

Universidade Federal de Pernambuco Centro de Tecnologia e Geociências Área de Concentração em Geologia Sedimentar e Ambiental Programa de Recursos Humanos da ANP –PRH 26

Victor Hugo Santos

SEQÜÊNCIAS SILURO-DEVONIANA E EOCARBONÍFERA DA BACIA DO PARNAÍBA, BRASIL, COMO ANÁLOGOS PARA A EXPLOTAÇÃO DE HIDROCARBONETOS

TESE DE DOUTORADO 2005

Orientador: Prof. Dr. Mário de Lima Filho

Recife – PE

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Apoio:

Financiamento:

Victor Hugo Santos

Geólogo, Universidade Federal de Mato Grosso – Cuiabá, 1998 Mestre em Geociências, Universidade Federal de Pernambuco, 2000

SEQÜÊNCIAS SILURO-DEVONIANA E EOCARBONÍFERA DA BACIA DO PARNAÍBA, BRASIL, COMO ANÁLOGOS PARA A EXPLOTAÇÃO DE HIDROCARBONETOS

Tese que apresentou ao programa Pós Graduação em Geociências do Centro de Tecnologia e Geociências da Universidade Federal de Pernambuco, orientada pelo Prof. Dr. Mário de Lima Filho, como Preenchimento Parcial dos requisitos para a obtenção do grau de Doutor em Geociências, área de concentração Geologia Sedimentar e Ambiental, defendida e aprovada em 25 de maio de 2005.

Recife, PE 2005

SEQÜÊNCIAS SILURO-DEVONIANA E EOCARBONÍFERA DA BACIA DO PARNAÍBA, BRASIL, COMO ANÁLOGOS PARA A EXPLOTAÇÃO DE HIDROCARBONETOS

VICTOR HUGO SANTOS

Aprovado:

Prof: Dr. Mário Ferreira de Lima Filho25/05/2005Prof: Dr. Joel Carneiro de Castro25/05/2005Prof: Dr. Francisco Pinheiro Lima Filho25/05/2005Prof: Dr. Lúcia Maria Mafra Valença25/05/2005Prof: Dr. Lúcia Maria Mafra Valença25/05/2005Prof: Dr. Gelson Luis Fambrini25/05/2005

A minha Mãe. Não só tudo, mas, a vida. Para a realização deste trabalho foram fundamentais os apoios de diversos segmentos pessoais e profissionais. Sendo assim, gostaria de expressar os meus agradecimentos de uma forma muito particular às pessoas abaixo relacionadas.

Ao professor e amigo Dr. Mário de Lima Filho, pelas oportunas orientações, discussões, bem como inspirações nas várias etapas da elaboração desta tese. Aos professores Drs. Virgínio Henrique Neumann, Lúcia Valença e Joel de Castro, pelo incentivo e valiosas sugestões nas etapas iniciais deste trabalho. Ao talento e brilhantismo da professora Dra. Maria Helena Hessel, nas correções ortográficas e organização dos capítulos aqui apresentados.

Ao professor Dr. Leonardo Borghi, aos geólogos Charles Young e Fabiana Campelo, assim como a bióloga Sônia Agostinho, pelas discussões em uma das etapas de campo, onde foram discutidas diversas idéias que resultaram no enriquecimento do trabalho. Ao geólogo Dr. Marco Malmann, pela habilidosa ajuda em algumas tomadas fotográficas e empréstimos de equipamentos fotográficos utilizados em campo. Aos geólogos Rodrigo Meireles, José Neto, Alhan Santos e Agnelo Leite, pelo companheirismo e auxílio nas etapas de campo.

Aos amigos "lageseanos" Anna Rosa, Cristiane Moura, Cleide Regina e Antônio Barbosa, pelo convívio harmônico que foi fundamental especialmente em momentos difíceis, pela compreensão e, de certa forma, pela tolerância. A geóloga e amiga Luciana Tupinambá que foi sempre solícita e gentil ao me enviar inúmeros *papers*. Aos funcionários da secretaria do Departamento de Geologia, Marcos e Rosa, pelos inúmeros favores prestados nas atividades burocráticas junto a UFPE e ANP.

Aos meus amigos e irmãos Silvana Barros, Liliana Sayuri e Williams Guimarães, que caminharam comigo paralelamente nesta jornada, me incentivando e fazendo parte da minha vida de forma muito especial. As minhas amigas Anabel Pessoa e Daniela, pelo carinho e admiração que sempre demonstraram à minha pessoa, e que muito impulsionou no engrandecimento deste trabalho.

À minha família e grandes amigos de Cuiabá, Mato Grosso, que, compreendendo minhas ausências e minhas dificuldades para iniciar a vida acadêmica em Recife, demonstraram seu amor acreditando e investindo em meu potencial e na minha vocação. Sinceramente, meu muito OBRIGADO. Lembro das rifas, empréstimos e colaborações. Tudo valeu a pena!

À minha mãe, Josefa Santos, que representa para mim o mais alto grau de dedicação que alguém pode dispensar aos seus semelhantes nesta Terra. E tenho a certeza de que a melhor recompensa por esta dedicação é a conclusão de meu doutoramento.

APRESENTAÇÃO

Esta tese é parte dos requisitos para obtenção do grau de doutor em geociências na área de concentração de geologia sedimentar e ambiental da Universidade Federal de Pernambuco. Para a realização desta pesquisa foi imprescindível o apoio do Programa de Recursos Humanos da Agência Nacional de Petróleo – PRH26 do departamento de Geologia e Engenharia Civil, e financiamento do Projeto Análogos, convênio Petrobrás-Petróleo Brasileiro/CTPETRO-Ciência e Tecnologia de Petróleo e Gás Natural /FINEP- Financiadora de Estudos e Projetos / LAGESE - Laboratório de Geologia Sedimentar as UFPE.

Este trabalho foi desenvolvido, em onze afloramentos que estão situados na borda sudeste da Bacia do Parnaíba, abrangendo as formações Ipú, Jaicós, Itaim-Pimenteiras, Cabeças, Longá e Poti, e consistiu uma abordagem de técnicas que têm surtido sucesso e se tornado poderosas ferramentas na predição e otimização na recuperação de hidrocarbonetos. Entre essas estão: 1) caracterização faciológica e arquitetural, interpretação dos sistemas deposicionais; 2) correlação com análogos em subsuperfície na própria bacia e; 3) simulação de fluxo de hidrocarbonetos.

No Capítulo 1 estão definidos os objetivos propostos e métodos utilizados na pesquisa.

O Capítulo 2 aborda vários fatores que interferiram no âmbito geológico da Bacia Parnaíba e as respectivas formações aqui investigadas. Entre os fatores estão: o controle tectônico; o arcabouço litoestratigráfico; os aspectos paleogeográficos; e os registros glacio-sedimentares.

No Capítulo 3 é feita uma revisão dos conceitos fundamentais utilizados na pesquisa abrangendo a litofaciologia e sua relação com os sistemas deposicionais e estratigrafia.

No Capítulo 4 são caracterizadas as litofácies e elementos arquiteturais encontradas nos afloramentos com o auxílio de painéis fotográficos e suas respectivas interpretações ambientais.

O Capítulo 5 é reservado à analogia dos dados superficiais obtidos em afloramentos localizados na borda sudeste da bacia, com os dados de poços na porção central da bacia, para melhor controle ambiental, estratigráfico e evolutivo das formações aqui estudadas. Essa correlação é possível através da junção dos dados de poços (perfis e testemunhos), com dados obtidos de perfis em afloramentos e a composição das técnicas de análise de fácies sedimentares aqui utilizadas. Com isso foram confeccionadas seções estratigráficas ao longo da bacia, com a identificação das seqüências que compõem esta sucessão sedimentar, elaboradas a partir de um modelo à luz da Estratigrafia de Seqüências.

O Capítulo 6 refere-se à caracterização dos domínios petrofísicos (porosidade, permeabilidade) encontrados em um afloramento da Formação Cabeças. Esses dados foram submetidos a teste de um simulador 2D que está sendo desenvolvido pelo PADMAC (Processamento de Alto Desempenho na Mecânica Computacional)para simulações de fluxo bifásico (água - óleo).

O Capitulo 7 traz as conclusões e algumas considerações relativas aos resultados obtidos. Finalizando no Capítulo 8 estão citadas as referências bibliográficas utilizada nesta tese.

RESUMO

No presente estudo sobre as següências devoniana e eocarbonífera aflorantes da Bacia do Parnaíba, como subsídio análogo para o entendimento de possíveis rochas-reservatório de hidrocarbonetos, foram estudados dez afloramentos localizados na região central do Estado do Piauí, geologicamente inseridos na borda sudeste da Bacia do Parnaíba. Três afloramentos mostram estratos silurianos do Grupo Serra Grande (Ipú 1, Jaicós 1 e 3) e os demais exibem camadas do devoniano ao eocarboníferas do Grupo Canindé (Itaim/ Pimenteiras 1 e 2, Cabeças 1 e 2, Poti 1, 2 e 3). As següências sedimentares aflorantes confirmam a existência de dois ciclos sedimentares distintos ocorridos na Bacia, comandados por variações de níveis eustáticos de um mar interior: uma seqüência devoniana e uma seqüência devoniano-eocarbonífera. A seqüência devoniana está representada pela Formação Cabeças, depositada em ambiente transicional de frente deltaica proximal, dominado por fácies canalizadas e sigmoidais. A seqüência devonianoeocarbonífera compõe uma mesma sucessão deposicional de plataforma marinha rasa flúvio-deltaica, onde as fácies mais proximais pertencem à Formação Poti e, as mais distais, à Formação Longá. A Formação Poti foi depositada sob sistema fluvial meandrante em extensa planície de inundação com certa influência marinha e de tempestades. Oito fácies sedimentares foram identificadas: conglomerados suportados por clastos (Gcm), arenitos com estratificação cruzada de baixo ângulo (SI), arenitos com estratificação cruzada planar (Sp), arenitos com estratificação cruzada acanalada/festonada (St), arenitos com marcas de ondas ou hummocky (Sr), arenitos com estratificação planoparalela ou *climbing ripples* (Sh) e siltitos a arenitos muito finos estratificados e com acamamento ondulado (FI). A Formação Ipú, visualizada no afloramento IP-1, apresenta quatro fácies de uma fase eminentemente clástica de barras longitudinais de leitos fluviais entrelaçados de um fandelta submerso. A Formação Jaicós, com grande continuidade lateral e geometria geralmente tabular, foi analisada em dois afloramento (JC-1e JC-2), mostrando quatro diferentes fácies de um canal fluvial primário de baixa energia com migração de barras longitudinais truncadas por canais rasos. As formações Itaim-Pimenteiras apresentam cinco fácies areníticas: no afloramento ITP-1 sugerem uma deposição em frente deltaica de retrogradante a progradante de alta energia, e no afloramento ITP-2, com a maior variedade faciológica na seqüência do Grupo Canindé, uma deposição estuarina de regiões costeiras com interferência de correntes de baixa energia. A Formação Cabeças, analisada em dois

afloramentos de ampla continuidade lateral (CAB-1 e CAB-2), mostrou três fácies arenosas atribuídas à deposição em planície deltaica com canais distributários ativos, em barras de embocadura e com lobos migrando em direção ao centro da bacia. E a següência regressiva entre as formações Longá e Poti foi avaliada em três extensos afloramentos PT-1, PT-2 e PT-3, revelando quatro fácies relacionadas a um ambiente fluvial meandrante com acreção lateral de barras, e periódicas variações da velocidade de correntes. Três tipos principais de sistemas deposicionais foram identificados por: depósitos plataformais constituídos por pelitos laminados e arenitos finos com estratificação cruzada hummocky e plano-paralela (em todas as unidades estratigráficas); depósitos litorâneos de arenitos finos a médios com estratificação cruzada sigmoidal, ritmitos relacionados a planícies de maré, arenitos bioturbados e siltitos com laminação plano-paralela (formações Itaim, Cabeças e Poti); e depósitos fluviais principalmente do tipo anastomosado compostos por arenitos grossos a conglomeráticos com estratificação cruzada acanalada de barras e dunas em sistema sub-aquoso entrelaçado (formações Jaicós e Poti). A correlação de afloramentos com perfis de RG possibilitou a identificação de 52 marcos elétricos ou estratigráficos, definindo-se também três seqüências deposicionais (da base para o topo): devoniana (do marco Jaic até o M200), devoniano-eocarbonífera (do marco M200 até abaixo do M015), e eocarbonífera (do marco M015 até o M010). A seqüência devoniana mostra um intervalo transgressivo, correspondendo à Formação Itaim e parte da Formação Pimenteiras, e um intervalo regressivo, correspondente às formações Pimenteiras e Cabeças. É possível individualizar conjuntos de parasseqüências que correspondem a uma seqüência vertical de fácies tempestíticas do tipo shoaling upward, sendo frequentemente recobertas por um folhelho radioativo correspondente à superfície de inundação da parasseqüência. A seqüência devoniano-eocarbonífera apresenta um intervalo transgressivo corresponde à metade inferior da Formação Longá e é formado por duas parasseqüências que representam sistemas deposicionais de plataformas dominadas por tempestades. O intervalo regressivo corresponde à Formação Poti, onde são individualizados dois conjuntos de parasseqüências. Uma simulação numérica sintética dos dados adquiridos no presente estudo demonstra que a análise faciológica detalhada de afloramentos pode oferecer subsídios bastante interessantes na investigação de reservatórios análogos de hidrocarbonetos.

ABSTRACT

The present study was applied to understanding the similar hydrocarbon reservoirs on the Silurian, Devonian and Early Carboniferous sequences of the Parnaíba Basin. The exposure investigated are located in the central area in the Piauí state. These outcrops are geologically inserted in the southeastern border of the Parnaíba Basin. Three outcrops constituited on the Silurian strata of the Serra Grande Group (Ipú 1, Jaicós 1 and 3) and the others exhibit Devonian (Itaim-Pimenteiras 1 and 2, Cabeças 1 and 2) and Early Carboniferous strata of the, Poti 1, 2 and 3), all of the Canindé Group. The sedimentary sequences confirm two different cycles in the basin, dominated by eustatic levels variations the inland: one a Devonian other a Devonian-Early Carboniferous sequences. The first sequence is represented by the Cabeças Formation, deposited in a proximal deltaic front, dominated by channels and sigmoids. The Devonian-Early Carboniferous sequence is composed by the deposicional succession of fluvial-deltaic shallow platform, where the proximal facies belong to the Poti Formation and, the distal, to the Longá Formation. The Poti Formation was deposited on the fluvial meandering system in extensive flood plain with certain marine and storms influence. Eight sedimentary facies were identified: conglomerate clast supported (Gcm), sandstones with crossed bedding of low angle (SI), sandstones with crossed bedding to glide (Sp), sandstones with channeled crossed bedding (St), sandstones with ripples or hummocky (Sr), sandstones with plan-parallel bedding or climbing ripples (Sh), and siltstones to very fine stratified sandstones with ripples (FI). The Ipú Formation, visualized in IP-1 outcrop, presents four facies with represent of longitudinal bars of braided fluvial beds of a submerged fandelta. The Jaicós Formation, with great lateral continuity and tabulate geometry, was analyzed in two outcrops (JC-1 and JC-2), showing four different facies of fluvial channels of low energy with migration of truncated longitudinal bars by shallow channels. The Itaim and Pimenteiras Formations present five sandy facies: the outcrop ITP-1 suggest a deposition from a retrogradational deltaic front to a progradational high energy environment, and the outcrop ITP-2, with the largest facies variety in the Canindé sequence, a estuarine deposition of coastal areas with interference of low energy currents. The Cabeças Formation, analyzed in two outcrops of wide lateral continuity (CAB-1 and CAB-2), showed three sandy facies attributed to the deposition in deltaic plain with channels, bars, and lobes. The regressive sequence between Longá and Poti Formations was evaluated in three extensive outcrops (PT-1, PT-2 and PT-3), revealing four facies related to a fluvial meandring environment with lateral accretion of bars, and periodic variations of the speed of currents. Three main types of depositional systems were identified: platformal deposits constituted by laminated pelites and fine sandstones, with planparallel or cross bedding hummocky (in all formations); coastal deposits of fine to medium sandstones with sigmoids, rhitmites related to tide plains, bioturbed sandstones, and siltstones with plan-parallel lamination (Itaim, Cabeças and Poti Formations); and fluvial deposits mainly of the anastomosed type, composed by medium to conglomeratic sandstones with cross bedding of bars and dunes in braided sub-aqueous system (Jaicós and Poti Formations). The correlation of outcrops with RG profiles made possible the identification of 52 electric or stratigraphical marks, being also defined three depositional sequences (from the base to the top): Devonian (from the Jaic mark to M200), Devonian-Early Carboniferous (from M200 to M015), and Early Carboniferous (from M015 to M010). The Devonian sequence shows a transgressive interval, corresponding to the Itaim Formation and part of the Pimenteiras Formation, and a regressive interval, corresponding to the Pimenteiras and Cabeças Formations. It is possible to individualize parassequences that correspond to a shoaling upward facies, frequently covered for radioactive shales corresponding to the surface of flood of the parassequence. The Devonian-Early Carboniferous sequence presents a transgressive interval correspond lower part of the Longá Formation and it is formed by two parassequences, that represent a depositional system of platforms dominated by storms. The regressive interval corresponds to the Poti Formation, where two parassequences are individualized. A numeric simulation of the acquired data in the present study demonstrates that the detailed facies analysis of outcrops can offer interesting subsidies in the investigation of similar hydrocarbons reservoirs.

Palavras –chave: análogos, reservatórios, arquitetura, Bacia Parnaíba, modelo numérico, estratigrafia.

	,		
CII		DI	\sim
зu	IV	\ K I	U
			-

APRESENTAÇÃO	VII
RESUMO	IX
ABSTRACT	XI
LISTA DE FIGURAS E FOTOGRAFIAS	ХХ
LISTA DE TABELAS	ХХ
CAPÍTULO 1 – INTRODUÇÃO 1.1 Localização da Área de Estudo 1.2 Materiais e Métodos 1.2.1. Aquisição de Dados de Campo 1.2.2. Processamento de Dados em Laboratório 1.3. Banco de Dados	001 001 003 006 009
 CAPÍTULO 2 - A BACIA PARNAÍBA 2.1. Introdução 2.2. Controle Tectônico da Sedimentação 2.3. Estratigrafia 2.3.1. Grupo Serra Grande 2.3.2. Grupo Canindé 2.3.3. Grupo Balsas 2.3.4. Grupo Mearim 2.4. Aspectos Paleogeográficos 2.4.1. Registros Glacio-sedimentares Silurianos 2.4.2. Registros Glacio-sedimentares Neodevonianos. 	015 017 019 022 024 027 028 029 032 033
 Capítulo 3 - SISTEMAS DEPOSICIONAIS, FACIOLOGIA E ESTRATIGRAFIA	036 036 043 046 048 057 060 062 065 067 068 067 068 069 071 073 073
3.6. Modelos de Estilos Arquiteturais	073

Capítulo 4 - FACIOLOGIA E ARQUITETURA	078
4.1. Introdução	078
4.2. Fácies do Grupo Serra Grande	080
4.2.1. Afloramento Ipú 1	080
4.2.2. Afloramento Jaicós 1	880
4.2.3 Afloramento Jaicós 3	093
4.3. Faciologia do Grupo Canindé	095
4.3.1. Afloramento Itaim-Pimenteiras 1	095
4.3.2. Afloramento Itaim-Pimenteiras 2	098
4.3.3. Afloramento Cabeças 1	107
4.3.4. Afloramento Cabeças 2	123
4.3.5. Afloramento Poti 1	134
4.3.6. Afloramento Poti 2	142
4.3.7. Afloramento Poti 3	148
4.4. Elementos Arquiteturais	154
4.5. Associação de Fácies	156
4.5.1. Formação Cabeças	156
4.5.2. Formações Longá e Poti	158
CAPÍTULO 5 - ANALOGIA DOS DADOS DE SUPERFÍCIE E SUBSUPERFÍCIE	161
5.1. Introdução	161
5.2. Marcos Estratigráficos Utilizados para Analogia	161
5.3. As Seqüências dos Poços Estudados	172
5.3.1 Seqüência Devoniana	172
5.3.2 Seqüência Devoniano-Eocarbonífera	175
5.4. Seqüências dos Afloramentos Estudados	176
5.4.1. Seqüência Devoniana	176
5.4.2. Seqüência Eocarbonífera	180
Capítulo 6. SIMULAÇÃO NUMÉRICA DE ESCOAMENTO DE FLUXO	182
6.1. Introdução	182
6.2. Simulações Numéricas	182
Capítulo 7. CONCLUSÕES	186
REFERÊNCIAS BIBLIOGRÁFICAS	191

LISTA DE FIGURAS E FOTOGRAFIAS

CAPÍTULO 1 Figura 1.1: Localização dos afloramentos da Bacia do Parnaíba estudados no presente trabalho......002 Figura 1.2: Diagrama de uma antena transmissora, onde ε = permissividade dielétrica (Farads/m); σ = condutividade elétrica; e μ = permeabilidade magnética do material......005 Fotografia 1.1: Trabalho de campo para a obtenção de um perfil de reflexão GPR no afloramento CAB-2, com antenas de freqüências Figura 1.3: Fluxograma do processamento, em laboratório, dos dados Figura 1.4: Dados gerais sobre o sistema de informações do Banco de Dados Geológicos Análogos (BDGA)......009 Figura 1.5: Janela de abertura do programa BDGA solicitando os dados Figura 1.7: Apresentação da janela para a localização da bacia no Figura 1.8: Janela para a inclusão, alteração ou exclusão dos afloramentos no BDGA......011 Figura 1.9: Mapa com a localização dos afloramentos contidos no BDGA. Cada quadrado em branco mostrado no mapa representa um Figura 1.10: Janela com as informações disponíveis dos afloramentos no Figura 1.11: Apresentação da janela para a inclusão de dados adicionais Figura 1.12: Janela para exportar dados digitais do BDGA para outro sistema de informação......013 Figura 1.14: Janela gerando dados para impressão dos afloramentos do BDGA......013 Figura 1.15: Arquivo gerado pelo programa BDGA contendo os painéis fotográficos dos afloramentos da bacia arquivada......014

Figura	1.16:	Arquivo	gerado	pelo	programa	BDGA	com	as	fotos	das	
fácies.											

CAPÍTULO 2

CAPÍTULO 3

Figura 3.1	: Definição	dos quatro	o padrões	de canais	fluviais	segundo	OS
conceitos	de Rust (19	78a) e Mial	(1980)				

Figura 3.2: Classificação de padrões de canal fluvial baseada na carga de sedimento, granulometria, poder de transporte e estabilidade relativa do rio (modificado de Schumm, 1981)	039
Figura 3.3: Exemplos reais e esquemáticos de elementos geomorfológicos de intracanal fluvial, de acordo com as definições de Brieley (1996)	041
Figura 3.4: Exemplos reais e esquemáticos de elementos geomorfológicos de margem de canal e de bacia de inundação fluvial, de acordo com as definições de Brieley (1996)	
Figura 3.5: A) Campos de estabilidade de camadas de areia e silte na profundidade de fluxo entre 25 e 40cm (segundo Ashley, 1990). B) Sucessão de acamadamentos desenvolvidos com o aumento da velocidade do fluxo, onde as linhas tracejadas indicam a separação de fluxo (modificado de Simons et al., 1965 e de Blatt et al., 1980)	
Figura 3.6: Modelo de fácies de sedimentação em barra por acreção lateral em migração de meandros (D = dunas; T = barra transversal ou ondas de areia; R = ripples; Allen, 1970)	045
Figura 3.7: A) Relação entre estratos, estruturas sedimentares de dunas 3D e estratificação cruzada acanalada. B) Relação entre ondas de areia (2D) e estratificação cruzada planar (Harms et al., 1975)	045
Figura 3.8: A) Terminologia dos diferentes tipos de estratificação cruzada (Allen, 1963); B) Progradação de forsets e desenvolvimento por migração de ripples ao longo de camadas de topo, onde o aumento da granulometria do forset do estágio 1 para o estágio 2 atua como avalanches (Smith, 1972); C) Estrutura interna de estratificações cruzadas	
Figura 3.9: Estratificação cruzada do tipo hummocky (Hamblin & Walker, 1979; Walker, 1984).	047
Figura 3.10- A)Delta lobado e B) alongados (pé de pássaro); e seus respectivos exemplos atuais.Fontehttp://earthobservatory.nasa.gov/study/astronautphotograp hy/astronaut_phtography2.html	048
Figura 3.11- Integração de perfil estratigráfico e seção transversal de um delta, mostrando ambientes, fácies e respectivas interpretações dos depósitos (modificado de Scruton, 1960); maior variação pode ocorrer no topo da seqüência, onde baías e canais interdistributários são bem desenvolvidos.	
Figura 3.12 - Classificação dos tipos de delta, com base na força relativa do rio ou processos marinhos, como a influência das marés e ondas. A) em planta e B)em perfil. (Modificado de Coleman &Wrigth, 1975 e Miall, 1996).	

Figura 3.13: Plumas flutuantes do delta do rio Amarelo (China) durante as inundações ocorridas entre 1989 e 2000, mostrando a construção de lobos deltaicos de fluxo hiperpicnal
Figura 3.14: Principais tratos de fácies observados em sistemas de deltas fluviais com inundações (modificado de Mutti et al., 2000)
Figura 3.15: Tratos de fácies comumente observados em sistemas de fandeltas: diagrama em seção (A e B) e em planta (C); (modificado de Mutti et al., 2000)
Figura 3.16: Modelo e descrição da geometria dos principais elementos arquiteturais em depósitos fluviais (modificado de Miall, 1985)
Figura 3.17: Hierarquia dos elementos arquiteturais básicos de acordo com os limites da estrutura principal, tomando como exemplo um canal fluvial (modificado de Miall, 1988c)
Figura 3.18: Representações esquemáticas de canais fluviais que mostram a ausência de relação entre a geometria do canal e a geometria de preenchimento do complexo de canais, segundo Miall (1985). Os números sobre cada complexo informam a razão largura/profundidade calculada em canal preenchido numa posição e posteriormente noutra posição. A, D: canais simples; B, E, F: complexos de canais preenchidos formados por migração lateral ou por pequena subsidência contemporânea; C: complexo de canais formados dentro de canais relativamente estáveis sob condições de rápida subsidência
Figura 3.19: Exemplo de elemento arquitetural FM (forset macroform) mostrando a variação da geometria e da estrutura interna: A) segundo Allen (1983) e Kirk (1983); B) conforme Cant & Walker (1978) e Haszeldine (1983a, b)
Figura 3.20: Exemplos de elemento AL (acreção lateral): A) barra de pontal conglomerática (modelo fluvial de Ori, 1979); B) arenitos de granulação média com estratificação cruzada planar (modelo de Beutner et al., 1967); C) arenitos finos com leitos seixosos (modelo de Allen, 1983); D) barra de pontal com dunas e estratificação cruzada por ripples (modelo de Puigdefabregas, 1973); E) barra de pontal com arenitos finos e silte (modelo de Nanson, 1980); F) barra de pontal gigante com granulometria fina (modelo de Massop & Flach, 1983)
Figura 3.21: Relação entre granulometria e padrão dos canais fluviais (elementos arquiteturais baseados em Miall, 1985)075
CAPÍTULO 4 Figura 4.1: Mapa geológico da região que compreende a área estudada com a localização dos afloramentos074
Figura 4.2: Painel fotográfico do afloramento Ipú 1 (IP-1), Formação Ipú do Grupo Serra Grande da Bacia do Parnaíba, nas proximidades do Parque

Nacional da Serra da Capivara, mostrando as quatro fácies nele identificadas	1
Figura 4.3: Divisão faciológica e geometria de algumas estruturas sedimentares encontradas no afloramento IP-1, Formação Ipú do Grupo Serra Grande	0
Figura 4.4: Divisão faciológica e geometria das estruturas sedimentares encontradas no afloramento IP-1, Formação Ipú do Grupo Serra Grande	3
Fotografia 4.1: A) Vista geral da fácies Sp no afloramento IP-1, mostrando sets de estratificação cruzada planar de médio porte, limitados por níveis de cascalho. B) Detalhe	4
Fotografia 4.2: Arenitos grosso com leitos seixosos e estratificação cruzada acanalada da fácies Sp no afloramento IP-1 (Formação Ipú). O retângulo à esquerda situa a tomada fotográfica no afloramento	5
Fotografia 4.3: Fácies Gcm, de conglomerados sustentados por clastos e areia grossa, com estratificação cruzada acanalada, no afloramento IP-1 (Formação Ipú). O retângulo à esquerda situa a tomada fotográfica no afloramento	6
Fotografia 4.4: Níveis conglomeráticos com clastos com até 20cm de diâmetro semelhantes a 'ferro-de-engomar', e estruturas de sobrecarga representando deformação sindeposicional da fácies Gcm no afloramento IP-1	6
Fotografia 4.5: Detalhe de estrutura de deformação nos estratos da Fácies Gcm no afloramento IP-1	7
Fotografia 4.6: Intercalação da fácies FI na fácies Sp, observável no afloramento IP-1, Piauí, mostrando também estratificação cruzada planar e indícios de paleocorrentes de direção NW	8
Figura 4.5: Painel fotográfico do afloramento Jaicós 1 (JC-1), Formação Jaicós do Grupo Serra Grande da Bacia do Parnaíba, próximo à cidade de Vila Nova do Piauí, mostrando as três fácies nele identificadas	9
Fotografia 4.7: Detalhe do 'perfil tipo' do afloramento, salientando as litofácies encontradas no afloramento JC-1 (Formação Jaicós do Grupo Serra Grande)	0
Fotografia 4.8: Estratificação cruzada planar de médio porte da fácies Sp no afloramento JC-109	1
Fotografia 4.9: Conglomerado suportado por clastos e areia grossa da fácies Gcm no afloramento JC-1, Piauí092	2
Fotografia 4.10: Estratificação cruzada planar na fácies Sp no afloramento	

JC-3, com diferentes direções de paleocorrentes na sua porção superior,

sobreposta por estratos com estratificação cruzada planar de baixo ângulo da fácies SI
Figura 4.7: Painel fotográfico do afloramento Itaim-Pimenteiras 1 (ITP-1), Formação Itaim do Grupo Canindé da Bacia do Parnaíba, e suas duas fácies constituintes
Fotografia 4.11: A) Relação espacial das duas fácies areníticas encontradas no afloramento ITP-1, sendo demarcado (linha vermelha) o limite erosivo entre elas. B) Detalhe da superfície erosiva entre as fácies Sp e Sr do mesmo afloramento
Fotografia 4.12: A) Icnofácies Psilonichnus na fácies Sh do afloramento IPT- 2; B) Detalhe
Fotografia 4.13: Sets de estratificação cruzada de baixo ângulo da porção superior da fácies SI no afloramento ITP-2, com indicações de correntes bidirecionais (setas indicam diferentes direções de fluxo)
Fotografia 4.14: Intercalação de silte e arenito, com marcas de ondas, da fácies Sr no afloramento ITP-2, Piauí
Figura 4.8a: Painel fotográfico das seções A e B do afloramento Itaim- Pimenteiras 2 (ITP-1), Formação Itaim do Grupo Canindé da Bacia do Parnaíba, e suas diferentes fácies
Figura 4.8b: Painel fotográfico das seções C e D do afloramento Itaim- Pimenteiras 2 (ITP-1), Formação Itaim do Grupo Canindé da Bacia do Parnaíba, e suas diferentes fácies
Figura 4.8c: Painel fotográfico das seções E e F do afloramento Itaim- Pimenteiras 2ITP-1), Formação Itaim do Grupo Canindé da Bacia do Parnaíba, e suas diferentes fácies
Figura 4.8d: Painel fotográfico das seções G e H do afloramento Itaim- Pimenteiras 2 (ITP-1), Formação Itaim do Grupo Canindé da Bacia do Parnaíba, e suas diferentes fácies
Figura 4.8e: Painel fotográfico das seções I e J do afloramento Itaim- Pimenteiras 2 (ITP-1), Formação Itaim do Grupo Canindé da Bacia do Parnaíba, e suas diferentes fácies
Figura 4.9: Painel fotográfico do afloramento Cabeças 1 (CAB-1), Formação Cabeças do Grupo Canindé da Bacia do Parnaíba, próximo à cidade de Oeiras, Piauí, e suas duas fácies areníticas
Figura 4.10: Modelo esquemático 3D da arquitetura deposicional e de paleofluxos de areia da fácies Sp do afloramento CAB-1, próximo a Oeiras, Piauí

Figura 4.11: Painel fotográfico do afloramento Cabeças 2 (CAB-2), Formação Cabeças do Grupo Canindé da Bacia do Parnaíba, próximo à cidade de Ipiranga, Piauí, com suas duas fácies areníticas
Figura 4.12: Croqui esquemático da localização dos cinco perfis de imagem obtidos por GPR no afloramento CAB-1
Figura 4.13: Croqui esquemático da localização dos quatro perfis de imagem obtidos por GPR no afloramento CAB-2
Figura 4.14: Perfis de imagem a e b obtidos por GPR no afloramento CAB-1 com os principais refletores e respectivas fácies interpretadas
Fotografia 4.15: Estratificação cruzada planar de grande porte com lobos sigmoidais da fácies Sp no afloramento CAB-1, em corte longitudinal com paleocorrente de direção de 230°Az
Fotografia 4.16: Lobos deltaicos retrabalhando barras de embocadura correspondentes a fácies Sp no afloramento CAB-1
Fotografia 4.17: Corte transversal de sets com estratificação cruzada planar de grande porte com sigmóides da fácies Sp no afloramento CAB-1, com paleocorrentes com sentido NW
Fotografia 4.18: Depósito de interlobos composto por silte e areia fina intercalado na fácies Sp do afloramento CAB-1; a série de L1 = lobo 1, L2 = lobo 2 e L3 = lobo 3 indica a seqüência deposicional dos lobos, com direções que sugerem uma migração do fluxo deposicional
Fotografia 4.19: A) Vista geral do afloramento CAB-1 com superfícies de truncamento e depósitos de interlobos. B) Corte longitudinal da estratificação cruzada de grande porte, com paleocorrente de direção NW, e cunha de depósitos de interlobos intercalada na fácies Sp. C) Detalhe de B
Fotografia 4.20: Feição sedimentar que sugere uma estrutura de alívio de pressão (vulcão de areia?) no arenito da fácies Sp no afloramento CAB-1
Fotografia 4.21: Intervalo superior da fácies Sr no afloramento CAB-1, mostrando detalhes de migração de pequenas ripples e estratificação cruzada hummocky gradando para estratificação cruzada tabular de pequeno porte, característico dos tempestitos da Formação Cabeças
Fotografia 4.22: Patamares com domínio de ripples e hummocky da fácies Sr no afloramento CAB-1, mostrando que as direções de paleocorrente indicadas pelas ondas são concordantes com o fluxo principal da sotoposta fácies Sp
Fotografia 4.23: Morfologia de feições do tipo 'dorso-de-arraia', que caracteriza superfícies pertencentes a estruturas do tipo hummocky encontradas na fácies Sr do afloramento CAB-1

Fotografia 4.24: Bioturbação do icnogênero Ophiomorpha na fácies Sr no afloramento CAB-1, característica de ambientes muito rasos
Figura 4.15: Perfil de imagem c obtido por GPR no afloramento CAB-1 com os principais refletores e respectivas fácies interpretadas
Figura 4.16: Perfis de imagem d e e obtidos por GPR no afloramento CAB-1, com os principais refletores e respectivas fácies interpretadas
Figura 4.17: Perfis de imagem a e b obtidos por GPR no afloramento CAB-2, com os principais refletores e respectivas fácies inyterpretadas
Figura 4.18: Perfil de imagem c obtido por GPR no afloramento CAB-2, com os principais refletores e respectivas fácies interpretadas
Figura 4.19: Perfil de imagem d obtido por GPR no afloramento CAB-2, com os principais refletores e respectivas fácies interpretadas
Fotografia 4.25: Vista geral do afloramento Cabeças 2 (CAB-2), mostrando a continuidade lateral de suas fácies
Fotografia 4.26: Estratos com geometria tabular da fácies St sobrepostos por estratos da fácies Sr, no afloramento CAB-2, mostrando o contato erosivo planar, com presença de climbing ripples no topo da fácies Sr
Fotografia 4.27: Contato erosivo, com geometria acanalada, entre as fácies Sr e St no afloramento CAB-2
Fotografia 4.28: Detalhe de climbing ripples presentes na fácies Sr do afloramento CAB-2
Fotografia 4.29: Detalhe do contato da fácies Sr com a fácies sobrposta St, no afloramento CAB-2
Fotografia 4.30: Estrutura secundária de carga de pressão do tipo flame, na fácies SR no afloramento CAB-2131
Fotografia 4.31: Estratificação cruzada acanalada do tipo swaley encontrada na fácies St do afloramento CAB-2132
Fotografia 4.32: Detalhe do contato acanalado da fácies Sr e a fácies St no afloramento CAB-2
Figura 4.20: Painel fotográfico do afloramento Poti 1 (PT-1), Formação Poti do Grupo Canindé da Bacia do Parnaíba, localizado na barragem Salinas, próximo à cidade de Nazaré do Piauí
Figura 4.21: Perfil estratigráfico da seção do afloramento PT-1

Fotografia 4.33: A) Vista geral da fácies Sr no afloramento PT-1, mostrando a intercalação de arenitos e folhelhos com estratificação cruzada hummocky com geometria planar formando lençóis de areia. B) Detalhe
Fotografia 4.34: Estrutura de micro-hummocky na fácies Sr no afloramento PT-1
Fotografia 4.35: Camadas arenosas separadas por folhelhos na fácies Sr no afloramento PT-1
Fotografia 4.36: Camadas espessas de arenitos da fácies Sr na porção superior do afloramento PT-1 (foto de Joel de Castro, fevereiro de. 2003)
Fotografia 4.37: A) Vista geral, em corte longitudinal, do afloramento PT-1, apresentando intercalação de arenitos e folhelhos da fácies Sr. B e C) Detalhe dos folhelhos entre os arenitos, com estratificação hummocky de médio porte na fácies Sr do mesmo afloramento
Fotografia 4.38: Intercalações de follhelhos, arenitos e siltitos da fácies Sh no afloramento PT-1
Fotografia 4.39: Arenitos com estratificação planoparalela gradando para estratos com ripples encontrados na fácies Sh no afloramento PT-1
Fotografia 4.40: Intercalações entre siltitos e arenitos finos na fácies Sh no afloramento PT-1
Figura 4.22: Painel fotográfico do afloramento Poti 2 (PT-2), Formação Poti do Grupo Canindé da Bacia do Parnaíba, e suas duas fácies constituintes
Figura 4.23: Perfil estratigráfico do afloramento PT-2
Fotografia 4.41: Arenitos muito finos intercalados com siltitos arenosos cinzentos, com ciclos granocrescentes e estruturas de climbing ripples da fácies Fl no afloramento PT-2
Fotografia 4.42: Arenitos finos com intercalações de siltitos, com nódulos ferruginosos, da fácies FI no afloramento PT-2
Fotografia 4.43: Contato da fácies Sh (parte inferior da foto) com as camadas com estratificação cruzada festonada da fácies Fl, no afloramento PT-2
Fotografia 4.44: Sets de estratificação cruzada com pequenas marcas onduladas da fácies St do afloramento PT-2
Fotografia 4.45: A) Vista, em corte transversal, da estratificação cruzada com direção NNW da fácies St no afloramento PT-2. B) Vista, em corte longitudinal, do arenito fino com estratificação cruzada festonada da fácies St no mesmo afloramento

Figura 4.25: Perfil estratigráfico da seção do afloramento PT-3 em
Cajazeiras
Fotografia 4.46: Folhelhos com intercalações de siltitos, com acamamento ondulado na fácies FI no afloramento PT-3
Fotografia 4.47: Bioturbação em níveis de folhelhos da fácies Fl no afloramento PT-3
Fotografia 4.48: Arenito fino a muito fino intercalado com níveis de folhelhos e siltitos da fácies Sh no afloramento PT-3 (foto de Joel de Castro em fevereiro de 2003)
Fotografia 4.49: Detalhe das intercalações entre arenitos com climbing ripples e arenitos com laminação ondulada na fácies Sh no afloramento PT-3
Fotografia 4.50: Detalhe das intercalações entre folhelhos e arenitos finos da fácies Sh no afloramento PT-3 (foto de Joel de Castro em fevereiro de 2003)
Fotografia 4.51: Detalhe das intercalações entre folhelhos e arenitos finos com laminação ondulada da fácies Sh no afloramento PT-3
Figura 4.26: Modelo deposicional para a Formação Cabeças (Meso- Neodevoniano) da Bacia do Parnaíba nos afloramentos CAB-1 e CAB-2, com respectivas fácies sedimentares e estruturas características (modificado de Della Fávera, 1990)
Figura 4.27: Modelo deposicional para a fase de transição entre as formações Longá (Neodevoniano) e Poti (Eocarbonífero) da Bacia do Parnaíba nos afloramentos PT-1, PT-2 e PT-3, com respectivas fácies sedimentares (adaptado de Leveel, 1980 apud Reading, 1996)
CAPÍTULO 5 Figura 5.1- A) Mapa com as localização dos poços na Bacia Parnaíba com as seções com direções SE-NW e SW-NE. O retângulo representa a área onde estão localizados os afloramentos para analogia nesta tese. B) Mapa geológico da área onde estão localizados os afloramentos usados para analogia
Figura 5.2 – Seção estratigráfica A-A'. Localiza-se na parte central da bacia, orientada ao longo do "strike" deposicional. O datum é o nível de máxima inundação da seqüência mississipiana (marco M015). A influência das fontes nordeste e sudeste, que agiu durante a deposição da Seqüência devoniana, podem ser visualizadas pelo teor de arenito + siltito nos poços 2CP-1MA e 1-FO-1-MA.

Figura 5.5- Seção Estratigráfica D-D'. Trata-se de seção orientada na direção do mergulho deposicional e localizada na parte central da bacia. Esta seção mostra notavelmente a geometria de uma cunha clástica apresentada pelo intervalo regressíivo da seqüência devoniana (intervalo marco M550 – marco M200), com progressivo decréscimo no teor de areia e adelgaçamento desta seção, desde a borda leste da bacia (1FL-1-PI) até a oeste (2IZST-1-MA). O mesmo efeito pode ser notado, mais discretamente, na Seqüência devoniana-mississipiana (Fm. Poti).

Fotografia 5.1- A) Padrão de empilhamento das camadas agradacionais de ambiente estuarino com estratificação plano paralela e climbing ripples no afloramento IPT-2, próximo da cidade de Itaim. Este afloramento representa o limite inferior da seqüência devoniana, correspondente em subsuperfície ao marco M850. B) Detalhe da ocorrência de icnofácies Psilonichnus da classe Glossifungites, que

caracterizam exposição subaquosa seqüência transgressiva em estuário (marco M850)	. 177
Fotografia 5.2 – Afloramento que caracteriza em subsuperfície o marco M250, que corresponde o intervalo regressivo, com feições acanaladas (lobadas, no centro da fotografia) de silte argiloso da transição entre as formações Pimenteiras e Cabeças. Este afloramento está localizado na saída a norte da cidade de Picos-PI, coordenadas UTM – X: 225612 e Y: 9216604.	. 178
Fotografia 5.3 – Pavimento glacial equivalente ao marco M200 e correspondente à transição entre as seqüências devoniana e devoniana- eocarbonífera, em um afloramento a 17 km da cidade de Cantos do Buriti, pela PI-140, próximo ao Vilarejo Calembe-PI (Coordenadas UTM: X- 733231 e Y- 9087340): A) Vista geral do lagedo na atualidade; B) Seixo pingado em forma de "ferro de engomar"; C) Pavimento estriado com estrias com direção preferencial 300°Az.	. 179
Fotografia 5.4 – Afloramento no km 9 da PI-120, em direção à localidade de Francisco Ayres-PI (Coordenadas UTM X-750551 e Y-9268102). Que representa a transição para um intervalo transgressivo entre os marcos M110 e M050: A) geometria lobada com estratificação cruzada acanalada do intervalo regressivo sobreposto por siltitos transgressivos; B) Detalhe dos pelitos do intervalo transgressivo	. 181
CAPÍTULO 6 Figura 6.1 – Geometria dos domínios utilizados na simulação	. 184

1.1. LOCALIZAÇÃO DA ÁREA DE ESTUDO

Para a realização da presente investigação sobre as seqüências devoniana e eocarbonífera aflorantes da Bacia do Parnaíba, como subsídio análogo para o entendimento de possíveis rochas-reservatório de hidrocarbonetos, foram estudados dez afloramentos selecionados. Localizam-se todos na região central do Estado do Piauí, estando geologicamente inseridos em uma área da borda sudeste da Bacia do Parnaíba (Figura 1.1). Dos dez afloramentos selecionados por sua extensão e/ou representatividade, três mostram estratos silurianos e quatro devonianos. A Tabela 1.1 sintetiza algumas informações básicas (denominação, grupo, formação e localização detalhada) destes afloramentos.

1.2. MATERIAIS E MÉTODOS

A abordagem metodológica aqui utilizada abrangeu essencialmente as seguintes etapas: investigação bibliográfica de estudos prévios relacionados ao tema (Bacia do Parnaíba, sistemas deposicionais, faciologia e Estratigrafia de Seqüências); seleção de afloramentos a serem estudados; aquisição de informações sedimentológicas e estratigráficas detalhadas em uma excursão de campo, utilizando inclusive equipamento de GPR; e processamento, em laboratório, dos dados obtidos.

A primeira etapa seguiu os procedimentos tradicionais da investigação científica em sua parte de revisão bibliográfica. Para a seleção dos afloramentos a serem estudados, foram realizadas curtas visitas preliminares à região para o reconhecimento a área e escolha de exposições significativas para a realização do trabalho, priorizando-se as exposições contínuas de fácies sedimentares que possivelmente permitissem visualizar aspectos tridimensionais (transversais e longitudinais).

Figura 1.1: Localização dos afloramentos da Bacia do Parnaíba estudados no presente trabalho (Mod. CPRM 2002).

 Tabela 1.1: Denominação (referência), grupo, formação e localização dos afloramentos estudados neste trabalho.

Nome do afloramento	Grupo	Formação	Localização e coordenadas (UTM)
lpú 1 (IP-1) Serra Vermelha	Serra Grande	lpú	Km 13 da rodovia PI-140, a partir da cidade de São Raimundo Nonato, Piauí; coordenadas: X - 226077 e Y - 9176898
Jaicós 1 (JC-1)		Jaicós	Km 40 na BR-316, a partir da cidade de Marcolândia, Piauí, nas proximidades da localidade de Vila Nova do Piauí; coordenadas: X - 289765 e Y- 9206848
Jaicós 3 (JC-3)		Jaicós	Km 394 da BR-407, a 33km da cidade Jaicós, Piauí; coordenadas: X - 249382 e Y - 9170100
Itaim/Pimenteiras 1 (ITP-1)	Canindé	Itaim/Pimenteiras	Km 75 da rodovia Pl-140, a partir da cidade de São Raimundo Nonato, Piauí; coordenadas: X - 726392 e Y - 9113554
Itaim/Pimenteiras 2 (ITP-2) Itainópolis		Itaim/Pimenteiras	Km 38 da rodovia PI-245, a partir da cidade de Picos, Piauí, sentido Itainópolis; coordenadas: X - 226077 e Y - 9176898
Cabeças 1 (CAB-1) Oeiras		Cabeças	Km 104 da BR-230, a partir da cidade de Picos, Piauí, na entrada da cidade de Oeiras, coordenadas: X -188857 e Y - 9225236
Cabeças 2 (CAB-2) Ipiranga		Cabeças	Km 50 da BR-316, a partir da cidade de Picos, Piauí, sentido Teresina; coordenadas: X - 197270 e Y- 9244978
Poti 1 (PT-1) Barragem Salinas		Poti	Km 70 apartir da cidade de Oeiras-Pl pela BR-230, nas proximidades da cidade de Nazaré do Piauí-Pl.
Poti 2 (PT-2) Riacho Jenipapeiro		Poti	Km 10 da Pl 120 (não pavimentada) proximo a cidade de Francisco Ayres. O acesso a essa estrada é dado pelo km 32 da BR 343 apartir do entroncamento com a BR 230.
Poti 3 (PT-3) Cajazeiras		Poti	Km 68 apartir do afloramento do Riacho Jenipapeiro, porém no km 36 (cidade de Arraial-PI) deve-se seguir pela PI 239 em direção a Cajazeiras-PI até o km 32.

1.2.1. Aquisição de Dados de Campo

Nessa etapa de trabalho, a aquisição de informações observáveis nos afloramentos, incluiu a descrição e elaboração de perfis faciológicos, a obtenção de painéis fotográficos, a coleta de amostras para a confecção de lâminas petrográficas para caracterização mineralógica e análise estimada da porosidade,

4

e a aquisição de dados de subsuperfície através de equipamento de GPR (*Ground Penetrating Radar*) nos afloramentos CAB-1 e CAB-2.

O GPR é um método eletromagnético que emprega ondas de rádio em alta freqüência (normalmente entre 10 e 1000MHz) para localizar estruturas e feições geológicas rasas em subsuperfície. A técnica na qual se baseia o GPR é similar à técnica de reflexão sísmica e de sonar, com a exceção de que o GPR é baseado na reflexão de ondas eletromagnéticas e não sonoras. O GPR é um método geofísico no qual uma antena emissora emite uma onda eletromagnética que penetra no subsolo, e outra antena recebe os sinais em forma digital, cujo os sinais podem ser graficamente analisadas. Ao percorrer em subsuperfície, a onda encontra superfícies que são penetradas e ou refletem parcialmente. A outra parte da onda continua se propagando, porém, à medida que a energia se propaga, sua amplitude se torna tão pequena que pode ser confundidos com os ruídos ambientais. Assim, o GPR permite obter uma imagem de alta resolução da subsuperfície rasa através da transmissão de um curto pulso de alta freqüência que gera ondas eletromagnéticas (EM), que é, por sua vez, repetidamente radiada para dentro do subsolo por uma antena transmissora colocada na superfície (Figura 1.2).

A propagação do sinal EM depende da freqüência do sinal transmitido e das propriedades elétricas dos materiais (condutividade elétrica e permissividade dielétrica), que são principalmente dependentes do tipo de rocha, e conteúdo de água. As mudanças nas propriedades elétricas em subsuperfície fazem com que parte do sinal seja refletido. As ondas de radar refletidas em subsuperfície são recebidas através de outra antena, denominada de antena receptora, também colocada na superfície do terreno. A energia refletida é registrada em função do tempo de percurso, que é amplificada, digitalizada e gravada no disco rígido de um computador *note book*, ficando os dados prontos para processamento posterior. No microcomputador, os dados são processados utilizando o s*oftware Gradix*, utilizando-se filtros e outros processos digitais para melhorar a qualidade da linha, eliminando as indesejáveis interferências.

O uso do GPR nesta pesquisa teve como objetivo principal avaliar sua sensibilidade para o reconhecimento indireto de estruturas sedimentares e limites entre unidades faciológicas em afloramentos. Assim, foi realizado um levantamento segundo intervalos paralelos e perpendiculares ao fluxo, Foi utilizado um equipamento Mala-Ramac, com antena de 100MHz, que pode mapear até 25m, profundidade ideal para os objetivos aqui propostos. Trabalhos com tal equipamento têm mostrado que sistemas com uma antena de freqüência central em 100 MHz, oferece o melhor resultado de penetração, resolução, variação de freqüências e portabilidade do sistema (Davis & Annan, 1989). A profundidade de penetração da onda de radar depende da condutividade elétrica, da constante dielétrica e das freqüências centrais das antenas (Olhoeft, 1984). Foram efetuados 445m de caminhamento para obtenção de linhas de GPR, distribuídos em nove perfis (Figuras 4.8-4.15).

Figura 1.2: Diagrama de uma antena transmissora, onde ε = permissividade dielétrica (Farads/m); σ = condutividade elétrica; e μ = permeabilidade magnética do material.

O equipamento é leve, portátil e todo sistema de registro é digital. O sistema consiste de seis unidades acessadas via computador: duas antenas (uma transmissora e uma receptora), uma unidade eletrônica transmissora, uma unidade eletrônica receptadora, uma unidade de controle central e um computador *note book*. O arranjo de campo para a obtenção de um perfil de reflexão de GPR utilizado nesta pesquisa é visualizado na Fotografia 1.1, onde a unidade de controle central e a bateria são acoplados nas costas do operador.

6

Fotografia 1.1: Trabalho de campo para a obtenção de um perfil de reflexão GPR no afloramento CAB-2, com antenas de freqüências centrais em 100Mhz.

1.2.2. Processamento de Dados em Laboratório

Os trabalhos de laboratório consistiram no processamento e interpretação das informações obtidas no campo e montagem de painéis fotográficos para a formulação dos modelos geológicos e numéricos. Os métodos empregados na elaboração de modelos dos análogos de reservatórios constaram da identificação das principais feições geológicas, da geometria, orientação e arquitetura deposicional em 2D das unidades aflorantes que são denominadas como radarfácies.

O processamento dos dados de GPR foi efetuado no Laboratório de Geofísica da Universidade Federal do Rio de Janeiro, através do programa *Gradix-Ekko pulse*, seguindo as etapas de edição dos dados, de processamento do sinal e de apresentação da imagem processada (Figura 1.3). A edição dos dados permite corrigir erros no cabeçalho e no arquivo de dados, manipular os dados para melhorar a apresentação, reverter a direção do perfil, incluir informações da topografia e editar traços, podendo incluir comentários, descartar traços e mudar a polaridade (Annan, 1993). Esses procedimentos são normalmente atividades dependentes do intérprete, sendo assim bastante subjetivos.

Um importante aspecto no processamento de dados de GPR é o entendimento das necessidades do ganho no tempo. Este conceito refere-se a um ganho de tempo aplicado aos dados, que aumenta com o tempo depois do pulso transmitido. O aumento da função de ganho no tempo é realizado para ajustar a parte atenuada (enfraquecida) do sinal, aumentando sua amplitude em função do tempo.

A filtragem temporal (ou uso de filtro DC) é utilizada para remover os componentes de dados com baixa freqüência, permitindo ao interprete corrigir o tempo zero para todo o perfil. Esse passo é frequentemente referido como *dewowing* dos dados (Gerlitz, 1993). A filtragem temporal é uma das técnicas mais simples e mais potentes para a análise de dados de GPR. Ela atua ao longo de um traço, podendo separar as respostas ou remover os sinais espúrios localizados. As filtragens temporais mais comumente adotadas são: *band pass* (passa lateral), *low pass* (passa baixa) e *high pass* (passa alta). No processo de filtragem temporal, analisa-se visualmente o espectro de amplitude do sinal em função da freqüência,

8

buscando determinar, dentro de uma delimitada banda, onde estão os sinais de maior amplitude. Logo após, definem-se os vértices dos filtros, ou seja, escolhem-se os limites na freqüência dos filtros. O uso apropriado desta filtragem pode melhorar a razão sinal/ruído, sem alterar significativamente os dados, realçando a estrutura que está sendo investigada.

A filtragem espacial pode ser aplicada ao perfil GPR para remover ou enfatizar diferentes tipos de variação espacial. A filtragem espacial de passa baixa retém apenas os comprimentos de onda mais longos, realçando a continuidade lateral dos refletores horizontais (estratigrafia), enquanto elimina rapidamente os refletores inclinados, os pontos de difrações e os ruídos aleatórios.

A migração é outra etapa importante no processamento de dados obtidos por GPR, pois permite reconstruir a imagem que melhor representa a superfície (Sheriff, 1991). Nesta etapa, os dados registrados e processados no domínio (x, t) são convertidos para o domínio (x, z), isto é, as reflexões aparentes identificadas nos perfis são recolocadas em suas verdadeiras posições espaciais de subsuperfície e as hipérboles de difrações são colapsadas em um só ponto. Como na sísmica de reflexão, a maior parte dos dados de GPR é apresentada sob a forma de *wiggle trace*, que mostra a amplitude do sinal em função do tempo. Mas também pode ser apresentada em *gray scale* ou em *color coding*.

Correlacionando os painéis fotográficos dos afloramentos e seções estratigráficas, foram delimitados, dimensionados e posicionados no espaço unidades sedimentares, obtendo-se assim uma arquitetura deposicional 2D. Esta quantificação dos atributos arquiteturais e geométricos dos estratos e da variação lateral das feições sedimentares possibilitou a elaboração de modelos numéricos a partir dos modelos geológicos (por exemplo, mapa de domínios a partir do mapa de litofácies), com as respectivas heterogeneidades, atribuídas a diferenças de propriedades petrofísicas, como porosidade e permeabilidade. Esta modelagem foi elaborada pela equipe do PADMAC (Processamento de Alto Desempenho em Mecânica Computacional) da Universidade Federal de Pernambuco, através do programa *Ebb_Fflow_01 (Edge Based Biphasic Fluid Flow*, versão 01). Explorando uma das principais características do Método dos Elementos Finitos, foi possível obter uma discretização de domínio (malha) bastante fiel à geometria 2D real do análogo de reservatório. A geometria numérica, relacionada às coordenadas X e Y
9

de cada domínio foi gerada através do programa *MarkGraf for Windows 95* versão 2.0β, desenvolvido pela COPPE da Universidade Federal do Rio de Janeiro.

A modelagem numérica realizada no presente trabalho restringiu-se a um afloramento da Formação Cabeças (CAB-1), em virtude da presença de certas feições mais favoráveis (textura, estruturas e arranjo interno), sendo gerada uma série de simulações de fluxos de fluidos.

1.3. BANCO DE DADOS

Para o arquivamento e futura disponibilização das fotografias obtidas ao longo desta tese, foi utilizado o *software* denominado BDGA (Banco de Dados Geológicos Análogos; Figura 1.4), desenvolvido pela Universidade Estadual do Rio de Janeiro, com o financiamento do Projeto Análogos, através do Núcleo de Estudos de Arquitetura de Reservatório (NEAR) da Universidade Federal de Pernambuco. Este programa arquiva imagens (fotografias, perfis GPR, lâminas petrográficas, *etc.*) e disponibiliza para futuros estudos. O objetivo principal do programa consiste no armazenamento organizado de imagens e sistematização das feições faciológicas dos afloramentos de uma determinada bacia sedimentar. Com o fácil manuseio das fotografias inseridas no programa, é possível uma visita virtual ao afloramento de forma didátical.

Figura 1.4: Dados gerais sobre o sistema de informações do Banco de Dados Geológicos Análogos (BDGA).

O programa BDGA pode atender a vários usuários no armazenamento de várias bacias ou de uma bacia sob diferentes enfoques, através de *logins* e senhas individualizadas dos usuários. Quando é acionado o ícone do programa na tela de trabalho, a janela de abertura do programa (Figura 1.5) é apresentada, solicitando as informações dos usuários, criadas pelo administrador do programa.

Projeto Análogo	s - Banco d	le Dados Geo	lógico (BDGA).		100
NEAR	P.10.	BR TARALO	FINEP	Usuário.: petrovic Senha.: *****	▼ X Cancel
	UFRJ	٢	UNISINOS		

Figura 1.5: Janela de abertura do programa BDGA solicitando os dados do usuário.

Após o atendimento correto dos campos solicitados, é acionado o programa direcionado ao usuário, para o cadastro da bacia desejada (Figura 1.6).

Figura 1.6: Apresentação da janela para o cadastro da bacia.

Nesta etapa, o usuário pode inserir, em formato '.jpg' (Figura 1.7) e em qualquer escala, o mapa de uma ou mais bacias no comando correspondente, para servir como localizador dos afloramentos.

Seção.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I 🕈 🛃		
Cadastro de Bacia	s - Janela: 1			
Nova Nova Nova Aterar Aterar Oracella Concella Con	Id Id bit Cadastrais po da Bacia: FRA ci. Sacia do Pamaliba cão: Pisuí denadas Silo.000000 11.: 3640.000000 Y1.: 3640.000000 17. T.0 rivações Silo.000000	Mapa Geológico da Bacia	_ 32	
Excluir		 Trocar Mapa		

Figura 1.7: Apresentação da janela para a localização da bacia no programa BDGA.

No programa, os afloramentos são denominados como seções (afloramentos = seções), que são selecionados a partir do comando "arquivo" para que os afloramentos possam ser (incluídos, alterados ou excluídos; Figura 1.8).

Figura 1.8: Janela para a inclusão, alteração ou exclusão dos afloramentos no BDGA.

Após a seleção de uma das alternativas oferecidas pelo comando de cadastro da seção, o usuário terá acesso à localização da mesma no contexto da bacia, para que possa ser realizada a operação solicitada (Figura 1.9). Após a seleção da seção, é exposto o afloramento com as devidas informações. Para a visualização das informações sobre o afloramento, basta *clicar* no quadrado que se deseja a informação: nome do afloramento, locação, coordenadas, cidade, Estado, principal formação, litologia, idade geológica, fotografias, amostras e perfis de GPR (Figura 1.10).

Figura 1.9: Mapa com a localização dos afloramentos contidos no BDGA. Cada quadrado em branco mostrado no mapa representa um afloramento armazenado.

nquivo Editar Da	dos Coletados Janelas Help Fecharo Afloramento	
HE Real pecar	C Secal da Bolda sudeste da Bacta do Par 👷 🚱 🚳	
Afloramento.: Aflora	mento Ipiranga Nº de Fotografias.: 24 Nº de Amostras.: 0 Nº de GPR.: 1	
🖇 Afloramento I	N°.: PBA/001/0001 Janela.:1	
Salvar	Nome: Afloramento lpiranga Coordenadas, Hemistério: IS X - 197270.00	
S Cancelar	Locação. BR-316 km 50 (sentido Picos - Teresina) Y.: 9247978,00	
Fotomontagem	Cidade : Ilpiranga do Piaul Estado: PI Pais: BRA Z.: 497,00	
Doservações	Pertil Geologico Formação Principal Cabeças Litologia Arrento médio a grosso e intercalações de site e arento fino Lidade Geológica: Frastinino-Fameriano (Devoniano)	
	Fotografias	
	D+ Sat	

Figura 1.10: Janela com as informações disponíveis dos afloramentos no BDGA.

Neste estágio, podem ser inseridos ainda alguns dados adicionais, como perfis estratigráficos, outros mapas, fotografias extras e aéreas (Figura 1.11).

😁 NEAR - Núcleo de Estud	de Arquitetura de Reservatório - Projeto Análogos - petrovic - Bacia Padrão do Sistema: PBA	
Arquivo Editar Configurações	anelas Help	······································
Cadastro de Seções	da sudeste da Bacia do Par 🛛 🎊 🔏 🗱 🔛	
Cadastro de Afloramentos		
Dados Adcionais (Seção)	Perfil Estatigrafico	
🛃 Fechar Seção	Mapas	
Ferramentas	Fotografias Aéreas	
Relatorios		
Trocar de Usuario		
Sair		

Figura 1.11: Apresentação da janela para a inclusão de dados adicionais no BDGA.

O usuário pode ainda solicitar relatórios referentes a todos os dados armazenados em arquivos impressos ou digitais (CDS ou disquetes), através da opção 'arquivo'. Se optar pela forma digital (Figura 1.12), deve escolher a opção 'ferramentas' e selecionar 'exportar dados (*back up*)'; se optar pela forma impressa (Figura 1.13), deve-se escolher 'relatórios', onde são encontradas as seguintes opções: 'resumo de bacia', 'listagem geral de afloramentos' e 'listagem geral de fotografias'.

😎 NEAR - Núcleo de Estud	os d	e Arquitetura de Reservatório	- Projeto Aná	ilogos - petrovic - Be	acia Padrão do Sistema	: PBA	- 6 🛛
Arquivo Editar Configurações	Jar	elas Help					
Cadastro de Seções	•		2 A		3		
Cadastro de Afloramentos							
Dados Adrionais (Seção)	•						
Fechar Seção							
Ferramentas	•	Preencher Automaticamente					
Relatorios	•	Exportar Dados (Back-Up)					
Trocar de Usuario		Importar Dados (Restore)					
Sair	1						

Figura 1.12: Janela para exportar dados digitais do BDGA para outro sistema de informação.

ivo Editar Configurações	Jane	elas Help	
Cadastro de Seções Cadastro de Afloramentos	;	B B	
Dados Adcionais (Seção)	•		
Fechar Seção Ferramentas	,		
Relatorios	•	Resumo de Bacia	
Trocar de Usuario Sair		Listagem de Seções Listagem Geral de Afloramentos	

Figura 1.13: Apresentação da janela para imprimir relatórios do BDGA.

Para o resumo dos afloramentos da bacia, é necessário clicar na opção 'resumo da bacia' para que seja gerado o relatório contendo as fotos dos painéis fotográficos de cada afloramento (Figuras 1.14 e 1.15).

NEAR - Núcleo de Estudos (de Arquitetura de Reservatório - Projeto Análogos - petrovic - Bacia Padrão do Sistema: PE	
Seção.		
	Impressão de Resumo da Dacia 🛛 🕅	
	Selecione a Bacia e Clique em OK	
	PBA Bacia do Parnaiba V K V Fechar	
	mprimindo	
	Preparando o relatório	

Figura 1.14: Janela gerando dados para impressão dos afloramentos do BDGA.

Figura 1.15: Arquivo gerado pelo programa BDGA contendo os painéis fotográficos dos afloramentos da bacia arquivada.

Para obter um resumo das fácies litológicas observadas nos afloramentos da bacia é utilizado o mesmo procedimento, porém, na opção 'listagem geral das fotografias' (Figura 1.16).

Figura 1.16: Arquivo gerado pelo programa BDGA com as fotos das fácies.

2.1. Introdução

A Bacia Parnaíba está inserida na plataforma Sul-americana (Figura 2.1), sobreposta a um embasamento cristalino cratonizado após o término do evento Brasiliano, datado do final do Proterozóico e início do Cambriano. Esta bacia foi classificada por Asmus & Porto (1972) como cratônica tipo I, por Brito Neves (1985) como intracratônica, e por Figueiredo & Gabaglia (1986) como fratura interior passando a sinéclise interior continental. Essas classificações refletem a evolução dos conhecimentos sobre a origem e evolução das bacias paleozóicas, onde esta última classificação é mais relacionada à indústria de petróleo. O distanciamento geográfico dessa bacia dos principais centros de pesquisa do Brasil, aliado às pela Petrobras, contribuiu para que ela permaneça como a menos conhecida das bacias paleozóicas do Brasil (Lima Filho, 1999).

Com o início da prospecção petrolífera pela Petrobras na Bacia Parnaíba na em meados da década de '70, foi dado um salto quantitativo e qualitativo no seu conhecimento litoestratigráfico, paleontológico e paleoambiental, observado pelos trabalhos de Andrade & Daemon (1974), Daemon (1974 e 1976), Carozzi *et al.* (1975), Della Fávera (1980, 1982, 1984 e 1990), Quadros (1982), Caputo (1984) e Góes *et al.* (1990). Na mesma época, surgiram também diversas contribuições de pesquisadores universitários da UFPA, UFRJ, UFPE, UFC, UFRN, UFOP e USP, como Suguio & Fúlfaro (1977), Mabesoone (1977), Campanha & Rocha Campos (1979), Faria Jr. & Truckenbrodt (1980), Assis (1980), Coimbra (1983), Cordani *et al.* (1984), Faria Jr. (1984), Cunha (1986), Caldas *et al.* (1989), Lima Filho (1991a), Lima Filho & Rocha Campos (1992 e 1993), Anelli *et al.* (1992 e 1993), Anelli (1994), Ianuzzi (1994), Góes (1995), Lima Filho *et al.* (1995), Lima Filho & Anelli (1997), Lima Filho (1999), Metelo (1999), Agostinho (1999), Agostinho *et al.* (2001), Agostinho & Viana (2001) Santos *et al.* (2001), Campelo (2002), Rodrigues (2002) e Young (2003).

Figura 2.1: Localização da Bacia Parnaíba, com dados estruturais e estratigráficos. (Mod. de CPRM 2002).

2.2. Controle Tectônico da Sedimentação

O desenvolvimento tectono-sedimentar da Bacia Parnaíba é atribuído à estruturação precursora relacionada aos pulsos terminais do Ciclo Brasiliano (cerca de 500Ma), responsável pela formação de grábens (Figura 2.2) distribuídos por toda a bacia, com eixos orientados de nordeste a norte. A influência desta tectônica no desenvolvimento da sedimentação pós-ordoviciana marcou pronunciadamente as primeiras fases deposicionais na bacia.

Figura 2.2: Seção geológica (A-B) esquemática da Bacia Parnaíba (Góes et al., 1994).

Cunha (1986) reconheceu a enorme influência dos pulsos termais do Ciclo Brasiliano cambro-ordovicianos sobre a sedimentação subseqüente da Bacia Parnaíba. Em função desta tectônica terminal, formaram-se grábens ou riftes precursores, com eixos orientados de nordeste a norte-sul (Figura 2.3), preenchidos por sedimentos imaturos. As áreas subsidentes dos riftes precursores e o lineamento denominado Picos-Santa Inês (Cunha, 1986 e Góes *et al.*, 1989) influenciaram principalmente na sedimentação ocorrida durante o Devoniano.

A evolução termo-mecânica da área resultou numa grande depressão ordoviciana, sobre a qual se depositaram sedimentos flúvio-deltaicos a marinhos rasos do Grupo Serra Grande. O final desta sedimentação reflete os efeitos da orogenia caledoniana, que causou uma discordância de caráter regional (Góes *et al.*, 1990). O desenvolvimento contínuo dos processos termais, aliado à influência de natureza flexural, resultou num notável aumento da sedimentação durante o

Santos, V.H

Devoniano, registrado pela Formação Jaicós do Grupo Serra Grande. O término dessa sedimentação é caracterizado por uma expressiva discordância regional associada aos efeitos da Orogenia Eoherciniana ocorrida no Eocarbonífero, também representada na porção central da bacia por falhamentos normais e estruturas ligadas à falhas reversas (Góes *et al.*, 1990).

Figura 2.3: Relação entre os eixos deposicionais dos grupos Serra Grande e Canidé, e os lineamentos transbrasilianos e Picos-Santa Inês (segundo Góes *et al.*, 1990).

Acima desta discordância regional, a sedimentação recomeça durante o Neocarbonífero, com progressiva desertificação e deslocamento de depocentros para a parte mais central da bacia. Esta fase inicial de continentalização corresponde ao Grupo Balsas (Góes *et al.*, 1990). No Jurássico, os efeitos da tectônica extensional entre os continentes sul-americano e africano provocavam o magmatismo intrusivo e extrusivo, seguido da deposição clástica, do Grupo Mearim: formações Pastos Bons e Corda (Góes *et al., op. cit.*). O Cretáceo está representado na bacia por duas fases distintas. A primeira está relacionada a eventos tectônicos neocomianos, representada por falhas reversas e dobramentos compressivos com *trends* em direção noroeste (Góes & Feijó, 1994). A segunda fase

Santos, V.H

é o encerramento do ciclo sedimentar, com uma deposição lacustre a continental das formações Codó/Grajaú e Itapecurú, limitadas à porção norte-noroeste da bacia (Góes *et al.*, 1990).

2.3. Estratigrafia

O arcabouço litoestratigráfico da Bacia Parnaíba, desde Small (1914), vem sendo modificado por vários autores (Figura 2.4), como Plummer *et al.* (1948), Campbell *et al.* (1949), Kegel (1953), Mesner & Wooldridge (1964), Aguiar (1971), Brito (1979), Quadros (1982), Caputo & Lima (1984), Melo (1988), Grahn (1992), Loboziak *et al.* (1992) e Góes & Feijó (1994). Estas propostas são tidas como trabalhos-referência, tendo por base a 'seção tipo' definida por Kegel (1953). A proposta estratigráfica adotada neste trabalho é a mais recente (Góes & Feijó, 1994), baseada em dados de subsuperfície da Petrobras (Figura 2.5).

A partir de Figueiredo & Gabaglia (1986), há uma tendência em considerar esta bacia como policíclica, inclusive com a separação em várias "sub-bacias". Góes & Feijó (1994) denominaram de Província Sedimentar do Meio Norte o conjunto das rochas paleo-, meso- e cenozóicas compartimentada em diferentes bacias com gênese e idades distintas, denominadas de Bacia Parnaíba, Bacia Alpargatas, Bacia do Grajaú e do Espigão-Mestre. Para esses autores, a Bacia Parnaíba, com uma área aproximada de 400.000km² e 3000m de espessura de rochas siliciclásticas e carbonáticas, representa a porção remanescente de uma extensa sedimentação afro-brasileira, envolvendo três grandes ciclos transgressivoregressivos que ocorreram desde o Siluriano até a continentalização da bacia (Triássico), representados pelos grupos Serra Grande, Canindé e Balsas.

Já a anfíclise das Alpargatas, segundo Góes & Feijó (1994) com espessura de cerca de 200m, seria o resultado de eventos precoces (jurássicos) relacionados à abertura do Atlântico Sul. Nesse período, ocorreu o abatimento da região central da Província Sedimentar do Meio Norte, com a instalação de um sistema de riftes que contém rochas sedimentares flúvio-lacustres (formações Pastos Bons e Corda) e vulcânicas associadas, de idade jurássica e eo-cretácica (formações Mosquito e Sardinha).

ERA	PERIODO	ÉPOCA	IDADE		PLUMMER, 1949	CAMPBELL	et al. 1949	KEGE	L, 1953	MESNER & V	WOOLDRIDGE 964	AGUIAR, 1971	CAROZZI et. Al., 1975
	CARBONÍFERO	NEO	STEPHANIANO WESTPHALIANO NANURIANO VISEANO	_	FORMAÇÃO TRANQUEIRAS FORMAÇÃO CABEÇAS	FORMAÇÃO SERRA GRANDI	CABEÇAS	FORMAÇ	ÃO PIAUÍ	FORMAÇA	ÃO PIAUÍ	FORMAÇÃO PIAUÍ	
0		NEO	TOURNAISIANO STRUNIANO FRNENNIANO		1		lpÜ	FORMAÇÃO POTI	Mb. SUPERIOR	FORMAÇ		FORMAÇÃO LONGÁ	
ÓIC	DEVONIANO	MESO	GIVETIANO		FORMAÇÃO	FORMAÇÃO	PICOS	FORMAÇÃO	Mb. IPIRANGA Mb. OEIRAS	FORMAÇÃO	CABEÇAS	FORMAÇÃO CABEÇAS	FORMAÇÃO CABEÇAS
LEOZ	DEVONIANO	EO	EMSIANO SIEGENIANO PRAGHIANO		PIMENTÉIRA	PIMENTEIRAS	OITIS	FORMAÇÃO PIMENTEIRA	Mb. PASSAGEM Mb. PICOS Mb. ITAIM	FORMAÇÃO	Mb. PICOS	FORMAÇÃO PIMENTEIRAS	PIMENTEIRAS
PAI	SILUPIANO	NEO	LUDLOVIANO WENLOCKIANO		l		1	FORMAÇÃO SE	RRA GRANDE		Mb. ITAIM		FORMAÇÃO JAICOS
	CAMBRO-	EO	LLANDOVERIANO ASHGILLIANO CARADOCIANO	435ma						FORMAÇÃO SERRA GRANDE	Mb. INFERIOR	FORMAÇÃO TOMBADOR	FORMAÇÃO MIRADOR FORMAÇÃO TOMBADOR
PRÉ	CAMBRIANO			570ma								NÃO IDENTIFICADO	DCres 4
ERA	PERIODO	ÉPOCA	IDADE		BRITO, 1979	QUADRO	S, 1982	CAPUTO,	1984a	MELO, 19	988a	GRAHN, 1992	LOBOZIAK et al., 1992
PALEOZÓICO	CARBONIFERO DEVONIANO SILURIANO CAMBRO- ORDOVICIANO	NEO EO NEO EO EO EO	STEPHANIANO WESTPHALIANO NANURIANO VISEANO TOURNAISIANO STRUNIANO FRNENNIANO FRIENIANO GIVETIANO EIFELIANO EIFELIANO SIEGENIANO SIEGENIANO SIEGENIANO UDLOVIANO WENLOCKIANO LLANDOVERIANO CARADOCIANO	- 345ma - 385ma - 435ma 450ma 570ma	FORMAÇÃO POTI IMPERATRIZ CORMAÇÃO LONGA FORMAÇÃO LONGA CABEÇAS U FORMAÇÃO PIMENTEIRA CABEÇAS CABEÇAS CORMAÇÃO PIMENTEIRA CORMAÇÃO POTI FORMAÇÃO POTI FORMA FOR	FORMAÇÃO FORMAÇÃO FORMAÇÃO PIL FORMAÇÃO FORMAÇÃO FORMAÇÃO F. MIRADOR	D POTI LONGA CABEÇAS MENTEIRA ITAIM ITAIM	FORMAC FORMACA FORMACA FORMACA Fm TIANU Fm TIANGUA Formaca FORMACA	ÇÃO POTI IÇÃO CABEÇAS O PIMENTEIRA ÇÃO JAICÓS RMAÇÃO IPÚ	OESTE Fm. LONGA Fm. PIMENTEIRA SERRA GRANDE MD. ITAIM Fm	Fm. LONGA Fm. CABEÇAS n. PEMENTEIRA SERRA GRANDE Mb. ITAM	Prin LONGÁ PEMENTEIRA PEMENTEIRA PORMAÇÃO JAICÓS FORMAÇÃO JAICÓS	FORMAÇÃO POTI FORMAÇÃO LONGÁ FORMAÇÃO PRENTEIRA FORMAÇÃO PRENTEIRA FORMAÇÃO PIMENTEIRA FORMAÇÃO ITAIM
PRÉ	CAMBRIANO			570ma									

Figura 2.4: Comparação de colunas cronoestratigráficas da Bacia Parnaíba elaboradas por Plummer (1949), Campbell *et al.* (1949), Kegel (1953), Mesner & Wooldridge (1984), Aguiar (1971), Carozzi *et al.* (1975), Brito (1979), Quadros (1982), Caputo (1984a), Melo (1984a), Granh (1992) e Loboziak *et al.*, (1992).

Figura 2.5: Carta estratigráfica da Bacia Parnaíba (Góes & Feijó, 1994).

No Cretáceo, com a efetiva abertura do Atlântico Sul, foram gerados novos depocentros, ao norte denominado Bacia do Grajaú, com sedimentação eólicolacustre (formações Codó, Grajaú e Itapecurú) que atinge 800m de espessura, e a sul, denominado Bacia Espigão Mestre, com depósitos predominantemente flúvioeólicos (Grupo Areado e Formação Urucuia) de cerca de 400m de espessura (Figueiredo & Gabaglia, 1986),

Assim sendo, e seguindo o proposto por Góes & Feijó (1994), a Bacia do Parnaíba está representada apenas por rochas paleozóicos, correspondentes aos grupos Serra Grande, Canindé e Balsas, que tiveram um desenvolvimento tectônico e sedimentar associado à subsidência do embasamento da bacia dentro do contexto evolutivo do paleocontinente Gondwana. Os aspectos tectônicos sedimentares observados após o Grupo Balsas estão diretamente associados ao processo de ruptura do Gondwana, sendo considerados como bacias de evolução distinta da Bacia do Parnaíba, de acordo com o sugerido por Rosseti *et al.* (2001).

2.3.1. Grupo Serra Grande

O termo Serra Grande foi proposto por Small (1914) para descrever a seção composta por arenitos, conglomerados e calcários da Bacia do Parnaíba e calcários da Bacia de Ubajara, com espessura de cerca de 900m. Kegel (1953) considerou esta terminologia como formação, excluindo os carbonatos e referindo-se a seqüência sedimentar inferior da bacia, baseando-se na presença de uma discordância angular que separa as rochas destas duas bacias. Carozzi *et al.* (1975) elevaram esta formação à categoria de grupo, e Caputo (1984) e Caputo & Lima (1984) propuseram a subdivisão do Grupo Serra Grande em três formações (Ipú, Tianguá e Jaicós), como é atualmente aceito.

O termo Ipú foi introduzido por Campbell (1948), que dividiu a então Formação Serra Grande em duas camadas, e usou este termo para se referir às camadas inferiores de conglomerado. O uso do termo na categoria de formação foi adotado por Caputo (1984) e Caputo & Lima (1984). A espessura máxima da Formação Ipú é de 300m (na região NE da bacia), sendo formada por uma seqüência de arenitos, arenitos conglomeráticos, conglomerados e diamictitos. Apenas uma espécie fóssil foi encontrada até o momento, sendo identificada como um icnogênero (*Arthrophycus* sp.; Caputo, 1984), de idade ordoviciana/ siluriana. Pela ausência de fósseis mais diagnósticos, a idade de deposição da Formação Ipú variou ao longo do tempo, havendo entretanto a tendência recente de considerá-la mesmo como ordoviciana a siluriano. Assim, baseando-se em correlações com unidades litoestratigráficas supostamente crono-equivalentes de outras bacias ou em idades de formações fossilíferas sobrejacentes, Plummer *et al.* (1948 *apud* Batista *et al.*, 1984) a consideraram carbonífera; Blankennagel (1952, *apud* Caputo, 1984), Kegel (1953) e Quadros (1982), eodevoniana; Muller (1962), Mesner & Wooldridge (1964) e Aguiar (1971) a dataram como siluro-devoniana, e Moore (1963 *apud* Caputo, 1984) como ordoviciana ou eo-siluriana. Os ambientes deposicionais reconhecidos na Formação Ipú são associados a leques aluviais de origem glacial (depósitos de *sandur* e *out-wash*) e deltaicos, no interior da bacia, e à plataforma marinha rasa, nas partes mais distais (Caputo, 1984; Caputo & Lima, 1984). As melhores exposições encontram-se na região centro-leste da bacia.

O termo Tianguá foi proposto por Rodrigues (1967, *apud* Batista *et al.*, 1984), na categoria de membro, referindo-se a folhelhos e arenitos finos que ocorrem sobrepostos a Formação Ipú. Carozzi *et al.* (1975) elevaram-no à categoria de formação, e Caputo (1984) subdividiu esta formação, cuja espessura máxima em subsuperfície é de 270m, em três membros, denominados informalmente de 1, 2 e 3. A formação é constituída por folhelhos cinzento-escuros a negros com arenitos intercalados. Os macrofósseis conhecidos desta unidade resumem-se a graptolitos do gênero *Manograptus*, encontrados no testemunho 53 do poço 2-BJ-1-PA da Petrobras (Caputo & Lima, 1984), que a datam como de idade siluriana. Segundo estes autores, as rochas desta formação foram depositadas em ambiente marinho raso durante a fase de máxima transgressão mundial glacio-eustática siluriana.

A Formação Jaicós foi proposta por Plummer *et al.* (1948) para designar camadas de arenitos e conglomerados que afloram na cidade de Jaicós, Piauí. O limite superior desta formação é controvertido, pois sua litologia se assemelha a da sobreposta Formação Itaim, dificultando a identificação de uma provável discordância (Caputo & Lima, 1984). Não foram encontrados macrofósseis nesta unidade, de modo que sua idade é controvertida. Muller (1962 e 1964, *apud* Caputo, 1984), analisando palinomorfos encontrados em folhelhos intercalados aos arenitos, em subsuperfície, indicou a idade como siluriana. Carozzi *et al.* (1975) sugerem idade eodevoniana (Eo- e Meso-emsiano). Quadros (1982), estudando acritarcos, atribui idade eodevoniana (Gediniano/Sigeniano) ou eo-siluriana (Neolandoveriano/Venlockiano), e Caputo & Lima (1984) adotam a idade eo-siluriana (Venlockiano). Em afloramentos, as rochas desta formação foram interpretadas como representantes de depósitos fluviais (Kegel, 1953 e K. Beurlen,

1965), de plataforma rasa (Bigarella, 1973 e Mabesoone, 1978); de frente deltaica (Carozzi *et al.*, 1975) e de legues aluviais e frentes deltaicas (Caputo & Lima, 1984).

2.3.2. Grupo Canindé

O Grupo Canindé foi proposto por Rodrigues (1967, *apud* Caputo, 1984) para agrupar as formações Pimenteiras, Cabeças e Longá, às quais Caputo & Lima (1984) acrescentaram a Formação Itaim, mais antiga, e Góes *et al.* (1994), a Formação Poti, mais nova. Todas, pertencentes ao intervalo temporal de deposição desde o Devoniano ao Mississipiano.

O termo Itaim foi proposto por Kegel (1953) como um membro da Formação Pimenteiras. Blankennagel (1954, *apud* Batista *et al.*, 1984) considerou o Membro Itaim como pertencente ao topo da então Formação Serra Grande. A Formação Itaim atinge espessuras superiores à 250m, sendo composta por arenitos finos esbranquiçados e folhelhos cinzentos (Caputo, 1984). Alguns icnofósseis foram identificados por Kegel (1953; *Spirophyton* sp. e *Amphigenia* sp.), o que permitiu a Caputo (1984) atribuir, para esta formação, a idade eodevoniana, e Góes & Feijó (1994) a idades mesodevoniana. Aparentemente sua gênese foi influenciada por sistemas deltaico (Caputo, 1984) e plataformal (Góes & Feijó, 1994), com correntes de marés e tempestades.

A Formação Pimenteiras, descrita pioneiramente por Small (1914), é composta por espessas camadas (10 a 30m) de folhelhos cinzento-escuros a negros com intercalações de lâminas de arenito muito fino (Della Fávera, 1990). É caracterizada por uma seqüência cíclica granodecrescente ascendente, predominantemente argilosa (Della Fávera, 1984). O topo dos ciclos é reconhecido pela presença de corpos de arenitos de 3 a 5m de espessura e de extensão de até 100m, como geometria de lobos ou barras com estratificação cruzada tipo *hummocky*, e *hardgrounds* bioturbados. O conteúdo paleontológico desta formação é representado por alguns gêneros de trilobitas, como *Metacryphaeus*, e de braquiópodos, como *Chonetes*, indicando uma idade devoniana (Kegel, 1953) ou meso/neodevoniana (Della Fávera, 1990). Retrata um ambiente marinho de plataforma como registro da grande transgressão com oscilações do nível do mar que ocorreu no Devoniano, sendo o máximo de mar alto representado pelas camadas de folhelho laminado (Caputo, 1984).

A Formação Cabeças, descrita originalmente por Kegel (1914), é composta predominantemente por arenitos com delgadas intercalações de siltitos e folhelhos,

com estratificação cruzada tabular ou sigmoidal, ocorrendo tempestitos próximos ao contato com a Formação Pimenteiras (Della Fávera, 1990). Seus depósitos atingem cerca de 100m ao norte de Picos (Kegel, 1956). A Formação Cabeças foi subdividida por Plummer (1948) em três membros estratigráficos e aflorantes (Passagem, Oeiras e Ipiranga), no que Blankennagel (1952), Kegel (1953), Mesner & Wooldrige (1962) e Lima & Leite (1978) não concordam por visualizarem-na indivisa. Rodrigues (1967), estudando a seqüência em subsuperfície, criou outros membros: Testa Branca, Tem Medo e Ribeirãozinho. K.Beurlen (1965) considerou que os sedimentos do Membro Passagem possuem maiores afinidades com a sotoposta Formação Pimenteiras, e Aguiar (1971) incluiu o Membro Ipiranga na sobreposta Formação Longá. As estruturas sedimentares mais comuns na Formação Cabeças são (Della Fávera, 1984): estratificação cruzada sigmoidal, feições de escorregamento e de escape de fluidos. Trilobitas, braquiópodos e outros invertebrados marinhos são abundantes (Kegel, 1953; Caldas et al., 1987), indicando uma idade meso-neodevoniana (Givetiano/Frasniano; Góes & Feijó, 1994). A Formação Cabeças teria se depositado em uma plataforma marinha sob a ação predominante das marés (Della Fávera, 1982). Para Caputo (1984), as fácies diamictíticas, paraconglomeráticas e as superfícies estriadas na parte superior da Formação Cabeças, ausentes na porção leste da bacia, indicam certa influência glacial.

A Formação Longá, primeiramente descrita por Albuquerque & Dequech (1946) com base nos afloramentos das margens do rio Longá em Campo Maior, Piauí, é composta por folhelhos escuros, siltitos cinzentos e arenitos esbranquiçados finos e argilosos. Com espessura média de 100m, é subdividida informalmente em um membro inferior de folhelhos e siltitos, um membro mediano de arenitos e siltitos, e um membro superior de folhelhos. O contato com a Formação Cabeças é observado ora com os arenitos ora com paraconglomerados, enquanto que o contato superior com a Formação Poti é gradacional (Aguiar, 1971). Pela abundante fauna de invertebrados marinhos Kegel (1953) sugere uma idade neodevoniana. Mesner & Wooldridge (1964) consideraram esta formação como depositada em ambiente marinho raso caracterizado por abundantes icnofósseis. Caputo (1984) observou que onde os depósitos da porção média não ocorrem são encontrados depósitos interdeltaicos com fácies de praia, e que na porção superior ocorrem folhelhos transgressivos com indicação de maior restrição ambiental do que os folhelhos mais inferiores.

A Formação Poti (Small, 1914) é composta por arenitos esbranquiçados intercalados por folhelhos e siltitos (Góes & Feijó, 1994), sendo subdividida informalmente em dois membros (Aguiar, 1971): o inferior compreende predominantemente arenitos conglomeráticos com intercalações de pelitos, e o superior é caracterizado por arenitos com intercalações de folhelhos, restos vegetais e leitos de carvão. É tida como de idade eocarbonífera (Tournaisiano; Góes & Feijó, 1994). Mesner & Wooldridge (1964) e Della Fávera (1980) interpretaram a parte inferior da Formação Poti como marinha, e a superior como flúvio-deltaica com interferência de tempestades. Cruz et al. (1973), Leite et al. (1975) e Della Fávera & Uliana (1979) acrescentaram que estes sedimentos mais superiores foram depositados num sistema fluvial meandrante em extensa planície de inundação, ainda que, a presença de estruturas *flaser* e acamamento ondulado em algumas áreas possam sugerir certa influência marinha. A Formação Poti segundo Góes (1995) é constituída de arenito cinza esbranquiçado, intercalado e interlaminado com folhelhos e siltitos, depositados em deltas e planícies de maré sob influência ocasional de tempestades durante o Eocarbonífero (Tournasiano).

Della Fávera (1990), tendo como seção-referência o perfil de raios-gama do poço 1-CA-1-MA (Caraíbas) e os afloramentos do roteiro de campo incluído em Della Fávera & Uliana (1979), compartimentou a següência eopaleozóica da Bacia Parnaíba em parasseqüências individualizadas por superfícies de inundação máxima. Este autor observou que toda esta seqüência pertence a tratos de sistemas de mar alto e de sistemas transgressivos sem o trato de mar baixo. Ele identificou uma seqüência devoniana/eocarbonífera (Formação Longá e parte basal da Formação Poti) com 13 parasseqüências de 12 a 40m de espessura, compondo dois tratos de sistemas: um intervalo transgressivo formado por sistemas deposicionais de plataformas dominadas por tempestades e um intervalo regressivo constituído por lobos sigmoidais e fácies de sistemas fluviais e planícies de inundação. A seqüência eocarbonífera correspondente ao topo da Formação Poti, foi interpretada como um trato de sistema transgressivo, composto por três parasseqüências de 12 a 15m de espessura, formadas por lobos sigmoidais deltaicos e tempestitos. Góes (1995) concluíram que as formações Poti (base) e Longá (topo) representam uma mesma següência deposicional, compondo uma sucessão progradante deltaica/estuarina com depósitos plataformais, litorâneos e fluviais.

Os depósitos plataformais são constituídos por pelitos laminados, interpretados como lamas de plataforma (*offshore*), e arenitos finos com

estratificação cruzada *hummocky*, laminação truncada por onda e laminação plano-paralela, estes tidos como formados por tempestades. Os depósitos litorâneos consistem de arenitos finos a médios, com estratificações *swaley*, considerados como tempestitos de face litorânea (*shoreface*), com estratificação cruzada sigmoidal interpretados como *tidal sand ridges*, ritmitos com acamamento *flaser*, *wave* e *linsen* relacionados a planícies de maré, arenitos finos bioturbados com laminação plano-paralela interpretados como barras de antepraia (*foreshore*), e siltitos com laminação plano-paralela associados a fluxos hiperpicnais em lagunas. Os depósitos fluviais são compostos por arenitos grossos a conglomeráticos com estratificações cruzadas acanaladas, relacionados a depósitos de barras e dunas sub-aquosas em sistema entrelaçado.

2.3.3. Grupo Balsas

O Grupo Balsas (Góes & Feijó, 1994) é constituído pelas formações Piauí, Pedra de Fogo, Motuca e Sambaíba (Figura 2.5). A Formação Piauí é característica de arenito cinza esbranquiçado, predominantemente fino a médio e bem selecionado, eventualmente conglomerático, folhelho vermelho e calcário esbranquiçado, posicionados no Westphaliano-Stephaniano em ambiente continental e litorâneo, sob condições severas de aridez. A Formação Pedra de Fogo é caracterizada pela presença de sílex e calcário oolítico/pisolítico creme a branco, eventualmente estromatolítico, intercalado com arenito amarelado fino a médio, folhelho cinzento e anidrita branca, de idade Eopermiana. São característicos desta formação os troncos petrificados de *Psaronius*. O ambiente deposicional para esta formação é nerífico raso a litorâneo com planícies de *sabkha*, sob a eventual influência de tempestades.

A Formação Motuca compõe-se de arenito fino a médio, siltito avermelhado e marrom, anidrita branca e raros calcários depositados em ambiente continental desértico, controlado por sistemas lacustres durante o Eopermiano. A Formação Sambaíba é composta por arenito róseo a amarelo, médio a fino, bem selecionado, bimodal, com estratificação cruzada de grande porte, depositado por sistemas eólicos em ambiente desértico e posicionado na idade Eotriássica.

Originalmente utilizado com Série Piauí por Small (1914), para designar pacotes de rochas sedimentares que ocorrem nos estados do Piauí e Maranhão, identificadas como arenitos e folhelhos inferiores, arenitos e folhelhos intermediários e aenitos vermelhos superiore. Duarte (1936), em estudo do conteúdo paleontolágico do poço 125, a chamada "sondagem de Theresina", separou estratos contendo os bivalves *Aviculopecten, Edmondia, Sperifer* e *Oriculoidea*, que atribuiu ao andar Uraliano do carbonífero, de camadas de origem continental caracterizadas por *Palmatopteris farcata*. Oliveira & Leonardos (1943) restringiram o termos Formação Piauí, apenas às camadas carboníferas do Pensilvaniano. Dequech (1950) definiu os limites estratigráficos da Formação Piauí, compreendidos entre os arenitos e sititos da Formação Poti e o sílex basal da Formação Pedra de Fogo.

Lima Filho (1991) separou as rochas carbonáticas da Formação Piauí em dois tipos principais: o tipo 1 corresponde a carbonatos biodetríticos, calcíticos, as vezes parcialmente silicificados, e abundantemente fossilífero, com espessura média de 1m, aflorando na porção NE da bacia, especialmente no município de José de Freitas, PI. Lima Filho *et al.*, (1995), com base no mapeamento geológico de uma área de 200 km² (na escala de 1:25000) na borda NE da bacia, levantamento de seções estratigráficas e descrição de afloramentos isolados reconhecem que na porção inferior da Formação Piauí na região de Teresina/José de Freitas/União-PI) a sedimentação deu-se num contexto ambiental marinho costeiro, onde foram identificados depósitos de dunas eólicas, de plataforma carbonática, de deltas e de marés. A maioria dos trabalhos que discute os ambientes deposicionais da Formação Piauí considera seus depósitos inferiores como sendo de origem continental (ex. Abreu *et al.*, 1977). Entretanto, desde Lima Filho (1991), Lima Filho *et al.*, (1995), Ribeiro & Melo (1994) são descritos também depósitos costeiros na borda leste da bacia.

2.3.4. Grupo Mearim

O Grupo Mearim (Góes & Feijó, 1994) é composto pelas formações Pastos Bons e Corda, que ocorrem interdigitadas e sobrepostas em discordância ao Grupo Balsas e às vulcânicas Mosquito, e sotopostas em discordância às formações Grajaú, Codó, Itapecuru e Sardinha, que pertencem a outra unidade geotectônica (Figura 2.5).

A Formação Pastos Bons é constituída de siltito, folhelho e argilito verde e castanho avermelhado com grãos de quartzo inclusos. A Formação Corda se caracteriza por arenito cinza esbranquiçado a avermelhado, fino a grosso, por vezes bimodal, e raros níveis de sílex. Admite-se para essas rochas uma deposição em ambiente continental desértico, controlado por sistemas flúvio-lacustre,

Santos, V.H

eventualmente retrabalhados por processos eólicos e a ação esporádica de correntes de turbidez. Essa formação é posicionada no Neojurássico até o Eocretáceo, com base em ocorrências de ostracodes, conchostráceos e do fóssil *Lepidotus piauhyensis*.

2.4. Aspectos Paleogeográficos

Do Siluriano ao Neodevoniano, ocorreram grandes alterações na configuração dos continentes (Figuras 2.6 e 2.7), com extensos espalhamentos oceânicos (Johnson *et al.* 1985; Sheridan, 1987) e alteração nos pólos gelados que migraram do sul da América do Sul para o centro da África (Van der Voo, 1988). Com essa migração, eventos climáticos como glaciações tiveram um caráter simultâneo e global (Boecker & Denton, 1990), de modo que os depósitos glaciais auxiliam grandemente na localização paleogeográfica de registros sedimentares desta época, funcionando como verdadeiras camadas-guia.

As variações eustáticas do nível do mar ocorrem no decorrer do tempo em ciclos de maior ou menor variação (Plint *et al.*, 1992). Para o período aqui estudado, admite-se que a movimentação continental tenha causado uma grande tendência transgressiva com pequenos pulsos regressivos relacionados a períodos glaciais, que causaram um rebaixamento do nível eustático, devido à retirada de água dos mares (Johnson *et al.*, 1985). É possível visualizar estas variações correlacionando as glaciações registradas na curva global no nível do mar apresentadas por Plint *et al.* (1992) e as formações sedimentares da Bacia Parnaíba (Figura 2.8)

Figura 2.7: Possível configuração dos continentes e localização dos pólos gelados no Eo- e Neodevoniano (±465-430Ma), observando-se a movimentação dos pólos, da Patagônia para o centro da África (modificado de Van der Voo, 1988).

Figura 2.8: Curva de mudança do nível do mar relacionado às glaciações (modificado de Plint *et al.*, 1992) e às unidades litoestratigráficas da Bacia Parnaíba (modificado de Góes & Feijó, 1994).

2.4.1. Registros Glácio-sedimentares Eos-silurianos

A glaciação havida no Eo-siluriano tem sido extensivamente descrita, sendo bem registrada em sedimentos da África central (Beuf *et al.*, 1971), da Arábia (McClure, 1978), da África do Sul (Rogers, 1904 *apud.* Caputo, 1984), além da América do Sul. Na cadeia andina ao norte da Argentina, as glaciações descritas por Crowell (1978 e 1981) foram datadas como eo-silurianas (Llandoveriano) por Barry & Boucot (1972) e por Laubacher *et al.* (1982), ambos baseados na ocorrência de gastrópodos.

No Brasil, os indícios desta glaciação têm sido estudados desde a década de '40 (Maack, 1947), sendo descritas nas bacias do Amazonas, Parnaíba, Jatobá e Paraná. Na Bacia Parnaíba, traços dessas glaciações são encontrados no vale do Cariri, no leste da bacia, em estratos da Formação Ipú (Caputo, 1984), sendo sugerida uma idade eo-siluriana com base na correlação com outras bacias (Caputo & Crowell, 1985). As investigações bioestratigráficas baseadas em graptolitos (Jaeger, 1986) e quitinozoários (Grahn & Paris, 1992) da Bacia do Amazonas têm datado estas glaciações como eo-silurianas (Llandoveriano). Como na Formação Ipú os fósseis são extremamente raros, tendo sido reconhecido apenas um gênero de icnofóssil (Arthrophycus), que não permite uma datação acurada, os tilitos da Bacia Parnaíba são considerados correlativamente de mesma idade. Parte da Formação Ipú consiste de depósitos glaciogênicos retrabalhados por depósitos flúvio-glaciais, e parte é formada por legues aluviais (parte central da bacia; Caputo, 1984). O avanço das geleiras parece ter ocorrido em direção noroeste, com certa tendência para oeste da bacia (Mabesoone, 1978; Caputo & Lima, 1984).

Num afloramento na localidade de Serra Vermelha, próximo a São Raimundo Nonato (km 13 da rodovia PI-140 em direção à cidade de Cantos do Buriti), Piauí, como se verá maia adiante em detalhe, há a exposição de 6m de tilitos contendo diamictitos com inclusões de quartzo, quartzito, arenito fino e clastos de rochas vulcânica em arenito maciço de matriz argilosa. Na parte superior deste tilito, observa-se uma mudança de granulometria (de fina na base para grossa no topo), e a rocha torna-se de esbranquiçada para esverdeada-clara e de maciça para estratificada (com estratificações cruzadas) à medida que a deposição é mais recente.

Santos, V.H

2.4.2. Registros Glácio-sedimentares Neodevonianos

A existência de rochas glaciais neodevonianas restringe-se somente ao continente Gondwana (Caputo, 1985). Apesar da ausência do registro rochoso na Euro-américa, dada a presença de mares entre este supercontinente e o Gondwana (Figura 2.7), limitando as geleiras somente a este último, esta glaciação é marcada por uma pronunciada regressão marinha (House, 1975 e Crowel, 1983). Dickins (1993), Becker (1996), House (1996) e Isacson *et al.* (1999) observaram indícios essa glaciação se entendendo até o Eocarbonífero. Entretanto, alguns autores contestam a existência de eventos glaciais durante o neodevoniano, como Johnson *et al.* (1985), Boucot (1988) e Thompson & Newton, (1988), datando-a como neocarbonífera. Loboziak *et al.* (1993) reconhecem-na apenas na parte final do Eodevoniano (Neofameniano); Caputo (1985) admite que ocorreu no Mesofameniano; e Veevers & Powell (1987) e Smith (1997) sugerem que esta única glaciação devoniana teria ocorrido durante todo o Fameniano.

A curva de variação do nível do mar (Figura 2.9) proposta por Johnson e*t al.* (1985) durante o Neodevoniano é caracterizada por sub-estágios de subida e descida do nível eustático ao longo dos andares Givetiano (estágios lf, lla e parte de IIb), Frasniano (IIb, IIc e parte de IId) e Fameniano (IId, IIe e IIf). A principal queda eustática é observada ao final do ciclo transgressivo-regressivo (T-R) IIf e a maior transgressão IID, na metade inferior da curva do ciclo T-R IIe. No topo doFrasniano há uma ampla transgressão, sendo sugerida uma importante queda eustática (IIf) ao final deste andar.

Estudos de isótopos de oxigênio, carbono e estrôncio da chamada Estratigrafia Química têm aprimorado a capacidade de identificar 'quebras' mundialmente correlacionáveis isotópicas numa seqüência sedimentar, considerando que um período glacial modifica todo o quimismo dos oceanos, alterando conseqüentemente o equilíbrio entre isótopos estáveis. Rodrigues (1989) identificou uma destas 'quebras' isotópicas de carbono em algumas seções das bacias do Amazonas, Solimões e Parnaíba, com indícios de um período glacial na passagem dos folhelhos para os diamictitos glaciogênicos. Esta 'quebra' coincide com outras encontradas em seções devonianas seguramente datadas (Goodfellow et al., 1988) e relacionadas a um evento de extinção faunística ocorrido no eodevoniano (entre o Frasniano e o Fameniano), e sugeriu que o mesmo tenha ocorrido na Bacia Parnaíba. O ápice da subida do nível eustático desta época é

representado por sedimentos depositados aparentemente sob condições anóxicas, que ocorrem na maioria das bacias paleozóicas. Na Bacia Parnaíba, em subsuperfície, este evento é relacionado ao marco 550 (Della Fávera, 1990).

Figura 2.9: A) Curva de variação de nível do mar durante o Neodevoniano proposta por Johnson *et al.* (1985) baseando-se em estudos de Estratigrafia de Seqüências em diversas partes do mundo; B1) Coluna estratigráfica do Neodevoniano no centro-oeste da Bacia do Parnaíba, baseada em Caputo (1985); B2) proposta no presente trabalho, modificada de Loboziak *et al.* (1992). Nas colunas estratigráficas: A = cronoestratigrafia; B = bioestratigrafia de Daemon (1974); C = bioestratigrafia de Loboziak *et al.* (1992); D = litoestratigrafia.

Kegel (1953) foi o primeiro autor a demonstrar a origem glacial dos diamictitos com clastos facetados e estriados do Neodevoniano da Bacia Parnaíba. Malzahn (1957) descreveu pavimentos estriados atribuídos à Formação Pimenteiras, observados no setor sudeste da bacia, no Piauí, recobertos por tilitos da Formação Cabeças. Segundo Carozzi *et al.* (1975) e Rocha-Campos (1981), os diamictitos na Bacia Parnaíba são associados ao contato entre as formações Pimenteiras e Cabeças. Boucot (1988) mencionou evidências de glaciação também em áreas na parte leste da Bacia Parnaíba.

3.1. INTRODUÇÃO

A estratigrafia moderna utiliza uma abordagem dinâmica e genética, na qual os sistemas deposicionais de uma seqüência sedimentar ou de uma província fisiográfica (Tabela 3.1) são interpretados através de associações de fácies. Por sistemas deposicionais entendem-se depósitos sedimentares, ou seja, produtos de processos sedimentares, analisados sob uma óptica tridimensional (Della Fávera, 2001).

Ambiente deposicional	Sistema deposicional	Subsistema deposicional
Continental	Fluvial	Leques aluviais Rios entrelaçados Rios meandrantes
Commentat	Desértico	
	Lacustre	
	Glacial	
Turnining	Deltaico	Planície deltaica Frente deltaica Prodelta
Iransicional	Praial	
	Estuarino ou lagunar	
	De planície de maré	
Marinho	Nerítico	Plataforma continental Recifes orgânicos
Mainno	Oceânico	Talude continental Fundo oceânico

Tabela 3.1: Tabela de classificação dos principais ambientes deposicionais, com sistemas e subsistemas correspondentes (modificado de Galloway & Hobday, 1983).

Para a definição da sucessão das seqüências estratigráficas relacionadas aos tratos dos sistemas deposicionais e interpretação dos ambientes deposicionais são necessárias uma caracterização faciológica e uma descrição detalhada de certas evidências litológicas, como estruturas sedimentares, litologia, fósseis, *etc*.

3.2. DEPÓSITOS FLUVIAIS

Modelos de sedimentação fluvial representam uma tentativa de relacionar a observação morfológica de rios atuais com a interpretação de antigas sucessões

37

sedimentares. Dada à acessibilidade a sistemas fluviais recentes para estudos geológicos e geomorfológicos, é grande a riqueza de material descritivo disponível para estudos sedimentológicos, assim como o conhecimento da dinâmica dos rios atuais é extremamente útil para interpretação de fácies geradas em sistemas antigos de sedimentação. Entre os rios atuais, que servem como potencial modelo para estudos de fácies fluviais, estão o Amazonas, o Orenoco, o Mekong e o Congo.

De acordo com Riccomini *et al.* (2000), os rios são cursos naturais de água doce, com canais definidos e fluxo permanente ou sazonal que transportam sedimentos para um oceano, lago ou outro rio. Dada a sua capacidade de erosão, transporte e deposição, os rios são os principais agentes de transformação da paisagem de terras emersas, agindo continuamente na modelagem do relevo. Os depósitos de rios são essencialmente de natureza tracional, onde se observa uma estruturação interna que obedece a variações de fluxo. O regime de fluxo resulta da interação entre a corrente d´àgua que passa e o fundo arenoso do leito (Della Fávera, 2001).

Do ponto de vista geológico, a morfologia dos canais é o principal atributo considerado na classificação dos rios. Ela é considerada por uma série de fatores chamados autocíclicos, que condicionam o transporte e a deposição na bacia fluvial (como descarga, velocidade de fluxo, carga de sedimentos transportada, largura e profundidade do canal, declividade, rugosidade do leito, cobertura vegetal nas margens, ilhas) e alocíclicos, que afetam não apenas a bacia de drenagem, mas toda a região onde está inserida (Schumm 1981).

Na interpretação de sedimentos fluviais, também se utilizam parâmetros quantitativos de sinuosidade. Rust (1978a) e Miall (1980), separadamente, propuseram uma classificação em quatro tipos básicos de rios: entrelaçado, meandrante, anastomosado e retilíneo (Figura 3.1). Esta classificação é uma simplificação bastante útil, mas vários pesquisadores (como, por exemplo, Galay *et al.*, 1973; Mollard, 1973; Schumm, 1981; Smith, 1983) ilustram uma variada gama de morfologias de canal encontradas na natureza que revelam uma completa gradação entre estes quatro tipos (Figura 3.2).

Fonte: http://www.gallery.cz/gallery/cz/Vystava/2002_06/Images/Vystava/A007_M.jpg

Definição dos padrões de canal

1) Padrão Entrelaçado - Os canais entrelaçados são excepcionalmente bem desenvolvidos em planícies de lavagem, leques aluviais e deltaicos. São caracterizados por sucessivas divisões e reuniões de canais que contornam barras arenosas ou cascalhosas de sedimentos aluviais. São típicos de rios com excesso de carga de fundo em relação à descarga líquida (Suguio, 2003).

2) Padrão Meandrante -O termo meandro tem sua origem no caso do Rio Maiandros (atualmente Menderes), na Turquia. É utilizado para designar o tipo de canal em que os rios descrevem curvas sinuosas, largas, harmoniosas e semelhantes entre si, através de um trabalho contínuo de escavação na margem côncava, local de maior velocidade da corrente, e deposição na margem convexa, local de menor velocidade da corrente (Christofoletti, 1981).

Figura 3.1: Definição dos quatro padrões de canais fluviais segundo os conceitos de Rust (1978a) e Miall (1980).

Figura 3.2: Classificação de padrões de canal fluvial baseada na carga de sedimento, granulometria, poder de transporte e estabilidade relativa do rio (modificado de Schumm, 1981).

O tectonismo (segundo Heward, 1978; Burnett & Schumm, 1983; e Peterson, 1984), assim como o clima (conforme Leeder, 1978; Allen, 1978; Bkakey & Gubitosa, 1984; e Carson, 1984a, b, c), são fatores que podem alterar a jusante de um rio, ainda que o tipo de material disponível na área possa anular este controle tectônico ou climático. Deste modo, na jusante são esperadas mudanças no estilo fluvial de um rio, assim como há sutis variações na arquitetura ao longo das unidades fluviais.

As diversas formas de sistemas fluviais estão relacionadas a processos erosivos e de sedimentação. A carga detrítica fornecida a um curso de água é transportada em suspensão ou sobre a superfície do leito. Essa carga possui características granulométricas variadas e se deposita sob diversas condições (Christofoletti, 1981).

40

Santos, V.H

Diversas tentativas foram efetuadas para integrar a geomorfologia e a sedimentologia fluvial. Como exemplo destas tentativas, temos os trabalhos de Miall (1978, 1985), que definiram uma série de elementos arquiteturais baseados na geometria, superfície limitante, posicionamento dentro da seqüência e características sedimentares, como canais e barras de cascalho, formas de leitos arenosos, depósitos de acreção lateral, sedimentos de fluxo gravitacional, laminações de areia e finos de *overbanks*.

A geometria, a textura e os processos deposicionais são os principais fatores utilizados para diferenciar, respectivamente, os elementos de um canal fluvial, o cascalho das formas de fundo arenoso, e os sedimentos depositados por fluxo gravitacional (White *et al.*, 1992). A classificação adotada nesse trabalho sobre elementos geomorfológicos relacionados a rios divide um sistema fluvial em três componentes: elementos intracanais (Figura 3.3), elementos da margem de canal e elementos da bacia de inundação (Figura 3.4).

Figura 3.3: Exemplos reais e esquemáticos de elementos geomorfológicos de intracanal fluvial, de acordo com as definições de Brieley (1996).

Granulometria

é alta, somente sedimento com granulometria mais alta é depositada.

realidade também ocorre em rios entrelaçados (ex. Bluck, 1979; Ori, 1979, 1982; Allen, 1983), em fluxos efêmeros (Tunbridge, 1984) e também em alguns trechos anastomosados (Smith, 1983) alta sinuosidade de rios meandrantes geralmente contêm numerosas barras e ilhas, e assim apresentam características de rios entrelaçados (Miall, 1977; Jackson, 1978; Schwartz, 1978; Rust, 1978a; Forbes, 1983).

Elementos da margem do canal

- Diques marginais "levees" ____ Ver Fotografia 05 e Esquemas 05 e 06
- lóbulos de derrame: espalhamento, "crevasse-splay" --> Ver Fotografia 06 e Esquema 08

Elementos da bacia de inundação

- pântanos marginais ("backswamp") __ Ver Fotografia 06 e Esquema 08
- canal abandonado, isolado "ox-bow". --> Ver Fotografia 07 e Esquema 07

ESQUEMA 06

Http://www.dnr.mo.gov/magazine/1999_sumr

pelíticos.

ou pântanos

transportar este tamanho de grão. ou contorcidas.

Figura 3.4: Exemplos reais e esquemáticos de elementos geomorfológicos de margem de canal e de bacia de inundação fluvial, de acordo com as definições de Brieley (1996).

A interpretação de estruturas sedimentares através da hidrodinâmica é um dos mais importantes elementos para a análise de fácies, particularmente, em sedimentos siliciclásticos. Tais estruturas geralmente são formadas em meio aquoso e comandadas por regime de fluxo, quando a água corre sobre um leito granular móvel. Constitui-se, neste caso, o registro do limite aluvial da carga sedimentar transportada pelo rio ou de superfícies de separação (Simons *et al*, 1965).

É unânime entre os autores a concepção de que três parâmetros são os principais fatores controladores dos tipos de acamadamento e de estruturas encontradas em depósitos fluviais: a granulometria, a profundidade do fluxo e a velocidade do fluxo. Deste modo, com a interpretação das condições de fluxo, estruturas sedimentares podem ser previstas, como nos exemplos apresentados por Simons & Richardson (1961), Simon *et al.* (1965), Harms & Fahnestock (1965), Southard (1971), Harms *et al.* (1975 e 1982), Collinson & Thompson (1982), Leeder (1983), Allen (1983) e Ashley (1990). Assim, por exemplo, campos de estabilidade de *ripples* (marcas onduladas), dunas e outras feições podem ser visualizados, de acordo com a variação da profundidade e velocidade de fluxo (Figura 3.5).

Figura 3.5: A) Campos de estabilidade de camadas de areia e silte na profundidade de fluxo entre 25 e 40cm (segundo Ashley, 1990). B) Sucessão de acamadamentos desenvolvidos com o aumento da velocidade do fluxo, onde as linhas tracejadas indicam a separação de fluxo (modificado de Simons e*t al.*, 1965 e de Blatt *et al.*, 1980).

Santos, V.H

Na evolução de crescimento de ondulações no depósito sedimentar de origem fluvial por regime de fluxo trativo, passa por várias fases: 1) ausência de movimento; 2) formação de laminação plano-paralela associada à *ripples;* 3) dunas com *ripples* super-impostos; 4) dunas ou ondas de areia; 5) camadas de transição; 6) laminação plano-paralela com 'carpetes de tração'; 7) antidunas; e 8) transporte total. Os quatro primeiros itens representam um regime de fluxo inferior nos canais aluviais, enquanto que os demais, o regime de fluxo superior. O dimensionamento destas ondulações pode variar desde pequenos ripples até grandes dunas, que podem ultrapassar 10m de altura. Esse contraste dimensional é atribuído à altura e ao espaçamento de 0.5-1m da onda, que reflete a turbulência do evento que gera o acamadamento (Leeder, 1983). Segundo Ashley (1990), para pequenas formas é usada a terminologia *ripples*, e para formas maiores é adotado o termo dunas. *Ripples,* dunas e ondas de areia são formas geradas a partir do contato entre superfícies arenosas e o movimento de água, e tradicionalmente classificadas como formas de regime de fluxo inferior. As formas de regime de fluxo superior são caracterizadas por antidunas e ondas superficiais.

O regime de fluxo inferior caracteriza-se por alta resistência ao escoamento e pequeno transporte de sedimento (Figura 3.5B). A resistência ao fluxo é dada pela aspereza das formas de leito, que mostra marcas ondulares ou ondas de areia de seção transversal triangular. O transporte principal de carga de fundo é efetuado por etapas, de modo que os grãos individuais se movem rio abaixo, subindo até a crista das marcas de onda (ou da onda de areia) e caindo a jusante na face avalanche. O regime de fluxo superior caracteriza-se, ao contrário, por baixa resistência ao escoamento e por intenso transporte de sedimento. O transporte dos sedimentos ocorre em lençóis, deslocando-se os grãos individualmente de maneira quase contínua corrente abaixo. Desenvolvem-se então camadas planas e ondas de areia transgressivas e regressivas (antidunas).

Allen (1970) analisou padrões de fluxos em camadas de rios meandrantes e, em particular, o efeito dos fluxos helicoidais das curvas para o desenvolvimento de cada meandro, observando que este resulta do movimento oblíquo dos grãos acima do mergulho da barra de pontal (Figura 3.6). Com a diminuição da profundidade e da velocidade, esse declive conduz ao aumento de granulometria e de estruturas sedimentares.

Figura 3.6: Modelo de fácies de sedimentação em barra por acreção lateral em migração de meandros (D = dunas; T = barra transversal ou ondas de areia; R = *ripples*; Allen, 1970).

Harms *et al.* (1975) demonstraram a relação entre o regime de fluxo e as estruturas sedimentares. Assim, por exemplo, a estratificação cruzada planar tabular é produto da migração de *megaripples* de cristas retas, semelhantes às ondas (dunas 2D), e a estratificação cruzada acanalada que se desenvolve durante a migração de dunas 3D (Figura 3.7).

Figura 3.7: A) Relação entre estratos, estruturas sedimentares de dunas 3D e estratificação cruzada acanalada. B) Relação entre ondas de areia (2D) e estratificação cruzada planar (Harms *et al.*, 1975).

3.2.2. Aspectos Morfológicos de Estruturas Sedimentares Fluviais

As estruturas sedimentares de origem fluvial podem ser agrupadas em três tipos principais: 1) as formadas por corrente unimodal em rios e deltas, sem interferência do movimento de marés, leques submarinos e quebras de plataforma; 2) as constituídas por reversão de corrente (bimodal), como as oscilações de marés em ambientes marinhos marginais e lagos; e 3) as formadas por correntes eólicas em complexos de dunas de costa e em alguns ambientes aluvial-lacustres. Os diversos tipos de estratificação cruzada (Figura 3.8) podem conter evidências do estágio de flutuação ou reativação de superfícies (Collinson, 1970), sendo seu reconhecimento em afloramentos ou testemunhos de sondagens de inestimável auxílio na interpretação paleoambiental.

Figura 3.8: A) Terminologia dos diferentes tipos de estratificação cruzada (Allen, 1963); B) Progradação de *foresets* e desenvolvimento por migração de *ripples* ao longo de camadas de topo, onde o aumento da granulometria do *foreset* do estágio 1 para o estágio 2 atua como avalanches (Smith, 1972); C) Estrutura interna de estratificações cruzadas.

Um *foreset* representa uma avalanche de grãos superfície abaixo por deslizamento, rolamento e varredura por correntes de água ou vento (fluxo gravitacional). O avanço de grãos no sentido da corrente (*stoss*) e a alimentação da camada com a contínua progradação de *foreset* corrente abaixo (*lee*; Figura 3.8B), é um bom exemplo de deste tipo de morfologia de camadas. Um *coset* é definido como uma unidade sedimentar constituída por dois ou mais *sets* de estratos ou de estratificações cruzadas, separadas por erosão, por não deposição ou por mudança repentina, de outros *cosets* (Mckee & Weir, 1953).

Outro tipo de estratificação cruzada é denominado estratificação cruzada do tipo *hummocky*, mencionada primeiramente por Harms *et al.* (1975; Figura 3.9). Essas estruturas estão presentes principalmente em depósitos de plataforma (Dott & Bourgeois 1982). Podem ser visualizadas em pequenos afloramentos, porém requerem muito cuidado quando analisadas em testemunhos, especialmente na comparação com outro tipo de estratificação cruzada. As características que servem para distingui-las dos demais tipos são baseadas no baixo ângulo das estratificações (menor do que o ângulo de repouso), na presença de curvaturas côncava e convexa dos *sets*, e de truncamentos internos. A associação de fácies e a posição estratigráfica, que em geral sugerem atividades de ondas de tempestades na plataforma interna (Howard & Reineck, 1981 e Swift *et al.*, 1983). É provável que sejam produzidas pelo movimento oscilatório de água induzido por tempestades de corrente unimodal de ventos (Allen, 1983 e Nohvedt & Kreisa, 1987).

Figura 3.9: Estratificação cruzada do tipo hummocky (Walker, 1984).

3.3. SISTEMAS DELTAICOS

Deltas são regiões costeiras de acumulação sedimentar, geralmente associados a rios com grande carga fluvial, onde os processos costeiros, como ondas e marés, não são fortes o suficiente para dispersar os sedimentos trazidos pelos rios. Os deltas representam um sistema deposicional complexo, composto por uma ampla variação sedimentar característica de sub-ambientes (Figura 3.10), que proporcionam um diversificado conjunto de fácies e de tipos de sedimentos, abrangendo planícies fluviais com lagos rasos, lagunas, planícies de maré, estuários, fácies de praia, frentes deltaicas subaéreas, plataformas deltaicas e prodeltas. A progradação de um delta lobado dá origem a um extenso corpo de areia em lençol, e a de um delta alongado, origina um corpo arenítico, mais conhecido como 'pé de pássaro'.

Figura 3.10: A) Delta lobado e B) alongado (pé de pássaro) e respectivos exemplos atuais (http://earthobservatory.nasa.gov/study/astronautphotography/astronaut_photography2. html).

Utilizando termos e integrando dados estratigráficos temporais e espaciais, é possível descrever a sedimentação deltaica de modo generalizado (Figura 3.11). Para tanto, também se adotam as clássicas divisões de fácies de topo, frontal e de fundo.

Figura 3.11: Integração de perfil estratigráfico e seção transversal de um delta, mostrando ambientes, fácies e respectivas interpretações dos depósitos (modificado de Scruton, 1960); maior variação pode ocorrer no topo da seqüência, onde baías e canais interdistributários são bem desenvolvidos.

As fácies de topo compreendem os sedimentos depositados na superfície do delta e na plataforma submarina da frente deltaica. Em áreas subaéreas, os sedimentos são depositados pelas correntes distribuidoras em canais, lagos, pântanos e mangues, resultando em depósitos de preenchimento de canal, de diques marginais, lacustres e paludais. Mais da metade da parte subaérea de um delta costuma ser ocupada por pântanos de água doce a salobra. Os sedimentos de preenchimento de canais são de textura variável, granulação fina a muito fina, afossilíferos. As areias de barra de pontal contribuem em grande parte para os depósitos de canais, com estratificação cruzada tangencial e acanalada (Allen, 1964). Os sedimentos de bancos marginais são de granulação mais fina do que os dos canais. E os depósitos paludais são formados principalmente por silte e argilas, com grande conteúdo de matéria orgânica. Em depósitos subaéreos são abundantes micas e restos de plantas (camadas de carvão são frequentemente associadas à fácies de topo de deltas). Em geral, sob esses depósitos superiores estão os chamados sedimentos de frente deltaica, compreendendo sedimentos de

baías entre canais distributários e de barras de foz interdigitadas estas com grandes espessuras e sem erodir os sedimentos prodeltaicos subjacentes (Fisk, 1954). Nos sedimentos de baías situadas entre distributários, encontram-se silte e argilas com grandes quantidades de micas, matéria orgânica e restos esqueletais de invertebrados, como conchas e carapaças.

As características das fácies frontais dependem do tipo de sedimento transportado pelos rios e do local onde este sedimento é depositado. No caso de um rio que desemboca num corpo de água tranqüila, por exemplo, formam-se pequenos deltas. Quando o sedimento transportado é composto por sedimentos finos, o ângulo deposicional resultante da fácies frontal é suave. Ao contrário, se houver transporte de sedimentos grosseiros, originam-se camadas frontais com forte inclinação.

As fácies de fundo são depositadas principalmente sob condições submarinas (*offshore*), podendo ser considerada como a continuação da sedimentação da encosta exterior do delta, onde sedimentos predominantes são argilosos e sílticos, e as partículas em geral depositadas por suspensão (Jopling, 1965). Diferem dos sedimentos de fácies frontais por serem mais ricos em matéria orgânica, muito perturbados por organismos, com possível presença de glauconita.

A caracterização de associações de litofácies deltaicas não é fácil, por se tratar de um conjunto que pode ocorrer em outros sistemas. O tipo de energia vigente na desembocadura entre o rio e o ambiente receptor (lago ou mar) é importante no controle da geometria deposicional. O modelo mais utilizado para a classificação dos tipos de delta é baseado na força relativa do rio e em processos marinhos, como a influência das marés e ondas (Figura 3.12).

Nos últimos anos, a origem de fluxos hiperpicnais (de inversão de plumas flutuantes) da desembocadura de rios modernos tem sido investigada por Sparks *et al.* (1993), Mulder & Syvitski (1995), Skene *et al.* (1997), Mulder *et al.* (1998), Mcleod *et al.* (1999), entre outros. Estas pesquisas foram baseadas na teoria de formação de deltas proposta por Bates (1953), e subseqüentemente desenvolvida por Wright *et al.* (1986) e Prior *et al.* (1986) no rio Amarelo, China. Esses autores analisam a evolução do fluxo hiperpicnal durante inundações ocorridas num período de dez anos, demonstrando sua importância nos processos de construção de deltas (Figura 3.13).

Figura 3.12: Classificação dos tipos de delta, com base na força relativa do rio ou processos marinhos, como a influência das marés e ondas. A) em planta e B) em perfil. (Modificado de Coleman & Wrigth, 1975 e Miall, 1996).

Figura 3.13: Plumas flutuantes do delta do rio Amarelo (China) durante as inundações ocorridas entre 1989 e 2000, mostrando a construção de lobos deltaicos de fluxo hiperpicnal (Prior *et al.*, 1986).

Diversos trabalhos foram publicados sobre preenchimento de bacias em diferentes idades e ambientes geológicos com a influência de deltas, como os de

53

Given (1977), Jansa & Weidmann (1982), Blakey & Gubitosa (1984), Haszeldine, (1983b), Martinsen (1990), Omran & Ibrahim (1991), Olsen (1993), Poppe & Poag (1993), Mutti *et al.* (1996), Roberts & Coleman (1996), Somoza *et al.* (1998), Mohammed & El Hassan (2002) e Jo (2003). Esses autores investigaram também a interferência das inundações em sistemas flúvio-deltaicos antigos, demonstrando a importância delas no preenchimento de bacias tectonicamente ativas, tanto em sucessões aluviais como em seqüências marinhas rasas. Observaram ainda que os depósitos de embocadura de rios em sistemas flúvio-deltaicos mostram grande variação de geometria onde as fácies são geradas essencialmente sob condições erosivas. A maioria das fácies mostra o domínio de areias retidas na foz do rio, que podem ser carregadas para outras regiões da bacia por fluxo hiperpicnal, formando lobos de frente deltaica e demonstrando a eficiência do fluxo.

A entrada da carga sedimentar do rio no corpo de água receptor, geralmente é dominada pela inércia do fluxo de chegada. Esse fluxo forma um jato turbulento axial ou em pluma, que depende diretamente da espessura da lâmina d'água receptora e da desembocadura do rio. Wrigth *et al.* (1986) e Prior *et al.* (1986) enfatizaram a importância dessa carga de fluxo turbulento no delta do rio Amarelo, onde foi observada uma dispersão alongada de plumas de baixa densidade sobre o fluxo da frente deltaica (Figura 3.13), inferindo desta observação a ocorrência de plumas de alta densidade com características erosivas em vales sub-aquosos parcialmente preenchidos por argilas. Observações desse tipo, em deltas atuais, podem auxiliar a esclarecer a sedimentação em sistemas flúvio-deltaicos dominados por inundação ocorrida em outras épocas, tanto em termos de geometria e fácies, como em termos de relação dos depósitos de barras de embocadura e lobos, de acordo com a eficiência do fluxo durante a deposição (Figura 3.14).

Sistemas flúvio-deltaicos dominados por inundações podem ser reconhecidos em rios imaturos e pequenos essencialmente pela relativa elevação de áreas da bacia receptora, onde a sedimentação e transporte são dominados por fluxo hiperpicnal (Schumm, 1977). Sistemas deltaicos deste tipo podem ser correlacionados com análogos modernos, como os 'rios montanhosos de pequeno porte' de Milliman & Syvitski (1992) e os '*dirty rivers*' de Mulder & Syvitski (1995). Esses rios são caracterizados por um grande fluxo de sedimentos para o mar, por elevação da drenagem da bacia, e pela proximidade com a linha de costa. Esses

fatores aumentam a concentração de sedimentos relacionados ao fluxo de transbordamento no ambiente aluvial e nas planícies costeiras, não reduzidas pela energia de dissipação e sedimentação na bacia receptora. Consequentemente, muitos desses rios podem gerar, em anos consecutivos, freqüentes fluxos hiperpicnais.

Sistemas flúvio-deltaicos com domínio de inundações representam um complexo depósito de barras de desembocadura com interferência de processos de transbordamento de rios e da carga sedimentar que entra no corpo de água receptor. Para Mutti *et al.* (2000), as unidades de inundações são controladas por fatores locais, como volume das águas, concentração de sedimento, duração de eventos e tipo de processo sedimentar envolvido. Como resultado, a unidade de inundação pode variar desde pequenas barras lenticulares resultantes da repentina desaceleração, com pequeno volume e ciclos de pouca duração, até espessas barras de grande extensão lateral, constituídas por camadas de areia gradadas e relativamente bem selecionadas, depositadas por fluxo hiperpicnal em ambiente marinho de frente de delta.

Wright (1977) e Nemec, (1995) definiram os tipos básicos de barras de desembocadura com base na influência da inércia, fricção e flutualibilidade. Rios com fluxo de pouca eficiência formam tratos de fácies simples, formados pela abrupta desaceleração e diluição da carga em suspensão gerada por inundação durante a entrada no corpo receptor (Figura 3.14A). Os depósitos deste tipo são geralmente encontrados com bases erodidas ou gradadas, raramente com menos que 20cm de espessura. Normalmente é composto por areias finas e silte com abundantes fragmentos vegetais. As estruturas sedimentares geralmente são pouco desenvolvidas, restringindo-se a lâminas paralelas e cruzadas de pequena escala, e *ripples* no topo de camadas individuais. Todo esse conjunto forma barras ou clinoformas arenosas. A melhor interpretação desse depósito até o momento encontra-se em McLeod et al. (1999), que interpretam a formação desse depósito como um colapso gravitacional de sedimentos que geram plumas com rápida desaceleração (devido à mistura com a água receptora), seguida por deposição ao longo da vertente da barra. A geometria interna, a ausência de erosão e a textura de granulação fina sugerem uma origem de um fluxo pouco eficiente. Esses depósitos podem ser considerados com análogos de barras de desembocadura dominados por rios formados durante inundações, caracterizados por um fluxo diluído de carga de sedimentos em condições homopicnais.

O trato de fácies de carga sedimentar fluvial com fluxo de alta eficiência (Figura 3.14-1B) é caracterizado por longa duração e alta concentração de sedimentos de granulação grossa (predomínio de areias de média a grossa) depositados na desembocadura do rio. A porção de areias finas e argilas é carreada bacia adentro, para regiões distais da frente deltaica, onde são formadas camadas com grande extensão longitudinal, conhecidas também como lobos areníticos de frente deltaica.

Os tratos de fácies de alta eficiência (figuras 3.14-2A e 3.14-2B) mostram a gradação se sedimentos de finos a grossos. A maior eficiência de fluxo individual é indicada na segregação de grãos em direção a jusante, acompanhada por uma transformação e espetacular produção de superfícies de erosão ocasionadas pela cabeceira desse fluxo.

Os depósitos de desembocadura dos rios comumente mostram uma típica estratificação cruzada desenvolvida em diferentes escalas físicas, em função da potência e da duração de cada fluxo. Além da exposição de vários tipos de geometria de camadas, há estruturas deposicionais como laminações, *climbing ripples*, barras, dunas, *etc*.

Primeiramente descrita por Mutti *et al.* (1996), a estratificação cruzada sigmoidal produzida por inundação é caracteristicamente desenvolvida sob formas sigmoidais com lâminas cruzadas resultantes de correntes longitudinais, truncadas por planos superiores ou por superfícies erosionais levemente convexas. Cada unidade sigmoidal é separada por finas lentes com acresção frontal, com progressivo aplanamento corrente abaixo, o que significa uma diminuição das condições de fluxo. A origem de acamadamento sigmoidal, embora claramente produzido por tração e transformação em fluxo turbulento, pode ser interpretada como pulsante, amenizando no decorrer do tempo.

Figura 3.14: Principais tratos de fácies observados em sistemas de deltas fluviais com inundações (modificado de Mutti et al., 2000).

3.4. SISTEMAS DE FANDELTA

Esse tipo de sistema deposicional é bastante comum no preenchimento de bacias sedimentares estruturalmente confinadas. Consiste de unidades de transbordamento essencialmente expressas por corpos tabulares, que podem ser formados diretamente em ambiente aluvial ou marinho raso, abrangendo, neste caso, praias ou planícies de maré. Esses depósitos são registrados por camadas bipartidas, compostas por conglomerados basais em geral clasto-suportados sobrepostos por arenitos cascalhosos ou de granulometria grossa. Todd (1989) definiu sistemas de fandeltas como unidades lenticulares geradas por erosão, com raro conteúdo de granulação fina. Essas unidades, resultantes de material em suspensão por fluxo corrente abaixo, são encontradas no topo de uma seqüência sedimentar.

Sob a designação de fácies de leque (*fan* ou cones) encontram-se os depósitos compostos por sedimentos mal classificados, de granulação fina a grosseira, depositados no sopé de montanhas ou em outras áreas de relevo acentuado, onde encostas íngremes se tornam rapidamente mais suaves. Os modelos mais modernos destes sistemas incluem essencialmente fandeltas do tipo rampa e do tipo plataforma, sendo investigados por diversos autores, como Ethridge & Wescott (1984) e Postuma (1990).

Relações entre tratos de fácies e estratigrafia em sistemas de fandeltas dominados por inundações sugerem uma origem subaérea com fluxo catastrófico hiperconcentrado. O termo 'fluxo hiperconcentrado' é atualmente adotado por pesquisadores para descrever fluxos que estão no campo transicional entre fluxo de detritos e fluxos aquosos, indicando o prefixo 'hiper' o que está na parte de cima, é excedente ou excessivo. Dessa forma, com uma gama de densidade de fluxo, o termo 'fluxo hiperconcentrado' pode ser utilizado também para referir a coesão do fluxo de detrito, que é mais denso.

Este fluxo hiperconcentrado é provavelmente similar ao 'fluxo de deslizamento' submarino descrito por Norem *et al.* (1990), no qual ocorre uma ativação inicial por liquefação dos sedimentos em escarpas relativamente inclinadas. Ao seguir pelo vale fluvial com alto gradiente, há uma aceleração gradativa do fluxo da carga sedimentar, que, ao entrar num corpo aquoso, desacelera, por causa da mudança de inclinação. Exemplos deste tipo de depósito encontram-se nos trabalhos de Middleton & Hampton (1973), Nemec & Steel (1984),

Pierson & Costa (1987), Costa (1988), Coussot & Meunier (1982), Kim *et al.* (1995), Shanmugam (1996 e 2000) e Major & Iverson (1999).

Norem *et al.* (1990), Mohrig *et al.* (1998), Major & Iverson (1999) e Mutti *et al.* (1999), com base em observações de experimentos artificiais de fluxo de detrito e de modelagem numérica da pressão de fluidos sobre poros, demonstraram diferenças da fricção efetiva de fluxo hiperconcentrado subaéreo e submarino. Um tipo comum de fácies de tração observado nesse sistema é mostrado no esquema representado na Figura 3.15, derivado da proposta de Mutti et al. (1999), que se inspiraram parcialmente nos trabalhos de Sanders (1965), Ravenne & Beghin (1983) e Norem *et al.* (1990).

Em correntes turbiditicas bipartidas, a porção com granulometria grossa do fluxo (detrito pouco coeso ou fluxo hiperconcentrado) é conduzida pela força de pressão dos poros. O fluxo granular movimenta-se mais a frente do que o conteúdo de finos, até que este é desacelerado pela acomodação. A fricção entre os grãos, devido à perda de pressão dos poros e o escape de água, faz com que o fluxo granular seja contornado por um fluxo mais turbulento e diluído do que era no início.

Com base em observações de estratos aluviais antigos, Sohn *et al.* (1999) propuseram um modelo sedimentar de fluxo, no qual foi introduzido o conceito de composição do fluxo sedimentar. Neste conceito são inclusos o comportamento do fluxo de detrito (coeso ou pouco coeso), o fluxo de arraste aquoso (curso de água do rio) e um fluxo intermediário (hiperconcentrado). O modelo, portanto, não valoriza a pressão dos poros nos fluidos e nem tão pouco a mistura destes, que são dois fatores reconhecidamente importantes no controle do transporte e sedimentação. Os tratos de fácies representados no setor proximal da Figura 13.15A podem ser interpretados como produtos de correntes bipartidas geradas por inundação (uma série de ondas), com alta velocidade e movimento de fluxo hiperconcentrado (fluxo granular), como sugerido por Major & Iverson (1999) e Sohn *et al.* (1999).

Figura 3.15: Tratos de fácies comumente observados em sistemas de fandeltas: diagrama em seção (A e B) e em planta (C); (modificado de Mutti *et al.*, 2000).

3.5. MODELOS DE FÁCIES

Modelagem de fácies de sistemas deposicionais de sedimentação é uma das mais completas formas de sintetizar os dados para classificar e explicar processos sedimentares ocorridos no passado e registrados em seqüências deposicionais. As propostas de modelos de fácies baseiam-se em diversos critérios, como superfícies geomorfológicas (Coleman & Wright, 1975 e Galloway, 1975) ou estruturas sedimentares, como o modelo turbidítico proposto por Bouma (1962), e o modelo de estratificação cruzada do tipo *hummocky* proposto por Dott & Bougeois (1982). Geralmente os modelos de fácies são gerados sob a forma de croquis paleogeográficos, perfis verticais, blocos diagrama ou uma combinação destas três formas. Isoladamente, os perfis verticais de fácies mostram uma restrição de uso na interpretação de sistemas deposicionais, pois sucessões cíclicas similares podem ser produzidas em mais de um sistema, sendo controlados por diferentes processos.

Quanto a formas de camadas de depósitos fluviais, há uma classificação de Jackson (1975) que pode ser muito útil na descrição de modelos de fácies. Este autor denomina de:

- microformas, camadas geradas por processos turbulentos resultantes de ondulações de pequena escala e de lineações, sendo essencialmente idênticas em todos ambientes clásticos dominados por correntes de tração unidirecional (deste modo, não são diagnósticas de estilos fluviais);
- mesoformas, camadas que registram processos gerados por regime de fluxo de grande escala, sendo este gerado por eventos dinâmicos do final de tempestades, do degelo sazonal ou de inundações, como pode ser observado em dunas, canais secundários e barras linguóides, transversais, longitudinais e diagonais (Smith, 1974). Essas camadas têm geometria semelhante em todos ambientes clásticos cuja condição de fluxo aquoso seja unidirecional. Portanto, estratos com regime de fluxo com características constantes podem ser descritos pontualmente, seguindo uma classificação de litofácies como a proposta por Miall (1977 e 1978; Tabela 3.2), como comprovam os trabalhos de Rust (1978b, 1979), McLean & Jerzykiewicz (1978), Boothroyd & Nummedal (1978), Miall & Gibing (1978), Awasthi & Parkash (1981), Graham (1981), Forbes (1983), Bryant (1983), Massari (1983), Hayward (1983), Rust & Legun (1983), Stear (1983), Brady (1984), Kerr (1984), Johnson (1984) e Gager (1984); e

 macroformas, camadas que refletem o efeito cumulativo de vários eventos dinâmicos, abrangendo um período de tempo de dez a milhares de anos, nelas se incluindo os canais principais e formas de barras maiores, assim como combinações de barras em pontal, barras laterais, lençóis de areia e ilhas.

Código	Fácies	Estruturas sedimentares	Interpretação
Gmm	Cascalho maciço com matriz suportada	Estratificação incipiente	Fluxo de detritos plástico (alta energia, viscoso)
Gmg	Cascalho com matriz suportada	Gradação inversa ou normal.	Fluxo de detritos pseudoplástico (baixa energia, viscoso)
Gci	Clastos suportados por cascalho	Estratificação incipiente	Fluxo rico em detritos (alta energia), ou fluxo de detritos pseudoplástico (baixa energia)
Gmc	Cascalho maciço suportado por clastos		Fluxo de detritos pseudoplástico (carga da camada inerte, fluxo turbulento)
Gh	Cascalho com acamadamento desorganizado	Acamadamento horizontal com imbricação	Depósitos de corrente
Gt	Cascalho estratificado	Estratificação cruzada- acanalada.	Preenchimento de canais secundários
Gp	Cascalho estratificado	Estratificação cruzada- planar	Acamadamento transverso, produto deltaico de antigas barras remanescentes
St	Areia fina a grosseira, podendo conter seixos	Estratificação cruzada- acanalada, isolada ou agrupada	Dunas 3D com cristas sinuosas e do tipo linguóides.
Sp	Areia fina a grosseira, podendo conter seixos	Estratificação cruzada- planar, isolada ou agrupada	Dunas 2D transversas e do tipo linguóides.
Sr	Areia muito fina a grossa	Estratificação cruzada e <i>ripples</i>	<i>Ripples</i> (regime de fluxo inferior)
Sh	Areia muito fina a grossa, podendo conter seixos	Laminação horizontal	Fluxo de acamadamento planar
SI	Areia muito fina a grossa, podendo conter seixos	Estratificação cruzada de baixo ângulo (<15°)	Preenchimento de canais, formação de pequenas elevações e desmoronamento de dunas, antidunas
Ss	Areia fina a muito grossa, podendo conter seixos	Escavações rasas e largas	Preenchimento, retrabalhamento por polimento
Sm	Areia fina a grossa	Maciço ou discreta Iaminação	Depósito de fluxo gravitacional
FI	Lutitos	Pequenas laminações e pequenas <i>ripples</i>	<i>Overbank,</i> canais abandonados ou depósito de inundações
Fsm	Silte e argila	Maciço	Depósito de canais abandonados.
Fm	Argila e silte	Maciço, gretas de dissecação	Overbank, canais abandonados
Fr	Argila	Maciço, marca de raízes, bioturbação	Solos
С	Carvão e argila carbonática	Restos vegetais, filmes de argila	Depósito de pântano

Tabela 3.2: Síntese do	classificação	de litofácies	conforme Mia	I (1996).
------------------------	---------------	---------------	--------------	-----------

Santos, V.H

Р	Paleosolo carbonático (calcita, siderita)	Feições pedogenéticas: nódulos, filamentos	Solo com precipitação química
---	---	---	-------------------------------

Entretanto, são os componentes de pequena escala (poucos metros de largura e comprimento) que definem os oito elementos arquiteturais básicos sugeridos para depósitos fluviais por Allen (1983) e Miall (1996). Esses elementos são definidos utilizando os critérios de granulometria, composição das camadas, sucessão interna e geometria interna (Figura 3.16) e reúnem um ou mais tipos de litofácies, como as listadas na Tabela 3.2.

3.5.1. Elementos Arquiteturais Básicos

Os elementos maiores de geometria planar de depósitos sedimentares, geralmente conhecidos como elementos arquiteturais, conforme a classificação de Miall (1996), podem requerer centenas de metros de exposição lateral para serem reconhecidos, uma condição raramente encontrada. Ao descrever elementos arquiteturais é preciso observar algumas feições (Figura 3.16), como a:

- natureza das superfícies limitantes ou das gradações superiores e inferiores: planar, irregular, erosiva ou canalizada (côncava ou convexa);
- escala, espessura, extensão lateral longitudinal ou transversal à direção do fluxo;
- geometria externa: folha, lente, cunha acanalada, corte em U;
- geometria interna: associação de litofácies, sucessão vertical, presença de superfícies de erosão secundária (se aparece, qual a orientação), direção de paleofluxo das camadas, relação de acamadamento interno das superfícies (paralela, *onlap*, *downlap*).

Os elementos arquiteturais básicos são isolados por contatos de acamadamento de diferentes escalas. Allen (1983) define três tipos destes contatos: contato de 1ª ordem ou de camadas individuais; contato de 2ª ordem ou *cosets* (*sensu* McKee & Weir, 1953), e superfície de 3ª ordem ou associação de litofácies geneticamente relacionadas (Figura 3.17). Grupos de canais, como num paleovale, podem constituir-se adicionalmente numa superfície de 4ª ordem. A terminologia e definição dos principais elementos arquiteturais proposta por Miall (1985) é a adotada no presente trabalho.

62

Figura 3.16: Modelo e descrição da geometria dos principais elementos arquiteturais em depósitos fluviais (modificado de Miall, 1985).

O elemento CH (depósitos de canal), por exemplo, é o elemento com maior facilidade de identificação num sistema fluvial (Figuras 3.16 e 3.17), por apresentar típicas superfícies côncavas. Em afloramentos, os canais principais podem conter vários canais secundários, por vezes mais visíveis do que os principais, por apresentar uma morfologia mais completa. Os complexos de barras que geralmente acompanham os canais secundários mostram três elementos arquiteturais: GB, que compreende as barras e camadas de cascalho; FM, formado por macroformas de *foresets* arenosos; e SB, composto por camadas arenosas. Os dois primeiros elementos (GB e FM) mostram gradação vertical e acreção lateral resultantes da migração de canais pelo fundo do vale. Em todos estes três elementos arquiteturais básicos são observadas superfícies de acreção lateral mergulhando com baixo ângulo para dentro do meandro do fluxo do canal, o que pode dificultar seu reconhecimento, pois podem ser confundidas ou mascaradas por superfícies acanaladas dos canais secundários, por barras ou por camadas que migram sobre elas (Gustavson, 1978; Schwartz, 1978; Forbes, 1983).

Figura 3.17: Hierarquia dos elementos arquiteturais básicos de acordo com os limites da estrutura principal, tomando como exemplo um canal fluvial (modificado de Miall, 1978).

A maioria dos elementos arquiteturais está contida, em parte ou completamente, em canais fluviais principais (Williams & Rust, 1969; Rust, 1978a). Mas outros não, como é o caso dos elementos: LS, composto por camadas laminadas de areia formadas principalmente durante eventos de inundação; OF: constituído por depósitos de *overbank* com areias finas, argilas, silte, calcretes e restos vegetais

depositados em planícies de inundação e canais abandonados; e SG: formado por depósitos de fluxo gravitacional, pobre em cascalhos, de regiões proximais de leques aluviais.

3.5.2. Elemento CH: Canal

O elemento arquitetural CH corresponde a depósitos de canal (*channel*). Geralmente, os canais mostram vários pulsos de preenchimento, com cada um deles limitados por superfícies erosionais (Figuras 3.16 e 3.17). A geometria de um canal é definida pelos parâmetros largura *versus* espessura e direção, esta raramente observada em afloramento, sendo deduzida através de dados faciológicos ou de paleocorrentes (Miall, 1976 e Peterson, 1984). Canais fluviais da ordem de centena de metros incluem canais secundários, de pequeno e médio porte, que estão associados a calhas, topos de barras e canais de *crevasse*, estes normalmente iniciados em estágios de nível alto de um rio, sendo escavados durante o período de queda do nível das águas. Com o aumento da largura do rio, as margens de canais tornam-se mais inclinadas, de modo que o ângulo de inclinação das margens é inversamente proporcional à estabilidade das barras formadas no leito.

Segundo Friend *et al.* (1979), Friend (1983) e Blakey & Gubitosa (1984), os canais podem ser classificados, conforme sua geometria, em: fixos (de geometria retilínea, geralmente estreita, com razão largura/profundidade >15), móveis (com geometria de preenchimento por processo de migração de canais ou interrupção de escoamento dentro do canal principal, sendo largos e rasos) ou lençóis (não canalizados, com a razão largura/ profundidade excedendo a 100). Onde a carga sedimentar do rio é dominada por areias ou cascalhos são desenvolvidos trechos entrelaçados, com geometria de canais em lençol. Assim, constata-se que a geometria não está diretamente relacionada à declividade de um rio, mas sim à carga sedimentar e à natureza do sedimento que a compõe (Crowley, 1983; Church & Rood, 1983; Carson, 1984a, b, c). Essa é uma das razões para não definir modelos de fácies fluviais somente através da geometria de canal observada.

Os grandes complexos de canais são melhor denominados paleovales, contendo depósitos e outros elementos limitados por quatro ordens de acamadamento (Figura 3.17). Canais de grande porte geram outros canais

menores, que trocam continuamente de curso, formando um padrão entrelaçado (Schumm, 1963; Figura 3.18).

O preenchimento de canais com gradação vertical mostra sucessões com granodecrescência que refletem processos de progressivo abandono resultante do tamponamento por eventos episódicos, como, por exemplo, o transbordamento de leito por inundação. Típicos ciclos incluem:

GB (barras de cascalho) → FM (*foresets Macroformas frontais* arenosas) → SB (arenito) → OF (Overbank) (*overbanks*) LS (laminas de areia)→ SB (arenitos)→ OF (*overbank*)

Particularmente em sistemas de alta sinuosidade, os canais podem ser abandonados por calhas ou dutos de expansão, que serão provavelmente preenchidos por elementos OF (*overbanks* finos de extravasamento) com estruturas canalizadas. Hopkins (1985) descreveu afloramentos com canais distributários cujo preenchimento mostra uma gradação vertical resultante do abandono súbito ou progressivo.

Figura 3.18: Representações esquemáticas de canais fluviais que mostram a ausência de relação entre a geometria do canal e a geometria de preenchimento do complexo de canais, segundo Miall (1985). Os números sobre cada complexo informam a razão largura/profundidade calculada em canal preenchido numa posição e posteriormente noutra posição. A, D: canais simples; B, E, F: complexos de canais (multilaterais) preenchidos formados por migração lateral ou por pequena subsidência contemporânea; C: complexo de canais formados dentro de canais relativamente estáveis sob condições de rápida subsidência.

3.5.3. Elemento GB: Barras de Cascalho

Este elemento arquitetural, também denominado 'barras cascalhosas' ou *gravel bars*, é composto por clastos grossos, difusos, com margens lobadas, sendo formado durante episódios de descarga sedimentar de alta energia da água, pela adição de clastos em direção da jusante que dão origem a barras longitudinais (Rust, 1972 e Hein & Walker, 1977). Estas barras alcançam até 1m de altura, podendo apresentar diminuição ou aumento no tamanho dos clastos em direção ao topo, dependo do modo da acreção. Southard *et al.* (1984) observaram o processo de transporte de seixos em canais rasos de dutos e lobos, constatando que os lobos possuem baixo potencial de acomodação de cascalhos grossos. Entretanto, a acomodação dos clastos tende a resultar em granodecrescência, devido à diminuição da lâmina de água (Gustavson, 1978).

O elemento GB forma tipicamente vários pavimentos com espessuras que variam de 10 a 100m constituídos por barras. Superfícies planas ou irregulares de erosão podem ser comuns entre os *sets* da barra. A migração de canais ativos pode cortar essas barras cascalhosas, produzindo cortes até 2m. A jusante de rio, elementos GB podem ser retrabalhados por elementos SB e FM (Miall, 1978; Vos & Tankard, 1981; Brady, 1984).

Este elemento arquitetural inclui as litofácies denominadas por Hein & Walker (1977) como Gm, Gp, Gt e Gl, que definem um intervalo de mesoformas. Estes mesmos autores propuseram um mecanismo evolutivo para explicar a semelhança entre as litofácies Gm e Gp, posteriormente confirmado nos trabalhos de Gustavson (1978), Massari (1983) e Bluck (1979 e 1980). Este mecanismo mostra que, em alguns casos, as barras são capeadas por cascalho grosso, que fica frequentemente interdigitado a areias. A erosão do cascalho no topo das barras em períodos de águas de nível alto e o preenchimento dos canais por areia durante fases de nível de águas mais baixo resultam numa seqüência de granodecrescência ascendente. Segundo Crowley (1983), a textura da areia das barras é caracterizada pelo aumento da granulometria em direção ao topo, produzido pelo aumento de velocidade de fluxo e da profundidade da lâmina de água sob a crista de crescimento da barra.

A litofácies Gt representa a migração de barras transversais com linha de crista curvada ou o preenchimento de canais secundários. Esses canais geralmente

desembocam em pântanos que podem desenvolver barras com estratificação cruzada paralela, típica da litofácies Gp (Ramos & Sopeña, 1983 e Massari, 1983).

3.5.4. Elemento SB: Formas de Leito

O elemento arquitetural SB corresponde a camadas de areias (sands bedforms), sendo tipicamente composto por estratos arenosos com 5% a 10% de cascalho grosso. Representam depósitos ocorridos sob águas calmas em canais abandonados ou em cunhas de canais de barras de pontal e de microdeltas (Rust, 1972 e Miall, 1977). Esse elemento abrange o amplo domínio de areias fluviais que formam dunas (litofácies St), barras linguadas e transversas (litofácies Sp), camadas planas de regime de fluxo superior (litofácies Sh) e *ripple marks* (litofácies Sr; Allen, 1968; Southard, 1971; Harms *et al.*, 1975 e 1982; Miall, 1977). A seqüência vertical destas camadas registra diferentes regimes de fluxos, como torrentes de inundações (*flash floods*) decorrentes de flutuações climáticas sazonais. A variação da profundidade da lâmina de água leva a seqüências de litofácies similares, o que é um problema na análise de perfis verticais.

Alguns exemplos típicos de elementos SB podem ser apresentados para ilustrar suas feições mais características. Assim, temos os campos de dunas (litofácies St) que geralmente ocupam as porções do fundo de canais ativos, com carga do leito predominantemente composta por areias. A morfologia desta litofácies se apresenta sob a forma de lentes ou lobos de areia com estratificação cruzada acanalada, com poucos metros de espessura. Esses depósitos podem ser cortados por superfícies de erosão (litofácies Se e Ss), indicando certa diversidade de fases de flutuação fluvial (Harms *et al.*, 1963 e Harms & Fahnestock, 1965). Nas partes mais rasas do canal, incluindo os topos e flancos de barras de pontal e de lençóis de areia, barras transversais ou ondas de areia são comuns, gerando estratificações cruzadas planares (litofácies *Sp*), com pouca ciclicidade interna.

Muitos trabalhos (McGowen & Gorner, 1970; Jackson, 1976b; Cant & Walker, 1978; Nijman & Puigdefabregas, 1978; Plint, 1983, Buck, 1983; Stear, 1983, entre outros) têm descrito características que ocorrem em pequena escala nas partes mais rasas dos canais ativos, particularmente nos topos das barras. A estrutura com maior ocorrência são as estratificações cruzadas do tipo *ripple* (litofácies Sr), constituídas durante o rebaixamento do nível das águas, sendo preservada por exudações de grandes formas ou de barras formadas em seqüências locais, com

granodecrescência ascendente. Canais de *crevasse* e depósitos de *crevasse splay* são também típicos do elemento SB. S*plays* são corpos tabulares com dezenas a centenas de metros de extensão e 1 a 2m de espessura, variando lateralmente para o elemento OF (o*verbank fine*), com seqüência granodecrescente, indicando progradação ou abandono gradual. Restos de vegetais e de vertebrados são comuns (Collinson, 1970; Ethridge *et al.*, 1981; Gersib & McCabe, 1981; Smith, 1983; Bridge, 1984). Nas planícies distais anastomosadas, os lagos associados a praias de depósitos fluviais podem ser inteiramente compostos dos elementos SB, assim como os lençóis de areia que desenvolvem bancos com canais não confinados. Em termos faciológicos, elementos SB podem apresentar ciclos de 1 a 3m de espessura, com uma transição ascendente das fácies Sh, Sp ou St para as fácies Sr e Fl.

3.5.5. Elemento FM: Macroformas Frontais de avalanche Foreset

A visualização tridimensional é básica para a análise arquitetural do elemento FM (*foersets macroforms*), pois podem ter mais de quilômetros e conter uma complexa geometria interna, que só permite ser modelada em afloramentos de grande porte. Esses depósitos representam uma vigorosa atividade deposicional Investigações sedimentológicas com ênfase na geometria interna desse elemento foram realizadas por Collinson (1970) em barras de rio, e por Cant & Walker (1978) em lençóis de areia, que concluíram, juntamente com Allen (1983), Kirk (1983) e Haszeldine (1983a, b), que a geometria e a estrutura interna variam consideravelmente de acordo com a profundidade do canal, tamanho dos grãos, e a carga sedimentar (Figura 3.19).

As características essenciais do elemento FM consistem em alguns *cosets* de camadas, cujo regime de fluxo é dinamicamente relacionado à hierarquia das superfícies internas limitantes (Figura 3.19), que revelam a atuação de eventos não periódicos sob a forma irregular das barras. As principais fácies geradas neste elemento são: St, Sh, SI ou Sr. As lâminas das fácies Sh e SI estão paralelas ou subparalelas a superfícies limitantes de 2ª ordem. Estudos de paleocorrentes mostram que o regime de fluxo dominante nessas camadas avança paralelo ao mergulho existente abaixo das superfícies de 2ª ordem (Haszeldine, 1983a, b; Kirk, 1983) ou oblíquo à superfície da barra (Allen, 1983), explicando a geometria de camadas cruzadas das barras.

A acreção de macroformas é basicamente gerada pelo processo agregação sedimentar de camadas a jusante, por rápido soterramento e preservação de camadas sobrepostas. As variações na composição e na geometria descritas são geradas por estágios de flutuação. As superfícies limitantes de 1ª e 2ª ordens têm caráter de superfícies de reativação (Collinson, 1970). Os níveis de areia, mencionados por Cant & Walker (1978), seriam cortados por inúmeros canais erosionais, durante a diminuição do nível das águas. Kirk (1983) descreveu associações de litofácies de diversas fases deste elemento, distinguindo estruturas nos corpos de areia por diferentes paleocorrentes, que refletiriam várias superfícies de escoamento existentes durante a diminuição do nível das águas, conforme a orientação do canal de topo da barra.

Quando a direção do fluxo principal do canal é obliquo à lateral do leito fluvial, é gerada uma força centrifuga que gera a inversão helicoidal de uma corrente secundária obliqua acima nas barras. Por causa da redução da potência da corrente principal provocada por esta corrente secundária helicoidal, há uma acreção lateral de sedimentação de alto ângulo paralela ao fluxo principal. Os depósitos gerados por esse processo são caracterizados por estratificações cruzadas com terminações bifurcadas em *offlap*, seguidas por fácies do elemento OF (Allen, 1963 e 1965). Assim, geralmente a base do elemento LA é erosional e o topo é gradacional, exceto onde este é truncado por outro elemento mais recente. Por isto, o reconhecimento do elemento LA pode fornecer um importante dado para iniciar uma análise paleohidráulica.

Crowley (1983) comparou a dinâmica sedimentar do elemento LA com alta sinuosidade de canais com a dinâmica de depósitos FM com baixa sinuosidade de canais, constatando que ambos são similares. Entretanto, na parte de menor energia das águas nas curvas dos canais fluviais com alta sinuosidade é depositada a maior parte dos depósitos de LA, sob a forma de barras de pontal. E nos rios com baixa sinuosidade (sistema entrelaçado), o elemento LA é menos proeminente, o que se deve à ocorrência de canais retilíneos intercalados pelo desenvolvimento de barras nos meandros dos talvegues sinuosos (Smith, 1983).

O conjunto de litofácies participante do elemento LA é muito variável, dependendo da composição e da granulometria da carga sedimentar. Depósitos dominados por cascalho são relativamente raros, e quando ocorrem são subordinados ao elemento GB. Já os depósitos com predomínio de areias ou areias seixosas mostram uma ampla variabilidade, que se reflete em vigorosas camadas e na progradação de barras com desenvolvimento de calhas. A geometria e a composição de depósitos de LA não são constantes ao longo de uma dada curva do meandro. Esta variabilidade é registrada nos clássicos perfis de granodecrescência ascendente (Allen, 1970).

Exemplos deste elemento foram descritos por Bluck (1971) e Bridge & Jarvis (1976) em rios cascalhosos, onde a parte mais espessa da barra de pontal está a montante da corrente (cabeça da barra), podendo migrar para a jusante. Jackson (1976a) constatou que, num depósito fluvial de areias e areias seixosas, os padrões de fluxo helicoidais tendem a gerar granodecrescência ascendente nas barras de

Santos, V.H

pontal a jusante do meandro. Observou também que correntes de turbilhonamento formam significativos depósitos de areia fina, silte e argila nos complexos de bancos côncavos.

Depósitos de acreção lateral (barra de pontal) são classificados, de acordo com a granulometria, em quatro grupos, havendo também gradações entre eles, como resultado da variação de energia do evento de descarga. Estes quatro grupos e variações foram caracterizados em modelos fluviais por diversos autores (Figura 3.20):

Figura 3.20: Exemplos de elemento AL (acreção lateral): A) barra de pontal conglomerática (modelo fluvial de Ori, 1979); B) arenitos de granulação média com estratificação cruzada planar (modelo de Beutner *et al.*, 1967); C) arenitos finos com leitos seixosos (modelo de Allen, 1983); D) barra de pontal com dunas e estratificação cruzada por *ripples* (modelo de Puigdefabregas, 1973); E) barra de pontal com arenitos finos e silte (modelo de Nanson, 1980); F) barra de pontal gigante com granulometria fina (modelo de Mossop & Flach, 1983).

3.5.7. Elemento SG: Depósitos de Fluxo Gravitacional

Este elemento ocorre como um estreitamento de lobos alongados ou como sobreposições de lençóis inter-acamadados com elemento GB, mostrando predominantemente a litofácies Gms. Esse depósito, com camadas individuais geralmente medindo de 50cm a 3m de espessura, é formado primariamente por fluxo gravitacional de detritos, podendo ter unidades lobadas, com largura de aproximadamente 20m, e na jusante alcançando alguns quilômetros (Hooke, 1967; Wasson, 1977; Vessel & Davies, 1981; Nemec & Muszynski, 1982). Eventos de fluxo gravitacional trazem material que ocupa canais erosionais ou formas topográficas irregulares formadas por um fluxo anterior. Internamente, elementos SG podem mostrar uma ampla gama de texturas e *fabrics*. A transição gradual de diferentes fluxos também está presente nesse elemento, o que é observado na deposição superior das unidades, que mostra uma gradação de areia para cascalho, com estratificações cruzadas de baixo ângulo, interpretadas como uma transição de fluxo de detritos para o transporte de tração (Nemec & Muszynski, 1982).

3.5.8. Elemento LS: Lençóis de areia Laminadas

O elemento LS inclui os lençóis laminadas de areia (*laminated sand sheets*), comuns em algumas seqüências sedimentares antigas e interpretados como produto do transbordamento de leitos fluviais. A areia é então depositada em camadas planas (litofácies Sh e SI), sob um regime de fluxo (Miall, 1977 e 1984b; Rust, 1978b; Tunbridge, 1981 e 1984; Sneh, 1983). A característica arquitetural desse elemento foi descrita por Tunbridge (1981) e Sneh (1983). Os lençóis individualizados de areia têm espessura média entre 0.4 e 2.5m, com ampla extensão lateral e base com superfícies planares de erosão. Este elemento pode ser recoberto gradualmente por fácies Sp, St ou Sr, que indicam um decréscimo de energia durante estágio final dos eventos de inundação.

3.5.9. Elemento OF: Overbank Fines

O elemento OF é caracterizado pela litofácies FI, que consiste de estratos de argilas ou silte, lentes ou lâminas de silte, que gradam para areias finas, normalmente com laminações cruzadas onduladas (*ripples*). Esse tipo de depósito pode abranger planícies de inundação onde se formam lagos lamosos habitados por moluscos de água doce, com restos carbonosos de vegetais, calcretes e

depósitos de areia de *crevasse splays* (Allen, 1974; Horne *et al.*, 1978; Mclean & Jerzykiewicz, 1978; Horne *et al.*, 1978; Staub & Cohen, 1979; Bridge & Leeder, 1979; Ethridge *et al.*, 1981; Flores, 1981; Smith, 1983; Bridge & Diemer, 1983; Bridge, 1984; e Leeder, 1985).

Os depósitos de OF possuem geometria em lençol, se constituindo numa deposição com gradação vertical. Próximo a canais ativos, os lençóis depositados com mergulhos de baixo ângulo podem ser cortados por *crevasse splays*, e os diques podem ser abruptamente truncados por canais de *cutbanks*. Elementos OF podem preencher canais abandonados com base côncava e geometria em lençol (Ethridge *et al.*, 1981). A geometria e a espessura das seqüências de *overbank* são controladas por diversos fatores de grande importância na sucessão fluvial, como fonte sedimentar, padrões de canais, razão de subsidência e trajetória dos canais de migração (Friend, 1983).

3.6. MODELOS DE ESTILOS ARQUITETURAIS

No estudo de depósitos fluviais, nem sempre termos padrões utilizados nas interpretações paleoambientais, como entrelaçado, meandrante, *etc.*, permitem a completa descrição da variedade de controles e de combinações encontradas na natureza. Assim, nove modelos baseados em registros de rios atuais e em depósitos fluviais antigos (Figura 3.21) podem facilitar o entendimento dos estilos de seqüências observadas e descritas, como é a seguir apresentado. Os modelos 5, 7, e 9 geram corpos de areia planar (lençóis), segundo a terminologia de Friend (1983).

Modelo 1: caracteriza regiões proximais de leques aluviais, onde o equilíbrio do regime pluvial e o intemperismo atuante na área fonte gera abundante fluxo de detritos. Este estilo fluvial também pode ocorrer na drenagem de rios ativos em regiões vulcânicas. Este modelo é geralmente associado ao elemento SG de geometria lobada, interdigitado com camadas canalizadas ou lençóis tabulares do elemento GB, ainda que unidades secundárias do elemento SB possam ocorrer em canais abandonados.

Figura 3.21: Relação entre granulometria e padrão dos canais fluviais (elementos arquiteturais baseados em Miall, 1985).

Modelo 2: representa leques aluviais onde o fluxo de detritos são escassos. Feições proximais alcançam planícies anastomosadas, formando este tipo de depósitos (Bodhroyd & Nummedal, 1978). O vale é cortado por vários canais largos, rasos e de baixa sinuosidade, que se ramificam e mudam constantemente de posição, gerando a erosão e progradação de barras (Bluck, 1979). Geralmente 95% da espessura total deste estilo de depósito são corpos tabulares do elemento GB, incluindo lençóis difusos de cascalhos e barras longitudinais (fácies Gm), camadas transversais de cascalho (fácies Gp) e cortes erosionais (fácies Ge e Gt). Durante a fase de alteração espacial das barras são formados canais secundários sobre as barras emergidas, preenchidos por depósitos do elemento SB. A arquitetura consiste em numerosos lençóis tabulares, interdigitados com superfícies de erosão que incluem os *cutbanks* de difícil identificação.

Modelo 3: inclui grandes leitos seixosos e leques aluviais desenvolvidos em vales com três ou quatro níveis topográficos distintos, sendo o mais alto coberto por densa vegetação, e o inferior ocupado por um canal ativo similar ao modelo 2. Os níveis superiores somente são ativados em fases com intenso acúmulo de depósitos de SB. Uma planície de inundação pode ou não formar parte do sistema, dependendo da largura do vale e da estabilidade do canal. A migração lateral de canais (como, por exemplo, canais distributários de leques aluviais) causa uma sobreposição dos níveis do terraço e a geração de seqüências granodecrescentes ascendentes (Williams & Rust, 1969 e Rust, 1972).

Modelo 4: rios largos, de leitos rasos, baixa sinuosidade e abundante carga de areia são características marcantes nesse modelo, assim como a arquitetura típica consiste de lençóis tabulares de SB. O canal principal é abastecido por canais mais profundos preenchidos por sucessivas dunas e por camadas que formam barras linguóides com lobos geralmente recobertos por *ripples* e *megaripples*. Sucessivas avalanches formam estas barras com cristas sub-retilíneas mergulhando para a montante, em ângulo de cerca de 30° com o *trend* do canal (Crowley, 1983). Geralmente consistem de numerosos *sets* sobrepostos pela fácies Sp (modelo de *platte* de Miall, 1977). Planícies de inundação erosional, como os lençóis de areia são comuns e ilhas com vegetação são raras.

Modelo 5: representa típicos rios com leitos meandrantes de granulometria grossa, mas compostos por um complexo de barras de pontal de areias seixosas. O padrão acrecionário das barras é interrompido por camadas de areia, como dunas e ondas de areia. Marcas de meandros e de canais abandonados são comuns na planície de inundação. Ciclos de granodecrescência ascendente podem estar ou não presentes, dependendo da sinuosidade dos meandros e do padrão de fluxo em torno da curva (Jackson, 1976a).

Modelo 6: caracteriza um complexo com diversos canais, barras e fácies de topo de barra similares ao modelo 4, por vezes com sobreposição de canais, possivelmente formados pela ampla flutuação de sua profundidade. Muitos depósitos deste tipo podem registrar gradação granodecrescente ascendente por longo período na planície anastomosada e nos canais distributários (Cant & Walker, 1978). A espessura das seqüências que registram os ciclos é de aproximadamente 10m.

Modelo 7: representa o clássico leito arenoso meandrante, com barras de pontal geralmente apresentando uma geometria simples, similarmente ao modelo 5, mas em menor escala. Apresenta um bom desenvolvimento de um sistema em 'Y', com estratificação cruzada. Meandros, canais abandonados e *crevasse splays* são comuns.

Modelo 8: caracteriza uma rede de canais efêmeros e rasos, entrelaçados e com pouca definição, típicos de planícies anastomosadas distais, particularmente desenvolvidas em regiões áridas (Williams, 1971). Os depósitos são dominados por lençóis, lentes e cunhas do elemento SB, com raros depósitos de *overbank*.

Modelo 9: representa leitos arenosos meandrantes caracterizados por fluxos fortemente sinuosos, com carga sedimentar fina (areia fina, argila e silte) em suspensão. Marcas de ondas são abundantes devido à alta energia do fluxo fluvial sinuoso. A geometria é similar ao modelo 7, com acreção em barras de pontal com mergulhos acima de 25°. O conjunto de elementos CH é composto por depósitos LA, subordinados a elementos SB e OF em canais abandonados. A arquitetura em grande escala é controlada pelas mudanças de curso dos canais.

Capítulo 4 - FACIOLOGIA E ARQUITETURA

4.1. Introdução

Na porção estudada da Bacia do Parnaíba, oito fácies sedimentares e suas associações foram identificadas, sendo a seguir descritas em suas principais características, com base em dez afloramentos selecionados por sua extensão ou pela espessura de sua exposição (Tabela 1.1). A interpretação genética dos processos responsáveis por suas deposições é discutida igualmente, numa tentativa de entender a evolução da seqüência devoniano-eocarbonífera. Sete fácies foram identificadas em ambos os grupos estratigráficos, com variações que são mencionadas em detalhe na discussão de cada afloramento, denominadas pelas siglas propostas por Miall (1996):

- Gcm: conglomerado maciço suportado por clastos (afloramentos IP-1 e JC-1)
- SI: arenito com estratificação cruzada de baixo ângulo (afloramentos JC-3, e ITP-2)
- Sp: arenito com estratificação cruzada planar (afloramentos IP-1, JC-1 e JC-3, ITP-1 e CAB-1)
- St: arenito com estratificação cruzada acanalada (afloramentos IP-1, JC-1 CAB-2 e PT-2)
- Sr: arenito com marcas de ondas ou hummocky (afloramentos ITP-1, ITP-2, CAB-1, CAB-2 e PT-1)
- Sh: arenito (com folhelho intercalado) com estratificação planoparalela ou *climbing ripples* (afloramentos PT-1 e PT-3).
- FI: siltito a arenito muito fino estratificado (afloramento IP-1) ou com *climbing ripples* ou acamamento ondulado (afloramentos PT-2 e PT-3).

Os critérios utilizados para a classificação das litofácies de Miall (1996) foram baseados na estratigrafia, elementos estruturais, disponibilidade da carga sedimentar continental e níveis eustáticos do mar (Hornung & Aigner, 1999; Buatois & Mángano, 1994; Jo, 2003).

Os afloramentos estudados estão localizados na região sudeste do Estado do Piauí, geologicamente inseridos numa área da borda sudeste da Bacia do Parnaíba (Figura 4.1).

Seqüências Devoniana e Eocarbonífera da Bacia do Parnaíba, Brasil, como análogos... Santos, V.H 80

Do Grupo Serra Grande (Siluro-devoniano, conforme Aguiar, 1971), há três afloramentos bastante significativos: Ipú 1 (IP-1), Jaicós 1 (JC-1) e Jaicós 3 (JC-3), correspondentes às formações de igual nome. Do Grupo Canindé (Mesodevoniano-eocarbonífero, segundo Góes & Feijó, 1994), sete afloramentos mostram sua variedade litológica e seqüência estratigráfica: Itaim/Pimenteiras 1 (ITP-1), Itaim/Pimenteiras 2 (ITP-2), Cabeças 1 (CAB-1), Cabeças 2 (CAB-2), Poti 1 (PT-1), Poti 2 (PT-2) e Poti 3 (PT-3), igualmente referidos às formações de mesmo nome.

4.2. Fáceis do Grupo Serra Grande

No estudo faciológico de três afloramentos do Grupo Serra Grande foram descritos (afloramento IP-1) da Formação Ipú e dois da Formação Jaicós (afloramentos JC-1 e JC-3), nos quais foram reconhecidas cinco diferentes fácies, de conglomeráticas a rítimicas (varvitos).

4.2.1. Afloramento Ipú 1

O painel fotográfico do afloramento Ipú 1 (IP-1), mostrado na Figura 4.2, apresenta uma visão geral da exposição sedimentar, sendo individualizadas as quatro fácies reconhecidas, todas referentes a uma fase eminentemente clástica (**Sp**, **Gcm**, **St** e **FI**). As geometrias (2D) visualizadas neste afloramento, estão sintetizadas nas Figuras 4.3 e 4.4.

Fácies Sp: arenito com estratificação cruzada planar

No afloramento IP-1, esta fácies está presente em sua parte inferior, sendo composta por quartzo-arenito de granulação grossa e mal selecionada, com níveis

cascalhosos, apresentando estratificação cruzada planar de médio porte, com sets de 10 a 60cm de espessura, mergulho de baixo ângulo (25°), e indícios de paleocorrentes de direção entre 220° a 300°Az (Fotografia 4.1). A geometria desta fácies é caracterizada por camadas tabulares de arenito, que podem ser interpretadas como migração de barras transversais (com cristas subretilíneas) de areia. Na base há conglomerados com estratificação horizontal, atribuídos a depósitos residuais. Todo este conjunto arquitetural é atribuído a barras longitudinais de leitos fluviais entrelaçados.
Formação IPÚ - Km 13 - PI-140

Figura 4.2: Painel fotográfico em quatro partes, do afloramento Ipú 1 (IP-1), Formação Ipú do Grupo Serra Grande da Bacia do Parnaíba, nas proximidades do Parque Nacional da Serra da Capivara.

Fácies St

Figura 4.3: Divisão faciológica e geometria de algumas estruturas sedimentares encontradas no afloramento IP-1, Formação Ipú do Grupo Serra Grande.

Escala vertical 1,80m 0m

Escala horizontal 10m 0

LOCALIZAÇÃO

Coordenada UTM - SAD69 X - 226077 Y 9176898

Figura 4.4: Divisão faciológica e geometria das estruturas sedimentares encontradas no afloramento IP-1, Formação Ipú do Grupo Serra Grande.

Escala vertical 1,80m 0m

Escala horizontal 0 10m

LOCALIZAÇÃO

Coordenada UTM - SAD69 X - 226077 Y 9176898

Fotografia 4.1: A) Vista geral da fácies **Sp** no afloramento IP-1, mostrando *sets* de estratificação cruzada planar de médio porte, limitados por níveis de cascalho. B) Detalhe.

Fácies St: arenito com estratificação cruzada acanalada

A fácies **St** no afloramento IP-1 mostra arenitos de granulação grossa de textura aparentemente maciça, com estratificação cruzada acanalada e planar, com níveis seixosos. O limite superior desta fácies é uma superfície de contato de alto grau erosivo, com pequenos canais de leito (Fotografia 4.2). Esta fácies é atribuída a processos de formação de pequenos canais, resultante do colapso de bancos de areia, por acentuado aumento de energia fluvial. Segundo Rust & Koster (1984) e Miall (1996), a fácies **St** representa a migração de barras de cascalhos, sendo os conglomerados com estratificação cruzada originários de canais distributários com alta energia e elevada carga sedimentar, e os arenitos advindos de baías interdistributárias de um fandelta em porção submersa.

Fácies Gcm: Conglomerado Maciço suportado por clastos

Superposta à fácies **Sp** no afloramento IP-1, a fácies **Gcm** é constituída por siliciclastos conglomeráticos, mal selecionados, suportados por matriz arenosa grossa, com porções caulinitizados e seixos arredondados de quartzo variando de 2 a 10cm. A fácies é caracterizada com *sets* com estratificação cruzada acanalalada, com

Santos, V.H

tendência de granodecrescência ascendente, e geometria tabular de 2m de espessura (Fotografia 4.3). Alguns clastos apresentam-se subarredondados a subangulares, assemelhando-se a formas de 'ferro de engomar', o que sugere pouco retrabalhamento e pequena distância da área fonte, com influência flúvio-glacial. Esta fácies mostra leitos longitudinais, depósitos residuais (*lag deposits*) e de peneiramento (*sieve deposits*), indicando, juntamente com a presença de canais erosivos e granodecrescência ascendente, a ocorrência de processos de tração (paleocorrentes com canais). Estruturas de deformação também presentes no afloramento (Fotografias 4.4 e 4.5), aparentemente sindeposicionais, sugerem que superfícies primárias dobradas ou falhadas foram resultantes de uma rápida e volumosa deposição sedimentar por gravidade, associada a processos de liquefação e fluidização.

Fotografia 4.2: Arenitos grosso com leitos seixosos e estratificação cruzada acanalada da fácies **Sp** no afloramento IP-1 (Formação Ipú). O retângulo à esquerda situa a tomada fotográfica no afloramento.

Fotografia 4.3: Fácies **Gcm**, de conglomerados sustentados por clastos e areia grossa, com estratificação cruzada acanalada, no afloramento IP-1 (Formação Ipú). O retângulo à esquerda situa a tomada fotográfica no afloramento.

Fotografia 4.4: Níveis conglomeráticos com clastos com até 20cm de diâmetro semelhantes a 'ferro-de-engomar', e estruturas de sobrecarga representando deformação sindeposicional da fácies **Gcm** no afloramento IP-1.

Fotografia 4.5: Detalhe de deformação nos estratos da Fácies Gcm no afloramento IP-1.

Fácies FI (Arenito muito fino a silte laminado de varvito)

Esta fácies ocorre no aloramento IP-1 da Formação Ipú como uma cunha inserida na fácies **St** (Fotografia 4.6, Figura 4.4), atingindo até 1.5m de espessura. É composta por lâminas de silte e argila intercaladas, similares aos ritimitos apresentados por Banerjee (1966) e Limarino & Césari (1988). O contato com a fácies **Sp** é sempre marcado por truncamentos de estratificação cruzada. A fácies Fl no afloramento IP-1 é caracterizada por depósitos produzidos por decantação de silte e argila em meio aquoso, podendo ainda representar depósitos de *overbank*, de canais abandonados ou de final de inundação, sugerindo uma deposição catastrófica por rios glaciais. Esta fácies é interpretada como um depósito de periódicas paleocorrentes com grande carga sedimentar, similar a deposição de varvitos, com anuais eventos de desgelo.

Santos, V.H

Fotografia 4.6: Intercalação da fácies **FI** na fácies **Sp**, observável no afloramento IP-1, Piauí, mostrando também estratificação cruzada planar e indícios de paleocorrentes de direção NW.

4.2.2. Afloramento Jaicós 1

O painel fotográfico do afloramento Jaicós 1 (JC-1), próximo à cidade de Vila Nova do Piauí, oferece uma visão panorâmica desta exposição de estratos da Formação Jaicós (Figura 4.5), tendo sido traçados os limites faciológicos (fácies **Sp**, **Gcm** e **St**) e respectivas geometrias (2D). Foi elaborado uma 'seção tipo' deste afloramento, com as respectivas estruturas encontradas nas três diferentes fácies (Fotografia 4.7).

Fácios So	
Fácies Sp Fácies Sp	_
Fácies St Fácies Fl	////
Fácies Sp Fácies Sp	

Escala Vertical

Figura 4.5: Painel fotográfico do afloramento Jaicós 1 (JC-1), Formação Jaicós do Grupo Serra Grande da Bacia do Parnaíba, próximo à cidade de Vila Nova do Piauí, mostrando as três fácies nele identificadas.

LOCALIZAÇÃO Coordenada UTM - SAD69 X - 289765 Y-9206848.

90

Fotografia 4.7: Detalhe da 'seção tipo' do afloramento, salientando as litofácies Sp, Gcm, St e Fl (Formação Jaicós do Grupo Serra Grande).

Fácies Sp: arenito com estratificação cruzada planar

Esta fácies encontra-se representada na parte inferior do afloramento JC-1 com uma seqüência de aproximadamente 1,50m de espessura, apresentando geometria tabular com *sets* de arenito médio a fino, muito bem selecionado, e estratificação cruzada planar (Fotografia 4.8), mostrando superfícies discordantes no contato superior. Os estratos que contêm *climbing ripples*, apresentam direção preferencial de 60°, sugerindo alta taxa de deposição e desaceleração de fortes correntes de fluxo sedimentar. Esta fácies sugere a migração de dunas onduladas de crista subretilínea e de barras longitudinais de leitos fluviais, com paleocorrentes de 350°Az. Aparentemente, esta fácies representa uma deposição nas margens do leito de escoamento de cursos fluviais, com desaceleração do fluxo sedimentar.

Fotografia 4.8: Estratificação cruzada planar de médio porte da fácies Sp no afloramento JC-1.

Fácies Gcm: Conglomerado Maciço suportado por clastos

A fácies **Gcm** no afloramento Jaicós 1 é constituída por um conglomerado médio, suportado por clastos, composto por seixos de quartzo e de quartzito, subarredondados e de 2 a 5cm (Fotografia 4.9), com matriz arenosa grossa. Apresenta geometria tabular com discreta estratificação cruzada planar. Esta fácies pode ser associada a fluxos de detritos pseudoplásticos, viscosos e laminares.

Fotografia 4.9: Conglomerado suportado por clastos e areia grossa da fácies Gcm no afloramento JC-1, Piauí.

Fácies St: arenito com estratificação cruzada acanalada

Esta fácies encontra-se representada na parte superior do afloramento JC-1 (Figura 4.5), com grande continuidade lateral e uma geometria trabular. É composta por arenitos de médios a grossos, de coloração branca a amarelada, de seleção boa a muito boa e pequenos ciclos de granocrescência ascendente. Os corpos de arenito se apresentam com geometria sigmóide, estratificação cruzada acanalada de pequeno porte e pouco conteúdo de siltitos nos *foresets*. Os *sets* com estruturas acanaladas têm larguras de 1 a 1,5m e espessuras que variam entre 0,8 e 1,5m. As calhas côncavas das estratificações acanaladas mostram limites erosivos pouco destacados, compostas por *foresets* tangenciais, espessos *sets* sigmóides, e superfícies de truncamento de baixo ângulo. Esses corpos arenosos são gerados por processos oscilatórios associados a depósitos de tempestitos com grande energia de correntes em várias direções, suave ondulação dos estratos e grande continuidade lateral.

Santos, V.H

4.2.3 Afloramento Jaicós 3

O painel fotográfico do afloramento Jaicós 3 (JC-3), oferece uma visão panorâmica da exposição de estratos da Formação Jaicós próxima da cidade de Jaicós, Piauí (Figura 4.6), com as fácies (**Sp** e **SI**) interrelacionadas e respectivas geometrias (2D). As duas fácies deste afloramento serão analisadas em conjunto, por se tratar de um depósito de um sistema fluvial do tipo entrelaçado (*braided*), onde tais fácies se alternam.

Fácies Sp: arenito fino com estratificação cruzada planar e Fácies SI: arenito com estratificação cruzada de baixo ângulo

A fácies **Sp** está localizada, em sua maior porção, na parte inferior do afloramento Jaicós 3, sendo sobreposta por uma següência onde predomina a fácies SI. A distribuição das duas fácies no afloramento não é constante, pois em alguns trechos observa-se certa migração lateral ou vertical das mesmas, seja gradacional ou erosional. A fácies **Sp** mostra arenitos com estratificação cruzada planar e a fácies SI é composta por arenitos de estratificação cruzada tangencial ou de baixo ângulo, passando a plano-horizontal, esta sugerindo a migração de leitos rasos com predominância de areia. Os sets com estratificações cruzadas planares e limites planares truncados por erosão, apresentam indícios de paleocorrentes que variam de 260 a 350°Az (Fotografia 4.10). A interpretação conjunta das duas fácies é de um canal fluvial primário de baixa energia, análogo ao do rio mostrado na Figura 3.3 (fotografia 1), onde a fácies Sp representa a migração de barras longitudinais truncadas por canais rasos, que geram a fácies SI. As superfícies de truncamentos mostram diferentes direções de fluxos que escavam as camadas pré-existentes no leito primário. A maior concentração da fácies SI na porção superior do afloramento é atribuída ao assoreamento do leito fluvial, que gerou maior concentração de canais rasos.

Figura 4.6: Painel fotográfico do afloramento Jaicós 3 (JC-3), Formação Jaicós do Grupo Serra Grande da Bacia do Parnaíba, próximo da cidade de Jaicós, Piauí, mostrando as suas duas fácies constituintes.

Escala Vertical

Escala Horizontal 0m 5m

LOCALIZAÇÃO

Coordenada UTM - SAD69 X - 249382 Y - 9170100

Fotografia 4.10: Estratificação cruzada planar na fácies **Sp** no afloramento JC-3, com diferentes direções de paleocorrentes na sua porção superior, sobreposta por estratos com estratificação cruzada planar de baixo ângulo da fácies **SI**.

4.3. Faciologia do Grupo Canindé

Na análise faciológica do Grupo Canindé foram descritos sete afloramentos sendo dois da Formação Itaim–Pimenteiras (afloramentos ITP-1 e ITP-2), dois da Formação Cabeças (afloramentos CAB-1 e CAB-3) e três da Formação Poti (PT-1, PT-2 e PT-3), nos quais foram reconhecidas seis diferentes fácies, de areníticas a sílticas, duas delas não ocorrentes no Grupo Serra Grande.

4.3.1. Afloramento Itaim-Pimenteiras 1

O painel fotográfico montado para ilustrar o afloramento Itaim-Pimenteiras 1 (ITP-1) em toda a sua extensão permite visualizar as duas fácies areníticas que o compõem (**Sp** e **Sr**), e suas respectivas geometrias (Figura 4.7).

Santos, V.H

Figura 4.7: Painel fotográfico do afloramento Itaim-Pimenteiras 1 (ITP-1), Formação Itaim do Grupo Canindé da Bacia do Parnaíba, e suas duas fácies constituintes.

Santos, V.H

Fácies Sp: arenito com estratificação cruzada planar

Esta fácies está bem representada em toda a extensão da porção inferior do afloramento ITP-1, sendo composta por arenito arcosiano fino, de coloração amarelo-esbranquiçada, com estratificação cruzada planar de baixo ângulo (entre 20 e 25°), formando *sets* sigmoidais com direção de paleocorrentes de 300° a 320°Az. Esta fácies é relacionada à migração longitudinal de formas de leitos ondulados com cristas subretilíneas (dunas 2D) em frentes deltaicas, com aporte sedimentar subaéreo. Uma superfície de truncamento por erosão no limite entre as fácies Sp e Sr (Fotografia 4.11) sugere o rebaixamento do nível de base do delta (regressão), transformando este trecho deposicional de exposição subaérea em aérea.

Fotografia 4.11: A) Relação espacial das duas fácies areníticas encontradas no afloramento ITP-1, sendo demarcado (linha vermelha) o limite erosivo entre elas. B) Detalhe da superfície erosiva entre as fácies **Sp** e **Sr** do mesmo afloramento.

98

Fácies Sr: arenito fino a médio com marcas de ondas

Esta fácies é composta por arenitos de granulação fina a grossa, de coloração avermelhada e com marcas onduladas geradas por tração de regime de fluxo inferior. Ocorre acima da superfície erosiva que trunca a fácies **Sp** (Fotografia 4.11), sugerindo a ocorrência de um rebaixamento do nível de base de uma frente deltaica, transformando-a de retrogradante, com cunhas sigmoidais (fácies **Sp**) para progradante de alta energia, com *ripples* (fácies **Sr**).

4.3.2. Afloramento Itaim-Pimenteiras 2

O afloramento Itaim-Pimenteiras 2 (ITP-2) é o que apresenta maior variedade faciológica na seqüência sedimentar do Grupo Canindé, sendo ilustrado pelas Figuras 4.8 a-e, onde foram traçados os limites faciológicos das quatro diferentes fácies identificadas (**Sh**, **SI**, **St** e **Sr**), e suas respectivas geometrias (2D). Este afloramento tem a extensão aproximada de 650m, de modo que, na interpretação das fácies, foi necessária a sua subdivisão em dez seções esquemáticas de cerca de 25m de comprimento: seção A (1-2), B (2-3), C (3-4), D (4-5), E (5-6), F (6-7), G (7-8), H (8-9), I (9-10) e J (10-11).

Fácies Sh: arenito com estratificação planoparalela

Esta fácies ocorre na porção mais inferior do afloramento ITP-2, com aproximadamente 6m espessura (Figuras 4.8a-b seções A-D), sendo composta por arenitos amarelo-avermelhados de granulação de média a grossa, com *sets* com estratificação horizontalizada e níveis altamente bioturbados da icnofácies *Psilonichnus* (Fotografia 4.12). Esta fácies sugere um paleoambiente com formas de leitos planos formados sob um regime de fluxo tranqüilo e subaéreo, com padrão agradacional estuarino, relacionando-se a regiões costeiras. A paleobatimetria associada a icnofácies *Psilonichnus* da classe *Glossofungites* proposta por Seilacher (1967) é de águas muito rasas, sendo também relacionada a substratos firmes, horizontalizados e não litificados (*softgrounds*) sob águas não marinhas (Pemberton *et al.* 1992).

Santos, V.H

Fotografia 4.12: A) Icnofácies Psilonichnus na fácies Sh do afloramento IPT-2; B) Detalhe.

Fácies SI: arenito com estratificação cruzada de baixo ângulo

Esta fácies ocorre em duas porções sedimentares da formação Itaim do Grupo Canindé no afloramento ITP-2: uma sobreposta à fácies **Sh**, e outra entre os sedimentos da fácies **Sr**. A primeira é composta por arenitos finos de coloração branco-amarelada, nos quais ocorre gradação de estratificações paralelas a estratificações cruzadas de baixo ângulo. Esta variação gradacional é atribuída à mudança de regime de fluxo pouco canalizado (fácies **Sh**) para canalizado (fácies **SI**). Nesta porção mais basal da fácies **SI** há uma cunha de laminação plano paralela inserida, cuja origem é relacionada à deposição de um lençol de areia sob águas bastante calmas (Figura 4.8b seção D). Estas feições sugerem a ocorrência de migração de barras transversais formadas em estuários, com interferências de correntes de baixa energia. A segunda porção sedimentar (superior) tem aproximadamente 3m de espessura (Figuras 5.8b-e seções C-J), sendo formada também por arenitos (agora avermelhados) com *sets* contendo estratificação cruzada de baixo ângulo. Apresenta seus estratos retrabalhados por correntes bidirecionais, o que sugere a ação de marés (Fotografia 4.13).

Fotografia 4.13: *Sets* de estratificação cruzada de baixo ângulo da porção superior da fácies **SI** no afloramento ITP-2, com indicações de correntes bidirecionais (setas indicam diferentes direções de fluxo).

Fácies St: arenito com estratificação cruzada acanalada

Esta fácies no afloramento ITP-2 é formada por arenitos de finos a grossos, de coloração avermelhada, ocorrendo intercalada à fácies **Sr**, com uma espessura que varia de 1 a 2m, devido a geometria acanalada. O contato inferior desta fácies é do tipo erosivo, que pode ser ora com a fácies **Sr**, ora com a fácies **SI**. Na porção superior desta fácies é observada uma gradação para fácies **Sr**, devida provavelmente a uma diminuição de correntes, o que gerou a fácies **Sr** suprajacente.

Fácies Sr: arenito fino a médio com marcas de ondas

No afloramento ITP-2, esta fácies é composta por arenito siltoso de fino a médio, com marcas de ondulação assimétrica (Fotografia 4.14), que representam formas de leitos ondulados gerados por tração em regime de fluxo inferior. Estas marcas de ondas e a gradação normal observada em camadas centimétricas (variando de areia média a silte) confirma a presença de *gutter casts* (depósitos em *nearshore* caracterizados por passagem e erosão de sedimentos arenosos durante tempestades). Isto sugere uma deposição em plataformas retrabalhadas por ondas de tempestade, similar ao modelo apresentado por Myrow (1992a), onde a fácies com *guter cast* representa a porção proximal de uma plataforma retrabalhada por ondas de tempestades, e cuja porção mais distal é caracterizada por *hummockys*.

Fotografia 4.14: Intercalação de silte e arenito, com marcas de ondas, da fácies Sr no afloramento ITP-2, Piauí.

Figura 4.8a: Painel fotográfico das seções A e B do afloramento Itaim-Pimenteiras 2 (ITP-1), Formação Itaim do Grupo Canindé da Bacia do Parnaíba, e suas diferentes fácies.

LOCALIZAÇÃO

Coordenada UTM - SAD69 X - 226077 Y - 9176898

Figura 4.8b: Painel fotográfico das seções C e D do afloramento Itaim-Pimenteiras 2 (ITP-1), Formação Itaim do Grupo Canindé da Bacia do Parnaíba, e suas diferentes fácies.

	Escala Horizontal	
0m	2m	5m

LOCALIZAÇÃO

Coordenada UTM - SAD69 X - 226077 Y - 9176898

Figura 4.8c: Painel fotográfico das seções E e F do afloramento Itaim-Pimenteiras 2ITP-1), Formação Itaim do Grupo Canindé da Bacia do Parnaíba, e suas diferentes fácies.

LOCALIZAÇÃO

Coordenada UTM - SAD69 X - 226077 Y - 9176898

Figura 4.8d: Painel fotográfico das seções G e H do afloramento Itaim-Pimenteiras 2 (ITP-1), Formação Itaim do Grupo Canindé da Bacia do Parnaíba, e suas diferentes fácies.

Escala Horizontal 0m 2m 5m

LOCALIZAÇÃO

Coordenada UTM - SAD69 X - 226077 Y - 9176898

Figura 4.8e: Painel fotográfico das seções I e J do afloramento Itaim-Pimenteiras 2 (ITP-1), Formação Itaim do Grupo Canindé da Bacia do Parnaíba, e suas diferentes fácies.

5m

Santos, V.H

4.3.3. Afloramento Cabeças 1

O painel fotográfico elaborado sobre o afloramento Cabeças 1 (CAB-1), próximo à cidade de Oeiras, Piauí, oferece uma visão panorâmica desta exposição da Formação Cabeças (Figura 4.9), tendo sido traçados os limites faciológicos (fácies **Sp** e **Sr**) e respectivas geometrias (2D). Dados foram obtidos por GPR em cinco perfis deste afloramento (Figura 4.10), para o reconhecimento de estruturas sedimentares e limites entre as unidades faciológicas. Nas Figuras 4.11, 4.12 e 4.13 os radargramas de GPR do afloramento CAB-01 onde os perfis (a e c) estão no sentido longitudinal à direção da paleocorrente e os perfis (b, e, d) estão no sentido transversal da paleocorrente, tendo sido traçados refletores que coincidem com as superfícies das estruturas primárias (estratificações cruzadas planares, tangenciais e *hummockys*) das radarfácies **Sp** e **Sr**.

Fácies Sp: arenito com estratificação cruzada planar

Esta é a fácies predominante no afloramento CAB-1, com uma espessura média de 12m e ampla distribuição lateral. Mostra uma geometria lobular de arenitos muito bem selecionados de granulação fina à média, com estratificação cruzada planar de grande porte, e sets com mergulho de baixo ângulo (25°). O sentido de paleocorrentes, de fluxo longitudinal, tem direção entre 220° e 300°Az (Fotografia 4.15). Lobos sigmoidais truncam os sets de estratificação cruzada planar representando o retrabalhamento de lobos sobre barras longitudinais em desembocadura de deltas (Fotografias 4.15 e 4.16). As caracterizações geométrica e arquitetural desta fácies, em modelagem 3D dos lobos, foi possível efetuar em corte longitudinal e transversal, sendo mostrados nas Fotografias 4.16 e 4.17, respectivamente. Todo conjunto arquitetural representado nesta fácies é atribuído a barras de desembocadura de delta, com lobos migrando no sentido NW (Figura 4.14). A geometria lobular da fácies **Sp** neste afloramento é dada por superfícies de truncamento, que indicam o fim de diferentes fluxos dos lobos que migram em direção à bacia. O limite entre os lobos é de natureza erosiva. Também observamse corpos de areia muito fina a silte, com boa seleção e coloração variando de branca a avermelhada, formados possivelmente por processos deposicionais de desaceleração da carga sedimentar, sugerindo uma concomitante deposição de interlobos (equivalente à fácies Fsm - depósito de carga de suspensão ou de interlobos Fotografias 4.18 e 4.19).

Figura 4.9- Painel fotográfico do afloramento CAB-01 da Formação Cabeças do Grupo Canindé da Bacia do Parnaíba para estudo faciológico neste trabalho. Localizado na BR 230 Próximo à cidade de Oeiras-PI.

Croqui esquemático de caminhamento para aquisição de dados de GPR do Afloramento OEIRAS

Figura 4.10 – Croqui esquemático do posicionamento e dimensão dos perfis obtidos de GPR no CAB-01.

Radargrama do Afloramento CAB-1 - Projeto Analogos

Figura 4.11- Radargrama a e b obtido com antena de 100Mhz, e as respectivas interpretações das radarfácies GPR no afloramento CAB-1 com os principais refletores e respectivas fácies.

Radargrama do Afloramento CAB-1 - Projeto Analogos

Perfil c

Figura 4.12- Radargrama c obtido com antena de 100Mhz, e as respectivas interpretações das radarfácies GPR no afloramento CAB-1 com os principais refletores e respectivas fácies.

Radargrama do Afloramento CAB-01 - Projeto Analogos

Perfil d

Perfil e

Figura 4.13- Perfil de Imagem d e e com interpretação de dados de GPR no afloramento CAB-1 com os principais refletores e respectivas fácies.

Figura 4.14: Modelo esquemático 3D e de paleofluxos de areia da fácies **Sp** do afloramento CAB-1, próximo a Oeiras, Piauí.

A deposição ocorre sob a forma de cunha intercalada nesta fácies **Sp**, com espessura média de 35cm, e os corpos formam pequenos sigmóides com progradação concordante com a direção de paleocorrente dos lobos sobrejascentes, o que confirma a hipótese de que esta fácies represente a parte final do ciclo deposicional dos lobos, como depósitos de carga em suspensão. Algumas feições de alivio de pressão foram observadas (Fotografia 4.20), sugerindo um intenso aporte sedimentar de lobos de frente deltaica. Esta fácies também apresenta vários níveis bioturbados em diferentes graus, o que pode ampliar ou diminuir a qualidade do potencial reservatório (Fernandes *et al.*, 2002). Por vezes o índice de bioturbações é bem elevado, havendo a destruição total das estruturas sedimentares primárias, não permitindo a identificação do icnogênero presente.

Fotografia 4.15: Estratificação cruzada planar de grande porte com lobos sigmoidais da fácies **Sp** no afloramento CAB-1, em corte longitudinal com paleocorrente de direção de 230°Az.

Fotografia 4.16-Lobos deltaicos retrabalhando barras de desembocadura correspondentes a fácies **Sp** no afloramento CAB-1.

Fotografia 4.17: Corte transversal de *sets* com estratificação cruzada planar de grande porte com sigmóides da fácies **Sp** no afloramento CAB-1, com paleocorrentes com sentido NW.

Fotografia 4.18: Depósito de interlobos composto por silte e areia fina intercalado na fácies **Sp** do afloramento CAB-1; a série de L1 = lobo 1, L2 = lobo 2 e L3 = lobo 3 indica a seqüência deposicional dos lobos, com direções que sugerem uma migração do fluxo deposicional.

Fotografia 4.19: A) Vista geral do afloramento CAB-1 com superfícies de truncamento e depósitos de interlobos. B) Corte longitudinal da estratificação cruzada de grande porte, com paleocorrente de direção NW, e cunha de depósitos de interlobos intercalada na fácies **Sp**. C) Detalhe de B.

Fotografia 4.20: Feição sedimentar que sugere uma estrutura de alívio de pressão (vulcão de areia?) no arenito da fácies Sp no afloramento CAB-1.

Fácies Sr: arenito com níveis de marcas de ondas

Esta fácies, no afloramento CAB-1, é composta por arenitos brancoamarelados, de finos a médios, muito bem selecionados, com ripples de pequeno a médio porte e cristas contínuas intercaladas em níveis com climbing ripples, estratificação cruzada planar e pequenos sigmóides (Fotografia 4.21), o que sugere uma deposição gerada pela migração de dunas de cristas sinuosas e acamadamento planoparalelo relacionado a um regime de fluxo inferior, ambos processos comuns em depósitos de topo de barras e canais lobulares na desembocadura de um sistema flúvio-deltaico. A direção de correntes nesta fácies é fornecida pela grande quantidade de estratos com ripples indicando um fluxo radial (Fotografia 4.22), com paleocorrentes polimodais de 20°/0°/330°Az. A morfologia da crista das ripples, a presença de feições denominadas 'dorso-de-arraia' (Fotografia 4.23) e de estruturas do tipo hummocky de tempestitos sugerem a migração de lobos sob águas de batimetria bastante rasa. No nível das ripples desta fácies também ocorre bioturbação do icnogênero Ophiomorpha, da fácies Skolithos (Fotografia 4.24), que é considerada típica de ambiente marinho de alta energia, principalmente de águas rasas de regiões costeiras (Seilacher, 1967), confirmando a hipótese de que parte do afloramento CAB-1 foi depositado em um ambiente muito raso de foz de um sistema flúvio-deltaico. Este icnogênero foi registrado por Agostinho et al. (2001) em estratos da Formação Pimenteiras aflorantes no leito do rio Sambito, município de Pimenteiras, tendo sido relacionado a planícies de maré.

Fotografia 4.21- Intervalo superior da fácies **Sr** no afloramento CAB-1, mostrando detalhes de migração de pequenas *ripples* e estratificação cruzada *hummocky* gradando para estratificação cruzada tabular de pequeno porte, característico dos tempestitos da Formação Cabeças.

Fotografia 4.22- Patamares com domínio de *ripples* e *hummocky* da fácies **Sr** no afloramento CAB-1, mostrando que as direções de paleocorrente indicadas pelas ondas são concordantes com o fluxo principal da sotoposta fácies **Sp**.

Fotografia 4.23: Morfologia de feições do tipo 'dorso-de-arraia', que caracteriza superfícies pertencentes a estruturas do tipo *hummocky* encontradas na fácies **Sr** do afloramento CAB-1.

Fotografia 4.24: Bioturbação do icnogênero *Ophiomorpha* na fácies **Sr** no afloramento CAB-1, característica de ambientes muito rasos.

Afloramento Cabeças 2

O painel fotográfico (Figura 4.15) montado para ilustrar o afloramento Cabeças 2 (CAB-2) em toda a sua extensão permite visualizar as duas fácies areníticas que o compõem (**Sr** e **St**), e suas respectivas geometrias. Dados de GPR foram obtidos em quatro perfis deste afloramento (Figura 4.16), para o reconhecimento de estruturas sedimentares e limites entre as duas fácies. Nos perfis **a** e **b** estão transversais (Figura 4.17), e os perfis **c** e **d** longitudinais a direção da paleocorrente (4.18 e 4.19).

Fácies Sr: arenito muito fino com marcas de ondas

Com estratos de até 20cm de areia fina e muito fina, muito bem selecionada, a fácies **Sr** no afloramento CAB-2 apresenta ampla continuidade lateral (Fotografia 4.25), com geometria acanalada a tabular (Fotografias 4.26 e 4.27). As estruturas primárias encontradas nesta fácies, com variações laterais, são estratificação cruzada de pequeno porte do tipo hummocky e climbing ripples (Fotografia 4.28) e laminação planoparalela (Fotografia 4.29) e enquanto que estruturas secundárias estão representadas por bioturbações e estruturas de carga de pressão tipo flame (Fotografia 4.30). Esta última é interpretada como uma estrutura pós-deposicional de sobrecarga, resultante da carga de sedimentos que compõem a fácies sobreposta (fácies St). Os climbing ripples sugerem uma corrente de alta velocidade em ambiente turbilhonado, com espessa lâmina d'água. A fácies **Sr** no afloramento CAB-2 é truncada por superfícies erosivas do tipo canais de grande porte ou planos erosivos, que marcam o contato com a fácies sobreposta. A direção de paleocorrentes desta fácies é fornecida pelos estratos contendo hummocky, com direção de 60°Az. Esta fácies parece ter sido depositada nas margens de um leito de escoamento fluvial, onde ocorreu certa desaceleração no fluxo sedimentar dos cursos fluviais. A Fácies Sr está relacionada também a depósitos de carga de fundo seguindo eventuais pulsos tempestíticos deltaicos, deduzido pela presença de gradação de estruturas, desde lâminas planoparalelas (porções proximais de um sistema de frente deltaico) .a estratificação hummocky (porções distais).

Figura 4.16 - Croqui esquemático do posicionamento e dimensão dos perfis obtidos de GPR no afloramento CAB-02.

Figura 4.17- Radargrama a e b obtido com antena de 100Mhz, e as respectivas interpretações das radarfácies GPR no afloramento CAB-2 com os principais refletores e respectivas fácies.

Figura 4.18- Radargrama cobtido com antena de 100Mhz, e as respectivas interpretações das radarfácies GPR no afloramento CAB-2 com os principais refletores e respectivas fácies.

Radargrama do Afloramento CAB-2 - Projeto Analogos

Figura 4.19- Radargrama d obtido com antena de 100Mhz, e as respectivas interpretações das radarfácies GPR no afloramento CAB-2 com os principais refletores e respectivas fácies.

Fotografia 4.25: Vista geral do afloramento Cabeças 2 (CAB-2), que mostra a continuidade lateral das fácies Sr e St.

Fotografia 4.26: Estratos com geometria tabular da fácies **St** sobrepostos por estratos da fácies **Sr**, no afloramento CAB-2, mostrando o contato erosivo planar, com presença de *climbing ripples* no topo da fácies **Sr**.

Fotografia 4.27: Contato erosivo, com geometria acanalada, entre as fácies Sr e St no afloramento CAB-2.

Fotografia 4.28: Detalhe de *climbing ripples* presentes na fácies Sr do afloramento CAB-2.

Fotografia 4.29: Detalhe do contato da fácies Sr com a fácies sobrposta St, no afloramento CAB-2.

Fotografia 4.30: Estrutura secundária de carga de pressão do tipo *flame*, na fácies SR no afloramento CAB-2.

Fácies St: arenito com estratificação cruzada acanalada

Esta fácies no afloramento CAB-2 é constituída por arenito médio e bem selecionado, com grande continuidade lateral. Tem a espessura média de 5m e ums geometria tabular com abundância de estratificação cruzada acanalada do tipo *swaley* (Fotografia 4.31) com superfícies erosivas de canais entalhados na fácies sotoposta (**Sr**; Fotografia 4.32). Estas estruturas são atribuídas ao escavamento de canais relacionados ao recuo da linha de costa e posterior quebra de nível de base do sistema fluvial. A direção de paleocorrente do canal principal é concordante com o paleofluxo de direção preferencial para NW vigente na época, sugerindo que, então, esta área se encontrava muito próxima da linha de costa, ou seja, em planície deltaica com canais distributários ativos.

Fotografia 4.31: Estratificação cruzada acanalada do tipo *swaley* encontrada na fácies St do afloramento CAB-2.

Fotografia 4.32: Detalhe do contato erosivo das fácies Sr e St no afloramento CAB-2.

4.3.5. Afloramento Poti 1

Na Figura 4.20 é apresentado O painel fotográfico elaborado sobre o afloramento Poti 1 (PT-1) permite a visualização das duas fácies nele observadas (**Sh** e **Sr**) e suas respectivas geometrias (2D). Com 25m de altura e 200m de comprimento, este afloramento representa o registro da seqüência regressiva entre as formação Longá e Poti. Genericamente, na porção inferior deste afloramento predominam intercalações arenitos finos com estratificação cruzada *hummocky* de médio porte, separados por intercalações pouco espessas de folhelhos, que gradam, na porção superior, para arenitos e siltitos com estratificação planoparalela.

Fácies Sr: arenito com estratificação cruzada hummocky

Esta fácies é composta no afloramento PT-1 por predominantes arenitos e menor proporção de níveis de folhelho. O arenito é micáceo, de coloração cremeamarelada, bem selecionado, possuindo granulometria de fina a muito fina, A geometria é tabular, formando lençóis de areia (sheets sandstones). Estes lençóis e os folhelhos apresentam estratos com espessuras que variam de centimétricas a métricas (Fotografia 4.33A), em dois distintos intervalos (superior e inferior) no afloramento (Figura 4.21). Esta fácies se caracteriza pela presença constante de estratificação cruzada hummocky de pequeno a médio porte, com marcas de sola na base das estruturas (Fotografias 4.33B e 4.34). As camadas arenosas são limitadas por folhelhos amarronados com laminação planoparalela, tanto no topo quanto na base do afloramento, que tem a espessura entre 20 e 50cm (Fotografias 4.35 a 4.37). Os intervalos pelíticos apresentam truncamento de camadas com ângulos que não ultrapassam 5° (Fotografias 4.37 A e B). As camadas de arenitos e folhelhos apresentam continuidade lateral com superfícies de contato abruptas, planares e não erosivas (Fotografia 4.37C). O contato litológico superior da fácies Sr no afloramento PT-1 parece representar o topo da Formação Longá.

Fácies e arquitetura 2D no Afloramento PT-1 - Barragem Salinas da Formação Poti - Bacia Parnaíba

Figura 4.20: Painel fotográfico do afloramento Poti 1 (PT-1), Formação Poti do Grupo Canindé da Bacia do Parnaíba, localizado na barragem Salinas, próximo à cidade de Nazaré do Piauí (Modificado de Rodrigues, 2003).

Pácies Sr	
~~~	



Figura 4.21: Seção colunar do afloramento PT-1 (Modificado de Rodrigues, 2003).



**Fotografia 4.33**: A) Vista geral da fácies **Sr** no afloramento PT-1, mostrando a intercalação de arenitos e folhelhos com estratificação cruzada *hummocky* com geometria planar formando lençóis de areia. B) Detalhe. (Modificado de Rodrigues, 2003)



Fotografia 4.34: Estrutura de micro-hummocky na fácies Sr no afloramento PT-1.



Fotografia 4.35: Camadas arenosas separadas por folhelhos na fácies Sr no afloramento PT-1.



Fotografia 4.36: Camadas espessas de arenitos da fácies Sr na porção superior do afloramento PT-1 (foto de Joel de Castro, fevereiro de. 2003).



**Fotografia 4.37:** A) Vista geral, em corte longitudinal, do afloramento PT-1, apresentando intercalação de arenitos e folhelhos da fácies **Sr**. B e C) Detalhe dos folhelhos entre os arenitos, com estratificação *hummocky* de médio porte na fácies **Sr** do mesmo afloramento. (Modificado de Rodrigues, 2003)

#### Fácies Sh: arenito com folhelho intercalado com estratificação planoparalela

No afloramento PT-1, esta fácies, ao contrário da fácies anterior, há o predomínio de folhelhos amarronados, com camadas cujas espessuras variam de 20cm a 2m, intercalados por finos estratos de arenitos finos e maciços, de espessuras entre 20 e 40cm, com incipiente acamamento ondulado e *ripples* de pequeno porte, e por reduzidas porções sílticas (Fotografias 4.38 e 4.39). Este siltito, com grande

quantidade de mica, é de moderadamente a bem selecionado, variando de marrom a amarelado, e apresentando-se como estratos de 0,2 a 1,5m de espessura, com laminação e estratificação planoparalela. Geralmente sua geometria tabular não mostra significativas alterações de continuidade lateral. Em direção ao topo do afloramento, a presença de siltitos diminui, predominando intercalações entre siltitos arenosos e arenitos finos (Fotografia 4.40). Esta fácies no afloramento PT-1 pode ser relacionada à fase de transição entre a Formação Longá e a Formação Poti.



Fotografia 4.38: Intercalações de follhelhos, arenitos e siltitos da fácies Sh no afloramento PT-1. (Modificado de Rodrigues, 2003)



Fotografia 4.39: Arenitos com estratificação planoparalela gradando para estratos com *ripples* encontrados na fácies **Sh** no afloramento PT-1. (Modificado de Rodrigues, 2003)



Fotografia 4.40: Intercalações entre siltitos e arenitos finos na fácies Sh no afloramento PT-1. (Modificado de Rodrigues, 2003)

25

20

15

10

2

#### 4.3.6. Afloramento Poti 2

O afloramento Poti 2 (PT-2) pode ser observado em toda a sua extensão na Figura 4.18, onde foram traçados os limites faciológicos (fácies **St** e **FI**) e suas respectivas geometrias (2D). Com 90m de extensão e altura média de 3.3m, o afloramento apresenta uma sequência (Figura 4.22) constituída por arenitos finos a muito finos, e siltitos arenosos. Os estratos intercalados apresentam duas unidades de geometria, sendo uma inferior e acanalada e outra superior e sigmoidal, esta gradando lateralmente para uma geometria tabular, como pode ser observado no perfil estratigráfico do afloramento (Figura 4.23).

#### Fácies FI: siltito a arenito muito fino com estratificação climbing ripples

A litologia desta fácies no afloramento PT-2 é constituída por arenitos muito finos intercalados a siltitos arenosos de coloração cinzenta a branco-arroxeada, com ciclos granocrescentes e estruturas de *climbing ripples* (Fotografia 4.41). Os arenitos variam de 20 a 50cm de espessura, sendo maciços ou com laminação cruzada *climbing ripples* e nódulos ferruginosos de origem diagenética (Figura 4.42). Os estratos de siltitos variam de 20 a 80cm de espessira, com *climbing ripples* cíclicos (o que sugere o periódico aumento e diminuição de velocidade de correntes) e geometria sigmoidal (Fotografia 4.43). As lineações de correntes têm direções preferenciais de E-SE e, em menor proporção, NW, com marcas onduladas apresentando cristas unidirecionais.



Figura 4.22: Painel fotográfico do afloramento Poti 2 (PT-2), Formação Poti do Grupo Canindé da Bacia do Parnaíba, e suas duas fácies constituintes. (Modificado de Rodrigues, 2003)



Figura 4.23: Seção colunar do afloramento PT-2. (Modificado de Rodrigues, 2003)



Fotografia 4.41: Arenitos muito finos intercalados com siltitos arenosos cinzentos, com ciclos granocrescentes e estruturas de *climbing ripples* da fácies FI no afloramento PT-2. (Modificado de Rodrigues, 2003)



Fotografia 4.42: Arenitos finos com intercalações de siltitos, com nódulos ferruginosos, da fácies Fl no afloramento PT-2. (Modificado de Rodrigues, 2003)

#### Fácies St: arenito com estratificação cruzada festonada

Na parte inferior do afloramento PT-2, no leito do rio Jenipapeiro, observa-se o contato das fácies **FI** e **St**, com pequena inclinação (entre 4 e 8°) das camadas (Fotografia 4.43). A fácies **St** é constituída por arenitos muito claros, de brancos a arroxeados, de granulação fina a muito fina, moderadamente selecionados, com estratificação cruzada festonada, pequenas marcas onduladas assimétricas e, ocasionalmente, laminações cruzadas internas limitando *sets* com estratificação cruzada (Fotografia 4.44). Os arenitos formam *sets* com espessuras entre 1.5 e 2m, de continuidade lateral limitada. Esta fácies pode ser relacionada a processos de acresção lateral e/ou preenchimento de canais meandrantes (Fotografia 4.45). A sucessão das fácies **FI** e **St** neste afloramento é relacionada a um ambiente fluvial meandrante com acresção lateral de barras arenosas longitudinais.



**Fotografia 4.43**: Contato da fácies **Sh** (parte inferior da foto) com as camadas com estratificação cruzada festonada da fácies **FI**, no afloramento PT-2. (Modificado de Rodrigues, 2003).



Fotografia 4.44: Sets de estratificação cruzada com pequenas marcas onduladas da fácies St do afloramento PT-2. (Modificado de Rodrigues, 2003)



**Fotografia 4.45**: A) Vista, em corte transversal, da estratificação cruzada com direção NNW da fácies **St** no afloramento PT-2. B) Vista, em corte longitudinal, do arenito fino com estratificação cruzada festonada da fácies **St** no mesmo afloramento. (Modificado de Rodrigues, 2003) **4.3.7. Afloramento Poti 3** 

No painel fotográfico do afloramento Poti 3 (PT-3; Figura 4.24) podem ser identificadas duas fácies (**FI** e **Sh**) e as respectivas geometrias (2D). O afloramento tem cerca de 20m de extensão e 2,8m de altura, com o corte direcionado para 70°NW. Uma coluna estratigráfica desta seção foi elaborada (Figura 4.25), sendo composta por intercalações decimétricas a centimétricas de folhelhos, siltitos e arenitos finos, com laminação e estratificação planoparalela e ondulada.

### Fácies FI: siltito com folhelho intercalado com acamamento ondulado

Esta fácies no afloramento PT-3 é caracterizada por folhelhos e siltitos cinzaclaros a esverdeados, intercalando-se em sucessões de 10 a 30cm, onde predominam estruturas de laminação, estratificação planoparalela, acamadamento ondulado e vários pequenos ciclos de granocrescência ascendente (Fotografia 4.46). Icnofósseis aparecem com freqüência nos níveis de folhelho da base da seção (Fotografia 4.47). As camadas são tabulares, lateralmente contínuas, e não mostram mergulho maior do que 2°.

# Fácies e arquitetura 2D no Afloramento PT-3 Cajazeiras da Formação Poti - Bacia Parnaíba



Figura 4.24: Painel fotográfico do afloramento Poti 3 (PT-3), Formação Poti do Grupo Canindé da Bacia do Parnaíba, e suas fácies constituintes. (Modificado de Rodrigues, 2003)





Figura 4.25: Seção colunar afloramento PT-3 em Cajazeiras. (Modificado de Rodrigues, 2003)



**Fotografia 4.46**: Folhelhos com intercalações de siltitos, com acamamento ondulado na fácies **FI** no afloramento PT-3. (Modificado de Rodrigues, 2003)



Fotografia 4.47: Bioturbação em níveis de folhelhos da fácies Fl no afloramento PT-3. (Modificado de Rodrigues, 2003)

## Fácies Sh: arenito com folhelho intercalado com estratificação climbing ripples

Esta fácies é constituída, no afloramento PT-3, por arenitos rosa-avermelhados de granulação fina a muito fina com delgadas intercalações de folhelhos e siltitos arenosos e laminação cruzada clino-ascendente ou *climbing ripples*. A espessura dos estratos arenosos varia de 50 a 80cm, mostrando persistente continuidade lateral. O contato com as camadas de folhelhos e siltitos é abrupto e não erosivo (Fotografias 4.48 e 4.49). Os folhelhos apresentam espessuras em torno de 40 a 80cm, intercalando-se em lentes de arenitos (Fotografias 4.50 e 4.51).



**Fotografia 4.48**: Arenito fino a muito fino intercalado com níveis de folhelhos e siltitos da fácies **Sh** no afloramento PT-3.


**Fotografia 4.49**: Detalhe das intercalações entre arenitos com *climbing ripples* e arenitos com laminação ondulada na fácies **Sh** no afloramento PT-3.



Fotografia 4.50: Detalhe das intercalações entre folhelhos e arenitos finos da fácies Sh no afloramento PT-3.



Fotografia 4.51: Detalhe das intercalações entre folhelhos e arenitos finos com laminação ondulada da fácies **Sh** no afloramento PT-3.

# 4.4. ELEMENTOS ARQUITETURAIS

Os depósitos sedimentares numa bacia são mais facilmente entendidos através da análise de processos sedimentares arquiteturais. O arranjo dos elementos arquiteturais sugerido por Miall (1985, 1996) tem-se mostrado bastante útil para a modelagem 3D de sucessões fluviais, deltaicas e plataformais, de modo que é comumente utilizado na caracterização de reservatórios (Dreyer, 1993). Nos afloramentos aqui estudados e descritos, seis elementos arquiteturais (dos descritos e comentados no item 3.5) foram reconhecidos (Tabela 4.1): canais (CH), depósitos de acreção lateral (LA), feições de transbordamento (OF), depósitos de fluxo gravitacional (SG), lençóis laminados de areia (LS) e camadas de areia (SB). Apesar de denominados de igual forma, muitos podem ter sido gerados por diferentes processos hidrodinâmicos e sedimentares.

Afloramento	Associação faciológica	Elemento arquitetural	Sigla
IP-1	Sp, St, Fl, Gcm	canal com barras de acreção lateral	CH + SG + LA
JC-1	Sp, St, Gcm	canal com barras de acreção lateral	CH + LA
JC-3	Sp, Sl	barras de acreção lateral	LA
ITP-1	Sp, Sr	camadas de areia c/ acreção à jusante	LA + SB
ITP-2	Sr, Sh, Sl, St	lençol de areia e canais	CH + SB + LS
CAB-1	Sr, Sp	canal de transbordamento ( <i>overbank</i> )	CH + OF
CAB-2	Sr, St	canal de transbordamento ( <i>overbank</i> )	CH + OF
PT-1	Sr, Sh	lençol de areia LS	
PT-2	FI, St	lençol de areia e canais CH + LS	
PT-3	Fl, Sh	lençol de areia LS	

 Tabela 4.1:
 Identificação e caracterização dos elementos arquiteturais identificados nos afloramentos analisados no presente estudo.

O canal (CH) é o elemento arquitetural mais abundante, estando presente em seis dos 10 afloramentos: IP-1, JC-1, ITP-2, CAB-1, CAB-2 e PT-2. É composto principalmente por siltitos, arenitos finos a grossos e níveis cascalhosos, em combinação faciológica (St, Sp, SI, Sh, Sr) ora agrupada em seqüência vertical, ora isolada. Sucessões granodecrescentes ascendentes não são comuns, sendo somente desenvolvidas se houver uma base erosiva e leitos seixosos. A fácies St, com estratificação cruzada acanalada, é a que apresenta este elemento de forma mais característica, mas seqüências aparentemente maciças podem conter estruturas sedimentares com lentes de argila no topo (fácies SI). A diminuição de energia no fluxo do canal são representadas pela fácies Sh, e seu aumento pela fácies Sr.

O elemento relacionado a depósitos de acreções laterais (LA) ocorre nos afloramentos IP-1 JC-1 e JC-2, representando a migração de barras laterais associados a sistemas fluviais do tipo entrelaçado (*braided*). Os depósitos de acreção lateral estão representados nos afloramentos pela associação de fácies **Sp**, **St**, **FI** e **Gcm**. Os *sets* destes depósitos são compostos com arenitos finos a médios e siltes com estratificação cruzada planar de baixo ângulo (<25°), e acanalada de pequeno porte, na parte superior das seqüências.

Depósitos de fluxo gravitacional representam o elemento SG, restrito apenas ao afloramento IP-1. É associado a depósitos de fluxo gravitacional da parte proximal de leques periglaciais das fácies **FI** e **Gcm**. É composto principalmente por camadas areníticas com seixos em forma de 'ferro-de-engomar' que formam leitos com ampla gama granulométrica, representando um fluxo bastante forte.

O elemento de transbordamento ou overbank fines (OF) está presente em dois

afloramentos, sendo composto por siltes e argilas da fácies **FI** associados, no topo de cada ciclo de transbordamento de canais ou de depósito de *crevasse splay*, à presença de fácies **Sr**.

Exclusivo dos afloramentos ITP-2, PT-1, PT-2 e PT-3, o elemento representado por lençóis laminados de areia (LS) é composto por extensas intercalações de estratos de areia (*sandstone sheets*), silte e argila. E o elemento simplesmente constituído por camadas de areia (SB) está presente nos afloramentos ITP-1 e ITP-2.

## 4.5. ASSOCIAÇÃO DE FÁCIES

Os afloramentos estudados representam segmentos de dois ciclos sedimentares distintos ocorridos na Bacia do Parnaíba, comandados por variações de níveis eustáticos de um mar interior, como foi proposto por Della Fávera (1990): uma seqüência devoniana e uma seqüência devoniano-eocarbonífera. Entretanto, não é possível afirmar, no presente trabalho, em que ordem de grandeza são encontradas estas seqüências, pois foram analisados afloramentos isolados que não permitem visualizar o contexto evolutivo geral da bacia. A seqüência devoniana neste estudo está bem representada pela Formação Cabeças, e a seqüência devoniano-eocarbonífera, pelas formações Poti e Longá, sendo comentadas logo a seguir em seus elementos arquiteturais e associações de fácies, de modo a permitir a proposta de modelos deposicionais para ambas as seqüências.

#### 4.5.1. Formação Cabeças

Com base em conhecimento prévio e na análise faciológica dos afloramentos aqui estudados (CAB-1 e CAB-2), um modelo deposicional pode ser proposto, como o ilustrado na Figura 4.26. Assim, a faciologia, geometria e arquitetura encontradas nas exposições sedimentares estudadas permitem elaborar o modelo de um sistema deposicional transicional, representado por uma frente deltaica proximal, dominado por fácies canalizadas e sigmoidais de um sistema flúvio-deltaico submerso.



**Figura 4.26**: Modelo deposicional para a Formação Cabeças (Meso-Neodevoniano) da Bacia do Parnaíba nos afloramentos CAB-1 e CAB-2, com respectivas fácies sedimentares e estruturas características (modificado de Della Fávera, 1990).

As fácies sedimentares identificadas nos afloramentos CAB-1 e CAB-2 (**Sp**, **Sr** e **St**) mostram estruturas características de deltas sob ação fluvial, onde a dinâmica

Oeiras (Tempo 1)

eustática atuante principalmente na borda da bacia ocasionou uma quebra de nível de base, gerando assim, dois tempos deposicionais nos afloramentos: um tempo representado pelas fácies **Sp** e **Sr**, e um tempo pela fácies **St**. A presença de estruturas acanaladas de grande porte no afloramento CAB-2 provavelmente é devida à ação erosiva de elementos proximais bastante expressivos em bacias intracratônicas, onde é característica uma pequena taxa de subsidência.

Por outro lado, os agentes atuantes na plataforma, normalmente tempestades e correntes de maré, atacam depósitos transicionais e os transformam em tempestitos ou lobos sigmoidais, como foi observado nos afloramentos. Entretanto, tempestitos costumam ocorrer mais distalmente do que lobos sigmoidais, tanto em planta quanto em seções verticais (Della Fávera 1990). Em função da dinâmica variável do nível do mar, depósitos que foram gerados em plataformas de um ambiente nerítico médio podem passar, num estágio seguinte, à linha de praia e vice-versa. Assim, tempestitos podem se constituir em material fonte para lobos sigmoidais no intervalo regressivo de uma seqüência, e vice-versa no intervalo transgressivo. Assim, espacialmente, em ciclos regressivos, os tempestitos estão embaixo de depósitos sigmoidais, e, em ciclos transgressivos, estão logo acima, como pode ser observado nos afloramentos estudados no presente trabalho.

#### 4.5.2. Formações Longá e Poti

A Formação Longá é tida como depositada durante o Neodevoniano (Kegel, 1953) em ambiente marinho raso, com depósitos interdeltaicos com fácies de praia e certa restrição ambiental em sua porção superior (Caputo, 1984). É composta por folhelhos escuros, siltitos cinzentos e arenitos esbranquiçados finos e argilosos, mostrando um contato gradacional com a Formação Poti (Aguiar, 1971). A Formação Poti, de idade eocarbonífera (Góes & Feijó, 1994), tem sido considerada como depositada em ambiente marinho raso (porção inferior, Della Fávera, 1980) e sob sistema fluvial meandrante em extensa planície de inundação com certa influência marinha e de tempestades (porção superior; Della Fávera & Uliana, 1979). É composta por arenitos esbranquiçados intercalados por folhelhos e siltitos (Góes & Feijó, 1994).

Por inferências estratigráficas os afloramentos estudados desta seqüência (PT-1, PT-2 e PT-3) representam o topo da Formação Longá e a base da Formação Poti, que compõem uma mesma sucessão deposicional plataforma marinha rasa, flúviodeltaica, onde as fácies mais proximais pertencem a Formação Poti e as mais distais a Formação Longa (Rodrigues, 2003). O ciclo de regressão marinha durante o Eocarbonífero é representado pela transição gradual dos sedimentos da Formação Longá para os da Formação Poti (Mabesoone, 1977). Segundo Góes (1995) a transgressão marinha máxima do topo desta última formação propiciou um aumento de espaço deposicional, configurando uma paisagem de plataformas marinhas distais. O abaixamento do nível do mar durante a passagem Longá-Poti, provocou a coexistência de sistemas marinhos com a deposição composta por pelitos de *offshore* com tempestitos individualizados e por arenitos de *shoreface* com tempestitos amalgamados.

As fácies identificadas no presente estudo estão relacionadas a uma sucessão deposicional progradante, em um sistema marinho de águas rasas em transição para um sistema flúvio-deltaico que corresponde a sistemas regressivos ou de costa progradante, com o domínio de deposições deltaicas com momentos de rápido afogamento da drenagem. Nesse modelo deposicional proposto (Figura 4.27), destacam-se dois sistemas: o marinho raso (fácies **Sr** e **Sh**) e o de planície flúvio-deltaica (fácies **Fl** e **St**).

Para Mabesoone (1977), esta a transição Devoniano-Carbonífero materializada nas formações Longá e Poti, representa uma fase talassocrática durante a evolução da sinéclise do Parnaíba no Paleozóico, equivalendo ao final da següência Gama, quando ocorreu uma transição da fase submergente para uma fase oscilatória. Assim, a seqüência clástica marinha (talassocrática) observada nos afloramentos estudados é seguida uma fase por predominantemente clástica (geocrática), onde se desenvolveu o sistema flúviodeltaico da Formação Poti, dando início ao recuo marinho na Bacia do Parnaíba. A sedimentação da Formação Poti passou a ser flúvio-deltaica a medida que os mares epicontinentais recuavam no Eocarbonífero. Na porção norte e noroeste da Bacia do Parnaíba, o suprimento sedimentar constante facilitou ainda mais esta regressão marinha. A partir da porção média da Formação Poti, a sedimentação passou a ser relacionada a um modelo fluvial com canais meandrantes de barras arenosas sob processos de acreção lateral (Figura 4.27)



Figura 4.27: Modelo deposicional para a fase de transição entre as formações Longá (Neodevoniano) e Poti (Eocarbonífero) da Bacia do Parnaíba nos afloramentos PT-1, PT-2 e PT-3, com respectivas fácies sedimentares (adaptado de Leveel, 1980 *apud* Reading, 1996). Capítulo 5 - ANALOGIA DOS DADOS DE SUPERFÍCIE E SUBSUPERFÍCIE

# 5.1. INTRODUÇÃO

Neste capítulo são oferecidos subsídios e considerações relacionadas à correlação de dados de superfície e subsuperfície obtidos na fase anterior deste trabalho, considerando a importância da posição estratigráfica correta de cada uma das seqüências estudadas para inferir conclusões seguras sobre o potencial de

geração e/ou reserva de hidrocarbonetos na Bacia da Parnaíba. Esta correlação é apresentada através da comparação de dados obtidos em perfis elétricos e Raio Gama (RG) e em descrições de testemunhos (Della Fávera, 1990) de 24 poços perfurados na década de 70 pela Petrobrás, com informações advindas dos perfis de afloramentos e da análise de fácies sedimentares efetuadas. Para facilitar a analogia dos dados de superfície e subsuperfície, foram confeccionadas seções estratigráficas ao longo da bacia, identificando as seqüências que compõem a sucessão sedimentar observada, elaboradas a partir de modelos preconizados pela Estratigrafia de Seqüências.

A localização das seções estratigráficas e dos afloramentos utilizados para este estudo analógico na Bacia da Parnaíba podem ser localizados na Figura 5.1. Os afloramentos estão localizados na borda sudeste da bacia, representando entidades estratigráficas de diferentes ordens de grandeza, e registrando eventos que podem ser visualizados através das fácies anteriormente descritas. As seções estratigráficas AA' (Figura 5.2) e BB' (Figura 5.3) estão orientadas ao longo do *strike* deposicional e posicionadas na parte central da bacia. As seções estratigráficas CC' (Figura 5.4), DD' (Figura 5.5) e EE' (Figura 5.6) estão orientadas ao longo do mergulho deposicional.

## 5.2. MARCOS ESTRATIGRÁFICOS UTILIZADOS PARA ANALOGIA

As análises e correlações detalhadas de perfis no intervalo entre o topo da Formação Jaicós (Eo-siluriano ou Eodevoniano) e a base da Formação Piauí (Eocarbonífera) possibilitaram a identificação de 52 marcos radioativos ou marcos estratigráficos, que receberam informalmente uma numeração crescente, da base para o topo, de M010 até M950 (Della Fávera, 1990).



Figura 5.1: A) Localização dos poços na Bacia do Parnaíba computados no presente trabalho, com as seções de direção SE-NW e SW-NE. O retângulo mostra a área onde estão localizados os afloramentos estudados, neste trabalho. B) Mapa geológico da área demarcada em A.



**Figura 5.2**: Seção estratigráfica A-A', localizada na parte central da bacia, orientada ao longo do *strike* deposicional. O *datum* é o nível de máxima inundação da seqüência eocarbonífera (marco M015). A influência das fontes nordeste e sudeste, atuantes durante a deposição da seqüência devoniana, pode ser inferida pelo teor de arenito e siltito nos poços 2-CP-1-MA e 1-FO-1-MA.

Capítulo 5 – Analogia dos dados de superfície e subsuperfície



**Figura 5.3**: Seção estratigráfica B-B', orientada parcialmente em direção do mergulho e parcialmente no *strike*, localizada na parte central da bacia. O *datum* é o nível de máxima inundação da seqüência eocarbonífera (marco M015). Entre os marcos M230 e M450, intervalo regressivo da seqüência devoniana correspondente à Formação Cabeças, há um adelgaçamento da seção. Nos poços 2-BAC-1-MA e 1-PA-1-MA, há ciclos de tempestitos muito nítidos entre os marcos M850 e M550.

Capítulo 5 – Analogia dos dados de superfície e subsuperfície



**Figura 5.4**: Seção estratigráfica C-C', orientada ao longo do mergulho deposicional, situada na porção sul da bacia. No intervalo regressivo da seqüência devoniana (Formação Cabeças), há variação lateral de fácies e adelgaçamento para oeste. Ciclos de tempestitos de granodecrescência ascendente estão bem indicados no perfil de raios-gama do poço 1-TB-2-MA.

Santos, V.H



**Figura 5.5**: Seção Estratigráfica D-D', orientada na direção do mergulho deposicional e localizada na parte central da bacia. Esta seção mostra notavelmente uma cunha clástica no intervalo regressivo da seqüência devoniana (entre os marcos M550 e M200), com progressivo decréscimo no teor de areia e adelgaçamento da seção, desde a borda leste (1-FL-1-PI) até a oeste (2-IZST-1-MA) da bacia. Efeito similar, mas mais discreto, pode ser observado na seqüência devoniana-eocarbonífera (Formação Poti).

Capítulo 5 – Analogia dos dados de superfície e subsuperfície



Figura 5.6: Seção estratigráfica E-E', orientada na direção do mergulho deposicional e localizada na porção norte da bacia. Uma cunha clástica pode ser observada no intervalo regressivo da seqüência devoniana, com área fonte situada no leste da bacia.

168

Marcos elétricos são feições gráficas existentes na curva do registro adquirido (perfil elétrico) de determinada propriedade geofísica (em geral, raios gama e resistividade) num furo de sondagem, que, por sua expressiva e repetitiva forma gráfica, permite inferir importantes eventos deposicionais. Apesar dos marcos estratigráficos se constituírem mais como intervalos de deposição, do que propriamente como níveis litológicos, em geral são referidos como camadas mais radiativas (frequentemente folhelhos) de determinado seqüência. De acordo com os princípios da Estratigrafia de Seqüências, os marcos estratigráficos correspondem ao intervalo de deposição de uma parassegüência que apresenta, na maioria das vezes, granodecrescência ascendente (Figura 5.7). O folhelho radiativo depositado ao final da parasseqüência marcaria também o final de uma transgressão, transformando-se assim em um marco estratigráfico que limita uma parasseqüência, e correspondendo a zonas de condensação provocadas por máxima inundação marinha, correspondendo também aos limites de seqüências de 3ª ordem (Della Fávera, 1990). Na Bacia do Parnaíba, os marcos estão igualmente relacionados a inundações marinhas, sendo reconhecidos nos folhelhos radioativos.

O perfil de raios gama (RG) registra a radioatividade natural medida em rochas. Nas sedimentares, esta diagrafia reflete o conteúdo de pelitos, porque é neste material que os elementos radioativos tendem a se encontrar. Sedimentos com baixo conteúdo de argilas têm um nível de baixa radioatividade, exceto quando ocorrem, por exemplo, cinzas vulcânicas, seixos de granitos ou água de percolação com sais de potássio dissolvido. As curvas do perfil de RG, depois de calibradas, são proporcionais à concentração (em peso) de material radioativo na unidade analisada. Em suma, os perfis de RG refletem variações de acordo com mudanças litológicas da seqüência, sendo reconhecidas por serem uniformes e constantes para cada litologia. Deste modo, as respostas de RG, que podem ser combinadas com curvas de resistividade, adquirem um significado importante na interpretação dos registros de diferentes ambientes de sedimentação.

A aloestratigrafia da Bacia da Parnaíba foi definida inicialmente por Della Fávera (1990) no poço 1-CA-1-MA ao sul da bacia, tomado aqui como poço de referência para o trabalho desenvolvido. No perfil deste poço, foram assinalados marcos elétricos (coluna em amarelo na Figura 5.7) a partir do perfil de RG, definindo-se a seguir, três seqüências deposicionais e respectivas parasseqüências. Assim, da base para o topo, foram individualizadas uma:

- seqüência devoniana: até o topo da Formação Jaicós, no marco M200,
- seqüência devoniano-eocarbonífera: do marco M200 até a base do intervalo transgressivo imediatamente abaixo do marco M015, e
- seqüência eocarbonífera: do marco M015 até o marco M010.

Na porção superior, ocorrem seqüências neo-carbonífera e permiana, não mostradas nessa seção.

Uma seção estrutural esquemática da bacia está representada na Figura 5.8, com os poços equidistantemente localizados (sem escala horizontal), mostrando modificações pós-deposicionais ocorridas, como, por exemplo, o efeito das intrusões de diabásio sobre as unidades paleozóicas e seus níveis preferenciais de ocorrência. Em cada sequência é possível observar, através do comportamento de raios-gama, intervalos transgressivos e parassequências regressivas, separados por superfícies de inundação máxima, correspondentes aos níveis radioativos. Os sistemas deposicionais observados foram agrupados em três tipos principais:

- fluvial, principalmente do tipo anastomosado, na Formação Jaicós do Grupo Serra Grande, e na Formação Poti,
- deltaico, envolvendo seções com lobos sigmoidais das formações Itaim, Cabeças e Poti,
- de plataformas dominadas por tempestades, na seção argilosa de todas as referidas unidades.

No topo da Formação Cabeças, há evidências de certa influência glacial na deposição.

As seqüências são constituídas basicamente de folhelhos e areias, com siltitos em menores proporções. Nas mais superiores, mais ao leste na bacia, as areias progradam sobre os folhelhos plataformais, às vezes interdigitando-os até desaparecerem por completo (Figuras 5.2, 5.4 e 5.5). Os poços localizados mais ao centro da bacia possuem areias depositadas em padrão lenticular a tabular. Essas barras arenosas são resultantes do retrabalhamento das areias de delta por correntes de mar aberto, sendo definidas como barras de *offshore* (*offshore bars*).







Figura 5.8: Seção estrutural esquemática da Bacia do Parnaíba baseada em dados de poços, ocorridas nos intervalos paleozóicos (Della Fávera, 1990).

# 5.3. SEQÜÊNCIAS DOS POÇOS ESTUDADOS

Com o estabelecimento dos marcos estratigráficos em diversos perfis e descrições, foi possível estabelecer correlações mais seguras entre poços, identificando limites de seqüências. As seções estratigráficas de subsuperfície foram elaboradas a partir de dados que envolvem as formações dos grupos Serra Grande e Canindé. Neste estudo, será dado maior detalhamento à seqüência devoniana, por ter sido até hoje melhor estudada e datada.

## 5.3.1. Seqüência Devoniana

Na Bacia da Parnaíba, a seqüência devoniana é limitada inferiormente pelo nível correspondente ao topo da Formação Jaicós, conhecido também como marco Jaic. Considerando que parte desta formação aparentemente é eo-siluriana (Caputo & Lima, 1984), fica caracterizada uma discordância, como requerido pelos princípios da Estratigrafia de Seqüência.

Do marco Jaic até o marco M550, define-se um intervalo transgressivo da seqüência devoniana, correspondendo litoestratigraficamente à Formação Itaim e parte da Formação Pimenteiras. No marco M550 encontra-se assinalada uma superfície de máxima inundação, com indicações de máxima profundidade dentro da seqüência, como, por exemplo, um alto teor de carbono orgânico. O intervalo regressivo está compreendido entre os marcos M550 e M200, que corresponde às formações Pimenteiras e Cabeças.

O intervalo transgressivo apresenta quatro conjuntos de parasseqüências, com uma ou mais delas: o primeiro compreende o intervalo entre os marcos Jaic e M950; o segundo, entre M950 e M850; o terceiro, está compreendido entre M850 e M700; e o quarto, entre M700 e M550.

A base do intervalo transgressivo apresenta sistemas deposicionais de plataformas dominadas por tempestades, inferidas a partir dos testemunhos de sondagem e dos padrões de perfis elétricos. Os ciclos de tempestitos gradam em direção às fontes de sistemas deltaicos, dominados por ação fluvial ou das marés que se instalam sobre depósitos dominados por sistemas fluviais. A variação lateral de fácies e de espessura, desta ou das outras seqüências, pode ser avaliada pelo exame das seções estratigráficas (Figuras 5.2-5.6) localizadas no mapa da Figura 5.1A. As seções têm como datum o marco M015, superfície de inundação máxima da seqüência eocarbonífera, е estão dispostas segundo orientações aproximadamente paralelas às bordas da bacia e ao longo do mergulho deposicional. O intervalo arenoso limitado entre os marcos M900 e M850 corresponde aos depósitos onde predominam fácies de lobos sigmoidais, cuja origem deposicional deltaica na região de inframaré marinha é confirmada pela presença de icnofósseis do gênero *Skolithos* (Della Fávera, 1984).

A parte superior do intervalo transgressivo é inteiramente dominada por depósitos de tempestades. Cada parasseqüência corresponde a uma seqüência vertical de fácies tempestíticas do tipo *shoaling upward*, sendo quase sempre recobertas por um folhelho radioativo correspondente à zona de condensação junto à superfície de inundação da parasseqüência. Estes folhelhos marcam a base da parasseqüência sobrejacente. Os limites dos conjuntos de parasseqüências, correspondentes aos M850, M700 e M550, refletem importantes eventos deposicionais, já que encerram significativos níveis de folhelhos radioativos (Della Fávera, 1990).

No intervalo regressivo, pelo menos dois conjuntos de parasseqüências podem ser definidos: um compreendido pelo intervalo entre o marco M550 e um nível situado entre os marcos M250 e M230, e outro correspondente entre este último nível e o marco M200. A seção de referência estratigráfica (Figura 5.7), por se encontrar numa região relativamente distal, apresenta neste intervalo regressivo o domínio de lamitos e fácies tempestíticas. Entretanto, a partir do marco M250 para cima, há sempre predomínio de arenitos sobre os lamitos, intervalo onde estes arenitos apresentam fácies de lobos sigmoidais (até próximo ao marco M550).

Em afloramentos esse intervalo regressivo é caracterizado por abundantes truncamentos erosionais, o que está de acordo com os princípios da Estratigrafia de Seqüências. Segundo Della Fávera & Uliana (1979), em regiões proximais de trato de sistema equivalente ao nível de mar alto (intervalo regressivo), o topo das parasseqüências normalmente está truncado pelas parasseqüências sobrejacentes, em função do rebaixamento do nível de base ao longo de um progressivo rebaixamento eustático. No modelo proposto por Vail (1987), apenas a parte superior (área limitada pela linha vermelha tracejada na Figura 5.9) pode ser aplicada à Bacia da Parnaíba, que, por ser uma bacia intracratônica, não apresenta superfície deposicional característica de margem continental, isto é, com plataforma, talude e bacia. Assim, o limite inferior das seqüências deposicionais em bacias intracratônicas fica localizado na base do trato de sistemas transgressivos,

facilmente identificável no perfil de raios-gama. Cada trato de sistemas é formado por um determinado número de parasseqüências, que correspondem a inundações rápidas, porém não tão expressivas a ponto de gerar importantes zonas de condensação. No trato de sistemas de nível de mar alto, a natureza erosional do limite superior de cada parasseqüência é bem marcada.



**Figura 5.9**: Modelo deposicional da Estratigrafia de Seqüências (Vail, 1987), destacando-se (retângulo tracejado vermelho) a porção aplicável à Bacia da Parnaíba (modificado de Della Fávera, 1990).

No intervalo regressivo da seqüência devoniana, há uma notável mudança lateral de fácies, indo desde fácies de prováveis ambientes deltaicos ou ligados a processos tidais, com lobos sigmoidais, similares aos inferidos para o intervalo entre os marcos M950 e M850, até fácies de regiões mais distais de plataforma, com lamitos e tempestitos (Della Fávera & Uliana, 1979; Della Fávera, 1982; Figura 5.5). Segundo Kegel (1953), as feições acima descritas podem ser interpretadas como leques aluviais ao sul da bacia. Entretanto, Carozzi *et al.* (1975) interpretam a seção de lobos sigmoidais como originária de ambientes fluviais. De acordo com a detalhada observação faciológica realizada em afloramentos da Formação Cabeças, no presente estudo é reforçada a interpretação de que esta unidade possui natureza marinha, considerando a presença de bioturbação típica da zona de marés.

#### 5.3.2. Seqüência Devoniano-Eocarbonífera

A seqüência devoniano-eocarbonífera é limitada na base pelo topo da seqüência devoniana, aqui considerada como marco M200 (Figura 5.7), também apresentando um intervalo transgressivo seguida por outro regressivo.

O intervalo transgressivo da seqüência devoniano-eocarbonífera encontra-se entre os marcos M200 e M110, considerando este como uma superfície de inundação máxima. Este intervalo transgressivo corresponde à metade inferior da Formação Longá e é formado por um conjunto de duas parasseqüências (Figura 5.7). Este intervalo e a porção basal do intervalo regressivo seguinte representam sistemas deposicionais de plataformas dominadas por tempestades, o que é evidenciado pelas fácies observadas nos afloramentos e nos testemunhos de sondagem.

O intervalo regressivo é representado pela seqüência sedimentar entre o marco M110 e o topo da parasseqüência, logo abaixo do marco M015, que marca o da fase transgressiva da seqüência sobrejacente. Este intervalo regressivo corresponde litoestratigraficamente à Formação Poti, onde são individualizados dois conjuntos de parasseqüências: o primeiro se desenvolve do marco M110 até o marco M050, e o segundo, deste este último até o topo da seqüência. Este intervalo regressivo apresenta na porção basal (abaixo do marco M050) arenitos com lobos sigmoidais, como se observa no afloramento próximo a Francisco Aires, Piauí. O restante deste intervalo é composto por fácies de sistemas fluviais e de planície de inundação (Della Fávera, 1982). A ocorrência de feições do tipo 'sino normal' observada em perfis elétricos sugere também sistemas continentais.

Como é possível observar na coluna estratigráfica (Figura 2.5), alguns autores admitem uma discordância local entre as formações Longá e Poti, apesar da passagem gradacional sugerida pelos perfis na maior parte dos poços perfurados. Com o auxílio da Estratigrafia de Seqüências, esta discordância corresponde também a truncamentos erosivos no trato de sistemas de nível de mar alto (Figura 5.9), situado na altura do marco M050.

A perfilagem de poços do intervalo entre os marcos M200-M015, que corresponde a toda a seqüência devoniano-eocarbonífera, mostra, como feição principal, um acunhamento da sedimentação clástica em direção oeste. Tal configuração é observada somente no intervalo regressivo da seqüência (mais arenoso), diferentemente da seqüência subjacente, onde o intervalo regressivo se

espessa em direção sudeste. No intervalo transgressivo da seqüência devonianoeocarbonífera, entre os marcos M200-M110, esta região sudeste da bacia surge como fonte mais importante para os tempestitos depositados, produzindo uma acumulação de arenitos e siltitos sob forma lobada.

## 5.4. SEQÜÊNCIAS DOS AFLORAMENTOS ESTUDADOS

Os diversos afloramentos da Bacia do Parnaíba analisados no presente estudo correspondem a intervalos de formações que compõem os grupos Serra Grande e Canindé. Também neles é possível individualizar duas seqüências sedimentares: a devoniana e a eocarbonífera.

#### 5.4.1. Seqüência Devoniana

Os afloramentos da seqüência devoniana ocorrem na margem leste da bacia, e a presente investigação apresenta a análise de exposições que ocorrem na região de Itaim, Picos, Oeiras e Ipiranga, no Piauí, e no município de Cantos do Buriti no Maranhão. O limite inferior da seqüência devoniana aflora na região de Itainópolis (afloramento ITP-2).

Na área estudada, o intervalo transgressivo da seqüência devoniana Pimenteiras. corresponde às formações Itaim e que se encontram discordantemente sobre a Formação Jaicós. O contato Itaim-Pimenteiras corresponde ao marco M850, situado neste intervalo transgressivo (Della Fávera, 1990). A Formação Itaim, em Itainópolis é relativamente espessa e apresenta uma fácies com padrão agradacional, de estuário. No afloramento ITP-2, se observa grande quantidade de bioturbações da icnofácies Psilonichnus da classe Glossofungites, que caracteriza uma exposição subaquosa de següência transgressiva em estuário (Fotografia 5.1B). Faciologicamente mostra а predominância de tempestitos. Observa-se um considerável adelgaçamento do intervalo, que atinge pouco mais de 40m de espessura, a grande maioria acima do marco M850. No interior da bacia, área amostrada pelos furos de sondagem, sua espessura situa-se entre 250 e 400m, aproximadamente. Foi atribuído este adelgaçamento ao onlap de seus estratos, que se desenvolve sobre o limite basal da següência. Entretanto, é bom lembrar que os poços foram perfurados na área mais subsidente da bacia, entre os limites externos dos riftes precursores.



**Fotografia 5.1**: Afloramento IPT-2, próximo à cidade de Itaim, Piauí, que representa o limite inferior da seqüência devoniana, correspondendo em subsuperfície ao marco M850: A) seqüência de camadas agradacionais de ambiente estuarino com estratificação planoparalela e *climbing ripples*; B) detalhe da ocorrência da icnofácies *Psilonichnus* da classe *Glossofungites* que caracteriza uma exposição subaquosa da seqüência transgressiva em estuário (marco M850).

O intervalo regressivo corresponde à Formação Cabeças, envolvendo também sua transição (marco M250) para a Formação Pimenteiras (Fotografia 5.2). O afloramento ITP-2, ao norte da cidade de Picos, Piauí, mostra este intervalo regressivo na transição entre as formações Pimenteiras e Cabeças, com feições acanaladas de siltitos argilosos. Similarmente ao intervalo transgressivo anterior, apresenta um grande adelgaçamento de estratos na borda leste da bacia, quando comparado com as espessuras encontradas no interior da bacia. Segundo Kegel (1953) e Lima & Leite (1978) a espessura de sedimentos aflorantes está em torno de 200m, enquanto que a seção perfurada pela Petrobras chega a atingir 450m. A interpretação para tal adelgaçamento é a mesma atribuída ao intervalo transgressivo.



Fotografia 5.2: Afloramento IPT-2, que corresponde em subsuperfície ao marco M250 e representa o intervalo regressivo, mostrando feições acanaladas (lobadas, no centro da fotografia) de siltitos argilosos na transição entre as formações Pimenteiras e Cabeças. Este afloramento está localizado na saída norte da cidade de Picos, Piauí (coordenadas UTM X: 225612 e Y: 9216604)

O intervalo entre os marcos M250 e M200 (Figura 5.7) compreende pelo menos duas parasseqüências, estando representado nos afloramentos CAB-1 e CAB-2. Neste intervalo há abundantes truncamentos erosionais (Della Fávera & Uliana, 1979), o que seria esperado, de acordo com os princípios da Estratigrafia de Seqüências. Segundo estes autores, em regiões proximais de sistemas de nível de mar alto (intervalo regressivo), os topos das parasseqüências estão normalmente truncados pelas parasseqüências sobrejacentes, em função do rebaixamento do nível de base durante um progressivo rebaixamento eustático. No limite superior da seqüência, existem indicações de truncamento sob o *onlap* basal da seqüência devoniano-eocarbonífera. Em quase toda a borda leste da bacia, a superfície de contato é extremamente plana, provavelmente como resultado de um evento glacial ocorrido na região (afloramento nas proximidades da cidade de Cantos do Buriti; Fotografias 5.3A, B e C, cujo análogo nos perfis é o marco M200).







**Fotografia 5.3**: Pavimento glacial equivalente ao marco M200 e correspondente à transição entre as seqüências devoniana e devonianaeocarbonífera, em um afloramento a 17Km da cidade de Cantos do Buriti, pela rodovia PI-140, próximo ao vilarejo Calembe, Piauí (coordenadas UTM: X-733231 e Y-9087340): A) Vista geral do lagedo na atualidade; B) Seixo pingado em forma de 'ferro-de-engomar'; C) Pavimento estriado com estrias com direção preferencial de 300°Az.

#### 5.4.2. Seqüência Eocarbonífera

Esta seqüência apresenta pequena espessura, se comparada a anterior, correspondendo ao topo da Formação Poti e estando representada no afloramento PT-1 (Figura 4.20), no qual é observado o intervalo transgressivo desta seqüência. O topo deste intervalo transgressivo (entre os marcos M110 e M050) corresponde a uma superfície de inundação máxima junto ao marco M015 (Figura 5.7), pois uma discordância erosional aparentemente removeu o intervalo regressivo, representado em apenas alguns poços.

Na área de afloramentos na região de Francisco Aires, Piauí, a seqüência é encerrada por intercalações de depósitos de lobos sigmoidais de deltas e de tempestitos (Della Fávera & Uliana, 1979). Os tempestitos correspondem a eventos transgressivos que retrabalharam os depósitos deltaicos subjacentes. Ambos os depósitos apresentam uma seqüência vertical de fácies do tipo ´sino invertido´, o que indica *shoaling upwards*. O intervalo transgressivo na área estudada é observado pela presença de lobos deltaicos, com direção preferencial de 310°Az, sobrepostos por intercalações de siltes e pelitos (Fotografia 5.4.), característico da transição entre as formações Longá e Poti.





Fotografia 5.4: Afloramento no Km 9 da rodovia PI-120, em direção à localidade de Francisco Alves, Piauí (coordenadas UTM: X-750551 e Y-9268102) que representa a transição para o intervalo transgressivo entre os marcos M110 e M050: A) Geometria lobada com estratificação cruzada acanalada do intervalo regressivo sobreposto por siltitos transgressivos; B) Detalhe dos pelitos do intervalo transgressivo

# 6.1. INTRODUÇÃO

A simulação de reservatórios é importante para modelar fluxo em meios porosos, auxiliar na caracterização de reservatórios e na identificação de barreiras e de propriedades próximas a poços. São programas de computador para a resolução de equações de fluxo de massa e de calor em meios porosos, que obedecem a determinadas condições iniciais e de contorno. A simulação numérica de escoamento de fluidos em reservatórios de hidrocarbonetos tem sido comprovadamente um instrumento de grande importância na avaliação e desenvolvimento de áreas produtoras, pois utilizando modelos computacionais é possível prever o comportamento do reservatório e assim aperfeiçoar o processo de produção (Aziz, 1979). A análise dos resultados de uma simulação permite avaliar o comportamento do reservatório com maior confiabilidade e definir um plano de desenvolvimento que otimize objetivos econômicos ou técnicos.

Para realizar uma simulação numérica é fundamental a caracterização geológica do reservatório, efetuada essencialmente com base na identificação, classificação e interpretação das heterogeneidades, tendo em vista que elas causam as principais dificuldades encontradas na recuperação do óleo. Heterogeneidade é um termo sem uma definição precisa, sendo utilizado para indicar a falta de uniformidade dentro de uma rocha. É considerada primária, quando controlada por processos deposicionais, e secundária, se resultante de modificações diagnéticas ou estruturais (Cândido, 1989).

A formulação matemática e os princípios básicos para a elaboração de um modelo utilizando o *software Ebb_Fflow_01* (*Edge Based Biphasic Fluid Flow*, versão 01) foram ajustados a partir de programas baseados em diferenças finitas existentes no mercado e largamente difundidos na indústria de petróleo. A malha de elementos finitos utilizada foi a malha bidimensional de 2018 elementos e 1346 nós, sendo, portanto, fina o suficiente para oferecer os resultados esperados.

## 6.2. SIMULAÇÕES NUMÉRICAS

A modelagem numérica realizada no presente trabalho restringiu-se a um afloramento da Formação Cabeças (CAB-1), em virtude da presença de certas feições mais favoráveis (textura, estruturas e arranjo interno), sendo gerada uma

183

Santos, V.H

série de simulações de fluxos de fluidos. Estas simulações foram efetuadas a partir do painel fotográfico e do modelo geológico do afloramento, como o mostrado na Figura 6.1.

Para a determinação do modelo numérico no afloramento, foram definidos 12 domínios (Figura 6.1), de acordo com as propriedades (geometria, porosidade e permeabilidade) observadas nas rochas e adotadas para a simulação de fluxo. As linhas vermelhas representam os limites entre os domínios e as setas verdes a direção preferência do fluxo. Estas propriedades, relativas a cada domínio e aos fluídos a uma profundidade de 2040m estão listadas na Tabela 6.1, tendo sido os valores obtidos a partir de dados publicados de outras rochas-reservatório existentes em bacias sedimentares brasileiras cuja evolução diagenética é similar aos estratos da Formação Cabeças. As fronteiras superior e inferior do modelo análogo foram consideradas impermeáveis e o efeito da gravidade nos fluxos de água e óleo foi desprezado. Considerou-se ainda que a permeabilidade vertical (kv) corresponde a 40% da permeabilidade horizontal (ky).

Utilizando o módulo de simulação de fluxo 2D em reservatórios com diferentes domínios, foi efetuada a simulação com um poço de produção e outro de recuperação avançada. Assim, na simulação de fluxo aqui apresentada, para identificar os diferentes regimes de fluxo e visualizar o potencial de recuperação de óleo em cinco e dez anos de exploração, foram considerados dois casos: um caso com óleo pouco viscoso e outro com óleo pesado, ambos com injeção de água. Para o primeiro caso, de óleo leve, o fator de recuperação pode ser devido à baixa viscosidade adotada para o óleo, próxima a da água, ou ainda pode ser porque a formação de gás no reservatório foi desconsiderada, mesmo depois de sua despressurização com a abertura do poço de produção. Em dez anos, o fator de recuperação na modelagem de óleo leve passou para 40% (Figura 6.2b).

# GEOMETRIA DOS DOMÍNIOS PARA SIMULAÇÃO DE FLUXO NO AFLORAMENTOS CAB-1 Formação Cabeças - Km 50 - BR 316



Figura 6.1 – Geometria dos domínios utilizados na simulação.



Escala Vertical



Escala horizontal

0m 10m

#### LOCALIZAÇÃO Coordenadas UTM - SAD69 X - 8197270 Y - 9247978

O deslocamento do óleo dentro do reservatório, ocasionado pela água injetada, bem como a distribuição da saturação de água, visualizados na Figura 6.3, mostra que, embora injetada na camada superior de arenitos médios a grossos, a água percola preferencialmente através do domínio 9 (nove), provavelmente em virtude de sua maior permeabilidade e porosidade. Em 10 anos, pode-se verificar também que a fratura funciona como uma barreira à dispersão dos fluidos, devido à diminuição da permeabilidade do material presente nos domínios 4, 5 e 6.

Domínio	Φ (%)	K (md)	Өу
D1	5,5	4,0	88
D2	17,0	10,0	87
D3	15,0	8,0	89
D4	1,0	0,9	58
D5	2,0	1,0	58
D6	3,0	2,0	58
D7	4,0	2,0	89
D8	5,5	4,0	85
D9	17,0	10,0	88
D10	15,0	8,0	89
D11	4,0	2,0	89
D12	12,0	6,0	91

Tabela 6.1: Dados petrofísicos dos domínios utilizados na simulação.

Os resultados obtidos nas duas simulações permitiram prever, ainda que com certas reservas, o comportamento de fluídos dentro de um análogo de reservatório dos arenitos da Formação Cabeças, além de validar o *software* aqui utilizado para a simulação de fluxo contendo óleos leves e pesados. A simulação numérica de escoamento de fluxo demonstrou novamente ser um método bastante efetivo para avaliar a recuperação de hidrocarbonetos em um reservatório. Entretanto, a geração de modelos mais sofisticados e próximos da realidade de um reservatório requer a obtenção de dados petrofísicos exatos referentes ao reservatório em subsuperfície a ser avaliado, bem como a determinação do comportamento tridimensional do análogo.

Com base em todas as informações advindas do estudo detalhado de dez afloramentos do Grupo Serra Grande (Ipú 1, Jaicós 1 e 3) e do grupo Canindé (Itaim/Pimenteiras 1 e 2, Cabeças 1 e 2, Poti 1, 2 e 3), situados no sudeste do Piauí e inseridos na borda sudeste da Bacia do Parnaíba, foi possível listar diversas conclusões de maior significado:

- a. As seqüências sedimentares aflorantes confirmam a existência de dois ciclos distintos ocorrido na Bacia do Parnaíba, como proposto por Della Fávera (1990), comandados por variações de níveis eustáticos de um mar interior: ua seqüência devoniana e uma seqüência devoniano-eocarbonífera.
- b. A Seqüência devoniana está representada pela Formação Cabeças, que pode ser explicada por um modelo deposicional transicional de frente deltáica proximal, dominado por fácies canalizadas e sigmoidais (Sp, Sr e St), pois mostram estruturas características de deltas sob ação fluvial, onde a dinâmica eustática atuante principalmente na borda da bacia ocasionou uma quebra de nível de base, gerando assim, dois tempos deposicionais nos afloramentos: um tempo representado pelas fácies Sp e Sr, e um tempo pela fácies St.
- c. A Seqüência devoniano-eocarbonífera é representada pelas formações longa e Potí, em contato gradacional, que compõe uma mesma sucessão deposicional de plataforma marinha rasa flúvio-deltáica, onde as fácies mais proximais pertencem à Formação Poti e, as mais distais, à Formação Longa. A Formação Poti é originada de sistema fluvial em extensa planície de inundação com certa influência marinha e de tempestades. As fácies identificadas estão relacionadas a uma sucessão deposicional progradante em um sistema marinho de águas rasas (fácies Sr e Sh) em transição para um sistema flúvio-deltáico (fácies FI e St) que corresponde a sistema regressivos ou de costa progradante.
- d. Oito fácies sedimentares foram identificadas, set das quais em ambos os grpos estratigráficos:
  - Gcm: Conglomerado Maciço suportado por clastos (IP-1 e JC-1)

- Sp: arenito com estratificação cruzada planar (IP-1, JC-1, JC-3, ITP-1 e CAB-1)
- St: arenito com estratificação cruzada acanalada (IP-1, JC-1, CAB-2, PT-2)
- Sr: arenito com marcas de ondas ou hummocks (ITP-1, ITP-2, CAB-1, CAB-2 e PT-1)
- Sh: arenito com estratificação plano-paralela ou *climbing ripples* (PT-1 e PT-3)
- FL: siltito a arenito fino, estratificado e com acamamento ondulado (IP-1, PT-2 e PT-3).
- e. A Formação Ipú (Grupo Serra Grande) visualizada no afloramento IP-1 apresenta quatro fácies de uma faze eminentemente clástica de barras longitudinais de leitos fluviais entrelaçados de fandelta submerso: Sp (quartzo-arenito com níveis seixosos, com estratificação cruzada de médio porte, mergulho de baixo ângulo); St (arenitos grossos com níveis seixosos com estratificação cruzada acanalada e planar); Gcm (conglomerados com estratificação cruzada acanalada com granodecrescência ascendente); e
  FI (lâminas de arenitos muito finos, siltes e argilas), esta fácies sugere ter sido depositada por paleocorrentes periódicas de grande carga sedimentar, similar a deposição de varvitos.
- f. A Formação Jaicós (Grupo Serra Grande), com grande continuidade lateral e geometria geralmente tabular, foi analisada em dois afloramentos (JC-1 e JC-2), mostrando quatro diferentes fácies de um canal fluvial primário de baixa energia com migração de barras longitudinais truncadas por canais rasos: Sp (arenito médio a fino com estratificação cruzada planar com *climbing ripples*); SI (arenitos de estratificação cruzada tangencial ou de baixo ângulo); Gcm (conglomerado médio suportado por seixos subarredondados, com discreta estratificação cruzada planar); e St (arenitos médio a grosso, com estratificação cruzada planar); e St (arenitos de granocrescência ascendente), esta gerada por tempestitos de grande energia e correntes em várias direções. A maior concentração da fácies SI na porção superior é atribuída ao assoreamento do leito fluvial, que gerou maior concentração de canais raso.

- g. As formações Itaim-Pimenteiras (Grupo Canindé) foram observadoas em dois afloramentos (ITP-1 e ITP-2), apresentando cinco fácies areníticas: Sp (arenitos arcosianos finos com estratificação cruzada planar de baixo ângulo e cunhas sigmoidais); St (arenitos finos) que gradam para a fácies Sr (arenitos finos a grossos com marcas onduladas); Sh (arenitos médios a grossos com estratificação horizontalizada e icnofácies *Psilonichnus*); e a SI (arenitos finos com marcas de ondas assimétricas e gradação de estratificação paralela a cruzada de baixo ângulo). No afloramento ITP-1 sugerem uma deposição em frente deltáica retrogradante (fácies Sp) a progradante de alta energia (fácies Sr), e no afloramento IPT-2, com a maior variedade faciológica na seqüência do Grupo Canindé, uma deposição estuarina de regiões costeiras com interferência de correntes de baixa energia.
- h. A Formação Cabeças (Grupo Canindé), analisada em dois afloramentos de ampla continuidade lateral (CAB-1 e CAB-2), mostrou três fácies arenosas atribuídas à deposição em planícies deltaica com canais distributários ativos, em barras de embocadura e com lobos migrando em direção ao centro da bacia: a predominante Sp (arenitos bem selecionados, finos a médios, bioturbados, com geometria tabular e estratificação cruzada planar de grande porte); Sr(arenitos finos muito bem selecionados, com *climbing ripples*, estratificação cruzada acanalada a tabular, pequenos sigmóides laminação planoparalela e estrauturas de carga de pressão (tipo flame); e a St (arenitos médios e bem selecionados, com geometria tabular e estratificação cruzada acanalada) Ocorre também a icnofácies *Skolithos*, típica de ambiente marinho raso de regiões costeiras.
- A seqüência regressiva entre as formações Longa e Poti (Grupo Canindé) foi avaliada em três extensos afloramentos PT-1, PT-2 e PT-3, revelando quatro fácies relacionadas a um sistema fluvial meandrante com acresção lateral de barras, e periódicas variações de velocidade de correntes: Sr (arenitos finos e muito finos bem selecionados e níveis de folhelhos com estratificação cruzada *hummocky* de pequeno a médio porte, formando lençóis de areia);
   Sh (folhelhos de geometria tabular intercalados por lâminas de arenito fino, laminação cruzada clino-ascendente ou climbing ripples); FI (arenito muito fino intercalado a siltitos arenosos ou folhelhos bioturbados, com estratificação planoparalela, ciclos granodecrescentes e *climbing ripples*); e
o fino com estratificação cruzada festonada e

a fácies **St** (arenito fino a muito fino com estratificação cruzada festonada e pequenas marcas onduladas assimétricas).

- j. Três tipos de sistemas deposicionais foram identificados por depósitos: plataformais constituídos por pelitos laminados e arenitos finos com estratificação cruzada hummocky, laminação truncada por onda e planoparalela em todas as unidades estratigráficas estudadas; litorâneos de arenitos finos a médios com estratificação cruzada sigmoidal de origem tidal, ritimitos relacionados a planícies de maré, arenitos bioturbados com laminação plano-paralela de barras de antepraia, e siltitos com laminação plano-paralela de tempestitos litorâneos (formações Itaim, Cabeças e Poti); e fluviais principalmente do tipo anastomosado composto por arenitos grossos a conglomeráticos com estratificação cruzada acanalada de barras e dunas em sistema sub-aquoso entrelaçado (formações Jaicós e Poti).
- k. A Correlação de afloramentos com perfis RG (Raio Gama), entre o topo da Formação Jaicós (Eodevoniano) e o topo da Formação Piauí (Eocarbonífero) possibilitou a identificação de 52 marcos elétricos ou marcos estratigráficos, definindo-se também três seqüências deposicionais (da base para o topo):
  - devoniana: do marco Jaic até o topo da Formação Jaicós, no marco M200,
  - devoniana-eocarbonífera: do marco M200 até a base do intervalo transgressivo imediatamente abaixo do marco M015, e
  - eocarbonífera: do marco M015 até o marco M010.
- I. Na seqüência devoniana, do marco Jaic até o marco M550 (uma superfície de máxima inundação) define-se um intervalo transgressivo, correspondendo à Formação Pimenteiras, e do marco M550 ao marco M200, um intervalo regressivo, correspondente às formações Pimenteiras e Cabeças. O intervalo transgressivo devoniano mostra quatro conjuntos de parasseqüências: entre os marcos Jaic e M950; entre M950 e M850; entre M850 e M700; e entre M700 e M550. Cada parasseqüência corresponde a uma seqüência vertical de fácies tempestíticas do tipo *shoaling upward*, sendo frequentemente recobertas por folhelho radioativo correspondente à superfície de inundação da parasseqüência. Os limites dos conjuntos de parasseqüências, correspondentes aos marcos M850, M700 e M550, refletem importantes eventos deposicionais, com significativos níveis de folhelhos radioativos. No

intervalo regressivo devoniano, pelo menos dois conjuntos de parasseqüências podem ser definidos: um entre o marco M550 e um nível entre M250 e M230, e outro entre este e o marco M200. Neste intervalo há uma notável mudança lateral de fácies, indo desde ambientes deltaicos até regiões distais de plataforma, confirmando-se que possui natureza marinha, considerando a presença de bioturbação típica de zona de marés.

- m. A seqüência devoniana-eocarbonífera apresenta um intervalo transgressivo (entre os marcos M200 e M110), seguido por outro regressivo (entre o marco M110 e logo abaixo do marco M015). O intervalo transgressivo corresponde à metade inferior da Formação Longa e é formado por duas parasseqüências que representam sistemas deposicionais de plataformas dominadas por tempestades. O intervalo regressivo corresponde À Formação Poti, onde são individualizados dois conjuntos de parasseqüências: o primeiro entre os marcos M110 e M050, de arenitos com lobos sigmoidais, e o segundo, deste até o topo da seqüência, composta por fácies de sistemas fluviais e de planície de inundação.
- n. Na seqüência devoniana-eocarbonífera, a principal feição observada no intervalo regressivo é um acunhamento da sedimentação clástica em direção oeste, diferentemente da seqüência devoniana, onde o intervalo regressivo se espessa em direção sudeste. No intervalo transgressivo da seqüência devoniano-eocarbonífera, a região sudeste da bacia surge como fonte mais importante para os tempestitos.

# Α

- AGOSTINHO, S. 1999. Icnofósseis da Formação Pimenteiras, Devoniano da Bacia do Parnaíba, Município de Pimenteiras, Piauí. Dissertação de Mestrado, Universidade Federal de Pernambuco, Recife: 46p,
- AGOSTINHO, S., CAMPELO, F.M.A.C., MELO, K.J.V., VIANA, M.S.S & FERNANDES, A.C.S. 2001. Perfil estratigráfico da Formação Pimenteiras (Devoniano da Bacia do Parnaíba) no leito do rio Sambito (Pimenteiras-PI). *Resumos do 1º Congresso Brasileiro de P&D em Petróleo e Gás*, Natal: 29.
- AGOSTINHO, S. & VIANA, M.S.S. 2001. Ocorrência de Tentarculita na Formação Pimenteiras, Devoniano da Bacia do Parnaíba. *Revista Brasileira de Paleontologia*, Rio de Janeiro, **2**: 96.
- AGUIAR, G.A. 1971. Revisão geológica da bacia paleozóica do Maranhão. *Anais do 25° Congresso Brasileiro de Geologia*, São Paulo, **3**: 113-122.
- ALBUQUERQUE, K.R.M. 2000. Subdivisão estratigráfica da seqüência devoniana da Bacia do Parnaíba. Dissertação de mestrado, Universidade Estadual do Rio de Janeiro, Rio de Janeiro: 134p.
- ALBUQUERQUE, O.R. & DEQUECH, V. 1946. Contribuição para a geologia do meio-norte, especialmente Piauí e Maranhão. *Anais do 2º Congresso Pan-americano de Engenharia de Minas e Geologia*, Ouro Preto, **3**: 69-109.
- ALLEN, J.R.L. 1963. The classification of cross-stratified units with notes on their origin. *Sedimentology*, Oxford, **2**: 93-114.
- ALLEN, J.R.L 1965. The sedimentation and palaeogeography of the Old Red Sandstone of Anglesey, North Wales. *Proceedings of Yorkshire Geological Society*, Yorkshire, **35**: 139-185.
- ALLEN, J.R.L. 1968. Current Ripples. North-Holland, Amsterdam, 433p.
- ALLEN, J.R.L. 1970. Studies in fluviatile sedimentation: A comparation of fining-upward cyclothems with special reference to coarse-member composition and interpretation. *Journal of Sedimentary Petrology*, Tulsa, **40**: 298-323.
- ALLEN, J.R.L. 1974. Studies in fluviatile sedimentation: Implications of pedogenic carbonate units, Lower Old Red Sandstone, Anglo-Welsh outcrop. *Geological Journal*, **9**: 181-208.
- ALLEN, J.R.L. 1978. Studies in fluviatile sedimentation: An exploratory quantitative model for the architecture of avulsion controlled alluvial suites. *Sedimentary Geology*, **21**: 129-147.
- ALLEN, J.R.L. 1983. Studies in fluviatile sedimentation: Bars, bar-complexes, and sandstone sheets (low-sinuosity braided streams) in the Brownstones (Lower Devonian), Welsh Borders. *Sedimentary Geology*, **33**: 237-293.
- ALMEIDA, F.F.M. 1969. Diferenciação tectônica da plataforma brasileira. *Anais do 23º Congresso Brasileiro de Geologia*, Salvador, **1**: 29-46.
- ANDRADE, S.M. & DAEMON, R.F. 1974. Litoestratigrafia e bioestratigrafia do flanco sudoeste da Bacia do Parnaíba (Devoniano e Carbonífero). *Anais do 28º Congresso Brasileiro de Geologia*, Porto Alegre, **2**: 129-137.
- ANDRADE, S.M. & CAMARÇO, M.A. 1984. Geologia do Carbonífero dos flancos nordeste da Bacia do Paraná e sudoeste da Bacia do Parnaíba e suas possibilidades uraníferas. *Anais do 33º Congresso Brasileiro de Geologia*, Rio de Janeiro, **3**: 1174-1186.
- ANELLI, L.E. 1994. Pelecípodes da Formação Piauí (Pensilvaniano Médio), Bacia do Parnaíba, Brasil. Dissertação de Mestrado, Universidade de São Paulo, São Paulo: 148p.
- ANELLI, L.E., ROCHA-CAMPOS, A.C. & LIMA FILHO, F.P. 1992. Paleoecologia dos bivalves da Formação Piauí (Neocarbonífero), Bacia do Parnaíba. *Boletim de Resumos Expandidos do 37º Congresso Brasileiro de Geologia*, São Paulo: 502.
- ANELLI, L.E., SIMÕES, M.G. & LIMA FILHO, F.P. 1993. Análise tafonômica da assembléia de bivalves do calcário Mocambo, Formação Piauí (Neocarbonífero) do Parnaíba. *Resumos do 13º Congresso Brasileiro de Paleontologia*, São Leopoldo: 108.
- ANNAN, A.P. 1993. Pratical processing of GPR data. *Proceedings from the 2nd Government Workshop on Ground Penetrating Radar*, Columbus: 1-26.

ARCHE, A. 1983. Coarse-grained meander lobe deposits in the Jarama River, Madrid, Spain. International Association of Sedimentology Special Publication, Lawrence, 6: 313-322.

- ASHLEY, G.M. 1990. Classification of large-scale subaqueous bedforms: A new look at an old problem. *Journal of Sedimentary Petrology*, Tulsa, **60**: 160-172.
- ASMUS, H.E. & PORTO, R. 1972. Classificação das bacias segundo a tectônica de placa. Anais do 26° Congresso Brasileiro de Geologia, Belém, **2**: 67-90.
- ASSINE, M.L. 2001. O ciclo devoniano na Bacia do Paraná e correlação com outras bacias gondwânicas. *Ciência-Técnica-Petróleo*, Rio de Janeiro, **20**: 55-62.
- ASSIS, J.F.P. 1980 Sobre uma fáunula de moluscos bivalves do calcário Mocambo, Carbonífero da Bacia do Maranhão. *Anais da Academia Brasileira de Ciências*, Rio de Janeiro, **52**(1): 201-202.
- AWASTHI, A.K. & PARKASH, B. 1981. Depositional environments of unfossiliferous sediments of the Jodhpur Group, Western Indian. *Sedimentary Geology*,, **30**: 15-42.

#### В

- BANERJEE, I. 1966. Turbidites in a glacial sequence: A study from the Talchir Formation, Raniganj Colfield, India. *Journal of Geology*, **74**: 393-606.
- BATES, C.C. 1953. Rational theory of delta formation. AAPG Bulletin, Tulsa, 37: 2119-2162.
- BATISTA, B.M., BRAUN, O.P.G. & CAMPOS, D.A. 1984. *Léxico estratigráfico do Brasil*. Brasília, DNPM/MME, 560p.
- BECKER, R.T. 1993. Analysis of ammonoid palaeogeography in relation to the global Hangenberg Terminal Devonian and Lower Alum Shale Middle Tournaisian events. *Annual Proceedings of the Society of Geology of Belgium*, Bruxelles, **115** (2): 459-473.
- BERNARD, H.A. & MAJOR, C.J. 1963. Recent meander belt deposits of the Brazos River: An alluvial 'sand' model. *AAPG Bulletin*, Tulsa, **47**: 350.
- BEUF, S., BIJU-DAVAL, A., CHARPAL, O., RAGON, P., GARIEL, O. & BENNACEF, A. 1971. Les grès du Paléozoique Inférieur au Sahara: Sèdimentation et descontinuites, évolution structurale d'un craton. Paris, Institut Francais du Pétrole: 464p.
- BEURLEN, K. 1965. Observações no Devoniano do Estado do Piauí. *Anais da Academia Brasileira de Ciências*, Rio de Janeiro, **37**(1): 61-67.
- BEURLEN, K. & MABESOONE, J.M., 1969. Novas observações sobre o Devoniano no Piauí. *Anais da Academia Brasileira de Ciências*, Rio de Janeiro, **41**(2): 199-210.
- BEUTNER, E.C., FLUECKINGER, L.A. & GARD, T.M. 1967. Bedding geometry in a Pennsylvanian channel sandstone. *Geological Society of America Bulletin*, Washington D.C., **78**: 911-916.
- BIGARELLA, J.J. 1973. Geology of the Amazonas and Parnaíba Basin. *Boletim Paranaense de Geociências*, Curitiba, **31**: 141-224.
- BLAKEY, R.C. & GUBITOSA, R. 1984. Controls of sandstone body geometry and architecture in the Chinle Formation (Upper Triassic), Colorado Plateau. Sedimentary Geology, 38: 51-86.
- BLATT, H., MIDDLETON, G.V & MURRAY, R. 1980. *Origin of sedimentary rocks*. New Jersey, Prentice-Hall & Englewood Cliffs: 782p.
- BLODGETT, R.H. & STANLEY, K.O. 1980. Stratification, bedforms, and discharge relations of the Platte braided river system, Nebraska. *Journal of Sedimentary Petrology*, Tulsa, **50**:139-148.
- BLUCK, B.J. 1971. Sedimentation in the meandering River Endrick. *Scotland Journal of Geology*, Edinburgh, **7**: 93-138.
- BLUCK, B.J. 1979. Structure of coarse grained braided stream alluvium. *Transactions of the Royal Society of Edinburgh*, Edinburgh, Earth Sciences **70**: 181-221.
- BLUCK, B.J. 1980. Structure, generation and preservation of upward fining braided stream cycles in the Old Red Sandstone of Scotland. *Transactions of the Royal Society of Edinburgh*, Edinburgh, Earth Sciences **71**: 29-46.
- BOECKER, W.S. & DENTON, G.H. 1990. What drives glacial cycles. *Scientific American*, Washington D.C., **1278**: 49-56.

- BOOTHROYD, J.C. & NUMMEDAL, D. 1978. Proglacial braided outwash: A model for humid alluvial fan deposits. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **5**: 641-668.
- BORGHI, L. 2000. Visão geral da análise de fácies sedimentares do ponto de vista da arquitetura deposicional. *Boletim do Museu Nacional*, Rio de Janeiro, **53**: 1-26.
- BOUCOT, A.J. 1988. Devonian biogeography: An update. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **14**: 211-227.
- BOUMA, A. 1962. Sedimentology of some flysch deposits. Amsterdam, Elsevier, 168p.
- BRADY, R.H. 1984. Neogene stratigraphy of the Avawatz Mountains between the Garlock and Death Valley fault zones, Southern Death Valley, California: Implications as to Late Cenozoic tectonism. Sedimentary Geology, 38: 127-158.
- BRIDGE, J.S. 1984. Large-scale facies sequences in alluvial overbank environments. *Journal of Sedimentary Petrology*, Tulsa, **54**: 583-588.
- BRIDGE, J.S. & DIEMER, J.A. 1983. Quantitative interpretation of an evolving ancient river system. *Sedimentology*, Oxford, **30**: 599-623.
- BRIDGE, J.S. & JARVIS, J. 1976. Flow and sedimentary processes in the meandering River South Esk, Glen Clova, Scotland. *Earth Surface Processes*, London, **1**: 303-336.
- BRIDGE, J.S. & LEEDER, M.R. 1979. A simulation model of alluvial stratigraphy. *Sedimentology*, Oxford, **26**: 617-644.
- BRITO, I.M. 1967. Silurian and Devonian Acritarcha from Maranhão Basin. *Micropaleontology*, London, **13**: 473-482.
- BRITO, I.M. 1979. Estratigrafia da Bacia do Parnaíba 1: a seqüência sedimentar inferior. *Anais da Academia Brasileira de Ciências*, Rio de Janeiro, **51**(4): 695-727.
- BRITO, I.M. & SANTOS, A.S. 1965. Contribuição ao conhecimento dos microfósseis silurianos e devonianos da Bacia do Maranhão. Notas Preliminares e Estudos da DGM, Rio de Janeiro, 129: 1-23.
- BRITO, I.M., BERTINI, R.J. & BRITO, P.M. 1992. Os vertebrados cretácicos brasileiros: levantamento preliminar. *Boletim do 2° Simpósio sobre o Cretáceo do Brasil*, Rio Claro: 99-101.
- BRITO NEVES, B.B. 1985. As grandes falhas do Nordeste e as bacias sedimentares. *Textos didáticos do Departamento de Geologia da UFPE*, Recife, **5** (série D): 14-18.
- BRYANT, I.D. 1983. Facies sequences associated with some braided river deposits of Late Pleistocene age from Southern Britain. *International Association of Sedimentology Special Publication*, Lawrence, **6**: 267-278.
- BUATOIS L.A. & MÁNGANO, M.G. 1994. Lithofacies and depositional processes from a Carboniferous lake, Sierra de Narváes, Northwest Argentina. *Sedimentary Geology*, **3**: 25-49.
- BUCK, S.G. 1983. The Saaiplaas Quartzite Member: A braided system of gold and uranium bearing channel placers within the Proterozoic Witwatersrand Supergroup of South Africa. *International Association of Sedimentology Special Publication*, Lawrence, **6**: 549-562.
- BULL, W.B. 1977. The alluvial fan environment. Progress on Physical Geography, 1: 222-270.
- BULTYNCK, P. & MARTIN, F. 1995. Assessment of an old stratotype: The Frasnian-Famennian boundary at Senzeilles, Southern Belgium. *Bulletin d'Institute Royal de Sciences Naturelles de Belgique*, Bruxelles, Sciences de Terre **65**: 5–34.
- BURNETT, A.W. & SCHUMM, S.A. 1983. Alluvial river response to neotectonic deformation in Louisiana and Mississippi. *Science*, London, **222**: 49-50.

## С

- CALDAS, E.B., LIMA FILHO, F.P., FLORÊNCIO, C.P. 1989. Nova ocorrência de *Metacryphaeus* cf. *australis* (Trilobita) no Devoniano Médio da Bacia do Parnaíba. *Anais do 10° Congresso Brasileiro de Paleontologia*, Rio de Janeiro, 2: 444-539.
- CAMPANHA, V.A. & ROCHA-CAMPOS, A.C. 1979. Alguns microfósseis da Formação Piauí (Neocarbonífero), Bacia do Parnaíba. *Boletim do Instituto de Geociências da USP*, São Paulo, **10**: 57-67.

CAMPBELL, D.F., ALMEIDA, L.A. & SILVA, S.O. 1949. Relatório preliminar sobre a geologia da Bacia do Maranhão. *Boletim do Conselho Nacional do Petróleo*, Rio de Janeiro, **1**: 1-160.

- CAMPELO, F.M.A.C. 2002. Faciologia da Formação Pimenteiras na região de Picos e Pimenteiras, Estado do Piauí (Devoniano da Bacia do Parnaíba). Relatório de Graduação, Universidade Federal de Pernambuco, Recife, 81p.
- CANT, D.J. & WALKER, R.G. 1978. Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. *Sedimentology*, Oxford, **25**: 625-648.
- CAPUTO, M.V. 1984. Glaciação neodevoniana no continente Gondwana Ocidental. *Anais do 33º Congresso Brasileiro de Geologia*, Rio de Janeiro, **2**: 725-739.
- CAPUTO, M.V. 1985. Late Devonian glaciation in South America. *Palaeogeography, Palaeoclimatology, Palaeoecology,* Amsterdam, **51**: 291-317.
- CAPUTO, M.V. 1994. Atmospheric CO₂ depletion as glaciation and biotic extinction agent: The Late Devonian-Early Carboniferous glacial examples. *Boletim de Resumos Expandidos do Simpósio de Geologia da Amazônia*, Belém, **4**: 194-197.
- CAPUTO, M.V. & LIMA, E.C. 1984. Estratigrafia, idade e correlação do Grupo Serra Grande. Anais 33º Congresso Brasileiro de Geologia, Rio de Janeiro, **2**: 740-753.
- CAPUTO, M.V. & CROWELL, J.C. 1985. Migration of glacial centers across Gondwana during Paleozoic Era. *Geological Society of America Bulletin*, Wadhington D.C., **96**: 1020-1036.
- CARLING, I.P.A. & DAWSON, M. 1996. Advances in fluvial dynamics and stratigraphy. London, John Wiley, 530p.
- CAROZZI, A.V., FALKENHEIN, F.U.H., CARNEIRO, R.G., ESTEVES, F.R. & CONTREIRAS, C.J.A. 1975. Análise ambiental e evolução tectônica sin-sedimentar da seção siluro-eocarbonífera da Bacia do Maranhão. *Ciência-Técnica-Petróleo*, Rio de Janeiro, **7**: 1-60.
- CARSON, M.A. 1984a. The meandering-braided river threshold: A reappraisal. *Journal of Hydrology*, London, **73**: 315-334.
- CARSON, M.A. 1984b. Observations on the meandering-braided river transition, the Canterbury Plains, New Zealand, Part One. *New Zealand Geography*, **40**: 12-17.
- CARSON, M.A. 1984c. Observations on the meandering-braided river transition, the Canterbury Plains, New Zealand, Part Two. *New Zealand Geography*, , **40**: 89-99.
- CARVALHO, I.S.A. (ed.) 2000. *Paleontologia*. Rio de Janeiro, Interciência, 628p.
- CARVALHO, M.S.S., SANTOS, M.E.C.M. & FONSECA, V.M.M. 1996. Eventos biológicos no Devoniano da Bacia do Parnaíba. *Anais do Simpósio Sul-americano do Siluro-Devoniano*, Ponta Grossa: 375-390.
- CASTRO, J.C. 1999. Progressos em geologia sedimentar: da Sedimentologia de Processos à Estratigrafia de Seqüências. *Revista Escola de Minas*, Ouro Preto, **52**(3): 148-156.
- CHURCH, M. & ROOD, J. 1983. Pattern of instability in a wandering gravel bed channel. International Association of Sedimentology Special Publication, Lawrence, 6:169-180.
- COIMBRA, A.M. 1983. Estudo sedimentológico e geoquímico do Permo-Triássico da Bacia do Maranhão. Tese de Doutorado, Universidade de São Paulo, São Paulo, 259p.
- COIMBRA, A.M. & MUSSA, D. 1984. Associação ligniflorística na Formação Pedra de Fogo (Arenito Cacunda), Bacia do Maranhão-Piauí, Brasil. *Anais do 33º Congresso Brasileiro de Geologia*, Rio de Janeiro: 591-605.
- COIMBRA, A.M., GÓES, A.M. & MATOS, S.L.F. 1993. Proposta de classificação de estruturas. Atas do Simpósio Regional de Geologia do Sudeste, Rio de Janeiro: 282-286.
- COLEMAN, J.M. 1969. Brahmaputra River: Channel processes and sedimentation. Sedimentary Geology, **3**: 129-239.
- COLEMAN, J.M. & WRIGHT, L.D. 1975. Modern river deltas: Variability of processes and sand bodies. *In*: M.L. Broussard (ed.), *Deltas. Models for Exploration*. The Geological Society of America: 99-149.
- COLLINSON, J.D. 1970. Bedforms of the Tana River, Norway. *Geography Annals*, 5A: 31-55.
- COLLINSON, J.D. & THOMPSON, D.B. 1982. *Sedimentary structures*. London, George Allen, 194p.

- CONAGHAN, P.J. & JONES, J.G. 1975. The Hawkesbury Sandstone and the Brahmaputra: A depositional model for continental sheet sandstones. *Journal of Geological Society of Australia*, Sidney, **22**: 275-283.
- CORDANI, U.G. *et al.* 1984. Estudo preliminar de integração do Pré-Cambriano com os eventos tectônicos das bacias sedimentares brasileiras. *Ciência-Técnica-Petróleo*, Rio de Janeiro, **15**: 1-70.
- CORDANI, U.G., MILANI, E.J.M., THOMAZ FILHO, A. & CAMPOS, D.A. 2000. Tectonic evolution of South America. *Proceedings from 31th International Geological Congress*, Rio de Janeiro: 256.
- CORRIGAN, A.F. 1993. Estimation of recoverable reserves: The geologist's job. *Proceedings of the 4th Conference on ......* (by 1986), London, **2**: 1473-1481.
- COSTA, J.E. 1988. Rheologic, geomorphic and sedimentologic differentiation of water floods, hyperconcentred flows and debris flows. *In*: V.R. Baker, R.C. Kochel & P. Pation (eds), *Flood Geomorphology*. New York, Wiley-Interscience, 113-122.
- COUSSOT, P. & MEUNIER, M. 1992. Recognition, classification and mechanical descrition of debris flow. *Earth Sciences*, Amsterdam, **40**: 209-227.
- CPRM, 2002. Serviço Geológico do Brasil. Disponível em <u>http://www.geoambiente.com.br/website/cprm_geologico/viewer.htm</u> Acessado em 21 de Janeiro de 2005.
- CRISTALLI, P.S. 1997. Tafoflora das camadas Nova Iorque, depósitos neógenos do rio Parnaíba, município de Nova Iorque, MA, Brasil. Dissertação de Mestrado, Universidade de São Paulo, São Paulo, 157p.
- CROWELL, J.C. 1978. Gondwana glaciations, cyclothems, continental positioning, and climate change. *American Journal of Sciences*, , **278:** 1345-1372.
- CROWELL, J.C. 1981. Early Paleozoic glaciation and Gondwana drift. *In: Paleoreconstructions* of the continents. Washington D.C., Geological Society of America: 45-49.
- CROWELL, J.C. 1983. The recognition of ancient glaciations. *Geological Society of America Memoir*, Washington D.C., **161**: 221-234.
- CROWLEY, K.D. 1983. Large-scale bed configurations (macroforms), Platte River Basin, Colorado and Nebraska: Primary structures and formative processes. *Geological Society of America Bulletin*, Washington D.C., **94**: 117-133.
- CRUZ, W.B.C & PEIXOTO, A. 1972. Recursos de água subterrânea da área Floriano-Oeiras, Piauí. Recife, SUDENE, 142p.
- CRUZ, W.B.C., LIMA, E.A.M., LEITE, J.F., QUINO, J.S., ANGELIM, L.A.A. & VALE, P.A.B.R. 1973. Projeto carvão da Bacia do Parnaíba. Relatório Final, CPRM/DNPM, Rio de Janeiro, 123p.
- CUNHA, F.M.B. 1986. Evolução paleozóica da Bacia do Parnaíba e seu arcabouço tectônico. Dissertação de Mestrado, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 107p.
- CUNHA, P.R.C. 2001. Correlação das seqüências eo-mesodevonianas da Bacia do Amazonas com outras bacias do Gondwana. *Ciência-Técnica-Petróleo*, Rio de Janeiro, **20**: 91-98.

## D

- DAEMON, R.F. 1974. Palinomorfos-guias do Devoniano Superior e Carbonífero das bacias do Amazonas e do Parnaíba. Anais da Academia Brasileira de Ciências, Rio de Janeiro, 46: 546-587.
- DAEMON, R.F. 1976. Correlação bioestratigráfica entre os sedimentos do Siluriano, Devoniano e Carbonífero das bacias do Amazonas, Parnaíba e Paraná. *Anais 29º Congresso Brasileiro de Geologia*, Ouro Preto, **2**: 189-194.
- DALRYMPLE, R.W. 1992. Tidal depositional systems. *In*: R.G. Walker & N.P. James (eds), *Facies models: Response to sea level change*. Ottawa, Geological Association of Canada: 195-218.
- DAVIS, D.J. & ANNAN, A.P. 1989. Ground penetrating radar for high resolution mapping and rock stratigraphy. *Geophysical Prospecting*, **37**: 531-551.
- DELLA FÁVERA, J.C. 1980. Reconhecimento de novas fácies e ambientes deposicionais na Bacia do Parnaíba. *Anais 31º Congresso Brasileiro de Geologia*, Camboriú, **2**: 356-357.

- DELLA FÁVERA, J.C. 1982. Devonian storm and tide-dominated shelf deposits, Parnaíba Basin, Brazil. AAPG Bulletin, Tulsa, **66**: 562.
- DELLA FÁVERA, J.C. 1984. Eventos de sedimentação episódica nas bacias brasileiras. Uma contribuição para atestar o caráter pontuado do registro sedimentar. *Anais do 33º Congresso Brasileiro de Geologia*, Rio de Janeiro, **1**: 489-501.
- DELLA FÁVERA, J.C. 1990. Tempestitos da Bacia do Parnaíba. Tese de Doutoramento, Universidade Federal do Rio Grande do Sul, Porto Alegre, 290p.
- DELLA FÁVERA, J.C. 2001. Fundamentos de Estratigrafia. Rio de Janeiro, UERJ, 264p.
- DELLA FÁVERA, J.C. & ULIANA, M.A. 1979. Bacia do Maranhão: ambientes e fácies. Relatório Interno da Petrobras, Rio de Janeiro, 56p.
- DERBY, O. A. 1884. Estructura geológica e mineraes. *In*: J.E. Wasppaeus (ed.) *A geographia phísica do Brasil*. Rio de Janeiro, G. Lenziger: 43-59.
- DIAS-LIMA, R. & ROSSETTI, D.F. 1999. Análise faciológica e estratigráfica de depósitos do Cretáceo Superior, leste da Bacia do Grajaú, Maranhão. *Boletim do 5° Simpósio sobre o Cretáceo do Brasil*, Rio Claro: 237-251.
- DICKINS, J.M. 1993. Climate of the Late Devonian to Triassic. *Palaeogeography, Palaeoclimatology, Palaeoecology,* Amsterdam, **100**: 89-94.
- DOLIANITI, E. 1953. A flora do Carbonífero Inferior de Terezina, Piauí. *Boletim da DGM*, Rio de Janeiro, **148**: 1-56.
- DOLIANITI, E. 1980. *Rhacopteris* na Formação Poti, Estado do Piauí. *Anais da Academia Brasileira de Ciências*, Rio de Janeiro, **52**(1): 165-169.
- DOTT JR, R.H. & BOURGEOIS, J. 1982. Hummocky stratification: Significance of its variable bedding sequences. *Geological Society of America Bulletin*, Washington D.C., **93**: 663-680.

#### Ε

- EINSELE, G. 2000. Sedimentary basins: Evolution, facies and sediment budget. Berlin, Gerhard Einsele, 792p.
- ELLIOT, T. 1986. Siliciclastic shorelines. *In*: H.G. Reading (ed.), *Sedimentary environments and facies*. New York, Blackwell: 155-188.
- ETHRIDGE, F.G., JACKSON, T.J. & YOUNGBERG, A.D. 1981. Flood basin sequence of a finegrained meander belt subsystem: The coal-bearing Lower Wasatch and Upper Fort Union Formations, Southern Powder River Basin, Wyoming. *Society of Economic Paleontologists and Mineralogists Special Publication*, **31**: 191-209.
- ETHRIDGE, F.G. & WESCOTT, W.A. 1984. Tectonic setting, recognition and hydrocarbon reservoir potential of fan delta deposits. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **10**: 217-235.

## F

- FARIA JR, L.E. 1984. O Permo-Triássico na Bacia do Parnaíba: um modelo de paleodeserto. Anais do 33º Congresso Brasileiro de Geologia, Rio de Janeiro, **2**: 777-784.
- FARIA JR, L.E. & TRUCKENBRODT, W. 1980. Estratigrafia e petrografia da Formação Pedra de Fogo, Permiano da Bacia do Maranhão. Anais do 21º Congresso Brasileiro de Geologia, Camburiú, 2: 740-754.
- FEITOSA, M.C. & FEITOSA, F.A.C. 1991. Sedimentologia e estratigrafia das formações Longá e Cabeças (Bacia do Parnaíba) no vale do rio Gurguéia. *Atas do 14º Simpósio de Geologia do Nordeste*, Recife: 22-25.
- FIGUEIREDO, A.M. & RAJA-GABAGLIA, G.P. 1986. Sistema classificatório aplicado às bacias sedimentares brasileira. *Revista Brasileira de Geociências*, São Paulo, **16**(4): 350-369.
- FISHER, W.L. & BROWN JR, L.F. 1972. *Clastic depositional systems: A genetic approach to facies analysis.* Austin, Bureau of Economic Geology, 211p.
- FISHER, W.L. & McGOWEN, J.H. 1967. Depositional system in the Wilcox Group of Texas and their relationship to ocorrence of oil and gas. *Gulf Coast Association of Geologists Society Transactions*, **17**: 213-248.
- FISK, H.N. 1954. Sedimentary framework of the modern Mississippi Delta. *Journal of Sedimentary Petrology*, Tulsa, **24**(2): 76-99.

- FLORES, R.M. 1981. Coal deposition in fluvial paleoenvironments of the Paleocene Tongue River Member of the Fort Union Formation, Powder River area, Powder River Basin, Wyoming and Montana. Society of Economic Paleontologists and Mineralogists Special Publication, Lawrence, **31**: 161-190.
- FORBES, D.L. 1983. Morphology and sedimentology of a sinuous gravel-bed channel system: Lower Babbage River, Yukon coastal plain, Canada. *International Association of Sedimentology Special Publication*, Lawrence, 6: 195-206.
- FRIEND, P.F. 1983. Towards the field classification of alluvial architecture or sequence. International Association of Sedimentology Special Publication, Lawrence, 6: 345-354.
- FRIEND, P.F., SLATER, M.J. & WILLIAMS, R.C. 1979. Vertical and lateral building of river sandstone bodies, Ebro Basin, Spain. *Journal of Geological Society of London*, London, 136: 39-46.

# G

- GAGER, B.R. 1984. The Tiger Formation: Paleogene fluvial sediments deposited adjacent to a deforming cordilleran metamorphic core complex, northeastern Washington. *Sedimentary Geology*, , 38: 393-420.
- GALAY, V.J., KELLERHALS, R. & BRAY, D.I. 1973. Diversity of river types in Canada. *Proceedings* from Hydrologic Symposium on Fluvial Processes and Sedimentation, Edmonton: 217-250.
- GALLOWAY, W.E. 1975. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. *In*: M.L. Broussard (ed.), *Deltas. Models for Exploration*. Washington D.C., The Geological Society of America: 87-98.
- GALLOWAY, W.E. & HOBDAY, D.K. 1983. Terrigenous clastic depositional system. Application to petroleum and uranium exploration. New York, Springer, 423p.
- GERLITS, K. 1993. Processing ground penetrating radar data to improve resolution of near surface targets. *Proceedings from 6th Symposium on the Application of Geophysics to Engineering and Environmental Problems*, San Diego: 561-574.
- GERSIB, G.A. & McCABE, P.J. 1981. Continental coal-bearing sediments of the Port Hood Formation (Carboniferous), Cape Linzee, Nova Scotia, Canada. *Society of Economic Paleontologists and Mineralogists Special Publication*, Lawrence, **31**: 95-108.
- GIVEN, M.M. 1977. Mesozoic and Early Cenozoic geology of offshore Nova Scotia. *Bulletin of Canadian Petroleum Geology*, Ottawa, **25**: 63-91.
- GÓES, A.M.O. 1995. A Formação Poti (Carbonífero Inferior) da Bacia do Parnaíba. Tese de Doutoramento, Universidade de São Paulo, São Paulo, 180p.
- GÓES, A.M.O. & FEIJÓ, F.J. 1994. A Bacia do Parnaíba. *Boletim de Geociências da Petrobras*, Rio de Janeiro, **8**(1): 57-67.
- GÓES, A.M.O., SOUZA, J.M.P. & TEIXEIRA, L.B. 1989. Estágio exploratório e perspectivas petrolíferas da Bacia do Parnaíba. *Coletânea dos Trabalhos Técnicos do 1° Seminário de Interpretação Exploratória*, Rio de Janeiro: 25-34.
- GÓES, A.M.O., SOUZA, J.M.P. & TEIXEIRA, L.B. 1990. Estágio exploratório e perspectivas petrolíferas da Bacia do Parnaíba. *Boletim de Geociências da Petrobras*, Rio de Janeiro, **4**(1): 55-64.
- GÓES, A.M.O., ROSSETTI, D.F. & COIMBRA, A.M. 1999. A Bacia do Grajaú, Estado do Maranhão. *Boletim do 5° Simpósio sobre o Cretáceo do Brasil*, Rio Claro: 255-258.
- GOODFELOW, W.D., GELDSETZER, H., McLAREN, D.J., ORCHARD, M.J. & KLAPPER, G. 1988. The Frasnian-Famenian extinction: Currents results and possible causes. *Canadian Society of Petroleum Geologists Memoir*, Toronto **14**: 2-9.
- GRAHAM, J.R. 1981. Fluvial sedimentation in the Lower Carboniferous of Clew Bay, County Mayo. *Ireland Sedimentary Geology*, Glasgow, **30**: 195-211.
- GRAHN, Y. 1992. Revision of Silurian and Devonian strata of Brazil. *Palinology*, London, **16**: 35-61.
- GRAHN, Y. & PARIS, F. 1992. Age and correlation of the Trombetas Group, Amazonas Basin, Brazil. *Revue de Micropaléontologie*, Paris, **35**: 20-32.

Santos, V.H

- GRAHM, Y., LOBOZIAK, S. & MELO, J.H.G. 2001. Integrated miospore-chitinozoan of the Parnaíba Basin and its correlation with Petrobras (Muller, 1962) Silurian-Lower Carboniferous palynozones. *Ciência-Técnica-Petróleo*, Rio de Janeiro, **20**: 81-89.
- GRAY, J., COLBATH, G.K., FARIA, A., BOUCOUT, A.J. & ROHR, D.M. 1985. Silurian age fossils from Paleozoic Paraná Basin, Southern Brazil. *Geology*, Amsterdam, **13**: 521-525.
- GUSTAVSON, T.C. 1978. Bed forms and stratification types of modern gravel meander lobes, Nueces River, Texas. *Sedimentology*, Oxford, **25**: 401-426.

## Η

- HÄNTZSCHEL, W. 1975. Trace fossils and problematic. In: C. Teichert (ed.), Treatise on Invertebrate Paleontology Part W Supplement 1. Boulder, University of Kansas, 269p.
- HARDIE, L.A. SMOOT, J.P. & EUGSTER, H.P. 1978. Saline lakes and their deposits: A sedimentological approach. *International Association of Sedimentology Special Publication*, Lawrence, **2**: 7-41.
- HARMS, J.C. & FAHNESTOCK, R.K. 1965. Stratification, bed forms, and flow phenomena (with an example from the Rio Grande). *Society of Economic Paleontologists and Mineralogists Special Publication*, Lawrence, **12**: 84-115.
- HARMS, J.C., MACKENZIE, D.B. & McCUBBIN, D.G. 1963. Stratification in modern sands of the Red River, Louisiana. *Journal of Geology*,, **71**: 566-580.
- HARMS, J.C., SOUTHARD, J.B., SPEARING, D.R. & WALKER, R.G. 1975. Depositional environments as interpreted from primary sedimentary structures and stratification sequences. Short Course, The Society of Economic Paleontologists and Mineralogists, Lawrence, 161p.
- HARMS, J.C., SOUTHARD, J.B. & WALKER, R.G. 1982. Structures and sequences in clastic rocks. Short Course, The Society of Economic Paleontologists and Mineralogists, Lawrence, 9p.
- HASUI, Y., ABREU, F.A.M. & VILLAR, R.N.N. 1984. Província Parnaíba. *In*: F.M.M. Almeida & Y. Hasui (coords), *O Pré-cambriano do Brasil*. São Paulo, EDUSP: 36-45.
- HASZELDINE, R.S. 1983a. Fluvial bars reconstructed from a deep, straight channel, Upper Carboniferous coal field of northeast England. *Journal of Sedimentary Petrology*, Tulsa, 53: 1233-1248.
- HASZELDINE, R.S. 1983b. Descending tabular cross-bed sets and bounding surfaces from a fluvial channel in the Upper Carboniferous coal field of Northeast England. *International Association of Sedimentology Special Publication*, Lawrence, **6**: 449-456.
- HAYWARD, A.B. 1983. Coastal alluvial fans and associated marine facies in the Miocene of SW Turkey. *International Association of Sedimentology Special Publication*, Lawrence, **6**: 323-336.
- HEIN, F.J. & WALKER, R.G. 1977. Bar evolution and development of stratification in the gravelly, braided, Kicking Horse River, British Columbia. *Canadian Journal of Earth Sciences*, Ottawa, **14**: 562-570.
- HEWARD, A.P. 1978. Alluvial fan sequence and megasequence models, with examples from Westphalian D-Stephanian B coalfields, Northern Spain. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **5**: 669-702.
- HOOKE, R.L.B. 1967. Processes on arid-region alluvial fans. *Geology*, Amsterdam, 75: 438-460.
- HOPKINS, J.C. 1985. Channel-fill deposits formed by aggradations in deeply scoured, superimposed distributaries of the Lower Kootenai Formation (Cretaceous). *Journal of Sedimentary Petrology*, Tulsa, **55**: 42-52.
- HORNE, J.C., FERM, J.C., CARUCCIO, F.T. & BAGANZ, B.P. 1978. Depositional models in coal exploration and mine planning in Appalachian region. *AAPG Bulletin*, Tulsa, **62**: 2379-2411.
- HORNUNG J. & AIGNER T. 1999. Reservoir and aquifer characterization of fluvial architecture elements: Stubensandstein, Upper Triassic, Southwest Germany. *Sedimentary Geology*, 129: 215-280.
- HOUSE, M.R. 1975. Facies and time in Devonian tropical áreas. *Proceedings from the Yorkshire Geological Society*, **40**(16): 233-288.
- HOUSE, M.R. 1996. An *Eocanites* fauna from the Early Carboniferous of Chile and its palaeogeographic implications. *Annals from Society of Geology of Belgium*, Bruxelles, **117**(1): 95-105.

#### I

- IANUZZI, R. 1994. Reavaliação da flora carbonífera da Formação Poti, Bacia do Parnaíba. Dissertação de Mestrado, Universidade de São Paulo, São Paulo, 205p.
- ISACSON, P.E., HLADIL, J., SHEN, J.W., KALVODA, J. & GRADER, G. 1999. Late Devonian Famennian glaciation in South America and marine of flap on other continents. *Abhandlung Geologisches Bundesanstalt*, Frankfurt, **54**: 239–257.

#### J

- JACKSON II, R.G. 1975. Hierarchical attributes and a unifying model of bed forms composed of cohesionless material and produced by shearing flow. *Geological Society of America Bulletin,*, **86**: 1523-1533.
- JACKSON II, R.G. 1976a. Depositional model of point bars in the lower Wabash River. *Journal of Sedimentary Petrology*, Tulsa, **46**: 579-594.
- JACKSON II, R.G. 1976b. Preliminary evaluation of lithofacies models for meandering alluvial streams. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **5**: 543-576.
- JACKSON II, R.G. 1981. Sedimentology of muddy fine-grained channel deposits in meandering streams of the American Middle West. *Journal of Sedimentary Petrology*, Lawrence, **51**:1169-1192.
- JAEGER, H. 1976. Das Silur und Unterdevon vom thüringischen Typ in Sardinien und seine regionalgeologiche Bedeutung. *Nova Acta Leopoldesia*, **45**(224): 263-299.
- JANSA, L.F. & WEIDMANN, J. 1982. Mesozoic-Cenozoic development of the Eastern North American and Northwest African continental margins: A comparison. In: V. Rad, K. Hinz, M. Sarnthein & E. Seibold (eds), Geology of the Northwest African Continental Margin. Springer, Berlin: 215-269.
- JO, H.R. 2003. Depositional environments, architecture, and controls of Early Cretaceous nonmarine successions in the northwestern part of Kyongsang Basin, Korea. Sedimentary Geology, 161: 269-294.
- JOHNSON, J.G., KLEPPER, G. & SANDBERG, C.A. 1985. Devonian eustatic fluctuation in Euro-America. *Geological Society of America Bulletin*, **96**: 567-587.
- JOHNSON, S.Y. 1984. Cyclic fluvial sedimentation in a rapidly subsiding basin, northwest Washington. *Sedimentary Geology*, **38**: 361-392.
- JONES, CM. & McCABE, P.J. 1980. Erosion surfaces within giant fluvial cross-beds of the Carboniferous in Northern England. *Journal of Sedimentary Petrology*, Tulsa, **50**: 613-620.
- JOPLING, A.V. 1965. Laboratory study of the distribution of grain sizes in the cross-bedded deposits. Tulsa, The Society of Economic Paleontologists and Mineralogists: 65p.

## Κ

- KEGEL, W. 1953. Contribuição para o estudo do Devoniano da Bacia do Parnaíba. *Boletim da DGM*, Rio de Janeiro, **141**: 1-41.
- KEGEL, W. 1954. Lamelibrânquios da Formação Poti, Carbonífero Inferior do Piauí. *Notas Preliminares e Estudos da DGM*, Rio de Janeiro, **24**: 1-14.
- KEGEL, W. 1956. As inconformidades da Bacia do Parnaíba e zonas adjacentes. *Boletim da DGM*, Rio de Janeiro, **160**: 1-60.
- KERR, D.R. & JIRIK, L.A. 1990. Fluvial architecture and reservoir compartmentalization in the Oligocene Middle Frio Formation, South Texas. *Transactions from the Gulf Coast Association of Geological Societies*, **40**: 3-12.
- KERR, D.R. 1984. Early Neogene continental sedimentation in the Vallecito and Fish Creek Mountains, Western Salton Trough, California. *Sedimentary Geology*, , **38**: 217-246.
- KIM, S.B., CHOUGH, S.K. & CHUM, S.S. 1995. Bouldery deposits in the lowermost of the Cretaceous Kyokpori Formation, SW Korea: Cohesionless debris flows and debris falls on a steep-gradient delta slop. *Sedimentary Geology*,, **98**: 97-119.

KIRK, M. 1983. Bar developments in a fluvial sandstone (Westphalian ´A´), Scotland. Sedimentology, Oxford, **30**: 727-742.

#### L

- LANGE, F.W. & PETRI, S. 1967. The Devonian of the Paraná Basin. *Boletim Paranaense de Geociências*, Curitiba, 1: 5-55.
- LAUBACHER, G., BOUCOT, A.J. & GRAY, J. 1982. Aditions to Silurian stratigraphy, lithofacies, biogeography and paleontology of Bolivia and Southern Peru. *Journal of Paleontology*, London, **56**: 1138-1170.
- LE HÉRISSÉ, A., MELO, J.H.G., QUADROS, L.P. & STEEMANS, P. 2001. Palynological characterization and dating of the Tianguá Formation, Serra Grande Group, Northern Brazil. *Ciência-Técnica-Petróleo*, Rio de Janeiro, **20**: 25-42.
- LEEDER, M.R. 1973. Fluviatile fining-upward cycles and the magnitude of paleochannels. *Geological Magazine*, **110**: 265-276.
- LEEDER, M.R. 1985. Pedogenic carbonates and flood sediment accretion rates: A quantitative model for alluvial arid-zone lithofacies. *Geological Magazine*, **112**: 257-270.
- LEEDER, M.R. 1978. A quantitative stratigraphic model for alluvium, with special reference to channel deposit density and interconnectedness. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **5**: 587 596.
- LEEDER, M.R. 1983. On the interactions between turbulent flow, sediment transport and bedform mechanics in chanelized flows. *International Association of Sedimentology Special Publication*, Lawrence, **6**: 5-18.
- LEITE, J.F., ABOARRAGE, A.M. & DAEMON, R.F. 1975. Projeto carvão da Bacia do Parnaíba. Relatório Final, DNPM/CPRM, Recife, 284p.
- LEVEY, R.A. 1978. Bed-form distribution and internal stratification of coarse-grained point bars, Upper Congaree River, S.C. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **5**: 105-127.
- LIMA, E.A.A. & LEITE, J.F. 1978. Projeto-estudo global dos recursos minerais da Bacia do Parnaíba: integração geológico-metalogenética. Relatório Final, DNPM/CPRM, Recife, 437p.
- LIMA FILHO, F.P. & ANELLI, L.E. 1997. Contribuition to the Late Paleozoic stratigraphy of the Parnaiba Basin. *Newletter on Carboniferous Stratigraphy*, **15**: 36-37.
- LIMA FILHO, F.P. & ROCHA-CAMPOS, A.C. 1992. Sedimentos desérticos da Formação Piauí (Pensilvaniano), Bacia do Parnaíba. *Boletim do Instituto de Geociências da USP*, São Paulo, **12**: 67-68.
- LIMA FILHO, F.P. & ROCHA-CAMPOS, A.C. 1993. Formação Piauí: um modelo de ambiente desértico e evaporítico. *Anais da Academia Brasileira de Ciências*, Rio de Janeiro, **65**(3): 324-325.
- LIMA FILHO, F.P., MACHADO, M.F., CÓRDOBA, V.C. & SOUZA, D.C. 1995. O Permo-Pensilvaniano na porção nordeste da Bacia do Parnaíba: exemplo de sedimentação costeira. *Anais do 16º Simpósio de Geologia do Nordeste*, Recife, **1**: 370-373.
- LIMA FILHO, F.P. 1999. A sequência Permo-Pensilvaniana da Bacia do Parnaíba. Tese de doutorado / Universidade de São Paulo. 155p.
- LIMARINO C.O. & CÉSARI, S. 1988. Paleoclimatic significance of the lacustrine Carboniferous deposits in the north-west. *Paleogeography, Paleoclimatology, Paleoecology,* Amsterdam, **65**: 115-131.
- LISBOA, M.A.R. 1914. The Permian geology of Northern Brazil. *American Journal of Sciences*, 177: 425-442.
- LOBOZIAK, S., MELO, J.H.G., STREEL, M. & CAPUTO, M.V. 1992. Middle Devonian and Lower Carboniferous miospore stratigraphy in the central Parnaíba Basin. *Annals of Society of Geology of Belgium*, Bruxelles, **115**: 215-226.
- LOBOZIAK, S., STREEL, M., CAPUTO, M.V. & MELO, J.H.G., 1993. Middle Devonian to Lower Carboniferous miospores from selected boreholes in Amazonas and Parnaıba Basins Brazil: Additional data, synthesis, and correlation. *Documents du Laboratoire de Géologie de la Faculté des Sciences de Lyon*, Lyon, **125**: 277–289.

LONG, D.G.F. 1978. Proterozoic stream deposits: Some problems of recognition and interpretation of ancient sandy fluvial systems. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **5**: 313-342.

#### Μ

- MAACK, R. 1947. Breves notícias sobre a geologia dos estudos do Paraná e Santa Catarina. Arquivos de Biologia e Tecnologia, Curitiba, **2**: 63-154.
- MABESOONE, J.M. 1977. Mesozoic deposits of the Piauí-Maranhão syneclise (Brazil): A geological history of a sedimentary basin. *Sedimentary Geology*, **19**(1): 7-38.
- MABESOONE, J.M. 1994. Sedimentary basins of Northeast Brazil. *Publicação Especial do Departamento de Geologia da UFPE*, Recife, **2**: 1-310.
- MABESOONE, J.M. & CAMPANHA, V.A. 1974a. Paleoambiente e paleoecologia do Membro Picos, Formação Pimenteiras, Devoniano do Piauí. *Anais 28º Congresso Brasileiro de Geologia*, Porto Alegre, **2**: 221-235.
- MABESOONE, J.M. & CAMPANHA, V.A. 1974b. Sinopse da estratigrafia das seqüências sedimentares do nordeste brasileiro. *Boletim do Núcleo Nordeste da SBG*, Recife, **2**: 7-22.
- MABESOONE, J.M. & LIMA, L.V.O. 1984. Levantamento bibliográfico dos fósseis encontrados no Nordeste. Atas do 11° Simpósio de Geologia do Nordeste, Natal: 370-379.
- MABESOONE, J.M., VIANA, M.S. & LIMA FILHO, M. 1999. Late Mesozoic history of sedimentary basins in NE Brazilian Borborema Province before the final separation of South America and Africa 3: Paleogeography. *Boletim do 5° Simpósio sobre o Cretáceo do Brasil*, Rio Claro: 621-625.
- MACHADO, E.R. 1972. O carvão neopaleozóico do Brasil meridional. *Anais da Academia Brasileira de Ciências*, Rio de Janeiro, **44**(1): 209-235.
- MAJOR, J.J. & IVERSON, M.R. 1999. Debris flow deposition: Effects of pore-pressure and friction concentrated at flow margins. *Geological Society of America Bulletin*, **111**: 1424-1434.
- MARTINSEN, O.J. 1990. Fluvial, inertia-dominated deltaic deposition in the Namurian (Carboniferrous) of Northern England. *Sedimentology*, Oxford, **37**: 1099-1114.
- MASSARI, F. 1983. Tabular cross-bedding in Messinian fluvial channel conglomerates, Southern Alps, Italy. *International Association of Sedimentology Special Publication*, Lawrence, **6**: 287-300.
- McCABE, P.J. 1977. Deep distributary channels and giant bedforms in the Upper Caboniferous of the Central Pennines, Northern England. *Sedimentology*, Oxford, **24**: 271-290.
- McCLURE, H.A. 1978. Early Paleozoic glaciation in Arabia. *Palaeogeography, Palaeoclimatology, Palaeoecology,* Amsterdam, **25**: 315-326.
- McGHEE JR, G.R. 1988. Evolutionary dynamics of the Frasnian-Famenian extinction events. *Canadian Society of Petroleum Geologists Memoir*, Toronto **14**:10-23.
- McGHEE JR, G.R. 1996. *The Late Devonian mass extinction the Frasnian/Famennian crisis*. New York, Columbia University Press, 303p.
- McGOWEN, J.H. & GARNER, L.E. 1970. Physiographic features and stratification types of coarse-grained point bars: Modern and ancient examples. *Sedimentology*, Oxford, **14**: 77-112.
- McKEE, E.D. & WEIR, G.W. 1953. Terminology for stratification and cross-stratification in sedimentary rocks. *Geological Society of America Bulletin*,, **64**: 381-389.
- McKERROW, W.S., LAMBERT, R.S.J. & CHAMERLAIN, V.E. 1980. The Ordovician, Silurian, and Devonian time scales. *Earth and Planetary Science Letters*, **51**(1): 1-8.
- McLAREN, D.J. 1970. Time, life, and boundaries. *Journal of Paleontol*ogy, London, 44, 801-815.
- McLEAN, J.R. & JERZYKIEWICZ, T. 1978. Cyclicity, tectonics and coal: Some aspects of fluvial sedimentology in the Brazeau-Paskapoo Formations, Coal Valley area, Alberta, Canada. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **5**:441-468.
- McLEOD, P., CAREY, S. & SPARKS, S.J. 1999. Behaviour of particle-laden flows into the ocean: Experimental simulation and geological implications. *Sedimentology*, Oxford, **46**: 523-536.

Santos, V.H

MELO, J.H.G. 1988. Malvinokaffric realm in the Devonian of Brazil. *Canadian Society of Petroleum Geologists Memoir*, Toronto 14: 669-703.

MELO, J.H.G. & LOBOZIAK, S. 2000. Visean miospore biostratigraphy and correlation of the Poti Formation (Parnaíba Basin, Northern Brazil). *Review of Paleobotany and Palynology*, London, **112**:147-165.

MENEZES, L. & LIMA FILHO, F.P. 2001. Técnicas para parametrização de reservatórios utilizando afloramentos fluviais análogos: exemplo da Formação Açu, Bacia Potiguar. *Revista Técnica de Energia, Petróleo e Gás*, Natal, **1**: 12-19.

MESNER, J.C. & WOOLDRIDGE, L.C.P. 1964. Maranhão Paleozoic Basin and Cretaceous coastal basin, North Brazil. *AAPG Bulletin*, Tulsa, **48**: 1475-1512.

METELO, C.M.S. 1999. Caracterização estratigráfica do Grupo Serra Grande (Siluriano) na borda sudeste da Bacia do Parnaíba. Dissertação de Mestrado, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 102p.

MIALL, A.D. 1976. Paleocurrent and paleohydrologic analysis of some vertical profiles through a Cretaceous braided stream deposit, Banks Island, Arctic Canada. *Sedimentology*, Oxford, **23**: 459-484.

MIALL, A.D. 1977. A review of the braided river depositional environment. *Earth Sciences*, Amsterdam, **13**: 1-62.

MIALL, A.D. 1978. Lithofacies types and vertical profile models in braided river deposits: A summary. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **5**: 597-604.

MIALL, A.D. 1980. Cyclicity and the facies model concept in fluvial deposits. *Bulletin of Canadian Petroleum Geologists*, Ottawa, **28**: 59-80.

MIALL, A.D. 1984a. Principles of Sedimentary Basin Analysis. New York, Springer, 490p.

- MIALL, A.D. 1984b. Variations in fluvial style in the Lower Cenozoic synorogenic sediments of the Canadian Arctic Islands. *Sedimentary Geology*, **38**: 499-523.
- MIALL, A.D. 1985. Architetural-element analysis: A new method of facies analysis applied to fluvial deposits. *Earth Sciences*, Amsterdam, **22**. 261-308.

MIALL, A.D. 1996. The geology of fluvial deposits. New York, Springer, 582p.

- MIALL, A.D. & GIBLING, M.R 1978. The Siluro-Devonian clastic wedge of Somerset Island, Arctic Canada, and some regional paleogeographic implications. *Sedimentary Geology*, **21**: 85-127.
- MIDDLETON, G.V. & HAMPTON, M.A. 1973. Sediment gravity flow: mechanics of flow and deposition: *In:* G.V. Middleton & A.H. Bouma (eds), *Turbidites and deep-water sedimentation*.Pacific Section SEPM: 1-38.

MIDDLETON, L.T. & TRUJILLO, A.P. 1984. Sedimentology and depositional setting of the Upper Proterozoic Scanlan conglomerate, Central Arizona. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **10**: 189-201.

MILANI, E.J. & ZALÁN, P.V. 2000. An outline of the geology and petroleum systems of the Paleozoic interior basins of South America. *Episodes*, **22**(3): 199-206.

MILLIMAN, J.D. & SYVITSKI, J.P.M. 1992 Geomorphic and tectonic control of discharge to ocean: The importance of small mountainous rivers. *Journal of Geology*, **100**: 525-544.

MOHAMMED, N. & EL HASSAN, C. 2002. Facies and sequence stratigraphy of a Late Barremian wave dominated deltaic deposit, Agadir Basin, Morocco. *Sedimentary Geology*. **150**, 375-384.

MOHRING, D., WHIPPLE, K.X., HONDZO, M., ELLIS, C. & PARKER, G. 1998. Hydroplaning of subaqueous debris flows. *Geological Society of America Bulletin*, **110**: 387-394.

MOLLARD, J.D. 1973. Airphoto interpretation of fluvial features. *Proceedings from the 1973 Hydrological Symposium*, Edmonton: 341-380.

MOORE, B. 1963. Geological reconnaissance of the Southwest corner of the Maranhão Basin. Relatório Interno. Petrobras (DIVEX/SIEX 130), Salvador, 44p.

MOSSOP, G.D. & FLACH, P.D. 1983. Deep channel sedimentation in the Lower Cretaceous McMurray Formation, Athabasca oil sands, Alberta. *Sedimentology*, Oxford, **30**: 493-509.

MULDER, T. & SYVITSKI, J.P.M. 1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans. *Journal of Geology*, **103**: 285-299.

MULDER, T. & SYVITSKI, J.P.M. & SKENE, K.I. 1998. Modeling of erosion and deposition of turbidity currents generated at river mounts. *Journal of Sedimentary Research*, **68**: 124-137.

- MUNIZ, G.C.B. 1982. Icnofósseis devonianos da Formação Longá no Estado do Piauí. Anais do 32º Congresso Brasileiro de Geologia, Salvador, **4**: 1305-1316.
- MUTTI, E., DAVOLI, G., TINTERRI, R. & ZAVALA, C. 1996. The importance of fluvio-deltaic systems dominated by catastrophic flooding in tectonically active basin. *Memoires of Sciences Geologics*, **48**: 233-291.
- MUTTI, E., TINTERRI, R., REMANCHA, E., MAVILLA, N., ANGELLA, S. & FAVA, L. 1999. An introduction to the analysis of ancient turbidite basins from an outcrop perspective. *AAPG Continuing Education Course Note Series*, Tulsa, **39**: 1-61.
- MUTTI, E., TINTERRI, R., DI BIASE, D., FAVA, L., MAVILLA, N., ANGELLA, S. & CALABRESE, L. 2000. Delta-front facies associations of ancient flood-dominated fluvio-deltaic systems. *Revista de la Sociedad de Geología de España*, Madrid, **13**(2): 165-190.
- MYROW, P.M 1992. Bypass-zone tempestite facies model and proximaly trenes for an ancient muddy shorelineand shelf. *Journal of Sedimentary Petrology*, Tulsa, **62**: 99-115.

# Ν

- NAMI, M. & LEEDER, M.R. 1978. Changing channel morphology and magnitude in the Scalby Formation (Middle Jurassic) of Yorkshire, England. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **5**: 431-440.
- NANSON, G.C. 1980. Point bar and floodplain formation of the meandering Beatton River, Northeastern British Columbia, Canada. *Sedimentology*, Oxford, **27**: 3-30.
- NANSON, G.C. & PAGE, K. 1983. Lateral accretion of fine-grained concave benches on meandering rivers. *International Association of Sedimentology Special Publication*, Lawrence, **6**: 133-144.
- NEMEC, W. & MUSZYNSKI, A. 1982. Volcaniclastic alluvial aprons in the Tertiary of Sofia District (Bulgaria). Annals of Society of Geology from Poloniae, Warsaw, **52**: 239-303.
- NEMEC, W. & STEEL, R.J. 1984. Alluvial and coastal conglomerates: Their significant features and some comments on gravelly mass-flow deposits. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **10**: 1-31.
- NEMEC, W. 1995. The dynamics of deltaic suspension plumes. *In:* M.N. Oti & G. Postuma (eds), *Geology of deltas*. Rotterdam, A.A. Balkema: 31-93.
- NIJMAN, W. & PUIGDEFABREGAS, C. 1978. Coarse-grained point bar structure in a molassetype fluvial system, Eocene Castisent Sandstone Formation, South Pyrenean Basin. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **5**: 487-510.
- NOHVEDT, A. & Kreisa, R.D. 1987. Model for the combined-flow origin of hummocky crossstratification. *Geology*, Amsterdam, **15**: 357-361.
- NOREM, H., LOCAT, J. & SCHIELDROP, B. 1990. An approach to physics and the modeling of submarine flowslides. *Marine Geotechnology*, ., **9**: 93-111.

# 0

- OLIVEIRA, A.I. & LEONARDOS, O.H. 1943. *Geologia do Brasil*. Rio de Janeiro, Serviço de Informação Agrícola, 813p.
- OLSEN, T. 1993. Large fluvial systems: The Atane Formation, a fluvio-deltaic example from the Upper Cretaceous of Central West Greenland. *Sedimentary Geology*, ....., **85**: 457-473.
- OMRAN, E.F. & IBRAHIM H.G. 1991. Facies analysis of Nile delta continental shelf sediments of Egypt. *Netherlands Journal of Sea Research*, Amsterdam, **27**(2): 165-171.
- ORI, G.G. 1979. Barre di meandre nelle alhivioni ghiaiose del flume Reno (Bologna). *Bulletin della Societá di Geologia de Italia*, Roma, **98**: 35-54.
- ORI, G.G. 1982. Braided to meandering channel patterns in humid-region alluvial fan deposits, Reno River, Po plain (Northern Italy). *Sedimentary Geol*ogy, , **31**: 231-248.

## Ρ

PAIVA, G. & MIRANDA, J. 1937. Carvão mineral do Piauhy. *Boletim da DGM*, Rio de Janeiro, **20**: 1-16.

- PARKASH, B., AWASTHI, A.K. & GOHAIN, K. 1983. Lithofacies of the Markanda terminal fan, Kurukshetra District, Haryana, India. *International Association of Sedimentology Special Publication*, Lawrence, **6**: 337-344.
- PAZ, J.D.S. & ROSSETTI, D.F. 1999. Análise faciológica da Formação Codó (Aptiano Superior) na região de Codó, MA, leste da Bacia do Grajaú. *Boletim do 5° Simpósio sobre o Cretáceo do Brasil*, Rio Claro: 201.
- PEREIRA, E. 2000. Evolução tectono-sedimentar do intervalo ordoviciano-devoniano da Bacia do Paraná, com ênfase na sub-bacia de Alto Garças e no Paraguai Oriental. Tese de Doutoramento, Universidade de São Paulo, São Paulo, 277p.
- PETERSON, F. 1984. Fluvial sedimentation on a quivering craton: Influence of slight crustal movements on fluvial processes, Upper Jurassic Morrison Formation, Western Colorado Plateau. *Sedimentary Geology*, **, 38**: 21-50.
- PIERSON, T.C. & COSTA, J.E. 1987. Archaeologic classification of subaerial sediment-water flows. *Geological Society of America Reviews in Engineering Geology*, Washington D.C., 7: 1-12.
- PINTO, C.P. & SAD, J.H.G. 1986. Revisão da estratigrafia da Formação Pedra de Fogo, borda sudoeste da Bacia do Parnaíba. *Anais 34º Congresso Brasileiro de Geologia*, Goiânia, 1: 346-356.
- PLINT, A.G. 1983. Sandy fluvial point-bar sediments from the middle Eocene of Dorset, England. *International Association of Sedimentology Special Publication*, Lawrence, **6**: 355-368.
- PLINT, A.G., EYLES, N., EYLES, C.H. & WALKER, R.G. 1992. Control of sea level change. *In*: R.G. Walker N.P. James (eds) *Facies Models: Response to sea level change*. Ottawa, Geological Association of Canada: 15-25.
- PLUMMER, F.B. 1946. *Report on Maranhão-Piauí geosyncline*. Rio de Janeiro, Conselho Nacional do Petróleo, 70p.
- PLUMMER, F.B., PRICE, L.I. & GOMES, F.A. 1948. Estados do Maranhão e Piauí (Geologia). Conselho Nacional do Petróleo (ed.) *Relatório de 1946*. Rio de Janeiro, CNP: 87-134.
- PONTE, F.C. 1992. Origem e evolução das pequenas bacias cretácicas do interior do Nordeste do Brasil. Boletim do 2° Simpósio sobre o Cretáceo do Brasil, Rio Claro: 55-58.
- PONTE, F.C. 1994. Geologia das bacias sedimentares brasileiras. *Short Course Notes from the* 14th International Sedimentological Congress, Recife: 1-26.
- POPPE, L.J. & POAG, C.W. 1993. Mesozoic stratigraphy and paleoenvironments of the Georges Bank Basin: A correlation of exploratory and cost wells. *Marine Geology*, ....., 113: 147-162.
- POSTUMA, G. 1990. Depositional architeture and facies of river and fan deltas: A synthesis. International Association of Sedimentology Special Publication, Lawrence, **10**: 13-27.
- PRIOR, D.B., YANG, Z.S., BORNHOLD, B.D., KELLER, G.H., LIN, G.H., WISMAN JR, W.J., WRIGHT L.D. & LIN, T.C. 1986. The subaqueus delta of the modern Huanghe (Yellow River). *Geologic Marine Letter*, **6**: 67-75.
- PUIGDEFABREGAS, C. 1973. Miocene point-bar deposits in the Ebro Basin, Northern Spain. Sedimentology, Oxford, **20**: 133-144.
- PUIGDEFABREGAS, C. & VAN VLIET, A. 1978. Meandering stream deposits from the Tertiary of the Southern Pyrenees. *Canadian Society of Petroleum Geology Memoir*, Toronto, **5**: 469-485.

## Q

QUADROS, L.P. 1982. Distribuição bioestratigráfica dos Chitinozoa e Acritarchae na Bacia do Parnaíba. *Ciência-Técnica-Petróleo*, Rio de Janeiro, **12**: 3-28.

## R

RAMOS, A. & SOPEÑA, A. 1983. Gravel bars in low-sinuosity streams (Permian and Triassic, Central Spain). *International Association of Sedimentology Special Publication*, Lawrence, **6**: 301-312. RAVENNE, C. & BEGHIN, P. 1983. Apport des experiences en canal a l'interpretation sedimentologique des dépts de cones detritiques sous-marins. *Reveu de l'Institute Français du Pétrole*, Paris, **38**: 279-297.

READING, H.G. 1978. Sedimentary environments and facies. Oxford, Blackwell, 557p.

- READING, H.G. 1996. Facies. In: H.G. Reading (ed.) Sedimentary environments and facies. 2nd ed., Oxford, Blackwell: 4-19.
- READING, H.G. & ORTON, G.J. 1993. Variability of deltaic process in terms of sediment supply, with particular emphasis on grain size. *Sedimentology*, Oxford, **40**: 475-512.
- REZENDE, W.M. & PAMPLONA, H.R.P. 1970. Estudo do desenvolvimento do arco Ferrer-Urbano Santos. *Boletim Técnico da Petrobras*, Rio de Janeiro, **13**: 5-14.
- RIBEIRO, H.J.P.S. (org.) 2001. *Estratigrafia de Seqüências: fundamentos e aplicações*. São Leopoldo, Universidade do Vale do Rio dos Sinos, 428p.
- RIBEIRO, J.A.P. & MELO, F. 1994. Caracterização litofaciológica do Carbonífero da Bacia do Parnaíba na Folha Caxias (SB.23X-B). *Anais 38° Congresso Brasileiro de Geologia*, Camburiú, **3**: 232-233.
- RICCOMINI, C. ; GIANNINI, P.C.F. ; MANCINI, F. 2000. Rios e processos aluviais. In: Teixeira, W.; Toledo, M.C.M.; Fairchild, T.R.; Taioli, F.. (Org.). Decifrando a Terra. 1 ed. São Paulo, v., p. 191-214.
- ROBERTS, H.H & COLEMAN, J.M., 1996. Holocene evolution of the deltaic plain: A perspective from past to present. *Engineering Geology*, , **45**: 113-138.
- RODRIGUES, R. 1967. Estudo sedimentológico e estratigráfico dos depósitos silurianos e devonianos da Bacia do Parnaíba. Relatório Interno da Petrobras, Rio de Janeiro, 63p.
- RODRIGUES, R. & TAKAKI, T. 1989. Strontiun isotopic cronoestratigraphy in Paleozoic section. *Abstracts from the International Geochemistry Symposium*, Belém: 177.
- RODRIGUES, R. & TAKAKI, T. 1994. Estratigrafia química da Formação Codó, Cretáceo Inferior da Bacia do Parnaíba. *Boletim do 3° Simpósio sobre o Cretáceo do Brasil*, Rio Claro: 115-117.
- RODRIGUES, R.M.M 2003. Estudo faciológico em afloramentos selecionados das formações Longá e Poti (Fameniano e Tournasiano), Bacia do Parnaíba, NE do Brasil. Dissertação de Mestrado, Universidade Federal de Pernambuco, Recife, 84p.
- ROGERS, A.W. 1902. On a glacial conglomerate in the Table Mountain Series. *Transactions from South African Philosophical Society*, Cape Town, **2**: 236-242.
- ROGERS, A.W. 1904. The glacial conglomerate in the Table Mountain Series near Clanwilliam. *Transactions from South African Philosophical Society,* Cape Town, **16**: 1-8.
- ROSSETI, D.F., GOÉS, A.M. & TRUCKENBRODT, W. 2001. O Cretáceo da Bacia de São Luís-Grajaú. Belém, Museu Emílio Goeldi, 246p.
- RUST, B.R. 1972. Structure and process in a braided river. Sedimentology, Oxford, 18: 221-246.
- RUST, B.R. 1978a. A classification of alluvial channel systems. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **5**: 187-198.
- RUST, B.R. 1978b. Depositional models for braided alluvium. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **5**: 605-625.
- RUST, B.R. 1979. Facies models 2: Coarse alluvial deposits. *In*: R.G. Walker (ed.), *Facies models*. Toronto, The Canadian Society of Petroleum Geologists: 9-21.
- RUST, B.R. 1981. Sedimentation in an arid-zone anastomosing fluvial system: Cooper's Creek, Central Australia. *Journal of Sedimentary Petrology*, Tulsa, **51**: 745-755.
- RUST, B.R. & LEGUN, A.S. 1983. Modern anastomosing fluvial deposits in arid Central Australia, and a Carboniferous analogue in New Brunswick, Canada. *International Association of Sedimentology Special Publication*, Lawrence, **6**: 385-392.
- RUST, B.R. & KOSTER, E.H. 1984 Coarse alluvial deposits. *In*: R.G. Walker, *Facies models*. Toronto, The Canadian Society of Petroleum Geologists: 53-59.

#### S

SANDERS, J.E. 1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. *SEPM Special Publication*, Lawrence, **12:** 192-219.

Santos, V.H

- SANTOS, M.E.C.M. 1994. Províncias biogeográficas e variação do nível do mar: Neopaleozóico da Bacia do Parnaíba. Anais do 38° Congresso Brasileiro de Geologia, Camburiú, 3: 232-233.
- SANTOS, V.H., RODRIGUES, R.M., NEUMANN, V.H., VALENÇA, L.M.M., JESUS NETO, J.C. & SANTOS, A.J. 2001 Arquitetura deposicional em corpos aflorantes como análogos de reservatórios em subsuperfície: um estudo na seqüência flúvio-deltaica da Formação Cabeças da Bacia do Parnaíba, NE do Brasil. Anais do 1º Congresso Brasileiro de P&D em Petróleo e Gás, Natal: 86.
- SCHINDLER, E. 1993. Event-stratigraphic markers within the Kellwasser crisis near the Frasnian/Famennian boundary, Upper Devonian in Germany. *Palaeogeography, Palaeoecology, Palaeoecology, Amsterdam*, **104**: 115-125.
- SCHLUMBERGER 1998. Searching for oil and gas in the land of giants. Rio de Janeiro, Schlumberger, 149p.
- SCHOBBENHAUS, C., CAMPOS, D.A., DERZE, G.R. & ASMUS, H.E. (coords) 1981. Mapa geológico do Brasil e da área oceânica adjacente incluindo depósitos minerais, Escala 1:2.500.000. Brasília, DNPM.
- SCHUMM, S.A. 1963. A tentative classification of alluvial river channels., U.S. Geological Survey, 477p.
- SCHUMM, S.A. 1968. Speculations concerning paleohydrologic controls of terrestrial sedimentation. *Geological Society of America Bulletin*, , **79**: 1573-1588.
- SCHUMM, S.A. 1977. The fluvial system. New York, John Wiley, 338p.
- SCHUMM, S.A. 1981. Evolution and response of the fluvial system, sedimentological implications. *Society of Economic Paleontology and Mineralogy Special Publication*, Lawrence, **31**: 19-30.
- SCHWARTZ, D.E. 1978. Hydrology and current orientation analysis of a braided to meandering transition: The Red River in Oklahoma and Texas, USA. *Canadian Society of Petroleum Geologists Memoir*, Toronto, **5**: 231-256.
- SCRUTON, P.C. 1960. Delta building and the deltaic sequence. Abstracts from the Symposium on Recent Sediments, Northwest Gulf of Mexico, Tulsa: 164.
- SEILACHER, A. 1967. Bathymetry of trace-fossils. *Marine Geology*, ., 5: 413-428.
- SHANMUGAM, G. 1996. High density turbidity currents: Are they sandy debris flow? *Journal of Sedimentary Research*, **66**: 2-10.
- SHANMUGAM, G. 2000. 50 years of the turbidite paradigm (1950s-1990s): Deep-water process and facies models: A critical perspective. *Marine Geol*ogy, **17**: 285-342.
- SHELTON, J.W. & NOBLE, R.L. 1974. Depositional features of braided-meandering stream. *AAPG Bulletin*, Tulsa, **58**: 742-749.
- SHERIDAN, R.E. 1987. Pulsation tectonics as the control of long term stratigraphic cycles. *Paleoceanography*, **2**(2): 97-118.
- SHULTZ, A.W. 1984. Subaerial debris-flow deposition in the Upper Paleozoic Cutler Formation, Western Colorado. *Journal of Sedimentary Petrology*, Tulsa, **54**: 749-772.
- SIMONS, D.B. & RICHARDSON, E.V. 1961. Forms of bed roughness in alluvial channels. American Society of Civil Engineers Proceedings, **87(**3): 87-105.
- SIMONS, D.B., RICHARDSON, E.V. & NORDIN, C.F. 1965. Sedimentary structures generated by flow in alluvial channels. *Society of Economic Paleontologists and Mineralogists Special Publication*, Lawrence, **12**: 34-52.
- SINGH, I.B. & KUMAR, S. 1974. Mega- and giant ripples in the Ganga, Yamuna, and Son rivers, Uttar Pradesh, India. *Sedimentary Geology*, **12**: 53-66.
- SKENE, K.I., MULDER, T. & SYVITSKI, J.P.M. 1997. INFLO 1: A model predicting the behaviour of turbidity currents generated at river mouths. *Computer Geosciences*, **23**: 975-991.
- SLOSS, L.L. 1963. Sequences in the cratonic interior of North America. *AAPG Bulletin*, Tulsa, **74**: 93-114.
- SMALL, H. 1914. Geologia e suprimento de água subterrânea no Piauhy e parte do Ceará. Boletim da Inspetoria de Obras Contra as Secas, Rio de Janeiro, **25**: 1-80.
- SMITH, A.G. 1997. Estimates of the Earth's spin geographic axis relative to Gondwana from glacial sediments and paleomagnetism. *Earth Sciences*, Amsterdam, **42**, 161-179.
- SMITH, A.G., HURLEY, A.M. & BRIDEN, J.C. 1981. Palaeokontinentale welkarten des Phanerozoikuns. Enke, Stuttgart, 102p.

- SMITH, N.D. 1970. The braided stream depositional environment: comparison of the Platte River with some Silurian clastic rocks, North Central Appalachians. *Geological Society of America Bulletin*, **81**: 2993-3014.
- SMITH, N.D. 1971. Transverse bars and braiding in the lower Platte River, Nebraska. *Geological Society of America Bulletin*, , **82**: 3407-3420.
- SMITH, N.D. 1972. Some sedimentological aspects of planar cross-stratification in a sandy braided river. *Journal of Sedimentary Petrology*, Tulsa, **42**: 624-634.
- SMITH, N.D. 1974. Sedimentology and bar formation in the upper Kicking Horse River, a braided outwash stream. Journal of Geology, , **82**: 205-224.
- SNEH, A. 1983. Desert stream sequences in the Sinai Peninsula. *Journal of Sedimentary Petrology*, Tulsa, **53**: 1271-1280.
- SOARES, P.C., LANDIM, P.M.B. & FÚLFARO, V.J. 1974. Avaliação preliminar da evolução geotectônica das bacias intracratônicas brasileiras. Anais do 28° Congresso Brasileiro de Geologia, Porto Alegre, 4: 61-83.
- SOHN, Y.K., RHEE, C.W. & KIM, B.C. 1999. Debris flow and hyperconcentrad flood-flow deposits in an alluvial fan, Northwestern part of Cretaceous Yongdong Basin, Central Korea. *Journal of Geology*, 107: 111-132.
- SOMOZA, L., BARNOLA, A., ARASA, A., MAESTRO, A., REES, J.G. & HERNANDEZ-MOLINA, F.J. 1998. Architectural stacking patterns of the Ebro delta controlled by Holocene high-frequency eustatic fluctuation delta-lobe switching and subsidence processes. *Sedimentary Geology*, , **117**, 11-32.
- SOUTHARD, J.B. 1971. Representation of bed configurations in depth-velocity-size diagrams. *Journal of Sedimentary Petrology*, Tulsa, **41**: 903-915.
- SOUTHARD, J.B., SMITH, N.D. & KUHNLE, R.A. 1984. Chutes and lobes: Newly identified elements of braiding in shallow gravelly streams. *Canadian Society of Petroleum Geology Memoir*, Toronto, **10**: 51-59.
- SPARKS, S.J., BONNECAZE, R.T., HUPPERT, H.E., LISTER, J.R., HALLWORTH, M.A., MADER, H. & PHILLIPS, J. 1993. Sediment-laden gravity currents with reversing buoyancy. *Earth Planetary Sciences Letters*, **114**: 243-257.
- STAUB, J.R. & COHEN, A.D. 1979. The Snuggedy swamp of South Carolina: A back-barrier coalforming environment. *Journal of Sedimentary Petrology*, Tulsa, **49**: 133-144.
- STEAR, W.M. 1983. Morphological characteristics of ephemeral stream channel and overbank splay sandstone bodies in the Permian Lower Beaufort Group, Karoo Basin, South Africa. International Association of Sedimentology Special Publication, Lawrence, **6**: 405-420.
- STEEL, R.J. & GLOPPEN, T.G. 1980. Late Caledonian (Devonian) basin formation, Western Norway: Signs of strike-slip tectonics during infilling. *International Association of Sedimentology Special Publication*, Lawrence, **4**: 79-104.
- STEWART, D.J. 1983. Possible suspended-load channel deposits from the Wealden Group (Lower Cretaceous) of Southern England. *International Association of Sedimentology Special Publication*, Lawrence, **6**: 369-384.
- SUGUIO, K. & FÚLFARO, V.J. 1977. Geologia da margem ocidental da Bacia do Parnaíba (Estado do Pará). *Boletim do Instituto de Geociências da USP*, São Paulo, **8**: 31-54.
- SUNDBORG, A. 1956. The River Klarlven, a study of fluvial processes. *Geographical Annals*, **38**: 125-316.
- SWIFT, D.J.P., FIGUEREIDO JR, A.G., FREELAND, G.L., & OERTEL, G.F. 1983. Hummocky crossstratification and megaripples: A geological double standard? *Journal of Sedimentary Petrology*, Tulsa, 53: 1295-1318.
- SZATMARI, P. & FRANÇOLIN, J.B.L. 1987. Mecanismo de rifteamento da porção oriental da margem norte brasileira. *Revista Brasileira de Geociências*, São Paulo, **17**(2): 196-207.
- SZATMARI, P. & FRANÇOLIN, J.B.L., ZANOTTO, O. & WOLFF, S. 1987. Evolução tectônica da margem equatorial brasileira. *Revista Brasileira de Geociências*, São Paulo, **17**(2): 180-188.

TAPPAN, H., 1982. Extinction or survival: Selectivity and causes of Phanerozoic crises. *Geological Society of America Special Publication*, Lawrence, **190**: 265-276.

- THOMPSON, J.B. & NEWTON, C.R. 1988. Late Devonian mass extinction: Episodic climatic cooling or warning? *Canadian Society of Petroleum Geologists Memoir*, Toronto **14**: 24-29.
- TODD, S.P. 1989. Stream-driven, high-density gravelly, traction carpets: Possible deposits in the Trabeg Conglomerate Formation, SW Irland and some theoretical considerations of their origin. *Sedimentology*, Oxford, **36**: 513-530.
- TRINDADE, N.M. & SOMMER, F.W. 1966. Os megaesporos do furo SN-5, de José de Freitas, Carbonífero do Piauí. Anais 20° Congresso Brasileiro de Geologia, Rio de Janeiro, 1: 82-83.
- TRUCKENBRODT, W. 1985. Micromarcas onduladas em sedimentos paleozóicos da Bacia do Parnaíba e da região de Gurupi (NE do Estado do Pará). *Revista Brasileira de Geociências*, São Paulo, **15**(2): 103-109.
- TUNBRIDGE, I.P. 1981. Sandy high-energy flood sedimentation: Some criteria for recognition, with an example from the Devonian of SW England. *Sedimentary Geology*, , **28**: 79-96.
- TUNBRIDGE, I.P. 1984. Facies model for a sandy ephemeral stream and clay playa complex; The Middle Devonian Trentishoe Formation of North Devon, U.K. *Sedimentology*, Oxford, **31**: 697-716.

#### ۷

- VAIL, P.R. 1987. Seismic stratigraphy interpretation using sequence stratigraphy, Part 1: Seismic stratigraphy interpretation procedure. *AAPG Studies in Geology*, Tulsa, **27**: 1-9.
- VAN DER VOO, R. 1988. Paleozoic paleogeography of North America, Gondwan and intervening disolaced terranes: Comparations of paleomagnetism with paleoclimatology and biogeographical patterns. *Geological Society of America Bulletin*, , **100**: 311-324.
- VAN LOON, A.J. 1999. The meaning of 'abruptness' in the geological past. *Earth Sciences*, Amsterdam, **45**, 209-214.
- VASLET, D. 1990. Upper Ordovician glacial deposits in Saudi Arabia. *Episodes*, ., **13**(3): 147-161.
- VEEVERS, J.J. & POWELL, C.M. 1987. Late Paleozoic glacial episodes in Gondwanland reflected in transgressive-regressive depositional sequences in Euramerica. *Geological Society of America Bulletin*, **. 98**, 475-487.
- VESSELL, R.K. & DAVIES, D.K. 1981. Nonmarine sedimentation in an active fore arc basin. Society of Economic Paleontologists and Mineralogists Special Publication, Lawrence, 31: 31-45.
- VITORELLO, I. & PADILHA, A.L. 1993. Perfis de resistividade AMT: contribuição ao reconhecimento estrutural da borda sudeste da Bacia do Parnaíba. *Revista Brasileira de Geociências*, São Paulo, **23**(1): 81-91.
- VOS, R.G. & TANKARD, A.J. 1981. Braided fluvial sedimentation in the Lower Paleozoic Cape Basin, South Africa. *Sedimentary Geology*, ., **29**: 171-193.

#### W

- WALKER, R.G. (ed.) 1984. *Facies models*. 2nd ed., Toronto, The Canadian Society of Petroleum Geologists, 238p.
- WALLISER, O.H. 1990. How to define a global bio-events? *Lectures and Notes on Earth Sci*ences, , **30**: 1-3.
- WASSON, R.J. 1977. Last-glacial alluvial fan sedimentation in the Lower Derwent Valley, Tasmania. *Sedimentary Geology* **4**: 781-800.
- WILLIAMS, G.E. 1971. Flood deposits of the sand-bed ephemeral streams of central Australia. *Sedimentology*, Oxford, **17**: 1-40.
- WILLIAMS, P.F. & RUST, B.R. 1969. The sedimentology of a braided river. *Journal of Sedimentary Petrology*, Tulsa, **39**: 649-679.
- WRIGHT, L.D. 1977. Sediment transport and deposition at river mounts: A synthesis. *Geological Society of America Bulletin*, **88**: 857-868.

# Υ

YOUNG, C.G.K. 2003. Contribuição à análise estratigráfica da Formação Pimenteiras (Devoniano, Bacia do Parnaíba): caracterização de um potencial intervalo de rochasreservatório. Relatório de Graduação em Geologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 84p.

# Ζ

ZHARKOF, M.A. 1988. Devonian evaporite basins (distribution and paleogeography). *Canadian Society of Petroleum Geologists Memoir*, Toronto **14**: 415-427.

Santos, V.H

# Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo