	1,753	10518,922	0,43	4,523	
0 a-10	156,20	95,90	1,629	1628,780	2,18	3,551	12,942
10 a 20	162,12	95,87	1,691	1691,040	0,83	1,404	
20 a 40	163,02	95,87	1,700	3400,855	0,72	2,449	
40 a 100	163,91	95,88	1,710	10257,196	0,54	5,539	
0 a-10	156,30	96,60	1,618	1618,012	2,76	4,466	12,325
10 a 20	161,40	96,56	1,671	1671,500	0,54	0,903	
20 a 40	161,52	94,68	1,706	3411,914	0,40	1,365	
40 a 100	160,05	93,54	1,711	10266,196	0,10	1,027	
0 a-10	149,40	95,90	1,558	1557,873	1,78	2,773	13,694
10 a 20	151,00	95,87	1,575	1575,050	1,09	1,717	
20 a 40	157,60	95,87	1,644	3287,786	0,83	2,729	
40 a 100	159,20	95,88	1,660	9962,453	0,65	6,476	
Média					•		13,736

A3.- Carbono herbáceo e liteira (P1 e P2) C.t/ha.

PFT/M ²	PFM (g)	PSM (g)	Fator de correção	BAH t/ha)	C.t/ha.
1975	500,00	140,20	0,1	55,379	24,921
2065	500,00	111,20	0,1	45,926	20,667
MEDIA				50,652	22,794

A4.- Carbono Total em Sistema silvipastoril melhorado Echinochloa polystachia HBK.

	Carbono na BAV	Carbono em AM Pé	Carbono herbáceo e	Carbono no solo	Total carbono
	t/há	t/ha	liteira t/ha	t/ha	t/ha
_	45,34	2,50	22,794	13,74	84,37

2.2. Sistema capoeira 12 anos

N° /Parcela	Coordena	das Y	- Nome Comum	Circ (cm)	dap (cm)	Hc (m)	Ht (m)	AB (m ²)	Vol (m³)	Vol (pt)	BAV (kg/arv.)	BAV (t/ha)	C t/ha.
1	1,0		Eritrina	31,00	9,87	5,00	7,00	0,01	0,02	5,47	38,79	0,78]0,35
2	1,0		Poroto shimbillo	13,50	4,30		4,00	0,00	0,00	0,00	4,73	0,09	0,04
2	1,0	0 3,00		11,00	3,50		4,00	0,00	0,00	0,00	2,82	0,06	0,03
2	1,0	0 3,00		10,50	3,34		3,00	0,00	0,00	0,00	2,51	0,05	0,02
3	2,0	0 1,50	Matico	9,50	3,02		4,00	0,00	0,00	0,00	1,95	0,04	0,02
4	2,5	0 5,00	Oje	12,50	3,98		4,00	0,00	0,00	0,00	3,90	0,08	0,04
5	2,5	0 5,00	Oje negro	16,50	5,25		3,00	0,00	0,00	0,00	7,87	0,16	0,07
6	3,0	0 7,00	Poroto shimbillo	12,50	3,98		4,00	0,00	0,00	0,00	3,90	0,08	0,04
7	5,0	0 1,00	Achiote	38,50	12,25	8,00	13,00	0,01	0,06	13,49	67,11	1,34	0,60
7	5,0	0 1,00		48,50	15,44	10,00	15,00	0,02	0,12	26,77	120,36	2,41	1,08
8	4,5	0 5,00	Tangarana	28,50	9,07	7,00	11,00	0,01	0,03	6,47	31,36	0,63	0,28
9	4,5	0 7,00	Tangarana	28,50	9,07	6,00	10,00	0,01	0,03	5,55	31,36	0,63	0,28
	4,5	0 7,00		18,50	5,89	7,00	10,00	0,00	0,01	2,73	10,51	0,21	0,09
10	3,0	0 8,00	Shimbillo	14,50	4,62		4,00	0,00	0,00	0,00	5,67	0,11	0,05
	3,0	0 8,00		13,00	4,14		4,00	0,00	0,00	0,00	4,30	0,09	0,04
11	3,0	0 8,00	NN	9,00	2,86		3,00	0,00	0,00	0,00	1,70	0,03	0,02
12	0,5	0 10,00	Erytrina	42,00	13,37	5,00	9,00	0,01	0,05	10,04	83,63	1,67	0,75
13	0,5	0 10,00	Erytrina	16,50	5,25		4,00	0,00	0,00	0,00	7,87	0,16	0,07
14	2,0	0 12,50	Moena	19,50	6,21		3,00	0,00	0,00	0,00	12,00	0,24	0,11
15	3,0	0 13,00	Bolaina	54,50	17,35	4,00	6,00	0,02	0,06	13,52	161,68	3,23	1,46
16	2,5	0 14,50	Moena negra (*)	160,00	50,93		4,00	0,20	0,00	0,00	2465,95	49,32	22,19
17	5,0	0 16,50	Bolaina	64,50	20,53	4,00	4,00	0,03	0,09	18,94	247,60	4,95	2,23
18	2,0	0 22,00	Bolaina	92,00	29,28	15,00	20,00	0,07	0,66	144,47	608,06	12,16	5,47
19	1,0	0 22,50	Pashaco	32,00	10,19	5,00	4,00	0,01	0,03	5,83	42,03	0,84	0,38
20	3,0	0 22,50	Pona (P)	15,00	4,77		3,00	0,00	0,00	0,00	6,18	0,12	0,06
21	4,0	0 22,50	Erytrina	16,00	5,09		5,00	0,00	0,00	0,00	7,28	0,15	0,07
22	4,0	0 23,00	Erytrina	11,00	3,50		3,00	0,00	0,00	0,00	2,82	0,06	0,03
23	2,5	0 24,00	Huicungo	137,00	43,61		5,00	0,15	0,00	0,00	1665,19	33,30	14,99
24	3,0	0 24,00	NN	17,50	5,57		3,00	0,00	0,00	0,00	9,13	0,18	0,08
26	0,5	0 25,00	Pona (P)	38,00	12,10		13,00	0,01	0,00	0,00	64,93	1,30	0,58
27	0,5	0 71,00	Huicungo	103,00	32,79		8,00	0,08	0,00	0,00	809,17	16,18	7,28

2	8 0,50	71,00	Huicungo	96,00	30,56		6,00	0,07	0,00	0,00	677,18	13,54	6,09
2	9 0,50	71,00	Huicungo	98,00	31,19		6,00	0,08	0,00	0,00	713,45	14,27	6,42
3	0 3,00	76,00	Capirona	26,00	8,28		3,00	0,01	0,00	0,00	24,86	0,50	0,22
3	1 2,50	76,00	Shimbillo	14,00	4,46		4,00	0,00	0,00	0,00	5,19	0,10	0,05
3:	2 2,50	76,50	Pashaco (*)	13,00	4,14		3,00	0,00	0,00	0,00	4,30	0,09	0,04
3:	3 3,00	70,00	Shimbillo	27,50	8,75	4,00	7,00	0,01	0,02	3,44	28,65	0,57	0,26
3.	5 0,00	78,50	Shimbillo	14,00	4,46		4,00	0,00	0,00	0,00	5,19	0,10	0,05
3	6 1,50	79,00	Huicungo	67,00	21,33		4,00	0,04	0,00	0,00	272,60	5,45	2,45
3	7 3,00	80,00	Cetico	55,00	17,51	8,00	12,00	0,02	0,13	27,54	165,45	3,31	1,49
3	8 1,00	81,00	Quillosisa	31,00	9,87		4,00	0,01	0,00	0,00	38,79	0,78	0,35
3	9 1,50	81,00	Hierba santa	16,00	5,09		5,00	0,00	0,00	0,00	7,28	0,15	0,07
4	0 2,00	81,50	NN	17,00	5,41		6,00	0,00	0,00	0,00	8,48	0,17	0,08
4	1 1,50	84,00	Quillosisa	59,00	18,78	7,00	15,00	0,03	0,13	27,73	197,61	3,95	1,78
4	2 2,50	84,50	Shimbillo	25,00	7,96	7,00	6,00	0,00	0,02	4,98	22,51	0,45	0,20
4.	3 2,50	85,00	Cetico	40,50	12,89	6,00	9,00	0,01	0,05	11,20	76,28	1,53	0,69
4	4,00	87,00	Quillosisa	58,00	18,46	15,00	20,00	0,03	0,26	57,42	189,25	3,78	1,70
4	6 3,50	89,00	Pashaco	18,50	5,89		5,00	0,00	0,00	0,00	10,51	0,21	0,09
4	7 1,00	90,00	Ocuera	8,00	2,55		2,50	0,00	0,00	0,00	1,26	0,03	0,01
4	8 1,00	92,00	Atadijo	17,00	5,41		2,00	0,00	0,00	0,00	8,48	0,17	0,08
4	9 0,50	95,00	Quillosisa	57,00	18,14	10,00	15,00	0,03	0,17	36,97	181,10	3,62	1,63
5	0 1,50	97,00	Cetico	72,00	22,92	10,00	12,00	0,04	0,27	58,99	327,05	6,54	2,94
5	1,80	97,00	Huicungo	102,00	32,47		4,00	0,08	0,00	0,00	789,44	15,79	7,10
5	2 2,00	97,00	Huicungo	62,00	19,74		3,50	0,03	0,00	0,00	224,03	4,48	2,02
TOTAL													94,60

N°	Coorder	nadas	Nome	Circ	dap	Hc	Ht	AB	Vol	Vol	BAV	BAV	C
•	x	y	Comum	(cm)	(cm)	(m)	(m)	(m²)	(m ³)	(pt)	(kg/arv.)	(t/ha)	t/ha.
1-3	-	5,00 1	NN	99,00	31,513	4,00	6,00	0,002	0,006	1,416	732,010	14,640	6,588
2-3	1,00	2,50 I	Huicungo (p)	17,00	5,411			0,000	0,000	0,000	8,484	0,170	0,076
				19,00	6,048	5,00	7,00	0,000	0,002	0,340	11,241	0,225	0,101
3-3	2,50	2,50 I	Eritrina alta espinosa	104,00	33,104	10,00	15,00	0,003	0,017	3,718	829,190	16,584	7,463
4-3	2,00	2,50 I	Bolaina negra	23,00	7,321	6,00	8,00	0,001	0,002	0,493	18,228	0,365	0,164
5-3	1,50	2,50 I	Ficus Quillocisa	92,00	29,284	10,00	16,00	0,002	0,015	3,289	608,055	12,161	5,472

6-3	2,00	2,50 Requia	26,00	8,276	6,00	8,00	0,001	0,003	0,558	24,857	0,497	0,224
7-3	2,00	3,00 Eritrina alta espinosa	45,00	14,324	6,00	9,00	0,001	0,004	0,965	99,584	1,992	0,896
8-3	1,50	4,00 NN	21,00	6,684	1,50	3,00	0,001	0,001	0,113	14,480	0,290	0,130
9-3	4,50	5,00 NN	11,00	3,501	3,50	5,00	0,000	0,001	0,138	2,820	0,056	0,025
10-3	4,50	3,00 NN	12,50	3,979		3,00	0,000	0,000	0,000	3,897	0,078	0,035
11-3	4,00	5,00 Ishanga hoja ancha	11,00	3,501		2,50	0,000	0,000	0,000	2,820	0,056	0,025
12-3	3,00	7,00 Shimbillo	27,00	8,594	3,00	5,00	0,001	0,001	0,290	27,347	0,547	0,246
	5,00		30,00	9,549	3,00	5,00	0,001	0,001	0,322	35,701	0,714	0,321
13-3	0,50	8,00 NN	24,00	7,639	2,00	4,00	0,001	0,001	0,172	20,300	0,406	0,183
14-3	2,50	9,00 Requia	19,50	6,207	3,00	6,00	0,000	0,001	0,209	12,005	0,240	0,108
15-3	2,50	10,00 NN (L)	11,00	3,501	0,00	6,00	0,000	0,000	0,000	2,820	0,056	0,025
16-3	4,00	11,00 Cetico	23,00	7,321	4,00	6,00	0,001	0,001	0,329	18,228	0,365	0,164
17-3	4,00	13,00 NN	30,00	9,549	4,50	6,50	0,001	0,002	0,483	35,701	0,714	0,321
			31,00	9,868	4,50	6,00	0,001	0,002	0,499	38,789	0,776	0,349
18-3	4,00	13,50 NN	20,00	6,366	2,00	4,00	0,001	0,001	0,143	12,799	0,256	0,115
19-3	4,00	15,00 NN	61,00	19,417	4,00	7,00	0,002	0,004	0,872	215,003	4,300	1,935
20-3	4,00	16,50 Cetico	65,00	20,690	6,00	9,00	0,002	0,006	1,394	252,482	5,050	2,272
21-3	3,50	18,00 Huicungo (P)	75,00	23,873	4,00	12,00	0,002	0,005	1,073	362,631	7,253	3,264
22-3	3,00	19,00 Yacuchapana	23,50	7,480	3,00	5,00	0,001	0,001	0,252	19,247	0,385	0,173
23-3	3,50	20,00 Huimba verde	16,00	5,093	1,00	3,00	0,000	0,000	0,057	7,278	0,146	0,065
24-3	4,50	20,00 Moena canela	21,50	6,844	3,50	5,00	0,001	0,001	0,269	15,368	0,307	0,138
25-3	4,00	23,00 Huicungo (P)	67,00	21,327		3,00	0,002	0,000	0,000	272,602	5,452	2,453
26-3	4,00	23,00 Canela moena	12,00	3,820	2,00	3,00	0,000	0,000	0,086	3,515	0,070	0,032
27-3	4,00	23,00 Canela moena	15,00	4,775	2,00	3,50	0,000	0,000	0,107	6,181	0,124	0,056
28-3	2,00	23,50 Quillo sisa	25,00	7,958	3,00	5,00	0,001	0,001	0,268	22,509	0,450	0,203
29-3	2,00	23,00 Quillo sisa	46,00	14,642	8,00	11,00	0,001	0,006	1,316	105,278	2,106	0,948
30-3	2,50	23,50 Leche caspi	79,00	25,146	13,00	16,00	0,002	0,017	3,672	413,57	8,272	3,722
31-3	0,50	23,00 Achiotillo	30,50	9,708	10,00	15,00	0,001	0,005	1,090	37,225	0,745	0,335
32-3	4,50	23,00 Tapona	53,50	17,030	8,00	12,00	0,001	0,007	1,530	154,275	3,085	1,388
33-3	4,00	23,00 NN	11,50	3,661	1,50	3,00	0,000	0,000	0,062	3,156	0,063	0,028
34-4	4,50	52,50 Cetico	53,50	17,030	10,00	12,00	0,001	0,009	1,913	154,275	3,085	1,388
35-4	3,50	52,50 Anonilla	14,50	4,615	1,00	3,00	0,000	0,000	0,052	5,673	0,113	0,051
36-4	3,00	53,50 Leche caspi	17,50	5,570	2,00	4,00	0,000	0,001	0,125	9,129	0,183	0,082

	SONICPOR		
_	ũ		

37-4	4,50	55,00 Palo blanco	78,00	24,828	12,00	15,00	0,002	0,015	3,346	400,460	8,009	3,604
38-4	4,50	56,00 Requia	21,50	6,844	3,00	5,00	0,001	0,001	0,231	15,368	0,307	0,138
39-4	4,00	56,50 Anonilla	10,50	3,342	2,00	3,00	0,000	0,000	0,075	2,507	0,050	0,023
40-4	4,00	57,00 Anonilla	21,00	6,684	2,00	4,00	0,001	0,001	0,150	14,480	0,290	0,130
41-4	1,00	55,00 Ocuera	13,50	4,297	1,50	3,00	0,000	0,000	0,072	4,735	0,095	0,043
42-4	2,00	58,00 Ocuera	10,50	3,342		2,50	0,000	0,000	0,000	2,507	0,050	0,023
43-4	2,00	58,50 Guayaba	17,00	5,411		2,50	0,000	0,000	0,000	8,484	0,170	0,076
44-4	2,00	58,50 Anonilla	9,50	3,024	2,00	3,00	0,000	0,000	0,068	1,946	0,039	0,018
45-4	-	62,00 NN	12,00	3,820		3,50	0,000	0,000	0,000	3,515	0,070	0,032
			12,00	3,820		3,00	0,000	0,000	0,000	3,515	0,070	0,032
			15,00	4,775		4,00	0,000	0,000	0,000	6,181	0,124	0,056
			14,00	4,456		3,50	0,000	0,000	0,000	5,191	0,104	0,047
46-4	4,00	65,00 Requia	10,00	3,183		1,50	0,000	0,000	0,000	2,216	0,044	0,020
47-4	3,50	66,00 Ocuera	18,00	5,730		3,00	0,000	0,000	0,000	9,804	0,196	0,088
48-4	4,00	69,00 Cetico	97,00	30,876	15,00	18,00	0,002	0,024	5,202	695,172	13,903	6,257
49-4	2,00	74,00 Ocuera	17,00	5,411		3,00	0,000	0,000	0,000	8,484	0,170	0,076
50-4	2,00	75,00 NN	11,50	3,661		2,50	0,000	0,000	0,000	3,156	0,063	0,028
50-4	-	61,00 Ocuera	15,50	4,934		3,00	0,000	0,000	0,000	6,716	0,134	0,060
TOTAL												52,32
Media												73.46

B.1.- Carbono em árvores mortos em pé

	Coord	lenadas	Nome	Circ	dap	Hc	Ht	AB	Vol	Vol	BAV	BAV	C
N°	x	y	Comum	(cm)	(cm)	(m)	(m)	(m2)	(m3)	(pt)	(kg/arbol)	(t/ha)	t/ha
	1,50	25,00	NN	22,00	7,00		3,00	0,001	0,000	0,000	16,29	0,33	0,147
	0,00	78,50	NN	33,50	10,66		4,00	0,001	0,000	0,000	47,20	0,94	0,425
	3,50	89,00	NN	22,00	7,00		4,00	0,001	0,000	0,000	16,29	0,33	0,147
													0,718

B,2.- Carbono no solo C.t/ha.

Estratos cm	PS do solo em cilindro (gr/cc)	Volumem do cilindro	DA (gr/cc)	Peso volume do solo t/ha.	CO gr/kg	CO no solo t/ha.	CO no solo 1 m
0 a-10	178,60	96,60	1,849	1848,861	3,16	5,842	16,568
10 a 20	174,60	96,56	1,808	1808,202	1,63	2,947	

20 a 40	169,30	94,68	1,788	3576,257	0,98	3,505	
40 a 100	102,50	93,54	1,096	6574,727	0,65	4,274	
0 a-10	175,20	95,90	1,827	1826,903	2,72	4,969	10,223
10 a 20	171,20	95,87	1,786	1785,752	1,49	2,661	
20 a 40	165,02	95,87	1,721	3442,578	0,40	1,377	
40 a 100	161,91	95,88	1,689	10132,040	0,12	1,216	
0 a-10	166,30	96,60	1,722	1721,532	2,94	5,061	14,880
10 a 20	161,60	96,56	1,674	1673,571	1,49	2,494	
20 a 40	160,11	95,78	1,672	3343,287	1,27	4,246	
40 a 100	155,05	93,54	1,658	9945,478	0,94	9,349	
0 a-10	151,40	95,90	1,579	1578,728	1,92	3,031	9,357
10 a 20	149,67	95,87	1,561	1561,177	1,30	2,030	
20 a 40	148,76	95,87	1,552	3103,369	0,98	3,041	<u> </u>
40 a 100	143,20	95,88	1,494	8961,202	0,14	1,255	
Media							12,757

B.3.-Carbono herbáceo e liteira, (P3 e P4) C.t/ha

PFT/M2	PFM (g)	PSM	Fator Conversão	BAH (t/ha)	C.t/ha
3250	500	97,10	0,1	63,12	28,40
1690	500	125,29	0,1	42,35	19,06
4720	500	112,50	0,1	106,20	47,79
3150	500	215,90	0,1	136,02	61,21
1100	500	134,50	0,1	29,59	13,32
1410	500	89,10	0,1	25,13	11,31
3320	500	107,10	0,1	71,11	32,00
3600	500	135,72	0,1	97,72	43,97
Media					32,13

B.4.-Carbono Total no sistema capoeira 12 anos

Carbono na BAV	Carbono em AM Pé	Carbono herbáceo e liteira	Carbono no solo	Total de carbono]
t/ha	t/há	t/ha	t/ha	t/ha
73,46	0,72	32,13	12,76	119,07

2.3. SAF cacau tradicional

N°/Parcela Coordenadas Nome Circ dap Hc Ht AB Vol Vol BAV BAV	AB Vol Vol BAV BAV
---	--------------------

			Comum	(cm)	(cm)	(m)	(m)	(m ²)	(m ³)	(pt)	(kg/arv.)	(t/ha)	1
	x	y											/ha
1-5	0,00	0,00	Bolaina	67,80	21,581	10,00	13,00	0,037	0,238	52,310	280,913	5,618	2,528
2-5	2,00	3,00	Cacau	36,00	11,459			0,010	0,000	0,000	56,625	1,132	0,510
3-5	4,00	0,00	Bolaina	80,00	25,465	8,00	12,00	0,051	0,265	58,263	426,951	8,539	3,843
4-5	5,00	2,00	Cacau	36,00	11,459			0,010	0,000	0,000	56,625	1,132	0,510
5-5	8,00	0,80	Cacau	43,00	13,687			0,015	0,000	0,000	88,764	1,775	0,799
6-5	9,00	4,00	Cacau	58,00	18,462			0,027	0,000	0,000	189,249	3,785	1,703
7-5	15,00	3,00	Cacau	40,00	12,732			0,013	0,000	0,000	73,922	1,478	0,665
8-5	20,00	2,50	Cacau	26,00	8,276			0,005	0,000	0,000	24,857	0,497	0,224
9-5	20,00	2,50	Cacau	32,00	10,186			0,008	0,000	0,000	42,033	0,841	0,378
10-5	21,00	4,50	Pashaco	61,00	19,417	16,00	20,00	0,030	0,308	67,749	215,003	4,300	1,935
			Pashaco	70,00	22,282	17,00	22,00	0,039	0,431	94,792	304,550	6,091	2,741
11-5	22,00	1,00	Pashaco	80,00	25,465	22,00	25,00	0,051	0,728	160,224	426,951	8,539	3,843
12-5	27,00	4,00	Cacau	54,50	17,348			0,024	0,000	0,000	161,675	3,234	1,455
			Cacau	32,00	10,186			0,008	0,000	0,000	42,033	0,841	0,378
13-5	31,00	3,00	Cacau	108,00	34,377			0,093	0,000	0,000	912,267	18,245	8,210
14-5	44,00	2,00	Cacau	46,00	14,642			0,017	0,000	0,000	105,278	2,106	0,948
			Cacau	27,50	8,754			0,006	0,000	0,000	28,647	0,573	0,258
15-5	46,00	0,50	Cacau	42,00	13,369			0,014	0,000	0,000	83,634	1,673	0,753
16-5	50,00	5,00	Cacau	97,50	31,035			0,076	0,000	0,000	704,274	14,085	6,338
17-5	53,00	3,00	Cacau	52,00	16,552			0,022	0,000	0,000	143,565	2,871	1,292
18-5	58,00	3,00	Cacau	44,00	14,006			0,015	0,000	0,000	94,080	1,882	0,847
19-5	61,00	4,00	Cacau	50,00	15,915			0,020	0,000	0,000	130,003	2,600	1,170
20-5	70,00	2,50	Cacau	71,00	22,600			0,040	0,000	0,000	315,677	6,314	2,841
21-5	74,00	4,00	Cacau	51,00	16,234			0,021	0,000	0,000	136,682	2,734	1,230
22-5	74,00	3,00	Llambo pashaco	39,00	12,414	16,00	18,00	0,012	0,126	27,693	69,335	1,387	0,624
23-5	74,00	3,00	Llambo pashaco	39,00	12,414	15,00	18,00	0,012	0,118	25,962	69,335	1,387	0,624
24-5	81,00	1,00	Cacau	43,50	13,846			0,015	0,000	0,000	91,398	1,828	0,823
			Cacau	29,00	9,231			0,007	0,000	0,000	32,766	0,655	0,295
25-5	85,00	3,50	Cacau	104,50	33,263			0,087	0,000	0,000	839,313	16,786	7,554
26-5	89,00	1,00	Cacau	51,00	16,234			0,021	0,000	0,000	136,682	2,734	1,230
27-5	93,00	0,50	Cacau	69,00	21,963			0,038	0,000	0,000	293,662	5,873	2,643
28-5	97,00	3,50	Cacau	54,00	17,189			0,023	0,000	0,000	157,949	3,159	1,422

TOTAL													60,612
N°/Parcela	Coorde	enadas y	Nome Comum	Circ (cm)	dap (cm)	Hc (m)	Ht (m)	AB (m2)	Vol (m3)	Vol (pt)	BAV (kg/arbol)	BAV (t/ha)	C t/ha
1-6	0,00	0,00	Capirona	101,00	32,149	26,00	30,00	0,081	1,372	301,815	770,004	15,400	6,930
2-6	1,00	4,00	Bolaina	94,00	29,921	22,00	26,00	0,070	1,005	221,209	642,057	12,841	5,779
3-6	2,00	1,00	Cacau	43,00	13,687	-	-	0,015	0,000	0,000	88,7636	1,775	0,799
4-6	4,00	1,00	Capirona	97,00	30,876	27,00	31,00	0,075	1,314	289,090	695,172	13,903	6,257
5-6	5,00	3,00	Capirona	76,50	24,351	23,00	27,00	0,047	0,696	153,171	381,262	7,625	3,431
6-6	7,00	1,00	Cacau	43,00	13,687			0,015	0,000	0,000	88,7636	1,775	0,799
7-6	7,00	4,00	Cacau	40,00	12,732			0,013	0,000	0,000	73,9217	1,478	0,665
8-6	11,00	3,50	Cacau	43,00	13,687			0,015	0,000	0,000	88,7636	1,775	0,799
9-6	15,00	2,00	Cacau	36,00	11,459			0,010	0,000	0,000	56,6246	1,132	0,510
10-6	20,00	1,00	Cacau	17,00	5,411			0,002	0,000	0,000	8,4839	0,170	0,076
11-6	22,00	0,00	Capirona	85,50	27,215	16,00	24,00	0,058	0,605	133,100	505,166	10,103	4,546
12-6	23,00	4,00	Cacau	52,00	16,552			0,022	0,000	0,000	143,565	2,871	1,292
13-6	24,00	3,50	Cacau	41,00	13,051			0,013	0,000	0,000	78,687	1,574	0,708
14-6	28,00	1,00	Cacau	28,00	8,913			0,006	0,000	0,000	29,9826	0,600	0,270
15-6	30,00	1,50	Capirona	70,00	22,282	25,00	28,00	0,039	0,634	139,400	304,55	6,091	2,741
16-6	33,00	1,00	Capirona	120,00	38,197	20,00	27,00	0,115	1,490	327,731	1190,94	23,819	10,718
			Capirona	83,00	26,420	18,00	26,00	0,055	0,641	141,109	468,627	9,373	4,218
17-6	33,00	3,00	Cacau	72,00	22,918			0,041	0,000	0,000	327,048	6,541	2,943
18-6	35,00	2,50	Cacau	37,50	11,937			0,011	0,000	0,000	62,7855	1,256	0,565
19-6	38,00	2,00	Cacau	50,50	16,075			0,020	0,000	0,000	133,317	2,666	1,200
20-6	40,00	2,00	NN	78,00	24,828	20,00		0,048	0,629	138,466	400,46	8,009	3,604
			NN	55,00	17,507	20,00		0,024	0,313	68,846	165,454	3,309	1,489
			NN	92,00	29,284	22,00		0,067	0,963	211,896	608,055	12,161	5,472
			NN	39,50	12,573	19,00		0,012	0,153	33,734	71,6062	1,432	0,644
21-6	43,00	3,00	Capirona	134,00	42,653	30,00	23,00	0,143	2,786	612,994	1574,47	31,489	14,170
22-6	43,00	4,00	Cacau	31,00	9,868			0,008	0,000	0,000	38,7887	0,776	0,349
			Cacau	28,00	8,913			0,006	0,000	0,000	29,9826	0,600	0,270
23-6	45,00	4,50	Capirona	71,50	22,759	29,00	22,00	0,041	0,767	168,708	321,332	6,427	2,892
24-6	47,00	2,00	Cacau	51,00	16,234			0,021	0,000	0,000	136,682	2,734	1,230
			Cacau	58,50	18,621			0,027	0,000	0,000	193,403	3,868	1,741
25-6	52,50	5,00	Cacau	50,00	15,915			0,020	0,000	0,000	130,003	2,600	1,170

SONIGPOF	

26-6	52,00	3,00	Cacau	19,00	6,048	0,003	0,000	υ,000	11,241	0,225	0,101
27-6	52,00	1,00	Cacau	42,00	13,369	0,014	0,000	0,000	83,6336	1,673	0,753
28-6	54,00	4,00	Cacau	47,00	14,961	0,018	0,000	0,000	111,165	2,223	1,000
29-6	57,00	3,00	Cacau	59,00	18,780	0,028	0,000	0,000	197,613	3,952	1,779
30-6	61,00	2,50	Cacau	56,00	17,825	0,025	0,000	0,000	173,171	3,463	1,559
31-6	68,00	1,00	Cacau	41,00	13,051	0,013	0,000	0,000	78,687	1,574	0,708
32-6	68,00	5,00	Cacau	93,00	29,603	0,069	0,000	0,000	624,916	12,498	5,624
33-6	70,00	5,00	Cacau	14,50	4,615	0,002	0,000	0,000	5,67311	0,113	0,051
34-6	70,00	1,00	Cacau	79,00	25,146	0,050	0,000	0,000	413,577	8,272	3,722
35-6	74,00	3,00	Cacau	47,00	14,961	0,018	0,000	0,000	111,165	2,223	1,000
TOTAL			<u>-</u>			<u>-</u>	·	<u>'</u>		<u>'</u>	104,576
Media											82,594

C.1.- Carbono herbáceo e liteira (P5 e P6), C.t/ha

PFT/M2	PFM (g)	PSM	Fator Conversão	BAH (t/ha)	C.t/ha
1150	500	72,3	0,1	16,629	7,483
875	500	85	0,1	14,875	6,694
2450	500	160,3	0,1	78,547	35,346
3295	500	168,2	0,1	110,8438	49,880
950	500	56,70	0,1	10,77	4,848
895	500	75,20	0,1	13,461	6,057
5280	500	128,80	0,1	136,01	61,206
2250	500	129,00	0,1	58,05	26,123
Media					24,705

C.2.- Carbono no solo (P5 e P6), C.t/ha

Estratos Cm	PS solo no cilindro (gr/cc)	Volumem do cilindro	DA (gr/cc)	Peso volume do solo t/ha.	CO gr/kg	CO no solo t/ha ⁻¹	CO no Solo 1m
0 a-10	59,45	93,54	0,636	635,557	2,18	1,386	5,633
10 a 20	58,01	93,54	0,620	620,162	1,92	1,191	
20 a 40	57,76	93,54	0,617	1234,980	1,20	1,482	
40 a 100	57,10	93,54	0,610	3662,604	0,43	1,575	
0 a-10	89,67	95,87	0,935	935,329	1,63	1,525	3,420

10 a 20	84,22	95,87	0,878	878,481	0,36	0,316	
20 a 40	81,97	95,87	0,855	1710,024	0,32	0,547	
40 a 100	78,56	95,88	0,819	4916,145	0,21	1,032	
0 a-10	91,60	94,68	0,967	967,469	3,33	3,222	10,728
10 a 20	90,88	94,68	0,960	959,865	1,57	1,507	
20 a 40	90,12	94,68	0,952	1903,676	1,16	2,208	
40 a 100	89,76	93,54	0,960	5757,537	0,69	3,973	
0 a-10	73,47	94,68	0,776	775,982	3,33	2,584	9,460
10 a 20	73,02	94,68	0,771	771,229	2,51	1,936	
20 a 40	72,78	94,68	0,769	1537,389	1,07	1,645	
40 a 100	72,23	94,68	0,763	4577,313	0,72	3,296	
Media							7,311

C.3.- Carbono Total no SAF cacau tradicional t/ha

Carbono na BAV	Carbono herbáceo e liteira	Carbono no solo t/ha	Total de carbono
t/ha	t/ha		t/ha
82,594	24,705	7,311	114,61

2.4. SAF cítrico 15 anos

N°	Coordena	das	- Nome	Circ	dap	Нс	Ht	AB	Vol	Vol	BAV	BA	С
Parcela	x	Y	Comum	(cm)	(cm)	(m)	(m)	(m^2)	(\mathbf{m}^3)	(pt)	(kg/arbol)	(t/ha)	t/ha
1-7	0,00	1,00	Laranja v	70,50	22,44			0,03955	0,000	0,00	310,083	6,2017	2,791
2-7	1,50	4,00	Bolaina	71,20	22,66	12,00	15,00	0,04034	0,315	69,23	317,932	6,3586	2,861
3-7	5,00	5,00	Capirona	82,00	26,10	12,00	16,00	0,05351	0,417	91,82	454,474	9,0895	4,090
4-7	6,00	0,00	Jagua	128,00	40,74	12,00	20,00	0,13038	1,017	223,73	1402,172	28,0434	12,620
5-7	9,00	3,00	Laranja v	40,00	12,73			0,01273	0,000	0,00	73,922	1,4784	0,665
6-7	12,00	1,00	Laranja v	71,10	22,63			0,04023	0,000	0,00	316,804	6,3361	2,851
7-7	21,50	2,50	Laranja v	65,50	20,85			0,03414	0,000	0,00	257,425	5,1485	2,317
8-7	26,00	2,00	Capirona	111,10	35,36	21,00	25,00	0,09822	1,341	294,97	979,978	19,5996	8,820
9-7	27,00	2,00	Laranja v	14,10	4,49			0,00158	0,000	0,00	5,285	0,1057	0,048
10-7	33,00	1,00	Laranja v	21,20	6,75			0,00358	0,000	0,00	14,832	0,2966	0,133
11-7	42,00	4,50	Laranja v	60,00	19,10			0,02865	0,000	0,00	206,197	4,1239	1,856
12-7	48,00	2,50	Laranja v	42,60	13,56			0,01444	0,000	0,00	86,689	1,7338	0,780
13-7	52,00	2,50	Bolaina	53,00	16,87	4,00	7,00	0,02235	0,058	12,79	150,653	3,0131	1,356
14-7	54,00	1,00	Laranja v	22,00	7,00			0,00385	0,000	0,00	16,289	0,3258	0,147

				60,80	19,35	15,00	20,00	0,02942	0,287	63,10	213,224	4,2645	1,919
15-7	57,00	2,00	Capirona	66,70	21,23	14,00	20,00	0,0354	0,322	70,88	269,525	5,3905	2,426
16-7	59,00	4,00	Laranja v	50,80	16,17			0,02054	0,000	0,00	135,330	2,7066	1,218
17-7	65,00	2,50	Laranja v	60,00	19,10			0,02865	0,000	0,00	206,197	4,1239	1,850
18-7	71,00	2,00	Laranja v	25,00	7,96			0,00497	0,000	0,00	22,509	0,4502	0,203
				74,40	23,68	15,00	20,00	0,04405	0,429	94,48	355,336	7,1067	3,19
19-7	74,00	5,00	Bolaina	87,80	27,95	13,00	18,00	0,06134	0,518	114,04	540,258	10,8052	4,86
20-7	74,00	1,00	Laranja v	46,50	14,80			0,01721	0,000	0,00	108,197	2,1639	0,97
21-7	75,00	1,00	Laranja v	52,00	16,55			0,02152	0,000	0,00	143,565	2,8713	1,29
22-7	81,00	4,00	Bolaina	28,80	9,17	8,00	12,00	0,0066	0,034	7,55	32,198	0,6440	0,29
23-7	81,00	3,00	Lima	36,30	11,55			0,01049	0,000	0,00	57,826	1,1565	0,52
24-7	86,00	1,00	Lima	34,40	10,95			0,00942	0,000	0,00	50,472	1,0094	0,45
				29,00	9,23	2,00	5,00	0,00669	0,009	1,91	32,766	0,6553	0,29
				25,20	8,02	1,50	5,00	0,00505	0,005	1,08	22,967	0,4593	0,20
25-7	91,0	1,00	Capirona	41,80	13,31	6,00	10,00	0,0139	0,054	11,93	82,630	1,6526	0,74
26-7	93,00	4,00	Naranja v	18,60	5,92			0,00275	0,000	0,00	10,652	0,2130	0,09
27-7	98,00	2,00	Lima	37,00	11,78			0,01089	0,000	0,00	60,689	1,2138	0,54
													62,43

D.1 Carbono no solo	(P7). (C.t/ha
---------------------	-----	------	--------

Estratos cm	PS solo no cilindro (gr/cc)	Volumem cilindro	DA (gr/cc)	Peso volume do solo t/ha.	CO gr/kg	CO no solo t/ha	CO no Solo 1m
0 a-10	99,42	93,54	1,063	1062,861	3,18	3,380	12,603
10 a 20	97,34	93,54	1,041	1040,624	2,51	2,612	
20 a 40	95,45	93,54	1,020	2040,838	0,91	1,857	
40 a 100	95,02	93,54	1,016	6094,933	0,78	4,754	
0 a-10	86,70	95,87	0,904	904,350	2,26	2,044	12,243
10 a 20	85,20	95,87	0,889	888,703	2,14	1,902	
20 a 40	84,96	95,87	0,886	1772,400	1,60	2,836	
40 a 100	81,56	95,88	0,851	5103,880	1,07	5,461	
Media							12,423

D.2.- Carbono herbáceo e liteira (P7) C.t/ha

D.2. Car bono ne	i bacco e nicii a (i	(/) C.(/III			
PFT/M2	PFM (g)	PSM	Fator Conversão	BAH t/ha)	C.t/ha
4470	500	46,64	0,1	41,6962	18,763

5060	500	48.33	0.1	49.0100	22.009
	500	- ,	0,1	48,9100	,
8160	500	84,53	0,1	137,9530	62,079
4450	500	116,55	0,1	103,7295	46,678
Media					37,382

D.3.- Carbono Total no SAF cítrico 15 anos

Carbono na BAV	Carbono herbáceo e liteira	Carbono no solo	Total de carbono
t/ha	t/ha	t/ha	t/ha
62,434	37,382	12,423	112,24

2.5. SAF cítrico 30 anos

Parcela X Y Comum (cm) (cm) (m) (m) (m²) (m³) (pt) (kg/arbol) (t/ha) Comum 1-8 0,00 0,00 Laranja v 54,00 17,189 0,023 - - 157,949 4,265 2-8 5,00 6,00 Laranja v 54,00 17,189 0,023 - - 157,949 4,265 3-8 1,00 19,00 Laranja v 67,00 21,327 0,036 - - 272,602 7,360 4-8 5,00 25,00 Laranja v 66,60 21,199 0,035 - - 268,503 7,250 100,10 31,863 14,00 18,00 0,080 0,726 159,633 752,763 20,325 89,00 28,33 15,00 17,00 0,063 0,615 135,206 559,135 15,097 5-8 3,00 31,00 NN 82,00 26,101 13,00 1	1,919 5,009 1,919 3,312 3,262 9,146
2-8 5,00 6,00 Laranja v 54,00 17,189 0,050 - - 412,254 11,131 3-8 1,00 19,00 Laranja v 67,00 21,327 0,036 - - 272,602 7,360 4-8 5,00 25,00 Laranja v 66,60 21,199 0,035 - - 268,503 7,250 100,10 31,863 14,00 18,00 0,080 0,726 159,633 752,763 20,325 89,00 28,33 15,00 17,00 0,063 0,615 135,206 559,135 15,097	5,009 1,919 3,312 3,262
2-8 5,00 6,00 Laranja v 54,00 17,189 0,023 - - 157,949 4,265 3-8 1,00 19,00 Laranja v 67,00 21,327 0,036 - - 272,602 7,360 4-8 5,00 25,00 Laranja v 66,60 21,199 0,035 - - 268,503 7,250 100,10 31,863 14,00 18,00 0,080 0,726 159,633 752,763 20,325 89,00 28,33 15,00 17,00 0,063 0,615 135,206 559,135 15,097	1,919 3,312 3,262
3-8 1,00 19,00 Laranja v 67,00 21,327 0,036 - - 272,602 7,360 4-8 5,00 25,00 Laranja v 66,60 21,199 0,035 - - 268,503 7,250 100,10 31,863 14,00 18,00 0,080 0,726 159,633 752,763 20,325 89,00 28,33 15,00 17,00 0,063 0,615 135,206 559,135 15,097	3,312 3,262
4-8 5,00 25,00 Laranja v 66,60 21,199 0,035 268,503 7,250 100,10 31,863 14,00 18,00 0,080 0,726 159,633 752,763 20,325 89,00 28,33 15,00 17,00 0,063 0,615 135,206 559,135 15,097	3,262
4-8 3,00 23,00 3 100,10 31,863 14,00 18,00 0,080 0,726 159,633 752,763 20,325 89,00 28,33 15,00 17,00 0,063 0,615 135,206 559,135 15,097	
89,00 28,33 15,00 17,00 0,063 0,615 135,206 559,135 15,097	9.146
	- ,0
5-8 3,00 31,00 NN 82,00 26,101 13,00 16,00 0,054 0,452 99,471 454,474 12,271	6,793
	5,522
6-8 3,00 32,00 Laranja v 18,20 5,7932 0,003 10,082 0,272	0,122
7-8 3,00 39,00 Laranja v 55,00 17,507 0,024 165,454 4,467	2,010
Laranja v 58,30 18,557 0,027 191,735 5,177	2,330
8-8 0,00 45,00 Laranja v 67,30 21,422 0,036 275,701 7,444	3,350
9-8 0,00 49,00 Hualaja 91,00 28,966 18,00 22,00 0,066 0,771 169,621 591,473 15,970	7,186
10-8 0,00 50,00 Bolaina 55,10 17,539 15,00 20,00 0,024 0,236 51,823 166,216 4,488	2,020
11-8 3,00 57,00 Laranja v 98,20 31,258 0,077 717,137 19,363	8,713
12-8 3,00 63,00 Bolaina 86,30 27,470 14,00 17,00 0,059 0,539 118,652 517,210 13,965	6,284
13-8 5,00 63,00 Laranja v 30,30 9,6448 0,007 36,611 0,988	0,445
14-8 4,00 71,00 Capirona 27,30 8,6898 3,00 5,00 0,006 0,012 2,544 28,122 0,759	0,342
25,60 8,1487 3,00 5,00 0,005 0,010 2,237 23,901 0,645	0,290
26,20 8,3397 3,00 5,00 0,005 0,011 2,343 25,343 0,684	0,308
15-8 3,00 70,00 Sacha sapote 200,00 63,662 12,00 15,00 0,318 2,483 546,218 4336,765 117,093	52.602
TOTAL	52,692

F 1 -	Carbono	herbáceo	e liteira	(P8) C t/ha

PFT/M2	PFM (g)	PSM	Fator Conversão	BAH t/ha)	C.t/ha
6275	500,00	62,53	0,1	78,475	35,314
4595	500,00	51,50	0,1	47,329	21,298
1550,000	500,00	132,92	0,1	41,205	18,542
3750	500,00	106,16	0,1	79,620	35,829
Media					27,75

E.2.- Carbono no solo C.t/ha

Estratos Cm	PS do solo em cilindro (gr/cc)	Volumem cilindro	DA (gr/cc)	Peso volume do solo t/ha.	CO gr/kg	CO no solo t/ha	CO no Solo 1m
0 a-10	98,80	93,54	1,056	1056,233	3,21	3,391	13,707
10 a 20	98,30	93,54	1,051	1050,887	1,48	1,555	
20 a 40	96,54	93,54	1,032	2064,144	1,35	2,787	
40 a 100	96,02	93,54	1,027	6159,076	0,97	5,974	
0 a-10	96,70	93,54	1,034	1033,782	3,27	3,380	8,570
10 a 20	95,20	93,54	1,018	1017,746	1,57	1,598	
20 a 40	83,56	95,87	0,872	1743,194	0,69	1,203	
40 a 100	81,22	95,88	0,847	5082,603	0,47	2,389	
Media							11,138

E.3.- Carbono total no SAF cítrico de 30 anos

Carbono na BAV	Carbono em AM Pé	Carbono herbáceo e liteira	Carbono no solo	Total de carbono
t/ha	t/ha	t/ha	t/ha	t/ha
122,975	0	27.75	11,138	161.86

2.6. SAF cacau melhorado 3m x 3 m

N° C	Coordenadas		- Nome	Circ	dap	Нс	Ht	AB	Vol	Vol	BAV	BA	С.
Parcela x	Y	7	Comum	(cm)	(cm)	(m)	(m)	(\mathbf{m}^2)	(m ³)	(pt)	(kg/arbol)	(t/ha)	t/ha
1-9	0,00	0,00	Capirona	37,8	12,03	3,00	5,00	0,0114	0,0222	4,8779	64,064	1,281	0,577
2-9	2,00	2,50	Cacau	20,5	6,53			0,0033	0,0000	0,0000	13,624	0,272	0,123
3-9	4,00	2,50	Bolaina	64,2	20,44	8,00	10,00	0,0328	0,1706	37,5219	244,694	4,894	2,202
4-9	4,00	4,00	Cacau	25,8	8,21			0,0053	0,0000	0,0000	24,376	0,488	0,219
5-9	5,00	2,50	Bolaina	99,3	31,61	12,00	15,00	0,0785	0,6120	134,6495	737,635	14,753	6,639
				49	15,60	8,00	12,00	0,0191	0,0994	21,8578	123,525	2,471	1,112
				57,4	18,27	7,00	12,00	0,0262	0,1193	26,2450	184,335	3,687	1,659

									<u></u>			
6-9	6,00	4,00 Cacau	16,2	5,16			0,0021			7,510	0,150	0,068
7-9	11,00	5,00 Cacau	21,8	6,94			0,0038			15,917	0,318	0,143
8-9	14,00	1,00 Cacau	7,5	2,39			0,0004			1,070	0,021	0,010
9-9	11,00	3,00 Bolaina	114	36,29	15,00	18,00	0,1034	1,0083	221,8330	1.045,994	20,920	9,414
			116	36,92	13,00	17,00	0,1071	0,9048	199,0602	1.093,047	21,861	9,837
10-9	8,00	1,00 Cacau	20	6,37			0,0032			12,799	0,256	0,115
11-9	12,00	1,00 NN	67,6	21,52	8,00	12,00	0,0364	0,1891	41,6015	278,821	5,576	2,509
12-9	16,00	1,00 Cacau	31,1	9,90			0,0077			39,106	0,782	0,352
13-9	15,00	5,00 Cacau	29,9	9,52			0,0071			35,400	0,708	0,319
14-9	16,00	3,00 Cacau	18,7	5,95			0,0028			10,797	0,216	0,097
15-9	20,00	1,00 Cacau	25,6	8,15			0,0052			23,901	0,478	0,215
16-9	21,00	3,00 Cacau	29,5	9,39			0,0069			34,214	0,684	0,308
17-9	23,00	4,00 Cacau	29	9,23			0,0067			32,766	0,655	0,295
18-9	22,00	2,00 Cacau	19,5	6,21			0,0030			12,005	0,240	0,108
19-9	21,00	5,00 Cacau	27,5	8,75			0,0060			28,647	0,573	0,258
20-9	25,00	3,00 Cacau	23,1	7,35			0,0042			18,429	0,369	0,166
21-9	24,00	1,00 Cacau	25,6	8,15			0,0052			23,901	0,478	0,215
22-9	27,00	2,00 Cacau	25,7	8,18			0,0053			24,137	0,483	0,217
23-9	31,00	4,00 Cacau	14,6	4,65			0,0017			5,773	0,115	0,052
24-9	32,00	2,00 NN	33,8	10,76	6,00	8,00	0,0091	0,0355	7,8003	48,275	0,965	0,434
25-9	35,00	1,00 Cacau	25	7,96			0,0050			22,509	0,450	0,203
26-9	37,00	4,00 Cacau	20,4	6,49			0,0033			13,456	0,269	0,121
27-9	40,00	2,00 Cacau	22,5	7,16			0,0040			17,242	0,345	0,155
28-9	44,00	1,00 Bolaina	71,2	22,66	14,00	16,00	0,0403	0,3671	80,7631	317,932	6,359	2,861
			69	21,96	12,00	15,00	0,0379	0,2955	65,0137	293,662	5,873	2,643
29-9	45,00	0,50 Cacau	33,8	10,76			0,0091			48,275	0,965	0,434
30-9	46,00	4,00 Cacau	28,5	9,07			0,0065			31,356	0,627	0,282
31-9	48,00	2,00 Cacau	29	9,23			0,0067			32,766	0,655	0,295
32-9	49,00	1,00 Cacau	22,2	7,07			0,0039			16,666	0,333	0,150
33-9	50,00	4,00 Cacau	16,3	5,19			0,0021			7,628	0,153	0,069
34-9	50,00	0,00 Cacau	18	5,73			0,0026			9,804	0,196	0,088
35-9	51,00	2,00 Cacau	19,6	6,24			0,0031			12,161	0,243	0,109
36-9	53,00	1,00 Cacau	22	7,00			0,0039			16,289	0,326	0,147
37-9	55,00	1,00 Cacau	25,8	8,21			0,0053			24,376	0,488	0,219

38-9	58,00	1,00 Cacau	31,9	10,15		0,0081			41,701	0,834	0,375
39-9	58,00	0,00 Cacau	25,6	8,15		0,0052			23,901	0,478	0,215
40-9	53,00	5,00 Yacushapana	43	13,69	4,00	6,00 0,0147	0,0383	8,4163	88,764	1,775	0,799
41-9	54,00	5,00 Cacau	30,5	9,71		0,0074			37,225	0,745	0,335
42-9	59,00	3,00 NN	34,8	11,08	5,00	7,00 0,0096	0,0313	6,8905	51,970	1,039	0,468
43-9	58,00	5,00 Capirona	10	3,18	1,00	2,00 0,0008	0,0005	0,1138	2,216	0,044	0,020
44-9	60,00	2,00 Cacau	26,4	8,40		0,0055			25,836	0,517	0,233
45-9	63,00	1,00 Cacau	23	7,32		0,0042			18,228	0,365	0,164
		Cacau	23,5	7,48		0,0044			19,247	0,385	0,173
46-9	64,00	4,00 Cacau	29,5	9,39		0,0069			34,214	0,684	0,308
		Cacau	34,5	10,98		0,0095			50,844	1,017	0,458
47-9	67,00	1,00 Cacau	31,3	9,96		0,0078			39,745	0,795	0,358
48-9	71,00	2,00 Cacau	28,5	9,07		0,0065			31,356	0,627	0,282
49-9	75,00	2,00 Cacau	44,8	14,26		0,0160			98,468	1,969	0,886
50-9	76,00	5,00 Cacau	44,2	14,07		0,0155			95,165	1,903	0,856
51-9	76,00	1,00 Cacau	34,6	11,01		0,0095			51,218	1,024	0,461
52-9	77,00	2,00 Cacau	32,6	10,38		0,0085			44,056	0,881	0,396
			37,7	12,00		0,0113			63,636	1,273	0,573
53-9	79,00	3,00 Cacau	34	10,82		0,0092			49,001	0,980	0,441
54-9	79,00	0,00 Cacau	29,5	9,39		0,0069			34,214	0,684	0,308
55-9	83,00	2,00 Cacau	38,2	12,16		0,0116			65,793	1,316	0,592
56-9	86,00	1,00 Cacau	10	3,18		0,0008			2,216	0,044	0,020
		Cacau	20,4	6,49		0,0033			13,456	0,269	0,121
		Cacau	19	6,05		0,0029			11,241	0,225	0,101
57-9	89,00	4,00 Cacau	10	3,18		0,0008			2,216	0,044	0,020
58-9	89,00	3,00 Bolaina	91	28,97	13,00	16,00 0,0659	0,5568	122,5043	591,473	11,829	5,323
59-9	90,00	1,00 Cacau	14,4	4,58		0,0017			5,575	0,111	0,050
60-9	92,00	2,00 Cacau	34	10,82		0,0092			49,001	0,980	0,441
61-9	94,00	1,00 Cacau	28	8,91		0,0062			29,983	0,600	0,270
62-9	96,00	0,00 Cacau	15,1	4,81		0,0018			6,286	0,126	0,057
63-9	96,00	2,00 Cacau	17,5	5,57		0,0024			9,129	0,183	0,082
		Cacau	20,2	6,43		0,0032			13,125	0,262	0,118
64-9	95,00	5,00 Cacau	21	6,68		0,0035			14,480	0,290	0,130
65-9	100,00	2,00 Cacau	38,5	12,25		0,0118			67,108	1,342	0,604

TOTAL 61,4787

F.1 Car	rbono herbác	eo e liteira	a (P9)	. C.t/ha
---------	--------------	--------------	---------	----------

PFT/M2	PFM (g)	PSM	Fator Conversão	BAH t/ha)	C.t/ha
950	500,00	75,35	0,1	14,317	6,442
1125	500,00	59,45	0,1	13,376	6,019
3575	500,00	143,28	0,1	102,445	46,100
6950	500,00	145,78	0,1	202,634	91,185
Media					37,437

F.2.- Carbono no solo C.t/ha

Estratos cm	PS do solo em cilindro (gr/cc)	Volumem cilindro	DA (gr/cc)	Peso volume do solo t/ha.	CO gr/kg	CO no solo t/ha	CO no Solo 1m
0 a-10	95,40	93,54	1,020	1019,885	3,18	3,243	9,027
10 a 20	95,22	93,54	1,018	1017,960	0,81	0,825	
20 a 40	93,40	93,54	0,999	1997,007	0,72	1,438	
40 a 100	93,05	93,54	0,995	5968,570	0,59	3,521	
0 a-10	92,67	93,54	0,991	990,699	3,18	3,150	16,567
10 a 20	91,20	93,54	0,975	974,984	2,48	2,418	
20 a 40	89,89	95,87	0,938	1875,248	1,70	3,188	
40 a 100	88,52	95,88	0,923	5539,424	1,41	7,811	
Media							12,797

F.3.- Carbono total no SAF cacau melhorado (3mx3m) .

_	Carbono na BAV t/ha	Carbono em AM Pé t/ha	Carbono herbáceo e liteira t/ha	Carbono no solo t/ha	Total carbono t/ha
	61,48	0	37,44	12,80	111,72

2.7. Sistema silvipastoril com Paspalum conjugatum Berg.

***	Coordenadas												~
N° Parcela	X	Y	Nome Comum	Circ (cm)	dap (cm)	Hc (m)	Ht (m)	AB (m ²)	Vol (m³)	Vol (pt)	BAV (kg/arbol)	BA (t/ha)	C t/ha
1-1	0,00	0,00	Yacushapana	66,10	21,04	7,00	10,00	0,035	0,158	34,80	263,43	5,270	2,370
2-1	0 1,00	23,00	Bolaina	62,80	19,99	12,00	15,00	0,031	0,245	53,85	231,42	4,630	2,080
3-1	0 4,00	26,00	Bolaina	41,00	13,05	9,00	11,00	0,013	0,078	17,22	78,69	1,570	0,710
4-1	0 1,00	29,00	Bolaina	71,00	22,6	13,00	16,00	0,040	0,339	74,57	315,68	6,310	2,840
5-1	0 1,00	30,00	Bolaina	32,20	10,25	2,50	3,00	0,008	0,013	2,95	42,70	0,850	0,380
6-1	0 3,00	35,00	Bolaina	64,50	20,53	14,00	17,00	0,033	0,301	66,28	247,60	4,950	2,230

8	
<u> </u>	
혹	
Ť	
ᇦᆍ	
<u>a</u> <u></u>	
~ 10	

-									_				
				71,80	22,85	9,00	12,00	0,041	0,240	52,80	324,75	6,500	2,920
7-10	2,00	38,00	Bolaina	72,60	23,11	14,00	16,00	0,042	0,382	83,97	333,99	6,680	3,010
8-10	1,00	40,00	Bolaina	73,00	23,24	11,00	14,00	0,042	0,303	66,71	338,66	6,770	3,050
9-10	2,00	53,00	Bolaina	72,30	23,01	7,00	10,00	0,042	0,189	41,64	330,51	6,610	2,970
10-10	4,00	90,00	Leche caspi	53,00	16,87	4,00	6,00	0,022	0,058	12,79	150,65	3,010	1,360
TOTAL									2,307	507,58	2658,08	53,160	23,920
	Coordena	das		~									
N° — Parcela	X	Y	Nome Comum	Circ (cm)	dap (cm)	Hc (m)	Ht (m)	AB (m ²)	Vol (m³)	Vol (pt)	BAV (kg/arbol)	BA (t/ha)	C t/ha
1-11	0,00	0,00		72,80	23,17	7,00	10,00	0,042	0,192	42,22	336,32	9,081	4,086
							,		,		,		
2-11	4,00	29,00	Jagua	81,50	25,94	11,00	15,00	0,053	0,378	83,14	447,50	12,082	5,437
3-11	3,00	31,00	Jagua	65,40	20,82	10,00	13,00	0,034	0,221	48,67	256,43	6,924	3,116
4-11	4,00	35,00	Inga sp	100,60	32,02	8,00	17,00	0,081	0,419	92,13	762,31	20,582	9,262
5-11	5,00	40,00	Jagua	53,30	16,97	5,00	7,00	0,023	0,073	16,16	152,82	4,126	1,857
6-11	2,00	45,00	Jagua	65,20	20,75	5,00	8,00	0,034	0,110	24,19	254,45	6,870	3,092
7-11	1,00	62,00	Jagua	57,50	18,30	6,00	8,00	0,026	0,103	22,57	185,15	4,999	2,250
8-11	5,00	65,00	Jagua	80,00	25,46	6,00	9,00	0,051	0,199	43,70	426,95	11,528	5,187
9-11	1,00	65,00	Bolaina	56,00	17,83	12,00	15,00	0,025	0,195	42,82	173,17	4,676	2,104
10-11	1,00	65,00	Jagua	58,80	18,72	9,00	12,00	0,028	0,161	35,41	195,92	5,290	2,380
11-11	2,00	69,00	Jagua	76,00	24,19	8,00	12,00	0,046	0,239	52,58	374,99	10,125	4,556
12-11	3,00	70,00	Jagua	81,00	25,78	7,00	10,00	0,052	0,238	52,26	440,58	11,896	5,353
TOTAL													48,680
MEDIA													36,30

G.1.- Carbono herbáceo e liteira (P10 e 11), C. t/ha

PFT/M2	PFM (g)	PSM	Fator Conversão	BAH t/ha)	C.t/ha
1750,00	500,00	188,10	0,10	73,359	29,626
1510,00	500,00	190,00	0,10	57,380	25,821
1590,00	500,00	192,80	0,10	61,310	27,590
1100,00	500,00	206,10	0,10	45,342	20,404
Media					25,860

G.2.- Carbono no solo C.t/ha

Estratos cm	PS do solo em cilindro (gr/cc)	Volumem cilindro	DA (gr/cc)	Peso volume do solo t/ha.	CO gr/kg	CO no solo t/ha	CO no Solo 1m
0 a-10	59,45	93,54	0,636	635,557	2,58	1,640	6,676

ıl٤	3	
ᄩ	Ш	
×.	"	
_ ₹	7	
д.	-	

10 a 20	58,01	93,54	0,620	620,162	1,29	0,800	
20 a 40	57,76	93,54	0,617	1234,980	0,94	1,161	
40 a 100	57,10	94,68	0,603	3618,504	0,85	3,076	
0 a-10	69,67	94,68	0,736	735,847	2,48	1,825	7,245
10 a 20	64,22	94,68	0,678	678,285	1,41	0,956	
20 a 40	61,97	94,68	0,655	1309,041	1,00	1,309	
40 a 100	58,56	94,68	0,619	3711,027	0,85	3,154	
0 a-10	77,60	94,68	0,820	819,603	1,58	1,295	2,046
10 a 20	76,54	94,68	0,808	808,407	1,17	0,946	
20 a 40	74,12	94,68	0,783	1565,695	0,67	1,049	
40 a 100	71,76	94,68	0,758	4547,529	0,45	2,046	
0 a-10	73,47	94,68	0,776	775,982	2,33	1,808	5,034
10 a 20	73,02	94,68	0,771	771,229	1,09	0,841	
20 a 40	72,78	94,68	0,769	1537,389	0,45	0,692	
40 a 100	72,23	94,68	0,763	4577,313	0,37	1,694	
Media	·						5,250

G.3.- Carbono Total sistema silvipastoril com Paspalum conjugatum Berg.

Carbono na BAV	Carbono em A.M Pé	Carbono herbáceo e liteira	Carbono no solo	Total de carbono
t/ha	t/ha	t/ha	t/ha	t/ha
36,30	0	25,86	5,25	

2.8. SAF pupunha

N°	Coc	ordena	das	- Nome	Circ	dap	Нс	Ht	AB	Vol	Vol	BAV	BA	C
Parcela	X		y	Comum	(cm)	(cm)	(m)	(m)	(\mathbf{m}^2)	(\mathbf{m}^3)	(pt)	(kg/arbol)	(t/ha)	t/ha
1-12		0,00	0,00	Bolaina	65,000	20,690	11,000	14,000	0,002	0,012	2,556	252,482	5,050	1,375
2-12		3,00	4,00	Pupunha	53,300	16,966	4,000	6,000	0,001	0,003	0,762	152,820	3,056	1,395
					53,600	17,061	4,000	6,000	0,001	0,003	0,766	155,005	3,100	1,356
					53,000	16,870	4,000	6,000	0,001	0,003	0,758	150,653	3,013	2,185
3-12		9,00	5,00	Pupunha	64,000	20,372	5,000	8,000	0,002	0,005	1,144	242,770	4,855	1,422
					54,000	17,189	1,000	3,000	0,001	0,001	0,193	157,949	3,159	2,185
					64,000	20,372	5,000	8,000	0,002	0,005	1,144	242,770	4,855	1,435
4-12		9,00	10,00	Pupunha	54,200	17,252	2,000	5,000	0,001	0,002	0,388	159,433	3,189	2,281
					65,100	20,722	5,000	7,000	0,002	0,005	1,164	253,466	5,069	4,453
5-12		12,00	0,00	Bolaina	84,800	26,993	15,000	16,000	0,002	0,021	4,547	494,768	9,895	1,703

	SONICPD	
5	_	1

6-12	15,00	5,00	Pupunha	58,000	18,462	4,000	6,000	0,001	0,004	U,829	189,249	3,785	1,587
				56,400	17,953	4,000	6,000	0,001	0,004	0,807	176,318	3,526	2,943
				72,000	22,918	6,000	8,000	0,002	0,007	1,544	327,048	6,541	1,182
7-12	24,50	4,00	Pupunha	50,200	15,979	3,000	5,000	0,001	0,002	0,538	131,323	2,626	1,779
				59,000	18,780	6,000	8,000	0,001	0,006	1,266	197,613	3,952	2,317
				65,500	20,849	5,000	7,000	0,002	0,005	1,171	257,425	5,148	2,100
8-12	31,00	3,00	Pupunha	63,000	20,053	5,000	7,000	0,002	0,005	1,126	233,288	4,666	2,662
				69,200	22,027	5,000	7,000	0,002	0,006	1,237	295,821	5,916	2,272
				65,000	20,690	6,000	8,000	0,002	0,006	1,394	252,482	5,050	0,242
9-12	33,00	0,00	Cashu	26,800	8,531	2,000	3,000	0,001	0,001	0,192	26,837	0,537	0,235
				26,500	8,435	2,000	3,000	0,001	0,001	0,189	26,084	0,522	1,779
10-12	5,00	2,50	Pupunha	59,000	18,780	8,000	10,000	0,001	0,008	1,687	197,613	3,952	3,687
11-12	0,00	10,00	Bolaina	78,700	25,051	10,000	12,000	0,002	0,013	2,814	409,615	8,192	0,425
12-12	0,00	8,00	Pupunha	33,500	10,663	3,000	5,000	0,001	0,002	0,359	47,198	0,944	0,431
				33,700	10,727	3,000	5,000	0,001	0,002	0,361	47,914	0,958	0,409
				33,000	10,504	4,000	6,000	0,001	0,002	0,472	45,436	0,909	0,441
13-12	20,00	7,00	Laranja	34,000	10,823			0,001	0,000	0,000	49,001	0,980	0,308
14-12	33,00	7,00	Laranja	29,500	9,390			0,001	0,000	0,000	34,214	0,684	0,082
15-12	43,00	7,00	Laranja	17,500	5,570			0,000	0,000	0,000	9,129	0,183	0,203
16-12	22,00	1,00	Laranja	25,000	7,958			0,001	0,000	0,000	22,509	0,450	0,203
17-12	14,00	7,00	Laranja	25,000	7,958			0,001	0,000	0,000	22,509	0,450	0,425
18-12	5,00	7,00	Laranja	33,500	10,663			0,001	0,000	0,000	47,198	0,944	47,771
TOTAL													93,271

H.1.- Carbono herbáceo e liteira (P12), C.t/ha

PFT/M2	PFM (g)	PSM	Fator Conversão	BAH t/ha)	C.t/ha
2050	500	197,56	0,1	81,00	36,45
2250	500	214,00	0,1	96,30	43,34
3950	500	128.23	0,1	101,30	45,59
5050	500	147,13	0,1	148,60	66,87
					48,06

H.2 Carbono no	o solo C.t/ha						
Estratos	PS do solo em	Volumem	DA	Peso volume do	CO	CO no solo	CO Solo
cm	cilindro (gr/cc)	cilindro	(gr/cc)	solo t/ha.	gr/kg	t/ha	1m

0 a-10	98,42	99,78	0,986	986,370	2,60	2,565	10,696
10 a 20	95,34	99,78	0,956	955,502	1,69	1,615	
20 a 40	95,40	99,78	0,956	1912,207	0,98	1,874	
40 a 100	93,02	99,78	0,932	5593,506	0,83	4,643	
0 a-10	88,70	99,78	0,889	888,956	2,86	2,542	8,450
10 a 20	86,42	99,78	0,866	866,105	1,43	1,239	
20 a 40	84,90	99,78	0,851	1701,744	1,09	1,855	
40 a 100	83,56	99,78	0,837	5024,654	0,56	2,814	
Media							9,573

H.3.- Carbono total no SAF pupunha.

 · Cursono totar no priz	Pupumu			
Carbono na BAV	Carbono em A.M Pé	Carbono herbáceo e liteira	Carbono no solo	Total de carbono
t/ha	t/ha	t/ha	t/ha	t/ha
93.27	0	48.06	9,57	150.90

2.9. Sistema Coca

I.1.- Carbono herbáceo e liteira (P12), C.t/ha

PFT/M2	PFM (g)	PSM	Fator Conversão	BAH t/ha)	C.t/ha
80	80	22,8	0,1	2,28	1,03
250	250	115,30	0,1	11,53	5,19
Media					6,21

PFT/M2	PFM (g)	PSM	Fator Conversão	BAH t/ha)	C.t/ha
1040	500	282,20	0,1	58,70	26,41
1300	500	289,70	0,1	75,32	33,89
Media					60,31

I.2.- Carbono no solo C.t/ha

Estratos Cm	PS do solo em cilindro (gr/cc)	Volumem cilindro	DA (gr/cc)	Peso volume do solo t/ha.	CO gr/kg	CO no solo t/ha	CO no Solo 1m
0 a-10	104,10	96,91	1,074	1074,193	2,15	2,310	14,380
10 a 20	103,04	96,91	1,063	1063,255	1,98	2,105	
20 a 40	101,00	96,91	1,042	2084,408	1,60	3,335	
40 a 100	98,24	96,91	1,014	6082,344	1,09	6,630	
0 a-10	98,70	93,87	1,051	1051,454	2,97	3,123	13,298
10 a 20	98,20	93,87	1,046	1046,128	1,81	1,893	

20 a 40	96,78	93,87	1,031	2062,001	1,26	2,598	
40 a 100	95,6	95,88	0,997	5982,478	0,95	5,683	
Media					•		13,839

I.3.- Carbono total no sistema coca.

Carbono na BAV	Carbono em A.M Pé	Carbono herbáceo e liteira	Carbono no solo	Total carbono
t/ha	t/ha	t/ha	t/ha	t/ha
0	0	66,52	13,84	80,36

2.10. SAF café.

N° C	Coordenadas		- Nome	Circ	dap	Hc	Ht	AB	Vol	Vol	BAV	BA	C
Parcela	X	Y	Comum	(cm)	(cm)	(m)	(m)	(\mathbf{m}^2)	(m^3)	(pt)	(kg/arbol)	(t/ha)	t/ha
1	0,00	0,00	Pona	45,100	14,356	9,00	10,00	0,008	0,073	16,123	100,144	2,003	0,901
2	0,50	0,50	Pona	48,500	15,438	9,00	10,00	0,008	0,079	17,339	120,361	2,407	1,083
3	2,00	2,00	Pona	55,500	17,666	9,50	10,00	0,008	0,090	19,841	169,286	3,386	1,524
4	3,00	3,00	Café	15,600	4,966			0,000	0,000	0,000	6,826	0,137	0,061
5	4,00	1,00	Café	12,500	3,979			0,000	0,000	0,000	3,897	0,078	0,035
6	2,00	6,00	Café	14,800	4,711			0,000	0,000	0,000	5,975	0,119	0,054
7	3,00	6,00	Café	18,000	5,730			0,000	0,000	0,000	9,804	0,196	0,088
8	2,00	4,00	Café	12,500	3,979			0,000	0,000	0,000	3,897	0,078	0,035
	2,00	4,00	Café	15,600	4,966			0,000	0,000	0,000	6,826	0,137	0,061
9	4,00	6,00	Café	12,500	3,979			0,000	0,000	0,000	3,897	0,078	0,035
10	3,50	6,00	Caimito	87,000	27,693	7,00	11,00	0,010	0,171	37,634	527,890	10,558	4,751
11	3,00	8,00	Café	16,000	5,093			0,000	0,000	0,000	7,278	0,146	0,065
12	3,00	9,00	Guaba	51,500	16,393	6,00	9,00	0,006	0,068	14,913	140,098	2,802	1,261
13	0,50	9,00	Café	12,000	3,820			0,000	0,000	0,000	3,515	0,070	0,032
14	3,00	10,00	Café	15,000	4,775			0,000	0,000	0,000	6,181	0,124	0,056
15	4,00	13,00	Café	16,000	5,093			0,000	0,000	0,000	7,278	0,146	0,065
16	3,00	15,00	Café	14,000	4,456			0,000	0,000	0,000	5,191	0,104	0,047
17	1,00	15,00	Cacau	28,000	8,913			0,000	0,000	0,000	29,983	0,600	0,270
18	0,00	15,50	Café	12,500	3,979			0,000	0,000	0,000	3,897	0,078	0,035
19	1,00	15,50	Café	12,800	4,074			0,000	0,000	0,000	4,138	0,083	0,037
20	1,00	16,00	Café	14,500	4,615			0,000	0,000	0,000	5,673	0,113	0,051
21	1,50	15,50	Pona	54,000	17,189	8,00	10,00	0,008	0,088	19,305	157,949	3,159	1,422

22	3,00	17,00	Café	14,200	4,520			0,000	0,000	υ,υυυ	5,381	0,108	0,048
23	3,00	19,00	Café	18,000	5,730			0,000	0,000	0,000	9,804	0,196	0,088
24	2,00	219,00	Café	16,000	5,093			0,000	0,000	0,000	7,278	0,146	0,065
25	1,00	21,00	Café	11,800	3,756			0,000	0,000	0,000	3,368	0,067	0,030
26	2,50	21,00	Café	10,600	3,374			0,000	0,000	0,000	2,568	0,051	0,023
27	4,00	21,00	Café	12,300	3,915			0,000	0,000	0,000	3,741	0,075	0,034
28	3,00	23,00	Pijuayo	56,400	17,953	10,00	12,00	0,011	0,132	29,035	176,318	3,526	1,587
29	4,00	25,00	Café	10,800	3,438			0,000	0,000	0,000	2,692	0,054	0,024
30	2,50	26,00	Café	12,700	4,043			0,000	0,000	0,000	4,057	0,081	0,037
31	1,00	25,00	Café	13,500	4,297			0,000	0,000	0,000	4,735	0,095	0,043
 32	2,50	28,00	Café	14,600	4,647			0,000	0,000	0,000	5,773	0,115	0,052
33	3,50	30,00	Cacau	18,000	5,730			0,000	0,000	0,000	9,804	0,196	0,088
34	3,00	30,00	Pona	54,000	17,189	12,00	14,00	0,015	0,172	37,838	157,949	3,159	1,422
35	3,00	29,00	Pona	50,000	15,915	8,00	10,00	0,008	0,081	17,875	130,003	2,600	1,170
36	4,50	29,00	Café	10,800	3,438			0,000	0,000	0,000	2,692	0,054	0,024
37	3,00	29,00	Café	10,000	3,183			0,000	0,000	0,000	2,216	0,044	0,020
38	1,00	29,00	Café	15,500	4,934			0,000	0,000	0,000	6,716	0,134	0,060
39	3,00	31,00	Café	8,000	2,546			0,000	0,000	0,000	1,260	0,025	0,011
 40	4,00	33,00	Café	12,500	3,979			0,000	0,000	0,000	3,897	0,078	0,035
41	3,00	33,00	Café	13,000	4,138			0,000	0,000	0,000	4,304	0,086	0,039
42	2,00	33,00	Café	15,000	4,775			0,000	0,000	0,000	6,181	0,124	0,056
 43	4,50	35,00	Guaba	93,200	29,666	8,00	17,00	0,023	0,438	96,292	628,322	12,566	5,655
 44	3,00	35,00	Café	14,000	4,456			0,000	0,000	0,000	5,191	0,104	0,047
 45	4,00	36,00	Café	13,000	4,138			0,000	0,000	0,000	4,304	0,086	0,039
 46	3,00	37,00	Café	13,800	4,393			0,000	0,000	0,000	5,006	0,100	0,045
 47	2,00	37,50	Café	13,100	4,170			0,000	0,000	0,000	4,388	0,088	0,039
 48	1,00	38,00	Café	15,000	4,775			0,000	0,000	0,000	6,181	0,124	0,056
 49	4,00	39,00	Café	15,300	4,870			0,000	0,000	0,000	6,499	0,130	0,058
50	4,00	40,50	Café	19,600	6,239			0,000	0,000	0,000	12,161	0,243	0,109
 51	3,00	40,00	Café	16,200	5,157			0,000	0,000	0,000	7,510	0,150	0,068
 52	1,50	40,50	Café	14,000	4,456			0,000	0,000	0,000	5,191	0,104	0,047
 53	3,00	42,00	Café	9,500	3,024			0,000	0,000	0,000	1,946	0,039	0,018
	3,00	42,00		12,300	3,915			0,000	0,000	0,000	3,741	0,075	0,034
 54	3,00	44,00	Café	20,000	6,366			0,000	0,000	0,000	12,799	0,256	0,115

	55	1,00	45,00 Café	18,000	5,730			0,000	0,000	0,000	9,804	0,196	0,088
	56	3,50	48,00 Café	15,000	4,775			0,000	0,000	0,000	6,181	0,124	0,056
	57	5,00	49,00 Café	16,000	5,093			0,000	0,000	0,000	7,278	0,146	0,065
	58	4,00	49,00 Café	16,400	5,220			0,000	0,000	0,000	7,747	0,155	0,070
	59	2,50	50,00 Café	20,000	6,366			0,000	0,000	0,000	12,799	0,256	0,115
	60	1,00	50,00 Café	17,000	5,411			0,000	0,000	0,000	8,484	0,170	0,076
	61	4,00	52,00 Café	13,400	4,265			0,000	0,000	0,000	4,647	0,093	0,042
	62	5,00	54,00 Café	13,600	4,329			0,000	0,000	0,000	4,824	0,096	0,043
	63	3,00	54,00 Café	20,000	6,366			0,000	0,000	0,000	12,799	0,256	0,115
_	64	3,00	56,00 Café	27,500	8,754			0,000	0,000	0,000	28,647	0,573	0,258
	65	4,00	57,50 Café	16,000	5,093			0,000	0,000	0,000	7,278	0,146	0,065
	66	3,00	57,50 Café	13,000	4,138			0,000	0,000	0,000	4,304	0,086	0,039
_	67	2,50	57,50 Café	17,000	5,411			0,000	0,000	0,000	8,484	0,170	0,076
	68	1,50	58,00 Café	14,000	4,456			0,000	0,000	0,000	5,191	0,104	0,047
	69	3,00	59,50 Café	14,000	4,456			0,000	0,000	0,000	5,191	0,104	0,047
	70	4,00	62,00 Café	13,000	4,138			0,000	0,000	0,000	4,304	0,086	0,039
	71	4,00	62,00 Coca	10,300	3,279			0,000	0,000	0,000	2,388	0,048	0,021
	72	3,00	62,00 Café	11,500	3,661			0,000	0,000	0,000	3,156	0,063	0,028
	73	2,00	63,00 Café	11,500	3,661			0,000	0,000	0,000	3,156	0,063	0,028
	74	1,00	63,00 Café	10,000	3,183			0,000	0,000	0,000	2,216	0,044	0,020
	75	1,50	63,50 Miconia	53,200	16,934	5,00	10,00	0,008	0,086	19,019	152,096	3,042	1,369
	76	1,50	67,00 Laranja	11,500	3,661			0,000	0,000	0,000	3,156	0,063	0,028
	77	3,00	67,00 Café	16,200	5,157			0,000	0,000	0,000	7,510	0,150	0,068
	78	3,00	69,00 Guaba	24,000	7,639	5,00	10,00	0,008	0,039	8,580	20,300	0,406	0,183
	79	4,00	69,50 Café	15,000	4,775			0,000	0,000	0,000	6,181	0,124	0,056
	80	5,00	70,00 Café	11,000	3,501			0,000	0,000	0,000	2,820	0,056	0,025
	81	3,50	74,00 Café	11,000	3,501			0,000	0,000	0,000	2,820	0,056	0,025
	82	2,00	75,00 Café	10,000	3,183			0,000	0,000	0,000	2,216	0,044	0,020
	83	1,00	75,00 laranja	11,200	3,565			0,000	0,000	0,000	2,952	0,059	0,027
	84	3,00	76,00 Café	12,000	3,820			0,000	0,000	0,000	3,515	0,070	0,032
	85	0,00	75,00 Ojé	178,300	56,755	12,00	20,00	0,031	1,159	254,969	3243,193	64,864	29,189
	86	4,00	77,00 Pona	47,000	14,961	6,00	8,00	0,005	0,049	10,754	111,165	2,223	1,000
	87	1,00	79,00 Café	9,000	2,865			0,000	0,000	0,000	1,697	0,034	0,015
	88	3,00	80,50 Café	14,000	4,456			0,000	0,000	0,000	5,191	0,104	0,047

SONICPDF	

89	4,00	81,50 Cacau	28,500	9,072	0,000	0,000	υ,υυυ	31,356	0,627	0,282
90	4,00	83,00 Café	12,500	3,979	0,000	0,000	0,000	3,897	0,078	0,035
91	3,00	83,00 Café	11,000	3,501	0,000	0,000	0,000	2,820	0,056	0,025
92	2,50	83,00 Café	10,000	3,183	0,000	0,000	0,000	2,216	0,044	0,020
93	1,50	84,00 Café	10,500	3,342	0,000	0,000	0,000	2,507	0,050	0,023
94	1,00	86,00 Café	14,500	4,615	0,000	0,000	0,000	5,673	0,113	0,051
95	5,00	86,00 Café	9,100	2,897	0,000	0,000	0,000	1,746	0,035	0,016
96	4,00	88,00 Café	9,500	3,024	0,000	0,000	0,000	1,946	0,039	0,018
97	3,00	88,00 Café	10,000	3,183	0,000	0,000	0,000	2,216	0,044	0,020
98	2,00	88,00 Cacau	21,000	6,684	0,000	0,000	0,000	14,480	0,290	0,130
99	2,00	89,00 Café	9,100	2,897	0,000	0,000	0,000	1,746	0,035	0,016
100	2,00	90,00 Café	14,000	4,456	0,000	0,000	0,000	5,191	0,104	0,047
101	3,00	92,00 Café	12,000	3,820	0,000	0,000	0,000	3,515	0,070	0,032
102	2,00	92,00 Café	15,000	4,775	0,000	0,000	0,000	6,181	0,124	0,056
103	1,00	92,00 Café	11,000	3,501	0,000	0,000	0,000	2,820	0,056	0,025
104	4,00	96,00 Café	11,000	3,501	0,000	0,000	0,000	2,820	0,056	0,025
105	3,50	96,00 Café	12,000	3,820	0,000	0,000	0,000	3,515	0,070	0,032
106	3,00	97,00 Limão	9,000	2,865	0,000	0,000	0,000	1,697	0,034	0,015
107	2,00	96,00 Café	14,000	4,456	0,000	0,000	0,000	5,191	0,104	0,047
108	4,00	98,00 Café	12,500	3,979	0,000	0,000	0,000	3,897	0,078	0,035
						2,725	599,516			57,628

J.1.- Carbono herbáceo e liteira (P14), C.t/ha

PFT/M2	PFM (g)	PSM	Fator Conversão	BAH t/ha)	C.t/ha
1000	500,00	93,8	0,1	18,760	8,442
1200	500,00	83,8	0,1	20,112	9,050
4900	500,00	144,1	0,1	141,218	63,548
2400	500,00	98,2	0,1	47,136	21,211
Media					25,563

J.2.- Carbono no solo t/ha

	Estratos Cm			Densidade Aparente do solo (gr/cc)	Peso volume do solo t/ha.	CO gr/kg	CO no solo t/ha	CO no solo 1m
_	0 a-10	94,10	99,78	0,943	943,075	2,29	2,160	12,368
	10 a 20	93,82	99,78	0,940	940,269	2,25	2,116	

20 a 40	93,12	99,78	0,933	1866,506	1,40	2,613	
40 a 100	92,05	99,78	0,923	5535,177	0,99	5,480	
0 a-10	115,20	99,78	1,155	1154,540	2,42	2,794	11,394
10 a 20	114,56	99,78	1,148	1148,126	1,09	1,251	
20 a 40	114,07	99,78	1,143	2286,430	0,88	2,012	
40 a 100	113,78	99,78	1,140	6841,852	0,78	5,337	
Media							11,881

J.3.- Carbono total no SAF café.

Carbono na BAV	Carbono em A.M Pé	Carbono herbáceo e liteira	Carbono no solo	Total de carbono
t/ha	t/ha	t/ha	t/ha	t/ha
75,63	0	25,56	11,881	113,07

Apêndice 3. Custos de produção de alguns sistemas de uso-da-terra e seu analise econômico na área de estudo. 2006.

3.1. Custo de produção do sistema coca tecnologia tradicional $1\ x\ 1m$.

	L A B O R E S		Preço	ANO 1	
		Unidade.	unidade	Quantidade	Total.
A.	Gastos do cultivo				795,08
	- Manejo de Germinadores	Salário	2,86	3	8,58
	- Manejo de Viveiro de Coca	Salário	2,86	40	114,40
	- Preparação de terreno	Salário	2,86	40	114,40
	- Transplante de Coca	Salário	2,86	35	100,10
	- Replante	Salário	2,86	3	8,58
	- Manutenção	Salário	2,86	120	343,20
	- Controle fito sanitário	Salário	2,86	10	28,60
	- Fertilização	Salário	2,86	15	42,90
	- Colheita e carga	Salário	2,86		
	- Desfolhe	Salário	2,86	12	34,32
	- Desalije	Salário	2,86		
B.	GASTOS ESPECIAIS				495,00
	- Compra de semente	Kg.	15,00	20	300,00
	- Bolsas para viveiro	Kg.	12,00	5,5	66,00
	- Fungicida Benlate	Kg.	40,00	0,5	20,00
	- Inseticida	Lt.	12,00	2	24,00
	- Uréia	Kg.	0,30	100	30,00
	- Sopre fosfato triplo	Kg.	0,30	50	15,00
	- Clorou de potássio	Kg.	0,30	50	15,00
	- Roca fosfórica	Kg.	0,10	250	25,00
	- Sacos vazios	Unidade	0,50		
	- Transporte colheita da Coca	Salário	2,86		
	- Plantões para replante	Unidade	0,10		
C.	GASTOS GERAIS				116,11
	- Imprevistos, Assistência técnica, Administração	159	6		116,11
	ТОТАЬ				1.406,19


ANOS	Produção	Preço	Receita Bruto	Custos	Receita Neto
	Kg	Kg	(\$/ha)	(\$/ha)	(\$/ano)
1	500	1,32	660,00	1.406,19	-1.406,19
	VAN	14%	Anual		(654.60)
	TIR				(0,53)%
	B/C				(0.46)

Analise econômico do sistema coca (Ilícito)

ANOS	Produção	Preço	Receita Bruto	Custos	Receita Neto
	Kg Kg		(\$/ha)	(\$/ha)	(\$/ano)
1	500	5.22	2608.69	13617,36	-13617,36
	VAN	14%	Anual		1054.82
	TIR				85%
	B/C				1.85

3.2. Custo de produção do SAF cacau melhorado (3m x 3m)

LABORES		Preço	ANO 1		ANO 2		ANO 3		ANO 4		ANO 5-30	
	Unidade.	Unidade	Quantid.	Total.								
A. GASTOS DO CULTIVO				112,11		199,98		199,98		199,98		199,98
Preparação de terreno	Salário	3,03	4	12,12								
Alinhamento e oco	Salário	3,03	8	24,24								
Transplante cacau	Salário	3,03	4	12,12								
Controle de ervas daninhas (2)	Salário	3,03	8	24,24	16	48,48	16	48,48	16	48,48	16	48,48
Ressemeado	Salário	3,03	4	12,12								
Controle fito sanitário	Salário	3,03	4	12,12	4	12,12	4	12,12	4	12,12	4	12,12
Manutenção de arvores	Salário	3,03	1	3,03	1	3,03	1	3,03	1	3,03	1	3,03
Fertilização	Salário	3,03	4	12,12	4	12,12	4	12,12	4	12,12	4	12,12
Colheita seca e acareio	Salário	3,03		0,00	25	75,75	25	75,75	25	75,75	25	75,75
Poda de formação	Salário	3,03			6	18,18	4	12,12	4	12,12	4	12,12
Despolpado, fermentado, seca, carga	espolpado, fermentado, seca, carga Salário	3,03			10	30,30	12	36,36	12	36,36	12	36,36
B. GASTOS ESPECIAIS				613,00		132,00		131,20		131,20		131,20

ANOS	Produção	Preço	Receita Bruto	Custos	Receita Neto
	Kg	Kg	(\$/ha)	(\$/ha)	(\$/ano)
1		1,22	0,00	833,88	-833,88
2		1,22	0,00	440,75	-440,75
3	800	1,22	976,00	439,95	536,05
4	1.000,00	1,22	1.220,00	439,95	780,05
5-30	1.172,23	1,22	1.430,12	417,16	1.012,96
	VAN	14% A	Anual		279,17
	TIR				23,88%
	B/C				1,38

3.3. Custo de produção do SAF cacau tradicional (4m x 4 m).

LABORES		Preço	ANO 1		ANO 2		ANO 3		ANO 4		ANO 5-35	
	Unidade.	Unidade	Quantid.	Total.								

GASTOS DO CULTIVO				112,11		154,53		157,56		154,53		154,53
Preparação de terreno	Salário	3,03	4	12,12								
Alinhamento e oco	Salário	3,03	8	24,24								
Transplante cacau	Salário	3,03	4	12,12								
Controle de ervas daninhas (2)	Salário	3,03	8	24,24	12	36,36	12	36,36	12	36,36	12	36,36
Ressemeado	Salário	3,03	4	12,12								
Controle fito sanitário	Salário	3,03	4	12,12	4	12,12	4	12,12	4	12,12	4	12,1
Manutenção de arvores	Salário	3,03	1	3,03	1	3,03	1	3,03	1	3,03	1	3,03
Fertilização	Salário	3,03	4	12,12	4	12,12	4	12,12	4	12,12	4	12,12
Colheita seca e acareio	Salário	3,03			15	45,45	15	45,45	15	45,45	15	45,45
Poda de formação	Salário	3,03			5	15,15	4	12,12	3	9,09	3	9,09
Despolpado, fermentado, seca, carga	Salário	3,03			10	30,30	12	36,36	12	36,36	12	36,30
GASTOS ESPECIAIS				440,00		57,00		56,20		56,20		56,20
Compra de plantões	Unidade	0,45	650	292,50								
- Uréia	Kg.	0,30	50	15,00	50	15,00	50	15,00	50	15,00	50	15,00
Super fosfato triplo	Kg.	0,30	50	15,00	50	15,00	50	15,00	50	15,00	50	15,00
Clorou de potássio	Kg.	0,30	50	15,00	50	15,00	50	15,00	50	15,00	50	15,00
Gramofone	Lt	11,00	1	11,00								
Cupravit	Kg.	5,00	1	5,00								
Thiodan	Lt	14,00	1	14,00								
Transporte de insumos	Kg.	0,03	250	7,50	400	12,00	250	7,50	250	7,50	250	7,50
Transporte plantões	Unid.	0,10	650	65,00								
Agrotin	Lt	3,70					1	3,70	1	3,70	1	3,70
GASTOS GERAIS				82,82		82,82		82,82		82,82		82,82
- Imprevistos	5 %			27,61		27,61		27,61		27,61		27,61
- Assistência Técnica	5 %			27,61		27,61		27,61		27,61		27,6
- Administração	5 %			27,61		27,61		27,61		27,61		27,6
ТОТАЬ				634,93		294,35		296,58		293,55		293,5

ANOS	Produção	Preço	Ingresso Bruto	Custos	Ingresso Neto
	Kg	Kg	(\$/ha)	(\$/ha)	(\$/ano)

1		1,22	0,00	634,93	-634,93
2		1,22	0,00	294,35	-294,35
3	450	1,22	549,00	296,58	252,42
4	676	1,22	824,72	293,55	531,17
5 -35	867	1,22	1.057,72	293,55	764,17
	VAN	14% Anual			98,32
	TIR				18,64%
	B/C				1,18

3.4. Custo de produção do SAF cítrico 30 anos

	L A B O R E S		Preço		1	ANO	2	ANO	3	ANO 4	-30
		Unidade.	Unidade	Quantid.	Total.	Quantid.	Total.	Quantid.	Total.	Quantid.	Total.
A.	GASTOS DEL CULTIVO				284,82		106,05		281,79		281,79
	Preparação de terreno (R- D-Q)	Salário.	3,03	33	99,99						
	Semeado	Salário.	3,03	8	24,24						
	Replante	Salário.	3,03	1	3,03						
	Abonamento	Salário.	3,03	12	36,36	5	15,15	5	15,15	5	15,15
	Controle de ervas daninhas (3)	Salário.	3,03	30	90,90	20	60,60	20	60,60	20	60,60
	Controle fito sanitário	Salário.	3,03	8	24,24	8	24,24	8	24,24	8	24,24
	Colheita e acareio	Salário.	3,03					40	121,20	40	121,20
	Seleção	Salário.	3,03					6	18,18	6	18,18
	Embasado e carga	Salário.	3,03					12	36,36	12	36,36
	Manutenção de arvores	Salário.	3,03	2	6,06	2	6,06	2	6,06	2	6,06
B.	GASTOS ESPECIAIS				502,67		250,60		250,60		250,60
	Plantões	Unidade	0,91	277	252,07						
	Fertilizantes (170-40-150)										
	Uréia, ClK, SPT	Kg.	0,36	360	129,60	360	129,60	360,00	129,60	360,00	129,60
	Pesticida Furadan	Kg.	2,42	50	121,00	50	121,00	50	121,00	50,00	121,00
C.	GASTOS GERAIS				118,12		53,50		79,86		79,86
	- Imprevistos		5%		39,37		17,83		26,62		26,62

- Assistência Técnica	5%	39,37	17,83	26,62	26,62
- Administração	5%	39,37	17,83	26,62	26,62
тотаь		905,61	410,15	612,25	612,25

ANOS	Produção	Preço	Receita Bruto	Custos	Receita Neto
	Kg	Kg	(\$/ha)	(\$/ha)	(\$/ano)
1		0,11	0,00	905,61	-905,61
2		0,11	0,00	410,15	-410,15
3	15.000	0,11	1.650,00	612,25	1.037,75
4 -30	23.040	0,11	2.534,44	612,25	1.922,19
	VAN	14%	Anual		728,55
	TIR				41,57
	B/C				1,92

3.5. Custo de produção do SAF cítrico 15 anos

	L A B O R E S		Preço	ANO	1	ANO	0 2	ANO	3	ANO 4	- 15
		Unidade	Unidade	Quantid	Total.	Quantid	Total.	Quantid	Total.	Quantid	Total.
A.	GASTOS DEL CULTIVO				239,37		81,81		221,19		221,19
	Preparação de terreno (R-D-Q)	Salário.	3,03	30	90,90						
	Semeado	Salário.	3,03	8	24,24						
	Replante	Salário.	3,03	1	3,03						
	Abonamento	Salário.	3,03	8	24,24	5	15,15	5	15,15	5	15,15
	Controle de ervas daninhas (3)	Salário.	3,03	25	75,75	15	45,45	15	45,45	15	45,45
	Controle fito sanitário	Salário.	3,03	6	18,18	6	18,18	6	18,18	6	18,18
	Colheita e acareio	Salário.	3,03					30	90,90	30	90,90
	Seleção	Salário.	3,03					6	18,18	6	18,18
	Embasado e carga	Salário.	3,03					10	30,30	10	30,30
	Manutenção de arvores	Salário	3,03	1	3,03	1	3,03	1	3,03	1	3,03
B.	GASTOS ESPECIAIS				454,27		202,20		202,20		202,20
	Plantões	Unidade	0,91	277	252,07						

	Fertilizantes (170-40-150)										
	Uréia, ClK, SPT	Kg.	0,36	360	129,60	360	129,60	360,00	129,60	360,00	129,60
	Pesticida Furadan	Kg.	2,42	30	72,60	30	72,60	30	72,60	30	72,60
C.	GASTOS GERAIS				104,05		42,60		63,51		63,51
	- Imprevistos				34,68		14,20		21,17		21,17
	- Assistência Técnica	5%			34,68		14,20		21,17		21,17
	- Administração	5%			34,68		14,20		21,17		21,17
	тотаь	5%			797,69		326,61		486,90		486,90

ANOS	Produção	Preço	Receita Bruto	Custos	Receita Neto
	Kg	Kg	(\$/ha)	(\$/ha)	(\$/ano)
1		0,11	0,00	797,69	-797,69
2		0,11	0,00	326,61	-326,61
3	10.123	0,11	1.113,53	486,90	626,63
4 - 15	14.865	0,11	1.635,18	486,90	1.148,28
	VAN	14% A	Anual		151,79
	TIR				21,41%
	B/C				1,22

3.6. Custo de produção do sistema silvipastoril melhorado (Echinocloa polystachya HBK.)

L A B O R E S		Preço	AÑO	O 1	ΑÑ	ŇO 2	Al	ÑO 3
	Unidade	Unidade	Quantid	Total.	Quantid	Total.	Quantid	Total.
GASTOS DEL CULTIVO				401,79		15,15		15,15
Preparação de terreno	Salário.	3,030	3	9,09				
Arado	HM	3,030	7	21,21				
Rastro	HM	3,030	2	6,06				
Abrandar	HM	3,030	3	9,09				
Semeado	Salário.	3,030	35	106,05				
Saca e preparação de galho	Salário	3,030	20	60,60				
Transporte	Salário.	3,030	5	15,15				
Fertilização	Salário.	3,030	2	6,06	2	6,06	2	6,06

Corte de ervas daninhas	Salário.	3,030	15	45,45	2	6,06	2	6,06
Semente vegetativa	Galhos	0,003	40.000,00	120,00				
Manutenção de arvores	Salário	3,030	1	3,03	1	3,03	1	3,03
GASTOS ESPECIAIS				246,36		210,00		210,00
Uréia	Kg.	0,300	200	60,00	200	60,00	200,00	60,00
SFT	Kg.	0,300	300	90,00	300	90,00	300,00	90,00
CIK	Kg.	0,300	200	60,00	200	60,00	200,00	60,00
Transporte de semente	Viajes	12,120	3	36,36				
GASTOS GERAIS				97,22		33,77		33,77
-Imprevistos	5 %			32,41		11,26		11,26
- Assistência Técnica	5 %			32,41		11,26		11,26
- Administração	5 %			32,41		11,26		11,26
TOTAL				745,37		258,92		258,92

ANOS	PRODUÇÃO	PREÇO	RECEITA BRUTO	CUSTOS	RECEITA NETO
	KGS.	KGS.	(\$/HA)	(\$/HA)	(\$/ANO)
1	145.000,00	0,005	710,50	745,37	-745,37
2	162.130,00	0,005	794,44	258,92	535,51
3	167.906,00	0,005	822,74	258,92	563,82
	VAN	14%	Anual		138,79
	TIR				30,02%
-	B/C				1,21

27	Custo do muo	J≈ a J.a aia4aa	ail-i-aatauia aam	Pasnalum conjugatum herg.
.)./.	Clisto de pro	ancao ao sistema	suvinasioris com	Pasnauum contugatum nerg.

	L A B O R E S		Preço	AÑO 1			ÑO 2	AÑO	AÑO 3 – 15		
		Unidade.	unidade.	Quantidade	Total.	Quantidade	Total	Quantidade	Total		
A.	GASTOS DEL CULTIVO				63,	63	9	9,09		9,09	
	Preparação de terreno	Salário	3,030	8	24,	24					
	Manutenção de arvores	salário	3,030	1	3,	03	1	3,03	1	3,03	
	Semeado	Salário	3,030	2	6,	06					
	Controle de ervas daninhas	Salário	3,030	10	30,	30	2	6,06	2	6,06	

B. GASTOS ESPECIAIS				12,12	0,00	0,00
Transporte de semente	viajes	12,120	1	12,12		
C. GASTOS GERAIS				3,79	0,45	0,45
- Imprevistos	5 %			3,79	0,45	0,45
тотаь				79,54	9,54	9,54

ANOS	ANOS PRODUÇÃO		RECEITA BRUTO	CUSTOS	RECEITA NETO
	KGS.		(\$/HA)	(\$/HA)	(\$/ANO)
1	3.250	0,004	13,00	79,54	-79,54
2	11.065	0,004	44,26	9,54	34,72
3 - 15	18.953	0,004	75,81	9,54	66,27
	VAN	14%	Anual		1,67
	TIR				15,67%
	B/C				1,02

3.8. Custo de produção do SAF Pupunha

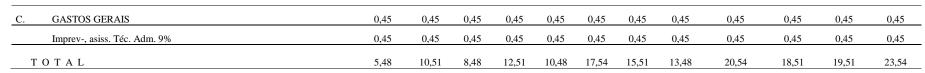
	LABORES	Preço			AÑO 1		ANO 2			AÑO 3-5		
		Unidade.	unidade.	Quantidade	Total.		Quantidade	Total.		Quantidade	Total.	
A.	GASTOS DEL CULTIVO					402,99			163,62			175,74
	Preparação de terreno	Salário.	3,03	3	0	90,90						
	Semeado	Salário.	3,03	3	5	106,05						
	Abonamento	Salário.	3,03		5	15,15	8	3	24,24		5	15,15
	Labores culturais	Salário.	3,03	5	0	151,50	40)	121,20		30	90,90
	semeado de arvores	Salário.	3,03		3	9,09						
	Manutenção de arvores	Salário.	3,03		5	15,15	1	[3,03		1	3,03
	Controle fito sanitário	Salário.	3,03		5	15,15	2	2	6,06		2	6,06
	Colheita	Salário.	3,03				3	3	9,09		20	60,60
B.	GASTOS ESPECIAIS					295,00			150,00			120,00
	Compra sementes	Unidade	5000,00	0,01	5	75,00						

Fertilizantes

	Roca fosfórica	Kg.	0,30	500	150,00	500	150,00	400,00	120,00
	Guano de islãs	Kg.	0,28	250	70,00				
C.	GASTOS GERAIS				62,82		28,23		26,62
	- Imprevistos	5%			20,94		9,41		8,87
	- Assistência Técnica	5%			20,94		9,41		8,87
	- Administração	5%			20,94		9,41		8,87
	тотаL				760,81		341,85		322,36

ANOS	PRODUÇÃO	PREÇO	RECEITA BRUTO	CUSTOS	RECEITA NETO
	Ks.	Ks.	(\$/HA)	(\$/HA)	(\$/Ano)
1		0,00	0,00	760,81	-760,81
2	200	1,50	300,00	341,85	-41,85
3 – 5	1.560	1,50	2.340,00	322,36	2.017,64
	VAN	14%	Anual		662,2
	TIR				60,12%
	B/C				1,99

3.9. Custo de produção do SAF Café


	L A B O R E S		Preço	AÑO 1			AN	NO 2		AÑO 3			AÑO 4-5		
		Unidade.	Unidade	Quantidade		Total.	Quantidade	Tota	al.	Quantidade	Total.		Quantidade	Tot	tal.
A.	GASTOS DEL CULTIVO					518,13			90,90		1	142,41			142,41
	Preparação de plântulas	Salário Salário	3,03		20	60,60									
	Preparação de viveiro		3,03		50	151,50									
	- Preparação de terreno	Salário	3,03		40	121,20									
	Instalação em terreno definitivo	Salário	3,03		30	90,90									
	- Replante	Salário	3,03		1	3,03									
	Abonamento	Salário	3,03		6	18,18		6	18,18		6	18,18		6	18,18
	Labores culturais	Salário	3,03		20	60,60		20	60,60		15	45,45		15	45,45
	Controle fito sanitário	Salário	3,03		2	6,06		2	6,06		2	6,06		2	6,06
	Colheita e despolpado	Salário	3,03								20	60,60	4	20	60,60

	Ensacado	Salário	3,03					2	6,06	2	6,06
	Manutenção de arvores	Salário	3,03	2	6,06	2	6,06	2	6,06	2	6,06
B.	GASTOS ESPECIAIS				153,20		95,00		195,80		196
	- Compra de sementes	Kg.	2,00	1,8	3,60						
	- Uréia	Kg.	0,36	150	54,00	150	54,00	150	54,00	150	54,00
	- Sopre fosfato triplo	Kg.	0,41	100	41,00	100	41,00	100	41,00	100	41,00
	- Clorou de potássio	Kg.	110,00	0	39,60						
	- Sacos vazios	Kg.	0,30	50	15,00			50	15,00	50	15,00
	Transporte para colheita	Salário	2,86					30	85,80	30	85,80
C.	GASTOS GERAIS				60,42		16,73		30,44		30,44
	- Imprevistos, assistência téc. Adm	15%			60,42		16,73		30,44		30,44
í	ТОТАЬ				731,75		202,63		368,65		368,65

ANOS	PRODUÇÃO	PREÇO	RECEITA BRUTO	CUSTOS	RECEITA NETO
	Ks.	Ks.	(\$/HÁ)	(\$/HA)	(\$/Ano)
1		1,45	0,00	731,75	-731,75
2	150	1,45	217,50	202,63	14,87
3	900	1,45	1.305,00	368,65	936,35
4-5	937	1,45	1.358,65	368,65	990,00
-	VAN	14% A	Anual		587,73
	TIR				48,94%
	B/C				1,92

3.10.Custo de produção do sistema Capoeira 12 anos.

				ANO							ANO	ANO		ANO	
	LABORES		Preço	1	ANO 2	AN0 3	ANO 4	ANO 5	ANO 6	ANO 7	8	9	ANO 10	11	ANO 12
		Unidade	Unidade	Total	Total	Total									
A.	GASTOS DEL CULTIVO			3.03	6.06	3.03	6.06	3.03	9.09	6.06	3.03	9.09	6.06	6.06	9.09
	mantenimento de arvores	Jor.	3.03	3.03	6.06	3.03	6.06	3.03	9.09	6.06	3.03	9.09	6.06	6.06	9.09
B.	GASTOS ESPECIAIS			2.00	4.00	5,00	6,00	7,00	8,00	9,00	10,00	11,00	12,00	13,00	14,00
	Materiais	Unidade	1	2	4,00	5	6,00	7,00	8,00	9	10,00	11,00	12,00	13,00	14,00

ANOS	PRODUÇÃO	PREÇO	RECEITA BRUTO	CUSTOS	RECEITA NETO		
	Ks.	Ks.	(\$/HÁ)	(\$/HA)	(\$/Ano)		
1	214	0,09	19.26	5,48	(5.48)	VAN 14%	262,12
2	328	0,09	29.52	10,51	19.01	TIR	396,34%
3	429	0,09	38.61	8,48	30.13	B/C	55,50
4	580	0,09	52.20	12,51	39.69		
5	675	0,09	60.75	10,48	50.27		
6	789	0,09	71.01	17,54	53.47		
7	870	0,09	78.30	15,51	62.79		
8	995	0,09	89.55	13,48	76.07		
9	1,120	0,09	100.80	20,54	80.26		
10	1,280	0,09	115.20	18,51	96.69		
11	1,580	0,09	142.20	19,51	122.69		
12	1,678	0,09	151.02	23,54	127.48		

Apêndice 4. ANVA do total de armazenamento de carbono por faixa de idades.

F. V	GL	\mathbf{SQ}	QM	Fc
Tratamentos	2	1396,669	698,334	61,5667
Erro	6	68,056	11,343	
Total	8			

Apêndice 5. Resultados da análise comparando média de armazenamento de carbono no solo, biomassa aérea e total por ano dos sistemas com a coca

		Carbo	no na		
Carbo	no no	biomassa aérea		Carl	ono
sol	lo			tot	al
		t/ha	⁻¹ /ano ⁻¹ -		
13,84	Dif.	66,52	Dif.	80,36	Dif.
4,58	NS	23,54	NS	28,12	NS
0,35	*	4,14	NS	4,49	NS
1,06	NS	8,86	NS	9,92	NS
0,21	*	3,07	NS	3,27	NS
0,83	*	6,65	NS	7,48	NS
0,37	NS	5,02	NS	5,40	NS
0,43	NS	3,30	NS	3,72	NS
1,91	*	28,27	NS	30,18	NS
3,96	*	33,73	NS	37,69	NS
	13,84 4,58 0,35 1,06 0,21 0,83 0,37 0,43 1,91	4,58 NS 0,35 * 1,06 NS 0,21 * 0,83 * 0,37 NS 0,43 NS 1,91 *	Carbono no solo biomassa	solo 13,84 Dif. 66,52 Dif. 4,58 NS 23,54 NS 0,35 * 4,14 NS 1,06 NS 8,86 NS 0,21 * 3,07 NS 0,83 * 6,65 NS 0,37 NS 5,02 NS 0,43 NS 3,30 NS 1,91 * 28,27 NS	Carbono no solo biomassa aérea tot Cark tot

^(*) Significativo; (^{NS}) Não significativo.

Apêndice 6. Resultados da análise comparando média de armazenamento de carbono no solo, biomassa aérea e total por ano dos sistemas com a capoeira

Sistemas de uso-da-terra		no no lo	Carbon biomassa		Carb tot	
			t/h	a ⁻¹ /ano		
Capoeira 12 anos	1,06	Dif.	8,86	Dif.	9,92	Dif
SSP Echynochloa polystachya HBK.3 anos	4,58	NS	23,54	NS	28,12	NS
SSP Paspalum conjugatum Berg. 15 anos	0,35	*	4,14	NS	4,49	NS
Cultivo de coca 1 ano	13,84	NS	66,52	NS	80,36	NS
SAF Cacau tradicional 35 anos	0,21	NS	3,07	NS	3,27	NS
SAF Cítricos 15 anos	0,83	NS	6,65	NS	7,48	NS
SAF Cítricos 30 anos	0,37	NS	5,02	NS	5,40	NS
SAF Cacau melhorado 30 anos	0,43	NS	3,30	NS	3,72	NS
SAF Pupunha 5 anos	1,91	NS	28,27	NS	30,18	NS
SAF Café 3 anos	3,96	NS	33,73	NS	37,69	NS

^(*) Significativo, (^{NS}) Não significativo.

Apêndice 7. Análise da regressão da utilidade em função dos sistemas de uso-da-terra em José Crespo e Castillo, 2007.

Dependent Variable	: LOG(U)			
Method	: Least Squares			
Date: 08/22/07 Time: 21:4	.9			
Sample	: 1 200			
Included observations	: 199			
Excluded observations	:1			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4,904458	0,109730	44,69577	0,0000
LOG(P)	0,579783	0,024583	23,58442	0,0000
S 1	-0,157216	0,085435	-1,840181	0,0673
S2	0,564302	0,085435	6,605045	0,0000
S3	-0,478527	0,085435	-5,601064	0,0000
S4	0,675926	0,085435	7,911586	0,0000
S5	-1,535562	0,085435	-17,97346	0,0000
S6	-0,929471	0,085435	-10,87928	0,0000
S7	-0,857912	0,085435	-10,04169	0,0000
S8	-1,206745	0,085435	-14,12472	0,0000
S 9	0,793166	0,086595	9,159473	0,0000
R-squared	0,922786	Mean dependent var		6,752260
Adjusted R-squared	0,918679	S.D. dependent var		0,947400
S.E. of regression	0,270169	Akaike info criterion		0,274152
Sum squared resid	13,72237	Schwarz criterion		0,456194
Log likelihood	-16,27813	F-statistic		224,6786
Durbin-Watson stat	1,505212	Prob(F-statistic)		0,000000

O modelo é:

 $\ln(U) = 5.697624 + 0.5797828858*LOG(P) - 0.1572157602*S1 + 0.5643017418*S2 - 0.4785266766*S3 + 0.6759259567*S4 - 1.535561527*S5 - 0.9294709424*S6 - 0.8579115306*S7 - 1.206745112*S8 + 0.7931656661*S9 - 0.793166*S10$

Apêndice 8. Test de white de heteroscedasticidad para o modelo da utilidade em função dos sistemas de uso-da-terra em José Crespo e Castillo, 2007.

White Heteroskedastic	city Test:		
F-statistic	5.252064	Probability	0.000000
Obs*R-squared	46.96916	Probability	0.000002

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 09/18/07 Time: 19:43

Sample: 1 200

Included observations: 199 Excluded observations: 1

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.685048	0.557051	3.024941	0.0028
LOG(P)	-0.671332	0.195815	-3.428404	0.0007
$(LOG(P))^2$	0.083977	0.023885	3.515941	0.0005
S 1	-0.303683	0.208121	-1.459168	0.1462
S2	-0.394896	0.208243	-1.896325	0.0595
S 3	-0.392067	0.208026	-1.884703	0.0610
S4	-0.395111	0.208530	-1.894748	0.0597
S5	-0.388939	0.207867	-1.871092	0.0629
S 6	-0.343584	0.207396	-1.656662	0.0993

S7 S8	-0.395502 -0.388146	0.208325 0.207834	-1.898488 -1.867580	0.0592 0.0634
S10	-0.292976	0.207729	-1.410373	0.1601
R-squared	0.236026	Mean depend	lent var	0.068957
Adjusted R-squared	0.191086	S.D. depende	ent var	0.315040
S.E. of regression	0.283346	Akaike info	criterion	0.374110
Sum squared resid	15.01327	Schwarz crite	erion	0.572701
Log likelihood	-25.22392	F-statistic		5.252064
Durbin-Watson stat	1.982604	Prob(F-statis	tic)	0.000000

Apêndice 9. Análise da regressão com correção de heterocedasticidade da utilidade em função dos sistemas de uso-da-terra em José Crespo e Castillo, 2007.

Dependent Variable: LOG(U) Method: Least Squares Date: 09/19/07 Time: 18:26

Sample: 1 200

Included observations: 199 Excluded observations: 1

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4.904458	0.202188	24.25696	0.0000
LOG(P)	0.579783	0.045563	12.72491	0.0000
S1	-0.157216	0.104863	-1.499255	0.1355
S2	0.564302	0.078541	7.184835	0.0000
S 3	-0.478527	0.079488	-6.020085	0.0000
S4	0.675926	0.078468	8.613993	0.0000
S5	-1.535562	0.080523	-19.06986	0.0000
S 6	-0.929471	0.094257	-9.861040	0.0000
S7	-0.857912	0.078336	-10.95163	0.0000
S8	-1.206745	0.080783	-14.93810	0.0000
S9	0.793166	0.165802	4.783819	0.0000
R-squared	0.922786	Mean depen	dent var	6.752260
Adjusted R-squared	0.918679	S.D. depend	lent var	0.947400
S.E. of regression	0.270169	Akaike info criterion		0.274152
Sum squared resid	13.72237	Schwarz criterion		0.456194
Log likelihood	-16.27813	F-statistic		224.6786
Durbin-Watson stat	1.505212	Prob(F-stati	stic)	0.000000

Apêndice 10. Análise de regressão das utilidades em função das idades dos sistemas de usoda-terra em José Crespo e Castillo, 2007.

Dependent Variable	: LOG(U)				
Method	: Least Sq	uares			
Date: 08/22/07 Time: 22:					
Sample	: 1 200				
Included observations	: 199				
Excluded observations: 1					
Variable		Coefficient	Std. Error	t-Statistic	Prob.
LOG(P)		0.584830	0.043896	13.32305	0.0000
C		4.037923	0.175039	23.06874	0.0000
EA		1.352336	0.082681	16.35606	0.0000
EC		-0.026355	0.088142	-0.299006	0.7653
R-squared		0.744265	Mean dependent var		6.752260
Adjusted R-squared		0.740331	S.D. dependent var		0.947400
S.E. of regression		0.482774	Akaike info criterion		1.401358
Sum squared resid		45.44872	Schwarz criterion		1.467555
Log likelihood		-135.4351	F-statistic		189.1696
Durbin-Watson stat		2.246163	Prob(F-statistic)		0.000000

O modelo é:

ln(U) = 4.011568 + 0.5848303233*LOG(P) + 1.352335587*EA + 0.026355*EB - 0.02635497006*EC

Apêndice 11. Test de white de heterocedasticidad para o modelo da utilidade em função das faixas de idades dos sistemas de uso-da-terra em José Crespo e Castillo, 2007.

White Heteroskedast	icity Test:		
F-statistic	13.12535	Probability	0.000000
Obs*R-squared	42.38426	Probability	0.000000

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 09/18/07 Time: 19:48

Sample: 1 200

Included observations: 199 Excluded observations: 1

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.660886	0.808770	2.053594	0.0414
LOG(P)	-0.792123	0.451548	-1.754241	0.0810
(LOG(P))^2	0.095776	0.061066	1.568407	0.1184
EA	0.121475	0.050715	2.395227	0.0176
EC	0.277482	0.055462	5.003112	0.0000
R-squared	0.212986	Mean depende	ent var	0.228386
Adjusted R-squared	0.196759	S.D. depender	nt var	0.386798
S.E. of regression	0.346663	Akaike info cr	riterion	0.743875
Sum squared resid	23.31394	Schwarz criter	rion	0.826621
Log likelihood	-69.01557	F-statistic		13.12535
Durbin-Watson stat	1.589795	Prob(F-statisti	c)	0.000000

Apêndice 12. Análise da regressão com correção de heterocedasticidade da utilidade em função das faixas de idades dos sistemas de uso-da-terra em José Crespo e Castillo, 2007.

Dependent Variable: LOG(U) Method: Least Squares Date: 09/06/07 Time: 10:41

Sample: 1 200

Included observations: 199 Excluded observations: 1

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(P)	0.584830	0.061283	9.543171	0.0000
C	4.037923	0.233629	17.28349	0.0000
EA	1.352336	0.067088	20.15771	0.0000
EC	-0.026355	0.089965	-0.292948	0.7699
R-squared	0.744265	Mean depende	ent var	6.752260
Adjusted R-squared	0.740331	S.D. depender	nt var	0.947400
S.E. of regression	0.482774	Akaike info ci	riterion	1.401358
Sum squared resid	45.44872	Schwarz criter	rion	1.467555
Log likelihood	-135.4351	F-statistic		189.1696
Durbin-Watson stat	2.246163	Prob(F-statisti	ic)	0.000000

Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

<u>Baixar</u>	livros	de	Adm	<u>inis</u>	tra	ção

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciência da Computação

Baixar livros de Ciência da Informação

Baixar livros de Ciência Política

Baixar livros de Ciências da Saúde

Baixar livros de Comunicação

Baixar livros do Conselho Nacional de Educação - CNE

Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos

Baixar livros de Economia

Baixar livros de Economia Doméstica

Baixar livros de Educação

Baixar livros de Educação - Trânsito

Baixar livros de Educação Física

Baixar livros de Engenharia Aeroespacial

Baixar livros de Farmácia

Baixar livros de Filosofia

Baixar livros de Física

Baixar livros de Geociências

Baixar livros de Geografia

Baixar livros de História

Baixar livros de Línguas

Baixar livros de Literatura

Baixar livros de Literatura de Cordel

Baixar livros de Literatura Infantil

Baixar livros de Matemática

Baixar livros de Medicina

Baixar livros de Medicina Veterinária

Baixar livros de Meio Ambiente

Baixar livros de Meteorologia

Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Música

Baixar livros de Psicologia

Baixar livros de Química

Baixar livros de Saúde Coletiva

Baixar livros de Serviço Social

Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo