Download PDF
ads:
i
Universidade Federal de Santa Catarina
Centro de Ciências Biológicas
Departamento de Ecologia e Zoologia
Programa de Pós-Graduação em Ecologia
Demografia de Clusia criuva Cambess. (Clusiaceae) e a influência
das interações positivas para seu estabelecimento e sobrevivência
no Parque Municipal das Dunas da Lagoa da Conceição,
Florianópolis, SC
Tatiane Beduschi
Orientadora: Tânia Tarabini Castellani
Florianópolis/ 2010
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
ii
ads:
iii
Dedico esta dissertação aos meus pais,
Ingrid Schmidt Beduschi e Hamilton
Beduschi
“Ilha do verde mirto e das flores vistosas,
Venerada afinal por todas as nações,
Onde suspiros de ardorosos corações
Flutuam como incenso entre jardins de
rosas”
Charles Baudelaire
“A ciência é muito boa – dentro de seus
preciosos limites. Quando transformada na
única linguagem para se conhecer o mundo,
entretanto, ela pode produzir dogmatismo,
cegueira e, eventualmente,
emburrecimento.”
Rubem Alves
iv
Resumo
A restinga é um ambiente heterogêneo, no qual a vegetação pode
formar mosaicos de vegetação herbácea e arbustiva. As condições
abióticas severas encontradas neste ambiente podem impedir o
estabelecimento de indivíduos. Por isso a propagação clonal, e as
interações positivas (e.g. síndrome da planta-berçário), são importantes
para possibilitar o recrutamento. Clusia criuva é uma espécie lenhosa e
dióica, comumente encontrada em restingas e que pode se reproduzir
clonalmente. Os objetivos deste estudo foram: analisar aspectos da
demografia de C. criuva e a possibilidade da colonização na área ser
recente; e investigar se existem interações positivas e, se elas têm um
papel importante em processos populacionais da espécie. Todos os
indivíduos em uma área de 38 ha foram marcados, medidos e
georreferenciados. Um ano depois, a permanência de indivíduos nos
quatro estágios de desenvolvimento (plântulas, juvenis, adultos
vegetativos e adultos com flores) ou sua passagem para os estágios
seguintes foi observada. O recrutamento (clonal e sexual) também foi
observado e uma matriz de Lefkovitch foi construída. A distribuição
espacial foi analisada usando a função K de Ripley. Para averiguar a
existência de interações positivas, foram pesquisadas as espécies
vegetais que ocorrem em associação com C. criuva e suas freqüências
foram comparadas com as freqüências obtidas na amostragem
sistemática. Além disso, foram feitos experimentos com germinação de
sementes e sobrevivência de plântulas, em quatro tratamentos
diferentes: áreas abertas, na borda de baixadas úmidas, dentro de
bromélias e sob arbustos. Os resultados mostraram associação espacial
positiva entre C. criuva e algumas espécies de arbustos, além de uma
espécie de bromélia. Os experimentos revelaram que a germinação de
sementes e a sobrevivência das plântulas nas áreas secas dependem da
presença de outras espécies vegetais. Análises de fatores abióticos
sugerem que a disponibilidade de água e a temperatura do substrato são
as principais características amenizadas pelos facilitadores, que também
podem estar agindo como poleiros, melhorando a dispersão de
sementes. Indivíduos estabelecidos parecem ser capazes de sobreviver
isoladamente e podem ter eliminado seus antigos benfeitores por
competição. A distribuição agregada dos indivíduos, encontrada no
v
estudo, também pode ser resultado das interações positivas e/ou advir
da heterogeneidade ambiental. Um padrão de distribuição similar foi
observado em indivíduos jovens e maduros. O crescimento em diâmetro
e em altura foi mais expressivo em estágios pré-reprodutivos, mas
adultos investiram mais em folhas. A permanência dos adultos nos
respectivos estágios teve a maior contribuição para a taxa de
crescimento populacional estimada (λ
est
=1,02). Foi observada a
reprodução clonal dos adultos vegetativos, mas todos os genetas
recrutados são imigrantes. Quando comparados os valores das taxas de
crescimento populacional calculadas (λ
cal
) incluindo-se os imigrantes
(λ
cal
=1,53) ou os excluindo ((λ
cal
=0,99) é possível perceber que o
crescimento desta população depende de fontes externas de sementes.
Todavia esta reprodução por sementes parece ser um fenômeno
inconstante e a propagação clonal pode garantir a estabilidade desta
população.
vi
Abstract
Brazilian coastal sand dunes are heterogeneous environments, in which
the vegetation can form mosaics of herbaceous and shrub vegetation.
The harsh abiotic conditions found in this environment can be
prohibitive to the establishment of individuals. Therefore clonal
propagation and positive interactions, (e.g. nurse plant syndrome), are
important to enable recruitment. Clusia criuva is a woody dioecious
species, common in coastal sand dunes that can reproduce clonally. The
goals of this study were: to analyze aspects of the demography of C.
criuva and to assess the possibility of a recent colonization of the area;
and to investigate whether positive interactions exist and, if they have
an important role in populational processes of this species. All
individuals in an area of 38 ha were tagged, measured and their location
was determined with a GPS. One year later, the stasis of individuals in
the four developmental stages (seedlings, saplings, vegetative adults
and flowering adults) or their passage to subsequent stages was
recorded. Recruitment (both clonal and sexual) was also observed and a
Lefkovitch matrix was constructed. Spatial distribution was analyzed
using Ripley’s K-function. In order to asses the existence of positive
interactions, we investigated the plant species occurring in association
to C. criuva and compared their frequency to a systematic sampling.
Moreover, experiments on seed germination and seedling survival were
performed, in four different treatments (open areas; in the border of
humid slacks; inside a bromeliad and beneath shrubs). The results
demonstrate that C. criuva is positively associated to some shrub
species and one bromeliad. The experiments performed revealed that
germination and seedling survival on dry areas depend on milder on the
presence of other plant species. Analyses of the abiotic conditions in the
experiments sites, suggested that water availability and temperature of
the substrate are the main characteristics ameliorated by the benefactors
that can also be working as bird perches, improving seed dispersal.
Established individuals seem to be able to survive in isolation and may
have outcompeted their benefactors. The clustered spatial distribution
of the individuals, found by the study, can also be a result of the
positive interactions and/or due to environmental heterogeneity. A
similar distribution pattern was observed in young and mature
vii
individuals. Growth in height and stem diameter was more expressive
in pre-reproductive stages, but adults invested more in leaves. Stasis of
adults (which can reproduce clonally) had the greatest contribution to
the population growth rate (λ=1.02). Clonal reproduction of vegetative
adults was observed, but all recruited genets were immigrants. When
the calculated growth rate of the population (λ
cal
) with and without the
immigrants (λ
cal
=1.53 and 0,99, respectively) are compared, it is
possible to notice that this population depends on external sources of
seeds to grow. However, reproduction through seeds appears to be an
inconstant phenomenon and clonal propagation may guarantee the
stability of the population.
viii
Sumário
Lista de tabelas.............................................................................
1
Lista de figuras.............................................................................
2
Agradecimentos............................................................................
3
1.Introdução..................................................................................
4
1.1 Restinga.................................................................................... 4
1.2. Reprodução sexual e reprodução clonal.................................. 5
1.3 Facilitação................................................................................ 7
1.4 Justificativa.............................................................................. 9
2. Objetivos...................................................................................
10
2.1 Objetivos gerais........................................................................ 10
2.2 Objetivos específicos............................................................... 10
3. Área e espécie de estudo..........................................................
11
3.1 Área de estudo.......................................................................... 11
3.2 Espécie de estudo..................................................................... 15
4. Referências................................................................................
17
Capítulo 1. Demography, spatial distribution, individual
growth and the relative importance of clonal and sexual
reproduction of a woody species in a coastal dune
environment……………………………………………………..
24
Abstract………………………………………………………….. 24
Introduction……………………………………………………… 25
Material and Methods…………………………………………… 27
Study area and plant species................................................... 27
Population sampling............................................................... 28
Demographic model................................................................ 29
Individual growth.................................................................... 30
Spatial distribution..................................................................
30
Results…………………………………………………………… 31
Discussion……………………………………………………….. 36
Conclusions ……………………………………………………... 38
References……………………………………………………….. 39
ix
Capítulo 2. The influence of facilitation on germination,
establishment and survival of a woody species in a coastal
dune environment……………………………………………
45
Abstract…………………………………………………………. 45
Introduction……………………………………………………… 46
Methods…………………………………………………………. 47
Study site and species.............................................................. 47
Spatial association.................................................................. 48
Experiments on germination and survival.............................. 49
Environmental conditions...................................................... 50
Results…………………………………………………………… 51
Spatial association.................................................................. 51
Environmental conditions...................................................... 53
Experiments on germination and survival.............................. 53
Discussion……………………………………………………….. 56
Conclusions……………………………………………………… 59
References………………………………………………………..
59
Considerações Finais……………………………………………
69
Referências………………………………………………………
71
1
Lista de tabelas
Introdução
Tabela 1. Tipos e subtipos de vegetação mapeados no Parque
Municipal das Dunas da Lagoa da Conceição, Florianópolis,
SC........................................................................................................
12
Capítulo 1
Table 1. Population matrix of Clusia criuva…………………….. 29
Table 2. Transition matrix of a population of Clusia criuva during a
study performed in 2008/2009……………………………………… 33
Table 3. Elasticity matrix of a population of Clusia criuva during a
study performed in 2008/2009……………………………………… 33
Capítulo 2
Table 1. Amount of germinated seeds of Clusia criuva in each
treatment and in laboratory conditions…………………………….
55
Table 2. Results of Cox Proportional Hazard Model to identify the
effect of treatments on Clusia criuva seedling survival compared to
open areas…………………………………………………………… 56
Table 3. Number of Clusia criuva surviving seedlings and height,
number of leaves and biomass of individuals per treatment after six
months………………......................................................................... 56
Appendix 1. Relative frequencies of the plant species found in
association with C. criuva and in the systematic
sampling…………………………………………………………… 66
2
Lista de figuras
Área e espécie de estudo
Figura 1. Localização do campo de dunas onde foi realizado o
estudo............................................................................................... 11
Figura 2. Foto de satélite do campo de dunas do Parque
Municipal das Dunas da Lagoa da Conceição mostrando a área de
estudo............................................................................................... 13
Figura 3. Porção sul da área de estudo............................................ 14
Figura 4. Porção norte da área de estudo......................................... 14
Figura 5. Ilha de vegetação encontrada na área. Parque Municipal
das Dunas da Lagoa da Conceição, Ilha de Santa Catarina, SC......
14
Figura 6. Aspecto geral de Clusia criuva........................................ 16
Figura 7. Estruturas reprodutivas de Clusia criuva.........................
16
Capítulo 1
Figure 1. Life cycle graph of Clusia criuva………….................... 31
Figure 2. Number of individuals of C. criuva in each stage of
development in two subsequent years……………………………. 32
Figure 3. Spatial pattern analysis using Ripley’s K function…….. 34
Figure 4. Density of C. criuva individuals in the study area……... 35
Figure 5. Growth of individuals in each stage……….....................
36
Capítulo 2
Figure 1. Ordination (PCA) species-samples diagram.. 52
Figure. 2. Abiotic conditions in each treatment………………….. 54
Figure. 3. Survival curves of Clusia criuva seedlings for each
treatment……..................................................................................
55
3
Agradecimentos
Aos meus pais, pelo amor, dedicação e por toda a importância
que sempre deram à minha educação, o que me permitiu chegar aqui. À
ajuda prática de minha mãe, sempre disposta a ir a campo comigo, ou a
tabelar os dados mais tediosos.
À minha irmã pelo seu companheirismo e conselhos.
À professora Tânia, melhor orientadora que alguém pode desejar.
Possuidora de um conhecimento imenso, que sempre se esforçou em
dividir comigo em todos estes anos de trabalho e amizade.
Às técnicas Karla Zanenga Scherer e Mara Lúcia Bedin, que, com
toda a paciência, atendem a todos os inúmeros pedidos de ajuda.
Aos meus estagiários Diogo Costa Pereira de São Thiago, Laura
Andrade Martins e Júlia Vieira da Cunha que tornaram possíveis e
agradáveis as minhas incontáveis idas a campo.
Aos membros da banca Nivaldo Peroni e Flávio Antônio Maes
dos Santos, por aceitarem colaborar com meu trabalho.
À CAPES pelo financiamento.
Ao Fernando Mayer por sua indispensável ajuda estatística.
Aos professores da pós pelos ensinamentos nestes dois anos.
Aos colegas de laboratório e de corredor por todos os cafés
compartilhados.
Aos amigos do mestrado pelas discussões, sugestões, festinhas e
Ninas.
Aos amigos da época graduação por me darem a oportunidade de
vivenciar uma amizade sem igual. Em especial agradeço à Giorgia
Freitas Alves, Vanessa Moraes Nunes e Félix Baumgarten Rosumek,
que me acompanharam no campo e nas festas (sempre até o final).
Aos amigos que não estudaram comigo, mas que me
acompanham em eventos rock’n’roll.
Ao meu cachorro Snoopy, que faz minha vida mais feliz.
4
1. Introdução
1.1 Restinga
As restingas estão inclusas no Domínio Mata Atlântica (Lei n.º
11.428/2006). Muitas de suas espécies vegetais são originárias da
Floresta Ombrófila Densa, mas se adaptaram às condições extremas
encontradas nos ambientes costeiros (Scarano, 2002). Restingas e dunas
de areia cobrem cerca de cinco mil quilômetros (79%) do litoral
brasileiro (Araújo e Lacerda, 1987). Na Ilha de Santa Catarina, a
restinga representava, originalmente, 7% da cobertura vegetal, mas
22,4% deste total foi desmatado até 1978 (CECA, 1996). As restingas
catarinenses têm origem quaternária e são formadas, principalmente, por
dunas e suaves depressões (Falkenberg, 1999). Segundo Suguio e
Tessler (1984), as planícies quaternárias brasileiras se formaram por
ação conjunta dos seguintes fatores: fontes de areia (escarpas arenosas,
rios, escarpas cristalinas e areias que recobrem a plataforma
continental); correntes de deriva litorânea; variações do nível relativo do
mar e deposição de sedimentos. Os agentes geológicos modificam a
fisionomia destes locais, tendo destaque a ação do vento.
Muitos são os fatores limitantes para o estabelecimento de plântulas em
dunas. Os mais importantes são a pobreza de nutrientes e a falta de água
no substrato. Alguns nutrientes provenientes da água do mar são
superabundantes no solo durante um período de tempo, mas são
rapidamente lixiviados. A salinidade em forma de aerossol ou presente
no solo permite a sobrevivência de plantas capazes de suportar o
excesso de cloreto de sódio. A baixa capacidade de retenção de água do
solo arenoso e a alta taxa de evaporação acarretam estresse hídrico.
Além de altamente permeável, o solo arenoso é instável, o que causa
erosão ou deposição de sedimento por ação das ondas e do vento, muitas
vezes removendo as plantas ou promovendo o soterramento por areia. O
vento também tem grande influência sobre a vegetação da restinga, por
causar constante dessecação, além de manter em constante agitação as
partes aéreas das plantas. A intensa luminosidade é outro fator
prejudicial, pois oxida a clorofila e aumenta a temperatura. Outros
fatores que podem inibir o estabelecimento de plantas nestes locais são:
a temperatura do solo, a competição, a herbivoria, doenças e infecções
por fungos, além das atividades humanas. (Bresolin, 1979; Hesp, 1991;
Maun, 1994).
5
A restinga não é um ambiente uniforme. A existência de
diferentes condições ambientais definidas, em parte, pela distância do
oceano, forma um gradiente na vegetação que pode também se
apresentar em forma de mosaico (Falkenberg, 1999), como ocorre no
Parque Municipal das Dunas da Lagoa da Conceição, na cidade de
Florianópolis, Santa Catarina. Neste mosaico, dunas fixas, semifixas e
móveis são entremeadas por depressões que podem ser ocupadas por
corpos d’água, formados a partir do afloramento do lençol freático. Em
anos muito chuvosos, estas áreas úmidas ou alagadas podem ter até 60
cm de profundidade (Araújo e Lacerda, 1987).
1.2 Reprodução sexual e reprodução clonal
Para resistir às adversidades impostas pelo ambiente, as plantas
da restinga apresentam adaptações, como folhas suculentas, esclerófilas,
pubescentes ou cobertas de cera, fotossíntese CAM ou C
4
, resistência ao
sal, germinação de sementes em épocas favoráveis (de maior umidade
ou de temperaturas mais amenas, por exemplo), entre outras (Hesp,
1991). Uma adaptação muito freqüente neste ambiente é a propagação
vegetativa, que possibilita às plantas superarem as dificuldades
associadas ao estabelecimento de plântulas e germinação de sementes
(Cordazzo e Seeliger, 1988; Cordazzo e Costa, 1989).
Em plantas, a reprodução assexuada pode se dar através de
agamospermia (i.e. produção de sementes não fertilizadas) ou pela
produção de rametas (Crawley, 1997). Rametas são unidades
potencialmente independentes fisiologicamente de um geneta e podem
ter todas as funções comuns aos indivíduos não-clonais (Pan e Price,
2002). Genetas, então, são compostos de tecidos provenientes de um
zigoto (Eriksson e Bremer, 1993). Há um espectro de formas de
propagação clonal que podem ser observadas. Em um extremo estão as
espécies que se propagam espaçadamente, se infiltrando na vegetação e
maximizando contatos interespecíficos. Em outro extremo estão as
espécies com rametas muito próximos, excluindo outras plantas do
território do clone. Estas estratégias são chamadas de “guerrilha” e
“falange”, respectivamente (Lovett Doust, 1981). No entanto, ambas as
estratégias apresentam limitada capacidade de dispersão, o que resulta
na distribuição agregada de indivíduos em pequenas escalas (Harada e
Iwasa, 1996).
Como ressaltado por Pan e Price (2002), estudos ecológicos com
plantas clonais devem levar em consideração não a propagação por
6
sementes (genetas) como também a clonal (rametas), visto que ambas
colaboram para o sucesso reprodutivo e, consequentemente, para a
adaptação da espécie. Esta visão discorda da idéia clássica de que a
adaptação deve ser medida somente em nível de geneta, visto que os
rametas seriam partes do geneta e a reprodução vegetativa seria igual ao
crescimento vegetativo da planta (Harper, 1977; Turkington, 2010).
No entanto, rametas podem colaborar para o aumento da
adaptação do geneta. A probabilidade de sobrevivência do geneta
aumenta com o crescimento no número de rametas (Pan e Price, 2002)
da mesma forma que aumenta com o crescimento em tamanho do
indivíduo (Harper, 1977). Além disso, em ambientes heterogêneos, os
rametas podem se expandir para áreas com diferentes concentrações de
recursos e responder plasticamente, se especializando na captação de um
recurso, que pode ser distribuído para os outros rametas, aumentando a
produção de biomassa (Stuefer et al., 1996; Fischer e van Kleunen,
2002).
Silvertown et al. (1993) constataram que um balanço de curto
prazo entre reprodução vegetativa e sexual. Ou seja, o investimento em
propagação clonal implica em um menor investimento na produção de
sementes e vice e versa. A reprodução sexual é vantajosa para a
manutenção da diversidade genética da população e para a dispersão a
longas distâncias (Silvertown, 2008). Por isso, a propagação por
sementes poderia ser mais importante na colonização de novos locais e
após perturbações. Com o tempo, a reprodução sexual seria menos
abundante e a reprodução clonal predominaria (Eriksson e Bremer,
1993). Contudo, muitas espécies vegetais mantêm a reprodução sexual,
mesmo após o período inicial de colonização (e.g. Berg, 2002; Weppler,
2006). Provavelmente, a manutenção da propagação por sementes e sua
importância dependem de diversas características das espécies, como
habitat, capacidade de dispersão das sementes (a longas ou curtas
distâncias), forma de propagação (guerrilha ou falange) e de como
ocorre a propagação dos rametas (abaixo ou acima do solo) (Eriksson,
1989).
Tendo em vista que a restinga é ambiente heterogêneo e muito
restritivo ao estabelecimento de plântulas (Scarano, 2002), estudos
voltados aos mecanismos de recrutamento de indivíduos e estudos
detalhados de demografia têm grande importância para entender o
funcionamento da restinga como um todo.
7
1.3 Facilitação
Facilitação ou interação positiva é a relação entre organismos que
beneficia pelo menos um dos participantes e não prejudica nenhum deles
(Bruno et al., 2003). A facilitação é um fenômeno amplamente
distribuído que afeta a produtividade, diversidade, distribuição e
reprodução das plantas (Callaway, 1995). O conceito de facilitação é
baseado nas idéias de Clements, de que a sucessão é uma seqüência de
desenvolvimento, no qual cada estágio prepara o caminho para o
próximo (Ricklefs, 2003).
A facilitação pode agir diretamente, através da modificação dos
recursos ambientais, como luz e temperatura, umidade, nutrientes e
oxigenação do solo. Indiretamente, pode ocorrer modificação da
densidade (e.g. compactação) do substrato, proteção contra herbívoros,
atração de polinizadores, concentração de propágulos, interação entre
raízes, micorrizas e alteração da microflora do solo (Callaway, 1995).
A facilitação e a competição agem simultaneamente (Holmgren et
al., 1997). Espera-se que a facilitação seja mais importante em
condições abióticas mais severas e que a competição predomine em
condições mais amenas (Bertness e Callaway, 1994). Esta teoria,
chamada de ‘Stress-gradient hypothesis’ (SGH), tem sido objeto de
muitos estudos (Mulder et al., 2001; Tewksbury e Lloyd, 2001;
Callaway et al., 2002; Franks, 2003a ; Cavieres et al., 2006) e sua
validade e generalidade foram discutidas em uma série de artigos
(Maestre et al.; 2005; Lortie e Callaway, 2006; Maestre et. al.; 2006)
que culminaram em um artigo de consenso entre os autores (Maestre et
al.; 2009). Os refinamentos da SGH propostos pelo artigo sugerem que o
balanço entre facilitação e competição depende não das
características dos fatores abióticos (recursos ou não recursos) como
também da estratégia (sensu Grime, 1977) de cada uma das espécies
envolvidas.
A chamada nurse plant syndrome (“síndrome das plantas-
berçário”) destaca-se entre as formas de interação positiva e tem sido
freqüentemente relatada para ambientes xerofíticos. As plantas
consideradas “berçários” contribuem para a melhoria das condições para
germinação, estabelecimento e/ou crescimento de outras espécies
vegetais (Zaluar e Scarano, 2000). Muitos estudos identificaram
espécies de plantas-berçário. Tewksbury e Lloyd (2001) estudaram uma
espécie arbórea do deserto de Sonora (Olneya tesota) e constataram que
a riqueza e a abundância de espécies vegetais aumentaram sob a
8
influência desta espécie em ambientes xéricos. Moro et al. (1997)
constataram o mesmo para Retama sphaerocarpa em um ambiente
semi-árido no sudeste da Espanha.
Em áreas de dunas costeiras, este processo parece ser de grande
importância para estruturar a comunidade, visto que somente algumas
espécies têm a capacidade de colonizar a areia descoberta, onde a
temperatura pode alcançar 70
o
C (Scarano, 2002). Neste ambiente, a
sucessão se através de processos de nucleação, em que a espécie
nucleadora cria um ambiente favorável para o estabelecimento de outras
espécies, que irão, eventualmente, substituir as espécies iniciais
(Yarranton e Morrisson, 1974). Um experimento realizado por Franks
(2003b), em dunas costeiras na Flórida, mostrou que a quantidade de
sementes e a emergência de plântulas é maior sob plantas adultas do que
em áreas abertas, o que pode explicar também o padrão agregado
observado na vegetação. Outro estudo, realizado em restingas (Martínez,
2003), mostrou a relevância da facilitação em áreas de dunas. Foi
observado que a densidade de adultos e de juvenis de gramíneas não-
pioneiras foi de duas a seis vezes maior sob o arbusto pioneiro
Chamaecrista chamaecristoides. A temperatura da superfície arenosa, a
velocidade do vento e o acréscimo de areia foram significativamente
reduzidos pelo arbusto. Um resultado semelhante foi observado em um
outro trabalho, realizado nas dunas arenosas costeiras de South Wellfleet
(Shumway, 2000). O arbusto Myrica pensylvanica influenciou
positivamente o crescimento, a reprodução e o recrutamento das
herbáceas Solidago sempervirens e Amnophila breviligulata. Esta
facilitação ocorreu através do sombreamento e da maior quantidade de
matéria orgânica presente sob seus arbustos.
Plantas do gênero Clusia, como Clusia hilariana, são vistas como
plantas-berçário (Scarano et al., 2004), pois se associam positivamente
com juvenis de outras e de sua própria espécie, podendo também
aumentar a complexidade da vegetação ao longo do tempo. Estudos de
campo demonstraram que as plantas do gênero Clusia são encontradas
com o metabolismo ácido das crassuláceas (CAM ou MAC) obrigatório,
fotossíntese C
3
obrigatória e comportamento CAM/C
3
intermediário,
sendo as únicas espécies arbóreas e dicotiledôneas que apresentam
fotossíntese CAM (Scarano et al., 2005; Lüttge, 2007). Logo, se
mostram bastante adaptadas ao ambiente ensolarado da restinga. Além
disso, possuem reprodução assexuada bem sucedida e freqüente
(Scarano et al., 2004).
9
Apesar de algumas espécies do gênero Clusia facilitarem o
estabelecimento de outras plantas da restinga, alguns estudos mostram
que as Clusia podem ser facilitadas por bromélias para seu
estabelecimento inicial. Devido às condições desfavoráveis para
germinação de sementes oferecidas pela restinga, as plantas da família
Bromeliaceae podem ser um excelente berçário para outras espécies. Foi
observada a presença de sementes e plântulas do gênero Clusia (C.
lanceolata e C. fluminensis) no interior de bromélias, em trabalho
realizado na Restinga da Barra de Maricá (RJ) (Macedo e Monteiro,
1987). Plântulas também foram encontradas em moitas onde não havia
plantas adultas, o que indica que as sementes chegaram às bromélias
através de algum agente dispersor.
foi evidenciado o efeito facilitador da exótica Eucalyptus sp. para o
estabelecimento de C. criuva e de outras espécies de plantas arbustivas e
arbóreas de restinga, no Parque Municipal das Dunas da Lagoa da
Conceição (Simões-Jesus e Castellani, 2007). Beduschi e Castellani
(2008) também sugeriram ocorrer uma facilitação por parte da bromélia
Vriesea friburgensis Mez (Bromeliaceae) para o estabelecimento de C.
criuva em áreas de vegetação herbácea/subarbustiva de dunas internas.
Esta relação, no entanto, não foi encontrada em área de vegetação
herbácea/subarbustiva em baixadas e depressões secas ou pouco
alagadas.
1.4 Justificativa
Dada a grande diversidade de mecanismos ecológicos ocorrentes na
restinga, a estabilidade dos ecossistemas depende estreitamente da
preservação de seus componentes biológicos (Araújo e Lacerda, 1987).
Por este motivo, o estudo das estratégias de estabelecimento de espécies
em restinga e dos processos que atuam na estruturação e
desenvolvimento das comunidades vegetais é essencial. Uma melhor
compreensão da singularidade das interações entre os diferentes
organismos e da contribuição de cada espécie para a dinâmica do
ecossistema pode embasar ações de conservação e restauração das áreas
de restinga.
A supressão da vegetação destes locais pode ocasionar a formação de
dunas móveis, afetando todo o ambiente costeiro e a população
litorânea. Ainda assim, este habitat é pouco focado pelas políticas
nacionais de conservação, devido aos baixos índices de endemismo e
biodiversidade.
10
2. Objetivos
2.1 Objetivo geral
Com o objetivo de compreender a dinâmica populacional de Clusia
criuva e o funcionamento dos mecanismos facilitadores em ambientes
de restinga, o presente trabalho pretende responder às seguintes
perguntas:
Qual é a escala de agregação espacial de C. criuva na área?
C. criuva é favorecida, em seu estabelecimento, por espécies de
bromélias ou por espécies arbustivas?
Este favorecimento ocorre sob condições mais extremas de
hábitat?
Quais são os mecanismos facilitadores envolvidos?
Qual a contribuição da reprodução clonal e da reprodução sexual
na dinâmica desta população?
Qual a tendência de crescimento populacional atual no ambiente
de duna em questão?
2.2 Objetivos específicos
Para responder estas perguntas, o presente trabalho tem como objetivos
específicos:
Descrever a abundância, o padrão espacial e as espécies
vegetais que ocorrem junto à C. criuva;
Avaliar se esta distribuição está associada à ocorrência
de bromélias ou a espécies arbustivas;
Testar se a germinação ou a sobrevivência das
plântulas é maior em associação a determinadas espécies vegetais ou sob
condições ambientais específicas;
Avaliar os fatores abióticos (temperatura da superfície
do solo; velocidade do vento, luminosidade; quantidade de matéria
orgânica do solo, umidade relativa do ar e do solo);
Descrever a estrutura populacional de C. criuva em
estádios de desenvolvimento e avaliar a sobrevivência, crescimento e
recrutamento atual na população;
Projetar tendências atuais de crescimento através de
uma matriz populacional de Lefkovitch;
11
Avaliar quais componentes da matriz têm maior
importância para a manutenção da taxa de crescimento populacional;
Determinar qual a proporção de novos indivíduos que
provém de reprodução clonal e de reprodução sexual e qual a
importância de cada tipo de reprodução para a taxa de crescimento
populacional.
3. Área e espécie de estudo
3.1 Área de estudo
O Parque Municipal das Dunas da Lagoa da Conceição, que se
localiza na Ilha de Santa Catarina e se estende do sul da Lagoa da
Conceição até a praia do Campeche com extensão de 563 ha (Fig 1), foi
criado pelo Decreto Municipal n
o
231/1988 (CECCA, 1997). As dunas
estão protegidas pelo Código Florestal Lei Federal n
o
4771, de
15/09/1965) e pela Resolução n
o
303/2002 do CONAMA,
Figura 1. Localização do campo de dunas onde foi realizado o estudo.
Parque Municipal das Dunas da Lagoa da Conceiçao, Ilha de Santa
Catarina, SC (Fonte: Google Earth, 2010).
35
º
33’40’’
33º13’42’
77º39’52’
29º30’24’
25º48’98’
53º55’72’
48º13’49’
27º52’63’
27º21’95’
48º19’96’
48º35’81’
48º25’24’
48º29’78’
27º36’41’
27º39’56’
Brasil
Santa Catarina
Ilha de
Santa
Catarina
Campo
de
Dunas
N
12
conseqüentemente, são consideradas Área de Preservação Permanente
(CECCA, 1997). Estas dunas representam o principal complexo de
dunas móveis e semifixas da Ilha de Santa Catarina (Bresolin, 1979).
Neste Parque, Güttler (2006) dispôs a vegetação em 12 classes
(Tabela 1) de acordo com o porte da vegetação e dos hábitats de duna
presentes no local: duna frontal, dunas internas, baixadas e depressões
secas e alagáveis e corpos d’água.
Tabela 1. Tipos e subtipos de vegetação mapeados no Parque Municipal
das Dunas da Lagoa da Conceição, Florianópolis, SC (Güttler, 2006).
Tipos de Vegetação
Subtipos
a- Herbácea/subarbustiva da duna frontal
b- Herbácea/subarbustiva de dunas internas
c- Herbácea/subarbustiva de baixadas e
depressões secas ou pouco alagadas
I. Herbácea/subarbustiva
d- Herbácea/subarbustiva de pequenos
corpos d’água
a- Herbácea/subarbustiva/arbustiva de dunas
internas
II.
Herbácea/subarbustiva/
arbustiva
b- Herbácea/subarbustiva/arbustiva de
baixadas e depressões secas ou poucos
alagadas
a- Arbustiva sem espécie dominante
b- Arbustiva da duna frontal dominada por
Dalbergia III. Arbustiva
c- Arbustiva da duna frontal dominada por
Eucalyptus
IV. Arbustiva/arbórea
V. Arbórea
VI. Descaracterizada (ou ocupação urbana)
O presente estudo foi realizado em uma região de dunas do Parque,
selecionada, não pelo tamanho, mas sim pelo número de indivíduos e pela
representatividade da amostra em relação à população. Esta
representatividade foi admitida com base em observações prévias, que
identificaram dois grupos bastante distintos em densidade de indivíduos e na
morfologia dos mesmos (tamanho de folhas e número de ramos e folhas).
Por este motivo, indivíduos dos dois grupos foram incluídos na amostra, de
13
forma a retratar os diferentes aspectos da população e de seus indivíduos.
Esta área mede 38 ha e contém os tipos de vegetação, segundo a
classificação de Güttler (2006): herbácea/subarbustiva,
herbácea/subarbustiva/arbustiva e arbustiva (Fig 2).
27
º
37’3”
27
º
37’52”
48
º
26’45”48
º
27’4”
27
º
37’3”
27
º
37’52”
48
º
26’45”48
º
27’4”
Figura 2. Foto de satélite do campo de dunas do Parque Municipal das
Dunas da Lagoa da Conceiçao mostrando a área de estudo. Ilha de Santa
Catarina, SC (Fonte: Google Earth, 2009).
A área não é homogênea. A porção sul, mais próxima do mar é
mais seca, apresentando mais dunas e uma grande quantidade de
bromélias Vriesea friburgensis (Fig 3). Gradualmente, nas áreas mais ao
norte, as baixadas alagáveis e corpos d’agua se tornam mais comuns e as
dunas menos freqüentes (Fig 4). Nesta área, V. friburgensis se torna
menos freqüente. Em toda a área de estudo são encontradas manchas
com vegetação arbustivas, ora chamadas de ilhas de vegetação (Fig 5).
14
Figura 3. Porção sul da área de estudo, mostrando as dunas semifixas e
as inflorescências de Vriesea friburgensis. Parque Municipal das Dunas
da Lagoa da Conceição, Ilha de Santa Catarina, SC.
Figura 4. Porção norte da área de estudo, mostrando os corpos d’água e
a predominância de vegetação herbácea.. Parque Municipal das Dunas
da Lagoa da Conceição, Ilha de Santa Catarina, SC.
Figura 5. Ilha de vegetação encontrada na área. Parque Municipal das
Dunas da Lagoa da Conceição, Ilha de Santa Catarina, SC.
15
3.2 Espécie de estudo
Clusia criuva Cambess. (Fig 6) pertence à família Clusiaceae e é
conhecida popularmente como Mangue-bravo (Sampaio et al., 2005) ou
Mangue-formiga (Falkenberg, 1999). É uma planta lenhosa, arbórea ou
arbustiva, podendo também adotar o comportamento hemi-epifítico,
tornando-se até estrangulante, o que deu origem ao nome de “mata-pau”,
pelo qual as clúsias em geral são popularmente conhecidas (Joly, 1985;
Zaluar e Scarano, 2000).
C. criuva é uma espécie dióica e que apresenta automimetismo,
ou seja, as flores femininas (Fig 7a) mimetizam as masculinas (Fig 7b)
para atrair os polinizadores, que são principalmente besouros. Apesar da
agamospermia (produção de sementes não fertilizadas) ter sido
descrita para o gênero, C. criuva não apresenta este tipo de reprodução
(Martins et al., 2007).
Os frutos de C. criuva (Figs 7c e 7d) são globulares, deiscentes e
contêm cinco diásporos, com 0 a 17 sementes cada um. Os diásporos
são envoltos por um arilo, que contém um dos maiores teores lipídicos
(83,4%) descritos na literatura. (Passos e Oliveira, 2002). Na Mata
Atlântica, estas sementes ariladas são dispersas, primariamente por aves
e secundariamente por formigas
É possível encontrar C. criuva em diversos ambientes, como na
Mata Atlântica, na restinga, em florestas semidecíduas, em matas de
galeria e em costões rochosos (Bresolin, 1979; Araújo e Scarano, 2007).
Esta espécie ocorre no Brasil e sua distribuição se estende da Bahia
até o Rio Grande do Sul, ocorrendo também em Goiás e Minas Gerais,
em altitudes menores de 1800 metros (Araújo e Scarano, 2007).
16
Figura 6. Aspecto geral de Clusia criuva. Parque Municipal das Dunas
da Lagoa da Conceição, Ilha de Santa Catarina, SC.
a b
c
d
a b
c
d
Figura 7. Estruturas reprodutivas de Clusia criuva. (a) Flor feminina (b)
Flor masculina (c) Frutos verdes (d) Fruto maduro.
17
Na Ilha de Santa Catarina, a análise da composição florística das
áreas de restinga realizada por Bresolin (1979) mostrou que C. criuva
pode ser encontrada com grande expressividade em duas regiões: na
restinga arbustiva do Pântano do Sul, sendo uma espécie bastante
abundante, e na restinga do Rio Vermelho, onde, junto com Ilex dumosa
e Myrcia multiflora, constitui cerca de 70% da cobertura superior da
matinha litorânea. Em estudo mais recente, Guimarães (2006) detectou a
presença da C. criuva em diferentes hábitats do Parque das Dunas da
Lagoa da Conceição. Sua ocorrência foi considerada ocasional em
baixadas eventualmente alagadas e rara em dunas fixas e semifixas. Em
baixadas secas ocorrência da espécie, mas sua abundância não foi
estimada. Nesta mesma localidade, exemplares de C. criuva foram
encontrados sob as moitas de Eucalyptus sp. por Simões-Jesus e
Castellani (2007).
4. Referências
ARAUJO, D.S.D.; LACERDA L.D. 1987. A natureza das restingas.
Ciência Hoje 6(33): 42-48.
ARAUJO, D.S.D.; SCARANO, F.R. 2007. Biogeographic features of
Clusia, with emphasis on South American and especially species. In:
Lüttge, U. (ed.) Clusia: A woody neotropical genus of remarkable
plasticity and diversity. Springer, Berlin, pp. 31-51
BEDUSCHI, T; CASTELLANI, T.T. 2008. Estrutura populacional de
Clusia criuva Cambess. (Clusiaceae) e relação espacial com espécies de
bromélias no Parque Municipal das Dunas da Lagoa da Conceição,
Florianópolis, SC. Biotemas 20(2): 41-50
BERG, H. 2002. Population dynamics in Oxalis acetosella: the
significance of sexual reproduction in a clonal, cleistogamous forest
herb. Ecography 25: 233–243.
BERTNESS, M.D.; CALLAWAY, R.1994. Positive interactions in
communities. Trends in Ecology & Evolution 9: 191-193.
BRASIL. Lei n.º 4.771, de 15 de setembro de 1965. Institui o novo
Código Florestal. Lex: Coletânea de Legislação Ambiental,
Constituição Federal. 6. ed. São Paulo: Revista dos Tribunais, 2007. pp.
481-492.
18
BRASIL. Lei n.º 11.428, de 22 de dezembro de 2006. Dispõe sobre a
utilização e proteção da vegetação nativa do Bioma Mata Atlântica, e
outras providências. Lex: Coletânea de Legislação Ambiental,
Constituição Federal. 6. ed. São Paulo: Revista dos Tribunais, 2007. p.
536-544.
BRESOLIN, A. 1979. Flora da restinga da Ilha de Santa Catarina.
Insula 10: 1-54.
BRUNO, J.F., STACHOWICZ, J.J.; BERTNESS, M.D., 2003. Inclusion
of facilitation into ecological theory. Trends in Ecology & Evolution
18: 119-125.
CALLAWAY, R.M. 1995. Positive interactions among plants. The
Botanical Review 61(4): 306-340.
CALLAWAY, R.M., BROOKER, R.W.; CHOLER, P.; KIKVIDZE, Z.;
LORTIE, C.J.; MICHALET, R.;. PAOLINI, L.; PUGNAIRE, F.I.;
NEWINGHAM, B.; ASCHEHOUG, E.T.; ARMAS, C.; KIKODZE,
D.;. COOK, B.J. 2002. Positive interactions among alpine plants
increase with stress. Nature 417: 844-848.
CAVIERES, L.A.; BADANO, E.E.; SIERRA-ALMEIDA, A.;
GOMEZ-GONZALEZ, S.; MOLINA-MONTENEGRO, M.A. 2006.
Positive interactions between alpine plant species and the nurse cushion
plant Laretia acaulis do not increase with elevation in the Andes of
central Chile. New Phytologist 169: 59-69.
CECA, Centro de Estudos Cultura e Cidadania. 1996. Relatório sobre
os problemas sócio-ambientais da Ilha de Santa Catarina. Editora
Insular, Florianópolis, 247 p.
CECCA, Centro de Estudos Cultura e Cidadania. 1997. Unidades de
conservação e áreas protegidas da Ilha de Santa Catarina:
caracterização e legislação. Editora Insular, Florianópolis, 160 p.
CONSELHO NACIONAL DO MEIO AMBIENTE CONAMA.
Resolução n.º 303, de 20 de março de 2002. Dispõe sobre parâmetros,
definições e limites de Áreas de Preservação Permanente. Lex:
Coletânea de Legislação Ambiental, Constituição Federal. 6. ed. São
Paulo: Revista dos Tribunais, 2007. pp. 417-420.
CORDAZZO, C. V.; COSTA, C.S.B. 1989. Associações vegetais das
dunas frontais de Garopaba (SC). Ciência e Cultura 41: 906-910.
19
CORDAZZO, C. V.; SEELIGER, U. 1988. Phenological and
biogeographical aspects of coastal dune plant- Communities in southern
Brazil. Vegetatio 75(3): 169-173
CRAWLEY, M.J. 1997. Plant Ecology. 2 ed. Blackwell Science,
Oxford. 744 p.
ERIKSSON, O. 1989. Seedling dynamics and life histories in clonal
plants. Oikos 55: 231–238
ERIKSSON, O.; BREMER,.B. 1993. Genet dynamics of the clonal plant
Rubus saxatilis. Journal of Ecology 81: 533-542.
FALKENBERG, D.B. 1999. Aspectos da flora e da vegetação
secundária da restinga de Santa Catarina, sul do Brasil. Insula 28: 1-30.
FISCHER, M.; VAN KLEUNEN, M. 2002. On the evolution of clonal
plant life histories. Evolutionary Ecology 15: 565-582.
FRANKS, S.J. 2003a. Competitive and facilitative interactions within
and between two species of coastal dune perennials. Canadian Journal
of Botany 81: 330-337
FRANKS, S.J., 2003b. Facilitation in multiple life-history stages:
evidence for nucleated succession in coastal dunes. Plant Ecology 168:
1-11.
GRIME, J.P. 1977. Evidence for existence of three primary strategies in
plants and its relevance to ecological and evolutionary theory.
American Naturalist 111: 1169–1194.
GUIMARÃES, T.B. 2006. Florística e fenologia reprodutiva de
plantas vasculares na restinga do Parque Municipal das Dunas da
Lagoa da Conceição, Florianópolis, SC. Dissertação de Mestrado,
Universidade Federal de Santa Catarina, 102 p.
GÜTTLER, F.N. 2006. Mapeamento da vegetação do Parque
Municipal das Dunas da Lagoa da Conceição, Florianópolis SC.
Trabalho de conclusão de curso, Universidade Federal de Santa
Catarina, 59 p.
HARADA, Y.; IWASA, Y. 1996. Analyses of spatial patterns and
population processes of clonal plants.Researches on Population
Ecology 38(2): 153-164
HARPER, J. L. 1977. Population Biology of Plants. Academic Press,
London.
20
HESP, P.A. 1991. Ecological processes and plant adaptations on coastal
dunes. Journal of Arid Environment 21: 165-191.
HOLMGREN, M.; SCHEFFER, M. 2001. El Nino as a window of
opportunity for the restoration of degraded arid ecosystems. Ecosystems
4: 151-159.
JOLY, A.B. 1985. Botânica - Introdução à taxonomia vegetal. ed.
Companhia Editora Nacional, São Paulo.778p.
LORTIE, C.J.; CALLAWAY, R.M. 2006. Re-analysis of meta-analysis:
support for the stress-gradient hypothesis. Journal of Ecology 94: 7-16.
LOVETT DOUST, L. 1981. Population dynamics and local
specialization in a clonal perennial (Ranunculus repens) I. The dynamics
of ramets in contrasting habitats. Journal of Ecology 69:743-755.
LÜTTGE, U. 2007. Photosynthesys. In: Lüttge, U. (ed.) Clusia: A
woody neotropical genus of remarkable plasticity and diversity.
Springer, Berlin, pp. 135-181.
MACEDO, M.V.; MONTEIRO, R.F. 1987. Germinação e
desenvolvimento de plântulas em tanque de Neoregelia cruenta
(BROMELIACEAE) na Restinga de Barra de Maricá, RJ. ACIESP
54(2): 188-190.
MAESTRE, F.T.;CALLAWAY, R.M., VALLADARES, F.; LORTIE,
C.J. 2009. Refining the stress-gradient hypothesis for competition and
facilitation in plant communities. Journal of Ecology 97: 199-205.
MAESTRE, F.T., VALLADARES, F.; REYNOLDS, J.F. 2005. Is the
change of plant-plant interactions with abiotic stress predictable? A
meta-analysis of field results in arid environments. Journal of Ecology
93: 748-757.
MAESTRE, F.T., VALLADARES, F.; REYNOLDS, J.F. 2006. The
stress-gradient hypothesis does not fit all relationships between plant-
plant interactions and abiotic stress: further insights from arid
environments. Journal of Ecology 94: 17-22.
MARTINEZ, M.L., 2003. Facilitation of seedling establishment by an
endemic shrub in tropical coastal sand dunes. Plant Ecology 168: 333-
345.
MARTINS, R. L., WENDT, T. MARGIS, R.; SCARANO, F.R. 2007.
Reproductive Biology. In U. Lüttge [ed.], Clusia: A woody neotropical
genus of remarkable plasticity and diversity. Springer, Berlin, pp.73-
91
21
MAUN, M.A. 1994. Adaptations enhancing survival and establishment
of seedlings on coastal dune systems. Vegetatio 111: 59-70.
MORO, M.J.; PUGNAIRE, F.I.; HAASE, P.; PUIGDEFÁBREGAS, J.
1997. Effect of the canopy of Retama sphaerocarpa on its understorey
in a semiarid environment. Functional Ecology 11: 425-431.
MULDER, C.P.H.; ULIASSI, D.D.; DOAK, D.F. 2001. Physical stress
and diversity-productivity relationships: The role of positive
interactions. Proceedings of the National Academy of Sciences of the
United States of America 98: 6704-6708
PAN, J.J.; PRICE, J.S. 2002. Fitness and evolution in clonal plants: the
impact of clonal growth. Evolutionary Ecology 15:583-600
PASSOS, L.; OLIVEIRA, P.S. 2002. Ants affect the distribution and
performance of seedlings of Clusia criuva, a primarily bird-dispersed
rain forest tree. Journal of Ecology 90:517-528
RICKLEFS, R.E. 2003. A economia da natureza. Guanabara Koogan,
Rio de Janeiro, 501p.
SAMPAIO, D.; SOUZA, V.C.; OLIVEIRA, A.A.; PAULA-SOUZA, J.;
RODRIGUES, R.R. 2005. Árvores da restinga - Guia de
identificação. Editora Neotrópica, São Paulo, 277 p.
SCARANO, F. R. 2002. Structure, function and floristic relationships of
plant communities in stressful habitats marginal to the Brazilian Atlantic
rainforest. Annals of Botany 90: 517-524.
SCARANO, F.R.; CIRNE, P.; NASCIMENTO, M.T.; SAMPAIO,
M.C.; VILLELA, D.M.; WENDT, T.; ZALUAR, H.L.T. 2004. Ecologia
vegetal: integrando ecossistema, comunidades, populações e
organismos. In: C.F.D. Rocha, F.A. Esteves, F.R. Scarano (orgs.),
Pesquisas de longa duração na restinga de Jurubatiba Ecologia,
história natural e conservação. RiMa Editora, São Carlos, pp. 77-97
SCARANO, F.R.; DUARTE, H.M.; FRANCO, A.C.; GESSLER, A.;
MATTOS, E.A.; NAHM, M.; RENNENBERG, H.; ZALUAR, H.L.T;
LÜTTGE, U. 2005. Ecophysiology of selected tree species in different
plant communities at the periphery of the Atlantic Forest of SE Brasil I.
Performance of three different species of Clusia in an array of plant
communities. Trees 19: 497-509.
SHUMWAY, S. W. 2000. Facilitative effects of a sand dune shrub on
species growing beneath the shrub canopy. Oecologia 124: 138-148.
22
SILVERTOWN, J., FRANCO, M., PISANTY, I.; MENDOZA, A. 1993.
Comparative plant demography relative importance of life-cycle
components to the finite rate of increase in woody and herbaceous
perennials. Journal of Ecology 81: 465–476.
SILVERTOWN, J. 2008. The evolutionary maintenance of sexual
reproduction: Evidence from the ecological distribution of asexual
reproduction in clonal plants. International Journal of Plant Sciences
169(1): 157-168
SIMÕES-JESUS, M.F.S; CASTELLANI, T.T. 2007. Avaliação do
potencial facilitador de moitas de Eucalyptus sp. na restinga da Praia da
Joaquina, Ilha de Santa Catarina, SC. Biotemas 20(3): 27-35
STUEFER, J. F., deKROON, H.; DURING, H.J.. 1996. Exploitation of
environmental heterogeneity by spatial division of labour in a clonal
plant. Functional Ecology 10: 328-334.
SUGUIO, K.; TESSLER, M. G. 1984. Planícies de cordões litorâneos
quaternários do Brasil: Origem e nomenclatura. In: L. D. Lacerda; D. S.
D. Araujo; R. Cerqueira; B. Turcq (eds.) Restingas Origem, Estrutura
e Processos. CEUFF, Niterói, pp.15-26
TEWKSBURY, J.J; LLOYD, J.D. 2001. Positive interactions under
nurse-plants: spatial scale, stress gradients and benefactor size.
Oecologia 127: 425-434
TURKINGTON, R. 2010. Obituary: John L. Harper FRS, CBE 1925–
2009. Bulletin of the Ecological Society of America 91 (1): 9-13
WEPPLER, T.;STOLL, P.;STOCKLIN, J. 2006. The relative
importance of sexual and clonal reproduction for population growth in
the long-lived alpine plant Geum reptans. Journal of Ecology 94(4):
869-879
YARRANTON, G.A.; MORRISON, R.G. 1974. Spatial dynamics of a
primary succession: Nucleation. Journal of Ecology 62(2): 417-428
ZALUAR, H.L.T; SCARANO, F.R. 2000. Facilitação em restingas de
moitas: Um século de buscas por espécies focais. In: F.A. Esteves; L.D.
Lacerda. (eds.) Ecologia de Restingas e Lagoas Costeiras.
NUPEM/UFRJ, Macaé, pp. 03-23.
23
Capítulo escrito em forma de artigo,
seguindo as normas do periódico
American Journal of Botany
24
Capítulo 1
Demography, spatial distribution, individual growth and the
relative importance of clonal and sexual reproduction of a woody
species in a coastal dune environment
Tatiane Beduschi
1,2
and Tânia Tarabini Castellani
1
1. Universidade Federal de Santa Catarina, Laboratório de Ecologia
Vegetal, Departamento de Ecologia e Zoologia, CCB, 88040-970,
Florianópolis, Brazil
2. Corresponding author: tatibed@gmail.com
Abstract
Brazilian coastal sand dunes are heterogeneous environments, in which
the vegetation constitutes mosaics of herbaceous and shrub vegetation.
Clonal propagation is a common adaptation found in these locations,
and enables the recruitment of new individuals, since the harsh
conditions limit germination and seedling survival. Clusia criuva is a
woody dioecious species, common in coastal sand dunes that can
reproduce vegetatively. In order to understand the population dynamics
of this species and to determine whether its colonization in this habitat is
recent. We have analyzed the spatial distribution, individual growth,
demography and the importance of clonal and sexual reproduction to C.
criuva. All individuals in an area of 38 ha were tagged and their location
was determined with a GPS. One year later, the stasis of individuals in
the four developmental stages (juveniles, saplings, vegetative adults and
flowering adults) or their passage to subsequent stages was recorded. No
regressions were observed. Recruitment (both clonal and sexual) was
also observed and a Lefkovitch matrix was constructed. Spatial
distribution was analyzed using Ripley’s K-function. Results showed
that this population is distributed in clusters of approximately 10 meters,
probably due to environmental heterogeneity and positive interactions
with other plant species. A similar distribution pattern was observed in
young and mature individuals. Growth in height and stem diameter was
more expressive in pre-reproductive stages, but adults invested more in
leaves. Stasis of adults (which reproduce clonally and sexually) had the
greatest contribution to the estimated population growth rate (λ=1.02).
Recruitment of genets only happened by immigration of seeds, but
25
contributed greatly to the growth of the population. However,
reproduction through seed appears to be an inconstant phenomenon.
This population appears to be colonizing the area and still depends on
external input of seeds to grow, since the clonal propagation only
compensates the mortality of individuals.
Keywords: Clusia criuva, population, Lefkovitch matrix, colonization,
clonal and sexual reproduction
Introduction
Brazilian coastal sand dunes were formed by variations in the
sea level from the Quaternary period and subsequent sediment
deposition and are constantly transformed by the wind (Suguio and
Tessler, 1984). The vegetation that covers this soil is a mosaic of plant
communities, and “vegetation islands” of woody vegetation can be
found within areas of herbaceous vegetation (Falkenberg, 1999;
Scarano, 2002). When compared to mesic ecosystems, species diversity,
productivity and structural complexity are lower in these communities,
as a result of the harsh conditions to which plants are subjected (Kachi
and Hirose, 1983; Scarano, 2002). Burial, strong winds, substrate
erosion, flooding, salt sprays, drought, high salinity and lack of nutrients
are some of these limitations (Hesp, 1991; Maun, 1994; Scarano, 2002).
To endure in this environment, plants present adaptations such as small
size, flexible stems, long and numerous roots, salt glands and leaves
resistant to desiccation (Bresolin, 1979; Waechter, 1985; Hesp, 1991;
Maun , 1994).
The initial colonization of coastal sand dunes is constrained
mainly by sand burial and absence of organic matter (Olff et al., 1993;
Lichter, 2000). Therefore, species that can endure such conditions are
the first to establish. These species, which are usually herbaceous, but
can also be shrubs, facilitate the establishment of later- successional
species by gradually stabilizing the substrate and increasing the
concentration of nitrogen in the soil (Connell & Slatyer 1977, Lichter,
1998, Martínez et al., 2001). However, this process is not homogeneous
and spatial variation in stress factors like salinity, drought and flooding
can lead to very different successional sequences in the same area (Olff,
1993). Similarly, evidences suggest that succession in coastal sand
dunes can occur through nucleation. That means that the establishment
of certain species brings changes in environmental conditions that
26
enable other species to colonize the area beneath these individuals,
forming patches the later coalesce (Yarranton e Morrison, 1974).
Additionally, nucleation can happen when certain species accumulate
the propagules of other species, which are able to germinate and
establish, also generating a patchy distribution of individuals (Day and
Wright, 1989; Franks, 2003; Martínez, 2003).
The spatial distribution of individuals is an important feature of
a population. Since most of the interactions among individuals happen
among neighbors (Harper, 1977), spatial distribution can be a key factor
in population dynamics (Girdler and Radtke, 2006). Spatial patterns
reflect processes that took place in the past and will determine processes
occurring in the future (Law et al., 2009). A more regular pattern of
distribution could be evidence of self-thinning, the density-dependent
mortality that occurs progressively in cohorts as individuals grow in size
(Begon and Mortimer, 1986; Wolf, 2005). Besides the nucleation
processes mentioned above, clumped distributions can be formed by
microsite mosaics, canopy gaps, vegetative reproduction or limited
dispersal of the members of the population (Wolf, 2005; Law et al.
2009).
One strategy, common in this environment, is clonal
reproduction (Cordazzo and Costa, 1989). In clonal plants, vegetative
reproduction produces new ramets (i.e. clonal segments) by budding
from roots, rhizomes, stems, storage organs such as tubers, leaves or
inflorescences (Silvertown, 2008). This kind of reproduction allows
plants to colonize limiting and heterogeneous environments (Stuefer et
al., 1996). Given that the ramets can remain connected, photosynthates,
water and nutrients can be transported between segments, increasing
biomass incorporation (Mantuano and Martinelli, 2007). In
heterogeneous environments, where resources are uneven distributed,
clonal plants can respond plastically by a spatial division of labour or by
growing to more favorable sites (Stuefer et al., 1996; Sampaio et al.,
2004). The expansion of clonal plants can occur through shortly spaced
ramets (phalanx strategy) or through widely dispersed ramets (guerrilla
strategy) (Lovett Doust, 1981; Eriksson, 1989). Either way, clonal
expansion limits long distance dispersal, as, over time, their expansion
resembles that of an amoebae moving across the landscape (Robinson et
al., 1992). Hence, it is hypothesized that sexual reproduction prevails in
a clonal plant population during the initial colonization or after
disturbance, but vegetative reproduction tends to dominate in
established populations, when long distance dispersal is no longer
27
needed. This model, however, is not valid for all plant populations
(Eriksson and Bremer, 1993).
Plants of the genus Clusia are dioecious and can reproduce
asexually. Some species can reproduce vegetatively or by agamospermy
(seed production without fertilization) (Martins et. al., 2007), but this
last kind of asexual reproduction has never been described to Clusia
criuva Cambess. (Clusiaceae), which is the focus species in this study.
As many of the species found in the Brazilian coastal vegetation, C.
criuva originated in the montane Atlantic rainforest and migrated to the
younger coastal lowlands (Scarano, 2002). The study of plant
populations that originated in mesic conditions and adapted to a more
extreme environment has a growing importance, considering the global
warming scenario (Scarano, 2002). To our knowledge, this is one of the
first studies describing the structure, distribution and dynamics of a
species in such a situation. The exception is the research of Sampaio et
al. (2005) that studied the ramet demography of the bromeliad Aechmea
nudicaulis (L.) Griseb, a bromeliad also originated in the Atlantic
rainforest.
To better understand the dynamics of a C. criuva population in
this coastal dune environment, we have addressed the following
questions:
1. In what scale are the individuals of C. criuva clumped and what
processes can be influencing the observed pattern?
2. How is the population structured and does this structure varies
between years?
3. What components of the life-cycle contribute the most to the
population growth rate?
4. What is the relative importance of clonal and sexual reproduction?
Material and Methods
Study area and plant species
The study was carried out within the coastal sand dunes of the
Parque Municipal das Dunas da Lagoa da Conceiçao (27°37’S,
48°27’W). The climate of the region, according to Köppen
classification, is humid subtropical, characterized by humid hot
summers and mild winters (Caruso, 1990). Average monthly
temperature is 21ºC, ranging from 16ºC in July to 25ºC in February.
Mean annual precipitation is 1700 mm, with greater values in January
and February and smaller values from June to August.
28
The dune system was originated during the sea level
oscillations from the Quaternary period and the subsequent eolic sand
deposition (Suguio and Tessler, 1984, Falkenberg, 1999). The study site
is composed by a central dunefield where semifixed dunes, humid slacks
and small temporary lakes form a mosaic of habitats and vegetations.
The dunefield is composed mainly by herbaceous vegetation and some
shrubs, which can form clusters, called vegetation islands”. This
central region is surrounded by two corridors of arboreous vegetation.
Previous observations have detected two groups of C. criuva individuals
that differed in density and size. Therefore, the sampled area was placed
so that both these groups would be at least partially included, what
resulted in an area of 38 ha located on the central dunefield.
Clusia criuva is woody dioecious species that can be found in
semidecidous forests, gallery forests, coastal sand dunes and in the
Atlantic forest. This species can be shrubby, arboreous or hemi-epifhytic
stranglers. In the study site, all individuals were shrubs. However,
arboreous individuals can be found in the corridors of arboreous
vegetation mentioned above. The fruits are very attractive to animals
and the seeds are primarily dispersed by birds (Passos and Oliveira,
2002). In the area, C. criuva flowers from December to March and
mature fruits can be found from January to March.
Population sampling
The field investigation was performed during 2008-09. In the
first year, all the individuals of C. criuva (n=309) found inside the
delimitated area were tagged and mapped with a GPS (Garmim eTrex).
The height, number of leaves, number of branches and stem diameter (at
soil level) were surveyed in every individual, using a digital paquimeter
(Digimess 150mm/6”). All measurements were made in July/August
2008 and repeated one year later. New recruitments were searched for in
2009 and classified into seedlings or ramets. Ramets were defined as all
new individuals connected to the adult through the roots, but other
characteristics could be used to differentiate them from the newly
recruited seedlings. Size of the leaves, much bigger in ramets was one of
those. Hardness and color of the stem was also a very clear
characteristic. When vegetative reproduction was observed, the source
individual was identified.
29
Demographic model
Individuals were classified in four stages of development.
Their fate was recorded from one year to the other and a Lefkovitch
(Stage structured) matrix was constructed. A general model of the
matrix can be seen in Table 1. Juveniles were considered to have stem
diameters smaller than 2.7mm. Such small individuals were considered
to be less than 1 year old and, consequently, recently recruited. This
limit was set based on the maximum stem diameter reached by seedlings
recruited in summer 2009 by the time the second census was made.
Ramets recruited in the last year which had stem diameters smaller than
2.7mm where also placed in this stage. Saplings were non-branched
individuals, whose stem diameters where larger than 2.7mm.
Reproduction was not observed in either of these classes. Vegetative
adults were branched and could reproduce clonally. Flowering adults
were observed flowering at least once during the duration of the
research. Seeds were germinated in laboratory conditions and no
dormancy was observed.
Table 1. Population matrix of Clusia criuva. F
ij i
ndicates production of
new individuals (by clonal propagation - F
31
and
F
32
- and by seeds - F
41
and F
42
); G
ij
designates the passage from one stage to the other and S
ii
represents the permanence of individuals in the same stage.
Stage at time t
Juveniles Saplings Adults
Flowering
Juveniles 0 0 F
31
F
41
Saplings G
12
S
22
F
32
F
42
Adults G
13
G
23
S
33
R
43
Stage at time t + 1
Flowering 0 0 G
34
S
44
The estimated population growth rate (λ
est
) and the elasticities
(proportional sensitivities) were calculated by the program Ramas
EcoLab 2.0 (Akçakaya and Root, 1999). Elasticities are the percentual
variation of λ
est
caused by a proportional change in one of the elements
of the matrix (Gurevitch et al., 2009), i.e., they indicate the contribution
of demographic traits to λ
est
(Caswell, 1989). To compare the population
growth rate with and without immigration, the λ
cal
was calculated for
both cases according to the following formula:
30
λ
cal
= number of individuals in the population at time t + 1
number of individuals in the population at time t
A chi-square analysis was performed to compare the mortality between
stages (Zar, 1984). Since there was only one flowering individual, this
stage was not included in this analysis to avoid bias.
Individual growth
A Kruskal-Wallis rank sum test and Wilcoxon paired-sample test
were used to assess differences between developmental stages regarding
rates of growth in height, stem thickening and increase in the number of
leaves. These rates where calculated by the formula:
Proportion of increase = final value (2009) – initial value (2008)
initial value (2008)
Also here, the flowering was left out of the analyses and the
software R version 2.7.2 (R Development Core Team, 2008) was used.
Spatial distribution
Ripley’s function K(d) was used to evaluate the spatial
distribution of C. criuva. This function, also known as second-order
analysis, counts the number of points within a certain distance d of each
point, with d taking a range of values (Dale, 1999). If individuals are
aggregated, the observed K(d)-value will be larger than the expected
value found for complete spatial randomness (CSR), a uniform Poisson
process. If individuals are uniformly distributed, the observed K(d)-
value is smaller than the expected. In order to calculate the critical
values for the CSR, at a significance level of 0.05, a Monte Carlo test
was performed (100 simulations) as proposed by Baddeley (2008).
Ripley’s K function assumes that the point pattern is spatially
homogeneous, i.e. presents constant intensity. Since the coastal dune
environment does not exhibit such homogeneity, the modification
suggested by Baddeley et al. (2000) for inhomogeneous point-processes
was used (Kinhom(d)). To account for edge effect, a correction was
applied. When the circle defined by the distance d is not completely
inside the study area, a weighting factor, proportional to the amount of
the circle situated within the area, is used (Ohser, 1983). In this analysis,
individuals found in the first census were separated in young
(juveniles+saplings) and mature (vegetative adults+flowering adults) in
31
order to verify if the spatial distribution of individuals is different in
initial and more advanced stages. Analyses were performed using the
software R version 2.7.2 (R Development Core Team, 2008) and the
package Spatstat (Baddeley and Turner, 2005).
Results
In the first census, 309 individuals were found against 474 one
year later. Without immigration, the final number of individuals would
be 306. The calculated λ
cal
for the population was 1.53 when recruited
seedlings were taken into account and 0.99, and when the increment by
migration was not considered. The estimated population growth rate
(λ
est
), that does not account for migration, was 1.02. Initial and final
abundances in each stage can be seen in Figure 1. During the study year,
194 individuals were recruited in the area (183 in the juvenile stage and
11 in the sapling stage).
The number of individuals in the first stage increased greatly in
the second year (Figure 1). Recruitment by immigrant seeds (168- 92%)
contributed the most to this increase. Since only one flowering
individual was found in the reproductive season of 2008/2009 and it was
a male, the source of all seedling recruitments was external. Seeds
probably came from the arboreous corridors that surround the area,
located at least 200 meters away and all seedlings were considered to be
immigrants. Also, production of ramets by the flowering individual was
not observed. Consequently the reproductive values of the flowering
stage were zero. Vegetative adults produced 15 new ramets in the first
stage (stem diameters smaller than 2.7mm) and 11 in the second stage.
The abundance of saplings and vegetative adults did not change greatly.
0
20
40
60
80
100
120
140
160
180
200
Juveniles Saplings Adults Flowering
2008
2009
Figure 1. Number of individuals of C. criuva in each stage of
development in two subsequent years.
32
According to the stages defined, retrogression was only
possible between vegetative and flowering adults, but was not observed
during the period of the study (Figure 2).
Juveniles Saplings
Vegetative
adults
Flowering
adults
S
22
S
33
S
44
G
12
G
23
G
34
F
32
F
31
G
13
Juveniles Saplings
Vegetative
adults
Flowering
adults
S
22
S
33
S
44
G
12
G
23
G
34
F
32
F
31
G
13
Figure 2. Life cycle graph of Clusia criuva. F
ij
indicates production of
new individuals; G
ij
designates the passage from one stage to the other,
S
ii
represents the permanence of individuals in the same stage and R
ji
represents the retrogression of individuals to previous stages.
The matrix contained the following components:
F
ij
= Fecundity (number of individuals produced by the stage i to
the stage j/ number of individuals in stage i in time t.),
G
ij
= Growth (number of individuals that grew to stage j/ initial
number of individuals in stage i),
S
ii
= Stasis (number of individuals that remained in the stage i/
initial number of individuals in stage i).
R
ji
= Retrogession (number of individuals that retrogressed to
stage i/ initial number of individuals in stage j)
Considering that juveniles could not be older than one year old
(i.e. were recruited in the last reproductive season), all individuals that
survived passed to the next stage. In the other stages, however, there
were high survival and stasis rates (Table 2). Three vegetative adults
became flowering adults in the second year (two males and one female)
and the one observed in the first year remained as flowering adult. By
the time the second census was made, 29 individuals had died (3
seedlings, 16 saplings and 10 vegetative adults). Mortality was not
different among stages (χ
2
=1.556; p>0.05).
33
Table 2. Transition matrix of a population of Clusia criuva during a
study performed in 2008/2009. Life cycle stages, population growth
(λ
est
) and abundance per stage (n=initial abundance/final abundance) are
shown.
Λ
est
= 1.02 Juveniles Saplings Adults Flowering
n 25/183 142/126 141/161 1/4
Juveniles 0 0 0,11 0
Saplings 0,84 0,66 0,08 0
Adults 0,04 0,23 0,91 0
Flowering 0 0 0,02 1
Elasticity analysis revealed that changes in the proportion of
vegetative adults remaining in the same stage had the highest effect on
λ
est
(Table 3). The stasis of saplings had the second greatest relative
contribution to λ
est
, followed by their passage to the subsequent stage.
The stasis of the flowering individual, the production of juveniles by
adults and the growth of juveniles into saplings contributed similarly.
Vegetative adults becoming Flowering adults had the smallest effect on
λ
est
.
Table 3. Elasticity matrix of a population of Clusia criuva during a
study performed in 2008/2009
Juveniles Saplings Adults Flowering
Juveniles 0,000 0,000 0,042 0,000
Saplings 0,039 0,135 0,035 0,000
Adults 0,030 0,074 0,626 0,000
Flowering 0,000 0,000 0,001 0,045
Regarding the spatial distribution, there was no considerable
difference between the pattern observed for the mature and the young
individuals (Figure 3 a e b).
In both cases, there was significant clustering at distances up to
approximately 30 meters. However, cluster size is probably close to 10
meters, considering that after this level, the curve stabilizes, verging to
random and uniform distribution, sequentially. This pattern is
particularly clear with the young individuals. Repulsion of clusters was
observed at distances greater than 40 meters. Two main clusters can be
seen in the area, separated by 500 meters (Figure 4), as indicated by the
UTM coordinates. Given that the spatial distribution was similar for
34
both classes, all individuals were pooled in the graph. The greatest
density is observed in the north of the area, farther from the sea.
0 25 50 75 125
0 20000 40000 60000 80000
d (meters)
Kinhom (d)
a
0 25 50 75 125
0 20000 40000 60000 80000
d (meters)
b
Figure 3. Spatial pattern analysis using Ripley’s K function. (a) Mature
individuals (b) Young individuals. Solid lines represent the observed
distribution and dotted lines represent values of Kinhom (d) and the
95% confidence interval for CSR. The arrows mark the 10 meters.
35
C
o
o
r
d
i
n
a
t
e
s
-
E
a
s
t
i
n
g
(
U
T
M
)
751200
751400
751600
6941500
6942000
D
e
n
s
i
t
y
(
p
e
r
s
q
u
a
r
e
m
e
t
e
r
)
0.002
0.004
0.006
C
o
o
r
d
i
n
a
t
e
s
-
N
o
r
t
h
i
n
g
(
U
T
M
)
7
5
1
4
0
0
C
o
o
r
d
i
n
a
t
e
s
-
E
a
s
t
i
n
g
(
U
T
M
)
751200
751400
751600
6941500
6942000
D
e
n
s
i
t
y
(
p
e
r
s
q
u
a
r
e
m
e
t
e
r
)
0.002
0.004
0.006
C
o
o
r
d
i
n
a
t
e
s
-
N
o
r
t
h
i
n
g
(
U
T
M
)
7
5
1
4
0
0
Figure 4. Density of C. criuva individuals in the study area. Coordinates
(UTM) and density values are shown.
Individual growth was different between stages (Figure 5).
Proportionally, juveniles invested more in diameter increase than the
other two stages (Figure 5a). Vegetative adults grew less in height than
juveniles and saplings (Figure 5b), but had the greatest proportional
increase in number of leaves (Figure 5c). Some adult individuals had an
enormous proportional increase in the number of leaves (3600%, 1671%
and 1249%). To improve clarity, some of these outliers are not shown in
the graphs.
36
1 2 3
0 1 2 3 4
a
b
c
a
1 2 3
0 1 2 3 4
a
a
b
b
1 2 3
0 5 10 15
a a
b
c
Figure 5. Growth of individuals in each stage. (a) Proportion of increase
in stem diameter (b) Proportion of increase in height (c)Proportion of
increase in number of leaves. 1- Juveniles; 2- Saplings; 3- Vegetative
Adults. Central lines and boxes represent medians and first (1Q) and
third quartiles (3Q), respectively. Whiskers represent 1.5 times the
extent of the boxes (3Q-1Q) plus the value of the first and third quartile,
for the lower and upper whisker, respectively. Points correspond to
oultiers. To improve clarity, some outliers are not shown in the graphs.
Discussion
Based on field observations, the clusters observed at scales of
approximately 10 meters appear to be consistent with the “vegetation
islands” and with the scale of environmental heterogeneity observed in
coastal sand dune vegetation. Clusters can arise from random variation
in the initial colonization or by favorable local conditions (Levin, 1976).
As few plants are able to colonize bare sand (which can reach very high
temperatures) (Scarano, 2002), seedlings probably concentrate in the
few favorable sites available. The presence and the density of some
plant species can alter the dune environment and influence the
distribution of other species as they provide milder conditions for the
establishment of individuals (Shumway, 2000; Cheplick, 2005). Thus,
these clusters are possibly formed by higher seed and seedling survival
in limited areas, created by buffering plants, a process that can be
particularly important in dry areas (Franco and Nobel, 1989; Leirana-
Alcocer and Parra-Tabla, 1999). As observed in another study, seeds of
37
C. criuva do not germinate and seedlings cannot establish in the open
dry areas of the dunefield, but are able to survive in association to other
plant species (a shrub and a bromeliad) or in the border of humid slacks,
where abiotic conditions are alleviated (Beduschi and Castellani,
unpublished data). Clumped seedlings are expected to compete
intensively and exhibit nonrandom mortality as they grow into larger
classes (Girdler and Radtke, 2006). Nonetheless, no evidence of severe
self-thinning has been found in this study, since the pattern of spatial
distribution did not differ greatly between youngs and matures.
Due to the small number of flowering individuals, this
population depends on the established individuals from the surrounding
arboreous areas to recruit new genets, which contribute to the population
growth (λ
cal
= 1.53). Without this input, the population is merely
stabilized (λ
cal
= 0.99). As observed by Lichter (2000), the increase in
seed availability can be an important factor favoring the establishment
of populations of late-successional species during the colonization of
coastal sand dune areas. Based on these facts, it is possible to suggest
that this population is still colonizing this area.
Considering the great difference in number of juveniles
between the years, recruitment was apparently much more expressive in
the second year of the study, probably on account of the great amount of
seedlings. In many clonal plant populations, seedling recruitment is an
infrequent and irregular event and depends on “windows of
opportunities”, such as favorable climatic conditions or disturbances
(Eriksson and Bremer, 1993; Eriksson and Froborg, 1996; Holmgren
and Scheffer, 2001; Weppler et al., 2006). In fact, a similar occurrence
has been described for Clusia hilariana Schltdl., another species found
in coastal dunes. Also for this species, abundant regeneration of
seedlings could be a periodic phenomenon, but when it occurs, young
plants originated by seeds are much more common than those originated
by vegetative propagation (Martins et al., 2007). This pattern agrees
with the results obtained in the present study, but contrasts with what
was observed in other long-lived clonal plants, where vegetative
propagation predominates (Clark-Tapia et al., 2005; Sampaio et al.,
2005). This difference could be explained by the strategy of each
population, since species with a phalanx growth form, which is the case
of C. criuva, are expected to rely more on seed recruitment than guerrilla
plants (Eriksson and Bremer, 1993). Also, the prevalence of ramets over
genets tends to be more common in longer established populations than
in younger populations (Silvertown, 2008). Clonal reproduction,
38
although not very significant in the studied year, may guarantee
population stability when sexual reproduction is not possible (Weppler
et al., 2006; Silvertown, 2008).
Although clonal reproduction may compensate for mortality,
even when there is no immigration, the stasis of vegetative adults had
the greatest contribution to λ. Even though one year is a short period for
conclusions about the dynamics of a long-lived plant, strong support is
given in the literature to confirm that stasis of adults tends to be critical
to the maintenance of population growth (de Kroon et al., 2000; Guedje
et al., 2003; Forbis & Doak, 2004; Weppler et al., 2006), especially for
woody long-lived plants (Silvertown et al., 1993). Accordingly, longer
loops, such as those created by late reproduction, would contribute less.
Vegetative adults clearly invested less in growth (in height and
in stem diameter) when compared to seedlings. Saplings exhibited an
even smaller rate of stem thickening, but invested more in height. These
results suggest that individual growth rate is not constant through the
stages and a tendency to stabilization in higher stages can be observed.
A study performed with another Clusiaceae, Garcinia lucida, also
observed higher rates of growth (in this case, increment in diameter) in
pre-reproductive stages (Guedje et al., 2003). Vegetative adults of C.
criuva would, then, invest more in leaves or in the production of ramets.
Those individuals with the greater values of increase in the number of
leaves were almost leafless in the first census, probably due to
herbivory. Therefore, any leaf found in the second census represented a
great proportional increase.
Conclusions
This population of C. criuva is distributed in clusters, possibly
because of the existence of few favorable sites of germination provided
by other plants. There is a large proportion of the area still not colonized
by this species. There is a dependence of the population on an external
source of seeds, since only vegetative reproduction occurred. These
observations indicate that the colonization of C. criuva in the area is
recent. Large seedling recruitments appear to be irregular episodes and
may depend on specific conditions. Therefore, clonal propagation and
mainly stasis of vegetative adults, maintain the stability of the
population.
39
References
AKÇAKAYA, H. R., AND W. ROOT. 1999. Ramas. Applied
Biomathematics, Setauket, New York
BADDELEY, A. J., J. MOLLER, AND R. WAAGEPETERSEN. 2000. Non-
and semi-parametric estimation of interaction in inhomogeneous point
patterns. Statistica Neerlandica 54: 329-350.
BADDELEY, A., AND R. TURNER. 2005. Spatstat: an {R} package for
analyzing spatial point patterns. Journal of Statistical Software 12: 1-42.
BADDELEY, A. 2008. Analysing spatial point patterns in R, Workshop
Notes.
BEGON, M., AND M. MORTIMER. 1986. Population ecology: an unified
study of animals and plants. Blackwell Scientific, Oxford.
BRESOLIN, A. 1979. Flora da restinga da Ilha de Santa Catarina. Insula
10: 1-54.
CARUSO, M. M. L. 1990. O desmatamento na Ilha de Santa Catarina de
1500 aos anos atuais. UFSC, Florianópolis.
CASWELL, H. 1989. Matrix population models: Construction, analysis
and interpretation. Sinauer Associates, Inc., Sunderland.
CHEPLICK, G. P. 2005. Patterns in the distribution of American
beachgrass Ammophila breviligulata and the density and reproduction of
annual plants on a coastal beach. Plant Ecology 180: 57-67.
CLARK-TAPIA, R., M. C. MANDUJANO, T. VALVERDE, A. MENDOZA,
AND F. MOLINA-FREANER. 2005. How important is clonal recruitment
for population maintenance in rare plant species? The case of the narrow
endemic cactus, Stenocereus eruca, in Baja California, Mexico.
Biological Conservation 124: 123-132.
CONNELL J.H. AND R.O. SLATYER. 1977. Mechanisms of succession in
natural communities and their role in community stability
andorganization. American Naturalist 111: 1119–1144.
CORDAZZO, C. V., AND C. S. B. COSTA. 1989. Associações vegetais das
dunas frontais de Garopaba (SC). Ciência e Cultura 41: 906-910.
DALE, M. R. T. 1999. Spatial Pattern Analysis in Plant Ecology.
Cambridge University Press, Cambridge.
DAY, T.A. AND R.G. WRIGHT. 1989. Positive plant spatial association
with Eriogonum ovalifolium in primary succession on cinder cones -
Seed-trapping nurse plants. Vegetatio 80: 37-45.
DE KROON, H., J. VAN GROENENDAEL, AND J. EHRLEN. 2000.
Elasticitcities: a review of methods and model limitations. Ecology
81:607-681
40
ERIKSSON, O. 1989. Seedling dynamics and life histories in clonal
plants. Oikos 55: 231-238.
ERIKSSON, O., AND B. BREMER. 1993. Genet dynamics of the clonal
plant Rubus saxatilis. Journal of Ecology 81: 533-542.
ERIKSSON, O., AND H. FROBORG. 1996. ''Windows of opportunity'' for
recruitment in long-lived clonal plants: Experimental studies of seedling
establishment in Vaccinium shrubs. Canadian Journal of Botany-Revue
Canadienne De Botanique 74: 1369-1374.
FALKENBERG, D. B. 1999. Aspectos da flora e da vegetação secundária
da restinga de Santa Catarina, sul do Brasil. Insula 28: 1-30.
FORBIS, T. A., AND D. F. DOAK. 2004. Seedling establishment and life
history trade-offs in alpine plants. American Journal of Botany 91:
1147-1153.
FRANCO, A. C., AND P. S. NOBEL. 1989. Effect of nurse plants on the
microhabitat and growth of cacti. Journal of Ecology 77: 870-886.
FRANKS, S.J., 2003. Facilitation in multiple life-history stages: evidence
for nucleated succession in coastal dunes. Plant Ecology 168: 1-11.
GIRDLER, E. B., AND T. A. RADTKE. 2006. Conservation implications
of individual scale spatial pattern in the threatened dune thistle, Cirsium
pitcheri. American Midland Naturalist 156: 213-228.
GUEDJE, N. M., J. LEJOLY, B. A. NKONGMENECK, AND W. B. J.
JONKERS. 2003. Population dynamics of Garcinia lucida (Clusiaceae) in
Cameroonian Atlantic forests. Forest Ecology and Management 177:
231-241.
GUREVITCH, J., M. SCHEINER, AND G. A. FOX. 2009. Estrutura,
crescimento e declínio populacionais. In J. Gurevitch, S. M. Scheiner,
and G. A. Fox [eds.], Ecologia Vegetal, 101-127. Artmed, Porto Alegre.
HARPER, J. L. 1977. Population Biology of Plants. Academic Press,
London.
HESP, P. A. 1991. Ecological processes and plant adaptations on coastal
dunes. Journal of Arid Environments 21: 165-191.
HOLMGREN, M., AND M. SCHEFFER. 2001. El Nino as a window of
opportunity for the restoration of degraded arid ecosystems. Ecosystems
4: 151-159.
KACHI, N., AND T. HIROSE. 1983. Limiting nutrients for plant-growth
in coastal sand dune soils. Journal of Ecology 71: 937-944.
L
AW, R., J. ILLIAN, D. BURSLEM, G. GRATZER, C. V. S. GUNATILLEKE,
AND I. GUNATILLEKE. 2009. Ecological information from spatial
patterns of plants: insights from point process theory. Journal of
Ecology 97: 616-628.
41
LEIRANA-ALCOCER, J., AND V. PARRA-TABLA. 1999. Factors affecting
the distribution, abundance and seedling survival of Mammillaria
gaumeri, an endemic cactus of coastal Yucatan, Mexico. Journal of Arid
Environments 41: 421-428.
LEVIN, S. A. 1976. Population dynamic-models in heterogeneous
environments. Annual Review of Ecology and Systematics 7: 287-310.
LICHTER, J. 1998. Plant succession and forest development on coastal
Lake Michigan sand dunes. Ecological Monographs 68: 487-510.
LICHTER J. 2000. Colonization constraints during primary succession on
coastal Lake Michigan sand dunes. Journal of Ecology 88: 825–839.
LOVETT DOUST, L. 1981. Population dynamics and local specialization
in a clonal perennial (Ranunculus repens) I. The dynamics of ramets in
contrasting habitats. Journal of Ecology 69:743-755.
MANTUANO, D. G., AND G. MARTINELLI. 2007. Estrutura Populacional
e Crescimento da bromélia clonal Neoregelia cruenta na Restinga de
Jurubatiba. Revista Brasileira de Biociências 5: 876-878.
MARTÍNEZ M.L., G. VÁZQUEZ AND S. SÁNCHEZ-COLÓN. 2001. Spatial
and temporal dynamics during primary succession on tropical coastal
sand dunes. Journal of Vegetation Science 12: 361–372.
MARTINEZ, M.L., 2003. Facilitation of seedling establishment by an
endemic shrub in tropical coastal sand dunes. Plant Ecology168: 333-
345.
MARTINS, R. L., T. WENDT, R. MARGIS, AND F. R. SCARANO. 2007.
Reproductive Biology. In U. Lüttge [ed.], Clusia: A woody neotropical
genus of remarkable plasticity and diversity, 73-91. Springer, Berlin.
MAUN, M. A. 1994. Adaptations enhancing survival and establishment
of seedlings on coastal dune systems. Vegetatio 111: 59-70.
OHSER, J. 1983. On estimators for the reduced second moment measure
of point processes. Statistics 14: 63-71.
OLFF H, J. HUISMAN AND BF VAN TOOREN. 1993. Species dynamics
and nutrient accumulation during early primary succession in coastal
sand dunes. Journal of Ecology 81:693–706
PASSOS, L., AND P. S. OLIVEIRA. 2002. Ants affect the distribution and
performance of seedlings of Clusia criuva, a primarily bird-dispersed
rain forest tree. Journal of Ecology 90: 517-528.
R DEVELOPMENT CORE TEAM. 2008. R: A Language and Environment
for Statistical Computing. R Foundation for Statistical Computing,
Vienna.
42
ROBINSON, G. R., R. D. HOLT, M. S. GAINES, S. P. HAMBURG, M. L.
JOHNSON, H. S. FITCH, AND E. A. MARTINKO. 1992. Diverse and
contrasting effects of habitat fragmentation. Science 257: 524-526.
SAMPAIO, M. C., F. X. PICO, AND F. R. SCARANO. 2005. Ramet
demography of a nurse bromeliad in Brazilian restingas. American
Journal of Botany 92: 674-681.
SAMPAIO, M. C., T. F. ARAUJO, F. R. SCARANO, AND J. F. STUEFER.
2004. Directional growth of a clonal bromeliad species in response to
spatial habitat heterogeneity. Evolutionary Ecology 18: 429-442.
SCARANO, F. R. 2002. Structure, function and floristic relationships of
plant communities in stressful habitats marginal to the Brazilian Atlantic
rainforest. Annals of Botany 90: 517-524.
SHUMWAY, S. W. 2000. Facilitative effects of a sand dune shrub on
species growing beneath the shrub canopy. Oecologia 124: 138-148.
SILVERTOWN, J. 2008. The evolutionary maintenance of sexual
reproduction: Evidence from the ecological distribution of asexual
reproduction in clonal plants. International Journal of Plant Sciences
169: 157-168.
SILVERTOWN, J., M. FRANCO, I. PISANTY, AND A. MENDOZA. 1993.
Comparative plant demography - Relative importance of life-cycle
components to the infinite rate of increase in woody and herbaceous
perennials. Journal of Ecology 81: 465-476.
STUEFER, J. F., H. DEKROON, AND H. J. DURING. 1996. Exploitation of
environmental heterogeneity by spatial division of labour in a clonal
plant. Functional Ecology 10: 328-334.
SUGUIO, K., AND M. G. TESSLER. 1984. Planícies de cordões litorâneos
quaternários do Brasil: origem e nomenclatura. Simpósio sobre restingas
brasileiras, In: L. D. Lacerda; D. S. D. Araujo; R. Cerqueira; B. Turcq
[eds.] Restingas Origem, Estrutura e Processos. CEUFF, Niteroi, 15-26.
WAECHTER, J. L. 1985. Aspectos ecológicos da vegetação de restinga no
rio Grande do sul, Brasil. Comunicações do Museu de Ciências da
PUCRS 33: 49-68.
WEPPLER, T., P. STOLL, AND J. STOCKLIN. 2006. The relative
importance of sexual and clonal reproduction for population growth in
the long-lived alpine plant Geum reptans. Journal of Ecology 94: 869-
879.
W
OLF, A. 2005. Fifty year record of change in tree spatial patterns
within a mixed deciduous forest. Forest Ecology and Management 215:
212-223.
43
ZAR, J.H. 1984. Biostatistical Analysis. Prentice-Hall, Inc, Englewood
Cliffs.
YARRANTON G.A. AND R.G. MORRISON. 1974. Spatial dynamics of a
primary succession – nucleation. Journal of Ecology 62: 417– 428.
44
Capítulo escrito em forma de
artigo, seguindo as normas do
periódico Perspectives in Plant
Ecology, Evolution and Systematics
45
Capítulo 2
The influence of facilitation on germination, establishment and
survival of a woody species in a coastal dune environment
Tatiane Beduschi
1,2
and Tânia Tarabini Castellani
1
1. Universidade Federal de Santa Catarina, Laboratório de Ecologia
Vegetal, Departamento de Ecologia e Zoologia, CCB, 88040-970,
Florianópolis, Brazil
2. Corresponding author: tatibed@gmail.com
Abstract
Facilitation can have an important role in structuring natural
communities. Possibly, the importance of facilitation increases with
environmental severity and “nurse-plants” enable other species to
establish and survive. In this study, the existence of positive interactions
favoring germination and survival of the woody species, Clusia criuva,
in a coastal dune environmental was examined. In an area of 38ha, we
investigated the plant species occurring in association to C. criuva and
compared their frequency to a systematic sampling, in order to verify
the existence of positive spatial association. Moreover, experiments on
seed germination and seedling survival were performed, in four different
treatments (open areas, eventually covered by herbaceous vegetation; in
the border of humid slacks; inside a bromeliad and beneath shrubs). The
results demonstrated that C. criuva is positively associated to some
shrub species and one bromeliad. The experiments performed revealed
that seeds of C. criuva do not germinate and seedlings are not able to
survive in open areas. Even though negative effects of the nurse plants
on the seedlings, caused probably by shading, could be identified,
establishment was improved and survival was enhanced in association to
other plant species or in milder conditions. Analyses of the abiotic
conditions in the experiments sites, suggested that water availability and
temperature of the substrate are the main characteristics ameliorated by
the benefactors that can also be working as bird perches and improving
seed dispersal. Established individuals, however, seem to be able to
survive in isolation, which may indicate that they have outcompeted
their benefactors.
46
Key words: Clusia criuva, bromeliad, facilitative mechanisms, spatial
association
Introduction
The concept of facilitation includes all processes by which a
community, a population or an individual affects positively the
performance of another individual, what includes enhancing its
establishment, productivity or reproduction (Berkowitz, 1995; Callaway,
1995 ).
Facilitative mechanisms can take place directly, through the
modification of environmental resources or conditions, such as light,
temperature, water and nutrients availability and soil oxygenation, or
indirectly, through the protection against herbivores, removal of
competitors, concentration of propagules, root grafts, mycorrhizae and
soil microbes (Callaway, 1995; Bruno et al., 2003; Rodriguez, 2006).
Several studies have indicated, not without controversy, that the
importance of positive interactions increases in situations of higher
“environmental severity” (sensu Brooker et. al., 2008), what is called
the stress-gradient hypothesis (SGH) (Bertness and Callaway, 1994;
Mulder et al., 2001; Tewksbury and Lloyd, 2001; Callaway et al. 2002;
Cavieres et al., 2006, but see Maestre et al. 2005; 2006; 2009; Lortie and
Callaway, 2006 for a more elaborate discussion). In coastal dune
environments, plants are subjected to extreme conditions, namely
drought, nutrient-poor unstable soils, strong winds, high soil
temperatures and salinity (Bresolin, 1979; Hesp, 1991; Maun, 1994). In
such an environment, many plant species depend on others to work as
“nurse-plants” and improve the conditions of germination, establishment
and/or growth (Tewksbury and Lloyd, 2001).
Spatial association among species is frequently used as an
evidence of nurse effects and can result in patchy plant communities
(Callaway, 1995; Fajardo et al., 2008). These patches are formed when
pioneer species accumulate seeds and/or shelter seedlings and adults of
other species under its canopies, in a process called nucleation, which is
very important for succession in coastal dunes (Yarranton and Morrison,
1974; Day and Wright, 1989; Franco and Nobel, 1989; Franks, 2003).
Bromeliads are known to trap seeds of many species and, in some cases,
to make germination possible (Macedo and Monteiro, 1987; Scarano,
2002). However, when facilitated plants do not have adventitious roots,
which allows them to extend out of the bromeliads, seed accumulation
47
can actually constitute competition, since the seedlings will not be able
to establish and will die inside the bromeliad (Brancalion et al., 2009).
Shrubs have also been identified as facilitators in coastal dunes. Simoes-
Jesus and Castellani (2007) found that under the patches of the exotic
shrub Eucalyptus sp. there was a greater establishment of woody species
when compared to open areas. Plants of the genus Clusia, common in
coastal dunes, have been described both as nurse-plants and as
facilitated plants (Dias and Scarano, 2007; Simoes-Jesus and Castellani,
2007). Evidences of the bromeliad Vriesea friburgensis Mez
(Bromeliaceae) acting as a benefactor to Clusia criuva Cambess.
(Clusiaceae) were found by Beduschi and Castellani (2008).
In order to understand how woody species colonize coastal dunes,
and based on previous evidences that indicate the influence of
facilitation on this population of C. criuva (Beduschi and Castellani,
2008), the objective of this study was to corroborate the hypotheses that
facilitation influences the distribution of this woody species and identify
the mechanisms by which benefactors may act improving its
germination, establishment, growth and survival. Since the effect of
positive interactions can also depend on the size or quality of
benefactors (Butterfield, 2009), two species (a shrub and a bromeliad)
with different size, shape and life-form were examined.
The following questions were adressed: (1) Is there spatial
association between individuals of C. criuva and another plant species?
(2) Is recruitment more common in association to some plant species?
(3) Is germination improved and survival of seedlings increased under
any of the supposed benefactors studied or under milder environmental
conditions? (4) What are the mechanisms of facilitation? (5) Are
established individuals dependent on facilitation?
Methods
Study site and species
The study took place at the Parque Municipal das Dunas da
Lagoa da Conceição located in the state of Santa Catarina, Brazil
(27
o
37’S, 48
o
27’W). The dune field is constituted by shrubby patches on
a matrix of herbaceous vegetation and surrounded by two corridors of
arboreous vegetation. Eight kinds of habitat can be identified in the area:
beach, frontal dune, internal moving dunes, internal semifixed dunes,
internal fixed dunes, dry slacks, humid slacks, and flooded slacks
(Guimaraes, 2006).
48
The study focused on the role of Clusia criuva Cambess.
(Clusiaceae) as a beneficiary of facilitation. This is a woody dioecious
species that can also present clonal reproduction. This species is widely
distributed in the Brazilian coast and also in some non-coastal states. Its
habitats include the Atlantic rainforest, semideciduous forests, gallery
forests and coastal environments (Araujo and Scarano, 2007). In the
study site, it can be observed on internal fixed dunes, internal semifixed
dunes, dry slacks and on the border of humid slacks (Guimaraes, 2006).
The sampled area measured 38 ha and included slacks, dunes,
herbaceous and sub-shrubby vegetation and vegetation islands (i.e.
patches of shrubs). The corridors of arboreous vegetation were not
comprised in the sampled area. All the individuals of C. criuva (n=301)
were counted and tagged and their location was determined with a GPS
(Global Positioning System) device so that recruitment and mortality of
individuals could be identified. Only one reproductive individual was
encountered, but, since it was a male one, all the seeds came from the
adult trees on the adjacent arboreous corridors. It was also observed, for
each individual, the kind of environment where it was located: patches
of shrubs, open areas (eventually covered with sparse herbaceous
vegetation), humid slacks or inside a bromeliad. Humid slacks were
defined as low-lying areas, in which the soil was never dry and eventual
or permanent flood could be observed (Grootjans et al., 1998).
Spatial association
By the time this part of the study was performed, 12 individuals
were not found, probably because they were already dead. Recruitments
were considered separately. Therefore, a total of 289 specimens of C.
criuva were surveyed. All woody species occurring within a 0.5m radius
of a C. criuva individual were surveyed and measured as well as all the
herbaceous species whose coverage reached a minimum of 25 percent of
the established area. Following the same procedure described above, a
systematic sampling of the same size (n=289) was made in order to
characterize the vegetation on the study area and compare the frequency
(i.e. number of samples were the species was found / total number of
samples) of the woody and herbaceous species with those detected in
association with C. criuva. Six transects were laid out in the area,
perpendicularly to the sea, and samples were taken each 20 meters,
summing 50 samples per transect. Eleven samples were randomly
chosen to be excluded from the sampling so that only 289 samples
remained. A PCA was performed to investigate whether the vegetation
49
found associated with C. criuva differed from the one recorded in the
systematic sampling and what species contributed the most to this
differentiation. This analysis was made using the software MVSP v 3.1
(Kovach, 1999). Afterwards, a chi-square analysis or a Fisher’s exact
test (Zar, 1984) was executed to test the null hypothesis that the
frequency of the species associated to C. criuva was equal to their
frequency of occurrence on the environment. One year later, the sites
of recruitment were also surveyed and the frequency of each plant
species was recorded as described above for each seedling. In the same
period, survival of the established individuals was evaluated and a chi-
square analysis or a Fisher’s exact test (Zar, 1984) was performed to
identify differences in mortality between opens areas, patches of shrubs,
bromeliads and humid slacks.
Experiments on germination and survival
Mature fruits were collected at the time of their natural
fructification (during summer, in January 2009). The fruits are globular
capsules that dehisce to expose five diaspores, each one containing 0-17
seeds enveloped by a red aril (Passos and Oliveira, 2002). The aril that
covers the diaspores was removed so that the seeds could be
individualized. Twenty seeds were disposed uniformly in each one of
the twenty plots (0.5m x 0.5m). The plots were divided equally in five
replicates of four treatments: (i) open areas, (ii) beneath the canopy of
Guapira opposita (Vell.) Reitz (Nyctaginaceae) (the most frequent
species of shrub encountered associated with C. criuva), (iii) near a
humid slack and (iv) inside a specimen of the tank bromeliad Vriesea
friburgensis Mez (Bromeliaceae). In the bromeliad, seeds were placed
inside the rosette, uniformly distributed in the third and forth concentric
circle of leaves. Germination rate was measured in laboratory conditions
with the same amount of seeds and replicates. In order to measure the
germination rate, each plot was observed monthly and maximum
germination was recorded. To facilitate reading, hereafter the treatments
will be referred to as “open area”, “shrub”, “humid slack” and
“bromeliad”. Both the shrub and the bromeliad are not found in humid
slacks (Guimaraes, 2006). A Generalized Linear Model (GLM) was
used to detect the effect of the treatments on germination compared to
the open area. Error distribution was chosen accordingly to the lowest
AIC (Akaike Information Criteria). Analysis were made using R version
2.7.2 (R Development Core Team, 2008).
50
Additionally, seedlings were collected under the canopy of
reproductive C. criuva, on April 2009, and transplanted in number of
twenty seedlings per plot. Five plots were set for each of the four
treatments described above. A control was created in the laboratory and
watered daily in order to account for deaths due to transplant stress.
Only seedlings with two cotyledons and approximately 3cm height were
selected. Censuses of the surviving seedlings occurred once a month in
the course of six months, when all remaining seedlings were removed.
Their biomass and height was measured (using a digital paquimeter with
150mm/6” accuracy) and the number of leaves counted.
Survival curves were constructed using the Kaplan-Meier
method. Survival data were analyzed using Cox Proportional-Hazard
model for covariate analysis of censored data. The underlying
assumption of the model is that there is a baseline hazard function that is
modified multiplicatively by covariates (in this case the treatments).
Diagnostics for proportional hazards were based on the scaled
Schoenfeld residuals; while the effect of influential cases and
nonlinearity were assessed with differences in beta (Dfbeta) and
Martingale-residuals, respectively (Schoenfeld, 1980; Puterman, 1988;
Therneau et al., 1990). Efron’s approximation to the risk set
permutations on tied data was used (Fox, 2002). In this study, the time
when the individuals were last observed alive was considered the time
of death. For that reason, the estimates of survival times will be
somewhat conservative. Since nonparametrical survival analysis cannot
explicitly incorporate information from replication, seedlings were
pooled across replicates, totalizing 100 individuals per treatment. Data
analysis was performed using the “survival” package (Therneau and
Lumley, 2008) in R version 2.7.2 (R Development Core Team, 2008).
Environmental conditions
Abiotic conditions were examined in the summer (February
2009). Measurements were made on five replicates of each treatment
(open area, shrub, humid slack and bromeliad), from 10:30 to 12:00,
during Summer. Soil temperature was determined using a thermometer
inserted 1.5 cm into the sand. Light intensity was measured with a light
meter (Extech Instruments 401025) placed at soil level or inside the
bromeliads. Soil cores were taken in each place where the other
measurements were made. Soil moisture was assessed by drying 20g of
soil at 100
o
C until the weight stabilized and calculating the difference
between fresh and dry weight. Since tank bromeliads are filled with
51
water and contain no soil, moisture in this environment was considered
to be 100%. The soil organic matter content was determined as the loss
of mass upon ignition (550
o
C, 2h). This measurement was not
performed for the bromeliad because there was no soil to be collected.
Also here, Generalized Linear Models were used to analyze data,
comparing the results of the treatments to those obtained in open areas.
Results
Spatial association
Results revealed that the species observed associated to C. criuva
do not coincide to those registered in the systematic sampling (Figure
1). Species that contributed the most to this differentiation were Smilax
campestris Griseb. (Smilacaceae), Vitex megapotamica (Spreng.)
Moldenke (Lamiaceae), Guapira opposita and Gaylussacia brasiliensis
(Spreng.) Meisn. (Ericaceae).
In fact, the species most commonly associated with C. criuva.
was G. opposita, followed by V. megapotamica, S. campestris, G.
brasiliensis and Vriesea friburgensis. Their frequency of occurrence
associated to C. criuva was 35.8%, 35.4%, 34.4%, 32.6% and 26.0%,
respectively. Apart from the bromeliad V. friburgensis and from S.
campestris, which is a climbing plant usually associated to woody
plants, all the mentioned species are shrubs. When compared to the
systematic sampling, most species had contrasting results. G. opposita
was much less frequent (0.7%; χ
2
=118.811; p<0.001) in the systematic
sampling than in association to C. criuva, as well as V. megapotamica
(7.3%; χ
2
=71.680; p<0.001), G. brasiliensis (5.2%; χ
2
=70.621; p<0.001)
and V. friburgensis (1.7%; χ
2
=71.129; p<0.001). The complete list, with
the frequencies of all species found in the study, can be seen in appendix
1.
A great part of the individuals surveyed (45.3%) (n=301) was
associated with some species of shrub and/or was found inside a
vegetation island; 23.7% were associated only with V. friburgensis
(outside vegetation islands) and 31.0% were not associated with either
(10.7 % located on open areas and 20.3% near humid slacks). Mortality,
however, was greater in the presence of shrubby neighbors, where
11.7% of the individuals died (n=137). On humid slacks and inside
bromeliads, 5.0% (n=61) and 4.2% (n=71) of the individuals died,
respectively. No deaths were observed in open areas (n=32). Statistical
52
difference was observed only between the open area and the shrubs
(Fisher’s exact test, p<0.05).
Figure 1. Ordination (PCA) species-samples diagram. Plots are
displayed as triangles (samples with C. criuva) and rectangles (random
sampling). More information on the species can be seen in Appendix 1
In one year, 194 individuals were recruited. Seedling recruitment
occurred mainly beneath shrubs (n=184; 94.9%). One (0.5%) recruited
inside a bromeliad and nine (4.5%) recruited on open areas. However,
all of those recruiting in open areas were clones. The most common
species under which seedlings recruited were V. megapotamica, C.
criuva, Polypodium lepidopteris (Langsdorff & Fischer) Kunze
(Polypodiaceae), V. friburgensis and G. opposita.
Axis 2
Axis 1
-0.02
-0.04
-0.06
-0.07
-0.09
0.02
0.04
0.06
0.07
0.09
-0.02-0.04-0.06-0.07-0.09 0.02 0.04 0.06 0.07 0.09
A. polyanthus
D. viscosa
P. lepidopteris
S. campestris
V. megapotamica
G. brasiliensis
V. fribrugensis
G. opposita
I. minus
19.4%
32,7%
53
Environmental conditions
Substrate moisture was significantly different from open areas in
all other three treatments (Figure 2a). In open areas, the percentage of
water was close to zero. Probably linked to these results, substrate
temperature was the lowest inside bromeliads, followed by shrubs and
humid slacks (Figure 2b). Incidence of light was significantly lower
only under the canopy of shrubs, but in humid slacks and bromeliads a
tendency to reduction on the incidence of light could be noticed (Figure
2c). Organic matter content also differed only under the shrub, in spite
of the great variation found in this treatment (Figure 2d).
Experiments on germination and survival
Germination of seeds was low in all sites, as well as in laboratory
conditions, and nil in open areas (Table 1). Hence, there was no
difference in seed germination among treatments (p>0.05).
Nevertheless, the survivorship curves were different in all cases (Figure
3, Table 2) No seedlings survived the first month in open areas.
Mortality in the first month was very high, probably due to transplant
stress, since the same pattern was observed in the laboratory, where, on
average, 2.8 (Std deviation =2.5) seedlings survived the first month.
Overall increment in survival was stronger in humid slacks and weaker
beneath G. opposita (Table 2). At the outset, most surviving seedlings
were inside bromeliads. However, this initial strong positive effect
decreased gradually with time, what also happened to the shrubs. In
humid slacks, though, a steady rate of survival was disrupted by a
considerable mortality observed between September and October.
54
OA HS Sh Br
0 25 50 75 100
Substrate Moisture (%)
a
*
*
***
OA HS Sh Br
22 24 26 28 30
Temperature ( C)
b
*
**
***
OA HS Sh Br
0 200 400 600 800
Light intensity (Fc)
c
*
OA HS Sh
0 2 4 6 8 10
Organic Matter (%)
d
*
Figure. 2. Abiotic conditions in each treatment. (a) Substrate moisture
(%), (b) Substrate Temperature (
o
C), (c) Light intensity (Fc), (d)
Organic Matter (%). OA= Open area, HS= Humid Slack, Sh= Beneath
shrub, Br= Bromeliad. Central lines represent medians and boxes
represent first and third quartiles. Whiskers represent 1.5 times the
extent of the boxes (3Q-1Q) plus the value of the first and third quartile,
for the lower and upper whisker, respectively. Circles represent outliers.
Asterisks show the results of the generalized linear models, and
represent significant statistical difference between each treatment and
the open areas. *Significant at 5%; **Significant at 1%; ***Significant
at 0,1%.
55
Table 1. Amount of germinated seeds of Clusia criuva in each
treatment and in laboratory conditions. Mean and standard deviation per
plot (n=5) are shown. Twenty seeds were placed in each plot.
Treatment Germinated seeds
Total Mean (SD)
Open Area 0 0 (0)
Humid Slack 2 0.4 (0.5)
Shrub 7 1.4 (1.8)
Bromeliad 4 0.8 (1.9)
Laboratory 14 4.8 (2.1)
Survival probability
April
May
June
July
August
September
October
0.0 0.2 0.4 0.6 0.8 1.0
Open Area
Lake Bank
Bromeliad
Shrub
Figure 3. Survival curves of Clusia criuva seedlings (n=100) for each
treatment. The x-axis represents the months when seedlings were last
seen alive (Kaplan-Meier estimator).
56
Table 2. Results of Cox Proportional Hazard Model to identify the
effect of treatments on Clusia criuva seedling survival compared to
open areas. *Significant at 5%; **Significant at 1%; ***Significant at
0,1%.
Treatment Hazard Ratio
95% Confidence
Interval
Humid Slack 0.497*** 0.396-0.671
Shrub 0.758*** 0.453-0.801
Bromeliad 0.602*** 0.572-1.005
Growth and final number of leaves was similar among treatments
(Table 3). Biomass, though, was much smaller inside bromeliads, and
the highest value found in bromeliads was smaller than the minimum
values from the other treatments. Beneath G. opposita, biomass had an
intermediate value and the greatest biomass was found in humid slacks.
Table 3. Number of Clusia criuva surviving seedlings and height,
number of leaves and biomass of individuals per treatment after six
months. Mean (min-max).
Discussion
As already thoroughly explored in literature, positive spatial
association, such as the one found between C. criuva and shrubby
species or the bromeliad, can be an evidence of facilitation, since the
beneficiated species will recruit preferably under the benefactor
(Valiente-Banuet et al., 1991; Haase et al., 1996; Tewksbury and Lloyd,
2001; Callaway et al., 2000; Tirado and Pugnaire, 2005). Nonetheless, it
can also represent spatial heterogeneity of resources and plants may be
actually competing at a patch scale for resources distributed non-
Treatment
Number of
survivors
Height (cm)
Number of
leaves
Biomass (g)
Open Area
0
Humid
Slack
12 4.2 (2.3- 5.2) 4.2 (3-6) 36 (27-51)
Bromeliad 2 5.2 (4.8-5.8) 3 (2-4) 9 (8-10)
Shrub 3 4.7 (4.1-5.1) 4 (2-6) 28 (18-41)
57
uniformly (Tirado and Pugnaire, 2003; Michalet, 2006). For that reason
field experiments are required. Both recruited seedlings and established
individuals of C. criuva were frequently associated to some species of
shrub, what suggests the occurrence of positive interactions.
Furthermore, survival of transplanted seedlings was improved under G.
opposita in comparison to open areas. The canopy of G. opposita
diminished incidence of light and soil temperature and also increased
organic matter and water content. Indeed, amelioration of microclimatic
conditions has been reported as one of the main mechanisms of
facilitation, especially in extreme environments (Franco and Nobel,
1989; Callaway, 1995; Armas and Pugnaire, 2005). In coastal dunes,
bare sand can reach temperatures as high as 70
o
C during mid-summer at
the peak of radiation, what makes germination impossible for most
species (Scarano, 2002). Besides shadow, canopies provide litter, whose
slow decomposition adds nutrients to the soil and increases humidity,
tempering limiting factors typical of this kind of environment (Lichter,
2000; Zaluar and Scarano, 2000). Enhancing in survival and
establishment of seedlings due to the presence of shrubs has been seen
in other coastal sand dunes. Martínez (2003) has detected the positive
influence of the early colonizer Chamaecrista chamaecristoides on the
establishment of the late colonizer grasses Shizachyrium scoparium and
Trachypogon plumosus on the coast of the gulf of Mexico. Another
study showed that the shrub Myrica pensilvanica beneficiated two
herbaceous sand dune species through soil enrichment (Shumway,
2000).
Besides seed and seedling desiccation, limited seed dispersal can
also constrain colonization by late-successional species (Day and
Wright, 1989; Lichter, 2000). On sand dunes, most sites are
inappropriate for seed germination and the accumulation of seeds on
places that favor their establishment can be an important mechanism of
facilitation (Franks, 2003). As showed by experimental results,
germination, while low, could only happen in association to another
species or in humid slacks. Since all seeds are produced outside the
study area and considering that C. criuva is dispersed primarily by birds
(Passos and Oliveira, 2002), shrubs and bromeliads could work as bird
perches accumulating these seeds and avoiding their loss to open areas,
where germination would not be possible. Birds were often observed on
inflorescences of V. friburgensis and on the branches of G. opposita. Joy
and Young (2002) had already determined that positive interactions
among two woody species could be mediated through the non-random
58
distribution of fleshy seeds by perching birds or through increased
seedling survival. All the most common shrub species (G. opposita, V.
megapotamica and G. brasiliensis) have fleshy fruits, what could attract
seed dispersers. However, to confirm this hypothesis, studies that
analyzed seed rain under these species and compared them to open areas
would be necessary.
Regarding all of the parameters measured, seedlings were more
successful in humid slacks, possibly due to the lower environmental
severity in comparison to open areas. These results are supported by the
SGH (Bertness and Callaway, 1994). Even though the two degrees of
environmental severity tested in this experiment do not constitute a
gradient of stress, it was possible to notice that a benefactor is
indispensable for the establishment of seedlings in dry open areas, what
did not happen in the milder environment of the humid slacks. As
explained by Butterfield (2009), some species can be obligate
beneficiaries within the most severe part of their distribution and be
facultative beneficiaries in more favorable environments. Therefore,
facilitation led to the expansion of the realized niche (Bruno et. al.,
2003) of C. criuva, allowing the species to colonize greater areas than
what would be possible in the absence of interspecific interactions.
Nonetheless, it was perceived a size-dependent decrease in the
importance of associations to C. criuva, given that many of the
established individuals were found isolated in dry areas. In fact,
considering only survival of established individuals, the performance of
those in isolation was better than of those associated to other species,
what could indicate an ontogenetic shift from facilitation to competition
(Miriti, 2006). Although seedlings need a nurse plant to survive in drier
areas, established individuals are able to endure in isolation. In these
cases, the C. criuva individuals may have outcompeted their initial
benefactors, since they are not present anymore. Similar results were
already obtained by several studies (e.g. Anderson et al., 2001, Valiente-
Banuet et al., 1991; Gasque & García-Fayos 2004). These observations
can be explained by the simultaneous occurrence of competition and
facilitation and their delicate balance that may easily shift in response to
environmental variability in space and time (Bertness and Callaway,
1994; Armas e Pugnaire, 2005; Callaway, 2007). It is this balance that
determines the net effects of the nurse plants on the growth and survival
of seedlings (Berkowitz et. al., 1995) and, ultimately, the structure and
composition of plant communities (Armas and Pugnaire, 2005).
59
Other negative effects could be identified. The smallest biomass
on seedlings under the shrubs indicates that the shadow was probably
inhibiting photosynthesis, what could also explain the results obtained in
the bromeliads. Bromeliads increased substantially survival of seedlings
in the first month, probably because of water availability. Regardless, by
the end of the experiment, seedlings transplanted to bromeliads had the
lowest biomass in all three treatments. In drier environments, the net
result of the interplay between facilitation and competition is only
positive when the improvement of water availability exceeds the costs
caused by lower light levels (Holmgren et al., 1997). Hence, the greatest
success of seedlings in humid slacks could also be due to the virtual
absence of competition. In these locations, where the scarce herbaceous
vegetation is not able to shade the seedlings and the superficial
groundwater increases water availability, the positive net result is clear.
Under shrubs and inside bromeliads there was also a positive net result,
since seedlings were able to survive.
Conclusions
While in moister areas, facilitation is not a requirement, positive
interactions seem to enable C. criuva to colonize dry areas of coastal
sand dunes. Seeds do not germinate and seedlings cannot establish in
such areas without a benefactor, but, once established individuals are
able to live in isolation, competition may become more important than
facilitation in the adult stage. Most likely, mechanisms involved in the
positive interactions are: increase in water availability, reduction of
substrate temperature and improvement of seed dispersal. Shadow
appeared to have a negative effect on seedling growth. Results depended
of the species of the benefactors.
References
Anderson, L.J., M.S., Brumbaugh and R.B. Jackson, 2001. Water and
tree–understory interactions: a natural experiment in a savanna with oak
wilt. Ecology, 82: 33–49.
Araujo, D.S.D. and F.R. Scarano, 2007. Biogeographic features of
Clusia, with emphasis on south american and especially Brazilian
species. In: U. Lüttge (Ed), Clusia: A woody neotropical genus of
remarkable plasticity and diversity, Springer, Berlin, pp. 31-54.
60
Armas, C. and F.I. Pugnaire, 2005. Plant interactions govern population
dynamics in a semi-arid plant community. Journal of Ecology, 93: 978-
989.
Beduschi, T. and T.T. Castellani, 2008. Estrutura populacional de Clusia
criuva Cambess. (Clusiaceae) e relação espacial com espécies de
bromélias no Parque Municipal das Dunas da Lagoa da Conceição,
Florianópolis, SC. Biotemas, 20: 41-50.
Berkowitz, A.R., C.D. Canham and V.R. Kelly, 1995. Competition vs
facilitation of tree seedling growth and survival in early successional
communities. Ecology, 76: 1156-1168.
Bertness, M.D. and R. Callaway, 1994. Positive interactions in
communities. Trends in Ecology & Evolution, 9: 191-193.
Brancalion, P.H.S., V.D. Gabriel and J.M. Gomez, 2009. Do Terrestrial
Tank Bromeliads in Brazil Create Safe Sites for Palm Establishment or
Act as Natural Traps for Its Dispersed Seeds? Biotropica, 41: 3-6.
Bresolin, A., 1979. Flora da restinga da Ilha de Santa Catarina. Insula,
10: 1-54.
Brooker, R.W., F.T. Maestre, R.M. Callaway, C.L. Lortie, L.A.
Cavieres, G. Kunstler, P. Liancourt, K. Tielborger, J.M.J. Travis, F.
Anthelme, C. Armas, L. Coll, E. Corcket, S. Delzon, E. Forey, Z.
Kikvidze, J. Olofsson, F. Pugnaire, C.L. Quiroz, P. Saccone, K.
Schiffers, M. Seifan, B. Touzard and R. Michalet, 2008. Facilitation in
plant communities: the past, the present, and the future. Journal of
Ecology, 96: 18-34.
Bruno, J.F., J.J. Stachowicz and M.D. Bertness, 2003. Inclusion of
facilitation into ecological theory. Trends in Ecology & Evolution, 18:
119-125.
Butterfield, B.J., 2009. Effects of facilitation on community stability and
dynamics: synthesis and future directions. Journal of Ecology, 97: 1192-
1201.
61
Callaway, R.M., 1995. Positive interactions among plants. Botanical
Review, 61: 306-349.
Callaway, R.M. 2007. Positive Interactions and Interdependence in
Plant Communities. Springer, Dordrecth
Callaway, R.M.; Z. Kikvidze; D. Kikodze, 2000. Facilitation by
unpalatable weeds may conserve plant diversity in overgrazed meadows
in the Caucasus Mountains. Oikos, 89(2): 275-282
Callaway, R.M., R.W. Brooker, P. Choler, Z. Kikvidze, C.J. Lortie, R.
Michalet, L. Paolini, F.I. Pugnaire, B. Newingham, E.T. Aschehoug, C.
Armas, D. Kikodze and B.J. Cook, 2002. Positive interactions among
alpine plants increase with stress. Nature, 417: 844-848.
Cavieres, L.A., E.I. Badano, A. Sierra-Almeida, S. Gomez-Gonzalez
and M.A. Molina-Montenegro, 2006. Positive interactions between
alpine plant species and the nurse cushion plant Laretia acaulis do not
increase with elevation in the Andes of central Chile. New Phytologist,
169: 59-69.
Day, T.A. and R.G. Wright, 1989. Positive plant spatial association with
Eriogonum ovalifolium in primary succession on cinder cones - Seed-
trapping nurse plants. Vegetatio, 80: 37-45.
Dias, A.T.C., Scarano, F.R., 2007. Clusia as a nurse plant. In: U. Lüttge
(Ed), Clusia: A woody neotropical genus of remarkable plasticity and
diversity, Springer, Berlin, pp. 55-72.
Fajardo, A., C.L. Quiroz and L.A. Cavieres, 2008. Spatial patterns in
cushion-dominated plant communities of the high Andes of central
Chile: How frequent are positive associations? Journal of Vegetation
Science, 19: 87-96.
Fox, J., 2002. Cox Proportional-Hazards Regression for Survival Data.
Appendix to An R and S-PLUS Companion to Applied Regression. 18p.
Franco, A.C. and P.S. Nobel, 1989. Effect of nurse plants on the
microhabitat and growth of cacti. Journal of Ecology, 77: 870-886.
62
Franks, S.J., 2003. Facilitation in multiple life-history stages: evidence
for nucleated succession in coastal dunes. Plant Ecology, 168: 1-11.
Gasque, M. and P. García-Fayos. 2004. Interaction between Stipa
tenacissima and Pinus halepensis: consequences for reforestation and
the dynamics of grass steppes in semi-arid
Mediterranean areas. Forest Ecology and Management 189, 251–261.
Grime, J., 1977. Evidence for the Existence of Three Primary Strategies
in Plants and Its Relevance to Ecological and Evolutionary Theory. The
American Naturalist, 111: 1169-1194.
Grootjans, A.P., W.H.O. Ernst and P.J. Stuyfzand, 1998. European dune
slacks: strong interactions of biology, pedogenesis and hydrology.
Trends in Ecology & Evolution, 13: 96-100.
Guimaraes, T.B., 2006. Florística e fenologia reprodutiva de plantas
vasculares na restinga do Parque Municipal das dunas da Lagoa da
Conceição, Florianópolis, SC. Master, Universidade Federal de Santa
Catarina, Florianopolis, 107p
Haase, P., F.I. Pugnaire, S.C. Clark and L.D. Incoll, 1996. Spatial
patterns in a two-tiered semi-arid shrubland in southeastern Spain.
Journal of Vegetation Science, 7: 527-534.
Hesp, P.A., 1991. Ecological processes and plant adaptations on coastal
dunes. Journal of Arid Environments, 21: 165-191.
Holmgren, M., M. Scheffer and M.A. Huston, 1997. The interplay of
facilitation and competition in plant communities. Ecology, 78(7): 1966-
1975
Joy, D.A. and D.R. Young, 2002. Promotion of mid-successional
seedling recruitment and establishment by Juniperus virginiana in a
coastal environment. Plant Ecology, 160: 125-135.
Kovach, W.L., 1999. A Multivariate Statistical Package for Windows.
Kovach Computing Services, Pentraeth.
63
Lichter, J., 2000. Colonization constraints during primary succession on
coastal Lake Michigan sand dunes. Journal of Ecology, 88: 825-839.
Lortie, C.J. and R.M. Callaway, 2006. Re-analysis of meta-analysis:
support for the stress-gradient hypothesis. Journal of Ecology, 94: 7-16.
Macedo, M.V. and R.F. Monteiro, 1987. Germinação e desenvolvimento
de plântulas em tanque de Neoregelia cruenta (Bromeliaceae) na
Restinga de Barra de Maricá, RJ. ACIESP, 54: 188-190.
Maestre, F.T., R.M. Callaway, F. Valladares and C.J. Lortie, 2009.
Refining the stress-gradient hypothesis for competition and facilitation
in plant communities. Journal of Ecology, 97: 199-205.
Maestre, F.T., F. Valladares and J.F. Reynolds, 2005. Is the change of
plant-plant interactions with abiotic stress predictable? A meta-analysis
of field results in arid environments. Journal of Ecology, 93: 748-757.
Maestre, F.T., F. Valladares and J.F. Reynolds, 2006. The stress-
gradient hypothesis does not fit all relationships between plant-plant
interactions and abiotic stress: further insights from arid environments.
Journal of Ecology, 94: 17-22.
Martinez, M.L., 2003. Facilitation of seedling establishment by an
endemic shrub in tropical coastal sand dunes. Plant Ecology, 168: 333-
345.
Maun, M.A., 1994. Adaptations enhancing survival and establishment of
seedlings on coastal dune systems. Vegetatio, 111: 59-70.
Michalet, R., 2006. Is facilitation in arid environments the result of
direct or complex interactions? Commentary. New Phytologist, 169: 3-
6.
Miriti, M.N., 2006. Ontogenetic shift from facilitation to competition in
a desert shrub. Journal of Ecology, 94: 973-979.
Mulder, C.P.H., D.D. Uliassi and D.F. Doak, 2001. Physical stress and
diversity-productivity relationships: The role of positive interactions.
Proceedings of the National Academy of Sciences of the United States
of America, 98: 6704-6708.
64
Passos, L. and P.S. Oliveira, 2002. Ants affect the distribution and
performance of seedlings of Clusia criuva, a primarily bird-dispersed
rain forest tree. Journal of Ecology, 90: 517-528.
Puterman, M.L., 1988. Leverage and influence in auto-correlated
regression-models. Applied Statistics-Journal of the Royal Statistical
Society Series C, 37: 76-86.
R Development Core Team, 2008. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing.
Rodriguez, L.F., 2006. Can invasive species facilitate native species?
Evidence of how, when, and why these impacts occur. Biological
Invasions, 8: 927-939.
Scarano, F.R., 2002. Structure, function and floristic relationships of
plant communities in stressful habitats marginal to the Brazilian Atlantic
rainforest. Annals of Botany, 90: 517-524.
Schoenfeld, D., 1980. Chi-squared goodness-of-fit tests for the
proportional hazards regression-model. Biometrika, 67: 145-153.
Shumway, S.W., 2000. Facilitative effects of a sand dune shrub on
species growing beneath the shrub canopy. Oecologia, 124: 138-148.
Simões-Jesus, M.F. and T.T. Castellani, 2007. Avaliação do potencial
facilitador de Eucalyptus sp. na restinga da Praia da Joaquina, Ilha de
Santa Catarina, SC. Biotemas, 20: 27-35.
Tewksbury, J.J. and J.D. Lloyd, 2001. Positive interactions under nurse-
plants: spatial scale, stress gradients and benefactor size. Oecologia,
127: 425-434.
Therneau, T. and T. Lumley, 2008. survival: Survival analysis,
including penalised likelihood. R package version 2.35-7.
http://CRAN.R-project.org/package=survival
Therneau, T.M., P.M. Grambsch and T.R. Fleming, 1990. Martingale-
based residuals for survival models. Biometrika, 77: 147-160.
65
Tirado, R. and F.I. Pugnaire, 2003. Shrub spatial aggregation and
consequences for reproductive success. Oecologia, 136: 296-301.
Tirado, R. and F.I. Pugnaire, 2005. Community structure and positive
interactions in constraining environments. Oikos, 111: 437-444.
Valiente-Banuet, A., A. Bolongarocrevenna, O. Briones, E. Ezcurra, M.
Rosas, H. Nunez, G. Barnard and E. Vazquez, 1991. Spatial
relationships between cacti and nurse shrubs in a semiarid environment
in Central Mexico. Journal of Vegetation Science, 2: 15-20.
Yarranton, G.A. and R.G. Morrison, 1974. Spatial dynamics of a
primary succession - Nucleation. Journal of Ecology, 62: 417-428.
Zaluar, H.L.T. and F.R. Scarano, 2000. Facilitação em restingas de
moitas: um século de buscas por espécies focais. In: F.A. Esteves and
L.D. Lacerda (Eds), Ecologia de Restingas e Lagoas Costeiras,
NUPEM-UFRJ, Rio de Janeiro, pp. 3-23.
Zar, J.H., 1984. Biostatistical Analysis. Prentice-Hall, Inc, Englewood
Cliffs.
66
Appendix 1. Relative frequencies of the plant species found in association with C. criuva and in the systematic sampling.
FA: relative frequency in association with C. criuva. FS: relative frequency in the systematic sampling. Family
classification was made accordingly to APG II (APG 2003). Results of the chi-square analysis or Fischer’s exact test (when
the expected value was zero) are shown. χ
2
= NA (not applicable) when Fischer’s exact test was used. *Significant at 5%
Family Species Habit FA (%) FS (%) χ2 p
Anacardiaceae Lithraea brasiliensis Marchand Shrub 2.4 0.3 NA 0.6840
Apiaceae
Centella asiatica (L.) Urb.
Herb 0 0.7 NA 0.4991
Apocynaceae
Oxypetalum tomentosum Wight ex Hook. & Arn.
Herb 0 0.3 NA 1.0000
Asteraceae Achyrocline satureioides (Lam.) DC.
Herb 0 0.3 NA 1.0000
Baccharis sp Herb 0 1.0 NA 0.2487
Baccharis radicans DC.
Herb 0 0.3 NA 1.0000
Eupatorium casarettoi (B.L.Rob.) Steyerm.
Shrub 2.8 7.3 6.137 0.0222*
Noticastrum malmei Zardini
Herb 0 8.7 NA 0*
Porophyllum ruderale (Jacquin) Cassini
Herb 0 0.3 NA 1.0000
Pterocaulon sp.
Herb 1.7 2.1 0.093 1.0000
Blechnaceae Blechnum serrulatum Rich. Herb 2.4 0 NA 0.0151*
Bromeliaceae Vriesea friburgensis Mez Bromeliad
26.0 1.7 71.129 <0.0001*
Cyperaceae Androtrichum trigynum (Spreng.) H. Pfeiff. Herb 12.2 7.6 2.804 0.0940
Cyperus cf. sesquiflorus (Torr.) Mattf. & Kük.
Herb 0 0.3 NA 1.0000
Cyperus L. Herb 1.4 3.5 1.830 0.1761
Unidentified 1 Herb 0.7 0 NA 0.4991
Unidentified 2 Herb 0 5.6 NA 0*
Unidentified 3 Herb 0.3 0 NA 1.0000
67
Dryopteridaceae
Rumohra adiantiformis (Forster) Ching Herb 2.8 0 NA 0.0074*
Ericaceae Gaylussacia brasiliensis (Spreng.) Meisn. Shrub 32.7 5.6 66.623 <0.0001*
Eriocaulaceae Actinocephalus polyanthus (Bong.) Kunth Herb 21.2 16.3 2.234 0.1650
Euphorbiaceae Alchornea triplinervia (Spreng.) Müll. Arg. Shrub 2.4 0 NA 0.0151*
Lamiaceae Vitex megapotamica (Spreng.) Moldenke Shrub 35.4 7.3 71.680 <0.0001*
Lauraceae Ocotea pulchella (Nees) Mez
Shrub 2.4 0.3 NA 0.6840
Fabaceae - Fab. Desmodium adscendens (Sw.) DC.
Herb 2.4 1.7 0.340 0.7705
Sophora tomentosa L. Shrub 0.7 0 NA 0.4991
Stylosanthes viscosa (L.) Sw. Herb 0 4.2 NA 0.0004*
Melastomataceae
Tibouchina asperior (Cham.) Cogn. Herb 2.4 0 NA 0.0151*
Tibouchina sp
Herb 2.8 1.0 2.317 0.2233
Unidentified 1 Herb 1.4 0 NA 0.1237
Myrsinaceae Myrsine cf. parvifolia A. DC. Shrub 4.5 0 NA 0.0002*
Myrsine cf. umbellata Mart. Shrub 3.1 0 NA 0.0037*
Myrsine coriacea (Sw.) R. Br. ex Roem. & Schult. Shrub 0.3 0 NA 1.0000
Myrtaceae Eucalyptus sp Shrub 0 0.3 NA 1.0000
Eugenia catharinae O. Berg
Shrub 2.4 0 NA 0.0151*
Gomidesia palustris (DC.) Kausel
Shrub 7.6 0 NA 0*
Unidentified 1 Shrub 0.3 0 NA 1.0000
Nyctaginaceae Guapira opposita (Vell.) Reitz Shrub 35.8 0.7 118.811 <0.0001*
Orchidaceae Epidendrum fulgens Brongn.
Herb 2.1 3.5 1.029 0.4469
Pinaceae Pinus elliottii Engelm. Shrub 2.1 0 NA 0.0304*
Piperaceae Peperomia glabella (Sw.) A. Dietr.
Herb 0 0.7 NA 0.4991
Poaceae Andropogon selloanus (Hack.) Hack.
Herb 0.7 7.6 15.696 <0.0001*
cont.
68
Andropogon sp Herb 0 0.3 NA 1.0000
Aristida circinalis Lindm.
Herb 4.5 0 NA 0.0002*
Ischaemum minus J. Presl
Herb 12.5 4.9 9.658 0.0019*
Panicum sp Herb 0 1.4 NA 0.1237
Paspalum sp1 Herb 0 2.8 NA 0.0074*
Paspalum sp2 Herb 0.3 0 NA 1.0000
Spartina ciliata Brongn. Herb 0.7 10.1 NA 0.4991
Unidentified 1 Herb 4.2 0 NA 0.0004*
Unidentified 2 Herb 0 2.4 NA 0.0151*
Unidentified 3 Herb 0 2.4 NA 0.0151*
Unidentified 4 Herb 0 2.1 NA 0.0304*
Unidentified 5 Herb 0 0.3 NA 1.0000
Unidentified 6 Herb 0 0.3 NA 1.0000
Polypodiaceae Polypodium lepidopteris (Langsdorff & Fischer) Kunze Herb 21.9 2.1 53.495 <0.0001*
Rubiaceae Diodela radula
(Willd. & Hoffmanns. ex Roem. & Schult.) Delprete
Herb 5.6 4.2 0.601 0.5611
Sapindaceae
Dodonaea viscosa Jacquin
Shrub 10.8 15.6 2.971 0.1095
Smilacaceae Smilax campestris Griseb Climbing 34.4 3.8 87.018 <0.0001*
cont.
69
Considerações finais
Na restinga herbácea/subarbustiva do Parque Municipal das
Dunas da Lagoa da Conceição, a população de Clusia criuva está em
crescimento e provavelmente a colonização da área ainda está em fase
inicial. A sobrevivência dos adultos, que se reproduzem clonalmente,
tem a maior importância para a manutenção deste crescimento. No ano
de estudo, o recrutamento de genetas, que dependeu totalmente de fontes
externas de sementes, foi mais expressivo do que a produção de rametas.
No entanto, este fenômeno parece ser irregular e depender de anos
favoráveis, enquanto que a propagação clonal deve ser contínua,
garantindo a estabilidade nos anos que a propagação por sementes não é
possível.
Em áreas secas e abertas, desprovidas de vegetação as sementes
de C. criuva não germinam e as plântulas não conseguem sobreviver.
Por isso, a presença de plantas facilitadoras, que amenizam as condições
abióticas, especialmente diminuindo a temperatura do substrato e
aumentando a disponibilidade de água, são essenciais para o
estabelecimento de novos indivíduos por semente. A existência desta
interação positiva também ajuda a explicar o padrão de distribuição
agregado encontrado em pequenas escalas. Provavelmente, as espécies
facilitadoras formam núcleos ao seu redor, onde as condições são
propícias ao estabelecimento de espécies menos resistentes, originando
as moitas de plantas arbustivas (ilhas de vegetação) observadas na
restinga. Espécies arbustivas foram as mais frequentemente encontradas
em associação com C. criuva, mas a bromélia Vriesea friburgensis
também merece destaque, pois comprovadamente aumenta a germinação
das sementes e a sobrevivência das plântulas. O mesmo pode ser dito
sobre a espécie arbustiva Guapira opposita. Estas espécies poderiam
também estar agindo como poleiros, estimulando a deposição de
sementes em sítios adequados à germinação.
Contudo, não as interações positivas são responsáveis pelo
recrutamento de novos indivíduos genéticos de C. criuva. A restinga na
área de estudo é muito heterogênea, apresentando dunas semifixas,
entremeadas por baixadas, ilhas de vegetação e corpos d’água. Sendo
assim, apesar do estabelecimento de plântulas não ser possível em áreas
abertas, as bordas de baixadas úmidas e alagáveis são ambientes
propícios a este estabelecimento e espécies facilitadoras não são
necessárias. O padrão agregado de distribuição também pode ser
decorrente do tamanho reduzido destas áreas favoráveis.
70
Apesar da localização de indivíduos jovens ser limitada a
pequenas áreas onde a densidade é alta, não foi observado um forte
efeito de mortalidade dependente de densidade, visto que o padrão de
distribuição espacial de plantas jovens e estabelecidas é similar. Os
adultos apresentam o mesmo padrão de distribuição dos indivíduos
juvenis. Entretanto, os indivíduos já estabelecidos não precisam das
mesmas condições que as plântulas, visto que muitos foram encontrados
em áreas abertas e a mortalidade nestes locais foi menor quando
comparada às moitas. Possivelmente, estes indivíduos se estabeleceram
em áreas úmidas ou na presença de facilitadores, que podem ter sido
eliminados posteriormente por competição.
Neste ambiente, as interações positivas parecem bastante
importantes, especialmente para o estabelecimento de plântulas, apesar
de alguns efeitos negativos poderem ser percebidos. Em estágios mais
avançados, a competição pode ter mais relevância. É a combinação
destas interações, positivas e negativas, que determina a sobrevivência e
a distribuição das espécies e, consequentemente, a composição florística
e o aspecto da paisagem.
71
Referências
AKÇAKAYA, H. R.; ROOT, W. 1999. Ramas. Applied
Biomathematics, Setauket, New York
ANDERSON, L.J., M.S., BRUMBAUGH, M.S.; JACKSON, R.B.
Water and tree–understory interactions: a natural experiment in a
savanna with oak wilt. Ecology, v. 82, p. 33–49, 2001
ARAUJO, D.S.D.; LACERDA L.D. A natureza das restingas. Ciência
Hoje, v. 6, n..33, p. 42-48, 1987
ARAUJO, D.S.D.; SCARANO, F.R. Biogeographic features of Clusia,
with emphasis on South American and especially species. In: LÜTTGE,
U. (ed.) Clusia: A woody neotropical genus of remarkable plasticity
and diversity. Berlin: Springer, 2007, pp. 31-51
ARMAS, C.; PUGNAIRE, F.I. Plant interactions govern population
dynamics in a semi-arid plant community. Journal of Ecology, v. 93, p.
978-989, 2005
BADDELEY, A. J.; MOLLER, J.; WAAGEPETERSEN, R. 2000. Non-
and semi-parametric estimation of interaction in inhomogeneous point
patterns. Statistica Neerlandica, v. 54, p. 329-350, 2000
BADDELEY, A.; TURNER, R. Spatstat: an {R} package for analyzing
spatial point patterns. Journal of Statistical Software, v.12, p.1-42,
2000
BADDELEY, A. Analysing spatial point patterns in R, Workshop
Notes, 2008
BEDUSCHI, T; CASTELLANI, T.T. Estrutura populacional de Clusia
criuva Cambess. (Clusiaceae) e relação espacial com espécies de
bromélias no Parque Municipal das Dunas da Lagoa da Conceição,
Florianópolis, SC. Biotemas, v. 20, n.. 2, p. 41-50, 2008
72
BEGON, M.; MORTIMER, M. Population ecology: an unified study
of animals and plants. Oxford: Blackwell Scientific, 1986
BRESOLIN, A. Flora da restinga da Ilha de Santa Catarina. Insula, v.
10, p.1-54, 1979
BERG, H. Population dynamics in Oxalis acetosella: the significance of
sexual reproduction in a clonal, cleistogamous forest herb. Ecography,
v. 25, p. 233–243, 2002
BERKOWITZ, A.R.; CANHAM, C.D.; KELLY,V.R. Competition vs
facilitation of tree seedling growth and survival in early successional
communities. Ecology, v.76, p.1156-1168, 1995
BERTNESS, M.D.; CALLAWAY, R. Positive interactions in
communities. Trends in Ecology & Evolution , v.9, p.191-193, 1994
BRANCALION, P.H.S., GABRIEL, V.D.; GOMEZ, J.M. Do
Terrestrial Tank Bromeliads in Brazil Create Safe Sites for Palm
Establishment or Act as Natural Traps for Its Dispersed Seeds?
Biotropica, v. 41, p.3-6, 2009
BRASIL. Lei n.º 4.771, de 15 de setembro de 1965. Institui o novo
Código Florestal. Lex: Coletânea de Legislação Ambiental,
Constituição Federal. 6. ed. São Paulo: Revista dos Tribunais, 2007. pp.
481-492.
BRASIL. Lei n.º 11.428, de 22 de dezembro de 2006. Dispõe sobre a
utilização e proteção da vegetação nativa do Bioma Mata Atlântica, e
outras providências. Lex: Coletânea de Legislação Ambiental,
Constituição Federal. 6. ed. São Paulo: Revista dos Tribunais, 2007. p.
536-544.
BRESOLIN, A. Flora da restinga da Ilha de Santa Catarina. Insula, v.
10, p.1-54, 1979
73
BROOKER, R.W., MAESTRE, F.T.; CALLAWAY, R.M.; LORTIE,
C.L.; CAVIERES, L.A.; KUNSTLER, G.; LIANCOURT, P.;
TIELBORGER, K.; TRAVIS, J.M.J.; ANTHELME, F.; ARMAS, C.;
COLL, L.; CORCKET, E.; DELZON, S.; FOREY, E.; KIKVIDZE, Z.;
OLOFSSON, J.; PUGNAIRE, F.; QUIROZ, C.L.; SACCONE, P.;
SCHIFFERS, K.; SEIFAN, M.; TOUZARD, B.; MICHALET, R.
Facilitation in plant communities: the past, the present, and the future.
Journal of Ecology, v. 96, p.18-34, 2008
BRUNO, J.F., STACHOWICZ, J.J; BERTNESS, M.D. Inclusion of
facilitation into ecological theory. Trends in Ecology & Evolution, v.
18, p.119-125, 2003
CALLAWAY, R.M. Positive interactions among plants. Botanical
Review, v. 61, p.306-349, 1995
CALLAWAY, R.M. Positive Interactions and Interdependence in
Plant Communities. Dordrecth: Springer, 2007
CALLAWAY, R.M.; KIKVIDZE; Z.; KIKODZE, D. Facilitation by
unpalatable weeds may conserve plant diversity in overgrazed meadows
in the Caucasus Mountains. Oikos, v. 89, n.2, p.275-282, 2000
CALLAWAY, R.M., BROOKER, R.W.; CHOLER, P.; KIKVIDZE, Z.;
LORTIE, C.J.; MICHALET, R.; PAOLINI, L.; PUGNAIRE, F.I.;
NEWINGHAM, B.; ASCHEHOUG, E.T.; ARMAS, C.; KIKODZE, D.;
COOK, B.J. Positive interactions among alpine plants increase with
stress. Nature, v. 417, p.844-848, 2002.
CARUSO, M. M. L. O desmatamento na Ilha de Santa Catarina de
1500 aos anos atuais. UFSC, Florianópolis, 1990
CAVIERES, L.A., BADANO, E.I.; SIERRA-ALMEIDA, A.; GOMEZ-
GONZALEZ, S.; MOLINA-MONTENEGRO, M.A. Positive
interactions between alpine plant species and the nurse cushion plant
Laretia acaulis do not increase with elevation in the Andes of central
Chile. New Phytologist, v. 169, p. 59-69, 2006
CASWELL, H. Matrix population models: Construction, analysis
and interpretation. Sunderland: Sinauer Associates, Inc., 1989
74
CECA, Centro de Estudos Cultura e Cidadania. Relatório sobre os
problemas sócio-ambientais da Ilha de Santa Catarina.
Florianópolis: Editora Insular, 247 p., 1996
CECCA, Centro de Estudos Cultura e Cidadania. Unidades de
conservação e áreas protegidas da Ilha de Santa Catarina:
caracterização e legislação. Florianópolis: Editora Insular, 160 p, 1997
CHEPLICK, G. P. Patterns in the distribution of American beachgrass
Ammophila breviligulata and the density and reproduction of annual
plants on a coastal beach. Plant Ecology, v.180, p.57-67, 2005
CLARK-TAPIA, R., M. C. MANDUJANO, M.C.; VALVERDE, T.;
MENDOZA, A.; MOLINA-FREANER, F. How important is clonal
recruitment for population maintenance in rare plant species? The case
of the narrow endemic cactus, Stenocereus eruca, in Baja California,
Mexico. Biological Conservation, v. 124, p. 123-132, 2005
CONNELL J.H.; SLATYER, R.O. Mechanisms of succession in natural
communities and their role in community stability andorganization.
American Naturalist, v.111, p. 1119–1144, 1977
CONSELHO NACIONAL DO MEIO AMBIENTE CONAMA.
Resolução n.º 303, de 20 de março de 2002. Dispõe sobre parâmetros,
definições e limites de Áreas de Preservação Permanente. Lex:
Coletânea de Legislação Ambiental, Constituição Federal. 6. ed. São
Paulo: Revista dos Tribunais, 2007. pp. 417-420.
CORDAZZO, C. V.; COSTA, C.S.B. Associações vegetais das dunas
frontais de Garopaba (SC). Ciência e Cultura, v. 41, p. 906-910, 1989
CORDAZZO, C. V.; SEELIGER, U. Phenological and biogeographical
aspects of coastal dune plant- Communities in southern Brazil.
Vegetatio, v. 75, n. 3, p.169-173, 1988
75
CRAWLEY, M.J. Plant Ecology. 2 ed. Blackwell Science, Oxford. 744
p., 1997
DALE, M. R. T. Spatial Pattern Analysis in Plant Ecology. Cambridge:
Cambridge University Press, 1999
DAY, T.A.; WRIGHT, R.G. Positive plant spatial association with
Eriogonum ovalifolium in primary succession on cinder cones - Seed-
trapping nurse plants. Vegetatio, v.80, p. 37-45, 1989
DE KROON, H.; VAN GROENENDAEL, J; EHRLEN, J.
Elasticitcities: a review of methods and model limitations. Ecology,
v.81, p. 607-681, 2000
DIAS, A.T.C.; SCARANO, F.R. Clusia as a nurse plant. In: U. Lüttge
(Ed), Clusia: A woody neotropical genus of remarkable plasticity
and diversity, Berlin: Springer, p. 55-72, 2007
ERIKSSON, O. Seedling dynamics and life histories in clonal plants.
Oikos, v. 55, p. 231–238, 1989
ERIKSSON, O.; BREMER, B. 1993. Genet dynamics of the clonal plant
Rubus saxatilis. Journal of Ecology, v. 81, p. 533-542, 1993
ERIKSSON, O.; FROBORG, H. ''Windows of opportunity'' for
recruitment in long-lived clonal plants: Experimental studies of seedling
establishment in Vaccinium shrubs. Canadian Journal of Botany-
Revue Canadienne De Botanique, v. 74, p. 1369-1374, 1996
FAJARDO, A.; QUIROZ, C.L.; CAVIERES, L.A. Spatial patterns in
cushion-dominated plant communities of the high Andes of central
Chile: How frequent are positive associations? Journal of Vegetation
Science, v.19, p. 87-96, 2008
FALKENBERG, D.B. Aspectos da flora e da vegetação secundária da
restinga de Santa Catarina, sul do Brasil. Insula, v. 28, p. 1-30, 1999
76
FISCHER, M.; VAN KLEUNEN, M. On the evolution of clonal plant
life histories. Evolutionary Ecology, v. 15, p. 565-582, 2002
FORBIS, T. A.; DOAK, D.F. Seedling establishment and life history
trade-offs in alpine plants. American Journal of Botany, v. 91, p.
1147-1153, 2004
FOX, J. Cox Proportional-Hazards Regression for Survival Data.
Appendix to An R and S-PLUS Companion to Applied Regression,
2002, 18p.
FRANCO, A.C.; NOBEL, P.S. Effect of nurse plants on the
microhabitat and growth of cacti. Journal of Ecology, v. 77, p. 870-
886, 1989
FRANKS, S.J. Competitive and facilitative interactions within and
between two species of coastal dune perennials. Canadian Journal of
Botany, v. 81, p. 330-337, 2003a
FRANKS, S.J. Facilitation in multiple life-history stages: evidence for
nucleated succession in coastal dunes. Plant Ecology, v. 168, p. 1-11,
2003b
GASQUE, M.; GARCÍA-FAYOS, P. Interaction between Stipa
tenacissima and Pinus halepensis: consequences for reforestation and
the dynamics of grass steppes in semi-arid Mediterranean areas. Forest
Ecology and Management, v. 189, p. 251–261, 2004
GIRDLER, E. B.; RADTKE, T.A. Conservation implications of
individual scale spatial pattern in the threatened dune thistle, Cirsium
pitcheri. American Midland Naturalist, v. 156, p. 213-228, 2006
GUEDJE, N. M.; LEJOLY, J.; NKONGMENECK, B.A; JONKERS,
W.B.J. Population dynamics of Garcinia lucida (Clusiaceae) in
Cameroonian Atlantic forests. Forest Ecology and Management, v.
177, p. 231-241, 2003
77
GRIME, J. Evidence for the Existence of Three Primary Strategies in
Plants and Its Relevance to Ecological and Evolutionary Theory. The
American Naturalist, v. 111, p. 1169-1194, 1977.
GROOTJANS, A.P.; ERNST, W.H.O.; STUYFZAND, P.J. European
dune slacks: strong interactions of biology, pedogenesis and hydrology.
Trends in Ecology & Evolution, v.13, p.96-100, 1998
GUIMARAES, T.B. Florística e fenologia reprodutiva de plantas
vasculares na restinga do Parque Municipal das dunas da Lagoa da
Conceição, Florianópolis, SC. Dissertação de Mestrado, Universidade
Federal de Santa Catarina, Florianopolis, 2006
GUREVITCH, J.; SCHEINER, M.; FOX, G.A. Estrutura, crescimento e
declínio populacionais. In J. Gurevitch, S. M. Scheiner, and G. A. Fox
[eds.], Ecologia Vegetal, Porto Alegre: Artmed, 2009, p. 101-127
GÜTTLER, F.N. Mapeamento da vegetação do Parque Municipal
das Dunas da Lagoa da Conceição, Florianópolis SC. Trabalho de
conclusão de curso, Universidade Federal de Santa Catarina, 2006
HAASE, P.; PUGNAIRE, F.I.; CLARK, S.C.; INCOLL, L.D. Spatial
patterns in a two-tiered semi-arid shrubland in southeastern Spain.
Journal of Vegetation Science, v. 7, p. 527-534, 1996
HARADA, Y.; IWASA, Y. Analyses of spatial patterns and population
processes of clonal plants.Researches on Population Ecology, v. 38, n.
2, p. 153-164, 1996
HARPER, J. L. Population Biology of Plants. London: Academic
Press, 1977
HESP, P.A. Ecological processes and plant adaptations on coastal
dunes. Journal of Arid Environment, v. 21, p. 165-191, 1991
HOLMGREN, M.; SCHEFFER, M. El Nino as a window of opportunity
for the restoration of degraded arid ecosystems. Ecosystems, v. 4, p.
151-159, 2001
JOLY, A.B. Botânica - Introdução à taxonomia vegetal. 7. ed. São
Paulo: Companhia Editora Nacional, p. 778, 1985
78
JOY, D.A.; YOUNG, D.R. Promotion of mid-successional seedling
recruitment and establishment by Juniperus virginiana in a coastal
environment. Plant Ecology, v. 160, p.125-135, 2002
KOVACH, W.L. A Multivariate Statistical Package for Windows.
Kovach Computing Services, Pentraeth, 1999
KACHI, N.; HIROSE, T. Limiting nutrients for plant-growth in coastal
sand dune soils. Journal of Ecology, v. 71, p. 937-944, 1983
LAW, R.; ILLIAN, J.; BURSLEM, D.; GRATZER, G.;
GUNATILLEKE, C.V.S.; GUNATILLEKE, I. Ecological information
from spatial patterns of plants: insights from point process theory.
Journal of Ecology, v. 97, p. 616-628, 2009
LEIRANA-ALCOCER, J.; PARRA-TABLA, V. Factors affecting the
distribution, abundance and seedling survival of Mammillaria gaumeri,
an endemic cactus of coastal Yucatan, Mexico. Journal of Arid
Environments, v. 41, p. 421-428, 1999
LEVIN, S. A. Population dynamic-models in heterogeneous
environments. Annual Review of Ecology and Systematics, v. 7, p.
287-310, 1976
LICHTER, J. Plant succession and forest development on coastal Lake
Michigan sand dunes. Ecological Monographs, v. 68, p. 487-510, 1998
LICHTER, J. Colonization constraints during primary succession on
coastal Lake Michigan sand dunes. Journal of Ecology, v. 88, p. 825-
839, 2000
LORTIE, C.J.; CALLAWAY, R.M. Re-analysis of meta-analysis:
support for the stress-gradient hypothesis. Journal of Ecology, v. 94, p.
7-16, 2006
LOVETT DOUST, L. Population dynamics and local specialization in a
clonal perennial (Ranunculus repens) I. The dynamics of ramets in
contrasting habitats. Journal of Ecology, v. 69, p. 743-755, 1981
79
LÜTTGE, U. Photosynthesys. In: Lüttge, U. (ed.) Clusia: A woody
neotropical genus of remarkable plasticity and diversity. Berlin:
Springer, p. 135-181, 2007
MACEDO, M.V.; MONTEIRO, R.F. Germinação e desenvolvimento de
plântulas em tanque de Neoregelia cruenta (BROMELIACEAE) na
Restinga de Barra de Maricá, RJ. ACIESP, v. 54, n. 2, p. 188-190, 1987
MAESTRE, F.T.;CALLAWAY, R.M., VALLADARES, F.; LORTIE,
C.J. Refining the stress-gradient hypothesis for competition and
facilitation in plant communities. Journal of Ecology, v. 97, p. 199-
205, 2009
MAESTRE, F.T., VALLADARES, F.; REYNOLDS, J.F. Is the change
of plant-plant interactions with abiotic stress predictable? A meta-
analysis of field results in arid environments. Journal of Ecology, v. 93,
p. 748-757, 2005
MAESTRE, F.T., VALLADARES, F.; REYNOLDS, J.F. The stress-
gradient hypothesis does not fit all relationships between plant-plant
interactions and abiotic stress: further insights from arid environments.
Journal of Ecology, v. 94, p. 17-22, 2006
MANTUANO, D.; MARTINELLI, G. Estrutura Populacional e
Crescimento da bromélia clonal Neoregelia cruenta na Restinga de
Jurubatiba. Revista Brasileira de Biociências, v. 5, p. 876-878, 2007
MARTÍNEZ M.L.; VÁZQUEZ, G.; SÁNCHEZ-COLÓN, S. Spatial and
temporal dynamics during primary succession on tropical coastal sand
dunes. Journal of Vegetation Science, v. 12, p. 361–372, 2001
MARTINEZ, M.L. Facilitation of seedling establishment by an endemic
shrub in tropical coastal sand dunes. Plant Ecology, v. 168, p. 333-345,
2003
MARTINS, R. L., WENDT, T. MARGIS, R.; SCARANO, F.R.
Reproductive Biology. In U. Lüttge [ed.], Clusia: A woody neotropical
80
genus of remarkable plasticity and diversity. Berlin: Springer, p.73-
91, 2007
MAUN, M.A. Adaptations enhancing survival and establishment of
seedlings on coastal dune systems. Vegetatio, v. 111, p. 59-70, 1994
MICHALET, R. Is facilitation in arid environments the result of direct
or complex interactions? Commentary. New Phytologist, v. 169, p. 3-6,
2006
MIRITI, M.N. Ontogenetic shift from facilitation to competition in a
desert shrub. Journal of Ecology, v. 94, p. 973-979, 2006
MORO, M.J.; PUGNAIRE, F.I.; HAASE, P.; PUIGDEFÁBREGAS, J.
Effect of the canopy of Retama sphaerocarpa on its understorey in a
semiarid environment. Functional Ecology, v. 11, p. 425-431, 1997
MULDER, C.P.H.; ULIASSI, D.D.; DOAK, D.F. Physical stress and
diversity-productivity relationships: The role of positive interactions.
Proceedings of the National Academy of Sciences of the United
States of America, v. 98, p. 6704-6708, 2001
OHSER, J. On estimators for the reduced second moment measure of
point processes. Statistics, v. 14, p. 63-71, 1983
OLFF H; HUISMAN, J.; VAN TOOREN, B.F. Species dynamics and
nutrient accumulation during early primary succession in coastal sand
dunes. Journal of Ecology, v. 81, p. 693–706, 1993
PAN, J.J.; PRICE, J.S. Fitness and evolution in clonal plants: the impact
of clonal growth. Evolutionary Ecology, v. 15, p. 583-600, 2002
PASSOS, L.; OLIVEIRA, P.S. Ants affect the distribution and
performance of seedlings of Clusia criuva, a primarily bird-dispersed
rain forest tree. Journal of Ecology, v. 90, p. 517-528, 2002
81
PUTERMAN, M.L. Leverage and influence in auto-correlated
regression-models. Applied Statistics-Journal of the Royal Statistical
Society Series C, v. 37, p. 76-86, 1988
R DEVELOPMENT CORE TEAM. R: A Language and Environment
for Statistical Computing. R Foundation for Statistical Computing,
Vienna, 2008
RICKLEFS, R.E. A economia da natureza. Rio de Janeiro: Guanabara
Koogan, p. 501, 2003
ROBINSON, G. R.; HOLT, R.D.; GAINES, M.S.; HAMBURG, S.P.;
JOHNSON, M.L.; FITCH, H.S.; MARTINKO, E.A. Diverse and
contrasting effects of habitat fragmentation. Science, v. 257, p. 524-526,
1992
RODRIGUEZ, L.F. Can invasive species facilitate native species?
Evidence of how, when, and why these impacts occur. Biological
Invasions, v. 8, p. 927-939, 2006
SAMPAIO, M. C.; ARAUJO, T.F.; SCARANO, F.R.; STUEFER, J.F.
Directional growth of a clonal bromeliad species in response to spatial
habitat heterogeneity. Evolutionary Ecology, v. 18, p. 429-442, 2004
SAMPAIO, D.; SOUZA, V.C.; OLIVEIRA, A.A.; PAULA-SOUZA, J.;
RODRIGUES, R.R. Árvores da restinga - Guia de identificação. São
Paulo: Editora Neotrópica, p. 277, 2005
SCARANO, F. R. Structure, function and floristic relationships of plant
communities in stressful habitats marginal to the Brazilian Atlantic
rainforest. Annals of Botany, v. 90, p. 517-524, 2002
SCARANO, F.R.; CIRNE, P.; NASCIMENTO, M.T.; SAMPAIO,
M.C.; VILLELA, D.M.; WENDT, T.; ZALUAR, H.L.T. Ecologia
vegetal: integrando ecossistema, comunidades, populações e
organismos. In: C.F.D. Rocha, F.A. Esteves, F.R. Scarano (orgs.),
Pesquisas de longa duração na restinga de Jurubatiba Ecologia,
82
história natural e conservação. São Carlos: RiMa Editora, p. 77-97,
2004
SCARANO, F.R.; DUARTE, H.M.; FRANCO, A.C.; GESSLER, A.;
MATTOS, E.A.; NAHM, M.; RENNENBERG, H.; ZALUAR, H.L.T;
LÜTTGE, U. Ecophysiology of selected tree species in different plant
communities at the periphery of the Atlantic Forest of SE Brasil I.
Performance of three different species of Clusia in an array of plant
communities. Trees, v. 19, p. 497-509, 2005
SCHOENFELD, D. Chi-squared goodness-of-fit tests for the
proportional hazards regression-model. Biometrika, v. 67, p. 145-153,
1980
SHUMWAY, S. W. Facilitative effects of a sand dune shrub on species
growing beneath the shrub canopy. Oecologia, v. 124, p. 138-148, 2000
SILVERTOWN, J., FRANCO, M., PISANTY, I.; MENDOZA, A.
Comparative plant demography relative importance of life-cycle
components to the finite rate of increase in woody and herbaceous
perennials. Journal of Ecology, v. 81, p. 465–476, 1993
SILVERTOWN, J. The evolutionary maintenance of sexual
reproduction: Evidence from the ecological distribution of asexual
reproduction in clonal plants. International Journal of Plant Sciences,
v. 169, n. 1, p. 157-168, 2008
SILVERTOWN, J.; FRANCO, M.; PISANTY, I.; MENDOZA, A.
Comparative plant demography - Relative importance of life-cycle
components to the infinite rate of increase in woody and herbaceous
perennials. Journal of Ecology, v. 81, p. 465-476, 1993
SIMÕES-JESUS, M.F.S; CASTELLANI, T.T. Avaliação do potencial
facilitador de moitas de Eucalyptus sp. na restinga da Praia da Joaquina,
Ilha de Santa Catarina, SC. Biotemas, v. 20, n. 3, p. 27-35, 2007
83
STUEFER, J. F., deKROON, H.; DURING, H.J. Exploitation of
environmental heterogeneity by spatial division of labour in a clonal
plant. Functional Ecology, v. 10, p. 328-334, 1996
SUGUIO, K.; TESSLER, M. G. Planícies de cordões litorâneos
quaternários do Brasil: Origem e nomenclatura. In: L. D. Lacerda; D. S.
D. Araujo; R. Cerqueira; B. Turcq (eds.) Restingas Origem, Estrutura
e Processos. Niterói: CEUFF, p.15-26, 1984
TEWKSBURY, J.J; LLOYD, J.D. Positive interactions under nurse-
plants: spatial scale, stress gradients and benefactor size. Oecologia, v.
127, p. 425-434, 2001
THERNEAU, T.; LUMLEY, T. survival: Survival analysis, including
penalised likelihood. R package version 2.35-7. http://CRAN.R-
project.org/package=survival, 2008
THERNEAU, T.M.; GRAMBSCH, P.M.; FLEMING, T.R. Martingale-
based residuals for survival models. Biometrika, v. 77, p. 147-160,
1990
TIRADO, R.; PUGNAIRE, F.I. Shrub spatial aggregation and
consequences for reproductive success. Oecologia, v. 136, p. 296-301,
2003
TIRADO, R.; PUGNAIRE, F.I. Community structure and positive
interactions in constraining environments. Oikos, v. 111, p. 437-444,
2005
TURKINGTON, R. Obituary: John L. Harper FRS, CBE 1925–2009.
Bulletin of the Ecological Society of America, v. 91, n. 1, p. 9-13,
2010
VALIENTE-BANUET, A.; BOLONGAROCREVENNA, A.;
BRIONES, O; EZCURRA, E.; ROSAS, M.; NUNEZ, H.; BARNARD
G.; VAZQUEZ, E. Spatial relationships between cacti and nurse shrubs
84
in a semiarid environment in Central Mexico. Journal of Vegetation
Science, v. 2, p. 15-20, 1991
WAECHTER, J. L. Aspectos ecológicos da vegetação de restinga no rio
Grande do sul, Brasil. Comunicações do Museu de Ciências da
PUCRS, v. 33, p. 49-68, 1985
WEPPLER, T.; STOLL, P.;STOCKLIN, J. The relative importance of
sexual and clonal reproduction for population growth in the long-lived
alpine plant Geum reptans. Journal of Ecology, v. 94, n. 4, p. 869-879,
2006
WOLF, A. Fifty year record of change in tree spatial patterns within a
mixed deciduous forest. Forest Ecology and Management, v. 215, p.
212-223, 2005
YARRANTON, G.A.; MORRISON, R.G. Spatial dynamics of a
primary succession: Nucleation. Journal of Ecology, v. 62, n. 2, p. 417-
428, 1974
ZALUAR, H.L.T; SCARANO, F.R. Facilitação em restingas de moitas:
Um século de buscas por espécies focais. In: F.A. Esteves; L.D.
Lacerda. (eds.) Ecologia de Restingas e Lagoas Costeiras. Macaé:
NUPEM/UFRJ, p. 03-23, 2000
ZAR, J.H. Biostatistical Analysis. Englewood Cliffs: Prentice-Hall,
Inc, 1984
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo