

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE QUÍMICA ORGÂNICA E INORGÂNICA CURSO DE PÓS-GRADUAÇÃO EM QUÍMICA ORGÂNICA

DÉLCIO DIAS MARQUES

CONTRIBUÍÇÃO AO CONHECIMENTO QUÍMICO DA FLORA ACREANA: Protium hebetatum Daly, Protium heptaphyllum (Aublet) Marchand subsp. ulei (Swat) Daly e Protium heptaphyllum (Aublet) Marchand subsp. heptaphyllum

FORTALEZA

2010

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

DÉLCIO DIAS MARQUES

CONTRIBUÍÇÃO AO CONHECIMENTO QUÍMICO DA FLORA ACREANA: *Protium hebetatum* Daly, *Protium heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly e *Protium heptaphyllum* (Aublet) Marchand subsp. *heptaphyllum*

Tese submetida à Coordenação do Curso de Pós-Graduação em Química Orgânica, da Universidade Federal do Ceará, como requisitos parcial para obtenção do grau de Doutor em Química Orgânica. Área de concentração fitoquímica.

Orientador: Prof. Dr. Francisco José Queiroz Monte

Co-Orientadora: Profa. Dra. Telma Leda Gomes de Lemos

FORTALEZA 2010

M316c Marques, Delcio Dias

Contribuição ao conhecimento químico da flora acreana: *Protium hebetatum* Daly, *Protium heptaphyllum* (Aublet) Marchand subsp. u*lei* (Swat) Daly e *Protium heptaphyllum* (Aublet) Marchand subsp. *heptaphyllym* / Délcio Dias Marques, 2010.

56f; il. color. enc.

Orientador: Prof. Dr. Francisco José Queiroz Monte

Co-orientadora: Profa. Dra. Telma Leda Gomes de Lemos

Tese (doutorado) - Universidade Federal do Ceará, Centro de Ciências. Depto. de Química, Fortaleza, 2010.

1. Protium hebetatum 2. Protium heptaphyllum 3. Burserácea 4. Óleos essenciais I. Monte, Francisco José Queiroz (orient.) II. Lemos, Telma Leda Gomes de III. Universidade Federal do Ceará – Pós-Graduação em Química IV. Título

CDD 540

Esta Tese foi aprovada como parte dos requisitos necessários à obtenção do Grau de Doutor em Química Orgânica, outorgado pela Universidade Federal do Ceará, em cuja Biblioteca de Ciências e Tecnología/UPC encontra-se à disposição dos interessados.

Déleio Dus Mar

TESE APROVADA EM: 04/03/2010

EXAMINADORES:

Front Dr. Francisco José Queinge Monte (orientador)

Universidade Federal do Ceará - UFC

Profa, Dra Angela Martha Campos Arriaga Universidade Federal do Ceará - UFC

Prof. Dr. Marcos Carlos de Mattes Universidade Federal de Ceara - UFC

Profa Dra Apploia Maria das Graças Lopes Citó-Universidade Federal do Piaui - UFPI

Profa, Dra. Maria Lúcia Bolóm Pinheiro-Universidade Federal do Amazonas - UFAM

À Gizelda N. Marques, minha esposa e aos nossos filhos Tiago N. Marques e Davi N. Marques, com grande afeto e ao neto Daniel Matheus P. Marques

Ao meu pai e a memória de minha mãe, Maria F. Dias, a quem devo toda a minha formação

Aos meus irmãos: José Antonio, Francisca de Maria, Francisco das Chagas, Ivete, Ivone, Edna, Núbia, João Bosco, Henrique e Katia

AGRADECIMENTOS

À minha família, esposa e filhos, pela paciência que tiveram em suportar a minha ausência, e a Deus pelo seu grande amor à minha família.

Ao meu orientador Prof. Dr. Francisco José Queiroz Monte, pela amizade, orientação e dedicação ao trabalho acadêmico.

A minha co-orientadora Profa. Dra. Telma Leda Gomes de Lemos, pela sua amizade, pelos momentos de descontração e por ter permitido trabalhar no Laboratório de Biotecnologia de Produtos Naturais (LBPN).

A Universidade Federal do Acre, pela minha liberação de minhas atividades de sala de aula.

Aos meus colegas de profissão Profs. Barroso, Magnésio, Anélise Rogério, Ilmar, Rosélia pelo apoio, incentivo e encorajamento imprescindíveis para o meu aperfeiçoamento e qualificação profissional.

A minha grande amiga Luciana Lucas Machado, o meu muito obrigado, por ter me ajudado no passado, no presente e no futuro certamente continuará.

A todos os professores do curso de Pós-Graduação em Química, pelos ensinamentos que foram imprescindíveis para o meu aperfeiçoamento e qualificação profissional.

Aos amigos conquistados durante o curso, Sammy Nery, Glauber, Noberto, Aluísio, Hélcio, Mozarina, Luciana Bertini, agradeço pelo carinho, amizade e laser proporcionado.

Ao amigo João Carlos, pela paciência em me ensinar a trabalhar no espectrômetro de massa.

A família LBPN por todos os momentos vividos durante os quatro anos de muitas conquistas, agradece a todos, pela amizade e por terem transformados os dias de trabalho mais agradáveis.

A Universidade Federal do Ceará e ao Departamento de Química Orgânica e Inorgânica pela estrutura concedida.

A ciência é uma mescla de dúvida e certeza. O bom cientista é arrogantemente humilde, o que não se reduz a um mero jogo de palavras: arrogante em relação ao método e humilde quanto à fé no seu conhecimento.

Bachrach

RESUMO

Este trabalho relata o estudo fitoquímico de três espécies de plantas da família Burseraceae: Protium hebetatum Daly (PHB), Protium heptaphyllum (Aublet) Marchand subsp. ulei (Swat) Daly (PHU) e o Protium heptaphyllum (Aublet) Marchand subsp. heptaphyllum (PHH), conhecidas, aleatoriamente, como breu, breu-branco ou almécega. As espécies foram coletadas no município de Cruzeiro do Sul, Acre, Brasil. Da resina do PHB, foram obtidos três misturas binárias de triterpenos pentacíclicos das séries oleanano/ursano: 3-oxoolean-12eno e 3-oxours-12-eno; 3ß-hidroxiolean-12-eno e 3ß-hidroxiurs-12-eno; 3ß,16ß-dihidroxiolean-12-eno e 3B,16B-di-hidroxiurs-12-eno; e quatro triterpenos tetracíclicos da série tirucalano: ácido 3-oxotirucala-8,24-dien-21-óico, ácido 3a-hidroxitirucala-8,24-dien-21-óico, ácido 3a-acetoxitirucala-8,24-dien-21-óico e o ácido 3a-hidroxitirucala-7,24-dien-21-óico. Da cera epicuticular das folhas do PHB foram obtidos misturas de três hidrocarbonetos lineares, heptacosano, hentriacontano e tritriacontano, e mistura de ésteres etílicos, tendo como constituinte principal o hexadecanoato de etila. Da resina do PHU foram obtidas duas misturas binárias de triterpenos pentacíclicos das séries oleanano/ursano: 3-oxoolean-12-eno e 3-oxours-12-eno: 3ß-hidroxiolean-12-eno e 3a-hidroxiurs-12-eno: três triterpenos tetracíclicos da série tirucalano: ácido 3-oxotirucala-8,24-dien-21-óico, ácido 3ahidroxitirucala-8,24-dien-21-óico e ácido 3a-hidroxitirucala-7,24-dien-21-óico, e um triterpeno pentacícleo da série friedelano, D:A-friedoolean-3-ona. Do óleo essencial do PHU foram isolados dois monoterpenos: o terpinoleno e o p-cimen-8-ol. O óleo essencial das resinas do PHB, PHU e PHH, apresentaram como constituintes principais, a-pineno (21,28%), terpinoleno (42,31%) e p-cimeno (31,50%), respectivamente. Esses óleos mostraram atividade biológica frente aos microorganismos Bacillus subtilis, Klebsiella pneumoniar, Staphylococcus aureus, Escherichia coli, Nycobacterium phlei. Especificamente, o óleo essencial do PHB apresentou atividade contra larvas do mosquito Aedes aegypti, apresentado CL₅₀ = 270,32 ppm, considerado insuficiente. Algumas reações de derivatização foram realizadas com o intuito de comprovação estrutural, como também, para destacar, em parte, a química propriamente dita. Finalmente, foi verificada a possibilidade de utilização das enzimas imobilizadas da resina do PHB como biocatalisador, em reação de acetilação.

ABSTRACT

This work presents study phytochemistry of three species of plants of the family Burseraceae: Protium hebetatum Daly (PHB), Protium heptaphyllum (Aublet) Marchand subsp. ulei (Swat) Daly (PHU) and the Protium heptaphyllum (Aublet) Marchand subsp. heptaphyllum (PHH), known, at random, as pitch, pitch-white and almécego. The species were collected in the municipal district of Cruzeiro do Sul, Acre, Brazil. Of the resin of PHB, were obtained three binary mixtures of triterpenes pentacyclics of the series oleanane/ursane: 3-oxoolean-12-ene 3-oxours-12-ene; 3ß-hydroxyolean-12-ene and 3ß-hydroxyurs-12-ene; 3ß,16ßand dihydroxyolean-12-ene and 3B,16B-dihydroxyurs-12-ene; and four triterpenes tetracyclic of the series tirucallane: 3-oxotirucalla-8,24-dien-21-oic acid, 3a-hydroxytirucalla-8,24-dien-21oic acid, 3a-acetoxytirucalla-8,24-dien-21-oic acid and the 3a-hydroxytirucalla-7,24-dien-21oic acid. Of the epicuticular wax of the leaves of PHB were extracted mixtures of three hydrocarbons: heptacosane, hentriacontane and tritriacontane, and mixture of ethyl ester, as main constituent, the ethyl hexadecanoate. Of the resin of PHU were obtained two binary mixtures of triterpenes pentacyclics of the series oleanane/ursane: 3-oxoolean-12-ene and 3oxours-12-ene; 3ß-hydroxyolean-12-ene and 3a-hydroxyurs-12-ene; three triterpenes tetracyclics of the series tirucallane: 3-oxotirucalla-8,24-dien-21-oic acid. 3ahydroxytirucalla-8,24-dien-21-oic acid and the 3a-hydroxytirucalla-7,24-dien-21-oic acid and one triterpene pentacyclic of the series friedelane: D:A-friedoolean-3-one. From the essential oil of PHU, were isolated two monoterpenes: the terpinolene and the p-cymen-8-ol. The essential oil of the resins of PHB, PHU and PHH, presented as main constituent a-pinene (21.28%), terpinolene (42.31%) e p-cymene (31.50%), respectively. Those oils showed biological activity to the microorganism: Bacillus subtilis, Klebsiella pneumoniar, Staphylococcus aureus, Escherichia coli, Nycobacterium phlei. Specifically, the essential oil of PHB was analyzed his activity against larva of the mosquito Aedes aegypti, presenting $CL_{50} = 270.32$ ppm, considered don't activate. Some reactions were performed with the intention of structural proof, as well as, to detach, in part, the chemistry. Finally, was verified the possibility of using the immobilized enzymes of the resin of PHB as biocatalyst, in acetylation reaction.

LISTA DE ILUSTRAÇÕES

Figura 2.1	Mapa mundial em meados do Eoceno representando a rota de expansão da família Burseraceae (WEEKS <i>et. al.</i> , 2005)
Quadro 2.1	Tribos, subtribos e gêneros da família Burseraceae, com o número
	de espécies e suas ocorrências geográficas5
Figura 2.2	Morfologia das folhas, inflorescências e frutos da família
	Burseraceae7
Figura 2.3	Características morfologias das espécies Protium hebetatum, P.
	heptaphyllum subsp. heptaphyllum e do P. heptaphyllum subsp.
	ulei 8
Figura 3.4	Primeiros triterpenos acíclico, monocíclico, dicíclico e tricíclico 10
Figura 3.5	Tipos de triterpenos isolados de espécies da família Burseraceae 11
Tabela 3.1	Dados de carbono dos triterpenos isolados e derivados da família
	Burseraceae no período de 1980 a 2008 (Solvente CDCl ₃) 13
Gráfico 3.1	Distribuição dos triterpenos em seus respectivos esqueletos
	carbônico isolados de Burserácea no período de 1980 a 2008 15
Esquema 4.1	Via biossintética do ácido mevalônico 33
Esquema 4.2	Via biossintética do 3,3 – dimetilalilapirofosfato (DMAP) 34
Esquema 4.3	Biossíntese do IPP e DMAP via malonato-independente (MEP) 35
Esquema 4.4	Rota biossintética do (2S)-2,3-óxidoesqualeno 36
Esquema 4.5	Rotas biossintéticas dos cátions dammarenila e Protosterila 37
Esquema 4.6	Rota biossintética do esqueleto lanostano e cicloartano 38
Esquema 4.7	Rota biossintética do esqueleto lupano 39
Esquema 4.8	Rota biossintética dos esqueletos ursano e oleanano 40
Esquema 4.9	Rota biossintética dos esqueletos dammarano, eufano e tirucalano- 41
Esquema 4.10	Rota biogenética do esqueleto octanordammarano 41
Esquema 4.11	Rota biossintétíca do esqueleto hopano 42
Esquema 4.12	Rota biossintética dos esqueletos taraxastano, friedelano e
	friedoursano 43
Tabela 5.2	Rendimento do óleo essencial obtido das espécies de Protium 48
Figura 5.6	Cromatograma do óleo essencial da resina do P. hebetatum Daly,
	(PHB-ROE) 49

Figura 5.7	Cromatograma do óleo essencial da casca do P. hebetatum Daly	
	(PHB-COE)	50
Tabela 5.3	Constituintes identificados no óleo essencial de PHB-EHCOE, não	
	registrados na literatura especializada Adams (2007)	51
Figura 5.8	Cromatograma do óleo essencial obtido do extrato hexânico da	
	casca do P. hebetatum Daly (PHB-EHCOE)	51
Figura 5.9	Cromatograma do óleo essencial da resina do P. heptaphyllum	
	subsp. ulei (PHU-ROE)	52
Figura 5.10	Cromatograma do óleo essencial da resina do P. heptaphyllum	
	subsp. <i>heptaphyllum</i> (PHH-ROE)	53
Tabela 5.4	Teor dos constituintes voláteis das espécies de Protium	54
Figura 5.11	Espectro de massa do metilciclo-hexano (199)	56
Figura 5.12	Espectro de massa do etilciclo-hexano (200)	56
Figura 5.13	Espectro de massa do 4-metiloctano (201)	56
Figura 5.14	Espectro de massa do 1,3-dimetilbenzeno (202)	56
Figura 5.15	Espectro de massa do 3-metiloctano (203)	57
Figura 5.16	Espectro de massa do ciclo-hexanona (204)	57
Figura 5.17	Espectro de massa do 1,2-dimetilbenzeno (205)	57
Figura 5.18	Espectro de massa do n-nonano (206)	57
Figura 5.19	Espectro de massa do n-propilciclo-hexano (207)	58
Figura 5.20	Espectro de massa do a-tujeno (208)	58
Figura 5.21	Espectro de massa do a- pineno (194)	58
Figura 5.22	Espectro de massa do a-fencheno (209)	58
Figura 5.23	Espectro de massa do o-etiltolueno (210)	59
Figura 5.24	Espectro de massa do cumeno (211)	59
Figura 5.25	Espectro de massa do sabineno (212)	59
Figura 5.26	Espectro de massa do ß–pineno (195)	59
Figura 5.27	Espectro de massa do cis-pineno (213)	60
Figura 5.28	Espectro de massa do p-menta-3-eno (214)	60
Figura 5.29	Espectro de massa do mesitileno (215)	60
Figura 5.30	Espectro de massa do n-decano (216)	60
Figura 5.31	Espectro de massa do a-felandreno (217)	61
Figura 5.32	Espectro de massa do a-terpineno (218)	61

Figura 5.33	Espectro de massa do 2,3-dimetilnonano (219)	61
Figura 5.34	Espectro de massa do p-cimeno (220)	61
Figura 5.35	Espectro de massa do pseudocumeno (221)	62
Figura 5.36	Espectro de massa do deshidro-4-careno (222)	62
Figura 5.37	Espectro de massa do ß-felandreno (223)	62
Figura 5.38	Espectro de massa do 1,8– cineol (193)	62
Figura 5.39	Espectro de massa do limoneno (197)	63
Figura 5.40	Espectro de massa do γ-terpineno (224)	63
Figura 5.41	Espectro de massa do p-menta-2-4(8)-dieno (225)	63
Figura 5.42	Espectro de massa do n-undecano (226)	63
Figura 5.43	Espectro de massa do terpinoleno (227)	64
Figura 5.44	Espectro de massa do deshidro cis-terpineol (228)	64
Figura 5.45	Espectro de massa do p-menta-1,3,8-trieno (229)	64
Figura 5.46	Espectro de massa do terpinen-4-ol (230)	64
Figura 5.47	Espectro de massa do n-dodecano (231)	65
Figura 5.48	Espectro de massa do p-cimen-8-ol (232)	65
Figura 5.49	Espectro de massa do a-terpineol (233)	65
Figura 5.50	Espectro de massa da verbenona (234)	65
Figura 5.51	Espectro de massa do crisantenil acetato (235)	66
Figura 5.52	Espectro de massa do n-tridecano (236)	66
Figura 5.53	Espectro de massa do d-elemeno (237)	66
Figura 5.54	Espectro de massa do a-cubebeno (238)	66
Figura 5.55	Espectro de massa do a-ylangeno (239)	67
Figura 5.56	Espectro de massa do a-copaeno (240)	67
Figura 5.57	Espectro de massa do \Belemeno (241)	67
Figura 5.58	Espectro de massa do metil eugenol (242)	67
Figura 5.59	Espectro de massa do n-tetradecazno (243)	68
Figura 5.60	Espectro de massa do cis-a-bergamoteno (244)	68
Figura 5.61	Espectro de massa do ß-cariofileno (245)	68
Figura 5.62	Espectro de massa do <i>trans</i> -a-bergamoteno (246)	68
Figura 5.63	Espectro de massa do γ–elemeno (247)	69
Figura 5.64	Espectro de massa do a-humuleno (248)	69
Figura 5.65	Espectro de massa do a-aromadrendeno (249)	69

Figura 5.66	Espectro de massa do γ-muuroleno (250)	69
Figura 5.67	Espectro de massa do γ-gurjuneno (251)	70
Figura 5.68	Espectro de massa do β-(cis)-guaieno (252)	70
Figura 5.69	Espectro de massa do a-amorfeno (253)	70
Figura 5.70	Espectro de massa do germacreno – D (254)	70
Figura 5.71	Espectro de massa do valenceno (255)	71
Figura 5.72	Espectro de massa do a-selineno (256)	71
Figura 5.73	Espectro de massa do a-muuroleno (257)	71
Figura 5.74	Espectro de massa do n-pentadecano (258)	71
Figura 5.75	Espectro de massa do ß-bisaboleno (259)	72
Figura 5.76	Espectro de massa do γ-cadineno (260)	72
Figura 5.77	Espectro de massa do d-cadineno (261)	72
Figura 5.78	Espectro de massa do <i>trans</i> -calameneno (262)	72
Figura 5.79	Espectro de massa do <i>trans</i> -cadina-1,4-dieno (263)	73
Figura 5.80	Espectro de massa do a-Z-bisaboleno (264)	73
Figura 5.81	Espectro de massa do a-calacoreno (265)	73
Figura 5.82	Espectro de massa do elemicin (266)	73
Figura 5.83	Espectro de massa do germacreno B (267)	74
Figura 5.84	Espectro de massa do óxido de cariofileno (268)	74
Figura 5.85	Espectro de massa do n-hexadecano (269)	74
Figura 5.86	Espectro de massa do ftalato de isobutila (270)	74
Figura 6.87	Cromatograma de F14-21 da fração éter de petróleo do extrato	
	hexânico das folhas do P. hebetatum Daly	77
Figura 6.88	Espectro de massa (EMIE, 70 eV.) da fração F14-21,	
	hentriacontano (C ₃₁)	77
Figura 6.89	Espectro de massa (EMIE, 70 eV.) da fração F14-21,	
	tritriacontano (C ₃₃)	78
Figura 6.90	Espectro de RMN ¹ H (500 MHz, CDCl ₃) da fração F14-21	78
Figura 6.91	Cromatograma de F22-26 da fração éter de petróleo do extrato	
	hexânico das folhas do P. hebetatum Daly	79
Figura 6.92	Cromatograma de F32-36 da fração éter de petróleo do extrato	
	hecxânico das folhas do P. hebetatum Daly	79
Figura 6.93	Cromatograma de F52 da fração éter de petróleo do extrato	
	hexânico das folhas do P. hebetatum Daly	80

Figura 6.94	Cromatograma de F62 da fração éter de petróleo do extrato	
	hexânico das folhas do P. hebetatum Daly	80
Figura 6.95	Espectro na região do IV (NaCl) da fração F62	81
Figura 6.96	Espectro de RMN ¹ H (500 MHz, CDCl ₃) da fração F62	81
Tabela 6.5	Teor dos constituintes químicos da fração éter de petróleo do	
	extrato hexânico das folhas do P. hebetatum Daly	82
Figura 6.97	Espectro de massa do ciclohexilbenzeno (271)	83
Figura 6.98	Espectro de massa do 1-ciclohexil-3-metilbenzeno (272)	83
Figura 6.99	Espectro de massa do β-selineno (273)	83
Figura 6.100	Espectro de massa do dodecanoato de etila (274)	83
Figura 6.101	Espectro de massa do tetradecanoato de etila (275)	84
Figura 6.102	Espectro de massa do pentadecanoato de etila (276)	84
Figura 6.103	Espectro de massa do hexadecanoato de etila (277)	84
Figura 6.104	Espectro de massa do heptadecanoato de etila (278)	84
Figura 6.105	Espectro de massa do 9-hexadecenoato de etila (279)	85
Figura 6.106	Espectro de massa do octadecanoato de etila (280)	85
Figura 6.107	Espectro de massa do eicosonoato de etila (281)	85
Figura 6.108	Espectro de massa do heptacosano (282)	85
Figura 6.109	Espectro de massa do hentriacontano (283)	86
Figura 6.110	Espectro de massa do tritriacontano (284)	86
Figura 7.111	Espectro de massa (70 eV) de PHB-01a/PHB-01b	88
Figura 7.112	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHB-01a/PHB-01b-	89
Figura 7.113	Espectro de RMN - DEPT 135° (125 MHz, CDCl ₃) de PHB-	
	01a/PHB-01b	89
Figura 7.114	Espectro na região do IV (NaCl) de PHB-01a/PHB-01b	90
Figura 7.115	Espectro de RMN ¹ H - ¹³ C HMBC (125 MHz, CDCl ₃) de PHB-	
	01a/PHB-01b	90
Figura 7.116	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHB-01a/PHB-01b	91
Figura 7.117	Espectro de RMN ¹ H - ¹³ C HSQC (125 MHz, CDCl ₃) de PHB-	
	01a/PHB-01b	91
Figura 7.118	Estrutura molecular de PHB-01a e PHB-01b	92
Figura 7.119	Espectro de RMN ${}^{1}H - {}^{1}H$ COSY (125 MHz, CDCl ₃) de PHB-	
	01a/PHB-01b	92

Figura 7.120	Espectro de RMN $^{1}H - ^{13}C$ HSQC (125 MHz, CDCl ₃) de PHB-
	01a/PHB-01b
Figura 7.121	Espectro de RMN ^{1}H – ^{13}C HSQC (125 MHz, CDCl ₃) de PHB-
	01a/PHB-01b
Figura 7.122	Espectro de RMN $^{1}H - ^{13}C$ HMBC (125 MHz, CDCl ₃) de PHB-
	01a/PHB-01b
Tabela 7.6	Correlações ${}^{2,3}J_{CH}$ ${}^{1}H$ - ${}^{13}C$ HMBC de PHB-01a e PHB-01b
Tabela 7.7	Dados de RMN ¹ H e ¹³ C de PHB-01a e PHB-01b
Figura 7.123	Espectro de massa (70 eV) de PHB-02a/PHB-02b
Figura 7.124	Espectro RMN ¹³ C (125 MHz, CDCl ₃) de PHB-02a/PHB-02b
Figura 7.125	Espectro de RMN - DEPT 135º (125 MHz, CDCl ₃) de PHB-
	02a/PHB-02b
Figura 7.126	Espectro na região do IV (NaCl) de PHB-02a/PHB-02b
Figura 7.127	Espectro de RMN ¹ H - ¹³ C HMBC (125 MHz, CDCl ₃) de PHB-
	02a/PHB-02b
Figura 7.128	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHB-02a/PHB-02b
Figura 7.129	Espectro de RMN ¹ H - ¹³ C HSQC (125 MHz, CDCl ₃) de PHB-
	02a/PHB-02b
Figura 7.130	Estrutura molecular de PHB-02a e PHB-02b
Figura 7.131	Espectro de RMN ¹ H - ¹ H COSY (125 MHz, CDCl ₃) de PHB-
	02a/PHB-02b
Figura 7.132	Espectro de RMN ¹ H - ¹³ C HSQC (125 MHz, CDCl ₃) de PHB-
	02a/PHB-02b
Figura 7.133	Espectro de RMN ¹ H - ¹³ C HMBC (125 MHz, CDCl ₃) de PHB-
	02a/PHB-02b
Tabela 7.8	Correlações ${}^{2,3}J_{CH}$ ${}^{1}H - {}^{13}C$ HMBC de PHB-02a e PHB-02b
Tabela 7.9	Dados de RMN ¹ H e ¹³ C de PHB-02a e PHB-02b
Figura 7.134	Espectro de massa (70 eV) de PHB-07a/PHB-07b
Figura 7.135	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHB-07a/PHB-07b
Figura 7.136	Espectro de RMN - DEPT 135° (125 MHz, CDCl ₃) de PHB-
	07a/PHB-07b
Figura 7.137	Espectro na região do IV (NaCl) de PHB-07a/PHB-07b
Figura 7.138	Espectro de RMN ¹ H - ¹³ C HMBC (125 MHz, CDCl ₃) de PHB-
	07a/PHB-07b

Figura 7.139	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHB-07a/PHB-07b	108
Figura 7.140	Espectro de RMN $^{1}H - ^{13}C$ HSQC (125 MHz, CDCl ₃) de PHB-	
	07a/PHB-07b	108
Figura 7.141	Estrutura molecular de PHB-07a e PHB-07b	109
Figura 7.142	Espectro de RMN ¹ H - ¹ H COSY (125 MHz, CDCl ₃) de PHB-	
	07a/PHB-07b	109
Figura 7.143	Espectro de RMN $^{1}H - ^{13}C$ HSQC (125 MHz, CDCl ₃) de PHB-	
	07a/PHB-07b	110
Figura 7.144	Espectro de RMN $^{1}H - ^{13}C$ HSQC (125 MHz, CDCl ₃) de PHB-	
	07a/PHB-07b	110
Figura 7.145	Espectro de RMN ¹ H - ¹³ C HMBC (125 MHz, CDCl ₃) de PHB-	
	07a/PHB-07b	111
Figura 7.146	Espectro de RMN $^{1}H - ^{13}C$ HMBC (125 MHz, CDCl ₃) de PHB-	
	07a/PHB-07b	111
Tabela 7.10	Correlações ^{2,3} <i>J</i> _{CH} ¹ H x ¹³ C HMBC de PHB-07a e PHB-07b	112
Tabela 7.11	Dados de RMN ¹ H e ¹³ C de PHB-07a e PHB-07b	113
Figura 7.147	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHB-03	116
Figura 7.148	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHB-03	116
Figura 7.149	Espectro de RMN 1 H – 1 H COSY (125 MHz, CDCl ₃) de PHB-03	117
Figura 7.150	Espectro de RMN 1 H - 13 C HSQC (125 MHz, CDCl ₃) de PHB-03 -	117
Figura 7.151	Espectro de RMN ¹ H - ¹³ C HMBC (125 MHz, CDCl ₃) de PHB-03	118
Figura 7.152	Espectro de RMN - DEPT 135° (125 MHz, CDCl ₃ de PHB-03	118
Figura 7.153	Espectro de massa (70 eV) de PHB-03	119
Figura 7.154	Espectro de RMN ¹ H - ¹³ C HMBC (125 MHz, CDCl ₃) de PHB-03-	119
Figura 6.155	Espectro de RMN 1 H - 13 C HSQC (125 MHz, CDCl ₃) de PHB-03-	120
Figura 7.156	Estrutura molecular de PHB-03	120
Tabela 7.12	Dados de RMN ¹ H e ¹³ C de PHB-03	121
Figura 7.157	Espectro de massa (70 eV) de PHB-05	123
Figura 7.158	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHB-05	123
Figura 7.159	Espectro de RMN - DEPT 135° (125 MHz, CDCl ₃) de PHB-05	124
Figura 7.160	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHB-05	124
Figura 7.161	Espectro de RMN 1 H – 13 C HSQC (125 MHz, CDCl ₃) de PHB-05	125
Figura 7.162	Espectro de RMN ¹ H - ¹³ C HMBC (125 MHz, CDCl ₃) de PHB-05-	125
Figura 7.163	Espectro de RMN ¹ H - ¹³ C HMBC (125 MHz, CDCl ₃) de PHB-05-	126

Figura 7.164	Estrutura molecular de PHB-05
Tabela 7.13	Dados de RMN ¹ H e ¹³ C de PHB-05
Figura 7.165	Espectro de massa (70 eV) de PHB-08
Figura 7.166	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHB-08
Figura 7.167	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHB-08
Figura 7.168	Espectro de RMN - DEPT 135° (125 MHz, CDCl ₃) de PHB-08
Figura 7.169	Espectro de RMN ¹ H - ¹³ C HMBC (125 MHz, CDCl ₃) de PHB-
	08
Figura 7.170	Estrutura molecular de PHB-08
Tabela 7.14	Dados de RMN ¹ H e ¹³ C de PHB-08
Figura 7.171	Espectro de massa (70 eV) de PHB-06
Figura 7.172	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHB-06
Figura 7.173	Espectro de RMN - DEPT 135° (125 MHz, CDCl ₃) de PHB-06
Figura 7.174	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHB-06
Figura 7.175	Espectro de RMN ¹ H - ¹³ C HSQC (125 MHz, CDCl ₃) de PHB-06-
Figura 7.176	Espectro de RMN 1 H - 13 C HMBC (125 MHz, CDCl ₃) de PHB-06-
Figura 7.177	Estrutura molecular de PHB-06
Tabela 7.15	Dados de RMN ¹ H e ¹³ C de PHB-06
Figura 7.178	Espectro de massa (70 eV) de PHU-09
Figura 7.179	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHU-09
Figura 7.180	Espectro na região do IV (NaCl) de PHU-09
Figura 7.181	Espectro de RMN - DEPT 135° (125, MHz, CDCl ₃) de PHU-09
Figura 7.182	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHU-09
Figura 7.183	Espectro de RMN 1 H – 13 C HMBC (125 MHz, CDCl ₃) de PHU-09
Figura 7.184	Estrutura molecular de PHU-09
Tabela 7.16	Dados de RMN ¹ H e ¹³ C de PHU-09
Figura 7.185	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHU-10
Figura 7.186	Espectro de RMN - DEPT 135° (125 MHz, CDCl ₃) de PHU-10
Figura 7.187	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHU-10
Figura 7.188	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHU-11
Figura 7.189	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHU-11
Figura 7.190	Espectro de RMN - DEPT 135° (125 MHz, CDCl ₃) de PHU-11
Figura 7.191	Estrutura molecular de PHB-10 e PHB-11
Tabela 7.17	Dados de RMN ¹ H e ¹³ C de PHB-10 e PHB-11

Figura 7.192	Estrutura molecular de PHB-02aOAc e PHB-02bOAc	149
Figura 7.193	Espectro de massa (70 eV) de PHB-02aOAc/PHB-02bOAc	150
Figura 7.194	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHB-02aOAc/PHB-	
	02bOAc	150
Figura 7.195	Espectro de RMN - DEPT 135° (125 MHz, CDCl ₃) de PHB-	
	02aOAc/PHB-02bOAc	151
Figura 7.196	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHB-02aOAc/PHB-	
	02bOAc	151
Figura 7.197	Estrutura molecular de PHB-07aOAc e PHB-07bOAc	152
Figura 7.198	Espectro de massa (70 eV) de PHB-07aOAc/PHB-07bOAc	153
Figura 7.199	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHB-07aOAc/PHB-	
	07bOAc	153
Figura 7.200	Espectro de RMN - DEPT 135° (125 MHz, CDCl ₃) de PHB-	
	07aOAc/PHB-07bOAc	154
Figura 7.201	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHB-07aOAc/PHB-	
	07bOAc	154
Figura 7.202	Estrutura molecular de PHU-06OAc	155
Figura 7.203	Espectro de massa (70 eV) de PHU-06OAc	156
Figura 7.204	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHU-06OAc	156
Figura 7.205	Espectro de RMN - DEPT 135° (125 MHz, CDCl ₃) de PHU-	
	06OAc	157
Figura 7.206	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHU-06OAc	157
Figura 7.207	Estrutura molecular de PHB-02aOxi e PHB-02bOxi	158
Figura 7.208	Espectro de massa (70 eV) de PHB-02aOxi/PHB-02bOxi	159
Figura 7.209	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHB-02aOxi/PHB-	
	02bOxi	159
Figura 7.210	Espectro de RMN - DEPT 135° (125 MHz, CDCl ₃) de PHB-	
	02aOxi/PHB-02bOxi	160
Figura 7.211	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHB-02aOxi/PHB-	
	02bOxi	160
Figura 7.212	Estrutura molecular de PHB-02aOxima e PHB-02bOoxima	161
Figura 7.213	Espectro de massa (70 eV) de PHB-02aOxima/PHB-02bOxima	162
Figura 7.214	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHB-02aOxima	
	/PHB-02bOxima	162

Figura 7.215	Espectro de RMN - DEPT 135° (125 MHz, CDCl ₃) de PHB-
	02aOxima/ PHB-02bOxima
Figura 7.216	Espectro de RMN ¹ H (500 MHz, CDCl ₃) de PHB-02aOxima/
	PHB-02bOxima
Figura 7.217	Estrutura molecular de PHB-03Oxima
Figura 7.218	Espectro de massa (70 eV) de PHB-03Oxima
Figura 7.219	Espectro de RMN ¹³ C (125 MHz, CDCl ₃) de PHB-03Oxima
Figura 7.220	Espectro de RMN - DEPT 135° (125 MHz, CDCl ₃) de PHB-
	03Oxima
Tabela 7.18	Dados de RMN ¹³ C dos derivados reacionais
Esquema 8.13	Esterificação enzimática da mistura ß,a-amirina usando como
	biocatalisador o complexo enzimático imobilizado
Figura 8.221	Espectro de RMN ¹ H do produto da acetilação catalisado pelas
	enzimas imobilizadas do PHB à temperatura ambiente
Figura 8.222	Espectro de RMN ¹³ C do produto da acetilação catalisada pelas
	enzimas imobilizadas do PHB à temperatura ambiente
Tabela 9.19	Atividade antimicrobiana do óleo essencial do P. hebetatum
	(PHB), P. heptaphyllum subsp. ulei (PHU) e do P. heptaphyllum
	subsp. heptaphyllum (PHH) após 24 horas
Tabela 9.20	Atividade antimicrobiana do óleo essencial do P. hebetatum
	(PHB), P. heptaphyllum subsp. ulei (PHU) e do P. heptaphyllum
	subsp. heptaphyllum (PHH) após 48 horas
Tabela 9.21	Atividade larvicida do óleo essencial da resina do P. hebetatum
	(PHB) contra larvas do mosquito Aedes aegypti
Tabela 10.22	Coordenadas geográficas e número do registro do herbário (PZ)
	das espécies de Protium
Fluxograma 10.1	Obtenção dos extratos da resina do P. hebetatum Daly
Fluxograma 10.2	Fracionamento do extrato éter de petróleo da resina do P.
	hebetatum Daly
Fluxograma 10.3	Fracionamento da fração clorofórmica do estrato acetato de etila
_	da resina do P. hebetatum Daly
Fluxograma 10.4	Obtenção dos extratos e fracionamento do extrato hexânico da
	casca do lenho do P. hebetatum Daly

Fluxograma 10.5	Obtenção dos extratos e fracionamento do extrato hexânicos das	
	folhas do P. hebetatum Daly	182
Fluxograma 10.6	Obtenção dos extratos e fracionamento dos extratos éter de	
	petróleo e hexânico da resina do P. Heptaphyllum subsp. ulei	185

SUMÁRIO

1	INTRODUÇÃO	1
2	CONSIDERAÇÕES BOTÂNICAS	4
2.1	Origem da família Burseracea	4
2.2	Considerações botânicas sobre a família Burseraceae	4
2.3	Considerações botânicas sobre o gênero Protium	6
2.4	Considerações botânicas sobre a espécie Protium hebetatum Daly	6
2.5	Considerações botânicas sobre a espécie Protium heptaphyllum (Aublet)	
	Marchand subsp. <i>Heptaphyllum</i>	8
2.6	Considerações botânicas sobre a espécie Protium heptaphyllum (Aublet)	
	Marchand subsp. ulei (Swat) Daly	9
3	REVISÃO BIBLIOGRÁFICA	10
3.1	Tipos de esqueletos de triterpenos de Burseraceae e seus dados de	
	RMN ¹³ C	10
4	BIOSSÍNTESE DE TRITERPENOS DE BURSERACEAE	32
4.1	Considerações gerais da biossíntese de triterpenos	32
4.1.1	Biossíntese do esqualeno e do (3S)-2,3-óxidoesqualeno	32
4.1.2	Biossíntese dos cátions dammarenila e protosterila	37
4.1.3	Biossíntese do esqueleto do tipo lanostano e cicloartano	38
4.1.4	Biossíntese do esqueleto do tipo lupano	39
4.1.5	Biossintese do esqueleto do tipo ursano e oleanano	39
4.1.6	Biossíntese do esqueleto do tipo dammarano, eufano e tirucalano	40
4.1.7	Biogênese do esqueleto do tipo octanordammarano	41
4.1.8	Biossíntese do esqueleto do tipo hopano	42
4.1.9	Biossíntese do esqueleto do tipo taraxastano, friedelano e friedoursano	43
5	CONSTITUIÇÃO QUÍMICA DO ÓLEO ESSENCIAL DE TRÊS	
	ESPÉCIES DO GÊNERO <i>PROTIUM</i>	44
5.1	Importância econômica dos óleos essenciais	45
5.2	Métodos de obtenção industrial dos óleos essenciais	46
5.3	Constituintes voláteis do gênero Protium	47
5.3.1	Rendimento dos óleos essenciais obtidos das espécies de Protium	48
5.3.2	Óleo essencial da resina do P. hebetatum Daly	48

8	ACETILAÇAO ENZIMATICA	168		
7.4.6	PHB-03Oxima	164		
7.4.5	PHB-02aOxima/PHB-02bOxima	161		
7.4.4	PHB-02aOxi/PHB-02bOxi	158		
7.4.3	PHU-06OAc	155		
7.4.2	PHB-07aOAc/PHB-07bOAc	152		
7.4.1	PHB-02aOAc/PHB-02bOAc	149		
7.4	Derivados reacionais	149		
7.3.2	Determinação estrutural de PHU-11	145		
7.3.1	Determinação estrutural de PHU-10	143		
	subsp. <i>ulei</i> (Swat) Daly	143		
7.3	Constituintes voláteis da resina P. heptaphyllum (Aublet) Marchand			
7.2.1	Determinação estrutural de PHU-09	138		
	ulei (Swat) Daly	138		
7.2	Constituintes fixos da resina P. heptaphyllum (Aublet) Marchand subsp.			
7.1.2.4	PHB-06	133		
7.1.2.3	PHB-08	128		
7.1.2.2	PHB-05	122		
7.1.2.1	PHB-03	114		
7.1.2	Triterpenos tetracíclicos	114		
7.1.1.3	PHB-07a/PHB-07b	104		
7.1.1.2	PHB-02a/PHB-02b	96		
7.1.1.1	PHB-01a/PHB-01b	87		
7.1.1	Triterpenos pentacíclicos	87		
7.1	Constituintes fixos da resina do P. hebetatum Daly	87		
7	DETERMINAÇÃO ESTRUTURAL 8			
6.1	Extrato hexânico das folhas do P. hebetatum	75		
	FOLHAS	75		
6	CONSTITUIÇÃO QUÍMICA DA CERA EPICUTICULAR DAS			
	heptaphyllum 52			
5.3.5	Óleo essencial da resina do P. heptaphyllum (Aublet) Marchand subsp.			
	(Swat) Daly	52		
5.3.4	Óleo essencial da resina do P. heptaphyllum (Aublet) Marchand subsp. ulei			
5.3.3	Óleo essencial da casca do lenho do P. hebetatum Daly	49		

8.1	Reação de acetilação via complexo enzimático do P. hebetatum Daly	168	
9	ATIVIDADE BIOLÓGICA	170	
9.1	Atividade antimicrobiana do óleo essencial	170	
9.2	Atividade larvicida do óleo essencial	171	
10	PARTE EXPERIMENTAL	172	
10.1	Métodos cromatográficos	172	
10.1.1	Cromatografia em coluna (CC)	172	
10.1.2	Cromatografia em camada delgada (CCD)	172	
10.2	Métodos físicos de análises		
10.2.1	Espectroscopia na região do infravermelho (IV)	172	
10.2.2	Espectroscopia de ressonância magnética nuclear (RMN)	172	
10.2.3	Espectrometria de massa (EM)	173	
10.2.4	Cromatografia gasosa (CG)	173	
10.2.5	Rotação ótica específica [a]	174	
10.2.6	Ponto de fusão	174	
10.3	Coletas das amostras botânicas	174	
10.4	Obtenção dos constituintes voláteis	175	
10.5	Isolamento dos constituintes fixos da resina do P. hebetatum Daly(PHB)-	175	
10.5.1	Extrato éter de petróleo da resina	176	
10.5.2	Extrato acetato de etila da resina	177	
10.6	Isolamento dos constituintes fixos e voláteis da casca do lenho do P.		
	hebetatum Daly (PHB)	180	
10.6.1	Extrato hexânico da casca do lenho	180	
10.7	Isolamento dos constituintes fixos das folhas do P. hebetatum Daly		
	(PHB)	181	
10.7.1	Extrato hexânico das folhas	182	
10.8	Isolamento dos constituintes fixos da resina do P. heptaphyllum (Aublet)		
	Marchand subsp. ulei (Swat) Daly (PHU)	183	
10.8.1	Extrato éter de petróleo	183	
10.8.2	Extrato hexânico	183	
10.9	Isolamento dos monoterpenos do óleo essencial do P. heptaphyllum		
	(Aublet) Marchand subsp. <i>ulei</i> Swat) Daly (PHU)	184	
10.10	Derivados reacionais	184	
10.10.1	PHB-02aOAc/PHB-02bOAc	184	

10.10.2	PHB-07aOAc/PHB-07bOAc)	186
10.10.3	PHU-06OAc	186
10.10.4	PHB-02aOxi/PHB-02bOxi	186
10.10.5	PHB-02aOxima/PHB-02bOxima	187
10.10.6	PHB-03Oxima	187
10.11	Reação de acetilação via enzimática	187
10.12	Atividade biológica	188
10.12.1	Atividade antimicrobiana	188
10.12.2	Atividade larvicida contra Aedes aegypti	188
11	CONCLUSÕES	189
12	CARACTERÍSITCAS FÍSICAS E QUÍMICAS DAS SUBSTÂNCIAS	191
12.1	3-Oxoolean-12-eno ou ß-amirenona (PHB-01a) e 3-Oxours-12-eno ou a-	
	amirenona (PHB-01b)	191
12.2	3ß-Hidroxiolean-12-eno ou ß-amirina (PHB-02a) e 3ß-Hidroxiurs-12-	
	eno ou a-amirina (PHB-02b)	192
12.3	36,168-Di-hidroxiolean-12-eno ou maniladiol (PHB-07a) e 36,168-Di-	
	hidroxiurs-12-eno ou breina (PHB-07b)	193
12.4	Ácido 3-oxotirucala-8,24-dien-21-óico (PHB-03)	194
12.5	Ácido 3a-hidroxitirucala-8,24-dien-21-óico (PHB-05)	194
12.6	Ácido 3a-acetoxitirucala-7,24-dien-21-óico (PHB-08)	195
12.7	Ácido 3a-hidroxitirucala-7,24-dien-21-óico (PHB-06)	196
12.8	D:A-Friedoolean-3-ona ou friedelina (PHU-09)	197
12.9	1-Metil-4-(1-metiletilideno)ciclo-hex-1-eno ou Terpinoleno (PHU-10) e	
	1-Metil-4-(1-hidroxi-1-metiletil)benzeno ou p-Cimeno-8-ol (PHU-11)	198
12.10	3ß-Acetoxiolean-12-eno ou acetato de ß-amirina (PHB-02aOAc) e 3ß-	
	Acetoxiurs-12-eno ou acetato de a-amirina (PHB-02bOAc)	199
12.11	36,166-Diacetoxiolean-12-eno ou acetato de maniladiol (PHB-07aOAc)	
	e 36,166-Diacetoxiurs-12-eno ou acetato de breina (PHB-07bOAc)	200
12.12	Ácido 3a-acetoxitirucala-7,24-dien-21-óico (PHU-06OAc)	201
12.13	3-Oxoolean-12-eno ou ß-amirenona (PHB-02aOxi) e 3-Oxours-12-eno	
	ou a-amirenona (PHB-02bOxi)	201
12.14	3-(Hidroxi-imino)olean-12-eno ou oxima de ß-amirina (PHB-02aOxima)	
	e 3-(Hidroxi-imino)urs-12-eno ou oxima de a-amirina (PHB-2bOxima)-	202
12.15	Ácido 3-(hidroxi-imino)tirucala-8,24-dien-21-óico (PHB-03Oxima)	203

REFERÊNCIAS BIBLIOGRÁFICAS 2	204
------------------------------	-----

1. INTRODUÇÃO

Os recursos vegetais da Amazônia constituem uma grande atração para pesquisadores e estudiosos nas áreas da botânica, ecologia, farmacologia e fitoquímica interessados no seu conhecimento científico, assim como, no seu aproveitamento econômico de forma racional.

A Floresta Amazônica representa um extraordinário bioma, abriga uma das maiores diversidades biológicas do planeta. Geograficamente está situada em longitude da cidade Pongo Manseriche (Peru) até ao norte do Maranhão (Brasil) e em latitude do delta do Orinoco (Venezuela) ao norte do Mato Grosso (Brasil), recebendo a designação de Amazônia Continental (BOREM, 2004).

No território nacional, foram adotados os nomes Amazônia para a Floresta que ocupa os Estados do Amazonas, Pará, Amapá, Roraima, Acre e Rondônia, correspondendo a 42% do território nacional e, Amazônia Legal, criada pela lei nº. 5.806 de 06 de janeiro de 1953 que adicionou parte do Estado do Maranhão, norte do Mato Grosso e o Estado de Tocantins, totalizando 59,1% do território brasileiro (BOREM, 2004). O nome Amazônia Ocidental, criado pelo Decreto-Lei nº. 291 de 28 de fevereiro de 1967, foi usado para a flora dos Estados do Amazonas, Acre, Rondônia e Roraima. De fato essas terminologias foram estabelecidas para fins de planejamento econômico e execução de políticas públicas.

A Floresta Amazônica, onde predominam as grandes árvores características da floresta tropical úmida, por ser um grande celeiro de plantas medicinais e de espécies produtoras de óleos (essenciais e fixos), foi considerada a principal reserva florística do Brasil. Consequentemente, este grande laboratório natural, constitui também uma grande preocupação em relação à sua preservação (GOTTLIEB; KAPLAN, 1990).

O Estado do Acre, localizado no sudoeste da Amazônia brasileira, apresenta uma densa floresta com uma diversidade maior do que as demais regiões da Amazônia Continental. A flora acreana tem características que a diferenciaram de outras regiões da Amazônia, mostrando maiores afinidades florísticas com a Amazônia Peruana e a Boliviana do que com a própria Amazônia Legal - conforme mostraram os dados do Banco da Flora do Acre, projeto do Parque Zoobotânico (PZ) da Universidade Federal do Acre (UFAC). Os resultados desse trabalho, ainda não publicados, caracterizaram essa flora nacional como a mais importante biodiversidade nacional, fortalecendo e exigindo prioridade para sua conservação, principalmente, a área do Juruá-Envira, por apresentar uma das partes mais ricas em diversidade de espécies, com vários táxons botânicos.

A família Burseraceae representa um dos grandes táxons botânicos presente na Floresta Amazônica, sendo o gênero *Protium* o maior representante, com mais de 80% das espécies de Burseraceae (SIQUEIRA, 1991). Na região do Alto Juruá, município de Cruzeiro do Sul, Estado do Acre, foi registrado mais de 40 espécies do gênero *Protium*, conforme levantamento realizado pelo projeto do PZ da Flora do Acre.

As espécies do gênero *Protium*, na região do Alto Juruá, são conhecidas por vários nomes: breu, breu-branco, almecequeira, breu-verdadeiro. Apesar de alguns pesquisadores relacionarem os nomes almacegueira-vermelha (BANDEIRA *et al.*, 2002) e breu-vermelho (RUDIGER *et al.*, 2007) ao gênero *Protium*, nessa região, esses nomes estão relacionados ao gênero *Tetragastis* (Burseraceae). As espécies do gênero *Tetragastis* exsudam uma resina vermelha, sendo, portanto conhecidas como breu-vermelho ou almacegueira-vermelha.

A resina exsudada pelas espécies do gênero *Protium* é utilizada na medicina popular como um importante agente terapêutico, tendo propriedades anti-inflamatórias, analgésicas, expectorantes e cicatrizantes. Também é utilizada na indústria artesanal de verniz, na calafetagem de pequenas embarcações e queimada como incenso em rituais religiosos (RIBEIRO *et al.*, 1999).

Estudos farmacológicos realizados com o óleo essencial obtido das resinas de várias espécies do gênero *Protium* mostraram atividades anti-inflamatórias e antinociceptivas (SIANI *et al.*, 1999). Assim os óleos essenciais das espécies *Protium heptaphylum*, *P. strumosum* e *P. lewellyni* revelaram ação anti-inflamatória, ao passo que, os óleos essenciais do *P. heptaphyllum* e do *P. lewellyni* apresentaram atividades nociceptivas antagônicas. O *P. heptaphyllum* reduziu de forma significativa o números de contrações abdominais induzidas por ácido acético em ratos (74%), enquanto o óleo do *P. lewellyni* produziu aumento nas contrações abdominais (14%). Estudos da atividade anti-inflamatória foram também comprovados com a resina do *P. heptaphyllum* (OLIVEIRA *et al.*, 2004) e do *P. kleinii* (OTUKI *et al.*, 2005).

A resina do *P. heptaphyllum* apresentou também atividade gastroprotectiva contra úlceras gástricas. Contudo, conforme os estudos realizados, no uso de quantidades maiores que 400 mg/kg poderá ocorrer ação antagônica (OLIVEIRA *et al.*, 2004). A resina dessa espécie foi também avaliada sua ação antidepressiva, mostrando significativo efeito sedativo (ARAGÃO *et al.*, 2006).

Outras atividades biológicas foram descritas tais como efeito antimalárico da casca do *P. glabrescens* (DEHARO *et al.*, 2001) e atividade antiprotozeário do fruto do *P. amplum* (WENIGER *et al.*, 2001).

Apesar da grande quantidade de trabalhos publicados na literatura relacionada às atividades biológicas de espécies do gênero *Protium*, poucos foram os estudos fitoquímicos. Conforme registro, foram analisadas 26 espécies, sendo treze (13) no tocante a análise do óleo essencial; dez (10) referente ao estudo fitoquímico da resina (óleo essencial e constituinte fixos) e três (03), envolvendo o estudo da resina, folhas, frutos e lenho (BANDEIRA, 2002, RUDIGER *et al.*, 2007).

Essas observações induziram a seleção do gênero *Protium* para investigação científica, tendo como principais objetivos, o isolamento e a identificação de metabólitos secundários, assim como, a análise dos constituintes voláteis. Os estudos fitoquímicos foram realizados com a resina, folhas e cascas do lenho da espécie *P. hebetatum* Daly (PHB) e da resina do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU). Com relação ao estudo do óleo essencial, foi avaliada a composição química de três espécies: *P. hebetatum* Daly (PHB), *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp.

Alguns derivados reacionais foram obtidos com o intuito de comprovação e destacar, em parte, a química propriamente dita.

Finalmente, foi realizado testes antimicrobianos dos óleos essenciais da resina do PHB, PHU e PHH em cepas do *Bacillus subtilis*, *Staphylococcus aureus*, *Escherichia coli*, *Klebsiella pneumonia*, *Nycobacterium phlei* do laboratório de microbiologia da Universidade Federal do Acre e, analisado a atividade larvicida do óleo da resina do PHB, em larvas do mosquito *Aedes aegypti*.

2 CONSIDERAÇÕES BOTÂNICAS

2.1 Origem da família Burseraceae

A utilização de material fóssil, a sua datação e a utilização dos recursos da filogenia molecular possibilitaram esclarecer as origens da família Burseraceae. Os estudos da filogenia molecular mostraram que a família Burseraceae tem características muito próximas da família Anacardiaceae, sendo considerada como parente próximo (irmã). No período geológico Eoceno, por volta de 60 mil anos atrás, a família Anacardiaceae divergiu originando na América do Norte a família Burseraceae. Nesse período ocorreu a migração para as regiões tropicais e subtropicais do globo terrestre (Fig. 2.1). Com relação à tribo Protieae, existem fortes evidências de que foi originada na América do Sul (WEEKS *et.al.*, 2005).

Figura 2.1 - Mapa mundial em meados do Eoceno representando a rota da expansão da família Burseraceae (WEEKS *et. al.*, 2005).

2.2 Considerações botânicas sobre a família Burseraceae

Até recentemente a família Burseraceae foi considerada como pertencente à Ordem Rutales e dividida em 21 gêneros com três tribos: Protieae com quatro gêneros, Boswellieae com oito gêneros e Canarieae com nove gêneros e aproximadamente 600 espécies (KHALID, 1983, apud SIANI *et al.*, 2004). Baseado em dados da sequência de DNA, a família Burseraceae foi reclassificada na Ordem Sapindales, classe dicotiledônea e subclasse Rosidae. A família foi dividida em 18 gêneros e aproximadamente, 700 espécies, distribuídas em três tribos: Bursereae com sete gêneros; Canarieae com oito gêneros e Protieae com três gêneros. A tribo Bursereae foi dividida em duas subtribos: a Burserinae com dois gêneros e a Boswelliinae com cinco gêneros (Quad. 2.1). Todas as tribos têm representantes nas regiões dos trópicos e subtrópicos dos continentes americano, africano e indo-asiático (WEEKS *et al.*, 2005).

Tribo Bursere	ae	Localização Geográfica
Subtribo Bur	serinae	
Gêneros	Bursera Jcq. (100 spp)	Caribe, México e América do Sul
		e Central
	Commiphora Jacq. (190 spp)	Africa, India e América do Sul
Subtribo Boswelliinae		
Gêneros	Aucoumea Pierre. (1 sp.)	África
	Beiselia Forman (1 sp.)	México
	Boswellia Roxb. (30 spp.)	África, Arábia e Índia
	Triamma Hook (1 sp.)	Malásia
	Garuga Roxb. (4 spp.)	Índia e Ásia
Tribo Canarie	ae	
Gêneros	Canarium L. (105 spp.)	Ásia, Malásia e África
	Dacryodes Vahl. (66 spp.)	Caribe, México, América do Sul e
		Central, Ásia e África
	Haplolobus H. J. Lam. (22 spp.)	Malásia
	Pseudodacryodes R. Pierre (1 sp.)	África Central
	Rosselia Forman (1 sp.)	Islândia e Nova Guiné
	Santiria Blume (24 spp.)	Malásia, Filipinas, Nova Guiné,
		Ilhas Molucas e África
	Scutinanthe Thwaites (2 spp.)	Síria, Malaia, Sumatra, Bósnia,
		Malaia e Mianmar
	Trattinnickia Willd. (13 spp.)	América Central e do Sul
Tribo Protieae		
Gêneros	Crepidospermum Hook. f. (6 spp)	América do Sul
	Protium Burm. f. (150 spp.)	México, América Central e do
		Sul, África, Ásia
	Tetragastris Gaertn. (9 spp.)	América Central e do Sul

Quadro 2.1 - Tribos, subtribos e gêneros da família Burseraceae, com o número de espécies e suas ocorrências geográficas (WEEKS *et. al.*, 2005).

A família Burseraceae é constituída de árvore de pequeno porte, como arbustos, mas algumas espécies podem atingir o pico de cobertura da floresta. Quase todos os gêneros apresentam uma resina aromática, constituída principalmente de óleo essencial (BANDEIRA *et al.*, 2001; CRUZ-CANIZARES *et al.*, 2005) e triterpenos (MAIA *et al.*, 2000; SUSUNAGA *et al.*, 2001; LIMA *et al.*, 2005; RUDIGER *et al.*, 2007). As folhas (Fig. 2.2, p. 7) são alternas (A, uma folha por nó) ou raramente opostas (B, duas folhas por nó), compostas imparipenadas (C, folha formada pela união de folíolos com número impar).

Os folíolos, muitas vezes, têm pulvínulo (intumescimento na base do folíolo de uma folha composta) e margem inteira (D, lisa sem recorte) ou serrilhada (E, com dentes agudos inclinados para o ápice).

As inflorescências podem ocorrer como racemos (F), panículas (G) ou pseudoespigas (H). As flores são unissexuadas e muito pequenas, nunca passando de 5 mm, de cor creme, amarelada ou esverdeada, raramente avermelhada (I). As flores têm 3 a 5 sépalas, normalmente unidas e 3 a 5 pétalas, livres ou unidas. Um disco está sempre presente com 6 a 10 estames. Os frutos são drupáceos; às vezes, capsulares; muitas vezes, oblíquos. O pirênio (endocarpo com a semente) está envolto por polpa de cor branca, que se destaca devido à cor vistosa das válvulas ou columela (RIBEIRO *et al.*, 1999).

2.3 Considerações botânicas sobre o gênero Protium

São árvores ou arbustos com canais produtores de resina aromática (breu). As folhas (Fig. 2.2, p. 7) são alternas (A), compostas imparipinadas (C), com pulvínulos e pulvino na base dos folíolos e dos pecíolos (haste que liga a folha ao caule), respectivamente, normalmente flexionados. As folhas e ramos glabros, (inteiramente lisos e desprovidos de pelos). Em geral têm raiz escova ou com a base reta, sapopema ou raízes superficiais (RIBEIRO *et al.*, 1999). Os frutos são drupáceos (semelhantes à drupa, tipo de fruto carnoso com uma semente), deiscentes (frutos que se abrem quando secos) com 4 ou 5 lóculos (cavidade onde se encontra a semente), sendo de 1 a 3 desenvolvidos, globosos, ovóides, elipsóides ou oblongos, geralmente vermelhos quando maduros e raramente verde ou vináceo, com superfície lisa ou rugosa; brilhante ou opaco. As valvas (cada uma das peças em que se abrem longitudinalmente, como as vagens e outros frutos deiscentes) podem ser internamente brancas, rosadas ou avermelhadas (MELO *et al.*, 2007).

2.4 Considerações botânicas sobre a espécie *Protium hebetatum* Daly

São árvores de 40 a 50 m de altura, com caule e ramos resinosos, raiz sapopema (J) (Fig. 2.3, p. 8), hábitat de solo argiloso. Os frutos são de globosos a ovados com ápice obtuso (K), deiscentes, abrindo-se geralmente por 3 ou 4 valvas, internamente brancas, 3 ou 4 lóculos, sendo de 1 a 3 desenvolvidos. Exocarpo é liso, brilhante, verde e glabro. O mesocarpo é delgado, verde-claro, arilóide carnoso, esbranquiçado envolvendo totalmente o pirênio. O pirênio amplamente obovado com ápice (mesma forma da ovada, mas, neste caso, a parte mais larga é próxima ao ápice). O endocarpo é fino e quebradiço, de coloração vinhaça

obtidas da internet)

Foto B <<u>http://www.vinv.ucr.ac.cr/herbario/Vertodaslasplantas_1_2.html</u>> em 20/10/2010 Foto C/D <<u>http://www.discoverlife.org/mp/200?search=Burseraceae> em 20/02/2010</u>

Foto F- <<u>http://www.discoverlife.org/mp/20p?see=I sp466&res=640> em 25/02/20010</u>

Foto I -< <u>http://striweb.si.edu/esp/tesp/plant_images_p.htm</u>> em 20/10/2010

Foto E- <<u>http://.www.msu.edu/~vriesend/all_seedlings.htm</u> em 20/02/2010

8

J-Raiz sapopema P. hebetatum

K - Fruto maduro em diescente *P. hebetatum*

L-Folha P. hebetatum

M - Folha P. hebetatum

N-Frutos *P. heptaphyllum* subsp *heptaphyllum*

O-Folha *P. heptaphyllum* subsp *heptaphyllum*

Q–Folha do *P. heptaphyllum* subsp *ulei*

Figura 2.3 - Características morfologias das espécies *Protium hebetatum, P. heptaphyllum* subsp. *heptaphyllum* e do *P. heptaphyllum* subsp. *ulei*.(Foto K, MELO *et al.*, 2007)

Fotos L, M, O e Q -<<u>http://www.discoverlife.org/mp/200?search=Burseraceae</u>> em 20/02/2010 Foto N- <<u>HTTP://.frutasraras.sites.uol.com.br/protiumhept.htm</u>> em 20/02/2010
2.5 Considerações botânicas sobre a espécie *Protium heptaphyllum* (Aublet) Marchand subsp. *heptaphyllum*

São árvores de 20 a 30 m de altura com caule e ramos resinosos, hábitat de floresta densa e raiz com base reta. Flores esverdeadas com anteras amarelas, pequenas, abundantes, dispostas em panículas. Fruto de 2,3 cm de comprimento, deiscente assimetricamente ovado, glabro, de coloração verde, quando imaturo, e vermelha, quando maduro (N) (Fig. 2.3, p. 8). Sementes pretas envoltas por arilo branco. As folhas compostas imparipinadas (O), de 5 a 7 folíolos, margem inteira, apresentando os folíolos levemente discolor (duas cores diferentes), com a face adaxial (superior) mais escura, aculeado.

2.6 Considerações botânicas sobre a espécie *Protium heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly

São arbustos de 5 a 10 m de altura, com caule e com ramos resinosos, raízes com base reta (P), hábitat de floresta de campina de solo arenoso (Fig. 2.3, p. 8). Folha lanceolada (Q), glabro com a face abaxial (inferior) que reflete a luz, composta imparipinada, com poucos pares de folíolos 3, no máximo 4, verde escuro na face adaxial (superior) e verde pálido abaxial (inferior), margem inteira, apresentando pequenas ou poucas nervuras. Flores pendiceladas, odoríferas, sépalas e pétalas creme-esverdeadas ou vináceas, estames amarelos. Fruto imaturo verde, tornando-se roxo quando maduro, contém de 1 a 3 sementes cobertas com polpa branca.

3 REVISÃO BIBLIOGRÁFICA

3.1 Tipos de esqueletos de triterpenos de Burseraceae e seus dados de RMN¹³C

Os triterpenóides são metabólitos secundários de origem da flora e da fauna terrestre e marinha, de ocorrência livre, assim como na forma de éter, éster e glicosídeos. São compostos isoprenóides com trinta átomos de carbono, que podem apresentar o esqueleto de carbono acíclico, mono, di, tri, tetra ou pentacícilico. Os pentacíclicos são os constituintes dominantes seguidos dos tetracíclicos, e que têm sido amplamente investigados (MAHATO; KUNDU, 1994).

Os primeiros triterpenos acíclico e dicíclico foram isolados da flora e da fauna marinha, respectivamente. Da alga *Botryococcus braunii* (MAXELL *et al.*, 1968), foi isolado o triterpeno acíclico 10-etil-2,6,10,13,17,21-hexametildocosano ou C_{30} -Botriococcano (1), pertencente ao esqueleto do tipo botriococcano (Fig. 3.4). Do molusco *Collisella limatula*, muito comum nos mares da Califórnia, foi isolado a limatulona (2), o primeiro triterpeno dicíclico (PAWLIK *et al.*, 1986).

Figura 3.4 - Primeiros triterpenos acíclico, monocíclico, dicíclico e tricíclico

Da flora terrestre, a partir da espécie *Achillea odorata* (Compositae), foi isolado o Achilleol A (**3**), como primeiro triterpeno monocíclico (BARRERO *et al.*, 1989). No ano seguinte, foi isolado da mesma espécie o triterpeno tricíclico Achileol B (**4**) (BARRERO *et al.*, 1990).

Centenas de outros triterpenóides foram isoladas de espécies vegetais e animais, sendo distribuídos em, aproximadamente, 200 diferentes tipos de esqueletos de carbono, principalmente tetracíclicos e pentaciclicos (WU et al., 2008).

Uma pesquisa realizada no período de 1980 a 2008, nos bancos de dados do Scielo, SciFinder, Science Direct, consultados por meio da palavra Burseraceae, revelou que os triterpenos isolados desta família foram distribuídos em treze diferentes tipos com esqueletos tetracíclicos e pentacíclicos (Fig. 3.5).

Figura 3.5 - Tipos de triterpenos isolados de espécies da família Burseraceae.

Usando as mesmas fontes de pesquisa foi realizado um levantamento bibliográfico, tendo como objetivo catalogar os dados espectrais de RMN ¹³C dos triterpenos tetracíclicos e pentacíclicos isolados e derivados das espécies da família Burseraceae, considerando o período de 1980 a 2008 (Tab. 3.1, p. 16). Nesta tabela consta também o nome dos triterpenos isolados, derivados e a citação bibliográfica dos respectivos dados de RMN ¹³C.

A investigação revelou que 36 espécies de Burseraceae permitiram o isolamento de triterpenos, totalizando 140 compostos. Deste total, 25 não foram registrados os dados de RMN ¹³C. Os compostos β-amirina e a-amirina foram os triterpenos encontrados com maior frequência, estando presentes em 22 espécies. A série ursano apresentou o maior número de compostos (33), seguido dos oleananos (20), dammaranos (18), octanordammaranos (12), tirucalanos (11), cicloartano (9), lupano (8). Friedoursano foi à série que apresentou à menor frequência, com apenas um composto isolado da espécie *Canarium zeylanicu* (LEE *et al.*, 2004), conforme mostra o gráfico 3.1.

Gráfico 3.1- Distribuição dos triterpenos em seus respectivos esqueletos carbônico isolados de Burserácea no período de 1980 a 2008.

$ \begin{array}{c} 1 & 34.2 & 34.3 & 33.5 & 30.1 & 73.4 & 71.9 & 73.5 \\ 2 & 34.3 & 34.1 & 33.5 & 20.4 & 75.5 & 75.0 & 76.6 \\ 3 & 218.9 & 218.6 & 218.5 & 85.9 & 73.9 & 74.1 & 74.8 \\ 4 & 46.9 & 46.9 & 47.0 & 37.6 & 35.4 & 35.3 & 36.1 \\ 5 & 45.4 & 45.4 & 42.3 & 42.9 & 39.1 & 40.6 & 39.7 \\ \textbf{(18)} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	H 22 24 CO.H	С	(18)	(19)*	(20)	(21)*	(22)*	(23)*	(24)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21 18 20 25	1	34,2	34,3	33,5	30,1	73,4	71,9	73,5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19 ¹¹ 13 17 27	2	34,3	34,1	33,5	20,4	75,5	75,0	76,6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3	218,9	218,6	218,5	85,9	73,9	74,1	74,8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 3 4 6 30	4	46,9	46,9	47,0	37,6	35,4	35,3	36,1
	29 28	5	45,4	45,4	42,3	42,9	39,1	40,6	39,7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(18) Ácido 20(<i>R</i>)24(<i>E</i>)-3-02	xo-9ß-1	anosta-7	,24-dien-	-26-óico		SIL	VA et al	., 1990
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	26 H 22 24 CO₂Me	6	22,9	23,1	67,8	23,1	19,9	19,9	20,0
$ \begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	12^{21} 18^{20} 25^{25}	7	121,4	121,6	120,3	121,6	27,9	27,9	28,0
9 52.9 52.4 53.5 48.6 138.4 137.6 138.4 10 35.7 35.8 33.4 35.7 42.2 41.6 42.1 11 20.7 20.8 19.0 22.9 21.3 21.1 21.4 (19) 20(R)24(E)-3,23-Dioxo-9B-lanosta-7,24-dicn-26-oato de metila* SILVA <i>et al.</i> , 1990 12 33.0 33.1 32.9 33.3 24.7 24.8 24.8 13 43.9 44.1 43.9 43.7 44.5 44.4 44.5 51.0 50.0 50.1 50.0 50.1 15 34.0 34.1 34.0 35.4 30.7 30.8 30.9 16 28.2 28.4 27.8 28.7 30.7 30.6 30.7 17 52.3 51.9 52.4 54.0 50.3 50.3 (20) Acido 20(R)24(E)-6B-acetoxi-3-oxo-9B-lanosta-7,24-dien-26-oico SILVA <i>et al.</i> , 1990 18 22.3 22.4 21.3 23.8 15.6 15.7 15.6 21 18, 1 19.4 18,1 18,4 18,6 18,5 18,6 12 33.0 33.3 35.8 33,5 36.1 36.1 36.5 18.6 (21)20(R)24(E)-3a-Metoxi-9B-lanosta-7,24-dien-25-6-ico SILVA <i>et al.</i> , 1990 19 23.0 23,1 24.6 24.5 22.4 82.46 24.9 20 36.0 33.3 35.8 33,5 36.1 36.1 36.5 18.6 (21)20(R)24(E)-3a-Metoxi-9B-lanosta-7,24-dien-25-6-ioa SILVA <i>et al.</i> , 1990 18 22.3 25.9 20.1 25.8 79.0 25.5 25.7 25.6 (21)20(R)24(E)-3a-Metoxi-9B-lanosta-7,24-dien-23-6-oida-SILVA <i>et al.</i> , 1990 23 25.9 20.1 25.8 79.0 25.5 25.7 25.6 (21)20(R)24(E)-3a-Metoxi-9B-lanosta-7,24-dieno-23-6-oida-SILVA <i>et al.</i> , 1990 24 145.6 132.8 145.3 149.7 125.1 125.1 125.1 125.1 25 126.6 140.0 126.7 129.4 130.8 130.7 130.8 26 173.3 168.1 173.1 174.4 25.5 25.5 25.6 27 11.8 14.3 11.8 10.6 17.5 17.5 17.5 17.5 29 21.2 21.3 20.5 23.8 (22)2a.3B-Diacetoxi-1a-hidroxi-29-norlamosta-8.24-dieno* PROVAN; WATERMAN, 1988 20,7 20 30 27.3 27.3 27.3 25.5 30.9 14.7 14.7 14.9 20 30 27.3 27.3 27.5 20.9 20,9 20,9 20,7 (23)1a.2a.3B-Triacetoxi-29-norlamosta-8.24-dieno* PROVAN; WATERMAN, 1988 20,7 20,9 20,9 20,7 (23)1a.2a.3B-Triacetoxi-29-norlamosta-8.24-dieno* PROVAN; WATERMAN, 1988 20,7 20,9 20,9 20,7 21,1 22,4 30.9 20,7 23,1 22,3 30.7 130,8 20,7 24,1 30,8 20,7 25,1 25,5 25,6 25,7 26,6 MeC 20,9 20,7 20,9		8	148,6	148,4	152,5	148,4	130,0	129,9	130,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9	52,9	52,4	53,5	48,6	138,4	137,6	138,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 ³ ⁴ 6 ¹ ³⁰	10	35,7	35,8	33,4	35,7	42,2	41,6	42,1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	29 28	11	20,7	20,8	19,0	22,9	21,3	21,1	21,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(19) 20(<i>R</i>)24(<i>E</i>)-3,23-Diox	o-9ß-la	nosta-7,2	24-dien-2	26-oato d	le metila*	sIL sIL	.VA et al	., 1990
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 → H 22 24 ∠CO.H	12	33,0	33,1	32,9	33,3	24,7	24,8	24,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13	43,9	44,1	43,9	43,7	44,5	44,4	44,5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19 11 13 17 27	14	51,8	51,9	51,1	52,9	50,1	50,0	50,1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		15	34,0	34,1	34,0	35,4	30,7	30,8	30,9
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	0 3 4 30	16	28,2	28,4	27,8	28,7	30,7	30,6	30,7
(20) Ácido $20(R)24(E)$ - $6B$ -acetoxi- 3 -oxo- $9B$ -lanosta- $7,24$ -dien- 26 - $6ico$ SILVA <i>et al.</i> , 1990 18 22,3 22,4 21,3 23,8 15,6 15,7 15,6 19 23,0 23,1 24,6 24,5 24,8 24,6 24,9 20 36,0 33,3 35,8 33,5 36,1 36,1 36,5 18,6 21 18,1 19,4 18,1 18,4 18,6 18,5 18,6 23 25,9 202,1 25,8 79,0 25,5 25,7 25,6 (21)20(R)24(E)-3a-Metoxi-9B-lanosta- $7,24$ -dieno- $23,26$ - $6xido$ - 26 -ona* SILVA <i>et al.</i> , 1990 27 26 27 26 24 145,6 132,8 145,3 149,7 125,1 125,1 125,1 25 126,6 140,0 126,7 129,4 130,8 130,7 130,8 $4co$ 10^{4} 10^{4} 10^{4} 10^{4} $11,8$ 11,8 10,6 17,5 17,5 17,5 29 21,2 21,3 20,5 23,8 (22)2a,3B-Diacetoxi-1a-hidroxi-29-norlanosta- $8,24$ -dieno* PROVAN; WATERMAN, 1988 $4co$ 10^{4} $10^$	29 28 OAc	17	52,3	51,9	52,4	54,0	50,3	50,3	50,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(20) Ácido $20(R)24(E)-6\beta$ -	acetoxi	-3-oxo-9	ß-lanosta	a-7,24-di	en-26-ói	co SIL	.VA et al	., 1990
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18	22,3	22,4	21,3	23,8	15,6	15,7	15,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21 25	19	23,0	23,1	24,6	24,5	24,8	24,6	24,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19^{11} 12 17 24 27 19^{11} 13 17	20	36,0	33,3	35,8	33,5	36,1	36,1	36,5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		21	18,1	19,4	18,1	18,4	18,6	18,5	18,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MeO	22	34,5	53,0	34,4	40,5	36,2	36,2	36,3
$(21)20(R)24(E)-3a-Metoxi-9\beta-lanosta-7,24-dieno-23,26-óxido-26-ona* SILVA et al., 1990$ $(21)20(R)24(E)-3a-Metoxi-9p-lanosta-7,24-dieno-23,26-óxido-26-ona* SILVA et al., 1990$ $(22)2a,3B-Diacetoxi-1a-hidroxi-29-norlanosta-8,24-dieno* PROVAN; WATERMAN, 1988$ $(22)2a,3B-Diacetoxi-29-norlamosta-8,24-dieno* PROVAN; WATERMAN, 1988$ $(22)2a,3B-Triacetoxi-29-norlamosta-8,24-dieno* PROVAN; WATERMAN, 1988$ $(23)1a,2a,3B-Triacetoxi-29-norlamosta-8,24-dieno* PROVAN; WATERMAN, 1988$ $(23)1a,2a,3B-Triacetoxi-29-norlamosta-8,24-dieno* PROVAN; WATERMAN, 1988$ $(23)a_{A}B-Triacetoxi-29-norlamosta-8,24-dieno* PROVAN; WATERMAN, 1988$ $(24)a_{A}B-Triacetoxi-29-norlamosta-8,24-dieno* PROVAN; WATERMAN, 1988$ $(25)a_{A}B-Triacetoxi-29-norlamosta-8,24-dieno* PROVAN; WATERMAN, 1988$ $(24)a_{A}B-Triacetoxi-29-norlamosta-8,24-dieno* PROVAN; WATERMAN, 19$	 ✓ 1/2 H 29 28 	23	25,9	202,1	25,8	79,0	25,5	25,7	25,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(21)20(R)24(E)-3a-Metoxi-9	9ß-lano	sta-7,24-	dieno-23	,26-óxid	lo-26-ona	ו¥ SIL	.VA et al	., 1990
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21 22 24 26	24	145,6	132,8	145,3	149,7	125,1	125,1	125,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HQ 12 12^{18} 20 27^{25}	25	126,6	140,0	126,7	129,4	130,8	130,7	130,8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AcO	26	173,3	168,1	173,1	174,4	25,5	25,5	25,6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		27	11,8	14,3	11,8	10,6	17,5	17,5	17,5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AcO	28	27,9	27,9	29,2	28,7	18,3	18,3	18,5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	29	21,2	21,3	20,5	23,8			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(22)2a,3B-Diacetoxi-1a-hidr	roxi-29-	norlanos	sta-8,24-0	dieno*	PROVA	N; WAT	TERMAN	J, 1988
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 22 24 26	30	27,3	27,3	25,5	30,9	14,7	14,7	14,9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AcQ 11 12 27	MeO		52,5		56,8			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AcO	C=O			170,6		170,5	170,4	
Aco $C = O$ 20,9 $20,9$ $20,7(23)1a,2a,3B-Triacetoxi-29-norlamosta-8,24-dieno*HO 10^{2} MeCHO 10^{1} 10^{2} 20,7HO 10^{1} 10^{2} 20,7MeC 20,8 20,7MeC 20,8 20,7MeC 20,8 20,7MeC 20,7$		C=O					170,2	170,4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AcO	C=O						170,2	
(23) 1a,2a,3ß-Triacetoxi-29-norlamosta-8,24-dieno* PROVAN; WATERMAN, 1988 10^{21} 10^{22} 24^{26} Me 20,8 20,7 20,7 20,7 20,7 20,7 20,7 20,7 20,7	28	MeC			20,9		20,9	20,7	
$HO = 10^{-1} +$	(23)1a,2a,3ß-Triacetoxi-29	-norlan	nosta-8,2	4-dieno*	k	PROVA	N; WAT	FERMAN	J, 1988
$HO = 10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-$	21 22 24 26	Me					20,8	20,7	
	HO HO HO HO HO HO HO HO HO HO HO HO HO H	MeC						20,7	

 Tabela 3.1 - Dados de carbono dos triterpenos isolados e derivados da família Burseraceae no período de 1980 a 2008 (Solvente CDCl₃).

(24)1a,2a,3ß-Tri-hidroxi-29-norlanosta-8,24-dieno PROVAN; WATERMAN, 1988

20,,,21 22 23 20	C	(25)	(26)	(27)	$(28)^{a}$	(29)	(30)	$(31)^{b}$			
12 18 21 26 $-$	1	75,3	77,9	75,8	77,8	75,8	73,7	76,0			
OH ₁₉ ¹¹ H ¹³ ₁₄ ¹⁷ 27	2	72,5	67,9	71,6	71,9	71,6	36,6	73,1			
HO ,, 1 10 8	3	78,1	81,9	80,5	77,8	80,2	73,8	77,7			
HO 3 4 28	4	40,1	39,7	40,0	40,8	40,0	40,5	40,8			
30 29	5	39,3	33,4	38,9	41,5	38,9	39,5	39,8			
(25) 1a,2a,3B-Tri-hidroxici	cloarta	n-24-eno				SE	IEN et a	<i>l.</i> , 2007			
20,,,21 23 26	6	20,6	20,5	20,6	21,4	20,6	20,8	21,1			
	7	25,6	25,4	25,5	25,9	25,4	25,8	25,9			
OH ₁₉ 11 H 13 17 27	8	47,9	47,6	47,9	47,5	47,9	48,0	48,0			
	9	20,3	20,4	20,4	21,2	20,3	20,8	20,0			
	10	29,0	29,6	29,4	30,3	28,7	30,3	30,0			
30 29	11	26,1	26,0	26,1	27,3	26,0	26,1	26,1			
(26) 1a,2a,3a-Tri-hidroxicicloartan-24-eno SHEN <i>et al.</i> , 2008											
20,,21 22 23 26	12	32,7	32,7	32,7	33,7	32,6	32,8	32,9			
	13	45,1	45,1	45,2	45,9	45,1	45,1	45,4			
	14	48,8	48,8	48,8	49,8	48,7	48,7	49,1			
	15	35,7	35,6	35,7	36,2	35,7	35,7	35,8			
Ac0 4 4 6	16	28,1	28,1	28,1	28,7	28,1	28,1	28,2			
30 ₂₉	17	52,2	52,2	52,3	53,0	52,2	52,3	52,3			
(27) 3ß-Acetoxi-1a,2a-di-h	27) 3ß-Acetoxi-1a,2a-di-hidroxicicloartan-24-eno							<i>l.</i> , 2008			
²⁰ ,, ²¹ ²² , ²² ²³ ₂₆	18	18,1	18,0	18,1	18,3	18,1	18,2	18,3			
AcO 12^{18} 24^{25}	19	29,4	29,1	29,7	28,5	29,4	30,0	29,3			
HO $(19^{11} \text{ H}^{13} \text{ H}^{17})$ 27	20	35,9	35,9	35,9	36,7	35,8	35,9	36,7			
	21	18,2	18,2	18,2	18,6	18,2	18,2	18,5			
	22	36,3	36,3	36,3	37,1	36,3	36,3	39,7			
30 29	23	24,9	24,9	24,9	25,5	24,9	24,9	128,5			
(28)1a-Acetoxi-2a,3ß-di-hi	droxici	cloartan-	-24-eno			SE	IEN et a	<i>l</i> ., 2008			
²⁰ ,, ²¹ 23 26	24	125,2	125,2	125,2	126,0	125,2	125,2	137,1			
AcQ 11 12 24 25	25	131,0	130,9	130,9	131,3	130,9	131,0	81,1			
HO,,,,, 1 H ¹³ 14 27	26	17,7	17,6	17,7	17,7	17,6	17,6	25,1			
	27	25,7	25,7	25,7	25,9	25,7	25,7	25,3			
2 3' 30 29	28	19,4	19,3	19,4	19,4	19,4	19,4	19,4			
5' `4'		25,6	26,0	25,6	26,3	25,5	25,1	26,5			
(29)3B-Isovaleroiloxi-1a,2a	a-di-hid	lrox1c1clc	partan-24	-eno		SE	IEN <i>et a</i>	<i>l</i> ., 2008			
20, 21, 21 22 23 26	30	14,2	20,3	15,3	14,9	15,4	13,0	15,1			
HQ $_{40}$ 12 12 12 24 25	C=0			172,8	170,2						
H ¹³ 14 27	C=0			01.0	01.0						
	MeC			21,2	21,3						
	MeC										
(30)1a 38 Di hidroviciolog	Mec	lano				ST.	IEN of a	1 2008			
	11 tan-24 19					175.0	illin ei u	1., 2008			
²⁰ / _{1/2} ²¹ 18 23 26	1),					173,0					
	∠ 3,					43,0 20 7					
	Л,					27,1 22 A					
	+ 5'					22,4 22.5					
30 29	3					44,5					
(31) 1a,2a,3B,25-Tetra-hidr	SH	IEN et a	<i>l.</i> , 2007								

$\frac{H}{2} = \frac{1}{2} = \frac{1}$	C	(32)	(33)	(34)	(35)	(36)	(37)	(38)*
²⁰ ,,,21 18 18 23	1	75,3	75,3	35,4	38,6	39,6	33,8	34,5
HO 19 ¹¹ H ¹³ 17 27	2	72,5	72,5	29,7	27,3	34,1	26,3	23,8
HO,,, 1 10 8 14	3	77,2	77,2	181,0	78,9	217,9	71,0	77,2
	4	40,1	40,1	149,1	38,8	47,3	47,5	46,0
30 29	5	39,0	39,0	51,9	55,2	55,0	49,0	49,6
(32) 24 <i>S</i> ,25-Epoxi-1a,2a,31	3,-tri-hi	droxicic	loartano			SH	IEN et al	1., 2007
20 32 24 P	6	20,6	20,6	26,2	18,2	19,6	19,6	19,6
123, 21, 22 26	7	25,5	25,5	34,3	34,2	33,6	34,1	34,1
HO 19 ¹¹ H ¹³ 17 27	8	47,9	47,9	42,1	40,7	40,9	40,8	40,8
HO,,,, 1 10 8	9	19,9	19,9	42,3	50,3	49,8	49,7	50,5
	10	28,7	28,7	40,7	37,1	36,9	37,8	37,7
30 29	11	25,7	25,7	23,0	20,8	21,5	21,1	21,0
(33) 24 <i>R</i> ,25-Epoxi-1a,2a,3	ß,-tri-h	idroxicic	loartano			SH	IEN et al	1., 2007
29	12	32,6	32,6	26,6	25,0	25,2	25,2	25,2
30 ^{20,1} ,19	13	45,0	45,0	39,7	38,0	38,2	38,0	38,8
	14	48,6	48,6	44,8	42,7	42,9	42,9	42,9
	15	35,5	35,5	29,0	27,4	27,4	27,4	27,4
	16	27,9	27,9	37,0	35,5	35,6	35,5	35,6
24	17	52,0	52,1	44,5	42,9	42,9	43,0	43,0
(34) 3,4-Secolup-4(23),20(2	29)-die	n-3-óico			ALBUR	QUERQ	UE et al	1., 2007
29 	18	18,0	18,0	49,8	48,2	48,3	48,2	48,2
30 ^{20,1} ,19 21	19	29,3	29,3	49,5	47,9	47,9	48,0	47,9
25 11 26 17 22	20	35,6	35,8	152,4	150,8	150,7	151,0	150,9
	21	18,1	18,0	31,4	29,8	29,9	29,8	30,0
HO 3 4 27	22	32,4	32,6	41,5	39,9	40,0	40,0	40,0
24 23	23	25,4	25,5	114,9	27,9	26,6	24,1	23,8
(35) 3ß-Hidroxilup-20(29)-	eno ou	Lupeol			F	REYNOL	LDS et al	., 1986
29	24	68,6	64,8	21,6	15,3	21,0	183,0	182,9
30 21 21	25	58,3	58,0	24,8	16,0	15,8	13,4	12,4
	26	18,5	18,4	17,5	15,9	15,9	15,9	15,9
1 10 H 8 15 28	27	24,7	24,7	16,0	14,5	14,4	14,5	14,1
	28	19,2	19,2	19,5	17,9	18,0	18,0	18,0
	29	25,5	25,5	111,0	109,3	109,2	109,3	109,3
(30) 3-Oxolup-20(29)-eno (ou Lupe	enona		••••	AH	MAD; R	AHMA	N, 1994
20	30	14,2	14,2	20,8	19,2	19,3	19,3	19,3
30 19 21 12 H 19 21								170 5
1 ²⁵ ¹¹ ²⁶ ¹³ ¹⁷ ²²								170,5
3 10 H 8 15 28	MeC							21,4
HO'''' 4 H 6 HOOC 23	MeC							
(37) Ácido 3a-hidroxilup-2	0(29)-e	n-24-óic	0			CULI	OLI et al	2003
29 29	1'		-			COL		., 2000
20	2,							
3U H 12 H 17 22								
25 ¹¹ 26 14 H 28	3 4'							
	5'							
HOOC 24 23	6 '							
(38) Ácido 3a-Acetoxilup-2		CULI	OLI et al	2., 2003				

29 	С	(39)*	$(40)^{c}$	(41)	(42)	(43)	(44)	(45)*
30 20 1,19 21	1	33,9	33,6	32,5	39,6	34,5	38,7	32,6
12 H 18 17 22	2	26,4	25,7	25,3	34,7	23,6	27,2	22,7
25 1 26 14 H 28	3	71,1	73,9	76,4	216,6	73,4	78,3	78,1
	4	47,6	37,3	37,6	47,4	46,7	38,7	36,3
	5	48,9	47,5	48,2	55,6	50,6	55,2	49,2
(39) 3a-Hidroxilup-20(29)-	-en-24-0	oato de n	netila *			CULI	OLI et a	<i>l.</i> , 2003
29	6	19,8	19,3	18,4	20,1	19,6	18,3	18,1
30 30 19 21	7	34,1	33,8	34,4	33,2	33,1	32,9	32,3
	8	40,8	42,5	41,1	39,7	40,0	40,0	40,2
	9	49,7	49,4	50,4	47,4	46,8	47,7	46,6
AcO	10	37,6	40,6	37,3	37,1	37,4	36,9	36,8
HOOC 24 23	11	21,1	20,7	21,2	24,0	23,4	23,3	23,2
(40) Ácido 3a-acetoxi-27-h	hidroxil	up-20(29)-eno-24	-óico		RAHM	AN et a	<i>l.</i> , 2005
29 	12	25,2	26,7	25,3	125,7	124,5	124,3	125,3
30 ⁻²¹ ,19 21	13	38,1	37,0	38,0	139,6	139,5	139,3	137,5
25 ¹¹ 26 17 22	14	42,9	46,3	43,0	42,9	42,3	42,0	43,9
	15	27,4	29,4	27,6	28,9	26,5	28,7	33,8
HO ¹¹ 4 H 27	16	35,6	34,2	35,8	25,2	28,1	26,6	70,8
24 23	17	43,0	46,3	43,2	47,7	33,8	33,7	37,6
(41) 3a-Hidroxilup-20(29)-eno ou Epilupeol							ZA et a	<i>l.</i> , 2001
30 E	18	48,2	50,1	48,2	53,9	59,2	58,9	60,8
29	19	48,0	48,9	48,2	40,1	39,6	39,6	39,5
$11 \frac{12}{2^5} \frac{18}{2^6} \frac{17}{2} \frac{22}{2^6}$	20	151,0	150,3	151,2	39,8	39,7	39,6	39,4
	21	29,9	28,9	29,9	31,4	31,2	31,2	30,5
0 34 27	22	40,0	37,0	40,2	37,7	41,5	41,5	35,4
24 23	23	24,0	23,4	28,2	27,0	23,6	28,1	27,8
(42) 3-Oxours-12-en-28-ói	co ou Á	cido urs	ônico			IBRAH	IIM et a	<i>l.</i> , 2008
30 1	24	177,7	178,5	22,4	21,7	182,3	15,6	22,6
29	25	13,3	14,5	16,4	15,4	13,3	15,6	15,5
25^{11} 26 H 17^{22}	26	15,9	15,5	16,2	17,6	16,9	16,8	16,8
	27	14,5	59,6	14,7	24,1	23,2	23,3	24,4
AcO'''24 27	28	18,0	13,0	18,2	180,3	28,2	28,1	21,4
HOOC 23	29	109,3	109,2	109,6	17,8	17,4	17,4	17,6
(43) Ácido 3a-acetoxiurs-12	2-en-24	-óico				BELSN	IER et a	<i>l.</i> , 2000
30 	30	19,3	18,7	19,5	21,9	21,3	21,3	21,3
²⁹ 19 12 ²⁰	MeO	51,1						
	C=O		170,9			170,3		170,9
	MeC		21,0			21,3		21,2
$HO \xrightarrow{4}_{24} \xrightarrow{7}_{23} \xrightarrow{27}_{27}$								

(44) 3B-Hidroxiurs-12-eno ou a-Amirina

(45) 3a,16B-Diacetoxyurs-12-eno*

LIMA et al., 2004

LIMA et al., 2004

	C	(46)	(47)	(48)	(49)*	(50)	(51)	(52)		
29	1	38,7	38,8	33,8	34,0	33,9	33,3	38,5		
25 26 27 22	2	23,5	27,2	28,4	28,5	26,2	25,2	27,7		
	3	79,0	79,0	179,5	174,5	70,8	76,1	80,9		
HO 34 H° 27^{15}	4	39,6	38,8	147,2	147,2	47,4	37,4	42,0		
24 23	5	52,7	55,2	50,5	50,4	49,1	48,9	55,8		
(46) Ácido 3ß-hidroxiurs-1	2-en-28	8-óico ou	Ácido u	rsólico	AH	MAD; R	AHMAN	N, 1994		
30 =	6	18,3	18,3	24,3	24,3	19,7	18,3	18,6		
29	7	33,0	32,9	31,5	31,5	33,1	32,8	33,1		
$11 12 13^{18} 17 22$	8	39,1	40,1	39,7	39,7	40,0	40,2	40,0		
	9	47,6	47,0	37,8	37,7	46,8	46,8	47,7		
HO 34 H 27 13	10	36,7	36,8	39,1	39,1	37,5	36,9	36,6		
✓ 5 H ° 24 23	11	23,7	23,4	23,7	23,7	23,4	23,3	23,6		
(47) 3B,16B-Di-hidroxiurs-	-12-eno	ou Breir	na			LI	MA et al	., 2005		
30 E	12	125,8	125,1	126,0	126,1	124,5	125,2	124,2		
²⁹ 19 0	13	138,0	138,0	138,5	138,4	139,6	137,9	139,6		
$11 \\ 25 \\ 26 \\ 11 \\ 17 \\ 22 \\ 26 \\ 17 \\ 22 \\ 26 \\ 10 \\ 17 \\ 22 \\ 21 \\ 22 \\ 22 \\ 21 \\ 22 \\ 22$	14	42,0	44,0	42,4	42,4	42,3	44,2	42,7		
HO_2C 1 H 28	15	29,4	36,0	26,6	26,6	26,5	35,9	28,0		
24	16	23,3	67,0	29,6	29,6	28,1	67,0	26,6		
<u>р</u> 23	17	47,9	38,5	39,5	39,5	33,8	38,6	33,7		
(48) Acido 21-oxo-3,4-secoursa-4(23),12-dien-3-óico PARSONS <i>et al.</i> , 1993										
30	18	55,3	60,7	58,6	58,6	59,2	60,8	59,0		
²⁹ 12 19 0	19	30,6	39,6	41,8	41,8	39,7	39,6	39,5		
11 13 17 22 25 26 H 28	20	30,4	39,5	51,1	51,1	39,6	39,5	39,6		
MeO_2C , $H = 15$	21	27,3	30,5	213,0	212,9	31,3	30,5	31,2		
24 4 27 H 6	22	37,0	35,2	55,5	55,5	41,5	35,2	41,5		
23	23	23,4	28,1	113,7	113,7	24,2	28,3	22,4		
(49) 21-Oxo-3,4-secoursa-	4(23),1	2-dien-3	-oato de	metila*		PARSC	DNS et al	., 1991		
30	24	17,0	15,6	23,3	23,3	183,1	22,3	64,5		
12 19	25	17,0	15,7	19,6	19,6	13,3	15,5	16,2		
1 ²⁵ ¹ ²⁶ ¹ ²⁶ ¹ ²⁸	26	15,5	16,8	17,0	17,0	16,9	16,9	16,7		
8 15	27	24,2	24,5	23,3	23,4	23,2	24,7	23,2		
HO ¹¹¹³⁴ H 6	28	176,0	21,9	27,7	27,7	28,8	21,9	28,7		
	29	21,1	17,6	18,5	. 18,5	17,4	17,6	17,5		
(50) Acido 3a-hidroxiurs-1	2-en-24	-01CO OU	Acido Is	-boswel		CULIOLI et al., 200				
30 29	30	23,4	21,6	12,7	12,78	21,4	21,3	21,4		
12 19	C=0									
1 26 H 28 0H	MeC MeO				51,6					
HO ¹¹ A_{23}^{3} H_{6}^{1} A_{27}^{15} H_{73}^{15} A_{27}^{15}					-					
(51) 3a,16ß-Di-hidroxiurs-	12-eno					LI	MA et al	2., 2004		
30 										

SUSUNAGA et al., 2001

 $HOH_{2C_{4}} \xrightarrow{B} B,24-Di-hidroxiurs-12-eno$

30	С	(53)	(54)	(55)	(56)	(57)	(58)	(59)
29 20 21	1	39,2	33,2	38,1	38,5	41,2	37,0	36,8
211 12 13 17 22	2	33,8	25,2	23,8	27,9	69,0	24,3	25,1
	3	219,9	76,1	80,8	81,4	70,5	80,6	78,2
H8 = 15 27	4	47,4	37,3	37,5	37,8	47,5	38,6	38,4
0 ⁴ 1 1 6	5	55,2	48,9	55,1	55,3	54,9	51,2	50,6
(53) 3-Oxours-12-eno ou a-A	miren	iona			(CARVAL	HO et al	., 1998
30	6	18,3	18,2	18,0	18,2		18,2	17,8
29 20 21	7	32,5	32,8	32,7	32,5	31,0	32,0	31,6
11 1213 17 22	8	49,6	40,1	39,3	40,1	42,4	40,7	40,1
	9	46,8	47,5	47,3	47,7	49,0	154,2	154,0
HO, 34 H8 27	10	37,0	36,9	36,9	36,8	38,8	37,9	38,1
24 23	11	17,0	23,2	23,4	23,4	24,2	115,5	114,8
(54) 3a-Hidroxiurs-12-eno ou	3-Ep	i-a-amiı	rina			TAN	AAI et al	., 1989
30 	12	124,3	124,4	125,5	124,4	129,5	123,0	122,5
29	13	139,8	139,5	137,8	139,7	142,5	141,4	140,7
251 26 117 22	14	42,3	42,1	41,7	42,1	43,4	43,1	42,6
	15	29,1	26,5	27,9	27,9	28,0	28,2	27,7
AcQ 3 4 H 27 15	16	26,5	28,1	23,9	26,6	26,5	26,1	25,6
24 23	17	34,1	33,7	47,8	32,9	34,0	33,7	33,1
(55) Ácido 3ß-acetoxiurs-12-e	en-28-	-óico			AH	IMAD; R	AHMAN	J, 1994
30 	18	59,1	59,0	52,3	59,1	58,5	57,3	56,8
29	19	39,6	39,6	38,8	39,7	37,0	39,0	38,5
25^{11} 26^{12} 17^{22} 22^{21}	20	39,4	39,6	38,7	39,6		39,5	38,9
	21	31,2	31,2	30,4	31,3	29,0	31,2	30,7
7' 3 H ° 27 ¹⁵ C-H-CH-CO	22	42,0	41,5	36,5	41,6	39,5	41,4	40,9
24 23	23	28,0	28,2	27,9	28,1	14,0	28,2	28,1
(56) 3ß-Fenilacetoxiurs-12-en	0					LI	MA et al	., 2004
30	24	15,5	22,3	16,9	15,7	181,6	17,4	16,8
29 19	25	16,0	15,4	15,3	16,8	21,5	17,6	17,1
25 1 26 17 22	26	17,0	16,8	16,5	16,9	14,5	22,2	21,6
HO,,,, 1 15	27	23,5	23,3	23,4	23,3	23,0	25,5	24,9
	28	28,0	28,7	184,0	28,8	18,0	28,7	29,1
	29	21,5	. 17,4	16,8	17,5	23,5	16,8	17,1
(57) Acido 2a,3a-di-hidroxiur	s-12-	en-24-ó	100			MAHAJ	AN et al	., 1995
29.	30	23,6	21,3	21,0	21,4	17,0	21,5	20,9
12 to 19	eU			1707	171.2		171.0	
$1 \frac{25}{1} \frac{12}{26} \frac{13}{14} \frac{17}{28} \frac{22}{28} \frac{1}{26} \frac{13}{14} \frac{17}{28} \frac{22}{28} \frac{1}{28} \frac$	=0			170,7	1/1,3		1/1,0	
3 98 15 C	=0 [eC			21.1			21.2	
AcO H 6	1,			21,1	134.5		21,5	
(58) 3B-Acetoxiursa-9(11) 12:	∎ diena	1			154,5	LI	MA et al	2004
30	2,	<i>,</i>			1293			., 2001
29	3 ,				128.5			
11 12 13 17 22	4'				126.9			
	5'				128.5			
	6' 7				129.3			
HU H_{24} H_{23}	<i>1</i> ′ 8 ′				42.1 171 3			
(59) 3B-Hidroxiursa-9(11),12-)			1/1.5	MA	IA et al	., 2000	

Dados de carbono dos triterpenos isolados e derivados da família Burseraceae no período de 1980 a 2008 (Solvente CDCl₃)

30	C	(60)*	(61)	(62)	(63)	(64)	(65)	(66)
29	1	35.9	33.3	33.5	40.1	41.4	40.9	40.3
12 19 19 17 22	$\frac{1}{2}$	23.1	24 3	25.4	34.2	343	27.4	34.2
	3	79 5	116.4	76.0	218.0	217.6	78.7	217.9
9 8 15 OAc	4	36.8	47.0	37.5	210,0 47.6	217,0 47.7	393	47.6
AcO	5	50,0	57.4	48.8	55 3	55.6	55 4	55.2
(60) 36,168-Diacetoxiursa-	9(11),12	2-dieno*	57,4	40,0	55,5	LI	MA et al	<i>l.</i> , 2004
30	6	173	19.5	18.2	19.7	197	18.3	19.6
29	7	30.8	31.9	35.2	32.4	33 3	33.7	33.0
12 18 17 22	8	42.2	43.4	43.5	43.0	43.1	43.6	43.2
25 26 H 28	9	153 1	152.6	55.8	47.8	54 4	55.3	47.2
	10	37.5	39.0	38.2	37.4	37.6	38.1	37.3
HOOC 24 H 6	11	114.6	123.1	68 4	81.8	68 7	68.2	81 7
(61) Ácido 3a-acetoxiurs-9	(11), 12	-dien-24	-óico	00,1	01,0	BELSN	JER et a	<i>l.</i> , 2000
30 =	12	122,1	141.5	128,7	124,8	129,0	129,2	125,4
29	13	137,7	141,5	142,9	146,1	142,8	141,3	144,2
HO, 11 12 13 17 22	14	41.8	40.5	42,2	42,0	42,5	44,3	44,2
	15	30,7	26,2	27,9	27,9	28,0	36,0	35,8
	16	69,9	28,3	27,7	26,3	26,6	66,7	66,7
110 F 6 24 23	17	36,3	33,7	33,6	33,8	33,8	38,5	38,5
(62) 3a,11a-Di-hidroxiurs-	,	,	Ĺ	MA et a	<i>l.</i> , 2004			
30 	18	57,8	57,4	58,1	58,7	58,7	59,9	60,3
29	19	38,2	39,0	39,4	39,4	39,4	39,5	39,4
HO 11 12 13 17 22	20	37,5	41,3	39,3	39,3	39,5	39,1	39,2
	21	29,5	31,2	31,1	31,1	31,1	30,4	30,4
H ⁸ = 15 27	22	34,4	43,4	41,3	41,3	41,3	35,2	35,0
24 23 6	23	27,1	23,8	28,7	26,5	26,9	28,4	26,0
(63) 11B-Hidroxi-3-oxours	-12-eno)				LI	MA et a	<i>l.</i> , 2005
30 =	24	15,7	177,3	22,4	21,4	21,2	15,7	21,4
29	25	17,0	23,4	16,6	18,1	16,2	17,0	18,0
HO ₁₁ ,11 12 13 17 22	26	21,7	21,8	18,0	16,2	17,5	18,0	16,2
	27	24,4	17,4	23,3	22,0	23,0	24,3	23,2
0 34 27 3	28	22,2	28,7	28,6	28,5	28,7	21,9	21,9
24 23	29	16,5	17,4	17,5	17,5	18,0	17,8	17,7
(64) 11a-Hidroxi-3-oxours	bxours-12-eno LIMA et a							l., 2005
30 	30	21,2	21,5	21,3	21,3	21,5	21,5	21,2
29 19	C=O	169,8	170,2					
HU _{1,11} 12 13 17 22 25 26 11	C=O	170,0	21,2					
	MeC	20,3						
HO 34 H 27	MeC	20,3						

Dados de carbono dos triterpenos isolados e derivados da família Burseraceae no período de 1980 a 2008 (Solvente $CDCl_2$)

(65) 3B,16B,11a-Tri-hidroxiurs-12-eno

(66) 11B,16B-Di-hidroxi-3-oxours-12-eno

LIMA et al., 2004

LIMA et al., 2005

30 E	C	(67)	(68)	(69)	(70)	(71)	(72)	(73)		
29	1	40,0	38,6	38,6	34,6	39,8	34,3	38,2		
0,11,12 17 22	2	34,4	27,2	23,6	23,5	28,2	26,6	23,4		
	3		78,6	80,6	73,2	78,1	70,7	80,0		
\dot{H}^{8} $\dot{\Xi}^{15}$	4	47,9	37,2	38,6	23,8	39,9	47,5	37,5		
	5	55,6	54,9	55,0	50,4	55,6	49,2	55,1		
(67) 3,11-Dioxours-12-eno	ou Urs	-12-en-3,	11-diona	ι	AHMAD; RAHMAN, 1994					
30 Ξ	6	19,0	17,5	18,8	18,7	18,0	19,0	17,2		
29	7	32,4	33,1	33,0	32,8	33,6	31,3	33,9		
O 11 12 13 17 22 25 26 1 17 22	8	43,9	43,7	43,7	43,0	45,1	44,1	42,2		
1 1 1 1 1 1 1 1 1 1	9	60,9	61,4	61,4	60,3	62,0	60,8	49,0		
HO^{-3}_{4} H^{0}_{27} H^{-15}_{27}	10	36,8	37,2	37,0	37,4	37,8	37,7	36,9		
24 23	11	199,2	199,8	199,6	199,2	199,6	199,8	29,0		
(68) 3B-Hidroxi-11-oxours	-12-en-2	28-oato d	le metila		SYAM	IASUNE	OAR et al	l., 1991		
30 =	12	130,5	130,6	130,6	130,5	131,1	130,6	69,1		
29	13	165,5	162,8	162,7	164,8	163,7	165,4	94,4		
O 11 12 13 17 22	14	45,1	44,7	44,7	43,7	44,4	45,3	43,0		
	15	29,8	28,4	28,3	27,2	29,1	33,3	27,6		
$A = \frac{3}{4} + \frac{1}{27} + \frac{1}{27} + \frac{1}{27}$	16	27,4	24,0	23,9	27,5	24,6	27,6	22,3		
ACC / H 6 24 23	17	34,3	47,7	47,6	33,9	47,8	34,1	45,2		
(69) 3ß-Acetoxi-11-oxours	SYAM	IASUNE	OAR et al	l., 1991						
30 E	18	59,2	52,7	52,8	59,0	53,6	59,4	52,1		
29	19	39,4	39,1	38,0	39,3	38,8	39,7	38,2		
0 12 18 17 22 25 20 1 17 22	20	39,4	39,1	38,0	39,3	39,9	39,7	38,2		
	21	31,0	30,2	30,2	30,9	30,8	27,7	30,5		
AcO ¹¹ 3 4 = 27 15	22	41,0	36,0	36,0	40,9	36,7	41,3	31,2		
HOOC 23	23	26,5	28,2	28,1	23,8	28,8	24,7	27,3		
(70) Ácido 3a-acetoxi-11-c	cetours-	12-en-24	-óico	-	-	BELSN	NER et al	1., 2000		
30 Ξ	24	21,6	15,7	16,6	181,2	16,5	182,9	16,5		
29	25	15,9	16,2	16,2	13,2	16,7	13,6	16,5		
0 ¹² ¹³ ¹⁷ ²² 25 ²⁶ H CO H	26	18,5	18,9	20,9	18,4	19,4	18,7	18,3		
	27	20,6	21,0	20,9	20,5	21,3	20,9	19,5		
HO 34 27 10	28	29,0	177,2	177,0	28,8	179,3	21,5	178,9		
24 23	29	17,6	17,0	17,0	17,4	17,2	17,8	17,0		
(71) 11-Oxo-3ß-hidroxiuor	s-12-en	-28-óico			SI	EEBACH	IER et al	l., 2003		
30 E	30	21,3	21,0	21,2	21,1	21,1	29,3	19,5		
29	MeO		51,8	51,7						
$ \begin{array}{c} 0 \\ 25 \\ 26 \end{array} $ $ \begin{array}{c} 12 \\ 13 \\ 17 \\ 22 \end{array} $ $ \begin{array}{c} 22 \\ 26 \end{array} $	C=O			170,8	170,2			170,8		
	MeC			21,2	21,3			21,4		
HO ^{1/24} 5 H 6 HOOC ²³										

(72) 3a-Hidroxi-11-oxiurs-12-en-24-óico

(73) 3ß-Acetoxi-12ß-hidroxiurs-28,13-olide

BADRIA et al., 2003

SYMASUNDAR; MALLAVARAPU, 1995

30 Ξ	C	(74)	(75)	(76)	(77)	(78)*	(79)	(80)	
	1	37,5	38,2	38,4	38,6	38,1	39,3	33,1	
	2	23,2	26,4	27,0	27,2	27,1	34,2	25,2	
	3	80,4	78,5	81,4	79,0	78,8	217,0	76,1	
AcO 3 4 1 27 15	4	37,7	38,1	37,8	38,8	38,7	47,4	37,3	
4 ≤ H 6 24 23	5	54,5	54,7	55,3	55,2	55,1	55,3	48,9	
(74) 3ß-Acetoxi-11a,12a-ej	poxiurs	-28,13-0	lide	SYMAS	SUNDAR	; MALLA	VARAPU	J, 1995	
30	6	17,3	17,9	18,2	18,4	18,2	19,5	18,3	
12 20	7	31,3	30,7	32,5	32,6	32,6	32,1	32,6	
25 26 17 17 22 26 17 22 22	8	41,2	39,3	40,1	39,8	39,8	39,1	40,1	
	9	51,2	47,2	47,6	47,6	46,8	46,9	46,6	
HO 27 10	10	36,3	36,4	36,8	36,9	37,2	36,8	36,9	
24 23	11	54,5	23,0	23,7	23,6	23,4	23,5	23,5	
(75) 3ß-Hidroxiolean-12-er	10 ou ß-	Amirina				M	AIA et al.	, 2000	
30 29	12	56,1	121,2	121,7	122,3	122,2	122,4	122,4	
	13	88,8	144,6	145,0	144,2	143,4	143,6	143,5	
$11 \frac{12}{25} 13 \frac{17}{26} 22$	14	41,2	41,6	41,8	41,7	43,7	41,7	43,9	
	15	26,8	27,6	26,2	25,6	35,5	27,7	35,6	
PhCH ₂ CO	16	22,6	26,1	25,9	22,0	65,9	22,9	66,1	
2 1 5 H 6 24 23	17	45,0	31,9	32,8	36,9	36,8	46,6	37,4	
(76) 3ß-Fenilacetoxiolean-1	12-eno	LIMA et al., 20							
30 29	18	60,5	45,1	47,3	42,3	49,0	41,0	49,1	
19 20 21	19	37,2	46,3	46,8	46,5	46,5	45,8	46,6	
25 26 2011 201	20	40,2	30,5	31,1	31,0	30,8	30,7	30,9	
2 10 14 H ₁₆ CH ₂ OH	21	30,4	33,2	34,8	34,1	34,1	33,8	34,2	
3 4 5 7 27	22	31,3	36,6	37,3	31,0	30,5	32,4	30,6	
	23	27,7	27,8	28,1	28,1	28,0	21,4	28,3	
(77) 3a,28-Di-hidroxiolean	-12-enc	o ou Eritr	odiol		AH	MAD; R	AHMAN	, 1994	
30	24	16,2	15,1	15,5	15,5	15,4	26,4	22,3	
12 20	25	16,2	15,1	16,6	15,5	15,3	15,0	15,3	
125 26 17 22 28	26	17,3	16,3	16,8	16,7	16,7	17,0	16,9	
	27	20,2	25,5	25,9	25,9	27,0	25,8	27,3	
	28	179,0	27,6	28,4	69,7	21,3	184,1	21,5	
24 23	29	17,3	32,8	33,8	33,2	33,1	33,1	33,3	
(78) 3 <i>B</i> ,16 <i>B</i> -Di-hidroxiolea	n-12-en	io ou Ma	niladiol				YI et al.	, 1988	
30 .29	30	19,5	22,7	33,7	23,6	23,8	23,6	23,9	
19 ²⁰ 21	C=O	170,6		171,3					
1 25 26 L CO ₂ H	MeC	21,2							
	1'			134,5					
0 3 4 7 27	2'			129,3					
24 23	3'			128,5					
(79) Acido 3-oxoolean-12-6	en-28-ó	ico ou A	cido olea	anônico		ABF	RAS et al.	, 2007	
³⁰ ²⁹	4'			126,9					
12 19	5'			128,5					
11 - 13 - 17 - 22 25 - 26 - H - 28	6'			129,3					
	7'			42,1					
HO HO HO HO HO HO HO HO H	8'			171,3					
(80) 3a,16ß-Di-hidroxiolean-12-eno						LI	MA et al.	, 2004	

30 29	C	(81)*	(82)	(83)	(84)	(85)*	(86)	(87)		
19	1	32,4	33,0	33,6	39,2	33,8	38,2	34,3		
25 26 17 22	2	22,7	25,2	26,2	33,8	28,3	26,6	23,6		
	3	78,1	76,1	70,8	219,9	179,5	80,9	73,6		
AcO ¹¹¹ 4 27	4	36,3	37,3	47,4	47,4	147,2	37,7	46,7		
24 23	5	49,2	48,9	49,1	55,2	50,4	55,2	50,6		
(81) 3a,16B-Diacetoxiolean-12-eno* LIMA <i>et al.</i> , 2004										
³⁰ , ²⁹	6	18,1	18,3	19,7	18,3	24,3	18,2	16,6		
12 20	7	31,9	32,5	32,7	32,5	31,3	32,6	32,8		
	8	40,0	39,9	39,8	39,6	39,4	38,4	39,8		
	9	46,6	47,3	46,7	46,8	37,8	47,5	46,8		
HO, 13 27 10	10	36,8	37,0	37,6	37,0	39,0	36,8	37,4		
24 23	11	23,4	23,4	23,5	17,0	23,7	23,6	23,5		
(82) 3a-Hidroxiolean-12-eno ou 3-Epi-ß-amirina TAMAI <i>et al.</i> 1989										
30 29	12	122,6	121,7	121,7	121,4	123,4	121,6	121,8		
12 [19]	13	142,9	145,1	145,1	145,2	142,4	145,2	139,0		
11 + 13 + 17 + 22 25 + 26 + 1 + 22	14	43,7	41,7	41,9	41,5	42,1	41,7	41,9		
	15	33,6	26,1	26,0	26,8	25,8	26,1	26,1		
HO 34 27 13	16	69,8	26,9	26,9	26,8	29,3	26,9	27,0		
HOOC 23	17	36,5	32,4	32,5	32,4	38,8	32,9	32,5		
(83) 3a-Hidroxiolean-12-e	n-24-ói	co ou Áci	ido a-bo	swélico		CULI	OLI et al	l., 2003		
³ , ²⁹	18	49,9	47,2	47,3	47,2	47,0	47,1	47,3		
19 ²⁰ 21	19	46,5	46,8	46,7	46,7	48,0	46,8	46,9		
25 1126 1 17 22	20	30,8	31,0	31,1	31,0	45,5	31,0	31,0		
	21	34,3	34,7	34,7	34,8	216,0	34,7	34,7		
0 3 4 7 27	22	30,8	37,1	37,1	37,5	51,6	37,1	37,1		
24 23	23	27,8	28,2	24,2	28,4	114,0	28,0	23,7		
(84) 3-Oxoolean-12-eno ou	ı ß-Ami	irenona			(CARVA	LHO et a	ıl. 1998		
30 29	24	22,6	22,3	183,2	16,0	23,3	15,5	182,2		
12 19 0	25	15,3	15,2	13,1	15,7	19,5	15,7	13,2		
$3 \qquad 25 \qquad 26 \qquad H \qquad 22$	26	16,8	16,8	16,7	16,1	16,9	16,8	16,8		
HO_2C $H = 15$	27	27,0	26,0	25,9	26,3	25,6	25,9	25,9		
24 4 27 H 6	28	21,9	28,4	28,4	28,7	27,7	28,3	28,4		
23	29	33,0	33,3	33,3	33,5	24,5	33,3	23,6		
(85) Ácido 21-oxo-3,4-sec	ooleana	-4(23),12	2-dien-3-	óico		PARSC	ONS et al	l., 1991		
30 .29	30	23,8	23,6	23,7	23,6	25,4	23,6	33,3		
12 18	C=O	170,9					170,9			
25 + 11 + 17 + 22 + 28 + 17 + 17 + 18 + 17 + 18 + 17 + 18 + 17 + 18 + 17 + 18 + 17 + 18 + 17 + 18 + 18	MeC	21,2					38,4	21,3		
Aco 4 H 6										

Dados de carbono dos triterpenos isolados e derivados da família Burseraceae no período de 1980 a 2008 (Solvente CDCl₃)

(86) 3ß-Acetoxiolean-12-eno ou 3ß-Acetoxi-ß-amirina

BANDEIRA et al., 2007

(87) 3a-Acetilolean-12-en-24-óico

BELSNER et al., 2000

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1980 a 2008 (Solvente CDC	J3)							
$ \begin{array}{c} 1 & 37,9 & 38,5 & 38,0 & 40,3 & 41,1 & 38,7 & 36,6 \\ \hline \\ 1 & 37,0,0 & 27,2 & 28,5 & 34,2 & 32,8 & 23,4 & 27,7 \\ 3 & 37,8 & 79,0 & 80,8 & 217,8 & 217,4 & 80,5 & 78,2 \\ \hline \\ 1 & 38,0,0,6 & 5 & 47,8 & 55,1 & 55,2 & 55,3 & 54,9 & 54,9 & 50,6 \\ \hline \\ (88) 2a,36,23-Triacetoxiolean-12-eno* FOURIE; SNYCKERS,1989 \\ \hline \\ 1 & 38,0,0,6 & 7 & 32,3 & 32,5 & 32,4 & 32,6 & 32,8 & 32,6 & 31,5 \\ \hline \\ 1 & 1 & 23,2 & 23,3 & 32,5 & 32,4 & 32,6 & 32,8 & 32,6 & 31,5 \\ \hline \\ 1 & 1 & 23,2 & 23,6 & 22,8 & 82,0 & 67,9 & 201,4 & 115,2 \\ \hline \\ 1 & 1 & 23,2 & 23,6 & 22,8 & 82,0 & 67,9 & 201,4 & 115,2 \\ \hline \\ 1 & 1 & 23,2 & 23,6 & 22,8 & 82,0 & 67,9 & 201,4 & 115,2 \\ \hline \\ 1 & 1 & 23,2 & 23,6 & 22,8 & 82,0 & 67,9 & 201,4 & 115,2 \\ \hline \\ 1 & 1 & 24,1 & 122,3 & 122,5 & 121,7 & 125,5 & 127,9 & 120,2 \\ \hline \\ 1 & 1 & 12,4 & 142,4 & 143,5 & 42,3 & 43,2 & 45,3 & 42,2 \\ \hline \\ 1 & 1 & 15 & 28,2 & 25,5 & 27,6 & 27,9 & 26,4 & 26,4 & 26,7 \\ \hline \\ 1 & 1 & 41,7 & 41,7 & 41,5 & 42,3 & 43,2 & 45,3 & 42,2 \\ \hline \\ 1 & 1 & 15 & 28,2 & 25,5 & 23,5 & 26,6 & 26,0 & 26,4 & 26,7 \\ \hline \\ 1 & 1 & 41,7 & 41,7 & 41,5 & 42,3 & 43,2 & 45,3 & 42,2 \\ \hline \\ 1 & 1 & 1 & 23,2 & 23,5 & 23,5 & 23,5 & 26,6 & 26,0 & 26,4 & 26,7 \\ \hline \\ 1 & 1 & 1 & 23,2 & 23,5 & 23,5 & 23,5 & 26,6 & 26,0 & 26,4 & 26,7 \\ \hline \\ 1 & 1 & 1 & 1 & 22,2 & 22,5 & 23,5 & 23,5 & 26,6 & 26,0 & 26,4 & 26,7 \\ \hline \\ 1 & 1 & 1 & 1 & 22,2 & 22,6 & 31,0 & 32,4 & 36,9 & 36,8 & 36,4 & 36,5 \\ \hline \\ 1 & 1 & 1 & 1 & 1 & 23,2 & 23,6 & 33,2 & 33,1 & 33,2 & 33,1 & 32,3 \\ \hline \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	30 29	С	(88)*	(89)	(90)	(91)	(92)	(93)	(94)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12 18	1	37,9	38,5	38,0	40,3	41,1	38,7	36,6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25^{1} 26 H 22 AcO 1 H 28	2	70,0	27,2	28,5	34,2	32,8	23,4	27,7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ACO., 98 15	3	78,7	79,0	80,8	217,8	217,4	80,5	78,2
$ \frac{2}{4} \frac{91}{5} \frac{91}{6} \frac{91}{6} \frac{5}{24} \frac{47}{3} \frac{55}{2} \frac{55}{2} \frac{55}{3} \frac{54}{3} \frac{54}{9} \frac{50}{9} \frac{50}{9} \frac{51}{3} \frac{54}{9} \frac{9}{50} \frac{54}{9} \frac{9}{50} \frac{50}{3} \frac{54}{9} \frac{9}{50} \frac{54}{9} \frac{9}{50} \frac{51}{3} \frac{51}{5} \frac{51}{5} \frac{55}{5} \frac{51}{5} \frac$	AcO 4 5 6	4	40,2	39,0	37,7	47,7	47,7	38,0	38,5
	²⁴ CH ₂ OAc	5	47,8	55,1	55,2	55,3	54,9	54,9	50,6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(88) 2a,3B,23-Triacetoxiol	ean-12-	eno*			FOU	RIE; SN	YCKER	S,1989
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 29	6	18.1	18.3	18.1	19.7	19.7	18.4	17.8
$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	×	7	32.3	32.5	32.4	32.6	32.8	32.6	31.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 11 12 18 17 22	8	39.7	393	39.2	43.2	41 9	43 3	37.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 2 26 H CH_2OH 28 28 28 28 21 28 21 21 21 21 21 21 21 21	ġ	47 9	47 5	47.6	48 5	55 5	61.5	153.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	33.8	36.9	36.9	37.5	37.6	36.9	100,0
(89) 3B, 28-Di-hidroxiolean-12-eno ou Erritidol PAULETTI <i>et al.</i> , 2002 PAULETTI <i>et al.</i> , 2005 PAULETTI <i>et al.</i> , 20	HO' X H 6	10	22,0	23.6	20, 9	82.0	67 Q	201.4	115.2
(b) 36, 20-D1-Indio Noticul 12-E10 of Lumbon 12 124,1 122,3 122,5 121,7 125,5 127,9 120,2 13 145,4 144,2 143,5 152,8 149,0 170,2 146,5 13 145,4 144,2 143,5 152,8 149,0 170,2 146,5 14 41,7 41,7 41,5 42,3 43,2 45,3 42,2 25,5 27,6 27,9 26,4 26,4 25,1 16 23,5 23,5 23,5 26,6 26,0 26,4 26,7 17 47,4 36,9 46,5 33,1 32,3 32,3 31,5 (90) 3B-Acetoxiolean-12-en-28-6ico $ASRES \ et\ al., 1998$ 41,9 42,3 40,8 47,0 46,7 47,5 45,1 $10 \frac{2^{29}}{2^{29}}$ 19 44,2 46,4 45,4 46,7 46,3 45,0 46,4 45,4 46,7 46,3 45,0 46,4 45,4 34,6 34,6 34,4 34,1 22 32,6 31,0 32,4 36,9 36,8 36,4 36,5 23 65,5 28,1 28,0 26,9 26,7 28,0 28,2 (91) 11B-Hidroxi-3-oxoolean-12-eno $UIMA\ et\ al., 2005$ $41 \frac{2^{29}}{2^{29}}$ 24 22,1 15,5 16,6 16,2 17,9 17,3 20,4 $10 \frac{2^{29}}{2^{29}}$ 25 17,2 15,5 17,2 18,0 16,2 15,7 19,5 27 25,8 25,9 25,9 24,7 26,1 23,5 24,9 27 25,8 25,9 25,9 24,7 26,1 23,5 24,9 $28 21,7 69,8 184,2 28,5 28,7 28,7 27,7 29 23,6 33,2 33,6 33,2 33,0 33,0 23,2 (92) 11a-Hidroxi-3-oxoolean-12-eno UIMA\ et\ al., 200540 \frac{2^{49}}{19} \frac{2^{49}}{2^{16}} \frac{26}{20} 170,6170,9$ 170,6 170,9 170,6 190,98 120,0 190,98	(89) 36 28-Di-hidrovioleau	11 n_12_еп	23,2	z3,0 tidol	22,0	82,0		201,4 TTL et al	2002
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10-12-Ch	10 00 Eur	100.2	100 5	101 7	105 5	107 0	120.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30	12	124,1	122,3	122,5	121,/	125,5	127,9	120,2
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	12 13 (17) 22	13	145,4	144,2	143,5	152,8	149,0	1/0,2	146,5
$\begin{array}{c} 15 & 28.2 & 25.5 & 27.6 & 27.9 & 26.4 & 26.4 & 26.7 \\ 23 & 23 & 17 & 47.4 & 36.9 & 46.5 & 33.1 & 32.3 & 32.3 & 31.5 \\ \hline (90) 38-Acetoxiolean-12-en-28-6ico \\ ASRES et al., 1998 \\ \hline (91) 38-Acetoxiolean-12-en-28-6ico \\ ASRES et al., 1998 \\ \hline (91) 116-Hidroxi-3-oxoolean-12-eno \\ \hline (92) 11a-Hidroxi-3-oxoolean-12-eno \\ \hline (92) 11a-Hidroxi-3-oxoolean-12-eno \\ \hline (93) 38-Acetoxi-11-oxoolean-12-eno \\ \hline (94) 38-Acetoxi-11-oxoolean-12-eno \\ \hline (95) $		14	41,7	41,7	41,5	42,3	43,2	45,3	42,2
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	3 10H 8 10 3 10H 8 10 27 15	15	28,2	25,5	27,6	27,9	26,4	26,4	25,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AcO H 6	16	23,5	23,5	23,5	26,6	26,0	26,4	26,7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24 23	17	47,4	36,9	46,5	33,1	32,3	32,3	31,5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(90) 3B-Acetoxiolean-12-e	n-28-ói	co				ASI	RES et al	., 1998
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	18	41,9	42,3	40,8	47,0	46,7	47,5	45,1
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $		19	44,2	46,4	45,4	46,7	46,3	45,0	46,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 13 17 22 25 26 17 22	20	31,1	31,0	30,7	31,1	31,0	31,0	30,5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 10-18 H 28	21	31,3	34,1	33,7	34,6	34,6	34,4	34,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 H 27 15	22	32,6	31,0	32,4	36,9	36,8	36,4	36,5
(91) 118-Hidroxi-3-oxoolean-12-eno $IIMA et al., 2005$ $H_{0}^{3} \xrightarrow{29}_{24} \xrightarrow{24}_{25} 17,2 15,5 16,6 21,5 21,5 16,6 15,1 15,5 17,2 18,0 16,2 15,7 19,5 17,2 18,0 16,2 15,7 19,5 17,2 18,0 16,2 17,9 17,3 20,4 15,5 17,2 18,0 16,2 17,9 17,3 20,4 15,5 17,2 18,0 16,2 17,9 17,3 20,4 15,5 17,2 18,0 16,2 17,9 17,3 20,4 15,5 17,2 18,0 16,2 17,9 17,3 20,4 15,5 17,2 18,0 16,2 17,9 17,3 20,4 15,5 17,2 18,0 16,2 17,9 17,3 20,4 15,5 17,2 18,0 16,2 17,9 17,3 20,4 15,5 17,2 18,0 16,2 17,9 17,3 20,4 15,5 17,2 18,0 16,2 17,9 17,3 20,4 15,5 17,2 18,0 16,2 17,9 17,3 20,4 15,5 16,6 16,2 17,9 17,5 15,5 17,2 18,0 16,2 15,5 16,6 16,2 17,9 17,5 15,5 17,2 18,0 16,2 15,5 16,2 17,5 15,5 17,2 18,0 16,2 15,5 16,2 17,5 15,5 17,2 18,0 16,2 15,5 15,5 15,5 15,5 15,5 15,5 15,5 15$	24 23	23	65,5	28,1	28,0	26,9	26,7	28,0	28,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(91) 11ß-Hidroxi-3-oxoole	an-12-e	no	,	,	,	Ĺ	MA et al	., 2005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3Q 29	24	22.1	15 5	16.6	21.5	21.5	16.6	15.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	25	17.2	15,5	17.2	18.0	16.2	15.7	19.5
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 25 & 28 \\ \end{array} \\ \begin{array}{c} 27 & 25 \\ \end{array} \\ \begin{array}{c} 24 \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \begin{array}{c} 24 \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \begin{array}{c} 27 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 27 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 27 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 27 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 27 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 27 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 27 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 27 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 27 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 27 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 27 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 27 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 28 \\ \end{array} \\ \begin{array}{c} 217 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 28 \\ \end{array} \\ \begin{array}{c} 217 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 28 \\ \end{array} \\ \begin{array}{c} 217 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 25 \\ \end{array} \\ \begin{array}{c} 29 \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \begin{array}{c} 29 \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \begin{array}{c} 29 \\ \end{array} \\ \begin{array}{c} 29 \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \begin{array}{c} 29 \\ \end{array} \\ \begin{array}{c} 29 \\ \end{array} \\ \begin{array}{c} 23 \\ 23 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 23 \\ 23 \\ \end{array} \\ \begin{array}{c} 23 \\ 23 \\ \end{array} \\ \begin{array}{c} 23 \\ 23 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 23 \\ 23 \\ \end{array} \\ \begin{array}{c} 23 \\ 23 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 23 \\ 23 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 23 \\ 23 \\ \end{array} \\ \begin{array}{c} 23 \\ 23 \\ \end{array} \\ \end{array} \\ $	HO, 12 13 17 22	26	16.9	16.7	16.6	16.2	17.9	173	20.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25 26 H 28	27	25.8	25.9	25.9	24.7	26.1	23 5	20,4 24.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3 10 H^8 \frac{10}{27} \frac{15}{15}$	28	23,0	69.8	184.2	24,7	20,1 28.7	23,5	27,7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20	21,7 23.6	33.2	33.6	20,5	20,7	20,7	27,7
$(92) \text{ Inta-Inducxi-5-oxobical-II-2-cno} \qquad \text{LIMA et al., 2005} \\ \begin{array}{c} 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\$	(97) 11 ₂ -Hidrovi-3-ovoole	- <u>-</u> - an_12_e	23,0	55,2	55,0	55,2	55,0 TT	$M\Lambda$ at a	23,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(72) 11a-111d10A1-3-0X001C	an-12-0	22.1	1 2 2	025	226	22 C	325	2005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	30	33,1 170 (23,3	23,5	23,0	23,0	23,5	32,6
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 25 \\ 1 \\ 1 \\ 24 \end{array} \end{array} \end{array} \\ \begin{array}{c} 28 \\ 24 \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} C=0 \\ 170,2 \\ MeC \\ 20,6 \\ MeC \\ 20,7 \end{array} \end{array} \\ \begin{array}{c} 21,3 \\ 21,2 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 21,3 \\ 21,2 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 1 \\ 21,2 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 1 \\ 22 \\ 23 \\ \end{array} \\ \begin{array}{c} 1 \\ 22 \\ 23 \\ \end{array} \\ \begin{array}{c} 1 \\ 22 \\ 23 \\ \end{array} \\ \begin{array}{c} 1 \\ 22 \\ 23 \\ \end{array} \\ \begin{array}{c} 1 \\ 22 \\ 23 \\ \end{array} \\ \begin{array}{c} 1 \\ 22 \\ 23 \\ \end{array} \\ \begin{array}{c} 1 \\ 22 \\ 23 \\ \end{array} \\ \begin{array}{c} 1 \\ 22 \\ 23 \\ \end{array} \\ \begin{array}{c} 1 \\ 22 \\ 23 \\ 15 \\ 27 \\ 28 \\ \end{array} \\ \begin{array}{c} 1 \\ 22 \\ 22 \\ 23 \\ \end{array} \\ \begin{array}{c} 1 \\ 22 \\ 22 \\ 23 \\ \end{array} \\ \begin{array}{c} 1 \\ 22 \\ 22 \\ 23 \\ 15 \\ 27 \\ 28 \\ \end{array} \\ \begin{array}{c} 1 \\ 22 \\ 22 \\ 22 \\ 22 \\ 23 \\ \end{array} \\ \begin{array}{c} 1 \\ 22 \\ 22 \\ 22 \\ 23 \\ 22 \\ 22 \\ 22 \\ $	0 12 18 17 22		170,0		170,9			170,0	
$\begin{array}{c} & C=0 & 170,2 \\ & MeC & 20,6 & 21,3 & 21,2 \\ \hline & MeC & 20,7 & MeC & 20,7 \\ \hline & MeC & 20,7 & AHMAD; RAHMAN, 1994 \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	25 1126 14 H 28	C=0	170,5						
$\begin{array}{c} \text{MeC} & 20,6 & 21,3 & 21,2 \\ \text{MeC} & 20,7 & \text{MeC} & 20,7 \\ \text{(93)} & 3\beta\text{-Acetoxi-11-oxoolean-12-eno} & \text{AHMAD; RAHMAN, 1994} \\ \hline \\ & & & & & & \\ & & & & & \\ & & & &$	10 H 8 15	C=0	1/0,2		01.0			01.0	
(93) 3ß-Acetoxi-11-oxoolean-12-eno $HO = \frac{34}{29}$ Me 21,0 $HO = \frac{34}{10}$ Me 21,0 $HO = \frac{34}{10}$ Me 21,0	AcO 4 6	MeC	20,6		21,3			21,2	
(93) 3/3-Acetoxi-11-oxoolean-12-eno AHMAD; RAHMAN, 1994 3^{0} 3^{0} Me 21,0 4^{0} 3^{0} 4^{10} 4^{10} 17^{22} 15^{10}	24 23	MeC	20,7						T 1001
$HO = \begin{bmatrix} 30 & 29 & Me & 21,0 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$	(93) 3B-Acetox1-11-oxoole	an-12-e	eno			AH	MAD; R	AHMAN	N, 1994
24, 22	HO 24 00 HO 20	Ме	21,0						

Dados de carbono dos triterpenos isolados e derivados da família Burseraceae no período de 1980 a 2008 (Solvente CDCl₃)

(94) 3B-Hidroxioleana-9(11),12-dieno

MAIA et al., 2000

21, OH22 24 26	C	(95)	(96)	(97)*	(98)	(99)	(100)	(101)			
	1	38,2	38,5	39,1	39,1	39,0	39,8	39,8			
	2	27,4	26,2	30,5	27,4	27,5	34,0	27,4			
3 10H 8 14	3	75,0	77,2	76,4	74,5	79,0	217,7	78,9			
	4	40,0	43,0	39,6	42,8	39,0	47,3	39,0			
29 28	5	55,3	55,3	56,0	54,7	55,9	55,3	55,4			
(95) 3B,16B,20(S),25-Tetra	-hidrox	idamma	r-23-eno	,	Ń	IANGU	RO et al	., 2003a			
21, OH22 24 26	6	19.5	19.6	19.2	18.9	18.3	19.5	18.3			
	7	35.3	35.3	34.7	34.5	35.2	34.4	35.3			
19 ¹ 18 17 OH 27	8	41.2	41.2	40.6	47.1	40.2	40.2	40.4			
	9	51.3	50.4	50.5	49.8	50.6	49.9	50.7			
HO 34 30	10	36.5	38.1	37.0	37.3	37.1	36.7	37.1			
29 28	11	22.0	21.0	21.6	27,3	21.5	21.9	21.6			
(96) 205 38 128 168 25-Pe	nta-hidı	oxidamı	, mar_23-е	no 21,0	22,3 N	IANGU	RO et al	2003h			
$21, 0H_2$ 2^4 2^6 12 27 1 76 4 26 8 76 3 24 9 27 1 25 4											
20, 23 OH	12	27,1 51.1	70,4	20,8	/0,5	24,9 42.4	27,4 42.2	23,4 42.2			
19 11 18 17 OH 27	13	52.0	30,5 47.1	49,0	49,7	42,4	45,5	42,5			
	14	52,0	4/,1	50,3	46,8	50,3	50,1	50,3			
Aco	15	43,2	43,5	41,0	43,9	31,1	31,0	31,2			
29 28	16	/4,6	/4,/	/4,4	/3,2	27,4	27,4	27,6			
	17	42,0	40,6	41,7	41,2	50,1	49,8	49,9			
(9 7)3B-Acetox1,16B,20(S),2	25-tri-hi	idrox1da	mmar-23	-eno	N	IANGU	RO <i>et a</i> l	., 2003a			
21, OH22 24 26 OH. 20 23 OH	18	18,3	18,3	17,7	17,7	15,5	15,9	16,2			
19 ¹¹ 17 OH 27	19	16,0	15,6	15,8	15,7	16,2	15,1	15,5			
	20	76,3	76,3	77,3	77,8	75,1	74,8	75,4			
	21	25,9	25,9	26,3	25,7	25,7	25,7	24,9			
ACU H 6 29 28	22	34,4	43,8	35,2	45,4	43,4	43,3	40,5			
	23	127,5	129,3	127,6	128,1	122,4	122,2	22,6			
(98) 20 <i>S</i> ,3 <i>B</i> -Acetoxi-12 <i>B</i> ,1	6B,25-te	etra-hidr	oxidamn	har-23-er	no M	IANGU	RO et al.	, 2003b			
21, OH22 24 26	24	138,4	138,4	140,3	140,1	142,0	141,9	124,8			
12 H 17 11 12 H 17 17 23 OH	25	81,6	82,6	81,3	81,2	70,8	70,6	131,5			
	26	25,3	25,3	26,3	25,0	29,9	29,8	25,7			
$10\bar{H}^{8}$ $\frac{1}{30}^{14}$	27	25,0	25,5	24,8	25,1	29,9	29,8	17,7			
HU H 6	28	19,0	26,7	18,3	26,4	28,0	26,6	28,0			
	29	22,2	20,3	21,5	20,7	15,4	20,9	15,4			
(99) 3 <i>B</i> ,20(<i>S</i>),25-Tri-hidro	xidamn	nar-23-e	no	PA	AKHATH	HRATH	IEN et a	<i>l.</i> , 2005			
21, OH 24 26	30	14,0	15,9	15,2	16,2	16,4	16,2	16,5			
12 H 17 27 17 27	C=O			170,4	170,3						
19^{1} 18 \overline{H} $\overline{-1}$	C=O										
	MeC			21,0	23,0						
O H	MeC										
29 28	MeC										
(100) 20(<i>S</i>)25-Di-hidroxida	ammar-	23-en-3-	ona		WATER	RMAN; A	AMPOF	0, 1985			
21 × 0H22 24 26	1'										
12 H $12 H$ $12 H$ $12 H$ $12 H$ $17 H$ $27 H$	2'										
	3'										
	4'										
	5'										
25 26	6'										
(101) 3B,20(S)-Di-hidroxidammar-24-em ou Dammaranodio-II ASAKAWA <i>et al.</i> , 1977											

Dados de carbono dos triterpenos isolados e derivados da família Burseraceae no período de 1980 a 2008 (Solvente CDCl₃)

21 OH22 24 26	C	(102)	(103)	(104)	(105)	(106)	(107)	(108)
	1	38,6	38,7	39,7	38,4	33,7	34,6	39,0
19 ¹ 18 ¹⁷ OH 27	2	34,5	25,5	34,0	26,3	24,8	23,2	27,4
	3	73,4	73,8	217,6	74,2	76,4	78,7	78,8
HO 34 30	4	40,1	42,5	47,3	42,4	37,7	37,5	39,0
29 28	5	55,5	55,1	55,3	53,3	50,5	50,7	56,0
(102) (20 <i>R</i>),3 <i>B</i> ,16 <i>B</i> -Tri-hida	roxidar	nmar-24	-eno		Ν	IANGU	RO et al.	, 2003a
21, OH22 24 26	6	20,3	19,5	19,6	20,1	18,3	18,4	18,3
	7	35,0	34,8	34,5	35,1	35,2	35,4	34,8
	8	40,3	41,3	40,0	40,4	40,7	40,8	39,8
	9	50,4	52,3	49,6	51,5	50,5	51,1	50,2
giu-0 , H 6	10	37,0	36,5	36,8	37,4	37,3	37,1	37,1
	11	22,0	21,7	21,8	22,0	21,5	21,7	31,2
(103)(20S),12B,16B-Tri-hidro	oxidam	nmar-24-	eno-3ß-		Ν	IANGU	RO et al.	, 2003b
21 OH 24 26	12	27,0	76,7	26,3	74,3	25,4	25,1	70,8
$12 H^{20}$ 23 25	13	51,6	49,4	51,4	49,3	42,3	42,5	47,7
1 19 18 17 OH 27	14	48,2	47,3	47,6	46,5	49,8	50,7	51,6
	15	44,0	44,6	43,5	44,5	31,2	31,5	31,1
	16	74,0	74,6	74,2	75,5	27,6	27,9	26,6
29 28	17	39,4	40,9	40,8	41,4	49,6	50,2	53,6
(104)16(<i>S</i>),20(<i>R</i>)-Di-hidrox	kidamm	har-24-ei	n-3-ona		PROVA	N; WA	[FERMA]	N, 1986
21, OH2 24 26	18	18,3	17,8	17,9	18,1	16,6	15,8	16,2
	19	16,3	15,5	15,6	16,3	16,1	16,3	15,7
	20	76,0	75,7	75,5	76,1	75,5	75,8	74,0
2 10H 8 14	21	26,0	27,3	25,9	26,1	25,4	25,7	26,8
AcO 34 30	22	43,5	43,7	43,2	44,6	40,6	40,9	34,8
29 28	23	22,7	22,7	22,4	21,3	22,6	22,9	22,4
(105) 3ß-Acetoxi-12ß,16ß,2	20S-tri-	hidroxic	lammar-2	24-eno	Ν	IANGU	RO et al.	, 2003b
²¹ , OH22 24 26	24	124,6	125,7	124,5	128,3	124,8	125,1	125,2
$H \stackrel{20}{\longrightarrow} 23 \stackrel{25}{\longrightarrow} 25$	25	131,6	132,4	131,6	138,4	131,6	131,9	131,4
	26	25,8	25,8	25,6	25,7	25,8	26,1	25,8
$10\frac{1}{H}8$ 14	27	18,3	17,9	17,6	18,1	47,8	18,1	17,8
HO HO	28	18,9	27,3	26,6	26,6	28,4	28,2	28,1
29 28	29	19,7	21,3	20,9	19,4	22,2	22,1	15,5
(106) $(3R, 20S)$ -3,20-Di-hid	roxidai	mmar-24	-eno			DEKE	DO et al.	., 2002a
$21 \times 0 = 0$	30	15,8	15,8	15,7	16,6	15,6	16,9	16,9
$12 H$ 10^{-23} 10^{-3}	C=O				170,4		171,2	
	MeC				24,7		21,7	
	MeO							
29 28	MeO							
(107) $(3R 20S)$ -3-Acetoxi-20-hidroxidammar-24-eno DEKEDO <i>et al</i> 2002								., 2002a
²¹ , QH22 24 .26	1'		103.7					,
	2'		75.5					
191 1813 17 27	<u>-</u> 3,		78.4					
	4'		71.5					
HO 30	5'		77.8					
29 28	6 '		62.6					
(108) 3B,12B,20(<i>S</i>)-Tri-hidroxidammar-24-eno ASAKAWA <i>et al.</i> , 197								<i>l.</i> , 1977

Dados de carbono dos triterpenos isolados e derivados da família Burseraceae no período de 1980 a 2008 (Solvente CDCl₃)

	C	(100)	(110)	(111)	(11)	(112)	(114)	(115)
26 H		24.1	20.0	(111)	24.4	(113)	<u>(114)</u> 27.1	(115)
O 21	1	54,1	39,9 24 1	25,7	54,4 22.0	27.9	37,1	20,2 28 2
12 H 20	2	23,8	34,1 217.0	23,8	25,0 79.5	37,0	27,0	20,2 75 (
	3	/0,/	217,9	/0,3	/8,5	//,0	79,0 29.9	/5,0
HO	4	38,0	47,4	37,6	36,9	38,9	38,8	40,1
29 28 (100)	5	50,2	55,4	50,7	50,9	49,6	50,5	49,4
(109) $(3R, 20S, 24S)$ -20, 24-1	Epóxido	o-3,25-di	-hidroxi	dammara	ano	DEKE	DO et al.	, 2002a
21 23 24 -26	6	18,6	19,7	18,3	18,2	24,1	23,9	25,1
12 H 17 O H OH	7	35,2	34,6	34,9	35,2	117,6	117,3	119,9
	8	41,0	40,3	40,6	40,7	145,8	145,3	144,0
	9	51,0	50,2	49,8	50,7	49,1	48,9	58,3
0^{-34} H^{-30} 30	10	37,7	36,9	37,3	37,3	41,0	35,8	34,9
29 28	11	22,1	23,3	21,7	21,8	27,0	27,2	65,7
(110) (20S,24S)-Óxido-25-	hidroxi	dammar	-3-ona		WATER	MAN;	AMPOF	D, 1985
21 23	12	27.4	25.8	25.4	27.1	34.2	34.0	47.2
20 24 26 OH	13	43.2	43,3	42,8	42,9	42,9	43,4	43,3
12 H 17 C H 17 19 ¹¹ 18 27	14	50.5	50.0	50.1	50.3	50.9	51.0	51.6
	15	31.8	31.4	31.4	31.6	34.0	33.8	44.5
	16	26.2	27.8	28.3	26.0	28.0	28.1	74.9
29 28 H 6	17	49.9	49.8	49.6	49.9	52.9	52.8	53.4
(111) (20S.24S)-Óxido-3a.2	25-di-hi	droxidar	narano	.,,,,	WATER	MAN:	AMPOF	D. 1985
HO 27	18	15.9	16.0	16.0	15.6	14.2	13.1	15.2
26 H	19	16.5	15,0	15,5	16.2	74	18.1	10.0
0 21	20	86.7	86.4	86.5	86.7	35.9	36.1	36.6
	21	27.5	24.1	24.1	27.3	18.2	18.1	18.6
	22	35.7	34.9	24,1 35.2	34.8	36.1	36.1	36.4
AcO , H 6 30	23	267	27.0	27.8	26.5	24.9	25.0	25 5
(112) $(3R 20S 24S)-3-Acet$	oxi-20 ′	20,7 24-enóxi	do-25-hi	droxidaı	nmarano	DFKE	DO et al	2002a
(112) (37,203,245) 3 11000	20,1 21	24 0poxi	86 5	86 3	86.5	125.1	124 7	125.8
18 = 20 23 26	24	70.6	70.2	70.2	70 A	120,1	124,7	123,0
HQ 11 12 17 24 25 27	25 26	70,0	70,2	70,2	70,4	25.6	25.6	25.0
	20	20,2 24.5	20,4	20,4	27,9	25,0	23,0	23,9
	21	24,5	20,7	27,0	24,2	17,3 21.7	17,0	17,0 21.5
HO	20	20,7	27,1 21.0	27,0	20,0	21,7 27.1	21,0	21,3
$_{30}$ 29 (112)12a 140 17a Lanasta	49	22,3 iono 10'	21,0	22,1	21,0 VEN	$\frac{2}{1}$	27,0	20,1
(113)15a,14b,17a-Lallosta	-7,24-0	1 c o		165	VEN	KAIKA	$\frac{1}{1}$	11., 1993
$21_{r_{1}}$ $22_{r_{2}}$ $22_{r_{2}}$ $23_{r_{2}}$ $26_{r_{2}}$	30	16,9	16,3	16,5	16,7	21,3	14,3	27,1
	C=0				1/1,0			
	MeC				21,8			
10H	MeO							
HO 4 28	MeO							
30 29	-				* 7***			1 1000
(114) 13a,14B,17a-Lanosta	a-7,24-d	lieno-3ß	-ol		VEN	KATRA	MAN et a	<i>ıt.</i> , 1993
21,								

Dados de carbono dos triterpenos isolados e derivados da família Burseraceae no período de 1980 a 2008 (Solvente CDCl₃)

(115)13a,14b,17a-Lanosta-7,24-dieno-3b,11b,16γ-triol

VENKATRAMAN et al., 1994

21, 22	C	(116)	(117)	(118)	(119)	(120)	(121)*	(122)
12^{18} 23^{23} 26^{26}	1	37,1	32,0	35,5	35,5	29,7	30,0	35,2
19 11 13 17 24 25 27	2	27,6	26,6	34,5	34,5	26,8	24,3	27,6
	3	79,0	75,5	218,0	218,1	76,1	78,4	78,9
HO 34 28	4	38,8	37,1	47,3	47,3	37,2	34,7	38,9
30 29	5	50,5	44,3	51,0	51,4	44,5	43,2	50,9
(116) 13a,14ß,17a-Lanosta	a-7,24-c	lieno-3ß-	-ol		VENK	ATRAN	AAN et a	<i>l.</i> , 1994
21 H HOOC = 22 24 26	6	23,9	18,2	20,2	20,7	20,4	18,6	18,9
$13 \frac{18}{20} \frac{20}{23} \frac{25}{25}$	7	117,3	28,4	21,2	21,4	21,3	21,6	27,9
19 1 13 17 27	8	145,3	133,8	134,4	134,4	134,4	134,2	133,5
	9	48,9	132,4	132,8	132,6	132,9	132,9	134,0
HO ¹¹¹	10	35,8	36,7	37,2	37,1	37,7	36,8	37,2
29 28	11	27,2	21,0	26,8	26,8	26,0	26,0	21,4
(117) Ácido 3a-hidroxitiru	cala-8,2	24-dien-2	21-óico			Μ	AIA et a	<i>l.</i> , 2000
$H_{COOC} = 22 = 24 = 26$	12	34,0	26,3	28,6	28,6	28,7	28,8	28,0
	13	43,4	42,3	43,8	43,9	43,8	43,9	44,0
	14	51,0	50,5	49,6	49,6	49,6	49,7	49,9
3 10 8 14	15	28,1	32,0	29,5	29,2	29,4	29,3	30,7
	16	33,8	28,8	17,4	17,4	17,7	17,6	
HOH ₂ C 28	17	52,8	46,5	47,8	47,6	47,7	47,6	49,0
(118) 29-Hidroxi-3-oxotiru	icala-8,	24-dieno	-21-oato	de metil	a US	UBILLA	AGA et a	<i>l</i> ., 2004
HOOC 22 24 26	18	13,1	15,3	15,9	15,8	15,8	15,9	15,4
$12 \ 12 \ 23 \ 25 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12 \ 12$	19	18,1	19,3	21,8	19,6	19,6	19,8	20,1
	20	36,1	44,1	47,3	46,9	46,9	46,9	35,9
	21	18,1	181,1	176,8	183,1	182,4	182,6	18,6
	22	36,1	25,2	32,5	32,4	32,7	32,1	37,2
29 28	23	25,0	24,4	25,8	25,9	25,8	25,9	24,9
(119) 3-Oxotirucala-8,24-d	lieno-21	-óico			US	UBILLA	AGA et a	<i>l</i> ., 2004
HOOC 22 24 26	24	124,7	26,3	123,7	123,5	123,7	123,6	125,2
$12 \frac{18}{12} \frac{20}{12} 23 \frac{25}{12}$	25	130,8	30,3	132,1	132,4	132,2	132,2	130,9
	26	25,6	23,1	17,9	17,6	17,6	17,6	17,6
	27	17,6	25,1	25,7	25,6	25,6	25,6	25,7
	28	21,8	23,9	26,6	26,5	26,8	26,6	24,3
	29	27,6	21,7	63,7	21,1	21,1	21,4	27,9
(120) Acido 3B-hidroxitiru	cala-8,2	24-dien-2	21-óico		US	UBILLA	AGA et a	<i>l</i> ., 2004
HOOC 22 24 26	30	14,3	27,5	24,2	24,3	24,2	24,4	15,5
$12 \stackrel{18}{=} \stackrel{20}{=} 23 \stackrel{25}{=} 11 \stackrel{17}{=} 27$	C=O						170,9	
	C=O							
	MeC						21,3	
AcO 29 28 H 6	MeC			51 5				
(121) Á .: 1- 20	MeO	A	1 4:*	51,5	П			1 2004
(121) ACIUO 315-acetoXitiru	cala-8,2	24-01en-2	21-01CO*		05	UBILLA	HUA et a	ı., 2004
$HO \begin{array}{c} 21 & 22 & 24 \\ 12 & 18 & 20 & 23 \\ 10 & 10 & 8 \\ 29 & 28 \end{array} \begin{array}{c} 24 & 26 \\ 12 & 18 & 20 & 23 \\ 14 & 30 \\ 29 & 28 \end{array}$								

(122) 3ß-Hidroxitirucala-8,24-dieno ou Tirucalol

LIN et al., 2000

OH 21 H 22 24	C	(123)	(124)	(125)	(126)	(127)	(128)*	(129)
12^{18} 20^{26} 25^{26}	1	38,4	38,3	32,0	31,1	38,5	39,6	39,0
$1 \frac{19^{1}}{13} \frac{17}{14} 0 \frac{27}{27}$	2	34,8	34,7	26,4	25,3	35,0	33,9	27,3
10H	3	216,8	216,6	74,2	76,1	216,8	217,3	78,7
	4	47,8	47,6	36,8	37,3	47,8	47,3	39,0
29 28	5	52,3	52,1	43,8	44,5	52,4	55,0	55,7
(123) 22ξ-Hidroxitirucala-7	,24-die	en-3,23-0	liona				YI et a	<i>l</i> ., 1988
²¹ 22 ²² ²⁴ ²⁶ CO ₂ H	6	24,3	24,3	23,3	23,8	24,4	19,5	18,2
18 23 25 11 2 3 25	7	117,8	117,6	117,6	118,1	118,0	34,9	35,6
1 = 13 = 13 = 17 = 17	8	145,7	145,7	145,2	145,5	145,6	41,0	41,0
	9	48,4	48,3	49,1	48,5	48,3	49,5	50,3
	10	34,9	34,7	34,1	33,7	34,9	37,1	37,0
29 20	11	18,1	27,3	16,7	17,2	27,4	22,5	22,0
(124) Ácido 3-oxotirucala-7	7,24-di	en-26-ói	co			SI	LVA et c	ıl.,1990
HOOC H 22 24 m	12	33,4	33,4	30,8	34,7	35,1	27,4	27,3
$12 \frac{18}{20} \frac{20}{23} \frac{25}{25}$	13	43,2	43,4	42,8	43,6	43,5	187,1	187,0
	14	51,3	50,9	50,3	50,4	50,4	51,3	51,0
	15	33,9	32,1	32,8	34,5	34,2	45,9	46,0
HO ^{11/13}	16	27,9	27,9	29,7	31,0	31,5	208,9	209,0
29 28	17	49,0	52,5	47,9	41,2	46,9	126,7	126,5
(125) Ácido 3a-hidroxitiruc	cala-7,2	24-dien-2	21-óico				YI et a	<i>l.</i> , 1988
H, 24 0, 23 26	18	12,7	20,3	12,3	12,8	12,7	15,7	16,3
O ²¹ H 22 27	19	21,5	18,3	21,0	21,6	17,7	16,2	16,0
12 18 320	20	39,4	35,8	47,5	46,7	33,8		
	21	11,9	18,3	177,2	178,5	101,7		
HO. 34 30	22	78,6	35,4	25,6	23,6	24,9		
29 28	23	201,2	26,9	25,4	75,0	78,4		
(126) 3a-Hidroxitirucala-7,	24-die	n-21-ona	-21,23-е	póxido			YI et a	<i>l.</i> , 1988
H, 24 O 0 - 52 - 26	24	119,1	146,6	123,8	123,1	67,4		
HO H 22 27	25	159,4	125,9	130,6	139,3	57,9		
10^{11} 18^{20} 17^{10}	26	24,4	173,0	24,6	25,6	24,9		
	27	21,3	12,6	16,6	18,3	19,2		
	28	28,0	21,3	27,5	27,3	22,5	26,9	28,0
29 28	29	21,8	24,3	21,8	23,3	24,4	21,0	15,5
(127) 21a-Hidroxi-3-oxotir	ucala-7	7-en-(21,	23),(24-2	25)-dióxi	ido	POLON	ISKY et. d	al., 1977
$11 \stackrel{12}{\frown} 13 \stackrel{17}{\bigcirc} 0$	30	27,5	21,4	26,2	27,6	21,5	22,2	22,3
	C=O							
	C=O							
	MeC							
O H 6	MeC							
29 28	MeO							
(128) Mansumbin-13(17)-e	n-3,16	-diona				PROV	VAN et a	<i>l</i> ., 1992
$11 \stackrel{12}{\frown} 13 \stackrel{17}{\bigcirc} 0$	1'							
	2'							
	3'							
	4'							
HO' H 6	5'							
29 28	6'							
(129) 3B-Hidroximansumbi	n-13(1	7)-en-16	-ona			PROV	VAN et a	<i>l.</i> , 1992

1980 a 2008 (Solvente CDC	Ī ₃)							
11 12 13 17 0	С	(130)*	(131)	(132)	(133)*	(134)*	(135)*	(136)
	1	34,3	39,0	39,7	39,7	39,6	40,0	38,6
	2	28,6	27,3	33,8	33,9	33,8	34,1	35,1
29 4 30 H 6	3	174,4	78,8		217,3	217,3	218,0	215,0
 28	4	146,9	38,9	47,2	47,3	47,0	47,5	50,3
(120) 2 4 9 16	5 mhin 4	50,5 (28) 12(17	55,7	55,1	55,4	54,4	55,3	48,7
(130) 3,4-Seco-16-oxomansul		28),13(1)	-aien-3-	oato de n			\mathbf{V} AN et \mathbf{C}	<i>u</i> ., 1992
11 12 13 17 OOH	6	24,2	18,1	19,5	19,4	19,5	19,6	19,6
	7	34,1	35,5	34,8	34,5	33,3	35,7	35,5
$\begin{bmatrix} 10 \\ H \end{bmatrix} = \begin{bmatrix} 14 \\ 20 \end{bmatrix}$	8	40,8	39,7	40,3	39,3	42,0	40,4	40,3
	9 10	40,7	50,7 27.4	49,9	49,5	49,9	50,5 27.1	50,5 26.9
29 28	10	39,0 22.5	57,4 21.5	37,0	30,9 21.8	37,0 20.6	37,1	30,8 22.2
(131)16-hidronerovinansun	11 nhin_13	22,3 $3(17)_{-en}$	21,3 38 -01	22,0	21,8	20,0 PRAN	22,3 IAN et a	1 1007
	17		215 -01 25 6	257	22.0	25.0	71 A	21 2
11 12 13 1/ OOH	12	27,3 187 A	∠3,0 157.0	23,7 156 A	23,0 45 7	23,9 17 0	24,4 46 ?	24,3 46 9
	13 14	51 7	54 7	130,4 5∆ 6	-+J,7 50 1	47,9 12 5	+0,∠ 58 7	+0,2 58 7
$\begin{bmatrix} 10 \\ H \\ H \end{bmatrix} = \begin{bmatrix} 14 \\ -2 \\ -2 \end{bmatrix}$	15	46.0	38 7	38.6	36.2	403	79 1	79 N
0 4 ± 30	16	209.2	89.7	89.6	60.4	10,5	133.9	133.9
29 28	17	126.9	117.8	118.3	61.4	175.0	134.6	134.6
(132) 16-Hidroperoximans	umbin-	-13(17)-e	n-3-ona	,0	5-,1	PROV	AN et a	<i>l.</i> , 1992
₁₂ <u>H</u> _0	18	16.0	17.6	17.4	19.4	16.2	17.9	18.0
19 17	19	20.2	16.3	16.2	15.8	15.7	16.1	15.9
$ \begin{array}{c} 1 \\ 10 \\ H \\ 8 \\ 30 \\ 10 \\ H \\ 8 \\ 30 \\ 30 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	20 21 22	·	·	·	-		·	·
4 3 1 3 29 28	23							
(133) 3-Oxomansumbin-16	,17-ep	óxido*			PROV	AN; WA	TERMA	N,1986
12 H 17	24							
11 19 18	25							
10 14 CO ₂ Me	26							
	27							
29 28 H 6	28	114,3	28,0	26,9	26,6	26,8	26,8	67,7
(134)15 17 0 0	29	23,2	15,4	21,0	20,9	20,8	21,0	17,3
(134)15,1/-Seco-3-oxomansumb	oin-16,1	/-dicarbox	natode me	tal*	PROVA	AN; WA'	FERMA	N, 1986
12 ^H 17	30	22,2	23,7	23,6	15,7	14,6	9,7	9,7
	C=0							170,8
	MeC	517				51.0		21,0
	MeO	51,/				51,2		
20 28	WICO					51,2		
(135) 15a-Hidroximansum	bin-3-c	ona				DEKE	BO et al.	, 2002b
$0 \xrightarrow{10}{29} \xrightarrow{10}{28} \xrightarrow{10}{0} \xrightarrow{10}{10} \xrightarrow{110}{10} \xrightarrow$								

(136) 28-Acetoxi-15a-hidroximansumbin-3-ona

DEKEBO et al., 2002b

					•	
(137)	(138)	(139)	(140)	$(141)^{d}$	(142)	(143)
39,8	39,0	34,3	38,7	38,9	39,5	38,6
34,0	27,4	28,3	27,3	27,9	34,1	27,3
217,6	78,8	180,1	79,0	78,5	218,4	79,0
47,3	39,0	147,3	38,8	39,0	47,3	38,8
55,4	56,0	41,4	55,3	18,7	54,6	55,1
С			PROVA	AN; WAT	[ERMA]	N, 1986
19,6	18,3	24,7	18,2	18,7	19,7	18,3
34,7	35,4	34,0	37,1	18,7	33,7	34,4
39,8	39,9	39,6	44,1	41,9	41,3	41,3
50,2	50,9	51,0	50,0	50,6	48,9	49,6
37,0	37,4	39,2	37,1	37,3	36,6	36,9
22,3	21,8	22,3	20,9	21,3	22,1	21,5
-eno ou	Mansur	nbinol	PROVA	AN; WAT	[ERMA]	N, 1986
23,8	23,9	23,7	24,7	23,6	26,6	26,6
47,7	47,6	47,7	37,2	49,8	39,0	38,9
52.0	52.0	533	10.0	12.2	13 2	13 1

Dados de carbono dos triterpenos isolados e derivados da família Burseraceae no período de 1980 a 2008 (Solvente CDCl₃)

C

29 28

(137) 3-Oxomansumbin-16(17)-eno

HO. H 6	10	37,0	37,4	39,2	37,1	37,3	36,6	36,9	
29 28	11	22,3	21,8	22,3	20,9	21,3	22,1	21,5	
(138) 3ß-Hidroximansumbin-	-16(17)	-eno ou	Mansum	binol	PROVA	N; WAT	ERMAN	l, 1986	
H 12 ■ 17	12	23,8	23,9	23,7	24,7	23,6	26,6	26,6	
3 19 ¹¹ 18 13	13	47,7	47,6	47,7	37,2	49,8	39,0	38,9	
HO_2C 1 14	14	52,9	52,9	53,3	40,9	42,2	43,2	43,1	
$10 H^8 = 29 4 = 30$	15	39,8	39,9	39,9	27,4	33,9	26,6	26,1	
Ĥ Ĝ	16	129,8	129,9	129,8	37,7	22,0	38,1	38,1	
28	17	133,9	134,0	133,9	47,7	55,0	35,1	35,1	
(139) Ácido 3,4-secomansumb	in-4(28	5),16(17)-	dien-3-ói	co	PROVA	N; WAT	ERMAN	l, 1986	
HO ,,20	18	17,8	18,2	17,9	48,6	44,9	47,4	47,4	
11 H 18 21 $22 - 30$	19	15,8	16,0	19,9	77,1	42,2	38,7	38,7	
	20				29,7	27,6	73,6	73,6	
10 H 8 15 29	21				47,6	46,7	35,4	35,4	
HO 1 H 6	22				150,0	148,4	37,7	37,7	
24 23	23				28,0	28,7	26,7	28,0	
(140) 36,19-Di-hidroxihop-2	22(29)-	eno			USUBILLAGA et al., 2004				
20 H	24				15,3	15,7	21,0	15,4	
11 26 13 18 21 22 30	25				16,2	16,0	16,0	16,2	
	26				16,0	16,8	16,1	16,2	
10 H $8 = 15$ 27	27				16,1	16,9	14,7	14,7	
HOT H 6	28	26,6	28,0	113,4	11,7	16,3	17,8	17,8	
24 23	29	20,9	15,2	23,1	109,7	110,7	17,9	17,9	
(141) 3ß-Hidroxihopeno ou	Hopen	ol – B				HOSHI	NO et al.	., 2004	
29,,,,,,OH	30	16,9	17,0	17,0	19,3	25,2	30,3	30,3	

(142) 20(S)-Hidroxi-3-oxotaraxastano

(143) 3B,20(S)-Di-hidroxitaraxastano

SUSUNAGA et al., 2001

SUSUNAGA et al., 2001

30	C	(144)	(145)	(146)	
27	1	22,3	22,3	37,8	
	2	41,5	41,5	27,2	
2 10 8 15	3	213,2	214,0	79,1	
0 3 4 25 7 26	4	58,2	58,2	39,0	
23 24	5	42,2	42,0	55,6	
(144) D:A-Friedooleanan-	3-ona o	u Friedel	ona		ABRAS et al., 2007
³⁰ • • • • ²⁹	6	41,3	41,0	18,8	
27 18 20 00	7	18,2	18,1	35,2	
	8	53,1	52,8	38,8	
	9	37,4	37,1	48,8	
0 3 4 25 7 26	10	59,5	59,2	37,6	
23 24	11	35,6	35,4	17,5	
(145) D:A-Friedoolean-28	-al-3-or	na ou 3-C	xofriede	lan-28-al	ABRAS et al., 2007
30 1	12	30,5	30,6	35,8	
²⁹ 12 ²⁷ 19	13	39,7	38,7	37,8	
$11 \frac{12}{26} + 17 \frac{22}{28}$	14	38,3	37,7	158,1	
9 8 15	15	32,4	32,4	116,9	
HO HO	16	36,0	34,9	36,7	
24 23	17	30,0	47,7	38,0	
(146) 3a-Hidroxi-D-friedo	ursan-1	4-eno ou	Taraxer	ol)	LEE et al., 2004
	18	42,8	36,4	49,3	
	19	35,3	35,4	41,4	
	20	28,2	28,3	29,8	
	21	32,8	32,4	33,7	
	22	39,3	28,0	33,1	
	23	6,8	6,9	28,0	
	24	14,7	14,6	15,5	
	25	18,0	17,2	15,4	
	26	18,7	18,8	29,9	
	27	20,3	20,0	25,9	
	28	32,1	210,0	29,9	
	29	31,8	29,4	33,4	
	30	35,0	34,5	21,3	

* Composto derivado, ^a Acetona – d₆, ^b Piridina – d₅, ^c Metanol –CD₃OD, ^d Bemzeno-d₆

4 BIOSSÍNTESE DE TRITERPENOS DE BURSERACEAE

4.1 Considerações gerais da biossíntese de triterpenos

Os terpenóides constituem a maior e a mais variada classe de produtos do metabólito secundário com estruturas contendo esqueleto carbônico formado por unidades de isopreno (2-metilbutadieno). Embora esta unidade não participe da biossíntese desses compostos, Ruzicka *et al.* (1953) desenvolveu a chamada regra do isopreno, que possibilitou classificar os terpenóides segundo o número das unidades de isopreno na molécula. Conforme este modelo, os terpenóides foram classificados em hemiterpernos (C_5 , 1 unidade), monoterpenos (C_{10} , 2 unidades), sesquiterpenos (C_{15} , 3 unidades), diterpenos (C_{20} , 4 unidades), sestertertepenos (C_{25} , 5 unidades), triterpenos (C_{30} , 6 unidades) e tetraterpenos (C_{40} , 8 unidades).

A biossíntese dos triterpenos origina-se a partir do mesmo precursor, o (3S)-2,3óxidoesqualeno (176) (Esq. 4.4, p. 36). Em plantas e animais esse precursor sofre ciclização seguida de reações de rearranjo catalisadas pela enzima óxidoesqualeno ciclase (OSCs), conduzindo aos diferentes esqueletos de triterpenos (WU *et al.*, 2008).

4.1.1 Biossíntese do esqualeno e do (3S)-2,3-óxidoesqualeno

A biossíntese do precursor (3S)-2,3-óxidoesqualeno (176) (Esq. 4.4, p. 36) surge da reação de condensação, do tipo Claisen, de duas moléculas de acetil-Coenzima A (AcCoA) (147), originando acetoacetil-Coenzima A (Acac-CoA) (148) (Esq. 4.1, p. 33). Uma terceira molécula na forma de acetil-SEnzima (Ac-SEnz) é incorporada ao grupo cetônico via adição estereoespecífica pela "face Re", formando o intermediário (149). Este, sofrendo hidrólise do tioéster, liberando a enzima do grupo tiol (HSEnz), origina o éster (3S)-3-hidroxi-3-metilglutaril-Coenzima A (HMG-CoA) (150).

A transformação do HMG-CoA (**150**) em ácido (3R)-mevalônico (**153**) ocorre em três etapas. Inicialmente, a redução do grupo tioéster com fosfato de dinucleotídeo de nicotinamida e adenina (NADPH), mediada pela enzima HMG-CoA redutase, origina o hemitiocetal (**151**) que se oxida para originar o ácido meváldico (**152**). Este intermediário sofre nova redução em NADPH levando a formação do ácido (3R) - mevalônico (**153**). Esta rota foi denominada de "Via do Mevalonato" (DEWICK, 2004).

Esquema 4.1 - Via biossintética do ácido mevalônico

A conversão do ácido (3R)-mevalônico (**153**) ao 3,3'-dimetilalilapirofosfato (DMAP) (**157**) ocorre por meio de uma série de reações de fosforilação das hidroxilas (Esq. 4.2, p. 34). A hidroxila primária, sofrendo duas reações sucessivas de fosforilação, usando duas moléculas de trifosfato de adenosina (ATP), origina o ácido mevalônico difosfatado (**154**). Posteriormente, uma terceira molécula de ATP, atuando como facilitadora das reações de descarboxilação e de eliminação da hidroxila terciária, resulta na formação do isopent-3-en-1-il-pirofosfato (3-isopentenil-pirofosfato) (IPP) (**156**). Este com a mediação da enzima isomerase com propriedades estereoespecíficas, removendo o próton pro-R (H_R) em H-2 origina o 3,3 - dimetilalilapirofosfato (DMAP) (**157**).

A fosforilação da hidroxila terciária em C-3 do ácido mevalônico difosfato (**154**), pela terceira molécula de ATP, não foi comprovada. Segundo Dewick (2004), a terceira molécula de ATP atua como facilitadora da descarboxilação com a consequente eliminação da hidroxila, estrutura (**155**) (Esq. 4.2, p. 34).

Esquema 4.2 - Via biossintética do 3,3 - dimetilalilapirofosfato (DMAP)

Existem duas rotas biossintéticas possíveis de formação das unidades isoprênica IPP (**156**) e DMAP (**157**) (LOBO; LOURENÇO, 2007): a via do ácido mevalônico (MVA) (**153**) e a via do 1-deoxi-D-xilulose-5-fosfato (DXP) (**161**), conhecida como mevalonato-independente metileritritol fosfatado (MEP), descrita mais recentemente por Rohmer (2003) (Esq. 4.3, p. 35).

A rota denominada de mevalonato-independente ou 1-deoxi-D-xilulose-5-fosfato (DXP) origina-se do ácido pirúvico (**158**) e o D-gliceraldeído-3-fosfato (**161**) num processo mediado pela coenzima difosfato de tiamina (TPP) (**159**). O ácido pirúvico (**158**), sofrendo descarboxilação pela atuação da coenzima difosfato de tiamina (TPP) (**159**), origina a TPP-enamina (**160**). Esta enamina, atuando como nucleófilo em reação de adição com o gliceraldeído-3-fosfato (**161**), forma um intermediário (**162**), o qual sofrendo subsequente liberação do TPP (**159**) produz o 1-deoxi-D-xilulose-5-fosfato (DXP) (**163**). Por meio do rearranjo do tipo Pinacol, o DXP (**163**) origina o aldeído fosfatado (**164**), que, sofrendo redução com NADPH origina o 2-C-metil-D-eritritol-4-fosfato (MEP) (**165**). O MEP, reagindo com a cistidina trifosfato (CTP) gera o 4-difosfatocistidinila-ME (**166**), o qual, sofrendo nova fosforilação da hidroxila terciária C-3 com CTP forma o 4-difosfatocistidinila-ME-2-fosfato (**167**). Este, eliminando a cistidina monofosfato (CMP) origina um intermediário metileritritol ciclodifosfatado (**168**), o qual ocorrendo abertura do anel difosfatado forma o intermediário (**169**), que por meio de uma série de reações ainda não totalmente esclarecidas, produzem o IPP (**156**) e o DMAP (**157**).

A formação do precursor farnesil de pirofosfato (FPP) (171) (Esq. 4.4, p. 36) ocorre através de uma condensação "cauda-cabeça' ou 1,4-condensação, entre as unidades DMAP (157) e IPP (156), catalisada pela enzima prenil-transferase, levando à formação do geranil-pirofosfato (GPP) (170). O geranil pirofosfato (170), sofrendo nova condensação com outra unidade de IPP (156), origina o farnesil pirofosfato (FPP) (171), considerado o precursor do pré-esqualeno PSPP (173).

A condensação "cauda-cauda" de duas unidades de FPP (**171**), mediada pela enzima esqualeno sintase (Esq. 4.4), origina o intermediário pré-esqualeno de pirofosfato (PSPP)

(173). A atuação dessa enzima promove à formação do cátion alílico (172), de origem de uma molécula de FPP (171). O cátion alílico (172a), sofrendo condensação com outra molécula de FPP (171), resulta na formação do cátion terciário (172b). A neutralização desse cátion terciário ocorre pela perda de um próton com a consequente formação do anel ciclopropano do PSPP (173). Este através do rearranjo da ligação C-1/C-2', com expansão do anel, origina o cátion secundário (174), o qual, sofrendo reação redutiva com NADPH, produz o esqualeno (175). A epoxidação do esqualeno (175) catalisada pela enzima esqualeno epoxidase na presença de oxigênio molecular (O_2), origina o (3S)-2,3-óxidoesqualeno (176).

Esquema 4.4 - Rota biossintética do (2S)-2,3-óxidoesqualeno

4.1.2 Biossíntese dos cátions dammarenila e protosterila

A ciclização enzimática do esqualeno (175) ocorre a partir do intermediário (3S)-2,3óxidoesqualeno (176), controlada pela enzima óxidoesqualeno ciclase (OSCs), formando várias ligações carbono-carbono e novos centros quirais. Dois cátions dammarenila (179) e protosterila (180) são originados como intermediários dos diversos esqueletos de triterpenos tetracíclicos e pentacíclicos (Esq. 4.5).

Esquema 4.5 - Rotas biossintéticas dos cátions dammarenila e protosterila

O processo de ciclização do precursor acíclico, o esqualeno (175) ou seu óxido (176) envolve conformações adequadas. Duas conformações "cadeira-cadeira-cadeira-barco" (177) e "cadeira-barco-cadeira-barco" (178) dão origem aos cátions dammarenila (179) e protosterila (180), respectivamente. Uma série de rearranjos do tipo Wagner-Meerwein (W-M), com deslocamentos de metila e de hidreto e adição de água, os cátions dammarenila (179) e protosterila (**180**) originam os diversos esqueletos dos triterpenos. Contudo, os metabólitos secundários em plantas, em sua maioria, é originado do cátion dammarenila (**179**). Em triterpenos pentacíclicos, a configuração do carbono C-17 do cátion dammarenila (**179**) é desconhecida. Este intermediário é comumente desenhado tendo o hidrogênio no carbono C-17, a estereoquímica *alfa* (**179a**), sem evidências experimentais ou justificativas teóricas. (XIONG *et al.*, 2005).

Woodward e Block (1953) foram os primeiros pesquisadores a demonstrarem a participação do esqualeno (**175**) na biossíntese dos triterpenos. Entretanto, o mecanismo dos rearranjos 1,2 de grupo metila e de 1,2 de hidreto foram estudados independentemente pelos grupos de Maugdal *et al.* (1958) e do Cornforth *et al.* (1965).

4.1.3 Biossíntese do esqueleto do tipo lanostano e cicloartano

Os triterpenos do tipo lanostano (5) e cicloartano (6) (Fig. 3.5, p. 11) têm o cátion protosterila (180) como precursor (Esq. 4.6). Este, sofrendo rearranjo do tipo Wagner-Meerwein (W-M) de hidreto e de metila, possibilita a formação do esqueleto lanostano (5), como na biossíntese do lanosterol (182) (XIONG *et al.*, 2005). Por outro lado, a eliminação de um próton da metila C-19 do cátion lanosterila (181) permite a formação do esqueleto cicloartano (6), como no cicloartenol (183) (WU *et al.*, 2008).

Esquema 4.6 - Rota biossintética do esqueleto lanostano e cicloartano. 4.1.4 Biossíntese do esqueleto do tipo lupano.

Biossinteticamente, o esqueleto do tipo lupano (7) (Fig. 3.5, p. 11) tem sua origem do cátion dammarenila (179), como precursor (Esq. 4.7). O cátion dammarenila (179) sofrendo rearranjo da ligação entre os carbonos C-16(17), permitindo a expansão do anel D com a consequente formação do cátion bacharenila (183). Posterior ciclização da ramificação olefínica possibilita a formação do anel E de cinco membros do cátion lupenila (184). A eliminação de um próton de uma das metilas do lupenila (184) origina o esqueleto lupano (7), como no lupeol (35) (XIONG *et al.*, 2005).

Esquema 4.7 - Rota biossintética do esqueleto lupano

4.1.5 Biossintese do esqueleto do tipo ursano e oleanano.

Os esqueletos ursano (8) e oleanano (9) (Fig. 3.5, p. 11) são originados biossintéticamente a partir do cátion dammarenila (179), tendo como intermediário o cátion lupenila (184) (Esq. 4.8, p. 40). A expansão do anel E do cátion lupenila (184) permite a formação do cátion oleanila (185), precursor do esqueleto oleanano (9), como na β-amirina (75) (REES *et al.*, 1968).

O cátion oleanila (**185**), sofrendo rearranjo do grupo metila axial no anel E, leva a formação do cátion taraxasterila (**186**). Este sofrendo migração de hidreto e a consequente eliminação de próton leva a formação do esqueleto do tipo ursano (**4**), como na biossíntese do a-amirina (**44**) (ABE *et. al.*, 1993).

Esquema 4.8 - Rota biossintética dos esqueletos ursano e oleanano

4.1.6 Biossíntese do esqueleto do tipo dammarano, eufano e tirucalano

Os esqueletos do tipo dammarano (10), eufano (11) e tirucalano (12) (Fig. 3.5, p. 11) são originados biossinteticamente do cátion dammarenila (179a) (Esq. 4.9, p. 41). O carbocátion (179a), com a estereoquímica H-17a, sofrendo oxidação no carbono C-20, sem sofrer rearranjo de Wagner-Meerwein (W-M), leva à formação do esqueleto do tipo dammarano (10), como na biossíntese do dammaranodiol-II (101). A estereoquímica do carbono C-17 dos dammaranos foi originada do cátion intermediário dammarenila (179a) (XU *et al.*, 2004).

O cátion dammarenila (**179**) sofrendo rearranjo de metila e hidreto, leva à formação de dois esqueletos distintos. Assim, ocorrendo o rearranjo de hidreto do carbono C-17 ao carbono C-20, pela "face *Si*", permite a formação do esqueleto eufano (**11**), como no eufano

13a,14 β ,17a-Lanosta-7,24-dieno-3 β -ol (**114**). Contudo, ocorrendo o rearranjo do hidreto C-17 pela "face *Re*", forma o esqueleto tirucalano (**12**), como na biossíntese do tirucalol (**122**) (XU *et al.*, 2004). Os esqueletos eufano e tirucalano são epímeros no C-20, os eufanos apresentam estereoquímica C-20(R); e os tirucalano C-20(S).

Esquema 4.9 - Rota biossintética dos esqueletos dammarano, eufano e tirucalano.

4.1.7 Biogênese do esqueleto do tipo octanordammarano

A biogênese do esqueleto do tipo octanordammarano (13) (Fig. 3.5, p. 11) conforme descreveu Provan *et al.*, (1986) provém do cátion dammarenila (149). A quebra da ligação C-17(20) origina o carbocátion (187), que por eliminação de um próton permite a formação da ligação dupla C-13(17) ou C-16(17) como no mansumbinol (138) (Esq. 4.10).

Esquema 4.10 - Rota biogenética do esqueleto octanordammarano

4.1.8 Biossíntese do esqueleto do tipo hopano

Os hopanóides formam uma família de triterpenóides pentacíclicos que apresentaram crescentes interesses nos últimos anos. A biossíntese desses compostos resulta da ciclização do esqualeno (**175**) (Esq. 4.11), iniciada por um próton ou pela água, sem o envolvimento do oxigênio molecular (O_2), como ocorre na formação do (2S)-2.3-óxidoesqualeno (**176**) (Esq. 4.4, p. 36) (DEWICK, 2004).

Esquema 4.11 - Rota biossintética do esqueleto hopano

A ciclização do esqualeno (175), mediada pela enzima esqualeno-hopano ciclase, promove a formação do carbocátion (188), cuja expansão do anel C de cinco membros, origina o cátion dammarenila (179b). Este, por meio do rearranjo da ligação carbono-carbono C-13(17), origina o carbocátion (189). A ciclização da dupla olefínica com a formação do anel E de cinco membros origina o cátion hopanila (190). A eliminação de um próton de um dos grupos metila permite a formação do esqueleto hopano (16) (Fig. 3.5, p 11) como na biossíntese do hopenol B (141) (HOSHINO *et al.*, 2004; XIONG *et al.*, 2005). Vale ressaltar que Xiong *et al.*, (2005) descreveu a rota do hop-22(29)-eno, sendo a biossíntese desse iniciada pelo esqualeno (175) catalisado por ácido. Por outro lado, Hoshino *et al.*, (2004) descreveu a biossíntese do hopenol B (141), tendo como precursor o 2,3-óxido de esqualeno sem informar como ocorre a formação do óxidoesqualeno.
4.1.9 Biossíntese do esqueleto do tipo taraxastano, friedelano e friedoursano

O esqueleto do tipo taraxastano (14), friedelano ou D:A-friedooleanano (15) e friedoursano ou D:friedoursano (17) (Fig. 3.5, p. 11) são originados do cátion dammarenila (179), tendo como intermediário o cátion oleanila (185) (Esq. 4.12).

Esquema 4.12 - Rota biossintética dos esqueletos taraxastano, friedelano e friedoursano

O cátion oleanila (185), envolvendo migrações estereoespecíficas de hidreto e metila, origina o esqueleto do tipo friedelano (15), como na biossíntese da friedelona (144) (Rota a). Ocorrendo a migração da a-metila do carbono C-20 do cátion oleanila (185), permite a formação do cátion taraxastanila (191), precursor dos esqueletos do tipo taraxastano (14) e do friedoursano (17). O cátion taraxastanila (191) sofrendo adição de água sem sofrer rearranjos de Wagner-Meerwein (W-M), origina o esqueleto taraxastano (14), como na biossíntese do 3β,20(S)-diidroxitaraxastano (143). Ocorrendo rearranjos de hidretos e metila origina o esqueleto friedoursano (17), como na biossíntese do taraxerol (146) (Rota b) (LOBO; LOURENÇO, 2007).

5 CONSTITUIÇÃO QUÍMICA DO ÓLEO ESSENCIAL DE TRÊS ESPÉCIES DO GÊNERO *PROTIUM*

Ao longo da evolução da fauna e da flora, as espécies desenvolveram vias metabólicas que lhes permitiram sintetizar uma grande variedade de substâncias. Esses processos metabólicos, denominados de biossíntese, foram os responsáveis pela produção, acúmulo e degradação de inúmeras substâncias orgânicas no interior das células que formam os diversos tecidos dos organismos animais e vegetais (SANTOS *et al.*, 2004).

As substâncias originadas nos processos biossintéticos foram classificadas de modo geral, como metabólitos primários e metabólitos secundários. Entre os metabólitos secundários, estão os compostos de baixo peso molecular, denominados de óleos essenciais, óleos voláteis, óleos etéreos ou simplesmente essências. A *"International Standard Organization (ISO)*" definiu óleo essencial como produto obtido de partes das plantas por arraste de vapor de água ou por prensagem dos pericarpos de frutos cítricos (CUNHA, 2005).

As denominações atribuídas aos óleos essenciais foram devido às suas características físico-químicas. São considerados óleos, por serem líquidos com características oleosas à temperatura ambiente; voláteis por apresentar volatilidade; e essências devido ao aroma agradável da maioria de seus constituintes. A denominação óleo etéreo foi devido a sua solubilidade em solventes orgânicos, como o éter de petróleo (CUNHA, 2005). Normalmente a composição química desses óleos é complexa, constituída de substâncias voláteis terpenóides, principalmente de monoterpenos e sesquiterpenos (ARAÚJO, 2001).

As plantas produtoras de óleos essenciais desenvolveram estruturas especializadas, tanto externas (tricomas secretoras) como internas (idioblastos, canais e bolsas) em todas as partes (flores, frutos, raízes, lenho, resinas e sementes) capazes de produzir e acumular os óleos essenciais (VITTI; BRITO, 2003).

Além do uso industrial na produção de perfume, cosméticos e fármacos, os óleos essenciais têm um importante papel na ecofisiologia vegetal (CUNHA, 2005). Neste contexto, destacam-se os semioquímicos, ou seja, compostos que influenciam o comportamento fisiológico de seres vivos, atuando apenas como sinalizadores. A atuação dos semioquímicos resulta na atração, por exemplo, dos zoopolinizadores e zoodispersores ou, na repulsão de predadores e infectantes (ARAÚJO, 2001).

Os óleos voláteis desempenham também importantes relações de simbiose plantamicroorganismo, inibindo, limitando ou favorecendo o seu desenvolvimento, assim como no controle alelopático da germinação e/ou desenvolvimento de espécies competidoras. Outra função importante atribuída aos óleos essenciais é o controle hídrico das plantas aromáticas (CUNHA, 2005).

5.1 Importância econômica dos óleos essenciais

O conhecimento dos óleos essenciais data de alguns séculos antes da era Cristã e, está ligado aos países orientais como Egito, Pérsia, China, Índia e Israel. O interesse da humanidade pelos óleos essenciais se fundamentou na possibilidade da obtenção de substâncias aromáticas (aroma), como também na possibilidade de obtenção de fármacos.

Dentro desta perspectiva, ocorreu um aumento significativo do registro de plantas produtoras de óleos essenciais com aproveitamento

econômico. Tal ocorrência registrou espécies de plantas rasteiras como no caso da hortelã, da qual foi extraído o mentol (**192**), até plantas arbóreas, como o eucalipto, do qual se extraiu o 1,8-cineol

(193). No mundo foram produzidos e transacionados, em 2005, por volta de 45 a 50 mil toneladas de óleo essencial, sem levar em

(193) consideração a essência de terebintina, mistura formada por a-pineno (194) e β-pineno (195), cuja produção anual superou as 250 mil toneladas no ano (CUNHA, 2005).

(192)

ΌH

No Brasil, a produção de óleo essencial teve início em meados do século XX, com a produção de forma extrativista de algumas essências. As exportações brasileiras de produtos nativos em 2005 se resumiram ao óleo essencial do Pau-Rosa (*Aniba rosaeodora*) com US\$ 700.00 mil, bálsamo de copaíba (*Copaífera sp*) US\$ 340.00 mil e pau santo (*Bulnesia sarmiento*) com US\$ 375.00 mil (MATTOSO, 2005).

Até meados da década de 90 havia exploração de canela sassafrás (Ocotea pretiosa)

fonte de safrol (**196**). Entretanto, a exploração predatória da espécie levou o Instituto Brasileiro do Meio Ambiente (IBAMA) incluí-la na lista de espécies ameaçadas de extinção, proibindo sua comercialização. A alternativa para a produção do safrol (**196**) ficou por conta da espécie nativa e endêmica *Piper hispidinervium* (Piperaceae), no Estado do Acre, que produz 83% de safrol (**196**) no seu óleo essencial (NASCIMENTO *et al.*, 2008).

Apesar da baixa produção de óleo essencial de forma extrativista, o Brasil destacou-se na produção de essências da laranja-doce, fonte de dlimoneno (197), (US\$ 38.00 milhões), óleo de eucalipto, fonte de 1,8-cineol (193) (US\$ 1.8 milhões) e de terebintina, (US\$ 9 milhões), produzida da resina do *Pinus elliotti* (MATTOSO, 2005).

O Ceará entrou no mercado de exportações de óleo essencial com a espécie alecrim-pimenta (*Lippia sidoides*) fonte de timol (**198**). O primeiro lote de 200 litros foi comercializado em 2003 no valor de US\$ 55 o litro (ADRIANA, 2004).

As espécies do gênero *Protium* (Burseraceae), distribuídas em todo o Brasil, principalmente na Amazônia, são conhecidas por exsudar uma resina rica em óleos essenciais com rendimento chegando à ordem de 30%. O óleo essencial desse gênero apresenta aroma muito agradável, o que vislumbra possibilidade de aplicação na indústria de perfumaria e de cosmético (SIANI *et al.*, 2004).

5.2 Métodos de obtenção industrial dos óleos essenciais

Em processo industrial, vários foram os métodos aplicados na obtenção dos óleos essenciais, que dependia da matéria prima e dos fins que se dava ao produto industrializado. A indústria recorreu a método de extração com solvente de baixa polaridade, extração por vapor de água, método de expressão (prensagem) ou extração por enfleurage. Alguns desses métodos ainda são utilizados, mas que estão sendo paulatinamente substituídos pelos métodos de extração mais modernos com fluído supercrítico ou subcrítico.

O método de expressão (prensagem) foi inicialmente utilizado pelas indústrias de sucos de espécies de *Citrus*, em virtude do baixo custo dos equipamentos. O método consiste na maceração da casca dos frutos *Citrus* e prensagem obtendo-se uma mistura água/óleo, que em seguida, passa por um processo de separação.

A enfleurage foi um dos métodos mais antigos utilizado na indústria de cosmético e de perfumaria. O método foi aplicado na extração de essências de flores que apresentam rendimento extremamente baixo. Consiste em extrair as essências utilizando gorduras. As flores frescas são colocadas em uma placa de vidro contendo a gordura que vai absorvendo o óleo essencial, sendo as flores substituídas após 24 horas. O processo se repete até a saturação

(197)

(198)

OH

da gordura (8 a 10 semanas). Depois desse período o óleo é extraído com álcool, obtendo-se o extrato alcoólico que é resfriado, para remoção de gotículas de gorduras, filtrado e destilado o solvente, visando a obtenção do óleo essencial (CUNHA, 2005).

A extração por fluídos supercríticos e/ou subcríticos, uma das tecnologias que mais avançou nas últimas décadas, está sendo muito utilizada, em especial, pela indústria farmacêutica. O método destacou-se entre os processos industriais pela qualidade dos produtos obtidos e por não causar danos ambientais, quando se usa o dióxido de carbono (CO₂) como solvente. A técnica consiste em manter uma substância (solvente) com a pressão e temperatura (ambas, simultaneamente) acima dos valores do seu ponto crítico, fluido supercrítico, ou em manter a temperatura ou pressão acima do valor do ponto crítico do solvente, fluído subcrítico (LANÇAS, 2002).

As indústrias de pequena dimensão e produção de essências utilizam as técnicas de extração por vapor de água (hidrodestilação ou arraste por vapor), em função do baixo custo dos equipamentos (CUNHA, 2005).

5.3 Constituintes voláteis do gênero *Protium*.

As análises qualitativas e quantitativas dos óleos essenciais obtidos das três espécies do gênero *Protium* (Burseraceae): *P. hebetatum* Daly (PHB), *P. Heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *heptaphyllum* (PHH), foram realizadas por cromatografia gás-líquido acoplada a um espectrômetro de massa (CGL/EM) e por cromatografia gasosa com detector de chama (CG/FID).

Os óleos essenciais foram obtidos das resinas das três espécies, sendo codificados por PHB-ROE, PHU-ROE e PHH-ROE, respectivamente. Além da resina, foi extraído o óleo da casca do *P. hebetatam*, que foi codificado por PHB-COE. Os óleos foram extraídos por hidrodestilação, armazenados em ampolas de vidro âmbar, fechadas e mantidas em ambiente refrigerado até a obtenção dos espectros de massas.

5.3.1 Rendimento dos óleos essenciais obtidos das espécies de Protium.

O rendimento percentual do óleo essencial extraído das espécies de *Protium* foi determinado levando-se em consideração o volume do óleo essencial extraído e a massa da amostra (v/m).

O rendimento do óleo essencial da resina do *P. hebetatum* (PHB-ROE) foi de 15,1%, superior ao rendimento 11,9% do óleo da resina do *P. heptaphyllum* subsp. *ulei* (PHU-ROE). O rendimento mais baixo (0,2%) foi observado na casca do *P. hebetatum* (PHB-COE), apesar do forte aroma exalado no processo de trituração. O baixo rendimento do óleo essencial da casca pode estar relacionado ao método hidrodestilação, utilizado na extração do óleo (Tab. 5.2).

Espécie			Parte da	Planta	Volume	Rend.
			Resina	Casca	do Óleo	(%)
Protium hebetatum Daly				267,0g g	0,6 mL	0,2
			164,0 g		24,7 mL	15,1
Protium heptaphyllum subsp. ulei			251,0 g		30,0 mL	11,9
Protium heptaphyllum	heptaphyllum	subsp	103,0 g		11,7 mL	11,3

Tabela 5.2 - Rendimento do óleo essencial obtido das espécies de Protium

5.3.2 Óleo essencial da resina do *P. hebetatum* Daly

O óleo essencial obtido da resina do *P. hebebatum* Daly (PHB-ROE), representado no cromatograma (Fig. 5.6, p. 49) e com os respectivos espectros de massa registrados, tiveram 97,82% dos seus constituintes identificados (Tab. 5.4, p. 54). A análise dos espectros de massa permitiu identificar vinte e dois (22) constituintes, sendo onze (11) monoterpenos, dez (10) sequiterpenos e o ftalato de isobutila, (**270**) (Fig. 5.86, p. 74) como artefato. O a-pineno, com 21,28% (**194**) (Fig. 5.21, p. 58) e o β-felandreno, com 14,53% (**223**) (Fig. 5.37, p. 62) foram os constituintes principais.

Figura 5.6 - Cromatograma do óleo essencial da resina do P. hebetatum Daly, (PHB-ROE)

5.3.3 Óleo essencial da casca do lenho do *P. hebetatum* Daly

A análise dos espectros de massa dos componentes do cromatograma (Fig. 5.7, p. 50) da amostra do óleo essencial extraído da casca do lenho do *P. hebetatum* Daly (PHB-COE), permitiu identificar oito (08) constituintes, representando 97,72% do total (Tab. 5.4, p. 54). A análise revelou a presença marcante de seis (06) sesquiterpenos e de um (01) monoterpeno e um artefato (**270**). Os dois constituintes majoritários foram o β-cariofileno (**245**), com 28,14% (Fig. 5.61, p. 68) e o d-cadineno (**261**), com 3,94% (Fig. 5.77, p. 70).

A casca do lenho do *P. hebetatum* (PHB) foi também submetida à extração com solventes orgânicos obtendo os extratos hexânico e etanólíco. O extrato hexânico foi fracionado em coluna filtrante com gel de sílica, fornecendo por eluição as frações éter de petróleo, clorofórmio e etanol (Flux. 10.4, p. 181). A fração éter de petróleo foi adsorvida em gel de sílica e acondicionada em coluna cromatográfica (CC), empacotada com gel de sílica. As frações F1-34 eluídas com éter de petróleo apresentaram um forte aroma característico de óleo essencial. Após análise em cromatografia de camada delgada (CCD), foram reunidas e identificadas como PHB-EHCOE, sendo analisado por CGL/EM.

Figura 5.7 - Cromatograma do óleo essencial da casca do P. hebetatum Daly (PHB-COE)

Os constituintes representados no cromatograma (Fig. 5.8, p. 51) do óleo codificado por PHB-EHCOE, tiveram seus espectros de massas registrados, o que possibilitou a identificação de 39 constituintes, representando 86,68% do total registrado. Esses constituintes foram distribuídos em: 3 monoterpenos, 20 sesquiterpenos, 4 hidrocarbonetos lineares, 3 hidrocarbonetos acíclicos de cadeias ramificadas e os demais, distribuídos entre hidrocarbonetos cíclicos saturados e aromáticos (Tab. 5.4, p. 54). Os dois constituintes majoritários foram o β-cariofileno (**245**) com 16,84% (Fig. 5.61, p. 68) e o a-copaeno (**240**) com 10,41% (Fig. 5.56, p. 67).

Um total de dez (10) constituintes (Tab. 5.3, p. 51) não encontram-se publicados na literatura especializada (ADAMS, 2007). Eles foram identificados por comparação com espectros registrados em banco de dados informatizado (*SciFinder, Science Direct*). Alguns desses constituintes, provavelmente, não sejam oriundos da biossintese da planta.

Constituinte	Tempo de retenção	Teor (%)	Espectro/Página
Metilciclo-hexano (199)	3,164	0,35	Fig. 5.11, p.56
Etilciclo-hexano (200)	5,244	0,32	Fig. 5.12, p.56
4-Metiloctano (201)	6,050	0,71	Fig. 5.13, p.56
1,3-Dimetilbenzeno (202)	6,122	2,96	Fig. 5.14, p.56
3-Metiloctano (203)	6,260	0,58	Fig. 5.15, p.57
Ciclo-hexanona (204)	6,682	1,41	Fig. 5.16, p.57
1,2-Dimetilbenzeno (205)	6,783	0,97	Fig. 5.17, p.57
Propilciclo-hexano (207)	8,015	0,32	Fig. 5.19, p.58
o-Etiltolueno (210)	8,990	0,61	Fig. 5.23, p.59
2,3-Dimetilnonano (219)	11,300	0,40	Fig. 5.33, p.61

Tabela. 5.3 - Constituintes identificados no óleo essencial de PHB-EHCOE, não registradosna literatura especializada Adams (2007)

Figura 5.8 - Cromatograma do óleo essencial obtido do extrato hexânico da casca do *P*. *hebetatum* Daly (PHB-EHCOE).

5.3.4. Óleo essencial da resina do P. heptaphyllum (Aublet) Marchand subsp. ulei (Swat) Daly

Os constituintes do óleo essencial da resina do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU-ROE), registrados no cromatograma (Fig. 5.9) tiveram seus espectros de massas registrados, o que permitiu identificar 95,35% do total dos componentes do óleo (Tab.5.4, p. 54). Foram identificados quinze (15) constituintes, sendo treze (14) monoterpenos e um (01) hidrocarboneto cíclico aromático. O terpinoleno (**227**) com 42,31% (Fig. 5.43, p. 64) e o p-cimen-8-ol (**232**) com 13,62% (Fig.5.48, p. 65) foram os dois constituintes principais.

Figura 5.9 - Cromatograma do óleo essencial da resina do *P. heptaphyllum* subsp. *ulei* (PHU-ROE)

4.3.5. Óleo essencial da resina do P. heptaphyllum (Aublet) Marchand subsp. heptaphyllum

Um total de vinte e um (21) constituintes do óleo essencial da resina do *P*. *heptaphyllum* (Aublet) Marchand subsp. *heptaphyllum* (PHH-ROE), presentes no cromatograma (Fig. 5.10, p. 53), foram identificados, por meio de seus espectros de massas, representando 98,53% do total.(Tab.5.4, p. 54). Os constituintes foram distribuídos em (11) monoterpenos, seis (06) sesquiterpenos e quatro (04) hidrocarbonetos lineares. Os três principais constituintes foram: p-cimeno, com 39,93% (220) (Fig. 5.34, p. 61), deshidro-4-

careno, com 11,69% (222) (Fig. 5.36, p. 62) e o n-tetradecano, com 13,38% (243) (Fig. 5.59, p. 68).

Essa espécie se diferenciou bastante das outras duas, PHB e PHU, pela presença de uma grande quantidade de hidrocarbonetos lineares: tridecano (236) (Fig. 5.52, p. 66), tetradecano (243) (Fig. 5.59, Pág. 68), pentadecano (258) (Fig. 5.74, Pág. 71) e o hexadecano (269) (Fig. 5.85, p. 74) (Tab. 5.4, p. 54).

Figura 5.10 - Cromatograma do óleo essencial da resina do *P. heptaphyllum* subsp. *heptaphyllum* (PHH-ROE)

		Teor dos Constituintes (%)					
Constituintes Voláteis	I.R.	PHB-	PHB-COE PHB-	PHU-	PHH-		
Matilgicla hayana (199)	702	ROE	<u>EHCOE</u>	ROE	ROE		
Etilciclo-beyano (200)	850		0,33				
A-Metiloctano (201)	873		0,52				
1 3-Dimetilbenzeno (202)	875		2.96				
3-Metiloctano (203)	879		2,50				
Ciclo hexanona (203)	801		0,30				
1 2-Dimetilbenzeno (205)	89/		0.97				
n-Nonano (206)	902		1.91				
n-Propilciclo-bexano (207)	928		0.32				
a-Tuieno (208)	928	7 49	0,52		1 88		
a-Pineno (194)	936	21.28		3 96	1,00		
a-Fencheno (209)	945	0.47		5,70			
o-Etiltolueno (210)	955	0,47	0.29				
Cumeno (211)	963		0,61				
Sabineno (212)	970	1 87	0,01				
B-Pineno (195)	972	8 77		3 4 2	0.60		
cis-Pineno (213)	980	0,77		5,42	1 17		
n-Menta-3-eno (214)	991				3 17		
Mesitileno (215)	993		1.17		5,17		
n-Decano (216)	996		1 49				
a-Felandreno (217)	997	9.21	-,.,	2.02	7 41		
a-Terpineno (218)	1010	1.21		1.49	1.68		
2.3-Dimetilnonano (219)	1016	-,	0.40	-,.,	1,00		
p-Cimeno (220)	1017	8.10	1.96 1.80	4.75	39.93		
Pseudocumeno (221)	1020	-,	0.41	3.06			
Deshidro-4-careno (222)	1024		- 7	- ,	11.69		
β-Felandreno (223)	1025	14.53	0.31		,		
1.8-Cineol (193)	1025	y	- ,-	3.07			
Limoneno (197)	1029			11,87			
γ-Terpineno (224)	1058	0,82		2,62			
p-Menta-2,4(8)-dieno (225)	1082	,		,	0,85		
Undecano (226)	1100		1,80				
Terpinoleno (227)	1137			42,31	4,22		
Deshidro <i>cis</i> -terpineol (228)	1143				2,46		
p-Menta-1,3,8-trieno (229)	1145			0,68			
Terpinen-4-ol (230)	1180	1,19					
n-Dodecano (231)	1204		0,43				
p-Cimen-8-ol (232)	1214			13,62			
a-Terpíneol (233)	1223			1,00			

Tabela 5.4 - Teor dos constituintes voláteis das espécies de Protium

	I.R.	Teor dos Constituintes (%)					
Constituintes Voláteis		PHB-	PHB-COE	PHB-	PHU-	PHH-	
Verbenona (234)	1232	ROE		EHCOE	ROE	ROE	
Crisantenil acetato (235)	1232				0.72		
Tridecano (236)	1242				0,72	1 75	
d-Flemeno (237)	1344	0.78		1 73		1,75	
a-Cubebeno (238)	1357	3 18		6.04			
a-Vlangeno (239)	1375	5,10		0,04			
a-Copaeno (240)	1373	1.06	2 63	10.41			
B-Elemeno (241)	1393	1,00	2,05	2.40			
Metil eugenol (242)	1401			2,10	0.76		
n-Tetradecano (243)	1405				0,70	13 38	
cis-a-Bergamoteno (244)	1415			1.57		10,00	
B-Cariofileno (245)	1429	7.90	28.14	16.84		1 16	
trans-a-Bergamoteno (246)	1434	,,,, 0	20,11	2.25		1,10	
v-Elemeno (247)	1437	0.82		2,23			
a-Humuleno (248)	1458	0.83	3 4 5	2.37		0.43	
a-Aromadredeno (249)	1464	0,02	5,15	0.79		0,15	
γ -Muuroleno (250)	1471			2.88			
v-Guriujeno (251)	1471			_,		0.45	
β -(cis)-Guaieno (252)	1474			0.64		- , -	
a-Amorfeno (253)	1480			1.79			
Germacreno D (254)	1483	2,42		,			
Valenceno (255)	1487	,		1,79			
a-Selineno (256)	1489			1,47			
a-Muuroleno (257)	1492			1,95			
n-Pentadecano (258)	1502			·		4,49	
β-Bisaboleno (259)	1504			2,00		0,44	
γ-Cadineno (260)	1507		2,45	2,23			
d-Cadineno (261)	1515		3,94	7,82			
trans-calameneno (262)	1517	1,85					
trans cadina-1,4-dieno (263)	1523	1,38					
a-Z-Bisaboleno (264)	1528					0,25	
a-Calacoreno (265)	1528			0,89			
Elemicin (266)	1545					0,27	
Germacreno B (267)	1548	1,16					
Óxido de Cariofileno (268)	1567		1,53				
n-Hexadecano (269)	1594					0,85	
Ftalato de Isobutila (270)	1752	1,50	53,62				
TOTAL%		97,82	97,72	86,68	95,35	98,53	

Teor dos constituintes voláteis das espécies de Protium

I. **R.** Índice de Retenção

Figura 5.11 - Espectro de massa do metilciclo-hexano (199)

Figura 5.12 - Espectro de massa do etilciclo-hexano (200)

Figura 5.13 - Espectro de massa do 4-metiloctano (201)

Figura 5.14 - Espectro de massa do 1,3-dimetilbenzeno (202)

Figura 5.15 - Espectro de massa do 3-metiloctano (203)

Figura 5.16 - Espectro de massa do ciclo-hexanona (204)

Figura 5.17 - Espectro de massa do 1,2-dimetilbenzeno (205)

Figura 5.18 - Espectro de massa do n-nonano (206)

Figura 5.19 - Espectro de massa do n-propilciclo-hexano (207)

Figura 5.20 - Espectro de massa do a-tujeno (208)

Figura 5.21- Espectro de massa do a- pineno (194)

Figura 5.22 - Espectro de massa do a-fencheno (209)

Figura 5.23 - Espectro de massa do o-etiltolueno (210)

Figura 5.24 - Espectro de massa do cumeno (211)

Figura 5.25 - Espectro de massa do sabineno (212)

Figura 5.26 - Espectro de massa do β–pineno (195)

Figura 5.27 - Espectro de massa do *cis*-pinano (213)

Figura 5.28 - Espectro de massa do p-menta-3-eno (214)

Figura 5.29 - Espectro de massa do mesitileno (215)

Figura 5.30 - Espectro de massa do n-decano (216)

Figura 5.31 - Espectro de massa do a-felandreno (217)

Figura 5.32 - Espectro de massa do a-terpineno (218)

Figura 5.33 - Espectro de massa do 2,3-dimetilnonano (219)

Figura 5.34 - Espectro de massa do p-cimeno (220)

Figura 5.35 - Espectro de massa do pseudocumeno (221)

Figura 5.36 - Espectro de massa do deshidro-4-careno (222)

Figura 5.37 - Espectro de massa do ß-felandreno (223)

Figura 5.38 - Espectro de massa do 1,8- cineol (193)

Figura 5.39 - Espectro de massa do limoneno (197)

Figura 5.40 - Espectro de massa do γ-terpineno (224)

Figura 5.41 - Espectro de massa do p-menta-2-4(8)-dieno (225)

Figura 5.42 - Espectro de massa do n-undecano (226)

Figura 5.43 - Espectro de massa do terpinoleno (227)

Figura 5.44 - Espectro de massa do deshidro *cis*-terpineol (228)

Figura 5.45 - Espectro de massa do p-menta-1,3,8-trieno (229)

Figura 5.46 - Espectro de massa do terpinen-4-ol (230)

Figura 5.47 - Espectro de massa do n-dodecano (231)

Figura 5.48 - Espectro de massa do p-cimen-8-ol (232)

Figura 5.49 - Espectro de massa do a-terpineol (233)

Figura 5.50– Espectro de massa da verbenona (234)

Figura 5.51 – Espectro de massa do crisantenil acetato (235)

Figura 5.52 - Espectro de massa do n-tridecano (236)

Figura 5.53 - Espectro de massa do d-elemeno (237)

Figura 5.54 - Espectro de massa do a-cubebeno (238)

Figura 5.55 - Espectro de massa do a-ylangeno (239)

Figura 5.56 - Espectro de massa do a-copaeno (240)

Figura 5.57 - Espectro de massa do B-elemeno (241)

Figura 5.58 - Espectro de massa do metil eugenol (242)

Figura 5.59 - Espectro de massa do n-tetradecano (243)

Figura 5.60 - Espectro de massa do cis-a-bergamoteno (244)

Figura 5.61 - Espectro de massa do B-cariofileno (245)

Figura 5.62 - Espectro de massa do *trans*-a-bergamoteno (246)

Figura 5.63 - Espectro de massa do γ -elemeno (247)

Figura 5.64 - Espectro de massa do a -humuleno (248)

Figura 5.65 - Espectro de massa do a-aromadrendeno (249)

Figura 5.66 - Espectro de massa do γ-muuroleno (250)

Figura 5.67 - Espectro de massa do γ-gurjuneno (251)

Figura 5.68 - Espectro de massa do β-(cis)-guaieno (252)

Figura 5.69 - Espectro de massa do a-amorfeno (253)

Figura 5.70 - Espectro de massa do germacreno - D (254)

Figura 5.71 - Espectro de massa do valenceno (255)

Figura 5.72 - Espectro de massa do a-selineno (256)

Figura 5.73 - Espectro de massa do a-muuroleno (257)

Figura 5.74 - Espectro de massa do n-pentadecano (258)

Figura 5.75 - Espectro de massa do β-bisaboleno (259)

Figura 5.76 - Espectro de massa do γ-cadineno (260)

Figura 5.77 - Espectro de massa do d-cadineno (261)

Figura 5.78 - Espectro de massa do trans-calameneno (262)

Figura 5.79 - Espectro de massa do trans-cadina-1,4-dieno (263)

Figura 5.80 - Espectro de massa do a-Z-bisaboleno (264)

Figura 5.81 - Espectro de massa do a-calacoreno (265)

Figura 5.82 - Espectro de massa do elemicin (266)

Figura 5.83 - Espectro de massa do germacreno B (267)

Figura 5.84 - Espectro de massa do óxido de cariofileno (268)

Figura 5.85 - Espectro de massa do n-hexadecano (269)

Figura 5.86 - Espectro de massa do ftalato de isobutila (270)

6 CONSTITUIÇÃO QUÍMICA DA CERA EPICUTICULAR DAS FOLHAS

6.1 Extrato hexânico das folhas do P. hebetatum

A fração éter de petróleo do extrato hexânico das folhas do *P. hebetatum* Daly (PHB) foi adsorvida em gel de sílica e acondicionada em coluna cromatográfica (CC), empacotada com gel de sílica. A eluição forneceu 62 frações que, após análise em cromatografia de camada delgada (CCD), foram reunidas em cinco grupos. As frações F14-21, eluídas com hexano, forneceram 5,34g de um sólido amorfo, branco, solúvel em diclorometano. As frações F22-26 e F32-36, eluídas com Hex-CH₂Cl₂ (95:05), forneceram 0,156g e 0,079g de constituintes líquidos viscosos, respectivamente. As frações F52 e F62, eluídas com CH₂Cl₂ e acetato de etila, forneceram 0,098g e 0,043g de líquidos viscosos amarelados, respectivamente. Estas frações foram analisadas em cromatógrafo gás-líquido acoplado a um espectrômetro de massa (CGL/EM).

Os parâmetros utilizados nas análises dos espectros de massa para a identificação dos constituintes químicos foram à presença do pico do íon molecular, o pico base e a comparação visual, levando-se em conta o padrão de fragmentação com espectros de massa descritos na literatura (ADAMS, 2007) ou em banco informatizado (*SciFinder*).

A análise dos espectros de massa da fração F14-21, registrados a partir dos principais picos do cromatograma (Fig. 6.87, p. 77), permitiu identificar três (03) hidrocarbonetos, representando 98,47% do total dos constituintes registrados (Tab. 6.5, p. 82). Os hidrocarbonetos identificados foram: heptacosano (**282**), com 6,97% (Fig. 6.108, p. 85), hentriacontano (**283**), com 63,24% (Fig. 6.109, p. 86) e o tritriacontano (**284**) com 28,26% (Fig. 6.110, p. 86).

A análise da fração F14-21 cujo espectro de massa (EMIE, 70 eV) foi registrado a partir de injeção direta, permitiu identificar apenas dois constituintes, ou seja, os hidrocarbonetos hentriacontano (C₃₁) (**283**) (Fig. 6.88, p. 77) e tritriacontano (C₃₃) (**284**) (Fig. 6.89, p. 78), com íon moleculares com razão de massa/carga (m/z) 436 e 464, respectivamente. O espectro de RMN ¹H (Fig. 6.90, Pág. 78) mostrou um tripleto em d_H 0,89 (J= 6,7 Hz) e um singleto de alta intensidade em d_H 1,27, característicos de hidrocarbonetos lineares.

Os componentes das frações F22-26 (cromatograma Fig. 6.91, p. 79), F32-36 (cromatograma Fig. 6.92, p. 79) e F52 (cromatograma Fig. 6.93, p. 80) revelaram a presença

marcante de dois hidrocarbonetos lineares, identificados como hentriacontano (**283**) (Fig. 6.109, p. 86) e tritriacontano (**284**) (Fig. 6.110, p. 86), sendo o hentriacontano (**283**) o constituinte majoritário (Tab. 6.5, p.82).

A partir da fração F62 (cromatograma Fig. 6.94, p. 80), oito (08) ésteres etílicos foram identificados, representando 100% dos constituintes registrados (Tab.6.5, p. 82). O éster hexadecanoato de etíla (**277**) (Fig. 6.103, p. 84) com 64,33%, foi o constituinte majoritário, seguido do octadecanoato de etila (**280**) (Fig. 6.106, p. 85) com 17,87%. Desta fração, foram também obtidos os espectros na região do IV e de RMN¹H. O espectro no infravermelho (Fig. 6.95, p. 81) revelou como destaque, absorções de deformação axial de carbonila ($v_{C=O}$) em 1733 cm⁻¹. O espectro de RMN ¹H (Fig. 6.96, p. 81) apresentou os sinais característicos de ésteres alifáticos: d_H 4,14 (m, **CH**₂O-), 2,30 (t, *J* = 7,6 Hz, **CH**₂ *alfa* a C = O), 1,65 (m, CH₂ *beta* a C = O), 1,29 [s, demais (CH₂)_n da cadeia alifática] e 0,90 (t, CH₃). Esses dados foram em acordo com a análise resultante a partir dos espectros de massa obtidos por CGL/EM.

A identificação de ceras epicuticular em folhas no gênero *Protium* foi registrada pela primeira vez na espécie *P. icicariba* (SIANI *et al.*, 2004), sendo os hidrocarbonetos lineares C_{14} a C_{18} os principais constituintes. Foi também registrada a presença em menor concentração dos hidrocarbonetos C_{27} , C_{30} , C_{32} e C_{33} . O isolamento da mistura, em grande quantidade, dos hidrocarbonetos C_{27} , C_{31} e C_{33} e a identificação de ésteres etílicos na cera epicuticular no gênero *Protium* está sendo registrado pela primeira vez.

Figura 6.87 - Cromatograma de F14-21 da fração éter de petróleo do extrato hexânico das folhas do *P. hebetatum* Daly

Figura 6.88 - Espectro de massa (EMIE, 70 eV.) da fração F14-21 hentriacontano (C₃₁).

Figura 6.89 - Espectro de massa (EMIE, 70 eV.) da fração F14-21, tritriacontano (C₃₃).

Figura 6.90 - Espectro de RMN ¹H (500 MHz, CDCl₃) da fração F14-21

Figura 6.91 - Cromatograma de F22-26 da fração éter de petróleo do extrato hexânico das folhas do *P. hebetatum* Daly.

Figura 6.92 - Cromatograma de F32-36 da fração éter de petróleo do extrato hecxânico das folhas do *P. hebetatum* Daly.

Figura 6.93 - Cromatograma de F52 da fração éter de petróleo do extrato hexânico das folhas do *P. hebetatum* Daly.

Figura 6.94 - Cromatograma de F62 da fração éter de petróleo do extrato hexânico das folhas do *P. hebetatum* Daly.

Figura 6.95 - Espectro na região do IV (NaCl) da fração F62

Figura 6.96 - Espectro de RMN ¹H (500 MHz, CDCl₃) da fração F62

	T.R.	Porcentagem (%)				
Constituintes		F14-	F22-	F32-	F52	F62
		21	26	36		
Ciclo-hexllbenzeno (271)	10,892			0,86		
a-Copaeno (239)	12,433			3,79		
1-Ciclo-hexil-3-metilbenzeno (272)	13,542			4,23		
β-Selineno (273)	15,200			2,36		
a-Selineno (255)	15,417			1,83		
Dodecanoato de etila (274)	17,558					2,47
Tetradecanoato de etila (275)	21,867					3,15
Pentadecanoato de etila (276)	23,483					3,95
Hexadecanoato de etila (277)	24,867				5,28	64,33
Heptadecanoato de etila (278)	26,058					3,32
9-Hexadecenoato de etila (279)	26,875					2,92
Octadecanoato de etila (280)	27,142					17,87
Eicosonoato de etila (281)	29,067					1,99
Heptacosano (282)	33,283	6,97	8,03			
Hentriacontano (283)	35,301	63,24	58,63	49,64	60,75	
Tritriacontano (284)	37,947	28,26	30,04	26,59	27,52	
Total %		98,47	96,70	89,30	93,55	100,0

Tabela 6.5 - Teor dos constituintes químicos da fração éter de petróleo do extrato hexânicodas folhas do P. hebetatum Daly.

T. R. Tempo de Retenção

Figura 6.97 - Espectro de massa do ciclo-hexilbenzeno (271)

Figura 6.98 - Espectro de massa do 1-ciclo-hexil-3-metilbenzeno (272)

Figura 6.99 - Espectro de massa do β-selineno (273)

Figura 6.100 - Espectro de massa do dodecanoato de etila (274).

Figura 6.101 - Espectro de massa do tetradecanoato de etila (275)

Figura 6.102 - Espectro de massa do pentadecanoato de etila (276)

Figura 6.103 - Espectro de massa do hexadecanoato de etila (277)

Figura 6.104 - Espectro de massa do heptadecanoato de etila (278)

Figura 6.105 - Espectro de massa do 9-hexadecenoato de etila (279)

Figura 6.106 - Espectro de massa do octadecanoato de etila (280)

Figura 6.107 - Espectro de massa do eicosonoato de etila (281)

Figura 6.108 - Espectro de massa do heptacosano (282)

Figura 6.109 - Espectro de massa do hentriacontano (283)

Figura 6.110 - Espectro de massa do tritriacontano (284)

7 DETERMINAÇÃO ESTRUTURAL

7.1 Constituintes fixos da resina do *P. hebetatum* Daly

Os extratos éter de petróleo e acetato de etila da resina do *P. hebabatum*, após cromatografia em coluna com gel de sílica, possibilitaram a caracterização de seis triterpenos pentacíclicos (PHB-01a/PHB-02b, PHB-02a/PHB-02b e PHB-07a/PHB-07b) como misturas binárias e de quatro triterpenos tetracíclicos (PHB-03, PHB-05, PHB-06 e PHB-08) em seus estados puros.

7.1.1 Triterpenos pentacíclicos

7.1.1.1 PHB-01a/PHB-01b

Os compostos PHB-01a e PHB-01b foram obtidos como uma mistura binária na proporção relativa, aproximada, de 1:2 respectivamente, determinado pelo método de RMN¹H, e não puderam ser separados por cromatografia em coluna com gel de sílica. O espectro de massa (Fig. 7.111, p. 88) da mistura, obtido por impacto eletrônico (70 eV), mostrou um íon molecular com razão de massa/carga (m/z) 424 e, o espectro de RMN ¹³C com desacoplamento de hidrogênio (RMN ¹³C HBBD) (Fig. 7.112, p. 89) em combinação com o espectro de RMN ¹³C usando a sequencia de pulsos DEPT 135° (Fig. 7.113, p. 89), além de um grande número de sinais na região de carbonos sp³, revelou dois pares de sinais para carbonos olefínicos em d_C 145,50 (C)/121,57 (CH) e 139,99 (C)/124,26 (CH) (Tab. 7.7, p. 95). Estes sinais caracterizaram PHB-01a e PHB-01b como derivados triterpênicos das séries oleanano e ursano, respectivamente. Em adição, o espectro de RMN ¹³C mostrou um sinal em d_C 217,81, indicativo de carbono carbonílico de função cetona em sistema cíclico de seis carbonos, em acordo com a absorção em 1704 cm⁻¹ ($v_{C=0}$), registrada no espectro na região do infravermelho (IV) (Fig. 7.114, p. 90). Com base nesses dados foi possível estabelecer a fórmula molecular $C_{30}H_{48}O$ para os triterpenos isômeros PHB-01a e PHB-02b. A função cetona (d_C 217,81) foi localizada no átomo de carbono C-3, por comparação com valores de substâncias registradas na literatura (BANDEIRA et al., 2002), o que foi confirmado no espectro de RMN bidimensional de correlação heteronuclear de hidrogênio e carbono-13 através de duas e três ligações (^{2,3}J_{CH} ¹H - ¹³C HMBC) (Fig. 7.115, p. 90) por intermédio das correlações do C-3 (d_C 217,81), com os átomos de hidrogênios 2H-2 (d_H 2,54 e 2,36) e com os hidrogênios dos grupos metila 3H-23 [d_H 1,10 (oleanano/ursano)] e 3H-24 $[d_H 1,08, (oleanano/ursano)].$

No espectro de RMN ¹H (Fig. 7.116, p. 91), vale ressaltar os sinais devidos aos hidrogênios olefínicos em d_H 5,21 (t, J = 3,4 Hz) e 5,16 (t, J = 3,7 Hz), característicos desses triterpenos e claramente correlacionados aos seus respectivos carbonos no espectro de RMN bidimensional de correlação heteronuclear de hidrogênio e carbono-13 através de uma ligação (${}^{1}J_{CH}{}^{1}H - {}^{13}C$ HSQC) (Fig. 7.117, p. 91).

Assim, PHB-01a e PHB-02b foram identificados como sendo os triterpenos 3oxoolean-12-eno (ß-amirenona) e 3-oxours-12-eno (a-amirenona), respectivamente (Fig. 7.118,p. 92).

Diversas outras correlações de confirmação das estruturas foram observadas nos espectros bidimensionais [¹H - ¹H COSY (Fig.7.119, p. 92), ¹H - ¹³C HSQC (Figs. 7.120 e 7.121, p. 93) e ¹H - ¹³C HMBC (Fig. 7.122, p. 94)]. Correlações estruturais dos espectros HMBC e HSQC foram indicadas nas tabelas 7.6 (p. 94) e 7.7 (p. 95), respectivamente.

Figura 7.111 - Espectro de massa (70 eV) de PHB-01a/PHB-01b.

Figura 7.112 – Espectro de RMN¹³C (125 MHz, CDCl₃) de PHB-01a/PHB-01b.

Figura 7.113 - Espectro de RMN¹³C - DEPT 135° (125 MHz, CDCl₃) de PHB-01a/PHB-01b.

Figura 7.114 - Espectro na região do IV (NaCl) de PHB-01a/PHB-01b.

Figura 7.115 - Espectro de RMN 1 H - 13 C HMBC (125 MHz, CDCl₃) de PHB-01a/PHB-01b.

Figura 7.116 - Espectro de RMN 1 H (500 MHz, CDCl₃) de PHB-01a/PHB-01b.

Figura 7.117 - Espectro de RMN 1 H - 13 C HSQC (125 MHz, CDCl₃) de PHB-01a/PHB-01b.

Figura 7.118 - Estrutura molecular de PHB-01a e PHB-01b.

Figura 7.119 - Espectro de RMN 1 H – 1 H COSY (125 MHz, CDCl₃) de PHB-01a/PHB-01b.

Figura 7.120 - Espectro de RMN 1 H - 13 C HSQC (125 MHz, CDCl₃) de PHB-01a/PHB 01b.

Figura 7.121 - Espectro de RMN 1 H – 13 C HSQC (125 MHz, CDCl₃) de PHB-01a/PHB-01b.

Figura 7.122 - Espectro de RMN 1 H – 13 C HMBC (125 MHz, CDCl₃) de PHB-01a/PHB-01b.

С	(PHB-01a) 3-Oxoolean-12-eno ou ß- Amirenona			(PHB-01b) 3-Oxours-12-eno ou a-Amirenona		
•	d _C	$^{2}J_{\mathrm{CH}}$	$^{3}J_{\mathrm{CH}}$	d _C	$^{2}J_{\mathrm{CH}}$	$^{3}J_{\mathrm{CH}}$
1	39,33	2H-2		39,53	2H-2	
3	217,81	2H-2	2H-1, 3H-24, 3H-23	217,81	2H-2	2H-1, 3H-24, 3H-23
9	46,97		H-12	46,92		H-12
11	23,57	H-12		23,68	H-12	
12	121,57	2H-11		124,26	2H-11	
13	145,50		2H-11, 3H-27	139,99		2H-11, 3H-27
14	41,76		H-12	41,76		H-12
18	47,39		H-12	59,23		H-12

Tabela 7.6 - Correlações ${}^{2,3}J_{CH}$ ¹H - ${}^{13}C$ HMBC de PHB-01a e PHB-01b.

(PHI	3-01a) 3-Oxoolean-12-ei	no ou	(PHB-01b) 3-Oxours-12-eno ou			
	B-Amirenona			a-Amirenona		
dc	$\mathbf{d}_{\mathbf{H}}\left(\boldsymbol{J} \; \mathbf{H} \mathbf{z} \right)$	dcLit	dc	$\mathbf{d}_{\mathrm{H}}(\mathbf{J} \mathbf{H}\mathbf{Z})$	dcLit	
39,33	1,91 (m); 1,40 (m)	39,2	39,53	1,91 (m); 1,40 (m)	39,3	
34,21	2,54 (ddd, 14,7, 13,3 e 7,3)		34,21	2,54 (ddd, 14,7, 13,3 e 7,3)		
34,21	2,36 (ddd, 11,0, 9,4 e 3,7)		34,21	2,36 (ddd, 11,0, 9,4 e 3,7)		
217,81		217,6	217,81		217,8	
46,85			46,85			
55,38		55,2	55,34		55,2	
19,69		19,6	19,63		19,6	
32,51		32,4	32,51		32,4	
39,53		39,3	39,53		39,3	
46,97		47,1	46,92		47,3	
36,94		36,6	36,87		36,5	
23,57	1,97 (m)	23,6	23,68	1,97 (m)	23,4	
121,57	5,21 (t, 3,4)	121,2	124,26	5,16 (t, 3,7)	124,1	
145,50		145,2	139,99		139,6	
41,76		41,5	41,76		43,1	
26,18		26,0	27,00		26,5	
27,00		26,8	26,63		26,4	
34,99		32,1	34,99		34,2	
47,39		46,8	59,23		60,7	
46,97		46,7	39,73		39,4	
31,30		35,0	39,63		39,2	
34,21		34,6	31,27		31,2	
37,15		37,0	41,55		41,4	
26,65	1,10 (s)		26,65	1,10 (s)		
15,46	1,08 (s)	15,1	16,76	1,08 (s)	16,6	
15,22	1,08 (s)	15,4	17,47		17,4	

17,47

16,85

21,36

23,21 1,08 (s)

28,77 0,81 (s)

16,7

25,8

34,1

23,6

Tabela 7.7 - Dados de RMN ¹ H e ¹³ C de PHB-01a e PHB-01

С

1

2ß

2a

3

4 5

6

7 8

9

10

11 12

13

14

15

16

17 18

19

20

21

22

23

24

25

26

27

28 29

30

Lit. BANDEIRA et al., 2002

25,88 1,14 (s)

28,77 0,81 (s)

33,31 0,87 (s)

17,47

23,21

17,5

23,1

17,5

21,4

Os compostos PHB-02a e PHB-02b foram obtidos como uma mistura binária na proporção relativa, aproximada, de 1:1,7, respectivamente, determinado pelo método de RMN¹H, e não puderam ser separados por cromatografia em coluna com gel de sílica. O espectro de massa (Fig. 7.123, p. 97) da mistura, obtido por impacto eletrônico (70 eV), mostrou um íon molecular com razão de massa/carga (m/z) 426 (duas unidades de massa a mais que PHB-01a/PHB-01b).

O espectro de RMN ¹³C HBBD (Fig. 7.124, p. 97) em combinação com o espectro de DEPT 135° (Fig. 7.125, p. 98), além de um grande número de sinais na região de carbonos sp³, revelou dois pares de sinais para carbonos olefínicos em d_C 145,40 (C)/121,94 (CH) e 139,80 (C)/124,63 (CH) (Tab. 7.9, Pág. 103). Estes sinais caracterizaram PHB-02a e PHB-02b como derivados triterpênicos das séries oleanano e ursano, respectivamente. O espectro de RMN 13 C HBBD não exibiu o sinal em d_C 217,81, observado no espectro de PHB-01a e PHB-01b, porém, registrou dois sinais, quase superpostos, para carbonos metínicos oxigenados em d_C 79,22 e 79,25. Por outro lado, o espectro no IV (Fig. 7.126, p. 98), também não mostrou absorção do grupo carbonila, mas, apresentou uma banda intensa e larga em 3475 cm⁻¹ (v_{O-H}), característica de grupo hidroxila. Essas deduções tornaram evidente que PHB-02a e PHB-02b tratavam-se dos produtos de redução, no grupo carbonila, de PHB-01a e PHB-01b. Todas as deduções acima permitiram estabelecer a fórmula molecular $C_{30}H_{50}O$ para os triterpenos isômeros PHB-02a e PHB-02b. O grupo hidroxila foi localizado no átomo de carbono C-3, por comparação com valores registrados na literatura (TAMAI et al., 1989) situação confirmada no espectro de HMBC (Fig. 7.127, p. 99), através das correlações dos átomos de carbono C-3 (d_C 79,22 e 79,25) com os hidrogênios dos grupos metila 3H-23 (d_H 0,99) e 3H-24 (d_H 0,79).

No espectro de RMN ¹H (Fig.7.128, p. 99), vale ressaltar os sinais devidos aos hidrogênios olefínicos em d_H 5,20 (t, J = 5,8 Hz) e 5,14 (t, J = 5,9 Hz), característicos desses triterpenos e claramente correlacionados aos seus respectivos carbonos no espectro de HSQC, (Fig. 7.129, p. 100). A estereoquímica *beta* atribuída ao grupo hidroxila no carbono C-3 teve como base o sinal dubleto de dubleto registrado no espectro de RMN ¹H para os hidrogênios H-3 em d_H 3,22 (2H, dd, J = 10,4 e 5,0 Hz) e o deslocamento químico do carbono C-5 de PHB-01a e PHB-02b em d_C 55,39 valor este, semelhante aos registrados na literatura (TAMAI *et al.*, 1989). Quando a hidroxila em C-3 ocupa posição axial, o carbono C-5 sofre

efeito *gama* e seu deslocamento químico ocorre em torno de d_C 48,0 (MAHATO; KUNDU, 1994).

Assim, PHB-01a e PHB-02b foram identificados como sendo os triterpenos 3ßhidroxiolean-12-eno (ß-amirina) e 3ß-hidroxiurs-12-eno (a-amirina), respectivamente (Fig. 7.130, p. 100).

Diversas outras correlações, de confirmação das estruturas, foram observadas nos espectros bidimensionais [COSY (Fig. 7.131, p. 101), HSQC (Fig. 7.132, p. 101) e HMBC (Fig. 7.133, p. 102)]. Correlações estruturais dos espectros de HMBC e HSQC foram indicadas nas tabelas 7.8 (p. 102) e 7.9 (p. 103), respectivamente.

Figura 7.123 - Espectro de massa (70 eV) de PHB-02a/PHB-02b.

Figura 7.124 – Espectro de RMN 13 C (125 MHz, CDCl₃) de PHB-02a/PHB-02b.

Figura 7.125 – Espectro de RMN - DEPT 135° (125 MHz, CDCl₃) de PHB-02a/PHB-02b.

Figura 7.126 - Espectro na região do IV (NaCl) de PHB-02a/PHB-02b.

Figura 7.127 – Espectro de RMN 1 H - 13 C HMBC (125 MHz, CDCl₃) de PHB-02a/PHB-02b.

Figura 7.128 - Espectro de RMN ¹H (500 MHz, CDCl₃) de PHB-02a/PHB-02b.

Figura 7.129 - Espectro de RMN 1 H - 13 C HSQC (125 MHz, CDCl₃) de PHB-02a/PHB-02b.

Figura 7.130 - Estrutura molecular de PHB-02a e PHB-02b

Figura 7.131 - Espectro de RMN ¹H - ¹H COSY (125 MHz, CDCl₃) de PHB-02a/PHB-02b.

Figura 7.132 - Espectro de RMN 1 H - 13 C HSQC (125 MHz, CDCl₃) de PHB-02a/PHB-02b.

Figura 7.133 - Espectro de RMN 1 H - 13 C HMBC (125 MHz, CDCl₃) de PHB-02a/PHB-02b.

	(PHB-	02a) 3ß-Hid	roxiolean-12-eno	(PHB-02b) 3ß-Hidroxiurs-12-eno			
С	ou ß-Amirina		ou a-Amirina				
	d _C	$^{2}J_{\mathrm{CH}}$	$^{3}J_{\rm CH}$	d _C	$^{2}J_{\mathrm{CH}}$	$^{3}J_{\rm CH}$	
1	38,80	H-2	H-3	39,00	H-2	H-3	
2	27,14	H-3		27,43	H-3		
3	79,22	H-2	Me-23, Me-24	79,25	H-2	Me-23, Me-24	
9	47,84		H-12	47,43		H-12	
11	23,57	H-12		23,57	H-12		
12	121,94	H-11		124,63	H-11		
13	145,40		3H-27, H-11	139,80	H-12	3H-27, H-11	
14	42,29		H-12	42,29		H-12	
18	47,92			59,21	H-12		
23	28,34		H-3	28,34		H-3	
24	15,71		H-3	17,68		H-3	

Tabela 7.8 - Correlações ${}^{2,3}J_{CH} {}^{1}H - {}^{13}C HMBC$ de PHB-02a e PHB-02b.

	(PHB-02a) 3ß-Hidroxiolean-12-eno			(PHB-02b) 3ß-Hidroxiurs-12-eno			
C		ou B-Amirina		ou a-Amirina			
	dc	d _H (J Hz)	dcLit	dc	$d_{H} \left(J H z \right)$	dcLit	
1	38,80	1,66 (m), 1,05 (m)	38,58	39,00	1,66 (m), 1,05 (m)	38,76	
2	27,14	1,68 (m), 1,35 (m)	27,23	27,43	1,68 (m), 1,35 (m)	27,26	
3	79,22	3,22 (dd, 10,4 e 5,0)	79,01	79,25	3,22 (dd, 10,4 e 5,0)	79,03	
4	38,98		38,77	38,99		38,76	
5	55,39	0,75 (m)	55,17	55,39	0,75 (m)	55,17	
6	18,57		18,37	18,57		18,35	
7	32,86		32,64	33,15		32,92	
8	40,00		39,78	40,22		39,99	
9	47,84	1,53 (m)	47,62	47,43	1,56 (m)	47,70	
10	37,11		36,94	37,11		36,88	
11	23,57	1,90 (m)	23,52	23,57	1,92 (m)	23,36	
12	121,94	5,20 (t, 5,8)	121,72	124,63	5,14 (t, 5,9)	124,40	
13	145,40		145,19	139,80		139,57	
14	42,29		41,71	42,29		42,06	
15	28,31		26,14	28,31		26,61	
16	26,82		26,93	26,36		28,09	
17	32,70		32,48	33,96		33,74	
18	47,92		47,22	59,21		59,04	
19	47,04		46,82	39,81		39,60	
20	31,29		31,07	39,87		39,60	
21	34,94		34,72	31,46		31,25	
22	37,35		37,13	41,74		41,53	
23	28,34	0,99 (s)	28,10	28,34	0,99 (s)	28,12	
24	15,71	0,79 (s)	15,57	15,88	0,79 (s)	15,62	
25	15,83	0,79 (s)	15,49	15,83	0,79 (s)	15,68	
26	17,07	1,01 (s)	16,80	17,62	1,01 (s)	16,88	
27	26,36	1,12 (s)	25,98	23,48	1,06 (s)	23,27	
28	28,61	0,78 (s)	28,39	28,61	0,78 (s)	28,75	
29	33,55		33,33	15,71		17,47	
30	23,48	0,86 (s)	23,68	21,61	0,90 (d, 5,6)	21,40	

Tabela 7.9 - Dados de RMN ¹H e ¹³C de PHB-02a e PHB-02b

Lit. TAMAI et al., 1989

Os compostos PHB-07a e PHB-07b foram obtidos como uma mistura binária na proporção relativa, aproximada, de 1,0:1,8, respectivamente, determinado pelo método de RMN¹H, e não puderam ser separados por cromatografia em coluna com gel de sílica. O espectro de massa (Fig. 7.134, p. 105) da mistura, obtido por impacto eletrônico (70 eV), mostrou o íon molecular com razão de massa/carga (m/z) 442 (16 unidades de massa a mais que PHB-02a/PHB-02b). O espectro de RMN ¹³C HBBD (Fig. 7.135, p. 106) em combinação com o espectro DEPT 135° (Fig. 7.136, p. 106), além de um grande número de sinais na região de carbonos sp³, revelou dois pares de sinais para carbonos olefínicos em d_C 143,73 (C)/122,51 (CH) e 138,19 (C)/125,33 (CH) (Tab. 7.11, p. 113). Estes sinais caracterizaram PHB-07a e PHB-07b como derivados triterpênicos das séries oleanano e ursano, respectivamente. Os espectros de RMN ¹³C HBBD e DEPT 135° exibiram também dois pares de sinais (d_C 78,91/78,93 e 65,95/66,99) devidos a carbonos metínicos oxigenados, enquanto, o espectro no IV (Fig. 7.137, p. 107) apresentou uma banda intensa e larga em 3405 cm⁻¹ (v_{O} - $_{\rm H}$), característica de grupo hidroxila. O peso molecular com 16 unidades de massa a mais que PHB-02a/PHB-02b e a existência de dois carbonos metínicos oxigenados indicaram a presença de um grupo hidroxila adicional em PHB-07a/PHB-07b. As deduções acima permitiram deduzir a fórmula molecular $C_{30}H_{50}O_2$ para os triterpenos isômeros PHB-07a e PHB-07b. Um dos grupos hidroxila foi localizado no átomo de carbono C-3, por comparação com os dados espectrais de RMN ¹³C HBBD de PHB-07a/PHB-07b com os de PHB-02a/PHB-02b e com valores registrados na literatura (MAIA et al., 2000), condição estrutural confirmada no espectro HMBC (Fig. 7.138, p. 107), através da correlação dos átomos de carbono C-3 (d_C 78,91 e 78.93) com os hidrogênios dos grupos metila 3H-23 (d_H 1,02) e 3H-24 (d_H0,79) de PHB-07a/PHB-07b.

No espectro de RMN ¹H (Fig. 7.139, p. 108), vale ressaltar os sinais devidos aos hidrogênios olefínicos em d_H 5,24 (sl) e 5,18 (sl) característicos desses triterpenos e vistos claramente no espectro HSQC (Fig. 7.140, p. 108).

A estereoquímica relativa no carbono C-3 foi deduzida a partir do espectro de RMN ¹H. O sinal em d_H 3,22 do hidrogênio H-3, como um dubleto de dubleto e constantes de acoplamento J = 11,0 Hz (Jax-ax) e 4,8 Hz (Jax-eq), indicou que o grupo hidroxila em C-3 deve ser equatorial e, consequentemente, com orientação *beta*, o que está em acordo com os

deslocamentos químicos (d_C 55,29 e 55,12) dos carbonos C-5 de PHB-07a/PHB-07b, conforme argumentado no caso dos triterpenos PHB-02a/PHB-02b e segundo a literatura (MAIA *et al.*, 2000). O outro grupo hidroxila foi localizado no carbono C-16 (d_C 65,95 e 66,99), por comparação com compostos tomados como modelos (MAIA *et al.*, 2000) e em acordo com o pico base em m/z 234 (C₁₆H₂₆O) resultante de uma fragmentação retro Diels-Alder no anel C. As constantes de acoplamento, J = 13,8 Hz (Jax-ax) e 4,8 Hz (Jax-eq) do sinal dubleto de dubleto em d_H 4,18, devido ao H-16, indicaram que o grupo hidroxila deve ser equatorial e, assim, com orientação *beta*.

Assim, PHB-07a e PHB-07b foram identificados como sendo os triterpenos 36,16ßdi-hidroxiolean-12-eno (maniladiol)) e 36,16ß-di-hidroxiurs-12-eno (breína) (Fig. 7.141, p. 109), respectivamente.

Diversas outras correlações, de confirmação das estruturas, foram observadas nos espectros bidimensionais [COSY (Fig. 7.142, p. 109), HSQC (Figs. 7.143 e 7.144, p. 110) e HMBC (Figs. 7.145 e 7.146, p. 111)]. Correlações estruturais dos espectros HMBC e HSQC foram indicadas nas tabelas 7.10 (p. 112) e 7.11 (p. 113), respectivamente.

Figura 7.134 - Espectro de massa (70 eV) de PHB-07a/PHB-07b.

Figura 7.135 - Espectro de RMN ¹³C (125 MHz, CDCl₃) de PHB-07a/PHB-07b

Figura 7.136 – Espectro de RMN - DEPT 135° (125 MHz, CDCl₃) de PHB-07a/PHB-07b.

Figura 7.137 - Espectro na região do IV (NaCl) de PHB-07a/PHB-07b.

Figura 7.138 - Espectro de RMN 1 H - 13 C HMBC (125 MHz, CDCl₃) de PHB-07a/PHB-07b.

Figura 7.139 - Espectro de RMN ¹H (500 MHz, CDCl₃) de PHB-07a/PHB-07b.

Figura 7.140 - Espectro de RMN ¹H - ¹³C HSQC (125 MHz, $CDCl_3$) de PHB-07a/PHB-07b.

Figura 7.141 - Estrutura molecular de PHB-07a e PHB-07b.

Figura 7.142 - Espectro de RMN 1 H – 1 H COSY (125 MHz, CDCl₃) de PHB-07a/PHB-07b.

Figura 7.143 - Espectro de RMN 1 H - 13 C HSQC (125 MHz, CDCl₃) de PHB-07a/PHB-07b.

Figura 7.144 - Espectro de RMN 1 H - 13 C HSQC (125 MHz, CDCl₃) de PHB-07a/PHB-07b.

Figura 7.145 - Espectro de RMN 1 H - 13 C HMBC (125 MHz, CDCl₃) de PHB-07a/PHB-07b.

Figura 7.146 - Espectro de RMN 1 H - 13 C HMBC (125 MHz, CDCl₃) de PHB-07a/PHB-07b.
	36,166-Di-hidroxiolean-12-eno ou			3ß,16ß-Di-hidroxiurs-12-eno ou breína			
С	maniladiol (PHB-07a)			(PHB-07b)			
	d _C	$^{2}J_{\rm CH}$	$^{3}J_{\rm CH}$	d _C	$^{2}J_{\rm CH}$	$^{3}J_{\rm CH}$	
2	27,03	H-3		26,29	H-3		
3	78,91	2H-2	3H-23, 3H-24	79,85	2H-2	3H-23, 3H-24	
4	38,96	H-3		38,96	H-3		
5	55,29		3H-23, 3H-24, 3H-25	55,12		3H-23, 3H-24, 3H-25	
9	46,91		H-12	46,76		H-12	
11	23,31	H-12		23,45	H-12		
12	122,51		H-9	125,33		H-9	
13	143,73		2H-11, H-15, 3H-27	138,19	H-18	2H-15, H-19, 3H-27	
14	43,98		H-12	44,10		H-12	
15	35,13	H-16		35,86	H-16		
16	65,95	2H-15	3H-28	66,99	2H-15	3H-28	
17	36,15	H-16		39,48	H-16		
18	49,02		H-12	60,65	H-16	H-12	
23	28,03		H-3	27,64		H-3	
24	15,56		H-3	15,46		H-3	
28	21,29		H-16	21,42		H-16	

Tabela 7.10 - Correlações ${}^{2,3}J_{CH}$ ${}^{1}H$ x ${}^{13}C$ HMBC de PHB-07a e PHB-07b.

	3 ß,	16B-Di-hidroxiolean-12-	eno	3B,16B-Di-hidroxiurs-12-eno			
С		ou maniladiol (PHB-07a	ı)	ou breína (PHB-07b)			
	dc	d _{CH} (J Hz)	dcLit	dc	d _{CH} (J Hz)	dcLit	
1	38,40		38,0	38,52		38,8	
2	26,29	1,54 (m), 1,02 (m)	26,7	27,03	1,54 (m), 1,20 (m)	26,7	
3	78,91	3,22 (dd,11,0 e 4,8)	78,4	78,93	3,22 (dd,11,0 e 4,8)	78,4	
4	38,98		38,2	38,98		38,2	
5	55,29	0,71 (sl)	54,7	55,12	0,71 (sl)	54,7	
6	18,11		17,8	18,25		17,8	
7	32,58		32,2	32,83		32,4	
8	40,26		39,4	40,26		39,5	
9	46,76	1,52 (m)	46,3	46,91	1,52 (m)	46,5	
10	36,15		36,8	36,15		36,3	
11	23,45	2,04 (m)	23,0	23,31	2,04 (m)	22,8	
12	122,51	5,24 (sl)	121,7	125,33	5,18 (sl)	125,6	
13	143,73		143,0	138,19		137,5	
14	43,99		43,3	44,10		43,5	
15	35,49	1,73 (m), 1,35 (m)	35,1	35,13	1,73 (m), 1,35 (m)	35,5	
16	65,95	4,18 (dd,13,8 e 4,8)	65,4	66,99	4,18 (dd,13,8 e 4,8)	66,4	
17	36,15		36,8	38,80		38,0	
18	49,02		48,6	60,65		60,2	
19	46,48		46,1	39,43		39,0	
20	30,74		30,3	39,48		39,0	
21	34,44		33,7	30,46		30,0	
22	30,46		29,1	34,10		34,7	
23	28,03	1,02	27,6	28,06	1,02	27,6	
24	15,63	0,79	15,0	15,93	0,79	15,0	
25	15,46	0,93	14,9	15,56	0,93	15,1	
26	16,77	0,99	17,0	16,81	0,99	16,3	
27	27,06	1,21	26,7	24,46	1,14	24,0	
28	21,90	0,75	20,9	21,90	0,75	21,4	
29	33,18	0,90	32,7	17,57	0,78 (d, 5,6)	17,0	
30	23,89	0,90	23,4	21,29	0,89 (d, 3,8)	21,4	

Tabela 7.11 - Dados de RMN ¹H e ¹³C de PHB-07a e PHB-07b

Lit. MAIA et al., 2000

7.1.2 Triterpenos tetracíclicos

7.1.2.1 PHB-03

O composto catalogado como PHB-03 foi isolado como um sólido amorfo, branco, com faixa de fusão 123,7 - 126,5 °C (Lit. 122 - 124 °C, ROBLES et al., 2005) e rotação ótica específica $[s]_{D}^{20} = +18^{\circ}$ (c = 0,001 g/mL, CHCl₃). O espectro de RMN ¹³C HBBD (Fig. 7.147, p. 116) exibiu sinais para 30 carbonos, incluindo, a presença das funções cetona [d_C 218,00 (em anel ciclo-hexano)], ácido carboxílico (d_c 183,11) e duas ligações olefínicas, sendo uma tetrassubstituída $[d_C 134,63(C) e 132,86(C)] e$ a outra trissubstituída $[d_C 132,42(C)]$ e 123,57(CH)]. O espectro de RMN ¹H (Fig. 7.148, p. 116), mostrou sinais característicos para sete grupos metila, sendo cinco terciários [0,81 (s), 0,90 (s), 1,02 (s), 1,04 (s), 1,08 (s)] e dois vinílicos [1,58 (sl), 1,67 (sl)] e um sinal tripleto (J = 6,8 Hz) devido ao hidrogênio olefínico em d_H 5,09. A análise do espectro COSY (Fig. 7.149, p. 117), revelou o sinal em d_H 5,09 acoplado, adicionalmente, com os sinais singletos dos grupos metila em $d_{\rm H}$ 1,58 e 1,67 e permitiu identificar o segmento -CH₂-CH=C(CH₃)₂ da estrutura de PHB-03. Em adição, o espectro COSY mostrou correlação de um sinal em d_H 2,28 (dt, J = 10.0 e 5,3 Hz) com os sinais em d_H 2,06 e 1,55. Os carbonos correspondentes a esses hidrogênios são metínico (CH, d_C 47,63), metínico (CH, d_C 46,98) e metilênico (CH₂, d_C 32,41), respectivamente, conforme o espectro HSQC (Fig. 7.150, p. 117) (Tab. 7.12, p. 121). Por outro lado, o espectro HMBC (Fig. 7.151, p. 118) revelou correlação do hidrogênio metínico em $d_H 2,28$ com o carbono em d_C 183,11 (CO₂H), assim como, com os carbonos em d_C 46,98 (CH) e 32,41 (CH₂). Todas essas informações, permitiram identificar outro segmento, HO₂C-CH(CH)-CH₂-, da estrutura de PHB-03. Os espectros RMN ¹³C HBBD e DEPT 135° (Fig. 7.152, p. 118) possibilitaram definir o padrão de hidrogenação de todos os átomos de carbono e, com a ajuda do espectro de massa (Fig. 7.153, p. 119) com razão de massa/carga (m/z) 454, foi possível estabelecer a fórmula molecular C₃₀H₄₆O₃ para PHB-03. Assim, os 8 índices de deficiência de hidrogênio consistiram de quatro ligações duplas [sinais no espectro de RMN ¹³C devido a duas ligações $C = O (d_C 218,00 e 183,11) e a duas ligações C = C (d_C 134,63, 132,86, 132,42 e 123,57)].$ Consequentemente, a estrutura de PHB-03 exigiu um esqueleto carbônico triterpênico de quatro anéis.

Três tipos de esqueletos de triterpenos tetracíclicos com as características descritas acima foram previstos inicialmente: eufano, lanostano e tirucalano. Os triterpenos do tipo

eufano em Burseraceae foram encontrados em *Garuga pinnata* (VENKATRAMAN *et al.*, 1993, 1994), e, nesse caso, os compostos não apresentam oxidação no carbono C-21. Do tipo lanostano, foram isolados dois compostos na espécie *Santiria trimera* (SILVA *et al.*, 1990) e um norlanostano na espécie *Commiphora incisa* (PROVAN; WATERMAN, 1988), todos também sem oxidação no carbono C-21. No gênero *Protium*, tirucalanos foram isolados do *P. crenatum* (USUBILLAGA *et al.*, 2004) e do *P. heptaphyllum* (MAIA *et al.*, 2000). O isolamento de triterpenos da série titucalano mostrando oxidação no átomo de carbono C-21, é uma evidência quimiotaxonômica significativa, demonstrando o vínculo entre a Burseraceae, da ordem Sapidales, e seus parentes próximos Rutaceae, Meliaceae, Simarubaceae, da ordem Rutales que apresentam compostos com a oxidação em C-21 (ROBLES *et al.*, 2005).

Os dados espectrais revelados, juntamente, com as evidências de ordem taxonômica, indicaram triterpeno pertencente ao tipo tirucalano, ao invés de eufano ou lanostano.

Assim, com base em dados espectrais de compostos modelo (USUBILLAGA et al., 2004), além de outras correlações extraídas dos espectros bidimensionais, os fragmentos estruturais descritos anteriormente, foram conectados, para formar a cadeia lateral do triterpeno tetracíclico tirucalano, constituída de oito carbonos [HO₂C-C^{*}H-CH₂-CH₂-CH=C(CH₃)₂], típica desses triterpenos. O carbono metínico ($d_{\rm C}$ 47,63), corespondente ao C-20 liga-se ao carbono metínico (CH-17, $d_{C}46,98$) do sistema cíclico triterpenóidal. O espectro de massa de PHB-03 exibiu um pico intenso em m/z 69 (⁺CH₂-CH=C(CH₃)₂) resultante de uma fragmentação alílica na cadeia lateral. A função cetona (d_C 218,00) foi localizada no átomo de carbono C-3 por comparação com valores registrados na literatura (USUBILLAGA et al., 2004), sendo também confirmada no espectro HMBC (Fig. 7.151, p. 118) que mostrou correlações do C-3 (d_C 218,00) com os hidrogênios dos grupos metila 3H-28 (d_H 1,08) e 3H-29 (d_H 1,04). Este espectro (Fig. 7.154, p. 119), também permitiu localizar a ligação dupla tetrassubstituída entre os carbonos C-8 (d_C 134,63) e C-9 (d_C 132,86) em decorrência das correlações desses carbonos com os hidrogênios metílicos 3H-30 (d_H 0,90) e 3H-19 (d_H 1,02), respectivamente. Os grupos metila foram devidamente identificados por intermédio do espectro HSQC (Fig. 7.155, p. 120).

Assim, PHB-03 foi identificado como sendo o ácido 3-oxotirucala-8,24-dien-21-óico ou ácido β-elemônico (Fig. 7.156, p. 120).

Figura 7.147 - Espectro de RMN ¹³C (125 MHz, CDCl₃) de PHB-03

Figura 7.148 - Espectro de RMN ¹H (500 MHz, CDCl₃) de PHB-03

Figura 7.149 - Espectro de RMN ${}^{1}\text{H} - {}^{1}\text{H} \text{ COSY}$ (125 MHz, CDCl₃) de PHB-03

Figura 7.150 - Espectro de RMN 1 H - 13 C HSQC (125 MHz, CDCl₃) de PHB-03.

Figura 7.151 - Espectro de RMN 1 H - 13 C HMBC (125 MHz, CDCl₃) de PHB-03.

Figura 7.152 – Espectro de RMN - DEPT 135° (125 MHz, CDCl₃) de PHB-03.

Figura 7.153 - Espectro de massa (70 eV) de PHB-03.

Figura 7.154 - Espectro de RMN 1 H - 13 C HMBC (125 MHz, CDCl₃) de PHB-03.

Figura 6.155 - Espectro de RMN 1 H - 13 C HSQC (125 MHz, CDCl₃) de PHB-03.

Figura 7.156 - Estrutura molecular de PHB-03

С		(PHB-03) Ácido 3-oxotirucala-8,24-dien-21-óico							
e	dc		$\mathbf{d}_{\mathrm{H}}\left(J\mathrm{Hz} ight)$	$^{2}J_{\mathrm{CH}}$	$^{3}J_{\rm CH}$	dcLit			
1	35,61	1,94 (m), 1,67(m)			35,5			
2ß	34,54	2,51 (do	l, 10,0 e 7,4)			34,5			
2a	34,54	2,45 (da	l, 7,2 e 3,7)			34,5			
3	218,00			2H-2	3H-28; 3H-29, 2H-1	218,1			
4	47,81			3H-28, 3H-29	2H-6	47,3			
5	51,51	1,62 (m)		3H-28, 3H-29	51,4			
6ß	20,17	1,61 (m)			20,1			
ба	20,17	1,47, (d	d, 12,3 e 5,5).			20,1			
7	26,87	1,98 (m)			21,4			
8	134,63				3H-30	134,4			
9	132,86			2H-11	1H-5, 2H-7, 3H-19	132,6			
10	37,34			1H-5	2H-6	37,1			
11	21,39	1,96 (m)			26,8			
12	28,69	1,71; 1,	40 (m)		3H-18	28,6			
13	44,10			3H-18	3H-30	43,9			
14	49,89			3H-30	3H-18	49,6			
15ß	29,31	1,53(m)),			29,2			
15a	29,31	1,27(t, 1	10,0)		3H-30	29,2			
16	27,43	1,54 (m)			17,4			
17	46,98	2,06 (m)			47,6			
18	15,81	0,81 (s)				15,8			
19	19,63	1,02 (s)			1H-5	19,6			
20	47,63	2,28 (dt	10,0 e 5,3)			46,9			
21	183,11			1H-20	2H-22, 1H-17	183,1			
22	32,41	1,55 (m)			32,4			
23	25,95	1,98 (m), 1,64 (m)			25,9			
24	123,57	5,09 (t,	6,8)	2H-23	3H-26, 3H-27	123,5			
25	132,42			3H-26; 3H-27	2H-23	132,4			
26	17,64	1,58 (s)			1H-24	17,6			
27	25,69	1,67 (s)			1H-24	25,6			
28	26,59	1,08 (s)			3H-29	26,5			
29	21,16	1,04 (s)			3H-28	21,1			
30	24,27	0,90 (s)				24,3			

Tabela 7.12 - Dados de RMN ¹H e ¹³C de PHB-03

Lit. USUBILLAGA et al., 2004.

7.1.2.2 PHB-05

O composto catalogado como PHB-05 foi isolado como um sólido amorfo, branco, com faixa de fusão 181,2 - 184,6 °C (Lit. 194-197 °C, USUBILLAGA et al., 1004) e rotação ótica específica $[s]_{D}^{20} = -15^{\circ}$ (c = 0,001 g/mL, CHCl₃). O espectro de massa (Fig. 7.157, p. 123) de PHB-05 registrou pico do íon molecular com razão de massa/carga (m/z) 456, ou seja, 02 unidades de massa a mais que PHB-03, possibilitando estabelecer a fórmula molecular $C_{30}H_{48}O_3$, para PHB-05. No espectro de RMN ¹³C HBBD (Fig. 7.158, p. 123) de PHB-05, em comparação ao do PHB-03, à ausência do sinal em d_C 218,00 (grupo C=O no C-3 em PHB-03) e o aparecimento do sinal em $d_{\rm C}$ 76,53, devido a um carbono metínico, conforme o espectro DEPT 135° (Fig. 7.159, p. 124), foram às diferenças mais evidentes. No espectro de RMN ¹H (Fig. 7.160, p. 124) de PHB-05, ainda em comparação ao do PHB-03, ocorreu um sinal em $d_{\rm H}$ 3,45 (sl) característico de hidrogênio oximetínico e que foi correlacionado com o carbono em d_C 76,53 no espectro HSQC (Fig. 7.161, p. 125). Adicionalmente, o experimento HMBC (Fig. 7.162, p. 125) mostrou correlações do carbono sp³ oxigenado (C-3, d_C 76,53) com os grupos metila geminados (3H-28, d_H 0,97 e 3H-29, d_H 0,86), ligados no carbono C-4. O sinal em d_H 3,45 atribuído ao hidrogênio H-3, na forma de singleto largo, indicou a orientação alfa para a função hidroxila. O deslocamento químico do carbono C-5 (d_C 45,25) (Tab. 7.13, p. 127) está em acordo com esta orientação, conforme compostos descritos na literatura (MAIA et al., 2000) com a mesma estereoquímica (3a-OH) e, como argumentado no caso de PHB-02a/PHB/02b. Vale ressaltar a alternância no deslocamento químico da dupla olefinica C-8(9), em comparação com PHB-03, revelado no experimento HMBC (Fig. 7.163, p. 126), claramente identificada, por meio das correlações do C-8 (d_C 133,18) e do C-9 (d_C 134,51), com os hidrogênios dos grupos metila 3H-30 (d_H 0,96) e 3H-19 (d_H 0,88), respectivamente (Tab. 7.13, p.127).

Assim, PHB-05 foi identificado como sendo o triterpeno 3a-hidroxitirucala-8,24dien-21-óico ou ácido a-elemólico (Fig. 7.164, p. 126). Este triterpeno foi isolado previamente (SAWADOGO *et al.*, 1985, PARDHY *et al.*, 1978) a partir de outra resina. Entretanto, os dados de RMN ¹³C foram determinados (MAIA *et al.*, 2000) a partir de uma mistura binária constituída dos compostos PHB-05 e PHB-06, e as atribuições dos deslocamentos químicos dos carbonos C-9, C-12, C-13, C-15, C-20, C-22, C-23, C-24, C-25, C-28 e C-30 registrados na literatura, foram discrepantes. Neste trabalho, os átomos de carbono e hidrogênio do PHB-05 foram inequivocamente assinalados usando uma combinação de técnicas bidimensionais de correlação espectral (COSY, HSQC e HMBC) (Tab. 7.13, p. 127).

Figura 7.157 - Espectro de massa (70 eV) de PHB-05.

Figura 7.158 - Espectro de RMN 13 C (125 MHz, CDCl₃) de PHB-05.

Figura 7.159 - Espectro de RMN - DEPT 135° (125 MHz, CDCl₃) de PHB-05.

Figura 7.160 - Espectro de RMN 1 H (500 MHz, CDCl₃) de PHB-05.

Figura 7.161 - Espectro de RMN 1 H - 13 C HSQC(125 MHz, CDCl₃) de PHB-05.

Figura 7.162 - Espectro de RMN 1 H - 13 C HMBC (125 MHz, CDCl₃) de PHB-05.

125

Figura 7.163 - Espectro de RMN 1 H - 13 C HMBC (125 MHz, CDCl₃) de PHB-05.

Figura 7.164 - Estrutura molecular de PHB-05.

С	(PHB-05) Ácido 3a-hidroxitirucala-8,24-dien-21-óico							
)	dc	$d_{\rm H} \left(J \; {\rm Hz} \right)$	$^{2}J_{\rm CH}$	$^{3}J_{\rm CH}$	dcLit			
1	32,95				32,00			
2	26,36	1,93 (m), 1,53 (m)			26,67			
3	76,53	3,45 (sl)			75,58			
4	37,43		3H-28, 3H-29		37,13			
5	45,25			3H-19	44,35			
6	19,16	1,36 (m), 1,56 (m)			18,26			
7	27,27				28,45			
8	133,18			2H-6, 3H-30	133,85			
9	134,51			3H-19	132,46			
10	37,82		3H-19		36,73			
11	21,95	2,06 (m), 1,93 (m)			21,01			
12	29,74	1,26 (m)			26,37			
13	44,08				42,34			
14	49,88				50,52			
15	30,11				32,01			
16	27,58	1,99 (m)			28,84			
17	47,35	2,05 (m)			46,50			
18	16,27	0,84 (s)			15,37			
19	20,24	0,96 (s)			19,36			
20	47,67	2,29 (dt, 7,4 e 5,4)			44,19			
21	182,33				181,10			
22	30,27	1,53 (m)			25,28			
23	26,16	1,97 (m), 1,59 (m)			24,49			
24	123,92	5,10 (t, 5,9)	2H-23	3H-27, 3H-26, 2H- 22	26,34			
25	132,35		3H-27, 3H-26	2H-23	30,35			
26	18,08	1,60 (s)		3H-27	23,17			
27	26,10	1,68 (s)		3H-26	25,12			
28	28,48	0,97 (s)		3H-29	23,97			
29	22,67	0,86 (s)		3H-28	21,75			
30	24,91	0,88 (s)			27,53			

Tabela 7.13 - Dados de RMN ¹H e ¹³C de PHB-05.

Lit. MAIA et al., 2000

7.1.2.3 PHB-08

O composto catalogado como PHB-08 foi isolado como um sólido amorfo, branco, com faixa de fusão 118,4 -121,2°C. O espectro de massa (Fig.7.165, p. 129) de PHB-08 registrou pico do íon molecular com razão de massa/carga (*m/z*) 498, ou seja, 42 unidades de massa a mais que PHB-05. A comparação dos espectros de RMN ¹H (Fig. 7.166, p. 129) e de ¹³C (Fig. 7.167, p. 130) do PHB-08 (Tab. 7.14, p. 132), com os espectros do PHB-05, revelou uma grande similaridade entre as duas estruturas, exceto, pela presença de um grupo acetoxila em PHB-08, demonstrado pelos sinais em d_C 170,89 (C=O), 21,85 (CH₃) e d_H 2,10 (s, 3H). Com base nos espectros de RMN ¹³C HBBD, DEPT (Fig. 7.168, p. 130) e de massa, foi possível deduzir a fórmula molecular $C_{32}H_{50}O_4$ de PHB-08. O grupo acetoxi foi localizado no carbono C-3 (d_C 77,99) através de correlações observadas no espectro HMBC (Fig.169, p. 131) entre este carbono e os hidrogênios metílicos 3H-28 (d_H 0,89) e 3H-29 (d_H 0,91). A mudança no carbono C-3, do grupo hidroxila pelo grupo acetoxila ocasionou, como esperado, um grande deslocamento para campo baixo no sinal do hidrogênio H-3 (d_{H-3} 3,45 em PHB-05 e d_H 4,66 em PHB-08; $\Delta d_H + 1,21$). O grupo acetoxi, pelas razões expostas na determinação estrutural do PBH-05, foi posicionado também em orientação *alfa*.

Os deslocamentos químicos dos carbonos foram estabelecidos através da análise dos espectros de RMN ¹³C HBBD, DEPT 135°, experimentos de RMN 2D e por comparação com dados do PPH-05 (Tab. 7.14, p. 132).

Assim, PHB-08 foi identificado como sendo o Ácido 3a-acetoxitirucala-8,24-dien-21-óico, inédito na literatura como produto natural (Fig. 7.170, p. 131).

Figura 7.165 - Espectro de massa (70 eV) de PHB-08.

Figura 7.166 - Espectro de RMN 1 H (500 MHz, CDCl₃) de PHB-08.

Figura 7.167 - Espectro de RMN 13 C (125 MHz, CDCl₃) de PHB-08.

Figura 7.168 - Espectro de RMN - DEPT 135° (125 MHz, CDCl₃) de PHB-08.

Figura 7.169 - Espectro de RMN 1 H - 13 C HMBC (125 MHz, CDCl₃) de PHB-08.

Figura 7.170 - Estrutura molecular de PHB-08.

C	(PHB-08) Ácido 3a-acetoxitirucala-8,24-dien-21óico								
C	dc	d _H (<i>J</i> Hz)	$^{2}J_{\mathrm{CH}}$	$^{3}J_{\rm CH}$	PHB-05				
1	30,49			H-3, 3H-19	32,95				
2	23,36	1,95 (m), 1,64 (m)			26,36				
3	77,99	4,66 (sl)		3H-28, 3H-29	76,53				
4	33,75		3H-28, 3H-29		37,43				
5	45,87			H-3, 3H-19, 3H-29	45,25				
6	18,59				19,16				
7	27,04				21,95				
8	132,95			3H-19	133,18				
9	134,24			3H-30	134,51				
10	36,79		3H-19		37,82				
11	21,41				27,27				
12	29,06				29,74				
13	43,88		3H-18	3H-30	44,08				
14	49,68		3H-30	3H-18	49,88				
15	29,31				30,11				
16	29,69				27,58				
17	47,50	1,95 (m)		3H-18	47,35				
18	15,89	0,87 (s)			16,27				
19	19,88	0,85 (s)			20,24				
20	46,93	2,35 (m)			47,67				
21	182,00			2H-22	182,33				
22	31,91	1,51 (m)			30,27				
23	25,95	1,96 (m)			26,16				
24	123,57	5,10 (sl)	2H-23	3H-27, 3H-26	123,92				
25	132,22		3H-27, 3H-26	2H-23	132,35				
26	17,65	1,56 (s)		H-24	18,08				
27	25,68	1,66 (s)		H-24	26,10				
28	27,61	0,89 (s)			28,48				
29	21,85	0,91 (s)			22,67				
30	24,43	0,88 (s)			24,91				
CO	170,89		MeC	H-3					
MeC	21,85	2,10 (s)							

Tabela 7.14 - Dados de RMN ¹H e ¹³C de PHB-08.

7.1.2.4 PHB-06

O composto catalogado como PHB-06 foi isolado como um sólido amorfo, branco, com faixa de fusão 177,2 - 180,3 °C (Lit. 188-190 °C, YI et al., 1988) e rotação ótica específica $[s]_{D}^{20} = -29^{\circ}$ (c = 0,001 g/mL, CHCl₃). O espectro de massa (Fig.7.171) do PHB-06 registrou pico do íon molecular com razão de massa/carga (m/z) 456, ou seja, o mesmo do PHB-05. Os espectros de RMN ¹³C HBBD (Fig. 7.172, p. 134) e DEPT 135° (Fig. 7.173, p. 134) em combinação com o espectro de massa possibilitou estabelecer a fórmula molecular $C_{30}H_{48}O_3$. A análise comparativa entre os espectros de RMN ¹³C HBBD e DEPT 135° revelou a presença de 30 átomos de carbono e permitiu determinar o padrão de hidrogenação correspondente a cada átomo de carbono, evidenciando, como diferença entre as estruturas de PBH-06 e PBH-05, a existência de um segundo carbono metínico sp² (d_C 118,43) na estrutura do PBH-06. Este carbono foi correlacionado ao hidrogênio em d_H 5,25 (d, J = 2,7 Hz) no espectro de RMN ¹H (Fig. 7.174, p. 135), por intermédio do espectro HSQC (Fig. 7.175, p. 135). No espectro HMBC (Fig. 7.176, p. 136), a correlação entre o sinal em d_H 0,97 dos hidrogênios metílicos 3H-30 e o sinal em d_C 145,90 do carbono sp² não-hidrogenado, permitiu localizar a ligação dupla entre os carbonos C-7 (d_C 118,43) e C-8 (d_C 145,90). Outras correlações de confirmação da estrutura foram observadas nos espectros bidimensionais, sendo registradas na tabela 7.15 (p. 137).

Assim, com base nas evidencias acima descritas e por comparação com dados da literatura (MAIA *et a*l., 2000) a estrutura do PHB-06 foi determinada como sendo o ácido 3a-hidroxitirucala-7,24-dien-21-óico (Fig. 7.177, p. 136).

Figura 7.171 - Espectro de massa (70 eV) de PHB-06.

Figura 7.172 - Espectro de RMN 13 C (125 MHz, CDCl₃) de PHB-06.

Figura 7.173 - Espectro de RMN - DEPT 135° (125 MHz, CDCl₃) de PHB-06.

Figura 7.174 - Espectro de RMN 1 H (500 MHz, CDCl₃) de PHB-06.

Figura 7.175 - Espectro de RMN 1 H - 13 C HSQC (125 MHz, CDCl₃) de PHB-06.

Figura 7.176 - Espectro de RMN 1 H - 13 C HMBC (125 MHz, CDCl₃) de PHB-06.

Figura 7.177 - Estrutura molecular de PHB-06

С	(PHB-06) Ácido 3a-hidroxitirucala-7,24-dien-21-óico						
C	dc	d _H (<i>J</i> Hz)	$^{2}J_{\rm CH}$	$^{3}J_{\rm CH}$	dcLit		
1	33,64			3H-19	32,95		
2	26,21				26,58		
3	76,73	3,50 (sl)			75,96		
4	37,53		3H-28, 3H-29		36,89		
5	44,75	1,76 (dd, 12,1 e 5,7)		3H-28	44,05		
6	24,13	2,05 (m), 1,96 (m)			23,46		
7	118,43	5,25 (d, 2,7)			117,72		
8	145,90			3H-30	145,23		
9	47,40	2,31 (m)			47,85		
10	35,03				34,35		
11	29,92	1,47 (m), 1,45 (m)			17,07		
12	30,47	1,35 (m), 1,31 (m)		3H-18	30,76		
13	43,51		3H-18	3H-30;	42,89		
14	51,22		3H-30		50,52		
15	32,62			3H-30	31,95		
16	27,30				29,75		
17	49,88	2,01 (m)		3H-18	47,75		
18	13,11	0,75 (s)			12,43		
19	21,85	0,90 (s)			21,10		
20	48,47	2,29 (dt, 10,6, 4,0)			49,19		
21	181,72		H-20		181,49		
22	31,42	1,50 (m), 1,47 (m)			25,49		
23	25,52	1,93 (m)			25,28		
24	123,88	5,09 (t, 5,6)	2H-23	3H-27, 3H-26	123,20		
25	132,38		3H-27, 3H-26	2H-23	131,58		
26	17,88	1,56 (s)			17,11		
27	25,92	1,68 (s)			25,12		
28	27,95	0,93 (s)			26,83		
29	22,00	0,88 (s)		3H-28	21,78		
30	27,50	0,97 (s)			27,28		
Lit.	MAIA et a	al., 2000					

Tabela 7.15 - Dados de RMN ¹H e ¹³C de PHB-06.

7.2 Constituintes fixos da resina *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly

O estudo fitoquímico dos estratos éter de petróleo e hexânico da resina do *Protium heptaphyllum* subsp. *ulei* (PHU), após sucessivas cromatografias em coluna com gel de sílica, levou a caracterização de duas misturas binárias dos triterpenos pentacíclicos das séries oleanano e ursano [ß-amirina (PHU-02a) / a-amirina (PHU-02b)] e [ß-amirenona (PHU-01a) / a-amirenona (PHU-01b)] e ao isolamento de três triterpenos tetracíclicos [ácido 3-oxotirucala-8,24-dien-21-óico (PHU-03), ácido 3a-hidroxitirucala-8,24-dien-21-óico (PHU-05) e ácido 3a-hidroxitirucala-7,24-dien-21-óico (PHU-06)] em seus estados puros. Todos esses triterpenos foram identificados por comparação direta com amostras isoladas do *P. hebetatum* Daly (PHB). Além desses compostos, foi isolado um sólido amorfo, branco que foi codificado de PHU-09 (Flux. 10.6, p. 185).

7.2.1 Determinação estrutural de PHU-09

O composto catalogado como PHU-09 foi isolado como um sólido amorfo, branco, com faixa de fusão 217,1-219,8°C e rotação ótica específica $[a]_{D}^{20} = +58^{\circ}$ (c = 0,001 g/mL). O espectro de massa do PHU (Fig. 7.178, p. 139), obtido por impacto eletrônico (70 eV.), registrou íon molecular com razão de massa/carga (m/z) 426. O espectro de RNM ¹³C HBBD (Fig. 7.179, p. 138) exibiu vários sinais na região de carbono sp³ e um sinal em d_C 213,59, característico de função cetona em anel ciclo-hexano, em acordo com o espectro no IV (Fig. 7.180, Pág. 140), que exibiu uma banda intensa em 1705 cm⁻¹ ($v_{C=0}$). Em adição, o RMN ¹³C HBBD revelou um sinal em d_C 7,04, característico de carbono de grupo metila de triterpeno da série friedelano. A comparação entre os espectros de RMN ¹³C HBBD e DEPT 135° (Fig. 7.181, p. 140), possibilitou identificar os tipos de todos os carbonos e, em combinação com o espectro de massa, estabelecer a fórmula molecular $C_{30}H_{50}O$ de PHU-09 (06 índices de deficiência de hidrogênios justificados pela ligação C = O e pelos cinco anéis do esqueleto carbônico friedelano). No espectro de RMN ¹H (Fig. 7.183, p. 140) vale ressaltar o sinal dos hidrogênios metílicos 3H-23 em d_H 0,88 (d, J = 6,5 Hz). O grupo C = O foi localizado no átomo de carbono C-3 por comparação com valores publicados na literatura (ABRAS et al., 2007) e confirmado no espectro HMBC (Fig. 7.184, p. 140), que revelou correlação do C-3 $(d_{\rm C} 213,59)$ com os átomos de hidrogênios do grupo metila 3H-23 (d_H 0,88) (Tab. 7.16, p. 141).

Assim, PHU-09 foi identificado como sendo o D:A-friedoolean-3-ona ou friedelina, (Fig.7.185, p. 141).

Figura 7.178 - Espectro de massa (70 eV) de PHU-09

Figura 7.179 - Espectro de RMN ¹³C (125 MHz, CDCl₃) de PHU-09

Figura 7.180 - Espectro na região do IV (NaCl) de PHU-09

Figura 7.181 – Espectro de RMN - DEPT 135° (125, MHz, CDCl₃) de PHU-09

Figura 7.182 - Espectro de RMN ¹H (500 MHz, CDCl₃) de PHU-09

Figura 7.183 – Espectro de RMN 1 H – 13 C HMBC (125 MHz, CDCl₃) de PHU-09

Figura 7.184 - Estrutura molecular de PHU-09

	(PHU-09) D:A-Friedo-olean-3-ona ou friedelina									
С	d _C	d _H (<i>J</i> Hz)	d _C Lit	С	d _C	$\mathbf{d}_{\mathrm{H}}\left(J \; \mathrm{Hz}\right)$	d _C Lit			
1	22,50		22,3	16	36,21		36,0			
2	41,74	2,38(m) 2,27(m)	41,5	17	30,20		30,0			
3	213,59		213,2	18	42,99		42,8			
4	58,43		58,2	19	35,55		35,3			
5	42,37		42,2	20	28,38		28,2			
6	41,49		41,3	21	32,97		32,8			
7	18,44		18,2	22	39,46		39,3			
8	53,30		53,1	23	7,04	0,88 (d, 6,5Hz)	6,8			
9	37,31		37,4	24	14,87	0,72 (s)	14,7			
10	59,67		59,5	25	18,16	0,87 (s)	18,0			
11	35,83		35,6	26	20,47	1,00 (s)	20,3			
12	30,71		30,5	27	18,88	1,05 (s)	18,7			
13	39,82		39,7	28	32,30	1,18 (s)	32,1			
14	38,50		38,3	29	35,24	0,88 (s)	35,0			
15	32,62		32,4	30	31,99	0,95 (s)	31,8			

Tabala 7 1(D. J J.	DMN	1тт .	130 1	
Tabela 7.16 -	Dados de	RMN	⁻ H e	^{13}C de	PHU-09

Lit. ABRAS *et al.*, 2007. Os deslocamentos químicos dos hidrogênios das metilas foram determinados por comparação com os publicados na literatura.

7.3 Constituintes voláteis da resina *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly

Uma alíquota do óleo essencial da resina do *Protium heptaphyllum* subsp. *ulei* (PHU), foi submetida a cromatografia em coluna com gel de sílica, levando ao isolamento de dois monoterpenos codificados como PHU-10 e PHU-11.

7.3.1 Determinação estrutural de PHU-10

O espectro de RMN ¹³C HBBD (Fig. 7.185, p. 144) exibiu 10 sinais principais (C10), indicativo da estrutura de um monoterpeno. A análise comparativa com o espectro DEPT 135° (Fig. 7.186, p. 144) permitiu identificar três carbonos metílicos (CH₃), três carbonos metilênicos sp³ (CH₂), um carbono metínico sp² (CH) e três carbonos não-hidrogenados sp² (C) e estabelecer a fórmula molecular $C_{10}H_{16}$ de PHU-10. Na ausência de quaisquer outros grupos insaturados, os três índices de deficiência de hidrogênio foram atribuídos a duas ligações duplas carbono-carbono [uma trissubstituída: d_C 121,79 (C)/120,81 (CH)] e outra tetrassubstituída: d_c 134,31 (C)/127,81 (C)] (Tab. 7.17, p. 147) e um sistema anelar. Os sinais em d_H 1,70 (s, 6H) e 1,74 (s, 3H), do espectro de RMN ¹H (Fig. 7.188, p. 144) ligam-se com os sinais do espectro de RMN¹³C em d_C 19,68/20,15 e 23,38 (Tab. 7.17, p. 148), respectivamente, indicaram a dos grupos metila ligados às ligações duplas.

Assim, PHU-10 foi identificado como sendo um monoterpeno 1-metil-4-(1metiletilideno)ciclo-hex-1-eno, conhecido como a-terpinoleno (Fig. 7.193, p. 155).

Figura 7.185 - Espectro de RMN 13 C (125 MHz, CDCl₃) de PHU-10

Figura 7.186 - Espectro de RMN - DEPT 135° (125 MHz, CDCl₃) de PHU-10

Figura 7.187 - Espectro de RMN ¹H (500 MHz, CDCl₃) de PHU-10

7.3.2 Determinação estrutural de PHU-11

A análise comparativa entre os espectros de RMN ¹³C HBBD (Fig. 7.189, p. 146) e DEPT 135 (Fig. 7.190, p. 147) revelou quatro sinais devidos a carbonos sp² (2 CH e 2 C), que em combinação com o par de dubletos em d_H 7,40 (2H, d, J = 7,9 Hz) e d_H 7,17 (2H, d, J = 7,9 Hz) no espectro de RMN ¹H (Fig. 7.188, p. 146), determinou a presença de um sistema aromático p-substituído. A análise comparativa entre os espectros de RMN ¹³C HBBD e DEPT 135° revelou, também, mais três sinais, sendo dois devidos a carbonos metílicos [d_C 31,86, 2 CH₃) e 21,06 (1 CH₃)] e um a carbono sp³ não-hidrogenado e oxigenado (d_C 72,46). Em adição, o espectro de RMN ¹H mostrou sinais simples e intensos em d_H 2,36 e 1,58, na proporção relativa de 1:2, respectivamente, relativos aos grupos metila indicados pelo espectro de RMN ¹³C. O sinal em d_H 1,58 (correlacionado diretamente ao sinal em d_C 31,86) foi atribuído a dois grupos metila geminado ligados ao carbono em d_C 72,46 (Tab.7.17, p. 148).

Assim, PHU-11 foi identificado como sendo um monoterpeno 1-metil-4-(1-hidroxi-1-metiletil)benzeno, conhecido como p-cimeno-8-ol (Fig. 7.191, p. 147).

Figura 7.188 - Espectro de RMN ¹H (500 MHz, CDCl₃) de PHU-11

Figura 7.189 - Espectro de RMN ¹³C (125 MHz, CDCl₃) de PHU-11

Figura 7.190 – Espectro de RMN - DEPT 135° (125 MHz, CDCl₃) de PHU-11

Figura 7.191 - Estrutura molecular de PHB-10 e PHB-11.
(PHU-10) 1-Metil-4-(1-metiletilideno)-		(PHU-11) 1-Metil-4-(1-hidroxi-1-metiletil)-				
ciclo	-hex-1-en	o ou Terpinoleno	benzeno ou p-Cimeno-8-ol			
С	d _C	d _H	d _C	d _H		
1	121,79		136,29			
2	120,81	5,41 (1H, sl)	128,98	7,16 (1H, d, <i>J</i> = 7,7 Hz)		
3	26,65	2,78 (2H, sl)	124,48	7,39 (1H, d, <i>J</i> = 7,9 Hz)		
4	134,31		146,43			
5	29,54	2,37 (2H, t, <i>J</i> = 6,2)	124,48	7,39 (1H, d, <i>J</i> = 7,9 Hz)		
6	31,46	2,04 (2H, sl)	128,98	7,16 (1H, d, <i>J</i> = 7,7 Hz)		
7	23,38	1,74 (3H, s)	21,06	2,36 (3H, s)		
8	127,81		72,46			
9	19,68*	1,70 (3H, s)	31,86	1,58 (3H, s)		
10	20,15*	1,70 (3H, s)	31,86	1,58(3H, s)		
OH				2,05 (sl)		

Tabela 7.17 - Dados de RMN ¹H e ¹³C de PHB-10 e PHB-11.

*Sinais podem ser invertidos.

7.4 Derivados reacionais

No intuito de comprovação estrutural, assim como, para destacar a química em si, algumas reações químicas foram efetuadas na preparação de derivados a partir de alguns triterpenos.

7.4.1 PHB-02aOAc/PHB-02bOAc

A mistura PHB-02a (β -amirina)/PHB-02b (a-amirina) foi submetida à reação de acetilação com anidrido acético e trietilamina (Item 10.10.1, p. 184) à temperatura ambiente fornecendo o produto (PHB-02aOAc/PHB-02bOAc, na proporção relativa, aproximada, de 1:1, respectivamente, determinado pelo método de RMN¹H), com rendimento de 86,3% (Fig. 7.192). O espectro de massa (Fig. 7.193, p. 150) do produto, obtido por impacto eletrônico (70 eV), apresentou íon molecular com razão de massa/carga (*m/z*) 468 (42 unidades de massa a mais que PHB-02a/PHB-02b) permitindo estabelecer a fórmula molecular C₃₂H₅₂O₂, de PHB-02aOAc/PHB-02bOAc. Os espectros de RMN ¹³C HBBD (Fig. 7.194, p. 150) e o DEPT 135° (Fig. 7.195, p. 151), evidenciaram os sinais dos carbonos, inclusive, dois em d_C 171,01 e 171,21 indicativos da função éster (Tab. 7.18, p. 167). O espectro de RMN ¹H (Fig. 7.196, p. 151) exibiu como destaque, singleto intenso em d_H 2,04 (3H, s) característico dos hidrogênios metílicos de grupos acetoxila e o sinal em d_H 4,50 (1H, m), devido ao hidrogênio carbinólico H-3.

Assim, os dados espectrais confirmaram a formação do acetato de β-amirina (PHB-02aOAc) e o acetato de a-amirina (PHB-02bOAc).

Figura 7.192 - Estrutura molecular de PHB-02aOAc e PHB-02bOAc.

Figura 7.193 - Espectro de massa (70 eV) de PHB-02aOAc/PHB-02bOAc.

Figura 7.194 - Espectro de RMN ¹³C (125 MHz, CDCl₃) de PHB-02aOAc/PHB-02bOAc.

Figura 7.195 - Espectro RMN - DEPT 135° (125 MHz, CDCl₃) de PHB-02aOAc/PHB-02bOAc.

Figura 7.196 - Espectro de RMN ¹H (500 MHz, CDCl₃) de PHB-02aOAc/PHB-02bOAc.

7.4.2 PHB-07aOAc/PHB-07bOAc

Os triterpenos isômeros PHB-07a e PHB-07b foram submetidos à reação de acetilação (Item 10.10.2, p. 186) com anidrido acético em presença de piridina fornecendo produto bruto (PHB-07aOAc/PHB-07bOAc, na proporção relativa, aproximada, de 1,7:1,0, respectivamente, determinado pelo método de RMN¹H), com rendimento de 91% (Fig. 7.197). O espectro de massa desse produto (Fig. 7.198, p. 153), obtido por impacto eletrônico (70 eV), mostrou pico do íon molecular com razão de massa/carga (*m/z*) 526 (84 unidades de massa a mais que PHB-07a/PHB-07b), compatível com a fórmula molecular C₃₄H₅₄O₄. Os espectros de RMN ¹³C HBBD (Fig.7.199, p. 153) e DEPT 135° (Fig. 7.200, p. 154) evidenciaram os sinais de todos os carbonos, inclusive dois quase superpostos (d_C 171,19/171,00) devido aos carbonos da função éster (Tab. 7.18, p. 167). O espectro de RMN ¹H (Fig. 7.201, p. 154), revelou dois sinais intensos e simples em d_H 2,06 (3H, s) e d_H 2,05 (3H, s) característicos dos hidrogênios metílicos de grupos acetoxila, além, dos sinais, relativamente desblindados, dos hidrogênios carbinólicos H-3 e H-16 em d_H 4,50 (1H, sl) e d_H 5,46 (1H, sl), respectivamente.

Esses dados espectrais confirmaram a formação dos acetatos PHB-07aOAc e PHB-07bOAc.

Figura 7.197 - Estrutura molecular de PHB-07aOAc e PHB-07bOAc.

Figura 7.198 - Espectro de massa (70 eV) de PHB-07aOAc/PHB-07bOAc.

Figura 7.199- Espectro de RMN ¹³C (125 MHz, CDCl₃) de PHB-07aOAc/PHB-07bOAc.

Figura 7.200 - Espectro de RMN - DEPT 135° (125 MHz, CDCl₃) de PHB-07aOAc/PHB-07bOAc.

Figura 7.201 - Espectro de RMN ¹H (500 MHz, CDCl₃) de PHB-07aOAc/PHB-07bOAc.

7.4.3 PHU-06OAc

O triterpeno o ácido 3a-hidroxitirucula-7-24-dien-21-óico (PHU-06) foi submetido à reação com anidrido acético em piridina, à temperatura ambiente por 24 horas (Item 10.10.3, p. 186), obtendo o produto da reação com rendimento de 62,4% (Fig. 7.202). O espectro de massa do produto acetilado (Fig. 7.203, p. 156), obtido por impacto eletrônico (70 eV), revelou pico do íon molecular com razão de massa/carga (*m/z*) 498 (42 unidades de massa a mais que PHU-06), permitindo deduzir a fórmula molecular $C_{32}H_{50}O_4$ de PHU-06OAc. Os espectros de RMN ¹³C HBBD (Fig. 7.204, p. 156) e o DEPT 135° (Fig. 7.205, p. 157), revelaram sinal em d_c 170,9 atribuído ao carbono carbonílico da função éster (Tab. 7.18, p. 167). O espectro de RMN ¹H (Fig. 7.206, p. 157), registrou, como detalhes, um sinal simples e intenso em d_H 2,04 (3H, s) característico de hidrogênios metílicos de grupo acetoxila e o sinal em d_H 4,65 (1H, m) relacionado ao hidrogênio carbinólico H-3.

Assim, os dados espectrais confirmaram a formação do acetato PHU-06OAc.

Figura 7.202 - Estrutura molecular de PHU-06OAc.

Figura 7.203 - Espectro de massa (70 eV) de PHU-06OAc.

Figura 7.204 - Espectro de RMN ¹³C (125 MHz, CDCl₃) de PHU-06OAc.

Figura 7.205 – Espectro de RMN - DEPT 135° (125 MHz, CDCl₃) de PHU-06OAc.

Figura 7.206 - Espectro de RMN 1 H (500 MHz, CDCl₃) de PHU-06OAc.

7.4.4 PHB-02aOxi/PHB-02bOxi

Os triterpenos isômeros PHB-02a e PHB-02b foram submetidos à reação de oxidação com clorocromato de piridina (PCC) à temperatura ambiente (Item 10.10.4, p. 186) fornecendo produto bruto (PHB-02aOxi/PHB-02bOxi, na proporção relativa, aproximada, de 1,2:1,0, respectivamente, determinado pelo método de RMN¹H), com rendimento de 98% (Fig. 7.207). O espectro de massa do produto (Fig. 7.208, p. 159), obtido por impacto eletrônico (70 eV), apresentou pico do íon molecular com razão de massa/carga (*m/z*) 424 (2 unidades de massa a menos que PHB-02a/PHB-02b), permitindo estabelecer a fórmula molecular C₃₀H₄₈O. Os espectros de RMN ¹³C HBBD (Fig. 7.209, p. 159) e DEPT 135° (Fig. 7.210, p. 160) que permitiram reconhecer o padrão de hidrogenação de cada carbono, não apresentaram os sinais (d_C 79,22/79,25) relativo aos carbonos metínicos oxigenados, observados nos espectros de PHB-02a/PHB-02b, mas, revelaram o sinal (d_C 218,0) devido à função cetona (Tab. 7.18, p. 167). No espectro de RMN ¹H (Fig. 7.211, p. 160) foi ausente, como esperado, o sinal em d_H 3,22 referente ao hidrogênio metínico (H-3), que foi observado no correspondente espectro de PHB-02a/PHB-02b.

Assim, os dados espectrais confirmaram a formação de β-amirenona (PHB-02aOxi) e da a-amirenona (PHB-02bOxi).

Figura 7.207 - Estrutura molecular de PHB-02aOxi e PHB-02bOxi.

Figura 7.208 - Espectro de massa (70 eV) de PHB-02aOxi/PHB-02bOxi.

Figura 7.209- Espectro de RMN ¹³C (125 MHz, CDCl₃) de PHB-02aOxi/PHB-02bOxi.

Figura 7.210 - Espectro de RMN - DEPT 135° (125 MHz, CDCl₃) de PHB-02aOxi/PHB-02bOxi.

Figura 7.211 - Espectro de RMN ¹H (500 MHz, CDCl₃) de PHB-02aOxi/PHB-02bOxi.

7.4.5 PHB-02aOxima/PHB-02bOxima

O produto PHB-02aOxi/PHB-02bOxid foi submetido à reação com cloridrato de hidroxilamina (H₂NOH.HCl) sob refluxo por 6 horas (Item 10.10.5 p. 187) fornecendo produto bruto (PHB-02aOxima/PHB-02bOxima, na proporção relativa, aproximada, de 1:1, respectivamente, determinado pelo método de RMN¹H), com rendimento de 80,9% (Fig. 7.212). O espectro de massa do produto da reação (Fig. 7.213, p. 162), obtido por impacto eletrônico (70 eV), apresentou pico do íon molecular com razão de massa/carga (*m/z*) 439 (15 unidades de massa a mais que PHB-02aOxid/PHB-02bOxid), permitindo estabelecer a fórmula molecular C₃₀H₄₈NO. Nos espectros de RMN ¹³C HBBD (Fig. 7.214, p. 162) e DEPT 135° (Fig. 7.215, p. 163) não foram registrados o sinal relativo ao carbono da função cetona (d_C 218,0) como no espectro de PHB-02a/PHB-02b, mas, foi revelado o sinal em d_C 167,9 atribuído ao carbono quaternário sp² (C-3), típico da função oxima (Tab. 7.18, p. 167). O espectro de RMN ¹H (Fig. 7.216, p. 163) apresentou dois multipletos, um em d_H 3,09 (1H, m, H-2eq) e o outro em 2,20 (1H, m, H-2ax), característicos de hidrogênios próximos de carbono tipo sp².

Assim, os dados espectrais confirmaram a formação da oxima da β-amirina (PHB-02aOxima) e da oxima da a-amirina (PHB-02bOxima). A comparação dos dados de RMN ¹³C da β-amirenona (PHB-02aOxid) e da a-amirenona (PHB-02bOxid) permitiu estabelecer os deslocamentos químicos dos átomos de carbonos das oximas PHB-02aOxima e PHB-02bOxima (Tab. 7.18, Pág. 167).

Figura 7.212 - Estrutura molecular de PHB-02aOxima e PHB-02bOoxima.

Figura 7.213 - Espectro de massa (70 eV) de PHB-02aOxima/PHB-02bOxima.

Figura 7.214 - Espectro de RMN¹³C (125 MHz, CDCl₃) de PHB-02aOxima/PHB-02bOxima

Figura 7.215 - Espectro de RMN - DEPT 135° (125 MHz, CDCl₃) de PHB-02aOxima/PHB-02bOxima.

Figura 7.216 - Espectro de RMN ¹H (500 MHz, CDCl₃) de PHB-02aOxima/PHB-02bOxima.

7.4.6 PHB-03Oxima

O triterpeno ácido 3-oxotirucala-8,24-dien-21-óico (PHB-03) foi submetido à reação com cloridrato de hidroxilamina (H₂NOH.HCl) sob refluxo por 6 horas (Item 10.10.6, p. 187) fornecendo o produto da reação (Fig. 7.217) com rendimento de 63,1%. O espectro de massa (Fig. 7.218, p. 165), obtido por impacto eletrônico (70 eV), apresentou íon molecular com razão de massa/carga (*m/z*) 469 (15 unidades de massa a mais que PHB-03), permitindo deduzir a fórmula molecular $C_{30}H_{46}NO_3$ de PHB-03Oxima. Nos espectros de RMN ¹³C HBBD (Fig. 7.219, p. 165) e DEPT 135° (Fig. 7.220, p. 166), não foram registrados o sinal relativo ao carbono da função cetona (d_C 218,0) como nos espectros de PHB-03, mas, foi revelado o sinal em d_C 167,7, atribuído ao carbono quaternário sp² (C-3) típico da função oxima.

Assim, os dados espectrais confirmaram a formação da oxima (PHB-03Oxima), e comparação com os dados de RMN ¹³C de PHB-03 permitiu a identificação do deslocamento químico dos átomos de carbonos de PHB-03Oxima (Tab. 7.18, p. 167).

Figura 7.217 - Estrutura molecular de PHB-03Oxima.

Figura 7.218 - Espectro de massa (70 eV) de PHB-03Oxima.

Figura 7.219- Espectro de RMN 13 C (125 MHz, CDCl₃) de PHB-03Oxima.

Figura 7.220 - Espectro de RMN - DEPT 135° (125 MHz, CDCl₃) de PHB-03Oxima.

C	d _C											
C	1	2	3	4	5	6	7	8	9	10		
1	38,4	38,6	38,2	38,4	29,8	39,7	39,8	38,8	38,7	36,4		
2	26,3	26,3	23,5	23,3	23,1	34,6	34,6	27,1	27,1	40,5		
3	81,1	81,1	80,8	80,8	78,5	218,0	218,0	167,9	167,9	167,7		
4	38,9	38,9	36,9	36,9	36,7	46,9	46,9	46,9	46,9	44,0		
5	55,4	55,4	55,1	55,2	46,0	55,7	55,6	55,9	55,8	51,6		
6	18,4	18,4	18,1	18,1	18,8	20,0	20,0	19,2	19,2	18,6		
7	32,7	33,0	32,8	32,5	118,3	32,5	32,8	32,8	32,5	27,0		
8	40,0	40,0	40,1	40,3	145,8	39,5	39,5	40,0	40,2	133,9		
9	47,7	47,8	46,6	46,8	47,7	47,2	47,3	47,3	47,3	133,4		
10	37,0	37,0	37,8	37,6	34,9	36,8	36,8	37,1	37,1	37,5		
11	23,7	23,7	23,5	23,5	28,9	24,0	24,0	23,8	23,6	23,3		
12	121,8	124,5	122,6	25,2	30,2	121,7	124,4	124,4	121,7	29,4		
13	145,4	139,8	143,3	137,8	43,5	145,4	139,9	139,8	145,4	44,9		
14	42,5	42,5	44,0	44,1	51,2	41,7	41,7	41,9	42,3	49,8		
15	28,2	28,2	31,9	32,3	32,5	27,0	27,3	28,2	28,2	29,8		
16	26,8	27,1	69,6	70,7	27,3	26,6	26,5	26,3	26,7	27,6		
17	33,9	33,9	34,4	37,9	49,8	34,0	34,0	33,9	32,7	47,0		
18	47,4	59,2	49,2	60,8	13,1	47,8	59,4	59,2	47,4	18,9		
19	46,9	39,6	46,5	39,4	21,6	47,1	39,9	39,8	46,9	19,8		
20	31,4	39,8	29,5	39,4	48,6	31,2	40,0	39,8	31,2	47,7		
21	34,9	31,4	34,1	30,5		35,1	31,6	31,4	34,9	182,2		
22	37,3	41,7	29,7	35,4	30,7	37,5	41,9	41,7	37,3	32,6		
23	23,9	23,4	28,0	28,0	23,9	26,2	26,2	27,5	27,4	25,8		
24	15,7	15,9	16,6	16,7	123,9	15,6	15,8	15,3	15,3	123,8		
25	16,9	16,9	15,5	15,7	132,2	15,6	17,2	15,5	15,5	132,2		
26	17,0	17,0	16,8	16,9	17,8	17,8	17,8	17,1	17,0	17,8		
27	26,1	23,5	26,9	24,7	25,8	24,0	23,5	23,3	26,1	24,6		
28	28,3	28,6	21,3	23,8	27,8	28,1	28,8	28,9	28,6	26,1		
29	33,5	17,7	33,0	17,6	22,0	33,7	17,1	17,7	33,5	21,6		
30	23,4	21,5	24,2	21,3	27,5	23,9	21,9	21,6	23,5	24,4		
MeC	28,9	28,9	23,7	23,2								
MeC			23,7	23,2	21,8							
Ac	171,0	171,2	171,0	171,1	170,9							
Ac	2	0 DUD	171,0	171,1		4 510						

Tabela 7.18 - Dados de RMN ¹³C dos derivados reacionais.

1-PHB-02aOAc, 2-PHB-02bOAc, 3-PHB-07aOAc, 4-PHB-07bOAc, 5- PHU-06OAc, 6-PHB-02aOxi, 7-PHB-02bOxi, 8-PHB-02aOxima, 9-PHB-02bOxima, 10-PHB-03Oxima.

8. ACETILAÇÃO ENZIMÁTICA

Tendo em vista a disponibilidade de β-amirina/a-amirina, face à grande quantidade isolada, foi averiguado o potencial como biocatalisador, das enzimas da resina do *P. hebetatum* (PHB) imobilizadas em alginato, frente à reação de acetilação. A reação foi efetuada em dois diferentes solventes (hexano e éter etílico) tendo o anidrido acético como agente acilante (Esq. 8.13). Para efeito de comparação, foi realizada a reação de acetilação de β-amirina/a-amirina em presença de anidrido acético e trietilamina (Item 10.10.1, p. 184) e registrado o espectro de RMN ¹H (Fig. 7.198, p. 151) do produto. Como comprovação da ação biocatalítica do complexo enzimático, foi realizado o branco nas mesmas condições e na ausência do biocatalisador, não detectando a presença do radical acetoxila pelo método de RMN¹H considerando, portanto abaixo de 5%.

Esquema 8.13 - Esterificação enzimática da mistura β,a-amirina usando como biocatalisador o complexo enzimático imobilizado.

8.1 Reação de acetilação via complexo enzimático do *P. hebetatum* Daly

A reação de acetilação usando 21,9 μ L (0,234 mmol) do agente acilante (anidrido acético), 50 mg (0,117 mmol) do substrato (β-amirina/a-amirina), 200 mg do complexo enzimático (Enz. do *P. hebetatum*) e 5 mL de solvente (hexano), à temperatura ambiente por 120 horas, levou a formação do acetato com uma conversão de 15,3% (determinado com base no espectro de RMN ¹H).

A obtenção do acetato foi atestada pelo espectro de RMN ¹H (Fig. 8.221, p. 169) que revelou um sinal em d_H 4,50, atribuído ao hidrogênio metínico (H-3) ligado a carbono oxigenado (C-3), assim como, o singleto em d_H 2,19, característico, dos hidrogênios metílicos

do grupo acetoxila. Por sua vez, o espectro de RMN 13 C HBBD (Fig. 8.222, p. 169), exibiu sinal em d_C 171,21 devido ao carbono carbonílico de éster e sinal em d_C 81,17, do carbono C-3 que sustenta o grupo acetoxila.

Figura 8.221 - Espectro de RMN ¹H do produto da acetilação catalisado pelas enzimas imobilizadas do PHB à temperatura ambiente.

Figura 8.222 - Espectro de RMN ¹³C do produto da acetilação catalisada pelas enzimas imobilizadas do PHB à temperatura ambiente

O experimento realizado a 60°C, utilizando o solvente éter etílico, e o agente acilante anidrido acético e enzimas imobilizadas da *P. hebetatum*, não apresentou resultado detectável pelo método de RMN ¹H.

9 ATIVIDADE BIOLÓGICA

As espécies do gênero *Protium* destacaram-se na medicina popular devido à grande variedade no uso terapêutico. Esta resina, rica em óleo essencial e em triterpenos, tem sido utilizada como cicatrizante, anti-inflamatório, desinfetante e no tratamento de úlceras. Estudos farmacológicos realizados com o óleo essencial de várias espécies do gênero *Protium* comprovaram sua eficácia anti-inflamatória e antinociceptiva (SIANI *et al.*, 1999). Foi também comprovada à atividade cercaricida dos óleos das folhas e dos frutos do *P. heptaphyllum* (BANDEIRA, 2002, FRISCHKORN *et al.* 1978). Fundamentado nesses dados e no uso popular das espécies do gênero *Protium* foram realizados ensaios biológicos com o óleo essencial da resina do *Protium hebetatum* Daly (PHB), *P. heptaphyllum* subsp. *ulei* (PHU) e do *P. heptaphyllum* subsp. *heptaphyllum* (PHH).

9.1 Atividade antimicrobiana do óleo essencial

Os ensaios frente aos microorganismos foram realizados com o óleo essencial e com a resina após a extração do óleo. Somente os óleos essenciais apresentaram atividade antimicrobiana.

As cepas utilizadas foram dos microorganismos: *Bacillus subtilis*, *Staphylococcus aureus*, *Escherichia coli*, *Klebsiella pneumoniar*, *Nycobacterium phlei*, do laboratório de microbiologia da Universidade Federal do Acre. Os ensaios foram realizados em duplicata, utilizando-se apenas uma concentração (diluição de 1:1 em clorofórmio) e oxacilina como controle microbiano. Os valores médios dos diâmetros dos halos de inibição de crescimento microbiano foram determinados em 24 (Tab. 9.19) e 48 horas (Tab. 9.20, p. 171).

Tabela 9.19 - Atividade antimicrobiana do óleo essencial do P. hebetatum (PHB), P. heptaphyllum subsp. ulei (PHU) e do P. heptaphyllum subsp. heptaphyllum (PHH) após 24 horas.

Microorganismos	Halos de Inibição (mm)							
inite our guillomos	PHB	PHU	PHH	Oxacilina	CHCl ₃			
Bacillus subtilis	13	21	14	31	nd			
Staphylococcus aureus	25	26	23	25	nd			
Escherichia coli	13	21	18	30	nd			
Klebsiella pneumoniar	15	21	13	30	nd			
Nycobacterium phlei	nd	18	15	30	nd			

nd – não detectável

Todos os microorganismos foram sensíveis, após 48 horas, aos óleos essenciais, até mesmo as bactérias Gram (+) *Staphylococcus aureus* e Gram (-) *Escherichia coli*, conhecidas por apresentarem resistência a drogas comercializadas, apresentaram sensibilidade a partir das 24 horas.

Microorganismos	Halos de Inibição (mm)							
	РНВ	PHU	РНН	Oxacilina	CHCl ₃			
Bacillus subtilis	11	19	14	30	nd			
Staphylococcus aureus	22	22	23	23	nd			
Escherichia coli	11	18	11	23	nd			
Klebsiella pneumoniar	12	19	12	28	nd			
Nycobacterium phlei	13	15	15	27	nd			

Tabela	9.20	-	Atividade	antimicrobiana	do	óleo	essencia	ıl do	Р.	hebetatu	m (PHB), <i>P</i> .
			heptaphyllı	um subsp. ulei	(PH	U) e d	lo P. hep	otaph	yllur	n subsp.	heptaphy	yllum
			(PHH) após	s 48 horas.								

nd – não detectável

9.2 Atividade larvicida do óleo essencial

O óleo essencial da resina do *P. hebetatum* (PHB) foi submetido à investigação da atividade larvicida, utilizando-se seis concentrações diferentes. Os ensaios foram realizados em larvas do mosquito *Aedes aegypti* no 3° estágio. Foram utilizados ensaios em triplicatas, usando-se, em cada ensaio, 50 larvas do mosquito. Após 24 horas, foi observado o número de larvas mortas (Tab. 9.21). A concentração letal (CL₅₀ =270,32 ppm) foi considerada insuficiente, portanto considerado inativo.

 Tabela 9.21 - Atividade larvicida do óleo essencial da resina do P. hebetatum (PHB) contra larvas do mosquito Aedes aegypti.

Concentração ppm	Larvas Afetadas	Larvas Afetadas	Larvas Afetadas	Nortalidade (%)
500,0	45	48	50	96,00
250,0	20	19	22	40,67
100,0	0	1	1	1,00
50,0	0	0	0	0,00
25,0	0	0	0	0,00
12,5	0	0	0	0,00

10 PARTE EXPERIMENTAL

10.1 Métodos cromatográficos

10.1.1 Cromatografia em coluna (CC)

As cromatografias por adsorção (líquido-sólido) em colunas foram realizadas utilizando-se como fase estacionária gel de sílica 60 da VETEC (0,063-0,200 mm ou 70-230 *mesh*). As dimensões e os diâmetros das colunas variaram de acordo com a quantidade da amostra a ser cromatografada. Como fase móvel foram usados solventes analíticos, como éter de petróleo, hexano, diclorometano, acetato de etila e metanol, em ordem crescente de polaridade.

10.1.2 Cromatografia em camada delgada (CCD)

As cromatografias em camada delgada (CCD) foram realizadas em cromatoplacas de vidro preparadas por espalhamento manual utilizando-se gel de sílica 60G da VETEC.

Para as revelações das substâncias nas cromatoplacas, utilizou-se a pulverização com solução de vanilina em ácido perclórico (HClO₄) e posterior aquecimento. A solução de vanilina foi obtida misturando a solução aquosa de vanilina a 0,75M com a solução alcoólica (etanol) do ácido perclórico a 0,33M, usando a mesma proporção em volume.

10.2 Métodos físicos de análises

10.2.1 Espectroscopia na região do infravermelho (IV).

Os dados espectrais obtidos na região do infravermelho (IV) foram registrados em espectrômetro da *Perkin Elmer*, modelo FT-IR *Espectrum* 1000, registrados na região de 450 a 4400 cm⁻¹.

10.2.2 Espectroscopia de ressonância magnética nuclear (RMN)

Os espectros de ressonância magnética nuclear (RMN) de ¹H e de ¹³C unidimensional e bidimensional foram registrados em espectrômetros da Bruker, modelo Avance DPX 300 e modelo Avance DRX 500, operando na freqüência do hidrogênio a 300 MHz e 500 MHz, respectivamente. Na freqüência do carbono, os equipamentos operaram a

75 MHz e 125 MHz, respectivamente. O solvente utilizado foi o clorofórmio deuterado (CDCl₃).

O deslocamento químico (d) foi expresso em parte por milhão (ppm) e referenciado pelo pico do hidrogênio residual do solvente deuterado CDCl₃ ($d_H = 7,27$) e pelo pico do ¹³C do solvente utilizado CDCl₃ ($d_C = 77,23$) para RMN ¹H e ¹³C, respectivamente.

O padrão de hidrogenação dos carbonos foi determinado por meio da técnica DEPT (*Distortionless Enhacement by Polarization Transfer*) com ângulo de 135° com amplitude de CH e CH₂ em oposição, utilizando-se a terminologia convencional: C (carbono nãohidrogenado), CH (carbono metínico), CH₂ (carbono metilênico) e CH₃ (carbono metílico). Os carbonos quaternários (não-hidrogenados) foram identificados pela diferença entre o espectro DEPT 135° e o espectro RMN ¹³C HBBD (*Hidrogen Broad Band Decouppled*).

As multiplicidades das absorções dos hidrogênios nos espectros de RMN ¹H foram identificadas obedecendo à convenção: s (singlete), sl (singleto largo), d (dubleto), dl (dubleto largo), t (tripleto), q (quarteto), dd (dubleto de dubleto) e m (multipleto).

10.2.3 Espectrometria de massa (EM)

Os espectros de massas das substâncias apolares (óleo essencial e cera epicuticular das folhas) foram registrados em aparelho da *Shimadzu*, modelo HP-5971 A, com um detector de massa, acoplado ao cromatógrafo de gás modelo HP-5890 A, série II (CGL/EM), usando uma coluna capilar OV-5 (Dimetilsiloxisano) com 30 m de comprimento, 0,25 mm de diâmetro interno e 0,30 mm de diâmetro externo, nas seguintes condições: gás hidrogênio como fase móvel com fluxo de 1 mL/min. no modo *split* na razão de 1:48, temperatura do injetor 250°C, fonte de ionização de impacto eletrônico de 70 eV. A programação da temperatura foi de 4°C/min. de 40 a 180°C e 20°C/min de 180 a 280°C, permanecendo a essa temperatura por 5 minutos. Os espectros de massas das substâncias sólidas foram obtidos por impacto eletrônico (EMIE, 70 eV), sendo a amostra ionizada diretamente na fonte de ionização.

10.2.4 Cromatografia gasosa (CG)

As análises quantitativas dos constituintes voláteis (óleo essencial) foram realizadas em cromatógrafo modelo Trace GC ultra com o detector FID (*Flame Ionization Detector*) à

temperatura de 280°C, utilizando-se a mesma coluna capilar OV-5 da espectroscopia de massa (Item 10.2.3, Pág 172) com e a mesma programação de temperatura.

10.2.5 Rotação ótica específica [a]

As rotações óticas específicas foram determinadas em polarímetro da *Perkim Elmer*, modelo 341. As medidas foram determinadas, usando-se comprimento de onda de 589 nm à temperatura de 20°C, numa concentração de 1 mg/mL.

10.2.6 Ponto de fusão

Os pontos de fusão foram determinados em aparelho da *Mettler* da MICROQUIMICA, modelo MQAPF–302, com placa de aquecimento. As determinações foram obtidas utilizando uma velocidade de aquecimento de 2°C/min.

10.3 Coletas das amostras botânicas

As resinas das espécies *Protium hebetatum* Daly (PHB), *Protium heptaphyllum* (Aubl.) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *Protium heptaphyllum* (Aubl.) Marchand subsp. *heptaphyllum* (PHH) foram coletadas no município de Cruzeiro do Sul, Estado do Acre, Brasil ao longo da BR-307 e da BR-364, em 2005. Do *Protium hebetatum* Daly, além da resina, foi coletada também a casca do lenho e folhas.

As exsicatas foram obtidas *in loco* e registradas no Herbário do Parque Zoobotânico (PZ) da Universidade Federal do Acre (Tab. 10.22), sendo as espécies identificadas por um especialista no gênero, professor PhD. Douglas C. Daly, curador do Jardim Botânico de Nova Iorque.

 Tabela 10.22 - Coordenadas geográficas e número do registro do herbário (PZ) das espécies de Protium.

Espécie	Latitude Sul	Longitude Oeste	No. Registro
Protium hebetatum Daly (PHB)	07° 29' 13,4"	72° 50' 09,8"	18.374
Protium heptaphyllum subsp. ulei (PHU)	07° 29' 23,4"	72° 54' 19,8"	18.379
Protium heptaphyllum subsp heptaphyllum (PHH)	07° 35' 33,9"	72° 47'29,5"	18.381

10.4 Obtenção dos constituintes voláteis

Os óleos essenciais das três espécies de *Protium* foram extraídos pelo método de hidrodestilação. A mistura óleo e água foram coletadas em aparelho tipo *Cleavenger* modificado por Gottlieb e Magalhães (1960). Após a separação do óleo, este foi secada com sulfato de sódio anidro (Na₂SO₄) e mantido em ampola de vidro âmbar em ambiente refrigerado. O rendimento do óleo foi obtido através da relação volume do óleo essencial extraído versus massa da amostra (v/m) (Tab. 5.2, p. 48).

Os parâmetros utilizados nas análises dos espectros de massas para a identificação dos constituintes químicos presentes nos óleos essenciais foram comparação dos índices de Kovats com o índice simulado (ALENCAR *et al.*, 1990), o pico do íon molecular, o pico base e comparação visual, levando-se em conta o padrão de fragmentação com espectros de massa descritos na literatura (ADAMS, 2007) ou em banco de dados informatizado providos de espectros de massas de substâncias voláteis (SciFinder).

10.5 Isolamento dos constituintes fixos da resina do *P. hebetatum* Daly (PHB)

A resina 95,0g, após extração do óleo essencial, foi dissolvida em éter etílico para remoção de impurezas sólidas. A solução obtida foi filtrada e concentrada o solvente à pressão reduzida, obtendo-se 87,0g de um sólido amorfo, branco. Após esta previa purificação, a resina foi fracionada em cromatografia do tipo filtrante, obtendo-se os extratos: éter de petróleo (23,0 g), acetato de etila (28,0 g) e etanólico (2,5 g). O extrato acetato de etila (28,0 g) foi novamente fracionado em coluna filtrante sob pressão, obtendo-se as frações de éter de petróleo (3,4 g), clorofórmio (10,8 g) e etanol (0,7 g) (Flux. 10.1, p. 176). Os extratos éter de petróleo e acetato de etila, após sucessivas cromatografias em coluna (CC) empacotadas com sílica gel e/ou sephadex LH-20 possibilitaram a obtenção de três misturas binárias de triterpenos pentacíclicos das séries oleanano/ursano (PHB-01, PHB-02 e PHB-07) e o isolamento de quatro tritepenos tetracíclicos da série tirucalano (PHB-03, PHB-05, PHB-06 e PHB-08) em seus estados puros.

Fluxograma 10.1 - Obtenção dos extratos da resina do P. hebetatum Daly

10.5.1 Extrato éter de petróleo da resina

O extrato éter de petróleo da resina, após destilação do solvente sob pressão reduzida em evaporador rotativo, forneceu 23,0g de um sólido amorfo, branco. Uma parte (14,0g) foi fracionada em CC, empacotada com gel de sílica 60, eluída com os solventes hexano (Hex) e acetato de etila (AcOEt), em suas formas puras e em misturas, fornecendo 95 frações de 125 mL. Estas frações, após destilação do solvente sob pressão reduzida e análise em cromatografia de camada delgada (CCD), foram reunidas fornecendo cinco grupos de frações (Flux. 10.2, p. 178).

O primeiro grupo F12-15 (2,10g), eluído pela mistura de Hex-AcOEt (95:05), foi fracionado em sucessivas CC, permitindo o isolamento de duas substâncias. As frações F32-43, eluídas com Hex.-AcOEt (95:05), foram reunidas após análise em CCD, fornecendo 0,415g de um de sólido amorfo, branco que foi codificado de PHB-01. As frações F52-67, eluídas com Hex-AcOEt (9:1), foram reunidas, após análise em CCD, fornecendo 0,638 g de um sólido amorfo, branco, que foi codificado de PHB-02.

O segundo grupo, F16-17 (0,580g), eluído pela mistura de Hex-AcOEt (95:05), foi submetido a sucessivas CC, possibilitamdo o isolamento de duas substâncias. As frações F19-34, eluídas com Hex-AcOEt (95:05), foram reunidas, após análise em CCD, fornecendo 0,167g do PHB-02. As frações F46-62, eluídas com Hex-AcOEt (8:2), após analise em CCD, foram reunidas fornecendo 0,075g de um sólido amorfo, branco, que foi codificado de PHB-07.

O terceiro grupo F18-45 (2,16g), eluído com Hex-AcOEt (95:05), foi purificado em CC, empacotada com gel de sílica, fornecendo 87 frações de 125 mL. As frações F13-58, eluídas com Hex-AcOEt (95:05) foram reunidas, após análise em CCD, fornecendo 1,25g do PHB-02.

O quarto grupo F46-60 (3,40g), eluído com Hex-AcOEt (9:1), foi macerado em gel de sílica e fracionado em cromatografia do tipo filtrante, realizada sob pressão, obtendo-se as frações: éter de petróleo (1,40g), AcOEt (1,08g) e etanol (0,280g). A fração éter de petróleo (1,40g) foi submetida a CC, fornecendo 120 frações de 10 mL. As frações F3-43 eluídas com Hex-AcOEt (9-1) foram reunidas após CCD, fornecendo 0,442g do PHB-02. As frações F65-74, eluídas com Hex-AcOEt (8:2), foram reunidas, após análise em CCD, fornecendo 0,025g de um sólido amorfo, branco, que foi codificado de PHB-08. A frações F35-74, eluídas com Hex-AcOEt (9:1), foram reunidas, após CCD, fornecendo 0,398g do PHB-02. As frações F90-176, eluídas com Hex-AcOEt (8:2), foram reunidas, após análise em CCD, fornecendo 0,273g do PHB-07.

O último grupo F61-90 (0,130g), eluído com a mistura Hex-AcOEt (8:2), foi purificado em CC, fornecendo 65 frações de 10 mL. As frações F17-38, eluídas com Hex-AcOEt (8:2), forneceu 0,067g de um sólido amorfo, branco, que foi codificado de PHB-03.

10.5.2 Extrato acetato de etila da resina

Uma parte (1,9g) da fração éter de petróleo (FEP) do extrato acetato de etila (Flux. 10.1, p. 176) foi fracionada em CC, eluída com a mistura de Hex-AcOEt em ordem crescente de polaridade, fornecendo 40 frações de 125 mL. As frações F9-20, eluídas com a mistura Hex-AcOEt (95:05), foram reunidas, após análise em CCD, fornecendo 0,546g do PHB-02. As frações F38-44 eluídas com Hex-AcOEt (8:2) foram reunidas, após análise em CCD, fornecendo 0,144g do PHB-07.

Fluxograma 10.2 - Fracionamento do extrato éter de petróleo da resina do P. hebetatum Daly

Uma parte (5,0g) da fração clorofórmio (FCL) do extrato acetato de etila (Flux. 10.1, p. 176) foi fracionado em CC, eluída com a mistura de Hex-AcOEt em ordem crescente de polaridade, fornecendo 70 frações de 125 mL. As frações F7-45, eluídas com a mistura Hex-AcOEt (95:05), após análise em CCD, foram reunidas fornecendo 1,18g do PHB-02. As frações F52-66 eluídas com Hex-AcOEt (7:3) foram reunidas fornecendo 0,790g de um sólido branco, amorfo, que foi fracionado em CC, fornecendo 310 frações de 5 mL. As frações F94 – 118 (35 mg) e as frações F147 – 183 (28,0 mg), eluídas com Hex-AcOEt (8:2), forneceram um sólido branco, amorfo, que foram codificados de PHB-05 e PHB-06, respectivamente (Flux. 10.3).

Fluxograma 10.3 – Fracionamento da fração clorofórmica do extrato acetato de etila da resina do *P. hebetatum* Daly

10.6 Isolamento dos constituintes fixos e voláteis da casca do lenho do *P. hebetatum* Daly (PHB)

A casca do lenho (2,15 Kg) do PHB foi triturada e secada à temperatura ambiente. Em seguida foi submetida à extração a frio, com solvente orgânico, obtendo-se as soluções de hexano e etanol. As soluções resultantes foram concentradas em rotaevaporador sob pressão reduzida, fornecendo os extratos de hexânico (40,0g) e etanólico (256,0g). O extrato hexânico após sucessivas CC permitiu o isolamento dos triterpenos PHB-02 e PHB-07 e de óleo essencial (PHB-EHCOE) (Flux. 10.4, p. 181).

10.6.1 Extrato hexânico da casca do lenho

O extrato hexânico da casca do lenho (40,0g) foi fracionado em cromatografia tipo filtrante sob pressão fornecendo as frações de éter de petróleo (8,2g), clorofórmio (12,0g) e etanol (1,7g) (Flux. 10.4, p. 181).

Uma parte da fração éter de petróleo (2,5g) foi fracionada em CC, eluída inicialmente com éter de petróleo e, posteriormente, com a mistura de hexano e acetato de etila em ordem crescente de polaridade, fornecendo 151 frações de 10 mL. As frações F1-34 eluídas com éter de petróleo foram reunidas, após análise em CCD, fornecendo 0,324g de uma substância com aspectos de óleo essencial, que foi codificada como PHB-EHCOE. As frações F74-82 eluídas com Hex-AcOEt (9:1), reunidas após CCD, forneceram 0,935g do PHB-02.

Uma parte da fração clorofórmio (2,0g) foi fracionada em CC obtendo-se 93 frações de 10 mL. As frações F7-35 eluídas com Hex-AcOEt (95:05), reunidas após CCD, forneceram 0,650g do PHB-02. As frações F30-54 eluídas com Hex-AcOEt (8:2), reunidas após CCD, forneceram 0,040 g do PHB-07.

Fluxograma 10.4 – Obtenção dos extratos e fracionamento do extrato hexânico da casca do lenho do P. hebetatum Daly

10.7 Isolamento dos constituintes fixos das folhas do *P. hebetatum* Daly (PHB)

As folhas (2,19 Kg) do PHB foram secadas à temperatura ambiente e submetidas à extração a frio, obtendo-se os extratos de hexânico (40,0g) e etanólico (158,0g). O extrato hexânico, após sucessivas CC, permitiu o isolamento do triterpeno PHB-02 e a identificação

da composição química da cera epicuticular das folhas [hidrocarbonetos lineares (C_{27} , C_{31} e C_{33}), e oito ésteres etílicos] (Flux. 10.5).

10.7.1 Extrato hexânico das folhas

O extrato hexânico das folhas (40g) foi fracionado em coluna filtrante, fornecendo as frações de éter de petróleo (8,8g), clorofórmio (17,0g) e etanol (1,6g) (Flux. 10.5).

Fra Cl 4 A fração éter de petróleo (8,8g) foi fracionada em CC, empacotada com gel de sílica, fornecendo 62 frações de 125 mL As frações foram reunidas, após CCD, em F14-21 eluídas com Hexano; F22-26 e F32-36 eluídas com Hex-CH₂Cl₂ (95:05); F52 eluída com H₂CCl₂ e F62 eluída com acetato de etila. As frações F14-21 forneceram 5,34g de um sólido amorfo, branco, sendo analisada por CGL/EM, RMN¹H e EMIE (70 eV). A fração F62 forneceu um líquido amarelado que foi analisado por CGL/EM, IV e RMN ¹H e as demais frações foram analisadas apenas por CGL/EM.

Parte da fração clorofórmio (3,0g) foi adsorvida em sílica e fracionada em CC, fornecendo 90 frações de 10 mL. As frações F20-58 eluídas com Hex-AcOEt (9:1) foram reunidas, após CCD, fornecendo 0,92g do PHB-02 (Flux. 10.5, p. 182).

10.8 Isolamento dos constituintes fixos da resina do *P. heptaphyllum* (Aublet) Marchand subsp *ulei* (Swat) Daly (PHU)

A resina 107,0g, após extração do óleo essencial, foi macerada em sílica gel, e fracionada em cromatografia do tipo filtrante sob pressão. A cromatografia foi eluída com solventes orgânicos analíticos obtendo-se os extratos de éter de petróleo (17,0 g), hexânico (20,0 g), diclorometano (50,0g) e metanólico (2,0g). (Flux. 10.6, p. 185). Os extratos éter de petróleo e hexânico permitiram o isolamento de duas misturas binárias constituídas dos triterpenos pentacíclicos das séries oleana/ursano (PHU-01 e PHU-02), três triterpenos tetracíclicos ácidos da série tiruculano (PHU-03, PHU-05 e PHU-06) e de um triterpeno pentacíclico da série friedelano (PHU-09).

10.8.1 Extrato éter de petróleo

Uma parte do extrato éter de petróleo (3,0g) foi adsorvida em gel de sílica e fracionada em CC, fornecendo 80 frações de 125 mL. As frações F28-74, eluídas com Hex-AcOEt (95:05), após CCD, foram reunidas, fornecendo 1,59g de um sólido amorfo, branco, que foi codificado por PHU-02.

10.8.2 Extrato hexânico

Uma parte do extrato hexânico (5,0g) foi adsorvida em gel de sílica e fracionada em CC, fornecendo 126 frações de 125 mL. Estas foram submetidas a sucessivas colunas cromatográficas, possibilitando o isolamento de quatro substâncias. A fração F29 eluída com

éter de petróleo forneceu 145 mg de um sólido amorfo, branco, que foi codificada de PHU-01. As frações F58-59 eluídas com hexano forneceram 70,0 mg de um sólido amorfo, branco, que foi codificado de PHU-09. As frações F100-108 eluídas com Hex-AcOet (8:2) forneceram 90,0 mg de um sólido amorfo, branco, que foi codificado de PHU-05; as frações F115-120, eluídas com Hex-AcOEt (7:3), forneceram 46,0 mg de um sólido amorfo, branco, que foi codificado de PHU-06 e as frações F127-150, eluídas com Hex-AcOEt (7:3), forneceram 50,0mg de um sólido amorfo, branco, que foi codificado de PHU-03 (Flux. 10.6, p. 185).

10.9 Isolamento dos monoterpenos do óleo essencial do *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU)

Uma alíquota do óleo essencial da resina (3 mL) do PHU foi adsorvida em sílica gel e fracionada em CC, fornecendo 40 frações de 10 mL. As frações F3-6, eluídas com éter de petróleo, foram reunidas após análise em CCD, fornecendo 55,0 mg de um óleo que foi codificado de PHU-10. As frações F28-30, eluidas com diclorometano, foram reunidas após comparação em CCD, fornecendo 30 mg de um óleo que foi codificado de PHU-11.

10.10 Derivados reacionais

10.10.1 PHB-02aOAc/PHB-02bOAc

Em um balão de 50 mL, foram adicionados 110 mg (0,25 mmol) da mistura de ßamirina (PHB-02a)/a-amirina (PHB-02b), 2,0 mL (21,1 mmol) de anidrido acético e 0,5 mL (3,3 mmol) de trietilamina. O sistema foi mantido sob agitação magnética por três horas, à temperatura ambiente. Após a constatação da ocorrência da reação por cromatografia em camada delgada, foi evaporado o solvente sob pressão reduzida fornecendo 105 mg (89,7%) do produto bruto. Este foi purificado em cromatografia em coluna, eluída com diclorometano, obtendo-se 101,0 mg (86,3%) do acetato de ß,a-amirina (PHB-02aOAc/PHB-02bOAc).

Fluxograma 10.6 – Obtenção dos extratos e fracionamento dos extratos éter de petróleo e hexânico da resina do P. Heptaphyllum subsp. ulei

10.10.2 PHB-07aOAc/PHB-07bOAc

Em um balão de 50 mL, foram adicionados 60 mg (0,11 mmol) da mistura de 3ß,16ß-di-hidroxiolean-12-eno (maniladiol)/3ß,16ß-di-hidroxiurs-12-eno (breína), 2,0 mL (21,1 mmol) de anidrido acético e 0,5 mL (3,3 mmol) de trietilamina. O sistema foi deixado à temperatura ambiente, sob agitação magnética, por três horas. Após a constatação da ocorrência da reação por CCD, foi evaporado o solvente sob pressão reduzida, obtendo-se 70 mg (98,0%). Em seguida foi cromatografado em coluna empacotada com gel de sílica, eluída com diclorometano, obtendo-se 63 mg (91,0%) do produto acetilado (PHB-07aOAc/PHB-07bOAc).

10.10.3 PHU-06OAc

Em um balão de 50 mL, foram adicionados 100 mg (0,23 mmol) do ácido 3ahidroxitirucala-7,24-dien-21-óico, 2,0 mL (21,1 mmol) de anidrido acético e 0,8 mL (9,9 mmol) de piridina. O sistema reacional permaneceu sob agitação magnética à temperatura ambiente, por 24 horas. Após a constatação da reação por CCD, foram adicionados 20 mL de solução aquosa saturada de sulfato de cobre (CuSO₄). A extração do produto foi realizada por partição com três porções de 20 ml de diclorometano. A fase aquosa foi desprezada, e a fase orgânica foi lavada com 20 mL de água, separada e secada com sulfato de sódio anidro (Na₂SO₄), fornecendo 98 mg (89,9%) do produto bruto. Em seguida, foi purificado em coluna cromatográfica eluída com uma mistura de diclorometano/metanol (95:05) fornecendo 68 mg (62,4%) do produto acetilado (PHU-06OAc)

10.10.4 PHB-02aOxi/PHB-02bOxi

Em um balão de 50 mL, foram adicionados 600 mg (2,8 mmol) de clorocromato de piridina (PCC) dissolvidos em 10,0 mL de acetona, 400 mg (0,94 mmol) da mistura de β-amirina (PHB-02a)/a-amirina (PHB-02b), dissolvida em 10 mL de diclorometano. A mistura racional foi mantida sob agitação por 3 horas, à temperatura ambiente. Após a constatação da ocorrência da reação por CCD, foi concentrada o solvente sob pressão reduzida, obtendo-se 390 mg (98%) de β,a-amirenona (PHB-02aOxi/PHB-02bOxi).

10.10.5 PHB-02aOxima/PHB-02bOxima

Em um balão de 50 ml, foram adicionados 1,5g (21,6 mmol) de cloridrato de hidroxilamina (H₃NO.HCl) dissolvidos em 30 mL de metanol, 200 mg (0,47 mmol) de β-amirenona (PHB-02aOxi)/a-amirenona (PHB-02bOxi). O sistema reacional foi conectado a um condensador de refluxo, contendo tubo secante, permanecendo em refluxo por 6 horas. Após a constatação da ocorrência da reação por CCD, o solvente foi concentrado sob pressão reduzida. Em seguida, foram adicionados 20 mL de água e o produto extraído por partição com três porções de 20 mL de diclorometano. A fase aquosa foi desprezada, e a fase orgânica foi lavada com 20 mL de água, separada, secada com sulfato de sódio anidro e concentrada o solvente sob pressão reduzida fornecendo 188 mg (90,8%) da oxima (PHB-02aOxima/PHB-02bOxima).

10.10.6 PHB-03Oxima

Em um balão de 50 ml, foram adicionados 0,75g (10,8 mmol) de cloridrato de hidroxilamina (H₃NO.HCl) dissolvidos em 20 mL de metanol, 100 mg (0,22 mmol) do ácido 3-oxotirucala-8,24-dien-21-óico (PHB-03). A reação foi conduzida como descrito no item 10.10.5. O produto da reação foi purificado em coluna cromatográfica, eluída com a mistura diclorometano/metanol (95:05), obtendo-se 65 mg (63,1%) da oxima (PHB-03Oxima).

10.11 Reação de acetilação via enzimática

As reações de acetilação da mistura binária β-amirina/a-amirina via enzimática, foram realizadas utilizando-se das enzimas da resina do *P. hebetatum*. O agente acilante anidrido acético. O poder de conversão das enzimas foi observado em dois tipos de solvente: hexano e éter etílico à temperatura ambiente. Como padrão de comparação, foi obtido o acetato de β-amirina/a-amirina (Item 10.10.1, p. 184), via reação com anidrido acético em trietilamina.

A reação enzimática, foi realizada conforme a técnica descrita a seguir: em um Erlenmeyer de 50 mL, foi adicionada a mistura ß-amirina/a-amirina, a enzima, 5 mL do solvente, e sob atmosfera de nitrogênio, foi adicionado o agente acilante. O sistema reacional foi mantido sob agitação em *Shake* a 250 rpm por 120 horas. Após cinco dias, o complexo enzimático foi separado da solução orgânica por filtração e lavado com o mesmo solvente utilizado na reação e em seguida concentrado o solvente sob pressão reduzida. O branco foi

obtido utilizando o mesmo procedimento sem o complexo enzimático. O poder de conversão das enzimas imobilizadas foi quantificado por RMN¹H.

10.12 Atividade biológica

10.12.1 Atividade antimicrobiana

A atividade antimicrobiana foi realizada no Laboratório de Microbiologia da Universidade Federal do Acre. Foi utilizada a técnica de difusão em meio sólido em acordo com a Farmacopéia Brasileira.

As suspensões microbianas: *Bacillus subtilis*, *Staphylococcus aureus*, *Escherichia coli*, *Klebsiella pneumoniar*, *Nycobacterium phlei*, obtidos a partir de culturas em caldo de BHI foram semeadas na superfície de Agar *Muller-Hintion*, em placa de Petri. Sobre o meio semeado foi feito poço com diâmetro de 5 mm, o qual foi aplicado 25 µL do óleo essencial com diluição de 50% em clorofórmio. As placas foram encubadas por 48 horas à temperatura de 35°C, como também o controle negativo. As leituras dos halos de inibição de crescimento foram feitas de 24 e 48 horas com uma régua, através do fundo da placa. Como padrão de comparação foi utilizado a oxacilina.

10.12.2 Atividade larvicida contra Aedes aegypti

Os ensaios biológicos foram realizados com seis contrações do óleo essencial: 500, 250, 100, 50, 25 e 12,5 ppm. As amostras foram dissolvidas em 0,3 mL de dimetilsulfóxido e em seguida, foi completada com água e as 50 larvas do mosquito no 3° estágio, até completar 20 mL. Este procedimento foi realizado para cada concentração em triplicata. Após 24 horas, foram contadas as larvas mortas, para posterior cálculo da concentração letal, concentração da amostra do óleo essencial capaz de matar 50% da população de larvas (CL_{50}). O dimetilsulfóxido foi usado como controle (branco) usando a mesma concentração das amostras do óleo essencial.

11 CONCLUSÕES

A pesquisa bibliográfica realizada no período de 1980 a 2008 sobre triterpenos isolados das espécies de Burseraceae revelou a presença marcante de triterpenos da série ursano (33 compostos), seguidos dos oleanano (20), dammarano (18), octanordammarano (12), tirucalano (11), cicloartano (9) e lupano (8). Friedoursano foi o mais raro, com apenas um composto isolado da espécie *Canarium zeylanicu*.

A pesquisa bibliográfica revelou também que, 36 espécies de Burseraceae apresentaram triterpenos, com um total de 140 compostos. Os compostos β-amirina e a-amirina foram os triterpenos encontrados com maior frequência, presentes em 22 espécies.

Os óleos essenciais das resinas do *Protium hebetatum* Daly (PHB), *P. heptaphyllum* (Aublet) Marchand subsp. *ulei* (Swat) Daly (PHU) e do *P. heptaphyllum* (Aublet) Marchand subsp. *heptaphyllum* (PHH), apresentaram alto rendimento com, 15,1%, 11,9% e 11,3%, respectivamente, vislumbrando grande possibilidade de aplicação nas industrias de cosméticos e perfumarias o que contribuiria para o desenvolvimento sustentável da região do Alto Juruá.

A espécie *P. heptaphyllum subsp. heptaphyllum* (PHH) se diferenciou bastante das outras duas, PHB e PHU, pela presença de uma grande quantidade de hidrocarbonetos lineares [tridecano (1,75%), tetradecano (13,38%), pentadecano (4,49%) e hexadecano (0,85%)] na composição química do óleo essencial da resina

O óleo essencial das resinas das três espécies de *Protium*, PHB, PHU e PHH revelou inibição de crescimento microbiano, inclusive as bactérias Gram (+) *Staphylococcus aureus* e Gram (-) *Escherichia coli*, conhecidas por apresentarem resistência a drogas comercializadas, foram também sensíveis às três amostras de óleo essencial. Além dessa propriedade, o óleo da resina do PHB, também apresentou atividade contra as larvas do mosquito *Aedes aegypti* (CL₅₀ 270,32 ppm), considerada insuficiente. Essas propriedades, em parte, justificam o uso popular da planta.

O estudo fitoquímico da resina do *P. hebetatum* Daly (PHB) permitiu o isolamento de uma mistura de triterpenos pentacíclicos isômeros das séries oleanano/ursano (β-amirina/a-amirina), numa proporção aproximadamente de 20%. A presença marcante dessas substâncias

produzidas na espécie em questão abre a possibilidade de pesquisa interdisciplinar (Química-Biologia-Botânica-Farmacologia).

O estudo revelou também a presença de triterpenos tetracíclicos da série tirucalano com oxigenação no átomo de carbono C-21 (Ácido 3-oxotirucala-8,24-dien-21-óico, Ácido 3a-hidroxitirucala-8,24-dien-21-óico, Ácido 3a-acetoxitirucala-8,24-dien-21-óico e o Ácido 3a-hidroxitirucala-7,24-dien-21-óico), o que reforça o vínculo entre a Burseraceae da ordem Sapindales e seus parentes próximos Rutaceae, Meliaceae, Simarubaceae, da ordem Rutales.

O estudo fitoquímico da resina do *P.hebetatum* permitiu também o isolamento do triterpeno (Ácido 3a-hidroxitirucala-8,24-dien-21-óico) possibilitando de forma inequívoca a revisão no assinalamento dos dados de RMN¹³C, publicado pela literatura, como também o isolamento de um tirucalano acetilado (Ácido 3a-acetoxitirucala-8-24-dien-21-óico) inédito como produto natural.

A constituição química da cera epicuticular das folhas do *P. hebetatum*, formada de hidrocarbonetos [heptacosano (6,97%), hentriacontano (63,24%) e tritriacontana (30,04%)] e ésteres etílicos [Dodecanoato (2,47%), tetradecanoato (3,15%), pentadecanoato (3,95%), hexadecanoato (64,33%), heptadecanoato (3,32%), 9-hexadecenoato (2,92%) e o octadecanoato (17,87%), em grande quantidade, justifica a maior resistência do vegetal a perda d'água, aos ataques de diversos microrganismos patogênicos e reduz a lixiviação foliar, prevenindo a perda de nutrientes e íons.

O estudo fitoquímico da resina do *P. heptaphyllum* (Aublet) Marchand subsp. *ule*i (Swat) Daly (PHU) também revelou a presença marcante dos triterpenos pentacíclicos das séries oleanano/ursano (β-amirin/a-amirina), e dos triterpénos tetracíclicos da série tirucalano oxigenados na átomo de carbono C-21 (Ácido 3-oxotirucala-8,24-dien-21-óico, Ácido 3a-hidroxitirucala-8,24-dien-21-óico).

O uso das enzimas imobilizadas da resina do *P. hebetatum* como biocatalisador, em reação de acetilação, com o fator de conversão de 15,3%, vislumbra novas possibilidades de estudos nessa linha de pesquisa.

12 CARACTERÍSTICAS FÍSICAS E QUÍMICAS DAS SUBSTÂNCIAS

12.1 3-Oxoolean-12-eno ou ß-amirenona (PHB-01a) e 3-Oxours-12-eno ou aamirenona (PHB-01b)

Características da mistura binária: sólido amorfo, branco, solúvel em clorofórmio (HCCl₃), diclorometano (H₂CCl₂), fórmula molecular $C_{30}H_{48}O$, massa molar 424 u.m.a., faixa de fusão 110,6-113,8 °C (Lit. 101-103 °C, CARVALHO *et al.*, 1998), [a]²⁰_D = + 139° (c = 0,001 g/mL, CHCl₃).

Dados no IV (NaCl) v_{max} cm⁻¹ = 2947, 2867, 1704, 1457, 1381, 1242, 1111, 1000, 968, 756.

Dados de massa (EMIE, 70 eV), *m/z* (%) = 424 (21,2), 409 (9,4), 391 (2,3), 368 (2,3), 354 (2,3), 339 (2,3), 325 (2,3), 313 (3,5), 299 (3,5), 285 (4,7), 273 (4,7), 257 (7,1), 243 (4,7), 232 (7,1), 218 (100), 203 (78,8), 189 (445,8), 175 (16,5), 161 30,6, 147 (27), 135 (36,5), 119 (38,8), 109 (37,6), 95 (40,0), 81 (32,9), 69 (25,9), 55 (24,7), 41 (29,4).

Dados de RMN ¹H (500 MHz, CDCl₃) do 3-oxoolean-12-eno ou β-amirenona: ver tabela 7.7, pág. 95

Dados de RMN ¹³C (125 MHz, CDCl₃) do **3**-oxoolean-12-eno (β-amirenona): ver tabela 7.7, pág. 95

Dados de RMN ¹H (500 MHz, CDCl₃) do 3-oxours-12-eno ou a-amirenona: ver tabela 7.7, pág. 95

Dados de RMN ¹³C (125 MHz, CDCl₃) do 3-oxours-12-eno ou a-amirenona: ver tabela 7.7, pág. 95

12.2 3β-Hidroxiolean-12-eno ou β-amirina (PHB-02a) e 3β-Hidroxiurs-12-eno ou aamirina (PHB-02b)

Características da mistura binária: sólido amorfo, branco, solúvel em clorofórmio (HCCl₃), diclorometano (H₂CCl₂), fórmula molecular $C_{30}H_{50}O$, massa molar 426 u.m.a., faixa de fusão 143,3- 146,2 °C, $[a]^{20}_{D} = +104^{\circ}$ (c = 0,001g/mL, CHCl₃).

Dados no IV (NaCl) v_{max} cm⁻¹ = 3475, 2948, 2863, 1635, 1462, 1381, 1196, 1095, 1036, 986.

Dados de massa (EMIE, 70 eV) *m/z* (%) = 426 (27,6), 411 (13,4), 393 (3,4), 365 (1,7), 337 (1,7), 315 (1,7), 302 (1,7), 286 (1,7), 272 (5,2), 257 (9,6), 243 (3,8), 229 (3,8), 218 (100); 203 (53,4), 189 (44,1), 175 (19,0), 161 (24,1), 147 (24,8), 135 (32,7), 119 (31,0), 109 (27,5), 95 (31,0), 81 (23,4), 69 (27,6), 55 (27,6), 41 (17,2).

Dados de RMN ¹H (500 MHz, CDCl₃) do 3 β -hidroxiolean-12-eno ou β -amirina: ver tabela 7.9, pág. 103.

Dados de RMN ¹³C (125 MHz, CDCl₃) do 3β-hidroxiolean-12-eno ou β-amirina: ver tabela 7.9, pág. 103

Dados de RMN ¹H (500 MHz, CDCl₃) do 3β-hidroxiurs-12-eno ou a-amirina: ver tabela 7.9, pág. 103

Dados de RMN ¹³C (75 MHz, CDCl₃) do 3ß-hidroxiurs-12-eno ou a-amirina: ver tabela 7.9, pág. 103

12.3 38,168-Di-hidroxiolean-12-eno ou maniladiol (PHB-07a) e 38,168-Di-hidroxiurs-12-eno ou breina (PHB-07b)

Características da mistura binária: sólido amorfo, branco, solúvel em clorofórmio (HCCl₃), dicloro metano (H₂CCl₂), fórmula molecular $C_{30}H_{50}O_2$, massa molar 442 u.m.a., faixa de fusão 124,8 – 125,7 °C, [a]²⁰_D = + 49° (c = 0,001 g/mL, CHCl₃).

Dados no IV (NaCl₁) $v_{max.}$ cm⁻¹ = 3405, 2929, 1702, 1455, 1381, 1215, 1029, 996, 756, 665.

Dados de massa (EMIE, 70 eV) *m/z* (%) = 442 (11), 424 (4,4), 409 (2,2), 391 (2,2), 369 (2,2), 357 (2,2), 341 (2,2), 327 (2,2), 317 (2,2), 289 (2,5), 273 (2,2), 248 (2,7), 234 9100), 219 (42,2), 207 (42,2), 191 (30,3), 175 (22,2), 159 (12,2), 151 (22,2), 135 (24,4), 123 (42,2), 110 (44,4), 95 (42,2), 81 (33,3), 69 (40), 43 (42,2), 41 (26,7).

Dados de RMN ¹H (500 MHz, CDCl₃) do 3β,16β-di-hidroxiolean-12-eno ou maniladiol: ver tabela 7.11, pág. 113.

Dados de RMN ¹³C (125 MHz, CDCl₃) do 36,16β-di-hidroxiolean-12-eno ou maniladiol: ver tabela 7.11, pág. 113.

Dados de RMN ¹H (500 MHz, CDCl₃) do 3β ,16β-di-hidroxiurs-12-eno ou breína: ver tabela 7.11, pág. 113.

Dados de RMN 13 C (125 MHz, CDCl₃) do 3 β ,16 β -di-hidroxiurs-12-eno ou breina: ver tabela 7.11, pág. 113.

12.4 Ácido 3-oxotirucala-8,24-dien-21-óico (PHB-03)

Características: sólido amorfo, branco, solúvel em clorofórmio (HCCl₃), diclorometano (H₂CCl₂), fórmula molecular $C_{30}H_{46}O_3$, massa molar 454 u.m.a., faixa de fusão 123,7 – 126,5°C (Lit. 122-124 °C, ROBLES *et al.*, 2005), [a]²⁰_D = +18° (c = 0,001 g/mL, CHCl₃).

Dados de RMN ¹H (500 MHz, CDCl₃): ver tabela 7.12, pág. 121.

Dados de RMN ¹³C (125 MHz, CDCl₃): ver tabela 7.12, pág. 121.

Dados de massa (EMIE, 70 eV) *m/z* (%) = 454 (22,8), 439 (100), 421)23,9), 409 (4,8), 393 (30,5), 391 (1,9), 375 (1,9), 357 (1,9), 311 (14,3), 297 (37), 281 (4,6), 269 (6,7), 257 (6,7), 234 (17), 215 (8,5), 201 (20), 189 (22,8), 159 (20), 145 (20,5), 131 (29,5) 119 (48,6), 107 (42,8), 95 (29,5), 79 (29,5), 69 (89,5), 43 (64,7), 41 (95).

12.5 Ácido 3a-hidroxitirucala-8,24-dien-21-óico (PHB-05)

Características: sólido amorfo, branco, solúvel em clorofórmio (HCCl₃), diclorometano (H₂CCl₂), fórmula molecular C₃₀H₄₈O₃, massa molar 456 u.m.a., faixa de fusão 181,2 – 184,6 °C (Lit. 194-197 °C, USUBILLAGA *et al.*, 1004) e rotação ótica específica [s]²⁰_D = - 15° (c = 0,001 g/mL, CHCl₃).

Dados de RMN ¹H (500 MHz, CDCl₃): ver tabela 7.13, pág. 127.

Dados de RMN¹³C (125 MHz, CDCl₃): ver tabela 7.13, pág. 127.

Dados de massa (EMIE, 70 eV) *m/z* (%) = 456 (19,6), 439 (12,8), 423 (100), 405 (8,5), 377 (6,4), 356 (6,4), 339 (8,7), 329 (12,8), 313 (8,5), 301 (8,5), 281 (19,6), 261 (12), 241 (10,6), 227 (10,3), 213 (16), 201 (16,4), 187 (40,4), 173 (17), 159 (17,5), 145 (17,5), 135 (34), 119 (42,5), 173 (25,6), 159 (27,6), 145 (27,6), 135 (31,9), 119 (42,5), 107 (36), 95 (42,5), 81 (29,8), 69 (40,4), 43 (31,9), 41 (38,3).

12.6 Ácido 3a-acetoxitirucala-7,24-dien-21-óico (PHB-08)

Características: sólido amorfo, branco, solúvel em clorofórmio (HCCl₃), diclorometano (H₂CCl₂), fórmula molecular $C_{32}H_{50}O_4$, massa molar 498 u.m.a., faixa de fusão 118,4-121,2°C.

Dados de RMN ¹H (500 MHz, CDCl₃): ver tabela 7.14, pág. 132.

Dados de RMN ¹³C (125 MHz, CDCl₃): ver tabela 7.14, pág. 132. Dados de massa (EMIE, 70 eV) m/z (%) = 498 (1), 482 (1), 468 (1,5), 451 (1,5), 423 (1,5), 371 (2), 355 (1,5), 329 (2), 303

(2,2), 255 (3), 269 (2,4), 227 (4), 201 (10), 187 (12), 161 (15), 145 (18), 121 (28), 107 (23), 95 (32), 81 (25), 69 (32), 55 (40), 43 (100), 41 (43).

12.7 Ácido 3a-hidroxitirucala-7,24-dien-21-óico (PHB-06)

Características: sólido amorfo, branco, solúvel em clorofórmio (HCCl₃), diclorometano (H₂CCl₂), fórmula molecular C₃₀H₄₈O₃, massa molar 456 u.m.a., faixa de fusão 177,2 – 180,3 °C (Lit. 188-190 °C, YI *et al.*, 1988), $[a]_{D}^{20}$ = - 29° (c = 0,001 g/mL, CHCl₃).

Dados de RMN ¹H (500 MHz, CDCl₃): ver tabela 7.15, pág. 137.

Dados de RMN ¹³C (125 MHz, CDCl₃): ver tabela 7.15, pág. 137.

Dados de massa (EMIE, 70 eV) *m/z* (%) = 456 (15,9), 439 (25,3), 423 (100), 419 (5,9), 405 (8,8), 377 (3), 353 (3), 341 (5,3), 327 (11,8), 311 (4,7), 299(11,2), 281 (38,2), 279 (11), 255 (1), 241 (12,3), 227 (17), 213 (17), 199 (19,4), 187 (61,7), 173 (41,8), 159 (58,8), 145 (48,2), 133 (52,9), 119 (64,7), 105 (78,8), 95 (60), 81 (40,6), 69 (50), 55 (91), 43 (70), 41 (43,5).

12.8 D:A-Friedoolean-3-ona ou friedelina (PHU-09)

Características: sólido amorfo, branco, solubilidade em clorofórmio (HCCl₃), diclorometano (H₂CCl₂), fórmula molecular $C_{30}H_{50}O$, massa molar 426 u.m.a., faixa de fusão 217,1-219,8°C, [a]²⁰_D = + 58° (c = 0,001 g/mL).

Dados no IV (NaCl₁) v_{max} cm⁻¹ = 2946, 2869, 1705, 1455, 1383, 755.

Dados de RMN ¹H (500 MHz, CDCl₃): ver tabela 7.16, pág. 142.

Dados de RMN¹³C (125 MHz, CDCl₃): ver tabela 7.16, pág. 142.

Dados de massa (EMIE, 70 eV) *m/z* (%): 426(1)., 407 (1), 392 (1), 373 (1), 327 (1), 314 91), 300 (1), 281 (1), 267 91), 253 91), 241 91), 227 (1), 219 (1), 203 (1,5), 189 (1,5), 175 (1,7), 161 (3), 149 (4,5), 133 (13,4), 105 (13,4), 95 (23,4), 81 (33,4), 69 (83,4), 55 (100), 45 (95), 41 (61,7).

12.9 1-Metil-4-(1-metiletilideno)ciclo-hex-1-eno ou Terpinoleno (PHU-10) e 1-Metila-4-(1-hidroxi-1-metiletil)benzeno ou p-Cimeno-8-ol (PHU-11)

Dados de RMN ¹H (500 MHz, CDCl₃) do 1-metil-4-(1-metiletilideno)ciclo-hex-1-eno ou Terpinoleno (PHU-10): ver tabela 7.17, pág. 148.

Dados de RMN ¹³C (125 MHz, CDCl₃) do 1-metil-4-(1-metiletilideno)ciclo-hex-1-eno ou Terpinoleno (PHU-10): ver tabela 7.17, pág. 148.

Dados de RMN ¹H (500 MHz, CDCl₃,) do 1-metil-4-(1-hidroxi-1-metiletil)benzeno ou p-Cimeno-8-ol: ver tabela 7.17, pág. 148.

Dados de RMN ¹³C (125 MHz, CDCl₃) do 1-metil-4-(1-hidroxi-1-metiletil)benzeno ou p-Cimeno-8-ol: ver tabela 7.17, pág. 148. 12.10 3B-Acetoxiolean-12-eno ou acetato de B-amirina (PHB-02aOAc) e 3B-Acetoxiurs-12-eno ou acetato de a-amirina (PHB-02bOAc)

Características: sólido amorfo, branco, solúvel em clorofórmio (HCCl₃), diclorometano (H₂CCl₂), fórmula molecular $C_{32}H_{52}O_2$, massa molar 468 u.m.a., $[a]^{20}{}_D = +100^{\circ}$ (c = 0,001 g/mL)

Dados de massa (EMIE, 70 eV), *m/z* (%) 468 (10,9), 454 (3,3), 437 (1), 410 (3), 393 (3), 270 (3,3), 249 (3,3), 231 (3), 218 (100), 203 (54), 189 (33), 175 (13,5), 161 (14), 147 (14), 135 (20), 119 (25), 107 (21), 95 (25), 81 (20), 69 (23), 43 (60), 41 (12).

Dados de RMN ¹H (500 MHz, CDCl₃) do 3 β -acetoxiolean-12-eno ou acetato de β -amirina: 4,50 (1H, m, H-3), 5,18 (1H, s, H-12), 2,04 (3H, s, MeC=O).

Dados de RMN ¹H (500 MHz, CDCl₃) do 3 β -acetoxiurs-12-eno ou acetato de a-amirina: 4,50 (1H, m, H-3), 5,12 (1H, 7, J = 3.2 Hz, H-12), 2,04 (3H, s, MeC=O).

Dados de RMN 13 C (125 MHz, CDCl₃) do 3 β -acetoxiolean-12-eno ou acetato de β -amirina: ver tabela 7.18, pág. 167.

Dados de RMN 13 C (125 MHz, CDCl₃) do 3β-acetoxioxours-12-eno ou acetato de a-amirina: ver tabela 7.18, pág. 167.

12.11 3ß,16ß-Diacetoxiolean-12-eno ou acetato de maniladiol (PHB-07aOAc) e 3ß,16ß-Diacetoxiurs-12-eno ou acetato de breina (PHB-07bOAc)

Características: sólido amorfo, branco, solúvel em clorofórmio (HCCl₃), diclorometano (H₂CCl₂), fórmula molecular $C_{34}H_{54}O_4$, massa molar 526 u.m.a., $[a]^{20}{}_D = + 240^{\circ}$ (c = 0,001 g/mL).

Dados de massa (EMIE, 70 eV), *m/z* (%): 526 (1), 510 (1), 498 (1,3), 480 (1), 466(9,3), 451 (8), 216 (100), 201(18,6), 189 (7,8), 175 (5,2), 159 (5), 145 (17,5), 131 (18), 119 (16), 105 (14), 95 (18), 81 (15,4), 433 (86,7(, 41 (16).

Dados de RMN ¹H (500 MHz, CDCl₃) do 3β ,16β-diacetoxiolean-12-eno ou acetato de maniladiol: 4,50 (1H, m, H-3), 5,22 (1H, m, H-12), 4,46 (1H, m, H-16), 2,05 (3H, s, MeC=O).

Dados de RMN ¹H (500 MHz, CDCl₃) do 3β,16β-diacetoxiurs-12-eno ou acetato de breína: 4,50 (1H, m, H-3), 5,21 (1H, m, H-12), 4,46 (1H, m, H-16), 2,06 (3H, s, MeC=O).

Dados de RMN ¹³C (125 MHz, CDCl₃) do 3β,16β-diacetoxiolean-12-eno ou acetato de maniladiol: ver tabela 7.18, pág. 167.

Dados de RMN ¹³C (125 MHz, CDCl₃) do 3β,16β-diacetoxiurs-12-eno ou acetato de breína: ver tabela 7.18, pág. 167.

12.12 Ácido 3a-acetoxitirucala-7,24-dien-21-óico (PHU-06OAc)

Características: sólido amorfo, branco, solúvel em clorofórmio (HCCl₃), diclorometano (H₂CCl₂), fórmula molecular $C_{32}H_{50}O_4$, massa molar 498 u.m.a.

Dados de massa (EMIE, 70 eV), *m/z* (%): 498 (5), 481 (3,5), 468 92), 453 (5), 437 (12,5), 423 (24), 393 (5), 381 (2), 371 (2), 353 (2,3), 339 (1.4), 281 (15), 255 (4), 201 (7), 187 (25), 173 (10), 159 (14), 145 (19), 133 (16), 119 (31), 107 (33), 95 (30), 81 (28), 69(38), 43 (100), 41(40).

Dados de RMN ¹H (500 MHz, CDCl₃): 2,04 (3H, s, **CH**₃C=O), 4,65 (1H, m, H-3), 5,07 (1H, m, H-24), 5,24 (1H, m, H-7), 1,65 (3H, s, H-27) e 1,56 (3H, s, H-26).

Dados de RMN ¹³C (125 MHz, CDCl₃): ver tabela 7.18, pág. 167.

12.13 3-Oxoolean-12-eno ou β-amirenona (PHB-02aOxi) e 3-Oxours-12-eno ou aamirenona (PHB-02bOxi).

Características: sólido amorfo, branco, solúvel em clorofórmio (HCCl₃), diclorometano (H₂CCl₂), fórmula molecular $C_{30}H_{48}O$, massa molar 424 u.m.a.

Dados de massa (EMIE, 70 eV), *m/z* (%): 424(14,7), 410 (10,3), 391(1), 299(2), 273(2,5), 218(100), 203(60), 189(25), 175(7), 161(7), 147(10), 135(26,7), 119(26,7), 105926), 95(28), 81(27), 69(40), 55(60), 41(50).

Dados de RMN ¹H (500 MHz, CDCl₃) do 3-oxoolean-12-eno ou β -amirenona: 2,53(1H, m, H-2 β), 2,38 (1H, m, H-2a), 5,21 (1H, sl, H-12).

Dados de RMN ¹³C (125 MHz, CDCl₃) do 3-oxoolean-12-eno ou β -amirenona: ver tabela 7.18, pág. 167.

Dados de RMN ¹H (500 MHz, CDCl₃) do 3-oxours-12-eno ou a-amirenona: $2,53(1H, m, H-2\beta)$, 2,38 (1H, m, H-2a), 5,15 (1H, sl, H-12).

Dados de RMN ¹³C (125 MHz, CDCl₃) do 3-oxours-12-eno ou a-amirenona: ver tabela 7.18, pág. 167.

12.14 3-(Hidroxi-imino)olean-12-eno ou oxima de ß-amirina (PHB-02aOxima) e 3-(Hidroxi-imino)urs- 12-eno ou oxima de a-amirina (PHB-02bOxima).

Características: sólido amorfo, branco, solúvel em clorofórmio (HCCl₃), diclorometano (H₂CCl₂), fórmula molecular $C_{30}H_{48}NO$, massa molar 439 u.m.a., $[a]^{20}{}_D = +48^{\circ}$ (c = 0,001 g/mL).

Dados de massa (EMIE, 70 eV), *m*/*z* (%): 440(14,7), 423(14,7), 383(1), 269(3), 218(100), 203(60), 189(25), 175(13,5), 161(15,6), 147(14), 135(19), 119(23,7), 107(16), 95(22), 81(19), 69(25), 55(40), 41(40).

Dados de RMN ¹H (500 MHz, CDCl₃) do 3-(hidroxi-imino)olean-12-eno ou oxima da β -amirina: 3,08 (1H, m, H-2 β), 2,20 (1H, m, H-2a), 5,19 (1H, sl, H-12).

Dados de RMN ¹³C (125 MHz, CDCl₃) do 3-(hidroxi-imino)olean-12-eno ou oxima da βamirina: ver tabela 7.18, pág. 167.

Dados de RMN ¹H (500 MHz, CDCl₃) do 3-(hidroxi-imino)urs-12-eno ou oxima da aamirina: 3,08 (1H, m, H-2ß), 2,20 (1H, m, H-2a), 5,14 (1H, sl, H-12).

Dados de RMN ¹³C (125 MHz, CDCl₃) do 3-(hidroxi-imino)urs-12-eno ou oxima da aamirina: ver tabela 7.18, pág. 167.

Características: sólido amorfo, branco, solúvel em clorofórmio (HCCl₃), diclorometano (H₂CCl₂), fórmula molecular $C_{30}H_{48}NO$, massa molar 439 u.m.a.

Dados de massa (EMIE, 70 eV), *m/z* (%): 569(15), 454(22,5), 439(20), 423(47,5), 390(7,5), 327(7), 311(7), 294(7,5), 281(8), 255(7), 241(4), 234(7), 213(8), 199(8), 187(30), 173(22), 159(30), 145(42,5), 133(30), 119(43), 105(45), 91(42), 73(62,5), 69(97), 43(87,5), 41(100).

Dados de RMN ¹³C (125 MHz, CDCl₃): ver tabela 7.18, pág. 167.

REFERÊNCIAS BIBLIOGRÁFICAS

REFERÊNCIAS BIBLIOGRÁFICAS

ABE, I., ROHNER, M., PRESTWICH, G. D. Enzymatic cycllization of squalene and oxisqualene to sterols and triterpenes. **Chemical Reviews**, v. 83, p. 2189-2206, 1993.

ABRAS, F. A.; AL-MASSARANY, S. M.; KHAN, S.; AL-HOWIRINY, T.; MOSSA, J. S.; ABOURASHED, E. A.; Phytochemistry and biological studies on Saudi *Commiphora opobalsamum*. Natural Product Research, v. 21, n. 5, p. 383-391, 2007

ADAMS, R. P. Identification of essential oil components by gas chromatography quadrupole mass spectroscopy, 4. ed. Allured, 2007. 804p.

ADRIANA, T. Ceará exporta óleo essencial de alecrim-pimenta. Gazeta Mercantil, Brasil, 13 de fev. de 2004.

AHMAD, V. U.; RAHMAN, A. Handbook of natural products data: Pentacyclic triterpenoids. v. 2. New York: ELSEVIER, 1994, 1556p.

ALBURQUERQUE I. I.; ALVES, L. A.; LEMOS, T. L. G.; MONTE, F. J. Q. BRAZ-FILHO, R. Ácido canárico (3,4-secoderivado do lupano) em própolis do Ceará. **Química Nova**, v. 30, n. 4, p. 828-831, 2007.

ALENCAR, J. W.; CREVEIRO, A. A.; MATOS, F. J. A.; MACHADO, M. I. L. Kovat's índices simulation in essential oils analysis, **Química Nova**, v. 13, n. 4, p. 282-284, 1990.

ARAGÃO, G. F.; CARNEIRO, L. M. V.; JUNIOR, A. P. F.; VIEIRA, L. C.; BANDEIRA, P. N.; LEMOS, T. L. G.; VIANA, G. S. de B. A possible mechanism for anxiolytic and antidepressant effects of alpha- and beta-amyrin from Protium heptaphyllum (Aubl.) March. **Pharmacology Biochemistry and Behavior**, v. 85, p. 827-834, 2006.

ARAÚJO, J. M. A. **Química de alimentos**. 2. ed. Viçosa: Editora da Universidade Federal de Viçosa 2001. 416p.

ASAKAWA, J.; KASAL, R. YAMASAKI, K.; TANAKA, O. ¹³C NMR of *Ginseng* sapogenins and theor related dammarane type triterpenes. **Tetrahedron**, v. 33, n.15, p. 1935-1939, 1977.

ASRES, K.; TEI, A.; MOGES, G.; SPORER, F.; WINK, M. Terpenoid composition of the wound-induced bark exudates of *Commiphora tenuis* from Ethiopia. **Planta Médica**, v. 64, p. 473-475, 1998.

BANDEIRA, P. N.; LEMOS, T. L. G.; COSTA, S. M. O.; SANTOS, H. S. dos. Obtenção de derivados da mistura triterpenoídica a – e β-amirina. **Revista Brasileira de Farmacognosia**. v. 17, n. 2, p. 204-208. 2007.

BANDEIRA, P. N.; LOIOLA-PESSOA, O. D.; TRREVISAN, M. T. S.; LEMOS, T. L. G. Metabolitos secundários de *Protium heptaphyllum* March. **Química Nova**, v. 25, n. 6B, p. 1078-1080, 2002.

BANDEIRA, P. N.; MACHADO, M. I. L.; CAVALCANE, F. S.; LEMOS, T. L. G. essential oil composition of leaves, fruits and resin of *Protium heptaphyllum* (Aubl.) March. Journal of Essential Oil Research, v. 13, p. 3-34, 2001.

BARRERO, A. F.; ALVAREZ-MANZANEDA, E. J.; ALVAREZ-MANZANEDA, R. Achilleol A: a new monocyclic triterpene skeleton from *Achillea odorate* L. **Tetrahedron** Letters, v. 30, n. 25, p. 3351-3352, 1989.

BARRERO, A. F.; MANZANEDA, R. E. A.; MANZANEDA, R. R. A. Achilleol B: a new tricyclic triterpene skeleton from *Achillea odorata* L. **Tetrahedron**, v. 46, n. 24, p. 8161-8168, 1990.

BELSNER, K.; BUCHELE, B.; WERZ, U.; SYROVETS, T.; SIMMET, T. Structural analysis of pentacyclic triterpenes from the gum resin of *Boswellia serrata* by NMR spectroscopy. **Magnetic Resonance in Chemistry**, v. 41, p. 115-122, 2003.

BOREM, A. **Biotecnologia e meio ambiente**. Viçosa: Editora Universidade Federal de Viçosa, 2004. 342p.

BRADIA, F. A.; MIKHAREIL, B. R.; MAATOOQ, G. T.; AMER, M.M.A. Immunomodulatory triterpenoids from the oleogum resin of *Boswellia carterii* Birdwood. **Verlag der Zeitschrift Naturforsch**, v. 58c, p. 505-516, 2003.

CARVALHO, M. G. de; VELANDIA, J. R.; OLIVEIRA, L. F. de; BEZERRA, F. B. Triterpenos isolados de *Eschweillera longipes* Miers (Çecythidaceae). **Química Nova**, v. 21, n. 6, p. 740-743, 1998.

CORNFORTH, J. W.; CORNFORTH, R. H.; DONINGER, C.; POPJAK, G. SHIRNIZA, Y.; ICHII, S.; FORCHIELLI, E.; CASPI, E. The migration and elimination of hydrogen during biosynthesis of cholesterol from squalene. **Journal of the American Chemical Society**, v. 87, n. 14, p. 3224-3228, 1965

CRUZ-CANIZARES, J. D. la; CARBO, M. T. D.; ADELANTADO, J. V. G.; CASTRO, R. M.; REIG, F. B. Study of Burseraceae resins used in binding media and varnishes from artworks by gás chromatography-mass spectrometry and pyrolusis-gas chromatography-mass spectrometry. **Journal of Chromatography A**, v. 1093, p. 177-194, 2005.

CULIOLI, G.; MATHE, C.; ARCHEIR, P.; VIEILECAZES, C. A lupine triterpene from frankincense (Boswellia sp., Burseraceae). **Phytochemistry.** v. 62, p. 537-541, 2003

CUNHA, A. P. **Farmacognosia e fitoquímica**. Lisboa: Fundação Calouste Gulbenkian, 2005. 670p.

DEHARO, E.; BOURDY, G.; QUENEVO, C.; MUNOZ, V.; RUIZ, G.; SAUVAIN, M. A search for natural bioactive compounds in Bolívia through a multidisciplinary approach. Part V. Evaluation of the antimalarial activity of plants used by Tacana Indian. **Journal of Pharmacology**, v. 77, p. 91-98, 2001.

DEKEBO, A.; DAGNE, E.; CURRY P.; GAUTUM, O.R.; AASEN, A.J. Dammarane triterpenes from the resins of *Commiphora confuse*. Bulletin of the Chemical Society of Ethiopia, v. 16, n. 1, p. 81-86, 2002a.

DEKEBO, A.; DAGNE, E.; HANSE, L. K.; GAUTUN, O. R.; AASEN, A. J. Two octanordammarane triterpenes from *Commiphora kua*. **Phytochemistry**. v. 59, p. 399-403. 2002b.

DEWICK, P. M. Medicinal natural products: A biosynthetic approach. 2. ed. Inglaterra: John Wiley, 2004. 507p.

FOURIE, T. G.; SNYCKERS, F. O. A pentacyclic triterpene with anti-inflamatory and analgesic activity from the roots of *Commiphora merkeri*. Journal of Natural Products, v. 52, n.5, p. 1129-1131, 1989.

FRISCHKORN, C. G. B.; FRISCHKORN, H. E. Cercaricidal activity of some essential oils of plants from Brazil. Naturwissenschaften, v. 65, p. 480-483, 1978.

GOTTLIEB, O. R.; KAPLAN, M. A. C. Amazônia: tesouro químico a preservar. Ciência Hoje, v. 11, n. 61, p. 17–20, 1990.

GOTTLIEB, O. R.; MAGALHÃES, M. T. Modified destilation trap. **Chemist-analyst**, v. 49, p. 114, 1960.

HOSHINO, T.; NAKANO, S-I.; KONDO, T.; SATO, T.; MIYOSHI, A. Squalene-hopene cyclase: final deprotonation reaction, conformational analysis for yhe cyclization of (3R,S)-2,3-oxidosquakene and further evidence for the requirement of na isopropylidene moity both for initiation of the polycyclization cascade and for the formation of the 5-membered E-ring. **Organic and Biomolecular Chemistry**, v. 2, p. 1456-1470, 2004.

IBRAHIM, A.; KHALIFA, S. I.; KHAFAGE, I.; YOUSSEF, D. T.; KHAN, S.; MESBAH, M.; KHAN, I. Microbial metqbolism of biologically active secondary metabolites from *Nerium oleander* L. Chemical Pharmaceutical Bulletin, v. 56, n. 9, p. 1253-1258, 2008.

KHALID, S. A. Chemistry of the Burseraceae. In: Waterman, P.G., Grundon, M.F. (Eds.), Chemistry and Chemical Taxonomy of the Rutales. Academic Press, New York, p. 281–299, 1983. apud SIANI, A. C.; GARRIDO, I. S.; MONMTEIRO, S. S.; CARVALHO, E. S.; RAMOS, M. F. S. *Protium icicariba* as a source of volatile essences. **Biochemical Systematics and Ecology**, v. 32, p. 477-489, 2004.

LANÇAS, F. M. Extração com fluído supercrítico: *Quo vadis*?. Analítica, v. 2, n. 2, p. 30-37, 2002.

LEE, J. H.; LEE, K. T.; YANG, J. H.; BEEK, N. I.; KIM, D. K. Acetycholinesterase inhibitors from the twisgs of *Vaccinium oldhami* Miquel. **Archives of Pharmacal Research**, v. 27, n. 1, p. 53-56, 2004.

LIMA, F. V.; MALHEIROS, A. OTUKI, M. F.; CALIXTO, J. B.; YUNES, R. A.; CECHINEL-FILHO, V.; MONACHE, F. D. Three new triterpenes from the resinous bark of *Protium kleinii* and their antinociceptive activity. **Journal of the Brazilian Chemical Society**. v. 16, n. 3B, p. 578-582. 2005.

LIMA, M. da P.; BRAGA, P. A. de C.; MACEDO, M. L.; SILVA, M. F. das G. F. da.; FERREIRA, A. G.; FERNANDES, J. B.; VIEIRA, P. C. Phytochemistry of *Trattinnickia burserifolia*, *T. rholfolia*, and *Dacryodes hopkinsil*: Chemosystematic implications. Journal of the Brazilian Chemical Society, v. 15, n. 3, p. 385-394, 2004.

LIN, J. H.; KU, Y. R.; LIN, Y. T.; TENG, S. F.; WEN, K. C.; LIAO, C. H. Preparative isolation and gas chromatography-mass spectrometry analysis of triterpenoids in *Kansui radix*. Journal of Food and Drug Analysis, v. 8, n. 4, p. 278-282, 2000.

LOBO, A. M.; LOURENÇO, A. M. Biossíntese de produtos naturais. Lisboa: IST Press, 2007. 272p.

MAHAJAN, B.; TANEJA, S.C.; SETH, V.K.; DHAR, K.L. Two triterpenoids from Boswellia serrata gum resin. **Phytochemistry**, v. 39, n. 2, p. 453-455, 1995.

MAHATO, S. B.; KUNDU, A. P. ¹³CNMR spectra of pentacyclictriterpenoids – a compilations and some salient features. **Phytochemistry**, v. 37, n. 6, p. 1517-1575, 1994.

MAIA, R. M.; BARBOSA, P. R.; CRUZ, F. G.; ROQUE, N. F.; FASCIO, M. Triterpenos da resina de *Protium heptaphyllum* March. (Burseraceae): caracterização em misturas binárias. **Química Nova**, v. 20, n. 5, p. 623-626, 2000.

MANGURO, L. O. A.; UGI, I.; LEMMEM, P. Further bisabolenes and dammarane triterpenes of *Commiphora hua* resin. **Chemical & Pharmaceutical Bulletin**, v. 51, n. 5, p. 479-482, 2003a.

MANGURO, L. O. A.; UGI, I.; LEMMEM, P. Dammarane triterpenes of *Commiphora confusa* resin. Chemical & Pharmaceutical Bulletin, v. 51, n. 5, p. 483-486, 2003b.

MATTOSO, E. **Estudo de fragrâncias amadeiradas da Amazônia**. Campinas, 2005. 143f. Dissertação (Mestrado em Química) – Instituto de Química, Universidade Estadual de Campinas.

MAUGDAL, J. W.; TCHEN, T. T.; BLOCK, K. 1,2-methyl shirts in the cycllization of squalene to lanosterol. Journal of the American Chemical Society, v. 80, n. 10, p. 2589-2590, 1958.

MAXELL, J. R.; DOUGLAS, A. G.; EGLINTON, G.; McCORMICK, A. The botryococcenes-hydrocarbon of novel structure from the alga *Botryococcus braunii*, Kutzing. **Phytochemistry**, v.7, p. 2157-2171, 1968.

MELO, M. de F. F.; MACEDO, S. T. de; DALY, D. C. Morfologia de frutos, sementes e plântulas de nove espécies de *Protium* Burm. F. (Burseraceae) da Amazônia Central, Brasil. Acta Botânica Brasilica, v. 21, n. 3, p. 503-520, 2007.

NASCIMENTO, F. R.; CARDOSO, M. G.; SOUZA, P. E.; LIMA, R. K.; SALGADO, A. P. S. P.; GUIMARÃES, L. G. L. Efeito do óleo essencial de pimenta longa (*Piper hispidinervum* C. DC) e do emulsificante Tween® 80 sobre o crescimento micelial de *Alternaria alternata* (Fungi: Hyphomycetes). **Acta Amazonica**, v. 38, n. 3, p. 503-508, 2008.

OLIVEIRA, F. A.; VIEIRA-JUNIOR, G. M.; CHAVES, M. H.; ALMEIDA, F. R. C.; FLORÊNCIO, M. G.; LIMA-JUNIOR, R. C. P. SILA, R. M.; SANTOS, F. A.; RAO, V. S. N. Gastrotective and anti-inflammatory affects of resin from *Protium heptaphyllum* in mice and rats. **Pharmacologica Research**, v. 49, n. 2, p. 105-111, 2004.

OTUKI, M. F.; VIEIRA-LIMA, F. MALHEIROS, A.; YUNES, R. A.; CALIXTO, J. B. Topical anti-inflammatory effects of the ether extract from *Protium kleinii* and a-amyrin pentacyclic triterpene. **European Journal of Pharmacology**, 507, p. 253-259, 2005.

PAKHATHIRATHIEN, C.; KARALAI, C.; PONGLIMANONT, C.; UBHADHIRASAKUL, S.; CHANTRAPROMMA, K. Dammarane triterpene from the hypocotyln and fruits of *Ceriops tagal*. Journal of Natural Products, v. 68, n. 12, p. 1221-1223, 2005.

PARDHY, R. S, BHATTACHARYA, S. C. Tetracyclic triterpenes acids from resin of *Boswellia serrata* Roxb. Indian Journa of Cemistry, v. 16B, p. 174-175, 1978.

PARSONS, I. C.; GRAY, A. I.; LAVAUD, C.; MASSIOT, G.; WATERMAN, P. G. Seco ring-A triterpene acids from the resin of *Dacryodes normandii*. **Phytochemistry**, v. 30, n. 4, p. 1221-1223, 1991.

PAULETTI, P. M.; ARAÚJO, A. R.; BOLZANI, V. S. Triterpenos de *Styrax camporum* (Styracaceae). **Química Nova**, v. 25, n. 3, p. 349-352, 2002.

PAWLIK, J. R.; ALBIZATI, K. F.; FAULKNER, D. J. Evidence of a defensive role for limatulone, a novel triterpene from the intertidal limpet *Collisella limatula*. Marine Ecology **Progress Series**, v. 30, p. 251-260, 1986.

POLONSKY, J.; VARON, Z.; RABANAL, R. M. 21,20-Anhydromelianone and Melianone from *Simarouba amara* (Simaroubaceae); Carbon-13 NMR Spectral Analysis of A'-Tirucallol-Type Triterpenes. **Israel Journal of Chemistry**, v. 16, p. 16-19, 1977.

PROVAN, G. J.; GRAY, A. I.; WATERMAN, P. G. Mansumbinane derivatives from stem bark of Commiphora kuá. **Phytochemistry**, v. 31, n. 6, p. 2065-2068, 1992.

PROVAN, G. J.; WATERMAN, P. G. Major triterpenes from the resins of *Commiphora incise* and *C. kuá* and their potential chemotaxonomic significance. **Phytochemistry**. v. 27, n. 12, p. 3841-3843, 1988.

PROVAN, G. J.; WATERMAN, P. G. The mansumbinanes: octanordammaranes from the resin of *Commiphora incise*. **Phytochemistry**, v. 25, n. 4, p. 917-922, 1986.

RAHMAN, A. U.; NAZ, H.; FADIMATOU; MAKHMOOR, T.; YASIN, A.; FATIMA, N.; NGOUNOU, F. N.; KIMBU, S. F.; SONDENGAM, B. L.; CHOUDHARY, M. I. Bioactive constituents from *Boswellia papyrifera*. Journal of Natural Products, v. 68, n. 2, p. 189-193, 2005.

REES, H. H., BRITTON, G., GOODWIN, T. W. The biosynthesis of β-amyrin- mechanism of squalene cyclization. **Biochemical Journal**, 106, p 659-665, 1968.

REYNOLDS, W. F.; MECLEAN, S.; POPLAWISK, J. Total assignment et ¹³C and ¹H spectrum of three isomeric triterpenol derivatives by 2D NMR: an investigation of the potential utility of ¹H chemical shifts in structural investigation of complex natural products. **Tetrahedron**, v. 42, n. 13, p. 3419-3428, 1986.

RIBEIRO, J. E. L.; HOPKINS, M. J. G.; VICENTINI, A.; SOTHERS, C. A.; COSTA, M. A. S.; BRITO, M. J.; SOUZA, M. A. D.; MARTINS, L. H. P.; LOHMANN, L. G.; ASSUNÇÃO, P. A. C. L.; PERREIRA, E. C.; SILVA, C. S.; MESQUITA, M. R.;

PROCOPIO, L. C. Flora da reserva Ducke: guia de identificação das plantas vasculares de uma floresta de terra firme na Amazônia Central. Manaus: IMPA, 1999. 800p

ROBLES, J.; TORRENEGRA, R.; GRAY, A. I.; PINEROS, C.; ORTIZ, L.; SIERRA, M. Triterpenos aislados de corteza de *Bursera graveolens* (Burseraceae) y su actividad biológica. **Revista Brasileira de Farmacognosia**, v. 15, n. 4, p. 283-286, 2005.

ROHMER, M. Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. **Pure and Applied Chemistry**, v. 75, n. 2 e 3, p. 375-387, 2003.

RUDIGER, A. L.; SIANE, A. C.; VEIGA-JUNIOR, V. F. The chemistry and pharmacology of the south America genus Protium burm. F. (Burseraceae). **Pharmacognosy Reviews**, v. 1, n. 1, p. 93-104, 2007.

RUZIKA, L.; ESCHENMOSSER, H.; HEUSSER, H. The isoprene rule and the biogenesis of terpene compounds. **Experientia**, v. 9, n. 10, p 357-396, 1953

SANTOS, B. R.; PAIVA, R.; CASTRO, E. M. de; CARDOSA, M. G.; REZENDE, R. K. S.; PAIVA, P. D. O. Aspectos da anatomia e do óleo essencial em folhas de pindaíba (*Xylopia brasiliensis* Spreng.). Ciência e Agrotecnologia, v. 28, n. 2, p. 345-349, 2004.

SAWADOGO, M.; VIDAL-TESSIER, A. M.; DELAVEAU, P. L'oleo-résin do *Canarium* schweinfurthii Engl. Annales Pharmacéutiques Françaises, v. 43, n. 1, p. 89-96, 1985.

SEEBACHER, W.; SIMIC, N.; WEIS, R.; SAF, R. KUNERT, O. Spetral assignments and reference data. Magnetic resonance in Organic, v. 41, p. 636-638, 2003.

SHEN, T.; WAN, W.; YUAN, H.; KONG, F.; GUO, H.; FAN, P.; LOU, H. Secondary metabolites from Commiphora opobalsamum and their antiproliferative effect on human prostate cancer cells. **Phytochemistry**, v. 68, p. 1331-1337. 2007.

SHEN, T.; YUAN, H. Q.; WAN, W. Z.; WANG, X. L.; WANG, X. N.; JI, M.; LOU, H. X. Cycloartane-type triterpenes from the resinous exudates of Commiphora opobalsamum. **Journal of Natural Products.** V. 71, p. 81-86, 2008.

SIANI, A. C.; GARRIDO, I. S.; MONMTEIRO, S. S.; CARVALHO, E. S.; RAMOS, M. F. S. *Protium icicariba* as a source of volatile essences. **Biochemical Systematics and Ecology**, v. 32, n.5, p. 477-489, 2004.

SIANI, A. C.; RAMOS, M. F. S.; LIMA-JUNIOR, O. M. de, SANTOS, R. R. dos; FERREIRA E.F.; SOARES, R. O.A.; ROSAS, E.C.; SUSUNAGA, G. S.; GUIMARÃES, A. C.; ZOGHBI, M. G. B.; HENRIQUES, M. G. M. O. Evolution anti-inflamatory-related activity of essential oils from the leaves and 289d289ino f species of Protium. Journal of Etnophpharmacology, v. 66, p. 57-69, 1999.

SILVA, M. F. das G. F. da; FRANCISCO, R. H. P.; GRAY, A. I.; LECHAT, J. R.; WATERMAN, P. G. Lanost-7-en triterpenes from stem bark of Satiria trimera. **Phytochemistry**, v. 29, n. 5, p. 1629-1632. 1990

SIQUEIRA, J. B. G. **Estudo fitoquímico do gênero Protium:** *P. unifoliolatum* (Engl.) Engl. E *P. laxiflorum* Engl. (Burseraceae). Manaus, 1991, 189f. Dissertação (Mestrado em Química de Produtos Naturais), Instituto Nacional de Pesquisa da Amazônia, Universidade Federal da Amazônia

SOUZA, A. D. L. de; ROCHA, A. F. I. da; PINHEIRO, M. L. B.; ANDRADE, C. H. de S.; GOLPTTA, A, L, de A. Q.; SANTOS, M. do P. S. S. dos. Constituintes químicos de *Gustavia L* (Lecythidaceae). **Química Nova**, v. 24, n. 4, p. 439-442, 2001.

SUSUNAGA, G. S.; SIANI, A. C.; PIZZOLATTI, M. G.; YUNES, R. A.; MONACHE, F. D. Triterpenes from the resin of *Protium heptaphyllum*. **Fitoterapia.** V. 72, n 6, p. 709-711. 2001.

SYAMASUNDAR, K. V.; MALLAVARAPU, G. R. Two triterpenoids lactones from the resin of *Busera delpechiana*. **Phytochemistry**, v. 40, n. 1, p. 337-339, 1995.

SYAMASUNDAR, K. V.; MALLAVARAPU, G. R; KRISHNA, E.M. triterpenoids of the resin of *Busera delpechina*. **Phytochemistry**, v. 30, n. 1, p. 362-363, 1991.

TAMAI, W.; WATANABE, N.; SOMEYA, M.; KONDOH, H.; OMURA, S.; LING, Z. P.; CHANG, R.; MING, C. W. New hepatoprotective triterpenes from *Canarium album*. **Planta Medica**, v. 55, p. 44-47, 1989.

USUBILLAGA, A.; KHOURI, N.; BAHSAS, A.; ABAD, A.; ROJAS, L. B. Triterpenes from the resin of *Protium crenatum* Sandwith. **Revista Latinoamericana de Quimica**, v. 32, n. 3, p. 101-108, 2004.

VENKATRAMAN, G.; THOMBARE, P. S.; SABATA, B. K. A tetracyclic triterpenoids from Garupa pinnata. **Phytochemistry**, v. 36, n. 2, p. 417-419, 1994.

VENKATRAMAN, G.; THOMBARE, P. S.; SABATA, B. K. Euphane triterpenoids from Garupa pinnata. **Phytochemistry**. V. 32, n. 1, p. 161-163. 1993

VITTI, A. M. S.; BRITO, J.O. Óleo essencial de eucalipto. **Documentos Florestais**, n. 17, p. 1-26, 2003.

WATERMAN, P. G.; AMPOFO, S. Dammarane triterpenes from the stem bark of *Commiphora dalzielit*. **Phytochemistry**, v. 24, n. 12, p. 2925-2928, 1985.

WEEKS, A.; DALY, D. C.; SIMPSON, B. B. The phylogenetic history and biography of the frankincense and myrrh family (Burseraceae) based on nucleae and chloroplast sequence data. **Molecular Phylogenetics and Evolution**, v. 35, p. 85-101, 2005.

WENIGER, B.; ROBLEDO, S.; ARANGO, G. J.; DEHARO, E.; ARAGÓN, R.; MUNOZ, V.; CALLAPA, J.; LOBSTEIN, A.; ANTON, R. Antiprotozoal activities of Colombian plants. **Journal of Ethonopharmacology**, v. 78, p. 193-200, 2001.

WOODWART, R. B.; BLOCH, K. The cyclization of squalene in cholesterol synthesis. Journal American Chemical Society, v. 75, p. 2023-2024, 1953.

WU, T. K.; CHANG, C. H.; LIU, Y. T.; WANG, T. T. *Saccharomyces cerrevisiae* oxidosqualene- lanosterol cyclase: A chemistry – biology interdisciplinary study of the protein's structure-functio-reaction mechanism relationships. **The Chemical Record**, v. 8, p. 302-325, 2008.

XIONG, Q.; ROCCO, F.; WILSON, W. K.; XU, R.; CERUTI, M.; MATSUDO, S. P. T. Structure and reativity of the dammarenyl cation: configurational transmission in triterpene synthesis. **The Journal of Organic Chemistry**, v. 70, p. 5362-5375, 2005.

XU, R., FAZIO, G. C., MATSUBA, S. P. T. On the origins of triterpenoid skeletal diversity . **Phytochemistry**, v. 65, p. 261-291, 2004.

YI, L. G.; GRAY, A. I.; WATERMAN, P. G. Tirucallane and oleanane triterpenes from the resins of *Aucoumea klaineana*. **Phytochemistry**, v. 27, n. 7, p. 2283-2286, 1988.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas
Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo