UNIVERSIDADE FEDERAL DE VIÇOSA

ANÁLISE DOS TERMOS "AERODINÂMICO" E "BALANÇO DE ENERGIA" DA EQUAÇÃO DE PENMAN, PARA VIÇOSA, MG

José Espínola Sobrinho Magister Scientiae

VIÇOSA MINAS GERAIS – BRASIL 1983

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

JOSE ESPÍNOLA SOBRINHO

ANÁLISE DOS TERMOS "AERODINÂMICO" E "BALANÇO DE ENERGIA" DA EQUAÇÃO DE PENMAN, PARA VIÇOSA, MG

> BIBLIOTECA DEPTO, ENG. AGRICOLA

551.5 (517) E 770 1983 ex.2 Tese Apresentada à Universidade Federal de Viçosa, como Parte das Exigências do Curso de Meteorologia Agrícola, para Obtenção do Grau de Magister Scientiae.

VIÇOSA - MINAS GERAIS 1983

ANÁLISE DOS TERMOS "AERODINÂMICO" E "BALANÇO DE ENERGIA" DA EQUAÇÃO DE PENMAN, PARA VIÇOSA, MG

por

JOSE ESPÍNOLA SOBRINHO

APROVADA:

Ser. 1

There federama f.

of. Gilberto C. Sediyama (Orientador)

Prof. Rubens Leite Vianello

einer

Prof. Dirceu Teixeira Coelho

ainic lus

Prof. Adil Rainier Alves

Prof. Celestino Aspiazu

Aos meus país, Sancho e Severina, que me enveredaram pelos caminhos da sabedoria. A minha esposa, Magale, e aos meus filhos, Ana Luzia e Josẽ Henrique, pela compreensão e pelo apoio.

i

AGRADECIMENTOS

A Deus, primeiramente, por sempre me ter dado força e estímulo para desenvolver e concluir este trabalho.

Ao Departamento de Engenharia Agrícola da Escola Superior de Agricultura de Mossoró - ESAM, pela permissão para realizar o curso de mestrado na U.F.V.

À Universidade Federal de Viçosa, pelo apoio e ensinamentos.

À Financiadora de Estudos e Projetos - FINEP, pela contribuição parcial e à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, pelo apoio financeiro durante todo o curso.

Ao Professor Gilberto C. Sediyama, pela orientação segura, séria, amiga, compreensiva e honesta, que muito contribuiu para este trabalho.

Aos Professores Rubens Leite Vianello, Dirceu Teixei ra Coelho, Hélio Alves Vieira, Adil Rainier Alves e Celestino Aspiazu, pela amizade sincera, pelo apoio constante e pelas valiosas sugestões durante o curso de mestrado, e no decorrer deste trabalho.

Aos Chefes do Departamento de Engenharia Agrícola da U.F.V., Professores Tetuo Hara e Salassier Bernardo, pela atenção que sempre me dispensaram.

Aos Professores Alcides Reis Condé e Paulo Roberto Cecon, pela amizade sincera.

ii

Aos meus pais, pela educação que me deram.

À minha esposa, Magale M. L. Espínola, por sua ajuda, apoio e compreensão durante todas as fases do curso e deste trabalho.

Aos amigos Nilson de Sousa Sathler e Maria das Graças B. Sathler, pela ajuda nos primeiros passos para este trabalho.

A Maria Nazaré Molica de Andrade, pelo serviço datilográfico.

Aos colegas do curso de mestrado em Meteorologia Agrícola, pela compreensão, ajuda, incentivos e pelo convívio sadio no decorrer do curso.

Finalmente, a todos que, direta ou indiretamente, contribuíram para a realização e conclusão deste trabalho.

BIOGRAFIA DO AUTOR

José Espinola Sobrinho, filho de Francisco Araújo da Silva e Severina Espínola de Araújo, nasceu em Acari, Estado do Rio Grande do Norte, no dia 14 de março de 1954.

Em dezembro de 1977, graduou-se em Engenharia Agron<u>ô</u> mica, na Escola Superior de Agricultura de Mossoró - ESAM.

Em janeiro de 1978, foi contratado pela Escola Superior de Agricultura de Mossoró, para exercer a função de Auxiliar de Ensino junto ao Departamento de Fitotecnia, sendo posteriormente, remanejado para o Departamento de Engenharia Agrícola, atualmente como Professor Assistente.

Em janeiro de 1981, iniciou o Curso de Pós-Graduação em Meteorologia Agrícola, a nível de Mestrado, na Universid<u>a</u> de Federal de Viçosa, MG.

CONTEUDO

Página

LISTA DE QUADROS	vii
LISTA DE FIGURAS	ix
LISTA DE SÍMBOLOS	xiv
1. INTRODUÇÃO	1
2. REVISÃO DE LITERATURA	5
2.1. Equação Geral do Escoamento Turbulento	5
2.2. Estimativa dos Coeficientes de Difusão de	
Calor, Massa e Momentum	9
2.3. Coeficientes de Transferência na Forma Inte	
grada	10
2.4. Equação de Penman	13
2.5. Estimativa da Perda Efetiva de Radiação pe-	
la Superfície Terrestre (Q _ℓ)	36
3. MATERIAL E METODOS	40
3.1. Escolha da Área	40
3.2. Estabelecimento das Fases do Experimento	40
3.3. Estimativa do Poder Evaporante do Ar	41
3.4. Estimativa do Balanço de Energia	42
3.5. Estimativa da Evapotranspiração Potencial .	43
3.6. Determinação do Poder Evaporante do Ar	46
3.7. Determinação da Evaporação da Água Livremen	
te Exposta à Atmosfera	46

Página

	3.8. Análise das Equações de Estimativas do Sal-	
	do de Radiação de Ondas Longas (Q _p)	49
	3.9. Análise dos Métodos de Estimativa do Poder	
	Evaporante do Ar	49
	3.10. Análise da Relação entre os Termos "Aerod <u>i</u>	
	nâmico e "Balanço de Energia" da Equação	
5. 1.020	de Penman	50
4.	RESULTADOS E DISCUSSÃO	52
5.	RESUMO E CONCLUSÕES	77
6.	LITERATURA CITADA	80
A PÍ	ÊNDICE	83

· vi

LISTA DE QUADROS

Quadros

Página

1	Definição dos termos das equações de Ángs-	
	tröm, Brunt, McDonald e Swinbank, para es-	
	timativa do saldo de radiação de ondas lo <u>n</u>	
	gas (Q _L)	50
2	Definição dos métodos para estimativa do	
	poder evaporante do ar da equação de Pen-	
	man	51
3	Estimativas dos parâmetros "a" e "b" das	4 S
	equações lineares de regressão entre os va	
1	lores diários de E, e PP, PA, EPA e TCA,	
	para Viçosa, MG	53
4	Estimativas dos parâmetros "a" e "b" das	
	equações lineares de regressão entre os va	
	lores diários de PP, TCA e PA e EPA, para	
	Viçosa, MG	60

Página

66

84

Quadros

5

Estimativas dos parâmetros "a₀, b₀ e c₀" da equação de Angström, "a₁ e b₁" da equação de Brunt, "a₂ e b₂" da equação de McD<u>o</u> nald e "a₃ e b₃" da equação de Swinbank, nas fases I e II, para cálculo do saldo de radiação de ondas longas (Q_L), em Viçosa, MG

- Valores diários dos dados meteorológicos coletados em Viçosa, MG, nos períodos de 19 a 30 de junho (fase I) e 24 de agosto a 10 de setembro (fase II) de 1982
- 2A Valores diários dos dados meteorológicos calculados para Viçosa, MG, a partir dos dados observados, nos períodos de 19 a 30 de junho (fase I) e 24 de agosto a 10 de setembro (fase II) de 1982
- 3A Valores da tangente à curva de pressão de saturação de vapores (Δ) para as temperatu ras de 5 a 45°C

85

LISTA DE FIGURAS

Figuras

2

Página

•

1	Representação gráfica da relação entre	
	pressão de vapor, temperatura e componen-	
	tes das fórmulas de evaporação, segundo	
	Monteith e Tanner, JENSEN (7)	21
2	Representação esquemática do balanço de	
	energia completo, numa superfície vegeta-	
	da, TANNER (20)	28
3	Piranômetro de Lambrecht, nº 2318, e um r <u>e</u>	
	gistrador H & B, usados para medir a radi <u>a</u>	
	$cao global (Q_g)$	42
4	Registro diário da radiação global inciden	
	te (Q_{σ}) , do saldo de radiação à superfície	
	(Rn) e da radiação global refletida (Q _r),	
	para o dia 20/06/82, em Viçosa, MG	44
5	Saldo radiômetro, modelo TCN 188-01 e	
	"Speedomax H", usados na medida e registro	
	do saldo de radiação	45

Figuras

Página

x

6	Evaporímetro de Piche adaptado para medida do poder evaporante do ar (As dimensões são	
	em mm)	47
7	Evaporímetro de prato adaptado para medida	*
	do poder evaporante do ar (As dimensões são	
	em mm)	48
8	Diagramas de dispersao entre as relações	
	dos valores medidos do poder evaporante do	
	a da equação de Penman (L _a) e da evapora-	
	em torno das linhas de regressão	54
9	Diagramas de dispersão entre as relações	
	dos valores medidos do poder evaporante do	
	ar da equação de Penman (E _a) e da evapora-	
	ção no evaporímetro de Piche adaptado (PA),	
	em torno das linhas de regressão	55
10	Diagramas de dispersão entre as relações	
	dos valores medidos do poder evaporante do	
	ar da equação de Penman (E _a) e da evapora-	
	ção no evaporímetro de prato adaptado	54
	(EPA), em torno das linhas de regressao	56
11	Diagramas de dispersão entre as relações	
	dos valores medidos do poder evaporante do	
	ar da equação de Penman (E _a) e da evapora-	
	ção no tanque "classe A" padrão (TCA), em	
	torno das linhas de regressão	57

Figuras

12

Variações dos valores acumulados do poder evaporante do ar para a fase I, medidos no evaporímetro de Piche padrão, instalado no interior do abrigo meteorológico, e no eva porímetro de Piche adaptado, instalado fora do abrigo meteorológico, em condições de

sombreamento

- 13
- Variações dos valores acumulados do poder evaporante do ar para a fase II, medidos no evaporímetro de Piche padrão, instalado no interior do abrigo meteorológico, e no evaporímetro de Piche adaptado, instalado fora do abrigo meteorológico, em condições de sombreamento
- 14
- Diagramas de dispersão entre as relações dos valores da evaporação medidos no evapo rímetro de Piche padrão (PP) e no evaporímetro de Piche adaptado (PA), em torno das linhas de regressão
- 15

Diagramas de dispersão entre as relações dos valores da evaporação medidos no evapo rímetro de Piche padrão (PP) e no evaporímetro de prato adaptado (EPA), em torno das linhas de regressão

16 Diagramas de dispersão entre as relações dos valores da evaporação medidos no tanque "classe A" padrão (TCA) e no evaporíme tro de Piche adaptado (PA), em torno das linhas de regressão Página

58

59

61

62

17

Diagramas de dispersão entre as relações dos valores da evaporação medidos no tanque "classe A" padrão (TCA) e no evaporím<u>e</u> tro de prato adaptado (EPA), em torno das linhas de regressão

18

20

21

- Diagramas de dispersão entre as relações YA e XA, em torno das linhas de regressão, em que YA = $\frac{Q_{\ell}}{\varepsilon \sigma T_4^4}$ e XA = e (pressão de vapor atual em mb) são as variáveis da equação de Angström, para estimativa do saldo de radiação de ondas longas (Q_l)
- 19 Diagramas de dispersão das relações YB e XB em torno das linhas de regressão, em que YB = $1 - \frac{Q_{\ell}}{\varepsilon \sigma T_{4}^{+}}$ e XB = \sqrt{e} são as variáveis da equação de Brunt, para estimativa do saldo de radiação de ondas longas (Q_{ℓ}) .
 - Diagramas de dispersão entre as relações YM e XM, em torno das linhas de regressão, em que YM = $\frac{Q_{\ell}}{\varepsilon}$ e XM = UR são as variáveis da equação de McDonald para estimativa do saldo de radiação de ondas longas (Q_{ℓ}) ...
 - Diagramas de dispersão entre as relações YS e XS, em torno das linhas de regressão, em que YS = $\frac{Q_{\ell}}{\varepsilon}$ e XS = σT_a^4 são as variáveis da equação de Swinbank para estimativa do saldo de radiação de ondas longas (Q_{ℓ}) ...

68

69

Página

64

67

Figuras

- 22 Diagrama de dispersão entre as relações YB₂ e XB₂, em torno da linha de regressão, em que YB₂ = $1 - \frac{Q_{\ell}}{\varepsilon \sigma T^4}$ e XB₂ = \sqrt{e} são as vari<u>ã</u> veis da equação de Brunt para estimativa do saldo de radiação de ondas longas (Q_ℓ), sem correção para nebulosidade, para os dias da fase II, em que a razão de insolação foi maior ou igual a 0,78 (n/N \geq 0,78)
- 23 Curso diário dos termos do balanço de ener gia e aerodinâmico da equação de Penman, em Viçosa, MG
- Função discriminante (1:1) para os pontos de dispersão entre as relações dos valores de evapotranspiração potencial, obtidos pe la equação de Penman, com todos os parâmetros medidos (ETP_m) e com os parâmetros E_a e Q_p estimados (ETP_e), para Viçosa, MG ...
- 25 Variações do saldo de radiação à superficie (Rn), em milímetro de evaporação equivalente, da evaporação medida no tanque "classe A" padrão (TCA) e da evapotranspiração potencial segundo Penman, determinada com todos os parâmetros medidos (ETP_m).

75

xiii

Página

70

73

74

LISTA DE SÍMBOLOS

a, b	-	Constantes empíricas da fórmula de Angs
		tröm para estimativa da radiação global
		à superfície
a_0, b_0, c_0	-	Constantes empíricas da fórmula de Angs
	•	tröm para estimativa do saldo de radia-
		ção de ondas longas
a1, b1	-	Constantes empíricas da fórmula de Brunt
a ₂ , b ₂	-	Constantes empíricas da fórmula de
		MacDonald
a3, b3	-	Constantes empíricas da fórmula de
		Swinbank
c _p	-	Calor específico do ar seco a pressão
P		contante $(J.kg^{-1}.^{O}C^{-1})$
C	-	Concentração de um escalar qualquer
Co	-	Concentração de um escalar qualquer à
		superfície
Cz	-	Concentração de um escalar qualquer à
·		altura z
Cd	-	Coeficiente de arrasto para a variação
		de momentum
C _h	-	Coeficiente de arrasto para a variação
		de calor sensivel
Cw	-	Coeficiente de arrasto para a variação
		de vapor de água

xiv

D	-	Depressão psicrométrica à altura z (°C)
Do	-	Depressão psicrométrica à superfície
		(°C)
e	-	Energia cinética média turbulenta por
		unidade de massa (m ² .s ⁻²)
е	-	Pressão de vapor de água (Pa)
e ₀	-	Pressão de vapor de água à superfície
		(Pa)
ez	-	Pressão de vapor de água à altura ż (Pa)
e ⁰	-	Pressão de saturação do vapor de água
		(Pa)
e ⁰ ₀		Pressão de saturação do vapor de água à
		superfície (Pa)
e ⁰ ₇	-	Pressão de saturação do vapor de água à
		altura z (Pa)
e	-	Pressão de saturação do vapor de água na
3		cavidade estomatal (Pa)
ew	-	Pressão de saturação do vapor de água à
		temperatura do bulbo úmido (Pa)
e,0	14	Pressão de saturação do vapor de água à
WO		temperatura do bulbo úmido à superfície
		(Pa)
e ⁰	-	Pressão de saturação do vapor de água à
WZ		temperatura do bulbo úmido à altura z
		(Pa)
E, E*, E*, E*, E*	-	Taxa de evaporação (mm.dia ⁻¹)
E	-	Poder evaporante do ar (mm.dia ⁻¹)
a E	-	Evaporação potencial (mm.dia ⁻¹)
P E	-	Evaporação potencial de equilíbrio
pe		(mm.dia ⁻¹)
ETP	-	Taxa de evapotranspiração potencial
		(mm.dia ⁻¹)
f	-	Fator de conversão
F	-	Forças externas por unidade de massa
		(m.s ⁻²)
FC	-	Transferência de qualquer escalar

g	- Aceleração local da gravidade (m.s ⁻²)
G	- Fluxo de calor para o interior do solo
	(W.m ⁻²)
h	- Coeficiente de transferência para o ca-
	lor sensivel (m.s ⁻¹)
h _c	- Coeficiente de transferência para um es
	calar qualquer (m.s ⁻¹)
h_	- Coeficiente de transferência para o mo-
	mentum (m.s ⁻¹)
h.	- Coeficiente de transferência para o va-
W	por de água (m, s^{-1})
Н	- Fluxo vertical turbulento de calor sen-
	sivel (W, m^{-2})
H'	- Fluxo de calor sensível associado à ad-
	veccão de massa (W_m^{-2})
н.	- Tensor fluxo de calor
	- Relação entre o termo do balanço de
	energia e o termo aerodinâmico da equa-
	cão de Penman
T.	- Contra radiação em condições de céu cla
	r_{0} (W m ⁻²)
TA	- Energia total em ondas longas emitida
	= Energia total em ondas longas, emitida pela superfície terrestre $(W m^{-2})$
TL	- Contra radiação da atmosfera (W, m^{-2})
1 v k	- Constante de von Karman (0.40)
x V	- Constante de difusividade turbulenta
ⁿ h	do calor consistel (m^2, c^{-1})
V	- Coeficiente de difusividade turbulenta
m	do momentum (m^2, q^{-1})
V	- Constante de valer iguel e 1/7
K 0	- Constante de valor igual a $1/7$
^к Т к	- Configiento de difusividado turbulento
Ŵ	- coefficience de difusividade curbulenta
V	ce vapor de agua (m ⁻ . s ⁻)
^R ZZ	- coefficiente de difusão turbulenta para
	um escalar qualquer (m ² , S ⁻¹)
-	

LE	- Fluxo vertical turbulento de calor la-
	tente (W.m ⁻²)
LE'	- Fluxo de calor latente associado à ad-
	vecção de massa (W.m ⁻²)
M	- Fator de comprimento do dia
n	- Período de brilho solar (insolação) (h)
N	- Duração ou comprimento do dia (h)
P	- Pressão atmosférica (Pa)
P' .	- Flutuação da pressão atmosférica em to <u>r</u>
	no da média (Pa)
q	- Umidade específica (kg/kg)
ġ ·	- Taxa de geração de energia por unidade
	de massa (W.m ⁻³)
q ₀	• Umidade específica à superfície (kg/kg)
q _z	- Umidade específica à altura z (kg/kg)
q° ·	- Umidade específica de saturação (kg/kg)
QF ·	- Armazenamento de energia devido à foto <u>s</u>
	sintese (W.m ⁻²)
Q _g	- Radiação global à superfície (W.m ⁻²)
Q _L	· Perda efetiva de radiação pela superfí-
	cie $(W.m^{-2})$
Qo ·	· Radiação solar incidente no topo da at-
	mosfera (W.m ⁻²)
QV ·	- Armazenamento de calor (sensível e la-
	tente) (W.m ⁻²)
r _a ·	• Tempo necessário para troca de calor
	(dia)
r _{ah}	Resistência à difusão de calor sensível
	(s.m ⁻¹)
r _{aw} ·	• Resistência à difusão de vapor de água
	(s.m ⁻¹)
r _s	• Resistência média associada à contribui
A CALL ST AND	ção dos estômatos (s.m ⁻¹)
R ·	· Constante termodinâmica do ar seco
	$(J.kg^{-1}.^{O}C^{-1})$
R _i .	• Saldo fluxo de energia radiante na dir <u>e</u>
	ção j (W.m ⁻²)

xvii

Rn	-	Saldo de radiação na superficie do solo
		(W.m ⁻²)
S	-	Fator de estômato
t	-	Tempo (h)
T	-	Temperatura ([°] C)
T'	-	Flutuação da temperatura em torno da mé
		dia (^o C)
T	-	Temperatura absoluta do ar (K)
To	-	Temperatura à superfície (⁰ C)
T_	-	Temperatura à altura z ($^{\circ}$ C)
T.,	-	Temperatura do bulbo úmido (^O C)
W T	-	Temperatura do bulbo úmido à superfície
Wo		(°C)
T _{w7}	-	Temperatura do bulbo úmido à altura z
W 2		(°C)
u, v, w	-	Componentes locais de velocidade média
		do vento ao longo dos eixos coordenados
		$(m.s^{-1})$
u', v', w'	-	Flutuações locais de velocidade do ven-
	2	to em torno da média (m s ⁻¹)
		to cm corno da media (m.s.)
u.*	-	Velocidade de fricção $(m.s^{-1})$
u. u.2	-	Velocidade de fricção (m.s ⁻¹) Velocidade do vento a 2 m de altura
u* u2	-	Velocidade de fricção $(m.s^{-1})$ Velocidade do vento a 2 m de altura $(m.s^{-1})$
u* u2 u10		Velocidade de fricção (m.s ⁻¹) Velocidade do vento a 2 m de altura (m.s ⁻¹) Velocidade do vento a 10 m de altura
u* u2 u10		Velocidade de fricção $(m.s^{-1})$ Velocidade do vento a 2 m de altura $(m.s^{-1})$ Velocidade do vento a 10 m de altura $(m.s^{-1})$
u* u2 u10 u;, u;		Velocidade de fricção (m.s ⁻¹) Velocidade do vento a 2 m de altura (m.s ⁻¹) Velocidade do vento a 10 m de altura (m.s ⁻¹) Componentes da velocidade do vento
u _* u ₂ u ₁₀ u _i , u _j U		Velocidade de fricção (m.s ⁻¹) Velocidade do vento a 2 m de altura (m.s ⁻¹) Velocidade do vento a 10 m de altura (m.s ⁻¹) Componentes da velocidade do vento Fator de correção para dias nublados
u _* u ₂ u ₁₀ u _i , u _j U UR	1 1 1 1 1	Velocidade de fricção (m.s ⁻¹) Velocidade do vento a 2 m de altura (m.s ⁻¹) Velocidade do vento a 10 m de altura (m.s ⁻¹) Componentes da velocidade do vento Fator de correção para dias nublados Umidade relativa (%)
u _* u ₂ u ₁₀ u _i , u _j U UR V	1 1 1 1 1 1 1	Velocidade de fricção (m.s ⁻¹) Velocidade do vento a 2 m de altura (m.s ⁻¹) Velocidade do vento a 10 m de altura (m.s ⁻¹) Componentes da velocidade do vento Fator de correção para dias nublados Umidade relativa (%) Velocidade do vento na atmosfera livre
u _* u ₂ u ₁₀ u _i , u _j U UR V		Velocidade de fricção (m.s ⁻¹) Velocidade do vento a 2 m de altura (m.s ⁻¹) Velocidade do vento a 10 m de altura (m.s ⁻¹) Componentes da velocidade do vento Fator de correção para dias nublados Umidade relativa (%) Velocidade do vento na atmosfera livre (m.s ⁻¹)
u _* u ₂ u ₁₀ u _i , u _j U UR V V		Velocidade de fricção $(m.s^{-1})$ Velocidade do vento a 2 m de altura $(m.s^{-1})$ Velocidade do vento a 10 m de altura $(m.s^{-1})$ Componentes da velocidade do vento Fator de correção para dias nublados Umidade relativa (%) Velocidade do vento na atmosfera livre $(m.s^{-1})$ Velocidade do vento $(m.s^{-1})$
u _* u ₂ u ₁₀ u _i , u _j U UR V V X, y, z		Velocidade de fricção (m.s ⁻¹) Velocidade do vento a 2 m de altura (m.s ⁻¹) Velocidade do vento a 10 m de altura (m.s ⁻¹) Componentes da velocidade do vento Fator de correção para dias nublados Umidade relativa (%) Velocidade do vento na atmosfera livre (m.s ⁻¹) Velocidade do vento (m.s ⁻¹) Coordenadas cartesianas
u_{*} u_{2} u_{10} u_{i}, u_{j} U UR \vec{v} \vec{v} \vec{v} x, y, z x_{i}, x_{i}		Velocidade de fricção (m.s ⁻¹) Velocidade do vento a 2 m de altura (m.s ⁻¹) Velocidade do vento a 10 m de altura (m.s ⁻¹) Componentes da velocidade do vento Fator de correção para dias nublados Umidade relativa (%) Velocidade do vento na atmosfera livre (m.s ⁻¹) Velocidade do vento (m.s ⁻¹) Coordenadas cartesianas Coordenadas espaciais
u_{\star} u_{2} u_{10} u_{i}, u_{j} U UR \vec{v} \vec{v} \vec{v} x, y, z x_{i}, x_{j} W_{2}		Velocidade de fricção (m.s ⁻¹) Velocidade do vento a 2 m de altura (m.s ⁻¹) Velocidade do vento a 10 m de altura (m.s ⁻¹) Componentes da velocidade do vento Fator de correção para dias nublados Umidade relativa (%) Velocidade do vento na atmosfera livre (m.s ⁻¹) Velocidade do vento (m.s ⁻¹) Coordenadas cartesianas Coordenadas espaciais Vapor de água precipitável
u_{\star} u_{2} u_{10} u_{i}, u_{j} U UR \vec{v} \vec{v} \vec{v} x, y, z x_{i}, x_{j} W_{a} Z_{0}		Velocidade de fricção (m.s ⁻¹) Velocidade do vento a 2 m de altura (m.s ⁻¹) Velocidade do vento a 10 m de altura (m.s ⁻¹) Componentes da velocidade do vento Fator de correção para dias nublados Umidade relativa (%) Velocidade do vento na atmosfera livre (m.s ⁻¹) Velocidade do vento (m.s ⁻¹) Coordenadas cartesianas Coordenadas espaciais Vapor de água precipitável Parâmetro de rugosidade (m)
u_{*} u_{2} u_{10} u_{i}, u_{j} U UR \vec{v} \vec{v} x, y, z x_{i}, x_{j} W_{a} z		Velocidade de fricção (m.s ⁻¹) Velocidade do vento a 2 m de altura (m.s ⁻¹) Velocidade do vento a 10 m de altura (m.s ⁻¹) Componentes da velocidade do vento Fator de correção para dias nublados Umidade relativa (%) Velocidade do vento na atmosfera livre (m.s ⁻¹) Velocidade do vento (m.s ⁻¹) Coordenadas cartesianas Coordenadas espaciais Vapor de água precipitável Parâmetro de rugosidade (m) Altura qualquer acima da superfície (m)
u_{*} u_{2} u_{10} u_{i}, u_{j} U V V V V x, y, z x_{i}, x_{j} W_{a} Z_{0} Z Z_{2}		Velocidade de fricção (m.s ⁻¹) Velocidade do vento a 2 m de altura (m.s ⁻¹) Velocidade do vento a 10 m de altura (m.s ⁻¹) Componentes da velocidade do vento Fator de correção para dias nublados Umidade relativa (%) Velocidade do vento na atmosfera livre (m.s ⁻¹) Velocidade do vento (m.s ⁻¹) Coordenadas cartesianas Coordenadas espaciais Vapor de água precipitável Parâmetro de rugosidade (m) Altura qualquer acima da superfície (m)

Z10 -	Altura a 10 m da superfície (m)
α -	Albedo
γ –	Constante psicrométrica (Pa. ^O C ⁻¹)
β –	Razão de Bowen
ε -	Emissividade
ε _{iik} -	Tensor de 3. ^a ordem
Δ -	Tangente à curva de saturação do vapor
	de água (Pa. ^o C ⁻¹)
Δ' -	Tangente à curva de saturação do vapor
	de água à temperatura média entre o bul-
	bo seco e úmido (Pa. ⁰ C ⁻¹)
p –	Massa específica do ar (kg.m ⁻³)
o' -	Flutuação da massa específica em torno
	da média (kg.m ⁻³)
P.e -	Massa específica do ar à superfície
	(kg.m ⁻³)
σ -	Constante de Stefan-Boltzmann (W.m ⁻² .K ⁻⁴)
θ –	Temperatura potencial (K)
θ'	Flutuação da temperatura potencial em
1	torno da média (K)
τ, Έλληνα τη Έλλη -	Fluxo vertical de momentum (kg.m ² .s ⁻²)
Ω –	Velocidade angular da Terra (rad.s ⁻¹)
^t ii -	Tensor tensão
ň -	Vetor unitário paralelo ao eixo de rota
	ção da Terra
δ _{ii} -	Tensor de 2. ^a ordem (Delta de Kronecker)
	Viscosidade cinemática (m ² .s ⁻¹)
▽	Operador vetorial $(\vec{i} \ \frac{\partial}{\partial x} + \vec{j} \ \frac{\partial}{\partial y} + \vec{k} \ \frac{\partial}{\partial z})$
∀ ² -	Operador Laplaciano $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)$

EXTRATO

ESPÍNOLA SOBRINHO, José. M.S., Universidade Federal de Viçosa, julho de 1983. Análise dos termos "aerodinâmico" e "balanço de energia" da equação de Penman, para Viçosa, MG.
Professor Orientador: Gilberto C. Sediyama. Professores Conselheiros: Rubens Leite Vianello, Dirceu Teixeira Coelho e Hélio Alves Vieira.

Esta pesquisa foi desenvolvida em área adjacente ao setor de Armazenamento e Processamento de Produtos Vegetais do Departamento de Engenharia Agrícola da Universidade Federal de Viçosa, com a finalidade de analisar o termo aerodin<u>â</u> mico e o termo balanço de energia, da equação de Penman, para as duas fases (19/06/82 a 30/06/82, fase I e 24/08/82 a 10/09/82, fase II).

Três tipos de evaporímetros (Piche, Piche adaptado e Prato adaptado) e o tanque "classe A" foram testados na determinação do poder evaporante do ar. Os valores de evaporação medidos foram comparados com os valores determinados pela equação proposta por Penman, usando-se o método estatísti co dos mínimos quadrados. A melhor correlação encontrada foi para o evaporímetro de Piche adaptado, a partir da qual foi proposta uma equação linear para ambas as fases.

Na avaliação do termo do balanço de energia, testa-

ram-se quatro equações empíricas para estimativa do saldo de radiação de ondas longas e ao mesmo tempo comparou-se cada uma, em particular, com os valores do saldo de radiação de ondas longas medidos no campo. A equação proposta foi a de Brunt, a qual foi usada neste trabalho com as constantes empíricas determinadas para cada fase individualmente.

Com a finalidade de se conhecer, quantitativamente, a importância dos termos da equação, determinou-se a relação entre o termo do balanço de energia e o termo aerodinâmico, constatando-se uma total superioridade do primeiro.

Finalmente, foi determinada a evapotranspiração potencial, segundo Penman, com todos os parâmetros medidos e concomitantemente com os parâmetros (poder evaporante do ar e saldo de radiação de ondas longas) estimados pelas equações propostas neste trabalho. A análise discriminante para a função 1:1 evidenciou pequenos desvios dos pontos observados, principalmente para ETP inferior a 3 mm.

1. INTRODUÇÃO

Um dos grandes problemas com que se defrontam os téc nicos, que trabalham com as relações Solo-Água-Planta, é a contabilização da água perdida por evaporação no balanço hídrico do solo. A taxa de água perdida pela superfície, por evaporação e/ou transpiração, é de grande importância na determinação das necessidades hídricas de qualquer região (16). Existem também ocasiões em que o conhecimento da taxa de eva poração, através de superfícies vegetadas ou não, é requerido em circunstância na qual, não sendo possível a medição d<u>i</u> reta, esta tenha que ser estimada (8).

Evaporação é o processo natural pelo qual a água pas sa para a atmosfera na forma de vapor, a uma temperatura inferior à de ebulição (21). Transpiração é a perda de água pa ra a atmosfera na forma de vapor através dos estômatos e cutículas das plantas (3). Fisicamente, ambos os processos são idênticos, porque envolvem mudança de fase da água, da forma líquida para a de vapor e o transporte para a atmosfera. Eva potranspiração refere-se ao total da perda de água para a atmosfera, da superfície do solo e das plantas. A mudança da fase líquida para a fase de vapor de um grama de água consome grande quantidade de energia, em torno de 586 calorias à temperatura de 20°C (10). Como o vapor é transportado na atmosfera, podendo condensar-se e precipitar-se à grande distância da sua origem, a mudança de fase líquido-vapor ou vi

ce-versa, representa o mecanismo mais importante para a redistribuição da energia em todo o globo (3).

A água na forma de vapor, é transferida de uma super fície molhada para a atmosfera através do processo de troca turbulenta. A superfície molhada pode ser a superfície da agua livremente exposta ou uma superfície tal como a formada pelos estômatos das folhas. O tamanho e o número de estômatos variam de acordo com a espécie vegetal, mas todas as plantas, pela ação das células-guardas, que entram em ação quando diminui a turgescência da folha, têm a habilidade de variar o tamanho de seus estômatos, e, consequentemente, а taxa de evaporação. A evaporação no sistema cultura-solo com preende a evaporação no solo e a transpiração da planta atra vēs das folhas. Esse processo, chamado evapotranspiração, é uma função de energia disponível para vaporizar a água, asso ciada à taxa de remoção do vapor da superfície da folha (24).

Os dados de evaporação são parâmetros de grande importância no estudo da economia de água em reservatórios expostos, na secagem natural de produtos, além de ser elemento de grande influência ecológica (21). Informações quantitativas de evaporação e transpiração são necessárias nos vários campos científicos que tratam dos numerosos problemas do manejo de água. Dados confiáveis de evaporação são exigidos pa ra o planejamento, a construção e a operação de reservatórios e de sistemas de irrigação e drenagem (3). O conhecimen to da intensidade do consumo de água pela cultura e das características de sua retenção pelo solo é fundamental para se projetar o sistema de abastecimento e planejar a irrigação. Conhecendo-se o consumo de água pela cultura, considerando-se a chuva e as perdas operacionais, torna-se possível dimensionar o canal, a tubulação, o armazenamento e a capaci dade de bombeamento do sistema de irrigação (24). Ainda com relação à irrigação, uma grande economia de água pode ser ob tida evitando parte da evaporação dos canais de irrigação e, principalmente, não permitindo que seja ministrada ao solo em quantidade inferior à requerida pelas culturas irrigadas. Tal procedimento tem a conveniência adicional de evitar que

os terrenos se salinizem, o que constituiria um irreparável prejuízo para a região. Caracteriza-se assim, a importância da condução de pesquisas com o objetivo de quantificar, com a máxima fidelidade possível, a evapotranspiração em cultivos irrigados (18).

Além da finalidade de orientar os agricultores quanto às exigências hídricas das culturas, tais pesquisas são igualmente necessárias à realização de estudos climáticos e meteorológicos, uma vez que a evapotranspiração implica na transferência de água e de calor para a atmosfera (18).

Para se estimar a evaporação pode-se dizer que, de acordo com seus princípios básicos, existem dois tipos de fórmulas (8):

- As formulas empíricas são as mais simples e sumarizam os valores de evaporação em termos de correlação estatis tica com temperatura do ar ou deficit de saturação, por exem plo. Infelizmente tais conexões empíricas entre evaporação e clima, em locais e ocasiões particulares, não são necessaria mente aplicáveis para qualquer local e tempo, e isso mostra a ineficiência das diferentes formulas de evaporação de uso corrente, tais como a de Thornthwaite.

- As fórmulas físicas são consideradas melhores e se baseiam no entendimento da física do processo de evaporação. O melhor exemplo dessas equações é a de Penman, desenvolvida em 1948 e modificada por McIlroy e Angus em 1964, citados por LINACRE (8). Essas equações são superiores ãs empíricas em precisão e exatidão.

É provável que a equação de Penman seja a mais usada universalmente na estimativa tanto da evaporação, quanto da evapotranspiração. Sendo uma equação baseada nos princípios físicos da evaporação, produz estimativas de elevado grau de confiabilidade.

A dificuldade na utilização da fórmula de Penman e de outras deste tipo consiste na necessidade de se conhecerem valores de quatro elementos do clima: saldo de radiação, umidade do ar, velocidade do vento e temperatura, nem sempre disponíveis na prática (8). Desses quatro elementos necessários na expressão, temperatura e umidade são observados comu mente nas estações meteorológicas. O saldo de radiação, que geralmente não é medido, pode ser estimado através de fórmu las empíricas. A velocidade do vento a dois metros de altura não é medida na maioria das estações meteorológicas, sendo essa uma das dificuldades na aplicação dessa fórmula (3).

Está evidenciado portanto, que o problema crucial, no uso da equação de Penman, está na disponibilidade dos parâmetros de entrada exigidos pela formulação original. Em conseqüência disso, utilizam-se versões aproximadas, as quais induzem a erros nos cálculos. Tentando superar tais dificuldades, para Viçosa, MG, o presente trabalho visa a:

a. determinar a evapotranspiração potencial, conforme a equação de Penman de 1956, usando todos os parâmetros medidos na área de armazenamento do DEA da UFV;

 b. testar equações empíricas do balanço de ondas lon gas, com valores medidos e, conseqüentemente, apresentar a melhor equação para estimar o saldo de radiação;

c. comparar o desempenho de dois evaporímetros modificados com o tanque classe A e com o evaporímetro de Piche, testando-os como representantes do termo aerodinâmico da fo<u>r</u> mulação de Penman;

 d. determinar as relações entre os termos "aerodinâmico" e "balanço de energia";

e. avaliar a equação de Penman para a estimativa da evapotranspiração, a partir da melhor equação para o balanço de energia e do evaporímetro que melhor represente o poder evaporante do ar,

2. REVISÃO DE LITERATURA

2.1. Equação Geral do Escoamento Turbulento

O conjunto de equações que governa o escoamento de gases e líquidos consiste basicamente nas seguintes equações: Equação de Navier-Stokes (expressando a conservação de momen tum), Equação da Continuidade (princípio de conservação de massa), Equação da Energia Termodinâmica (conservação de energia) e a Equação de Estado (11):

$$\frac{D\vec{V}}{Dt} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \vec{V} + 2\vec{\Omega} x \vec{V} + \vec{F} \qquad \text{eq. 1}$$

$$\frac{1}{\rho} \frac{D\rho}{Dt} = -\nabla \cdot \vec{V} \qquad \text{eq. 2}$$

$$\frac{D\theta}{Dt} = \frac{1}{\rho c_p} \nabla \cdot (K_T \nabla \theta) + \frac{\dot{q}}{\rho c_p} \qquad \text{eq. 3}$$

$$P = \rho RT_a \qquad \text{eq. 4}$$

em que,

 $\vec{\nabla}$ = u \vec{i} + v \vec{j} + w \vec{k} é a velocidade do escoamento (m.s⁻¹); \vec{i} , \vec{j} e \vec{k} são vetores unitários;

- P, a pressão atmosférica (Pa);
- ρ, a massa específica (kg.m⁻³);
- v, a viscosidade cinemática (m².s⁻¹);

 $\vec{\Omega}$, a velocidade angular da Terra (rad.s⁻¹);

- θ , a temperatura potencial (K);
- c_n , o calor específico à pressão constante (J.kg⁻¹.^OC⁻¹);
- K_{T} , a condutividade térmica (W.m⁻¹.^OC⁻¹);
- q, a taxa de geração de calor por unidade de massa (W.m⁻³);
- R, a constante termodinâmica do ar seco (J.kg⁻¹.°C⁻¹);
- T_a, a temperatura absoluta (K);
- F, as forças externas por unidade de massa (m.s⁻²);

 $K_{\rm T},~c_{\rm p}$ e ν são assumidos independentes da flutuação de temperatura ou densidade.

Segundo NIELS (11), para o estudo da convecção, próximo à superfície do solo, usam-se as equações de Boussinesq, desde que as devidas aproximações sejam feitas. Nessas aproximações, o escoamento é considerado imcompressível, mas com dependência da massa específica (temperatura), onde a variação é significativa somente quando multiplicada pela acelera ção da gravidade. O conjunto de equações nas quais se fundamenta o escoamento na camada limite, em notação tensorial, é:

$$\frac{\partial u_{i}}{\partial t} + u_{j} \frac{\partial u_{i}}{\partial x_{j}} = -\frac{1}{\rho_{0}} \frac{\partial P}{\partial x_{i}} + \frac{gT'}{T_{0}} \delta_{i3} + \nu \frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{j}} - 2\Omega \varepsilon_{ijk} \eta_{j} u_{k} \quad eq. 5$$

$$\frac{\partial u_i}{\partial x_i} = 0 \qquad \text{eq. 6}$$

$$\frac{\partial T'}{\partial t} + u_j \frac{\partial T'}{\partial x_j} = \frac{K_T}{c_p \rho_0} \frac{\partial^2 T'}{\partial x_j \partial x_j} - \frac{1}{c_p \rho_0} \frac{\partial R_j}{\partial x_j} \quad eq. 7$$

$$\frac{\rho'}{\rho_0} = -\frac{T'}{T_0}$$

em que o último termo do lado direito da equação 5 representa a aceleração de Coriolis e é o produto $2\Omega(\vec{n} \times \vec{V})$, onde $\vec{\eta}$ é o vetor unitário paralelo ao eixo de rotação, e Ω é a freqüência angular de rotação da Terra. O último termo da equação 7 é a taxa de variação da temperatura devido à divergência de energia radiante (R_j), a qual será desprezada, uma vez que o estudo se aplica para a camada próxima à superfície. T' é a flutuação da temperatura em relação ao estado de referência à superfície T_0 ; ρ' é a flutuação da massa especí fica em relação à massa específica do estado de referência

O tipo e o grau de estratificação térmica da atmosf<u>e</u> ra são de grande significado para o escoamento turbulento, uma vez que a turbulência ganha ou perde energia pela ação das forças de flutuação. Assim, para o exame das propriedades básicas do escoamento médio, introduz-se a convenção de Reynolds:

 $u_{i} = \overline{u}_{i} + u_{i}', \qquad \overline{u}_{i}' = 0$ $T' = \overline{T}' + \theta', \qquad \overline{\theta}' = 0$ $P = \overline{P} + P', \qquad \overline{P}' = 0$

o que equivale a explicar o campo do escoamento a partir de um valor médio e de uma flutuação em torno dessa média. Assim, substituindo-se as expressões acima em 5 a 7 obtêm-se as equações para o escoamento médio:

$$\frac{\partial \overline{u}_{i}}{\partial t} + \overline{u}_{j} \frac{\partial \overline{u}_{i}}{\partial x_{j}} = -\frac{1}{\rho_{0}} \frac{\partial^{\tau} i j}{\partial x_{j}} + \frac{g\overline{T}'}{T_{0}} \delta_{i3} - 2\Omega \varepsilon_{ijk} \eta_{j} \overline{u}_{k} \qquad \text{eq. 9}$$

$$\frac{\partial \overline{u}_{i}}{\partial x_{i}} = 0 \qquad \qquad \text{eq. 10}$$

eq. 8

$$\frac{\partial \overline{T}'}{\partial t} + u_j \frac{\partial \overline{T}'}{\partial x_j} = -\frac{\partial}{\partial x_j} \frac{H_j}{c_p \rho_0} \qquad \text{eq. 11}$$

em que a barra identifica a média temporal e o primo, a flutuação em torno da média; τ_{ij} e H_j são, tensor tensão e tensor fluxo de calor, respectivamente, expressos por:

$$\tau_{ij} = -\overline{P}\delta_{ij} + \nu\rho_0 \left(\frac{\partial\overline{u}_i}{\partial x_j} + \frac{\partial\overline{u}_j}{\partial x_i}\right) - \rho_0 \overline{u_i'u_j'}$$
$$H_j = c_p\rho_0 \left(-K_T \frac{\partial\overline{T'}}{\partial x_j} + \overline{\theta'u_j'}\right)$$

Usando-se as equações 5 a 7, e através de manipulações matemáticas, obter-se-á a equação da energia cinética turbulenta, em notação comumente usada na meteorologia (17):

$$\frac{\partial \overline{e}}{\partial t} = -\overline{u'w'} \frac{\partial \overline{u}}{\partial z} + \frac{g}{T} \overline{w'\theta'} - \frac{\partial}{\partial z} \left(\overline{e'w'} + \frac{1}{\rho_0} \overline{P'w'} - \nu \frac{\partial \overline{e}}{\partial z}\right) + I$$

$$I \qquad II \qquad III \qquad IV \qquad V \qquad VI$$

+ $\frac{\partial u_{i}^{\prime} \partial u_{j}^{\prime}}{\partial x_{j} \partial x_{j}^{\prime}}$

eq. 12

8

em que, $\overline{e} = \frac{\overline{u'_i u'_i}}{2}$ e os diversos termos têm os seguintes sign<u>i</u> ficados:

- I taxa de variação da energia cinética média;
- II produção mecânica ou cisalhante de turbulência;
- III produção térmica ou flutuante de turbulência;
 - IV divergência do fluxo vertical de energia cinética turbulenta;
 - V divergência de energia cinética turbulenta, por pressão;
- VI divergência molecular;
- VII dissipação viscosa de energia cinética.

2.2. Estimativa dos Coeficientes de Difusão de Calor, Ma<u>s</u> sa e Momentum

Segundo WEBB (23) e PRIESTLEY (13), usando-se a hip<u>ó</u> tese dos coeficientes de difusividade turbulenta e desprezan do-se os termos de transferência molecular em relação aos termos de transferência turbulenta, é possível obter-se os fluxos instantâneos de momentum (τ), calor sensível (H) e ca lor latente (LE), em função dos gradientes de velocidade do vento (\overline{u}), temperatura (\overline{T}) e umidade específica (\overline{q}), os quais são definidos respectivamente, por:

$$\tau = \rho K_{\rm m} \frac{\partial \overline{u}}{\partial z} \qquad \text{eq. 13}$$

 $LE = -\rho LK_{W} \frac{\partial \overline{q}}{\partial z}$ eq. 15

em que, K_m , K_h e K_w são os coeficientes de difusividade turbulenta de momentum, de calor sensível e de vapor de água, respectivamente. L é o calor latente de evaporação. As duas últimas expressões contêm o sinal negativo devido ao fato de a difusão de calor sensível e vapor de água ocorrerem na direção contrária ao gradiente. A difusão de momentum também ocorre na direção contrária ao gradiente, mas convencionou--se trocar o sinal, tal que a tensão de cisalhamento torne--se uma quantidade positiva (17, 13).

 $H = -\rho c_p K_h \frac{\partial \overline{T}}{\partial z}$

Segundo a hipótese de Reynolds, mencionada por ANDRÉ (2), no caso de existir similaridade nos transportes de momentum, calor sensível e vapor de água e, além disso, considerando-se a atmosfera próximo à neutralidade, os coeficientes de difusividade são aproximadamente iguais. Entretanto, a razão K_h/K_m cresce em condições instáveis e decresce em condições estáveis.

eq. 14

A determinação da razão K_h/K_m , bem como K_h/K_w , é mui to importante no estudo da camada limite atmosférica, e pode também ser feita por meio de estudos das relações fluxos-per fis, utilizando-se de funções adimensionais.

Segundo SELLERS (16), para a camada atmosférica aba<u>i</u> xo de 1 m pode-se considerar $K_h \simeq K_m \simeq K_w$ sem grandes erros, já que nela a maior parte da turbulência está associada à r<u>u</u> gosidade da superfície, o que não ocorre em alturas maiores, onde as forças de flutuação atuam de maneira mais seletiva, favorecendo o transporte de calor, em detrimento dos transportes de vapor de água e de momentum. TANNER (20) concorda que quando um dos pontos de medição é a superfície evaporante, a razão K_h/K_w aproxima-se da unidade.

2.3. Coeficientes de Transferência na Forma Integrada

Segundo SHAW (17), a transferência de qualquer propriedade (F_c) entre um objeto sólido e um fluido é expressa como um produto do coeficiente de transferência e a diferença finita entre as magnitudes da quantidade à superfície e o seu valor na corrente livre.

$$F_{c} = \rho h_{C} \left[C_{0} - C_{7} \right] \qquad eq. 16$$

em que:

 h_C , é o coeficiente de transferência do escalar C; C, o momentum, o calor ou o vapor de água; C₀, a concentração de C na superfície; C_z, a concentração de C no nível z.

Considerando a transferência de momentum entre a atmosfera e a superfície e sob condições neutras, o perfil do vento na camada próximo à superfície do solo pode ser escrita como:

$$\overline{u} = \frac{u_*}{k} \ln\left(\frac{z}{z_0}\right), \text{ logo } u_* = \frac{\overline{u}k}{\ln\left(\frac{z}{z_0}\right)} \text{ eq. 17}$$

Pela definição de u*:

$$u_* = \left(\frac{\tau}{\rho}\right)^{1/2}, \log \sigma \tau = \rho u_*^2$$
 eq. 18

Substituindo a equação 17 em 18, e chamando

$$C_{d} = \left[\frac{k}{\ell n(\frac{z}{z_{0}})}\right]^{2} \qquad \text{eq. 19}$$

obtém-se:

em que, C_d é o coeficiente de arrasto, que por sua vez é ad<u>i</u> mensional e é função das condições de estabilidade e da alt<u>u</u> ra; z₀ é o parâmetro de rugosidade da superfície (m); u_{*} é a velocidade de fricção (m.s⁻¹) e k é a constante de von Karman.

Aplicando a equação 16 para as concentrações de calor sensível (H) e vapor de água (E), obtêm-se:

$$H = \rho c_{p} h [T_{0} - T_{z}] e$$
$$E = \rho h_{w} [q_{0} - q_{z}]$$

Como os coeficientes de transferência têm as dimensões de velocidade, é mais conveniente expressar os fluxos na forma:

$$H = \rho c_{p} C_{h} \overline{u} [T_{0} - T_{7}] \qquad eq. 21$$
$$E = \rho C_{W} \overline{u} \left[q_{0} - q_{z} \right]$$

em que C_h e C_w são coeficientes adimensionais para calor sen sível e vapor de água, respectivamente, equivalentes ao coefi ciente de arrasto C_d para a variação de momentum. C_h e C_w igualmente variam lentamente com a altura e com a velocidade do vento. Esses coeficientes são chamados de coeficientes de transferência global e podem ser calculados pela integração das formas explícitas do vento, da temperatura e do perfil de umidade, para qualquer condição de estabilidade, na altura desejada. Sendo assim, pode-se afirmar que (17):

 $h = C_h \overline{u}; \quad h_m = C_d \overline{u} \quad e \quad h_w = C_w \overline{u}$

A vantagem do uso dos coeficientes de transferência nesta forma é que eles absorvem as complexidades introduzidas pela turbulência. Esforços têm sido feitos para encontrar relações empíricas para diferentes tipos de superfícies e condições atmosféricas. A desvantagem de sua utilização é que eles dependem do conhecimento de uma propriedade da superfície e medidas das temperaturas e umidades à superfície, que são extremamente difíceis de serem obtidas e consequent<u>e</u> mente não são medidas rotineiramente.

Segundo SHAW (17), uma forma alternativa para expre<u>s</u> sar os processos é apresentando os coeficientes de transporte na forma recíproca, tal como:

$$h = \frac{1}{C_{h}\overline{u}} = \frac{1}{r_{ah}} e h_{w} = \frac{1}{C_{w}\overline{u}} = \frac{1}{r_{aw}}$$

logo, têm-se:

$$H = \frac{\rho c_p [\overline{T}_0 - \overline{T}_2]}{r_{ah}}$$

eq. 23

$$E = \frac{\rho \left[\overline{q}_0 - \overline{q}_z\right]}{r_{aw}}$$

em que $r_{ah} e r_{aw}$, os respectivos reciprocos de h e h_w , são, por analogia com a Lei de Ohm, chamados de resistências.

2.4. Equação de Penman

Algum tempo após a derivação de sua fórmula, Penman, em 1956, declarava: A expressão para a evaporação é demasiadamente simples para ser verdadeira para todas as condições, mas ela é adequada para muitas. De lá para cá, o seu método tem sido o mais usado, especialmente em trabalhos de pesquisa, quer seja na sua forma original, quer nas inúmeras variantes com ligeiras modificações introduzidas por ele próprio e por muitos outros pesquisadores (3).

Para que a evaporação possa ocorrer é necessário uma força que permita o deslocamento das moléculas de água da su perfície evaporante e uma fonte de energia, para a necessária transformação de fase. A força citada é representada pela diferença de pressão de vapor entre a superfície evaporan te e o ar que a envolve, sendo o saldo de radiação à superfí cie a fonte de energia para o processo. Segundo Penman, cita do por VILLA-NOVA (22), o saldo de energia à superfície é responsável por três quartos do processo e apenas uma quarta parte é devida ao deficit de saturação associado ao efeito da transferência de massa.

A formula de Penman é um método combinado em que pa<u>r</u> ticipam o método do balanço de energia e o aerodinâmico (20). Entendendo a dificuldade da medida de gradientes, PENMAN (12) combinou os dois métodos para derivar uma expressão aproximada que eliminou a necessidade de medições à superficie.

A equação proposta por PENMAN (12) baseia-se no fato de que, uma vez determinado o saldo de energia numa superfí-

cie natural, durante um período qualquer, pode-se estimar a fração desse saldo usada na evaporação. Como elemento atuante, também na evaporação, inclui-se ainda a ação do transpor te, pelo vento, do vapor de água adjacente à superfície (22).

O termo aerodinâmico depende do poder evaporante do ar. Stanhill, citado por CHANG (5), correlacionou, em Israel, em base semanal, o poder evaporante do ar com a evaporação dada pelo evaporímetro de Piche, instrumento encontrado na maioria das estações meteorológicas. Encontrou uma correlação alta (r = 0,89), sendo que a correspondência entre as duas variáveis foi representada pela equação $E_a = 0,15E + 0,11$, em que E é a evaporação obtida no evaporímetro de Piche, em ml.dia⁻¹(3). SILVA (18), trabalhando com a cultura de alfafa na região semi-árida do nordeste brasileiro, também encontrou bom ajustamento entre evapotranspiração medida através da variação de umidade do solo e a estimativa pelo método de Penman, quando utilizou a evaporação no Piche como o poder evaporante do ar. MOTA (10) afirma que, para as condições climáticas de Pelotas, RS, o ajustamento entre o poder evapo rante da fórmula de Penman e a evaporação de Piche foi bom.

De acordo com CHANG (5), dadas as dificuldades na m<u>a</u> nipulação da equação de Penman, McCulloch apresentou tabelas para vários componentes da equação, enquanto Rijkoort e Kohler, Nardeson e Fox apresentaram nomogramas que tornaram po<u>s</u> sível a rápida solução gráfica da equação. CHANG (5), cita ainda que, Wang e Wang apresentaram nomogramas mensais para a estimativa da evaporação segundo Penman em função da temp<u>e</u> ratura e do brilho solar, em Wisconsin. Para a situação em que a variação do termo aerodinâmico é pequena, a evaporação é estimada a partir apenas do termo de energia.

A importância relativa dos dois termos (energético e aerodinâmico) na equação depende da razão entre a inclinação da curva de pressão de saturação de vapor e a constante psicrométrica, que por sua vez depende da temperatura. O termo aerodinâmico é geralmente menor que o termo energético, mas pode mostrar grande variação entre duas regiões próximas co<u>n</u> forme afirma Stanhill, citado por CHANG (5). Desse modo, quando o saldo de radiação é aproximadamente o mesmo dentro de uma área, o procedimento simplificado e proposto por Sta<u>n</u> hill, pode ser usado para resolver a equação de Penman. Ele sugeriu que o saldo da radiação fosse medido numa estação central e o termo aerodinâmico fosse estimado a partir de m<u>e</u> didas locais no evaporímetro de Piche. Quando os dois termos são comparados quantitativamente de acordo com a temperatura média do ar, o termo energético torna-se consideravelmente importante com o aumento da temperatura.

De acordo com CHANG (5), os resultados experimentais obtidos por Pruitt na Califórnia e em Washington, Stanhill em Israel, Chapas e Rees na Rodésia, Chang no Hawaii e King em Wisconsin, indicam que a equação de Penman é mais precisa do que a de Thornthwaite. Outros pesquisadores como SEDIYAMA (15) e SILVA (18) compararam os valores obtidos pelo método de Penman e a evapotranspiração medida, obtendo alta correl<u>a</u> ção. Esses valores obtidos, em condições climáticas diferentes, são evidências da universalidade do referido método.

Entre as fórmulas de maior eficiência, a equação de Penman foi recomendada por uma junta de trabalho organizada pela FAO e IAEA, em 1966, e comprovada em trabalho realizado por Stanhill, citado por VILLA-NOVA (22). A referida equação, usualmente mais acurada para períodos iguais ou superiores a cinco dias, não dá estimativa precisa para períodos diários. Em comparação com leituras lisimétricas, Businger, citado por CHANG (5), obteve estimativas através do método de Penman variando aproximadamente em 25% para períodos diários, enquanto que para períodos maiores que 25 dias a variação foi em torno de 1%.

A equação original de Penman somente dá estimativa de evaporação da água livremente exposta. Entretanto, a evapotranspiração numa superfície com vegetação é um pouco dif<u>e</u> rente. No sul da Inglaterra, a razão entre a evapotranspiração num gramado e a evaporação em superfície da água livremente exposta foi de aproximadamente 0,6 para o período de novembro a fevereiro, 0,8 para o período de maio a agosto e 0,7 para os outros quatro meses (5). O valor alto no verão é presumidamente por causa da grande quantidade de energia resultante da intensa advecção nessa época. A razão entre a evapotranspiração potencial e a estimativa de Penman para evaporação da água, varia com a altura da vegetação, o clima e principalmente com o efeito oásis na área. Em áreas de for te advecção, a equação de Penman pode severamente subestimar a evapotranspiração potencial. Abdel-Aziz, citado por CHANG (5), achou necessário adicionar um termo advectivo na equação, para o cultivo de maçãs em regiões áridas dos Estados Unidos. No clima semi-árido central do estado de Washington, conforme afirma CHANG (5), Pruitt observou que a necessidade de água para o "trevo ladino" foi quase igual à estimativa de Penman para a evaporação da superfície de água livremente exposta. No Hawaii, a evapotranspiração potencial máxima de uma cultura de cana-de-açúcar excedeu à estimativa de Penman em aproximadamente 10% (5).

A não utilização do fluxo de calor para o solo, assu mida por Penman, pode, em determinadas condições, ocasionar erros no método. Segundo Van Bavel e Hillel, citado por BER-LATO e MOLION (3), o método combinado pode causar um erro de 5 a 10% no balanço de energia, proporcionando erro na estima tiva da evaporação. Segundo os mesmos autores, o erro tende a aumentar quando a demanda evaporativa é alta. Para superfí cies vegetadas, o termo de troca de calor com o solo (G) tem menor peso e erro para períodos de um dia ou mais, não afetando seriamente a evapotranspiração, embora, quando possível, deva-se usá-lo.

Segundo TANNER (20), Penman e Schofield, Tanner e Pelton introduziram correções teóricas na expressão de Penman, visando adaptá-la à estimativa da evapotranspiração potencial, considerando a influência dos estômatos e do compri mento do dia, além do fato de a temperatura da superfície v<u>e</u> getada diferir da que se verifica numa superfície plana e h<u>o</u> mogênea de água, exposta às mesmas condições. Tais fatores de correção foram criticados por Businger, em 1965, que sug<u>e</u> riu utilizar uma constante empírica de proporcionalidade, p<u>a</u> ra obter a evapotranspiração a partir da evaporação estimada pela equação de Penman.

Acredita-se que pode ser estabelecida uma equação de regressão entre evaporação estimada por Penman e a evapotranspiração real para uma certa cultura, região e época do ano, embora haja restrições quanto ao fato de se obter uma correlação satisfatória em se tratando de áreas em que seja significativa a advecção de calor (20).

Segundo JENSEN (7), quando a água evapora do solo ou das plantas, a energia é suprida pela radiação solar, por transferência turbulenta na atmosfera ou pelo calor armazen<u>a</u> do no solo. A taxa de evaporação é influenciada pela energia disponível, pelo gradiente de pressão de vapor e pela resistência à transferência de vapor. Os três interagem continuamente mas só a radiação solar pode ser considerada independente. Uma vez que uma folha túrgida pode transpirar uma quantidade de água muitas vezes superior ao seu próprio peso em um dia de verão, o gradiente de vapor não pode ser mantido sem uma fonte de calor. Conseqüentemente, as taxas de fl<u>u</u> xo de calor e vapor e os gradientes ajustam-se para manter o balanço de energia.

Em condições naturais de evaporação, o estado de uma dada massa de ar pode ser descrito pela sua temperatura e pressão de vapor. Sua energia térmica total é dada pela soma do calor sensível dependente da temperatura, e do calor latente dependente da pressão de vapor. Caso haja água disponí vel para evaporar-se em uma massa isolada de ar não saturado, a quantidade de calor latente aumenta e o calor sensível diminui. O processo pára quando o ar torna-se saturado à temp<u>e</u> ratura do bulbo úmido (T_w) . Desde que a variação no calor l<u>a</u> tente (de) deve ser igual à variação no calor sensível (γ dT), em que a constante psicrométrica é uma propriedade do ar seco, segue-se que:

$$e_{W}^{0} - e = \gamma (T_{T} - T_{W})$$
 eq. 25

em que,

- e_w⁰, é a pressão de vapor de saturação à temperatura do bulbo úmido;
- e, a pressão de vapor atual;
- T_w, a temperatura do bulbo úmido;

 T_{7} , a temperatura do ar;

γ, a constante psicrométrica.

Se uma quantidade de calor (Q) for adicionada à ref<u>e</u> rida massa de ar, ela se divide entre calor latente, caso h<u>a</u> ja água disponível, e calor sensível, aumentando e⁰ e T. Para pequenas variações, tem-se:

$$de^{0} = \Delta dT$$
 eq. 26

em que, ∆ é a tangente à curva de saturação do vapor de água (mmHg.^OC⁻¹). Os acréscimos na quantidade de calor latente e calor sensível serão:

- Acréscimo no calor latente:

$$\frac{\Delta Q}{\Delta + \gamma}$$

- Acréscimo no calor (sensível:

$$\frac{\gamma Q}{\Delta + \gamma}$$
 eq. 28

A taxa de evaporação em uma superfície úmida à temperatura T_{w_0} , pode ser agora calculada pela taxa de acréscimo de calor latente no ar à temperatura T_z . Se o ar em T_z , com uma capacidade calorífica volumétrica ρc_p , é resfriado para T_{wz} , ele fornecerá $\rho c_p (T_z - T_{wz})$ calorias por cm³ na evaporação. Se r_a é o tempo necessário para 1 cm³ de ar trocar calor com uma superfície de 1 cm², $1/r_a = h$ é a taxa de troca de energia em cm.s⁻¹. O fluxo de calor que o ar pode fornecer à superfície, para a evaporação (7), é:

$$LE_{1}^{*} = \frac{\rho c_{p}(T_{z} - T_{WZ})}{r_{a}} = \frac{\rho c_{p}D}{r_{a}}$$
 eq. 29

em que,

D é a depressão psicrométrica à altura z;
 E* é a taxa de evaporação.

Quando a água evapora, em condições de saturação, o calor latente deve ser obtido do saldo de radiação, Rn, ou do fluxo de calor do solo, G, na taxa:

$$LE_2^* = \frac{\Delta}{\Delta + \gamma} (Rn + G)$$
 eq. 30

Para essa equação, Δ é avaliado à temperatura média entre a temperatura do ar (bulbo úmido) e a temperatura da superfície ($T_{wz} + T_{w_0}$)/2. Uma vez que a superfície está úmida e a pressão de vapor corresponde à pressão de saturação à temperatura da superfície, as equações 29 e 30 podem ser com binadas:

$$LE^{*} = L(E_{1}^{*} + E_{2}^{*}) = \frac{\Delta}{\Delta + \gamma} (Rn + G) + \frac{\rho c_{p} D}{r_{a}}$$
 eq. 31

Para o ar, à temperatura T_z , Δ é determinado à temp<u>e</u> ratura média entre os valores do bulbo úmido e do bulbo seco, Δ ', então:

$$\frac{(e_z^0 - e_z)}{D} = \Delta' + \gamma$$

a equação 31 pode ser escrita:

$$LE^* = \frac{\Delta(Rn + G) + \rho c_p \frac{(e_z^0 - e_z)}{r_a}}{\Delta + \gamma} eq. 32$$

Essa equação é semelhante à equação derivada por Pen man, em 1948.

Se a pressão de vapor à superfície é menor que a pressão de saturação de vapor à temperatura do ar, o calor latente será liberado por causa da condensação, na taxa:

$$-LE_{3}^{*} = \frac{\rho c_{p} D_{0}}{r_{a}} \qquad eq. 33$$

em que D_0 é a depressão psicrométrica à temperatura da super fície. Nessas condições, a taxa total de evaporação será:

$$LE^{*} = LE_{1}^{*} + LE_{2}^{*} + LE_{3}^{*} = \frac{\Delta(Rn + G)}{\Delta + \gamma} + \frac{\rho c_{p}(D - D_{0})}{r_{a}} \qquad eq. 34$$

em que,

- LE^{*}, representa a conversão de calor sensivel em latente (evaporação);
- LE^{*}₂, representa a evaporação em ambiente saturado, na prese<u>n</u> ça de uma fonte externa de energia;
- LE^{*}₃, representa a conversão de calor latente em sensível, quando a pressão de saturação de vapor no ar é maior que a pressão de vapor na superfície do solo, havendo portanto uma inversão, e, ao invés de evaporação, verifica-se uma condensação (7).

As relações descritas nas equações 25 a 34 são graf<u>i</u> camente ilustradas na Figura 1. Interpreta-se o gráfico da seguinte maneira:

Trajeto 1-2 - mostra o acréscimo na pressão de vapor (calor latente) que ocorre à medida em que a temperatura do ar T_z aproxima-se de T_{wz}, por resfriamento adiabático.

Trajeto 2-3 - representa o aumento na pressão de vapor e_{WZ}^{0} para e_{W0}^{0} , da temperatura T_{WZ} para a temperatura do bulbo úmido à superfície, T_{W0}. Se a superfície está exposta ao ar, T_{W0} seria a temperatura da superfície em evaporação.

Trajeto 3-4 - representa o decréscimo na pressão de vapor, associado com a dessaturação do ar, à temperatura T_w,

FIGURA 1 - Representação gráfica da relação entre pressão de vapor, temperatura e componentes das fórmulas de evaporação, segundo Montheith e Tanner, JENSEN (7).

para o conteúdo de umidade e_0 , liberando calor latente. Representa, também, o acréscimo na temperatura do ar para T_0 (temperatura da superfície).

Substituindo $1/r_a = h e (e_z^0 - e_z)/D = \Delta + \gamma$, na equação 34, obtém-se:

$$LE^* = \frac{\Delta}{\Delta + \gamma} (Rn + G) + \frac{\rho c h}{\Delta + \gamma} \left[(e_z^0 - e_z) - (e_0^0 - e_0) \right] \quad eq. 35a$$

ou

$$LE^* = \frac{\Delta}{\Delta + \gamma} (Rn + G) + \frac{\rho c h}{\Delta + \gamma} \left[(e_0 - e_z) - (T_0 - T_z) \Delta \right] \quad eq. 35b$$

em que LE* representa o fluxo de calor latente. Para se usarem as equações 35a e 35b, os termos Rn, G, h, T_z , e_z , e_0 e T_0 devem ser conhecidos. Nessas equações consideram-se $h_w = h$, e Δ deve ser calculado em $(T_0 + T_z)/2$, ou em T_z se $(T_0 - T_z)$ for um valor pequeno (7).

Para condições em que a água não é fator limitante, e a pressão de vapor igual à pressão de saturação à superfície, então $D_0 = (e_0^0 - e_0) = 0$, e a equação 35 se reduz a:

$$E_{p} = \frac{\Delta}{\Delta + \gamma} (Rn + G) + \frac{\rho c_{p} h}{\Delta + \gamma} (e_{z}^{0} - e_{z}) \qquad eq. 36$$

Essa é a equação original de Penman para evaporação potencial (E_p) , sendo \triangle calculado à temperatura do bulbo seco no nível z. Em condições úmidas, e_z^0 tende a e_z , e o valor mínimo da evaporação potencial será:

$$E_{pe} = \frac{\Delta}{\Delta + \gamma} (Rn + G)$$
 eq. 37

em que E_{pe} foi definida por McIlroy como evaporação potencial de equilíbrio (7).

Segundo SHAW (17), por causa das dificuldades na ob-

tenção das propriedades da superfície, muitas tentativas têm sido feitas para eliminar as necessidades desses dados. Isso pode ser contornado assumindo-se que a troca de energia na superfície está em balanço, e o melhor exemplo conhecido des sa aproximação é o de Penman, que estimou a evaporação de uma superfície de água livremente exposta, eliminando a necessidade do conhecimento da temperatura da superfície da água e consequentemente pressão de vapor, a partir das equações de transferência global. Um outro desenvolvimento desse princípio permite estimar a taxa de evapotranspiração para uma vegetação, assumindo que a mesma pode ser caracterizada por uma única temperatura da superfície (T₀) e pressão de va por (e₀), desprezando-se a complexidade do dossel real, е considerando-se que as fontes de calor e de vapor de água são distribuídas espaçadamente em frações idênticas. Então, podem-se escrever os fluxos de calor sensível e latente como:

eq. 38

eq. 39

em que y é a constante psicrométrica, dada por:

 $H = \frac{\rho c_p [T_0 - T_z]}{r_{ab}}$

 $LE = \frac{\rho c_p \left[e_0 - e_z\right]}{\gamma r_{aw}}$

$$\gamma = \frac{c_p P}{0,622 L} eq. 40$$

Uma vez que existe uma resistência fisiológica adicional para a difusão de vapor de água das plantas, é possível escrever que:

$$LE = \frac{\rho c_p [e_s(T_0) - e_0]}{\gamma r_s} eq. 41$$

em que,

- T_0 , é a temperatura da superfície das folhas;
- r, a resistência média estomatal;
- T₂, a temperatura à altura z;
- e,, a pressão de vapor à altura z;

e_s, a pressão de vapor de saturação na cavidade estomatal.

A equação 41 expressa, na forma da Lei de Ohm, o fl<u>u</u> xo de vapor de água como uma função da diferença na concentração de vapor entre a cavidade estomatal (assumindo que e_s ocorre à temperatura da folha T₀) e à superfície das folhas. Isso pode ser assegurado para uma folha isolada, mas pode ser assumido também para a evaporação num dossel. A quantid<u>a</u> de de r_s representa a resistência média estomatal, avaliada de acordo com a contribuição para a taxa total de transpiração (17).

A temperatura T_z e a pressão de vapor e_z são medidas rotineiramente na altura do abrigo. Se se deseja estimar a taxa de evaporação como uma função das resistências aerodin<u>â</u> micas r_{ah} e r_{aw} , e da resistência fisiológica r_s , usando-se as três equações 38, 39 e 41, que contêm quatro incógnitas H, E e as propriedades de superfície T_0 e e_0 , a solução só poderá ser obtida pela informação de que a energia disponível é dividida entre os fluxos de calor latente e sensível, ou seja:

$$(Rn + G) = H + LE$$
 eq. 42

em que Rn é o saldo de radiação à superfície e G é o fluxo de calor no solo. Considerando (Rn + G) como uma quantidade conhecida, procede-se da seguinte maneira:

- Explicitando e_0 nas equações 39 e 41, e igualando--se as duas equações resultantes para e_0 , tem-se:

$$LE(r_{aW} + r_{s}) = \frac{\rho c_{p}}{\gamma} [e_{s}(T_{0}) - e_{z}] \qquad eq. 43$$

Chamando $\Delta = \frac{e_s(T_0) - e_s(T_z)}{T_0 - T_z}$, tem-se:

$$e_{s}(T_{0}) = e_{s}(T_{z}) + \Delta(T_{0} - T_{z})$$
 eq. 44

em que Δ é a inclinação da curva de pressão de vapor de sat<u>u</u> ração à temperatura média entre T₀ e T_z, ou simplesmente em T_z para uma aproximação satisfatória.

- Explicitando H nas equações 38 e 42, e igualando--se, resulta:

$$T_0 - T_z = \frac{r_{ah}}{\rho c_p} [(Rn + G) - LE]$$
 eq. 45

- Substituindo a equação 45 em 44 tem-se:

$$e_s(T_0) = e_s(T_z + \Delta \frac{r_{ah}}{\rho c_p} [(Rn + G) - LE]$$
 eq. 46

- Substituindo a equação 46 em 43, elimina-se T₀. E<u>n</u> tão:

$$LE(r_{aw} + r_s) = \frac{\rho c_p}{\gamma} \{e_s(T_z) - e_z + \Delta \frac{r_{ah}}{\rho c_p} [(Rn + G) - LE]\} eq. 47$$

- Rearranjando a equação 47, tem-se uma expressão para estimar o fluxo de calor latente (LE), ou seja, a taxa de evapotranspiração:

$$LE = \frac{(Rn + G) + \frac{\rho c}{\Delta r_{ah}} [e_s(T_z) - e_z]}{1 + \frac{\gamma}{\Delta} (\frac{r_{aw} + r_s}{r_{ah}})} eq. 48$$

a qual se reduzirá para a forma original de Penman, considerando-se a superfície úmida, na qual $r_s = 0$ (17).

Equações como essas são usadas freqüentemente para estimar a evapotranspiração real ou potencial, ou para predi

zer variações induzidas por mudanças nos fatores atmosféricos ou fisiológicos. É interessante agora verificar a variação da evapotranspiração com a velocidade do vento. Para isso assume-se $r_{ah} = r_{aw} = r_{a}$ e diferencia-se a equação 48 com relação a r_{a} , obtendo-se a relação:

$$L \frac{dE}{dr_a} = \frac{(Rn + G) \frac{\gamma r_s}{\Delta} - \frac{\rho c_p}{\Delta} [e_s(T_z) - e_z] (1 + \frac{\gamma}{\Delta})}{[(1 + \frac{\gamma}{\Delta})r_a + \frac{\gamma}{\Delta}r_s]^2} \qquad eq. 49$$

a qual indica que, para superfície úmida, $r_s = 0$, $dE/dr_a < 0$, e que a perda de água aumenta com o acréscimo na velocidade do vento, uma vez que a resistência, r_a , diminui. A equação 49 indica ainda que dE/dr_a pode mudar de sinal, dependendo da magnitude da resistência fisiológica (r_s). Um valor crít<u>i</u> co para r_s pode ser definido quando $dE/dr_a = 0$, tal que:

$$r_{s}(critico) = \frac{\rho c_{p}}{\gamma} \frac{\left[e_{s}(T_{z}) - e_{z}\right]}{(Rn + G)} (1 + \frac{\gamma}{\Delta}) \qquad eq. 50$$

Se r_s for maior que esse valor, a taxa de evapotran<u>s</u> piração decresce com o aumento da velocidade do vento. A taxa de evapotranspiração é controlada pela quantidade de ene<u>r</u> gia disponível. A partição de tal energia em calor sensível e calor latente pode-se ajustar de tal modo que a perda de calor sensível seja favorecida, em relação à perda de calor latente, com o aumento da velocidade do vento, quando a maior resistência à difusão de vapor de água é a componente fisiológica (16).

Segundo SILVA (18), o processo aerodinâmico em que se fundamentam alguns métodos para o cálculo da evaporação, ou da evapotranspiração, baseia-se na equação:

$$\frac{\partial}{\partial z} \left[K_{ZZ} \frac{\partial}{\partial Z} \overline{C} \right] = 0$$

em que K_{zz} é o coeficiente de difusão turbulenta e \overline{C} é a con centração do escalar. O termo entre colchetes representa o fluxo vertical turbulento médio da entidade escalar. Para os casos específicos do momentum, do calor sensível e do calor latente, têm-se as equações 13, 14 e 15, expressas em seus valores médios, ou seja:

 $\overline{\tau} = K_{\rm m} \overline{\rho} \frac{\partial}{\partial z} \overline{u}$ $\overline{H} = -\overline{\rho} K_{\rm h} c_{\rm p} \frac{\partial}{\partial z} \overline{\theta}$ $L\overline{E} = -K_{\rm w} L \overline{\rho} \frac{\partial}{\partial z} \overline{q}$

em que os fluxos são representados como médios e $\overline{\rho} \frac{\partial}{\partial z} \overline{q}$, $\overline{\rho} c_p \frac{\partial}{\partial z} \overline{\theta} e \overline{\rho} \frac{\partial}{\partial z} \overline{u}$ são as concentrações para calor latente, sensível e momentum, respectivamente (18).

Segundo Gangopadhyaya e outros, citados por SILVA (18), na prática, para pequenos intervalos de tempo, próximo à superfície, o gradiente adiabático de temperatura pode ser substituído pelo gradiente observado. Logo, $\overline{\Theta} \simeq \overline{T}$.

Relacionando as equações 15 e 13, obtém-se:

$$\frac{\overline{LE}}{\overline{\tau}} = -\frac{K_{W}}{K_{m}} \frac{\partial \overline{q}}{\partial \overline{u}} \qquad \text{eq. 52}$$

Essa é a equação fundamental para o cálculo da evaporação p<u>e</u> lo processo aerodinâmico.

O processo do balanço de energia baseia-se na soma dos fluxos de energia na superfície, incluindo os fluxos de radiação, calor sensível, calor latente, calor do solo e outros fluxos (20).

Segundo SILVA (18), a aplicação do princípio da conservação da energia em relação a um volume de controle (Figu ra 2) cuja base coincida com a interface solo-atmosfera e a altura seja superior à da vegetação existente no local consi

Divergência horizontal de calor
 Divergência horizontal de vapor de água

Armazenamento Variação de temperatura da cultura Variação de temperatura do ar úmido Variação da umidade absoluta

FIGURA 2 - Representação esquemática do balanço de energia completo, numa superfície vegetada, TANNER (20)

derado, permite estabelecer que:

 $Rn + G + H + LE + H' + LE' + \Delta QF + \Delta QV = 0$ eq. 53

em que,

- Rn, é o saldo da radiação, isto é, o fluxo de energia radiante efetivamente disponível, após descontadas as per das por reflexão, emissão e condução de energia;
- G, o fluxo de calor sensível decorrente das trocas com o solo próximo;
- H, o fluxo de calor sensível, transportado por turbulência, para a atmosfera;
- LE, o fluxo turbulento de calor latente associado à evapo transpiração;
- H', o fluxo de calor sensível decorrente da advecção de mas sa;
- LE', o fluxo de calor latente associado à advecção de vapor de água;
- ΔQF, a variação no armazenamento de energia decorrente da atividade fotossintética da vegetação;
- ΔQV, a variação no armazenamento de calor sensível e latente, no interior do volume considerado.

São considerados positivos os fluxos dirigidos para o interior do volume considerado (Figura 2).

O termo AQF representa cerca de 1 a 2% do saldo de radiação (Rn) podendo ser desprezado para períodos longos, o mesmo acontecendo com AQV. Por outro lado, no caso de uma ve getação que ofereça uma cobertura uniforme, os termos de divergência podem também ser desprezados ao se considerarem pe ríodos superiores a um dia e pontos suficientemente afastados dos limites da cultura. Finalmente, o fluxo médio G, ao longo de um dia, pode ser desprezado segundo SELLERS (*16*) e portanto, a equação 53 reduz-se a:

$$\overline{R}n = L\overline{E} + \overline{H}$$

eq. 54

Desde que os demais termos sejam conhecidos, as expressões 53 e 54 permitem estabelecer a energia consumida na evapotranspiração, para intervalos de tempo curto e longo, respec tivamente. A utilização dessas expressões na prática não é simples, face à necessidade de se medir H que, segundo PRIEST LEY (13) envolve muitos obstáculos. Para contornar essa difi culdade, costuma-se lançar mão da razão de Bowen, definida como:

$$\beta = \frac{H}{LE} \qquad eq. 55$$

Tendo em vista as equações 14 e 15, e considerando--se ainda $K_h \approx K_w \approx K_m$, a equação 55 torna-se:

$$\beta = \frac{c_p}{L} \left(\frac{\partial T}{\partial q}\right) \qquad \text{eq. 56}$$

sendo \overline{E} o fluxo vertical médio de vapor de água medido a uma distância muito pequena da superfície evaporante. Usando-se \overline{q} em função de \overline{e} e admitindo-se \overline{P} constante, a expressão anterior torna-se:

$$\beta = \gamma \left(\frac{\Delta \overline{T}}{\Delta \overline{e}} \right)$$

em que os infinitésimos foram substituídos pelas respectivas diferenças finitas (18).

André, em 1973, citado por SILVA (18), revelou ser bastante viável a utilização da equação 57 para estimar a evaporação, em solo descoberto, pelo processo do balanço de energia.

Combinando as equações 54 e 57, obtém-se:

$$\overline{Rn} = L\overline{E}(1 + \gamma \frac{\Delta \overline{T}}{\Delta \overline{e}}) \qquad eq. 58$$

a qual foi empregada por Budyko, em 1958, e por Ferreira e Peixoto, em 1962, segundo SILVA (18), para determinar a evaporação média (\overline{E}) a partir do balanço energético e da média dos valores da temperatura do ar (T_z) e da pressão de vapor (e) correspondente, tomados em dois níveis próximos da supe<u>r</u> fície.

A partir das equações 14 e 54 demonstra-se que:

$$\overline{Rn} = L\overline{E} - K_{w}\overline{\rho}c_{p} \frac{\partial \overline{T}}{\partial z} \qquad eq. 59$$

em que K_h foi substituído por K_w. Essa expressão pode ainda ser escrita:

$$\overline{Rn} = L\overline{E} - K_{w}\overline{\rho}c_{p} \frac{\partial \overline{T}}{\partial \overline{q}^{\circ}} \frac{\partial \overline{q}^{\circ}}{\partial z} \qquad eq. 60$$

em que \overline{q}° é a umidade específica de saturação obtida através de sua fórmula clássica, quando a pressão de vapor (\overline{e}) assume o valor máximo (\overline{e}°), à temperatura e pressão constantes. A última expressão pode ainda ser escrita como:

$$\frac{\overline{Rn}}{L} = \overline{E} - \frac{K_w \overline{\rho} c_p \overline{P}}{0,622 L} \frac{\partial \overline{T}}{\partial \overline{e}^0} \left[\frac{\partial \overline{q}}{\partial z} + \frac{\partial (\overline{q}^0 - \overline{q})}{\partial z} \right] \qquad \text{eq. 61}$$

a qual considerando as equações 15 e 40, torna-se:

$$\frac{\overline{R}n}{L} = \overline{E} + \frac{\partial \overline{T}}{\partial \overline{c}^0} \gamma [\overline{E} - \overline{E}_a] \qquad \text{eq. 62}$$

em que \overline{E}_a é o poder evaporante do ar, ou seja:

$$\overline{E}_{a} = K_{w}\overline{\rho} \quad \frac{\partial(\overline{q}^{0} - \overline{q})}{\partial z} \qquad \text{eq. 63}$$

Da equação 26 tem-se que $\Delta = \frac{\partial \overline{e}^0}{\partial \overline{T}}$. Substituindo na equação 62, resulta em:

$$E = \frac{\frac{\Delta}{\gamma} \frac{Rn}{0, 1 L} + E_a}{\frac{\Delta}{\gamma} + 1} eq. 64$$

a qual é a equação de Penman na sua forma mais utilizada para o cálculo da evaporação onde, por facilidade, foram omit<u>i</u> das as indicações de valor médio e o saldo de radiação (Rn/ 0,1 L) expresso em equivalente lâmina de água (18). Segundo BERLATO e MOLION (3), a equação 64 foi proposta para estimar a evaporação da água livremente exposta. Penman apresentou duas soluções possíveis, uma empírica e ou tra analítica, para determinar a evapotranspiração potencial no caso de um sistema solo-planta, considerando que, quando se trata de evapotranspiração, surgem dois novos fatores, o solo e a planta.

A solução empírica pode ser dada pela formula:

ETP = fE

eq. 65

em que,

ETP, é a evapotranspiração potencial;

E, a evaporação de um superfície de água livremente exposta;

f, um fator de conversão.

Esse fator de conversão é determinado experimentalmente através de medidas simultâneas de ETP e E. Para o caso da superfície vegetada com grama (porte baixo), Penman, em 1965, segundo BERLATO e MOLION (3), cita que o valor médio anual de f foi de 0,75, nas condições do sudeste da Inglater ra. Ele mostra também que houve uma acentuada variação estacional dessa relação. O valor de f, como uma constante empírica, tem que ser determinado para cada local.

No enfoque analítico, a preocupação foi concentrada em se encontrar um valor teórico para f, baseado em princípios físicos e fisiológicos. Segundo Penman e Schofield, citados por BERLATO e MOLION (3), foi estabelecida uma aproxi mação aerodinâmica, para avaliar a resistência à difusão do vapor de água de dentro para fora da folha, como uma função da geometria do estômato e da população. Isso forçou a intro dução de um fator de estômato denominado S. Baseados no fato de que, para muitas plantas, a abertura dos estômatos é fenômeno dependente da luz, e, que, portanto, a oportunidade de transpiração seria uma função do comprimento do dia, os autores incluíram um outro fator M chamado de fator de comprimento do dia. A formula de Penman adaptada para estimar a ETP seria dada por:

$$ETP = \frac{\frac{\Delta}{\gamma} \frac{Rn}{0, 1 L} + E_a}{\frac{\Delta}{\gamma} + \frac{1}{SM}}$$

eq. 66

em que Rn é o saldo de radiação sobre a vegetação.

O termo M determina a variação estacional de f. Ambos, M e S, são sempre menores que a unidade, indicando que a ETP é sempre menor que E. Também Rn sobre a superfície de uma cultura é menor que o Rn sobre uma superfície líquida, porque o albedo das culturas é maior que o albedo da água. Essa é outra causa de ETP ser menor que E. A conclusão de que a evapotranspiração potencial é menor que a evaporação de uma superfície de água livremente exposta está baseada em trabalhos experimentais onde a cultura utilizada é de pequeno porte (grama), conforme a definição de evapotranspiração potencial ou transpiração potencial (3).

A equação 66, conforme Penman, em 1956, não é uma equação de uso freqüente. Serve, entretanto, para generalizar o princípio de que a ETP é menor que E (3).

Na prática, a equação utilizada para determinar ETP é basicamente a mesma que se utiliza para a evaporação de su perfície de água livremente exposta. Apenas o termo saldo de energia é referente à superfície vegetada. Quando o saldo não é medido, e sim estimado através de fórmulas empíricas, deve-se levar em conta o albedo próprio da cultura em questão. A equação recomendada, nesse caso, em função do vento, é a primeira aproximação de Penman (3).

De acordo com SILVA (18), o poder evaporante do ar é de difícil obtenção, constituindo a mais séria dificuldade para a aplicação da equação de Penman. Para o caso de uma su perfície líquida, pode-se admitir a saturação do ar próximo à água, e assim, tem-se:

$$E_a = K_W \rho \frac{(q^0 - q)}{z}$$

a qual pode ser obtida a partir do deficit de saturação (e^o e) médio, tomado a uma altura z da superfície. Essa aproxima ção não elimina, portanto, a dificuldade em se obter $\rho \in K_W$ (18).

Penman, em 1956, enfatizou que a forma exata da função E_a não deve constituir uma séria limitação à aplicação do método; isso porque o termo energético da equação contribui mais efetivamente do que E_a no resultado da evaporação.

Segundo Penman, em 1956, e Rijtema, em 1958, citados por SILVA (18), de um modo geral aceita-se que E_a seja função da velocidade do vento e do teor de umidade do ar, expressa por uma equação de tipo análogo à da Lei de Dalton, para a evaporação. Penman, em 1956, empregou a seguinte equa ção para o caso de superfície da água livremente exposta:

$$E_a = 0,35(0,5 + 0,01 u_2)(e^0 - e)$$
 eq. 68

em que,

- E_a, é expresso em mm de água por dia;
- u₂, a velocidade do vento, em milhas náuticas por dia, ao nível de 2 m de altura acima da superfície evaporante;

(e^o - e), o deficit de saturação do ar, tomado ao nível do abrigo, em mmHg.

TANNER (20) salienta que a equação de Penman, para estimar a evapotranspiração máxima em culturas irrigadas nas regiões semi-áridas, deve levar em conta a advecção de calor.

Como a velocidade do vento nas estações meteorológicas geralmente é medida a 10 m de altura (u_{10}) , uma relação proposta por Pasquill, em 1949, e utilizada para a redução da mesma para 2 m de altura (u_2) :

$$\frac{u_2}{u_{10}} = \left(\frac{z_2}{z_{10}}\right)^{K_0}$$
 eq. 69

em que z₂ e z₁₀, são as alturas de tomada da velocidade e K₀

é uma constante igual a 1/7 (22).

Para o caso de superfícies rugosas, a equação 68 to<u>r</u> na-se (3):

$$E_{a} = 0,35(1 + 0,01 u_{2})(e^{0} - e)$$
 eq. 70

Rohwer, citado por CHANG (5), determinou, em 1931, a seguinte relação:

$$E_0 = 0,40(1 + 0,17 u_2)(e^0 - e)$$
 eq. 71

Com relação ao termo do balanço de energia da equação de Penman, quando não se dispõe de medidas diretas de Rn, é possível obter-se um valor estimado, a partir da equação:

$$Rn = Q_g(1 - \alpha) - Q_\ell \qquad eq. 72$$

em que, Q_g é a radiação global; α o albedo da superfície; e Q_ℓ corresponde à perda efetiva de radiação pela superfície terrestre, todos tomados em termos médios. Quando são disponíveis medidas de Q_g e α , o termo Q_ℓ pode ser estimado por várias equações.

Uma vez que a planimetria de actinogramas não é normalmente realizada nas estações meteorológicas, a radiação global pode ser estimada por equações empíricas, como a clás sica equação de Angström, ou seja:

$$Q_{\sigma} = Q_0 (a + b n/N) \qquad eq. 73$$

em que, Q_g é a radiação solar global à superfície; Q_0 é a radiação solar que atinge uma superfície plana e horizontal, situada no topo da atmosfera; a e b são constantes empíricas determinadas para cada local. Sá, em 1973, citado por SILVA (18), encontrou como valores médios a = 0,241 e b = 0,584, para Juazeiro, BA. ALVES (1) encontrou valores médios de a e b para todos os meses do ano, em Viçosa, MG. Cervelini, Sala

ti e Godoy, em 1960, encontraram a = 0,24 e b = 0,58, para o Estado de São Paulo, segundo VILLA-NOVA (22).

2.5. Estimativa da Perda Efetiva de Radiação pela Superficie Terrestre (Q_p)

Segundo SELLERS (16), a perda efetiva de radiação p<u>e</u> la superficie terrestre (saldo de radiação de ondas longas ou saldo de radiação infravermelha) consiste de duas componentes básicas: o total de energia de ondas longas emitido para fora da superfície (I⁺), o qual é função da emissividade (ε) e da temperatura (T₀) e a contra-radiação da atmosfera (I⁺), que é função principalmente da temperatura do ar (T_z), do vapor de água precipitável (W_a) e da cobertura de nuvens (n). Assim, tem-se:

$$Q_{\ell} = I \uparrow - I \downarrow = f(T_z, T_0, \varepsilon, W_a, n)$$
 eq. 74

Essas componentes podem ser determinadas por medidas diretas, a partir de cartas de radiação, ou por equações empíricas derivadas de dados medidos.

Muitas fórmulas simples que utilizam comumente parâmetros meteorológicos medidos (temperatura, pressão de vapor e umidade), para estimar a perda efetiva de radiação, em condi ções de céu claro (Q_l) , são usadas quando não forem possíveis medições diretas com pirgeômetros, ou indiretamente, com cartas de radiação. As equações mais usadas são as seguintes:

- Equação de Angström: pode ser escrita da seguinte maneira:

$$I_{\downarrow 0} = \varepsilon \sigma T_{a}^{4} (a_{0} - b_{0} 10^{-C_{0} e})$$
 eq. 75

em que,

I↓o, é a contra-radiação para céu claro;

T, a temperatura absoluta próximo à superfície (K);

ε, a emissividade da superfície;

σ, a constante de Stefan-Boltzmann; é igual a 5,769.10⁻⁸W. m⁻².K⁻⁴ ou 8,14.10⁻¹¹ly.min⁻¹.K⁻⁴

ao, bo e co, são constantes empíricas.

Uma vez que:

 $Q_{\ell} = I^{\dagger} - I^{\dagger}_{0} e I^{\dagger} = \epsilon \sigma T_{0}^{4} e \text{ considerando } T \simeq T_{0},$ então:

$$Q_{\rho} = \varepsilon \sigma T_{\rho}^{4} (1 - a_{0} + b_{0} 10^{-C_{0} e})$$
 eq. 76

Os valores encontrados para as constantes diferem de uma pesquisa para outra, dependendo de como eles são obtidos. Em geral variam nas seguintes faixas: $a_0 = 0,710$ a 0,820; $b_0 = 0,148$ a 0,326 e $c_0 = 0,041$ a 0,094, quando a pressão é dada em milibars.

Geiger, em 1961, citado por JENSEN (7), usou a₀ = 0,820; b₀ = 0,250 e c₀ = 0,094.

O efeito do termo exponencial na equação 76 é pequeno para valores de e superiores a 17 mb. Nessas condições, a perda efetiva de radiação pela superfície terrestre para céu claro, é menor que 20% da radiação infravermelha total emit<u>i</u> da da superfície terrestre. Quando o ar está muito seco, $Q_{\ell}/$ It raramente excede 0,30. Nos Estados Unidos, os valores médios de $Q_{\ell}/$ It são 0;226 e 0,182 para janeiro e julho, respe<u>c</u> tivamente (16).

- Equação de Brunt: expressa a contra radiação para o céu claro, na forma:

$$I \downarrow_{0} = \varepsilon \sigma T_{a}^{4} (a_{1} + b_{1} \sqrt{e}), \text{ logo:}$$

$$Q_{\ell} = \varepsilon \sigma T_{a}^{4} (1 - a_{1} - b_{1} \sqrt{e}) \qquad \text{eq. 77a}$$

em que, $a_1 = 0,256$ e $b_1 = 0,065$. Outros pesquisadores citam valores na faixa de $a_1 = 0,34$ a 0,71 e $b_1 = 0,023$ a 0,110.

Geiger, citado por VILLA-NOVA (22), introduziu em 1950 um fator de correção, U, para dias nublados, estimado por U = 0,1 + 0,9n/N. Assim tem-se:

$$Q_{\ell} = \varepsilon \sigma T_{2}^{4} (1 - a_{1} - b_{1} \sqrt{e}) (0, 1 + 0, 9 n/N)$$
 eq. 77b

em que n é o número real de horas de brilho solar e N é o n \underline{v} mero máximo possível de horas de brilho solar.

Tanner e Pelton, em 1960, citados por SILVA (18), es tabeleceram que o erro padrão da estimativa de Q_{ℓ} por essa fórmula pode atingir cerca de 18 cal.cm⁻².dia⁻¹, quando comparado com valores medidos, desaconselhando-a para curtos periodos de tempo.

- Equação de MeDonald: é conhecida também como equação da umidade relativa. O fluxo infravermelho foi calculado usando-se o diagrama de Elsasser e sondagens médias mensais (U. S. WEATHER BUREAU, 1957) para janeiro e julho, em 53 estações, sendo 45 nos Estados Unidos, 3 no Caribe e 5 no Méx<u>i</u> co.

Esses dados foram bem correlacionados com a umidade relativa (UR) à superfície, com o seguinte resultado para c<u>a</u> da dois meses combinados:

$$Q_{\rho} = \varepsilon(0, 165 - 0, 000769 \text{ UR})$$
 eq. 78

em que Q_{ℓ} é dado em ly.min⁻¹ e UR em percentagem. O erro padrão da estimativa para essa fórmula foi de 0,0085 ɛly.min⁻¹ (16).

- Equações de Swinbank: com base em medidas feitas na Austrália e Oceano Índico, Swinbank concluiu que a contra--radiação pode ser estimada com um alto grau de precisão a partir somente da temperatura da superfície. Assim duas expressões foram propostas, como se segue:

$$Q_{\rho} = \varepsilon (0, 245 - 0, 214 \text{ oT}_{2}^{4})$$
 eq. 79

$$Q_{\ell} = \varepsilon \sigma T_{a}^{4} (1 - 9, 35 \cdot 10^{-6} T_{a}^{2})$$
 eq. 80

Existem outras equações de uso menos difundido, como as propostas por Robitzsch, Elsasser e Loenquist, Anderson, Anderson e Budyko (16).

A maioria dessas equações fornecem valores médios diários de Q_{ℓ} com um erro de até 10%, quando a pressão de v<u>a</u> por da superfície está entre 9 e 27 mb. Para valores maiores ou menores de pressão de vapor, os erros podem tornar-se grandes. Cerca de 70% das estações usadas por McDonald tiveram pressão de vapor à superfície menor que 9 mb em janeiro, e 23% tiveram valores maiores que 27 mb em julho (16).

3. MATERIAL E METODOS

O material e a metodologia utilizados no desenvolvimento desta pesquisa serão descritos em sub-itens, como se segue:

3.1. Escolha da Area

A presente pesquisa foi realizada em Viçosa, MG, cujas coordenadas geográficas são: Latitude 20⁰45' S, Longitude 42⁰51' W e altitude de 651 m em área plantada com grama batatais (*Paspalum notatum* L.), localizada próxima ao Labor<u>a</u> tório de Armazenamento e Processamento de Produtos Vegetais do Departamento de Engenharia Agrícola da Universidade Federal de Viçosa, por ser uma área plana e representativa da to pografia da região, na qual já foram desenvolvidos alguns trabalhos de micrometeorologia.

3.2. Estabelecimento das Fases do Experimento

Com o objetivo de verificar, para as condições climá ticas de Viçosa, as variações temporais de evapotranspiração, os dados foram coletados em duas épocas diferentes, sendo a fase I composta de oito dias em junho e a fase II de 15 dias entre agosto e setembro. As observações foram realizadas às 8 horas de cada dia para ambas as fases.

3.3. Estimativa do Poder Evaporante do Ar

Para estimar o poder evaporante do ar usou-se a equ<u>a</u> ção 70, transformada para:

$$E_a = 0,35(1 + 0,00625 u_2)(e^0 - e),$$

em que a velocidade do vento, a dois metros de altura (u_2) , é expressa em km dia⁻¹ e foi medida por um anemômetro totalizador, de conchas, modelo Belfort, para períodos de 24 horas.

Estimou-se a pressão de vapor de saturação (e⁰) com o auxílio da fórmula de Tetens segundo BERRY *et alii* (4), ou seja:

$$e^{\circ} = 4,58.10^{\left(\frac{7,5}{237,3}+T\right)}$$

em que e^o é expressa em mmHg.

A pressão de vapor atual (e) foi estimada pela seguinte relação:

$$e = \frac{e^{0} UR}{100} eq. 82$$

em que a umidade relativa (UR) é dada em percentagem e a pressão de vapor atual em mmHg.

Obteve-se a umidade relativa (UR) e a temperatura do ar (T) diretamente no local do experimento por meio de um termohigrógrafo modelo Thies, aferido diariamente com as le<u>i</u> turas de um psicrômetro de ventilação forçada modelo Bendix,

e por um termômetro de mercúrio em vidro.

3.4. Estimativa do Balanço de Energia

O saldo de radiação de ondas longas (Q_l) foi obtido por resíduo a partir da equação 72, ou seja:

$$Q_{\ell} = Q_{\alpha}(1 - \alpha) - Rn \qquad eq. 83$$

A radiação global (Q_g) foi medida no local do exper<u>i</u> mento por meio de um piranômetro Lambrecht, nº 2318 (Figura 3), na primeira fase, e um piranômetro Eppley, nº 9653, na segunda fase. Os valores obtidos foram registrados continuamente, por meio de um registrador H & B, na primeira fase, e um "Speedomax H", na segunda fase.

FIGURA 3 - Piranômetro de Lambrecht, nº 2318, e um registrador H & B,usados para medir a radiação global (Q_p)

em que Q_r é a radiação refletida pela superfície em cal.cm⁻². dia⁻¹, a qual foi medida pelo piranômetro Eppley, nº 9653, usando o referido registrador "Speedomax H".

Para o saldo de radiação (Rn), também medido em condições de campo, utilizaram-se dois saldos radiômetros, mod<u>e</u> lo TCN 188-01, séries 1025 e 1051. Os valores obtidos foram também registrados continuamente por "Speedomax H" (Figura 5).

Todos os instrumentos para medir as componentes da radiação solar foram instalados a 1,5 m e altura da superfí cie do solo, em uma plataforma circular de madeira, com 30 cm de diâmetro, acoplada a um suporte, também de madeira, por intermédio de um rolamento que permitia girar em torno do seu centro.

3.5. Estimativa da Evapotranspiração Potencial

Para estimar a evapotranspiração potencial em mm de água por dia, usou-se a equação 64, ou seja:

$$ETP = \frac{\frac{\Delta}{\gamma} \frac{Rn}{0, 1 L} + E_a}{\frac{\Delta}{\gamma} + 1}$$

 $\alpha = \frac{Q_r}{Q_{\sigma}}$

A tangente à curva de saturação do vapor de água (Δ) foi calculada segundo LIST (9) pela equação:

FIGURA 5 - Saldo radiômetro, modelo TCN 188-01 e "Speedomax H", usados na medida e registro do saldo de radiação

$$\Delta = \frac{0.75 \ e^{0}}{T_{a}^{2}} (6790, 5 - 5,02808 \ T_{a} + 4916, 8 .$$

$$\begin{array}{c} -0,0304 \ T_{a} \\ \cdot 10 \\ \end{array} \begin{array}{c} -1302,88 \\ T_{a} \\ -174209.10 \\ \end{array} \begin{array}{c} -1302,88 \\ T_{a} \\ \end{array} \begin{array}{c} -1302,88 \\ T_{a} \\ \end{array} \begin{array}{c} -1302,88 \\ \end{array} \begin{array}{c} -1302,88 \\ T_{a} \\ \end{array} \begin{array}{c} -1302,88 \\ \end{array} \begin{array}{c} -1302,88 \\ T_{a} \\ T_{a} \\ \end{array} \begin{array}{c} -1302,88 \\ T_{a} \\ T_{a} \\ T_{a} \\ T_{a} \\ T_{a} \end{array} \begin{array}{c} -1302,88 \\ T_{a} \\$$

em que Δ é dado em mmHg.^OC⁻¹ e cujos valores encontram-se t<u>a</u> belados no Quadro 3A, em função da temperatura, para uma fa<u>i</u> xa 5 a 45 graus Celsius.

Determinou-se a constante psicrométrica (γ) pela equação 40, ou seja:

$$\gamma = \frac{c_{p}\overline{P}}{0,622 L}$$

Sendo o calor latente de evaporação (L) considerado

como 586 cal.g⁻¹, para a faixa de 20[°]C (6) e o calor específico para o ar seco à pressão constante (c_p) como sendo 0,24 cal.g⁻¹.[°]C⁻¹, enquanto que a pressão atmosférica usada foi a média de cada fase.

3.6. Determinação do Poder Evaporante do Ar

O poder evaporante do ar foi medido por três instrumentos diferentes: através do evaporimetro de Piche, padrão, instalado no interior do abrigo meteorológico; por meio de um evaporímetro de Piche, adaptado, em que o corpo do mesmo foi sombreado por um segmento de cano plástico PVC e o elemento sensor por uma proteção composta de dois discos de duratex preparado, com 6 mm de espessura, sendo as faces inter nas dos mesmos pintadas de preto, não permitindo a reflexão da radiação, enquanto que as faces externas foram pintadas de branco para permitir o máximo de reflexão possível (Figura 6); e, por último, o poder evaporante do ar foi medido por intermédio de um evaporimetro de prato, adaptado, sombreado também por dois discos do mesmo material anteriormente mencionado, em que o inferior foi pintado interna e exter namente de branco, para permitir a reflexão, e o superior, que possuia diâmetro maior, foi também pintado de branco na parte externa e de preto na parte interna para não permitir a reflexão da radiação (Figura 7). Todos esses instrumentos foram instalados a 1,5 m de altura da superfície do solo.

3.7. Determinação da Evaporação da Água Livremente Exposta ã Atmos fera

Para medir a evaporação da água livremente exposta à atmosfera, utilizou-se um tanque "classe A" padrão, instalado conforme as normas da OMM, na área do experimento, total-

mensões são em mm)

FIGURA 7 - Evaporimetro de prato adaptado para medida do poder evaporante do ar (As dimensões são em mm)

-

mente gramada, com uma extensão de aproximadamente 15 m a montante e a jusante dos ventos predominantes no local. A grama foi aparada a uma altura de 5 cm da auperfície do solo. A lâmina de água evaporada foi medida através de um micrômetro de gancho, apoiado sobre um poço tranquilizador. A altura da água no interior do tanque foi controlada de tal maneira que a superfície evaporante permanecesse sempre entre os limites de 5 e 7,5 cm da borda superior do tanque.

3.8. Análise das Equações de Estimativas do Saldo de Radiação de Ondas Longas (2_p)

Foram testadas quatro equações de estimativas do sa<u>l</u> do de radiação de ondas longas. A análise foi feita pelo método estatístico de regressão linear, utilizando-se as equações 77a, 78 e 79. Para a equação 76, por ser da forma não linear, foi usado um programa de computador REGRENL utiliza<u>n</u> do-se o método de MARQUARDT, em linguagem FORTRAN, para determinação dos parâmetros. As demais equações foram usadas na forma Y = a + bX. Os símbolos usados obedecem às conceituações feitas no Quadro 1.

Para o caso deste trabalho, em particular, os valores de Q_{ℓ} foram determinados para dias normais, sem correção para nebulosidade.

3.9. Análise dos Métodos de Estinativa do Poder Evaporante do Ar

O poder evaporante do ar da equação de Penman (E_a) , estimado pela equação 70, foi testado estatisticamente por regressão linear com os valores medidos de evaporação obtidos pelos evaporimetros de Piche padrão e adaptado, pelo eva porimetro de prato adaptado e pelo tanque "classe A" padrão.

QUADRO 1 - Definição dos termos das equações de Ángström, Brunt, McDonald e Swinbank para estimativa do sa<u>1</u> do de radiação de ondas longas (Q_p)

Modelo	Fase	I	Fas	e II
Angström	$YA_1 = \frac{Q_\ell}{\varepsilon \sigma T_a^4}$	$XA_1 = e$	$YA_2 = \frac{Q_\ell}{\varepsilon \sigma T_a^4}$	$XA_2 = e$
Brunt	$YB_1 = 1 - \frac{Q_{\ell}}{\varepsilon \sigma T_a^4}$	$XB_1 = \sqrt{e}$	$YB_2 = 1 - \frac{Q_{\ell}}{\varepsilon \sigma T_a^4}$	$XB_2 = \sqrt{e}$
McDonald	$YM_1 = \frac{Q_{\ell}}{\varepsilon}$	$XM_1 = UR$	$YM_2 = \frac{Q_{\ell}}{\epsilon}$	XM ₂ = UR
Swinbank	$YS_1 = \frac{Q_\ell}{\epsilon}$	$XS_1 = \sigma T_a^4$	$YS_2 = \frac{Q_\ell}{\epsilon}$	$XS_2 = \sigma T_a^4$

A análise de regressão linear foi feita também comparando-se as medidas do evaporímetro de Piche padrão e do tanque "cla<u>s</u> se A" padrão, com o evaporímetro de Piche adaptado e com o evaporímetro de prato adaptado. Os símbolos que representam essas variações podem ser vistos no Quadro 2.

3.10. Análise da Relação entre os Termos "Aerodinâmico" e "Balanço de Energia" da Equação de Penman

A análise da relação entre os termos "aerodinâmico" e "balanço de energia" (J) foi feita, comparando-se os valores desses termos observados para cada dia em ambas as fases. Os referidos termos foram encontrados escrevendo-se a equação de Penman numa outra forma, ou seja:

Definita	Símbolos		
Derinição	Fase I	Fase II	
Poder evaporante do ar da equação de Penman	Eai	Eaz	
Poder evaporante do ar medido no evaporíme- tro de Piche padrão, instalado no interior do abrigo meteorológico	PP1	PP ₂	
Poder evaporante do ar medido no evaporíme- tro de Piche adaptado, instalado fora do abrigo meteorológico	PA1	PA ₂	
Poder evaporante do ar medido no evaporíme- tro de prato adaptado, instalado fora do abrigo meteorológico	EPA ₁	EPA ₂	
Evaporação medida no tanque "classe A" padrão	TCA1 .	TCA ₂	

QUADRO 2 - Definição dos métodos para estimativa do poder evaporante do ar da equação de Penman

$$ETP = \frac{\Delta}{\Delta + \gamma} \frac{Rn}{0, 1 L} + \frac{\gamma}{\Delta + \gamma} E_a \qquad eq. 86$$

em que:

 $\frac{\Delta}{\Delta + \gamma} \frac{Rn}{0, 1 L}$, é o termo do balanço de energia e

 $\frac{\gamma}{\Delta + \gamma} E_a$, o termo aerodinâmico da equação.

Relacionando-se os dois termos, obtém-se:

$$J = \frac{\Delta}{\gamma} \frac{\frac{Rn}{0, 1 L}}{E_a}$$
 eq. 87

4. RESULTADOS E DISCUSSÃO

O presente trabalho foi desenvolvido em duas fases, conforme metodologia já apresentada, ou seja, a fase I, de 19 a 30 de junho e a fase II, de 24 de agosto a 10 de setembro de 1982. Os dados referentes aos dias 22, 24 e 28 de junho, 31 de agosto, 01 e 07 de setembro foram desprezados por terem apresentado valores fora do esperado, em conseqüência de fortes rajadas de ventos, chuvas ou entradas de sistemas frontais, influenciando fortemente os elementos meteorológicos e, conseqüentemente, os valores dos parâmetros observados.

Os valores da pressão de saturação de vapor de água (e⁰), da pressão de vapor atual (e) calculados pelas equações 81 e 82, respectivamente, e da velocidade do vento, medida a dois metros (u₂), encontram-se no Quadro 1A. Com esses parâmetros de entrada, calculou-se o poder evaporante do ar da equação de Penman (E_a) por meio da equação 70, os val<u>o</u> res são apresentados no Quadro 2A. Como se pode observar, os valores de E_a para a fase II são maiores do que para a fase I, em conseqüência da maior velocidade do vento e dos valores mais elevados da diferença entre a pressão de saturação e pressão de vapor atual (e⁰ - e).

O poder evaporante do ar foi medido de três maneiras diferentes, ou seja, por intermédio do PP, PA e EPA conforme definições do item 3.9, e os resultados são também apresenta dos no Quadro 1A. A partir dos valores obtidos verifica-se que o poder evaporante do ar, em termos quantitativos, variou na seguinte ordem decrescente: o evaporímetro de Piche adaptado (PA), o evaporímetro de prato adaptado (EPA) e o evaporímetro de Piche padrão (PP). A priori, percebe-se que os valores obtidos aumentaram da fase I para a fase II.

Com base na afirmativa de Penman de que o termo aero dinâmico depende do poder evaporante do ar, foi feita, neste trabalho, a análise estatística por regressão linear entre o poder evaporante do ar (E_a) , calculado segundo Penman, e os valores do poder evaporante do ar medidos pelos três processos já descritos anteriormente. Essa análise foi feita também correlacionando-se o poder evaporante do ar e a evaporação da água livremente exposta à atmosfera (TCA). Os result<u>a</u> dos de todas as regressões são apresentados no Quadro 3, enquanto que os diagramas com as linhas de regressão e dispersão dos dados observados nas fases I e II estão nas Figuras 8, 9, 10 e 11.

QUADRO 3 - Estimativas dos parâmetros "a" e "b" das equações lineares de regressão entre os valores diários de E_a e PP, PA, EPA e TCA, para Viçosa, MG

			1					
Período	Variáveis		Parâmetros 🗸		Coef. Corr.	Equação		
	Y	Х	a	b	r	Y = a + bX		
Fase I	Eai	PP1	0,50	0,15	0,34	$E_{a1} = 0,50 + 0,15 PP_1$		
	Eai	PA1	-0,07	0,27	0,70	$E_{a1} = -0,07 + 0,27 PA_1$		
	E _{a1}	EPA1	-0,10	0,43	0,61	$E_{a_1} = -0,10 + 0,43 \text{ EPA}_1$		
	Eaı	TCAi	0,04	0,34	0,60	$E_{a_1} = 0,04 + 0,34 \text{ TCA}_1$		
Fase II	Ea 2	PP ₂	0,52	0,55	0,69	$E_{a_2} = 0,52 + 0,55 PP_2$		
	Eaz	PA ₂	0,49	0,33	0,82	$E_{a_2} = 0,49 + 0,33 PA_2$		
	E _{a 2}	EPA ₂	0,43	0,52	0,83	$E_{a2} = 0,43 + 0,52 EPA_2$		
	E _{a 2}	TCA ₂	1,09	0,,33	0,64	$E_{a_2} = 1,09 + 0,33 \text{ TCA}_2$		

FIGURA 8 - Diagramas de dispersão entre as relações dos valo res medidos do poder evaporante do ar da equação de Penman (E_a) e da evaporação no evaporimetro de Piche padrão (PP), em torno das linhas de regressão.

Observando-se os parâmetros listados no Quadro 3, percebe-se que, na regressão entre o poder evaporante do ar (E_a) e a evaporação obtida no evaporimetro de Piche padrão (PP), o coeficiente de correlação (r) comportou-se bem abaixo do valor r = 0,89 encontrado em Israel, por Stanhill, citado por CHANG (5). Acredita-se que a discrepância nos valores encontrados neste trabalho deva-se ao fato de que os dados aqui trabalhados foram correlacionados em termos diários, enquanto que Stanhill trabalhou com dados em bases semanais.

FIGURA 9 - Diagramas de dispersão entre as relações dos valores medidos do poder evaporante do ar da equação de Penman (E_a) e da evaporação no evaporimetro de Piche adaptado (PA), em torno das linhas de regressão.

Entretanto, SILVA (19) encontrou, em 1979, para Viçosa, MG, trabalhando com dados semanais, um coeficiente de correlação igual a 0,60 que é um valor aproximado do coeficiente aqui encontrado, para a fase II.

Comparando-se todas as correlações feitas, verificase que os dados de evaporação que melhor se correlacionaram com o poder evaporante do ar foram aqueles medidos no evapo-

FIGURA 10 - Diagramas de dispersão entre as relações dos valores medidos do poder evaporante do ar da equação de Penman (E_a) e da evaporação no evaporimetro de prato adaptado (EPA), em torno das linhas de regressão.

rímetro de Piche adaptado e instalado fora do abrigo meteoro lógico. Esse resultado é justificado pelo simples fato de que o mesmo está sujeito às variações da advecção e da radia ção difusa do meio ambiente, o que provavelmente não acontece com o evaporímetro instalado no interior do abrigo meteorológico. Isso pode ser perfeitamente observado nas Figuras 12 e 13, em que a plotagem dos valores acumulados, medidos no evaporímetro de Piche padrão e no evaporímetro de Piche

FIGURA 11 - Diagramas de dispersão entre as relações dos valores medidos do poder evaporante do ar da equação de Penman (E_a) e da evaporação no tanque "classe A" padrão (TCA), em torno das linhas de regressão.

adaptado, mostra uma subestimativa do primeiro, com relação ao poder evaporante.

Ainda com o objetivo de testar qual o evaporímetro que melhor estima o poder evaporante do ar, correlacionaram--se os valores medidos no evaporímetro de Piche padrão e no tanque "classe A" com os valores obtidos pelos dois evaporímetros adaptados. Os resultados encontram-se no Quadro 4 a

57

FIGURA 12 - Variações dos valores acumulados do poder evaporante do ar para a fase I, medidos no evaporimetro de Piche padrão, instalado no interior do abrigo meteorológico, e no evaporimetro de Piche adaptado, instalado fora do abrigo meteorológico, em condições de sombreamento

seguir, e os diagramas com as linhas de regressão e dispersão dos dados observados na fase I e II, acham-se nas Figuras 14, 15, 16 e 17.

Como pode ser visto no Quadro 4, existe uma correl<u>a</u> ção razoável entre os valores observados no evaporímetro de

FIGURA 13 - Variações dos valores acumulados do poder evaporante do ar para a fase II, medidos no evaporímetro de Piche padrão, instalado no interior do abrigo meteo rológico, e no evaporímetro de Piche adaptado, instalado fora do abrigo meteorológico, em condições de sombreamento

Período	Variáveis		Parâmetros		Coef. Corr.	Equação		
	Y	X	a	b	r		Y = a + bX	
	PP1	PA1	-0,12	0,69	0,80	PP1	$= -0,12 + 0,69 \text{ PA}_1$	
Eaco I	PP ₁	EPA1	-0,20	1,11	0,70	PP1	= -0,20 + 1,11 EPA ₁	
rase 1	TCA1	PA1	0,23	0,64	0,93	TCA1	= 0,23 + 0,64 PA ₁	
	TCA1	EPA1	0,10	1,05	0,83	TCA1	= 0,10 + 1,05 EPA ₁	
	PP ₂	PA ₂	0,59	0,49	0,96	PP ₂	= 0,59 + 0,49 PA ₂	
Faco II	PP ₂	EPA ₂	0,57	0,74	0,94	PP2	= 0,57 + 0,74 EPA ₂	
rase 11	TCA ₂	PA ₂	-0,23	0,70	0,92	TCA ₂	$= -0,23 + 0,70 \text{ PA}_2$	
	TCA ₂	EPA ₂	-0,30	1,08	0,91	TCA ₂	$= -0,30 + 1,08 \text{ EPA}_2$	

QUADRO 4 -	Estimativas	dos parâmetros	"a" e "b" da	s equações
	lineares de	regressão entre	os valores	diários de
	PP, TCA e PA	e EPA, para Vi	çosa, MG	

Piche padrão e no evaporimetro de Piche adaptado, para ambas as fases, tendo esta apresentado um coeficiente de correlação maior que o encontrado para a relação evaporimetro Piche padrão e evaporimetro de prato adaptado. Esse resultado deixa claro que a substituição do eveporimetro de Piche padrão pelo evaporimetro de Piche adaptado apresenta apenas uma pequena vantagem, em termos quantitativos, na determinação do poder evaporante do ar.

A alta correlação entre os dados medidos no tanque "classe A" e nos evaporimetros adaptados, PA e EPA, pode ser explicada levando-se em consideração que os evaporimetros fo ram instalados a 1,5 metros de altura da superfície do solo, nível no qual a velocidade do vento é em média 20% maior que na altura da borda do tanque "classe A", além do problema de estrutura do material usado na adaptação dos evaporimetros.

FIGURA 14 - Diagramas de dispersão entre as relações dos valores da evaporação medidos no evaporimetro de Piche padrão (PP) e no evaporimetro de Piche adaptado (PA), em torno das linhas de regressão.

Acredita-se que esses fatores contribuem para melhorar a cor relação com a quantidade de água evaporada no tanque "classe A" exposto sob condições de incidência direta da radiação so lar.

Conforme metodologia apresentada no item 3.4, o balanço de energia foi medido e os valores obtidos para a radiação global (Q_g) , saldo de radiação (Rn) e saldo de radia-

FIGURA 15 - Diagramas de dispersão entre as relações dos valores de evaporação medidos no evaporimetro de Piche padrão (PP) e no evaporimetro de prato adap tado (EPA), em torno das linhas de regressão.

ção de ondas longas (Q_{ℓ}) encontram-se no Quadro 1A.

O albedo (α) da superfície gramada foi determinado através de observações cumulativas diárias conforme já descrito anteriormente. Os resultados para seis dias consecutivos da fase I foram 19%, 21%, 21%, 18%, 20% e 20%, resultando uma média de aproximadamente 20%. Como se observa, o valor estimado foi ligeiramente menor que os valores encontrados na literatura. ROBINSON (14), por exemplo, cita valores

FIGURA 16 - Diagramas de dispersão entre as relações dos valores da evaporação medidos no tanque "classe A" padrão (TCA) e no evaporimetro de Piche adaptado (PA), em torno das linhas de regressão.

de 18 a 20% para grama alta e densamente desenvolvida, 26% para grama verde e 19% para grama seca ao sol. Defende-se um argumento importante para tal justificativa, qual seja, o f<u>a</u> to de que, neste trabalho, o albedo foi representado pela r<u>e</u> lação entre as integrações totais diárias das curvas da radiação refletida e incidente global, ao passo que os valores encontrados na literatura são provavelmente determinados in<u>s</u> tantaneamente. Com a finalidade de comprovar tal justificat<u>i</u> va, estimou-se o albedo com valores instantâneos para o dia 20 de junho, da fase I, e encontrou-se um valor médio de 24%.

FIGURA 17 - Diagramas de dispersão entre as relações dos valores da evaporação medidos no tanque "classe A" padrão (TCA) e no evaporimetro de prato adaptado (EPA), em torno das linhas de regressão.

Outros pesquisadores, como VIANELLO e ALVES* também encontr<u>a</u> ram um valor de 24% para o mesmo local, porém em época diferente, em que a grama estava bastante verde e o solo encontrava-se consideravelmente úmido, além de o valor médio ter sido estimado através da média dos valores instantâneos, em alguns horários de um dia escolhido aleatoriamente.

O saldo de radiação de ondas longas (Q_{ρ}) foi calcula

^{*} R. L. VIANELLO e A. R. ALVIS, Departamento de Engenharia Agrícola, UFV, Comunicação pessoal.

do por resíduo, conforme metodologia citada no item 3.4. Esse parâmetro é geralmente estimado por fórmulas empíricas quando do uso da equação de Penman para estimativas de evapo transpiração.

Testaram-se quatro equações empiricas cujos parâmetros de entrada foram determinados em condições de campo ne<u>s</u> ta pesquisa. As equações testadas pelo método dos mínimos quadrados foram as de Angström (Equação 76), Brunt (Equação 77a), McDonald (Equação 78) e Swinbank (Equação 79). Os resultados das análises encontram-se no Quadro 5, e os diagramas com as linhas de regressão e dispersão dos dados observ<u>a</u> dos nas duas fases, encontram-se nas Figuras 18, 19,20 e 21.

Para todas as equações, a emissividade da superfície (ε) foi considerada constante e de valor igual à unidade.

Na análise da equação de Angström, a pressão atmosfé rica foi usada em mb. Os valores encontrados para as constan tes empíricas "ao" e "co" encontram-se aproximadamente dentro da faixa apresentada por SELLERS (16), isto é, $a_0 = 0,710$ a $0,820 \text{ e } c_0 = 0,041 \text{ a } 0,094$. Porém os valores encontrados para "bo" apresentaram uma diferença significativa da faixa citada na literatura, isto é, $b_0 = 0,148$ a 0,326, além de ter apresentado uma grande variação de uma fase para outra. Isso leva a crer que o parâmetro "bo" está de uma certa forma intrinsicamente associado às variações temporais para o mesmo local. Das quatro equações testadas esta foi a que apresentou maior coeficiente de correlação (r = 0,90) para ambas as fases, embora o seu manuseio seja um pouco mais com plexo que as outras.

Depois de analisada a equação de Brunt, observa-se que os valores encontrados para os parâmetros " a_1 " e " b_1 " en quadram-se satisfatoriamente nas faixas apresentadas por SEL LERS (16), ou seja, $a_1 = 0,34$ a 0,71 e $b_1 = 0,023$ a 0,110. O coeficiente de correlação encontrado foi r = 0,90 para a fase I e 0,87 para a fase II. Essa equação foi ainda testada para cinco dias aproximadamente claros, com razão de insolação (n/N) maior ou igual a 0,78 e os valores encontrados foram $a_1 = 0,46561$, $b_1 = 0,13669$, para um coeficiente de corre

QUADRO 5 - Estimativas dos parâmetros "a₀, b₀ e c₀" da equação de Angström, "a₁ e b₁" da equação de Brunt, "a₂ e b₂" da equação de McDonald e "a₃ e b₃" da equação de Swinbank, nas fases I e II, para cálculo do saldo de radiação de ondas longas (Qℓ), em Viçosa, MG

Método	Fase I	Fase II
Angström	$a_{0} = 0,92517$ $b_{0} = 0,72572$ $c_{0} = 0,06341$ r = 0,90 $Q_{\ell} = \varepsilon \sigma T_{a}^{4} [1 - 0,92517 + 0,72572 + 10^{(-0,06341 e)}]$	$a_{0} = 0,95218$ $b_{0} = 2,89316$ $c_{0} = 0,13508$ r = 0,90 $Q_{\ell} = \varepsilon^{\sigma}T_{a}^{4} [1 - 0,95218 + 2,89316 \cdot 10^{(-0,13508 e)}]$
Brunt	$a_{1} = 0,63418$ $b_{1} = 0,06468$ r = 0,90 $Q_{\ell} = \varepsilon \sigma T_{a}^{4} (1 - 0,63418 - 0,06468\sqrt{e})$	$a_{1} = 0,54246$ $b_{1} = 0,11219$ r = 0,87 $Q_{\ell} = \varepsilon \sigma T_{a}^{4}(1 - 0,54246 - 0,11219\sqrt{e})$
McDonald	$a_{2} = 0,21141$ $b_{2} = -0,00159$ r = -0,49 $Q_{\ell} = \varepsilon (0,21141 - 0,00159 \text{ UR})$	$a_{2} = 0,19789$ $b_{2} = -0,00205$ r = -0,64 $Q_{\ell} = \varepsilon(0,19789 - 0,00205 \text{ UR})$
Swinbank	$a_{3} = 0,37592$ $b_{3} = -0,51582$ r = -0,84 $Q_{\ell} = \varepsilon (0,37592 - 0,51582 \text{ s}^{\text{T}^{4}})$	$a_{3} = 0,63547$ $b_{3} = -1,00567$ r = -0,78 $Q_{\ell} = \varepsilon (0,63547 - 1,00567 \sigma T_{a}^{4})$

FIGURA 18 - Diagramas de dispersão entre as relações YA e XA, em torno das li nhas de regressão, em que YA = $\frac{Q_{\ell}}{\varepsilon \sigma T_a^4}$ e XA = e (pressão de vapor atual em mb) são as variáveis da equação de Angström, para estimati va do saldo de radiação de ondas longas (Q_l)

lação r = 0,87, aproximadamente o mesmo encontrado para a f<u>a</u> se II. A linha de regressão e a dispersão dos dados observados encontram-se na Figura 22. Como já era esperado, essa equação apresentou uma alta correlação, reafirmando assim sua eficiência, além da vantagem de sua simplicidade de man<u>u</u> seio. Tudo isso justifica o seu uso tão difundido.

Os valores encontrados para os parâmetros "a" e "b" da equação de McDonald diferem um pouco dos valores encontr<u>a</u> dos na literatura, que são a = 0,165 e b = 0,000769. Entretanto, vale a pena salientar que os parâmetros encontrados

neste trabalho foram obtidos para valores diários, enquanto que o citado pesquisador trabalhou com médias mensais e a sua equação foi originalmente baseada para dois meses combinados. O baixo coeficiente de correlação encontrado para as duas fases, -0,49 para a fase I e -0,64 para a fase II, demonstra a inviabilidade dessa equação, para valores diários, em Viçosa, MG.

Para os parâmetros "a" e "b" da equação de Swinbank, foram encontrados valores consideravelmente diferentes dos valores encontrados e citados pelo pesquisador, para a Austrália, que são a = 0,245 e b = 0,214, e apresentou também

FIGURA 21 - Diagramas de dispersão entre as relações YS e XS, em torno das linhas de regressão, em que YS = $\frac{Q_{\ell}}{\varepsilon}$ e XS = σT_a^4 são as variáveis da equação de Swinbank para estimativa do saldo de radiação de ondas longas (Q_p)

coeficiente de correlação inferior ao encontrado para o méto do de Brunt. Os valores encontrados foram: -0,84 para a fase I e -0,78 para a fase II. Isso torna desaconselhável o uso da referida fórmula na estimativa do saldo de radiação de o<u>n</u> das longas.

Acredita-se que a baixa correlação para os dois últ<u>i</u> mos métodos se deve à pouca representatividade da umidade r<u>e</u> lativa e da temperatura do ar como parâmetros de entrada para estimativa do saldo de radiação de ondas longas.

A relação entre os termos "aerodinâmico" e "balanço

de energia" foi feita para cada dia e confirmou-se que, geralmente, o termo aerodinâmico é menor que o termo do balanço de energia e que, à medida em que a temperatura do ar aumenta, o termo do balanço de energia torna-se mais importantante. Os resultados acham-se no Quadro 2A, no qual se obse<u>r</u> vam claramente os valores extremos, que evidenciam a maior importância do termo balanço de energia sobre o termo aerod<u>i</u> nâmico numa faixa de aproximadamente 1 a 10 com a média de 7,17 na fase I e de 3,41 na fase II. Essa importância pode ser perfeitamente vista na Figura 23, na qual foram plotados os valores diários de ambos os termos para as fases I e II.

A evapotranspiração potencial (ETP) foi calculada p<u>a</u> ra Viçosa, MG, através da equação 64, por duas maneiras dif<u>e</u> rentes. A primeira (ETP_m) com todos os parâmetros medidos, e a segunda (ETP_e) com os parâmetros E_a e a componente Q_ℓ de Rn estimados pelas equações que melhor representaram o termo aerodinâmico e saldo de radiação de ondas longas, ou seja,

para a fase I:

$$E_{a} = -0,07 + 0,27 PA_1$$
 eq. 88

$$Q_{\beta} = \varepsilon \sigma T_{a}^{4} (1 - 0, 63418 - 0, 06468 \sqrt{e})$$
 eq. 89

e para a fase II:

$$E_{22} = 0,49 + 0,33 PA_2$$
 eq. 90

$$Q_{\rho} = \varepsilon \sigma T_{\alpha}^{4} (1 - 0,54246 - 0,11219\sqrt{e})$$
 eq. 91

Após calculada a evapotranspiração potencial segundo Penman pelas duas maneiras citadas, foi feita uma análise discriminante na relação 1:1, conforme Figura 24. Observa-se que os valores de ETP_e acima de 3,0 mm foram subestimados na função discriminante, ao passo que, para os valores inferiores a 3,0 mm, os desvios foram menores. As linhas de regressão com a dispersão dos dados observados encontram-se na Figura 24.

A evapotranspiração potencial calculada com todos os parâmetros medidos foi comparada com a evaporação da superf<u>í</u> cie de água livremente exposta à atmosfera, medida por meio

10

FIGURA 23 - Curso diário dos termos do balanço de energia e aerodinâmico da equação de Penman, em Viçosa, MG

Evapotranspiração potencial - parâmetros estimados (ETP_e) (mm.dia⁻¹)

FIGURA 24 - Função discriminante (1:1) para os pontos de dispersão entre as relações dos valores de evapotran<u>s</u> piração potencial, obtidos pela equação de Penman, com todos os parâmetros medidos (ETP_m) e com os p<u>a</u> râmetros E_a e Q_l estimados (ETP_e), para Viçosa, MG.

do tanque "classe A" e com o saldo de radiação. Essa compar<u>a</u> ção pode ser observada na Figura 25, em que foram plotados os valores diários dos três parâmetros, para todos os dias de ambas as fases. Como pode ser observado, de uma maneira

FIGURA 25 - Variações do saldo de radiação à superfície (Rn), em milímetro de evaporação equivalente, da evaporação medida no tanque "classe A" padrão (TCA) e da eva potranspiração potencial segundo Penman, determinada com todos os parâmetros medidos (ETP_m)

geral a evaporação e a evapotranspiração são menores que o saldo de radiação. Entretanto, em determinados dias a evaporação e a evapotranspiração chegam a se igualar e até a sup<u>e</u> rar o saldo de radiação, como por exemplo, os dias 06 e 07 de setembro, na fase II. Isso pode ser justificado pelo aumento da advecção, acarretando um acréscimo no termo aerodinâmico e, conseqüentemente, aumentando a importância de sua contribuição na evaporação e evapotranspiração potencial.

Quando a bordadura possui uma extensão significativa, o efeito da advecção tende a ser amortecido, uma vez que o ar circulante sobre a área, de uma certa forma entra em equilibrio na interface solo-atmosfera, adquirindo características próprias do local, concorrendo para que o termo aerodinâmico torne-se praticamente constante. No caso deste trabalho isso não aconteceu, visto que a bordadura era de certa forma irregular e de pequena extensão.

5. RESUMO E CONCLUSÕES

Testaram-se para Viçosa, MG, quatro tipos diferentes de evaporímetro com a finalidade de escolher aquele que melhor representasse o poder evaporante do ar da equação de Penman. O melhor resultado foi apresentado pelo evaporímetro de Piche adaptado, instalado fora do abrigo meteorológico, em condições de sombreamento. Quando comparado com o poder evaporante do ar, calculado com os dados medidos segundo Pen man, encontraram-se coeficientes de correlação de 0,70 para a fase I e 0,82 para a fase II. As equações que melhor se apresentaram para a estimativa do poder evaporante do ar para Viçosa, MG, foram:

- para a fase I:

 $E_{a_1} = -0,07 + 0,27 PA_1$

- para a fase II:

 $E_{a_2} = 0,49 + 0,33 PA_2.$

Foram analisadas também quatro equações empíricas p<u>a</u> ra estimativa do saldo de radiação de ondas longas. Os resu<u>l</u> tados apresentados evidenciaram a equação de Angström como a melhor, com um coeficiente de correlação de 0,90 para ambas as fases. Como essa equação apresentou grandes variações no termo "b₀", e devido à complexidade no manuseio, torna-se d<u>e</u> saconselhável o seu uso. Em seguida, a equação que melhor se correlacionou com os dados observados foi a de Brunt que apresentou coeficientes de correlação de 0,90 para a fase I e 0,87 para a fase II. Por apresentar uma correlação razoável, pela sua facilidade de manipulação e pelo seu uso tão difundido, essa foi a equação empregada para a estimativa do saldo de radiação de ondas longas, com parâmetros determinados para o local, e expressa nas seguintes formas:

- para a fase I:

 $Q_{p} = \varepsilon \sigma T_{a}^{4} (1 - 0, 63418 - 0, 06468 \sqrt{e})$

- para a fase II:

 $Q_{\ell} = \varepsilon \sigma T_a^4 (1 - 0, 54246 - 0, 11219 \sqrt{e})$

O termo aerodinâmico da equação de Penman foi comparado com o termo do balanço de energia e constatou-se a supremacia do termo do balanço de energia numa razão que variou na faixa de 1 a 10, com a média de 7,17 na fase I e 3,41 na fase II.

A evapotranspiração potencial foi calculada segundo Penman com todos os parâmetros medidos e com os parâmetros $E_a \in Q_\ell$ estimados pelas equações descritas anteriormente. A análise discriminante para a função 1:1 evidenciou pequenos desvios dos pontos observados, principalmente para ETP inferior a 3 mm.

Comparando-se o saldo de radiação na superfície, a evaporação da superfície de água livremente exposta à atmosfera e a evapotranspiração potencial, conclui-se que, mesmo que o termo do balanço de energia tenha apresentado superioridade, em termos quantitativos, sobre o termo aerodinâmico, não se pode generalizar tal grau de importância na determin<u>a</u> ção da evaporação e evapotranspiração, em decorrência da grande variação advectiva local.

8

Os parâmetros medidos e estimados apresentaram uma grande variação de uma fase para outra, e, conseqüentemente, variaram também as equações propostas. Conclui-se que a simplificação da equação de Penman para Viçosa, MG, só será po<u>s</u> sível se esse mesmo trabalho for conduzido para cada mês do ano, e desenvolvida uma equação geral representativa para o ciclo anual.

6. LITERATURA CITADA

- ALVES, A.R. Irradiância solar global em superficies de diferentes inclinações e azimutes, para Viçosa, MG. Vi çosa, UFV, 1981. 92 p. (Tese de M.S.).
- ANDRÉ, A.G.B. Um estudo dos transportes verticais de momentum, calor sensível e vapor d'água sobre superficie vegetada nos trópicos. São José dos Campos, INPE, 1980. 112 p. (Tese de D.S.).
- BERLATO, M.A. & MOLION, L.C.B. Evaporação e evapotranspiração.
 Porto Alegre, Instituto de Pesquisas Agronômicas. 1981. 95 p. (Boletim Técnico, nº 7).
- 4. BERRY, F.A.; BOLLAY, E. & BEERS, N.R. Handbook of meteor ology. New York, McGraw-Hill Book C.⁰, 1945. 1068 p.
- CHANG, JEN-HU. Climate and agriculture. Chicago, Aldine. 1968. 295 p.
- 6. GEIGER, R. The climate near the ground. 4 ed. Cambridge, Harvard University Press, 1973. 611 p.

6. LITERATURA CITADA

- ALVES, A.R. Irradiância solar global em superficies de diferentes inclinações e azimutes, para Viçosa, MG. Vi çosa, UFV, 1981. 92 p. (Tese de M.S.).
- ANDRÉ, A.G.B. Um estudo dos transportes verticais de momentum, calor sensível e vapor d'água sobre superficie vegetada nos trópicos. São José dos Campos, INPE, 1980. 112 p. (Tese de D.S.).
- BERLATO, M.A. & MOLION, L.C.B. Evaporação e evapotranspiração.
 Porto Alegre, Instituto de Pesquisas Agronômicas. 1981. 95 p. (Boletim Técnico, nº 7).
- 4. BERRY, F.A.; BOLLAY, E. & BEERS, N.R. Handbook of meteor ology. New York, McGraw-Hill Book C.⁰, 1945. 1068 p.
- CHANG, JEN-HU. Climate and agriculture. Chicago, Aldine. 1968. 295 p.
- 6. GEIGER, R. The climate near the ground. 4 ed. Cambridge, Harvard University Press, 1973. 611 p.

- SHAW, R.H. Micrometeorology. Purdue University, 1977.
 136 p. (Class Notes).
- SILVA, M.A.V. Evapotranspiração em cultura irrigada no semi-árido sub-médio São Francisco. São José dos Campos, INPE, 1977. 97 p. (Tese de M.S.).
- 19. SILVA, W.J. Estimativa da evaporação potencial, em condições de campo, usando o tanque "classe A" modificado. Viçosa, UFV, 1979. 60 p. (Tese de M.S.).
- 20. TANNER, C.B. Evaporation of water from plants and soils. In: Kozlowski, T.T., ed. Water deficit and plant growth. New York, Academic Press, 1968. p. 73-106.
- TUBELIS, A. & NASCIMENTO, F.J.L. Meteorologia descritiva: fundamentos e aplicações brasileiras. São Paulo, Nobel. 1980. 373 p.
- VILLA-NOVA, N.A. A estimativa da evaporação potencial no estado de São Paulo. Piracicaba, ESALQ, 1967. 66 p. (Tese de D.S.).
- 23. WEBB, R.H. Aerial microclimate. In: American Meteorological Society, ed. Meteorological Manographs - Agricul tural Meteorology. Boston, American Meteorological Society, 1965. 188 p.
- 24. WITHERS, B. & VIPOND, S. Irrigação: projeto e prática. São Paulo, EPU e EDUSP. 1977. 399 p.

APÊNDICE
QUADRO 2A - Valores diários calculados para Viçosa, MG, a partir dos dados observados, nos períodos de 19 a 30 de junho (fase I) e 24 de agosto a 10 de setembro (fase II) de 1982

and wh

Die	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
				10110-0-0						10	11	12	15	14		10		10
		Fase I																
19 20 21 22 23 24 25 27 28 29	10,74 10,74 10,74 10,74 10,74 10,74 10,74 10,74 10,74 10,75	14,26 15,19 17,75 15,87 15,87 17,97 19,00 18,09 18,31 16,48	12,14 12,96 15,43 14,14 14,34 15,94 17,16 16,06 16,54 14,91	2,12 2,23 2,32 1,73 1,53 2,03 1,84 2,03 1,77 1,57	1,9707 2,0828 2,3878 2,1650 2,1650 2,4139 2,5337 2,4270 2,4533 2,2372 2,3772 2,2372 2,37	826,85 838,80 867,60 847,30 846,43 870,34 880,99 871,06 873,65 853,63	1,0368 1,0309 1,0471 0,9260 - 0,6750 0,9738 0,6456 0,9014 0,9323 0,7041	0,9290 0,8345 0,9830 0,8885 0,5915 1,0235 0,7805 0,9830 1,2125 0,8075	116,14 111,54 96,95 103,88 102,32 93,64 86,23 92,87 89,79 99,08	131,73 182,58 176,53 75,19 107,91 192,27 169,71 197,81 218,47 137,71	2,1833 3,1845 2,9811 1,4939 1,7106 3,0171 2,7971 3,5391 3,4113 2,3539 2,5574	2,2480 3,1157 3,0125 1,2831 1,8414 3,2810 2,8960 3,3756 3,7282 2,3500 2,4783	1,3665 1,4181 1,5584 1,4559 1,4559 1,5704 1,6255 1,5764 1,5885 1,4891	1,4483 2,1515 2,1012 1,0219 1,1701 2,1333 2,0055 2,5064 2,4235 1,6268	$\begin{array}{c} 0,3490\\ 0,3344\\ 0,3091\\ 0,2926\\ 0,2133\\ 0,2852\\ 0,1827\\ 0,2630\\ 0,2700\\ 0,2175\\ 0,2175\\ \end{array}$	4,1499 6,4338 6,7981 3,4927 5,4865 7,4790 10,9775 9,5289 8,9766 7,4792	1,7974 2,4859 2,4102 1,3145 1,3834 2,4186 2,1882 2,7694 2,6934 1,8843 1,9567	1,8040 2,3757- 2,4134 1,1584 1,4465 2,6197 2,2973 2,6774 2,9997 1,8735
30	10,76	15,38	14,00	1,38	2,1061	841,39	0,6693	0,8210	104,17	145,25	2,5074	2,4/03	1,4288	1,7408	0,2155	8,0788	1,9503	1,9447
		Fase II																
24 25 26 27 28 29 30 31 01 01 01 01 01 01 01 01 01 01 01 01 01	11,45 11,47 11,49 11,51 11,55 11,55 11,57 11,59 11,61 11,63 11,65 11,67 11,69 11,71 11,73 11,75 11,77 11,79	15,67 15,87 16,89 16,58 16,89 15,87 13,21 17,32 17,97 16,17 16,17 14,35 14,26 17,11 13,81 11,68 13,04 13,46	11,40 11,76 12,56 12,80 12,47 10,79 8,99 12,14 13,37 13,53 12,30 11,06 10,52 10,52 8,99 7,76 8,34 9,21	4,27 4,11 4,33 3,78 4,42 5,08 4,22 5,18 4,60 2,64 3,87 3,29 3,74 6,592 3,92 4,70 4,25	2,1411 2,1650 2,2863 2,2496 2,2863 2,1650 1,8426 2,3367 2,4139 2,2009 2,2009 2,2009 2,2009 1,9817 1,9707 2,3115 1,9163 1,6541 1,8220 1,8739	844,99 847,30 858,10 855,36 858,10 846,43 813,89 863,57 869,90 849,89 850,46 828,29 826,85 860,83 821,67 792,43 811,01 817,63	2,0933 2,0665 2,1947 1,8700 2,2422 2,9558 2,1356 2,7935 2,4621 1,3948 2,3647 1,4756 1,8562 4,6198 3,3125 2,3540 2,4852 2,0284	2,1400 2,1235 2,0080 1,7605 2,1070 2,7670 2,5690 1,9750 1,6450 1,1005 2,0740 1,6285 1,8760 3,5095 2,8990 2,9320 3,0640 2,5030	66,54 61,69 51,43 48,04 52,66 75,35 98,61 57,55 41,16 38,14 54,50 69,93 77,44 80,62 99,55 114,91 108,31 95,72	229,49 213,27 203,15 140,34 208,67 286,76 253,77 323,11 290,72 87,84 181,64 156,59 205,53 284,81 127,31 327,59 332,60 293,99	3,6176 4,0377 3,3911 2,2606 3,3800 4,8365 4,6403 4,1014 3,6398 1,1662 3,5072 2,8051 3,6398 5,0493 2,7995 5,3367 5,5631 4,9000	3,9162 3,6394 3,4667 2,3949 3,5610 4,8935 4,3305 5,5139 4,9611 1,4989 3,0996 2,6722 3,5074 4,8603 2,1726 5,5903 5,6757 5,0169	1,4449 1,4559 1,5117 1,4948 1,5117 1,4559 1,3076 1,5349 1,5704 1,4724 1,4724 1,4724 1,3716 1,5233 1,3209 1,2981 1,3220	2,4659 2,7620 2,3592 1,5649 2,3515 3,3084 3,0079 2,8722 2,5736 0,8019 2,4115 1,8643 2,4145 3,5245 1,8396 3,3260 3,5917 3,1950	0,6664 0,6529 0,6678 0,5755 0,6823 0,9339 0,7513 0,8372 0,7212 0,4358 0,7388 0,7388 0,7388 0,4949 0,6248 1,3951 1,1359 0,8869 0,8807 0,7058	3,7002 4,2302 3,5326 2,7195 3,4464 3,5426 4,0036 3,4307 3,5685 1,8402 3,2642 3,2642 3,2642 3,2642 3,2642 3,7672 3,8643 2,5265 1,6195 3,7500 4,0785 4,5268	3,1323 3,4149 3,0270 2,1404 3,0338 4,2423 3,7592 3,7094 3,2948 1,2376 3,1503 2,3592 3,0394 4,9196 2,9754 4,2129 4,4724 3,9008	3,3507 3,1604 3,0228 2,1997 3,1186 4,2216 3,7108 4,4533 3,9897 1,3744 2,7792 2,3222 2,9582 4,4524 2,4217 4,5887 4,7502 4,1422

85

~ 1 D

QUADRO 3A - Valores da tangente à curva de pressão de saturação de vapores (Δ) para as temperaturas de 5 a 45[°]C

					100					
T (^O C)) 0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
					— mmHg	°C ⁻¹ -				
05	0,4565	0.4593	0,4621	0,4650	0,4679	0.4707	0,4736	0.4766	0.4795	0.4824
06	0,4854	0,4884	0,4914	0,4944	0,4974	0,5004	0,5035	0.5065	0,5096	0,5127
07	0,5159	0,5190	0,5221	0,5253	0,5285	0,5317	0,5349	0,5381	0,5414	0,5447
08	0,5479	0,5512	0,5546	0,5579	0,5612	0,5646	0,5680	0.5714	0,5748	0,5783
09	0,5817	0,5852	0,5887	0,5922	0,5957	0,5993	0,6028	0,6064	0,6100	0,6136
10	0,6172	0,6209	0.6246	0,6283	0,6320	0,6357	0,6394	0,6432	0,6470	0,6508
11	0,6546	0,6584	0,6623	0,6662	0,6701	0,6740	0,6779	0,6819	0,6859	0,6899
12	0,6939	0,6979	0,7020	0,7060	0,7101	0,7143	0,7184	0,7225	0,7267	0,7309
13	0,7351	0,7394	0,7436	0,7479	0,7522	0,7565	0,7609	0,7652	0,7696	0,7740
14	0.7785	0,7829	0,7874	0,7919	0,7964	0,8009	0,8055	0,8101	0,8147	0,8193
15	0,8239	0,8286	0,8333	0,8380	0,8427	0,8475	0,8523	0,8571	0,8619	0,8668
16	0.8716	0,8765	0,8814	0,8864	0,8914	0,8963	0,9014	0,9064	0,9115	0,9165
17	0,9217	0,9268	0,9319	0,9371	0,9423	0,9476	0,9528	0,9581	0,9634	0,9687
18	0,9741	0,9795	0,9849	0,9903	0,9957	1,0012	1,0067	1,0123	1,0178	1,0234
19	1:0290	1,0346	1,0403	1,0460	1,0517 '	1,0574	1,0632	1,0690	1,0748	1,0807
20	1,0865	1,0924	1,0984	1,1043	1,1103	1,1163	1,1223	1,1284	1,1345	1,1406
21	1,1468	1,1529	1,1591	1,1654	1,1716	1,1779	1,1842	1,1906	1,1969	1,2033
22	1,2098	1,2162	1,2227	1,2292	1,2358	1,2424	1,2490	1,2556	1,2623	1,2690
23	1,2757	1,2824	1,2892	1,2960	1,3029	1,3097	1,3166	1,3236	1,3305	1,3375
24	1,3446	1,3516	1,3587	1,3658	1,3730	1,3802	1,3874	1,3946	1,4019	1,4092
25	1,4166	1,4240	1,4314	1,4388	1,4463	1,4538	1,4613	1,4689	1,4765	1,4841
26	1,4918	1,4995	1,5072	1,5150	1,5228	1,5306	1,5385	1,5464	1,5544	1,5623
. 27	1,5703	1,5784	1,5864	1,5946	1,6027	1,6109	1,6191	1,6273	1,6356	1,6440
28	1,6523	1,6607	1,6691	1,6776	1,6861	1,6946	1,7032	1,7118	1,7204	1,7291
29	1,7378	1,7466	1,7554	1,7642	1,7731	1,7820	1,7909	1,7999	1,8089	1,8180
30	1,8271	1,8362	1,8453	1,8546	1,8638	1,8731	1,8824	1,8918	1,9012	1,9106
51	1,9201	1,9296	1,9391	1,9487	1,9584	1,9680	1,9778	1,9875	1,9973	2,0071
54	2,01/0	2,0269	2,0369	2,0469	2,0569	2,0670	2,0771	2,0873	2,0975	2,1077
33	2,1180	2,1285	2,1387	2,1491	2,1595	2,1700	2,1806	2,1912	2,2018	2,2124
34	2 7726	2,2339	2,2447	2,2555	2,2004	2,2/13	2,2883	2,2995	2,3104	2,5215
35	2,3320	2,3438	2,3551	2,3004	2,3/1/	2,3890	2,4005	2,4119	2,4234	2,4350
30	2,4400	2,4584	2,4099	2,481/	2,4934	2,5053	- 2,51/1	2,5291	2,5410	2,5530
3/	2,5051	2,5/12	2,5894	2,0010	2,0138	2,0201	2,0385	2,0509	2,0033	2,0758
30	2 8165	2 8206	2 9/27	2 9550	2 9602	2,7518	2,7047	2 0002	2 0226	2 0741
40	2 0407	2 0633	2 0760	2 0006	2,0092	2,0024	2,8958	3 0460	2,9220	2,9301
40	3 0000	3 1021	3 1163	3 1 305	3 1 4 4 9	7 1502	3,0320	7 1000	3 +0599	7 21 71
41	3 2717	3 2463	3 2611	3 2750	3,1448	3 3056	3 1730	3,1000	3 3506	3 7657
42	3,2317	3 3960	3 /113	3 1267	3 1/21	3,3050	3 1720	3 1006	3 5042	3,305/
45	3.5356	3.5514	3.5673	3,5832	3 5002	3,6152	3.6313	3-6474	3-6636	3.6700
45	3.6962	3,7126	3,7290	3.7456	3,7621	3,7787	3,7054	3,8122	3,8200	3.8459
TU	0,00000	031220	0.11200	011400	337041	311101	511554	0,0100	510250	2,0420

87

QUADRO 2A - Continuação

- 1- Comprimento do dia (N) (horas).
- 2- Pressão de saturação de vapor (e^o) (mmHg).
- 3- Pressão de vapor atual (e) (mmHg).
- 4- Diferença entre a pressão de saturação de vapor e a pressão de vapor atual (e^o e) (mmHg).
- Relação entre a tangente à curva de pressão de saturação de vapores e a constante psicrométrica (Δ/γ) .
- 6- Produto da emissividade pela constante de Stefan-Boltzmann e pela temperatura absoluta do ar elevada à quarta potência (εσΤ⁴) (cal.cm⁻².dia⁻¹).
- 7- Poder evaporante do ar segundo Penman (E_) (mm.dia-1).
- 8- Poder evaporante do ar estimado pelas equações ajustadas para Viçosa, MG, em função do evaporimetro de Piche adaptado (È e E) (mm.dia⁻¹). 9- Saldo de radiação de ondas longas na superfície, estimado pela equação de Brunt, ajustada
- para Viçosa, MG (Q₀) (cal.cm⁻².dia⁻¹).
- 10- Saldo de radiação na superfície, estimado (Rn) (cal.cm⁻².dia⁻¹).
- 11- Saldo de radiação medido na superfície, e expresso em milímetros de água equivalentes (Rn/0, 1 L) (mm.dia⁻¹).
- 12- Saldo de radiação na superfície, estimado e expresso em milímetros de água equivalentes (Rn/0, 1 L) (mm.dia⁻¹).
- 13- Soma da tangente à curva de pressão de saturação de vapores e a constante psicrométrica $(\Delta + \gamma)$ (mmHg. $^{\circ}C^{-1}$).
- 14- Termo do balanço de energia da equação de Penman $(\Delta Rn/0, 1(\Delta + \gamma)L)$ com os parâmetros medi dos (mm.dia⁻¹).
- 15- Termo aerodinâmico da equação de Penman ($\gamma E_A/\Delta + \gamma$) com os parâmetros medidos (mm.dia⁻¹). 16- Relação entre o termo do balanço de energia^e o termo aerodinâmico da equação de Penman Penman (J), ambos com os parâmetros medidos.
- 17- Evapotranspiração potencial segundo Penman com todos os parâmetros medidos (ETP_m) (mm. dia⁻¹).
- 18- Evapotranspiração potencial segundo Penman com todos os parâmetros E_a e Rn estimados (ETP_{e}) (mm.dia⁻¹).

seal stan

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo