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The fascination of this work arises from the
fact that understanding how a mechanism or
a parallel manipulator functions is fairly easy,
but comprehending how it was originated and
why it was designed in a particular form in
which it exists is more difficult.

Erdman (1993)






RESUMO

Afase de projeto conceitual de mecanismos e manipuladarakejps, i.e. es-
truturas cinemaéticas, destina-se ao desenvolvimentonizepcao da cadeia
cinematica. As etapas fundamentais para o desenvolvindardconcep¢ao da
cadeia cinematica sao sintese e analise. A sintesesponde a enumeragao
de concepcoes e a analise corresponde a selecaordzpcdes mais promis-
soras considerando os requisitos de projeto. O objetivte desbalho é
aplicar ferramentas da teoria de grupos e teoria de grafasspanumeracao
e para a analise de estruturas cinematicas. A enuntesa¢a desenvolvida
de forma sisteméatica em trés niveis: enumeracdo deiamdinematicas,
enumeracdo de mecanismos e enumeracao de manipguiyedelos. A
aplicacao de ferramentas da teoria de grafos e grupositpetliesenvolver
novos métodos para enumeragao e, consequentemergenolbibs resulta-
dos. A anélise sera simplificada considerando um novedoeétiue avalia
as simetrias das cadeias cinematicas. Uma cadeia cicaréatepresentada
de forma univoca através de um grafo. A representagaweést do grafo per-
mite a manipulagao computacional do problema de enujaerde cadeias
cinematicas. A aplicacdo de ferramentas integradasat@tde grafos e teo-
ria de grupos permite identificar as simetrias das cadei@sréticas através
do grupo de automorfismos do grafo e, assim, € possiveifidanquais sao
as possiveis escolhas de base para novos mecanismosag quals sao as
possiveis escolhas de base e efetuador final para mardpesgoaralelos. O
primeiro nivel da sintese corresponde a enumerac@aadeeias cinematicas
com determinada mobilidade, nimero de elos, nUmero daguue ope-
ram num determinado sistema de helicoides. O segundo désintese
corresponde & enumeracao de mecanismos. Um mecanisima &adeia
cinematica com um elo escolhido para ser a base. Assim,raeragao de
mecanismos consiste em determinar todas as possivelsasde bases para
uma determinada cadeia cinematica. O principal conceitoregado neste
nivel & o de simetria de grafos nao coloridos e oérbitagrdpo de automor-
fismos. O terceiro nivel da sintese corresponde a engé®ide manipu-
ladores paralelos. Um manipulador paralelo € uma cadeé@nttica com
um elo escolhido para ser a base e outro para ser o efetuaaloEin outras
palavras, um manipulador paralelo & um mecanismo com urasglolhido
para ser o efetuador final. Assim, a enumeracdo de madipas paralelos
consiste em determinar todas as possiveis escolhas daddefinal para um
determinado mecanismo. O principal conceito empregade mégel € o de
simetria de grafos coloridos e 6rbitas do grupo de autosmds de grafos



coloridos. Na etapa de analise das concepc¢des enursesaxd abordadas
propriedades bem estabelecidas na literatura: mobiljdededade, conec-
tividade, grau de controle, redundancia e simetria. Mddile e variedade
sao propriedades globais das estruturas cinematicaecfieidade, grau de
controle e redundancia sao propriedades locais, i.ee eois elos da estru-
tura cinematica e sao dadas por matrizesn, onden & o nimero de elos da
cadeia. A simetria pode ser considerada uma propriedatelgidou local
da estrutura cinemética. A aplicacao de ferramentagiatas da teoria de
grafos e teoria de grupos permite demonstrar que as praplésdocais sao
invariantes pela acao do grupo de automorfismos do grafcelas sao pro-
priedades simétricas. Desta forma, a representacaiciabé reduzida de
n x nparao x n, ondeo & o nimero de o6rbitas do grupo de automorfismos do
grafo associado a estrutura cinematica. Essa abordagenite simplificar a
analise de estruturas cinematicas apenas considerasdoetrias das cadeia
associadas.

Palavras-chave:Projeto conceitual. Enumeracao. Analise. Cadeiaswétie
cas. Mecanismos. Manipuladores paralelos. Teoria de grupeoria de
grafos. Teoria de helicoides. Grupo de automorfismos. SimeRcoes.
Orbitas.



ABSTRACT

The conceptual design of mechanisms and parallel mangralabrresponds
to the enumeration of kinematic structures (synthesis)thedselection of
the most promising solutions (analysis). In mechanismsraadhines the-
ory, the conceptual design is known by several expressimisas: structural
synthesis, Gribler synthesis, topological synthests, tis thesis deals with
enumeration and analysis of kinematic structures with abarrof links and
joints related by the mobility equation. A kinematic sturet can be uniquely
represented by a graph whose vertices correspond to linksvhnse edges
correspond to joints, this approach simplify the concedeaign problem.
The enumeration will be considered into three levels: trst fevel corre-
sponds to the enumeration of kinematic chains, which are of $ieks con-
nected by joints; the second level corresponds to the eratioerof mech-
anisms, which are kinematic chains with one link fixed on theeh and the
third level corresponds to the enumeration of parallel ipalaitors, which are
mechanisms with a link selected to be the end-effector. Tadyais of the
kinematic structures enumerated will be simplified expigithe symmetries
of the associated graph. In this work, we apply integratetstof the graph
theory and group theory to capture the internal symmetnyjradikatic chains
and mechanisms leading, respectively, mechanisms antlgbananipula-
tors. The main concept applied is the orbits of the automenpé group of
a graph, i.e. graph symmetry, which represents a kinemlagimc Using this
approach, it is possible to enumerate precisely all the eytians of mech-
anisms and parallel manipulators with appropriate atteibI he application
of integrated tools of graph and group theory permits a sfioation of kine-
matic analysis of kinematic structures. We prove that intgpdrproperties of
kinematic structures are invariants by the action of thematrphism group
of the associated graph, i.e. they are symmetrical praggertConsidering
that kinematic chains have symmetries, it is possible tdyagmup theory
to reduce the matrix representation of properties of therkiatic structures
(connectivity, degrees-of-control and redundancy) amdequently facilitate
the structural analysis.

Keywords: Conceptual design. Enumeration. Analysis. Kinematic rchai
Mechanisms. Parallel manipulators. Graph theory. Groeprih Screw
theory. Isomorphisms. Automorphisms. Symmetry. ActidDsbits.
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1 INTRODUCTION

In this thesis, we study two classical problems of concdptasign
of mechanisms and parallel manipulators, kinematic atrestin short: enu-
meration and analysis. Conceptual design studies play poriant role in
the design of mechanisms and parallel manipulators. In dneaeptual de-
sign phase, many design alternatives as possible are gethenad evalu-
ated against the functional requirements and the most gingiconcept is
selected for design detailing (TSAI, 2001). In the concaptiesign, the
characteristics of mechanisms are entirely determinechbyirtterconnec-
tivity pattern among the links and are unaffected by chanigeke metric
properties; the interconnectivity pattern includes théility, the number of
links, the number of joints and the order of screw system tackvill the
joint screws belong (YAN, 1998; TSAI, 2001; MRUTHYUNJAYA,0D3;
SUNKARI, 2006).

The focus of this thesis are two classical problems of cotuzdple-
sign phase:

e enumeration of kinematic structures enumeration of kinematic chains
of mechanisms (selecting the base) and parallel manipslgelecting
the base and the end-effector) satisfying the mobilityeddn, and

e analysis of kinematic structures kinematic structures generated are
analyzed to select the most promising kinematic chain feigtede-
tailing.

The enumeration and analysis developed in this thesis tedevith
the number synthesis which generates all the possiblei@atutising graph
theory and combinatorial analysis (TSAI, 2001; MRUTHYUN24 2003).

This introduction contextualizes the problem of concepdesign of
mechanisms and parallel manipulators in the literaturesgmts the motiva-
tion to work, the state of the art and the overview of the thesi

1.1 LOCALIZATION AND DEFINITION OF THE PROBLEM

This section provides a brief review of the design proceskaasys-
tematic methodology for creation of mechanisms and pamdmipulators.
Design is the creation of synthesized solutions in the fofrproducts or
systems that satisfy customer’s requirements (PAHL; BEIT296; TSAI,
2001). Design is a continuous process of refining custormegairements



into a final product, the process is iterative and the sahstiare usually not
unique.

Firstly, the problem addressed, i.e. enumeration and aisady mech-
anisms and parallel manipulators, will be described adogrtb two sys-
tematic methodologies of design: Tsai’'s methodology “Matdbms Design:
Systematic Design Methodology” (TSAI, 2001), and Back etredthodology
“Integrated Design of Products: Planning, Conception and&lling” (BACK
et al., 2008), developed in the Center for Integrated Depraknt of Products
(NeDIP/UFSC). These two methodologies are chosen bechageate re-
cent, Tsai’'s methodology is specific for mechanisms desigrBack et al. meth-
odology, developed in the UFSC, is a more detailed meth@yolo

According to Tsai (2001), the design process can be logiciided
into three interrelated macro-phases:

e Specification and planning in this phase the customer’s requirements
are identified and translated into engineering specifinatim terms of
the functional requirements, time and money availabletferdevelop-
ment, and planning of design.

e Conceptual design during this phase, as many design alternatives as
possible are generated (using graph theory and combiabamialysis)
and evaluated against the functional requirements; the promising
concept is selected for design detailing. A rough idea of trevprod-
uct will function and what it will look like is developed.

e Product design in the last phase, a design analysis and optimiza-
tion are performed, together with a simulation of the seléaton-
cept. Function, shape, material, and production methoel€@nsid-
ered. Several prototype machines are constructed and testemon-
strate the concept. An engineering documentation is prediaad the
design goes into the production phase.

Tsai's methodology for mechanisms design is summarizelarfdl-
lowing steps (TSAI, 2001):

1 - Identify the functional requirements, based on custonrersiire-
ments, of a class of mechanisms of interest.

2 - Determine the nature of motion (i.e. planar, spherical,patial
mechanism), DoF, type, and complexity of the mechanisms.

3 - ldentify the structural characteristics associated witms of the
functional requirements.



4 - Enumerate all possible kinematic chains that satisfy thectral
characteristics using graph theory and combinatorialyaisal

5 - Sketch the corresponding mechanisms and evaluate eachrof th
gualitatively in terms of its capability in satisfying themaining func-
tional requirements. This evaluation results in a set ofifda mecha-
nisms.

6 - Select a most promising mechanism for dimensional syrghdst
sign optimization, computer simulation, prototype dentmt®n, and
documentation.

7 - Enter the production phase.

Feedback among design phases mentioned above is usuallgchiee
improve the design.

Back et al. (2008) present a systematic methodology fogmated
design of products. Mechanisms and parallel manipulatesigd may be
regarded as a process of product design. Back et al. metimdid decom-
posed into three macro-phases which are divided in eigfardifit phases
summarized below.

e Project planning: the first macro-phase involves the preparation of
project product plan;

1 - Project planning: it is for planning the new project by the
business strategies of the company and the organizatioi w
to be developed throughout the process. Identificationakest
holders and plan for management of communications.

e Elaboration of the product design involves the development of the
product design and manufacturing plan. It is divided intorfphases
and the main results of each one are:

2 - Informational design: customer’s requirements are identi-
fied and translated into design requirements considerifigyeit
attributes: functional, ergonomic, safety, reliabilibgodularity,
legal aspects, and so on. The design requirements areateahs|
into design specifications in the form of geometry, matecialor,
size, actuation, and so on.

3 - Conceptual design: as many design alternatives as possible
are generated and evaluated against the functional regeiis.
Criteria are used to select the best conception.



4 - Preliminary design: technical and economic feasibility. De-
velopment of the final layout identifying requirements ofrfp
material, safety, review of patents and legal aspects, ar@hs
Development of virtual prototyping and optimization.

5 - Detailed design: product documentation. Approval of the
prototype, finalization of the components specificationanm
facturing plan.

e Pilot production: involves the execution of the manufacturing plan in
the company production and the closure of the project. ltivi&ldd
into three phases and the main results of each one are:

6 - Preparation of the production: product liberation for pilot
production and assembling validation.

7 - Product marketing: product launch on the market, guide-
lines for final updates and release of mass production.

8 - Product validation: evaluation of costumers/stakeholders
satisfaction, monitoring performance, and so on.

Figure 1 shows the correspondence between Tsai's systemath-
anism design methodology and Back et al. integrated prodiesign meth-
odology. The methodology most cited for conceptual desfgnechanisms
and parallel manipulators is the Tsai's methodology (TS401).

According to Tsai (2001), Back et al. (2008), and other axgh85%
of the manufacturing cost of a typical product is committeding the first
two macro-phases. Decisions made after the conceptugrdphiase have
only influence of 25% on the manufacturing cost. Therefaiis,dritical that
we pay sufficient attention to the product specification asmteptual design
phases (TSAI, 2001). In particular, to parallel manipulgittesign the cost is
high and the decisions must be the most corrects in the fiestgshof design.
Thus, the conceptual design phase is very important andvestattention
of the academic community in recent years as indicated bytiyrunjaya
(2003) in the 41 pages long review paper “Kinematic strictfimechanisms
revisited”.

We note that the conceptual design in the Tsai's methodobagy
sists of two engines: a generator and an evaluator. The fofcthds the-
sis is in the use of the two engines (generator and evaluiatding concep-
tual design phase of mechanisms and parallel manipulatuchworrespond
to the macro-phase two of Tsai's methodology and to phase tbf Back
et al. methodology (see Figure 1). The generator corresptménumera-
tion of kinematic structures, using graph theory and comutoiral analysis,
satisfying the mobility criterion (see Equation 3.1 on p&F¢ and without
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Figure 1 — Correspondence between Tsai's systematic mschatesign
methodology and Back et al. integrated product design naetlogy.

isomorphisms. The generator engine of Tsai's methodoleglso known
in mechanisms and machines theory as enumeration of kiiewetains,
enumeration of mechanisms, enumeration of parallel maetipgts, number
synthesis, structural synthesis, synthesis of mechani@righler's synthe-
sis, topological synthesis, and so on. In fact, the geneawesponds to
enumeration of kinematic structures and, therefore, batveeveral denomi-
nations, we will use the term “enumeration” to describe thrisblem in this
thesis. The evaluator corresponds to select the most apg@iinematic
structure, which satisfying the customer’s requiremeotsgesign detailing.
Some functional requirements are translated into criferiatructural anal-
ysis (variety, connectivity, degrees-of-control, redandy, symmetry, and so



on) and then, using these criteria, it is possible to selectiost appropriate
kinematic structure.

1.2 THE STATE OF THE ART

This section presents the state of the art in enumeratioranalysis
of kinematic structures.

1.2.1 Enumeration of kinematic structures

The most important phase in the study of kinematic struatfireech-
anisms is the structural synthesis or classification ananenation of kine-
matic chains with a given number of links and degree of freeds related
by the mobility equation (MRUTHYUNJAYA, 2003).

The approaches for enumeration are mainly founded on gheguiny,
group theory, Lie subgroups of displacements, screw thandyevolution-
ary morphology as shown in Table 1. The first two approachekaown
as number synthesis and the last three approaches are ksdypessynthe-
sis in mechanisms and machines literature. Number syistigeain abstract
approach and type synthesis is a geometrical approach oépturel design.

Number synthesis is the process of finding the arrangeméatgieen
number of links and joints which result in kinematic chainfwthe desired
mobility (CROSSLEY, 1964). Number synthesis deals withdbtermination
of the number of links, type and number of joints needed toexeha given
mobility of a desired mechanism and involves the enumeratiall feasible
kinematic chains which satisfy these requirements. A ceteist of kine-
matic chains, mechanisms and parallel manipulators ammeraied without
isomorphisms based on the mobility criterion (see Equaidron page 37).
In the enumeration, the joints are assumed to be 1-DoF, be RPjoints. In
terms of graphs, the number synthesis correspond to entiorecd a com-
plete list of graphs that satisfy the mobility criteria, hout isomorphic and
improper graphs, where the vertices correspond to linkstemeédges corre-
spond to joints. Number synthesis is considered an abstpgebach and it
is used to create new concepts of mechanisms and parallgufators.

Several methods have been developed for enumeration ahkite
chains (ALIZADE; BAYRAM, 2004; MRUTHYUNUJAYA, 2003; TISCHER
et al., 1995a, 1995b; TSAI, 2001; SUNKARI; SCHMIDT, 2006;VEDNI
et al., 2009, 2008). In particular, the technique presebteduttle et al.
(1989b, 1989a), Tuttle (1996), Simoni (2008), Simoni et(2D09) apply



Table 1 — Approaches for enumeration of kinematic strusture

Enumeration Approach References

Number Graph Theory| (TISCHLER et al., 1995a, 1995b; TSAI,

Synthesis 1998, 2001; ALIZADE; BAYRAM, 2004,
ALIZADE et al.,, 2007; SUNKARI;
SCHMIDT, 2006; SIMONI; MARTINS,
2007; SIMONI, 2008; SIMONI et al.,
2009)

Group theory | (TUTTLE, 1996; SIMONI et al., 2009,

2008)

Type Lie sub- | (HERVE, 1978, 1994, 1999; HERY,

Synthesis | groups of| SPARACINO, 1991; LI et al.,, 2004;

displacements ANGELES, 2004; TSAIl, 1998; FANG,;
TSAI, 2002, 2004; FRISOLI et al., 2000;
KONG; GOSSELIN, 2005, 2004a, 2007,
HUANG,; LI, 2002, 2003; LI; HUANG,
2003; CARRICATO, 2005; SIMONI;
MARTINS, 2009)

(GOGU, 2008, 2009)

Evolutionary
morphology

group theory tools to enumeration of all mechanisms thanarkatic chain
can lead. The technique presented by Simoni et al. (2008y gppup the-
ory tools, in particular the concepts of symmetry, actiond arbits of the
automorphism group of colored vertex graphs, for enumamadi parallel
manipulators. The kinematic chains, mechanisms and pana#inipulators
generated by these approaches are complex since your eationesatisfy
the mobility equation.

Type synthesis of parallel manipulators consists in findith¢the pos-
sible types of parallel manipulators generating a specifietion pattern of
the moving platform (KONG; GOSSELIN, 2007). Type synthésisased on
the selection of a particular type of mechanism (linkage,agear, etc.). The
selection depends to a great extent on the functional rexpgints of a ma-
chine and other considerations such as materials, manufagtprocesses,
and cost. In the type synthesis, a geometrical tool is intced to define the
type of joints, even generally the proposed methods use RRgaoihts, need
to generate the proposed motion. These approaches coasisalyy of legs
enumeration and assembling of these legs to form the planadieipulators.
The parallel manipulators generated by these techniquefdrase-platform



type.

Type synthesis is generally based on Lie subgroups of dispiants
and screw theory and is considered a geometrical approasler&8 works
dealt with the problem of type synthesis (KONG; GOSSELIN)202004a,
2005; FANG; TSAl, 2004, 2002; GOGU, 2008, 2009; LI et al., 20dUANG;
LI, 2003; SICILIANO; KHATIB, 2008).

1.2.2 Analysis of kinematic structures

The main concepts used to analyze and classify kinematimgha
mechanisms and parallel manipulators are: mobility, warieonnectivity,
degrees-of-control, redundancy and symmetry. These ptmege well es-
tablished in mechanisms and machines literature.

Themobility (M) of a kinematic structure is the number of independent
parameters required to completely specify the configunaifdhe kinematic
chain in the space, with respect to one link chosen as theerefe. The
mobility may be calculated by the general mobility criterizee Section 3.3
on page 37).

Hunt (1978) introduced the concept of connectivity. Toanectivity
(C) between two links of a kinematic structure is the relativabitity between
the two links. The importance of the connectivity is emphediby Hunt
(1978), Tischler et al. (2001, 1995b), Liberati and Belfi{@806), Belfiore
and Benedetto (2000), Shoham and Roth (1997) which driveefflorts to
find an algorithm for the numerical calculation of conneitfiv

Tischler et al. (1995b) present the conceptafiety (V) in kinematic
structures which has application in the selection of aetligtirs. Tischler et
al. (1995b) summarize the relationship between variety@mhectivity by
a series of conjectures and propositions proved later byiaand Carboni
(2007). If the Variety of a kinematic structure withjoints isV = 0, the
actuated pairs may be selected at random.

Belfiore and Benedetto (2000) introduced the concept ofedeyof-
control. Thedegrees-of-contrgK) between two links of a kinematic struc-
ture is the minimum number of independent actuating paiesied to deter-
mine the relative position between the two links, possibrving some other
link-relative position undetermined.

Based on the concepts of degrees-of-control and conntyoiveéi can
introduce the concept of redundancy. TfedundancyR) between two links
of a kinematic structure is the difference between the nurobdegrees-of-
control and the connectivity between these links (BELFIQBENEDETTO,
2000; MARTINS; CARBONI, 2007).



Symmetryis another concept used for several authors to select the
most promising kinematic structures (RAO, 2000; TISCHLERile 1998;
PERNETTE et al., 1997; CAMPOS et al., 2008; HUANG; LI, 200802;
HESS-COELHO, 2006). The kinematic and dynamic equatiomsaifon of
any mechanism or parallel manipulator should be as simptessible since,
generally, positions, velocities and accelerations aleutated in real time.
Symmetric kinematic structures lead to considerable sfioafions in kine-
matic and dynamic equations. Thus, it is important to idgrsymmetries in
the kinematic chains in early stages of design and that isilplesanalyzing
its associate graph.

Based on these concepts itis possible to classify the eratetekine-
matic structures and to select the most promising for dedégailing.

1.3 THESIS CONTRIBUTION

This thesis contributes to the conceptual design of meshanand
parallel manipulators. We will address two steps of coneaggtesign, i.e. enu-
meration and analysis of mechanisms and parallel mangrslat

1.3.1 Contributions to the enumeration of mechanisms and pallel ma-
nipulators

The contribution is to develop the enumeration of kinemekiains,
mechanisms and parallel manipulators, in a systematicepoe, applying
integrated tools of graph theory, group theory and screarthd he enumer-
ation process will be consider into three levels: kinemghiins, mechanisms
and parallel manipulators.

e Level 1: Enumeration of kinematic chains: From structural charac-
teristics (number of links, number of joints, mobility, @rdof screw
system) kinematic chains are enumerated. It is importargniember
that a kinematic chain is an assembly of links and joints. attrébutes
of kinematic chains in this level are: number of linkg,(number of
1-DoF joints (), mobility (M), order of screw systemAj. The main
tools considered in this level are graph theory and screarthe

e Level 2: Enumeration of mechanisms: Each kinematic chain orig-
inates mechanisms selecting all different bases. It is tapbto re-
member that a mechanism is a kinematic chain with one of g
nents (links) taken as a frame (IONESCU, 2003). In terms aplgr
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theory, a mechanism corresponds to a graph with one of itegside-

tached (colored) to represent the fixed link (SIMONI et 2008). The

attributes of mechanisms in this level are: number of limjsrfumber
of 1-DoF joints (), mobility (M), order of screw systeni and base of
mechanism. The tools considered in this level are graphryhgooup

theory and screw theory; mainly the concepts of symmettigae and

orbits of the automorphism group of non-colored vertex bsap

e Level 3: Enumeration of parallel manipulators: Each mechanism
originates parallel manipulators selecting differenkdéiio be the end-
effectors. It is important to remember that a parallel malafor is a
kinematic chain with one of its components (links) taken dsaee
and the other taken as an end-effector. In terms of grapirtheo
parallel manipulator with one end-effector corresponds gwaph with
two detached vertices (colored with distinct colors), omedpresent
the fixed link and another to represent the end-effector (IVet al.,
2008). The attributes of parallel manipulators in this l@are: number
of links (n), number of 1-DoF jointsj(), mobility (M), order of screw
system Q), base and end-effector. The tools considered in this level
are graph theory, group theory and screw theory; mainly tmeepts
of symmetry, actions and orbits of the automorphism grougotdred
vertex graphs.

Using this systematic procedure we will enumerate all meismas
and parallel manipulators that a kinematic chain can oaiginwithout iso-
morphisms. Applying integrated tools of graph and groupithend the
concept of symmetry, we will present a new method of enurcaraif par-
allel manipulators and several new results. Using the qanafesymmetry
we will present an improvement of the enumeration of medrsimethod
presented by Simoni (2008).

1.3.2 Contributions to the analysis of kinematic structures

The contributions to the analysis are to apply integratetstof graph
theory and group theory to identify the symmetries of thehkiatic structures
and to reduce the complexity of the matricial analysis. Thalysis in the
context of this thesis is to describe the connectivity, tegrdes-of-control
and redundancy matrices in a compact form and simplify thec8en of the
best kinematic structure satisfying the costumer’s regménts.

The main contribution to the analysis of kinematic struetuis to
prove the invariance of connectivity, degrees-of-condimodl redundancy by
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the action of the automorphism group of the associated grEpdconnectiv-
ity, degrees-of-control and redundancy are symmetriagh@rties of a kine-
matic chain, i.e. links which are symmetric by the action afoanorphism
group of the graph have the same properties. Consideririgsytmametric
links are identified by the orbits of its automorphism grodiph@ graph we
reduce the matricial representation considering one septative element of
each orbit. Thus, the order of the matrices are reduced frorm to 0 x n
where 'h” is the number of links of the kinematic chain amf is the number
of orbits of the automorphism group of the graph.

Will be evident from the examples considered in Chapter 6 tthia
strategy simplifies the analysis considerably because ofitts¢ mechanisms
and parallel manipulators have a large number of symmetries

1.4 MOTIVATION

In the last two decades, parallel manipulators arousedtaitefrom
researchers and industry. Conceptual design phase, iicigart is a field
which has beenincreasing in the parallel manipulatonslitee (MRUTHYUN-
JAYA, 2003). Parallel manipulators can be considered a-eattblished op-
tion for many different applications as shown in Section.8.2s opposed to
serial manipulators, in which the number of kinematic agements (types)
is somewhat limited, parallel manipulators can lead to & \@ige number
of kinematic arrangements for a given motion pattern (KOR®SSELIN,
2007). However, existing architectures of parallel matsdprs have been
traditionally designed by the designer’s intuition, ingéy, and experience
(TSAI, 2001; KONG; GOSSELIN, 2007).

In the last years, the research in the field of conceptuaydesipar-
allel manipulators increased and some books on the subgret published
addition to numerous scientific papers. The main authordanés are:

e Creative Design of Mechanical Devices (YAN, 1998).

e Mechanism Design: Enumeration of Kinematic Structuresoiding
to Function (TSAI, 2001).

e Parallel Robots (MERLET, 2006).
e Type Synthesis of Parallel Mechanisms(KONG; GOSSELIN,7200

e Structural Synthesis of Parallel Robots: Part 1: Methogpl@OGU,
2008)
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e Structural Synthesis of Parallel Robots: Part 2: Trarteti Topolo-
gies with Two and Three Degrees of Freedom (GOGU, 2009).

The importance and need of conceptual design of parallelpuka
tors is emphasized in several other works.

Mruthyunjaya (2003) in the 41 pages long review paper “Kiaém
structure of mechanisms revisited” wrote:

The most important phase in the study of kinematic struabfire
mechanisms is the structural synthesis or classificatiorean-
meration of kinematic chains with a given number of links and
degree of freedom as related by the Chebyshev-Gruebler equa
tion.

Moon and Kota (2002) wrote:

conceptual design of mechanisms is still a mixture of artcof s
ence.

It means that conceptual design of mechanisms and paradleipmlators is
still an open problem.

Torgny Brogardh (2002) from ABB Automation Technology &vo
ucts/Robotics, in his conference paper entitled “PKM Regea Important
Issues, presented as seen from a Product Development &ers@ze ABB
Robotics” presented in the “Workshop on Fundamental Isandg-uture Re-
search Directions for Parallel Mechanisms and Manipusdtaevrote:

This paper will address some of the most important PKM re-
search issues as seen from a robot manufacturer’s poinewf vi

.. section 3, which is the most important part of this pafes,
urgent need for a systematic topology synthesis is put fatwa

Jean Pierre Merlet from INRIA Sophia Antipolis - France,artof
the first book on parallel robots, in his paper entitled ‘1Stillong way to
go on the road for parallel mechanisms” presented in ASME22DBTC
Conference (MERLET, 2002), wrote:

Synthesis of parallel robot is an open field (there is a vary li
ited number of papers addressing this issue) and, in myampini
one of the main issue for the development of parallel robots i
practice.

The importance of synthesis of parallel manipulators is edsterated by Jean
Pierre Merlet in the paper “Optimal design of robots” (MERLE005):
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Synthesis of robots may be decomposed into two processes: st
tural synthesis (determine the general arrangement of e m
chanical structure such as the type and number of jointstand t
way they will be connected) and dimensional synthesis (dete
mine the length of the links, the axis and location of the tgin
the necessary maximal joint forces/torques). The perfaoes
that may be obtained for a robot are drastically dependent on
both synthesis.

Clément Gosselin and Xianwen Kong in his book “Type Synthes
Parallel Mechanisms” (KONG; GOSSELIN, 2007), wrote:

Parallel manipulators have been largely synthesized using
ition and ingenuity. As opposed to serial kinematic chains,
which the number of kinematic arrangements (types) is some-
what limited, parallel manipulators can lead to a very largm-

ber of kinematic arrangements for a given motion patterreréh
fore, a systematic approach is needed in order to reveaipabt

of parallel manipulators thereby allowing the developnunihe
most promising designs. This fundamental issue, namelg typ
synthesis, is the focus of this book.

Grigore Gogu, in his books “Structural Synthesis of Par&tiebots:
Part 1: Methodology (GOGU, 2008)” and “Structural Synteesi Parallel
Robots: Part 2: Translational Topologies with Two and Thbegrees of
Freedom (GOGU, 2009)” emphasizes the need for methoda dgieoted to
the systematic design of parallel manipulators:

Structural synthesis is directly related to the concegthake of
robot design, and represents one of the highly challengibg s
jects in recent robotics research. ... In general, panaléipu-
lators performances are highly dependent on their mechkanic
chitecture, so that structural synthesis becomes theatgmtb-
lem in the conceptual design phase, but only a few works can be
found in the literature on this topic. We note that this is filngt
book focusing on the structural synthesis of the mechaical
chitecture of parallel robots. The topic of this book addesshe
problem of structural, also called topological, synthesisaral-
lel robotic manipulators in a systematic way. This is an atge
need put forward by robot manufacturers and scientists.

Jean Pierre Merlet and Clement Gosselin in the HandboolobbRcs
(SICILIANO; KHATIB, 2008), wrote:
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Determining all potential mechanical architectures offiatrobots
that can produce a given motion pattern at the moving platfor
is a challenging problem.

These comments motivate the research in this interdisaiplifield of
science. The early research in this field can be considecedtand little was
developed in the conceptual design of parallel manipwafbine approaches
already proposed should be improved and other tools sha@uplored.

Another motivation is the interest of the UFSC robotics agskb group
front of current challenges. New projects of the UFSC raisolaboratory
have a current trend towards parallel manipulators.

The reader is invited to read the Appendix B (page 167) whidiso
part of the motivation. Appendix B presents a review of theapy@l manipu-
lators implemented by laboratories of research and inguestid presents the
main applications of parallel manipulators.

1.5 THESIS ORGANIZATION

The thesis is divided into seven chapters and two appenditesfirst
chapter consists of this introduction to contextualizesghoblem, presents
the state of the art in the enumeration and analysis and, ttation to
work.

The second chapter presents the mathematical tools useddetual
design and it is composed by four main sections: graph thgooyp theory,
symmetry analysis and screw theory.

The third chapter presents the fundamentals concepts anchtdogy
of mechanisms and machines theory.

The fourth chapter presents a review of the main methodsfomer-
ation of kinematic structures and criteria for kinematialgsis.

The fifth presents contributions to the enumeration of kiagerstruc-
tures. We will present the systematic procedure consigeha three levels,
discussed in Section 1.3.

The sixty chapter presents an application of integratels tofogroup
theory and graph theory for analysis of enumerated kinensaitiictures in
the synthesis process.

The seventh chapter presents the conclusions and pexgsetctifur-
ther works.

Appendix A presents an application of enumeration techesaievel-
oped in fifth chapter for enumeration of planar metamorpbiiots configu-
rations. With the development of science, technology ant space explo-
ration, hazardous environment work, production requirgisef small batch,
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short run and quick change-over, the traditional concepp@¢hanisms and
robot developmentis facing a challenge in the 21st centuagliptability and
reconfigurability. Therefore, new concepts were emergigadular robots,
metamorphic robots and variable topology mechanisms. Thepgtheory
tools are applied successfully to reduce the problem of emation of planar
metamorphic robots configurations.

Appendix B presents a review and the applications of pdnalénip-
ulators.
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2 MATHEMATICAL TOOLS

As discussed in the introduction, several mathematicdstae used
in conceptual design. This chapter introduces these mattieathtools which
are used in the remainder of this work. The chapter is dividgdur main
sections:

e Group theory This section introduces the fundamental concepts of
group theory. Group theory is important for enumeration analysis
of mechanisms and parallel manipulator because it captheesym-
metries of the structure of the kinematic chain of parallahipulator.
A preliminary contribution of this thesis is to apply grouyebry tools
to enumeration of mechanisms and parallel manipulators.

e Graph theory This section introduces the fundamental concepts of
graph theory. Kinematic chains, mechanisms and parallelpo&ators
can be represented by a graph. The graph representatioiit psrta
give an abstract treatment for enumeration and analysigchanisms
and parallel manipulators in the first phases of design.

e Symmetry analysisThis section presents a precise definition of sym-
metry in kinematic chains. Since the aim of this work is tolgygym-
metry to simplify the enumeration and analysis of mechasiand par-
allel manipulators, which are represented in biunivocalespondence
by graphs, it is necessary to define what is meant by kineroh&in
symmetry. It is an original contribution of this thesis.

e Screw theoryThis section introduces some screw system where kine-
matic structures will work.

2.1 GROUP THEORY

Groups are abstract structures used in mathematics amtediregen-
eral to capture the internal symmetry of a structure in thienfof automor-
phism group. In general, groups can be thought as sets of sympiwpera-
tions. The definition of a group is the abstraction of the prtips of sym-
metry operations. Thus, group theory methods are usefuhewres there are
symmetries. In the enumeration and analysis of mechanisthparallel ma-
nipulators, the group theory can be used by identifies symeseif kinematic
chains and mechanisms (SIMONI et al., 2008, 2009). We wiinberested
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in symmetries of kinematic structures, i.e. kinematic nkaf mechanisms
and parallel manipulators.

The concepts presented in this section are essential fapiblecation
proposed in this thesis. More details on group theory cambed in Alperin
and Bell (1995), Burrow (1993), Rotman (1995), Scott (19&8lig (2005).

2.1.1 Groups and subgroups

A group is a set endowed with a binary operatiarG x G — G
satisfying certain axioms, detailed below. Thus, wheneveet has a group
structure the whole group can be described in terms of a sgtmdrators.
This follows from the fact that the equatienx = b always admits a unique
solutionx=a1-bin G.

Definition 1 (Group) Let G be a set and: G x G — G. The pair (G-) is a
group if the following conditions are satisfied:

1. associativity: foralla,bandcin Ga-b)-c=a-(b-c).

2. identity element: there exists an elemert® such that for all ac G,
e-a=a-e=a.

3. inverse element: for everyaG, there exists an elementae G such
thataal=a'l-a=e.

Definition 2 (Subgroup) A subset HC G is a subgroup of a group G if the
operation induced by the operation on ({5satisfies the three conditions in
Definition 1. This is equivalent to a requirement thatx—1.g € H, for all
h,geH.

Definition 3 (Group generators)A setf3 = {gi,...,0n} C G is a set of gen-
erators for a group G if any elementgG can be written as the product of
elements irB. In this case, we denote €< g1, ...,0n >.

Example 1(Symmetric group) Let X, = {X3,X2,...,Xn} and S ={0: Xp —
Xn | O is bijective} (permutations). Consider: S, x S, — S, the operation
given by the composition la@- T = 0o T : X, — Xn. Thus, ($,-) is the A"-
symmetric group. In order to describe the elements,@f & convenient way,
let us consider a bijection : X, — Xp;

o~ oty o) - ol )

For n= 2, we have2! = 2 elements
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{1102 1)

For n= 3, we have3! = 6 elements
S = 1 2 3 1 2 3 1 2 3
o 1 2 3)’\V2 1 3/’\'1 3 2)
1 2 3 1 2 3 1 2 3
3 21)°\2 3 1 3 1 2

The group §has fl elements.

Definition 4 (Isomorphism group)Consider the group&Gs, 1) and(Gy, -2).

1. Amapg: G; — Gy is a homomorphism ip(x-1y) = @(X) -2 @(y), for
all x,y € Gy.

2. A homomorphismp : G; — G is an isomorphism if is bijective.
An isomorphism is called an automorphisn@Gf = Go.

Definition 5 (Automorphism group) Let G be a group. An isomorphism of
G in G is called arautomorphismThe set of all automorphisms of G form a
group, which is called the automorphism group and denoteduiyG).

2.1.2 Actions and orbits

The group structure is present in a model in the form of theigro
action, also called group representation. For the sakemydlgiity, from now
on let us denote the product of two group elemenksc G by gh.

Definition 6 (Left group action) A left group action of a group G on a set
Xisamapa : Gx X — X, usually denoted by (g,x) = g- X, satisfying the
following conditions:

1. Forallg,he G and xe X, g- (h-x) = (gh) - x.
2. Forallxe X, e-x=x.

Analogously, a right group action can be defined. From nownan,
use the term action for left action.
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Example 2. The symmetric group is a matrix group and the actions can be
represented by a binary matrix operation. For instance,

a b c 010
0—<bac)—> 1 00
0 0 1

can be represented as (left group action)

NANEEID

A spaceX endowed with &-action is named &-space.

Definition 7 (Orbits). Let X be a G-space. The orbit of a poinkxX, by the
action of G, is the space

Ox={9-x|ge G}.

A partition of aG-spaceX is obtained by considering the space of
G-orbits. This can be seen by defining the following equiveéerelation:
x ~ Yy if and only if there exists an elemegte G such thaty=g-x. The
equivalence classes are exactly the orbits under the @racliherefore, if
X ~y, thendy = 0). Itis well known that the equivalent classes define a
partition.

Example 3. Consider the S) group, i.e. the planar rotation group. The
action is rotation of a point in the plane about the origin by angle 6.
The orbit of a point at distance r from the origin is the ciraé radius r.
Figure 2(a) shows the orbit of poiritl,0) by an angled = 7, i.e. Oy =

{1,6%,ém 6%}, where & = cosd +isind. Figure 2(b) shows the orbit of
point (1,0) by an angled = 7, i.e. Oy = {1,68,d5, 3,7 % d7d 7,

5,
o &¥ d% d'¥)
2.2 GRAPH THEORY

In this section, some fundamental concepts of graph the@yina
troduced. The definitions adopted in this work are obtainedhiy from
Gross and Yellen (2003), Jonsson (2007), Murota (2000g$8{@993a), Tsai
(2001), Thomas et al. (2001).

A graph is a simple, intuitive and abstract concept used poesent



21

y y
1,00 X (1,0) X
(a) Orbits of point(1,0) (b) Orbits of point(1,0)
by an angled = 7. by an angled = Z.

Figure 2 — Orbits of subgroups of the planar rotation group230

the idea of some kind of relationship between objects. Cardigons of
nodes and connections occur in a great diversity of appdiest They can
be present in electrical circuits, roadways, organic mdks; databases, and
so on. In special, as discussed in the introduction they ssergial for topo-
logical analysis and enumeration of mechanisms and phradiaipulators.
It is important to remember that the topology of a kinematiaio can be
uniquely identified by its graph representation, wherediakd joints of the
kinematic chain are represented, respectively, by thécesrand edges of the
graph.

2.2.1 Graphs and subgraphs

A graph X = (V,E) consists of a finite se¥(X) of vertices and a
family E(X) of subsets oV (X) of size two called edges. Usually, the pair
{x,y} denotes an edge, and the number of edges incident to a waeehke
degree of the vertex (degv)). A vertex of zero degree is called an isolated
vertex. A vertex of degree two is called a binary vertex, dereof degree
three a ternary vertex, and so on. A subgraph of a gkasha graphy such
thatV(Y) CV(H), E(Y) CE(H). A graph is dense whejE| < |V|? and
sparse whefE| ~ |V2.

It is important to remember that a kinematic chain can be welig
represented by the graph whose vertices correspond todimks/hose edges
correspond to joints of the chain (TSAI, 2001; MRUTHYUNJAY2003;
DOBRJANSKYJ; FREUDENSTEIN, 1967). Figure 3 shows this espon-
dence, Figure 3(a) shows the Stephenson kinematic chainatieled links
and Figure 3(b) shows the corresponding graph (DOBRJANSKREUDEN-
STEIN, 1967).
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1 5
q
2 3
[
4 6
(a) Stephenson kine- (b) Graph represen-
matic chain. tation.

Figure 3 — Correspondence between graphs and kinematieschai

Equation 2.1 shows the adjacency matrix of the graph showiigin
ure 3(b). Adjacency matrix is a means of representing whigtices of a
graph are adjacent to which other vertices. The adjacentspnad X is the
nx nmatrix A(X) = (aj)nxn such thatj = 1 if vertexi is adjacent to vertex
j, andaj; = 0 otherwise (including = j). Other possible representations are
incidence matrix, adjacency list, graph6 and sparce6 (sgEh§ and sparce6
formats in McKay (2009a)). The graph shown in Figure 3(b)isresented
by ECxo in the graph6 format and by :EKGChG™ in the sparce®br

4

2.1)
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A path between two verticeg andv, is a sequencey, vy, Vo, ..., Vg Of
vertices and edges, such thvat= vy, vk = vp and for alli € [1,K], {vi_1,vi} €
E. The length of a path is the number of its edges. The distaateden
two verticesva andvy, denoted byd(va, Vp), is the length of the shortest path
betweenv, andv,. If each vertex appears once, except that the beginning and
ending vertices are the same, the path forms a circuit or. ldophe graph
shown in Figure 3(b) the sequence (1,2}, 2, {2,3}, 3, {3,4}, 4) is a path
and the sequence (11,2}, 2, {2,3}, 3, {3,4}, 4, {4,5}, 5, {5,1}, 1) is a
circuit.

A graphX is said to be connected if every vertex{ris connected to
every other vertex by at least one path. The minimum degraayfertex in
a connected graph is equal to one. A connected graph is tBcteuhif the
removal of any single vertex (and all edges incident on tleatex) can not
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disconnect the graph. Articulation points are vertices sehemoval would
increase the number of connected components in the grapls, Bhgraph
without articulation points is biconnected. Figure 4 ithases the articulation
points and biconnected components of a small graph.

Figure 4 — A connected graph and its biconnected componétitsiashed
boundaries. The vertices 3, 5 and 7 are cut vertices and gp&domore than
one biconnected component.

2.2.2 Actions

Given a graptX, a bijective map : V(X) — V(X) defines a permu-
tation of the elements d&f (X). AssumingV (X) hasn elements, the set of
permutations endowed with the operation of compositiohésgroupS, and
we can apply the definitions presented in Section 2.1.

Example 4(Actions). Figure 3(a) shows the Stephenson kinematic chain and
Figure 3(b) its graph (X). Figures 5(a) and 5(b) show the astdf oy (X) and
02(X), respectively, on the labels of the Stephenson graph, where

a0 = (3537143
- (531)(88%)
= (134)(256)

and
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123456
GZ(X):(432165>
(1 4\(23\(5 6
~\a1)\32) 65
— (14)/(23)(56)
1 3 3 4
< [
2 5 6 5
[ [
6 4 2 1
(@ 01(X) (0) 02(X)

Figure 5 — Action ofo; anday in the Stephenson graph

2.2.3 Isomorphisms and automorphisms

Definition 8. Two graphs X and Y are isomorphic if there is a bijectin
V(X) = V(Y) such that

{xy} € E(X) & {a(x)a(y)} € E(Y).

If isomorphism exists between two graphs, then the graphsallted isomor-
phic and we write XY (GROSS; YELLEN, 2003).

Isomorphic graphs clearly have the same numbers of vedingedges.
On the other hand, equality of these parameters does naamgfearisomor-
phism. In general, if two graphs andY are isomorphic they are said to be
identical and we writtetX ~ Y. If two graphs are identical, they can clearly
be represented by identical diagrams. For example, thehgbg@andy in
Figure 6 can be represented by diagrams which look exaathyséime, the
sole difference lies in the labels of their vertices.

In order to show that two graphs are isomorphic, one mustaidian
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3 4 1 3
< <
5 6 2 5
« «
2 1 6 4
@ X. (b) Y.

Figure 6 — Isomorphic graphs.

isomorphism between them. The mappieg defined by

s_(1 23456
~“\35 4162

is an isomorphism between the graphandY in Figure 6.

Most isomorphism tests are based on graph invariants whesepve
the properties or parameters of graphs under isomorphisaln as degree
sequence, distance matrix, vertex ordering, etc. (KINGENBG, 1999).

Definition 9. The automorphism of a graph is the graph’s isomorphism with
itself. The automorphism group of a graph X is denoted by>Aut

A labeled graph is mapped into another labeled graph whelalteds
of vertices are permuted. For some permutations, a labezhgnay map
into itself. The set of those permutations which map the lgrafo itself form
a group called automorphism group of a graph. This automsmpgroup is
said to be a vertex-induced group (TSAI, 2001). Similarhg tdges of a
graph may be labeled. We call the group of permutations tlagisrthe graph
into itself an edge-induced automorphism group.

The automorphism group of the graph is a subgroup of the sytriane
group and contains all possible permutations of the verticat preserve the
adjacency. The automorphism group of a graph charactetizegmmetries,
and are, therefore, quite useful for determining some opritperties. We
denote the set of all automorphisms of a grxpy Aut(X). It can be verified
thatAut(X) is a group under the operation of composition.

For example, the mapping

s (123456
~\43216°5

define an automorphism between the graytendY in Figure 7. Note that,



26

in this case, the adjacency and degree are preserved.

4 3 4

N

‘2 1 1
(@) X. OB

Figure 7 — Automorphic graphs.

2.3 SYMMETRY ANALYSIS

Since the aim of this work is to apply symmetry to simplify &iee-
matic analysis, and, kinematic chains are representediriMgical correspon-
dence by graphs, it is necessary to define what is meant by gsapmetry.
This is carried out using the concept of a group defined in tegipus sec-
tions. To the best of the authors’ knowledge, there are necigely definition
of symmetry in kinematic chains in the literature. Rao (20di6cusses sym-
metries in kinematic chains but does not presents a fornfiglitien or a tech-
nique to obtain the symmetries of a kinematic chain. Tiscilal. (1995a)
define left and right symmetry to avoid generation of isonh@zkinematic
chains in the Farrell's method (more details in Chapter 4).

The symmetry of a graph corresponds to an element of the antom
phism group of the graph. According to Erdés and Rényi g)@®d Petitiean
(2007), a graph is considered to be symmetric when it has thareone au-
tomorphism, i.e. the automorphism group has a degree gréwte 1. In
the definition below we extend the concept of graph symmaetkirtematic
chains.

Definition 10 (Symmetry of a kinematic chain)The symmetry of a kine-
matic chain is the symmetry of its corresponding graph. &iiatic chain is
symmetric when it has more than one automorphism (SIMONI,2Gi0).

In the definition below we extend the concept of symmetry grde
found in Erd6s and Rényi (1963) and Wright (1974), to kiatimchains.

Definition 11 (Symmetry order) We write r for the order of the automor-
phism group of the kinematic chain (X), i.e=ffAut(X)|, and we say that the
kinematic chain is of symmetry order r.
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A kinematic chain which is not symmetric is called asymnuesmd,
for such a kinematic chain, obviougly= 1.

Symmetric links are identified by the orbits of the automdspihgroup
of the graph.

Example 5. Let X be the Stephenson graph shown in Figure 3(a) (page 22).
In this case,

[ o= W@E@E)E). 0= (1)(2)(3)(4)(56)
A“‘”‘)—{ 0o (14(23(5)(6). 03— (14)(23)(56) }

Therefore, Stephenson graph is of symmetry ordedt The genera-
tor set is AutX) =< 0»,03 >. The action of the automorphism group in the
Stephenson graph is shown in Figures 8(a), 8(b), 8(c) anil 8(d

3 4 3 4
q q

5 6 6 5
[ [
2 1 2 1

(@) a1(X). (b) 02(X).
2 1 2 1
q [

5 6 6 5
e [
3 4 3 4

(c) 03(X). (d) oa(X).

Figure 8 — Action of the automorphism group in the Stephemgaph.

Following the definition of group operation, we can constraenul-
tiplication table shown in Table 2. We conclude that everydpcct is an
element of the group; the associative law holdsg;is the identity element;
and every element is its own inverse. Thereforg,0,, 03, and o4 form a
automorphism group.

Symmetric vertices (links) are identified by orbits. Theitsrare:

0 ={{1,4},{2,3},{56}}.
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Table 2 — Group operation table for the automorphism grouptephenson
graph.

o | 0Op Oz 03 04
01| 01 O 03 O
O | O 01 0O4 O3
O3 | 03 04 01 O2
04| O4 03 0Oz O

2.4 SCREW THEORY

In the mobility equation (see Equation 3.1 on page 37) we llage
parameteA which represent the order of screw system to which all thd joi
screws belong. Therefore, this section presents the defirdf a screw and
some screw systems important for enumeration of kinematins mecha-
nisms and parallel manipulators. More details on screwrthean be found
in (HUNT, 1978; BALL, 1998; DAVIDSON; HUNT, 2004; KONG; GOS-
SELIN, 2007; CHIRIKJIAN et al., 2001).

2.4.1 Screw systems

In screw theory (HUNT, 1978; BALL, 1998; DAVIDSON; HUNT,
2004), a unit screw $ is defined by a pair of vectors

s e e
A [sxso—khs} if his finite
$:{ 3 ]: 2.2)

[0] if h— o0
S

wheres is a unit vector along the axis of the screws$js a vector directed
from origin of the reference frame O-xyz to any point on thisaf the screw,
andhis called the pitch. There are two vector components (F-fistecond)
or six scalar components in the above presentation of tlesvscr

A screwt is a geometric element composed by a directed line (axis)
associated to a scalar paramételenominated pitch (CAMPOS, 2004).

A screw system of ordex (0 < A < 6) comprises all the screws that

INotation: %, $, and $, are used to represent a screw of O-pitch, a scretemifch and a
screw ofeo-pitch respectively (HUNT, 1978; DAVIDSON; HUNT, 2004; KGN GOSSELIN,
2007).
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Figure 9 — The geometry of a screw.

are linearly dependent ongiven linearly independent screws. A screw sys-
tem of orderA is also called ard -system. Any set oh linearly independent
screws within am -system forms a basis of the-system. There are many
types of screw systems, see for instance Hunt (1978), Dawidsd Hunt
(2004), Gibson and Hunt (1990a, 1990b). For example, therdaal base
screw

$4=(100;hy 00), (2.3)

represent a 1-system (DAVIDSON; HUNT, 2004). There are twecgl
cases of note; one when the pitchijs=0, i.e. = (1 00;0 0 9, and another
when the pitcthy = o, i.e. % = (0 0 0;1 0 9. The mechanical generators of
this two 1-systems are respectively the R and P joints.

A geometric treatment on screw systems was presented by &g
Gosselin (2007). Table 3 presents eleven most importaetvssystems. The
description was obtained from Kong and Gosselin (2007) aeccanonical
base screws from Hunt (1978), Gibson and Hunt (1990b), Bavidind Hunt
(2004).

2.5 CONCLUSIONS

This chapter presented group, graph and screw theory teséngal
for the application proposed in this thesis. Through sdwexamples we
showed the potential of the integrated application of grapth group theory
tools.

This chapter presented a precise definition of the symméamkme-
matic chain in terms of the automorphism group of the assetigraph. The
definition of symmetry is an original contribution of thisefis and it will be
used in the remainder of this text. Three important appbostto the sym-
metry in this thesis are: enumeration mechanisms, enuioeret parallel
manipulators and simplification to the analysis of theselkiatic structures.
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Table 3 — Summary of some screw systems.

A-system [ Description

| Canonical base screws

1-systems
1-$- composed of all the$along a same direction| %= (100;hy 00)
system hg =
1-%o- composed of all thegbalong a same line = (100;hy 00)
system hg =0
1-$,- is a finite screw motion about a line a$=(100;hy 00)
system hg = const
2-systems
2-$- composed of all the  whose directions are $q¢ = (10 0;hy 00)
system parallel to a same plane $3 =(100;0hg 0)
ha = hB = 0
1-$.-1-$9- | composed of all theghwhose axes are coplanar$y = (1 0 0;hy 0 0)
system and parallel as well as the.8vhose direction is| $ = (1 00;0hg 0)
perpendicular to the axes of all thg $ hg =0, hg =
2-%o- composed of all theghwvhose axes intersect atfa$y = (1 0 0;hy 0 0)
system common point and are coplanar. The commofig = (10 0;0hg 0)
point is called the center of the 2-8ystem. hg =hg=0
3-systems
3-$- composed of all the$ $a =(100;hg 00)
system $3 = (1 00;0hg 0)
$,=(100;00hy)
hg =hg =hy =
2-$0-1-%- | composed of all the ghand all the $ whose | $¢ = (100;hy 00)
system directions are parallel to a plane that is not per$g = (1 0 0;0hg 0)
pendicular to the axis of they$ $,=(100;00hy)
hg =hg =, hy=0
1-$,-2-%- | composed of a$ as well as all the §whose | $5 = (10 0;hy 00)
system axes are located on a plane which is perpendiég = (1 0 0;0hg 0)
ular to the direction of the$ $,=(100;00hny)
hg =hg =0, hy=w
3-%o- composed of all theghvhose axes intersect atfa$y = (1 0 0;hy 0 0)
system common point. The common point is called thesg = (1 0 0;0hg 0)
center of the 3-§system. $,=(100;00hy)
hg =hg=h,=0
4-systems
3-$w-1-$9- | composed of all the $and all the § whose | $5 = (1 00;hy 00)
system axes are all parallel to one line $3 =(100;0hg 0)

$y = (100;00hy)

oo,hw:O
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3 MECHANISMS AND PARALLEL MANIPULATORS: A
BIBLIOGRAPHY REVIEW

This chapter introduces the basic concepts of mechanisohsnan
chines theory. The terminology used in this chapter is éstadal in ac-
cordance with the terminology proposed by the InternatiGederation for
the Promotion of Mechanism and Machine Science (IFToMMg, lemescu
(2003).

3.1 LINKS AND JOINTS

A material body is a rigid body if the distance between any pommts
of the body remains constant. In reality, rigid bodies doeast, since all
known materials deform under stress. However, we may censithody as
rigid if its deformation under stress is small and can be ictamed negligibly.
The individual rigid bodies making up a mechanism, a machire parallel
manipulator are called links (TSAI, 2001). A link is calledbimary link if it
is connected to only two other links, a ternary link if it istceected to three
other links, a quaternary link if it is connected to four atheks, and so on.
A rigid body in space can move in various ways, in translatomotation
motion. These are called its degrees of freedom (DoF).

The links in a mechanism, a machine or a parallel manipulater
connected in pairs and this connection is called a joint. iAtjphysically
adds some constraints to the relative motion between thérk& Two such
paired elements form a kinematic pair (TSAI, 2001).

Kinematic pairs (or joints) are classified according to tgpéhe con-
tact between the paired elements into lowers and highes fREULEAUX,
1876; TSAI, 2001; IONESCU, 2003). Lower pairs have supeafficontact
and higher pairs have linear or punctual contact. Thereiarlwer pairs
as shown in Figure 10 and two higher pairs as shown in Figusgtidh are
frequently used in mechanisms, machines and parallel mengrs. Figure
10(g) shows the universal joint. The universal joint is stmes referred to
as the Hooke joint, ball-and-socket joint or Cardan joint.

Table 4 summarizes the DoF and the types of motion associatied
each joint.

Joints with more than 1-DoF can be replaced/obtained by auanb
tions of joints with 1-DoF, see Figure 12. The universaljdérkinematically
equivalent to two intersecting revolute joints (see Figl2éa)), therefore, it
is a 2-DoF joint. The cylindric joint is kinematically eqailent to a revolute
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Va

(a) Revolute joint (R joint). (b) Prismatic joint (P joint).

ol omg

(c) Cylindric joint (C joint). (d) Helical joint (H joint).
)
i

(e) Spherical joint (S joint). (f) Planar joint.

(g) Universal joint (U joint).

Figure 10 — Six lower kinematic pairs and universal jointfied by two rev-
olute joints (SIMONI, 2008).

joint in series with a prismatic joint with their joint axeanallel to or coin-
cident with each other (see Figure 12(b)), therefore, it2soF joint. The
spherical joint is kinematically equivalent to three isteting revolute joints
(see Figure 12(c)), therefore, it is a 3-DoF joint. The ptgoat is kine-
matically equivalent to two prismatic joints with axis pbebto plane and a
revolute joint with axis perpendicular to plane (see Figl2éd)), therefore,
it is a 3-DoF joint.

A joint is called a binary joint, if it connects only two linksind a
multiple joint, if it connects more than two links.
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N
B4
A

(a) Gear. (b) Came.

Figure 11 — Two higher kinematic pairs (SIMONI, 2008).

Table 4 — Summary of kinematic pairs (joints) frequentlydugsemechanisms
and machines (TSAI, 2001).

Kinematic pair Figure Symbol DoF Rotational Translational
Lower kinematic pairs.

Revolute 10(a) R 1 1 0
Prismatic 10(b) P 1 0 1
Cylindric 10(c) Cc 2 1 1
Helical 10(d) H 1 1 coupled
Spherical 10(e) S 3 3 0
Planar 10(f) E 3 1 2
Very used kinematic pair based on lower kinematic pairs.
Universal 10(g) U 2 2 0
Higher kinematic pairs.

Gear 11(a) G 2 1 1
Cam 11(b) G 2 1 1

3.2 KINEMATIC STRUCTURES

In the standard terminology, i.e. IFToMM (IONESCU, 2003kiae-
matic chain is defined as an assembly of links and joints.

3.2.1 Kinematic chains

There are three types of kinematic chains: open-loop, didsep and
hybrids. An open-loop kinematic chain has every link coneeédo every
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(@)  Universal joint (b) Cylindric joint.
(KONG; GOSSELIN,
2007).

T

(c) Spherical joint (KONG; GOS- (d) Planar joint.
SELIN, 2007).

Figure 12 — Joints obtained by combinations of 1-DoF joints.

other link by one and only one path (see Figure 13(a)). A cldsep kine-

matic chain is a kinematic chain which each link is conneetél at least
two other links. In other words, a closed-loop kinematicichaas every
link connected to every other link by at least two distincthga(see Fig-
ure 13(b)). Clearly, itis possible for a kinematic chain émtain both closed-
and open-loop kinematic chain which is called a hybrid kiaémchain (see
Figure 13(c)). A kinematic chain whose joints are equivateriower pairs

only is called a linkage.
(©)

/
Figure 13 — Three types of kinematic chains: (a) Open-loapiiatic chain.
(b) Closed-loop kinematic chain. (c) Hybrid kinematic ahai

(€Y (b)
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3.2.2 Mechanisms

In design terms, a mechanism is kinematic chain with onesafam-
ponents (links) fixed to the ground or base (or taken as a fréfi®Al, 2001;
IONESCU, 2003). The link that is fixed to the base is calledfiked link.
In kinematic terms, a mechanism is a system of bodies desgigneonvert
motions of, and forces on, one or several bodies into canstlanotions of,
and forces on, other bodies (TSAI, 2001; IONESCU, 2003).

Figure 14(a) shows the Watt kinematic chain which origimatemech-
anisms with different characteristics of the movementnedao the base fix-
ing one of the links of the kinematic chain. Figures 14(b) aA{c) shows
these classical mechanisms, i.e. Watt | and Watt Il, origithéixing different
links of the kinematic chain.

—

(@) Watt kinematic (b) Watt I. (c) Watt II.
chain.

Figure 14 — Watt kinematic chain and the two classical meishas origi-
nated: Watt | and Watt II.

Mechanisms can be classified according to their nature abmaotto
three types: planar, spherical and spatial (TSAI, 2001)igilbody is said
to be under planar motion if the motion of all particles in tiged body are
constrained in parallel planes. A planar mechanism is a am@sh in which
all points of its links describe paths located in parallelas. A rigid body is
said to be performing a spherical motion if the motions ofalticles in the
rigid body are confined on concentric spherical surfacesplfegcal mech-
anism is a mechanism in which all points of its links descphéns located
on concentric spheres. A rigid body is said to be undergosypdial motion
if its motion is not planar or spherical. A spatial mechanisra mechanism
in which some points of some of its links describe non-plgrahs, or paths
located in non-parallel planes. In other words, a spatiathmgism cannot
be classified as planar or spherical. Figure 15 shows an dgahthe three
types of mechanisms according to their nature of motion.
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Bennett mechanism.

Figure 15 — Classification of mechanisms according to thegiumre of motion
(WANG, 2006; WANG et al., 2008).

3.2.3 Machines

By Tsai (2001), a machine is an assembly of one or more mesmani
are assembled together with other hydraulic, pneumatit géectrical com-
ponents such that mechanical forces of nature can be caedgelldo work.
By Reuleaux (1876), a machine is a collection of mechanismaged to
transmit forces and do work. By IFToMM terminology (IONESC2D03)
a machine is a mechanical system that performs a specificgask as the
forming of material, and the transference and transfoirnati motion and
force. Figures 86 and 87 (pages 176 and 177) shows two 5-agbines
used in machine-tool.

3.2.4 Parallel manipulators

A parallel manipulator is a mechanical system under autiencan-
trol, that performs operations such as handling and locmmgand controls
the motion of its end-effector by means of at least two kinnzhains go-
ing from the end-effector towards the frame (TSAI, 2001; MER, 2006;
IONESCU, 2003; KONG; GOSSELIN, 2007; GOGU, 2008). In otherks,
a parallel manipulator is a kinematic chain which one of ibsnponents
(links) is fixed to the ground or base and another is choseretthé end-
effector. Several examples of parallel manipulators aesgmted in Ap-
pendix B.

Basically, the difference between a machine and a parafieipulator
is in function of the tasks developed. While a machine isglesil to devel-
oped a “specific task” a parallel manipulator can developésa tasks”.
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3.3 MOBILITY OF KINEMATIC STRUCTURES

Mobility is the main structural parameter of a mechanismapdral-
lel manipulator, kinematic structures in short, and alse oithe most funda-
mental concepts in the kinematic and the dynamic modellfngechanisms
(GOGU, 2009).

The mobility (M) or number of degrees of freedom (DoF) of a kine-
matic chain is the number of independent parameters raetjtareompletely
specify the configuration of the kinematic chain in the spaci¢h respect
to one link chosen as the reference (IONESCU, 2003; TSAI12GDGU,
2008).

Mobility is used to verify the existence of a kinematic sture, to
indicate the number of independent parameters in robot limgland to de-
termine the number of actuators needed to drive the kinemstaticture. The
mobility of a kinematic structure is given by

M=A j—1 j f 3.1
=A(h—j—21)+ : .
(n—j-1) gl [ (3.1)

whereA is the order of screw system to which all the joint screws hgl@ee
some screw systems in Table 3 on page 80% the number of linksj the
number of joints and; are the degrees of relative motion permitted by joint
i (HUNT, 1978; TSAI, 2001; MRUTHYUNJAYA, 2003; MERLET, 2006)
As joints with more than 1-DoF can be replaced by a combinaiifol-DoF
joints (see Figure 12) the mobility equation (Equation ®d4g¢omes

M=A(N—j—1)+] (3.2)

It is also possible to establish an equation that relatesitimeber of inde-
pendent loopsy) to the number of links and number of joints in a kinematic
chain

v=j—-n+1 3.3)

Combining Equation 3.3 with Equation 3.2 yields

M=j—Av. (3.4)
Equation 3.4 is known as the loop mobility criterion (TSAQ®).
Example 6. Figure 16 shows two representations of the classical Stewar

platform. Figure 16(a) shows the Stewart platform witfDbF joints, i.e. 1-
DoF joints (prismatic), 2-DoF joints (universal) and 3-Dqgéints (spheri-
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cal). Inthiscased =6,n=14, j =18, f; =6, f, =6and & = 6. Applying
the Equation 3.1 we have M 6(14— 18— 1) + 36 = 6, as expected. Fig-
ure 16(b) shows the Stewart platform with 1-DoF joints, fieDoF joints are
replaced by 1-DoF joints (see Figure 12). In this casdes= 6, n= 32 and
j = 36. Applying the Equation 3.2 we have#6(32— 36— 1) +36= 6, as

expected.
S-joint P
/’/ Base \
platform s
¥ &

(a) fi-DoF joints. (b) 1-DoF joints.

. Moving
: platform &

o) O
' Moving @)
platform
ety

Figure 16 — Representations of Stewart platform.

Equations 3.1 and 3.2 are well known in mechanisms and meshin
theory and can be applied to several mechanisms and parall@pulators.
This equation is used for quick calculation of mobility, texwer, it fails in
several cases. For example, let us apply the mobility @iteto 3-PRRR
Cartesian Parallel Manipulator presented in Figure 17¢ctwvbily contains R
and P joints (KIM; TSAI, 2002, 2003). In this case, we have 11 links and
j =12 joints. Applying the Equation 3.1 we obtai: = 6 (if we assuma =
3),M=4(f A =4),M=2(if A =5) andM = 0 (if A = 6). However, Kim
and Tsai’'s manipulator has 3-DoF, iM.= 3 (KIM; TSAI, 2002, 2003). That
equation is not applicable to many other types of recentlghnaanipulators,
for example the Star (HER‘:‘/, SPARACINO, 1992), H4 (PIERROQOT et al.,
1999), Orthoglide (WENGER; CHABLAT, 2000), Tripteron (GSELIN;
KONG, 2002), Isoglide family (GOGU, 2008, 2009), and others

There are several versions of generalized equations stegigesdis-
cussions on mobility and DoF in the literature. However, itiiybcalcula-
tion still remains a central subject, and not solved, in thechanisms and
machines theory and should be investigated. Equation 3st bauused for
a quick calculation of mobility in early stages of design. eTiore recent
review of mobility calculation was presented by (GOGU, 2028@08). Gogu
(2005) presents a critical review of several versions okgalized equations
suggested in the literature and apply the theory of linesmrsfiormations to
derive a new equation for mobility calculation of paralledmipulators.
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Figure 17 — CPM - Cartesian Parallel Manipulator (KIM; TSAI002;
GOGU, 2008).

3.3.1 Full mobility, partial mobility and fractionated mob ility

A kinematic chain can have the following types of mobilityskd in
the concept of mobility criteria (see Equation 3.1):

1. Fractionated mobility A kinematic chain has fractionated mobility if
it has a separation link or joint, when cut into two, splite tthain
into separate (closed) kinematic chains. Hence, the gréghnon-
fractionated kinematic chain is a biconnected graph.

2. Partial mobility: A kinematic chain withvl > 0 degrees of freedom, has
partial mobility if it has at least one closed subchain withnumber
of degrees of freedom, such thatOv’ < M.

3. Total mobility. A kinematic chain withiM > 0 degrees of freedom, has
total mobility if all its closed subchains hai > M number of degrees
of freedom.

3.3.2 Instantaneous versus full-cycle mobility

A parallel manipulator is said to be instantaneous if bathmbbility
and corresponding properties cannot remain unchangedaftbitrary fea-
sible finite motion (KONG; GOSSELIN, 2007). For example, iparallel
manipulator has 3-DoF translational at a moment, and hasRansla-
tional and 1-DoF rotational at another moment, the paratiehipulator is
instantaneous.
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A parallel manipulator that do not change their motion patedter a
finite motion is called full-cycle (global mobility, genénaobility) parallel
manipulator (MOHAMED; DUFFY, 1985).

The mobility calculated in relation to a given configuratafrthe par-
allel manipulator is an instantaneous mobility which candiféerent from
the full-cycle mobility (HUNT, 1978). The full-cycle molif} represents the
minimum value of the instantaneous mobility. For a giverajat manipu-
lator, full-cycle mobility has a unique value. It is a glolgrameter char-
acterizing the parallel manipulator in all its configuratsaexcept its singular
ones.

Instantaneous parallel manipulators can be used as miotimmpar-
allel manipulators if necessary. As reviewed above, thesatal Grubler or
Kutzbach mobility criterion, which is based solely on tapy, fails to pro-
vide the correct mobility in many instances. Thus, the nighilbtained by
Equation 3.1 is usually instantaneous.

3.4 REPRESENTATIONS OF KINEMATIC STRUCTURES

The kinematic structure of a mechanism or a parallel maatpukton-
tains the essential information about which links are categkto which oth-
ers links and type of joints. The kinematic structure candprasented in
different ways. Basically, a mechanism or a parallel malaiou can be il-
lustrated by a functional, structural and graph representaTable 5 shows
these three representations of parallel manipulators.

Functional schematic representation refers to the mostiéaroross-
sectional drawing of a mechanism representing physicabeintents. Shafts,
gears, and other mechanical elements are drawn as sucletieggbe geo-
metric relations defined by the relative positions of joixes

Structural representation is a more coarse representatich link of
a mechanism is denoted by a polygon whose vertices reprédseiints.
Specifically, a binary link is represented by a line with twadevertices, a
ternary link is represented by a cross-hatched trianglejadegnary link is
represented by a cross-hatched quadrilateral, and so on.

Graph representation is an abstract representation, ajgnesed in
the initial phases of mechanisms design. A structural giaghnetwork of
vertices or nodes connected by edges or arcs without gelsnnelations.
Since a kinematic chain is defined by an assembly of links aimds, it can
be represented in a more abstract form by a graph. In a grapésentation,
the vertices denote links and the edges denote joints of aaném.
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Table 5 — Functional, structural and graph representatibmechanisms and

parallel manipulators.

Functional

Structural | Graph

Epicyclic gear trainA = 2.

4 ksa
I~

RCCC spatial four-bar mechanisrh:= 6.

Stewart platformA = 6.

‘ Moving
! platform

.,,,;/////{?.//,},,,,.

Example 7. Consider the mechanisms and parallel manipulators present
in Table 5. Davies (2006) showed that any gear system cangresented
by A = 2, i.e. a 2-system. Thus, applying the Equation 3.1 in theyepa
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gear train we have mobility M=A(n—j—1)+j=2(6—-9-1)+9=1

The classical Watt engine which converts a continuous iaradf link 2 to

a reciprocating and oscillating motion of link 6, it works &n3-system and

it has mobility M= 1, i.e. by Equation 3.1 M=A(n—j—1)+ j=3(6—
1-1)+7=1. The RCCC spatial four-bar mechanism which converts a
continuous rotation of link 2 to a reciprocating and osdilleg motion of link

4, it works in a 6-system and it has mobility M1, i.e. by Equation 3.2
M=ANn—j—1)+3  fi=6(4—4—1)+7=1 The classical Stewart
platform works in a 6-system and it has mobility=V6 (see Example 6).

3.4.1 From kinematic structures to graphs

We will develop a systematic procedure for enumeration oékiatic
structures based on group and graph theory tools, theréfs@émportant to
show how to convert kinematic structures to graphs and \ecsar

Table 5 shows the graph representation of kinematic strestuAs
we can see, given a kinematic structure is always possihiepieesent it in
form of a graph where the links are represented by verticdsj@ints are
represented by edges.

The following procedure permit us to convert a kinematia&res to
a graph.

¢ |dentify fi-DoF joints.
e Replacefi-DoF joints by f 1-DoF joints.

e Represent links by vertices and 1-DoF joints by edges.

In the example below, we apply these three steps to reprédsemiassical
Stewart platform to a graph.

Example 8. Figure 18 shows the steps of representation from kinemtatic-s
ture to graph. Figure 18(a) shows the Stewart platform. trisge iden-
tify the §-DoF joints as indicated in Figure 18(b): we have six prisioat
joints, i.e. § = 6, six universal joints, i.e.f= 6 and six spherical joints,
i.e. 3 = 6. Second, we replace-DoF joints by f 1-DoF joints as indicated
in Figure 18(c) and, third, we represent links by verticesl dARDoF joints by
edges and we have the graph representation as shown in Fi@{c.
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"~ Moving

O
' Movin, § 5
g : platform

platform
ety

% %
Base
( platform \
X -
¥ P4

(a) Stewart platform, fi-
DoF joints.

©
10) ®
Base
platform
@ ©

.,,,,'///J/G,{’f}///}/,,,..

(c) Kinematic chain. (d) Graph Representation.

Figure 18 — From Stewart platform to graph.

3.4.2 From graphs to kinematic structures

The procedure to obtain kinematic structures from graphwerse of

the procedure to convert kinematic structures to graphthieenumeration of
kinematic structures via graphs, several graphs are emateteand, we need
to develop kinematic structures from these graphs.

The following procedure permit us to develop all kinematiastures

from a graph.

Identify the number of edges by leg, kethese number. Each edge
correspond to 1-DoF joint. Thus, each leg correspondiedge or a
k-DoF.

Make all combinations offi-DoF joints,i = 1,2,3, up to complete
serial-legs withk-DoF.

Replace the graph-legs tckeDoF serial-legs.

Repeat the item above for all possilBoF serial-legs.
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In the example below we apply these four steps to develop nisaniatic
structures from a graph.

Example 9. Figure 19 shows a graph of a parallel manipulator which works
in a 6-system, i.ed = 6, and it has mobility M= 6. First, we built the
kinematic chain identifying the number of edges by leg,a@pb by joints,
and the number of vertices, replacing by links. In this casehave six legs
with k= 6 edges, i.e. we have legs with 6-DoF in the kinematic chaimaho
in Figure 19(b). Figure 19(c) shows some of the possible ¢oations of
fi-DoF joints, i= 1,2, 3, to form serial-legs with 6-DoF. Figure 19(d) shows
the replacement of graph-legs to serial-legs to obtain farananipulators.

We can apply this procedure to enumerate all kinematic sires
from a set of graphs.

3.5 ISOMORPHIC KINEMATIC STRUCTURES

Isomorphisms avoidance is a recurrent problem in mechanam
machines science. A major problem in the study of kinematigctures is
that of detecting a possible isomorphism (structural esjaivce) between two
given kinematic chains, mechanisms and parallel maniprdat

Two kinematic chains are said to be isomorphic if they shiaeesame
topological structure. In terms of graphs, there are antormie corre-
spondence between their vertices and edges that preserveciience. If
there is not such correspondence the two kinematic chainsadd to be non-
isomorphic.

For example, Figure 20 shows two eight-link kinematic chaimich
are apparently dissimilar but are isomorphic to each othethis example,
the correspondence between the links is given by@, 2< 1,34 5,44 2,
5£4,6&3,7< 7,84 8.

Earlier studies dealing with structural synthesis utdizesual inspec-
tion for solving this problem. Since diagrams of kinemati@ins can be
drawn in different ways, visual detection of isomorphissaot always easy
(see Figure 20). In view of these difficulties several attenmave been made
in literature to develop reliable and computationally édfitt tests for isomor-
phisms.
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Moving
! platform

(d) Classical Stewart plat-
form.

Figure 19 — From graph to parallel manipulators.

3.5.1 Elimination of isomorphisms

Uicker and Raicu (1975) suggested that the characterisly;mpmial
could be used to test for isomorphisms. However, if two kiagachains are
isomorphic, it is necessary, but not sufficient, that thé@racteristic poly-
nomials are identical as there are counter-examples wherenethod fails
(TISCHLER et al., 1995a; MRUTHYUNJAYA, 2003).
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Figure 20 — Isomorphism between two kinematic chains (MRYTDH-
JAYA, 2003).

Agrawal and Rao (1987) suggested a method of identificatidied
the optimum code. The method involves a technique for lagefe links
of a kinematic chain such that a binary string obtained bycatenating the
upper triangular elements of the adjacency matrix row by, exgluding the
diagonal elements, is maximized. This method is called theXMode. We
can also search for a labeling of the chain that minimizesthary string of
the upper triangular elements, called the MIN code. Theaenised to develop
a more efficient heuristic algorithms for determinationtwd bptimum code
(TSAI, 2001; MRUTHYUNJAYA, 2003).

Rao and Raju (1991) present a method for detecting isomamzhi
based on Hamming numbers of the adjacency matrix. Althowgtonnter-
examples are known, when the algorithm was applied to thecten of iso-
morphisms among the number of inversions of the pladas 1, ten links,
some non-isomorphic inversions were omitted (TISCHLER.etl895a).

Siek et al. (2002) present a test of isomorphisms detectiboses
worst-case time complexity B(|V|!), where|V| is the number of vertices.

The McKay algorithm (MCKAY, 1998, 2009b, 2007) is, to the bes
of the authors’ knowledge, considered the fastest grapimasphisms al-
gorithm available today, it is exponential tin@elV!) (JAIN; WYSOTZKI,
2005; FOGGIA et al., 2001; MIYAZAKI, 1997).

Kobler et al. (1993) have examined the structural compjexd the
graph isomorphisms problem and state that there is stroidgmse to sug-
gest that no efficient algorithms exist for this problem, tlee problem of
isomorphisms is NP-hatd

1A problem is NP-hard if an algorithm for solving it can be stated into one for solving
any NP-problem (nondeterministic polynomial time). NRehtnerefore means “at least as hard
as any NP-problem”, although it might, in fact, be harder (&TEIN, 2009)
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3.6 BARRANOV TRUSSES AND ASSUR GROUPS

The Barranov truss has a close relationship with Assur groApsur
groups are kinematic chains in which some links contain reenpaired
elements such that when the group is connected to the framegh all its
free elements it becomes a structure with zero mobility CHEER et al.,
1995a; MRUTHYUNJAYA, 2003). Barranov truss is a rigid stiwre which
is formed when a link connects to all the outside pairs of asuAgroup. On
the other hand, removing any link of a Barranov truss, an Agsaup will be
obtained (HAN et al., 2000).

Figure 21 shows some basic Assur groups. Figure 22 showsatina-B
nov trusses originated from Assur groups in Figure 21. TirdeBarranov
truss shown in Figure 22(a) was originated connecting ed finks of Assur
group shown in Figure 21(a) in a single link, five-link Baroartruss shown
in Figure 22(b) was originated connecting all free links es&r group shown
in Figure 21(b) in a single link, and so on.

@ (b) (©

Figure 21 — Some basic Assur groups.

1
@ (b) ©

Figure 22 — Barranov trusses originated from Assur groupsvehin Fig-
ure 21.
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3.7 IMPROPER KINEMATIC STRUCTURES

An improper kinematic chain is a kinematic chain with> 0, where
at least one biconnected subchain has mobility< 0. If the subchain has
mobility M = 0, them the kinematic chain has a Barranov truss as subchain.
Let the planar kinematic chains shown in Figure 23(a), théilitp
is M = 1 but, the subchain formed by links 1-2-3-4-5-6-7-8-9, haditity
M’ =0 and its links act as a Barranov truss. Generally, impropains are of
no interest in pure kinematic analysis and should be digchr8igure 23(b)
shows the elimination of Barranov truss resulting in a kiaémchain more
simple.

(a) Twelve-link kine- (b) Elimination of Barranov truss.
matic chain.

Figure 23 — Improper planar kinematic chain with= 1 because it contains
a subchain (1-2-3-4-5-6-7-8-9) wit’ = 0.

3.8 CONCLUSIONS

This chapter reviewed the main concepts used in this thiesisno-
bility criterion, kinematic chain, mechanisms, parallemipulators, isomor-
phisms, improper chains and Barranov trusses.

In this thesis we will develop a systematic procedure fomeeration
of kinematic structures based on group and graph theorg tdwrefore, we
will describe a procedure to convert kinematic structunés graphs and vice
versa. The representation of kinematic chains by graphsglidavown in the
mechanisms and machines theory.
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4 ENUMERATION AND ANALYSIS OF KINEMATIC
STRUCTURES: A BIBLIOGRAPHY REVIEW

This chapter presents a bibliography review of enumeraifdkine-
matic structures methods and criteria to analysis thesenidtic structures.
First, we review the main contributions to the enumeratifdareematic struc-
tures, i.e. kinematic chains, mechanisms and parallel podators. Second,
we review the analysis criteria found in the literature tssify the kinematic
structures enumerated.

4.1 ENUMERATION OF KINEMATIC STRUCTURES

4.1.1 Enumeration of kinematic chains

The enumeration of kinematic chains consists of the geioeraf a
complete list of kinematic chains with a determined mopilithout isomor-
phisms. A significant and unsolved problem in the enumeanaifkinematic
chains is the precise elimination of all isomorphisms angroper chains. In
early stage of design, it is preferable the generation oficafe (isomorphic)
chains to the omission of a potentially useful kinematiciclf@lSCHLER et
al., 1995a).

It is important to remember that a kinematic chain can be welig
represented by the graph whose vertices correspond todimks/hose edges
correspond to joints of the chain. Figure 24 shows this spwadence,
Figure 24(a) shows the Stephenson kinematic chain withdddanks and
Figure 24(b) shows the corresponding graph (DOBRJANSKYREBDEN-
STEIN, 1967). In graph theory terms, the enumeration of ikiatic chains

3 4
q
5 6
[
2 1
(a) Stephenson kinematic (b) Graph representation.

chain.

Figure 24 — Correspondence between graphs and kinematitscha
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corresponds to the enumeration of graphs satisfying thergemobility cri-

terion (see Equation 3.1 on page 37) and having given a nuafhartices
and edges. However, the problem of graphs enumerationgpegsent kine-
matic chains is a NP-Hard problem because all methods ohgrapumer-
ation generate a great amount of isomorphisms which mustitmnated

without eliminating any graph (kinematic chain) with udedatential for the
accomplishment of task.

4.1.1.1 Link assortments

The first common step in enumeration of kinematic chainsagigtter-
mination of the possible assortments of binary, ternargepnary, etc. links
that can exist in a desired kinematic chain. These are giyghdésolutions
of the following equations:

N=nNa+nN3+Ng+--- (4.1)

2] =2np+3n3+4ng+--- (4.2)

wheren; is the number of links with connections each is the number of
links andj is the number 1-DoF joints.

The subsequent step is the formation of distinct strucfuméterns in
which polygonal links (non-binary) can be connected togetiTo add the
available binary links to the polygonal link patterns in pdissible ways to
produce closed-loop kinematic chains and finally discaydtimproper chains
and isomorphic kinematic chains to produce the set of alirtiskinematic
chains that meet the mobility criterion (see Equation 3.page 37).

For the purpose of classification, each link assortmentlisa¢apar-
tition. Algorithms for finding all the partitions are well documedtin lit-
erature (JAMES; RIHA, 1976). Table 6 shows the partitionsdonstruct-
ing ten-bar kinematic chains with = 3 (not necessarily planar motion) and
M = 3, where number 2 represents binary links, 3 ternary linkd,s® on.

4.1.1.2 Contribution of Franke

The Franke’s notation is a graphical simplification of thpresenta-
tion of kinematic chains (FRANKE, 1958; TISCHLER et al., 529. In the
Franke’s notation, each polygonal link is represented ey @rcle with a la-
belninside that corresponds to number of connections of thedirkbinary
links are represented by lines. Figure 25(a) shows onerk2-kinematic
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Table 6 — Partitions of the kinematic chains with ten linkghwk = 3 and
M = 3.

Partitions Classifications of links

Partition 1| 3 3 3 3 2 2 2 2 2 2
Partition2| 4 3 3 2 2 2 2 2 2 2
Partition 3| 4 4 2 2 2 2 2 2 2 2
Partition4| 5 3 2 2 2 2 2 2 2 2
Partition5| 6 2 2 2 2 2 2 2 2 2

chain and Figure 25(b) shows the corresponding Franke&tioat

Figure 25 — Franke’s notation of a 12-links kinematic chain.

In the enumeration procedure based on Franke’s notatiofirsteon-
sider all the possible mappings of the polygonal links (bamery) for each
possible partition. For each partition, each circle is @woted by lines in all
possible ways, being the incident line number in the cirgead to label of
it. Each line receives a numblkee> 0, k = 0 if no binary link exists between
two polygonals (DAVIES; CROSSLEY, 1966).

Care must be taken to guarantee that improper kinematiosicain-
taining immobile sub-chains are not produced. A disadgntd this method
is that it generates a great number of isomorphisms which beusliminated.

4.1.1.3 Contribution of Assur

Another approach for enumeration of kinematic chains istduessur
(TISCHLER et al., 1995a; MRUTHYUNJAYA, 2003). He introdutéhe
concept of fundamental groups, later called Assur grougsuAgroups are
kinematic chains in which some links contain free or unghélements such
that when the group is connected to the frame through altees élements it
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becomes a structure with zero mobility.

Assur also proposed that kinematic chains of greater cofitplé.e.
with greater number of links) could be built up by the seqiati@iddition of
these Assur groups to simpler kinematic chains (i.e. wittefelinks). The
basis for this idea lies in the fact that addition of an Assgroup to a link
or links of an existing kinematic chain do not modify the mipiof the
original kinematic chain. The method is based on visualéesipn and does
not require determination of partitions. Improper kineima&hains do not
arise if the initial simpler kinematic chains are free frommiobile sub-chains
and if the free elements of an Assur’s group are not all addedsingle link.
Figure 26 shows the addition of an Assur’s group to a 4-limieknatic chain.

o,,,/.tllllllllh.. '

]

4-link chain Resulting 8-link chains

Figure 26 — Aggregation of the Assur’s group to 4-link kingimahain.

However, the method produces a large number of isomorpHidso,
it is necessary to have available atlases of chains with litoM and number
of links less thah, as well as complete atlases of all Assur groups itk
M — 1) links (MRUTHYUNUJAYA, 2003).

4.1.1.4 Contribution of Farrell

Simoni and Martins (2007), Simoni (2008) implemented a rfiedi
version of the Farrell's method for enumeration of kinematains avoid-
ing to enumerate the fractionated kinematic chains. Toeeethe Farrell's
method will be described here with more detail and our methiticoe de-
scribed in Section 4.1.1.5. The Farrell's method imposes@dtructure in
kinematic chains generation process and is summarized iimtlowing steps
(FARRELL, 1977; TISCHLER et al., 1995a):

Step 1 Each link in the partition is assigned by a numerical laloeloading
to its degree. One of the links with the highest degree isrgthe number
"1", while the link with the lowest degree is given the highasmber. Two
links cannot be assigned by the same number. For exampl@attidion 1
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in Table 6 has four ternary links, which we now labels 1, 2,13 4, and
six binary links we labels 5, 6, 7, 8, 9, and 10. At this staddiks are
unconnected. See Figure 27.

[Partition 1 | 3 2 2 2|
hhhki iﬁ bk I
/ \
(2,3,4)
/ (235)/ \256 567 5

e

Figure 27 — Example Farrell's method: possible connectionknk 1.

Step 2 The link with the lowest number (i.e. 1) is selected and #maining
links, {2, 3, ... , 10 are grouped so that connecting link 1 to any member of
the group would result in an identical, partially connectedm. Here, two
distinct groups materialize, namely a group of ternarydifig, 3, 4}, and a
group of binary links{5, 6, 7, 8, 9, 19. Connecting link 1 to any member
in the group{2, 3, 4} would result in two connected ternary links, and con-
necting link 1 to any member db, 6, 7, 8, 9, 1§ would result a ternary link
connected to a binary link.

Step 3 The number of connectiotneeded to make the link with the lowest
number fully connected is determined. In this case 3, because link 1 is
ternary and no connections have yet been made. All the diffeavays of
selectingc = 3 links to connect to link 1 from the groups of Step 2 are found.
These are; three ternary linkg, 3, 4}, two ternary links and one binary link
{2, 3, 5, one ternary link and two binary link&, 5, 6}, and three binary
links {5, 6, 7}. The partial forms which result from each of these selestion
are shown in Figure 27. In each case the lowest numberedfliie&ah group
are selected first. Each of the four partial forms represaisanch on the
tree.

Step 4 Each of the branches in Step 3 are selected in turn and aky lin
which are fully connected are ignored; Steps 2, 3 and 4 amatef for the
next lowest numbered link which is not fully connected. liszttase the low-
est numbered link will be link 2. Steps 2, 3 and 4 are repeatgitiall other
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links are fully connected or it is impossible to connect tamaining links.
When either of these two situations arises the algorithrkdiacks and con-
tinues with the next unexplored branch.
Step 5 When no unexplored branch remains the next partition iscsed,
and all above steps are repeated until no further partitiemsiin.
Step 8 Elimination of improper kinematic chains and isomorphssamd fi-
nality list the generated kinematic chains.

One disadvantage of the method is that it generates manyoisom
phisms which must be eliminated and the elimination reguargreat compu-
tational effort. Figures 28 and 29 show the exploration eftthanch 2 from

the link 1.
Vo

Figure 28 — Example Farrell’s method: exploration of thenlsta2 from the
link 1.

4.1.1.5 Contribution of Simoni and Martins

Simoni and Martins (2007), Simoni (2008) presented a matifio
of Farrell's method in order to avoid the generation of fracated kine-
matic chains. We notice that, in majority of the applicatipthe fraction-
ated kinematic chains are generated without necessity. I¥dgenatice that
some methods enumerate fractionated kinematic chains;(YEBN, 1994;
SUNKARI; SCHMIDT, 2006; TUTTLE, 1996) while others do not{¥ANG;
HWANG, 1991; MRUTHYUNJAYA, 1984c, 1984b, 1984a; TISCHLER e
al., 1995a; SIMONI et al., 2009).
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Figure 29 — Example Farrell's method: continuation of exglion of the
branch 2.

(€Y (b) (©

Figure 30 — Fractionation in kinematic chains: (a) Bodycfienation. (b)
Joint-fractionation. (c) Fractionation into hybrid chgin

A kinematic chain is classified as fractionated if the eliation of a
single element of the chain (link or joint) divides the kireta chain into
two disconnected kinematic chains. Otherwise it is nooctfomated (TIS-
CHLER et al., 1995a). A body-fractionated kinematic chaintains a link
which divides the kinematic chain into two closed, indepartdkinematic
chains, see Figure 30(a). A joint-fractionated kinematiain contains a
joint whose re-motion (or disconnection) divides the kimio chain into
two closed sub-chains, see Figure 30(b). Figure 30(c) slookimematic
chain with more complicated forms of fractionation can actcluding not
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only combinations of joint- and body-fractionation, buig@fractionation into
hybrid chains.

The method was implemented in C++ using graphs as datasteuct
The method imposes a tree structure in generation progegarsio the Far-
rell’s method, see Figure 31. The input data of the algoriththe number of

Figure 31 — Structure of proposed method in tree structupéemented using
algorithms of the Boost Graph Library (SIEK et al., 2002).

vertices and the degree of each vertex. The vertices arelydbrreasing of
degree and labeled with gradual number. The graph of rooesefis formed
by a set of vertices labeled. Combinations of degrees oicesrare made and
edges are connected in accordance with the label of eadxv@itte process
of adding edges is repeated to complete the degree of alktiiees.

In generation process, if a graph has a connected sub-griéiplthe
degrees of the vertices complete except one of them, suph danot gener-
ate more children because in this case the children wilimaitg fractionated
kinematic chains:

e if the sub-graph has only one vertex with degree 1 free, itdien lead
to body-fractionation as shown in Figure 32(a);

o if the sub-graph has only one vertex with degree higher thize€l its
children lead to joint-fractionation as shown in Figurelt32(

Some fractionated chains are generated in leaves of theitréleis
case we use the test of biconnectivity (time complexity ilypomial) of the
Boost Graph Library (SIEK et al., 2002) to exclude them . Tiugsavoid
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Body-fractionation Joint-fractionation

(&) Avoiding generate body- (b) Avoiding generate joint-
fractionation. fractionation.

Figure 32 — Eliminated graph avoiding the generation oftfoaated kine-
matic chains.

the generation of graphs that originate fractionated ket@nthains. In the
graphs of leaves of tree we run the isomorphisms test of Bérgth Library
whose worst-case time complexity & |V|!), where|V| is the number of
vertices.

More details and the algorithm of the modification of Fafsetiethod
consult Simoni and Martins (2007) and Simoni (2008).

4.1.1.6 Contribution of Sunkari and Schmidt

Recently, Sunkariand Schmidt (2006) presented a methahfomer-
ation of kinematic chains based on the group theory teclasiqThey uses
the McKay’s method (MCKAY, 1998, 2009b) for generation ofiaamor-
phism class representative in combination with an efficieproper testing
algorithms. According to the authors of method, the alponiis computa-
tionally efficient and it generates 318,162 planar kinemaltiains whit 14
link andM = 1 in 37.28s on Pentium 11l 1.7GHz with 512MB RAM. The au-
thors claims that the computational speed at which the katienchains are
generated depend on McKay-type algorithm that greatlymmize the explicit
isomorphism detection by using group theory techniques.

4.1.1.7 Contribution of Simoni et al.

Simoni (2008) and Simoni et al. (2009) adapt the graph geoeoh
McKay (2009b, 1998), freely distributed together with treckagegtools to
use the degeneracy test that Martins and Carboni (2007hubke algorithm
to calculate the connectivity and variety of kinematic cisai
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The degeneracy test considered by Martins and Carboni {206ii-
tifies improper kinematic chains that operate in any screstesy, by individ-
ualizing and calculating the mobility of all the sub-chaitdsing the graph
generator of McKay together with the improper kinematicioch&est of Mar-
tins and Carboni (2007), we validated the kinematic chagmegation method
considered in Simoni and Martins (2007) and enumeratedframiionated
kinematic chains with mobility £ M < 6 for several screw systems.

More details and the algorithm of the modification of Fafsetiethod
consult Simoni (2008) and Simoni et al. (2009).

4.1.1.8 Contribution of Martins et al.

Simoni (2008) and Martins et al. (2010) present a methoddkat
erates exclusively fractionated kinematic chains, i.eekiatic chains with
body fractionation, joint fractionation, body and joinaétionation or frac-
tionation into hybrid kinematic chains. The method is sémilo the Assur
method (see Section 4.1.1.3), in the sense that, kinenfasiog with greater
complexity (i.e. with a greater number of links) are genedldty the aggrega-
tion of simpler kinematic chains (i.e. with fewer links). @lhdvantage of the
method is that degenerate kinematic chains are not enuedefghe initial
simpler kinematic chains are free from immobile subchairf®e number of
isomorphisms is drastically reduced by applying the symynetncept, in-
troduced in Section 2.3, to each kinematic chain for subsegronnections.

Method description

The method consists of theggregationof simpler kinematic chains
to form kinematic chains with greater complexity. This aggation consists
of “welding” links of two kinematic chains (one of each kinatit chain), as
shown in Figure 33(a), to form kinematic chains with bodycfianation or
“the introduction of one joint” between two bodies to fornm&imatic chains
with joint fractionation as shown in Figure 33(b).

A serial kinematic chain can also be introduced between tukels
of two simpler kinematic chains forming fractionation iritgbrid kinematic
chains as shown in Figure 34.

I somorphism avoidance

To avoid the generation of isomorphic kinematic chains, wecdto
avoid “welding” or “introduction of one joint” in symmetrad links of a kine-
matic chain. Thus, we consider “welding” or “introductiohame joint” only
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Chain A ™
Chain A

(a) Welding two links to generate a (b) Introduction of one joint be-
body-fractionated kinematic chain.  tween two links to generate joint-
fractionated kinematic chain.

Figure 33 — Aggregation of kinematic chains generating ikiatc chains
with body- or joint fractionation.

. Chain B
O ,,,,; '-

Figure 34 — Aggregation of kinematic chains generatingtioaation into
hybrid kinematic chains.

in links representing different inversions of the kinernatiain. For example,
when we weld the serial kinematic chain shown in Figure 35lItorks of
a Stephenson kinematic chain, we generate several isormdrpbtionated
kinematic chains as shown in Figure 36.

Figure 35 — Aggregation by “welding” of a serial kinematicagh and a
Stephenson kinematic chain.

Considering the symmetries of the Stephenson kinematio ghex kine-
matic inversions or mechanisms that the Stephenson kimeotetin can as-
sume, which are known as Stephenson | (fix link 6), Stephehgbxlink 2)
and Stephenson Il (fix link 1), we avoid the generation ofhisophic kine-
matic chains when we weld a link of a serial kinematic chaia ik of a
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Figure 36 — List of all possible aggregations of a serial kiatic chain to a
Stephenson kinematic chain. Note the generation of isohiofactionated
kinematic chains.

Stephenson kinematic chain, as shown in Figure 37. Thislsiexample
shows that the identification of symmetries of the kinemaeliains reduces
drastically (and sometimes eliminates) the number of ispmems on the
output list.

Using this method Martins et al. (2010) concluded that tiserdipan-
cies reported in the literature were related to fractiaaith kinematic chains.
More details and examples of the generation of fractionkitegimatic chains
technigue consult Simoni (2008) and Martins et al. (2010).

4.1.1.9 Other contributions

Tischler et al. (1995a) proposed an improvement to the Farethod,
called the Melbourne method, with the objective to redueaitiimber of iso-
morphisms in output list. The improvement consists of ajmglya set of four
rules with the objective of reducing the number of isomaospis on the out-
put list. Melbourne’s method was applied to enumerationiéatic chains
suitable for application as robot hands (TISCHLER et al95t8). Mruthyun-
jaya (1979) presented a method based on the transformdthlinary kine-
matic chains for the structural synthesis of simple- andipleljointed kine-
matic chains with positive, zero or negative freedom. Dsnded Crossley
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Figure 37 — List of aggregations of a serial kinematic chaithe Stephenson
kinematic chain avoiding repeating symmetries. In thigctee identification
of symmetries eliminates the generation of isomorphidioaated kinematic
chains.

(1966) presented a method based on Franke’s notatione®uttitl coworkers
(TUTTLE, 1996; TUTTLE et al., 1989a, 1989b) enumerated timeiatic

chains systematically which reduced the need for isomemltésting. The
theory of symmetry groups is used successfully by Tuttlditoieate isomor-

phic entities in the generation of bases and kinematic shain

4.1.2 Enumeration of mechanisms

Agreement with IFTOMM a mechanism is a kinematic chain witle o
of its components (links) taken as a frame (IONESCU, 2003)e Prob-
lem of define all distinct choices of bases of a kinematic thee. define
the possible mechanism to a given kinematic chain is knowneohanisms
and machines literature as enumeration of mechanisms,exation of inver-
sions, specialization, and so on (MRUTHYUNJAYA, 2003; TUTH, 1996;
JAMES; RIHA, 1976; WALDRON; KINZEL, 1999; YAN; HWANG, 1991;
YAN, 1998).

Figure 38(a) shows the Stephenson kinematic chain whidinatie
three mechanisms with different characteristics of the entent relative to
the base fixing one of the links of the kinematic chain. Figu88(b), 38(c)
and 38(d) shows the classical mechanisms originated fixffeyent links of
the kinematic chain, i.e. Stephenson |, Stephenson Il agpgh®&nson 111
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(a) Stephenson kinematic chain. (b) Stephenson I.

(c) Stephenson II. (d) Stephenson llI.

Figure 38 — Stephenson kinematic chain and the three céss@chanisms
originated: Stephenson I, Stephenson Il and Stephenson Il

4.1.2.1 Contribution of Tuttle et al.

Tuttle and coworkers (TUTTLE, 1996; TUTTLE et al., 1989a328)
presented a method based on the theory of finite symmetrypgtotenumer-
ation of kinematic chains minimizing the use of isomorphissting, as part
of their method they generated information on subgroupire of symme-
try groups of binary and polygonal links and utilized it fagrdving distinct
inversions of chains. They present a table of mechanisniswpito 14 links
and possessing up to three degrees of freedom.

4.1.2.2 Contribution of Yan et al.

Yan and Hwang (1991) and Yan (1998) presented a processl calle

specialization which consists of assigning specific tydgdisiks and joints in

the available atlas of kinematic chains, subject to cedasign requirements
and constraints. First, they apply the permutation grougefme the bases of

a mechanism. Second, they apply the Polya’s theory to cduspecialized
mechanisms with a determined number of joints (prismatitative, cam,
etc.) and a determined type of links (spring, rigid, growetd) (YAN, 1998).
Simoni (2008) and Simoni et al. (2009) present a method aimid that of
Yan (1998) to define the bases of a mechanism, this methotevitviewed

in the next section.
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4.1.2.3 Contribution of Simoni et al.

Simoni (2008) presented a method for enumeration of meshemi
based on graph and group theory techniques, however, S{@@®38) did not
presented a detailed description of the method. Simoni§R060ly used the
nauty to identify the orbits of the graph represents a kirtenwhain. Af-
ter that work, Simoni et al. (2009) presented an improveroéttie method
applying the concept of symmetry presented in Section 2t8s improve-
ment using the concepts of symmetry, actions and orbitseadittomorphism
group of the associated graph will be described in SectiBrabd it is an
original contribution of this thesis.

4.1.2.4 Other contributions

Rao and Rao (1996) represent an inversion of a chain by ajmimt
symmetric distance matrix in which each entry is the shodésance, in
terms of number of links, by passing the frame link, betwéencbrrespond-
ing joints. A numerical scheme comprising of the row-sums@serators
and the sum total of all row-sums as the common denominataiiied to
be successful in distinguishing inversions of chains witl8&nd 10 links
(MRUTHYUNJAYA, 2003). Vijayananda (1994) successfullypdipd the
representation set of links to distinguish mechanismsvddrfrom a chain
and carried out enumeration of mechanisms with up to 13 mdpossess-
ing up to seven degrees of freedom (MRUTHYUNJAYA, 2003).

4.1.3 Enumeration of parallel manipulators

Agreement with IFTOMM a mechanism is a parallel manipuldda
kinematic chain with one of its components (links) takenrase and the
other taken as end-effector IONESCU, 2003).

4.1.3.1 Contribution of Tsai

Tsai (2001) presents a method of enumeration of parallelpo&ators
with a single platform distributing the number of binarykibetween the
number of legs of the parallel manipulator. Tsai (2001) dses equations



64

to characterize the structural topology of parallel matsifors:

]

M = Anh—j—-1)+S5 f 4.3
(h—j-1) I; (4.3)
m = M (4.4)

m i
= fi 4.5
kZle jZl (4.5)
S C = A+1M=-A (4.6)

k=1

A > G=>M 4.7)

whereM is the mobility (see Equation 3.1 on page 3T)is the number of
limbs made up of an open-loop kinematic chain &jds the connectivity
of a limb and it is defined as the number of degrees of freed@ocated

with all the joints, including the terminal joints, in thaimb. Substituting

Equation 4.4 and 4.5 into Equation 4.3, we obtain the Eqonati6é. To en-

sure proper mobility and controllability of the moving glaim, Tsai uses
Equation 4.7, i.e. the connectivity of each limb should r®@gbeater than the
motion parameter or be less than the number of degrees afdine®f the

moving platform.

Example 10. For spatial manipulatorsp = 6. Thus, Equations 4.6 and 4.7
becomey ' ;Cc = 7M — 6 and 6 > C, > M. All feasible limb connectivity
listings are shown in Table 7. After the classification praed in Table 7, the

Table 7 — Classification of Spatial Parallel Manipulatorsaading to Tsai's
method.

Mobility (M)  Total Joint Degrees of Limb Connectivity List-

Freedom}/_, f) ing (C1,Co, ...,Cm)
2 8 4,4
53
6,2
3 15 55,5
6,5,4
6,6, 3
4 22 6,6,5,5
6,6,6,4
5 29 6,6,6,6,5
6 36 6,6,6,6,6,6
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method consider all possible combinations of revolutesmaéitic, universal

and spherical joints for each limb connectivity listing. rlexample, the (5,

5, 5) connectivity listing cam be changed by RUU, UPU, RRS, RSP,
RRRU, PRRU, RRRRR, RRRRP, RPRRP, RRPRP, and so on. Mol& detai
of how to convert graphs to kinematic structures consultiSes 3.4.1 and
3.4.2 (pages 42 and 43).

4.1.3.2 Contribution of Alizade and Bayram

Alizade and Bayram (2004) present a method of enumeratigaef
allel manipulators with single and multiple platforms, wé@arallel manip-
ulators are classified according to their platform type(s) the connections
between them. The method determines simple structurapgrfor a given
set of synthesis parameters and then a number of requineataxs are added
to the group to form the parallel manipulator. For certaintegsis param-
eters, the Alizade and Bayram’s method finds one structutte tive desired
number and type of platforms (non-binary links) and numbéaimary links
(ALIZADE; BAYRAM, 2004). After that, the number of binarynks is dis-
tributed between the number of branches and legs origimatity one paral-
lel manipulator for the specified parameters.

The procedure can be summarized, step by step, as followZ HDE;
BAYRAM, 2004):

1) Selectvalues for the number of mobile platforfsand the total num-
ber of joints on the platformg;

2) The number of different structural grou, is given byG = 0.5j, —
B+ 1 (the structural groups correspond to partitions disaligs&ec-
tion 4.1.1.1);

3) Select a value for the total number of connections (sunuafiler of
legs and branches), in the interval given by #0,5j, <c <1+ jp—
B;

4) Calculate the number of branches, from j, = ¢, +C;
5) Calculate the number of legs, fromc=c,+¢;

6) Calculate the sum of mobility of all joints in the strucligroup f;
fromfi=A(c—B) =73/, fi

7) Place the joints on branches and legs.



66

8) Decide on the place to add the actuators. The DoF of thepukator
is equal to the number of actuators added. Note that one naag fie
actuators on legs or branches and also more than one actaydoe
placed on the same leg or branch.

9) Using the principle of interchangeability of kinemataiys, replace the
single mobility kinematic pairs with other kinematic paits desired.

Example 11. A spatial parallel manipulator with four degrees of freedom
is required, we want to use two triangular platforms (ALIZBIBAYRAM,
2004).

1) A=6,M=4,B=2,=6.

2) G=0.5%6—2+1=2, we have only two different structural groups,
i.e. partitions (4 3 3) and (3 3 3).

3,45) c=4o0rc=5:

e Forc=4.cp=2andg =2;
e Forc=5.c,=1andg =4.

6) e Forc=4: f; =6(4—2) =12 since we have a total of four
branches and legs, it is convenient to plak®/4 = 3 joints on
each leg or branch.

e Forc=15 f;i =6(5—2) = 18; since we have a total of five
branches and limbs, it is convenient to place three jointeach
leg or branch and place the remaining three joints on somaef t
branches or legs as we like.

7) The placement of joint fore 4 and c= 5 is given in Figures 39(a)
and 39(c);

8,9) In Figure 39(b), two actuators are placed on branched amo
actuators are placed on legs. In Figure 39(d), all actuatars placed
on the legs. Therefore the synthesis is concluded.

4.2 CRITERIA FOR ANALYSIS OF KINEMATIC STRUCTURES

Structural analysis is a field of kinematics that study ofnlagure of
connection among the members (links and joints) of a meshamind its
mobility (TSAI, 2001). It is concerned primarily with theridamental rela-
tionships among the mobility, the number of links, the numidfgoints, and
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@ (b)
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© (d)

Figure 39 — Two parallel manipulators obtained by Alizadaisthod (AL-
IZADE; BAYRAM, 2004).

the type of joints used in a mechanism. The structural arsafesals only
with the general functional characteristics of a mecharasih not with the
physical dimensions of the links.

As we can see in Section 4.1, in general, the number of gesterat
kinematic structures generated in the enumeration praseg®at and it is
difficult to evaluate each chain individually. Thereforteisinecessary to de-
velop a set of criteria to evaluate the merit of each chaihavit eliminating
a chain with possibilities to develop the desired task. Risrteason, the con-
cepts of variety, connectivity, degrees-of-control, nedlancy and symmetry
can be used to classify kinematic chains according to thstraints required.
They are essential for structural analysis of mechanisrdgparallel manip-
ulators.

4.2.1 Mobility

Definition 12 (Mobility). The number ofdegrees of freedoyror mobility
(M), of a kinematic chain is the number of independent patarseequired
to completely specify the configuration of the kinematidrchmspace, with
respect to one link chosen as the reference.

The mobility of a kinematic chain, with links andj single degree of
freedom joints, may be calculated by the general mobilitedon (HUNT,
1978; MRUTHYUNJAYA, 2003) applied to a set oflinks andj single de-
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gree of freedom joints:
M=A(n—j—1)+]j (4.8)

whereA is the order of the screw system to which all the joint screalsitg.
More details on mobility calculation consult Section 3.3.

Using the graph representation of a kinematic chain (seer&ig4, on
page 49), the general mobility criterion is given by

M=A(V[-|E[-1)+][E| (4.9)

where|V| is the number of graph vertices (i.e. links) gidl is the number of
graph edges (i.e. joints) (TSAI, 2001; MRUTHYUNJAYA, 2003)

4.2.2 Variety

Variety is an useful property for determining the relativmoectivi-
ties within a chain and also for selecting actuated pairsietamay also be
used to classify kinematic chains according to the comdsaequired (TIS-
CHLER et al., 1995b, 2001).

A kinematic chain is of variety if it does not contain any loop, or
subset of loops, with a mobility of less théh—V, but does contain at least
one loop, or subset of loops, which has a mobilityf V (TISCHLER et
al., 1995b).

Recently, Martins and Carboni (2007) present a new defmitiova-
riety in terms of graphs.

Definition 13 (Variety). Let a kinematic chain of mobility M be represented
by a graph G, the variety of the kinematic chain is:

V =M — min{M(G{)VG} € B} (4.10)

where B is the (finite) set of all possible biconnected subgraphs@raph
G and MG, is the mobility of the k biconnected subchain/subgraph.

Classification of kinematic chains by variatyallows generalizations
to be made about the relative connectivity of links withia kinematic chain,
therefore, if a kinematic chain with variety has a mobilityM greater than
the order of screw system that generally prevails.e. if M > A, then any
two links, separated by at leakt—V joints, have relative connectivitg >
A —V. The variety of kinematic chains also affects the choicéefjbint to
be actuated. If the Variety of a kinematic chain witloints isV = 0, the
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actuated pairs may be selected at random. Figure 40 shoess tibm links
planar kinematic chains with varie¥y= 2 (Figure 40a)y = 1 (Figure 40b),
V =0 (Figure 40c).

@ (b) (©
Figure 40 — Planar kinematic chains: Y&} 2, (b)V =1 and (c)vV = 0.

Tischler et al. (2001) showed that the variety can be usectlers
those candidate mechanisms best suited to an intendedbiun&h epicyclic
transmission, designed to control the finger-tip of a dexdmbot finger, was
used to demonstrate the technique. Tischler et al. (20@hyiited that the
most appropriate kinematic chains to the epicyclic gean thave variety
V = 1. Among the 2271 kinematic chains with=2, M = 3 andv =5
enumerated in the set required, only 5 (five) have valety1, and the other
2266 can be discarded as completely unsuitable. This exashuws the
potential of the variety to select the the most appropriaterkatic chains.

4.2.3 Connectivity

The connectivityC; between two links and j of a kinematic chain
is the relative mobility between linkisand j. This concept was introduced
by Hunt (1978). The importance of the connectivity and rethnty is em-
phasized by Hunt (1978), Tischler (1995), Belfiore and Betted(2000),
Tischler et al. (2001), Liberati and Belfiore (2006).

Different algorithms for connectivity calculations wereoposed by
Shoham and Roth (1997), Belfiore and Benedetto (2000), aibend Belfiore
(2006). However, all these algorithms presented some rfaglonnectivity
calculation. An alternative definition of connectivity aashew algorithm ca-
pable of connectivity calculation for every kinematic ahaan be found in
Martins and Carboni (2007):

Definition 14 (Connectivity) In a kinematic chain represented by a graph X,
the connectivity between two links i and j is defined in Marand Carboni
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(2007) as
Cij = min{D[i, j],M,Mg;n,A } (4.11)

where Oi, j] is distance between vertices i and j of X, M is the mobility of
the kinematic chain considered, )V is the minimum mobility closed-loop
biconnected subchain of X containing vertices i and j, and the order of
screw system.

Example 12. The connectivity is an important criterion for selectingnd
matic chains. For a better understanding of the importantéhe connec-
tivity consider the kinematic chain shown in Figure 41. Fegyd1l represents
a closed-loop kinematic chain with mobility M 3, but the connectivity be-
tween any two links does not excegdFrom this simple example, and as
already outlined in previous works (SHOHAM; ROTH, 1997; BEDRE;
BENEDETTO, 2000; LIBERATI; BELFIORE, 2006; CARBONI, 20@8%
evident that connectivity, not mobility, determines thititgtof an output link
to perform a task relative to a frame.

Figure 41 — Planar kinematic chain with maximum connegtivétween links
of 2, i.e.Gj < 2Vi,j (CARBONI, 2008). This kinematic chains will be
eliminated for the connectivity.

4.2.4 Degrees-of-control

Belfiore and Benedetto (2000) introduced the concept ofedegof-
control. The degrees-of-contril; between two links and j of a kinematic
chain is the minimum number of independent actuating paiesiad to de-
termine the relative position between the two linkend j, possibly leaving
some other link-relative position undetermined as wKgnis less than the
mobility M (BELFIORE; BENEDETTO, 2000). It is an important concept to
structural analysis of kinematic chains.

Recently, Martins and Carboni (2007) present a new defmdfalegrees-
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of-control in terms of graphs.

Definition 15 (Degrees-of-control) In a kinematic chain represented by a
graph X, the degrees-of-control between two links i and j is

Kij = min{D[i, j},Mgin} (4.12)

Based on the definition of degrees-of-control and conniggtihe def-
inition of redundancy will be introduced in next section.

4.2.5 Redundancy

Redundancy is one of the most important parameters in a kitiem
chain together with connectivity and variety (MARTINS; CBRNI, 2007).
The redundancy can be used to prevent collisions in martgrslavhich op-
erate in confined environment (SIMAS, 2008).

Definition 16 (Redundancy)In a kinematic chain represented by a graph X,
the redundancy between two links i and j is the differencevben K; and
Gij

RijKij—Cij. (4.13)

Example 13. Consider the planar kinematic chain with 10 links and 12{sin
and its graph X shown in Figure 42. By Equation 3.1 (page 37hane
M=3(10—-12—-1)+12=3

the mobility is equal to three. The variety is zero, i.e=\0 (see Section 4.2.2).
The adjacency matrix X) is given by:

Figure 42 — Planar kinematic chain and graph representation
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123456789 10
170 01010000
2l0 00000001 1
3/1 00000010 0
21000000100 1
51 00001000 0

AX)=610 00010100 0 (4.14)
7l0 00101010 0
8|0 01 000101 0
9/0 10000010 0
1001 10100000

The connectivity matrix X) is given by:

123456 78 9 10
170 2 1 212 3 2 3 1
22 032333211
3|1 30323212 2
212 230321231
5|1 32301233 2

CX)=6|2 3321012 3 3 (4.15)
71332121012 2
82 21232101 3
9312333210 2
101 12123232 0

In this case, the degrees-of-control matrixXK is equal to the con-
nectivity matrix GX), K(X) = C(X), and the redundancy matrix is null,
R(X)=0.

4.3 CONCLUSIONS

This chapter presented a bibliography review of the enutioeraf
kinematic structures methods and the criteria for analyfsisnematic struc-
tures.

First, we presented a bibliography review of the main cbntions
to the enumeration of kinematic structures. The main resafltenumera-
tion of kinematic chains are found in Tischler (1995), Mruthjaya (2003),
Sunkari and Schmidt (2006), Simoni (2008), Simoni et alO@0 The main
results of enumeration of mechanisms are found in Vijaydagh994), Tuttle
(1996), Mruthyunjaya (2003), Simoni (2008), Simoni et 20@9). Simoni
(2008) presents results of enumeration of mechanisms gsing and graph
theories, however, the description of the method was netr @ad the con-
cepts used in his method can be improved using the definifisgrometry
presented in Section 2.3. Using the concept of symmetryg, fitoissible to
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conclude that enumeration of mechanisms are related to syries of kine-
matic chains. The description of the enumeration of meamasimethod
using the symmetry concept will be presented in Chapter &.rmain meth-
ods for enumeration of parallel manipulators related with two engines
(generator and evaluator) in the conceptual design phasecfianisms and
parallel manipulators of Tsai’'s methodology were reviewdé noted that,
for some structural parameters, Tsai's and Alizade’s naglemumerated one
kinematic chain of the parallel manipulator. Then, usinmbtatorial anal-
ysis, rotative, prismatic, universal and spherical joiate allocated in the
kinematic chain to form the kinematic structure of the pgatahanipulator.
We also note that, Tsai’'s method enumerates only parallelpukators with
open-loop legs. Alizade’s method also enumerates opemits, however,
he introduces more moving platforms. We will introduce a meethod for
enumeration of all parallel manipulators that a kinematiecture can origi-
nate. Using this approach, it is possible to ensure thatradirkatic structure
will be evaluated.

Second, we reviewed the main criteria used to classify therkitic
structures enumerated. The importance of these critegi@@mphasized by
several authors: Hunt (1978), Tischler (1995), Tsai (200Authyunjaya
(2003), Belfiore and Benedetto (2000), Tischler et al. (30Qiberati and
Belfiore (2006), Shoham and Roth (1997), Martins and Car(k007), Car-
boni (2008), Simas (2008). Applications of these criterith be considered
in Chapter 6. For the purposes of this thesis, the critefilebeiclassified into
global and local. In Chapter 6 we prove that local criteria imvariant by
the action of the automorphism group. Therefore, it is gegtd reduce the
matricial representation of local criteria and to simplifi analysis.



74



75

5 CONTRIBUTIONS TO THE ENUMERATION OF KINEMATIC
STRUCTURES

The contribution of this work to the enumeration of kineroatiruc-
tures is to develop the enumeration of kinematic chains,haeisms and
parallel manipulators in a systematic procedure applymegdrated tools of
graph theory, group theory and screw theory.

First, we present the systematic procedure which consttierenu-
meration process into three levels: kinematic chains, meisms and par-
allel manipulators. Second, we present the current stdtasuwmeration of
kinematic chains found in the literature and we will compame discuss the
results of the methods reviewed in Section 4.1 (page 49ydTWwe present an
improvement of the method of enumeration of mechanismsepted by Si-
moni (2008) using the concept of symmetry introduce in ®ac#.3 (page
26). We present the current status of enumeration of mesimesfound in the
literature and we will compare and discuss these resultsrtirowve present
a new method for enumeration of all parallel manipulatoeg thkinematic
chain can originate.

This chapter provides original contributions to the enuatien of kine-
matic structures and it is based on the following papers:

¢ “M&aos Robdticas: Critérios para Sintese Estruturdbssificagao” (Sl-
MONI et al., 2007),

e “Criteria for Structural Synthesis and Classification of dflanisms”
(SIMONI; MARTINS, 2007);

e “Enumeration of Kinematic Chains and Mechanisms” (SIMONale,
2009),

e “Enumeration of Parallel Manipulators” (SIMONI et al., 28)tand

e “Fractionation in planar kinematic chains: Reconcilinguereration
contradictions” (MARTINS et al., 2010).

5.1 SYSTEMATIC PROCEDURE FOR ENUMERATION OF KINEMATIC
STRUCTURES

The enumeration of kinematic structures will be develop ititree
levels: kinematic chains, mechanisms and parallel maaiprd. Figure 43
shows the structure of the systematic procedure. We wilflyridescribe
below the three levels of the systematic procedure.
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Systematic Procedure for Enumeration
of Kinematic Structures

Ié LEVEL 1: Enumeration of : LEVEL 2: Enumeration of * LEVEL 3: Enumeration of
‘E’; Kinematic chains : Mechanisms . Parallel Manipulators

R L L A PP B

s:

"'é"")

nwrood omHCcmToAA>

: Number of links (n); : Number of links (n); : Number of links (n);

* Number of 1-DoF joints (j); * Number of 1-DoF joints (j); * Number of 1-DoF joints (j);

 Mobility (M); * Mobility (M); . Mobility (M);

Order of screw system (1). : Order of screw system (1); ' Order of screw system (L);

. Base. : Base;

Ee e i Endeeffector.

. Graph theory; . Graph theory; : Graph theory;

' Screw theory. ' Screw theory; . Screw theory; :
: Group theory (orbits of non- : Group theory (orbits of colored :
: colored vertex graphs) : vertex graphs) :

Figure 43 — Three levels of the systematic procedure for emation mecha-
nisms and parallel manipulators. Each level has a desanipfithe attributes
of the kinematic structure and the mathematical tools usékd design pro-
cess.
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5.1.1 Level 1: Enumeration of kinematic chains

The level 1 corresponds to the enumeration of kinematiosh& nu-
meration of kinematic chains satisfying a set of design ifipations is still
an open problem. Three difficulties are common in the enutioerarocess:
isomorphism (NP-hard), degeneration (NP-hard) and fraation.

From structural characteristics (humber of links, numii@iats, mo-
bility, order of screw system) kinematic chains are enunegkdt is important
to remember that a kinematic chain is an assembly of linksjaints. The
attributes of kinematic chains in this level are:

e number of links §),

e number of 1-DoF jointsj(),
e mobility (M) and

o order of screw system{.

The main tools considered in this level are graph theory amnels
theory and the main methods for enumeration of kinematitnshaere pre-
sented in Section 4.1 (page 49). There are some discregandiege results
found in the literature, the results and these discrepandgiebe commented
in Section 5.2.

5.1.2 Level 2: Enumeration of mechanisms

Each kinematic chain originates mechanisms selecting ifiireint
bases. It is important to remember that a mechanism is a latierhain
with one of its components (links) taken as a frame (IONES2003). In
terms of graph theory, a mechanism corresponds to a graphoné of its
vertices detached (colored) to represent the fixed link (SNVlet al., 2008).

The attributes of mechanisms in this level are:

e number of links (),

e number of 1-DoF jointsj(),

mobility (M),

order of screw systemi() and

base of the mechanism.
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The tools considered in this level are graph theory, groepmhand
screw theory; mainly the concepts of symmetry, actions amitoof the
automorphism group of non-colored vertex graphs.

In Section 5.3 we will present an improvement of the methodmf-
meration of mechanisms presented by Simoni (2008) usingdheepts of
symmetry, actions and orbits of the automorphism group ofcmlored ver-
tex graphs introduced in Section 2.3 (page 26). We will pretiee current
status of enumeration of mechanisms found in the literatndewe will com-
pare and discuss these results.

5.1.3 Level 3: Enumeration of parallel manipulators

Each mechanism originates parallel manipulators selgdifierent
links to be end-effectors. It is important to remember thpaeallel manipu-
lator is a kinematic chain with one of its components (linkeken as a frame
and the other taken as an end-effector. In terms of graphnthagarallel
manipulator with one end-effector corresponds to a graph tio detached
vertices (colored with distinct colors), one to represaetfixed link and an-
other to represent the end-effector (SIMONI et al., 2008).

The attributes of parallel manipulators in this level are:

e number of links (),

number of 1-DoF jointsj(),

mobility (M),

order of screw system(

base and end-effector of the parallel manipulator.

The tools considered in this level are graph theory, groepyhand
screw theory; mainly the concepts of symmetry, actions abdsoof the au-
tomorphism group of colored vertex graphs. We will presenéa method
for enumeration of parallel manipulators. The method cxigsif enumerat-
ing all the possible parallel manipulators with one encetfbr that a single
kinematic chain can originate.

Using this systematic procedure we will enumerate all meismas
and parallel manipulators that a kinematic chain can oaiginwithout iso-
morphisms. It is important to remember that the isomorphisoblem is
NP-hard.
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5.2 ENUMERATION OF KINEMATIC CHAINS

This section corresponds to level 1 of the systematic pnaeetbr
enumeration of kinematic structures proposed in Sectiarafid shown in
Figure 43. A review of the main methods for enumeration ofekiatic
chains was presented in Section 4.1 (page 49). To enumersmatic
chains we can use one of those methods. However, as indizatgdc-
tion 4.1, some methods enumerate fractionated kinemagioshvhile others
do not. Authors in general do not confirm the presence or aesehfrac-
tionated kinematic chains in their lists. Sunkari and Scrf2006) present
in their Tables 1-4 a series of enumeration contradictiohschler et al.
(1995a) deal with the fractionation question in a great¢aileMruthyun-
jaya (2003) comments that Tuttle and coworkers (TUTTLE,&9UTTLE
et al., 1989a, 1989b) generate only non-fractionated katenchains. How-
ever, both papers do not identify explicitly the fracticgdkinematic chains
generated nor present numerical results comparing natidreated and frac-
tionated kinematic chains. In view of this, we will presem turrent status
of enumeration of kinematic chains and we will discuss thesalts.

5.2.1 Current status of enumeration of kinematic chains

Tables 8, 9 and 10 present the current status of enumerdtkines
matic chains. Note that, these tables present just the nuafbdlénematic
chains, as we can see the number is large and it is impralditalprovide
all the drawings of the kinematic chains or their correspogdraphs. To
the best of the authors’ knowledge, the largest number okidgs of the
kinematic chains is the planar cage=£ 3) with mobility M = 3 and number
of loopsv = 3 listed in Tischler et al. (1995a), Mruthyunjaya (1984ajl an
Martins et al. (2010).

Table 8 shows the results obtained applying the method gexpby
Martins et al. (2010), Simoni (2008) described in Sectidn}48 for enumer-
ation of fractionated kinematic chains with mobility<IM < 6. We notice
that the table presented by Simoni (2008) has an incorreattref 440 frac-
tionated kinematic chains for the planar case A.e- 3, mobility equal three,
i.e. M = 3, and four loops, i.ev = 4, the correct result is 460 as shown in
Table 8.

To the best of the authors’ knowledge, the method proposeddry
tins et al. (2010) and Simoni (2008) is the unique that enateevnly frac-
tionated kinematic chains. Recently, Martins et al. (20dd)clude that the
discrepancies in the results found in the literature at@edl with fractiona-
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Table 8 — Current status of enumeration of fractionatedrket# chains ob-
tained by Simoni (2008) andMatrtins et al. (2010).

Mobility
A 1 2 3 a 5 6
2 - 1 2 2 6 9
2 3 ; 2 11 31 74 153
4 ; 11 67 270 839 2239
2 - 1 2 2 6 9
3 3 ; 5 24 63 142 273
4 ; 86 460 1559 4222 9920
, 2 - 1 2 2 6 9
3 ; 10 41 104 222 416
5 2 - 1 2 2 6 9
3 ; 17 69 169 350 634
s 2 - 1 2 2 6 9
3 ; 27 102 246 495 882

A is the order of screw system to which all the joint screws hglo
v is the number of loops of the kinematic chain.

tion in kinematic chains and they indicate that most of theilts are correct
and the difference are the fractionated kinematic chains.

Table 9 shows the results of enumeration of non-fractiah&tee-
matic chains. For example, witld = 1, A = 3 andv = 2 we have2 (two)
kinematic chains, these are the classical Watt and Stephéireematic chains.

For non-planar case, i.d. = 2,4,5,6, the results are in agreement
with Martins et al. (2010) and Simoni (2008). For planar case A = 3,
the most results are in agreement with those of Sunkari ahohigt (2006),
Tuttle (1996), Lee and Yoon (1994). We confirm all the res(ritsrmal font
style) in Table 9 up to four loops, i.@.= 4, others results (italic font style)
presented in Table 9 were obtained from Sunkari and Sch20@g) because
they use a technique of enumeration similar to the Martired.g2010) and
Simoni (2008) (see Sections 4.1.1.6 and 4.1.1.7).

In the following, we will indicate and comment all the dispamcies
on the results of Table 9 relative to results found in theditere:

e caseM =1 andv = 6; the result of Tuttle (1996) is 318126 and the
result of Sunkari and Schmidt (2006), presented in Table 918162.
By the similarity of the numbers we believe that 318126 ispoty

e caseM =2 andv = 6; the result of Tuttle (1996) is 1432608 and the re-
sult of Sunkari and Schmidt (2006) and Lee and Yoon (1994semted
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Table 9 — Current status of enumeration of non-fractionkitgeimatic chains.

Mobility
A 1 2 3 Z 5 6
2 1 2 3 2 6 7
2 3 3 9 20 40 70 121
4 13 49 160 432 1033 2241
2 2 3 5 6 8 10
3 3 16 35 74 126 212 325
4 230 753 1962 4356 8846 16649
5 6856 27496 38547 216291
6 318162 1432730 4805764 13743920
7 19819281
. 2 3 2 6 8 10 12
3 42 93 172 289 451 678
g 2 2 6 8 10 13 15
3 116 225 398 621 939 1339
s 2 5 7 10 12 15 18
3 242 454 749 1146 1661 2327

in Table 9, is 1432730. We believe that the result of Tuttlo@) is in-
correct because two authors, i.e. Sunkari and Schmidt (2006 Lee
and Yoon (1994), confirm the result of the Table 9.

e caseM = 3 andv = 4, the result of Simoni (2008) is 1982 and the
correct result is 1962.

e caseM = 3 andv = 6; the result of Tuttle (1996) is 4805382 and the
result of Sunkari and Schmidt (2006), presented in Table £805764.

Table 10 gives the results of the enumeration of generalnkatie
chains, i.e. fractionated and non-fractionated kinemaiins. The entries
of this table are given by summing the entries of Tables 8 aaPinstance,
the casel = 3,M = 3 andv = 3 is given by 24(F) + 74(NF) = 98(G), and the
casel =6,M =6 andv = 2is given by 882(F) + 2327(NF) = 3209(G), where
(F), (NF) and (G) represent, respectively, fractionatexh-fractionated and
general kinematic chains.

For non-planar case, i.2.= 2,4,5,6, the results are in agreement with
Martins et al. (2010) and Simoni (2008). For planar caseji 3, the most
results are in agreement with those of Tischler et al. (1998authyunjaya
(1984a), Hwang and Hwang (1991), Mruthyunjaya (1984c, b98We con-
firm all the results (normal font style) in Table 10 up to fooops, i.ev = 4,
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Table 10 — Current status of enumeration of general kinenchtins.

Mobility

A v 1 2 3 Z 5 6
2 1 3 5 8 12 16

2 3 3 11 31 71 144 274
4 13 60 227 702 1872 4480
2 2 2 7 10 14 19

3 3 16 40 98 189 354 598
4 230 839 2422 5915 13068 26569
5 6862 29704

, 2 3 5 8 12 16 21
3 42 103 213 393 673 1094

5 2 Z 7 10 14 19 24
3 116 242 467 790 1289 1973

5 2 5 8 12 16 21 27
3 242 481 851 1392 2156 3209

others planar results (italic font style) presented in &at) (caseM = 1,2
andv = 5) were obtained from Hwang and Hwang (1991) and Mruthyumjay
(2003).

In the following, we will indicate and comment all the dispescies
on the results of Table 10 relative to results found in thexditure:

e caseM = 3 andv = 4; the result of Hwang and Hwang (1991) is 2442
and the result of Simoni (2008), Martins et al. (2010) ancygnanda
(1994), presented in Table 10, is 2422. By the similarityhefnumbers
we believe that 2442 is a typo.

e caseM =4 andv = 4; the result of Hwang and Hwang (1991) is 5951
and the result of Simoni (2008), Martins et al. (2010) ancdygnanda
(1994), presented in Table 10, is 5915. By the similarityhefnumbers
we believe that 5951 is a typo.

The work initiated by Simoni (2008) and complemented by Marét
al. (2010) solves the contradictions of the results of ematian of kinematic
chains found in the literature since 1960. Enumeratioms lgft kinematic
chains are presented in the literature (SUNKARI; SCHMID00@&; SIMONI
et al., 2009; TISCHLER et al., 1995a; TUTTLE, 1996; MRUTHYUAYA,
1984a; LEE; YOON, 1994; HWANG; HWANG, 1991; MRUTHYUNJAYA,
1984c, 1984b), but until now the contradictions of the ressaite not conclu-
sive. Now, with the work of Simoni (2008) and Martins et al0{®) it is
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possible to affirm without doubt that the methods (TISCHLERIg 19954a;

MRUTHYUNJAYA, 1984a; HWANG; HWANG, 1991; MRUTHYUNJAYA,

1984c, 1984b) enumerate general kinematic chains (freetiénl and non-
fractionated) while other methods, e.g. (SUNKARI; SCHMI2ZDO6; TUT-

TLE, 1996; LEE; YOON, 1994), enumerate only non-fracti@udtinematic
chains. In this section, we presented the current resulehofmeration of
kinematic chains and point out the discrepancies and iacoresults of all
methods. As noted above, most results presented in thatliterare correct,
with minor disagreements (possibly caused by typos), mostradictions
are only related to the presence or not of fractionated katenehains in the
enumeration lists.

5.3 ENUMERATION OF MECHANISMS

This section corresponds to level 2 of the systematic prareetbr
enumeration of kinematic structures proposed in Sectidrafd shown in
Figure 43. A review of the main methods for enumeration of ma@isms
was presented in Section 4.1 (page 49).

In this section, first, we introduce a new representationefmanisms
in terms of graph which is an useful simplification for comgtidnal imple-
mentation. Second, we present an improvement of the mefrestlioneration
of mechanisms proposed by Simoni et al. (2009). The impreverronsists
in the application of the concept of symmetry in kinematiaiols presented in
Section 2.3 (page 26). Using this method, it is possiblefioathat mecha-
nisms are related to the symmetries of the kinematic chaimsd, we present
the current status of enumeration of mechanisms found ifitdrature and,
finally, we discuss these results.

5.3.1 Graph representation of mechanisms

Agreement with IFToMM (International Federation for theRotion
of Mechanism and Machine Science) a mechanism is a kinetadio with
one of its components (links) taken as a frame (IONESCU, 003

Figure 44(a) shows a kinematic chain and Figure 44(b) itplyrap-
resentation. For the purposes of this thesis, kinematimstzd mechanisms
are represented by graphs. This representation is a vefyl ggaplification
for analyzing the possible mechanisms which a kinematimaten originate.
A new graph representation of mechanisms was introducedrbgrt et al.
(2008) to simplify the application of group theory tools ésrumeration of all
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possible mechanisms that a kinematic chains can originate.

3 0 2
7 6
5 1 4
(a) Kinematic chain. (b) Graph representation.

Figure 44 — Graph representation of kinematic chains.

A mechanism is a kinematic chain with one of its componeirikg)
taken as a frame (IONESCU, 2003). In terms of graph theorygehamnism
corresponds to a graph with one of its vertices detachedi@ad) to represent
the fixed link (SIMONI et al., 2008). Figure 45(b) shows thagn of the
mechanism presented in Figure 45(a) where the detacheskvepresents
the fixed, i.e. link 1.

3 0 2
7 6
5 1 4
(a) Mechanism. (b) Graph representation.

Figure 45 — Graph representation of mechanisms (SIMONI.£2608).

5.3.2 Improvement of the method proposed by Simoni (2008)

The improvement of the method proposed by Simoni (2008)isbns
into apply the concept of symmetry presented in Sectiongagd€ 26). Mech-
anisms are related to the symmetries of the kinematic cHaliRIQNI et
al., 2009). Ignoring dimensions, symmetrical links in theekmatic chain,
when fixed, yield mechanisms with the same kinematic cheriatits. For
instance, any of the binary links of the Watt kinematic chdire to the sym-
metry of the chain, yield the same Watt | mechanism (see Eigdrin Sec-
tion 3.2).
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From the biunivocal correspondence between graphs anankitie
chains, the symmetry of a kinematic chain can be analyzed¢firthe sym-
metry of its correspondent graph. As discussed in Sectibnuaing group
theory, the symmetry of a graph can be identified by its autpimems group.
A kinematic chain is symmetric when it has more than one aatpiism, see
Definition 10 of Simoni et al. (2010). Thus, once identifiedsgetries in the
kinematic chain we can use the graph symmetry to enumerafiorecha-
nisms. As shown in Example of the Watt mechanisms (Figureade 35),
symmetric links yield the same mechanisms, i.e. Watt | antt Wadowever,
mechanisms are related to the symmetries of the links ofitienkatic chain
and symmetric links are identified by orbits of the automasphgroup of the
graph associated to kinematic chain. The orbits of the aatphism group
provides the sets of vertices (links) that are in the samévalgunce classes,
i.e. they possess the same properties of symmetry. Therefanechanism
may be enumerated by choosing one representative from eaitlofathe au-
tomorphism group of graph that represents the kinematimchiée number
of orbits of the automorphism group induced by the grapheestis equal to
the number of mechanisms that the graph can originate. krtodietermine
the possible choices of the fixed link, only one represerdaif each orbit
needs to be selected.

Figure 46 illustrates the applied techniques step by stepumeration
of mechanisms. First, given a graph, we need to identify sgirigs. McKay
(2009b, 1998) implemented the prograauty(No AUTomorphisms, Yes?)
which is a set of very efficient C language procedures forrdgteéng the
automorphism group of a graph with colored vertices. It ptes this infor-
mation in the form of a set of generators, the size of the graogd the orbits
of the group. We can use nauty, without colored verticesgterining the
automorphism group of a kinematic chain using its assogetph. Second,
the internal symmetry of the graph is represented in the fafran automor-
phism group and their orbits provide the equivalence ctassder the action
of the automorphism group. Symmetric links are grouped stirtit orbits
because the orbits form a partition of the vertex set. THhindenumerate
all mechanisms of a kinematic chain can originate is onlydedeto choose
one representative from each equivalence classes, ira. éach orbit, be-
cause these equivalence classes provides links with the sharacteristics
of symmetry inside of the kinematic chain. Finally, sincerthis a biunivo-
cal correspondence between graphs, kinematic chains acldamisms, see
Section 5.3.1, we obtain all possible choices of base in kaamatic chain
originating all possible mechanisms that a kinematic cbamoriginate.
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¢ identification of symmetries of the
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group of the graph
| actions and orbits of the automor-
| phism group
Y Y Y Y
orbit orbit orbit orbit —>[ orbits capture internal symmetries]
o wom agn "
—>[ symmetric links identified by orbits]
v v v A4 .
one representative element of
vertex vertex vertex vertex —p| ;
wqn “on “ o each orbit
1 2 3" k
> biunivocal correspondence
v v v v links - vertices and joints - edges
mechanism| [mechanism||mechanism| mechanism| - -
“qn “m “3" “K" —>[ all possible mechanisms ]

Figure 46 — Flowchart of the proposed method outlining the obthe group
theory tools for enumeration of mechanisms.

Algorithm 1 shows the pseudocode of the improvement of thinate
of method of enumeration of mechanisms using the nauty progr

In the following, we will apply the technique to enumeratwiiVatt
and Stephenson mechanisms, two examples well known in mischg.and
machines literature. These didactic example are choseaubedhe results
are well established and it is easy to understand the atiplioaf the method.

Example 14. Watt kinematic chain shown in Figure 47(a) is well known ia th
literature of mechanisms, we know that it originate twoidisttmechanisms,
i.e. Watt | and Watt Il. Watt kinematic chain is representgdtiiee labeled
graph X shown in Figure 47(b). The automorphism group of th& @faph
possesses four elements:

o 0, = (12)(34)(56),

o 03 = (15)(26)(3)(4) and
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Algorithm 1 Pseudocode of the improvement of the method of enumeration
of mechanisms of Simoni (2008).

1- Input:

A non-colored vertex graph, which represents a kinematdrch

2 - Run the nauty program:

Determines the automorphism group of the graph.

nauty output: Elements of the automorphism group.

3 - Post-processing:
Determines the number of symmetries of the non-colore@xenaph.
IF {non-colored vertex graph is symmetric, r.e4 1 (see Definition 11
on page 26)
THEN

Identify equivalence classes of vertices of the non-calorertex
graph.

These equivalence classes are grouped into orbits of thoenaut
phism group.

Select one representative element of each orbit of the otored
vertex graph, i.e. a vertex, to represent a new mechanism.

The number of orbits of the automorphism group of the nomeal
vertex graph is equal to the number of possible choices aéhas
i.e. the number of mechanisms that the associate kinemiadio c
can originate.

Use the graph representation of mechanisms (see Sectidr) ®©3
identify the new mechanisms.

ELSE

All links, when fixed, originate distinct mechanisms.

4 - Output:

Number mechanisms.
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o 03 = (16)(25)(34).

The generator set is A(K) =< 02, 03 >. As Au(X) has four elements
the Watt kinematic chain is symmetric, therefore, we caryatiig method
described above. The action of the automorphism group o\t graph is
shown in Figures 48(a), 48(b), 48(c) and 48(d), respecfivelhe orbit of

1 3 5

(b)

Figure 47 — Watt kinematic chain and graph representation.

1 3 5 2 4 6
v \ 4
2 4 6 1 3 5
(a) 01(X) action. (b) 02(X) action.
5 3 1 6 4 2
6 4 2 5 3 1
(c) og3(X) action. (d) 0a(X) action.

Figure 48 — Image of automorphism group action in the Watplgra

vertex 1 is equal to the orbit of vertices 2, 5, and 6 of the frae. &1 =
Oy = 05 = 0 = {1,2,5,6}, and the orbit of vertex 3 is equal to the orbit
of vertex 4 of the graph, i.e7;3 = 04 = {3,4}. Therefore, the orbits of the
automorphism group are:

e Owat 1 ={1,2,5,6} and
o Owatt 1 = {3,4}.
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Note that it is possible to identify the orbits by analyzing(X) =< g2, 03 >.
For the Watt kinematic chain, the automorphism group passesvo orbits;
therefore, the number of mechanisms for the Watt chain isatwebthe rep-
resentatives can be, for example, 1 and 3. Fixing link 1, weeggte the
classical Watt | mechanism. Similarly, fixing link 3 we getterthe Watt I
mechanism. Any choice from the orbit of link 1 (i.e. 1, 2, 56poriginates
Watt | mechanism, and any choice in the orbit of link 3 (i.er 8)ooriginates
Watt Il mechanism.

Example 15. Stephenson graph (X), shown in Figure 49, has four elements
in the automorphism group:

. 01— (1)(2(3)(4)(5)(6),
o 02 = (1)(2)(3)(4)(56),
o 3= (14)(23)(5)(6) and
. 0y = (14)(23)(56).

As Au(X) has four elements the Stephenson kinematic chain is syrometr
therefore, we can apply the method described above. Theraofi auto-
morphism group of the Stephenson graph (Figure 49(b)) isvehim Fig-
ures 50(a), 50(b), 50(c) and 50(d),respectively. The oobivertex 1 is

3 4
q
5 6
[
2 1
(a) Stephenson kinematic chain. (b) Graph representation.

Figure 49 — Correspondence between graphs and kinematitscha

equal to the orbit of vertices 4 of the graph, i@, = 04 = {1,4}, the orbit
of vertex 2 is equal to the orbit of vertex 3 of the graph,d’e= 03 = {2,3},
and the orbit of vertex 5 is equal to the orbit of vertex 6 ofdregph, i.e.05 =
O = {5,6}. Therefore, the orbits of the automorphism group are:

® Ostephenscill = {1,4},
® Ostephenscdl = 12,3} and
b ﬁStephensc-n = {5,6}.



90

3 4 3 4
q q
5 6 6 5
« «
2 1 2 1
(a) 01(X) action. (b) 02(X) action.
2 1 2 1
r r
5 6 6 5
« «
3 4 3 4
(c) o3(X) action. (d) 04(X) action.

Figure 50 — Image of automorphism group action in the Stegpdregraph.

For the Stephenson kinematic chain, the automorphism grospesses three
orbits originating three distinct mechanisms and the repraatives can be
1, 2 and 5. These choices of fixed links originate, respdgtitlee classical
Stephenson lll, Il and | mechanisms. Fixing links 4, 3 and Gld/generate
the same Stephenson IlI, Il and | mechanisms because theesapectively,
in the same orbits.

5.3.3 Current status of enumeration of mechanisms

This section presents the current results of enumeratiorechanisms
found in the literature. Each kinematic chain originaterymun mechanisms,
therefore, we can enumerate the mechanisms originate@tydnated kine-
matic chains, non-fractionated kinematic chains and byeg®rkinematic
chains (see Tables 8, 9 and 10). Tables 11, 12 and 13 preseatittent
results of enumeration of mechanisms. Note that, the tagirlesent just the
number of mechanisms, as we can see the number is large arichjtriacti-
cable to provide all the drawings of the mechanisms that arkatic chains
can originate.

Following the results of enumeration of kinematic chains,initiate
with Table 11 that presents the list of fractionated mecéranj these mech-
anisms are originated from kinematic chains shown in Tal{jgage 80). To
the best of the authors’ knowledge, the method proposed hyideet al.
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(2010) is the unique that enumerate only fractionated katenthains. We
confirm all the results of Table 11.

Table 11 — Current status of enumeration of fractionatedhaeisms ob-
tained by Martins et al. (2010).

Mobility
A 1 2 3 2 5 6
2 - 2 6 15 27 47
2 3 ; 4 49 171 471 1103
4 ; 49 380 1793 6430 19323
2 - 3 8 19 33 56
3 3 ; 34 167 508 1244 2645
4 - 742 4388 16349 48166 122411
. 2 - 3 9 21 37 62
3 ; 82 367 1043 2414 4894
g 2 - 2 11 25 43 71
3 . 193 799 2138 4684 9068
5 2 - 2 12 27 47 77
3 . 353 1410 3649 7757 14608

A is the order of screw system to which all the joint screws hglo
v is the number of loops of the kinematic chain.

Table 12 shows the current results of enumeration of noctitnaated
mechanisms, i.e. mechanisms originated from kinematimestsnown in Ta-
ble 9 (page 81). For example, with = 1, A = 3 andv = 2 we haves (five)
mechanisms, these are the classical Watt I, Watt Il, Steggreh Stephen-
son Il and Stephenson Il mechanisms originated from Walt@tephenson
kinematic chains.

For non-planar case, i.&. = 2,4,5,6, the results are in agreement
with Simoni (2008), Simoni et al. (2009). For planar case, A. = 3, the
results are in agreement with those of Tuttle (1996) and Sirabal. (2009).
We confirm all the results (normal font style) in Table 9 up ¢aif loops,
i.e.v =4, others results (italic font style) presented in Table ®engbtained
from Tuttle (1996).

Table 13 shows the current results of enumeration of genegaha-
nisms, i.e. mechanisms originated from kinematic chaimsvehin Table 10
(page 82). For non-planar case, le= 2,4,5,6, the results are in agreement
with Simoni (2008). For planar case, i&.= 3, we confirm all the results
in Table 13, some results are in agreement with those of &fjapda (1994).
The discrepancies occur in the following cases:
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Table 12 — Current status of enumeration of non-fractiachatechanisms.

Mobility
A v 1 2 3 Z 5 6
2 2 5 9 15 23 33
2 3 8 35 91 217 463 897
4 45 255 1014 3248 8924 21911
2 5 11 18 28 39 55
3 3 71 220 517 1056 1955 3387
4 1834 7156 20737 51245 113387 231664
5 75397 335398 1105923
6 4274142 20736427 74387903
, 2 10 18 29 43 59 79
3 324 832 1749 3245 5581 9042
5 2 17 31 45 65 86 113
3 1196 2704 5136 8849 14256 21894
5 2 27 44 65 89 117 150
3 3331 6813 12126 19792 30538 45118

e caseM = 6 andv = 2; the result of Vijayananda (1994) is 110 and our
resultis 111.

e caseM = 3 andv = 3; the result of Vijayananda (1994) is 648 and our
result is 684. By the similarity of the numbers we believd 6¥8 is a
typo.

e caseM = 3 andv = 4; the result of Vijayananda (1994) is 25124 and
our resultis 25125.

e caseM = 4 andv = 4; the result of Vijayananda (1994) is 67591 and
our result is 67594.

As we can see, the discrepancies are very similar, the maxiiseaepancy
is four mechanisms in the last case. Notes that, in all camasmethod
enumerate more mechanisms than Vijayananda (1994). ltislaration that
the method of Vijayananda (1994) can be discarding anyl&asolution.

To the best of the authors’ knowledge, Tables 11, 12 and 18rskiwe
most complete result of enumeration of mechanisms.
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Table 13 — Current status of enumeration of general mecmanis

Mobility
A 1 2 3 2 5 6
2 2 7 15 30 50 80
2 3 8 39 140 388 934 2000
4 45 304 1394 5041 15354 41234
2 5 14 26 47 72 111
3 3 71 254 684 1564 3199 6032
4 1834 7898 25125 67594 161553 354075
. 2 10 21 38 64 96 141
3 324 914 2116 4288 7995 13936
g 2 17 35 56 90 129 184
3 1196 2897 5935 10987 18940 30962
5 2 27 48 77 116 164 227
3 3331 7166 13536 23441 38295 59726

5.4 ENUMERATION OF PARALLEL MANIPULATORS

This section corresponds to level 3 of the systematic prareetbr
enumeration of kinematic structures proposed in Sectiarafid shown in
Figure 43. This section provides an original contributiottte enumeration
of parallel manipulators with one end-effector and is basethe following
paper:

e “Enumeration of parallel manipulators” (SIMONI et al., Z)0

A review of the main methods for enumeration of parallel mpani
lators was presented in Section 4.1 (page 49). As pointedrpr$ et al.
(2008), the method that we will present here is the only oaéeéhumerates
all possible parallel manipulators of a kinematic chaine Tésults presented
in this section are new and therefore we do not have refesdoceompari-
son. The advantage of this approach is that all parallel pudatiors will be
evaluated and the most promising will be chosen by desigailitet.

In this section, first, we introduce a new representatioreoélel ma-
nipulators in terms of graph which is an useful simplificatfor computa-
tional implementation. Second, we describe the methodhwses the group
theory tools (see Section 2.1), specially, we apply the eptscof symme-
try, actions and orbits of the automorphism group of a calaertex graph.
The method consists of enumerating all the possible pamalmipulators
with one end-effector that a single kinematic chain canioatg. Third, we
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present some applications of the method and, finally, waudssthe results.
5.4.1 Graph representation of parallel manipulators

In this section we explore the number of parallel maniputateith
one end-effector which a kinematic chain can originate. @kgoration is
carried out using graph and group theory. The representafi@ parallel
manipulator by a graph is a very useful simplification for lgmimg all the
possible parallel manipulators which the kinematic chain originate. A
new graph representation of mechanisms and parallel miabdps was intro-
duced by Simoni et al. (2008) to simplify the application afgp theory tools
for enumeration of all possible parallel manipulators wthe end-effector
that a kinematic chains can originate.

To a better understanding of representation of a parallelipoda-
tors by a graph, the representation of kinematic chains aschamisms will
be briefly presented below. Figure 51(a) shows a kinematdincand Fig-
ure 51(b) its graph representation. Figure 52(a) shows eéhamssm and
Fig 52(b) shows their graph representation. In terms oflythpory a mech-
anism corresponds to a graph with one of its vertices dethftwored) to
represent the fixed link (SIMONI et al., 2008).

3 0 2
7 6
5 4
(a) Kinematic chain. (b) Graph representation.

Figure 51 — Graph representation of kinematic chains.

3 0 2
7 6
|||\|| 1 1 |||\|| 5 1 4
(a) Mechanism. (b) Graph representation.

Figure 52 — Graph representation of mechanisms (SIMONI.g2@08).
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A parallel manipulator is a kinematic chain with one of itsrqgmonents
(links) taken as frame and the other taken as end-effecddiESCU, 2003).
In terms of graph theory, a parallel manipulator with one-effdctor corre-
sponds to a graph with two detached vertices (colored witirdit colors),
one to represent the fixed link and the other to representitiefector (SI-
MONI et al., 2008).

Figure 53(b) shows the graph of the parallel manipulatomshin
Figure 53(a), where one of the detached links representbake and the
other represents the end-effector. If the parallel maatoulpossess more
than one end-effector, more graph vertices must be detdolregresent it.

3 0 2
7 6
i 1 1 1 fumi 5 1 4
(a) Parallel Manipulator. (b) Graph representation of parallel ma-

nipulator.

Figure 53 — Graph representation of parallel manipulatath wne end-
effector.

Simoni et al. (2008) used the concept of orbits of the autpimem
group of non-colored vertex graphs, of group theory, to eznate all the
possible mechanisms of a single kinematic chain.

In this section, we present an extension of the enumerafiorecha-
nism method for enumeration of parallel manipulators witle end-effector.
Thus, we will represent parallel manipulators by graph& wiio of their ver-
tices colored (detached), one to represent the base anthiieto represent
the end-effector, and use tools from group theory for enatiaar of all the
possible parallel manipulators with one end-effector thaingle kinematic
chain can originate.

5.4.2 New method for enumeration of parallel manipulators

Our method for the enumeration of parallel manipulatorssegis of
calculating orbits of the automorphism group of colored&ergraphs and
selecting all the possible distinct label listing of veesic(one to represent
the base and other to represent the end-effector) which riginate distinct
parallel manipulators. Firstly, the base of the parallehipalators are enu-
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merated using the concepts of symmetry, action and orbitseofutomor-
phism group. Second, the links defined as base of the pamadielpulators
are colored and the automorphism group is obtained agaie.syimmetries
are discarded and only original configurations are obtained

5.4.2.1 Orbits of non-colored vertex graphs and corresipgrishses

The method of enumeration of bases is the same of enumetion
mechanisms presented in Section 5.3. We use the same metbaassk it is
shown in Section 5.3.3 that the results obtained by the ndethenumeration
of mechanisms are effective and all possible choices ofsms&enumerated.
For completeness of the enumeration of parallel maniprda@thod we will
present another example of enumeration of bases, i.e. misona Using the
tools of group theory presented in Section 2.1 we can obtgdossible bases
of a kinematic chain choosing a representative of each ofltite automor-
phism group of a non-colored vertex graph, i.e. discardimgraetric links.
The number of orbits of a non-colored vertex graph whichesent the kine-
matic chain is equal to the number of bases that the graphk{hematic
chain) can originate. To ascertain which are the possiteek for the fixed
link there only needs to be chosen a representative of edh(8{MONI
et al., 2008), this procedure guarantees that symmettis lame discarded
originating only the distinct choices of base.

Example 16. Figure 54(a) shows a planar kinematic chain with mobility
three (M= 3) and two loops, the kinematic chain is represented by a la-
beled non-colored graph (without vertices detached) aswha Figure 54(b)
which will be called X. The automorphism group of graph X peses four
elements:

The action of the automorphism group on the graph X is showhign
ures 55(a), 55(b), 55(c), and 55(d), respectively.

The orbit of vertex 0 is equal to the orbit of vertex 1, k.= 01 =
{0,1}, the orbit of vertex 2 is equal to the orbit of vertices 3, 4 &nd
i.e. 0 = 03 = 04 = 05 ={2,3,4,5}, and the orbit of vertex 6 is equal to
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(a) Kinematic chain. (b) H.

Figure 54 — Graph representation of kinematic chain.

~
=2

#ﬁ
<

5 4 5
(a) 01(X) action. (b) 02(X) action.
5 1 4 4 1 5

\,
)
o

3 0 2 2 0 3
(c) o3(X) action. (d) 04(X) action.

Figure 55 — Actions of automorphism group on the graph.

the orbit of vertex 7, i.e0s = 07 = {6,7}. Therefore, the three orbits of the
automorphism group are:

L ﬁBasq = {07 1},
L4 ﬁBaSQ = {27 37 47 5} and
[ ] @)Bas% = {67 7}

The possible choices of base for the kinematic chain showigin
ure 54(a) are obtained by choosing a representative of eabl of the au-
tomorphism group induced by associated non-colored graptices, for ex-
ample 0, 2 and 6.

The number of orbits of the automorphism group (i.e. 3) is¢tpthe
number of all possible bases of the parallel manipulatot tie kinematic
chain can originate. The links that are in the same orbit oréde identical
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bases, i.e. the changing of a fixed link does not cause diffelaracteristic

in the movement of the mechanism in relation to the fixed Tihk. changing
of a fixed link, for links that are in different orbits, leads different char-

acteristic in the movement of the mechanism originatingirdismechanisms
for the kinematic chain.

5.4.2.2 Orbits of colored vertex graphs and correspondiidgedfectors

For enumeration of all possible parallel manipulators witte end-
effector for a given kinematic chain we use colored vertepys.

The method of enumeration of all the possible parallel malators
with one end-effector for a kinematic chain is similar of thethod of enu-
meration of mechanisms and it consists of identify symrestdf the kine-
matic chain with one link selected as base. The symmetreeglantified by
orbits of the automorphism group of colored vertex gragtescolored vertex
represent the base and is obtained by method presentedtiorSed.2.1. To
enumerate all the possible parallel manipulators with antkeffector which
can be originated by a single kinematic chain we only needhtorerate all
the possible choices of the end-effector for each base. in@est way of
enumerate all possible choices of end-effector is to cohar \eertex (which
originates the base) of each time and identify the symnsetadculating the
orbits of the automorphism group of the colored vertex gr@yth the vertex
that originates the base colored). The parallel manipul@tase and end-
effector) is obtained choosing a representative elemeetoh orbit of the
colored graph to represent the end-effector.

Figure 56 shows a flowchart of the method, step by step, auglitne
role of the group theory tools for enumeration of parallehipalators.

With this technique all the parallel manipulators with one-effector
that the kinematic chain can originate are enumerated.ridagtablished the
possible choices of a base, for each colored base (coloeguh giertex) the
automorphism group of colored vertex graph captures tleenat symmetries
of graph and supplies the information through the orbithiefdutomorphism
group. In the case of colored graphs, the automorphism grapiures equiv-
alence between graph vertices in relation to the coloretites: The vertices
that are in the same orbit originate identical parallel rpatdtors with one
end-effector. Now we present some examples of the new method
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Kinematic
chain
4 .| biunivocal correspondence
A ~| links - vertices and joints - edges
Graph
¢ identification of symmetries of the
R graph using the automorphism
Symmetries of non-colored ven:tex graph and group of the non-colored vertex
base of the parallel manipulator
¢ graph
| actions and orbits of the automor-
"1 phism group
Y Y Y Y
orbit orbit orbit orbit —>[ orbits capture internal symmetries ]
o won wgn e
—>[ symmetric links identified by orbits]
Y Y Y Y
one representative element of
vertex vertex vertex vertex |—p ;
aqn o o e each orbit
1 2 3 Kk
> biunivocal correspondence
v v v v links - vertices and joints - edges
base base base base - -
“qn “gn “gn “g" —»[ all possible choices of base

- f 4 F

identification of symmetries of the

Symmetries of colored vertex graph and graph using the automorphism
base of the parallel manipulator group of the colored vertex graph
. | actions and orbits of the automor-
™| phism grou
Y \4 \ 4 A 4 P group
orbit orbit orbit orbit —>[ orbits capture internal symmetries ]
u1 " 1:2" 513" “n"
—»[ symmetric links identified by orbits]
v A 4 v h 4 e ol or
vertex vertex vertox vertex one representative element o
aqn won won g »| each orbit
1 2 3 y
»| biunivocal correspondence
v v 4 links - vertices and joints - edges
end-effector]|end-effector end-effector - -
e won " —b[all possible choices of end-effectors]

Figure 56 — Flowchart of the proposed method outlining the obthe group
theory tools for enumeration of parallel manipulators.
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Example 17. Enumeration of planar parallel manipulators with one end-
effector: In Example 16, we enumerated all possible choices of bageeof
kinematic chain in Figure 54(a), i.€, 2 and 6. Now, we will enumerate
all the possible parallel manipulators with one end-effedor the kinematic
chain in Figure 54(a).

First, we consider the base The graph vertex of labé) in Fig-
ure 54(b) is colored as shown in Figure 57(a) and the orbitthefautomor-
phism group of the colored graph are calculated. The autgrhimm group
of the graph with vertef colored possesses two elements:

* 01=(0)(1)(2)(3)(4)(5)(6)(7) and
e 0y = (23)(45)(67).
Therefore, the orbits of the automorphism group are:

e 0p={0},

Opm, = {1}, (PM - parallel manipulator)

L4 ﬁPMZ = {273}1
e Opw, = {4,5} and
e Opy, = {6,7}.
3 0 2 3 0 2 3 0 2
7 6 7 >6 7i 6
5 1 4 5 4 5 4
(a) Vertex O colored. (b) Vertex 2 colored. (c) Vertex 6 colored.

Figure 57 — Graph representation of the enumeration of plzarallel manip-
ulators with one end-effector calculating orbits of theosubrphism group of
colored vertex graphs which represent the mechanism.

Second, we consider the baaeThe vertex of labe? in Figure 54(b)
is then colored as show in Figure 57(b). In this case the aotpmsm group
of the graph with verte® colored possesses only one element, i.e. the identity

e 01= (0B (B)(E)(7):

Thus, the number of orbits is equal to the number of vertices,
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e Upy; = {0},

e Opvs = {1},

o 0, ={2},

e Opy, = {3},

o Opng = {4},

e Upm, = {5},

e Upwy,=1{6}and
I —

Third, we consider the base The vertex of labé in Figure 54(b) is
colored as shown Figure 57(c). In this case the automorplgssup of the
graph with verte)6 colored possesses two elements

e 01=(0)(1)(2)(3)(4)(5)(6)(7) and
e 0o =(01)(24)(35).

Orbits are;
e Opmy, =1{0,1},
o Opmy; =1{2,4},
e Opmy, =1{3,5},
e Us={6}and
o Opms = {7}

With this technique, we enumerate all the possible stristinljs of
vertices that can originate distinct parallel manipulasaelecting the colored
vertex (base) and a vertex of each orbit of the automorphismamof the
graph with colored vertices, where the string listindg represent the two
colored vertices of the graph, i.e. one parallel maniputatdere x is the
fixed link and y is the end-effector.

Table 14 shows the list of all parallel manipulators with oaed-
effector that the kinematic chain in Figure 54(a) can origi®. Column
1 shows the orbits of the non-colored graph, column 2 showsptissi-
ble choices of base (i.e. one representative of each orlihhehon-colored
graph), column 3 shows the orbits of the colored graph wheesdolored
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Table 14 — Results of the enumeration of parallel manipudiar the kine-
matic chain shown in Figure 54(a).

1 2 3 4
Orbits of non- Base Orbits of col- End-effector
colored graph ored graph

o1
02
04
06
20
21

0,1 0

~N o1 w

23
24
25
26
27
60
62
63

67
Total number of parallel manipulators >=15

2,3,4,5 2

(G2 SN

6,7 6

NO WNONOCOUPA,WNRERPOORMANEO

vertex is the vertex that originates the bases shown in co2@nd the col-
umn 4 shows the possible choices of end-effector for therkitie chain in
Figure 54(a). In column 4, the parallel manipulator with oead-effector
is originated from one representative of each orbit of the+eolored graph
to be the base and one representative of each orbit of theembigraph to
be the end-effector. Using this technique, we enumeratastinict parallel
manipulators with one end-effector that the kinematic chaiFigure 54(a)
can originate.

Figure 58 shows some results of Table 14 in the three leveisedys-
tematic procedure to enumeration of kinematic structunep@sed in Sec-
tion 5.1 and shown in Figure 43. Figure 58 shows the kinemetiizin in
Figure 54(a) on the first level, the mechanisms derived frois kinematic
chain (i.e. ,0, 2and6) on the second level and the parallel manipulators with
one end-effector for the first choice of base (b@sée.0|1, 0|2, 0|4 and0|6,
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on the third level.

Ié LEVEL 1: Enumeration of * LEVEL 2: Enumeration of LEVEL 3: Enumeration of
\E’; Kinematic chains : Mechanisms . Parallel Manipulators

L ;

S

"'é"")

: Number of links; © Number of links; : Number of links;

* Number of 1DoF joints; * Number of 1DoF joints; : Number of 1DoF joints;
: Mobility; : Mobility; : Mobility;

. Order of screw system. . Order of screw system; . Order of screw system;
: Base. : Base;

: : End-effector.

omHCwm=n-4-4>

Figure 58 — Enumeration of parallel manipulators methodlierresults of
Table 14. The systematic procedure is completed into theeeld as dis-
cussed in Section 5.1 and shown in Figure 43.

We choose always the vertex of the lowest label in each asbigp-
resent the bases and/or the end-effectors, but the choidd be another.
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Therefore, if the vertices are in the same orbit they havethxéhe same
kinematic and structural characteristics as mechanisnallpl manipula-
tor. For example, in line 1 of Table 14, we choose the vertealoél O (see
column 2) to represent the base but we could choose the vefrtebel 1.
The orbits of the colored graph with one of these two vertam@ered (i.e. 0
or 1) will be the same as those shown in the column 3 and, coesgl,
the parallel manipulators indicated in the column 4 will &alre same kine-
matic characteristics. The parallel manipulatt® Shown in Figure 59(a) is
the same as|T.

LT o o
im0 0 Ofmmi i 6 G i

(a) Base 0, end-effector 6. (b) Base 6, end-effector 0.

Figure 59 — Parallel manipulators with totally differenb&matic and struc-
tural characteristics changing the base from 0 to 6 and fram@and the
end-effector from 6 to 0 and from O to 6, respectively.

Note that the vertices that are in the same orbit on the autainism
group of the non-colored vertex graph only originate onalpermanipula-
tor with one end-effector because the base-end-effectorgindoes not cause
alterations in the kinematic and structural charactesstf the parallel ma-
nipulator. Therefore, the parallel manipulator only appemce in Table 14,
for example QL. The vertices that are in the same orbits on the automarphis
group of different non-colored vertex graphs appear twit¢he list of par-
allel manipulators. For exampleé®and 60 (see Figures 59(a) and 59(b)),
they possess totally different kinematic and structuralrabteristics. Often
the parallel manipulators originated by the same two vestappear camou-
flaged, as is the case of72and 63.

If the vertices are in different orbits on the automorphisoup of a
non-colored vertex graph then the base-end-effector ehdogs not originate
parallel manipulators with different structural charaistiics and therefore
they appear twice on the list of parallel manipulators.

The results presented in Table 14 are new and therefore wetdiane
references for comparison.

We should emphasize that, using this method, we enumerkisaka
sible parallel manipulators that a kinematic chain canioatg without iso-
morphisms which is a NP-hard problem. This contribution ypassible
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through the integrated application of the graph and groeprtools pre-
sented in Chapter 2.

Example 18. Enumeration of planar parallel manipulators with one end-
effector: Figure 60 shows a planar kinematic chain with mobility thfge. M=
3), ten links (i.e. n= 10) and variety zero (i.e. \= 0) and its graph.

3 1
(a) Kinematic chain. (b) Graph representation.

Figure 60 — Planar kinematic chain and graph representation

The orbits of the automorphism group of non-colored verteply
are:

L ﬁBasq = {17 7787 10}!
(] ﬁBaSQ = {2, 57 67 9} and
L ﬁBasg = {374}

which originates three possible choices of base, i.e. 1,23ampplying our
method, coloring the vertex that originates distinct baaed calculating the
orbits of the automorphism group of the colored vertex graggrhave:

o for vertex 1 colored, the orbits aredy = {1}, Opm, = {2}, Opm, =
{3}, Opms = {4}, Opm, = {5}, Opnis = {6}, Opmg = {7}, Opw, = {8},
ﬁPMg - {9}1 ﬁPMg - {10}1

o for vertex 2 colored, the orbits areZpm,, = {1}, 02 = {2}, Opwmy, =
{3}, Opwy, = {4}, Opmyy = {5}, Opmy, = {6}, Opmys = {7}, Opwyg =
{8}, Opmy, = {9}, Opmy = {10}, and

o for vertex 3 colored, the orbits aredpm,y = {1,8}, Opwm,, = {2,6},
O3 = {3}, Opmy, = {4}, Opmy, = {5,9}, Opmy, = {7,10}.

Table 15 shows the possible parallel manipulators with ame-effector for
the kinematic kinematic chain shown in Figure 60.
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Table 15 — Results of the enumeration of planar parallel mdators with
one end-effector.

Bases Parallel Manipulators Total number
1 12; 1)3; 14; 15; 16; 17; 18; 1]9; 1|10; 9

2 21; 23; 2|4; 2/5; 2/6; 2|7; 2/8; 2|9; 2|10; 9

3 311; 32; 3|4; 3/5; 3/10; 5

Total number of parallel manipulators >=23

Example 19. Enumeration of spatial parallel manipulators with one end-
effector: Figure 61(a) shows a spatial kinematic chain with26 and n=
14 enumerated by Tischler (1995) and Simoni et al. (2007) asadjrtbe
most promising candidates for the design of robotic fing€he graph of the
kinematic chain is shown in Figure 61(b).

(a) Kinematic chain. (b) Graph representation.
Figure 61 — Kinematic chain and graph representation.
The orbits of the automorphism group of a non-colored vegiexh
are:
L4 ﬁBasq = {07 1},
o ORase =1{2,5,6,9,10,13} and
o ORasg =1{3,4,7,8,11,12}.

which originates three distinct choices of base, i.e. 0, @ anApplying our
method, coloring the vertex that originates distinct baaed calculating the
orbits of the automorphism group of the colored vertex grayghhave:

o for vertex O colored, the orbits are¢y = {0}, Opm, = {1}, Opm, =
{2,6,10}, Opm, = {3,7,11}, Opwm, = {4,8,12}, Opvg = {5,9,13},
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e for vertex 2 colored, the orbits arefpy, = {0}, Opm, = {1}, 02 =
{2}, Opwg = {3}, Opng = {4}, Opwy = {5}, Opwy, = {6,10}, Oy, =
{7,11}, OpMys = {8,12}, Opmy, = {9,13} and

o forvertex 3 colored, the orbits ar&Zpw, = {0}, Opmyg = {1}, Opmy, =
{2}, 03={3}, Opwyg = {4}, Opwg = {5}, Oy = {6,10}, Opwpy =
{7,11}, OpMyy = {8,12}, ObMys = {9,13}.

Table 16 shows the possible parallel manipulators with ame-effector for
the kinematic chain in Figure 61(a).

Table 16 — Results of the enumeration of spatial parallelimaators with
one end-effector.

Bases Parallel Manipulators Total number
0 0/1; 012; 0]3; 0/4; Q|5 5

2 20;21; 23; 24, 25; 26; 2|7; 2|8; 29 9

3 30; 31; 32; 34; 3/5; 36; 3/7; 38;39 9

Total number of parallel manipulators 2=23

5.4.3 Advantages of using symmetry

Example 18 presents the enumeration of all non-isomorpéuialje!
manipulators of the kinematic chain shown in Figure 60.

Using our method which analyzes the symmetries of the kitiema
chain, we enumerated 23 non-isomorphic parallel maniptgathown in Ta-
ble 15.

Without symmetry analysis, all possible choices of basesauudeffector
need to be evaluated because, in early stage of design, iiefiergble the
generation of duplicate (isomorphic) kinematic strucsuieethe omission of
a potentially useful solution (TISCHLER et al., 1995a). Téfere, for the
kinematic chain shown in Figure 60 we have 90 possibilitieshmices of
base and end-effector. We have 10 links and we need to sel@dt2at
a time, one to be the base and another to be the end-effedterndmber
of arrangements that are possible when a subset of 2 iterse @yal end-
effector) is taken from a set of 10 distinct items (links) igparmutation of
10 objects taken 2 at a time” which can be writtenRg8 and is equal to
10_ 10!

(10-2)! 9.
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For example, using symmetry analysis we identify only five8s-
sibilities considering the link 3 as base, i.¢1332, 34, 35, 310 (see Ta-
ble 15), however, without symmetry analysis we have ning(&sibilities,
i.e. 31, 32, 34, 35, 36, 37, 38, 39, 310. As the links 1, 7, 8, 10 are
symmetric, using symmetry analysis we identify only ning g8ssibilities
considering ternary base, i.¢21 13, 14, 1|5, 16, 1|7, 1|8, 1]9, 1|10 (see
Table 15), however, without symmetry analysis we havewsix (36) pos-
sibilities, i.e. 12, ... 1|10, 71, ... 7|6, 78, 7|9, 7|10, 81, ... 8|7, §9, 8§10,
9/1,...98, 910.

This simple example shows the potential of the proposedodetts-
ing symmetry analysis we identify all non-isomorphic pkalainanipulators
and without symmetry analysis we enumerate several dupti¢asomorphic)
parallel manipulators. We simplify the next step of the desi.e. design de-
tailing, from 90 parallel manipulators to 23 parallel mariggors. In the next
chapter we will apply symmetry and use well establisheedtto classify
and select the most promising of these 23 parallel maniprdat

5.5 CONCLUSIONS

This chapter is based on the following papers:

e “Maos Robbticas: Critérios para Sintese Estruturdbssificacao” (Sl-
MONI et al., 2007);

e “Criteria for Structural Synthesis and Classification of dflanisms”
(SIMONI; MARTINS, 2007);

e “Enumeration of Kinematic Chains and Mechanisms” (SIMON&le,
2009),

¢ “Enumeration of Parallel Manipulators” (SIMONI et al., 28)tand

e “Fractionation in planar kinematic chains: Reconcilinguereration
contradictions” (MARTINS et al., 2010).

This chapter presented a systematic procedure for enuorecdkine-
matic structures, applying integrated tools of graph arahgrtheory, into
three levels: kinematic chains, mechanisms and parallelputators.

First, we described each level of the systematic procedudetiae
methods and tools used in each level.

Second, we presented and discussed the current status roeemu
tion of kinematic chains and indicated the discrepancighedes results. As
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pointed by Martins et al. (2010) the most discrepancies elaged to frac-
tionation in kinematic chains and some incorrect resuktsragicated in Sec-
tion5.2.1.

Third, we presented an improvement of the method descnipfienu-
meration of mechanisms presented by Simoni (2008) usingdheept of
symmetry introduced in Section 2.3 (page 26). Also, we prieskthe cur-
rent status of enumeration of mechanisms found in the titegawe com-
pared and discussed the results.

Fourth, we presented a new method for enumeration of allllpara
manipulators with one end-effector that a kinematic chaimariginate. The
method uses the concepts of symmetries, actions of orbitiseoAutomor-
phism group of colored vertex graphs. To the best of the asthoowledge,
this is the first method for enumeration of all possible datahanipulators
which a kinematic chain can originate. The results preseimé&ection 5.4
are new and therefore we do not have references for compaige should
emphasize that, using this method, we enumerated all gegsoallel ma-
nipulators that a kinematic chain can originate withoutrisophisms which
is a NP-hard problem.

The next step is the systematization of the criteria of vargymme-
try, connectivity, degree-of-control and redundancy (MARS; CARBONI,
2007; BELFIORE; BENEDETTO, 2000; TISCHLER et al., 2001 )jattlare
well established concepts for kinematic analysis of themesmated parallel
manipulators. The number of parallel manipulators whicbhelinematic
chain can originate is generally very great and it is difficalanalyze the
individual merits of each parallel manipulator and we neeeéféective tech-
nique to the analysis of enumerated kinematic structures.

The techniques of enumeration introduced in this chaptenat only
applicable for enumeration of mechanisms and parallel mudators. Ap-
pendix A presents an application of these techniques fomenation of pla-
nar metamorphic robots configurations. The results of AdpeA were
presented in theSL ASME/IFToMM International Conference on Reconfig-
urable Mechanisms and Robots (ReMAR 2009) and receivedesieaoward
paper on reconfigurable robots for the application of groog graph the-
ory tools to solve the problem of enumeration of planar metgnic robots
configurations (MARTINS; SIMONI, 2009a).
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6 CONTRIBUTIONS TO THE ANALYSIS OF KINEMATIC
STRUCTURES

As we can see in Chapter 5, in general, the number of kinersiatic-
tures generated in the enumeration process is great andifficsilt to eval-
uate each kinematic structure individually. Thereforés ihecessary to use
a set of criteria to evaluate the merits of each kinematigcstire without
eliminating a chain with possibilities to develop the deditask. For this rea-
son, the concepts of variety, connectivity, degrees-oitrad, redundancy and
symmetry can be used to classify kinematic structures dougto the con-
straints required (see Section 4.2). They are essentiatfioctural analysis
of mechanisms and parallel manipulators.

The contribution to the analysis is to classify the critédahe kine-
matic analysis, reviewed in Section 4.2, into global andalarriteria and
to prove that local criteria are invariants by the actiontref automorphism
group of the associated graph. Global criteria are progeeuf the kine-
matic structure and local criteria are properties betweemtrers (links) of
the kinematic structure.

First, we present the classification of the criteria, intwbgll and local,
and we present an example of the proposed classificationogéthriteria.
Second, we apply integrated tools of graph and group theopydve some
lemmas and theorems about invariance by the action of threreuphism
group of local criteria. The application of these lemmas thedrems results
in the reduction of the matricial representation of locatecia and, conse-
quently, in the simplification of the analysis of kinematiastures.

This chapter provides original contributions to the anialyd kine-
matic structures and it is based on the following papers:

e “Criteria for Structural Synthesis and Classification of dflanisms”
(SIMONI; MARTINS, 2007) and

e “Group and Graph Theories Applied to the Analysis of Mecbars
and Parallel Robots” (SIMONI et al., 2010).

6.1 CRITERIA CLASSIFICATION

Section 4.2 (page 66) presents a review of the main criterkdrte-
matic analysis, i.e. mobility, variety, connectivity, degs-of-control, redun-
dancy and symmetry. As we can see in Section 4.2, mobility\eamity
are properties of the kinematic structure. Already, cotiviég degrees-of-
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control and redundancy are properties between two linkhefkinematic
structure, it is evident from the Definitions 4.11, 4.12 artB4 Symmetry is
a property of the kinematic structure, in the sense of therkitic structure
be symmetrical or asymmetrical. Also, the symmetry is a priypbetween
two links of the kinematic structure. If the kinematic sture is symmet-
rical, than, it is possible to explore symmetries betwepkslior top/bottom
and left/right symmetries. Thus, based on the criteria difivs reviewed in
Section 4.2, we can classify the criteria into:

e Global criteria - properties of the kinematic structure:

— mobility;
— variety and
— symmetry.

e Local criteria- properties between two links of the kinematic structure:

connectivity;

degrees-of-control;

redundancy and

symmetry.

Global criteria of the kinematic structures are represbyea number,
M of mobility, V of variety andr of symmetry (symmetrical if # 1 and
asymmetrical ifr = 1, see Definition 11 on page 26). Local criteria of the
kinematic structures are represented by matrices of order, wheren is the
number of links of the kinematic structure. Therefore, theetry of the
links is represented by a string of links labels.

Example 20. Figure 62(a) shows a planar kinematic chain with mobility
three (M= 3), ten links (n= 10) and variety zero (\= 0). The graph of the
kinematic chain is shown in Figure 62(b).

In this case,
o pegemuon
0> =
AUX) = {5 (18)(26)(59)(7 10 (6.1)
04— (110)(25)(34)(69)(78)

As AuiX) has four elements the kinematic chain is of symmetry order r
|Aut(X)| = 4. Equation 4.15 (page 72) shows the connectivity matrix whic
is equal to the degrees-of-control matrix. Redundancy im&requal a null
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3 1

(a) Kinematic chain. (b) Graph representation.

Figure 62 — Kinematic chain and graph representation.

matrix. As the kinematic chain is symmetrical we can idgthié€ symmetries
between the links of the kinematic chain. The orbits are:

¢ =1{{1,7,8,10},{2,5,6,9};{3,4}}.

Therefore, the symmetric links arél1, 7,8,10}, {2,5,6,9} and {3,4}.
6.2 CRITERIA INVARIANCE BY AUTOMORPHISM GROUP

This section considers the application of integrated tobfgraph and
group theory to simplify the kinematic analysis. First, wél prove the
invariance of degrees-of-control, connectivity and reshncty of kinematic
chains by the action of its automorphism group of the assettigraph. With
the definition of the symmetry of kinematic chains, see D&€inil0 (page 26),
we will develop a method to reduce the matricial represanriatf the degrees-
of-control, connectivity and redundancy matrices sinyii§ the kinematic
analysis of kinematic structures.

Herein, we use some results for invariants of isomorphisch aun
tomorphism groups of graphs found in the literature (SORLHDLNON,
2008; GODSIL; ROYLE, 2001; BIGGS, 1993b; LAURI; SCAPELLATO
2003; HELL; NESETRIL, 2004; GROSS; TUCKER, 2001; MCKAY, 2009b).
These results, summarized below, are important to provel teorems 1
and 2 below.

Remark 1. Let X be agraph, Y a subgraph of X aadn element of Agi).
1. Degreeinvariance: deqg o(x)) = degx), for all x € V(X);
2. Distance invariance: (o (x),a(y)) = o(x,y), forall x,y € V(X);

3. Subgraph invariance: o(y) ~ v, i.e. they are isomorphic.
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The proofs of these invariants are found in Sorlin and Sol2®08),
Godsil and Royle (2001).

To prove the Theorems 1 and 2 below we need another resulehwhi
will be proved in the following lemmas.

Lemma 1 (Mobility invariance) The mobility M of a graph (kinematic chain)
is invariant by the action of the automorphism group of thagjr.

Proof: The proof follows from Definition 8. An automorphism of a ghap
is an isomorphism with itself and thus, the graph structanereserved. As
we can see in Example 5, the automorphism group of the gragpiitsen the
relabeling of the graph vertices and consequently the nuofbeertices|V|,
the number of edgg&| and the order of the screw systémemain the same.
Consequently, the mobility (Equation 4.9) is invariant. O

Lemma 2 (Subgraph mobility invariance)The mobility M of a subgraph
(subchain) is invariant by the action of the automorphisugrof the graph.

Proof: The proof follows from Remark 1 and Lemma 1. Remark 1 provas th
a subgraph is invariant by the action of its automorphisnugrand thus, the
structure of the subgrapM, |E|, A) remains the same. Lemma 1 proves that
the mobility is invariant. Consequently, the subgraph titybis invariant.

O

Theorem 1 (Degrees-of-control invariance)l et X be a graph (kinematic
chain) and AufX) its automorphism group. The degrees-of-control matrix
K(X) of the kinematic chain is invariant by the action of the autophism
group of the graph.

Proof: The degrees-of-controlis given By; =min{D][i, ], M;nin}, see Equa-
tion 4.12. To prove this theorem, it is necessary to show Efat] matrix

and M;mn are invariant by the action of the automorphism group. Adoay
to Remark 1 the distance of any pair of vertices is invarignthte action of
the automorphism group of the graph, DHi, j] = D[o(i),o(j)]. Therefore,
theD[i, j] matrix is invariant by the action of the automorphism groé@ithe
graph. According to Remark 1 any subgraph is invariant byagi®n of the

automorphism group of the graph, therefdﬂé1in is also invariant. O

Theorem 2 (Connectivity invariance)Let X be a graph (kinematic chain)
and Au(X) its automorphism group. The connectivity matrigXg of the
kinematic chain is invariant by the action of the automogphigroup of the
graph.

Proof: The proof follows from Theorem 1. The connectivity is giveyn b
Cij =min{K;jj, A }, see Equation 4.1X;; is invariant according to Theorem 1
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andA is a property of the kinematic chain (it is not dependent engtaph)
and therefore it is constant. O

Corollary 1 (Redundancy invariance)l.et X be a graph (kinematic chain)
and Au(X) its automorphism group. The redundancy matrigRR of the
kinematic chain is invariant by the action of the automogphigroup of the
graph.

Proof: The proof follows straightforwardly from Theorems 1 and 2heT
redundancy is given bR (X) = Kij (x) — Gij (x) (see Equation 4.13X;j (x)
andGjj (x) are invariants according to Theorems 1 and 2, consequi)tly)
is invariant. O

Theorems 1 and 2 and Corollary 1 state that the connectilétyrees-
of-control and redundancy are symmetric properties of @rkiatic chain,
i.e. elements which are symmetric by the action of the autphiem group
of the graph have the same properties. Considering that syriztinks are
identified by the orbits of the automorphism group of the gtdips possible
to reduce the matricial representation considering oneesgmtative element
of each orbit.

6.3 APPLICATIONS

To show the potentialities of the results proved in Secti@wée will
present a reduction in the matricial representation ofllodteria. We have
selected examples of mechanisms and parallel manipulfaiansl in the lit-
erature where the connectivity, degrees-of-control addmdancy matrices
are presented. First, we introduce the notation of the matriepresentation
in its reduced form.

Notation 1 (Reduced representationfhe action of the automorphism group
of the graph allows a reduced matricial representation. sTigiduced matri-
cial representation has a subindex r as follows:

A (x) is the reduced adjacency matrix;

K: () is the reduced degrees-of-control matrix;
G (x) is the reduced connectivity matrix;

R (x) is the reduced redundancy matrix.

The reduced matrix corresponds to the original matrix bl wows
eliminated, the elimination will be clearly shown in thelaling examples.
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6.3.1 Example 1: Planar parallel mechanisms

This section presents the application of the method of enatioa
of parallel manipulators (see Section 5.4) and the teclasido simplify the
analysis (using connectivity) presented above. First, willeagply the The-
orem 2 to reduce the size of the connectivity matrix. Secosthg the re-
sults of the enumeration of parallel manipulators method e reduced
connectivity matrix, we will select the most promising geelamanipulators
to design detailing. Third, we will present a comparisontaf tesults using
symmetry analysis and without symmetry analysis.

6.3.1.1 Reduced connectivity matrix

Let X be the kinematic chain of the parallel mechanism shown in Fig
ure 62(a), its graph is shown in Figure 62(b). The automarplgroup is

N
0> =

AUX) = {5 (18)(26)(59)(7 10 (6.2)
04— (110)(25)(34)(69)(78)

The generator set But(X) =< g, 03 >. The orbits are:
0={{17810;{2569;{34}}
where
o 0, ={17810,
o 0,={2569 and
o O3=1{34}.
Using a representative element of each orbit of the autohismp

group (1, 2 and 3) the adjacency matrix presented in Equdtibhis reduced
to:

1 2 3 4 5 6 7 8 9 10
oof[O 0 1 0 1 0 0 0 0 I
AX)=6,l0 0 0 0 0 0 0 0 1 1. (6.3
631 0 0 0 0 0 0 1 0 O
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According to Theorem 2 we can reduce the connectivity maitsix
ing a representative element of each orbit of the automenplgroup. The
connectivity matrix presented in Equation 4.15 is reduced t

1 2 3 4 5 6 7 8 9 10
o0 2 1 2 1 2 3 2 3 1
CX)y=6,2 0 3 2 3 3 3 2 1 1 (6.4)
0;l1 3 0 3 2 3 2 1 2 2

where we chose as representative elements of each orbiethemts (links)
1,2 and3.

Note that the matrices are reduced from<100 to 3x 10.

With the reduced adjacency and connectivity matrices shiowggua-
tions 6.3 and 6.4 and the automorphism group shown in Equét, it is
possible to rebuild the original matrices shown in Equatidri4 and 4.15,
respectively, just considering the action of the automsphgroup elements
on the rows of the reduced matrices. Note that it is necessagbuild rows
4,5..., 10. Observe the action of each elemenfof(X): Tables 17 and
18 show the actions which should be applied to rebuild thgimai matrices
A(X) andC(X), respectively, where the first column shows the row to be re-
built (R). To rebuild row 4 we need to choose an element of theraorphism
group whose action changes a determined lab24. For example the action
of (1 7)(2 9)3 4)5 6)(8 10) change the labgl= 3 to 4 and, thus, it can be
used to rebuild row 4 from row 3. Note that the way to rebuilel tmatrices is
not unique, i.e. to rebuild row 10 we can use the elemgnt0)2 5)(3 4)(6
9)(7 8), (1 8)(2 6)(5 97 10)and (1 7)(2 9)(3 4)(5 &B 10.

Table 17 — Actions of the elements of the automorphism grdupengraph
on the rows of the reduced adjacency ma#ixX) for reconstruction of the
original adjacency matriA(X).

R  Applied element oAut(X) Row of A;(X) Row of A(X)

4 (17)(29)(34)56)(810) 1000000100 0000001001
5 (110)25)34)(69)(78) 0000000011 1000010000
6 (18X26)59)(710) 0000000011 0000101000
7 (A7)X29)(34)(56)810) 0010100001 0001010100
8 (18)26)(59)(7 10) 0010100001 0010001010
9 (17X29)34)(56)(810) 0000000011 0100000100
10 (110)25)(34)(69)(78) 0010100001 1101000000

Note also that the matrix representatigh$X) andC; (X) are more
compact than the origin#(X) andC(X) matrices. The more symmetric the
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Table 18 — Actions of the elements of automorphism group efgtaph on
the rows of reduced connectivity mati®x(X) for reconstruction of original
connectivity matrixC(X).

R  Applied element oAut(X) Row ofC;(X) Row of C(X)

4 (17)(29)134)56)(810) 1303232122 2230321231
5 (110)25)34)(69)(78) 2032333211 1323012332
6 (18X26)59)(710) 2032333211 2332101233
7 (A7)X29)(34)(56)810) 0212123231 3321210122
8 (18)26)(59)(7 10) 0212123231 2212321013
9 (17X29)34)(56)(810) 2032333211 3123332102
10 (110)25)(34)(69)(78) 0212123231 1121232320

kinematic chain the smaller is its representation. As masalfel mecha-
nisms found in the literature are symmetric, this represtént is particularly
advantageous.

6.3.1.2 Selection according to connectivity

This section presents the analysis of all possible pamalalipulators
that the kinematic chain shown in Figure 62 can originatevemill classify
those parallel manipulators according to connectivity.tHa Example 18
(page 105) we enumerated all parallel manipulators with ema-effector,
the number of parallel manipulators is shown in Table 15. Vilerepeat
the Table 15 below, i.e. Table 19, to consider the analysibade parallel
manipulators.

Table 19 — Number of planar parallel manipulators with ong-effiector.

Bases Parallel Manipulators Total number
1 12; 1)3; 14; 1)5; 16; 17; 18; 1]9; 1|10; 9

2 21; 23; 2|4; 2/5; 2/6; 2|7; 2/8; 2|9; 2|10; 9

3 311; 32; 3|4; 3/5; 3/10; 5

Total number of parallel manipulators >=23

Equation 6.4 shows the reduced connectivity matrix. If watgon-
nectivity between base and end-effector equal to thre&gageend—ef fector=
3, we have nine possible choices as indicated in boldfacegiration 6.5.
Note that, the number of choices are drastically reducechwbepared with
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original matrix shown in Equation 4.15.

1 2 3 4 5 6 7 8 9 10
[0 2 1 2 1 2 3 2 3 1
GX)=62l2 0 3 2 3 3 3 2 1 1 (6.5)
031 3 0 3 2 3 2 1 2 2

Furthermore, we can use the parallel manipulators enustebst our
method of enumeration of parallel manipulators, propos&giction 5.4, pre-
sented in Table 19. Table 20 shows only the parallel manipridaf Table 19
with connectivity equal three.

Note that, analyzing the reduced matrix we indicate ninesibdes
choices of parallel manipulators with connectivity eqiaée, however, when
we analyze the number of parallel manipulators obtainedusyneethod we
discard one of them which is isomorphic to one presentedteT20. In fact,
the parallel manipulator|8 is isomorphic to parallel manipulatofZand it
should be discarded.

Table 20 — Number of planar parallel manipulators with ong-effiector and
connectivity equal three.

Bases Parallel Manipulators Total number
1 17;19 2
2 23; 25; 2|6; 2|7 4
3 312; 34 2

Total number of parallel manipulatorsz =8

Using the results of Table 20 and the kinematic chain showfidna
ure 62, it is possible to incorporate “other requiremenés',indicated by
Tsai's methodology (see Figure 1, page 5), to evaluate tret atequate par-
allel manipulators for design detailing. For example, weedree possible
choices of the base, i.e. 1, 2 or 3, if we identify that the based to be a
ternary link we have just two possible parallel manipulstas indicated by
line 1 of Table 20, i.e. (I and 19. Other two choices of base are binary: the
base 2 is connect to one ternary link and one binary link andotise 3 is
connected to two ternary links.

According to Tsai (2001), if a parallel manipulator has thenber of
limbs equal to the number of degrees of freedom (mobility)haf moving
platform such that each limb is controlled by one actuata ahactuators
are mounted on or near the fixed base, the parallel manipwidtdave the
advantages of low inertia, high stiffness, and large paylmepacity. Thus,
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as the parallel manipulator has mobility equal to three,ntfest promising
choice to the fixed link is a ternary link. As discussed in 8ectl.2.3 (Ex-
ample 12 on page 70) the connectivity is an important catefor selecting
the most promising parallel manipulator because the cdivitgaetermines
the ability of the moving platform to perform a determinedikta Thus, for
the planar kinematic chain shown in Figure 62(&)=£ 3 andM = 3), the
most promising choice to the connectivity between base addedfector is
Chaseend—ef fector= 3, i.€. the relative mobility between base and end-effector
is equal to three. Therefore, we have only two possibilitéselection of
the base and end-effector for the kinematic chain showngargi62, i.e. {7
and 19. Only these two parallel manipulators have ternary baseofding
to Tsai (2001)) and connectivity equal to three (accordmgdtint (1978),
Liberati and Belfiore (2006), Martins and Carboni (2007)hefefore, only
these two parallel manipulators will be considered in th&igtedetailing.

6.3.1.3 Comparison of the analysis of the enumerated parainipulators

This section presents a comparison of the results of apigicaf the
techniques presented in Chapters 5 and 6 with a general eatiomeas dis-
cussed in Section 5.4.3.

Table 21 shows the comparison of the results using symmieélysis
(applying our methods) and without symmetry analysis (sssi&n 5.4.3).
Column four of Table 21 shows the number of isomorphismsdaapply-
ing our techniques.

Table 21 — Comparison of the analysis of kinematic strusture

Total number of parallel Using sym- Without sym- Isomorphisms

manipulators metry anal- metry analy- avoided
ysis sis

G;=123 23 90 67

Ternary base 9 36 27

G,;=3 8 30 22

Ternarybaseand j=3 2 8 6

Ci,j = Cbaseend—ef fector

The first line of Table 21 shows a comparison between the thoial-
ber of parallel manipulators. Using symmetry analysis, @sented in Ta-
ble 19, we have 23 parallel manipulators. Without symmenglysis, as
indicated in Section 5.4.3, we have 90 parallel maniputatdhe number of
isomorphic parallel manipulators enumerated unnecégsahien the sym-
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metry is not used is shown in the fourth column of Table 21.

The second line of Table 21 shows a comparison between the tot
number of parallel manipulators with ternary base. Usingsetry analysis,
and the results of the first line of Table 20 we have 9 parall@hipulators
and, without symmetry analysis, we have 36 parallel maatpu$ (see Sec-
tion 5.4.3).

The third line of Table 21 shows a comparison between thénata-
ber of parallel manipulators wit; j = 3. Using symmetry analysis and the
results of Table 20 we have only 8 parallel manipulators.h@fit symme-
try analysis, all possible choices of base and end-effewetthr connectivity
Ci,j = 3 need to be evaluated. Using the connectivity matrix prieseim
Equation 4.15 (page 72) we identify 30 possibilities of desiwithC; j = 3.
The number of isomorphic parallel manipulators enumeratatecessarily
when the symmetry is not used is shown in the fourth columrebid21.

The fourth line of Table 21 shows a comparison between tlaérom-
ber of parallel manipulators witi; ;| = 3 and ternary base. Using symmetry
analysis, and the results of the first line of Table 20 we hanhg 2 parallel
manipulators. Without symmetry analysis, all possibleich® of base and
end-effector with connectivit¢; ; = 3 and ternary base need to be evaluated.
Using the connectivity matrix presented in Equation 4.1&g@72) and the
kinematic chain shown in Figure 62 (page 113), we identifyo8gibilities
of choices withC; j = 3 and ternary base because we have four ternary links,
i.e.links 1, 7, 8 and 10.

If the functional requirements of the parallel manipulaos ternary
base and connectivity equal to three (as discussed in 8egi81.2), then
only two parallel manipulators originated of kinematic ichahown in Fig-
ure 62 will be considered in the design detailing, i.. and 19 (see Sec-
tion 6.3.1.2). Figure 63 shows these two parallel manipuatAs we can see,
the techniques developed in this thesis permit us to sdiecinost promis-
ing parallel manipulators to design detailing, the numbgrassible parallel
manipulators is reduced from 90 to 2 (see Table 21).

This simple example shows the potential of the techniquesdoced
in this thesis. As we can see, the methods presented in gagsthnumerate
all possible parallel manipulators and avoids isomorphkisvhich is a NP-
hard: problem.

Below, we present two other examples just to show the patiesitthe
theorems proved in this chapter. From the reduced matrbesgmtation it is
clear that the analysis will be simplified.

1A problem is NP-hard if an algorithm for solving it can be stated into one for solving
any NP-problem (nondeterministic polynomial time). NRehtherefore means “at least as hard
as any NP-problem”, although it might, in fact, be harder (8&TEIN, 2009)
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3 D1

(b) Graph 17.

3 D1

(c) PM 1)9. (d) Graph 17.

Figure 63 — The only two possible parallel manipulatorsgioated from
kinematic chain shown in Figure 62, selected to design litegai

6.3.2 Example 2: Hybrid 6-DoF Mechanisms

Let X be the kinematic chain of the hybrid 6-DoF manipulator pre-
sented in Figure 11 of Belfiore and Benedetto (2000) and slio®igure 64.
In this caseAut(X) in terms of the generator set is given by:

o1 = (711)(8 12(9 13(10 14
0> = (20 24)(21 25)/(22 26/(23 27)
aux) | 03 =(1520(1621(17 22(1823
W)= o) = (27)(38)(49)(510)
05 — (119)(2 18)(3 17)(4 16)(5 15)(7 23)(8 22)
(

921)(10 20(11 27)(12 26)(13 25(14 24

The orbits are:

0 ={{119};{271118232F;{381217 22 2§;
{4913162125;{51014 15 20 2¥; {6}}

Using the Theorem 2 we can reduce the connectivity matrirguai
representative element of each orbit of the automorphismamr Following
the same procedure applied in the example above, the cavityeotatrix
C(X) presented in Appendix B of Belfiore and Benedetto (2000) ctvlis
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Figure 64 — Hybrid 6-DoF manipulator (BELFIORE; BENEDETTZ)00;
LIBERATI; BELFIORE, 2006).

27 x 27, is reduced to:
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where we chose as representative elements of each orbiethemts (links)
1,2,3,4,5,and 6.

In this case the connectivity matrix is reduced fronx27 to 6x27.
Other properties represented by matrices, such as degfr@esirol, redun-
dancy and adjacency, also are reduced from27to 6x27.

6.3.3 Example 3: Redundant Mechanism Employed in Space Migss

Let X be the kinematic chain of a multiple-arm robot employed in
space missions presented by Belfiore and Benedetto (20@0%teswn in
Figure 65.

In this caseAut(X) in terms of the generator set is given by:

Autix) — {01 =(130)(229)(3 28)(4 27)(5 26)(6 25)(7 24)
ut( )—< 0z = (816)(9 17)(10 18)(11 19 (12 20/(13 21)(14 22 (15 23 >

The orbits are:

0 = {{130};{229};{328};{427};{5 26};{6 25}; {7 24}; {8 16};
{917},{1018}; {11 19}; {12 20}; {13 21}; {14 22; {15 23}; {31} }
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Figure 65 - Redundant Mechanism Employed in Space Mis-
sions (BELFIORE; BENEDETTO, 2000; LIBERATI; BELFIORE, 260

Using the Corollary 1 we can reduce the connectivity matsg a
representative element of each orbit of the automorphismagr Following
the same procedure applied in the examples above, the radeydhatrix
R(X) presented in Appendix B of Belfiore and Benedetto (2000)dsiced
t
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where we chose as representative elements of each orbiethers (links)
1,2,3,..,15and 16.
In this case the redundancy matrix is reduced fronx 31 to 16x 31.

6.4 CONCLUSIONS

This chapter is based on the following papers:

e “Criteria for Structural Synthesis and Classification of dflanisms”
(SIMONI; MARTINS, 2007) and

e “Group and Graph Theories Applied to the Analysis of Mecbkars
and Parallel Robots” (SIMONI et al., 2010).
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In this chapter we classified the criteria to kinematic asialyi.e. mo-
bility, variety, connectivity, degrees-of-control, redlancy and symmetry,
into global and local criteria. Global criteria are projestof the kinematic
structure and local criteria are properties between mesn@imks) of the
kinematic structure.

The main contribution of this chapter is to prove the invaci of
connectivity, degrees-of-control and redundancy, i.ealariteria, by the ac-
tion of the automorphism group of the graph. The connegtidegrees-
of-control and redundancy are symmetric properties of @rkiatic chain,
i.e. links which are symmetric by the action of the autom@phgroup of
the graph have the same properties. Considering that symorfieks are
identified by the orbits of the automorphism group of the grape reduce
the matricial representation considering one represeatatement of each
orbit. Thus, the order of the matrices is reduced fromn to o x n where
n is the number of links of the kinematic chain aads the number of or-
bits of the automorphism group of the graph. As shown in $a08i.3 the
reduced representation simplify the analysis of kinengttiectures. The re-
duced representation presented is a minimal represemtatite properties
of kinematic chains in terms of symmetry.

Considering that the majority of parallel manipulators te titera-
ture have symmetric kinematic chains (FANG; TSAI, 2002; thk, 2004;
HUANG,; LI, 2003; KONG; GOSSELIN, 2007, 2005, 2004b; GOGU Q30
2009), the reduced representation offers considerablergages. As shown
in the examples, if a kinematic chain has symmetry, it is jidesgo obtain
a gain in terms of the storage of matrices, and in the sinplafi the kine-
matic analysis. These techniques can also be applied tonkitie chains of
serial and hybrid manipulators. The only cases for whichtikery presented
herein is not advantageous is when the graph is fully asymienee. in rare
practical cases.
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7 CONCLUSIONS AND FURTHER WORKS

This is the first thesis that considers the problems of enatiogrand
analysis of kinematic structures developed in the Mectariimgineering
Postgraduate Program of The Federal University of Santaridat It is a
broad work involving the phases of synthesis and analysisgenerator and
evaluator of Tsai's methodology shown in Figure 1 (page Byl ihopens a
large field of research. The main focus of this work is to apptggrated
tools of group and graph theory for enumeration and anabyfsisnematic
structures.

This work is the interest of the UFSC robotics research gifooipt
of current challenges. New projects of the UFSC roboticedatory have a
current trend towards mechanisms and parallel manipslator

7.1 CONCLUSIONS

We improved graph and group theory tools for the application-
sidered in this thesis and we presented bibliography res/igwnechanisms
and machines concepts, enumeration of kinematic struecturd criteria of
analysis. Using integrated tools of graph and group theseypresented a
precise definition of symmetry in kinematic structures ggime concepts of
symmetry, actions and orbits of the automorphism group aplys (see Sec-
tion 2.3 on page 26). Symmetry is successfully applied incthemeration
and analysis of kinematic structures.

We presented a systematic procedure for enumeration ofmtie
structures into three levels (see Figure 43 on page 76):

e Level 1 - Enumeration of kinematic chains (Section 5.2):From
structural characteristics (number of links, number afifei mobility,
order of screw system) kinematic chains are enumeratedafifileutes
of kinematic chains are: number of links)( number of 1-DoF joints
(j), mobility (M) and order of screw system ). The main tools used
in this level are: graph theory and screw theory.

e Level 2 - Enumeration of mechanisms (Section 5.3)Each kine-
matic chain originates mechanisms selecting all diffeteges. The
attributes of mechanisms are: number of linky lumber of 1-DoF
joints (j), mobility (M) and order of screw systemd) and base of
mechanism. The tools used in this level are: graph theooymtheory
and screw theory; mainly the concepts of symmetry, actiodsoabits
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of the automorphism group of non-colored vertex graphs.

e Level 3 - Enumeration of parallel manipulators (Section 5.4: Each
mechanism originates parallel manipulators selectinfgdint links to
be end-effectors. The attributes of parallel manipulatwes number
of links (n), number of 1-DoF joints jj, mobility (M) and order of
screw systemX) and base and end-effector of parallel manipulator.
The tools used in this level are: graph theory, group theod/screw
theory; mainly the concepts of symmetry, actions and odfithe au-
tomorphism group of colored vertex graphs.

The main contributions of each level are summarized below:
e Level 1 - Enumeration of kinematic chains:

— We presented the current status of enumeration of kinercladiins
(see Tables 8, 9 and 10 on pages 80, 81 and 82, respectively).

— Based on previous work of the authors, we solved the disaorepa
cies of the results found in the literature, see Martins.€2ai10).

— We discussed the results that are still not in compliancevead
concluded that are strong evidence of typos in view of tha-sim
larities between the numbers.

e Level 2 - Enumeration of mechanisms:

— We introduced a new notation of mechanisms in terms of graphs
(see Section 5.3.1 on page 83).

— We presented an improvement of the method of enumeration of
mechanisms proposed by Simoni (2008) using the concepts of
symmetry, actions and orbits of automorphism group of tiaglgr
associated to mechanism (see Section 5.3 on page 83).

— We presented the current status of enumeration of mechanism
and we confirmed the results found in the literature (seeskatl, 12
and 13 on pages 91, 92 and 93, respectively).

— We indicated and discussed all the discrepancies of thdtsesu
found in the literature and we indicated incorrect resuitsSb
moni (2008).

e Level 3 - Enumeration of parallel manipulators:

— We introduced a new notation of parallel manipulators imteof
graphs (see Section 5.4.1 on page 94).
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— We presented a new method for enumeration of parallel manipu
lators using the concepts of symmetry, actions and orbitsuef
tomorphism group of the colored graph associated to thdlphra
manipulator (see Section 5.4.2 on page 95).

— We presented several new results of parallel manipulat®s (
Examples 17, 18 and 19 on pages 100, 105 and 106, respektively

The graph representation of mechanisms and parallel miangpsiintroduced,
respectively, in Sections 5.3.1 and 5.4.1 is effective amdesproperties of the
representation are:

e Completeness: A graph represents all relationship in therkatic
structures;

e Unigueness: Each graph represents an unique kinematatistewn-
less relabeling of vertices/links (automorphisms);

e Non-redundancy: The graph provides the essential infoomadf a
kinematic structures;

e Comprehensiveness: The representation is easy to unursta

The techniques of enumeration introduced in the systemetiedure
described above are not only applicable for enumerationesfhanisms and
parallel manipulators. Appendix A presented an applicatbthese tech-
niques to enumeration of planar metamorphic robots cordtgans. The re-
sults of Appendix A were presented in th& ASME/IFToMM International
Conference on Reconfigurable Mechanisms and Robots (ReMAR)2nd
received the best award paper on reconfigurable robotsdaapplication of
group and graph theories tools to solve the problem of enatioerof planar
metamorphic robots configurations (MARTINS; SIMONI, 20D9a

In Chapter 6, we presented a new approach for structuraysinalf
kinematic structures using integrated tools of group amglgitheory. First,
we reviewed the main criteria used to classify the kinemstiiacture enu-
merated and, then, these criteria are classified into glabdllocal crite-
ria. Global criteria are properties of the kinematic stawetand local criteria
are properties between members (links) of the kinematiccstre. Second,
we proved the invariance of local criteria by the action @& dutomorphism
group associated with the graph of the kinematic strucfoxeriance of mo-
bility, invariance of connectivity, invariance of degregfscontrol and invari-
ance of redundancy. By exploring the symmetries of the kiet@nstructure,
we developed a technique to reduce the size of matriciabsgmtation of
connectivity, degrees-of-control and redundancy frormn to o x n, whereo
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is the number of orbits by the action of the automorphism groithe asso-
ciated graph. The reduced representation simplify theyaisabf kinematic
structures. An example is presented to show the potentthkbatechnique.

Combining the techniques presented in this thesis, we aheidso-
morphism problem which is a NP-hard problem.

7.2 RELATED PAPERS

This work yielded several papers for journals and confezenc

e Maos roboticas: Critérios para sintese estruturalassificacao (Sl-
MONI et al., 2007);

e Criteria for structural synthesis and classification of hedsm (SI-
MONI et al., 2007);

e Enumeration of kinematic chains and mechanisms (SIMONIl.et a
2009);

e Enumeration of parallel manipulators (SIMONI et al., 2G08)

e Group and Graph Theories Applied to the Analysis of Mechasiand
Parallel Robots (SIMONI et al., 2010);

e Fractionationin planar kinematic chains: Reconcilingraptation con-
tradictions (MARTINS et al., 2010);

e Enumeration of planar metamorphic robots configurationSRVINS;
SIMONI, 2009a);

e Metamorphic robots: Enumeration of configurations and arofilan-
ning (MARTINS; SIMONI, 2009b);

e Type synthesis of low-DoF parallel robots based on screarth@1AR-
TINS; SIMONI, 2009a);

e Progressive dynamic analysis of serial robots based omstreory
(LAUS et al., 2009);

e Progressive dynamic analysis of serial robots based omvgtieory:
An extension to the theory (LAUS et al., 2010).
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7.3 FURTHER WORKS

Itis a broad work involving the problems of enumeration andlgsis

of kinematic structures and it opens a larger field of regea8ome interest-
ing fields are presented below:

Enumeration of fractionated kinematic chains to desigrridymanip-
ulators.

The specialization of mechanisms in the sense of to enumspactial-
ized mechanisms with a determined number and type of jdiets,o-
tative, prismatic, spherical, and so on (see Sections ari13.4.2).

To extend the method of enumeration of parallel manipuatoym
one end-effector tm end-effectors. A work in the line of research of
Alizade and Bayram (2004).

Type synthesis of kinematic structures obtained in the rersynthesis
process.

Classification of symmetries of kinematic chains using enttghism
group of the associated graph, girth and distance.

Exploring symmetries in the growing field of reconfigurabtdats
(modular and metamorphic robots) (MARTINS; SIMONI, 2002@0)9b).

Synthesis of protein using group theory and graph symnsetrie

To analyze the optimal number of legs (or loops) of a mecmamisd
a parallel manipulator for each screw system. To analyzentheence
of each leg on the complexity of kinematic and dynamic eaunatj to
investigate the influence of each leg in the workspace, testigate
the influence of each leg to load capacity. The results ofahaysis
conduce to another important criterie@ps or number of leg$o select
the best mechanism for each screw system.
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This appendix presents an original application of the tephes of
enumeration presented in Chapter 5. This appendix preseatapplica-
tion of group and graph theory tools presented in Chapteri@ ke field
of metamorphic robotic systems. A metamorphic roboticeysts a col-
lection of mechatronic modules that can dynamically setfenfigure in a
variety of configurations, i.e. kinematic chains, to meéfedent or changing
task requirements (CHIRIKJIAN, 1994). The contributiontbis appendix
to enumeration of planar metamorphic robots configuratistssed on the
following paper

e“Enumeration of planar metamorphic robots configuratiofMAR-
TINS; SIMONI, 2009a).

This paper was presented in tfeASME/IFToMM International Conference
on Reconfigurable Mechanisms and Robots (ReMAR 2009) amivextthe
best award on reconfigurable robots for the application ofigrand graph
theory tools to solve the problem of enumeration of metamiempbots con-
figurations

This appendix shows how to enumerate all the non-isomorqrie
figurations of a planar metamorphic robotic system. Due picel symme-
tries in module design, different assemblies may genesataarphic robotic
structures. A very useful simplification for metamorphibeotic systems is
their representation through graphs. In this way, it is fbsdo apply the
group theory tools discussed in Section 2.1 for the ideatifimn of symme-
tries of these metamorphic robotic systems. In particwardefine the con-
cept of binary orbits of the automorphism group of graphecissed with the
metamorphic robot configurations.

A.1 INTRODUCTION

A metamorphic robotic system is a collection of mechatromiciules
that can dynamically self-reconfigure (CHIRIKJIAN, 1994A change in
the macroscopic morphology results from the locomotion adhemodule
over its neighbors. Potential applications of metamorphigtems composed
of a large number of modules include (CHIRIKJIAN, 1994; CH{RBIAN;
PAMECHA, 1996; CHIANG; CHIRIKJIAN, 2001):

eobstacle avoidance in highly constrained and unstrucemeslonments;

e“growing” structures composed of modules to form bridgestresses,
and other civil structures in times of emergency;

eenvelopment of objects, such as recovering satellites fpace.
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One application in particular, civil structures in timesesfiergency, evince
the importance of previously knowing all the possible camfégions that a
predetermined finite number of modules can assume.

There some enticing questions in the literature of moduldrraeta-
morphic which are sometimes implicit in the context:

1.How to enumerate all possible configurations that a metphiorobotic
system can assume (CHEN; BURDICK, 1998);

2.How to find the optimal configuration for a predeterminetktgCHEN;
BURDICK, 1995; Bl et al., 2003);

3.How to plan the movement of a metamorphic robot systemhoe
to determine a sequence of module movements required tagodr
given initial position to a desired goal configuration (PARIHA et al.,
1997; CHIANG; CHIRIKJIAN, 2001).

Questions 2 and 3 are relatively frequent in the metamorpibot
literature. Chen and Burdick (1995) consider the problerfirafing an op-
timal module assembly configuration for a specific task. Theiution was
formulated as a discrete optimization procedure. Bi et2008) define the
configuration space as the set of all feasible configuratariations of the
robotic system and evaluate system adaptability for regardble robotic
systems with large variations in configurations. They alsscdbed how to
achieve task-oriented configuration design of reconfigernadbotic systems.

Chirikjian and Pamecha (1996) proposed lower and upperdsotm
the number of moves needed to change such systems from &aytmiany
final specified configuration. Pamecha et al. (1997) intredube concept of
distance between metamorphic robot configurations and dsinade that this
distance satisfies the formal properties of a metric. Thexteics are applied
to the automatic self-reconfiguration of metamorphic systéor computing
the optimal sequence of movements required to reconfiguralumitrescu
et al. (2004) present a number of fast formations for botharegular and
hexagonal systems, and presented lower and upper bountie @peed of
locomotion. Kamimura et al. (2003) propose an offline metttogenerate a
locomotion pattern automatically for a modular robot in apiteary module
configuration.

Question 1, the problem of enumerating the set of kinemitides-
tinct modular robot assembly configurations from a givero$atodules, was
addressed by Chen and Burdick (1998). They introduced &septation of
a modular robot assembly configuration as an assembly inc&d@atrix and
defined equivalence relations based on symmetries in mgeawametry and
graph isomorphisms on the assembly incidence matrix. Thseymesented
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an algorithm to identify the kinematically equivalent ra&oChitta and Os-
trowski (2006) also focused on enumeration of distinct pnfitions of a
modular robot.

Common planar module designs are square (PAMECHA et al§;199
DUMITRESCU et al., 2002; CHIANG; CHIRIKJIAN, 2001) and heganal
(PAMECHA et al., 1996; ABRAMS; GHRIST, 2004; WALTER et al.0Q4;
DUMITRESCU et al., 2002; WALTER et al., 2002). For spatialtaraor-
phic systems there are cubic (RUS; VONA, 2001; YOSHIDA et 5998)
and dodecahedral (YIM et al., 1997, 2001) modules. Due tartherent
symmetries of these modules design, different assembiidsese modules
may lead to several kinematically isomorphic robotic stnoes. To identify
these symmetries, hence eliminating isomorphisms, in matahic robotic
systems we use group theory, in particular the concept dfsoobautomor-
phism group. This concept was previously applied to idgmtif mechanisms
and parallel manipulators of a kinematic chains by Simoal.€2009, 2008).
This tool helps avoiding isomorphisms in enumeration ofiptanetamorphic
robots configurations; therefore, all non-isomorphic aunfitions are enu-
merated.

A.2 MODELLING OF METAMORPHIC ROBOTS

A metamorphic robot system can be modeled by a graph andalg gr
theory tools presented in Section 2.1 can be applied toifgehe symmetries
of modules configurations and so it is possible enumerateoalligurations
that a set o modules can assume.

A.2.1 Graph representation

Figure 66(a) shows the metamorphic robot with two hexagormal-
ules presented by Pamecha et al. (1996). Figure 66(b) shmnsriematic
chain of this metamorphic robot configuration and Figureb$ graph rep-
resentationX).

A.2.2 Actions of automorphism group and orbits

The automorphisms group of the metamorphic robot presémteid.
66(a) is composed by eight elements. The generators of tioenauphism
groupareg; =(17)(810),0,=(26)(35) ando3=(1267(31058(49),
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Figure 66 — (a) metamorphic robot with two hexagonal mod(Hégure 4 of
Pamecha et al. (1996)); (b) kinematic chain and (c) Grapressmtation.

and the group is composed oy, 0>,03,04 = 010 02,05 = 01 0 03,06 =
00 03,07 = 010 0z 0 03,03 = €, Wheree is the identity element. Figures
67(a), 67(b), 67(c) and 67(d) shows the actionggfo,, g3 and ,04 in G,
respectively, on the labels of the metamorphic robot condition.

For the metamorphic robot or graph shown in Figure 66 thedre:

o0y ={1,2,6,7};
o0, ={3,5,8,10};
o03={4,9} and
o0y ={11}.

A.3 STANDARD MODULES AND BINARY ORBITS

Inthis section, we present the standard modules of metarizmgbots
and discuss the symmetries of these modules. We also imteoithe fun-
damental concepts of our technique of enumeration of plareamorphic
robots configurations: binary inversions and binary orbits
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(c) 03(X) (d) ga(X)

Figure 67 — Actions ob, 0>, 03 and ,a, in the graph of metamorphic robot
with two hexagonal modules shown in Figure 66(c).

As discussed in Section A.1, two standard modules appligditaar
metamorphic robots are:

esquare modules (PAMECHA et al., 1996; DUMITRESCU et al.,200
CHIANG; CHIRIKJIAN, 2001), see Figure 68(a), and

ehexagonal modules (PAMECHA et al., 1996; ABRAMS; GHRIST,
2004; WALTER et al., 2004; DUMITRESCU et al., 2002; WALTER
et al., 2002), see Figure 68(b).

A metamorphic robot system with square modules are repteddy
a four-bar kinematic chain as shown in Figure 68(c). SiriJghe hexag-
onal module is represent by a six-bar kinematic chain as shiowigure
68(d). Other issues of the metamorphic robot design, sudheapolarity
(PAMECHA et al., 1996), were not considered during the emaien of
metamorphic robot configurations.

Figures 68(c) and 68(d) shows the internal symmetries cletineod-
ules. These symmetries may be identified by the orbits ofraotphisms
group. In these modules, all links (edges) have the samesptieg; there-
fore, there is a single orbit for each module:
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7
© (d)

Figure 68 — Standard modules of metamorphic robots: (a) requadule
(CHIANG; CHIRIKJIAN, 2001). (b) Hexagonal module (PAMECHet al.,

1996). (c) Graph representation of square module. (d) Grayptesentation
of hexagonal module.

esquare moduleg; = {1,2,3,4} and
ehexagonal modules; = {1,2,3,4,5,6}.

A general metamorphic robot have multiple orbits. For exi@ne
metamorphic robot shown in Figure 69 has the following synie identi-
fied by the orbits of automorphism group:

e0y ={1,6,10,15};
o0, =1{2,511,14};
003 ={3,4,12,13};
o0y = {22,24};
e0s = {7,9,16,18};
e0s = {8,17} and

o7 = {19,30,21,23}.
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1 15

Figure 69 — Configuration of hexagonal metamorphic robot.

In kinematic terms, there are two types of links in the metgrhiz
robot system shown in Figure 69: binary and quaternary. igitiaks 1-18
are connected to two other links while the quaternary linB24 are con-
nected to four other links. Thus, the orbits, &>, &3 andds are composed
by binary links andZ4, 0 and &7 are composed by quaternary links.

Planar metamorphic robots may have other types of links they
must have a subset of binary links since all “external” liaks binary. These
binary provide means for the movement of the metamorphictrdtbence, all
links of a metamorphic robot may be divided into two sets:abjrand non-
binary links. Another detail is that the joints are all ecialthe modules, or
they are R joints as shown in Figure 68(b) or they are P joistsheown in
Figure 68(a). So, fixing one link we have an inversiand we define:

Definition 17 (Binary inversions) Binary inversions are inversions com-
posed only by binary links.

Definition 18 (Binary orbits) Binary orbits are orbits composed only by bi-
nary inversions.

A property derived from the concept of binary orbits and clisede-
rived from the Definition 7 page 20 is:

Lemma 3 (Element of binary orbits) Every binary link is an element of a
binary orbit.

Therefore, binary links can be classified into binary orbltgks in
the same binary orbit have identical symmetry propertiekémetamorphic
robot configuration. Whenever a new module is connected dootwnore of

Linversions are related with enumeration of mechanisms$setion 4.1.2)
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the binary links from a same orbit, the resulting kinemaliaios are isomor-
phic. For planar metamorphic robots, a new module can onlydomected
to links that belong to binary orbits. The binary orbits foetconfiguration
shown in Figure 69 aré&,, 0>, 03 and 5 and they will be called, respec-
tively, 0c,, Oc,, Oc, and Oc, where “C” means connection. Each binary
orbit results in a new connection and an element of each ywrdit should
be chosen to represent this connection.

In Section A.4, the configurations of metamorphic robot Witk 1”
modules generated by configurations of metamorphic roltbt'wi’ modules
are explored.

A.4 ENUMERATION OF PLANAR METAMORPHIC ROBOTS CONFIG-
URATIONS

The enumeration process follows a tree structure. In roth@tree,
a first module is placed. The following modules are added, airee time,
selecting just one representative for each binary orbie Befinition 18 in
Section A.3.

As orbits are equivalence classes and capture the intgmmahstry of
a structure (metamorphic robot); modules elements (link)e same orbit
when connected to other module elements result in isomomuimfigura-
tions. For example, Figure 70 shows a metamorphic robot tmithsquare
modules and another square module will be connected.

1] LD

6 5

Figure 70 — Metamorphic robot with two square modules andreatanodule
for connection.

The orbits of automorphism group of metamorphic robot witlo t
square modules are:

001 = {174}!
o0y ={2,3,56} and

o5 = {T}.
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Since link 7 is quaternary, there are just two binary orbits
.ﬁcl ={1,4}
e0c, ={2,3,5,6}.

The connection of a new module with links from a same orbitltss
in kinematically isomorphic configurations as shown in Feg71 and 72.
Figure 71 shows that the connection of a new module to thegunafiion of
metamorphic robot on elements from the ori, = {1,4} results in iso-
morphic configurations. Similarly, Figure 72 shows that doanection of
a new module with elements from the orbig, = {2,3,5,6} also results in
isomorphic configurations.

Figure 71 — Kinematically isomorphic configurations, ob& from Fig-
ure 70, by connecting another module in o, = {1,4}.

Figure 72 — Kinematically isomorphic configurations, ob& from Fig-
ure 70, by connecting another module in o, = {2, 3,5,6}.

Summing up, there are only two ways of connecting the new reodu
to the current configuration, as shown in Figure 73.

Figure 73 — Kinematically distinct (non-isomorphic) configtions of a meta-
morphic robot with three square modules identified by thé®sdf automor-
phism group.
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A.4.1 Metamorphic robot configurations with square modules

The technique will be presented by an example using squadel le®
to facilitate the understanding of how the tools are appliecsection A.4.2,
we present metamorphic robot configurations with hexagmaalules.

Without loss of generality, for identification of symmegief meta-
morphic robot system with square modules by group theoryrepeesent
this module by a four-bar kinematic chain as shown in Fig@

Consider an example with a set of five square modules as shown i
Figure 74. We start with a module in root of the tree (levelrid aentify all
the ways to connect another module, for this we enumeratkitiaey orbits
through the group theory tools. In example there are onlylonary orbit.
Figure 74 marks one representative from each binary ortiitsmall inclined
parallel lines.

The next step is to enumerate configurations of metamorjplhicts
with three square modules adding another module from thansHevel of the
tree. For this, we enumerate the binary orbits of configarathetamorphic
robot of the root. In this case are two as was illustrated gufés 71, 72
and 73. The configurations metamorphic robot with three sgoedules are
obtained in the third level of the tree (see Figure 74).

The configurations metamorphic robot with four square meslalre
obtained in the fourth level of the tree. In this level, thare two isomorphic
configurations to be eliminated. This isomorphisms elirtiorais applied in
every level of the tree (see Figure 74).

Finally, to enumerate the configurations of metamorphicotatith
five square modules, all non-isomorphic configurations acamerphic robot
with four square modules generated in the fourth level ofttke become
roots for the fifth level. The process repeats: identificatid the binary
orbits, connection of a new module to single representdtiven each bi-
nary orbit, and elimination of the isomorphic configurasomt the end, of
the process, all non-isomorphic metamorphic robot corditjoims with five
square modules are obtained in the fifth level of the tree.

The numbers of all non-isomorphic planar metamorphic rabofig-
urations with up to five square modules are (see Figure 74):

e1: with a single module (level 1);
e1: with two modules (level 2);
e2: with three modules (level 3);

o5: with four modules (level 4);
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¢12: with five modules (level 5).

Level 1 Level 2 . Level3 . Level 4 . Level 5
«0) - D) eD) - «0) (+0J)
. | ’ ] five binary _ |
. four binary * orbits
:_» L orbits '> @
) one binary |
| orbit
one bmary two blnary >

| orbity,’ orbits ]
l:, i i . ] six binary | [ |
. B ﬂ A . oot ! L]

T

three binary: o — —

| orbits _ . |len binary _ | —l L]
--> .. orbits > [ |
[

jjEEpn

0 Flag

— three binary _ .
orbits

:DDD:DD : i Eﬁjﬁﬂ

Set of five square modules

Figure 74 — Enumeration of all non-isomorphic metamorpbbmt configu-
rations (bold lines) with up to five square modules. Confitares with thin
lines are those discarded due to isomorphism with prewaesherated kine-
matic chains.

A.4.1.1 Procedure in algorithmic form

In algorithm form, the procedure is summarized as:

Step ICalculate the binary orbits of the metamorphic robot comfigan of
the root.

Step 2Assemble a new module with one element from each binary,ddieit-
tified in the previous step, of the current metamorphic raoofigura-
tion.
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Step Run an (efficient) isomorphism test to eliminate the possibbmor-
phic configurations in each level of the tree.

Figure 75 illustrates the algorithm.

metamorphic robot configurations
with “n” modules

biunivocal correspondence
links - vertices; joints - edges

graph the automorphisms group identify
the internal symmetries of the graph;

| orbits provide elements from each
l l l equivalence class

orbit orbit [ orbit orbits or equivalence classes

select one element from
each binary orbit;

vertex vertex| ... vertex o
- f - biunivocal correspondence
link link link link rtices: ioint: q
B v e inks - vertices; joints - edges
l l l\’ possible connections with the next
" confia. " module results in a new configura-
cor:(flg “yﬂg """ cor:(ﬂg tion with “n+1” modules

v /

| teste of isomorphisms ‘

set of metamorphic robot confi-
gurations with “n+1” modules

Figure 75 — Flowchart of the proposed technique outlining thle of the
group theory tools for enumeration planar metamorphic robofigurations.

Group theory allows reducing the number of isomorphismstarally
by preventing symmetries during the assembling proceddoeiever, as the
number of modules increases, the number of isomorphismeadaes almost
combinatorially and the process becomes computationgligresive. Hence,
there is still a need of a more efficient isomorphism detectio

A.4.2 Metamorphic robot configurations with hexagonal modues

Let the enumeration of all non-isomorphic planar metamiarptbot
configurations with up to four hexagonal modules. The praceds pre-
sented in Figure 76. Besides each arrow is located the nuofbginary
orbits. The module of the first level of the tree has only omaby orbit. The
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metamorphic robot in second level has three binary orbitse third level,
from left to right, has 2, 7 and 4 binary orbits, respectively

The numbers of all non-isomorphic planar metamorphic rabaofig-
urations with up to four hexagonal modules are (see Figuye 76

o1: with a single module (level 1);
o1: with two modules (level 2);
¢3: with three modules (level 3);

#3: with four modules (level 4);

BB R B FER
B 8 B

Figure 76 — Enumeration of all non-isomorphic metamorpbbmt configu-
rations (bold lines) with up to four hexagonal modules. Ggunfations with
thin lines are those discarded due to isomorphism with presly generated
kinematic chains.

A.5 CONCLUSIONS

This appendix introduced a technigue for enumeration afaitisomorphic
planar metamorphic robot configurations. This techniqus aplied to
the most common planar metamorphic robots, namely squatdaxago-
nal modules. However, the technique may be easily exteraledumerate
non-planar metamorphic robot configurations based on dyipeis modules
with only minor changes.

This appendix shows the effectivenees of the enumeratamiques
presented in Chaper 5.
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The enumeration consider in this appendix provide a firstvanso
Question 1 in Section A.1lhow many possible configurations a finite set of
metamorphic robotic system can assume?

Another related research topic is on planning the movenfentreta-
morphic robot system, i.e. how to determine a sequence ofutaadove-
ments required to go from a given initial configuration to aided goal con-
figuration.

Future work will be carried out to extend the method to enatien
spatial metamorphic robots configurations whit cube, daddral and so on,
in view of that the modules are symmetric.

Another future work is automatic configuration recognitioAuto-
matic configuration recognition is the process by which a ntaxdsystem can
determine its own configuration without having it expligifrogrammed.



APPENDIX B -- Parallel Manipulators
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A robot manipulator is a mechanical system under automatitrol
that performs operations such as handling and locomot@NESCU, 2003).
The mechanical system of a robot manipulator consists afjaesee of rigid
bodies (links) interconnected by articulations (joint§jrom a topological
viewpoint, this mechanical system formed by links and @iist known as
kinematic chain. There are two fundamental structureslmftomanipulators
from mechanical point of view: the serial and parallel maiapors. A serial
manipulator is formed by an open-loop kinematic chain: akiatic chain
is termed open-loop if every link in a kinematic chain is ceated to every
other link by one and only one path. A parallel manipulatdioisned by a
closed-loop kinematic chain; a kinematic chain is termedeti-loop if every
link is connected to every other link by at least two distipaths.

An intrinsic property of a robot kinematic chain is the mdljli.e. the
degrees of freedom (DoF). The DoF are distributed in therkaté chain in
order to have a sufficient number to execute a given task. ¥ample, to
develop a task in the plane 3-DoF are required (two for pmsitig a point
on the object and one for orienting the object with respec teference
coordinate frame) and to develop a task in three-dimenbkgpace 6-DoF
are required (three for positioning and three for orientitgmore DoF than
task variables are available, the manipulator is said toelemdant from a
kinematic viewpoint (SICILIANO et al., 2009).

The space in which a robot can operate is its work envelop&hwh
encloses its workspace (SICILIANO; KHATIB, 2008). The wepace rep-
resents the portion of the environment that manipulatand-effector can
access. Its shape and volume depend on the manipulatoiuséras well as
on the presence of mechanical joint limits (SICILIANO et 2009).

The last few years have withessed an important developméms iuse
of robots on the industrial world mainly due to their flexityil Serial manip-
ulators are by far the most common industrial robots (MERLEDO6). Ac-
cording to the International Federation of Robotics (IRi)to 2005, 59% of
installed robot manipulators worldwide has anthropomargkometry, 20%
has Cartesian geometry, 12% has cylindrical geometry, &htids SCARA
geometry (LITZENBERGER, 2009; SICILIANO et al., 2009). Thmain
advantage is its large workspace with respect to its ownmeland occu-
pied floor space. However, several disadvantages are suirapthis type of
robots:

ethe low stiffness inherent to an open-loop kinematic streest
ethe low load/weight ratio;

ethe errors are accumulated and amplified from link to link;
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ethey have to carry the weight of the actuators.

Thus, we see that serial manipulators are inappropriatéafks requiring
either the handling of heavy loads, an adequate level ofipasig accuracy,
or the ability to move fast (DOMBRE; KHALIL, 2007; MERLET, 2®).

On the other hand, the parallel manipulators are attradtiteyest
from research and industry (MERLET; DANEY, 2008), severdéiesting
parallel manipulators are appearing in university labmas and some are
already on the market. A recent report of the Internatioredefation of
Robotics already present statistics on parallel maniptddt.ITZENBERGER,
2009). The interest of research on parallel manipulatobe@ause current
applications require high stiffness, high accuracy pesitig, high speed and
ability to manipulate large loads. These are the main adggst of parallel
manipulators and their disadvantages are:

elimited workspace;

esingularities inside the workspace, where the manipulzeomes un-
controllable;

ecomplex design and control.

As opposed to serial manipulators, in which the number oéikiatic
arrangements (types) is somewhat limited, parallel mdaipts can lead to
a very large number of kinematic arrangements for a given Dofotion
pattern. Therefore, a systematic approach is needed im rdetermine all
types of parallel manipulators thereby allowing the depeient of the most
promising designs. This fundamental issue, conceptuaiales parallel ma-
nipulators, is the main focus of this work.

Parallel manipulators can be found today in the manufauguin-
dustry, agricultural, military and domestic applicatipspace exploration,
medicine, education, information and communication tetbgies, enter-
tainment, etc.

B.1 SERIAL MANIPULATORS

Currently, the most common robot architecture is undouiptsetial.
Serial manipulators are constituted of a succession af bigdies linked to its
predecessor and its successor by a 1- joint, from base teffector. As ex-
ample we have the Scara which has 4-DoF as shown in Figurg #itéascara
motion is also known in literature as Schoenflies motion. tAeoexample of
a serial manipulator with 6-DoF is shown in Figure 77(b).sTthesign offers
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numerous advantages, the Figure 77 illustrate well the adhiantage of this
type of manipulator; its large workspace with respect toits volume and
occupied floor space. The popularity of this architecturthaindustry is a
clear indication of its ability to fulfill a broad variety ofeeds.

/.

1

(a) Scara robot. (b) Anthropomorphic robot.

Figure 77 — Serial manipulators and their workspace (SIENO et al.,
2009).

In agreement with Merlet (2006) and Dombre and Khalil (20@q¢
low transportable payload and poor accuracy are both inbhérehe serial
manipulators; the links are submitted to high forces and erasrequiring
them to be very rigid, and consequently very heavy (whickeisichental to
fast motion), the errors of the internal sensors on the madauipr travel in an
amplified manner to the end-effector. Merlet (2006, Tableahd 1.2) shows
that Scara type manipulators, that have a good ratio loa¥ipecause they
are direct-drive robots (without a reduction gear betwé&ennmotors and the
joints), the ratio load/weight is always less than 0.25 feay loads. For ex-
ample, for a load capacity of 500 kg the robots mass of theaSgae will be
at least 2000 kg. In another structures, such spherical athagoomorphic,
this ratio is worse (see Merlet (2006, Table 2)). For the fimsing accuracy
there are two concepts to analyze: absolute accuracy, defsthe distance
between the desired and the actual position of the endteffend repeatabil-
ity, which is the maximum distance between two position$iefénd-effector
reached for the same desired pose from different startisggipos. Merlet
(2006, Table 1.1 and 1.2) shows that the repeatability magssficient for
certain tasks and in most cases the absolute accuracy abhrsanipulator
is poor.

In summary, the serial manipulators are inappropriategfekd requir-
ing either the manipulation of heavy loads, or a good pasitig accuracy, or
to work at different scales, or the ability to move fast (DORIB; KHALIL,
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2007; MERLET, 2006).
One alternative to avoid these problems is to use the seecpérallel
manipulators, also known as parallel robots or parallelmaatsms.

B.2 PARALLEL MANIPULATORS AND THEIR APPLICATIONS

A generalized parallel manipulator is a closed-loop kingenehain
mechanism whose end-effector (mobile platform) is linkethe base (fixed
platform) by at least two independent kinematic chainsechlimbs (MER-
LET, 2006; GOGU, 2008). The mobile platform can achieve leetwone to
three independent translations and one to three indeperatations (DoF).

Parallel manipulators are usually faster than traditicesdal manip-
ulators, since the motors can be mounted on the base, cargbgsaving
weight. They are also stronger than serial manipulatoraumeof the closed-
loop kinematic chain and the load/weight ratio is considesery good. An-
other benefit is that the errors of the end-effector is leas tifne errors of
serial manipulators since the errors are divided betwddagd (as opposed
to being additive as in serial manipulators). However, jarenanipulators
have usually a more limited workspace; for instance, theyegaly cannot
reach around obstacles because the legs can collide andditioa, each
leg has passive joints and each one has its own mechaniéta (RONEV,
2002). Another drawback of parallel manipulators is thayttose stiffness
in singular positions. In these positions, the parallel ipalator gains finite
or infinite degrees of freedom which are uncontrollablegitdmes shaky or
mobile. Also, the freedom of motion on the end-effector aeally coupled
together due to the multi-loop kinematic structure of theaflal manipulator
(GOGU, 2008). Hence, motion planning and control usuallgonee com-
plicated. The advantages and current requirements in enggplications
(e.g. medical applications) continue to motivate the dgwelent of parallel
manipulators.

The development of parallel manipulators (PMs) can be daded to
the early 1960s when Gough and Whitehall first devised aiseal jack sys-
tem for use as a universal tire testing machine (TSAI, 1999NK; GOS-
SELIN, 2007) shown in Figure 78(a). Later, Stewart devetbaelatform
manipulator for use as a flight simulator, (see Figure 7§B$AI, 1999).

Since 1980, there has been an increasing interest in théogevent
of parallel manipulators. Early research on parallel malaitors have con-
centrated primarily on 6-DoF Gough-Stewart-type parati@hipulators. In
the last decade, parallel manipulators with fewer than 6-Bitracted indus-
try’s and researcher’s attention. For some industrialiappbns, a parallel
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Figure 78 — Gough-Stewart platforms: (a) Gough’s origiinal testing ma-
chine (SICILIANO; KHATIB, 2008). (b) Schematic of the Stesalatform
(BONEV, 2001).

manipulator with fewer than 6-DoF, called a low-DoF padatfenipulator,
is sufficient. Indeed, the study of this type of parallel npatators is very
important. Kong and Gosselin (2007) question the need ofDok paral-
lel manipulators because a 6-DoF parallel manipulatorccbel used in all
applications. However, a low-DoF parallel manipulator ibithinteresting
features if compared to 6-DoF parallel manipulators; it th@sadvantages of
simpler mechanical design, lower manufacturing and operatost, larger
workspace (reducing the legs interference and increasadienum motion
range of the remaining DoF), and simpler control (FANG; TSZI02; TSAI,
2001; MERLET, 2006). Therefore, the study of low-DoF paathanipula-
tors recently become a main focus among the robotics rdsearamunity.

B.2.1 1-DoF and 2-DoF parallel manipulators

Devices originated from closed-loop kinematic chains wiboF and
2-DoF normally are not called parallel manipulators andrgeshanisms due
to their low mobility. These mechanisms are used to convetions of,
and forces on, one or several bodies into constrained notfrand forces
on, other bodies and not to manipulate objects, this is thia megson for
not calling them parallel manipulators. Figure 79(a) shewsdider-crank
mechanism which has 1-DoF and Figure 79(b) shows a 2-DoF amésah
used by NASA as a flight simulator for the Apollo missions (NW2009).
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@) (b)

Figure 79 — 1-DoF and 2-DoF mechanisms: (a) Schematic oérstichnk
mechanism. (b) 2-DoF mechanisms used by NASA as a flight simufor
the Apollo missions (NASA, 2009).

B.2.2 3-DoF parallel manipulators

Parallel manipulators with 3-DoF in translation prove ertely inter-
esting for pick-and-place and machining operations.

Professor Clément Gosselin from Laval University Rol®tiabora-
tory, proposed parallel manipulators with 3-DoF; 3-RRResptal and 3-DoF
3-PRRR translational (GOSSELIN, 2009; GOSSELIN; KONG, 20@ig-
ure 80(a) shows the Laval University Agile Eye with three exi¢al DoF
and the Figure 80(b) shows the Tripteron with three traiwsiat DoF (GOS-
SELIN; KONG, 2002).

(b)

Figure 80 — 3-DoF parallel manipulators: (a) Laval Univisrgigile Eye. (b)
Tripteron (GOSSELIN, 2009; GOSSELIN; KONG, 2002).
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Figure 81 shows the Tricept manipulator proposed by Neumaduich
has 3-DoF translational (NEUMANN, 1988). The Tricept waplemented
as a 6-DoF parallel manipulator by ABB Robotics and PKMipic®L; 3-DoF
translational original from Tricept and 3-DoF sphericalfra serial chain on
the moving platform (see Figure 81(b)).

(b)

Figure 81 — Tricept parallel manipulator: (a) Schematichef Tricept ma-
nipulator (NEUMANN, 1988). (b) Tricept T606 from PKMtricefL (PKM
Tricept SL, 2009).

B.2.3 4-DoF parallel manipulators

Parallel manipulators with 4-DoF are of great interest giuistrial ap-
plications (pick-and-place, electronic industry, foodustry, and so on) and
they shows great advantage in medical applications andyas gimulators.

Clavel (1990), professor &icole Polytechnique Fédérale de Lausanne,
proposed the Delta manipulator, a parallel manipulatoh B8#DoF transla-
tional and 1-DoF rotational. Figure 82(a) shows the origgwematic of
the Delta parallel manipulator (CLAVEL, 1990). The Deltamaulator has
several applications since food industry until medicagsuy. The Delta ma-
nipulator is extremely light and is said to be the fastestalp@rmanipula-
tor yet made; its workspace is favorable too (DAVIDSON; HUNDO4).
Figures 82(b) and 83(b) shows the ABB industrial Delta unither name
IRB 340 FlexPicker and a medical application of a Delta, eesipely. The
ISIS/SurgiScope system from ISIS Robotics (PRIQUEL, 20&Mg a Delta
as microscope stand. Dr. Tim Lueth from MIMED (LUETH, 20083lized
the world’s first head surgery (see Figure 83(b)).

Figure 83(a) shows the Adept Quattro s650H produced by ADEPT
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Figure 82 — Delta: (a) Schematic of the Delta (CLAVEL, 199@).ABB in-
dustrial Delta under the name IRB 340 FlexPicker (ABB ROBCS) 2009).

ROBOTICS (2009). The Adept Quattro s650H have Delta-typhitecture
with four legs.

Figure 83 — Delta-type robot: (a) Adept Quattro s650H (ADERIBOTICS,
2009). (b) World’s first Craniomaxillofacial surgery usiagoelta (LUETH,
2009).

Francois Pierrot and co-workers proposed the H4 and |4lyaohpar-
allel manipulators, in partnership with Toyota (PIERROU09). These par-
allel manipulators uses various clever configurations efrttoving platform
to get 4-DoF, three translations and one rotation, with dgdethat allows
for large rotation ability (PIERROT et al., 1999; KRUT et,&003; COM-
PANY et al., 2003; MERLET, 2006). 14 is an evolution of H4 aitelsture
(see Figure 84).
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Figure 84 —H4 and 14 4-DoF parallel manipulators: (a) H4 fparmanipula-
tor. (b) 14 parallel manipulator. (c) Clever configuratiarishe platforms. On
the left detail of H4 platform and on the right detail of 14 titam (PIERROT
etal., 2006).

B.2.4 5-DoF parallel manipulators

Parallel manipulators with 5-DoF are of great interest machine-
tool domain, so called five-axis machining (REFAAT et al.)@OMERLET;
DANEY, 2008; MERLET, 2006). For example, in milling opexation the
machine tool domain, the rotation of the platform arounchidsmal is not
needed, as the spindle will manage this DoF, hence only 5dbemeeded.
Some 5-DoF parallel manipulators have been proposed, mpdeallel ma-
nipulators were implemented (KONG; GOSSELIN, 2005; LI et a004;
GAO et al., 2002; FANG; TSAI, 2002).

Figure 85 shows two 5-DoF parallel manipulator with idealtigmb
structures proposed by Fang and Tsai (2002).

Figure 86 shows the 5-axis machine P800/P2000 of Metrom ntiai-
chine has a clever head mechanism that allows it to use orlysSMERLET,
2006). Figure 86(b) shows details of his platform (headjuFé 87 shows
the Okuma Cosmo Center PM-600 5-axis milling machine andildef its
platform (head).
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Figure 85 — 5-DoF parallel manipulator proposed by Fang asa (FANG;
TSAI, 2002): (a) 5-RRRRR. (b) 5-RPUR.

Figure 86 — 5-axis machine: (a) The 5-axis P800 machineftoni Metrom
(MERLET, 2006; BONEV, 2009a). (b) The head mechanism witledsl
attached to revolute joints sharing the same axis allows st only 5 legs
(BONEV, 2009a).

B.2.5 6-DoF parallel manipulators

Figure 88 shows the Hexaglide parallel manipulator fisoole Poly-
technique Fédérale of Zurich. The Hexaglide is actuétedix linear ac-
tuators as shown in Figure 88(a). Figure 89(a) shows the H&gab from
Servos & Simulation (SERVOS AND SIMULATIONS, 2009), whichactu-
ated by six rotational actuators as shown in Figure 89(aurei 89(b) shows
an application of the Hexa for an entertainment simulatotiomo

Another interesting parallel manipulator is the Eclipskich has been
conceived and designed at the Robotics Laboratory of Nalt®eoul Univer-
sity, Korea (ROBOTICS LABORATORY SEUL UNIVERSITY, 1995; RY
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Figure 87 — 5-axis machine: (a) Okuma Cosmo Center PM-600BBM
2009; BONEV, 2009a). (b) detail of its platform (BONEV, 2@&)9

(b)

Figure 88 — Hexaglide manipulator froficole Polytechnique Fédérale of
Zurich: (a) Schematic of the Hexaglide (MERLET, 2006). Ifg)implemen-
tation as a machine-tool (MERLET, 2006).

(b)

Figure 89 — Hexa 710-6 from Servos & Simulation (SERVOS ANMBI
LATIONS, 2009): (a) Detail of actuation. (b) An applicatiofthe Hexa as
an entertainment simulator motion base.
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et al., 1998). Eclipse has seven actuators as shown in Fg§yréhree car-
riages supporting legs on a circular rail, and on the legstaee linear ac-
tuators supporting three revolute joints connected to fleedth links, one
of which is actuated (MERLET, 2006). The other ends of thkdiare con-
nected to the moving platform through ball-and-sockettirAn evolution
of Eclipse was proposed by Kim et al. (2002), named Eclipgedé Figure
91(b)). The Eclipse Il is not redundant (see Schematic imfei®1(a)) and
use circular railways to allow 360 degrees of rotation ofgtaform.

Figure 90 — Eclipse: (a) Schematic of the Eclipse (MERLETO&0 (b)
First prototype of milling machine based on the Eclipse emi¢ROBOTICS
LABORATORY SEUL UNIVERSITY, 1995).

Linear ......
Column

Linear
Prismatic
Joint

Clroular
Prismatic

(@) (b)

Figure 91 — Eclipse II: (a) Schematic of the Eclipse Il (KIMagt, 2002). (b)
First prototype of Eclipse Il motion simulator (ROBOTICS BORATORY
SEUL UNIVERSITY, 1995).

Kohli et al. (1988) suggested a parallel manipulator witle¢legs and
uses double actuators which are either linear and rotagysceematic of the
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parallel manipulator in Figure 92(a). Figure 92(b) showsidant of Kohli's
parallel manipulator proposed by Yang et al. (2003), Ché@0%2 using three
RPRS legs.

(b)

Figure 92 — Three leg 6-DoF manipulator: (a) Schematic okibleli's ma-
nipulator (MERLET, 2006). (b) A variant of Kohli's maniputars using
RPRS legs (CHEN, 2009).

A more detailed review of parallel manipulators can be fomriderlet
(2006) and Bonev (2009b). While several parallel maniputahave been
proposed there is still a large field of research in concepiesign of parallel
manipulators.

B.2.6 Applications of parallel manipulators

Some applications of parallel manipulators already haealdéscussed
in the text above. Parallel manipulators have been suadssted in many
applications and the variety of applications in which pletahanipulators
are used is constantly expanding (MERLET, 2006; BONEV, 20B68NG;
GOSSELIN, 2007; GOGU, 2008).

The applications of parallel manipulators are the mosttes

eMotion simulators and test systems; all flight simulatorsERLET,
2006; SICILIANO; KHATIB, 2008), vibrations, and so on.

eIndustrial manipulators; food, electronic, ultra-acdanaositioning de-
vices, pick-and-place, fast packaging, and so on.
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eSpatial applications; pointing device for telescopes (@flent land-
based telescopes use parallel manipulators, either asadaagy mirror
alignment system or as a primary mirror pointing device (MER,
2006)), simulator for the study of robotized assembly in $pace,
satellite instrumentation, and so on.

eMedical research; the accuracy of parallel manipulatocs the fact
that they are more easily “miniaturizable” than serial npatators has
led to certain research in the medical domain. Parallel mdaiors are
used in the medical domain for:

—endoscopy heads (WENDLANDT; SASTRY, 1994);

—brain surgery to position a microscope at the Necker Hospita
(DOMBRE; KHALIL, 2007);

—orthopedic surgery (BRANDT et al., 1999);
—ophthalmic surgery (GRACE et al., 1993);

—nheurosurgery, such as the manipulator developed by thenFrau
hofer Institute in Stuttgart (MCBETH et al., 2004);

—Hepatic devices (DAVIES, 2000);

—precise positioning, either as permanent devices sucled3eha
manipulator (DAVIES, 2000).

—-ISIS/SurgiScope system from ISIS Robotics (PRIQUEL, 2009)
using a Delta as microscope stand.

—Dr. Tim Lueth from MIMED (LUETH, 2009) realized the world’s
first head surgery (see Figure 83(b)).

eMiscellaneous; entertainment as tour simulator, eleaftalydro-Geratbau
which is used for the installation of the main landing geahefAirbus
A380 (HYDRO SYSTEMS, 2007; MERLET, 2006).

eMachine-tool; in industry, numerous machine tools baseganallel
structures have been designed, see for example two 5-aglsimes in
Figures 86 and 87.

enanotechnology and micro-electromechanical systemsgj-naamipulators
and micro-manipulators were recently developed based @li@lama-
nipulators (KONG; GOSSELIN, 2007).

For an updated comprehensive list of parallel manipulaotsapplications,
see (MERLET, 2006; BONEV, 2009b; KONG; GOSSELIN, 2007).
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Torgny Brogardh (2002) from ABB Automation Technology &vo
ucts/Robotics, in his paper entitled “PKM Research - Imguatrissues, pre-
sented as seen from a Product Development Perspective atRuBBtics”
presented in the “Workshop on Fundamental Issues and Haagearch Di-
rections for Parallel Mechanisms and Manipulators”, shawdiagram ex-
emplifying the relations between potential performanedfees of a parallel
manipulators and the industrial applications (see Fig@je 9

PKM Features Applications End Users
Acceleration Pick and Place Pharmaceutical
Industry
Assembl

y Electronics

Industry

Measurement
Food
Accuracy Laser Cutting Industry

Water Jet Cutting

Cosumers Goods

Industry
Dynamic Riveting Automotive
Accuracy Industry
Drilling
Aerospace
Deburring Industry
Stiffness o Foundry
Milling Industry

Figure 93 — Diagram exemplifying the relations between pidé perfor-
mance features of a parallel manipulators and the apmitaind industries
needing this performance for improved flexible automatBRQGARDH,
2002).

The potential applications of parallel manipulators comés to moti-
vate their design. However, the difficulties of design mtifitlse overcome
and this subject is the main objective of this thesis, to Gbute to the con-
ceptual design of mechanisms and parallel manipulators.
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