UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

FELIPE DE SOUZA MARQUES

Technology Mapping for Virtual Libraries
Based on Cells with Minimal Transistor
Stacks

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor of
Computer Science

Prof. Dr. André Inacio Reis
Advisor

Porto Alegre, March 2008.

Livros Gratis

http://www.livrosgratis.com.br

Milhares de livros gratis para download.

CIP - CATALOGACAO NA PUBLICACAO

Marques, Felipe de Souza

Technology Mapping for Virtual Libraries Based on Cells with
Minimal Transistor Stacks / Felipe de Souza Marques — Porto
Alegre: Programa de P6s-Graduacao em Computagdo, 2008.

Tese (doutorado) — Universidade Federal do Rio Grande do Sul.
Programa de Pds-Graduagdo em Computacdo. Porto Alegre, BR —
RS, 2008. Advisor: André Inacio Reis.

1. Mapeamento Tecnoldgico 2 Sintese Logica 3 Bibliotecas de
Células 4 Bibliotecas Células Virtuais 5 Geradores de Células. I.
Reis, André Inacio. II. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. José Carlos Ferraz Hennemann

Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca

Pro-Reitora de Pés-Graduagdo: Profa. Valquiria Linck Bassani

Diretor do Instituto de Informética: Prof. Fladvio Rech Wagner
Coordenadora do PPGC: Prof* Luciana Porcher Nedel

Bibliotecédria-Chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

ACKNOWLEDGMENTS

Primeiramente, gostaria de agradecer as pessoas que estiveram diretamente
envolvidas no desenvolvimento do meu trabalho de tese. Meu orientador, prof. André
Reis, com quem trabalhei desde o mestrado e sempre trouxe grandes contribui¢des para
a realizacdo deste trabalho. Ao prof. Renato Ribas, que apesar de ndo ser oficialmente
co-orientator deste trabalho, atuou como tal e esteve sempre disposto a ajudar no que foi
preciso. Quero estender este agradecimento ao colega Leomar Soares da Rosa Junior
que também teve uma importante contribuicdo e que sempre esteve disposto a
conversar, seja sobre trabalho, seja sobre questdes pessoais. Eu gostaria de agradecer do
mesmo modo a todos os colegas com quem eu trabalhei no laboratério da Nangate, em
especial ao Pedro e ao Erasmo, pelos esforcos para a realizagao de experimentos.

Também gostaria de agradecer a minha familia, meus pais, Sandra e Rogério
Marques, e meus irmaos Rodrigo, Diego e Leticia, pois o apoio e carinho deles foram
sempre muito importantes em todas as minhas conquistas. Ndo poderia deixar de
agradecer uma pessoa que € fundamental na minha vida, minha esposa, Milena Rota
Sena Marques, por todo o companheirismo, compreensdo e amor que me deram forcas
para vencer mais um desafio, além da paciéncia para agiientar todos os dias de mau
humor. Agradeco aos amigos, pelas cervejas, churrascos e conversas, que certamente
ajudaram a espairecer nos momentos mais estressantes do doutorado.

E importante também agradecer ao CNPq pela bolsa de doutorado, que, através
do Programa Nacional de Microeletronica, me possibilitou dedicacdo exclusiva a minha
formacdo académica. A CAPES, agradeco a bolsa de estidgio no exterior, que me
permitiu colaborar com um excelente laboratério de pesquisa na Universidade de
Minnesota, nos Estados Unidos, e ter uma experi€éncia muito relevante para minha

formacdo. Em especial, agradeco ao prof. Sachin Sapatnekar, por ter me dado a
oportunidade de trabalhar em seu grupo de pesquisa (Thank you!).

TABLE OF CONTENTS

LIST OF ABBREVIATIONS ...ccuuiiiiiiinininsncssissncssncssecsssssncssessssssssssesssssssssssssssssasssees 7
LIST OF FIGURESccuuiiiiitinnensinsnissnisssssnsss 9
LIST OF TABLEScooiiiiiitininsninsnnsnnssesssissnsssncsssssssssssssssssssssssssssssssessssssssssassassase 12
ABSTRACT .uuiiiinnissnnsisssisssnsssssisssass 13
RESUMO.cuuiiiiiniinicnnsncssicssissesssicsssssssssesssessesssassssssssssessssssssssessssssssssssssssssssssssssssassase 14
1 INTRODUCTION .uccuuiiniieisninsenssesssnsssssssssnsssns 15
1.1 Motivation and thesis CONtribULIONSccceeveeeveesecseecsensecsenssecseecsaecsessaecneans 17
1.2 Thesis OrganiZationN........ccccrerccssercssercssnscssssscssassses 17
2 TERMINOLOGY AND BASIC CONCEPTSccuuvveeruicrunsnnsaecsnessncssecsassnne 18
2.1 Boolean logic and 10ZiC eXPIreSSIiONSccceieeeeicsseicsssescsssnsssssssssssssssasesssassssnns 18
2.2 Logic styles of transiStor NEIWOTKSccccececsercssnicssnicssanecssssesssasessasesssasesens 21
2.3 Minimal length for transistor stacks in standard cell libraries........cccccceeune. 23
2.4 Digital circuits representationcceccececcssssccsssscsssnscssasssssssssssassssasssssasesssas 25
3 TECHNOLOGY MAPPINGcucovuieversinsninsnnsnnsanssssssssssissssssssssssssssssssssssssans 27
3.1 Cell HIDraries...ucceicecseecsensecsuncsansncssecssnssncssecsssssssssssssessessssssasssssssesssssssssssssassane 27
3.2 SUDJECt Graphs ..ccccveeeccvercsssnrcsssnncssnsessssnessssssssssssssssssssnsssssssssssasssssssssssasssssassssnns 33
33 Conventional technology MapPing.......cccceveeccssarcsssancssnsessansessassosssssssasssssasesss 33
3.3.1 Graph partitioningcccueeeeiureeriueeeniieenieeerreeesreeessreeesereesssreesssseessseeessseessssees 34
3.3.2 Technology deCOMPOSITIONcccuueeiririeriiiieriiieeiteeeiteeeiteeeiteeeieeesbee et e e as 34
3.3.3 MatChing PRASE......eeeeiiieeiieeeiee ettt et e et e e e s 35
3.3.4 COVETING PRASEuvieiiiiieiiie ettt ettt ettt eit e st e e st e e sabee e sabeeesabeeesabee s 36

34

3.4.1

342

343

344

3.5

3.5.1

3.5.2

353

354

3.6

4.1

4.1.1

4.1.2

4.1.3

4.14

4.2

4.2.1

4.2.2

423

4.2.4

4.2.5

4.3

Technology mapping for standard cell libraries......cccceeeeececcscnnccssanccsaressnanes 37
Keutzer (1987-2) — DAGON ...t 38
Kukimoto (1998) — DAG based technology mapping.........ccceeeeveeeeuveescnreeneneen. 40
Stok (1999) — Wavefront technology mappingccecceeevvveeriieeniieeenieeeenneen. 41
Mishchenko (2005) — Technology Mapping with Boolean Matching, Supergates
ANA CROLCES ...ttt ettt s e e s enees 43
Technology mapping for virtual lIDrariescc.ccceeveecccercssnccscsnecsssnessasesssanes 45

Berkelaar (1988) — The first technology mapping algorithm for cell

GENICTALOTS tuvsrecsssssssessssssssssssssssssssssssasssans 45
Reis (1998) — TABA ...t 46
Jiang (2001) — OTR: PTL / CMOS technology mapping..........ccccceeeevveeeveeennne 47
Correia (2004) — ELIS - Technology mapping for symmetric and asymmetric
VITTUAL TIDTATIES ..ot 49
Technology mapping methods OVEIrVIEWccccecccseccsseicscnnicssanscssascssasesssanes 52

TECHNOLOGY MAPPING USING CMOS GATES WITH MINIMUM

TRANSISTOR STACKS ..uucouiiniiinsecsanssnessncssecsssssecssessssssessssssasssssssessssssssssses 53
Previous technology mapping techniques and CMOS gates with minimum
19161115 R 100 AT 7 T OO 53
Cll INSTANCES ...ttt ettt st ettt st e s e e e e 53
Tree based and DAG based technology mapping techniquescc.ccccevueeenee 55
The computation Of SEries tranSIStOTSeeervieriireeriieerireerreeerreeeireeeareesveeens 55
Contextualizing the problem..........coccueeiiiiiiiiiiniiieeeee e 57
VIRMA technology mapping toolccoeeecevercssnicssnrcsssnscsssnsssssesssasssssaseses 57
Defining the object funCtioncocueiiiiiiiiiiiee e 57
Pre-processing ProCEAUIESccvieeiiieeiiieeiiee et eeieeesreeesreeereeeereeeareesseeees 58
POSt-processing ProCeAUTIEScouruieriiiieriiieniiieeriee ettt ee et e st sreesiee e 60
VIRMA wavefront technology mappingccccevcueeeniiienieennieeniieenieesieeene 60
VIRMA and K-CULS ..c.ueiiiiiiiieiieeieet ettt 65
Final conSiderations.........cceeeeiiecsecsensecssissenssncssncesssecssisncssesssessssssessssssnsssees 67

EXPERIMENTS ..ccuuiniinininninsnnnsnnssensaessasssnsssessasssessasssassssssssssasssassassssssssssassss 69

Comparisons between SIS and VIRMA-WEFcccicereicncnicssnnicssancssascosens 69
Comparisons between ABC and VIRMAccccccervurensnrcssrercssssscssssssssassssnns 74
Comparisons between commercial tools and VIRMAccocceeervnnccssancosens 76

CONCLUSIONS AND FUTURE WORKScouinierensuensnnsaecsansaessessacssassae 82

ABC
AIG
AND
AOI
BDD
LC
CMOS
CpPU
CSP
DAG
EDA
FPGA
GND
HDL
IC
ISCAS
LLWF
LUT
NAND
NCSP
NMOS
NOR
NOT
NP
OR
OTR
PC

LIST OF ABBREVIATIONS

A System for Sequential Synthesis and Verification
AND-Inverter Graph

AND Boolean operator

AND-OR-Inverter Boolean operator

Binary Decision Diagram

Logic Cones

Complementary Metal Oxide Semiconductor
Central Processing Unit

Complementary Series/Parallel

Directed Acyclic Graph

Electronic Design Automation

Field Programmable Gate Array

Ground drain

Hardware Description Language

Integrated Circuit

International Symposium on Circuits and Systems
Library-less Wavefront

Lookup Table

Inverted AND Boolean operator
Non-Complementary Series/Parallel

N-type Metal Oxide Semiconductor

Inverted OR Boolean operator

Inversion Boolean operator

Algorithm complexity class

OR Boolean operator

Odd-level Transistor Replacement

Personal Computer

PD

PI
PMOS
PO

POS
PTL
PU
ROBDD
RTL
SIS
SOP
SPD
SPICE
SPU
STA
TABA
TSBDD
VDD
VHDL
VIRMA
VLSI
XNOR
XOR

Maximum number of stacked transistors in the pull-down plane
Primary Input

P-type Metal Oxide Semiconductor

Primary Output

Product of Sums

Pass Transistor Logic

Maximum number of stacked transistors in the pull-up plane
Reduced Ordered Binary Decision Diagram

Register Transfer Language

Sequential Interactive System

Sum of Products

Sum of PDs in a path

General-Purpose Circuit Simulation Program

Sumo f PUs in a path

Static Timing Analysis

Tool for Library Free Technology Mapping
Terminal-Suppressed Binary Decision Diagram

Power supply voltage

Very High Speed Integrated Circuit Hardware Description Language
Virtual technology mapping tool

Very Large Scale Integration

Inverted XOR Boolean operator

XOR Boolean operator

LIST OF FIGURES

Figure 2.1: Truth table for the function f and their respective minterms.c.......... 19
Figure 2.2: Karnaugh map for the Boolean function f.c.cceooeeeiiiiiniiiieniieecieeee, 20
Figure 2.3: Multilevel representations.ceeueeeriieeniieeniieeiieeeiiee ettt 20
Figure 2.4: Correspondence among BDD nodes and multiplexers.cccceeveerneennee. 21
Figure 2.5: PTL transistor network derived from a BDD.cc.cccccooiiiiiniinniinenen. 22
Figure 2.6: Path sensitization in @ PTL network.ccccoocviviiiieniiiiiiieeieeceeeeee e 22
Figure 2.7: CSP CMOS transistor networks for f..........ccocciiiiiiniiiniiiiieeeeee, 23
Figure 2.8: NCSP cell for the Boolean function f.cccccoeviiiiiiiiiiiieiieeeieeeeeee 24
Figure 2.9: Simulation table of the NCSP cell.ccocoeiiiiiiiiiiiiiiiieeeee 25
Figure 2.10: Combinational circuit repreSentationscceeecveeerveeerveeerveessueeessneeennnes 26
Figure 3.1: Digital circuits design metodology.coccveeeviiiiiiiiiniiiiieeeieeeeeeeeeeee 28
Figure 3.2: Static library eXample.ccociieriiiieiiiieeniieciee e 29
Figure 3.3: A subset of the 1ib2.genlib.ccccciiiiiiiiiiiiiiieee 30
Figure 3.4: Logic synthesis flow for virtual library technology mapping...................... 31
Figure 3.5: Virtual library eXamples.cccoooiieiiiiiniiiiiiiieiceeieeeeeeeeee e 32
Figure 3.6: Graph partitioning.ccccveeerueeeriieeeniieenieeenieeeseeeesveeessaeesssneesseeesseessnnes 34
Figure 3.7: Technology deCOmMPOSILION.ccevuiiiriiiiniiieiiieeiiee et 35
Figure 3.8: MatcChing SEeNeration.cceccveeeiuieeeiiieeniieenieeesieeerreeeieeeeseeesseeesnneeennns 36
Figure 3.9: Calculating cost on the subject graph.cccceeviiiiiiiiiiiiiniieeee, 37
Figure 3.10: Tree COVering reSult.ccueeeiiieeiiieeiie et 37

Figure 3.11: DAGON algorithm flow.cccooviiiiiiiiiiiiiiicecceeeeeee e 38

Figure 3.12: An AOIXXX PAEINvveeeeiieeiieeeiieeeieeesieeesieeeseieeesseeeesreesnneessneesnseessnnes 39
Figure 3.13:Geometric interpretation of Figure 3.12.cccooviiiiiiiiniiiiiniiienieeeeee 40
Figure 3.14: Wavefront algorithmccocoviiiiiiiniiiieciieeieeceece e 42
Figure 3.15: Wavefront resulting CIrCUILLS.c.eerverieerierieeneenreeieeeeeeiee e 43
Figure 3.16: An example of an AIGccccoeviiiiiiiieniieeeeee e 43
Figure 3.17: Computation of all k-feasible cutsccccceecveeriiniiiiiiniiiicnececieeeen 44
Figure 3.18: Graph expression repreSentationeeveeerveeerieeereeeenveesseeesssneessneeennnes 45
Figure 3.19: Relation among TSBDD edges and transistor networks...........cccceeeeneee. 46
Figure 3.20: Circuit €XampPIe.......cccvieeiuiieriiieeiieeeiieesieeesieeesteeesveeeereesareessneeenneeennnes 48
Figure 3.21: Logic cells generated by OTR algorithm.............cocoeviiniiiniiniinniinienee. 48
Figure 3.22: Appling the DeMorgan’s theorem on n-ary trees.ccceeevveervvveerneeennne 49
Figure 3.23: Grouping equivalent NOAESccovuerieerierieinienieerieeeieeiee e 49
Figure 3.24: Embedded decompositions (b,c) in a n-ary tree (a).ccceeevveererveerneeennne 50
Figure 3.25: Cost calculation and the first Cut........c.ccceeveriiiiiiiniinnienieeceeeceeeeen 51
Figure 3.26: Final cover (before inverters minimization).cccceeerveeerveesiuveesneeennnes 51
Figure 4.1: Cell instances and the lower bounds.ccoceeiiiniiiiiniiiiincceee, 54
Figure 4.2: Computation of serial tranSiStors.ceevveeerieeeriieeriieeieeerreeeieeeeneeennnes 56
Figure 4.3: Cost function mOdeling.ccceevieiiiiiiiiiiienieiecneeeceeee e 58
Figure 4.4: A set Of 10ZIC CEIIS...uiiiiiiiiiiiiiiiieciie ettt 58
Figure 4.5: Creating the Subject graph..........cooceiiiiiiiiiiiiniiieieeeee e 59
Figure 4.6: Inverters removal and phase assignments.ccceeerveeerveeerveesieeencneeennnes 59
Figure 4.7: Levelizing the subject graph.ccoocuiiiiiiiiiiiiiiieeee 60
Figure 4.8: Adjusting polarities of the CIrcuit NetS.ccocveeeriieeriieeiieeeiee e 60
Figure 4.9: Main algorithm of VIRMA-WF.......ccccooiiiiiceeeceeen 61
Figure 4.10: Matching generation WindOW.cceeevueeeriieeniieenieeeieeeieeesieeeevee e 62
Figure 4.11: Matching algorithm.cooiiiiiiiiiiniiiiiieeeeeeeeee e 62
Figure 4.12: Covering algorithm.ccooiiiiiiiiniiiiiiieceeeeeeeee e 63

Figure 4.13: Function inversion during the mapping proCess.ccccceeerveerrrveercveeennne 63
Figure 4.14: DecoOmMpPOSEd CITCUIL......cccuuiiriieeriieeniieesiee ettt 64
Figure 4.15: Best matches generated by VIRMA-WF.ccoooiiiiiiiiiiieeee 64
Figure 4.16: Circuit mapped with VIRMA-WF. ... 65
Figure 4.17: K-cuts eXample.ccccuveeiiieiiiieiiieeeiie ettt ettt s eeiaeesaee e saee e 66
Figure 4.18: 4-input XOR GatES.eeviiiiiiiiieiieeicee et 66
Figure 4.19: Computing the number of possible structural combinations. 67
Figure 5.1: Computing node levels (from inputs to Outputs).cccceeeceeeveerceeenneeneennnee. 73
Figure 5.2: Computing reverse node levels (from outputs to inputs)........ccceeeuveereveennne. 73
Figure 5.3: Identifying timing critical T€ZIONS.ccccueeeriieriiieriieeniieeeieee e 73
Figure 5.4: Buffering and sizing frame Work.cccccveeviiiieiiiieniiieieeeeeeeeeeee e 77
Figure 5.5: Delay comparisons using the benchmark circuit c1908...........c.c.ccceeeeennee. 78
Figure 5.6: Area comparisons using the benchmark circuit c1908.ccccveeeneeenee. 78
Figure 5.7: Delay comparisons using the benchmark circuit c6288...........c.ccceeveveennee. 79
Figure 5.8: Area comparisons using the benchmark circuit c6288.ccccvvevnennee. 79
Figure 5.9: Characterization problem of NCSP cells.ccoooiiiiiiiiiiiiniiiiiiieieee 80
Figure 5.10: Area effects of having inverters inside the cell............cccccevvvieriieennieenne. 81
Figure 5.11: Delay effects of having inverters inside the cell.c.cccooveriieniinnenee. 81

Table 3.1:

LIST OF TABLES

The size of CMOS CSP cell libraries induced by the number of serial

ETANISISEOTS ¢ttt eatee ettt ettt ettt sat e et e st e e bt e st e e b e e sabeebeesbeesareas 32
Table 3.2: Differences among previous technology mapping methods. 52
Table 4.1: Pull-up and pull-down sums in the longest path.ccccceevviiiiiieencieennne. 70
Table 4.2: Delay comparisons among SIS and VIRMA-WF. ..., 70
Table 4.3: Area comparisons between SIS and VIRMA-WF.cccoovviiiiiiinniiennne. 71
Table 4.4: SIS and VIRMA-WEF Tuntime.ccoceevieeiienieinicnieeieeeeeeieesee e 71
Table 4.5: CO288 CITCUIL TESULLS. ..c...eiuieeiieiiieieeite ettt 72
Table 4.6: Area comparison — Area saving heuriStiC........ccueevvveerrieeriieeniieeniieenieeee 74
Table 4.7: Delay comparison — Area saving heuristiC..........ceevveeerueeerieeenieesiieeeneeenne 74
Table 4.8: Pull-up and pull-down sums in the longest path.ccoceeviiniinninnennn. 75
Table 4.9: Delay comparisons between ABC and VIRMA..........ccccoiiiiiiiiiinniinicnen. 75
Table 4.10: Area comparisons between ABC and VIRMA.ccooiiiiiiiniinniiene 76
Table 4.11: Number of instances of lower bound cells.ccoceeviiniiiniiniinnienienen. 76

Table 4.12: Close look at the c6288 area repOort.cc.eeevveeerieernieeniieeniieeeeee e 80

ABSTRACT

Currently, microelectronic technologies enable high degrees of semiconductor
integration. However, this integration makes the design, verification, and test challenges
more difficult. The circuit design is often the first area under assault by the effects of
aggressive scaling in deep-submicron technologies. Therefore, designers have adopted
strict methodologies to deal with the challenge of developing high quality designs on a
reasonable time. Electronic Design Automation tools play an important role, automating
some of the design phases and helping the designer to find a good solution faster. One
of the hardest challenges of an integrated circuit design is to meet the timing
requirements. It depends on several steps of the synthesis flow. In standard cell based
flows, it is directly related to the technology mapping algorithm and the cells available
in the library. The performance of a cell is directly related to the transistor sizing and
the cell topology. It determines the timing, power and area characteristics of a cell.
Technology mapping has a major impact on the structure of the circuit, and on its delay
and area characteristics. The quality of the mapped circuit depends on the richness of
the cell library. This thesis proposes two different approaches for library-free
technology mapping aiming delay reduction in combinational circuits. Both algorithms
rely on a cell topology able to implement Boolean functions using minimal transistors
stacks. They reduce the overall number of serial transistors through the longest path,
considering that each transistor network of a cell has to obey to a maximum admitted
chain. The mapping algorithms are integrated to a cell generator that creates cells with
minimal transistor stacks. This cell generator is also in charge of performing the
transistor sizing. Significant gains can be obtained in delay due to both aspects
combined into the proposed mapping tool.

Keywords: technology mapping, logic synthesis, virtual cell library, standard cell
library, automatic cell generator.

Mapeamento tecnoldgico para Bibliotecas Virtuais Baseado em Células
com Cadeias Minimas de Transistores em Série

RESUMO

Atualmente, as tecnologias disponiveis para a fabricacdo de dispositivos
eletrOnicos permitem um alto grau de integracdo de semicondutores. Entretanto, esta
integragcdo torna o projeto, a verificagdo e o teste de circuitos integrados mais dificeis.
Normalmente, o projeto de circuitos integrados € consideravelmente afetado com a
diminui¢do do tamanho dos dispositivos eletronicos em tecnologias sub-micronicas.
Conseqiientemente, os projetistas adotam metodologias rigidas para produzir circuitos
de alta qualidade em tempo razodvel. Ferramentas de auxilio ao projeto de circuitos
eletronicos sdo utilizadas para automatizar algumas das etapas do projeto, ajudando o
projetista a encontrar boas solu¢des rapidamente. Uma das tarefas mais dificeis no
projeto de circuitos integrados € fazer com que o circuito respeite as restricdes de atraso.
Isto depende de varias etapas do processo de sintese. Em metodologias baseadas em
bibliotecas de células, isto estd diretamente relacionado ao algoritmo para mapeamento
tecnoldgico e as células disponiveis na biblioteca. O atraso de cada célula depende do
tamanho dos transistores e da topologia da rede de transistores. Isso determina as
caracteristicas de atraso, poténcia e area de uma célula. O mapeamento tecnoldgico
define as principais caracteristicas estruturais do circuito, principalmente em drea,
poténcia e atraso. A qualidade do circuito mapeado depende das células disponiveis na
biblioteca de células. Este trabalho propde um novo método para mapeamento com
bibliotecas virtuais para redu¢do de atraso em circuitos combinacionais. Ambos 0s
algoritmos baseiam-se em uma topologia de células capaz de implementar funcdes
Booleanas com cadeias minimas de transistores em série. Os algoritmos reduzem o
nimero de transistores em série do caminho mais longo do circuito, considerando que
cada célula é implementada por uma rede de transistores que obedecem um nimero
maximo de transistores em série. O nimero de transistores em série € calculado de
forma Booleana, garantindo que este seja o ndmero minimo necessario para
implementar a funcdo l6gica da célula. Os algoritmos estdo integrados a um gerador de
células que utiliza tal topologia e realiza o dimensionamento dos transistores. Ganhos
significativos podem ser obtidos combinando estas duas técnicas em uma ferramenta
para mapeamento tecnolégico.

Palavras-Chave: mapeamento tecnoldgico, sintese ldgica, bibliotecas de células,
bibliotecas de células virtuais, geradores de células.

15

1 INTRODUCTION

According to the ‘Moore’s Law’ (MOORE, 1965), since the invention of the
integrated circuit (IC) in 1958, the number of transistors that can be placed
“inexpensively” on an integrated circuit has increased exponentially due to advances on
technology scaling. Currently, billions of electronic components can be integrated on a
single chip. The processing speed and memory capacity of digital electronic devices
almost increases in the same proportion of the number of transistors.

Although deep-submicron microelectronic technologies enable greater degrees
of semiconductor integration, such integration makes the design, verification, and test
challenges more difficult. The circuit design is often the first area under assault by the
effects of aggressive scaling in deep-submicron technologies. Effects like leakage
power, noise and electro-migration were considered irrelevant in early technologies.
Currently, the analysis of these effects is crucial for a successful design. Therefore,
designers have adopted strict methodologies to deal with the challenge of developing
high quality designs on a reasonable time. Electronic Design Automation (EDA) tools
play an important role, automating some of the design phases and helping the designer
to find a good solution faster.

The methodology adopted by most of the EDA flows is based on standard cell
libraries. In a typical standard cell based flow the synthesis starts from a high-level
description using Hardware Description Languages (HDL), such as VHDL (VHDL
ORG, 2008) and Verilog (VERILOG DOT COM, 2008), at Register Transfer Level
(RTL). The second step is the logic synthesis that performs several logic manipulation
procedures over the high level description resulting in a netlist composed by a set of
cells of the standard cell library. The last step is the physical synthesis that places and
routes the cells of a netlist on a floorplan. The main advantage of this methodology is
that each cell in the library is fully characterized through many simulations, resulting in
a set of accurate information about the behavior of the cell. Thereby, the designer can,
with the aid of an EDA tool, predict with a very good precision the characteristics of the
final circuit.

Even though the available EDA tools perform a good job on finding good
solutions for a given design, there are still some open issues in the automation flow.
Furthermore, every time that the manufacturing technology process advances to the next
generation, new problems come up. It demands a constant update in the available tools
or even completely new tools. Hence, there is a high cost associated to the technology
process shifting. It requires investments on tools and on manufacturing process.
Alternatively, the designer can explore other optimization strategies in order to increase
performance and to reduce area and power without changing the technology.

16

One of the big challenges in high-performance circuits design is the timing
closure of the combinational logic (or random logic). Usually, combinational logic is
not regular enough to be implemented in an intuitive design flow. Furthermore, it can be
changed until the last steps of the design cycle. Logic synthesis has been shown to be an
effective tool for designing logic circuits, especially for semicustom designs using a
standard cell methodology. The computer-aided synthesis of a logic circuit involves two
major steps: the optimization of a technology-independent logic representation, using
Boolean and/or algebraic techniques, and technology mapping. Logic optimizations are
used to modify the structure of a logic description, such that the final structure has a
lower cost than the original one. These optimizations are performed before the
technology mapping.

Technology mapping is the step of logic synthesis that chooses the cells that
will be used to implement a design in a given technology. This step of logic synthesis
has a major impact on the structure of the circuit and, consequently, on delay and area
characteristics. Most existing techniques are based on static pre-characterized libraries
(standard cell methodology), where a set of cells is defined and characterized for a
given technology. First methods for technology mapping (KEUTZER, 1987-a)
(DETIENS, 1987) (ABOUZEID, 1992) (MAILHOT, 1993) (LIEN, 1992) used trees as
the initial description of the circuit to be mapped. More recent methods (LEHMAN,
1997) (KUKIMOTO, 1998) (STOK, 1999) (MISHCHENKO, 2005) are based on
Directed Acyclic Graph (DAG) representations that allow duplicating logic to some
extent to increase speed. Another important contribution to technology mapping was
Boolean matching (MAILHOT, 1993), where the matching of a portion of the circuit
and a cell from the library is done by comparing the Boolean function of the candidates,
instead of the structure. Structural comparison would not be able to find all matches.

In the early days of technology mapping, it was considered that the use of a cell
generator would enable the use of larger virtual (built on demand) cell libraries.
Berkelaar (1988) has presented a pioneer work aiming cell generators, which maps
decomposed logic expressions onto complex gates. Reis (1997) presented another
approach which uses a Binary Decision Diagram (BDD) representation for the circuit
network, and performs BDD decomposition using constraints in the number of serial
transistors. Each decomposed BDD is mapped onto a static CMOS complex gate. The
work in (CORREIA, 2004) dynamically explores many embedded AND/OR
decompositions by using n-ary trees for the circuit network representation. Each sub-
tree that is limited by the number of serial transistors is also mapped onto static CMOS
cells. In (JTANG, 2001) two techniques for technology mapping are presented. The first
method maps circuits to a virtual cell library of complex static CMOS gates. The second
technique uses a mixed logic of static CMOS and PTL gates, considering the relation
between PTL and BDDs.

Unfortunately, the use of such approaches was not widely verified in a
commercial level, even if other references suggest that the increased number of cells in
a library could lead to significant improvements in the quality of the final design
(KEUTZER, 1987-b) (SCOTT, 1994) (SECHEN, 1996) (GAVRILOV, 1997). A recent
approach presented in (ROY, 2005) suggests that the addition of some custom cells to a
library can improve the speed of the final circuit.

17

1.1 Motivation and thesis contributions

According to the previously statements, one of the hardest challenges of an IC
design is to meet the timing requirements. It depends on several steps of the synthesis
flow. In standard cell based flows, it is directly related to the technology mapping
algorithm and the cells available in the library. The performance of a cell is directly
related to the transistor sizing and the cell topology. The transistor sizing also affects the
power consumption and, off-course, the cell area.

Recently, some methods for generating efficient cell networks were proposed
(KANECKO, 1997) (POLI, 2003) (TANAKA, 2004) (SCHNEIDER, 2005), including a
method to compute the minimum number of transistors in series needed to implement
an arbitrary Boolean function that was proposed by Schneider (2005). The reduction of
the number of series switches leads to timing efficient networks.

The topology presented in (SCHNEIDER, 2005) was only verified at the cell
level, lacking of an efficient methodology to evaluate the use of these cell topologies in
larger circuits. Motivated by this, this thesis presents two different methods for
“VIRtual library technology MApping” (VIRMA) based on DAGs. Both mapping
methods combine the method for Boolean computation of the number of series
transistors introduced by Schneider (2005) with state of the art technology mapping
algorithms inspired by the approaches presented by Stok (1999) and Mishchenko
(2005). Significant gains can be obtained in delay due to both aspects combined into the
proposed mapping tool.

Since this cell topology was not well explored yet, both algorithms
implemented in the VIRMA tool are library-free. It chooses the transistor configuration
for the cells that will have to be created through a cell generation tool in a subsequent
step. Currently, the VIRMA mapping flow is integrated to a cell generator that
implements the techniques proposed in (Rosa, 2008). This cell generator is also in
charge of performing the transistor sizing.

1.2 Thesis organization

The remaining of this thesis is organized as follows: chapter 2 review some
general concepts required for a better comprehension of the proposed methods. Specific
concepts of technology mapping as well as some previous approaches are described in
the chapter 3. The new approaches for library-free technology mapping are presented in
the chapter 4. All results obtained through the implemented prototypes are shown in the
chapter 5. Finally, conclusions and future works are presented in the chapter 6.

18

2 TERMINOLOGY AND BASIC CONCEPTS

Electronic design automation is divided into many sub-areas. We are
particularly interested in logic synthesis and physical synthesis (related to cell
generators) concepts. This chapter introduces some of these concepts and definitions
that will be used in the following chapters. For next chapters, we assume the knowledge
of all definitions described here.

2.1 Boolean logic and logic expressions

The Boolean domain (B) is defined as a two element set, say, B = {0, 1},
whose elements are interpreted as logical values, typically 0 = false and 1 = true. A
Boolean function describes how to determine a Boolean value output based on some
logical calculation from Boolean inputs. A Boolean function is a function of the form f:
B" — B, where B = {0, 1} is a Boolean domain and where 7 is a non-negative integer. In
the case where n = 0, the "function" is simply a constant element of B. More generally, a
Boolean-valued function is a function of the type f: X — B, where X is an arbitrary set
and where B is a Boolean domain. If X = [n] = {1, 2, 3, ..., n}, then f is a binary

sequence of length n. Therefore, there are 2% such functions.

The support of a Boolean function is the set of variables that may change the
output value of a function. For instance, consider the function f{a,b,c)=ab+a’c. Its
support is the set {a, b, ¢/. An input vector is an element defined in Boolean domain
and indicates the value of each variable that defines the Boolean space. An input vector
v € B" belongs to the ON-set of f if and only if f{v) = 1. Otherwise, if f{v) = 0, then v
belongs to the OFF-set of f. While the vectors v; = {1,1,0} and v,= {0,1,1} belong to
the ON-set of the function f{a,b,c)=ab+a’c, the vector v; = {1,0,0} goes into the OFF-
set of fla,b,c).

A logic expression (or equation) is a Boolean function representation. Each
function is unique for any application f: B — B in the whole Boolean space. However,
a Boolean function has infinite representations. All Boolean functions can be expressed
in a canonical form through sum of products (SOP) or product of sums (POS). A
SOP is said canonical when all variables appear in all products. Every instance of a
Boolean variable is called literal according to Wagner (2006). A product of literals is
formally called cube. For instance, {a, b, ¢/ is a cube interpreted like a.b.c or just like
abc. A minterm is a cube that contains all variables of the function support.

19

Figure 2.1 shows a truth table and the minterms of the Boolean function f.
Equation 2.1 represents f through a SOP in a canonical form. This equation has 32
literals and it is not a minimal SOP. Karnaugh maps (KARNAUGH, 1953) and the
Quine-McCluskey method that comes from (QUINE, 1955) and (MCCLUSKEY, 1956)
are the main exhaustive optimization techniques for two-level minimization. Although
they are not practical algorithms for large circuits, they are easy to use and simple to
understand. The Espresso algorithm (McGeer, 1993) is a heuristic method for two-level
minimization that is computationally less expensive and presents good results. An
example of two-level minimization can be seen in Figure 2.2. It shows the Karnaugh
map for the Boolean function f. The minimal cover for the ON-set is composed by four
cubes. It can be represented through the Equation 2.2. Equation 2.3 shows the minimal
cover for the OFF-set of function f.

f=abcd+abcd+abcd+abed+abed+abed+abed+abed (2.1)
ON —set(f)=a.cd +ab.c+acd+ab.c (2.2)
OFF —set(f) = a.cd +ab.c+acd+ab.c (2.3)

a b ¢ d|f
0 0 0 0]oO
0 0 0 1]o0
0 0 1 0]o
0 0 1 11 = gphed
0 1 0 0|1 — gped
0 1. 0 1|1 — gpbed
0 1 1 0]o
0 1 1 111 — gped
1 0 0 o]o0
10 0 111 — gphed
1 0 1 0]o0
1 0 1 1]o0
1 1 0 o]o
L1 0 111 — gped
L1 1 011 = gped
1 1 1 1|1 — abed

Figure 2.1: Truth table for the function f and the respective minterms.

20

0001010
oO1jo|1|1]1
1m|y1r|1rj1|o0
1000 1]O0

Figure 2.2: Karnaugh map for the Boolean function f.

Both equations can also be represented as factored forms. According to
Brayton (1987), a factored form can be defined as a representation of a logic function
that is either a single literal or a sum or product of factored forms. It is very similar to a
parenthesized algebraic expression. This parenthesized representation seems to be the
most appropriate representation for use in multilevel logic synthesis. As an example,
consider the representations in Figure 2.3. The parenthesized expression can be seen as
a logical operator tree. Any representation with more than two levels is called a
multilevel representation. In this example, the logical operator tree has depth four (or
four levels).

There are several methods for obtaining different factored forms for a given
logic function. These methods range from purely algebraic ones, which are quite fast, to
so-called Boolean ones, which are slower but are capable of giving better results. Since
obtaining an optimal (shortest length) factorization for an arbitrary Boolean function is
an NP-hard problem (MINTZ, 2005), all practical algorithms for factoring are heuristic
and provide a correct, logically equivalent formula, but not necessarily a minimal length
solution. Brayton (1987) has presented one of the most known heuristics for algebraic
factorization. More recently, another heuristic was introduced by Mintz (2005). Usually,
it gets significantly better factorizations than former algebraic factoring and are quite
competitive with Boolean factoring but with lower computation costs.

F(a,b,c,d,e,f,g)

Factored form:
F(a,b,c,d,ef,g) = (a.b) + ((c.d + e.f).g)

a_|
c b
d
F(a,b,c,de,f,g)
e
f
gi

Figure 2.3: Multilevel representations.

21

2.2 Logic styles of transistor networks

A logic gate or logic cell can be defined as a network of transistors (or other
electronic/electromagnetic components). The association of these components is used to
implement arbitrary Boolean functions. Usually, logic gates are created following a
given topology. The most common logic styles are the Pass-Transistor Logic (PTL) and
the Complementary Series/Parallel (CSP) CMOS (also known as static CMOS).
Independently of the topology, the output of the cell is either connected to VDD or GND
through one or more paths of interconnected transistors. A path from VDD to the cell
output is called pull-up path, while a path from GND to the cell output is called pull-
down path.

There are several techniques for an automated transistor network generation.
Buch (1997), Hsiao (2000), Shelar (2001), Shelar (2002) and Avci (2003) have
proposed methods for PTL network generation. Most of them are based on Binary
Decision Diagrams1 (BDDs). Every node of a BDD is a decision point which matches to
a two-input multiplexer (refer to Figure 2.4). This element implements the Shannon
expansion that is expressed by Equation 2.4. In our BDD representation, the dashed arcs
represent the decision for the negative cofactor(f(a=0) in the example of Figure 2.4),
while the other arcs correspond to the positive cofactor (f(a=1) in the example). The
composition of the cofactors and the decision variable (a in this case) are able to express
the function f through the Shannon expansion. Due to this, a PTL cell can be easily
derived from a BDD using pass transistors to build multiplexers. This will be
demonstrated in Example 1.

f=af@a=)+af(a=0) (2.4)
f f
" I:{> 5_” ”—a
fa=0) f{a=1) fa=0) f(a=1)

Figure 2.4: Correspondence among BDD nodes and multiplexers.

Example 1: Consider the function f{a,b,c,d) such that the ON-set and the OFF-
set are represented by Equations 2.5 and 2.6, respectively.

ON —set(f)=ab+ac+bc+bd 2.5)
OFF —set(f)=ab+b.c+acd (2.6)

! Binary Decision Diagrams were introduced by Lee (1959). The basic idea from which this data structure
was created is the Shannon decomposition (SHANNON, 1938). These two concepts resulted in efficient
data structure proposed by Bryant (1986). Few years later, Brace (1990) extended it to a strongly
canonical form that is so-called Reduced Ordered Binary Decision Diagram (ROBDD). In popular usage,

the term BDD almost always refers to ROBDDs.

22

Figure 2.5 shows a BDD that represents the Boolean function f{a,b,c,d) and a
possible PTL implementation. Every BDD node was replaced by a pair of transistors
implementing a multiplexer that is controlled by the node variable. The resulting
transistor network is composed by NMOS transistors only. Moreover, it has an inverter
in the cell output that works like a signal amplifier. This way, the assignments for the
source nodes (the terminal nodes 0 and / of the BDD) are also inverted for a correct
implementation. Consider the input vector v(a,b,c,d) = {0, 1, 0, 0}. In the Figure 2.6,
this vector activates a path in the BDD that leads to the terminal node 1. In the PTL
transistor network, a pull-down path is sensitized. Therefore, it gives VDD in the
inverter output which corresponds to the logical value 1. m

Figure 2.6: Path sensitization in a PTL network.

Generally, the number of transistors in PTL cells is linearly proportional to the
number of BDD nodes. There are techniques to reduce this number in some special
cases. These techniques are discussed in (ROSA, 2006). In PTL cells, the same

23

intermediate node can be both in a pull-up path and in a pull-down path. When the
transistor network has these shared nodes, it is said a non-disjoint network. Another
important point is the length of the longest path. The maximum number of stacked
transistors corresponds to the number of arcs in the longest path in the BDD.

Complementary Series/Parallel cells are implemented using two disjoint
transistor planes. The pull-up plane (pull-down plane) corresponds to the set of
interconnected transistors between the cell output and VDD (GND). While the pull-up
plane is only composed by PMOS transistors, the pull-down plane is composed by
NMOS transistors. When the pull-up plane is derived from the ON-set equation of a
Boolean function, the topology of the pull-down plane is the series/parallel complement
of the pull-up plane. In a similar way, CSP cells can be derived from the OFF-set
equation. In this case, the pull-down is derived directly from the equation and the pull-
up is the series/parallel complement of the pull-down. The topological complementarity
assures the logical complementarity of the transistor network. Figure 2.7 shows CSP
cells derived from the ON-set and OFF-set equations (Equations 2.5 and 2.6,
respectively). In the cell of Figure 2.7a, each pull-up path matches to a cube of the
Equation 2.5. The pull-down paths depend on the series/parallel associations of the pull-
up plane. Notice that the longest pull-up path has two series transistors, while the
longest pull-down path has four series transistors. The longest pull-up and pull-down
paths of the cell derived from the Equation 2.6 have three series transistors. This
illustrates that the length of the longest path can vary for different implementations of
the same logic function.

a—d[¢ p-d . ﬂ b

o4l Jp-o b
Tp-b

¢ aq
|-e [f
|_'b a%

L

s
2

Bl a] b

a) cell derived from ON-set(f) b) cell derived from OFF-set(f)

Figure 2.7: CSP CMOS transistor networks for f.

2.3 Minimal length for transistor stacks in standard cell libraries

For approaches that are intended for cell generators, the number of serial
transistors inside a cell is an important parameter. The methods presented by Berkelaar
(1988), Gavrilov (1997), Reis (1997), Jiang (2001) and Correia (2004) use a maximum

24

allowed number of transistor in series as a parameter to restrict the size of feasible cells.
All these approaches are limited to the use of serial/parallel implementations, and the
computation of the number of serially connected transistors is done by serial/parallel
association. Schneider (2005) proposes a design methodology to implement complex
gates with the exact lower bound for the number serial transistors. More details of this
approach can be also found in (SCHNEIDER 2006). It is based on the observation that
the number of literals on the smallest cube” of the ON-set (OFF-set) prime irredundant
cover determines the maximum number of serial transistors of the pull-up (pull-down)
plane. Due to their topologies, PTL and CSP CMOS cells do not respect the lower
bound in several practical cases. A different topology can be used to implement
complex gates with the exact lower bound for the number serial transistors. Such
topology is called Non-Complementary Series/Parallel (NCSP), where the minimum
cover for the ON-set is used to derive the pull-up plane, and the minimum cover for the
OFF-set is used to derive the pull-down plane. These cells do not have topological
complementary plans. However, they are logically complementary.

Consider the CSP CMOS cells in Figure 2.7. The NCSP cell which implements
the Boolean function f'is shown in Figure 2.8. Just like the CSP CMOS cell, the longest
pull-down path has three serial transistors. However, the smallest cube of the minimum
cover for the ON-set has two literals. Thus, two serial transistors is the length of the
longest pull-up path.

| NCSP Cell

Q
i
-
o

puil-down — OFF-sel(f)

Figure 2.8: NCSP cell for the Boolean function f.

2 The smallest cube is the one with more literals.

25

Accordingly to Weste (1994), the usual CSP CMOS has one important
characteristic: low static power consumption. Significant power is only drawn when the
transistors in the CMOS device are switching between on and off states. Although the
pull-up and pull-down networks are not complementary in NCSP, they are logically
complementary. Hence, there will not be any viable path connecting VDD and GND for
any input vector. Therefore, the same principles of the CSP CMOS logic are applied to
the NCSP logic. Figure 2.9 shows this property through an example. The truth table of
the function f was associated to two columns named VDD and GND. They represent the
occurrence of the voltages corresponding to VDD and GND in the cell output.

a b ¢ DJ| f|VDD|GND
0O 0 O O] 1] yes no
0O 0 O 1]1] yes no
O 0 1 01]1 yes no
0O 0 1 1] 1] yes no
0O 1 0 O] 1] yes no
0O 1 O 1] 1] yes no
0O 1 1 0]0] no yes
0O 1 1 1]10] no yes
I 0 0 O] 1] yes no

1 0 0 1| 1] yes no

1 0 1 O[] 1] yes no

1 0 1 110 no yes
I 1 0 0]0] no yes
1 1 0 1]0] no yes
1 1 1 0]0] no yes NCSP cell
1 1 1 110 no yes

Figure 2.9: Simulation table of the NCSP cell.

2.4 Digital circuits representation

Digital circuits can be represented in many ways. Graphs3 are widely used for
this purpose. A Directed Acyclic Graph (DAG) is one of the most popular
representation for logical circuits. On these structures, each logic gate is represented by
a vertex and its connections by edges.

A gate g/ is fanin of g2 if the output of g/ is connected to a g2 input. This
way, g2 is part of the fanout of g/. The fanout degree of a logic gate is determined by
the number of logic gates connected to its output. For instance, if the logic gate g/ is
connected to inputs of the gates g2 and g3 then its fanout degree (or just fanout) is two.

3 . . L . .

In mathematics and computer science graphs are used to model pairwise relations between objects from
a certain collection. A graph refers to a collection of vertexes or nodes' and a collection of edges that
connect pairs of vertexes. Each vertex has at least an incoming edge and an outgoing edge.

26

When there is no gate with fanout greater than one, the circuit is called fanout-free.
Fanout-free regions are also known as logic cones.

A path in a graph is an alternate sequence of vertexes such that from each of its
vertexes there is an edge to the next vertex in the sequence. Formally, it is a set of
vertex and connections {coy, go, €1, ..., Cn, &n Cn+1/, Where a connection ¢;, I <i <n,
connects the output of g;; to an input of g;. The connections ¢y and c¢,+; corresponds to a
primary input (PI) and primary output (PO), respectively. The depth of a graph
(circuit) is the maximum number of vertexes (gates) in any path of the graph.
Consequently, each vertex has a depth value that is given by the distance from the
vertexes. Each logic gate g has a delay d(g) as well as each connection has an associated

delay d(c). The delay of path is defined as d(P)=) 1 d(g)+Y I d(c,).

Consider the combinational circuit of Figure 2.10.a. This circuit can be
represented by the DAG of Figure 2.10.b. The graph is directed from the primary
outputs to the primary inputs. The logic depths, which are numerically represented, can
be calculated through a depth-first search algorithm. In this example, the circuit has
depth three. The networks n/ and n2 are connected to gates with fanout greater than
one. In the DAG, these gates are represented by the vertexes that have more than one
arriving edge. The graphical representation of Figure 2.10.b is a more formal way to see
the usual graphical representation of Figure 2.10.a. Thus, we will refer DAGs just by
using the representation of Figure 2.10.a.

Combinational circuits can also be represented by trees. The trees are a
specialized kind of graph where all vertexes have fanout one (they are fanout-free
representations). The Figure 2.10.c shows a forest of logical operator trees. Each tree
corresponds to a logic cone of the circuit.

a [o—

b 1 x
c [

} n2

d o
e [fD—_D—Gy

R -

a) combinational circuit b) representation with DAGs
x y n2
nt
n2 n n %
a nt fgh d e b ¢

c¢) representation with trees

Figure 2.10: Combinational circuit representations

27

3 TECHNOLOGY MAPPING

Technology mapping is a foundation of the logic synthesis process. It is used to
define the set of elements from a library that will implement a circuit in a given
technology. Typically, the objective function aims the optimal use of all gates in the
library to produce a circuit with critical-path delay less than a target value and minimum
area. It may sound to be an interpretation of the general logic optimization problem.
However, the role of technology mapping is to finish the synthesis of the circuit by
performing the final gate selection from a particular library. It assumes that the
technology-independent circuit has already undergone through a significant
Boolean/structural optimization. In general, these algorithms do not change the structure
of the circuit radically, for instance, either by finding common expressions between two
or more parts of the circuit or reducing the logic depths of the critical paths. They are
simplified because they are constrained by the structure of the equations produced by
the technology-independent optimizations. This structural dependence has been studied
by Chatterjee (2005), and it is also known as structural bias.

Most existing techniques for technology mapping are based on
precharacterized libraries, and can be classified into four categories: rule-based mapping
(GREGORY, 1986), graph matching (KEUTZER, 1987-a), direct mapping (LEGA,
1988) and functional matching (MAILHOT, 1993). Ideally, technology mapping
algorithms should be able to satisfy several goals and to handle different libraries. It is a
quite hard task since the cell libraries normally have a different set of cells that
implements a limited set of logic functions. A library of fixed size restricts the choices
for covering a given circuit. Other approaches for technology mapping propose
techniques based on cell generators. Instead of having a static library, they assume that
arbitrary cells can be generated on the fly through a cell generator, increasing the
matching search space.

Besides specifying the technology mapping problem, this chapter shows
specific concepts and techniques for technology mapping, such as data structures,
technology libraries and some of the existing methods.

3.1 Cell libraries

A cell library can be defined as a finite set of logic gates that implements
different Boolean functions with different drive strengths and topologies. Traditionally,
the technology mapping methods rely on static precharacterized libraries aiming delay,
area and power optimizations. Each cell in the library is fully characterized through

28

many simulations using complex numerical methods. The result of this process is a set
of accurate information about the behavior of the cell, concerning timing and power
consumption, and its physical area. According to Sechen (2003), the characterization
cost of a library is expensive. Hence, commercial libraries are typically composed of
few hundred combinational cells and sequential elements like latches and flip-flops for
which highly optimized layouts have been optimized for a particular technology. The
logic designers are then restricted to using these cells in their circuit designs. Figure 3.1
shows the usual circuit design flow considering technology mapping methodologies
based on libraries with a fixed size.

A very simple library is illustrated in Figure 3.2. The cell library names are
shown together with their area costs, their function and their DAG representations in
terms of two-input AND/OR gates and inverters. The DAG representations correspond
to graph patterns used by the matching algorithm. An equivalent library description is
given in the Figure 3.3. It corresponds to a subset of the /ib2.genlib that is distributed
with the SIS tool (SENTOVICH, 1992).

4 N A om0

L

£
RTL o
description i
’

boolean network

P ‘ Technology
it independent
3 / optimizations
Logic
Synthesis Optimized
3 hoolean network
A1
Y
\
A
- ; Techno_lqu Cell
Physwa_l 1 mapping library
Synthesis \
v

Cell network

A A
A
‘ Circuit layout ’ ‘\ Technology Ovtimized
) dependent >]:) e
/ \) optimizations / ce” networ

Figure 3.1: Digital circuits design methodology.

, Circuit Design Methodology

(Logic Synthesis

29

Cell Cost Symbol Primitive graph pattern
INV 2 > =
NAND2 4 D W
NAND3 6 {} DDD@
NAND4 8 {} %}D>
R D e
NOR4 8 %

ozt 6 ED T e
OAI21 6 ji} D@—Do
AOI22 8 BD %jj:}&
OAI22 8 %D& %}D&
xoR2 10 D %}D

Figure 3.2: Static library example.

30

GATE 928.00 O=!a;

a 0.0514 999.0 0.4200 4.7100 0.4200 3.6000
GATE 2320.00 O=(!a*b)+(a*!b);

a 0.1442 999.0 1.7700 5.2300 0.9600 4.6400

b 0.1381 999.0 1.9400 4.6500 1.1400 5.2200
GATE 1392.00 O=!(a*b);

a 0.0777 999.0 0.6400 4.0900 0.4000 2.5700

b 0.0716 999.0 0.4600 4.1000 0.3700 2.5700
GATE 1856.00 O=! (a*b*c);

a 0.1000 999.0 0.8900 3.6000 0.5100 2.4900

b 0.0828 999.0 0.7100 4.1100 0.4200 2.5000

c 0.0777 999.0 0.5600 4.3900 0.3500 2.4900
GATE 2320.00 O=! (a*b*c*d);

a 0.1030 999.0 1.2700 3.6200 0.6700 2.3900

b 0.0980 999.0 1.0900 3.6100 0.6100 2.3900

c 0.0980 999.0 0.8200 3.6200 0.5500 2.4000

d 0.1050 999.0 0.5800 3.6200 0.3800 2.3900
GATE 1392.00 O=!(a+b);

a 0.0736 999.0 0.3300 3.6400 0.4500 3.6400

b 0.0968 999.0 0.5000 3.6400 0.7000 3.6600

GATE 1856.00 O=! (a+b+c);
0.0856 999.0 0.8400 5.0400 1.3000 3.4500
0.0806 999.0 0.7800 5.0300 1.1400 3.4300
0.0826 999.0 0.5200 5.0300 0.8400 3.4400
GATE 2320.00 O=! (a+b+c+d);

.0887 999.0 0.4100 5.9100
.0867 999.0 0.8500 5.9100
.0867 999.0 1.1100 5.9200
.0887 999.0 1.2700 5.9100
GATE 1856.00 O=!((a*b)+c);

.1029 999.0 0.7500 3.5200 0.6700
.0908 999.0 0.6700 3.6400 0.6200
0.1110 999.0 0.5800 3.6400 0.2100
GATE 2320.00 O=!((a*b)+(c*d));
.1019 999.0 0.9200 3.4600
.0908 999.0 0.8400 3.6400
.0958 999.0 0.6100 3.6400
.0988 999.0 0.7000 3.6400
GATE 1856.00 O=!((a+b)*c);

0.1019 999.0 0.6900 3.9400 0.5300
.0979 999.0 0.8700 3.9300 0.6300
.0998 999.0 0.3700 2.0500 0.5700
GATE 2320.00 O=!((a+b)*(c+d));
.1009 999.0 1.1000 4.0600
.1029 999.0 0.9900 4.0600
.0958 999.0 0.6900 3.6600
.1039 999.0 0.6100 3.6600

o W
[
w

Q
o
w

.1600
.5300
. 7500
.9400

.2000
.1800
.1900
.2000

Q0 o0 w
oo oo
e
W www

o
o
N

.5300
.5200
.2800

oo
o
o
N

Q
[

.9400
.8500
L4900
.5400

L7900
L7900
.9300
.9300

0.0 0w
o o oo
o o oo
NN NN

N

L4700
L4700
.5100

o o
o
o
N

Q

o
o
N

.9000
.6800
. 7400
.5600

.5000
.3600
.5300
.0600

0.0 0w
o o oo
o o oo
NN NN

Figure 3.3: A subset of the [lib2.genlib.

The quality of the mapped circuits is very dependent on the richness of the
library in terms of the number of implemented logic functions, drive strengths and
topologies. Libraries that implement a large number of Boolean functions lead to better
results when compared to sparsely populated libraries. Keutzer (1987-b) analyzed the
impact of the library size. He demonstrated that a better area optimization can be
achieved using large libraries. As Jiang (2001) has observed, the most recent device

31

technologies encourage the usage of complex gates in deep-submicron circuits. It leads
to better circuit performance. Nevertheless, it complicates the problem of the traditional
library-based technology mapping. In order to increase the use of complex gates in the
design, the number of implemented Boolean functions has to be increased. The side
effect is that this number grows exponentially. Thus, the number of gates in any library
of a reasonable size can only capture a small fraction of the total number of possibilities.
It makes the traditional technology mapping too restrictive.

There are approaches for technology mapping based on virtual/dynamic cell
libraries (it is also know by library-less technology mapping). These methods assume
that each cell in the library is generated on-the-fly by a module generator. Figure 3.4
illustrates the logic synthesis flow of these approaches. The mapping algorithm defines
the set of cells used in the circuit implementation. This set is the input for a cell
generator which provides the cell layouts that are further used in physical synthesis.

Non-optimized \
hoolean network

/

Technology List of cells used on
independent Technology mappin,
optimizations

Optimized
bhoolean network

Automatic
cell generator

Technology
mapping

Cell

library
Cell network

Technology ' Optimized

acpendent cell network

optimizations /

Figure 3.4: Logic synthesis flow for virtual library technology mapping.

- Logic Synthesis

The virtual cell libraries also have a finite number of cells. This number is
limited by a set of constraints that represent characteristics of the virtual cells. These
constraints can impose topological restrictions such as the maximum number of inputs.
For example, consider a library restricted to 2-input cells. It results in the library in
Figure 3.5.a. Usually, virtual library-based technology mapping uses the maximum
number of series transistor to restrict the pull-up and pull-down planes of each cell. An
example of library limited by two transistors in series in both planes is demonstrated in
Figure 3.5.b. In this case, the library has only seven cells. Table 3.1 shows the size of
the virtual libraries in terms of number of cells. It uses the maximum number of series
transistors as constraint to limit the library. These values were calculated considering
the CMOS CSP topology. Notice that after the limit of three series transistors the

32

number of cells is much bigger than a normal static library. For instance, the library
(4,4) implements 3,503 distinguished Boolean functions (up to four serial transistors in
both planes). This number grows exponentially when increasing the number of serial
transistors.

The matching and covering methods used by the traditional technology
mappers cannot be applied to virtual libraries since the number of patterns is far too
large. A structural/Boolean matching method, which compares the Boolean function of
the cells in the library with subfunctions of the circuit representation, operates by
choosing a covering that is the best solution over all possible matchings. Therefore, if
the number of patterns/cells is large then more comparisons would be necessary,
increasing the execution time. Virtual cell libraries do not have patterns for cell
representation. There are methods, for example, to calculate the number of serial
transistors of a sub-graph of the circuit representation. It is enough to know if the
calculated result fits in a set of constraints. Hence, there is no need of a pattern matching
algorithm.

,--'""__

—= D*D&Dﬂ*

D |7 Op

ISEEI
wlw)¥

a) up to 2-inputs b) up to 2 serial transistors
Figure 3.5: Virtual library examples.

Table 3.1: The size of CMOS CSP cell libraries induced by the number of serial

transistors.
PU/PD 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 7 18 42 90 186
3 3 18 87 396 1,677 6,877
4 4 42 396 3,503 28,435 222,913
5 5 90 1,677 28,435 425,803 6,084,393
6 6 186 6,877 222,913 | 6,084,393 | 154,793,519

Source: (SECHEN, 1996).

Clearly, both the quality of the mapped circuit and the CPU time are related to
the size of the library. The main barrier of the virtual library approach is the dependency
on a good layout generator and the lack of accurate information about the cell behavior.
Due to this, the static precharacterized libraries are still popular in the industry.
Currently, there are layout synthesis tools able to automatically generate layout for

33

arbitrary complex gates more accurately and efficiently. The big problem is to find good
models to estimate area, timing and power on demand. In this sense, some estimative
models have been proposed such as the leakage power estimation method introduced by
Butzen (2008).

3.2 Subject graphs

All technology mapping methods are performed over a circuit representation
that is called subject graph. Digital circuits can be represented in many ways through
different kinds of data structures. Each algorithm uses a well defined structure
according to the criteria that will be explored during the technology mapping process.
The evolution of the technology mapping algorithms is strongly related to their different
subject graph types.

The first technology mapping methods used logical operator trees to represent
parts of a circuit. Several import methods found in the literature, including more recent
approaches, use this kind of subject graph (KEUTZER, 1987-a) (DETJENS, 1987)
(ABOUZEID, 1992) (MAILHOT, 1993) (LIEN, 1992) (LEHMAN, 1997) (REIS, 1999)
(ZHAO, 2001) (CORREIA, 2004). The operator trees are very simple data structures,
and they are usually used to represent logic cones of a circuit. Therefore, algorithms that
use these structures can only find optimal solutions for each part of the represented
circuit.

The Binary Decision Diagrams are also used as subject graphs in some
technology mapping approaches. There are different types of BDDs, and each one of
them has a particular property. The TSBDDs were used in (REIS, 1998) to map circuits
with CMOS CSP gates. Some methods, such as the methods presented by Yamashita
(1997) and Jiang (2001), use ROBDDs to map circuits to PTL cells. A recent method
proposed by Rosa (2006) describes techniques to generate gates in different topologies,
including NCSP gates.

Other methods, such as (KUKIMOTO, 1998) (STOK, 1999) (MISHCHENKO,
2005), are based on DAGs, or similar data structures, that provide a full representation
of the circuit. This kind of representation does not impose limits to the boundaries of the
logic cones. This way, optimal solutions can have matches that cross nets with multiple
fanout.

As discussed above, each technology mapping method uses a well defined
subject graph. Generally, it determines the main characteristics of the algorithm and its
application. The memory consumption to store the circuit and its matches will depend
on the subject graph type. Therefore, the choice of the subject graph can determine the
success of a technology mapping algorithm.

3.3 Conventional technology mapping

As mentioned in the beginning of this chapter, the technology mapping chooses
a set of logic gates to implement a circuit in a given technology. This set of cells is
defined aiming the minimization of an objective function, and it is not an easy task. The
majority of the algorithms reduce the technology mapping problem by handling smaller
parts of the circuit. Therefore, the result can be (locally) minimal, but generally it does
not correspond to global minimal costs.

34

The most conventional approach of technology mapping can be described as a
three step procedure: technology decomposition, matching phase and covering phase.
The most common methods have trees as subject description. This way, an additional
step is required right before the technology decomposition. The initial graph must be
partitioned into trees. Next section describes the technology mapping using tree-based
approaches.

3.3.1 Graph partitioning

In order to apply the tree-based technology mapping, the graph must be
converted in a forest of trees. It can be done by breaking the graph at each multiple-
fanout point. Each node with fanout greater than one becomes the root of a tree, and
fanout of this node becomes a leaf-node of another tree. Thus, this technique does not
duplicate nodes in the graph. An example of partitioning is demonstrated in Figure 3.6.

x1 x2
x1 x2
nt

n1

n1 nt

ab

Figure 3.6: Graph partitioning.

3.3.2 Technology decomposition

The technology decomposition phase translates the graph representation into a
subject graph decomposed in simple logic primitives. Any complex gate representation
is replaced by a set of primitives normally composed of AND, OR and NOT operators
or only AND and NOT operators. The main purpose of this step is to facilitate the
matching algorithm task and to increase the graph granularity. The graph is decomposed
using the same primitives in which the patterns of the cell in the library are represented.
Therefore, the matcher can compare the circuit sub-graphs to the pattern graphs. Figure
3.7 shows an example of technology decomposition in the tree rooted by the node nl.
Three different decompositions are shown. In the first one, the subject graph is
expressed by AND, OR and NOT operators. All OR nodes can be replaced by a set of
AND and NOT nodes in order to reduced the number of distinguished nodes. This is
demonstrated in the second subject graph/tree (from left to right). As a last step, another

35

trick can be used to increase the granularity of the subject graph. A pair of inverter
nodes can be added at each input that is not connected to NOT nodes.

ni

Figure 3.7: Technology decomposition.

3.3.3 Matching phase

This step consists in establishing the initial set of candidate matches attempting
to match each node of the graph against each pattern of the library. If there are p
patterns in the library and n nodes in the subject graph, then this naive approach has
complexity O(n- p). Structural matchers look for patterns and sub-graphs that are

structurally isomorphic. Some approaches reduce the tree matching problem to the
string matching problem. It is possible to find all of the strings that match a given string
in time proportional to the length of the longest string in the pattern set. Boolean
matchers identify patterns independently of the graph structure. There are several
approaches for functional matchers that usually give better results than the structural
matchers. However, these methods are expensive in terms of CPU time. Most of them
have a limited search space containing Boolean functions with support up to 10
variables.

The result of the matching phase is illustrated through Figure 3.8. The subject
graph of Figure 3.8 was matched against the library of Figure 3.2. Only the best matches
for each node are bound in the graph. All cumulative costs are also shown in Figure 3.8,
considering all possible matches.

36

4+6+0=10

Figure 3.8: Matching generation.

3.3.4 Covering phase

The last step of technology mapping is the covering phase. This procedure
finds the optimal set of cells for final circuit implementation. Dynamic programming is
a general technique for many algorithms which can be applied to the covering problem.

Consider the problem of finding a minimum area cover for a subject tree 7. A
scalar cost is assigned to each tree pattern, and the cost for a cover is the sum of costs
for each pattern in the cover. The minimum-area cover for a tree 7 can be derived from
the minimum-area covers for every node below the root of 7. This is the principle of
optimality for tree covering and is used as follows to find an optimal cover for 7. For
every match at the root of the tree the cost of an optimal cover containing that match
equals the sum of the cost of the corresponding gate and the sum of the costs of the
optimal covers for the nodes which are inputs to the match. For instance, consider the
possible covers shown in Figure 3.9. The tree in the right side of the figure represents
the minimal cover.

Note that each node in the tree is visited only once through a depth-first search
algorithm. It is not necessary to re-compute the optimal cover for each input of each
match. Hence, the complexity of this algorithm is proportional to the number of nodes
in the subject tree times the maximum number of matches at any node in the subject
tree. As result the covering algorithm has linear complexity in the size of the subject
tree, and the memory requirements are also linear in the size of the subject tree. The
optimal cover of each matched tree is presented in Figure 3.10. Its total cumulative cost
is 10.

37

Inverter
Cost 2

2+6=8 li o
4+2+0=6 ° o
2+0=2 (.D U

Inverter
Cost 2

Cost 0

Figure 3.10: Tree covering result.

3.4 Technology mapping for standard cell libraries

This section reviews some of the main methods for technology mapping based
on static precharacterized cell libraries, analyzing how they handle the technology
mapping problem, the subject graphs and the objective functions. First, it starts with the
first technology mapping method that was presented by Keutzer (1987-a). After, the
methods of Kukimoto (1998), Stok (1999) and Mishchenko (2005) are reviewed.

38

3.4.1 Keutzer (1987-a) - DAGON

The first technology mapping algorithm was presented by Keutzer (1987-a).
He has found a relationship between technology mapping and programming language
compiler techniques. More specifically, matching graph patterns of a technology
independent circuit representation against a library of patterns, such as standard cell
libraries, is similar to matching graph patterns of intermediate representations of a
computer program against the patterns of an instruction set of a given machine.

The result is an algorithm for technology mapping, called DAGON, which is
able to minimize area, timing or a function of both. The initial description of a circuit is
represented by a DAG. This graph is partitioned into a forest of trees that represents all
logic cones of the circuit. Each sub-tree of the forest is matched against the library of
patterns that are equivalent to technology cells. The tree matching is made by an
external tool called rwig (TJIANG, 1986). This tool was generally used to construct
code generators for programming language compilers. This tool needs to be fed with list
of patterns that are matched against circuit trees. The pattern list is composed by small
trees in the canonical NAND/NOT form. The developers of the patterns are responsible
for providing the cost of each one of them. Therefore, given a tree to be matched, the
twig tool uses these costs to evaluate cost of candidate matches. Once the matches and
their costs are bound in the circuit tree, the covering algorithm can select the
patterns/cells that will cover the tree/circuit with minimal cost. The whole DAGON
mapping flow is summarized by the Figure 3.11.

Technology-
independent circuit

Circuit parser Technology patterns

DAG representing

the circuit twig

Graph partitioning
into trees

Pattern matching

Mapped circuit

Figure 3.11: DAGON algorithm flow (KEUTZER, 1987-a).

39

Keutzer gives an example of a set of five patterns for AND-OR-INVERTER
(AOI) gates. These patterns can be seen in Figure 3.12. They actually describe sixty-
four unique pattern instances from an AOI444 to AOI211. Many of these patterns are
symmetric, thus an AOI114 is equivalent to an AOI411. A graphical representation of
the set of trees described by these patterns is given in Figure 3.13. Comparing the
current cell library descriptions (refer to Figure 3.3) against the library of patterns, we
can see that it is a very rudimentary description. It can only describe a single cost value
for each pattern while the most recent descriptions are able to describe different costs,
even for each cell pin.

Since it uses the tree covering approach, optimal solutions can be found in
linear time. The main disadvantage of this method is the size of the library, which is
very limited. Moreover, it does not achieve good results regarding timing optimizations
since it is a tree based mapping.

Aunxwn AOIxxx canonically expressed as
not
:
nand_3
i b H
nand nand nand %/
egn: not({nand_3(inand,inand, inand))
/#%% refers to the root of the patterns/
{
DEFAULT COST; /+sum up cost of childrens/
cost.cest a[AREA]+=d _get_aoi_area_cost($$);
cost.cost a[TIME]+=d aoi_ time ccst{:t]
cost.cost a[AT K1
+= my_ pow{cost.cost _alTIME],cost_power)
*cost.cost a[AREA],

I s

{

d_print_aoi(stdout,$$);

¥

inand: nand_2(eqn,eqn)

{} /+default cost is the sum of costs of the
children-it doesn’t have to be spelled out#/
={};/#+action taken at root of pattern trees/
inand: mnand 3(eqn,eqn,eqn)

{}/»default cost is the sum of childrens/
={};/#action taken at root of pattern trees/
inand: nand_4(eqn,eqn,eqn,eqn)

{}/+default cost is the sum of childrens/
={};/#action taken at root of pattern trees/
inand: not(egn)

{}/+default cost is the sum of childrens/
={};/#action taken at root of pattern trees/

Figure 3.12: An AOIxxx pattern (KEUTZER, 1987-a).

40

eqn —
inand
inand
inand

inand ~

Dy
inand — D‘
{

inand —

inand — D"

Example of one resulting pattern: AOI432

[o—Pe

A

Figure 3.13:Geometric interpretation of Figure 3.12 (KEUTZER, 1987-a).

3.4.2 Kukimoto (1998) — DAG based technology mapping

A pioneer work for standard cell technology mapping, which effectively uses
DAGs as subject descriptions, was the algorithm introduced by Kukimoto (1998). As
Keutzer (1989) has shown, if a subject graph is a DAG, graph covering for minimal area
mapping is a NP-complete problem. When using trees as subject graphs, some methods
can guarantee a minimal cover in linear time. It leads to the usual approach of
technology mapping algorithms that decompose a subject DAG into trees, solve the
technology mapping problem optimally for each tree and glue the results together.

Based on these assumptions, Rudell (1989) worked on a minimal-delay
technology mapping. If loading effects are completely ignored, then the minimal-delay
mapping problem for subject trees can be solved optimally by dynamic programming in
linear time. In the early 90’s, the appearance of Field-programmable Gate Arrays
(FPGAs) brought a new technology mapping problem. LUT-based FPGAs can
implement any function of k inputs in a single LUT, where k is a fixed constant
depending on the FPGA technology. The traditional library-based technology mapping

cannot be applied in FPGAs because it would be necessary to create 2* patterns that
correspond to the number of Boolean functions of n variables. Cong (1994) introduced a
technology mapping algorithm able to find timing-optimal solutions in LUT-based
FPGAs in polynomial time. Unlike the conventional tree mapping, it maps a circuit
directly over a DAG.

The dynamic programming approach proposed in (CONG 1994) is not
specifically for FPGA. Kukimoto (1998) observed that it could be easily extended to a

41

library-based mapping method. It was the first method to show that the minimum-delay
technology mapping problem for DAGs can be solved optimally in polynomial time.
This method guarantees the minimal cover under a load-independent delay model. It
only considers a fixed delay between each input and the output of a gate, discarding any
information about load effects. The method assumes that the mapped circuit can be
continuously sized to match the delay of the matches and the actual loads. It also can
take into account buffer insertion methods to reduce the load of high fanout nets. As
most of the DAG-based methods, Kukimoto’s method focuses on delay optimization
without any area consideration. Therefore, at each intermediate node the fastest
mapping is simply created no matter how critical the node is. It leads to a certain
amount a of logic duplication increasing the area of the resulting circuit.

3.4.3 Stok (1999) — Wavefront technology mapping

The wavefront technology mapping algorithm leads to a very simple and
efficient implementation that elegantly decouples pattern matching and covering but
circumvents that patterns have to be stored for the entire network simultaneously. This
approach coupled with dynamic decomposition enables trade-off of many more
alternatives than in conventional mapping algorithms. The wavefront algorithm maps
optimally for minimal delay on DAGs when a gain based delay model is used. It is
optimal with respect to the arrival times on each path in the network.

The wavefront was defined as a subgraph of the DAG, such that every path
from input to output goes through the subgraph. The subcircuit isolated by the
wavefront is bounded by the head and the tail of the wavefront. The head of the
wavefront is the boundary closer to the primary outputs (POs) and the tail of the
wavefront is the boundary closer to the primary inputs (PIs) of the circuit. If, in Figure
3.14, the vertical line with label 1 is the head and the line with label O is the tail, the
subgraphs containing the inverters form the wavefront. In addition to decoupling the
match generation and covering problems, the wavefront algorithm allows the match
generation to work only on a subcircuit, thereby minimizing the number of matches
stored at any time. Also, matches are allowed to be generated and maintained
dynamically, as opposed to generating all the matches for the entire circuit a-priori.

The algorithm is illustrated through Figure 3.14 (the same example found in
Stok (1999)). It supposes that the target library, which will be used to map the circuit, is
composed by the cells: NOR, AOI, XNOR and inverter. Furthermore, the wavefront
algorithm presumes that the circuit is levelized from inputs to outputs. Initially, both the
head and the tail of the wavefront start at level O (at the PIs level). The head of the
wavefront advances one step and the steps of match generation and implementation are
performed for all nets on this level. Matches are generated using Boolean and Structural
matchers. All pattern matchers have one thing in common; given (a) net(s) in the circuit,
they generate a set of technology cell matches for the subcircuit in the wavefront driving
the(se) net(s). All technology/library cells and their embedding in the network are
shown in dotted lines.

42

0 g

5 G GHRERoii ol e ek et i,

i
SNl

Figure 3.14: Wavefront algorithm (STOK, 1999).

Unlike conventional technology mapping, matches are not limited to fanout-
free regions; i.e. the match generation search process performs its search across fanout.
However, the subcircuit for the match generation process is isolated by the wavefront;
i.e. the match generation search process starts at a net(s) on the head of the wavefront
and stops as soon as it encounters nets on the tail of the wavefront or a net on a level
below the tail of the wavefront. As matches are generated for a node, they are
implemented in the underlying netlist as drivers of a multi-source net. The multiple
drivers on a net include the technology-independent cell and all the technology cell
matches found for that node. For instance, the net connected to the PO x has four
technology cells plus the technology-independent cell as drivers. The head of the
wavefront keeps advancing one step at a time until matches have been generated for all
nets on the highest level of the circuit.

The tail does not start moving until the head has moved for a number of steps
equal to the width of the wavefront. Covering for selecting the best match occurs for all
nets on the tail of the wavefront. After choosing the best match of a net, a cleanup
operation is recursively performed in order to remove all matches deemed sub-optimal
and the technology-independent cells. Therefore, the matches for the technology cells
are just kept in the sub-graph of the wavefront. The tail of the wavefront keeps
advancing one step at a time until all nets on the highest level of the circuit have been
covered.

Figure 3.15 demonstrates the effect of using different wave widths. Both the
quality of the mapped circuit and CPU time are affected by the width of the wavefront.
While the circuit in Figure 3.15.a is the timing-optimal cover, the circuit in Figure
3.15.b is not. When using a wave width of three levels, the XNOR match is not
allowed. It reduces the number of generated matches/patterns reducing the CPU time.

43

aro
a [y b 1 J
b M
) oo X

a) wave width =4 b) wave width =3

Figure 3.15: Wavefront resulting circuits (STOK, 1999).

3.4.4 Mishchenko (2005) — Technology Mapping with Boolean Matching,
Supergates and Choices

Mischenko has recently proposed an approach for library-based technology
mapping (MISHCHENKO, 2005) that relies and enhances upon several known
techniques, integrated and fine tuned to work in a new way. The previous work on DAG
mapping is extended, by proposing new methods for enumerating mapping choices and
performing Boolean matching, which guarantees delay-optimum phase assignment at
the gate boundaries. These techniques are used to reduce the mapping dependence on
the initial subject graph (CHATTERIJEE, 2005) (MISCHENKO, 2006). Mishchenko’s
method is incorporated in the ABC tool (ABC, 2008).

The technology mapping approach proposed by Mishchenko (2005) is devoted
to minimize the delay of the longest path in the mapped netlist under a load-independent
delay model. As shown by Kukimoto (1998), this problem can be optimally solved
using dynamic programming for DAG-covering. The key difference of Mishchenko’s
method with the conventional approaches based on DAG-covering lies in the matching
step, which uses Boolean instead of structural matching. The subject graph is
represented as an And-Inverter Graph (AIG). An AIG is a DAG whose nodes represent
either AND gates or primary inputs. Its edges represent wires. Inverters are represented
by bubbles on the edges. An example of AIG can be seen in Figure 3.16.

X1 X2 X3 X4 X5

Figure 3.16: An example of an AIG (MISHCHENKO, 2005).

The mapping is divided into 5 steps. First, for every node, it computes all of its
k-feasible cuts. A feasible cut of a node N in the AIG is a set of nodes {xi} in the
transitive fan-in cone of N such that an arbitrary assignment of values to xi completely

44

determines the value of N. A feasible cut is redundant if the value of a node in the cut is
completely determined by an assignment of values to the other nodes in the cut. A k-
feasible cut is a feasible cut of size at most k that is not redundant. The cut [N}
composed of node N alone is always a k-feasible cut of node N (for any k) and is called
the trivial cut. Each k-cut of node represents a Boolean function of k variables. In the
AIG of Figure 3.16, {n2}, {n4, n5}, {n4, x2, x3}, {n5, x1, x2}, {x1, x2, x3} are all the 3-
feasible cuts of n2. The algorithm for computing all k-feasible cuts for all nodes in the
AIG is performed in one pass over the nodes as shown in Figure 3.17.

Second, for every cut, it assigns a formal variable to each node in the cut and
computes the function of the corresponding node in terms of these variables. (The
function is computed as a bit-vector representing the truth-table.) Third, these functions
are looked up in a hash table and matched with gates from the library. Fourth, in
topological order, starting with arrival times of the primary inputs, the best arrival time
for each node is computed by choosing the library gate with minimum delay. Finally, in
reverse topological order, the best covering is chosen. (The last two steps are exactly the
same as in traditional mapping.) There is an additional post-processing step, which can
recover area on the non-critical paths.

The results presented by Mishchenko (2005) demonstrate that the Boolean
matching technique with optimal phase assignment is a better alternative to the graph
matching since it produces superior results with shorter run-time. Supergates and
choices fit nicely into this framework and greatly improve the quality of mapping by
mitigating structural bias. Furthermore, the intermediate networks seen during
technology independent synthesis are a useful source of choices for the final mapping.
However, these techniques have limitations. The exhaustive cut computation is only
practical for cuts up to 6 variables. There is a heuristic method presented in
(CHATTERIJEE, 2006) that allows non-exhaustive computation of k-cuts up to 12
variables.

void NetworkKFeasibleCuts(Graph g, intk) {
for each primary output node nof g
NodeKFeasibleCuts(n, k)
}

cutset NodeKFeasibleCuts{ Node n, int k) {
if (nis primary input) return {{n}}
if (nis visited) return NodeReadCutSet(n)
mark n as visited
cutset Set? = NodeKFeasibleCuts(NodeReadChild1(n), k)
cutset Set2 = NodeKFeasibleCuts(NodeReadChild2(n), k)
cutset Result = MergeCutSets(Sett, Set2 k) {n}
NodeWriteCutSet(n, Result)
return Result
}
cutset MergeCutSets (cutset Set1, cutset Sef2, int k) {
cutset Resuft={}
for each cut Cutt in Set1
for each cut Gut? in Set2
if (| Cutt Cut2| < k) then Result = Result { Cut! w Cut2)
return Result

}

Figure 3.17: Computation of all k-feasible cuts (MISHCHENKO, 2005).

45

3.5 Technology mapping for virtual libraries

There are some technology mapping methods based on virtual libraries. Instead
of having a library with a limited amount of cells, these approaches can handle a large
number of cells in libraries limited by some constraints. This section review some of
these techniques focusing on the objective function, the matching algorithm and the
constraints used to restrict the library.

3.5.1 Berkelaar (1988) — The first technology mapping algorithm for cell
generators

The algorithm presented by Berkelaar (1988) was a pioneering work aiming at
virtual libraries. It relies on the completeness of a generated library in an automatic way.
As other traditional technology mapping approaches, it works over DAG-partitioned
representation. This method also applies the partitioning procedure over an initial DAG
to divide the representation in logic cones. The algorithm takes as input complex
Boolean expressions that represent the logic cones of the circuit. All Boolean
expressions are denoted by a prefix notation, and they are assumed to be non-redundant
and factorized.

The expressions are represented by a specialized kind of graph as demonstrated
in Figure 3.18. Each edge symbolizes a literal of the expression. A set of three different
nodes connected through two serial edges is equivalent to an AND operation between
two literals. This is the case of the edges j and k of the graph. The association of two
different nodes connected through two parallel edges is equivalent to an OR operation.
Either the pair of edges fand g or h and i represent a parallel association. The size of the
sub-expressions is limited to reduce the number of recursive evaluations.

(+("fabc)(*de (+fg)(+ hi))(*k))

Figure 3.18: Graph expression representation (BERKELAAR, 1988).

The method performs a top-down traversal (from source to sink) over the graph
evaluating the expressions from source to sink (giving priority for the operators with
less precedence). Each sub-graph starting from any intermediate node to the sink

46

corresponds to a sub-expression. Each sub-expression should match with some cell in
the virtual library. When the optimal match is found, the nodes in the bottom of the sub-
graph become intermediate variables in the sub-expression. Then this process is
recursively repeated until the sub-expression becomes single variables.

The result of the mapping process is a multi-level gate network with minimal
logic depth and the lowest possible number of gates. The main problem of this approach
is that the algorithm cuts the top of the three first and the bottom intermediate nodes are
not mapped yet. Therefore, the algorithm does not know the depth of the uncovered sub-
functions. This depth is estimated through a heuristic instead of solving it with a
dynamic programming strategy, which could result in non-optimal solutions when
compared to dynamic programming. Even if the algorithm works on a graph, it treats
single output parts of the circuit, which is equivalent to tree mapping.

3.5.2 Reis (1998) - TABA

A different solution for virtual library technology mapping was proposed by
Reis (1998). The method TABA, as it was called, uses Terminal-Suppressed Binary
Decision Diagrams (TSBDDs), which are a specialized kind of BDD, as subject graph.
These structures have a special property. Each edge of the TSBDD corresponds to a
transistor as depicted in Figure 3.19.

s0 s1

Figure 3.19: Relation among TSBDD edges and transistor networks.

This method also applies the partitioning procedure over an initial DAG to
divide the representation in logic cones. Each logic cone is represented by a TSBDD.
The algorithm evaluates part of the diagram verifying if they respect the constraint of
the virtual library. It uses the number of series transistors for the pull-up and pull-down
networks to restrict the size of the virtual library. Each sub-TSBDD that respects the
constraints is considered a viable match. Therefore, this sub-set of nodes is replaced by
an intermediate node in the original TSBDD. The sub-set of nodes becomes a new
TSBDD that is referenced by the intermediate nodes. It is done in a hierarchical data
structure that results in a multi-level circuit representation where each instance of a
TSBDD corresponds to a technology cell.

47

Later, the author observed that there is no advantage in having TSBDDs as
subject graphs. By the way, Berkelaar’s method does not benefit from using graphs as
well; all the operations in Berkelaar’s algorithm could be easily implemented on trees.
The properties of TSBDDs are kept in tree representations. However, it was one of the
first methods to claim the re-ordering of the subject graph aiming better results, mainly,
in terms of logic depth.

3.5.3 Jiang (2001) - OTR: PTL / CMOS technology mapping

Jiang (2001) introduces two independent algorithms that can be used to map
circuits with complex gates using either PTL or CMOS cells. One of the algorithms is
called Odd-level Transistor Replacement (OTR). It maps circuits using static CMOS
complex gates through a topological gate collapsing method. It also uses the number of
series transistors to limit the size of the virtual library. The other algorithm performs a
Boolean mapping using BDDs to derive PTL cells. As discussed in the first chapter of
this work, PTL cells can be easily derived from BDDs. In the remainder of this section,
the OTR method will be reviewed.

The OTR method is fast and simple and avoids the intractable sub-problems in
technology mapping, such as matching and covering, by constructing complex gates
topologically. The basic idea of the OTR method is to use the pull-down (pull-up)
transistor structure from the gates at the previous level gates to replace the pull-up (pull-
down) transistors of the gates at the next level. To illustrate this, consider the circuit in
Figure 3.20.a consisting of gates G/ through G7. This structure has a total of 20
transistors, and a transistor-level version is shown in Figure 3.20.b. During the
procedure of transforming the circuit into a complex gate, we will need to generate
intermediate gates as shown in Figure 3.21.a for temporary use. Those intermediate
gates will be transformed into a normal static CMOS gate at the end of transformation.

As shown in Figure 3.20.b, we will refer to the pull-down and pull-up transistor
in GI (G2) as a, and a,. (ba, and b,,), respectively. The pull-down (pull-up) transistors
in GI and G2 are used to replace the fanout pull-up (pull-down) transistors of these
gates in G5 to obtain the gate G5', resulting an intermediate static CMOS gate shown in
Figure 3.21.a. For example, the pull-down blocks of G/ and G2 fan out to the pull-up
transistors pl;5 and p2;5 in G5, respectively, and hence a, and b, are inserted in their
place to create G5'. Similarly, the transistors in G3 and G4 are inserted into G6 to obtain
another intermediate static CMOS gate, G6'. These intermediate gates are treated as
intermediate synthesis stages and we will eliminate them in the next step by performing
the same operation, replacing the pull-down (pull-up) block of G7 consisting of
transistors pl;7 and p2;7 (nl;7 and n2;7) by the pull-up (pull-down) blocks of the
intermediate gates G5' (G6'). Therefore, noting that for G5’, the pull-up block consists
of a, and b, and the pull-down block of a, and b,, that G6' has a pull-up block
comprising transistors ¢, and d, and a pull-down block comprising ¢, and d,, the
following operations are performed to obtain the final collapsed gate: (1) use a, and b,
from G5’ to replace nl;7 of G7 (2) use ¢, and d, from G6' to replace n2;7 of G7 (3) use
a, and b, from G5' to replace pI;7 of G7 (4) use c, and d, from G6' to replace p2;7 of
G7. The detailed illustration of the final collapsed gate is shown in Figure 3.21.b. Note
that the final implementation has only 8 transistors, a transistor count reduction of 60%.

48

B

a) Combinational circuit b) Electrical diagram

Figure 3.20: Circuit example (JIANG, 2001).

RS 5 P %

a - j e,

i a, B i i “n 4 i | -

BN - e

5 L i - Ik

P D ¢ —® | Al

L L o e

o5 T G6' [-

..................................... G‘?’
a) Intermediate cells b) Final circuit

Figure 3.21: Logic cells generated by OTR algorithm (JIANG, 2001).

49

From the principle illustrated in this example, it is easy to see that if we
collapse an even number of levels of gates, we will be left with an intermediate static
CMOS gate, whereas if we collapse an odd number of levels, we will return to the
formal CMOS complex gate structure, and therefore this technique is called the odd-
level transistor replacement (OTR) method. The number of levels used in the
replacement process depends on the constraints for the maximum number of serial
transistors. If the length of the longest transistor chain in a given cell is smaller than the
constraint, then the cell can be used as a replacement product in the forward levels.

3.5.4 Correia (2004) — ELIS - Technology mapping for symmetric and asymmetric
virtual libraries

The approach presented in Correia (2004) also performs technology mapping
over trees. It uses n-ary trees, where nodes can have multiple outgoing edges (more than
two child nodes), as subject graph. These trees allow the use of a distinct covering
strategy that exploits several decompositions in the same subject description, taking into
account criteria that optimize the logic depth of the nodes before gathering them into
complex gates.

After the DAG partitioning procedure, each tree is transformed in a n-ary tree,
with multiple input AND/OR operators and leaf nodes representing the input literals.
There are two basic rules for this transformation. First, the DeMorgan’s theorem is
applied in the root of a tree to propagate all inverters to the leaf boundary of the tree.
This is demonstrated in Figure 3.22. Afterward, every adjacent node with the same
operator label is grouped into a single node as illustrated in Figure 3.23.

L

Figure 3.23: Grouping equivalent nodes (CORREIA, 2004).

50

The n-ary subject trees embed all possible decompositions achieved by the
application of associative transformations. As stated before, the initial decomposition of
the subject graph has a significant impact in the technology mapping due to the
structural bias. The impact of the initial structure can be reduced when different
decompositions are explored. Thus, better results can be achieved. Figure 3.24 shows
different decompositions for the tree represented by Figure 3.23.

(a) (b) (¢}

Figure 3.24: Embedded decompositions (b,c) in a n-ary tree (a).

The trees are traversed through a depth-first search procedure, and each node
has its depth and (s,p) costs calculated. The series (parallel) cost of an AND (OR) node
is given by the sum of all the s (p) costs of its children. The parallel (series) cost of
AND (OR) node is given by the highest cost among all de p (s) costs at its children.
Leaf-nodes have (s,p) costs equals to (1,1). At each node where the series and parallel
costs comply with the specified constraints, a match is established. The covering
procedure is bottom-up, following a dynamic programming strategy. As a result, each
node, whose children have already being covered, has a precise information about (s, p)
costs. The costs for a complete tree are shown in Figure 3.25.a. If a node is found
having the (s,p) costs in the maximum value allowed, it is marked as an ideal cut. An
example of an ideal cut made at a node for a (2,2) restriction is shown in Figure 3.25.b.
The sub-tree rooted at this node is then cut and directly associated to a CMOS complex
gate. The cut node at the original tree is replaced by a new leaf node, with associated
cost (1,1) and logic depth given by the value of the root of the recently cut tree plus 1.
The search then restarts at this node. If a node is found with any of its costs exceeding
the limits, it is further sliced. Its set of sons is scanned in terms of costs and depths.
Several clusters grouping the nodes with lower depths are considered at this time. A
new node with the same operator is added as its son, and this new node receives a set of
sons that maximizes the (s,p) costs and minimizes the depth of the new node. The new
node is then cut and the cluster directly associated to a CMOS complex gate. The set of
nodes removed from the original tree is substituted by a single new leaf node, with
associated costs (1,1) and logic depth given by the worst value of this set plus 1. The
search restarts then at the node that had some sons removed. If it still has any exceeding
cost, the last step is repeated. After each iteration, the costs of the remaining nodes that
root subtrees recently modified are recalculated.

51

(a) (b)

Figure 3.26: Final cover (before inverter minimization).

The main advantage of this method is that it considers dynamically several
decompositions of the subject description at low or no cost and covers them optimally in
a dynamic programming manner. It finds the optimal cover in linear time. A final cut
and its associated implementation is shown in Figure 3.26. After this, a dedicated
process will proceed the gate polarization step, where inverters are used where

52

necessary, prioritizing the critical paths. By exploring dynamically several
decompositions embedded in the same tree, this method can achieve better results than
simply relying on the initial structure provided. This improvement is accomplished at a
lower computational cost than barely trying exhausting all the possibilities over
numerous instances of the same description. More detailed results were present by
Correia (2004). In agreement with Keutzer (1987-b), these results show that rich
libraries improve the quality of the mapped circuit. A comparison against SIS
technology mapping shows significant improvements in terms of delay. The final area
achieved by the Correia’s method is slightly bigger than the circuits mapped by SIS.

3.6 Technology mapping methods overview

All technology mapping methods reviewed in the previous sections are
summarized in Table 3.2. The second column shows the subject graph used by each
method. In column three, we can see three different matching types: structural,
topological constraint and structural/Boolean. Structural matching is strongly dependent
on the structure of the subject graph. Some methods use a mixed solution of Boolean
and structural matching. Although the Boolean matching is slower than structural
matching, it usually gives better results. In some cases, it can be used to avoid structural
bias. The other matching type is ‘topological constraint’. It may be dependent on the
structure of a circuit. However, it relies on how the constraints are calculated. The
covering strategies of each method are enumerated in the fourth column. Except by the
Berkelaar’s method, the other methods use a bottom-up covering strategy. The top-
down strategy leads to non-optimal results. Finally, column five categorizes the
methods according to its dependence on a static library.

Table 3.2: Differences among previous technology mapping methods.

. Matching Covering Static
Method Subject Graph Type Type Library
Binary tree
Keutzer (1987-a) | represented through Structural Bottom-up Yes
a string
Boolean expression Topological
Berkelaar (1988) represented by a POIOE! Top-down No
constraint
graph
Kukimoto (1998) DAG Structural Bottom-up Yes
Reis (1998) TSBDD Topological Bottom-up No
constraint
Stok (1999) DAG Structural / Bottom-up Yes
Boolean
Jiang (2001) C1rcu¥t electrical Topolog}cal Bottom-up No
diagram constraint
Correia (2004) N-ary tree Topolog} cal Bottom-up No
constraint
Mishchenko Structural /
(2005) AIG Boolean Bottom-up Yes

53

4 TECHNOLOGY MAPPING USING CMOS GATES WITH
MINIMUM TRANSISTOR STACKS

This chapter introduces a new approach for library-free technology mapping
using CMOS gates with minimum transistor stacks (the lower bound cells presented in
(SCHNEIDER, 2005)). The available technology mapping methods/tools are analyzed
in order to verify how these techniques can handle lower bound cells. Our method for
library-free technology mapping, which is called VIRMA (“VIRtual technology
MApping tool”), is described in the following. It includes a description of the object
function, subject graph and all supporting functions.

4.1 Previous technology mapping techniques and CMOS gates with
minimum transistor stacks

The previous chapter presented a quick overview of several technology
mapping techniques that are based on different subject graphs and on dynamic or static
libraries. In this section, some crucial points concerning lower bound cells are
discussed. Not all available technology mapping methods can take advantage of these
complex gates, either due to their subject graphs or library limitations. These aspects are
discussed in the following.

4.1.1 Cell instances

The exploration of lower bound benefits in the circuit design is strongly
attached to the technology mapping procedure, as stated by Rosa (2007).

Lemma 1: every function that can be expressed as a prime irredundant sum of
products (ISOP) without repeated literals will have a complementary series-parallel
(CSP) implementation with minimum length transistor chains.

Example 1: The cell shown in the left part of Figure 4.1 will have a regular
series-parallel implementation which is PU=2 and PD=3 (2,3). This corresponds to the
lower bounds for this cell, implementing a function without repeated literals.

Corollary 1: It is a necessary condition for a cell not to respect the lower
bound that it has more than one transistor in the same plane controlled by the same
variable (in positive or negative polarity).

Example 2: The cell in the right part of Figure 4.1 will have a regular series-
parallel implementation which is (2,3). However, the lower bounds for this function

54

(with repeated literals) are (2,2), and a non-complementary cell is necessary to achieve
the lower bounds. This corresponds to a self-dual implementation of a carry-out circuit
that is used in practice.

Corollary 2: Respecting the lower bound does not depend on the cell structure
itself, but also on the way the cell is instantiated in a circuit. This way, a cell library
where all the cells respect the lower bound is not sufficient to have a final circuit where
all the cell instances respect the lower bounds, as some instances may not respect the
lower bounds if different input pins are externally (to the cell) connected to logically
equivalent signals.

— PO OT @

O 9T QO W@

LB = (2,3) LB = (2,2)
Figure 4.1: Cell instances and the lower bounds.

Example 3: Consider the cell given by the function
cl=x1-x24x3- x4+ x5-x6. This cell would be available in many commercial libraries
under the name OA222. This cell has a regular series-parallel implementation which is
(2,3). Now consider two different instances of the same cell as shown in the Figure 4.1.
Aninstance fl=a-b+c-d+e- f will respect the lower bounds, as the structure of the
cell is (2,3) and the lower bounds for this function are also (2,3). An instance
f2=a-b+b-c+a-c will not respect the lower bounds, as the structure of the cell is
(2,3) and the lower bounds for the implemented function are (2,2).

Corollary 3: It is not sufficient to look at the instance of a cell to determine if
it respects the lower bounds, as logic equivalency among different signals may happen
through syntax that is expressed externally to the cell instance, like buffer and inverter
connections.

Example 4: Consider the cell given by the function
cl=x1-x2+x3-x4+x5-x6 and an instance fl=a-b+c-d+e- f . The instance will
potentially respect the lower bounds, as the structure of the cell is (2,3) and the lower
bounds for this function are also (2,3). However, if some buffers instantiated in the
circuit say that a=e, b=d and c = f, then the function is a (2,2) function. In order to
discover this, it is necessary to determine which signals are equivalent through chains of
inverters and buffers.

As a general conclusion about cell libraries and the respect to the lower
bounds, it is possible to notice the following:

1. All the cells in the sp.genlib libraries distributed with SIS (SENTOVICH,
1992) have structures that respect the lower bounds. This is a consequence
of these cells not presenting repeated literals. However, when instantiated
in a circuit, these cells may have logically equivalent signals connected to

55

different cell inputs and as a consequence some instances may not respect
the lower bounds.

2. Most cells inserted in commercial libraries have a structure that respects
the lower bounds. However this does not guarantee instances respecting
the lower bounds.

3. If a cell with a structure that does not respect the lower bounds is inserted
in a library, none of its instances will respect the lower bounds. However,
this is a situation that rarely happens because commercial libraries are
usually composed by cells that can be expressed by an equation without
repeated literals (except by adders, XORs and memory cells).

4. Any statistics about the number of cells that respect the lower bounds
should be divided into two different questions. First question is to look at
cells in the library, and see if the cell structures respect the lower bounds.
This question involves only the quality of cell networks in the library.
Second question is to look at cell instances in a circuit. This question
evaluates how the library, the circuit, and the technology mapping fit
together. In order to be valid, this second analysis should also be aware of
logic equivalency expressed through buffers and inverters.

4.1.2 Tree based and DAG based technology mapping techniques

Another very import point for mapping circuits using lower bound cells are the
subject graphs. Some of these representations impose some structural barriers for the
mapping methods (structural bias). Most techniques are based on trees and DAGs. Trees
are a fanout-free representation. It means that repeated literals can only appear in sub-
trees that reach the leaf-nodes (refer Example 3 of the previous section). Moreover, the
depth of the trees is generally not too large for many circuits. Therefore, it reduces the
number of possibilities for implementing Boolean functions with the lower bounds for
serial transistors.

On DAG representations there is path re-convergence. Thus, sub-graphs
starting on any node of the DAG can represent functions with repeated literals. It makes
this kind of data structure more appropriated for handling lower bound cells.

4.1.3 The computation of series transistors

All existing library-free mapping methods such as (BERKELAAR, 1988)
(GAVRILOV, 1997) (REIS, 1997) (CORREIA, 2004) (JIANG, 2005) computes the
number of series transistors by series/parallel associations. This is a structural non-
Boolean way of computing the number of transistors in series, and it is monotonically
increasing.

The series (parallel) association of transistors computes the number of series
(parallel) elements of an association as the sum (maximum) of the elements in series
(parallel) in the association. Following the notation (series, parallel) or just (s, p), the
computation rules are resumed below:

e AND association: (s, p) cost = (sum(sy,...,S,), max(pi,....Pn))-
® OR association: (s, p) cost = (max(sj,...,Sn), SUM(P1,....pPn))-

¢ Inversions: (s, p) cost = (p, s) cost.

56

The series/parallel association of two logic functions will result in a function
with a higher (or equal) number of transistors in series than the functions associated.
This is demonstrated through the DAG of the Figure 4.2. The association of the sub-
functions f3 and f4 results in the sub-function f6. The (s,p) cost of f6 is higher than f3
and f4. The costs are always increasing until the node that represents f7.

Schneider (2005) presented a method for Boolean computation of the number
of series transistors. The main advantages of this Boolean computation are:

1) The values are minimal.

2) The values depend solely on the candidate function and are univocally
defined. They do not depend on sub-functions being associated (it is a non-
structural method).

The first affirmation was demonstrated in the second chapter of this thesis
using examples of NCSP cells. These cells are constructed from the minimal SOP of the
ON-set and OFF-set of a Boolean function. The minimal SOP is achieved through a
Boolean method which is based on a modification of the Quine-McCluskey methods.
The second affirmation is quite interesting since we can conclude that the Boolean
computation is not monotonically increasing. This is also illustrated in the Figure 4.2.
While the structural computation gives a (s,p) cost of (4,2) for the sub-function f6, the
Boolean method gives (3,2), even considering that f4 has alone a higher cost. This is
more apparent for the function f7 which has cost (2,2).

) F1:@G.1)= F1:(3.1)

F7

F7: (4,52 F7:(2.2)

\ {
’o F6:(42) 2 F6: (3.2)

() F4:(4,1)= F4: (4,1)

Figure 4.2: Computation of series transistors.

Based on the explanation above, we stress that our technology mapping
algorithm depends on a Boolean method for computing the number of series transistors.
The structural method is quite simple and its complexity is linear to the number of
nodes in the sub-graph. In case of the Boolean method, the complexity is very
dependent of the method that searches for the minimal SOPs. It might be a bottleneck

57

for the mapping algorithm since it is called for each match created during the matching
phase. Therefore, it must perform a very quick computation.

4.1.4 Contextualizing the problem

The evolution of VLSI circuits is directly related to their manufacturing
processes. Accordingly to the Moore’s Law, each new generation of the lithography
process brings more integration, storage capacity, performance and energy efficiency
for VLSI circuits. However, the design of these circuits involving new technologies is
very expensive. Many companies would prefer to invest in good EDA tools that explore
specific optimizations during the circuit design process. There is a whole search space
that is usually not explored in industrial tools. Instead of changing the used technology
to obtain more performance, for instance, the designer could count on efficient cells in
the library (either virtual or static). This leads to the approach introduced in
(SCHNEIDER, 2005), which shows that transistor networks can be constructed using
minimal transistor chains through NCSP gates.

As stated in the previous section, there are many occurrences of cells that do
not respect the lower bounds on implementing some Boolean functions. None of the
previous techniques explores the use of these cells. Recent works proposed automatic
techniques to construct transistor networks that respect the lower bounds with respect to
the length of series transistor chains (ROSA, 2006). In order to verify how these cells
can contribute to implement circuits with better performance, a new technology
mapping method is needed.

4.2 VIRMA technology mapping tool

The VIRMA technology mapping tool puts together two concepts: library free
technology mapping and lower bound cells. The first prototype to evaluate our method
started to be developed early in 2005. It was strongly based on the wavefront
technology mapping presented by Stok (1999). Later, a new Boolean technology
mapping algorithm was introduced in (MISHCHENKO, 2005). Since this algorithm has
a Boolean nature and has presented good results with static libraries, a new version of
VIRMA was developed on its principles to explore the potential of virtual libraries.
Both methods are described in the remaining of this section, including the objective
function and all algorithms/functions needed by the VIRMA algorithms.

4.2.1 Defining the object function

Usually, a precharacterized cell library has accurate information for each
designed cell. It includes delay, area, power consumption, etc. The availability of delay
information can help timing analysis algorithms, providing a very accurate timing
analysis for mapped circuits. Since our technology mapping tool is not based on a pre-
characterized library, our cost function uses topological metrics to estimate delay costs.
Basically, the number of series transistors of the longest pull-up/pull-down path is used
as metric. Even though this is not accurate, the minimization of this number leads to
circuits with lower delay.

In our topological model, each cell has its own cost for the pull-up plane and
pull-down plane. There are also costs attached to each cell output. They represent the
cost for the longest path from a primary input to the output net of the cell. The pull-up
cost is calculated by the sum of series transistors in the pull-up plane (SPU) of each cell

58

along the path. The pull-down cost (SPD) is computed similarly using the pull-down
plane costs.

The circuit in Figure 4.3 illustrates how the costs are calculated. It is composed
by the gates G1 to G5. The set of logic cells that implements the circuit is shown in
Figure 4.4. A pair of numbers represents the PU/PD costs of a logic cell. For instance,
the gates G1, G2, and G3 have cost 1,2, where PU is 1 and PD is 2. Similarly, a pair of
numbers represents the SPU and SPD costs for each cell output. There are three driver
cells connected to the multi-source net of the primary output. The cell with the lowest
SPU is considered the fastest implementation. When there is more than one cell with the
same value for SPU, the cell with the lowest SPD is deemed the fastest implementation.
Therefore, the gate G5 is the fastest implementation for the net of the primary output.

e
1
o— L
63 pEE4—O
D__n.r_ 1,2
oy - G2
2.2

Figure 4.3: Cost function modeling.

1.2
......................... 40 Ik
230 F— TS 53]
RO N A b |
L <L b |
: ..516263 |
T 40 - |
- s =

Figure 4.4: A set of logic cells.

4.2.2 Pre-processing procedures

As most of the technology mapping methods, VIRMA needs some pre-
processing procedures before starting the matching and covering phases. First, the
original circuit representation must be converted to a subject graph. Our algorithm
assumes that the initial circuit is decomposed in 2-Input AND/OR gates, in order to
increase the granularity of the circuit, to provide more freedom for the matching

59

algorithm in generating arbitrary complex gates. It is represented by a DAG containing
only nodes with two outgoing edges. The nodes can be primary inputs or outputs,
inverters, and OR and AND operators. This procedure is demonstrated through Figure
4.5.

a o— i
b &o—
c Do—

d o—
iy

a) original circuit with complex gates

e

£
d o— fD_D——Gy

b) decomposed circuit

Figure 4.5: Creating the subject graph.

Second, all inverter nodes in the subject graph are removed. This technique is
used in order to reduce the total number of pattern matches, given that every possible
match containing an inverter is discarded. As demonstrated in the Figure 4.6, inversion
flags are placed in all incoming edges (circuit nets) connected to inverter nodes.
Therefore, the signal phase assignments are preserved.

C O—
d o— fD_D—Cy

Figure 4.6: Inverter removal and phase assignment.

The last step is the circuit depth calculation. This is done through a depth-first
search algorithm. The depths are annotated in the respective nodes. Inverters are not
counted in the depth calculation since they are not represented by DAG nodes at this
moment (refer to Figure 4.7). The depths are needed for both matching and covering
algorithms. Each iteration of these algorithms works on a set of nodes of a given
level/depth.

60

oo

07 19

fD—a) 1y

Figure 4.7: Levelizing the subject graph.

4.2.3 Post-processing procedures

Since all inverters are removed before the technology mapping algorithm, a
post-processing procedure may be required to ensure the correct phase assignment of all
circuit nets. This can be done through a very simple procedure that verifies the polarity
of each net of the circuit. The algorithm checks all inversions assignments in a net either
for the inputs of the net driven cells or for the output of the driver cell. Figure 4.8
illustrates this procedure. The net n of Figure 4.8.a is connected to the cells X, Y, G1, G2
and G3 (primary inputs and outputs are also represented by nodes of a DAG). As the
output of the gate GI, the inputs of the cells X and G2 have inversion assignments.
Therefore, the connection of these cells is in the correct phase. Nevertheless, the cells Y
and G3 do not have inversion assignments. Thus, an inverter is needed to correct the
signal phase. This process results in the circuit of Figure 4.8.b.

——OCIX —X
9 « | G2 |—oee
=l w1t
000 = e —°t 000 = s —
a) net with phase assignments b) adding inverters

Figure 4.8: Adjusting polarities of the circuit nets.

4.2.4 VIRMA wavefront technology mapping

VIRMA wavefront (VIRMA-WF) technology mapping was derived from the
wavefront algorithm presented in (STOK, 1999). The wavefront algorithm leads to a
simple implementation and maps optimally for minimal delay on DAGs using a static
cell library. Since our approach is based on virtual cell libraries, some small
modifications were needed. However, the original characteristics such as the
management of the pattern matches and the objective function model for multi-source
nets were preserved.

The VIRMA-WF method is outlined in Figure 4.9. As the original wavefront
(STOK, 1999), the wavefront is defined as a subgraph of a DAG, such that every path

61

from input to output goes through the subgraph. The subcircuit isolated by the
wavefront is bounded by the head and the tail of the wavefront. The matching
generation window is given by the wave_width. For instance, consider the window
shown in Figure 4.10 that has width 3. The head starts at level O (primary input nets). It
advances level-by-level and the match generation, which is outlined in Figure 4.11. This
is done for all nodes on the head level. After the matching generation step is finished for
a given node n, the covering algorithm (Figure 4.12) is immediately invoked, in order to
choose the best match for n. These steps will be repeated until the head reaches the
highest level in the circuit. Finally, considering the inversion flags in the circuit
representation, inverters are inserted when it is necessary.

Algorithm 4.1: Main Algorithm of the VIRMA-WF method.

Input: subject graph (DAG decomposed into AND/OR/NOT primitives), maximum number of series
transistors in the PU plane, maximum number of series transistors in the PD plane, wavefront window
width.

Qutput: mapped circuit netlist.
1 procedure wavefront_mapping(dag_cir, pu_max, pd_max, wave_width) {
2 remove_all_inverters(dag_cir);

3 levelize_circuit(dag_cir);

4. highest_level = highest_level_of_the_circuit(dag_cir);

5: head_level = 1;

6 while (head_level < highest_level) {

7 head_nets = list_of_all_nets_on_head_level(dag_cir, head_level);

8 foreach net, n in head_nets {

9

/*Generate all matches considering a set of constraints*/

10: generate_matches(dag_cir, n, max_pu, max_pd, head_level, wave_width);
11: /*Select the best match for the net n*/

12: covering_algorithm(dag_cir, n);

13: }

14: increment head_level;

15: }

16: add_inverters(dag_cir);

17: }

Figure 4.9: Main algorithm of VIRMA-WF.

62

Figure 4.10: Matching generation window.

Algorithm 4.2: Matching generation.

Input: subject graph (DAG decomposed into AND/OR/NOT primitives), reference net, maximum
number of series transistors in the PU plane, maximum number of series transistors in the PD plane,
the head level, wavefront window width.

Output: matches sub-graphs are inserted directly into the DAG representation.

procedure generate_matches(dag_cir, n, pu_max, pd_max, head_level, wave_width) {

- In the DAG, generate all the pattern matches for the net n, such that the search for pattern
matches is performed in the interval [head_level — wave_width : head_level]; At this point,
other constraints can be used to limit the match generation;

foreach pattern match, pat in the list_of_pattern_matches {
/* Compute lower bound for pull-up and pull-down planes*/
cost_pu = compute_lower_bound_pu(pat);
cost_pd = compute_lower_bound_pd(pat);
if (cost_pu <= max_pu && cost_pd <= max_pd) {
- Store pat as a logic_cell;
- Make logic_cell, a driver of n in the DAG representation (dag_cir);

- Connect all inputs of logic_cell to their correspondent nets;

Figure 4.11: Matching algorithm.

63

Algorithm 4.3: Covering algorithm.
Input: subject graph (DAG decomposed into AND/OR/NOT primitives), reference net.
Output: mapped DAG.

procedure covering_algorithm(dag_cir, r) {

- Compute the sum of pull-up for all cells driving net n;

- Compute the sum of pull-down for all cells driving net n;

- Disconnect all driver cells on n, except the selected cell, and perform a cleanup

1
2
3
4: - Select the cell with the lowest sum of pull-up and pulldown;
5
6 operation on their exclusive inputs;

7

Figure 4.12: Covering algorithm.

The main difference of the VIRMA-WF method to the original wavefront
technology mapping algorithm is found in the matching phase. While the library based
algorithm uses structural patterns for library matching, the matching algorithm of the
VIRMA-WF is purely Boolean. During the matching generation procedure, the lower
bound for the number of series transistors is calculated from BDDs that represent
Boolean functions of each match. All matches are enforced to obey the inequality pull-
up_cost <= pull-down_cost. When this condition is false, the inverse function is
considered (refer to Figure 4.13). Therefore, the inequality will be respected. Two
constraints are used to validate the patterns: max_pu and max_pd. Both limit the
maximum number of series transistors for the pull-up (max_pu) and pull-down
(max_pd) chains for each match of a given circuit net. Besides these constraints, another
set of restrictions can be used to avoid an excessive number of matches. For instance,
the number of variables and/or the number of literals can also limit pattern matches. The
matchings are not limited to fanout-free regions; i.e. the match generation search
process performs its search across fanout, when the nets are in the wavefront. However,
it can be easily limited to fanout-free regions testing the fanout of each net in the search
space. This technique can be used in order to save area.

a) pu_cost > pd_cost b) pu_cost < pd_cost

Figure 4.13: Function inversion during the mapping process.

64

The library-free wavefront algorithm is illustrated by Figure 4.15. Assume the
following constraint values: max_pu = 2, max_pd = 3 and wave_width = 3. The circuit
to be mapped is shown in Figure 4.14. The labeled vertical dashed lines represent the
head of the wavefront. All matches and their embedding in the network are shown in
dashed lines. When the head reaches the level 1, the 2-Input NAND gates are added as
drivers of their respective nets in the circuit, creating multi-source nets. After the
covering algorithm selects the best match for the last net on level 1, the head is moved
to level 2. As the wave_width is equal to the highest level of the circuit, on level 2,
matches are generated until the primary inputs. The covering algorithm selects the best
match for a net, and also disconnects all driver cells, except the selected match,
performing a cleanup operation on their exclusive inputs. Figure 4.16.a shows the
mapped circuit under these constraints. If the wave_width is reduced to 2, the circuit in
Figure 4.16.b is obtained. The same circuit is obtained, assuming the following
constraints: max_pu = 1, max_pd = 2 and wave_width = 2.

a o
b =>—

b &
c o f

a o
C O
d o

Figure 4.14: Decomposed circuit.

0 1 2 3
[I I [
|
| 1,2 jf,'_}-?--'gg : : |
ot AT a—dTTy | |
|5 : | | i o, | I
. e 22
d = E | S S i | ey I
pe] i b T lpod | 2sl
i | I dETiNabrberacd) iy
bo—— | | y—=—ido—i_ 23 i
C b J i [Pl
) e 13 U o
! 12 0 L d O 13“ !) |
[P e = - : | I
o | i —\ | : aD) i : :
dom—r—_J | | :
------ 1,2 .':.? 1’2"

Figure 4.15: Best matches generated by VIRMA-WF.

—h

65

a o
b O

d [Co— b &>— — 4.8

b 2,3 .

g E—1ab + b;;; acd)—af ¢ D_:}:)‘D"—_}DO—G f

Co— -
C O
A5 o
a
a) wave width = 3 b) wave width =2

Figure 4.16: Circuit mapped with VIRMA-WF.

4.2.5 VIRMA and k-cuts

Mishchenko (2005) has recently presented an approach for technology
mapping based on DAGs was that relies on a simple exhaustive procedure able to
enumerate all k-feasible cuts where & is the number of variables in a sub-function of the
circuit. Each k-cut is matched against the library using a Boolean matcher.

This algorithm can also be extended to perform technology mapping using
virtual libraries. VIRMA-K-Cuts algorithm, which uses k-cuts, is introduced in this
section. It uses the same subject graph as the VIRMA-WF method. Before starting the
technology mapping algorithm the subject graph is also pre-processed. After the
mapping procedure, it also performs the correction of the net phase assignments. The
difference of Mishchenko’s method and VIRMA-K-cuts is in the Boolean matcher.
Instead of matching every k-cut against a library of patterns, the lower bounds for the
number of series transistors are calculated through a BDD-based algorithm. If the lower
bounds for pull-up and pull-down networks respect the constraints of the virtual library,
then it is considered a valid match. As an example, consider the k-cuts of Figure 4.17.
The whole circuit is covered by a k-cut of 4 variables. This cut is a Boolean equivalent
to the 4-input XOR gates presented in Figure 4.18. The implementation of this gate in
the regular CMOS CSP is prohibitive since it has eight serial transistors in the longest
pull-down path. However, it can be implemented with a NCSP cell that does not have
more than four series transistors in any of the network planes.

In library-based approaches that use structural matchers, each sub-graph rooted
by a given node is matched against each pattern of the library. Although the number of
possible matches is directly related to the library size, typically, it binds few patterns in
the root node. It results in less CPU time to compute the accumulated match costs. Even
in library-based approaches that use Boolean matchers, the number of attached matches
in a node is not so high. Accordingly to Mishchenko (2005), when computing all 5-
feasible cuts, the number of matches attached to each node varies from 20 to 30 matches
in many practical cases.

66

a) CMOS CSP b) NCSP

Figure 4.18: 4-input XOR gates.

67

Unlike the traditional library based approaches, the VIRMA-WF has to
compute all structural combinations of adjacent nodes inside the wavefront window.
Since the lower bound cost is not monotonically increasing, it has to compute all
combinations. This number grows exponentially by increasing the wave width, which is
demonstrated through Figure 4.19. In order to find the 4-input XOR match, a wavefront
with width 6 must be used. This way, the algorithm will compute 1294 combinations of
candidate matches. The VIRMA-K-Cuts method would find less than 30 candidate
matches by computing all 6-feaseble cuts. This is one of the main advantages of the k-
cuts method.

The computation of all feasible k-cuts has limitations. The exhaustive
enumeration of k-cuts is limited to 6 variables in most of the practical cases. Chatterjee
(2006) proposed a non exhaustive heuristic method to compute k-cuts up to 12
variables. This heuristic was not yet incorporated in the VIRMA-K-cuts approach.

1
4
c 5
d 1 36
] 1
4 — 5 37
1294
1 f
a R
b
—d 1 [. 37
q 4
1 36
4
S—
1

Figure 4.19: Computing the number of possible structural combinations.

4.3 Final considerations

Both VIRMA-WF and VIRMA-K-Cuts methods can be extended to support
other features. Since it is not restricted to fanout-free regions, the area can grow fast
during the technology mapping. In order to find a good trade-off between area and
delay, the algorithm can be limited to map fanout-free graphs in regions that are not
critical in delay. Therefore, the DAG mapping approach would be used only in critical
regions.

In (STOK, 1999), another extension based on a two-pass algorithm was
proposed to optimize other cost functions. Instead of keeping only the best match for
each network, one or more other matches are kept in the first pass. In a second pass,
from the primary output to the primary inputs, the slower (smaller) patterns can be
chosen in the off-critical regions to minimize area.

68

In addition, this strategy can be used to perform a mixed technology mapping
using different topologies for logic designs. The works presented in (YAMASHITA,
1997) and (JIANG, 2001) show that mixed designs using PTL and static CMOS cells
can have better area/delay/power than circuits realized with only one logic style. The
transistor network generator proposed in (ROSA, 2006) is able to generate PTL cells,
and other different topologies as well. Thus, the two-pass approach can be used to
realize mixed technology mapping using PTL and NCSP cells. Following the idea of
keeping more than one match for each net in the circuit, extra matches can be generated
considering different topologies. Hence, matches implemented by PTL cells will be
available for the second pass algorithm.

69

5 EXPERIMENTS

This chapter presents different sets of results to validate the concepts proposed
in this thesis. The first set of results contemplates an analysis done over the VIRMA-
WF method against SIS (SENTOVICH, 1992). These results were presented in
(MARQUES, 2007). A more complete analysis of the VIRMA methods is done by
comparisons against the academic state-of-art tool, ABC (ABC, 2008) that incorporates
the method presented by Mishchenko (2005), as well as by comparing VIRMA against
two industrial technology mapping tools.

5.1 Comparisons between SIS and VIRMA-WF

In this section, results for a sub-set of seven ISCAS’85 benchmark circuits are
presented, comparing the technology mapping performed by SIS (SENTOVICH, 1992)
and VIRMA-WF (MARQUES, 2007). The algorithm prototype was developed in Java.
All results were generated on a PC workstation running Windows XP using an AMD
Athlon 64/3200+ processor.

For this experiment, the circuits were first decomposed into inverters and 2-
Input NAND/NOR gates using SIS. Next, we performed technology mapping, using SIS
and our method, for all benchmark circuits. Finally, using our cell generator, NCSP and
CSP CMOS transistor networks are derived for the mapped circuits produced by our
method and by SIS, respectively. Results are shown in seven different tables. In Tables
4.1 to 4.7, the first columns show the name of the circuit. The labels of the following
columns describe the cell libraries used during the technology mapping. The columns
33-4 and lib2 show results for the cell libraries 33-4.genlib and lib2.genlib, respectively,
mapped by SIS targeting minimum delay. Since the cell libraries 33-4.genlib and
lib2.genlib have cells with costs equal or lesser than 3 for the pull-up and pull-down
planes, and few cells where PU or PD cost can be 4 (such as cells found in the
lib2.genlib), all circuits were mapped by our method using wave_width = 4 and the
constraints 3,3 and 3,4 to limit PU and PD costs. The label T (e.g. (3,3)-T and (3,4)-T)
indicates that the mapping was limited to trees (fanout free regions). The label D (e.g.
(3,3)-D and (3,4)-D) indicates that the mapping was allowed to duplicate logic, resulting
on DAG mapping.

Table 4.1 shows the accumulated sum of series transistors on the pull-up and
pull-down planes of each cell on the longest path of the circuit. The longest path was
found following the same criteria of the covering algorithm that is based on SPU and
SPD costs. It is noticeable that VIRMA-WF reduces the accumulated transistor chains

70

along the longest path. In order to prove that the reduction of transistor in the pull-up
and pull-down planes can reduce the circuit delay, we used SPICE simulation to
estimate delay. This way, the ten most critical paths (considering SPU and SPD costs)
were extracted from each circuit and were individually simulated in order to find the
worst path delay. The transistors used on the SPICE description have fixed size using a
technology model 130 nanometers. Table 4.2 presents a delay comparison between SIS
technology mapping and VIRMA-WF technology mapping. The second column (33-4
(ns)) shows delay values expressed in nanoseconds for circuits mapped by SIS. The
columns 3-7 show normalized values corresponding to the delay values of the second
column. VIRMA-WF method provides better results than SIS results, with average
delay reductions of about 27% and 33% considering virtual cell libraries restricted by
the constraints 3,3 and 3,4, respectively. The technology mapping limited to trees (all
column labels tagged with -T) performed by our method also shows improvements of
13%-15% in average. These gains demonstrate the effectiveness of having Boolean
matching combined with a virtual library that is able to use lower bound cells.

Table 4.1: Pull-up and pull-down sums in the longest path.

SIS VIRMA-WF
cireuit 33-4 lib2 33)-T | 33)-D | 34)-T | (34)-D

SPU|SPD|SPU|SPD|SPU|SPD|SPU|SPD|SPU|SPD|SPU| SPD

c1355 311 52| 31| 55| 34| 45| 25| 301 31| 46| 19| 27

c1908 411 58| 40| 56] 39| 52 301 38| 37| 50f 27| 40

c3540 60| 78| 54 69| 42| 67| 391 60| 39| 69| 33| 52

c432 391 55| 34| 52| 33| 49| 31| 43| 25| 47| 24| 41

c499 291 35| 24 35| 27| 32| 25| 27| 24| 33| 18] 26

c6288 124 243| 131 247] 153] 213] 95| 113] 153] 213] 88| 125

c880 321 41 21 39| 26| 35 21| 32| 20| 36/ 16/ 38

Table 4.2: Delay comparisons between SIS and VIRMA-WF.
SIS VIRMA-WF

circuit | 33-4 (ns) lib2 33-T | 33-D | 34)-T | 34-D
c1355 2,3205 1,07 0,94 0,61 0,93 0,52
c1908 2,5334 1,08 0,87 0,65 0,87 0,71
c3540 3,3702 1,04 0,94 0,90 091 0,65
c432 2,7021 0,88 0,32 0,76 0,79 0,70
c499 1,8734 0,91 0,82 0,71 0,80 0,64
c880 2,2671 0,91 0,83 0,77 0,82 0,80
average 0,98 0,87 0,73 0,85 0,67

Area comparison, considering the number of transistors of each circuit, can be
seen in Table 4.3. The absolute values are shown in the column 33-4. All other values
are relative to those values. Due to logic duplications during technology mapping,
which is inherent to DAG mapping, our method may increase the area. The area penalty
for using our technology mapping algorithm is 18% and 31% in average for the virtual
cell libraries 3,3 and 3,4, respectively. There are cases where the average area increase

71

is negligible. It happens for the technology mapping limited by fanout. Although for
these cases the delay gains were not maximized, a good area/delay trade-off is still
achieved.

Table 4.4 shows the execution times for SIS and VIRMA-WF, given in
seconds. VIRMA-WF is clearly more time consuming than SIS. As the obtained
execution times show, they are not proportional to the size of the circuit. For instance,
considering the virtual cell library (3,4), the circuit c499 uses more time than the circuit
c3540. However, c499 is smaller than ¢3540. This is mainly due to the complexity of
the lower bound calculus for each match, and also to the number of generated matches
during the technology mapping process.

Table 4.3: Area comparisons between SIS and VIRMA-WF.

SIS VIRMA-WF
circuit 334 lib2 3,3)-T 3,3)-D 3,4)-T 3,4)-D
c1355 2140 1,03 0,92 0,87 0,89 1,15
c1908 2390 1,01 1,02 1,19 0,94 1,11
c3540 4410 1,09 0,99 1,32 1,05 1,38
c432 790 1,13 1,13 1,37 1,08 1,39
c499 1484 1,00 1,04 1,00 1,00 1,26
c880 1256 1,00 1,08 1,33 1,03 1,54
average 1,05 1,03 1,18 1,00 1,31
Table 4.4: SIS and VIRMA-WF runtime.
SIS VIRMA-WF
circuit 334 lib2 3,3)-T 3,3)-D 3,4)-T 3,4)-D
c1355 0,4 0,3 13,0 4941 27,8 5424
c1908 0,6 0,5 15,3 404,7 19,1 766,3
c3540 2,9 2,6 41,3 469,2 44,6 777,7
c432 0,2 0,1 5,5 25,6 6,3 36,0
c499 0,3 0,3 12,7 992,8 27,3 1641,3
c880 0,3 0,2 1,7 93,0 2,1 281,2
total (s) 4,7 4,0 89,5 2479,3 127,1 4044,9

Table 4.5 shows results for the benchmark circuit c6288. For delay and area
results, the column ’33-4’ presents, respectively, absolute values in nanoseconds and
number of transistors. The following columns show the correspondent relative values.
The CPU time is expressed in seconds for all libraries. Delay gains are very significant
for the libraries (3,3) and (3,4), when DAG mapping is applied. However, the area
penalty is high. The c6288 is a multiplier composed by regular logic blocks, and it has
several regions that are not fanout-free. Therefore, best matches that cross fanout, will
probably be best matches for other regions, resulting in many duplications. This area
penalty can be reduced by allowing duplication of logic only for timing critical regions.

72

Table 4.5: C6288 circuit results.

33-4(ms)| lib2 | 33)-T| 33 | 34T | (34
delay 10.20 1.02 1.00 0.57 1.00 0.63
area 9444 1.01 1.00 1.90 1.00 2.07
CPU time (s) 9.0 8.6 7.6 10284 8.0 1304.0

The prototype implemented to obtain the experimental results is devoted to
prove our concepts. The results show considerable delay gains. Nevertheless, area
results show that better area/delay trade-offs have to be found. The area increase can be
better controlled allowing duplication only in critical regions of the circuit.

Another experiment uses a very naive approach to identify critical regions in a
circuit. It is based on path slack computation using the logic level of each gate. Consider
the sub-circuit of Figure 5.1. The values in the inputs correspond to the logic level of
previous gates. It shows the logic level of each gate propagating the values from the
inputs to the outputs. Figure 5.2 illustrates the reverse level computation. It assumes that
the outputs are at level zero. In this case, the values are propagated from the outputs to
inputs. This way, each gate has two associated values: the forward level and the
backward level. The slack of each circuit net can be computed using the formula
expressed by Equation 5.1 that takes the level of the net driver gate and the reverse level
of a driven gate. Figure 5.3 shows the slack computation of each net of the circuit.
Assuming that the critical paths are the ones with slack = 1. In this scenario, there are
only two critical paths in the circuit that are highlighted in the figure. The remaining of
the logic is not timing critical.

slack = max_circut_level— (driver_ forward _level + driven_backward _level) (5.1)

Using this approach to identify critical regions, different mappings were made,
considering different slacks to determine the criticality. The results are shown in Tables
4.6 and 4.7. The columns 5 to 8 that are tagged with ‘-T-D’ show the obtained results
for the mixed mapping strategy. Assuming that the critical slack is one, only nets with
slack one are considered critical. Thus, the DAG mapping strategy is applied, allowing
logic duplication. Non-critical regions are mapped using the tree mapping methodology
(which does not allow logic duplications over multiple fanout points). The higher is the
critical slack, the larger is the amount of logic duplications in the circuit.

Table 4.6 demonstrates the area effect by using this strategy considering
different slack values to determine criticality of paths. When the area results are
compared to the estimated delay results of Table 4.7, it clearly seems to be a good
strategy to circumvent the area increasing problem. It can also decrease the CPU time,
since the number of matches will be reduced. Another possibility to reduce CPU time is
to store pre-computed lower bounds in a hash table, to avoid repeated computations.

73

e e
8 —

5]
= 11

1_- —

k — 8

6 — 7

3 — ,)—

Figure 5.1: Computing forward node levels (from inputs to outputs).

. D
i 1
| =

o

| -]

&ﬁ
%H; |

Figure 5.2: Computing backward node levels (from outputs to inputs).

Critical slack = 1

Figure 5.3: Identifying timing critical regions.

74

Table 4.6: Area comparison — Area saving heuristic.

SIS VIRMA-WF
(3,4)-T-D | (3,4)-T-D | (3,4)-T-D | (3,4)-T-D

circuit| 33-4 | lib2| (3,4)-T slack 1 slack 2 slack 3 slack 4 3,4)-D
cl1355 (2140(1,03[0,89 0,87 1,12 1,12 1,12 1,15
c1908 (2390(1,01 0,94 0,96 1,10 1,07 1,07 1,11
c3540 (4410(1,09 1,05 1,05 1,06 1,14 1,14 1,38
c432 | 790 (1,13 1,08 1,20 1,41 1,41 1,41 1,39
c499 [1484(1,00 1,00 1,22 1,22 1,22 1,22 1,26
c6288 (9444(1,01 1,00 1,04 1,15 1,33 1,33 2,07
c880 [1256(1,00 1,03 1,10 1,15 1,17 1,17 1,54

average |1,04) 1,00 1,06 1,17 1,21 1,21 1,42

Table 4.7: Delay comparison — Area saving heuristic.

SIS VIRMA-WF

(3,4)-T-D|((3,4)-T-D|(3,4)-T-D|((3,4)-T-D
circuit (33-4 (ns)| lib2 | (3,4)-T | slack1 | slack2 | slack3 | slack4 | (3,4)-D

c1355 2,32 11,07 0,93 0,57 0,57 0,57 0,57 0,52

c1908 2,53 |1,08| 0,87 0,75 0,73 0,71 0,71 0,71

c3540 | 3,37 [1,04] 0091 0,85 0,85 0,75 0,75 0,65

c432 2,70 10,88| 0,79 0,79 0,70 0,70 0,70 0,70

c499 1,87 1091| 0,80 0,64 0,64 0,64 0,64 0,64

c6288 [10,20 [1,02| 1,01 0,90 0,88 0,86 0,86 0,63

c880 2,27 1091 0,82 0,77 0,77 0,77 0,77 0,80

average 099| 0,88 0,76 0,74 0,72 0,72 0,66

5.2 Comparisons between ABC and VIRMA

This section shows comparisons of results obtained by ABC tool (ABC, 2008)
that implements the algorithm proposed by Mishchenko (2005) and from both versions
of the VIRMA methods: VIRMA-WF and VIRMA-K-Cuts. All circuit netlists used for
comparisons came from the same starting point as the previous experiment; i.e., all
circuits were decomposed in 2-inputs AND/OR gates and balanced to reduce the logic
depth. After this, they were mapped using ABC and VIRMA for libraries containing
cells up to 4 serial transistors in both pull-up and pull-down planes.

Table 4.8 shows the accumulated sum of series transistors on the pull-up and
pull-down planes of each cell on the longest path of the circuit. Both versions of
VIRMA methods achieved similar results. The sum series transistors is generally much
smaller in VIRMA methods than ABC method. Table 4.9 presents a delay comparison
among ABC and VIRMA technology mapping methods. The second column shows
delay values expressed in nanoseconds for circuits mapped by ABC. The columns 3-4
show normalized values corresponding to the delay values of the second column.
VIRMA-K-Cuts method provides better results than VIRMA-WF method. However, in
most of the cases, the ABC presented slightly better results than both. VIRMA gains (up
to 29%) in the c6288 benchmark (that is a multiplier) are very reasonable. The VIRMA

75

methods handle better with XOR gates. XORs up to 4 inputs can be implemented using
lower bound cells with cost (4,4), while ABC does not see these cells available in the
44-6.genlib.

Table 4.8: Pull-up and pull-down sums in the longest path.

ABC VIRMA-WF | VIRMA-K-Cuts
44-6 44 44
circuit SPU SPD SPU SPD SPU SPD

c1355 21 28 16 25 16 25
c1908 30 41 24 41 24 43
c3540 42 49 32 49 33 52
c432 25 38 19 34 22 36
c499 21 26 16 25 16 25
c6288 110 127 83 93 81 94

Table 4.9: Delay comparisons between ABC and VIRMA.

ABC VIRMA-WF VIRMA-K-Cuts

circuit 44-6 (ns) 4.4) 4,4)
c1355 1,54 1,05 1,00
c1908 2,28 1,03 1,00
c3540 2,84 1,15 1,06
c432 1,86 1,26 1,06
c499 1,51 1,08 1,03
c6288 7,79 0,74 0,71

average 1,05 0,98

Table 4.10 demonstrates area comparisons in terms of number of transistors. In
the average case, VIRMA-WF method is 19% better than ABC, while VIRMA-K-Cuts
method is 21% better than ABC. ABC mapping results in a considerable amount of
logic duplication. This is the result of the dual-rail assignments that are made to achieve
better delay results. There are area recovery heuristics implemented in ABC
environment. In order to make an appropriated comparison, one iteration of the area
recovery heuristic was performed. Area recovering heuristics can also be applied in
VIRMA methods as suggested in the fourth chapter (algorithm extensions).

Table 4.11 shows the number of instances of lower bound cells in circuits
mapped by VIRMA methods. The matching algorithm finds much more sub-functions
with repeated literals in DAG representations. Hence, the lower bound cells occur more
frequently when a DAG is used as subject graph.

76

Table 4.10: Area comparisons between ABC and VIRMA.

ABC VIRMA-WF VIRMA-K-Cuts

circuit 44-6 4,4) 4,4)
c1355 3660 0,75 0,77
c1908 2894 0,74 0,72
c3540 5824 0,94 0,80
c432 1108 1,07 0,87
c499 3368 0,83 0,84
c6288 17256 0,53 0,73
average 0,81 0,79

Table 4.11: Number of instances of lower bound cells.

VIRMA-WF VIRMA-K-Cuts
(3,3)-T (3,3)-D (4,4)-T 4,4)-D 4,4)-D
#LB #LB #LB #LB #LB
circuit fcells cells feells cells feells cells feells cells feells cells
c1355 280 0 349 16 276 0 420 8 376 0
c1908 358 2 343 25 339 2 344 22 314 39
c3540 937 39 1069 64 919 11 958 61 951 47
c432 203 4 206 6 183 4 210 16 205 1
c499 275 0 272 16 276 0 420 8 345 0
c6288 | 3618 0 1268 414 3618 0 1206 415 1921 593

5.3 Comparisons between commercial tools and VIRMA

This section shows comparisons of results obtained by VIRMA, ABC and two
commercial tools. We have created a simple framework that integrates four different
methodologies for technology mapping into the synthesis flow of a commercial tool.

The framework is demonstrated in Figure 5.4. It is an iterative flow that
performs gate sizing and buffer insertion to meet a timing constraint. One of the inputs
of the framework is a mapped design described in the Verilog format (VERILOG DOT
COM, 2008) that only instantiates the smallest version of each referred cell (usually,
cells named with the suffix ‘X1’). The other input file is a pre-characterized library
described in the Liberty format (SYNOPSYS LIBERTY LIBRARY FORMAT, 2008).
Each of the iterations performs gate sizing and buffer insertion preserving the previous
mapping. The sizing algorithm is allowed to change the drive strength of a cell instance,
but not the cell function, preserving the cell boundaries. After the sizing procedure, a
Static Timing Analysis (STA) is performed in order to measure the circuit delay. Thus,
the currently delay value, decreased in 5%, will be the timing constraint for the next
iteration. In the end of each iteration, the sized design is exported. Therefore, timing,
area and power analysis can be performed over each design version (it is also done
using the analysis tools of the commercial synthesis tool). This process is repeated for a
given number of iterations.

77

Library
{liberty)

Design
(verilog)

S

Gate sizing and buffer
inscrtion

STA

Decrease the timing
constraintvalue

no

¥ Number of
iterations
was

reached?

Exportthe sized design

Figure 5.4: Buffering and sizing framework.

The whole experiment depends on a cell library. We have created and
characterized a library of 664 cells composed by:

e All cells of the genlib 44-6 up to 6 inputs in two versions: positive and
negative unate and in three different drive strengths.

e PTL XOR2, XOR3, XNOR2 and XNOR3 cells in three drive strengths
each.

e NCSP cells that were identified by VIRMA in two drive strengths each.

The library was characterized using a commercial tool for library
characterization. All SPICE netlists of each logic cell were automatically generated
using the techniques presented by Rosa (2008). It includes the transistors sizing that
were calculated through the logical effort method proposed by Sutherland (1999) using
a fixed gain constant calibrated for a 130nm technology process. The characterization
tool does not provide the area of the cell. All area values were estimated using our own
area estimator, taking into account the cell topology, the transistor sizes and the cell
height (in our experiment, 9 rows). It was necessary five full days to characterize the
whole library using two dual-core processors. The area estimation has taken around two
hours.

We have run the sizing framework for the circuits analyzed in the previous
experiments. Results are summarized by Figures 5.5 to 5.8. Figure 5.5 shows a delay
comparison for the circuit c1908. It reflects the common observed behavior for most of
the analyzed circuits. After some iterations, the VIRMA tool can achieve a slight better
delay than the other tools. Area results are shown in Figure 5.6 for the same benchmark
circuit. As expected, commercial tools give a smaller area given that they produce worst

78

delay. The ABC method mapping comes in third place with 30% of area increase.
Breaking the expectations, the VIRMA mapping gives the worst results in terms of area.
Figure 5.7 shows a delay comparison for circuit c6288. In this case, VIRMA begins
with the best delay. However, in the second iteration, the ABC method starts to give
better results, keeping the same proportion to the other methods. The area results that
are shown in Figure 5.8 reflect the effect observed for the circuit c1908. In all cases, the
power measurements were linearly proportional to the area values.

Delay comparisons - c1908
1,2

0,8

mTooll

0,6 HTool2
ABC
VIRMA

0,4 —

0,2 |

0
1 2 3 4 5 & 7 8 =l 10

Figure 5.5: Delay comparisons using the benchmark circuit ¢c1908.

Area comparisons - c1908

2,5 —

mTooll
1,5 — mETool2

L.

VIRMA
Figure 5.6: Area comparisons using the benchmark circuit c1908.

79

Delay comparisons - c6288

1,2

0,8
mTooll
0,6 — mTool2
ABC
VIRMA
0,4 =
0,2 |
0
1 2 3 4 5 6 7

8 9 10

Figure 5.7: Delay comparisons using the benchmark circuit c6288.

Area comparisons - c6288

25

1,5

H Tooll
H Tool2

T

Figure 5.8: Area comparisons using the benchmark circuit c6288.

In order to understand why VIRMA gives bad results for area, the NCSP cells
have to be analyzed. Table 4.12 shows the area report of the circuit ¢6288. The number
of inverters of the circuit mapped using VIRMA method is more than five times bigger
that in the circuit mapped with the ABC method. Another import point is that the area
occupied by NCSP cells corresponds to 44.1% of the total area.

80

Table 4.12: Close look at the c6288 area report.

VIRMA ABC
Type Instances| Area (uz) Area(%) |Instances| Area (pz) Area(%)
Inverter 870 6776.980 18.6 156 1214.600 5.9
Buffer 4 37.638 0.1 8 75.276 0.4
Logic 1148 129656.124| 81.3 1236 |19212.981| 93.7
Total 2022 [36470.742| 100.0 1400 {20502.858| 100.0
NCSP Cells 451 16087.257| 44.1 0 0 0

Most of the NCSP cells of the library are similar to the cell of Figure 5.9.a.
These cells can be expressed through equations containing repeated literals and
inversions at the inputs. In some cases, it would be interesting to have cells like the one
in Figure 5.9.b. This way, the cell instances would guarantee that the input na and nb
are the complements of the inputs a and b, respectively, keeping the logic equivalence.
However, the tool used to perform the characterization does not allow a setup of the
input stimuli for characterization simulations. It automatically generates the input
vectors considering the cell inputs. Therefore, it assumes that the function implemented
by the cell of Figure 5.9.b depends on six variables and a vector v(a,b,c,d,na,nb) =
{0,1,1,1,0,1} could be used in the characterization process. It leads to the
characterization of a non-equivalent cell resulting, for instance, in different timing and
power characteristics. Due to this limitation, all NCSP cells that have input inversions
have inverters inside the cell.

R o ——
e -

[>o—{Na]
_D.;

(a) (b)
Figure 5.9: Characterization problem of NCSP cells.

Il

I-l-fl
al o] |o

il

3

The consequence of having the inverters inside the cell is demonstrated in
Figure 5.10. The circuit of Figure 5.10.a has two times more inverters than the circuit of
Figure 5.10.b. The delay of the circuit can also be affected. Consider the circuit of
Figure 5.11. In this case, there is one extra inverter in the longest path of the circuit.
This effect was observed in the benchmark circuit c6288. This circuit has a regular
structure and has several instances of the same cell. Each one of the instances needs
extra input inverters that results in area and delay increase.

Another problem, which was observed in the library cells, is the transistor
sizing. All transistors have to fit into the specified cell height. When it is not possible,
the transistor sizing algorithm performs a transistor folding procedure. In average, it at
least duplicates the area of occupied by a transistor. Some of the generated cells were

81

just a little bit higher to fit on the maximum height. In this case, the transistor folding is
applied resulting in area increase. Alternatively, it could make transistors larger enough
to fit on the cell height and have a small delay penalty. It requires a fine tuning in the
transistors sizing. Since each cell topology has its peculiarities, this is a hard task, which
is out of the scope of this work.

Figure 5.10: Area effects of having inverters inside the cell.

0

Figure 5.11: Delay effects of having inverters inside the cell.

Although the results obtained from the last experiment are not good enough for
area and power, they show that VIRMA can be competitive in terms of delay. The next
chapter presents some conclusions about it, as well as guidelines for future works.

82

6 CONCLUSIONS AND FUTURE WORKS

This thesis presented two DAG-based approaches for technology mapping
using virtual libraries. VIRMA methods are pioneering approaches regarding the use of
cells with minimal length transistor chains (SCHNEIDER, 2005), aiming delay
minimization in combinational circuits.

The first method, which is called VIRMA-WF, was derived from the wavefront
algorithm presented in (STOK, 1999). A comparison between the traditional technology
mapping performed by SIS tool and VIRMA-WF method was presented in
(MARQUES, 2007). It shows delay reductions up to 43%. For some circuits, better
delay means a high area penalty. Although the VIRMA-WF algorithm uses DAGs as
subject graphs, the method was easily adapted to handle trees. It was demonstrated that
the mapped circuits are 14% faster in average and have a negligible area increase.

Based on the work presented by Mishchenko (2005), a new version of VIRMA
was proposed later. This approach relies on a simple algorithm that is able to enumerate
all k-feasible cuts of a graph. Each k-cut is matched against the library and can be used
as part of an optimal cover. Both VIRMA methods were compared to ABC logic
synthesis tool (ABC, 2008). Even limited to k-cuts up to 6 variables, VIRMA-K-Cuts
method shows better results than VIRMA-WF method. ABC mapping gives slight
better results in terms of delay. Early results revealed that the circuits mapped with
VIRMA tool have a smaller transistor count.

The results obtained from naive implementations show the potential of these
techniques. However, there are several open issues that should be better explored to
improve VIRMA methods. The implicit logic duplication that occurs in DAG based
approaches can be circumvented by allowing duplications only in the critical regions of
the circuit. It was demonstrated through some experiments that a good area/delay trade-
off can be achieved when this technique is used. Both VIRMA methods search for delay
optimal implementations. The algorithms can be extended to a two-pass algorithm that
can consider other non-delay metrics to map circuits.

One of the main problems in virtual library technology mapping approaches is
the lack of accurate information of the cell characteristics. Methods to estimate area,
delay and power consumption could be used to solve this problem. Butzen (2008) has
presented a fast algorithm to estimate leakage-current power consumption. It could be a
good approach for power estimation. The other alternative is to create hash tables with
the characterization data. Therefore, a regular Boolean matcher would be needed to
create the keys (for instance, binary strings) for each match. This hash tables could also

83

store the lower bound values in terms of series transistors for each cell match. It would
reduce the mapping time since these values would not be calculated on the fly.

In parallel with this work, there was another work exploring different cell
topologies and making comparisons concerning timing, power and area. The results,
which were presented in (ROSA, 2008), show that the NCSP topology is generally a
good alternative to implement logic functions. However, it is not the best choice for
every logic function. Such results were validated at the cell level. The main objective of
this thesis is to evaluate the effectiveness of the use of NCSP in a design. In order to
validate the experiments, a framework for mapping, sizing and analysis was created
over a commercial synthesis tool. Four mapping method of different tools (including
VIRMA, ABC and two commercial tools) were integrated in this framework. The
results show that VIRMA can be competitive to other tools in terms of delay.
Nevertheless, area and power results are not good enough.

The analysis performed in this work depends on several variables concerning
almost all steps of the logic synthesis flow. Assumptions made in intermediate steps
have major impact in the subsequent steps. One of the main problems found during the
analysis is related to the automated transistor sizing strategy used to generate an
experimental cell library. It requires a fine tuning in the algorithm to find a good trade-
off for area, power and timing. A library design project is very complex and it is hard to
be fully automated. There are many issues to be explored in this field. A good strategy
for gate sizing was proposed by Schlinker (2008). This iterative approach can also be
extended to perform design optimizations taking into account NCSP cells. Since it relies
in a more robust methodology for design analysis, it would lead to better results. All
techniques presented in this work are just the starting point for constructing a more
powerful logic synthesis tool.

84

REFERENCES

ABC (from Berkeley Logic Synthesis and Verification Group). ABC: A System for
Sequential Synthesis and. Available at:
<http://www.eecs.berkeley.edu/~alanmi/abc/abe.html>. Visited on: in Feb. 2008.

ABOUZEID, P. et al. Logic synthesis for automatic layout. In: THE EUROPEAN
EVENT IN ASIC DESIGN, 1992. Proceedings... [S.l.: s.n.], 1992. p. 146-151.

AVCI, M.; YILDIRIM, T. General design method for complementary pass transistor
logic circuits. Electronics Letters, [S.1.], v. 39, n. 1, p.46—48, Jan. 2003.

BERKELAAR, M.; JESS, J. Technology mapping for standard-cell generators. In: INT.
CONF. COMPUTER-AIDED DESIGN, 1988, Santa Clara, CA. Proceedings...
[S.l.: s.n.], 1988. p. 470-473.

BRACE, K.; RUDELL, R.; BRYANT, R. Efficient Implementation of a BDD Package.
In: ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC, 1990. Proceedings...
[S.L: s.n.], 1990. p. 40-45.

BRAYTON, R. Factoring logic functions. IBM Journal of Research and
Development, Riverton, NJ, USA, v. 31, n. 2, p. 187-198, Mar. 1987.

BRAYTON, R. et al. MIS: A multiple-level logic optimization system. IEEE
Transactions on Computer Aided Design of Integrated Circuits and Systems, [S.1.],
v.6,n. 6, p. 1062-1081, Nov. 1986.

BRYANT, R. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, New York, v. C-35, n. 8, p. 677-691, 1986.

BUCH, P. et al. Logic synthesis for large pass transistor circuits. In: ICCAD, 1997.
Proceedings... New York: IEEE, 1997. p. 663-670.

BUTZEN, P. Leakage Current Modeling in Sub-micrometer CMOS Complex
Gates. 2008. Master Degree Thesis. Engenharia de Computacdo. Universidade Federal
do Rio Grande do Sul, Porto Alegre, Brasil.

CHATTERIEE, S.; MISHCHENKO, A.; BRAYTON, R. Factor cuts. In: ICCAD, 2006.
Proceedings... New York: ACM, 2006. p. 143-150.

CHATTERIEE, S. et al. Reducing Structural Bias in Technology Mapping. ICCAD,
2005. Proceedings... [S.1.: s.n.], 2005. p. 519-526.

85

CONG, J.; DING, Y. FlowMap: An optimal technology mapping algorithm for delay
optimization in look-up table based FPGA designs. IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, [S.l.], v. 13, n. 1, p. 1-12, Jan.
1994.

CORREIA, V.; REIS, A. Advanced technology mapping for standard-cell generators.
In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEM DESIGN, SBCCI,
17., 2004, Porto de Galinhas. Proceedings... Los Alamitos: IEEE Computer Society,
2004. p. 254-259.

DETIJENS, E. et al. Technology mapping in MIS. In: IEEE INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN, 1987. Proceedings... [S.].: s.n.],
1987. p. 116-119.

DEVADAS, S.; GHOSH, A.; KEUTZER, K. Logic synthesis. New York: McGraw-
Hill, 1994.

GRAVRILOV, S. et al. Library-less synthesis for static CMOS combinational logic
circuits. In: INT. CONF. COMPUTER-AIDED DESIGN, 1997. Proceedings...
[S.l.: s.n.], 1997, p. 658 — 662.

GREGORY, D. et al. SOCRATES: a system for automatically synthesizing and
optimizing combinational logic. In: ACM/IEEE DESIGN AUTOMATION
CONFERENCE, 23., 1986. Proceedings...[S.l.: s.n.], 1986. p. 79-85.

HSIAO, S.; YEH, J.; CHEN, D. High performance multiplexer-based logic synthesis
using pass-transistor logic. In: ISCAS, 2000, Geneva. Proceedings... Piscataway:
IEEE, 2000. v. 2, p. 325-328.

JIANG, Y.; SAPATNEKAR, S.; BAMIJI, C. Technology mapping for high-performance
static CMOS and pass transistor logic designs. IEEE Transactions on VLSI, New
York, v. 9, n. 5, p. 577-589, Oct. 2001.

KANECKO, M.; TIAN, J. Concurrent cell generation and mapping for CMOS logic
circuits. In: ASPDAC, 1997. Proceedings... New York: ACM SIGDA, 1997. p. 247-
252.

KARNAUGH, M. The Map Method for the Synthesis of Combinational Circuits. AIEE
Transactions, [S.1.], p. 593-599, Nov. 1953.

KEUTZER, K. Dagon: Technology binding and local optimization by DAG matching.
In: DESIGN AUTOMATION CONFERENCE, DAC, 24., 1987. Proceedings...
[S.L: s.n.], 1987. p. 341-347.

KEUTZER, K.; KOLWICZ, K.; LEGA, M. Impact of library size on the quality of
automated synthesis. INT. CONF. COMPUTER-AIDED DESIGN, 1987.
Proceedings... [S.I.: s.n.], 1987. p. 120-123.

KEUTZER, K.; RICHARDS, D. Computational complexity of logic synthesis and
optimization. In: INTERNATIONAL WORKSHOP ON LOGIC SYNTHESIS, 1989.
Proceedings... [S.I.: s.n.], 1989. p. 1-15.

86

KUKIMOTO, Y.; BRAYTON, R.; SAWKAR, P. Delay-optimal technology mapping
by DAG covering, In: IEEE/ACM DESIGN AUTOMATION CONFERENCE, 1998.
Proceedings... [S.1.: s.n.], 1998. p. 348-351.

LEE, C. Representation of switching circuits by Binary-Decision Programs. Bell
System Technical Journal, New York, v. 38, n. 7, p. 985-999, July 1959.

LEGA, M. Mapping properties of multi-level logic synthesis operations. IEEE INT.
CONF. COMPUTER DESIGN, 1988. Proceedings... [S.1.: s.n.], 1988. p. 257-260.

LEHMAN, E. et al. Logic decomposition during technology. IEEE Transactions on
Computer-Aided Design, New York, v.16, n. 8, p. 813-834, Aug. 1997.

LIEN, C.; LEFEBVRE, M. A constructive matching algorithm for cell generator based
technology mapping. In: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS
AND SYSTEMS, 1992. Proceedings... [S.1.: s.n.], 1992. v. 6, p. 2965-2968.

MAILHOT, F.; DEMICHELLI, G. Algorithms for technology mapping based on binary
decision diagrams and on Boolean operations. IEEE Transactions on CAD for IC and
Systems, [S.1.], v. 12, n. 5, p. 599-620, May 1993.

MARQUES, F.; ROSA, L.; RIBAS, R.; SAPATNEKAR, S.; REIS, A. DAG Based
Library-Free Technology Mapping. In: GLSVLSI, 2007. Proceedings... [S.l.: s.n.],
2007.

MISHCHENKO, A.; CHATTERIJEE, S.; BRAYTON, R. DAG-aware AIG rewriting:
A fresh look at combinational logic synthesis. In: DAC, 2006. Proceedings...
[S.1.: s.n.], 2006. p. 532-536.

MISHCHENKO, A. et al. Technology mapping with Boolean matching, supergates
and choices. Berkeley: EECS Dept., UC Berkeley, 2005. Technical Report.

MCCLUSKEY, E. J. Minimization of Boolean Functions. Bell Systems Technical
Journal, [S.1.], v. 35, p. 1417-1444, June 1956.

MCGEER, P. et al. Espresso-Signature: A new exact minimizer for logic functions. In:
DESIGN AUTOMATION CONFERENCE, 1993. Proceedings... [S.1.: s.n.], 1993.

MINTZ, A.; GOKUMBIC, M. Factoring Boolean functions using graph partitioning.
Discrete Applied Mathematics, [S.1.], v. 149, n. 1-3, p. 131-153, Aug. 2005.

MOORE, G. Cramming more components onto integrated circuits. Electronics
Magazine,[S.1.], v. 38, n. 8, Apr. 1965.

POLI R.; SCHNEIDER, F.; RIBAS, R.; REIS, A. Unified theory to build cell-level
transistor networks from BDDs. In: SYMPOSIUM ON INTEGRATED CIRCUITS
AND SYSTEM DESIGN, SBCCI, 16., 2004, Sao Paulo. Proceedings... Los Alamitos:
IEEE Computer Society, 2003. p. 199 — 204.

QUINE, W. V. A Way To Simplify Truth Functions. American Mathematical
Monthly, [S.1.], v. 62, p. 627-631, 1955.

87

REIS, A. Assignation Technologique sur Bibliotheques Virtuelles de Portes
Complexes CMOS. 1998. 123 f. These (Doctorate m Electronique, Optronique et
Systemes) — Université de Montpellier, Grenoble.

REIS, A.; REIS, R. Covering strategies for library free technology mapping. In: ACM
INTERNATIONAL WORKSHOP LOGIC SYNTHESIS, 1999, Lake Tahoe.
Workshop notes... [S.I.: s.n.], 1999.

REIS, A.; REIS, R.; AUVERGNE, D.; ROBERT, M. Library free technology mapping.
In: INT. CONF. ON VERY LARGE SCALE INTEGRATION, 1997, Gramado, RS,
Brazil. Proceedings... [S.1.: s.n.], 1997.

ROSA, L.; MARQUES, F.; CARDOSO, T.; RIBAS, R.; REIS, A. BBDs and transistor
networks with minimum pull-up/pull-down chains. In: INTERNATIONAL
WORKSHOP ON LOGIC SYNTHESIS, 2006. Proceedings... [S.1.: s.n.], 2006.

ROSA, L.; MARQUES, F.; SCHNEIDER, F.; RIBAS, R.; REIS, A. A Comparative
Study of CMOS Gates with Minimum Transistor Stacks. In: SBCCI — Chip in Rio,
2007. Proceedings... [S.1.: s.n.], 2007.

ROSA, L.; REIS, A. Automatic Generation and Evaluation of Transistor Networks
in Different Logic Styles. 2008. PhD Degree Thesis. Engenharia de Computacio.
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

ROY, R.; BHATTACHARYA, D.; BOPPANA, V. Transistor-level optimization of
digital designs with flex cells. Computer, [S.1.], v.38, n.2, p.53-61, Feb. 2005.

RUDELL, R. Logic Synthesis for VLSI design. Berkeley: University of California,
1989. (TR UCB/ERL M89/49).

SCHNEIDER, F.; RIBAS, R.; SAPATNEKAR, S.; REIS, A. Exact lower bound for the
number of switches in series to implement a combinational logic cell. In: ICCD, 2005.
Proceedings... [S.1.: s.n.], 2005. p. 357-362.

SCHNEIDER, R. Exact lower bound for the number of switches in series to
implement a combinational logic cell. 2006. Master Degree Thesis. Engenharia de
Computagdo. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

SCOTT, K.; KEUTZER, K. Improving cell libraries for synthesis, In: CICC, 1994
Proceedings... [S.1.: s.n.], 1994. p. 128-131.

SCHLINKER, G.S. Gate Sizing Algorithms For Standard Cell Designs. 2008.
Graduate Degree Thesis. Engenharia de Computagdo.Universidade Federal do Rio
Grande do Sul, Porto Alegre, Brasil.

SECHEN, C. et al. LIBRARIES: Lifejacket or straitjacket. In: IEEE DESIGN
AUTOMATION CONFERENCE, 2003. Proceedings... [S.1.: s.n.], 2003. p. 642-643.

SECHEN, C.; GUAN, B. Large standard cell libraries and their impact on layout area
and circuit performance. In: ICCD, 1996. Proceedings... [S.1.: s.n.], 1996. p. 378-383.

SENTOVICH, E. et al. SIS: A system for sequential circuit synthesis. Berkeley: EECS
Department, University of California, 1992. (TR UCB/ERL M92/41).

88

SHANNON, C. A symbolic analysis of relay and switching circuits. Transactions
American Institute of Electrical Engineers, [S.1.], v. 57, p. 713-723, 1938.

SHELAR, R.; SAPATNEKAR, S. An efficient algorithm for low power pass transistor
logic synthesis. In: ASPDAC, 2002. Proceedings... [S.1.: s.n.], 2002. p. 87-92.

SHELAR, R.; SAPATNEKAR, S. Recursive bipartitioning of BDDs for performance
driven synthesis of pass transistor logic circuits. In: ICCAD, 2001. Proceedings...
[S.L: s.n.], 2001. p. 449-452.

STOK, L.; IYER, M.; SULLIVAN, A. Wavefront technology mapping. In: DESIGN,
AUTOMATION AND TEST IN EUROPE, 1999, Germany. Proceedings... [S.l.: s.n.],
1999. p. 531-536.

SUTHERLAND, I.; SPROULL, B.; HARRIS, D. Logical Effort: Designing Fast
CMOS Circuits. [S.1.]: Morgan Kaufmann, 1999.

SYNOPSYS LIBERTY LIBRARY FORMAT. Liberty CSS. Available at:
<http://www.synopsys.com/products/libertyccs/libertyccs.html>. Visited on: Feb. 2008.

TANAKA, K.; KAMBAYASHI, Y. Transduction method for design of logic cell
structure. In: ASPDAC, 2004. Proceedings... [S.1.: s.n.], 2004. p. 600-603.

TIIANG, S. Twig reference manual. [S.1.: s.n.], 1986.

VERILOG DOT COM. Verilog Resources. Available at: <http://www.verilog.com/>.
Visited on: Feb 2008.

VHDL ORG. VASG: VHDL Analysis and Standardization Group. Available at:
<http://www.vhdl.org/vasg/>. Visited on: Feb 2008.

WAGNER, F.; RIBAS, R.; REIS, A. Fundamento de Circuitos Digitais. Porto Alegre:
Sagra Luzzatto, 2006.

WESTE, N.; ESHRAGHIAN, K. Principles of CMOS VLSI design: a systems
perspective. 2™ ed. [S.1.]: Addison-Wesley, 1994.

YAMASHITA, S. et al. Pass-transistor/CMOS collaborated logic: the best of both
worlds. In: SYMPOSIUM ON VLSI CIRCUITS, 1997. Proceedings... [S.I.: s.n.],
1997. p. 31-32.

ZHAO, M.; SAPATNEKAR, S. A new structural pattern matching algorithm for
technology mapping. In: IEEE/ACM DESIGN AUTOMATION CONFERENCE, 2001,
Las Vegas, NV. Proceedings... New York, NY: ACM Press, 2001. p. 371-376.

89

APPENDIX A MAPEAMENTO TECNOL()GICO PARA
BIBLIOTECAS VIRTUAIS ULITILIZANDO CELULAS COM
UM NUMERO MINIMO DE TRANSISTORES EM SERIE

De acordo com a “Lei de Moore” (MOORE, 1965), desde a inveng¢do dos
circuitos integrados (Cls), em 1958, o nimero de transistores que podem ser colocados
em um unico chip aumenta exponencialmente a cada evolugdo tecnoldgica que reduz a
escala dos transistores. Atualmente, bilhdes de componentes eletronicos podem ser
integrados em um unico chip. O poder de processamento e a capacidade de memoria
dos dispositivos eletronicos digitais aumentam nas com o nimero de transistores.

Embora tecnologias sub-micronicas permitam um alto grau de integragdo de
semicondutores, esta integracdo torna o projeto, a verificagdo e o teste de circuitos
integrados mais dificeis. Normalmente, o projeto de circuitos integrados ¢
consideravelmente afetado com a diminuicdo do tamanho dos dispositivos eletronicos
em tecnologias sub-micrdnicas. Efeitos como corrente de fuga, ruido e eletro-migragcao
eram considerados irrelevantes em tecnologias mais antigas. Atualmente, a andlise
destes efeitos é fundamental para o sucesso de um projeto. Conseqiientemente, 0s
projetistas adotam metodologias rigidas para produzir circuitos de alta qualidade em
tempo razodvel. Ferramentas para automacgdo do projeto de circuitos eletrdnicos sao
utilizadas para automatizar algumas das etapas do projeto, ajudando o projetista a
encontrar boas solucdes rapidamente.

A metodologia adotada na maioria dos fluxos para automagao sao baseadas em
bibliotecas de células. Neste caso, o fluxo de sintese inicia com uma descri¢do em alto-
nivel do projeto, utilizando linguagens de descricdo de hardware, tais como VHDL
(VHDL ORG, 2008) e Verilog (VERILOG DOT COM, 2008). O segundo passo € a
sintese 1dgica, que realiza varias manipulagdes l6gicas sobre a descri¢do de alto-nivel,
transformando-a em uma descri¢do a nivel de portas l6gicas, que instanciam células de
uma biblioteca. O tltimo passo € a sintese fisica que posiciona e conecta as células em
um floorplan. A principal vantagem desta metodologia é que cada célula de uma
biblioteca é caracterizada através de varias simulacdes, resultando em um conjuntos de
informagdes bastante precisas sobre o comportamento das células. Desta forma, o
projetista pode, com o auxilio de ferramentas de automacao, prever as caracteristicas do
circuito final com uma boa precisao.

Embora as ferramentas para automacgao desempenhem um bom trabalho na
busca por boas solugdes para um dado projeto, existem diversos pontos que podem ser
melhorados no fluxo de automacao. Além disso, novos problemas surgem cada vez que
um processo de fabricacdo evolui para a proxima geracdo. Isto demanda uma constante
atualizacdo nas ferramentas disponiveis ou ferramentas completamente novas. Logo,

90

existe um alto custo associado a migragdo para novas tecnologias. Isto exige
investimentos tanto em ferramentas quanto em processos de fabricacdo.
Alternativamente, o projetista pode explorar outras estratégias para otimizacdes a fim de
aumentar o desempenho e reduzir drea e poténcia de circuito sem mudar a tecnologia.

Um dos maiores desafios no projeto de circuitos integrados de alto-
desempenho € atingir as metas de atraso na ldgica combinacional de controle.
Normalmente, a 16gica de controle ndo é regular o suficiente para ser implementada em
um fluxo de projeto intuitivo. Além disso, este tipo de 1dgica sofre modifica¢des até as
ultimas etapas do ciclo de projeto. Consequentemente, a sintese ldgica € necessaria para
viabilizar a implementacdo dos circuitos, garantindo uma implementacdo ripida e
correta de sub-circuitos irregulares. A maioria das ferramentas de sintese ldgica consiste
de trés etapas bem definidas. O mapeamento tecnold6gico normalmente segue uma etapa
de otimizacdes em uma descricdo do circuito, sendo esta independente de tecnologia. A
etapa posterior a0 mapeamento tecnoldgico € uma etapa para otimizagdes especificas,
considerando as restri¢des de atraso do circuito.

O mapeamento tecnoldgico é uma etapa da sintese légica que escolhe quais
células serdo utilizadas para implementar um circuito em uma determinada tecnologia.
Esta fase da sintese l6gica tem o maior impacto na estrutura do circuito, definindo suas
principais caracteristicas de drea e atraso. A maioria das técnicas sdo baseadas em
bibliotecas estaticas de células (standard cell), onde um conjunto de células € definido e
caracterizado para uma determinada tecnologia. Os primeiros métodos para
mapeamento tecnolégico (KEUTZER, 1987-a) (DETJENS, 1987) (ABOUZEID, 1992)
(MAILHOT, 1993) (LIEN, 1992) usavam darvores para representar o circuito a ser
mapeado. Algoritmos mais recentes (LEHMAN, 1997) (KUKIMOTO, 1998) (STOK,
1999) (MISHCHENKO, 2005) sao baseados em grafos aciclicos direcionados (DAGS),
permitindo a duplicagdo de légica para aumentar o desempenho do circuito. Outra
contribuicdo importante para o mapeamento tecnolégico foi o matching Booleano
(MAILHOT, 1993). O matching de uma por¢ao do circuito e uma célula da biblioteca é
feito por uma comparagdo Booleana entre funcdes candidatas. Uma comparagdao
estrutural pode nao ser suficiente para encontrar todos matchings possiveis.

Além das abordagens que realizam mapeamento tecnoldgico com bibliotecas
estdticas, outras abordagens consideram o uso de geradores de células, o que
possibilitaria o uso de uma grande biblioteca virtual (construida sob demanda). Um
trabalho pioneiro visando geradores de células foi apresentado por Berkelaar (1988).
Neste método, expressoes logicas decompostas sdo mapeadas em portas complexas. Um
outro método, proposto por Reis (1997), utiliza Diagramas de Decisdo Binaria (BDDs)
para representar um circuito e aplica decomposi¢des nestas estruturas, considerado uma
restricdo para o nimero maximo de transistores em série admitido para implementar
uma dada funcdo Booleana. Cada BDD decomposto € mapeado em uma porta complexa
CMOS estdtica. O trabalho apresentado em (CORREIA, 2004) explora dinamicamente
decomposicoes AND/OR usando drvores de grau livre que representam o circuito a ser
mapeado. Cada sub-arvore é limitada pelo nimero de transistores em série necessarios
para implementar uma célula CMOS estatica. Em (JIANG, 2005) duas técnicas para
mapeamento tecnoldgico sdo apresentadas. O primeiro método mapeia circuitos para
uma biblioteca virtual de células CMOS estaticas. A segunda técnica usa uma logica
mista de células CMOS e PTL, considerando a relacao direta de uma célula PTL e um
BDD.

91

Infelizmente, o uso destas abordagens nao foi suficientemente verificado pela
industria, mesmo considerando que outras referéncias sugerem que um nimero maior de
células l6gicas pode melhorar a qualidade do circuito mapeado (KEUTZER, 1987-b)
(SCOTT, 1994) (SECHEN, 1996) (GAVRILOV, 1997). Uma abordagem recente
(ROY, 2005) propde a adicdo de células especificas a biblioteca de células para
aumentar o desempenho dos circuitos mapeados.

Recentemente, alguns métodos para geracao eficiente de células 16gicas foram
propostos (KANECKO, 1997) (POLI, 2003) (TANAKA, 2004) (SCHNEIDER, 2005),
incluindo um método para calcular o nimero minimo de transistores em série
necessdrios para implementar uma fung¢do Booleana arbitraria, apresentado por
Schneider (2005). Além do dimensionamento dos transistores, a topologia da rede de
transistores também interfere no atraso das células. Logo, a redu¢do do nimero de
elementos em série tende a reduzir o atraso das células.

A topologia proposta por Schneider (2005) foi apresentada no nivel de células
l6gicas. Logo, € necessdria uma metodologia para avaliar o uso desta topologia em
circuitos maiores. Motivado por este fator, esta tese apresenta dois métodos para
mapeamento tecnolégico baseados em grafos aciclicos direcionados (DAGs), que deram
origem a uma ferramenta para mapeamento tecnolégico, chamada VIRMA (VIRtual
library technology MApping). Os algoritmos reduzem o nimero de transistores em série
do caminho mais longo do circuito, considerando que cada célula é implementada por
uma rede de transistores que obedecem um nimero maximo de transistores em série. O
nimero de transistores em série € calculado de forma booleana, garantindo que este seja
o nimero minimo necessdrio para implementar a funcao légica da instancia da célula.
Os algoritmos estdo integrados a um gerador de células que utiliza as técnicas
apresentadas em (ROSA, 2008) para a geracao de redes de transistores e também realiza
o dimensionamento dos transistores.

O primeiro método, que € chamado de VIRMA-WF, foi derivado do algoritmo
wavefront apresentado por Stok (1999). Uma comparagdo entre o tradicional algoritmo
para mapeamento tecnoldgico realizado pela ferramenta SIS e o algoritmo VIRMA-WF
foi apresentado em (MARQUES, 2007). Ela mostra redu¢des de atraso que chegam a
43%. Em alguns circuitos, menor atraso significa maior drea. Embora o método
VIRMA-WF seja baseado em DAGs ele pode facilmente ser adaptado para realizar o
mapeamento sobre arvores. Resultados comparativos mostram que o mapeamento
utilizando arvores pode aumentar o desempenho dos circuitos em 14% com um aumento
insignificante em 4rea.

Baseado no método apresentado por Mishchenko (2005), uma segunda versao
do método VIRMA foi proposta. A nova abordagem utiliza o algoritmo de Mishchenko
para enumeracdo de k-cuts sobre um grafo. Cada k-cut equivalente a uma célula da
biblioteca, poderd ser parte de uma cobertura 6tima. Os métodos da ferramenta VIRMA
foram comparados com o método de Mishchenko (2005), que estd disponivel na
ferramenta ABC (ABC, 2008). Mesmo limitado a k-cuts de até 6 varidveis, o algoritmo
VIRMA-K-Cuts mostra resultados melhores que o algoritmo VIRMA-WF. O
mapeamento da ferramenta ABC consegue obter resultados um pouco melhores em
termos de atraso. Os primeiros resultados relativos a drea mostraram que a ferramenta
VIRMA obtém circuitos com uma menor contagem de transistores.

Os resultados obtidos com as primeiras versdes dos algoritmos mostram o
potencial destas técnicas. No entanto, existem vérios problemas que devem ser

92

explorados visando melhorias nos métodos da ferramenta VIRMA. As duplicacdes
implicitas de légica, que ocorrem em técnicas de mapeamento baseado em DAGs,
podem ser evitadas se o algoritmo limita-las as regides criticas do circuito. Este efeito
foi analisado em alguns experimentos, demonstrando que uma boa relacio de
compromisso entre drea e atraso pode ser encontrada quando esta técnica € utilizada. Os
métodos da VIRMA buscam somente a otimizagdo do atraso dos circuitos. Os
algoritmos podem ser estendidos para duas passagens, de forma que a segunda passada
considere outras métricas que nao somente o atraso do circuito.

Um dos principais problemas do mapeamento tecnoldgico utilizando
bibliotecas virtuais € a falta de informacdes precisas sobre o comportamento das células.
Métodos para estimativa de drea, poténcia e atraso poderiam ser utilizados para resolver
este problema. Butzen (2008) apresentou um método que realiza uma rdpida estimativa
do consumo causado por corrente de fuga. Assim como este método para estimativa de
poténcia, outros métodos podem ser utilizados para medir outros critérios. Uma outra
alternativa € a criagcao de hash tables contendo os dados provenientes de um processo de
caracterizacdo. Desta forma, seria necessdrio utilizar um método matching Booleano
para identificar equivaléncias entre por¢des do circuito e as entradas desta hash table.
Estas tabelas também poderiam armazenar os valores correspondentes ao ndmero
minimo de transistores em série de uma célula. Isto poderia reduzir o tempo de
mapeamento, visto que este valor ndo seria calculado durante a execugdo do
mapeamento.

Paralelamente a este trabalho, outro estudo estava sendo desenvolvido,
analisando diferentes topologias de células e realizando comparagdes de atraso, poténcia
e drea entre um conjunto de células. Os resultados, que foram apresentados em (ROSA,
2008), mostram que, em geral, a topologia NSCP ¢é uma boa alternativa para
implementar fun¢des Booleanas. Todos os experimentos foram realizados no nivel de
células légicas. O principal objetivo do trabalho € avaliar o uso efetivo de células NCSP
em circuitos combinacionais. Para validar os experimentos inicias, um fluxo para
mapeamento tecnolégico, dimensionamento e andlise de circuitos foi criado sobre uma
ferramenta comercial. Quatro métodos para mapeamento (VIRMA, ABC e duas
ferramentas comerciais) foram integrados neste fluxo. Os resultados mostram que a
ferramenta VIRMA pode ser competitiva em termos de atraso. Porém, os resultados de
area e poténcia nao sdo ainda bons o suficiente.

A andlise que foi realizada neste trabalho depende de vérias varidveis de cada
uma das etapas do fluxo de sintese. Algumas decisdes tomadas em passos
intermedidrios podem ter um impacto muito grande nos passos subseqiientes. Um dos
principais problemas encontrados durante a andlise foi a estratégia de dimensionamento
de transistores do gerador de células, que foi utilizado durante criacdo da biblioteca
experimental. Ela precisa de ajustes mais precisos para encontrar um bom compromisso
entre drea, poténcia e atraso. O projeto de uma biblioteca de células é bastante complexo
e dificil de ser automatizado. Uma boa estratégia para o dimensionamento de portas
16gicas foi proposta por Schlinker (2008). Este algoritmo iterativo pode ser estendido
para realizar otimizacdes em um circuito considerando células NCSP. Como o
algoritmo € baseado em uma metodologia mais robusta para a anélise do circuito, ele
tende a encontrar melhores resultados. Todas as técnicas apresentadas neste trabalho sao
somente o ponto inicial para a construcdo de uma ferramenta de sintese ldgica mais
completa.

93

APPENDIX B ACADEMIC LIBRARY DESCRIPTIONS
USED IN THE EXPERIMENTS

This appendix shows the full description of two academic libraries that are
distributed with the SIS technology mapping tool (SENTOVICH, 1992). The libraries
are described in the genlib format. This format is briefly illustrated below.

1. Genlib library format
A cell is specified in the following format:
GATE <cell_name> <cell_area> <cell_logic_function>

PIN <pin_name> <phase> <input_load> <max_load>
<rise_block_delay> <rise_fanout_delay> <fall_block_delay>
<fall_fanout_delay>

<cell_name> is the name of the cell in the cell library.

<cell_area> defines the relative area cost of the cell. It is a floating point
number, and may be in any unit system convenient for the user.

<cell_logic_function> is an equation written in conventional algebraic
notation using the operators “+” for OR, “*” or nothing (space) for AND, “!” or “’”
(post-fixed) for NOT, and parentheses for grouping. The names of the literals in the
equation define the input pin names for the cell; the name on the left hand side of the
equation defines the output of the cell. The equation terminates with a semicolon.

<pin_name> must be the name of a pin in the <cell_logic_function>, or it * to
specify identical timing information for all pins.

<phase> is INV, NONINV, or UNKNOWN corresponding to whether the
logic function in negative unite, positive unate, or binate in this variable respectively.
This is required for the separate rise-fall delay model.

<input_load> gives the input load of this pin. It is a floating point value, in
arbitrary units convenient for the user.

<max_load> specifies a loading constraint for the cell. It is a floating point
value specifying the maximum load allowed on the output.

<rise_block_delay> and <rise_fanout_delay> are the rise-time parameters for
the timing model. They are floating point values, typically in the units nanoseconds, and
nanoseconds/unit_load respectively.

94

<fall_block_delay> and <fall_fanout_delay> are the fall-time parameters for
the timing model. They are floating point values, typically in the units nanoseconds, and
nanoseconds/unit_load respectively.

2. Library: lib2.genlib

GATE invl 928.00 O=!a;

PIN a INV 0.0514 999.0 0.4200 4.7100 0.4200 3.6000
GATE xor 2320.00 O=(!a*b)+(a*!b);

PIN a UNKNOWN 0.1442 999.0 1.7700 5.2300 0.9600 4.6400
PIN b UNKNOWN 0.1381 999.0 1.9400 4.6500 1.1400 5.2200
GATE xnor 2320.00 O=('!a*!b)+(a*b);

PIN a UNKNOWN 0.1502 999.0 1.1100 4.8600 1.0700 3.3900
PIN b UNKNOWN 0.1352 999.0 1.5500 4.8700 1.0700 3.3900
GATE nand2 1392.00 O=!(a*b);

PIN a INV 0.0777 999.0 0.6400 4.0900 0.4000 2.5700

PIN b INV 0.0716 999.0 0.4600 4.1000 0.3700 2.5700
GATE nand3 1856.00 O=! (a*b*c);

PIN a INV 0.1000 999.0 0.8900 3.6000 0.5100 2.4900

PIN b INV 0.0828 999.0 0.7100 4.1100 0.4200 2.5000

PIN ¢ INV 0.0777 999.0 0.5600 4.3900 0.3500 2.4900
GATE nand4 2320.00 O=! (a*b*c*d);

PIN a INV 0.1030 999.0 1.2700 3.6200 0.6700 2.3900
PIN b INV 0.0980 999.0 1.0900 3.6100 0.6100 2.3900
PIN c INV 0.0980 999.0 0.8200 3.6200 0.5500 2.4000
PIN d INV 0.1050 999.0 0.5800 3.6200 0.3800 2.3900

GATE nor2 1392.00 O=! (a+b);

PIN a INV 0.0736 999.0 0.3300 3.6400 0.4500 3.6400
PIN b INV 0.0968 999.0 0.5000 3.6400 0.7000 3.6600
GATE nor3 1856.00 O=! (a+b+c);

PIN a INV 0.0856 999.0 0.8400 5.0400 1.3000 3.4500
PIN b INV 0.0806 999.0 0.7800 5.0300 1.1400 3.4300
PIN ¢ INV 0.0826 999.0 0.5200 5.0300 0.8400 3.4400
GATE nor4 2320.00 O=!(a+b+c+d);

PIN a INV 0.0887 999.0 0.4100 5.9100 1.1600 3.2000
PIN b INV 0.0867 999.0 0.8500 5.9100 1.5300 3.1800
PIN ¢ INV 0.0867 999.0 1.1100 5.9200 1.7500 3.1900
PIN d INV 0.0887 999.0 1.2700 5.9100 1.9400 3.2000
GATE aoi2l 1856.00 O=!((a*b)+c);

PIN a INV 0.1029 999.0 0.7500 3.5200 0.6700 2.5300
PIN b INV 0.0908 999.0 0.6700 3.6400 0.6200 2.5200
PIN ¢ INV 0.1110 999.0 0.5800 3.6400 0.2100 1.2800

95

GATE aoi3l
PIN a INV
PIN b INV

PIN c INV

o o o o

PIN d INV
GATE aoi22
PIN a INV O.
PIN b INV O.
PIN c INV O.
PIN d INV O.
GATE ao0i32
PIN a INV O
PIN b INV O
PIN c INV O.
PIN d INV O
PIN e INV O
GATE ao0i33
PIN a INV
PIN b INV
PIN c INV

PIN d INV

o o o o o

PIN e INV
PIN £ INV O.
GATE aoi2ll
PIN a INV O.
PIN b INV O.
PIN c INV O.
PIN d INV O.

GATE aoiz221l

(@]

PIN a INV
PIN b INV
PIN c INV
PIN d INV
PIN e INV
GATE aoi22
PIN a INV
PIN b INV
PIN c INV
PIN d INV

PIN e INV

o O O O O o N o o o o

PIN £ INV

GATE oaizl

2320.00 O=!((a*b*c)+d);

.1009 999.0 0.9100
.1049 999.0 1.0500
.1059 999.0 1.1500
.0979 999.0 0.8900

4
3
3
4

.0400 0.8100
.9300 0.8700
.9400 0.9400
.0600 0.2500

2320.00 O=!((a*b)+(c*d));

1019 999.0 0.9200
0908 999.0 0.8400
0958 999.0 0.6100
0988 999.0 0.7000

3
3
3
3

.4600 0.9400
.6400 0.8500
.6400 0.4900
.6400 0.5400

2784.00 O=!((a*b*c)+(d*e));

.1029 999.0 1.0600
.1009 999.0 1.2000

1060 999.0 1.2900

.0979 999.0 0.9100
.1049 999.0 0.7800

3
3
3
3
3

.8100 0.9600
.8100 1.0300
.6900 1.0600
.8100 0.4300
.5900 0.4300

3248.00 O=!((a*b*c)+(d*e*f));

.1029 999.0 1.3300
.1029 999.0 1.4600
.1120 999.0 1.4700
.1029 999.0 1.1100
.0949 999.0 1.0400

1039 999.0 0.8400

3
3
3
3
3
3

.9100 1.3000
.8400 1.4100
.6500 1.4100
.5900 0.7600
.9100 0.6800

0

.5800 0.6400

2320.00 O=!((a*b)+c+d);

1039 999.0 1.1200
1090 999.0 1.2900
1080 999.0 1.0400
1008 999.0 0.6800

4
4
4
4

.8100 1.0300

1
.8100 1.0300
.8300 0.5200

0

.8300 0.5100

2784.00 O=!((a*b)+(c*d)+e);

.1089 999.0 1.4800
.0948 999.0 1.4200
.1029 999.0 0.7600
.1049 999.0 0.7300
.1110 999.0 1.3900

3712.00 O=!((a*b)+(c*d)+(e*f));
.1019 999.0 1.7700
.0958 999.0 1.7300
.1039 999.0 1.3400
.1039 999.0 1.5000
.0958 999.0 0.9200
.1039 999.0 0.7700

4

4.

4

4.

4

4

4.

4

4.

4

4.

.4300 1.3300
5600 1.4000
.4700 0.7900
5800 0.7800
.5600 0.7000

.5800 1.5600
6900 1.6000
.6800 1.2100
6900 1.2200
.6700 0.8100
4700 0.7600

1856.00 O=!((a+b)*c);

NDNDNDNDNDDN DN NDoNDNDN RoNDNDDN

=

RoNDNDNDN

NN NN NN

.8600
.8700
.8600
.2800

.7900
.7900
.9300
.9300

.9100
.9000
.9100
.1200
.1200

.9100
.9100
.9100
.9000
.9100
.9000

.3800
.3800
.4000
.7900

.7800
.7500
.8900
.9100
.5100

.9500
.9300
.9200
.9200
.9200
.9200

96

PIN a INV O.
PIN b INV O.
PIN c INV O.
GATE ocai3l

PIN a INV O.
PIN b INV O.
PIN c INV O.
PIN d INV O.

GATE oaiz22

1019
0979
0998
2320.
1089 999
1049 999
1090 999
1059 999

2320.

.0 1.2700
.0 1.1100
.0 0.8500
.0 0.3800

PIN a
PIN b
PIN c

PIN d

GATE o0ai32

PIN a

INV

INV

INV

INV

INV

o o o o

.1009
.1029
.0958
.1039

2784.

.1130

999.0 1.1000
999.0 0.9900
999.0 0.6900
999.0 0.6100

999.0 0.6900 3.9400 0.5300
999.0 0.8700 3.9300 0.6300
999.0 0.3700 2.0500 0.5700
00 O=!((a+b+c)*d);

4.7100 1.0300
4.7100 1.0400
4.7100 0.6900
1.8600 0.8100

00 O=!((a+b)*(c+d));

4.0600 0.9000
4.0600 0.6800
3.6600 0.7400
3.6600 0.5600

00 O=!((atb+c)*(d+e));

999.0 1.3900

PIN b INV
PIN

PIN

0
0
c INV O.
d INV O

0

PIN e INV
GATE o0ai33
PIN a INV
PIN b INV
PIN c

PIN d

0
0
INV O.
INV O

0

PIN e INV
PIN £ INV O.
GATE ocai2ll
PIN a INV O.
PIN b INV O.
PIN c INV O.
PIN d INV O.
GATE ocai22l
PIN a INV O.
PIN b INV

PIN c INV

o o O

PIN d INV

PIN e INV O.
GATE o0ai222
PIN a INV O.
PIN b INV O.
PIN c INV O.

PIN d INV O.

.1069

.1059
.1130

L1170
.1089

.1170
.1089

.1050
.1080
.1060

999
1140 999
999
999
3248.

999

1079

1109

2320.00
1070
1131
1050
1050

2784.00

1039 999.

1019

3248.00
1161
1110
1009
1191

999.
999.
999.
999.
999.

999.
999.
999.
999.

999.
999.
999.
999.

999.
999.
999.
999.

.0 1.2500
.0 0.9900
.0 0.5800
.0 0.6800
.0 1.5800
0 1.5000
0 1.2400
0 0.8000
0 0.0000

0 1.1300

O=!((a+b)

0 1.1200
0 1.3000
0 0.5100
0 0.5000

O=!((a+b)

0 1.5800
0 1.4800
0 0.9400
0 0.7600

0 0.7800

O=!((a+b)

0 1.7700
0 1.6200
0 1.1700
0 1.3500

4.4600 1.0400
4.4600 1.0900
4.4600 0.7400
3.2000 0.7900
3

.2100 0.8300

00 O=!((a+b+c)* (d+e+f));

4.3000 1.4800
4.3100 1.4200
4.3100 1.1700
.8200

4.3000

1
4.3000 O
1.1700
1

4.3100 1.3500
*c*d) ;
4.1700 0.5900
4.1600 0.7900
2.1300 0.6900
2.4600 0.5200
*(c+d) *e) ;

4.1700 1.1100
4.1700 0.8600
4.0300 0.8100
4.0300 0.6400

2.2800 0.9000

*(c+d) *(e+f));

3.7500 1.2100

3.7500 1.1300
3.5800 1.0700

3.5800 1.1000

NN NDoNDNDN NDNDNDNDNDN NN NDNDNDN NDoNDNDN

NDoNNDN

.4700
.4700
.5100

.4300
.5700
.3800
.7300

.5000
.3600
.5300
.0600

.4600
.6300
.4200
L7100
.3400

.4700
.6300
.6500
.2700
.6400
.6500

.3100
.3600
.4000
.4100

.4700
.3600
.5000
.5000
.5400

.4700
.4800
.4800
.3500

97

PIN e INV 0.1060 999.0 0.9900 3.5900 0.9300 2.4900
PIN £ INV 0.1140 999.0 0.8200 3.5800 0.7900 2.4800
GATE zero O=CONSTO;

GATE one O=CONST1;

Library: 33-4.genlib

GATE zero O=CONSTO;

GATE one O=CONST1;

GATE buf 1 O = a;

PIN a INV 1 999 1.0 0.2 1.0 0.2

GATE "!a" 2 O=!a;

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE "(ab)'" 3 O=!(a*b);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE "(a(b+c))'" 4 0=!(a*(b+c));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a(b+cd))'" 5 O=!(a* (b+c*d));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a(b+c(d+e)))'" 6 O=!(a* (b+c*(d+e)));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a(b+(c+d) (e+£)))'" 7 O=!(a* (b+(c+d)*(e+f)));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a(bc+de))'" 6 O=!(a* (b*c+d*e));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a(bc+d(e+f)))'" 7 O=!(a* (b*c+d* (e+f)));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a(bc+(d+e) (f+g)))'" 8 O=! (a* (b*c+(d+e)*(f+g)));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a(b+c+d))'" 5 O=!(a* (b+c+d));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a(b+tc+de))'" 6 O=!(a*(b+c+d*e));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a(b+cd+ef))'" 7 O=!(a* (b+c*d+e*f));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a(bc+de+fg))'" 8 O=!(a* (b*c+d*e+f*g));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b) (c+d))'"™ 5 O=!((a+b)*(c+d));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b) (c+de))'" 6 O=!((a+b)* (c+d*e));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b) (c+d(e+f)))'" 7 O=!((a+b)* (c+d*(e+£f)));
PIN * INV 1 999 1.0 0.2 1.0 0.2

98

GATE " ((a+b) (c+(d+e) (f+g)))'"™ 8 O=!((a+b)* (c+(d+e)*(f+g)));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b) (cd+ef))'" 7 O=!((a+b)* (c*d+e*f));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b) (cd+e(f+g)))'" 8 O=!((a+b)*(c*d+e* (f+g)));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b) (cd+(e+f) (g+h))) '™ 9 O=! ((a+b)* (c*d+(e+f)*(g+h)));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b) (c+d+e))'" 6 O=!((a+b)* (c+d+e));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b) (c+d+ef))'"™ 7 O=!((a+b)* (c+d+e*f));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b) (c+de+fg))'" 8 0=!((a+b)* (c+d*e+f*g));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b) (cd+ef+gh))'"™ 9 0O=!((a+b)* (c*d+e*f+g*h));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+bc) (d+e+f))'"™ 7 O=!((a+b*c)* (d+e+f));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b(c+d)) (e+f+g))'" 8 O=!((a+b*(c+d))*(e+f+qg));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+(b+c) (d+e)) (f+g+h))'" 9 0O=! ((a+(b+c)* (d+e))* (f+g+h));

PIN * INV 1 999 1.0 0.2 1.0 0.2
GATE " ((ab+cd) (e+f+g))'" 8 0O=! ((
PIN * INV 1 999 1.0 0.2 1.0 0.2
GATE " ((ab+c(d+e)) (f£+g+h))""

PIN * INV 1 999 1.0 0.2 1.0 0.2

a*b+c*d) * (e+f+g));

9 O=!((a*b+c*(d+e))* (f+g+h));

GATE " ((ab+(c+d) (e+f)) (g+h+i))'" 10 O=!((a*b+(c+d)*(e+f))* (g+h+1i));
PIN * INV 1 999 1.0 0.2 1.0 0.2
GATE " ((a+b+c) (d+e+f))'" 7 O=!((a+b+c) * (d+e+f));

PIN * INV 1 999 1.0 0.2 1.0 0.2
GATE " ((a+b+c) (d+e+fg))'"™ 8 0=!(
PIN * INV 1 999 1.0 0.2 1.0 0.2
GATE " ((a+b+c) (d+ef+gh))'" 9 0O=!
PIN * INV 1 999 1.0 0.2 1.0 0.2
GATE " ((a+b+c) (de+fg+hi))'"
PIN * INV 1 999 1.0 0.2 1.0 0.2
GATE "(abc)'"™ 4 0=! (a*b*c);

PIN * INV 1 999 1.0 0.2 1.0 0.2
GATE " (ab(c+d))'"
PIN * INV 1 999 1.0 0.2 1.0 0.2
GATE " (ab(c+d+e))"'"

PIN * INV 1 999 1.0 0.2 1.0 0.2

(a+b+c) * (d+e+f*qg));

((a+tb+c)* (d+e*f+g*h));

10 O=!((at+b+c)* (d*e+f*g+h*i));

5 0=!(a*b* (c+d));

6 O=!(a*b*(c+d+e));

99

GATE " (a(b+c) (d+e))'" 6 O=!(a* (b+c) * (d+e));
PIN * INV 1 999 1.0 0.2 1. 0.2
GATE " (a(b+c) (d+e+f)) '™ 7 !'(a* (b+c) * (d+e+f)) ;
GATE " (a(b+c+d) (e+f+g))'" O=! (a* (b+c+d) * (e+f+g)) ;

PIN * INV 1 999 1.0 0.2 1.

0

0=
PIN * INV 1 999 1.0 0.2 1.0 0.2

8

0 0.2

9

GATE " ((a+b) (c+d) (e+f))"" O=!((a+b) *(c+d)*(e+f));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b) (c+d) (e+f+g))'" 8 O=!((a+b)*(c+d)* (e+f+g));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((at+b) (c+d+e) (f£+g+h))'" 9 O=!((a+b)* (c+d+e)* (£+g+h));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b+c) (d+e+f) (g+h+i))'" 10 O=! ((a+b+c)* (d+e+f) * (g+h+i));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE "(a+b)'" 3 O=!(a+b);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a+bc)'" 4 O=!(a+b*c);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a+b(c+d))'" 5 O=!(a+b*(c+d));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE "(a+b(c+de))'" 6 O=! (a+b*(c+d*e));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a+b(cd+ef))'"™ 7 O=! (atb*(c*d+e*f));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a+(b+c) (d+e))'" 6 O=! (a+(b+c)*(d+e));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a+(b+c) (d+ef)) '™ 7 0O=! (a+ (b+c)*(d+e*f));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a+(b+c) (de+fg))'" 8 O=! (a+(b+c)*(d*e+f*g));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a+bcd)'" 5 O=! (a+tb*c*d);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a+bc(d+e))'" 6 O=! (a+tb*c*(d+e));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a+b(c+d) (e+f))'" 7 O=! (a+b*(c+d)*(e+f));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a+(b+c) (d+e) (f+g))'" 8 O=! (a+ (b+c)*(d+e) * (f+g));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE "(ab+cd)'" 5 O=!(a*b+c*d);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (ab+c(d+e))'" 6 O=! (a*b+c*(d+e));

PIN * INV 1 999 1.0 0.2 1.0 0.2

100

GATE " (ab+c(d+ef))'" 7 O=!(a*b+c* (d+e*f));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (ab+c(de+fg))'" 8 O=!(a*b+c* (d*e+f*qg));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (ab+(c+d) (e+f))'" 7 O=!(a*b+(c+d) *(e+f));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (ab+(c+d) (e+fg))'" 8 O=!(a*b+(c+d) *(e+f*qg));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (ab+(c+d) (ef+gh))'" 9 O=!(a*b+(c+d)*(e*f+g*h));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (ab+cde)'" 6 O=!(a*b+c*d*e);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (ab+cd(e+f))'"™ 7 O=! (a*b+c*d* (e+f));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (ab+c(d+e) (f+g))'" 8 O=! (a*b+c* (d+e)* (f+g));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (ab+(c+d) (e+f) (g+h))'"™ 9 0=! (a*b+(c+d)* (e+f) * (g+h));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a(b+c)+def)'" 7 O=!(a*(b+c)+d*e*f);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a(b+cd)+efg)'" 8 O=!(a* (b+c*d)+e*f*qg);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a(bc+de)+fgh)'" 9 O=!(a* (b*c+d*e)+£f*g*h);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b) (c+d)+efg)'" 8 0=!((a+b)* (c+d)+e*f*qg);
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b) (c+de)+fgh)'" 9 O=!((a+b)*(c+d*e)+f*g*h);
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " ((a+b) (cd+ef)+ghi)'" 10 O=!((a+b)*(c*d+e*f)+g*h*i);
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (abc+def)'" 7 O=!(a*b*c+d*e*f);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (abc+de(f+g))'" 8 O=!(a*b*c+d*e* (f+g));

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (abc+d(e+f) (g+h))'" 9 O=!(a*b*c+d* (e+f)*(g+h));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (abc+ (d+e) (f+g) (h+i))'" 10 O=! (a*b*c+(d+e)* (f+g) * (h+1i));
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a+b+c)'" 4 O=! (a+b+c);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a+b+cd)'"™ 5 O=! (a+b+c*d);

PIN * INV 1 999 1.0 0.2 1.0 0.2

101

GATE " (a+b+cde)'" 6 O=! (a+b+c*d*e);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a+bc+de)'" 6 O=! (at+b*c+d*e);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (a+bc+def) '™ 7 O=! (a+b*c+d*e*f);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (at+bcd+efg)'" 8 O=! (at+tb*c*d+e*f*qg);
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (ab+cd+ef)'"™ 7 O=! (a*b+c*d+e*f);

PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (ab+cd+efg)'" 8 O=! (a*b+c*d+e*f*qg);
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (ab+cde+fgh)'" 9 0O=!(a*b+c*d*e+f*g*h);
PIN * INV 1 999 1.0 0.2 1.0 0.2

GATE " (abc+def+ghi)'" 10 O=! (a*b*c+d*e*f+g*h*i);
PIN * INV 1 999 1.0 0.2 1.0 0.2

102

do

APPENDIX C VIRMA USER GUIDE

How to run VIRMA tool (and Java Virtual Machine setup)

java -Xmx512m -Xms256m -jar virma.jar <parameters> [options]

If you run it without any parameter or option, a brief help will be printed out. You
not need to specify the parameters and options in a pre-defined order. It is

recommended to use 512Mb for the main memory and 256Mb for the stack memory.

Parameter description
Input netlist: VIRMA can read EQN and BLIF files.

Output netlist: the output netlist is a “mapped” EQN file. In this file, each equation
represents a cell and it is associated to a logic style (CSP or NCSP). The logic
style is used for the cell generator.

Constraints and the Virtual Library: the virtual library is defined by two
constraints: pu and pd. They determine the maximum number of transistors in the
pull-up (pu) plane and in the pull-down (pd) plane of a cell. The parameters
‘max_tree_k_cut’ and ‘max_dag_k_cut’ define the maximum number of variables
for matches generated from trees and DAGs. The implemented algorithm for
finding the k-cuts is very limited. Therefore, practical values for these constraints
are 10 and 6, respectively. Otherwise, it could take too long time for mapping a
circuit.

Options: since VIRMA maps a circuit for a virtual library, a list of cells can be
provided for a cell generator. This list will contain all cells used in the mapped
circuit. In order to generate it, you just need to specify the file name through the
option ‘-output_library’. If you use the option ‘-Ic’ (short for library costs), the
CSP and NSCP costs will be written in the output library file. The options ‘~CSP’
and ‘-NSCP’ are used to specify the logic style used for mapping. By default, the
NSCP is taken. If you choose CSP, only the standard series/parallel CMOS cells
will be used.

Livros Gratis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

Baixar livros de Administracao

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciéncia da Computacao
Baixar livros de Ciéncia da Informacéo
Baixar livros de Ciéncia Politica

Baixar livros de Ciéncias da Saude
Baixar livros de Comunicacao

Baixar livros do Conselho Nacional de Educacdo - CNE
Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos
Baixar livros de Economia

Baixar livros de Economia Doméstica
Baixar livros de Educacao

Baixar livros de Educacdo - Transito
Baixar livros de Educacao Fisica

Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmacia

Baixar livros de Filosofia

Baixar livros de Fisica

Baixar livros de Geociéncias

Baixar livros de Geografia

Baixar livros de Histdria

Baixar livros de Linguas

http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1

Baixar livros de Literatura

Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matematica

Baixar livros de Medicina

Baixar livros de Medicina Veterinaria
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Musica

Baixar livros de Psicologia

Baixar livros de Quimica

Baixar livros de Saude Coletiva
Baixar livros de Servico Social
Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo

http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1

