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Abstract

In this thesis we study a modified subgradient algorithm applied to the

dual problem generated by augmented Lagrangians. We consider an opti-

mization problem with equality constraints and study an exact version of

the algorithm with a sharp Lagrangian in finite dimensional spaces. An ine-

xact version of the algorithm is extended to infinite dimensional spaces and

we apply it to a dual problem of an extended real-valued optimization pro-

blem. The dual problem is constructed via augmented Lagrangians which

include sharp Lagrangian as a particular case. The sequences generated by

these algorithms converge to a dual solution when the dual optimal solution

set is nonempty. They have the property that all accumulation points of

a primal sequence, obtained without extra cost, are primal solutions. We

relate the convergence properties of these modified subgradient algorithms

to differentiability of the dual function at a dual solution, and exact penalty

property of these augmented Lagrangians. In the second part of this thesis,

we propose and analyze a general augmented Lagrangian function, which

includes several augmented Lagrangians considered in the literature. In this

more general setting, we study a zero duality gap property, exact penalization

and convergence of a sub-optimal path related to the dual problem.

Keywords: nonsmooth optimization, reflexive Banach spaces, sharp La-

grangian, general augmented Lagrangians, dual problem, modified subgradi-

ent algorithm, primal convergence, exact penalization, Hausdorff topological

spaces.
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então agradecendo aos meus familiares, que sempre deram apoio aos meus

estudos e aos quais devo tudo o que sou. Ao meu irmão querido, também

agradeço pela amizade e carinho. Agradeço a minha esposa Leila pela com-

preensão, apoio e carinho, e a minha filha Yasmim que está sempre ilumi-
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Jean Carlos, Maicon Alves, Michel Molina, José Yunier, Roger Behling, Ruan
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Introduction

Duality is a very useful tool in optimization. The duality theory obtained

through the ordinary (classical) Lagrangian and its use for convex optimiza-

tion problems is well-known. However, when the primal problem is not con-

vex, a duality gap (the difference between the optimal primal value and the

optimal dual value) may exist when the ordinary Lagrangian is used, com-

promising the applicability of many methods. This justifies the quest for

other kind of Lagrangians which are able to provide algorithms for solving

a broader family of constrained optimization problems, including nonconvex

ones.

The duality theory by means of a Lagrange-type function is used to trans-

form the (primal) constrained optimization problem into a sequence of un-

constrained subproblems, in such a way that information of the constraints

is incorporated on this Lagrange-type function. This reduction is effective

when the subproblems are much easier to solve than the original problem

and the Lagrange-type function is able to provide zero duality gap property.

The so-called augmented Lagrangian methods are among the best known me-

thods for reduction to unconstrained optimization. Augmented Lagrangian

methods for equality constrained optimization problems were introduced in-

dependently by Hestenes [25] and Powell [47]. Its extension to inequality

constrained problems started with [19] and [50, 51]. An extensive study of

augmented Lagrangian can be found in [3, 6, 7, 9, 30, 52, 53] and referen-

ces therein. Many others Lagrange-type functions have been proposed and

1



INTRODUCTION 2

analyzed in the literature, see e.g. [7, 22, 35, 55, 57, 67].

Rockafellar and Wets in [54, Chapter 11] considered an optimization pro-

blem of minimizing a (possibly) nonsmooth and nonconvex extended real-

valued function in a finite dimensional space. They proposed and analyzed a

dual problem constructed via augmented Lagrangians with convex augmen-

ting functions. This primal-dual scheme provides zero duality gap properties

under mild assumptions [54, Theorems 11.59]. An exact penalty represen-

tation was defined and a criterion for such a property was presented [54,

Theorem 11.61]. Recently, this duality approach has been studied in a more

general setting. In Huang and Yang [26] the convexity assumption on the

augmenting function, which is assumed by Rockafellar and Wets [54], is re-

laxed to a level boundedness assumption. They studied zero duality gap

property, exact penalty representation and convergence of optimal paths in

a unified approach. Rubinov et al. [58] considered augmented Lagrangians

constructed by a family of augmenting functions with a peak at zero, and

related the zero duality gap property with the lower semicontinuity of the

perturbation function. Penot [43] and Zhou and Yang [70] considered duality

via augmented Lagrangian, studied different growth conditions on the per-

turbation function and related them with zero duality gap property. Nedic

and Ozdaglar [37] considered a geometric primal-dual approach and studied

a zero duality gap property for augmented Lagrangian with a convex aug-

menting function. This geometric viewpoint was extended to augmented

Lagrangian with some general augmenting function in [38]. An inequality

constrained optimization problem is considered in [65, 63], where a unified

approach for duality with some Lagrange-type functions, which include some

augmented Lagrangians, is analyzed. Many efforts have been devoted to

augmented Lagrangians with a valley at zero property on the augmenting

function [17, 27, 58, 56, 68, 69, 70, 71]. Duality via general Lagrange-type

functions for an optimization problem with general constraints can be found

in [18, 64]. Augmented Lagrangian type functions constructed via auxiliary
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coupling functions have been considered and extensively studied in the li-

terature [17, 44, 56, 58, 65, 71]. Penot and Rubinov [44] investigated the

relationship between the Lagrangian multipliers and a generalized subdiffe-

rential of the perturbation function in ordered spaces. In Wang et al. [65,

section 3.1], an augmented Lagrangian type function is studied via an auxi-

liary coupling function, and a valley at zero type property for the derivative

of the coupling function with respect to the penalty parameter is proposed.

Abstract convex analysis has demonstrated to be a natural language for cons-

tructing a duality theory for nonconvex optimization problems [55, 56, 61].

The issue of studying duality theory in the setting of augmented Lagrangian

type functions with abstract convexity tools is reinforced in the works of

Nedić et al. [41], Rubinov et al. [58], Penot and Rubinov [44] and most

recently with the work of Burachik and Rubinov [17].

Another issue to consider in any duality theory is how to solve the dual

problem. It is well known that in the classical Lagrangian duality the dual

problem is a convex problem (i.e., the dual problem is the maximization of

a concave function over a convex set), regardless of the properties of the

primal problem. Also, in the process of evaluating the dual function, we

obtain “without extra cost” some subgradient information. In the case of

the duality constructed via augmented Lagrangian these results still hold.

As a consequence, subgradient type methods are natural methods to solving

the dual problem.

Subgradient methods are used to solve nonsmooth convex optimization

problems. They were introduced by N. Z. Shor in the middle sixties and

extensively studied since then. The work of Polyak [46] was fundamental for

the development of this method. Subgradient methods are extensions of the

gradient method to the convex nonsmooth optimization. One of the main

difference between these methods is that the direction opposite to a subgra-

dient is not, in general, a descent direction, as is the case for differentiable

functions. We mention that in some very special situations it is still possible
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to obtain a subgradient such that its opposite direction is a descent direc-

tion, see for example [5]. Subgradient methods are slow methods, but they

are very simple and their study can help to understand and devise better

algorithms, so that they still attract the attention of many researchers. An

extensive literature on subgradient methods and their variants can be found

in [1, 2, 4, 10, 21, 32, 36, 46, 60] and references therein.

One of the main applications of subgradient methods appears in the con-

text of classical Lagrangian duality, see for instance [39, 40] and references

therein. In this context, we obtain a subgradient when solving the subpro-

blems, which can be used to devise algorithms for solving the dual problem.

In general, this information is not enough to obtain a descent direction for a

subgradient algorithm. Indeed, the subgradient method has another property

which makes its convergence possible, namely that the k+ 1−th iteration of

a subgradient algorithm is closer to the solution set than the k-th iteration.

In some variants of subgradient methods this latter property is satisfied par-

tially, that is, we can compare and control the distance of iterates of the

algorithm to the dual solution set. We mention that Féjer convergence ana-

lysis is a suitable tool for analyzing convergence of subgradient methods [1].

As commented before, the dual problem generated by augmented Lagrangian

methods [26, 53, 54] is convex, and thus subgradient methods and its variants

are suitable procedures for solving it. Among the augmented Lagrangians

proposed by Rockafellar and Wets [54], we mention the “sharp Lagrangian”,

generated by taking as augmenting function the Euclidean norm.

Modified subgradient algorithms (MSg) have been considered for the

dual problem constructed via sharp Lagrangian in finite dimensional spaces

[12, 13, 14, 16, 23]. Gasimov in [23] considered a nonlinear optimization

problem with equality constraints, and proposed a modified subgradient al-

gorithm for solving the dual problem constructed via a sharp Lagrangian. A

deflection in the parameter direction ensures that the dual values are strictly

increasing. This increasing property makes the modified subgradient algo-
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rithm very attractive, since subgradient methods, as commented above, in

general do not have this property. Dual convergence results were obtained

and numerical experiments were presented in [23] to illustrate the behavior

of the algorithm. In [12], Burachik et al. improved the results of [23] by

relaxing the stepsize rule, and presented an example for which the algorithm

may fail to achieve primal convergence. An auxiliary sequence, with an extra

cost, was considered, and a primal convergence result was obtained for this

sequence. In [14] an inexact version of the algorithm with a variant of the

stepsize rule considered in [12] is proposed and analyzed. Similar results to

those of the exact version were obtained. A version of this modified subgradi-

ent algorithm is considered in [24] for solving the dual problem via augmented

Lagrangians where the primal problem has a single constraint. The idea of

these modified subgradient algorithms was carried out to propose an update

rule for a penalty method [13]. The applicability of these algorithms (exact

and inexact versions) is better when the primal optimal value is known, or at

least a good estimate, see Section 1.6 and [12, Eqs. 16, 23 and Section 5.1]

and also [14, Corollary 5.1]. In some problems, even an approximate optimal

value is both very hard to obtain and expensive. Therefore, it is desirable

to look for a different stepsize rule, unrelated to the optimal value, and such

that the convergence properties of the algorithm are preserved. It is also

important to ensure convergence of the primal sequence which is generated

during the process of the algorithm without any extra cost. This goals are

achieved with the methods introduced in this thesis.

This thesis is divided in two parts: in the first part we investigate a modi-

fied subgradient algorithm for the dual problem generated by augmented La-

grangians, and in the second part we study general augmented Lagrangians.

We now outline the thesis and present with details what we have done.
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Outline of the Thesis

In Chapter 1 we recall some preliminaries materials on Lagrange-type func-

tions and subgradient algorithms. In particular, we present some existing re-

sults on augmented Lagrangians and a modified subgradient algorithm with

sharp Lagrangian.

In Chapter 2 we consider the same modified subgradient algorithm as

[12, 23], but we propose a very simple stepsize rule. With this rule we get

rid of the dependence on the optimal value. We obtain dual convergence

results as in [12, 23]. We also show that all accumulation points of the

primal sequence generated by the algorithm are primal solutions, and thus no

auxiliary sequence (as required in [12]) is needed. This primal convergence

is ensured even if the dual optimal set is empty. The latter result is very

important, because, in general, it is impossible to know a priori whether the

dual problem has optimal solutions. We also show that if there exists a dual

solution, then it is possible to consider larger stepsizes which ensure that

after a finite number of iterations of the algorithm both primal and dual

optimal solutions are reached.

The algorithm analyzed in Chapter 2 considers the dual problem induced

by the sharp Lagrangian in finite dimensional spaces and assumes exact so-

lution of the subproblems, which is too strong a requirement in many situa-

tions, specially in the context of nonsmooth and nonconvex optimization.

In Chapter 3 we address this issue by developing an infinite dimensional

modified subgradient method which accepts an inexact solution of the sub-

problems, and can be applied to duality schemes induced by a wide family

of augmented Lagrangians in Banach spaces.

We consider a primal problem of minimizing an extended real-valued

function (possibly nonconvex and nondifferentiable) in a reflexive Banach

space. A duality scheme is considered via augmented Lagrangian functions

which include the sharp Lagrangian as a particular case (see Example 3.1.1).
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Our dual variables belong to a Hilbert space. Such duality schemes are

suitable for solving constrained optimization problems in which the image

space of the constraint function is a Hilbert space, see e.g. [28, 29, 62, 71]

and references therein. Development and analysis of a given algorithm in

infinite dimensional spaces gives a deeper insight into its properties. This

issue has also practical interest since usually the performance of numerical

algorithms in finite dimensions are closely related to the infinite dimensional

performance, see for example [62] and references therein.

We propose a parameterized inexact modified subgradient algorithm for

solving the dual problem. For this purpose we use a dualizing parameteri-

zation function (a function f(·, ·) such that f(·, 0) = ϕ(·), where ϕ(·) is the

primal function). In order to ensure a monotone improvement of the dual

values, we consider an augmenting function (not necessarily convex) similar

to the one used in [24] (see assumption (A0) below). We prove that validity

of (A0) is necessary for having a monotone increase of the dual values, see

Proposition 3.2.18. This algorithm extends in several ways the one considered

in Chapter 2. First, we extend the (finite dimensional) MSg to a reflexive

Banach space. Second, our method accepts dual variables in a finite or in-

finite dimensional Hilbert spaces; as commented above this can have some

advantages. Third, the convergence analysis of MSg assumes exact solution

of the subproblems, while in Chapter 3 we establish convergence accepting

inexact iterates, which is in fact the actual situation in computational im-

plementations. Fourth, the sharp Lagrangian is just a particular case of a

wide family of augmented Lagrangians that are considered in this chapter

(see Example 3.1.1 and assumption (A0)). Fifth, we consider in our analysis

a level-boundedness assumption on the dualizing parameterization function

(Definition 3.1.2) which is weaker than the compactness assumption used in

Chapter 2 and [12, 14, 16, 23, 24].

We show that, in our more general setting, our algorithm generates a dual

sequence strongly convergent to a dual solution when the dual solution set
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is nonempty. The primal sequence converges in the sense that all its weak

accumulation points are primal solutions, even when the dual solution set is

empty. We also analyze a stepsize selection rule which ensures that when

the dual solution set is nonempty, approximate primal and dual solutions are

obtained after a finite number of iterations of the algorithm.

In Chapter 4 we consider the same framework as in Chapter 3. We re-

late some properties of a penalty mapping to the differentiability of the dual

function at a solution, and the convergence of modified subgradient algo-

rithms with augmented Lagrangians in infinite dimensional spaces. In this

chapter we characterize the primal convergence property of modified subgra-

dient algorithm. We show that if the algorithm generates a dual sequence

convergent to a dual solution, then the dual function is differentiable at this

solution if and only if the primal sequence generated by the algorithm has

all the accumulation points in the primal solution set. This result is also

equivalent to strong exactness of a penalty mapping defined in this chapter.

In the second part of the thesis, Chapter 5, we consider a primal problem

of minimizing an extended real-valued function in a Hausdorff topological

space. A main tool in our analysis is abstract convexity, which recently

became a natural language to investigate duality schemes via augmented

Lagrangian type functions, see for example [17, 41, 44, 56, 58]. With abs-

tract convexity tools, we propose and analyze a duality scheme induced by

a general augmented Lagrangian function. We consider a valley at zero type

property on the coupling (augmenting) function, which generalizes the valley

at zero type property proposed in the related literature (e.g., [65, Section

3.1], [17] and references therein). In order to obtain our results, we demand

continuity assumptions at a fixed base point instead of at the whole space, the

latter being a standard assumption in the literature (see, e.g.,[17]). We show

that our duality scheme has a zero duality gap property. A sub-optimal path

related to the dual problem is considered, and we prove that all its cluster

points are primal solutions. A criterion for exact penalization was presented
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by Rockafellar and Wets in [54, Theorem 11.61]. This criterion has been ge-

neralized, for instance, by Burachik and Rubinov [17], Huang and Yang [26]

and Zhou and Yang [71]. We also extend this criterion to our general setting.

Since no linearity on the augmented Lagrangian is assumed, this allows us to

consider our primal-dual scheme in Hausdorff topological spaces. The main

motivation for working in the framework of Hausdorff topological spaces is

to develop a duality theory that can encompass different settings found in

the literature, such as metric spaces (see e.g., [18, 58, 42, 64]) and Banach

spaces with the weak topology (see e.g., [17, 69, 71]), which in general are

not metrizable. It is also worthwhile to note that the general augmented La-

grangian studied here, for which the valley at zero type property is assumed

directly at the coupling function ρ (see Section 5.1), has not been considered

in the literature even in finite dimensional spaces.
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Notations

Rn, the n-dimensional Euclidean space,

BX [0, r], closed ball of X with radius r,

∂g, subdifferential (superdifferential ) of a convex (concave) function g,

X∗, the topological dual of a Banach space X,

‖ · ‖, the norm in a Banach space

〈·, ·〉, the scalar product of a Hilbert space,

R̄= {−∞} ∪ R ∪ {+∞},

R++ := (0,+∞), R+ := [0,∞), R+∞ = R∪{+∞}, R−∞ = R∪{−∞},

mp, the primal optimal value,

md, the dual optimal value,

lsc, abbreviation for lower semicontinuous function

usc, abbreviation for upper semicontinuous function



Chapter 1

Background and preliminaries

In this chapter we present some preliminary materials on a primal-dual

scheme via augmented Lagrangians. We recall the classical augmented La-

grangian and penalty function methods. We present different Lagrange-type

functions. We recall some materials on abstract convexity. We consider a

duality approach which is used to solving an extended real-valued optimiza-

tion problem [54, Chapter 11]. In the second part of this chapter we recall

subgradient method and present the previous materials on a modified subgra-

dient algorithms applied to a dual problem generated via sharp Lagrangian

[12, 14, 23]. We also discuss the difference between our work and the previous

literature on the subject.

In this chapter we denote by ‖ · ‖ the Euclidean norm in Rm.

1.1 Classical augmented Lagrangian

and penalty functions

We recall in this section some preliminary results on penalty methods and

augmented Lagrangian. A complete material can be found in several books

on optimization, for instance [6, 8].

11
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Consider the following equality constrained optimization problem:

minimize f(x) s.t. x in K, h(x) = 0, (1.1)

where f : Rn → R, h : Rn → Rm e K ⊂ Rn. In this formulation we assume

that any possible complicate constraints are contained in the equality ones.

The set K is usually a box or K = Rn.

The penalty methods attempt to solve the problem (1.1) via a sequence

(finite or not) of easier unconstrained optimization problems. In order to do

so, the infeasible points are penalized, that is a high cost is given for points

which are not in the feasible region ({x ∈ K : h(x) = 0} ). We describe next

this procedure:

Consider a penalty function P : Rn → R+ such that P (x) = 0 if and only

if h(x) = 0. Let {ck} be a sequence of penalty parameter (possible satisfying

ck ↑ +∞). For each k, find xk solution of the following subproblem:

minimize f(x) + ckP (x) s.t. x in K. (1.2)

Under mild assumptions, the penalty method generates a sequence such

that all its limit points are primal solutions. It is necessary in many situations

to assume that the sequence of penalty parameters {ck} goes to infinity.

Several penalty functions have been proposed in the literature, and we

shall consider just some basic ones. The first one is the quadratic penalty

function, which is given by P (x) = 1
2
‖h(x)‖2. This penalty function inherits

differentiability properties of the problem (1.1). However it is necessary to

increase the parameter ck to infinity in most cases, causing ill-conditioning

of the subproblems (1.2). Some usual nondifferentiable penalty functions are

P (x) =
m∑
j=1

|hj(x)| and P (x) = max
j=1,...,m

{|hj(x)|}. These penalty functions

have the properties that, under mild assumptions, it is sufficient to solve

only one subproblem in order to solve or to obtain significant information of

the problem (1.1), see [6, 8]. We mention that although only one subproblem
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needs to be solved, it is not possible to know a priori how large an initial

penalty parameter must be. Therefore these methods still give rise to ill-

conditioning. It is also important to note that since the penalty function is

nondifferentiable, it destroys any differentiability property of the constrained

problem. The quadratic penalty approach can be improved to the following

situation, which consist of combining the classical penalty approach with the

traditional Lagrangian function L(x, λ) = f(x) + 〈h(x), λ〉. More precisely,

the subproblems become:

minimize f(x) + 〈h(x), λk〉+
ck
2
‖h(x)‖2 s.t. x in K. (1.3)

where {λk} is a bounded sequence. We mention that the optimum value of the

subproblem above can be equal to −∞ even if the primal problem has a finite

optimal value. Such a situation is avoided, for example, when K is a compact

set, and the functions involved are continuous. We present next two basic

results related to this method. Let Lc(x, λ) := f(x) + 〈h(x), λ〉+ c
2
‖h(x)‖2.

Proposition 1.1.1. Assume that f and h are continuous functions, that K

is a closed set, and that the constraint set {x ∈ K : h(x) = 0} is nonempty.

For k = 0, 1, ..., let xk be a global minimum of the problem (1.3), where {λk}
is bounded, 0 < ck < ck+1 for all k, and ck → ∞. Then every limit point of

the sequence {xk} is a global minimum of the original problem (1.1).

Proof. For the proof see [8, Proposition 4.2.1].

Proposition 1.1.2. Assume that K = Rn, and f and h are continuously

differentiable. For k = 0, 1, ..., let xk satisfying

‖∇xLck(x
k, λk)‖ ≤ εk,

where {λk} is bounded, 0 < ck < ck+1 for all k, and ck →∞, and εk ≥ 0 for

all k, and εk → 0. Assume that a subsequence {xkj} converges to a vector x∗

such that ∇h(x∗) has rank m. Then

{λkj + ckjh(xkj)} converges to λ∗,
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where λ∗ is a vector satisfying, together with x∗, the first order necessary

conditions:

∇f(x∗) +
m∑
j=1

λ∗j∇hj(x∗) = 0, h(x∗) = 0.

Proof. For the proof see [8, Proposition 4.2.2].

Proposition 1.1.2 suggests an updating rule for {λk}. Indeed, given a

sequence of parameters {ck} and λ0 ∈ Rm, the multipliers method consists

of generating a sequence {λk} through the formula

λk+1 = λk + ckh(xk),

where xk is a solution of the subproblem (1.3).

This method overcomes or attenuates some of the difficulties of the qua-

dratic penalty method, see [7].

In the first part of this thesis we shall consider a sharp Lagrangian, which

uses P (x) = ‖h(x)‖. This augmented Lagrangian is more suitable for non-

differentiable problems, because of the nondifferentiability of the penalty

function ‖ · ‖ at 0.

An inequality constrained optimization problem:

minimize f(x) s.t. g(x) ≤ 0, (1.4)

where g : Rn → Rm, can be treated as an equality one by augmenting the

domain, introducing additional variables: hj(x, z) = gj(x) + z2
j or by con-

sidering hj(x) = max{0, gj(x)}, for j = 1, ...,m. We mention however that

in some situations it is interesting to tackle the problem directly without

modifying it. Rockafellar in the seventies proposed and analyzed the follow-

ing quadratic augmented Lagrangian for inequality constrained optimization

problem:

l(x, µ, c) = f(x) +
1

2c

m∑
j=1

{[max{0, µj + cgj(x)}]2 − µ2
j}.
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In this context the subproblems are

minimize l(x, µk, ck) s.t. x ∈ Rn. (1.5)

The multipliers method for inequality constraints is similar to the one for

equality constraints. The iteration formula to updating the multipliers is

µk+1
j = max{0, µkj + ckgj(x

k)}, where xk is a solution of (1.5). Several results

concerning the quadratic augmented Lagrangian and the multipliers method

can be found in the literature, for instance [7, 8, 51, 52, 53]. A detailed

review on augmented Lagrangian for inequalities constraints can be found in

[53].

1.2 Classical primal dual scheme

The classical (linear) Lagrange function for problem (1.4) is given by

L(x, µ) = f(x) + 〈g(x), µ〉.

The dual problem via the Lagrange function is

max q(µ) s.t. µ ≥ 0,

where the dual function q : Rm → R is defined by q(µ) = infx∈K L(x, µ).

This dual problem is suitable specially when the primal problem (1.4)

is convex. For nonconvex optimization problem a positive duality gap can

hold. We recall that the duality gap is the difference between the optimal

values of the primal and the dual problems, that is,

inf
x∈K:g(x)≤0

f(x)− sup
µ≥0

q(µ).

It is straightforward to verify that weak duality holds:

sup
µ≥0

q(µ) ≤ inf
x∈K:g(x)≤0

f(x).
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Therefore the duality gap is nonnegative. When the duality gap is zero, it is

possible to solve the primal problem (1.4) via the dual problem, and this ap-

proach is suitable in several situations, see [8, Chapter 5]. When the duality

gap is positive, this duality approach is not very successful, specially because

many methods are efficient only when zero duality gap holds. We mention

however, that the use of Lagrange function for nonconvex problem is also

interesting in some particular situations, for example in integer program-

ming. In order to deal with nonconvex problems, an alternative is the use

of an augmented Lagrangian function (Section 1.1) instead of the Lagrange

function. Another approach is the use of nonlinear Lagrange-type function,

briefly described next.

1.3 Nonlinear Lagrange-type function

In this section we shall give only a basic description of a nonlinear Lagrange-

type function; a complete material can be found in [55, 56]. We consider

nonlinear Lagrange-type function generated by increasing positive homoge-

neous functions.

A function p : Rm → R is called increasing positive homogeneous (IPH)

iff

a) p(x) ≥ p(y) when x ≥ y, where x ≥ y means xj ≥ yj for j = 1, ...,m;

b) p(tx) = tp(x) for all t > 0.

We assume the following properties on the IPH functions:

i) There exist positive numbers a0, a1, ..., am with a0 = 1 such that

p(y) ≥ max
0≤j≤m

aiyi, for all y = (y0, ..., ym) with y0 ∈ R+;

ii) for y0 ∈ R+ it holds that p(y0, 0, ..., 0) = y0.

We mention that the linear IPH function (p(y) =
∑m

j=0 yj) does not satisfy

these properties. Some examples of IPH functions satisfying properties (i)

and (ii) are:
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p(y) := max{y0, a1y1, ..., amym}, where a1, ..., am ∈ R+;

pk(y0, ..., ym) =

(
m∑
j=0

max{yj, 0}k
) 1

k

0 < k < +∞.

Consider the inequality constrained optimization problem (1.4). Assume

that each of the functions of the problem is continuous, and infx∈K f(x) > 0.

The function L defined by

L(x, d) = p(f(x), d1g1(x), ..., dmgm(x)), x ∈ Rm, dj ∈ R+ ∀ j = 1, ...,m,

is called an extended Lagrange function for the problem (1.4). The dual

function corresponding to p is defined by qp(d) = infx∈K L(x, d). The dual

problem is

maximize qp(d) s.t. d ∈ Rm
+ . (1.6)

For the proof of the next theorem see [55, Theorem 4.1].

Theorem 1.3.1. Assume that the feasible set of the problem (1.4) is a com-

pact set or (if K is unbounded) the function f satisfies lim
x∈K,x→∞

f(x) = +∞.

Then there is no duality gap between the primal problem (1.4) and its dual

(1.6), constructed via extended Lagrange function with properties (i) and (ii).

1.4 Augmented Lagrangian with convex aug-

menting functions

In this section, we present some of the main results on the primal-dual scheme

via augmented Lagrangian, proposed and analyzed by Rockafellar and Wets

in [54, Chapter 11].

We consider the following primal problem.

minimize ϕ(x) s.t. x ∈ Rn, (1.7)
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where ϕ : Rn → R+∞ is a proper, lsc function. A dualizing parameterization

for ϕ is a function φ : Rn×Rm → R̄, such that φ(x, 0) = ϕ(x) for all x ∈ Rn.

We recall that the perturbation function of the primal problem is defined as

β(z) = inf
x
φ(x, z),

where φ is the parameterization function.

The augmented Lagrangian ` : Rn × Rm × R+ → R̄ is defined as

`(x, y, c) := inf
z∈Rm
{φ(x, z)− 〈y, z〉+ cσ(z)},

where σ : Rm → R+∞ is a lsc and convex augmenting function such that

Argmin
x
σ(x) = 0 and σ(0) = 0.

The dual function ψ : Rm × R+ → R̄ induced by the augmented La-

grangian ` is defined by

ψ(y, c) = inf
x∈Rn

`(x, y, c).

The dual problem is given by

maximize ψ(y, c) s.t. (y, c) ∈ Rm × R+. (1.8)

Denote by mp and md the optimal primal and dual values respectively.

The next definition was introduced in [54, Definition 1.16].

Definition 1.4.1. A function f : Rn×Rm → R̄, is said to be level-bounded

in x locally uniform in z, if for all z̄ ∈ Rm and for all α ∈ R, there exist an

open neighborhood V ⊂ Rm of z̄, and a bounded set B ⊂ Rn, such that

LV,f (α) := {x ∈ Rn : f(x, z) ≤ α} ⊂ B, for all z ∈ V.

Next we summarize some basic results concerning the primal problem

(1.7) and its dual (1.8).
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Proposition 1.4.1. Consider the primal problem (1.7) and the dual problem

(1.8). The following statements hold.

(i) The dual function ψ is a concave and upper semicontinuous function.

(ii) If r ≥ c then ψ(y, r) ≥ ψ(y, c) for all y ∈ Rm. In particular, if (y, c) is

a dual optimal solution, then also (y, r) is a dual optimal solution.

Proof. Item (i) follows from the fact that ψ is the infimum of affine functions.

Item (ii) is a consequence of the fact that σ is nonnegative.

The next theorem guarantees that there is no duality gap for the primal-

dual pair (1.7)-(1.8).

Theorem 1.4.2. Consider the primal problem (1.7) and its dual problem

(1.8). Assume that the dualizing parameterization function φ : Rn×Rm → R̄
for the primal function ϕ is proper, lsc and level bounded in x locally uniform

in z. Suppose that there exists some (y, r) ∈ Rm × R+, such that

inf
(x,z)
{φ(x, z)− 〈y, z〉+ rσ(z)} > −∞.

Then zero duality gap holds, i.e. mp = md.

Proof. See for instance, [54, Theorem 11.59]. For the proof of this result in

a more general setting, see Theorem 5.2.3 in Chapter 5.

Another important property related to this augmented Lagrangian is the

exact penalty representation. This concept has been generalized to more

general contexts [17, 26, 71]; see also Chapter 5.

Definition 1.4.2. Consider the primal and dual problems (1.7)-(1.8). A

vector ȳ ∈ Rm is said to support an exact penalty representation for problem

(1.7) if there exists r̄ ∈ R+ such that for any r > r̄,

E1) inf
x
l(x, y, r) = inf

x
ϕ(x);
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E2) Argmin
x
ϕ(x) = Argmin

x
l(x, y, r).

Together with this concept of exact penalization, Rockafellar and Wets

proved the following criterion.

Theorem 1.4.3. [54, Theorem 11.61] Let β : Rm → R̄ be the perturbation

function. With the same assumption of Theorem 1.4.2 the following asser-

tions are equivalent:

i) There exist an open neighborhood V ⊂ Z of 0 and r̂ > 0 such that

β(z) ≥ β(0) + 〈y, z〉 − r̂σ(z) for all z ∈ V ;

ii) the vector y supports an exact penalty representation for problem (1.7).

The above considered scheme includes a wide family of augmented La-

grangians. Indeed, many specific augmented Lagrangians can be constructed

by choosing different convex augmenting function. We describe now two par-

ticular augmented Lagrangians. The first one is constructed by choosing the

augmenting function σ(z) = 1
2
‖z‖2 and it is called a proximal (or quadratic)

Lagrangian. The second one is the sharp Lagrangian, which is constructed by

taking the augmenting function σ(z) = ‖z‖. These examples are discussed

in [54, Examples 11.57 e 11.58].

Remark 1.4.4. In [54], the sharp Lagrangian function is generated by ta-

king, as the augmenting function, any norm function in the Euclidean space.

However, in this thesis we use this notation for the case of the Euclidean

norm, that is, σ(z) = (
m∑
j=1

|zj|2)
1
2 for all z ∈ Rm, which guaranteed some

additional properties of the resulting modified subgradient algorithm. For

example, if we consider the infinity norm σ(z) = max
j=1,...,m

|zj|, then the modi-

fied subgradient algorithm may fail to have the increasing property proved

in [14, 23] and assumed in [12, 16] (see example 3.29 in Chapter 3). We men-

tion, parenthetically, that the 1-norm, σ(z) =
m∑
j=1

|zj|, could also be used. We
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also remark that in Chapter 3 we study the modified subgradient algorithm

applied to the dual problem constructed with a much more general family

of augmented Lagrangians. In particular the algorithm can be modified so

that it admits the infinity norm as augmenting function (see Remark 3.2.19

in Chapter 3).

The next example show that the augmented Lagrangians considered in

this section generalizes the classical augmented Lagrangian for constrained

optimization problems, which is presented in Section 1.1.

Example 1.4.5. Consider the equality constrained optimization problem

(1.1). For z ∈ Rm, define

Ω(z) := K ∩ {x : h(x) = z}.

Recall that given A ⊂ Rn, the indicator function δA : Rn → R+∞ is defined

as

δA(x) = 0, if x ∈ A; and δA(x) =∞ otherwise.

Let

ϕ(x) :=

{
f(x) x ∈ Ω(0),

∞ otherwise.

Consider now a dualizing parameterization function φ : Rn ×Rm → R̄ given

by φ(x, z) = f(x) + δΩ(z)(x). It is easy to see that φ(x, 0) = ϕ(x) for all

x ∈ Rn. In this situation we obtain

`(x, y, r) = f(x)− 〈y, h(x)〉+ rσ(h(x)) + δK(x)

In particular taking σ(z) = 1
2
‖z‖2 we obtain

`(x, y, r) = f(x)− 〈y, h(x)〉+
r

2
‖h(x)‖2 + δK(x), (1.9)

which is the classical quadratic augmented Lagrangian plus the indicator

function of K. In particular, taking K = Rn we obtain

`(x, y, r) = f(x)− 〈y, h(x)〉+
r

2
‖h(x)‖2.
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In the case of the constrained optimization problem above, if we consider

the sharp Lagrangian (σ(·) = ‖ · ‖), we obtain

`(x, y, r) = f(x)− 〈y, h(x)〉+ r‖h(x)‖+ δK(x). (1.10)

In Chapter 2 we study a modified subgradient algorithm applied to the

dual problem constructed by sharp Lagrangian, where the primal problem is

(1.1).

1.5 Abstract convexity

In the second part of the thesis we use abstract convexity for analyzing our

primal-dual scheme. In order to better understand our results we recall here

some basic definitions and results of abstract convexity. A detailed material

can be found in [55, 56].

Definition 1.5.1. Consider a nonempty set Z. Let H be a nonempty set of

(elementary) functions h : Z → R. A function f : Z → R is called abstract

convex with respect to H (or H-convex) if there exists a set U ⊂ H such that

f is the upper envelop of this set:

f(z) = sup{h(z) : h ∈ U} for all z ∈ Z.

Example 1.5.1. Let Z = Rn and take H := {〈·, w〉+c : c ∈ R, w ∈ Rn} (the

set of all affine functions defined in Rn). In this context a function f is H-

convex if and only if f is lower semicontinuous and convex (in the classical

definition); see [48, Theorem 12.1]. If H is the set of all linear functions

defined in Rn then f is H-convex iff it is a lower semicontinuous sublinear

function.

In the following we present this concept of abstract convexity involving a

coupling function. Let (Z,Ω) be a pair of nonempty sets, and take a coupling
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function ρ : Z × Ω→ R. Consider the following set of elementary functions

defined in Z:

Hρ := {ρ(·, w) + c : (w, c) ∈ Ω× R}.

Given a function g : Z → R+∞, the support of g with respect to Hρ is defined

by

Supp(g,Hρ) := {h ∈ Hρ : h ≤ g},

where h ≤ g means h(z) ≤ g(z) for all z ∈ Z. The Hρ-convex hull of g is

defined as

coHρg(z) := sup{h(z) : h ∈ Supp(g,Hρ)} for each z ∈ Z.

The function g is called abstract convex (or Hρ-convex) at z̄ iff

g(z̄) = coHρg(z̄).

A function g is abstract convex (with respect to Hρ) if and only if it is

abstract convex at all z ∈ Z.

Definition 1.5.2. Consider a function g : Z → R̄. Given ε ≥ 0, we say that

w ∈ Ω is an ε−abstract subgradient of g at z (with respect to ρ) if

g(z)− ρ(z, w) ≥ g(z)− ρ(z, w)− ε for all z ∈ Z. (1.11)

The set of ε−abstract subgradients of g at z, denoted by ∂ρ,εg(z), is the

ε−abstract subdifferential of g at z with respect to the coupling function

ρ. The 0−abstract subdifferential at z̄ is denoted by ∂ρg(z), and is called

abstract subdifferential.

The Fenchel-Moreau conjugate and biconjugate functions of g with res-

pect to the coupling function ρ are defined, respectively, by

gρ(w) = sup
z∈Z
{ρ(z, w)− g(z)}

and

gρρ(z) = sup
w∈Ω
{ρ(z, w)− gρ(w)}.
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It follows directly from this definition that

gρρ(z) ≤ g(z) for all z ∈ Z. (1.12)

1.5.1 Abstract Lagrangian

Now we present a general duality scheme in the framework of abstract convex

analysis. Let X,Z be general nonempty sets (usually with some topological

structure). Consider the primal problem:

minφ(x) s.t. x ∈ X. (1.13)

Assume that an element of Z, denoted by 0, satisfies ρ(0, w) = 0 for all w ∈ Ω.

Let f : X × Z → R̄ be a parameterization function for problem (1.13), that

is, f(x, 0) = φ(x). The perturbation function is β(z) = infx f(x, z). The

abstract Lagrangian related to ρ is defined by

`(x,w) = inf
z
{f(x, z)− ρ(z, w)},

the dual function q : Ω→ R̄ is given by

q(w) = inf
x
`(x,w),

and the dual problem is stated as

max q(w) s.t. w ∈ Ω.

Observing that

−βρ(w) = inf
z∈Z
{β(z)− ρ(z, w)} = q(w),

it follows that

βρρ(0) = sup
w∈Ω
{ρ(0, w)− βρ(w)} = sup

w∈Ω
q(w),
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where we used ρ(0, w) = 0. In particular, weak and strong duality are rewrit-

ten, respectively, as

βρρ(0) ≤ β(0) and βρρ(0) = β(0).

In this context strong duality is related to abstract convexity at 0 of the

function β with respect to the family of functions Hρ.

Let Z = Rm,Ω = Rm × R+ and X = Rn. Consider a convex augmenting

function σ, and take ρ(z, y, c) = 〈y, z〉 − cσ(z). In this context the abstract

Lagrangian is an augmented Lagrangian with convex augmenting function

presented in Section 1.4.

In the next proposition we relate ∂ρβ(0), Supp(β,Hρ), and dom βρ to the

dual function q.

Proposition 1.5.2. Take w̄ ∈ Ω. Then

i) w̄ ∈ ∂ρβ(0) if and only if q(w̄) = β(0);

ii) w̄ ∈ dom βρ if and only if there exists c ∈ R such that q(w̄) ≥ c, which

in turn is equivalent to ρ(·, w̄) + c ∈ Supp(β,Hρ).

Proof. Since weak duality holds, (i) follows from the following equivalences:

w̄ ∈ ∂ρβ(0) ⇔ β(z)− ρ(z, w̄) ≥ β(0) (∀ z ∈ Z)

⇔ inf
z
{β(z)− ρ(z, w̄)} ≥ β(0)

⇔ q(w̄) ≥ β(0).

Since q(w̄) = −βρ(w̄), (ii) follows from the following equivalences:

ρ(·, w̄) + c ∈ Supp(β,Hρ) ⇔ β(z) ≥ ρ(z, w̄) + c (∀ z ∈ Z)

⇔ β(z)− ρ(z, w̄) ≥ c (∀ z ∈ Z)

⇔ inf
z
{β(z)− ρ(z, w̄)} ≥ c

⇔ q(w̄) ≥ c.
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We describe now two approaches for studying augmented Lagrangians

type functions. The first one was proposed in [17] and the second one was

proposed in [66].

Let X,Z be Banach spaces. Consider a function s : R2 → R such that

s(0, 0) = 0 and for every a ∈ R and b1 ≥ b2, it satisfies

s(a, b1)− s(a, b2) ≥ ψ(b1 − b2), (1.14)

where ψ : R+ → R+ is a strictly increasing function such that ψ(0) = 0 and

ψ is coercive, that is, lim
t→∞

ψ(t) =∞.

Let {νη}η∈U1 be a family of upper semicontinuous functions defined in Z

satisfying

νη(0) = 0 for all η ∈ U1, (1.15)

and consider a family of augmenting functions {σµ}µ∈U2 defined in Z and

having a valley at zero property, that is, for every µ ∈ U2, σµ : Z → R+ is

proper, w-lsc and satisfies

σµ(0) = 0 and inf
z∈V c

σµ(z) > 0, (1.16)

for every open neighborhood V ⊂ Z of 0.

The coupling function ρ considered in [17] is given by

ρ(z, (η, µ), r) = s(νη(z),−rσµ(z)).

In this context the abstract Lagrangian is

l(x,w) = l(x, η, µ, r) = inf
z∈Z
{f(x, z)− s(νη(z),−rσµ(z))}

The corresponding dual function is q(η, µ, r) = infx l(x, η, µ, r) and the dual

problem is stated as

max q(η, µ, r) s.t. (η, µ, r) ∈ U1 × U2 × R+.

In order to describe the second approach studied in [66], consider a cou-

pling function p : Rm × Rm × R++ → R such that p(z, y, ·) is differentiable.



CHAPTER 1. BACKGROUND AND PRELIMINARIES 27

The dual scheme studied in [66] is constructed via the following nonlinear

Lagrangian type function (taking p = −ρ)

l(x, y, r) = inf
z
{f(x, z) + p(y, z, r)},

where the coupling function p has the following valley at zero type property:

There exists α ∈ [0, 1) such that, for every ε > 0 and y ∈ Rm,

inf
‖u‖≥ε,τ≥ε

ταp′r(u, y, τ) > 0.

This property was introduced in [65, Section 3.1] for an inequality cons-

trained problem in finite dimensional spaces.

In [17, 66] the authors study the zero duality gap property, exact penalty

representations and optimal paths. We present now the latter concept.

Recall that the calculation of the dual function leads to the following

problem:

inf{f(x, z)− ρ(z, y, r) : (x, z) ∈ X × Z}. (1.17)

Definition 1.5.3. Let I ⊂ R+ be unbounded above, and for each r ∈ I take

εr ≥ 0. The set {(xr, zr)}r∈I ⊂ X×Z is called a sub-optimal path of problem

(1.17) if

f(xr, zr)− ρ(zr, y, r) ≤ q(y, r) + εr (1.18)

for all r ∈ I. When (xr, zr) satisfies (1.18) with εr = 0 for all r ∈ I, the set

{(xr, zr)}r∈I is called an optimal path.

We mention that it is usual to consider I = R+. In [17] the authors stu-

died only optimal paths (i.e., the minimization (1.18) is carried out exactly).

1.6 Modified subgradient algorithm-MSg

In this section we recall some preliminary material on a modified subgradi-

ent algorithm proposed by Gasimov [23] for solving the dual problem gene-

rated by sharp Lagrangian. Gasimov considered a deflected direction which
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guarantees that the algorithm is an ascent method. It is well known that

subgradient method, in general, when applied to a maximization of a con-

cave function over a convex set, is not an ascent method. The results of

Gasimov was improved in [12] and an inexact version of MSg was proposed

in [14]. Before presenting the modified subgradient algorithm we recall a

general subgradient method.

Consider the optimization problem

minimize g(x) s.t. x ∈ Rn, (1.19)

where g : Rn → R is a convex function. Denote by ḡ := inf
x∈Rn

g(x).

Recall that the subdifferential of a convex function g at x0 ∈ domg is

defined by

∂g(x0) := {v : g(x) ≥ g(x0) + 〈v, x− x0〉, for all x ∈ Rn}.

An element of ∂g(x0) is a subgradient of g at x0. The superdifferential of a

concave function q at y0 ∈ dom q is the set

∂q(y0) := {−v : v is a subgradient of the convex function − q at y0}.

The subgradient method is an iterative method of the form

xk+1 = xk − skuk, (1.20)

where x0 is an arbitrary initial point, uk ∈ ∂g(xk) and sk ≥ 0 is a stepsize

parameter. If at some iteration-j, the subgradient direction is 0 then the

method stops. In such a situation, it follows from the subgradient inequality

that xj is a solution of the problem (1.19). Therefore for the convergence

results of the method is assumed that uk 6= 0 for all k. Some well known

stepsize rules for the subgradient method are:

• Diminishing stepsize rule:

{sk‖uk‖} converges to zero, and
∑
k

sk =∞;
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• Polyak’s (or dynamic) stepsize rule:

sk = γk
g(xk)− ḡ
‖uk‖2

, with 0 < δ ≤ γk ≤ 2− δ.

It is well known that the diminishing stepsize rule, although simple, it

makes the method slow in general. One of the reasons is that no information

during the process of the algorithm is used. However, in some applications,

it is very difficult and expensive to obtain informations of the problem at

hand, for example in large scale optimization problems. Therefore for such

problems, simple rules as constant (sk = s for all k, with s ∈ R+) and

diminishing stepsizes are convenient and many strategies are used in order

to overcome some drawbacks of the method [36, 39] and references therein.

The Polyak’s stepsize rule is better than diminishing stepsize when one has

some“a priori” knowledge of the optimal value. In practice, in the case

that the optimal value is not known, some strategies can be considered in

such a way that significant convergence results of the method are obtained

[32, 46]. One approach proposed in the literature in order to avoid the

optimal value used in the Polyak’s stepsize rule, is a variable target value

[32]. Many variants and strategies to improve subgradient methods have been

proposed and analyzed in the literature, see [11, 32, 36] and references therein.

One of the main variant of subgradient methods is the“bundle method”.

This method is the main tool for solving a nonsmooth convex optimization

problem and much research has been done in order to improve or adapt it

to some particular applications. We will not deal with bundle methods in

this thesis; we refer the reader interested on this method to [10, 31, 34] and

references therein.

It is usual to consider a normalized direction in the subgradient method:

xk+1 = xk − sk
uk
‖uk‖

, (1.21)

where uk ∈ ∂g(xk) and uk 6= 0. In the following, we state some of the well

known convergence results for subgradient methods.
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Proposition 1.6.1. Consider the optimization problem (1.19).

a) The sequence {xk} generated by the subgradient method (1.20) satisfies

lim inf
k→∞

g(xk) = ḡ.

b) Assume that the solution set of the problem (1.19) is nonempty, and

the stepsize satisfy
∞∑
k=1

sk = ∞ and
∞∑
k=1

s2
k < ∞. Then {xk} generated

by the subgradient method (1.21) converges to a solution of (1.19).

Proof. See [33, Propositions 1.2 and 5.1].

Proposition 1.6.2. Assume that the solution set of the problem (1.19) is

nonempty. Then the sequence {xk} generated by the subgradient method

(1.20) with Polyak’s stepsize rule converges to a solution of (1.19).

Proof. See [11, Theorem 2.4].

In the following we state the modified subgradient algorithm. This algo-

rithm is used to solve the dual problem of an equality constrained optimiza-

tion problem (1.1). It was proposed by Gasimov [23]. We use the notation

A(y, c) := Argmin
x∈K

`(x, y, c), (1.22)

where `(x, y, r) = f(x)− 〈λ, h(x)〉+ c‖h(x)‖ is the sharp Lagrangian.

The dual function is given by q(y, c) = min
x∈K

`(x, y, c). The dual problem is

max q(y, c) s.t. (y, c) ∈ Rm × R+.

We mention that the set A(y, c) is nonempty for all (y, c) ∈ Rm×R+, because

the function `(·, y, c) is lower semicontinuous for all (y, c) ∈ Rm × R+, and

K is a compact set.
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Modified Subgradient Algorithm-MSg:

Step 0. Choose (y0, c0) ∈ Rm × R+, {αk} ⊂ R++, and set k := 0.

Step 1 (Subproblem and stopping criterion)

a) Find xk ∈ A(yk, ck),

b) if h(xk) = 0 stop,

c) if h(xk) 6= 0, go to Step 2.

Step 2 (Stepsize selection and update of dual variable)

Take sk > 0 a stepsize and update the dual variables,

yk+1 := yk − skh(xk),

ck+1 := ck + (1 + αk)sk‖h(xk)‖.
Set k = k + 1 and go to Step 1.

In [23], Gasimov showed that MSg generates a monotonic increasing se-

quence of dual values, that is, q(yk+1, ck+1) > q(yk, ck). The stepsize selection

rule considered in [23] is a dynamic stepsize, more precisely, sk is chosen as

sk =
q̄ − qk

5‖h(xk)‖2
, (1.23)

where q̄ is the dual optimal value and qk = q(yk, ck). [23] showed that {qk}
converges monotonically to q̄ when the dual optimal solution is nonempty.

The sequence {εk} with εk := αksk, is chosen satisfying εk < sk for all k.

In [12] the authors improved the results of [23] relaxing the choice for the

stepsize and proving that MSg generates a dual sequence which converges to a

dual solution when the dual solution set is nonempty. An example presented

in [12] shows that the primal sequence {xk} generated by MSg can converge

to a point which is not a primal solution. In order to solve this inconvenient,

they propose an auxiliary sequence {x̃k} such that x̃k ∈ A(yk, ck + β) for all

k and some β > 0, and establish optimality of all accumulation points of this

sequence. However this auxiliary sequence has an extra cost. We show, in

a more general setting, in Proposition 4.3.5 that this auxiliary sequence has

finite termination, that is, there exists k̄ such that x̃k̄ is a primal solution.
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For further use and for the sake of completeness, we prove now two results

related to MSg. The first one establishes the relation between the minimiza-

tion implicit in A(y, c) (defined in (1.22)) and the superdifferential ∂q(y, c).

The second one shows that MSg is an ascent method. The proofs of these

results are very similar to the ones given in [23]. In Chapter 3 we prove these

results in a more general setting.

Theorem 1.6.3. The following results hold for MSg.

a) If x̂ ∈ A(ŷ, ĉ), then (−h(x̂), ‖h(x̂)‖) ∈ ∂q(ŷ, ĉ).

b) If the sequence {αk} is bounded, then MSg generates a dual bounded

sequence {(yk, ck)} if and only if
∑

k sk‖h(xk)‖ < +∞.

c) If MSg stops at the k−th iteration, then xk is an optimal primal solution,

and (yk, ck) is an optimal dual solution.

Proof. a) For all (y, c) ∈ Rm × R++ we have

q(y, c) = min
x∈K
{f(x)− 〈h(x), y〉+ c‖h(x)‖}

≤ f(x̂)− 〈h(x̂), y〉+ c‖h(x̂)‖

= f(x̂)− 〈h(x̂), ŷ〉+ ĉ‖h(x̂)‖+ 〈−h(x̂), y − ŷ〉+ (c− ĉ)‖h(x̂)‖.
(1.24)

Using that x̂ ∈ A(ŷ, ĉ) in (1.24), we obtain

q(y, c) ≤ q(ŷ, ĉ) + 〈−h(x̂), y − ŷ〉+ (c− ĉ) ‖h(x̂)‖

= q(ŷ, ĉ) + 〈(−h(x̂), ‖h(x̂)‖), (y, c)− (ŷ, ĉ)〉.

That is, (−h(x̂), ‖h(x̂)‖) ∈ ∂q(ŷ, ĉ).
b) Since {αk} is bounded, the equivalence follows from the expressions:

‖yk+1 − y0‖ ≤
k∑
j=0

‖yj+1 − yj‖ =
k∑
j=0

sj‖h(xj)‖, (1.25)

ck+1 − c0 =
k∑
j=0

cj+1 − cj =
k∑
j=0

(αj + 1)sj‖h(xj)‖. (1.26)
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c) Example 1.4.5 shows that the sharp Lagrangian is an augmented La-

grangian with convex augmenting function. Therefore, it follows from Theo-

rem 1.4.2 that mp = md. If MSg stops at iteration k, then h(xk) = 0. Hence

md = mp ≤ f(xk) = f(xk)− 〈yk, 0〉+ ck‖0‖ = q(yk, ck) ≤ mp,

which implies that md = q(yk, ck), and f(xk) = mp. That is to say, xk is

an optimal primal solution, and (yk, ck) is an optimal dual solution. The

theorem is proved.

Theorem 1.6.4. Consider the primal problem (1.1). Assume that f is a

lower semicontinuous function, h is a continuous function and K is a com-

pact set. Let {(yk, ck)} be the sequence generated by MSg. If (yk, ck) is not a

dual solution, then q(yk+1, ck+1) > q(yk, ck).

Proof. The assumptions imply that for any (yj, cj) there exists xj ∈ A(yj, cj),

that is q(yj, cj) = f(xj)− 〈h(xj), yj〉+ cj‖h(xj)‖. Let εk := αksk. Therefore

q(yk+1, ck+1) = min
x∈K
{f(x)− 〈h(x), yk+1〉+ ck+1‖h(x)‖}

= f(xk+1)− 〈h(xk+1), yk+1〉+ ck+1‖h(xk+1)‖

= f(xk+1)− 〈h(xk+1), yk〉+ ck‖h(xk+1)‖+

(sk + εk)‖h(xk)‖‖h(xk+1)‖+ sk〈h(xk+1), h(xk)〉

≥ q(yk, ck) + (sk + εk)‖h(xk)‖‖h(xk+1)‖+ sk〈h(xk+1), h(xk)〉.

Using Cauchy-Schwarz inequality we obtain

q(yk+1, ck+1) ≥ q(yk, ck) + εk‖h(xk)‖‖h(xk+1)‖. (1.27)

If h(xk+1) = 0, then (yk+1, ck+1) is a dual solution, by Theorem 1.6.3 (c). In

particular q(yk+1, ck+1) > q(yk, ck), because (yk, ck) is not a dual solution, by

assumption. Therefore assume that h(xk+1) 6= 0. Since (yk, ck) is not a dual

solution, it follows that h(xk) 6= 0. From (1.27) we obtain that

q(yk+1, ck+1) > q(yk, ck),

because εk > 0 and h(xk), h(xk+1) 6= 0. The result follows.
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Remark 1.6.5. We mention that the results in Theorems 1.6.3, 1.6.4 do not

depend on the choice of the stepsize sk.

The next theorem is one of the main convergence results of MSg presented

in [12]. For its proof, see [12, Theorem 10].

Theorem 1.6.6. Consider the equality constrained problem (1.1), where f

and h are continuous function and K is a compact set. Assume that the

stepsize sk in MSg satisfies

η(q̄ − qk)
‖h(xk)‖2

< sk <
2(q̄ − qk)
‖h(xk)‖2

with η ∈ (0, 2).

Suppose also that the dual optimal solution is nonempty. Then:

i) the dual sequence {(yk, ck)} converges to a dual solution;

ii) the sequence {q(yk, ck)} converges to the optimal dual value;

iii) all accumulation points of the auxiliary sequence {x̃k} are solutions of

the primal problem (1.1).

In [14] an inexact version of MSg was proposed and analyzed. They

allowed that the subproblems are solved inexactly. More precisely, the sub-

problems are solved with possibly some errors rk satisfying

`(xk, yk, ck) ≤ q(yk, ck) + rk. (1.28)

[14] assumes the following conditions on the stepsize:

a1) sk ≥
η(q̄ − qk) + θrk
‖h(xk)‖2

for some θ, η > 0, and for all k;

a2) the sequence {sk‖h(xk)‖} is bounded.

With this stepsize rule, similar results of the exact version studied in [12]

are obtained in [14]. We denote by IMSg the inexact version of MSg. One of

their main convergence results is:
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Theorem 1.6.7. [14, Theorem 4.2] Assume that the dual optimal solution set

is nonempty. Let {xk} and {(yk, ck)} be generated by IMSg satisfying (1.28).

Suppose that conditions (a1) and (a2) hold. Then the sequence {(yk, ck)}
generated by IMSg converges to a dual solution. In particular, {qk} tends to

q̄ and {rk} tends to 0. Moreover, if {xk} has an accumulation point x̄ such

that h(x̄) = 0, then x̄ is a primal solution.

We emphasize that Theorem 1.6.6 and Theorem 1.6.7 hold in finite di-

mensional spaces and assume that the dual optimal solution set is nonempty.

In the next chapter we propose a simple stepsize selection rule for MSg with

sharp Lagrangian. We show that our stepsize rule ensures primal convergence

even when the optimal dual solution is empty. In Chapter 3 we propose an

inexact version of this algorithm for a broader class of augmented Lagrangians

in infinite dimensional space. We obtain similar results as the ones obtained

for the sharp Lagrangian in Chapter 2.

1.7 Subdifferential of the maximum of con-

vex functions

For completing this chapter we present a characterization of the subdifferen-

tial of the maximum of convex functions. We use the following notation: X

is a Banach space and X∗ its topological dual. Given a set C ⊂ X∗, we

denote its closure in the weak ∗ topology by C
w∗

. We denote the convex hull

of C by

co(C) :=

{
k∑
j=1

αjcj |
k∑
j=1

αj = 1, cj ∈ C and k ∈ N

}
.

Consider a nonempty set S and convex functions fs : X → R with s ∈ S.

Let f be a convex function given by

f(x) = max
s∈S

fs(x), x ∈ X. (1.29)



CHAPTER 1. BACKGROUND AND PRELIMINARIES 36

We set

S(x̄) := {s ∈ S | fs(x̄) = f(x̄)}.

Theorem 1.7.1. Let S be a compact Hausdorff space. For any s ∈ S, let

fs : X → R be convex on X and continuous at x̄ ∈ X. Assume further that

there exists a neighborhood U of x̄ such that for every z ∈ U , the functional

s 7→ fs(z) is upper semicontinuous on S. Then the function f : X → R
defined by (1.29) satisfies

∂f(x̄) = cow∗

 ⋃
s∈S(x̄)

∂fs(x̄)

 .

Proof. The proof of this result can be found in [59, Proposition 4.5.2].



Chapter 2

Modified subgradient algorithm

with sharp Lagrangian

In this chapter we consider an optimization problem with equality con-

straints. We construct a dual problem via a sharp Lagrangian. In order

to solve the dual problem, we use a modified subgradient algorithm. We pro-

pose two stepsize rules. The first one guarantees that all the accumulation

points of a primal sequence generated by the algorithm, without extra cost,

are primal solutions. The dual sequence converges to a dual solution when

the dual solution set is nonempty. The second stepsize rule assures that the

algorithm finds a primal-dual solution after a finite number of iterations when

the dual solution set is nonempty. In Chapter 3 we will present a generaliza-

tion of the results of this chapter in several directions (like inexact solution

of the subproblems and infinite dimensional spaces). We have chosen to keep

this chapter for the sake of clarity of the exposition, and also because have

been useful as an introduction to the more involved material of Chapter 3.

This chapter is organized as follows. We start by recalling the primal

dual problem via sharp Lagrangians. In Section 2.2 we state and analyze a

first version of the modified subgradient algorithm. In this section we also

establish the main results of this chapter Theorem 2.2.6 and Theorem 2.2.7.

37



CHAPTER 2. MSg WITH SHARP LAGRANGIAN 38

In Section 2.3 we present a stepsize selection rule which ensures that the

sequence generated by the algorithm reaches a primal-dual solution after a

finite number of iterations. By means of a simple example, we show in Section

2.4 that the stepsize used in [23] may not have primal convergence, while our

stepsize produces a primal solution in a finite number of steps. The issue of

finite convergence is discussed in detail in Remark 2.4.4 at the end of Section

2.4.

The results of this chapter is accepted for publication, see [16].

2.1 Introduction

We consider the nonlinear (primal) optimization problem

minimize f(x) s.t. x in K, h(x) = 0, (P)

where f : Rn → R, is lower semicontinuous, h : Rn → Rm is continuous and

K ⊂ Rn is compact. We consider the sharp Lagrangian

L(x, y, c) := f(x)− 〈y, h(x)〉+ c‖h(x)‖. (2.1)

Associated with the sharp Lagrangian we consider the dual function

q : Rm × R+ → R defined by

q(y, c) = inf
x∈K

L(x, y, c)

and the dual augmented problem given by

maximize q(y, c) s.t (y, c) in Rm × R+. (D)

The primal and dual optimal values are denoted, respectively, by mp and md.

Example 1.4.5 shows that the sharp Lagrangian (2.1) is an augmented La-

grangian with convex augmenting function, presented in Section 1.4. There-

fore, it follows from Theorem 1.4.2 that zero duality gap property holds for

the primal and dual problems (P) and (D), that is mp = md.
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The fact that in our approach the penalty parameter c is a dual variable,

together with the use of a sharp Lagrangian, has some interesting conse-

quences on the structure of the dual solution set D∗, improving upon the

result: (y, c) ∈ D∗ ⇒ (y, t) ∈ D∗, for all t > s; see Proposition 1.4.1(ii).

Proposition 2.1.1. Take (y∗, c∗) ∈ D∗, ρ > 0, and define

∆ρ = {(y, c) : ‖y − y∗‖ ≤ ρ, c ≥ c∗ + ρ}.

Then ∆ρ ⊂ D∗ for all ρ > 0.

Proof. Take (y, c) ∈ ∆ρ. By assumption q(y∗, c∗) = md. Therefore,

q(y, c) = inf
x∈K
{f(x)− 〈h(x), y〉+ c‖h(x)‖}

= inf
x∈K
{f(x)− 〈h(x), y∗〉+ c∗‖h(x)‖+

(c− c∗)‖h(x)‖ − 〈h(x), y − y∗〉}

≥ inf
x∈K
{f(x)− 〈h(x), y∗〉+ c∗‖h(x)‖+ (c− c∗ − ‖y − y∗‖)‖h(x)‖}

≥ inf
x∈K
{f(x)− 〈h(x), y∗〉+ c∗‖h(x)‖+ (c− c∗ − ρ)‖h(x)‖}

≥ inf
x∈K
{f(x)− 〈h(x), y∗〉+ c∗‖h(x)‖} = q(y∗, c∗) = md,

(2.2)

where we used Cauchy-Schwarz inequality in the first inequality, the fact that

‖y − y∗‖ ≤ ρ in the second one, and the fact that c ≥ c∗+ρ in the third one.

We conclude from (2.2) that q(y, c) = md and so (y, c) ∈ D∗, proving that

∆ρ ⊂ D∗.

Corollary 2.1.2. If (y∗, c∗) ∈ D∗ then {(0, c) : c ≥ c∗ + ‖y∗‖} ⊂ D∗.

Proof. The proof follows from Proposition 2.1.1, taking ρ = ‖y∗‖.

We recall that given a concave function q : Rp → R, the superdifferential

of q at y0 ∈ Rp is the set ∂q(y0) defined by

∂q(y0) := {z ∈ Rp : q(y) ≤ q(y0) + 〈z, y − y0〉 ∀y ∈ Rp}.
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We mention that the set ∂q(y0) is called subdifferential in [12, 14, 23].

Since q(·) is concave, we prefer our notation in order to avoid any confusion

between the set above and the subdifferential of a convex function, where

the inequality is reversed. However, we still call the algorithm a subgradient

algorithm, instead of a supergradient algorithm. Consider the following set

A(y, c) = {x ∈ K ⊂ Rn : L(x, y, c) = q(y, c)}. (2.3)

Note that A(y, c) = Argminx∈K L(x, y, c). Since K is compact, f is a lsc

function and h is a continuous function, we have that L(·, y, c) is a lsc function

for all (y, c) ∈ Rm × R+, and A(y, c) is nonempty for all (y, c) ∈ Rm × R+.

Thus, we have q(y, c) > −∞, for all (y, c) ∈ Rm × R+, and also mP > −∞.

In particular, since by Proposition 1.4.1(ii) the dual function q is concave, we

conclude also that q is continuous (note that q can be extended in a natural

way to Rm × R, preserving its concavity). Next we state our first version of

the Modified Subgradient Algorithm (MSg-1).

2.2 Algorithm 1

Step 0. Choose (y0, c0) ∈ Rm×R+, and exogenous parameters, {αk} ⊂ R++.

Also fix β ≥ η > 0. Set k := 0.

Step 1 (Subproblem and stopping criterion)

a) Find xk ∈ A(yk, ck),

b) if h(xk) = 0 stop,

c) if h(xk) 6= 0, go to Step 2.

Step 2 (Stepsize selection and update of dual variable)

Set ηk := min{η, ‖h(xk)‖}, βk := max{β, ‖h(xk)‖};

choose sk in [ηk, βk] and update the variables,

yk+1 := yk − skh(xk),

ck+1 := ck + (1 + αk)sk‖h(xk)‖.

Set k = k + 1 and go to Step 1.
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Remark 2.2.1. Note that [η, β] ⊂ [ηk, βk]. In particular, if we consider

η = β then we see that constant stepsizes (sk = η, for all k) are acceptable.

Another simple choice for the stepsize is sk := ‖h(xk)‖.

Remark 2.2.2. The parameter εk := αksk (which “modifies” the classical

subgradient step) was proposed by Gasimov in [23]. It ensures that the dual

values are strictly increasing. It is well known that pure subgradient methods

(i.e., when αk = 0 for all k) in general do not have this property. This is

a special characteristic of this modified subgradient algorithm. The stepsize

selection rule given above has not been considered in [12, 14, 23, 24]. In all

these references, some knowledge of the optimal value is required (see, for

instance Section 1.6 in Chapter 1).

It follows from Theorem 1.6.3 that if MSg-1 stops at iteration k (that

is, h(xk) = 0), then xk is a primal solution and (yk, ck) is a dual solution.

Therefore, from now on we assume that h(xk) 6= 0 for all k, which means

that the algorithm produces an infinite primal-dual sequence.

The next result provides an estimate which is essential for proving our

main result. We will use in the sequel the following notation: qk := q(yk, ck),

q̄ := md.

Lemma 2.2.3. The following estimate is satisfied for all k ≥ 1,

max{q0 + (
k−1∑
j=0

αjsj‖h(xj)‖)‖h(xk)‖, f(xk)− 〈y0, h(xk)〉} ≤ qk. (2.4)

Proof. It is easy to see that yk = y0 −
k−1∑
j=0

sjh(xj) . Therefore we have

〈yk, h(xk)〉 = 〈y0, h(xk)〉 −
k−1∑
j=0

sj〈h(xj), h(xk)〉

≤ 〈y0, h(xk)〉+
k−1∑
j=0

sj‖h(xj)‖‖h(xk)‖,
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using Cauchy-Schwarz inequality. Hence

qk = f(xk)− 〈yk, h(xk)〉+ ck‖h(xk)‖

≥ f(xk)− 〈y0, h(xk)〉+ (ck −
k−1∑
j=0

sj‖h(xj)‖)‖h(xk)‖.
(2.5)

On the other hand, a simple manipulation in (1.26) gives

ck −
k−1∑
j=0

sj‖h(xj)‖ = c0 +
k−1∑
j=0

αjsj‖h(xj)‖ ≥ 0. (2.6)

Using (2.6) in (2.5) we obtain

qk ≥ f(xk)− 〈y0, h(xk)〉+ c0‖h(xk)‖+
k−1∑
j=0

αjsj‖h(xj)‖‖h(xk)‖

≥ max{f(xk)− 〈y0, h(xk)〉, q0 +
k−1∑
j=0

αjsj‖h(xj)‖‖h(xk)‖}.

The result follows.

Lemma 2.2.4. Consider the sequence {(yk, ck)} generated by MSg-1. If {ck}
is bounded then {yk} is bounded. If the dual optimal set is nonempty, the

converse of the last statement also holds.

Proof. The first statement follows directly from (1.25) and (1.26). For pro-

ving the second statement, suppose that {yk} is bounded and take a dual

solution (ȳ, c̄). The supergradient inequality yields

q(ȳ, c̄) ≤ q(yk, ck)− 〈h(xk), ȳ − yk〉+ (c̄− ck)‖h(xk)‖,

and therefore

ck ≤
q(yk, ck)− q(ȳ, c̄)
‖h(xk)‖

+ ‖yk − ȳ‖+ c̄,

using Cauchy Schwarz inequality. Since (ȳ, c̄) is a dual solution we get that

ck ≤ ‖yk − ȳ‖+ c̄.

Therefore, since {yk} is bounded, we conclude that {ck} is bounded. The

result follows.
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Next, we establish convergence for a stepsize which is more general than

the one used in Step 2 of MSg-1. Indeed, we prove convergence for stepsizes

sk ∈ [ηk, β̄k] for all k, where β̄k ≥ βk. More precisely, we make the following

assumption.

(A1) : There exist k̂ > 0 such that

ηk ≤ sk ≤ βk +
2(q̄ − qk)
‖h(xk)‖2

=: β̄k for all k > k̂.

Remark 2.2.5. At least from the theoretical point of view, the step (A1)

is an improvement over the stepsizes used in [12, 23]. Indeed, the step (A1)

ensures primal and dual convergence, while in [12, 23] only dual convergence

results hold, and primal convergence is proved only for an auxiliary primal

sequence in [12]. In fact in [12, Example 1], the authors presented an op-

timization problem for which the MSg with their stepsize rule produces a

primal sequence convergent to a point which is not a primal solution. We

will see later on that the step (A1) guarantees that all the accumulation

points of the primal sequence generated by MSg-1 are primal solutions (see

Theorem 2.2.6). The dual optimal value considered in Assumption (A1) is

just for enlarging the interval where the stepsizes can be chosen. It is clear

that the interval [ηk, βk] considered at iteration k in Step 2 of MSg-1, is con-

tained in the interval [ηk, β̄k], and sk can be chosen in [ηk, βk] without the

knowledge of the dual optimal value.

From now on we take {αk} ⊂ (0, α) for some α > 0. Next we establish

our main convergence results.

Theorem 2.2.6. If the dual optimal set is nonempty then the following state-

ments hold.

i) Algorithm MSg-1 generates a bounded dual sequence.

ii) {h(xk)} converges to zero and {qk} converges to q̄.

iii) All accumulation points of {(yk, ck)} are dual solutions.
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iv) All accumulation points of {xk} are primal solutions.

Proof. For proving (i), note that if {ck} is bounded then {(yk, ck)} is bounded

by Lemma 2.2.4. Thus it suffices to prove that {ck} is bounded. Suppose,

for the sake of contradiction, that {ck} is unbounded. By monotonicity of

{ck} we have that

lim
k→∞

ck =∞. (2.7)

Observe that by continuity of h and compactness of K, we have that

sup
k
‖h(xk)‖ := b <∞,

in particular {βk} is bounded. Consider β̂ such that βk ≤ β̂ for all k. Take

k̂ as in Assumption (A1). In view of (2.7), there exists k0 > k̂ such that

ck ≥ c̄+
β̂b

2
, for all k ≥ k0. Take (ȳ, c̄) ∈ D∗. Denote dj = ‖ȳ − yj‖ for all j.

For each k ≥ k0 we can write

d2
k+1 = ‖ȳ − (yk − skh(xk))‖2

= d2
k + s2

k‖h(xk)‖2 + 2sk〈ȳ − yk, h(xk)〉

≤ d2
k + s2

k‖h(xk)‖2 + 2sk [qk − q̄ + ‖h(xk)‖(c̄− ck)]

(2.8)

using the update of the dual variables in the first equality, and the super-

gradient inequality in the inequality. Rearranging the right-hand side of the

expression above, and using Assumption (A1), we obtain

d2
k+1 ≤ d2

k + sk[sk‖h(xk)‖2 + 2(qk − q̄)] + 2sk‖h(xk)‖(c̄− ck)

≤ d2
k + skβk‖h(xk)‖2 + 2sk‖h(xk)‖(c̄− ck)

= d2
k + sk‖h(xk)‖(βk‖h(xk)‖+ 2c̄− 2ck)

≤ d2
k + sk‖h(xk)‖(β̂b+ 2c̄− 2ck),

(2.9)

using the definition of b in the last inequality. Therefore,

‖ȳ − yk+1‖2 ≤ ‖ȳ − yk‖2 + sk‖h(xk)‖(β̂b+ 2c̄− 2ck). (2.10)



CHAPTER 2. MSg WITH SHARP LAGRANGIAN 45

The expression between parentheses in (2.10) is negative by definition of k0.

Hence, we obtain

‖yk+1 − ȳ‖ ≤ ‖yk − ȳ‖ ≤ ‖yk0 − ȳ‖, for all k ≥ k0. (2.11)

Thus, {yk} is bounded, and by Lemma 2.2.4 we conclude that {(yk, ck)} is

bounded, in contradiction with (2.7), and hence (i) holds. Moreover, we have

that
∑

k sk‖h(xk)‖ < ∞, by Theorem 1.6.3(b). In particular {sk‖h(xk)‖}
converges to zero. On the other hand, by the first inequality in assumption

(A1) we have that

sk‖h(xk)‖ ≥ ηk‖h(xk)‖ > 0 for all k ≥ k̂, (2.12)

where ηk = min{η, ‖h(xk)‖}. Hence we obtain from (2.12) that {h(xk)}
converges to zero. We are going to prove (ii) and (iv) simultaneously. Since

{xk} ⊂ K and K is compact, {xk} is bounded. Take an accumulation point

x̄ of {xk}. Suppose that {xkj} converges to x̄. By lower semi-continuity of

f , and Lemma 2.2.3, we obtain

f(x̄) ≤ lim inf
j

(
f(xkj)− 〈y0, h(xkj

)
〉) ≤ lim inf

j
qkj ≤ q̄ = mp, (2.13)

using also the fact that {h(xkj)} converges to zero. On the other hand,

by continuity of h we have that h(x̄) = 0. Therefore, we conclude from

(2.13) that x̄ is a primal solution. In particular, all inequalities in (2.13) are

equalities and then lim inf qkj = q̄. Since {qk} is increasing by Theorem 1.6.4,

we get that {qk} converges to q̄, and we have thus proved (ii) and (iv). For

proving (iii), take a subsequence {(ykj , ckj)}j converging for some (ŷ, ĉ). By

upper-semicontinuity of q (Proposition 1.4.1(i)), we get

q(ŷ, ĉ) ≥ lim sup
j

q(ykj , ckj) = lim
j
qkj = q̄,

using the fact that {qk} converges to q̄ by (ii). Hence we have that (ŷ, ĉ) is

a dual solution. This proves (iii), and the theorem follows.
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Theorem 2.2.6 presents convergence results for the primal and dual se-

quences generated by Algorithm MSg-1 assuming the existence of an optimal

dual solution. The next theorem ensures convergence of the primal sequence

generated by MSg-1 even when the dual solution set is empty. This is very

important, because in general, it is not possible to know “a priori” whether

the dual solution set is nonempty. Also, in our dual formulation, which in-

cludes the penalty parameter c as a dual variable, optimal dual solutions

exist only when the problem admits exact penalization and some problems

fail to enjoy this property.

Theorem 2.2.7. Assume that α̂ := inf
k
αk > 0. Then {h(xk)} converges

to zero and {qk} converges to q̄. Moreover, all accumulation points of the

primal sequence {xk} are primal solutions.

Proof. By monotonicity of the sequence {ck}, either it goes to infinite, or it

converges to some ĉ. In the second case, we have that {ck} is bounded, there-

fore by Lemma 2.2.4 we get that {(yk, ck)} is also bounded. Hence repeating

the proof of Theorem 2.2.6 (ii), (iii) and (iv) we get that the dual solution

set is nonempty (observe that in Theorem 2.2.6 we use the nonemptiness of

the dual solution set just for ensuring the boundedness of the dual sequence).

Thus, in this case (i.e., when {ck} is bounded) the theorem is proved. So we

just need to consider the case in which {ck} goes to infinite. In this case, by

Theorem 1.6.3(b),
∑
j

sj‖h(xj)‖ = ∞. On the other hand, by Lemma 2.2.3

we obtain that

α̂

(
k−1∑
j=0

sj‖h(xj)‖

)
‖h(xk)‖ ≤

(
k−1∑
j=0

αjsj‖h(xj)‖

)
‖h(xk)‖ ≤ qk−q0 ≤ q̄−q0.

(2.14)

Note that q̄ < ∞ and
∑
j

sj‖h(xj)‖ = ∞. Therefore we conclude that

{h(xk)} converges to zero. The proof of the remaining statements follows

the same steps as in (ii) and (iv) of Theorem 2.2.6.
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The following corollary establishes the equivalence between the bounded-

ness of the dual sequence and the existence of dual solutions. A similar result

was obtained in [12, 14].

Corollary 2.2.8. The dual sequence {(yk, ck)} generated by MSg-1 is bounded

if and only if the dual optimal solution set is nonempty.

Proof. If the dual optimal set is nonempty, then Theorem 2.2.6 (i) ensures

that {(yk, ck)} is bounded. For proving the converse statement, we just note

that in the proof of Theorem 2.2.6, we only use the existence of a dual solution

for ensuring boundedness of the dual sequence. Thus, if we assume that the

dual sequence is bounded, we can repeat the proof of Theorem 2.2.6(ii) and

(iii), and prove that the dual optimal set is nonempty. The result follows.

In Theorem 2.2.6 we proved that all accumulation points of the dual

sequence {(yk, ck)} generated by MSg-1 are optimal solutions. Since the

dual problem is convex and we are applying a subgradient method, we should

expect convergence of the whole sequence. The next proposition establishes

this result.

Proposition 2.2.9. Take the dual sequence {(yk, ck)} generated by MSg-1,

and assume that 0 < αk < α < ∞. If D∗ is nonempty, then {(yk, ck)}
converges to a dual solution.

Proof. Since D∗ is nonempty, it follows from Theorem 2.2.6 that {(yk, ck)}
is bounded. In particular {yk} and {ck} are bounded. Take an accumula-

tion point (ȳ, c̄) of {(yk, ck)}. It follows that (ȳ, c̄) belongs to D∗ (Theorem

2.2.6(iii)). Since {ck} is increasing and bounded, it converges to c̄. There-

fore we just need to prove that {yk} converges to ȳ. Consider a subsequence

{ykj}j converging to ȳ. Using the same calculations as in (2.10), we obtain

‖ȳ − yk+1‖2 ≤ ‖ȳ − yk‖2 + β̃sk‖h(xk)‖, (2.15)
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where β̃ := β̂b + 2c̄, with b and β̂ as in the proof of Theorem 2.2.6. On the

other hand, since {(yk, ck)} is bounded, we have that
∑
sk‖h(xk)‖ <∞, by

Theorem 1.6.3. Therefore, given an arbitrary ε > 0, there exists k0 sufficiently

large such that ∑
k>k0

sk‖h(xk)‖ <
ε

2β̃
.

Since {ykj}j converges to ȳ, there exists j0 such that for each j ≥ j0 it follows

that kj > k0 and ‖ykj − ȳ‖2 < ε
2
. Using (2.15) we obtain, for all k > kj0 ,

‖ȳ − yk‖2 ≤ ‖ȳ − ykj0‖
2 + β̃

k−1∑
l=kj0

sl‖h(xl)‖ < ε. (2.16)

Since ε is arbitrary, we conclude that {yk} converges to ȳ. Therefore {(yk, ck)}
converges to (ȳ, c̄), and the proposition follows.
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2.3 Algorithm 2

In this section we present and analyze algorithm MSg-2. This algorithm has a

stepsize which ensures finite termination, as long as there exist dual solutions.

Step 0. Choose (y0, c0) ∈ Rm×R++, and exogenous parameters {αk} ⊂ R++.

Also fix β̄ ≥ η̄ > 0. Set k := 0.

Step 1 (Subproblem and Stopping Criterion)

a) Find xk ∈ A(yk, ck),

b) if h(xk) = 0 stop,

c) if h(xk) 6= 0, go to Step 2.

Step 2 (Step-size Choice and Update of Dual Variables)

ηk := η̄
‖h(xk)‖ , βk := β̄

‖h(xk)‖ , and choose sk ∈ [ηk, βk],

yk+1 := yk − skh(xk),

ck+1 := ck + (1 + αk)sk‖h(xk)‖.

Set k = k + 1 and go to Step 1.

Observe that the only difference between MSg-1 and MSg-2 is the choice

of βk and ηk.

Theorem 2.3.1. Suppose that the dual solution set is nonempty. Consider

the MSg-2 algorithm. Choose {αk} ⊂ (0, α) for some α > 0. Then there

exists k̄ > 0 such that h(xk̄) = 0, i.e. MSg-2 stops at the k̄-th iteration. In

particular xk̄ and (yk̄, ck̄) are primal and dual optimal solutions, respectively.

Proof. We prove first that the dual sequence is bounded. If ck ≤ β̄
2

+ c̄ for

all k, then {yk} is also bounded by Lemma 2.2.4. Assuming, for the sake of

contradiction, that {ck} is unbounded, we can repeat the same calculations
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as in (2.8), (observing that qk ≤ q̄), to get

‖ȳ − yk+1‖2 ≤ ‖ȳ − yk‖2 + sk‖h(xk)‖(βk‖h(xk)‖+ 2c̄− 2ck)

= ‖ȳ − yk‖2 + sk‖h(xk)‖(β̄ + 2c̄− 2ck).

(2.17)

Since {ck} is increasing, there exists k0 such that ck >
β̄
2

+ c̄ for all k > k0.

Using this estimate in (2.17), we obtain, for all k > k0,

‖ȳ − yk+1‖2 ≤ ‖ȳ − yk‖2. (2.18)

From (2.18) we obtain that {yk} is bounded. Thus, {(yk, ck)} is bounded by

Lemma 2.2.4, contradicting the supposed unboundedness of {ck}. Hence, the

dual sequence is bounded. Let us prove now that the algorithm has finite

termination. If this is not true, we must have h(xk) 6= 0 for all k (note that

the algorithm stops at k if and only if h(xk) = 0). Using the definition of the

stepsizes, we can write for k ≥ 1:

ck− c0 =
k−1∑
j=0

(cj+1− cj) =
k−1∑
j=0

(εj + sj)‖h(xj)‖ ≥
k−1∑
j=0

sj‖h(xj)‖ ≥
k−1∑
j=0

η̄ = kη̄,

which entails a contradiction with the boundedness of {ck}. Thus there

exists k̄ such that h(xk̄) = 0. In view of Remark 1.6.5, the result follows by

Theorem 1.6.3(c).

2.4 Final remarks

As established above, our stepsize rules allow us to prove primal convergence,

which in principle does not hold for the stepsize rule proposed in [23]. We

show next that the improvement over the convergence analysis in [23] is not

purely theoretical, but has indeed computational consequences; we do this

by exhibiting a simple example where MSg with our stepsize rule finds the

primal solution after a finite number of steps, while MSg with the stepsize

rule given in [23] stays away from it.
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Example 2.4.1. Consider the following primal problem:

min f(x) := −x subject to h(x) := x = 0 and x ∈ [0, 1]. (2.19)

The sharp Lagrangian related to problem (2.19) is:

L(x, y, c) = −x− yx+ c|x|,

and the dual function is

q(y, c) = min
x∈[0,1]

L(x, y, c) = min
x∈[0,1]

(c− y − 1)x.

Therefore the dual problem is stated as

max
(y,c)∈R×R+

q(y, c).

Let A(y, c) := Argminx∈[0,1] L(x, y, c). It follows that:

A(y, c) = [0, 1] if c− y = 1,

A(y, c) = {0} if c− y > 1,

A(y, c) = {1} if c− y < 1.

(2.20)

In the current example we consider an initial point (y0, c0) satisfying

0 ≤ c0 − y0 < 1.

We claim that MSg with our stepsize has finite convergence, that is, there

exists k̄ such that xk̄ = 0. In this case we have ck̄−yk̄ ≥ 1, q(yk̄, ck̄) = 0 = mp

(where mp is the optimal value) and h(xk̄) = h(0) = 0. Thus, MSg stops

at iteration k̄, producing a primal-dual solution. On the other hand, MSg

with stepsize as in [23] satisfies xk = 1, q(yk, ck) = ck − yk − 1 < 0 and

h(xk) = h(1) = 1, for each k ≥ 0. Indeed, in the latter situation, the dual

update of MSg is

ck+1 = ck + (1 + αk)sk|h(xk)| = ck + (1 + αk)sk

yk+1 = yk − skh(xk) = yk − sk.
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Hence, taking αk = 1
2

yields

ck+1 − yk+1 = ck − yk + (2 + αk)sk = ck − yk +
5

2
sk. (2.21)

We recall that the stepsize rule suggested in [23] is

sk =
q̄ − qk

5‖h(xk)‖2
,

which in the current situation becomes

sk =
0− (ck − yk − 1)

5
=

1− (ck − yk)
5

.

Applying MSg with the stepsize rule proposed in [23], and supposing that at

the k-th iteration ck − yk < 1, we have

ck+1 − yk+1 =
ck − yk

2
+

1

2
< 1.

Thus the primal-dual sequences {xk} and {(yk, ck)} satisfy ck − yk < 1 and

xk = 1 for all k. The dual sequence converges to a dual solution, in agreement

with the convergence results in [12, Theorem 10], but the primal sequence

does not approach the primal solution x∗ = 0.

On the other hand, our method overcomes this obstacle, obtaining a

primal solution after a finite number of iterations, as we show next. Take

β > η > 0. If ck − yk = 1 for some k > 0 and xk 6= 0, then

ck+1 − yk+1 ≥ ck − yk +
5 min{η, ‖h(xk)‖}

2
= 1 +

5 min{η, ‖h(xk)‖}
2

> 1.

Therefore, it follows from (2.20) that xk+1 = 0, which is the primal solution.

Thus, suppose that ck − yk < 1 for each k ≤ k1 :=
⌊

2
5 min{η,1}

⌋
. Then the

stepsize sk satisfies

sk ∈ [min{η, 1},max{β, 1}]

for each k ≤ k1, because xk = 1. In this situation we have, using (2.21),

ck+1 − yk+1 ≥ ck − yk +
5

2
min{η, 1}.
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It follows recursively that

ck1+1 − yk1+1 ≥ c0 − y0 +
5(k1 + 1)

2
min{η, 1} > 1,

using c0 − y0 ≥ 0 and definition of k1. Then ck1+1 − yk1+1 > 1, so that, in

view of (2.20), MSg stops at iteration k1 + 1, achieving the primal solution

x∗ = 0.

Remark 2.4.2. Observe that if we consider in the previous example sk =

|h(xk)| = 1 (one of the simple possible choices for sk discussed in Remark

2.2.1), then xk+1 = 0, which is the primal solution.

Remark 2.4.3. It is also worthwhile to mention that a standard penalty

method, with yk = 0 and penalty parameters ck such that limk→∞ ck = ∞,

will exhibit in this example the same behavior as MSg with our stepsize rule,

i.e., finite primal convergence.

Remark 2.4.4. A finitely convergent algorithm for nonsmooth and noncon-

vex problems might seem too good to be true, but the point here is that the

assumption of existence of optimal dual solutions is stronger than it looks at

first sight. Observe that we have included the penalty parameter c among

the dual variables, and hence the existence of optimal dual solutions implies

in particular the existence of an optimal penalty parameter c∗. It is easy

to verify that any c larger than such a c∗ turns out to be an exact penalty

parameter, in the sense of [54, Definition 11.60]. Thus, in our formulation, if

optimal dual solutions exist then the problem admits exact penalization. In

such a setting, for achieving finite convergence it is enough to have a step-

size selection rule which allows ck to attain arbitrarily large values. In fact,

after establishing that the sequence {yk} is bounded, as is the case for both

Algorithms 1 and 2, Proposition 2.1.1 provides an alternative argument for

the finite convergence of Algorithm 2, assuming existence of a dual solution

(y∗, c∗): if ρ is such that ‖yk − y∗‖ ≤ ρ for all k, then any pair (y, c) with

‖y − y∗‖ ≤ ρ, c ≥ c∗ + ρ belongs to D∗ by Proposition 2.1.1, and hence we
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get (yk, ck) ∈ D∗ as soon as ck > c∗+ρ. Once such a value of k is reached, xk

will be an optimal primal solution, because, as commented above, the fact

that xk belongs to A(yk, ck), as prescribed in Step 1(a) of Algorithm 2, is

equivalent to saying that xk is an exact minimizer of L(·, yk, ck) on K.

Similarly to the argument above, one can establish that if D∗ 6= ∅ then the

penalty method with ‖ · ‖ as penalty function also obtains a primal solution

after a finite number of iterations. In this situation yk = 0 for all k, and the

penalty parameter ck can be arbitrarily large (see also Corollary 2.1.2).

It should be emphasized, however, that attempting to circumvent the

dual updating by guessing the “right” values of c∗ and ρ (assuming that it

is known in advance that the problem admits exact penalization), does not

seem to be in general a good strategy: quite likely one will overshoot the value

of the parameters, and then suffer the consequences, in terms of numerical

instability, of a too large penalty parameter (of course, this comment applies

to any penalty method in the presence of exact penalization; not just to ours).

A sensible gradual increase of the penalty parameter, like the updating of ck

in Algorithm 2, is likely to give rise to a better numerical behavior. See also

the discussion in [13] on the comparison of the actual numerical behavior of

a dual updating similar to ours with a classical penalty method.

A careful study of the numerical behavior of our method, and its compa-

rison with other variants of subgradient techniques, are subjects of our future

research.



Chapter 3

Inexact MSg with augmented

Lagrangian

In this chapter we consider a primal problem of minimizing an extended

real-valued function (possibly nonconvex and nondifferentiable) in a refle-

xive Banach space. A duality scheme is considered via augmented Lagrangian

functions, which include the sharp Lagrangian as a particular case (see Exam-

ple 3.1.1). Our dual variables belong to a Hilbert space. We propose a

parameterized inexact modified subgradient algorithm for solving the dual

problem. We show that this algorithm guarantees monotone increase of the

dual values. We show that, in our more general setting, our algorithm gen-

erates a dual sequence strongly convergent to a dual solution when the dual

optimal solution set is nonempty. The primal sequence converges in the

sense that all its weak accumulation points are primal solutions, even when

the dual solution set is empty. We also analyze a stepsize rule which ensures

that when the dual solution set is nonempty, approximate primal and dual

solutions are obtained after a finite number of iterations of the algorithm

(see Section 3.2.2). Many of the results presented in Chapter 2 are extended

in this chapter to a more general primal-dual scheme in infinite dimensional

spaces.

55
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This chapter is organized as follows. In Section 3.1 we describe the setting

of our primal and dual problems, and give some basic definitions, assumptions

and examples. We also recall in this section some useful facts. In Section 3.2

we consider the inexact modified subgradient algorithm (IMSg) and establish

its convergence properties which do not depend on the choice of the stepsize.

In Section 3.2.1 we propose a stepsize rule for IMSg and state and prove our

main results. In Section 3.2.2 another stepsize rule for IMSg is proposed and

we show that, under this stepsize rule, IMSg converges in a finite number of

steps. In the last section we compare our algorithm with the algorithms with

sharp Lagrangian considered in [12, 16, 14, 23] and in Chapter 2.

3.1 Introduction

Let X be a reflexive Banach space and H a Hilbert space. We denote by

〈·, ·〉 the scalar product in H, and by ‖ · ‖ the norm, where the same notation

will be used for the norm both in X and H. We consider the optimization

problem

min ϕ(x) s.t. x in X, (3.1)

where the function ϕ : X → R+∞ := R ∪ {+∞} is a proper (i.e., domϕ 6= ∅
and ϕ > −∞) weakly lower semicontinuous (w-lsc) function. We also assume

that ϕ has weakly compact sublevel sets. In order to introduce our duality

scheme, we consider a dualizing parameterization for (3.1), which is a function

f : X ×H → R̄ := R+∞ ∪ {−∞} that verifies f(x, 0) = ϕ(x) for all x ∈ X.

The perturbation function induced by this dualizing parameterization is the

function β : H → R̄ defined by

β(z) := inf
x∈X

f(x, z).

Because ϕ is proper, we have β(0) < +∞. Next we recall the definition of a

level-bounded augmenting function.
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Definition 3.1.1. A function σ : H → R+∞ is said to be a level-bounded

augmenting function if it is proper, w-lsc, level-bounded on H and

σ(0) = 0 and Argmin
y
σ(y) = {0}.

The augmented Lagrangian function ` : X ×H × R+ → R̄ is defined as

`(x, y, r) := inf
z∈H
{f(x, z)− 〈z, y〉+ rσ(z)}. (3.2)

The dual function q : H × R+ → R ∪ {−∞} is defined as

q(y, r) := inf
x∈X

`(x, y, r)

and therefore the dual problem is stated as

max q(y, r) s.t. (y, r) ∈ H × R+. (3.3)

Denote by Mp := infx∈X ϕ(x) and by Md := sup(y,r)∈H×R+
q(y, r) the optimal

values of the primal and dual problem, respectively. The primal and dual

solution sets are denoted by P∗ and D∗, respectively. Next we show how this

framework contains the one studied in Chapter 2. Here we allow the space

that contains the image of the constraints to be an infinite dimensional space.

The next example is similar to Example 1.4.5.

Example 3.1.1. Consider the following equality constrained problem

min ψ(x) s.t. x ∈ K,h(x) = 0, (3.4)

where h : X → H has a weakly closed graph, i.e., G(h) := {(x, h(x)) : x ∈ K}
is weakly closed in X ×H, ψ : X → R is w-lsc, and K ⊂ X is weakly closed.

We consider the following equivalent unconstrained problem:

min φ(x) := ψ(x) + δV (x), s.t. x ∈ X,

where V := {x ∈ K : h(x) = 0} and δV (x) = 0 if x ∈ V , δV (x) = ∞
otherwise. Consider the augmenting function given by σ(·) = ‖ · ‖, and the
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canonical dualizing parameterization function given by

f(x, z) =

ψ(x) if x ∈ K and h(x) = z,

∞, otherwise.

By definition,

`(x, y, r) = inf
z∈H
{f(x, z)− 〈z, y〉+ rσ(z)},

and then we obtain

`(x, y, r) =

ψ(x)− 〈y, h(x)〉+ r‖h(x)‖ if x ∈ K,

∞ otherwise,

which generalizes the sharp Lagrangian proposed in [54, Example 11.58] in

finite dimensional space. The dual function induced by this Lagrangian is

q(y, r) := inf
x∈K
{ψ(x)− 〈y, h(x)〉+ r‖h(x)‖},

and the dual problem is

max q(y, r) s.t. (y, r) ∈ H × R+.

We recall that a modified subgradient algorithm was studied in [12, 16,

14, 23] for the primal-dual scheme described in Example 3.1.1, under the

assumptions that X = Rn, H = Rm and K is a compact set; see Section 1.6.

From now on, in this section, we make the following assumption on the

augmenting function.

(A0) : σ(z) ≥ ‖z‖ for all z ∈ H.

Remark 3.1.2. An assumption similar to (A0) was considered in [24], where

the primal problem is a constrained optimization problem with a single cons-

traint. [24] considers a dynamic stepsize rule, and results similar to those

of [23] are obtained. At the end of this chapter we make some comments

on assumption (A0), in particular we show in Proposition 3.2.18 that (A0)

is a necessary assumption, under mild conditions, for obtaining the increase

property of the modified subgradient algorithm.
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Next we list some examples of augmenting functions that satisfy (A0).

i) Let σp,q : H → R be defined as

σp,q(z) :=

{
‖z‖p if ‖z‖ ≤ 1,

‖z‖q otherwise,

with 0 < p ≤ 1 ≤ q.

ii) Let H = Rn, and σk : Rn → R be defined by

σk(z) :=

(
n∑
i=1

|zi|
1
k

)k

, with k ∈ N.

The next definition has been considered in [17, Section 5] and it is a natural

generalization of Definition 1.4.1.

Definition 3.1.2. A function f : X × H → R̄ is said to be weakly level-

compact if for every z̄ ∈ H and α ∈ R there exist a weak neighborhood

V ⊂ H of z̄, and a weak compact set B ⊂ X, such that

LV,f (α) := {x ∈ X : f(x, z) ≤ α} ⊂ B for all z ∈ V.

Remark 3.1.3. If f verifies Definition 3.1.2 then every sequence in LV,f (α)

has a weakly convergent subsequence. It is immediate that the canonical

dualizing parameterization function considered in Example 3.1.1 is weakly

level-compact if K is a weakly compact set. We will only consider dualizing

parameterization functions which are proper, w-lsc and weakly level-compact.

Similarly to Proposition 1.4.1, we have the following basic properties of

the dual function.

Proposition 3.1.4. i) The dual function q is concave and weakly upper-

semicontinuous (w-usc).

ii) If r ≥ c then q(y, r) ≥ q(y, c) for all y ∈ H. In particular, if (y, c) is a

dual solution, then also (y, r) is a dual solution for all r ≥ c.
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Proof. Item (i) follows from the fact that q is the infimum of affine functions.

Item (ii) follows from the fact that the penalty function σ is nonnegative.

Augmented Lagrangians are special cases of abstract Lagrangians ([17]

and [56, Section 5.2]; see Section 1.5.1). The next theorem is a consequence

of [17, Proposition 4.1]. It ensures that there is no duality gap between the

primal problem (3.1) and its dual problem (3.3).

Theorem 3.1.5. Consider the primal problem (3.1) and its dual problem

(3.3). Assume that the dualizing parameterization function f : X ×H → R̄
for the primal function ϕ is proper, w-lsc and weakly level-compact. Suppose

that there exists some (y, r) ∈ H × R+ such that q(y, r) > −∞. Then zero

duality gap holds, i.e. Mp = Md.

Proof. This result has been proved in a more general setting in [17, Propo-

sition 4.1] and [71, Theorem 3.1]. We also emphasize that the result of this

theorem is a consequence of Theorem 5.2.3 in Chapter 5.

Remark 3.1.6. The augmented Lagrangians studied in [71] use a weakly

continuous function g : Y × V → R, where Y, V are reflexive Banach spaces,

but the main prototypical of g is g(y, v) = 〈y, v〉, where Y = V is a Hilbert

space. In this case g is not weakly continuous, but we mention that only

weakly upper semicontinuity of g(y, ·) is required in the proof of [71, Theorem

3.1], and this assumption holds for g(y, v) = 〈y, v〉.

From now on we assume that the hypotheses of Theorem 3.1.5 are verified.

We give next some definitions.

Definition 3.1.3. We say that x∗ ∈ X is an ε∗-optimal primal solution if

ϕ(x∗) ≤Mp+ε∗; we say that (y∗, c∗) ∈ H×R+ is an ε∗-optimal dual solution

if q(y∗, c∗) ≥Md − ε∗.

For r ≥ 0 consider the following set

Ar(y, c) = {(x, z) ∈ X ×H : f(x, z)− 〈z, y〉+ cσ(z) ≤ q(y, c) + r}. (3.5)
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By definition of q and (3.2), we see that Ar(y, c) is nonempty for all r > 0

and all (y, c) such that q(y, c) > −∞. Fix (y, c) ∈ H × R+ and define

Φ(y,c) : X ×H → R̄ as

Φ(y,c)(x, z) = f(x, z)− 〈z, y〉+ cσ(z). (3.6)

Observe that computation of an element in Ar(y, c) is tantamount to an

approximate unconstrained minimization of Φ(y,c)(·, ·), with tolerance r.

3.2 Inexact modified subgradient algorithm-

IMSg

Step 0. Choose (y0, c0) ∈ H ×R+ such that q(y0, c0) > −∞, and exogenous

parameters ε∗ > 0 (a prescribed tolerance), δ < 1, {αk} ⊂ (0, α) for some

α > 0, and {rk} ⊂ R+ such that rk → 0. Let k := 0.

Step 1. (Subproblem and stopping criterion)

a) Find (xk, zk) ∈ Ark(yk, ck),

b) if zk = 0 and rk ≤ ε∗ stop,

c) if zk = 0 and rk > ε∗, then rk := δrk and go to (a),

d) if zk 6= 0 go to Step 2.

Step 2. (Selection of the stepsize and updating the variables)

Choose a stepsize sk > 0 and update the dual variables,

yk+1 := yk − skzk,

ck+1 := ck + (αk + 1)skσ(zk),

k := k + 1, go to Step 1.
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Note that IMSg has the general form of standard augmented Lagrangian

methods: in Step 1 the primal variables are updated through the approximate

solution of an unconstrained minimization problem (in this case producing

the pair (x, z)), and then in Step 2 the dual variables (yk, ck) is updated

through an explicit formula, in this case moving along a direction of dual

ascent. Observe also that here the penalty parameters {ck} are considered

as variables. The parameters {αk} ensure monotonic increase of the dual

values; see Theorem 3.2.3.

First, we present some results which do not depend on the selection of the

stepsize. The next proposition establishes the relation between the approxi-

mate minimization implicit in Ar(y, c) and the approximate superdifferential

∂rq(y, c).

Proposition 3.2.1. The following facts hold for IMSg.

i) For all r ≥ 0 it holds that if (x̂, ẑ) ∈ Ar(ŷ, ĉ), then (−ẑ, σ(ẑ)) ∈
∂rq(ŷ, ĉ).

ii) Assume that (A0) holds. Then IMSg generates a bounded dual sequence

{(yk, ck)} if and only if
∑
k

skσ(zk) < +∞.

iii) If IMSg stops at iteration k, then xk is an ε∗-optimal primal solution,

and (yk, ck) is an ε∗-optimal dual solution.

Proof. i) For all (y, c) ∈ H × R+ we have:

q(y, c) = inf(x,z){f(x, z)− 〈z, y〉+ cσ(z)}

≤ f(x̂, ẑ)− 〈ẑ, y〉+ cσ(ẑ)

= f(x̂, ẑ)− 〈ẑ, ŷ〉+ ĉσ(ẑ) + 〈−ẑ, y − ŷ〉+ (c− ĉ)σ(ẑ).

(3.7)

Using that (x̂, ẑ) ∈ Ar(ŷ, ĉ) in (3.7), we obtain

q(y, c) ≤ q(ŷ, ĉ) + r + 〈−ẑ, y − ŷ〉+ (c− ĉ)σ(ẑ)

= q(ŷ, ĉ) + 〈(−ẑ, σ(ẑ)), (y, c)− (ŷ, ĉ)〉+ r.
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Therefore, (−ẑ, σ(ẑ)) ∈ ∂rq(ŷ, ĉ).
ii)Using (A0) and simple manipulations in the definition of {yk}, we obtain

‖yk+1 − y0‖ ≤
k∑
j=0

‖yj+1 − yj‖ =
k∑
j=0

sj‖zj‖ ≤
k∑
j=0

sjσ(zj). (3.8)

On the other hand,

ck+1 − c0 =
k∑
j=0

cj+1 − cj =
k∑
j=0

(αj + 1)sjσ(zj). (3.9)

Since {αk} is bounded, (ii) follows from (3.8) and (3.9).

For proving (iii), observe that if IMSg stops at iteration k, then zk = 0

and rk ≤ ε∗. Therefore we have (see Theorem 3.1.5):

Md = Mp ≤ ϕ(xk) = f(xk, 0)− 〈yk, 0〉+ ckσ(0)

≤ q(yk, ck) + rk ≤ q(yk, ck) + ε∗ ≤Mp + ε∗,

which implies that Md ≤ q(yk, ck) + ε∗, and ϕ(xk) ≤ Mp + ε∗. That is to

say, xk is an ε∗-optimal primal solution, and (yk, ck) is an ε∗-optimal dual

solution.

Next we establish boundedness properties of the sub-level sets of Φ(y,c)(·, ·).

Lemma 3.2.2. Let (y, cy) ∈ H × R+ be such that q(y, cy) > −∞. Then for

each w ∈ H, r ≥MP and c > cy + ‖w − y‖ the set

Lr(y, c) = {(x, z) : Φ(y,c)(x, z) := f(x, z)− 〈z, y〉+ cσ(z) ≤ r}

is nonempty and weakly-compact. In particular, for each w ∈ H and c >

cy + ‖w − y‖ there exists some (x̃, z̃) such that

q(w, c) = f(x̃, z̃)− 〈z̃, y〉+ cσ(z̃).

Proof. Since the function ϕ(·) = f(·, 0) is w-lsc and weakly-level compact,

there exists a global minimizer x∗ of ϕ, so that (x∗, 0) ∈ Lr(w, c) for all w, c
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and r ≥ MP , ensuring that Lr(w, c) is nonempty. For proving that Lr(w, c)

is bounded, suppose by contradiction that Lr(w, c) is unbounded for some

w, c, r with c > cy+‖w−y‖ and r ≥MP , so that there exists some unbounded

sequence {(xk, zk)} ⊂ Lr(w, c). Therefore

r ≥ f(xk, zk)− 〈zk, w〉+ cσ(zk)

= f(xk, zk)− 〈zk, y〉+ cyσ(zk) + 〈zk, y − w〉+ (c− cy)σ(zk)

≥ q(y, cy) + (c− cy − ‖w − y‖)‖zk‖,

(3.10)

using Cauchy-Schwarz inequality and assumption (A0) in the inequality. It

follows from (3.10) that

‖zk‖ ≤
r − q(y, cy)

c− cy − ‖w − y‖
,

and hence {zk} is bounded. Without loss of generality we can assume that

the whole sequence {zk} converges weakly to some z̄. Since {zk} is bounded

and σ(z) ≥ 0 for all z, we obtain from (3.10) that

f(xk, zk) ≤ r + ‖w‖‖zk‖ ≤ α̃ (3.11)

for some α̃ ∈ R. Take a weak compact set B ⊂ X and a weak neighbor-

hood V of z̄ given by the level compactness property of f related to z̄ and

α̃ (see Definition 3.1.2). We know that there exists k0 such that zk ∈ V for

all k > k0. Thus {xk}k>k0 ⊂ LV,f (α̃) ⊂ B, by (3.11). Therefore {xk} is

bounded, and hence {(xk, zk)} is bounded, which is a contradiction, establi-

shing boundedness of Lr(w, c). Since the function Φ(w,c)(·, ·) given by (3.6) is

w-lsc, Lr(w, c) is also weakly-closed, and so Lr(w, c) is weakly-compact, by

Banach-Alaoglu theorem. The last assertion of the Lemma is equivalent to

(x̃, z̃) ∈ Arg min
(x,z)∈X×H

Φ(w,c)(x, z).

Indeed, (x̃, z̃) verifies the inclusion above if and only if

q(w, c) = inf
(x,z)∈X×H

Φ(w,c)(x, z) = Φ(w,c)(x̃, z̃) = f(x̃, z̃)− 〈z̃, w〉+ cσ(z̃),

(3.12)
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where we use the definitions of Φ(w,c)(·, ·) and q. Note also that X ×H is re-

flexive and Lr(w, c) is a nonempty weakly-compact sub-level set of Φ(w,c)(·, ·),
as we have already established. Since Φ(w,c)(·, ·) is w-lsc, we know (see for

example [15, Proposition 3.1.15]) that Φ(w,c)(·, ·) attains its minimum (x̃, z̃)

on Lr(w, c), which must coincide with the unconstrained minimum. In view

of (3.12), we conclude that (x̃, z̃) verifies

q(w, c) = f(x̃, z̃)− 〈z̃, w〉+ cσ(z̃).

The following theorem guarantees a special property of IMSg, which is not

verified by the classical subgradient algorithm. It states that IMSg guarantees

a monotonic increase of the dual function, generalizing Theorem 1.6.4.

Theorem 3.2.3. Let {zk} and {(yk, ck)} generated by IMSg. If zk 6= 0 and

(yk, ck) is not a dual solution, then q(yk+1, ck+1) > q(yk, ck).

Proof. For all k consider εk := αksk. Using the update rule to the dual

variables we have

q(yk+1, ck+1) = inf
(x,z)
{f(x, z)− 〈z, yk+1〉+ ck+1σ(z)}

= inf
(x,z)
{f(x, z)− 〈z, yk〉+ sk〈z, zk〉+

[ck + (εk + sk)σ(zk)]σ(z)}

= inf
(x,z)
{f(x, z)− 〈z, yk〉+ (ck + εkσ(zk))σ(z)+

(σ(zk)σ(z) + 〈z, zk〉)sk}

≥ inf
(x,z)
{f(x, z)− 〈z, yk〉+ (ck + εk‖zk‖)σ(z)+

(‖zk‖‖z‖+ 〈z, zk〉)sk}

where the inequality follows from (A0). Now we obtain, using Cauchy-
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Schwarz inequality,

q(yk+1, ck+1) ≥ inf
(x,z)
{f(x, z)− 〈z, yk〉+ (ck + εk‖zk‖)σ(z)}

= q(yk, ck + εk‖zk‖) ≥ q(yk, ck),

where the second inequality follows from Proposition 3.1.4 (ii). Thus we have

q(yk+1, ck+1) ≥ q(yk, ck + εk‖zk‖) ≥ q(yk, ck) for all k. (3.13)

In particular we have q(yk+1, ck+1) ≥ q(yk, ck) for all k. It follows that

q(yk, ck) > −∞ for all k, because q0 = q(y0, c0) > −∞. Therefore we obtain

from Lemma 3.2.2 that, fixing k such that zk 6= 0, there exists (x̃, z̃) such

that

q(yk, ck + εk‖zk‖) = f(x̃, z̃)− 〈z̃, yk〉+ (ck + εk‖zk‖)σ(z̃). (3.14)

If z̃ = 0, then we get from (3.14) that

q(yk, ck + εk‖zk‖) = f(x̃, 0) = ϕ(x̃) ≥Md > q(yk, ck),

where the last strict inequality follows from the fact that (yk, ck) is not a dual

solution. Therefore we conclude from (3.13) that q(yk+1, ck+1) > q(yk, ck). If

z̃ 6= 0, then, since zk 6= 0 and εk > 0, we obtain from (3.13) and (3.14) that

q(yk+1, ck+1) ≥ q(yk, ck) + εk‖zk‖‖z̃‖ > q(yk, ck),

using (A0) and definition of q. The proof is complete.

Proposition 3.2.4. Consider the dual sequence {(yk, ck)} generated by IMSg.

The set A(yk, ck) := {(x, z) ∈ X ×H : f(x, z)− 〈z, yk〉+ ckσ(z) = q(yk, ck)}
is nonempty for each k ≥ 1. In particular, the exact version of IMSg is well

defined; that is to say, for all k ≥ 1 there exists (xk, zk) ∈ X ×H satisfying

q(yk, ck) = f(xk, zk)− 〈yk, zk〉+ ckσ(zk).
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Proof. It follows from inequalities (3.8) and (3.9) that

ck ≥ c0 + ‖yk − y0‖+
k−1∑
j=0

αjsjσ(zj) > c0 + ‖yk − y0‖.

Therefore the result follows from the definition of A(yk, ck) and Lemma 3.2.2,

because by assumption (y0, c0) satisfies q(y0, c0) > −∞ (see Step 0 of IMSg).

From now on we assume that zk 6= 0 for all k. In other words, we assume

from now on that the method generates an infinite sequence.

Lemma 3.2.5. Let {(yk, ck)} be the sequence generated by IMSg and consider

a sequence {zk} such that (xk, zk) ∈ Ark(yk, ck) for all k. Then, the sequence

{σ(zk)} is bounded and in particular {zk} is bounded.

Proof. From (3.8) and (3.9) we obtain, for all k ≥ 1,

ck − c0 ≥ ‖yk − y0‖+
k−1∑
j=0

αjsjσ(zj) ≥ ‖yk − y0‖+ a,

for some a > 0, ( e.g., we may take a = α0s0σ(z0)). Hence we have

‖yk − y0‖+ c0 − ck ≤ −a. (3.15)

On the other hand, by Proposition 3.2.1, (−zk, σ(zk)) ∈ ∂qrk(yk, ck). Thus

q0 = q(y0, c0) ≤ q(yk, ck) + 〈−zk, y0 − yk〉+ (c0 − ck)σ(zk) + rk

≤ Md + ‖zk‖‖yk − y0‖+ (c0 − ck)σ(zk) + rk

≤ Md + σ(zk)(‖yk − y0‖+ c0 − ck) + rk

≤ Md − aσ(zk) + rk,

using Cauchy-Schwarz inequality in the second inequality, (A0) in the third

one, and (3.15) in the last one. It follows that

q0 ≤Md − aσ(zk) + rk. (3.16)
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Rewriting (3.16) we obtain

σ(zk) ≤
Md − q0 + rk

a
≤ Md − q0 + r̃

a
:= b,

where r̃ > 0 is an upper bound for {rk}. Since ‖zk‖ ≤ σ(zk) ≤ b for all

k ≥ 1, the proof is complete.

From now on we use the notation qk := q(yk, ck) for all k, and q̄ := Md.

Lemma 3.2.6. Consider the sequences {(xk, zk)}, {(yk, ck)} generated by

IMSg algorithm.

a) The following estimates hold for all k ≥ 1,

f(xk, zk)− 〈zk, y0〉 ≤ qk + rk, and (3.17)

k−1∑
j=0

αjsjσ(zj)σ(zk) ≤ qk − q0 + rk. (3.18)

b) Assume that the dual solution set D∗ is nonempty. If (ȳ, c̄) ∈ D∗ then

for all k,

‖yk+1− ȳ‖2 ≤ ‖yk − ȳ‖2 + 2skσ(zk)

(
skσ(zk)

2
+
qk − q̄ + rk
σ(zk)

+ c̄− ck
)
.

(3.19)

Proof. From the update formula for {(yk, ck)} we have

yk = y0 −
k−1∑
j=0

sjzj and ck = c0 +
k−1∑
j=0

(1 + αj)sjσ(zj). (3.20)

Hence

〈yk, zk〉 = 〈y0, zk〉 −
k−1∑
j=0

sj〈zj, zk〉.

By Cauchy Schwarz inequality and (A0),

〈yk, zk〉 ≤ 〈y0, zk〉+
k−1∑
j=0

sjσ(zj)σ(zk).
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Using the expression for ck given in (3.20) in the inequality above, we obtain

〈yk, zk〉 ≤ 〈y0, zk〉 − c0σ(zk)−
k−1∑
j=0

αjsjσ(zj)σ(zk) + ckσ(zk).

Adding f(xk, zk) to both sides of this inequality, and observing that σ ≥ 0,

we have, after some simple algebra,

f(xk, zk)− 〈y0, zk〉 ≤ f(xk, zk)− 〈y0, zk〉+ c0σ(zk) +
k−1∑
j=0

αjsjσ(zj)σ(zk)

≤ f(xk, zk)− 〈yk, zk〉+ ckσ(zk) ≤ qk + rk.

From these inequalities, using the definition of q, we obtain

f(xk, zk)− 〈y0, zk〉 ≤ qk + rk and q0 +
k−1∑
j=0

αjsjσ(zj)σ(zk) ≤ qk + rk,

which are the statements of (a). For proving (b), take (ȳ, c̄) ∈ D∗. For all k

we have

‖yk+1 − ȳ‖2 = ‖yk − skzk − ȳ‖2

= ‖yk − ȳ‖2 + s2
k‖zk‖2 + 2sk〈ȳ − yk, zk〉

≤ ‖yk − ȳ‖2 + s2
kσ(zk)

2 + 2sk(qk − q̄ + rk + σ(zk)(c̄− ck))

= ‖yk − ȳ‖2 + 2skσ(zk)

(
skσ(zk)

2
+
qk − q̄ + rk
σ(zk)

+ c̄− ck
)

where the inequality follows from (A0) and the supergradient inequality. The

result follows.

Lemma 3.2.7. If the sequence {zk} converges weakly to 0, then {qk} con-

verges to q̄, the primal sequence {xk} is bounded, and all its weak accumula-

tion points are primal solutions.

Proof. Take an upper bound r of {rk}. It follows from Lemma 3.2.6(a) that

f(xk, zk)− 〈y0, zk〉 ≤ qk + rk ≤ q̄ + r for all k.
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Rearranging this inequality and using Cauchy-Schwarz inequality, we obtain

f(xk, zk) ≤ ‖y0‖‖zk‖+ q̄ + r ≤ b̃ := ‖y0‖b+ q̄ + r for all k, (3.21)

where b is an upper bound for {‖zk‖}. Now by the level compactness as-

sumption on f , there exists a weak open neighborhood V ⊂ H of 0 and a

weakly compact set B ⊂ X such that

LV,f (b̃) = {x : f(x, z) ≤ b̃} ⊂ B, for all z ∈ V.

Since {zk} is weakly convergent to 0, zk ∈ V for k sufficiently large. Hence

xk ∈ LV,f (b̃) for k sufficiently large, by (3.21). Therefore {xk} is bounded.

Take a weak accumulation point x̄ of {xk}. Thus there exists a subse-

quence {xkj} which converges weakly to x̄. In particular {(xkj , zkj)} con-

verges weakly to (x̄, 0). Since f(·, ·) is w-lsc, we obtain

ϕ(x̄) = f(x̄, 0) ≤ lim inf
j

(f(xkj , zkj)− 〈y0, zkj〉) ≤ lim inf
j

(qkj + rkj) ≤ q̄,

(3.22)

where the second inequality follows from Lemma 3.2.6 (a), and the third

follows from the fact that {rk} converges to 0. Since q̄ = Mp by Theorem

3.1.5, we obtain from (3.22) that ϕ(x̄) = Mp, and then x̄ is a primal solution.

In particular, all inequalities in (3.22) are equalities. Since {rk} converges to

0, we obtain that lim inf
j

qkj = q̄. Since {qk} is increasing by Theorem 3.2.3,

we conclude that {qk} converges to q̄. The proof is complete.

In order to obtain our results we consider the following assumption on

the error sequence.

(A1): There exists R > 0 such that rk ≤ q̄ − qk +Rσ(zk) for all k.

Remark 3.2.8. We mention that the verification of condition (A1) is not

immediate, since in general at iteration k we ignore the values of both q̄

and qk. One alternative is to think of an “a posteriori” verification of (A1),

meaning that we check the boundedness of the sequence { rk
σ(zk)
}. Indeed,
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note that when this sequence is bounded, then (A1) holds, because q̄−qk
σ(zk)

≥ 0.

The situation improves considerably when we know the optimal dual value

q̄, a situation which occurs in some “real life” problems. In this case, we

can verify condition (A1) along the iterations of the algorithm. In order to

do this, we observe that the value Lk := f(xk, zk) − 〈yk, zk〉 + ckσ(zk) is

computable, and satisfies r̂k := Lk − qk ≤ rk for each k. The (unknown)

value r̂k is in fact the actual error in the kth-iteration, while the (known)

value rk can be seen as an estimate of r̂k. We assert that we can take r̂k

instead of rk in condition (A1). Observe that, since Lk = qk + r̂k, we should

verify the following condition:

(Â1): There exists R > 0 such that Lk ≤ q̄ +Rσ(zk) for all k.

This condition is checkable when we know the optimal dual value q̄ = Mp.

Another possibility is to think of IMSg as “measuring” at each iteration

the boundedness of rk
σ(zk)

, meaning that we observe whether the condition
rk

σ(zk)
≤ R is satisfied, where R > 0 is an “a priori” given parameter. For

those values of k such that this inequality does not hold, one should consider

an exact step (rk = 0). Another option consists of applying the inexact

algorithm IMSg just for a finite number of iterations and then switch to the

exact version of IMSg, i.e., with rk = 0. We mention that the exact version

of IMSg is well defined, see Proposition 3.2.4.

Lemma 3.2.9. If {ck} is bounded then {yk} is also bounded. If the dual

solution set is nonempty then the converse of the previous statement holds.

Proof. The first statement follows directly from (3.8) and (3.9). For proving

the last statement, we rewrite the supergradient inequality as follows:

ck ≤ c̄+
qk − q̄ + rk − 〈ȳ − yk, zk〉

σ(zk)
,

where (y, c) ∈ D∗. Using (A0), (A1) and Cauchy-Schwarz inequality we ob-

tain

ck ≤ c̄+R + ‖ȳ − yk‖ (3.23)
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where the constant R is given by (A1). The last statement now follows from

(3.23).

Next we propose and analyze two algorithms related to IMSg. We remark

that the difference between them lies in the stepsize selection rule.

3.2.1 Algorithm 1

Take two parameters β > η > 0. In Step-2 of the k-th iteration of IMSg,

take ηk := min{η, ‖zk‖} and βk := max{β, σ(zk)}, and choose a stepsize

sk ∈ [ηk, βk], for all k. We denote this algorithm by IMSg-1.

Remark 3.2.10. By definition of ηk, βk and (A0) we have ηk ≤ ‖zk‖ ≤
σ(zk) ≤ βk. In particular we see that ‖zk‖ and σ(zk) are simple choices for

the stepsize sk. Observe that since [η, β] ⊂ [ηk, βk] for all k, we can choose

any stepsize s ∈ [η, β]. In particular, a constant stepsize for all iterations is

admissible.

The next theorem establishes some basic convergence properties of the

dual sequence generated by IMSg-1.

Theorem 3.2.11. Assume that IMSg-1 generates an infinite dual sequence

{(yk, ck)}. If the dual optimal set is nonempty then {(yk, ck)} is bounded and

all its weak accumulation points are dual solutions; if the dual optimal set is

empty then {(yk, ck)} is unbounded.

Proof. First, we prove that {(yk, ck)} is bounded when D∗ 6= ∅. Observe

that sk ≤ βk ≤ max{β, b}, where b is an upper bound for σ(zk) (see Lemma

3.2.5). Thus skσ(zk) ≤ b̂ := max{bβ, b2} for all k. Let R be as in (A1),

and take (ȳ, c̄) ∈ D∗. If we show that {ck} is bounded, then {(yk, ck)} will

be bounded, by Lemma 3.2.9. Suppose by contradiction that {ck} is not

bounded. Thus there exists k0 such that ck ≥M :=
b̂

2
+R+ c̄ for all k ≥ k0.
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Using these estimates in (3.19), we obtain

‖yk+1 − ȳ‖2 ≤ ‖yk − ȳ‖2 + 2skσ(zk)

(
b̂

2
+R + c̄− ck

)
≤ ‖yk0 − ȳ‖2,

for all k ≥ k0. It follows that {yk} is bounded. This entails a contradiction,

in view of Lemma 3.2.9. Therefore the dual sequence is bounded.

Let us prove now that all weak accumulation points of {(yk, ck)} are dual

solutions. In particular this also proves the last statement of the theorem by

contradiction. Since {(yk, ck)} is bounded, we know that
∑

k skσ(zk) < ∞,

by Proposition 3.2.1. In particular {skσ(zk)} converges to 0. On the other

hand, using (A0) and the fact that sk ≥ min{η, ‖zk‖} we obtain

skσ(zk) ≥ min{η‖zk‖, ‖zk‖2} > 0.

Since η > 0, we conclude that {‖zk‖} converge to 0. In particular {zk}
converges weakly to 0. Now Lemma 3.2.7 ensures that {qk} converges to q̄.

Take a weak accumulation point (ȳ, c̄) of {(yk, ck)}, so that there exists a

subsequence {(ykj , ckj)} weakly convergent to (ȳ, c̄). Since the dual function

is w-usc (see Proposition 3.1.4), we have

q̄ ≥ q(ȳ, c̄) ≥ lim sup
j

q(ykj, ckj) = lim
j
qkj = q̄.

Hence q(ȳ, c̄) = q̄ and we conclude that (ȳ, c̄) is a dual optimal solution. In

particular, boundedness of the dual sequence implies that the dual solution

set D∗ is nonempty, which establishes the theorem.

Theorem 3.2.11 establishes dual convergence results of IMSg-1. The next

theorem establishes primal convergence results.

Theorem 3.2.12. Consider the primal sequence {xk} generated by IMSg-1.

Suppose that there exists ᾱ > 0 such that ᾱ ≤ αk for all k. Then {qk} con-

verges to q̄, the primal sequence {xk} is bounded and all its weak accumulation

points are primal solutions.
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Proof. Take the dual sequence {(yk, ck)} generated by IMSg-1. If {(yk, ck)}
is bounded, then we can use the same argument as in the second part of

the proof of Theorem 3.2.11 for ensuring that {zk} converges weakly to 0.

Thus, in the case that {(yk, ck)} is bounded the result follows from Lemma

3.2.7. Hence we just need to consider the case in which the dual sequence is

unbounded. In this case we get from Lemma 3.2.6(a)

k−1∑
j=0

αjsjσ(zj)σ(zk) ≤ qk − q0 + rk. (3.24)

On the other hand, {rk} is bounded and qk − q0 ≤ q̄ − q0 for all k. Thus

there exists M̂ > 0 such that qk − q0 + rk ≤ M̂ for all k. Using this estimate

in (3.24), together with the fact that αk ≥ ᾱ for all k, we obtain

ᾱ

(
k−1∑
j=0

sjσ(zj)

)
σ(zk) ≤ M̂ (3.25)

for all k ≥ 1. Since the dual sequence is unbounded, Proposition 3.2.1(ii)

implies that
∑∞

j=0 sjσ(zj) = ∞. Using this fact in (3.25), since ᾱ > 0, it

follows that {σ(zk)} converges to zero. By assumption (A0) we get that

{‖zk‖} converges to 0, and thus {zk} converges weakly to 0. The result now

follows from Lemma 3.2.7.

In order to establish convergence of the whole dual sequence, we need

some preliminary material on Fejér convergence.

Definition 3.2.1. Let H be a Hilbert space and V a nonempty subset of H.

A sequence {zk} ⊂ H is said to be quasi-Fejér convergent to V if and only

if for all z̄ ∈ V there exists some sequence {µk} ⊂ R+ such that
∑

k µk < ∞
and

‖zk+1 − z̄‖2 ≤ ‖zk − z̄‖2 + µk.

Lemma 3.2.13. Consider a Hilbert space H and a sequence {ξk} ⊂ H. If

{ξk} is quasi-Fejér convergent to some set V 6= ∅, then
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a) The sequence {ξk} is bounded;

b) {‖ξk − v̄‖} is convergent for all v̄ ∈ V ;

c) if all the weak accumulation points of {ξk} are in V , then {ξk} is weakly

convergent to some v̄ ∈ V .

Proof. See for example [1, Proposition 1].

Next we establish quasi-Fejér convergence of the dual sequence generated

by IMSg-1 to an appropriate subset of the dual solution.

Proposition 3.2.14. Consider the dual sequence {(yk, ck)} generated by

IMSg-1. If D∗ is nonempty, then {(yk, ck)} is quasi-Fejér convergent to the

set V∗ = {(y, c) ∈ D∗ : c ≥ ck ∀k}.

Proof. Since D∗ is nonempty, it follows from Theorem 3.2.11 and Proposition

3.1.4 (ii) that there exists some (ȳ, c̄) ∈ D∗ such that c̄ ≥ ck for all k, i.e., V∗

is nonempty. Take any (ȳ, c̄) ∈ V∗. Consider dk := ‖(ȳ, c̄)− (yk, ck)‖. Using

the updating formula for the dual sequence, we have, for all k,

d2
k+1 =

∥∥(ȳ, c̄)−
(
yk − skzk, ck + (1 + αk)skσ(zk)

)∥∥2

= d2
k + s2

k‖zk‖2 + (1 + αk)
2s2
kσ(zk)

2+

2sk
[
〈ȳ − yk, zk〉 − (1 + αk)σ(zk)(c̄− ck)

]
≤ d2

k + s2
kσ(zk)

2 + (1 + α)2s2
kσ(zk)

2+

2sk
[
〈ȳ − yk, zk〉 − σ(zk)(c̄− ck)

]
,

where the inequality follows from (A0) and the fact that α > αk > 0. Now,

using the supergradient inequality, we obtain

d2
k+1 ≤ d2

k +
(
1 + (1 + α)2

)
s2
kσ(zk)

2 + 2sk(qk − q̄ + rk). (3.26)

By (A1) we get R > 0 such that qk − q̄ + rk ≤ Rσ(zk). Using this estimate

in (3.26) and considering α̂ := 1 + (1 + α)2, we have

d2
k+1 ≤ d2

k + α̂s2
kσ(zk)

2 + 2Rskσ(zk). (3.27)
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On the other hand, Theorem 3.2.11 ensures boundedness of the dual se-

quence. Hence we have
∑
k

skσ(zk) <∞, by Proposition 3.2.1, which in turn

implies that
∑
k

s2
kσ(zk)

2 <∞. Consider µk := α̂s2
kσ(zk)

2 + 2Rskσ(zk) for all

k. We see that
∑

k µk <∞ and by (3.27) we obtain

d2
k+1 ≤ d2

k + µk

for all k. The result follows from Definition 3.2.1.

Now we establish weak convergence of the whole dual sequence generated

by IMSg-1 to a dual solution.

Theorem 3.2.15. If the dual solution set is nonempty, then the dual se-

quence generated by IMSg-1 is weakly convergent to some dual solution.

Proof. By Theorem 3.2.11, the dual sequence {(yk, ck)} is bounded and all

its weak accumulation points belong to V∗ = {(y∗, c∗) ∈ D∗ : c∗ ≥ ck ∀k}
(observe that {ck} is increasing). By Proposition 3.2.14 this sequence is

quasi-Fejér convergent to V∗. By Lemma 3.2.13(c), the sequence is weakly

convergent to some (ȳ, c̄) ∈ V∗ ⊂ D∗.

The argument is a standard one for proving weak convergence of the

whole sequence generated by a subgradient method. Since in our approach

the parameter c is taken as variable, we can obtain more than just weak con-

vergence. We obtain indeed that the whole dual sequence converges strongly

when dual solutions exist.

Theorem 3.2.16. If the dual optimal solution set is nonempty then the dual

sequence generated by IMSg converges strongly to a dual solution.

Proof. For proving this result, observe that for any j > k > 0 it holds:

‖yj − yk‖ = ‖
j−1∑
l=k

slzl‖ ≤
j−1∑
l=k

sl‖zl‖ ≤
j−1∑
l=k

slσ(zl). (3.28)
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By Theorem 3.2.11 and Proposition 3.2.1, if the dual optimal solution set

is nonempty, then
∑∞

l=1 slσ(zl) converges. In particular, from the estimates

in (3.28) we conclude that {yk} is a Cauchy sequence and therefore strongly

convergent, because {yk} ⊂ H and H is a Hilbert space. Since, {ck} is

monotonically increasing and, under nonemptyness of the dual solution set,

{ck} is also bounded, it is convergent. We conclude that {(yk, ck)} converges

strongly to a dual solution, because we know that it converges strongly and

each of its weak accumulation points is a dual solution, by Theorem (3.2.11).

3.2.2 Algorithm 2

In this section we propose a stepsize rule which ensures that IMSg converges

in a finite number of steps.

Take β > 0 and a sequence {θk} ⊂ R+ such that
∑

j θj = ∞, and θk ≤ β

for all k. In Step-2 of the k-th iteration of IMSg, consider ηk :=
θk

σ(zk)
and

βk :=
β

σ(zk)
, and choose a stepsize sk ∈ [ηk, βk], for all k. IMSg with this

stepsize rule is denoted by IMSg-2.

Theorem 3.2.17. a) Suppose that the dual solution set D∗ is nonempty.

Let {(xk, zk)} and {(yk, ck)} be the primal and dual sequences generated by

IMSg-2. Then there exists k̄ such that IMSg-2 stops at iteration k̄. As a con-

sequence xk̄ and (yk̄, ck̄) are ε∗-optimal primal and ε∗-optimal dual solutions

respectively.

b) Suppose that IMSg-2 generates infinite primal and dual sequences {(xk, zk)}
and {(yk, ck)}, (in this case D∗ is empty by (a)). Assume that αk ≥ ᾱ > 0

for all k. Then {(yk, ck)} is unbounded, {‖zk‖} converges to 0, and {qk}
converges to the optimal value q̄. The primal sequence {xk} is bounded and

all its weak accumulation points are primal solutions.

Proof. a) Taking an upper bound b̂ for {skσ(zk)} and repeating the first
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part of the proof of Theorem 3.2.11, it follows that {(yk, ck)} is bounded. In

particular, we obtain
∑

j sjσ(zj) <∞, in view of Proposition 3.2.1. Observe

now that the criterion rk < ε∗ in Step-1 of IMSg-2 is satisfied after a finite

number of iterations, because {rk} converges to 0. Suppose by contradiction

that the stopping criterion of IMSg-2 is not satisfied. Therefore zk 6= 0 for all

k. By the stepsize selection rule of IMSg-2, it follows that skσ(zk) ≥ θk for all

k. This is a contradiction, because∞ >
∑

j sjσ(zj) ≥
∑

j θj =∞. Therefore

IMSg-2 stops at iteration some k̄, and by Theorem 3.2.1 we conclude that xk̄

is an ε∗-optimal primal solution and {(yk̄, ck̄)} is an ε∗-optimal dual solution.

For proving (b) we observe that since IMSg-2 generates infinite primal

and dual sequences, it follows that zk 6= 0 for all k. By the stepsize selection

rule of IMSg-2 we have skσ(zk) ≥ θk for all k. In particular
∑

k skσ(zk) =∞,

which is equivalent to unboundedness of {(yk, ck)}, by Proposition 3.2.1. Now

the result follows by using the same argument as in the proof of the second

part of Theorem 3.2.12.

The next proposition establishes that if Assumption (A0) does not hold,

then the conclusion of Theorem 3.2.3 may fail.

Proposition 3.2.18. Let H be a Hilbert space. Suppose that there exists

some 0 6= ū ∈ H such that σ(ū) = γ1‖ū‖ with γ1 < 1. Moreover suppose that

σ(−ū) = γ2‖ū‖, with γ1γ2 < 1. In this situation, the conclusion of Theorem

3.2.3 may fail.

Proof. Observe that we only need to find a problem such that q1 < q0 < Md.

First, consider a w-lsc function g : H → R, such that

ū,−ū ∈ Argmin(g + σ) and min(g + σ) = 0 < g(0),

(for example g(x) = −σ(x) if x ∈ {ū,−ū}, g(x) = 1 otherwise). Let K ⊂ H

be a weakly compact set such that {ū,−ū, 0} ⊂ K. Consider the following

primal problem

min f(x) := g(x) + 〈ū, x〉 s.t. x ∈ K, h(x) := x = 0. (3.29)
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Let C = {x ∈ K : h(x) = 0} and δC(x) = 0 if x ∈ C, δC(x) = ∞ otherwise

(observe that C = {0}, because 0 ∈ K and h(x) = x). For each x ∈ H, let

φ̄(x) := f(x) + δC(x). Therefore the problem (3.29) is equivalent to

min φ̄(x) s.t. x ∈ H,

Consider now a dualizing parameterization function given by

f̄(x, u) =

f(x) if x ∈ K and x = u,

∞ otherwise.

Then

`(x, y, c) = infu{f̄(x, u)− 〈y, u〉+ cσ(u)}

=

f(x)− 〈y, x〉+ cσ(x) if x ∈ K

∞ otherwise,

and therefore

q(y, c) = infx∈H `(x, y, c) = infx∈K{f(x)− 〈y, x〉+ cσ(x)}

= infx∈K{g(x)− 〈y − ū, x〉+ cσ(x)}.

Since K is weakly compact and f̄ is w-lsc, the hypotheses of Theorem 3.1.5

are satisfied, and therefore

sup
(y,c)∈H×R+

q(y, c) = inf
x∈H

φ̄(x) =: v

(observe that v = g(0)). We can easily verify that

q(u, 1) = inf
x∈K
{g(x) + σ(x)} = g(u) + σ(u) = 0.

Observe also that 0 = g(u) + σ(u) = f̄(u, u) − 〈u, u〉 + σ(u). Therefore,

(u, u) ∈ A(u, 1) := A0(u, 1), (see definition of Ar(y, c) in (3.5)). Consider

y0 = u, c0 = 1 and r0 = 0 in Step-0 of IMSg. If we take (u, u) ∈ A(y0, c0) as

the solution of the subproblem (see IMSg) then

y1 = y0 − s0ū, and c1 = c0 + (1 + α0)s0σ(ū),
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where s0 > 0 is an initial stepsize and α0 satisfies α0 <
1

γ1γ2

− 1. Hence

`(−ū, y1, c1) = f(−ū) + 〈y1, ū〉+ c1σ(−ū)

= f(−ū) + 〈y0 − s0ū, ū〉+ [c0 + (1 + α0)s0σ(ū)]σ(−ū)

= f(−ū) + ‖ū‖2 + σ(−ū) + s0 [(1 + α0)σ(ū)σ(−ū)− ‖ū‖2]

where we use y0 = u and c0 = 1. Observing that g(−u) + σ(−u) = 0 and

using the definition of f we obtain

`(−ū, y1, c1) = s0 [(1 + α0)σ(ū)σ(−ū)− ‖ū‖2]

= s0 [(1 + α0)γ1γ2 − 1] ‖ū‖2 < 0,

where we use the assumptions on σ(u), σ(−u) and α0. Now by definition of

q(y1, c1) we get

q(y1, c1) ≤ `(−ū, y1, c1) < 0 = q(y0, c0) < g(0) = v,

that is, q(y1, c1) < q(y0, c0) < v = Md. The proof is complete.

Remark 3.2.19. The assumption γ1γ2 < 1 used in Proposition 3.2.18 is

satisfied when σ is even (i.e., when σ(z) = σ(−z) for all z) and there exists

some ū such that σ(ū) < ‖ū‖. An example of such a function is σ(z) = ‖z‖t

for t > 1. Another choice of σ for which Theorem 3.2.3 may be false is

when σ(·) ≥ γ‖ · ‖ with 0 < γ < 1. In the latter case, the following simple

modification of the algorithm ensures the increasing property of the dual

values. Consider a sequence {tk} such that tk ≥ 1
γ2 for all k, and update the

parameter ck as follows,

ck+1 := ck + (αk + tk)skσ(zk).

The proof of the increasing property of the dual values is similar to the one

given in Theorem 3.2.3 and it is omitted. We claim also that if we consider

{tk} ⊂ [ 1
γ2 , d1] for some d1 >

1
γ2 > 0, then Theorems 3.2.11, 3.2.12, 3.2.15

and Theorem 3.2.17 remain valid for this modification with essentially the

same proofs.
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3.2.3 IMSg with sharp Lagrangian

Modified subgradient algorithms (MSg) with sharp Lagrangian were pro-

posed and analyzed in [12, 16, 23, 14] and Chapter 2, in finite dimensional

spaces. In the present chapter we studied an inexact version of the MSg pro-

posed in [16] (studied here in Chapter 2) and we extended the convergence

results to augmented Lagrangians more general than the sharp Lagrangian.

In [14] the authors proposed an inexact version of MSg proposed in [12]. In

this section we compare our algorithm with these previous versions of MSg,

giving special attention to the search direction. We also compare our as-

sumption (A1) with the assumption on the error sequence {rk} used in [14].

For this purpose, consider Example 3.1.1, for which we have

Ar(y, c) = {(x, z) ∈ X ×H : f(x, z)− 〈y, z〉+ c‖z‖ ≤ q(y, c) + r}

= {(x, h(x)) ∈ K ×H : ψ(x)− 〈y, h(x)〉+ c‖h(x)‖ ≤ q(y, c) + r}

= {(x, h(x)) : x ∈ Γr(y, c)},

where

Γr(y, c) := {x ∈ K : L(x, y, c) := ψ(x)− 〈y, h(x)〉+ c‖h(x)‖ ≤ q(y, c) + r},

which is precisely the set Xr(y, c) considered in [14, Equation (6)] in a finite

dimensional setting. Moreover, the set Ar(y, c) is completely determined if

we know Γr(y, c). Therefore, at iteration k we update the search direction

as (−zk, σ(zk)) = (−h(xk), ‖h(xk)‖) with xk ∈ Γrk(yk, ck), which is the same

search direction considered in [14]. In particular, when rk = 0 for all k, we

obtain the MSg studied in Chapter 2 and [16], which is the exact version

of IMSg with sharp Lagrangian. Thus we have also extended to reflexive

Banach spaces the MSg algorithm studied in Chapter 2. We also consider

more general augmented Lagrangian functions than the sharp Lagrangian

considered in [12, 14, 16, 23].

Next, we compare our assumption on the error sequence {rk} (condition

(A1)) with the assumption considered in [14]. First, we look again at Example
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3.1.1 in a finite dimensional setting, with σ(·) = ‖ · ‖, and zk = h(xk) . It

is easy to see that assumptions (a1) and (a2) presented in Section 1.6 of

this thesis (considered in [14, Section 4]) are equivalent to the following

assumption: there exist η > 0 and M > 0 such that, for all k,

η
(q̄ − qk + rk)

σ(zk)
≤ skσ(zk) ≤M.

In particular, from these inequalities we obtain rk <
M
η
σ(zk) for all k. We re-

mark that our assumption (A1) on the error sequence {rk} is an improvement

over this last estimate.



Chapter 4

Exact penalty properties

In this chapter we shall consider the same primal-dual scheme as the one

in Chapter 3. We analyze some properties related to the dual problem and

relate differentiability of the dual function at a dual solution with an exact

penalty property. We show how this result can be used for obtaining primal

convergence of a modified subgradient algorithm. The outline of this chapter

is as follows. In Section 4.1 we recall the primal-dual scheme and state

some basic results. In Section 4.2 we define a penalty mapping and show

some examples illustrating these results. We also show that exactness of this

penalty mapping is equivalent, under mild assumptions, to differentiability

of the dual function at a dual solution. In Section 4.2.1 we study properties

of this penalty mapping. In Section 4.3 we relate these results to primal

convergence of a modified subgradient algorithm. We apply these results to

the constrained optimization problem in Section 4.4.

4.1 Preliminary

The primal-dual scheme of this chapter is the same as the one in Chapter 3.

X is a reflexive Banach space, and H a Hilbert space. We denote by ‖ · ‖ the

norm in both X and H. The inner product of z, y ∈ H is denoted by 〈y, z〉.

83
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The primal optimization problem is

minimize ϕ(x) subject to x in X, (4.1)

where the function ϕ : X → R+∞ := R ∪ {+∞} is a proper and weakly

lower semicontinuous (w-lsc) function. Let f : X × H → R̄ be a dualizing

parameterization function for (4.1).

The augmented Lagrangian function ` : X ×H ×R+ → R̄ corresponding

to the dualizing parameterization function f and the augmenting function σ

is given by

`(x, y, r) := inf
z∈H
{f(x, z)− 〈z, y〉+ rσ(z)}. (4.2)

The dual function q : H × R+ → R−∞ is q(y, r) := inf
x∈X

`(x, y, r). The

dual problem is stated as

maximize q(y, r) subject to (y, r) ∈ H × R+. (4.3)

We denote by Mp := infx∈X ϕ(x) and by Md := sup(y,r)∈H×R+
q(y, r) the

optimal values of the primal and dual problem, respectively. The primal and

dual solution sets are denoted by P∗ and D∗, respectively.

We will only consider dualizing parameterization functions which are

proper, weakly level-compact (see Definition 3.1.2) and w-lsc. In fact, we

assume that the hypotheses of Theorem 3.1.5 are satisfied. In particular

there is no duality gap between the primal and dual problems.

Fix (y, c) ∈ H×R+ and consider the function Φ(y,c) : X×H → R̄ defined

by

Φ(y,c)(x, z) := f(x, z)− 〈y, z〉+ cσ(z), (4.4)

and let A(y, c) := Argmin(x,z) Φ(y,c)(x, z) ⊂ X × H. We also consider the

projection of A(y, c) in X, denoted by P (y, c). More precisely,

P (y, c) := {x ∈ X : (x, z) ∈ A(y, c), for some z ∈ H}.

Analogously, we consider the projection of A(y, c) in H, denoted by PH(y, c):

PH(y, c) := {z ∈ H : (x, z) ∈ A(y, c), for some x ∈ X}.
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Note that q(y, c) = Φ(y,c)(x, z) whenever (x, z) ∈ A(y, c).

Proposition 4.1.1. The following statements hold:

a) (y, c) ∈ D∗ if and only if 0 ∈ PH(y, c). If (y, c) ∈ D∗ then P∗ ⊂ P (y, c);

b) if PH(y, c) = {0} then P (y, c) = P∗;

c) if (y, c) ∈ D∗ then PH(y, t) = {0} for all t > c.

Proof. For proving (a) take an arbitrary x∗ ∈ P∗. Hence

Mp = ϕ(x∗) = f(x∗, 0)− 〈y, 0〉+ cσ(0) = Φ(y,c)(x
∗, 0). (4.5)

Since Mp = Md (Theorem 3.1.5) we conclude from (4.5) that

q(y, c) = Md ⇐⇒ q(y, c) = Φ(y,c)(x
∗, 0)⇐⇒ 0 ∈ PH(y, c).

In particular, when (y, c) ∈ D∗, it follows that (x∗, 0) ∈ A(y, c), which implies

x∗ ∈ P (y, c). Since x∗ ∈ P∗ is arbitrary we obtain that P∗ ⊂ P (y, c).

For proving (b) let PH(y, c) = {0}. Then for any x ∈ P (y, c) it follows

that (x, 0) ∈ A(y, c). Therefore

q(y, c) = Φ(y,c)(x, 0) = f(x, 0)− 〈y, 0〉+ cσ(0) = ϕ(x) ≥Mp ≥ q(y, c),

which proves that x ∈ P∗ and (y, c) ∈ D∗. Since x ∈ P (y, c) is arbitrary we

obtain that P (y, c) ⊂ P∗. By (a) we conclude that P (y, c) = P∗.

For proving (c) let t > c. By Proposition 3.1.4 we obtain that (y, t) ∈ D∗,
and by (a) we have 0 ∈ PH(y, t). Take an arbitrary z ∈ PH(y, t), we want to

prove that z = 0. We know that there exists x ∈ X such that (x, z) ∈ A(y, t)

and then

Φ(y,t)(x, z) = q(y, t) = Md.

On the other hand, a simple manipulation shows that

Φ(y,t)(x, z) = Φ(y,c)(x, z) + (t− c)σ(z) ≥ q(y, c) + (t− c)σ(z).

Therefore σ(z) = 0, because t > c, q(y, c) = Md and σ is nonnegative. As a

consequence, z = 0 and then PH(y, t) = {0}.
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The next example shows that the inclusion P∗ ( P (y, c) can be strict.

Example 4.1.2. Consider the problem

min
x∈R

ϕ(x) := x+ δ[0,1](x)

with optimal value 0 and P ∗ = {0}. Take the parameterization function

given by

f(x, z) = |x− z|+ δ[0,1](x) + δ[0,1](z)

and the augmenting function σ(z) = |z|. It follows that

q(u, c) = min
x,z∈[0,1]

{|x− z|+ (c− u)z}.

It is easy to see that D∗ = {(u, c) ∈ R × R+ : c ≥ u} and that P (t, t) =

[0, 1] ) P ∗ for any t ∈ [0, 1].

The preceding discussion and example motivate us to study under which

conditions we obtain P (y, c) = P∗, or the stronger condition PH(y, c) = {0}.
As we will see, the condition PH(y, c) = {0} is equivalent to the differentia-

bility of q in (y, c).

4.2 Exact Penalty Map

Consider a penalty map E : H → R+ given by

E(y) = inf{c ≥ 0 : (y, c) ∈ D∗}. (4.6)

The infimum above is assumed to be +∞ when the argument of the infimum

in (4.6) is empty. The weakly upper semicontinuity of the dual function q

implies that (y, E(y)) ∈ D∗ when y ∈ domE. Therefore by Proposition 4.1.1

we see that if (y, c) ∈ D∗ then P∗ ( P (y, c) can hold only when c = E(y).

Remark 4.2.1. From (4.6) we see that the penalty map E is nonnegative.

However, since the dual function can be extended to H×R, it is still possible

to consider negative values of E, see Example 4.2.2 for which E(0) = −1.



CHAPTER 4. EXACT PENALTY PROPERTIES 87

Definition 4.2.1. The penalty map E is said to be exact at y ∈ domE if

and only if P (y, E(y)) = P∗. The penalty map E is said strongly exact at

y ∈ domE if and only if PH(y, E(y)) = {0}.

It follows from Proposition 4.1.1 (b) that if E is strongly exact at y then

E is exact at y. We give next an example in which E is exact but not strongly

exact.

Example 4.2.2. Consider the following primal problem

minimize φ(x) :=

ln(x+ 1), if x ≥ 0,

+∞, otherwise.

We have that P∗ = {0}. Take σ(z) = |z| and a parameterization function f

given by

f(x, z) :=

ln(x+ 1) + z, if x ≥ 0, z ∈ [0, 1]

+∞, otherwise.

It is straightforward to show that

q(y, c) =

c− y + 1, if c < y − 1,

0, if c ≥ y − 1.

Also E(y) = y − 1 and A(y, E(y)) = {(0, t) : t ∈ [0, 1]}. In particular,

P (y, E(y)) = P∗ and PH(y, E(y)) = [0, 1]. Therefore E is exact but not

strongly exact. We mention that q is not differentiable at (y, E(y)).

The next example illustrates a situation in which the penalty map E is

strongly exact.

Example 4.2.3. Consider the following primal problem

minimize φ(x) :=

ln(x+ 1) + 1, if x ≥ 0,

+∞, otherwise.
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Let σ(z) = |z| and a parameterization function f given by

f(x, z) :=

ln(x+ 1) + exp(−z), if x, z ≥ 0,

+∞, otherwise.

In this case we have

q(y, c) =



−∞, if c < y,

0, if c = y,

(c− y)(1− ln(c− y)), if y < c ≤ y + 1,

1, if c > y + 1.

Also E(y) = y + 1 and A(y, E(y)) = {(0, 0)}. In particular, P (y, E(y)) = P∗

and PH(y, E(y)) = {0}. Therefore E is strongly exact. We observe that in

this example q is differentiable at (y, E(y)).

We mention that the existence of y supporting an exact penalty represen-

tation is equivalent to (y, c) ∈ D∗ for some c > 0. Moreover the value E(y)

is the threshold for y, that is, the infimum of c such that (y, c) ∈ D∗ and

Argmin
x
ϕ(x) = Argmin

x
l(x, y, r). We also mention that Definition 1.4.2 does

not require nonemptiness of A(y, c), while Definition 4.2.1 requires nonempti-

ness of A(y, c). In fact the only situation in which A(y, c) is empty, un-

der the compactness assumption on the sub-levels of f (Definition 3.1.2), is

when q(y, c − ε) = −∞ for all ε > 0. It is obvious that A(y, c) = ∅ when

q(y, c) = −∞. Also, q(y, c) = −∞ implies that q(y, c − ε) = −∞ for all

ε > 0, by monotonicity of q(y, ·). Example 4.2.3 illustrates a situation in

which q(y, y) > −∞, A(y, y) = ∅ for any y ∈ R, and q(y, c − ε) = −∞ for

all ε > 0. As a consequence of the next lemma we have A(y, c) 6= ∅ when

(y, c) ∈ int(dom q). We use the notation B(y, ε) := {z ∈ H : ‖z − y‖ < ε}.
Recall that Φ(u,t)(x, z) := f(x, z)− 〈u, z〉+ tσ(z). The next lemma is similar

to Lemma 3.2.2. We assume from now on in this section that σ(·) ≥ ‖ · ‖.
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Lemma 4.2.4. Let (y, cy) ∈ H×R++ be such that (y, cy) belongs to int(dom q).

Then for each b ≥Mp there exist a weak compact set B ⊂ X ×H and ε > 0

such that

Lb(w, c) := {(x, z) ∈ X ×H : Φ(w,c)(x, z) ≤ b} ⊂ B

for all (w, c) ∈ B(y, ε)× (cy − ε, cy + ε). As a consequence, for each (w, c) ∈
B(y, ε)× (cy − ε, cy + ε) there exists some (x̃, z̃) ∈ A(w, c), that is,

q(w, c) = f(x̃, z̃)− 〈z̃, w〉+ cσ(z̃).

Proof. Since (y, cy) belongs to int(dom q), there exists 0 < r < cy such

that B(y, r) × [cy − r, cy + r] ⊂ dom q. Take ε := r
3
. Let us show that

there exists a weak compact set B ⊂ X × H such that Lb(u, t) ⊂ B for all

(u, t) ∈ B(y, ε) × [cy − ε, cy + ε]. Suppose by contradiction that this is not

true. Therefore there exist a sequence {(yk, ck)} ⊂ B(y, ε)×[cy−ε, cy+ε] and

a sequence {(xk, zk)} satisfying lim
k
‖(xk, zk)‖ = ∞ and (xk, zk) ∈ Lb(yk, ck)

for all k ∈ N. Let d := cy− r > 0, and observe that (y, d) ∈ dom q. It follows

that

Φ(yk,ck)(xk, zk) = f(xk, zk)− 〈yk, zk〉+ ckσ(zk) ≤ b for each k, (4.7)

which implies

b ≥ Φ(yk,ck)(xk, zk) = Φ(y,d)(xk, zk) + 〈y − yk, zk〉+ (ck − d)σ(zk)

≥ q(y, d)− ‖yk − y‖‖zk‖+ 2εσ(zk)

≥ q(y, d)− ε‖zk‖+ 2ε‖zk‖

= q(y, d) + ε‖zk‖

(4.8)

where in the second inequality we use Cauchy-Schwarz inequality and the

fact that ck ≥ cy − ε = d+ 2ε, and in the last inequality we use the fact that

σ(·) ≥ ‖ · ‖ and yk ∈ B(y, ε). Let a := b−q(y,d)
ε

. Therefore we obtain from

(4.8) that {zk} ⊂ B(0, a). Thus there exists a subsequence {zkj} weakly
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convergent to some z. Take α := b + a(‖y‖ + ε). By the compactness

assumption on the sublevel of f (see Definition 3.1.2), we have that there

exist a weak neighborhood W of z and a weak compact set B such that

Lf,W (α) := {x : f(x, u) ≤ α} ⊂ B for all u ∈ W . In particular, since

{zkj} is weakly convergent to z, we obtain that zkj ∈ W for all j sufficiently

large. Observing that σ ≥ 0 and {yk} ⊂ B(y, ε), we obtain from (4.7)

that f(xkj , zkj) ≤ α for all j. In particular xkj ∈ B for all j sufficiently

large. Therefore {xkj} is bounded. Hence {(xkj , zkj)} is bounded, which is

a contradiction with the fact that lim
k
‖(xk, zk)‖ = ∞. Since each function

composing Φ(u,t)(·, ·) is w-lsc, the last statement follows by the first part

already proved and the fact that every w-lsc function assumes its minimum

on a weak compact set.

The next theorem shows the equivalence between the differentiability of

the dual function q at (y, E(y)) and the strong exactness property of E.

Theorem 4.2.5. Let y ∈ H be such that E(y) < +∞ and (y, E(y)) ∈
int(dom q). Then the dual function q is differentiable at (y, E(y)) iff E is

strongly exact at y.

Proof. Suppose that q is differentiable at (y, E(y)). We need to prove that

PH(y, E(y)) = {0}. We get from (4.5) that 0 ∈ PH(y, E(y)), because

(y, E(y)) ∈ D∗. Let us show that 0 is the only element in PH(y, E(y)). In or-

der to show this, take an arbitrary z ∈ PH(y, E(y)). Thus, there exists x ∈ X
such that (x, z) ∈ A(y, E(y)). In particular (−z, σ(z)) ∈ ∂q(y, E(y)) by

Proposition 3.2.1. On the other hand, (0, 0) ∈ ∂q(y, E(y)) because (y, E(y))

maximizes the concave function q. Since q is differentiable at (y, E(y)), we

conclude that ∂q(y, E(y)) = {(−z, σ(z))} = {(0, 0)} ⊂ H × R. Therefore

z = 0 and then PH(y, E(y)) = {0}, which proves the “only if” statement of

the theorem. In order to prove the “if” statement, suppose that E is strongly

exact at y. By Lemma 4.2.4 we have that there exists a weak compact set B
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such that

∅ 6= {(x, z) : Φ(w,c)(x, z) ≤Mp} ⊂ B,

for all (w, c) ∈ B(y, ε) × (E(y) − ε, E(y) + ε) and some 0 < ε < E(y). It

follows that

q(w, c) = min{Φ(w,c)(x, z) : (x, z) ∈ B}.

Note that for each (x, z) ∈ B the function Φ(w,c)(x, z) (as function of (w, c))

is an affine function and its derivative at (w, c) is (−z, σ(z)). Therefore, we

obtain from Theorem 1.7.1 that the superdifferential of q at (y, E(y)) is given

by

∂q(y, E(y)) = cow{(−z, σ(z)) : (x, z) ∈ A(y, E(y)) for some x ∈ X}.

Since {0} = PH(y, E(y)) = {z : (x, z) ∈ A(y, E(y)) for some x ∈ X}, we

obtain that ∂q(y, E(y)) = cow{(0, 0) ∈ H × R} = {(0, 0)}. Therefore q is

differentiable at (y, E(y)), and we conclude the proof.

The next proposition considers a general dual sequence converging to

a dual solution. As we have seen in previous chapters, subgradient type

methods are suitable methods for generating such a sequence.

Proposition 4.2.6. Consider a dual sequence {(yk, ck)} converging strongly

to (ȳ, c̄) ∈ D∗. Let {(xk, zk)} be such that (xk, zk) ∈ A(yk, ck), and suppose

that {zk} is weakly convergent. If P (ȳ, c̄) = P∗ then each (if any) weak

accumulation point of {xk} is a primal solution.

Proof. let z be the weak limit point of {zk} and x̄ the weak limit point of some

subsequence {xkj}. Under the assumption of the proposition, it follows that

〈yk, zk〉 converges to 〈ȳ, z〉. Therefore, using the weak lower semicontinuity

of the functions involved in the augmented Lagrangian we obtain

Md = q(ȳ, c̄) ≤ f(x̄, z)− 〈ȳ, z〉+ c̄σ(z)

≤ lim inf
j

f(xkj , zkj)− 〈ykj , zkj〉+ ckjσ(zkj)

= lim inf
j

q(ykj , ckj) ≤Md.
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In particular we have (x̄, z) ∈ A(ȳ, c̄) and then x̄ ∈ P (ȳ, c̄). Since P∗ =

P (ȳ, c̄), we conclude that x̄ is a primal solution.

Remark 4.2.7. Proposition 4.2.6 assumes that {yk} is strongly convergent.

If we have that {yk} converges weakly and {zk} converges strongly, the result

is still true with a similar proof. In fact, we only use the strong convergence

to ensure that 〈yk, zk〉 converges to some 〈y, z〉. We also recall that the

modified subgradient algorithm considered in Chapter 3 generates a dual

sequence {(yk, ck)} which is strongly convergent to a dual solution.

4.2.1 Properties of the penalty map

We will see that some properties of the function Φ(y,c)(x, z) (defined in (4.4))

imply some interesting properties on E and the dual solution set. The fol-

lowing estimate will be useful in the sequel. For each y, w ∈ H and c ∈ R+,

Φ(y,c)(x, z) ≤ Φ(w,c+‖w−y‖)(x, z), for all (x, z) ∈ X ×H. (4.9)

Indeed,

Φ(y,c)(x, z) = f(x, z)− 〈y, z〉+ cσ(z)

= f(x, z)− 〈w, z〉+ (c+ ‖w − y‖)σ(z)

+ 〈w − y, z〉 − ‖w − y‖σ(z),

now using the definition of Φ and Cauchy-Schwarz inequality we obtain

Φ(y,c)(x, z) ≤ Φ(w,c+‖w−y‖)(x, z) + ‖w − y‖(‖z‖ − σ(z)),

and the result follows because σ(·) ≥ ‖ · ‖.
Next we consider some results related to the dual solution set, extending

Proposition 2.1.1 to the general setting of this chapter.

Proposition 4.2.8. Take (y, c∗) ∈ D∗. Then (w, c∗ + ‖w − y‖) ∈ D∗ for all

w ∈ H.
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Proof. Using that (y, c∗) ∈ D∗ and inequality (4.9) we obtain

q̄ = q(y, c∗) = inf
(x,z)

Φ(y,c∗)(x, z)

≤ inf
(x,z)

Φ(w,c∗+‖w−y‖)(x, z)

= q(w, c∗ + ‖w − y‖) ≤ q̄.

Therefore all the inequalities are equalities and (w, c∗ + ‖w − y‖) ∈ D∗,

completing the proof.

Corollary 4.2.9. Take (y, c∗) ∈ D∗, and ρ > 0. Then

∆ρ := {(w, c) ∈ H × R+ : c ≥ c∗ + ρ, and ‖w − y‖ ≤ ρ} ⊂ D∗.

Proof. The result follows directly from Propositions 4.2.8 and 3.1.4 (ii).

Consider the mapping T : H ×H → R ∪ {+∞} defined by

T (y, w) = E(y) + ‖w − y‖.

We mention that the dual optimal solution set D∗ is convex, because the

dual function q is concave. In particular, E is a convex function, because it

is a lower envelope of a convex set. It follows that T is a convex function and

T (y, y) = E(y) for all y ∈ H. Next we relate this function with the results

proved above and then we prove that E is a Lipschitz continuous mapping.

Corollary 4.2.10. If D∗ is nonempty then E(w) <∞ for all w ∈ H. Also

(0, t) ∈ D∗ for all t ≥ T (w, 0).

Proof. Consider (y, c∗) ∈ D∗ and fix w ∈ H. It follows from Proposition 4.2.8

that (w, c∗+‖w−y‖) is a dual solution. In particular, E(w) ≤ c∗+‖w−y‖ <
∞, by definition of E. The last statement follows from Corollary 4.2.9, by

taking ρ := ‖w‖, c∗ := E(w) and using the definition of T (w, 0).

Corollary 4.2.11. If E(y) < ∞ for some y ∈ H then (w, T (y, w)) ∈ D∗

for all w ∈ H. As a consequence, E(w) ≤ T (y, w) for all y, w ∈ H and

E is a Lipschitz continuous mapping with Lipschitz constant 1, that is, a

nonexpansive mapping.
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Proof. Take y ∈ H such that E(y) <∞. It follows from upper semicontinuity

of q and definition of E that (y, E(y)) ∈ D∗. Take an arbitrary w ∈ H. Using

the definition of T (y, w) and taking c∗ = E(y) we obtain from Proposition

4.2.8 that (w, T (y, w)) ∈ D∗. Therefore, by definition of E we obtain that

E(w) ≤ T (y, w). In particular E(w) < ∞ for all w ∈ H and the inequality

E(w) ≤ T (y, w) yields E(w) − E(y) ≤ ‖y − w‖. Since E(w) < ∞ for

all w ∈ H, the last conclusion is true for arbitrary y, w ∈ H. Therefore

|E(y)− E(w)| ≤ ‖y − w‖ for any y, w ∈ H, concluding the corollary.

Remark 4.2.12. It follows from Corollary 4.2.11 that either domE = ∅ or

domE = H.

4.3 Exact penalty map and modified subgra-

dient algorithm

In this section we show how the results above relate to the convergence prop-

erties of MSg (exact version of IMSg). Next we recall MSg in the framework

of this chapter.

Step 0. Choose (y0, c0) ∈ H×R+ such that q(y0, c0) > −∞, and parameters

{αk} ⊂ [α, α̂] for some α̂ > α > 0. Let k := 0.

Step 1. (Subproblem and stopping criterion)

a) Find (xk, zk) ∈ A(yk, ck),

b) if zk = 0 then stop,

c) if zk 6= 0 go to Step 2.

Step 2. (Selection of the stepsize and updating the variables)

Choose a stepsize sk and update the dual variables,

yk+1 := yk − skzk,
ck+1 := ck + (αk + 1)skσ(zk),

k := k + 1, go to Step 1.



CHAPTER 4. EXACT PENALTY PROPERTIES 95

We recall for further use the following estimates for the dual sequence

generated by MSg:

‖yk+j − yk‖ ≤
k+j−1∑
l=k

‖yl+1 − yl‖ =

k+j−1∑
l=k

sl‖zl‖ ≤
k+j−1∑
l=k

slσ(zl).

ck+j − ck =

k+j−1∑
l=k

cl+1 − cl =

k+j−1∑
l=k

(αl + 1)slσ(zl).

As a consequence of theses estimates we obtain for all k, j ∈ N,

ck+j − ck ≥ (1 + α)‖yk+j − yk‖. (4.10)

The next proposition relates exactness property of the penalty map E

and convergence of MSg. We mention that no specific stepsize selection rule

is assumed.

Proposition 4.3.1. Let {(xk, zk)} and {(yk, ck)} be generated by MSg. Sup-

pose that {(yk, ck)} converges to some (ȳ, c̄) ∈ D∗, and that there exists a

subsequence {σ(zkj)} converging to zero. Then the penalty map E is strongly

exact at ȳ.

Proof. We need to prove that PH(ȳ, c̄) = {0}. It follows from Proposition

4.1.1(a) that 0 ∈ PH(ȳ, c̄). Take an arbitrary z̄ ∈ PH(ȳ, c̄) and suppose for

the sake of contradiction that z̄ 6= 0. In particular, σ(z̄) > 0 and since

{σ(zkj)} converges to 0, we can consider j0 such that

σ(zkj) ≤
ασ(z̄)

2(2 + α)
< σ(z̄) for all j ≥ j0, (4.11)

where α is given in Step 0 of MSg. It follows from Proposition 3.2.1(i) that

(−z̄, σ(z̄)) ∈ ∂q(ȳ, c̄) and (−zk, σ(zk)) ∈ ∂q(yk, ck). Therefore, we obtain by

antimonotonicity of ∂q that

〈(−z̄, σ(z̄))− (−zkj , σ(zkj)), (ȳ, c̄)− (ykj , ckj)〉 ≤ 0,

which is equivalent to

〈zkj − z̄, ȳ − ykj〉+ (σ(z̄)− σ(zkj))(c̄− ckj) ≤ 0.
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Using Cauchy Schwarz inequality we obtain

−‖z̄ − zkj‖‖ȳ − ykj‖+ (σ(z̄)− σ(zkj))(c̄− ckj) ≤ 0.

The estimate (4.10) implies that c̄− ckj ≥ (1 + α)‖ȳ − ykj‖. Therefore

−‖z̄ − zkj‖‖ȳ − ykj‖+ (σ(z̄)− σ(zkj))(1 + α)‖ȳ − ykj‖ ≤ 0.

Using triangle inequality and the fact that σ(·) ≥ ‖ · ‖ we obtain[
−σ(z̄)− σ(zkj) + (1 + α)(σ(z̄)− σ(zkj))

]
‖ȳ − ykj‖ ≤ 0

and then [
ασ(z̄)− (2 + α)σ(zkj)

]
‖ȳ − ykj‖ ≤ 0. (4.12)

In particular, using (4.11) in (4.12), we obtain for j ≥ j0 that

0 <
α

2
σ(z̄)‖ȳ − ykj‖ ≤ 0,

which is a contradiction. The proof is complete.

The following result fully characterizes convergence of MSg in terms of

the map E.

Corollary 4.3.2. Let {(xk, zk)} and {(yk, ck)} be bounded sequences gene-

rated by MSg. Suppose that {(yk, ck)} converges to (ȳ, c̄) ∈ D∗ ∩ int(dom q).

The following statements are equivalent:

a) there exists a subsequence of {σ(zk)} converging to 0;

b) the sequence {σ(zk)} converges to 0;

c) the dual function q is differentiable at (ȳ, c̄);

d) the penalty map E is strongly exact at ȳ.

Moreover, under any of these statements as assumption, the sequence {zk}
converges strongly to 0 and every accumulation point of {xk} is a primal

solution.
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Proof. By Theorem 4.2.5 we have the equivalence between (c) and (d). It is

obvious that (b) implies (a). Proposition 4.3.1 shows that (a) implies (d).

Therefore for proving the corollary we just need to show that (d) implies (b).

An argument similar to the one used in the proof of Proposition 4.2.6 shows

that any weak accumulation point of {zk} belongs to PH(ȳ, c̄). Since we are

assuming (d), we have PH(ȳ, c̄) = {0} and then we obtain that {zk} converges

weakly to 0. We observe that σ is just w-lsc (our prototypical of augmenting

function is σ(·) = ‖ · ‖, which is w-lsc but not weakly continuous). Therefore

we cannot conclude yet that (b) holds. Consider the following sequences

mk := f(xk, zk)− 〈yk, zk〉 and qk := mk + ckσ(zk), for all k.

Since {yk} is strongly convergent to ȳ and {zk} is weakly convergent to 0,

we have that {〈yk, zk〉} converges to 0. We know that {qk} converges to Md.

Let us show now that {mk} also converges to Md.

Fix a subsequence {mkj} convergent to m := lim inf mk. Take a subse-

quence {xkjn} weakly convergent to some x̂. In particular {mkjn
} converges

to m. From weak lower semicontinuity of f and the fact that f(·, 0) = ϕ(·),
we have

Mp ≤ ϕ(x̂) ≤ lim inf
n

f(xkjn , zkjn )− 〈ykjn , zkjn 〉 = lim
n
mkjn

= lim inf
k

mk ≤ lim sup
k

mk

≤ lim sup
k

qk = Mp.

Therefore {mk} converges to m = Mp. Since {qk} also converges to Mp we

obtain that

0 ≤ σ(zk) =
qk −mk

ck

k−→ Mp −Mp

c̄
= 0.

That is, {σ(zk)} converges to 0, and then (b) holds. We also obtain that {zk}
converges strongly to 0, because we are assuming that σ(·) ≥ ‖ · ‖. Taking

an arbitrary subsequence {xkl} weakly convergent to some x̄ we obtain

ϕ(x̄) ≤ lim inf
l

f(xkl , zkl)− 〈ykl , zkl〉 = lim
l
mkl = Mp,
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and then x̄ is a primal solution, proving that every weak accumulation point

of {xk} is a primal solution. The proof is complete.

Remark 4.3.3. From the proof of Corollary 4.3.2 we see that if {zk} is

weakly convergent then it is strongly convergent.

Lemma 4.3.4. Consider a sequence {(uk, tk)} converging to some (ū, t̄) ∈
D∗, with t̄ > 0. Assume that PH(uk, tk) 6= {0} for all k. Then t̄ = E(ū).

Proof. Take d := t̄ − E(ū). Since (ū, t̄) ∈ D∗, d ≥ 0 by definition of E. In

order to prove the lemma we need to show that d = 0. Suppose for the sake

of contradiction that d > 0. By Proposition 4.2.8 we know that (u, t) ∈ D∗
for each u ∈ H and t ≥ E(ū) + ‖u− ū‖. Take k̄ such that ‖uk − ū‖ ≤ d

3
and

tk ≥ t̄− d
3

for all k ≥ k̄. It follows that

tk ≥ t̄− d

3
= E(ū) +

2d

3
≥ E(ū) + ‖uk − ū‖+

d

3
. (4.13)

Therefore, Proposition 4.2.8 implies that (uk, tk) ∈ D∗. It follows from (4.13)

and Proposition 4.1.1 that PH(uk, tk) = {0} for all k ≥ k̄, contradicting the

hypothesis. Thus d = 0 and the result follows.

Example 2.4.1 of Chapter 2 and [12, Example 1] show that MSg with a

Polyak stepsize can fail to obtain a primal solution via accumulation points

of the primal sequence. In [12] an auxiliary sequence {x̃k} such that all its

accumulation points are primal solutions was considered for an equality cons-

trained problem in finite dimensional spaces, see Theorem 1.6.6 of this thesis.

In order to obtain this sequence one needs to solve two subproblems. Next

we recall how this auxiliary sequence is obtained and we show that it has

finite convergence, that is, there exists k̄ > 0 such that x̃k̄ ∈ P∗. We consider

the auxiliary sequence in the general framework of augmented Lagrangian

considered here. When the primal problem is an equality constrained pro-

blem and we use a canonical parameterization function (Example 3.1.1), this

sequence is the one considered in [12].
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Consider {(yk, ck)} generated by MSg, and fix β > 0. Let {x̃k} be an

auxiliary primal sequence satisfying x̃k ∈ P (yk, ck + β) for all k.

Proposition 4.3.5. Suppose that D∗ is nonempty, and assume that MSg

generates an infinite dual sequence {(yk, ck)} convergent to a dual solution

(ȳ, c̄). Fix β > 0 and consider the auxiliary sequence {x̃k} such that x̃k ∈
P (yk, ck + β) for all k. Then there exists k̄ such that PH(yk̄, ck̄ + β) = {0}.
In particular x̃k̄ is a primal solution.

Proof. If the conclusion is not true, we have PH(yk, ck +β) 6= {0} for each k.

Use now Lemma 4.3.4 for the choice (uk, tk) = (yk, ck + β), which converges

to (ȳ, c̄+ β) ∈ D∗, to obtain

E(ȳ) = c̄+ β > c̄. (4.14)

On the other hand, since (ȳ, c̄) ∈ D∗ we have E(ȳ) ≤ c̄ by definition of

E, which is a contradiction with (4.14). The last statement follows from

Proposition 4.1.1.

4.4 Exact penalty map and equality constrai-

ned problems

Consider the equality constrained optimization problem (P) of Chapter 2.

Let us denote by

Γ(y, c) := {x ∈ K : L(x, y, c) := ψ(x)− 〈y, h(x)〉+ c‖h(x)‖ = q(y, c)}.

In this context, the sets A(y, c) and P (y, c) defined in Section 4.1 become

A(y, c) = {(x, h(x)) : x ∈ Γ(y, c)} and P (y, c) = Γ(y, c). In particular,

PH(y, c) = {0} ⇔ h(x) = 0 for every x ∈ Γ(y, c). Therefore we have that

PH(y, c) = {0} ⇔ Γ(y, c) = P∗. In particular, in the context of equality

constrained optimization problem, the dual penalty map E is exact if and
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only if it is strongly exact. As a consequence of these facts we obtain the

following theorem. We remark that we do not assume any specific rule for

the stepsize in MSg.

Theorem 4.4.1. Consider the sequences {(yk, ck)} and {xk} generated by

MSg applied to the dual problem (D) of Chapter 2. Suppose that {(yk, ck)}
converges to (ȳ, c̄) ∈ D∗. Then the following statements are equivalent:

a) the dual function q is differentiable at (ȳ, c̄);

b) the sequence {h(xk)} converges to 0;

c) the dual penalty map E is exact at ȳ;

d) all weak accumulation points of {xk} are primal solutions.

Proof. Observing that σ(z) = ‖z‖ for all z ∈ Rm and zk = h(xk) for all k, the

statements (a), (b) and (c) are equivalent by Corollary 4.3.2. The equivalence

between (b) and (d) follows easily from the continuity of h.



Chapter 5

General augmented Lagrangian

In this chapter, we consider a primal problem of minimizing an extended

real-valued function in a Hausdorff topological space. A main tool in our

analysis is abstract convexity, which recently became a natural language to

investigate duality-schemes via augmented Lagrangian type functions, see for

example Burachik and Rubinov [17], Nedić et al. [41], Penot and Rubinov

[44], Rubinov and Yang [56], and Rubinov et al. [58]. With abstract con-

vexity tools, we propose and analyze a duality scheme induced by a general

augmented Lagrangian function. We consider a valley at zero type property

on the coupling (augmenting) function, which generalizes the valley at zero

type property proposed in the related literature (e.g., [17] and references

therein, [65, Section 3.1]), see Sections 1.5 and 5.4. We show that our dua-

lity scheme has a zero duality gap property. A sub-optimal path related to

the dual problem is considered, and we prove that all its cluster points are

primal solutions. A criterion for exact penalization was presented in Rocka-

fellar and Wets [54, Theorem 11.61]. We also extend this criterion to our

general setting. Since no linearity on the augmented Lagrangian is assumed,

this allows us to consider our primal-dual scheme in Hausdorff topological

spaces. It is also worthwhile to note that the general augmented Lagrangian

considered here, for which the valley at zero type property is assumed di-

101
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rectly at the coupling function ρ (see Section 5.1), has not been considered

in the literature even in finite dimensional spaces.

The outline of this chapter is as follows. Section 5.1 contains basic defi-

nitions and assumptions. Also, our primal-dual scheme is stated. In Section

5.2 we show that our duality scheme provides strong duality, and a criterion

to exact penalty representation is presented. In Section 5.3 we study the

convergence properties of a sub-optimal path related to our dual problem.

In Section 5.4 we present some examples and compare our setting with the

ones considered in [17] and [65, Section 3.1].

5.1 Statement of the problem and basic as-

sumptions

Let Y be an arbitrary (nonempty) set. Let X and Z be Hausdorff topological

spaces. We consider the optimization problem

minimize ϕ(x) subject to x in X, (5.1)

where the function ϕ : X → R+∞ := R ∪ {+∞} is a proper extended real-

valued function. We fix a base point in Z and denote it by 0. We use a duality

parameterization for ϕ, which is a function f : X × Z → R̄ := R ∪ {±∞}
satisfying f(x, 0) = ϕ(x) for all x ∈ X. We also consider a perturbation

function β : Z → R̄, related to this duality parameterization, given by

β(z) := inf
x∈X

f(x, z).

The properness of ϕ implies that β(0) < +∞.

In what follows, we consider a coupling function ρ : Z × Y × R+ → R
that satisfies the following basic assumptions:

C1) For any (y, r) ∈ Y ×R+ the function ρ(·, y, r) is upper semicontinuous

at 0, and ρ(0, y, r) = 0.
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C2) For every neighborhood V ⊂ Z of 0, and for every (y, r) ∈ Y × R+, it

holds that

i) AVy,r(r) := inf
z∈V c
{ρ(z, y, r)− ρ(z, y, r)} > 0, for all r > r;

ii) lim
r→∞

AVy,r(r) =∞.

Remark 5.1.1. Condition C1 is a basic assumption considered in the related

literature. Condition C2 is a valley at zero type property, which generalizes

similar properties for augmenting functions recently introduced in the litera-

ture. Item (i) in condition C2 ensures that the function ρ(z, y, ·) is strictly

decreasing for any fixed (y, z) ∈ Y × Z \ {0}. In particular, the function

AVy,r : (r,∞) → R+ is nondecreasing, ensuring the existence of lim
r→∞

AVy,r(r).

In Section 5.4 we compare condition C2 with related assumptions in the

literature.

The augmented Lagrangian function ` : X × Y ×R+ → R̄ induced by the

coupling function ρ is defined by

`(x, y, r) := inf
z∈Z
{f(x, z)− ρ(z, y, r)}. (5.2)

The dual function q : Y ×R+ → R̄ is defined as q(y, r) := infx∈X `(x, y, r)

and therefore the dual problem is stated as

maximize q(y, r) subject to (y, r) in Y × R+. (5.3)

It is clear that q(y, r) = infz∈Z{β(z)−ρ(z, y, r)}, where β is the perturbation

function. We denote by Mp := infx∈X ϕ(x) the optimal value of the primal

problem, and by Md := sup(y,r)∈Y×R+
q(y, r) the optimal value of the dual

problem.

Since f is a parameterization function, condition C1 easily implies the

weak duality property for our scheme, that is, Md ≤ Mp. In this section we

show that our duality scheme enjoys a strong duality property, that is to say,

the zero duality gap property holds (Mp = Md).
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Next, for the convenience of the reader, we recall some of the definitions

related to abstract convexity presented in Chapter 1. Let Ω = Y × R+ and

g : Z → R̄. Given ε ≥ 0, an element (y, r) is an ε−abstract subgradient of g

in z (with respect to ρ) iff

g(z)− ρ(z, y, r) ≥ g(z)− ρ(z, y, r)− ε for all z ∈ Z. (5.4)

The set of all ε−subgradients of g at z̄ is called ε−subdifferential of g at z̄,

and it is denoted by ∂ρ,εg(z̄).

Remark 5.1.2. It follows from C1 and the definition of ∂ρ,εg(0), that if

(y, r0) ∈ ∂ρ,εg(0) then (y, r) ∈ ∂ρ,εg(0) for all r ≥ r0, using the fact that

ρ(z, y, ·) is decreasing and ρ(0, y, r) = 0.

We recall that β(0) = Mp and βρρ(0) = Md. In particular weak and

strong duality are rewritten, respectively, as

βρρ(0) ≤ β(0) and βρρ(0) = β(0).

In this context strong duality is related to abstract convexity at 0 of the

perturbation function β with respect to the family elementary functions

Hρ := {ρ(·, y, r) + c : (y, r, c) ∈ Y × R+ × R}.

Recall that the support of β with respect to Hρ is the set

Supp(β,Hρ) := {h ∈ Hρ : h ≤ β}.

We mention that Proposition 1.5.2 relates the sets ∂ρβ(0), Supp(β,Hρ), and

dom βρ to the dual function q.

5.2 Strong duality and exact penalty repre-

sentation

The next theorem ensures that, under mild assumptions, for every ε > 0

the ε-abstract subgradient of β at 0 is nonempty. As a consequence of this
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fact, we establish strong duality. In Example 5.3.5 we consider a constrained

optimization problem for which the hypothesis of the next theorem, regar-

ding lower semicontinuity of β at 0, is satisfied. Proposition 5.3.4 presents

some conditions on the parameterization function that guarantee the lower

semicontinuity of β at 0.

Theorem 5.2.1. Assume that C1 and C2 hold, that β is lower semicon-

tinuous (lsc) at 0, and that there exists (y, r) ∈ dom βρ. Then ∂ρ,εβ(0) 6= ∅ for

all ε > 0. Moreover, for any ε > 0 there exists r0 such that (y, r) ∈ ∂ρ,εβ(0)

for all r ≥ r0.

Proof. The properness of the primal function ϕ implies that β(0) <∞. We

have that β(0) > −∞ by weak duality and the assumption that dom βρ is

nonempty. Therefore, β(0) ∈ R. Observe that we just need to prove the

last statement of the theorem. In order to arrive at a contradiction, suppose

that there exists ε̄ > 0 such that for any k > 0 there exists rk ≥ k, zk ∈ Z
satisfying:

β(zk)− ρ(zk, y, rk) < β(0)− ε. (5.5)

Suppose that {zk}k∈N converges to 0. Thus

β(0)− ε̄ > β(zk)− ρ(zk, y, rk) > β(zk)− ρ(zk, y, r)

for all k ≥ k0 > r. Hence, using C1 and the lower semicontinuity of β at 0,

we have

β(0)− ε̄ ≥ lim inf
k→∞

{β(zk)− ρ(zk, y, r)} ≥ β(0)− ρ(0, y, r) = β(0),

which is a contradiction. Therefore {zk}k∈N does not converge to 0, which

implies that there exists some open neighborhood V ⊂ Z of 0, and a subse-

quence {zkj}j∈N ⊂ V c. Now, using (5.5) and the fact that there exists c such
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that ρ(·, y, r) + c ∈ Supp(β,Hρ) (see Proposition 1.5.2), we have

β(0)− ε̄ > β(zkj)− ρ(zkj , y, rkj)

= β(zkj)− ρ(zkj , y, r) + ρ(zkj , y, r)− ρ(zkj , y, rkj)

≥ c+ inf
z∈V c
{ρ(z, y, r)− ρ(z, y, rkj)}.

Henceforth,

AVy,r(rkj) := inf
z∈V c
{ρ(z, y, r)− ρ(z, y, rkj)} ≤ β(0)− ε̄− c,

which contradicts C2, because limj rkj =∞. The result follows.

The next corollary, which extends [17, Proposition 4.2], shows that in

order to check if the abstract subgradient of β at 0 is nonempty we just

need to verify that there exists an element (y, r) ∈ Y × R+ satisfying the

abstract subgradient inequality (5.4) in a neighborhood of 0. As we will

see in Theorem 5.2.5, under mild assumptions, this fact is equivalent to the

existence of an exact penalty representation.

Corollary 5.2.2. Suppose that the assumptions of Theorem 5.2.1 hold. Sup-

pose also that there exists an open neighborhood V ⊂ Z of 0 such that

β(z) − ρ(z, y, r) ≥ β(0) for all z ∈ V , with (y, r) ∈ dom βρ. Then there

exists r0 such that β(z) − ρ(z, y, r) ≥ β(0) for all z ∈ Z and r ≥ r0, i.e.,

(y, r) ∈ ∂ρβ(0) for all r ≥ r0.

Proof. Take V as in the assumption. Consider z ∈ V c and ε > 0. By

Theorem 5.2.1 there exists rε > 0 such that (y, rε) ∈ ∂ρ,εβ(0). Thus

β(z) ≥ β(0) + ρ(z, y, rε)− ε

= β(0) + ρ(z, y, r) + ρ(z, y, rε)− ρ(z, y, r)− ε

≥ β(0) + ρ(z, y, r) + inf
u∈V c
{ρ(u, y, rε)− ρ(u, y, r)} − ε.

(5.6)

By C2 there exists r1 > rε such that inf
u∈V c
{ρ(u, y, rε) − ρ(u, y, r)} > ε for all

r ≥ r1. Using this estimate in (5.6) we obtain β(z) ≥ β(0) + ρ(z, y, r) for
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all z ∈ V c and r ≥ r1. Since, by assumption, β(z) ≥ β(0) + ρ(z, y, r) for

all z ∈ V , the result follows by taking r0 = max{r, r1} and observing that

ρ(z, y, ·) is nonincreasing in R+ for each (z, y) ∈ Z × Y .

Theorem 5.2.3. Under the assumptions of Theorem 5.2.1, zero duality gap

property holds for the primal-dual pair of problems (5.1)-(5.3).

Proof. Take ε > 0. By Theorem 5.2.1, there exists (y, rε) ∈ ∂ρ,εβ(0). Hence

we have

βρρ(0) = sup
(y,r)

{ρ(0, y, r)− βρ(y, r)} = sup
(y,r)

−βρ(y, r)

≥ −βρ(y, rε) = inf
z
{β(z)− ρ(z, y, rε)} ≥ β(0)− ε,

using C1 in the second equality and the fact that (y, rε) ∈ ∂ρ,εβ(0) in the last

inequality. It follows that βρρ(0) ≥ β(0)−ε. Since ε is arbitrary, we have that

βρρ(0) ≥ β(0), and the reverse inequality is the weak duality property. We

conclude that βρρ(0) = β(0), i.e., zero duality gap property holds, completing

the proof.

Remark 5.2.4. Corollary 5.2.1 and Theorem 5.2.3 generalize [17, Propo-

sitions 4.2 and 4.1], respectively. Observe also that we just use the lower

semicontinuity of β at 0, while in [17] β is assumed to be lsc in all the space.

Exact penalty representation for augmented Lagrangian function was de-

fined and studied by Rockafellar and Wets in [54, Chapter 11]. A criterion

for such a representation was presented in [54, Theorem 11.61]; see Theo-

rem 1.4.3. This criterion has been studied for more general augmented La-

grangians, for instance, [17] and [26]. In the next theorem we extend this

criterion to our more general setting. We recall now the definition of exact

penalty representation.

Definition 5.2.1. Consider the primal and dual problems (5.1)-(5.3). An

element y ∈ Y is said to support an exact penalty representation for problem

(5.1) if there exists r0 ∈ R+ such that for any r > r0,
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E1) β(0) = q(y, r);

E2) Argmin
x
ϕ(x) = Argmin

x
l(x, y, r).

Theorem 5.2.5. Assume that

a) the primal optimal solution set is nonempty, and the parameterization

function f satisfies: f(x, ·) is lsc at 0 for every x ∈ X;

b) the perturbation function β is lsc at 0;

c) conditions C1 and C2 are satisfied;

d) there exists (y, r) ∈ dom βρ.

Then the following assertions are equivalent:

i) There exist an open neighborhood V ⊂ Z of 0 and r0 > 0 such that

β(z) ≥ β(0) + ρ(z, y, r0) for all z ∈ V ;

ii) y supports an exact penalty representation for problem (5.1).

Proof. First, we prove that (ii) ⇒ (i). By E1 there exists r0 > 0 such that

∀r ≥ r0

β(0) = q(y, r) = inf
z∈Z
{β(z)− ρ(z, y, r)}.

In particular, for any open neighborhood V ⊂ Z of 0, we have

β(0) ≤ β(z)− ρ(z, y, r) for all z ∈ V and r ≥ r0,

which proves (i).

Let us now prove that (i) ⇒ (ii). By condition (i) and Corollary 5.2.2

we obtain that there exists r1 such that (y, r) ∈ ∂ρβ(0), for all r ≥ r1. From

Proposition 1.5.2 we conclude that E1 holds for all r ≥ r1. Take r ≥ r1. We

prove now that E2 holds.
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⊂) Take x∗ ∈ Argminx ϕ(x). Then

l(x∗, y, r) = inf
z
{f(x∗, z)− ρ(z, y, r)} ≤ f(x∗, 0)− ρ(0, y, r) = ϕ(x∗)

= β(0) = q(y, r) = infx l(x, y, r),

where the second equality follows from C1 and the fact that f(x, 0) = ϕ(x)

for all x ∈ X, and the fourth equality follows from E1 (already proved). From

these estimates we obtain that x∗ ∈ Argminx l(x, y, r). Since x∗ is arbitrary,

we conclude that the announced inclusion holds.

⊃) Consider r > r1 and take xr ∈ Argminx l(x, y, r). We know that E1 holds,

and therefore

β(0) = q(y, r) = infx l(x, y, r) = l(xr, y, r)

= inf
z
{f(xr, z)− ρ(z, y, r)}

= lim
k→∞
{f(xr, zk)− ρ(zk, y, r)}

(5.7)

for some minimizing sequence {zk}k∈N. We analyze two possible cases:

1) the sequence {zk}k converges to 0;

2) the sequence {zk}k does not converge to 0.

In the first case we get from (5.7) that

β(0) = lim
k→∞
{f(xr, zk)− ρ(zk, y, r)}

= lim inf
k→∞

{f(xr, zk)− ρ(zk, y, r)}

≥ f(xr, 0)− ρ(0, y, r) = f(xr, 0) = ϕ(xr)

where the inequality follows from (a) and C1, included in (b), and the third

equality also follows from C1. We conclude that in this case xr ∈ Argminx ϕ(x).

Since xr is arbitrary, the proof will be complete if we prove that case (2) can-

not occur. Suppose by contradiction that case (2) holds. Thus there exist



CHAPTER 5. GENERAL AUGMENTED LAGRANGIAN 110

an open neighborhood V ⊂ Z of 0 and a subsequence zkj := zj, such that

zj ∈ V c for all j ∈ N. Then,

f(xr, zj)− ρ(zj, y, r) = f(xr, zj)− ρ(zj, y, r1) + ρ(zj, y, r1)− ρ(zj, y, r)

≥ inf
z
{f(xr, z)− ρ(z, y, r1)}+

inf
z∈V c
{ρ(z, y, r1)− ρ(z, y, r)}

≥ q(y, r1) + inf
z∈V c
{ρ(z, y, r1)− ρ(z, y, r)}

= β(0) + inf
z∈V c
{ρ(z, y, r1)− ρ(z, y, r)}.

Taking limits with j →∞ in the inequalities above and using (5.7), we obtain

that

β(0) ≥ β(0) + inf
z∈V c
{ρ(z, y, r1)− ρ(z, y, r)}. (5.8)

Since β(0) ∈ R and r > r1, (5.8) contradicts condition C2(i), included in (b).

We conclude that case (2) cannot occur, which completes the proof.

Remark 5.2.6. We mention that assumption (a) in Theorem 1.4.3 does not

imply assumption (b). Indeed, consider a primal problem minx∈R ϕ(x), where

ϕ(x) = x2. Let a continuous parameterization function f(x, z) = x2 + zx3.

It follows that assumption (a) in Theorem 1.4.3 holds, but assumption (b)

does not hold, because β(0) = 0 and β(z) = −∞ for all z 6= 0. Proposition

5.3.4 presents some assumptions under which β is lsc at 0.

5.3 Sub-optimal path

In general, getting an exact optimal solution of an optimization problem is

very hard or even impossible, but when the optimal value is finite, approxi-

mate solutions always exist and in general they are easier to find than exact

solutions. In [66], the authors defined a sub-optimal path related to the

dual problem and established some convergence results in finite dimensional

spaces. A sub-optimal path is presented in Definition 1.5.3. In this section
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we recall a sub-optimal path related to our duality scheme and analyze its

convergence properties. This result is related to [17, Theorem 6.1], where

the authors consider an optimal path in the sense that all the subproblems

are solved exactly. Also, as we will see in Section 5.4, our duality scheme

includes the one considered in [17].

Recall that the calculation of the dual function leads to the following

problem:

inf{f(x, z)− ρ(z, y, r) : (x, z) ∈ X × Z}. (5.9)

Definition 5.3.1. Let I ⊂ R+ be unbounded above, and for each r ∈ I take

εr ≥ 0. The set {(xr, zr)}r∈I ⊂ X×Z is called a sub-optimal path of problem

(5.9) if

f(xr, zr)− ρ(zr, y, r) ≤ q(y, r) + εr (5.10)

for all r ∈ I. When (xr, zr) satisfies (5.10) with εr = 0 for all r ∈ I, the set

{(xr, zr)}r∈I is called an optimal path.

In the next theorem we analyze limit points of a sub-optimal path, where

{εr}r∈I satisfies lim
r∈I,r→∞

εr = 0.

Theorem 5.3.1. Assume that

a) there exists (y, r) ∈ dom βρ;

b) the parameterization function f is lsc at (x, 0) for each x ∈ X, and

there exist an open neighborhood W ⊂ Z of 0, a real number α > β(0),

and a compact subset B ⊂ X such that

Lf,W (α) := {x ∈ X : f(x, z) ≤ α} ⊂ B, for all z ∈ W.

Then

i) there exists a sub-optimal path {(xr, zr)}r≥r.
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ii) Take a set I ⊂ R+ unbounded above and consider a sub-optimal path

{(xr, zr)}r∈I satisfying lim
r∈I,r→∞

εr = 0. Then {zr}r∈I converges to 0,

and the set of cluster points of {xr}r∈I is a nonempty set contained in

the primal optimal solution set.

Proof. Since ρ(z, y, ·) is a nonincreasing function, we have that q(y, ·) is non-

decreasing. Thus, if r ≥ r then q(y, r) > −∞, by item (a) and Proposition

1.5.2. Thus the existence of a sub-optimal path is trivially ensured, which

proves (i).

For proving (ii), let {(xr, zr)}r∈I be a sub-optimal path. Assume that

lim
r∈I,r→∞

εr = 0. Suppose by contradiction that {zr}r∈I does not converge to

0 when r → ∞. Thus there exist an open neighborhood V ⊂ Z of 0 and

J ⊂ I, unbounded above, such that {zr}r∈J ⊂ V c, (for instance, we can take

Jk := I∩ [k,∞), for k ∈ N, and hence there exists rk ∈ Jk such that zrk ∈ V c;

then J = {rk}k is unbounded above). Therefore we have

β(0) + εr ≥ q(y, r) + εr ≥ f(xr, zr)− ρ(zr, y, r)

= f(xr, zr)− ρ(zr, y, r) + ρ(zr, y, r)− ρ(zr, y, r)

≥ q(y, r) + inf
z∈V c
{ρ(z, y, r)− ρ(z, y, r)}.

Since lim
r∈I,r→∞

εr = 0, we conclude that there exists r0 ∈ J such that for all

r ≥ r0, r ∈ J , we have

β(0) + 1− q(y, r) ≥ inf
z∈V c
{ρ(z, y, r)− ρ(z, y, r)},

which contradicts C2, because J is unbounded above and β(0), q(y, r) ∈ R. It

follows that {zr}r∈I converges to 0. Consider an open neighborhood W ⊂ Z

of 0 and α > β(0) as in assumption (b). Since {zr}r∈I converges to 0, there

exists r0 ∈ I such that {zr}r≥r0,r∈I ⊂ W . Take t := α − β(0) > 0. The

function ρ(·, y, r) is upper semicontinuous at 0 by condition C1. Thus there

exists some r1 ≥ max{r0, r} such that ρ(zr, y, r) ≤ t
2

and εr ≤ t
2

for all
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r ≥ r1, r ∈ I. Therefore, for all r ≥ r1, r ∈ I,

β(0) + t
2
≥ q(y, r) + εr ≥ f(xr, zr)− ρ(zr, y, r)

≥ f(xr, zr)− ρ(zr, y, r) ≥ f(xr, zr)− t
2
.

Hence

f(xr, zr) ≤ β(0) + t = α, for all r ≥ r1, r ∈ I,

that is to say {xr}r≥r1,r∈I ⊂ Lf,W (α) ⊂ B, where B is a compact set and

the last inclusion follows by Assumption (b). In particular, since {zr}r∈I
converges to 0, the set of cluster points of the sub-optimal path {(xr, zr) :

r ∈ I} is nonempty. Moreover every cluster point has the form (x∗, 0).

Let us prove that x∗ is a primal optimal solution, where x∗ is an arbitrary

cluster point of {xr}r∈I . Take a subnet {xrj}j∈J converging to x∗, and j0 ∈ J
satisfying rj ≥ r for all j ≥ j0, j ∈ J . Observe that {zrj}j∈J converges to 0.

Thus
β(0) + εrj ≥ q(y, rj) + εrj

≥ f(xrj , zrj)− ρ(zrj , y, rj)

≥ f(xrj , zrj)− ρ(zrj , y, r)

for all j ≥ j0, j ∈ J . If we take the lim infj∈J in these inequalities, we obtain

β(0) ≥ f(x∗, 0)− ρ(0, y, r) = f(x∗, 0) = ϕ(x∗),

using conditions (b) and C1. Thus x∗ is a primal solution. The theorem is

proved.

Remark 5.3.2. In connection with the compactness assumption of Theorem

5.3.1, we mention that when X is an infinite dimensional reflexive Banach

space with the weak topology (which is not metrizable), Banach-Alaoglu’s

Theorem implies that a set is weakly compact if and only if it is bounded and

weakly closed. In particular, closed balls (in the strong topology) are weakly

compact in such spaces. Thus, a parameterization function f such that some

sub-level set of f(·, z) is weakly closed and uniformly bounded when z runs
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over a neighborhood of 0, provides an example for which assumption (b) of

Theorem 5.3.1 holds. This situation is indeed a prototypical and nontrivial

case to which Theorem 5.3.1 applies. We remind also that sub-level sets of

convex and lsc functions are always weakly closed, so that in the convex case

it suffices to check the uniform boundedness of the sub-level sets of f(·, z).

Remark 5.3.3. Theorem 5.3.1 is related to [17, Theorem 6.1], where the

authors considered an optimal path (in a reflexive Banach space) instead of

a sub-optimal path, and the compactness assumption on the sub-level sets of

f(·, z) is assumed locally at all z, instead of just at z = 0, as assumed here.

Also, in [17, Theorem 6.1] it is assumed that the compactness property holds

for all sub-level sets of f(·, z), while Theorem 5.3.1 assumes compactness of

just one of them, corresponding to α > β(0). Since we are not assuming

convexity of f(·, z), compactness of just one sub-level set of f(·, z) is not

equivalent to compactness of all of them.

Proposition 5.3.4. Let f : X×Z → R be lsc at (x, 0) for each x ∈ X. Take

β(z) := infx f(x, z). Suppose that β(0) > −∞ and that there exist an open

neighborhood W ⊂ Z of 0, α ≥ β(0) and a compact subset B ⊂ X, such that

Lf,W (α) := {x ∈ X : f(x, z) ≤ α} ⊂ B, for all z ∈ W.

Then the perturbation function β is lsc at 0.

Proof. Let J be the set of all neighborhoods of 0. We know that J is a

directed set with the partial order V1 ≥ V2 iff V1 ⊂ V2. Suppose by contra-

diction that β is not lsc at 0. Then there exists ε > 0 such that

sup
V ∈J

inf
v∈V

β(v) < β(0)− ε.

Thus, inf
v∈V

β(v) < β(0)− ε for all V ∈ J . In particular for each V ∈ J there

exists zV ∈ V such that β(zV ) < β(0)−ε, which in turn implies that for each

V ∈ J there exists xV ∈ X satisfying

f(xV , zV ) < β(0)− ε. (5.11)
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By construction the net {zV }V ∈J converges to 0. Taking W and α as in the

assumption. It follows from (5.11) that I := {V ∈ J : V ≥ W} is a terminal

subset of J such that {zV }V ∈I ⊂ W and {xV }V ∈I ⊂ Lf,W (α) ⊂ B, where B

is the compact set given by hypothesis. Hence there exists a subnet {ηs}s∈S
of {xV }V ∈I convergent to some x. This means that ηs = xg(s), where S is

a directed set and g : S → I is a function such that for every U ∈ I there

exists an sU ∈ S satisfying g(s) ≥ U for all s ≥ sU , s ∈ S. In particular, the

set {ts}s∈S, where ts := zg(s) for all s ∈ S, is a subnet of {zV }V ∈I converging

to 0, and f(ηs, ts) < β(0) − ε for all s ∈ S, by (5.11). Therefore, using the

lower semicontinuity of f in (x, 0) we obtain

β(0) ≤ f(x, 0) ≤ lim inf
s∈S

f(ηs, ts) ≤ β(0)− ε,

entailing a contradiction.

Example 5.3.5. Consider the following constrained optimization problem

minimize h(x) subject to x in C, (5.12)

where h : X → R is a lsc function such that Lα := {x ∈ X : h(x) ≤ α} is

compact for some α > infx∈C h(x), and C is a closed subset of X. Take a

mapping D : Z ⇒ X such that D(0) = C and suppose that D has a closed

graph, that is, the set {(z, u) : u ∈ D(z), z ∈ Z} is closed (in the case that

C := {x : gj(x) ≤ 0, j = 1, ...,m}, where gj : X → R is lsc for j = 1, ...,m,

a canonical such mapping is D(z) = {x : gj(x) ≤ zj, j = 1, ...,m}). A

canonical dualizing parameterization function for problem (5.12) is f(x, z) =

h(x)+δD(z)(x), where δV (x) = 0 if x ∈ V and δV (x) =∞ otherwise. It is not

difficult to see that f satisfies the assumptions of Proposition 5.3.4. Thus

the perturbation function β(z) = infx∈D(z) h(x) is lsc at 0.

Next we show some examples of general augmented Lagrangians and com-

pare our setting with the ones considered in [17] and [65, Section 3.1].
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5.4 Augmented Lagrangian type functions

Consider a coupling function p : Z × Y × R++ → R such that p(z, y, ·)
is differentiable. We state next, in our general setting, the valley at zero

property given in [65, Section 3.1] and presented in Section 1.5.1 of this

thesis.

A1) There exists α ∈ [0, 1) such that, for every open neighborhood V ⊂ Z of

0, and y ∈ Y ,

MV,ε := inf
u∈V c,τ≥ε

ταp′r(u, y, τ) > 0

for all ε > 0.

Remark 5.4.1. In [65, Section 3.1] the authors also assume that p′r(0, y, r) =

0, while here we do not assume this condition. Regarding our condition

C1, it is a standard assumption, used in both [17] and [65]. Therefore, is

enough for us to study the relationship between our condition C2 and related

assumptions in the aforementioned papers.

We mention that [65] uses as coupling function ρ := −p in the construc-

tion of the Lagrangian function.

Proposition 5.4.2. Take a function p satisfying (A1). Then the function

ρ := −p satisfies condition C2.

Proof. Fix an open neighborhood V ⊂ Z of 0, y ∈ Y , and r̂ > 0. For every

z ∈ V c and r > r̂ there exists θr ∈ (r̂, r) such that

p(z, y, r)−p(z, y, r̂) = p′r(z, y, θr)(r− r̂) ≥ (r1−α− r̂1−α)θαr p
′
r(z, y, θr), (5.13)

where the inequality follows from the following estimates:

r > θr ⇒ r = r1−αrα ≥ r1−αθαr ,

where α ∈ [0, 1) is given by (A1); analogously we have r̂ = r̂1−αr̂α ≤ r̂1−αθαr .

Thus we get

r − r̂ ≥ r1−αθαr − r̂1−αθαr = θαr (r1−α − r̂1−α).
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Take 0 < ε < r̂. From (5.13) we obtain

p(z, y, r)− p(z, y, r̂) ≥ (r1−α − r̂1−α) inf
τ≥ε

ταp′r(z, y, τ)

≥ (r1−α − r̂1−α) inf
u∈V c,τ≥ε

ταp′r(u, y, τ)

= (r1−α − r̂1−α)MV,ε

for all z ∈ V c. Therefore

inf
z∈V c
{p(z, y, r)− p(z, y, r̂)} ≥ (r1−α − r̂1−α)MV,ε.

It is easy to see that C2 follows from the last estimate above and (A1),

observing that ρ = −p and α ∈ [0, 1).

The above result shows that our setting is more general than the one

considered in [65]. In order to show that our setting is more general than the

one considered in [17], we recall next their main assumptions. We mention

that these assumptions are stated in Chapter 1, we recall them here for the

convenience of the reader.

Consider a function s : R2 → R such that s(0, 0) = 0 and for every a ∈ R
and b1 ≥ b2, it satisfies

s(a, b1)− s(a, b2) ≥ ψ(b1 − b2), (5.14)

where ψ : R+ → R+ is a strictly increasing function such that ψ(0) = 0 and

ψ is coercive, that is, lim
t→∞

ψ(t) =∞.

Let {νη}η∈U1 be a family of upper semicontinuous functions satisfying

νη(0) = 0 for all η ∈ U1, (5.15)

and {σµ}µ∈U2 be a family of augmenting functions which have a valley at zero

property, that is, for every µ ∈ U2, σµ : Z → R+ is proper, lsc and satisfies

σµ(0) = 0 and inf
z∈V c

σµ(z) > 0, (5.16)

for every open neighborhood V ⊂ Z of 0.
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The coupling function considered in [17] is ρ, given by

ρ(z, (η, µ), r) = s(νη(z),−rσµ(z))

where s, {νη}η∈U1 and {σµ}µ∈U2 satisfy (5.14)-(5.16).

Since we are not supposing any structure on the set Y , we can consider

Y := U1×U2. In the next proposition we show that our primal-dual scheme

includes the one in [17].

Proposition 5.4.3. Take ρ(z, y, r) := s(νη(z),−rσµ(z)), where y = (η, µ)

and the functions {νη}η∈U1 and {σµ}µ∈U2 satisfy (5.14)-(5.16). Then condi-

tion C2 is satisfied.

Proof. Fix an open neighborhood V ⊂ Z of 0, y ∈ Y and r > 0. For all

r > r and z ∈ V c we have

ρ(z, y, r)− ρ(z, y, r) = s(νη(z),−rσµ(z))− s(νη(z),−rσµ(z))

≥ ψ((r − r)σµ(z))

≥ ψ((r − r)MV ),

where the first inequality follows from the property of the function s, and

the second inequality follows from the fact that ψ is increasing and MV :=

inf
u∈V c

σµ(u) > 0. It follows that

inf
z∈V c

ρ(z, y, r)− ρ(z, y, r) ≥ ψ((r − r)MV ).

Using this last estimate and the property of the function ψ, we conclude that

C2 is satisfied.

Remark 5.4.4. The coercivity property limt→∞ ψ(t) =∞ was not explicitly

required in [17], but it was used in the proof of [17, Theorem 4.1], and this

theorem is applied throughout the paper.
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Example 5.4.5. Let Y be a Banach space and Z be a reflexive Banach

space. Consider a coupling function g : Y × Z → R such that g(y, ·) is

weakly upper semicontinuous and g(y, 0) = 0 for each y ∈ Y . Let

ρ(z, y, r) := g(y, z)− rσ(z),

where σ is an augmenting function with a valley at zero (i.e., σ satisfies

(5.16)). In this case, we recover the augmented Lagrangian studied by Zhou

and Yang [71]:

`(x, y, r) = inf
z
{φ(x, z)− g(y, z) + rσ(z)}.

Example 5.4.6. Let Z be a Hilbert space. Consider a continuous and in-

vertible map A : Z → Z, and suppose that Y = Z. Let the coupling function

ρ be defined by ρ(z, y, r) = 〈y, Az〉 − rσ(Az), where σ : Z → R is an aug-

menting function, i.e. a proper, lsc and convex function satisfying:

σ(0) = 0 and Argminσ = {0}.

In this context our general augmented Lagrangian is the A-augmented La-

grangian proposed and studied by Yang and Zhang [68]:

`A(x, y, r) = inf
z∈Z
{φ(x, z)− 〈y, Az〉+ rσ(Az)}.

The A-augmented Lagrangian was studied in finite dimensional space, and

some additional conditions are imposed on the mapping A, see [68]. In

particular, in the finite dimensional setting, when A = I, that is, Az = z

for all z ∈ Z, we recover the augmented Lagrangian proposed by Rockafellar

and Wets in [54, Chapter 11], presented in Section 1.4.
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Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo
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