Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas Departamento de Astronomia

Beatriz Fernandes

Extinção na Direção de Aglomerados Estelares Jovens

São Paulo 2010

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Beatriz Fernandes

Extinção na Direção de Aglomerados Estelares Jovens

Dissertação apresentada ao Departamento de Astronomia do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo como parte dos requisitos para a obtenção do título de Mestre em Ciências.

Área de Concentração: Astronomia Orientador(a): Prof^a. Dr^a. Jane Gregorio-Hetem

> São Paulo 2010

Agradecimentos

À minha família com quem sempre pude e sei que sempre vou poder contar;

Ao Eduardo por todos os momentos que passamos juntos, pela ajuda e paciência nos momentos difíceis;

À minha orientadora, Prof.^a Jane, por todo trabalho e atenção dedicados a este projeto;

Ao Prof. Annibal pela participação essencial tanto no desenvolvimento computacional realizado durante o projeto quanto na elaboração da dissertação;

A Thais que, além de amiga, tenho prazer de ter também como colega de trabalho e estudos. E a todos os outros amigos que estiveram presentes nas horas de descanso e distração tão necessárias;

Aos funcionários do IAG, por proporcionarem uma boa estrutura e um agradável ambiente de trabalho.

Esta dissertação foi escrita em LATEX com a classe IAGTESE, para teses e dissertações do IAG.

"Living is easy with eyes closed..."

John Lennon

Resumo

Realizamos um estudo detalhado da extinção interestelar na direção dos aglomerados estelares jovens: NGC 2264, NGC 2244, Berkeley 86 e NGC 6530. Esta amostra foi selecionada com base nos catálogos disponíveis na literatura, buscando por alguns aglomerados localizados em regiões em que a extinção é considerada normal, e outros apresentando indícios de ser anômala ou variável.

Foi elaborada uma base de dados para estrelas na direção dos aglomerados. Visando reduzir a poluição de estrelas de campo, selecionamos como membros somente os objetos apresentando uma probabilidade mínima de pertencer ao aglomerado, de acordo com estudos de movimento próprio.

Para a determinação da extinção, desenvolvemos um algoritmo que ajusta dados observacionais à curva teórica da Sequência Principal, tendo a extinção como parâmetro livre. Desta forma determinamos o valor médio da extinção visual (A_V) que proporciona o ajuste de melhor qualidade aos dados observacionais.

Duas metodologias foram adotadas também para estimar a lei de extinção (R_V) para cada aglomerado. Neste caso, os resultados foram obtidos por meio da análise de diagramas de duas cores e também calculados por expressões que relacionam o excesso de cor em diferentes bandas. Em concordância com trabalhos recentes de outros autores, notamos que o uso de diferentes cores no estudo da lei de extinção, correlacionando dados ópticos com o infravermelho próximo, proporcionam melhores resultados do que aqueles obtidos analisando apenas as cores nas bandas UBV, por exemplo.

Verificamos a possível ocorrência de extinção variável nos aglomerados e comparamos sua localização com a de nuvens interestelares utilizando os mapas de A_V disponíveis na literatura, buscando relacionar a lei de extinção com as condições do meio interestelar nas regiões dos aglomerados. A análise de uma eventual variação na lei de extinção foi verificada a partir da determinação individual de R_V , que foi realizada apenas para alguns membros cujo tipo espectral era préviamente conhecido. Os resultados dessa parte de nosso estudo não permitiram uma análise mais robusta da variação de R_V em função da distribuição espacial, dado o número pequeno de objetos para os quais há confiabilidade nas informações espectrais.

Concluímos que entre a amostra estudada, somente o aglomerado NGC 6530 apresenta indícios de extinção anômala e os aglomerados NGC 2264 e NGC 2244 parecem sofrer de extinção variável. Os resultados de extinção obtidos através do ajuste à sequência principal, em geral, se mostraram em boa concordância com aqueles encontrados na literatura. O algoritmo de ajuste automático desenvolvido no presente trabalho se mostrou prático e eficiente para determinação de A_V médio em aglomerados com grande número de membros.

Abstract

We conducted a detailed study of interstellar extinction in the direction of the young star clusters: NGC 2264, NGC 2244, Berkeley 86 and NGC 6530. This sample was selected based on catalogs available in the literature, searching for clusters located in regions where extinction is considered normal, and other clusters showing signs of having anomalous or variable extinction.

A database was developed for stars in the direction of the clusters. To reduce contamination from field stars, we select only the objects presenting a minimal membership probability, according to proper motion studies.

To determine the extinction, we developed an algorithm that fits observational data to the theoretical curve of the Main Sequence, with extinction as a free parameter. Thus we determined the average visual extinction (A_V) that provides the best to observational data fitting.

Two methods were also adopted to estimate the extinction law (\mathbf{R}_V) for each cluster. In this case, the results were obtained by analyzing two-color diagrams and also calculated by expressions that relate the color excess in different bands. According to other recent works, we also noted that the use of different colors in the study of the extinction law, correlating optical data with near-infrared, provides better results than those obtained by analyzing only the colors in the UBV bands, for example.

We verify the possible occurrence of variable extinction in the clusters and compare its location projected against interstellar clouds, using the maps of A_V available in the literature, to seek for a possible relation of the extinction law with the conditions of the interstellar medium in the clusters regions. The analysis of the variation in the extinction law was obtained from the individual determination of R_V , which was performed only to some members whose spectral type was previously known. The results of this part of our study did not allow a more robust analysis of the variation of R_V as a function of spatial distribution, given the few objects for which there is reliable spectral information.

We conclude that among the studied sample, only the cluster NGC 6530 shows evidence of anomalous extinction and the clusters NGC 2264 and NGC 2244 appear to suffer variable extinction. The results of extinction obtained through the main sequence fitting, in general, are in good agreement with those found in the literature. The automatic fitting algorithm developed in this study proved to be efficient for the determination of the average A_V in clusters with large numbers of members.

Lista de Figuras

1.1	Diagrama cor-cor (U-B)×(B-V) para estrelas do aglomerado Collinder 132.	
	A Sequência Principal de Schimdt-Kaler (1965) é representada pela curva	
	contínua. Adaptada de Clariá (1977)	21
1.2	TCDs nas cores (V-R), (V-I), (V-J), (V-H), (V-K), e (V-L) \times (B-V) para	
	estrelas do aglomerado NGC 6611. A linha tracejada representa o ajuste	
	linear para as estrelas de campo e a linha cheia para membros do aglomerado.	
	Adaptada de Chini e Wargau (1990)	23
1.3	TCD nas cores (V-I) \times (B-V) para estrelas do aglomerado NGC 3603. A	
	linha tracejada representa o ajuste linear para as estrelas de campo e a	
	linha cheia para membros do aglomerado. Adaptada de Pandey et al. (2000).	24
1.4	Descrição esquemática de como é medida a dispersão $\Delta E(B\text{-}V).$ Adaptado	
	de Burki (1975)	25
2.1	Diagramas obtidos a partir do banco de dados WEBDA para os aglomerados	
	Berkeley 86 (esquerda) e NGC 2264 (direita). As linhas vermelhas repre-	
	sentam isócronas ajustadas pelo WEBDA a partir dos dados catalogados do	
	aglomerado para distância, idade e excesso de cor	31
2.2	Histograma da fração do número total de estrelas em função da probabili-	
	dade de as estrelas pertencerem ao aglomerado. Painel Superior: NGC 2264	
	(esquerda) e NGC 2244 (direita). Painel Inferior: Berkeley 86 (esquerda) e	
	NGC 6530 (direita)	34

2.3	Probabilidade da estrela pertencer ao aglomerado em função de sua distância	
	ao centro adotado. A linha tracejada indica o valor de \mathbf{P}_{min} em cada caso.	
	Painel Superior: NGC 2264 (esquerda) e NGC 2244 (direita). Painel Infe-	
	rior: Berkeley 86 (esquerda) e NGC 6530 (direita)	36
2.4	Sobreposição das coordenadas obtidas dos catálogos WEBDA (cruzes) e	
	DAML02 (círculos e quadrados). Os quadrados representam estrelas com	
	$\mathbf{P}\%$ maior que $\mathbf{P}_{min}.$ Painel Superior: NGC 2264 (esquerda) e NGC 2244	
	(direita). Painel Inferior: Berkeley 86 (esquerda) e NGC 6530 (direita)	37
2.5	Imagem composta a partir dos fluxos medidos pelo IRAS em 25, 60 e 100	
	$\mu {\rm m},$ cobrindo 12,5° × 12,5° na região das associações Mon OB1 e Mon R1,	
	que contêm o aglomerado estelar da nebulosa Rosette (NGC2244) e nebulosa	
	do Cone (NGC 2264). Adaptado de Dahm (2008)	38
2.6	Imagem óptica da Nebulosa do Cone, região que contém o aglomerado	
	NGC2264, cortesia de T.A. Rector (NRAO/AUI/NSF e NOAO/AURA/NSF)	
	& B.A. Wolpa (NOAO/AURA/NSF)	39
2.7	Imagem óptica da Nebulosa Rosette no centro da qual se encontra embebido	
	o aglomerado NGC2244, adaptada de Robert Gendler (2006, Universe a	
	Seasonal Guide to Viewing the Cosmos)	40
2.8	Imagem óptica do aglomerado Berkeley 86. Extraída do banco de dados	
	DSS(R) - Digital Sky Survey	42
2.9	Imagem óptica da Nebulosa da Lago a $(\mathrm{M8})$ e a região demarcada contendo	
	o aglomerado NGC6530. Cortesia de Henri Boffin (2009, GigaGalaxy Zoom	
	Project, ESO)	43
2.10	Mapa de extinção visual extraído de Dobashi et al. $\left(2005\right)$ para os aglome-	
	rados NGC2244 (abaixo à esquerda) e NGC2264 (acima à direita). O centro	
	do aglomerado é indicado por uma cruz vermelha, delimitado por uma área	
	definida pelo diâmetro do aglomerado (círculo vermelho), que é cerca de 30'	
	nesses casos. Os contornos em verde indicam níveis de \mathbf{A}_V de 0,5, 1,5 e 3,0	
	mag	44

- 3.1 TCDs para cores intrínsecas de Siess et al. (2000), a linha tracejada é o ajuste linear que representa a extinção normal em cada banda.
 48
- 3.2 TCDs para o aglomerado NGC 2264, a linha contínua representa a extinção normal, a linha tracejada é o ajuste linear para os membros do aglomerado.
 51
- 3.3 TCDs para o aglomerado NGC 2244, a linha contínua representa a extinção normal, a linha tracejada é o ajuste linear para os membros do aglomerado.
 52
- 3.4 TCDs para o aglomerado Berkeley 86, a linha contínua representa a extinção normal, a linha tracejada é o ajuste linear para os membros do aglomerado.
 53
- 3.5 TCDs para o aglomerado NGC 6530, a linha contínua representa a extinção normal, a linha tracejada é o ajuste linear para os membros do aglomerado.
 54
- 4.2 Curvas de Spline deslocadas de $A_V = 0.5$ e $A_V = 1.5$ mag, respectivamente. 63
- 4.3 Ajustes obtidos a partir do algoritmo no diagrama (U-B) × (B-V) para os aglomerados da amostra. Painel Superior: NGC 2264 (esquerda) e NGC 2244 (direita). Painel Inferior: Berkeley 86 (esquerda) e NGC 6530 (direita). 68
- 5.1 Curvas representando os limites dados por Burki (1975) no diagrama (U-B) \times (B-V) de estrelas com probabilidade maior que P_{min} de pertencer ao aglomerados da amostra. Painel Superior: NGC 2264 (esquerda) e NGC 2244 (direita). Painel Inferior: Berkeley 86 (esquerda) e NGC 6530 (direita). 71
- 5.2 E(B-V) em função da distância ao centro do aglomerado, símbolos diferentes marcam estrelas a leste (círculos cheios) e a oeste (asteriscos) do centro. A linha pontilhada indica o valor médio de E(B-V).
 72

- 5.3 Posição dos membros do aglomerado projetada no mapa de A_V (cruzes). O valor individual de R_V é indicado para estrelas com tipo espectral conhecido. No painel superior aparecem NGC2264 (esquerda) e NGC2244 (direita), e no painel inferior: NGC6530 (esquerda) e Berkeley 86 (direita). O valor em amarelo, no caso de NGC2264, destaca uma possível correção de tipo espectral, sem a qual um valor aberrante de R_V seria encontrado. 74

Lista de Tabelas

2.1	Amostra pré-selecionada de aglomerados	30
2.2	Amostra de aglomerados definitiva (Os dois aglomerados com possível ex-	
	tinção anômala são indicados por asteriscos)	32
2.3	Lista parcial de dados do aglomerado NGC 2244 (a versão integral está	
	apresentada na Tabela A.1)	33
3.1	Resultados obtidos através dos TCDs.	49
3.2	Excessos de cor e valores de \mathbf{R}_V calculados para estrelas do aglomerado NGC	
	2264	56
3.3	Excessos de cor e valores de \mathbf{R}_V calculados para estrelas do aglomerado NGC	
	2244	57
3.4	Excessos de cor e valores de \mathbf{R}_V calculados para estrelas do aglomerado	
	Berkeley 86	57
3.5	Excessos de cor e valores de \mathbf{R}_V calculados para estrelas do aglomerado NGC	
	6530	58
3.6	Valores médios dos excessos de cor e R_V	59
4.1	Resultados obtidos através do Programa de Ajuste à Sequência Principal	67
5.1	Excesso de cor E(B-V) determinado por diferentes métodos. \ldots	70
A.1	Dados do aglomerado NGC 2244.	89
A.2	Dados do aglomerado NGC 2264	96
A.3	Dados do aglomerado Berkeley 86	100
A.4	Dados do aglomerado NGC 6530.	101

B.1	Relação: Temperatura Efetiva \times Tipo Espectral. Adaptada de Jager e								
	Niewenhuijzen (1987). \ldots	103							
B.2	2 Índices de cor intrínsecos e correções bolométricas para estrelas com $\log(g)=4$.								
	Adaptada de Bessel et al. (1998)	104							

Sumário

1.	Intro	odução		19
2.	Desc	erição d	a Amostra	29
	2.1	Seleçã	o de Aglomerados	29
	2.2	Seleçã	o de membros	31
		2.2.1	Seleção de membros por meio de movimentos próprios	34
		2.2.2	Distribuição espacial dos membros	35
	2.3	Comer	ntários Individuais sobre os Aglomerados Estudados	38
		2.3.1	NGC 2264	39
		2.3.2	NGC 2244	40
		2.3.3	Berkeley 86	41
		2.3.4	NGC 6530	42
	2.4	Compa	aração com a Distribuição de Nuvens Interestelares	43
3.	Estu	ido de a	anomalias na Lei de Extinção	47
	3.1	Estima	ativa de R_V a partir da análise de TCDs $\ldots \ldots \ldots \ldots \ldots \ldots$	47
	3.2	Cálcul	o de R_V através de relações entre excessos de cor $\ldots \ldots \ldots \ldots$	55
4.	Alge	oritmo d	le ajuste à Sequência Principal	61
	4.1	Metod	ologia adotada	61
	4.2	Descri	ção detalhada	62
	4.3	Result	ados de extinção média	66

5.	5. Análise e Discussão dos Resultados									
	5.1	Extinção média na direção dos aglomerados	69							
	5.2	Desvios esperados no valor médio da extinção	70							
	5.3	Variabilidade da lei de extinção	73							
6.	Cone	clusões e Perspectivas	77							
Re	ferên	cias	81							
Ap	êndia	Ce	87							
Α.	Dad	os dos candidatos a membros dos aglomerados estudados	89							
В.	Tabe	elas para conversão entre Tipo Espectral e Cores Intrínsecas	103							

Introdução

O estudo do Meio Interestelar é de grande interesse astrofísico por se tratar do local onde as estrelas nascem e também onde são distribuídos os elementos formados nos eventos relacionados com a morte das estrelas. Além do gás, na forma de átomos e moléculas, o Meio Interestelar tem uma componente importante de poeira, que se apresenta de forma mais complexa, sendo constituída por diversos tipos de grãos e composições químicas variadas.

Uma das consequências mais bem estudadas da poeira contida no Meio Interestelar é a extinção, pois seu estudo em regiões de formação estelar revela propriedades do material nessas regiões, o que pode levar a um avanço na compreensão da evolução e formação das estrelas.

Tratamos particularmente neste trabalho do estudo da extinção na direção de aglomerados estelares jovens, já que a maior parte da formação estelar no Universo (cerca de 80%) se dá como aglomerados gerados a partir de nuvens moleculares gigantes (Lada e Lada, 2003).

O fenômeno de extinção no brilho estelar aparente, ou seja, nas magnitudes observadas, é devido à absorção e ao espalhamento causados pelos grãos de poeira interestelar na luz emitida pelas estrelas. A extinção faz com que o brilho das estrelas diminua e, além disso, com que sua cor sofra avermelhamento, já que o efeito da extinção é mais grave para comprimentos de onda que são menores ou iguais ao tamanho dos grãos que a causam.

Em um dado comprimento de onda λ , a extinção, é expressa por A_{λ} . Se uma estrela tem uma magnitude aparente m_{λ} e está sujeita a uma determinada extinção, sua magnitude deve ser corrigida da forma:

$$m_{0_{\lambda}} = m_{\lambda} - A_{\lambda}$$

onde $m_{0_{\lambda}}$ é a magnitude não-avermelhada da estrela e m_{λ} é a magnitude observada.

Os efeitos de absorção e espalhamento não afetam a posição das linhas espectrais da estrela, assim, conhecido seu tipo espectral ainda é possível determinar a sua cor intrínseca, que pode ser obtida através de modelos como o de Bessell et al. (1998). Pela diferença entre a cor observada e a cor intrínseca da estrela é possível calcular a grandeza conhecida como o excesso de cor:

$$E(m_{\lambda_1} - m_{\lambda_2}) = (m_{\lambda_1} - m_{\lambda_2}) - (m_{\lambda_1} - m_{\lambda_2})_0$$

onde o índece 0 indica a cor intrínseca, por exemplo: $E(B - V) = (B - V) - (B - V)_0$.

A cada linha de visada está associada uma dada Lei de Extinção que relaciona a extinção em diferentes bandas. Usualmente, ela é expressa em termos de relações do tipo A_{λ}/A_{V} (onde A_{V} é a extinção no visível) como por exemplo a lei de extinção dada por Cardelli et al. (1989), ou em termos de relações do tipo $E(\lambda - V)/E(B - V)$.

Mathis (1990) afirma que, em média, a extinção pode ser caracterizada somente pelo parâmetro R_V , chamado de razão entre extinção total e seletiva, dado por: $R_V = A_V/E(B-V)$.

O valor de R_V depende da constituição do Meio Interestelar ao longo da linha de visada. De acordo com Savage e Mathis (1979), para direções onde as densidades são menores, geralmente o valor de R_V é da ordem de 3,1 enquanto que para nuvens mais densas o valor apresentado se encontra em geral no intervalo $4 < R_V < 6$. Para R_V da ordem de 3,1, a lei de extinção pode ser representada, por exemplo, pelo valor canônico $\frac{E(U-B)}{E(B-V)} = 0,72$. De acordo com Hillenbrand et al. (1993) variações dessa razão podem ser encontradas mas valores extremos fora do intervalo de 0,5 a 0,9 não são conhecidos na Via Láctea nem nas Nuvens de Magalhães.

Leis anômalas de avermelhamento, com altos valores de R_V têm sido relatadas em regiões de formação estelar (Neckel e Chini, 1981; Chini e Wargau, 1990; Pandey et al., 2000; Samal et al., 2007, entre outros).

Vários métodos podem ser aplicados para estimar a extinção interestelar na direção de aglomerados estelares jovens, que ocorre por diferentes fatores: (i) o efeito de *foreground*

em uma dada linha de visada, devido ao material interestelar que se interpõe entre o aglomerado e o observador; (ii) o efeito da presença das nuvens interestelares na direção do aglomerado; (iii) a extinção individual, associada ao material circunstelar ou a objetos embebidos em nuvens, causando anomalias na razão entre extinção total e seletiva.

A estimativa da extinção causada pela poeira interestelar encontrada na linha de visada, pode ser determinada em média através de modelos que reproduzem a contagem de estrelas na Galáxia (Amôres e Lépine, 2005) ou por mapas de extinção visual (Gregorio Hetem et al., 1988; Schlegel et al., 1998; Dobashi et al., 2005, entre outros).

Estudos fotométricos também podem ser aplicados. Clariá (1977), por exemplo, estudou a extinção na direção do aglomerado Collinder 132 a partir da estimativa dos excessos de cor nas bandas ópticas UBV comparando a distribuição das estrelas do aglomerado no diagrama cor-cor (U-B) \times (B-V) com a curva teórica (cores intrínsecas) da Sequência Principal. Na Figura 1.1 apresentamos o diagrama construído por Clariá (1977).

Figura 1.1: Diagrama cor-cor (U-B)×(B-V) para estrelas do aglomerado Collinder 132. A Sequência Principal de Schimdt-Kaler (1965) é representada pela curva contínua. Adaptada de Clariá (1977).

Além de diagramas cor-cor nas bandas UBV, também são interessantes para o estudo da extinção os diagramas de duas cores, apresentados na literatura como two-color diagrams (TCDs daqui em diante). Diagramas desse tipo podem ser construídos nas cores (V- λ) versus (B-V), onde λ pode ser uma das bandas: R, I, J, H, K, L. Note-se que os TCDs diferenciam-se dos usuais diagramas cor-cor, como por exemplo (U-B) x (B-V), por não adotarem uma sequência no padrão das bandas, como por exemplo (V-I) x (B-V). Nos TCDs, as estrelas se apresentam em uma distribuição aproximadamente linear. Anomalias na lei de extinção podem ser detectadas caso haja diferença na inclinação das retas formadas pelas estrelas de campo (que seguem uma lei de extinção normal) e membros do aglomerado (que podem seguir a uma lei de extinção anômala). Na Figura 1.2 vemos um exemplo desse método aplicado por Chini e Wargau (1990) para o aglomerado NGC 6611.

O uso de TCDs na avaliação da lei de extinção também pode ser encontrado nos trabalhos de Pandey et al. (2000) sobre o aglomerado NGC 3603 e de Jose et al. (2008) sobre o aglomerado Stock 8. No caso de Stock 8, foram encontradas inclinações $1,13\pm0,02$ para $\lambda=I$, $1,95\pm0,03$ para $\lambda=J$, $2,41\pm0,04$ para $\lambda=H$, e $2,56\pm0,04$ para $\lambda=K$. Valores idênticos são encontrados tanto para a região interna do aglomerado (r < 6') como para uma área total considerada (r < 12'). Já no caso do aglomerado NGC 3603 o valor estimado de R_V para o aglomerado foi de 4,3, levando a uma diferença muito clara na distribuição de estrelas de campo e membros do aglomerado, como pode ser observado na Figura 1.3.

A determinação da extinção e principalmente da lei de extinção pode alterar significativamente os parâmetros estimados para o aglomerado. Valores de distância apresentados na literatura para o aglomerado NGC 3603 variam entre 6,3 e 10,1 kpc, por exemplo. De acordo com Melena et al. (2008) essa discrepância se deve principalmente a erros na correção de avermelhamento. Adotando um valor normal de $R_V = 3,1$, os autores determinaram uma distância de 9,1 kpc para o aglomerado, enquanto que utilizando $R_V = 4,3$, como encontrado por Pandey et al. (2000), determinaram uma distância de 7,6 kpc, os autores decidiram adotar este último resultado pois é o que mais está em concordância com distâncias cinemáticas encontradas na literatura.

Estimativas de massas e idades dependem fortemente da correta determinação da distância dos aglomerados, a qual por sua vez depende de uma boa determinação da

Figura 1.2: TCDs nas cores (V-R), (V-I), (V-J), (V-H), (V-K), e (V-L) \times (B-V) para estrelas do aglomerado NGC 6611. A linha tracejada representa o ajuste linear para as estrelas de campo e a linha cheia para membros do aglomerado. Adaptada de Chini e Wargau (1990).

extinção. Além disso, para uma melhor avaliação do diagrama cor-magnitude, os dados fotométricos devem ser adequadamente corrigidos dos efeitos da extinção interestelar. Nas

Figura 1.3: TCD nas cores (V-I)× (B-V) para estrelas do aglomerado NGC 3603. A linha tracejada representa o ajuste linear para as estrelas de campo e a linha cheia para membros do aglomerado. Adaptada de Pandey et al. (2000).

regiões de formação estelar, devido à presença de nuvens escuras, deve-se atentar para a possível ocorrência de extinção variável ou anômala, que é caracterizada por valores de R_V diferentes de 3,1.

Burki (1975) realizou um estudo do avermelhamento variável em aglomerados com base em fotometria UBV. O autor afirma que outras causas de dispersão das estrelas num diagrama cor-cor, como duplicidade, rotação e diferenças de idade, por exemplo, podem levar a um alargamento $\Delta E(B-V)$ da Sequência Principal de até 0,11 mag, como ilustrado na Figura 1.4. Alargamentos maiores que esse seriam então causados pela ocorrência de variação na extinção.

Mais recentemente, Yadav e Sagar (2001) estudaram a extinção variável numa amostra de 14 aglomerados jovens. Foram avaliadas a distribuição espacial do excesso de cor em cada aglomerado e sua dependência com a luminosidade e tipo espectral dos membros, o que pode indicar se essas estrelas ainda mantém algum material circunstelar. Além disso foi verificada a relação entre a variação da extinção e a idade dos aglomerados, indicando uma maior variação da extinção em aglomerados mais jovens.

Na literatura podem ser encontrados outros diversos estudos de aglomerados estelares jovens onde a determinação da extinção é vista como um passo importante no estudo do conteúdo estelar e na determinação de parâmetros do aglomerado. Dois exemplos são os

Figura 1.4: Descrição esquemática de como é medida a dispersão $\Delta E(B-V)$. Adaptado de Burki (1975).

trabalhos de Sung et al. (2000) e Baume et al. (1999).

Sung et al. (2000) realizaram um estudo do aglomerado NGC6530, a seleção de membros, determinação da distância e da distribuição de massa do aglomerado foram feitas a partir da localização das estrelas em diagramas construídos a partir de fotometria UBVRI e H α . Para posicionar corretamente as estrelas nos diagramas, foi feita uma estimativa dos excessos de cor na direção do aglomerado utilizando um diagrama cor-cor (U-B) × (B-V). Os autores afirmam que a análise de dados UBV em geral não é suficiente, sendo assim calcularam E(B-V) e E(V-I) individualmente para as estrelas do aglomerado com tipo espectral conhecido. A partir da relação entre os dois excessos foram encontrados valores de R_V que variam desde $R_V = 3$ até valores mais elevados, sugerindo que a lei de extinção para este aglomerado é anômala e variável.

Visando descrever a estrutura de NGC 6231, Baume et al. (1999) obtiveram fotometria UBVI para o aglomerado e investigaram a pertinência de membros, extinção, idade e distância através da análise da luminosidade e distribuição de massa para os membros mais massivos. Para realizar o estudo da extinção, determinaram a relação entre os excessos E(U - B)/E(B - V) a partir dos tipos espectrais de algumas das estrelas observadas. Construíram um diagrama cor-cor (U-B) × (B-V) conseguindo, assim como nos trabalhos citados anteriormente, uma estimativa do excesso de cor na direção do aglomerado. O valor de R_V foi determinado de forma individual pela relação E(V - I)/E(B - V) encontrada para cada estrela do aglomerado. O resultado obtido foi compatível com o esperado para uma lei de extinção normal e foi adotado $R_V = 3, 2$.

Podemos encontrar duas principais fontes de recursos para o estudo de aglomerados estelares jovens na literatura: (i) o banco de dados *online* WEBDA (disponível em: www.univie.ac.at/webda/navigation.html) e (ii) o catálogo DAML02 (disponível em: www.astro.iag.usp.br/~wilton) publicado por Dias et al. (2002) juntamente com as compilações organizadas por Wilton Dias e colaboradores: *Tables of membership and mean proper motions for open clusters* publicadas por Dias et al. (2006) baseada no catálogo UCAC2 e Dias et al. (2001, 2002) baseada no TYCHO2.

O banco de dados WEBDA tem como objetivo reunir toda informação publicada na literatura sobre aglomerados abertos. É possível encontrar dados para mais de 1000 aglomerados, os quais consistem de fotometria em bandas nas quais o aglomerado foi observado, medidas astrométricas e espectroscopia, sendo sempre acompanhados da bibliografia para todos os aglomerados. Além disso também está disponível uma ferramenta para construção de diagramas cor-cor ou cor-magnitude, utilizando o conteúdo do bando de dados, e extensa bibliografia para cada aglomerado. Cada aglomerado é apresentado numa página onde é possível acessar, por meio de *links*, qualquer dado ou ferramenta que se queira utilizar.

No catálogo DAML02 podem ser encontradas informações para 1629 aglomerados, de acordo com os autores. Entre os dados disponíveis estão o diâmetro aparente para 99% dos aglomerados e distância, idade e E(B-V) para 38% dos aglomerados. Nas *Tables of membership and mean proper motions for open clusters* é possível encontrar para cada aglomerado a coordenada de estrelas observadas e dados de movimento próprio utilizados para determinar a probabilidade da estrela ser pertencente ao aglomerado, a qual também é apresentada nas tabelas, além disso estão disponíveis as magnitudes J, H e K obtidas do catálogo 2MASS.

Apresentamos a estrutura desta dissertação da seguinte forma: no Capítulo 2 é descrita a amostra, com detalhes e informações a respeito de cada objeto estudado. Os Capítulos 3 e 4 são dedicados aos diferentes métodos que adotamos para determinar o avermelhamento na direção dos aglomerados, bem como a avaliação da lei de extinção em cada caso. Analisamos e discutimos nossos resultados no Capítulo 5, enquanto que o último capítulo é reservado para apresentar um resumo de nossas conclusões e perspectivas de continuidade do trabalho. É importante ressaltar que em alguns casos optamos por adotar os acrônimos mais usuais da literatura, no lugar de traduzí-los. Por exemplo: ZAMS (do inglês Zero Age Main Sequence) para Idade Zero da Sequência Principal, ou TCD (do inglês Two Colours Diagram) para os diagramas de duas cores, entre outros.

Descrição da Amostra

Para melhor entender a variação da lei de extinção na direção de aglomerados jovens, que discutiremos no Capítulo 3, foi necessário realizar um levantamento dos objetos mais adequados para nosso estudo. Com base nos catálogos disponíveis na literatura, buscamos selecionar uma amostra contendo tanto aglomerados localizados em regiões em que a extinção é considerada normal, como alguns candidatos com indícios de sofrerem extinção anômala, ou variável.

Neste capítulo descrevemos os procedimentos para a seleção e a priorização dos melhores candidatos a serem estudados (Sec. 2.1); apresentamos os critérios utilizados para identificação dos membros de cada aglomerado, para os quais foi elaborada uma base de dados (Sec. 2.2); e finalmente discutimos a distribuição espacial das candidatas selecionadas e sua probabilidade de pertencer ao aglomerado, visando avaliar se ocorrem concentrações preferenciais. Uma distribuição espacial mais concentrada poderia indicar uma separação mais clara entre membros e estrelas de campo (Sec. 2.3). Apresentamos uma descrição individual de cada um dos aglomerados selecionados, contendo informações encontradas na literatura (Sec 2.4) e comparamos a localização desses aglomerados com a de nuvens escuras (Sec. 2.5) utilizando os mapas de Dobashi et al. (2005).

2.1 Seleção de Aglomerados

Com o objetivo de criar uma base de dados o mais completa possível, buscamos selecionar aglomerados jovens que tivessem dados disponíveis para seus membros tanto no banco de dados WEBDA, que fornece fotometria óptica e tipos espectrais, como nas listas de probabilidades de pertencer ao aglomerado, dadas por movimentos próprios de DAML02. A partir do catálogo de DAML02, selecionamos todos os aglomerados com idades até 30 milhões de anos e distâncias de até cerca de 2kpc (esperando que nesses casos haja uma melhor qualidade e maior quantidade de dados observacionais). Avaliamos então a disponibilidade de informações sobre esses aglomerados no banco de dados WEBDA, selecionando aglomerados que possuíssem fotometria UBVRI e dados de tipo espectral para pelo menos 10 estrelas.

Com isso, produzimos uma amostra preliminar contendo 14 aglomerados, apresentada na Tabela 2.1, onde são dados o nome do aglomerado; as coordenadas de seu centro; estimativa da distância; o tamanho angular; o excesso de cor e uma estimativa da idade.

Aglomerado	AR J2000		DE J2000		diam (arcmin)	d (pc)	E(B-V) (mag)	Idade (10^6 anos)		
NGC 2264	06	40	58	+09	53	42	39	667	0.05	89
NGC 6531	18	04	13	-22	29	24	14	1205	0.28	11.7
NGC 6231	16	54	10	-41	49	30	14	1243	0.44	6.9
NGC 6530	18	04	31	-24	21	30	14	1330	0.33	7.4
NGC 1960	05	36	18	34	08	24	10	1330	0.22	25.1
NGC 2362	07	18	41	-24	57	18	5	1480	0.10	5.0
Trumpler 15	10	44	43	-59	22	00	14	1853	0.43	8.5
NGC 4755	12	53	39	-60	21	42	10	1976	0.39	16.6
Berkeley 86	20	20	24	+38	42	00	6	1112	0.90	13.2
NGC 2467	07	-0 52	26	-26	26	12	14	1355	0.34	12.6
NGC 2367	07	20	-06	-21	-0 52	54	5	1400	0.05	5.0
NGC 2244	06	31	55	+04	56	30	29	1445	0.46	7 9
NGC 6611	18	18	48	-13	48	24		1800	0.80	1.3
Pismis 20	15	15	23	-59	-10 04	00	4	2018	1,18	7,2

Tabela 2.1 - Amostra pré-selecionada de aglomerados.

Fizemos uma análise preliminar da nossa amostra construindo diagramas V-R e V-I × B-V através da ferramenta *General menu for Isochrone plots* disponível no banco de dados WEBDA. Com isso, detectamos a possível presença de extinção anômala ou variável nos seguintes aglomerados: Berkeley 86, NGC 2467, NGC 2367, NGC 2244, NGC 6611 e Pismis 20, enquanto os outros 8 aglomerados parecem sofrer uma extinção normal e constante. Um exemplo dessa seleção preliminar é mostrado na Figura 2.1, onde se comparam os diagramas fornecidos pela ferramenta do WEBDA para os aglomerados Berkeley 86 (provável extinção anômala ou variável) e NGC 2264 (extinção provavelmente normal).

Figura 2.1: Diagramas obtidos a partir do banco de dados WEBDA para os aglomerados Berkeley 86 (esquerda) e NGC 2264 (direita). As linhas vermelhas representam isócronas ajustadas pelo WEBDA a partir dos dados catalogados do aglomerado para distância, idade e excesso de cor.

2.2 Seleção de membros

Para gerar uma base de informações relevantes para as estrelas encontradas na direção dos aglomerados, foram extraídos do WEBDA três conjuntos separados de dados: (i) fotometria UBV; (ii) fotometria VI; e (iii) coordenadas equatoriais (J2000). Nos três conjuntos de dados, cada fonte possui um mesmo número de identificação e a indicação da referência de onde foi obtido cada dado. Selecionamos primeiramente estrelas para as quais fossem encontrados dados de fotometria UBV e VI provenientes de uma mesma referência e cruzamos os três grupos de dados utilizando um algoritmo que elaboramos para buscar as estrelas baseando-se em seu número de identificação, obtendo assim uma base de dados completa para um conjunto de estrelas na região de cada aglomerado. De acordo com Yadav e Sagar (2001) a correta identificação dos membros do aglomerado é de grande importância para a avaliação da extinção naquela direção e a seleção mais confiável é feita baseando-se em estudos cinemáticos (movimento próprio e velocidade radial). No catálogo DAML02 é possível encontrar uma lista de estrelas com dados de fotometria JHK obtida do catálogo 2MASS e também a probabilidade da estrela ser pertencente ao aglomerado, a qual é determinada a partir de seu movimento próprio.

Para identificar no catálogo DAML02 as estrelas contidas no conjunto de dados formado a partir do WEBDA, comparamos as coordenadas fornecidas pelos dois catálogos através de um algoritmo que calcula sua diferença para todas as fontes encontradas em ambos. Foram consideradas coincidentes as fontes com diferença menor que 5 segundos de arco entre as coordenadas.

A construção dessa base de informações restringiu nossa amostra com extinção possivelmente anômala ou variável a 2 aglomerados, para os quais após cruzar os dados em ambos os catálogos ainda restou uma quantidade de membros suficiente para uma análise estatística. Visando uma análise comparativa, selecionamos mais dois aglomerados entre aqueles com extinção provavelmente normal. A amostra final estudada é apresentada na Tabela 2.2, na qual é apresentado também as coordenadas galácticas do centro do aglomerado e o número de estrelas disponíveis na base de dados construída para cada aglomerado.

Aglomerado	l (graus)	b (graus)	Ν
NGC 2264	202,9	+02,2	179
NGC 6530	6,1	-01,3	24
Berkeley 86 *	76,7	+01,3	16
NGC 2244 *	206,3	-02,1	288

Tabela 2.2 - Amostra de aglomerados definitiva (Os dois aglomerados com possível extinção anômala são indicados por asteriscos).

Na Tabela 2.3 apresentamos, como exemplo, parte dos dados levantados para o aglome-

rado NGC 2244. O restante desta tabela e outras semelhantes para os demais aglomerados da amostra são apresentadas no Apêndice A. A Tabela 2.3 lista parte das fontes coincidentes nos catálogos do WEBDA, identificadas por N_W na primeira coluna, e na compilação de DAML02, numeradas por N_D na segunda coluna. As coordenadas J2000 dos objetos, fornecidas por DAML02, são dadas em graus nas colunas 3 e 4, e a respectiva diferença (Δ) com relação à coordenada fornecida pelo WEBDA é dada na coluna 5, em segundos de arco. Nota-se que apesar de adotarmos o limite de 5", para aceitar a coincidência de fontes, 95% dos objetos têm $\Delta \sim 1$ "ou menos. As colunas de 6 a 12 na Tabela 2.3 apresentam os dados de fotometria óptica e infravermelha, enquanto que a penúltima coluna indica a probabilidade de a estrela pertencer ao aglomerado. A última coluna mostra a distância do objeto até o centro do aglomerado, calculada com base nas coordenadas dadas na Tabela 2.1, que foram fornecidas por DAML02.

Tabela 2.3 - Lista parcial de dados do aglomerado NGC 2244 (a versão integral está apresentada na Tabela A.1).

N_W	N_D	AR (graus)	DE (graus)	d (arcsec)	V	B-V	U-B	V-I	J	Н	К	r (arcmin)	P (%)
		(graub)	(graus)	(uresee)								(aremin)	(70)
60	295	97,868	$5,\!100$	0,33	14,06	0,79	0,32	$0,\!89$	$12,\!54$	12,03	11,98	11,62	36
61	217	97,863	5,058	$0,\!65$	$13,\!93$	$0,\!54$	$0,\!10$	$0,\!64$	$12,\!80$	12,59	$12,\!52$	$9,\!87$	76
62	191	97,856	5,036	0,30	12,83	0,76	-0,16	1,07	10,98	10,71	$10,\!54$	9,29	71
63	181	97,849	5,021	$0,\!44$	14,11	$1,\!66$	1,75	$1,\!89$	$10,\!65$	9,82	9,55	$9,\!10$	14
65	162	97,849	5,004	$0,\!42$	12,80	$0,\!55$	0,02	$0,\!62$	$11,\!66$	11,41	$11,\!31$	8,62	22
68	132	97,853	4,970	$0,\!68$	14,29	$1,\!47$	$1,\!17$	1,73	$11,\!17$	$10,\!42$	$10,\!17$	7,74	0
69	90	97,879	4,970	0,28	12,87	$0,\!39$	$0,\!29$	$0,\!42$	$12,\!05$	11,91	11,81	6,24	59
70	85	97,878	4,956	$0,\!44$	12,41	$1,\!24$	0,88	1,33	10,04	9,46	9,29	6,09	73
72	108	97,868	4,922	0,37	$12,\!45$	$0,\!54$	0,06	$0,\!59$	$11,\!45$	$11,\!19$	$11,\!10$	6,78	45
74	96	97,874	4,914	0,37	12,41	0,32	-0,18	$0,\!45$	$11,\!45$	10,89	9,69	$6,\!50$	64
79	141	97,881	4,850	0,35	10,64	$0,\!19$	-0,59	$0,\!25$	10,30	10,29	10,24	8,04	64
80	138	97,890	4,844	0,37	9,35	$0,\!18$	-0,69	$0,\!24$	8,90	8,84	8,79	7,92	56
106	234	97,917	5,099	0,28	12,01	$0,\!90$	$0,\!27$	1,26	9,68	8,96	8,27	10,15	44
108	184	97,952	5,092	0,28	11,41	$0,\!22$	-0,14	0,32	10,82	10,76	10,76	9,20	44
109	205	97,923	5,092	0,24	13,72	$0,\!52$	0,31	$0,\!60$	$12,\!58$	$12,\!44$	12,32	9,61	79
110	153	97,966	5,081	0,27	10,78	$1,\!08$	0,76	$1,\!14$	8,81	8,32	8,14	8,40	38
111	151	97,959	5,078	0,20	$12,\!07$	$1,\!03$	0,88	1,00	10,32	9,83	9,72	8,28	53
112	139	97,961	5,073	0,46	$13,\!58$	$1,\!87$	$1,\!95$	$2,\!10$	9,84	8,90	8,63	$7,\!98$	61
113	117	97,975	5,062	$0,\!18$	$14,\!61$	$0,\!66$	$0,\!09$	0,78	$13,\!32$	$12,\!97$	12,93	$7,\!23$	54
114	75	97,969	5,033	0,25	$7,\!59$	$0,\!15$	-0,81	$0,\!24$	7,24	7,25	7,25	5,52	62
115	100	97,910	5,027	0,22	$7,\!95$	$0,\!11$	-0,75	$0,\!19$	$7,\!61$	$7,\!59$	$7,\!62$	$6,\!57$	60
2.2.1 Seleção de membros por meio de movimentos próprios

Para verificar a distribuição do número de estrelas em função da sua probabilidade de pertencer ao aglomerado (P%), construímos os histogramas apresentados na Figura 2.2.

Figura 2.2: Histograma da fração do número total de estrelas em função da probabilidade de as estrelas pertencerem ao aglomerado. Painel Superior: NGC 2264 (esquerda) e NGC 2244 (direita). Painel Inferior: Berkeley 86 (esquerda) e NGC 6530 (direita).

Em todos os histogramas verifica-se uma distribuição bimodal, indicando que a seleção de membros a partir do movimento próprio é eficiente para a distinção entre estrelas de

campo e membros do aglomerado e que a poluição por estrelas de campo deve ser reduzida se considerarmos apenas estrelas na faixa de maior probabilidade de serem membros, de acordo com o proposto por Yadav e Sagar (2001).

Desta forma, com base nos histogramas da Figura 2.2, adotamos a probabilidade mínima (P_{min}) a partir da qual consideramos a estrela como membro do aglomerado, indicada pelo mínimo do segundo pico no histograma (maiores P%). A análise da distribuição espacial dos objetos, em função de P% é discutida a seguir.

2.2.2 Distribuição espacial dos membros

Verificamos a variação espacial de P%, utilizando somente estrelas contidas no diâmetro fornecido por DAML02, conforme a Tabela 2.1. Nos gráficos da Figura 2.3, nos quais são indicados os limites P_{min} adotados em cada caso, vemos a distribuição de P% em função da distância em que se encontra a estrela com relação ao centro do aglomerado.

Uma concentração espacial de estrelas com valores maiores ou menores de P% permitiria restringir melhor a região ocupada pelos aglomerados, ou seja, indicar uma separação entre membros e estrelas de campo o que diminuiria ainda mais a poluição por estrelas não pertencentes ao aglomerado nos diagramas. Porém, em nenhum dos casos parece haver uma tendência de distribuição espacial de membros muito evidente, que nos permita identificar regiões de concentração preferencial. Assim, para a seleção de membros, vamos nos basear somente na probabilidade de pertinência dada pelos movimentos próprios.

Na Figura 2.4 apresentamos os gráficos em que se comparam as coordenadas dos objetos, fornecidas pelos dois catálogos avaliados. Podemos observar que, no caso do aglomerado NGC 2264, por exemplo, nem toda a sua região é coberta pelos dados do catálogo WEBDA e a amostra de estrelas a ser estudada nesse caso vai estar localizada predominantemente em regiões mais distantes do centro do aglomerado.

Como descrito anteriormente, foram selecionados no presente trabalho apenas os objetos com coordenadas coincidentes em ambos catálogos (símbolos sobrepostos na Figura 2.4), que no caso de NGC2264, por exemplo, ocorre para 174 objetos levando-nos a desprezar cerca de 70% dos objetos listados no WEBDA e 60% dos objetos da lista de DAML02.

Figura 2.3: Probabilidade da estrela pertencer ao aglomerado em função de sua distância ao centro adotado. A linha tracejada indica o valor de P_{min} em cada caso. Painel Superior: NGC 2264 (esquerda) e NGC 2244 (direita). Painel Inferior: Berkeley 86 (esquerda) e NGC 6530 (direita).

Figura 2.4: Sobreposição das coordenadas obtidas dos catálogos WEBDA (cruzes) e DAML02 (círculos e quadrados). Os quadrados representam estrelas com P% maior que P_{min} . Painel Superior: NGC 2264 (esquerda) e NGC 2244 (direita). Painel Inferior: Berkeley 86 (esquerda) e NGC 6530 (direita).

2.3 Comentários Individuais sobre os Aglomerados Estudados

Como pode ser visto na Figura 2.5, dois dos aglomerados estudados no presente trabalho, NGC2244 e 2264, pertencem às associações em Monoceros de estrelas OB e nebulosas de reflexão, chamadas Mon OB1 e Mon R1. NGC6530 está associado a M8, a Nebulosa da Lagoa, e Berkeley encontra-se na associação Cygnus OB1. Cada um desses aglomerados teve suas características compiladas e apresentadas em detalhes no *Handbook of Star Forming Regions*, editado por Bo Reipurth em 2008. Um resumo dos capítulos do livro dedicado a esses aglomerados é apresentado nesta seção, assim como os resultados recentes, disponíveis na literatura. A título de ilustração em grande escala dessas regiões, as Figuras 2.6 a 2.9 apresentam imagens contendo os aglomerados estudados no presente trabalho.

Figura 2.5: Imagem composta a partir dos fluxos medidos pelo IRAS em 25, 60 e 100 μ m, cobrindo 12,5° × 12,5° na região das associações Mon OB1 e Mon R1, que contêm o aglomerado estelar da nebulosa Rosette (NGC2244) e nebulosa do Cone (NGC 2264). Adaptado de Dahm (2008).

2.3.1 NGC 2264

A exemplo do aglomerado da Nebulosa de Orion, entre os objetos moderadamente distantes, NGC2264 é um dos aglomerados mais ricos em termos de abrangência da faixa de massas, apresentando uma bem definida pré-sequência principal (Dahm, 2008). Diversos surveys em H α e em raios-X revelaram a presença de cerca de 1000 membros. NGC2264 é visto projetado contra um complexo de nuvens moleculares que se estende por cerca de 2° × 2° e se encontra a cerca de 40' ao norte da Nebulosa do Cone, mostrada na Figura 2.6.

Figura 2.6: Imagem óptica da Nebulosa do Cone, região que contém o aglomerado NGC2264, cortesia de T.A. Rector (NRAO/AUI/NSF e NOAO/AURA/NSF) & B.A. Wolpa (NOAO/AURA/NSF).

A população estelar é dominada por S Mon (O7 V) e dezenas de estrelas do tipo B da sequência principal de idade zero. As maiores concentrações de objetos estão ao redor de S Mon e na Nebulosa do Cone. A estimativa média de idade é de 3 milhões de anos, mas com dispersão até 5×10^6 anos. A distância mais aceita atualmente é d ~ 760pc (Sung et al., 1997) e seu tamanho linear projetado é de 28 pc. O avermelhamento interestelar é bastante baixo, de acordo com resultados de Walker (1954), que fornece $A_V=0,25$ obtido de E(B-V)=0,082 e $R_V=3,08$, considerado normal. Valores semelhantes foram encontrados por outros autores, como E(B-V)=0,061, por Pérez et al. (1987), e $E(B-V)=0,071\pm0,033$, por Sung et al. (1997). Mais recentemente, Rebull et al. (2002) determinaram $E(B-V)=0,146\pm0,03$ e $A_V=0,45$ a partir de um estudo espectroscópico de mais de 400 estrelas. Dahm e Simon

(2005) determinaram $A_V=2,43$ E(V-I_c)=0,71 mag para um grupo de estrelas de baixa massa, que podem conter material circunstelar ou devem estar embebidas.

Dahm (2008) argumenta que uma extinção média, deduzida a partir da população OB presumivelmente da sequência principal, possuindo cores intrínsecas bem determinadas, deve melhor representar o avermelhamento interestelar causado no aglomerado. Uma compilação de diversos trabalhos da literatura mostra variações de 0,061 < E(B-V) < 0,15para NGC2264.

2.3.2 NGC 2244

A nebulosa de Rosette consiste de um interessante cenário de formação estelar, no qual uma região HII em expansão gerada por uma grande associação de estrelas OB, que formam o aglomerado NGC2244, está em interação com uma nuvem molecular gigante (Román-Zúñiga e Lada, 2008). Os membros estudados por nós encontram-se no centro da nebulosa Rosette, como pode ser visto na Figura 2.7.

Figura 2.7: Imagem óptica da Nebulosa Rosette no centro da qual se encontra embebido o aglomerado NGC2244, adaptada de Robert Gendler (2006, Universe a Seasonal Guide to Viewing the Cosmos).

Trata-se de uma proeminente associação OB com cerca de 70 estrelas massivas, que provavelmente são responsáveis pela evacuação do gás na parte central da nebulosa. Várias estimativas de distância são encontradas na literatura, variando entre 1600 e 1700pc. Os primeiros estudos fotométricos ópticos, realizados por Johnson (1962), resultaram em uma estimativa de excesso de cor para o aglomerado de E(B-V)=0,46, adotando-se $R_V=3,0$, que veio a ser confirmado mais tarde por Turner (1976) e Ogura e Ishida (1981). Estes últimos utilizaram $R_V=3,2\pm0,15$ e sugeriram uma idade de 4±1 milhões de anos. Um valor anômalo de R_V foi verificado para alguns membros, por Pérez et al. (1987), que sugeriram a coexistência de estrelas da sequência principal juntamente com objetos présequência principal (PSP). Posteriormente, baseados em fotometria em H α , Park e Sung (2002) estenderam para 21 o número de estrelas PSP entre os membros de NGC2244.

No infravermelho próximo, Li (2005), baseado em dados 2MASS, e Román-Zúñiga et al. (2008) a partir de um *survey* com o Flamingos, verificaram uma estrutura secundária localizada a cerca de 6,6pc a oeste do núcleo (*core*) principal de NGC2244. Fontes de raios-X detectadas pelo ROSAT foram estudadas por Gregorio-Hetem et al. (1998), que sugeriram se tratar de estrelas PSP de baixa massa e de massa intermediária. Esse resultado foi confirmado por meio de espectroscopia de baixa resolução, por Li et al. (2002). Mais recentemente, estudos em raios-X utilizando o satélite Chandra, realizados por Townsley et al. (2003) e Wang et al. (2008) revelaram cerca de 800 fontes com características de estrelas jovens. As contrapartidas infravermelhas dessas fontes foram avaliadas revelando uma função de massa inicial de Salpeter normal.

2.3.3 Berkeley 86

As características do aglomerado Berkeley 86 encontram-se resumidas no trabalho de Reipurth e Schneider (2008), em uma compilação sobre a formação estelar e aglomerados jovens na associação Cygnus OB1. Este aglomerado em particular é pequeno, e o primeiro trabalho revelando sua juventude, em função da descoberta da presença de estrelas O foi apresentado por Sanduleak (1974), embora o aglomerado seja conhecido desde o trabalho de Setteducati e Weaver (1962).

Medidas mais recentes da distância indicam 1585 ± 160 pc (Bhavya et al., 2007). As estimativas de idade apresentam-se nas faixas de: $2-3\times10^6$ anos (Massey et al. 1995), 6×10^6 anos (Deeg e Ninkov, 1996), $8\pm5\times10^6$ anos (Delgado et al., 1997). Vallenari et al. (1999) utilizaram fotometria no infravermelho próximo para identificar várias possíveis estrelas PSP. Segundo Bhavya et al. (2007), o aglomerado passou por um processo pouco intenso de formação estelar há cerca de 5×10^6 anos, porém no último milhão de anos esse processo tem sido muito mais vigoroso.

Schneider et al. (2007) realizaram e um estudo da distribuição de gás e poeira, na região

Figura 2.8: Imagem óptica do aglomerado Berkeley 86. Extraída do banco de dados DSS(R) - Digital Sky Survey.

de nuvens moleculares conhecida como Cygnus X, que sofre a influência de radiação UV da associação OB1. Esse estudo foi baseado na comparação entre o mapa no infravermelho médio do MSX, em 8,3 μ m, e medidas da linha de CO. Nesse mapa, Berkeley 86 se mostra isolado, localizado em uma região totalmente livre da presença de gás e poeira, indicando baixos níveis de extinção esperados para esse aglomerado. Yadav e Sagar (2001) afirmam que o aglomerado tem avermelhamento variável na faixa 0,24 < E(B-V) < 1,01.

2.3.4 NGC 6530

No estudo realizado por Tothill et al. (2008) da Nebulosa da Lagoa, vista na Figura 2.9, e suas vizinhanças, o principal destaque é dado a NGC 6530, um aglomerado estelar de idade da ordem de 3×10^6 anos, associado a uma região HII que se situa a cerca de 1300 ± 100 pc.

Apesar de se encontrar em uma linha de visada que contém uma grande concentração de gás, NGC6530 está desacoplado da nuvem molecular e os membros do aglomerado parecem não estar muito embebidos. Por outro lado, estudos ópticos indicam um importante avermelhamento variável na direção das estrelas, mostrando a presença de material interestelar na frente do aglomerado. Há indícios, a partir de medidas do gás em expansão (McCall et al., 1990), de que NGC6530 se encontre dentro da cavidade da região HII, porém esse resultado é baseado nos espectros UV de 4 estrelas OB e 3 delas têm probabilidade menor

Figura 2.9: Imagem óptica da Nebulosa da Lagoa (M8) e a região demarcada contendo o aglomerado NGC6530. Cortesia de Henri Boffin (2009, GigaGalaxy Zoom Project, ESO).

que 40% de pertencer ao aglomerado.

Estimativas do excesso de cor variam desde 0,17 até 0,37, com valor médio de E(B-V) = 0,33±0,01 (Mayne e Naylor, 2008). A razão de extinção total para seletiva está na faixa de $R_V = 3,0 - 4,6$. Além disso, valores anômalos têm sido encontrados em casos individuais, como a estrela HD164740 por exemplo, membro do aglomerado, para a qual Fitzpatrick & Massa (2009) sugerem E(B-V) = 0,86 e 5,2 < $R_V < 6,1$.

Lada et al. (1976) propuseram que o aglomerado foi formado a partir de uma nuvem molecular massiva pré-existente, que teria gerado as primeiras estrelas quentes que ionizaram a região e criaram a cavidade. Lightfoot et al. (1984) sugerem mais duas gerações subsequentes de estrelas, induzidas pelo primeiro grupo de estrelas quentes. Um estudo em multi-comprimentos de onda do cenário de formação estelar em NGC6530 foi realizado por van den Ancker et al. (1997), revelando que o processo se iniciou há alguns 10⁷ anos e provavelmente continua em andamento ainda hoje, formando estrelas de menor massa. Eles também encontraram uma lei de extinção normal para a região intra-aglomerado, porém confirmam valores anômalos para algumas das estrelas embebidas.

2.4 Comparação com a Distribuição de Nuvens Interestelares

Com o objetivo de comparar a posição dos aglomerados estudados no presente trabalho, com relação à distribuição galáctica de nuvens moleculares, extraímos do Catálogo de Nuvens Escuras de Dobashi et al. (2005) os mapas de extinção visual das regiões que contêm nossos objetos de estudo.

A Figura 2.10 apresenta o mapa de A_V para uma região de 5° x 5°, contendo os aglomerados NGC2244 e NGC2264. Diferentes níveis de cinza indicam a escala de extinção variando de 0,1 (mais claro) até $A_V \sim 4$ mag. No canto esquerdo inferior nota-se a região ionizada da nebulosa de Rosette, no centro da qual encontra-se o aglomerado NGC2244. Os níveis de extinção encontrados por Dobashi et al. (2005) nessa região variam entre 0 e 1,8 mag, sendo que no centro do aglomerado é 0,38 mag. É possível que os valores de A_V nessa área do mapa estejam subestimados, por se tratar de uma região de alto brilho na faixa do infravermelho distante, como pode ser verificado na Figura 2.5. Por outro lado, os valores de A_V são bem mais elevados, variando de 0,95 a 3,7 mag, na região superior a direita da Figura 2.10, onde se encontra o aglomerado NGC2264. No centro desse aglomerado é encontrado $A_V=2,3$ mag, porém nota-se uma estrutura filamentária na nuvem, indicando possíveis variações em função da distância ao centro.

Figura 2.10: Mapa de extinção visual extraído de Dobashi et al. (2005) para os aglomerados NGC2244 (abaixo à esquerda) e NGC2264 (acima à direita). O centro do aglomerado é indicado por uma cruz vermelha, delimitado por uma área definida pelo diâmetro do aglomerado (círculo vermelho), que é cerca de 30' nesses casos. Os contornos em verde indicam níveis de A_V de 0,5, 1,5 e 3,0 mag.

Na Figura 2.11 são mostrados os mapas de A_V para os outros dois aglomerados estu-

dados no presente trabalho. Para NGC 6530 o valor da extinção medido no centro é de 3,24 e as variações são de 3,2 a 4 mag. No caso de Berkeley 86, $A_V=1,9$ no centro e os desvios em toda a área do aglomerado são de apenas $\pm 0,1$ mag.

Figura 2.11: Idem à Figura 2.10: Berkeley 86 (esquerda), A_V variando de 1,5 a 3,5mag, e NGC6530 (direita), com extinção entre 2,5 e 4,5, com passos de 0,5 mag em ambos os casos.

Estudo de anomalias na Lei de Extinção

A determinação da Lei de Extinção para os aglomerados consiste no cálculo do valor da razão entre a extinção total e a seletiva (R_V). Dois métodos foram adotados para estimar R_V , um deles sendo a partir da análise de TCDs e, em casos em que há disponibilidade de dados, através do excesso de cor individual das estrelas. Uma vez conhecida a Lei de Extinção, poderemos avaliar as possíveis variações espaciais do valor de R_V e do excesso de cor, o que pode nos revelar a distribuição de poeira no interior dos aglomerados.

Neste Capítulo descrevemos ambas as metodologias adotadas para a estimativa de R_V , apresentamos os resultados obtidos por meio da análise de TCDs (Sec. 3.1) e também calculados por expressões que relacionam o excesso de cor em diferentes bandas (Sec. 3.2).

3.1 Estimativa de R_V a partir da análise de TCDs

Para o aglomerado como um todo, podemos comparar nos TCDs a posição dos membros com relação às estrelas de campo, o que deve resultar em distribuições claramente separadas no caso de extinção anômala. Com a análise dos TCDs iremos determinar o valor de R_V a partir da expressão sugerida por Pandey et al. (2000):

$$R_{aglom} = \frac{a_{aglom}}{a_{normal}} R_{normal} \tag{3.1}$$

onde a_{aglom} é a inclinação da reta ajustada para estrelas do aglomerado, a_{normal} é a inclinação da reta ajustada para estrelas de campo e R_{normal} é o valor usual para uma lei de extinção normal, $R_V = 3.1$ (Savage & Mathis, 1979).

No presente trabalho utilizamos as bandas I, J, H e K para a construção dos TCDs e adotamos os seguintes valores de inclinação para lei de extinção normal: $(1,09 \pm 0,02)$,

 $(1,87 \pm 0,03)$, $(2,42 \pm 0,03)$ e $(2,51 \pm 0,04)$ para os diagramas (V-I), (V-J), (V-H), (V-K) versus (B-V), respectivamente, de acordo com a inclinação encontrada para a curva formada pelas cores intrínsecas dadas pelo modelo de Siess et al. (2000), o que pode ser observado na Figura 3.1. Para o ajuste foram desconsiderados os pontos com (B-V) > 1, tendo em vista o desvio da linearidade desses pontos.

Figura 3.1: TCDs para cores intrínsecas de Siess et al. (2000), a linha tracejada é o ajuste linear que representa a extinção normal em cada banda.

Nas Figuras 3.2 a 3.5 são apresentados os TCDs construídos para os aglomerados da amostra, os ajustes foram feitos somente para estrelas com alta probabilidade de pertencer ao aglomerado, e para pontos com (B-V) < 1. Para comparação, também são apresentadas nessas figuras as retas com inclinação para uma lei de avermelhamento normal. O resultado dos ajustes obtidos para cada aglomerado pode ser encontrado na Tabela 3.1 onde para cada TCD são apresentados a inclinação da reta ajustada e o valor de R_V obtido a partir da equação (3.1) acompanhado de sua respectiva incerteza σR_V .

Aglomerado	V-I × B-V		$V-J \times B-V$		V-H \times B-V			$V-K \times B-V$				
	a_{aglom}	\mathbf{R}_V	$\sigma \mathbf{R}_V$	a_{aglom}	\mathbf{R}_V	$\sigma \mathbf{R}_V$	a_{aglom}	\mathbf{R}_V	$\sigma \mathbf{R}_V$	a_{aglom}	\mathbf{R}_V	$\sigma \mathbf{R}_V$
NGC 2244	1,14	3,22	$0,\!11$	2,02	$3,\!36$	$0,\!13$	2,49	$3,\!19$	0,10	2,54	$3,\!13$	0,22
NGC 2264	1,04	2,94	$0,\!20$	$1,\!91$	3,17	0,08	2,39	$3,\!07$	0,08	2,50	3,09	$0,\!11$
NGC 6530	$1,\!59$	4,49	$0,\!14$	3,45	5,73	$0,\!38$	4,31	5,52	$0,\!19$	5,01	$6,\!19$	0,32
Berkeley 86	1,20	3,39	0,11	1,98	3,29	0,11	2,24	$2,\!87$	$0,\!10$	2,41	2,98	0,10

Tabela 3.1 - Resultados obtidos através dos TCDs.

E interessante notar a semelhança de resultados que encontramos para NGC 2244 com inclinações que Jose et al. (2008) determinaram a partir do ajuste linear dos dados do aglomerado Stock 8, nos TCDs em I, J, H e K, que resultaram em um R_V médio de $3,1\pm0,1$.

Dentro das barras de erro, verifica-se uma boa concordância dos valores de R_V encontrados nas diversas bandas, exceto para NGC 6530. Neste caso, R_V varia desde 4,49 até 6,19.

Considerando a maior diferença nos valores encontrados entre os valores de R_V calculados utilizando as bandas I e K, buscamos verificar possíveis desvios causados por diferenças entre sistemas fotométricos. Carpenter (2001) apresenta as equações de transformação entre os dados do 2MASS e o sistema utilizado por Bessell e Brett (1988), os mesmos adotados no presente trabalho. Realizamos um teste sobre os dados 2MASS do aglomerado NGC2244, aplicando as transformações propostas por Carpenter (2001). Verificamos que as diferenças são menores que: 2% na magnitude J, 0,2% em H, e 0,6% em K. Em todos os casos essas diferenças estão abaixo das barras de erro encontradas nos ajustes dos TCDs dos aglomerados estudados por nós, indicando que não ocorrem desvios causados pelas diferenças entre os sistemas fotométricos nessa análise.

Concluímos que, ao contrário do que se esperava pela pré-seleção, os aglomerados Berkeley 86 e NGC 2244 apresentam R_V normal, enquanto NGC 6530 pode apresentar extinção anômala.

Figura 3.2: TCDs para o aglomerado NGC 2264, a linha contínua representa a extinção normal, a linha tracejada é o ajuste linear para os membros do aglomerado.

Figura 3.3: TCDs para o aglomerado NGC 2244, a linha contínua representa a extinção normal, a linha tracejada é o ajuste linear para os membros do aglomerado.

Figura 3.4: TCDs para o aglomerado Berkeley 86, a linha contínua representa a extinção normal, a linha tracejada é o ajuste linear para os membros do aglomerado.

Figura 3.5: TCDs para o aglomerado NGC 6530, a linha contínua representa a extinção normal, a linha tracejada é o ajuste linear para os membros do aglomerado.

3.2 Cálculo de R_V através de relações entre excessos de cor

Uma outra forma para se determinar o valor de R_V é calculá-lo individualmente para estrelas do aglomerado que possuem tipo espectral conhecido, o que permite determinar seu excesso de cor.

Para obter o excesso de cor das estrelas precisamos primeiramente determinar sua cor intrínseca, para isso iremos utilizar as tabelas dadas por Bessel et al. (1998) em que são fornecidas cores intrínsecas em função da gravidade superficial e temperatura efetiva da estrela. Esses dois valores podem ser estimados através de tabelas dadas por Straizys e Kuriliene (1981) e por de Jager e Nieuwenhuijzen (1987) que fornecem, respectivamente, gravidade superficial e temperatura efetiva em função do tipo espectral. As tabelas utilizadas são apresentadas no Apêndice B, o valor do logaritmo da gravidade superficial é de aproximadamente 4 para todas as estrelas.

Vamos calcular o valor de R_V a partir dos excessos E(V-I) e E(V-K), para isso vamos utilizar as expressões:

$$R_V = 2,45 \frac{E(V-I)}{E(B-V)};$$
 (Guetter e Vrba, 1989) (3.2)

$$R_V = 1, 10 \frac{E(V - K)}{E(B - V)};$$
 (Steenman e The, 1991) (3.3)

Os excessos de cor são dados por:

$$E(U - B) = (U - B) - (U - B)_0$$
$$E(B - V) = (B - V) - (B - V)_0$$
$$E(V - I) = (V - I) - (V - I)_0$$
$$E(V - K) = (V - K) - (V - K)_0$$

onde o índice 0 representa a cor intrínseca da estrela.

Nas Tabelas 3.2 a 3.5 são apresentados os resultados obtidos para estrelas com probabilidade maior que P_{min} , para as quais haviam disponíveis informações de tipo espectral. Na primeira coluna é dado o número de identificação da estrela no catálogo WEBDA, nas últimas 3 colunas encontramos os valores da razão $\frac{E(U-B)}{E(B-V)}$, que deve representar a Lei de Extinção no aglomerado, e os valores de R_V calculados a partir das expressões (3.2) e (3.3), respectivamente.

Tabela 3.2 - Excessos de cor e valores de R_V calculados para estrelas do aglomerado NGC 2264.

N_W	\mathbf{ST}	E(U-B)	E(B-V)	E(V-I)	E(V-K)	E(U-B)/E(B-V)	\mathbf{R}_V	\mathbf{R}_V
43	A7 III	0.14	0.01	0.05	0.15	13.90	12.50	16.17
46	A5 III	0.08	0.13	0.31	1.36	0.57	5.63	11.14
50	B25 V	0.14	0.05	0.13	0.15	2.65	6.39	3 28
88	B20 V	0.17	0.10	0.19	0.69	1,67	4 55	7 27
90	B4 V	0.57	0.33	0.50	3 90	1 74	3 72	13 13
100	A2 IV	0.12	0.16	0,30	1.60	0.77	4 76	11.37
104	A5 IV	0.12	0.17	0.29	0.52	0.70	4 10	3 31
107	B7 V	-0.04	0.07	0.10	0.18	-0.51	3 33	2.88
100	B6 V	0.00	0.03	0.03	0.05	0.14	2 70	2,00
110		0,00	0.01	0,03	0,00	6.54	6 78	1 10
114	AU V	-0,09	0,01	0,04	1,20	-0,54	0,70	1,10
134		0,31	0,26	0,35	1,30	1,18	3,23	5,42
137	B8 V	-0,09	0,02	0,07	0,21	-4,24	8,52	10,79
142	B6 V	-0,02	0,03	0,07	0,21	-0,74	6,44	8,60
151	F5 V	0,09	0,07	0,09	0,27	1,24	3,21	$4,\!12$
158	F0 V	0,21	0,08	$0,\!15$	0,77	2,73	4,77	$11,\!25$
159	A0 V	$0,\!04$	0,07	$0,\!16$	0,55	0,57	$5,\!54$	8,77
164	G8 V	0,03	0,08	$0,\!19$	$1,\!17$	0,40	5,49	$15,\!49$
187	B8 V	-0,10	0,07	$0,\!01$	0,01	-1,41	0,36	0,16
190	G0 V	0,05	0,03	0,08	$0,\!19$	1,52	$6,\!40$	$6,\!60$
206	B7 V	0,05	0,00	0,14	$0,\!10$	-13,50	-88,20	-27,22
222	A3 IV	$0,\!11$	0,11	0,19	0,32	0,99	4,16	$3,\!14$
226	A3 III	0,10	0,10	$0,\!12$	0,20	0,97	2,96	$2,\!18$
228	F0 V	0,10	0,07	0,06	0,18	1,45	2,19	2,96
411	G8 V	0,06	0,11	0,23	$0,\!62$	0,57	5,06	$6,\!18$

N_W	ST	E(U-B)	E(B-V)	E(V-I)	E(V-K)	E(U-B)/E(B-V)	\mathbf{R}_V	\mathbf{R}_V
79	B2 V	0,26	0,41	$0,\!47$	1,07	0,63	$2,\!81$	$2,\!91$
80	B0.5 V	$0,\!34$	0,44	0,53	$1,\!41$	0,77	$2,\!94$	$3,\!53$
114	O8.5 V	0,33	$0,\!44$	$0,\!54$	$1,\!27$	0,74	$3,\!00$	3,16
115	B0 V	0,32	$0,\!39$	$0,\!49$	$1,\!22$	0,82	$3,\!08$	$3,\!46$
127	A2 V	0,03	0,04	$0,\!05$	0,20	0,85	3,06	5,44
128	B1 V N	0,26	$0,\!40$	0,52	$1,\!25$	0,67	3,25	$3,\!48$
130	B2.5 V	0,35	$0,\!46$	0,60	$1,\!39$	0,75	$3,\!18$	$3,\!30$
167	B3 V	$0,\!17$	$0,\!40$	$0,\!49$	$1,\!22$	0,43	$3,\!00$	$3,\!34$
172	B2.5 V	$0,\!38$	$0,\!51$	$0,\!61$	$1,\!43$	0,73	$2,\!92$	$3,\!05$
180	O9 V	0,37	$0,\!45$	0,53	$1,\!42$	0,82	$2,\!90$	3,45
190	B2 V N	0,41	$0,\!49$	$0,\!58$	$1,\!38$	0,84	$2,\!89$	3,10
193	B2 V	$0,\!27$	$0,\!46$	0,52	$1,\!30$	0,60	$2,\!80$	3,13
194	B6 V N E	$0,\!27$	$0,\!45$	0,60	$1,\!43$	$0,\!59$	3,26	$3,\!48$
200	B0.5 V	0,31	$0,\!43$	$0,\!54$	$1,\!27$	0,72	3,11	3,27
201	B1 V	0,26	$0,\!41$	$0,\!48$	$1,\!13$	0,63	$2,\!88$	$3,\!05$
239	B7 V	$0,\!13$	$0,\!41$	0,52	$1,\!12$	0,31	3,10	$2,\!99$
241	B8 V	0,04	$0,\!37$	$0,\!48$	$0,\!98$	0,10	$3,\!18$	$2,\!91$
253	B3 V P	$0,\!48$	$0,\!53$	$0,\!65$	2,05	0,90	$3,\!01$	4,29
274	B2.5 V	0,31	$0,\!52$	$0,\!61$	$1,\!46$	0,61	$2,\!89$	3,12

Tabela 3.3 - Excessos de cor e valores de R_V calculados para estrelas do aglomerado NGC 2244.

=

Tabela 3.4 - Excessos de cor e valores de R_V calculados para estrelas do aglomerado Berkeley 86.

N _W	ST	E(U-B)	E(B-V)	E(V-I)	E(V-K)	E(U-B)/E(B-V)	\mathbf{R}_V	\mathbf{R}_V
1	O9.5 V	0,92	1,04	1,24	2,67	0,88	2,90	2,82
2	B1 V	0,77	0,93	1,11	2,34	0,82	$2,\!90$	2,76
6	B2 V	0,77	0,96	$1,\!24$	$2,\!54$	0,80	3,17	$2,\!91$

N_W	ST	E(U-B)	E(B-V)	E(V-I)	E(V-K)	E(U-B)/E(B-V)	\mathbf{R}_V	\mathbf{R}_V
60	B1 V	0.31	0.36	0.46	1 17	0.84	3.08	3 54
61	B2 V	0.23	0.34	0.43	1,10	0.67	3.13	3.58
66	B2 V	0.20	0.33	0.43	1,10	0.60	3.22	3.69
70	B2 V	0,24	0,37	0,52	1,28	0,64	3,47	3,82
73	B2 IV	0,16	0,31	0,41	1,03	0,52	3,30	3,71
76	B2.5 V	0,11	0,28	0,32	0,92	0,40	2,81	$3,\!65$
80	B1 V	0,21	0,31	0,44	1,14	0,66	$3,\!41$	4,00
83	B2.5 V	0,24	0,33	0,40	1,18	0,73	2,98	3,96

Tabela 3.5 - Excessos de cor e valores de R_V calculados para estrelas do aglomerado NGC 6530.

Na Tabela 3.2 verifica-se para uma grande parte da amostra valores aberrantes nos excessos de cores E(U-B) e E(B-V), que podem estar relacionados com problemas na estimativa da cor intrínseca, por incertezas no tipo espectral, ou então na fotometria UBV em uma ou mais bandas. A estrela com $N_W = 158$, por exemplo, é encontrada no catálogo WEBDA classificada como tipo espectral F0, uma busca no *SIMBAD Astronomical Database* (disponível em: http://simbad.u-strasbg.fr/simbad/) revelou uma estrela de tipo espectral B8 na sua posição, neste caso, a correção de suas cores intrínsecas resultaria em $R_V = 3,04$. Além disso, uma quantidade de membros de tipo A a G é encontrada nessa amostra, indicando que o método pode não ser adequado para esse aglomerado, já que elas podem não ser tão bem representadas pela lei de extinção adotada quanto estrelas de tipo O e B (Fitzgerald, 1970).

De acordo com Hillenbrand et al. (1993), a faixa de valores aceitáveis para a relação E(U-B)/E(B-V) é apenas de 0,5 a 0,9, sugerindo que resultados acima e abaixo dessa faixa devem estar ligados a problemas observacionais. Adotando esse critério, para calcular a média dos R_V s individuais (visando compará-los com os resultados anteriores), desprezamos as estrelas que apresentaram valores aberrantes de E(U-B)/E(B-V). Na Tabela 3.6 resumimos os resultados obtidos mostrando o valor médio dos excessos de cor em diferentes bandas e os valores de R_V médio calculados. No caso de NGC2264, por exemplo, somente 5 estrelas atenderam esse critério e foram utilizadas no cálculo da média.

Apenas para NGC2244, e parcialmente para Berkeley 86, verifica-se uma certa semelhança entre os valores de R_V apresentados na Tabela 3.6 (médias dos valores individuais) e nas Tabelas 3.1 (resultados dos ajustes de TCDs). Para NGC6530 e NGC2264 os valores não são compatíveis, em particular para esse último, que apresenta as maiores anomalias, não indicadas por outros métodos. Nesse caso, as médias encontradas não podem ser consideradas estatisticamente válidas. Considerando tais dificuldades, adotamos apenas os valores obtidos por meio dos TCDs, na avaliação da extinção a partir do ajuste dos dados na Sequência Principal, como discutiremos no próximo capítulo. As discrepâncias com relação aos valores encontrados pelos ajustes nos TCDs não devem estar relacionadas a diferencas entre as bandas óptica e infravermelha. Como mencionado anteriormente, problemas devidos a diferenças nos sistemas fotométricos são desprezíveis neste caso. Carpenter (2001) argumentam que que a transformação da magnitude K tem uma fraca dependência da cor V-K. Além disso, os máximos desvios encontrados nas magnitudes K, após a aplicação das equações de transformação entre sistemas fotométricos, levam a uma diferença em 0,1 sobre o valor de R_V determinado a partir da cor V-K, ou seja $(R_V)_{2MASS} = 0.1 + (R_V)_{BB}$ onde BB corresponde ao sistema de Bessell e Brett (1988).

Aglomerado	E(U-B)	E(B-V)	E(V-I)	E(V-K)	E(U-B)/E(B-V)	\mathbb{R}_V	\mathbb{R}_V
NGC 2264	0,08	0,13	0,26	0,93	0,64	$5,02 \pm 0,47$	$8,15 \pm 2,73$
NGC 2244	0,30	0,42	0,51	1,24	0,72	$3,00 \pm 0,12$	$3,\!40 \pm 0,\!31$
Berkeley 86	$0,\!82$	$0,\!98$	$1,\!19$	2,52	0,83	$2{,}99\pm0{,}12$	$2{,}83\pm0{,}06$
NGC 6530	0,22	0,33	$0,\!44$	1,14	$0,\!67$	$3{,}23\pm0{,}13$	$3{,}76\pm0{,}13$

Tabela 3.6 - Valores médios dos excessos de cor e R_V .

Capítulo 4

Algoritmo de ajuste à Sequência Principal

No presente trabalho desenvolvemos um programa que tem como objetivo ajustar de forma automática os dados observacionais de aglomerados estelares jovens num diagrama do tipo cor-cor, determinando assim o valor de extinção que proporciona o ajuste de melhor qualidade.

Trata-se de uma técnica baseada em cálculo de mínimos-quadrados, para uma maior eficiência na determinação da extinção. Nesta técnica, procura-se ajustar dados observacionais à curva teórica da Sequência Principal de Idade Zero (ZAMS), tendo a extinção como parâmetro livre.

Neste capítulo apresentamos um resumo das etapas realizadas para determinar a extinção a partir do ajuste da curva teórica da ZAMS (Sec. 4.1) e a descrição dos cálculos efetuados para esse ajuste (Sec. 4.2). Os valores de A_V obtidos com esse método são apresentados na Tabela 4.1, no final do capítulo.

4.1 Metodologia adotada

O ajuste automático da curva teórica da ZAMS aos dados observacionais é resumido nas seguintes etapas:

- São dadas como entrada as cores observadas dos membros do aglomerado, assim como as cores intrínsecas da ZAMS teórica e os coeficientes de correção de extinção;
- É realizada uma interpolação de *Spline* Cúbica, utilizando a técnica apresentada por Press et al. (1992), para os pontos da ZAMS teórica, resultando na curva teórica à

qual serão ajustados os dados observacionais do aglomerado. Um exemplo da curva de *Spline* interpolada à ZAMS é dado na Figura 4.1;

Figura 4.1: Spline (linha tracejada) interpolada à ZAMS (asteriscos).

- A curva gerada pela interpolação de *Spline* é deslocada dentro de um certo intervalo de valores de A_V , variando A_V num determinado passo (variando A_V de 0 a 5 em passos de 0,5, por exemplo). A Figura 4.2 ilustra o caso de duas curvas deslocadas em função de A_V ;
- É calculada a distância entre cada ponto dos dados observacionais do aglomerado à cada curva teórica deslocada (avermelhada) por um dado valor de A_V ;
- Determinada a menor distância para cada um dos pontos dos dados observacionais, esses valores são somados e o programa deve comparar as somas resultantes para os diferentes valores A_V , encontrando assim aquele que melhor se ajusta ao aglomerado.

4.2 Descrição detalhada

Apresentamos aqui o formalismo de cálculo adotado no programa de ajuste da ZAMS para determinação de A_V .

Figura 4.2: Curvas de Spline deslocadas de $A_V = 0.5$ e $A_V = 1.5$ mag, respectivamente.

Definimos como $Z_0[ub_ibv_i]$ a curva teórica da ZAMS sem avermelhamento, dada por Siess et al. (2000), no diagrama U-B versus B-V, sendo j=1... n os pontos que a compõem. A distribuição de pontos é dada por σ , onde $\sigma_j[x_jy_j]$ corresponde à posição no diagrama corcor ocupada pelo objeto i, com j=1..m, sendo m o número total de objetos do aglomerado. Foi adotada a notação [ab] pelo fato de estas funções serem compostas por um conjunto de pontos tabelados (Z_0) ou dispersos (σ) .

Ao se aplicar a extinção A_V a $Z_0[ub_i bv_i]$, obtém-se a curva ZAMS avermelhada $Z_{A_V}[ub_i bv_i]$. Isso é feito por meio da Lei de Extinção dada por:

$$\frac{A_{\lambda}}{A_{V}} = a(x) + \frac{b(x)}{R_{V}}$$

onde $x = \frac{1}{\lambda}$ e os coeficientes a(x) e b(x) são dados por Cardelli et al. (1989).

O valor da extinção A_V^{\min} que melhor ajusta os dados do aglomerado é aquele que apresenta a menor distância entre Z_{A_V} e σ , ou seja, o valor de A_V que minimiza a função:

$$\delta(A_V) = \psi(Z_{A_V}, \sigma)$$

onde $\psi(Z_{A_V}, \sigma)$ é a "função distância" entre os dados do aglomerado e a curva da ZAMS avermelhada. Neste trabalho adotamos:

$$\psi(Z_{A_V}, \sigma) = \sum_{j=1}^m (\bar{u}b_j - x_j)^2 + (\bar{b}v_j - y_j)^2$$

onde $[\bar{u}b_j\bar{b}v_j]$ representa o ponto de Z_{A_V} mais próximo de $[x_jy_j]$. Entretanto, a obtenção de $[\bar{u}b_j\bar{b}v_j]$ não é trivial, pois Z_{A_V} não é uma função contínua e os pontos $[x_jy_j]$ não correspondem exatamente aos valores tabelados para $Z_0, [ub_ibv_i]$.

Desta forma, faz-se necessário criar uma função $\xi(ub, bv)$ tal que:

$$\begin{cases} Z_{A_V}[ub_i bv_i]\xi(ub, bv), i = 1..n\\ \xi(ub, bv) \text{ \'e contínua no domínio de } Z_{A_V}[ub_i bv_i] \end{cases}$$

Para tanto, foi adotada a técnica de interpolação por *Splines* cúbicas, sugeridas por Press et al.(1995). Considera-se que a distribuição $Z_{A_V}[ub_i bv_i]$ pode ser descrita como $ub_j = ub(bv_j), i = 1..n$. Nesta notação, bv assume o papel da variável independente (abscissa) e ub(bv) assume o papel da função a ser definida (ordenada).

Num dado intervalo, entre bv_k e bv_{k+1} , é possível estabelecer uma interpolação linear dada por:

$$ub = Aub_k + Bub_{k+1}$$

onde $A \in B$ são os coeficientes de interpolação de Lagrange:

$$A = \frac{bv_{k+1} - bv}{bv_{k+1} - bv_k}$$

е

$$B = 1 - A = \frac{bv - bv_{k+1}}{bv_{k+1} - bv_k}$$

Supondo-se que sejam disponíveis os valores das segundas derivadas de ub, dados por ub'', podemos re-escrever a primeira expressão como:

$$ub = Aub_k + Bub_{k+1} + Cub_k'' + Dub_{k+1}''$$

onde os novos coeficientes de Lagrange $C \in D$ são dados por:

$$C = \frac{1}{6}(A^3 - A)(bv_{k+1} - bv_k)^2$$

е

$$D = \frac{1}{6}(B^3 - B)(bv_{k+1} - bv_k)^2$$

Reescrevendo a função com os seus coeficientes acima descritos, e diferenciando com relação a bv obtém-se:

$$\frac{\partial ub}{\partial bv} = \frac{ub_{k+1} - ub}{bv_{k+1} - bv_k} - \frac{3A^2 - 1}{6}(bv_{k+1} - bv_k)ub_k'' + \frac{3B^2 - 1}{6}(bv_{k+1} - bv_k)ub_{k+1}''$$

Uma nova diferenciação leva a:

$$\frac{\partial^2 ub}{\partial^2 bv} = Aub_k'' + Bub_{k+1}''$$

Nos extremos do intervalo temos $A(bv_k) = 1$, $A(bv_{k+1}) = 0$, $B(bv_k) = 0$ e $B(bv_{k+1}) = 1$, que resulta em $\left(\frac{\partial^2 ub}{\partial^2 bv}\right]_k = ub''_k$ e $\left(\frac{\partial^2 ub}{\partial^2 bv}\right]_{k+1} = ub''_{k+1}$. Assim, confirma-se que a segunda derivada de ub é ub'', sendo esta contínua entre bv_k e bv_{k+1} . Esta dedução é válida também para o intervalo bv_{k-1} e bv_k , e pode-se afirmar que ub'' é contínua na intersecção dos intervalos, ou seja, em bv_k .

Falta, portanto, obter os valores de ub'' a partir dos valores tabelados ub. Para tanto, basta definir que a primeira derivada, $\frac{\partial ub}{\partial bv}$, calculada para $bv = bv_k$ no intervalo (bv_{k-1}, bv_k) seja igual à sua equivalente no intervalo (bv_k, bv_{k+1}) , ou seja:

que é válida para k=2..n-1. Os valores para $ub_1'' e ub_n''$ podem ser adotados como nulos, o que leva a condição de *Spline* cúbica natural para os extremos de $\xi(ub, bv)$.

Este conjunto de equações leva a uma matriz tridiagonal, dada por:

$\begin{bmatrix} a \end{bmatrix}$	b	0							
c	d	e	0						
0	f	g	h	0	•••				
				·					
				0	s	t	u	0	
					0	v	w	x	
							y	z	_

e apresenta fácil e rápida solução numérica.

Dessa forma, a sequência de ações para o cálculo de A_V é:

- 1. Leitura dos dados tabelados da ZAMS, $Z_0[ubbv]$.
- 2. Leitura dos dados do aglomerado, $\sigma[xy]$.
- 3. Para vários valores de A_V :
 - (a) Calcular a ZAMS avermelhada, $Z_{A_V}[ubvb]$.
 - (b) Estimar a distância $\psi(Z_{A_V}, \sigma)$. Para tanto:
 - i. Calcular a segunda derivada ub''_i .
 - ii. Localizar os pontos $\xi(ub, bv)$ mais próximos de cada $\sigma_j[x_jy_j]$.
- 4. Definir o A_V ideal a partir do menor ψ .

4.3 Resultados de extinção média

Aplicamos o programa para os aglomerados da amostra. Como discutido anteriormente, um dos parâmetros do ajuste é o valor de R_V . De acordo com os resultados apresentados Tabela 3.1 verificamos que a lei de extinção não se desvia do valor normal no caso dos aglomerados NGC 2264, NGC 2244 e Berkeley 86, para os quais utilizamos então $R_V = 3,1$. Já no caso do aglomerado NGC 6530 adotamos o valor de R_V encontrado pelo ajuste linear no TCD (V-I) × (B-V): $R_V = 4,5$.

Ao aplicar primeiramente o programa, verificamos que a dispersão das estrelas menos massivas prejudicava a qualidade do ajuste. Sendo assim, acrescentamos uma rotina para realizar um corte de forma que só sejam consideradas no ajuste as estrelas na região mais brilhante da sequência principal, porém esse corte necessita de uma avaliação visual caso a caso para cada aglomerado.

Na Figura 4.3 são apresentados os ajustes obtidos por meio do ajuste dos dados observados à ZAMS. Os valores da extinção A_V resultantes dos ajustes são apresentados na Tabela 4.1. No Capítulo 5 iremos comparar os resultados obtidos no presente trabalho com aqueles disponíveis na literatura.

Nos aglomerados NGC 2244 e NGC 6530 notamos um grupo de estrelas acima do ponto mais brilhante na sequência principal ajustada. Acreditamos que devem corresponder a estrelas mais brilhantes que B3, já que a curva dada por Siess et al. (2000) contém somente os tipos espectrais de M6 a B3.

Aglomerado	\mathbf{A}_V	Ψ	\mathbf{R}_V	E(B-V)	E(V-I)	E(V-K)
NGC 2264	$0,\!14$	3,21	3,1	$0,\!05$	0,06	$0,\!13$
NGC 2244	1,36	$3,\!44$	3,1	$0,\!44$	$0,\!56$	$1,\!24$
Berkeley 86	2,77	$0,\!02$	3,1	$0,\!89$	$1,\!13$	2,52
NGC 6530	0,96	$0,\!11$	4,5	$0,\!21$	$0,\!39$	$0,\!87$

Tabela 4.1 - Resultados obtidos através do Programa de Ajuste à Sequência Principal.

O valor Ψ é um indicativo da qualidade do ajuste obtido para cada aglomerado, já que este corresponde à distância quadrática média das estrelas à curva ajustada. Um valor maior se refere a uma maior dispersão das estrelas, como pode ser notado em NGC 2264 e 2244. Estrelas mais brilhantes que B3 vão resultar numa distância maior do que deveria se a curva tivesse continuação até seu tipo espectral, contribuindo para um maior valor de Ψ . Assim, a grandeza $\sqrt{\Psi}$ não pode ser considerada como a incerteza do ajuste.

Figura 4.3: Ajustes obtidos a partir do algoritmo no diagrama (U-B) \times (B-V) para os aglomerados da amostra. Painel Superior: NGC 2264 (esquerda) e NGC 2244 (direita). Painel Inferior: Berkeley 86 (esquerda) e NGC 6530 (direita).

Capítulo 5.

Análise e Discussão dos Resultados

No presente trabalho, foi possível estimar a extinção média para os quatro aglomerados da amostra de 2 maneiras diferentes: (i) utilizando nosso Programa de Ajuste à Sequência Principal; (ii) calculando o valor dos excessos de cor para estrelas com tipo espectral conhecido. Na Sec. 5.1 discutimos os resultados obtidos por meio dos diferentes métodos.

Neste Capítulo também apresentamos uma análise buscando verificar a ocorrência de extinção variável nos aglomerados, avaliando se ela se relaciona com a distribuição espacial das estrelas (Sec. 5.2). Finalmente, buscamos confirmar se há uma correlação entre a lei de extinção avaliada individualmente, no caso das estrelas com tipo espectral conhecido, e as condições do meio interestelar, de acordo com a sua localização projetada nos mapas de A_V (Sec. 5.3).

5.1 Extinção média na direção dos aglomerados

Os resultados obtidos por meio de nosso programa de Ajuste à Sequência Principal e do cálculo do valor dos excessos de cor para estrelas com tipo espectral conhecido, foram comparados com aqueles obtidos dos mapas de A_V de Dobashi et al. (2005) e também com aqueles encontrados na literatura, apresentados no Capítulo 2. Na Tabela 5.1 são apresentados os valores do excesso de cor E(B-V) médio encontrados a partir dos diferentes métodos e o intervalo de valores obtidos da literatura.
Método	NGC 2264	NGC 2244	Berkeley 86	NGC 6530
Literatura	0,061 - 0,15	0,46	0,24 - 1,01	0,17 - 0,37
Mapas de \mathbf{A}_V	0,32 - 1,19	0,03 - 0,32	1,03 - 1,10	0,38 - 0,42
Tipo Espectral	$0{,}13\pm0{,}03$	$0{,}42\pm0{,}06$	$0{,}98\pm0{,}04$	$0{,}33\pm0{,}02$
Ajuste da SP	$0{,}05\pm0{,}06$	$0{,}44\pm0{,}06$	$0{,}89\pm0{,}06$	$0{,}21\pm0{,}06$

Tabela 5.1 - Excesso de cor E(B-V) determinado por diferentes métodos.

Os dois métodos aplicados nesse trabalho, em geral, levam a resultados compatíveis entre si para cada aglomerado e também em comparação aos mapas de A_V e resultados encontrados na literatura.

Apenas o aglomerado NGC 2264 mostra valores que não condizem com o esperado no mapa de A_V . A exemplo de NGC 6530, podemos ter também nesse caso um aglomerado que não está embebido na nuvem molecular, localizado na frente da nuvem, apresentando assim uma extinção menor do que aquela esperada ao se analisar as nuvens projetadas na região. Além disso, nota-se (vide Sec. 5.3) que a nuvem apresenta estrutura filamentar e as estrelas em NGC 2264 em muitos casos parecem estar nas bordas desses filamentos e não necessariamente nas regiões mais densas.

No caso de NGC 2244, as diferenças com relação aos mapas de A_V provavelmente se devem à problemas nas medidas de Dobashi et al. (2005) para essa região central de Rosette, como mencionado no Capítulo 2.

5.2 Desvios esperados no valor médio da extinção

Na Figura 5.1 apresentamos diagramas (U-B) × (B-V) para os aglomerados estudados no presente trabalho, onde estão representadas somente estrelas com probabilidade maior que P_{min} de pertencer ao aglomerado. As linhas tracejadas representam o limite de dispersão $\Delta E(B-V)$ dado por Burki (1975) para o qual o alargamento da Sequência Principal se deve a fatores que não sejam relacionados a variação da extinção dentro do aglomerado.

Nota-se que, para as estrelas mais massivas, em todos casos, a dispersão está dentro da faixa de 0,11 mag, sugerida por Burki (1975). Podemos estimar então que a incerteza no ajuste à sequência principal só vai ser devida aos fatores que causam esse alargamento e adotamos então uma incerteza de ± 0.06 mag para os valores de E(B-V) encontrados.

Figura 5.1: Curvas representando os limites dados por Burki (1975) no diagrama (U-B) × (B-V) de estrelas com probabilidade maior que P_{min} de pertencer ao aglomerados da amostra. Painel Superior: NGC 2264 (esquerda) e NGC 2244 (direita). Painel Inferior: Berkeley 86 (esquerda) e NGC 6530 (direita).

Extinção variável, ou seja uma dispersão mais alargada, pode ser percebida no caso dos aglomerados NGC 2264 e NGC 2244.

Para NGC 2244 obtivemos também boas estimativas do valor de E(B-V) a partir de tipos espectrais, com isso podemos analisar a variação espacial da extinção. Na Figura 5.2 vemos os valores de E(B-V) em função da distância ao centro do aglomerado para estrelas com tipo espectral conhecido em NGC 2244, símbolos diferentes marcam estrelas a leste e a oeste do centro. Trata-se de um estudo semelhante ao trabalho de Jose et al. (2008), que verificaram diferenças nas variações de E(B-V) em função da distância radial até o centro do aglomerado Stock 8. Nota-se na Figura 5.2 que NGC2244 tem uma concentração de valores mais elevados de E(B-V) numa região de 2' ao redor do centro, enquanto que outra concentração ocorre para r > 4' com valores de E(B-V) abaixo da média. Com relação a distribuição espacial, nota-se uma tendência de objetos que encontram do lado oeste apresentarem maiores variações de E(B-V), enquanto os do lado leste variam dentro da faixa com largura de 0,11 mag.

Figura 5.2: E(B-V) em função da distância ao centro do aglomerado, símbolos diferentes marcam estrelas a leste (círculos cheios) e a oeste (asteriscos) do centro. A linha pontilhada indica o valor médio de E(B-V).

Yadav e Sagar (2001) encontraram $\Delta E(B-V) = 0.75$ para NGC 2244, da Figura 5.2 temos $\Delta E(B-V) = 0.19$, porém esse resultado se baseia num número reduzido de estrelas, dificultando uma comparação direta. Um valor mais compatível de dispersão é encontrado na Figura 5.1, que corresponde a $\Delta E(B-V) \sim 0.6$. Os autores também encontraram extinção variável nos aglomerados NGC 2264 e Berkeley 86. Para Berkeley 86 a tendência a extinção variável foi notada inicialmente na Figura 2.1 mas no presente trabalho contamos com um número reduzido de estrelas para detectá-la até mesmo no diagrama (U-B) × (B-V). No caso de NGC 2264 a variação da extinção também só pode ser percebida no diagrama da Figura 5.1 e parece corresponder a $\Delta E(B-V) \sim 0.5$, enquanto Yadav e Sagar (2001) encontraram 0.29 para o mesmo aglomerado.

5.3 Variabilidade da lei de extinção

Nessa seção estudamos a distribuição espacial dos valores individuais de R_V , determinado com base nos excessos de cor para estrelas com tipo espectral conhecido, que foram apresentados nas Tabelas 3.2 a 3.5. A Figura 5.3 apresenta detalhes (*zoom*) dos mapas de A_V apresentados nas Figuras 2.10 e 2.11, mostrando a distribuição espacial dos membros dos aglomerados, com destaque para os quais é conhecido o tipo espectral. Nestes casos, foi estimado um valor individual de R_V , a partir de E(V-I) determinado por meio das cores intrínsecas. Os valores encontrados para R_V são indicados em função da sua posição projetada no mapa de A_V .

No caso do aglomerado NGC 2264, está em amarelo o valor corrigido de R_V para a estrela 158, considerando que ela seja realmente de tipo espectral B8, conforme mencionado na Sec. 3.2.

No caso de NGC2244, NGC6530 e Berkeley 86 não se verifica uma tendência preferencial na distribuição de R_V , cuja dispersão em torno de 3,1 é baixa, exceto para NGC6530 em que se estima $R_V > 3,4$ para alguns objetos. Mesmo assim, esses valores são ainda menores que o valor anômalo médio encontrado pelos TCDs e também não mostram correlação com a distribuição de poeira nas nuvens. Este resultado está de acordo com a literatura, que confirma o desacoplamento de NGC 6530 das nuvens ao fundo.

Para NGC2264 a dispersão é bem maior, o que pode ser devido a problemas na determinação do tipo espectral dos objetos, como foi discutido no Capítulo 3. Com base nos valores individuais de R_V , não se verifica uma relação direta com a posição do objeto na direção das nuvens, seja pela falta de um número maior de objetos, ou pela não confiabilidade dos resultados em alguns casos em que se encontrou valores de R_V muito maiores que o esperado. Além disso, a localização dos aglomerados em relação às nuvens é projetada, não servindo como indício do grau de embebimento dos objetos.

Figura 5.3: Posição dos membros do aglomerado projetada no mapa de A_V (cruzes). O valor individual de R_V é indicado para estrelas com tipo espectral conhecido. No painel superior aparecem NGC2264 (esquerda) e NGC2244 (direita), e no painel inferior: NGC6530 (esquerda) e Berkeley 86 (direita). O valor em amarelo, no caso de NGC2264, destaca uma possível correção de tipo espectral, sem a qual um valor aberrante de R_V seria encontrado.

Na Figura 5.4 são mostradas as variações de R_V em função das cores nas bandas K e I, utilizadas para avaliar a lei de extinção para os 4 aglomerados. Somente para NGC 2264 nota-se uma grande dispersão e valores muito discrepantes de R_V normal. Para NGC 2244 e NGC 6530 nota-se uma tendência do valor determinado a partir de E(V-K) ser ligeiramente maior que na banda I, ou seja, R_V determinado a partir de E(V-I). Nota-se também em NGC6530 valores maiores que 3,1 em alguns casos, porém não atingindo os valores anômalos encontrados nos TCDs.

Figura 5.4: Comparação entre os valores individuais de R_V encontrados a partir do excesso E(V-I) e E(V-K). As linhas pontilhadas indicam variações de 50% acima e abaixo do valor esperado de $R_V[E(V-K)]=R_V[E(V-I)]$

Capítulo 6

Conclusões e Perspectivas

No presente trabalho estudamos a extinção na direção de quatro aglomerados selecionados de uma amostra de 14 candidatos, alguns dos quais localizados em regiões em que a extinção é considerada normal, enquanto que outros candidatos apresentavam indícios de sofrerem extinção anômala ou variável.

Os aglomerados selecionados: NGC 2264, NGC 2244, Berkeley 86 e NGC 6530 estão localizados em regiões de formação estelar, tendo suas idades estimadas na literatura como sendo da ordem de $\sim 5 \times 10^6$ anos. Sendo assim, devido à possível associação com nuvens escuras, deve-se atentar para a ocorrência de extinção variável ou anômala nesses aglomerados.

A partir do estudo de TCDs, encontramos uma lei de extinção normal para os aglomerados NGC 2264, NGC 2244 e Berkeley 86, esse mesmo resultado também foi confirmado pelo cálculo individual de R_V realizado para estrelas com tipo espectral conhecido e concorda com determinações encontradas anteriormente na literatura.

Para o aglomerado NGC 6530, uma lei de extinção anômala foi encontrada por meio da análise dos TCDs, com R_V podendo variar entre entre 4,5 e 6,1. Porém, ao calcularmos R_V individualmente para 5 estrelas com tipo espectral conhecido, encontramos uma lei de extinção normal com R_V da ordem de 3,2 - 3,7. Indícios de extinção anômala já foram confirmados anteriormente para algumas estrelas desse aglomerado, principalmente no caso de estrelas embebidas.

A determinação da extinção média na direção dos aglomerados estudados foi feita por meio de um programa por nós desenvolvido que ajusta dados observacionais à curva teórica da Sequência Principal de Idade Zero (ZAMS), tendo a extinção como parâmetro livre. O programa permite realizar um ajuste de forma rápida para um grande número de aglomerados, reduzindo em grande parte a necessidade de inspeção visual.

Obtivemos a partir da aplicação do programa: $A_V = 0.14 \text{ com } R_V = 3.1 \text{ para NGC}$ 2264; $A_V = 1.36 \text{ com } R_V = 3.1 \text{ para NGC } 2244$; $A_V = 2.77 \text{ com } R_V = 3.1 \text{ para Berkeley}$ 86; $A_V = 0.96 \text{ com } R_V = 4.5 \text{ para NGC } 6530$. Estimamos uma dispersão $\Delta E(B-V)$ de aproximadamente 0.6 para NGC 2244 e 0.5 para NGC 2264.

O estudo da lei de extinção a partir de estrelas com tipo espectral conhecido depende fortemente da qualidade das cores observadas e determinações de tipo espectral. Para o aglomerado NGC 6530, resultados individuais foram obtidos somente para estrelas muito brilhantes, não reproduzindo o comportamento anômalo da lei de extinção observado nos TCDs. Concluímos que o melhor método para estudar possíveis variações na lei de extinção é através do uso de diferentes cores, combinando dados ópticos com infravermelho, de acordo com resultados recentes da literatura.

A dependência da lei de extinção em função do comprimento de onda tem sido amplamente discutida na literatura, dado seu interesse na identificação dos tipos de grãos que causam a extinção, bem como na necessidade de corretamente remover seus efeitos dos dados observacionais. Considerando que tais efeitos não são menos importantes no infravermelho como no óptico, em geral adota-se uma lei de extinção "universal", do tipo lei de potência, para comprimentos de onda maiores que 1 μ m. Apesar da lei de potência $(A_{\lambda} \propto \lambda^{-\beta})$ ajustar bem a maioria das curvas de extinção, é reconhecido que o índice β varia enormemente, dependendo da linha de visada.

Com base em resultados da análise de dados do HST (*Hubble Space Telescope*), Fitzpatrick e Massa (2009) avaliaram a dependência da lei de extinção para comprimentos de onda do infravermelho próximo. Eles verificaram que uma lei "universal" de extinção não parece ser possível e encontraram uma tendência de β decrescer com o aumento de R_V . No lugar de uma extrapolação da lei de potência, eles sugerem o uso da relação $R_V =$ -1,36 [E(K-V)/E(B-V)] - 0,79, para melhor representar a lei de extinção. Aplicamos esta nova relação para o aglomerado NGC 2244, os resultados encontrados se mostraram em concordância com os calculados neste trabalho utilizando a relação dada por Steenman e The (1991). Um próximo passo natural seria aplicar o mesmo para os outros aglomerados da amostra. No caso de NGC 2264, erros nessas determinações fizeram com que cerca de 80% das estrelas analisadas gerassem resultados irreais com valores da razão $\frac{E(U-B)}{E(B-V)}$ com desvios muito grandes dos valores esperados. Neste caso, não foram utilizados nos cálculos os excessos de cor daquelas estrelas fora do intervalo 0.5 < E(U-B)/E(B-V) < 0.9, que devem ser devidos a outros fatores, diferentes de anomalias na lei de extinção. Mesmo para as estrelas consideradas ainda foram encontrados valores de R_V muito maiores do que seria esperado. Isso nos levou a concluir que as determinações médias baseadas nos TCDs são melhores indicativos do efeito da extinção nos aglomerados. Infelizmente esses valores médios não permitem uma análise mais conclusiva sobre uma variação espacial de R_V . As distribuições espaciais avaliadas para os valores individuais de R_V também não permitiram uma correlação com a distribuição projetada das nuvens, já que os valores anômalos esperados para o aglomerado NGC 6530 não se evidenciaram no caso dos poucos membros com tipo espectral conhecido. Nos outros aglomerados, os valores individuais de R_V se mostraram normais e compatíveis com a distribuição da extinção em suas linhas de visada.

Uma análise detalhada das características da extinção, previamente ao estudo de outras características do aglomerado, resulta numa melhor qualidade na determinação de parâmetros como idade ou distância, quando estes são obtidos através da análise de diagramas cor-cor e cor-magnitude, os quais necessitam da correção das magnitudes por avermelhamento.

Seria interessante aplicar a metodologia utilizada no presente trabalho para um grande número de aglomerados jovens. Verificamos que isso é factível por meio de nosso programa de ajuste da ZAMS, cuja metodologia se comprovou eficiente na determinação da extinção envolvendo um grande número de membros do aglomerado. No entanto, seriam necessárias observações para obtenção de tipos espectrais e fotometria óptica e no infravermelho proporcionando uma análise completa e com maior consistência e qualidade de dados.

Dentre as perspectivas de continuidade do presente trabalho, pretendemos estudar uma amostra selecionada de estrelas localizadas nas proximidades de aglomerados jovens associados à nebulosa ionizada Sh2-296, na região de Canis Major, a qual apresenta anomalias na lei de extinção. Com base nas características espectrais, buscaremos identificar, para posteriores análises mais detalhadas, os objetos mais interessantes, que apresentam as linhas tipicamente encontradas em estrelas jovens.

A classificação espectral será feita com base na comparação dos espectros já obtidos com o Gemini com bibliotecas de espectros. A análise dos dados fotométricos ópticos e no infravermelho próximo será baseada na metodologia desenvolvida durante o presente trabalho, para avaliação da extinção, correção adequada do avermelhamento, seguida da estimativa de massas e idades por meio de diagramas cor-magnitude. A análise das cores infravermelhas também permitirá identificar objetos que apresentam excesso H-K, característica da emissão circunstelar.

Referências Bibliográficas

- Amôres E. B., Lépine J. R. D., Models for Interstellar Extinction in the Galaxy, AJ, 2005, vol. 130, p. 659
- Baume G., Vázquez R. A., Feinstein A., UBVI imaging photometry of NGC 6231, A&AS, 1999, vol. 137, p. 233
- Bessell M. S., Brett J. M., JHKLM photometry Standard systems, passbands, and intrinsic colors, PASP, 1988, vol. 100, p. 1134
- Bessell M. S., Castelli F., Plez B., Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O M stars, A&A, 1998, vol. 333, p. 231
- Bhavya B., Mathew B., Subramaniam A., Pre-main sequence stars, emission stars and recent star formation in the Cygnus region, Bulletin of the Astronomical Society of India, 2007, vol. 35, p. 383
- Burki G., Non-uniform extinction in open star clusters and dispersion of the photometric sequences, A&A, 1975, vol. 43, p. 37
- Cardelli J. A., Clayton G. C., Mathis J. S., The relationship between infrared, optical, and ultraviolet extinction, ApJ, 1989, vol. 345, p. 245
- Carpenter J. M., Color Transformations for the 2MASS Second Incremental Data Release, AJ, 2001, vol. 121, p. 2851
- Chini R., Wargau W. F., Abnormal extinction and pre-main sequence stars in M 16 (NGC 6611), A&A, 1990, vol. 227, p. 213

- Clariá J. J., Two sparse open clusters in the region of Collinder 132., PASP, 1977, vol. 89, p. 803
- Dahm S. E., The Young Cluster and Star Forming Region NGC 2264. In Handbook of Star Forming Regions, Volume I, 2008, p. 966
- Dahm S. E., Simon T., The T Tauri Star Population of the Young Cluster NGC 2264, AJ, 2005, vol. 129, p. 829
- de Jager C., Nieuwenhuijzen H., A new determination of the statistical relations between stellar spectral and luminosity classes and stellar effective temperature and luminosity, A&A, 1987, vol. 177, p. 217
- Deeg H. J., Ninkov Z., Deep CCD photometry and the initial mass function of the core of the OB cluster Berkeley 86., A&AS, 1996, vol. 119, p. 221
- Delgado A. J., Alfaro E. J., Cabrera-Cano J., CCD Stromgren Photometry of Young Reddened Clusters, AJ, 1997, vol. 113, p. 713
- Dias W. S., Alessi B. S., Moitinho A., Lépine J. R. D., New catalogue of optically visible open clusters and candidates, A&A, 2002, vol. 389, p. 871
- Dobashi K., Uehara H., Kandori R., Sakurai T., Kaiden M., Umemoto T., Sato F., Atlas and Catalog of Dark Clouds Based on Digitized Sky Survey I, PASJ, 2005, vol. 57, p. 1
- Fitzgerald M. P., The Intrinsic Colours of Stars and Two-Colour Reddening Lines, A&A, 1970, vol. 4, p. 234
- Fitzpatrick E. L., Massa D., An Analysis of the Shapes of Interstellar Extinction Curves. VI. The Near-IR Extinction Law, ApJ, 2009, vol. 699, p. 1209
- Gregorio-Hetem J., Montmerle T., Casanova S., Feigelson E. D., X-rays and star formation: ROSAT observations of the Monoceros and Rosette molecular clouds, A&A, 1998, vol. 331, p. 193
- Gregorio Hetem J. C., Sanzovo G. C., Lépine J. R. D., Star counts and IRAS sources in southern dark clouds, A&AS, 1988, vol. 76, p. 347

- Guetter H. H., Vrba F. J., Reddening and polarimetric studies toward IC 1805, AJ, 1989, vol. 98, p. 611
- Hillenbrand L. A., Massey P., Strom S. E., Merrill K. M., NGC 6611: A cluster caught in the act, AJ, 1993, vol. 106, p. 1906
- Johnson H. L., The Galactic Cluster, NGC 2244., ApJ, 1962, vol. 136, p. 1135
- Jose J., Pandey A. K., Ojha D. K., Ogura K., Chen W. P., Bhatt B. C., Ghosh S. K., Mito H., Maheswar G., Sharma S., Stellar contents and star formation in the young open cluster Stock 8, MNRAS, 2008, vol. 384, p. 1675
- Lada C. J., Gottlieb C. A., Gottlieb E. W., Gull T. R., Optical and millimeter-wave observations of the M8 region, ApJ, 1976, vol. 203, p. 159
- Lada C. J., Lada E. A., Embedded Clusters in Molecular Clouds, ARA&A, 2003, vol. 41, p. 57
- Li J. Z., Is the Emerging Massive Cluster NGC 2244 a Twin Cluster?, ApJ, 2005, vol. 625, p. 242
- Li J. Z., Wu C. H., Chen W. P., Rector T., Chu Y. H., Ip W. H., Strong Emission-Line Stars Identified toward the Rosette Nebula, AJ, 2002, vol. 123, p. 2590
- Mathis J. S., Interstellar dust and extinction. In The Evolution of the Interstellar Medium , vol. 12 of Astronomical Society of the Pacific Conference Series, 1990, p. 63
- Mayne N. J., Naylor T., Fitting the young main-sequence: distances, ages and age spreads, MNRAS, 2008, vol. 386, p. 261
- McCall M. L., Richer M. G., Visvanathan N., Getting to the bottom of the lagoon Dust, magnetism, and star formation, ApJ, 1990, vol. 357, p. 502
- Melena N. W., Massey P., Morrell N. I., Zangari A. M., The Massive Star Content of NGC 3603, AJ, 2008, vol. 135, p. 878
- Neckel T., Chini R., The interstellar extinction law in some dusty HII regions, A&AS, 1981, vol. 45, p. 451

Ogura K., Ishida K., UBV Photometry of NGC2244, PASJ, 1981, vol. 33, p. 149

- Pandey A. K., Ogura K., Sekiguchi K., Stellar Contents of the Galactic Giant H { II} Region NGC 3603, PASJ, 2000, vol. 52, p. 847
- Park B., Sung H., UBVI and H α Photometry of the Young Open Cluster NGC 2244, AJ, 2002, vol. 123, p. 892
- Pérez M. R., The P. S., Westerlund B. E., On the distances to the young open clusters NGC 2244 and NGC 2264, PASP, 1987, vol. 99, p. 1050
- Press W., Teukolsky S., Vetterling W., Flannery B., Numerical Recipes in C 2nd edn. Cambridge University Press Cambridge, UK, 1992
- Rebull L. M., Makidon R. B., Strom S. E., Hillenbrand L. A., Birmingham A., Patten B. M., Jones B. F., Yagi H., Adams M. T., Circumstellar Disk Candidates Identified in NGC 2264, AJ, 2002, vol. 123, p. 1528
- Reipurth B., Schneider N., Star Formation and Young Clusters in Cygnus. In Handbook of Star Forming Regions, Volume I, 2008, p. 36
- Román-Zúñiga C. G., Lada E. A., Star Formation in the Rosette Complex, ArXiv e-prints, 2008
- Samal M. R., Pandey A. K., Ojha D. K., Ghosh S. K., Kulkarni V. K., Bhatt B. C., A Multiwavelength Study of Galactic H II Region Sh 2-294, ApJ, 2007, vol. 671, p. 555
- Sanduleak N., Probable OB Star Members in Eleven Berkeley Clusters, PASP, 1974, vol. 86, p. 74
- Savage B. D., Mathis J. S., Observed properties of interstellar dust, ARA&A, 1979, vol. 17, p. 73
- Schlegel D. J., Finkbeiner D. P., Davis M., Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds, ApJ, 1998, vol. 500, p. 525

- Schneider N., Simon R., Bontemps S., Comerón F., Motte F., A multiwavelength study of the S106 region. III. The S106 molecular cloud as part of the Cygnus X cloud complex, A&A, 2007, vol. 474, p. 873
- Setteducati A., Weaver H. F., Newly found star clusters, Berkeley: Radio Astronomy Laboratory, 1962, vol. 474, p. 873
- Steenman H., The P. S., The anomalous extinction law. II The effect of changing the lower size cutoff of the particle size distribution, Ap&SS, 1991, vol. 184, p. 9
- Straizys V., Kuriliene G., Fundamental stellar parameters derived from the evolutionary tracks, Ap&SS, 1981, vol. 80, p. 353
- Sung H., Bessell M. S., Lee S., UBVRI H(alpha) Photometry of the Young Open Cluster NGC 2264, AJ, 1997, vol. 114, p. 2644
- Sung H., Chun M., Bessell M. S., UBVRI and Hα Photometry of the Young Open Cluster NGC 6530, AJ, 2000, vol. 120, p. 333
- Tothill N. F. H., Gagné M., Stecklum B., Kenworthy M. A., The Lagoon Nebula and its Vicinity. In Handbook of Star Forming Regions, Volume II, 2008, p. 533
- Townsley L. K., Feigelson E. D., Montmerle T., Broos P. S., Chu Y., Garmire G. P., 10 MK Gas in M17 and the Rosette Nebula: X-Ray Flows in Galactic H II Regions, ApJ, 2003, vol. 593, p. 874
- Turner D. G., The value of R in Monoceros, ApJ, 1976, vol. 210, p. 65
- Vallenari A., Richichi A., Carraro G., Girardi L., Near-infrared photometry of the young open clusters NGC 1893 and Berkeley 86, A&A, 1999, vol. 349, p. 825
- van den Ancker M. E., The P. S., Feinstein A., Vazquez R. A., de Winter D., Perez M. R., A multiwavelength study of star formation in the very young open cluster NGC 6530, A&AS, 1997, vol. 123, p. 63
- Walker M. F., The color-magnitude diagram of NGC 2264., AJ, 1954, vol. 59, p. 333

- Wang J., Townsley L. K., Feigelson E. D., Broos P. S., Getman K. V., Román-Zúñiga C. G., Lada E., A Chandra Study of the Rosette Star-forming Complex. I. The Stellar Population and Structure of the Young Open Cluster NGC 2244, ApJ, 2008, vol. 675, p. 464
- Yadav R. K. S., Sagar R., Non-uniform extinction in young open star clusters, MNRAS, 2001, vol. 328, p. 370

Apêndice

Apêndice A_

Dados dos candidatos a membros dos aglomerados estudados

\mathbf{N}_W	N_D	AR	DE	d	V	B-V	U-B	V-I	J	Н	Κ	r	P
		(graus)	(graus)	(arcsec)								(arcmin)	(%)
60	205	07 969	E 100	0.22	14.06	0.70	0.20	0.80	19 54	19.09	11.09	11.69	26
00	295	97,000	5,100	0,55	14,00	0,79	0,52	0,89	12,34	12,05	11,98	11,02	30 70
61	217	97,863	5,058	0,65	13,93	0,54	0,10	0,64	12,80	12,59	12,52	9,87	76
62	191	97,856	5,036	0,30	12,83	0,76	-0,16	1,07	10,98	10,71	10,54	9,29	71
63	181	97,849	5,021	0,44	14,11	1,66	1,75	1,89	10,65	9,82	9,55	9,10	14
65	162	97,849	5,004	0,42	12,80	0,55	0,02	$0,\!62$	11,66	11,41	11,31	8,62	22
68	132	97,853	4,970	$0,\!68$	14,29	$1,\!47$	$1,\!17$	1,73	11,17	10,42	10,17	7,74	0
69	90	97,879	4,970	0,28	$12,\!87$	0,39	$0,\!29$	0,42	12,05	11,91	11,81	6,24	59
70	85	97,878	4,956	0,44	$12,\!41$	$1,\!24$	$0,\!88$	1,33	10,04	9,46	9,29	6,09	73
72	108	$97,\!868$	4,922	0,37	$12,\!45$	$0,\!54$	$0,\!06$	$0,\!59$	$11,\!45$	$11,\!19$	$11,\!10$	6,78	45
74	96	$97,\!874$	4,914	0,37	$12,\!41$	$0,\!32$	-0,18	$0,\!45$	$11,\!45$	$10,\!89$	$9,\!69$	6,50	64
79	141	$97,\!881$	4,850	0,35	$10,\!64$	$0,\!19$	-0,59	$0,\!25$	10,30	$10,\!29$	10,24	8,04	64
80	138	97,890	4,844	0,37	9,35	$0,\!18$	-0,69	$0,\!24$	8,90	8,84	8,79	7,92	56
106	234	$97,\!917$	5,099	0,28	$12,\!01$	$0,\!90$	$0,\!27$	$1,\!26$	$9,\!68$	8,96	8,27	$10,\!15$	44
108	184	$97,\!952$	5,092	$0,\!28$	$11,\!41$	$0,\!22$	-0,14	$0,\!32$	10,82	10,76	10,76	9,20	44
109	205	97,923	5,092	0,24	13,72	$0,\!52$	$0,\!31$	$0,\!60$	$12,\!58$	$12,\!44$	$12,\!32$	$9,\!61$	79
110	153	97,966	5,081	0,27	10,78	$1,\!08$	0,76	$1,\!14$	8,81	8,32	8,14	8,40	38
111	151	97,959	5,078	0,20	$12,\!07$	$1,\!03$	0,88	$1,\!00$	10,32	9,83	9,72	8,28	53
112	139	$97,\!961$	5,073	0,46	$13,\!58$	$1,\!87$	1,95	$2,\!10$	9,84	8,90	8,63	$7,\!98$	61
113	117	97,975	5,062	$0,\!18$	$14,\!61$	$0,\!66$	0,09	0,78	13,32	$12,\!97$	$12,\!93$	7,23	54
114	75	97,969	5,033	0,25	$7,\!59$	$0,\!15$	-0,81	$0,\!24$	$7,\!24$	7,25	7,25	5,52	62
115	100	97,910	5,027	0,22	$7,\!95$	$0,\!11$	-0,75	$0,\!19$	$7,\!61$	$7,\!59$	$7,\!62$	6,57	60
116	29	97,977	4,990	0,21	12,75	0,36	-0,07	$0,\!45$	11,92	11,80	11,72	2,88	43
117	52	97,916	4,976	0,40	14,27	0,90	0,35	1,14	12,20	11,85	11,70	4,29	75
119	5	97,980	4,955	0,23	12,35	0,34	-0,25	0,51	11,39	11,11	10,87	0,83	46
123	1	97,980	4,939	0,21	11,81	0,26	-0,30	0.43	11.09	10,96	10,86	0.15	52
124	7	97,964	4,938	0,23	13,02	0,37	0,13	0,50	12,07	11,97	11,89	0,95	55
124	7	97,964	4,938	0,23	$13,\!02$	$0,\!37$	$0,\!13$	0,50	12,07	11,97	$11,\!89$	0,95	55

TabelaA.1 - Dados do aglomerado NGC 2244.

Nuz	Np	AB	DE	d	V	B-V	U-B	V-I	J	н	К	r	 Р
1 W	110	(graus)	(graus)	(arcsec)	v	D- V	0-10	V-1	0	11	IX.	(arcmin)	(%)
		(0)	(0)	()								()	
125	4	$97,\!969$	4,938	0,29	$12,\!03$	$0,\!25$	-0,32	$0,\!45$	$11,\!26$	$11,\!16$	$11,\!06$	$0,\!66$	57
126	38	$97,\!921$	4,936	$0,\!15$	$13,\!97$	$1,\!12$	$0,\!48$	$1,\!31$	$11,\!63$	$11,\!10$	$10,\!97$	$3,\!48$	49
127	62	97,901	4,933	$0,\!40$	8,76	$0,\!08$	0,09	0,09	8,52	8,54	8,47	$4,\!67$	56
128	6	$97,\!967$	4,933	$0,\!34$	$9,\!42$	$0,\!15$	-0,70	0,27	9,00	8,99	$8,\!95$	0,92	57
129	35	$97,\!924$	4,925	$0,\!22$	11,81	$1,\!38$	$1,\!40$	$1,\!35$	9,33	8,77	8,54	3,41	58
130	27	$97,\!950$	4,905	$0,\!24$	$11,\!66$	0,26	-0,43	$0,\!40$	$11,\!00$	$10,\!94$	$10,\!87$	2,82	64
131	16	97,965	4,905	$0,\!14$	$13,\!64$	0,52	0,33	0,70	$11,\!98$	$11,\!31$	$10,\!61$	2,37	0
132	58	$97,\!943$	4,877	$0,\!46$	13,74	$1,\!00$	0,36	$1,\!19$	$11,\!65$	$11,\!24$	$11,\!13$	4,44	0
133	70	$97,\!925$	4,876	$0,\!34$	11,72	$0,\!44$	0,06	$0,\!55$	$10,\!67$	$10,\!53$	$10,\!40$	$5,\!11$	39
135	67	$97,\!941$	4,869	$0,\!40$	$11,\!66$	$0,\!61$	$0,\!12$	$0,\!66$	$10,\!52$	$10,\!25$	$10,\!20$	4,93	51
136	59	$97,\!971$	4,868	0,33	$13,\!43$	0,80	0,32	0,86	$11,\!92$	$11,\!53$	$11,\!42$	4,45	54
137	106	$97,\!907$	4,856	$0,\!42$	$13,\!39$	0,35	0,16	$0,\!40$	$12,\!12$	$12,\!45$	$11,\!95$	6,74	0
138	106	97,906	4,855	$1,\!61$	$13,\!67$	$0,\!41$	0,26	$0,\!49$	$12,\!12$	$12,\!45$	$11,\!95$	6,77	0
139	118	97,900	4,850	$0,\!48$	$14,\!57$	0,77	0,57	0,98	12,71	$12,\!50$	$12,\!29$	7,24	33
140	79	97,957	4,845	$0,\!15$	13,82	0,54	0,22	0,73	$12,\!45$	$12,\!25$	$12,\!13$	5,95	54
141	114	97,959	4,827	0,11	$13,\!98$	$0,\!60$	0,05	0,70	12,75	$12,\!45$	$12,\!40$	$6,\!98$	22
142	221	97,900	4,796	$0,\!50$	10,25	0,54	0,04	$0,\!64$	9,21	8,99	8,92	9,92	14
143	226	97,921	4,785	0,32	13,91	0,91	$0,\!61$	0,93	$12,\!24$	11,76	11,70	10,00	3
167	169	98,011	5,086	0,23	10,71	0,20	-0,60	0,30	$10,\!18$	10,09	10,09	8,85	59
168	185	98,036	5,084	0,16	13,68	$1,\!40$	0,97	1,55	10,88	$10,\!24$	10,08	9,21	52
169	157	97,997	5,082	0,23	$12,\!44$	0,56	0,08	$0,\!63$	11,33	11,11	11,05	8,48	56
170	171	98,062	5,065	0,28	$14,\!19$	$0,\!69$	$0,\!12$	0,85	12,74	$12,\!47$	$12,\!35$	8,93	6
171	122	98,031	5,053	0,18	12,79	0,73	0,33	0,74	$11,\!51$	$11,\!22$	$11,\!17$	7,33	50
172	109	98,041	5,037	0,23	$11,\!22$	0,31	-0,43	$0,\!40$	10,55	$10,\!49$	$10,\!43$	6,82	56
173	72	98,008	5,026	0,41	$10,\!27$	1,09	0,90	1,08	8,35	$7,\!89$	7,72	5,34	37
174	50	97,992	5,010	0,28	$13,\!60$	$0,\!49$	0,35	0,52	$12,\!63$	$12,\!51$	$12,\!42$	4,16	70
175	34	97,984	4,998	0,35	$13,\!42$	$0,\!42$	0,11	0,54	12,43	$12,\!29$	12,21	3,40	73
177	49	98,039	4,976	0,53	$14,\!65$	1,14	1,08	$1,\!17$	12,64	12,08	11,98	4,15	0
180	48	98,044	4,967	0,35	8,20	0,16	-0,76	0,23	7,78	7,78	7,72	4,14	51
181	12	97,991	4,964	0,28	$11,\!57$	$0,\!62$	$0,\!15$	0,71	10,41	$10,\!13$	10,08	1,50	30
183	17	98,015	4,959	$0,\!19$	$11,\!39$	0,50	0,28	$0,\!60$	10,32	$10,\!13$	10,06	2,39	63
185	3	97,990	4,945	0,64	14,89	1,39	1,00	$1,\!65$	11,95	$11,\!25$	11,03	$0,\!65$	0
188	23	98,023	4,941	0,27	11,79	1,00	0,82	1,04	9,94	9,47	9,38	2,63	20
190	8	97,995	4,938	0,28	11,26	0,27	-0,44	0,36	$10,\!65$	10,58	$10,\!54$	1,00	64
191	65	98,061	4,938	0,32	13,81	0,70	0,16	0,81	12,39	12,00	11,94	4,87	64
192	42	98,040	4,933	0,33	$12,\!65$	0,44	-0,11	0,59	11,40	11,23	11,08	$3,\!69$	65
193	10	97,996	4,928	0,35	10,38	0,24	-0,57	0,30	9,87	9,77	9,74	1,29	62
194	71	98,065	4,922	0,14	$12,\!01$	0,32	-0,25	$0,\!48$	$11,\!15$	11,00	10,96	5,23	56
195	30	98,023	4,920	$0,\!11$	$12,\!15$	0,30	-0,19	0,39	$11,\!40$	$11,\!35$	$11,\!31$	2,92	60
196	66	98,058	4,921	$0,\!11$	13,26	0,38	-0,02	0,51	12,36	$12,\!37$	$12,\!24$	4,89	0
197	20	98,013	4,917	0,30	$12,\!63$	0,36	-0,10	$0,\!46$	11,71	$11,\!52$	$11,\!45$	2,51	62
198	37	98,031	4,916	0,26	$12,\!66$	0,37	0,01	$0,\!46$	11,74	$11,\!62$	$11,\!61$	3,46	55
199	39	98,004	4,888	0,09	$14,\!26$	1,03	0,39	1,23	12,07	$11,\!60$	$11,\!43$	3,54	0

Tabela A.1 - Continuação

T 1 1 1 1 1	a ~	
Tabola A L	Continuinano	
I a D E I a A I - I	Communacao	
100010 11.1	Communace	

N_W	N_D	AR	DE	d	V	B-V	U-B	V-I	J	Н	К	r	P
		(graus)	(graus)	(arcsec)								(arcmin)	(%)
200	47	98,003	4,878	0,27	8,54	$0,\!17$	-0,72	0,26	8,15	8,13	8,12	4,06	63
201	69	98,026	4,871	0,34	9,74	$0,\!16$	-0,71	$0,\!22$	9,40	9,38	9,39	5,07	61
202	95	98,023	4,844	$0,\!24$	$13,\!48$	$0,\!42$	$0,\!19$	$0,\!48$	$12,\!56$	$12,\!43$	$12,\!32$	$6,\!42$	73
204	165	98,060	4,820	0,37	$14,\!49$	$0,\!67$	$0,\!10$	0,77	$13,\!15$	$12,\!86$	12,75	8,73	32
205	152	98,018	4,809	0,07	$13,\!25$	0,72	$0,\!41$	0,90	$11,\!59$	$11,\!33$	$11,\!21$	8,30	75
206	225	$98,\!056$	4,794	$0,\!19$	$12,\!00$	$0,\!56$	-0,11	$0,\!85$	$10,\!45$	$10,\!10$	9,91	10,00	63
207	209	$97,\!986$	4,781	0,36	$11,\!54$	0,77	$0,\!24$	0,79	$10,\!16$	9,73	$9,\!69$	$9,\!68$	0
208	220	98,016	4,781	$0,\!13$	$13,\!93$	$0,\!64$	$0,\!42$	$0,\!83$	$12,\!43$	$12,\!20$	$12,\!02$	9,89	78
234	337	$98,\!104$	$5,\!106$	$0,\!13$	$12,\!42$	$1,\!75$	$1,\!99$	$1,\!91$	9,07	8,22	$7,\!96$	12,36	70
235	320	98,098	$5,\!105$	0,29	$11,\!67$	$1,\!46$	$1,\!61$	$1,\!54$	9,02	8,34	8,08	$12,\!11$	53
236	213	$98,\!071$	5,076	0,26	$13,\!61$	$0,\!59$	0,03	$0,\!67$	$12,\!50$	$12,\!24$	$12,\!18$	9,74	77
237	219	98,088	5,065	0,19	$13,\!68$	$0,\!57$	$0,\!05$	$0,\!65$	$12,\!55$	$12,\!31$	$12,\!30$	9,88	74
238	253	$98,\!107$	5,065	0,25	$13,\!67$	$0,\!57$	0,26	$0,\!67$	$12,\!52$	$12,\!34$	$12,\!22$	$10,\!61$	73
239	175	$98,\!076$	5,056	0,26	$11,\!11$	$0,\!30$	-0,25	$0,\!42$	$10,\!40$	10,32	$10,\!28$	8,98	65
240	237	98,114	$5,\!047$	0,30	$10,\!08$	$0,\!34$	0,07	0,39	$9,\!42$	9,25	9,25	$10,\!23$	48
241	195	98,096	$5,\!046$	0,29	$11,\!09$	$0,\!28$	-0,23	$0,\!40$	$10,\!41$	$10,\!37$	$10,\!33$	9,39	59
242	134	98,067	5,038	0,29	$12,\!92$	$1,\!32$	$0,\!89$	$1,\!49$	$10,\!30$	$9,\!67$	$9,\!47$	7,81	0
243	131	98,083	5,019	0,55	14,70	$1,\!36$	1,75	$1,\!66$	$11,\!67$	$10,\!97$	10,76	7,73	0
244	216	$98,\!125$	5,018	0,31	$14,\!06$	0,75	$0,\!19$	$0,\!89$	$12,\!51$	$12,\!26$	$12,\!12$	9,85	38
245	140	$98,\!102$	$4,\!994$	0,22	$12,\!59$	$0,\!66$	$0,\!49$	$0,\!84$	$10,\!84$	$10,\!10$	9,33	8,01	58
246	107	98,086	4,977	0,35	$14,\!28$	$0,\!71$	$0,\!17$	$0,\!80$	$12,\!91$	$12,\!62$	$12,\!54$	6,75	0
247	183	$98,\!129$	4,971	0,31	$14,\!12$	$1,\!41$	$1,\!08$	$1,\!62$	$11,\!20$	$10,\!50$	10,33	$9,\!14$	81
248	229	$98,\!146$	4,969	$0,\!62$	$14,\!33$	$1,\!95$	$2,\!04$	2,23	$10,\!34$	$9,\!41$	9,09	$10,\!10$	66
249	214	98,141	4,965	0,22	$12,\!97$	$0,\!35$	$0,\!00$	$0,\!44$	$12,\!17$	$12,\!12$	$12,\!03$	9,79	55
250	126	98,104	4,963	0,39	$14,\!31$	$0,\!90$	$0,\!46$	$0,\!97$	$12,\!61$	$12,\!18$	$12,\!08$	$7,\!55$	76
251	198	$98,\!137$	4,954	0,39	$14,\!29$	0,72	$0,\!16$	$0,\!80$	$12,\!91$	$12,\!56$	$12,\!51$	9,46	70
252	218	98,144	4,954	0,19	$13,\!15$	$1,\!39$	$1,\!13$	$1,\!53$	$10,\!39$	9,76	$9,\!57$	9,86	69
253	159	$98,\!122$	4,949	0,24	10,79	$0,\!33$	-0,30	$0,\!45$	$9,\!87$	$9,\!65$	$9,\!34$	8,58	58
256	91	98,081	4,914	0,36	12,79	$0,\!43$	-0,15	$0,\!57$	11,75	$11,\!63$	$11,\!56$	6,31	45
259	116	98,087	4,892	0,22	$13,\!69$	$0,\!53$	0,37	$0,\!63$	12,46	$12,\!30$	$12,\!20$	7,09	21
261	212	$98,\!128$	4,877	0,27	$13,\!41$	$0,\!68$	0,21	0,80	$12,\!01$	11,80	11,72	9,73	59
263	203	98,123	4,872	$0,\!18$	$12,\!49$	$1,\!34$	$1,\!10$	$1,\!39$	10,02	9,42	9,26	9,54	68
264	271	98,148	4,866	0,17	$13,\!58$	0,71	$0,\!19$	0,77	$12,\!23$	$11,\!90$	$11,\!83$	11,04	20
265	143	98,087	4,861	0,20	14,44	$0,\!62$	$0,\!42$	0,80	12,75	12,72	$12,\!62$	8,07	1
267	182	98,098	4,846	$0,\!13$	$13,\!00$	$0,\!54$	$0,\!12$	0,77	$11,\!55$	$11,\!25$	$11,\!12$	$9,\!13$	57
268	142	98,070	4,843	0,26	$13,\!00$	$0,\!38$	0,03	0,51	12,06	$11,\!94$	$11,\!85$	8,04	50
269	270	$98,\!129$	4,835	0,16	$14,\!48$	$1,\!04$	$0,\!46$	$1,\!29$	$12,\!07$	$11,\!57$	$11,\!09$	11,02	17
270	246	98,105	4,821	0,36	$14,\!30$	$0,\!58$	0,39	0,77	12,84	$12,\!63$	$12,\!47$	10,42	62
271	208	98,080	4,816	0,36	10,88	0,41	$0,\!20$	$0,\!45$	10,11	10,00	9,94	$9,\!65$	59
273	341	$98,\!129$	4,798	0,51	$13,\!64$	$0,\!92$	$0,\!57$	0,96	$11,\!97$	$11,\!53$	$11,\!50$	12,41	3
274	310	98,101	4,784	0,25	11,41	$0,\!31$	-0,50	$0,\!40$	$10,\!69$	$10,\!63$	$10,\!58$	11,92	58
296	483	98,160	$5,\!108$	$0,\!17$	13,76	$0,\!60$	$0,\!07$	$0,\!69$	$12,\!57$	$12,\!29$	$12,\!29$	14,70	10
299	382	98,164	5,056	0,25	$13,\!68$	0,78	0,32	0,83	$12,\!25$	$11,\!88$	11,79	13,04	73

N_W	N_D	AR	DE	d	V	B-V	U-B	V-I	J	Н	К	r	Р
		(graus)	(graus)	(arcsec)								(arcmin)	(%)
300	331	98,159	5,041	0,17	$13,\!54$	$0,\!57$	0,02	0,80	12,11	11,99	11,83	12,29	78
301	374	$98,\!179$	5,025	0,24	$12,\!53$	$0,\!68$	$0,\!44$	0,91	10,83	$10,\!49$	$10,\!13$	12,94	51
303	342	$98,\!178$	5,001	$0,\!17$	14,09	0,85	$0,\!49$	0,92	12,48	$12,\!10$	$11,\!95$	12,42	80
304	318	$98,\!175$	4,994	0,28	12,23	0,56	-0,01	$0,\!64$	11,09	$10,\!87$	10,81	12,09	13
306	285	98,165	4,988	$0,\!62$	$14,\!45$	1,52	$1,\!28$	1,76	11,24	$10,\!55$	$10,\!30$	$11,\!45$	80
310	304	$98,\!175$	4,962	0,29	$14,\!19$	$0,\!61$	0,23	0,74	$12,\!91$	$12,\!68$	$12,\!62$	11,76	80
311	301	$98,\!175$	4,957	0,30	$13,\!57$	$0,\!48$	0,25	$0,\!65$	$12,\!35$	$12,\!17$	$12,\!02$	11,74	48
312	315	$98,\!180$	4,952	0,22	$12,\!58$	0,32	$0,\!19$	0,33	$11,\!94$	$11,\!87$	$11,\!83$	12,03	38
314	233	$98,\!149$	4,948	0,35	$13,\!34$	$1,\!28$	$0,\!82$	$1,\!47$	$10,\!66$	$10,\!10$	9,90	$10,\!15$	3
315	231	$98,\!148$	4,938	$0,\!37$	$11,\!22$	$0,\!58$	$0,\!04$	$0,\!65$	$10,\!13$	$9,\!91$	9,81	10, 11	0
319	312	$98,\!174$	4,894	$0,\!19$	$12,\!81$	0,33	$0,\!16$	$0,\!41$	$11,\!93$	$11,\!82$	$11,\!66$	$11,\!99$	50
320	293	98,162	4,878	0,26	$14,\!04$	$0,\!62$	$0,\!14$	0,74	12,74	$12,\!54$	$12,\!45$	11,60	39
321	289	$98,\!158$	4,869	0,68	12,74	$0,\!66$	0,00	0,75	$11,\!42$	$11,\!10$	$11,\!06$	$11,\!52$	0
322	335	$98,\!167$	4,856	$0,\!51$	$14,\!09$	0,80	$0,\!28$	$0,\!88$	$12,\!56$	$12,\!18$	$12,\!07$	$12,\!34$	62
323	389	$98,\!181$	4,856	0,37	$12,\!64$	$0,\!45$	0,32	$0,\!55$	$11,\!58$	$11,\!47$	$11,\!36$	$13,\!13$	60
324	332	98,163	4,850	$0,\!56$	$13,\!93$	$1,\!83$	1,71	$2,\!12$	$10,\!12$	9,22	8,94	$12,\!30$	22
325	387	$98,\!172$	4,838	$0,\!15$	$11,\!85$	$0,\!55$	$0,\!02$	$0,\!59$	$10,\!82$	$10,\!60$	$10,\!56$	13,09	58
326	386	$98,\!164$	4,825	$0,\!25$	$14,\!46$	$1,\!12$	$1,\!05$	$1,\!14$	$12,\!50$	$11,\!97$	$11,\!85$	13,09	0
328	375	$98,\!155$	4,816	$0,\!16$	$14,\!08$	$0,\!58$	-0,17	$0,\!81$	$12,\!62$	$12,\!44$	$12,\!37$	12,95	81
330	438	$98,\!167$	4,804	0,26	$10,\!83$	$1,\!29$	$1,\!44$	$1,\!26$	8,63	8,04	7,86	$13,\!94$	30
331	481	$98,\!180$	4,801	$0,\!25$	12,72	$0,\!38$	-0,02	$0,\!51$	11,77	$11,\!66$	$11,\!57$	$14,\!67$	62
333	436	$98,\!155$	4,790	0,22	13,72	$0,\!43$	$0,\!27$	$0,\!51$	12,77	$12,\!63$	$12,\!52$	$13,\!91$	72
1043	391	$98,\!163$	4,822	$0,\!39$	$15,\!08$	0,78	$0,\!17$	$0,\!89$	$13,\!52$	$13,\!17$	$13,\!15$	$13,\!14$	25
1044	476	$98,\!161$	4,780	0,29	$15,\!23$	0,85	$0,\!35$	$1,\!15$	$13,\!17$	$12,\!82$	$12,\!67$	$14,\!54$	57
1051	80	$98,\!074$	4,972	$0,\!47$	$15,\!38$	$0,\!80$	$0,\!10$	$0,\!98$	$13,\!66$	$13,\!27$	$13,\!27$	$5,\!95$	0
1052	360	$98,\!191$	4,921	$0,\!30$	$15,\!54$	$0,\!82$	$0,\!22$	$1,\!03$	13,76	$13,\!42$	$13,\!25$	12,70	81
1054	248	$98,\!145$	4,882	0,21	$16,\!03$	$0,\!84$	0,21	$0,\!98$	$14,\!32$	$13,\!93$	$13,\!81$	$10,\!53$	85
1068	319	$98,\!180$	$4,\!918$	$0,\!19$	$15,\!60$	$0,\!57$	$0,\!38$	0,79	$14,\!12$	$13,\!83$	$13,\!64$	12,09	62
1164	61	98,030	$4,\!883$	$0,\!30$	$15,\!37$	$0,\!80$	$0,\!28$	$0,\!89$	13,76	$13,\!40$	$13,\!33$	$4,\!67$	0
1180	187	$98,\!084$	4,829	0,29	$15,\!01$	0,80	$0,\!29$	$0,\!87$	$13,\!50$	$13,\!10$	$13,\!00$	9,21	16
1186	323	98,089	4,771	$0,\!11$	$15,\!36$	0,97	$0,\!54$	$1,\!04$	$13,\!53$	$13,\!10$	$13,\!00$	$12,\!17$	0
1250	97	97,870	4,937	0,33	$15,\!48$	0,79	$0,\!17$	$0,\!92$	$13,\!85$	$13,\!51$	$13,\!40$	6,53	59
1251	41	98,027	$4,\!905$	0,25	15,75	$0,\!88$	$0,\!29$	$0,\!99$	$14,\!03$	$13,\!62$	$13,\!52$	$3,\!60$	0
1252	74	97,887	$4,\!941$	0,25	$15,\!01$	$1,\!04$	0,92	$1,\!04$	$13,\!18$	12,71	$12,\!63$	$5,\!51$	5
1253	121	97,873	4,881	$0,\!13$	$15,\!45$	$0,\!81$	$0,\!23$	$0,\!94$	$13,\!85$	$13,\!45$	$13,\!40$	7,31	54
1272	447	$98,\!153$	4,782	$0,\!11$	$15,\!43$	$0,\!90$	$0,\!29$	$1,\!04$	$13,\!64$	$13,\!15$	$13,\!08$	14,11	26
1279	328	$98,\!131$	$4,\!805$	0,20	15,78	0,86	$0,\!28$	0,93	$14,\!15$	$13,\!80$	$13,\!68$	$12,\!27$	47
1294	451	$98,\!175$	4,810	0,33	$15,\!84$	$0,\!81$	0,37	$1,\!04$	$13,\!95$	$13,\!64$	$13,\!45$	$14,\!14$	42
1296	431	98,168	4,808	0,20	$15,\!36$	$0,\!83$	0,23	$0,\!95$	13,72	$13,\!38$	$13,\!25$	$13,\!85$	25
1298	497	$98,\!184$	4,799	$0,\!10$	$15,\!41$	$1,\!23$	$0,\!63$	$1,\!51$	12,74	$12,\!11$	$11,\!91$	$14,\!92$	62
1304	269	$98,\!161$	4,912	$0,\!39$	$14,\!66$	0,76	0,27	$0,\!83$	$13,\!11$	$12,\!79$	$12,\!57$	10,99	4
1386	179	98,027	4,799	$0,\!18$	$14,\!20$	0,79	$0,\!60$	$1,\!10$	$11,\!97$	$11,\!22$	$10,\!34$	9,04	51
1406	160	$98,\!117$	4,901	$0,\!14$	$14,\!57$	$1,\!09$	$0,\!45$	$1,\!29$	$12,\!33$	$11,\!79$	$11,\!66$	8,59	68

Tabela A.1 - Continuação

=

m 1 1 4 -		0	•	~
Tabela A.1	L -	Cont	tınu	iaçao

N_W	N_D	AR (graus)	DE (graus)	d (arcsec)	V	B-V	U-B	V-I	J	Н	K	r (arcmin)	P (%)
		(graus)	(graus)	(aresee)								(archini)	(70)
1411	434	$98,\!128$	4,764	0,44	$14,\!29$	0,70	$0,\!50$	$0,\!92$	$12,\!62$	$12,\!34$	$12,\!21$	$13,\!89$	68
1413	188	$98,\!130$	4,910	0,47	$14,\!90$	$0,\!91$	$0,\!56$	$0,\!99$	$13,\!16$	12,74	$12,\!59$	9,22	35
1421	119	98,087	4,884	0,57	$14,\!78$	$0,\!74$	$0,\!12$	$0,\!86$	$13,\!29$	$13,\!02$	$12,\!98$	$7,\!28$	2
1424	98	98,087	4,961	$0,\!19$	$14,\!71$	$0,\!91$	$0,\!32$	$1,\!15$	$12,\!64$	$12,\!28$	$12,\!15$	$6,\!54$	74
1430	127	$98,\!102$	4,909	$0,\!12$	$15,\!04$	$0,\!82$	$0,\!34$	$0,\!90$	$13,\!50$	$13,\!03$	$13,\!02$	$7,\!60$	10
1433	111	98,094	$4,\!926$	0,29	$15,\!27$	$0,\!62$	-0,15	$0,\!85$	13,77	$13,\!49$	$13,\!48$	6,91	81
1461	44	97,917	4,939	0,22	$14,\!90$	0,75	$0,\!10$	$0,\!87$	$13,\!37$	$13,\!10$	$12,\!96$	3,71	63
1504	32	98,014	$4,\!985$	0,22	$15,\!01$	$0,\!70$	$0,\!40$	$0,\!87$	$13,\!41$	$13,\!12$	$13,\!05$	3,32	71
1505	25	98,018	4,966	0,50	$15,\!20$	$1,\!02$	$0,\!46$	$1,\!23$	$12,\!95$	$12,\!48$	$12,\!37$	2,76	62
1506	15	98,016	4,930	0,78	$15,\!69$	$0,\!90$	$0,\!29$	$1,\!05$	$13,\!83$	$13,\!46$	$13,\!42$	2,33	0
1512	33	97,987	$4,\!998$	$0,\!48$	$14,\!98$	$0,\!70$	$0,\!36$	$0,\!88$	$13,\!46$	$13,\!15$	$13,\!03$	3,39	53
1515	14	97,990	4,906	$0,\!13$	$15,\!01$	$0,\!96$	$0,\!38$	$1,\!12$	$13,\!00$	$12,\!61$	$12,\!47$	2,21	79
1516	36	98,010	4,990	0,34	$14,\!67$	$0,\!96$	0,72	$0,\!97$	$12,\!97$	$12,\!54$	$12,\!44$	3,42	0
1518	236	97,998	4,773	$0,\!18$	$15,\!50$	$0,\!92$	$0,\!51$	$1,\!27$	$13,\!27$	$12,\!88$	12,75	10,21	71
1532	200	97,882	4,817	$0,\!48$	$14,\!66$	0,75	$0,\!15$	$0,\!87$	$13,\!14$	$12,\!85$	12,72	9,46	12
1536	102	97,891	4,875	$0,\!14$	$14,\!87$	$0,\!74$	$0,\!12$	$0,\!85$	$13,\!39$	$13,\!04$	$13,\!00$	6,59	8
1539	148	97,920	4,818	$0,\!12$	$15,\!06$	$0,\!86$	$0,\!35$	$0,\!95$	$13,\!45$	$13,\!09$	$12,\!99$	8,21	80
1542	68	$97,\!915$	4,888	0,51	$15,\!26$	$1,\!08$	$0,\!43$	$1,\!29$	$12,\!93$	$12,\!43$	$12,\!26$	5,02	80
1546	9	97,960	4,943	0,03	$14,\!92$	$0,\!65$	$0,\!40$	$0,\!86$	$13,\!07$	$13,\!15$	$12,\!99$	$1,\!18$	0
1551	176	97,979	4,792	0,07	$15,\!18$	0,75	$0,\!17$	$0,\!92$	$13,\!59$	$13,\!23$	$13,\!19$	$8,\!98$	9
1554	82	97,970	4,842	0,20	$14,\!89$	$0,\!62$	$0,\!42$	$0,\!80$	$13,\!39$	$13,\!14$	$13,\!02$	6,01	51
1557	31	97,979	4,994	0,03	$15,\!48$	0,74	$0,\!30$	$0,\!99$	$13,\!68$	$13,\!42$	$13,\!21$	3,14	1
1575	125	97,938	5,060	0,28	$15,\!20$	0,79	$0,\!23$	$0,\!87$	13,71	$13,\!30$	$13,\!24$	$7,\!51$	25
1593	168	98,093	5,035	0,30	$14,\!47$	$0,\!69$	$0,\!11$	$0,\!79$	$13,\!12$	12,73	$12,\!69$	8,80	15
1594	177	98,111	5,015	$0,\!12$	$14,\!96$	$0,\!63$	$0,\!42$	$0,\!81$	$13,\!50$	$13,\!21$	$13,\!11$	9,02	76
1601	112	$98,\!078$	5,002	0,22	$14,\!54$	$0,\!76$	$0,\!22$	$0,\!88$	$13,\!06$	12,73	$12,\!69$	6,92	49
1614	86	97,955	$5,\!041$	$0,\!43$	$14,\!69$	$0,\!70$	$0,\!15$	$0,\!80$	$13,\!34$	$13,\!07$	$13,\!00$	$6,\!12$	80
1617	359	$98,\!163$	5,047	0,41	$14,\!85$	0,79	$0,\!25$	$0,\!89$	$13,\!34$	$12,\!91$	12,78	$12,\!69$	39
1620	83	97,936	5,032	0,58	$14,\!61$	0,70	$0,\!13$	$0,\!82$	$13,\!23$	$12,\!85$	12,79	6,02	50
1626	477	$98,\!189$	5,066	0,23	$15,\!29$	$0,\!84$	$0,\!39$	$0,\!95$	$13,\!63$	$13,\!24$	$13,\!14$	$14,\!60$	0
1667	46	98,008	5,002	0,23	$15,\!48$	$0,\!95$	$0,\!32$	$1,\!18$	$13,\!36$	$13,\!03$	$12,\!84$	4,00	24
1677	63	97,977	5,020	0,47	$14,\!50$	$1,\!06$	$0,\!43$	$1,\!31$	$12,\!19$	11,73	$11,\!56$	4,70	59
1686	99	97,891	5,007	0,37	$15,\!94$	$0,\!83$	$0,\!21$	$1,\!14$	$13,\!85$	$13,\!58$	$13,\!47$	$6,\!56$	15
1689	105	98,027	5,044	$0,\!17$	$15,\!02$	0,77	$0,\!35$	$1,\!04$	$13,\!12$	$12,\!81$	$12,\!64$	6,74	40
1691	104	98,030	5,042	$0,\!13$	$15,\!94$	0,74	$0,\!17$	$0,\!99$	$14,\!18$	$13,\!89$	13,74	6,72	0
1694	204	98,021	5,096	0,31	$15,\!09$	0,74	$0,\!09$	$0,\!99$	$13,\!28$	$13,\!07$	$12,\!89$	$9,\!60$	67
1697	135	98,026	5,064	$0,\!19$	$15,\!03$	$0,\!81$	$0,\!34$	$0,\!87$	$13,\!50$	$13,\!16$	$13,\!09$	$7,\!85$	0
1699	94	$98,\!043$	5,027	0,21	$14,\!89$	$0,\!81$	$0,\!24$	$0,\!91$	$13,\!30$	$12,\!99$	$12,\!92$	$6,\!40$	0
1705	243	98,018	$5,\!109$	0,20	$14,\!86$	$0,\!67$	$0,\!40$	$0,\!94$	$13,\!13$	$12,\!95$	12,77	10,33	70
1716	224	97,960	$5,\!107$	0,28	$14,\!67$	$0,\!63$	$0,\!27$	$0,\!70$	$13,\!40$	$13,\!23$	$13,\!17$	9,99	53
1732	340	$98,\!127$	5,087	0,16	$14,\!71$	$0,\!65$	$0,\!37$	$0,\!90$	$13,\!06$	$12,\!82$	$12,\!67$	12,41	76
1733	326	$98,\!130$	5,080	0,27	$15,\!12$	$0,\!62$	$0,\!39$	$0,\!84$	$13,\!57$	$13,\!28$	$13,\!16$	$12,\!22$	26
1735	412	$98,\!139$	5,099	0,39	$15,\!27$	$0,\!82$	$0,\!54$	$1,\!11$	$13,\!24$	$12,\!93$	12,78	$13,\!44$	19

N_W	N_D	AR	DE	d	V	B-V	U-B	V-I	J	Н	К	r	Р
		(graus)	(graus)	(arcsec)								(arcmin)	(%)
1736	223	98,126	5,021	0,18	15,16	0,74	0,20	$0,\!89$	$13,\!58$	$13,\!36$	$13,\!23$	9,99	78
1741	308	98,141	5,057	0,26	14,91	1,03	$0,\!89$	1,07	$13,\!04$	$12,\!59$	$12,\!45$	11,87	29
1742	384	98,159	5,065	0,23	$15,\!21$	0,75	$0,\!54$	1,01	$13,\!38$	$13,\!11$	$12,\!94$	13,05	60
1768	244	98,095	5,070	0,30	$14,\!51$	0,73	$0,\!17$	$0,\!87$	13,03	$12,\!67$	$12,\!62$	10,34	48
2022	147	97,872	4,857	$1,\!12$	15,76	1,39	$1,\!24$	1,58	$13,\!16$	$12,\!49$	$12,\!34$	8,18	64
2024	124	97,873	4,875	0,52	$15,\!56$	0,85	$0,\!29$	0,93	$13,\!93$	$13,\!54$	$13,\!42$	$7,\!50$	69
2027	89	97,875	4,944	$0,\!66$	$15,\!65$	1,06	$0,\!88$	$1,\!15$	$13,\!64$	$13,\!08$	12,96	6,23	0
2036	307	97,883	$5,\!114$	0,33	$14,\!89$	$1,\!15$	$1,\!11$	$1,\!20$	12,86	$12,\!29$	$12,\!18$	11,83	12
2040	146	97,887	4,841	1,05	$15,\!60$	$1,\!04$	$0,\!56$	1,11	$13,\!61$	$13,\!13$	$12,\!93$	8,16	70
2049	93	$97,\!892$	4,880	$0,\!63$	$16,\!12$	$1,\!00$	$0,\!65$	1,03	$14,\!29$	$13,\!85$	$13,\!69$	$6,\!40$	53
2050	215	97,893	4,803	0,85	$15,\!94$	$0,\!89$	$0,\!27$	$0,\!99$	$14,\!22$	$13,\!80$	13,76	9,83	71
2052	149	$97,\!894$	4,834	1,22	$15,\!89$	$0,\!81$	$0,\!48$	$1,\!06$	$13,\!94$	$13,\!60$	$13,\!40$	8,21	42
2064	161	$97,\!904$	$5,\!064$	$0,\!64$	$15,\!97$	$1,\!18$	$1,\!10$	$1,\!22$	$13,\!89$	$13,\!27$	$13,\!19$	8,60	16
2068	207	$97,\!908$	4,798	1,24	$15,\!61$	$1,\!10$	$1,\!00$	$1,\!08$	$13,\!66$	$13,\!16$	$13,\!05$	$9,\!61$	0
2084	51	$97,\!918$	$4,\!906$	$0,\!31$	$15,\!90$	$0,\!98$	$0,\!32$	$1,\!26$	$13,\!62$	$13,\!20$	$13,\!01$	4,27	61
2085	154	$97,\!918$	5,068	$0,\!81$	15,71	0,92	$0,\!29$	$1,\!14$	$13,\!65$	$13,\!24$	$13,\!05$	8,41	17
2086	120	$97,\!919$	4,836	$0,\!53$	$15,\!30$	$1,\!08$	$0,\!94$	$1,\!14$	$13,\!25$	12,72	$12,\!57$	$7,\!31$	13
2091	54	$97,\!922$	$4,\!898$	$0,\!33$	$15,\!30$	$1,\!68$	$1,\!17$	$2,\!09$	$11,\!60$	$10,\!85$	$10,\!58$	4,31	77
2101	55	97,935	5,000	0,80	$15,\!00$	$1,\!88$	$1,\!58$	2,23	$11,\!01$	$10,\!13$	9,83	$4,\!37$	11
2109	84	97,940	5,035	0,25	$15,\!53$	$1,\!20$	$0,\!62$	$1,\!44$	$13,\!03$	$12,\!43$	$12,\!24$	6,05	64
2121	43	97,948	4,889	$0,\!39$	$15,\!80$	1,32	$0,\!83$	$1,\!56$	$13,\!06$	$12,\!41$	$12,\!11$	$3,\!69$	0
2125	18	$97,\!951$	$4,\!972$	$0,\!58$	16,77	$1,\!25$	$0,\!62$	$2,\!24$	$12,\!43$	$11,\!57$	$11,\!08$	$2,\!48$	19
2126	18	$97,\!951$	$4,\!973$	$0,\!48$	$16,\!52$	$1,\!67$	$0,\!54$	$1,\!94$	$12,\!43$	$11,\!57$	$11,\!08$	$2,\!49$	19
2145	158	$97,\!962$	4,800	0,72	$15,\!83$	$1,\!01$	$0,\!76$	$1,\!04$	$14,\!01$	$13,\!48$	$13,\!33$	8,56	0
2149	11	$97,\!964$	$4,\!958$	0,41	$16,\!14$	$1,\!39$	$1,\!02$	1,73	$13,\!10$	$12,\!31$	$12,\!09$	1,33	53
2150	130	$97,\!964$	4,814	$0,\!52$	$15,\!28$	$1,\!29$	0,77	$1,\!54$	$12,\!53$	11,88	$11,\!67$	7,70	80
2163	19	97,970	4,983	0,66	15,74	0,97	$0,\!44$	$1,\!25$	$13,\!52$	$13,\!08$	$12,\!90$	2,51	1
2167	173	97,972	$5,\!091$	$0,\!63$	$15,\!61$	0,79	$0,\!42$	$0,\!94$	$13,\!92$	$13,\!58$	$13,\!44$	8,94	80
2171	197	$97,\!974$	5,099	0,22	$16,\!12$	$0,\!95$	$0,\!34$	$1,\!20$	$13,\!97$	$13,\!54$	$13,\!40$	9,45	50
2178	110	$97,\!979$	4,828	$0,\!99$	$14,\!71$	$1,\!60$	$1,\!36$	$1,\!87$	$11,\!32$	$10,\!52$	$10,\!27$	6,85	24
2195	144	$97,\!985$	5,077	0,66	$15,\!81$	$1,\!32$	$0,\!84$	$1,\!54$	$13,\!06$	$12,\!39$	$12,\!23$	8,13	79
2196	22	$97,\!986$	$4,\!984$	0,03	$16,\!20$	$0,\!97$	$0,\!27$	$1,\!13$	$14,\!23$	13,77	$13,\!64$	$2,\!60$	68
2215	230	97,997	$5,\!109$	$0,\!38$	$15,\!65$	0,92	$0,\!28$	$1,\!15$	$13,\!63$	$13,\!17$	$13,\!05$	$10,\!11$	14
2219	150	97,999	$4,\!805$	$0,\!28$	$15,\!91$	$1,\!65$	$1,\!04$	$2,\!01$	$12,\!28$	$11,\!46$	$11,\!23$	8,27	79
2221	92	98,001	4,839	$0,\!55$	$16,\!19$	$1,\!45$	0,91	1,73	$13,\!05$	$12,\!36$	$12,\!17$	6,32	0
2222	57	98,001	5,012	$0,\!26$	$16,\!19$	$1,\!44$	$0,\!98$	1,71	$13,\!18$	$12,\!42$	$12,\!20$	4,40	80
2224	166	98,002	5,086	$0,\!63$	$15,\!90$	$1,\!19$	1,20	1,26	13,73	$13,\!19$	$13,\!08$	8,75	7
2230	21	98,006	$4,\!974$	$0,\!71$	16,01	0,92	$0,\!34$	$1,\!18$	13,88	$13,\!55$	$13,\!38$	2,52	83
2231	13	98,008	4,938	$0,\!59$	$15,\!59$	$1,\!65$	1,32	$1,\!90$	$12,\!14$	$11,\!34$	$11,\!09$	1,74	0
2234	123	98,008	5,062	$0,\!51$	$15,\!67$	$1,\!59$	$1,\!11$	$1,\!87$	$12,\!30$	$11,\!54$	$11,\!33$	$7,\!42$	4
2236	133	98,009	4,816	$0,\!53$	$15,\!93$	1,33	$0,\!79$	$1,\!59$	$13,\!12$	$12,\!49$	12,21	7,77	49
2239	101	98,010	4,836	0,44	$15,\!54$	1,26	$0,\!69$	1,50	12,88	12,28	12,06	$6,\!59$	80
2242	228	98,012	5,106	1.23	15,77	1.09	0.64	1.25	13,57	$13,\!12$	12.99	10.05	51

Tabela A.1 - Continuação

=

m 1 1 4 -		0	•	~
Tabela A.1	L -	Cont	tınu	iaçao

N_W	N_D	AR (graus)	DE (graus)	d (arcsec)	V	B-V	U-B	V-I	J	Н	К	r (arcmin)	P (%)
		(Braab)	(gradb)	(uresee)								(areiiiii)	(70)
2250	28	98,018	4,969	$0,\!47$	15,70	$1,\!58$	$1,\!09$	$1,\!89$	$12,\!31$	$11,\!54$	$11,\!32$	2,83	6
2252	25	98,018	4,966	0,92	$16,\!98$	$0,\!82$	$0,\!65$	$1,\!50$	$12,\!95$	$12,\!48$	$12,\!37$	2,77	62
2255	60	98,019	5,008	0,47	$15,\!93$	$0,\!88$	$0,\!31$	$1,\!11$	$13,\!97$	$13,\!58$	$13,\!49$	$4,\!63$	70
2285	250	$98,\!031$	$5,\!110$	0,73	15,73	$0,\!91$	$0,\!55$	$0,\!98$	$13,\!98$	$13,\!60$	$13,\!54$	10,57	43
2289	45	98,035	4,909	0,98	$15,\!87$	$0,\!76$	$0,\!20$	$1,\!03$	$13,\!96$	13,70	$13,\!59$	$3,\!87$	0
2291	201	$98,\!037$	4,794	0,76	$15,\!31$	$0,\!76$	$0,\!49$	$0,\!97$	$13,\!54$	$13,\!23$	$13,\!09$	9,51	78
2299	42	98,040	4,933	2,39	$14,\!56$	$0,\!74$	$0,\!44$	$1,\!00$	$11,\!40$	$11,\!23$	$11,\!08$	3,70	65
2301	53	$98,\!042$	4,906	0,31	$15,\!43$	$1,\!22$	$0,\!66$	$1,\!43$	$12,\!89$	$12,\!31$	$12,\!10$	4,29	83
2303	77	98,043	4,867	0,56	$15,\!79$	$0,\!82$	$0,\!35$	$1,\!02$	$13,\!93$	$13,\!61$	$13,\!47$	5,88	47
2306	259	98,046	4,776	1,02	$15,\!65$	$0,\!91$	$0,\!60$	$0,\!95$	$13,\!98$	$13,\!49$	$13,\!39$	10,71	7
2307	196	$98,\!047$	$5,\!084$	$1,\!18$	$16,\!01$	$1,\!08$	$0,\!41$	$1,\!31$	$13,\!69$	$13,\!17$	$13,\!08$	$9,\!45$	66
2308	64	98,048	4,899	0,26	$15,\!84$	$1,\!33$	$0,\!92$	$1,\!61$	$12,\!97$	$12,\!27$	$12,\!11$	4,86	65
2336	76	$98,\!070$	4,915	$0,\!49$	$14,\!51$	$1,\!91$	$1,\!85$	$2,\!17$	$10,\!59$	$9,\!68$	9,42	$5,\!64$	76
2350	78	$98,\!077$	4,929	0,52	$16,\!00$	$1,\!33$	1,26	$1,\!47$	$13,\!56$	$12,\!92$	12,79	$5,\!90$	22
2362	88	$98,\!082$	4,937	$1,\!12$	$15,\!41$	0,73	$0,\!32$	$1,\!02$	$13,\!57$	$13,\!30$	$13,\!12$	$6,\!18$	73
2363	131	$98,\!083$	5,018	0,70	$16,\!36$	$0,\!66$	-0,01	$1,\!33$	$11,\!67$	$10,\!97$	10,76	7,72	0
2374	163	$98,\!088$	4,847	$0,\!60$	$15,\!96$	$0,\!91$	$0,\!57$	$1,\!17$	$13,\!82$	$13,\!49$	$13,\!25$	8,66	0
2379	172	98,090	4,841	0,71	$16,\!07$	$1,\!36$	$1,\!10$	1,71	$13,\!13$	$12,\!41$	$12,\!18$	8,94	6
2388	178	$98,\!095$	4,846	$0,\!18$	$15,\!61$	$1,\!07$	$0,\!46$	$1,\!34$	$13,\!24$	12,75	$12,\!54$	9,02	0
2393	136	98,098	4,885	0,33	$15,\!88$	$1,\!23$	$1,\!24$	$1,\!33$	$13,\!64$	$13,\!01$	$12,\!89$	$7,\!86$	34
2400	155	$98,\!102$	4,873	0,41	$15,\!46$	$1,\!22$	$0,\!67$	$1,\!50$	$12,\!87$	$12,\!23$	$12,\!07$	8,40	69
2408	193	$98,\!104$	5,036	0,83	$15,\!55$	$0,\!84$	$0,\!35$	$0,\!91$	$13,\!91$	$13,\!56$	$13,\!37$	9,34	50
2422	145	$98,\!111$	4,976	$0,\!65$	$16,\!09$	$1,\!41$	$0,\!98$	$1,\!67$	$13,\!10$	$12,\!35$	$12,\!18$	8,15	48
2423	137	$98,\!112$	4,939	0,34	$16,\!03$	$1,\!11$	$0,\!45$	$1,\!37$	$13,\!60$	$13,\!06$	$12,\!96$	$7,\!92$	42
2431	390	$98,\!119$	$5,\!111$	$0,\!14$	$15,\!58$	$0,\!98$	$0,\!55$	$1,\!09$	13,72	$13,\!25$	$13,\!27$	$13,\!14$	68
2437	156	$98,\!120$	4,959	$0,\!43$	$15,\!88$	$1,\!02$	$0,\!85$	$1,\!12$	$13,\!92$	$13,\!34$	$13,\!30$	8,48	1
2440	238	$98,\!122$	4,847	0,71	$15,\!92$	$0,\!93$	$0,\!60$	$1,\!24$	$13,\!61$	$13,\!25$	$13,\!05$	10,23	41
2449	202	$98,\!127$	4,881	$0,\!65$	$15,\!46$	$1,\!02$	$0,\!37$	$1,\!26$	$13,\!21$	12,78	$12,\!59$	$9,\!54$	20
2455	251	$98,\!128$	5,036	$0,\!69$	$15,\!53$	$1,\!01$	$0,\!79$	$1,\!11$	$13,\!61$	$13,\!16$	$12,\!99$	$10,\!57$	0
2457	270	$98,\!129$	4,836	2,58	$16,\!69$	$1,\!34$	$0,\!67$	$1,\!57$	$12,\!07$	$11,\!57$	$11,\!09$	10,98	17
2485	211	98,140	4,961	0,93	$14,\!59$	$1,\!38$	$1,\!04$	$1,\!62$	$11,\!69$	$11,\!01$	$10,\!80$	9,71	46
2493	388	$98,\!143$	4,796	0,55	$15,\!84$	$1,\!54$	$1,\!15$	$1,\!82$	$12,\!59$	11,78	$11,\!57$	$13,\!11$	64
2506	297	$98,\!154$	5,028	$0,\!66$	$15,\!39$	$1,\!11$	$0,\!90$	$1,\!23$	$13,\!31$	$12,\!80$	$12,\!63$	$11,\!66$	44
2524	314	98,161	4,857	0,23	$14,\!69$	$1,\!78$	$1,\!65$	$2,\!07$	10,96	$10,\!14$	$9,\!84$	12,01	0
2525	266	$98,\!162$	4,956	0,95	$15,\!17$	$0,\!98$	0,76	$1,\!04$	$13,\!35$	$12,\!93$	12,79	10,97	73
2526	393	$98,\!162$	4,819	$0,\!66$	$15,\!69$	$0,\!79$	$0,\!53$	$1,\!06$	13,73	$13,\!46$	$13,\!23$	$13,\!17$	55
2531	351	$98,\!164$	4,842	$0,\!68$	$15,\!22$	$1,\!83$	$1,\!48$	$2,\!17$	$11,\!29$	$10,\!44$	$10,\!14$	12,56	67
2534	279	$98,\!165$	4,902	1,20	$15,\!50$	$0,\!92$	$0,\!59$	$0,\!97$	$13,\!80$	$13,\!36$	$13,\!30$	11,36	29
2536	303	$98,\!167$	4,882	0,75	$16,\!12$	$0,\!98$	$0,\!29$	1,24	$13,\!87$	$13,\!45$	$13,\!31$	11,76	80
2542	290	$98,\!173$	4,935	$1,\!37$	$16,\!25$	$1,\!05$	$0,\!44$	$1,\!35$	$13,\!90$	$13,\!43$	$13,\!25$	$11,\!56$	14
2549	463	$98,\!176$	4,808	0,70	$16,\!09$	$0,\!81$	$0,\!32$	$1,\!10$	$14,\!16$	$13,\!82$	13,76	14,26	74
2553	315	$98,\!179$	4,953	3,94	$16,\!50$	$0,\!81$	$0,\!39$	$1,\!10$	$11,\!94$	$11,\!87$	$11,\!83$	$11,\!97$	38
2560	346	$98,\!181$	$4,\!997$	0,59	15,79	$1,\!10$	$0,\!52$	$1,\!35$	$13,\!40$	$12,\!93$	12,76	12,50	25

N_W	N_D	AR (graus)	DE (graus)	d (arcsec)	V	B-V	U-B	V-I	J	Η	К	r (arcmin)	P (%)
2565	336	98,183	4,909	0,24	15,01	$1,\!45$	1,23	1,72	11,91	$11,\!24$	11,02	12,34	46
2566	344	98,183	4,898	0,49	$15,\!91$	$0,\!87$	$0,\!29$	1,14	$13,\!85$	$13,\!50$	$13,\!37$	12,49	28
2570	440	$98,\!185$	5,053	0,81	$15,\!55$	$1,\!21$	$0,\!63$	1,50	$12,\!88$	$12,\!13$	11,72	$13,\!99$	71
2571	354	$98,\!187$	4,905	0,94	$16,\!10$	1,02	0,88	$1,\!07$	$14,\!22$	$13,\!68$	$13,\!63$	$12,\!60$	0

Tabela A.1 - Continuação

TabelaA.2 - Dados do aglomerado NGC 2264.

\mathbf{N}_W	N_D	AR	DE	d	V	B-V	U-B	V-I	J	Н	К	r	Р
		(graus)	(graus)	(arcsec)								(arcmin)	(%)
10		100.000	0.000	1.00	10.05	0.00	0.00		11.00	11.10	11.00	10.10	
42	414	100,088	9,609	1,09	13,35	0,83	0,28	0,98	11,62	11,16	11,02	19,43	53
43	214	100,089	9,697	0,03	10,52	0,19	0,19	0,23	10,15	10,06	10,02	14,88	59
46	111	100,103	9,769	0,02	9,18	0,23	0,15	0,39	8,54	8,24	7,64	11,15	65
47	221	100,108	9,682	1,35	16,32	2,10	1,80	2,66	11,71	10,80	10,48	15,02	85
48	321	100,110	9,634	0,66	15,08	1,44	1,20	1,85	11,97	11,21	11,03	17,52	75
50	71	100,119	9,818	0,04	8,09	-0,16	-0,68	-0,08	8,44	8,48	8,57	8,60	72
51	406	100,119	9,598	3,51	$15,\!97$	1,39	1,16	1,94	12,79	12,07	11,85	19,32	84
52	165	100,121	9,705	0,79	$15,\!44$	1,29	1,12	1,53	12,91	12,21	12,02	13,47	1
54	56	100,125	9,836	1,63	$14,\!32$	1,14	0,97	1,24	12,22	11,68	11,56	7,77	62
58	67	100,132	9,806	0,82	$15,\!52$	1,20	0,53	$1,\!47$	$13,\!02$	$12,\!35$	$12,\!18$	8,39	82
59	128	100,133	9,721	1,09	15,75	$1,\!17$	$0,\!62$	$1,\!60$	$12,\!66$	12,32	11,94	$12,\!27$	70
60	96	100, 135	10,031	0,07	$12,\!50$	1,03	$0,\!54$	$1,\!42$	$10,\!14$	9,77	9,58	$10,\!32$	36
61	173	$100,\!141$	$9,\!688$	0,40	$14,\!97$	0,93	0,35	$1,\!05$	$13,\!16$	12,76	$12,\!62$	13,79	84
63	248	$100,\!143$	$9,\!648$	0,23	$14,\!69$	$0,\!88$	$0,\!46$	$0,\!90$	$13,\!17$	12,70	$12,\!63$	$15,\!94$	81
66	64	$100,\!153$	9,790	0,57	$12,\!43$	0,77	-0,08	$1,\!52$	$9,\!65$	9,00	8,59	8,22	10
67	59	$100,\!155$	9,792	$0,\!58$	$10,\!90$	$0,\!60$	-0,38	$1,\!32$	8,41	$7,\!84$	$7,\!50$	8,04	34
68	32	$100,\!156$	9,916	0,26	$11,\!75$	$0,\!65$	$0,\!08$	$0,\!78$	$10,\!53$	$10,\!22$	$10,\!14$	5,21	68
71	137	100, 155	9,704	4,53	$16,\!82$	$1,\!28$	$0,\!69$	$1,\!69$	$13,\!81$	$13,\!35$	13,06	$12,\!49$	0
73	43	100,160	9,963	0,07	9,36	0,85	$0,\!48$	$0,\!89$	$7,\!86$	7,40	$7,\!33$	6,30	71
74	60	100,160	9,788	0,03	8,42	-0,12	-0,60	-0,10	8,64	8,62	8,70	8,05	71
75	360	100,162	9,601	3,03	$16,\!23$	$1,\!37$	0,85	1,77	$13,\!30$	$12,\!56$	$12,\!40$	18,31	65
88	68	100,180	9,767	0,04	9,04	-0,10	-0,60	0,00	9,07	9,03	8,95	8,49	73
90	45	100,186	9,801	0,44	12,71	$0,\!15$	-0,12	0,33	11,44	$10,\!45$	9,33	$6,\!55$	73
92	33	100,192	9,822	$0,\!48$	11,76	$0,\!87$	$0,\!45$	$0,\!98$	10,16	$9,\!65$	9,56	$5,\!30$	0
97	308	100,201	9,611	2,47	$16,\!39$	1,52	1,25	$2,\!14$	12,92	$12,\!17$	11,96	$17,\!22$	77
100	13	100,204	9,862	0,32	10,04	$0,\!14$	0,09	$0,\!28$	9,52	9,13	8,48	2,98	76
104	7	100,206	9,890	0,40	11,41	0,23	0,18	0,34	10,92	10,86	10,78	$2,\!11$	74
105	297	100,208	9,614	0,09	15,33	1,10	-0,09	1,59	12,40	11,61	11,16	16,99	79
106	267	100,209	9,624	0,22	$13,\!25$	0,78	0,29	0,82	11,86	11,48	11,39	16,39	0

\mathbf{N}_W	N_D	AR	DE	d	V	B-V	U-B	V-I	J	Н	К	r	Р
		(graus)	(graus)	(arcsec)								(arcmin)	(%)
107	63	100,213	10,029	0,03	8,82	-0,04	-0,42	0,00	8,91	8,97	8,93	8,21	73
108	80	100,213	9,746	$0,\!23$	$12,\!02$	$0,\!59$	$0,\!07$	0,71	$10,\!74$	$10,\!23$	$9,\!67$	9,09	0
109	9	100,215	9,864	0,05	9,10	-0,11	-0,51	-0,09	$9,\!38$	$9,\!47$	9,43	2,46	72
110	98	100,215	9,723	0,83	$14,\!46$	1,11	$0,\!59$	$1,\!33$	$12,\!37$	$11,\!62$	$11,\!16$	$10,\!42$	52
111	274	100,215	9,621	$0,\!67$	$16,\!89$	$1,\!51$	1,26	$1,\!95$	13,72	$12,\!99$	$12,\!87$	$16,\!54$	1
112	205	100,216	$9,\!652$	$0,\!43$	10,78	0,00	-0,12	$0,\!02$	$10,\!80$	$10,\!83$	$10,\!81$	$14,\!65$	76
117	46	100,226	9,786	$0,\!80$	$13,\!66$	$0,\!63$	$0,\!15$	0,71	$12,\!19$	$11,\!94$	$11,\!80$	$6,\!58$	13
119	261	100,231	$9,\!623$	$1,\!13$	$15,\!62$	$1,\!30$	1,02	1,73	12,70	$12,\!02$	$11,\!80$	$16,\!32$	17
121	2	100,236	$9,\!903$	1,46	$12,\!38$	$0,\!85$	0,30	$0,\!98$	$10,\!78$	$10,\!31$	$10,\!21$	$0,\!60$	34
123	335	100,235	9,599	$1,\!66$	$16,\!78$	$1,\!36$	$0,\!04$	$2,\!14$	$12,\!78$	11,79	$11,\!02$	$17,\!82$	82
125	29	100,238	9,811	0,76	$12,\!32$	$0,\!60$	$0,\!07$	0,71	$11,\!16$	$10,\!92$	10,83	5,03	29
126	246	100,237	$9,\!630$	$0,\!13$	$14,\!91$	$1,\!11$	$0,\!18$	$1,\!63$	$12,\!22$	$11,\!50$	$11,\!25$	$15,\!89$	83
129	130	100,241	$9,\!689$	1,07	$15,\!99$	$1,\!35$	$0,\!57$	$1,\!94$	$12,\!87$	$11,\!91$	$11,\!27$	$12,\!36$	44
134	5	100,247	9,922	0,92	$12,\!51$	$0,\!94$	$0,\!47$	$1,\!07$	$10,\!65$	10,06	9,70	$1,\!67$	70
136	369	100,248	$9,\!587$	1,30	$15,\!36$	$1,\!69$	$1,\!31$	$2,\!14$	$11,\!59$	10,70	$10,\!31$	$18,\!52$	27
137	4	100,251	9,871	$3,\!62$	9,92	-0,07	-0,36	-0,01	$10,\!00$	$10,\!00$	9,94	$1,\!49$	66
141	423	100,255	9,569	$2,\!49$	$14,\!63$	$1,\!16$	$0,\!88$	$1,\!35$	$12,\!35$	$11,\!71$	$11,\!55$	$19,\!58$	62
142	3	100,258	$9,\!880$	0,06	9,03	-0,11	-0,54	-0,05	9,25	9,23	9,20	1,31	50
146	224	100,258	$9,\!645$	0,88	$14,\!84$	$1,\!14$	0,56	$1,\!44$	$12,\!24$	$11,\!61$	$11,\!38$	$15,\!04$	11
148	413	100,260	9,572	$1,\!63$	$13,\!63$	$0,\!66$	$0,\!13$	0,72	$12,\!41$	$12,\!11$	$12,\!01$	$19,\!42$	0
149	380	100,260	9,583	$1,\!29$	$14,\!31$	$0,\!98$	0,56	$1,\!14$	$12,\!36$	$11,\!82$	$11,\!65$	$18,\!80$	78
150	368	100,260	9,587	1,59	$15,\!35$	$1,\!23$	0,93	$1,\!43$	$12,\!85$	$12,\!23$	$12,\!05$	$18,\!52$	0
151	41	100,262	9,798	$0,\!63$	$12,\!56$	$0,\!48$	$0,\!04$	$0,\!58$	$11,\!64$	$11,\!45$	$11,\!35$	$5,\!92$	65
153	150	100,264	$9,\!679$	0,36	15,77	$1,\!22$	0,74	1,55	$12,\!93$	$12,\!24$	$12,\!07$	$13,\!02$	60
155	364	100,267	9,589	1,26	$16,\!60$	$1,\!49$	$1,\!18$	2,23	$13,\!03$	$12,\!34$	$12,\!10$	18,41	71
156	37	100,268	9,806	0,52	$16,\!17$	$1,\!46$	$1,\!34$	2,03	$12,\!57$	$11,\!99$	$11,\!83$	5,56	60
158	6	100,269	9,912	0,08	10,37	0,39	0,16	0,51	9,52	9,26	8,91	1,92	61
159	313	100,269	$9,\!608$	$2,\!80$	10,95	0,05	0,01	$0,\!14$	$10,\!64$	$10,\!51$	10,44	17,33	72
161	38	100,274	9,805	0,47	15,06	$1,\!17$	0,28	1,77	12,02	11,26	10,80	5,74	82
164	314	100,275	$9,\!607$	2,53	$13,\!42$	0,85	0,32	0,98	11,64	11,02	10,55	17,44	47
168	34	100,280	9,975	$0,\!63$	$15,\!14$	1,24	1,00	1,53	$12,\!54$	11,87	11,68	$5,\!33$	68
169	92	100,283	9,734	0,34	13,41	0,78	0,21	0,91	11,89	11,51	11,38	9,95	56
170	141	100,283	9,687	0,55	15,87	1,48	1,22	1,86	12,81	12,04	11,86	12,68	42
173	112	100,286	9,714	0,65	16,44	1,44	1,12	1,96	13,28	12,58	12,38	11,15	79
179	14	100,293	9,884	0,03	9,91	-0,01	-0,13	0,05	9,88	9,87	9,81	3,12	69
181	15	100,297	9,882	0,05	10,09	-0,04	-0,28	0,01	10,17	10,22	10,23	3,35	73
185	209	100,302	9,658	0,68	15,94	1,10	0,83	1,11	14,03	13,51	13,36	14,69	0
186	20	100,305	9,919	1,42	16,94	0,63	0,75	2,42	12,28	11,57	11,33	4,02	66
187	355	100,304	9,597	0,04	9,16	-0,02	-0,37	-0,07	9,37	9,40	9,38	18,24	56
190	24	100,308	9,929	0,35	12,35	0,64	0,11	0,74	11,18	10,90	10,82	4,39	64
192	185	100,314	9,670	0,06	13,72	0,59	-0,02	0,64	12,65	12,39	12,29	14,16	0
194	252	100,315	9,638	0,27	13,04	$0,\!65$	-0,01	0,67	11,88	11,61	11,56	16,00	65
195	27	100,319	$9,\!870$	$1,\!19$	$12,\!69$	$0,\!54$	$_{0,05}$	$0,\!64$	$11,\!68$	$11,\!42$	11,36	4,80	21

N_W	N_D	AR	DE	d	V	B-V	U-B	V-I	J	Н	К	r	P (%)
		(graus)	(graus)	(aresec)								(archini)	(70)
197	28	100,322	9,909	0,81	15, 13	0,71	-0,52	1,39	12,83	12,05	11,55	4,81	73
200	213	100,327	9,661	0,43	16,61	1,29	-0,03	1,98	13,41	12,65	12,46	14,88	1
201	212	100,329	9,662	0,06	15,70	1,03	0,95	1,04	13,89	13,33	13,33	14,88	0
206	117	100,342	9,731	0,79	8,68	-0,12	-0,33	0,05	8,84	8,94	8,88	11,48	63
211	362	100,357	9,611	0,07	15,97	1,66	1,08	$2,\!15$	12,31	11,77	11,50	18,35	84
214	253	100,372	9,660	0,26	13,00	0,82	0,20	0,92	11,41	10,98	10,85	16,06	65
216	66	100,381	9,915	0,04	11,90	0,73	0,26	0,80	10,63	10,27	10,19	8,34	0
218	156	100,388	9,727	0,80	$15,\!82$	1,25	$1,\!15$	1,31	13,72	13,07	12,91	13,28	1
219	254	100,389	9,670	0,00	$15,\!61$	1,18	1,11	1,27	13,51	12,90	12,76	16,06	0
221	139	100,393	10,040	0,03	$12,\!17$	0,41	0,01	0,56	11,36	11,15	11,11	12,50	0
222	82	100,394	9,861	0,05	9,90	0,13	0,14	0,20	9,61	9,61	9,55	9,25	73
223	179	100,406	9,728	0,16	10,89	0,34	0,09	0,40	10,25	10,16	10,07	13,97	63
225	125	100,414	10,001	0,03	$13,\!23$	0,62	0,06	0,75	12,00	11,69	11,66	12,01	0
226	135	100,425	9,793	0,08	9,63	$0,\!15$	$0,\!15$	0,16	9,37	9,36	9,35	12,45	54
227	146	100,427	10,005	0,07	11,85	0,50	-0,01	0,66	10,81	10,57	10,47	12,79	0
228	223	100,429	9,726	0,11	11,11	0,38	0,05	$0,\!43$	10,41	10,26	10,23	15,04	74
313	328	99,987	9,740	0,99	$13,\!61$	1,84	1,38	2,21	9,84	9,12	8,81	$17,\!69$	1
317	219	100,022	9,772	0,45	14,05	1,22	0,64	1,70	11,09	10,63	10,40	14,97	82
322	291	100,040	9,695	1,44	13,41	0,79	0,28	0,93	11,71	11,26	11,01	16,90	1
355	21	100, 173	9,904	0,76	$13,\!56$	0,85	0,22	1,05	11,64	10,95	10,43	4,13	76
356	23	100,173	9,921	0,75	15,05	0,92	0,78	1,01	13,35	12,88	12,76	4,35	76
395	30	100,251	9,980	0,77	13,61	0,93	$0,\!42$	1,06	11,85	11,36	11,20	5,16	64
411	8	100,268	9,864	0,78	12,46	0,87	0,35	1,02	10,74	10,30	10,15	2,44	72
417	16	100,271	9,846	0,52	14,41	1,00	0,54	$1,\!27$	12,24	$11,\!54$	11,09	$3,\!40$	81
428	61	100,287	9,767	0,54	$12,\!95$	$0,\!69$	$0,\!13$	0,72	11,79	11,51	11,40	8,13	18
442	77	100,308	9,762	0,03	$15,\!39$	0,88	0,56	$0,\!98$	13,79	13,31	13,23	8,90	26
443	65	100,314	9,778	0,35	$13,\!98$	$0,\!94$	$0,\!54$	$1,\!13$	12,04	11,48	11,42	8,24	78
457	91	100,336	9,760	0,79	$14,\!86$	1,08	0,74	$1,\!25$	$12,\!69$	12,07	11,98	9,83	34
470	440	100,363	9,586	2,92	14,28	1,05	$0,\!61$	$1,\!15$	12,32	11,73	$11,\!59$	19,94	84
477	89	100,382	9,809	0,38	$14,\!62$	$1,\!11$	0,83	$1,\!34$	12,32	11,71	11,55	9,75	70
479	69	100,383	9,921	0,93	13,72	$0,\!68$	$0,\!11$	0,79	$12,\!43$	12,06	11,94	8,50	0
481	330	100,385	$9,\!635$	0,09	$14,\!63$	$1,\!14$	0,78	$1,\!38$	$12,\!27$	$11,\!63$	$11,\!47$	17,74	51
485	148	100,405	9,752	0,09	$15,\!39$	$1,\!19$	0,81	$1,\!39$	$12,\!93$	$12,\!24$	$11,\!95$	12,94	0
491	284	100,416	$9,\!674$	0,79	$13,\!67$	1,00	0,08	1,14	$11,\!34$	10,58	$10,\!07$	16,76	81
497	202	100,430	9,737	0,20	$14,\!92$	$0,\!98$	$0,\!14$	$1,\!29$	12,71	$12,\!43$	$12,\!19$	14,62	1
502	199	100,448	9,764	0,28	$14,\!16$	0,74	0,04	$0,\!89$	12,68	12,39	$12,\!31$	14,49	70
505	273	100,450	9,712	0,46	$13,\!16$	$0,\!82$	0,23	0,93	$11,\!55$	$11,\!14$	10,97	$16,\!51$	62
509	270	$100,\!472$	9,740	$0,\!67$	$14,\!53$	$0,\!98$	0,37	$1,\!39$	$12,\!07$	11,72	11,46	$16,\!45$	82
521	310	100,518	9,799	1,04	$14,\!10$	$0,\!66$	0,32	0,81	12,70	$12,\!51$	$12,\!34$	$17,\!27$	76
533	390	100,540	9,777	0,39	$14,\!62$	$0,\!64$	0,20	0,79	$13,\!27$	$13,\!07$	$12,\!92$	19,02	71
1004	426	99,947	9,742	1,01	15,71	$1,\!32$	1,01	$1,\!82$	$12,\!57$	$12,\!11$	11,87	19,71	79
1018	275	99,982	9,792	$1,\!12$	$16,\!52$	1,50	1,28	$2,\!59$	$12,\!56$	$11,\!95$	11,68	16,55	0
1025	242	99,988	9,824	1.54	16,73	1.57	0.88	2,03	13,33	12.69	12,46	15,62	0

Tabela A.2 - Continuação

\mathbf{N}_W	\mathbf{N}_D	AR	DE	d	V	B-V	U-B	V-I	J	Н	К	r	Р
		(graus)	(graus)	(arcsec)								(arcmin)	(%)
1030	243	100,005	9,778	0,57	16,21	1,98	1,55	2,48	11,98	11,10	10,81	15,63	72
1034	193	100,015	9,814	1,25	16,17	1,20	0,62	1,65	13,35	12,99	12,79	14,29	5
1043	189	100,023	9,795	0,95	16,74	2,09	1,18	2,64	12,22	11,24	10,93	14,25	84
1047	389	100,027	9,659	0,33	15,07	1,28	1,03	1,52	12,57	11,92	11,72	19,02	77
1049	228	100,033	9,746	1,79	16,86	2,06	1,95	2,45	12,60	11,74	11,42	15,27	83
1050	238	100,036	9,737	1,25	16,26	1,40	1,17	2,01	12,95	12,23	12,04	$15,\!44$	64
1054	385	100,043	9,649	1,60	14,97	1,21	1,00	1,43	12,28	11,62	11,45	18,88	0
1060	201	100,052	9,740	0,87	$16,\!24$	1,38	1,27	2,07	12,84	12,14	11,95	$14,\!58$	65
1061	145	100,059	9,781	0,22	$16,\!12$	1,28	$1,\!10$	1,23	14,04	$13,\!47$	$13,\!35$	12,76	0
1063	133	100,071	9,776	$1,\!49$	$16,\!31$	$1,\!43$	$1,\!37$	1,84	$13,\!27$	$12,\!56$	$12,\!40$	$12,\!37$	80
1068	107	100,081	9,808	1,42	$15,\!94$	$1,\!44$	$1,\!15$	1,92	12,81	12,06	$11,\!89$	10,86	1
1071	88	100,085	9,935	0,46	$16,\!54$	$1,\!42$	$0,\!56$	$2,\!62$	$12,\!30$	$11,\!52$	$11,\!21$	9,60	34
1075	120	100,088	9,774	0,71	$16,\!48$	1,25	$0,\!41$	1,75	$13,\!51$	$12,\!98$	$12,\!81$	$11,\!62$	12
1105	90	100,125	$10,\!010$	0,98	$15,\!82$	$1,\!07$	$0,\!44$	$1,\!37$	$13,\!60$	$13,\!17$	$13,\!05$	9,79	74
1107	119	100,127	9,738	0,56	$16,\!53$	$1,\!23$	$0,\!63$	$1,\!57$	$13,\!82$	$13,\!37$	$13,\!13$	$11,\!59$	81
1118	47	100, 137	9,858	1,57	15,70	$1,\!40$	$1,\!05$	$1,\!83$	$12,\!68$	$12,\!00$	11,79	$6,\!59$	1
1119	58	100, 139	$9,\!981$	1,22	16,70	$1,\!41$	$1,\!00$	$1,\!88$	$13,\!62$	$12,\!89$	12,71	$7,\!99$	47
1128	40	100, 147	9,866	0,59	$16,\!05$	$1,\!56$	1,26	2,15	$12,\!61$	$11,\!83$	$11,\!47$	$5,\!89$	73
1131	36	100,153	9,867	0,70	$16,\!01$	$1,\!26$	-0,26	1,78	12,73	11,76	$11,\!10$	$5,\!51$	8
1139	215	100, 156	$9,\!661$	4,21	$16,\!81$	$1,\!36$	$1,\!35$	1,76	$14,\!00$	$13,\!27$	$13,\!14$	$14,\!90$	0
1146	53	100,164	9,989	$0,\!43$	$16,\!45$	$1,\!31$	0,72	$1,\!87$	$13,\!32$	$12,\!86$	$12,\!60$	$7,\!31$	75
1154	22	100,172	$9,\!882$	1,02	$15,\!66$	$1,\!29$	$0,\!49$	1,74	$12,\!53$	11,77	$11,\!25$	4,22	27
1167	18	100,177	$9,\!897$	0,27	$16,\!21$	$1,\!30$	$1,\!57$	$1,\!65$	$13,\!51$	$12,\!83$	$12,\!69$	3,79	28
1175	31	100, 187	$9,\!962$	0,64	$14,\!98$	$1,\!30$	$1,\!15$	$1,\!63$	$12,\!26$	$11,\!57$	$11,\!42$	5,17	78
1180	48	100,191	$9,\!996$	$0,\!44$	$16,\!21$	$1,\!94$	1,73	$2,\!25$	$12,\!29$	$11,\!49$	$11,\!15$	6,76	11
1197	19	100,207	$9,\!948$	1,11	$15,\!40$	$1,\!05$	$0,\!98$	$1,\!16$	$13,\!49$	$12,\!98$	$12,\!82$	3,79	24
1204	11	100,212	9,931	$0,\!67$	$15,\!54$	$1,\!32$	1,06	$1,\!59$	$12,\!86$	$12,\!19$	$11,\!97$	2,80	53
1216	76	100,220	9,749	$0,\!58$	$15,\!34$	$1,\!18$	$0,\!38$	$1,\!63$	12,70	$11,\!86$	$11,\!27$	8,88	42
1223	46	100,226	9,786	1,74	16,02	$1,\!32$	$1,\!13$	$1,\!92$	$12,\!19$	$11,\!94$	11,80	$6,\!58$	13
1243	57	100,244	9,765	0,35	$16,\!14$	$1,\!45$	$1,\!31$	$1,\!83$	$13,\!27$	$12,\!57$	$12,\!35$	$7,\!79$	0
1248	54	100,247	9,771	1,14	$16,\!15$	$1,\!25$	$0,\!02$	$1,\!98$	12,78	$11,\!92$	$11,\!51$	7,43	34
1250	42	100,248	9,996	0,77	$15,\!26$	$1,\!16$	$0,\!85$	$1,\!44$	$12,\!78$	$12,\!09$	$11,\!69$	6,07	83
1258	72	100,252	9,751	$0,\!17$	$15,\!17$	$1,\!10$	$0,\!54$	$1,\!38$	$12,\!74$	$12,\!02$	$11,\!53$	8,67	82
1264	50	100,257	10,010	$0,\!84$	$15,\!32$	$1,\!20$	$1,\!06$	$1,\!47$	$12,\!85$	$12,\!20$	$12,\!05$	6,96	68
1275	25	100,264	9,965	0,39	$15,\!89$	$1,\!31$	$1,\!12$	$1,\!67$	$13,\!05$	12,38	$12,\!24$	4,41	55
1276	17	100,264	9,948	$0,\!44$	16, 19	$1,\!31$	$1,\!28$	$1,\!45$	13,81	$13,\!19$	$13,\!04$	3,44	54
1281	26	100,267	9,819	0,94	$15,\!14$	$1,\!32$	$1,\!14$	$1,\!62$	$12,\!58$	11,91	11,72	4,79	66
1315	144	100,287	$9,\!687$	1,14	15,07	1,16	0,88	1,22	12,90	12,28	$12,\!17$	12,74	84
1354	52	100,335	9,975	0,29	$16,\!89$	1,74	0,91	$2,\!35$	12,88	$12,\!26$	$11,\!93$	7,29	19
1361	44	100,342	9,853	1,09	$16,\!35$	$1,\!37$	1,07	$1,\!69$	$13,\!54$	12,82	12,70	6,42	0
1367	49	100,351	9,936	0,93	15,76	$1,\!65$	$1,\!11$	2,22	11,98	$11,\!45$	11,14	6,91	37
1379	55	100,370	9,925	$0,\!67$	$15,\!34$	$1,\!32$	$0,\!68$	1,77	$12,\!35$	$11,\!85$	$11,\!64$	7,76	77
1392	104	100,384	10,007	$1,\!63$	$15,\!57$	1,21	$0,\!98$	1,52	13,04	$12,\!40$	$12,\!25$	10,73	83

N_W	N_D	AR (graus)	DE (graus)	d (arcsec)	V	B-V	U-B	V-I	J	Н	К	r (arcmin)	P (%)
1305	70	100 386	9 890	0.30	16.06	1 / 3	0.88	1.83	12.03	19/11	19 14	8 55	77
1404	307	100,500	9,656	0,98	16.44	1,40	1.22	1,69	13.66	12,41	12,14	17 17	85
1415	103	100,401	0.830	0,30	16 70	1 1 2	0.68	1,00	14.08	12,01	12,00	10.63	67
1410	244	100,403	9,050	0,51	16,70	1,10	1.64	1,01	19.76	11,00	11,40	15.00	20
1420	244	100,415	9,095	0,47	10,00	1,05	1,04	2,23	12,70	11,90	11,01	15,60	32
1425	116	100,422	9,961	1,19	16,21	1,51	0,94	2,08	13,03	12,34	12,08	11,36	16
1429	280	$100,\!423$	$9,\!682$	0,10	$14,\!65$	1,77	$1,\!38$	$2,\!07$	$11,\!04$	10,26	$9,\!99$	$16,\!68$	75
1433	235	$100,\!428$	9,716	0,51	$15,\!09$	$1,\!22$	0,91	$1,\!51$	$12,\!52$	$11,\!91$	11,71	$15,\!40$	48
1434	305	$100,\!428$	$9,\!677$	0,41	16,79	$1,\!19$	$0,\!47$	$1,\!55$	$14,\!13$	$13,\!69$	$13,\!44$	$17,\!13$	1
1440	281	100,434	9,692	$0,\!45$	$15,\!37$	1,76	1,36	$1,\!95$	$11,\!91$	$11,\!20$	10,95	$16,\!69$	66
1441	207	100,438	9,745	0,84	15,74	$1,\!25$	$1,\!05$	$1,\!50$	$13,\!18$	12,56	$12,\!38$	$14,\!67$	83
1444	249	100,444	9,719	0,82	$15,\!92$	$1,\!30$	1,06	$1,\!55$	13,24	$12,\!61$	$12,\!39$	15,95	0
1446	429	100,446	9,635	0,23	$15,\!90$	$1,\!24$	$1,\!13$	$1,\!56$	13, 19	$12,\!55$	$12,\!37$	19,76	16
1454	334	$100,\!454$	$9,\!685$	0,31	$15,\!83$	$1,\!42$	$1,\!15$	$1,\!85$	12,83	$12,\!12$	11,91	17,79	0
1460	399	100,460	$9,\!658$	$0,\!17$	16,09	2,07	2,25	$2,\!31$	12,08	$11,\!21$	10,92	19,23	83
1464	316	100,465	9,705	0,03	$15,\!99$	1,96	$1,\!65$	$2,\!33$	$11,\!85$	11,00	10,71	$17,\!45$	13
1482	352	100,492	9,718	0,89	15,71	1,38	1,19	$1,\!63$	$12,\!96$	$12,\!27$	$12,\!11$	18,19	77

Tabela A.2 - Continuação

TabelaA.3 - Dados do aglomerado Berkeley 86.

N _W	ND	AR	DE	d	V	B-V	U-B	V-I	J	Н	К	r	Р
		(graus)	(graus)	(arcsec)								(arcmin)	(%)
1	49	$305,\!040$	$38,\!659$	0,91	9,40	0,76	-0,18	0,93	$7,\!98$	$7,\!80$	$7,\!65$	3,74	81
2	54	$305,\!026$	$38,\!671$	1,00	$10,\!66$	$0,\!69$	-0,20	$0,\!85$	9,41	$9,\!18$	9,1	3,87	83
5	11	$305,\!129$	38,706	1,00	10,95	0,79	0,01	$0,\!89$	$9,\!54$	9,38	9,27	1,40	82
6	5	$305,\!119$	38,699	0,88	11,81	0,74	-0,08	1,02	10,23	10,01	9,94	0,87	82
7	18	$305,\!080$	$38,\!665$	1,00	$10,\!44$	$0,\!64$	$0,\!21$	0,75	9,30	9,00	8,95	2,26	4
10	68	$305,\!030$	$38,\!650$	0,84	12,72	0,79	$0,\!02$	$1,\!04$	$10,\!99$	10,79	$10,\!66$	4,41	71
11	32	$305,\!038$	$38,\!689$	1,03	11,78	0,74	-0,09	$0,\!86$	$10,\!42$	10,26	$10,\!18$	2,99	73
23	43	$305,\!046$	$38,\!659$	1,05	$12,\!36$	0,73	-0,07	$0,\!93$	10,81	$10,\!65$	$10,\!55$	3,51	53
27	64	$305,\!103$	$38,\!628$	1,03	$14,\!09$	0,93	0,30	$1,\!17$	$11,\!87$	$11,\!55$	11,4	4,32	0
28	67	$305,\!084$	$38,\!628$	0,22	12,72	$1,\!90$	$1,\!69$	$1,\!24$	8,94	8,07	7,8	4,41	22
30	9	$305,\!075$	$38,\!690$	1,03	$12,\!85$	0,76	$0,\!11$	1,03	$11,\!23$	$11,\!02$	$10,\!94$	1,31	8
31	22	$305,\!047$	38,696	0,83	$12,\!82$	0,56	$0,\!14$	0,75	11,72	$11,\!48$	$11,\!43$	2,50	47
32	78	304,999	38,690	0,94	13,71	0,92	0,30	$1,\!15$	11,77	$11,\!48$	$11,\!37$	4,75	65
33	81	$305,\!004$	$38,\!671$	0,29	$12,\!46$	$2,\!29$	1,74	$1,\!90$	$7,\!66$	$6,\!63$	$6,\!28$	4,80	0
134	6	$305,\!105$	38,686	1,07	$13,\!38$	$0,\!84$	$0,\!13$	$1,\!04$	$11,\!69$	$11,\!49$	$11,\!4$	$0,\!87$	81
175	57	305,017	38,700	0,90	14,78	0,89	0,42	1,00	13,21	12,81	12,77	3,88	3

1	n	1
т	υ	Т

Nuz	Np	AB	DE	Δ	V	B-V	II-B	V-I	т	н	K	Р	r
1.100	11D	(graus)	(graus)	(arcsec)	•	Ъ,	бЪ	• 1	0	11		(arcmin)	(%)
		(graus)	(graus)	(aresee)								(archini)	(70)
15	50	271,005	-24,396	0,24	$11,\!55$	$0,\!17$	-0,31	$0,\!27$	$11,\!03$	$10,\!94$	$10,\!93$	$7,\!15$	98
19	38	$271,\!031$	$-24,\!324$	0,20	10,76	$0,\!25$	-0,45	$0,\!48$	9,84	9,57	9,45	5,77	97
25	53	$271,\!038$	-24,262	0,21	$11,\!39$	$0,\!14$	-0,30	$0,\!20$	11,03	$11,\!02$	$11,\!01$	$7,\!61$	99
26	31	$271,\!041$	-24,336	0,23	$11,\!60$	$0,\!25$	-0,27	$0,\!42$	10,76	$10,\!61$	10,23	5,01	99
31	39	$271,\!048$	-24,425	$0,\!11$	$11,\!69$	$0,\!24$	-0,20	$0,\!44$	10,81	$10,\!53$	$10,\!40$	5,96	99
41	43	271,060	-24,278	1,31	$12,\!53$	$0,\!34$	$0,\!22$	$0,\!48$	$11,\!54$	$11,\!34$	$11,\!22$	6,14	97
49	34	271,069	-24,288	$0,\!12$	$11,\!07$	$0,\!15$	-0,44	$0,\!23$	$10,\!69$	$10,\!68$	$10,\!59$	5,35	99
60	8	$271,\!100$	-24,357	0,10	9,61	$0,\!12$	-0,66	$0,\!20$	9,32	9,25	9,22	$1,\!60$	99
61	9	$271,\!102$	-24,350	1,61	$10,\!25$	$0,\!12$	-0,62	$0,\!21$	9,87	9,83	9,82	$1,\!61$	96
64	11	$271,\!105$	-24,378	$0,\!11$	$11,\!63$	0,22	-0,21	$0,\!40$	10,81	$10,\!56$	10, 19	1,77	99
66	4	$271,\!106$	-24,346	0,33	$10,\!14$	$0,\!11$	-0,65	$0,\!21$	9,79	9,73	9,71	$1,\!45$	98
69	16	$271,\!111$	-24,326	0,28	$12,\!26$	$0,\!84$	$0,\!28$	$0,\!95$	$10,\!58$	10,22	$10,\!14$	2,20	0
70	7	$271,\!113$	-24,380	0,21	10,46	$0,\!15$	-0,61	$0,\!30$	$9,\!97$	9,91	9,85	$1,\!58$	99
73	2	$271,\!117$	-24,362	0,01	8,23	0,08	-0,72	$0,\!18$	$7,\!93$	$7,\!97$	$7,\!90$	0,71	98
76	15	$271,\!122$	-24,324	$0,\!14$	9,47	0,07	-0,70	$0,\!11$	9,25	9,24	9,18	$2,\!12$	97
80	10	$271,\!138$	$-24,\!387$	1,71	9,35	0,07	-0,76	$0,\!18$	9,05	9,02	8,99	1,77	99
82	1	$271,\!138$	-24,354	$0,\!40$	$12,\!36$	$0,\!30$	0,01	$0,\!51$	$11,\!32$	$11,\!03$	10,92	$0,\!54$	99
83	23	$271,\!137$	-24,312	$0,\!13$	$10,\!42$	$0,\!12$	-0,57	$0,\!19$	$10,\!05$	9,83	9,87	2,79	98
84	48	$271,\!144$	-24,468	1,41	$11,\!87$	0,22	-0,23	$0,\!42$	$11,\!05$	$10,\!83$	10,72	6,64	98
96	18	$271,\!163$	-24,383	1,53	$12,\!15$	0,21	-0,11	$0,\!35$	$11,\!47$	$11,\!37$	$11,\!30$	2,34	99
110	57	$271,\!199$	-24,473	0,35	$11,\!20$	$0,\!18$	-0,44	$0,\!30$	$10,\!63$	$10,\!58$	$10,\!53$	$7,\!89$	98
263	46	$271,\!105$	-24,463	1,52	$11,\!43$	0,21	-0,33	$0,\!41$	$10,\!61$	10,37	10,20	6,40	99
1705	5	$271,\!137$	-24,381	$3,\!58$	$15,\!28$	$1,\!04$	$0,\!55$	$1,\!27$	$11,\!12$	10,95	$10,\!91$	1,46	99
1790	20	271,174	-24,350	1,43	9,41	0,06	-0,53	0,09	9,29	9,26	9,22	2,49	0

Tabela A.4 - Dados do aglomerado NGC 6530.

Apêndice B_____

Tabelas para conversão entre Tipo Espectral e Cores Intrínsecas

Tabela B.1 - Relação: Temperatura Efetiva \times Tipo Espectral. Adaptada de Jager e Niewenhuijzen (1987).

\mathbf{ST}	Ia+	Ia	Ib	Iab	II	III	IV	V
O5	40179	39994	40926	41210	40179	39446	38019	41976
O5.5	39174	38905	39719	39902	39084	38637	37497	40644
O6	38194	37844	38548	38726	37844	37844	36898	39446
O6.5	37154	36728	37411	37497	45394	37154	36475	38459
07	36058	35727	36224	36392	35481	36475	35975	37497
O7.5	34995	34674	35156	35318	34914	35727	35481	36644
08	33963	33651	34041	34198	33963	34995	35075	35810
O8.5	32885	32584	33037	33189	32961	34356	33884	35075
O9	31842	31623	31989	32137	32063	33651	34119	34356
O9.5	28642	28642	27040	27227	29309	31405	32434	32211
A0	9078	10069	9977	9840	9795	10233	10520	9795
A1	8790	9772	9661	9506	9462	9817	10520	9397
A2	8511	9506	9376	9226	9162	9462	9638	9016
A4	8035	8995	8851	8690	8630	8831	8954	8433
A5	7816	8770	8610	8453	8395	8551	8650	8185
A6	7586	8531	8375	8222	8166	8299	8395	7962
A8	7178	8091	7907	7762	7727	7834	7907	7603
B0	25704	25942	26242	26424	26730	29174	30620	29992
B0.5	22961	23442	23659	23878	24322	26853	28510	27733
B1	20512	21184	21380	21577	22029	24491	26303	25410
B1.5	18408	19143	19364	19498	19953	22284	24044	23121
B2	16558	17418	17579	17660	18072	20184	21827	20893
B2.5	15740	16634	16749	16866	17219	19231	20797	19815
B3	14962	15885	15996	16106	16444	18281	19770	18793
B4	13646	14622	14689	14723	14997	16596	17865	16904

Tabela B.1 - Continuaçã	0

ST	Ia+	Ia	Ib	Iab	II	III	IV	V
B5	12531	13521	13552	13552	13772	15101	16144	15205
B6	11588	12589	12589	12560	12706	13804	14655	13740
B7	10789	11803	11776	11695	11803	12677	13335	12474
B8	10116	11143	11092	10990	11015	11722	12246	11429
B9	9550	10568	10495	10375	10375	10715	11298	10544
F0	6776	7638	7464	7328	7311	7396	7499	7311
F2	6383	7211	7031	6902	6902	6998	7112	7047
F4	6012	6776	6592	6471	6501	6607	6730	6792
F5	5821	6561	6368	9528	6310	6412	6546	6653
F6	5636	6339	6166	6053	7516	6223	6368	6531
F8	5272	5929	5754	5662	5741	5834	5998	6252
G0	4943	5546	5370	5284	5370	5470	5623	5943
G2	4786	5370	5188	5105	5200	5297	5458	5794
G4	4634	5188	5012	4943	5035	5129	5284	5636
$\mathbf{G8}$	4345	4875	4699	4634	4732	4797	4943	5309
K0	4217	4732	4550	4487	4603	4656	4775	5152
K1	4093	4603	4426	4365	4467	4508	4624	4989
K3	3855	4355	4188	4140	4246	4256	4335	4688
K4	3750	4246	4093	4036	4150	4150	4207	4539
K5	3639	4150	3990	3954	4064	4046	4083	4406
$\mathbf{K7}$	3436	3963	3828	3802	3926	3873	3873	4150
K9	3228	3793	3690	3681	3819	3741	3698	3936
M0	3119	3707	3622	3631	3776	3690	3631	3837

Tabela B.2 - Índices de cor intrínsecos e correções bolométricas para estrelas com $\log(g)=4$. Adaptada de Bessel et al. (1998).

Teff	$\log(g)$	BC(K)	BC(V)	U-B	B-V	V-R	V-I	V-K	J-H
3500	4,0	2,750	-1,700	1,267	1,416	0,852	1,895	4,446	0,836
3750	4,0	$2,\!640$	-1,320	1,345	1,407	0,825	1,700	3,966	0,871
4000	4,0	2,510	-1,020	1,364	1,343	0,793	1,527	3,526	0,844
4250	4,0	2,340	-0,750	1,235	1,238	0,730	1,360	3,098	0,758
4500	4,0	$2,\!180$	-0,540	1,008	1,120	$0,\!643$	1,203	2,721	0,660
4750	4,0	2,010	-0,380	0,791	1,020	0,562	1,067	2,399	0,571
5000	4,0	1,860	-0,260	0,600	0,933	$0,\!498$	0,956	$2,\!125$	$0,\!495$
5250	4,0	1,720	-0,170	$0,\!427$	$0,\!849$	$0,\!447$	0,866	$1,\!892$	$0,\!431$
5500	4,0	1,580	-0,110	0,277	0,763	0,405	0,790	$1,\!690$	0,375
5750	4,0	$1,\!440$	-0,070	$0,\!156$	$0,\!681$	0,367	0,722	1,511	0,327

Tabela B.2 - Continuação

Teff	$\log(g)$	BC(K)	BC(V)	U-B	B-V	V-R	V-I	V-K	J-H
6000	4.0	1.310	-0.040	0.065	0.604	0.333	0.658	1.349	0.286
6250	4,0	1,190	-0.010	0,003	0.533	0,302	0,598	1,201	0,247
6500	4.0	1,070	0.000	-0.034	0,468	0,271	0.539	1.064	0,213
6750	4,0	0,950	0,020	-0,051	0,410	0,242	0,482	0,935	0,182
7000	4,0	0,840	0,030	-0,053	0,360	0,212	0,424	0,811	$0,\!153$
7250	4,0	0,730	0,030	-0,045	0,313	0,183	0,367	0,694	0,127
7500	4,0	0,620	0,040	-0,027	0,269	0,154	0,309	0,580	0,103
7750	4,0	0,510	0,040	0,006	0,222	0,121	0,246	0,468	0,081
8000	4,0	0,390	0,040	0,047	$0,\!177$	0,089	$0,\!182$	0,357	0,060
8250	4,0	0,290	0,030	0,077	$0,\!131$	0,060	$0,\!126$	0,259	0,041
8500	4,0	$0,\!190$	0,000	0,077	0,093	0,038	0,084	$0,\!181$	0,027
8750	4,0	0,090	-0,020	0,061	0,062	0,021	$0,\!050$	$0,\!115$	0,015
9000	4,0	0,020	-0,070	0,056	$0,\!045$	0,013	0,035	0,085	0,010
9250	4,0	-0,070	-0,110	0,029	0,021	0,002	$0,\!013$	0,038	0,003
9500	4,0	-0,160	-0,160	-0,001	0,000	-0,007	-0,006	-0,004	-0,003
9750	4,0	-0,250	-0,210	-0,033	-0,017	-0,014	-0,021	-0,041	-0,009
10000	4,0	-0,330	-0,260	-0,066	-0,033	-0,020	-0,033	-0,075	-0,013
10250	4,0	-0,410	-0,310	-0,101	-0,046	-0,024	-0,044	-0,105	-0,017
10500	4,0	-0,490	-0,360	-0,135	-0,057	-0,028	-0,053	-0,133	-0,020
10750	4,0	-0,570	-0,410	-0,170	-0,067	-0,031	-0,060	-0,159	-0,024
11000	4,0	-0,640	-0,460	-0,204	-0,076	-0,034	-0,067	-0,183	-0,027
11250	4,0	-0,710	-0,510	-0,236	-0,083	-0,037	-0,074	-0,205	-0,029
11500	4,0	-0,780	-0,560	-0,268	-0,089	-0,039	-0,079	-0,226	-0,032
11750	4,0	-0,850	-0,600	-0,299	-0,095	-0,041	-0,085	-0,245	-0,034
12000	4,0	-0,920	-0,650	-0,328	-0,101	-0,043	-0,089	-0,263	-0,037
12250	4,0	-0,980	-0,700	-0,356	-0,106	-0,044	-0,094	-0,281	-0,039
12500	4,0	-1,050	-0,750	-0,383	-0,111	-0,046	-0,099	-0,297	-0,041
12750	4,0	-1,110	-0,800	-0,408	-0,115	-0,048	-0,103	-0,313	-0,043
13000	4,0	-1,170	-0,840	-0,431	-0,120	-0,050	-0,108	-0,328	-0,044
14000	4,0	-1,410	-1,030	-0,515	-0,136	-0,056	-0,124	-0,384	-0,052
15000	4,0	-1,640	-1,200	-0,582	-0,151	-0,063	-0,140	-0,434	-0,057
16000	4,0	-1,850	-1,370	-0,638	-0,164	-0,070	-0,155	-0,479	-0,063
17000	4,0	-2,050	-1,520	-0,687	-0,176	-0,076	-0,170	-0,521	-0,068
18000	4,0	-2,230	-1,670	-0,732	-0,188	-0,082	-0,183	-0,560	-0,074
19000	4,0	-2,410	-1,810	-0,773	-0,199	-0,088	-0,196	-0,597	-0,078
20000	4,0	-2,570	-1,940	-0,810	-0,208	-0,093	-0,209	-0,632	-0,083
21000	4,0	-2,730	-2,060	-0,846	-0,217	-0,099	-0,220	-0,666	-0,087
22000	4,0	-2,870	-2,170	-0,878	-0,225	-0,103	-0,231	-0,698	-0,092
23000	4,0	-3,010	-2,280	-0,910	-0,232	-0,107	-0,241	-0,729	-0,097
24000	4,0	-3,140	-2,380	-0,940	-0,238	-0,111	-0,249	-0,756	-0,101
25000	4,0	-3,260	-2,480	-0,966	-0,244	-0,114	-0,257	-0,781	-0,104
26000	4,0	-3,370	-2,570	-0,990	-0,250	-0,118	-0,265	-0,804	-0,108
27000	4,0	-3,480	-2,650	-1,011	-0,257	-0,121	-0,273	-0,828	-0,111
28000	4,0	-3,590	-2,740	-1,030	-0,264	-0,125	-0,282	-0,852	-0,114
Teff	$\log(g)$	BC(K)	BC(V)	U-B	B-V	V-R	V-I	V-K	J-H
-------	-----------	--------	--------	--------	--------	--------	--------	--------	--------
20000	4.0	2 (20	0.010	1.040	0.071	0 100	0.000	0.075	0.119
29000	4,0	-3,080	-2,810	-1,049	-0,271	-0,129	-0,290	-0,875	-0,118
30000	4,0	-3,770	-2,880	-1,068	-0,276	-0,131	-0,297	-0,895	-0,120
31000	4,0	-3,860	-2,950	-1,085	-0,281	-0,133	-0,302	-0,910	-0,122
32000	4,0	-3,940	-3,010	-1,100	-0,284	-0,134	-0,305	-0,922	-0,123
33000	4,0	-4,010	-3,090	-1,114	-0,287	-0,133	-0,306	-0,929	-0,125
34000	4,0	-4,090	-3,160	-1,125	-0,289	-0,133	-0,305	-0,932	-0,125
35000	4,0	-4,170	-3,240	-1,135	-0,291	-0,132	-0,304	-0,931	-0,125
36000	4,0	-4,250	-3,320	-1,141	-0,293	-0,131	-0,302	-0,930	-0,124
37000	4,0	-4,330	-3,400	-1,147	-0,295	-0,131	-0,302	-0,929	-0,123
38000	4,0	-4,410	-3,480	-1,152	-0,297	-0,131	-0,303	-0,931	-0,123
39000	4,0	-4,500	-3,560	-1,157	-0,299	-0,131	-0,304	-0,934	-0,124

Tabela B.2 - Continuação

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo