

DISSERTAÇÃO

ESTABILIDADE FENOTÍPICA DO FEIJOEIRO EM ENSAIOS REGIONAIS DE PRODUTIVIDADE

GUILHERME AUGUSTO PERES SILVA

Campinas, SP 2010

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

INSTITUTO AGRONÔMICO CURSO DE PÓS-GRADUAÇÃO EM AGRICULTURA TROPICAL E SUBTROPICAL

ESTABILIDADE FENOTÍPICA DO FEIJOEIRO EM ENSAIOS REGIONAIS DE PRODUTIVIDADE

GUILHERME AUGUSTO PERES SILVA

Orientador: PqC. Dr. Sérgio Augusto Morais Carbonell

Dissertação submetida como requisito parcial para obtenção do grau de **Mestre** em Agricultura Tropical e Subtropical Área de Concentração em Genética, Melhoramento Vegetal e Biotecnologia.

Campinas, SP

Fevereiro 2010

Aos meus pais, Osvaldo Augusto da Silva e Maria Teresinha Peres Silva, e minha irmã, Vanessa Peres Silva **DEDICO**

> Aos meus pais Osvaldo e Maria e minha irmã Vanessa. Pelo apoio e por sempre acreditarem em minha capacidade.

> > OFEREÇO

AGRADECIMENTOS

- Agradeço a Deus pela vida;
- Agradeço ao pesquisador Dr. Sérgio Augusto Morais Carbonell pela orientação, e pelos ensinamentos transmitidos;
- Ao pesquisador Alisson Chiorato pelo auxílio na elaboração desta dissertação;
- Ao amigo João Guilherme pela amizade e auxílio em especial com a análise AMMI utilizada nesta dissertação;
- Ao CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico, pela concessão da bolsa de estudos;
- Agradeço aos meus pais Osvaldo e Maria Teresinha por sempre acreditarem em minha capacidade, pelos ensinamentos e amor que levarei por toda a vida;
- A minha irmã Vanessa pela amizade, companheirismo;
- A toda a minha família que sempre me apoiou e incentivou em todas as decisões;
- Agradeço a todos os professores pelos ensinamentos e experiências;
- Agradeço a todos os amigos e colegas da pós graduação em especial as minhas amigas Laís Granato, Bárbhara Fatobene, Cecília Verardi, Simone Rizato, Lenita Haber e a minha namorada Marília Antonia dos Reis Fatobene pela amizade, companheirismo e apoio.
- A todos os amigos que de forma direta auxiliaram na elaboração da dissertação. João Guilherme, Eliana, Francine, Rodrigo e ao funcionário Adelino pela ajuda, amizade e tantas piadas contadas;
- Agradeço a todos os moradores da república Miúxa em especial ao meus primos Pedro Augusto e Daniel Augusto e meu amigo Carlos Marques pela amizade, companheirismo, incentivo e pelos momentos de alegria nesses dois anos.

SUMÁRIO

LISTA DE TABELAS	viii ix
ABSTRACT	
1 INTRODUÇÃO	4
2.2 Interação Genótipos com Ambientes	8
2.3 Adaptabilidade e Estabilidade Fenotípica	13
2.4 Conceitos de Estabilidade e Adaptabilidade	13
2.5 Análise AMMI	15
2.5.1 Análise de componentes principais	16
2.5.2 Genótipo suplementar	19
2.6 Análise LIN & BINNS (1988) Modificado por CARNEIRO (1998)	20
3 MATERIAL E MÉTODOS	
3.2 Ambientes Utilizados na Condução dos Experimentos	23
3.3 Análise de Variância Simples e Conjunta	24
3.4 Análise de Estabilidade e Adaptabilidade Fenotípica	25
3.4.1 Método AMMI	26
3.4.2 Lin & binns (1988) modificado por carneiro (1998)	29
4 RESULTADOS E DISCUSSÃO	
4.2 Análise da Estabilidade e Adaptabilidade pelo Método AMMI	39
4.2.1 Grãos de tegumento carioca e preto referente à época das águas	42
4.2.2 Grãos de tegumento carioca e preto referente à época da seca	46
4.2.3 Grãos de tegumento carioca e preto referente à época de inverno	50
4.2.4 Conjunto das três épocas de semeadura (águas, seca e inverno), referente a grâ	ios de
tegumento carioca e preto	54
4.3 Análise da Estabilidade e Adaptabilidade pelo Método LIN & BINNS (1988) Modi	ficado
por CARNEIRO (1998)	60
4.3.1 Grãos de tegumento carioca e preto referente à época das águas	63
4 3 2 Grãos de tegumento carioca e preto referente à época da seca	65

4.3.3 Grãos de tegumento carioca e preto referente à época de inverno	67
4.3.4 Conjunto das três épocas de semeadura (águas, seca e inverno), referente a grãos	s de
tegumento carioca e preto	70
4.4 Comparações Entre os Resultados dos Métodos de Análise de Estabilidade	e e
Adaptabilidade	72
5 CONCLUSÕES	72
6 REFERÊNCIAS BIBLIOGRÁFICAS	
Anexos	.80

LISTA DE TABELAS

Tabela	1 - Ensaios regionais de cultivares e linhagens de feijoeiro – VCU 2007/2008/2009, no Estado de São Paulo	23
Tabela 2	2 - Ambientes utilizados para a condução dos ensaios nas respectivas épocas de semeadura.	24
	3 - Ensaios regionais de cultivares e linhagens de feijoeiro – produtividade média de grãos (kg.ha-1) referente à safra das Águas de 2007, no estado de São Paulo.	31
Tabela	4 - Ensaios regionais de cultivares e linhagens de feijoeiro – produtividade média de grãos (kg.ha-1) referente à safra da Seca de 2008, no estado de São Paulo.	32
	 5 - Ensaios regionais de cultivares e linhagens de feijoeiro – produtividade média de grãos (kg.ha⁻¹) referente à safra de Inverno de 2008, no estado de São Paulo. 	33
	6 - Ensaios regionais de cultivares e linhagens de feijoeiro – produtividade média de grãos (kg.ha ⁻¹) referente à safra de Águas de 2008, no estado de São Paulo.	34
Tabela	 7 - Ensaios regionais de cultivares e linhagens de feijoeiro – produtividade média de grãos (kg.ha⁻¹) referente à safra de Seca de 2009, no estado de São Paulo. 	35
Tabela	8 - Ensaios regionais de cultivares e linhagens de feijoeiro – produtividade média de grãos (kg.ha ⁻¹) referente à safra de Inverno de 2009, no estado de São Paulo.	36
Tabela	9 - Ensaios regionais de cultivares e linhagens de feijoeiro – produtividade média de grãos (kg.ha ⁻¹) referente à safra de Águas (2007 e 2008), Seca (2008 e 2009), Inverno (2008 e 2009) e média geral, no estado de São Paulo.	39
		41
Tabela	11 - Proporção da SQ _{G X A} da interação para cada eixo principal da análise AMMI, para o grupo carioca e preto em relação à época de semeadura das águas.	43
Tabela	12 - Proporção da SQ _{G X A} da interação para cada eixo principal da análise AMMI, para o grupo carioca e preto em relação à época de semeadura de seca	47
Tabela	13 - Proporção da SQ _{G X A} da interação para cada eixo principal da análise AMMI, para o grupo carioca e preto em relação à época de semeadura de inverno	51
Tabela	14 - Proporção da SQ _{G X A} da interação para cada eixo principal da análise AMMI, para o grupo carioca e preto em relação ao conjunto das três épocas de semeadura.	55
Tabela	15 - Classificação dos ambientes favoráveis e desfavoráveis ao cultivo do feijoeiro, para produtividade média de grãos, com base nos índices ambientais (I), para as épocas das águas, seca e inverno	62

Tabela 16	- Classificação dos ambientes favoráveis e desfavoráveis ao cultivo do	
	\ // J	63
Tabela 17 -	- Estimativas dos parâmetros de adaptabilidade e estabilidade obtidos pelo método de LIN & BINNS (1988) modificado por CARNEIRO (1998),	
	para produtividade média de grãos (kg.ha ⁻¹), de 22 genótipos de feijoeiro avaliados na época das águas dos anos agrícolas de 2007/2008 para o estado de São Paulo	65
Tabela 18 -	Estimativas dos parâmetros de adaptabilidade e estabilidade obtidos pelo método de LIN & BINNS (1988) modificado por CARNEIRO (1998), para produtividade média de grãos (kg.ha ⁻¹), de 22 genótipos de feijoeiro avaliados na época de seca dos anos agrícolas de 2008/2009 para o estado	05
	de São Paulo.	67
Tabela 19 -	Estimativas dos parâmetros de adaptabilidade e estabilidade obtidos pelo método de LIN & BINNS (1988) modificado por CARNEIRO (1998), para produtividade média de grãos (kg.ha ⁻¹), de 22 genótipos de feijoeiro avaliados na época de inverno dos anos agrícolas de 2008/2009 para o	
	estado de São Paulo	. 69
Tabela 20 -	- Estimativas dos parâmetros de adaptabilidade e estabilidade obtidos pelo método de LIN & BINNS (1988) modificado por CARNEIRO (1998), para produtividade média de grãos (kg.ha ⁻¹), de 22 genótipos de feijoeiro avaliados no conjunto das três épocas de semeadura (águas, seca e inverno), dos anos agrícolas de 2007/2008/2009 para o estado de São	
	Paulo.	71

LISTA DE FIGURAS

Figura 1 - Gráfico biplot de modelo AMMI2, para dados de produtividade de grãos de	
tegumento carioca e preto referentes à época de águas-2007/2008,	
avaliados em oito ambientes (IPCA1 x IPCA2)	45
Figura 2 - Gráfico biplot para produtividade de grãos de feijoeiro de tegumento carioca	
e preto referente à época de águas-2007/2008, avaliados em oito ambientes	
	46
Figura 3 - Gráfico biplot de modelo AMMI2, para dados de produtividade de grãos de	
tegumento carioca e preto referentes à época de seca-2008/2009, avaliados	
em oito ambientes (IPCA1 x IPCA2)	49
Figura 4 - Gráfico biplot para produtividade de grãos de feijoeiro de tegumento carioca	
e preto referente as três épocas de semeadura, avaliados na safra de seca-	
2008/2009 em oito ambientes (IPCA x Média).	50
Figura 5 - Gráfico biplot de modelo AMMI1, para dados de produtividade de grãos de	
tegumento carioca e preto referentes à época de inverno-2008/2009,	
avaliados em oito ambientes (IPCA1 x IPCA2)	52
Figura 6 - Gráfico biplot para produtividade de grãos de feijoeiro de tegumento carioca	
e preto referente à épocas de semeadura, avaliados nas safras de inverno-	
2008/2009 em oito ambientes (IPCA x Média).	53
Figura 7 - Gráfico biplot de modelo AMMI2, para dados de produtividade de grãos de	
feijoeiro de tegumento carioca e preto referente às três épocas de	
semeadura, avaliados nas safras de 2007/2008/2009 em vinte e quatro	
ambientes (IPCA1 x IPCA2).	58
Figura 8 - Gráfico biplot de modelo AMMI3, para dados de produtividade de grãos de	
feijoeiro de tegumento carioca e preto referente às três épocas de	
semeadura, avaliados nas safras de 2007/2008/2009 em vinte e quatro	
ambientes (IPCA1 x IPCA3).	59
Figura 9 - Gráfico biplot para produtividade de grãos de feijoeiro de tegumento carioca	
e preto referente às três épocas de semeadura, avaliados nas safras de	
2007/2008/2009 em vinte e quatro ambientes (IPCA x Média)	60

LISTA DE ANEXOS

	ndice de genótipos e ambientes referentes ao VCU de grãos carioca e preto 80
	Valor do quadrado médio residual dos vinte e quatro ambientes
Anovo IV N	São Paulo
Allexo IV.	grãos de tegumento carioca e preto (Kg/ha ⁻¹), avaliados na época das águas em oito ambientes no estado de São Paulo.
Anexo V. Es	stimativas das interações de genótipos com ambientes pelo AMMI2, obtidos de 22 genótipos de grãos de tegumento carioca e preto(Kg/ha-1), avaliados
A X7T N	na época de seca em oito ambientes no estado de São Paulo
Anexo VI.	Matriz de médias preditas pelo modelo AMMI2, obtidos de 22 genótipos de grãos de tegumento carioca e preto (Kg/ha ⁻¹), avaliados na época de seca em oito ambientes no estado de São Paulo
Anexo VII.	Estimativas das interações de genótipos com ambientes pelo modelo AMMI2, obtidos de 22 genótipos de grãos de tegumento carioca e preto (Kg/ha ⁻¹), avaliados na época de inverno em oito ambientes no estado de
Anexo VIII	São Paulo
	de grãos de tegumento carioca e preto (Kg/ha ⁻¹), avaliados na época de inverno em oito ambientes no estado de São Paulo
Anexo IX.	Estimativas das interações de genótipos com ambientes pelo modelo AMMI5, obtidos de 22 genótipos de grãos de tegumento carioca (Kg/ha ⁻¹) e preto, avaliados nas três épocas de semeadura em vinte e quatro ambientes no estado de São Paulo (Continua)
Anexo IX.	Estimativas das interações de genótipos com ambientes pelo modelo AMMI5, obtidos de 22 genótipos de grãos de tegumento carioca (Kg/ha-1) e preto, avaliados nas três épocas de semeadura em vinte e quatro ambientes no estado de São Paulo (Continuação)
Anexo IX.	Estimativas das interações de genótipos com ambientes pelo modelo AMMI5, obtidos de 22 genótipos de grãos de tegumento carioca (Kg/ha ⁻¹) e preto, avaliados nas três épocas de semeadura em vinte e quatro ambientes no estado de São Paulo (Continuação)90
Anexo X. M	latriz de médias preditas pelo modelo AMMI5, obtidos de 22 genótipos de grãos de tegumento carioca e preto (Kg/ha ⁻¹), avaliados nas três épocas de semeadura em vinte e quatro ambientes no estado de São Paulo
Anexo X. M	(Continua)
Anexo X. M	(Continuação)

semeadura en	em v	vinte	e	quatro	ambientes	no	estado	de	São	Paulo
--------------	------	-------	---	--------	-----------	----	--------	----	-----	-------

SILVA, Guilherme Augusto Peres **Estabilidade fenotípica do feijoeiro em ensaios regionais de produtividade**. 2010. 93f. Dissertação (Mestrado em Genética, Melhoramento Vegetal e Biotecnologia) – Pós Graduação – IAC.

RESUMO

O estudo da estabilidade e adaptabilidade fenotípica é uma maneira de avaliar a interação entre genótipos e ambientes sendo de grande importância para o melhoramento, cujo interesse maior é a obtenção de materiais que se comportem bem sob diferentes condições ambientais. A interação de genótipos com ambientes é um fator que dificulta a recomendação de cultivares em vários ambientes. Para atenuar os efeitos dessa interação uma alternativa que pode ser tomada é a identificação de genótipos com maior estabilidade aos ambientes de cultivo. O presente trabalho tem como objetivo identificar genótipos superiores em produtividade, estabilidade e adaptabilidade na produção para possível recomendação de novos cultivares de feijoeiro. Os materiais genéticos utilizado neste estudo foram 22 linhagens e cultivares com grão carioca e preto do ensaio de VCU 2007/2008/2009 normalizado pelo MAPA/RNC. Estes ensaios foram semeados nas épocas das águas em 2007 e 2008, de inverno em 2008 e 2009 e das secas em 2008 e 2009, totalizando vinte e quatro ambientes. O delineamento estatístico foi o de blocos casualizados com três repetições contendo quatro linhas de quatro metros de comprimento. O espaçamento entre linhas foi de 0,5 metros e a área útil da parcela das duas linhas centrais (4 m²). Estudos da adaptabilidade e estabilidade dos valores fenotípicos foram realizados por duas metodologias, AMMI com o uso de genótipos suplementares e Lin & Binns (1988) modificado por Carneiro (1998), baseado em dados de produção e comparado seus resultados para o programa de melhoramento. Os resultados demonstraram que os genótipos mais estáveis e produtivos, para tipo de grão comercial carioca, são: GenC2-1-3, CNFC 10408 e Juriti Claro; para tipo de grão comercial preto, o genótipo LP 04-72 conforme modelo Lin & Binns; e para o modelo AMMI os mais estáveis foram os genótipos: GenC2-1-3, CNFC 10408 e Juriti Claro que foram superiores ao melhor cultivar padrão de tegumento carioca o Perola, assim como os genótipos IAC-Una, GenC2-1-7, LP-04-72 e Z-22, destacando o genótipo LP-04-72 para o tipo comercial preto que foi superior ao melhor cultivar padrão de tegumento preto o IAC-Una. Podendo concluir que os métodos AMMI e Lin & Binns (1988) modificado por Carneiro (1988) fornecem informações complementares, gerando estimativas com abordagens diferenciadas do processo de interação entre genótipos e ambientes. O grande número de variáveis na análise AMMI (genótipo e ambiente) prejudica a interpretação do gráfico biplot tornando-a difícil e confusa.

A utilização do genótipo suplementar no modelo AMMI facilita a identificação de genótipos altamente adaptados aos ambientes em estudo.

PALAVRAS-CHAVE: *Phaseolus vulgaris*, AMMI, melhoramento, Interação Genótipo x Ambiente ,adaptabilidade.

SILVA, Guilherme Augusto Peres **Phenotypic stability of common bean in regional yield trials**. 2010. 94f. Dissertação (Mestrado em Genética, Melhoramento Vegetal e Biotecnologia) – Pós Graduação – IAC.

ABSTRACT

The study of stability and adaptability phenotypic is one way to evaluate the interaction between genotypes and environments being of great importance for the breeding, whose major interest is to obtain materials that behave well under different environmental conditions. The genotype x environment interaction is a factor undesirable in breeding programs, making difficult the recommendation of new cultivars in many environments. To mitigate the effects of this interaction an alternative that can be taken is to identify genotypes with high stability to environmental conditions. This study aims to identify superior genotypes in field, stability and adaptability in production for possible recommendation of new cultivars of bean. The genetic materials used in this study were 22 lines and cultivars with grains carioca and black of VCU testing 2007/2008/2009 normalized by MAPA/RNC. These trials were sown in times of water in 2007 and 2008, winter in 2008 and 2009 and droughts in 2008 and 2009, providing a total of twenty-four environments. The experimental design was a randomized block design with three replicates containing four lines of four meters long. The spacing was 0.5 meters and each plot of the two central lines (4 m²). Studies on the adaptability and stability of phenotypic values were performed by two methods, AMMI with the use of additional genotypes and Lin & Binns (1988) modified by Carneiro (1998), based on production data and compared its results for the breeding program. The results showed that the genotypes more stable and productive for grain type commercial carioca are GenC2-1-3, CNFC 10408 and Juriti Claro, for the type of commercial grain black, genotype LP 04-72 as Lin & Binns model, and for the AMMI model the most stable genotypes were GenC2-1-3, CNFC 10408 and Juriti Claro were higher than the best standard cultivar carioca tegument Perola, as well as the genotypes IAC-Una, GenC2-1-7, LP-04-72 and Z-22, highlighting the genotype LP-04-72 for a commercial black was higher than the best standard cultivar black tegument IAC-Una. May conclude that the methods AMMI and Lin & Binns (1988) modified by Carneiro (1988) provide additional information, generating estimates with different approaches in the process of genotypes x environments interaction. The large number of variables in the AMMI analysis (genotype and environment) affects the interpretation of the biplot graphic making it difficult and confusing. The use of the

supplementary genotype on AMMI model facilitates the identification of genotypes highly adapted to environments under study.

KEY-WORDS: *Phaseolus vulgaris*, AMMI, breeding, genotype x environment interaction, adaptability

1 INTRODUÇÃO

O feijoeiro (*Phaseolus vulgaris* L.) é uma planta que pertence à família Leguminoseae, ordem Rosales e gênero *Phaseolus*, originária do continente americano. Possui dois centros de origem, sendo um Andino e um Mesoamericano. Seu ciclo varia de 61 a 110 dias, o que o torna segundo AIDAR (2009) uma cultura apropriada para compor desde sistemas agrícolas intensivos irrigados, altamente tecnificados, até aqueles com baixo uso tecnológico, principalmente de subsistência.

Segundo MERCADO-RUARO & DELGADO-SALINAS (2000), a primeira descrição sobre *Phaseolus* foi feita por Linnaeus em 1753 e incluía 11 espécies. Hoje em dia sabe-se que esse número gira em torno de 200 espécies. Em 1925 Karpetschenko, que observou que o número de cromossomos da cultura é 2n = 22, através de análises citogenéticas, concluiu-se que o número básico de cromossomos para a espécie é x = 11.

A família Fabaceae (*Leguminosae*) é um dos mais importantes grupos de legumes, pois é composto pela soja, feijão e vigna. Eles são economicamente importantes devido à sua função na alimentação humana, por serem algumas das principais fontes de proteínas, carboidratos, vitaminas, minerais e fibras (LACKEY, 1979).

O feijão é um dos mais importantes constituintes da dieta do brasileiro por ser uma excelente fonte protéica. Nos últimos anos, o Brasil tem ocupado o primeiro lugar na produção e consumo mundial de feijão, *Phaseolus vulgaris* L. (FAO, 2009). Além da sua importância na dieta do brasileiro é um dos produtos agrícolas de maior importância econômica e social, em razão de ser cultivado em grandes áreas e devido à mão-de-obra que emprega durante o ciclo da cultura.

O Brasil destaca-se na produção e no consumo mundial de feijão, sendo essa leguminosa sua principal fonte de proteína vegetal do brasileiro. O feijão com arroz constitui a base da alimentação do brasileiro, sendo consumido dessa forma em praticamente todos os Estados. No Estado de São Paulo, o feijoeiro é cultivado em três épocas (feijoeiro das águas, da seca e de inverno), com semeadura efetuada em agosto-setembro, janeiro-fevereiro e abrilmaio, respectivamente, de acordo com zoneamento ecológico e faz parte de um sistema quase contínuo de cultivo (PINZAN et al., 1994).

O Brasil ocupa o lugar de maior produtor e maior consumidor mundial de feijão, sendo que os principais Estados produtores são: Paraná (21%), Minas Gerais (16%), Bahia (10%), São Paulo (9%), Goiás (7%), Santa Catarina (5%), em uma área total semeada de 4.168.800 ha, com uma produção de 3.527.200 toneladas e um rendimento médio de 846 kg. ha⁻¹ (CONAB, 2009).

Atualmente, os ensaios realizados no Estado de São Paulo para avaliação do feijoeiro para fins de registro e proteção de novos cultivares para o sistema produtivo, seguem as normas estabelecidas pelo Ministério da Agricultura pecuária e Abastecimento (MAPA), Registro nacional de Cultivares (RNC) e pelo Sistema Nacional de Proteção de Cultivares (SNPC). Estes ensaios também são conhecidos como "ensaios de VCU" (Valor de Cultivo e Uso). Nestas normas estão descritos os procedimentos de campo e laboratório para avaliação destas cultivares e linhagens, sendo os principais: avaliação por dois anos nas principais regiões produtoras de feijão do Estado; comparação com no mínimo dois padrões ou grupo de feijão por ensaio (testemunhas); três repetições por ensaio no delineamento de blocos casualizados; avaliação de resistência as principais doenças no campo e laboratório e avaliação tecnológica e nutricional dos grãos como tempo de cozimento e porcentagem de proteína no grão.

O programa de melhoramento de feijoeiro do IAC- Instituto Agronômico de Campinas, visa à obtenção de genótipos com alta produtividade, estabilidade de produção e adaptabilidade aos mais variados ambientes da região para a qual são recomendados e como também a qualidade tecnológica e nutricional dos grãos a fim de atender as exigências de mercado. Segundo CRUZ et al. (2004), a interação de genótipos com ambientes (GxA), definida como a resposta diferencial dos genótipos a variação do ambiente, dificulta a seleção de genótipos amplamente adaptados. Além disso, essa interação pode inflacionar as estimativas de variância genética, resultando em superestimativas dos ganhos genéticos, esperados com a seleção, e num menor êxito, dos programas de melhoramento.

Para conhecer o efeito da interação GxA, a condução dos experimentos no maior número possível de locais e anos é necessária para se avaliar a magnitude da interação e seu possível impacto sobre a seleção e recomendação de cultivares. A fim de tornar essa recomendação mais segura possível, faz-se necessário um estudo detalhado acerca da adaptabilidade e da estabilidade das cultivares, assim como de seus caracteres importantes economicamente. Vários métodos estatísticos têm sido propostos com o objetivo de se interpretar melhor a interação GxA. Estudos dessa natureza são importantes para o

melhoramento de plantas, uma vez que fornecem informações sobre o comportamento de cada genótipo ante as variações do ambiente (CRUZ, 2006).

As análises de adaptabilidade e estabilidade são, portanto, procedimentos estatísticos que permitem identificar as cultivares de comportamento mais estável e que respondem previsivelmente às variações ambientais. Algumas delas permitem também, dividir os efeitos da interação GxA em efeitos de genótipos e de ambientes, revelando a contribuição relativa de cada um para a interação total. Assim a estimação dos parâmetros de adaptabilidade e estabilidade tem sido uma forma muito difundida, entre os melhoristas de plantas, de avaliar novos genótipos antes de sua recomendação como cultivares (SILVA & DUARTE, 2006).

Assim a detecção da interação significativa possibilitará a discriminação das cultivares quanto à análise de adaptabilidade e estabilidade fenotípica. Visando a seleção e recomendação de novas cultivares, diferentes metodologias estão sendo empregadas para a avaliação de linhagens avançadas de feijão, entre os quais, pode-se citar o método de Eberhart & Russel, Lin & Binns, AMMI, entre outros (CARBONELL & POMPEU, 1997; CARBONELL et al., 2000 e CARBONELL et al., 2001).

O método uni-multivariado denominado AMMI (*additive main effect and multiplicative interaction*) descrito em ZOBEL et al. (1988) e GAUCH & ZOBEL (1996), foi desenvolvido com a proposta de melhor descrever a interação GxA (DUARTE & VENCOVSKY, 1999).

De acordo com ZOBEL et al. (1988), o método AMMI permite uma análise mais detalhada da interação GxA, garante a seleção de genótipos mais produtivos, propicia estimativas mais precisas das respostas genotípicas e possibilita uma fácil interpretação gráfica dos resultados da análise estatística.

VICENTE et al. (2004), estudando a estabilidade e adaptabilidade de linhagens elite de soja através de vários métodos estatísticos, concluíram que os vários métodos estatísticos existentes fornecem uma contribuição para um melhor entendimento das interações GxA, uma vez que a metodologia AMMI, é capaz de fornecer informações quanto à estabilidade e também sugeriu associações específicas entre determinados genótipos e ambientes. De tal forma que estas informações não foram obtidas quando utilizados outros métodos estatísticos, chegando a conclusão que o método AMMI é um método inovador e capaz de obter informações mais detalhadas sobre as interações GxA.

Atualmente, é utilizado também para as análises de estabilidade e adaptabilidade, procedimentos de interpretação mais simples. Neste sentido, medidas que incorporam ambos

(estabilidade e adaptabilidade, juntamente com a produtividade) em uma única estatística, tais quais os métodos de Annicchiarico (1992) e Lin e Binns (1988) e modificações, tem sido enfatizados (CRUZ & CARNEIRO, 2003).

O método Lin e Binns (1988), modificado por Carneiro (1998) é utilizado para estimar o desempenho genotípico (P_i). Para que a recomendação atendesse aos grupos de ambientes favoráveis e desfavoráveis, que refletem, de certa forma, ambientes onde há emprego de alta e baixa tecnologia, respectivamente, CARNEIRO (1998) propôs a decomposição do estimador P_i nas partes devidas a ambientes favoráveis (P_{if}) e desfavoráveis (P_{id}). A classificação destes ambientes foi feita com base nos índices ambientais, definidos como a diferença entre a média dos cultivares avaliados em cada local e a média geral.

O presente trabalho tem como objetivo identificar genótipos superiores em produtividade e com boa adaptabilidade e estabilidade na produção para possível recomendação/registro de novos cultivares de feijoeiro. Também foi determinado entre estas metodologias, qual a melhor e/ou complementar (robustez e informação prática/teórica) para uso rotineiro junto ao programa de melhoramento de feijoeiro e para realização de ensaios de VCU (Valor de Cultivo e Uso).

2 REVISÃO DE LITERATURA

2.1 Cultura do Feijoeiro

No Brasil, o cultivo e a colheita do feijoeiro se concentram em três safras, ou seja, épocas das águas, seca e inverno. Segundo a CONAB-Companhia Nacional de Abastecimento, referente à safra de 2008/2009, o feijoeiro das águas (1ª safra), com semeadura em agosto/ setembro ocupou uma área de 1.439.200 ha, com produção de 1.359.300 toneladas e produtividade média de 945 kg. ha⁻¹. O feijoeiro da seca (2ª safra), com semeadura em janeiro/ fevereiro ocupou uma área de 1.940.900 ha, com produção de 1.404.100 toneladas e apresentou produtividade média de 723 kg. ha⁻¹. O feijoeiro de inverno (3ª safra), com semeadura em abril/maio, apresentou uma área utilizada para semeadura de 788.700 ha, com uma produção de 763.800 toneladas e produtividade média de 968 kg. ha⁻¹. Para o Estado de São Paulo, o feijoeiro das águas (1ª safra), apresentou uma produção de 160.300 toneladas (rendimento médio de 1.857 kg. ha⁻¹) em uma área total de 86.300 ha; o feijoeiro da seca (2ª safra), ocupou uma área de 50.800 ha, com uma produção de 70.600 toneladas e produtividade média de 1.390 kg. ha⁻¹, e o feijoeiro de inverno (3ª safra), com área

utilizada para semeadura de 59.300 ha, produção de 96.100 toneladas, apresentando produtividade média de 1.620 kg. ha⁻¹.

Os resultados de produtividade média são considerados baixos quando comparados ao potencial de produção da espécie, que em condições adequadas é superior a 3.000 kg. ha⁻¹. A baixa produtividade Nacional e Paulista, quando comparado ao potencial produtivo da espécie, é devido a vários fatores como: a ausência de calagem e rotação de cultivo na mesma área, adubação e tratos fitossanitários inadequados, baixa utilização de sementes sadias, falta de água nos períodos críticos da cultura (florescimento e enchimento de grãos) ou excesso durante a colheita e pela ocorrência de diversas doenças, cujos agentes causais (patógeno) apresentam, em sua maioria, várias raças fisiológicas e tendo nas sementes um eficiente meio de disseminação (SATORATO et al., 1991; MARINGONI et al., 1994).

Baseado neste quadro de baixa produtividade média da cultura do feijoeiro no Brasil ao longo dos anos, o Sistema de Avaliação e Recomendação de Cultivar de Feijão para o Estado de São Paulo foi preliminarmente instituído em 1992, para atuar junto a Comissão Técnica de Feijão da Secretaria de Agricultura e Abastecimento. Foi oficialmente estabelecido a partir de junho de 1997, conforme as diretrizes relacionadas pelo 'Regimento interno do sistema de avaliação e recomendação de cultivares de feijoeiro para o Estado de São Paulo'.

Este Sistema vem se aperfeiçoando desde 1992 e os resultados obtidos regionalmente, nas condições mais representativas em que o feijoeiro é cultivado, têm subsidiado a recomendação e registro de cultivares em São Paulo, ampliando a possibilidade de escolha para os agricultores. Este serviço realizado dos ensaios regionais intimamente ligados a programas de melhoramento genético do feijoeiro do brasil, e recomendação para cultivo dos melhores genótipos regionalmente por época de plantio, tem trazido aumento de produtividade nos Estados produtores de feijão.

Este progresso na produtividade pode ser demonstrado pelo trabalho realizado por ANTUNES & SILVEIRA (1996), no Rio Grande do Sul, que através de dados do IBGE e EMATER-RS determinou as produtividades do RS no período de 1970 a 1995. No período de 1970/73 a produtividade média do Estado do RS era de aproximadamente 850 kg/ha, onde o Ministério da Agricultura executava pesquisas diretamente, contando com equipe multidisciplinar. Em 1975, com a criação da EMBRAPA, paralisaram-se estas atividades, sendo os pesquisadores deslocados para outros centros ou outras atividades de pesquisa. Aliado a isto, o incentivo a cultivos de exportação como a soja reduziu o interesse pelo feijão,

resultando nos anos de 83/86, 84/87 e 85/88, uma produtividade abaixo de 500 kg/ha. Em 1987, foi instituída a Comissão Estadual de Pesquisa de Feijão que estabeleceu uma rede experimental no Estado e em 1989 recomendando as primeiras cultivares de feijão resultante dos programas de melhoramento da EMBRAPA e da FT-Pesquisa e Sementes. Somente em 1992/95, ou seja, vinte anos depois, conseguiu-se recuperar o nível de produtividade existente em 1970/73. Isto demonstra os malefícios ocasionados pela descontinuidade da pesquisa científica.

O feijoeiro comum (*Phaseolus vulgaris* L.) é a espécie mais cultivada entre as demais do gênero *Phaseolus*. Considerando todos os gêneros e espécies englobados como feijão nas estatísticas da FAO, estas envolvem cerca de 107 países produtores em todo o mundo. Considerando somente o gênero *Phaseolus*, o Brasil é o maior produtor, seguido do México (YOKOYAMA, 2003).

O feijão é um dos principais alimentos da dieta dos brasileiros. Devido à sua importância na alimentação humana, tem merecido grande destaque no cenário nacional e internacional por suprir as necessidades dos consumidores como fonte básica e barata de proteínas e calorias. É um produto de alta expressão econômica e social, visto que, juntamente com o arroz, é a base da alimentação nacional, fornecendo ricas quantidades de proteína vegetal e carboidratos, sendo a principal fonte protéica na alimentação da população menos favorecida. É ainda complementar em termos de aminoácidos essenciais, sendo considerado por especialistas, de excelente valor nutritivo. Além da importância do feijão na alimentação da população brasileira e mundial, a cadeia de produção, beneficiamento e comercialização, geram ocupação e renda, principalmente a classe menos privilegiada (FACHINI et al., 2006).

Além do papel relevante na alimentação do brasileiro, o feijão é um dos produtos agrícolas de maior importância econômico-social, devido principalmente à mão-de-obra empregada durante o ciclo da cultura. Estima-se que são utilizados, somente em Minas Gerais, na cultura do feijoeiro, cerca de 7 milhões de homens por dia-ciclo de produção, envolvendo cerca de 295 mil produtores (ABREU, 2009).

De acordo com WANDER (2006), o feijão sempre fez parte da dieta dos brasileiros, no entanto, nos últimos anos observa-se uma redução constante no consumo per capita de feijão. Enquanto em 1975 o consumo de feijão dos brasileiros girava em torno de 18,5 kg/hab/ano, em 2002 este já havia se reduzido para aproximadamente 16,3 kg/hab/ano, sofrendo uma redução de 12% entre o período de 1975 e 2002 e o consumo *per capita*

mundial caiu 18% no mesmo período, passando de 2,8 kg/hab/ano em 1975 para 2,3 kg/hab/ano em 2002.

Atualmente o consumo desta leguminosa não ultrapassa os 16 kg/hab/ano, preocupando a cadeia produtiva do produto. Diversas razões contribuíram para a redução do consumo *per capita* de feijão no Brasil, tais como: a sua substituição por fontes de proteína de origem animal; o êxodo rural (consumo *per capita* rural de feijão é bem mais elevado que o urbano); a mudança de hábitos alimentares com o advento do 'fast food'; as fortes flutuações de oferta e preços; e a demora para o seu preparo (falta de praticidade). A cadeia produtiva do feijão está sendo desafiada a encontrar novas oportunidades de colocação do produto. No mercado interno, poderia ser por meio de campanhas de conscientização junto aos consumidores, estimulando o consumo. Outra opção seria voltar-se para o mercado internacional.

O feijoeiro comum é cultivado ao longo do ano, na maioria dos estados brasileiros, proporcionando constante oferta do produto no mercado. A Região Sul ocupa lugar de destaque no cenário nacional, seguido pelas Regiões Sudeste, Nordeste, Centro-Oeste e Norte, respectivamente. Vários fatores são importantes para a obtenção de um produto de qualidade, envolvendo cuidados que vão desde a fase de pré-produção, como a seleção da época mais adequada ao cultivo, até a fase de comercialização, envolvendo questões relacionadas ao armazenamento (EMBRAPA, 2009a).

Segundo AIDAR (2009), a preferência do consumidor é regionalizada e diferenciada principalmente quanto à cor, o tamanho e o brilho do grão. O feijão de tegumento preto é mais popular no Rio Grande do Sul, Santa Catarina, sul e leste do Paraná, Rio de Janeiro, sudeste de Minas Gerais e sul do Espírito Santo. No restante do país, este tipo de grão tem pouco valor comercial ou aceitação. Os feijões de grão tipo carioca são aceitos em praticamente todo o Brasil, sendo que 53% da área cultivada é semeada com este tipo de grão. O feijão mulatinho é mais aceito na Região Nordeste e os de tipo roxo e rosinha são mais populares nos estados de Minas Gerais e Goiás. No Brasil são cultivadas inúmeras cultivares de feijoeiro comum que normalmente possuem sementes pequenas, embora possam também ser encontrado, em algumas regiões, tipo de tamanho médio e grande, como os feijões jalo e mulatinho, e também o branco importado, encontrado nos supermercados.

Os feijões com grãos especiais, ou seja, diferentes do carioca e preto, são originários das regiões Andinas da América Latina e abrangem cerca de 15 grupos comerciais. Como procedem de localidades de clima temperado, seus cultivos no Brasil são muitas vezes

inviáveis. Há então a necessidade de identificar feijões especiais que melhor se adaptem às condições do país (EMBRAPA, 2009b).

O cultivo deste tipo de feijão vem crescendo como fonte alternativa para colocar no mercado interno um produto diferenciado e de maior valor agregado e, a longo prazo, seria possível pensar até mesmo na exportação, uma vez que, no mercado internacional, o produto comercializado são os feijões de grãos graúdos. Os feijões especiais recebem esse nome por terem o peso relativo a 100 sementes superior a 30 gramas. Tratam-se de grãos diferenciados daqueles geralmente consumidos pelo brasileiro. Eles apresentam diversidade de cores e os tamanhos são praticamente o dobro do feijão carioquinha. Em termos comparativos, o peso de 100 sementes do feijão carioca é de 22 gramas (BARROS, 2009).

No Brasil, o melhoramento genético dos feijões especiais (Jalo, Bolinha, Jabola, Vermelho, Rajado, Brancos, Pintados, Canários, entre outros) ainda é considerado pequeno e recente quando comparados aos tipos carioca e preto, principalmente no estado de São Paulo (GONÇALVES, 2007).

A grande maioria dos feijões cultivados no Brasil é da variedade carioca, destinados ao mercado interno. As demais variedades cultivadas no país, com suas respectivas porcentagens são: feijão preto (aproximadamente 15%), feijão-caupi (aproximadamente 12%), rajado, jalo vermelho, canário, etc (aproximadamente 3%) (PICHEL, 2006).

Na produção internacional de feijões, são plantados anualmente, em média, 27 milhões de hectares, colhendo-se aproximadamente 20 milhões de toneladas, em mais de 100 países. Deste total, 60% da produção mundial se concentra em seis países: Brasil, Índia, China, Mianmar (antiga Birmânia), México e Estados Unidos (PICHEL, 2006). Diferentemente do que ocorre no Brasil, na Índia e no México, que consomem praticamente tudo o que produz e ainda importam quantidades consideráveis do produto. Países como os Estados Unidos, Canadá, Argentina, Chile, Mianmar e Austrália são os principais exportadores.

2.2 Interação Genótipos com Ambientes

A interação de genótipos com ambientes pode ser definida como o efeito diferencial dos ambientes sobre os genótipos, ou seja, é a resposta diferencial dos genótipos à variação ambiental. A maioria dos caracteres estudados de importância econômica em um programa de melhoramento genético constitui-se de caracteres quantitativos, de herança poligênica, ou seja, são caracteres de variação contínua e altamente influenciados pelo ambiente (CHAVES,

2001). SHELBOURNE (1972) define a interação genótipo x ambiente como a variação entre genótipos em sua resposta a diferentes condições ambientais. Existindo uma atuação conjunta de ambientes e genótipos na geração de interação entre ambos (MATHERSON, 1978). Dá-se aí a importância do estudo da interação genótipo com ambientes, buscando-se tornar eficientes os processos seletivos estabelecidos no programa.

Desde a década de 60 a interação genótipos x ambientes tem sido estudada em várias culturas. A identificação de cultivares com alta estabilidade é a estratégia mais amplamente empregada para atenuar os efeitos da interação genótipos x ambientes (GUALBERTO et al., 2002).

Em um determinado ambiente, a manifestação fenotípica é resultado da ação do genótipo sob influência do meio ambiente. Quando se tem uma série de ambientes e genótipos, detectam-se efeitos genéticos, ambientais e um efeito adicional proporcionado pela interação de genótipos com ambientes. Quando vários genótipos são avaliados em vários ambientes, pode ocorrer de o ambiente alterar diferentemente o mesmo caráter em diferentes genótipos, ou seja, pode ocorrer uma interação entre fatores (MORAIS, 2005).

A ocorrência da interação GxA implica em que dois ou mais genótipos, testados por exemplo quanto à sua produtividade, em diferentes ambientes, apresentem alterações em suas posições relativas ou nas diferenças absolutas entre eles, ao se considerar cada local isoladamente. ALLARD & BRADSHAW (1964), mostraram que a quantidade de casos de interação possíveis é dada pela fórmula: (M.N)!/M!.N!, em que é o número de genótipos avaliados em N ambientes. Assim, ao se ter dez cultivares avaliados em dez ambientes, haveria 10¹⁴⁵ possibilidades de interação. Podendo assim observar a complexidade para o estabelecimento de uma classificação na qual existem vários genótipos e ambientes. Essa classificação resume em dois tipos principais; o complexo que implica na alteração da posição relativa dos genótipos e o simples, ocorrendo na diferença da variância genotípica ao se alterar o ambiente.

BAKER (1996) define a interação de genótipo x ambiente sob o olhar biológico e estatístico. Quando há mudança na expressão do caráter observado ao se alterar o ambiente sem, contudo, ocorrer mudança na posição relativa dos genótipos, e mesmo sem alteração da variância observada em cada local, é denominada interação GxA do ponto de vista biológico. Do ponto de vista estatístico "uma interação ocorre quando dois genótipos diferem em sua resposta a uma mudança no ambiente", resultando na alteração da posição relativa dos genótipos.

Para ilustrar e classificar esses tipos de interação, autores como ALLARD & BRADSHAW (1964) e FONSECA (1979) utilizam uma situação em que a produção de dois genótipos é avaliada em dois ambientes. Isso gera vinte e quatro tipos de interações possíveis, dos quais, três são representações didáticas do que ocorre de uma forma geral. Tipo 1: um dos genótipos é superior ao outro em ambos os ambientes, entretanto a variância genotípica é diferente em cada ambiente. Tipo 2: um dos genótipos é superior ao outro em um ambiente e inferior no outro. Tipo3: a mudança de ambiente melhora o desempenho de um dos genótipos e piora a do outro sem, contudo, inverter a posição relativa entre eles.

Segundo DUARTE & VENCOVSKY (1999), a interação de genótipos com ambientes representa uma das principais dificuldades encontradas pelo melhorista durante sua atividade seletiva. Nas etapas preliminares desse processo (com avaliações normalmente em uma só localidade), a interação GxA pode inflacionar as estimativas da variância genética, resultando em superestimativas dos ganhos genéticos esperados com a seleção. Nas fases finais, os ensaios são conduzidos em vários ambientes (locais, anos e/ou épocas), o que possibilita o isolamento daquele componente da variabilidade (interação G x A), muito embora, neste momento, a intensidade de seleção seja baixa, o que já minimizaria seus efeitos sobre previsões de ganho genético. Por outro lado, a presença dessa interação, na maioria das vezes, faz com que os melhores genótipos em um determinado local não o sejam em outros. Isso dificulta a recomendação de genótipos para toda a população de ambientes amostrada pelos testes. Estatisticamente isso decorre de impossibilidade de interpretar, de forma aditiva, os efeitos principais de genótipos e de ambientes.

Paradoxalmente, se não houvesse interação GxA, uma variedade poderia adaptar-se na maioria dos ambientes de cultivo (locais, anos e estações), de forma que um único ensaio, conduzido num só local, seria suficiente para fornecer resultados universais. Contudo, na realidade, as variedades de ampla adaptação normalmente apresentam rendimentos ótimos, o que desperta a possibilidade de explorar vantajosamente os efeitos dessa interação. Deve ser lembrado que interações positivas, associadas com características previsíveis do ambiente, oferecem a oportunidade dos rendimentos mais elevados. Logo, a interação não é apenas um problema, mas também uma oportunidade a ser aproveitada. Adaptações específicas de genótipos a ambientes podem fazer a diferença entre uma boa e uma excelente variedade. Mas para que seja possível explorar esses efeitos positivos é preciso dispor de métodos estatísticos capazes de captar esse tipo de informação (DUARTE & VENCOVSKY, 1999).

Segundo ALLARD & BRADSHAW (1964), existem duas condições ambientais que contribuem para a interação GxA, ou seja, previsíveis e imprevisíveis. As previsíveis incluem as variações de ambiente como clima e tipo de solo, além de técnicas agronômicas em que o homem atua de forma direta. As variações imprevisíveis são aquelas que ocorrem ao acaso, como freqüência e distribuição de chuvas, temperatura do ar, ocorrência de geadas, ataque de pragas e doenças, entre outras.

Os fatores da interação podem ser identificados conforme apresentado por MOGESTEN (1982), citado POR PATIÑO-VALERA (1986), relacionados a seguir:

- 1.0) Diferenças climáticas, que consistem em mudanças de fotoperíodo e termoperíodo, expressas pela variação na sobrevivência, no ritmo de crescimento e na susceptibilidade diferencial dos genótipos a pragas e doenças, dentro do conjunto de ambientes inclusos na série de experimentos.
- 2.0) Especificidades adaptativas dos genótipos a diferenças de solo entre ambientes, de maneira que os genótipos não toleram de forma semelhante às diferenças nas deficiências nutricionais entre locais.
- 3.0) Diferenças genéticas das populações testadas, fazendo com que alguns genótipos apresentam maior adaptação a condições ambientais variadas (genótipos estáveis), embora outros sejam menos adaptados.

De acordo com RAMALHO et al. (1993), a estimativa da interação genótipos x ambientes torna-se importante tanto para os agricultores quanto para os melhoristas de plantas. Em relação aos agricultores, sua importância esta no fato de que as cultivares deve ter o mínimo da interação de locais e ou anos, permitindo, dessa forma, redução nos riscos da produção agrícola e garantia de lucros com a safra. Para os melhoristas, a existência de tais interações implica a necessidade do desenvolvimento de cultivares específicas para determinado ambiente. O ideal é que se observe na cultivar comportamento estável independente do local e do ano de cultivo.

A interação GxA é um importante componente de programas de melhoramento de plantas para o desenvolvimento de cultivares. Para avaliar essa interação, a condução de experimentos num maior número de locais possíveis é fundamental, para se quantificar os efeitos da interação nas características agronômicas desejáveis da planta e posterior recomendação dos genótipos para cultivo (HOOGERHEIDE et al., 2007).

O método mais comum para a avaliação da interação GxA é a análise de variância (ANAVA), por meio da análise conjunta de experimentos. A magnitude das interações GxA é

determinada pelo uso de um teste, normalmente o teste F. Estatisticamente, interações GxA são detectadas como um padrão de resposta diferencial e significante dos genótipos, entre ambientes. Do ponto de vista biológico, a interação surge quando ocorre a expressão diferenciada de um mesmo conjunto gênico em função do ambiente ou então pela expressão de conjuntos gênicos diferentes em ambientes distintos. As causas da interação GxA também tem sido atribuído a fatores fisiológicos e bioquímicos próprios de cada genótipo cultivado (OSMIR, 2003).

A análise consiste em verificar três possibilidades: ausência de interação, interação simples e interação complexa. A interação simples e a ausência de interação não trazem qualquer preocupação ao melhorista, porque não alteram a classificação dos genótipos nos ambientes. Porém a interação complexa é um problema sério, por alterar o ordenamento dos genótipos nos ambientes, e dessa forma haver falta de sensibilidade para seleção e recomendação desse material, comercialmente. Esses fenômenos interferem na classificação relativa dos genótipos, dificultando a sua avaliação e fazendo com que as interpretações das estimativas fenotípicas não possam ser estendidas a programas de melhoramento de outras regiões.

A significância dessas interações deve ser interpretada, a princípio, como uma indicação de que existem genótipos particularmente adaptados a determinados ambientes (adaptação específica) e outros que sejam menos influenciados pelas variações ambientais podendo ser explorados em vários ambientes (adaptação geral). Essa última apresenta, como inconveniente, o fato de estar associado a uma baixa produtividade, o que impede a recomendação desses cultivares de maneira generalizada, acarretando maiores dificuldades e, exigindo a adoção de medidas que controlem ou minimizem os efeitos dessa interação, para que seja possível, assim, proceder a uma recomendação mais segura (OSMIR, 2003).

Segundo RAMALHO et al. (1993), uma opção teoricamente possível para atenuar os efeitos da interação GxA é a identificação de cultivares com adaptação específica para cada ambiente, associada à estratégia do zoneamento ecológico. O procedimento apresenta dificuldades de implementação por parte das instituições de pesquisa, por serem altamente dispendiosos e por exigir trabalho de conscientização agrícola que atualmente pode inviabilizar a sua adoção. Segundo CARBONELL et al. (2001), a preferência para cultivares com adaptação ampla aos vários ambientes se deve à sobreposição e ao descontrole das épocas de plantio pelos agricultores que antecipam ou ultrapassam á época definida pelo zoneamento ecológico da cultura, uma vez que o Registro nacional de cultivares (RNC), do

Ministério da Agricultura e Abastecimento, registra novas cultivares para plantio conforme as regiões edafoclimáticas.

2.3 Adaptabilidade e Estabilidade Fenotípica

A interação GxA pode tornar-se indesejável nos programas de melhoramento, dificultando a recomendação de cultivares em vários ambientes. Para atenuar os efeitos dessa interação uma alternativa que pode ser tomada é na identificação de genótipos com maior estabilidade aos ambientes de cultivo.

O estudo da adaptabilidade e estabilidade fenotípica pode ser realizado por várias metodologias. As diferenciações entre elas devem-se aos variados conceitos de estabilidade considerados e aos cálculos estatísticos empregados para estimativa dos parâmetros utilizados na interpretação. Algumas delas mostram certa concordância entre si, ou seja, genótipo estável seria aquele que, quando cultivado em vários ambientes, apresentaria pouca oscilação para o caráter avaliado. Lembrando-se que os parâmetros de estabilidade estimados são específicos para o grupo de genótipos em estudo, para os ambientes considerados, não se podendo extrapolar os resultados obtidos para outros grupos de genótipos (FERREIRA et al., 2006).

O estudo da estabilidade e adaptabilidade é uma maneira de avaliar o fenômeno da interação entre genótipos e ambientes sendo de importância capital para o melhorista, cujo interesse maior é a obtenção de materiais que se comportem bem não somente em um ambiente particular, mas também sob diferentes condições ambientais (HOOGERHEIDE et al., 2007).

2.4 Conceitos de Estabilidade e Adaptabilidade

Segundo LIN et al. (1986), existem basicamente três conceitos de estabilidade:

- Tipo 1: a cultivar será considerada estável se sua variância fenotípica entre os ambientes for pequena (estabilidade no sentido biológico);
- Tipo 2: a cultivar será considerada estável se sua resposta ao ambiente é paralela ao desempenho médio de todos os materiais genéticos avaliados nos experimentos;
- Tipo 3: a cultivar será estável se o quadrado médio dos desvios de regressão for baixo, próximo a zero, indicando alta confiabilidade na resposta estimada.

As estatísticas relacionadas ao Tipo 1 estão relacionadas ao conceito de estabilidade no sentido biológico ou estático e são altamente dependentes do grupo de ambientes

escolhidos, sendo análoga ao conceito de homeostase; tem pouca utilidade para conjuntos de muitos ambientes, podendo ser úteis em áreas geográficas mais restritas; este tipo de estabilidade esta associada a respostas relativamente pobres em ambientes de baixas produtividades em ambientes altamente produtivos. O Tipo 2 esta ligado ao conceito de estabilidade de genótipos avaliados. As estatísticas do Tipo 3 mostram o quanto os dados se ajustam bem á regressão, mas estabelecem relação direta com a estabilidade dos genótipos.

Segundo DUARTE (1988), várias definições de estabilidade fenotípica tem sido encontradas na literatura. O autor cita, a proposta do termo homeostase, em que a estabilidade fenotípica refere-se ao fenômeno pelo qual um dado genótipo é capaz de manter constante sua expressão fenotípica diante das influências ambientais variáveis, ou seja, a propriedade de um genótipo com norma de reação estreita. A homeostase é a capacidade da planta em adaptar as suas funções fisiológicas às mudanças dos ambientes onde cresce, de forma a ser menos afetada por elas. Homeostase assim, é a presença fenotípica canalizada dentro de limites relativamente estreitos sob ambientes distintos. Um genótipo ou caráter é homeostático se tem resposta estável, ou seja, expressão fenótipica pouco variável de um ambiente para outro, o que corresponde a uma resposta relativamente constante em diferentes ambientes, o que para os melhoristas corresponde à chamada estabilidade biológica.

Segundo BECKER (1981), não há concordância entre os melhoristas quanto à definição de estabilidade produtiva, embora não haja divergência quanto à sua importância para o melhoramento genético. Este autor distinguiu dois tipos de estabilidade: estabilidade biológica ou homeostática diz respeito a um genótipo estável que apresenta variância mínima sob diferentes condições ambientais. O outro tipo refere-se à estabilidade no sentido agronômico, em que um genótipo estável deveria apresentar interação mínima com os ambientes e produtividade previsível para o nível de produtividade do ambiente.

Segundo CRUZ & REGAZZI (2001), entende-se por adaptabilidade a capacidade de os materiais aproveitarem vantajosamente o estímulo ambiental, ao passo que a estabilidade indica a capacidade dos mesmos mostrarem um comportamento altamente previsível de acordo com o ambiente.

Já o termo adaptabilidade corresponde à capacidade potencial de genótipos para assimilarem vantajosamente o estímulo ambiental. A adaptabilidade está associada à plasticidade fenotípica de um genótipo. Esta plasticidade fenotípica é a forma com que a expressão fenotípica de um dado caráter é alterada por diferentes ambientes. Um genótipo ou um determinado caráter avaliado em determinado genótipo tem resposta plástica, quando este

se flexibiliza, ou seja, varia a sua resposta fenotípica para ajustar-se às variações ambientais. Esse é um mecanismo adaptativo importante para as populações de plantas (MORAIS, 2005).

Segundo COSTA et al. (1999), o ideal é que uma cultivar apresente adaptabilidade geral e previsibilidade alta, capazes de responder ao estímulo de ambiente e de ser estável, mantendo bom desempenho quando as condições ambientais forem desfavoráveis à cultura. Assim, o estudo da adaptabilidade e estabilidade das cultivares tem grande importância em qualquer programa de melhoramento vegetal.

2.5 Análise AMMI

A análise AMMI, combina em um único modelo, componentes aditivos para os efeitos principais (genótipos e ambientes) e componentes multiplicativos para os efeitos da interação G x A (DUARTE & VENCOVSKY, 1999). Tendo como seus precursores os trabalhos de Fisher & Mackenzie (1923), Gilbet (1963), Gollob (1968) e Mandel (1969; 1971), segundo (GAUCH & ZOBEL, 1996).

Este método requer a estimação dos efeitos principais por meio da análise de variância, e os resíduos provenientes da aditividade desses efeitos são separados em um termo multiplicativo e um desvio do modelo (ANICCHIARICO, 2002). É possível F + 1 modelos, em que, F = [(g-1) (a-1)], o "g" representa o número de genótipos e "a" o número de ambientes (GAUCH, 1992). Como é impraticável fazer uma representação gráfica biplot com mais de três eixos é recomendável seguir até modelo AMMI3 (CARBONELL et al. 2004). Buscando assim encontrar o modelo AMMIn que melhor explica as interações da população estudada. Uma das vantagens do método AMMI está na representação em um único gráfico, denominado biplot os efeitos de interação para cada genótipo e cada ambiente (BONELLI et al., 2005).

Na parte aditiva do modelo é considerado a media geral e efeitos de genótipos e ambientes, enquanto na multiplicativa a interação G x A pode ser estudada por uma análise de componentes principais (ACP). O uso da ACP resume à interação G x A em poucos eixos (SQ_{GXA} padrão), utilizando poucos graus de liberdade descartando um resíduo adicional (GAUCH, 1992).

A análise AMMI não pressupõe que os desvios de aditividade decorrentes do ajuste dos efeitos principais (genótipos e ambientes) sejam somente resultantes da interação G x A. Esses desvios podem conter 'ruídos' não relacionados à resposta diferencial dos genótipos aos ambientes. Descartando estes 'ruídos' permite melhor caracterizar os fatores genéticos e ambientais realmente envolvidos na interação. Assim a análise possibilita

descrever simultaneamente os padrões de agrupamento dos genótipos e dos ambientes, permitindo inferir também sobre as relações adaptativas entre os dois fatores (GAUCH, 1992).

ZOBEL et al. (1988), afirmam que o método AMMI permite uma análise mais detalhada da interação G x A, garante a seleção de genótipos mais produtivos, propicia estimativas mais precisas das respostas genotípicas e possibilita uma fácil interpretação gráfica dos resultados da análise estatística.

Segundo GAUCH & ZOBEL (1996), esta análise pode ajudar tanto na identificação de genótipos de alta produtividade e largamente adaptados, como na realização do zoneamento agronômico, com fins de recomendação regionalizada e seleção de locais de teste. A metodologia AMMI é consistente com os objetivos do melhoramento, uma vez que seleciona genótipos e ambientes favoráveis (CORREIA et al., 2008)

SILVA et al. (2002), relatam que a metodologia AMMI, em relação aos de regressão linear, possibilitou inferir em situações onde se tem restrição quanto ao número de ambientes, mostrando-se mais adequada em discriminar melhor o comportamento dos materiais genéticos avaliados.

Segundo SILVA & DUARTE (2006) métodos baseados em diferentes princípios devem ser utilizados em conjunto. No trabalho de PEREIRA et al. (2009), comparando métodos de análise de adaptabilidade e estabilidade fenotípica em feijoeiro-comum, os métodos de Lin & Binns modificado e de Annicchiarico não mostraram associação com AMMI, o que indica que um deles pode ser utilizado em conjunto com AMMI. As correlações de AMMI com os métodos de Lin & Binns, Lin & Binns modificado e Annicchiarico aumentaram e passaram a ser significativas com a inclusão das médias, o que pode ser explicado ao levar-se em conta que a média, utilizada em conjunto com o parâmetro de estabilidade obtido pelo método AMMI, apresentou peso de 50% na classificação final dos genótipos. A utilização conjunta de métodos que apresentaram alta correlação não é indicada. É recomendada a utilização conjunta de métodos de estudo de adaptabilidade e estabilidade, sendo um entre os métodos de Lin & Binns, Lin & Binns modificado e Annicchiarico e outro entre os métodos de Eberhart & Russel, Cruz e AMMI.

2.5.1 Análise de componentes principais

Segundo CRUZ (1990), para a identificação de materiais genéticos superiores, numa população, os melhoristas necessitam avaliar vários caracteres de natureza agronômica,

morfologia, fisiologia, comercial, etc. A seleção com base em um ou poucos caracteres acaba resultando em materiais com desempenho não tão favoráveis para caracteres não considerados. Isto pode levar à rejeição precoce do material por parte de agricultores, consumidores, industriais, etc. Os resultados de analises univariadas, para um grande número de caracteres, são de difícil manipulação quando o objetivo é identificar os genótipos com as melhores combinações de características. Isso torna o procedimento praticamente inexequível. Especialmente quando o número de genótipos é elevado (DUARTE, 1997). PIMENTEL GOMES (1990), afirma que, somente havendo independência entre as variáveis (situação difícil na prática), as análises univariadas resolveriam o problema. Assim, para aumentar a probabilidade de êxito, num programa de melhoramento, deve-se combinar grande número de caracteres, com análise estatística eficiente em extrair as informações principais contida numa grande massa de dados.

JOHNSON & WICHERN (1992), classificam as aplicações de análise estatística multivariada em apenas três grupos: 1) análises inferenciais sobre médias e modelos lineares; 2) análise da estrutura de covariância; e 3) técnicas de classificação e agrupamento. As análises da estrutura de covariância, entre as quais os autores mencionam: análise de componentes principais, para explicar essa estrutura através de umas poucas combinações lineares das variáveis originais.

A análise de componentes principais (ACP), como já comentado, foi idealizada por Karl Pearson no início do século XX em (1901). De acordo com JOHNSON & WICHERN (1992), a análise de componentes principais procura explicar a estrutura de variância-covariância através de umas poucas combinações lineares das variáveis originais. A análise de componentes principais é associada à idéia de redução da massa de dados, com menor perda possível da informação (VARELLA, 2009). Possui apresenta em uma forma gráfica o máximo de informações presentes na matriz de dados, permitindo deste modo visualizar as proximidades entre os indivíduos e os vínculos entre as variáveis.

A ACP é um método estatístico essencialmente descritivo e consiste em reescrever as coordenadas das amostras em outro sistema de eixo mais conveniente para a análise dos dados. Em outras palavras, as n-variáveis originais geram, através de suas combinações lineares, n-componentes principais, cuja principal característica, além da ortogonalidade, é que são obtidos em ordem decrescente de máxima variância, ou seja, a componente principal 1 detém mais informação estatística que a componente principal 2, e assim por diante. Este método permite a redução da dimensionalidade dos pontos representativos das amostras, pois,

embora a informação estatística presente nas n-variáveis originais seja a mesma dos n componentes principais, é comum obter em apenas 2 ou 3 das primeiras componentes principais mais que 90% desta informação. O gráfico do componente principal 1 com o componente principal 2 fornece uma janela privilegiada (estatisticamente) para observação dos pontos no espaço n-dimensional. A análise de componentes principais também pode ser usada para julgar a importância das próprias variáveis originais escolhidas, ou seja, as variáveis originais com maior peso na combinação linear dos primeiros componentes principais são as mais importantes do ponto de vista estatístico (MOITA NETO & MOITA, 1998).

No melhoramento de plantas, segundo CRUZ (1990), o uso da ACP permite: i) examinar correlações entre caracteres; ii) resumir o conjunto de dados num outro, menor e de sentido biológico; iii) avaliar a importância relativa de caracteres na discriminação de genótipos, fornecendo elementos para o descarte daqueles pouco discriminantes e/ou redundantes; iv) construir índices que possibilitem o agrupamento ou classificação de genótipos, bem como a seleção simultânea para vários caracteres; e v) agrupar indivíduos similares mediante exame em dispersões gráficas bi ou tridimensional, permitindo, assim: identificar progenitores divergentes para hibridações, otimizar a manipulação de acesso em baços de germoplasma, estabelecer relação entre divergência genética e geográfica, etc.

É possível a determinação de tantos componentes principais quantas forem as variáveis originais, desde que nenhuma delas (variáveis) seja uma exata combinação linear das demais, o que resultaria num componente principal (cp) de escores nulos. Assim, o número de cp`s equivale ao posto da matriz de covariâncias ou correlações.

MANLY (1986) define os seguintes passos para realização de uma ACP: i) padronização dos dados para variável; ii) obtenção da matriz de covariâncias entre as variáveis; iii) obtenção dos autovalores desta matriz e os correspondentes autovetores; iv) descarte de componentes principais que contêm uma pequena proporção de variação, retendo preferencialmente três deles desde que expliquem ao menos 70% da variáveis; v) dispersão gráfica dos indivíduos no sistema de coordenadas principais; e iv) análise da correlação entre os componentes principais e as variáveis originais, buscando sentido biológico para os componentes.

2.5.2 Genótipo suplementar

Ferramenta utilizada para aumentar a precisão na identificação de um genótipo que tenha características agronômicas desejáveis, estabilidade de produção e elevada produtividade média em cada local avaliado nos experimentos. Sendo este genótipo suplementar (GS), virtual (PACHECO et al., 2005).

O GS é um vetor adicionado na matriz de dados originais para identificar virtualmente indivíduos interessantes nas linhas da matriz ou variáveis por meio das colunas (PACHECO et al., 2005).

Segundo essa abordagem, a superioridade agronômica de um genótipo deve ser avaliada relativamente às máximas produtividades observadas em cada ambiente. Assim, um genótipo teoricamente ideal seria aquele que reunisse, ao longo dos ambientes de teste, essas produtividades máximas.

Assim, genótipos com valores de IPCA1 próximos a zero demonstram estabilidade aos ambientes de teste; combinações de genótipos e ambientes com escores IPCA de mesmo sinal têm interações específicas positivas; e combinações de sinais opostos apresentam interações específicas negativas. Considerando o genótipo suplementar este deve ser interpretado como o de máxima produtividade em cada ambiente de acordo com LIN & BINNS (1988).

A quantificação do genótipo suplementar foi baseada no método de LIN & BINNS (1988), em que o critério para a resposta máxima em cada situação, e o melhor genótipo é medido por meio da máxima produção em cada ambiente (PACHECO et al., 2005).

Os elementos suplementares consistem em linhas e, ou, colunas adicionais à matriz original de dados multivariados (X), que representem indivíduos (linhas) ou variáveis (colunas) teoricamente interessantes (PACHECO et al., 2005).

Segundo PACHECO (2004) é necessário ressaltar que a nova representação gráfica (incluindo elementos suplementares) deve ser construída de modo a não afetar a estrutura de covariância original dos dados, isto é, mantendo-se os posicionamentos relativos dos indivíduos e das variáveis reais.

Para a realização da análise foi desenvolvida uma rotina computacional em linguagem SAS/IML, onde foram feitas adaptações ao programa disponibilizado por (DUARTE & VENCOVSKY, 1999).

2.6 Análise LIN & BINNS (1988) Modificado por CARNEIRO (1998)

A interação genótipos x ambientes constitui-se num dos maiores problemas dos programas de melhoramento de qualquer espécie, seja na fase de seleção ou na de recomendação de cultivares. Entre as alternativas para minimizar esse problema está à escolha de variedades com ampla adaptação e boa estabilidade (CRUZ e CARNEIRO, 2003).

Diferentes metodologias para avaliar a adaptabilidade e a estabilidade têm sido desenvolvidas e, ou, aprimoradas. Tais procedimentos se baseiam em análise de variância, regressão linear, regressão não linear, análises multivariadas e estatísticas não paramétricas (BASTOS et al., 2007).

Para as estimativas dos parâmetros de adaptabilidade e estabilidade das características avaliadas foi utilizada uma metodologia não-paramétricas: metodologia proposta por Lin & Binns (1988) modificada por Carneiro (1998), levando em consideração diferenças em relação à reta bissegmentada ponderadas pelo coeficiente de variação residual. A metodologia apresenta estimativas de parâmetros apenas para recomendação geral de cultivares.

LIN & BINNS (1988) definiram como medida para estimar a performance genotípica, o quadrado médio da distância entre a média do cultivar e a resposta média máxima para todos os ambientes. Este método pondera os desvios de comportamento dos cultivares nos ambientes, ou seja, considera a estabilidade de comportamento. Além disso, leva em consideração o rendimento do genótipo e a resposta relativa a um genótipo hipotético que é uma medida de adaptabilidade.

Este método foi modificado por CARNEIRO (1998), para atender às necessidades de se identificar genótipos superiores nos grupos de ambientes favoráveis e desfavoráveis, utilizando a mesma metodologia de classificação de ambientes definidas em EBERHART & RUSSELL (1966). Em seu trabalho CARNEIRO (1998), propôs análise multivariada da adaptabilidade e estabilidade.

Na metodologia de LIN & BINNS (1988), o desempenho geral dos genótipos é definido como sendo o quadrado médio da distância entre a média do cultivar e a resposta média máxima para todos os locais, de modo que, genótipos com menores valores correspondem aos de melhor desempenho. CARNEIRO (1998), decompôs a estatística Pig para atender à identificação de genótipos superiores nos grupos de ambientes favoráveis e desfavoráveis.

O método de Lin & Binns (1988), mede a estabilidade pela estimativa do índice de superioridade Pi. Assim, são desejáveis as cultivares com menor Pi, pois apresentam menor desvio em relação à produtividade máxima em cada ambiente, isto é, tem desempenho próximo do máximo na maioria dos ambientes. CARNEIRO (1998), propôs uma modificação na metodologia de Lin & Binns (1988), ou seja, fez a decomposição do estimador Pi em duas partes Pif (ambientes favoráveis) e em Pid (ambientes desfavoráveis). Desse modo, foi possível identificar germoplasma de feijão com maior estabilidade (<Pi), mais responsivos a ambientes favoráveis (<Pif) e mais adaptados a ambientes desfavoráveis (<Pid) (CARBONELL et al., 2001; MELO et al., 2007).

A aplicação do método de Lin e Binns (1988), modificado por Carneiro (1998), também possibilitou a identificação dos genótipos mais estáveis (<P_i), dos mais responsivos a ambientes favoráveis (<P_{if}) e dos mais adaptados a ambientes desfavoráveis (<P_{id}) (CARBONELL et al., 2001).

Conforme proposto por CARNEIRO (1998), obteve-se a estatística MAEC (Medida de Adaptabilidade e Estabilidade de Comportamento) em ambientes favoráveis (*Pif*) e desfavoráveis (*Pid*), visando identificar genótipos específicos para cada tipo de ambiente.

LIN et al. (1986) apresentaram críticas aos métodos que se baseiam no desvio da regressão como parâmetro de estabilidade. Segundo os autores, esse parâmetro serve apenas para indicar o ajuste dos dados à equação obtida, ao invés de maior ou menor estabilidade da cultivar. Reiteram que, baixa adaptação representada por elevado ou coeficiente de determinação pequeno, deve ser interpretada como indicativo de que o uso do modelo de regressão para estimar a estabilidade não é apropriado e que alternativas devam ser investigadas. Entretanto, a facilidade na interpretação dos resultados popularizou seu emprego. A estimativa da MAEC (Medida de Adaptabilidade e Estabilidade de Comportamento) fornece direcionamento da resposta aos diferentes tipos de ambientes. Assim, a recomendação geral é feita com base no Pi original de LIN e BINNS (1988), e para ambientes favoráveis e desfavoráveis, conforme a decomposição proposta por Carneiro.

Nas análises de estabilidade e adaptabilidade multivariada propostas por CARNEIRO (1998), baseado em LIN & BINNS (1988), foram obtidos resultados discordantes das análises univariadas, indicando que outras variáveis apresentaram efeitos significativos na classificação dos genótipos; assim, por indução, chega-se à conclusão de que este procedimento tem importante efeito complementar à metodologia univariada, pois, pode-

se conhecer melhor os genótipos quando vários caracteres são considerados e seus ambientes caracterizados.

3 MATERIAL E MÉTODOS

3.1 Material Genético

Foram utilizados neste estudo 22 linhagens e cultivares de feijoeiro de tegumento carioca e preto pertencentes aos ensaios de VCU ("Valor de Cultivo e Uso) de 2007/2008/2009, para Estado de São Paulo, sendo 4 linhagens da EMBRAPA, cinco linhagens do IAC, quatro linhagens do IAPAR e dois linhagens da UFLA e os cultivares padrões IAC Alvorada e Pérola, do grupo Carioca e, IAC-Una e IAC-Diplomata, do grupo Preto (Tabela 1).

Tabela 1 - Ensaios regionais de cultivares e linhagens de feijoeiro – VCU 2007/2008/2009, no Estado de São Paulo.

Cultivares e Linhagens de Feijoeiro	Tipo de grão	Instituição
1-IAC Alvorada (testemunha)	Carioca	IAC
2-Pérola (testemunha)	Carioca	EMBRAPA
3-IAC-Diplomata (testemunha)	Preto	IAC
4-IAC-Una (testemunha)	Preto	IAC
5-GenC2-1-1	Carioca	IAC
6-GenC2-1-3	Carioca	IAC
7-GenC2-1-5	Carioca	IAC
8-GenC2-1-6	Carioca	IAC
9-GenC2-1-7	Carioca	IAC
10-GenC8-4-3	Carioca	IAC
11-CNFC 10408	Carioca	EMBRAPA
12-CNFC 10429	Carioca	EMBRAPA
13-CNFC 10431	Carioca	EMBRAPA
14-CNFC 10470	Carioca	EMBRAPA
15-Gen99TG9-84-1	Preto	IAC
16-Guará	Carioca	EPAGRI
17-Juriti Claro	Carioca	IAPAR
18-LP 02-02	Carioca	IAPAR
19-LP 04-72	Preto	IAPAR
20-LP 04-92	Preto	IAPAR
21-MAI-25	Carioca	UFLA
22-Z-22	Carioca	UFLA

3.2 Ambientes Utilizados na Condução dos Experimentos

Estes ensaios foram semeados na época das águas/2007, seca/2008, inverno/2008 e águas/2008 e seca 2009 e de inverno de 2009. Os ambientes utilizados para a condução dos experimentos nas respectivas épocas de semeadura foram os municípios abaixo relacionados,

totalizando 24 ambientes. Sempre conservando o número mínimo de três locais por época de semeadura.

Tabela 2 - Ambientes utilizados para a condução dos ensaios nas respectivas épocas de semeadura.

	Épocas de semeadura							
Águas/2007	Seca/2008	Inverno/2008	Águas/2008	Seca/2009	Inverno/2009			
Araras	C. Bonito	Andradina	Tatuí	Avaré	Colina			
Avaré	Tatuí	Colina	M. A. do Sul	Mococa	Pindorama			
C. Bonito	M. A do Sul	R. Preto	Mococa	Tatuí	R. Preto			
M. A. do Sul	Avaré	Votuporanga	C. Bonito		Votuporanga			
	Mococa							

O delineamento experimental utilizado foi o de blocos casualizados conforme as normas do MAPA/RNC para ensaios de feijoeiro, em três repetições de parcelas contendo quatro linhas de quatro metros de comprimento. O espaçamento entre linhas foi o de 0,5 metros com 10 a 12 plantas viáveis por metro linear e a área útil da parcela corresponde-as duas linhas centrais (4 m²).

A adubação mineral foi realizada de acordo com a necessidade da cultura em cada situação agrícola, mas, em média foram aplicados 400 kg/ha da fórmula 4-14-8 na semeadura e 200 kg/ha de sulfato de amônio, em cobertura, aos 20 dias do ciclo. Os tratos culturais constaram de irrigações, de capinas manuais ou de aplicação de herbicidas, fungicidas e inseticidas, sempre que necessário.

3.3 Análise de Variância Individual e Conjunta

Foram utilizados dados de produtividade de grãos (kg.ha⁻¹), onde foram realizadas as análises de variância individual de cada experimento, para se avaliar a variabilidade genética entre os tratamentos e a precisão experimental. Em seguida, realizou-se a análise conjunta de variância, sendo aceitos os resultados de ensaios com coeficiente de variação de até 25%.

A análise de conjunta de variância foi realizada pelo modelo de blocos casualizados, constituído de efeitos fixos para genótipos, ambientes e para a interação de genótipos com ambientes. O modelo desta análise é dado por:

$$Y_{ijl} = \mu + b_{l(j)} + g_i + a_j + (ga)_{ij} + \epsilon_{(il)j}$$

 \mathbf{Y}_{iil} : valor observado do genótipo i no bloco l (l = 1, 2, ..., r) e dentro do ambiente j;

μ: média geral dos ensaios;

 g_i : efeito fixo do genótipo i, com i = 1, 2, 3, ..., p;

 a_j : efeito fixo do ambiente j, com j = 1, 2, 3, ..., q;

 $(ga)_{ij}$: efeito fixo da interação do genótipo i com o ambiente j;

 $\mathbf{b}_{\mathbf{l}(\mathbf{i})}$: efeito aleatório do bloco l dentro do ambiente j;

 $\epsilon_{(il)\,i}\colon \text{erro experimental.}$

Na análise conjunta avaliou-se a homogeneidade das variâncias residuais dos experimentos (QMR), verificada pela razão entre o maior e menor quadrado médio residual dos ensaios. Segundo PIMENTEL-GOMES (1990) as variâncias são consideradas homogêneas quando a razão entre o maior e o menor QMR ≤ 7,0.

As análises de variância foram realizadas utilizando o procedimento ANOVA do programa SAS (STATISTICAL ANALYSIS SYSTEM).

Realizou-se o teste de médias de Dunnett (5%) em relação a melhor cultivar padrão correspondente no grupo Preto (IAC-Diplomata ou IAC-Una), e melhor cultivar padrão correspondente no grupo carioca (IAC Alvorada ou Pérola).

A detecção da interação significativa de cultivares com épocas de semeadura possibilitaram a discriminação dos cultivares quanto à análise de adaptabilidade e estabilidade fenotípica, utilizando-se os métodos: 1) AMMI com genótipo suplementar de PACHECO et al. (2005); 2) Lin e Binns (1988) modificado por Carneiro (1998).

3.4 Análise de Estabilidade e Adaptabilidade Fenotípica

Estudos de adaptabilidade e estabilidade dos valores fenotípicos foram realizados pelos procedimentos: 1- AMMI, com o uso do genótipo suplementar (GS) para avaliação quanto à produtividade. Este procedimento forneceu uma análise gráfica do desempenho dos

genótipos e nos diferentes ambientes; 2- Lin e Binns (1988) modificado por Carneiro (1998) que estima o desempenho genotípico (P_i). Para que a recomendação atenda aos grupos de ambientes favoráveis e desfavoráveis, que refletem de certa forma, ambientes onde há emprego de alta e baixa tecnologia, respectivamente, Carneiro (1998) propôs a decomposição do estimador P_i nas partes devidas a ambientes favoráveis (P_{if}) e desfavoráveis (P_{id}). A classificação destes ambientes foi feita com base nos índices ambientais, definidos como a diferença entre a média dos cultivares avaliados em cada local e a média geral.

3.4.1 Método AMMI

As análises foram realizadas pela metodologia AMMI-modelo de efeitos principais aditivos e interacionais multiplicativos (MANDEL, 1971; KEMPTON, 1984; ZOBEL et al., 1988; GAUCH, 1992; GAUCH & ZOBEL, 1996; DUARTE & VENCOVSKY, 1999). A análise AMMI é uma combinação de métodos univariados (análise de variância) com métodos multivariados (análise de componentes principais e decomposição de valores singulares). No modelo proposto tem-se que:

$$Y_{ij} = \underbrace{\mu + g_i + e_j}_{aditiva} + \sum_{k=1}^{n} \underbrace{\lambda_k \gamma_{ik} \alpha_{jk}}_{multiplicativa} + \underbrace{\rho_{ij}}_{aditiva} + \varepsilon_{ij} \text{, sendo que:}$$

 Y_{ij} : é a resposta média do genótipo i no ambiente j;

 μ : é a média geral das respostas;

 g_i : é o efeito fixo do genótipo i (i=1, 2,g);

 e_i : é o efeito fixo do ambiente j (j=1, 2, ...a);

 λ_k : é a raiz quadrada do k-ésimo autovalor das matrizes (GE)(GE)' e (GE)'(GE) (de iguais autovalores não nulos);

 γ_{ik} : é o i-ésimo elemento (relacionado ao genótipo i) do k-ésimo autovetor de (GE)(GE)';

 α_{jk} : é o j-ésimo elemento (relacionado ao ambiente j) do k-ésimo autovetor de (GE)'(GE);

 ε_{ij} : é o erro experimental médio, assumido independentemente;

 ρ_{ij} : é a porção ruido, sendo este o resíduo.

O valor de p é o posto da matriz de médias (k=1, 2, ... p) dado pelo mínimo entre (g-1) e (e-1) e n é o número de eixos ou componentes principais selecionados para descrever o padrão da interação G x A (DUARTE & VENCOVSKY, 1999).

Os termos multiplicativos são estimados da decomposição por valores singulares (DVS) da matriz de interações: $GA_{(gxa)}=[(g\hat{e})_{ij}]$. Segundo DUARTE & VENCOVSKY (1999), a abordagem AMMI buscou recuperar uma parcela da SQ_{GxA} que determina o que é verdadeiramente resultante da interação genótipos x ambientes, sendo essa porção chamada padrão($\sum_{k=1}^{n} \lambda_k \gamma_{ik} \alpha_{ij}$) e uma porção ruído (ρ_{ij}), sendo este o resíduo adicional.

A SQ_{GxA} foi particionada em n eixos singulares ou componentes principais que descreveu a porção padrão ou componentes principais que descreveu a porção da interação, cada eixo correspondendo a um modelo AMMI. A seleção do modelo que melhor descreve a interação pode ser realizada por dois métodos, sendo os mais utilizados chamados de teste F de GOLLOB, (1968) e o teste F_r de CORNELIUS et al. (1992). O primeiro é obtido pela significância de cada componente relacionado ao QM erro médio dos eixos IPCA a serem retidos no modelo. Neste método, o cálculo dos graus de liberdade são dados por: Gl_{IPCAn}= g+e-1-2n, onde "g" é o número de genótipos, "e" é o número de ambientes e "n" o número de eixos ou componentes principais da matriz de interação.

Sob hipótese nula de que não haja mais do que "n" termos determinando a interação, a estatística tem distribuição F aproximada com f_2 graus de liberdade e Gl erro médio. Sob essa hipótese, o numerador da expressão apresentada a seguir (SQ_{GxE} para o resíduo AMMI) é, aproximadamente, uma variável qui-quadrado. Assim, um resultado significativo pelo teste F_r sugere que pelo menos um termo multiplicativo ainda deve ser adicionado aos "n" já ajustados (PIEPHO, 1995; DUARTE & VENCOVSKY, 1999):

$$F_{r,n} = (SQ_{GxA} - \sum_{k=1}^{n} \lambda_k^2 / (f_2 QM_{ERROm\'edio}); com: f_2 = (g - 1 - n) (a - 1 - n)$$

Após a seleção do modelo AMMI, foi realizado o estudo de estabilidade e adaptabilidade pelo gráfico biplot. Os gráficos biplots foram obtidos através de combinações dos eixos ortogonais IPCA, representando, assim, as aproximações DVS de posto n. Esses gráficos captam a porção padrão da interação GxA, mostrando os genótipos e ambientes que

menos contribuíram para a interação (estáveis), combinações de genótipos e ambientes desejáveis quanto a adaptabilidade.

Após selecionar o modelo AMMI que melhor descreve a estrutura dos dados também foi predita a resposta de cada genótipo em cada ambiente pela expressão:

$$\hat{Y}_{ij} = \overline{Y}_{i.} + \overline{Y}_{.j} - \overline{Y}_{..} + \sum_{k=1}^{n=3} \lambda_k \gamma_{ik} \alpha_{jk}$$

onde,

 \hat{Y}_{ij} : é a estimativa da média dos genótipos predita após a análise AMMI para o genótipo i com o ambiente j;

 \overline{Y}_{i} : é a média do genótipo i;

 \overline{Y}_{i} : é a média do ambiente j;

 \overline{Y} ..: é a média geral.

Uma das grandes virtudes do método AMMI está na possibilidade de representar os efeitos de cada genótipo e ambiente para a interação GxA, em um único gráfico denominado biplot. Esta representação é garantida em razão da decomposição por valores singulares aplicada a matriz de interação GxA (DUARTE, 1997).

A interpretação da adaptabilidade e estabilidade dos genótipos e ambientes será feita com base na análise gráfica do denominado biplot - AMMI. O termo biplot refere-se a um tipo de gráfico contendo duas categorias de pontos ou marcadores, um referindo-se a genótipos e outro a ambientes (DUARTE & VENCOVSKY, 1999).

A interpretação do *biplot* AMMI foi realizada a partir da aproximação dos genótipos e dos ambientes próximos do escore zero, que pouco contribuiu para a interação, indicando estabilidade. No biplot AMMI os genótipos em torno da linha da marca zero no PCA1, corresponde aos genótipos e ambientes mais estáveis (PACHECO et al., 2005). Foram também considerados estáveis os genótipos que se aproximaram do genótipo suplementar em se tratando dos genótipos portadores de características agronômicas desejáveis.

A quantificação do genótipo suplementar foi baseada no método de Lin & Binns (1988), onde o critério para a resposta máxima em cada situação, e o melhor genótipo é medido por meio da máxima produção em cada ambiente, sendo observado um ou mais genótipos suplementares. Para isto, deve-se considerar a distância quadrática entre as

projeções e a projeção específica do genótipo para cada eixo da interação (PACHECO et al., 2005).

Como forma de aumentar a precisão na identificação de um genótipo com ampla adaptabilidade, estabilidade de produção e elevada produtividade média em cada local avaliado nos experimentos e que tenha características agronômicas desejáveis incluir-se um genótipo suplementar na análise (Genótipo virtual -GS).

Esse *GS* é um vetor adicionado na matriz de dados originais para identificar virtualmente indivíduos interessantes nas linhas da matriz ou variáveis por meio das colunas.

3.4.2 Lin & binns (1988) modificado por Carneiro (1998)

No método de Lin e Binns (1988), define-se como medida para se estimar a performance genotípica (P_i), o quadrado médio da distância entre a média da cultivar e a resposta média máxima para todos os ambientes. Desde que a resposta máxima esteja no limite superior em cada ambiente, o quadrado médio menor, ou seja o P_i menor indicará uma superioridade geral da cultivar em questão. Esta medida de superioridade é dada por:

$$P_{i} = \frac{\sum_{j=1}^{n} (Y_{ij} - M_{j})^{2}}{2a}$$

em que

P_i : é a estimativa do parâmetro de estabilidade da cultivar i;

Y_{ij} : é a produtividade da i-ésima cultivar no j-ésimo ambiente;

M_i : é a resposta máxima observada entre todas as cultivares no ambiente j;

a : é o número de ambientes.

Porém, para que a recomendação de cultivares atenda ao conceito de grupos de ambientes favoráveis e desfavoráveis, como no método de CRUZ et al. (1989), que refletem de certa forma, ambientes onde há emprego de alta e baixa tecnologia, respectivamente, foi feita por CARNEIRO (1998) a decomposição desse estimador P_i, nas partes devidas a ambientes favoráveis (P_{if}) e desfavoráveis (P_{id}). A classificação destes ambientes foi feita com base nos índices ambientais, definidos como a diferença entre a média das cultivares avaliadas em cada ambiente e a média geral dos experimentos.

Para os ambientes favoráveis, com índices maiores ou iguais a zero, P_{if} foi estimado conforme a seguir:

$$P_{if} = \frac{\sum_{j=1}^{f} (Y_{ij} - M_{j})^{2}}{2f}$$

em que

f é o número de ambientes favoráveis;

Y_{ij} e M_i como definidos anteriormente.

Da mesma forma para os ambientes desfavoráveis, cujos índices são negativos,

$$P_{id} = \frac{\sum_{j=1}^{d} (Y_{ij} - M_{j})^{2}}{2d}$$

em que d é o número de ambientes desfavoráveis.

4 RESULTADOS E DISCUSSÃO

4.1 ANAVA Individual e Conjunta - Produtividade Média de Genótipos e Ambientes.

As análises de variância individuais por local referente à época das águas de 2007 e 2008, seca 2008 e 2009 e inverno 2008 e 2009 foram realizadas pelo programa SAS e seus resultados são apresentados nas tabelas 3 a 8 para os ensaios de VCU de grãos de tegumento carioca e preto.

Tabela 3 - Ensaios regionais de cultivares e linhagens de feijoeiro – produtividade média de grãos (kg.ha⁻¹) referente à safra das Águas de 2007, no estado de São Paulo.

Cultivares e Linhagens			Ambientes							
de Feijoeiro (grão: C=Carioca e P=Preto)	Araras	Avaré	Capão Bonito	Monte Alegre do Sul	Média ^{1/} (Kg.ha ⁻¹)					
	VCU – Carioca e Preto									
IAC Alvorada (C)	2093	2453	1703	3021	2317					
Pérola (C)	1079	2811	3194	3396	2620					
IAC-Diplomata (P)	1899	2143	3123	2842	2502					
IAC-Una (P)	2003	2308	2562	3367	2560					
GenC2-1-1 (C)	2195	2478	2509	3533	2679					
GenC2-1-3 (C)	2002	2698	3036	3942	2919					
GenC2-1-5 (C)	1910	2092	2338	3258	2400					
GenC2-1-6 (C)	1783	2219	2250	3683	2484					
GenC2-1-7 (C)	2323	2372	2877	3779	2838					
GenC8-4-3 (C)	1931	2291	2959	2850	2508					
CNFC 10408 (C)	1737	3290	3518	3154	2925					
CNFC 10429 (C)	2333	2230	2680	3033	2569					
CNFC 10431 (C)	2353	2349	2059	2929	2423					
CNFC 10470 (C)	2242	2875	2528	3046	2673					
Gen99TG9-84-1 (P)	2528	1613	2118	3025	2071					
Guará (C)	2100	1746	2668	3879	2598					
Juriti Claro (C)	2469	2997	3289	4083	3210					
LP 02-02 (C)	2451	2588	3071	3367	2869					
LP 04-72 (P)	2196	2619	3376	3813	3001					
LP 04-92 (P)	1958	2293	3109	3488	2712					
MAI-25 (C)	1963	2637	2554	3504	2664					
Z-22 (C)	2196	3218	3036	3292	2935					
Média	2034	2469	2753	3377	2658					
C.V. (%)	22,64	17,67	20,01	17,16	19,20					
*DMS kg.ha ⁻¹	1151	1091	1377	1448	615					

¹¹ Média dos experimentos com coeficiente de variação inferior a 25%,
 * Teste Dunnett (5%) em relação a melhor cultivar padrão correspondente no grupo Preto (IAC-Diplomata ou IAC-Una), grupo Diversos (IAC Alvorada ou Pérola). Valores em negrito correspondem a melhor cultivar padrão para cada tipo de tegumento.

Tabela 4 - Ensaios regionais de cultivares e linhagens de feijoeiro – produtividade média de grãos (kg.ha⁻¹) referente à safra da Seca de 2008, no estado de São Paulo.

	Ambientes					
Cultivares e Linhagens de Feijoeiro	Capão	TD 4.4	Monte		3.5	Média ^{1/}
(grão: C=Carioca e P=Preto)	Bonito	Tatuí	Alegre do Sul	Avaré	Mococa	(Kg.ha ⁻
	VCU – Ca	rioca e Pro				,
IAC Alvorada (C)	1463	875	1721	2528	1021	1522
Pérola (C)	1625	2033	1754	2795	1563	1954
IAC-Diplomata (P)	1242	1291	996	2620	1029	1436
IAC-Una (P)	1292	1745	1621	2326	1617	1720
GenC2-1-1 (C)	2492*	2218	2196	2695	1704	2261
GenC2-1-3 (C)	2071	1594	2254	2898	1442	2052
GenC2-1-5 (C)	1725	1928	2108	2333	1679	1955
GenC2-1-6 (C)	2508*	2440	2033	2328	1075	2077
GenC2-1-7 (C)	2175	2048	2254	2243	1729	2090
GenC8-4-3 (C)	2158	574	1975	2485	1479	1734
CNFC 10408 (C)	2313	1983	1275	2640	1383	1919
CNFC 10429 (C)	2325	1430	1825	2623	1258	1892
CNFC 10431 (C)	1679	872	1629	2567	1767	1703
CNFC 10470 (C)	1221	1473	1496	2872	1288	1670
Gen99TG9-84-1 (P)	1171	1246	1296	2353	1225	1518
Guará (C)	1575	588	1517	2818	946	1489
Juriti Claro (C)	1867	2471	2425	2940	1171	2175
LP 02-02 (C)	1821	2448	963	3024	1258	1903
LP 04-72 (P)	2454*	2073	1575	2573	1621	2059
LP 04-92 (P)	1788	2386	1458	2438	1550	1924
MAI-25 (C)	2375	1217	1479	2343	1625	1808
Z-22 (C)	1621	1357	2267	2811	1529	1917
Média	1862	1649	1733	2602	1421	1853
C.V. (%)	17,82	19,14	17,23	16,18	24,45	18,64
*DMS kg.ha ⁻¹	829	789	746	1053	869	372

½ Média dos experimentos com coeficiente de variação inferior a 25%,

^{*} Teste Dunnett (5%) em relação a melhor cultivar padrão correspondente no grupo Preto (IAC-Diplomata ou IAC-Una), grupo Diversos (IAC Alvorada ou Pérola). Valores em negrito correspondem a melhor cultivar padrão para cada tipo de tegumento.

Tabela 5 - Ensaios regionais de cultivares e linhagens de feijoeiro – produtividade média de grãos (kg.ha⁻¹) referente à safra de Inverno de 2008, no estado de São Paulo.

Cultivares e Linhagens		A	mbientes		1/
de Feijoeiro (grão: C=Carioca e P=Preto)	Andradina	Colina	R.Preto	Votuporanga	Média ^{1/} (Kg.ha ⁻¹)
		VCU – Carioc	a e Preto		
IAC Alvorada (C)	1892	3443	3460	3000	2949
Pérola (C)	1475	2655	2599	3083	2453
IAC-Diplomata (P)	1892	3085	4220	3956	3073
IAC-Una (P)	1667	3217	2989	3221	2773
GenC2-1-1 (C)	1700	2853	2380	2913	2462
GenC2-1-3 (C)	1808	3785	2920	3413	2981
GenC2-1-5 (C)	1992	3333	3233	3054	2903
GenC2-1-6 (C)	1683	3125	2608	3225	2660
GenC2-1-7 (C)	1092	3135	3138	3233	2649
GenC8-4-3 (C)	1475	3187	2839	3554	2764
CNFC 10408 (C)	1858	3422	3216	2654	2787
CNFC 10429 (C)	1108	2987	3058	3167	2580
CNFC 10431 (C)	1900	2944	2909	3188	2735
CNFC 10470 (C)	1325	2915	2855	3475	2642
Gen99TG9-84-1 (P)	1550	2627	2547	3146	2467
Guará (C)	1583	3185	3238	3454	2865
Juriti Claro (C)	1842	3370	2821	3392	2856
LP 02-02 (C)	1800	3508	3357	3204	2967
LP 04-72 (P)	2117	3493	3399	3475	3121
LP 04-92 (P)	1250	3122	2921	3375	2667
MAI-25 (C)	1475	3493	3496	3271	2919
Z-22 (C)	1908	3082	2900	3288	2794
Média	1652	3180	3050	3222	2776
C.V. (%)	20,41	11,28	14,72	13,82	14,43
*DMS kg.ha ⁻¹	843	897	1122	1113	483

¹/₂ Média dos experimentos com coeficiente de variação inferior a 25%,

^{*} Teste Dunnett (5%) em relação a melhor cultivar padrão correspondente no grupo Preto (IAC-Diplomata ou IAC-Una), grupo Diversos (IAC Alvorada ou Pérola). Valores em negrito correspondem a melhor cultivar padrão para cada tipo de tegumento.

Tabela 6 - Ensaios regionais de cultivares e linhagens de feijoeiro – produtividade média de grãos (kg.ha⁻¹) referente à safra de Águas de 2008, no estado de São Paulo.

Cultivares e Linhagens		Ambie	entes		
de Feijoeiro (grão: C=Carioca e P=Preto)	Tatuí	Monte Alegre do Sul	Mococa	Capão Bonito	Média ^{1/} (Kg.ha ⁻¹)
		VCU – Carioca	e Preto		
IAC Alvorada (C)	2263	2475	1337	3179	2314
Pérola (C)	2426	2804	2267	3387	2721
IAC-Diplomata (P)	1614	2313	1521	3046	2123
IAC-Una (P)	2390	2958	1887	3667	2726
GenC2-1-1 (C)	2393	2796	1533	3708	2608
GenC2-1-3 (C)	2128	3263	1346	4025	2690
GenC2-1-5 (C)	1889	3321	1417	4075	2675
GenC2-1-6 (C)	1739	3213	1208	3904	2516
GenC2-1-7 (C)	1723	2750	1796	4062	2583
GenC8-4-3 (C)	1820	2958	1750	3621	2537
CNFC 10408 (C)	2580	2654	1837	4317	2847
CNFC 10429 (C)	2318	2550	1358	3596	2455
CNFC 10431 (C)	1870	2221	1825	3433	2337
CNFC 10470 (C)	1603	2396	1912	3512	2356
Gen99TG9-84-1 (P)	1477	2100	1233	3746	2139
Guará (C)	2131	2521	1900	3746	2574
Juriti Claro (C)	2144	2704	1317	4006	2543
LP 02-02 (C)	1835	2717	1733	3883	2542
LP 04-72 (P)	2620	2704	1904	3450	2670
LP 04-92 (P)	1864	2925	1954	3992	2684
MAI-25 (C)	2359	2329	2017	3346	2513
Z-22 (C)	2054	3200	1667	3036	2791
Média	2056	2721	1669	3725	2543
C.V. (%)	20,18	12,82	18,17	15,51	16,68
*DMS kg.ha ⁻¹	1037	872	758	1444	511

¹/₂ Média dos experimentos com coeficiente de variação inferior a 25%,

^{*} Teste Dunnett (5%) em relação a melhor cultivar padrão correspondente no grupo Preto (IAC-Diplomata ou IAC-Una), grupo Diversos (IAC Alvorada ou Pérola). Valores em negrito correspondem a melhor cultivar padrão para cada tipo de tegumento.

Tabela 7 - Ensaios regionais de cultivares e linhagens de feijoeiro – produtividade média de grãos (kg.ha⁻¹) referente à safra de Seca de 2009, no estado de São Paulo.

Cultivares e Linhagens		Ambientes		
de Feijoeiro (grão: C=Carioca e P=Preto)	Avaré	Mococa	Tatuí	Média ^{<u>1/</u> (Kg.ha⁻¹)}
e-curioca e i -i i eto)	,	VCU – Carioca e l	Preto	(iigiiii)
IAC Alvorada (C)	2939	1825	2708	2491
Pérola (C)	2335	2075	2558	2323
IAC-Diplomata (P)	2517	2283	2462	2421
IAC-Una (P)	2809	3046	2517	2791
GenC2-1-1 (C)	2842	3502	2558	2968
GenC2-1-3 (C)	2923	3225	3454	3201
GenC2-1-5 (C)	3123	2996	2879	2999
GenC2-1-6 (C)	3092	3562	2471	3042
GenC2-1-7 (C)	3170	2842	2412	2808
GenC8-4-3 (C)	2874	1775	2858	2502
CNFC 10408 (C)	2972	2967	2837	2926
CNFC 10429 (C)	3245	2550	2817	2871
CNFC 10431 (C)	2720	2037	2762	2507
CNFC 10470 (C)	2033	2442	2512	2329
Gen99TG9-84-1 (P)	2316	2167	1883	2122
Guará (C)	2691	1729	2933	2451
Juriti Claro (C)	2766	3304	2930	3000
LP 02-02 (C)	2782	3608*	2942	3111
LP 04-72 (P)	3350	3258	2833	3147
LP 04-92 (P)	2473	3692	2640	2935
MAI-25 (C)	2875	3254	3096	3075
Z-22 (C)	2819	3354	2871	3015
Média	2803	2795	2724	2774
C.V. (%)	21,48	21,83	15,30	19,84
*DMS kg.ha ⁻¹	1505	1526	1042	769

[⊥] Média dos experimentos com coeficiente de variação inferior a 25%,

^{*} Teste Dunnett (5%) em relação a melhor cultivar padrão correspondente no grupo Preto (IAC-Diplomata ou IAC-Una), grupo Diversos (IAC Alvorada ou Pérola). Valores em negrito correspondem a melhor cultivar padrão para cada tipo de tegumento.

Tabela 8 - Ensaios regionais de cultivares e linhagens de feijoeiro – produtividade média de grãos (kg.ha⁻¹) referente à safra de Inverno de 2009, no estado de São Paulo.

Cultivares e Linhagens		Aml	oientes		
de Feijoeiro (grão: C=Carioca e P=Preto)	Colina	Pindorama	Ribeirão Preto	Votupotanga	Média ^{1/} (Kg.ha ⁻¹)
		VCU – Carioc	a e Preto		
IAC Alvorada (C)	2537	3117	3908	2975	3134
Pérola (C)	2397	3208	3821	3254	3170
IAC-Diplomata (P)	1567	2354	3458	2587	2492
IAC-Una (P)	2509	2654	3375	2887	2856
GenC2-1-1 (C)	2093	3158	3254	4233	3185
GenC2-1-3 (C)	2559	3604	3846	3350	3340
GenC2-1-5 (C)	2373	3637	2921	2992	2981
GenC2-1-6 (C)	2226	2975	3133	3579	2978
GenC2-1-7 (C)	2468	2983	3733	2950	3034
GenC8-4-3 (C)	2268	3342	3604	3154	3092
CNFC 10408 (C)	2730	3025	4150	4871	3694
CNFC 10429 (C)	2474	2692	3904	3237	3077
CNFC 10431 (C)	2562	2583	3454	2987	2897
CNFC 10470 (C)	2066	2867	3579	3100	2903
Gen99TG9-84-1 (P)	2158	2029	2983	2471	2410
Guará (C)	2889	3100	2529	2954	2868
Juriti Claro (C)	2421	3696	3312	3175	3151
LP 02-02 (C)	2562	3433	3858	2875	3182
LP 04-72 (P)	2510	3017	3471	2862	2965
LP 04-92 (P)	2804	3371	3287	3029	3123
MAI-25 (C)	2699	3375	3579	3200	3213
Z-22 (C)	2810	3229	3683	3167	3222
Média	2440	3066	3493	3177	3044
C.V. (%)	11,26	13,85	13,28	21,45	15,88
*DMS kg.ha ⁻¹	687	1062	1160	1704	583

¹/_{Média} dos experimentos com coeficiente de variação inferior a 25%,

Analisando as tabelas de 3 a 8 verificou-se que para as várias épocas utilizadas alguns genótipos apresentaram produtividade média superior a média do padrão correspondente quando analisamos a produtividade média de cada ambiente. As linhagens Gen-C2-1-1, Gen-C2-1-6 e LP-04-72 apresentaram produtividade acima do padrão correspondente na época seca do ano agrícola 2008 em Capão Bonito e a linhagem LP-02-02 na época de seca do ano agrícola 2009. Isso demonstra possíveis interações com os ambientes

^{*} Teste Dunnett (5%) em relação a melhor cultivar padrão correspondente no grupo Preto (IAC-Diplomata ou IAC-Una), grupo Diversos (IAC Alvorada ou Pérola). Valores em negrito correspondem a melhor cultivar padrão para cada tipo de tegumento.

e prováveis vantagens adaptativas de cultivo. No entanto, observa-se que embora não se tenha genótipos significativamente superiores aos padrões correspondentes quando analisamos a produtividade média dos ambientes, tem-se vários genótipos com performance igual, de acordo com o DMS Dunnett a 5%, pois é difícil encontrar genótipos superiores quanto a produtividade aos padrões devido esses serem os mais produtivos e adaptados apresentando potencial produtivo acima de 3000 kg.ha⁻¹. Portanto, ao encontrar algum genótipo com produtividade igual estatisticamente pode-se considerar bom resultado, já que esses novos materiais podem apresentar características agronômicas desejáveis e complementares aos padrões correspondentes, resistência a diferentes doenças e/ou raças de patógenos.

Na tabela 9 estão apresentadas as produtividades médias dos genótipos no conjunto dos ambientes por época de semeadura. Isto é importante, pois o MAPA-RNC baseia-se nestas informações para registros dos novos cultivares de feijoeiro e demais atos legais para cultivo pelos agricultores.

Em relação à época das águas referente aos anos agrícolas de 2007 e 2008, e inverno referente aos anos agrícolas 2008 e 2009, não ouve linhagem superior estatisticamente a melhor cultivar padrão (Pérola e IAC-Una). Para a época de seca nos anos agrícolas de 2008 e 2009 as linhagens Gen-C2-1-1, Gen-C2-1-3, Juriti Claro e LP-04-72 foram superiores estatisticamente a melhor cultivar padrão (Pérola e IAC-Una).

O comportamento diferencial em relação à adaptabilidade e responsividade das cultivares na época de plantio seca devem-se, em partes, à presença de patógenos, principalmente a mancha angular e antracnose. A maior ocorrência de chuvas nessa época de plantio na faze vegetativa da cultura com temperatura e umidade elevada leva a uma maior incidência de patógenos. Todavia, a avaliação da produtividade média neste estudo, conjuntamente com a estabilidade, possibilitou a recomendação de cultivares, mesmo na ausência da análise de dados de incidência de doenças. No presente caso, a seleção das cultivares mais produtivas e estáveis foi um meio indireto de identificar resistência a doenças. Nessas circunstâncias, a resistência é avaliada como proteção contra a perda de produção, considerando-se que as cultivares resistentes são aquelas mais produtivas e estáveis, portanto, com menor perda de produção.

No conjunto dos anos agrícolas de 2007/2008/2009 referente à produtividade média dos genótipos, os genótipos GenC2-1-3, CNFC10408, Juriti Claro e LP-04-72 foram superiores estatisticamente aos melhores cultivares padrões (Pérola e IAC-Una) para os ensaios de tegumento carioca e preto, mostrando-se promissoras para serem registradas como

uma nova cultivar. Podendo observar que dos quatro genótipos que se diferenciaram estatisticamente dos demais no conjunto dos anos agrícolas de 2007/2008/2009, três desses genótipos (GenC2-1-3, Juriti Claro e LP-04-72) também foram superiores estatisticamente na época das secas deixando evidente uma grande influência dessa época de semeadura no desempenho desses matérias. Esse desempenho superior não mostrou-se significativo para as épocas de águas e inverno, mas apresentou-se na época de secas de tal forma que interferiu também no conjunto das três épocas de semeadura.

Tabela 9 - Ensaios regionais de cultivares e linhagens de feijoeiro – produtividade média de grãos (kg.ha⁻¹) referente à safra de Águas (2007 e 2008), Seca (2008 e 2009), Inverno (2008 e 2009) e média geral, no estado de São Paulo.

Cultivares e Linhagens		Ambientes		
de Feijoeiro (grão:	Águas	Seca	Inverno	Média ^{1/}
C=Carioca e P=Preto)	(2007 e 2008)	(2008 e 2009)	(2008 e 2009)	(Kg.ha ⁻¹)
		CU – Carioca e Pi		
IAC Alvorada (C)	2316	1885	3041	2414
Pérola (C)	2671	2092	2812	2525
IAC-Diplomata (P)	2313	1805	2782	2300
IAC-Una (P)	2643	2121	2815	2526
GenC2-1-1 (C)	2643	2526*	2823	2664
GenC2-1-3 (C)	2805	2483*	3161	2816*
GenC2-1-5 (C)	2537	2346	2942	2609
GenC2-1-6 (C)	2500	2439	2819	2586
GenC2-1-7 (C)	2710	2359	2842	2637
GenC8-4-3 (C)	2522	2022	2928	2491
CNFC 10408 (C)	2886	2296	3241	2808*
CNFC 10429 (C)	2512	2259	2828	2533
CNFC 10431 (C)	2380	2004	2816	2400
CNFC 10470 (C)	2514	1917	2773	2401
Gen99TG9-84-1 (P)	2105	1745	2439	2096
Guará (C)	2586	1850	2867	2434
Juriti Claro (C)	2876	2484*	3004	2788*
LP 02-02 (C)	2706	2356	3075	2712
LP 04-72 (P)	2835	2467*	3043	2782*
LP 04-92 (P)	2698	2303	2895	2632
MAI-25 (C)	2589	2283	3066	2646
Z-22 (C)	2863	2329	3008	2733
Média	2600	2199	2910	2570
C.V. (%)	18.04	19.73	15.26	17.48
*DMS kg.ha ⁻¹	398	368	376	219

½ Média dos experimentos com coeficiente de variação inferior a 25%,

4.2 Análise da Estabilidade e Adaptabilidade pelo Método AMMI

Os efeitos de interação G x A, o efeito de ambientes e o efeito de genótipos foram significativos pelo teste F a 1% e 5% de probabilidade, para todas as épocas de semeadura analisadas. Esses resultados são indicativos da interação G x A, sabendo-se que interações positivas, associadas com características previsíveis do ambiente, oferecem a oportunidade

^{*} Teste Dunnett (5%) em relação a melhor cultivar padrão correspondente no grupo Preto (IAC-Diplomata ou IAC-Una), grupo Diversos (IAC Alvorada ou Pérola). Valores em negrito correspondem a melhor cultivar padrão para cada tipo de tegumento.

dos rendimentos mais elevados. O efeito de genótipos indica a presença de variabilidade para a seleção, o de ambientes indica a variabilidade entre locais, anos e épocas de cultivo, importante para tornar o processo de indicação de cultivares mais eficiente, e a ocorrência de interação indica resposta diferencial dos genótipos às mudanças de ambiente.

Na tabela 10 estão apresentados os resultados da análise AMMI para o VCU de grãos de tegumento carioca e preto, na qual estão apresentados nos itens 4.2.1 ao 4.2.4 No Anexo I estão apresentados os índices de genótipos e de ambientes utilizados para o VCU. A homogeneidade das variâncias residuais dos experimentos (QMR), verificada pela razão entre o maior e menor quadrado médio residual dos ensaios estão de acordo com Pimentel-Gomes (1990) onde ele diz que as variâncias são consideradas homogêneas quando a razão entre o maior e o menor QMR ≤ 7,0 o que ocorreu neste trabalho, como pode ser observado no Anexo II onde essa razão do QMR foi 6,15.

Tabela 10 - Análise de variância de dados de produtividade de grãos (Kg/ha⁻¹), e decomposição da interação G x A em eixos da Análise de Componentes Principais da Interação (IPCA), segundo metodologia AMMI, obtidas de 24 ensaios regionais no estado de São Paulo, referente a 22 linhagens e cultivares de grãos de tegumento carioca e preto participantes do ensaio de VCU 2007/2008/2009.

						Ambientes	(Époc	a)				
Fonte de Variação		Águas			Seca			Inverno		Ā	Águas/Seca/Inv	verno
	GL	QM	F/Fr	GL	QM	F/Fr	GL	QM	F/Fr	GL	QM	F/Fr
Repetição/Ensaio	16	1124539,1	5,11**	16	970502,6	5,16**	16	859338,5	4,36**	48	984793,4	4,88**
Genótipos (G)	21	980666,7	4,46**	21	1447081,9	7,69**	21	676964,5	3,43**	21	2365516,1	11,72**
Ambientes (A)	7	32111855,7	145,89**	7	22612951,3	120,12**	7	22910057,1	116,16**	23	29466469,6	145,97**
GXA	147	315841,5	1,43*	147	423452,6	2,25**	147	349781,0	1,77**	483	363596,6	1,80**
IPCA 1	27	190327,7	2,69**	27	364616,4	5,81**	27	268250,2	4,08**	43	340491	5,06**
Resíduo 1	120	97822,8	1,38**	120	88704,1	1,41**	120	87297,1	1,32**	440	104254,6	1,54**
IPCA 2	25	131780	1,86**	25	137404,2	2,18**	25	144657,2	2,20**	41	200631	2,98**
Resíduo 2	95	88886,7	1,26 ^{ns}	95	75888,3	1,20 ^{ns}	95	72202,3	1,09 ^{ns}	399	94351,2	1,40**
IPCA 3										39	193820,3	2,88**
Resíduo 3										360	83575,4	1,24**
IPCA 4										37	132499	1,96**
Resíduo 4										323	77971,2	1,15*
IPCA 5										35	120190,7	1,78*
Resíduo 5										288	72840,3	1,08 ^{ns}
Erro	336	220115,5		336	188255,4		336	197235,4		1008	201869	
Total	527	728191,8		527	625633,3		527	580692,5		1583	728853,8	

^{**, *:} Teste F significativo a 1% e 5% de probabilidade, respectivamente.

4.2.1 Grãos de tegumento carioca e preto referente à época das águas

Através da metodologia AMMI foi possível decompor a matriz da interação em oito componentes principais (posto da matriz G x A, em que *p* é o mínimo entre g-1 e a-1 {[min (22-1) e (8-1)] = 7}). Pelo teste F_r de CORNELIUS et al. (1992), os dois primeiros eixos são significativos (p<0,001), levando assim a seleção do modelo AMMI2 (Tabela 10), tendo o eixo IPCA2 acumulado 49,97% da SQ_{G x A} denominado de porção padrão. O gráfico biplot foi elaborado até o modelo AMMI2, sendo este o primeiro resíduo não significativo. Pode-se observar na tabela 11 que o primeiro eixo principal de interação capturou 30,45%, o segundo eixo 19,52%, tendo uma porcentagem acumulada para os dois eixos de 49,97% da SQ_{G x A}, proporção denominada padrão. Uma das premissas da análise AMMI é a de que nos primeiros eixos concentra-se maior porcentagem denominada padrão. GAUCH (1988) e GAUCH & ZOBEL (1996) mostraram que a inclusão excessiva de termos multiplicativos reduz a acurácia da análise. Assim, à medida que se aumenta o número de eixos selecionados, aumenta-se a porcentagem de ruído, reduzindo o poder de predição da análise AMMI.

Quanto à interpretação da porcentagem da SQ_{GxA} original explicada pelo modelo AMMI2, ressalta-se que não se deve proceder buscando uma explicação máxima dessa soma de quadrados. Conforme GAUCH (1988), os primeiros eixos AMMI captam maior porcentagem denominada padrão e, com a acumulação de eixos, ocorre diminuição na porcentagem denominada padrão e um acréscimo da porção ruído. Com isso, a seleção do modelo AMMI2, com pequena porção da SQ_{GxA} original, está capturando maior porcentagem padrão. Podendo inferir que os 50,03% restantes da SQ_{GxA} correspondem à porção ruído. Resultados semelhantes foram observados por alguns autores onde a porção padrão até o modelo AMMI correspondente foi de 36% no trabalho de OLIVEIRA et al. (2003), CROSSA et al. (1991) encontraram 27,1% de padrão; FLORES et al. (1996) obteveram 54,6% e PEREIRA & COSTA (1998) conseguiram 44,6% de padrão.

Esses resultados mostram que mesmo com grande porção ruído o que significa problemas na condução dos experimentos, ou seja, efeitos externos diferentes do efeito da interação G x A que deveriam ser controlados ao máximo para não influenciar no resultado e depreciar a qualidade de suas estimativas o método AMMI conseguiu separar de forma satisfatório o que é efeito da interação G x A e deve ser aproveitado, do que é ruído e deve ser descartado. Sendo de grande importância para o melhorista de plantas a condução de forma correta, precisa e homogenia de seus experimentos para diminuir o erro experimental e o ruído de suas análises.

Portanto, baixas proporções da SQ_{GxA} sugerem contaminação da matriz de interações originais por fatores imprevisíveis, depreciando a qualidade de suas estimativas.

Tabela 11 - Proporção da SQ_{GXA} da interação para cada eixo principal da análise AMMI, para o grupo carioca e preto em relação à época de semeadura das águas.

Eixo	Proporção/Eixo	% Acumulada
IPCA1	0,3045	30,4478
IPCA2	0,1952	49,9677
IPCA3	0,1471	64,6782
IPCA4	0,1236	77,0420
IPCA5	0,0994	86,9801
IPCA6	0,0738	94,3600
IPCA7	0,0564	100,0000

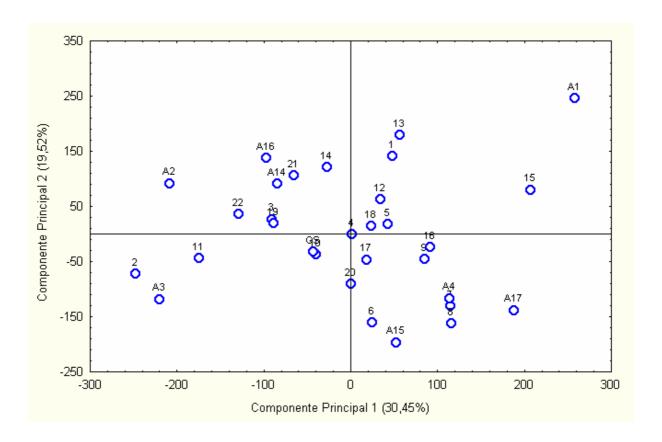
Analisando os resultados obtidos pode-se constatar que a interpretação deve ser feita pelo modelo AMMI2, selecionado pelo teste F_r CORNELIUS et al. (1992). Segundo GAUCH & ZOBEL (1996), os primeiros eixos da análise AMMI captam a maior porcentagem do desempenho real (padrão) e quando são utilizados muitos eixos para a realização da interpretação dos resultados ocorre diminuição na porcentagem denominada de padrão e um acréscimo de informações imprecisas, ou seja, ruídos.

Os gráficos biplot resultantes da análise de modelo AMMI2 foram feitos utilizando a combinação dos eixos principais, IPCA1 x IPCA2 e IPCA1 x Média.

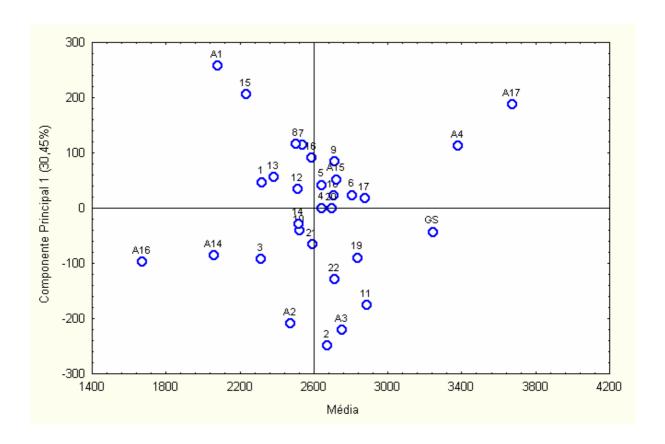
De acordo com a figura 1 pode-se observar que os genótipos que menos contribuíram com a interação, conforme as combinações de eixos principais, ou seja, os que se apresentaram estáveis para produtividade de grãos foram: IAC-Una (4), Juriti Claro (17) e LP-02-02 (18), pois quanto mais distante da origem do eixo AMMI de interação, ou seja, da abscissa do gráfico, maior é a contribuição para a interação. Estes genótipos apresentaram produtividade média de 2.643 Kg/ha⁻¹, 2.876 Kg/ha⁻¹ e 2.706 Kg/ha⁻¹ (Tabela 7) respectivamente, sendo esses os genótipos mais indicados, pois apresentaram média de produção superior ao padrão correspondente "Pérola (2)" mas não diferindo estatisticamente de acordo com o DMS Dunnett a 5% para Juriti Claro (17) e LP-02-02 (18) que são do tipo de

tegumento carioca e para o tipo de tegumento preto o IAC-Una é o próprio cultivar padrão. Já os genótipos Pérola (2) e Gen99TG9-84-1 (15) foram os que mais contribuíram para a interação G x A, uma vez que apresentaram os maiores escores no eixo da interação. O genótipo GenC8-4-3 (10) aproximou-se do genótipo suplementar (GS) sendo este próximo de ser um genótipo ideal para essa condição de ambiente.

Pode-se observar que os ambientes ficaram distribuídos pelo gráfico, ou seja, em quadrantes distintos, indicando assim uma correta estratificação dos ambientes para as avaliações dos genótipos envolvidos no estudo.


Analisando a figura 1 observa-se que os genótipos GenC2-1-5 (7) e GenC2-1-6 (8) foram especificamente adaptado ao ambiente de Monte Alegre do Sul (2007), representado pela sigla (A4). Os genótipos de maior e menor produtividade média são respectivamente, CNFC-10408 (11) (2.886 Kg/ha⁻¹) e Gen99TG9-84-1 (15) (2.105 Kg/ha⁻¹), conforme tabela 7.

De acordo com o teste F_r de CORNELIUS et al. (1992) o modelo selecionado foi o AMMI2 como comentado acima, sendo desta forma o genótipo IAC-Una (4) considerado o mais estável, pois apresentou menor valor de amplitude. Já os que mais contribuíram com a interação por terem apresentado as maiores amplitudes foram os genótipos Pérola (2) e Gen99TG9-84-1 (15).


Por meio de Anexo III pode-se observar que os genótipos Pérola e CNFC 10408 no ambiente de Araras (2007) apresentaram valores negativos de maior magnitude. Isto implica em uma perda de produtividade de 819 Kg/ha⁻¹ para a cultivar Pérola e 558 Kg/ha⁻¹ para o genótipo CNFC 10408, devido a alta incidência de antracnose neste local, pois esses genótipos são suscetíveis. Já os genótipos Gen99TG9-84-1 no ambiente de Araras (2007) e Pérola no ambiente de Capão Bonito (2007) apresentaram valores positivos de maior magnitude, com um ganho de produtividade de 732 Kg/ha⁻¹ para o primeiro e 634 Kg/ha⁻¹ para o segundo genótipo em relação aos respectivos ambientes.

De acordo com o Anexo IV os ambientes de Capão Bonito no ano agrícola de 2008 e Monte Alegre do Sul no ano agrícola de 2007 apresentaram as maiores médias preditas, com 3.670 e 3.377 Kg/ha⁻¹ respectivamente. O genótipo com maior média predita foi o GenC2-1-3 no ambiente de Campão Bonito no ano agrícola de 2008 e o genótipo com maior média predita geral foi CNFC 10408 com produtividades de 4141 e 2886 Kg/ha⁻¹ respectivamente, sendo que a média predita geral do genótipo CNFC 10408 foi igual a sua média original como mostra a tabela 9.

De acordo com a figura 2 o ambiente de Capão Bonito (A17) e Monte Alegre do Sul (A4) nos anos agrícolas de 2007 e 2008 apresentaram as maiores médias de produtividade, com 3.725 e 3.377 Kg/ha⁻¹ respectivamente.

Figura 1 - Gráfico biplot de modelo AMMI2, para dados de produtividade de grãos de tegumento carioca e preto referentes à época de águas-2007/2008, avaliados em oito ambientes (IPCA1 x IPCA2).

Figura 2 - Gráfico biplot para produtividade de grãos de feijoeiro de tegumento carioca e preto referente à época de águas-2007/2008, avaliados em oito ambientes (IPCA x Média).

4.2.2 Grãos de tegumento carioca e preto referente à época da seca

Utilizando a metodologia AMMI foi possível decompor a matriz da interação em sete componentes principais (posto da matriz G x A, em que p é o mínimo entre g-1 e a-1 {[min (22-1) e (8-1)] = 7}). Pelo teste F_r de CORNELIUS et al. (1992), os dois primeiros eixos são significativos (p<0,001), levando assim a seleção do modelo AMMI2 (Tabela 10), tendo o eixo IPCA2 acumulado 64,81% da $SQ_{G X A}$ denominado de porção padrão. O gráfico biplot foi elaborado até o modelo AMMI2. Pode-se observar na tabela 12 que o primeiro eixo principal de interação capturou 48,05%, o segundo eixo 16,77%, tendo uma porcentagem acumulada para os dois eixos de 64,81% da $SQ_{G X A}$, proporção denominada padrão, onde o restante da $SQ_{G X A}$, ou seja, 35,19% correspondem à porção ruído.

Tabela 12 - Proporção da SQ_{GXA} da interação para cada eixo principal da análise AMMI, para o grupo carioca e preto em relação à época de semeadura de seca .

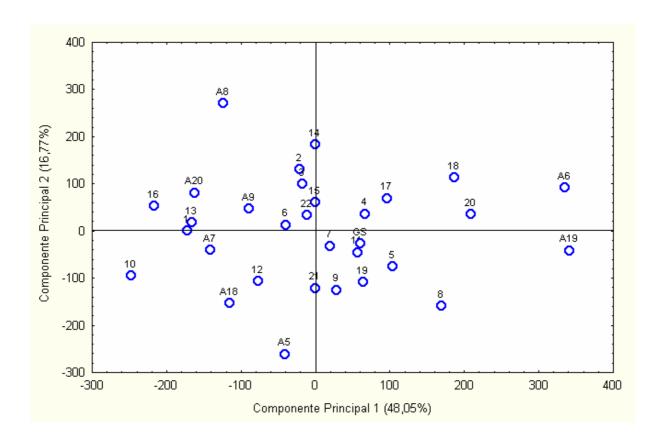
Eixo	Proporção/Eixo	% Acumulada
IPCA1	0,4805	48,0481
IPCA2	0,1677	64,8136
IPCA3	0,1313	77,9460
IPCA4	0,0894	86,8856
IPCA5	0,0719	94,0712
IPCA6	0,0407	98,1373
IPCA7	0,0186	100,0000

Os gráficos biplot resultantes da análise de modelo AMMI2 foram feitos utilizando a combinação dos eixos principais, IPCA1 x IPCA2 e IPCA1 x Média.

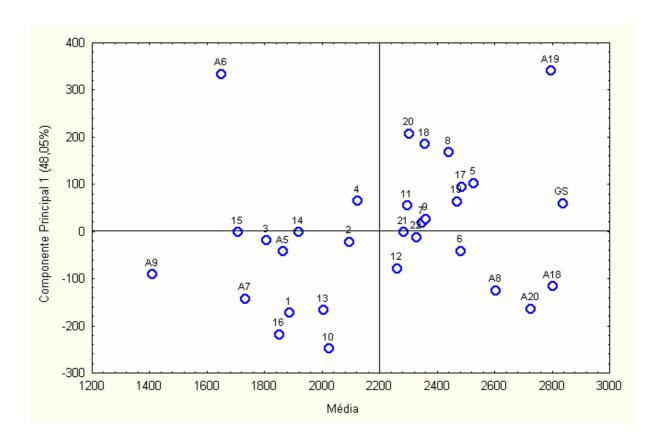
De acordo com as figuras 3 pode-se observar que os genótipos que menos contribuíram com a interação, conforme as combinações de eixos principais, ou seja, os que se apresentaram estáveis conforme figura 3 para produtividade de grãos foram: Z-22 (22), GenC2-1-5 (7) e Gen99TG9-84-1 (15). Estes genótipos apresentaram produtividade média de 2.329 Kg/ha⁻¹, 2359 Kg/ha⁻¹ e 1.745 Kg/ha⁻¹ (Tabela 7) respectivamente, sendo que os dois primeiros apresentaram média de produção superior ao padrão correspondente "Pérola (2)" mas não diferindo estatisticamente de acordo com o DMS Dunnett a 5% . Já os genótipos GenC8-4-3 (10) e Guará (16) foram os que mais contribuíram para a interação G x A, uma vez que apresentaram os maiores escores no eixo da interação. O genótipo CNFC 10408 (11) aproximou-se do genótipo suplementar (GS) sendo este que mais adaptou-se com os ambientes para nessas condições de ambiente apresentando escores próximos de zero, indicando estabilidade de produção.

Pode-se também observar que os ambientes ficaram distribuídos pela figura 3 em quadrantes distintos, indicando assim uma correta estratificação dos ambientes para as avaliações dos genótipos envolvidos no estudo para época de seca.

Os genótipos de maior produtividade média conforme tabela 9, GenC2-1-1 (5) (2.526 Kg/ha⁻¹), GenC2-1-3 (6) (2.483 Kg/ha⁻¹), Juriti Claro (17) (2.484 Kg/ha⁻¹), LP-04-72 (19) (2.467 Kg/ha⁻¹), sendo que os quatro genótipos apresentaram média de produção superior ao


padrão correspondente "Pérola (2)" diferindo estatisticamente de acordo com o DMS Dunnett a 5%. Pode-se ainda constatar por meio das figuras 4 e 6 que não ouve adaptação especifica a nenhum dos local entre os 22 genótipos avaliados mas os quatro genótipos de maiores médias de produtividade citados acima foram responsivos como observado na figura 6 e obtiveram estabilidade satisfatória através da análise da figura 3 onde AMMI2 explica 64,81% das interações destacando o GenC2-1-3 quanto a estabilidade de produção.

De acordo com o teste F_r de CORNELIUS et al. (1992) o modelo selecionado foi o AMMI2 como comentado acima, sendo desta forma o genótipo Z-22 (22) considerado o mais estável, pois apresentou menor valor de amplitude (Anexo V). Já o que mais contribuiu com a interação por ter apresentado a maior amplitude foi o genótipo GenC8-4-3 (10) (Anexo V).


Analisando a tabela 7 os ambientes de Avaré (A18) e Mococa (A19) no ano agrícola de 2009 apresentaram as maiores médias de produtividade com 2.803 e 2.795 Kg/ha⁻¹ respectivamente, e os ambientes encontram bem dispersos na figura 3 em quadrantes diferentes demonstrando uma correta estratificação dos ambientes selecionados para o estudo de adaptabilidade e estabilidade comprovando a existência de interação GxA.

Observando o Anexo V os genótipos GenC8-4-3 (10), GenC2-1-6 (8), Guará (16) e LP-02-02 (18) foram os que mais contribuíram com a interação, haja vista que apresentaram as maiores amplitudes nas estimativas da interação G x A. Os genótipos com as menores amplitudes foram GenC2-1-5 (7), Z-22 (22) e GenC2-1-3 (6), sendo considerados os mais estáveis, segundo o modelo AMMI2.

Por meio do Anexo VI pode-se observar as predições de respostas para as combinações de genótipos e ambientes, pelo modelo AMMI2. Os ambientes que obtiveram as maiores médias preditas para os genótipos foram os de Mococa (2009) e Tatuí (2009). Os genótipos GenC2-1-6 (8), LP 04-92 (20) e GenC2-1-1 (5) foram os que alcançaram as maiores médias preditas para este local. O primeiro com 3.676 Kg/ha⁻¹, sendo que a média genotípica original é de 3.562 Kg/ha⁻¹ o segundo com uma média predita de 3.597 Kg/ha⁻¹ e a original é de 3.692 Kg/ha⁻¹ e o terceiro com uma média preditiva de 3.507 Kg/ha⁻¹ e original de 3.502 Kg/ha⁻¹, sendo que o LP-04-92 (20) apresentou uma média original superior a média preditiva (Tabela 7).

Figura 3 - Gráfico biplot de modelo AMMI2, para dados de produtividade de grãos de tegumento carioca e preto referentes à época de seca-2008/2009, avaliados em oito ambientes (IPCA1 x IPCA2).

Figura 4 - Gráfico biplot para produtividade de grãos de feijoeiro de tegumento carioca e preto referente as três épocas de semeadura, avaliados na safra de seca-2008/2009 em oito ambientes (IPCA x Média).

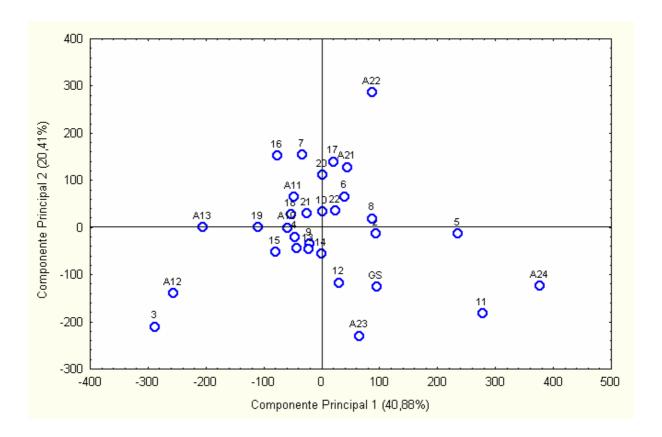
4.2.3 Grãos de tegumento carioca e preto referente à época de inverno

Para a época de inverno de acordo com o teste F_r de CORNELIUS et al. (1992) os três primeiros eixos foram significativos (p<0,001), com respectivo resíduo não significativo conforme tabela 10, o que leva a seleção do modelo AMMI2. Os gráficos seguiram as combinações de eixos principais dois a dois como segue IPCA1 x IPCA2 e IPCA1 x Média. O modelo AMMI2 acumulou 61,29% da $SQ_{G|x|A}$ denominada porção padrão e os outros 25,61% da $SQ_{G|x|A}$ correspondentes a porção ruído (Tabela 13).

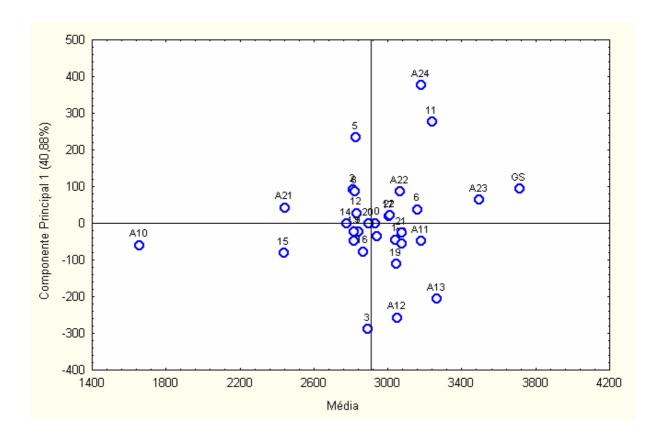
Tabela 13 - Proporção da SQ_{GXA} da interação para cada eixo principal da análise AMMI, para o grupo carioca e preto em relação à época de semeadura de inverno .

Eixo	Proporção/Eixo	% Acumulada
IPCA1	0,4088	40,8770
IPCA2	0,2041	61,2876
IPCA3	0,1310	74,3867
IPCA4	0,0831	82,8401
IPCA5	0,0831	91,1494
IPCA6	0,0656	97,7048
IPCA7	0,0230	100,0000

De acordo com as figuras 5 e 6 os genótipos GenC8-4-3 (10), MAI-25 (21) e Z-22 (22) foram os que mais se aproximaram do eixo central no gráfico biplot, sendo assim considerados os mais estáveis, pois foram os que menos contribuíram com a interação. Nenhum genótipo apresentou produtividade acima das testemunhas IAC Alvorada (1) e IAC-Una (4) pelo teste de médias Dunnett (5%), conforme tabela 9. Os genótipos IAC-Diplomata (3) e CNFC 10408 (11) foram os que mais contribuíram com a interação, uma vez que apresentaram os maiores valores de escores (Anexo VII).


Pode-se observar de acordo com as figuras 5 e 6 que a cultivar IAC-Diplomata (3) apresentou adaptação especifica ao ambiente Ribeirão Preto (A12) na época de inverno.

Analisando a tabela 9 pode-se constatar que produtividade média para época de inverno foi de 2910 Kg/ha⁻¹ sendo que as médias de produtividades dos anos agrícolas de 2008 e 2009 foram 2776 e 3044 Kg/ha⁻¹ respectivamente.


Observando o Anexo VII a cultivar CNFC 10408 (11) apresentou valor positivo de maior magnitude com ganho em produtividade de 1270 Kg/ha⁻¹ no ambiente de Votuporanga (2009). O genótipo IAC-Diplomata (3) apresentou valores negativos de maior magnitude, significando perdas de 827 Kg/ha⁻¹ para o ambiente de Votuporanga (2009) e de 852 Kg/ha⁻¹ para o ambiente de Pindorama (2009). Esses ambientes tornam-se impróprios para o cultivo deste genótipo, pois apresentou interações negativas e de grande magnitude.

Pode-se ainda constatar por meio do Anexo VII que os genótipos que menos contribuíram com a interação G x A foram GenC8-4-3 (10), GenC2-1-7 (9), MAI-25 (21), Z-

22 (22) uma vez que apresentaram as menores amplitudes nas estimativas da interação G x A por AMMI2, sendo assim considerados estáveis. Já os genótipos IAC-Uma (4) e CNFC 10408 (11), obtiveram as maiores amplitudes, sendo desta forma considerados como os genótipos que mais contribuíram com a interação, sendo confirmado pela figuras 5.

Figura 5 - Gráfico biplot de modelo AMMI1, para dados de produtividade de grãos de tegumento carioca e preto referentes à época de inverno-2008/2009, avaliados em oito ambientes (IPCA1 x IPCA2).

Figura 6 - Gráfico biplot para produtividade de grãos de feijoeiro de tegumento carioca e preto referente à épocas de semeadura, avaliados nas safras de inverno-2008/2009 em oito ambientes (IPCA x Média).

No Anexo VIII estão presentes as predições de respostas de produtividade para cada combinação de genótipos e ambientes, referente ao modelo AMMI2. Os ambientes de Ribeirão Preto (2009) e Votuporanga (2008) apresentaram as maiores médias preditas para os genótipos, sendo que no ambiente de Votuporanga (2009) foi encontrada a maior média predita de um genótipo, ou seja, 4.772 Kg/ha⁻¹ para o genótipo CNFC 10408, uma vez que a sua média genotípica original é de 3.241 Kg/ha⁻¹ e para o ambiente de Ribeirão Preto (2009) o genótipo que apresentou a maior média predita foi CNFC 10408 com 4.411 Kg/ha⁻¹, sendo sua média original de 3.241 Kg/ha⁻¹. Os genótipos CNFC 10408 e GenC2-1-3 apresentaram as maiores médias preditas para época de inverno com médias preditas de 3.241 e 3.161 Kg/ha⁻¹ respectivamente, os genótipos IAC Alvorada, Juriti Claro, LP-02-02, LP-04-72, MAI-25, Z-22 também apresentaram médias superior a 3000 Kg/ha⁻¹ para época de inverno.

4.2.4 Conjunto das três épocas de semeadura (águas, seca e inverno), referente a grãos de tegumento carioca e preto

Utilizando a metodologia AMMI foi possível decompor a matriz da interação em 21 componentes principais (posto da matriz G x A, em que p é o mínimo entre g-1 e a-1 {[min (22-1) e (24-1)] = 21}). Pelo teste F_r de CORNELIUS et al. (1992) os cinco primeiros eixos são significativos (p<0,001), levando assim a seleção do modelo AMMI5 (Tabela 14), tendo o eixo IPCA5 acumulado 65,33% da SQ_{GXA} .

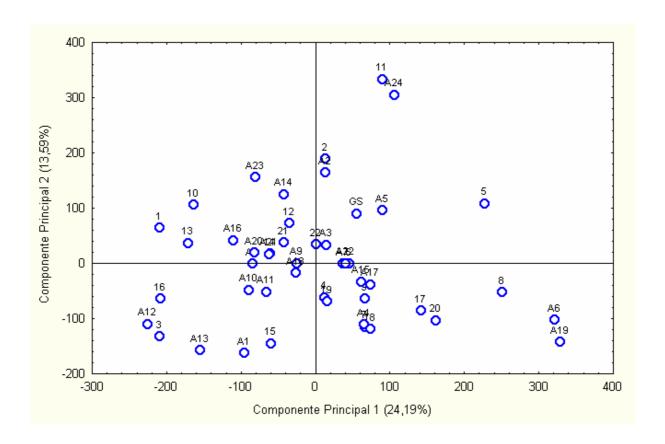
Tabela 14 - Proporção da SQ_{GXA} da interação para cada eixo principal da análise AMMI, para o grupo carioca e preto em relação ao conjunto das três épocas de semeadura.

Eixo	Proporção/Eixo	% Acumulada
IPCA1	0,2419	24,1949
IPCA2	0,1359	37,7885
IPCA3	0,1249	50,2799
IPCA4	0,0810	58,3814
IPCA5	0,0810	65,3331
IPCA6	0,0695	71,4987
IPCA7	0,0617	76,4491
IPCA8	0,0495	81,2968
IPCA9	0,0485	85,3579
IPCA10	0,0406	89,0807
IPCA11	0,0372	92,0601
IPCA12	0,0298	94,1914
IPCA13	0,0213	95,7170
IPCA14	0,0153	97,1214
IPCA15	0,0140	98,1039
IPCA16	0,0098	98,9722
IPCA17	0,0087	99,4043
IPCA18	0,0043	99,6886
IPCA19	0,0028	99,9538
IPCA20	0,0027	99,9885
IPCA21	0,0001	100,0000

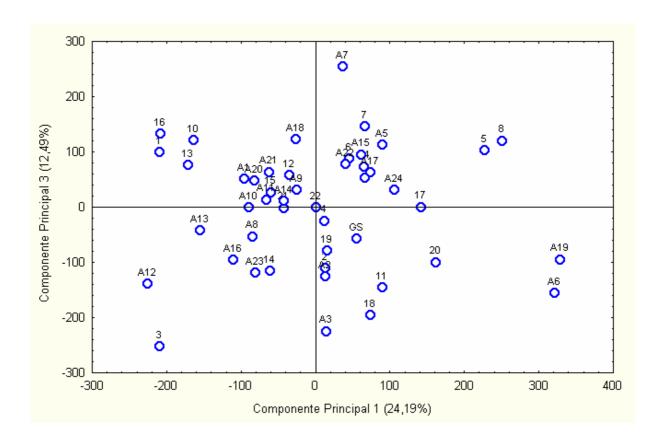
No entanto os gráficos biplot foram elaborados até o modelo AMMI3 conforme CARBONELL et al. (2004), uma vez que seria impraticável a representação gráfica utilizando cinco eixos. Por meio da tabela 14 pode-se observar que o primeiro eixo principal de interação (IPCA1) capturou 24,19% da $SQ_{G \times A}$, o IPCA2 capturou 13,59% da $SQ_{G \times A}$ e o IPCA3 capturou 12,49% da $SQ_{G \times A}$, acumulando 50,28% da $SQ_{G \times A}$ correspondente a porção padrão e o restante pertencem à porção chamada de ruído, ou seja, 49,72% da $SQ_{G \times A}$.

Analisando as figuras 7 e 8 pode-se observar que os genótipos assim como os ambientes mais estáveis ou que menos contribuíram para a interação são aqueles que possuem menores valores de escores, destacando dessa forma os cultivares, GenC2-1-7 (9), e Z-22 (22). Os ambientes que apresentaram estabilidade de produção foram os de Mococa (2008, época de seca, A9), Andradina (2008, época de inverno, A10) e Colina (2009, época de inverno, A21), com seus respectivos rendimentos de 1.421 Kg/ha⁻¹, 1.652 Kg/ha⁻¹, 2.440 Kg/ha⁻¹ (Tabelas 4, 5 e 8). Pode-se observar que nenhum genótipo se aproximou do GS.

Ainda de acordo com as figuras 7 a 9 os genótipos e os ambientes que tiveram os maiores valores de escores foram os que mais contribuíram com a interação, destacando os genótipos, IAC Alvorada (1), IAC-Diplomata (3), GenC2-1-1 (5), GenC2-1-6 (8) e Guará (16) e os ambientes de Tatuí (2008, época de seca, A6), Ribeirão Preto (2008, época de inverno, A12) e Mococa (2009, época de seca, A19).


Analisando a figura 7, os genótipos CNFC 10470 (14) e MAI-25 (21) apresentaram adaptação específica aos ambientes de Avaré (2008, época de seca, A8), Tatuí (2009, época de seca, A20) e Colina (2009, época de inverno, A21). O genótipo Pérola (2) foi especificamente adaptado ao ambiente de Avaré (2007, época das águas, A2). O genótipo CNFC 10408 (11) ao ambiente de Vopuporanga (2009, época de inverno, A24). O genótipo GenC2-1-3 (6) apresentou adaptação especifica aos ambientes de Monte Alegre do Sul (2008, época de seca, A7) e Pindorama (2009, época de inverno, A22). A cultivar IAC-Diplomata (3) apresentou adaptação especifica ao ambiente Ribeirão Preto (2008, época de inverno, A12). Nos ambientes de Monte Alegre do Sul (2008, época das águas, A15) e Capão Bonito (2008, época das águas, A17) o genótipo GenC2-1-7 (9) apresentou adaptação especifica. Para o ambiente de Monte Alegre do Sul (2007, época de águas, A4) os genótipos GenC2-1-5 (7) e LP-02-02 (18) foram especificamente adaptados. O genótipo suplementar GS apresentou adaptação especifica ao ambiente Capão Bonito (2008, época de seca, A5).

De acordo com o teste F_r de CORNELIUS et al. (1992) o modelo selecionado foi o AMMI5, sendo desta forma o genótipo Z-22 (22), GenC2-1-7 (9) e IAC-Una (4) considerados os mais estáveis, pois apresentaram menores amplitudes de acordo com o Anexo IX. Já os que mais contribuíram com a interação por terem apresentado as maiores amplitudes foram os genótipos IAC Alvorada (1), IAC-Diplomata (3), GenC2-1-6 (8), CNFC 10408 (11) e Guará (16).


Analisando o Anexo IX pode-se observar que os genótipos IAC Alvorada e IAC-Diplomata apresentaram valores negativos de maior magnitude para interação, sendo o primeiro com uma perda de 960 Kg/ha⁻¹ no ambiente de Tatuí (2008, época da seca, A6) e o segundo com uma perda de 849 Kg/ha⁻¹ em Monte Alegre do Sul (2008, época da seca, A7). Já os genótipos CNFC 10408 (11) e GenC2-1-6 (8) apresentaram valores positivos de maior magnitude, sendo o primeiro com um ganho de 1.186 Kg/ha⁻¹ em Votuporanga (2009, época de inverno, A24) e o segundo com um ganho de 881 Kg/ha⁻¹ no ambiente de Mococa (2009, época da seca, A19).

Observando o Anexo X os ambientes de Capão Bonito (2008, época das águas, A17) e o ambiente de Ribeirão Preto (2009, época de inverno, A23) apresentaram as maiores médias preditas, com 3.670 e 3.493 Kg/ha⁻¹, respectivamente. Em relação ao primeiro ambiente o genótipo GenC2-1-1 (5) apresentou média predita de 4.088 Kg/ha⁻¹, sendo que a média genotípica original é de 3.708 Kg/ha⁻¹ (Tabela 4) e para o segundo ambiente o genótipo CNFC 10408 (11) apresentou uma média predita de 4.423 Kg/ha⁻¹, sendo que a média genotípica original é de 4.150 (Tabela 8).

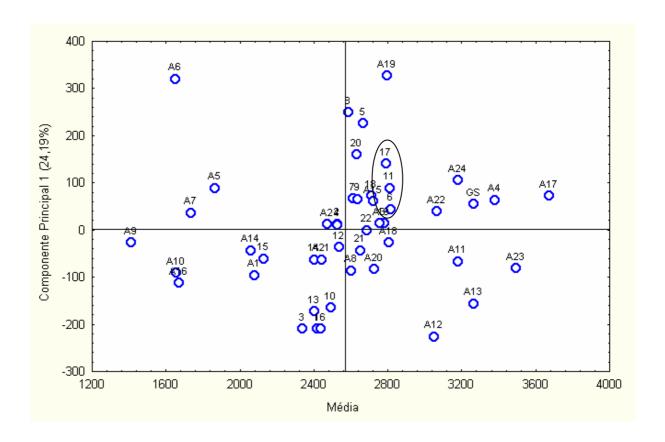

O modelo que melhor descreve as interações foi AMMI3 para a interpretação dos resultados, estando de acordo com os trabalhos de CARBONELL et al. (2004) e MELO et al. (2007).

Figura 7 - Gráfico biplot de modelo AMMI2, para dados de produtividade de grãos de feijoeiro de tegumento carioca e preto referente às três épocas de semeadura, avaliados nas safras de 2007/2008/2009 em vinte e quatro ambientes (IPCA1 x IPCA2).

Figura 8 - Gráfico biplot de modelo AMMI3, para dados de produtividade de grãos de feijoeiro de tegumento carioca e preto referente às três épocas de semeadura, avaliados nas safras de 2007/2008/2009 em vinte e quatro ambientes (IPCA1 x IPCA3).

Figura 9 - Gráfico biplot para produtividade de grãos de feijoeiro de tegumento carioca e preto referente às três épocas de semeadura, avaliados nas safras de 2007/2008/2009 em vinte e quatro ambientes (IPCA x Média).

4.3 Análise da Estabilidade e Adaptabilidade pelo Método LIN & BINNS (1988) Modificado por CARNEIRO (1998).

A classificação dos ambientes em favoráveis e desfavoráveis para produtividade média de grãos está apresentada nas tabelas 15 e 16. Os ambientes desfavoráveis são os que apresentam índices ambientais negativos, e ambientes favoráveis são aqueles cujos índices ambientais são positivos.

Pelos resultados observados nas tabelas 15 e 16, foi possível notar que os fatores, épocas das águas, seca e inverno e anos 2007, 2008 e 2008 influenciaram na classificação dos locais de experimentação em ambientes favoráveis e desfavoráveis. Os locais não se repetiram necessariamente para cada época de semeadura, pois foram selecionados, conforme a necessidade e disponibilidade de novas áreas e/ou indisponibilidade destes locais devido a vários fatores (clima, recursos financeiros e humanos).

Nota-se na tabela 15 que o ambiente Avaré foi favorável ao cultivo do feijoeiro para a época das secas, tendo esse resultado confirmado nos dois anos agrícolas (2008/2009)

avaliados neste local. Os ambientes Capão bonito e Monte Alegre do Sul apresentaram-se favoráveis para a época das águas, tendo esse resultado repetido nos anos agrícolas de 2007 e 2008. Mococa apresentou-se como ambiente desfavorável na época das secas/2008, mas favorável na época das secas/2009 isso pode ter ocorrido devido ao excesso de chuva na fase inicial da cultura e maior incidência de doenças como mancha angular e antracnose no ano de 2008. O ambiente Colina apresentou-se como ambiente favorável na época de inverno/2008, mas desfavorável na época de inverno/2009. Isso ocorreu devido à falta de irrigação no ano de 2009 causando perda de produtividade de 740 kg.ha⁻¹ de um ano para o outro, onde na safra de inverno/2008 a produtividade foi de 3180 kg.ha⁻¹ e inverno/2009 foi de 2440 kg.ha⁻¹. O ambiente Ribeirão Preto foi favorável ao cultivo do feijoeiro para a época de inverno, tendo esse resultado confirmado nos dois anos agrícolas (2008/2009) avaliados neste local

Para a classificação dos ambientes de acordo com o conjunto das três épocas de semeadura (tabela 16) pode-se observar que os valores do índice ambiental foram diferentes da tabela 15 o que é normal devido as médias de produtividade por época e conjunta serem diferentes, mas a classificação desses ambientes foram iguais tanto na tabela 15 quanto na tabela 16.

Tabela 15 - Classificação dos ambientes favoráveis e desfavoráveis ao cultivo do feijoeiro, para produtividade média de grãos, com base nos índices ambientais (I), para as épocas das águas, seca e inverno.

Local	Épocas	Índice Ambiental (I)	Classificação
Local	Epocas	(kg.ha ⁻¹)	Ciassificação
Araras	Águas/2007	-520,00	Desfavorável
Avaré	Águas/2007	-130,18	Desfavorável
Capão Bonito	Águas/2007	153,31	Favorável
M.A. Sul	Águas/2007	777,26	Favorável
Tatuí	Águas/2008	-542,91	Desfavorável
M.A. Sul	Águas/2008	122,17	Favorável
Mococa	Águas/2008	-930,23	Desfavorável
Capão Bonito	Águas/2008	1070,58	Favorável
Capão Bonito	Seca/2008	-335,13	Desfavorável
Tatuí	Seca/2008	-547,45	Desfavorável
M.A. Sul	Seca/2008	-464,40	Desfavorável
Avaré	Seca/2008	405,40	Favorável
Mococa	Seca/2008	-789,77	Desfavorável
Avaré	Seca/2009	606,00	Favorável
Mococa	Seca/2009	598,13	Favorável
Tatuí	Seca/2009	527,22	Favorável
Andradina	Inv/2008	-1260,95	Desfavorável
Colina	Inv/2008	265,13	Favorável
R.Preto	Inv/2008	135,00	Favorável
Votuporanga	Inv/2008	345,81	Favorável
Colina	Inv/2009	-475,04	Desfavorável
Pindorama	Inv/2009	150,72	Favorável
Ribeirão Preto	Inv/2009	577,68	Favorável
Votupotanga	Inv/2009	261,63	Favorável

Tabela 16 - Classificação dos ambientes favoráveis e desfavoráveis ao cultivo do feijoeiro, para produtividade média de grãos, com base no índice ambiental (I), considerando o conjunto das três épocas de semeadura.

T 1	т.	Índice Ambiental (I)	Ø1
Local	Épocas	(kg.ha ⁻¹)	Classificação
Araras	Águas/2007	-491,1989	Desfavorável
Avaré	Águas/2007	-101,3807	Desfavorável
Capão Bonito	Águas/2007	182,1193	Favorável
M.A. Sul	Águas/2007	806,0739	Favorável
Tatuí	Águas/2008	-514,108	Desfavorável
M.A. Sul	Águas/2008	150,983	Favorável
Mococa	Águas/2008	-901,4261	Desfavorável
Capão Bonito	Águas/2008	1099,392	Favorável
Capão Bonito	Seca/2008	-708,608	Desfavorável
Tatuí	Seca/2008	-920,9261	Desfavorável
M.A. Sul	Seca/2008	-837,8807	Desfavorável
Avaré	Seca/2008	31,9375	Favorável
Mococa	Seca/2008	-1163,2443	Desfavorável
Avaré	Seca/2009	232,5284	Favorável
Mococa	Seca/2009	224,6648	Favorável
Tatuí	Seca/2009	153,7557	Favorável
Andradina	Inv/2008	-916,2898	Desfavorável
Colina	Inv/2008	609,8011	Favorável
R.Preto	Inv/2008	479,6648	Favorável
Votuporanga	Inv/2008	690,483	Favorável
Colina	Inv/2009	-130,3807	Desfavorável
Pindorama	Inv/2009	495,392	Favorável
Ribeirão Preto	Inv/2009	922,3466	Favorável
Votupotanga	Inv/2009	606,3011	Favorável

4.3.1 Grãos de tegumento carioca e preto referente à época das águas

Considerando a época das águas (Tabela 17), com os ambientes favoráveis e os desfavoráveis, os genótipos Juriti Claro, GenC2-1-3 e CNFC 10408 do grupo comercial carioca e LP 04-72 do grupo comercial preto, foram aquelas com melhor desempenho da média dos oito ambientes da época de águas (2.876 kg.ha⁻¹), ou seja, apresentaram menores estimativas de P_i. Os genótipos Gen99TG9-84-1 e IAC Alvorada não apresentaram um bom desempenho entre os genótipos avaliados. Ao examinar os genótipos nos ambientes favoráveis (Tabela 17), os materiais GenC2-1-3 e Juriti Claro tiveram os menores valores de (P_{if}) sendo recomendadas para condições de alto nível tecnológico, enquanto que nos ambientes desfavoráveis (P_{id}) o genótipos LP 04-72, Z-22, CNFC 10408 e MAI-25 se

destacaram pelo bom desempenho portanto, promissoras em condições de baixo nível tecnológico . Entre os genótipos avaliados destacam-se, pelo baixo desempenho nos ambientes favoráveis, os genótipos IAC Alvorada e CNFC 10431. Enquanto que, para os ambientes classificados como desfavoráveis o genótipo Gen99TG9-84-1 apresentou desempenho inferior em relação aos demais genótipos avaliados.

Tabela 17 - Estimativas dos parâmetros de adaptabilidade e estabilidade obtidos pelo método de LIN & BINNS (1988) modificado por CARNEIRO (1998), para produtividade média de grãos (kg.ha⁻¹), de 22 genótipos de feijoeiro avaliados na época das águas dos anos agrícolas de 2007/2008 para o estado de São Paulo.

			Época-Águas						
		Resposta geral e a ambientes favoráveis e desfavoráveis							
Cultivares e Linhagens	Média	P _i .10 ⁻⁴	Cultivares e Linhagens	P _{if} .10 ⁻⁴	Cultivares e Linhagens	P _{id} .10 ⁻⁴			
Juriti Claro (C)	2876	10,9	GenC2-1-3 (C)	4,3	LP 04-72 (P)	8,7			
LP 04-72 (P)	2835	12,0	Juriti Claro (C)	6,6	Z-22 (C)	9,9			
GenC2-1-3 (C)	2805	12,9	LP 04-92 (P)	9,8	CNFC 10408 (C)	10,2			
CNFC 10408 (C)	2886	13,3	GenC2-1-7 (C)	11,2	MAI-25 (C)	11,0			
LP 02-02 (C)	2706	16,7	LP 04-72 (P)	15,3	Juriti Claro (C)	15,2			
LP 04-92 (P)	2698	17,3	LP 02-02 (C)	15,8	GenC2-1-1 (C)	17,0			
GenC2-1-7 (C)	2710	17,5	CNFC 10408 (C)	16,3	LP 02-02 (C)	17,5			
Z-22 (C)	2712	20,7	Pérola (C)	21,4	CNFC 10470 (C)	17,7			
GenC2-1-1 (C)	2643	20,8	Guará (C)	21,6	IAC-Una (P)	18,0			
IAC-Una (P)	2643	21,4	GenC2-1-6 (C)	24,4	CNFC 10431 (C)	20,9			
MAI-25 (C)	2589	25,4	GenC2-1-1 (C)	24,6	GenC2-1-3 (C)	21,5			
Pérola (C)	2671	25,5	IAC-Una (P)	24,8	IAC Alvorada (C)	23,5			
Guará (C)	2586	29,2	GenC2-1-5 (C)	26,6	GenC2-1-7 (C)	23,9			
GenC8-4-3 (C)	2523	29,4	GenC8-4-3 (C)	30,6	LP 04-92 (P)	24,9			
CNFC 10470 (C)	2514	31,1	Z-22 (C)	31,4	CNFC 10429 (C)	26,0			
CNFC 10429 (C)	2512	31,2	CNFC 10429 (C)	36,5	GenC8-4-3 (C)	28,3			
GenC2-1-5 (C)	2538	32,5	MAI-25 (C)	39,9	Pérola (C)	29,6			
GenC2-1-6 (C)	2500	34,7	CNFC 10470 (C)	44,5	Guará (C)	36,8			
CNFC 10431 (C)	2380	44,5	IAC-Diplomata (P)	54,1	GenC2-1-5 (C)	38,4			
IAC-Diplomata (P)	2313	47,5	Gen99TG9-84-1 (P)	61,2	IAC-Diplomata (P)	41,0			
IAC Alvorada (C)	2316	52,0	CNFC 10431 (C)	68,1	GenC2-1-6 (C)	45,0			
Gen99TG9-84-1 (P)	2230	63,0	IAC Alvorada (C)	80,4	Gen99TG9-84-1 (P)	64,8			
Média	2600								
*DMS kg.ha ⁻¹	398								

 P_i : estimativa da estabilidade do cultivar i considerando os ambientes favoráveis e desfavoráveis; P_{if} : estimativa da adaptabilidade e estabilidade do cultivar i considerando os ambientes favoráveis; P_{id} : estimativa da adaptabilidade e estabilidade do cultivar i considerando os ambientes desfavoráveis.

4.3.2 Grãos de tegumento carioca e preto referente à época da seca

Considerando a produtividade dos genótipos da época da seca (Tabela 18), observouse um desempenho máximo da média nos ambientes uma produtividade de 2.526 kg.ha⁻¹ pelo

^{*} Teste Dunnett (5%) em relação a melhor cultivar padrão correspondente no grupo Preto (IAC-Diplomata ou IAC-Una), grupo Diversos (IAC Alvorada ou Pérola). Valores em negrito correspondem a melhor cultivar padrão para cada tipo de tegumento.

genótipo GenC2-1-1 e ficando próximos a esse valor os genótipos Gen-C2-1-3, Juriti Claro de tegumento carioca e LP 04-72 de tegumento preto que foram superiores estatisticamente aos melhores cultivares padrões Perola e IAC-Una. Os genótipos Gen99TG9-84-1 e Guará foram as de menor estabilidade entre os 22 genótipos avaliados. Em relação aos ambientes favoráveis, os genótipos GenC2-1-3, LP-02-02, Juriti Claro e LP 04-72 foram as que apresentaram os menores valores de P_{if.} Enquanto que, nos ambientes desfavoráveis, P_{id} os genótipos GenC2-1-1, GenC2-1-7, GenC2-1-6 e Juriti Claro se destacaram como as mais estáveis e adaptadas. Os desempenhos mais baixos foram observados nos genótipos Guará e Gen99TG9-84-1 para os ambientes favoráveis, e Guará e IAC-Diplomata para os desfavoráveis.

Tabela 18 - Estimativas dos parâmetros de adaptabilidade e estabilidade obtidos pelo método de LIN & BINNS (1988) modificado por CARNEIRO (1998), para produtividade média de grãos (kg.ha⁻¹), de 22 genótipos de feijoeiro avaliados na época de seca dos anos agrícolas de 2008/2009 para o estado de São Paulo.

			Época-Seca						
		Resposta geral e a ambientes favoráveis e desfavoráveis							
Cultivares e Linhagens	Média	P _i .10 ⁻⁴	Cultivares e Linhagens	P _{if} .10 ⁻⁴	Cultivares e Linhagens	P _{id} .10 ⁻⁴			
GenC2-1-1 (C)	2526*	8,3	GenC2-1-3 (C)	5,2	GenC2-1-1 (C)	1,5			
GenC2-1-3 (C)	2483*	9,4	LP 02-02 (C)	7,4	GenC2-1-7 (C)	4,0			
Juriti Claro (C)	2484*	9,6	Juriti Claro (C)	9,7	GenC2-1-6 (C)	7,9			
LP 04-72 (P)	2467*	10,5	LP 04-72 (P)	9,7	Juriti Claro (C)	9,6			
GenC2-1-6 (C)	2439	13,5	Z-22 (C)	9,8	LP 04-72 (P)	11,3			
GenC2-1-5 (C)	2346	14,8	MAI-25 (C)	12,6	GenC2-1-5 (C)	12,7			
GenC2-1-7 (C)	2359	17,3	CNFC 10408 (C)	15,0	GenC2-1-3 (C)	13,7			
Z-22 (C)	2329	18,1	GenC2-1-1 (C)	15,1	Pérola (C)	18,3			
CNFC 10408 (C)	2296	18,4	GenC2-1-5 (C)	16,8	LP 04-92 (P)	18,8			
LP 04-92 (P)	2303	20,5	GenC2-1-6 (C)	19,2	CNFC 10429 (C)	21,7			
LP 02-02 (C)	2356	21,6	LP 04-92 (P)	22,2	CNFC 10408 (C)	21,8			
MAI-25 (C)	2283	22,0	CNFC 10429 (C)	23,5	Z-22 (C)	26,4			
CNFC 10429 (C)	2259	22,6	IAC-Una (P)	25,9	MAI-25 (C)	31,3			
IAC-Una (P)	2122	29,7	GenC2-1-7 (C)	30,6	IAC-Una (P)	33,4			
Pérola (C)	2092	37,3	CNFC 10431 (C)	47,8	LP 02-02 (C)	35,9			
CNFC 10431 (C)	2004	48,1	IAC-Diplomata (P)	47,8	CNFC 10470 (C)	46,8			
CNFC 10470 (C)	1917	49,7	CNFC 10470 (C)	52,6	CNFC 10431 (C)	48,5			
GenC8-4-3 (C)	2022	53,5	IAC Alvorada (C)	55,7	GenC8-4-3 (C)	50,1			
IAC Alvorada (C)	1885	57,2	Pérola (C)	56,3	IAC Alvorada (C)	58,6			
IAC-Diplomata (P)	1805	58,8	GenC8-4-3 (C)	56,8	Gen99TG9-84-1 (P)	60,7			
Guará (C)	1850	65,7	Guará (C)	57,5	IAC-Diplomata (P)	69,8			
Gen99TG9-84-1 (P)	1707	69,8	Gen99TG9-84-1 (P)	78,9	Guará (C)	73,9			
Média	2199								
*DMS kg.ha ⁻¹	368								

P_i: estimativa da estabilidade do cultivar i considerando os ambientes favoráveis e desfavoráveis; P_{if}: estimativa da adaptabilidade e estabilidade do cultivar i considerando os ambientes favoráveis; P_{id}: estimativa da adaptabilidade e estabilidade do cultivar i considerando os ambientes desfavoráveis.

* Teste Dunnett (5%) em relação a melhor cultivar padrão correspondente no grupo Preto (IAC-Diplomata ou IAC-Una), grupo Diversos (IAC Alvorada ou Pérola). Valores em negrito correspondem a melhor cultivar padrão para cada tipo de tegumento.

4.3.3 Grãos de tegumento carioca e preto referente à época de inverno

Considerando a época de inverno (tabela 19), ao analisar de forma geral, observou-se que os genótipos CNFC 10408, GenC2-1-3 e MAI-25, apresentaram desempenho próximo do

máximo da média dos oito ambientes (3.241 kg.ha⁻¹), ou seja, menores estimativas de P_i. O genótipo Gen99TG9-84-1 foi a menos estável entre os genótipos avaliados. Os genótipos CNFC 10408, MAI-25 e GenC2-1-3 foram os genótipos mais responsivos aos ambientes favoráveis, enquanto que os genótipos mais adaptados aos ambientes desfavoráveis foram Z-22, CNFC 10408, LP 04-72, CNFC 10431 e IAC Alvorada . Os desempenhos mais baixos foram observados nos genótipos Gen99TG9-84-1 e CNFC 10431 para os ambientes favoráveis, e para os ambientes desfavoráveis foram IAC-Diplomata e CNFC 10470.

Tabela 19 - Estimativas dos parâmetros de adaptabilidade e estabilidade obtidos pelo método de LIN & BINNS (1988) modificado por CARNEIRO (1998), para produtividade média de grãos (kg.ha⁻¹), de 22 genótipos de feijoeiro avaliados na época de inverno dos anos agrícolas de 2008/2009 para o estado de São Paulo.

			Época-Inverno			
			Resposta geral e a amb	ientes fa	voráveis e desfavoráveis	
Cultivares e Linhagens	Média	P _i .10 ⁻⁴	Cultivares e Linhagens	P _{if} .10 ⁻⁴	Cultivares e Linhagens	P _{id} .10 ⁻⁴
CNFC 10408 (C)	3241	21,1	CNFC 10408 (C)	27,4	Z-22 (C)	1,2
GenC2-1-3 (C)	3161	28,8	MAI-25 (C)	35,8	CNFC 10408 (C)	2,3
MAI-25 (C)	3074	29,7	GenC2-1-3 (C)	36,7	LP 04-72 (P)	3,6
LP 02-02 (C)	3075	35,8	LP 02-02 (C)	46,0	CNFC 10431 (C)	3,9
IAC Alvorada (C)	3042	36,1	IAC Alvorada (C)	46,6	IAC Alvorada (C)	4,4
Z-22 (C)	3008	38,0	GenC8-4-3 (C)	48,3	GenC2-1-3 (C)	5,1
LP 04-72 (P)	3043	38,1	LP 04-72 (P)	49,6	LP 02-02 (C)	5,2
Juriti Claro (C)	3004	39,5	Z-22 (C)	50,2	GenC2-1-5 (C)	7,0
GenC8-4-3 (C)	2928	41,2	Juriti Claro (C)	50,2	Guará (C)	7,1
GenC2-1-5 (C)	2942	45,7	CNFC 10429 (C)	52,9	Juriti Claro (C)	7,4
GenC2-1-6 (C)	2819	46,4	GenC2-1-7 (C)	54,1	IAC-Una (P)	8,7
LP 04-92 (P)	2895	46,7	LP 04-92 (P)	55,9	MAI-25 (C)	11,2
CNFC 10429 (C)	2828	47,1	GenC2-1-6 (C)	56,6	GenC2-1-6 (C)	15,7
GenC2-1-1 (C)	2823	47,8	GenC2-1-1 (C)	57,0	Pérola (C)	16,4
GenC2-1-7 (C)	2842	48,2	CNFC 10470 (C)	58,3	LP 04-92 (P)	19,0
Pérola (C)	2812	51,8	GenC2-1-5 (C)	58,6	GenC8-4-3 (C)	19,9
CNFC 10470 (C)	2773	51,9	Pérola (C)	63,6	GenC2-1-1 (C)	20,2
IAC-Una (P)	2815	52,2	IAC-Diplomata (P)	66,6	Gen99TG9-84-1 (P)	21,4
CNFC 10431 (C)	2816	52,8	IAC-Una (P)	66,7	CNFC 10429 (C)	29,8
Guará (C)	2867	53,2	Guará (C)	68,6	GenC2-1-7 (C)	30,7
IAC-Diplomata (P)	2890	61,2	CNFC 10431 (C)	69,1	CNFC 10470 (C)	32,6
Gen99TG9-84-1 (P)	2439	97,2	Gen99TG9-84-1 (P)	122,5	IAC-Diplomata (P)	45,0
Média	2910					
*DMS kg.ha ⁻¹	376					

P_i: estimativa da estabilidade do cultivar i considerando os ambientes favoráveis e desfavoráveis; P_{if}: estimativa da adaptabilidade e estabilidade do cultivar i considerando os ambientes favoráveis; P_{id}: estimativa da adaptabilidade e estabilidade do cultivar i considerando os ambientes desfavoráveis.

* Teste Dunnett (5%) em relação a melhor cultivar padrão correspondente no grupo Preto (IAC-Diplomata ou IAC-Una), grupo Diversos (IAC Alvorada ou Pérola). Valores em negrito correspondem a melhor cultivar padrão para cada tipo de tegumento.

4.3.4 Conjunto das três épocas de semeadura (águas, seca e inverno), referente a grãos de tegumento carioca e preto

Os resultados obtidos no conjunto dos anos e ambientes de 2007/2008/2008 (Tabela 20) demonstraram que os genótipos GenC2-1-3, CNFC 10408, Juriti Claro comportaram-se como as mais estáveis, ou seja, apresentaram menores estimativas de P_i, podendo estes materiais serem passíveis de recomendação. Os genótipos que apresentaram desempenho inferior entre os genótipos avaliados foram Gen 99TG9-84-1 e IAC-Diplomata, ambos de tegumento preto. Examinando os ambientes favoráveis, os genótipos GenC2-1-3 e CNFC 10408 tiveram os menores valores de P_{if} enquanto que, nos ambientes desfavoráveis, os genótipos LP 04-72, Juriti Claro e GenC2-1-1 se destacaram como os mais adaptados. Desempenho inferior aos demais foi observado na linhagem Gen99TG9-84-1 para os ambientes favoráveis e também para ambientes desfavoráveis.

Tabela 20 - Estimativas dos parâmetros de adaptabilidade e estabilidade obtidos pelo método de LIN & BINNS (1988) modificado por CARNEIRO (1998), para produtividade média de grãos (kg.ha⁻¹), de 22 genótipos de feijoeiro avaliados no conjunto das três épocas de semeadura (águas, seca e inverno), dos anos agrícolas de 2007/2008/2009 para o estado de São Paulo.

			Época-Conjunta			
			Resposta geral e a amb	ientes fa	voráveis e desfavoráveis	
Cultivares e Linhagens	Média	P _i .10 ⁻⁴	Cultivares e Linhagens	P _{if} .10 ⁻⁴	Cultivares e Linhagens	P _{id} .10 ⁻⁴
GenC2-1-3 (C)	2816*	17,0	GenC2-1-3 (C)	18,4	LP 04-72 (P)	8,7
CNFC 10408 (C)	2808*	17,6	CNFC 10408 (C)	20,7	Juriti Claro (C)	11,4
Juriti Claro (C)	2788*	20,0	Juriti Claro (C)	26,2	GenC2-1-1 (C)	11,4
LP 04-72 (P)	2782*	20,2	LP 02-02 (C)	26,4	CNFC 10408 (C)	13,3
LP 02-02 (C)	2712	24,7	LP 04-72 (P)	28,4	Z-22 (C)	14,8
Z-22 (C)	2683	25,6	MAI-25 (C)	30,4	GenC2-1-3 (C)	15,1
GenC2-1-1 (C)	2664	25,6	LP 04-92 (P)	33,1	GenC2-1-7 (C)	17,3
MAI-25 (C)	2648	25,7	Z-22 (C)	33,3	MAI-25 (C)	19,1
GenC2-1-7 (C)	2637	27,7	GenC2-1-7 (C)	35,1	LP 04-92 (P)	21,3
LP 04-92 (P)	2632	28,2	GenC2-1-1 (C)	35,8	GenC2-1-5 (C)	21,9
GenC2-1-5 (C)	2609	31,0	GenC2-1-6 (C)	36,7	IAC-Una (P)	22,3
GenC2-1-6 (C)	2586	31,5	GenC2-1-5 (C)	37,5	LP 02-02 (C)	22,4
CNFC 10429 (C)	2533	33,7	CNFC 10429 (C)	39,8	Pérola (C)	22,4
IAC-Una (P)	2526	34,4	IAC-Una (P)	43,1	GenC2-1-6 (C)	24,3
Pérola (C)	2525	38,2	GenC8-4-3 (C)	45,7	CNFC 10429 (C)	25,0
GenC8-4-3 (C)	2491	41,4	Pérola (C)	49,4	CNFC 10431 (C)	28,5
CNFC 10470 (C)	2401	44,2	Guará (C)	52,0	CNFC 10470 (C)	32,3
IAC Alvorada (C)	2414	48,4	CNFC 10470 (C)	52,7	IAC Alvorada (C)	33,7
CNFC 10431 (C)	2400	48,5	IAC-Diplomata (P)	57,6	GenC8-4-3 (C)	35,3
Guará (C)	2434	49,4	IAC Alvorada (C)	58,9	Guará (C)	45,7
IAC-Diplomata (P)	2336	55,8	CNFC 10431 (C)	62,7	IAC-Diplomata (P)	53,3
Gen99TG9-84-1 (P)	2125	76,7	Gen99TG9-84-1 (P)	92,5	Gen99TG9-84-1 (P)	54,5
Média	2570					
*DMS kg.ha ⁻¹	219					

P_i: estimativa da estabilidade do cultivar i considerando os ambientes favoráveis e desfavoráveis; **P**_{if}: estimativa da adaptabilidade e estabilidade do cultivar i considerando os ambientes favoráveis; **P**_{id}: estimativa da adaptabilidade e estabilidade do cultivar i considerando os ambientes desfavoráveis.

* Teste Dunnett (5%) em relação a melhor cultivar padrão correspondente no grupo Preto (IAC-Diplomata ou IAC-Una), grupo Diversos (IAC Alvorada ou Pérola). Valores em negrito correspondem a melhor cultivar padrão para cada tipo de tegumento.

4.4 Comparações Entre os Resultados dos Métodos de Análise de Estabilidade e Adaptabilidade

Pode-se observar que para as três épocas de plantio (águas, seca e inverno) e para o conjunto das três épocas de plantio poucos genótipos coincidem quanto à análise de estabilidade e adaptabilidade entre os métodos AMMI e Lin & Binns (1988) modificado por Carneiro (1998), e que no modelo de Lin & Binns (1988) modificado por Carneiro (1998) existe uma alta correlação entre média de produtividade e estabilidade de produção o que não ocorre necessariamente no modelo AMMI. Segundo MELO et al. (2007) os dois modelos são métodos pouco correlacionados e, portanto, fornecem informações complementares. Assim, a utilização simultânea desses dois métodos gera estimativas, com abordagens diferenciadas, do processo de interação entre genótipos e ambientes.

O método de Lin & Binns (1988) modificado por Carneiro (1998) tem como característica uma alta correlação entre média e estabilidade, pois associa estabilidade com a capacidade dos genótipos de apresentar o menor desvio em relação ao máximo, em todos os ambientes do estudo. Essa é considerada a maior vantagem desse método, pois consegue identificar os genótipos mais estáveis sempre entre os mais produtivos, como observado também por CARBONELL et al. (2001), em estudo de avaliação de estabilidade em feijoeiro.

O método AMMI por sua vez identifica os genótipos mais estáveis e os ambientes onde o conjunto desses genótipos foram mais estáveis através da análise dos gráficos biplot entre as componentes principais como por exemplo (IPCA1 x IPCAn) podendo ser auxiliada pela interpretação das estimativas das interações de genótipos com ambientes pelo modelo AMMIn. Os genótipos mais adaptados são identificados pelos gráficos biplot analisando a componente principal 1 com a média (IPCA1 x Média) com o auxílio de um genótipo suplementar, sendo possível identificar adaptabilidades especificas através da análise gráfica onde os genótipos mais adaptados a um respectivo ambiente estão próximos deste ambiente.

5 CONCLUSÕES

- a) Existe predominância da interação genótipos com ambientes do tipo complexa, na avaliação de genótipos de feijoeiro em diferentes épocas, anos e locais.
- **b)** O grande do número de variáveis na análise AMMI (genótipo e ambiente) prejudica a interpretação do gráfico biplot tornando-a difícil e confusa. O método Lin & Binns

(1988) modificado por Carneiro (1998) é de interpretação mais simples e rápida que o modelo AMMI.

c) Os genótipos mais estáveis e produtivos, para tipo de grão comercial carioca, são: GenC2-1-3, CNFC 10408 e Juriti Claro; para tipo de grão comercial preto, o genótipo LP 04-72 conforme modelo Lin & Binns e para o modelo AMMI os mais estáveis foram os genótipos IAC-Una, GenC2-1-7, LP-04-72 e Z-22, destacando o genótipo LP-04-72 para o tipo comercial preto que foi superior ao melhor cultivar padrão de tegumento preto o IAC-Una, assim como os genótipos GenC2-1-3, CNFC 10408 e Juriti Claro que foram superiores ao melhor cultivar padrão de tegumento carioca. O genótipo GenC2-1-3 será lançado como cultivar com o nome IAC Formoso.

6 REFERÊNCIAS BIBLIOGRÁFICAS

- ABREU, A.F.B. Cultivo do feijão da primeira e segunda safra na região Sul de Minas Gerais: Importânciaeconômica.http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Feijão/FeijaoPrimSegSafraSulMG/index.htm, (11 julho 2009).
- AIDAR, H. Cultivo do feijoeiro comum: Características da cultura. http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Feijao/CultivodoFeijoeiro/index.htm, (20 julho 2009).
- ALLARD, R.W.; BRADSHAW, A.D. Implications of genotype-environmental interactions in applied plant breeding. **Crop Science**. v.4, n.5, p.503-508, 1964.
- ANNICCHIARICO, P. Cultivar adaptation and recomendation from alfalfa trials in Northern Italy. **Journal of Genetics and Plant Breeding**, v. 46, p. 269-278, 1992.
- ANTUNES, I.F.; SILVEIRA, E.P. A Pesquisa em Melhoramento genético como fator de progresso na produtividade de feijão no Rio Grande do Sul. Amais. V Reunião Nacional de Pesquisa de feijão. 14 a 18/10/1996. Goiânia, GO, Volume 1: Resumos expandidos.
- BAKER, R. J. Recent research on genotype-environmental interaction. In: Proceedings of the 5th international Oat conference and 7th International Barley Genetics **Symposium**, Saskatoon. p. 245-246,1996.
- BARROS, R.P. Feijões especiais para a agricultura familiar. www.zoonews.com.br/ noticiax.php?idnoticia=221, (06 agosto 2009).
- BASTOS, I. T.; BARBOSA, M. H. P.; RESENDE, M. D. V.; PETERNELLI, L. A.; SILVEIRA, L. C. I.; DONDA, L. R.; FORTUNATO, A. A.; COSTA, P. M. A; FIGUEIREDO, I. C. R. Avaliação da interação genótipo x ambiente em cana-de açúcar via modelos mistos. **Pesquisa Agropecuária Tropical**, v. 37, n. 4, p. 195-203, 2007.
- BECKER, H.C. Correlations among some statistical measures of phenotypic stability. *Euphytica*, Dordrecht, v.30, p.835-840, 1981.
- BONELLI, A.F.; PINTO, R.M.C.; SILVA, H.D.; PEREIRA, R.S.B.; ESTEVES, A. Adaptabilidade e estabilidade fenotípica em milho para os Estados do Goiás, Minas Gerais e São Paulo, Universidade Federal de Uberlândia, Uberlândia, 14p., 2005.
- CARBONELL, S.A.M.; AZEVEDO FILHO, J.A.; DIAS, L.A.S.; GARCIA, A.A.F.; MORAIS, L.K. Common Bean cultivars and lines interactions with environments. **Scientia Agricola**, Piracicaba, v.61, n.2, p. 169-177, 2004.
- CARBONELL, S.A.M.; AZEVEDO FILHO, J.A.; DIAS, L.A.S.; GONÇALVES, C.; ANTONIO, C.B. Adaptabilidade e estabilidade de produção de cultivares e linhagens de feijoeiro no Estado de São Paulo. **Bragantia**, Campinas, v.60, n.2, p. 69-77, 2001.
- CARBONELL, S.A.M.; POMPEU, A.S. Estabilidade fenotípica de linhagens de feijoeiro em três épocas de plantio no Estado de São Paulo. **Pesquisa Agropecuária Brasileira**, Brasília, v.35, n.2, p.321-329, 2000.

- CARBONELL, S.A.M.; POMPEU, A.S. Estratificação de ambientes em experimentos de feijoeiro no Estado de São Paulo. **Bragantia**, Campinas, v.56, n.1, p. 207-218, 1997.
- CARNEIRO, P.C.S. Novas metodologias de análise da adaptabilidade e estabilidade de comportamento. Viçosa, MG: UFV, 1998. 155p. Tese (Doutorado em Genética e Melhoramento) Universidade Federal de Viçosa, 1998.
- CHAVES, L. J. Interação de genótipos com ambientes. Recursos genéticos e melhoramento de plantas. Rondonópolis: **Fundação-MT**, cap. 22, p. 673-713, 2001.
- CONAB- (COMPANHA NACIONAL DE ABASTACIMENTO) <u>www.conab.gov.br</u>, acesso em novembro de 2009.
- CORNELIUS, P. L.; SEYEDSADR, M. S.; CROSSA, J. Using the shifted multiplicative model search for "separability" in crop cultivar trials. **Theoretical and Applied Genetics**, v. 84, p. 161-172, 1992.
- CORREIA, W. R, et al. Adaptabilidade e Estabilidade de Genótipos de Soja em Minas Gerais. **Biosci. J.**, Uberlândia, v. 24, n. 4, p. 80-85, Oct./Dec. 2008
- COSTA, J.G. et al., Adaptabilidade e estabilidade de produção de cultivas de milho recomendadas para o Estado do Acre. **Ciência e Agrotecnologia**. Lavras, v.23, n.1, p.7-11, 1999.
- CROSSA, J.; FOX, P. N.; PFEIFFER, W. H.; RAJARAM, S.; GAUCH, H. G. AMMI adjustment for statistical analysis of an international wheat yield trial. **Theoretical and Applied Genetics**, Berlin, v. 81, p. 27-37, 1991.
- CRUZ, C. D. Aplicação de algumas técnicas multivariadas no melhoramento de plantas. 1990. 188 p. Tese (Doutorado) Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP.
- CRUZ, C. D., Carneiro, P. C. S. **Modelos biométricos aplicados ao melhoramento genético**. Volume 2. Viçosa, MG: Editora UFV, 2003. 585p.
- CRUZ, C. D.; TORRES, R. A. A. VENCOVSKY, R. An alternative approch to stability analysis proposed by Silva and Barreto. **Revista Brasileira de Genética**, v.12, n. 2, p.567-580, 1989.
- CRUZ, C.D., Programa GENES: **Biometria**. Viçosa: UFV, p.94-107, 2006.
- CRUZ, C.D.et al. **Modelos biométricos aplicados ao melhoramento genético**. Viçosa: UFV, p.103-123, 2004.
- CRUZ, C.D.; REGAZZI, A.J. Modelos biométricos aplicados ao melhoramento genético. Viçosa: UFV, 390p., 2001.
- DUARTE, J. B. Estudo da adaptabilidade e estabilidade fenotípica em linhagens e cultivares de feijão mulatinho (*Phaseolus vulgaris* L.). 1988. 155 f. Dissertação (mestrado em Agronomia) Escola de Agronomia, Universidade Federal de Goiás, Goiânia.

- DUARTE, J.B. O método "AMMI" para análise da interação de genótipos com ambientes. **ESALQ**, Piracicaba, p.1-15, 1997.
- DUARTE, J.B.; VENCOVSKY, R. Interação genótipos x ambientes: uma introdução à análise AMMI. Ribeirão Preto: **Sociedade Brasileira de Genética**, 1999.
- EBERHART, S.A.; RUSSELL, W.A. Stability parameters for comparing varieties. **Crop Science**. v.6, n.1, p.36-40, 1966.
- EMBRAPA EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA, http://www.agencia.cnptia.embrapa.br/Agencia4/AG01/Abertura.html. (5 agosto 2009a).
- EMBRAPA EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA, http://www.cnpaf.embrapa.br/eventosenoticias/anteriores/anteriores2006/060313.htm, (06 agosto 2009b).
- FACHINI, C.; BARROS, V. L. N. P. de.; RAMOS JUNIOR, E. U.; ITO, M. A.; CASTRO, J. L. de. Importância do feijão no agronegócio brasileiro. **Anais**. Dia de campo de feijão. 22/11/2006. Capão Bonito, SP, p.1-7, 2006.
- FAO.**Faostat**.Disponívelem:http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567. Acesso em: 10 maio 2009.
- FERREIRA, D.F. Statistical models in agriculture biometrical methods for evaluating phenotypic stability in plant breeding. **Cerne**, Lavras, v. 12, n. 4, p. 373-388, 2006.
- FLORES, F.; MORENO, M. T.; CUBERO, J. I. Genotype-environment interaction in faba bean: comparison of AMMI and principal coordinate model. **Field Crops Research**, Amsterdam, v. 47, p. 117-127, 1996.
- FONSECA, S. M. da. Estimação e interação dos componentes da variação total em experimentos de melhoramento florestal. In: **Curso Prático Experimentais em Silvicultura**. Piracicaba, IPEF. p. 1-20. 1979.
- GAUCH, H.G. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. New York: **Elsevier Science**, 1992, 278p.
- GAUCH, H. G.; ZOBEL, R. W. 1996. AMMI analysis of yield trials. In: KANG, M. S.; GAUCH, H. G. eds. **Genotype-by-environment interaction**, Boca Raton, FL, CRC Press, 1996. cap. 4, p. 85-122.
- GAUCH, H. G.; ZOBEL, R. W. AMMI analysis of yield trials. In: KANG, M. S.; GAUCH, H. G. (Ed.) Genotype-by-environment interaction. New York: **CRC Press**, 1996. p.85-122.
- GAUCH, H.G. Model selection and validation for yield trials with interaction. **Biometrics**, Washington, v.44, p.705-715, 1988.
- GOLLOB, H. F. Astatistical model which combines features of factor analysis and analysis of variance techniques. **Psycometrika**, v. 33, n. 1, p. 73-145, 1968.

- GONÇALVES, João Guilherme Ribeiro. Estabilidade fenotípica do feijoeiro com o uso de genótipos suplementares em análise AMMI. 2008. 103f. Dissertação (Mestrado em Genética, Melhoramento Vegetal e Biotecnologia) Pós Graduação IAC.
- GUALBERTO et al. Produtividade, adaptabilidade e estabilidade fenotípica de cultivares de tomateiro sob diferentes condições de ambiente. **Pesquisa Agropecuária Brasileira**, Brasília, v. 37, n. 1, p. 81-88, 2002.
- HOOGERHEIDE, E.S.S.; Farias, F. J. C.; Vencovsky, R.; Freire, E. C. Estabilidade fenotípica de genótipos de algodoeiro no Estado do Mato Grosso. **Pesquisa Agropecuária brasileira**, v.42, n.5, Brasília, maio 2007.
- KEMPTON, R. A. The use of biplots in interpreting variety by environment interactions. **Journal Agriculture Science**, Cambridge, v. 103, p. 123-135, 1984.
- JOHNSON, R. A. & WICHERN, D. W. Applied Multivariate Statistical Analysis. **Prentice Hall International**, New Jersey, 1992.
- LACKEY, J.A. A chromosome atlas of the Phaseoleae (Leguminosae-Papilionoideae). *Iselya* 1: 87-114, 1979.
- LIN, C. S.; BINNS, M. R. & LEFKOVITCH, L. P. Stability analysis: where do we stand. **Crop Science**, v. 26, p. 894-900, 1986.
- LIN, C.S.; BINNS, M.R. A superiority measure of cultivar performance for cultivar x location data. **Canadian Journal of Plant Science**, Ottawa, v.68, n. 3, p. 193-198, 1988.
- MANDEL, J. A new analysis of variance model for nonadditive data. **Technometrics**, Washington, v. 13, n.1, p. 1-18, 1971.
- MARINGONI, A.C.; KIMATI, H. & KUROZAWA, C. Variabilidade sorológica entre isolados de *Xanthomonas campestris* pv. *phaseoli*. **Summa Phytophatologica**, v.20, n.3-4, p.164-167, 1994.
- MANLY, Bryan F. J. Multivariate statistical methods. a primer. London: **Chapman and Hall**, 1986, 159p.
- MATHERSON, A. C. Genotype x environment interaction. In: Progress and problems of genetic improvement of tropical forest trees. Oxford, **Commonwelth Forestry Institute**, p. 227-36. 1978.
- MELO, L.C.; MELO, P.G.S.; FARIA, L.C.; DIAZ, J.L.C.; PELOSO; M.J.; RAVA, C.A.; COSTA, J.G.C. Interação com ambientes e estabilidade de genótipos de feijoeiro-comum na Região Centro-Sul do Brasil. **Pesquisa Agropecuária Brasileira**, Brasília, v.42, n.5, p.715-723, 2007.
- MERCADO-RUARO, P. & DELGADO-SALINAS, A. Cytogenetics studies in *Phaseolus* L. (*Fabaceae*). **Genetics and Molecular Biology**, 23, 4, p. 985-987, 2000.
- MORAIS, L.K. Adaptabilidade e estabilidade fenotípica em soja nos Estados de Mato Grosso e Mato Grosso do Sul. 2005. Tese (Doutorado em Genética e Melhoramento de Plantas)-Universidade Federal de Goiás.

- MOITA NETO, J.M. & MOITA, G.C. Uma introdução à análise exploratória de dados multivariados. **Química Nova**, Teresina, v.21, n.4, p.467-469, 1998.
- OLIVEIRA, A.B.; DUARTE, J.B.; PINHEIRO, J.B. Emprego da análise AMMI na avaliação da estabilidade produtiva em soja. **Pesquisa Agropecuária Brasileira**, Brasília, v.38, n.3, p.357-364, 2003.
- OSMIR, J.L. Estabilidade e adaptabilidade fenotípica através da reamostragem "Bootstrap" no modelo AMMI. 2003, Tese (Doutorado em Estatística e Experimentação Agrícola)-Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba.
- PACHECO, R.M.; DUARTE, J.B.; VENCOVSKY, R.; PINHEIRO, J.B.; OLIVEIRA, A.B. Use of supplementary genotypes in AMMI analysis. **Theoretical and Applied Genetics**, v.110, p.812-818, 2005.
- PACHECO, R.M. Estratificação de ambientes em cerrados do Brasil central para fins de seleção e recomendação de cultivares de soja. 2004, Tese (Doutorado em Agronomia, área de concentração: Genética e Melhoramento Vegetal)-Universidade Federal de Goiás.
- PATIÑO-VALERA. Variação genética em progênie de Eucalyptus saligna Smith e sua interação com o espaçamento. Dissertação de mestrado-ESALQ-USP, Piracicaba, 1986, 92 p.
- PEREIRA, A. S.; COSTA, M. D. Análise de estabilidade de produção de genótipos de batata no Rio Grande do Sul. **Pesquisa Agropecuária Brasileira**, Brasília, v. 33, n. 4, p. 405-409, abr. 1998.
- PEREIRA, H.S.; MELO, L.C.; DEL PELOSO, M.J.; FARIA, L.C. de; COSTA, J.G.C. da; DÍAZ, J.L.C.; RAVA, C.A.; WENDLAND, A. Comparação de métodos de análise de adaptabilidade e estabilidade fenotípica em feijoeiro-comum. **Pesquisa Agropecuária Brasileira**, v.44, p.374-383, 2009.
- PICHEL, A.M. Feijões para exportação. In: **Resumos do 22° Dia de Campo de Feijão**. Capão Bonito, p.39-41, 2006.
- PIEPHO, H. P. Robustness of statistical test for multiplicative terms in the additive main effects and multiplicative interaction model for cultivar trial. **Theoretical Applied of Genetics**, Berlim, v. 90, p. 438-443, 1995.
- PIMENTEL-GOMES, F. Curso de estatística esperimental. 13. ed. Piracicaba SP: **Nobel**. 1990, 468p.
- PINZAN, N.R.; BULISANI, E.A.; BERTI, A.J. Feijão: Zoneamento ecológico e épocas de semeadura para o Estado de São Paulo. Campinas: **CATI**, 1994. 19p. (CATI Boletim Técnico, 218).
- RAMALHO, M.A.P., SANTOS, J.B. & ZIMMERMANN, M.J. Genética quantitativa em plantas autógamas: **Aplicações ao melhoramento do feijoeiro**. Goiânia: UFG, 271p., 1993.

- SARTORATO, A.; RAVA, C.A.; MENTEN, J.O.M.; BERGAMIN FILHO, A. Resistência vertical do feijoeiro comum (*Phaseolus vulgaris*) a *Isariopsis griseola*. **Fitopatologia Brasileira**, v.16, n.1, p.43-46, 1991.
- SHELBOURNE, C. **Genotype environment interaction**: its study and its implications in Forest tree improvement. In: IUFRO GENETIC SABRAO JOINT SYMPOSIA, Tokio. 28p. 1972.
- SILVA, R.M.; ROSSE, L.N.; MÔRO, J.R. Estabilidade e adaptabilidade de híbridos duplos experimentais de milho. **Scientia Agrícola**. v.3, n.1-2, p.61-68, 2002.
- SILVA, W.C.J. & DUARTE, J.B. Métodos estatísticos para estudo de adptabilidade e estabilidade fenotípica em soja. **Pesquisa Agropecuária Brasileira, Brasília**, v.41, n.1, p.23-30, 2006.
- VARELLA, C.A.A. Análise de componentes principais. http://www.ufrrj.br/institutos/it/deng/varella/multivariada.htm, (09 julho 2009).
- VICENTE, D.; PINTO, R..J.B.; SCAPIM C.A. Análise da adaptabilidade e estabilidade de linhagens elite de soja. **Acta Scientiarum**. Agronomy. Maringá, v.26, n.3, p. 301-307, 2004.
- WANDER, A.E. Perspectivas de mercado interno e externo para o feijão. **EMBRAPA**: Arroz e Feijão, Santo Antônio de Goiás, p.892-895, 2006.
- YOKOYAMA, L.P., Cultivo de Feijoeiro Comum. EMBRAPA: Arroz e feijão, 2003.
- ZOBEL, R.W. et al. Statistical analysis of a yield trial. **Agron. J.**, Madison, v.80, n.3, p.388-393, 1988.

Anexos

Anexo I. Índice de genótipos e ambientes referentes ao VCU de grãos carioca e preto.

Genótipos	Ambientes	
	A1-Araras	Águas/2007
	A2-Avaré	Águas/2007
IAC Alvorada (C)	A3-Capão Bonito	Águas/2007
Pérola (C)	A4-M.A. Sul	Águas/2007
IAC-Diplomata (P)	A5-Capão Bonito	Águas/2007
IAC-Una (P)	A6-Tatuí	Seca/2008
GenC2-1-1 (C)	A7-M.A. Sul	Seca/2008
GenC2-1-3 (C)	A8-Avaré	Seca/2008
GenC2-1-5 (C)	A9-Mococa	Seca/2008
GenC2-1-6 (C)	A10-Andradina	Seca/2008
GenC2-1-7 (C)	A11-Colina	Inv/2008
GenC8-4-3 (C)	A12-R.Preto	Inv/2008
CNFC 10408 (C)	A13-Votuporanga	Inv/2008
CNFC 10429 (C)	A14-Tatuí	Inv/2008
CNFC 10431 (C)	A15-M.A. Sul	Águas/2008
CNFC 10470 (C)	A16-Mococa	Águas/2008
Gen99TG9-84-1 (P)	A17-Capão Bonito	Águas/2008
Guará (C)	A18-Avaré	Águas/2008
Juriti Claro (C)	A19-Mococa	Seca/2009
LP 02-02 (C)	A20-Tatuí	Seca/2009
LP 04-72 (P)	A21-Colina	Seca/2009
LP 04-92 (P)	A22-Pindorama	Inv/2009
MAI-25 (C)	A23-Ribeirão Preto	Inv/2009
Z-22 (C)	A24-Votuporanga	Inv/2009

 $\boldsymbol{Anexo}\;\boldsymbol{II}$. Valor do quadrado médio residual dos vinte e quatro ambientes.

Genótipos	QMR	Genótipos	QMR
A1-Araras	212065,76	A13-Votuporanga	177289,69
A2-Avaré	190328,16	A14-Tatuí	110020,63
A3-Capão Bonito	303251,07	A15-M.A. Sul	89124,39
A4-M.A. Sul	335610,68	A16-Mococa	120702,11
A5-Capão Bonito	333713,18	A17-Capão Bonito	99637,87
A6-Tatuí	121714,35	A18-Avaré	75505,36
A7-M.A. Sul	92037,225	A19-Mococa	180415,88
A8-Avaré	172203,65	A20-Tatuí	215183,19
A9-Mococa	113658,46	A21-Colina	464576,91
A10-Andradina	128783,45	A22-Pindorama	362846,86
A11-Colina	201469,87	A23-Ribeirão Preto	372611,22
A12-R.Preto	198290,04	A24-Votupotanga	173810,57

QMR: Quadrado médio do resíduo

Anexo III. Estimativas das interações de genótipos com ambientes pelo modelo AMMI2, obtidos de 22 genótipos de grãos de tegumento carioca e preto (Kg/ha-1), avaliados na época das águas em oito ambientes no estado de São Paulo.

Con Winner					Ambientes ^{1/}				
Genótipos	Araras 07	Avaré 07	CBonito 07	MASul 07	Tatuí 08	MASul 08	Mococa 08	CBonito 08	Amplitude
IAC Alvorada (C)	470,7276	30,7541	-271,3588	-109,6822	88,1516	-251,9712	148,0016	-104,6227	742,0864
Pérola (C)	-819,3893	452,8587	633,5464	-198,3012	145,4404	11,4225	142,6197	-368,1972	1452,9357
IAC-Diplomata (P)	-169,6227	216,2011	170,1311	-135,1715	102,3832	-100,935	126,3098	-209,296	425,4971
IAC-UNA (P)	25,4868	-13,701	-19,5837	5,8722	-4,2966	-0,6801	-4,1318	11,0343	45,0705
GenC2-1-1 (C)	151,9955	-71,5191	-113,5475	27,1879	-19,6097	-12,6514	-16,5874	54,7316	223,5146
GenC2-1-3 (C)	-332,5353	-197,5108	135,7392	212,5948	-166,0254	326,2879	-243,4903	264,9399	658,8232
GenC2-1-5 (C)	-27,0498	-359,8078	-98,3789	281,5002	-216,3896	316,5139	-291,4942	395,1062	754,914
GenC2-1-6 (C)	-99,4614	-391,7153	-65,2869	319,261	-245,9901	378,1999	-335,7411	440,734	832,4493
GenC2-1-7 (C)	107,0044	-219,5594	-133,8004	149,1987	-113,677	133,8352	-145,4184	222,417	441,9764
GenC8-4-3 (C)	-193,818	50,1068	131,7106	-3,0853	0,7525	50,796	-11,3263	-25,1362	325,5286
CNFC 10408 (C)	-558,0362	326,0372	437,0796	-148,596	109,4519	-7,0869	111,0583	-269,9079	995,1158
CNFC 10429 (C)	243,1497	-13,7985	-149,6169	-33,8394	28,0135	-105,1124	52,9869	-21,7831	392,7666
CNFC 10431 (C)	588,2641	47,4727	-336,2372	-144,0168	115,4976	-322,5118	192,101	-140,5697	924,5013
CNFC 10470 (C)	228,0296	169,6259	-82,1982	-172,0593	134,0265	-252,5847	193,9894	-218,8292	480,6143
Gen99TG9-84-1 (P)	731,9042	-357,5597	-550,959	141,0437	-102,2021	-49,8071	-90,2855	277,8655	1282,8632
Guará (C)	178,229	-212,5079	-174,0957	130,7597	-98,9236	93,687	-121,1292	203,9807	416,4886
Juriti Claro (C)	-66,9253	-80,4921	14,3497	74,1011	-57,4605	100,0365	-81,2057	97,5963	181,2422
LP 02-02 (C)	95,3242	-34,684	-67,9744	9,2346	-6,2961	-16,513	-2,3651	23,2736	163,2986
LP 04-72 (P)	-181,6345	204,7046	173,6457	-124,1394	93,8115	-85,4691	114,0667	-194,9854	399,69
LP 04-92 (P)	-223,3115	-82,5712	107,0916	104,2849	-81,9431	176,8819	-123,943	123,5104	400,1934
MAI-25 (C)	93,3887	234,1601	18,7606	-197,0507	152,0942	-242,3741	209,6163	-268,5951	502,7552
Z-22 (C)	-241,72	303,5054	240,9831	-189,0968	143,1911	-139,9642	176,3686	-293,2671	596,7725
Amplitude	1551,2935	844,574	969,7836	517,5622	398,0843	700,7117	545,3574	808,9312	

Anexo IV. Matriz de médias preditas pelo modelo AMMI2, obtidos de 22 genótipos de grãos de tegumento carioca e preto (Kg/ha⁻¹), avaliados na época das águas em oito ambientes no estado de São Paulo.

Canátinas					Ambientes ^{1/}				
Genótipos	Araras 07	Avaré 07	CBonito 07	MASul 07	Tatuí 08	MASul 08	Mococa 08	CBonito 08	Média Geral
IAC Alvorada (C)	2266,22	2216,07	2197,45	2983,08	1860,74	2185,7	1533,27	3281,46	2315,499
Pérola (C)	1331,11	2993,17	3457,36	3249,47	2273,03	2804,1	1882,89	3372,89	2670,503
IAC-Diplomata (P)	1623	2398,64	2636,07	2954,72	1872,09	2333,87	1508,7	3173,91	2312,625
IAC-UNA (P)	2148,23	2498,86	2776,48	3425,89	2095,54	2764,25	1708,39	3724,37	2642,751
GenC2-1-1 (C)	2275,11	2441,42	2682,89	3447,58	2080,6	2752,65	1696,3	3768,44	2643,124
GenC2-1-3 (C)	1952,46	2477,3	3094,05	3794,86	2096,06	3253,46	1631,28	4140,53	2805
GenC2-1-5 (C)	1990,44	2047,5	2592,43	3596,27	1778,2	2976,19	1315,77	4003,19	2537,499
GenC2-1-6 (C)	1880,41	1977,97	2587,9	3596,4	1710,97	3000,25	1233,9	4011,19	2499,874
GenC2-1-7 (C)	2297,25	2360,5	2729,76	3636,72	2053,66	2966,26	1634,6	4003,25	2710,25
GenC8-4-3 (C)	1808,68	2442,42	2807,52	3296,68	1980,34	2695,47	1580,94	3567,95	2522,5
CNFC 10408 (C)	1807,83	3081,72	3476,27	3514,55	2452,41	3000,96	2066,7	3686,55	2885,874
CNFC 10429 (C)	2235,39	2368,26	2515,95	3255,68	1997,35	2529,31	1635	3561,05	2512,249
CNFC 10431 (C)	2448,13	2297,16	2196,95	3013,13	1952,46	2179,54	1641,74	3309,89	2379,875
CNFC 10470 (C)	2222,27	2553,69	2585,36	3119,46	2105,36	2383,84	1778,01	3366,01	2514,25
Gen99TG9-84-1 (P)	2441,9	1742,25	1832,35	3148,31	1584,88	2302,37	1209,48	3578,45	2229,999
Guará (C)	2244,6	2243,68	2565,59	3494,4	1944,54	2802,24	1535,01	3860,94	2586,375
Juriti Claro (C)	2289,19	2665,45	3043,79	3727,49	2275,75	3098,34	1864,69	4044,31	2876,126
LP 02-02 (C)	2280,94	2540,75	2790,96	3492,13	2156,41	2811,29	1773,03	3799,48	2705,624
LP 04-72 (P)	2133,61	2909,77	3162,21	3488,38	2386,15	2871,96	2019,08	3710,85	2835,251
LP 04-92 (P)	1954,56	2485,12	2958,28	3579,43	2073,02	2996,93	1643,7	3891,97	2697,876
MAI-25 (C)	2162,01	2692,6	2760,7	3168,84	2197,8	2468,43	1868,01	3390,62	2588,626
Z-22 (C)	1950,65	2885,69	3106,67	3300,55	2312,65	2694,59	1958,51	3489,69	2712,375
Média Geral	2079,272	2469,09	2752,59	3376,546	2056,364	2721,455	1669,045	3669,863	2599,278

Anexo V. Estimativas das interações de genótipos com ambientes pelo AMMI2, obtidos de 22 genótipos de grãos de tegumento carioca e preto(Kg/ha-1), avaliados na época de seca em oito ambientes no estado de São Paulo.

Conótinos					Ambientes ¹ /				
Genótipos	CBonito 08	Tatuí 08	MASul 08	Avaré 08	Mococa 08	Avaré 09	Mococa 09	Tatuí 09	Amplitude
IAC Alvorada (C)	56,0804	-571,9864	242,2679	229,9954	158,4977	189,7304	-590,6135	286,0281	876,6416
Pérola (C)	-332,9988	50,3818	-21,5002	382,7181	82,4572	-176,305	-126,8909	142,1378	715,7169
IAC-Diplomata (P)	-254,87	33,1002	-14,143	295,7776	64,7815	-133,389	-103,0503	111,7931	550,6476
IAC-UNA (P)	-123,5179	253,7452	-107,5235	19,1346	-41,3223	-132,1542	208,2136	-76,5754	385,8994
GenC2-1-1 (C)	151,5102	276,2936	-116,9382	-330,4829	-129,0522	-4,7634	382,694	-229,2611	713,1769
GenC2-1-3 (C)	-18,4968	-123,2022	52,168	87,0982	43,1258	25,9922	-143,8897	77,2045	230,9879
GenC2-1-5 (C)	73,1111	36,0371	-15,2262	-108,6378	-32,512	25,332	79,0101	-57,1144	187,6479
GenC2-1-6 (C)	341,2912	417,5006	-176,6474	-637,389	-228,0272	47,4568	639,5507	-403,7358	1276,9397
GenC2-1-7 (C)	312,0438	-23,2012	9,9787	-371,1805	-84,6134	158,3914	144,9818	-146,4006	683,2243
GenC8-4-3 (C)	345,9156	-916,0335	388,1164	53,7483	178,5635	428,4406	-806,1941	327,4432	1344,4741
CNFC 10408 (C)	93,1177	146,3961	-61,9542	-190,8796	-72,1526	3,722	209,775	-128,0243	400,6546
CNFC 10429 (C)	307,7035	-359,5572	152,4259	-190,0914	19,559	251,8077	-222,6802	40,8327	667,2607
CNFC 10431 (C)	21,4984	-539,5579	228,5173	255,5297	158,7411	163,6971	-574,255	285,8292	860,0842
CNFC 10470 (C)	-477,4352	151,5778	-64,4282	507,2604	93,9501	-275,3104	-95,7595	160,145	984,6956
Gen99TG9-84-1 (P)	-158,6111	38,2341	-16,2701	174,8538	34,92	-88,0194	-44,978	59,8707	333,4649
Guará (C)	-47,8692	-679,5456	287,7691	413,887	221,9531	169,709	-764,1178	398,2144	1178,0048
Juriti Claro (C)	-221,4568	385,6131	-163,4185	70,5337	-52,8782	-217,2507	298,0141	-99,1568	607,0699
LP 02-02 (C)	-372,0965	728,3765	-308,6551	76,4687	-113,4615	-387,8809	588,1134	-210,8646	1116,2574
LP 04-72 (P)	253,9698	114,286	-48,2765	-371,6862	-109,6048	91,0923	262,6261	-192,4067	634,3123
LP 04-92 (P)	-181,6441	731,9453	-310,0732	-159,3413	-170,528	-296,2438	695,8562	-309,971	1042,0185
MAI-25 (C)	316,9853	-143,9862	61,1345	-314,1361	-49,1156	195,0992	16,4998	-82,4808	631,1214
Z-22 (C)	-84,2307	-6,417	2,6764	106,8192	26,7188	-39,1538	-52,9059	46,493	191,0499
Amplitude	823,53	1647,979	698,1896	1144,649	449,9803	816,3215	1502,05	801,9502	

Anexo VI. Matriz de médias preditas pelo modelo AMMI2, obtidos de 22 genótipos de grãos de tegumento carioca e preto (Kg/ha⁻¹), avaliados na época de seca em oito ambientes no estado de São Paulo.

Conótinos					Ambientes ^{1/}				
Genótipos	CBonito 08	Tatuí 08	MASul 08	Avaré 08	Mococa 08	Avaré 09	Mococa 09	Tatuí 09	Média Geral
IAC Alvorada (C)	1605,94	765,56	1662,86	2520,4	1253,72	2680,73	1892,52	2698,26	1884,9988
Pérola (C)	1424,11	1595,18	1606,34	2880,38	1384,93	2521,95	2563,5	2761,62	2092,2513
IAC-Diplomata (P)	1214,99	1290,65	1326,45	2506,19	1080,01	2277,61	2300,09	2444,02	1805,0013
IAC-UNA (P)	1662,97	1827,92	1549,69	2546,17	1290,53	2595,47	2927,97	2572,28	2121,625
GenC2-1-1 (C)	2342,25	2254,71	1944,53	2600,8	1607,05	3127,11	3506,71	2823,84	2525,875
GenC2-1-3 (C)	2128,99	1811,97	2070,38	2975,13	1735,98	3114,62	2936,87	3087,06	2482,625
GenC2-1-5 (C)	2084,35	1834,96	1866,74	2643,15	1524,09	2977,71	3023,52	2816,49	2346,3763
GenC2-1-6 (C)	2444,78	2308,67	1797,57	2206,65	1420,83	3092,08	3676,31	2562,12	2438,6263
GenC2-1-7 (C)	2336,03	1788,47	1904,69	2393,35	1484,74	3123,52	3102,24	2739,95	2359,1238
GenC8-4-3 (C)	2033,03	558,76	1945,96	2481,41	1411,04	3056,69	1814,19	2876,92	2022,25
CNFC 10408 (C)	2054,23	1895,19	1769,89	2510,78	1434,32	2905,97	3104,16	2695,45	2296,2488
CNFC 10429 (C)	2231,69	1352,11	1947,14	2474,44	1488,91	3116,93	2634,58	2827,19	2259,1238
CNFC 10431 (C)	1690,49	917,11	1768,23	2665,06	1373,09	2773,82	2028,01	2817,18	2004,1238
CNFC 10470 (C)	1104,55	1521,25	1388,29	2829,79	1221,3	2247,81	2419,5	2604,5	1917,1238
Gen99TG9-84-1 (P)	1213,38	1197,9	1226,45	2287,39	952,27	2225,11	2260,28	2294,22	1707,125
Guará (C)	1466,62	622,62	1672,99	2668,92	1281,81	2625,33	1683,64	2775,07	1849,625
Juriti Claro (C)	1927,66	2322,41	1856,42	2960,19	1641,6	2873	3380,4	2912,32	2484,25
LP 02-02 (C)	1648,52	2536,67	1582,69	2837,63	1452,52	2573,87	3542	2672,11	2355,7513
LP 04-72 (P)	2385,96	2033,96	1954,44	2500,85	1567,75	3164,22	3327,89	2801,95	2467,1275
LP 04-92 (P)	1786,34	2487,62	1528,64	2549,19	1342,82	2612,88	3597,12	2520,38	2303,1238
MAI-25 (C)	2264,85	1591,56	1879,73	2374,27	1444,11	3084,1	2897,64	2727,75	2283,0013
Z-22 (C)	1909,26	1774,75	1866,89	2840,85	1565,57	2895,47	2873,86	2902,35	2328,625
Média Geral	1861,8632	1649,5455	1732,5914	2602,4086	1407,2268	2803	2795,1364	2724,2286	2197,0001

Anexo VII. Estimativas das interações de genótipos com ambientes pelo modelo AMMI2, obtidos de 22 genótipos de grãos de tegumento carioca e preto (Kg/ha⁻¹), avaliados na época de inverno em oito ambientes no estado de São Paulo.

Genótipos	Ambientes ^{1/}										
Genoupos	Andradina 08	Colina 08	RPreto 08	Votuporanga 08	Colina 09	Pindorama 09	RPreto 09	Votuporanga 09	Amplitude		
IAC Alvorada (C)	24,5959	-7,0684	174,0313	88,3339	-75,2414	-164,1159	72,0087	-112,5442	338,1472		
Pérola (C)	-55,4969	-52,6774	-220,2504	-190,9687	24,2237	45,2864	86,7448	363,1386	583,389		
IAC-Diplomata (P)	163,1989	3,2269	1028,7896	580,0202	-392,9299	-851,5403	295,7527	-826,5183	1880,3299		
IAC-UNA (P)	27,5433	10,7074	148,0959	96,6552	-44,7614	-95,5842	13,0076	-155,6638	303,7597		
GenC2-1-1 (C)	-140,2461	-122,1942	-584,0476	-483,9249	84,3898	166,1922	179,5313	900,2994	1484,347		
GenC2-1-3 (C)	-20,1503	24,7586	-190,2333	-74,6742	101,8702	224,2852	-127,8767	62,0205	414,5185		
GenC2-1-5 (C)	26,338	117,0993	-126,8748	79,4335	183,8347	414,6947	-375,6346	-318,8908	790,3293		
GenC2-1-6 (C)	-50,7724	-29,4527	-248,5854	-176,9897	61,9071	130,1855	11,3035	302,4042	550,9896		
GenC2-1-7 (C)	11,2841	-11,8648	101,5049	41,5741	-52,8053	-116,1269	64,3474	-37,9136	217,6318		
GenC8-4-3 (C)	-2,8773	18,9234	-65,8269	-12,5339	47,1824	104,9048	-74,1428	-15,6296	179,0476		
CNFC 10408 (C)	-172,4468	-252,57	-461,0642	-582,5947	-113,2413	-280,2412	592,3352	1269,8231	1852,4178		
CNFC 10429 (C)	-21,6916	-89,6047	87,3151	-66,2515	-136,9041	-309,1581	284,5395	251,7553	593,6976		
CNFC 10431 (C)	12,0179	-18,2165	122,1258	44,9559	-68,0738	-150,1063	88,7966	-31,4997	272,2321		
CNFC 10470 (C)	1,8338	-32,8849	94,2757	10,5201	-74,2369	-165,4849	122,8795	43,0976	288,3644		
Gen99TG9-84-1 (P)	45,4043	5,2014	275,4109	160,8467	-100,1912	-216,5284	66,6536	-236,7972	512,2081		
Guará (C)	51,8559	136,89	-14,4699	167,781	163,2995	372,8878	-399,4301	-478,8143	851,7021		
Juriti Claro (C)	-6,1417	81,497	-243,7854	-31,7512	187,8894	418,5949	-307,5345	-98,7685	726,1294		
LP 02-02 (C)	33,1379	44,5291	98,6636	112,4402	13,2656	34,8816	-99,2785	-237,6394	350,0796		
LP 04-72 (P)	66,0232	58,3569	272,8601	227,7147	-37,9635	-74,2978	-87,5386	-425,155	698,0151		
LP 04-92 (P)	2,2897	71,1581	-164,2392	-0,5082	145,3084	324,8467	-254,103	-124,7524	578,9497		
MAI-25 (C)	16,3889	32,0457	23,6122	54,3905	27,8185	64,7213	-85,4997	-133,4774	198,1987		
Z-22 (C)	-12,0887	12,1398	-107,3079	-44,469	55,3595	121,703	-66,8621	41,5255	229,0109		
Amplitude	335,6457	389,46	1612,837	1162,615	580,8193	1270,135	991,7653	2096,341			

Anexo VIII. Matriz de médias preditas pelo modelo AMMI2, obtidos de 22 genótipos de grãos de tegumento carioca e preto (Kg/ha⁻¹), avaliados na época de inverno em oito ambientes no estado de São Paulo.

Genótipos					Ambientes ¹	,									
r	Andradina 08	Colina 08	RPreto 08	Votuporanga 08	Colina 09	Pindorama 09	RPreto 09	Votuporanga 09	Média Geral						
IAC Alvorada (C)	1805,14	3299,57	3350,53	3475,65	2491,21	3028,11	3691,19	3190,59	3041,499						
Pérola (C)	1495,05	3023,96	2726,25	2966,35	2360,68	3007,51	3475,93	3436,27	2811,5						
IAC-Diplomata (P)	1792,12	3158,24	4053,66	3815,71	2021,9	2189,06	3763,31	2324,99	2889,874						
IAC-UNA (P)	1581,46	3090,72	3097,97	3257,35	2295,07	2870,02	3405,56	2920,85	2814,875						
GenC2-1-1 (C)	1421,8	2965,94	2373,95	2684,89	2432,34	3139,92	3580,21	3984,94	2822,999						
GenC2-1-3 (C)	1879,52	3450,52	3105,39	3431,77	2787,45	3535,64	3610,43	3484,28	3160,625						
GenC2-1-5 (C)	1707,26	3324,11	2950	3367,13	2650,66	3507,3	3143,92	2884,62	2941,875						
GenC2-1-6 (C)	1507,52	3054,93	2705,66	2988,08	2406,11	3100,16	3408,24	3383,29	2819,249						
GenC2-1-7 (C)	1591,83	3094,77	3078	3228,89	2313,65	2876,1	3483,53	3065,22	2841,499						
GenC8-4-3 (C)	1664,04	3211,93	2997,05	3261,16	2500,01	3183,51	3431,41	3173,88	2927,874						
CNFC 10408 (C)	1807,35	3253,32	2914,69	3003,97	2652,46	3111,24	4410,77	4772,21	3240,751						
CNFC 10429 (C)	1545,73	3003,91	3050,69	3107,94	2216,43	2669,94	3690,6	3341,77	2828,376						
CNFC 10431 (C)	1566,94	3062,79	3073	3206,65	2272,76	2816,5	3482,35	3046,01	2815,875						
CNFC 10470 (C)	1513,63	3005	3002,03	3129,09	2223,47	2757,99	3473,31	3077,48	2772,75						
Gen99TG9-84-1 (P)	1223,32	2709,21	2849,29	2945,54	1863,64	2373,07	3083,21	2463,71	2438,874						
Guará (C)	1657,4	3268,53	2987,03	3380,1	2554,75	3390,12	3044,75	2649,32	2866,5						
Juriti Claro (C)	1736,53	3350,26	2894,84	3317,69	2716,47	3572,95	3273,77	3166,49	3003,625						
LP 02-02 (C)	1846,81	3384,29	3308,29	3532,88	2612,85	3260,23	3553,03	3098,62	3074,625						
LP 04-72 (P)	1848,07	3366,49	3450,86	3616,53	2529,99	3119,43	3533,14	2879,48	3042,999						
LP 04-92 (P)	1636,21	3231,17	2865,64	3240,18	2565,14	3370,45	3218,45	3031,76	2894,875						
MAI-25 (C)	1828,93	3370,68	3232,11	3473,71	2626,27	3288,95	3565,68	3201,66	3073,499						
Z-22 (C)	1735,33	3285,65	3036,07	3309,72	2588,69	3280,81	3519,19	3311,54	3008,375						
Média Geral	1654,1814	3180,2723	3050,1364	3260,9536	2440,0909	3065,8641	3492,8173	3176,7718	2915,136						

Anexo IX. Estimativas das interações de genótipos com ambientes pelo modelo AMMI5, obtidos de 22 genótipos de grãos de tegumento carioca (Kg/ha⁻¹) e preto, avaliados nas três épocas de semeadura em vinte e quatro ambientes no estado de São Paulo (Continua).

Conótinos				Amb	oientes1/			
Genótipos	Araras 07	Avaré 07	CBonito 07	MASul 07	CBonito 08	Tatuí 08	MASul 08	Avaré 08
IAC Alvorada (C)	79,8035	-110,414	-308,7392	-193,8088	160,767	-959,9531	11,4585	-4,4687
Pérola (C)	-517,5947	660,0244	592,8117	-82,2809	-338,7423	48,3832	73,4931	288,1908
IAC-Diplomata (P)	279,0106	7,9202	411,3067	-237,5403	-454,1593	-176,4782	-849,0228	217,6911
IAC-UNA (P)	159,0615	-77,6658	16,2733	47,4053	-89,515	177,8834	-34,1457	29,2396
GenC2-1-1 (C)	-95,6248	11,0766	-273,4261	35,2272	481,7005	549,3082	324,2622	-243,1955
GenC2-1-3 (C)	-365,7473	-0,7097	-24,7366	193,4352	56,2842	-135,3193	267,0548	-97,1531
GenC2-1-5 (C)	16,5417	-344,7338	-315,8927	296,6253	142,567	19,5986	346,8069	-183,7938
GenC2-1-6 (C)	-37,3708	-285,7943	-362,1455	230,0743	469,7628	657,2275	262,1511	-371,4271
GenC2-1-7 (C)	288,4007	-199,7154	-200,9744	117,2057	50,157	289,3125	200,8044	-36,0044
GenC8-4-3 (C)	-83,9373	79,1042	-149,7775	-58,8834	-26,9764	-856,191	339,693	127,9959
CNFC 10408 (C)	-586,5888	624,9986	290,5459	-529,596	460,0081	172,9439	-525,8817	-135,4741
CNFC 10429 (C)	148,9193	-86,7914	-295,9055	-184,9263	314,4803	-236,312	-28,88	-105,0639
CNFC 10431 (C)	436,6105	-122,6064	-296,5743	-160,4091	0,1403	-587,7723	142,1568	138,1541
CNFC 10470 (C)	111,6047	252,0413	350,5438	-65,7207	-414,4299	76,3976	-72,6305	304,4561
Gen99TG9-84-1 (P)	842,7548	-373,2515	-291,5998	45,9339	-166,1098	144,5836	125,7435	144,078
Guará (C)	204,5742	-209,5965	-221,3927	118,9197	-230,8514	-855,5929	361,1971	166,6676
Juriti Claro (C)	-174,0793	-0,7192	159,8873	315,6559	-169,0284	501,6066	245,3444	-7,9501
LP 02-02 (C)	-52,5391	22,6069	369,3106	-1,8375	-157,3826	603,7131	-579,4228	-43,4724
LP 04-72 (P)	-16,8488	-78,3673	79,2247	-34,3622	33,9087	170,7535	-362,4021	-99,9916
LP 04-92 (P)	-112,6946	38,9462	299,3303	203,9069	-179,8746	769,2451	-101,5711	-20,1845
MAI-25 (C)	-221,8552	5,1591	-34,5448	-132,9081	207,1484	-295,631	-261,0912	-142,6544
Z-22 (C)	-302,4009	188,4876	206,4747	77,884	-149,8543	-77,7068	114,8821	74,3602
Amplitude	1429,344	1033,276	954,9572	845,2519	935,8598	1729,198	1210,22	675,8832

Anexo IX. Estimativas das interações de genótipos com ambientes pelo modelo AMMI5, obtidos de 22 genótipos de grãos de tegumento carioca (Kg/ha-1) e preto, avaliados nas três épocas de semeadura em vinte e quatro ambientes no estado de São Paulo (Continuação).

Genótipos		Ambientes ¹ /								
Genoupos	Mococa 08	Andradina 08	Colina 08	RPreto 08	Votuporanga 08	Tatuí 08	MASul 08	Mococa 08		
IAC Alvorada (C)	-18,6625	202,6239	279,1011	478,5828	89,6622	236,6596	-97,2689	11,0657		
Pérola (C)	52,4874	-212,1985	-330,7654	-503,9096	-110,526	112,2445	51,4644	420,1294		
IAC-Diplomata (P)	-92,4985	300,8075	274,5794	1130,8219	571,8607	-62,5247	-380,6293	307,6525		
IAC-UNA (P)	40,4073	14,7785	-36,9876	32,8629	109,3591	-94,4006	-21,9372	26,1756		
GenC2-1-1 (C)	101,5426	-246,5403	-287,193	-784,6454	-548,8114	50,889	89,4268	-254,6255		
GenC2-1-3 (C)	-167,6627	-62,2157	130,1313	-202,1829	-135,6443	-6,697	279,3793	-209,1978		
GenC2-1-5 (C)	-97,0836	0,6559	157,2311	-136,5418	-30,7435	-135,5582	273,6293	-350,7702		
GenC2-1-6 (C)	-60,9645	-159,5879	-39,3159	-509,8125	-420,4329	-116,756	204,031	-512,3165		
GenC2-1-7 (C)	129,7579	-36,1133	-134,4013	-234,1268	18,0177	-119,929	35,1497	-61,7249		
GenC8-4-3 (C)	57,3228	59,67	59,4224	-11,0286	66,6408	192,5899	74,6467	151,4215		
CNFC 10408 (C)	-68,8194	-174,2509	-154,7571	-150,1964	-681,4485	420,4906	-320,3694	56,2991		
CNFC 10429 (C)	68,4263	51,0405	28,8945	92,9738	-143,6095	159,6029	-146,8133	-64,9429		
CNFC 10431 (C)	231,4497	138,1753	-38,7011	181,9522	213,3607	117,5229	-165,9962	221,0085		
CNFC 10470 (C)	163,2568	-20,8741	-240,4446	-47,1702	253,513	-43,9066	-110,7965	423,3807		
Gen99TG9-84-1 (P)	334,9836	113,5557	-190,4801	79,5533	406,1617	-190,6579	-161,1384	186,9492		
Guará (C)	46,3293	177,7383	187,2693	256,4906	397,4331	-1,9331	131,7656	115,1306		
Juriti Claro (C)	-58,9357	-145,9845	-103,7928	-427,4278	-20,0977	-218,2914	273,8815	-103,5308		
LP 02-02 (C)	-174,4338	30,4721	105,0416	385,2552	91,2413	-164,5389	-118,1773	-55,6128		
LP 04-72 (P)	-145,5675	72,8828	180,2432	373,149	25,2217	-46,0988	-83,7418	-129,0124		
LP 04-92 (P)	-78,2687	-122,0429	-105,4695	-215,2219	-7,8605	-236,5789	109,0041	-71,8192		
MAI-25 (C)	-192,1299	84,5711	273,9152	376,08	-124,3352	141,4605	-58,1148	-165,37		
Z-22 (C)	-70,9368	-67,1636	-13,5205	-165,458	-18,9625	6,4111	142,6047	59,7101		
Amplitude	527,1135	547,3478	609,8665	1915,467	1253,309	657,0695	660,0086	935,6972		

Anexo IX. Estimativas das interações de genótipos com ambientes pelo modelo AMMI5, obtidos de 22 genótipos de grãos de tegumento carioca (Kg/ha⁻¹) e preto, avaliados nas três épocas de semeadura em vinte e quatro ambientes no estado de São Paulo (Continuação).

Canátinas					Ambiente	$s^{1/}$									
Genótipos	CBonito 08	Avaré 09	Mococa 09	Tatuí 09	Colina 09	Pindorama 09	RPreto 09	Votuporanga 09	Amplitude						
IAC Alvorada (C)	-193,9608	348,2133	-721,0106	318,7259	180,129	5,8144	169,3509	36,3289	1438,5359						
Pérola (C)	-126,442	-592,5301	-380,3396	-12,8475	20,2152	219,4279	298,9136	370,3908	1252,5545						
IAC-Diplomata (P)	-296,1002	-83,208	-150,7194	59,6963	-75,8239	-333,8161	291,5698	-660,396	1979,8447						
IAC-UNA (P)	70,0612	-38,902	110,8642	-97,5233	-33,5403	-99,2923	-57,7771	-152,6852	330,5686						
GenC2-1-1 (C)	324,4408	101,5509	454,6873	-280,7814	-71,7321	-97,2053	-64,0039	723,6727	1508,3181						
GenC2-1-3 (C)	-115,4084	19,6059	120,3746	254,5987	50,7461	495,164	-246,3954	-97,7039	860,9113						
GenC2-1-5 (C)	68,5481	217,1877	324,809	130,4222	32,2091	311,4559	-445,0853	-298,0847	791,8922						
GenC2-1-6 (C)	277,292	256,1159	881,383	-163,2126	-113,3791	76,9313	-380,7107	218,2574	1393,6995						
GenC2-1-7 (C)	241,6159	45,5823	175,5152	-203,2057	-21,363	-158,7232	-164,6178	-20,6198	523,4393						
GenC8-4-3 (C)	-137,2836	53,9421	-851,4615	283,0218	219,8947	213,2589	97,6245	99,29	1195,884						
CNFC 10408 (C)	-132,0551	-33,2583	86,7659	-111,1834	-128,2689	-258,5634	692,9153	1185,7442	1867,1927						
CNFC 10429 (C)	59,1609	280,95	-183,7106	-30,7987	34,11	-249,5045	165,1325	353,5676	649,4731						
CNFC 10431 (C)	77,9758	158,0148	-761,0529	-22,1464	149,683	-320,3184	183,9311	85,4414	1197,634						
CNFC 10470 (C)	15,4691	-388,9509	-353,0584	-157,9841	2,7548	-172,0368	201,1004	-66,515	837,8106						
Gen99TG9-84-1 (P)	353,2235	55,7652	-200,807	-358,5897	17,5868	-562,6904	-77,1922	-278,356	1405,4452						
Guará (C)	-116,7812	96,7446	-765,6781	314,323	228,6962	237,3084	-156,1822	-482,5795	1253,026						
Juriti Claro (C)	80,2636	-238,504	473,5529	-46,8101	-59,9744	322,0004	-344,0996	-252,9669	929,0344						
LP 02-02 (C)	-92,5717	-122,4226	699,1573	-98,963	-205,6532	-93,6555	-6,3465	-339,7684	1278,5801						
LP 04-72 (P)	-95,1305	94,9275	376,4238	28,5342	-96,3779	-45,5454	-8,6102	-193,2127	738,8259						
LP 04-92 (P)	74,8057	-262,0218	708,0155	-170,5967	-162,1458	97,3055	-212,5379	-241,6706	1031,2669						
MAI-25 (C)	-217,8861	225,9278	42,54	229,8547	-0,8437	104,0545	98,8559	57,7973	671,711						
Z-22 (C)	-119,2371	-194,7303	-86,2507	135,4659	33,0774	308,63	-35,8349	-45,9315	611,0309						
Amplitude	649,3237	940,7434	1732,845	677,3156	434,3494	1057,854	1138,001	1846,14							

Anexo X. Matriz de médias preditas pelo modelo AMMI5, obtidos de 22 genótipos de grãos de tegumento carioca e preto (Kg/ha⁻¹), avaliados nas três épocas de semeadura em vinte e quatro ambientes no estado de São Paulo (Continua).

Genótipos				Amb	oientes ^{1/}			
Genoupos	Araras 07	Avaré 07	CBonito 07	MASul 07	CBonito 08	Tatuí 08 MASul 08 533,12 1587,58 1652,21 1760,36 1238,43 648,93 1783,37 1654,39 2292,38 2150,38 1759,84 2245,26 1707,26 2117,51 2322,22 2010,19 2005,34 1999,88 713,76 1992,69 2059,64 1443,86 1376,01 1666,49	Avaré 08	
IAC Alvorada (C)	2002,6	2202,21	2287,38	3026,27	1866,16	533,12	1587,58	2441,47
Pérola (C)	1515,96	3083,39	3299,68	3248,54	1477,4	1652,21	1760,36	2844,88
IAC-Diplomata (P)	2123,65	2242,37	2929,26	2904,37	1173,07	1238,43	648,93	2585,46
IAC-UNA (P)	2194,28	2347,37	2724,81	3379,9	1728,29	1783,37	1654,39	2587,59
GenC2-1-1 (C)	2077,18	2573,7	2572,69	3505,3	2437,09	2292,38	2150,38	2452,74
GenC2-1-3 (C)	1959,14	2713,99	2973,47	3815,59	2163,76	1759,84	2245,26	2750,87
GenC2-1-5 (C)	2133,93	2162,47	2474,81	3711,28	2042,54	1707,26	2117,51	2456,73
GenC2-1-6 (C)	2057,35	2198,74	2405,89	3622,06	2347,07	2322,22	2010,19	2246,43
GenC2-1-7 (C)	2434,16	2335,86	2618,1	3560,24	1978,51	2005,34	1999,88	2632,89
GenC8-4-3 (C)	1915,74	2468,6	2523,22	3238,07	1755,29	713,76	1992,69	2650,81
CNFC 10408 (C)	1729,84	3331,24	3280,29	3084,1	2559,03	2059,64	1443,86	2704,09
CNFC 10429 (C)	2190,97	2345,08	2419,46	3154,4	2139,12	1376,01	1666,49	2460,12
CNFC 10431 (C)	2345,37	2175,97	2285,5	3045,62	1691,49	891,26	1704,23	2570,05
CNFC 10470 (C)	2021,78	2552,04	2934,04	3141,73	1278,34	1556,85	1490,86	2737,77
Gen99TG9-84-1 (P)	2476,89	1650,7	2015,85	2977,34	1250,62	1348,99	1413,2	2301,35
Guará (C)	2147,54	2123,19	2394,89	3359,16	1494,71	657,65	1957,48	2632,77
Juriti Claro (C)	2122,72	2685,9	3130,01	3909,73	1910,36	2368,68	2195,46	2811,99
LP 02-02 (C)	2168,26	2633,23	3263,43	3516,24	1846,01	2394,79	1294,7	2700,47
LP 04-72 (P)	2273,74	2602,04	3043,14	3553,5	2107,09	2031,62	1581,51	2713,74
LP 04-92 (P)	2028,06	2569,52	3113,41	3641,94	1743,48	2480,28	1692,51	2643,71
MAI-25 (C)	1935,32	2552,15	2795,95	3321,54	2146,92	1431,82	1549,4	2537,66
Z-22 (C)	1889,53	2770,23	3071,72	3567,08	1824,66	1684,49	1960,13	2789,42
Média Geral	2079,273	2469,09	2752,591	3376,545	1861,864	1649,546	1732,591	2602,41

Anexo X. Matriz de médias preditas pelo modelo AMMI5, obtidos de 22 genótipos de grãos de tegumento carioca e preto (Kg/ha⁻¹), avaliados nas três épocas de semeadura em vinte e quatro ambientes no estado de São Paulo (Continuação).

Genótipos				Am	bientes ^{1/}			
Genoupos	Mococa 08	Andradina 08	Colina 08	RPreto 08	Votuporanga 08	Tatuí 08	MASul 08	Mococa 08
IAC Alvorada (C)	1232,09	1700,33	3302,9	3372,25	3194,15	2136,55	2467,71	1523,64
Pérola (C)	1413,99	1396,26	2803,79	2500,51	3104,71	2122,89	2727,2	2043,45
IAC-Diplomata (P)	1080,09	1720,35	3220,21	3946,32	3598,18	1759,2	2106,19	1742,06
IAC-UNA (P)	1403,58	1624,91	3099,23	3038,94	3326,26	1917,91	2655,46	1651,17
GenC2-1-1 (C)	1602,3	1501,17	2986,61	2359,02	2805,67	2200,78	2904,41	1507,95
GenC2-1-3 (C)	1485,18	1837,58	3556,02	3093,57	3370,92	2295,28	3246,45	1705,46
GenC2-1-5 (C)	1348,26	1692,95	3375,62	2951,71	3268,32	1958,92	3033,2	1356,39
GenC2-1-6 (C)	1361,71	1510,04	3156,4	2555,77	2855,97	1955,05	2940,93	1172,17
GenC2-1-7 (C)	1603,47	1684,56	3112,36	2882,5	3345,46	2002,92	2823,09	1673,81
GenC8-4-3 (C)	1384,95	1634,26	3160,1	2959,51	3248	2169,36	2716,5	1740,87
CNFC 10408 (C)	1575,56	1717,08	3262,67	3137,09	2816,66	2714,01	2638,24	1962,5
CNFC 10429 (C)	1438,43	1668	3171,95	3105,89	3080,12	2178,74	2537,42	1566,88
CNFC 10431 (C)	1468,16	1621,84	2971,06	3061,58	3303,8	2003,37	2384,95	1719,54
CNFC 10470 (C)	1401,39	1464,21	2770,73	2833,87	3345,37	1843,36	2441,56	1923,33
Gen99TG9-84-1 (P)	1297,07	1322,6	2544,65	2684,55	3221,98	1420,57	2115,18	1410,86
Guará (C)	1317,25	1695,62	3231,24	3170,32	3522,08	1918,13	2716,92	1647,87
Juriti Claro (C)	1565,82	1725,73	3294,01	2840,24	3458,39	2055,6	3212,86	1783,04
LP 02-02 (C)	1374,32	1826,18	3426,84	3576,92	3493,72	2033,35	2744,81	1754,96
LP 04-72 (P)	1472,98	1938,38	3571,84	3634,61	3497,5	2221,58	2849,03	1751,35
LP 04-92 (P)	1390,45	1593,63	3136,29	2896,4	3314,58	1881,27	2891,95	1658,71
MAI-25 (C)	1293	1816,66	3532,09	3504,12	3214,52	2275,73	2741,24	1581,58
Z-22 (C)	1448,94	1699,67	3279,41	2997,33	3354,65	2175,43	2976,71	1841,41
Média Geral	1407,2268	1654,1823	3180,2736	3050,1373	3260,955	2056,3636	2721,455	1669,0455

Anexo X. Matriz de médias preditas pelo modelo AMMI5, obtidos de 22 genótipos de grãos de tegumento carioca e preto (Kg/ha⁻¹), avaliados nas três épocas de semeadura em vinte e quatro ambientes no estado de São Paulo (Continuação).

Canátinas					Ambient	es ¹ /			
Genótipos	CBonito 08	Avaré 09	Mococa 09	Tatuí 09	Colina 09	Pindorama 09	RPreto 09	Votuporanga 09	Média Geral
IAC Alvorada (C)	3319,43	2994,74	1917,65	2886,48	2463,75	2915,21	3505,7	3056,63	2414
Pérola (C)	3497,7	2164,75	2369,08	2665,66	2414,58	3239,57	3746,01	3501,44	2524,751
IAC-Diplomata (P)	3139,13	2485,15	2409,78	2549,29	2129,63	2497,41	3549,75	2281,74	2335,834
IAC-UNA (P)	3695,87	2720,04	2861,95	2582,65	2362,5	2922,52	3390,99	2980,03	2526,417
GenC2-1-1 (C)	4087,83	2998,08	3343,35	2536,97	2461,89	3062,19	3522,34	3993,97	2664
GenC2-1-3 (C)	3800,07	3068,22	3161,12	3224,44	2736,45	3806,64	3492,03	3324,68	2816,085
GenC2-1-5 (C)	3776,52	3058,3	3158,06	2892,76	2510,41	3415,43	3085,84	2916,8	2608,584
GenC2-1-6 (C)	3962,6	3074,56	3691,96	2576,46	2342,16	3158,24	3127,55	3410,48	2585,917
GenC2-1-7 (C)	3977,97	2915,07	3037,14	2587,51	2485,21	2973,63	3394,69	3222,64	2636,959
GenC8-4-3 (C)	3452,98	2777,35	1864,08	2927,65	2580,39	3199,53	3510,85	3196,47	2490,876
CNFC 10408 (C)	3774,96	3006,9	3119,06	2850,2	2548,98	3044,45	4422,89	4599,67	2807,625
CNFC 10429 (C)	3691,8	3046,73	2574,2	2656,21	2436,98	2779,14	3620,73	3493,12	2533,25
CNFC 10431 (C)	3577,33	2790,5	1863,57	2531,57	2419,26	2575,03	3506,24	3091,7	2399,958
CNFC 10470 (C)	3516,24	2244,95	2272,98	2397,15	2273,75	2724,73	3524,82	2941,16	2401,375
Gen99TG9-84-1 (P)	3577,95	2413,63	2149,19	1920,5	2012,54	2058,04	2970,49	2453,28	2125,334
Guará (C)	3416,78	2763,44	1893,15	2902,25	2532,48	3166,87	3200,33	2557,89	2434,167
Juriti Claro (C)	3967,66	2782,02	3486,22	2894,95	2597,64	3605,39	3366,25	3141,33	2788
LP 02-02 (C)	3718,82	2822,11	3635,82	2766,79	2375,97	3113,74	3628	2978,53	2712
LP 04-72 (P)	3786,05	3109,25	3382,88	2964,08	2555,03	3231,64	3695,53	3194,88	2781,791
LP 04-92 (P)	3806,16	2602,46	3564,64	2615,12	2339,43	3224,66	3341,77	2996,59	2631,959
MAI-25 (C)	3529,88	3106,83	2915,58	3031,99	2517,15	3247,82	3669,58	3312,47	2648,375
Z-22 (C)	3663,28	2720,92	2821,54	2972,35	2585,82	3487,15	3569,64	3243,49	2683,125
Média Geral	3669,8641	2803	2795,1364	2724,228	2440,0909	3065,865	3492,8191	3176,7723	2570,47

Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

<u>Baixar</u>	livros	de	Adm	inis	tra	ção

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciência da Computação

Baixar livros de Ciência da Informação

Baixar livros de Ciência Política

Baixar livros de Ciências da Saúde

Baixar livros de Comunicação

Baixar livros do Conselho Nacional de Educação - CNE

Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos

Baixar livros de Economia

Baixar livros de Economia Doméstica

Baixar livros de Educação

Baixar livros de Educação - Trânsito

Baixar livros de Educação Física

Baixar livros de Engenharia Aeroespacial

Baixar livros de Farmácia

Baixar livros de Filosofia

Baixar livros de Física

Baixar livros de Geociências

Baixar livros de Geografia

Baixar livros de História

Baixar livros de Línguas

Baixar livros de Literatura

Baixar livros de Literatura de Cordel

Baixar livros de Literatura Infantil

Baixar livros de Matemática

Baixar livros de Medicina

Baixar livros de Medicina Veterinária

Baixar livros de Meio Ambiente

Baixar livros de Meteorologia

Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Música

Baixar livros de Psicologia

Baixar livros de Química

Baixar livros de Saúde Coletiva

Baixar livros de Serviço Social

Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo