Download PDF
ads:
UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE
PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA E RECURSOS
NATURAIS
VINÍCIUS DE LIMA DANTAS
DEFESAS CONTRA HERBIVORIA E DESCRITORES DA
VEGETAÇÃO: RELAÇÕES COM VARIÁVEIS EDÁFICAS EM UMA
ÁREA DE CERRADO
SÃO CARLOS
2010
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE
PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA E RECURSOS
NATURAIS
VINÍCIUS DE LIMA DANTAS
DEFESAS CONTRA HERBIVORIA E DESCRITORES DA
VEGETAÇÃO: RELAÇÕES COM VARIÁVEIS EDÁFICAS EM UMA
ÁREA DE CERRADO.
Dissertação apresentada ao Programa de
Pós-Graduação em Ecologia e Recursos
Naturais da Universidade Federal de São
Carlos, como parte dos requisitos para
obtenção do título de mestre em Ecologia e
Recursos Naturais.
Orientador: Prof.Dr. Marco Antônio Batalha
SÃO CARLOS
2010
ads:
Ficha catalográfica elaborada pelo DePT da
Biblioteca Comunitária da UFSCar
D192dc
Dantas, Vinícius de Lima.
Defesas contra herbivoria e descritores da vegetação :
relações com variáveis edáficas em uma área de cerrado /
Vinícius de Lima Dantas. -- São Carlos : UFSCar, 2010.
64 f.
Dissertação (Mestrado) -- Universidade Federal de São
Carlos, 2010.
1. Ecologia de comunidades. 2. Herbivoria. 3.
Autocorrelação espacial. 4. Solos. 5. Matéria orgânica. I.
Título.
CDD: 574.5247 (20
a
)
Vinicius
de
Lima
Dantas
DEFESAS CONTRA HERBIVORIA E DESCRITORES DA
VEGETACAO:
RELAC~ES
COM
VARI~VEIS
EDAFICAS
EM
UMA
AREA
DE CERRADO
Dissertqgo apresentada
A
Universidade Federal de Sgo Carlos, como parte dos
requisitos para obten~go do titulo .de Mestre em Ecologia e Recursos Naturais.
BANCA EXAMINADORA
Presiden
te
~ro$&?&arc&$nt6nio P.
L.
Batalha
1"
Examinador
"L-G
profa. Dra. Ana Teresa Lombardi
PPGERNKJFSCar
2"
Examinado
Dedico este trabalho aos meus pais
Robinson José de Santana e minha mãe
Sônia Regina de Lima, por que sempre
acreditaram em mim e me apoiaram
com muito amor.
Agradecimentos
Agradeço as instituições abaixo pelo apoio financeiro, sem o qual
seria inviável a realização deste trabalho, e às pessoas abaixo as quais foram
fundamentais na minha formação profissional e pessoal, e sem as quais eu não
teria conseguido chegar até aqui:
- Ao meu orientador, o Prof. Marco Antônio Batalha, pela excelente
orientação e pela paciência;
- A Priscilla de Paula Loiolla, pela companhia no campo, por suas
ideias geniais, por todas as vezes que me fez chorar de rir, e principalmente pela
amizade inestimável;
- A Danilo Muniz da Silva, pela companhia no campo, por sua
eterna disposição em ajudar, pelas ideias compartilhadas, pelas piadas
infindáveis, tão importantes no trabalho de campo, e pela amizade;
- A Gustavo Henrique de Carvalho, pela paciência e preciosa
assistência no aprendizado do R, e pela amizade;
- A Marcus Vinicius Cianciaruso e Igor Aurélio da Silva pelas
instigantes discussões que me ajudaram a entender melhor a ciência, a ecologia,
e a vida, e pela amizade;
- A toda equipe do laboratório pela ajuda no campo e bons
momentos no laboratório;
- À minha namorada Mariana Luciano Afonso, pela ajuda no
campo, mas principalmente pelo amor e paciência durante os períodos difíceis, e
por me fazer querer ser sempre uma pessoa melhor;
- À professora Dalva M. dos Santos, porque foi fundamental para
que eu decidisse mudar de caminho no mestrado e pudesse descobrir a minha
verdadeira vocação na biologia;
- À professora Maria Inês e técnica Maristela, pela ajuda com as
análises químicas;
- Ao meu irmão João Vitor, que eu me orgulho tanto e amo muito;
- Ao programa de Pós-graduação em Ecologia e Recursos Naturais,
pelo suporte;
- A Fundação de Amparo a Pesquisa do Estado de São Paulo
(Fapesp) pelo apoio financeiro no projeto;
- Ao Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq), pela bolsa concedida a mim.
Resumo
O solo, juntamente com o fogo e as variações climáticas, é considerado um dos principais
determinantes do cerrado brasileiro, a savana mais rica do mundo. O solo pode influenciar as
espécies de planta selecionando aquelas adaptadas a explorar e competir por recursos, mas
também pode influenciar os padrões de alocações em defesas contra herbivoria. Embora
muitos estudos tenham se voltado a entender as relações entre solo e vegetação no cerrado,
poucos se focaram efeitos em escala local. De forma geral, nossa expectativa é de que
descritores da comunidade, como composição florística, riqueza, equabilidade, diversidade e
abundância total estejam relacionados com o solo, mesmo em escala local, dentro de uma
determinada fisionomia, e que plantas em solos pobres em nutrientes invistam mais em
defesas contra herbivoria devido ao alto custo em repor as folhas perdidas. Em uma área de
cerrado, lançamos 100 parcelas contíguas de 25 m
2
cada, identificamos todos os indivíduos
em nível de espécies, coletamos amostras de solo e medimos os seguintes traços foliares de
defesa contra herbivoria: área foliar específica, razão C:N, quantidade de água, dureza,
densidade de tricomas, quantidade de látex, e presença de alcaloides, terpenoides e taninos.
Para testar a relação entre a composição florística e as variáveis do solo, usamos uma análise
de redundância parcial, controlando a autocorrelação espacial. Para testar a relação entre as
variáveis do solo e (1) a abundância das cinco espécies mais abundantes, (2) a abundância
total, (3) a riqueza de espécies, (4) a equabilidade e (5) a diversidade de espécies; para prever
a distribuição dos traços de defesa contra herbivoria por meio das variáveis do solo,
utilizamos regressões múltiplas ou modelos autorregressivos, na presença de autocorrelação
espacial. Encontramos uma baixa relação entre o solo e a composição florística,
provavelmente devido à presença de espécies funcionalmente redundantes e espécies com
dispersão limitada. O conteúdo de matéria orgânica esteve positivamente relacionado à
abundância de Myrsine umbellata, a espécie mais abundante na área, e à abundância total, e
negativamente relacionada à equabilidade, o que sugere que um mecanismo de
retroalimentação positiva pode ser a causa da dominância de Myrsine umbellata. Também
encontramos uma relação positiva entre soma de bases e a riqueza de espécies provavelmente
refletindo um gradiente de fertilidade. Contrariamente às nossas expectativas, não
encontramos relação entre o investimento total em defesas e a fertilidade do solo,
provavelmente refletindo uma baixa variação nas variáveis do solo em escala local ou
variações fenotípicas entre indivíduos da mesma espécie ou ambas. Entretanto, a presença de
taninos esteve relacionada positivamente com o conteúdo de matéria orgânica, o que pode
refletir menor tolerância à herbivoria em solos mais pobres ou uma alta acumulação de
matéria orgânica no solo devido à lenta taxa de decomposição de folhas com tanino. De forma
geral, sugerimos que o solo é um importante fator estruturando a comunidade, mesmo em
escala local, e que a dominância de espécies de cerrado pode estar relacionada a mecanismos
de retroalimentação positiva.
Palavras-chave: autocorrelação espacial, matéria orgânica, modelos autorregressivos,
Myrsine umbellata, riqueza, soma de bases, resistência contra herbivoria
Abstract
Together with fire and climate changes, soil is considered a major determinant in the Brazilian
cerrado, the richest savanna in the world. Soil can influence plants by filtering species capable
of acquiring resources and compete for them, but can also influence plant patterns of
allocation in defense against herbivory. Although many studies focused on plant soil
relationship in cerrado, few focused on the influence of soil at fine scale. We expected
community descriptors, such as floristic composition, richness, evenness, diversity, and total
abundance to be related to soil features at fine scale within a physiognomy. We also expected
plants on nutrient-poor soils to present higher anti-herbivory defenses. In a cerrado site, we
placed 100 contiguous 25 m
2
plots, in which we identified all woody individuals, measured
soil variables and the following leaf traits: specific leaf area, C:N ratio, water content,
toughness, trichomes, latex, and presence of tannins, alkaloids, and terpenoids. We did a
partial redundancy analysis to test for relationship between soil features and floristic
composition, controlled for spatial dependence. We also did multiple regression or spatial
autoregressive models to test for relationships between soil features and: (1) the abundance of
the five commonest species, (2) total abundance, (3) richness, (4) evenness, and (5) diversity
and to predict defense traits based on soil features. We found no relationship between soil and
floristic composition, probably due to functional redundancy or limited dispersal. Organic
matter was positively related to Myrsine umbellata, the most abundant species, and total
abundance, and negatively related to evenness, what suggests positive feedbacks to cause the
dominance by Myrsine umbellata. We also found a positive relationship between sum of basis
and species richness, probably reflecting a fertility gradient. Contrary to our expectations, we
found no relationship between total defenses and total soil fertility or soil variables, what
could result from low variability in soil fertility at fine scale or of high phenotypic variability.
Presence of tannins was positively related to organic matter, possibly reflecting a strategy
towards lower tolerance due to low reserve allocation or interactions with other resources.
However, since tannins decrease leaf decomposition rates, organic matter could be
accumulating in soil. Overall, we suggest that soil is an important factor structuring cerrado
community even at fine scales and that the dominance of cerrado species could be related to
positive plant-soil feedbacks.
Keywords: autoregressive models, anti-herbivory resistance, Myrsine umbellata, organic
matter, spatial autocorrelation, species richness, sum of basis.
Sumário
INTRODUÇÃO GERAL 13
REFERÊNCIAS BIBLIOGRÁFICAS 16
CAPITULO 1: ESTRUTURA DA VEGETAÇÃO: RELAÇÕES EM ESCALA LOCAL
COM VARIÁVEIS EDÁFICAS NUMA ÁREA DE CERRADO 19
Vegetation structure: fine scale relationships with soil in a cerrado site 20
Abstract 21
Introduction 22
Methods 23
Results 25
Discussion 26
Literature cited 28
CAPITULO 2: DEFESAS CONTRA HERBIVORIAS E VARIÁVEIS EDÁFICAS EM
ESCALA LOCAL NUMA SAVANA BRASILEIRA 36
Fine scale relationship between anti-herbivory defense traits and soil features in a
Brazilian savanna 37
Abstract 38
Introduction 49
Material and Methods 41
Results 46
Discussion 47
Acknowledgments 50
References 51
CONCLUSÃO GERAL 63
13
INTRODUÇÃO GERAL
14
Introdução Geral
O cerrado é um dos maiores domínios vegetacionais do país ocupando
originalmente cerca de 23% do território brasileiro (Rizzini 1997), e foi avaliado como sendo
a savana mais rica em espécies do mundo (Kier et al. 2005, Mendonça et al. 2008, Ratter et al.
2003). Por abrigar tantas espécies, estudos em escala local costumam encontrar uma alta
variação na composição de espécies em áreas de cerrado (Carvalho and Martins 2009,
Carvalho et al. 2008). No entanto, pouco se conhece sobre os fatores que determinam essa
enorme variabilidade de formas e seu padrão de distribuição no espaço (Simon et al. 2009).
Um estudo recente usando abordagens filogenéticas, sugeriu que o fogo foi um
fator chave para o surgimento do cerrado e sua separação das florestas há milhares de anos
atrás (Simon et al. 2009). Também tem sido sugerido que variações climáticas têm um papel
importante na distribuição do cerrado (Coutinho 1990, Oliveira-Filho & Ratter 2002) e
existem evidências de que as matas de galeria vêm se expandido sobre áreas de cerrado em
resposta a variações climáticas (Silva et al. 2008).
O solo também é um fator determinante na distribuição das espécies e na
estruturação do cerrado, sendo um dos principais determinantes das variações fisionômicas
encontradas no cerrado (Alvin & Araujo 1952, Coutinho 1990, Goodland & Pollard 1973,
Haridasan 2000, Oliveira-Filho & Ratter 2002) e na diferenciação entre cerrado e outros tipos
vegetacionais (Amorin & Batalha 2007, Ruggiero et al. 2002, Silva et al. 2008).
Outro fator que pode estar relacionado com os padrões de distribuição espacial
das espécies de planta no cerrado é a herbivoria. No entanto, apesar de existir evidência para
uma forte pressão dos herbívoros sobre as plantas do cerrado (Costa et al. 2008) a influência
deste fator tem sido pouco estudada. A herbivoria exerce uma forte pressão seletiva sobre
comunidade e populações de planta, aumentando a mortalidade de plantas, removendo
biomassa que poderia ser alocada para crescimento e reprodução (Coley et al. 1985), e
reduzindo a habilidade competitiva das plantas (Coley & Barone 1996). Desta forma a
herbivoria aumenta a pressão sobre espécies mais palatáveis, favorecendo espécies que sejam
mais resistentes ou tolerantes a herbivoria (Schädler et al. 2003, Mauricio 2000).
O padrão de alocação das planta para resistência ou tolerância à herbivoria
depende amplamente do ambiente em que a planta está inserida (Nuñez-Farfán et al. 2007) e
estudos empíricos mostraram que este padrão de alocação é influenciado pela disponibilidade
15
de recursos no solo (Fine et al. 2006). De forma geral, espécies em solos mais pobres tendem
a investir mais recursos em resistência contra herbivoria, que a baixa disponibilidade de
recursos torna a tolerância mais custosa (Fine et al. 2006). Taxas maiores de herbivoria são
encontradas em florestas estacionais do que em cerrado (Neves et al. 2010), o que foi
atribuído à maior esclerofilia nas folhas de cerrado relacionada à menor disponibilidade de
nutrientes. Assim, o solo parece exercer um papel ainda mais importante no cerrado, que
influencia o padrão de distribuição das defesas contra herbivoria, e assim, altera indiretamente
o padrão de seleção de plantas pelos herbívoros.
Apesar de existirem muitos estudos pesquisando possíveis fatores que
determinam a distribuição da vegetação do cerrado, a maioria deles tem se focado em
variações em escala regional, principalmente em fatores relacionados com a separação entre
as diferentes fisionomias do cerrado (Amorin & Batalha 2007, Carvalho & Martins 2009,
Goodland & Pollard 1973, Marimon Junior & Haridasan 2005, Ruggiero et al. 2002) ou
mesmo a separação entre o cerrado e outros tipos vegetacionais (Amorin & Batalha 2006,
Ruggiero et al. 2002, , Silva et al. 2008, Simon et al. 2009). Devido à alta variação a curtas
distâncias na composição de espécies, estudos em escala local poderiam ajudar a conhecer
melhor os processos influenciando comunidades de cerrado. Variações no solo ocorrem a
distâncias tão curtas quanto 1 m (Downes & Beckwith 1951, Souza & Martins 2004), assim, o
solo é um forte candidato a influenciar a distribuição das espécies e de seus atributos
funcionais em escala local. Este trabalho teve como objetivo estudar possíveis relações entre
as variáveis do solo e as características da comunidade, como a distribuição espacial das
espécies de plantas e de suas defesas contra herbivoria em escala local.
16
Referência bibliográficas
Alvin, P. T. & Araujo, W. (1952) El suelo como factor ecológico en el desarollo de
vegetación en al centro-oeste del Brasil. Turrialba 2:153-160.
Amorim, P. K. & Batalha, M. A. (2006) Soil characteristics of a hyperseasonal cerrado
compared to a seasonal cerrado and a floodplain grassland: implications for plant
community structure. Brazilian Journal of Biology 66:661-667.
Amorim, P. K.& Batalha, M. A. (2007) Soil-vegetation relationships in hyperseasonal
cerrado, seasonal cerrado, and wet grassland in Emas National Park (central Brazil). Acta
oecologica 32:319-327.
Carvalho, D. A. & Martins, F. M. (2009) Shrub and tree species composition in the cerrado
of southwest Minas Gerais. Cerne 2:142-154.
Carvalho, F.A.; Rodrigues, V. H. P.; Kilca, R. V.; Siqueira, A. S.; Araújo, G. M. & Schiavini,
I. (2008) Composição florística, riqueza e diversidade de um cerrado sensu stricto no
sudeste do estado de goiás. Bioscience Journal 4:64-72.
Coley, P. D.; Bryant, J. P. & Chapin III, F. S. (1985) Resource availability and plant
antiherbivore defense. Science 230:895-899.
Coley, P. D. & Barone, J. A. (1996) Herbivory and plant defenses in tropical forests. Annual
Review Ecology, Evolution and Systematics 27:305-335.
Costa, A. N.; Vasconcelos, H. L.; Vieira-Neto, E. H. M. & Bruna, E. M. (2008) Do herbivores
exert top-down effects in Neotropical savannas? Estimates of biomass consumption by
leaf-cutter ants. Journal of Vegetation Science 19:849-854.
Coutinho, L. M. (1990) Fire in the ecology of the Brazilian Cerrado. Ecol Stud 84:82-105
Downes, R. G. & Beckwith, R. S. (1951) Studies in the variation of soil reaction. I. Field
variation at Barooga, N.S.W. Australian Journal of Agricultural Research 2:60-72.
17
Fine, P. V. A.; Miller, Z. J.; Mesones, I.; Irazuzta, S.; Appel, H. M.; Stevens, M. H. H.;
Sããksjãrvi, I.; Shultz, J. C. & Coley, P. D. (2006) The growth-defense trade-off and habitat
specialization by plants in amazonian forests. Ecology 87:150-162
Goodland, R. & Pollard, R. (1973) The Brazilian cerrado vegetation: a fertility gradient.
Journal of Ecology 61:219-224.
Haridasan, M. (2000) Nutrição mineral de plantas nativas do cerrado. Revista Brasileira de
Fisiologia Vegetal 12:54-64.
Kier, G.; Dinerstein, E.; Ricketts, T. H.; Wolfgang, K.; Kreft, H. & Barthlott, W. (2005)
Global patterns of plant diversity and floristic knowledge. Journal of Biogeography
32:1107-1116.
Marimon Junior, B. H. & Haridasan, M. (2005) Comparação da vegetação arbórea e
características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes
sobre solos distróficos no leste do Mato Grosso, Brasil. Acta Botanica Brasilica 19:913-
926.
Mauricio, R. (2000) Natural selection and the joint evolution of tolerance and resistance as
plant defenses. Evolutionary Ecology 14:491-507.
Mendonça, R. C. et al. (2008) Vascular flora of the Cerrado biome: Checklist with 12,356
species. In: Sano, S. M.; Almeida, S. P., Ribeiro, J. F. (eds) Cerrado: Ecology and Flora.
Embrapa Cerrados/Embrapa Informação Tecnológica, Brasília, pp 4211279.
Neves, F. S.; Araújo, L. S.; Espírito-Santo, M. M.; Fagundes, M.; Fernandes, G. W.; Sanchez-
Azofeifa, G. A. & Quesada, M. (2010) Canopy herbivory and insect herbivore diversity in
a dry forestsavanna transition in Brazil. Biotropica 42:112-118
Núñez-Farfán, J.; Fornoni, J. & Valverde, P. L. (2007) The evolution of resistance and
tolerance to herbivores. Annual Review of Ecology, Evolution and Systematics 38:541-
566.
18
Oliveira-filho, A. T. & Ratter, J. A. (2002) Vegetation phisiognomies and woody flora of the
cerrado of the cerrado biome. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil:
ecology and natural history of neotropical savannas, Columbia University Press, New
York, pp 13-32
Ratter, J. A.; Bridgewater, S. & Ribeiro, J. F. (2003) Analysis of the floristic composition of
the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 areas.
Edinburgh Journal of Botany 60:57109.
Rizzini, C. T. (1997) Tratado de Fitogeografia do Brasil. Âmbito Cultural, Rio de Janeiro.
Ruggiero, P. G. C.; Batalha, M. A.; Pivello, V. R. & Meirelles, S. T. (2002) Soil-vegetation
relationships in cerrado (Brazilian savana) and semideciduous Forest, Southeastern Brazil.
Plant Ecology 160:1-16
Schädler, M.; Jung, G.; Auge, H. & Brandl R (2003) Palatability, decomposition and insect
herbivory: patterns in a successional old-field plant community. Oikos 103:121-132
Silva, L. C. R.; Sternberg, L.; Haridasan, M.; Hoffmann, W. A.; Miralles-Wilhelm, F. &
Franco, A.C. (2008) Expansion of gallery forest into central Brazilian savannas. Global
Change Biology 14:21082118
Simon, M. F.; Gretherc, R.; Queiroz, L. P.; Skemae, C.; Penningtone, R. T. & Hughes, C. E.
(2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ
evolution of adaptations to fire. Proceedings of the National Academy of Sciences 48:
2035920364.
Souza, A.F. & Martins, F. R. (2004) Microsite espaecialization and spatial distribution of
Geonoma brevispata, a clonal palm in south-eastern Brazil. Ecological Research 19:521-
532
19
CAPITULO 1: ESTRUTURA DA VEGETAÇÃO:
RELAÇÕES EM ESCALA LOCAL COM VARIÁVEIS
EDÁFICAS NUMA ÁREA DE CERRADO
1
1
Trabalho submetido à revista Biotropica com o título “Vegetation structure: fine scale
relationships with soil in a cerrado site”. Aqui o artigo se encontra dividido em sessões para
facilitar a leitura, mas a versão original foi submetida sem as sessões seguindo as normas para
artigos submetidos para a categoria “Insights”.
20
Vegetation Structure: Fine Scale Relationships with Soil in a Cerrado Site
Vinícius de Lima Dantas
1
and Marco Antônio Batalha
Federal University of São Carlos, Departament of Botany, PO Box 676, 13565-905, São
Carlos, SP, Brazil
1
Corresponding author; e-mail: [email protected].
21
ABSTRACT Soil is a major determinant in the Brazilian cerrado, considered at larger
scales a fertility gradient. We provide evidence that soil may be filtering the occurrence of
cerrado species even at fine scale and that positive plant-soil feedbacks can be responsible for
the abundance of the dominant species.
Keywords: autoregressive models, organic matter, savanna, soil-vegetation relationships,
spatial autocorrelation, species richness, sum of basis.
22
INTRODUCTION
THE BRAZILIAN CERRADO IS THE RICHEST SAVANNA IN THE WORLD, with about 7000 plant
species, of which about 1500 are shrubs or trees (Castro et al. 1999). Due to its high richness,
high degree of endemism, and present conservation status, the cerrado is one of the
biodiversity hotspots in the world. (Myers et al. 2000). Together with fire and seasonality, soil
is a main determinant of changes in plant species and vegetation structure in the Brazilian
cerrado, whose physiognomic variation is considered by some authors to be a fertility
gradient (for example, Goodland & Pollard 1973).
The cerrado tends to occur on well-drained, acid, and nutrient-poor soils, with high levels
of exchangeable aluminum, and, at increased water availability or soil fertility, it tends to be
replaced by forest (Goodland & Ferri 1979, Oliveira-Filho & Ratter 2002). The cerrado
productivity gradient is related to higher availability of bases in the soil (Goodland & Ferri
1979), whereas the sclerophyllous features of the cerrado vegetation are attributed to direct
and indirect effects of high aluminum contents and low nutrient availability (Arens 1958,
1963; Goodland & Ferri 1979, Sarmiento 1984).
Although many studies about the cerrado focused on soil-vegetation relationship, few of
them were carried out at fine scale (Ferreira et al. 2009). Since the cerrado flora is extremely
rich, being possible to find high species turnover even at small distances, studying the
processes that influence this turnover could help us to understand what drives cerrado
responses to the environment. As long as changes in soil features can be found at distances as
small as 1 m (Souza & Martins 2004), soil is an important candidate to exert fine scale effects
upon the cerrado vegetation, because at fine scale, other factors, such as climate and fire
frequency, are more homogeneous.
We looked for relationships between soil and vegetation at fine scale in a cerrado site,
23
trying to answer the following questions:(1) is floristic composition related to soil
features?;(2) are total abundance, richness, evenness, and diversity related to soil features?
We assumed soil to be an important environmental filter at fine scale in cerrado plant
communities. Thus, we expected floristic composition to change with fertility reflecting, to
some extent, success in exploring resources and competing with other species (Magurran
2004). Moreover, species not only respond to soil, but also influence it as well. Additionally,
we expected that, on nutrient-rich soils, where resources are available and competition may be
lower (MacArthur 1972, Bertness & Callaway 1994) total abundance, richness, evenness and
diversity would be higher.
METHODS
We studied a cerrado woodland site at Federal University of São Carlos, southeastern
Brazil (approximately, 21°58‟05.3”S, 47°52„10.1”W). The area is on dystrophic Oxisols, 850
m asl, under mesothermic, subtropical climate, with wet summers and dry winters (Cwa;
Köppen 1931). Mean annual temperature and precipitation lies around 21.3C and 1315.18
mm, respectively.
We placed a grid of 100 25-m
2
contiguous plots and sampled all individuals of the woody
component (stem diameter at soil level ≥ 3 cm; SMA 1997). We identified them to species
level using identification keys based on vegetative characters (Mantovani et al. 1985, Batalha
& Mantovani 1999). We used Plantminer (Carvalho et al. 2010) to correct species names, to
find author names of all species, and to include them into families according to the latest
phylogenetic classification.
We collected soil samples from soil surface (0-5 cm deep), the most correlated with
cerrado vegetation structure (Ruggiero et al. 2002, Amorim & Batalha 2006). In each plot,
24
we collected a composite sample, mixing five sub-samples, four in the corners of each plot
and one in the center, analysed at the University of São Paulo, according to Embrapa (1997),
Silva (1999) and Raij et al. (2001). We determined pH, organic matter, available phosphorus,
total nitrogen, exchangeable K
+
, Ca
2+
, Mg
2+
, and Al
3+
. We calculated sum of bases, cation
exchange capacity, base saturation, and aluminum saturation. We also determined sand, silt,
and clay proportions (for a complete description see Silva & Batalha 2008).
When necessary, we transformed variables to achieve normality. We calculated
correlograms using Moran index (Moran 1950) as spatial autocorrelation index. Subsequently,
we used only those soil variables that had the range of autocorrelation at distances smaller
than 25 m, since, in this case, soil features would have enough variability to influence plant
species distribution. Although the greatest distance between pairs of plots was higher than 50
m, beyond 25 m the results for spatial dependence were not reliable due to the small number
of pairs of plots to compare.
To avoid collinearity, we tested for correlations among soil variables and, when the
coefficient of correlation was higher than 0.7, we excluded one of the soil features in the
subsequent analysis. We also preferred more synthetic variables. We standardised soil
variables to zero mean and unit variance. To answer the first question, we did a partial
redundancy analysis (Jongman et al. 1995), using the vegetation and soil matrices, and using
the spatial coordinates to control for spatial autocorrelation. We also selected the five
commonest species and did stepwise multiple regressions with soil features as explanatory
variables. When we found significant relationships in the multiple regressions, we tested the
residuals for spatial autocorrelation with Moran‟s index, since spatial dependence could cause
type I error (Dormann et al. 2007). Since residuals were normally distributed, we used
autoregressive model to account for spatial autocorrelation (Dormann et al. 2007). To answer
the second question, we counted the numbers of individuals (abundance) and species
25
(richness) per plot and calculated evenness (Pielou 1975) and Shannon‟s diversity (Shannon
and Weaver 1949), using them as response variables. We selected the best stepwise model
using the Akaike Information Criteria (AIC). We did all analyses in R (R Development Core
Team 2009), using the vegan (Oksanen et al. 2009) and spdep (Bivand et al. 2009) packages.
RESULTS
We sampled 2062 individuals, belonging to 61 species and 27 families. The five
commonest species were Myrsine umbellata Mart. (567 individuals), Vochysia tucanorum
Mart. (168 individuals), Myrcia guianensis (Aubl.) DC. (131 individuals), Miconia albicans
(Sw.) Triana (125 individuals), and Piptocarpha rotundifolia (Less.) Baker (103 individuals).
The richest families were Fabaceae (with eight species), Myrtaceae (with six species),
Malpighiaceae and Melastomataceae (with four species each), and Annonaceae,
Erythroxylaceae e Rubiaceae (with three species each), summing 50 percent of all species
sampled.
Soil was dystrophic (P < 0.5 cmol
c
/kg, K
+
< 0.1 cmol
c
/kg, Mg
2+
< 0.2 cmol
c
/kg, Ca
2+
< 0.4
cmol
c
/kg), acidic (pH < 4), and with high concentration of Al
3+
(> 1.7 cmol
c
/kg). The only
soil features that showed a complete range of variation at the scale of our study were organic
matter, calcium, aluminum, sum of basis, aluminum saturation, cation exchange capacity, and
H+Al. Many of these variables were correlated with each other (Table 1) and, thus, for
statistical analyses, we used only organic matter, sum of basis, and aluminum saturation,
which were related to many others, but not correlated with each other.
The first axis of the redundancy analysis explained 12.86% (p= 0.005) of the variation in
floristic composition and was more related to organic matter and exchangeable aluminum.
The commonest species, Myrsine umbellata, showed a significant relationship with soil, but
26
only with organic matter (z=4.36; p<0.001; table 2). The other four commonest species
showed no relationship with soil features. Total abundance was positively related with organic
matter (t= 4.43;p<0.001), species richness was positively related with sum of basis (t = 3.19; p
= 0.002), and evenness was negatively related with organic matter (z=-3.3192, p<0.001). We
found no relationship between diversity and soil features (Table 2).
DISCUSSION
Albeit significant, we found low explanatory power for floristic composition in relation to
soil features at fine scale, as found by other studies that could not distinguish floristic
composition among different cerrado physiognomies based on soil (Ruggiero et al. 2002,
Marimon Junior & Haridasan 2005, Amorin & Batalha 2007). Floristic composition seems to
be more related to soil features between different neighbor vegetation types, such as wet
grassland, seasonal forest and cerrado (Amorin & Batalha 2007, Ruggiero et al. 2002, Silva
et al. 2008). Within cerrado physiognomies, there seems to be functionally redundant species,
corroborating the traditional idea that savannas are more stable in functional than floristic
terms (Sarmiento 1996). Another possibility that remains to be tested is whether neutral
processes prevail at fine scale, which is likely to occur in species-rich communities (Hubbel
2005), such as the cerrado. Nevertheless, since we found relationships between soil features
and the abundance of the commonest species, total abundance, richness, and evenness in the
regression analyses, there seems to be a deterministic relationship, at least to some extent,
between resource availability and vegetation structure within cerrado physiognomies.
The soil features related to vegetation structure were organic matter and sum of basis.
Organic matter is related to high soil fertility, since the negatively charged surfaces of organic
matter retain nutrients and some organic molecules chelate micronutrient, making them
27
available for plant roots (Salisbury & Ross 1991). In cerrado organic matter is the main
source of nitrogen and sulfur, both at critic low levels in cerrado (Goodland & Ferri 1979).
Moreover, organic matter provides clay aggregation stability, which allows water and air to
move through the soil and permits roots to penetrate with little resistance (Motta et al. 2002).
Organic matter may be even more important than clay in providing nutrients for plants in
cerrado communities (Goodland &Ferri 1979). Sum of basis is calculated as the sum of total
calcium, potassium, and magnesium, which are related to hydration regulation and, thus, to
water availability. Calcium and potassium are related to enzymatic activation; calcium, to
plant growth; and magnesium, to basal metabolism (Larcher 2000).
All the relationships we found with organic matter may be associated with the abundance
of Myrsine umbellata. Since Myrsine umbellata is by far the commonest species in the
community, the negative relationship between organic matter and evenness and its positive
relationship with total abundance, probably reflects the abundance of this species. We
expected higher evenness to be related to higher nutrient availability because of the lack of
competition exclusion of inferior competitors, but we did not corroborate this idea. Given that
changes in organic matter in surface soil are likely to be caused by the vegetation itself
(Sparovek & Camargo 1997, Ruggiero et al. 2002, Silva et al. 2008), a possible explanation
for the positive relationship between organic matter and the dominance of Myrsine umbellata
could be that this species increases soil organic matter, which could, in turn, favor this
species, in a mechanism of positive feedback (Kulmatisky et al.2008).
Richness showed a positive relationship with sum of basis, which could be related to
environmental filtering in nutrient-poor soils and more resources in nutrient-rich soils
allowing coexistence of more species. We did not find any relationship between richness and
exchangeable aluminum, contrary to Carvalho and Martins (2009), who compared different
cerrado physiognomies. Maybe, at fine scale, variations in aluminum could not be wide
28
enough to influence plants, especially because cerrado species are adapted to deal with it
(Sarmiento 1984). Richness and evenness were related with different non-correlated soil
features, and these two community descriptors are the components of diversity. Thus, the lack
of relationship between diversity and soil features could reflect different spatial patterns of
distribution of sum of basis (positively related with richness) and organic matter (positively
related with evenness) that would cancel out each other.
In conclusion, although it was not possible to infer cause-and-effect relationships, our
study indicated that soil is an important factor structuring cerrado community, even at fine
scales. Soil was not related to floristic composition, suggesting functional redundancy among
plants, but some soil features were related to community descriptors, such as abundance,
richness, and evenness. There can be a positive feedback between Myrsine umbellata, by far
the most abundant species, and organic matter, which remains to be tested. Moreover, fine
scale studies should be carried out among different cerrado physiognomies to partition soil-
vegetation relationships within and among habitats.
LITERATURE CITED
AMORIM, P. K., AND M. A. BATALHA. 2006. Soil characteristics of a hyperseasonal cerrado
compared to a seasonal cerrado and a floodplain grassland: implications for plant
community structure. Braz. J. Biol. 66: 661-667.
AMORIM, P. K., AND M. A. BATALHA. 2007. Soil-vegetation relationships in hyperseasonal
cerrado, seasonal cerrado, and wet grassland in Emas National Park (central Brazil). Acta
Oecol. 32: 319-327.
ARENS, K. 1958. O cerrado como vegetação oligotrófica, pp 59-57. Bol Fac Fil Ciênc Ltr
Universidade de São Paulo, São Paulo, BR.
29
ARENS, K. 1963. As plantas lenhosas dos campos cerrados como vegetação adaptada às
deficiências minerais do solo. In: Ferri MG (ed) III Simpósio sobre o cerrado, pp 13-115.
Edgard Blucher /Edusp, São Paulo, BR.
BATALHA, M. A., AND W. MANTOVANI. 1999. Chaves de identificação das espécies vegetais
vasculares baseadas em caracteres vegetativos para a ARIE Cerrado -de-Gigante (Santa
Rita do Passa Quatro, SP). Rev. Inst. Florest.11: 137-158.
BERTNESS, M. D., AND R. CALLAWAY.1994. Positive interactions in communities. Trends
Ecol. Evol. 5: 191-193.
BIVAND, R., L. ANSELIN, R. ASSUNÇÃO, O. BERKE, A. BERNAT, M. CARVALHO, Y. CHUN, C.
DORMANN, S. DRAY, R. HALBERSMA, E. KRAINSKI, N. LEWIN-KOH, H. LI, J. MA, G. MILLO,
W. MUELLER, H. ONO, P. PERES-NETO, M. REDER, M. TIEFELSDORF, ANDD. YU. 2009.
spdep: Spatial dependence: weighting schemes, statistics and models. R package version
0.4-34. http://CRAN.R-project.org/package=spdep.
CARVALHO, D. A., AND F. M. MARTINS. 2009. Shrub and tree species composition in the
cerrado of southwest Minas Gerais. Cerne 15: 142-154.
CARVALHO, G. H., M. V. CIANCIARUSO, AND M. A. BATALHA. 2010. Plantminer: a web tool
for checking and gathering plant species taxonomic information. Environmental Modelling
and Software: in press.
CASTRO, A. A. J. F., F. R. MARTINS, J. Y. TAMASHIRO, AND G. J. SHEPHERD. 1999. How rich is
the flora of Brazilian cerrados. Ann. Missouri Bot. Gard. 86: 192-224.
DORMANN, C. F., J. M. MCPHERSON, M. B. ARAÚJO, R. BIVAND, J. BOLLIGER, G. CARL, R.G.
DAVIES, A. HIRZEL, W. JETZ, W. D. KISSLING, I. KÜHN, R. OHLEMÜLLER, P. R. PERES-
NETO, B. REINEKING, B. SCHRÖDER, F. K. SCHURR, AND R. WILSON. 2007. Methods to
account for spatial autocorrelation in the analysis of species distributional data: a review.
Ecography 30: 609-628.
30
Embrapa. 1997. Manual de métodos de análise do solo. Embrapa, Rio de Janeiro, BR.
FERREIRA, J. N., M. M. DA C. BUSTAMANTE, AND E. A. DAVIDSON. 2009. Linking woody
species diversity with plant available water at a landscape scale at a Brazilian savanna. J.
Veg. Sci. 20: 826-835.
GOODLAND, R., AND M. G. FERRI.1979. Ecologia do Cerrado. Universidade de São Paulo, São
Paulo, BR.
GOODLAND, R.,AND R. POLLARD. 1973. The Brazilian cerrado vegetation: a fertility gradient.
J. Ecol. 61:219-224.
HUBBEL, S. P. 2005. Neutral theory in community ecology and the hypothesis of functional
equivalence. Funct. Ecol. 19: 166-172.
JONGMAN, R..H..G., C. J. F. TER BRAAK, AND O. F. R. VAN TONGEREN. 1995. Data analysis in
community and landscape ecology. Cambridge University, Cambridge, UK.
KÖPPEN, W. 1931. Grundriss der Klimakunde. Berlin, Gruyter.
KULMATISKY, A., K. H. BEARD, J. R. STEVENS, AND S. M. COBBOLD. 2008. Plant-soil
feedbacks: a meta-analytical review. Ecol. Letters11: 1-13.
LARCHER, W. 2000. Ecofisiologia Vegetal. Rima, São Carlos, BR.
LOPES, A. S. 1984. Solos sob “cerrado”. Características, propriedades e manejo. Associação
Brasileira para Pesquisa da Potassa e do Fosfato, Piracicaba, BR.
MACARTHUR, R. H. 1972. Geographical Ecology. Harper & Row, New York, U.S.A.
MAGURRAN, A. E. 2004. Measuring biological diversity. Blackwell Science, Oxford, UK.
MANTOVANI, W., H. F. LEITÃO FILHO, AND F. R. MARTINS. 1985. Chave baseada em
caracteres vegetativos para identificação de espécies lenhosas da Reserva Biológica de
Moji Guaçu, SP. Hoehnea 12: 3566.
MARIMON JUNIOR, B. H., AND M. HARIDASAN. 2005. Comparação da vegetação arbórea e
características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes
31
sobre solos distróficos no leste do Mato Grosso, Brasil. Acta Bot. Bras. 19: 913-926.
MORRAN, P. A. P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17-23
MOTTA, P. E. F., N. CURI, AND D. P. FRANZMEIER. 2002. Relation of soil and geomorphic
surfaces in the Brazilian cerrado. In: Oliveira PS, Marquis RJ (eds) The cerrados of
Brazil: ecology and natural history of neotropical savannas, pp 13-32. Columbia University
Press, New York, U.S.A.
MYERS, N., R. A. MITTERMEIER, C. G. MITTERMEIER, G. A. B. FONSECA, AND J. KENT. 2000.
Biodiversity hotspots for conservation priorities. Nature 403: 853858.
OKSANEN, J., R. KINDT, P. LEGENDRE, B. O'HARA, G. L. SIMPSON, P. SOLYMOS, M. HENRY, H.
STEVENS,ANDH. WAGNER. 2009. vegan: Community Ecology Package. R package version
1.15-2. http://CRAN.R-project.org/package=vegan
OLIVEIRA-FILHO, A.T., AND J. A. RATTER.2002. Vegetation phisiognomies and woody flora of
the cerrado biome. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and
natural history of neotropical savannas, pp 13-32. Columbia University, New York, U.S.A.
Pielou, E.C. 1975. Ecological diversity. Wiley, New York, U.S.A.
R DEVELOPMENT CORE TEAM. 2009. R: A language and environment for statistical
computing. Wien, R Foundation for Statistical Computing. Avalable via DIALOG.
http://www.r-project.org. Accessed 21 Oct 2009.
RAIJ, B. VAN, J. A. QUAGGIO, H. CANTARELLA, M. E. FERREIRA, A. S. LOPES, AND O. C.
BATAGLIA. 1987. Análise química do solo para fins de fertilidade. Fundação Cargill,
Campinas, BR.
RUGGIERO, P. G. C., M. A. BATALHA, V. P. PIVELLO, AND S. T. MEIRELLES. 2002. Soil-
vegetation relationships in cerrado (Brazilian savana) and semideciduous Forest,
Southeastern Brazil. Plant Ecol. 160:1-16.
SALISBURY, F. B., AND C. W. ROSS.1991. Plant physiology. Belmont: Wadsworth Publishing
32
Company, California, U.S.A.
SARMIENTO G. 1984. The ecology of neotropical savannas. Harvard University Press,
Massachusetts, U.S.A.
SARMIENTO G.1996. Biodiversity and water relations in tropical savannas. In: Solbrig O. T.,
E. Medina, and J. F. Silva (Eds) Biodiversity and Savanna Ecosystem Processes, pp 61-75,
Springer, Berlin, DE.
SHANNON, C. E.,AND W. WEAVER. 1949. The mathematical theory of communication. The
University of Illinois Press, Urbana, U.S.A.
SILVA, F. C. 1999. Manual de análises químicas de solos, plantas e fertilizantes. Embrapa,
Brasília, BR.
SILVA, D. M., AND M. A. BATALHA. 2008. Soilvegetation relationships in cerrados under
different fire frequencies. Plant Soil 311: 87-96
SILVA, L. C. R., L. STERNBERG, M. HARIDASAN, W. A. HOFFMANN, F. MIRALLES-WILHELM,
AND A. C. FRANCO. 2008. Expansion of gallery forest into central Brazilian savannas.
Glob. Change Biol. 14: 21082118.
SMA SECRETARIA DE ESTADO DO MEIO AMBIENTE. 1997.Cerrado: bases para conservação e
uso sustentável das áreas de cerrado do estado de São Paulo. SMA, São Paulo, BR.
SOUZA, A. F., AND F. R. MARTINS. 2004. Microsite specialization and spatial distribution of
Geonoma brevispata, a clonal palm in south-eastern Brazil. Ecol. Res. 19: 521-532.
SPAROVEK, G., AND O. A. CAMARGO. 1997. Sampling strategies for tropical forest nutrient
cycling studies: a case study in São Paulo, Brazil. Ver. Bras. Ci. Solo 21: 635-642.
33
Table 1. Pearson‟s correlation for soil variables varying within the scale of our study. OM
(organic matter; g/kg); Ca
+2
(mg/kg), Al
+3
(mmolc/kg); SB (sum of basis; mmolc/kg); m
(aluminum saturation; %); CEC (cation exchange capacity; mmolc/kg); H+Al (mg/kg).
Data were collected at a cerrado site at São Carlos, Brazil (approximately, 21º58‟05.3”S,
47º52„10.1”W)
OM
Ca
2+
Al
3+
SB
m
CEC
H+Al
OM
1.00
-
-
-
-
-
-
Ca
+2
0.30
1.00
-
-
-
-
-
Al
+3
0.66
-0.16
1.00
-
-
-
-
SB
0.42
0.94
-0.09
1.00
-
-
-
m
0.03
-0.82
0.61
-0.83
1.00
-
-
CEC
0.82
0.12
0.74
0.23
0.23
1.00
-
H+Al
0.78
0.01
0.77
0.12
0.34
0.99
1.00
34
Table 2. Regression analyses using the abundance of the five commonest species, total abundance, richness, evenness, and diversity as response
variables and soil features as explanatory variables. Best model selected according to the Akaike Information Criterion. Soil features were: OM
(Organic matter; g/kg); Al
3+
(mmolc/kg); SB (Sum of basis; mmolc/kg). Data collected at a cerrado site at São Carlos, Brazil (approximately,
21º58‟05.3”S, 47º52„10.1”W).
Stepwise model
R
2a
Moran's ssd
b
Rho
c
Moran's ssd
d
OM
e
Al
3+e
SB
e
Myrsine umbellata
OM, SB
0.22***
5.54***
0.63***
-0.16
ns
4.4***
-
-1.18
ns
Vochysia tucanorum
OM, Al
+3
,SB
0.01
ns
-
-
-
0.23
ns
-0.23
ns
0.46
ns
Myrcia guianensis
OM, Al
+3
,SB
0.03
ns
-
-
-
0.81
ns
0.07
ns
-1.19
Miconia albicans
OM, Al
+3
,SB
0.01
ns
-
-
-
0.19
ns
-0.26
ns
0.28
ns
Piptocarpha rotundifolia
SB
0.01
ns
-
-
-
-
0.23
ns
-
Total abundance
OM
0.16***
1.57
ns
-
-
4.4***
-
-
Richness
Al
+3
, SB
0.11**
-0.17
ns
-
-
-
1.71
ns
3.16**
Pielou's evenness
OM, SB
0.13***
5.12***
0.59***
0.19
ns
-3.22***
-
0.50
ns
Diversity
OM, SB
0.06*
3.26***
0.42*
-0.11
ns
0.22
ns
-
0.14
ns
a
: coefficient of multiple regression (linear regression when there is one variable in the model);
b
: Moran‟s statistic standard deviate before
correcting for spatial dependence;
c
: Rho statistic for autoregressive models;
d
: Moran‟s statistic standard deviate after correcting for spatial
35
dependence;
e
: t statistic for each variable include in the model;
ns
: not significant; *: p<0.05; **: p<0.01; ***: p<0.00.
36
CAPITULO 2: DEFESAS CONTRA HERBIVORIAS E
VARIÁVEIS EDÁFICAS EM ESCALA LOCAL NUMA
SAVANA BRASILEIRA
1
1
Trabalho submetido à revista Plant and Soil com o título Fine scale relationship between
anti-herbivory defense traits and soil features in a Brazilian savanna”.
37
Fine scale relationship between anti-herbivory defense traits and soil features in a
Brazilian savanna
Vinícius de Lima Dantas
1,2
and Marco Antônio Batalha
1
1
Federal University of São Carlos, Department of Botany, Brazil. PO Box 676, 13565-506,
São Carlos, SP, Brazil
2
e-mail: [email protected]. Phone: +55 16 3351 8307. Fax: +55 16 33518308
38
Abstract Herbivory selective pressure causes evolution of chemical, mechanical, and
phenological leaf defenses. Plant allocation to defense depends on environmental resources.
Soil is a major environmental filter in the Brazilian savanna known as “cerrado”, and so we
expected plants on nutrient-poor soils to present higher anti-herbivory defenses. In a cerrado
site, we measured soil variables and the following leaf traits: specific leaf area, C:N ratio,
water content, toughness, trichomes, latex, and presence of tannins, alkaloids, and terpenoids.
We did multiple regressions or spatial autoregressive models, to predict defense traits based
on soil features. Contrary to our expectations, we found no relationship between total defenses
and total soil fertility or soil variables, what could result from low variability in soil fertility at
fine scale or of not taking phenotypic plasticity into account. Presence of tannins was
positively related to organic matter, possibly reflecting a strategy towards lower tolerance due
to low reserve allocation or interactions with other resources. Since tannins decrease leaf
decomposition rates, organic matter could be accumulating in soil. We did not find other
relationships between defense traits and soil features, but we found variability in soil features
at local scale, which could be affecting plant community processes.
Keywords: anti-herbivory strategy, resistance, defense traits, organic matter, soil fertility,
spatial autocorrelation.
39
Introduction
Herbivory is an ecological and evolutionary agent, exerting a strong selective influence at
population and community levels, by increasing plant mortality, removing biomass that might
be allocated to growth or reproduction (Coley et al. 1985), and reducing plant competitive
ability (Coley and Barone 1996). Thus, herbivory restricts plants potential distribution to
regions that they might tolerate (Fine et al. 2006). This pressure results in the evolution of
chemical, mechanical, phenological, and physiological defenses in plants (Coley and Barone
1996; Strauss and Agrawal 1999), such as differences in leaf water, leaf nitrogen, leaf
toughness (Coley 1983), timing of leaf flush (Aide 1992), production of secondary
compounds (Howe and Jander 2008), and increased capacity to tolerate herbivory (Strauss
and Agrawal 1999).
The evolution and maintenance of each defensive strategy is affected by the relative fitness
costs and benefits that each strategy involves (Núñez-Farfán et al. 2007). Thus, a mixed
pattern of defense allocation on tolerance to herbivory (recovery after herbivory) and
resistance to herbivory (traits that decrease the amount of attack by herbivores) may be
evolutionarily unstable when they are limited by factors other than herbivory, such as the
environment (Núñez-Farfán et al. 2007). Low resource environments favor the establishment
of species with low growth rate and highly defended long-lived leaves, since plant costs of
recovering leaf loss would be high (Coley et al. 1985). In other words, higher investments in
resistance would be favored when tolerance is too expensive. Fine et al. (2006) corroborated
this idea, suggesting the existence of a universal growth vs. defense trade-off on high vs. low
resource environments.
Different vegetation types are limited by different resources; hence, it could be expected
that the type of resource should also influence plant tolerance to herbivory. It was suggested
40
that the effect of resources on plant tolerance to herbivory may depend not only on low vs.
high fertility gradients, but also on: (1) what resource is primarily limiting the plant; (2)
whether there is an alternative resource affecting plant growth; and (3) whether the acquisition
of one of these resources by the plant is affected by herbivory (Wise and Abrahamson 2005).
So, this “Limiting Resource Model” can result in higher, lower, or equal tolerance to
herbivory, depending on the combination of these factors (Wise and Abrahamson 2005).
Soil chemical and physical features are main limiting resources in tropical regions and,
thus, strongly influence plant community (Sollings 1998). Chemical and physical soil features
that affect most plant distribution are phosphorous, aluminum toxicity, depth of water table,
amount and arrangement of pores of different sizes, availability of base-metal cations,
micronutrients, and nitrogen (Sollings 1998). Soil, together with fire and climate, is the main
determinant of vegetation in the cerrado, a Brazilian savanna (Coutinho 1990; Haridasan
2000). Cerrado soils are usually poor, acidic, well-drained, and with high levels of
exchangeable aluminum (Lopes 1984; Queiroz-Neto 1982; Reatto et al. 1998). The pseudo-
xeromorphic features of the cerrado vegetation may be related to aluminum toxicity (Arens
1958) or oligotrophism (Arens 1963).
Although the cerrado flora is extremely rich, being possible to find high species turnover
even at small scale, few studies have focused on environmental factors influencing vegetation
characteristics of cerrado at local scales, within cerrado physiognomies. Given the importance
of soil on limiting the cerrado vegetation and since changes in soil features can be found at
distances as small as 1 m (Downes and Beckwith 1951, Souza and Martins 2004), soil is
likely to influence changes at such a scale. Thus, it is possible that the influence of soil on
plant the trade-off between growth and resistance (hereafter called “defense”) found by Fine
at al. (2006) could remain even at fine scale, and tolerance to herbivory in relation to soil
could be responding to soil and, thus, be a determinant of vegetation features at more
41
homogeneous conditions, such as those found at local scale. So, we asked the following
questions:
(1) Is soil fertility related to total resistance against herbivory in a cerrado site? Overall,
we expected the investment in defense traits against herbivory to increase from nutrient-rich
to nutrient-poor soils (Fine et al. 2006);
(2) If not, is total resistance related to different soil features when considered separated?
We expected investments in defense to increase with the decrease of mineral nutrients or soil
features related to nutrient availability and with the increase of soil features related to toxicity
or oligotrophism, such as aluminum and aluminum saturation.
(3) Are different defense traits related to different soil features? We expected the increase
in a given defense trait to be related to lower levels of mineral nutrients or soil features related
to fertility, and with higher level of features related with aluminum. We also expect structural
defenses to respond better, since it has been demonstrated to tropical forests that mature
leaves invest more in physical than in chemical defenses (Coley and Barone 1996).
Materials and Methods
Vegetation sampling
We studied a cerrado woodland site at Federal University of São Carlos, southeastern
Brazil (approximately, 21°58‟05.3”S, 47°52„10.1”W). The area is on dystrophic Oxisol, 850
m above sea level, under mesothermic, subtropical climate, with wet summers and dry winters
(Cwa; Köppen 1931). Mean annual temperature and precipitation lies around 21.3C and
1315.18 mm, respectively. In this site, we placed 100 5 m x 5 m contiguous plots, in which
we sampled all individuals of the woody component, that is, individuals with stem diameter at
42
soil level equal to or higher than 3 cm (SMA 1997). We identified them to species level using
identification keys based on vegetative characters (Batalha and Mantovani 1999; Mantovani
et al. 1985) and comparing the collected material to vouchers lodged at the Federal University
of São Carlos and State University of Campinas herbaria. We used Plantminer (Carvalho et al.
2010) to check species names, to include all species into families according to the latest
phylogenetic classification, and to find author names of all species.
For each species in the sample, we picked 10 individuals at random. When, for a given
species, there were less than 10 individuals in the sample, we made an additional effort to
look for more individuals nearby the plots. Thus, sample size was 10 individuals per species
(Cornelissen et al. 2003). From September 2008 to April 2009, for each individual in the
sample, we collected fully expanded and hardened leaves, without obvious symptoms of
pathogen or herbivore attack, and measured the following leaf defense traits: nutritional
quality, specific leaf area, water content, latex content, number of trichomes, toughness, and
presence of alkaloids, terpenoids, and tannins (Agrawal and Fishbein 2006).
We measured total carbon (C) and nitrogen (N) concentration to calculate the C:N ratio, as
an indicator of leaf nutritional quality. For each species, carbon and nitrogen concentration
were determined in five replicates at University of São Paulo. Nutritional quality is an
important constitutive plant defense, since high C:N ratios difficult nitrogen acquisition by
herbivores (Agrawal and Fishbein 2006).
Low values of specific leaf area tend to correspond to relatively high investments in leaf
defenses, particularly structural ones (Cornelisen et al. 2003). Specific leaf area also indicates
rapid growth and high leaf palatability (Agrawal and Fishbein 2006). Similarly, water leaf
content is related to increased leaf palatability and, so, low levels of leaf water should help
avoiding herbivory (Agrawal and Fishbein 2006), since it is related to low palatability
(Schädler et al. 2003). To measure specific leaf area and leaf water content, we collected two
43
leaves from each individual, kept them in a cooler, and weighted them still fresh. We scanned
the leaves to determine leaf area with the Image J 1.33 software (Rasband 2004) and oven-
dried them at 80°C for 72 h to obtain leaf dry mass. We obtained specific leaf area by
dividing leaf area by leaf dry mass (Cornelisen et al. 2003). We calculated water content by
the difference between fresh mass and dry mass, divided by leaf area (Agrawal and Fishbein
2006).
Trichomes are also important physical defenses against herbivores. Using five replicates
for each species, we counted the number of trichomes, on both leaf surfaces, in 28 mm² discs,
with a dissecting microscope. We also measured leaf toughness, which is related to nutritional
and defense constituents, probably influencing herbivore activity (Agrawal and Fishbein
2006). We used a force gauge penetrometer (Chatillon DFE 010) with a cone tip, drilling the
leaf at both sides of the mid-rib.
Latex is an important chemical strategy against herbivory (Agrawal and Fishbein 2006).
We measured latex by cutting the tip of an intact leaf in the field and collecting the exuding
latex onto a filter paper disc. When latex ceased to flow, this disc were placed on another dry
filter paper disc, oven-dried at 60°C for 72 h, and weighted (Agrawal and Fishbein 2006). We
analysed compounds frequently present in Brazilian plants that could act as chemical defenses
against herbivores (Lima 2000): alkaloids, terpenoids, and tannins. We carried out the tests
following Falkenberg et al. (2003): a series of three assays, Mayer, Dragendorff, and Wagner
reactions, to determine alkaloid presence; Liebermann-Burchard and Salkowisk reactions to
test terpenoid presence; and ferric chloride reaction to determine tannin presence.
Soil sampling
We collected soil samples from soil surface (0-5 cm deep), the one most correlated with
44
cerrado vegetation structure (Amorim and Batalha 2006; Ruggiero et al. 2002). In each plot,
we collected a composite sample, mixing five sub-samples, four in the corners of each plot
and one in the center. They were analysed at the University of São Paulo, according to
Embrapa (1997), Silva (1999), and Raij et al. (2001). We determined pH, organic matter,
available phosphorus, total nitrogen, exchangeable K+, Ca+2, Mg+2, and Al+3. We
calculated sum of bases, cation exchange capacity, base saturation, and aluminum saturation.
We also determined sand, silt, and clay proportions.
Soil pH was determined in CaCl
2
solution, using 10 ml of soil in 25 ml of solution. CaCl
2
was used to avoid salt and oxides influences. Organic matter was determined by organic
carbon oxidation with potassium dichromate and subsequent potassium dichromate titration
with ammonic ferrous sulfate, using 0.5 g of soil and 10 ml of potassium dichromate solution.
A correction factor (1.33) was used to compensate partial carbon oxidation. Available
phosphorus was determined by spectrophotometry after anion exchange resin extraction,
using 2.5 cm
3
of soil. Total nitrogen was determined by digestion with H
2
SO
4
, followed by
distillation with NaOH, using from 0.5 to 1 g of soil, 1 g of H
2
SO
4
, and 15 ml of NaOH.
Cations K+, Ca+2, Mg+2, and Al+3 were extracted with 1 M KCl, using 10 cm
3
of soil and
100 ml of solution. Then, potassium, calcium, and magnesium were determined by an EDTA
complexometry. Aluminum was determined by NaOH titration. Sum of bases was calculated
as the sum of potassium, calcium, and magnesium. Cation exchange capacity was calculated
as sum of bases plus H+ and Al+3 concentrations. Base saturation was calculated as a
percentage of total cation exchange capacity. Aluminum saturation was calculated as a
percentage of sum of bases and Al+3.
We quantified soil sand, silt, and clay proportions using the Boyoucus method: first, soil
particles were settled using a dispersant, suspension was separated from the sediment, and
clay content was calculated by suspension density using a densimeter; then, the sediment was
45
sieved to separate the sand, which was weighted. Silt proportion was calculated by the
difference.
Statistical analyses
We plotted all soil variables in a correlograms to test which soil variables had full range of
variability at the scale of our study. We did not consider for statistical analysis spatially
autocorrelated variables that had a range between positive and negative values of
autocorrelation smaller than 25 m, since their scale of variability were greater than the
sampling scale.
We also calculated Pearson‟s correlation between all pairs of variable selected above, to
choose variables not highly correlated with each other, thus, avoiding multicolinearity effects
in the analysis (Zar 1999). Since many of the variables were correlated, we decide to pick
only the less correlated and redundant ones (r < 0.70).
To answer the first question, we did a linear regression between defense and fertility
indices per plot. To obtain defense index per plot, we followed Fine et al. (2006), but we
weighted total defense by species abundance per plot; thus, we followed these steps: (1) for
each species and each quantitative defense trait, we calculated trait mean value; (2) we
standardised all defense traits, both quantitative and qualitative, to zero mean and unit
variance; (3) we summed all values of defense traits, obtaining a single value of total defense
per species; (4) we weighted the matrix of species abundance per plot with these values; and
(5) we summed all weighted values obtaining total defense per plot. For, specific leaf area and
water content, we used their inverse, since higher values of these traits represent low defense.
To calculate fertility index, we used a similar procedure: (1) we first log- or square root-
transformed soil variables to achieve normality; (2) we standardised them; and (3) we
46
summed the values per plot of soil variables related to soil fertility and the inverse of soil
variables related with low fertility (for example, exchangeable aluminum). This approach has
the problem of considering traits (and here also soil features) to have equal weights, but it is
preferable than to assign subjectively different weights (Fine et al. 2006). To answer the
second question, we did stepwise multiple linear regressions with soil features as explanatory
variables and the defense index as response variable.
To answer the third question, we did stepwise multiple regressions with each defense trait
as response variable and the soil features selected above as explanatory variables. We
obtained trait value per plot by weighting the species abundance matrix by species mean trait
value, and then summing all values of each plot. Soil and trait values per plot were log- or
square root-transformed to achieve normality, and soil variables were standardised to zero
mean and unit variance. When regression residuals were spatially autocorrelated, we used
tests that accounted for spatial autocorrelation, instead of multiple regressions, to avoid type I
error. Since all residuals that were autocorrelated were normally distributed, we used
simultaneous autoregressive models to correct spatial dependence (Dormann et al. 2007).
We selected the best stepwise regression models with the Akaike Information Criterion.
We tested the residuals of the multiple regressions for spatial autocorrelation among plots
using Moran‟s I index (Moran 1950), assuming data to be stationary and anisotropic. We did
all analyses with the vegan (Oksanen et al. 2009) and spdep (Bivand et al. 2009) packages for
R (R Development Core Team 2009).
Results
We sampled 2,062 individuals, belonging to 61 species and 27 families, for which we
measured defense traits (Table 1). The richest families were Fabaceae (eight species),
47
Myrtaceae (seven species), Malpighiaceae and Melastomataceae (four species each), and
Annonaceae, Erythroxylaceae, and Rubiaceae (three species each), accounting for half of the
species sampled. Only two species presented latex Kielmeyera grandiflora and Kielmeyera
coriacea. Tocoyena formosa was the only species to present alkaloids, whereas 26 species
presented terpenoids and 57 species presented tannins (Table 1). Soil was dystrophic (P < 0.5
cmol
c
kg
-1
, K+ < 0.1 cmol
c
kg
-1
, Mg+2 < 0.2 cmol
c
kg
-1
, Ca+2 < 0.4 cmol
c
kg
-1
), acidic (pH <
4), and with high concentration of Al+3 (> 1.7 cmol
c
kg
-1
).
All soil variables presented spatial
autocorrelation, but the only soil variables that showed a complete range of variation (from
positive to negative autocorrelation) at the scale of our study were organic matter, calcium,
aluminum, sum of basis, aluminum saturation, cation exchange capacity, and hydrogen ions,
showing that the others have greater scales of variation. Organic matter, Al+3, cation
exchange capacity and H+ showed a range of variability of 15 m, whereas Ca+2, sum of basis
and aluminum saturation showed a range of variability of 25 m (Figure 1). After selecting less
correlated soil variables, only organic matter, sum of basis, and Al+3 remained for statistical
analysis.
Concerning total defense index, we found no relationship with soil variables, either when
we used total fertility index or when we used soil features separately (Table 2). We found
positive relationship between the presence of tannins and organic matter (t = 4.37, p < 0.001),
but no other defense trait distribution was related to any of the soil features (Table 2).
Discussion
Contrary to our expectation, total investment in defense traits against herbivory did not
increase from nutrient-rich to nutrient-poor soils. Fine et al. (2006) found a relationship
between total defenses and total soil fertility at large scale, comparing different vegetation
48
types, but, at fine scale, within a plant community, this relationship does not seem to hold,
maybe because the variation in soil features is much larger in regional scale. Moreover, our
study focused in the effects of soil variables in the establishment of well versus poorly
defended species in space, but did not account for phenotypic plasticity in plant traits in
response to nutrient availability, which could be assessed by measuring trait values for every
individual at the community.
When taking into account each defense trait separately, we found positive significant
relationships between the presence of tannins and organic matter. This could be resulting from
higher investments in this chemical defense in response to high soil nutrient availability, since
negatively charged surfaces of organic matter retains nutrients and some organic molecules
chelate micronutrient, making them available for plant roots (Salisbury and Ross 1991).
Organic matter also provides clay aggregation stability, which allows water and air to move
through the soil readily and permits roots to penetrate with little resistance (Motta et al. 2002).
It was also suggested that organic compounds could favor plant growth, although there is not
much support to this idea (Salisbury and Ross 1991). Thus, our result goes in the opposite
direction of what was expected by the trade-off suggested by Fine et al. (2006), since we
found a greater abundance of well chemically defended species in richer soils, where species
should be less defended since they are more tolerant, and they had found high defenses in
poor soils due to low tolerance.
The discussion of whether a species have higher or lower investments in tolerance in high
nutrient availability is still a poorly resolved matter (Wise and Abrahamson 2007). Whereas
some studies have suggested higher tolerance to herbivory in poor soils, others have
suggested the opposite (Hawkes and Sullivan 2001). Although the second idea seems more
counterintuitive, some authors have suggested mechanisms to explain lower tolerance in
richer soils. Tolerance to herbivory could be negatively correlated to nutrient availability,
49
when nutrient levels are high and root reserve allocation is reduced (Strauss and Agrawal
1999). Since root reserves are known to be important to tolerance, species growing on rich
soils could have low tolerance to herbivory (Strauss and Agrawal 1999) and, hence, high
investment in defenses.
Another explanation is possible according to the Limiting Resource Model (Wise and
Abrahamson 2005), which intents to explain why many studies have found strong support to
both greater and lower tolerance to herbivory in low resources environments (Hawkes and
Sullivan 2001). The model provides a series of predictions depending on which are the first
and the second plant limiting resources and whether herbivory is affecting or not resource
acquisition by plant. Thus, depending on the combination of these factors, it is possible to find
higher, lower, or equal tolerance to herbivory, as empirical data has demonstrated (Wise and
Abrahamson 2007; Wise and Abrahamson 2008). According to the predictions of the model,
low tolerance on rich soils should happen when there is an alternate resource whose
acquisition are being affected by herbivory, as, for example, carbon from the atmosphere.
Since a species that grows on rich soils is growing at the maximum it could grow without
limitation by soil resources, when herbivory affects carbon acquisition, this species would
have a much higher decrease in fitness than when herbivory occurs on plants growing on poor
soils.
However, the fact that organic matter is related to increasing mineral availability
(Salisbury and Ross 1991) should lead us to find the abundance of individuals with tannins to
be also related to nutrient content, for example, sum of basis, what we did not find. This may
be related to the fact that, at small scale, what matters is not total nutrient in soil, but whether
it is availability to the plant, which is increased when organic matter level is high.
Conversely, the lack of relation with sum of basis could be an indication that higher
abundance of species with tannins is not a consequence of higher organic matter in soil, but
50
high organic matter in soil is a consequence of higher abundance of species with tannins.
Studies in other vegetation types have shown that plant defensive strategies against herbivory
are affected by belowground biota and decomposition rates, since lower leaf nutritional
quality or higher leaf toxicity could affect not only herbivores, but also the decomposition
system (Bardgett et al. 1998, Loranger et al. 2002). As long as leaf decomposition rate is
negatively correlated with leaf tannins (Loranger et al. 2002), it could lead to the
accumulation of organic matter.
Tannins were the only defense trait related to soil features. Since we sampled only mature
leaves, the fact that many species presented tannins (57 from 61 species) is an indication that
mature leaves uses chemical as well as structural defenses. The results found for tropical
forests that mature leaves invest in mechanical defensive traits and young leaves in
chemical traits may not stand for cerrado. Nevertheless, we found high variability in many
soil features at local scale, suggesting that although many of them do not seem to influence
the establishment of well or poorly defended species, community processes at fine scale must
be related to soil distribution and this may influence plant community at some level.
Acknowledgements: We are grateful to “Conselho Nacional de Desenvolvimento
Científico e Tecnológico”, for the scholarships granted to both authors; to “Fundação de
Amparo à Pesquisa do Estado de São Paulo”, for financial support; to ML Afonso, JR Freitas,
P Loiola, DM Silva, IA Silva, and JF Silva, for valuable help in field; to DM Silva and GH
Carvalho, for suggestions on the manuscript and help in data analysis; and to IA Silva, for
assistance in species identification.
51
References
Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87: 132-149
Aide TM (1992) Dry season leaf production and escape from herbivory. Biotropica 24:532-
537
Amorim PK, Batalha MA (2007) Soil-vegetation relationships in hyperseasonal, seasonal
cerrado, and wet grassland in Emas National Park (central Brazil). Acta Oecol 32:319-327
Arens K (1958) O cerrado como vegetação oligotrófica. Bol Fac Fil Ciênc Ltr, Universidade
de São Paulo, pp 59-57
Arens K (1963) As plantas lenhosas dos campos cerrados como vegetação adaptada às
deficiências minerais do solo. In: Ferri MG (ed.) III Simpósio sobre o cerrado, Edgard
Blucher /EDUSP, São Paulo, pp 13-115
Bardgett RD, Wardle DA, Yates GW (1998) Linking above-ground and below-ground
interactions: how plant responses to foliar herbivory influences soil organisms. Soil Biol.
Biochem. 14:1867-1878
Batalha MA, Mantovani W (1999) Chaves de identificação das espécies vegetais vasculares
baseadas em caracteres vegetativos para a ARIE Cerrado Pé-de-Gigante (Santa Rita do
Passa Quatro, SP). Rev Inst Florest 11:137-158
Bivand R, Anselin L, Assunção R, Berke O, Bernat A, Carvalho M, Chun Y, Dormann C,
Dray S, Halbersma R, Krainski E, Lewin-Koh N, Li H, Ma J, Millo G, Mueller W, Ono H,
Peres-Neto P, Reder M, Tiefelsdorf M, Yu D (2009) spdep: Spatial dependence: weighting
schemes, statistics and models. R package version 0.4-34. http://CRAN.R-
project.org/package=spdep
Carvalho GH, Cianciaruso MV, Batalha MA (2010) Plantminer: a web tool for checking and
gathering plant species taxonomic information. Environmental Modelling and Software: in
52
press.
Coley PD (1983) Herbivory and defensive characteristics of tree species in lowland tropical
forest. Ecol Monogr 53:209-233
Coley PD, Bryant JP, Chapin III FS (1985) Resource availability and plant antiherbivore
defense. Science 230:895-899
Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol
Syst 27:305-335
Coutinho LM (1990) Fire in the ecology of the Brazilian Cerrado. Ecol Stud 84:82-105
Cornelissen JHC, Lavorel S, Garniel E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege
H ter, Morgan HD, Heijden MGA van der, Pausas JG and Poorter H (2003) A handbook of
protocols for standardized and easy measurement of plant functional traits worldwide. Aust
J Bot 51:335-380
Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel
A, Jetz W, WD Kissling, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B,
Schurr FK, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis
of species distributional data: a review. Ecography 30:609-628
Downes RG, Beckwith RS (1951) Studies in the variation of soil reaction. I. Field variation at
Barooga, N.S.W. Aust J Agr Res 2:60-72
Embrapa (1997) Manual de métodos de análise do solo. Embrapa, Rio de Janeiro
Falkenberg MB, Santos RI, Simões CMO (2003) Introdução à análise fitoquímica. In Simões
CMO, Schenkel G, Gomann G, Mello JCP, Mentz L, Petrovick P (ed) Farmacognosia: da
planta ao medicamento. Universidade Federal do Rio Grande do Sul, Porto Alegre
Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHH, Sããksjãrvi I, Shultz
JC, Coley PD (2006) The growth-defense trade-off and habitat specialization by plants in
amazonian forests. Ecology 87:150-162
53
Goodland R, Ferri MG (1979) Ecologia do Cerrado. Universidade de São Paulo, São Paulo
Goodland R, Pollard R (1973) The Brazilian cerrado vegetation: a fertility gradient. J Ecol
61:219-224
Haridasan M (2000) Nutrição mineral de plantas nativas do cerrado. Rev Bras Fisiol Veg
12:54-64
Hawkes CV, Sullivan JJ (2001) The impact of herbivory on plants in different resource
conditions: a meta-analysis. Ecology 82:20452058
Howe GA, Jander G (2008) Plant Immunity to insect herbivores. Annu Rev Plant Biol 59:41-
66
Köppen W (1931) Grundriss der Klimakunde. Berlin, Gruyter.
Lima MIS (2000) Substâncias do metabolismo secundário de algumas espécies nativas e
introduzidas no Brasil. In: Larcher W (ed) Ecofisiologia Vegetal, Rima, São Carlos, pp 33-
68
Lopes AS (1984) Solos sob “cerrado”. Características, propriedades e manejo. Associação
Brasileira para Pesquisa da Potassa e do Fosfato, Piracicaba
Loranger G, Ponge j-F, Imbert D, Lavelle P (2002) Leaf decomposition in two semi-
evergreen tropical forests: influence of litter quality. Biol Fertil Soils 35:247-252.
Mantovani W, Leitão Filho HF, Martins FR (1985) Chave baseada em caracteres vegetativos
para identificação de espécies lenhosas da Reserva Biológica de Moji Guaçu, SP. Hoehnea
12:3566
Morran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17-23
Motta PEF, Curi N, Franzmeier DP (2002) Relation of soil and geomorphic surfaces in the
Brazilian cerrado. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and
natural history of neotropical savannas, Columbia University Press, New York, pp 13-32
Núñez-Farfán J, Fornoni J, Valverde PL (2007) The evolution of resistance and tolerance to
54
herbivores. Annu Rev Ecol Evol Syst 38:541-566
Oksanen J, Kindt R, Legendre P, O'Hara B, Simpson GL, Solymos P, Henry M, Stevens H,
Wagner H (2009) vegan: Community Ecology Package. R package version 1.15-2.
http://CRAN.R-project.org/package=vegan
Queiroz-Neto JP (1982) Solos da região do cerrado e suas interpretações (revisão de
literatura). Rev Bras Cien Solo 6:1-12
R Development Core Team. 2009. R: A language and environment for statistical computing.
Wien, R Foundation for Statistical Computing. Avalable via DIALOG. http://www.r-
project.org. Accessed 21 Oct 2009
Raij B van, Quaggio JA, Cantarella H, Ferreira ME, Lopes AS, Bataglia OC (1987) Análise
química do solo para fins de fertilidade. Fundação Cargill, Campinas
Rasband W (2004) ImageJ: Image process and analysis in Java. National Institutes of Health,
Bethesda
Reatto A, Correia JR, Spera ST (1998) Solos do bioma cerrado: aspectos pedológicos. In:
Sano SM, Almeida SP. Cerrado: ambiente e flora. Embrapa, Planaltina, pp 47-86
Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Soil-vegetation relationships in
cerrado (Brazilian savana) and semideciduous Forest, Southeastern Brazil. Plant Ecol
160:1-16
Salisbury FB, Ross CW (1991) Plant physiology. Belmont: Wadsworth Publishing Company,
California
Schädler M, Jung G, Auge H, Brandl R (2003) Palatability, decomposition and insect
herbivory: patterns in a successional old-field plant community. Oikos 103:121-132
Silva FC (1999) Manual de análises químicas de solos, plantas e fertilizantes. Embrapa,
Brasília
SMA Secretaria de Estado do Meio Ambiente (1997) Cerrado: bases para conservação e uso
55
sustentável das áreas de cerrado do estado de São Paulo. SMA, São Paulo
Sollings P (1998) Factors influencing species composition in tropical lowland rain Forest:
does soil matter? Ecology 79:23-30
Souza AF and Martins FR (2004) Microsite espaecialization and spatial distribution of
Geonoma brevispata, a clonal palm in south-eastern Brazil. Ecol Res 19:521-532
Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory.
Tree 5:179-185
Wise MJ, Abrahamson WG (2005) Beyond the compensatory continuum: environmental
resource levels and plant tolerance of herbivory. Oikos 109:417-428
Wise MJ, Abrahamson WG (2007) Effects of resource availability on tolerance of herbivory:
a review and assessment of three opposing models. Am Naturalist 169:443-454
Wise MJ, Abrahamson WG (2008) Applying the limiting resource model to plant tolerance of
apical meristem damage. Am Naturalist 172:635647
Zar JH (1999) Biostatistical analysis. Prentice-Hall, New Jersey
56
Table 1: Leaf defense traits (mean ± standard deviations) from woody species collected in a cerrado site at Federal University of São Carlos,
Brazil (approximately, 21º58‟05.3”S, 47º52„10.1”W), in the rainy season of 2008. Water leaf content (mg.cm
-2
); specific leaf area (cm
2
g
-1
); leaf
toughness (N); leaf trichomes density per area (cm
-2
); latex content (mg); C:N ratio; presence (1) or absence (0) of chemical defenses: alkaloids
(A), terpenoids (Te), and tannins (Ta).
Species
Family
Water
Specific leaf area
Toughness
Latex
Trichomes
Nutritional
quality
A
Te
Ta
Acosmium dasycarpum (Vogel)
Yakovlev
Fabaceae
0.02±0.005
78.626±8.710
1.227±0.240
0.000±0.000
1040.200±334.030
16.784±2.733
0
0
1
Acosmium subelegans (Mohlenbr.)
Yakovlev
Fabaceae
0.017±0.005
82.041±14.153
1.018±0.216
0.000±0.000
55.600±123.210
16.630±3.164
0
1
1
Aegiphila lhotskiana Cham.
Lamiaceae
0.027±0.005
103.966±15.022
0.712±0.228
0.000±0.000
841.200±192.836
14.721±2.374
0
1
1
Annona coriacea Mart.
Annonaceae
0.027±0.007
86.254±17.198
2.084±0.498
0.000±0.000
203.800±71.852
28.189±4.422
0
0
1
Annona crassiflora Mart.
Annonaceae
0.020±0.000
117.139±25.048
0.701±0.080
0.000±0.000
379.600±81.929
24.607±4.933
0
0
0
Banisteriopsis megaphylla (A.Juss.)
B.Gates
Malpighiaceae
0.018±0.006
127.473±28.145
0.422±0.198
0.000±0.000
617.400±330.540
14.820±3.313
0
0
1
Bauhinia rufa Steud.
Fabaceae
0.016±0.005
67.283±5.410
1.132±0.239
0.000±0.000
954.400±227.058
19.447±1.707
0
1
1
Byrsonima coccolobifolia Kunth
Malpighiaceae
0.020±0.000
97.4±16.128
0.776±0.097
0.000±0.000
13.800±12.357
22.468±2.805
0
0
1
Byrsonima verbascifolia Rich. ex
Malpighiaceae
0.025±0.007
74.42±6.576
0.680±0.113
0.000±0.000
2056.500±792.667
40.168±6.681
0
0
1
57
Juss.
Campomanesia adamantium
(Cambess.) O.Berg
Myrtaceae
0.013±0.005
81.004±14.263
1.073±0.203
0.000±0.000
603.800±401.108
27.663±2.903
0
1
1
Casearia sylvestris Sw.
Salicaceae
0.010±0.000
123.956±19.570
0.667±0.223
0.000±0.000
143.200±114.154
15.955±2.912
0
0
1
Connarus suberosus Planch.
Connaraceae
0.02±0.000
65.119±5.599
1.444±0.232
0.000±0.000
1403.000±561.190
29.951±5.808
0
1
1
Dalbergia miscolobium Benth.
Fabaceae
0.02±0.000
76.002±10.460
0.760±0.256
0.000±0.000
11.400±9.762
17.965±2.736
0
0
1
Daphnopsis sp Mart.
Thymelaeaceae
0.017±0.005
132.102±43.950
1.231±0.222
0.000±0.000
0.600±0.894
23.764±5.592
0
0
1
Davilla elliptica A.St.-Hil.
Dilleniaceae
0.016±0.005
129.334±42.730
0.852±0.257
0.000±0.000
215.600±158.371
28.791±2.862
0
0
1
Davilla rugosa Poir.
Dilleniaceae
0.011±0.003
188.293±39.525
0.824±0.252
0.000±0.000
227.800±133.607
28.312±3.456
0
0
1
Dimorphandra mollis Benth.
Fabaceae
0.012±0.004
102.249±14.677
0.285±0.115
0.000±0.000
623.400±173.259
12.824±1.495
0
0
1
Diospyros hispida A.DC.
Ebenaceae
0.023±0.005
62.249±6.733
1.040±0.320
0.000±0.000
708.000±278.318
33.142±5.446
0
1
1
Erythroxylum cuneifolium O.E.Schulz
Erythroxylaceae
0.011±0.003
160.394±42.361
0.399±0.154
0.000±0.000
1.000±2.236
18.156±1.648
0
1
1
Erythroxylum suberosum A.St.-Hil.
Erythroxylaceae
0.019±0.003
90.410±12.658
1.338±0.409
0.000±0.000
0.400±0.894
18.381±3.089
0
1
1
Erythroxylum tortuosum Mart.
Erythroxylaceae
0.02±0.000
90.593±13.504
0.942±0.362
0.000±0.000
1.600±1.342
20.375±1.497
0
0
1
Fagara rhoifolia Engl. in Engl. &
Prantl
Rutaceae
0.013±0.005
105.943±14.723
0.452±0.155
0.000±0.000
247.000±100.814
16.721±3.276
0
1
1
Gochnatia pulchra Cabrera
Asteraceae
0.010±0.000
103.086±803.475
0.76±0.589
0.000±0.000
2699.6±803.475
21.030±5.893
0
1
1
Guapira noxia (Netto) Lundell
Nyctaginaceae
0.031±0.007
104.277±23.772
0.878±0.240
0.000±0.000
17.200±24.773
10.427±0.679
0
1
1
Guapira opposita (Vell.) Reitz
Nyctaginaceae
0.019±0.007
120.074±27.549
0.795±0.185
0.000±0.000
37.600±55.162
11.283±0.918
0
1
1
58
Heteropterys umbellata A.Juss.
Malpighiaceae
0.011±0.003
117.969±21.672
0.379±0.144
0.000±0.000
27.000±44.688
17.185±4.415
0
0
1
Ilex cerasifolia Loes.
Aquifoliaceae
0.01±0.000
156.835±42.937
0.630±0.169
0.000±0.000
519.000±85.758
27.948±7.895
0
0
1
Kielmeyera coriacea Mart. & Zucc.
Clusiaceae
0.031±0.003
77.096±13.265
1.103±0.213
0.005±0.005
0.800±1.304
27.690±5.027
0
1
1
Kielmeyera grandiflora A.St.-Hil.
Clusiaceae
0.041±0.009
76.627±12.924
1.880±0.396
0.009±0.003
0.000±0.000
33.816±9.240
0
0
1
Leandra lacunosa Cogn.
Melastomataceae
0.022±0.004
126.108±25.624
0.846±0.321
0.000±0.000
256.800±35.231
28.718±3.329
0
0
1
Lippia velutina Schauer
Verbenaceae
0.014±0.005
164.427±59.599
0.452±0.109
0.000±0.000
925.800±130.239
17.302±2.669
0
0
0
Machaerium acutifolium Mart. ex
Benth.
Fabaceae
0.014±0.005
91.939±10.788
0.881±0.211
0.000±0.000
214.200±123.401
10.702±2.371
0
0
1
Miconia albicans Steud.
Melastomataceae
0.017±0.005
90.741±17.495
0.727±0.249
0.000±0.000
65100.000
a
30.919±6.920
0
0
1
Miconia ligustroides Naudin
Melastomataceae
0.019±0.003
96.689±21.997
0.568±0.100
0.000±0.000
5.400±6.504
26.619±2.556
0
0
1
Miconia rubiginosa DC.
Melastomataceae
0.02±0.000
64.441±7.438
0.712±0.100
0.000±0.000
281.000±52.192
38.415±4.261
0
0
1
Myrcia bella Cambess.
Myrtaceae
0.017±0.005
88.552±11.776
1.164±0.218
0.000±0.000
1020.000±307.864
32.868±5.892
0
1
1
Myrcia guianensis (Aubl.) DC.
Myrtaceae
0.02±0.000
64.426±8.164
1.269±0.312
0.000±0.000
660.800±369.921
28.653±3.666
0
0
1
Myrcia sp DC. ex Guill.
Myrtaceae
0.0125±0.005
77.878±7.813
0.860±0.153
0.000±0.000
1094.750±503.692
28.172±1.701
0
0
1
Myrcia splendens (Sw.) DC.
Myrtaceae
0.010±0.000
104.432±23.877
0.848±0.098
0.000±0.000
1067.000±384.667
38.978±4.806
0
0
1
Myrcia tomentosa (Aubl.) DC.
Myrtaceae
0.016±0.005
87.259±13.447
1.083±0.253
0.000±0.000
418.600±137.671
25.046±2.835
0
1
1
Myrsine coriacea Nadeaud
Myrsinaceae
0.012±0.004
125.938±21.262
0.517±0.075
0.000±0.000
307.800±93.106
19.588±0.689
0
1
1
Myrsine umbellata G.Don
Myrsinaceae
0.020±0.000
84.201±19.922
1.091±0.321
0.000±0.000
0.200±0.447
30.977±3.458
0
0
1
Ocotea pulchella Mart.
Lauraceae
0.014±0.005
69.967±12.467
1.356±0.208
0.000±0.000
1445.200±710.185
30.018±6.148
0
1
1
59
Ouratea spectabilis Engl.
Ochnaceae
0.0225±0.005
62.808±11.806
2.325±0.474
0.000±0.000
0.000±0.000
32.138±6.722
0
1
1
Palicourea coriacea (Cham.)
K.Schum.
Rubiaceae
0.029±0.005
111.645±20.856
0.883±0.380
0.000±0.000
2.400±4.336
17.939±5.496
0
1
0
Pera glabrata (Schott) Poepp. ex
Baill.
Peraceae
0.020±0.000
73.580±9.122
0.931±0.197
0.000±0.000
0.000±0.000
31.028±1.942
0
0
1
Phyllanthus acuminatus Vahl
Phyllanthaceae
0.010±0.000
207.404±40.957
0.290±0.060
0.000±0.000
0.000±0.000
27.659±1.464
0
0
1
Piptocarpha rotundifolia Baker
Asteraceae
0.020±0.000
95.997±21.772
1.123±0.344
0.000±0.000
1304.400±418.845
28.332±7.607
0
1
1
Plenckia populnea Reissek
Celastraceae
0.012±0.004
106.168±12.255
0.654±0.204
0.000±0.000
0.000±0.000
21.158±5.185
0
1
1
Psidium laurotteanum Cambess. in
A.St.-Hil.
Myrtaceae
0.018±0.004
73.770±14.123
1.259±0.139
0.000±0.000
1583.200±133.412
38.277±5.824
0
1
1
Rudgea viburnoides (Cham.) Benth.
Rubiaceae
0.033±0.005
80.721±14.276
1.226±0.248
0.000±0.000
687.000±257.630
25.226±3.647
0
0
1
Schefflera macrocarpa (Cham. &
Schltdl.) Frodin
Araliaceae
0.036±0.011
52.195±16.763
1.044±0.330
0.000±0.000
2392.200±450.335
31.360±5.455
0
0
1
Schefflera vinosa (Cham. & Schltdl.)
Frodin & Fiaschi
Araliaceae
0.028±0.006
61.864±5.268
0.910±0.231
0.000±0.000
1571.600±1038.238
27.194±4.838
0
1
1
Stryphnodendron adstringens (Mart.)
Coville
Fabaceae
0.022±0.004
81.427±14.873
0.727±0.125
0.000±0.000
23.600±48.387
18.030±1.465
0
0
1
Stryphnodendron obovatum Benth.
Fabaceae
0.017±0.007
121.016±30.463
0.434±0.143
0.000±0.000
4.600±2.302
18.448±2.972
0
0
1
Styrax ferrugineus Nees & Mart.
Styracaceae
0.020±0.005
69.605±19.303
1.462±0.335
0.000±0.000
437.400±12.341
36.008±3.902
0
1
1
60
Tabebuia ochracea Standl.
Bignoniaceae
0.021±0.003
77.181±13.026
1.284±0.358
0.000±0.000
620.200±148.288
19.923±2.948
0
0
1
Tapirira guianensis Aubl.
Anacardiaceae
0.020±0.000
74.561±10.860
0.730±0.141
0.000±0.000
18.000±31.369
33.766±3.630
0
0
1
Tocoyena formosa (Cham. &
Schltdl.) K.Schum.
Rubiaceae
0.020±0.005
86.199±10.765
0.790±0.300
0.000±0.000
1626.600±959.065
27.202±5.748
1
1
1
Vochysia tucanorum Mart.
Vochysiaceae
0.024±0.005
106.929±16.193
1.192±0.182
0.000±0.000
9.000±14.213
21.216±2.549
0
1
0
Xylopia frutescens Aubl.
Annonaceae
0.010±0.000
197.119±33.671
0.412±0.122
0.000±0.000
140.400±130.856
21.432±1.796
0
1
1
a
counted on one leaf, with a eletronic microscope, due to an extremely high number of trichomes
61
Table 2: Results and models of the regression analysis of defense traits against herbivory as a function of soil variables. Defense traits used were:
Total defenses index; SLA: specific leaf area (cm
2
g
-1
); C:N ratio; Water leaf content (mg.cm
-2
); leaf toughness (N); Leaf latex content (mg); leaf
trichomes density per area (cm
-2
); presence of chemical defenses: alkaloids, terpenoids and tannins. The stepwise model is the model that best
explained variation in defense traits according to the Akaike Information Criterion. Soil features were: OM (Organic matter; gkg-1); Al3+
(Exchangeable aluminum; mmolc kg-1); SB (Sum of basis; mmolc kg-1). Data were collected at a cerrado site at Federal University of São
Carlos, Brazil (approximately, 21º58‟05.3”S, 47º52„10.1”W).
Stepwise model
R2
a
Moran's ssd
b
Rho
c
Moran's ssd
d
Total defenses index
Total fertility index
0.002
ns
-
-
-
Total defenses index
SB
0.002
ns
-
-
-
SLA
OM
0.15***
2.0*
0.24
ns
0.18
ns
C:N ratio
OM
0.19***
1.68*
0.19
ns
0.35
ns
Water leaf content
OM
0.17***
1.75*
0.20
ns
0.13
ns
Leaf toughness
OM
0.16***
2.24*
0.25
ns
0.11
ns
Leaf latex content
OM, SB, Al+3
0.01
ns
-
-
-
Leaf trichomes
density
OM, SB, Al+3
0.02
ns
-
-
-
Alkaloids
OM, SB, Al+3
0.04
ns
-
-
-
Terpenoids
OM, SB, Al+3
0.02
ns
-
-
-
Tannins
OM
0.16***
0.58
ns
-
-
a
: coefficient of multiple regression (linear regression when there is one variable in the model)
b
: Moran‟s statistic standard deviate before correcting for spatial dependence
c
: Rho statistic for autoregressive models
d
: Moran‟s statistic standard deviate after correcting for spatial dependence
ns
: not significant; *: p<0.05; **: p<0.01; ***: p<0.001
62
Figure 1: Correlograms of soil variables using Moran‟s index as response variable and lag distances as
explanatory variables. Each lag unit represents a distance of 5 m. “*” represents significant
autocorrelation. Significant points over the line represents positive autocorrelation and above the line
negative autocorrelation. Soil features are: OM (Organic matter; gkg-1); Ca2+ (exchangeable
calcium; mmolc kg-1); Al3+ (exchangeable aluminum; mmolc kg-1); SB (sum of basis;
mmolc kg-1); m (aluminum saturation; %); CEC (cation exchange capacity; mmolc kg-1); H
(exchangeable hydrogen; mmolc kg-1). *: p<0.05; **: p<0.01; ***: p<0.001. Data were collected
at a cerrado site at Federal University of São Carlos, Brazil (approximately, 21º58‟05.3”S,
47º52„10.1”W).
63
CONCLUSÃO GERAL
64
Conclusões gerais
Este trabalho nos permitiu chegar às seguintes conclusões:
- Embora não seja possível inferir relações de causa e efeito, nossos resultados
indicaram que o solo é um fator importante estruturando comunidades de cerrado mesmo em
escala local;
- O solo não se relacionou com a composição florística, o que parece indicar
redundância funcional de algumas espécies;
- O solo se relacionou com descritores da comunidade como abundância,
riqueza e equabilidade, o que sugere um papel determinístico para o solo, contrariando
previsões da teoria neutra;
- A alta dominância de Myrsine umbelata parece estar relacionada com
mecanismos de retroalimentação positiva, que favorecem uma maior distribuição dessa
espécie no cerrado em questão;
- Os investimentos totais em defesas contra herbivoria não foram influenciados
pela fertilidade total do solo em escala local, o que provavelmente resulta da baixa variação
da fertilidade nessa escala. Assim, essa relação parece ser verdadeira apenas quando
comparamos diferentes tipos vegetacionais;
- Dos nove traços de defesa contra herbivoria medidos, o único que se
relacionou com os nutrientes do solo foi a presença de taninos. Tendo em vista que esse traço
se relacionou positivamente com o conteúdo de matéria orgânica do solo, o que significa
maior investimento em defesas em solos mais férteis, sugerimos três possibilidades: (1) um
maior investimento em defesas em solos mais ricos, para compensar a baixa alocação em
reservas, importantes para tolerar a herbivoria; (2) a limitação por um recurso alternativo, o
que de acordo com o modelo dos recursos limitantes levaria a uma diminuição da tolerância à
herbivoria em solos mais ricos, e consequentemente, a necessidade de compensar com
investimentos em defesa; ou (3) defesas contra herbivoria alteram as condições do solo, pois
folhas com taninos se decompõem mais lentamente levando à acumulação de matéria
orgânica no solo próximo às plantas com taninos;
- Mais trabalhos deveriam estudar o cerrado em escala fina para particionar a
relação entre solo e vegetação entre associação dentro de hábitat e entre diferentes bitats;
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo