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Abstract
A perfect hash function (PHF) h : S → [0, m − 1] for a key set S ⊆ U of size n, where
m ≥ n and U is a key universe, is an injective function that maps the keys of S to unique
values. A minimal perfect hash function (MPHF) is a PHF with m = n, the smallest possi-
ble range. Minimal perfect hash functions are widely used for memory eﬃcient storage and
fast retrieval of items from static sets, such as words in natural languages, reserved words
in programming languages or interactive systems, universal resource locations (URLs) in
web search engines, or item sets in data mining techniques.
In this thesis we present a simple, highly scalable and near-space optimal perfect hashing
algorithm. Evaluation of a PHF on a given element of S requires constant time, and the
dominating phase in the construction algorithm consists of sorting n ﬁngerprints of O(log n)
bits in O(n) time. The space usage depends on the relation between m and n. For m = n
the space usage is in the range 2.62n to 3.3n bits, depending on the constants involved
in the construction and in the evaluation phases. For m = 1.23n the space usage is in
the range 1.95n to 2.7n bits. In all cases, this is within a small constant factor from the
information theoretical minimum of approximately 1.44n bits for MPHFs and 0.89n bits for
PHFs, something that has not been achieved by previous algorithms, except asymptotically
for very large n. This small space usage opens up the use of MPHFs to applications for
which they were not useful in the past.
We demonstrate the scalability of our algorithm by constructing an MPHF for a set of
1.024 billion URLs from the World Wide Web of average length 64 characters in approx-
imately 50 minutes, using a commodity PC. We also present a distributed and parallel
implementation of the algorithm, which generates an MPHF for the same URL set, using
a 14 computer cluster, in approximately 4 minutes, achieving an almost linear speedup.
Also, for 14.336 billion 16-byte random integers distributed among the 14 participating ma-
chines, the algorithm outputs an MPHF in approximately 50 minutes, with a performance
degradation of 20%.








Resumo
Uma fun¸c˜ao hash perfeita (FHP) h : U → [0, m −1] para um conjunto de chaves S ⊆ U
de tamanho n, onde m ≥ n e U ´e um universo de chaves, ´e uma fun¸c˜ao injetora que
mapeia as chaves de S para valores ´unicos. Uma fun¸c˜ao hash perfeita m´ınima (FHPM)
´e uma FHP com m = n, o menor intervalo poss´ıvel. Fun¸c˜oes hash perfeitas m´ınimas s˜ao
amplamente utilizadas para armazenamento eﬁciente e recupera¸c˜ao r´apida de itens de con-
juntos est´aticos, como palavras em linguagem natural, palavras reservadas em linguagens
de programa¸c˜ao ou sistemas interativos, URLs (universal resource locations) em m´aquinas
de busca, ou conjuntos de itens em t´ecnicas de minera¸c˜ao de dados.
Nesta tese n´os apresentamos um algoritmo de hashing perfeito altamente escal´avel e
de espa¸co quase ´otimo. A avalia¸c˜ao de uma FHP sobre um dado elemento de S requer
tempo constante, e a fase dominante no algoritmo de constru¸c˜ao consiste da ordena¸c˜ao
de n ﬁngerprints de O(log n) bits em tempo O(n). A utiliza¸c˜ao de espa¸co depende da
rela¸c˜ao entre m e n. Para m = n a utiliza¸c˜ao de espa¸co est´a dentro do intervalo 2, 62n
`a 3, 3n bi ts, dependendo das constantes envolvidas nas fases de constru¸c˜ao e avalia¸c˜ao.
Para m = 1, 23n a utiliza¸c˜ao de espa¸co est´a dentro do intervalo 1, 95n `a 2, 7n bits. Em
todos os casos, isto est´a distante por um pequeno fator constante do m´ınimo te´orico de
aproximadamente 1, 44n bits para FHPMs e 0, 89n bits para FHPs, uma coisa que n˜ao
foi alcan¸cada por algoritmos anteriores, exceto assint´oticamente para valores de n muito
grandes. Esta pequena utiliza¸c˜ao de espa¸co permitiu o uso de FHPMs em aplica¸c˜oes para
as quais elas n˜ao eram ´uteis no passado.
N´os demonstramos a escalabilidade do nosso algoritmo ao construir uma FHPM para
um conjunto de 1, 024 bilh˜oes de URLs da World Wide Web de tamanho m´edio igual a
64 caracteres em aproximadamente 50 minutos, usando um PC comodite. N´os tamb´em
apresentamos uma implementa¸c˜ao distribu´ıda e paralela do algoritmo, a qual gera uma
FHPM para o mesmo conjunto de URLs, usando um cluster de 14 computadores, em
aproximadamente 4 minutos, alcan¸cando um speedup quase linear. Al´em disso, para 14, 336
bilh˜oes de n´umeros inteiros de 16 bytes gerados aleatoriamente e distribu´ıdos entre as 14
m´aquinas participantes, o algoritmo gera uma FHPM em aproximadamente 50 minutos,
com uma degrada¸c˜ao de desempenho de 20%.
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Resumo Estendido
Introdu¸c˜ao
A necessidade de acesso `a itens com base no valor de uma chave ´e omnipresente em ´areas
como inteligˆencia artiﬁcial, estruturas de dados, banco de dados, minera¸c˜ao de dados e recu-
pera¸c˜ao de informa¸c˜ao. Alguns tipos de bases de dados s˜ao atualizados apenas raramente,
geralmente por atualiza¸c˜oes peri´odicas feitas em lote. Isso ´e verdade, por exemplo, para a
maioria das aplica¸c˜oes em data warehousing (veja [71] para mais exemplos e discuss˜oes).
Em tais cen´arios, ´e poss´ıvel melhorar o desempenho do processamento de consultas por
meio da utiliza¸c˜ao de fun¸c˜oes hash perfeitas m´ınimas para criar representa¸c˜oes compactas
das chaves.
Em aplica¸c˜oes onde o conjunto de chaves ´e ﬁxo por um longo per´ıodo de tempo, a
constru¸c˜ao de uma fun¸c˜ao hash perfeita m´ınima pode ser feita como parte da fase de
pr´e-processamento. Por exemplo, aplica¸c˜oes OLAP (On-Line Analytical Processing) fazem
uso extensivo de pr´e-processamento de dados para otimizar ao m´aximo o processamento
de certos tipos de consultas. Mais formalmente, dado um conjunto est´atico de chaves
S ⊆ U de tamanho n, sendo suas chaves provenientes de um universo de chaves U de
tamanho u, onde cada chave est´a associada com dados sat´elites, a quest˜ao que n´os estamos
interessados ´e: quais s˜ao as estruturas de dados que proporcionam o melhor compromisso
entre utiliza¸c˜ao de espa¸co e tempo de consulta?
A utiliza¸c˜ao de uma tabela indexada por uma fun¸c˜ao hash consiste em uma estrutura
de dados que permite a realiza¸c˜ao de consultas eﬁcientemente (custo constante no caso
m´edio). Considerando S ⊆ U e dada uma chave x ∈ S, uma fun¸c˜ao hash h computa um
inteiro no intervalo [0, m − 1] para o armazenamento ou recupera¸c˜ao de x em uma tabela
hash. M´etodos de hashing para conjuntos de chaves n˜ao est´aticos podem ser usados para
construir estruturas de dados que armazenam S e suportam consultas do tipo “x ∈ S?”
com custo esperado de tempo O(1). No entanto, esses m´etodos envolvem perda de espa¸co
i




[image: alt]devido a localiza¸c˜oes n˜ao utilizadas na tabela e perda de tempo para resolver colis˜oes
quando duas chaves s˜ao mapeadas para a mesma entrada da tabela.
Hashing perfeito ´e uma forma eﬁciente em espa¸co para criar representa¸c˜oes compactas
de um conjunto est´atico S contendo n chaves. Para aplica¸c˜oes com somente pesquisas com
sucesso, a representa¸c˜ao de uma chave x ∈ S ´e simplesmente o valor de h(x), onde h ´e
uma fun¸c˜ao hash perfeita (FHP) para o conjunto S de valores considerados. A palavra
“perfeita” refere ao fato de que a fun¸c˜ao mapear´a os elementos de S para valores ´unicos.
Fun¸c˜oes hash perfeitas m´ınimas (FHPM) produzem valores que s˜ao inteiros no intervalo
[0, n −1], que ´e o menor intervalo poss´ıvel. A Figura 1(a) ilustra uma fun¸c˜ao hash perfeita
e a Figura 1(b) ilustra uma fun¸c˜ao hash perfeita m´ınima.
0 n−1...21
0 n−1...21
210
...
m−1
Conjunto de Chaves
Tabela Hash
(a)
Tabela Hash
Conjunto de Chaves
0 n−121
...
(b)

Figura 1: (a) Fun¸c˜ao hash perfeita (b) Fun¸c˜ao hash perfeita m´ınima.
Uma vez que colis˜oes n˜ao ocorrem nas FHPs e FHPMs, cada chave pode ser recuperada
da tabela com um ´unico acesso. FHPMs evitam completamente o problema de desperd´ıcio
de espa¸co e tempo. Melhor ainda, foi observado em [56] que FHPMs tamb´em evitam cache
misses que acontecem devido aos esquemas de resolu¸c˜ao de colis˜oes, como endere¸camento
aberto e encadeamento [51]. Isso ocorre porque tais fun¸c˜oes fazem, no pior caso, um ´unico
acesso `a tabela hash.
Fun¸c˜oes hash perfeitas m´ınimas s˜ao usadas para armazenamento eﬁciente e recupera¸c˜ao
r´apida de itens provenientes de conjuntos est´aticos, tais como palavras em linguagem na-
tural, palavras reservadas em linguagens de programa¸c˜ao ou sistemas interativos, conjun-
tos de itens em t´ecnicas de minera¸c˜ao de dados [21, 22], tabelas de roteamento e outras
aplica¸c˜oes na ´area de redes [66], dados espaciais esparsos [54], compress˜ao de grafos [7] e,
para representar grandes mapas da web [27].
Uma FHP depende completamente do conjunto S de chaves.
´
E sabido que manter
uma FHP em aplica¸c˜oes dinˆamicas, nas quais ocorrem inser¸c˜oes no conjunto S, ´e somente
ii




poss´ıvel usando espa¸co que ´e super-linear em n [28]. No entanto, neste trabalho n´os
consideramos o caso onde S ´e ﬁxo, e a constru¸c˜ao de uma FHP pode ser feita como parte
do pr´e-processamento dos dados (por exemplo, em aplica¸c˜oes de data warehouse).
Os m´etodos de hashing perfeito conhecidos na literatura n˜ao s˜ao capazes de gerar
fun¸c˜oes que podem ser armazenadas utilizando um n´umero constante de bits por elemento
para conjuntos de dados de tamanhos real´ısticos. Todos os m´etodos anteriores ou sofrem
de um compreendimento te´orico incompleto e, portanto, n˜ao existem garantias de que
eles funcionem bem para qualquer conjunto de chaves, ou n˜ao s˜ao pr´aticos devido a um
procedimento complicado de avalia¸c˜ao da fun¸c˜ao, que na maioria das vezes ´e tamb´em
ineﬁciente.
At´e este trabalho de tese, por causa das limita¸c˜oes dos algoritmos existentes, o uso de
FHPMs era restrito `a cen´arios onde o conjunto de chaves era relativamente pequeno. No
entanto, em muitos casos, a demanda para se tratar conjuntos de chaves muito grandes de
forma eﬁciente est´a crescendo. Por exemplo, m´aquinas de busca est˜ao indexando dezenas
de bilh˜oes de p´aginas e algoritmos como PageRank [16], o qual utiliza o grafo da web
para derivar uma medida de popularidade para p´aginas web, poderia se beneﬁciar de uma
FHPM para mapear URLs que ocupam muitos bytes para n´umeros inteiros que ocupam
poucos bytes e s˜ao utilizados como identiﬁcadores para as p´aginas. Os n´umeros inteiros
obtidos no mapeamento correspondem ao conjunto de v´ertices do grafo da web.
Embora uma quantidade consider´avel de trabalho sobre como construir boas FHPs
tenha sido realizado nos ´ultimos vinte anos na literatura de hashing perfeito, existe uma
lacuna entre teoria e pr´atica em todos os m´etodos de hashing perfeito anteriores. Por um
lado, existem bons resultados te´oricos sem comprova¸c˜ao experimental da sua aplicabili-
dade para grandes conjuntos de chaves. Por outro lado, existem os algoritmos que fazem
suposi¸c˜oes n˜ao real´ısticas para analisarem teoricamente tanto o tempo de execu¸c˜ao quanto
o espa¸co necess´ario para descrever as fun¸c˜oes.
Nesta tese s˜ao apresentados novos algoritmos para construir FHPs e FHPMs que,
al´em de serem melhores do que os principais algoritmos pr´aticos dispon´ıveis na literatura,
tamb´em s˜ao bem compreendidos teoricamente. Consequentemente, um importante passo
foi dado para preencher a lacuna existente entre teoria e pr´atica nos m´etodos de hashing
perfeito. N´os tamb´em mostramos que os novos algoritmos viabilizaram a utiliza¸c˜ao de
FHPMs em aplica¸c˜oes nas quais tais fun¸c˜oes n˜ao eram consideradas uma boa op¸c˜ao no
passado. Por ﬁm, os resultados desta tese permitem a constru¸c˜ao de FHPMs que escalam
facilmente para conjuntos contendo bilh˜oes de elementos.
iii
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Nesta se¸c˜ao apresentamos algumas deﬁni¸c˜oes e a nota¸c˜ao usada ao longo deste trabalho.
O objetivo ´e estabelecer um vocabul´ario comum que ser´a usado por toda a tese.
Deﬁni¸c˜ao 1 Uma chave ´e constru´ıda a partir de s´ımbolos de um alfabeto Σ, o qual ´e
ﬁnito, ordenado e de tamanho |Σ|.
Deﬁni¸c˜ao 2 Seja Φ o comprimento m´aximo de uma chave. Ent˜ao, L = Φ log |Σ| ´e o
comprimento m´aximo em bits
1
. Assim, deﬁnimos um universo de chaves U de tamanho
u = 2
L
.
Por toda esta tese consideramos que L = O(1) e que log u cabe em um n´umero cons-
tante de palavras de um computador. Consequentemente, todos os algoritmos que iremos
considerar s˜ao analisados para o modelo computacional Word RAM [41]. Neste modelo,
um elemento do universo U cabe dentro de uma palavra do computador, e as opera¸c˜oes
aritm´eticas e os acessos `a mem´oria tˆem custo unit´ario.
Deﬁni¸c˜ao 3 Seja S um subconjunto de U contendo n chaves, onde n ≪ u.
Deﬁni¸c˜ao 4 Seja h : U → M uma fun¸c˜ao hash que mapeia as chaves de U para um dado
intervalo de inteiros M = [0, m − 1] = {0, 1, . . . , m − 1} (isto ´e, dada uma chave x ∈ U, a
fun¸c˜ao hash computa um inteiro em [0, m − 1]).
Deﬁni¸c˜ao 5 Dado duas chaves x, y ∈ U, onde x = y, e uma fun¸c˜ao hash h : U → M, uma
colis˜ao ocorre quando h(x) = h(y).
Deﬁni¸c˜ao 6 Uma fun¸c˜ao hash perfeita phf : S → M ´e uma fun¸c˜ao injetora, onde S ⊆ U
(isto ´e, para todos os pares s
1
, s
2
∈ S nos quais s
1
= s
2
, temos que phf (s
1
) = phf (s
2
),
onde m ≥ n). Por ser uma fun¸c˜ao injetora, phf mapeia cada chave de S em um inteiro
´unico no intervalo M. Como n˜ao ocorrem colis˜oes, se phf for utilizada para indexar uma
tabela hash de tamanho m, com n registros identiﬁcados pelas n chaves de S, ent˜ao, cada
registro pode ser recuperado com um ´unico acesso `a tabela.
Deﬁni¸c˜ao 7 Uma fun¸c˜ao hash perfeita m´ınima mphf : S → M ´e uma fun¸c˜ao bijetora,
onde S ⊆ U (isto ´e, cada chave de S ´e mapeada para um ´unico inteiro em M e m = n).
1
Por todo este trabalho iremos denotar log
2
x como log x.
iv




[image: alt]Deﬁni¸c˜ao 8 Uma fun¸c˜ao hash perfeita ´e de ordem preservada se, para qualquer par de
chaves s
i
e s
j
∈ S, temos phf (s
i
) < phf (s
j
) sempre que i < j.
Limite Inferior de Espa¸co para se Representar FHPs e
FHPMs
A m´etrica mais importante relacionada com FHPs e FHPMs ´e a quantidade de espa¸co
necess´ario para descrever tais fun¸c˜oes. O limite inferior ter´orico para descrever uma FHP
foi primeiramente estudado em [57]. Fredman e Koml´os [40] provaram um limite inferior
para FHPMs. Uma prova mais simples deste limite foi mais tarde obtido em [68]. Os
dois teoremas seguintes apresentam o limite inferior te´orico para descrever uma FHP e
uma FHPM, respectivamente. Aqui n´os utilizamos a aproxima¸c˜ao de Stirling e, portanto,
obtivemos um resultado mais preciso, que est´a distante do valor exato por uma constante
aditiva, uma vez que a aproxima¸c˜ao de Stirling est´a distante do valor exato por um fator
constante. Por simplicidade de exposi¸c˜ao, consideramos nesta tese o caso em que log u ≪ n,
o qual nos permite ignorar nos dois teoremas abaixo termos que dependam de u.
Teorema 1 Toda fun¸c˜ao hash perfeita phf : S → M, onde |S| = n e |M| = m, requer
pelo menos (1 + (m/n − 1 + 1/2n) ln(1 − n/m)) n log e bits para ser armazenada.
Prova. A probabilidade de mapear aleatoriamente n elementos dentro de um intervalo
de tamanho m sem colis˜oes (isto ´e, a probabilidade de se obter uma FHP) ´e:
Pr
ph
(n, m) =
(m − 1)(m − 2) . . . (m − n + 1)
m
n
=
m!
m
n
(m − n)!
Pela seguinte aproxima¸c˜ao de Stirling n! ≈ n
n
e
−n
√
2πn obtemos:
Pr
ph
(n, m) ≈ m
(m−n)
· (m −n)
−(m−n)
· e
−n

m
m − n
Portanto, pelo menos 1/ Pr
ph
(n, m) fun¸c˜oes hash s˜ao necess´arias para se obter uma FHP.
Assim, pelo menos log(1/P r
ph
(n, m)) = (1 + (m/n −1 + 1/2n) ln(1 −n/m)) n log e bits s˜ao
necess´arios para codiﬁcar esse conjunto de fun¸c˜oes.
Teorema 2 Toda fun¸c˜ao hash perfeita m´ınima mphf : S → M, onde |S| = n e |M| =
m = n, requer pelo menos n log e − O(log n) bits para ser armazenada.
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[image: alt]Prova. A probabilidade de encontrar uma FHPM (onde n = m) ´e:
Pr
mph
(n, n) =
n!
n
n
=
n
n
√
2πn
n
n
e
n
= e
−n
√
2πn.
Na equa¸c˜ao acima tamb´em utilizamos a aproxima¸c˜ao de Stirling mencionada anteriormente.
Consequentemente, o n´umero esperado de bits necess´ario para descrever essas raras FHPMs
´e no m´ınimo log(1/ Pr
mph
(n, n)) = n log e − O(log n).
Hashing Uniforme versus Hashing Universal
Todos os algoritmos de hashing perfeito precisam usar fun¸c˜oes hash selecionadas aleato-
riamente com probabilidade uniforme de uma familia H de fun¸c˜oes hash, as quais s˜ao
utilizadas durante a constru¸c˜ao de FHPs e FHPMs. Existem dois tipos de familias de
fun¸c˜oes hash que s˜ao utilizadas nas an´alises cl´assicas de esquemas de hashing: (i) fun¸c˜oes
hash uniformes e (ii) fun¸c˜oes hash universais. Nesta se¸c˜ao deﬁnimos essas duas familias de
fun¸c˜oes hash.
Familia de Fun¸c˜oes Hash Uniformes
A an´alise cl´assica de esquemas de hashing ´e frequentemente calcada na suposi¸c˜ao de que
as fun¸c˜oes hash utilizadas s˜ao escolhidas aleatoriamente e com probabilidade uniforme de
uma familia de fun¸c˜oes hash uniformes, a qual ´e deﬁnida como segue.
Deﬁni¸c˜ao 9 Seja H a familia de todas as m
u
fun¸c˜oes hash que mapeiam chaves do universo
U para o intervalo [0, m−1]. Uma fun¸c˜ao hash uniforme ´e uma fun¸c˜ao que ´e escolhida com
probabilidade uniforme da familia H e que produz valores independentes e uniformemente
distribu´ıdos dentro do intervalo considerado.
O problema com as fun¸c˜oes hash uniformes ´e o espa¸co necess´ario para descrever uma
´unica fun¸c˜ao, o qual ´e Ω(u log m) bits. Esse requisito de espa¸co normalmente excede a
capacidade de armazenamento dispon´ıvel e ´e frequentemente desconsiderado durante a
an´alise dos algoritmos pr´aticos de hashing perfeito existentes na literatura.
Lema 1 [20] Seja H uma familia de fun¸c˜oes hash e seja h : U → M uma fun¸c˜ao hash
selecionada de H com probabilidade
1
|H|
. Seja C
h
(x, y) = 1 se x ∈ U e y ∈ U colidem na
utiliza¸c˜ao da fun¸c˜ao hash h, e 0 caso contr´ario, onde x = y . A probabilidade de colis˜ao
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[image: alt]entre duas chaves diferentes x, y ∈ U corresponde ao valor esperado de C
h
(x, y) e ´e dada
por:
E[C
h
(x, y)] ≥
1
m
−
1
u
Prova. Seja C
h
(x, U) o n´umero total de chaves de U que colidem com uma dada chave
x ∈ U na utiliza¸c˜ao da fun¸c˜ao hash h. Logo, C
h
(x, U) =

y∈U,y=x
C
h
(x, y). Seja C
h
(U, U)
o n´umero total de colis˜oes para toda chave x ∈ U na utiliza¸c˜ao da fun¸c˜ao hash h. Logo,
C
h
(U, U) =

x∈U
C
h
(x, U). Seja H uma familia ou cole¸c˜ao de fun¸c˜oes hash uniformes.
Assim, C
H
(U, U) =

h∈H
C
h
(U, U) denota o n´umero total de colis˜oes para toda chave
x ∈ U e para todas as fun¸c˜oes hash de H. Vamos imaginar que M = [0, m−1] ´e um intervalo
de ´ındices de uma tabela hash com m entradas e que os valores de M s˜ao computados por
uma fun¸c˜ao hash h : U → M selecionada com probabilidade
1
|H|
da familia H de fun¸c˜oes
hash uniformes. Depois de mapear todas as chaves para o intervalo M, se uma entrada
i ∈ M tem trˆes chaves {k
1
, k
2
, k
3
}, ent˜ao k
1
colide com cada uma das chaves de {k
2
, k
3
},
k
2
colide com cada uma das chaves de {k
1
, k
3
}, e k
3
colide com cada uma das chaves de
{k
1
, k
2
}, e, portanto, 6 colis˜oes ocorrem na entrada i. Considerando uma fun¸c˜ao hash
h ∈ H, no pior caso, quando todas as chaves de U s˜ao mapeadas na mesma entrada i, o
n´umero de colis˜oes corresponde ao n´umero de pares ordenados que podem ser formados
a partir das chaves do universo U de tamanho u, o qual ´e dado por C
h
(U, U) = u
2
− u.
Consequentemente, C
H
(U, U) = |H|(u
2
− u). Como existem m entradas, ent˜ao, o n´umero
esperado de colis˜oes para todas as fun¸c˜oes hash de H ´e:
E[C
H
(U, U)] = u
2
|H|

1
m
−
1
mu

Assim, pelo princ´ıpio da casa dos pombos
2
, existem x, y ∈ U e h ∈ H tal que
E[C
h
(x, y)] =
1
m
−
1
mu
≥
1
m
−
1
u
Familia de Fun¸c˜oes Hash Universais
Como mencionado na se¸c˜ao anterior, a quantidade de espa¸co necess´ario para se representar
uma fun¸c˜ao hash uniforme ´e proibitiva na pr´atica. Felizmente, na maioria das situa¸c˜oes,
2
O princ´ıpio da casa dos pombos diz que, dado dois n´umeros naturais n e m com n > m, se n pombos
s˜ao colocados dentro de m casas de pombos, ent˜ao, pelo menos uma casa de pombo conter´a mais do que
um pombo.
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[image: alt]fun¸c˜oes hash heur´ısticas se comportam de forma similar ao comportamento esperado de
fun¸c˜oes hash uniformes, mas existem casos para os quais garantias probabil´ısticas rigorosas
s˜ao necess´arias [18]. Por exemplo, v´arios esquemas de hashing adaptativos presumem
que uma fun¸c˜ao hash com certas propriedades pr´e-estabelecidas pode ser encontrada com
custo esperado de tempo O(1). Isso acontece se a fun¸c˜ao ´e selecionada aleatoriamente
com probabilidade uniforme de uma familia de fun¸c˜oes hash uniformes at´e que uma fun¸c˜ao
adequada seja encontrada, mas n˜ao necessariamente se a sele¸c˜ao for limitada a um conjunto
menor de fun¸c˜oes. Essa situa¸c˜ao conduziu Carter e Wegman [20] ao conceito de hashing
universal.
Deﬁni¸c˜ao 10 Uma familia H de fun¸c˜oes hash ´e deﬁnida como fracamente universal ou
apenas universal se, para qualquer par de elementos distintos x
1
, x
2
∈ U e uma fun¸c˜ao h
escolhida com probabilidade uniforme de H, temos que
Pr(h(x
1
) = h(x
2
)) ≤
1
m
·
Deﬁni¸c˜ao 11 Uma familia H de fun¸c˜oes hash ´e deﬁnida como fortemente universal ou
independente aos pares se, para qualquer par de elementos distintos x
1
, x
2
∈ U e dois
valores arbitr´arios y
1
, y
2
∈ M, temos que
Pr(h(x
1
) = y
1
e h(x
2
) = y
2
) =
1
m
2
·
Em muitas situa¸c˜oes, a an´alise de v´arios esquemas de hashing pode ser completada sob
a suposi¸c˜ao mais fraca de que h ´e escolhida com probabilidade uniforme de uma familia
de fun¸c˜oes hash universais, ao inv´es da suposi¸c˜ao de que h ´e escolhida com probabilidade
uniforme de uma familia de fun¸c˜oes hash uniformes. Em outras palavras, aleatoriedade
limitada ´e suﬁciente na pr´atica [70]. Por exemplo, quando estamos trabalhando com um
universo de chaves muito maior do que o intervalo M = [0, m − 1] da fun¸c˜ao hash, que
´e o caso para a maioria das aplica¸c˜oes de m´etodos de hashing, fun¸c˜oes hash universais se
comportam t˜ao bem quanto as fun¸c˜oes hash uniformes. Isso pode ser visto ao compararmos
o resultado do Lema 1 com a probabilidade de colis˜oes para fun¸c˜oes hash universais, que
´e dada na Deﬁni¸c˜ao 10.
´
E importante observar que existem casos para os quais garantias
probabil´ısticas rigorosas s˜ao necess´arias [18, 2]. Para ilustrar esse fato, iremos utilizar os
trˆes cen´arios seguintes, os quais foram bem reportados em [2]:
1. Considere que um conjunto de chaves S ⊆ U de tamanho n seja mapeado em uma
tabela hash com m entradas. A quest˜ao ´e: quantas entradas m s˜ao necess´arias para
viii




[image: alt]que nenhuma colis˜ao ocorra? Ao utilizarmos uma fun¸c˜ao hash universal com uma
tabela de tamanho m = O(n
2
), a probabilidade de que nenhuma colis˜ao ocorra ´e
maior que 1/2. Por outro lado, ao utilizarmos uma fun¸c˜ao hash uniforme, ´e bem
sabido que uma tabela de tamanho m = o(n
2
) n˜ao ´e suﬁciente para evitar colis˜oes,
como exempliﬁcado pelo paradoxo do anivers´ario
3
. Consequentemente, nada ´e per-
dido quando se utiliza uma fun¸c˜ao hash universal nesse cen´ario.
2. Considere que um conjunto de chaves S ⊆ U seja mapeado em uma tabela hash com
m = n entradas. A quest˜ao ´e: qual deveria ser o tamanho de S para cobrir todas as
entradas da tabela (isto ´e, nenhuma entrada ﬁca vazia)? Ao utilizarmos uma fun¸c˜ao
hash universal, se o tamanho de S for 2n
2
, ent˜ao, todas as entradas s˜ao cobertas
com probabilidade maior do que 1/2. Por outro lado, ao utilizarmos uma fun¸c˜ao
hash uniforme, ´e bem sabido que seria necess´ario um conjunto de chaves de tamanho
θ(n log n) para cobrir todas as entradas, com alta probabilidade
4
. Consequentemente,
ao utilizarmos uma fun¸c˜ao hash uniforme nesse cen´ario, um ganho polinomial ´e obtido
ao sairmos de O(n
2
) para θ(n log n) entradas.
3. Considere que o conjunto de chaves S de tamanho n seja mapeado em uma tabela
hash com m = n entradas. A quest˜ao ´e: qual seria a entrada com o maior n´umero de
chaves? Ao utilizarmos uma fun¸c˜ao hash universal, a entrada com o maior n´umero
de chaves conter´a O(n
1/2
) chaves. Ao utilizarmos uma fun¸c˜ao hash uniforme, ´e bem
sabido que a entrada com o maior n´umero de chaves conter´a θ(log n/ log log n) chaves.
Consequentemente, ao utilizarmos uma fun¸c˜ao hash uniforme nesse cen´ario, um ganho
exponencial ´e obtido ao sairmos de O(n
1/2
) para θ(log n/ log log n).
Grafos Randˆomicos
Nesta se¸c˜ao discutimos alguns fatos sobre grafos randˆomicos que s˜ao importantes para a
an´alise dos nossos algoritmos. Um grafo randˆomico ´e um grafo gerado por algum procedi-
mento aleat´orio. Existem muitas formas n˜ao equivalentes de se deﬁnir grafos randˆomicos
e agora iremos apresentar dois modelos fortemente relacionados. O estudo dos grafos
3
O paradoxo do anivers´ario diz que, se 23 ou mais pessoas forem aleatoriamente reunidas, a probabi-
lidade que pelo menos duas pessoas fa¸cam anivers´ario no mesmo dia ´e maior do que 50%, como pode ser
visto em Feller [36, P´agina 33].
4
Por toda esta tese o termo “com alta probabilidade” ´e utilizado para signiﬁcar com probabilidade
1 − n
−δ
para δ > 0.
ix




randˆomicos se iniciou com o trabalho cl´assico de Erd˝os e R´enyi [33, 34, 35] (veja [8, 49]
para um tratamento moderno do assunto).
Deﬁni¸c˜ao 12 Seja G = (V, E) um grafo randˆomico obtido atrav´es do modelo uniforme
G(m, n), que ´e o modelo em que todos os

(
m
2
)
n

grafos com m v´ertices e n arestas s˜ao
equiprov´aveis. Nesse modelo, o grafo G inicia com um n´umero ﬁxo de v´ertices, denotado
por |V | = m, e |E| = n arestas s˜ao escolhidas aleatoriamente do conjunto de todas as

m
2

arestas poss´ıveis sem permitir repeti¸c˜ao. Um modelo similar, denotado por G(m, p), onde
0 ≤ p ≤ 1, ´e obtido quando consideramos o mesmo conjunto de v´ertices e selecionamos
cada aresta com probabilidade p, mas independentemente das outras. Portanto, neste caso,
repeti¸c˜oes s˜ao permitidas.
Como apresentado em [48], frequentemente ´e ´util considerar que o grafo randˆomico
evolui no tempo por meio de um processo estoc´astico, iniciando com um conjunto de
v´ertices e sem nenhuma aresta. Em seguida, arestas s˜ao inseridas at´e que o grafo completo
seja obtido. O processo de se adicionar cada aresta independentemente das outras em algum
instante de tempo aleat´orio, o qual pode, por exemplo, estar uniformemente distribu´ıdo
no intervalo (0, 1), resultar´a em um grafo randˆomico do tipo G(m, p) em um certo instante
de tempo p ∈ (0, 1) e um grafo randˆomico do tipo G(m, n) no instante de tempo em que a
n-´esima aresta aparece.
Nosso melhor resultado constr´oi uma familia F de FHPs e FHPMs baseado em hiper-
grafos r-partidos sem ciclos, deﬁnidos como segue.
Deﬁni¸c˜ao 13 Um hipergrafo ´e a generaliza¸c˜ao de um grafo n˜ao direcionado onde cada
aresta conecta r ≥ 2 v´ertices.
Deﬁni¸c˜ao 14 Seja G
r
= (V, E) um hipergrafo randˆomico, r-partido e r-uniforme para
r ≥ 2, onde V ´e a uni˜ao das r partes disjuntas V
0
, V
1
, . . . , V
r−1
, |V
i
| = ρ, |V | = m = rρ,
e |E| = n. As arestas s˜ao inseridas em G
r
, uma de cada vez, sendo cada uma selecionada
aleatoriamente dentre todas as ρ
r
arestas poss´ıveis, permitindo repeti¸c˜ao.
Deﬁni¸c˜ao 15 Um hipergrafo ´e ac´ıclico se e somente se alguma sequˆencia de remo¸c˜oes
repetidas de arestas que incidem sobre v´ertices de grau 1 tem como resultado um hipergrafo
sem nenhuma aresta [26, P´agina 103].
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Trabalhos Relacionados
Nesta se¸c˜ao revisamos alguns dos resultados te´oricos, pr´aticos e heur´ısticos mais impor-
tantes da literatura de hashing perfeito. Czech, Havas e Majewski [26] ﬁzeram um levan-
tamento mais completo at´e o ano de 1997.
Como mencionado anteriormente, existe uma lacuna entre teoria e pr´atica nos m´etodos
de hashing perfeito. Por um lado, existem bons resultados te´oricos sem comprova¸c˜ao
experimental da sua aplicabilidade para grandes conjuntos de chaves. N´os argumentaremos
abaixo que esses m´etodos n˜ao podem ser utilizados na pr´atica. Por outro lado, existem duas
categorias de algoritmos pr´aticos: (i) os algoritmos que tˆem as complexidades de tempo e
espa¸co analisadas sob a suposi¸c˜ao de que fun¸c˜oes hash uniformes podem ser utilizadas sem
nenhum custo adicional de espa¸co, a qual ´e uma suposi¸c˜ao n˜ao real´ıstica porque cada uma
dessas fun¸c˜oes requer pelo menos u log m bits para ser armazenada, e (ii) os algoritmos
heur´ısticos que apresentam apenas evidˆencias emp´ıricas sobre os seus comportamentos.
O objetivo desta se¸c˜ao ´e discutir a lacuna existente entre estes trˆes tipos de algoritmos
dispon´ıveis na literatura.
Resultados Te´oricos
Nesta se¸c˜ao revisamos alguns dos resultados te´oricos mais importantes da literatura
de hashing perfeito m´ınimo, os quais n˜ao assumem que fun¸c˜oes hash uniformes est˜ao
dispon´ıveis para serem utilizadas sem nenhum custo adicional de espa¸co. Fredman e
Koml´os [40] provaram que pelo menos n log e + log log u − O(log n) bits s˜ao necess´arios
para representar uma FHPM (considerando o pior caso e todos os conjuntos de chaves de
tamanho n), dado que u ≥ n
α
para algum α > 2. Mehlhorn [57] mostrou que o limite
obtido por Fredman e Koml´os era quase justo, exibindo para isso um algoritmo que constr´oi
uma FHPM que pode ser representada em no m´aximo n log e + log log u + O(log n) bits.
No entanto, seu algoritmo est´a muito distante da pr´atica, uma vez que tanto a gera¸c˜ao
quanto a avalia¸c˜ao das fun¸c˜oes resultantes s˜ao exponenciais em n (isto ´e, n
θ(ne
n
u log u)
).
Schmidt e Siegel [70] propuseram o primeiro algoritmo para construir uma FHPM com
tempo de avalia¸c˜ao constante e tamanho da descri¸c˜ao igual a O(n+log log u) bits. Do ponto
de vista pr´atico, o algoritmo de Schmidt e Siegel n˜ao ´e atrativo. O esquema ´e complicado
para se implementar e a constante escondida na ordem de complexidade assint´otica de
espa¸co ´e grande: para um conjunto de n chaves, pelo menos 29n bits s˜ao utilizados, o que
signiﬁca uma utiliza¸c˜ao de espa¸co na pr´atica similar aos melhores esquemas que geram
xi




fun¸c˜oes que s˜ao armazenadas em O(n log n) bits. Embora pare¸ca que os autores em [70]
queriam descrever o algoritmo deles da forma mais clara poss´ııvel, sem tentar otimizar a
constante, seria dif´ıcil melhorar a utiliza¸c˜ao de espa¸co signiﬁcativamente.
Mais recentemente, Hagerup e Tholey [43] apresentaram o melhor resultado te´orico
que conhecemos. A FHPM obtida pode ser avaliada em tempo O(1) e armazenada
em n log e + log log u + O(n(log log n)
2
/ log n + log log log u) bits. O tempo de gera¸c˜ao
´e O(n+ log log u) utilizando O(n) palavras de um computador. Apesar da sua importˆancia
te´orica, o algoritmo de Hagerup e Tholey tamb´em n˜ao ´e pr´atico, uma vez que ele enfatiza
somente complexidade assint´otica de espa¸co. (Ele tamb´em ´e muito complicado de se im-
plementar, mas n˜ao iremos discutir isso.) Para n < 2
150
o esquema n˜ao ´e bem deﬁnido,
pois conta com o particionamento do conjunto de chaves em subconjuntos de tamanho
ˆn ≤ log n/(21 log log n). Se corrigirmos isto permitindo subconjuntos de tamanho m´ınimo
1, ent˜ao, subconjuntos de tamanho um ser˜ao utilizados para n < 2
300
, o que conduziria a
uma utiliza¸c˜ao de espa¸co de pelo menos (3 log log n+log 7) n bits. Para um conjunto de um
bilh˜ao de chaves, isso seria mais do que 17 bits por elemento. J´a que 2
300
excede o n´umero
de ´atomos conhecidos no universo, ´e seguro conluir que a FHPM de Hagerup e Tholey n˜ao
´e eﬁciente em espa¸co em situa¸c˜oes pr´aticas. Embora acreditamos que o algoritmo deles
foi otimizado levando em cosidera¸c˜ao a simplicidade de exposi¸c˜ao, ao inv´es das constantes
envolvidas na ordem de complexidade de espa¸co, parece ser dif´ıcil reduzir a utiliza¸c˜ao de
espa¸co signiﬁcativamente na abordagem deles.
Resultados Pr´aticos
Nesta se¸c˜ao descrevemos alguns dos principais resultados “pr´aticos” que serviram de fonte
de inspira¸c˜ao para este trabalho. Eles s˜ao caracterizados pela simplicidade e por possuirem
fatores constantes, aparentemente baixos, na complexidade de espa¸co para se descrever as
fun¸c˜oes resultantes. Em geral, eles s˜ao analisados sob a suposi¸c˜ao n˜ao real´ıstica de que
fun¸c˜oes hash uniformes est˜ao dispon´ıveis para serem utilizadas sem nenhum custo adicional
de espa¸co.
O algoritmo proposto por Czech, Havas e Majewski [25] fazem a suposi¸c˜ao mencionada
anteriormente para construir FHPMs de ordem preservada (mas, na pr´atica, fun¸c˜oes hash
universais s˜ao utilizadas). O m´etodo usa duas fun¸c˜oes hash uniformes h
1
: S → [0, cn − 1]
e h
2
: S → [0, cn − 1] para gerar FHPMs na seguinte forma: mphf (x) = (g[h
1
(x)] +
g[h
2
(x)] mod n, onde c > 2. As FHPMs resultantes podem ser avaliadas em tempo O(1) e
armazenadas em O(n log n) bits (que ´e ´otimo para uma FHPM de ordem preservada). A
FHPM resultante ´e gerada com complexidade esperada de tempo O(n).
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Botelho, Kohayakawa e Ziviani [12] melhoraram as requisi¸c˜oes de espa¸co para se ar-
mazenar as FHPMs resultantes sob a pena de gerar fun¸c˜oes da mesma forma, mas que
n˜ao s˜ao de ordem preservada. O algoritmo deles tamb´em ´e linear em n, mas executa mais
r´apido do que os algoritmos de Czech et al. [25] e as FHPMs resultantes necessitam da
metade do espa¸co para serem armazenadas, pois c ∈ [0.93, 1.15]. No entanto, as FHPMs
resultantes ainda requerem O(n log n) bits de espa¸co de armazenamento. Foi mostrado
experimentalmente em [12] que o algoritmo funciona bem em situa¸c˜oes pr´aticas.
Majewski et al. [55] propuseram um algoritmo para gerar uma familia de FHPMs
baseado em hipergrafos r-uniformes (isto ´e, com arestas de tamanho r). O algoritmo ´e
uma generaliza¸c˜ao do apresentado em [25]. As fun¸c˜oes resultantes podem ser avaliadas em
tempo O(1) e armazenadas em O(n log n) bits. Embora as fun¸c˜oes resultantes s˜ao quase
t˜ao compactas quanto as geradas no trabalho apresentado em [12], elas ainda requerem
O(n log n) bits de espa¸co de armazenamento. Botelho, Pagh e Ziviani [14] projetaram uma
familia de algoritmos que melhora o requisito de espa¸co, saindo de O(n log n) para O(n)
bits, sob a pena de gerar fun¸c˜oes que n˜ao s˜ao de ordem preservada.
J´a que a requisi¸c˜ao de espa¸co de armazenamento para fun¸c˜oes hash uniformes as tornam
inadequadas para implementa¸c˜ao, ´e preciso estabelecer uma conﬁgura¸c˜ao mais real´ıstica. O
primeiro passo nessa dire¸c˜ao foi dado por Pagh [61]. Ele propˆos uma familia de algoritmos
randˆomicos para construir FHPMs da forma mphf (x ) = (f(x) + d[g(x)]) mod n, onde f
e g s˜ao selecionadas de uma familia de fun¸c˜oes hash universais (veja Deﬁni¸c˜ao 10) e d
´e um conjunto de valores de deslocamentos utilizados para resolver as colis˜oes causadas
pela fun¸c˜ao f. Pagh identiﬁcou um conjunto de condi¸c˜oes relacionadas com f e g, e
mostrou que se estas condi¸c˜oes forem satisfeitas, ent˜ao, uma FHPM pode ser computada
com complexidade de tempo esperada igual a O(n) e pode ser armazenada em (2+ǫ)n log n
bits, que ´e sub-´otimo.
Dietzfelbinger e Hagerup [29] melhoraram o resultado apresentado em [61], reduzindo
a utiliza¸c˜ao de espa¸co para (1 + ǫ)n log n bits, mas, na abordagem deles, f e g precisam ser
escolhidas de uma classe de fun¸c˜oes hash que atenda a alguns outros requisitos. Woelfel [75]
mostrou como diminuir a utiliza¸c˜ao de espa¸co um pouco mais, indo para O(n log log n) bits
assint´oticamente, ainda com um algoritmo muito simples. No entanto, n˜ao existe nenhuma
evidˆencia emp´ırica sobre o valor pr´atico desse esquema.
Galli, Seybold e Simon [42] propuseram um algoritmo para gerar FHPMs similar aos
apresentados nos trabalhos [61, 29]. No entanto, nas FHPMs deles, as duas fun¸c˜oes f e g s˜ao
deﬁnidas como f(x) = h
c
(x) mod n e g(x) = ⌊h
c
(x)/n⌋, onde h
c
(k) = (ck mod p) mod n
2
,
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[image: alt]1 ≤ c ≤ p − 1 e p ´e um n´umero primo maior que u. As FHPMs s˜ao geradas em tempo
liner e armazenadas em O(n log n) bits. A principal vantagem dessa abordagem ´e que ela
pode ser facilmente adaptada para conjuntos dinˆamicos, mas somente para FHPs.
Prabhakar e Bonomi [66] projetaram FHPs que foram utilizadas para armazenar tabelas
de roteamento em roteadores. Eles mostraram que o requisito de espa¸co de armazenamento
para as fun¸c˜oes resultantes tende a 2en bits a medida que n tende ao inﬁnito. Nas suas
simula¸c˜oes, as fun¸c˜oes resultantes necessitavam de 8.6n bits para serem armazenadas. A
principal vantagem desse esquema ´e que ele ´e simples o suﬁciente para ser implementado
em hardware.
Algoritmos randˆomicos do tipo Las Vegas
5
foram projetados em todos os trabalhos
anteriores e tamb´em neste trabalho de tese. Contrariamente, os trabalhos [4, 73] apresen-
tam algoritmos determin´ısticos para construir FHPs e FHPMs. As fun¸c˜oes resultantes re-
querem O(n log(n)+log(log(u))) bits de espa¸co de armazenamento e s˜ao avaliadas em tempo
O(log(n) + log(log(u))). Assim, as fun¸c˜oes resultantes n˜ao s˜ao avaliadas em tempo O(1) e
est˜ao distantes por um fator de O(log n) bits dos limites inferiores de espa¸co de armazena-
mento de FHPs e FHPMs, os quais s˜ao apresentados nos Teoremas 1 e 2, respectivamente.
As complexidades de caso m´edio e de pior caso dos algoritmos s˜ao O(n log(n) log(log(u)))
e O(n
3
log(n) log(log(u))), respectivamente.
Heur´ısticas
Nesta se¸c˜ao consideramos trabalhos projetados para aplica¸c˜oes espec´ıﬁcas e, em geral,
apenas evidˆencias experimentais sobre o comportamento dos algoritmos s˜ao apresentadas.
Fox et al. [39] criaram o primeiro esquema com boa performance de caso m´edio para
grandes conjuntos de chaves, isto ´e, n ≈ 10
6
. Eles projetaram dois algoritmos. O primeiro
gera uma FHPM que pode ser avaliada em tempo O(1) e armazenada em O(n log n) bits. O
segundo usa hashing quadr´atico e adiciona desvios realizados com base em uma tabela de
valores bin´arios para obter uma FHPM que pode ser avaliada em tempo O(1) e armazenada
em c(n+1/ log n) bits. Eles argumentaram que o valor de c seria tipicamente menor do que
5, no entanto, a partir da experimenta¸c˜ao apresentada, ﬁca claro que o valor de c cresce
com n e eles n˜ao discutem isso. Eles alegaram que os seus algoritmos tinham complexidade
linear de tempo de execu¸c˜ao, mas, foi mostrado em [26, Section 6.7] que os algoritmos s˜ao
exponenciais no pior caso, embora o pior caso tenha uma pequena probabilidade de ocorrer.
5
Um algoritmo randˆomico ´e chamado de Las Vegas se ele sempre produz respostas corretas, mas com
uma pequena probabilidade de demorar muito para executar.
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Fox, Chen e Heath [38] melhoraram o resultado acima para obter uma fun¸c˜ao que
pode ser armazenada em cn bits. O m´etodo usa quatro fun¸c˜oes hash uniformes h
10
: S →
[0, n−1], h
11
: [0, p
1
−1] → [0, p
2
−1], h
12
: [p
1
, n−1] → [p
2
, b−1] e h
20
: S×{0, 1} → [0, n−1]
para construir uma FHPM que tem a seguinte forma:
mphf (x) = (h
20
(x, d) + g(i(x))) mod n
i(x) =



h
11
◦ h
10
(x) se h
10
(x) < p
1
h
12
◦ h
10
(x) caso contr´ario.
onde p
1
= 0.6n e p
2
= 0.3n foram determinados experimentalmente, e b = ⌈cn/(log n+1)⌉.
Novamente o valor de c foi estabelecido somente para valores pequenos de n. Tamb´em neste
caso, o valor de c poderia muito bem crescer com o valor de n. Ent˜ao, a limita¸c˜ao dos
trˆes algoritmos ´e que n˜ao existe nenhuma garantia de que o n´umero de bits por chave para
armazenar a fun¸c˜ao resultante permane¸ca constante a medida que o valor de n aumente.
O trabalho de Lefebvre e Hoppe [54] tem o mesmo problema de n˜ao garantir que o
n´umero de bits por chave para se armazenar as fun¸c˜oes resultantes permane¸ca constante.
Eles projetaram um m´etodo para construir FHPs utilizadas especiﬁcamente para represen-
tar dados espaciais esparsos. As fun¸c˜oes resultantes requerem mais de 3 bits por chave para
serem armazenadas. Seguindo a mesma tendˆencia, Chang, Lin e Chou [21, 22] projetaram
FHPMs feitas sob medida para minerar regras de associa¸c˜ao e padr˜oes transversais em
t´ecnicas de minera¸c˜ao de dados.
Panorama T´ecnico deste Trabalho
Nosso objetivo prim´ario foi o de projetar algoritmos de hashing perfeito que fossem bem
fundamentados teoricamente e que pudessem ser eﬁcientemente utilizados na pr´atica. Para
isso, investigamos maneiras de preencher a lacuna existente entre teoria e pr´atica nos
algoritmos de hashing perfeito dispon´ıveis na literatura.
Neste trabalho utilizamos uma abordagem de dois passos para atingir nosso objetivo
prim´ario. No primeiro passo, particionamos o conjunto de chaves de entrada em pequenos
subconjuntos de chaves, chamados de buckets de agora em diante. Esse passo ´e equivalente
ao processo de gerar runs em um mergesort externo de m´ultiplos caminhos, o qual foi
cuidadosamente projetado para funcionar com complexidade de tempo linear. No segundo
passo, geramos uma FHP ou uma FHPM para cada bucket.
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[image: alt]A Figura 2 ilustra os dois passos do algoritmo: o passo de particionamento e o passo
de pesquisa. O passo de particionamento toma como entrada um conjunto de chaves S de
tamanho n e usa uma fun¸c˜ao hash h
0
para particionar S em N
b
buckets. O passo de pesquisa
gera uma FHPM (ou, equivalentemente, uma FHP) para cada bucket i, 0 ≤ i ≤ N
b
− 1, e
computa o arranjo oﬀset. A avalia¸c˜ao da FHPM resultante para uma dada chave x ´e:
MPHF (x) = MPHF
i
(x) + oﬀset[i]
onde i = h
0
(x) indica o bucket onde a chave x reside, MPHF
i
(x) ´e a posi¸c˜ao de x dentro
do bucket i, e oﬀset[i] fornece o n´umero total de entradas antes do bucket i na tabela hash.
...
...
...
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Figura 2: Os dois passos do algoritmo.
Se o tamanho do conjunto de chaves, que ´e denotado por n, couber na mem´oria interna
dispon´ıvel, ent˜ao, o primeiro passo do algoritmo n˜ao ´e necess´ario. Nessa situa¸c˜ao, fazemos
com que o tamanho do bucket seja igual ao tamanho da entrada, isto ´e, n, e geramos uma
FHP ou uma FHPM para esse ´unico bucket. Consequentemente, o algoritmo se torna um
algoritmo de mem´oria interna que acessa `a mem´oria de forma randˆomica e, por isso, foi
denominado RAM que ´e uma abrevia¸c˜ao para iternal random access memory algorithm.
Se o tamanho do conjunto de chaves for maior do que o tamanho da mem´oria interna
dispon´ıvel, ent˜ao, o primeiro passo ´e realizado para particionar o conjunto de entrada em
pequenos buckets e, portanto, o algoritmo se torna uma algoritmo de mem´oria externa
ciente de cache. O algoritmo foi chamado de EM, que ´e uma abrevia¸c˜ao para external
memory algorithm e ´e ciente de cache porque os buckets s˜ao pequenos o suﬁciente para
caberem na cache do processador. Dessa forma, o algoritmo EM acessa `a mem´oria de uma
forma menos randˆomica quando comparado ao algoritmo RAM.
N´os reﬁnamos e combinamos in´umeras t´ecnicas existentes para projetar e implementar
o algoritmo, como discutido a seguir.
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1. Para gerar FHPs ou FHPMs para os buckets poder´ıamos escolher in´umeras alter-
nativas, enfatizando ou utiliza¸c˜ao de espa¸co, ou tempo de constru¸c˜ao, ou tempo de
avalia¸c˜ao. Podemos fazer funcionar qualquer um dos m´etodos que assumem que
fun¸c˜oes hash uniformes est˜ao dispon´ıveis para serem utilizadas sem custo adicional
de espa¸co. Para isso, basta utilizarmos a t´ecnica split-and-share apresentada em
[30], na qual quebramos o problema em pequenos buckets e simulamos fun¸c˜oes hash
uniformes para cada um dos buckets. No Cap´ıtulo 3, apresentamos um reﬁnamento
dessa id´eia que nos permite obter uma familia de fun¸c˜oes hash uniformes para cada
bucket com um custo adicional de espa¸co que ´e constante.
2. Utilizamos o algoritmo RAM para computar FHPs ou FHPMs para os pequenos
buckets por duas raz˜oes: (i) ele gera fun¸c˜oes de espa¸co quase ´otimo; e (ii) ´e mais
eﬁciente do que os principais algoritmos pr´aticos dispon´ıveis na literatura de hashing
perfeito, incluindo nosso resultado anterior apresentado em [12]. N´os pegamos como
ponto de partida um algoritmo para gerar FHPs implicitamente deﬁnido em [23], o
qual foi tamb´em sugerido de forma independente por Belazzougui [5]. A partir da´ı,
melhoramos a an´alise, reﬁnamos o algoritmo de gera¸c˜ao para que obtivesse sucesso
com alta probabilidade, o estendemos para tamb´em gerar FHPMs, e mostramos como
implementar tudo de uma maneira quase ´otima em termos de espa¸co. Caso o conjunto
de chaves cujo tamanho ´e n caiba em mem´oria interna, temos apenas um bucket de
tamanho n, caso contr´ario, v´arios buckets pequenos s˜ao manipulados pelo algoritmo.
O algoritmo RAM ´e apresentado no Cap´ıtulo 2.
3. Ordena¸c˜ao externa (veja, por exemplo, [74, 53]) foi usada para agrupar as chaves em
buckets quando o conjunto de chaves n˜ao cabe em mem´oria interna. Em seguida,
cada bucket ´e tratado separadamente. A perspectiva importante aqui foi o parti-
cionamento do problema em buckets pequenos, e isso tem tanto implica¸c˜oes te´oricas
quanto pr´aticas. Do ponto de vista te´orico, mostramos que, ao reﬁnarmos a t´ecnica
de split-and-share para simular fun¸c˜oes hash uniformes para os buckets pequenos, fo-
mos capazes de provar que o algoritmo EM funcionar´a com alta probabilidade para
qualquer conjunto de chaves, mesmo aqueles escolhidos por advers´arios. J´a do ponto
de vista pr´atico, uma caracter´ıstica importante disso ´e que podemos construir buck-
ets pequenos o suﬁciente para caberem no cache do processador, resultando em uma
acelera¸c˜ao signiﬁcativa no tempo de processamento por elemento em compara¸c˜ao
com outros m´etodos. Para gerar os runs da ordena¸c˜ao externa, usamos o algoritmo
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radixsort [24], o qual realiza essa tarefa com complexidade linear de tempo.
Tabelas de deslocamentos (oﬀset) s˜ao utilizadas para colocar tudo junto em uma
´unica FHP ou FHPM. Isso tem sido feito em v´arios trabalhos te´oricos (veja, por
exemplo, [70, 43]). No Cap´ıtulo 4, mostramos como implementar isso com um baixo
custo de utiliza¸c˜ao de espa¸co na pr´atica e apresentamos o algoritmo EM.
4. O algoritmo EM tem um alto grau de paralelismo por ser baseado em um mergesort
externo de m´ultiplos caminhos. No Cap´ıtulo 5, exploramos esse fato para projetar
uma vers˜ao paralela do algoritmo EM.
5. As t´ecnicas projetadas em nosso trabalho anterior apresentado em [12], as quais
permitem a gera¸c˜ao de FHPMs com base em grafos randˆomicos contendo ciclos, foram
utilizadas para otimizar uma vers˜ao do algoritmo RAM apresentado no Cap´ıtulo 2.
Isso ´e apresentado no Cap´ıtulo 6.
Contribui¸c˜oes
A atratividade de se usar FHPs e FHPMs depende dos seguintes requisitos [43]:
1. A quantidade de tempo de CPU necess´ario para gerar as fun¸c˜oes.
2. Os requisitos de espa¸co para gerar as fun¸c˜oes.
3. A quantidade de tempo de CPU necess´ario pelas fun¸c˜oes durante a avalia¸c˜ao.
4. Os requisitos de espa¸co para se descrever as fun¸c˜oes resultantes.
Nenhum algoritmo conhecido at´e ent˜ao tem bom desempenho em todos os quatro re-
quisitos acima. Normalmente, a requisi¸c˜ao de espa¸co para gerar as fun¸c˜oes ´e ignorada.
Devido a isso, os algoritmos na literatura n˜ao s˜ao capazes de escalar para conjuntos de
chaves contendo bilh˜oes de elementos. Al´em disso, como mencionado anteriormente, existe
uma lacuna entre os algoritmos pr´aticos e te´oricos. Por um lado, os algoritmos pr´aticos
possuem a complexidade de espa¸co para descrever as fun¸c˜oes analisada sob a suposi¸c˜ao n˜ao
real´ıstica de que fun¸c˜oes hash uniformes est˜ao dispon´ıveis para serem utilizadas sem custo
adicional de espa¸co. Por outro lado, os algoritmos te´oricos s˜ao analisados sem nenhuma
suposi¸c˜ao n˜ao real´ıstica, mas eles enfatizam apenas complexidade assint´otica de espa¸co e
s˜ao muito complicados para implementar.
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As principais contribui¸c˜oes desta tese s˜ao:
1. N´os apresentamos um algoritmo de hashing perfeito simples, pr´atico e altamente es-
cal´avel que leva em considera¸c˜ao os quatro requisitos mencionados no in´ıcio desta
se¸c˜ao. Caso o conjunto de chaves de entrada caiba na mem´oria principal, o algo-
ritmo se torna um algoritmo de mem´oria interna, o qual acessa `a mem´oria de forma
randˆomica e, como mencionado anteriormente, foi chamado de RAM (internal ran-
dom access memory algorithm); caso contr´ario, ele se torna um algoritmo de mem´oria
externa ciente de cache e, por isso, foi denominado EM (external memory algorithm).
Vers˜oes preliminares dos algoritmos RAM e EM foram apresentadas em [14] e [15],
respectivamente. Em seguida apresentamos mais detalhes sobre os dois algoritmos.
(a) O algoritmo RAM trabalha sobre hipergrafos randˆomicos, r-partidos e ac´ıclicos
obtidos com o aux´ılio de r fun¸c˜oes hash uniformes. A id´eia de basear a gera¸c˜ao
de FHPs ou FHPMs em hipergrafos radˆomicos e ac´ıclicos n˜ao ´e nova, veja, por
exemplo, [55], mas n´os procedemos diferentemente para alcan¸car fun¸c˜oes que
podem ser descritas com uma complexidade de espa¸co igual a O(1) bits por
chave, ao inv´es de O(log n) bits por chave, reduzindo a ordem de complexidade
de espa¸co para armazenar as fun¸c˜oes de O(n log n) para O(n) bits. O algoritmo
RAM ´e apresentado no Cap´ıtulo 2.
Agora comentamos sobre os quatro requisitos mencionados anteriormente:
i. O algoritmo RAM gera FHPs ou FHPMs com complexidade linear de
tempo. As FHPs s˜ao equivalentes `as sugeridas por Belazzougui [5], as quais
foram anteriormente sugeridas por Chazelle et al. em [23], mas de uma
forma mais geral.
ii. O algoritmo RAM requer O(n) palavras de computador para gerar FHPs
ou FHPMs. Esta ´e a raz˜ao que o torna mais apropriado para conjuntos de
chaves que podem ser tratados em mem´oria interna.
iii. O algoritmo RAM gera FHPs ou FHPMs que s˜ao avaliadas com custo O(1)
de tempo.
iv. O algoritmo RAM gera FHPs e FHPMs de espa¸co quase ´otimo. Os req-
uisitos de espa¸co para descrever as fun¸c˜oes resultantes depende da rela¸c˜ao
entre m e n. Para m = n, a utiliza¸c˜ao de espa¸co ´e aproximadamente 2.62n
bits. Para m = 1.23n, a utiliza¸c˜ao de espa¸co ´e aproximadamente 1.95n bits.
Em todos os casos, os valores est˜ao distantes, por um fator constante, dos
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limites inferiores te´oricos, os quais s˜ao 1.44n e 0.89n bits para FHPs e FH-
PMs, respectivamente. Esse ´e um resultado que n˜ao tinha sido alcan¸cado
pelos algoritmos pr´aticos existentes at´e ent˜ao, mas que tem sido procurado
a mais de vinte anos pela comunidade de hashing perfeito.
(b) O algoritmo EM usa in´umeras t´ecnicas da literatura para permitir a gera¸c˜ao de
FHPs ou FHPMs para conjuntos de chaves contendo bilh˜oes de elementos. Ele
aumentou uma ordem de magnitude no tamanho do maior conjunto de chaves
para o qual uma FHPM tinha sido gerada na literatura [12]. Esse resultado ´e
proveniente de uma combina¸c˜ao de um novo esquema de hashing perfeito que ´e
bem fundamentado teoricamente e simpliﬁca consideravelmente os m´etodos an-
teriores, e o fato que ele ´e projetado para fazer uma boa utiliza¸c˜ao da hierarquia
de mem´oria, j´a que ´e fundamentalmente uma t´ecnica de dividir para conquistar.
O algoritmo EM pode ser considerado como o primeiro passo visando preencher
a lacuna existente entre teoria e pr´atica nos m´etodos de hashing perfeito. Con-
sequentemente, o algoritmo EM ´e o primeiro algoritmo que pode ser usado na
pr´atica, tem complexidades de tempo e espa¸co cuidadosamente analisados sem
suposi¸c˜oes n˜ao real´ısticas, e escala para conjuntos com bilh˜oes de chaves.
A escalabilidade do algoritmo EM foi demonstrada por meio da gera¸c˜ao de uma
FHPM para um conjunto com 1, 024 bilh˜oes de URLs, as quais foram obtidas da
World Wi de Web e possuem comprimento m´edio igual a 64 bytes. A fun¸c˜ao foi
gerada em approximadamente 50 minutos, utilizando um computador pessoal
rodando o sistema operacional Linux na vers˜ao 2.6, com um processador de 1.86
GHz (core 2 duo) da Intel, 4 MB de cache L2 e 1 GB de mem´oria principal. O
algoritmo EM ´e apresentado no Cap´ıtulo 4.
Agora comentamos sobre os quatro requisitos mencionados anteriormente:
i. O algoritmo EM gera FHPs ou FHPMs com complexidade linear de tempo.
O passo que domina o tempo de execu¸c˜ao do algoritmo de gera¸c˜ao ´e a
ordena¸c˜ao de n ﬁngerprints de O(log n) bits.
ii. O algoritmo EM requer O(n
ǫ
) palavras de computador para ter complexi-
dade linear de tempo, onde 0 < ǫ < 1. Isso acontece porque ele necessita
somente de um heap em mem´oria principal para realizar uma intercala¸c˜ao
de m´ultiplos caminhos dos arquivos armazenados no disco, e o tamanho do
heap ´e a rela¸c˜ao entre o tamanho do conjunto de chaves e a quantidade de
mem´oria interna dispon´ıvel, ambos em bytes. No nosso caso, como queremos
xx




desempenhar a opera¸c˜ao de intercala¸c˜ao em uma ´unica passada sobre os
arquivos, necessitamos que ǫ = 0.5 (veja, por exemplo, [1, Teorema 3.1]).
Isso ´e uma das raz˜oes que capacita o algoritmo EM escalar para conjuntos
contendo bilh˜oes de elementos.
iii. O algoritmo EM gera FHPs ou FHPMs que s˜ao avaliadas com custo O(1)
de tempo.
iv. O algoritmo EM tamb´em gera FHPs e FHPMs de espa¸co quase ´otimo,
mas agora n´os n˜ao assumimos que fun¸c˜oes hash uniformes est˜ao dispon´ıveis
para serem utilizadas sem nenhum custo adicional de espa¸co. Para isso,
projetamos, no Cap´ıtulo 3, uma forma de simular fun¸c˜oes hash uniformes
que operam sobre os buckets pequenos com somente um fator constante de
espa¸co adicional. Isso nos permitiu usar o algoritmo RAM para construir as
FHPMs de cada bucket sem suposi¸c˜oes n˜ao real´ısticas. Da mesma forma que
para o algoritmo RAM, os requisitos de espa¸co para se descrever as fun¸c˜oes
resultantes tamb´em dependem da rela¸c˜ao entre m e n. Para m = n, a
utiliza¸c˜ao de espa¸co ´e de aproximadamente 3.3n bits. Para m = 1.23n,
a utiliza¸c˜ao de espa¸co ´e de aproximadamente 2.7n bits. Novamente, esses
valores est˜ao distantes por um fator constante dos limites inferiores te´oricos
relacionados com o espa¸co necess´ario para representar FHPs e FHPMs. Esse
tamb´em ´e um resultado que n˜ao foi alcan¸cado pelos algoritmos pr´aticos e
te´oricos dispon´ıveis at´e ent˜ao na literatura de hashing perfeito, exceto para
valores de n assintoticamente grandes.
2. N´os fornecemos uma implementa¸c˜ao paralela e altamente escal´avel do algoritmo EM,
a qual foi chamada de PEM – parallel external me mory algorithm. O algoritmo PEM
permite distribuir a constru¸c˜ao, descri¸c˜ao e avalia¸c˜ao das fun¸c˜oes resultantes. Por
exemplo, usando um cluster de 14 computadores o algoritmo PEM gera uma FHPM
para 1, 024 bilh˜oes de URLs em aproximadamente 4 minutos, atingindo um speedup
quase linear. Al´em disso, para 14, 336 bilh˜oes de inteiros de 16 bytes gerados aleato-
riamente e igualmente distribu´ıdos entre as 14 m´aquinas participantes, o algoritmo
PEM produz como sa´ıda uma FHPM em approximadamente 50 minutos, resultando
em uma degrada¸c˜ao de desempenho de 20%. Pelo melhor do nosso conhecimento,
nenhum outro resultado da literatura de hashing perfeito pode ser implementado
de uma forma paralela para obter resultados melhores no que diz respeito ao de-
sempenho e a escalabilidade do que os obtidos com o algoritmo PEM. O algoritmo
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PEM ´e apresentado no Cap´ıtulo 5. Uma vers˜ao preliminar do algoritmo PEM foi
apresentado em [11].
3. N´os apresentamos t´ecnicas que permitem a gera¸c˜ao de FHPs e FHPMs baseadas em
grafos randˆomicos contendo ciclos. Um resultado preliminar foi apresentado em [12],
onde melhoramos a utiliza¸c˜ao de espa¸co do algoritmo de Czech, Havas e Majewski [25]
sob a pena de gerar fun¸c˜oes na mesma forma que n˜ao s˜ao de ordem preservada. Os
dois algoritmos possuem complexidade de tempo linear em n, mas nosso algoritmo
executa, em m´edia, 59% mais r´apido do que o apresentado em [25], e as FHPMs
resultantes s˜ao armazenadas na metade do espa¸co.
No entanto, as FHPMs resultantes ainda necessitam de O(n log n) bits para serem
armazenadas. Como em [25], assumimos hashing uniforme e usamos O(n) palavras
de computadores do modelo de computa¸c˜ao Word RAM para construir as fun¸c˜oes.
Recentemente, usando id´eias similares as apresentadas em [12], fomos capazes de
otimizar a vers˜ao do algoritmo RAM que trabalha sobre grafos bipartidos para gerar
as fun¸c˜oes 40% mais r´apido do que quando ciclos n˜ao s˜ao permitidos. Estes resultados
s˜ao apresentados no Cap´ıtulo 6.
4. N´os mostramos que as FHPs e as FHPMs projetadas nesta tese podem agora serem
utilizadas em aplica¸c˜oes para as quais elas n˜ao eram consideradas uma boa op¸c˜ao no
passado. Isso ´e uma consequˆencia do fato de que as fun¸c˜oes resultantes necessitam
de um n´umero constante de bits por chave para serem armazenadas. No Cap´ıtulo 7,
mostramos que FHPMs fornecem o melhor compromisso entre utiliza¸c˜ao de espa¸co e
tempo de pesquisa quando comparadas a outros esquemas de hashing. Uma vers˜ao
preliminar deste resultado foi apresentada em [13].
5. Finalmente, criamos a biblioteca CMPH – C Minimal Perfect Hashing Library, a qual
est´a dispon´ıvel no link http://cmph.sf.net sob a licen¸ca LGPL (the GNU Lesser
General Public License). A biblioteca foi concebida por duas raz˜oes. Primeiro,
gostar´ıamos de tornar nossos algoritmos dispon´ıveis para testar sua aplicabilidade
em situa¸c˜oes pr´aticas. Segundo, percebemos que havia uma falta de uma biblioteca
similar na comunidade de software de c´odigo aberto. Recebemos muitos feedbacks
interessantes com respeito a praticidade da biblioteca. Por exemplo, mais de 2, 500
downloads foram realizados at´e Setembro de 2008 e a biblioteca foi incorporada por
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Conclus˜oes
Encontrar fun¸c˜oes hash perfeitas que s˜ao armazenadas utilizando espa¸co constante para
cada elemento do conjunto de chaves tem sido objeto de estudo h´a mais de vinte anos
pela comunidade cient´ıﬁca. Nesta tese apresentamos uma solu¸c˜ao para esse problema que
´e bem fundamentada teoricamente e pode ser utilizada na pr´atica para conjuntos est´aticos
contendo bilh˜oes de elementos. Nenhum outro resultado da literatura gera fun¸c˜oes t˜ao
compactas e que podem ser geradas por algoritmos lineares extremamente eﬁcientes e
escal´aveis como as fun¸c˜oes apresentadas neste trabalho.
Esse resultado possui in´umeras implica¸c˜oes pr´aticas. Por exemplo, mostramos que
as FHPMs projetadas neste trabalho fornecem o melhor compromisso entre utiliza¸c˜ao de
espa¸co e tempo de pesquisa para aplica¸c˜oes que precisam indexar conjuntos est´aticos de
chaves em mem´oria prim´aria. Al´em disso, devido a disponibiliza¸c˜ao dos resultados na
biblioteca CMPH, recebemos coment´arios sobre a utilidade dos resultados para escalar
modelos de tradu¸c˜ao autom´atica em t´ecnicas de aprendizado de m´aquina, para melhorar a
qualidade de ﬁltros de spam, onde grandes vocabul´arios s˜ao mantidos, dentre outras. Por
ﬁm, os resultados desta tese podem ser explorados em uma s´erie de ´areas e aplica¸c˜oes,
como indicado no Cap´ıtulo 8.
6
Debian ´e um projeto volunt´ario para desenvolver uma distribui¸c˜ao GNU/Linux, a qual est´a dispon´ııvel
em http://www.debian.org. O Debian iniciou a mais de uma d´ecada e, desde ent˜ao, cresceu e hoje envolve
mais de 1.000 membros com status oﬁcial de desenvolvedor, possuindo ainda muito mais volunt´arios e
contribuidores. O Debian expandiu ao ponto de englobar atualmente mais de 20.000 “pacotes” de aplica¸c˜oes
de c´odigo aberto e livre.
7
O projeto Ubuntu, dispon´ıvel em http://www.ubuntu.com, tenta trabalhar com o Debian para tratar
de assuntos que fazem com que alguns usu´arios evitem de usar o Debian. Ubuntu fornece um sistema
baseado no Debian com atualiza¸c˜oes e releases frequentes, utilit´arios corporativos, e uma interface de
desktop mais agrad´avel. Ubuntu permite a seus usu´arios uma forma de implantar o Debian com corre¸c˜oes
de erros cr´ıticos de seguran¸ca, uma interface consistente de desktop, e nunca est´a mais do que seis meses
distante da ´ultima vers˜ao de qualquer software na comunidade de software de c´odigo aberto e livre.
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Chapter 1
Introduction
1.1 Motivation
The need to access items based on the value of a key is ubiquitous in areas including
artiﬁcial intelligence, data structures, database, data mining and information retrieval.
Some types of databases are updated only rarely, typically by periodic batch updates. This
is true, for example, for most data warehousing applications (see [71] for more examples
and discussion). In such scenarios it is possible to improve query performance by creating
very compact representations of keys by minimal perfect hash functions.
In applications where the key set is ﬁxed for a long period of time the construction
of a minimal perfect hash function can be done as part of the preprocessing phase. For
example, On-Line Analytical Processing (OLAP) applications use extensive preprocessing
of data to allow very fast evaluation of certain types of queries. More formally, given a
static key set S ⊆ U of size n from a key universe U of size u, where each key is associated
with satellite data, the question we are interested in is: what are the data structures that
provide the best trade-oﬀ between space usage and lookup time?
An eﬃcient way to represent a key set in terms of lookup time is using a table indexed
by a hash function. Considering S ⊆ U and given a key x ∈ S, a hash function h computes
an integer in [0, m − 1] for the storage or retrieval of x in a hash table. Hashing methods
for non-static key sets can be used to construct data structures storing S and supporting
membership queries of the type “x ∈ S?” in expected O(1) time. However, they involve a
certain amount of wasted space owing to unused locations in the table and wasted time to
resolve collisions when two or more keys are hashed to the same table location.
1
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Perfect hashing is a space-eﬃcient way of creating compact representation for a static
set S of n keys. For applications with successful searches, the representation of a key x ∈ S
is simply the value h(x), where h is a perfect hash function (PHF) for the set S of values
considered. The word “perfect” refers to the fact that the function will map the elements
of S to unique values (is identity preserving). Minimal perfect hash function (MPHF)
produces values that are integers in the range [0, n − 1], which is the smallest possible
range. Figure 1.1(a) illustrates a perfect hash function and Figure 1.1(b) illustrates a
minimal perfect hash function.
0 n−1...21
0 n−1...21
Hash Table
Key Set
0 n−121
...
(b)
210
...
m−1
Key Set
Hash Table
(a)

Figure 1.1: (a) Perfect hash function (b) Minimal perfect hash function.
Since PHFs and MPHFs are collision free, each key can be retrieved from the table with
a single probe. MPHFs completely avoid the problem of wasted space and time. Better
still, it was observed in [56] that MPHFs also avoid cache misses that arise due to collision
resolution schemes like open addressing and chaining [51].
Minimal perfect hash functions are used for memory eﬃcient storage and fast retrieval of
items from static sets, such as words in natural languages, reserved words in programming
languages or interactive systems, item sets in data mining techniques [21, 22], routing
tables and other network applications [66], sparse spatial data [54], graph compression [7]
and, to represent large web maps [27].
A PHF depends on the set S of distinct key values that occur. It is known that
maintaining a PHF dynamically under insertions into S is only possible using space that
is super-linear on n [28]. However, in this work we consider the case where S is ﬁxed, and
construction of a PHF can be done as part of the preprocessing of data (e.g., in a data
warehouse).
To the best of our knowledge, previously perfect hashing methods have not been able to
generate functions for realistic data sizes that require a constant number of bits to store the
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functions. All previous methods suﬀer from either an incomplete theoretical understanding
(so there is no guarantee that they work well on a given data set) or seems impractical due
to a very intricate and time-consuming evaluation procedure.
Until now, because of the limitations of current algorithms, the use of MPHFs is re-
stricted to scenarios where the key set being hashed is relatively small. However, in many
cases the demand to deal in an eﬃcient way with very large key sets is growing. For in-
stance, search engines are nowadays indexing tens of billions of pages and algorithms like
PageRank [16], which uses the web graph to derive a measure of popularity for web pages,
would beneﬁt from an MPHF to map long URLs to smaller integer numbers that are used
as identiﬁers to web pages, and correspond to the vertex set of the web graph.
Though there has been considerable work on how to construct good PHFs, there is
a gap between theory and practice among all previous methods on perfect hashing. On
one hand, there are good theoretical results without experimentally proven practicality
for large key sets. On the other hand, there are the algorithms that assume unrealistic
assumptions to theoretically analyze their run time and space usage.
In this thesis we present new algorithms for constructing PHFs and MPHFs that out-
perform the main practical algorithms available in the literature and are theoretically
well-understood. Therefore we give an important step in the way of bridging the gap
between theory and practice on perfect hashing. We also show that the new algorithms
have made it viable to use MPHFs for applications that was not possible in the past. The
algorithm we propose to construct MPHFs can easily scale to billions of entries.
In Section 1.2 we present some deﬁnitions and notation used throughout this work.
In Section 1.3 we present the information theoretical lower bound to describe PHFs and
MPHFs. In Section 1.4 we present two important concepts used in the analysis of hashing
schemes. In Section 1.5 we disscuss some facts on random graphs used to analyze the
algorithms designed in this work. In Section 1.6 we present the main results available in
the literature on perfect hashing and also discuss the aforementioned gap between theory
and practice on perfect hashing. In Section 1.7 we present our objectives and a technical
overview of this work. In Section 1.8 we present the main contributions of this work.
Finally, in Section 1.9 we present the road map of this thesis.
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1.2 Deﬁnitions and Notation
The aim of this section is to establish a common vocabulary to be used throughout this
work.
Deﬁnition 1 A key is made up by symbols from a ﬁnite and ordered alphabet Σ of size
|Σ|.
Deﬁnition 2 Let Φ denote the maximum key length. Then L = Φ log |Σ| is the maximum
key length in bits
1
. Then we deﬁne a key universe U of size u = 2
L
.
Throughout this thesis we consider that L = O(1) and that log u ﬁts in O(1) computer
words. Therefore, all algorithms we will consider are analyzed for the Word RAM model
of computation [41]. In this model an element of the universe U ﬁts into one machine word,
and arithmetic operations and memory accesses have unit costs.
Deﬁnition 3 Let S be a subset of U containing n keys, where n ≪ u.
Deﬁnition 4 Let h : U → M be a hash function that maps the keys from U to a given
interval of integers M = [0, m − 1] = {0, 1, . . . , m − 1} (i.e., given a key x ∈ U, the hash
function h computes an integer in [0, m − 1]).
Deﬁnition 5 Given two keys x, y ∈ U, where x = y, and a hash function h : U → M, a
collision occurs when h(x) = h(y).
Deﬁnition 6 A perfect hash function phf : S → M is an injection on S ⊆ U(i.e., for all
pair s
1
, s
2
∈ S such that s
1
= s
2
, then phf (s
1
) = phf (s
2
), where m ≥ n). For being an
injection, phf maps each key in S to a unique integer in M. As no collision occurs, if phf
is used to index a hash table of size m with n records identiﬁed by the n keys in S, each
record can be retrieved in one probe.
Deﬁnition 7 A minimal perfect hash function mphf : S → M is a bijection on S ⊆ U
(i.e., each key in S is mapped to a unique integer in M and m = n).
Deﬁnition 8 A perfect hash function is order-preserving if for any pair of keys s
i
and
s
j
∈ S then phf (s
i
) < phf (s
j
) if and only if i < j.
1
Throughout this work we denote log
2
x as log x.
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1.3 The Information Theoretical Lower Bound to De-
scribe PHFs and MPHFs
One of the most important metrics related to PHFs and MPHFs is the amount of space
required to describe a function. The information theoretical lower bound to describe a
PHF was ﬁrst studied in [57]. Fredman and Koml´os [40] proved a lower bound for MPHFs.
A simpler proof of this was later given in [68]. The following two theorems present the
information theoretical lower bound to describe a PHF and an MPHF, respectively. Here
we use Stirling’s approximation and so we obtained a more precise result up to an additive
constant, because Stirling’s approximation is tight within a constant factor. For simplicity
of exposition, we consider in this thesis the case log u ≪ n, which allows us to ignore terms
in the space usage that depend on u.
Theorem 1 Every perfect hash function phf : S → M, where |S| = n and |M| = m,
requires at least (1 + (m/n − 1 + 1/2n) ln(1 − n/m)) n log e bits to be stored.
Proof. The probability of randomly mapping n elements into a range of size m without
collisions (i.e., probability of getting a PHF) is:
Pr
ph
(n, m) =
(m − 1)(m − 2) . . . (m − n + 1)
m
n
=
m!
m
n
(m − n)!
By using Stirling’s approximation n! ≈ n
n
e
−n
√
2πn we obtain:
Pr
ph
(n, m) ≈ m
(m−n)
· (m −n)
−(m−n)
· e
−n

m
m − n
Therefore, at least 1/ Pr
ph
(n, m) hash functions are required to obtain a PHF. Thus, at
least log(1/P r
ph
(n, m)) = (1 + (m/n − 1 + 1/2n) ln(1 − n/m)) n log e bits are required to
encode that set of hash functions.
Theorem 2 Every minimal perfect hash function mphf : S → M, where |S| = n and
|M| = m = n, requires at least n log e − O(log n) bits to be stored.
Proof. The probability of ﬁnding an MPHF (where n = m) is:
Pr
mph
(n, n) =
n!
n
n
=
n
n
√
2πn
n
n
e
n
= e
−n
√
2πn
which also uses the aforementioned Stirling’s approximation. Therefore, the expected
number of bits needed to describe these rare minimal perfect hash functions is at least
log(1/ Pr
mph
(n, n)) = n log e − O(log n).
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1.4 Uniform Hashing Versus Universal Hashing
All perfect hashing algorithms need to use hash functions chosen uniformly at random
from a ﬁxed family H of hash functions for constructing PHFs or MPHFs. There are two
families of hash functions used in the classical analysis of hashing schemes: (i) uniform hash
functions and (ii) universal hash functions. In this section we deﬁne these two families of
hash functions.
1.4.1 Family of Uniform Hash Functions
The classic analysis of hashing schemes often entails the assumption that the hash functions
used are uniformly chosen at random from a family of uniform hash functions, deﬁned as
follows.
Deﬁnition 9 Let H be the family of all m
u
possible hash functions from U to [0, m−1]. A
uniform hash function is a function that has independent function values and is uniformly
chosen at random from H.
The problem with uniform hash functions is the space required to describe a single
function, which is Ω(u log m) bits. This space requirement usually far exceeds the available
storage and is often overlooked in the analysis of practical perfect hashing schemes available
in the literature.
Lemma 1 [20] Let H be a family of uniform hash functions and h : U → M be a hash
function taken from H with probability
1
|H|
. Let C
h
(x, y) = 1 if x ∈ U and y ∈ U collide by
using a hash function h and 0 otherwise, where x = y. The probability of collision between
two diﬀerent keys x, y ∈ U corresponds to the expected value of C
h
(x, y) and is given by:
E[C
h
(x, y)] ≥
1
m
−
1
u
Proof. Let C
h
(x, U) denote the total number of keys in U that collides with a given
key x ∈ U by using a hash function h. So, C
h
(x, U) =

y∈U,y=x
C
h
(x, y). Let C
h
(U, U)
denote the total number of collisions for all x ∈ U by using a hash function h. So,
C
h
(U, U) =

x∈U
C
h
(x, U). Let H be a family or a collection of hash functions. Thus,
C
H
(U, U) =

h∈H
C
h
(U, U) denotes the total number of collisions for all x ∈ U and for
all hash functions from H. Let us think of M = [0, m − 1] as a range of indexes of a hash
table with m buckets and the values in M are computed by a hash function h : U → M
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taken with probability
1
|H|
from a family H of uniform hash functions. After mapping all
keys to the range M, if a bucket i ∈ M has three keys {k
1
, k
2
, k
3
}, then k
1
collides with
each of {k
2
, k
3
}, k
2
collides with each of {k
1
, k
3
}, and k
3
collides with each of {k
1
, k
2
}, so
we have 6 collisions in bucket i . In the worst case, when all keys from U are mapped to the
same bucket i, this corresponds to the number of ordered pairs we can form from the key
universe U of size u considering a hash function h ∈ H, which is given by C
h
(U, U) = u
2
−u.
Therefore, C
H
(U, U) = |H|(u
2
− u). As we have m buckets, then the expected number of
collisions for all hash functions in H is:
E[C
H
(U, U)] = u
2
|H|

1
m
−
1
mu

Thus, by the pigeon hole principle
2
there exists x, y ∈ U and h ∈ H such that
E[C
h
(x, y)] =
1
m
−
1
mu
≥
1
m
−
1
u
1.4.2 Family of Universal Hash Functions
As mentioned in Section 1.4.1, the amount of space to represent a uniform hash function
is prohibitive in practice. Fortunately in most cases heuristic hash functions behave very
closely to the expected behavior of uniform hash functions, but there are cases when
rigorous probabilistic guarantees are necessary [18]. For instance, various adaptive hashing
schemes presume that a hash function with certain prescribed properties can be found in
constant expected time. This holds if the function is chosen uniformly at random from all
possible functions until a suitable one is found but not necessarily if the search is limited
to a smaller set of functions. This situation has led Carter and Wegman [20] to the concept
of universal hashing.
Deﬁnition 10 A family of hash functions H is deﬁned as weakly universal or just universal
if for any pair of distinct elements x
1
, x
2
∈ U and h chosen uniformly at random from H
then
Pr(h(x
1
) = h(x
2
)) ≤
1
m
·
2
The pigeonhole principle states that, given two natural numbers n and m with n > m, if n pigeons
are put into m pigeonholes, then at least one pigeonhole must contain more than one pigeon.
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Deﬁnition 11 A family of hash functions H is deﬁned as strongly universal or pair-wise
independent if for any pair of distinct elements x
1
, x
2
∈ U and arbitrary y
1
, y
2
∈ M then
Pr(h(x
1
) = y
1
and h(x
2
) = y
2
) =
1
m
2
·
It turns out that in many situations the analysis of various hashing schemes can be
completed under the weaker assumption that h is chosen uniformly at random from a
family of universal hash functions, rather than the assumption that h is chosen uniformly
at random from all possible hash functions. In other words, limited randomness suﬃces in
practice [70]. For instance, when we are hashing a key universe much larger than the hash
function range M = [0, m − 1], which is the case for most hashing applications, universal
hash functions behave very closely to the expected behavior of uniform hash functions.
This can be seen by comparing the result of Lemma 1 with the probability of collision for
universal hash functions, which is given in Deﬁnition 10. We notice that there are cases
where rigorous probabilistic guarantees are necessary [18, 2]. Let us illustrate this with the
following three scenarios, which have been extensively used in various settings and were
reported in [2].
1. Consider that a key set S ⊆ U of size n is hashed to m buckets. The question is:
how many buckets m are needed to get no collisions? By using a universal hash
function we need m = O(n
2
) to get no collisions with probability more than 1/2.
By using a uniform hash function, it is well known that o(n
2
) is not enough to get
no collisions, as exempliﬁed by the birthday paradox
3
. Therefore, nothing is lost by
using a universal hash function in this scenario.
2. Consider that the key set S ⊆ U is hashed to m = n buckets. The question is: what
is the size of S to cover all buckets (i.e., no bucket is left empty)? By using a universal
hash function, if the size of S is 2n
2
, then, all buckets are covered with probability
more than 1/2. By using a uniform hash function, it is well known that a key set S of
size θ(n log n) would be enough to cover all buckets with high probability
4
. Therefore,
by using a uniform hash function in this scenario, a polynomial gain is obtained by
going from O(n
2
) to θ(n log n).
3. Consider that the key set S of size n is hashed to m = n buckets. The question is:
what is the size of the largest bucket? By using a universal hash function, the largest
3
The birthday paradox says that if 23 or more people are grouped together at random, the probability
that at least two people have a common birthday exceeds 50%, as can be seen in Feller [36, Page 33].
4
Throughout this thesis we write “with high probability” to mean with probability 1 − n
−δ
for δ > 0.
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bucket will contain O(n
1/2
) keys. By using a uniform hash function, it is well known
that the largest bucket will contain θ(log n/ log log n) keys. Therefore, by using a
uniform hash function in this scenario, it is obtained an exponential gain by going
from O(n
1/2
) to θ(log n/ log log n).
1.5 Random Graphs
We now discuss some facts on random graphs that are important for analyzing our al-
gorithms. A random graph is a graph generated by some random procedure. There are
many non-equivalent ways to deﬁne random graphs and now we present two closely re-
lated models. The study of random graphs goes back to the classical work of Erd˝os and
R´enyi [33, 34, 35] (for a modern treatment, see [8, 49]).
Deﬁnition 12 Let G = (V, E) be a random graph in the uniform model G(m, n), the
model in which all the

(
m
2
)
n

graphs on V with n edges are equiprobable. In this model,
graph G starts with a ﬁxed number of vertices |V | = m and |E| = n edges are randomly
chosen without replacement from the set of all

m
2

possible edges. A similar model, denoted
by G(m, p), where 0 ≤ p ≤ 1, is obtained by taking the same vertex set but now each edge
is selected with probability p and independently of all other edges and therefore repetitions
are allowed.
As presented in [48], it is often useful to regard the random graph as evolving in
time by a stochastic process, starting with a vertex set without edges and then inserting
edges until the complete graph is obtained. For instance, the process of adding each edge
independently of the others at some random time, for example, uniformly distributed in
the range (0, 1), will give a random graph of type G(m, p) at a ﬁxed time p ∈ (0, 1) and a
random graph of type G(m, n) at the random time at which the n-th edge appears.
Our best result generates a family F of PHFs or MPHFs based on random acyclic
r-partite hypergraphs, deﬁned as follows.
Deﬁnition 13 A hypergraph is the generalization of a standard undirected graph where
each edge connects r ≥ 2 vertices.
Deﬁnition 14 Let G
r
= (V, E) be a random r-partite r-uniform hypergraph for r ≥ 2,
where V is a disjoint union of the r parts V
0
, V
1
, . . . , V
r−1
, |V
i
| = ρ, |V | = m = rρ, and
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|E| = n. The edges are inserted into G
r
one at a time, each being picked at random from
all ρ
r
possible edges, allowing repetitions.
Deﬁnition 15 A hypergraph is acyclic if and only if some sequence of repeated deletions
of edges containing vertices of degree 1 yields a hypergraph without edges [26, Page 103].
1.6 Related Work
In this section we review some of the most important theoretical, practical, and heuristic
results on perfect hashing. Czech, Havas and Majewski [26] provided a more comprehensive
survey until 1997.
As mentioned before, there is a gap between theory and practice among minimal perfect
hashing methods. On one hand, there are good theoretical results without experimentally
proven practicality for large key sets. We will argue below that these methods are indeed
not practical. On the other hand, there are two categories of practical algorithms: the
theoretically analyzed time and space usage algorithms that assume uniform hash functions
for their methods, which is an unrealistic assumption because each uniform hash function
h : U → [0, m−1] require at least u log m bits of storage space, and the heuristic algorithms
that present only empirical evidences. The aim of this section is to discuss the existent
gap among these three types of algorithms available in the literature.
1.6.1 Theoretical Results
In this section we review some of the most important theoretical results on minimal perfect
hashing, which do not assume that uniform hash functions are available for free. Fredman
and Koml´os [40] proved that at least n log e + log log u − O(log n) bits are required to
represent an MPHF (in the worst case over all sets of size n), provided that u ≥ n
α
for
some α > 2. Mehlhorn [57] showed that the Fredman-Koml´os bound is almost tight by
providing an algorithm that constructs an MPHF that can be represented with at most
n log e + log log u + O(log n) bits. However, his algorithm is far from practice because its
generation and evaluation time are exponential on n (i.e., n
θ(ne
n
u log u)
).
Schmidt and Siegel [70] proposed the ﬁrst algorithm for constructing an MPHF with
constant evaluation time and description size O(n+log log u) bits. Their algorithm, as well
as all other algorithms we will consider, is for the Word RAM model of computation [41]
(see Section 1.2). From a practical point of view, Schmidt and Siegel’s algorithm is not
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attractive. The scheme is complicated to implement and the constant of the space bound
is large: For a set of n keys, at least 29n bits are used, which means a space usage similar
in practice to the best schemes using O(n log n) bits. Though it seems that [70] aims
to describe its algorithmic ideas in the clearest possible way, not trying to optimize the
constant, it is hard to improve the space usage signiﬁcantly.
More recently, Hagerup and Tholey [43] have come up with the best theoretical result
we know of. The MPHF obtained can be evaluated in O(1) time and stored in n log e +
log log u+O(n(log log n)
2
/ log n+log log log u) bits. The generation time is O(n+log log u)
using O(n) words of space. In spite of its theoretical importance, the Hagerup and Tholey
algorithm also is not practical, as it only emphasizes asymptotic space complexity. (It
is also very complicated to implement, but we will not go into that.) For n < 2
150
the
scheme is not well-deﬁned, as it relies on splitting the key set into buckets of size ˆn ≤
log n/(21 log log n). If we ﬁx this by letting the bucket size be at least 1, then buckets
of size one will be used for n < 2
300
, which means that the space usage will be at least
(3 log log n + log 7) n bits. For a set of a billion keys, this is more than 17 bits per element.
Since 2
300
exceeds the number of atoms in the known universe, it is safe to conclude that
the Hagerup-Tholey MPHF is not space eﬃcient in practical situations. While we believe
that their algorithm has been optimized for simplicity of exposition, rather than constant
factors, it seems diﬃcult to signiﬁcantly reduce the space usage based on their approach.
1.6.2 Practical Results
We now describe some of the main “practical” results upon which our work is based. They
are characterized by simplicity and (provably) low constant factors. In general, they are
analyzed upon the unrealistic assumption that uniform hash functions are available for
free.
The algorithm proposed by Czech, Havas and Majewski [25] assumes uniform hash
functions to be available for free (i.e., they use universal hash functions) to construct order
preserving MPHFs. The method uses two uniform hash functions h
1
: S → [0, cn −1] and
h
2
: S → [0, cn − 1] to generate MPHFs in the following form: mphf (x) = (g[h
1
(x)] +
g[h
2
(x)] mod n where c > 2. The resulting MPHFs can be evaluated in O(1) time and
stored in O(n log n) bits (that is optimal for an order preserving MPHF). The resulting
MPHF is generated in expected O(n) time.
Botelho, Kohayakawa and Ziviani [12] improved the space requirement at the expense
of generating functions in the same form that are not order preserving. Their algorithm
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is also linear on n, but runs faster than the ones by Czech et al [25] and the resulting
MPHFs are stored using half of the space because c ∈ [0.93, 1.15]. However, the resulting
MPHFs still need O(n log n) bits to be stored. It was found experimentally in [12] that
their generation procedure works well in practice.
Majewski et al [55] proposed an algorithm to generate a family of MPHFs based on
r-uniform hypergraphs (i.e., with edges of size r). It is a generalization of the algorithm
in [25]. The resulting functions can be evaluated in O(1) time and stored in O(n log n)
bits. Although the resulting functions are almost as compact as the ones generated by the
work in [12], they still require O(n log n) bits to be stored. Botelho, Pagh and Ziviani [14]
designed a family of algorithms that improves the space requirement from O(n log n) to
O(n) bits at the expense of generating functions that are not order preserving.
Since the space requirements for uniform hash functions makes them unsuitable for
implementation, one has to settle for a more realistic setup. The ﬁrst step in this direction
was given by Pagh [61]. He proposed a family of randomized algorithms for constructing
MPHFs of the form mphf (x) = (f(x) + d[g(x)]) mod n, where f and g are chosen from a
family of universal hash functions (see Deﬁnition 10) and d is a set of displacement values
to resolve collisions that are caused by the function f. Pagh identiﬁed a set of conditions
concerning f and g and showed that if these conditions are satisﬁed, then a minimal perfect
hash function can be computed in expected O(n) time and stored in (2 + ǫ)n log n bits,
which is suboptimal.
Dietzfelbinger and Hagerup [29] improved [61], reducing the space usage to (1+ǫ)n log n
bits, but in their approach f and g must be chosen from a class of hash functions that meet
additional requirements. Woelfel [75] has shown how to decrease the space usage further,
to O(n log log n) bits asymptotically, still with a quite simple algorithm. However, there is
no empirical evidence on the practicality of this scheme.
Galli, Seybold and Simon [42] proposed an algorithm to generate MPHFs similar to the
ones generated in the works [61, 29]. However, in their MPHFs the two functions f and g are
deﬁned as f(x) = h
c
(x) mod n and g(x) = ⌊h
c
(x)/n⌋, where h
c
(k) = (ck mod p) mod n
2
,
1 ≤ c ≤ p −1 and p is a prime larger than u. The resulting MPHFs are generated in linear
time and stored in O(n log n) bits. The main advantage of their approach is that it can be
easily adapted for dynamic key sets, but just for PHFs.
Prabhakar and Bonomi [66] designed perfect hash functions to be used for storing
routing tables in routers for networking applications. They have shown that the storage
requirement for the resulting functions goes to 2en when n goes to inﬁnity. In their
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simulations the resulting functions were stored in 8.6n bits. The main advantage of their
scheme is that it is simple enough to be implemented in hardware.
Randomized algorithms of Las Vegas
5
type were designed in all previous work and also
in this work. Conversely, the works [4, 73] present deterministic algorithms to construct
PHFs and MPHFs. The resulting functions require O(n log(n) + log(log(u))) bits of stor-
age space and are evaluated in O(log(n) + log(log(u))). Thus, the resulting functions are
not evaluated in O(1) time and are within a factor of log n bits from the information
theoretical lower bounds to describe PHFs and MPHFs, which are presented in Theo-
rems 1 and 2, respectively. The average and worst case complexity of the algorithms are
O(n log(n) log(log(u))) and O(n
3
log(n) log(log(u))), respectively.
1.6.3 Heuristics
In this section we consider works designed for speciﬁc applications and, in general, just
experimental evidences of the behavior of the algorithms are provided.
Fox et al. [39] created the ﬁrst scheme with good average-case performance for large
datasets, i.e., n ≈ 10
6
. They have designed two algorithms, the ﬁrst one generates an
MPHF that can be evaluated in O(1) time and stored in O(n log n) bits. The second al-
gorithm uses quadratic hashing and adds branching based on a table of binary values to
get an MPHF that can be evaluated in O(1) time and stored in c(n + 1/ log n) bits. They
argued that c would be typically lower than 5, however, it is clear from their experimenta-
tion that c grows with n and they did not discuss this. They claimed that their algorithms
would run in linear time, but, it is shown in [26, Section 6.7] that the algorithms have
exponential running times in the worst case, although the worst case has small probability
of occurring.
Fox, Chen and Heath [38] improved the above result to get a function that can be
stored in cn bits. The method uses four uniform hash functions h
10
: S → [0, n − 1],
h
11
: [0, p
1
− 1] → [0, p
2
− 1], h
12
: [p
1
, n − 1] → [p
2
, b − 1] and h
20
: S × {0, 1} → [0, n − 1]
to construct an MPHF that has the following form:
mphf (x) = (h
20
(x, d) + g(i(x))) mod n
i(x) =



h
11
◦ h
10
(x) if h
10
(x) < p
1
h
12
◦ h
10
(x) otherwise.
5
A random algorithm is Las Vegas if it always produces correct answers, but with a small probability
of taking a long time to execute.
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where p
1
= 0.6n and p
2
= 0.3n were experimentally determined, and b = ⌈cn/(log n + 1)⌉.
Again c is only established for small values of n. It could very well be that c grows with
n. So, the limitation of the three algorithms is that there is no warranty that the number
of bits per key to store the function will be ﬁxed as n increases.
The work by Lefebvre and Hoppe [54] has the same problem of not providing any
warranty that the storage space of the resulting functions will be a constant number of bits
per key. They have designed a PHF method to speciﬁcally represent sparse spatial data
and the resulting functions require more than 3 bits per key to be stored. In the same
trend, Chang, Lin and Chou [21, 22] have designed MPHFs tailored for mining association
rules and traversal patterns in data mining techniques.
1.7 Technical Overview of this Work
Our primary objective was to design perfect hashing algorithms that are theoretically well-
founded and can be eﬃciently used in practice. For that we investigate ways to bridge the
existent gap between theory and practice among the minimal perfect hashing algorithms
available in the literature.
In this work we used a two-step approach in order to design an algorithm that achieves
our primary objective. In the ﬁrst step, we partition the input key set into small buckets.
This step is equivalent to the process of generating runs in an external multi-way merge
sort, which is carefully engineered to make it work in linear time. In the second step, we
generate a PHF or an MPHF for each bucket.
Figure 1.2 illustrates the two steps of the algorithm: the partitioning step and the
searching step. The partitioning step takes a key set S of size n and uses a hash function
h
0
to partition S into N
b
buckets. The searching step generates an MPHF (or equivalently
a PHF) for each bucket i, 0 ≤ i ≤ N
b
− 1, and computes the oﬀset array. The evaluation
of the resulting MPHF for a key x is:
MPHF (x) = MPHF
i
(x) + oﬀset[i]
where i = h
0
(x) indicates the bucket where key x is, MPHF
i
(x) is the position of x in
bucket i, and oﬀset[i] gives the total number of entries before bucket i in the hash table.
If the key set size n ﬁts in the internal memory available, then the ﬁrst step of the
algorithm is not necessary. In this situation, we just make the bucket size equal to the
input size n and generate a PHF or an MPHF for this bucket. Therefore, the algorithm
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Figure 1.2: The two steps of the algorithm.
becomes an internal random access memory algorithm, referred to as RAM algorithm from
now on. If the key set size n is larger than the size of the internal memory available, then
the ﬁrst step is performed to partition the input set into small buckets and the algorithm
becomes an external memory algorithm, referred to as EM algorithm from now on. The
external algorithm is also cache-aware because the buckets are small enough to ﬁt in the
CPU cache. Therefore, the EM algorithm accesses memory in a less random fashion when
compared with the RAM algorithm.
We reﬁne and combine a number of existing techniques in the design and implementa-
tion of the algorithm, as follows:
1. To generate PHFs or MPHFs for the buckets we could choose from a number of
alternatives, emphasizing either space usage, construction time, or evaluation time.
All methods that assume uniform hash functions can be made to work, by using the
split-and-share technique presented in [30] to split the problem into small buckets, and
simulate uniform hash functions on each bucket. In Chapter 3 we present a particular
engineering of this idea, with a reﬁnement that, without extra space usage, gives a
family of uniform hash functions on each bucket.
2. The RAM algorithm is used to compute PHFs or MPHFs on the buckets because
it generates near-space optimal functions and outperforms the main practical algo-
rithms available in the literature, including our previous result presented in [12].
We take a PHF generation implicit in [23] as a starting point, which was also inde-
pendently suggested by Belazzougui [5]. Then, we improve the analysis, reﬁne the
generation algorithm to make it succeed with high probability, extend it to gener-
ate MPHFs as well, and show how to implement everything in a near space-optimal
manner. When the key set ﬁts in the internal memory we have just one bucket of size
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n, otherwise several small buckets are handled. The RAM algorithm is presented in
Chapter 2.
3. External sorting (see, e.g., [74, 53]) is used to group the keys into buckets when the
key set does not ﬁt in the internal memory. Then, we handle each bucket separately.
The important insight here is that we split the problem in small buckets and this
has both theoretical and practical implications. From the theoretical point of view
we showed that, by reﬁning the split-and-share technique to simulate uniform hash
functions on the small buckets, we were able to prove that the EM algorithm will
work for every key set with high probability. From the practical point of view, an
important feature of this is that we may make buckets that are small enough to ﬁt
in the CPU cache, resulting in a signiﬁcant speedup (in processing time per element)
compared to other methods. To generate the runs of the external memory sorting,
we use radix sorting [24] to perform this in linear time.
Oﬀset tables are used to put everything together to a single PHF or MPHF. This has
been done in several theoretical works (see, e.g. [70, 43]). In Chapter 4 we show how
to implement this with low space overhead in practice and present the EM algorithm.
4. The EM algorithm has a high degree of parallelism because it is based on the external
multi-way merge sort algorithm. In Chapter 5 we exploit this fact to design a parallel
version of the EM algorithm.
5. The techniques designed in our previous work presented in [12] to generate MPHFs
based on random graphs with cycles were used to optimize one version of the RAM
algorithm presented in Chapter 2. This is presented in Chapter 6.
1.8 Contributions
The attractiveness of using PHFs and MPHFs depends on the following issues [43]:
1. The amount of CPU time required for generating the functions.
2. The space requirements for generating the functions.
3. The amount of CPU time required by the functions for each retrieval.
4. The space requirements of the description of the resulting functions to be used at
retrieval time.
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No previously known algorithm performs well for all these requirements. Usually, the
space requirement for generating the functions is overlooked. That is why the algorithms in
the literature cannot scale for key sets on the order of billions of keys. Also, as mentioned
before, there is a gap between practical and theoretical algorithms. On one hand, practical
algorithms analyze the space requirement to describe the resulting functions under the
unrealistic assumption that uniform hash functions are available to be used with no extra
cost of space. On the other hand, the theoretical algorithms are analyzed with no unrealistic
assumption, but they emphasize asymptotic space complexity and are too complicated to
implement.
The main contributions of this thesis are:
1. We present a simple, practical and highly scalable perfect hashing algorithm that
takes into account the four requirements aforementioned. When the input key set
ﬁts in main memory, it becomes an internal random access memory algorithm (RAM
algorithm); otherwise, it becomes an external memory algorithm (EM algorithm).
Preliminary versions of the RAM and the EM algorithms were presented in [14] and
in [15], respectively. We now present more details on the two algorithms.
(a) The RAM algorithm works on random acyclic r-partite hypergraphs given by
function values of uniform hash functions on the keys of S. The idea of basing
perfect hashing on random acyclic hypergraphs is not new, see e.g. [55], but we
proceed diﬀerently to achieve a space usage of O(1) bits per key rather than
O(log n) bits per key, reducing the complexity order to store the functions from
O(n log n) to O(n) bits. The RAM algorithm is presented in Chapter 2.
We now comment on the four aforementioned requirements:
i. It generates PHFs or MPHFs in linear time. The PHFs are equivalent to
the ones suggested by Belazzougui [5], which were previously suggested in
a more general way by Chazelle et al in [23].
ii. It requires O(n) computer words to generate PHFs or MPHFs. That is why
it is appropriated for key sets that can be handled in internal memory.
iii. It generates PHFs or MPHFs that take O(1) time to be evaluated.
iv. It generates near space-optimal PHFs and MPHFs. The space requirements
of the description of the resulting functions depend on the relation between
m and n. For m = n, the space usage is approximately 2.62n bits. For
m = 1.23n, the space usage is approximately 1.95n bits. In all cases, this is
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within a small constant factor from the information theoretical minimum of
approximately 1.44n bits for MPHFs and 0.89n bits for PHFs, something
that has not been achieved by previous practical algorithms.
(b) The EM algorithm uses a number of techniques from the literature to allow
the generation of PHFs or MPHFs for sets on the order of billions of keys. It
increases one order of magnitude in the size of the greatest key set for which
an MPHF was obtained in the literature [12]. This improvement comes from a
combination of a novel, theoretically sound perfect hashing scheme that greatly
simpliﬁes previous methods, and the fact that it is designed to make good use of
the memory hierarchy, since it is fundamentally a divide-to-conquer technique.
The EM algorithm is the ﬁrst step aiming to bridge the gap between theory and
practice on perfect hashing. Therefore, the EM algorithm is the ﬁrst algorithm
that can be used in practice, has time and space usage carefully analyzed without
unrealistic assumptions, and scales for billions of keys.
We demonstrate the scalability of the EM algorithm by generating an MPHF
for a set of 1.024 billion URLs from the World Wide Web of average length
64 characters in approximately 50 minutes, using a commodity PC. The EM
algorithm is presented in Chapter 4.
We now comment on the four aforementioned requirements:
i. It generates PHFs or MPHFs in linear time and the dominating step in the
generation algorithm consists of sorting n ﬁngerprints of O(log n) bits.
ii. It requires O(n
ǫ
) computer words to have linear time complexity, where
0 < ǫ < 1. This is because it only needs a heap in main memory to
multi-way merge ﬁles stored on disk, and the size of the heap is the relation
between the size of the input key set and the amount of the internal memory
available, both in bytes. In our case, as we want to perform the merge
operation in one pass, we need ǫ = 0.5 (see, e.g., [1, Theorem 3.1]). This is
one of the reasons that enables the EM algorithm to scale for sets on the
order of billions of keys.
iii. It generate PHFs or MPHFs that take O(1) time to be evaluated.
iv. It also generates near space-optimal PHFs and MPHFs, but now we do not
assume that uniform hash functions are available with no additional cost of
space. For that we designed in Chapter 3 a way of simulating uniform hash
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functions on the small buckets with only a constant factor space overhead.
This enabled us to use the RAM algorithm to build the MPHFs of each
bucket without unrealistic assumptions. As for the RAM algorithm, the
space requirements of the description of the resulting functions also depend
on the relation between m and n. For m = n, the space usage is approxi-
mately 3.3n bits. For m = 1.23n, the space usage is approximately 2.7n bits.
Again, this is within a small constant factor from the information theoreti-
cal minimum for PHFs and MPHFs, something that has not been achieved
by previous practical and theoretical algorithms, except asymptotically for
very large n.
2. We provide a scalable parallel implementation of the EM algorithm, referred to as
Parallel External Memory (PEM) algorithm from now on. The PEM algorithm allows
to distribute the construction, description and evaluation of the resulting functions.
For instance, using a 14-computer cluster the parallel EM generates an MPHF for
1.024 billion URLs in approximately 4 minutes, achieving an almost linear speedup.
Also, for 14.336 billion 16-byte random integers evenly distributed among the 14
participating machines the PEM algorithm outputs an MPHF in approximately 50
minutes, resulting in a performance degradation of 20%. To the best of our knowledge
there is no previous result in the perfect hashing literature that can be implemented in
a parallel way to obtain better scalability and performance than the results presented
by the PEM algorithm. The PEM algorithm is presented in Chapter 5. A preliminary
version of the PEM algorithm was presented in [11].
3. We present techniques that allow the generation of PHFs and MPHFs based on
random graphs containing cycles. A preliminary result was presented in [12]. It
improved the space requirement of the algorithm by Czech, Havas and Majewski [25]
at the expense of generating functions in the same form that are not order preserving.
Both algorithms are linear on n, but our algorithm runs 59% faster than the one
in [25], and the resulting MPHFs are stored using half of the space.
However, the resulting MPHFs still need O(n log n) bits to be stored. As in [25],
the algorithm assumes uniform hashing and needs O(n) computer words of the Word
RAM model to construct the functions. Recently, using ideas similar to the ones
presented in [12], we have optimized the version of the RAM algorithm that works
on random bipartite graphs to output the resulting functions 40% faster when cycles
are allowed. These results are presented in Chapter 6.
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4. We show that the PHFs and MPHFs designed in this thesis can now be used for
applications in which they were not considered a good option in the past. This is
a consequence of the fact that the resulting functions need O(1) number of bits per
key to be stored. In Chapter 7 we show that MPHFs provide the best trade-oﬀ
between space usage and lookup time when compared to other hashing schemes. A
preliminary version of this result was presented in [13].
5. Finally, we have created the C Minimal Perfect Hashing Library that is available at
http://cmph.sf.net under the GNU Lesser General Public License (LGPL). The
library was conceived for two reasons. First, we would like to make available our
algorithms to test their applicability in practice. Second, we realized that there was
a lack of similar libraries in the open source community. We have received very good
feedbacks about the practicality of the library. For instance, it has received more
than 2, 482 downloads (August 2008) and is incorporated by two Linux distributions:
Debian
6
and Ubuntu
7
.
1.9 Road Map
This text is organized as follows: Chapter 2 presents the internal random access memory
algorithm (RAM algorithm), which generates a family of near space-optimal PHFs or
MPHFs based on random acyclic r-partite r-uniform hypergraphs, for r ≥ 2. Chapter 3
presents a way of simulating uniform hash functions on small key buckets. Chapter 4
presents the external memory algorithm (EM algorithm), which is the ﬁrst algorithm that
is theoretically well-understood and can be applied to sets on the order of billion keys.
Chapter 5 presents a parallel version of the EM algorithm. Chapter 6 shows how to generate
PHFs or MPHFs based on random graphs with cycles. Chapter 7 presents applications
6
Debian is a volunteer project to develop a GNU/Linux distribution, which is available
at http://www.debian.org. Debian was started more than a decade ago and has since grown to comprise
more than 1000 members with oﬃcial developer status and many more volunteers and contributors. It has
expanded to encompass over 20,000 “packages” of free and open source applications and documentation.
7
The Ubuntu project, available at http://www.ubuntu.com, attempts to work with Debian to address
the issues that keep many users from using Debian. Ubuntu provides a system based on Debian with
frequent time-based releases, corporate accountability, and a more considered desktop interface. Ubuntu
provides users with a way to deploy Debian with security ﬁxes, release critical bug ﬁxes, a consistent
desktop interface, and to never be more than six months away from the latest version of anything in the
open source world.
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in which the use of PHFs and MPHFs became interesting as a consequence of the results
of this work. Finally, Chapter 8 presents the conclusions and some suggestions regarding
future steps to be taken in this research.
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The Internal Perfect Hashing
Algorithm
In this chapter we present a simple and eﬃcient internal random access memory algorithm
(RAM algorithm) to generate a family F of near space-optimal PHFs
1
or MPHFs. Its
name comes from the fact that the RAM algorithm does not take into account the mem-
ory hierarchy to optimize eﬃciency, as the one presented in Chapter 4 does. The RAM
algorithm generates a family F of PHFs or MPHFs based on random acyclic r-partite
hypergraphs (see Section 1.5) given by function values of r uniform random hash functions
on S. It is designed for key sets that induce random acyclic r-partite hypergraphs that ﬁt
in the internal random access memory. The resulting PHFs and MPHFs are stored in near
optimal space (i.e., O(n) bits.) Acyclic random hypergraphs has been used in previous
MPHF constructions [55], but we will proceed diﬀerently to achieve a space usage of O(n)
bits rather than O (n log n) bits, diminishing the complexity order to store the functions
from O(n log n) to O(n) bits. A previous version of the RAM algorithm was presented
1
Chazelle et al [23] present a way of constructing PHFs that is equivalent to the ones presented in this
chapter. It is explained as a modiﬁcation of the “Bloomier Filter” data structure, but it is not explicit
that a PHF is constructed. We have independently designed an algorithm to construct a PHF that maps
keys from a key set S of size n to the range [0, (2.0 + ǫ)n − 1] based on random 2-graphs, where ǫ > 0.
The resulting functions require 2.0 + ǫ bits p er key to be stored. Belazzougui [5] suggested a method
to construct PHFs that map to the range [0, (1.23 + ǫ)n − 1] based on random 3-graphs. The resulting
functions are stored in 2.46 bits per key and this space usage was further improved to 1.95 bits p er key by
using arithmetic coding. Thus, the simple construction of a PHF described must be attributed to Chazelle
et al [23]. The new contribution of this chapter is to analyze and optimize the constant of the space usage
considering implementation aspects as well as a way of constructing MPHFs from those PHFs.
23
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in [14].
This chapter is organized as follows. In Section 2.1 we describe the family F of PHFs or
MPHFs and the RAM algorithm. In Section 2.2 we present analytical results of the RAM
algorithm. In Section 2.3 we present some experimental results. Finally, in Section 2.4 we
conclude this chapter.
2.1 The Family of Functions
The RAM algorithm is a three-step randomized algorithm of Las Vegas type because it
needs to generate a random acyclic r-partite hypergraph in its ﬁrst step. Once the hyper-
graph is obtained, the two other steps are deterministic. To make the exposition as clear
as possible we ﬁrst present our approach for r = 2 and, then, generalize it for r > 2. Later
on, we show that the two interesting cases from the family F of PHFs or MPHFs are based
on 2-graphs and 3-graphs.
The general idea of the algorithm for r = 2 is as follows. For a given undirected
bipartite 2-graph G = (V, E), |E| = n, |V | = m and m > n, build an array g such that the
following function phf : E → [0, m − 1] is a perfect hash function on E:
phf (e = {u, v} ∈ E) =



u, if (g [u] + g[v]) mod 2 = 0
v, if (g[u] + g[v]) mod 2 = 1
(2.1)
The problem to solve is to look for an assignment of values from {0, 1, r} to vertices so
that for each edge the sum of values associated with its endpoints taken modulo r (r = 2 in
this case) indicates a unique value in the range [0, m − 1]. This assignment is represented
by a function g : V → {0, 1, . . . , r}, which is implemented as the array g in Eq. (2.1).
This assignment of values to vertices can be always solved if the graph (or hypergraph)
is acyclic [55]. The special value r = 2 is used to represent non-assigned vertices. So, we
deﬁne:
Deﬁnition 16 A vertex v ∈ V is assigned if g[v] = r and non-assigned otherwise.
We now show how each key x ∈ S is mapped to each edge e ∈ E. Each key x ∈ S is
assigned to edge e = {u, v} as follows:
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u = h
0
(x)
v = h
1
(x)
where we assume h
0
: U → [0, m/2 − 1] and h
1
: U → [m/2, m − 1] as two uniform
hash functions. The uniform hash assumption is discussed in Section 2.2.5. Each diﬀerent
pair of functions (h
0
, h
1
) induces a diﬀerent bipartite random graph G = G(h
0
, h
1
) and
we iteratively select (h
0
, h
1
) until the induced graph G to be acyclic. In Section 2.2.1 we
show how to obtain an acyclic bipartite random graph in an expected constant number of
iterations.
To obtain an MPHF we observed that the resulting PHF presented in Eq. (2.1) asso-
ciates n vertices from V to n edges of S and, by construction, all associated vertices are
assigned according to Deﬁnition 16. This led us to a well-studied primitive in the succinct
data structure area (see e.g. [62, 59, 69]), deﬁned as:
Deﬁnition 17 Let rank : V → [0, n − 1] be a function deﬁned as:
rank(v) = |{y ∈ V | y < v ∧ g[y] = r}|. (2.2)
Function rank(v) counts how many vertices are assigned before a given vertex v ∈ V , which
is uniquely associated with a key x ∈ S.
Therefore, our problem is reduced to computing the array g such that a function mphf :
E → [0, n − 1] is a bijection on E, i.e., an MPHF on E and, consequently, an MPHF on
S since there is a one-to-one mapping between S and E by using r = 2 uniform hash
functions:
mphf (e = {u, v} ∈ E) = rank (phf (e)) (2.3)
The main insights that allow us to build functions that are evaluated in constant time
and stored in O(n) bits instead of O(n log n) bits are twofold. First, the values in the range
of g are small enough to be encoded by a constant number of bits, actually β = ⌈log(r +1)⌉
bits. Second, It is possible to build a data structure that allows the computation of function
rank presented in Eq. (2.2) in constant time by using o(m) additional bits of space.
Figure 2.1 gives an overview of the three-step RAM algorithm for r = 2, on a key set
S ⊆ U containing the ﬁrst 4 month names abbreviated to the ﬁrst three letters, i.e., S =
{jan, feb, mar, apr}. The mapping step in Figure 2.1(a) builds an acyclic random bipartite
graph for n = 4 keys or, equivalently, |E| = n = 4, and |V | = m = 8. The assigning step
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in Figure 2.1(b) builds the array g so that each edge is uniquely associated with one of its
r = 2 vertices. For instance, jan is mapped to 2 because (g[2] + g[5]) mod 2 = 0, feb to 6
because (g[2]+g[6]) mod 2 = 1, and so on. The ranking step builds the data structure used
to compute function rank : V → [0, n − 1] (see Deﬁnition 17) in O(1) time. To illustrate,
rank(7) = 3 means that there are three vertices assigned before vertex 7, which are the
vertices 0, 2 and 6. We are now ready to formally deﬁne our family F of PHFs or MPHFs.
h (x)
1
0
1
2
3
4
5
6
7
3
2
1
0
g
Hash Table 
(c)(a)
0
h (x)
(b)
Assigning
1
Mapping
1 3
54
S
jan
feb
mar
apr
6
20
0
mar
jan
feb
apr
1
0
r
r
r
r
Ranking
mar
jan
feb
apr
7

Figure 2.1: (a) The mapping step generates an acyclic bipartite random 2-graph. (b) The
assigning step builds an array g so that each edge is uniquely assigned to a vertex. (c) The
ranking step builds the data structure used to compute function rank : V → [0, n − 1] in
O(1) time.
Deﬁnition 18 Let H be a family of uniform hash functions as presented in Deﬁnition 9.
Let h
i
: U → [i
m
r
, (i + 1)
m
r
− 1], 0 ≤ i < r, be r uniform hash functions from H. The r
functions and the set S deﬁne, in a natural way, a random r-uniform r-partite hypergraph.
Let G
r
= G
r
(h
0
, h
1
. . . , h
r−1
) be such a hypergraph with vertex set V = [0, m − 1] and
edge set E = {{h
0
(x), h
1
(x), . . . , h
r−1
(x)} | x ∈ S}. Let g : V → {0, 1, . . . , r} be a
function, which is implemented as an array g, such that for each edge the sum of values
in g associated with its endpoints taken modulo r indicates a unique value in the range
[0, m −1]. Let PHF be a family of PHFs from S to [0, m −1] with parameters r ≥ 2 and
a class H of uniform hash functions, deﬁned as:
PHF(r, H) =

phf | phf (x) = h
i
(x), i =

r−1

i=0
g[h
i
(x)]

mod r, h
i
∈ H

(2.4)
Let MPHF be a family of MPHFs from S to [0, n −1] with parameter PHF and deﬁned
as:
MPHF(PHF) = {mphf | mphf (x) = rank(phf (x)), phf ∈ PHF} (2.5)
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Then, we deﬁne:
F(PHF, MPHF) = {h | h ∈ PHF or h ∈ MPHF} (2.6)
From now on we are going to design and analyze the RAM algorithm to prove the
following theorem:
Theorem 3 For a given key set S with n keys, a given r ∈ D = {x | x ≥ 2}, a given
class of uniform hash functions H, and an induced random acyclic r-partite hypergraph
G
r
= (V, E), where |E| = n, |V | = m = c(r)n and c : D → ℜ, it is possible to ﬁnd in
expected linear time an array g that implements a function g : V → {0, 1, . . . , r} and a
data structure rankTable so that a function h ∈ F can be computed in O(1) time and
described in βm bits if h is a PHF and in (β + ǫ)m + o(m) bits if h is an MPHF, where
β = ⌈log(r + 1)⌉ and 0 < ǫ < 1. For that O(n) computer words are required.
Figure 2.2 presents a pseudo code for the RAM algorithm. If we strip oﬀ the third
step we will build PHFs instead of MPHFs. The algorithm receives as input a key set S,
|S| = n, an edge size r and a family H of uniform hash functions, and produces in expected
O(n) time the resulting functions represented by the array g and a data structure, referred
to as rankTable, used to allow the computation of Eq. (2.2) in O (1) time. We now describe
and analyze each step in detail.
procedure RAM (S , r , H, g , rankTable)
Mapping (S , H, G
r
, L);
Assigning (G
r
, L, g );
Ranking (g , rankTable) ;
Figure 2.2: The RAM algorithm.
2.1.1 Mapping Step
The mapping step takes a key set S and a family H of uniform hash functions as input,
and creates a random acyclic r-partite hypergraph G
r
and a list of edges L. We used an
edge-oriented data structure proposed in [32] to represent the hypergraphs, where each
edge is explicitly represented as an array of r vertices and, for each vertex v, there is a list
of edges that are incident on v. Figure 2.3 presents a pseudo code for the mapping step.
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procedure Mapping (S , H, G
r
, L)
1. repeat
2. E(G
r
) = ∅;
3. select h
0
, h
1
, . . . , h
r−1
uniformly at random from H;
4. for each x ∈ S do
5. e = {h
0
(x), h
1
(x) . . . , h
r−1
(x)};
6. addEdge (G
r
, e);
7. L = isAcyclic (G
r
);
8. until E(G
r
) is empty
Figure 2.3: Mapping step.
The list L is obtained whenever we test whether G
r
is acyclic. For that we iteratively
delete edges that are incident on vertices of degree one. The list L stores the deleted edges
in the order of deletions (i.e., the ﬁrst edge in L was the ﬁrst deleted edge, the second edge
in L was the second deleted edge, and so on.) The following algorithm can do this test:
1. Traverse G
r
and store in a queue Q every edge that has at least one of its vertices
with degree one.
2. Until Q is not empty, dequeue one edge from Q, remove it from G
r
, store it in L,
and check if any of its vertices is now of degree one. If it is the case, enqueue the
only edge that contains that vertex.
Figure 2.4 presents one possible output when applied to the random acyclic bipartite
hypergraph G
2
presented in Figure 2.1. The three edges containing vertices of degree one
were, ﬁrst, deleted and stored in L. Then the only edge containing vertices of degree two
and three was deleted and stored in L.
{0,5} {2,6} {2,7} {2,5}
0 1 2 3
L

Figure 2.4: Output of the test to check whether a hypergraph has cycles.
2.1.2 Assigning Step
The assigning step takes the random acyclic r-partite hypergraph G
r
and the list of edges
L as input, and produces an assignment of values to the vertices of G
r
that is represented
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by the array g. The assignment is created as follows. Let Visited be a boolean vector of size
m that indicates whether a vertex has been visited. We ﬁrst initialize g[i] = r (i.e., each
vertex is unassigned) and Visited[i] = false, 0 ≤ i ≤ m−1. Then, for each edge e ∈ L from
tail to head, we look for the ﬁrst vertex u belonging to e not yet visited. Let j, 0 ≤ j ≤ r−1
be the index of u in e. Then, we set g[u] = (j −

v∈e∧Visited [v]=true
g[v]) mod r. Whenever
we pass through a vertex u from e, if it has not yet been visited, we set Visited[u] = true.
Figure 2.5 presents a pseudo code for the assigning step.
procedure Assigning (G
r
, L, g)
1. for u = 0 to m − 1 do
2. Visited [u ] = false ;
3. g[u] = r ;
4. for i = |L| − 1 to 0 do
5. e = L[ i ] ;
6. sum = 0;
7. for k = r − 1 to 0 do
8. i f (not Visited [e[k]] )
9. Visited [e[k] ] = true;
10. u = e[k];
11. j = k ;
12. else sum += g[e[k]];
13. g[u] = (j − sum) mod r ;
Figure 2.5: Assigning step.
Figure 2.6 presents a step by step example for the list of edges of our example presented
in Figure 2.4. The initial state is shown in Figure 2.6(a). In Figure 2.6(b), the vertices 2 and
5 of edge L[3] are marked as visited and g[2] = (0 −g[5]) mod 2 = 0. In Figure 2.6(c), the
vertex 7 of edge L[2] is marked as visited and g[7] = (1−g[2]) mod 2 = 1. In Figure 2.6(d),
the vertex 6 of edge L[1] is marked as visited and g[6] = (1 −g[2]) mod 2 = 1. Finally, in
Figure 2.6(e), the vertex 0 of edge L[0] is marked as visited and g[0] = (0−g[5]) mod 2 = 0.
The reason to traverse the edges in the reverse order they were deleted is to assure that
each edge will contain at least one vertex that is traversed for the ﬁrst time. For example,
if the deleted edges were stored in L in the following order: e
1
, e
2
, . . . , e
i
, e
i+1
, . . . , e
n
and
we consider edge e
i
, then we know that e
i
will have at least one of its vertices of degree one
by removing the edges e
1
, e
2
, . . . , e
i−1
. Let us refer to that vertex as v. Thus, by removing
e
i
, v will become of degree 0. Therefore, v is not contained in any of the edges e
i+1
, . . . , e
n
.
So, by traversing from e
n
to e
1
, at least one of the vertices in the edges will be traversed
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Figure 2.6: Example of the assigning step.
for the ﬁrst time and such a vertex can be used to uniquely represent the edge.
2.1.3 Ranking Step
The ranking step receives the array g as input and produces the data structure rankTable,
which allows the computation of function rank presented in Eq. (2.2) in O(1) time. We
now present a practical variant described in [62] that uses ǫ m additional bits of space,
where 0 < ǫ < 1. We remark that it is possible to join, in a single and more succinct data
structure, the array g and the data structure used to compute function rank in constant
time (see, e.g., [59, 69]).
Conceptually, the scheme is very simple: store explicitly the rank of every kth index
in a rankTable, where k = ⌊log(m)/ǫ⌋. In the implementation we let the parameter k to
be set by the users so that they can trade-oﬀ space for evaluation time and vice-versa. In
the experiments we set k to 256 in order to spend less space to store the resulting MPHFs.
This means that we store in rankTable the number of assigned vertices before every 256th
entry in the array g. Figure 2.7 presents a pseudo code for the ranking step.
procedure Ranking (g , rankTable)
1. sum = 0;
2. for i = 0 to |g| − 1 do
3. i f (i mod k == 0) rankTable [ i/k ] = sum;
4. i f (g[i] = r) sum++;
Figure 2.7: Ranking step.
Figure 2.8 illustrates the ranking step on the array g of Figure 2.6 (e) considering k = 3.
It means that there is no assigned vertex before g[0], there are two assigned vertices before




[image: alt]2.1. THE FAMILY OF FUNCTIONS 31
g[3], and two before g[6].
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g
0
0 1 2
rankTable for k=3
0
11
0
r r r r
2
0
2

Figure 2.8: Example of the ranking step.
2.1.4 Evaluating the Resulting Functions
To compute rank(u), where u is given by a perfect hash function phf ∈ PHF (see
Eq. (2.4)), we look up in rankTable the rank of the largest precomputed index v ≤ u,
and count the number of assigned vertices from position v to u − 1. To do this in time
O(1/ǫ) we use a lookup table T
r
that allows us to count the number of assigned vertices
in ♭ = ǫ log m bits in constant time for any 0 < ǫ < 1. For simplicity and without loss
of generality we let ♭ be a multiple of the number of bits β used to encode each entry of
g. Then, the lookup table T
r
can be generated a priori by the pseudo code presented in
Figure 2.9, where LS(i
′
,β) stands for the value of the β least signiﬁcant bits of i
′
and >>
is the right shift of bits. Note that for each r ≥ 2 a diﬀerent lookup table T
r
is required.
procedure GenLookupTable (β , ♭ , T
r
)
1. for i = 0 to 2
♭
− 1 do
2. sum = 0;
3. i
′
= i ;
4. for j = 0 to ♭/β − 1 do
5. i f (LS(i
′
, β) = r) sum++;
6. i
′
= i
′
>> β ;
7. T
r
[i] = sum;
Figure 2.9: Generation of the lookup table T
r
.
In the experiments, we have used a lookup table that allows us to count the number of
assigned vertices in 8 bits in constant time. Therefore, to compute the number of assigned
vertices in 256 bits we need 32 lookups. Such a lookup table ﬁts entirely in the CPU cache
because it takes 2
8
bytes of space.
We use the implementation just described because the smallest hypergraphs are ob-
tained when r = 3 (see Section 2.2.1). Therefore, the most compact and eﬃcient functions




[image: alt]32 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM
are generated when r = 2 and r = 3. That is why we have chosen these two instances of
the family to be discussed in Sections 2.2.3 and 2.2.4.
Figure 2.10 presents the pseudo code for the resulting PHFs. Note that the resulting
functions can be computed in O(r) time. As the practical instances are for r = 2 and r = 3,
then the computational cost is O(1) and it is quite simple to be computed, an important
characteristic at retrieval time.
function phf (x , g , r)
1. e = {h
0
(x), h
1
(x), . . . , h
r−1
(x)};
2. sum = 0;
3. for i = 0 to r − 1 do sum += g[e[i]];
4. return e[sum mod r];
Figure 2.10: Pseudo code for the resulting PHFs.
Figure 2.11 presents the pseudo code for the resulting MPHFs. The variable T
r
counts
the number of assigned vertices in E entries of g or in ♭ = βE = ǫ log m bits. We use the
notation g[i → j] to represent the values stored in the entries from g[i] to g[j] for i ≤ j.
If j ≥ |g| or (j − i + 1) < E, then the value r, which is used to represent unassigned
vertices, is appended to fulﬁll the entries to be looked up in T
r
. It is easy to see that the
computational cost is O(1/ǫ).
function mphf (x , g , r , rankTable , k)
1. u = phf(x , g , r );
2. j = u/k ;
3. rank = rankTabl e [j ] ;
4. for i = j ∗ k to u − 1 step E do
5. rank += T
r
[g[i → i + E]];
6. return rank ;
Figure 2.11: Pseudo code for the resulting MPHFs.
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2.2 Analytical Results
2.2.1 The Linear Time Complexity
In this section we show that the RAM algorithm runs in expected O(n) time. For that we
need to show that the mapping, assigning and ranking steps run in expected O(n) time.
Analysis of the Mapping Step
We start by showing how to obtain a random acyclic r-partite hypergraph G
r
=
G
r
(h
0
, h
1
, . . . , h
r−1
) with n edges and m = c(r)n vertices with high probability, where
r ∈ D = {x | x ≥ 2} and c(r) is a function with real values on D. We will ﬁrstly analyze
the case for r = 2 and, in the following, the case for r ≥ 3.
Theorem 4 Let G
2
= (V, E) be a bipartite random graph with n edges and m vertices.
Then, if m = cn holds for c > 2, the probability that G
2
is a forest (acyclic), for n → ∞,
is:
P r
a
=

1 −

2
c

2
(2.7)
Proof. Let G
2
= (V, E) be a bipartite random graph with |V | = 2ρ = m, and |E| =
dm/2 = n, where d = 2n/m is the average degree of G
2
. To build G
2
, each edge is
independently taken at random with probability p from all ρ
2
possible edges. As there are
m = 2ρ vertices, and each edge is connected to an average of d edges, then we can conclude
that p = d/ρ = 2d/m. Let ∁
2t
be the set of cycles of length 2t in the complete bipartite
graph K
m
, for t ≥ 1 and each m. A cycle in ∁
2t
can be represented as a sequence of 2t
distinct vertices in K
m
by choosing a starting point. Therefore, the cardinality of ∁
2t
is
given by:
|∁
2t
| =
1
2t
((ρ)
t
)
2
, (2.8)
where ρ =
m
2
and (ρ)
t
= ρ(ρ−1) . . . (ρ−t+1). As each edge in G
2
is selected independently
of the others and with probability p =
2d
m
, then, each cycle in ∁
2t
occurs with probability:
P r
2t
(d) = p
2t
(2.9)
Let C
2t
(G
2
) be a random variable that measures the number of cycles of length 2t in G
2
.
Let C
e
(G
2
) be a random variable that measures the number of cycles of any even length in
G
2
. The probability distribution of C
2t
(G
2
) and C
e
(G
2
) converge to a Poisson distribution
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with parameters λ
2t
and λ
e
, respectively. For a more detailed proof of a similar statement
see [48, Page 16]. To conclude the proof we are going to show how to get λ
2t
and λ
e
, which
represents the average number of cycles of length 2t in G
2
and the average number of cycles
of even length in G
2
, respectively. It is easy to see that, for m → ∞:
λ
2t
= P r
2t
(d) × |∁
2t
| =

2d
m

2t
1
2t
((ρ)
t
)
2
=
1
2t
d
2t
(2.10)
and
λ
e
=
∞

t=1
λ
2t
=
1
2
d
2
+
1
4
d
4
+
∞

t=3
1
2t
d
2t
= −
1
2
ln(1 − d
2
). (2.11)
As in [48], we use

∞
t=3
1
2t
x
t
= −
1
2
ln(1 − x) −
1
2
x −
1
4
x
2
, where x = d
2
. Therefore, the
probability that G
2
is a forest is given by:
P r
a
(C
e
(G
2
) = 0) = e
−λ
e
=
√
1 − d
2
. (2.12)
Note that d is restricted to be in the range (0, 1). As G
2
has m = cn vertices and n = dm/2
edges, then d = 2/c and we obtain:
P r
a
=

1 −

2
c

2
(2.13)
for c > 2.
For example, when c = 2.09 we have P r
a
= 0.29. This is very close to 0.294 that
is the value we got experimentally by generating 1, 000 random bipartite 2-graphs with
n = 10
7
keys (edges). A rigorous bound on Pr
a
for r > 2 seems to be technically diﬃcult
to obtain. However, the heuristic argument presented in [26, Theorem 6.5], which was
rigorously proved in [19], also holds for our random r-partite hypergraphs. Thereby we
have the following theorem.
Theorem 5 The threshold for the appearance of a 2-core (a subgraph of minimum degree
2) in a random r-partite hypergraph for r > 2 is r/τ, where
τ = min
x>0

x
(1 − e
−x
)
r−1

(2.14)
From Theorems 4 and 5 we can conclude that with P r
a
bounded by a constant (P r
a
=
Ω(1)) and c(r) given by
c(r) =



2 + ε, ε > 0 for r = 2
r

min
x>0

x
(1−e
−x
)
r−1

−1
for r > 2,
(2.15)
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the random acyclic r-partite hypergraphs dominate the space of random r-partite hyper-
graphs. The value c(3) ≈ 1.23 is a minimum value for Eq. (2.15), as shown in Figure 2.12,
previously reported in [55]. This implies that the random acyclic r-partite hypergraphs
with the smallest number of vertices happen when r = 3. In this case, we have got exper-
imentally P r
a
≈ 1 by generating 1, 000 random 3-partite hypergraphs with n = 10
7
keys
(hyperedges).
1.8
1.4
r
1.2
1098765432
c(r)
2.0
1.6

Figure 2.12: Values of c(r) for r ∈ {2, 3, . . . , 10}.
It is interesting to remark that the problems of generating random acyclic r-partite
hypergraphs for r = 2 and for r > 2 have diﬀerent natures. For r = 2, the probability P r
a
varies continuously with the constant c. But for r > 2, there is a phase transition. That
is, there is a value c (r) such that if c ≤ c(r) then P r
a
tends to 0 when n tends to ∞ and if
c > c(r) then P r
a
tends to 1. This phenomenon has also been reported in [55] for random
r-uniform hypergraphs.
We now show that the expected number of iterations of the mapping step is bounded by
a constant. When a random r-partite hypergraph with cycles occurs we abort and select
randomly a new tuple of hash functions (h
0
, h
1
, . . . , h
r−1
) from H. Then, we can model the
number of iterations to generate a random acyclic r-partite hypergraph G
r
as a random
variable Z that follows a geometric distribution, since the probability P r
a
of generating a
random acyclic r-partite hypergraph is Ω(1). Thus, P r(Z = i) = P r
a
(1 −P r
a
)
i−1
and the
mean of Z is 1/P r
a
, which corresponds to the expected number of iterations to obtain G
r
.
Therefore, as P r
a
is Ω(1), the expected number of iterations is O(1).
To conclude the analysis of the mapping step presented in Figure 2.3 we need to show
that each iteration runs in O(n) time. Statements 4 and 7 are the critical ones in the
mapping step, once statements 2 and 3 have costs equal to O(1) and O(r).
It is easy to see that statement 5 in Figure 2.3 has cost O(r). Statement 6 also has
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cost O(r) because it needs to insert a given edge e in r lists of incident edges, one for
each vertex in e. Thereby, statement 4 has cost O(n) for r = O(1). Therefore, it is safe to
conclude that the mapping step takes expected O(n) time because it is known (see e.g. [55,
Theorem 2.2]) that the algorithm to test whether a hypergraph contains cycles performed
in statement 7 also runs in O(n) time.
Analysis of the Assigning Step
It is easy to see in the assigning step presented in Figure 2.5 that the loops of statement
1 and 4 have costs equal to O(m) and O(r n), respectively. This comes from the fact that
the operations involved in all other statements have cost O(1). As the number of vertices
in G
r
is a linear function of the number of edges, i.e., m = c(r)n, then, for r = O(1), the
assigning step runs in O(n) time.
Analysis of the Ranking Step
It is also easy to see in the ranking step presented in Figure 2.7 that the ranking step runs
in O(n) time. This is because statement 2 just loops over the m = c(r)n entries of the
array g, performs operations in O(1) time, and c(r) is a constant ﬁxed a priori.
In conclusion, the RAM algorithm takes expected O(n) time because the mapping,
assigning and ranking steps run in expected O(n) time.
2.2.2 Space Requirements to Describe the Functions
In this section we present the space required to store the resulting functions disregarding
the space for storing the r uniform hash functions, which is discussed in Section 2.2.5.
The description of the resulting functions is compounded by the array g, the rankTable
and the lookup table T
r
. The resulting array g contains values in the range [0, r] and its
domain size is equal to the number of vertices in G
r
, i.e., m = c(r)n. Then, we can use
β = ⌈log(r + 1)⌉ bits to encode each value in g. Therefore, g requires βm bits of storage
space. The rankTable is stored in ǫm bits because it has m/k entries of size log m bits and
k = ⌊log(m)/ǫ⌋ for 0 < ǫ < 1. The lookup table T
r
is stored in o(m) bits because it has m
ǫ
entries of size log log m bits. Putting all together we have that the number of bits required
to store the resulting PHFs and MPHFs are βm and (β + ǫ)m + o(m) bits, respectively.
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2.2.3 The 2-graph Instance
The use of acyclic bipartite 2-graphs allows us to generate the PHFs of Eq. (2.4) that give
values in the range [0, m − 1], where m = (2 + ε)n for ε > 0 (see Section 2.2.1). The
signiﬁcant values in the range of the array g for a PHF are {0, 1}, because we do not need
to represent information to calculate the function rank (i.e., r = 2). Then, we can use
just one bit to represent the value assigned to each vertex, i.e., β = 1. Therefore, the
resulting PHF requires m bits to be stored. For ε = 0.09, the resulting PHFs are stored in
approximately 2.09n bits and map to the range [0, 2.09n − 1].
To generate the MPHFs of Eq. (2.5) we need to include the ranking information. Thus,
we must use the value r = 2 to represent unassigned vertices and now two bits are required
to encode each value assigned to the vertices, i.e., β = 2. Then, the resulting MPHFs
require (2+ǫ)m+o(m) bits to be stored (remember that the ranking information requires ǫm
bits and the lookup table T
2
requires o(m) bits), which corresponds to (2+ǫ)(2+ε)n+o(n)
bits for any ǫ > 0 and ε > 0. In the experiments, for ǫ = 0.125 and ε = 0.09 the resulting
functions are stored in approximately 4.44n bits. We now present two packing schemes
that give more compact MPHFs and can be done in O(n) time.
Packing the Resulting MPHFs for r = 2 with Arithmetic Coding
The range of signiﬁcant values assigned to the vertices is clearly [0,2]. Hence, we need
log(3) bits to encode the value assigned to each vertex. Theoretically we use arithmetic
coding as block of values. Therefore, we can compress the resulting MPHF to use (log(3)+
ǫ)(2 + ε )n + o(n) bits of storage space by using a simple packing technique. In practice,
we can pack the values assigned to every group of 5 vertices into one byte because each
assigned value comes from a range of size 3 and 3
5
= 243 < 256. At generation time we
should use a small lookup table of size 5 containing: pow3
table[5] = {1, 3, 9, 27, 81}. To
assign a value x ∈ [0, 2] to a vertex u ∈ V we use:
byte = g[u/5] ;
byte += x ∗ pow3 table[u mod 5];
g[u/5] = byte ;
At retrieval time we should use a lookup table T
lookup
of size 5*256=1280 bytes to speed
up the recovery of the value x assigned to a given vertex u, as shown below.
byte = g[u/5];
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x = T
lookup
[u mod 5][byte] ;
Each entry of the lookup table T
lookup
is computed by:
T
lookup
[i][j] = (j/pow3
table[i]) mod 3, (2.16)
where 0 ≤ i < 5 and 0 ≤ j < 256. In the experiments, for ǫ = 0.125 and ε = 0.09, the
resulting functions are stored in approximately 3.6n bits.
A More Eﬀective Packing Scheme for r = 2
We now present a more eﬀective packing scheme that allows us to compress the resulting
MPHFs to use (3 +ǫ)n bits, for ǫ > 0. The basic idea is to put the information to compute
the array g and the information to compute the function rank in diﬀerent data structures.
Therefore, the range of the values in the array g is narrowed to [0, 1] instead of [0, 2]. Then,
it is now possible to spend just β = 1 bit for each one of the m values of g. This implies
that the array g is used to represent a phf ∈ PHF.
Let V
a
= {phf(x) | x ∈ S ∧ phf ∈ PHF} be the set of assigned vertices in V . To
compute function rank somehow we need to represent V
a
. Let R be a bit vector of size
|V | = m used to represent V
a
. That is, R[v] = 1 if v ∈ V
a
and R[v] = 0 otherwise. Thereby
we can redeﬁne the function rank as follows.
Deﬁnition 19 Let rank : V → [0, n − 1] be a function deﬁned as:
rank(v) = |{y ∈ V | y < v ∧ R(y) = 1}|. (2.17)
In this case it would be required to store the array g and the vector R, both with m
one-bit entries, plus o(m) bits required to compute function rank in O(1) time. However,
we can create a compressed representation that uses just over 3 bits per key by noticing
that there exist exactly n assigned vertices in V , i.e., |V
a
| = n, and the value of g for all
non-assigned vertices V
na
= V − V
a
is equal to 0. Thus, the contents of g and R are not
independent. For instance, there can be a non-zero bit in g[v] only if R[v] = 1. Therefore,
it is possible to create a compressed representation g
′
that uses only n bits and enables
us to compute any bit of g in constant time. First of all, if R[v] = 0 we can conclude
that g[v] = 0. We want to initialize g
′
such that g[v] = g
′
[rank(v)] whenever R[v] = 1,
i.e., v ∈ V
a
. This is possible since rank(v) is 1-1 on elements in V
a
. In conclusion, we can
replace g by g
′
and reduce the space usage to n + m + o(m) bits. By using m = (2 + ǫ/2)n
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for ǫ > 0 and (ǫ/2)n bits of extra space to support rank operations eﬃciently, the total
space is (3 + ǫ)n bits.
2.2.4 The 3-graph Instance
The use of 3-graphs allows us to generate more compact PHFs and MPHFs at the expense
of one more hash function h
2
. An acyclic 3-partite random 3-graph is generated with
probability Ω(1) for m ≥ c(3)n, where c(3) ≈ 1.23 is the minimum value for c(r) (see
Section 2.2.1). Therefore, we will be able to generate the PHFs of Eq. (2.4) so that they
will produce values in the range [0, (1.23 + ε)n − 1] for any ε ≥ 0. The values assigned to
the vertices are drawn from {0, 1, 2, 3} and, consequently, each value requires β = 2 bits to
be represented. Thus, based on the fact that for PHFs no ranking information is needed
(i.e., ǫ = 0), the resulting PHFs require 2(1.23 + ε)n bits to be stored, which corresponds
to 2.46n bits for ε = 0.
We can generate the MPHFs of Eq. (2.5) from the PHFs that take into account the
special value r = 3. The resulting MPHFs require (2 + ǫ)(1.23 + ε)n + o(n) bits to be
stored for any ǫ > 0 and ε ≥ 0, once the ranking information must be included. In the
experiments, for ǫ = 0.125 and ε = 0, we have got MPHFs that are stored in approximately
2.62n bits.
Packing the Resulting PHFs for r = 3 with Arithmetic Coding
For PHFs that map to the range [0, (1.23+ε)n−1] we can get still more compact functions.
This comes from the fact that the only signiﬁcant values assigned to the vertices that
are used to compute Eq. (2.4) are {0, 1, 2}. Then, we can apply the arithmetic coding
technique aforementioned to get PHFs that require log(3)(1.23 + ε)n bits to be stored,
which is approximately 1.95n bits for ε = 0. For this we must replace the special value
r = 3 to 0.
2.2.5 The Use of Universal Hashing
The uniform hashing assumption is not feasible because each hash function h
i
: U →
[i
m
r
, (i + 1)
m
r
− 1] for 0 ≤ i < r would require at least n log
m
r
bits to be stored plus
the space for the PHFs. As mentioned in Chapter 1 (Section 1.4) limited randomness
represented by universal hash functions is often as good as total randomness when the key
universe U is much larger than the functions range.
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For our experiments we choose h
i
from a family of heuristic hash functions proposed
in [50] with very good performance in practice but with no theoretical foundation. These
functions do not impose any upper bound for the key sizes and their description requires
just the storage of an integer that is used as a seed for a pseudo random number generator.
The function just loops over the key doing bitwise operations on blocks of 12 bytes and,
at the end, a 12 byte long integer is generated.
From a theoretical perspective, the uniform hashing assumption is not too harmful,
as we can use the split-and-share approach [30] to simulate a uniform hash function by
using o(n) bits of extra space. We use this in the design of the EM algorithm presented in
Chapter 4. In Chapter 3 we show how to use this idea to create uniform hash functions
for the small buckets generated in the EM algorithm.
2.2.6 The Space Requirements to Generate the Functions
In this section we show that the RAM algorithm presented in Figure 2.2 needs O(n)
computer words of main memory to generate functions of F. For that we will assume
that the key set S is kept in external memory and just the data structures involved in the
generation process are kept in internal memory. We need to maintain the following data
structures in internal memory.
1. The r uniform hash functions h
0
, h
1
, . . . , h
r−1
. Each function can be described in
o(n) bits by using the split-and-share technique.
2. The random acyclic r-partite hypergraph G
r
. As m = c(r)n, it is possible to store
G
r
in O(rn) computer words by using the data structure proposed in [32].
3. The list L of deleted edges obtained when we test whether G
r
is a forest. It is also
stored in O(rn) computer words.
4. The description of a resulting function h ∈ F. This corresponds to βm bits if
h ∈ PHF and (β + ǫ)m + o(m) bits if h ∈ MPH F.
Therefore, for r = O(1), we need O(n) computer words to generate the functions of F.
This ends the proof of Theorem 3.
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2.3 Experimental Results
The purpose of this section is to evaluate the performance of the RAM algorithm and to
compare it with the main practical perfect hashing algorithms we found in the literature.
In Section 2.3.1 we consider key sets that can be handled in internal memory by the RAM
algorithm. The experimental results for the RAM algorithm match the analytical results
presented in Section 2.2. In Section 2.3.2 we compare the RAM algorithm with the main
ones found in the literature.
The algorithms were implemented in the C language and are available under the GNU
Lesser General Public License (LGPL) at http://cmph.sf.net. The experiments were
carried out on a computer running the Linux operating system, version 2.6, with a 1.86
gigahertz Intel Core 2 processor with a 4 megabyte L2 cache and 1 gigabyte of main
memory. For the experiments we used two collections: (i) a set of 150 million randomly
generated 4 byte long IP addresses, and (ii) a set of 1, 024 million 64 byte long (on average)
URLs collected from the Web.
To compare the algorithms we used the following metrics: (i) The amount of time to
generate PHFs or MPHFs, referred to as Generation Time. (ii) The space requirement
for the description of the resulting PHFs or MPHFs to be used at retrieval time, referred
to as Storage Space. (iii) The amount of time required by a PHF or an MPHF for each
retrieval, referred to as Evaluation Time.
2.3.1 Performance of the RAM Algorithm
In this section we evaluate the performance of the RAM algorithm considering generation
time and storage space as metrics. We will consider two versions of the RAM algorithm:
(i) the version that works on random graphs with no cycles when r = 2 and, (ii) the version
that works on random hypergraphs with no cycles when r = 3.
Let us start with the version of the RAM algorithm that works on random graphs (i.e.,
r = 2 ) with no cycles. We can consider the runtime of the algorithm to have the form αnZ
for an input of n keys, where α is some machine dependent constant that further depends
on the length of the keys and Z is a random variable with geometric distribution with
mean 1/Pr
a
, where P r
a
=

1 − (2/c)
2
(see Theorem 4). All results in our experiments
for this version were obtained taking c = 2.09; the larger is c the faster is the algorithm
because P r
a
increases continuously with c.
The values chosen for n were 1, 2, 4, 8, 12, 16, 20 and 24 million keys. Although we
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have 150 million random IPs and 1, 024 million URLs, on a PC with 1 gigabyte of main
memory, the RAM algorithm is able to handle an input with at most 24 million keys.
This is mainly because the sparse random hypergraph required to generate the functions
is memory demanding.
In order to estimate the number of trials for each value of n we used a statistical method
for determining a suitable sample size (see, e.g., [47, Chapter 13]). As we obtained diﬀerent
values for each n, we used the maximal value obtained, namely, 300 trials in order to have
a conﬁdence level of 95%.
Figure 2.13 presents the runtime for each trial. In addition, the solid line corresponds
to a linear regression model obtained from the experimental measurements. As we can
see, the runtime for a given n has a considerable ﬂuctuation, which gives a coeﬃcient of
determination R
2
= 66%. However, the ﬂuctuation also grows linearly with n, as explained
in the following.
0 200 400 600
Time (s)
0 5 10 15 20 25
Number of keys (millions)
IPs (r = 2) Linear regression
(a) IPs collection
0 200 400 600 800
Time (s)
0 5 10 15 20 25
Number of keys (millions)
URLs (r = 2) Linear regression
(b) URLs collection
Figure 2.13: Number of keys in S versus generation time for the RAM algorithm that works
on acyclic random graphs with r = 2. The solid line corresponds to a linear regression
model for the generation time (R
2
= 66%).
The observed ﬂuctuation in the runtimes is as expected; recall that this runtime
has the form αnZ with Z a geometric random variable with mean 1/P r
a
= 1/0.29
for c = 2.09. Thus, the runtime has mean αn/P r
a
= 3.45αn and standard devia-
tion αn

(1 − P r
a
)/(P r
a
)
2
= 2.91αn. Therefore, the standard deviation also grows lin-
early with n, as experimentally veriﬁed in Figure 2.13.
The version of the RAM algorithm that works on hypergraphs with no cycles, where
r = 3, is the fastest version. This is a consequence of Theorem 5, because the probability
of obtaining a hypergraph with no cycles for r > 2 tends to 1 for c > c(r), where c(r) is
given in Eq. (2.15). For r = 3, c(3) ∈ (1.22, 1.23) and therefore we use c = 1.23 in our
experiments. We again use the statistical method for determining a suitable sample size
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to estimate the number of trials to be run for each value of n. We got that just one trial
for each n would be enough with a conﬁdence level of 95%. However, we made 25 trials.
This number of trials seems rather small, but, as shown in Figure 2.14, the behavior of this
version of the RAM algorithm is very stable and its runtime is almost deterministic (i.e.,
the standard deviation is very small), which gives a coeﬃcient of determination R
2
= 99%
for the linear regression model obtained.
0 10 20 30 40 50
Time (s)
0 5 10 15 20 25
Number of keys (millions)
IPs (r = 3) Linear regression
(a) IPs collection
0 20 40 60
Time (s)
0 5 10 15 20 25
Number of keys (millions)
URLs (r = 3) Linear regression
(b) URLs collection
Figure 2.14: Number of keys in S versus generation time for the RAM algorithm that
works on acyclic random hypergraphs with r = 3. The solid line corresponds to a linear
regression model for the generation time (R
2
= 99%).
To conclude this section we now compare the two versions of the RAM algorithm by
taking n = 1, 12 and 24 million keys in the two collections and by considering generation
time and storage space as metrics. Table 2.1 presents the respective conﬁdence intervals
for the generation time, which is given by the average time ± the distance from average
time considering a conﬁdence level of 95%, and the respective values for the storage space.
It is possible to see that the generation time, as expected, is inﬂuenced by the key length
(IPs are 4 bytes long and URLs are 64 bytes long on average), and the storage space is
not. It is also possible to see that the fastest algorithm, for r = 3, also generates the most
compact functions.
2.3.2 Comparison with the Main Practical Results in the Liter-
ature
The main practical perfect hashing algorithms we found in the literature to compare the
RAM algorithm with are: Botelho, Kohayakawa and Ziviani [12] (referred to as BKZ),
Fox, Chen and Heath [38] (referred to as FCH), Majewski, Wormald, Havas and Czech [55]
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n
RAM algorithm
Generation Time (sec) Storage Space
IPs URLs Bits/Key Size (MB)
1 × 10
6
r = 2 3.09 ± 0.28 4.00 ± 0.34 3.60 0.43
r = 3 1.32 ± 0.01 1.61 ± 0.01 2.62 0.31
12 × 10
6
r = 2 48.30 ± 4.42 59.04 ± 5.47 3.60 5.15
r = 3 23.2 ± 0.02 26.31 ± 0.06 2.62 3.75
24 × 10
6
r = 2 101.59 ± 9.13 125.65 ± 11.35 3.60 10.30
r = 3 51.19 ± 0.03 57.39 ± 0.04 2.62 7.50
Table 2.1: Comparison of the two versions of the RAM algorithm considering generation
time and storage space, and using n = 1, 12, and 24 million keys for the two collections.
(referred to as MWHC), and Pagh [61] (referred to as PAGH). For the MWHC algorithm
we used the version based on random hypergraphs with r = 3. We did not consider the one
that uses random graphs because it is shown in [12] that the BKZ algorithm outperforms
it. The BKZ algorithm is presented in Chapter 6.
We used the hash function presented in [50] for all the algorithms. For all the experi-
ments we used n = 3, 541, 615 keys for the two collections. The reason to choose a small
value for n is because the FCH algorithm has exponential time on n for the generation
phase, and the times explode even when a number of keys are a little over.
We ﬁrst compare the RAM algorithm for constructing MPHFs with the other algo-
rithms, considering generation time and storage space. Table 2.2 shows that the RAM
algorithm for r = 3, and the MWHC algorithm are faster than the others in generating
MPHFs. This is because they work on random acyclic hypergraphs with r = 3 and the
probability of obtaining such a hypergraph tends to 1 as n tends to inﬁnity. Therefore,
they scan the whole key set stored in external memory once with high probability, whereas
all the other algorithms scan the whole key set everytime a failure occurs and they have a
higher probability of failure.
It is also important to note that the resulting functions of the RAM algorithm are the
most compact functions. The storage space requirements in bits per key for the two versions
of the RAM algorithm are 3.6 when r = 2, and 2.62 when r = 3. For the BKZ, MWHC
and PAGH algorithms they are log n, 1.23 log n and 2.03 log n bits per key, respectively.
Therefore, the RAM algorithm is the best choice for sets that can be handled in main
memory.
We now compare the algorithms considering evaluation time. Table 2.3 shows the
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Algorithms
Generation Time (sec) Storage Space
IPs URLs Bits/Key Size (MB)
RAM
r = 2 11.39 ± 1.33 16.73 ± 1.89 3.60 1.52
r = 3 5.46 ±0.01 6.74 ± 0.01 2.62 1.11
BKZ 9.22 ± 0.63 11.33 ±0.70 21.76 9.19
FCH 2, 052.7 ±530.96 2, 400.1 ± 711.60 4.22 1.78
MWHC 5.98 ± 0.01 7.18 ± 0.01 26.76 11.30
PAGH 39.18 ± 2.36 42.84 ± 2.42 44.16 18.65
Table 2.2: Comparison of the algorithms for constructing MPHFs considering generation
time and storage space, and using n = 3, 541, 615 for the two collections.
evaluation time for a random permutation of the n keys. Although the number of memory
probes at retrieval time of the MPHF generated by the PAGH algorithm is optimal [61]
(it performs only 1 memory probe), it is important to note in this experiment that the
evaluation time is smaller for the FCH and the RAM algorithms because the generated
functions ﬁt entirely in the machine’s L2 cache (see the storage space size for the RAM
algorithm and the FCH algorithm in Table 2.2). Therefore, the more compact an MPHF
is, the more eﬃcient it is if its description ﬁts in the cache. For example, for sets of size
up to 13 million keys of any type the resulting functions generated by the RAM algorithm
with r = 3 will entirely ﬁt in a 4 megabyte L2 cache.
Algorithms
RAM
BKZ FCH MWHC PAGH
r = 2 r = 3
Evaluation IPs 1.19 1.16 1.33 0.75 1.53 1.30
Time (sec) URLs 2.12 2.11 2.24 1.61 2.46 2.20
Table 2.3: Comparison of the algorithms considering evaluation time and using the collec-
tions IPs and URLs with n = 3, 541, 615.
In a converse situation, where the functions do not ﬁt in the cache, the MPHFs gener-
ated by the PAGH algorithm are the most eﬃcient, as shown in Table 2.4.
Finally, we compare the PHFs and MPHFs generated by the diﬀerent versions of the
RAM algorithm. Table 2.5 shows that the generation times for PHFs and MPHFs are
almost the same, with the algorithms for r = 3 being the fastest because the probability
of obtaining an acyclic 3-graph for c = 1.23 tends to one, whereas the probability for a
2-graph where c = 2.09 tends to 0.29 (see Section 2.2.1). For PHFs with m = 1.23n,
the storage requirement drops from 2.62 to 1.95 bits per key when r = 3. The PHFs with
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Algorithms
RAM
BKZ FCH MWHC PAGH
r = 2 r = 3
Evaluation IPs 7.11 8.02 4.86 − 6.29 4.60
Time (sec) URLs 10.17 11.49 9.29 − 9.61 9.25
Table 2.4: Comparison of the algorithms considering evaluation time and using the collec-
tions IPs and URLs with n = 15, 000, 000.
m = 2.09n, and m = 1.23n are the fastest at evaluation time because no ranking or packing
information needs to be computed.
RAM
m
Generation Time (sec) Eval. Time (sec) Sto. Space
r Packed IPs URLs IPs URL s Bits/Key
2
no
2.09n 10.50 ± 1.24 14.79 ± 1.58 0.68 1.63 2.09
yes
n 11.39 ± 1.33 16.73 ± 1.89 1.19 2.12 3.60
no
1.23n 5.51 ± 0.01 6.76 ± 0.01 0.79 1.68 2.46
3 yes
1.23n 5.54 ± 0.01 6.78 ± 0.02 0.79 1.71 1.95
no n 5.46 ± 0.01 6.74 ±0.01 1.16 2.11 2.62
Table 2.5: Comparison of the PHFs and MPHFs generated by the RAM algorithm, con-
sidering generation time, evaluation time and storage space metrics using n = 3, 541, 615
for the two collections. For packed schemes see Sections 2.2.3 and 2.2.4.
2.4 Conclusions
We have presented an eﬃcient algorithm to generate a family of near-space optimal PHFs
or MPHFs for key sets that can be handled in the internal memory. The algorithm accesses
memory in a random fashion and then was called internal random access algorithm (RAM).
The space necessary to describe the functions takes a constant number of bits per key.
The space usage depends on the relation between the size m of the hash table and the size
n of the input. For m = n, the space usage is in the range 2.62n to 4.44n bits, depending on
the constants involved in the construction and in the evaluation phases. For m = 1.23n the
space usage is in the range 1.95n to 2.46n bits. In all cases, this is within a small constant
factor from the information theoretical minimum of approximately 1.44n bits for MPHFs
and 0.89n bits for PHFs, something that has not been achieved by previous algorithms,
except asymptotically for very large n (i.e, n > 2
300
).
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The resulting functions are evaluated for a given element of a key set in constant
time. Moreover, as the generated function is space economical, its evaluation is likely to
be performed in the CPU cache, which is very eﬃcient in time. However, the resulting
MPHFs still assume uniform hashing. In Chapter 3 we present a particular engineering of
the split-and-share technique [30] to simulate a uniform hash function on small key buckets.
This result is used by the EM algorithm presented in Chapter 4 to generate simple and
near space-optimal PHFs and MPHFs without assuming uniform hashing.
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Chapter 3
Using Split-and-Share to Simulate
Uniform Hash Functions
In this chapter we show how to use the split-and-share approach presented in [30] to
simulate uniform hash functions on each of the small key buckets generated by the EM
algorithm (the EM algorithm is described in detail in Chapter 4). Our implementation
has two advantages compared to the implementation described in [30]. First, it generates
a family of hash functions for each bucket, with only a constant factor of space overhead.
This is necessary because the RAM algorithm needs to be able to choose new hash functions
when it fails because the random graph induced by the current hash functions contains
cycles. Second, the hash function is well suited for string data, and the buckets obtained
are provably very small – a fact that we exploit in the implementation.
We describe how to implement a single hash function in the family. To get the r
hash functions needed for the RAM algorithm we conceptually just keep r representations
(r = 3). In the implementation we exploit the fact that the number of random accesses can
be kept down by merging the hash function representations, as explained in Section 3.2.2.
A previous version of this result was presented in [15].
This chapter is organized as follows. In Section 3.1 we show how to split the key set
into small buckets. In Section 3.2 we show how to simulate uniform hash functions on the
small buckets. Finally, in Section 3.3 we conclude this chapter.
49
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3.1 Splitting
The ﬁrst ingredient we need is a hash function that maps the keys of S to N
b
= 2
b
buckets,
such that all buckets are of approximately the same size. If a uniform hash function is
used and N
b
< n/ log n, it is well known that the largest bucket will contain O(n/N
b
) keys
with high probability. Most explicitly deﬁned hash functions (e.g., universal or polynomial
hash functions) have much weaker guarantees. However, in [2] it is shown that if we ﬁx a
concrete family of universal hash functions, it is possible to considerably diminish the loss
by using universal hash functions. We want to apply the following result presented in [2],
where N
b
is assumed to be a power of 2:
Theorem 6 [2] Let H be the family of all linear transformations over Galois ﬁeld 2, or
simply GF(2), the ﬁeld of two elements, mapping {0, 1}
L
to {0, 1}
b
. Let N
b
= 2
b
and
suppose that N
b
≤ n/ log n. Let S ⊆ {0, 1}
L
be a set of size n, and pick h
0
∈ H uniformly
at random. Then the expected size of the largest bucket when hashing S using h
0
is
O(n log log(n)/N
b
).
To apply the above result we need to identify strings with bit vectors in {0, 1}
L
. Since
we are dealing with zero-terminated strings, this is simple: Just pad with extra zeros at
the end to get a string of L bits. As we will see shortly, the time to hash a string will be
proportional to its length, not proportional to L.
The theorem says that the expected size of the largest bucket is within a factor
O(log log n) of the average bucket size. This means that with a function from H we can
split the set into O(n log log(n)/ℓ) buckets of maximum size ℓ. Thus, for a given constant
κ > 0 we have:
2
b
≤
κn log log(n)
ℓ
b ≤ log n + log log log n − log ℓ + log κ (3.1)
For the EM algorithm to generate functions with space complexity O(n) bits we have
to impose the following restriction on ℓ:
N
b
≤
n
log n
ℓ ≥ κ log n log log n
ℓ = Ω(log n log log n) (3.2)
We will not analyze the constant in the number of buckets – instead, our algorithm
simply chooses the smallest number of buckets possible with a given hash function. Tech-
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nically this means that the space usage of the EM algorithm, as it is implemented, will be
O(n) bits only in expectation. However, given an upper bound on the constant of Theo-
rem 6 we may turn this into a worst-case space bound by picking a new function h
0
until
the maximum bucket size is close to the expectation. Our implementation is engineered
to work with maximum bucket size ℓ = 256. For extremely large sets (hundreds of billions
of keys) a larger maximum bucket size ℓ is needed to keep the space at O(n) bits. This
happens because ℓ increases asymptotically with n, as shown in Eq. (3.2).
Let h
0
: {0, 1}
L
→ {0, 1}
b
be a function from the family H of Theorem 6 with the
following form: h
0
= Ax, where A is a b × L matrix with entries in GF(2). To represent
h
0
we need to store the bL bits of the matrix A. A matrix-vector product Ax can be
implemented by adding the columns corresponding to 1s in x. Note that addition of vectors
over GF(2) corresponds to bit-wise exclusive-or. For example, let us consider L = 3 bits,
b = 3 bits, x = 110 and
A =



1 0 1
0 0 1
1 1 0



·
Then
h
0
(x) =



1 0 1
0 0 1
1 1 0






1
1
0



=



1
0
1



+



0
0
1



=



1
0
0



The evaluation time for this is O(L), assuming that a column vector can be stored in
one machine word. To obtain faster evaluation we use a tabulation idea from [3] that gives
evaluation time O(L/ log σ) by using space O(σL/ log σ log n) for σ > 0. Note that if x is
short, e.g. 8 bits, we can simply tabulate all the function values and compute h
0
(x) by
looking up the value in an array. To make the same thing work for longer keys, split the
matrix A into parts of 8 columns each: A = A
1
|A
2
|. . . |A
⌈L/8⌉
, and create a lookup table
h
0,i
for each submatrix. Similarly split x into parts of 8 bits, x = x
1
x
2
. . . x
⌈L/8⌉
. Now h
0
(x)
is the bit-wise exclusive-or of h
0,i
[x
i
], for i = 1, . . . , ⌈L/8⌉. Therefore, we have set σ to 256
so that keys of size L can be processed in chunks of log σ = 8 bits. Observe that all zero
characters in a string can simply be skipped, since their contribution to the matrix-vector
product will be zero. This means that the evaluation time is proportional to the number
of characters in the input string.
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3.2 Simulating Uniform Hash Functions
The second ingredient of split-and-share is a single hash function ρ that, when applied to the
keys of a single bucket, behaves like a fully random hash function with high probability.
This function can then be shared among all buckets. As stated earlier, we will in fact
present a way of generating a family of hash functions such that for any bucket, each
function behaves like a fully random function with high probability. Technically, this is
done by making ρ a function of two parameters (see Eq. (3.3)), where the second parameter
s describes which function in the family is used. To make the analysis go through we need
the fact that for any bucket, the functions in the family are pairwise independent.
3.2.1 The Shared Function
Let y
1
, . . . , y
k
be independently chosen functions from a pairwise independent family of
functions from {0, 1}
L
to {0, 1}
δ
, where 2
δ
≫ ℓ is a parameter to be chosen later. Also,
let p be a prime number, and k a positive integer. We will use a variation of a family due
to [31] that achieves full independence with high probability on small sets:
ρ(x, s ) =

k

j=1
t
j
[y
j
(x)] + s × t
′
j
[y
j
(x)]

mod p. (3.3)
The tables t
1
, . . . , t
k
and t
′
1
, . . . , t
′
k
contain 2
δ
random values from {0, . . . , p − 1}. We
prove the following lemma to obtain the independence property we need:
Lemma 2 For any s
i
, s
′
i
∈ {1, . . . , p −1}, s
i
= s
′
i
, B
i
⊆ S of size |B
i
|, where B
i
is the set
of keys in bucket i, the following holds: With probability at least 1 − |B
i
|(|B
i
|/2
δ
)
k
over
the choice of y
1
, . . . , y
k
the function values ρ(x, s), x ∈ B
i
, s ∈ {s
i
, s
′
i
} are independent and
uniformly distributed in {0, . . . , p − 1}.
Proof. Consider arbitrary values v
x,s
∈ {0, . . . , p−1}, for x ∈ B
i
, s ∈ {s
i
, s
′
i
}. Indepen-
dence means that the probability that ρ(x, s) = v
x,s
for all x ∈ B
i
, s ∈ {s
i
, s
′
i
} is p
−2|B
i
|
. To
arrive at a suﬃcient condition for independence, consider how the entries of t
1
, . . . , t
k
and
t
′
1
, . . . , t
′
k
are accessed when computing ρ(x, s) for x ∈ B
i
and s ∈ {s
i
, s
′
i
}. Assume that
a key x ∈ B
i
has an associated unique entry y
j
x
(x) in t
j
x
and t
′
j
x
, that is not read when
evaluating ρ on keys in B
i
−{x}. Then for any choice of values in other entries, the values
ρ(x, s
i
) and ρ(x, s
′
i
) are independent and uniformly distributed in {0, . . . , p − 1}. This is
because there is exactly one choice of t
j
x
[y
j
x
(x)] and t
′
j
x
[y
j
x
(x)] for each value of v
x,s
i
, v
x,s
′
i
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(two independent linear equations with two variables in GF(p)). In conclusion, a suﬃcient
condition for independence is that we can assign a unique entry to each x ∈ B
i
.
Since y
1
, . . . , y
k
are chosen from a pairwise independent family we know that for any
x ∈ B
i
the probability that x does not have a unique entry is at most (|B
i
|/2
δ
)
k
. By the
union bound, the probability that some key in B
i
does not have a unique entry is at most
|B
i
|(|B
i
|/2
δ
)
k
.
3.2.2 Using the Shared Function
We want to use the shared function to implement the RAM algorithm on the buckets. In
fact, we will use three independent shared functions ρ
0
, ρ
1
, ρ
2
, one for each hash function
needed by RAM. However, for reasons explained below all three functions will use the same
functions y
1
, . . . , y
k
.
Deﬁnition 20 Let |B
i
| denote the number of keys mapped by h
0
to bucket B
i
and m
i
=
c|B
i
|
3
, for c ≥ 1.23, then
h
i0
(x) = ρ
0
(x, s
i
) mod m
i
h
i1
(x) = ρ
1
(x, s
i
) mod m
i
+ m
i
h
i2
(x) = ρ
2
(x, s
i
) mod m
i
+ 2m
i
The variable s
i
is speciﬁc for bucket i. The algorithm randomly selects s
i
from
{1, . . . , p − 1} until the functions h
i0
, h
i1
, and h
i2
work with the RAM algorithm of Sec-
tion 2.2.4, which is used to generate a PHF or an MPHF for each bucket. We will prove
in Section 3.2.3 that, with high probability, a constant fraction of the set of all choices of
s
i
works.
In the implementation we have focused on ways to make the memory access pattern
more local when computing h
i0
, h
i1
, h
i2
. This is to make better use of the CPU cache.
The idea is that the tables used for storing the function descriptions are merged, such that
all 6 values looked up using y
1
(x) (two in each function ρ
j
, where 0 ≤ j ≤ 2) are stored in
consecutive memory locations, and so on for y
2
(x), . . . , y
k
(x).
3.2.3 Analysis of The Shared Function
By Lemma 2 the probability that we fail to get a family of fully random hash functions
for all buckets is at most

i
|B
i
|(|B
i
|/2
δ
)
k
≤ n(ℓ/2
δ
)
k
. If we choose, for example, δ =
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⌈log(
3
√
nℓ)⌉ and k ≥ 4, we have that this probability is o(1/n). Then, it will succeed with
high probability, i.e., 1 − o(1/n).
Finally, we need to show that it is possible to obtain, with high probability, a value
of s
i
such that the functions h
i0
, h
i1
, and h
i2
make the RAM algorithm work for B
i
.
There are two issues. First, the functions h
i0
, h
i1
, and h
i2
do not produce values that
are exactly uniformly distributed in {0, . . . , |B
i
| − 1}, because |B
i
| does not divide p.
However, it is not hard to see that the probability of a particular set of hash function
values (or, in the analysis of RAM, of a particular graph) is close to the probability in the
uniformly distributed case. More speciﬁcally, the probability is at most a factor e
m
i
|B
i
|/p
higher, because the probability of getting a given set of hash values is upper bounded by
⌈p/m
i
⌉
|B
i
|
/p
|B
i
|
≤ (1 + m
i
/p)
|B
i
|
m
−|B
i
|
i
≤ e
m
i
|B
i
|/p
m
−|B
i
|
i
. Since p ≫ ℓ ≥ |B
i
| this means
that the failure probability will be very close to the uniform case.
The second issue is to show that even though any single choice of s
i
makes RAM fail
with constant probability, ε
err
< 1, then with high probability there are many values of s
i
that will make RAM work. We may assume that the choice of y
1
, . . . , y
k
was successful, i.e.,
that all functions in Deﬁnition 20 are fully random on all buckets. The expected number X
of choices of s
i
that makes the hash functions fail is ε
err
p, since there are p possible values
for s
i
. Lemma 2 tells us that the events that the hash functions fail, for any two diﬀerent
values of s
i
, are independent. This means that Var(X) is bounded by the expectation,
and consequently Var(X) ≤ ε
err
p. Chebyshev’s inequality (see e.g. [58]) then says that
the probability that more than p(1 + ε
err
)/2 choices of s
i
make the hash functions fail is
bounded by (1 − ε
err
)
2
/p.
3.2.4 Implementation Details
The family of linear hash functions over GF(2) enables us to compute the functions h
0
,
y
1
, y
2
, y
3
, . . . , y
k
in parallel. The idea is to take a linear function h
′
: {0, 1}
L
→ {0, 1}
γ
from
the family of linear hash functions analyzed in [2] that produces a γ-bit ﬁngerprint for each
key x ∈ S ⊆ {0, 1}
L
with suﬃciently many bits, and chop the hash function values into
(disjoint) parts. Clearly, these functions will be independent.
The keys in S are mapped to a γ-bit ﬁngerprint set F . The value of γ must be encoded
by at least b + kδ bits so that a single ﬁngerprint will be able to represent the values of
functions h
0
, y
1
, y
2
, y
3
, . . . , y
k
. As the keys in S are assumed to be all distinct, then all
ﬁngerprints in F should be distinct as well. As the function h
′
comes from a family of
universal hash functions [2], the probability that there exist two keys that have the same
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values under all functions is at most

n
2

/2
b+kδ
. This probability can be made negligible by
choosing k and δ appropriately.
In the implementation we used a function that produces γ = 96 bits. The 32 most
signiﬁcant bits are used to compute h
0
, i.e., h
0
(x) = h
′
(x)[65, 96] >> (32 −b), where x ∈ S
and the symbol >> denotes the right shift of bits. The other 64 bits correspond then to
the values of y
1
(x), y
2
(x), . . . y
k
(x), for k = 4, leading to δ = 16. However, to save space
for storing the tables used for computing h
i0
, h
i1
, and h
i2
, we hard coded the linear hash
function to make the most signiﬁcant bit of each chunk of 16 bits equal to zero. Therefore,
δ = 15.
The last parameter related to the hash functions we need to talk about is the prime
number p. It should be chosen as large as possible, and in all cases p ≫ ℓ. In the
implementation we set it to the largest 32-bit integer that is prime, i.e, p = 4294967291.
Although it is always possible to set up a conﬁguration in which the EM algorithm
will work with high probability, the implementation is engineered for ℓ = 256. We have
two reasons for choosing ℓ = 256. The ﬁrst one is to keep the bucket size small enough to
be represented by 8-bit integers. The second is to allow the memory accesses during the
generation time and the resulting function evaluation to be done in the CPU cache most
of the time.
In experiments we noticed that the constant κ presented in Eq. (3.1) and in Eq. (3.2)
is in the range 0 < κ < 1. For instance, taking n = 1, 024 billion keys we got b = 23 and
therefore κ ≈ 0.42. This holds for smaller values of n, see Section 4.3.1. Therefore, based
on those experimental results, it is possible to estimate the largest problem we can solve in
32-bit and 64-bit architectures. The largest problem we can solve in a 32-bit architecture
is a key set with 500 billion keys. The problem here is that for larger sets more than 32
bits would be required to address a single bucket, i.e., b > 32. But in 64-bit architecture
we can deal with sets of sizes up to 1, 8 ×10
21
keys with high probability. For larger sets b
would require more than 64 bits. We remark that these estimates are based on the constant
κ ≈ 0.42 obtained experimentally and this can change for n asymptotically large.
3.3 Conclusions
We have presented a particular engineering of the split-and-share technique [30] to simulate
a uniform hash function on the small buckets generated by the EM algorithm presented in
Chapter 4. The main contribution is that we are able to generate a family of uniform hash
functions for each bucket with only a constant factor of space overhead. This is necessary
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because the RAM algorithm needs to be able to choose new hash functions when it fails
due to the occurrence of cycles in the random graph induced by the current hash functions.




Chapter 4
The External Cache-Aware Perfect
Hashing Algorithm
In this chapter we use a number of techniques from the literature to obtain a novel external
memory perfect hashing algorithm, referred to as EM algorithm, which is cache-aware. The
EM algorithm is for key sets that do not ﬁt in the internal memory. The main novelties
are: (i) it uses external memory to allow the generation of PHFs or MPHFs for sets on
the order of a billion keys; (ii) it generates the resulting functions without assuming that
uniform hash functions are available for free; and (iii) it partitions the input into buckets
small enough to ﬁt in the CPU cache.
The EM algorithm produces MPHFs that requires approximately 3.3 bits per key of
storage space. For PHFs with range {0, . . . , 1.23n − 1} the space usage drops to approx-
imately 2.7 bits per key. The main insight supporting the EM algorithm is that it splits
the incoming key set S into small buckets containing at most ℓ = 256 keys. Then, a PHF
or an MPHF is generated for each bucket and using an oﬀset array we obtain a PHF or an
MPHF for the whole set S. Therefore, the EM algorithm works on subsets of size lower
than 256 and this increases the probability of cache hits. That is why the EM algorithm
generates the functions as fast as the algorithms that operate only on data structures stored
in internal memory.
The EM algorithm increases one order of magnitude in the size of the greatest key set
for which an MPHF was obtained in the literature [12]. This improvement comes from a
combination of a novel perfect hashing scheme that greatly simpliﬁes previous methods,
and the fact that the EM algorithm is designed to make good use of memory hierarchy.
Also, the algorithm is theoretically sound because we have completely analyzed its time
57
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and space usage without unrealistic assumptions. This is a accomplished because the RAM
algorithm used to generate an MPHF for each bucket uses the hash functions designed in
Chapter 3, which simulate uniform hash functions on small buckets.
We demonstrate the scalability of the EM algorithm by considering a set of 1.024
billion strings (URLs from the world wide web of average length 64), for which we con-
struct a MPHF on a commodity PC in approximately 50 minutes. If we use the range
{0, . . . , 1.23n −1}, the space for the PHF is less than 324 MB, and we still get hash values
that can be represented in a 32 bit word. Certainly, the EM algorithm will be useful for a
number of current and practical data management problems that were not possible before.
A previous version of the EM algorithm was presented in [15].
This chapter is organized as follows. In Section 4.1 we present the EM algorithm. In
Section 4.2 we analyze the EM algorithm. In Section 4.3 we evaluate the EM algorithm
experimentally. Finally, in Section 4.4 we conclude this chapter.
4.1 Design of the EM Algorithm
The EM algorithm is also a two-step randomized algorithm of Las Vegas type because it
uses the Las Vegas type RAM algorithm in its second step, as illustrated in Figure 1.2.
The ﬁrst step, referred to as partitioning step, takes a key set S ⊆ {0, 1}
L
and uses a hash
function h
0
: S → {0, 1}
b
to partition S into N
b
= 2
b
buckets for some integer b. The
second step, referred to as searching step, generates a PHF or an MPHF for each bucket
i, 0 ≤ i < N
b
, and computes the oﬀset array. The PHFs or MPHFs for the buckets are
generated with the version of the RAM algorithm described in Section 2.2.4.
The EM algorithm generates a family J of PHFs or MPHFs, deﬁned as follows:
Deﬁnition 21 Let B
i
= {x ∈ S | h
0
(x) = i} denote the ith bucket. Let f
i
∈
F(PHF, MPHF) denote a PHF if f
i
∈ PHF or an MPHF if f
i
∈ MPHF on B
i
.
Let M
i
be the maximum value of f
i
on B
i
plus one, and oﬀset[i] =

i−1
j=0
M
i
. Note that, if
f
i
∈ MPHF, then M
i
= |B
i
|. Let H be the family of linear hash functions presented in
Section 3.1. Therefore,
J(F, H) = {f | f(x) = f
i
(x) + oﬀset[i], i = h
0
(x), f
i
∈ F, h
0
∈ H} (4.1)
is a family of PHFs or MPHFs for the whole set S. Thus, the problem is reduced to
computing and storing the function f
i
for each bucket and the oﬀset array.
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Now we are going to design and analyze the EM algorithm to prove the following
theorem:
Theorem 7 For a given key set S ⊆ {0, 1}
L
with n keys, where L = O(1) is the maximum
key length in bits, the family H of all linear transformations over GF(2), a function h
0
: S →
{0, 1}
b
taken uniformly at random from H, an induced set of buckets ξ = {B
i
| B
i
= {x ∈
S | h
0
(x) = i}}, where |ξ| = N
b
= 2
b
, max |B
i
| = ℓ, b ≤ log n+log log log n−log ℓ+log κ, ℓ ≥
κ log n log log n, for κ > 0, it is possible to ﬁnd in expected linear time all functions f
i
∈ F,
0 ≤ i < N
b
, and the oﬀset array so that any function f ∈ J can be computed in O(1) time
and described in log(3)cn+o(n)+O(log n) bits if f is a PHF, and in (2+ǫ)cn+o(n)+O(log n)
bits if f is an MPHF, where c ≥ 1.23 and ǫ > 0. For that O(N
f
) computer words are
required, where N
f
= Ω(n
τ
) and 0 < τ < 1.
We consider the situation in which the set of all keys may not ﬁt in the internal memory
and so the ﬁrst step of the algorithm is necessary to deal with the keys stored on disk to
form the buckets. The EM algorithm ﬁrst scans the list of keys and computes the hash
function values that will be needed afterwards in the algorithm. These values will (with
high probability) distinguish all keys, so we can discard the original keys. It is well known
that hash values of at least 2 log n bits are required to make this work. Thus, for sets of a
billion keys or more we cannot expect the list of hash values to ﬁt in the internal memory
of a standard PC.
To form the buckets we sort the hash values of the keys according to the value of h
0
.
Since we are interested in scalability for large key sets, this is done using an implementation
of an external memory mergesort [53] with some nuances to make it work in linear time.
The total work on disk consists of reading the keys, plus writing and reading the hash
function values once. Since the h
0
hash values are relatively small (less than 15 decimal
digits) we can use radix sort to do the internal memory sorting.
We have designed two versions of the EM algorithm. The ﬁrst one uses the hash
functions described in Section 3.2, which guarantee that the EM algorithm can be made to
work for every key set with high probability. The second one uses faster and more compact
pseudo random hash functions proposed in [50], referred to as heuristic EM algorithm
from now on, because it is not guaranteed that it can be made to work for every key set.
However, empirical studies show that limited randomness properties are often as good as
total randomness in practice [2], and the heuristic EM has worked for all key sets we have
applied it to so far.
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Figure 4.1 presents a pseudo code for the EM algorithm. The detailed description of
the partitioning and searching steps are presented in Sections 4.1.1 and 4.1.2, respectively.
The internal algorithm presented in Section 2.2.4 uses three hash functions h
i0
, h
i1
, and
h
i2
to compute a function f
i
∈ F. These hash functions, as well as the hash function h
0
used in the partitioning step of the algorithm, were described in Section 3.2.
function EM (S , H, {f
0
, f
1
, . . . f
N
b
−1
}, oﬀset )
Partitioning (S , H, Files )
Searching (Files , {f
0
, f
1
, . . . f
N
b
−1
}, oﬀset )
Figure 4.1: The EM algorithm.
4.1.1 Partitioning Step
The partitioning step performs two important tasks. First, the variable-length keys are
mapped to γ-bit ﬁngerprints by using a linear hash function h
′
: S → {0, 1}
γ
taken
uniformly at random from the family H of linear hash functions presented in Section 3.1.
That is, the variable-length key set S ⊆ {0, 1}
L
is mapped to a ﬁxed-length key set F
of ﬁngerprints. Second, the set S of n keys is partitioned into N
b
buckets, where b is a
suitable parameter chosen to guarantee that each bucket has at most ℓ = Ω(log n log log n)
keys with high probability (see Eq. (3.2)). It outputs a set of Files containing the buckets,
which are merged in the searching step when the buckets are read from disk. Figure 4.2
presents the partitioning step.
The critical point in Figure 4.2 that allows the partitioning step to work in linear time
is the internal sorting algorithm. We have two reasons to choose radix sort. First, it sorts
each key block B
j
in linear time, since keys are short integer numbers (less than 15 decimal
digits). Second, it just needs O(|B
j
|) words of extra memory so that we can control the
memory usage independently of the number of keys in S.
At this point one could ask: why not to use the well known replacement selection
algorithm to build ﬁles larger than the internal memory area size? The reason is that
the radix sort algorithm sorts a block B
j
in time O(|B
j
|) while the replacement selection
algorithm requires O(|B
j
|log |B
j
|). We have tried out both versions and the one using the
radix sort algorithm outperforms the other. A worthwhile optimization we have used is
the last run optimization proposed in [53], where the last block is kept in memory instead
of dumping it to disk to be read again in the second step of the algorithm.
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function Partitioning (S , H, Files )
◮ Let β be the size in bytes of the ﬁxed-length key set F
◮ Let µ be the size in bytes of an a priori reserved internal memory area
◮ Let N
f
= ⌈β/µ⌉ be the number of key blocks that will be read from disk
into an internal memory area
1. select h
′
uniformly at random from H
2. for j = 1 to N
f
do
3. DiskReader (S
j
) {read a key block S
j
from disk}
4. Hashing (S
j
, B
j
) {store h
′
(x), for each x ∈ S
j
, into B
j
, where |B
j
| = µ}
5. BlockSorter (B
j
) {cluster B
j
into N
b
buckets using an indirect radix sort algorithm that
takes h
0
(x) for x ∈ S
j
as sorting key (i.e, the b most signiﬁcant bits
of h
′
(x)) and if any bucket B
i
has more than ℓ keys restart in the
partitioning step}
6. BlockDumper (B
j
, Files[j]) {dump B
j
to disk into Files[j]}
Figure 4.2: Partitioning step.
Figure 4.3(a) shows a logical view of the N
b
buckets generated in the partitioning step.
In reality, the γ-bit ﬁngerprints belonging to each bucket are distributed among many ﬁles,
as depicted in Figure 4.3(b). In the example of Figure 4.3(b), the γ-bit ﬁngerprints in
bucket 0 appear in ﬁles 1 and N
f
, the γ-bit ﬁngerprints in bucket 1 appear in ﬁles 1, 2 and
N
f
, and so on.
a)
...
...
b)

.
.
.
.
.
.
.
.
.
Buckets Physical View
Files[1] Files[2] Files[N
f
]
0 1 2
Buckets Logical View
N
b
− 1
Figure 4.3: Situation of the buckets at the end of the partitioning step: (a) Logical view
(b) Physical view.
This scattering of the γ-bit ﬁngerprints in the buckets could generate a performance
problem because of the potential number of seeks needed to read the γ-bit ﬁngerprints in
each bucket from the N
f
ﬁles on disk during the second step. But, as we show afterwards
in Section 4.2.1, the number of seeks can be kept small by using buﬀering techniques.
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4.1.2 Searching Step
Figure 4.4 presents the searching step. The searching step is responsible for generating
a function f
i
∈ F for each bucket (using the RAM algorithm presented in Section 2.2.4)
and for computing the oﬀset array. Statement 1 of Figure 4.4 constructs a heap H of
function Searching (Files , {f
0
, f
1
, . . . f
N
b
−1
}, oﬀset )
◮ Let H be a minimum heap of size N
f
◮ Let the order relation in H be given by
i = x[γ − b + 1, γ] for x ∈ F
1. for j = 1 to N
f
do { Heap construction }
2. Read the ﬁrst γ-bit ﬁngerprint x from Files[j] on disk
3. Insert (i, j, x) in H
4. for i = 0 to N
b
− 1 do
5. BucketReader (Files, H, B
i
) {Read bucket B
i
from disk driven by heap H}
6. i f MPHFGen (B
i
, f
i
) fails then
Restart the partitioning step
7. oﬀset[i + 1] = oﬀset[i] + |M
i
|
8. MPHFDumper (f
i
, oﬀset[i]) {Write the description of f
i
and oﬀset[i] to the disk}
Figure 4.4: Searching step.
size N
f
, which is well known to be linear on N
f
. The order relation in H is given by the
bucket address i (i.e., the b most signiﬁcant bits of x ∈ F ). Statement 4 has four steps.
In statement 5, a bucket is read from disk, as described below. In statement 6, a function
f
i
is generated for each bucket B
i
using the internal random access memory algorithm
presented in Section 2.2.4. In statement 7, the next entry of the oﬀset array is computed.
Finally, statement 8 writes the description of f
i
and oﬀset[i] to disk. Note that to compute
oﬀset[i + 1] we just need M
i
(i.e., the maximum value of f
i
in bucket B
i
) and oﬀset[i]. So,
we just need to keep two entries of the oﬀset array in memory all the time.
The algorithm to read bucket B
i
from disk is presented in Figure 4.5. Bucket B
i
is
distributed among many ﬁles and the heap H is used to drive a multiway merge operation.
Statement 2 extracts and removes triple (i, j, x) from H, where i is a minimum value in
H. Statement 3 inserts x in bucket B
i
. Statement 4 performs a seek operation in Files[j]
on disk for the ﬁrst read operation and reads sequentially all γ-bit ﬁngerprints x ∈ F that
have the same index i and inserts them all in bucket B
i
. Finally, statement 5 inserts in
H the triple (i
′
, j , x
′
), where x
′
∈ F is the ﬁrst γ-bit ﬁngerprint read from Files[j] (in
statement 4) that does not have the same bucket address as the previous keys.
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function BucketReader (Files , H , B
i
)
1. while bucket B
i
is not full do
2. Remove (i, j, x) from H
3. Insert x into bucket B
i
4. Read sequentially all γ-bit ﬁngerprints from Files[j] that have the same i
and insert them into B
i
5. Insert the triple (i
′
, j, x
′
) in H, where x
′
is the ﬁrst γ-bit ﬁngerprint read
from Files[j] that does not have the same bucket index i
Figure 4.5: Reading a bucket.
4.2 Analytical Results
4.2.1 The Linear Time Complexity
In this section we show that the EM algorithm runs in expected O(n) time. For that end
we need to show that the partitioning and searching steps run in expected O(n) time.
Analysis of the Partitioning Step
The partitioning step presented in Figure 4.2 runs in expected O(n) time. As in statement
1 we need to select a function h
′
from the family H of linear hash functions presented
in Section 3.1 and each function h
′
is described in O(L log n) bits, this statement has
cost O(L) in the Word RAM model of computation [41] with a word size equal to log n
bits (recall that L is the maximum key length in bits). Each iteration of the loop for in
statement 2 runs in O(|B
j
|) time, 1 ≤ j ≤ N
f
, where |B
j
| is the number of γ-bit ﬁngerprints
that ﬁt in block B
j
of size µ. This is because statement 3 just read |B
j
| keys from disk,
statement 4 compute the related ﬁngerprints and stores them all into the internal memory
area of size µ, statement 5 runs a radix sort algorithm that is well known to be linear on
the number of keys it sorts (i.e., |B
j
| γ-bit ﬁngerprints), and statement 6 just dumps |B
j
|
γ-bit ﬁngerprints to the disk into File[j]. Thus, the loop for runs in

N
f
j=1
O(|B
j
|) time.
As

N
f
j=1
|B
j
| = n, then the partitioning step runs in expected O(n) time. It is expected
because the partitioning step can fail in statement 5 whenever a bucket with more than ℓ
keys is generated. However, it will succeed with high probability, as showed in Section 3.2.3
and, in turn, the number of iterations is O(1).
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Analysis of the Searching Step
The searching step presented in Figure 4.4 also runs in expected O(n) time. It is expected
because the RAM algorithm used for the buckets is a randomized algorithm that can
fail with small probability for a given bucket, when we cannot ﬁnd appropriated hash
functions h
i0
, h
i1
and h
i2
. When it fails, we restart in the partitioning step. By using the
hash functions designed in Section 3.2, it is possible to make the searching step work with
high probability, then the number of iterations will be bounded by a constant.
Let us, ﬁrst, analyze the number of heap operations performed in statement 5, which
reads |B
i
| γ-bit ﬁngerprints of bucket B
i
and is detailed in Figure 4.5. It is well known
that the heap construction of statement 1 runs in O(N
f
) time. Each iteration of statement
4 performs two heap operations in statement 5 (see statements 2 and 5 in Figure 4.5) and
each one costs O(log N
f
). So, the total cost of statement 4 in terms of heap operations is
2 × N
b
× O(log N
f
). Considering that: (i) N
b
<
n
log n
and (ii) N
f
≪ n, we can conclude
that the number of heap operations is O(n).
However, in the worst case the γ-bit ﬁngerprints of bucket i are spread in at most ℓ ﬁles
on disk (recall that ℓ is the maximum number of keys found in any bucket). Therefore,
we need to take into account that the critical step in reading a bucket is in statement 4 of
Figure 4.5, where a seek operation in Files[j] may be performed by the ﬁrst read operation.
In order to amortize the number of seeks performed we use a buﬀering technique [51].
We create a buﬀer j of size q = µ/N
f
for each ﬁle j, where 1 ≤ j ≤ N
f
(recall that
µ is the size in bytes of an a priori reserved internal memory area). Every time a read
operation is requested to ﬁle j and the data is not found in the jth buﬀer, q bytes are
read from ﬁle j to buﬀer j. Hence, the number of seeks performed in the worst case is
given by β/q (remember that β is the size in bytes of the ﬁxed-length key set F ). For
that we have made the pessimistic assumption that one seek happens every time buﬀer j
is ﬁlled in. Thus, the number of seeks performed in the worst case is γn/8q, since after
the partitioning step we are dealing with γ-bit ﬁngerprints instead of 64-byte URLs, on
average. Therefore, the number of seeks is linear on n and amortized by q.
It is important to emphasize two things. First, the operating system uses techniques
to diminish the number of seeks and the average seek time. This makes the amortization
factor to be greater than q in practice. Second, almost all main memory is available to be
used as ﬁle buﬀers because just the γ-bit ﬁngerprints of the bucket being processed and
O(N
f
) words for the heap must be kept in main memory during the searching step.
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To conclude the searching step analysis we need to show that statements 6 and 8 perform
a number of operations proportional to |B
i
|. If this is true, then the rest of statement 4
runs in φ

N
b
−1
i=0
|B
i
| time, where φ is a machine-dependent constant.
Statement 6 runs the algorithm used to generate the function f
i
of each bucket. That
algorithm is linear on the number of keys it is applied to, as we have shown in Section 2.2.1.
As it is applied to buckets with |B
i
| keys, then statement 6 performs a number of operations
proportional to |B
i
|.
Statement 8 has time complexity proportional to |B
i
| because it writes to disk the
description of each generated function f
i
and each description is stored in O(|B
i
|) bits (see
Section 2.2.2 for details). As

N
b
−1
i=0
|B
i
| = n, then statement 4 runs in O(n) time. In
conclusion, the EM algorithm takes expected O(n) time because both the partitioning and
the searching steps run in expected O(n) time.
4.2.2 The Space Requirements to Describe the Functions
The description of the resulting functions is compounded by the function h
0
, the oﬀset
array, and the functions f
i
∈ F(PHF, MPH F), 0 ≤ i < N
b
. Remember that b is given
by Eq. (3.1) and N
b
< n/ log n. The function h
0
comes from the family H of linear hash
functions over GF(2) and therefore requires O(L log n) bits to be stored. By assuming that
L = O(1), then h
0
takes O(log n) bits of space. The oﬀset array has N
b
entries of log n
bits and, then, requires o(n) bits since N
b
< n/ log n.
To store each function f
i
, if f
i
∈ PHF then it requires |f
i
| = log(3)c|B
i
| bits of
space, for c ≥ 1.23. If f
i
∈ MPHF then it requires |f
i
| = (2 + ǫ)c|B
i
| + o(|B
i
|) bits of
space, for c ≥ 1.23 and ǫ > 0. Therefore,

N
b
−1
i=0
|f
i
| = log(3)cn bits if f
i
is a PHF, and

N
b
−1
i=0
|f
i
| = (2 + ǫ)cn + o(n) bits if f
i
is an MPHF.
Additionally, we need to store the hash functions h
i0
, h
i1
, and h
i2
(see Deﬁnition 20).
For this we need to store 6k tables with 2
δ
entries of log p bits, where p is a large prime
number, and the seed numbers s
i
of log p bits, where 0 ≤ i < N
b
. We can assume with no
loss of generality that log p = O(log n). Therefore, as δ = ⌈log(
3
√
nℓ)⌉ and k = 4 are values
chosen to make the EM algorithm to work with high probability and N
b
< n/ log n, then,
h
i0
, h
i1
, and h
i2
are stored in o(n) + o(n) = o(n) bits.
Putting this all together, we have that the number of bits required to store a resulting
function f ∈ J is log(3)cn+o(n)+O(log n) bits if f is a PHF and (2+ǫ)cn+o(n)+O(log n)
bits for ǫ > 0 if f is an MPHF.
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4.2.3 The Space Requirements to Generate the Functions
In this section we show that the EM algorithm presented in Figure 4.1 needs O(N
f
) com-
puter words of main memory to generate the functions of J. We need to maintain the
following data structures in internal memory.
1. The internal memory area of size µ bytes to be used in the partitioning step and in
the searching step. The size µ is ﬁxed a priori and depends only on the amount of
internal memory available to run the algorithm (i.e., it does not depend on the size
n of the problem).
2. The main memory required to run the indirect radix sort algorithm. It just needs
O(|B
j
|) words of extra memory so that we can control the memory usage indepen-
dently of the size of the problem and can be ﬁxed a priori.
3. The additional space required is O(N
f
) computer words that corresponds to the size
of the heap H used to drive a N
f
-way merge operation in the searching step, which
allows the merge operation to be performed in one pass through each ﬁle.
Therefore, as the memory usage in the partitioning step does not depend on the number
of keys in S and, in the searching step, the internal algorithm is applied to problems of size
up to ℓ keys, we can conclude that the EM algorithm requires O(N
f
) computer words to
generate a function f ∈ J. As shown in [1, Theorem 3.1], to get a linear time complexity
we need N
f
= Ω(n
τ
) computer words for 0 < τ < 1 and to allow the merge operation to
be performed in one pass we need τ = 0.5. This ends the proof of Theorem 7.
4.3 Experimental Results
The purpose of this section is to evaluate the performance of the EM algorithm and to
compare it with both the RAM algorithm presented in Chapter 2 and the algorithm by
Fox, Chen and Heath [38] (referred to as FCH). We do not consider the other practical
perfect hashing algorithms compared with the RAM algorithm in Section 2.3.2 because the
RAM algorithm outperforms them in the same experimental setup. In Section 4.3.1 we
consider key sets that cannot be handled in internal memory. In this case, the partitioning
in small buckets and the use of external memory are needed by the EM algorithm. The
experimental results for the EM algorithm match the analytical results presented in Section
4.2. In Section 4.3.2 we carry out the comparison.
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The algorithms were implemented in the C language and are available under the GNU
Lesser General Public License (LGPL) at http://cmph.sf.net. The experiments were
carried out on a computer running the Linux operating system, version 2.6, with a 1.86
gigahertz Intel Core 2 processor with a 4 megabyte L2 cache and 1 gigabyte of main
memory. For the experiments we used the same two collections considered in Chapter 2:
(i) a set of 150 million randomly generated 4 byte long IP addresses, and (ii) a set of 1, 024
million 64 byte long (on average) URLs collected from the Web.
To compare the algorithms we used the following metrics: (i) The amount of time to
generate PHFs or MPHFs, referred to as Generation Time. (ii) The space requirement
for the description of the resulting PHFs or MPHFs to be used at retrieval time, referred
to as Storage Space. (iii) The amount of time required by a PHF or an MPHF for each
retrieval, referred to as Evaluation Time.
4.3.1 Performance of the EM Algorithm
In this section we evaluate the performance of the EM algorithm considering generation
time and storage space as metrics. First, we are interested in verifying the claim that the
EM algorithm runs in linear time. Therefore, we run both versions of the algorithm for
several numbers n of keys in the two collections. The values chosen for n were 1, 2, 4, 8,
16, 32, 64, 128, 256, 512 and 1, 024 million keys. The size µ of the a priori reserved internal
memory area was set to 250 megabytes. Subsequently, we show how µ aﬀects the runtime
of the algorithm. The parameter b (see Eq. (3.1)) was set to the minimum value that gives
us a maximum bucket size lower than ℓ = 256. For each value chosen for n, the respective
values for b are 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23 bits.
In order to estimate the number of trials for each value of n we used a statistical
method for determining a suitable sample size [47, Chapter 13]. We got that just one
trial for each n would be enough with a conﬁdence level of 95%. However, we conducted
25 trials. This number of trials seems rather small but, as shown below, the behavior of
the EM algorithm is very stable and its runtime is almost deterministic (i.e., the standard
deviation is very small) because it is a random variable that follows a (highly concentrated)
normal distribution.
Figure 4.6 presents the runtime for each trial in the two collections. In addition, the solid
and dashed lines correspond to a linear regression model obtained from the experimental
measurements for both: (i) the EM algorithm and (ii) the heuristic EM algorithm (HEM).
For both versions of the EM algorithm the coeﬃcient of determination R
2
is 99%. As we
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were expecting, the runtime for a given n has almost no variation and the heuristic EM
algorithm is faster than the EM algorithm because it uses a faster pseudo random hash
function, as explained later in this section.
0 50 100 150 200
Time (s)
0 50 100 150
Number of keys (millions)
EM  Linear regression for EM
HEM  Linear regression for HEM
(a) IPs collection
0 1000 2000 3000
Time (s)
0 200 400 600 800 1000
Number of keys (millions)
EM  Linear regression for EM
HEM  Linear regression for HEM
(b) URLs collection
Figure 4.6: Number of keys in S versus generation time for the EM algorithm and the
heuristic EM algorithm. The solid and dashed lines correspond to a linear regression
model for the generation time (R
2
= 99%).
An intriguing observation is that the runtime of both versions of the EM algorithm
is almost deterministic. A given bucket i, 0 ≤ i < N
b
(recall that N
b
= 2
b
), is a small
key set (at most 256 keys) and, the runtime of the building block algorithm is a random
variable X
i
that follows a geometric distribution with mean 1/P r
a
≈ 1, because P r
a
→ 1
as n → ∞ for the RAM algorithm where r = 3. Let Y =

0≤i<N
b
X
i
denote the runtime of
the searching step of the EM algorithm. Under the hypothesis that the X
i
are independent
and bounded, the law of large numbers (see, e.g., [47]) implies that the random variable
Y/N
b
converges to a constant as n → ∞. This and the fact that the partitioning step
was never restarted because the parameter b is chosen so that the maximum bucket size
ℓ is lower than or equal to 256 with high probability explains why the runtime is almost
deterministic.
The next important metric on PHFs and MPHFs is the space required to store the
functions. Table 4.1 shows that the EM algorithm can be used for constructing PHFs and
MPHFs that require on average 2.6 and 3.21 bits per key to be stored, respectively. It also
shows that the heuristic EM algorithm outputs PHFs and MPHFs that require on average
2.51 and 3.1 bits per key to be stored, respectively.
The lookup tables used by the hash functions of the EM algorithm require a ﬁxed
storage cost of 3, 345, 409 bytes and this cost is not considered in Table 4.1. To avoid the
space needed for lookup tables we have implemented the heuristic EM algorithm. It uses
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n b
EM (Bits/key) Heuristic EM (Bits/key)
PHF MPHF PHF MPHF
10
5
9 2.41 3.00 2.32 3.04
10
6
13 2.67 3.29 2.54 3.12
10
7
16 2.53 3.13 2.42 2.97
10
8
20 2.74 3.34 2.70 3.21
10
9
23 2.67 3.29 2.55 3.12
Table 4.1: Space usage to respectively store the resulting PHFs and MPHFs of the EM
algorithm and the Heuristic EM algorithm.
the pseudo random hash function proposed in [50] to replace the hash functions described
in Chapter 3. The Jenkins function just loops around the key, doing bitwise operations
over chunks of 12 bytes. Then, it returns the last chunk. Thus, in the mapping step, the
key set S is mapped to F , which contains 12-byte long ﬁngerprints (recall that γ = 96
bits).
The Jenkins function needs just one random seed of 32 bits to be stored instead of quite
long lookup tables, a major improvement over the 3, 345, 409 bytes necessary to implement
truly random hash functions on the buckets. Therefore, there is no ﬁxed cost to store the
resulting MPHFs, but three random seeds of 32 bits are required to describe the functions
h
i0
, h
i1
and h
i2
of each bucket. As a consequence, the MPHFs generation is faster (see
Figure 4.6). The reason is that there are no large lookup tables to cause cac he misses. For
example, the generation time for a set of 1, 024 million URLs has dropped from 49.3 down
to 46.2 minutes in the same setup. The disadvantage of using the Jenkins function is that
there is no formal proof that it works for every key set. That is why the hash functions
we have designed in Chapter 3 are required, even being slower. In the implementation
available, the user can choose the hash functions to be used.
Controlling Disk Accesses
In order to lower the number of seek operations on disk we beneﬁt from the fact that both
versions of the EM algorithm leave almost all main memory available to be used as disk
I/O buﬀer. In this section we evaluate how much the parameter µ aﬀects the runtime of
both versions of the EM algorithm. For that we ﬁxed n in 1, 024 million URLs and used µ
equal to 100, 200, 300, 400, 500, and 600 megabytes.
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Table 4.2 presents the number of ﬁles N
f
, the buﬀer size q used for all ﬁles, the num-
ber of seeks β/q in the worst case, considering the pessimistic assumption mentioned in
Section 4.2.1, and the time to generate a PHF or an MPHF for 1, 024 million URLs as a
function of the amount of internal memory available. Remember that β is the size in bytes
of the ﬁxed-length key set F , and β = 12n for both the EM algorithm and the heuristic EM
algorithm. Observing Table 4.2 we noticed that the time spent in the generation decreases
as the value of µ increases. However, for µ > 400, the time variation is not as signiﬁcant
as for µ ≤ 400. This can be explained by the fact that the kernel 2.6 I/O scheduler of
Linux has smart policies for avoiding seeks and diminishing the average seek time (see
http://www.linuxjournal.com/article/6931).
µ (MB)
EM Heuristic EM
N
f
q (KB) β/q time (min) N
f
q (KB) β/q time (min)
100 301 340 47, 059 59.8 226 453 26, 491 56.0
200 119 1, 721 9, 297 50.0 89 2, 301 5, 216 46.4
300 74 4, 151 3, 855 48.5 56 5, 485 2, 188 45.3
400 54 7, 585 2, 110 47.2 41 9, 990 1, 202 44.4
500 43 11, 906 1, 344 47.0 32 16, 000 750 44.0
600 35 17, 554 912 47.0 26 23, 630 508 44.0
Table 4.2: Inﬂuence of the internal memory area size (µ) in the runtime of both versions of
the EM algorithm to construct PHFs or MPHFs for 1.024 billion URLs (time in minutes).
4.3.2 Comparison with RAM and FCH Algorithms
We used the hash function presented in [50] for all the algorithms, except for the EM
algorithm, where we used the one designed in Chapter 3. For all the experiments we used
n = 3, 541, 615 keys for the two collections. The reason to choose a small value for n is
because the FCH algorithm has exponential time on n for the generation phase, and the
times explode even when a number of keys are a little over.
We ﬁrst compare the EM algorithm for constructing MPHFs with both the RAM and
FCH algorithms, considering generation time and storage space. Table 4.3 shows that the
RAM algorithm for r = 3, the EM and heuristic EM algorithms are faster than the FCH
algorithm in generating MPHFs. The performance of both versions of the EM algorithm is
quite surprising once they use external memory at generation time and the other algorithms
do not. The reason is twofold. First, both versions of the EM algorithm simply scan the
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whole key set once and maps it to a set of ﬁxed length ﬁngerprints. Second, as the whole
key set is broken into buckets with at most 256 keys, the memory is accessed in a less
random fashion which implies fewer cache misses.
Algorithms
Generation Time (sec) Storage Space
IPs URLs Bits/Key Size (MB)
RAM
r = 2 11.39 ± 1.33 16.73 ± 1.89 3.60 1.52
r = 3 5.46 ±0.01 6.74 ± 0.01 2.62 1.11
EM 5.86 ± 0.17 7.68 ± 0.22 3.31 1.40
Heuristic EM 5.56 ± 0.16 6.27 ± 0.11 3.17 1.34
FCH 2, 052.7 ±530.96 2, 400.1 ± 711.60 4.22 1.78
Table 4.3: Comparison of the algorithms for constructing MPHFs considering generation
time and storage space, and using n = 3, 541, 615 for the two collections.
It is also important to note that the resulting functions of the RAM and EM algorithms
are the most compact functions. The storage space requirements in bits per key for the
two versions of the RAM algorithm are 3.6 when r = 2, and 2.62 when r = 3. For the
EM and heuristic EM algorithms the storage space requirements are 3.21 and 3.17 bits
per key, respectively. Therefore, the RAM algorithm is the best choice for sets that can
be handled in main memory and the EM algorithm is the ﬁrst one that can be eﬃciently
applied to sets that do not ﬁt in main memory. We remark that the EM algorithm can also
be applied to key sets that can be handled in internal memory and the RAM algorithm
fails when applied to them, because the RAM algorithm assumes uniform hashing for free
and the EM algorithm does not.
We now compare the algorithms considering evaluation time. Table 4.4 shows the
evaluation time for a random permutation of the n keys. In this experiment the only
resulting MPHF that does not ﬁt entirely in the machine’s L2 cache is the one generated
by the EM algorithm. This is because the size of the lookup tables used to compute the
functions. That is why they are the slowest functions. The MPHFs generated by the FCH
algorithm are the fastest ones because they are optimal in terms of memory probes, as the
ones by Pagh [61]. That is, just one memory probe is performed in their computation (see
the form of those MPHFs in Section 1.6.3.) Thus, the more compact an MPHF is, the
more eﬃcient it is if its description ﬁts in the cache. However, functions that carry out
less memory probes are preferred. The main problem with the FCH algorithm is the time
to generate a MPHF, which is exponential on n.
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Algorithms
RAM
EM
Heuristic
FCH
r = 2 r = 3
EM
Evaluation IPs 1.19 1.16 2.72 1.75 0.75
Time (sec) URLs 2.12 2.11 4.36 2.73 1.61
Table 4.4: Comparison of the algorithms considering evaluation time and using the collec-
tions IPs and URLs with n = 3, 541, 615.
Finally, we compare the PHFs and MPHFs generated by the diﬀerent versions of the
RAM and EM algorithms. Table 4.5 shows that the generation times for PHFs and MPHFs
are almost the same, with the algorithms for r = 3 being the fastest because the probability
of obtaining an acyclic 3-graph for c = 1.23 tends to one, whereas the probability for a
2-graph where c = 2.09 tends to 0.29 (see Sections 2.2.1). For PHFs with m = 1.23n,
the storage requirement drops from 2.62 to 1.95 bits per key when r = 3. The PHFs
with m = 2.09n, and m = 1.23n are the fastest at evaluation time because no ranking or
packing information needs to be computed. The slowest MPHFs are generated by the EM
algorithm. Nevertheless, the diﬀerence is not so signiﬁcant (each key can be evaluated in
few microseconds) and the EM algorithm is the ﬁrst eﬃcient option for sets that do not
ﬁt in main memory.
RAM
m
Generation Time (sec) Eval. Time (sec) Sto. Space
r Packed IPs URLs IPs URL s Bits/Key
2
no
2.09n 10.50 ± 1.24 14.79 ± 1.58 0.68 1.63 2.09
yes
n 11.39 ± 1.33 16.73 ± 1.89 1.19 2.12 3.60
no
1.23n 5.51 ± 0.01 6.76 ± 0.01 0.79 1.68 2.46
3 yes
1.23n 5.54 ± 0.01 6.78 ± 0.02 0.79 1.71 1.95
no n 5.46 ± 0.01 6.74 ± 0.01 1.16 2.11 2.62
EM
1.23n 5.82 ± 0.17 7.34 ± 0.05 2.27 3.97 2.76
n 5.86 ± 0.17 7.68 ± 0.22 2.72 4.36 3.31
Heuristic EM
1.23n 5.47 ± 0.16 5.97 ± 0.09 1.44 2.43 2.62
n 5.56 ± 0.16 6.27 ± 0.11 1.75 2.73 3.17
Table 4.5: Comparison of the PHFs and MPHFs generated by our algorithms, considering
generation time, evaluation time and storage space metrics using n = 3, 541, 615 for the
two collections. For packed schemes see Sections 2.2.3 and 2.2.4.
It is important to emphasize that the RAM and FCH algorithms, as well as the other
ones considered in Section 2.3.2 were analyzed under uniform hashing assumption. There-
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fore, the EM algorithm is the ﬁrst one that has experimentally proven practicality for
large key sets and with both space usage for representing the resulting functions and the
generation time having been carefully proven. Additionally, it constructs the functions ef-
ﬁciently and the resulting functions are much simpler than the ones generated by previous
theoretically well-founded schemes so that they can be used in practice. Furthermore, it
considerably improves the ﬁrst step taken by Pagh with his hash and displace method [61]
in the way it joins theory and practice for perfect hashing.
4.4 Conclusions
In this chapter we presented a time eﬃcient, highly scalable and near space-optimal perfect
hashing algorithm. The basic idea to obtain scalability is to partition the input key set
into small buckets. It is an external memory algorithm suitable for key sets larger than
the size of the internal memory available. In this case, it partitions the input key set into
small buckets such that each bucket ﬁts in the CPU cache and then was called cache-aware
external memory algorithm (EM).
We perform an external sorting to partition the input key set into small buckets. Then,
we handle each bucket separately. Splitting the problem into small buckets has both
theoretical and practical implications. From the theoretical point of view we show how to
simulate fully random hash functions on the small buckets, being able to prove that the
EM algorithm will work for every key set with high probability. From the practical point of
view we show how to make buckets that are small enough to ﬁt in the CPU cache, resulting
in a signiﬁcant speedup in processing time per element compared to other methods known
in the literature.
The dominating phase in the construction of the functions consists of external sorting
n ﬁngerprints of O(log n) bits in O(n) time. The construction algorithm is highly scalable
because it uses a little amount of internal memory to work, basically the space necessary
to accommodate a heap that drives a multiway merge operation, which is O(n
ǫ
) computer
words to have linear time complexity, where 0 < ǫ < 1. In our case, as we want to perform
the merge operation in one pass, we need ǫ = 0.5 (see, e.g., [1, Theorem 3.1]).
The space necessary to describe the functions takes a constant number of bits per key.
The space usage depends on the relation between the size m of the hash table and the size
n of the input. For m = n, the space usage is in the range 3.1n to 3.3n bits, depending
on which version of the algorithm is used (i.e., EM or Heuristic EM). For m = 1.23n the
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space usage is in the range 2.5n to 2.7n bits. In all cases, this is within a small constant
factor from the information theoretical minimum of approximately 1.44n bits for MPHFs
and 0.89n bits for PHFs, something that has not been achieved by previous algorithms,
except asymptotically for very large n. The resulting functions are evaluated for a given
element of a key set in constant time.
The algorithm is theoretically well understood and is the ﬁrst one with theoretical
properties that scale for billions of keys and can be used in practice. We have illustrated
the scalability of our algorithm by constructing an MPHF for a set of 1.024 billion URLs
from the World Wide Web of average length 64 characters in approximately 50 minutes,
using a commodity PC.
Finally, the algorithm is suitable for a distributed and parallel implementation. For
instance, in the next chapter we present one implementation that is able to generate an
MPHF for a set of 14.336 billion 16-byte integer keys in 50 minutes using 14 commodity
PCs, achieving an almost linear speedup.




Chapter 5
A Highly Scalable and Parallel
Perfect Hashing Algorithm
In this chapter we present a parallel version of the Extern al Memory (EM) algorithm
presented in Chapter 4. The EM algorithm allows the generation of PHFs or MPHFs for
sets in the order of billions of keys. For instance, if we consider an MPHF that requires 3.3
bits per key to be stored, for 1 billion URLs it would take approximately 400 megabytes.
Considering now the time to generate an MPHF, taking the same set of 1.024 billion URLs
as input, the algorithm outputs an MPHF in approximately 50 minutes using a commodity
PC. It is well known that big search engines are nowadays indexing more than 20 billion
URLs. Then, we are talking about approximately 8 gigabytes to store a single MPHF and
approximately 1,000 minutes to construct an MPHF. Thus, two problems arise when the
input key set size increases: (i) the amount of time to generate an MPHF becomes large
for a single machine, and (ii) the storage space to describe an MPHF might be unsuitable
for a single machine.
This motivated us to design parallel implementation of the EM algorithm, referred to
as Parallel External Memory (PEM) algorithm from now on. The algorithm was designed
for the PRAM model [67]. This model consists of a control unit, global memory, and an
unbounded set of processors, each with its own private memory and executing identical
instructions. In our implementation the network was considered the global memory and
the processors share information by exchanging messages.
The PEM algorithm distributes both the construction and the description of the result-
ing functions. For instance, by using a 14-computer cluster the PEM algorithm generates
a PHF or an MPHF for 1.024 billion URLs in approximately 4 minutes, achieving an al-
75
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most linear speedup. Also, for 14.336 billion 16-byte random integers evenly distributed
among the 14 participating machines the PEM algorithm outputs a PHF or an MPHF in
approximately 50 minutes, resulting in a performance degradation of 20%. To the best
of our knowledge there is no previous result in the perfect hashing literature that can be
implemented in a parallel way to obtain better scalability and performance than the results
presented hereinafter. A previous version of the PEM algorithm was presented in [11].
This chapter is organized as follows. In Section 5.1 we present the metrics used for
evaluating the PEM algorithm. In Section 5.2 we describe the PEM algorithm in detail.
In Section 5.3 we evaluate the PEM algorithm experimentally. Finally, we conclude in
Section 5.4.
5.1 Metrics Used to Evaluate The PEM Algorithm
To evaluate the performance of the PEM algorithm we use two metrics: speedup and scale-
up. By ﬁxing the problem size, the speedup refers to how much a parallel algorithm is
faster than a corresponding sequential algorithm, and is deﬁned as:
Deﬁnition 22 The speedup S
p
of a parallel algorithm using p processors is:
S
p
=
T
1
T
p
, (5.1)
where T
1
is the execution time of the sequential algorithm and T
p
is the execution time of
the parallel algorithm with p processors.
Deﬁnition 23 The eﬃciency E
p
of a parallel algorithm using p processors is:
E
p
=
S
p
S
max
, (5.2)
where
S
max
=
p
1 + f × (p − 1)
(5.3)
is the maximum speedup a parallel algorithm can achieve and 0 < f < 1 corresponds to
the sequential portion of the parallel algorithm (i.e., the fraction that cannot be improved
using parallelism). This comes from the Amdahl’s law [67].
By increasing the problem size proportionally to the number of processors p, the scale-
up refers to the ability of solving a problem p times larger in the same amount of time the
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corresponding sequential algorithm would solve a problem 1/p times lower and is deﬁned
as:
Deﬁnition 24 The scale-up U
p
of a parallel algorithm using p processors is:
U
p
=
T
p
T
1
, (5.4)
where T
1
is the execution time of the sequential algorithm to solve a problem of size X
and T
p
is the execution time of the parallel algorithm with p processors to solve a problem
of size pX.
5.2 Parallel Algorithm
In this section we describe the Parallel External Memory (PEM) algorithm. As mentioned
before, the main motivation for implementing a parallel version of the EM algorithm is
scalability in terms of the size of the key set that has to be processed. In this case, we
must assume that the keys to be processed will be distributed among several machines.
Further, both the buckets and the construction of the hash functions for each bucket are
also distributed among the participating machines. In this scenario, the partitioning and
the searching steps present diﬀerent requirements when compared to the sequential version,
as we discuss next.
In Section 5.2.1 we discuss how to speedup the construction of a PHF or an MPHF
by distributing the buckets (during the partitioning phase) and the construction of the
functions f
i
(remember that f
i
is either a PHF or an MPHF) for each bucket (during the
searching phase) among the participating machines. In Section 5.2.2 we present a version
of the PEM algorithm where both the description and the evaluation of the resulting
function is centralized in one machine, from now on referred to as PEM-CE. In Section 5.2.3
we present another version of the PEM algorithm where both the description and the
evaluation of the resulting function are distributed among the participating machines, from
now on referred to as PEM-DE.
5.2.1 Parallel Construction
In this section we present the steps that are common to both PEM-CE and PEM-DE
algorithms. We employed two types of processes: manager and worker. This scheme is
shown in Figure 5.1.




[image: alt]78 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM
Manager
Worker
0
Worker
1
Worker
p-1
. . .
Figure 5.1: The manager/worker scheme.
The manager acts like the control unit of the PRAM model [67] and is responsible
for assigning tasks to the workers, determining global values during the execution, and
dumping the resulting PHFs or MPHFs received from the workers to disk. This last task
is diﬀerent for the PEM-CE and PEM-DE algorithms, as we will show later on.
The worker stores a partition of the key set, its buckets and the related PHF or MPHF of
each bucket. Each worker sends and receives data from other workers whenever necessary.
The workers are implemented as thread-based processes, where each thread is responsible
for a task, allowing larger overlap between computation and communication (disk and
network) in both steps of the algorithm.
Our major challenge in producing such a parallel version is that we do not know in
advance which keys will be clustered together in the same bucket. Our strategy in this
case is to migrate data whenever necessary. On the other hand, once we have the buckets,
we are able to generate the functions.
The manager starts the processing by sending the overall assignment of buckets to
workers before each worker starts processing its portion of the keys, so that each worker
becomes aware of the worker to which keys (actually, ﬁngerprints) must be sent. For that
veriﬁcation, the manager sends the following information: (i) the function h
′
∈ H used to
compute the ﬁngerprints; (ii) the worker identiﬁer i, where 0 ≤ i < p and p is the number
of workers; and (iii) the number of buckets per worker, which is given by B
pw
= ⌈N
b
/p⌉
(recall that N
b
is the number of buckets). Therefore, each worker i is responsible for the
buckets in the range [iB
pw
, (i + 1)B
pw
− 1].
Each worker then starts reading a key k ∈ S, applies the received hash function h
′
and veriﬁes whether it belongs to another worker. For that each worker i computes w =
h
0
(k)/B
pw
and checks if w = i (recall that h
0
(k) corresponds to the b most signiﬁcant bits
of h
′
(k).) If it is the case, it sends the corresponding ﬁngerprint to the worker w, otherwise,
it stores the ﬁngerprint locally for further processing.
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Figure 5.2: The partitioning step in the worker.
Figure 5.2 illustrates the partitioning step in each worker. The partitioning step of the
sequential algorithm presented in Figure 4.2 is divided into four major tasks: data reading
(line 3), hashing (line 4), block sorting (line 5), and block dumping (line 6).
As depicted in Figure 5.2, the worker is divided into the following six threads:
1. Disk Reader: it reads the keys from the worker’s portion of the set S and puts them
in Queue 1. When there are no more keys to be read, then an end of ﬁle marker is
put in Queue 1.
2. Hashing: it gets the keys from Queue 1 and generates the ﬁngerprints for the keys, as
mentioned in Section 4.1.1. This thread then checks whether the key being currently
analyzed is assigned to another worker. If it is, its ﬁngerprint is passed to the Sender
thread through Queue 5, otherwise its ﬁngerprint is placed in Queue 2. When there
are no more keys to be processed in Queue 1, then an end of ﬁle marker is put in
both Queue 2 and 5.
3. Sender: it sends a ﬁngerprint taken from Queue 5 to the worker that is responsible
for it. When there are no more ﬁngerprints in Queue 5, then an end of ﬁle marker is
sent to all other workers.
4. Receiver: it receives ﬁngerprints sent from other workers through the net, and puts
them in Queue 3. It ﬁnishes its work when an end of ﬁle marker is received from all
other workers.
5. Block Sorter: it takes ﬁngerprints from Queues 2 and 3 until a buﬀer of size µ/2
bytes is completely full (recall that µ is the amount of internal memory available),
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Figure 5.3: The searching step in the worker.
organizes them into buckets, and puts them in Queue 4. The process is repeated
until an end of ﬁle marker is obtained from both Queues 2 and 3. In this case, it also
places an end of ﬁle marker in Queue 4.
6. Block Dumper: it takes the buckets from Queue 4 and writes them to disk, for further
processing by the searching step. It ﬁnishes when an end of ﬁle marker is taken from
Queue 4.
After each worker ﬁnishes the partitioning step, it sends the size of each bucket to the
manager, which then calculates the oﬀset array. This does not depend on the searching
step, so the manager may compute the oﬀset array whereas the workers are performing the
searching step.
Figure 5.3 illustrates the searching step in each worker. It consists of generating the
functions f
i
for each bucket i (remember that f
i
is either a PHF or an MPHF.) The searching
step of the sequential algorithm of Figure 4.4 is divided into three tasks: bucket reading
(line 5), PHF or MPHF construction (lines 6 and 7), and PHF or MPHF dumping (line
8). Notice that, in this step, there is no need for communication between workers, since
the generation of function f
i
for each bucket does not depend on keys that are in other
buckets.
Again, the worker is divided into threads of execution, each thread being responsible
for a task. Following Figure 5.3, the worker is divided into the following two threads:
1. Bucket Reader : it reads the buckets from disk, and puts them in Queue 1. When
there are no more buckets to be read, then an end of ﬁle marker is put in Queue 1.
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2. MPHF Gen: it gets buckets from Queue 1 and generates the functions for them until
no more bucket remains. It can be instantiated t times, where t can be thought of
as the number of processors of the machine.
5.2.2 Centralized Evaluation of the Resulting Functions
In this section we present the PEM-CE algorithm, where both the description and the
evaluation of the resulting PHF or MPHF is centralized in a single machine (the one
running the manager process).
After each worker ﬁnishes the partitioning step, it sends the size of each bucket to the
manager, which then calculates the oﬀset array. This does not depend on the searching
step, so the manager may compute the oﬀset array whereas the workers are performing the
searching step. After each worker ﬁnishes the construction of the PHFs or MPHFs of their
buckets, it sends them to the manager, that will then write sequentially the ﬁnal PHF or
MPHF to disk, and the algorithm resumes.
The task of writing the ﬁnal PHF or MPHF to disk corresponds to the sequential part
of the algorithm and represents approximately 0.5% of the execution time. Thus, there is
a fraction of 99.5% of the execution time from which we can exploit parallelism. That is
why the PEM-CE algorithm can be considered an embarrassingly parallel algorithm.
The evaluation of the resulting functions is done in the same way as it is done in the
sequential algorithm presented in Section 4.1 (see Deﬁnition 21).
5.2.3 Parallel Evaluation of the Resulting Functions
In this section we present the PEM-DE algorithm, where both the description and the
evaluation of the resulting function are distributed and stored locally in each worker. The
PEM-DE algorithm calculates a localoﬀset array in each worker, in the same way as it is
done in the searching step of the sequential algorithm shown in Figure 4.4 (see line 7). At
the end of the partitioning step, each worker sends the number of keys assigned to it to the
manager, which calculates a globaloﬀset, whereas the workers are performing the searching
step.
To evaluate a key k using the resulting PHF or MPHF function f, the manager ﬁrst
discovers the worker w that generated the PHF or MPHF for the bucket in which k is
(recall that this is done by calculating w = h
0
(k)/B
pw
). Then, the key k (actually, its




[image: alt]82 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM
ﬁngerprint) is sent to the worker w, which calculates locally a partial result
f
partial
(k) = f
i
(k) + localoﬀset[i],
where i = h
0
(k) mod B
pw
is the local bucket address where k belongs and localoﬀset[i]
gives the total number of keys before bucket i. Once this partial result is calculated, it is
sent back to the manager, which calculates the ﬁnal result
f (k) = f
partial
(k) + globaloﬀset[w],
where globaloﬀset[w] has p entries and gives the total number of keys handled by the
workers before worker w.
The downside of this is that the evaluation of a single key is harmed, due to the
communication overhead between the manager and the workers. However, if the system
is being fed by a key stream, the average performance will improve because p keys can be
evaluated in parallel by p workers. This will indeed happen because the keys are uniformly
placed in the buckets by using a hash function, which will balance the key stream among
the p workers. The experimental results in Section 5.3 conﬁrm this fact.
Other advantage of the PEM-DE algorithm is that the workers do not need to send the
PHFs or MPHFs generated locally for the buckets they are responsible for to the manager.
Instead, they are written in parallel by the workers. Therefore, in this case, the fraction of
parallelism we can potentially exploit corresponds to 100% of the execution time.
Therefore, as shown in Section 5.3, the PEM-DE algorithm provides a slightly better
construction time than the PEM-CE algorithm. But the main advantage of the PEM-
DE algorithm is that it distributes the resulting PHF or MPHF among several machines.
When the number n of keys in the key set S grows, the size of the resulting PHF or
MPHF also grows linearly with n. For very large n, it may not be possible to represent
the resulting function in just one machine, whereas the PEM-DE algorithm addresses this
by distributing uniformly the resulting function.
5.2.4 Implementation Decisions
In this section we present and discuss some implementation decisions that aim to reduce
the overhead of the parallel algorithms we just described.
A very ﬁrst decision is to exploit multiprogramming in the worker, motivated not only
by the characteristics of the execution platform, but also by the complementary proﬁles of
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the steps, which are either CPU or I/O-intensive. As a result, we are able to maximize the
overlap between computation and communication, represented by disk and network traﬃc.
Further, in order to reduce the overhead due to context changes we grouped steps
(described in Section 5.2.1) into fewer threads, as detailed next. This strategy speeds up
the execution time, even on a single core machine, which is our case.
Disk
Net
Disk
Reader
Receiver
Hashing/
Block
Sorter
Block
Dumper
Disk
Net
Queue 1
Queue 3
Queue 4
Queue 5
Sender
Figure 5.4: The actual partitioning step used in the experiments.
In the partitioning step, the Hashing and Block Sorter threads were grouped together
into a single thread, as shown in Figure 5.4. Notice that these two steps are the most CPU-
intensive and the merge would prevent them to contend for the CPU. As a result, one thread
is almost always keeping the CPU busy, while the remaining threads are usually waiting for
system calls to resume (Disk Reader reading data from disk, Net Reader receiving messages
from the net, and Block Dumper writing buckets back to disk whenever necessary).
In the searching step, the structure replicates the step-based division presented, but
instantiating just one MPHF Gen thread (i.e., t = 1), as shown in Figure 5.5.
Disk
Bucket
Reader
MPHF
Gen
Queue 1
Figure 5.5: The actual searching step used in the experiments.
We also coalesced messages for both reducing the number of system calls associated
with exchange messages and better exploiting the available bandwidth. That is, we group
the ﬁngerprints that were going to be sent from one to another worker in buﬀers of a ﬁxed
size.
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5.3 Experimental Results
The purpose of this section is to evaluate the performance of both the PEM-CE and PEM-
DE algorithms in terms of speedup and scale-up (see Deﬁnitions 22 and 24), considering
the impact of the key size in both metrics. We also verify whether the load is balanced
among the workers. To compute the metrics we use the time to construct a PHF or an
MPHF in the parallel algorithms. We remark that we simpliﬁed a lot our experimental
evaluation. For instance, we did not analyze the inﬂuence of some factors (e.g., message
coalescing) in the speedup and scale-up. Our aim in this section is to illustrate that
the two versions of the PEM algorithm are embarrassingly parallel but a more thorough
experimental evaluation is left to be done as a future work.
The experiments were run in a cluster with 14 equal single core machines, each one
with 2.13 gigahertz, 64-bit architecture, running the Linux operating system version 2.6,
and 2 gigabytes of main memory.
For the experiments we used three collections: (i) a set of URLs collected from the web,
(ii) a set of randomly generated 16-byte integers, and (iii) a set of randomly generated 8-
byte integers. The collections are presented in Table 5.1. The main reason to choose these
three diﬀerent collections is to evaluate the impact of the key size on the results.
Collection Average key size n (billions)
URLs 64 1.024
Random 16 1.024
Integers 8 1.024
Table 5.1: Collections used for the experiments.
In Section 5.3.1 we discuss the impact of key size on speedup and scale-up. In Sec-
tion 5.3.2 we study the communication overhead. In Section 5.3.3 we discuss the load
balance among workers. In Section 5.3.4 we discuss the parallel evaluation of an MPHF
when the function is being fed by a key stream. The same results were obtained for a PHF
and therefore were not presented.
5.3.1 Key Size Impact
In this section we evaluate the impact of the key size and how it changes as we increase
the number of processors. We use both speedup and scale-up as metrics for performing
such evaluation.
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In order to compute the speedup we need the execution time of the sequential EM
algorithm. Table 5.2 shows how much time the EM algorithm requires to build an MPHF
for 1.024 billion keys taken from each collection shown in Table 5.1.
n (billion) Collection time (min.)
64-byte URLs 50.02
1.024 16-byte integers 39.35
8-byte integers 34.58
Table 5.2: Time in minutes of the sequential algorithm (EM) to construct an MPHF for
1.024 billion keys.
We start by evaluating the speedup of the parallel algorithm and perform three sets of
experiments, using the three collections presented in Table 5.1 and varying the number of
machines from 1 to 14.
Table 5.3 presents the maximum speedup (S
max
), the speedup S
p
and the eﬃciency E
p
for both the PEM-CE and PEM-DE algorithms for each collection. In almost all cases, the
speedup was very good, achieving an eﬃciency of up to 93% using 14 machines, conﬁrming
the expectations of that not only there is a parallelism opportunity to be exploited, but also
it is signiﬁcative enough that allows good eﬃciencies even for relatively large conﬁgurations.
The comparison between PEM-CE and PEM-DE also shows that the strategy employed
in PEM-DE was eﬀective.
It is remarkable that the key size impacts the observed speedups, since the eﬃciency
for the 64-byte URLs is greater than 90% for all conﬁgurations evaluated, but for 16-byte
and 8-byte random integers it is greater than or equal to 90% only for p ≥ 12 and p ≥ 6,
respectively. This happens because when we decrease the key size, the amount of compu-
tation decreases proportionally in the partitioning step, but the amount of communication
remains constant since the γ-bit ﬁngerprints will continue with the same size γ = 96 bits
(or 12 bytes.) The size γ of a ﬁngerprint depends on the number of keys n, but does not
depend on the key size [15]. Therefore, the smaller is the key size, the smaller is the value of
p to fully exploit the available parallelism, resulting in eventual performance degradation.
A graphical view of the speedups can also be seen in Figure 5.6.
We performed similar sets of experiments for evaluating the scale-up and the results
are presented in Table 5.5 and Figure 5.7, where we may conﬁrm the good scalability
of the algorithm, which allows just 17% of degradation when using 14 machines to solve
a problem 14 times larger. These results show that not only the algorithm proposed is
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S
max
64-byte URLs 16-byte random integers 8-byte random integers
p
PEM-CE PEM-DE PEM-CE PEM-DE PEM-CE PEM-DE
PEM-CE PEM-DE
S
p
E
p
S
p
E
p
S
p
E
p
S
p
E
p
S
p
E
p
S
p
E
p
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.99 2.00 1.96 0.98 1.99 1.00 1.89 0.95 1.90 0.95 1.91 0.96 1.91 0.96
4 3.94 4.00 3.85 0.98 3.90 0.98 3.76 0.95 3.81 0.95 3.54 0.90 3.63 0.91
6 5.85 6.00 5.62 0.96 5.78 0.96 5.68 0.97 5.70 0.95 5.27 0.90 5.42 0.90
8 7.73 8.00 7.73 1.00 8.00 1.00 7.41 0.96 7.78 0.97 6.74 0.87 6.98 0.87
10 9.57 10.00 9.21 0.96 9.61 0.96 9.01 0.94 9.57 0.96 8.03 0.84 8.33 0.83
12 11.37 12.00 10.85 0.95 11.37 0.95 10.61 0.93 11.05 0.92 9.07 0.80 9.30 0.78
14 13.15 14.00 12.18 0.93 13.06 0.93 11.59 0.88 12.44 0.89 9.97 0.76 10.48 0.75
Table 5.3: Speedup obtained with a conﬁdence level of 95% for both the PEM-CE and
PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each machine).
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(b) 16-byte random integers
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Figure 5.6: Speedup obtained with a conﬁdence level of 95% for both the PEM-CE and
PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each machine).
eﬃcient, but also is very eﬀective dealing with larger datasets. For instance, in Table 5.4
it is shown that the performance degradation is up to 20% even for 14.336 billion keys
evenly distributed among 14 machines. Again, the key size has a deﬁnite impact on the
performance.
5.3.2 Communication Overhead
We now analyze the communication overhead. There is a signiﬁcant overhead associated
with message traﬃc among workers in the net. Since the hash function h
0
is a linear hash
function [15] that behaves closely to a fully random hash function, the chance of a given
key in the key set S belonging to a given bucket is close to
1
N
b
. Since each worker has
N
b
p
buckets, the chance that a key it reads belongs to another worker is close to
p−1
p
. Since




[image: alt]5.3. EXPERIMENTAL RESULTS 87
n Random integer Construction time (min)
(billions) collections EM PEM-DE U
p
14.336
16-byte 41.17 49.5 1.20
8-byte 34.58 58.00 1.68
Table 5.4: Scale-up obtained with a conﬁdence level of 95% for the PEM-DE algorithm
considering 14.336 billion keys (1.024 billion keys in each machine).
64-byte URLs 16-byte random integers 8-byte random integers
p
PEM-CE PEM-DE PEM-CE PEM-DE PEM-CE PEM-DE
t (min) U
p
t (min) U
p
t (min) U
p
t (min) U
p
t (min) U
p
t (min) U
p
1 3.71 1.00 3.68 1.00 2.68 1.00 2.70 1.00 2.00 1.00 2.00 1.00
2 3.76 1.01 3.71 1.01 2.74 1.02 2.69 1.00 2.16 1.08 2.11 1.06
4 3.84 1.03 3.77 1.03 2.77 1.03 2.71 1.00 2.44 1.22 2.35 1.17
6 3.91 1.05 3.81 1.04 2.82 1.05 2.73 1.01 2.68 1.34 2.58 1.29
8 3.96 1.07 3.82 1.04 2.94 1.10 2.76 1.02 3.04 1.52 2.82 1.41
10 4.02 1.08 3.83 1.04 3.10 1.15 2.86 1.06 3.25 1.62 3.10 1.55
12 4.02 1.08 3.84 1.05 3.23 1.20 3.02 1.12 3.48 1.74 3.29 1.64
14 4.11 1.11 3.85 1.05 3.40 1.27 3.16 1.17 3.47 1.73 3.30 1.65
Table 5.5: Scale-up obtained with a conﬁdence level of 95% for both the PEM-CE and
PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each machine).
each worker has to read
n
p
keys from disk, it will send through the net approximately
n(p − 1)
p
2
·
Thus, the total traﬃc τ of ﬁngerprints through the net is approximately
τ ≈
n(p − 1)
p
· (5.5)
Table 5.6 shows the minimum and maximum amount of keys sent to the net by a
worker. It also shows the expected amount computed by using Eq. (5.5). As it shows, the
empirical measurements are really close to the expected value.
That results in a relevant overhead due to communication among the workers, and as
the number of workers increases, the speedup can be penalized if the network bandwidth
is not enough for the traﬃc. In our 1 gigabit ethernet network this was not a problem for
at most 14 workers.
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Figure 5.7: Scale-up obtained with a conﬁdence level of 95% for both the PEM-CE and
PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each machine).
p
Keys sent by a worker to the net
Max (%) Min (%) τ (%)
2 50.005 49.996 50.000
4 75.008 74.994 75.000
6 83.339 83.327 83.333
8 87.506 87.492 87.500
10 90.009 89.991 90.000
12 91.673 91.657 91.667
14 92.864 92.849 92.857
Table 5.6: Worst, best and expected percentage of keys sent by a worker to the net.
5.3.3 Load Balancing
In this section we quantify the load imbalance and correlate it with the results. An im-
portant issue is how much the load is balanced among the workers. The load depends
on the following parameters: (i) the number of keys each worker reads from disk in the
partitioning step; (ii) the number of buckets each worker is responsible for; (iii) the number
of keys in each bucket.
The ﬁrst two parameters are ﬁxed by construction and are evenly distributed among
the workers. The only parameter that could present some variation in each execution is
the last one. However, as we use the hash function h
0
to split the key set into buckets, it
was shown in [15] that each key goes to a given bucket with probability close to 1/N
b
and
therefore the distribution of the bucket sizes follows a binomial distribution with average
n
p
/B
pw
, where n
p
=

B
pw
−1
i=0
|B
i
| is the number of keys each worker has stored in the
buckets it is responsible for and B
pw
is the number of buckets per worker.
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It is also shown in [15] that the largest bucket is within a factor O(log log n
p
) of the
average bucket size. Therefore, n
p
has a very small variation from worker to worker, which
makes the load balanced among the p machines. Table 5.7 presents experimental results
conﬁrming this, as the diﬀerence between the execution time of the fastest worker (t
fw
)
and the slowest worker (t
sw
) was less than or equal to 0.1 minutes.
p
PEM-CE PEM-DE
t
fw
t
sw
t
sw
−t
fw
t
fw
t
sw
t
sw
−t
wb
2 25.27 25.37 0.10 25.01 25.06 0.05
4 12.94 13.04 0.10 12.78 12.86 0.09
6 8.58 8.69 0.11 8.53 8.65 0.11
8 6.19 6.26 0.07 6.18 6.25 0.07
10 5.14 5.22 0.08 5.11 5.20 0.09
12 4.31 4.39 0.08 4.32 4.40 0.07
14 3.81 3.88 0.07 3.76 3.84 0.08
Table 5.7: Fastest worker time (t
fw
), slowest worker time (t
sw
), and diﬀerence between
t
sw
and t
fw
to show the load balancing among the workers for 1.024 billion 64-byte URLs
distributed in p machines. The times are in minutes.
5.3.4 Parallel Evaluation
In this section we show that the parallel evaluation of an MPHF is worth when compared to
the ones generated by both the sequential and PEM-CE algorithms. These results assume
that the parallel function is being fed by a key stream, instead of one key at a time.
Table 5.8 shows the times that both the EM algorithm and PEM-DE algorithm needs to
evaluate one billion keys taken at random. As expected, the parallel evaluation was faster
because p keys of the key stream can be evaluated in parallel by p participating machines.
Here we also used the message coalescing technique. We remark that a more thorough
evaluation must be done to identify the impact of the message coalescing technique in the
parallel evaluation time.
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Collection
Evaluation time (min)
EM PEM-DE
64-byte URLs 33.11 21.68
16-byte random integers 24.54 11.47
8-byte random integers 18.2 10.1
Table 5.8: Evaluation time in minutes for both the sequential algorithm EM and the
parallel algorithm PEM-DE algorithm, considering 1 billion keys.
5.4 Conclusions
In this chapter we have presented a parallel implementation of the External Memory (EM)
perfect hashing algorithm presented in Chapter 4. We have designed two versions. The
PEM-CE algorithm distributes the construction of the resulting PHFs or MPHFs among
p machines and centralize the evaluation and description of the resulting functions in a
single machine, as in the sequential case. Then the goal in this version is to speedup the
construction of the PHFs or MPHFs by exploiting the high degree of parallelism of the EM
algorithm. The PEM-DE algorithm distributes both the construction and the evaluation of
the resulting functions. In this version the goal is to allow the descriptions of the resulting
functions be uniformly distributed among the participating machines.
We have evaluated both the PEM-CE and PEM-DE algorithms using speedup and scale-
up as metrics. Both versions presented an almost linear speedup, achieving an eﬃciency
larger than 90% by using 14-computer cluster and keys of average size larger than or
equal to 16 bytes. For smaller keys, e.g. 8-byte integers, we have shown that the existent
parallelism between computation and communication is captured with 90% of eﬃciency by
using a smaller number of machines (e.g, p = 6). This was as expected, because the smaller
is the key the smaller is the amount of computation, but the amount of communication
remains constant for a given number n of keys, penalizing the speedup.
We have also shown that both the PEM-CE and PEM-DE algorithms scale really well
for larger keys. Smaller keys also impose restrictions on the scalability due to the smaller
degree of overlap between computation and communication aforementioned. To illustrate
the scalability, the time to generate an MPHF for 14.336 billion 16-byte random integers
using a 14-computer cluster with 1.024 billion 16-byte random integers in each machine is
just a factor of 1.2 more than the time spent by the sequential algorithm when applied to
1.024 billion keys.




Chapter 6
MPHFs and Random Graphs With
Cycles
In this chapter we describe two algorithms for constructing minimal perfect hash functions
based on random graphs with cycles. A previous version of the ﬁrst algorithm was presented
by Botelho, Kohayakawa and Ziviani in [12]. For this reason it will be referred to as BKZ
algorithm, which is an acronym for its author names. The second algorithm uses the same
techniques used in the BKZ algorithm to speedup the execution time of the RAM algorithm
that works on random acyclic bipartite graphs, which is presented in Chapter 2.
The reason to use random graphs with cycles comes from the fact that the functions are
generated faster and are more compact than the ones generated based on acyclic random
graphs. This is because both the generation time and the space usage of the resulting
functions depend on the number of vertices in the random graphs and the acyclic ones are
more sparse. That is, the ratio between the number of vertices and number of edges must
be larger than two.
This chapter is organized as follows. In Section 6.1 we present the BKZ algorithm and
compare the BKZ algorithm with an algorithm that was used as departure point in its
design. In Section 6.2 we show how to speedup the RAM algorithm with the techniques
used in the design of the BKZ algorithm and compare the optimized version of the RAM
algorithm with the version of the RAM algorithm presented in Chapter 2. Finally, in
Section 6.3 we conclude this chapter.
91
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6.1 The BKZ Algorithm
The BKZ algorithm shares several features with the one due to Czech, Havas and Majew-
ski [25], from now on referred to as CHM algorithm. In particular, the BKZ algorithm is
also based on the generation of random graphs G = (V, E), where E is in one-to-one cor-
respondence with the key set S for which we want to generate the hash function. The two
main diﬀerences between the BKZ algorithm and the CHM algorithm are as follows: (i) the
BKZ algorithm generates random graphs G = (V, E) with |V | = cn and |E| = |S| = n,
where c = 1.15 (|V | = 1.15n), and hence G contains cycles with high probability, whereas
the CHM algorithm generates acyclic random graphs G = (V, E) with |V | = cn and
|E| = |S| = n, with a greater number of vertices: c = 2.09 (|V | = 2.09n); (ii) The CHM
algorithm generates order preserving minimal perfect hash functions whereas the BKZ al-
gorithm does not preserve order. Thus, the BKZ algorithm improves the space requirement
at the expense of generating functions that are not order preserving.
As the CHM algorithm, the BKZ algorithm produces an MPHF in O(n) expected time
for a set of n keys. The MPHF description requires 1.15n computer words, and evaluat-
ing it requires two accesses to an array of 1.15n integers. We further derive a heuristic
that improves the space requirement from 1.15n words down to 0.93n words. The BKZ
algorithm is very practical. To generate a minimal perfect hash function for a collection
of 100 million universe resource locations (URLs), each 63 bytes long on average, the BKZ
algorithm running on a commodity PC takes 811 seconds on average. In Section 6.1.1 we
present the CHM algorithm. In Section 6.1.2 we present the design of the BKZ algorithm.
In Section 6.1.3 we compare the BKZ algorithm with the CHM algorithm experimentally.
6.1.1 The CHM algorithm
In this section we brieﬂy present the CHM algorithm. Consider a problem known as the
perfect assignment problem: For a given undirected graph G = (V, E), where |V | = cn and
|E| = n, ﬁnd a function g:V → {0, 1, . . . , |V | − 1} such that the function mphf : E →
{0, 1, . . . , n −1}, deﬁned as
mphf (e) = (g(a) + g(b)) mod n (6.1)
is a bijection, where e = {a, b}. This means that we are looking for an assignment of values
to vertices so that for each edge the sum of values associated with endpoints taken modulo
the number of edges is a unique integer in the range [0, n − 1].
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Many methods for generating MPHFs use a mapping , ordering and searching (MOS)
approach, a description coined by Fox, Chen and Heath [38]. In the MOS approach, the
construction of a minimal perfect hash function is accomplished in three steps. First, the
mapping step transforms the key set from the original universe to a new universe. Second,
the ordering step places the keys in a sequential order that determines the order in which
hash values are assigned to keys. Third, the searching step attempts to assign hash values
to the keys. The CHM algorithm uses the MOS approach as well as our algorithm presented
in Section 6.1.
The ordering and searching steps of the MOS approach are a very simple way of solving
the perfect assignment problem. Czech, Havas and Majewski [25] showed that the perfect
assignment problem can be solved in optimal time if G is acyclic. To generate an acyclic
random graph, the method assumes that two uniform hash functions h
1
and h
2
are available
for free. The functions h
1
and h
2
are constructed as follows. We impose some upper
bound L on the lengths of the keys in S. To deﬁne h
j
(j = 1,2), we generate an L × |Σ|
table of random integers table
j
. For a key x ∈ S of length |x| ≤ L and j ∈ {1, 2}, we let
h
j
(x) =


|x|−1
i=0
table
j
[i, x[i]]

mod m. (6.2)
Thus, set S has a corresponding graph G = G(h
1
, h
2
), with V = {0, 1, . . . , m − 1}, where
|V | = m, and E = {{h
1
(x), h
2
(x)} : x ∈ S}. In order to guarantee acyclicity the algorithm
repeatedly selects h
1
and h
2
until the corresponding graph is acyclic. For the solution to
be useful we must have |S| = n and m = cn, for some constant c, such that acyclic graphs
dominate the space of all random graphs. Havas et al. [44] proved that if m = cn holds
with c > 2 the probability that G is acyclic is
P r
a
= e
1/c

c − 2
c
· (6.3)
For c = 2.09 the probability of a random graph being acyclic is P r
a
>
1
3
. Consequently,
for such c, the expected number of iterations to obtain an acyclic graph is lower than 3
and the g function needs 2.09n integer numbers to be stored, since its domain is the set V
of size m = cn.
Given an acyclic graph G, for the ordering step we associate with each edge an unique
number mphf (e) ∈ [0, n − 1] in the order of the keys of S to obtain an order preserving
function. Figure 6.1 illustrates the perfect assignment problem for an acyclic graph with
six vertices and with the ﬁve function values assigned to the edges.
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The searching step starts from the weighted graph G obtained in the ordering step. For
each connected component of G choose a vertex v and set g(v) to 0. For example, suppose
that vertex 0 in Figure 6.1 is chosen and the assignment g(0) = 0 is made. Traverse the
graph using a depth-ﬁrst or a breadth-ﬁrst search algorithm, beginning with vertex v. If
vertex b is reached from vertex a and the value associated with the edge e = {a, b} is
mphf (e), set g(b) to (mphf (e) − g(a)) mod n. In Figure 6.1, following the adjacent list of
vertex 0, g(2) is set to 3. Next, following the adjacent list of vertex 2, g(1) is set to 2 and
g(3) is set to 1, and so on.
0
2
1
3
4
5
4
1
2 3
0

v g(v)
0 0
1 2
2 3
3 1
4 0
5 1
Figure 6.1: Perfect assignment problem for a graph with six vertices and ﬁve edges.
Now we show why G must be acyclic. If the graph G was not acyclic, the assignment
process might trace around a cycle and insist on reassigning some already-processed vertex
with a diﬀerent g value than the one that has already been assigned to it. For example,
let us suppose that in Figure 6.1 the edge {3, 4} has been replaced by the edge {0, 1}. In
this case, two diﬀerent values are set to g(0). Following the adjacent list of vertex 1, g(0)
is set to 4. But g(0) was set to 0 before.
6.1.2 Design of The BKZ Algorithm
We now present how our MPHF, which has the same form of the one generated by the
CHM algorithm, will be constructed. We make use of two uniform hash functions h
1
and h
2
: U → V , where V = [0, m − 1] for some suitably chosen integer m = cn, where
n = |S| (see Eq. (6.2)). We build a random graph G = G(h
1
, h
2
) on S, whose edge set
is

{h
1
(x), h
2
(x)} : x ∈ S

. There is an edge in G for each key in the key set S. Note that
in our case the random graph G may have cycles.
In what follows, we shall be interested in the 2-core of the random graph G, that is,
the maximal subgraph of G with minimal degree at least 2 (see, e.g., [8, 49]). Because of
its importance in our context, we call the 2-core the critical subgraph of G and denote it
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by G
crit
. The vertices and edges in G
crit
are said to be critical. We let V
crit
= V (G
crit
)
and E
crit
= E(G
crit
). Moreover, we let V
ncrit
= V − V
crit
be the set of non-critical vertices
in G. We also let V
scrit
⊆ V
crit
be the set of all critical vertices that have at least one
non-critical vertex as a neighbor. Let E
ncrit
= E(G) − E
crit
be the set of non-critical
edges in G. Finally, we let G
ncrit
= (V
ncrit
∪ V
scrit
, E
ncrit
) be the non-critical subgraph
of G. The non-critical subgraph G
ncrit
corresponds to the “acyclic part” of G. We have
G = G
crit
∪ G
ncrit
.
We then construct a suitable labelling g : V → Z of the vertices of G: we choose g(v)
for each v ∈ V (G) in such a way that mphf (x) = g(h
1
(x)) + g(h
2
(x)) (x ∈ S) is an MPHF
for S. We will see later on that this labelling g can be found in linear time if the number
of edges in G
crit
is at most
1
2
|E(G)|.
Figure 6.2 presents a pseudo code for the algorithm. The procedure GenerateMPHF
(S, g) receives as input the key set S and produces the labelling g. The method uses a
mapping, ordering and searching approach. We now describe each step.
procedure GenerateMPHF (S , g)
Mapping (S , G ) ;
Ordering (G , G
crit
, G
ncrit
);
Searching (G , G
crit
, G
ncrit
, g );
Figure 6.2: Main steps of the algorithm for constructing a minimal perfect hash function.
Mapping Step
The procedure Mapping (S, G) receives as input the key set S and generates the random
graph G = G(h
1
, h
2
), by generating two auxiliary functions h
1
, h
2
: U → [0, m − 1] (see
Eq. (6.2)). This is done by ﬁlling each table
j
for j ∈ {1, 2} with random integer numbers.
The random graph G = G(h
1
, h
2
) has vertex set V = [0, m − 1] and edge set

{h
1
(x), h
2
(x)} : x ∈ S

. We need G to be simple, i.e., G should have neither loops
nor multiple edges. A loop occurs when h
1
(x) = h
2
(x) for some x ∈ S. We solve this in
an ad hoc manner: we simply let h
2
(x) = (2h
1
(x) + 1) mod m in this case. If we still ﬁnd
a loop after this, we generate another pair (h
1
, h
2
). When a multiple edge occurs we abort
and generate a new pair (h
1
, h
2
).
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Analysis of the Mapping Step
We start by discussing some facts on random graphs. Let G = (V, E) with |V | = m
and |E| = n be a random graph in the uniform model G(m, n), the model in which all
the

(
m
2
)
n

graphs on V with n edges are equiprobable. The study of G(m, n) goes back to
the classical work of Erd˝os and R´enyi [33, 34, 35] (for a modern treatment, see [8, 49]).
Let d = 2n/m be the average degree of G. It is well known that, if d > 1, or, equivalently,
if c < 2 (recall that we have m = cn ), then, almost every G contains
1
a “giant” component
of order (1 + o(1))bm, where b = 1 − T/d, and 0 < T < 1 is the unique solution to the
equation T e
−T
= de
−d
. Moreover, all the other components of G have O(log m) vertices.
Also, the number of vertices in the 2-core of G (the maximal subgraph of G with minimal
degree at least 2) that do not belong to the giant component is o(m) almost surely.
Pittel and Wormald [65] present detailed results for the 2-core of the giant component
of the random graph G. Since table
j
(j ∈ {1, 2}) are random, G = G(h
1
, h
2
) is a ran-
dom graph. In what follows, we work under the hypothesis that G = G(h
1
, h
2
) is drawn
from G(m, n). Thus, following [65], the number of vertices of G
crit
is
|V (G
crit
)| = (1 + o(1))(1 − T)bm (6.4)
almost surely. Moreover, the number of edges in this 2-core is
|E(G
crit
)| = (1 + o(1))

(1 − T )b + b(d + T − 2)/2

m (6.5)
almost surely. Let d
crit
= 2|E(G
crit
)|/|V (G
crit
)| be the average degree of G
crit
. We are
interested in the case in which d
crit
is a constant.
As mentioned before, for us to ﬁnd the labelling g : V → Z of the vertices of G =
G(h
1
, h
2
) in linear time, we require that |E(G
crit
)| ≤
1
2
|E(G)| =
1
2
|S| = n/2. The crucial
step now is to determine the value of c (in m = cn) to obtain a random graph G =
G
crit
∪ G
ncrit
with |E(G
crit
)| ≤
1
2
|E(G)|.
Table 6.1 gives some values for |V (G
crit
)| and |E(G
crit
)| using Eqs (6.4) and (6.5). The
theoretical value for c is around 1.152, which is remarkably close to the empirical results
presented in Table 6.2. In this table, generated from real data, the probability P
|E(G
crit
)|
that |E(G
crit
)| ≤
1
2
|E(G)| tends to 0 when c < 1.15 and it tends to 1 when c ≥ 1.15
and n increases. We found this match between the empirical and the theoretical results
1
As is usual in the theory of random graphs, we use the terms ‘almost every’ and ‘almost surely’ to
mean ‘with probability tending to 1 as m → ∞’.
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most pleasant, and this is why we consider that this a random graph, conditioned on being
simple, strongly resembles the random graph from the uniform model G(m, n).
d T b |V (G
crit
)| |E(G
crit
)| c
1.734 0.510 0.706 0.399n 0.498n 1.153
1.736 0.509 0.707 0.400n 0.500n 1.152
1.738 0.508 0.708 0.401n 0.501n 1.151
1.739 0.508 0.708 0.401n 0.501n 1.150
1.740 0.507 0.709 0.401n 0.502n 1.149
Table 6.1: Determining the c value theoretically.
We now brieﬂy argue that the expected number of iterations to obtain a simple
graph G = G(h
1
, h
2
) is constant for m = cn and c = 1.15. Let p be the probability of
generating a random graph G without loops and without multiple edges. If p is bounded
from below by some positive constant, then we are done, because the expected number of
iterations to obtain such a graph is then 1/p = O(1).
Let X be a random variable counting the number of iterations to generate G. Variable
X follows a geometric distribution with P (X = i) = p(1 −p)
i−1
. So, the expected number
of iterations to generate G is N
i
(X) =

∞
j=1
jP (X = j) = 1/p and its variance is V (X) =
(1 − p)/p
2
.
Let ξ be the space of edges in G that may be generated by h
1
and h
2
. The graphs
generated in this step are undirected and the number of possible edges in ξ is given by
|ξ| =

m
2

. The number of possible edges that might become a multiple edge when the jth
c
URLs (n)
10
3
10
4
10
5
10
6
2 × 10
6
3 × 10
6
4 × 10
6
1.13 0.22 0.02 0.00 0.00 0.00 0.00 0.00
1.14 0.35 0.15 0.00 0.00 0.00 0.00 0.00
1.15 0.46 0.55 0.65 0.87 0.95 0.97 1.00
1.16 0.67 0.90 1.00 1.00 1.00 1.00 1.00
1.17 0.82 0.99 1.00 1.00 1.00 1.00 1.00
Table 6.2: Probability P
|E
crit
|
that |E(G
crit
)| ≤ n/2 for diﬀerent c values and diﬀerent
number of keys for a collections of URLs.
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edge is added to G is j − 1, and the incremental construction of G implies that p(m) is:
p(m) =
n

j=1

m
2

− (j − 1)

m
2

=
n−1

j=0

m
2

− j

m
2

·
As m = cn we can rewrite the probability p(n) as:
p(n) =
n−1

j=0
1 −

2j
c
2
n
2
− cn

·
Using an asymptotic estimate from Palmer [64] that states that the inequality f
1
(x) ≤ f
2
(x)
is true ∀x ∈ ℜ for two functions f
1
: ℜ → ℜ and f
2
: ℜ → ℜ deﬁned as f
1
(x) = 1 − x and
f
2
(x) = e
−x
, we have
p(n) ≤
n−1

j=0
e
−
“
2j
c
2
n
2
−cn
”
= e
−
“
n−1
c
2
n−c
”
.
for x =
2j
c
2
n
2
−cn
. Thus,
lim
n→∞
p(n) ≃ e
−
1
c
2
. (6.6)
As N
i
(X) = 1/p then N
i
(X) ≃ e
1
c
2
= 2.13 (recall c = 1.15). Therefore, as the expected
number of iterations is O(1), the mapping step takes O(n) time.
Ordering Step
The procedure Ordering (G, G
crit
, G
ncrit
) receives as input the graph G and partitions G
into the two subgraphs G
crit
and G
ncrit
, so that G = G
crit
∪G
ncrit
. For that, the procedure
iteratively remove all vertices of degree 1 until it is done.
Figure 6.3(a) presents a sample graph with 9 vertices and 8 edges, where the degree
of a vertex is shown besides each vertex. Applying the ordering step in this graph, the
5-vertex graph showed in Figure 6.3(b) is obtained. All vertices with degree 0 are non-
critical vertices and the others are critical vertices. In order to determine the vertices in
V
scrit
we collect all vertices v ∈ V (G
crit
) with at least one vertex u that is in Adj(v) and in
V (G
ncrit
), as the vertex 8 in Figure 6.3(b).
Analysis of the Ordering Step
The time complexity of the ordering step is O(|V (G )|) (see [26]). As |V (G)| = m = cn,
the ordering step takes O(n) time.
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d:2
d:5
d:2
d:2
d:1
d:2d:2
d:0
d:0
a)
d:2
d:4
d:2
d:0
d:0
d:2d:2
d:0
d:0
b)
6
7 0
1
2
34
5
8
6
7 0
34
5
8
2
1

Figure 6.3: Ordering step for a graph with 9 vertices and 8 edges.
Searching Step
In the searching step, the key part is the perfect assignment problem: ﬁnd g : V (G) → Z
such that the function mphf : E(G) → Z deﬁned by
mphf (e) = g(a) + g(b) (e = {a, b}) (6.7)
is a bijection from E(G) to [0, n − 1] (recall n = |S| = |E(G)|). We are interested in a
labelling g : V → Z of the vertices of the graph G = G(h
1
, h
2
) with the property that
if x and y are keys in S, then g(h
1
(x)) + g(h
2
(x)) = g(h
1
(y)) + g(h
2
(y)); that is, if we
associate to each edge the sum of the labels on its endpoints, then these values should
be all distinct. Moreover, we require that all the sums g(h
1
(x)) + g(h
2
(x)) (x ∈ S) fall
between 0 and |E(G)| − 1 = n − 1, so that we have a bijection between S and [0, n − 1].
The procedure Searching (G, G
crit
, G
ncrit
, g) receives as input G, G
crit
, G
ncrit
and ﬁnds a
suitable ⌊log |V (G)|⌋+1 bit value for each vertex v ∈ V (G), stored in the array g. This step
is ﬁrst performed for the vertices in the critical subgraph G
crit
of G (the 2-core of G) and
then it is performed for the vertices in G
ncrit
(the non-critical subgraph of G that contains
the “acyclic part” of G). The reason the assignment of the g values is ﬁrst performed on
the vertices in G
crit
is to resolve reassignments as early as possible (such reassignments are
consequences of the cycles in G
crit
and are depicted hereinafter).
Assignment of Values to Critical Vertices
The labels g(v) (v ∈ V (G
crit
)) are assigned in increasing order following a greedy strategy
where the critical vertices v are considered one at a time, according to a breadth-ﬁrst
search on G
crit
. If a candidate value x for g(v) is forbidden because setting g(v) = x would
create two edges with the same sum, we try x + 1 for g(v). This fact is referred to as a
reassignment.
Let A
E
be the set of addresses assigned to edges in E(G
crit
). Initially A
E
= ∅. Let x be a
candidate value for g(v). Initially x = 0. Considering the subgraph G
crit
in Figure 6.3(b),




[image: alt]100 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES
a step by step example of the assignment of values to vertices in G
crit
is presented in
Figure 6.4. Initially, a vertex v is chosen, the assignment g(v) = x is made and x is set
to x + 1. For example, suppose that vertex 8 in Figure 6.4(a) is chosen, the assignment
g(8) = 0 is made and x is set to 1.
b) c) d)a)
7 0
34
8
7 0
34
8
7 0
34
8
7 0
34
8
g:0
g:1g:4 5
4
3 2
1
5 g:2g:3
g:0
g:1g:5 6
5
3 2
1
5 g:2g:3
g:0
g:1g:6 7
6
3 2
1
5 g:2g:3
g:0

Figure 6.4: Example of the assignment of values to critical vertices.
In Figure 6.4(b), following the adjacency list of vertex 8, the unassigned vertex 0 is
reached. At this point, we collect in the temporary variable Y all adjacencies of vertex
0 that have been assigned an x value, and Y = {8}. Next, for all u ∈ Y , we check if
g(u) + x ∈ A
E
. Since g(8) + 1 = 1 ∈ A
E
, then g(0) is set to 1, x is incremented by
1 (now x = 2) and A
E
= A
E
∪ {1} = {1}. Next, vertex 3 is reached, g(3) is set to 2,
x is set to 3 and A
E
= A
E
∪ {2} = {1, 2}. Next, vertex 4 is reached and Y = {3, 8}.
Since g(3) + 3 = 5 ∈ A
E
and g(8) + 3 = 3 ∈ A
E
, then g(4) is set to 3, x is set to 4
and A
E
= A
E
∪ {3, 5} = {1, 2, 3, 5}. Finally, vertex 7 is reached and Y = {0, 8}. Since
g(0) + 4 = 5 ∈ A
E
, x is incremented by 1 and set to 5, as depicted in Figure 6.4(c). Since
g(8) + 5 = 5 ∈ A
E
, x is again incremented by 1 and set to 6, as depicted in Figure 6.4(d).
These two reassignments are indicated by the arrows in Figure 6.4. Since g(0)+6 = 7 ∈ A
E
and g(8) + 6 = 6 ∈ A
E
, then g(7) is set to 6 and A
E
= A
E
∪{6, 7} = {1, 2, 3, 5, 6, 7}. This
ﬁnishes the algorithm.
Assignment of Values to Non-Critical Vertices
As G
ncrit
is acyclic, we can impose the order in which addresses are associated with edges
in G
ncrit
, making this step simple to solve by a standard depth ﬁrst search algorithm.
Therefore, in the assignment of values to vertices in G
ncrit
we beneﬁt from the unused
addresses in the gaps left by the assignment of values to vertices in G
crit
. For that, we
start the depth-ﬁrst search from the vertices in V
scrit
because the g values for these critical
vertices have already been assigned and cannot be changed.
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Considering the subgraph G
ncrit
in Figure 6.3(b), a step by step example of the assign-
ment of values to vertices in G
ncrit
is presented in Figure 6.5. Figure 6.5(a) presents the
initial state of the algorithm. The critical vertex 8 is the only one that has non-critical
neighbors. In the example presented in Figure 6.4, the addresses {0, 4} were not used. So,
taking the ﬁrst unused address 0 and the vertex 1, which is reached from the vertex 8, g(1)
is set to 0 − g(8) = 0, as shown in Figure 6.5(b). The only vertex that is reached from
vertex 1 is vertex 2, so taking the unused address 4 we set g(2) to 4 −g(1) = 4, as shown in
Figure 6.5(c). This process is repeated until the UnAssignedAddresses list becomes empty.
0 4 4
g:0
UnAssignedAddresses
g:0
0
UnAssignedAddresses
g:0
0
UnAssignedAddresses
g:0 g:4
g:0g:0
c)
g:0
b)a)
4
6
5
8
2
1 6
5
8
2
1 6
5
8
2
1

Figure 6.5: Example of the assignment of values to non-critical vertices.
Analysis of the Searching Step
We shall demonstrate that (i) the maximum value assigned to an edge is at most n − 1
(that is, we generate a minimal perfect hash function), and (ii) the perfect assignment
problem (determination of g) can be solved in expected time O(n) if the number of edges
in G
crit
is at most
1
2
|E(G)|.
We focus on the analysis of the assignment of values to critical vertices because the
assignment of values to non-critical vertices can be solved in linear time by a depth ﬁrst
search algorithm.
We now deﬁne certain complexity measures. Let I(v) be the number of times a can-
didate value x for g(v) is incremented. Let N
t
be the total number of times that can-
didate values x are incremented. Thus, we have N
t
=

I(v), where the sum is over
all v ∈ V (G
crit
).
For simplicity, we shall suppose that G
crit
, the 2-core of G, is connected.
2
The fact that
every edge is either a tree edge or a back edge (see, e.g., [24]) then implies the following.
2
The number of vertices in G
crit
outside the giant component is provably very small for c = 1.15;
see [8, 49, 65].
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Theorem 8 The number of back edges N
bedges
of G = G
crit
∪ G
ncrit
is given by N
bedges
=
|E(G
crit
)| − |V (G
crit
)| + 1.
Our next result concerns the maximal value A
max
assigned to an edge e ∈ E(G
crit
) after
the assignment of g values to critical vertices.
Theorem 9 We have A
max
≤ 2|V (G
crit
)| − 3 + 2N
t
.
Proof: The assignment of g values to critical vertices starts from 0, and each edge e
receives the label mphf (e) as given by Eq. (6.7). The g value for each vertex v in V (G
crit
)
is assigned only once. Consider now two possibilities: (i) If N
t
= 0, (that is, no increment
for a candidate value was necessary) then the g values will be assigned to the vertices
sequentially. Therefore, the greatest and the second greatest values assigned to two vertices
v and u are g(v) = |V (G
crit
)| − 1 and g(u) = |V (G
crit
)| − 2, respectively. Thus, A
max
≤
(|V (G
crit
)| − 1) + (|V (G
crit
)| − 2) in the worst case. (ii) If N
t
> 0 then a candidate
value x is incremented by one each time the value is forbidden. Thus, in the worst case,
A
max
≤ |V (G
crit
)| − 1 + N
t
+ |V (G
crit
)| − 2 + N
t
≤ 2|V (G
crit
)| − 3 + 2N
t
. ✷
Maximal Value Assigned to an Edge
In this section we present the following conjecture.
Conjecture 1 For a random graph G with |E(G
crit
)| ≤ n/2 and |V (G)| = 1.15n, it is
always possible to generate a minimal perfect hash function because the maximal value
A
max
assigned to an edge e ∈ E(G
crit
) is at most n − 1.
Let us assume for the moment that N
t
≤ N
bedges
. Then, from Theorems 8 and 9,
we have A
max
≤ 2|V (G
crit
)| − 3 + 2N
t
≤ 2|V (G
crit
)| − 3 + 2N
bedges
≤ 2|V (G
crit
)| − 3 +
2(|E(G
crit
)|−|V (G
crit
)|+ 1) ≤ 2|E(G
crit
)|−1. As by hypothesis |E(G
crit
)| ≤ n/2, we have
A
max
≤ n − 1, as required.
In the mathematical analysis of our algorithm, what is left open is a single problem:
prove that N
t
≤ N
bedges
.
3
We now show experimental evidence that N
t
≤ N
bedges
. Considering Eqs (6.4) and (6.5),
the expected values for |V (G
crit
)| and |E(G
crit
)| for c = 1.15 are 0.401n and 0.501n, re-
spectively. From Theorem 8, N
bedges
= 0.501n −0.401n + 1 = 0.1n + 1. Table 6.3 presents
3
Bollob´as and Pikhurko [9] have investigated a very close vertex labelling problem for random graphs.
However, their interest was on denser random graphs, and it seems that diﬀerent methods will have to be
used to attack the sparser case that we are interested in here.
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the maximal value of N
t
obtained during 10,000 executions of the algorithm for diﬀerent
sizes of S. The maximal value of N
t
was always smaller than N
bedges
= 0.1n + 1 and tends
to 0.059n for n ≥ 1,000,000.
n Maximal value of N
t
10,000 0.067n
100,000 0.061n
1,000,000 0.059n
2,000,000 0.059n
Table 6.3: The maximal value of N
t
for diﬀerent number of URLs.
Time Complexity
We now show that the time complexity of determining g(v) for all critical vertices x ∈
V (G
crit
) is O(|V (G
crit
)|) = O(n). For each unassigned vertex v, the adjacency list of v,
which we call Adj(v), must be traversed to collect the set Y of adjacent vertices that have
already been assigned a value. Then, for each vertex in Y , we check if the current candidate
value x is forbidden because setting g(v) = x would create two edges with the same
endpoint sum. Finally, the edge linking v and u, for all u ∈ Y , is associated with the address
that corresponds to the sum of its endpoints. Let d
crit
= 2|E(G
crit
)|/|V (G
crit
)| be the
average degree of G
crit
, note that |Y | ≤ |Adj(v)|, and suppose for simplicity that |Adj(v)| =
O(d
crit
). Then, putting all these together, we see that the time complexity of this procedure
is
C(|V (G
crit
)|) =

v∈V (G
crit
)

|Adj(v)| + (I(v) × |Y |) + |Y |

≤

v∈V (G
crit
)
(2 + I(v))|Adj(v)| = 4|E(G
crit
)| + O(N
t
d
crit
).
As d
crit
= 2 × 0.501n/0.401n ≃ 2.499 (a constant) we have O(|E(G
crit
)|) = O(|V (G
crit
)|).
Supposing that N
t
≤ N
bedges
, we have, from Theorem 8, that N
t
≤ |E(G
crit
)|−|V (G
crit
)|+
1 = O(|E(G
crit
)|). We conclude that C(|V (G
crit
)|) = O(|E(G
crit
)|) = O(|V (G
crit
)|). As
|V (G
crit
)| ≤ |V (G)| and |V (G)| = cn, the time required to determine g on the critical
vertices is O(n).
6.1.3 Comparing the BKZ and CHM Algorithms
In this section we compare the BKZ algorithm with the CHM algorithm experimentally.
For this reason the two algorithms were implemented in the C language and are avail-
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able as part of the C Minimal Perfect Hashing Library, which can be downloaded at
http://cmph.sf.net. Our data consists of a collection of 100 million universe resource
locations (URLs) collected from the Web. The average length of a URL in the collection
is 63 bytes. All experiments were carried out on a computer running the Linux operating
system, version 2.6.7, with a 2.4 gigahertz processor and 4 gigabytes of main memory.
Table 6.4 presents the main characteristics of the two algorithms. The number of edges
in the graph G = (V, E) is |S| = n, i.e., the number of keys in the input set S. The
number of vertices of G is equal to 1.15n and 2.09n for the BKZ algorithm and the CHM
algorithm, respectively. This measure is related to the amount of space to store the array
g. This improves the space required to store a function in the BKZ algorithm to 55% of the
space required by the CHM algorithm. The number of critical edges is
1
2
|E(G)| and 0 for
the BKZ algorithm and the CHM algorithm, respectively. The BKZ algorithm generates
random graphs that contain cycles with high probability and the CHM algorithm generates
acyclic random graphs. Finally, the CHM algorithm generates order preserving functions
whereas the BKZ algorithm does not preserve order.
c |E(G)| |V (G)| = |g| |E(G
crit
)| G Order preserving
BKZ algorithm 1.15 n cn 0.5|E(G)| cyclic no
CHM algorithm 2.09 n cn 0 acyclic yes
Table 6.4: Main characteristics of the algorithms.
Table 6.5 presents time measurements to generate the MPHFs. All times are in seconds.
The table entries are averages over 50 trials. The column labelled N
i
gives the number of
iterations to generate the random graph G in the mapping step of the algorithms. The
next columns give the running times for the mapping plus ordering steps together and the
searching step for each algorithm. The last column gives the percentage gain of the BKZ
algorithm over the CHM algorithm.
The mapping step of the BKZ algorithm is faster because the expected number of
iterations in the mapping step to generate G are 2.13 and 2.92 for the BKZ algorithm and
the CHM algorithm, respectively. The graph G generated by the BKZ algorithm has 1.15n
vertices, against 2.09n for the CHM algorithm. These two facts make the BKZ algorithm
faster in the mapping step. The ordering step of the BKZ algorithm is approximately equal
to the time to check if G is acyclic for the CHM algorithm. The searching step of the CHM
algorithm is faster, but the total time of the BKZ algorithm is, on average, approximately
59% faster than the CHM algorithm.
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n
BKZ algorithm CHM algorithm
Gain
N
i
Map+Ord Search Total N
i
Map+Ord Search Total
(%)
1,562,500 2.28 8.54 2.37 10.91 2.70 14.56 1.57 16.13 48
3,125,000 2.16 15.92 4.88 20.80 2.85 30.36 3.20 33.56 61
6,250,000 2.20 33.09 10.48 43.57 2.90 62.26 6.76 69.02 58
12,500,000 2.00 63.26 23.04 86.30 2.60 117.99 14.94 132.92 54
25,000,000 2.00 130.79 51.55 182.34 2.80 262.05 33.68 295.73 62
50,000,000 2.07 273.75 114.12 387.87 2.90 577.59 73.97 651.56 68
100,000,000 2.07 567.47 243.13 810.60 2.80 1,131.06 157.23 1,288.29 59
Table 6.5: Time measurements for the BKZ algorithm and the CHM algorithm to generate
MPHFs.
n
BKZ algorithm c = 1.00 BKZ algorithm c = 0.93
N
i
Map+Ord Search Total N
i
Map+Ord Search Total
12,500,000 2.78 76.68 25.06 101.74 3.04 76.39 25.80 102.19
Table 6.6: Time measurements for the BKZ algorithm to generate MPHFs, tuned with
c = 1.00 and c = 0.93.
The experimental results fully backs the theoretical results. It is important to notice
the times for the searching step: for both algorithms they are not the dominant times, and
the experimental results clearly show a linear behavior for the searching step.
We now present a heuristic that reduces the space requirement to any given value
between 1.15n words and 0.93n words. The heuristic reuses, when possible, the set of x
values that caused reassignments, just before trying x + 1 (see Section 6.1.2). The lower
limit c = 0.93 was obtained experimentally. We generate 10,000 random graphs for each
size n (n = 10
5
, 5 × 10
5
, 10
6
, 2 × 10
6
). With c = 0.93 we were always able to generate
an MPHF, but with c = 0.92 we never succeeded. Decreasing the value of c leads to an
increase in the number of iterations to generate G. For example, for c = 1 and c = 0.93, the
analytical expected number of iterations are 2.72 and 3.17, respectively (for n = 12,500,000,
the number of iterations are 2.78 for c = 1 and 3.04 for c = 0.93). Table 6.6 presents the
total times to construct a function for n = 12,500,000, with an increase from 86.31 seconds
for c = 1.15 (see Table 6.5) to 101.74 seconds for c = 1 and to 102.19 seconds for c = 0.93.
We compared the BKZ algorithm with the ones proposed by Pagh [61] and Dietzfel-
binger and Hagerup [29], respectively. The authors sent to us their source code. In their
implementation the key set is a set of random integers. We modiﬁed our implementation to
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generate an MPHF from a set of random integers in order to make a fair comparison. For a
set of 10
6
random integers, the times to generate a minimal perfect hash function were 2.7s,
4s and 4.5s for the BKZ algorithm, Pagh’s algorithm and Dietzfelbinger and Hagerup’s
algorithm, respectively. Thus, the BKZ algorithm was 48% faster than Pagh’s algorithm
and 67% faster than Dietzfelbinger and Hagerup’s algorithm, on average. This gain was
maintained for sets with diﬀerent sizes. The BKZ algorithm needs kn (k ∈ [0.93, 1.15])
words to store the resulting function, while Pagh’s algorithm needs kn (k > 2) words and
Dietzfelbinger and Hagerup’s algorithm needs kn (k ∈ [1.13, 1.15]) words. The time to
generate the functions is inversely proportional to the value of k.
6.2 The RAM Algorithm: Dealing with Connected
Components with a Single Cycle for r = 2
Although the BKZ algorithm still generates MPHFs that require O(n log n) bits to be
stored, the techniques used in its design can also be used to speedup the execution time of
the RAM algorithm, which generates MPHFs that require (3 + ǫ)n bits of storage space,
where ǫ > 0. Remember that the RAM algorithm originally works on random bipartite
graphs with no cycles. But, if each connected component of the random graph has just
one cycle with the same number of edges and vertices, then it is possible to build MPHFs
40% faster on average. In Section 6.2.1 we present the design of the optimized version of
the RAM algorithm. In Section 6.2.2 we experimentally compare the optimized version of
the RAM algorithm with the version of the RAM algorithm presented in Chapter 2.
6.2.1 Design of the Optimized Version of The RAM Algorithm
The ﬁrst two steps of the RAM algorithm builds an one-to-one mapping between a key set
S (or, equivalently, the edge set E) and the vertex set V of an acyclic bipartite random
graph G = (V, E), |E| = n, |V | = m = cn and c > 2. But if each connected component
of G has just one cycle with the same number of edges and vertices, then it is possible to
create an one-to-one mapping between edges and vertices in this case. This is interesting
because the RAM algorithm will run much faster for values of c close to 2. We now show
how to adapt the ﬁrst two steps of the RAM algorithm to deal with connected components
of G containing a single cycle.
Deﬁnition 25 Let C = {G
′
= (V
′
, E
′
) | V
′
⊆ V, E
′
⊆ E} be the set of connected
components of G.
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We now use the same idea presented in Section 6.1. For each connected component
G
′
∈ C, we split G
′
into two subgraphs G
′
= G
′
crit
∪ G
′
ncrit
, where G
′
crit
= (V
crit
, E
crit
)
is the subcomponent of G
′
that contains cycles and G
′
ncrit
= (V
ncrit
∪ V
scrit
, E
ncrit
) is the
subcomponent with no cycles. The algorithm presented in Section 2.1.1 to test whether a
graph contains cycles can be easily adapted to obtain G
′
crit
and G
′
ncrit
. The resulting graph
of the test corresponds to G
′
crit
and G
′
ncrit
= G
′
−G
′
crit
. Now we do not restart the mapping
step because G
′
crit
is not empty. Instead, we ﬁrst use a depth-ﬁrst search algorithm to
build an one-to-one mapping for E
crit
and V
crit
and, then, use the assigning step of the
RAM algorithm for E
ncrit
and V
ncrit
. We just restart from the mapping step if G
′
crit
is not
assignable (i.e., G
′
crit
contains more than one cycle).
Figure 6.6 illustrates the assignment of G
′
crit
. Figure 6.6(b) shows the order in which a
depth-ﬁrst search algorithm will visit each vertex. The algorithm starts from a given vertex
v ∈ V
crit
, lets say v = 0, and set g[v] to 0. Then, the depth-ﬁrst search goes on one of the
vertices adjacent to vertex v = 0. Let u = 2 be that vertex. Then, g[u] = (x −g[v]) mod 2,
where:
x =



0, if u < |V |/2
1, otherwise.
This will associate vertex u = 2 with the current edge {0, 2}. Note that when we are
visiting edge e = {0, 3}, which closes the cycle, its two vertices were already assigned.
Therefore, we cannot change the value assigned to vertex 0 and vertex 0 is supposed to be
associated with e. In this case, there is no problem because g[0] received the same value
previously assigned and the algorithm ends because all edges were visited.
0
1
2
3
g
0 1 1 0
(b)(a)
G’
crit
10
2
0
3
1
1
0
0
2
1
3

Figure 6.6: (a) Assignment for a connected component with a single cycle with 4 vertices
and 4 edges. (b) Order in which a depth-ﬁrst search algorithm will visit each vertex starting
from vertex 0.
The assignment of G
′
crit
is not possible when the length of the cycle is not a multiple
of four. Figure 6.7 illustrates a case where it is not possible to ﬁnish the assignment




[image: alt]108 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES
successfully. In Figure 6.7(b), if we traverse the cycle in the opposite way the depth-
ﬁrst search algorithm did, the values of g for the current visited vertex are: 0, 1, 0, 0, 1, 1.
Note that vertex 5 was associated with two edges: {0, 5} and {2, 5}. It happens because
(g[0] + g[5]) mod 2 = 1 and (g[2] + g[5]) mod 2 = 1. To avoid this we must have a sequence
of g values alternating double zeros and double ones with the same number of zeros and
ones, i.e., 0, 0, 1, 1, . . . , 0, 0, 1, 1. In Figure 6.6(b), if we traverse the cycle in the opposite
way the depth-ﬁrst search algorithm did, the values of g are: 0, 0, 1, 1. Therefore, the
length of the cycles must be a multiple of four.
1 0
G’
crit
0
1
2
3
4
5
(a)
0 1 0 1
(b)
0
0
3 4
21
5
0
3
1
4
2
5
0
1
1
0
1

Figure 6.7: (a) A non-assignable cycle with 6 vertices and 6 edges. (b) Order in which a
depth-ﬁrst search algorithm will visit each vertex starting from vertex 0.
Deﬁnition 26 A connected component G
′
∈ C is assignable if and only if it contains a
single cycle with the same number of vertices and edges, and its length is a multiple of
four.
The ranking step of the RAM algorithm does not need to be changed. To ﬁnish we
just need to show that it is possible to obtain a bipartite random graph G with no non-
assignable connected component with high probability. This is equivalent to show that,
with high probability, G has no cycle of length 2(2l −1) for l = 1, 2, 3, . . . , and each vertex
v ∈ V will be present in just one cycle. In [27] it is shown that, for c ≥ 2 and with
probability tending to one, a vertex v ∈ V cannot participate in two diﬀerent cycles of size
two or higher. Then, it remains to prove the following theorem.
Theorem 10 Let G = (V, E) be a bipartite random graph with n edges and m vertices.
Then, if m = cn holds for c > 2, the probability that G has no cycle of length 2(2l −1) for
l = 1, 2, 3, . . . , for n → ∞, is:
P r
b
=

1 −

2
c

2

1 −

2
c

4

1
4
(6.8)
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Proof. As shown in Theorem 4, the random variable C
e
(G) that measures the number
of cycles of any even length in G converges to a Poisson distribution with parameter:
λ
e
=
∞

l=1
1
2l

2
c

2l
= −
1
2
ln

1 −

2
c

2

· (6.9)
Corresponding results hold for cycles with lengths in a given subset of {2, 4, 6, . . . }, as
can be derived from the results of [48]. Let C
b
(G) be a random variable that measures
the number of bad cycles in G (cycles with lengths that are not multiple of four), which
converges to a Poisson distribution with parameter:
λ
b
=

l=1,3,5,7,...
1
2l

2
c

2l
· (6.10)
From Eq. (6.9) we know that:
λ
e
=

l=1,3,5,7,...
1
2l

2
c

2l
+

l=2,4,6,8,...
1
2l

2
c

2l
= −
1
2
ln

1 −

2
c

2

λ
b
= −
1
2
ln

1 −

2
c

2

−

l=2,4,6,8,...
1
2l

2
c

2l
= −
1
2
ln

1 −

2
c

2

−
1
2
∞

l=1
1
2l


2
c

2

2l
= −
1
2
ln

1 −

2
c

2

+
1
4
ln

1 −

2
c

4

Therefore, the probability that G has no bad cycle is given by:
P r
b
(C
b
(G) = 0) = e
−λ
b
=

1 −

2
c

2

1 −

2
c

4

1
4
·
For c = 2.09 we have P r
b
= 0.458, whereas the probability to obtain an acyclic bipartite
random graph P r
a
= 0.29. This implies that 1/P r
b
= 2.18 iterations are required on
average to succeed in the version that deals with one single cycle of length multiple of
four per connected component, whereas 1/P r
a
= 3.45 iterations are required on average in
the version that requires an acyclic bipartite random graph. Experimentally, we obtained
P r
b
= 0.463 by generating 1, 000 random bipartite 2-graphs with n = 10
7
keys (edges),
which is very close to the theoretical value.
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6.2.2 Comparing the two Versions of the RAM Algorithm
In this section we evaluate the performance of the RAM algorithm when used to generate
MPHFs
4
. We will consider two versions of the RAM algorithm: (i) the version that that
works on random bipartite graphs with a single cycle per connected component; and (ii)
the version that works on random bipartite graphs with no cycles, which is presented in
Chapter 2.
For this reason the two versions of the RAM algorithm were implemented in the C lan-
guage and are available under the GNU Lesser General Public License (LGPL) at http://-
cmph.sf.net. The experiments were carried out on a computer running the Linux oper-
ating system, version 2.6, with a 1.86 gigahertz Intel Core 2 processor with a 4 megabyte
L2 cache and 1 gigabyte of main memory. For the experiments we used two collections: (i)
a set of 150 million randomly generated 4 byte long IP addresses, and (ii) a set of 1, 024
million 64 byte long (on average) URLs collected from the Web.
The runtime of the version of the RAM algorithm that deals with a single cycle per
connected component has the same form of the one presented in Chapter 2, which is αnZ
for an input of n keys, where α is some machine dependent constant that further depends
on the length of the keys and Z is a random variable with geometric distribution. But now
the mean of the geometric distribution is 1/P r
b
instead of 1/P r
a
, where P r
b
and P r
a
are
given in Eq. (6.8) and Eq. (2.7), respectively. All results in the experiments to compare the
two versions of the RAM algorithm were obtained taking c = 2.09; the larger is c the faster
are both versions of the RAM algorithm because both P r
b
and P r
a
increase continuously
with c.
The values chosen for n were 1, 2, 4, 8, 12, 16, 20 and 24 millions. Although we have
150 millions of random IPs and 1, 024 millions of URLs, on a PC with 1 gigabyte of main
memory, both versions of the RAM algorithm are able to handle an input with at most 24
millions of keys. This is mainly because the sparse random hypergraph required to generate
the functions is memory demanding. By using the same technique used in Chapter 2 to
estimate the number of trials for each value of n we also obtained 300 trials in order to
have a conﬁdence level of 95%.
Figure 6.8 presents the runtime for each trial. In addition, the solid line corresponds to
a linear regression model obtained from the experimental measurements. As we can see,
the runtime for a given n has a considerable ﬂuctuation, which gives a coeﬃcient of deter-
mination R
2
= 71%. However, the ﬂuctuation also grows linearly with n. The observed
4
The same conclusions are achieved when PHFs are generated.
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ﬂuctuation in the runtimes is as expected; recall that this runtime has the form αnZ with Z
a geometric random variable with mean 1/P r
b
= 1/0.458 for c = 2.09. Thus, the runtime
has mean αn/P r
b
= 2.18αn and standard deviation αn

(1 − P r
b
)/(P r
b
)
2
= 1.61αn.
Therefore, the standard deviation also grows linearly with n, as experimentally veriﬁed in
Figure 6.8. It is important to remark that this version of the RAM algorithm has a smaller
ﬂuctuation than the version presented in Chapter 2 because P r
b
> P r
a
.
0 100 200 300 400
Time (s)
0 5 10 15 20 25
Number of keys (millions)
IPs (r=2, cycle) Linear regression
(a) IPs collection
0 100 200 300
Time (s)
0 5 10 15 20 25
Number of keys (millions)
URLs (r=2, cycle) Linear regression
(b) URLs collection
Figure 6.8: Number of keys in S versus generation time for the RAM algorithm that works
on random hypergraphs with a single cycle per connected component for r = 2. The solid
line corresponds to a linear regression model for the generation time (R
2
= 71%).
The version of the RAM algorithm that works on random bipartite graphs with a single
cycle per connected component has the same behavior of the version that works on random
acyclic bipartite graphs (see Figures 2.13 and 6.8), but runs considerably faster. This is
because the geometric distribution now has mean 1/P r
b
, where P r
b
= 0.458, whereas for
the version of the RAM algorithm presented in Chapter 2 the geometric distribution has
mean 1/P r
a
, where P r
a
= 0.29.
To end this section we now compare the two versions of the RAM algorithm by taking
n = 1, 12 and 24 millions of keys in the two collections and by considering generation
time and storage space as metrics. Table 6.7 presents the respective conﬁdence intervals
for the generation time, which is given by the average time ± the distance from average
time considering a conﬁdence level of 95%, and the respective values for the storage space.
It is possible to see that when cycles are allowed the RAM algorithm is approximately
40% faster to generate the functions. Also, the generation time, as expected, is inﬂuenced
by the key length (IPs are 4 bytes long and URL are 64 bytes long on average), and the
storage space is not. Finally, the most compact functions are generated when r = 2 and
cycles are allowed.
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n
RAM algorithm
Generation Time (sec) Storage Space
IPs URLs Bits/Key Size (MB)
1 × 10
6
r = 2
cycle 3.26 ± 0.16 3.69 ± 0.18 3.35 0.40
no cycle 4.45 ± 0.42 4.75 ±0.41 3.60 0.43
12 × 10
6
r = 2
cycle 41.33 ± 2.02 47.96 ± 2.45 3.35 4.79
no cycle 58.70 ± 5.20 64.22 ± 6.37 3.60 5.15
24 × 10
6
r = 2
cycle 91.32 ± 5.2 104.77 ± 5.58 3.35 9.58
no cycle 135.92 ± 13.2 146.93 ± 14.09 3.60 10.30
Table 6.7: Comparison of the two versions of the RAM algorithm considering generation
time and storage space, and using n = 1, 12, and 24 millions of keys for the two collections.
6.3 Conclusions
In this chapter we presented techniques that allow the generation of MPHFs based on
random graphs with cycles. This implies that the functions are generated faster and are
more compact than the ones generated based on acyclic random graphs. The techniques
were applied to the design of two algorithms: the BKZ algorithm and the RAM algorithm.
First we showed how the BKZ algorithm improves the space requirement of the MPHFs
generated by the algorithm proposed by Czech, Havas and Majewski [25] from cn log n bits,
for c > 2 to c
′
n log n, where c
′
∈ [0.93, 1.15]. That is, our resulting functions are stored in
approximately 55% of the space required to store the ones generated by the CHM algorithm.
However, the resulting MPHFs still requires O(n log n) bits to be stored, that is a factor
log n from the optimal. We also showed that the BKZ algorithm runs approximately 59%
faster than the CHM algorithm on average.
Second, we used techniques similar to the ones used in the design of the BKZ algorithm
to speedup the execution time of the RAM algorithm presented in Chapter 2, which gen-
erates MPHFs that require (3 + ǫ)n bits of storage space, where ǫ > 0. We showed that if
each connected component of the random graph has just one cycle with the same number
of edges and vertices, then it is possible to tune the RAM algorithm to build MPHFs 40%
faster on average.




Chapter 7
Indexing Internal Memory With
MPHFs
The objective of this chapter is to show that MPHFs provide the best tradeoﬀ between
space usage and lookup time when compared to other hashing schemes. It was not the
case in the past because the space overhead to store MPHFs was O(log n) bits per key for
practical algorithms [25, 55]. Therefore, a better performace in terms of time and space was
obtained by using a single hash function and resolving collisions with linear probing [45, 51].
However, the new results on MPHFs presented in Chapter 2 have motivated this work, since
the resulting MPHFs require approximately 2.6 bits per key of space overhead and can be
evaluated in O(1) time.
We obtained interesting results in two scenarios: (i) when the MPHF description ﬁts
in the CPU cache and (ii) when it cannot be entirely placed in the CPU cache. In the
ﬁrst scenario we show that the other hashing schemes cannot outperform minimal perfect
hashing when the hash table occupancy is greater than 55%. An MPHF requiring just
2.6 bits per key of storage space permits to store sets on the order of 10 million keys in a
4 megabyte CPU cache, which is enough for a large range of applications. In the second
scenario, other hashing schemes require a hash table occupancy lower than 75% to obtain
the same performance attained by minimal perfect hashing. For both scenarios, the space
overhead of minimal perfect hashing is within a factor of O(log n) bits lower than other
hashing schemes. A preliminary version of these results was presented in [13].
This chapter is organized as follows. In Section 7.1 we describe the hashing schemes
used in the study. In Section 7.2 we present the experimental results to compare the
considered hashing schemes. Finally, in Section 7.3 we conclude this chapter.
113




[image: alt]114 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS
7.1 The Algorithms
In this section we describe the hashing methods we used to compare minimal perfect
hashing with, namely, linear hashing, quadratic hashing, double hashing, dense hashing,
cuckoo hashing and sparse hashing. The hash table entries store items, and each item is
composed by a key and possibly some data, i.e., a pair < k, d >. All the methods analyzed
use collision resolution by open addressing, that is, they look at various positions of the
hash table one by one until it either ﬁnds the key k being searched for or it ﬁnds an empty
position [51]. In contrast, collision resolution could also be made by chaining, in which a
linked list is used to store items that collided in the same table position. Open addressing
is preferred over chaining if we are interested in lookup time, since it has a better locality
of reference and reduces the number of cache misses.
The hash table structure used by linear hashing, quadratic hashing, double hashing,
dense hashing and cuckoo hashing is shown in Figure 7.1. Every table position has a
pointer, initially pointing to an empty value. When an item is inserted in the table, the
pointer of the corresponding position starts to refer to it. The hash table structures for
sparse hashing and minimal perfect hashing are presented in Sections 7.1.5 and 7.1.6,
respectively.
K
1
D
1
D
2
D
3
K
n
D
n
K
2
K
3
m−1
1
0
10
Hash Table
NULL
11
Item Set

Figure 7.1: Hash table used for linear hashing, quadratic hashing, double hashing, dense
hashing and cuckoo hashing.
Note that we should not insert the item itself in the table, since the allocated empty
positions would cause an expressive waste of memory space, especially if the item occupies
several bytes. Hence, the wasted space is reduced by using only one pointer per empty
position. If we deﬁne p as the pointer size in bits, the space overhead for methods that
use the structure in Figure 7.1 is p × m bits for a hash table of size m. For a 64 bits
architecture, p = 64 bits.
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Throughout this section we shall use ⊕
m
as a notation for an addition modulus m. For
instance, we may describe the operation (a + b) mod m as a ⊕
m
b.
7.1.1 Linear Hashing
Linear hashing is considered one of the simplest open addressing schemes available [51, 76].
It uses a hash function h : S → [0, m −1] and tests positions h(k), h(k) ⊕
m
1, h(k) ⊕
m
2, ...
sequentially until it ﬁnds the term k being searched. Otherwise, if it ﬁnds an empty
position, or if the sequential search reaches position h(k) after running over all other
positions, the item being searched does not exist in the hash table.
The pseudocode shown below represents how this method works:
1. Calculate i = h(k).
2. If the i-th position is empty or h(k) is reached again after running over all table
positions, then the search is concluded and the item relative to k is not in the hash
table.
3. If the i-th position contains the item with key k, then the search is concluded and
the item relative to k is in position i.
4. Else, i = i ⊕
m
1. Go to step 2.
The eﬃciency of a search for a given key k ∈ S in the linear hashing method depends
on the number of probes performed during the search. This is highly sensitive to the hash
table load factor α = n/m (i.e., the ratio between the number of items and the number of
entries in the hash table.) The higher is α, the larger is the number of probes. According
to Knuth [51], the expected number of probes performed for successful and unsuccessful
searches are
1
2

1 +
1
1−α

and
1
2

1 +

1
1−α

2

, respectively. The main problem with this
method is that it degenerates in a sequential search when the number of terms n gets
closer to the table size m, which causes a waste of time. Another issue is the waste of
space caused by empty positions in the hash table.
7.1.2 Quadratic Hashing
Quadratic hashing is very similar to linear hashing, however, it uses two additional pa-
rameters, r and q, besides the hash function h(k) : S → [0, m − 1]. Parameter r indicates
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how many positions ahead the current position the next search for the term k will be per-
formed, and parameter q indicates the value which parameter r will be added to after each
iteration. Quadratic hashing is expected to have a better performance when compared to
linear hashing for higher load factors, since it prevents the production of clusters which
delay the search for items. However, this method shares some problems found in linear
hashing, e.g., the waste of space due to empty positions and the waste of time due to
successive collisions when n gets closer to m [46, 51]. The quadratic hashing method may
also have a smaller locality of reference when compared to linear hashing, as the pace r
may become much larger than one.
The period of search is deﬁned as the number of entries that appear in a sequence from a
particular initial position before an entry is encountered twice. The period of search should
preferably be the same as the table size m or, at least, as large as possible. Otherwise,
the table may appear to be full when there is still space available. If m is a prime number
then the period of search for the quadratic hash method is m/2.
The pseudocode shown below represents how this method works:
1. Calculate i = h(k).
2. If the i-th position is empty or h(k) is reached again after running over all reachable
positions, then the search is concluded and the item relative to k is not in the hash
table.
3. If the i-th position contains the item with key k, then the search is concluded and
the item relative to k is in position i.
4. Else, i = i ⊕
m
r, r = r ⊕
m
q. Go to step 2.
Given a hash table load factor α = n/m, the expected number of probes in quadratic
hashing is 1 −ln(1 −α) −
α
2
for successful searches and
1
1−α
−ln(1 −α) −α for unsuccessful
searches, according to [51]. Furthermore, in [51] it was proposed a variation of quadratic
hashing, which was also compared with perfect hashing in our experiments. We used an
implementation available in [72], which is called dense hashing.
7.1.3 Double Hashing
Double hashing also works in a way very similar to linear hashing, but with the diﬀerence
that, instead of one function, it uses two: h
1
(k) and h
2
(k). The ﬁrst one produces values




[image: alt]7.1. THE ALGORITHMS 117
in the range [0, m −1], mapping the term into its position in the hash table, the same way
as the hash function in linear hashing does. The additional function h
2
(k) produces values
in the range [1, m − 1], which are used as steps in the process of ﬁnding empty positions.
Values produced by h
2
(k) are relatively primes to the table size m. This is necessary to
ensure that the period of search will be of the same as m, which guarantees that any given
item can be inserted in any table position (see, e.g., [51]). Furthermore, we can check if
the table is full by counting the number of collisions, since m successive collisions indicates
a full structure.
This method tests positions using a distance h
2
(k), i.e., it tests positions h
1
(k), h
1
(k)⊕
m
h
2
(k), h
1
(k) ⊕
m
2h
2
(k), ..., until it ﬁnds an empty position or until it ﬁnds the term k being
searched for.
The method is described bellow:
1. Calculate i = h
1
(k), d = h
2
(k).
2. If the i-th position is empty or h
1
(k) is reached again after running over all table
positions, then the search is concluded and the item relative to k is not in the table.
3. If the i-th position contains the item with key k, then the search is concluded and
the item relative to k is in position i.
4. Else, i = i ⊕
m
d. Go to step 2.
Double hashing reduces the problem of clustering in a better way than quadratic hashing
does. This is because function h
2
(k) provides a diﬀerent step d for each key k, and the
multiple step sizes produce a more uniform distribution of used positions. This method
still shares some problems with previously cited methods, such as the waste of space due
to unused positions and the possibility of successive collisions when the structure is almost
full. Knuth [51] estimated the expected number of successful probes in searches for double
hashing as −

1
α
ln(1 − α)

, and the number of unsuccessful probes in searches as
1
1−α
.
7.1.4 Cuckoo Hashing
Cuckoo hashing uses two hash functions, h
1
(k) and h
2
(k), to get two possible table positions
for a given term. When a term x has to be inserted in the structure, one of the two possible
positions (h
1
(x) or h
2
(x)) is chosen. If the chosen position is already occupied, the term y
contained there will be removed from the structure, yielding an empty position to the term




[image: alt]118 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS
x being inserted. Term y, in turn, has two possible positions, given by h
1
(y) and h
2
(y).
Consequently, y can be inserted in a position diﬀerent from its former one. However, that
position can be occupied too. Thus, this process must continue until all terms are inserted
in one of their possible positions, or until some item can not be inserted [77, 63].
In case we need to search for a term k, the two possible positions for k (namely h
1
(k)
and h
2
(k)) are checked. If neither one contains the term, then it is not in the structure.
Insertion in cuckoo hashing is better described bellow:
1. Calculate i = h
1
(k)
2. If the i-th position is empty, insert the term k in that position
3. Else,
Swap the term k with the term x contained in the i-th position
If h
1
(x) == i, then i = h
2
(x)
Else, i = h
1
(x)
Go to step 2
A problem with this method is that it is possible that it gets into an inﬁnite loop during
the insertion of a term, since it can cause a sequence of items to be expelled indeﬁnitely in
a cyclical manner. It was shown that in practical situations with a load factor lower than
or equal to 50% this is highly unlikely [63]. However, we may prevent this by allowing only
a maximum amount of iterations during term insertion. Notwithstanding, cuckoo hashing
still will not be able to insert the term with the same hash function values, and the table
needs to be rebuilt with diﬀerent functions if the term is to be inserted.
7.1.5 Sparse Hashing
Sparse hashing is based on a sparse array structure which uses little memory space. It is
implemented as an array of groups A, where the number of groups in a sparse array of m
entries is calculated as G = ⌈ m/M⌉. Each group stored in A[g], 0 ≤ g < G, is responsible
for M indexes of the hash table, i.e., A[0] is responsible for the items in the range [0, M −1],
A[1] for the items in the range [M, 2M − 1], and so on. Each group g contains an array
I
g
that stores the actual items and a bitmap B
g
of size M. The bitmap B
g
indicates the
assigned indexes in the range [0, M − 1]. If B
g
[f] = 1, 0 ≤ f < M, then index f has a
corresponding value stored in I
g
. Note that an item in group g with an oﬀset f is not




[image: alt]7.1. THE ALGORITHMS 119
necessarily placed in position f of I
g
, but in the position I
g
[j], where j is the number of
bits set from B
g
[0] to B
g
[f − 1]. Therefore, the array I
g
is dynamically reallocated when
new items are inserted in it. Thus, the size of I
g
can diﬀer among groups. Figure 7.2
illustrates these data structures.
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Figure 7.2: Hash table used in the sparse hashing method.
A lookup for an item with key k is performed by ﬁrst calculating its position i = h(k),
in which h(k) : S → [0, m − 1]. The group g to which the item belongs is deﬁned as
g = ⌊i /M⌋, and its oﬀset inside g is f = i mod M. In this way, we need to check the value
of B
g
[f]. If it is set to 0, then the item is not present in the hash table. Otherwise, it is
possibly present in group g and we need to check if there is a collision. This can be done
by checking if the item with key k is present in I
g
. The position j of the item in this array
is calculated by counting the number of bits set between B
g
[0] and B
g
[f − 1]. If the item
in position j is not the one with key k, then there is a collision, which will be resolved by
quadratic probing on i (see Section 7.1.2).
Insertion is performed in a similar fashion. First, we must check if the item is present
with a lookup. If not, we shall insert the item in I
g
in the position calculated by counting
the number of bits set between B
g
[0] and B
g
[f − 1], in the same way it is done in the
lookup. An insertion may require the displacement of all items with internal oﬀset j such
that j ≥ f . Let us take Figure 7.2 as an example. Suppose we want to insert a certain
item with key k for which g = 0 and f = 1. Then the item must be inserted in position 1
of group 0, but that position is already occupied. To solve this, we need to move the items
with key K
0,2
and K
0,3
one position ahead of their current position. The item with K
0,3
will be moved to the position allocated for the new term, i.e., the forth position. The item
with key K
0,2
will be moved to the position just left of the item with key K
0,3
, i.e., the
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third position. Finally, the position calculated for the item with key k will be free and we
can place the new item there. Figure 7.3 shows the situation of group 0 after the insertion
of the item with key K
0,1
.
1111 K
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D
0, 0
K
0, 1
D
0, 1
K
0, 2
D
0, 2
K
0, 3
D
0, 3
Hash Table
Bitmaps
(0, 1, 2, 3)
0
Items

Figure 7.3: Group 0 after an insertion.
This method diﬀers from the others in the sense that it prioritizes eﬃcient memory
usage. It allocates as little space as possible to represent unassigned positions, and the
arrays containing the actual items grow only when it is needed. If each pointer has a size
of p bits, the space overhead of sparse hashing for a hash table of size m and G groups is
m + G ×p. That is, m bits to represent the bitmaps, and G pointers, one for each group.
Although being very eﬃcient in memory usage, sparse hashing is not designed to be
eﬃcient in time: each lookup needs to perform a sequential search through B
g
to ﬁnd the
position of an item I
g
.
7.1.6 Minimal Perfect Hashing
The hash table structure used by minimal perfect hashing is shown in Figure 7.4. In
this structure there is no need for pointers, i.e., all the items are inserted directly in the
table. This is only possible because there are no empty entries in the hash table, and
therefore we will not lose any space if we increase the capacity of the table entries to ﬁt
the items themselves. This is not the case for the other methods, in which any increase in
the capacity of the table entries would cause even more space to be wasted. Moreover, the
minimal perfect hashing avoids the use of memory space to keep the pointers, which is an
additional advantage. However, there is still the need to store the MPHF representation
in main memory, and the space overhead for this method is approximately 2.62n bits for
a set of n keys, as can be seen in Chapter 2.
The minimal perfect hash function h : S → [0, n − 1] used to index the hash table
presented in Figure 7.4 is taken from the family of MPHFs proposed in Chapter 2. The
MPHFs are generated based on random r-partite hypergraphs where each edge connects
r ≥ 2 vertices (see Deﬁnition 13). In our experiments we used a version that employs
hypergraphs with r = 3, since it generates the fastest and most compact MPHFs. However,
for simplicity of exposition, we will now illustrate the MPHF construction when r = 2.
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Figure 7.4: Hash table used in the perfect hashing method.
Figure 7.5 gives an overview of the MPHF construction for r = 2, taking as input a
key set S ⊆ U containing the ﬁrst four month names abbreviated to the ﬁrst three letters,
i.e., S = {jan, feb, mar, apr}. The mapping step in Figure 7.5(a) assumes that it is possible
to ﬁnd r = 2 hash functions, h
0
and h
1
, with independent values uniformly distributed in
the intervals [0,3] and [4,7], respectively. These functions are used to assign each key in
S to an edge of an acyclic random bipartite graph G = (V, E)
1
, such that |V | = m = 8
and |E| = n = 4. In our example, January is mapped to edge {h
0
(jan), h
1
(jan)} = {2, 5},
February is mapped to {h
0
(jan), h
1
(jan)} = {2, 6}, and so on.
The assigning step in Figure 7.5(b) builds an array g representing a function g : [0, m−
1] → {0, 1, 2}, which is used to uniquely assign an edge with key k to one of its r = 2
incident vertices. The value r is used to represent unassigned vertices. Note that a vertex
for a key k is either given by h
0
(k) or h
1
(k). The decision of which function h
i
(k) to be
used for k is made by calculating i = (g[h
0
(k)] + g[h
1
(k)]) mod 2. In our example, January
is mapped to 2 because (g[2] + g[5]) mod 2 = 0 and h
0
(jan) = 2. Similarly, February is
mapped to 6 because (g[2] + g[6]) mod 2 = 1 and h
1
(feb) = 6, and so on.
The ranking step builds a data structure used to compute a function rank(v), which
counts in O(1) time the number of assigned positions in g before a given position v ∈
[0, m − 1]. To illustrate, rank(7) = 3 means that there are three positions assigned before
position 7 in g, namely 0, 2 and 6.
In our experiments, the MPHF is constructed based on hypergraphs with r = 3, and
we use three hash functions h
i
: S → [i
m
3
, (i + 1)
m
3
− 1], in which 0 ≤ i < 3 and m =
1.23n. The value 1.23n is required to generate an acyclic random 3-partite hypergraph
with high probability, as shown in Chapter 2. Here again, the functions are assumed
to have independent values uniformly distributed. The MPHF has the following form:
h(k) = rank(phf (k)), where phf : S → [0, 1.23n − 1] is a perfect hash function deﬁned
1
See Chapter 2 for details on how to obtain such a graph with high probability.
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Figure 7.5: (a) The mapping step generates an acyclic bipartite random 2-graph. (b) The
assigning step builds an array g so that each edge is uniquely assigned to a vertex. (c) The
ranking step builds the data structure used to compute function rank : V → [0, n − 1] in
O(1) time.
as phf (k) = h
i
(k) and i = (g[h
0
(k)] + g[h
1
(k)] + g[h
2
(k)]) mod 3. The array g is now
representing a function g : V → {0, 1, 2, 3}, and rank : V → [0, n−1] is now the cardinality
of {u ∈ V | u < v ∧ g[u] = 3}. Notice that a vertex u is assigned if g[u] = 3.
7.2 Experimental Results
In this section we present the key sets used in the experiments and the results of the
comparative study. All experiments were carried out on a computer running Linux version
2.6, with a 1.86 gigahertz Intel Core 2 64 bits processor, 4 gigabytes of main memory and 4
megabytes of L2 cache. All results presented are averages on 50 trials and were statistically
validated with a conﬁdence level of 95%. Table 7.1 summarizes the symbols and acronyms
used throughout this section.
The linear hashing, quadratic hashing, double hashing, cuckoo hashing and minimal
perfect hashing structures were all implemented using the C language. We used the CMPH
library available at http://cmph.sf.net to generate the MPHFs used in the minimal
perfect hashing structure. For sparse hashing and dense hashing we used the original
implementation available in [72].
It is important to notice that we are interested in the performance of lookups and
therefore we do not present results concerning the time to build the data structures. Nev-
ertheless, it is important to stress that the MPHF construction is very fast, as can be seen
in Chapter 2. We consider two situations: (i) when only successful lookups are performed
(i.e., the key is always found in the hash table) and (ii) when only unsuccessful lookups
are involved (i.e., a key is never found in the hash table). The results are evaluated for
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Symbol Meaning
α Load factor
n Number of keys in a key set
N Number of keys used in the lookup step
Probes/N Average number of probes per key during the lookup
T(s) Average time (in seconds) spent during the lookup of N keys
S
o
(bits/key) Space Overhead in bits per key
LH Linear Hashing
QH Quadratic Hashing
DH Double Hashing
CH Cuckoo Hashing
SH Sparse Hashing
DeH Dense Hashing
MPH Minimal Perfect Hashing
Table 7.1: Symbols and acronyms used throughout this section.
each data structure in terms of the average number of lookups, the average lookup time
and the space overhead.
The experimental results are presented in three distinct subsections. First, in Sec-
tion 7.2.2, we compare the minimal perfect hashing structure with linear hashing, quadratic
hashing and double hashing structures. Second, in Section 7.2.3, we compare it with sparse
hashing and dense hashing structures. Finally, in Section 7.2.4, we compare it with cuckoo
hashing structure. The three sets of experiments use the key sets described in Section
7.2.1.
7.2.1 Key Sets
In our experiments we used three key sets: (i) a key set of 5, 424, 923 unique query terms
extracted from the AllTheWeb
2
query log, referred to as AllTheWeb key set; (ii) a key
set of 37, 294, 116 unique URLs collected from the Brazilian Web by the TodoBr
3
search
engine, referred to as URLs-37 key set; and (iii) a smaller key set of 10 million URLs
randomly selected from the URLs-37 key set, which is referred to as URLs-10 key set.
Table 7.2 shows the main characteristics of each key set, namely the smallest key size, the
largest key size and the average key size in bytes.
2
AllTheWeb (www.alltheweb.com) is a trademark of Fast Search & Transfer company, which was
acquired by Overture Inc. in February 2003. In March 2004 Overture itself was taken over by Yahoo!.
3
TodoBr (www.todobr.com.br) is a trademark of Akwan I nformation Technologies, which was acquired
by Google Inc. in July 2005.
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Key Set n Shortest Key Largest Key Average Size of the Keys
AllTheWeb 5,424,923 2 31 17.46
URLs-10 10,000,000 8 494 58.36
URLs-37 37,294,116 8 496 58.77
Table 7.2: Characteristics of the key sets used for the experiments.
In order to test the lookup performance of the considered hash structures in a real world
environment, we need to look up keys in a way similar to the real access patterns of actual
applications. In the case of the AllTheWeb key set, the probability distribution of query
term lookups was extracted from the AllTheWeb query log. Similarly, the distribution of
URL lookups must be equivalent to the access pattern performed by a web crawler that
needs to check whether a URL extracted from a web page is new, i.e., whether it has not
been collected before. Therefore, we decided to use an automatic generator to simulate
these lookup patterns found in search engines.
The probability distribution of query term lookups for the AllTheWeb key set is shown
in Figure 7.6 (a). It is plotted in a log-log scale, constituting a power law distribution
with inclination −0.91. This same distribution was used to simulate the lookup stream
submitted to the hashing data structures in order to evaluate their performance, as can
be seen in Figure 7.6 (b). We generated 10 million keys to be looked up in a hashing data
structure storing the AllTheWeb key set.
(a) Extracted from AllTheWeb query log. (b) Generated automatically.
Figure 7.6: Probability distribution of query term lookups.
Pages arriving in a crawling system are known to have a few very popular URLs and
many not so popular URLs, which also constitutes a power law behavior [17]. Consequently,
we employed the same distribution found for query terms to describe the probability of




[image: alt]7.2. EXPERIMENTAL RESULTS 125
arrival of a URL in a crawler. We generated 250 million and 20 million URLs to be looked
up in the hashing data structures that store the URLs-37 key set and the URLs-10 key set,
respectively.
So far we have described how to generate key sets to perform successful searches in
hashing data structures. In order to test the performance of the data structures when
unsuccessful searches are involved, we have randomly generated three additional key sets:
(i) 10 million keys of average size equal to 17.46 bytes to be looked up when the structures
are storing the AlltheWeb key set, (ii) 20 million keys of average size equal to 58.36 bytes
to be looked up when the structures are storing the URLs-10 key set, and (iii) 250 million
keys of average size equal to 58.77 bytes to be looked up when the structures are storing the
URLs-37 key set. They were created based on the average key sizes presented in Table 7.2.
In our experiments we used an 8-byte ﬁngerprint of the key instead of the key itself.
The use of ﬁngerprints was motivated by two reasons: (i) to guarantee that all keys have
the same size, since in this way we can allocate a ﬁxed size for each key without waste of
space; and (ii) to reduce the amount of memory used to store each key, as the average key
size in all key sets used is greater than 8 bytes. A point worth noting is that each key set
was stored entirely in main memory, but the set of automatically generated keys is too big
to be stored in the same way, and had to be kept in disk.
7.2.2 Minimal Perfect Hashing Versus Linear Hashing, Quadrat-
ic Hashing and Double Hashing
In this section we compare the minimal perfect hashing structure with linear hashing,
quadratic hashing and double hashing. Linear hashing, quadratic hashing and double
hashing methods were tested with diﬀerent load factors, ranging from 50 to 90%. We
considered both successful and unsuccessful searches to measure the average number of
probes and the amount of time spent (on average) to look up 10, 20 and 250 million keys
in the AllTheWeb, URLs-10 and URLs-37 key sets, respectively.
The results for successful and unsuccessful searches are presented in Tables 7.3 and
7.4, respectively. As expected, quadratic hashing and double hashing perform better than
linear hashing for high load factors, since they avoid the creation of clusters in this case.
Nevertheless, linear hashing is a better option when we use lower load factors. Further-
more, we can see that double hashing always has a smaller number of collisions per key
when compared to quadratic hashing and linear hashing, but it is slower since it needs to
compute two hash functions instead of one. The average number of probes measured for
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both successful and unsuccessful searches are very close to the expected according to the
equations presented in Sections 7.1.1, 7.1.2 and 7.1.3 (this is not shown in the tables).
LH QH DH
Key Set α Probes/N T(s) Probes/N T(s) Probes/N T(s)
85% 3.78 5.67 2.40 5.27 2.17 5.42
80% 2.91 5.26 2.09 5.09 2.02 5.28
75% 2.47 5.04 1.93 4.97 1.90 5.11
AllTheWeb 70% 2.13 4.84 1.78 4.81 1.71 4.98
65% 1.89 4.70 1.69 4.69 1.61 4.83
60% 1.73 4.58 1.58 4.60 1.52 4.72
55% 1.62 4.46 1.51 4.52 1.45 4.64
50% 1.48 4.34 1.42 4.40 1.40 4.56
85% 3.63 18.98 2.27 17.87 2.16 18.36
80% 2.83 18.32 2.09 17.67 1.96 18.02
75% 2.37 17.69 1.87 17.29 1.83 17.69
URLs-10 70% 2.05 17.31 1.76 17.01 1.69 17.34
65% 1.80 17.00 1.61 16.81 1.62 17.14
60% 1.70 16.84 1.53 16.61 1.50 16.92
55% 1.57 16.34 1.47 16.33 1.42 16.58
50% 1.51 16.33 1.39 16.19 1.35 16.39
85% 3.94 269.19 2.37 253.18 2.29 263.80
80% 3.00 255.53 2.12 247.48 2.01 257.31
75% 2.46 247.95 1.89 242.51 1.83 250.60
URLs-37 70% 2.11 243.02 1.82 240.55 1.71 246.58
65% 1.94 238.15 1.65 235.54 1.66 244.10
60% 1.74 235.21 1.57 234.20 1.50 239.84
55% 1.62 232.83 1.50 231.63 1.45 236.31
50% 1.55 229.62 1.43 228.92 1.37 233.79
Table 7.3: Load factor inﬂuence on the time to successfully look up 10, 20 and 250 million
keys in the AllTheWeb, URLs-10 and URLs-37 key sets, respectively.
We now compare the minimal perfect hashing structure with linear hashing, quadratic
hashing and double hashing. Tables 7.5 and 7.6 show the results for successful and un-
successful searches, respectively. Two interesting results are remarkable. First, when the
MPHF description ﬁts in the L2 cache, which is the case for the AllTheWeb key set and
URLs-10 key set, the minimal perfect hashing structure outperforms the others in terms of
lookup time for load factors greater than 55% for both successful and unsuccessful searches.
Second, in the converse situation in which the MPHF description does not ﬁt in the L2
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LH QH DH
Key Set α Probes/N T(s) Probes/N T(s) Probes/N T(s)
85% 22.80 14.82 7.54 8.60 6.67 8.89
80% 13.02 10.43 5.59 7.36 5.00 7.65
75% 8.44 8.17 4.43 6.67 4.00 6.95
AllTheWeb 70% 6.05 7.03 3.66 6.20 3.33 6.42
65% 4.59 6.32 3.11 5.87 2.86 6.06
60% 3.63 5.84 2.71 5.60 2.50 5.74
55% 2.97 5.48 2.39 5.36 2.22 5.48
50% 2.50 5.19 2.13 5.14 2.00 5.25
85% 22.61 34.81 7.54 22.68 7.25 23.71
80% 12.93 25.78 5.59 20.16 5.00 20.87
75% 8.49 21.93 4.43 18.77 4.00 19.27
URLs-10 70% 6.05 19.42 3.66 17.77 3.33 18.18
65% 4.58 17.94 3.11 17.07 2.86 17.40
60% 3.62 16.91 2.70 16.57 2.50 16.70
55% 2.97 16.14 2.39 15.98 2.22 16.14
50% 2.50 15.59 2.13 15.57 2.00 15.63
85% 22.53 526.05 7.55 333.49 6.67 379.17
80% 13.01 387.93 5.59 294.89 5.19 330.74
75% 8.51 318.94 4.43 270.53 4.00 296.62
URLs-37 70% 6.06 281.93 3.66 253.64 3.33 274.55
65% 4.58 258.15 3.12 242.66 2.86 257.75
60% 3.62 242.04 2.71 232.46 2.50 245.06
55% 2.97 230.90 2.39 225.05 2.22 233.96
50% 2.50 220.64 2.13 217.66 2.00 222.92
Table 7.4: Load factor inﬂuence on the time to unsuccessfully look up 10, 20 and 250
million keys in the AllTheWeb, URLs-10 and URLs-37 key sets, respectively.
cache, which is the case for the URLs-37 key set, the same thing happens for load factors
greater than 75% and 65% for successful searches and unsuccessful searches, respectively.
Therefore, as can be seen, the use of MPHFs saves a signiﬁcant amount of space with
almost no loss in the lookup time.
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Data AllTheWeb URLs-10 URLs-37
Structure α(%) T(s) S
o
(bits/key) α(%) T(s) S
o
(bits/key) α(%) T(s) S
o
(bits/key)
MPH 100 4.48 2.62 100 16.34 2.62 100 250.36 2.62
LH 55 4.46 116.36 55 16.34 116.36 75 247.95 85.33
QH 55 4.52 116.36 55 16.33 116.36 80 247.48 80
DH 50 4.56 128 50 16.39 128 75 250.60 85.33
Table 7.5: Comparison of MPH with LH, QH and DH, considering the space overhead and
the time to successfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-10
and URLs-37 key sets, respectively.
Data AllTheWeb URLs-10 URLs-37
Structure α(%) T(s) S
o
(bits/key) α(%) T(s) S
o
(bits/key) α(%) T(s) S
o
(bits/key)
MPH 100 5.33 2.62 100 16.38 2.62 100 252.65 2.62
LH 55 5.48 116.36 60 16.91 106.67 65 258.15 98.46
QH 55 5.36 116.36 60 16.57 106.67 70 253.64 91.43
DH 55 5.48 116.36 60 16.70 106.67 65 257.75 98.46
Table 7.6: Comparison of MPH with LH, QH and DH, considering the space overhead and
the time to unsuccessfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-10
and URLs-37 key sets, respectively.
7.2.3 Minimal Perfect Hashing Versus Dense and Sparse Hash-
ing
Sparse hashing and dense hashing were tested with their default load factor only, which
is 80%. Table 7.7 shows the time spent to execute the lookup step for each method for
successful searches only. As expected, sparse hashing had the worst performance in lookup
time when compared to the other methods, as it is designed to be eﬃcient in space but not
in execution time. The same is true for unsuccessful searches, as displayed in Table 7.8. It
is important to note that perfect hashing has clearly outperformed the other methods in
all aspects. Experiments were performed using only the AllTheWeb and URLs-10 key sets.
We decided not to use the URLs-37 key set since we did not expect any improvements on
the results.
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Data AllTheWeb URLs-10
Structure α(%) T(s) S
o
(bits/key) α(%) T(s) S
o
(bits/key)
MPH 100 4.48 2.62 100 16.34 2.62
SH 80 11.47 2,92 80 35.76 2,92
DeH 80 6.51 80 80 27.48 80
Table 7.7: Comparison of MPH with DeH and SH, considering the space overhead and the
time to successfully look up 10 and 20 million keys in the AllTheWeb and URLs-10 key
sets, respectively.
Data AllTheWeb URLs-10
Structure α(%) T(s) S
o
(bits/key) α(%) T(s) S
o
(bits/key)
MPH 100 5.33 2.62 100 16.38 2.62
SH 80 15.48 2,92 80 48.27 2,92
DeH 80 7.59 80 80 30.26 80
Table 7.8: Comparison of MPH with DeH and SH, considering the space overhead and the
time to unsuccessfully look up 10 and 20 million keys in the AllTheWeb and URLs-10 key
sets, respectively.
7.2.4 Minimal Perfect Hashing Versus Cuckoo Hashing
Cuckoo hashing has a diﬀerent behavior when compared to any of the methods analyzed,
as it cannot work if the load factor is high, i.e., at most 50% [63]. Therefore, we decided to
show the comparison between this method and perfect hashing in this separated subsection.
Cuckoo hashing was tested with load factors ranging from 20% to the maximum load factor
with which it works.
Table 7.9 shows the average number of probes and the average lookup time to success-
fully search for 10, 20 and 250 million keys in the AllTheWeb, URLs-10 and URLs-37 key
sets, respectively. We can see that cuckoo hashing performs slightly faster for all key sets
used, but the space overhead for the MPH structure is much lower than for cuckoo hashing
in all experiments. The same happens for unsuccessful searches, as we can see in Table
7.10.
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Data AllTheWeb URLs-10 URLs-37
Structure α(%) T(s) S
o
(bits/key) α(%) T(s) S
o
(bits/key) α(%) T(s) S
o
(bits/key)
MPH 100 4.48 2.62 100 16.34 2.62 100 250.36 2.62
CH 20 4.08 320 20 15.99 320 20 222.40 320
CH 30 4.13 213 30 16.05 213 30 224.98 213
CH 40 4.28 160 40 16.22 160 40 228.76 160
CH 50 4.38 128 50 16.34 128 50 233.89 128
Table 7.9: Comparison of MPH with CH, considering the space overhead and the time to
successfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-10 and URLs-37
key sets, respectively.
Data AllTheWeb URLs-10 URLs-37
Structure α(%) T(s) S
o
(bits/key) α(%) T(s) S
o
(bits/key) α(%) T(s) S
o
(bits/key)
MPH 100 5.33 2.62 100 16.38 2.62 100 252.65 2.62
CH 20 5.06 320 20 15.79 320 20 222.46 320
CH 30 5.10 213 30 15.92 213 30 227.21 213
CH 40 5.30 160 40 16.07 160 40 229.58 160
CH 50 5.34 128 50 16.17 128 50 231.26 128
Table 7.10: Comparison of MPH with CH, considering the space overhead and the time
to unsuccessfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-10 and
URLs-37 key sets, respectively.
7.3 Conclusions
In this chapter we have presented a thorough study of data structures that are suitable for
indexing internal memory in an eﬃcient way in terms of both space and lookup time when
we have a key set that is ﬁxed for a long period of time (i.e., a static key set) and each
key is associated with satellite data. This is widely used in data warehousing and search
engine applications (see [71] for other examples).
It is well known that an eﬃcient way to represent a key set in terms of lookup time
is by using a table indexed by a hash function. For static key sets it is possible to pay
the price of pre-computing an MPHF to ﬁnd any key in a table in one single probe. We
have shown that minimal perfect hashing has a clear advantage in memory usage when
compared to other hashing methods, since there are no empty entries in its hash table and
thus space overhead is greatly reduced by avoiding the use of pointers. This implies in a
gain of O(log n) bits.
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In our study, we compared MPHFs with linear hashing, quadratic hashing, double hash-
ing, dense hashing, cuckoo hashing and sparse hashing. We have shown that MPHFs pro-
vide the best tradeoﬀ between space usage and lookup time among these hashing schemes.
As an example, minimal perfect hashing have a better performance in all measured as-
pects when compared to sparse hashing, which has been designed speciﬁcally for eﬃcient
memory usage. Furthermore, if the MPHF can be stored in cache, minimal perfect hash-
ing outperforms linear hashing, quadratic hashing and double hashing in all aspects when
these methods have a hash table occupancy of 55% or higher. The same happens for hash
table occupancies greater than or equal to 75% if the MPHF does not ﬁt in cache. This
implies in a signiﬁcant memory overhead due to a great number of unused positions in the
hash table.
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Chapter 8
Conclusions and Future Work
8.1 Conclusions
In this work we have presented two classes of algorithms for constructing PHFs and MPHFs.
The ﬁrst class contains internal memory based algorithms that assume uniform hashing
to construct the functions. The algorithms read a key set stored in external memory and
maps it to data structures that are handled in the internal memory. Then, the generation
of the functions are done based on these internal data structures. The second class contains
a cache-aware external memory algorithm that generates the functions without assuming
uniform hashing. The algorithm uses data structures stored in both internal and external
memory, but the key set is still kept in the external memory.
In Chapter 2 we presented an internal random access memory algorithm (RAM al-
gorithm) that generates a family F of near space-optimal PHFs or MPHFs. The RAM
algorithm uses acyclic random hypergraphs given by function values of r uniform random
hash functions on S for generating PHFs and MPHFs that require O(n) bits to be stored.
We have improved in a factor of O(log n) the well known result by Majewski et al [55].
They generate MPHFs based on acyclic hypergraphs that are stored in O(n log n) bits
whereas the ones generated by the RAM algorithm requires O(n) bits. All the resulting
functions are evaluated in constant time. For r = 2 the resulting MPHFs are stored in ap-
proximately 3.6n bits. For r = 3 we have got still more compact MPHFs, which are stored
in approximately 2.6n bits. This is within a factor of 2 from the information theoretical
lower bound of approximately 1.44n bits for MPHFs.
For applications where a PHF of range [0, m − 1], where m = 1.23n, is suﬃcient,
more compact and even simpler representations can be achieved. For example, for m =
133




[image: alt]134 CHAPTER 8. CONCLUSIONS AND FUTURE WORK
1.23n we can get a space usage of 1.95n bits. This is also within a small constant factor
from the information theoretical lower bound of approximately 0.89n bits. The bounds
for r = 3 assume a conjecture about the emergence of a 2-core in a random 3-partite
hypergraph, whereas the bounds for r = 2 are fully proved. Choosing r > 3 does not give
any improvement of these results.
There is a gap between theory and practice among all previous methods on perfect
hashing. On one hand, there are good theoretical results without experimentally proven
practicality for large key sets. On the other hand, there are the algorithms that assume
unrealistic assumptions, as the assumption that uniform hash functions are available to be
used with no extra cost of storage space (see Section 1.4), to theoretically analyze their run
time and space usage. The methods also require O(n) computer words for the construction
process.
To design a cache-aware external memory algorithm (EM algorithm) that gives an
important step on the way of bridging the gap between theory and practice on perfect
hashing, works with high probability for every key set and scales for key sets on the order
of billions of keys we used a two-step approach: the part ition ing step and the searching
step. In the partitioning step, we use a universal hash function to split the incoming key
set S into small buckets with a bounded maximum bucket size that ﬁts in the CPU cache.
Then, we use the techniques presented in Chapter 3 to simulate uniform hash functions
on the small buckets. Therefore, as we are able to use uniform hash functions on the
small buckets, in the searching step we use the RAM algorithm to build an MPHF for
each bucket with high probability, and using an oﬀset array we obtain an MPHF for the
whole key set S. In order to scale for sets on the order of billions of keys we generate runs
of an external multi-way merge sort during the partitioning step and merge them in the
searching step when the buckets are read from disk.
The EM algorithm requires O(n
ǫ
) computer words, where 0 < ǫ < 1, for constructing
the functions in linear time. Typically ǫ = 0.5 and that is the main reason that makes the
EM algorithm to scale. The resulting PHFs and MPHFs require approximately 2.7 and 3.3
bits per key to be stored and are evaluated in constant time. All together makes the EM
algorithm the ﬁrst one that demonstrates the capability of generating MPHFs for sets on
the order of billions of keys on a commodity PC. For instance, considering a set of 1.024
billion URLs the EM algorithm constructs an MPHF on a commodity PC in approximately
50 minutes. The complete description of the EM algorithm is presented in Chapter 4.
The EM algorithm presents a high degree of parallelism to be exploited. Then, in
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Chapter 5, we presented a parallel implementation of the EM algorithm (PEM algorithm).
The PEM algorithm distributes both the construction and the description of the resulting
functions. For instance, by using a 14-computer cluster the PEM algorithm generates
a PHF or an MPHF for 1.024 billion URLs in approximately 4 minutes, achieving an
almost linear speedup. Also, for 14.336 billion 16-byte random integers evenly distributed
among the 14 participating machines the PEM algorithm outputs a PHF or an MPHF in
approximately 50 minutes, resulting in a performance degradation of 20%.
In Chapter 6, we designed techniques to generate MPHFs based on random graphs with
cycles. The BKZ algorithm was the ﬁrst algorithm we came up with to generate MPHFs
based on random graphs with cycles. It improves the space requirement of the algorithm
by Czech, Havas and Majewski [25], referred to as CHM, at the expense of generating
functions in the same form that are not order preserving, but are computed in O(1) time.
We have improved the space required to store a function in the BKZ algorithm to 55% of
the space required by the CHM algorithm. The BKZ algorithm is also linear on n and runs
59% faster than the CHM algorithm. However, the resulting MPHFs still need O(n log n)
bits to be stored and the algorithm needs O(n) computer words to construct the functions.
In the same trend, also in Chapter 6, we used techniques similar to the ones used in the
design of the BKZ algorithm to speedup the execution time of RAM algorithm that works
on random acyclic bipartite graphs. In this case, by allowing a single cycle with the same
number of vertices and edges per connected component in the random bipartite graph we
were able to generate PHFs and MPHFs 40% faster than when cycles are not allowed.
Minimal perfect hash functions were not considered a good option to index internal
memory in the past [45]. However, in Chapter 7, we showed that the new MPHFs proposed
in this work, specially the ones generated by the RAM algorithm, have a clear advantage
in memory usage when compared to other hashing methods with almost no loss in terms
of lookup time, since there are no empty entries in its hash table and thus space overhead
is greatly reduced by avoiding the use of pointers. This implies in a gain of O(log n) bits.
8.2 Future Work
In this work we designed, analyzed and implemented algorithms to build compact and
practical PHFs and MPHFs. On the way we left some points open to be exploited as
future work. In the following we present the future steps to be taken:
1. In Chapter 2 the threshold for the moment that the random acyclic r-partite hyper-
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graphs dominate the space of random r-partite hypergraphs have not been completely
proved for r ≥ 3. The problems for r < 3 and for r ≥ 3 have diﬀerent natures and
involve a phase transition, as reported to us by Kohayakawa [52]. We are on the way
of obtaining a fully proof of the threshold for r ≥ 3. This is being done in a joint
work with Professor Nicholas C. Wormald from the Department of Combinatorics
and Optimization at University of Waterloo.
2. The main technical ingredient of the family of algorithms presented in Chapter 2 is
the use of acyclic r-partite random hypergraphs. We have shown how to deal with
cycles when r = 2. However, we aim to extend the techniques presented in Chapter 6
to deal with cycles when r = 3. We believe that we can get still more compact
functions in this case.
3. In Chapter 6 we were not able to prove the Conjecture 1 and Professor Jayme Szwar-
cﬁter pointed out in the thesis presentation that the literature related to graceful
labeling can be a good source to ﬁnd insights on the way of the proof. Therefore, we
want to study this literature and try to ﬁnd a proof for the the Conjecture 1.
4. A problem with all algorithms we have designed is that we need to know the key set a
priori. That is, they are designed to work with static sets. Then, we aim to study how
to extend the algorithms to work with dynamic key sets to build compact dynamic
minimal perfect hash functions. In this case, keys can be inserted or removed from
the key set and this operations would be carried out in our methods with a linear cost.
Then, our objective is to look for algorithms that generate functions as compact as
possible, which should allow lookups, insertions and deletions in amortized constant
time.
5. We believe that MPHFs can potentially be applied to applications where we need
to index similar objects previously clustered with respect to some similarity metric
(e.g., Euclidean distance). In these cases, we can compute a key for each cluster
based on the similarity metric and, then, to compute an MPHF for the resulting key
set. We aim to exploit this problem because we believe that the resulting key sets
can be built in such way that put them in between static and dynamic key sets. For
example, this situation would occur if we were able to build the key set so that a
key is added to it whenever a new cluster is created and deleted only when a cluster
disappear, but no change is made in the key of a given cluster when objects are added
to or removed from the cluster.




[image: alt]8.2. FUTURE WORK 137
6. An MPHF can be used to implement a data structure with the same functionality as
a Bloom ﬁlter
1
[60, 37]. In many applications where a set S of elements is to be stored,
it is acceptable to include in the set some false positives with a small probability by
storing a signature for each perfect hash value. Theoretically speaking, as shown
in [60], this data structure requires around 30% less space usage when compared
to Bloom ﬁlters, plus the space for the MPHF. Then we aim to study if this data
structure outperforms the Bloom ﬁlters in practice when lookup time and space usage
are considered as metrics. Preliminary results indicates that the data structure that
uses MPHFs just outperforms the Bloom ﬁlters for false positive rates smaller than
2
6
in terms of space usage. We still do not have conclusive preliminary results for
lookup time.
1
The Bloom ﬁlter, conceived by Burton H. Bloom in 1970 [6], is a space-eﬃcient probabilistic data
structure that is used to test whether an element is a member of a set. False positives are possible, but
false negatives are not. False positives are elements that appear to be in S but are not and false negatives
are elements that are not in S but a data structure storing S says that they are. Elements can be added
to the set, but not removed (though this can be addressed with a counting ﬁlter [10]). The more elements
that are added to the set, the larger the probability of false positives. Bloom ﬁlters have applications in
distributed databases and data mining (association rule mining [21, 22]).
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