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Marcelo Filósofo, Paulo Gustavo, Mineiro,..., etc. Aos meus amigos (tri)atletas: Valderes,
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Renata (na riqueza e na pobreza) e Manoel. Nós sempre fomos muito unidos.

Agradeço a banca examinadora pela compreensão e pelo criticismo: Prof. Daniel
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Abstract

We use a topological approach to describe the frustration- and field-induced phase transi-

tions exhibited by the infinite-range XY model on the AB2 chain, including noncollinear

spin structures. For this purpose, we have computed the Morse number and the Euler

characteristic, as well as other topological invariants, which are found to behave similarly

as function of the energy level in the context of Morse Theory. In particular, we use a

method based on an analogy with statistical mechanics to compute the Euler character-

istic, which proves to be quite feasible. We also introduce topological energies which help

to clarify several properties of the transitions, both at zero and finite temperature. In

addition, we establish a nontrivial direct connection between the thermodynamics of the

systems, which have been solved exactly under the saddle point approach, and the topol-

ogy of their configuration space. This connection allow us to identify the non-degeneracy

condition under which the divergence of the density of Jacobian’s critical points (jl(E))

at the critical energy of a topology-induced phase transition, proposed by Kastner and

Schnetz [Phys. Rev. Lett. 100, 160601 (2008)] as a necessary criterion, is suppressed.

Our findings, and those available in the literature, suggest that the cusp-like singularity

exhibited both by the Euler characteristic and the topological contribution for the entropy

at the critical energy, put together with the divergence of jl(E), emerge as necessary and

sufficient conditions for the occurrence of the finite-temperature topology-induced phase

transitions examined in this work. The general character of this proposal should be sub-

ject to a more rigorous scrutiny. Finally, we discuss the concept of the integration with

respect to the Euler characteristic and its relationship with thermodynamics and phase

transitions. These ideas are used to study the the infinite-range XY model. In particular,

combining statistical mechanics and Morse theory, we determine the phase transition crit-

ical temperature of the infinite-range XY model using the Euler characteristic. Moreover,

we provide evidence that the information embedded in the Euler characteristic suffice to

determine the magnetization, in the microcanonical ensemble, except for the metastable

solutions.

Keywords: Phase Transitions, Topology, Noncollinear Spin Structures, Euler Char-
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acteristic.
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Resumo

Utilizamos uma abordagem topológica para descrever as transições de fase induzidas

pelo campo e frustração exibidas pelo modelo XY de alcance infinito na cadeia AB2, o qual

exibe estruturas de spin colineares e não colineares. Para tal fim, calculamos o número

de Morse e a caracteŕıstica de Euler, bem como outros invariantes topológicos, os quais se

comportam de forma semelhante, em função do ńıvel de energia, no contexto da Teoria de

Morse. Em particular, baseado em uma analogia com a mecânica estat́ıstica, identificamos

um método bastante viável para o cálculo da caracteŕısitica de Euler. Também introduz-

imos energias topológicas que ajudaram a esclarecer várias propriedades das transições

de fase, tanto à temperatura nula quanto à temperatura finita. Além disso, estabelece-

mos uma conexão não trivial direta entre a termodinâmica dos sistemas, os quais foram

resolvidos exatamente pelo método do ponto de sela, e a topologia do espaço de con-

figurações. Esta conexão permite identificar a condição de não degenerescência em que a

divergência da densidade dos pontos cŕıticos do Jacobiano, jl(E), proposta por Kastner

e Schnetz [Phys. Rev. Lett. 100, 160601 (2008)] como um critério de necessidade, é

suprimida. Nossos resultados, e aqueles dispońıveis na literatura, sugerem que a singu-

laridade tipo cúspide exibida tanto pela caracteŕıstica de Euler quanto pela contribuição

topológica para a entropia na energia cŕıtica, simultaneamente com a divergência de jl(E),

emergem como condições necessárias e suficientes para a ocorrência de uma transição de

fase induzida por uma mudança topológica no espaço de configurações. O caráter geral

da presente proposta deverá ser submetida a uma avaliação mais rigorosa e testada para

outros modelos, inclúındo modelos de interação de curto alcance. Finalmente, baseado

na definição da integração sobre a caracteŕıstica de Euler, fizemos uma extensão da abor-

dagem topológica das transições de fase para o ensemble microcanônico e a aplicamos para

o caso do Modelo XY de alcance infinito na cadeia linear. Em particular, identificamos

a temperatura cŕıtica da transição de fase deste modelo através da caracteŕıstica de Euler.

Palavras-chave: Transições de Fase, Topologia, Simetria, Modelos de Spin, Caracteŕıstica
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de Euler.

Doctoral thesis - Departamento de F́ısica - UFPE



Contents

1 Introduction 1

2 Topological Approach to Phase Transitions 3

2.1 Geometrization of Hamiltonian Dynamics . . . . . . . . . . . . . . . . . . 4

2.2 Geometry and Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Geometry, Chaos and Phase Transitions . . . . . . . . . . . . . . . . . . . 11

2.4 Curvature, Topology and Phase Transitions . . . . . . . . . . . . . . . . . 15

2.5 Morse Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Topological Hypothesis on the Origin of Phase Transitions . . . . . . . . . 22

2.7 Main Theorems on the Topological Approach to Phase Transitions . . . . . 24

3 The Infinite-Range XY Model and Other applications 29

3.1 The Infinite-Range XY model . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Topology of Configuration Space . . . . . . . . . . . . . . . . . . . 33

3.2 The one-dimensional XY model . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 The k-trigonometrical model . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 The Model of DNA Denaturation . . . . . . . . . . . . . . . . . . . 45

3.3.3 The Spherical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.4 The Mean-Field φ4 Model . . . . . . . . . . . . . . . . . . . . . . . 47

ix



CONTENTS x

4 Phase Transitions in Infinite-Range XY Models on The AB2 Chain 49

4.1 Topology of configuration space . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Topology and noncollinear spin structures . . . . . . . . . . . . . . . . . . 54

4.2.1 Frustrated AB2-XY model . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Suppression of the T 6= 0 phase transition in the frustrated AB2

-XY model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 AB2-XY model in a field . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.4 Standard infinite-range XY model revisited . . . . . . . . . . . . . . 69

4.3 Symmetry Properties of the AB2-XY model . . . . . . . . . . . . . . . . . 71

4.3.1 Topology of configuration space of the frustrated AB2-XY model . 72

4.3.2 Field effect on topology of configuration space . . . . . . . . . . . . 75

4.3.3 Thermodynamics of the frustrated AB2-XY model . . . . . . . . . 77

4.4 Additional Topological invariants . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 Frustration-Dependent Topological invariants . . . . . . . . . . . . 79

4.4.2 Field-Dependent Topological invariants . . . . . . . . . . . . . . . . 83

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Phase Transitions via Integral with Respect to the Euler Characteristic 86

5.1 The Euler measure and topology-induced phase transitions . . . . . . . . . 88

5.2 Application to the standard infinite-range XY model . . . . . . . . . . . . 90

5.2.1 Topology of configuration space . . . . . . . . . . . . . . . . . . . . 91

5.3 Negative temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Euler temperature, negative temperature, and thermodynamics . . . . . . 98

6 Conclusions 103

Doctoral thesis - Departamento de F́ısica - UFPE



List of Figures

2.1 (a) [(b)] Lyapunov exponent λ vs. the temperature T for the two(three)-

dimensional XY model: the circles refer to a 10 × 10 (10 × 10 × 10), the

squares to a 40 × 40 (15 × 15 × 15), the triangles to a 50 × 50, and the

stars to a 100 × 100 lattice, respectively. The critical temperature of the

infinite order (second order) phase transition is TC ≃ 0.95 (TC ≃ 2.15) and

is marked by a dotted vertical line. From Refs. [1, 3, 11]. . . . . . . . . . . 12

2.2 (a) [(b)] Fluctuations of the Ricci curvature (Eisenhart metric), σk(T ), vs.

the temperature T for the two(three)-dimensional XY model: the circles

refer to a 40 × 40 (10 × 10 × 10) lattice. The critical temperature of the

infinite-order (second order) phase transition is TC ≃ 0.95 (TC ≃ 2.15) and

is marked by a dotted vertical line. The dashed line is only a guide to eye.

From Refs. [1, 3, 11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 (a) Lyapunov exponent λ vs. the energy per particle ε, for the two-

dimensional O(1) ϕ4 model, with N = 100 (solid circles), N = 400 (open

circles), N = 900 (solid triangles), and N = 2500 (open triangles), respec-

tively. εc is marked by a dotted line, and the dashed line is the power law

ε2. (b) λ vs. the temperature T for the three-dimensional ϕ4 model. Full

circles correspond to the O(1) (scalar) case, open circles to the O(2) case,

and open triangles to the O(4) case. From Ref. [12]. . . . . . . . . . . . . . 14

xi



LIST OF FIGURES xii

2.4 (a) Root mean square fluctuation of the Ricci curvature (Eisenhart metric)

σk, divided by the average curvature k0, for the two-dimensional O(1) ϕ4

model. The inset shows the transition vicinity. Symbols as in Fig. 2.3.

From Ref.[22, 3, 1]. (b) Curvature fluctuations σk vs. the temperature

T for the two-dimensional O(2) ϕ4 model, computed on a square lattice

of 30 × 30 sites. The critical temperature Tc of the BKT transition is at

Tc ≃ 1.5. From Refs. [12, 3, 1]. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Illustration of the two families of surfaces Fε and Gε defined in Eqs. (2.23)

and (2.24) respectively. Each family is divided into two subfamilies by

the critical surface corresponding to εc = 0 (middle members in the pic-

ture). Members of the same subfamily are diffeomorphic, whereas the two

subfamilies are not diffeomorphic to each other. From Ref. [12]. . . . . . . 16

2.6 The fluctuation σK of the gaussian curvature of the surfaces Fε and Gε is

plotted vs ε. σ is defined in Eq. (2.27), ε is shifted by εmin = 0.25 for

reasons of clarity in the presentation. (a) refers to Gε and (b) refers to Fε.

The cusps appear at ε = 0 where the topological transition takes place for

both Fε and Gε. From Ref. [12]. . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Illustration of the family of surfaces Hε: (a) the family of surfaces Hε are

diffeomorphic to a hyperboloid of one sheet for ε < 0, (b) to cone for

ε = εc = 0, and (c) to a hyperboloid of two sheets for ε > 0. . . . . . . . . 18

2.8 Illustration of a handle: A handle can be seen as the object produced

by puncturing a surface twice [Fig. 2.8(a)], attaching a zip around each

puncture traveling in opposite directions [Fig. 2.8(b)], pulling the edges of

the zips together [Fig. 2.8(c)], and then zipping up [Fig. 2.8(d)]. From

Ref. [27]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Infinite-range XY model: (a) magnetization M vs. temperature T ; (b) M

vs. potential energy per particle u; (c) T vs. u. The system displays a

phase transition at uc = 0.5 and Tc = 0.5. . . . . . . . . . . . . . . . . . . . 32

Doctoral thesis - Departamento de F́ısica - UFPE



LIST OF FIGURES xiii

3.2 The sequence of topological changes undergone by the manifolds Dv with

increasing v in the limit h → 0+. From Ref. [30] . . . . . . . . . . . . . . . 34

3.3 Mean-field XY model. (a) Histogram of log(µk(Mv))/N as a function of k

for v = 1/4; (b) Histogram of log(µk(Mv))/N as a function of k for v = 1/2.

In both cases N = 50 and h = 0.01. (c) For comparison, histogram of

log(bk(T
N))/N as a function of k for a N -torus T

N , with N = 50, which is

the lower bound of log(µk(Mv))/N for any v ≥ vc. From Ref. [31] . . . . . 37

3.4 Mean-field XY model. Plot of log(|χ(Mv)|)/N as a function of v. N =

50,200,800 (from bottom to top) and h = 0.01; vc = 0.5 + O(h2). From

Ref. [31]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Jacobian densities jℓ vs. the potential energy v for the mean-field XY

model with J = 1. From Ref. [5] . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 The same as in Fig. 3.3 for the one-dimensional XY model with the nearest-

neighbor interactions. (a) Histogram of log(µk(Mv))/N as a function of k

for v = 1/4; (b) Histogram of log(µk(Mv))/N as a function of k for v = 1/2.

In both cases N = 50 and h = 0.01. (c) For comparison, histogram of

log(bk(T
N))/N as a function of k for a N -torus T

N , with N = 50. From

Ref. [31]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Plot of log(|χ|(Mv))/N for the one-dimensional XY model with the nearest-

neighbor interactions as a function of v. N = 50, 200, 800 (from bottom

to top). From Ref. [31]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 k-trigonometric model. For k=1 there is no phase transition, while for

k = 2 there is a second order transition and for k > 2 a first order one. (a)

Temperature T as a function of the canonical average potential energy v for

three different values of k. (b) Microcanonical temperature T as a function

of the microcanonical average potential energy v for three different values

of k. From Refs. [39, 32] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Doctoral thesis - Departamento de F́ısica - UFPE



LIST OF FIGURES xiv

3.9 Logarithmic Euler characteristic of the Mv manifolds σ(v) (see text) as a

function of the potential energy v. The phase transition is signaled by a

singularity of the first derivative at vc = ∆; the sign of the second derivative

around the singular point allows to predict the order of the transition. From

Refs. [39, 32] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10 The submanifolds Mv for v = 0.5∆, ∆, 1.5∆, 2∆ (from left to right). (a)

For k = 1, all the submanifolds are topologically equivalent to a single disk.

(b) In the case k = 2, for v < vc = ∆ the submanifolds are topologically

equivalent to two disconnected disks, while for v > vc are equivalent to a

single disk. (c) In the case k = 3, for v < vc = ∆ the submanifolds are

topologically equivalent to three disconnected disks, while for v > vc are

equivalent to a single disk. From Ref. [32] . . . . . . . . . . . . . . . . . . 44

3.11 Jacobian densities jℓ as functions of the potential energy v with k = 1, 2, 3, 4

and ∆ = 1. From Ref. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.12 Level hypersurfaces, N = 2. The black line is the critical hypersurface.

From Ref. [42]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Frustrated AB2 chain: only first-neighbor competing AF couplings, J1 and

J2, are indicated. (b) Distinct chain with three-site unit cell topology (see

text). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Frustrated AB2-XY model. T -dependent magnetization for different values

of J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Intersection surfaces between equipotential submanifolds ME and CB: (a)

For E = −4 and J = 1, we have E < Emin(J = 1) = −3, so there is no

intersection between ME and CB. (b) For E = −2 and J = 1, we have

E > Emin(J), so ME is inside CB, with nonzero topological invariants. (c)

For E = −2.1 and J = 2, despite nonempty intersection, the topological

invariants are null. (d) For E = −1.9 and J = 2, we have E > ETmin , so

the intersection between ME and CB is nonzero and isomorphorphic to the

hyperboloid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Doctoral thesis - Departamento de F́ısica - UFPE



LIST OF FIGURES xv

4.4 Frustrated AB2-XY model. (a) Cusp-like pattern exhibited by ln |χJ(E)|/2Nc

measured on the surface defined by the intersection of the equipotential sur-

face and the cylinder CB (see text). For E < 0, the equipotential surfaces

are one-sheet hyperboloids; at Ec(T 6= 0) = 0, ∀J , we have a cone; and

for E > 0 we have two sheet-hyperboloids. For J ≥ 2, ln |χJ(E)|/2Nc

is discontinuous at ETmin(E) due to intersection surfaces with zero χJ(E)

for Emin(J) ≤ E < ETmin(J). The intersection surfaces and ln |χJ(E)|/2Nc

vanish at Emax = ETmax = 4+J . (b) Divergence of jl,J(E) at Ec(T 6= 0) = 0,

∀J . The golden hyperboloid at J = 2 signals the change of the tail cur-

vature of jl,J(E) for E < 0, associated with the discontinuous behavior

shown in (a). (c) Emin(J) and ETmin(J) split at Ec(T = 0) = −3 and

J = 1. For J ≥ 2, there exist intersection surfaces with zero χJ(E) in the

region limited by Emin(J) and ETmin(J). The spin structures illustrate the

stable phases associated with Emin(J). . . . . . . . . . . . . . . . . . . . . 62

4.5 (a) Equipotential curves of the A-frozen frustrated AB2 -XY model: for

E < ETmin(J) = −4/J , the hyperbola transverse axis is along the x-axis

(east-west opening hyperbolas); for E = ETmin(J) = −4/J the hyperbolas

are degenerate with asymptotes: mBy = ±(mBx − 2/J); for E > ETmin(J),

the hyperbola transverse axis is along the y-axis (north-south opening hy-

perbola). (b) ln |χJ(E)|/Nc: no cusp-like pattern occurs at E = 0. (c)

Divergence of jl,h(E) at E = 0 for J = 0, 1, 2, and 4. . . . . . . . . . . . . 64

4.6 Equipotential curves of the A-frozen frustrated AB2-XY model in the vi-

cinity of Emin(J) for (a) J = 0, (b) J = 1, (c) J = 1.25, and (d) J = 2. . . 65

Doctoral thesis - Departamento de F́ısica - UFPE



LIST OF FIGURES xvi

4.7 AB2 -XY model in a field. (a) ln |χh(E)|/2Nc: cusp-like pattern (dis-

continuity) occurs only at h = 0 (h = 4). (b) Divergence of jl,h(E) at

Ec(T 6= 0) − h2

2
for 4 ≥ h ≥ 0; the PT occurs at Ec(T 6= 0) = 0 and

h = 0. The divergence is suppressed for fields higher than the spin satu-

ration field predicted by ETmin(h) at h = 4. (c) Emin(h) and ETmin(h) split

at Ec(T = 0) = −6 and h = 2; they join again at h = 6, where saturation

occurs as predicted both by Emin and ETmin . The illustration of the stable

magnetic phases is associated with Emin(h) . . . . . . . . . . . . . . . . . 68

4.8 Standard Infinite-range XY model in a field. (a) ln |χh(E)|/N : cusp-like

pattern (discontinuity) at (for) h = 0 (0 ≤ h < 1). (b) Divergence of

jl,h(E) for 0 ≥ h ≥ 1; the PT occurs at Ec(T 6= 0) = 1/2 and h = 0. The

divergence is suppressed for fields beyond the spin saturation field predicted

by ETmax at h = 1. (c) h-Dependent energies and magnetization. . . . . . . 71

4.9 Magnetization of the standard infinite range XY model at T = 0.01 (only

h > 0 is illustrated): (a) stable (M = 1) and metastable (M = −1 and

M = −h) solutions, for h < 1, corresponding to the solutions E(h) = h

and ETmax(h) [see Fig. 4.8(c)]. (b) The two metastable solutions meet at

h = 1. (c) For h > 1, only the stable solution M = 1 remains. . . . . . . . 72

4.10 Comparison between computed Euler characteristic with (AB2) and with-

out (AB1B2) symmetry breaking. We used Nc;AB2 = (3/2)Nc;AB1B2 = 300

(see text). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.11 (a) ln[µk(E)]/2Nc for J = 2 and E = Ec(T 6= 0) = 0, exhibiting the

maximum at k = Nc = 500; (b) For E ≥ ETmax(J) = 6, the diagram is

fulfilled. ln[µk(J)]/2Nc for E ≥ ETmax(J): for 0 ≤ J < 2, the filled area of

the diagram grows up to J = 2; for higher values of J , the points at left

of the vertical disjoint line (k = Nc/2 = 250) are shifted to the right of

this line, as illustrated in (c), (b), and (d), for J = 1, J = 2, and J = 4,

respectively. The vertical disjoint lines and curves are explained in the text. 81

Doctoral thesis - Departamento de F́ısica - UFPE



LIST OF FIGURES xvii

4.12 J-Dependence of τ(E). (a) The maximum occurs at Ec(T 6= 0) = 0, ∀J ,

and τ(E) remains at this value for E ≥ Ec = 0; notice the discontinuity

in the slope at E = 0 ± ε → 0. (b) Under the constraint mAx = −1, the

curves present no cusp-like behavior. . . . . . . . . . . . . . . . . . . . . . 82

4.13 ln[µk(h)]/2Nc for E ≥ ETmax(h) is displayed in (a), (b), and (c): for 0 ≤
h < 2, the diagram is being filled; and at the critical field value of the T = 0

PT, h = 2, the diagram reaches its final form; the vertical disjoint lines

are explained in the text. (d) h-Dependence of τ(E): the discontinuity in

slope of τ(E) at Ec(T 6= 0) = 0 shows up only for h = 0. . . . . . . . . . . 84

5.1 Standard infinite-range XY model: Magnetization M vs. temperature T

for h = 0, 0.1 e 0.5. For 0 ≤ h ≤ 1 the system display metastable solutions 92

5.2 Standard infinite-range XY model: M vs. energy v for h = 0, 0.5, 1 e 1.5.

The phase transition occurs at Tc = 1/2, for h = 0, with Ec = 1/2. For

h > 0, E = 1/2 occurs for T → ∞ (see Fig 5.1). . . . . . . . . . . . . . . 92

5.3 Euler magnetization, Mχ, vs. E for h = 0, 0.5, 1 and 1.5. The region with

Mχ > 0 is identical to the M stable solutions (see Fig. 5.2). . . . . . . . . 94

5.4 Microcanonical entropy s(E) of the mean-field XY model with external

magnetic field h = 1
2
. Notice that, for E > 1/2, we have negative temper-

atures. From Ref. [63]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Negative temperature for a two-level system. The temperature scale from

cold to hot is: 0+, . . . , +T, . . . ,∞,−∞, . . . ,−T, . . . , 0−. . . . . . . . . . . . 96

5.6 Negative temperatures: (a) T for an algebraical scale. (b) T for a temper-

ature scale from cold to hot. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 A typical record of the reversed nuclear magnetization. On the left is a

deflection characteristic of the normal state at equilibrium magnetization

(T ≈ 300K), followed by the reversed deflection (T ≈ −350K), decaying

(T → −∞) through zero deflection (T = +∞) to the initial equilibrium

state. From Ref. [68]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Doctoral thesis - Departamento de F́ısica - UFPE



LIST OF FIGURES xviii

5.8 Tτ ,Tχ, and T vs. E for h=0. For E = Ec = 1/2, we have Tc = Tχc
= 1/2,

while Tτ → 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.9 Comparison between τ(E) and 1
N

ln |χ(E)|. τ(E) is convex in the critical

energy vicinity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.10 Euler temperature, Tχ, vs. E for h = 0, 0.1, 0.5 and 1.5. For E > 1/2, Tχ

is negative. Notice that Tc = Tχc
= 1/2 for h = 0. . . . . . . . . . . . . . . 101

5.11 M and Mχ for h = 0, 0.5, 1 e 1.5, considering negative temperature solu-

tions. The temperature flux, at least from metastable solutions, goes from

T = 0+, . . . ,∞,−∞, . . . , 0−, for h 6= 0. The temperature flux from de

metastable solution for h = 0.5, which could be inferred from Fig. 5.1,

goes from 0 up to Tmax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Doctoral thesis - Departamento de F́ısica - UFPE



List of Tables

2.1 Relation between dynamical and geometrical quantities. From Refs. [1, 3]. 6

xix



Chapter 1

Introduction

Recently, methods and concepts of geometry and differential topology, in special those

from Morse theory, have been used to propose a topological approach to phase transitions.

In fact, based on the temperature- or energy-dependent singular behavior presented by

some geometrical observables at the critical point, it was conjectured that the occurrence

of thermodynamic phase transitions is connected to a nontrivial change in the topology

of the configuration space. Later, it has been proved that this conjecture is a necessary

condition to phase transitions in systems described by smooth, finite-range, and confining

microscopic interaction potentials. However, the necessity theorems do not exclude the

possibility that infinite-range [mean-field like] or long-range models exhibit phase tran-

sitions that are connected to a topological change in configuration space. Very recently,

following some of the arguments used to prove the above theorems, a necessity criterion

for topology-induced phase transitions was proved, namely, the divergence of the den-

sity of Jacobian’s critical points at the critical energy level in the thermodynamic limit.

This criterion introduced a geometrical aspect associated to microscopic properties, i.e.,

curvatures at the saddle points of the potential, and confirmed the topological origin of

the phase transitions in two exactly infinite-range solvable models: the infinite-range XY

model and the k-trigonometrical model, and excluded that occurring in the short-range

spherical model. However, at present the moment, there is no theorem that specify nec-

essary and sufficient (topological and geometric) conditions for the occurrence of a phase

1



2

transition. The motivation of this work is to present a topological characterization of

the zero- and finite-temperature phase transitions exhibited by two infinite-range XY

models on the AB2 chain: the frustrated AB2-XY model and the AB2-XY model in the

presence of a magnetic field. The standard infinite-range XY model is also revisited.

In Chapter 2, we present a brief survey of concepts, methods, and theorems associated

with the topological approach to phase transitions. In Chapter 3 we shall deal with the

application of the topological approach to phase transitions in several model systems

reported in the literature. In chapter 4, we report on our results derived from our studies

of the topological characterization of the zero-and finite-temperature phase transitions

exhibited by the referred XY models on the AB2 chain, including also the standard XY

model. Finally, in chapter 5, we discuss the concepts of the integration with respect to

the Euler characteristic and its relationship with phase transitions, and apply these ideas

to the infinite-range XY model. The interpretation of the results has shown that the

concept of negative temperature play a significant role, particularly in the microcanonical

ensemble. Finally, in Chapter 6, we expose our conclusions.
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Chapter 2

Topological Approach to Phase

Transitions

In this Chapter, we present a general revision and description concerning the topologi-

cal approach to phase transitions. In Section 2.1 we review some previous results on

geometrization of Hamiltonian dynamics; further, in Section 2.2 we introduce a geometri-

cal theory of chaotical dynamics that gives us an alternative explanation about the origin

of chaos in Hamiltonian systems. In Section 2.3 we emphasize the geometrical aspects of

the dynamics of systems that display thermodynamic phase transitions. In Section 2.4,

we discuss the relationship between curvature, topology and phase transitions. In order

to improve our understanding on these topics, we present an outline of Morse theory in

Section 2.5. Further, in Section 2.6, we discuss some additional arguments that take us to

the topological hypothesis on the origin of phase transitions. Finally, in Section 2.7 we ex-

plain the main results and theorems related to this new and complementary (geometrical

and topological) approach to characterize the occurrence of phase transitions. A detailed

version of most of this Chapter results can be found in the book [1], in the reviews [2, 3],

and in the very recent works [4, 5, 6].

3



2.1 Geometrization of Hamiltonian Dynamics 4

2.1 Geometrization of Hamiltonian Dynamics

We consider a class of classical Hamiltonian dynamical systems, with the Hamiltonian

H : Λ2N ⊆ R2N → R, with N degrees of freedom in the form

H = T + V =
1

2

N∑

i=1

p2
i + V (q1, . . . , qN) , (2.1)

where q = (q1, . . . , qN) ∈ Λq
N ⊆ RN and p = (p1, . . . , pN) ∈ Λp

N ⊆ RN are the (general-

ized) positions and the conjugate momenta of the system, respectively; Λ2N ≡ Λq
N × Λp

N

is the phase space while Λq
N defines its configuration space; lastly, T and V denote the

kinetic and potential energy terms.

Like in classical statistical mechanics, where the Hamiltonian (2.1) could be integrated

over the momenta and the statistical measure can be defined only in the configuration

space, we can restrict our analysis to Λq
N .

The solutions of Hamiltonian systems in the form (2.1) can be seen as geodesics of a

suitable Riemannian manifold. In fact, by Hamilton’s principle, the trajectories are found

from the extrema of the Hamilton action

S =

∫ q(t1)

q(t0)

L(q, q̇) dt , (2.2)

where q(t0) and q(t1) are fixed positions at times t0 and t1, respectively, the corresponding

time (t) derivatives, and

L = T − V =
1

2
aij q̇

iq̇j − V (q) (2.3)

is the Lagrangian of the system. As such, the geodesics between points A and B are also

extrema (minimum solutions) of the length

ℓ =

∫ B

A

ds , (2.4)

where s is the arc length parameter. We can identify these geodesics with the physical

trajectories choosing a suitable metric, g, with ds2 = gijdqidqj. Indeed, the geodesic
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2.1 Geometrization of Hamiltonian Dynamics 5

equations in its local coordinate frame (q1, . . . , qN) are given by

Dγ̇

ds
≡ d2qi

ds2
+ Γi

jk

dqj

ds

dqk

ds
= 0 , (2.5)

where D/ds is the covariant derivative along the curve γ(s), γ̇ = dq/ds is the geodesic

velocity vector, and Γ are the Christoffel symbols [1, 3].

The main result for the Riemannian geometrization of these classical systems is the

following:

Theorem. Given a dynamical system on a Riemannian manifold M with a metric a, i.e.,

a dynamical system whose Lagrangian is defined by Eq. (2.3), then it is always possible

to find a conformal transformation of the metric,

gij = eϕ(q)aij,

such that the geodesics of M with the metric g are the trajectories of the original dynamical

system; this transformation is defined by1

ϕ(q) =
1

2
log[E − V (q)] .

The study of the stability of the trajectories can also be mapped onto the analysis of

the stability of the geodesics. In fact, by analyzing a perturbed trajectory

q̃i(t) = qi(t) + ξi(t) , (2.6)

in light of the equations of motion, q̈i = −∂V (q)
∂qi , we find the tangent dynamics equation

given by (up to first order in ξi(t))

ξ̈i = −
(

∂2V (q)

∂qi∂qj

)

qi=qi(t)

ξj . (2.7)

1For a proof, see e.g. Ref. [1, 3, 7] and Ref. therein.
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2.1 Geometrization of Hamiltonian Dynamics 6

The trajectory instability (stability) is thus determined by the above equation: If the

norm of the perturbations grows (does not grow) exponentially, the trajectory is unstable

(stable). The evolution of ξ(t) = (ξ1(t), . . . , ξN(t)) describes the separation of close tra-

jectories in phase space. If, in analogy with dynamical systems, we write the perturbed

geodesics as

q̃i(s) = qi(s) + J i(s) , (2.8)

and insert (2.8) onto (2.5), the evolution of the separation field J is given by the Jacobi

equation:
D2J i

ds2
+ Ri

jkl

dqj

ds
Jk dql

ds
= 0 , (2.9)

where Ri
jkl are the components of the Riemann curvature tensor associated with g, and

the tangent vector field J is the Jacobi field. In fact, the (in)stability of a geodesic is

determined by the curvature of the manifold. For Hamiltonian systems like (Eq. 2.1),

whose kinetic energy is a quadratic form in the momenta, there are many possibilities for

the suitable space and metric, like Jacobi and Eisenhart metrics. The Eisenhart metric

is the metric for which the relation between dynamical and geometrical quantities is the

simplest one. For example, the Jacobi equation (2.9) becomes identical to the tangent dy-

namics equation (2.7) in the referred metric. To summarize, the correspondence between

dynamical and geometrical quantities regardless the metric precise determination can be

sketched as follows [1, 3]:

dynamics geometry
(time) t s (arc-length)

(potential energy) V g (metric)
(forces) ∂V Γ (Christoffel symbols)

(“curvature” of the potential) ∂2V, (∂V )2 R (curvature of the manifold)

Table 2.1: Relation between dynamical and geometrical quantities. From Refs. [1, 3].
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2.2 Geometry and Chaos 7

2.2 Geometry and Chaos

We say that a dynamical system is chaotic if the system is sensitive to initial conditions;

is topologically mixing, i.e., the system will evolve over time so that any given region or

open set of its phase space will eventually overlap with any other given region, and its

periodic orbits are dense [8]. The sensitivity to initial conditions means that an arbitrarily

small perturbation of the trajectory may lead to significantly different future behavior.

The Lyapunov exponent λ of a dynamical system is a quantity that characterizes the

separation rate of infinitesimally close trajectories and, for the Hamiltonian (1.1), is given

by [1, 3]

λ = lim
t→∞

1

2t
log

ξ2
1(t) + · · · + ξ2

N(t) + ξ̇2
1(t) + · · · + ξ̇2

N(t)

ξ2
1(0) + · · · + ξ2

N(0) + ξ̇2
1(0) + · · · + ξ̇2

N(0)
, (2.10)

and measures the degree of instability of a trajectory: if λ is positive, the trajectory

is unstable with a characteristic time λ−1. To compute the Lyapunov exponent it is

necessary a reference trajectory. However, we may ask if it is possible to derive some

information about the dynamics chaoticity average degree without explicit knowledge of

the dynamics itself. In fact, under certain hypotheses we can accomplish this by studying

some average geometric properties of the mechanical manifolds [9, 10, 11, 12].

It is well established that the classical dynamics on manifolds with constant negative

curvature is chaotic. However, curvature fluctuations along geodesics can give rise to

the appearance of a dynamic instability [13]. In fact, these fluctuations are a type of

parametric instability mechanism responsible for creating chaos in systems such as the

Fermi-Pasta-Ulam (FPU) β model and ϕ4 chains [14], and for a driven onedimensional

oscillator [15]. These ideas and results have provided much of the motivation for the

development of the geometric theory of chaos [9, 10], which we briefly discuss in this

section.

This alternative interpretation of the origin of Hamiltonian chaos has been proposed

in the Riemanniam geometric framework mentioned in the previous section[13, 1]. In fact,

a pseudo-Riemannian nondegenerate metric, introduced by Eisenhart [16], can be defined

on a properly expanded space M×R2, with local coordinates (q0, q1, . . . , qi, . . . , qN , qN+1),
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2.2 Geometry and Chaos 8

where (q1, . . . , qN) ∈ M , q0 is the time coordinate, and qN+1 is proportional to the action

Eq. (2.2). The components of this metric are such that [1, 3]:

ds2 = (gE)µν dqµdqν = aij dqidqj − 2V (q)(dq0)2 + 2 dq0dqN+1 . (2.11)

In this metric, the Jacobi equation (2.9) becomes

d2J i

dt2
= −

(
∂2V

∂qi∂qk

)

q(t)

Jk . (2.12)

In order to make the Jacobi equation independent of the dynamics, the following

geometrical and statistical assumptions have been evoked [10, 6]:

• Geometric assumptions

– The ambient manifold is supposed to be quasi-isotropic. A quasi-isotropic

manifold is a manifold whose components of the Riemann tensor are

Rijkl ≈ K(s) (gikgjl − gilgjk) , (2.13)

where K(s) is an effective sectional curvature. With this assumption, the

Jacobi equation becomes [10]

d2J j

ds2
+

KR(s)

N − 1
J j + δK(s)J j = 0, (2.14)

where KR(s) is the Ricci curvature, δK(s) is the local deviation of the sectional

curvature from its average value K̄.

– The local variation of Ricci curvature measures the local variation of the sec-

tional curvature, i.e., δK(s) ≈ δKR. Thus, the effective dynamical instability

equation becomes

d2J

ds2
+

KR(s)

N − 1
J j +

KR(s) − 〈KR〉√
N − 1

J = 0. (2.15)
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2.2 Geometry and Chaos 9

• Statistical assumptions

– δK is a Gaussian stochastic process. This assumption, put together with the

previous ones, gives

δK(s) ≃ 1√
N − 1

〈δ2KR〉sη(s), (2.16)

where η(s) is a Gaussian process with zero mean and unit variance.

– The assumption that decouples the stability equation from the dynamics is er-

godicity. It consists in replacing the Ricci scalar curvature time averages with

static averages computed with a suitable probability measure µ. When the

manifold is a mechanical one, the appropriate choice for µ is the microcanonical

measure. Denoted by ψ, the effective stability equation is then

d2ψ

ds2
+ Ω(s)ψ = 0, (2.17)

where

Ω(s) =
〈KR〉µ
N − 1

+
1√
N
〈δ2KR〉1/2

µ η(s) (2.18)

is a Gaussian stochastic process. Eq. (2.17), in the form of a stochastic oscil-

lator, is independent of the dynamics.

– The last assumption is necessary to define the correlation function of Ω(s) and,

Ω(t) therefore. It is assumed that Ω(t) is stationary and almost δ−correlated

process [9, 10].

The above assumptions allow the analytic computation of the largest Lyapunov exponent

in the limit of large number of degrees of freedom, given by 2

λ(Ω0, σΩ, τ) =
1

2

(
Λ − 4Ω0

3Λ

)
, (2.19)

2Details can be found in Refs. [9, 10].
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2.2 Geometry and Chaos 10

with

Λ =


σ2

Ωτ +

√(
4Ω0

3

)3

+ σ4
Ωτ 2




1/3

. (2.20)

Where Ω0 is the average value of Ω(t), σΩ is the variance of its fluctuations and τ is the

correlation time of Ω(t).

The geometric approach to dynamical instability permits a union of the technique to

measure chaos and the interpretation of its origin. Technically, this approach allows an

analytical method for the Lyapunov exponent computation. Moreover, the evolution of

the field J in Eq. (2.9) leads to the conclusion that the origin of chaotic dynamics is in

the curvatures of ambient manifold.

In some systems, like the Fermi-Pasta-Ulam (FPU) β model [10] and the Bishop-

Peyrard model [17], the analytic and numerical results for the Lyapunov exponent are

notably in perfect agreement with the above assumptions. In other systems, like the

classical Heisenberg XY models in two and in three dimensions, this concordance occurs

only after extra assumptions are introduced [10, 11]. Besides, there are systems for which

the agreement between the analytical Lyapunov exponent computation and the numerical

one is less good [12, 18, 19].

Recently, with the purpose of finding hints for a general Riemanninan theory of

Hamiltonian chaos, the above assumptions were tested numerically for the FPU β model

and the one-dimensional XY model in Ref.[6]. Based on these tests, the authors concluded

that the simplifying geometric assumption of quasi-isotropy is possibly too restrictive.

This assumption, which was vital to find a scalar effective instability equation, holds

for topologically trivial manifolds, but not for topologically nontrivial ones. In fact, the

nontrivial topology of differentiable manifolds is in a biunique correspondence with the

existence of critical points of Morse functions defined on these manifolds [20, 1, 3]. By

using Morse theory, the authors concluded that the critical points neighborhood contribute

directly to the local exponential growth of the tangent vector norm, and consequently en-

hancing chaos with an additional mechanism. Therefore, the interaction between the

mechanism of local instability on the neighborhood of a critical point and the parametric
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2.3 Geometry, Chaos and Phase Transitions 11

instability depends on the model under consideration, and is proper either to increase or

attenuate chaos. Alternative assumptions on the ambient manifold, including effects from

nontrivial topology of configuration space submanifolds, have contributed to the proposal

of a more general Riemannian theory of Hamiltonian chaos [6].

Finally, the critical investigation of the energy-dependence pattern of the largest

Lyapunov exponent directed the development of a topological theory of phase transitions,

which we will discuss in next Section.

2.3 Geometry, Chaos and Phase Transitions

From now on, we shall emphasize the geometry of the dynamics of systems with phase

transitions. The geometrical description of chaotic dynamics, and the recognizing that

chaos is at the origin of the statistical behavior of the system, guide us to the follow-

ing questions: what is the behavior of the largest Lyapunov exponent when the system

undergoes a phase transition? Furthermore, what are the geometric properties of the

configuration-space manifold in the presence of a phase transition? [1, 3]. The answer to

these questions converged to the topological approach to phase transitions.

With the focus on the behavior of the largest Lyapunov exponent in presence of a

phase transition and the concern to the answer to the questions above, we now make a

retrospective of some numerical results on Hamiltonian dynamical systems, which display

a phase transition when studied as statistical-mechanical models for systems in thermo-

dynamic equilibrium.

We first consider the two- and three-dimensional versions of the XY model, a Hamil-

tonian dynamical system, whose Hamiltonian is given by

H =
1

2

N∑

i=1

p2
i + 1 −

∑

〈i,j〉

cos(θi − θj) , (2.21)

where the θ’s are the positions (angles), i and j label the sites of a square (cubic) lattice

for the two(three)-dimensional version and the sum runs over nearest-neighbor sites.

The two-dimensional version of the model was studied by Butera and Caravati [21]
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2.3 Geometry, Chaos and Phase Transitions 12

and was revisited together with its three-dimensional version in Ref.[11] by Caiani et

al.. In the two-dimensional case, the system undergoes an infinite-order phase transition

[Berežinskij-Kosterlitz-Thouless transition (BKT)] from a quasi-ordered (critical) phase

to a disordered one. The Lyapunov exponent, as a function of the temperature λ(T ),

displays a quite smooth pattern; on the other hand, in the vicinity of the transition, λ(T )

changes its inclination from a steeply increasing function to a less steep one. Additionally,

in the three-dimensional version the XY model undergoes a second-order phase transition

combined with the breaking of the potential energy O(2) symmetry. The behavior of λ(T )

in the two- and the three-dimensional cases are similar, except for its shape that is sharper

in the first case, as shown in Figs. 2.1(a) and (b), respectively.

Figure 2.1: (a) [(b)] Lyapunov exponent λ vs. the temperature T for the two(three)-
dimensional XY model: the circles refer to a 10 × 10 (10 × 10 × 10), the squares to a
40× 40 (15× 15× 15), the triangles to a 50× 50, and the stars to a 100× 100 lattice, re-
spectively. The critical temperature of the infinite order (second order) phase transition
is TC ≃ 0.95 (TC ≃ 2.15) and is marked by a dotted vertical line. From Refs. [1, 3, 11].

In the previous Section we observed that the Lyapunov exponent of Hamiltonian dy-

namical systems of the form (2.1) were directly associated to the Ricci curvature fluctua-

tions of configuration space. Therefore, we naively expect that this geometric observable

also presents a kind of characteristic behavior in the vicinity of a phase transition, since,

the curvature fluctuations in regions close to a phase transition suggest a topological

interpretation of this phenomenon.

In the case of the two-(three)dimensional XY model, which was discussed in Refs.

[1, 3, 11], the root mean square fluctuation of KR divided by the number of degrees of
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2.3 Geometry, Chaos and Phase Transitions 13

freedom N , i.e., σk = 1
N

[〈K2
R〉 − 〈KR〉2]1/2

, is shown in Figs. 2.2 (a) [2.2 (b)]. In the

two-dimensional case, when only a BKT transition is manifest, no cuspid-like pattern is

present. However, a slight modification is still perceived, as shown in Fig. 2.2 (a).

Figure 2.2: (a) [(b)] Fluctuations of the Ricci curvature (Eisenhart metric), σk(T ), vs.
the temperature T for the two(three)-dimensional XY model: the circles refer to a 40 ×
40 (10 × 10 × 10) lattice. The critical temperature of the infinite-order (second order)
phase transition is TC ≃ 0.95 (TC ≃ 2.15) and is marked by a dotted vertical line. The
dashed line is only a guide to eye. From Refs. [1, 3, 11]

Another system which displays patterns similar to the two- and three-dimensional

XY model is the so called vector ϕ4 model [1, 3, 12, 22], a classical Hamiltonian whose

potential energy in a vectorial version is given by

V =
J

2

∑

〈i,j〉

∑

α

(ϕα
i − ϕα

j )2 +
∑

i



−r2

2

∑

α

(ϕα
i )2 +

u

4!

[
∑

α

(ϕα
i )2

]2


 , (2.22)

where ϕi ∈ RN , lies on the sites of a d-dimensional lattice, r2 and u are positive parame-

ters and α runs from 1 to n, labeling the components of the vectors ϕi = (ϕ1
i , . . . , ϕ

n
i ).

Futhermore, the potential energy (2.22) is O(n)-invariant and we obtain the scalar ver-

sion in the case n = 1. This model displays a phase transition at a finite temperature for

d > 1, whose results are quite equivalent to the above mentioned XY model. Actually,

the Lyapunov exponent is sensitive to the phase transition and its shape in the vicinity of

the transition is model dependent [22, 12]. In Figs. 2.3 (a) and (b) we show the behavior

of λ for the two- and three-dimensional ϕ4 model, respectively.
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2.3 Geometry, Chaos and Phase Transitions 14

(a) (b)

Figure 2.3: (a) Lyapunov exponent λ vs. the energy per particle ε, for the two-
dimensional O(1) ϕ4 model, with N = 100 (solid circles), N = 400 (open circles),
N = 900 (solid triangles), and N = 2500 (open triangles), respectively. εc is marked
by a dotted line, and the dashed line is the power law ε2. (b) λ vs. the temperature T
for the three-dimensional ϕ4 model. Full circles correspond to the O(1) (scalar) case,
open circles to the O(2) case, and open triangles to the O(4) case. From Ref. [12].

The numerical indication that the Lyapunov exponent is sensitive to the presence of

a phase transition was confirmed in several models 3. Moreover, the qualitative behavior

displayed by λ(T ) sounds to determine if the transition is associated to a symmetry

breaking. For example, in the two-dimensional XY model the shape of λ(T ) is more

smoother in comparison with the three-dimensional case. In fact, the first is a BKT

transition while the second phase transition occurs with symmetry breaking [1]. On the

other hand, curvature fluctuations seem to be more suitable to identify symmetry breaking

phase transitions, as shown in Figs. 2.2 (a) and (b) for the two- and the three-dimensional

XY model, respectively. Another illustration of this behavior is provided by the ϕ4 model

with O(n) symmetry. In this case, σk vs the energy per degree of freedom, ε, is illustrated

in Fig. 2.4(a) for the two-dimensional O(1) ϕ4 model [22]. Notice a cusp-like behavior

in the vicinity of critical energy of this continuous symmetry-breaking phase transition .

On the contrary, as shown in Fig. 2.4(b), for the BKT phase transition exhibited by the

O(2) ϕ4 model, no cusp-like pattern is observed [12].

3For other interesting examples concerning the computation of Lyapunov exponents see e.g. the book
in Ref. [1] and references therein.
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(a) (b)

Figure 2.4: (a) Root mean square fluctuation of the Ricci curvature (Eisenhart metric)
σk, divided by the average curvature k0, for the two-dimensional O(1) ϕ4 model. The
inset shows the transition vicinity. Symbols as in Fig. 2.3. From Ref.[22, 3, 1]. (b) Cur-
vature fluctuations σk vs. the temperature T for the two-dimensional O(2) ϕ4 model,
computed on a square lattice of 30 × 30 sites. The critical temperature Tc of the BKT
transition is at Tc ≃ 1.5. From Refs. [12, 3, 1].

As we shall discuss in the following section, the behavior displayed both by the Lya-

punov exponents and the curvature fluctuations in the critical point vicinity suggest a

topological interpretation of phase transitions.

2.4 Curvature, Topology and Phase Transitions

In order to show an association between the singular behavior presented in the curvature

fluctuations, and a change in the correspondent manifold, we shall describe a simple

example of two-dimensional surfaces [11, 12, 23], which could be generalized to a N -

dimensional surface with the use of Morse theory [24, 20].

Let us now describe how singular curvature fluctuations behavior of a manifold can

be put in correspondence with a change in the topology of the manifold itself. For the

sake of clarity, we shall first discuss a simple example concerning two-dimensional surfaces

[11, 12, 23], and then it can be generalized to the case of N -dimensional hypersurfaces

[24].

The basic geometric examples, which we are now going to consider, are the two
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2.4 Curvature, Topology and Phase Transitions 16

Figure 2.5: Illustration of the two families of surfaces Fε and Gε defined in Eqs. (2.23)
and (2.24) respectively. Each family is divided into two subfamilies by the critical sur-
face corresponding to εc = 0 (middle members in the picture). Members of the same
subfamily are diffeomorphic, whereas the two subfamilies are not diffeomorphic to each
other. From Ref. [12].

revolution surfaces families defined as [24]:

Fε = (fε(u) cos v, fε(u) sin v, u) , (2.23)

and

Gε = (u cos v, u sin v, fε(u)) , (2.24)

where u and v are local coordinates on the surfaces; v ∈ [0, 2π], and u belongs to the

domain of definition of function f established by

fε(u) = ±
√

ε + u2 − u4 , ε ∈ [εmin, +∞) , (2.25)

and εmin = −1
4
.

The family of surfaces Fε are diffeomorphic to a torus T2 for ε < 0 and to a sphere

S2 for ε > 0, while the family of surfaces Gε are diffeomorphic to two spheres for ε < 0

and to one sphere for ε > 0, as illustrated in Fig. 2.5. In fact, we have a change in the

topology of both families of surfaces in the vicinity of εc = 0.
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2.4 Curvature, Topology and Phase Transitions 17

This change in the topology is also signalled by the Euler characteristic of the family

of surfaces. For example, in the Euclidian three-dimensional space, if we triangulate a

compact surface Σ with V vertices, E edges and F faces, no matter how we triangulate

Σ, its Euler characteristic is given by

χ(Σ) = V − E + F. (2.26)

Moreover, the Euler characteristic of Σ is invariant under diffeomorphisms. For the fami-

lies of surfaces mentioned above, we have χ(Fε) = 0 if ε < 0, and χ(Fε) = 2, while χ(Gε)

is 4 (2) for ε negative (positive).

In order to find a relation between curvature fluctuations and topology changes on

the above surfaces, we shall digress on the calculation of the curvature fluctuations on

these surfaces. Let M belong to one of the two families; its gaussian curvature K is given

by the determinant of the second fundamental form of the surface [25]. The fluctuations

of K can be then defined as

σ2
K = 〈K2〉 − 〈K〉2 = A−1

∫

M

K2 dS −
(

A−1

∫

M

K dS

)2

, (2.27)

where A is the area of M and dS is the invariant surface element. As shown in Fig. 2.6,

both families of surfaces display a singular behavior in σK in the vicinity of ε = εc = 0.

Another very interesting geometrical example, which will be useful for a better un-

derstanding of the infinite-range XY model on the AB2 chain, is the following family of

surfaces:

Hε = (u, v,±
√

ε + u2 + v2) , (2.28)

with ε + u2 + v2 ≤ 0. As shown in Fig. 2.7), the family of surfaces Hε are diffeomorphic

to a hyperboloid of one sheet if ε < 0, to a cone if ε = εc = 0, and to a hyperboloid of two

sheets if ε > 0. Furthermore, χ(Hε) = 0 if ε ≤ 0, and χ(Hε) = 1 for ε > 0. This family

of surfaces also displays a singular behavior in σK in the vicinity of ε = εc = 0.

It can be shown, with tools of Morse theory, that the result we have illustrated for

two-dimensional surfaces has a much more general validity: a topology change in an n-
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Figure 2.6: The fluctuation σK of the gaussian curvature of the surfaces Fε and Gε is
plotted vs ε. σ is defined in Eq. (2.27), ε is shifted by εmin = 0.25 for reasons of clarity
in the presentation. (a) refers to Gε and (b) refers to Fε. The cusps appear at ε = 0
where the topological transition takes place for both Fε and Gε. From Ref. [12].

(a) ε < 0. (b) ε = εc = 0. (c) ε > 0.

Figure 2.7: Illustration of the family of surfaces Hε: (a) the family of surfaces Hε are
diffeomorphic to a hyperboloid of one sheet for ε < 0, (b) to cone for ε = εc = 0, and
(c) to a hyperboloid of two sheets for ε > 0.

dimensional manifold is accompanied by a singularity in its curvature fluctuations [24].

In conclusion, if a singularity in the curvature fluctuations of a Riemannian manifold,

of the same kind of those observed numerically in phase transitions can be associated

with a change in the topology of the manifold, we may argue that this mechanism could

be at the origin of thermodynamic phase transitions [11]. The fundamental idea of the

topological approach to phase transitions is the establishment of a relation between the
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2.5 Morse Theory 19

topology changes of the configuration space subsets:

Mv = V −1 (−∞, v] =
{
q ∈ Λq

N

∣∣ V (q)/N ≤ v
}

, (2.29)

and the occurrence of a phase transition. Mv is the subset of all points q from configuration

space Λq
N for which the potential energy per degree of freedom V (q)/N is equal to or less

than a given value v. A topology change in Mv at v = vc means that for v < vc Mv is

not diffeomorphic to Mv for v > vc. Since Morse theory provides a suitable mathematical

framework for the topology study of these configuration space subsets, in the next section

we will present a summary of the results of this theory.

2.5 Morse Theory

In differential topology, Morse theory is a direct approach to investigate the topology of

a manifold by studying differentiable functions on that manifold. It establishes a link

between topology and analysis. In fact, Morse theory makes possible to characterize the

configuration space topology of the subsets Mv, by using Eq. (2.29) to analyze the critical

points of the potential V (q). In this section, we discuss the main results of Morse theory in

a physical friendly notation, i.e., we restrict Morse theory to configuration space subsets

Mv. The results outlined in this Section concerning Morse theory are present in more

detail in Refs. [26, 20] and summarized in Refs. [1, 3, 2].

We assume that V (q) is a smooth function V : Λq
N → R, thus mapping the config-

uration space manifold Λq
N onto reals. We say that a point qc ∈ Λq

N is a critical point

of V (q) if the differential dV (qc) at qc ∈ Λq
N vanishes. Then, vc is a critical value of

V (q) if V (qc) = vc for some critical point qc of V (q). An important result from Morse

theory is that if V (q) has no critical values in the interval [v1, v2], then Mv1 and Mv2

are homeomorphic, i.e., there exists a continuous bijection between Mv1 and Mv2 with

continuous inverse, i.e., an homeomorphism between Mv1 and Mv2 . This result is known

as the noncritical neck theorem. It means that if there are no critical points between v1

and v2, no topology change occurs in the family {Mv}v∈[v1,v2].
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The potential V (q) is Morse function if every critical point of V (q) is nondegenerate,

i.e., the Hessian determinant

Vij =
∂2V (q)

∂qi∂qj

(2.30)

at qc is nonzero. The index of a critical point qc of V (q) is the Hessian negative eigenvalues

number of V (q) at qc.

Another notable feature from Morse theory is the possibility of a handle decomposition

of a n-dimensional manifold as an exhaustion:

M0 ⊂ M1 ⊂ . . . ⊂ M, (2.31)

where each Mk is obtained from Mk−1 by attaching a k-handle. Handles are to surfaces

as vertices, edges, and faces are to polyhedra. Loosely speaking, as illustrated in Fig.

2.8, a handle can be seen as the object produced by puncturing a surface twice [Fig (a)],

attaching a zip around each puncture traveling in opposite directions (Fig. (b)), pulling

the edges of the zips together [Fig. (c)], and then zipping up [Fig. (d)][27]. If the interval

[v1, v2] has a single critical value of V (q) with a single critical point qc and index k, then

Mv2 is homeomorphic to the manifold obtained from attaching a k-handle to Mv1 , i. e.,

the direct product of a k-disk and a (n − k)-disk [20, 26].

The concepts of Morse theory apply just to the Morse functions defined above. How-

ever, this is an insignificant limitation because the set of Morse functions on M forms a

dense subset on the space of smooth functions on M [28]. This means that, if the potential

V (q) of the Hamiltonian system is not a proper Morse function, we can transform it onto

a Morse function Ṽ (q) by adding an arbitrarily small perturbation, for example,

Ṽ (q) = V (q) +
N∑

i=1

hiqi, (2.32)

with some small hi ∈ (i = 1, . . . , N). Then Morse theory relates the topology of Mt to

the critical points qc of V (q) and their indices. With the non-critical-neck theorem and

the handle decomposition, we have mapped the problem of studying the topology of M
v
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Figure 2.8: Illustration of a handle: A handle can be seen as the object produced by
puncturing a surface twice [Fig. 2.8(a)], attaching a zip around each puncture traveling
in opposite directions [Fig. 2.8(b)], pulling the edges of the zips together [Fig. 2.8(c)],
and then zipping up [Fig. 2.8(d)]. From Ref. [27].

to the problem of determining the critical points and critical indices of V (q), which leads

us to compute some topological invariants if all the critical points of V (q) are known.

At higher dimensions we can define a topological invariant, the Euler characteristic

χ, using higher dimensional generalizations of faces (simplexes) and by defining the n-

dimensional surface Mv Euler characteristic as

χ(Mv) =
n∑

k=0

(−1)k(” # of simplexes of dimension k ”). (2.33)

Using Morse theory, a more suitable definition for the Euler characteristic is given by an

alternate sum of the a Morse numbers of V (q) as

χ(Mv) =
n∑

k=0

(−1)kµk(Mv), (2.34)

where the Morse numbers, µk (k = 0, . . . , n), of V (q) are defined as the numbers of critical
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points of V (q) with index k.

A relevant feature of the Euler characteristic χ is that its analysis for each element

of subsets family {Mv}v∈R, we have an idea of the manner that the topology of the Mv

changes as the v changes. Since χ(Mv) is a topological invariant, different values of χ

for surfaces Mv1 and Mv2 imply that Mv1 and Mv2 are topologically nonequivalent. With

the tools of Morse theory, we can now study the relation between the configuration space

topology and phase transitions.

2.6 Topological Hypothesis on the Origin of Phase

Transitions

In this Section we shall show that given the microscopic interaction potential V (q), the

system configuration space is naturally foliated into the family {Σv}v∈ of equipotential

hypersurfaces defined by

Σv ≡ {q ∈ Λq
N |V (q) = v} ⊂ RN , (2.35)

both in the canonical and microcanonical ensembles. This result, and previous ones, lead

to the topological hypothesis on the origin of Phase Transitions.

Let us examine the canonical configurational partition function

Zc(β, N) =

∫

N

dNq e−βV (q) =

∫ +∞

0

dv e−βv

∫

ΣN−1
v

dσ

‖∇V ‖ , (2.36)

where a co-area formula was used to open the view to the structure integrals [29]:

ΩN(v) ≡
∫

Σv

dσ

‖∇V ‖ , (2.37)

i.e, an infinite collection of geometric integrals on Σv. At any given value of the inverse

temperature β in thermodynamic limit, the effective support of the canonical measure is

quite limited to Σv = Σv(β).
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Moreover, if we study the microcanonical phase space volume established by

Ω(E) =

∫ E

0

dη Ω(−)(E − η)Ωkin(η), (2.38)

where

Ωkin(η) =

∫
dNp δ(

∑

i

1

2
p2

i − η), (2.39)

and

Ω(−)(E − η) =

∫
dNq Θ[V (q) − (E − η)] =

∫ E−η

0

dv

∫

Σv

dσ

‖∇V ‖ . (2.40)

Finally, we have

Ω(E) =

∫ E

0

dη
(2πη)N/2

ηΓ(N
2
)

∫ E−η

0

dv

∫

Σv

dσ

‖∇V ‖ . (2.41)

Again, as in the canonical ensemble, the only non-trivial functions are the structure

integrals (2.37). Additionally, in the thermodynamic limit, the fluctuations of potential

and kinetic energies go to zero and the relevant contributions to Ω(E) come from the

vicinity of a Σv = Σv(E). On the basis of what was discussed in previous sections, the

“topological hypothesis” was formulated as follows [11, 24, 30, 3, 1]:

Topological Hypothesis. The basic origin of a phase transition lies on a topological

change of the support of the measure describing a system. This change of topology induces

a change of the measure itself at the transition point. In other words, the topological

hypothesis assumes that a {Σv} topology change, occurring at some vc = vc(βc)
4 (or

vc = vc(Ec)), is the deep origin of the singular behavior of thermodynamic observables at

a phase transition 5.

A direct numerical evidence of the topological hypothesis was given through the

Euler characteristic computation for the level sets {Σv}v∈R of the potential function of

a two-dimensional lattice ϕ4 model [24]. Moreover, a paradigmatic evidence was given

through the exact analytic Euler characteristic computation of the configuration space

submanifolds Mv for the mean-field XY model6 [31] and for the k-trigonometric model

4Assuming ensemble equivalence.
5A change of topology occurs at vc, if {Σv}v<vc

are not diffeomorphic to the {Σv}v>vc
.

6A detailed discussion of this model, among others, is also given in Chapter 3 and 4.
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[32]. Indeed, as we will discuss in next section, this conjecture is a necessary condition

to the occurrence of phase transitions in systems described by smooth, finite-range, and

confining microscopical interaction potentials [33].

2.7 Main Theorems on the Topological Approach to

Phase Transitions

In this Section, we shall enunciate and discuss the main theorems on the topological ap-

proach to phase transitions. The first theorem establishes a first step towards proving a

necessary topological condition for the occurrence of first or second order phase transi-

tions. The theorem is valid for smooth, finite-range and confining potentials V bounded

below, describing systems confined in finite regions of space with continuously varying

coordinates. In fact, the result of this theorem demonstrated in [33, 34] is the following:

Theorem 1. Let VN(q1, . . . , qN) : R
N → R, be a smooth, non-singular, finite-range po-

tential. Denote as Σv := V −1
N (v), v ∈ R, its level sets, or equipotential hypersurfaces,

in configuration space. Then let v̄ = v/N be the potential energy per degree of freedom.

If for any pair of values v̄ and v̄′ belonging to a given interval Iv̄ = [v̄0, v̄1] and, for any

N > N0, we have

ΣNv̄ ≈ ΣNv̄′ ,

that is, ΣNv̄ is diffeomorphic to ΣNv̄′, then the sequence of the Helmoltz free energies

{FN(β)}N∈N – where β = 1/T (T is the temperature) and β ∈ Iβ = (β(v̄0), β(v̄1)) – is

uniformly convergent at least in C2(Iβ) so that F∞ ∈ C2(Iβ) and neither first nor second

order phase transitions can occur in the (inverse) temperature interval (β(v̄0), β(v̄1)).

To prove the theorem, the authors first showed that, under the assumption of dif-

feomorphicity of the equipotential hypersurfaces {Σv}v∈R, as well as of the {Mv}v∈R in a

given interval of values for v̄ = v/N , the Helmoltz free energy is uniformly convergent in

N to its thermodynamic limit, at least within the class of twice differentiable functions

in the corresponding interval of temperature. The above theorem was fundamental in

proving the following second theorem [35]:
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Theorem 2. Let VN(q1, . . . , qN) : R
N → R, be a smooth, non-singular, finite-range

potential. Denote as Mv := V −1
N ((−∞, v]), v ∈ R, the generic submanifold of configuration

space bounded by Σv. Let {q(i)
c ∈ R

N}i∈[1,N (v)] be the set of critical points of the potential,

that is s.t. ∇VN(q
(i)
c ) = 0, and N (v) be the number of critical points up to the potential

energy value v. Let Γ(q
(i)
c , ε0) be pseudo-cylindrical neighborhoods of the critical points,

and µi(Mv) be the Morse indexes of Mv, then there exist real numbers A(N, i, ε0), gi and

real smooth functions B(N, i, v, ε0) such that the following equation for the microcanonical

configurational entropy S
(−)
N (v) holds 7:

S
(−)
N (v) =

1

N
log

[∫

Mv\
⋃N (v)

i=1 Γ(q
(i)
c ,ε0)

dNq +
N∑

i=0

A(N, i, ε0) gi µi(Mv−ε0)

+

N
ν(v)+1
cp∑

n=1

B(N, i(n), v − vν(v)
c , ε0)


 ,

and an unbound growth with N of one of the derivatives |∂kS(−)(v)/∂vk|, for k = 3, 4,

and thus the occurrence of a first or a second order phase transition respectively, can be

entailed only by the topological term
∑N

i=0 A(N, i, ε0) gi µi(Mv−ε0).

These results imply that, for the considered class of potentials, a phase transition

necessarily arises from a topological change in the configuration space. However, the con-

verse is not true, i.e., topology changes are necessary but not sufficient for the occurrence

of phase transitions. A change on the topology of Mv at vc is one possible nonanalyticity

mechanism in a thermodynamic function. However, some models are not in agreement

with the topological hypothesis and point out that a topology change on the configuration

space is not the only nonanalyticity mechanism. The theorems above indicate that, for a

large class of systems meeting its requirements, the unique mechanism available to induce

nonanalyticity is a topological change on the associated configuration space. Besides,

this result does not exclude the possibility that a phase transition in systems that does

not fulfill the conditions of the theorems, as in long-range systems or in systems with a

7The proof, as well as details and definitions are given in Chap. 9 from Ref. [1], and Refs. [34, 35].
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nonconfining potential, be associated with a topology change in configuration space. In

fact, there are several models for which the topology of Mv has been studied and that

does not meet the conditions of the theorems above 8.

On the other hand, the application of the above theorems is technically impracticable

in some realistic models. In fact, in certain models, the number of topology changes grows

unboundedly with the number of degrees of freedom, i.e., in the thermodynamic limit the

topology changes become dense on the corresponding energy interval. It implies that most

of the topology changes seems to be unrelated to phase transitions. In order to measure

the contribution of each topology change to thermodynamic quantities, the topological

approach to phase transitions was supplemented with a geometrical ingredient, which

allows to quantify the contribution of each topology change to thermodynamic quantities,

and to identify the potentially relevant topological changes [4, 5]. Inspired on a finite-

system result [4], a topological-geometrical criterion, which identifies most of the topology

changes as being unrelated to phase transitions in the thermodynamic limit, was derived

[5]. The result for finite systems can be summarized as follows:

Theorem 3 Let V : G → RN be a Morse function with a single critical point qc of index

k, Hessian HV , and N degrees of freedom in an open region G. Without loss of generality,

we assume V (qc) = 0. The density of states can be decomposed into an analytic part Ωa
N

and a nonanalytic part Ωna
N ,

ΩN = Ωa
N + Ωna

N . (2.42)

The leading order nonanalyticity is given by

Ωna
N (v) =

(Nπ)N/2

NΓ(N/2)
√

|det [HV (qc)/2]|
hna

N,k mod 4(v), (2.43)

8Results from model calculations reported in the literature, including several models which do not
satisfy the assumptions of the necessity theorems, are summarized in Table I in Ref. [2].
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with the universal function

hna
N,k mod 4(v) =





(−1)k/2 v(N−2)/2Θ(v) for k even,

(−1)(k+1)/2 v(N−2)/2 π−1 ln |v| for N even, k odd,

(−1)(N−k)/2(−v)(N−2)/2Θ(−v) for N, k odd;

where Θ is the Heaviside step function.

Starting from the above finite-system result to compute the contribution of critical

points of V to thermodynamic quantities, the ǫ-entropy was defined as [5]

sv0,ǫ(v) = lim
N→∞

1

N
ln [Av0,ǫ

N (v) + Bv0,ǫ
N (v)] (2.44)

= max{av0,ǫ(v), bv0,ǫ(v)}, (2.45)

where Bv0,ǫ
N contains the nonanalytic contributions Ωna

N,qc
from the critical points qc in the

ǫ-neighborhood of v0,

Bv0,ǫ
N (v) =

∑

{vc:|vc−v0|<ǫ}

∑

{qc:V (qc)=Nvc}

Ωna
N,qc

(v), (2.46)

for some small ǫ > 0 and the smooth function Av0,ǫ
N is selected such that the ǫ-entropy sv0,ǫ

corresponds to the exact entropy s = limN→∞ N−1 ln ΩN in the interval (v0 − ǫ, v0 + ǫ) [5].

From the Theorems 1 and 2 we may argue that, at least for systems that fulfill their

requirements, the analytic contributions in Av0,ǫ
N are immaterial for phase transitions. In

fact, examining the conditions under which

bv0,ǫ(v) = lim
N→∞

1

N
ln Bv0,ǫ

N (v) (2.47)

possibly induces a phase transition, the following necessity criterion was demonstrated in

Ref. [5], and enunciated below:

Theorem 4 The saddle point contribution bv0,ǫ(v) cannot induce a phase transition at

any potential energy in the interval (v0 − ǫ, v0 + ǫ) if
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1. the number of critical points is bounded by exp(CN) for some C > 0 and

2. the Jacobian densities, defined by

jℓ(v) = lim
N→∞

1

N
ln

( ∑

qc∈Qℓ(v,v+ǫ)

J(q
c
)

/ ∑

qc∈Qℓ(v,v+ǫ)

1

)
, (2.48)

where Qℓ(v, v + ǫ) denotes the set of critical points qc with index k(qc) = ℓ (mod 4)

and with critical values V (q
c
)/N in the interval [v, v + ǫ], have a thermodynamic

limit with jℓ < ∞ ∀ℓ ∈ {0, 1, 2, 3} inside the given interval.

The above criterion establishes a relation between the curvature of saddles and phase

transitions. As we shall discuss in the next chapter, this criterion excludes the occurrence

of a phase transition for all potential energy values, except the transition energy value

in the mean-field XY model in zero-field, and in the k-trigonometric model [5]. In next

chapter we shall present the application of the topological approach to phase transitions

in some interesting models.
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Chapter 3

The Infinite-Range XY Model and

Other applications

In this chapter we shall deal with the application of the ideas discussed in the previous

chapters on several models available in the literature. First, we give a detailed investiga-

tion of the infinite-range XY model, which will prove useful in next Chapter; them, we

present an outline of some interesting applications.

3.1 The Infinite-Range XY model

The infinite-range XY model [36] is defined by the following Hamiltonian

H(p, θ) =
N∑

i=1

p2
i

2
+

J

2N

∑

i,j

[1 − cos(θi − θj)] − h

N∑

i=i

cos θi , (3.1)

where θi ∈ [0, 2π] is the position (angle) of the i-th unit mass particle on a circle, pi

the corresponding conjugated momentum, θ ≡ (θ1, . . . , θN), and p ≡ (p1, . . . , pN). The

model describes a planar (XY ) infinite-range Heisenberg model with classical spin vectors

mi = (cos θi, sin θi) on each site i. The infinite-range character allows us to perform

analytical calculations both in the canonical and microcanonical ensembles 1. In the limit

1For a recent review concerning statistical mechanics and dynamics of solvable models with long-range
interactions, see Ref. [37].

29
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h → 0, the system displays a second order phase transition with critical temperature

Tc = 1/2 and energy per particle uc = 3/4. In order to describe the thermodynamic

properties of this model at zero field, it is useful to write the Hamiltonian (3.1) in a

different form, defining the x and y components of the magnetization vector:

m ≡ 1

N

N∑

i=1

mi = (mx,my) = (
1

N

N∑

i=1

cos θi,
1

N

N∑

i=1

sin θi). (3.2)

We thus find that

H(p, θ) =
N∑

i=1

p2
i

2
+

NJ

2

(
1 − m2

)
− Nhmx . (3.3)

From now on, we study the thermodynamics of this model with J ≡ 1 in the limit h → 0.

3.1.1 Thermodynamics

The canonical solution of this model results from computing the canonical partition func-

tion:

Z(β ≡ 1/T, Nc) =

∫ N∏

i=1

dpidθi exp[−βH(p, θ)]. (3.4)

After the Gaussian integration over the momenta, the canonical partition function thus

reads:

Z(β, N) = exp

(
−Nβ

2

)(
2π

β

)N/2

×
∫ 2π

0

N∏

i=1

dθi exp

[
β

2N

( N∑

i=1

mi

)2
]
. (3.5)

Now, by using the Gaussian identity

exp(bm2) =

√
b

π

∫ +∞

−∞

dz exp(−bz2 + 2mbz), (3.6)
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the partition function becomes

Z(β,N) = exp

(
−Nβ

2

)(
2π

β

)N/2
Nβ

2π

∫ 2π

0

N∏

i=1

dθi ×

∫ ∞

−∞

dz1dz2 exp

[
−N

β(z2
1 + z2

2)

2
+

N∑

i=1

(z1mx + z2my)

]
. (3.7)

After the integration over the angular coordinates and the rescaling zi → zi

√
N/2β, we

obtain [36]

Z(β, N) = exp

(
−Nβ

2

)(
2π

β

)N/2

×

Nβ

2π

∫ ∞

−∞

dz1dz2 exp

{
N

[
−(z2

1 + z2
2)

2β
+ ln 2πI0(z

2
1 + z2

2)
1
2 )

]}
, (3.8)

where I0(z) is the zero order modified Bessel function:

I0(z) =

∫ 2π

0

dθ exp (z1 cos θ + z2 sin θ) =

∫ 2π

0

dθ exp (z cos θ) , (3.9)

with z ≡ (z2
1 + z2

2)
1/2

. Lastly, we can write the partition function in polar coordinates

Z(β,N) = exp

(
−Nβ

2

)(
2π

β

)N/2

Nβ

∫ ∞

0

dz exp

{
N

[
−βz2

2
+ ln I0(βz)

]}
. (3.10)

Now, by defining the free energy per site,

F (β; z) = − lim
N→∞

1

βN
ln Z(β,N), (3.11)

and using the saddle point method, the free energy obtains:

−βF =
1

2
ln

(2π

β

)
− β

2
+ maxz

(
− z2

2β
+ ln[2πI0(z)]

)
, (3.12)
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Figure 3.1: Infinite-range XY model: (a) magnetization M vs. temperature T ; (b) M
vs. potential energy per particle u; (c) T vs. u. The system displays a phase transition
at uc = 0.5 and Tc = 0.5.

where z is the saddle point self-consistency equation solution:

z

β
=

I1

I0

(z) = M(β; z), (3.13)

and M(β; z) = − 1
β

limh→0
∂F (β;z)

∂h
is the magnetization. The solution to Eq. (3.13) is z = 0

for β < βc = 2, corresponding to a vanishing magnetization, and z 6= 0 for β > βc. We

thus obtain the energy per particle, ε ≡ E
N

= ∂F (β;z)
∂β

ε =
1

2β
+

1

2
− 1

2
[m∗(β)]2, (3.14)

where m∗(β) satisfies the self-consistency equation (3.13). At the critical temperature,

the energy is εc = 3
4

with potential energy per particle uc ≡ εc − 1
2β

= 1/2.

The exact solution of this model in the microcanonical ensemble is performed with the

use of large deviation theory [38]. Since this infinite-range model displays a second-order

phase transition, the canonical and microcanonical ensembles are equivalent [37]. In Fig.

3.1 (a), we show the magnetization M as a function of the temperature T . In Fig. 3.1

(b), we illustrate M versus the potential energy per particle u. In Fig. 3.1 (c) we show

the T vs. u. In these Figures, we do not consider kinetic energy effects.
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3.1.2 Topology of Configuration Space

The infinite-range XY model displays a paradigmatic evidence of a change in the confi-

guration space topology associated with a thermodynamic phase transition. In order to

understand and detect topological changes in Mv, we have to find the critical points of the

potential energy per particle V = V
N

that, due to the mean-field character of the model,

is given by

V(mx,my) =
1

2
(1 − m2

x − m2
y) − hmx . (3.15)

We can now consider the system of N spins projected out onto the collective spin variables

two-dimensional configuration space. According to the definition (3.2) of m, the accessible

configuration space is the disk D = {(mx,my) : m2
x + m2

y ≤ 1} , we have to analyze the

topological transformations sequence undergone by

Dv = {(mx,my) ∈ D : V(mx, my) ≤ v} . (3.16)

in the limit h → 0+. As shown in Fig. 3.2, for v < 0 Dv is the empty set. At v = v0 = 0,

the first topological change occurs and the manifold is the circle m2
x + m2

y = 1. Then as

v grows, Dv is limited by

1 − 2v ≤ m2
x + m2

y ≤ 1 , (3.17)

i.e., a ring with a hole centered in (0, 0) (punctuated disk) comprised between the two

circles of radii 1 and
√

1 − 2v, respectively. As v continues to grow, the hole contracts

and is completely filled at v = vc = 1/2, where the second topological change occurs.

Notice that the potential energy per particle critical value vc, where the last topological

change occurs, is equal to the statistical-mechanics average value of the potential energy

at the phase transition. This suggests that the topological change at vc is also present in

the N -dimensional configuration space and is correlated with the phase transition.

Now, our goal is to summarize the topological results exhibited by the infinite-range

XY model described in Ref.[31], which allow us to find the critical points, the critical
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v = 0 0 < v < 1/2 v = 1/2

Figure 3.2: The sequence of topological changes undergone by the manifolds Dv with
increasing v in the limit h → 0+. From Ref. [30] .

values of V , and the topological changes in Mv. We start solving the equations

∂V(ϕ)

∂ϕi

= 0 , i = 1, . . . , N , (3.18)

further, we compute the indices of the critical points of V , i.e., the number of negative

eigenvalues of its Hessian

Hij =
∂2V

∂ϕi∂ϕj

i, j = 1, . . . , N . (3.19)

Eq. (3.18) can be written as

(mx + h) sin ϕi − my cos ϕi = 0 , i = 1, . . . , N . (3.20)

The solutions of Eqs. (3.20) are all configurations in which the angles are either 0 or π.

The configuration ϕi = 0 ∀i, is the absolute minimum of V , while the other configurations

depend only on the number of angles which are equal to π. Denoting this number by nπ,

the critical values are

v(nπ) =
1

2

[
1 − 1

N2
(N − 2nπ)2

]
− h

N
(N − 2nπ) . (3.21)

Moreover, the number C(nπ) of critical points, with a particular nπ, is given by the
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binomial coefficient

C(nπ) =

(
N

nπ

)
=

N !

nπ! (N − nπ)!
. (3.22)

The diagonal elements of the Hessian Eq. (3.19) are

Hii = di =
1

N
[(mx + h) cos ϕi + my sin ϕi] −

1

N2
, (3.23)

and the off-diagonal ones are

Hij = − 1

N2
(sin ϕi sin ϕj + cos ϕi cos ϕj) . (3.24)

In order to find the index of a given critical point, we can write the Hessian as the sum

of a diagonal matrix D, whose elements are

δi =
1

N
[(mx + h) cos ϕi + my sin ϕi] , i = 1, . . . , N , (3.25)

and a non-diagonal matrix B, whose elements are just the Hij given in Eq. (3.24) for

i = j. Since the ratio between the elements of B and those of D is O(1/N), and B is

a rank one matrix, only the diagonal elements survive in large N limit 2. So, we can

estimate the critical points index with the number of negative δ’s at a given nπ,

index (nπ) ≃ #(δi < 0) . (3.26)

At a given critical point, the x-component of the magnetization vector is mx = 1 − 2nπ

N
,

so that mx > 0 (mx < 0) if nπ ≤ N
2

(mx > N
2
), the eigenvalues of D are

δi = mx + h i = 1, . . . , N − nπ ; (3.27a)

δi = −(mx + h) i = N − nπ + 1, . . . , N . (3.27b)

Then, denoting with index(nπ) the index of a critical point with nπ angles equal to π, for

2For a proof, see the Appendix in Ref. [31].
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a sufficiently small field we can write

index(nπ) = nπ if nπ ≤ N
2

, (3.28a)

index(nπ) = N − nπ if nπ > N
2

. (3.28b)

From these equations and Eq. (3.22), we can compute the Morse numbers µk as a function

of the level v in the interval −h ≤ v < 1/2 + h2/2, which is given by

µk(v) =

(
N

k

) [
1 − Θ(k − n(−)(v)) + Θ(N − k − n(+)(v))

]
, (3.29)

where Θ(x) is the Heaviside theta function and n(±)(v) are the limits of the allowed nπ’s

for a given value of v, i.e., by inverting Eq. (3.21):

n(±)
π (v) =

N

2

[
1 + h ±

√
h2 − 2

(
v − 1

2

)]
. (3.30)

We note that 0 ≤ n
(−)
π ≤ N

2
and N

2
+ 1 ≤ n

(+)
π ≤ N , so that Eq. (3.29) implies

µk(v) = 0, ∀ k >
N

2
, (3.31)

i.e., no critical points with index larger than N/2 exist as long as v < vc = 1/2 + h2/2.

In Fig. 3.3(a) and (b) we show the Morse numbers µk as a function of k for two values

of v, v = 1
4
, a value between the minimum and the maximum of V , and v = 1

2
= vc

respectively. Notice that the µk grow with v until v = vc = 1+h2

2
for 0 ≤ k ≤ N

2
, as

long as the µk with k > N
2

remain zero. Moreover, due to Morse inequalities, the Morse

numbers are upper bounds of the Betti numbers bk(Mv) [20], i.e. bk(Mv) ≤ µk(Mv) for

k = 0, . . . , N,. We thus conclude that, for v < vc = 1/2 + h2/2,

bk(Mv) = 0 ∀ k >
N

2
. (3.32)

Consequently, Mv is a “half” N -torus for 1
2
≤ v < 1

2
+ h2

2
and Mv is a (full) N -torus for
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Figure 3.3: Mean-field XY model. (a) Histogram of log(µk(Mv))/N as a function of k
for v = 1/4; (b) Histogram of log(µk(Mv))/N as a function of k for v = 1/2. In both
cases N = 50 and h = 0.01. (c) For comparison, histogram of log(bk(T

N))/N as a func-
tion of k for a N -torus T

N , with N = 50, which is the lower bound of log(µk(Mv))/N
for any v ≥ vc. From Ref. [31]

v > 1
2

+ h2

2
, whose Betti numbers are given by

bk(T
N) =

(
N

k

)
k = 0, 1, . . . , N . (3.33)

The ”abrupt” topology change at v = vc = 1
2

+ h2

2
embodies the attachment of

(
N
k

)

different k-handles for each k ranging from N
2

+ 1 to N , i.e., which implies the change

of Betti numbers of O(N) change. In Fig. 3.3 (c), we show the Betti numbers bk for

v > vc. The abrupt change at vc is visible if we compare Fig. 3.3 (b) with Fig. 3.3 (c),

where N
2

Betti numbers simultaneously become nonzero. Another topological invariant

that we can obtain with the index of the critical points below a given level v, is the Euler

characteristic of the manifolds Mv, defined by

χ(Mv) =
N∑

k=0

(−1)kµk(Mv) . (3.34)

In fact, using Eqs. (3.34), (3.30), and (3.29), we can accomplish this task. Since χ jumps

from positive to negative values, it is easier to look at |χ|. In Fig. 3.4, we display

log(|χ|(Mv))/N as a function of v for N = 50, 200, and 800. The abrupt topology change

presented at vc = 0.5, which corresponds to the phase transition in the thermodynamic

limit, displays a discontinuity of log |χ|/N .

Finally, for large N we can write the Jacobian determinant at a critical point qc as
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Figure 3.4: Mean-field XY model. Plot of log(|χ(Mv)|)/N as a function of v. N =
50,200,800 (from bottom to top) and h = 0.01; vc = 0.5 + O(h2). From Ref. [31].

[5]

J(qc)
N≫1−−−→2N/2

∣∣∣∣
N∏

i=1

Hii(qc)

∣∣∣∣
−1/2

=

∣∣∣∣
K

2
− Knπ

N
+

h

2

∣∣∣∣
−N/2

. (3.35)

Inserting the expression of nπ, Eq. (3.30), as function of the potential energy per degree

of freedom v, Eq. (3.30), we can calculate the Jacobian density (2.48) for N → ∞:

jℓ(v) =
1

2
ln 2 − 1

4
ln(1 − 2v), ℓ = 0, 1, 2, 3; (3.36)

in the limit h → 0. In Fig. 3.5 we show the graph of this function. In fact, jℓ(v) is singular

at v = 1/2, which is the potential energy per degree of freedom, where the phase transition

occurs for the mean-field XY model with zero external field. As we will show in next

hapter, jℓ is also singular in the presence of an external magnetic field h, for 0 ≤ h ≤ 1,

thus confirming that this is not a sufficient criterion to identify phase transitions.

3.2 The one-dimensional XY model

Now, we discuss about a model which has topological changes very similar to the ones

of the mean-field XY model analyzed in the previous Section, but no phase transition

occurs, namely, the one-dimensional XY model with nearest-neighbor interactions, whose
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Figure 3.5: Jacobian densities jℓ vs. the potential energy v for the mean-field XY
model with J = 1. From Ref. [5]

potential is given by

V (ϕ) =
1

4

N∑

i=1

[1 − cos(ϕi+1 − ϕi)] − h

N∑

i=1

cos ϕi . (3.37)

The configuration space M is a N -torus, and it was proved that also in this model there

are many topological changes in the submanifolds Mv as v is varied from its minimum to

its maximum value as well. However, no abrupt change, like the one at vc in the case of

the mean-field model, is presented. The behavior of the Morse indices µk, as a function

of k, and the Euler characteristic are illustrated in Figs. 3.6 and 3.7, respectively. By

comparing the mean-field XY model with the one-dimensional XY model, it has been

shown that in the mean-field case there exists a topology change that corresponds to the

simultaneous attaching of handles of N
2

different types, while this behavior does not occur

in the one-dimensional nearest-neighbor XY model. Moreover, contrasting the Euler

characteristic of this model in Fig. 3.7 with the mean-field case in Fig. 3.4, we see that

there is no longer a discontinuity in the Euler characteristic.
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Figure 3.6: The same as in Fig. 3.3 for the one-dimensional XY model with the
nearest-neighbor interactions. (a) Histogram of log(µk(Mv))/N as a function of k for
v = 1/4; (b) Histogram of log(µk(Mv))/N as a function of k for v = 1/2. In both cases
N = 50 and h = 0.01. (c) For comparison, histogram of log(bk(T

N))/N as a function of
k for a N -torus T

N , with N = 50. From Ref. [31].

Figure 3.7: Plot of log(|χ|(Mv))/N for the one-dimensional XY model with the nearest-
neighbor interactions as a function of v. N = 50, 200, 800 (from bottom to top). From
Ref. [31].
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3.3 Other Applications

3.3.1 The k-trigonometrical model

The k-trigonometrical model is defined by the Hamiltonian [39, 32]:

Hk =
N∑

i=1

1

2
π2

i + Vk(ϕ1, . . . , ϕN), (3.38)

where {ϕi} are angular variables: ϕi ∈ [0, 2π), {πi} are the conjugated momenta, and the

potential energy V is given by

Vk =
∆

Nk−1

∑

i1,...,ik

[1 − cos(ϕi1 + ... + ϕik)] , (3.39)

where ∆ is the coupling constant. In the topological approach, only the potential energy

term is considered. This interaction energy is of a mean-field nature, and each degree

of freedom interacts with all others; besides, the interactions are k-body ones. The k-

trigonometrical model is a generalization of the trigonometric model (TM) introduced

by Madan and Keyes [40] as a simple model for the potential energy surface (PES) of

simple liquids, the hypersurface defined by the potential energy as a N degrees of freedom

function. The TM is a model for N independent degrees of freedom with potential energy

(3.39) with k = 1: Vk=1. From now on, we give an outline of the thermodynamical and

topological properties of the k-trigonometrical model . For k = 1 the model displays no

phase transition, while for k = 2 there is a second order transition and for k > 2 a first

order one. In Fig. 3.8 (a) we show the temperature T as a function of the canonical

average potential energy v for three different values of k. In Fig. 3.8 (b) we illustrate

the microcanonical temperature T as a function of the microcanonical average potential

energy v for three different values of k. In this model, the Euler characteristic of Mv can

be analytically calculated using methods and concepts of Morse theory [32]. In Fig. 3.9

we show the Euler characteristic logarithmic density, i.e., σ(v) = limN→∞
1
N

log |χ(v)|.
In fact, we can see that there is an evident signature of the phase transition in the
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Figure 3.8: k-trigonometric model. For k=1 there is no phase transition, while for k = 2
there is a second order transition and for k > 2 a first order one. (a) Temperature T
as a function of the canonical average potential energy v for three different values of k.
(b) Microcanonical temperature T as a function of the microcanonical average potential
energy v for three different values of k. From Refs. [39, 32]
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Figure 3.9: Logarithmic Euler characteristic of the Mv manifolds σ(v) (see text) as a
function of the potential energy v. The phase transition is signaled by a singularity of
the first derivative at vc = ∆; the sign of the second derivative around the singular
point allows to predict the order of the transition. From Refs. [39, 32]
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analytic properties of σ(v). It was observed that regions never reached by the system are

characterized by σ′(v) < 0. Furthermore, for k=1, where there is no phase transition,

the function σ(v) is analytic; for k=2, a second order phase transition is observed, in

which case the first derivative of σ(v) is discontinuous at vc = v(ec) = ∆, and its second

derivative is negative around the singular point. Finally, for k ≥ 3, the first derivative

of σ(v) is also discontinuous at the transition point vc = ∆, but its second derivative is

positive around vc. In this case a first order transition takes place. In conclusion, the

investigation of the potential energy topology, via σ(v), allows to establish the location

and the nature of the phase transitions, without any statistical measure. The reported

results on the k-trigonometric model suggest that, at least in models which the origin

of the phase transition is topological, there is a relation between the thermodynamic

entropy of the system and the topological properties of the potential energy landscape, as

identified by 1
N

log |χ(v)|. It was conjectured that, at least around the transition point, the

thermodynamic entropy and 1
N

log |χ(v)| are closely related [32]. In fact, it was suggested

that it should be probably written as

s(e) ∼ 1

N
log |χ(v)| + R(v), (3.40)

where R(v) is analytic (or, at least, C2) around the transition point.

As we shall show in Chapter 5, we could extend this question to obtain the phase

transition critical temperature through the Euler characteristic. In the k-trigonometrical

model, as in many infinite-range models, the potential energy can be written as a func-

tion of collective variables. The topology of the Mv’s can be seen as the unitary disk

submanifolds in a reduced plane configuration space. In fact, analyzing the accessible

configurations in the disk and drawing them, a one-to-one correspondence between phase

transitions and topology is found [39, 32]. As illustrated in Fig. 3.10 (a) for k = 1, where

no phase transition is present, no topology changes occur in the Mv’s, i.e., all of them

are topologically equivalent to a single disk. For k = 2, 3, in which cases phase transitions

are present, the abrupt topology changes occurs precisely at vc = ∆, where k disks merge

into a single disk as shown in Figs. 3.10 (b) and (c), respectively.
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(a) (b) (c)

Figure 3.10: The submanifolds Mv for v = 0.5∆, ∆, 1.5∆, 2∆ (from left to right). (a)
For k = 1, all the submanifolds are topologically equivalent to a single disk. (b) In the
case k = 2, for v < vc = ∆ the submanifolds are topologically equivalent to two discon-
nected disks, while for v > vc are equivalent to a single disk. (c) In the case k = 3, for
v < vc = ∆ the submanifolds are topologically equivalent to three disconnected disks,
while for v > vc are equivalent to a single disk. From Ref. [32]

Lastly, the contribution from each topology change to the thermodynamic entropy was

computed in [5]. For the k-trigonometrical model, the criterion excluded the occurrence

of a phase transition for all values of potential energy, except for the value that coincides

with the potential energy in which the phase transition occurs. The Jacobian densities

jℓ, as functions of the potential energy per particle v, for the k-trigonometrical model are

given by [5]

jℓ(v) =
1

2
ln

(
2

∆k

∣∣∣1 − v

∆

∣∣∣
1/k−1

)
, ℓ = 0, 1, 2, 3, (3.41)

and are illustrated in Fig. 3.11, for k = 1, 2, 3, 4. Notice that jℓ is constant for k =

1, in accordance with the absence of a phase transition in this case. For k > 2 the

Jacobian density jℓ(v) displays a divergence at v = ∆, coinciding with the mean-field

k-trigonometric model phase transition critical potential energy, and in agreement with

the necessity theorem although this model interaction is a long-range one[5].

-0.5

 0.0

 0.5

 1.0

 1.5

 2.0

 0.0  0.5  1.0  1.5  2.0

v

k=1

k=2

k=3

k=4

l
j

Figure 3.11: Jacobian densities jℓ as functions of the potential energy v with k =
1, 2, 3, 4 and ∆ = 1. From Ref. [5]
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3.3.2 The Model of DNA Denaturation

Now, we describe a system that exhibits a second order phase transition, the Peyrard-

Bishop model [41], introduced as a simple model to study the DNA thermally induced

denaturation. Its simplicity allowed the analytical topological characterization of the

phase transition [42]. The model is defined by the following Hamiltonian

H =
N∑

i=1

[
p2

i

2m
+

K

2
(yi+1 − yi)

2 + D(e−ayi − 1)2 + Dhayi

]
. (3.42)

This Hamiltonian describes the energy of a string of N base pairs with reduced mass

m, in which the respective hydrogen bond is characterized by the stretching yi and its

conjugate momentum pi = m(dyi/dt). The elastic transverse force between adjacent pairs

is regulated by the constant K > 0, while the energy D > 0 and the inverse length a

determine, respectively, the plateau and the narrowness of the on-site potential well that

mimics the interaction between bases in each pair. The phase transition occurs only

when the transverse external stress h is null. Since the above potential can no longer be

considered a good Morse function, the authors completed the topological analysis of the

phase transition by considering the boundaries of Mv, i.e., the hypersurfaces

Σv ≡ {y ∈ R
N : V (y) = v} . (3.43)

In fact, it was found [42] that, for v raising from Vmin to vc = ND, Σv is a closed (N–1)

hypersurface [χ(Σv) = 0 or 2, depending on N being odd or even, respectively]. On the

other hand, if v = vc and h = 0, the level hypersurface Σvc
closes at positive infinity,

while for each v > vc the level hypersurfaces fail to close [χ(Σv) = 1]. This topological

change is strictly associated with the phase transition, since its presence is due to the same

feature of the potential (its plateau) giving rise to the phase transition. This mechanism

is illustrated in Fig. 3.3.2 for N=2. In summary, topological techniques may be an useful

tool in the study of biological critical phenomena.
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1

y_2

1

y_1

Figure 3.12: Level hypersurfaces, N = 2. The black line is the critical hypersurface.
From Ref. [42].

3.3.3 The Spherical Model

Another interesting example is the infinite-range spherical model. This model is an

infinite-range version of the original model introduced by Berlin and Kac [43], whose

Hamiltonian is given by

H(σ) = − 1

2N

N∑

i,j=1

σiσj − h

N∑

i=1

σi, (3.44)

with the N -dimensional spherical constraint:

N∑

i=1

σ2
i = N. (3.45)

where h is an external magnetic field. Due to the simplicity of the Hamiltonian in Eq.

(3.44), the system can be solved analytically both in the canonical [44] and microcanon-

ical ensembles [45, 46]. Comparing the two ensembles, it was observed that no phase

transition occurs in the microcanonical ensemble, while a phase transition does take place
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in the canonical ensemble for zero external field. Since this model displays an ensemble

inequivalence, a truthful close relationship between topology and phase transitions should

hold in only one of the statistical ensembles [45, 46]. A quite complete characterization of

the equipotential surfaces is possible for the infinite-range spherical model [44, 45, 46]. In

fact, it was observed the same type of topology change on the equipotential submanifolds

both in zero field (where a phase transition occurs in the canonical ensemble) and for

|h| < 1. Based on this model, it was concluded that the topological approach to phase

transition has a close relation with the microcanonical ensemble [45, 46].

In the nearest-neighbors interaction version of the spherical model, with Hamiltonian

given by Eq. (3.44) with the first sum restrict to the nearest-neighbors in a d-dimensional

cubic lattice, the necessity theorems [33, 34, 35] were put in question [47]. Indeed, by

analyzing the topology of Mv, it was claimed that this model would be the first counter-

example of the necessity theorems.

However, as pointed out by Pettini [48] and Kastner [4], due to the spherical constraint

Eq. (3.45), the effective interaction is a long range one. Moreover, the contribution of

the saddle points to the density of states vanishes in the thermodynamic limit [4]. These

observations might justify the absence of a one-to-one relation between topology and a

phase transition in this model.

3.3.4 The Mean-Field φ4 Model

Since the previous Chapter, we have discussed that, for systems described by smooth,

finite-range, and confining potentials, a topology change in the submanifolds Mv is the

unique mechanism that induces a thermodynamic phase transition. However, for systems

that do not fulfil the assumptions of the necessity theorems [33, 34, 35], another mechanism

may occur. This feature was illustrated in the infinite-range ϕ4 model, a system whose

potential energy is established by

V (q) = − J

2N

(
N∑

i=1

qi

)2

+
N∑

i=1

(
−1

2
q2
i +

1

4
q4
i

)
, q ∈ RN , (3.46)
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where the first sum are infinite-range forces, while the second one is a double well on site

potential. It was shown in Ref. [49, 50, 51] that for a sufficiently large coupling constant

J , the phase transition critical potential energy vc(J) is not associated with any topology

change of Mv. In fact, vc(J) diverges with increasing J while the topology changes in the

submanifolds Mv take place in non-positive potential energies v ≤ 0 for arbitrary values

of J . Moreover, in this model, the mechanism that gives rise to the phase transition stems

from the maximization over one variable of a nonconcave entropy function of two variables

[51]. However, the interpretation of these results still demand some afterthoughts.
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Chapter 4

Phase Transitions in Infinite-Range

XY Models on The AB2 Chain

The physical motivation of this Chapter is to present a topological characterization of the

zero-and finite-temperature phase transitions exhibited by two XY models on the AB2

chain [see Fig. 4.1(a)], at the mean field level: the frustrated AB2-XY model and the AB2

-XY model in the presence of a magnetic field. No kinetic energy effects are considered.

The AB2 chain has a special unit cell topology that enriches the variety of spin phases,

including noncollinear structures, and is of theoretical and experimental relevance in the

context of low-dimensional strongly correlated systems [52]. In fact, the physical proper-

ties of the quasi-one-dimensional magnetic compound azurite are successfully explained by

the frustrated AB2 (or distorted diamond) chain [53]. In Fig 4.1(b) we also display a chain

with a distinct three-site unit cell topology [54]. Without interaction between spins at B

sites, this chain is associated with the organic compound Poly(1,4-bis(2,2,6,6-tetramethyl-

4-piperidyl-1-oxyl)-butadiene) (poly-BIPO), which is made of polyacetylene-based radi-

cals with an unpaired electron per unit cell [55]. On the other hand, for a Hamiltonian

with first-neighbor spin interactions only, the AB2 chain shown in Fig. 4.1(a) exhibit

local invariance under the exchange of B sites at the same unit cell, a symmetry which

is not shared by the chain in Fig. 4.1(b); notice also that the coordination number of

some sites in these chains are distinct. Within the standard mean field approximation,

49
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J1
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B2 i

Ai
.  .  . .  .  .
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.  .  ..  .  .
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B1 i -1 B1 iJ1

(b)

J1

y
x

J2

J2

Figure 4.1: Frustrated AB2 chain: only first-neighbor competing AF couplings, J1 and
J2, are indicated. (b) Distinct chain with three-site unit cell topology (see text).

the molecular field on a site depends on its coordination number, which thus enhances

the magnitude of the exchange field in the mean field self-consistent equations. However,

for infinite-range interactions, both chains have 3N2
c pairs of spin at sites A-B1, A-B2,

and B1-B2 bonded by exchange interactions (see Fig. 4.1); in this framework both chains

are thus equivalent and the dimensionality of the system and the actual positions of the

spins are immaterial. Moreover, under these circumstances, both chains share an invari-

ance under the exchange of any pair of B sites. In any case, it is well known that the

mean field approximation for the short-range model can be made identical to the exact

solution of the corresponding model with infinite range interactions, as long as the values

of the effective exchange constants of the latter model are balanced in such a way that

the coordination number effect is properly considered [56], as shown below.

From now on we focus on the bipartite AB2-XY chain with three sites (named A, B1

and B2) per unit cell, and two antiferromagnetic competing couplings, J1 (≡ 1) and J2

(≡ J), as illustrated in Fig. 4.1 (a), which we model through the infinite-range classical

planar AB2 -XY Hamiltonian with effective coupling values chosen to match the self-
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consistent conditions of the standard mean field approximation [57, 58]:

H =
Nc∑

i,j=1

1

Nc

{
z

AB
SAi

· (SB1j
+ SB2j

) + z
B
J SB1i

· SB2j

−h · (SAi
+ SB1i

+ SB2i
)
}

, (4.1)

where H measures the total energy of the system for a given microscopic spin configuration

(see below), Nc is the total number of unit cells, z
AB

= 2, and z
B

= 1 are the coordination

numbers of sites A ( first-neighbor J1 couplings) and B (first-neighbor J2 couplings), SA1,

SB1i and SB2i are classical spin variables with unit size, and h is the magnetic field along

the x direction [see Fig. 4.1 (a)]. The results for any other system with three spins per

unit cell are completely equivalent, and easily obtained by adjusting the corresponding

coordination numbers.

This Chapter is organized as follows: in Section 4.1 we discuss the topology of configu-

ration space in light of fundamental properties of Morse theory and topological invariants,

such as the Euler characteristic and the density of Jacobian’s critical points. Further, we

present an alternative method to compute topological invariants. In Section 4.2, we ap-

ply these methods to study both the zero- and finite temperature phase transitions (PT)

exhibited by the infinite-range AB2 -XY models in the presence of frustration or mag-

netic field. The thermodynamics of the models are exactly derived under the saddle point

approach. In this Section, we also revisit the standard infinite-range XY model in the

presence of a field. In Sections 4.3 and 4.4, we report on symmetry properties of the

models and results of additional topological invariants, such as the Morse number, as well

as the topological contribution to the entropy, respectively. Finally, In Section 4.5 we

present some concluding remarks.
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4.1 Topology of configuration space

We first introduce the magnetization given by

mα ≡ Sα

Nc

= (mαx,mαy) = (
1

Nc

Nc∑

i=1

cos θαi,
1

Nc

Nc∑

i=1

sin θαi), (4.2)

where α = A,B1 or B2, and θαi refers to the angles of Sαi with respect to the local x-y

coordinate axis at site αi. Further, we use the symmetry conditions to restrict our analysis

to A and B (B1 or B2) sites (see Section 4.3). We are primarily concerned with finding

the critical points of the Morse function [20]: H = H/Nc, i.e., the energy per unit cell for

a given microscopic spin configuration, through the equations

∂H(θA, θB)

∂θαi

= 0, i = 1, ..., Nc, α = A,B, (4.3)

in the manifold M defined by the 2Nc-dimensional configuration space. Since Morse

functions on M are dense on the space of smooth functions on M , if H is not a proper

Morse function, we can transform it into a Morse function by adding an arbitrarily small

perturbation [1, 28]. Thus, we restrict our analysis to the isolated critical points of H.

Our goal is to compute the Euler characteristic χ(ME) of the submanifolds ME, with H
not greater than a given value of energy per unit cell E:

χ(ME) =
2Nc∑

k=0

(−1)kµk(ME), (4.4)

where the Morse number µk is the number of critical points of ME with k negative

eigenvalues of the Hessian (see Section 4.4)

Hij =
∂2H(θA, θB)

∂θαi∂θαj

, i, j = 1, ..., Nc, α = A,B, (4.5)

i.e., with index k [31]. In our analysis, it will prove useful to define the minimum (max-

imum) topological energy, ETmin (ETmax), below (above) which the topological invariants

are zero (or display no variation). We emphasize that χ(ME) is zero for E < ETmin and
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E > ETmax ; nontrivial values occur only for ETmin ≤ E ≤ ETmax , as shown in the examples

presented in next Section. Moreover, in order to measure the (nonanalytic) saddle point

contributions from the critical points in the neighborhood of E to the entropy [4, 5], we

also compute the density of Jacobian’s critical points in the thermodynamic limit, given

by

jl(E) = lim
Nc→∞

1

2Nc

ln
( ∑

qc∈Ql(E,E+δE)

J(qc)
/ ∑

qc∈Ql(E,E+δE)

1
)
, (4.6)

where J(qc) is the Jacobian determinant and Ql(E, E + δE) denotes the set of critical

points qc with index k(qc) = l ( mod 4) and with critical values H(qc) in the interval

[E, E + δE] [4, 5].

In order to turn the computation of χ(ME) more feasible, we use an analogy with

statistical mechanics in the context of the microcanonical ensemble. Let Γχ(E) denote the

difference between the Euler characteristic in the even-dimensional compact submanifolds

[59] ME+δE and ME:

Γχ(E) ≡ χ(ME+δE) − χ(ME), (4.7)

where ∆ε ≪ δE ≪ ∆E; here ∆E is the interval of energy in which χ(ME) is nonzero

and ∆ε is the average distance between two neighbor critical levels. Then,

Γχ(E) ≈ ωχ(E)δE, (4.8)

where ωχ(E) is the density of critical points of H at energy E, with weight (−1)k. Since

for systems in which the number of isolated critical points increases as 2Nc (see below),

|χ(ME)| grows exponentially with Nc, the following definitions are equivalent in the ther-

modynamic limit (up to O(ln 2Nc)) :

ln |χ(ME)| = ln |Γχ(ME)| = ln |ωχ(ME)|. (4.9)

Hence, for sufficiently large Nc, we can take

ln |ωχ(ME)| ≈ ln ωc(E), (4.10)
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where ωc(E) is the microcanonical density (in energy) of critical points. For example, for

the models studied in this work, we find that ∆ε ∼ (∆E/N2
c ) and ∆E ∼ 10; so, we have

computed χ(ME) using δE ∼ (∆E/Nc) and Nc = 103. With these prescriptions, we have

verified Eqs. 4.9 and 4.10 to very good numerical accuracy.

4.2 Topology and noncollinear spin structures

4.2.1 Frustrated AB2-XY model

In the frustrated AB2-XY model (J 6= 0, h = 0), the symmetry condition implies mB1y =

−mB2y ≡ mBy and mB1x = mB2x ≡ mBx (see Section 4.3). In fact, this solution turns out

to be the appropriate one under the physical constraint of zero transversal magnetization.

The Hamiltonian per unit cell in terms of collective variables thus reads:

H(θA, θB) = 4mAxmBx + J(m2
Bx − m2

By). (4.11)

The exact solution of the model at T 6= 0 results from computing the canonical

partition function

Z(β ≡ 1/T, Nc) =

∫ Nc∏

i=1

dθAidθBi exp[−βNcH(θA, θB)], (4.12)

with

H(θA, θB) =
(
mAx/

√
J +

√
JmBx

)2 − Jm2
By − m2

Ax/J, (4.13)

although, for 0 < J ≤ 1, the quadrature H = 2[(mAx+mBx)
2−2m2

Ax−(2−J)m2
Bx−Jm2

By]

is more suitable for numerical computation. Using the identities:

exp(−cy2
i ) =

1√
π

∫ +∞

−∞

exp(−x2
i + 2i

√
cxiyi)dxi, (4.14)
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with y1 = mAx/
√

J +
√

JmBx, y2 = mBy and y3 = mAx, and

I0

(√
x2 + y2

)
=

1

2π

∫ 2π

0

dθ exp(x cos θ + y sin θ), (4.15)

where I0 is the zero-order modified Bessel function, we obtain

Z(β, Nc)=
( Nc

4πβJ

)3/2
∫ +∞

−∞

3∏

i=1

dziexp

[
− Nc

(
3∑

i=1

z2
i

4βJ

− ln 2πI0

( 2

J
(iz1 − z2)

)
− ln 2πI0

(√
z2
3 − z2

1

))]
, (4.16)

with zi = 2
√

βJ
Nc

xi, i = 1, 2, 3.

Now, using the saddle point method, the free energy reads:

F (T ; J) = − lim
Nc→∞

1

βNc

ln Z(β, Nc) =
1

β

(
3∑

i=1

z2
i

4βJ

− ln 2πI0

( 2

J
(iz1 − z2)

)
− ln 2πI0

(√
z2
3 − z2

1

))
, (4.17)

whose extremum solutions satisfy the set of self-consistency equations: i) for z3 6= 0 and

2z1 + iz2 = 0: √
z2
3 − z2

1

2βJ
− I1

I0

(√
z2
3 − z2

1

)
= 0 (4.18)

and
iz1

βJ
+

I1

I0

( 2

J
(−iz1)

) 2

J
= 0; (4.19)

ii) for z3 = 0:
iz1 − z2

2βJ
+

I1

I0

(iz1) = 0 (4.20)

and
z2

2βJ
+

I1

I0

( 2

J
(iz1 − z2)

) 2

J
= 0. (4.21)
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Figure 4.2: Frustrated AB2-XY model. T -dependent magnetization for different values
of J.

The associated zero-field magnetization is given by

M(T ; J) = − lim
h→0

1

β

∂F (β, h; J)

∂h
, (4.22)

with addition of the Zeeman term, −h(mAx + 2mBx), in Eq. (4.11). From the solution

that minimizes the free energy we can compute Tc(J), above which M(T ; J) = 0, and

Ec(Tc; J) =
∂[βF (β = βc; J)]

∂β
= 0, ∀J. (4.23)

The T -dependent magnetization is shown in Fig. 4.2. For 0 < J ≤ 2, Tc(J) decreases

with J , leading to zero magnetization at J = 2. For J > 2 the magnetization points in

the opposite direction. These features suggest a frustration-induced phase transition at

T = 0. In fact, for 0 ≤ J < 1, simple minimization of H(θA, θB) in Eq. (4.11) gives a

ferrimagnetic phase with energy

Emin(J) = −4 + J, 0 ≤ J < 1, (4.24)

in agreement with Lieb-Mattis theorem [60]. At J = 1, the system undergoes a frustrated-
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induced second-order transition to a canted phase defined by

cos(θB) =
1

J
, (4.25)

and energy

Emin(J) = − 2

J
− J, J ≥ 1. (4.26)

In the following, we present a topological description of the PT exhibited by the

system both at T = 0 and at finite temperature. To this aim, we examine the topology

of configuration space in detail.

First we mention that the accessible configurations are defined by the solid cylinder

CB = {(mAx, mBx,mBy) : −1 ≤ mAx ≤ 1, m2
Bx + m2

By ≤ 1}. (4.27)

Therefore, the equipotential submanifolds of H(θA, θB) are obtained by diagonalization of

its quadratic form under the constraint of CB for a given energy E. Denoting by m1 and

m2 the eigenvectors of the quadric, with eigenvalues λ1 and λ2, respectively, the Cartesian

equation of the normalized surface reads:

λ1m
2
1

E
+

λ2m
2
2

E
− Jm2

By

E
= 1. (4.28)

We thus get, ∀J , a hyperboloid of one sheet for E < 0, a cone for E = 0, and a hyperboloid

of two sheets for E > 0. In particular, at the highest symmetry point (θ = 120o): J = 2

and ETmin = −2, with M(T ; J = 2) = 0, we obtain the golden hyperboloid, a quadratic

form whose coefficients are the golden ratio and its conjugate [61]:

−
(1 +

√
5

2

)
m2

1 −
(1 −

√
5

2

)
m2

2 + m2
By = 1. (4.29)

In approaching the critical energy Ec(T ; J) = 0,∀J , from bellow (E < Ec), we would

like to mention some relevant features. For E < Emin(J) there is no intersection between

the equipotential submanifolds ME and CB [see Fig. 4.3(a) for E = −4 and J = 1]. For
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E = Emin(J), ME touches the cylinder CB (not shown in Fig. 4.3). For E > Emin(J) =

ETmin(J) and 0 ≤ J ≤ 1, ME is inside CB, with nonzero topological invariants and

isomorphorphic to the hyperboloid [see Fig. 4.3(b) for E = −2 and J = 1]. However,

the topological invariants become nonzero not necessarily at Emin(J) [see Fig. 4.3(c) for

E = −2.1 and J = 2]. In fact, the topological invariants become nonzero only when two

disconnected regions of the intersection surface become connected at E = ETmin(J). For

1 < J < 2 and Emin ≤ E < ETmin(J), the intersection is nonzero but the topological

invariants vanish.

Figure 4.3: Intersection surfaces between equipotential submanifolds ME and CB: (a)
For E = −4 and J = 1, we have E < Emin(J = 1) = −3, so there is no intersection
between ME and CB. (b) For E = −2 and J = 1, we have E > Emin(J), so ME is inside
CB, with nonzero topological invariants. (c) For E = −2.1 and J = 2, despite nonempty
intersection, the topological invariants are null. (d) For E = −1.9 and J = 2, we have
E > ETmin , so the intersection between ME and CB is nonzero and isomorphorphic to
the hyperboloid.
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For J ≥ 2 and ETmin(J) ≤ E < Ec (= 0,∀J) the intersection is isomorphous to the

hyperboloid, thus leading to a discontinuity in the topological invariants, as illustrated in

Fig. 4.3(d) for J = 2 and E = −1.9. On the other hand, for Ec(T ; J) < E ≤ ETmax(J) =

Emax(J) the intersection surfaces are two-sheet hyperboloids.

The isolated critical points of the Morse function H(θA, θB), Eq. (4.11), occur for

θ = θc ∈ {0, π}2Nc , i.e., for θc = (θA1 , . . . , θANc
, θB1 , . . . , θBNc

) with all components θAi(Bi)

being either 0 or π. It is easy to show that the multiplicity of the critical points is
(

Nc

nπA

)(
Nc

nπB

)
, where nπA(B)

is the number of A(B) spins with θc = π. Therefore, the Morse

numbers read:

µk(E) =

(
Nc

nπA

)(
Nc

nπB

)∣∣∣
k(nπA,nπB ; E)

, (4.30)

where the index k(nπA, nπB), without energy restriction, is given by Eqs. (4.82) - (4.84).

The computation of the index k and µk(E), including a discussion on some of their

interesting features, is presented in Section 4.4

On the other hand, due to the form of the H(θA, θB), it is useful to split the Hessian

into two blocks; the first one, relative to the A sites and the second one to the B sites:

HAB
ij = HA

kl + HB
mn; k, l = 1, ..., Nc; m,n = Nc + 1, ..., 2Nc. (4.31)

For Nc ≫ 1, the Hessian is diagonal with matrix elements given by (see Section 4.4)

HA
ii = −4 cos θAi

Nc

mBx, (4.32)

HB
ii = − 1

Nc

[
4mAx cos θBi + 2J(mxB cos θBi − myB sin θBi)

]
. (4.33)

At an isolated critical point defined above, H(θA, θB) in Eq. (4.11) reads:

E(nπA
, nπB

, J) = 4(1 − 2nπA

Nc

)(1 − 2nπB

Nc

) + J(1 − 2nπB

Nc

)2, (4.34)

where use of Eq. (5.2) was made with mA(B)x = (1 − 2nπA(B)

Nc
) and mA(B)y = 0.

We can now proceed to compute numerically the Euler characteristic, in the conve-
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nient normalized form ln |χJ(E)|/2Nc, and the density of Jacobian’s critical points jl,J(E).

In fact, we have computed the first quantity in four equivalent ways, as given by Eqs.

(4.9) and (4.10), and further use of Eqs. (4.30), (4.82) - (4.84), and (4.34). We stress that

the referred four ways of computing ln |χJ(E)|/2Nc give the same result within numerical

accuracy, after subtraction of the leading finite-size term of O(ln 2Nc/2Nc). However, the

computational effort using the standard definition, i.e., ln |χJ(E)|, is quite high, so that

the final computation was done using either of the remained approaches for Nc = 103

and δE = 0.01. Moreover, the computation through Eq.(4.10) is the simplest one, since

it needs only the use of Eq. (4.34). On the other hand, in computing jl,J(E) use was

made of its definition in Eqs. (4.6), which requires the computation of the determinant of

the Hessian whose diagonal matrix elements are given by Eqs. (4.32) and (4.33), and the

energy around its value in Eq. (4.34) with uncertainty δE; in fact, ε is irrelevant in the

thermodynamic limit [62]. Therefore, in order to obtain accurate results, the computation

was performed for Nc = 104 and δE = 0.001.

In Fig. 4.4(a) we display ln |χJ(E)|/2Nc measured on the surface defined by the inter-

section of the equipotential surface and CB. Notice that it exhibits a cusp at Ec(T 6= 0),

∀J . For J ≥ 2, ln |χJ(E)|/2Nc is discontinuous at ETmin due to intersection surfaces with

zero χJ(E) for Emin(J) ≤ E < ETmin(J). The intersection surfaces and ln |χJ(E)|/2Nc

vanish at Emax = ETmax = 4 + J . The divergence of jl(E) at Ec(T 6= 0), ∀J , is shown

in Fig. 4.4(b), thus satisfying the necessity criterion at a topology-induced PT [4, 5].

The golden hyperboloid at J = 2 signals the change of the tail curvature of jl(E) for

E < 0, associated with the ln |χJ(E)|/2Nc discontinuity shown in Fig. 4.4(a). Moreover,

for 0 ≤ J ≤ 2, we find that Emin(J) = ETmin(J) = −4 + J [see Eq. (4.26)]. However,

ETmin(J) splits from Emin(J) at Ec(T = 0) = −3 and J = 1, as shown in Fig. 4.4(c). In

fact, for 1 < J ≤ 2, ETmin(J) above corresponds to a metastable Ising solution; further,

for J ≥ 2, ETmin(J) = − 4
J
, and in the region limited by Emin(J) and ETmin(J) we have

intersection surfaces with zero χJ(E). We also emphasize that the topological energies

[ETmin(J) and ETmax(J) ] can be inferred both from ln |χJ(E)|/2Nc, jl,J(E), and µk(E)

(see Section 4.4).
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We close our analysis of the frustrated AB2-XY model by establishing a nontrivial

direct connection between the thermodynamics of the system and the topology of its

configuration space. In fact, for 0 ≤ J ≤ 1 (J > 1), besides the finite-temperature

results, we have found that the distinct extremum numerical solutions of the saddle-point

consistency equations given above, in a C
4 (C3) space, give rise to the following energies

in the limit T → 0: the piecewise functions Emin(J) and ETmin(J), as defined above [see

Fig. 4.4(c)], where

E(T = 0, J) = − lim
T→0

∂

∂β

[
βF (T ; J)

]
. (4.35)

On the other hand, the MF maximum (and unstable) energy solutions Emax(J) = ETmax(J) =

4+J is obtained from Fig. 4.4(a), but not shown in Fig. 4.4(c), and can be readily derived

from Eq. 4.11. The above results also confirm that the symmetry condition (see Section

4.3), which is inferred from the T = 0 solution, is preserved for all temperatures in the

condensed phase.

4.2.2 Suppression of the T 6= 0 phase transition in the frustrated

AB2-XY model

In the previous Section we showed that the frustrated AB2-XY model exhibits topology-

induced finite-temperature PT for ∀J . A remarkable feature is the cusp-like behavior

displayed by the Euler characteristic at the critical energy Ec(T 6= 0) = 0. In order to

test whether this behavior is a necessary condition for a topology-induced PT, we study

this system under a staggered field to keep the magnetization at A sites at a constant

value, namely, mAx = −1. Obviously, under this stringent condition, there is no phase

transition, and thereby it should manifest in the Euler characteristic.

Under the above-mentioned constraint, the zero-field Hamiltonian, Eq. (4.11), re-

duces to

H(θB) = −4mBx + J(m2
Bx − m2

By), (4.36)
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Figure 4.4: Frustrated AB2-XY model. (a) Cusp-like pattern exhibited by
ln |χJ(E)|/2Nc measured on the surface defined by the intersection of the equipoten-
tial surface and the cylinder CB (see text). For E < 0, the equipotential surfaces are
one-sheet hyperboloids; at Ec(T 6= 0) = 0, ∀J , we have a cone; and for E > 0 we have
two sheet-hyperboloids. For J ≥ 2, ln |χJ(E)|/2Nc is discontinuous at ETmin(E) due to
intersection surfaces with zero χJ(E) for Emin(J) ≤ E < ETmin(J). The intersection
surfaces and ln |χJ(E)|/2Nc vanish at Emax = ETmax = 4 + J . (b) Divergence of jl,J(E)
at Ec(T 6= 0) = 0, ∀J . The golden hyperboloid at J = 2 signals the change of the tail
curvature of jl,J(E) for E < 0, associated with the discontinuous behavior shown in (a).
(c) Emin(J) and ETmin(J) split at Ec(T = 0) = −3 and J = 1. For J ≥ 2, there exist in-
tersection surfaces with zero χJ(E) in the region limited by Emin(J) and ETmin(J). The
spin structures illustrate the stable phases associated with Emin(J).

and the accessible configurations are defined by the disk

DB = {(mBx,mBy) : m2
Bx + m2

By ≤ 1}. (4.37)

Thus, the equipotential submanifolds of the Morse function H(θB) are obtained by identi-
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fying the corresponding conic, given below, under the constraint of DB for a given energy

E:

J(mBx −
2

J
)2 − Jm2

By = E +
4

J
. (4.38)

We thus get, ∀J and ∀E, a rectangular hyperbola, as shown in Fig 4.5(a). The properties

of the intersection curves between the equipotential hyperbolas and DB around ETmin(J)

and Emin(J), which attain the same values as in unconstrained case (see Figs. 4.4(a) and

4.5 (b)), and follow the same pattern shown in Fig. (4.3) under the restriction mAx = −1.

In particular, the present analysis makes possible a geometrical interpretation of the

metastable solution ETmin(J) = −4/J , valid for J ≥ 2, as explained in the following and

illustrated in Fig. 4.5(a). In fact, for E < ETmin(J) = −4/J , the hyperbola transverse

axis is align with the x-axis (east-west opening hyperbola); for E = ETmin(J) = −4/J

the hyperbola degenerate to asymptotes: mBy = ±(mBx − 2/J); for E > ETmin(J), the

hyperbola transverse axis is align with the y-axis (north-south opening hyperbola). Notice

that the referred value for ETmin(J) can be found from Eq. 4.11 using the asymptotic

solutions for mB.

The computed Euler characteristic is illustrated in Fig. 5(b). Since there is no PT,

no cusp-like pattern occurs at E = 0, ∀J , and thus suggests that the mentioned pattern is

indeed a necessary condition for the occurrence of a topology-induced PT. Nevertheless,

even in the absence of a PT the density of Jacobian’s critical points is divergent at E = 0,

as shown in Fig. 4.5(c).

The equipotential curves for the frustrated AB2-XY model with mAx = ±1, in the

vicinity of Emin(J) are drawn in Fig. 4.6 for (a) J = 0, (b) J = 1, J = 1.25, and J = 2.

In fact, for E < Emin(J), there is no intersection between the equipotential curves and

DB. For E = Emin(J), the equipotential curves touches DB while for E > Emin(J) they

are inside DB. A remarkable fact is the one-to-one correspondence between angle of the

stable phases and the corresponding equipotential curves, as illustrated in Fig. (4.6).
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Figure 4.5: (a) Equipotential curves of the A-frozen frustrated AB2-XY model: for E <
ETmin(J) = −4/J , the hyperbola transverse axis is along the x-axis (east-west opening
hyperbolas); for E = ETmin(J) = −4/J the hyperbolas are degenerate with asymptotes:
mBy = ±(mBx − 2/J); for E > ETmin(J), the hyperbola transverse axis is along the
y-axis (north-south opening hyperbola). (b) ln |χJ(E)|/Nc: no cusp-like pattern occurs
at E = 0. (c) Divergence of jl,h(E) at E = 0 for J = 0, 1, 2, and 4.

4.2.3 AB2-XY model in a field

We now turn to the case of the AB2-XY model in a magnetic field along the x direction

(h 6= 0, J = 0). In this case, the appropriate physical symmetry condition implies

mB1
+ mB2

≡ 2mB, also under the constraint of zero transversal magnetization (see

Section 4.3). Thus, H(θA, θB) reads:

H(θA, θB) = 4(mAxmBx + mAymBy) − h(mAx + 2mBy), (4.39)

which is the Morse function in the present case.
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Figure 4.6: Equipotential curves of the A-frozen frustrated AB2-XY model in the vici-
nity of Emin(J) for (a) J = 0, (b) J = 1, (c) J = 1.25, and (d) J = 2.

Here, we use the same procedure as in the previous case to compute the topological

invariants and thermodynamic quantities, including the pertinent energies in the limit

T → 0. In order to compute the canonical partition function Eq. (4.12), it is useful to
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write Eq.(4.39) as follows:

H(θA, θB) = 2(mA + mB)2 − 2(mA
2 + mB

2) − h · (mA + 2mB). (4.40)

Using the identities Eqs. (4.14) and (4.15) in a two-dimensional version, we obtain

Z(β,Nc) =
( Nc

8πβ

)3
∫ +∞

−∞

3∏

i=1

dzi exp

[
− Nc

(
3∑

i=1

zi
2

8β

− ln 2πI0

(
|iz1 + z2 + βh|

)
− ln 2πI0

(
|iz1 + z3 + 2βh|

))]
, (4.41)

Now, the set of consistency equations from the saddle-point method, in a C
6 space, read:

z3

4β
− I1

I0

(
| − z2 + 2βh|

) (−z2 + 2βh)

| − z2 + 2βh| = 0, (4.42)

z2

4β
− I1

I0

(
| − z3 + βh|

) (−z3 + βh)

| − z3 + 2βh| = 0, (4.43)

and

z1 = z2 + z3. (4.44)

Here, the T 6= 0 PT occurs only for h = 0 with Ec = 0 and M(T ) given in Fig. (4.2) for

J = 0.

The accessible configurations are now the four-dimensional region:

Ch = {(mA,mB) : mA
2 ≤ 1,mB

2 ≤ 1}. (4.45)

However, by using the condition of zero transversal magnetization, i.e., mAy = 2mBy, we

can restrict the analysis of the equipotential surfaces to a tree-dimensional space, which,

in fact, display energy-dependent topological properties similar to those shown in Fig.

4.3(a). The isolated critical points are the same, and the Morse number, µk(E), is given

by Eq. (4.30), where the index k(nπA, nπB; h), without energy restriction, is given by Eqs.

(4.88) and (4.89). Also, for Nc ≫ 1 the Hessian is diagonal with matrix elements given
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by

HA
ii = (−4mBx + h)

cos θAi

Nc

− 4mBy
sin θAi

Nc

. (4.46)

and

HB
ii = (−4mAx + 2h)

cos θBi

Nc

− 4mAy
sin θBi

Nc

. (4.47)

At a given critical point, H(θA, θB) in Eq.(4.39) reads:

E(nπA
, nπB

, h) = 4
(
1 − 2nπA

Nc

)(
1 − 2nπB

Nc

)
− h

(
(1 − 2nπB

Nc

)

+2(1 − 2nπA

2Nc

)
)

(4.48)

In analogy with the previous case, we now compute the topological invariants numerically

as a function of the energy level E and a fixed magnetic field h using the methods discussed

in Section 4.1.

In Figs.4.7(a) and 4.7(b) we display ln |χh(E)|/2Nc and jl(E) for distinct values of

h, respectively. A symmetrical cusp-like pattern [see Fig. 4.7(a)] and a divergence at

Ec(T 6= 0) = 0 [see Fig. 4.7(b)] occur only for h = 0, in agreement with the previous case

for J = 0. Nevertheless, for 4 ≥ h > 0, jl(E) is singular at energies Ec(T 6= 0) − h2

2
, not

associated with finite-temperature PT. In addition, a discontinuity in ln |χh(E)|/2Nc is

observed only for h = 4, the point at which mAx = 0; further, at this point, a metastable

Ising spin-flip first-order PT is predicted at ETmin(h) = −4 − h = −h2

2
= −8, thus

leading to zero spin degeneracy and suppression of the divergence of jl(E) for h > 4;

notice that while the previous expression for ETmin(h) holds for 0 ≤ h ≤ 4, for h ≥ 4 we

find ETmin(h) = 4 − 3h [see Figs. 4.7(b) and 4.7(c)]. Moreover, as in the previous case,

the topological energies [ETmin(h) and ETmax(h) = 4 + 3h ] can be inferred both from

ln |χh(E)|/2Nc, jl,h(E), and µk(E) (see Section 4.4), as well as from Eq. 4.39.

In Fig.4.7(c), we also show the stable spin configurations at T = 0. In fact, for

0 ≤ h ≤ 2 the system displays the same ferrimagnetic phase as in the frustrated case,

while for h ≥ 6, the system is fully polarized; in both cases Emin(h) = ETmin(h). For

2 ≤ h ≤ 6, Emin(h) = −h2/4 − 5 and, at h = 2, an interesting continuous spin-flop PT
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occurs: by increasing h the A-spins rotate, seeking alignment with the field, while the

B-spins rotate to cancel the unit cell transversal magnetization. In fact, the B-spins rotate

in the opposite direction up to θ = 300 at h = 4, and then rotate back for higher fields;

the net result is a unit cell magnetization increasing linearly with h, up to saturation at

h = 6 [58].
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Figure 4.7: AB2-XY model in a field. (a) ln |χh(E)|/2Nc: cusp-like pattern (disconti-
nuity) occurs only at h = 0 (h = 4). (b) Divergence of jl,h(E) at Ec(T 6= 0) − h2

2
for

4 ≥ h ≥ 0; the PT occurs at Ec(T 6= 0) = 0 and h = 0. The divergence is suppressed for
fields higher than the spin saturation field predicted by ETmin(h) at h = 4. (c) Emin(h)
and ETmin(h) split at Ec(T = 0) = −6 and h = 2; they join again at h = 6, where
saturation occurs as predicted both by Emin and ETmin . The illustration of the stable
magnetic phases is associated with Emin(h)

Doctoral thesis - Departamento de F́ısica - UFPE



4.2 Topology and noncollinear spin structures 69

4.2.4 Standard infinite-range XY model revisited

Finally, we use our approach to revisit the standard infinite-range XY model with ferro-

magnetic interactions [5, 30, 31, 36] in the presence of a magnetic field. The model is a

system of N plane rotators described by angular variables θ = (θ1, . . . , θN) and Hamil-

tonian (here we do not consider kinetic energy effects) given below

H(θ) =
1

2N

N∑

i,j=1

[1 − cos(θi − θj)] − h

N∑

i=1

cos θi. (4.49)

The free energy per particle reads [36]:

F (z; T, h) =
1

2
+

1

β

( z2

2β
− ln[2πI0(z + βh)]

)
, (4.50)

where z is the solution of the saddle point self-consistency equation :

z

β
=

I1

I0

(z + βh) = M(z; T, h), (4.51)

with M(z; T, h) = − 1
β

∂F (z;β,h)
∂h

. In the limit h → 0, the solution of the Eq. (4.51) is

z = 0 for β < βc = 2, corresponding to a vanishing magnetization, and z 6= 0 for β > βc.

Therefore, since the energy, E(z; T, h) = − ∂
∂β

[
βF (z; T, h)

]
, is given by

E(z; T, h) =
1

2
[1 − M(z; T, h)2] − hM(z; T, h), (4.52)

the T 6= 0 PT occurs for Ec = 0.5 and h = 0.

The critical points of this model are θ = θc = {0, π}N . At a given critical point, and

in the limit N ≫ 1, the Hessian is diagonal, with matrix elements given by [31]

Hii(θc) =
[(

1 − 2nπ

N

)
+ h

]
cos θi. (4.53)

In zero field, the Euler characteristic (density of Jacobian’s critical points) displays dis-

continuous (divergent) behavior at the critical energy Ec = 0.5, thereby confirming the
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topological origin of the finite-temperature PT exhibited by this model [31, 5]. The re-

lation between the PT exhibited by this model and the topology of its configuration

space is also verified qualitatively considering the sequence of topological transformations

undergone by ME until E = Ec(T 6= 0) = 0.5 [30].

Here, we are primarily concerned with the field dependence of the above-mentioned

topological features and their connection with the thermodynamics of the model. To

this aim, we compute numerically ln |χh(E)|/N and jl,h(E), as shown in Figs. 4.8(a)

and 4.8(b). From Eq.(4.52) and Fig.4.8(a), we find: Emax(h) = ETmax(h) = 1
2

+ h2

2

for 0 ≤ h < 1, and h for h ≥ 1. As shown in Figs.4.8(a) and 4.8(b), ln |χh(E)|/N is

discontinuous for 0 ≤ h < 1, while jl,h(E) is singular at ETmax(h) = Ec(T 6= 0) + h2

2
for

0 ≤ h ≤ 1, with the finite-temperature PT at Ec(T 6= 0) = 1/2 and h = 0. In addition,

as shown in Fig. 7(a), we also notice that, similarly to the microcanonical configurational

entropy [63], there is no positive lower bound for the slope of the Euler characteristic

in the presence of a field. In Fig.4.8(c), we display the pertinent energies in the limit

T → 0: Emin(h) = ETmin(h) = −h. First, we note that Ec(T = 0) = limh→0 Emin = 0, and

M = 1. Further, the two ETmax(h) metastable solutions [36] correspond to M = −h and

M = −1. Therefore, for h > 1, ETmax(h) exhibits a nondegenerate state, thus causing the

suppression of the singular behavior of jl(E).

Lastly, in the present model we can provide both a quantitative analysis and a qual-

itative illustration of the direct connection between thermodynamics and the topology of

configuration space. In fact, in the limit T → 0, we find two metastable solutions of Eq.

(4.51) for h < 1, associated with the metastable solutions for ETmax(h) referred above

[see Fig. 4.9(a) for h = 0.5 and T = 0.01, and Fig. 4.8(c)]. For h = 1, the metastable

solutions coincide [see Fig. 4.9(b) for h = 1 and T = 0.01, and Fig. 4.8(c)], beyond which

the suppression of the discontinuity (divergence) of ln |χh(E)|/N (jl(E)) takes place. For

h > 1, we find that only the minimum solution M = 1 remains [see Fig. 4.9(c) for

h = 1.25 and T = 0.01, and Fig. 4.8(c)]. However, for h > 1 and at zero temperature, Eq.

(52) also allows for a thermodynamically unstable solution, i. e., M = −1, corresponding

to Emax(h > 1) = ETmax(h > 1) = h.
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Figure 4.8: Standard Infinite-range XY model in a field. (a) ln |χh(E)|/N : cusp-like
pattern (discontinuity) at (for) h = 0 (0 ≤ h < 1). (b) Divergence of jl,h(E) for 0 ≥ h ≥
1; the PT occurs at Ec(T 6= 0) = 1/2 and h = 0. The divergence is suppressed for fields
beyond the spin saturation field predicted by ETmax at h = 1. (c) h-Dependent energies
and magnetization.

4.3 Symmetry Properties of the AB2-XY model

In this Section we shall examine the symmetry properties of the AB2-XY model. The

results will allow us to simplify the analysis of their topological properties. In particular,

these features will turn the computation of the topological invariants and thermodynamic

behavior more feasible.
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Figure 4.9: Magnetization of the standard infinite range XY model at T = 0.01 (only
h > 0 is illustrated): (a) stable (M = 1) and metastable (M = −1 and M = −h)
solutions, for h < 1, corresponding to the solutions E(h) = h and ETmax(h) [see Fig.
4.8(c)]. (b) The two metastable solutions meet at h = 1. (c) For h > 1, only the stable
solution M = 1 remains.

4.3.1 Topology of configuration space of the frustrated AB2-XY

model

Here, our goal is to compute the Euler characteristic of the frustrated AB2-XY model

in a general framework, in such a way that the symmetry properties of the model are

unveiled.

Inserting the magnetization, Eq.(5.2), in Hamiltonian (4.1) in zero field, we find

H = z
AB

mA ·
(
mB1

+ mB2

)
+ z

B
JmB1

· mB2
, (4.54)
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The critical points of the Morse function defined by Eq. (4.54) are thus found from the

equations below

∂H(θA, θB1 , θB2)

∂θαi

= 0, i = 1, ..., Nc, α = A,B1, B2. (4.55)

For the A spins we thus find:

∂H(θA, θB1 , θB2)

∂θAi

=
z

AB

Nc

[
− sin θAi

(mB1x + mB2x)

+ cos θAi
(mB1y + mB2y)

]
= 0, (4.56)

while for the B1(2) spins we have

∂H(θA, θB1 , θB2)

∂θB1(2)i

=
z

AB

Nc

[
− sin θB1(2)i

mAx + cos θB1(2)i
mAy

]

+
z

B

Nc

[
− sin θB1(2)i

mB2(1)x + cos θB1(2)i
mB2(1)y

]
= 0. (4.57)

From (4.56), the solutions are θAic
∈ {0, π}Nc , if mB1y = −mB2y; and θAic ∈ {π/2, 3π/2}Nc ,

if mB1x = −mB2x. On the other hand, from (4.57) the solutions are θB1(2)ic
∈ {0, π}Nc , if

θAic ∈ {0, π}Nc ; and θB1(2)i
∈ {π/2, 3π/2}Nc if θAic ∈ {π/2, 3π/2}Nc . Therefore, we have

two classes of isolated critical points θc = ({θAic
}, {θB1ic

}, {θB2ic
}) defined by θc ∈ {0, π}3Nc

and θc ∈ {π/2, 3π/2}3Nc . In fact, summing up either Eq. (4.56) or (4.57) over θAic
, θB1ic

,

and θB2ic
, we find

−mAx(mB1y + mB2y) + mAy(mB1x + mB2x) = 0, (4.58)

The two classes of critical points are thus equivalent, and differs only by a rotation,

and correspond to the constraint of zero transversal magnetization with respect to the

symmetry breaking magnetization direction. To achieve that, the B1 and B2 spins cancel

their frustration-induced transversal magnetization, while the A spins have no transversal

component.

Doctoral thesis - Departamento de F́ısica - UFPE



4.3 Symmetry Properties of the AB2-XY model 74

The Morse number thus reads:

µk(E) =

(
Nc

nπA

)(
Nc

nπB1

)(
Nc

nπB2

)∣∣∣
k(nπA,nπB1(2)

; E)

+

(
Nc

n 3π
2

A

)(
Nc

n 3π
2

B1

)(
Nc

n 3π
2

B2

)∣∣∣
k(n 3π

2 A
,n 3π

2 B1(2)
; E)

, (4.59)

where k(nπA, nπB1(2)
; E) and k(n 3π

2
A, n 3π

2
B1(2)

; E) are the indexes of the critical points

with energy less than E. Due to the form of the H(θA, θB1 , θB2), it is useful to split the

Hessian into three blocks relative to A, B1, and B2 sites:

HAB1B2
ij = HA

kl + HB1
mn + HB2

op ;

k, l = 1, . . . , Nc; m,n = Nc + 1, . . . , 2Nc; o, p = 2Nc + 1, . . . , 3Nc. (4.60)

In fact, the Hessian is diagonal with matrix elements given by:

HA
ii = −z

AB

Nc

[
cos θAi

(mB1x + mB2x) + sinθAi
(mB1y + mB2y)

]
, (4.61)

HB1(2)

ii = −z
AB

Nc

[
cos θB1(2)i

mAx + sin θB1(2)i
mAy

]

− z
B

Nc

[
cos θB1(2)i

mB2(1)x + sin θB1(2)i
mB2(1)y

]
. (4.62)

At an isolated critical point, we can use the above results to find the energy level

H(θA, θB1 , θB2) in Eq. (4.54):

E(nπ(3π/2)A,B1,B2
, J) = z

AB

(
1 − 2nπ(3π/2)A

Nc

)[(
1 −

2nπ(3π/2)B1

Nc

)
+

(
1 −

2nπ(3π/2)B2

Nc

)]
+

z
B
J
(
1 −

2nπ(3π/2)B1

Nc

)(
1 −

2nπ(3π/2)B2

Nc

)
.

(4.63)

We can now compute numerically the Euler characteristic as a function of the energy
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level, as shown in Fig. 4.10, for J = 2. We have performed this task using two distinct

approaches. In the first one, we consider the two equivalent class solutions described

above, without symmetry breaking. In the second one, we choose the magnetization

direction along the x-axis, so that only the first class of critical points are considered, i.e.,

θc ∈ {0, π}3Nc , with mB1y ≡ −mB2y and mB1x = mB2x.

In Fig. 4.10 we compare the computed Euler characteristic using the two above-

mentioned approaches, using Eq. (4.9) and (4.10). In order to make the total num-

ber of critical points equivalent for Nc ≫ 1 in the two approaches, we make Nc;AB2 =

(3/2)Nc;AB1B2 = 300 with point interval δE = 0.01. With this normalization, the results

are quite compatible, as shown in Fig. 9, resulting in the same values for ETmin and ETmax ,

and cusp-like pattern at Ec(T 6= 0) = 0. Therefore, in this work we shall use approach

one to study the AB2-XY model in detail.

-4 -2 0 2 4 6
E

0

0.2

0.4

0.6

0.8

lo
g|

χ(
E

)|
/γ

N
c

AB1 B2

AB2

 J = 2

γAB2
= 2

γAB1 B2
= 3

Figure 4.10: Comparison between computed Euler characteristic with (AB2) and with-
out (AB1B2) symmetry breaking. We used Nc;AB2 = (3/2)Nc;AB1B2 = 300 (see text).

4.3.2 Field effect on topology of configuration space

Here, we analyze the symmetry properties of the non-frustrated AB2-XY model in the

presence of a field along the x direction. Under these conditions, and using the definition
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of magnetization, Eq. (5.2), the Hamiltonian (4.1) reads:

H = z
AB

mA ·
(
mB1

+ mB2

)
− h · (mA + mB1

+ mB2
), (4.64)

In this case, the critical points of the Morse function, Eq.(4.64), are found from

Eq.(4.55).
∂H(θA, θB1 , θB2)

∂θαi

= 0, i = 1, ..., Nc, α = A,B1, B2. (4.65)

We thus find for the A and B1(2) spins, respectively:

∂H(θA, θB1 , θB2)

∂θAi

=
1

Nc

[
− sin θAi

(z
AB

(mB1x + mB2x) − h)

+ cos θAi
z

AB
(mB1y + mB2y)

]
= 0; (4.66)

∂H(θA, θB1 , θB2)

∂θB1(2)i

=
1

Nc

[
− sin θB1(2)i

(z
AB

mAx − h)

+ cos θB1(2)i
z

AB
mAy

]
= 0. (4.67)

Finally, summing up (4.67) over θαi, α = A,B1, and B2, we obtain

h(mAy + mB1y + mB2y) = 0. (4.68)

Therefore, the constraint of zero transversal magnetization in a field involves the com-

ponents of A and B1(2) spins. Notice also that by taking mB = (1/2)(mB1
+ mB2

),

which is in fact a symmetry property, we can map Eqs.(4.46) and (4.47) onto the Hessian

computed from Eqs. (4.66) and (4.67), respectively.
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4.3.3 Thermodynamics of the frustrated AB2-XY model

In this Section we are interested in the thermodynamics of the frustrated AB2-XY model,

which can be exactly derived in the saddle point framework. Therefore, using the identities

SAi
· (SB1j

+ SB2j
) =

1

2

[
(SAi

+ SB1i
+ SB2j

)2 − S2
Ai

−(SB1i
+ SB2j

)2
]
, (4.69)

SB1i
· SB2j

=
1

2

[
(SB1i

+ SB2j
)2 − S2

B1i
+ S2

B2j
)
]
, (4.70)

and the definition of magnetization, Eq. (5.2), the Hamiltonian (4.1) can thus be written

in a quadratic form:

H =
Nc

2

[
z

AB
(mA + mB1

+ mB2
)2 − zAmA

2

+(z
B
J − z

AB
)(mB1

+ mB2
)2 − z

B
J(mB1

2 + mB2

2)
]
. (4.71)

Now, in order to compute the partition function

Z(β, Nc) =

∫ 2π

0

Nc∏

i=1

dθAi
dθB1i

dθB1i
exp(−βH), (4.72)

we use the identity

exp(−ciy
2
i ) =

1

π

∫ +∞

−∞

exp(−x2
i + 2i

√
cixi · yi)dxi. (4.73)

We thus find:

Z(β,Nc) =
( Nc

2βπ2

)5/2
∫ 2π

0

Nc∏

i=1

dθAi
dθB1i

dθB2i

∫ +∞

−∞

5∏

i=1

dwi exp Nc

(
−

5∑

i=1

w2
i

2β
+ z

AB
(iw1

−w3)mA +
(
i(
√

z
AB

w1 +
√

z
B
J − z

AB
w2) −

√
z

B
Jw4)mB1

+
(
i(
√

z
AB

w1 +
√

z
B
J − z

AB
w2)

−
√

z
B
Jw5)mB2

)
.

(4.74)
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Notice that Z(β, Nc) is invariant under the exchange of the magnetization of B sites.

Performing the integrals over the angular variables, we have

Z(β, Nc) =
( Nc

2βπ2

)5/2
∫ +∞

−∞

5∏

i=1

dwi exp Nc

(
−

5∑

i=1

w2
i

2β
+ ln 2πI0

[
z

AB
(iw1 − w3)

]

+ ln 2πI0

[(
i(
√

z
AB

w1 +
√

z
B
J − z

AB
w2) −

√
z

B
Jw4)

]

+ ln 2πI0

[(
i(
√

z
AB

w1 +
√

z
B
J − z

AB
w2) −

√
z

B
Jw5)

])
, (4.75)

where I0 is the zero-order modified Bessel function. With the aim to compute the free

energy given by

F = − lim
Nc→∞

1

βNc

ln Z(β, Nc), (4.76)

using the saddle point method, we search for the stationary points of

f = −
5∑

i=1

w2
i

2β
+ ln 2πI0

[
z

AB
(iw1 − w3)

]
+ ln 2πI0

[(
i(
√

z
AB

w1 +
√

z
B
J − z

AB
w2) −

√
z

B
Jw4)

]

+ ln 2πI0

[(
i(
√

z
AB

w1 +
√

z
B
J − z

AB
w2) −

√
z

B
Jw5)

]
.

(4.77)

Thereby, we find a self-consistent system in a C
10 space, corresponding to ∂f

∂wi
= 0,

i = 1 . . . , 5. We emphasize that the form of the self-consistent equations associated to mB1

and mB1
are identical, except for the correspondence w4 ↔ w5. In fact, notwithstanding

the numerical difficulty to obtain solutions of this nonlinear system, we have succeed

in getting some solutions for particular values of frustration J and temperature T and

verified that the constraint condition of zero transversal magnetization and that w4 = w5,

which implies mB1
= mB2

. We also remark that similar conclusions are obtained for the

non-frustrated AB2-XY model in the presence of a field.
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4.4 Additional Topological invariants

Here, we would like to discuss some details associated with the indices of the critical

points, which we have used in Sections 4.1 and 4.2 to compute the Euler characteristic

and the density of Jacobian’s critical points, both in the limit Nc ≫ 1. We also compute

other topological invariants that corroborate general features found in previous ones.

4.4.1 Frustration-Dependent Topological invariants

Now, we want to determine the number k of negative eigenvalues of the Hessian matrix

of the Hamiltonian H(θA, θB) , Eq. (4.11). We split the Hessian in two blocks, HA, and

HB. The diagonal elements of the Hessian are

HA
ii = −4 cos θAi

Nc

mBx; (4.78)

HB
ii = − 1

Nc

(4mAx cos θBi + 2J(mxB cos θBi − myB sin θBi))

− 2J

N2
c

cos 2θBi); (4.79)

and the off-diagonal ones are

HA
ij =

∂2H(θA, θB)

∂θAi∂θBj

=
∂2H

∂θBi∂θAj

= 0, i, j = 1, ..., Nc; (4.80)

and

HB
ij = − 2J

N2
c

cos(θBi + θBj). (4.81)

Note that when i = j in Eq. (4.81), the last term in Eq. (4.79) is equal to Eq. (4.81).

At a given critical point, and for Nc ≫ 1, the index k of the critical point can be

approximated by the number of negative elements of O(1/Nc) in Eq. (4.78) and (4.79). In

fact, since the Hessian elements of O(1/N2
c ) form a matrix of rank one, the contribution

of these terms to the signal of the eigenvalues of the Hessian is irrelevant [31]. Therefore,
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k is given by the number of negative elements of O(1/Nc) in Eqs. (4.78) and (4.79). Since

the angles θAi and θBi are either 0 or π, the index reads:

index k(nπA, nπB) = indexA(nπA, nπB) + indexB(nπA, nπB), (4.82)

with

indexA =





nπA if nπB > Nc

2
,

Nc − nπA if nπB < Nc

2
,

0 if nπB = Nc

2
.

(4.83)

where the last result in Eq. (5.11) requires Nc even; and

indexB =





nπB if 2(1 − 2nπA

Nc
) + J(1 − 2nπB

Nc
) > 0,

Nc − nπB if 2(1 − 2nπA

Nc
) + J(1 − 2nπB

Nc
) < 0,

0 if 2(1 − 2nπA

Nc
) + J(1 − 2nπB

Nc
) = 0.

(4.84)

Now using Eqs. (4.30), (4.34), and (4.82)-(4.84), we can compute numerically lnµk(E)/2Nc

versus k. From these diagrams, we can also determine ETmin(J) and ETmax(J). In fact,

for E < ETmin(J), there are no critical points. For ET min(J) ≤ E < ETmax the diagram is

being filled, and for E = Ec(T 6= 0) = 0, ∀J , ln µk(E)/2Nc reaches its maximum value at

k = Nc. For E ≥ ETmax(J), the diagram is fulfilled. In Figs. 4.11 (a) and (b) we illustrate

these features for J = 2. For E < ETmin(J = 2) = −2, there are no critical points. In Fig.

4.11 (a), we show the diagram for E = Ec(T 6= 0) = 0; which displays the maximum of

ln µk(E)/2Nc at k = Nc = 500. In Fig. 4.11 (b) for E ≥ ETmax(J = 2) = 6, the diagram

is fulfilled.

We also remark that if indexA = 0, i.e., nπB = Nc/2, with Nc even, [see Eq. (5.11)],

we have index = Nc/2, ∀J . This result implies in values of ln µk(E)/2Nc lying in a vertical

disjoint line defined by k = Nc/2 = 250, as shown in Fig. 4.11. Moreover, if indexB = 0,

i.e. [see Eq. (4.84)],

2(Nc − 2nπA
) + J(Nc − 2nπB

) = 0, (4.85)
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it will prove useful to write nπB = Nc/2 ± δB, for nπB ≥ Nc/2 or nπB ≤ Nc/2, respec-

tively, where δB = 0, . . . , Nc/2, which implies (here we consider Nc even, without loss of

generality)

index k(nπA, nπB) =
1

2
(Nc − δBJ); (4.86)

therefore, since the index ∈ {0, . . . , 2Nc}, the above result holds only for J ∈ N, and

Eq. (4.85) thus becomes a linear Diophantine equation whose solutions are nπA and nπB.

This implies in values of ln µk(E)/2Nc lying in a disjoint curve, ∀J ∈ N, which meets the

vertical line referred above at k = Nc/2 = 250, as shown in Fig. 4.11.

Figure 4.11: (a) ln[µk(E)]/2Nc for J = 2 and E = Ec(T 6= 0) = 0, exhibiting
the maximum at k = Nc = 500; (b) For E ≥ ETmax(J) = 6, the diagram is ful-
filled. ln[µk(J)]/2Nc for E ≥ ETmax(J): for 0 ≤ J < 2, the filled area of the diagram
grows up to J = 2; for higher values of J , the points at left of the vertical disjoint line
(k = Nc/2 = 250) are shifted to the right of this line, as illustrated in (c), (b), and (d),
for J = 1, J = 2, and J = 4, respectively. The vertical disjoint lines and curves are
explained in the text.

With aim of understanding the influence of the frustration interaction J in the Morse
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number, we also compute this quantity without energy restrictions, ln µk(J)/2Nc, which

corresponds to the definition in Eq. (4.30) for E ≥ ETmax(J) = 4 + J . In this regime

of energies, for 0 ≤ J < 2, the filled area of the diagram grows up to J = 2, the value

for which the magnetization vanishes. For higher values of J , the points at left of the

vertical disjoint line (k = Nc/2 = 250) are continuously shifted to the right of this line.

We illustrate this feature in Figs. 4.11 (c) and (d), for J = 1 and J = 4, respectively.

We also compute the topological contribution to the entropy per unit cell τ(E) that,

as in [31], can be well approximated by

τ(E) =
1

2Nc

ln Ncp(E), (4.87)

where Ncp(E) =
∑2Nc

k=1 µk(E) is the total number of critical points of H(θA, θB) in the
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Figure 4.12: J-Dependence of τ(E). (a) The maximum occurs at Ec(T 6= 0) = 0, ∀J ,
and τ(E) remains at this value for E ≥ Ec = 0; notice the discontinuity in the slope at
E = 0 ± ε → 0. (b) Under the constraint mAx = −1, the curves present no cusp-like
behavior.
.

manifold ME. The behavior of τ(E) is plotted in Fig. 4.12. For E < ETmin(J) there

is no topological contribution to the entropy. For E ≥ ETmin(J), the contribution is

nonzero and τ(E) reaches its maximum at Ec(T 6= 0) = 0, ∀J , and remains constant for

E ≥ Ec = 0; notice also the discontinuity in its slope at E = 0 ± ε → 0. Moreover, for

E ≤ Ec = 0, Fig. 4.12 displays a pattern similar to that exhibited by ln |χJ(E)|/2Nc in

Fig. 4.4(a). Under the constraint mAx = −1, the curves present no cusp-like singularity,
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as shown in Fig. 11(b).

4.4.2 Field-Dependent Topological invariants

We now turn to the case of the AB2-XY model in a magnetic field using similar methods

to compute ln µk(E)/2Nc, ln µk(h)/2Nc, and τ(E). Using the same procedure of the

previous Section, the index of the Hessian is given by Eq. (4.82) with

indexA =





nπA if h > 4(1 − 2nπB

Nc
),

Nc − nπA if h < 4(1 − 2nπB

Nc
),

0 if h = 4(1 − 2nπB

Nc
);

(4.88)

and

indexB =





nπB if h > 2(1 − 2nπB

Nc
),

Nc − nπB if h < 2(1 − 2nπA

Nc
),

0 if h = 2(1 − 2nπA

Nc
).

(4.89)

Since ln µk(E)/2Nc has equivalent properties with respect to the frustrated case, here

we only show ln[µk(h)]/2Nc, i.e., the Morse number for E ≥ ETmax(h). In Figs. 4.13 (a),

(b), and (c) we display ln[µk(h)]/2Nc: for 0 ≤ h < 2, the diagram is being filled; and at

the critical field value of the T = 0 PT, h = 2, the diagram reaches its final form, with

two symmetrical arcs around k = Nc = 500. Therefore, this quantity was very sensitive

to the critical field value of the T = 0 phase transition. Moreover, similar arguments to

those used for the frustrated case can explain the occurrence of vertical disjoint lines at

h = 0, 1, 2, and 4.

Finally, the behavior of the topological contribution to the entropy is shown in Fig.

4.13 (d). We stress that the discontinuity in its slope occurs only for h = 0, in agreement

with the results for ln |χh(E)|/2Nc in Fig. 4.7(a).
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Figure 4.13: ln[µk(h)]/2Nc for E ≥ ETmax(h) is displayed in (a), (b), and (c): for 0 ≤
h < 2, the diagram is being filled; and at the critical field value of the T = 0 PT, h = 2,
the diagram reaches its final form; the vertical disjoint lines are explained in the text.
(d) h-Dependence of τ(E): the discontinuity in slope of τ(E) at Ec(T 6= 0) = 0 shows
up only for h = 0.

4.5 Conclusions

In conclusion, we have presented a quite complete topological characterization of the phase

transitions occurring in two infinite-range XY models exhibiting noncollinear spin struc-

tures on the AB2 chain, and complemented the analysis of the phase transition displayed

by the standard infinite-range XY model. We have computed the Morse number and

the Euler characteristic, as well as other topological invariants associated with the model

systems, which are found to behave similarly as function of the energy level in the context

of Morse Theory. For example, the Euler characteristic, and other invariants as well, have

their maximum (or divergence) at the critical energy of the finite-temperature PT. More-

over, we have used an efficient alternative method to compute the Euler characteristic,
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which proves more feasible. In addition, we have introduced the minimum (maximum)

topological energy, ET min (ETmax), below (above) which the topological invariants are zero

(or display no variation), which helped to clarify several properties of the phase transi-

tions, both at zero- and finite temperature. In fact, we showed that ETmin splits from

the MF minimum energy curve, Emin, at the critical point of the zero- temperature phase

transitions. This feature is associated with the noncollinear nature of the spin structure

of the frustrated- and field- induced phases. Further, our computation of the density of

Jacobian’s critical points have confirmed the topological origin of the finite-temperature

phase transition for the frustrated AB2-XY model, ∀J , and for the AB2-XY model in zero

field. In addition, we have established a nontrivial direct connection between the thermo-

dynamics of the studied models, which have been solved exactly under the saddle point

approach, and the topology of its configuration space. In fact, all the zero-temperature

stable and metastable pertinent energies, included the topological ones, are extremum

solutions of the saddle point self-consistent equations in the limit T → 0. This connection

has also allowed us to identify the non-degeneracy condition under which the divergence

of the density of Jacobian’s critical points is suppressed. Finally, our findings, and those

available in the literature [1, 2, 30, 32, 63], suggest that the cusp-like pattern exhibit both

by the Euler characteristic and the topological contribution for the entropy at the critical

energy [33, 34, 35], put together with the divergence of density of Jacobian’s critical points,

emerge as necessary and sufficient conditions for the occurrence of a finite-temperature

topology-induced phase transition. The general character of this proposal must be subject

to further scrutiny, on a rigorous basis [1, 33, 34, 35], and tested on a wider variety of

systems, including those with short-range interaction.
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Chapter 5

Phase Transitions via Integral with

Respect to the Euler Characteristic

In the preceding chapters we have discussed and reported on many results concerning

the topological approach to phase transitions. We learned that a change on the topol-

ogy of ME at the phase transition critical potential energy Ec is a possible mechanism

to induce a phase transition. For systems that fulfil the requirements of the necessity

theorems [33, 34, 35], as well as others systems such as the infinite-range XY model [31],

the k-trigonometric model [32], and the frustrated AB2-XY model, a topological change

in MEc
is the phase transition generator. Moreover, we have discussed that, analyzing

the saddle-points of the potential energy landscapes another necessary criterium for the

occurrence of a thermodynamic phase transition was proved [5]. Lastly, in Chapter 4, we

have provided several evidences that the cusp-like pattern exhibited by the Euler charac-

teristic at Ec and the simultaneous divergence of the density of Jacobian critical points

emerge as necessary and sufficient conditions for the occurrence of topology-induced phase

transitions [23]. From now on, we restrict our analysis for systems whose phase transition

generator mechanism is topological. Moreover, we assume that the number of stationary

points of V (q) grows exponentially in the thermodynamic limit. With these assumptions

we can assure that there is a direct relation between topology, phase transitions and the

saddles of the potential energy landscape. Now, we address the following question:

86
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Is it possible to derive thermodynamic quantities by using the information embedded in a

topological invariant, particularly the Euler characteristic?

In fact, it has been suggested that for systems exhibiting a phase transition whose

origin is topological, the thermodynamic entropy around the critical energy should obey

the following relation 1 2 [32]:

s(E) ∼ 1

N
ln |χ(E)| + R(E),

where R(e) is analytic (or, at least, C2) around the transition point. The microcanonical

temperature is defined by

1

T
=

∂S

∂E
= lim

δE→0

S(E + δE) − S(E)

δE
. (5.1)

We may then question if it is possible to use Eq. (3.3.1) to compute the critical temper-

ature from the Euler characteristic. However, since the Euler characteristic is a discrete

quantity, how to perform a discrete derivation with respect to the Euler characteristic

with a physical and topological sense?

With the aim of answering the above question, we have computed the contribution of

the critical points for thermodynamic quantities by using a topological measure, namely,

the Euler measure. In Section 5.1 we introduce the integration with respect to the Euler

characteristic in the context of topology-induced phase transitions. Further, in Section 5.2

we apply the concepts developed in Section 5.1 to the standard infinite-range XY model.

In Section 5.3 we discuss the concept of negative temperature which will prove useful in

the understanding of the relation between the Euler characteristic and phase transitions.

Finally, in Section 5.4 we digress on the Euler measure, negative temperatures and the

thermodynamics of the model.

1See Eq. 3.3.1.
2A rigorous relation between entropy and topological quantities is given in Refs. [34, 35] and in

Chapter 9 Ref. [1].
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5.1 The Euler measure and topology-induced phase

transitions

In this section, we introduce the Euler measure as an alternative to the phase space (Li-

ouville) measure for a system whose phase transition generator mechanism is topological.

The integration with respect to Euler characteristic, the χ-integral, was proposed by Viro

[64] and Schapira [65, 66], independently, and it is an analytical interpretation of the

classical Euler characteristic. This integral, which could be derived from sheaf theory[66],

is well known in the mathematic literature. We also mention that there are some applica-

tions to topography [65], and object enumerations in networks [67]. Here, we extend the

topological approach to phase transitions by computing the critical points contributions

to thermodynamic quantities using the χ-integral, defined bellow:

Euler integration:Let f be a Morse function in a n-dimensional manifold M . Denote

by C(f) the set of critical points of f . For each p ∈ C(f) the Morse index of p, k(p), is

defined as the number of negative eigenvalues of the Hessian in p. Them, the f integral

with respect to the Euler characteristic, i.e., the χ-integral is defined by [64, 67]

∫

M

fdχ =
∑

p ∈ C(f)

(−1)k(p)f(p). (5.2)

Analyzing the above definition, it is easy to see that

∫

ME

dχ = χ(ME) =
∑

k

(−1)kµk(ME). (5.3)

Futher, as E grows, the above integral does not change until a k-handle is attached to

ME. In conclusion, the χ-integral is a sum, with weight (−1)kµk(E) over all critical points

with energy lower than E.

Now, we estabilish an analogy between the microcanonical density of states

Ωv =

∫

H(p,q)<E

dpdq, (5.4)
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or its associated entropy

S = ln ΩE, (5.5)

and the χ-integral, through the correspondences:

dpdq → dχ (5.6)

and

S → Sχ =
1

N
ln |χ(ME)|. (5.7)

Further, the mean value of a thermodynamic quantity, defined by

〈O〉 =

∫

H<E

O(p, q)dpdq
/

ΩE, (5.8)

suggests that in the χ-integral context, we have

〈O〉χ =
∑

qc,E(qc<v)

(−1)kO(qc)µk(qc)(E(qc))
/

χ(ME(qc)). (5.9)

Finally, motivated by the thermodynamic temperature in Eq. 5.1, we introduce the Euler

temperature, Tχ, defined by
1

Tχ

=
δSχ

δE
. (5.10)

In computing the thermodynamic temperature, via Eq. (5.1), we can make δE arbitrarily

small. However, in computing Tχ, one should pay attention to Morse-Bott theorem [26],

which asserts that if δE is smaller than the distance between two neighbors critical values,

there is no change in the Mv topology. Therefore, we choose δE as the exact distance

between two neighbors critical points. This choice is reasonable since we expect that the

distance between neighbors critical points approaches zero in the thermodynamic limit.

Another alternative to a topological temperature comes from the topological contri-

bution to the entropy, defined by Eq. 4.87, written bellow

τ(E) =
1

N
ln Ncp(E),
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where Ncp(E) =
∑N

k=1 µk(E) is the total number of critical points with potential energy

per particle lower that E. τ(E) has been useful to identify the topological origin of phase

transitions in model systems, such as the standard infinite-range XY model [31], the k-

trigonometric model [32], and the frustrated infinite-range AB2-XY model. While the

Euler characteristic is an alternate sum of µk(E), τ(v) is the logarithm density of µk(E).

5.2 Application to the standard infinite-range XY

model

We shall now use the approach proposed in the previous section to describe the standard

infinite-range XY model in the presence of a field. This model, which was discussed in

previous chapters, is useful to our purposes because its infinite-range interaction simplify

the analysis in the context of the Morse theory and the χ-integral. Here, we describe new

features concerning its metastable and unstable solutions, as well as topological properties

and their connection with thermodynamics at positive and negative temperatures, and

with statistical ensembles (canonical and microcanonical). The standard infinite-range

XY model Hamiltonian in a field is given by

H(θ) =
1

2N

N∑

i,j=1

[1 − cos(θi − θj)] − h

N∑

i=1

cos θi,

where θi ∈ [0, 2π] is the position (angle) of the i-th rotor and h is the external magnetic

field. By defining a spin vector on each site i, the system is a Heisenberg planar (XY )

model with infinite-range unitary interaction. We introduce the magnetization, given by

m ≡ S

N
= (mx,my) = (

1

N

N∑

i=1

cos θi,
1

N

N∑

i=1

sin θi),
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where θi is the angle of Si with respect to the xy axes. The Hamiltonian per site can be

written in terms of the magnetization, i.e.,

H =
H(θ)

N
=

1

2
(1 − m2

x − m2
y) − hmx.

The exact solution of this model is obtained by the computation of the canonical partition

function, Z(β, h,N), Eq. 3.10, in the presence of a field. Thus, the free energy reads:

F (z; T, h) = − lim
N→∞

1

βN
ln Z(β, h, N) =

1

2
+

1

β

( z2

2β
− ln[2πI0(z + βh)]

)
,

where I0 is the zero order modified Bessel function, and z is the solution of the saddle

point self-consistency equation :

z

β
=

I1

I0

(z + βh) = M(z; T, h),

with M(z; T, h) = − 1
β

∂F (z;β,h)
∂h

. In addition to the solutions exposed in Chapters 3 and 4,

we find metastable solutions of the equation above, corresponding, in the limit T → 0, to

M = −h, and M = −1, for 0 ≤ h ≤ 1, as illustrated in Fig. 4.9.

The metastable solutions exist up to a maximum temperature Tmax, as illustrated in

Fig 5.1 for h = 0.1 and 0.5; further, we also show in Fig 5.1 the stable solutions M vs. T

for h = 0, 0.1, and 0.5. Lastly, in Fig. 5.2 we show M vs. E for h = 0, 0.5, 1, and 1.5

(stable solutions); and h = 0.1 for a metastable solution.

5.2.1 Topology of configuration space

Here, we describe the topology of the configuration space in the context of Morse theory

and the χ-integral. As discussed in previous chapters, the critical points of Eq. (5.2)

are θ = θc = {0, π}N . At a given critical point, and in the limit N ≫ 1, the Hessian is

diagonal, with matrix elements given by [31]:

Hii(θc) =
[(

1 − 2nπ

N

)
+ h

]
cos θi,
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Figure 5.1: Standard infinite-range XY model: Magnetization M vs. temperature T for
h = 0, 0.1 e 0.5. For 0 ≤ h ≤ 1 the system display metastable solutions

-1.5 -0.5 1.5

 E
-1

-0.5

0

0.5

1

M

 h = 0
 h = 0.5
 h = 1
 h = 1.5
 h = 0.1 (metastable)

Ec = 0.5

Figure 5.2: Standard infinite-range XY model: M vs. energy v for h = 0, 0.5, 1 e 1.5.
The phase transition occurs at Tc = 1/2, for h = 0, with Ec = 1/2. For h > 0, E = 1/2
occurs for T → ∞ (see Fig 5.1).
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with nπ being the total number of angles θi = π and mx(nπ) =
(
1 − 2nπ

N

)
. Therefore, the

index of a given critical point is determined by

indexk =





nπ if
(
1 − 2nπ

N

)
+ h > 0,

N − nπ if
(
1 − 2nπ

N

)
+ h < 0,

0 if
(
1 − 2nπ

N

)
+ h = 0;

(5.11)

with multiplicity given by the Morse number

µk(E) =

(
N

nπ

)∣∣∣
k(nπ ; E)

. (5.12)

At a given critical point, the energy is given by

E(nπ) =
1

2

[
1 − (1 − 2nπ

N
)2

]
− h(1 − 2nπ

N
). (5.13)

Using the above results, we can compute the Euler characteristic, ln |χh(E)|/N , as a

function of the energy level, for a given field h, as illustrated in Fig. 4.8 (a) for h = 0,

0.5, 0.75 and 1 .

With the aim to assess the magnetization behavior from a topological point of view,

we compute the mean magnetization with respect to the Euler measure, Mχ, by using Eq.

(5.9), in the form

〈M〉χ = Mχ =
∑

nπ)

(−1)k(nπ)
(
1 − 2nπ

N

)(N

nπ

)/
χ(ME). (5.14)

In Fig.5.3 this magnetization is illustrated for h = 0, 0.5, 1 and 1.5. Note that for

h = 0, we obtain the same canonical curve from Fig. 5.2. For h 6= 0, the stable solution

have magnetization identical to Mχ in the region with Mχ ≥ 0, a remarkable agreement.

However, we must interpret the nature of the magnetization solutions for 0 < Mχ ≤ 1.

Since the thermodynamic magnetization gives us information about stable and metastable

solutions with T ≥ 0, the extra solutions of Mχ must be associated with unstable thermo-
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dynamic solutions. From the definition of Tχ, Eq. 5.10, the referred solutions might me

associated with negative temperatures, in agreement with the microcanonical entropy in

the presence of a magnetic field h [63]. This feature is illustrated in Fig. 5.4 for h = 0.5.

With the desire to clarify this issue, in the next section we shall discuss the concept of

negative temperature.

Figure 5.3: Euler magnetization, Mχ, vs. E for h = 0, 0.5, 1 and 1.5. The region with
Mχ > 0 is identical to the M stable solutions (see Fig. 5.2).

Figure 5.4: Microcanonical entropy s(E) of the mean-field XY model with external
magnetic field h = 1

2
. Notice that, for E > 1/2, we have negative temperatures. From

Ref. [63].
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5.3 Negative temperatures

From the microcanonical definition of temperature, Eq. (5.1), the requirement for the

existence of negative temperature is that the entropy S(E) should not be a monotoni-

cally increasing function of the energy E. In fact, negative temperatures can be devised

theoretically and closely realized experimentally [68, 69].

In thermal equilibrium, the number of elements of the system with energy E increases

with the Boltzmann factor, exp(−E/kT ). For negative temperatures, the Boltzmann fac-

tor increases exponentially with E and, consequently, high energy states have higher

probability than lower energy ones. In conclusion, without no upper limit to the en-

ergy spectrum, negative temperatures could not be achieved with a finite energy. A very

interesting example of a system displaying negative temperatures is provided by a nonin-

teracting two-level spin system. In this example, each spin has two orientations, up and

down, with energies −ε and +ε, respectively; with total energy given by

E = −(N ↿ −N ⇃)ε, (5.15)

where N ↿ (N ⇃) is the total number of up (down) spins, with N = N ⇃ +N ↿. Therefore,

the canonical partition function for N spins is given by [70]:

ZN(β) = (eβε + e−βε)N = [2 cosh(βε)]N . (5.16)

When all the spins are fully positively polarized, i.e., with minimal energy, E = Emin =

−Nε, and all the spins positions are up, we have a positive zero+temperature,T=0+.

Moreover, for higher temperatures, the energy tends to vanish, implying a complete loss

of magnetic order in the limit T → ∞, with maximum entropy. However, when we analyze

the entropy of this model, established by [70]

S

Nk
= −Nε + E

2Nε
ln

(Nε + E

2Nε

)
− Nε − E

2Nε
ln

(Nε − E

2Nε

)
, (5.17)

and illustrated in Fig. 5.5, we note the following features: for E = Emin = −Nε, both
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-+ 8 - 8+ T - T
T cold hot

+ T - T

Figure 5.5: Negative temperature for a two-level system. The temperature scale from
cold to hot is: 0+, . . . , +T, . . . ,∞,−∞, . . . ,−T, . . . , 0−.
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Figure 5.6: Negative temperatures: (a) T for an algebraical scale. (b) T for a tempera-
ture scale from cold to hot.

S and T vanishes. In fact, S and T increase monotonically with E, up to E = 0. At

this value of energy, the entropy has reached its maximum value, while the temperature

becomes infinity (T → ∞). On the other hand, for E = 0−, T → −∞. Further on, the
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entropy decreases monotonically with E and the system displays negative temperatures.

Finally, when E = Emax = Nε, the entropy is once again zero and T = 0−.

Now, by adopting the definition that the hotter of two bodies is the one from which

heat flows when they are brought into thermal contact, we conclude that negative temper-

atures are hotter than positive temperatures. The temperature scale from cold to hot thus

reads: 0+, . . . , +T, . . . ,∞,−∞, . . . ,−T, . . . , 0−, as illustrated in Fig. 5.5. The variation

of the temperature with energy for the two level system is given by [70]

1

T
=

k

2ε
ln

(Nε − E

Nε + E

)
. (5.18)

This quantity is shown in Figs. 5.6 (a) and (b) in an algebraical scale and in temperature

scale from cold to hot, respectively. The region with negative temperature is indeed

unusual because it corresponds to a magnetization in an opposite direction with respect

to that of the applied field. Notwithstanding, negative temperatures can be realized

experimentally in a system of nuclear moments of a crystal of LiF. In this system, the

relaxation time t1 for the interaction between nuclear spins is very small in comparison

with the relaxation time t2 for the spin-lattice interaction [68]. If we apply a strong

magnetic field in the crystal, and then we reverse the field direction abruptly, the spins

are unable to follow this change instantaneously. As a result, during a O(t1) period, the

sub-system of the nuclear spins is able to achieve a state of internal quasi-equilibrium with

a negative magnetization; therefore, associated with a negative temperature. However,

the lattice sub-system, with unbounded energy spectrum, will indeed be at a positive

temperature. For a period of O(t2), the two sub-systems would achieve a state of common

equilibrium, with a positive temperature. In the experiment performed by Purcell and

Pound [68], using a crystal of LiF, t1 ∼ 10−5sec and t2 ∼ 5min. A state of negative

temperature for the sub-system of spins was achieved for several minutes as shown in Fig.

5.7.
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Figure 5.7: A typical record of the reversed nuclear magnetization. On the left is a de-
flection characteristic of the normal state at equilibrium magnetization (T ≈ 300K),
followed by the reversed deflection (T ≈ −350K), decaying (T → −∞) through zero
deflection (T = +∞) to the initial equilibrium state. From Ref. [68].

5.4 Euler temperature, negative temperature, and

thermodynamics

We start this section by computing the Euler temperature, Tχ, as a function of the energy.

In fact, at Ec = 1/2 and h = 0, this quantity can be computed analytically and reveals

a direct relationship between the Euler characteristic and the critical temperature. Since

χ(Ec = 1/2+) = 0, |χ(Ec = 1/2)| is obtained by subtracting the multiplicity of the critical

point with E = Ec = 1/2, which corresponds to nπ = N/2 in Eq.(5.13). Similarly, for the

neighbor critical point, we subtract the Morse number corresponding to nπ = N/2 ± 1.

Therefore, without loss of generality, considering an even (N = 2N) dimensional manifold,

we have

|χ(E(nπ = N/2 = n))| =

(
2n

n

)
, (5.19)

and

|χ(E(nπ = N/2 ± 1 = n ± 1))| = 2

(
2n

n − 1

)
−

(
2n

n

)
. (5.20)

Moreover, the energy difference between these critical points, computed from Eq. 5.13, is

given by:

E(nπ = n) − E(nπ = n ± 1) =
1

2n2
, (5.21)
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while the Euler critical temperature is given by

1

Tχc

= lim
n→∞

1

2n

ln |χ(E(nπ = N/2 = n))| − |χ(E(nπ = N/2 ± 1 = n ± 1))|
E(nπ = n) − E(nπ)

. (5.22)

After some algebra, we find
1

Tχc

= ln
(
1 +

2

n + 1

)n

. (5.23)

In the limit n → ∞, by using the exponential definition

ex = lim
n→∞

(
1 +

x

n

)n

, (5.24)

we obtain

Tχc
= Tc =

1

2
. (5.25)

Similarly, if we compute the temperature associated with τ(E), Tτ , defined by

1

Tτ

=
δτ(E)

δE
, (5.26)

we conclude that, in the thermodynamic limit, Tτ (E = Ec = 1/2) = Tτc
= 0. In fact,

the behavior of Tχ and Tτ differs only in the vicinity of the phase transition. In Fig.

5.8, we compare Tχ, Tτ , and T , for h = 0. We see that the thermodynamic temperature

T grows monotonically with E for 0 ≤ E ≤ Ec, while Tχ displays a negative variation

near Ec. However, we emphasize that, for E = Ec, we have Tχ = Tc, as obtained in

Eq. (5.25). This result justify the topological origin of this phase transition and the

choice of the Euler characteristic as a measure. Therefore, besides the correspondence

between the cusp-like behavior of the Euler characteristic in the critical energy displayed

by this model [31], we also identify a direct connection between the Euler characteristic

and the phase transition critical temperature. Despite the difference between Tτ and

Tχ near Ec, the mean magnetization values obtained using both weights are identical

to the thermodynamic ones for h 6= 0. Now, we compare τ(E) and 1/N ln |χ(E)| as

a function of energy at h = 0, as illustrated in Fig. 5.9. We notice that there is no

Doctoral thesis - Departamento de F́ısica - UFPE



5.4 Euler temperature, negative temperature, and thermodynamics 100

0 0.1 0.2 0.3 0.4 0.5
E

0

0.25

0.5

0.75

1

T

 Tχ
 Tτ
 T

(Ec , Tc )

Figure 5.8: Tτ ,Tχ, and T vs. E for h=0. For E = Ec = 1/2, we have Tc = Tχc
= 1/2,

while Tτ → 0.
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Figure 5.9: Comparison between τ(E) and 1
N

ln |χ(E)|. τ(E) is convex in the critical

energy vicinity.

difference between τ(E) and 1/ ln |χ(E)| for E not very close to Ec. However, near

the phase transition critical energy, the slope of τ(E) differs significantly from that of

1/N ln |χ(E)|, i.e., the Van Hove convexity requirement is not fulfilled [71]. This result

implies that the Euler weight, (−1)k, was decisive on the computation of Tχ near Ec. In
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Figure 5.10: Euler temperature, Tχ, vs. E for h = 0, 0.1, 0.5 and 1.5. For E > 1/2, Tχ

is negative. Notice that Tc = Tχc
= 1/2 for h = 0.

correspondence with negative temperatures exhibited by this model in the microcanonical

ensemble [63], negative temperatures are also manifest using the Euler measure. However,

since τ(E) grows monotonically with E, negative temperatures are not manifest in Tτ .

Lastly, in Fig. 5.11, we present the microcanonical diagram M vs. in which the flux

of temperature is indicated. Except for the metastable solutions, the flux goes from

T = 0+, . . . ,∞,−∞, . . . , 0−, for h 6= 0. The temperature flux for the metastable solution

with h = 0.5, which could be inferred from Fig. 5.1, goes from 0 up to Tmax. In conclusion,

the Euler measure is the appropriate topological measure to describe the phase transition

exhibited by this model.
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Figure 5.11: M and Mχ for h = 0, 0.5, 1 e 1.5, considering negative temperature so-
lutions. The temperature flux, at least from metastable solutions, goes from T =
0+, . . . ,∞,−∞, . . . , 0−, for h 6= 0. The temperature flux from de metastable solution
for h = 0.5, which could be inferred from Fig. 5.1, goes from 0 up to Tmax.
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Chapter 6

Conclusions

In this work, we studied topology-induced phase transitions in spin systems. In Chapter

2, we summarized the main results from a general viewpoint. Further, in Chapter 3 we

discussed several applications of this approach available in the literature.

In Chapter 4, we presented a quite complete topological characterization of the phase

transitions occurring in two infinite-range XY models exhibiting noncollinear spin struc-

tures on the AB2 chain, and complemented the analysis of the phase transition displayed

by the standard infinite-range XY model. We have computed the Morse numbers and

the Euler characteristic, as well as other topological invariants associated with the model

systems, which are found to behave similarly as function of the energy level in the context

of Morse theory. Additionally, we have used an efficient alternative method to compute

the Euler characteristic, which proved to be quite feasible. Moreover, we have introduced

the minimum (maximum) topological energy, ET min (ETmax), below (above) which the

topological invariants are zero (or display no variation), which helped to clarify several

properties of the phase transitions, both at zero- and finite temperature. In fact, we

showed that ETmin splits from the MF minimum energy curve, Emin, at the critical point

of the zero-temperature phase transitions. This feature is associated with the noncollinear

nature of the spin structure of the frustrated- and field-induced phases. Further, our com-

putation of the density of Jacobian’s critical points have confirmed the topological origin

of the finite-temperature phase transition for the frustrated AB2-XY model, ∀J , and for
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the AB2 -XY model in zero field. In addition, we have established a nontrivial direct

connection between the thermodynamics of the studied models and the topology of its

configuration space. In fact, all the zero-temperature stable and metastable pertinent

energies, included the topological ones, are extremum solutions of the saddle point self-

consistent equations in the limit T → 0. This connection has also allowed us to identify

the non-degeneracy condition under which the divergence of the density of Jacobian’s

critical points is suppressed. Our findings, and those available in the literature, suggest

that the cusp-like pattern exhibit both by the Euler characteristic and the topological

contribution for the entropy at the critical energy, put together with the divergence of

density of Jacobian’s critical points, emerge as necessary and sufficient conditions for the

occurrence of a finite-temperature topology-induced phase transition. Finally, in Chapter

5 we have discussed the concept of the integration with respect to the Euler character-

istic and its relationship with thermodynamics and phase transitions. These ideas have

been used to study the the infinite-range XY model. In particular, combining statistical

mechanics and Morse theory, we have determined the phase transition critical tempera-

ture of the infinite-range XY model using the Euler characteristic. Moreover, we provide

evidence that the information embedded in the Euler characteristic suffice to determine

the magnetization, in the microcanonical ensemble, except for the metastable solutions.

These are found from the set of self consistency-equations of the saddle-point solution for

the Helmholtz free energy. On the other hand, the results using the Euler measure allows

one to obtain unstable thermodynamic solutions associated with negative temperatures.

From these results, the microcanonical phase diagram for the magnetization versus energy,

in the presence of an applied magnetic field, is obtained for the entire interval of allowed

magnetization values. Therefore, latu sensu, the description of the standard XY model in

a field, both in the microcanonical and canonical ensembles, are equivalent. The general

character of these proposals must be subject to further scrutiny, on a rigorous basis, and

tested on a wider variety of systems, including those with short-range interaction.

In summary, our reported findings may shed light on the quest for a proper under-

standing of the topological properties associated with a phase transition.
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