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ABSTRACT 

Currently, microelectronic technologies enable high degrees of semiconductor 
integration. However, this integration makes the design, verification, and test challenges 
more difficult. The circuit design is often the first area under assault by the effects of 
aggressive scaling in deep-submicron technologies. Therefore, designers have adopted 
strict methodologies to deal with the challenge of developing high quality designs on a 
reasonable time. Electronic Design Automation tools play an important role, automating 
some of the design phases and helping the designer to find a good solution faster. One 
of the hardest challenges of an integrated circuit design is to meet the timing 
requirements. It depends on several steps of the synthesis flow. In standard cell based 
flows, it is directly related to the technology mapping algorithm and the cells available 
in the library. The performance of a cell is directly related to the transistor sizing and 
the cell topology. It determines the timing, power and area characteristics of a cell. 
Technology mapping has a major impact on the structure of the circuit, and on its delay 
and area characteristics. The quality of the mapped circuit depends on the richness of 
the cell library. This thesis proposes two different approaches for library-free 
technology mapping aiming delay reduction in combinational circuits. Both algorithms 
rely on a cell topology able to implement Boolean functions using minimal transistors 
stacks. They reduce the overall number of serial transistors through the longest path, 
considering that each transistor network of a cell has to obey to a maximum admitted 
chain. The mapping algorithms are integrated to a cell generator that creates cells with 
minimal transistor stacks. This cell generator is also in charge of performing the 
transistor sizing. Significant gains can be obtained in delay due to both aspects 
combined into the proposed mapping tool. 

 

 

 

 

 

Keywords: technology mapping, logic synthesis, virtual cell library, standard cell 
library, automatic cell generator. 



 

Mapeamento tecnológico para Bibliotecas Virtuais Baseado em Células 
com Cadeias Mínimas de Transistores em Série 

RESUMO 

Atualmente, as tecnologias disponíveis para a fabricação de dispositivos 
eletrônicos permitem um alto grau de integração de semicondutores. Entretanto, esta 
integração torna o projeto, a verificação e o teste de circuitos integrados mais difíceis. 
Normalmente, o projeto de circuitos integrados é consideravelmente afetado com a 
diminuição do tamanho dos dispositivos eletrônicos em tecnologias sub-micrônicas. 
Conseqüentemente, os projetistas adotam metodologias rígidas para produzir circuitos 
de alta qualidade em tempo razoável. Ferramentas de auxílio ao projeto de circuitos 
eletrônicos são utilizadas para automatizar algumas das etapas do projeto, ajudando o 
projetista a encontrar boas soluções rapidamente. Uma das tarefas mais difíceis no 
projeto de circuitos integrados é fazer com que o circuito respeite as restrições de atraso. 
Isto depende de várias etapas do processo de síntese. Em metodologias baseadas em 
bibliotecas de células, isto está diretamente relacionado ao algoritmo para mapeamento 
tecnológico e as células disponíveis na biblioteca. O atraso de cada célula depende do 
tamanho dos transistores e da topologia da rede de transistores. Isso determina as 
características de atraso, potência e área de uma célula. O mapeamento tecnológico 
define as principais características estruturais do circuito, principalmente em área, 
potência e atraso. A qualidade do circuito mapeado depende das células disponíveis na 
biblioteca de células. Este trabalho propõe um novo método para mapeamento com 
bibliotecas virtuais para redução de atraso em circuitos combinacionais. Ambos os 
algoritmos baseiam-se em uma topologia de células capaz de implementar funções 
Booleanas com cadeias mínimas de transistores em série. Os algoritmos reduzem o 
número de transistores em série do caminho mais longo do circuito, considerando que 
cada célula é implementada por uma rede de transistores que obedecem um número 
máximo de transistores em série. O número de transistores em série é calculado de 
forma Booleana, garantindo que este seja o número mínimo necessário para 
implementar a função lógica da célula. Os algoritmos estão integrados a um gerador de 
células que utiliza tal topologia e realiza o dimensionamento dos transistores. Ganhos 
significativos podem ser obtidos combinando estas duas técnicas em uma ferramenta 
para mapeamento tecnológico. 

 

 

 

Palavras-Chave: mapeamento tecnológico, síntese lógica, bibliotecas de células, 
bibliotecas de células virtuais, geradores de células. 
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1 INTRODUCTION 

According to the ‘Moore’s Law’ (MOORE, 1965), since the invention of the 
integrated circuit (IC) in 1958, the number of transistors that can be placed 
“inexpensively” on an integrated circuit has increased exponentially due to advances on 
technology scaling. Currently, billions of electronic components can be integrated on a 
single chip. The processing speed and memory capacity of digital electronic devices 
almost increases in the same proportion of the number of transistors. 

Although deep-submicron microelectronic technologies enable greater degrees 
of semiconductor integration, such integration makes the design, verification, and test 
challenges more difficult. The circuit design is often the first area under assault by the 
effects of aggressive scaling in deep-submicron technologies. Effects like leakage 
power, noise and electro-migration were considered irrelevant in early technologies. 
Currently, the analysis of these effects is crucial for a successful design. Therefore, 
designers have adopted strict methodologies to deal with the challenge of developing 
high quality designs on a reasonable time. Electronic Design Automation (EDA) tools 
play an important role, automating some of the design phases and helping the designer 
to find a good solution faster. 

The methodology adopted by most of the EDA flows is based on standard cell 
libraries. In a typical standard cell based flow the synthesis starts from a high-level 
description using Hardware Description Languages (HDL), such as VHDL (VHDL 
ORG, 2008) and Verilog (VERILOG DOT COM, 2008), at Register Transfer Level 
(RTL). The second step is the logic synthesis that performs several logic manipulation 
procedures over the high level description resulting in a netlist composed by a set of 
cells of the standard cell library. The last step is the physical synthesis that places and 
routes the cells of a netlist on a floorplan. The main advantage of this methodology is 
that each cell in the library is fully characterized through many simulations, resulting in 
a set of accurate information about the behavior of the cell. Thereby, the designer can, 
with the aid of an EDA tool, predict with a very good precision the characteristics of the 
final circuit. 

Even though the available EDA tools perform a good job on finding good 
solutions for a given design, there are still some open issues in the automation flow. 
Furthermore, every time that the manufacturing technology process advances to the next 
generation, new problems come up. It demands a constant update in the available tools 
or even completely new tools. Hence, there is a high cost associated to the technology 
process shifting. It requires investments on tools and on manufacturing process. 
Alternatively, the designer can explore other optimization strategies in order to increase 
performance and to reduce area and power without changing the technology. 
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One of the big challenges in high-performance circuits design is the timing 
closure of the combinational logic (or random logic). Usually, combinational logic is 
not regular enough to be implemented in an intuitive design flow. Furthermore, it can be 
changed until the last steps of the design cycle. Logic synthesis has been shown to be an 
effective tool for designing logic circuits, especially for semicustom designs using a 
standard cell methodology. The computer-aided synthesis of a logic circuit involves two 
major steps: the optimization of a technology-independent logic representation, using 
Boolean and/or algebraic techniques, and technology mapping. Logic optimizations are 
used to modify the structure of a logic description, such that the final structure has a 
lower cost than the original one. These optimizations are performed before the 
technology mapping. 

Technology mapping is the step of logic synthesis that chooses the cells that 
will be used to implement a design in a given technology. This step of logic synthesis 
has a major impact on the structure of the circuit and, consequently, on delay and area 
characteristics. Most existing techniques are based on static pre-characterized libraries 
(standard cell methodology), where a set of cells is defined and characterized for a 
given technology. First methods for technology mapping (KEUTZER, 1987-a) 
(DETJENS, 1987) (ABOUZEID, 1992) (MAILHOT, 1993) (LIEN, 1992) used trees as 
the initial description of the circuit to be mapped. More recent methods (LEHMAN, 
1997) (KUKIMOTO, 1998) (STOK, 1999) (MISHCHENKO, 2005) are based on 
Directed Acyclic Graph (DAG) representations that allow duplicating logic to some 
extent to increase speed. Another important contribution to technology mapping was 
Boolean matching (MAILHOT, 1993), where the matching of a portion of the circuit 
and a cell from the library is done by comparing the Boolean function of the candidates, 
instead of the structure. Structural comparison would not be able to find all matches. 

In the early days of technology mapping, it was considered that the use of a cell 
generator would enable the use of larger virtual (built on demand) cell libraries. 
Berkelaar (1988) has presented a pioneer work aiming cell generators, which maps 
decomposed logic expressions onto complex gates. Reis (1997) presented another 
approach which uses a Binary Decision Diagram (BDD) representation for the circuit 
network, and performs BDD decomposition using constraints in the number of serial 
transistors. Each decomposed BDD is mapped onto a static CMOS complex gate. The 
work in (CORREIA, 2004) dynamically explores many embedded AND/OR 
decompositions by using n-ary trees for the circuit network representation. Each sub-
tree that is limited by the number of serial transistors is also mapped onto static CMOS 
cells. In (JIANG, 2001) two techniques for technology mapping are presented. The first 
method maps circuits to a virtual cell library of complex static CMOS gates. The second 
technique uses a mixed logic of static CMOS and PTL gates, considering the relation 
between PTL and BDDs. 

Unfortunately, the use of such approaches was not widely verified in a 
commercial level, even if other references suggest that the increased number of cells in 
a library could lead to significant improvements in the quality of the final design 
(KEUTZER, 1987-b) (SCOTT, 1994) (SECHEN, 1996) (GAVRILOV, 1997). A recent 
approach presented in (ROY, 2005) suggests that the addition of some custom cells to a 
library can improve the speed of the final circuit.  
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1.1 Motivation and thesis contributions 

According to the previously statements, one of the hardest challenges of an IC 
design is to meet the timing requirements. It depends on several steps of the synthesis 
flow. In standard cell based flows, it is directly related to the technology mapping 
algorithm and the cells available in the library. The performance of a cell is directly 
related to the transistor sizing and the cell topology. The transistor sizing also affects the 
power consumption and, off-course, the cell area. 

Recently, some methods for generating efficient cell networks were proposed 
(KANECKO, 1997) (POLI, 2003) (TANAKA, 2004) (SCHNEIDER, 2005), including a 
method to compute the minimum number of transistors in series needed to implement 
an arbitrary Boolean function that was proposed by Schneider (2005). The reduction of 
the number of series switches leads to timing efficient networks. 

The topology presented in (SCHNEIDER, 2005) was only verified at the cell 
level, lacking of an efficient methodology to evaluate the use of these cell topologies in 
larger circuits. Motivated by this, this thesis presents two different methods for 
“VIRtual library technology MApping” (VIRMA) based on DAGs. Both mapping 
methods combine the method for Boolean computation of the number of series 
transistors introduced by Schneider (2005) with state of the art technology mapping 
algorithms inspired by the approaches presented by Stok (1999) and Mishchenko 
(2005). Significant gains can be obtained in delay due to both aspects combined into the 
proposed mapping tool. 

Since this cell topology was not well explored yet, both algorithms 
implemented in the VIRMA tool are library-free. It chooses the transistor configuration 
for the cells that will have to be created through a cell generation tool in a subsequent 
step. Currently, the VIRMA mapping flow is integrated to a cell generator that 
implements the techniques proposed in (Rosa, 2008). This cell generator is also in 
charge of performing the transistor sizing. 

1.2 Thesis organization 

The remaining of this thesis is organized as follows: chapter 2 review some 
general concepts required for a better comprehension of the proposed methods. Specific 
concepts of technology mapping as well as some previous approaches are described in 
the chapter 3. The new approaches for library-free technology mapping are presented in 
the chapter 4. All results obtained through the implemented prototypes are shown in the 
chapter 5. Finally, conclusions and future works are presented in the chapter 6. 
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2 TERMINOLOGY AND BASIC CONCEPTS 

Electronic design automation is divided into many sub-areas. We are 
particularly interested in logic synthesis and physical synthesis (related to cell 
generators) concepts. This chapter introduces some of these concepts and definitions 
that will be used in the following chapters. For next chapters, we assume the knowledge 
of all definitions described here. 

2.1 Boolean logic and logic expressions 

The Boolean domain (B) is defined as a two element set, say, B = {0, 1}, 
whose elements are interpreted as logical values, typically 0 = false and 1 = true. A 
Boolean function describes how to determine a Boolean value output based on some 
logical calculation from Boolean inputs. A Boolean function is a function of the form f: 
B

n
 → B, where B = {0, 1} is a Boolean domain and where n is a non-negative integer. In 

the case where n = 0, the "function" is simply a constant element of B. More generally, a 
Boolean-valued function is a function of the type f: X → B, where X is an arbitrary set 
and where B is a Boolean domain. If X = [n] = {1, 2, 3, …, n}, then f is a binary 

sequence of length n. Therefore, there are 
n22  such functions. 

The support of a Boolean function is the set of variables that may change the 
output value of a function. For instance, consider the function f(a,b,c)=ab+a’c. Its 
support is the set {a, b, c}. An input vector is an element defined in Boolean domain 
and indicates the value of each variable that defines the Boolean space. An input vector 
v ∈ B

n belongs to the ON-set of f if and only if f(v) = 1. Otherwise, if f(v) = 0, then v 
belongs to the OFF-set of f. While the vectors v1 = {1,1,0} and v2= {0,1,1} belong to 
the ON-set of the function f(a,b,c)=ab+a’c, the vector v3 = {1,0,0} goes into the OFF-
set of f(a,b,c). 

A logic expression (or equation) is a Boolean function representation. Each 
function is unique for any application f: Bn

 → B in the whole Boolean space. However, 
a Boolean function has infinite representations. All Boolean functions can be expressed 
in a canonical form through sum of products (SOP) or product of sums (POS). A 
SOP is said canonical when all variables appear in all products. Every instance of a 
Boolean variable is called literal according to Wagner (2006). A product of literals is 
formally called cube. For instance, {a, b, c} is a cube interpreted like a.b.c or just like 
abc. A minterm is a cube that contains all variables of the function support. 
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Figure 2.1 shows a truth table and the minterms of the Boolean function f. 
Equation 2.1 represents f through a SOP in a canonical form. This equation has 32 
literals and it is not a minimal SOP. Karnaugh maps (KARNAUGH, 1953) and the 
Quine-McCluskey method that comes from (QUINE, 1955) and (MCCLUSKEY, 1956) 
are the main exhaustive optimization techniques for two-level minimization. Although 
they are not practical algorithms for large circuits, they are easy to use and simple to 
understand. The Espresso algorithm (McGeer, 1993) is a heuristic method for two-level 
minimization that is computationally less expensive and presents good results. An 
example of two-level minimization can be seen in Figure 2.2. It shows the Karnaugh 
map for the Boolean function f. The minimal cover for the ON-set is composed by four 
cubes. It can be represented through the Equation 2.2. Equation 2.3 shows the minimal 
cover for the OFF-set of function f. 

 

dcbadcbadcbadcbadcbadcbadcbadcbaf ........................ +++++++=            (2.1) 

 

cbadcacbadcafsetON ........)( +++=−              (2.2) 

cbadcacbadcafsetOFF ........)( +++=−            (2.3) 

 

 

a b c d f   

0 0 0 0 0   
0 0 0 1 0   

0 0 1 0 0   

0 0 1 1 1 → dcba ...  
0 1 0 0 1 → dcba ...  
0 1 0 1 1 → dcba ...  
0 1 1 0 0   

0 1 1 1 1 → dcba ...  
1 0 0 0 0   

1 0 0 1 1 → dcba ...  
1 0 1 0 0   

1 0 1 1 0   

1 1 0 0 0   

1 1 0 1 1 → dcba ...  
1 1 1 0 1 → dcba ...  
1 1 1 1 1 → dcba ...  

Figure 2.1: Truth table for the function f and the respective minterms. 
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 ab     

cd  00 01 11 10 

 00 0 1 0 0 

 01 0 1 1 1 

 11 1 1 1 0 

 10 0 0 1 0 

Figure 2.2: Karnaugh map for the Boolean function f. 

Both equations can also be represented as factored forms. According to 
Brayton (1987), a factored form can be defined as a representation of a logic function 
that is either a single literal or a sum or product of factored forms. It is very similar to a 
parenthesized algebraic expression. This parenthesized representation seems to be the 
most appropriate representation for use in multilevel logic synthesis. As an example, 
consider the representations in Figure 2.3. The parenthesized expression can be seen as 
a logical operator tree. Any representation with more than two levels is called a 
multilevel representation. In this example, the logical operator tree has depth four (or 
four levels). 

There are several methods for obtaining different factored forms for a given 
logic function. These methods range from purely algebraic ones, which are quite fast, to 
so-called Boolean ones, which are slower but are capable of giving better results. Since 
obtaining an optimal (shortest length) factorization for an arbitrary Boolean function is 
an NP-hard problem (MINTZ, 2005), all practical algorithms for factoring are heuristic 
and provide a correct, logically equivalent formula, but not necessarily a minimal length 
solution. Brayton (1987) has presented one of the most known heuristics for algebraic 
factorization. More recently, another heuristic was introduced by Mintz (2005). Usually, 
it gets significantly better factorizations than former algebraic factoring and are quite 
competitive with Boolean factoring but with lower computation costs. 

 

 

Figure 2.3: Multilevel representations. 
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2.2 Logic styles of transistor networks 

A logic gate or logic cell can be defined as a network of transistors (or other 
electronic/electromagnetic components). The association of these components is used to 
implement arbitrary Boolean functions. Usually, logic gates are created following a 
given topology. The most common logic styles are the Pass-Transistor Logic (PTL) and 
the Complementary Series/Parallel (CSP) CMOS (also known as static CMOS). 
Independently of the topology, the output of the cell is either connected to VDD or GND 
through one or more paths of interconnected transistors. A path from VDD to the cell 
output is called pull-up path, while a path from GND to the cell output is called pull-
down path. 

There are several techniques for an automated transistor network generation. 
Buch (1997), Hsiao (2000), Shelar (2001), Shelar (2002) and Avci (2003) have 
proposed methods for PTL network generation. Most of them are based on Binary 
Decision Diagrams1 (BDDs). Every node of a BDD is a decision point which matches to 
a two-input multiplexer (refer to Figure 2.4). This element implements the Shannon 
expansion that is expressed by Equation 2.4. In our BDD representation, the dashed arcs 
represent the decision for the negative cofactor(f(a=0) in the example of Figure 2.4), 
while the other arcs correspond to the positive cofactor (f(a=1) in the example). The 
composition of the cofactors and the decision variable (a in this case) are able to express 
the function f through the Shannon expansion. Due to this, a PTL cell can be easily 
derived from a BDD using pass transistors to build multiplexers. This will be 
demonstrated in Example 1. 

)0(.)1(. =+== afaafaf                        (2.4) 

 

 

Figure 2.4: Correspondence among BDD nodes and multiplexers. 

 

Example 1: Consider the function f(a,b,c,d) such that the ON-set and the OFF-
set are represented by Equations 2.5 and 2.6, respectively. 

 

dbcbcabafsetON ....)( +++=−               (2.5) 

dcacbbafsetOFF ....)( ++=−                (2.6) 

                                                 
1 Binary Decision Diagrams were introduced by Lee (1959). The basic idea from which this data structure 
was created is the Shannon decomposition (SHANNON, 1938). These two concepts resulted in efficient 
data structure proposed by Bryant (1986). Few years later, Brace (1990) extended it to a strongly 
canonical form that is so-called Reduced Ordered Binary Decision Diagram (ROBDD). In popular usage, 
the term BDD almost always refers to ROBDDs. 
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Figure 2.5 shows a BDD that represents the Boolean function f(a,b,c,d) and a 
possible PTL implementation. Every BDD node was replaced by a pair of transistors 
implementing a multiplexer that is controlled by the node variable. The resulting 
transistor network is composed by NMOS transistors only. Moreover, it has an inverter 
in the cell output that works like a signal amplifier. This way, the assignments for the 
source nodes (the terminal nodes 0 and 1 of the BDD) are also inverted for a correct 
implementation. Consider the input vector v(a,b,c,d) = {0, 1, 0, 0}. In the Figure 2.6, 
this vector activates a path in the BDD that leads to the terminal node 1. In the PTL 
transistor network, a pull-down path is sensitized. Therefore, it gives VDD in the 
inverter output which corresponds to the logical value 1. ■ 

 

 

Figure 2.5: PTL transistor network derived from a BDD. 

 

Figure 2.6: Path sensitization in a PTL network. 

 

Generally, the number of transistors in PTL cells is linearly proportional to the 
number of BDD nodes. There are techniques to reduce this number in some special 
cases. These techniques are discussed in (ROSA, 2006). In PTL cells, the same 



 

 

23 

 

intermediate node can be both in a pull-up path and in a pull-down path. When the 
transistor network has these shared nodes, it is said a non-disjoint network. Another 
important point is the length of the longest path. The maximum number of stacked 
transistors corresponds to the number of arcs in the longest path in the BDD. 

Complementary Series/Parallel cells are implemented using two disjoint 
transistor planes. The pull-up plane (pull-down plane) corresponds to the set of 
interconnected transistors between the cell output and VDD (GND). While the pull-up 
plane is only composed by PMOS transistors, the pull-down plane is composed by 
NMOS transistors. When the pull-up plane is derived from the ON-set equation of a 
Boolean function, the topology of the pull-down plane is the series/parallel complement 
of the pull-up plane. In a similar way, CSP cells can be derived from the OFF-set 
equation. In this case, the pull-down is derived directly from the equation and the pull-
up is the series/parallel complement of the pull-down. The topological complementarity 
assures the logical complementarity of the transistor network. Figure 2.7 shows CSP 
cells derived from the ON-set and OFF-set equations (Equations 2.5 and 2.6, 
respectively). In the cell of Figure 2.7a, each pull-up path matches to a cube of the 
Equation 2.5. The pull-down paths depend on the series/parallel associations of the pull-
up plane. Notice that the longest pull-up path has two series transistors, while the 
longest pull-down path has four series transistors. The longest pull-up and pull-down 
paths of the cell derived from the Equation 2.6 have three series transistors. This 
illustrates that the length of the longest path can vary for different implementations of 
the same logic function. 

 

 

 

 

a) cell derived from ON-set(f)  b) cell derived from OFF-set(f) 

Figure 2.7: CSP CMOS transistor networks for f. 

2.3 Minimal length for transistor stacks in standard cell libraries 

For approaches that are intended for cell generators, the number of serial 
transistors inside a cell is an important parameter. The methods presented by Berkelaar 
(1988), Gavrilov (1997), Reis (1997), Jiang (2001) and Correia (2004) use a maximum 
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allowed number of transistor in series as a parameter to restrict the size of feasible cells. 
All these approaches are limited to the use of serial/parallel implementations, and the 
computation of the number of serially connected transistors is done by serial/parallel 
association. Schneider (2005) proposes a design methodology to implement complex 
gates with the exact lower bound for the number serial transistors. More details of this 
approach can be also found in (SCHNEIDER 2006). It is based on the observation that 
the number of literals on the smallest cube2 of the ON-set (OFF-set) prime irredundant 
cover determines the maximum number of serial transistors of the pull-up (pull-down) 
plane. Due to their topologies, PTL and CSP CMOS cells do not respect the lower 
bound in several practical cases. A different topology can be used to implement 
complex gates with the exact lower bound for the number serial transistors. Such 
topology is called Non-Complementary Series/Parallel (NCSP), where the minimum 
cover for the ON-set is used to derive the pull-up plane, and the minimum cover for the 
OFF-set is used to derive the pull-down plane. These cells do not have topological 
complementary plans. However, they are logically complementary. 

Consider the CSP CMOS cells in Figure 2.7. The NCSP cell which implements 
the Boolean function f is shown in Figure 2.8. Just like the CSP CMOS cell, the longest 
pull-down path has three serial transistors. However, the smallest cube of the minimum 
cover for the ON-set has two literals. Thus, two serial transistors is the length of the 
longest pull-up path. 

 

 

Figure 2.8: NCSP cell for the Boolean function f. 

 

                                                 
2 The smallest cube is the one with more literals. 
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Accordingly to Weste (1994), the usual CSP CMOS has one important 
characteristic: low static power consumption. Significant power is only drawn when the 
transistors in the CMOS device are switching between on and off states. Although the 
pull-up and pull-down networks are not complementary in NCSP, they are logically 
complementary. Hence, there will not be any viable path connecting VDD and GND for 
any input vector. Therefore, the same principles of the CSP CMOS logic are applied to 
the NCSP logic. Figure 2.9 shows this property through an example. The truth table of 
the function f was associated to two columns named VDD and GND. They represent the 
occurrence of the voltages corresponding to VDD and GND in the cell output. 

 

a b c D f VDD GND 

0 0 0 0 1 yes no 
0 0 0 1 1 yes no 

0 0 1 0 1 yes no 

0 0 1 1 1 yes no 

0 1 0 0 1 yes no 

0 1 0 1 1 yes no 

0 1 1 0 0 no yes 

0 1 1 1 0 no yes 

1 0 0 0 1 yes no 

1 0 0 1 1 yes no 

1 0 1 0 1 yes no 

1 0 1 1 0 no yes 

1 1 0 0 0 no yes 

1 1 0 1 0 no yes 

1 1 1 0 0 no yes 

1 1 1 1 0 no yes 
 

 

 

 

 

NCSP cell 

Figure 2.9: Simulation table of the NCSP cell. 

2.4 Digital circuits representation 

Digital circuits can be represented in many ways. Graphs3 are widely used for 
this purpose. A Directed Acyclic Graph (DAG) is one of the most popular 
representation for logical circuits. On these structures, each logic gate is represented by 
a vertex and its connections by edges. 

A gate g1 is fanin of g2 if the output of g1 is connected to a g2 input. This 
way, g2 is part of the fanout of g1. The fanout degree of a logic gate is determined by 
the number of logic gates connected to its output. For instance, if the logic gate g1 is 
connected to inputs of the gates g2 and g3 then its fanout degree (or just fanout) is two. 

                                                 
3 In mathematics and computer science graphs are used to model pairwise relations between objects from 
a certain collection. A graph refers to a collection of vertexes or 'nodes' and a collection of edges that 
connect pairs of vertexes. Each vertex has at least an incoming edge and an outgoing edge. 
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When there is no gate with fanout greater than one, the circuit is called fanout-free. 
Fanout-free regions are also known as logic cones. 

A path in a graph is an alternate sequence of vertexes such that from each of its 
vertexes there is an edge to the next vertex in the sequence. Formally, it is a set of 
vertex and connections {c0, g0, c1, ..., cn, gn, cn+1}, where a connection ci, 1 ≤ i ≤ n, 
connects the output of gi-1 to an input of gi. The connections c0 and cn+1 corresponds to a 
primary input (PI) and primary output (PO), respectively. The depth of a graph 
(circuit) is the maximum number of vertexes (gates) in any path of the graph. 
Consequently, each vertex has a depth value that is given by the distance from the 
vertexes. Each logic gate g has a delay d(g) as well as each connection has an associated 
delay d(c). The delay of path is defined as ∑∑
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Consider the combinational circuit of Figure 2.10.a. This circuit can be 
represented by the DAG of Figure 2.10.b. The graph is directed from the primary 
outputs to the primary inputs. The logic depths, which are numerically represented, can 
be calculated through a depth-first search algorithm. In this example, the circuit has 
depth three. The networks n1 and n2 are connected to gates with fanout greater than 
one. In the DAG, these gates are represented by the vertexes that have more than one 
arriving edge. The graphical representation of Figure 2.10.b is a more formal way to see 
the usual graphical representation of Figure 2.10.a. Thus, we will refer DAGs just by 
using the representation of Figure 2.10.a. 

Combinational circuits can also be represented by trees. The trees are a 
specialized kind of graph where all vertexes have fanout one (they are fanout-free 
representations). The Figure 2.10.c shows a forest of logical operator trees. Each tree 
corresponds to a logic cone of the circuit. 

 

  
a) combinational circuit b) representation with DAGs 

 
c) representation with trees 

Figure 2.10: Combinational circuit representations 
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3 TECHNOLOGY MAPPING 

Technology mapping is a foundation of the logic synthesis process. It is used to 
define the set of elements from a library that will implement a circuit in a given 
technology. Typically, the objective function aims the optimal use of all gates in the 
library to produce a circuit with critical-path delay less than a target value and minimum 
area. It may sound to be an interpretation of the general logic optimization problem. 
However, the role of technology mapping is to finish the synthesis of the circuit by 
performing the final gate selection from a particular library. It assumes that the 
technology-independent circuit has already undergone through a significant 
Boolean/structural optimization. In general, these algorithms do not change the structure 
of the circuit radically, for instance, either by finding common expressions between two 
or more parts of the circuit or reducing the logic depths of the critical paths. They are 
simplified because they are constrained by the structure of the equations produced by 
the technology-independent optimizations. This structural dependence has been studied 
by Chatterjee (2005), and it is also known as structural bias. 

Most existing techniques for technology mapping are based on 
precharacterized libraries, and can be classified into four categories: rule-based mapping 
(GREGORY, 1986), graph matching (KEUTZER, 1987-a), direct mapping (LEGA, 
1988) and functional matching (MAILHOT, 1993). Ideally, technology mapping 
algorithms should be able to satisfy several goals and to handle different libraries. It is a 
quite hard task since the cell libraries normally have a different set of cells that 
implements a limited set of logic functions. A library of fixed size restricts the choices 
for covering a given circuit. Other approaches for technology mapping propose 
techniques based on cell generators. Instead of having a static library, they assume that 
arbitrary cells can be generated on the fly through a cell generator, increasing the 
matching search space. 

Besides specifying the technology mapping problem, this chapter shows 
specific concepts and techniques for technology mapping, such as data structures, 
technology libraries and some of the existing methods. 

3.1 Cell libraries 

A cell library can be defined as a finite set of logic gates that implements 
different Boolean functions with different drive strengths and topologies. Traditionally, 
the technology mapping methods rely on static precharacterized libraries aiming delay, 
area and power optimizations. Each cell in the library is fully characterized through 
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many simulations using complex numerical methods. The result of this process is a set 
of accurate information about the behavior of the cell, concerning timing and power 
consumption, and its physical area. According to Sechen (2003), the characterization 
cost of a library is expensive. Hence, commercial libraries are typically composed of 
few hundred combinational cells and sequential elements like latches and flip-flops for 
which highly optimized layouts have been optimized for a particular technology. The 
logic designers are then restricted to using these cells in their circuit designs. Figure 3.1 
shows the usual circuit design flow considering technology mapping methodologies 
based on libraries with a fixed size. 

A very simple library is illustrated in Figure 3.2. The cell library names are 
shown together with their area costs, their function and their DAG representations in 
terms of two-input AND/OR gates and inverters. The DAG representations correspond 
to graph patterns used by the matching algorithm. An equivalent library description is 
given in the Figure 3.3. It corresponds to a subset of the lib2.genlib that is distributed 
with the SIS tool (SENTOVICH, 1992). 

 

 

Figure 3.1: Digital circuits design methodology. 
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Cell Cost Symbol Primitive graph pattern 

INV 2   

NAND2 4 
  

NAND3 6 
  

NAND4 8 
 

 

 

NOR2 4 
  

NOR3 6 
  

NOR4 8 
 

 

 

AOI21 6 
  

OAI21 6 
  

AOI22 8 

  

OAI22 8 

  

XOR2 10 
 

 

Figure 3.2: Static library example. 
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GATE inv1   928.00 O=!a; 

PIN a INV 0.0514 999.0 0.4200 4.7100 0.4200 3.6000 

GATE xor  2320.00 O=(!a*b)+(a*!b); 

PIN a UNKNOWN 0.1442 999.0 1.7700 5.2300 0.9600 4.6400 

PIN b UNKNOWN 0.1381 999.0 1.9400 4.6500 1.1400 5.2200 

GATE nand2  1392.00 O=!(a*b); 

PIN a INV 0.0777 999.0 0.6400 4.0900 0.4000 2.5700 

PIN b INV 0.0716 999.0 0.4600 4.1000 0.3700 2.5700 

GATE nand3  1856.00 O=!(a*b*c); 

PIN a INV 0.1000 999.0 0.8900 3.6000 0.5100 2.4900 

PIN b INV 0.0828 999.0 0.7100 4.1100 0.4200 2.5000 

PIN c INV 0.0777 999.0 0.5600 4.3900 0.3500 2.4900 

GATE nand4  2320.00 O=!(a*b*c*d); 

PIN a INV 0.1030 999.0 1.2700 3.6200 0.6700 2.3900 

PIN b INV 0.0980 999.0 1.0900 3.6100 0.6100 2.3900 

PIN c INV 0.0980 999.0 0.8200 3.6200 0.5500 2.4000 

PIN d INV 0.1050 999.0 0.5800 3.6200 0.3800 2.3900 

GATE nor2  1392.00 O=!(a+b); 

PIN a INV 0.0736 999.0 0.3300 3.6400 0.4500 3.6400 

PIN b INV 0.0968 999.0 0.5000 3.6400 0.7000 3.6600 

GATE nor3  1856.00 O=!(a+b+c); 

PIN a INV 0.0856 999.0 0.8400 5.0400 1.3000 3.4500 

PIN b INV 0.0806 999.0 0.7800 5.0300 1.1400 3.4300 

PIN c INV 0.0826 999.0 0.5200 5.0300 0.8400 3.4400 

GATE nor4  2320.00 O=!(a+b+c+d); 

PIN a INV 0.0887 999.0 0.4100 5.9100 1.1600 3.2000 

PIN b INV 0.0867 999.0 0.8500 5.9100 1.5300 3.1800 

PIN c INV 0.0867 999.0 1.1100 5.9200 1.7500 3.1900 

PIN d INV 0.0887 999.0 1.2700 5.9100 1.9400 3.2000 

GATE aoi21  1856.00 O=!((a*b)+c); 

PIN a INV 0.1029 999.0 0.7500 3.5200 0.6700 2.5300 

PIN b INV 0.0908 999.0 0.6700 3.6400 0.6200 2.5200 

PIN c INV 0.1110 999.0 0.5800 3.6400 0.2100 1.2800 

GATE aoi22  2320.00 O=!((a*b)+(c*d)); 

PIN a INV 0.1019 999.0 0.9200 3.4600 0.9400 2.7900 

PIN b INV 0.0908 999.0 0.8400 3.6400 0.8500 2.7900 

PIN c INV 0.0958 999.0 0.6100 3.6400 0.4900 2.9300 

PIN d INV 0.0988 999.0 0.7000 3.6400 0.5400 2.9300 

GATE oai21  1856.00 O=!((a+b)*c); 

PIN a INV 0.1019 999.0 0.6900 3.9400 0.5300 2.4700 

PIN b INV 0.0979 999.0 0.8700 3.9300 0.6300 2.4700 

PIN c INV 0.0998 999.0 0.3700 2.0500 0.5700 2.5100 

GATE oai22  2320.00 O=!((a+b)*(c+d)); 

PIN a INV 0.1009 999.0 1.1000 4.0600 0.9000 2.5000 

PIN b INV 0.1029 999.0 0.9900 4.0600 0.6800 2.3600 

PIN c INV 0.0958 999.0 0.6900 3.6600 0.7400 2.5300 

PIN d INV 0.1039 999.0 0.6100 3.6600 0.5600 2.0600 

 

Figure 3.3: A subset of the lib2.genlib. 

The quality of the mapped circuits is very dependent on the richness of the 
library in terms of the number of implemented logic functions, drive strengths and 
topologies. Libraries that implement a large number of Boolean functions lead to better 
results when compared to sparsely populated libraries. Keutzer (1987-b) analyzed the 
impact of the library size. He demonstrated that a better area optimization can be 
achieved using large libraries. As Jiang (2001) has observed, the most recent device 
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technologies encourage the usage of complex gates in deep-submicron circuits. It leads 
to better circuit performance. Nevertheless, it complicates the problem of the traditional 
library-based technology mapping. In order to increase the use of complex gates in the 
design, the number of implemented Boolean functions has to be increased. The side 
effect is that this number grows exponentially. Thus, the number of gates in any library 
of a reasonable size can only capture a small fraction of the total number of possibilities. 
It makes the traditional technology mapping too restrictive. 

There are approaches for technology mapping based on virtual/dynamic cell 
libraries (it is also know by library-less technology mapping). These methods assume 
that each cell in the library is generated on-the-fly by a module generator. Figure 3.4 
illustrates the logic synthesis flow of these approaches. The mapping algorithm defines 
the set of cells used in the circuit implementation. This set is the input for a cell 
generator which provides the cell layouts that are further used in physical synthesis. 

 

 

Figure 3.4: Logic synthesis flow for virtual library technology mapping. 

The virtual cell libraries also have a finite number of cells. This number is 
limited by a set of constraints that represent characteristics of the virtual cells. These 
constraints can impose topological restrictions such as the maximum number of inputs. 
For example, consider a library restricted to 2-input cells. It results in the library in 
Figure 3.5.a. Usually, virtual library-based technology mapping uses the maximum 
number of series transistor to restrict the pull-up and pull-down planes of each cell. An 
example of library limited by two transistors in series in both planes is demonstrated in 
Figure 3.5.b. In this case, the library has only seven cells. Table 3.1 shows the size of 
the virtual libraries in terms of number of cells. It uses the maximum number of series 
transistors as constraint to limit the library. These values were calculated considering 
the CMOS CSP topology. Notice that after the limit of three series transistors the 
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number of cells is much bigger than a normal static library. For instance, the library 
(4,4) implements 3,503 distinguished Boolean functions (up to four serial transistors in 
both planes). This number grows exponentially when increasing the number of serial 
transistors. 

The matching and covering methods used by the traditional technology 
mappers cannot be applied to virtual libraries since the number of patterns is far too 
large. A structural/Boolean matching method, which compares the Boolean function of 
the cells in the library with subfunctions of the circuit representation, operates by 
choosing a covering that is the best solution over all possible matchings. Therefore, if 
the number of patterns/cells is large then more comparisons would be necessary, 
increasing the execution time. Virtual cell libraries do not have patterns for cell 
representation. There are methods, for example, to calculate the number of serial 
transistors of a sub-graph of the circuit representation. It is enough to know if the 
calculated result fits in a set of constraints. Hence, there is no need of a pattern matching 
algorithm. 

  

a) up to 2-inputs b) up to 2 serial transistors 

Figure 3.5: Virtual library examples. 

Table 3.1: The size of CMOS CSP cell libraries induced by the number of serial 
transistors. 

PU / PD 1 2 3 4 5 6 
1 1 2 3 4 5 6 
2 2 7 18 42 90 186 
3 3 18 87 396 1,677 6,877 
4 4 42 396 3,503 28,435 222,913 
5 5 90 1,677 28,435 425,803 6,084,393 
6 6 186 6,877 222,913 6,084,393 154,793,519 

Source: (SECHEN, 1996). 

Clearly, both the quality of the mapped circuit and the CPU time are related to 
the size of the library. The main barrier of the virtual library approach is the dependency 
on a good layout generator and the lack of accurate information about the cell behavior. 
Due to this, the static precharacterized libraries are still popular in the industry. 
Currently, there are layout synthesis tools able to automatically generate layout for 
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arbitrary complex gates more accurately and efficiently. The big problem is to find good 
models to estimate area, timing and power on demand. In this sense, some estimative 
models have been proposed such as the leakage power estimation method introduced by 
Butzen (2008). 

3.2 Subject graphs 

All technology mapping methods are performed over a circuit representation 
that is called subject graph. Digital circuits can be represented in many ways through 
different kinds of data structures. Each algorithm uses a well defined structure 
according to the criteria that will be explored during the technology mapping process. 
The evolution of the technology mapping algorithms is strongly related to their different 
subject graph types. 

The first technology mapping methods used logical operator trees to represent 
parts of a circuit. Several import methods found in the literature, including more recent 
approaches, use this kind of subject graph (KEUTZER, 1987-a) (DETJENS, 1987) 
(ABOUZEID, 1992) (MAILHOT, 1993) (LIEN, 1992) (LEHMAN, 1997) (REIS, 1999) 
(ZHAO, 2001) (CORREIA, 2004). The operator trees are very simple data structures, 
and they are usually used to represent logic cones of a circuit. Therefore, algorithms that 
use these structures can only find optimal solutions for each part of the represented 
circuit. 

The Binary Decision Diagrams are also used as subject graphs in some 
technology mapping approaches. There are different types of BDDs, and each one of 
them has a particular property. The TSBDDs were used in (REIS, 1998) to map circuits 
with CMOS CSP gates. Some methods, such as the methods presented by Yamashita 
(1997) and Jiang (2001), use ROBDDs to map circuits to PTL cells. A recent method 
proposed by Rosa (2006) describes techniques to generate gates in different topologies, 
including NCSP gates. 

Other methods, such as (KUKIMOTO, 1998) (STOK, 1999) (MISHCHENKO, 
2005), are based on DAGs, or similar data structures, that provide a full representation 
of the circuit. This kind of representation does not impose limits to the boundaries of the 
logic cones. This way, optimal solutions can have matches that cross nets with multiple 
fanout. 

As discussed above, each technology mapping method uses a well defined 
subject graph. Generally, it determines the main characteristics of the algorithm and its 
application. The memory consumption to store the circuit and its matches will depend 
on the subject graph type. Therefore, the choice of the subject graph can determine the 
success of a technology mapping algorithm. 

3.3 Conventional technology mapping 

As mentioned in the beginning of this chapter, the technology mapping chooses 
a set of logic gates to implement a circuit in a given technology. This set of cells is 
defined aiming the minimization of an objective function, and it is not an easy task. The 
majority of the algorithms reduce the technology mapping problem by handling smaller 
parts of the circuit. Therefore, the result can be (locally) minimal, but generally it does 
not correspond to global minimal costs. 
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The most conventional approach of technology mapping can be described as a 
three step procedure: technology decomposition, matching phase and covering phase. 
The most common methods have trees as subject description. This way, an additional 
step is required right before the technology decomposition. The initial graph must be 
partitioned into trees. Next section describes the technology mapping using tree-based 
approaches. 

3.3.1 Graph partitioning 

In order to apply the tree-based technology mapping, the graph must be 
converted in a forest of trees. It can be done by breaking the graph at each multiple-
fanout point. Each node with fanout greater than one becomes the root of a tree, and 
fanout of this node becomes a leaf-node of another tree. Thus, this technique does not 
duplicate nodes in the graph. An example of partitioning is demonstrated in Figure 3.6. 

 

 

Figure 3.6: Graph partitioning. 

3.3.2 Technology decomposition 

The technology decomposition phase translates the graph representation into a 
subject graph decomposed in simple logic primitives. Any complex gate representation 
is replaced by a set of primitives normally composed of AND, OR and NOT operators 
or only AND and NOT operators. The main purpose of this step is to facilitate the 
matching algorithm task and to increase the graph granularity. The graph is decomposed 
using the same primitives in which the patterns of the cell in the library are represented. 
Therefore, the matcher can compare the circuit sub-graphs to the pattern graphs. Figure 
3.7 shows an example of technology decomposition in the tree rooted by the node n1. 
Three different decompositions are shown. In the first one, the subject graph is 
expressed by AND, OR and NOT operators. All OR nodes can be replaced by a set of 
AND and NOT nodes in order to reduced the number of distinguished nodes. This is 
demonstrated in the second subject graph/tree (from left to right). As a last step, another 
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trick can be used to increase the granularity of the subject graph. A pair of inverter 
nodes can be added at each input that is not connected to NOT nodes. 

 

Figure 3.7: Technology decomposition. 

3.3.3 Matching phase 

This step consists in establishing the initial set of candidate matches attempting 
to match each node of the graph against each pattern of the library. If there are p 
patterns in the library and n nodes in the subject graph, then this naive approach has 
complexity )( pnO ⋅ . Structural matchers look for patterns and sub-graphs that are 
structurally isomorphic. Some approaches reduce the tree matching problem to the 
string matching problem. It is possible to find all of the strings that match a given string 
in time proportional to the length of the longest string in the pattern set. Boolean 
matchers identify patterns independently of the graph structure. There are several 
approaches for functional matchers that usually give better results than the structural 
matchers. However, these methods are expensive in terms of CPU time. Most of them 
have a limited search space containing Boolean functions with support up to 10 
variables. 

The result of the matching phase is illustrated through Figure 3.8. The subject 
graph of Figure 3.8 was matched against the library of Figure 3.2. Only the best matches 
for each node are bound in the graph. All cumulative costs are also shown in Figure 3.8, 
considering all possible matches. 
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Figure 3.8: Matching generation. 

3.3.4 Covering phase 

The last step of technology mapping is the covering phase. This procedure 
finds the optimal set of cells for final circuit implementation. Dynamic programming is 
a general technique for many algorithms which can be applied to the covering problem. 

Consider the problem of finding a minimum area cover for a subject tree T. A 
scalar cost is assigned to each tree pattern, and the cost for a cover is the sum of costs 
for each pattern in the cover. The minimum-area cover for a tree T can be derived from 
the minimum-area covers for every node below the root of T. This is the principle of 
optimality for tree covering and is used as follows to find an optimal cover for T. For 
every match at the root of the tree the cost of an optimal cover containing that match 
equals the sum of the cost of the corresponding gate and the sum of the costs of the 
optimal covers for the nodes which are inputs to the match. For instance, consider the 
possible covers shown in Figure 3.9. The tree in the right side of the figure represents 
the minimal cover. 

Note that each node in the tree is visited only once through a depth-first search 
algorithm. It is not necessary to re-compute the optimal cover for each input of each 
match. Hence, the complexity of this algorithm is proportional to the number of nodes 
in the subject tree times the maximum number of matches at any node in the subject 
tree. As result the covering algorithm has linear complexity in the size of the subject 
tree, and the memory requirements are also linear in the size of the subject tree. The 
optimal cover of each matched tree is presented in Figure 3.10. Its total cumulative cost 
is 10. 
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Figure 3.9: Calculating cost on the subject graph. 

 

 

Figure 3.10: Tree covering result. 

3.4 Technology mapping for standard cell libraries 

This section reviews some of the main methods for technology mapping based 
on static precharacterized cell libraries, analyzing how they handle the technology 
mapping problem, the subject graphs and the objective functions. First, it starts with the 
first technology mapping method that was presented by Keutzer (1987-a).  After, the 
methods of Kukimoto (1998), Stok (1999) and Mishchenko (2005) are reviewed. 
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3.4.1 Keutzer (1987-a) – DAGON 

The first technology mapping algorithm was presented by Keutzer (1987-a). 
He has found a relationship between technology mapping and programming language 
compiler techniques. More specifically, matching graph patterns of a technology 
independent circuit representation against a library of patterns, such as standard cell 
libraries, is similar to matching graph patterns of intermediate representations of a 
computer program against the patterns of an instruction set of a given machine. 

The result is an algorithm for technology mapping, called DAGON, which is 
able to minimize area, timing or a function of both. The initial description of a circuit is 
represented by a DAG. This graph is partitioned into a forest of trees that represents all 
logic cones of the circuit. Each sub-tree of the forest is matched against the library of 
patterns that are equivalent to technology cells. The tree matching is made by an 
external tool called twig (TJIANG, 1986). This tool was generally used to construct 
code generators for programming language compilers. This tool needs to be fed with list 
of patterns that are matched against circuit trees. The pattern list is composed by small 
trees in the canonical NAND/NOT form. The developers of the patterns are responsible 
for providing the cost of each one of them. Therefore, given a tree to be matched, the 
twig tool uses these costs to evaluate cost of candidate matches. Once the matches and 
their costs are bound in the circuit tree, the covering algorithm can select the 
patterns/cells that will cover the tree/circuit with minimal cost. The whole DAGON 
mapping flow is summarized by the Figure 3.11. 

 

 

Figure 3.11: DAGON algorithm flow (KEUTZER, 1987-a). 
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Keutzer gives an example of a set of five patterns for AND-OR-INVERTER 
(AOI) gates. These patterns can be seen in Figure 3.12. They actually describe sixty-
four unique pattern instances from an AOI444 to AOI211. Many of these patterns are 
symmetric, thus an AOI114 is equivalent to an AOI411. A graphical representation of 
the set of trees described by these patterns is given in Figure 3.13. Comparing the 
current cell library descriptions (refer to Figure 3.3) against the library of patterns, we 
can see that it is a very rudimentary description. It can only describe a single cost value 
for each pattern while the most recent descriptions are able to describe different costs, 
even for each cell pin. 

Since it uses the tree covering approach, optimal solutions can be found in 
linear time. The main disadvantage of this method is the size of the library, which is 
very limited. Moreover, it does not achieve good results regarding timing optimizations 
since it is a tree based mapping. 

 

 

Figure 3.12: An AOIxxx pattern (KEUTZER, 1987-a). 
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Figure 3.13:Geometric interpretation of Figure 3.12 (KEUTZER, 1987-a). 

3.4.2 Kukimoto (1998) – DAG based technology mapping 

A pioneer work for standard cell technology mapping, which effectively uses 
DAGs as subject descriptions, was the algorithm introduced by Kukimoto (1998). As 
Keutzer (1989) has shown, if a subject graph is a DAG, graph covering for minimal area 
mapping is a NP-complete problem. When using trees as subject graphs, some methods 
can guarantee a minimal cover in linear time. It leads to the usual approach of 
technology mapping algorithms that decompose a subject DAG into trees, solve the 
technology mapping problem optimally for each tree and glue the results together. 

Based on these assumptions, Rudell (1989) worked on a minimal-delay 
technology mapping. If loading effects are completely ignored, then the minimal-delay 
mapping problem for subject trees can be solved optimally by dynamic programming in 
linear time. In the early 90’s, the appearance of Field-programmable Gate Arrays 
(FPGAs) brought a new technology mapping problem. LUT-based FPGAs can 
implement any function of k inputs in a single LUT, where k is a fixed constant 
depending on the FPGA technology. The traditional library-based technology mapping 

cannot be applied in FPGAs because it would be necessary to create 
n22  patterns that 

correspond to the number of Boolean functions of n variables. Cong (1994) introduced a 
technology mapping algorithm able to find timing-optimal solutions in LUT-based 
FPGAs in polynomial time. Unlike the conventional tree mapping, it maps a circuit 
directly over a DAG.  

The dynamic programming approach proposed in (CONG 1994) is not 
specifically for FPGA. Kukimoto (1998) observed that it could be easily extended to a 
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library-based mapping method. It was the first method to show that the minimum-delay 
technology mapping problem for DAGs can be solved optimally in polynomial time. 
This method guarantees the minimal cover under a load-independent delay model. It 
only considers a fixed delay between each input and the output of a gate, discarding any 
information about load effects. The method assumes that the mapped circuit can be 
continuously sized to match the delay of the matches and the actual loads. It also can 
take into account buffer insertion methods to reduce the load of high fanout nets. As 
most of the DAG-based methods, Kukimoto’s method focuses on delay optimization 
without any area consideration. Therefore, at each intermediate node the fastest 
mapping is simply created no matter how critical the node is. It leads to a certain 
amount a of logic duplication increasing the area of the resulting circuit. 

3.4.3 Stok (1999) – Wavefront technology mapping 

The wavefront technology mapping algorithm leads to a very simple and 
efficient implementation that elegantly decouples pattern matching and covering but 
circumvents that patterns have to be stored for the entire network simultaneously. This 
approach coupled with dynamic decomposition enables trade-off of many more 
alternatives than in conventional mapping algorithms. The wavefront algorithm maps 
optimally for minimal delay on DAGs when a gain based delay model is used. It is 
optimal with respect to the arrival times on each path in the network.  

The wavefront was defined as a subgraph of the DAG, such that every path 
from input to output goes through the subgraph. The subcircuit isolated by the 
wavefront is bounded by the head and the tail of the wavefront. The head of the 
wavefront is the boundary closer to the primary outputs (POs) and the tail of the 
wavefront is the boundary closer to the primary inputs (PIs) of the circuit. If, in Figure 
3.14, the vertical line with label 1 is the head and the line with label 0 is the tail, the 
subgraphs containing the inverters form the wavefront. In addition to decoupling the 
match generation and covering problems, the wavefront algorithm allows the match 
generation to work only on a subcircuit, thereby minimizing the number of matches 
stored at any time. Also, matches are allowed to be generated and maintained 
dynamically, as opposed to generating all the matches for the entire circuit a-priori. 

The algorithm is illustrated through Figure 3.14 (the same example found in 
Stok (1999)). It supposes that the target library, which will be used to map the circuit, is 
composed by the cells: NOR, AOI, XNOR and inverter. Furthermore, the wavefront 
algorithm presumes that the circuit is levelized from inputs to outputs. Initially, both the 
head and the tail of the wavefront start at level 0 (at the PIs level). The head of the 
wavefront advances one step and the steps of match generation and implementation are 
performed for all nets on this level. Matches are generated using Boolean and Structural 
matchers. All pattern matchers have one thing in common; given (a) net(s) in the circuit, 
they generate a set of technology cell matches for the subcircuit in the wavefront driving 
the(se) net(s). All technology/library cells and their embedding in the network are 
shown in dotted lines.  
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Figure 3.14: Wavefront algorithm (STOK, 1999). 

Unlike conventional technology mapping, matches are not limited to fanout-
free regions; i.e. the match generation search process performs its search across fanout. 
However, the subcircuit for the match generation process is isolated by the wavefront; 
i.e. the match generation search process starts at a net(s) on the head of the wavefront 
and stops as soon as it encounters nets on the tail of the wavefront or a net on a level 
below the tail of the wavefront. As matches are generated for a node, they are 
implemented in the underlying netlist as drivers of a multi-source net. The multiple 
drivers on a net include the technology-independent cell and all the technology cell 
matches found for that node. For instance, the net connected to the PO x has four 
technology cells plus the technology-independent cell as drivers. The head of the 
wavefront keeps advancing one step at a time until matches have been generated for all 
nets on the highest level of the circuit. 

The tail does not start moving until the head has moved for a number of steps 
equal to the width of the wavefront. Covering for selecting the best match occurs for all 
nets on the tail of the wavefront. After choosing the best match of a net, a cleanup 
operation is recursively performed in order to remove all matches deemed sub-optimal 
and the technology-independent cells. Therefore, the matches for the technology cells 
are just kept in the sub-graph of the wavefront. The tail of the wavefront keeps 
advancing one step at a time until all nets on the highest level of the circuit have been 
covered. 

Figure 3.15 demonstrates the effect of using different wave widths. Both the 
quality of the mapped circuit and CPU time are affected by the width of the wavefront. 
While the circuit in Figure 3.15.a is the timing-optimal cover, the circuit in Figure 
3.15.b is not.  When using a wave width of three levels, the XNOR match is not 
allowed. It reduces the number of generated matches/patterns reducing the CPU time. 
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a) wave width = 4  b) wave width = 3 

Figure 3.15: Wavefront resulting circuits (STOK, 1999). 

3.4.4 Mishchenko (2005) – Technology Mapping with Boolean Matching, 
Supergates and Choices 

Mischenko has recently proposed an approach for library-based technology 
mapping (MISHCHENKO, 2005) that relies and enhances upon several known 
techniques, integrated and fine tuned to work in a new way. The previous work on DAG 
mapping is extended, by proposing new methods for enumerating mapping choices and 
performing Boolean matching, which guarantees delay-optimum phase assignment at 
the gate boundaries. These techniques are used to reduce the mapping dependence on 
the initial subject graph (CHATTERJEE, 2005) (MISCHENKO, 2006). Mishchenko’s 
method is incorporated in the ABC tool (ABC, 2008). 

The technology mapping approach proposed by Mishchenko (2005) is devoted 
to minimize the delay of the longest path in the mapped netlist under a load-independent 
delay model. As shown by Kukimoto (1998), this problem can be optimally solved 
using dynamic programming for DAG-covering. The key difference of Mishchenko’s 
method with the conventional approaches based on DAG-covering lies in the matching 
step, which uses Boolean instead of structural matching. The subject graph is 
represented as an And-Inverter Graph (AIG). An AIG is a DAG whose nodes represent 
either AND gates or primary inputs. Its edges represent wires. Inverters are represented 
by bubbles on the edges. An example of AIG can be seen in Figure 3.16. 

 

 

Figure 3.16: An example of an AIG (MISHCHENKO, 2005). 

The mapping is divided into 5 steps. First, for every node, it computes all of its 
k-feasible cuts. A feasible cut of a node N in the AIG is a set of nodes {xi} in the 
transitive fan-in cone of N such that an arbitrary assignment of values to xi completely 
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determines the value of N. A feasible cut is redundant if the value of a node in the cut is 
completely determined by an assignment of values to the other nodes in the cut. A k-
feasible cut is a feasible cut of size at most k that is not redundant. The cut {N} 
composed of node N alone is always a k-feasible cut of node N (for any k) and is called 
the trivial cut. Each k-cut of node represents a Boolean function of k variables. In the 
AIG of Figure 3.16, {n2}, {n4, n5}, {n4, x2, x3}, {n5, x1, x2}, {x1, x2, x3} are all the 3-
feasible cuts of n2. The algorithm for computing all k-feasible cuts for all nodes in the 
AIG is performed in one pass over the nodes as shown in Figure 3.17. 

Second, for every cut, it assigns a formal variable to each node in the cut and 
computes the function of the corresponding node in terms of these variables. (The 
function is computed as a bit-vector representing the truth-table.) Third, these functions 
are looked up in a hash table and matched with gates from the library. Fourth, in 
topological order, starting with arrival times of the primary inputs, the best arrival time 
for each node is computed by choosing the library gate with minimum delay. Finally, in 
reverse topological order, the best covering is chosen. (The last two steps are exactly the 
same as in traditional mapping.) There is an additional post-processing step, which can 
recover area on the non-critical paths. 

The results presented by Mishchenko (2005) demonstrate that the Boolean 
matching technique with optimal phase assignment is a better alternative to the graph 
matching since it produces superior results with shorter run-time. Supergates and 
choices fit nicely into this framework and greatly improve the quality of mapping by 
mitigating structural bias. Furthermore, the intermediate networks seen during 
technology independent synthesis are a useful source of choices for the final mapping. 
However, these techniques have limitations. The exhaustive cut computation is only 
practical for cuts up to 6 variables. There is a heuristic method presented in 
(CHATTERJEE, 2006) that allows non-exhaustive computation of k-cuts up to 12 
variables. 

 

Figure 3.17: Computation of all k-feasible cuts (MISHCHENKO, 2005). 
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3.5 Technology mapping for virtual libraries 

There are some technology mapping methods based on virtual libraries. Instead 
of having a library with a limited amount of cells, these approaches can handle a large 
number of cells in libraries limited by some constraints. This section review some of 
these techniques focusing on the objective function, the matching algorithm and the 
constraints used to restrict the library. 

3.5.1 Berkelaar (1988) – The first technology mapping algorithm for cell 
generators 

The algorithm presented by Berkelaar (1988) was a pioneering work aiming at 
virtual libraries. It relies on the completeness of a generated library in an automatic way. 
As other traditional technology mapping approaches, it works over DAG-partitioned 
representation. This method also applies the partitioning procedure over an initial DAG 
to divide the representation in logic cones. The algorithm takes as input complex 
Boolean expressions that represent the logic cones of the circuit. All Boolean 
expressions are denoted by a prefix notation, and they are assumed to be non-redundant 
and factorized. 

The expressions are represented by a specialized kind of graph as demonstrated 
in Figure 3.18. Each edge symbolizes a literal of the expression. A set of three different 
nodes connected through two serial edges is equivalent to an AND operation between 
two literals. This is the case of the edges j and k of the graph. The association of two 
different nodes connected through two parallel edges is equivalent to an OR operation. 
Either the pair of edges f and g or h and i represent a parallel association. The size of the 
sub-expressions is limited to reduce the number of recursive evaluations. 

 

 

Figure 3.18: Graph expression representation (BERKELAAR, 1988). 

 

The method performs a top-down traversal (from source to sink) over the graph 
evaluating the expressions from source to sink (giving priority for the operators with 
less precedence). Each sub-graph starting from any intermediate node to the sink 
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corresponds to a sub-expression. Each sub-expression should match with some cell in 
the virtual library. When the optimal match is found, the nodes in the bottom of the sub-
graph become intermediate variables in the sub-expression. Then this process is 
recursively repeated until the sub-expression becomes single variables.  

The result of the mapping process is a multi-level gate network with minimal 
logic depth and the lowest possible number of gates. The main problem of this approach 
is that the algorithm cuts the top of the three first and the bottom intermediate nodes are 
not mapped yet. Therefore, the algorithm does not know the depth of the uncovered sub-
functions. This depth is estimated through a heuristic instead of solving it with a 
dynamic programming strategy, which could result in non-optimal solutions when 
compared to dynamic programming. Even if the algorithm works on a graph, it treats 
single output parts of the circuit, which is equivalent to tree mapping. 

3.5.2 Reis (1998) – TABA 

A different solution for virtual library technology mapping was proposed by 
Reis (1998). The method TABA, as it was called, uses Terminal-Suppressed Binary 
Decision Diagrams (TSBDDs), which are a specialized kind of BDD, as subject graph. 
These structures have a special property. Each edge of the TSBDD corresponds to a 
transistor as depicted in Figure 3.19. 

 

 

Figure 3.19: Relation among TSBDD edges and transistor networks. 

 

This method also applies the partitioning procedure over an initial DAG to 
divide the representation in logic cones. Each logic cone is represented by a TSBDD. 
The algorithm evaluates part of the diagram verifying if they respect the constraint of 
the virtual library. It uses the number of series transistors for the pull-up and pull-down 
networks to restrict the size of the virtual library. Each sub-TSBDD that respects the 
constraints is considered a viable match. Therefore, this sub-set of nodes is replaced by 
an intermediate node in the original TSBDD. The sub-set of nodes becomes a new 
TSBDD that is referenced by the intermediate nodes. It is done in a hierarchical data 
structure that results in a multi-level circuit representation where each instance of a 
TSBDD corresponds to a technology cell. 
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Later, the author observed that there is no advantage in having TSBDDs as 
subject graphs. By the way, Berkelaar’s method does not benefit from using graphs as 
well; all the operations in Berkelaar’s algorithm could be easily implemented on trees. 
The properties of TSBDDs are kept in tree representations. However, it was one of the 
first methods to claim the re-ordering of the subject graph aiming better results, mainly, 
in terms of logic depth. 

3.5.3 Jiang (2001) – OTR: PTL / CMOS technology mapping 

Jiang (2001) introduces two independent algorithms that can be used to map 
circuits with complex gates using either PTL or CMOS cells. One of the algorithms is 
called Odd-level Transistor Replacement (OTR). It maps circuits using static CMOS 
complex gates through a topological gate collapsing method. It also uses the number of 
series transistors to limit the size of the virtual library. The other algorithm performs a 
Boolean mapping using BDDs to derive PTL cells. As discussed in the first chapter of 
this work, PTL cells can be easily derived from BDDs. In the remainder of this section, 
the OTR method will be reviewed. 

The OTR method is fast and simple and avoids the intractable sub-problems in 
technology mapping, such as matching and covering, by constructing complex gates 
topologically. The basic idea of the OTR method is to use the pull-down (pull-up) 
transistor structure from the gates at the previous level gates to replace the pull-up (pull-
down) transistors of the gates at the next level. To illustrate this, consider the circuit in 
Figure 3.20.a consisting of gates G1 through G7. This structure has a total of 20 
transistors, and a transistor-level version is shown in Figure 3.20.b. During the 
procedure of transforming the circuit into a complex gate, we will need to generate 
intermediate gates as shown in Figure 3.21.a for temporary use. Those intermediate 
gates will be transformed into a normal static CMOS gate at the end of transformation. 

As shown in Figure 3.20.b, we will refer to the pull-down and pull-up transistor 
in G1 (G2) as an and ape (ban and bop), respectively. The pull-down (pull-up) transistors 
in G1 and G2 are used to replace the fanout pull-up (pull-down) transistors of these 
gates in G5 to obtain the gate G5', resulting an intermediate static CMOS gate shown in 
Figure 3.21.a. For example, the pull-down blocks of G1 and G2 fan out to the pull-up 
transistors p1;5 and p2;5 in G5, respectively, and hence an and bn are inserted in their 
place to create G5'. Similarly, the transistors in G3 and G4 are inserted into G6 to obtain 
another intermediate static CMOS gate, G6'. These intermediate gates are treated as 
intermediate synthesis stages and we will eliminate them in the next step by performing 
the same operation, replacing the pull-down (pull-up) block of G7 consisting of 
transistors p1;7 and p2;7 (n1;7 and n2;7) by the pull-up (pull-down) blocks of the 
intermediate gates G5' (G6'). Therefore, noting that for G5', the pull-up block consists 
of an and bn and the pull-down block of ap and bp, that G6' has a pull-up block 
comprising transistors cn and dn and a pull-down block comprising cp and dp, the 
following operations are performed to obtain the final collapsed gate: (1) use an and bn 
from G5' to replace n1;7 of G7 (2) use cn and dn from G6' to replace n2;7 of G7 (3) use 
ap and bp from G5' to replace p1;7 of G7 (4) use cp and dp from G6' to replace p2;7 of 
G7. The detailed illustration of the final collapsed gate is shown in Figure 3.21.b. Note 
that the final implementation has only 8 transistors, a transistor count reduction of 60%. 
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a) Combinational circuit b) Electrical diagram 

Figure 3.20: Circuit example (JIANG, 2001). 

 

 

 

a) Intermediate cells b) Final circuit 

Figure 3.21: Logic cells generated by OTR algorithm (JIANG, 2001). 
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From the principle illustrated in this example, it is easy to see that if we 
collapse an even number of levels of gates, we will be left with an intermediate static 
CMOS gate, whereas if we collapse an odd number of levels, we will return to the 
formal CMOS complex gate structure, and therefore this technique is called the odd-

level transistor replacement (OTR) method. The number of levels used in the 
replacement process depends on the constraints for the maximum number of serial 
transistors. If the length of the longest transistor chain in a given cell is smaller than the 
constraint, then the cell can be used as a replacement product in the forward levels. 

3.5.4 Correia (2004) – ELIS - Technology mapping for symmetric and asymmetric 
virtual libraries  

The approach presented in Correia (2004) also performs technology mapping 
over trees. It uses n-ary trees, where nodes can have multiple outgoing edges (more than 
two child nodes), as subject graph. These trees allow the use of a distinct covering 
strategy that exploits several decompositions in the same subject description, taking into 
account criteria that optimize the logic depth of the nodes before gathering them into 
complex gates. 

After the DAG partitioning procedure, each tree is transformed in a n-ary tree, 
with multiple input AND/OR operators and leaf nodes representing the input literals. 
There are two basic rules for this transformation. First, the DeMorgan’s theorem is 
applied in the root of a tree to propagate all inverters to the leaf boundary of the tree. 
This is demonstrated in Figure 3.22. Afterward, every adjacent node with the same 
operator label is grouped into a single node as illustrated in Figure 3.23. 

 

 

Figure 3.22: Appling the DeMorgan’s theorem on n-ary trees (CORREIA, 2004). 

 

 

Figure 3.23: Grouping equivalent nodes (CORREIA, 2004). 
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The n-ary subject trees embed all possible decompositions achieved by the 
application of associative transformations. As stated before, the initial decomposition of 
the subject graph has a significant impact in the technology mapping due to the 
structural bias. The impact of the initial structure can be reduced when different 
decompositions are explored. Thus, better results can be achieved. Figure 3.24 shows 
different decompositions for the tree represented by Figure 3.23. 

 

 

Figure 3.24: Embedded decompositions (b,c) in a n-ary tree (a). 

The trees are traversed through a depth-first search procedure, and each node 
has its depth and (s,p) costs calculated. The series (parallel) cost of an AND (OR) node 
is given by the sum of all the s (p) costs of its children. The parallel (series) cost of 
AND (OR) node is given by the highest cost among all de p (s) costs at its children. 
Leaf-nodes have (s,p) costs equals to (1,1). At each node where the series and parallel 
costs comply with the specified constraints, a match is established. The covering 
procedure is bottom-up, following a dynamic programming strategy. As a result, each 
node, whose children have already being covered, has a precise information about (s, p) 
costs. The costs for a complete tree are shown in Figure 3.25.a. If a node is found 
having the (s,p) costs in the maximum value allowed, it is marked as an ideal cut. An 
example of an ideal cut made at a node for a (2,2) restriction is shown in Figure 3.25.b. 
The sub-tree rooted at this node is then cut and directly associated to a CMOS complex 
gate. The cut node at the original tree is replaced by a new leaf node, with associated 
cost (1,1) and logic depth given by the value of the root of the recently cut tree plus 1. 
The search then restarts at this node. If a node is found with any of its costs exceeding 
the limits, it is further sliced. Its set of sons is scanned in terms of costs and depths. 
Several clusters grouping the nodes with lower depths are considered at this time. A 
new node with the same operator is added as its son, and this new node receives a set of 
sons that maximizes the (s,p) costs and minimizes the depth of the new node. The new 
node is then cut and the cluster directly associated to a CMOS complex gate. The set of 
nodes removed from the original tree is substituted by a single new leaf node, with 
associated costs (1,1) and logic depth given by the worst value of this set plus 1. The 
search restarts then at the node that had some sons removed. If it still has any exceeding 
cost, the last step is repeated. After each iteration, the costs of the remaining nodes that 
root subtrees recently modified are recalculated. 
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(a)                                                                            (b) 

Figure 3.25: Cost calculation and the first cut. 

 

 

(a)                                                                          (b) 

Figure 3.26: Final cover (before inverter minimization). 

 

The main advantage of this method is that it considers dynamically several 
decompositions of the subject description at low or no cost and covers them optimally in 
a dynamic programming manner. It finds the optimal cover in linear time. A final cut 
and its associated implementation is shown in Figure 3.26. After this, a dedicated 
process will proceed the gate polarization step, where inverters are used where 
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necessary, prioritizing the critical paths. By exploring dynamically several 
decompositions embedded in the same tree, this method can achieve better results than 
simply relying on the initial structure provided. This improvement is accomplished at a 
lower computational cost than barely trying exhausting all the possibilities over 
numerous instances of the same description. More detailed results were present by 
Correia (2004). In agreement with Keutzer (1987-b), these results show that rich 
libraries improve the quality of the mapped circuit. A comparison against SIS 
technology mapping shows significant improvements in terms of delay. The final area 
achieved by the Correia’s method is slightly bigger than the circuits mapped by SIS. 

3.6 Technology mapping methods overview 

All technology mapping methods reviewed in the previous sections are 
summarized in Table 3.2. The second column shows the subject graph used by each 
method. In column three, we can see three different matching types: structural, 
topological constraint and structural/Boolean. Structural matching is strongly dependent 
on the structure of the subject graph. Some methods use a mixed solution of Boolean 
and structural matching. Although the Boolean matching is slower than structural 
matching, it usually gives better results. In some cases, it can be used to avoid structural 
bias. The other matching type is ‘topological constraint’. It may be dependent on the 
structure of a circuit. However, it relies on how the constraints are calculated. The 
covering strategies of each method are enumerated in the fourth column. Except by the 
Berkelaar’s method, the other methods use a bottom-up covering strategy. The top-
down strategy leads to non-optimal results. Finally, column five categorizes the 
methods according to its dependence on a static library. 

Table 3.2: Differences among previous technology mapping methods. 

Method Subject Graph 
Matching 

Type 
Covering 

Type 
Static 

Library 

Keutzer (1987-a) 
Binary tree 

represented through 
a string 

Structural Bottom-up Yes 

Berkelaar (1988) 
Boolean expression 

represented by a 
graph 

Topological 
constraint 

Top-down No 

Kukimoto (1998) DAG Structural Bottom-up Yes 

Reis (1998) TSBDD 
Topological 
constraint 

Bottom-up No 

Stok (1999) DAG 
Structural / 

Boolean 
Bottom-up Yes 

Jiang (2001) 
Circuit electrical 

diagram 
Topological 
constraint 

Bottom-up No 

Correia (2004) N-ary tree 
Topological 
constraint 

Bottom-up No 

Mishchenko 
(2005) 

AIG 
Structural / 

Boolean 
Bottom-up Yes 
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4 TECHNOLOGY MAPPING USING CMOS GATES WITH 
MINIMUM TRANSISTOR STACKS 

This chapter introduces a new approach for library-free technology mapping 
using CMOS gates with minimum transistor stacks (the lower bound cells presented in 
(SCHNEIDER, 2005) ). The available technology mapping methods/tools are analyzed 
in order to verify how these techniques can handle lower bound cells. Our method for 
library-free technology mapping, which is called VIRMA (“VIRtual technology 
MApping tool”), is described in the following. It includes a description of the object 
function, subject graph and all supporting functions. 

4.1 Previous technology mapping techniques and CMOS gates with 
minimum transistor stacks 

The previous chapter presented a quick overview of several technology 
mapping techniques that are based on different subject graphs and on dynamic or static 
libraries. In this section, some crucial points concerning lower bound cells are 
discussed. Not all available technology mapping methods can take advantage of these 
complex gates, either due to their subject graphs or library limitations. These aspects are 
discussed in the following. 

4.1.1 Cell instances 

The exploration of lower bound benefits in the circuit design is strongly 
attached to the technology mapping procedure, as stated by Rosa (2007). 

Lemma 1: every function that can be expressed as a prime irredundant sum of 
products (ISOP) without repeated literals will have a complementary series-parallel 
(CSP) implementation with minimum length transistor chains. 

Example 1: The cell shown in the left part of Figure 4.1 will have a regular 
series-parallel implementation which is PU=2 and PD=3 (2,3). This corresponds to the 
lower bounds for this cell, implementing a function without repeated literals. 

Corollary 1: It is a necessary condition for a cell not to respect the lower 
bound that it has more than one transistor in the same plane controlled by the same 
variable (in positive or negative polarity). 

Example 2: The cell in the right part of Figure 4.1 will have a regular series-
parallel implementation which is (2,3). However, the lower bounds for this function 
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(with repeated literals) are (2,2), and a non-complementary cell is necessary to achieve 
the lower bounds. This corresponds to a self-dual implementation of a carry-out circuit 
that is used in practice. 

Corollary 2: Respecting the lower bound does not depend on the cell structure 
itself, but also on the way the cell is instantiated in a circuit. This way, a cell library 
where all the cells respect the lower bound is not sufficient to have a final circuit where 
all the cell instances respect the lower bounds, as some instances may not respect the 
lower bounds if different input pins are externally (to the cell) connected to logically 
equivalent signals. 

 

Figure 4.1: Cell instances and the lower bounds. 

Example 3: Consider the cell given by the function 
6543211 xxxxxxc ⋅+⋅+⋅= . This cell would be available in many commercial libraries 

under the name OA222. This cell has a regular series-parallel implementation which is 
(2,3). Now consider two different instances of the same cell as shown in the Figure 4.1. 
An instance fedcbaf ⋅+⋅+⋅=1  will respect the lower bounds, as the structure of the 
cell is (2,3) and the lower bounds for this function are also (2,3). An instance 

cacbbaf ⋅+⋅+⋅=2  will not respect the lower bounds, as the structure of the cell is 
(2,3) and the lower bounds for the implemented function are (2,2). 

Corollary 3: It is not sufficient to look at the instance of a cell to determine if 
it respects the lower bounds, as logic equivalency among different signals may happen 
through syntax that is expressed externally to the cell instance, like buffer and inverter 
connections. 

Example 4: Consider the cell given by the function 
6543211 xxxxxxc ⋅+⋅+⋅=  and an instance fedcbaf ⋅+⋅+⋅=1 . The instance will 

potentially respect the lower bounds, as the structure of the cell is (2,3) and the lower 
bounds for this function are also (2,3). However, if some buffers instantiated in the 
circuit say that ea = , db =  and fc = , then the function is a (2,2) function. In order to 
discover this, it is necessary to determine which signals are equivalent through chains of 
inverters and buffers. 

As a general conclusion about cell libraries and the respect to the lower 
bounds, it is possible to notice the following: 

1. All the cells in the sp.genlib libraries distributed with SIS (SENTOVICH, 
1992) have structures that respect the lower bounds. This is a consequence 
of these cells not presenting repeated literals. However, when instantiated 
in a circuit, these cells may have logically equivalent signals connected to 
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different cell inputs and as a consequence some instances may not respect 
the lower bounds. 

2. Most cells inserted in commercial libraries have a structure that respects 
the lower bounds. However this does not guarantee instances respecting 
the lower bounds. 

3. If a cell with a structure that does not respect the lower bounds is inserted 
in a library, none of its instances will respect the lower bounds. However, 
this is a situation that rarely happens because commercial libraries are 
usually composed by cells that can be expressed by an equation without 
repeated literals (except by adders, XORs and memory cells).  

4. Any statistics about the number of cells that respect the lower bounds 
should be divided into two different questions. First question is to look at 
cells in the library, and see if the cell structures respect the lower bounds. 
This question involves only the quality of cell networks in the library. 
Second question is to look at cell instances in a circuit. This question 
evaluates how the library, the circuit, and the technology mapping fit 
together. In order to be valid, this second analysis should also be aware of 
logic equivalency expressed through buffers and inverters. 

4.1.2 Tree based and DAG based technology mapping techniques 

Another very import point for mapping circuits using lower bound cells are the 
subject graphs. Some of these representations impose some structural barriers for the 
mapping methods (structural bias). Most techniques are based on trees and DAGs. Trees 
are a fanout-free representation. It means that repeated literals can only appear in sub-
trees that reach the leaf-nodes (refer Example 3 of the previous section). Moreover, the 
depth of the trees is generally not too large for many circuits. Therefore, it reduces the 
number of possibilities for implementing Boolean functions with the lower bounds for 
serial transistors.  

On DAG representations there is path re-convergence. Thus, sub-graphs 
starting on any node of the DAG can represent functions with repeated literals. It makes 
this kind of data structure more appropriated for handling lower bound cells.  

4.1.3 The computation of series transistors 

All existing library-free mapping methods such as (BERKELAAR, 1988) 
(GAVRILOV, 1997) (REIS, 1997) (CORREIA, 2004) (JIANG, 2005) computes the 
number of series transistors by series/parallel associations. This is a structural non-
Boolean way of computing the number of transistors in series, and it is monotonically 
increasing. 

The series (parallel) association of transistors computes the number of series 
(parallel) elements of an association as the sum (maximum) of the elements in series 
(parallel) in the association. Following the notation (series, parallel) or just (s, p), the 
computation rules are resumed below: 

• AND association: (s, p) cost = (sum(s1,...,sn), max(p1,...,pn)). 

• OR association: (s, p) cost = (max(s1,...,sn), sum(p1,...,pn)). 

• Inversions: (s, p) cost = (p, s) cost. 
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The series/parallel association of two logic functions will result in a function 
with a higher (or equal) number of transistors in series than the functions associated. 
This is demonstrated through the DAG of the Figure 4.2. The association of the sub-
functions f3 and f4 results in the sub-function f6. The (s,p) cost of f6 is higher than f3 
and f4. The costs are always increasing until the node that represents f7. 

Schneider (2005) presented a method for Boolean computation of the number 
of series transistors. The main advantages of this Boolean computation are: 

1) The values are minimal. 

2) The values depend solely on the candidate function and are univocally 
defined. They do not depend on sub-functions being associated (it is a non-
structural method). 

The first affirmation was demonstrated in the second chapter of this thesis 
using examples of NCSP cells. These cells are constructed from the minimal SOP of the 
ON-set and OFF-set of a Boolean function. The minimal SOP is achieved through a 
Boolean method which is based on a modification of the Quine-McCluskey methods. 
The second affirmation is quite interesting since we can conclude that the Boolean 
computation is not monotonically increasing. This is also illustrated in the Figure 4.2. 
While the structural computation gives a (s,p) cost of (4,2) for the sub-function f6, the 
Boolean method gives (3,2), even considering that f4 has alone a higher cost. This is 
more apparent for the function f7 which has cost (2,2). 

 

 

Figure 4.2: Computation of series transistors. 

Based on the explanation above, we stress that our technology mapping 
algorithm depends on a Boolean method for computing the number of series transistors. 
The structural method is quite simple and its complexity is linear to the number of 
nodes in the sub-graph. In case of the Boolean method, the complexity is very 
dependent of the method that searches for the minimal SOPs. It might be a bottleneck 
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for the mapping algorithm since it is called for each match created during the matching 
phase. Therefore, it must perform a very quick computation. 

4.1.4 Contextualizing the problem 

The evolution of VLSI circuits is directly related to their manufacturing 
processes. Accordingly to the Moore’s Law, each new generation of the lithography 
process brings more integration, storage capacity, performance and energy efficiency 
for VLSI circuits. However, the design of these circuits involving new technologies is 
very expensive. Many companies would prefer to invest in good EDA tools that explore 
specific optimizations during the circuit design process. There is a whole search space 
that is usually not explored in industrial tools. Instead of changing the used technology 
to obtain more performance, for instance, the designer could count on efficient cells in 
the library (either virtual or static). This leads to the approach introduced in 
(SCHNEIDER, 2005), which shows that transistor networks can be constructed using 
minimal transistor chains through NCSP gates.  

As stated in the previous section, there are many occurrences of cells that do 
not respect the lower bounds on implementing some Boolean functions. None of the 
previous techniques explores the use of these cells. Recent works proposed automatic 
techniques to construct transistor networks that respect the lower bounds with respect to 
the length of series transistor chains (ROSA, 2006). In order to verify how these cells 
can contribute to implement circuits with better performance, a new technology 
mapping method is needed. 

4.2 VIRMA technology mapping tool 

The VIRMA technology mapping tool puts together two concepts: library free 
technology mapping and lower bound cells. The first prototype to evaluate our method 
started to be developed early in 2005. It was strongly based on the wavefront 
technology mapping presented by Stok (1999). Later, a new Boolean technology 
mapping algorithm was introduced in (MISHCHENKO, 2005). Since this algorithm has 
a Boolean nature and has presented good results with static libraries, a new version of 
VIRMA was developed on its principles to explore the potential of virtual libraries. 
Both methods are described in the remaining of this section, including the objective 
function and all algorithms/functions needed by the VIRMA algorithms. 

4.2.1 Defining the object function 

Usually, a precharacterized cell library has accurate information for each 
designed cell. It includes delay, area, power consumption, etc. The availability of delay 
information can help timing analysis algorithms, providing a very accurate timing 
analysis for mapped circuits. Since our technology mapping tool is not based on a pre-
characterized library, our cost function uses topological metrics to estimate delay costs. 
Basically, the number of series transistors of the longest pull-up/pull-down path is used 
as metric. Even though this is not accurate, the minimization of this number leads to 
circuits with lower delay. 

In our topological model, each cell has its own cost for the pull-up plane and 
pull-down plane. There are also costs attached to each cell output. They represent the 
cost for the longest path from a primary input to the output net of the cell. The pull-up 
cost is calculated by the sum of series transistors in the pull-up plane (SPU) of each cell 
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along the path. The pull-down cost (SPD) is computed similarly using the pull-down 
plane costs. 

The circuit in Figure 4.3 illustrates how the costs are calculated. It is composed 
by the gates G1 to G5. The set of logic cells that implements the circuit is shown in 
Figure 4.4. A pair of numbers represents the PU/PD costs of a logic cell. For instance, 
the gates G1, G2, and G3 have cost 1,2, where PU is 1 and PD is 2. Similarly, a pair of 
numbers represents the SPU and SPD costs for each cell output. There are three driver 
cells connected to the multi-source net of the primary output. The cell with the lowest 
SPU is considered the fastest implementation. When there is more than one cell with the 
same value for SPU, the cell with the lowest SPD is deemed the fastest implementation. 
Therefore, the gate G5 is the fastest implementation for the net of the primary output. 

 

 

Figure 4.3: Cost function modeling. 

 

 

Figure 4.4: A set of logic cells. 

4.2.2 Pre-processing procedures 

As most of the technology mapping methods, VIRMA needs some pre-
processing procedures before starting the matching and covering phases. First, the 
original circuit representation must be converted to a subject graph. Our algorithm 
assumes that the initial circuit is decomposed in 2-Input AND/OR gates, in order to 
increase the granularity of the circuit, to provide more freedom for the matching 
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algorithm in generating arbitrary complex gates. It is represented by a DAG containing 
only nodes with two outgoing edges. The nodes can be primary inputs or outputs, 
inverters, and OR and AND operators. This procedure is demonstrated through Figure 
4.5. 

 

 

a) original circuit with complex gates 

 

b) decomposed circuit 

Figure 4.5: Creating the subject graph. 

Second, all inverter nodes in the subject graph are removed. This technique is 
used in order to reduce the total number of pattern matches, given that every possible 
match containing an inverter is discarded. As demonstrated in the Figure 4.6, inversion 
flags are placed in all incoming edges (circuit nets) connected to inverter nodes. 
Therefore, the signal phase assignments are preserved. 

 

 

Figure 4.6: Inverter removal and phase assignment. 

The last step is the circuit depth calculation. This is done through a depth-first 
search algorithm. The depths are annotated in the respective nodes. Inverters are not 
counted in the depth calculation since they are not represented by DAG nodes at this 
moment (refer to Figure 4.7). The depths are needed for both matching and covering 
algorithms. Each iteration of these algorithms works on a set of nodes of a given 
level/depth. 
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Figure 4.7: Levelizing the subject graph. 

4.2.3 Post-processing procedures 

Since all inverters are removed before the technology mapping algorithm, a 
post-processing procedure may be required to ensure the correct phase assignment of all 
circuit nets. This can be done through a very simple procedure that verifies the polarity 
of each net of the circuit. The algorithm checks all inversions assignments in a net either 
for the inputs of the net driven cells or for the output of the driver cell. Figure 4.8 
illustrates this procedure. The net n of Figure 4.8.a is connected to the cells X, Y, G1, G2 
and G3 (primary inputs and outputs are also represented by nodes of a DAG). As the 
output of the gate G1, the inputs of the cells X and G2 have inversion assignments. 
Therefore, the connection of these cells is in the correct phase. Nevertheless, the cells Y 
and G3 do not have inversion assignments. Thus, an inverter is needed to correct the 
signal phase. This process results in the circuit of Figure 4.8.b. 

 

 

 

 

a) net with phase assignments  b) adding inverters 

Figure 4.8: Adjusting polarities of the circuit nets. 

4.2.4 VIRMA wavefront technology mapping 

VIRMA wavefront (VIRMA-WF) technology mapping was derived from the 
wavefront algorithm presented in (STOK, 1999). The wavefront algorithm leads to a 
simple implementation and maps optimally for minimal delay on DAGs using a static 
cell library. Since our approach is based on virtual cell libraries, some small 
modifications were needed. However, the original characteristics such as the 
management of the pattern matches and the objective function model for multi-source 
nets were preserved. 

The VIRMA-WF method is outlined in Figure 4.9. As the original wavefront 
(STOK, 1999), the wavefront is defined as a subgraph of a DAG, such that every path 
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from input to output goes through the subgraph. The subcircuit isolated by the 
wavefront is bounded by the head and the tail of the wavefront. The matching 
generation window is given by the wave_width. For instance, consider the window 
shown in Figure 4.10 that has width 3. The head starts at level 0 (primary input nets). It 
advances level-by-level and the match generation, which is outlined in Figure 4.11. This 
is done for all nodes on the head level. After the matching generation step is finished for 
a given node n, the covering algorithm (Figure 4.12) is immediately invoked, in order to 
choose the best match for n. These steps will be repeated until the head reaches the 
highest level in the circuit. Finally, considering the inversion flags in the circuit 
representation, inverters are inserted when it is necessary. 

 

Algorithm 4.1: Main Algorithm of the VIRMA-WF method. 

Input: subject graph (DAG decomposed into AND/OR/NOT primitives), maximum number of series 
transistors in the PU plane, maximum number of series transistors in the PD plane, wavefront window 
width. 

Output: mapped circuit netlist. 

1: procedure wavefront_mapping(dag_cir, pu_max, pd_max, wave_width) { 

2: remove_all_inverters(dag_cir); 

3: levelize_circuit(dag_cir); 

4: highest_level = highest_level_of_the_circuit(dag_cir); 

5: head_level = 1; 

6: while (head_level ≤ highest_level) { 

7: head_nets = list_of_all_nets_on_head_level(dag_cir, head_level); 

8: foreach net, n in head_nets { 

9: /*Generate all matches considering a set of constraints*/ 

10: generate_matches(dag_cir, n, max_pu, max_pd, head_level, wave_width); 

11: /*Select the best match for the net n*/ 

12: covering_algorithm(dag_cir, n); 

13: } 

14: increment head_level; 

15: } 

16: add_inverters(dag_cir); 

17: } 

Figure 4.9: Main algorithm of VIRMA-WF. 
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Figure 4.10: Matching generation window. 

 

Algorithm 4.2: Matching generation. 

Input: subject graph (DAG decomposed into AND/OR/NOT primitives), reference net, maximum 
number of series transistors in the PU plane, maximum number of series transistors in the PD plane, 
the head level, wavefront window width. 

Output: matches sub-graphs are inserted directly into the DAG representation. 

1: procedure generate_matches(dag_cir, n, pu_max, pd_max, head_level, wave_width) { 

2: - In the DAG, generate all the pattern matches for the net n, such that the search for pattern 
matches is performed in the interval [head_level – wave_width : head_level]; At this point, 
other constraints can be used to limit the match generation; 

3: foreach pattern match, pat in the list_of_pattern_matches { 

4: /* Compute lower bound for pull-up and pull-down planes*/ 

5: cost_pu = compute_lower_bound_pu(pat); 

6: cost_pd = compute_lower_bound_pd(pat); 

7: if (cost_pu <= max_pu && cost_pd <= max_pd) { 

8:      - Store pat as a logic_cell; 

9:      - Make logic_cell, a driver of n in the DAG representation (dag_cir); 

10:      - Connect all inputs of logic_cell to their correspondent nets; 

11: } 

12: } 

13: } 

Figure 4.11: Matching algorithm. 
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Algorithm 4.3: Covering algorithm. 

Input: subject graph (DAG decomposed into AND/OR/NOT primitives), reference net. 

Output: mapped DAG. 

1: procedure covering_algorithm(dag_cir, r) { 

2: - Compute the sum of pull-up for all cells driving net n; 

3: - Compute the sum of pull-down for all cells driving net n; 

4: - Select the cell with the lowest sum of pull-up and pulldown; 

5: - Disconnect all driver cells on n, except the selected cell, and perform a cleanup 

6: operation on their exclusive inputs; 

7: } 

Figure 4.12: Covering algorithm. 

The main difference of the VIRMA-WF method to the original wavefront 
technology mapping algorithm is found in the matching phase. While the library based 
algorithm uses structural patterns for library matching, the matching algorithm of the 
VIRMA-WF is purely Boolean. During the matching generation procedure, the lower 
bound for the number of series transistors is calculated from BDDs that represent 
Boolean functions of each match. All matches are enforced to obey the inequality pull-

up_cost <= pull-down_cost. When this condition is false, the inverse function is 
considered (refer to Figure 4.13). Therefore, the inequality will be respected. Two 
constraints are used to validate the patterns: max_pu and max_pd. Both limit the 
maximum number of series transistors for the pull-up (max_pu) and pull-down 
(max_pd) chains for each match of a given circuit net. Besides these constraints, another 
set of restrictions can be used to avoid an excessive number of matches. For instance, 
the number of variables and/or the number of literals can also limit pattern matches. The 
matchings are not limited to fanout-free regions; i.e. the match generation search 
process performs its search across fanout, when the nets are in the wavefront. However, 
it can be easily limited to fanout-free regions testing the fanout of each net in the search 
space. This technique can be used in order to save area. 

 

 

 
 
 
 
 
 

 

 

a) pu_cost > pd_cost  b) pu_cost < pd_cost 

Figure 4.13: Function inversion during the mapping process. 
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The library-free wavefront algorithm is illustrated by Figure 4.15. Assume the 
following constraint values: max_pu = 2, max_pd = 3 and wave_width = 3. The circuit 
to be mapped is shown in Figure 4.14. The labeled vertical dashed lines represent the 
head of the wavefront. All matches and their embedding in the network are shown in 
dashed lines. When the head reaches the level 1, the 2-Input NAND gates are added as 
drivers of their respective nets in the circuit, creating multi-source nets. After the 
covering algorithm selects the best match for the last net on level 1, the head is moved 
to level 2. As the wave_width is equal to the highest level of the circuit, on level 2, 
matches are generated until the primary inputs. The covering algorithm selects the best 
match for a net, and also disconnects all driver cells, except the selected match, 
performing a cleanup operation on their exclusive inputs. Figure 4.16.a shows the 
mapped circuit under these constraints. If the wave_width is reduced to 2, the circuit in 
Figure 4.16.b is obtained. The same circuit is obtained, assuming the following 
constraints: max_pu = 1, max_pd = 2 and wave_width = 2. 

 

 

Figure 4.14: Decomposed circuit. 

 

 

Figure 4.15: Best matches generated by VIRMA-WF. 
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a) wave width = 3 b) wave width = 2 

Figure 4.16: Circuit mapped with VIRMA-WF. 

4.2.5 VIRMA and k-cuts 

Mishchenko (2005) has recently presented an approach for technology 
mapping based on DAGs was that relies on a simple exhaustive procedure able to 
enumerate all k-feasible cuts where k is the number of variables in a sub-function of the 
circuit. Each k-cut is matched against the library using a Boolean matcher.  

This algorithm can also be extended to perform technology mapping using 
virtual libraries. VIRMA-K-Cuts algorithm, which uses k-cuts, is introduced in this 
section. It uses the same subject graph as the VIRMA-WF method. Before starting the 
technology mapping algorithm the subject graph is also pre-processed. After the 
mapping procedure, it also performs the correction of the net phase assignments. The 
difference of Mishchenko’s method and VIRMA-K-cuts is in the Boolean matcher. 
Instead of matching every k-cut against a library of patterns, the lower bounds for the 
number of series transistors are calculated through a BDD-based algorithm. If the lower 
bounds for pull-up and pull-down networks respect the constraints of the virtual library, 
then it is considered a valid match. As an example, consider the k-cuts of Figure 4.17. 
The whole circuit is covered by a k-cut of 4 variables. This cut is a Boolean equivalent 
to the 4-input XOR gates presented in Figure 4.18. The implementation of this gate in 
the regular CMOS CSP is prohibitive since it has eight serial transistors in the longest 
pull-down path. However, it can be implemented with a NCSP cell that does not have 
more than four series transistors in any of the network planes. 

In library-based approaches that use structural matchers, each sub-graph rooted 
by a given node is matched against each pattern of the library. Although the number of 
possible matches is directly related to the library size, typically, it binds few patterns in 
the root node. It results in less CPU time to compute the accumulated match costs. Even 
in library-based approaches that use Boolean matchers, the number of attached matches 
in a node is not so high. Accordingly to Mishchenko (2005), when computing all 5-
feasible cuts, the number of matches attached to each node varies from 20 to 30 matches 
in many practical cases. 
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Figure 4.17: K-cut examples. 

 

      

                      a) CMOS CSP                                                  b) NCSP 

Figure 4.18: 4-input XOR gates. 
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Unlike the traditional library based approaches, the VIRMA-WF has to 
compute all structural combinations of adjacent nodes inside the wavefront window. 
Since the lower bound cost is not monotonically increasing, it has to compute all 
combinations. This number grows exponentially by increasing the wave width, which is 
demonstrated through Figure 4.19. In order to find the 4-input XOR match, a wavefront 
with width 6 must be used. This way, the algorithm will compute 1294 combinations of 
candidate matches. The VIRMA-K-Cuts method would find less than 30 candidate 
matches by computing all 6-feaseble cuts. This is one of the main advantages of the k-
cuts method. 

The computation of all feasible k-cuts has limitations. The exhaustive 
enumeration of k-cuts is limited to 6 variables in most of the practical cases. Chatterjee 
(2006) proposed a non exhaustive heuristic method to compute k-cuts up to 12 
variables. This heuristic was not yet incorporated in the VIRMA-K-cuts approach. 

 

 

Figure 4.19: Computing the number of possible structural combinations. 

4.3 Final considerations 

Both VIRMA-WF and VIRMA-K-Cuts methods can be extended to support 
other features. Since it is not restricted to fanout-free regions, the area can grow fast 
during the technology mapping. In order to find a good trade-off between area and 
delay, the algorithm can be limited to map fanout-free graphs in regions that are not 
critical in delay. Therefore, the DAG mapping approach would be used only in critical 
regions. 

In (STOK, 1999), another extension based on a two-pass algorithm was 
proposed to optimize other cost functions. Instead of keeping only the best match for 
each network, one or more other matches are kept in the first pass. In a second pass, 
from the primary output to the primary inputs, the slower (smaller) patterns can be 
chosen in the off-critical regions to minimize area. 
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In addition, this strategy can be used to perform a mixed technology mapping 
using different topologies for logic designs. The works presented  in (YAMASHITA, 
1997) and (JIANG, 2001) show that mixed designs using PTL and static CMOS cells 
can have better area/delay/power than circuits realized with only one logic style. The 
transistor network generator proposed in (ROSA, 2006) is able to generate PTL cells, 
and other different topologies as well. Thus, the two-pass approach can be used to 
realize mixed technology mapping using PTL and NCSP cells. Following the idea of 
keeping more than one match for each net in the circuit, extra matches can be generated 
considering different topologies. Hence, matches implemented by PTL cells will be 
available for the second pass algorithm. 
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5 EXPERIMENTS 

This chapter presents different sets of results to validate the concepts proposed 
in this thesis. The first set of results contemplates an analysis done over the VIRMA-
WF method against SIS (SENTOVICH, 1992). These results were presented in 
(MARQUES, 2007). A more complete analysis of the VIRMA methods is done by 
comparisons against the academic state-of-art tool, ABC (ABC, 2008) that incorporates 
the method presented by Mishchenko (2005), as well as by comparing VIRMA against 
two industrial technology mapping tools. 

5.1 Comparisons between SIS and VIRMA-WF 

In this section, results for a sub-set of seven ISCAS’85 benchmark circuits are 
presented, comparing the technology mapping performed by SIS (SENTOVICH, 1992) 
and VIRMA-WF (MARQUES, 2007). The algorithm prototype was developed in Java. 
All results were generated on a PC workstation running Windows XP using an AMD 
Athlon 64/3200+ processor. 

For this experiment, the circuits were first decomposed into inverters and 2-
Input NAND/NOR gates using SIS. Next, we performed technology mapping, using SIS 
and our method, for all benchmark circuits. Finally, using our cell generator, NCSP and 
CSP CMOS transistor networks are derived for the mapped circuits produced by our 
method and by SIS, respectively. Results are shown in seven different tables. In Tables 
4.1 to 4.7, the first columns show the name of the circuit. The labels of the following 
columns describe the cell libraries used during the technology mapping. The columns 
33-4 and lib2 show results for the cell libraries 33-4.genlib and lib2.genlib, respectively, 
mapped by SIS targeting minimum delay. Since the cell libraries 33-4.genlib and 
lib2.genlib have cells with costs equal or lesser than 3 for the pull-up and pull-down 
planes, and few cells where PU or PD cost can be 4 (such as cells found in the 
lib2.genlib), all circuits were mapped by our method using wave_width = 4 and the 
constraints 3,3 and 3,4 to limit PU and PD costs. The label T (e.g. (3,3)-T and (3,4)-T) 
indicates that the mapping was limited to trees (fanout free regions). The label D (e.g. 
(3,3)-D and (3,4)-D) indicates that the mapping was allowed to duplicate logic, resulting 
on DAG mapping. 

Table 4.1 shows the accumulated sum of series transistors on the pull-up and 
pull-down planes of each cell on the longest path of the circuit. The longest path was 
found following the same criteria of the covering algorithm that is based on SPU and 
SPD costs. It is noticeable that VIRMA-WF reduces the accumulated transistor chains 
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along the longest path. In order to prove that the reduction of transistor in the pull-up 
and pull-down planes can reduce the circuit delay, we used SPICE simulation to 
estimate delay. This way, the ten most critical paths (considering SPU and SPD costs) 
were extracted from each circuit and were individually simulated in order to find the 
worst path delay. The transistors used on the SPICE description have fixed size using a 
technology model 130 nanometers. Table 4.2 presents a delay comparison between SIS 
technology mapping and VIRMA-WF technology mapping. The second column (33-4 

(ns)) shows delay values expressed in nanoseconds for circuits mapped by SIS. The 
columns 3-7 show normalized values corresponding to the delay values of the second 
column. VIRMA-WF method provides better results than SIS results, with average 
delay reductions of about 27% and 33% considering virtual cell libraries restricted by 
the constraints 3,3 and 3,4, respectively. The technology mapping limited to trees (all 
column labels tagged with -T) performed by our method also shows improvements of 
13%-15% in average. These gains demonstrate the effectiveness of having Boolean 
matching combined with a virtual library that is able to use lower bound cells. 

Table 4.1: Pull-up and pull-down sums in the longest path. 

SPU SPD SPU SPD SPU SPD SPU SPD SPU SPD SPU SPD
c1355 31 52 31 55 34 45 25 30 31 46 19 27
c1908 41 58 40 56 39 52 30 38 37 50 27 40
c3540 60 78 54 69 42 67 39 60 39 69 33 52
c432 39 55 34 52 33 49 31 43 25 47 24 41
c499 29 35 24 35 27 32 25 27 24 33 18 26
c6288 124 243 131 247 153 213 95 113 153 213 88 125
c880 32 41 21 39 26 35 21 32 20 36 16 38

(3,4)-D(3,4)-T33-4
SIS VIRMA-WF

circuit
(3,3)-D(3,3)-Tlib2

 

Table 4.2: Delay comparisons between SIS and VIRMA-WF. 

circuit 33-4 (ns) lib2 (3,3)-T (3,3)-D (3,4)-T (3,4)-D
c1355 2,3205 1,07 0,94 0,61 0,93 0,52
c1908 2,5334 1,08 0,87 0,65 0,87 0,71
c3540 3,3702 1,04 0,94 0,90 0,91 0,65
c432 2,7021 0,88 0,82 0,76 0,79 0,70
c499 1,8734 0,91 0,82 0,71 0,80 0,64
c880 2,2671 0,91 0,83 0,77 0,82 0,80

0,98 0,87 0,73 0,85 0,67average

SIS VIRMA-WF

 

 

Area comparison, considering the number of transistors of each circuit, can be 
seen in Table 4.3. The absolute values are shown in the column 33-4. All other values 
are relative to those values. Due to logic duplications during technology mapping, 
which is inherent to DAG mapping, our method may increase the area. The area penalty 
for using our technology mapping algorithm is 18% and 31% in average for the virtual 
cell libraries 3,3 and 3,4, respectively. There are cases where the average area increase 
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is negligible. It happens for the technology mapping limited by fanout. Although for 
these cases the delay gains were not maximized, a good area/delay trade-off is still 
achieved. 

Table 4.4 shows the execution times for SIS and VIRMA-WF, given in 
seconds. VIRMA-WF is clearly more time consuming than SIS. As the obtained 
execution times show, they are not proportional to the size of the circuit. For instance, 
considering the virtual cell library (3,4), the circuit c499 uses more time than the circuit 
c3540. However, c499 is smaller than c3540. This is mainly due to the complexity of 
the lower bound calculus for each match, and also to the number of generated matches 
during the technology mapping process. 

Table 4.3: Area comparisons between SIS and VIRMA-WF. 

circuit 33-4 lib2 (3,3)-T (3,3)-D (3,4)-T (3,4)-D
c1355 2140 1,03 0,92 0,87 0,89 1,15
c1908 2390 1,01 1,02 1,19 0,94 1,11
c3540 4410 1,09 0,99 1,32 1,05 1,38
c432 790 1,13 1,13 1,37 1,08 1,39
c499 1484 1,00 1,04 1,00 1,00 1,26
c880 1256 1,00 1,08 1,33 1,03 1,54

1,05 1,03 1,18 1,00 1,31

SIS VIRMA-WF

average  

Table 4.4: SIS and VIRMA-WF runtime. 

circuit 33-4 lib2 (3,3)-T (3,3)-D (3,4)-T (3,4)-D
c1355 0,4 0,3 13,0 494,1 27,8 542,4
c1908 0,6 0,5 15,3 404,7 19,1 766,3
c3540 2,9 2,6 41,3 469,2 44,6 777,7
c432 0,2 0,1 5,5 25,6 6,3 36,0
c499 0,3 0,3 12,7 992,8 27,3 1641,3
c880 0,3 0,2 1,7 93,0 2,1 281,2

total (s) 4,7 4,0 89,5 2479,3 127,1 4044,9

SIS VIRMA-WF

 

 

Table 4.5 shows results for the benchmark circuit c6288. For delay and area 
results, the column ’33-4’ presents, respectively, absolute values in nanoseconds and 
number of transistors. The following columns show the correspondent relative values. 
The CPU time is expressed in seconds for all libraries. Delay gains are very significant 
for the libraries (3,3) and (3,4), when DAG mapping is applied. However, the area 
penalty is high. The c6288 is a multiplier composed by regular logic blocks, and it has 
several regions that are not fanout-free. Therefore, best matches that cross fanout, will 
probably be best matches for other regions, resulting in many duplications. This area 
penalty can be reduced by allowing duplication of logic only for timing critical regions. 

 

 



 

 

72 

Table 4.5: C6288 circuit results. 

 33-4 (ns) lib2 (3,3)-T (3,3) (3,4)-T (3,4) 
delay 10.20 1.02 1.00 0.57 1.00 0.63 

area 9444 1.01 1.00 1.90 1.00 2.07 

CPU time (s) 9.0 8.6 7.6 1028.4 8.0 1304.0 
 

The prototype implemented to obtain the experimental results is devoted to 
prove our concepts. The results show considerable delay gains. Nevertheless, area 
results show that better area/delay trade-offs have to be found. The area increase can be 
better controlled allowing duplication only in critical regions of the circuit. 

Another experiment uses a very naive approach to identify critical regions in a 
circuit. It is based on path slack computation using the logic level of each gate. Consider 
the sub-circuit of Figure 5.1. The values in the inputs correspond to the logic level of 
previous gates. It shows the logic level of each gate propagating the values from the 
inputs to the outputs. Figure 5.2 illustrates the reverse level computation. It assumes that 
the outputs are at level zero. In this case, the values are propagated from the outputs to 
inputs. This way, each gate has two associated values: the forward level and the 
backward level. The slack of each circuit net can be computed using the formula 
expressed by Equation 5.1 that takes the level of the net driver gate and the reverse level 
of a driven gate. Figure 5.3 shows the slack computation of each net of the circuit. 
Assuming that the critical paths are the ones with slack = 1. In this scenario, there are 
only two critical paths in the circuit that are highlighted in the figure. The remaining of 
the logic is not timing critical. 

 

)____( levelbackwarddrivenlevelforwarddrivert_levelmax_circuislack +−=      (5.1) 

 

Using this approach to identify critical regions, different mappings were made, 
considering different slacks to determine the criticality. The results are shown in Tables 
4.6 and 4.7. The columns 5 to 8 that are tagged with ‘-T-D’ show the obtained results 
for the mixed mapping strategy. Assuming that the critical slack is one, only nets with 
slack one are considered critical. Thus, the DAG mapping strategy is applied, allowing 
logic duplication. Non-critical regions are mapped using the tree mapping methodology 
(which does not allow logic duplications over multiple fanout points). The higher is the 
critical slack, the larger is the amount of logic duplications in the circuit. 

Table 4.6 demonstrates the area effect by using this strategy considering 
different slack values to determine criticality of paths. When the area results are 
compared to the estimated delay results of Table 4.7, it clearly seems to be a good 
strategy to circumvent the area increasing problem. It can also decrease the CPU time, 
since the number of matches will be reduced. Another possibility to reduce CPU time is 
to store pre-computed lower bounds in a hash table, to avoid repeated computations. 
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Figure 5.1: Computing forward node levels (from inputs to outputs). 

 

 

Figure 5.2: Computing backward node levels (from outputs to inputs). 

 

 

Figure 5.3: Identifying timing critical regions. 
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Table 4.6: Area comparison – Area saving heuristic. 

 SIS VIRMA-WF 

circuit 33-4 lib2 (3,4)-T 
(3,4)-T-D 

slack 1 
(3,4)-T-D 

slack 2 
(3,4)-T-D 

slack 3 
(3,4)-T-D 

slack 4 (3,4)-D 
c1355 2140 1,03 0,89 0,87 1,12 1,12 1,12 1,15 
c1908 2390 1,01 0,94 0,96 1,10 1,07 1,07 1,11 
c3540 4410 1,09 1,05 1,05 1,06 1,14 1,14 1,38 
c432 790 1,13 1,08 1,20 1,41 1,41 1,41 1,39 
c499 1484 1,00 1,00 1,22 1,22 1,22 1,22 1,26 
c6288 9444 1,01 1,00 1,04 1,15 1,33 1,33 2,07 
c880 1256 1,00 1,03 1,10 1,15 1,17 1,17 1,54 

average 1,04 1,00 1,06 1,17 1,21 1,21 1,42 
 

Table 4.7: Delay comparison – Area saving heuristic. 

 SIS VIRMA-WF 

circuit 33-4 (ns) lib2 (3,4)-T 
(3,4)-T-D 

slack 1 
(3,4)-T-D 

slack 2 
(3,4)-T-D 

slack 3 
(3,4)-T-D 

slack 4 (3,4)-D 
c1355 2,32 1,07 0,93 0,57 0,57 0,57 0,57 0,52 
c1908 2,53 1,08 0,87 0,75 0,73 0,71 0,71 0,71 
c3540 3,37 1,04 0,91 0,85 0,85 0,75 0,75 0,65 
c432 2,70 0,88 0,79 0,79 0,70 0,70 0,70 0,70 
c499 1,87 0,91 0,80 0,64 0,64 0,64 0,64 0,64 
c6288 10,20 1,02 1,01 0,90 0,88 0,86 0,86 0,63 
c880 2,27 0,91 0,82 0,77 0,77 0,77 0,77 0,80 

average 0,99 0,88 0,76 0,74 0,72 0,72 0,66 
 

5.2 Comparisons between ABC and VIRMA 

This section shows comparisons of results obtained by ABC tool (ABC, 2008) 
that implements the algorithm proposed by Mishchenko (2005) and from both versions 
of the VIRMA methods: VIRMA-WF and VIRMA-K-Cuts. All circuit netlists used for 
comparisons came from the same starting point as the previous experiment; i.e., all 
circuits were decomposed in 2-inputs AND/OR gates and balanced to reduce the logic 
depth. After this, they were mapped using ABC and VIRMA for libraries containing 
cells up to 4 serial transistors in both pull-up and pull-down planes. 

Table 4.8 shows the accumulated sum of series transistors on the pull-up and 
pull-down planes of each cell on the longest path of the circuit. Both versions of 
VIRMA methods achieved similar results. The sum series transistors is generally much 
smaller in VIRMA methods than ABC method. Table 4.9 presents a delay comparison 
among ABC and VIRMA technology mapping methods. The second column shows 
delay values expressed in nanoseconds for circuits mapped by ABC. The columns 3-4 
show normalized values corresponding to the delay values of the second column. 
VIRMA-K-Cuts method provides better results than VIRMA-WF method. However, in 
most of the cases, the ABC presented slightly better results than both. VIRMA gains (up 
to 29%) in the c6288 benchmark (that is a multiplier) are very reasonable. The VIRMA 
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methods handle better with XOR gates. XORs up to 4 inputs can be implemented using 
lower bound cells with cost (4,4), while ABC does not see these cells available in the 
44-6.genlib. 

Table 4.8: Pull-up and pull-down sums in the longest path. 

circuit 

ABC VIRMA-WF VIRMA-K-Cuts 
44-6 (4,4) (4,4) 

SPU SPD SPU SPD SPU SPD 
c1355 21 28 16 25 16 25 
c1908 30 41 24 41 24 43 
c3540 42 49 32 49 33 52 
c432 25 38 19 34 22 36 
c499 21 26 16 25 16 25 
c6288 110 127 83 93 81 94 

Table 4.9: Delay comparisons between ABC and VIRMA. 

circuit 
ABC VIRMA-WF VIRMA-K-Cuts 

44-6 (ns) (4,4) (4,4) 
c1355 1,54 1,05 1,00 
c1908 2,28 1,03 1,00 
c3540 2,84 1,15 1,06 
c432 1,86 1,26 1,06 
c499 1,51 1,08 1,03 
c6288 7,79 0,74 0,71 

average 1,05 0,98 
 

Table 4.10 demonstrates area comparisons in terms of number of transistors. In 
the average case, VIRMA-WF method is 19% better than ABC, while VIRMA-K-Cuts 
method is 21% better than ABC. ABC mapping results in a considerable amount of 
logic duplication. This is the result of the dual-rail assignments that are made to achieve 
better delay results. There are area recovery heuristics implemented in ABC 
environment. In order to make an appropriated comparison, one iteration of the area 
recovery heuristic was performed. Area recovering heuristics can also be applied in 
VIRMA methods as suggested in the fourth chapter (algorithm extensions). 

Table 4.11 shows the number of instances of lower bound cells in circuits 
mapped by VIRMA methods. The matching algorithm finds much more sub-functions 
with repeated literals in DAG representations. Hence, the lower bound cells occur more 
frequently when a DAG is used as subject graph. 
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Table 4.10: Area comparisons between ABC and VIRMA. 

circuit 
ABC VIRMA-WF VIRMA-K-Cuts 
44-6 (4,4) (4,4) 

c1355 3660 0,75 0,77 
c1908 2894 0,74 0,72 
c3540 5824 0,94 0,80 
c432 1108 1,07 0,87 
c499 3368 0,83 0,84 
c6288 17256 0,53 0,73 

average 0,81 0,79 
 

Table 4.11: Number of instances of lower bound cells. 

circuit 

VIRMA-WF VIRMA-K-Cuts 
(3,3)-T (3,3)-D (4,4)-T (4,4)-D (4,4)-D 

#cells 
#LB 
cells 

#cells 
#LB 
cells 

#cells 
#LB 
cells 

#cells 
#LB 
cells 

#cells 
#LB 
cells 

c1355 280 0 349 16 276 0 420 8 376 0 
c1908 358 2 343 25 339 2 344 22 314 39 
c3540 937 39 1069 64 919 11 958 61 951 47 
c432 203 4 206 6 183 4 210 16 205 1 
c499 275 0 272 16 276 0 420 8 345 0 
c6288 3618 0 1268 414 3618 0 1206 415 1921 593 

 

5.3 Comparisons between commercial tools and VIRMA 

This section shows comparisons of results obtained by VIRMA, ABC and two 
commercial tools. We have created a simple framework that integrates four different 
methodologies for technology mapping into the synthesis flow of a commercial tool. 

The framework is demonstrated in Figure 5.4. It is an iterative flow that 
performs gate sizing and buffer insertion to meet a timing constraint. One of the inputs 
of the framework is a mapped design described in the Verilog format (VERILOG DOT 
COM, 2008) that only instantiates the smallest version of each referred cell (usually, 
cells named with the suffix ‘X1’). The other input file is a pre-characterized library 
described in the Liberty format (SYNOPSYS LIBERTY LIBRARY FORMAT, 2008). 
Each of the iterations performs gate sizing and buffer insertion preserving the previous 
mapping. The sizing algorithm is allowed to change the drive strength of a cell instance, 
but not the cell function, preserving the cell boundaries. After the sizing procedure, a 
Static Timing Analysis (STA) is performed in order to measure the circuit delay. Thus, 
the currently delay value, decreased in 5%, will be the timing constraint for the next 
iteration. In the end of each iteration, the sized design is exported. Therefore, timing, 
area and power analysis can be performed over each design version (it is also done 
using the analysis tools of the commercial synthesis tool). This process is repeated for a 
given number of iterations. 
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Figure 5.4: Buffering and sizing framework. 

The whole experiment depends on a cell library. We have created and 
characterized a library of 664 cells composed by: 

• All cells of the genlib 44-6 up to 6 inputs in two versions: positive and 
negative unate and in three different drive strengths. 

• PTL XOR2, XOR3, XNOR2 and XNOR3 cells in three drive strengths 
each. 

• NCSP cells that were identified by VIRMA in two drive strengths each. 

The library was characterized using a commercial tool for library 
characterization. All SPICE netlists of each logic cell were automatically generated 
using the techniques presented by Rosa (2008). It includes the transistors sizing that 
were calculated through the logical effort method proposed by Sutherland (1999) using 
a fixed gain constant calibrated for a 130nm technology process. The characterization 
tool does not provide the area of the cell. All area values were estimated using our own 
area estimator, taking into account the cell topology, the transistor sizes and the cell 
height (in our experiment, 9 rows). It was necessary five full days to characterize the 
whole library using two dual-core processors. The area estimation has taken around two 
hours. 

We have run the sizing framework for the circuits analyzed in the previous 
experiments. Results are summarized by Figures 5.5 to 5.8. Figure 5.5 shows a delay 
comparison for the circuit c1908. It reflects the common observed behavior for most of 
the analyzed circuits. After some iterations, the VIRMA tool can achieve a slight better 
delay than the other tools. Area results are shown in Figure 5.6 for the same benchmark 
circuit. As expected, commercial tools give a smaller area given that they produce worst 



 

 

78 

delay. The ABC method mapping comes in third place with 30% of area increase. 
Breaking the expectations, the VIRMA mapping gives the worst results in terms of area. 
Figure 5.7 shows a delay comparison for circuit c6288. In this case, VIRMA begins 
with the best delay. However, in the second iteration, the ABC method starts to give 
better results, keeping the same proportion to the other methods. The area results that 
are shown in Figure 5.8 reflect the effect observed for the circuit c1908. In all cases, the 
power measurements were linearly proportional to the area values. 

 

 

Figure 5.5: Delay comparisons using the benchmark circuit c1908. 

 

Figure 5.6: Area comparisons using the benchmark circuit c1908. 
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Figure 5.7: Delay comparisons using the benchmark circuit c6288. 

 

Figure 5.8: Area comparisons using the benchmark circuit c6288. 

 

In order to understand why VIRMA gives bad results for area, the NCSP cells 
have to be analyzed. Table 4.12 shows the area report of the circuit c6288. The number 
of inverters of the circuit mapped using VIRMA method is more than five times bigger 
that in the circuit mapped with the ABC method. Another import point is that the area 
occupied by NCSP cells corresponds to 44.1% of the total area. 
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Table 4.12: Close look at the c6288 area report. 

 VIRMA ABC 

Type Instances Area (µ2) Area(%) Instances Area (µ2) Area(%) 

Inverter 870 6776.980 18.6 156 1214.600 5.9 

Buffer 4 37.638 0.1 8 75.276 0.4 

Logic 1148 29656.124 81.3 1236 19212.981 93.7 

Total 2022 36470.742 100.0 1400 20502.858 100.0 

NCSP Cells 451 16087.257 44.1 0 0 0 

 

Most of the NCSP cells of the library are similar to the cell of Figure 5.9.a. 
These cells can be expressed through equations containing repeated literals and 
inversions at the inputs. In some cases, it would be interesting to have cells like the one 
in Figure 5.9.b. This way, the cell instances would guarantee that the input na and nb 
are the complements of the inputs a and b, respectively, keeping the logic equivalence. 
However, the tool used to perform the characterization does not allow a setup of the 
input stimuli for characterization simulations. It automatically generates the input 
vectors considering the cell inputs. Therefore, it assumes that the function implemented 
by the cell of Figure 5.9.b depends on six variables and a vector v(a,b,c,d,na,nb) = 

{0,1,1,1,0,1} could be used in the characterization process. It leads to the 
characterization of a non-equivalent cell resulting, for instance, in different timing and 
power characteristics. Due to this limitation, all NCSP cells that have input inversions 
have inverters inside the cell. 

 

 

(a)                                                                        (b) 

Figure 5.9: Characterization problem of NCSP cells. 

The consequence of having the inverters inside the cell is demonstrated in 
Figure 5.10. The circuit of Figure 5.10.a has two times more inverters than the circuit of 
Figure 5.10.b. The delay of the circuit can also be affected. Consider the circuit of 
Figure 5.11. In this case, there is one extra inverter in the longest path of the circuit. 
This effect was observed in the benchmark circuit c6288. This circuit has a regular 
structure and has several instances of the same cell. Each one of the instances needs 
extra input inverters that results in area and delay increase. 

Another problem, which was observed in the library cells, is the transistor 
sizing. All transistors have to fit into the specified cell height. When it is not possible, 
the transistor sizing algorithm performs a transistor folding procedure. In average, it at 
least duplicates the area of occupied by a transistor. Some of the generated cells were 
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just a little bit higher to fit on the maximum height. In this case, the transistor folding is 
applied resulting in area increase. Alternatively, it could make transistors larger enough 
to fit on the cell height and have a small delay penalty. It requires a fine tuning in the 
transistors sizing. Since each cell topology has its peculiarities, this is a hard task, which 
is out of the scope of this work. 

 

 

(a)                                                                      (b) 

Figure 5.10: Area effects of having inverters inside the cell. 

 

 

Figure 5.11: Delay effects of having inverters inside the cell. 

 

Although the results obtained from the last experiment are not good enough for 
area and power, they show that VIRMA can be competitive in terms of delay. The next 
chapter presents some conclusions about it, as well as guidelines for future works. 
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6 CONCLUSIONS AND FUTURE WORKS 

This thesis presented two DAG-based approaches for technology mapping 
using virtual libraries. VIRMA methods are pioneering approaches regarding the use of 
cells with minimal length transistor chains (SCHNEIDER, 2005), aiming delay 
minimization in combinational circuits. 

The first method, which is called VIRMA-WF, was derived from the wavefront 
algorithm presented in (STOK, 1999). A comparison between the traditional technology 
mapping performed by SIS tool and VIRMA-WF method was presented in 
(MARQUES, 2007). It shows delay reductions up to 43%. For some circuits, better 
delay means a high area penalty. Although the VIRMA-WF algorithm uses DAGs as 
subject graphs, the method was easily adapted to handle trees. It was demonstrated that 
the mapped circuits are 14% faster in average and have a negligible area increase. 

Based on the work presented by Mishchenko (2005), a new version of VIRMA 
was proposed later. This approach relies on a simple algorithm that is able to enumerate 
all k-feasible cuts of a graph. Each k-cut is matched against the library and can be used 
as part of an optimal cover. Both VIRMA methods were compared to ABC logic 
synthesis tool (ABC, 2008). Even limited to k-cuts up to 6 variables, VIRMA-K-Cuts 
method shows better results than VIRMA-WF method. ABC mapping gives slight 
better results in terms of delay. Early results revealed that the circuits mapped with 
VIRMA tool have a smaller transistor count. 

The results obtained from naive implementations show the potential of these 
techniques. However, there are several open issues that should be better explored to 
improve VIRMA methods. The implicit logic duplication that occurs in DAG based 
approaches can be circumvented by allowing duplications only in the critical regions of 
the circuit. It was demonstrated through some experiments that a good area/delay trade-
off can be achieved when this technique is used. Both VIRMA methods search for delay 
optimal implementations. The algorithms can be extended to a two-pass algorithm that 
can consider other non-delay metrics to map circuits. 

One of the main problems in virtual library technology mapping approaches is 
the lack of accurate information of the cell characteristics. Methods to estimate area, 
delay and power consumption could be used to solve this problem. Butzen (2008) has 
presented a fast algorithm to estimate leakage-current power consumption. It could be a 
good approach for power estimation. The other alternative is to create hash tables with 
the characterization data. Therefore, a regular Boolean matcher would be needed to 
create the keys (for instance, binary strings) for each match. This hash tables could also 
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store the lower bound values in terms of series transistors for each cell match. It would 
reduce the mapping time since these values would not be calculated on the fly. 

In parallel with this work, there was another work exploring different cell 
topologies and making comparisons concerning timing, power and area. The results, 
which were presented in (ROSA, 2008), show that the NCSP topology is generally a 
good alternative to implement logic functions. However, it is not the best choice for 
every logic function. Such results were validated at the cell level. The main objective of 
this thesis is to evaluate the effectiveness of the use of NCSP in a design. In order to 
validate the experiments, a framework for mapping, sizing and analysis was created 
over a commercial synthesis tool. Four mapping method of different tools (including 
VIRMA, ABC and two commercial tools) were integrated in this framework. The 
results show that VIRMA can be competitive to other tools in terms of delay. 
Nevertheless, area and power results are not good enough. 

The analysis performed in this work depends on several variables concerning 
almost all steps of the logic synthesis flow. Assumptions made in intermediate steps 
have major impact in the subsequent steps. One of the main problems found during the 
analysis is related to the automated transistor sizing strategy used to generate an 
experimental cell library. It requires a fine tuning in the algorithm to find a good trade-
off for area, power and timing. A library design project is very complex and it is hard to 
be fully automated. There are many issues to be explored in this field. A good strategy 
for gate sizing was proposed by Schlinker (2008). This iterative approach can also be 
extended to perform design optimizations taking into account NCSP cells. Since it relies 
in a more robust methodology for design analysis, it would lead to better results. All 
techniques presented in this work are just the starting point for constructing a more 
powerful logic synthesis tool. 
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APPENDIX A MAPEAMENTO TECNOLÓGICO PARA 
BIBLIOTECAS VIRTUAIS ULITILIZANDO CÉLULAS COM 

UM NÚMERO MÍNIMO DE TRANSISTORES EM SÉRIE 

De acordo com a “Lei de Moore” (MOORE, 1965), desde a invenção dos 
circuitos integrados (CIs), em 1958, o número de transistores que podem ser colocados 
em um único chip aumenta exponencialmente a cada evolução tecnológica que reduz a 
escala dos transistores. Atualmente, bilhões de componentes eletrônicos podem ser 
integrados em um único chip. O poder de processamento e a capacidade de memória 
dos dispositivos eletrônicos digitais aumentam nas com o número de transistores. 

Embora tecnologias sub-micrônicas permitam um alto grau de integração de 
semicondutores, esta integração torna o projeto, a verificação e o teste de circuitos 
integrados mais difíceis. Normalmente, o projeto de circuitos integrados é 
consideravelmente afetado com a diminuição do tamanho dos dispositivos eletrônicos 
em tecnologias sub-micrônicas. Efeitos como corrente de fuga, ruído e eletro-migração 
eram considerados irrelevantes em tecnologias mais antigas. Atualmente, a análise 
destes efeitos é fundamental para o sucesso de um projeto. Conseqüentemente, os 
projetistas adotam metodologias rígidas para produzir circuitos de alta qualidade em 
tempo razoável. Ferramentas para automação do projeto de circuitos eletrônicos são 
utilizadas para automatizar algumas das etapas do projeto, ajudando o projetista a 
encontrar boas soluções rapidamente. 

A metodologia adotada na maioria dos fluxos para automação são baseadas em 
bibliotecas de células. Neste caso, o fluxo de síntese inicia com uma descrição em alto-
nível do projeto, utilizando linguagens de descrição de hardware, tais como VHDL 
(VHDL ORG, 2008) e Verilog (VERILOG DOT COM, 2008). O segundo passo é a 
síntese lógica, que realiza varias manipulações lógicas sobre a descrição de alto-nível, 
transformando-a em uma descrição a nível de portas lógicas, que instanciam células de 
uma biblioteca. O último passo é a síntese física que posiciona e conecta as células em 
um floorplan. A principal vantagem desta metodologia é que cada célula de uma 
biblioteca é caracterizada através de várias simulações, resultando em um conjuntos de 
informações bastante precisas sobre o comportamento das células. Desta forma, o 
projetista pode, com o auxílio de ferramentas de automação, prever as características do 
circuito final com uma boa precisão. 

Embora as ferramentas para automação desempenhem um bom trabalho na 
busca por boas soluções para um dado projeto, existem diversos pontos que podem ser 
melhorados no fluxo de automação. Além disso, novos problemas surgem cada vez que 
um processo de fabricação evolui para a próxima geração. Isto demanda uma constante 
atualização nas ferramentas disponíveis ou ferramentas completamente novas. Logo, 
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existe um alto custo associado à migração para novas tecnologias. Isto exige 
investimentos tanto em ferramentas quanto em processos de fabricação. 
Alternativamente, o projetista pode explorar outras estratégias para otimizações a fim de 
aumentar o desempenho e reduzir área e potência de circuito sem mudar a tecnologia. 

Um dos maiores desafios no projeto de circuitos integrados de alto-
desempenho é atingir as metas de atraso na lógica combinacional de controle. 
Normalmente, a lógica de controle não é regular o suficiente para ser implementada em 
um fluxo de projeto intuitivo. Além disso, este tipo de lógica sofre modificações até as 
últimas etapas do ciclo de projeto. Consequentemente, a síntese lógica é necessária para 
viabilizar a implementação dos circuitos, garantindo uma implementação rápida e 
correta de sub-circuitos irregulares. A maioria das ferramentas de síntese lógica consiste 
de três etapas bem definidas. O mapeamento tecnológico normalmente segue uma etapa 
de otimizações em uma descrição do circuito, sendo esta independente de tecnologia. A 
etapa posterior ao mapeamento tecnológico é uma etapa para otimizações específicas, 
considerando as restrições de atraso do circuito. 

O mapeamento tecnológico é uma etapa da síntese lógica que escolhe quais 
células serão utilizadas para implementar um circuito em uma determinada tecnologia. 
Esta fase da síntese lógica tem o maior impacto na estrutura do circuito, definindo suas 
principais características de área e atraso. A maioria das técnicas são baseadas em 
bibliotecas estáticas de células (standard cell), onde um conjunto de células é definido e 
caracterizado para uma determinada tecnologia. Os primeiros métodos para 
mapeamento tecnológico (KEUTZER, 1987-a) (DETJENS, 1987) (ABOUZEID, 1992) 
(MAILHOT, 1993) (LIEN, 1992) usavam árvores para representar o circuito a ser 
mapeado. Algoritmos mais recentes (LEHMAN, 1997) (KUKIMOTO, 1998) (STOK, 
1999) (MISHCHENKO, 2005) são baseados em grafos acíclicos direcionados (DAGs), 
permitindo a duplicação de lógica para aumentar o desempenho do circuito. Outra 
contribuição importante para o mapeamento tecnológico foi o matching Booleano 
(MAILHOT, 1993). O matching de uma porção do circuito e uma célula da biblioteca é 
feito por uma comparação Booleana entre funções candidatas. Uma comparação 
estrutural pode não ser suficiente para encontrar todos matchings possíveis. 

Além das abordagens que realizam mapeamento tecnológico com bibliotecas 
estáticas, outras abordagens consideram o uso de geradores de células, o que 
possibilitaria o uso de uma grande biblioteca virtual (construída sob demanda). Um 
trabalho pioneiro visando geradores de células foi apresentado por Berkelaar (1988). 
Neste método, expressões lógicas decompostas são mapeadas em portas complexas. Um 
outro método, proposto por Reis (1997), utiliza Diagramas de Decisão Binária (BDDs) 
para representar um circuito e aplica decomposições nestas estruturas, considerado uma 
restrição para o número máximo de transistores em série admitido para implementar 
uma dada função Booleana. Cada BDD decomposto é mapeado em uma porta complexa 
CMOS estática. O trabalho apresentado em (CORREIA, 2004) explora dinamicamente 
decomposições AND/OR usando árvores de grau livre que representam o circuito a ser 
mapeado. Cada sub-árvore é limitada pelo número de transistores em série necessários 
para implementar uma célula CMOS estática. Em (JIANG, 2005) duas técnicas para 
mapeamento tecnológico são apresentadas. O primeiro método mapeia circuitos para 
uma biblioteca virtual de células CMOS estáticas. A segunda técnica usa uma lógica 
mista de células CMOS e PTL, considerando a relação direta de uma célula PTL e um 
BDD. 
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Infelizmente, o uso destas abordagens não foi suficientemente verificado pela 
indústria, mesmo considerando que outras referências sugerem que um número maior de 
células lógicas pode melhorar a qualidade do circuito mapeado (KEUTZER, 1987-b) 
(SCOTT, 1994) (SECHEN, 1996) (GAVRILOV, 1997). Uma abordagem recente 
(ROY, 2005) propõe a adição de células específicas à biblioteca de células para 
aumentar o desempenho dos circuitos mapeados. 

Recentemente, alguns métodos para geração eficiente de células lógicas foram 
propostos (KANECKO, 1997) (POLI, 2003) (TANAKA, 2004) (SCHNEIDER, 2005), 
incluindo um método para calcular o número mínimo de transistores em série 
necessários para implementar uma função Booleana arbitrária, apresentado por 
Schneider (2005). Além do dimensionamento dos transistores, a topologia da rede de 
transistores também interfere no atraso das células. Logo, a redução do número de 
elementos em série tende a reduzir o atraso das células. 

A topologia proposta por Schneider (2005) foi apresentada no nível de células 
lógicas. Logo, é necessária uma metodologia para avaliar o uso desta topologia em 
circuitos maiores. Motivado por este fator, esta tese apresenta dois métodos para 
mapeamento tecnológico baseados em grafos acíclicos direcionados (DAGs), que deram 
origem a uma ferramenta para mapeamento tecnológico, chamada VIRMA (VIRtual 
library technology MApping). Os algoritmos reduzem o número de transistores em série 
do caminho mais longo do circuito, considerando que cada célula é implementada por 
uma rede de transistores que obedecem um número máximo de transistores em série. O 
número de transistores em série é calculado de forma booleana, garantindo que este seja 
o número mínimo necessário para implementar a função lógica da instância da célula. 
Os algoritmos estão integrados a um gerador de células que utiliza as técnicas 
apresentadas em (ROSA, 2008) para a geração de redes de transistores e também realiza 
o dimensionamento dos transistores. 

O primeiro método, que é chamado de VIRMA-WF, foi derivado do algoritmo 
wavefront apresentado por Stok (1999). Uma comparação entre o tradicional algoritmo 
para mapeamento tecnológico realizado pela ferramenta SIS e o algoritmo VIRMA-WF 
foi apresentado em (MARQUES, 2007). Ela mostra reduções de atraso que chegam a 
43%. Em alguns circuitos, menor atraso significa maior área. Embora o método 
VIRMA-WF seja baseado em DAGs ele pode facilmente ser adaptado para realizar o 
mapeamento sobre árvores. Resultados comparativos mostram que o mapeamento 
utilizando árvores pode aumentar o desempenho dos circuitos em 14% com um aumento 
insignificante em área. 

Baseado no método apresentado por Mishchenko (2005), uma segunda versão 
do método VIRMA foi proposta. A nova abordagem utiliza o algoritmo de Mishchenko 
para enumeração de k-cuts sobre um grafo. Cada k-cut equivalente a uma célula da 
biblioteca, poderá ser parte de uma cobertura ótima. Os métodos da ferramenta VIRMA 
foram comparados com o método de Mishchenko (2005), que está disponível na 
ferramenta ABC (ABC, 2008). Mesmo limitado a k-cuts de até 6 variáveis, o algoritmo 
VIRMA-K-Cuts mostra resultados melhores que o algoritmo VIRMA-WF. O 
mapeamento da ferramenta ABC consegue obter resultados um pouco melhores em 
termos de atraso. Os primeiros resultados relativos à área mostraram que a ferramenta 
VIRMA obtém circuitos com uma menor contagem de transistores. 

Os resultados obtidos com as primeiras versões dos algoritmos mostram o 
potencial destas técnicas. No entanto, existem vários problemas que devem ser 
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explorados visando melhorias nos métodos da ferramenta VIRMA. As duplicações 
implícitas de lógica, que ocorrem em técnicas de mapeamento baseado em DAGs, 
podem ser evitadas se o algoritmo limitá-las as regiões críticas do circuito. Este efeito 
foi analisado em alguns experimentos, demonstrando que uma boa relação de 
compromisso entre área e atraso pode ser encontrada quando esta técnica é utilizada. Os 
métodos da VIRMA buscam somente a otimização do atraso dos circuitos. Os 
algoritmos podem ser estendidos para duas passagens, de forma que a segunda passada 
considere outras métricas que não somente o atraso do circuito. 

Um dos principais problemas do mapeamento tecnológico utilizando 
bibliotecas virtuais é a falta de informações precisas sobre o comportamento das células. 
Métodos para estimativa de área, potência e atraso poderiam ser utilizados para resolver 
este problema. Butzen (2008) apresentou um método que realiza uma rápida estimativa 
do consumo causado por corrente de fuga. Assim como este método para estimativa de 
potência, outros métodos podem ser utilizados para medir outros critérios. Uma outra 
alternativa é a criação de hash tables contendo os dados provenientes de um processo de 
caracterização. Desta forma, seria necessário utilizar um método matching Booleano 
para identificar equivalências entre porções do circuito e as entradas desta hash table. 
Estas tabelas também poderiam armazenar os valores correspondentes ao número 
mínimo de transistores em série de uma célula. Isto poderia reduzir o tempo de 
mapeamento, visto que este valor não seria calculado durante a execução do 
mapeamento. 

Paralelamente a este trabalho, outro estudo estava sendo desenvolvido, 
analisando diferentes topologias de células e realizando comparações de atraso, potência 
e área entre um conjunto de células. Os resultados, que foram apresentados em (ROSA, 
2008), mostram que, em geral, a topologia NSCP é uma boa alternativa para 
implementar funções Booleanas. Todos os experimentos foram realizados no nível de 
células lógicas. O principal objetivo do trabalho é avaliar o uso efetivo de células NCSP 
em circuitos combinacionais. Para validar os experimentos inicias, um fluxo para 
mapeamento tecnológico, dimensionamento e análise de circuitos foi criado sobre uma 
ferramenta comercial. Quatro métodos para mapeamento (VIRMA, ABC e duas 
ferramentas comerciais) foram integrados neste fluxo. Os resultados mostram que a 
ferramenta VIRMA pode ser competitiva em termos de atraso. Porém, os resultados de 
área e potência não são ainda bons o suficiente. 

A análise que foi realizada neste trabalho depende de várias variáveis de cada 
uma das etapas do fluxo de síntese. Algumas decisões tomadas em passos 
intermediários podem ter um impacto muito grande nos passos subseqüentes. Um dos 
principais problemas encontrados durante a análise foi a estratégia de dimensionamento 
de transistores do gerador de células, que foi utilizado durante criação da biblioteca 
experimental. Ela precisa de ajustes mais precisos para encontrar um bom compromisso 
entre área, potência e atraso. O projeto de uma biblioteca de células é bastante complexo 
e difícil de ser automatizado. Uma boa estratégia para o dimensionamento de portas 
lógicas foi proposta por Schlinker (2008). Este algoritmo iterativo pode ser estendido 
para realizar otimizações em um circuito considerando células NCSP. Como o 
algoritmo é baseado em uma metodologia mais robusta para a análise do circuito, ele 
tende a encontrar melhores resultados. Todas as técnicas apresentadas neste trabalho são 
somente o ponto inicial para a construção de uma ferramenta de síntese lógica mais 
completa. 
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APPENDIX B ACADEMIC LIBRARY DESCRIPTIONS 
USED IN THE EXPERIMENTS 

This appendix shows the full description of two academic libraries that are 
distributed with the SIS technology mapping tool (SENTOVICH, 1992). The libraries 
are described in the genlib format. This format is briefly illustrated below. 

1. Genlib library format 

A cell is specified in the following format: 

GATE <cell_name>  <cell_area>  <cell_logic_function> 

PIN <pin_name>  <phase>  <input_load>  <max_load>  
<rise_block_delay>  <rise_fanout_delay>  <fall_block_delay>  
<fall_fanout_delay> 

 

<cell_name> is the name of the cell in the cell library. 

<cell_area> defines the relative area cost of the cell. It is a floating point 
number, and may be in any unit system convenient for the user. 

<cell_logic_function> is an equation written in conventional algebraic 
notation using the operators “+” for OR, “*” or nothing (space) for AND, “!” or “’” 
(post-fixed) for NOT, and parentheses for grouping. The names of the literals in the 
equation define the input pin names for the cell; the name on the left hand side of the 
equation defines the output of the cell. The equation terminates with a semicolon. 

<pin_name> must be the name of a pin in the <cell_logic_function>, or it * to 
specify identical timing information for all pins. 

<phase> is INV, NONINV, or UNKNOWN corresponding to whether the 
logic function in negative unite, positive unate, or binate in this variable respectively. 
This is required for the separate rise-fall delay model. 

<input_load> gives the input load of this pin. It is a floating point value, in 
arbitrary units convenient for the user. 

<max_load> specifies a loading constraint for the cell. It is a floating point 
value specifying the maximum load allowed on the output. 

<rise_block_delay> and <rise_fanout_delay> are the rise-time parameters for 
the timing model. They are floating point values, typically in the units nanoseconds, and 
nanoseconds/unit_load respectively. 
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<fall_block_delay> and <fall_fanout_delay> are the fall-time parameters for 
the timing model. They are floating point values, typically in the units nanoseconds, and 
nanoseconds/unit_load respectively. 

 

2. Library: lib2.genlib 
GATE inv1   928.00 O=!a; 

PIN a INV 0.0514 999.0 0.4200 4.7100 0.4200 3.6000 

GATE xor  2320.00 O=(!a*b)+(a*!b); 

PIN a UNKNOWN 0.1442 999.0 1.7700 5.2300 0.9600 4.6400 

PIN b UNKNOWN 0.1381 999.0 1.9400 4.6500 1.1400 5.2200 

GATE xnor  2320.00 O=(!a*!b)+(a*b); 

PIN a UNKNOWN 0.1502 999.0 1.1100 4.8600 1.0700 3.3900 

PIN b UNKNOWN 0.1352 999.0 1.5500 4.8700 1.0700 3.3900 

GATE nand2  1392.00 O=!(a*b); 

PIN a INV 0.0777 999.0 0.6400 4.0900 0.4000 2.5700 

PIN b INV 0.0716 999.0 0.4600 4.1000 0.3700 2.5700 

GATE nand3  1856.00 O=!(a*b*c); 

PIN a INV 0.1000 999.0 0.8900 3.6000 0.5100 2.4900 

PIN b INV 0.0828 999.0 0.7100 4.1100 0.4200 2.5000 

PIN c INV 0.0777 999.0 0.5600 4.3900 0.3500 2.4900 

GATE nand4  2320.00 O=!(a*b*c*d); 

PIN a INV 0.1030 999.0 1.2700 3.6200 0.6700 2.3900 

PIN b INV 0.0980 999.0 1.0900 3.6100 0.6100 2.3900 

PIN c INV 0.0980 999.0 0.8200 3.6200 0.5500 2.4000 

PIN d INV 0.1050 999.0 0.5800 3.6200 0.3800 2.3900 

GATE nor2  1392.00 O=!(a+b); 

PIN a INV 0.0736 999.0 0.3300 3.6400 0.4500 3.6400 

PIN b INV 0.0968 999.0 0.5000 3.6400 0.7000 3.6600 

GATE nor3  1856.00 O=!(a+b+c); 

PIN a INV 0.0856 999.0 0.8400 5.0400 1.3000 3.4500 

PIN b INV 0.0806 999.0 0.7800 5.0300 1.1400 3.4300 

PIN c INV 0.0826 999.0 0.5200 5.0300 0.8400 3.4400 

GATE nor4  2320.00 O=!(a+b+c+d); 

PIN a INV 0.0887 999.0 0.4100 5.9100 1.1600 3.2000 

PIN b INV 0.0867 999.0 0.8500 5.9100 1.5300 3.1800 

PIN c INV 0.0867 999.0 1.1100 5.9200 1.7500 3.1900 

PIN d INV 0.0887 999.0 1.2700 5.9100 1.9400 3.2000 

GATE aoi21  1856.00 O=!((a*b)+c); 

PIN a INV 0.1029 999.0 0.7500 3.5200 0.6700 2.5300 

PIN b INV 0.0908 999.0 0.6700 3.6400 0.6200 2.5200 

PIN c INV 0.1110 999.0 0.5800 3.6400 0.2100 1.2800 
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GATE aoi31  2320.00 O=!((a*b*c)+d); 

PIN a INV 0.1009 999.0 0.9100 4.0400 0.8100 2.8600 

PIN b INV 0.1049 999.0 1.0500 3.9300 0.8700 2.8700 

PIN c INV 0.1059 999.0 1.1500 3.9400 0.9400 2.8600 

PIN d INV 0.0979 999.0 0.8900 4.0600 0.2500 1.2800 

GATE aoi22  2320.00 O=!((a*b)+(c*d)); 

PIN a INV 0.1019 999.0 0.9200 3.4600 0.9400 2.7900 

PIN b INV 0.0908 999.0 0.8400 3.6400 0.8500 2.7900 

PIN c INV 0.0958 999.0 0.6100 3.6400 0.4900 2.9300 

PIN d INV 0.0988 999.0 0.7000 3.6400 0.5400 2.9300 

GATE aoi32  2784.00 O=!((a*b*c)+(d*e)); 

PIN a INV 0.1029 999.0 1.0600 3.8100 0.9600 2.9100 

PIN b INV 0.1009 999.0 1.2000 3.8100 1.0300 2.9000 

PIN c INV 0.1060 999.0 1.2900 3.6900 1.0600 2.9100 

PIN d INV 0.0979 999.0 0.9100 3.8100 0.4300 2.1200 

PIN e INV 0.1049 999.0 0.7800 3.5900 0.4300 2.1200 

GATE aoi33  3248.00 O=!((a*b*c)+(d*e*f)); 

PIN a INV 0.1029 999.0 1.3300 3.9100 1.3000 2.9100 

PIN b INV 0.1029 999.0 1.4600 3.8400 1.4100 2.9100 

PIN c INV 0.1120 999.0 1.4700 3.6500 1.4100 2.9100 

PIN d INV 0.1029 999.0 1.1100 3.5900 0.7600 2.9000 

PIN e INV 0.0949 999.0 1.0400 3.9100 0.6800 2.9100 

PIN f INV 0.1039 999.0 0.8400 3.5800 0.6400 2.9000 

GATE aoi211  2320.00 O=!((a*b)+c+d); 

PIN a INV 0.1039 999.0 1.1200 4.8100 1.0300 2.3800 

PIN b INV 0.1090 999.0 1.2900 4.8100 1.0300 2.3800 

PIN c INV 0.1080 999.0 1.0400 4.8300 0.5200 1.4000 

PIN d INV 0.1008 999.0 0.6800 4.8300 0.5100 1.7900 

GATE aoi221  2784.00 O=!((a*b)+(c*d)+e); 

PIN a INV 0.1089 999.0 1.4800 4.4300 1.3300 2.7800 

PIN b INV 0.0948 999.0 1.4200 4.5600 1.4000 2.7500 

PIN c INV 0.1029 999.0 0.7600 4.4700 0.7900 2.8900 

PIN d INV 0.1049 999.0 0.7300 4.5800 0.7800 2.9100 

PIN e INV 0.1110 999.0 1.3900 4.5600 0.7000 1.5100 

GATE aoi222  3712.00 O=!((a*b)+(c*d)+(e*f)); 

PIN a INV 0.1019 999.0 1.7700 4.5800 1.5600 2.9500 

PIN b INV 0.0958 999.0 1.7300 4.6900 1.6000 2.9300 

PIN c INV 0.1039 999.0 1.3400 4.6800 1.2100 2.9200 

PIN d INV 0.1039 999.0 1.5000 4.6900 1.2200 2.9200 

PIN e INV 0.0958 999.0 0.9200 4.6700 0.8100 2.9200 

PIN f INV 0.1039 999.0 0.7700 4.4700 0.7600 2.9200 

GATE oai21  1856.00 O=!((a+b)*c); 



 

 

96 

PIN a INV 0.1019 999.0 0.6900 3.9400 0.5300 2.4700 

PIN b INV 0.0979 999.0 0.8700 3.9300 0.6300 2.4700 

PIN c INV 0.0998 999.0 0.3700 2.0500 0.5700 2.5100 

GATE oai31  2320.00 O=!((a+b+c)*d); 

PIN a INV 0.1089 999.0 1.2700 4.7100 1.0300 2.4300 

PIN b INV 0.1049 999.0 1.1100 4.7100 1.0400 2.5700 

PIN c INV 0.1090 999.0 0.8500 4.7100 0.6900 2.3800 

PIN d INV 0.1059 999.0 0.3800 1.8600 0.8100 2.7300 

GATE oai22  2320.00 O=!((a+b)*(c+d)); 

PIN a INV 0.1009 999.0 1.1000 4.0600 0.9000 2.5000 

PIN b INV 0.1029 999.0 0.9900 4.0600 0.6800 2.3600 

PIN c INV 0.0958 999.0 0.6900 3.6600 0.7400 2.5300 

PIN d INV 0.1039 999.0 0.6100 3.6600 0.5600 2.0600 

GATE oai32  2784.00 O=!((a+b+c)*(d+e)); 

PIN a INV 0.1130 999.0 1.3900 4.4600 1.0400 2.4600 

PIN b INV 0.1069 999.0 1.2500 4.4600 1.0900 2.6300 

PIN c INV 0.1140 999.0 0.9900 4.4600 0.7400 2.4200 

PIN d INV 0.1059 999.0 0.5800 3.2000 0.7900 2.7100 

PIN e INV 0.1130 999.0 0.6800 3.2100 0.8300 2.3400 

GATE oai33  3248.00 O=!((a+b+c)*(d+e+f)); 

PIN a INV 0.1170 999.0 1.5800 4.3000 1.4800 2.4700 

PIN b INV 0.1089 999.0 1.5000 4.3100 1.4200 2.6300 

PIN c INV 0.1079 999.0 1.2400 4.3100 1.1700 2.6500 

PIN d INV 0.1170 999.0 0.8000 4.3000 0.8200 2.2700 

PIN e INV 0.1089 999.0 0.0000 4.3000 1.1700 2.6400 

PIN f INV 0.1109 999.0 1.1300 4.3100 1.3500 2.6500 

GATE oai211  2320.00 O=!((a+b)*c*d); 

PIN a INV 0.1070 999.0 1.1200 4.1700 0.5900 2.3100 

PIN b INV 0.1131 999.0 1.3000 4.1600 0.7900 2.3600 

PIN c INV 0.1050 999.0 0.5100 2.1300 0.6900 2.4000 

PIN d INV 0.1050 999.0 0.5000 2.4600 0.5200 2.4100 

GATE oai221  2784.00 O=!((a+b)*(c+d)*e); 

PIN a INV 0.1039 999.0 1.5800 4.1700 1.1100 2.4700 

PIN b INV 0.1050 999.0 1.4800 4.1700 0.8600 2.3600 

PIN c INV 0.1080 999.0 0.9400 4.0300 0.8100 2.5000 

PIN d INV 0.1060 999.0 0.7600 4.0300 0.6400 2.5000 

PIN e INV 0.1019 999.0 0.7800 2.2800 0.9000 2.5400 

GATE oai222  3248.00 O=!((a+b)*(c+d)*(e+f)); 

PIN a INV 0.1161 999.0 1.7700 3.7500 1.2100 2.4700 

PIN b INV 0.1110 999.0 1.6200 3.7500 1.1300 2.4800 

PIN c INV 0.1009 999.0 1.1700 3.5800 1.0700 2.4800 

PIN d INV 0.1191 999.0 1.3500 3.5800 1.1000 2.3500 
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PIN e INV 0.1060 999.0 0.9900 3.5900 0.9300 2.4900 

PIN f INV 0.1140 999.0 0.8200 3.5800 0.7900 2.4800  

GATE zero O=CONST0; 

GATE one O=CONST1; 

3. Library: 33-4.genlib 
GATE zero O=CONST0; 

GATE one O=CONST1; 

GATE buf 1 O = a; 

PIN a INV 1 999 1.0 0.2 1.0 0.2 

GATE "!a" 2 O=!a; 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab)'" 3 O=!(a*b); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(b+c))'" 4 O=!(a*(b+c)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(b+cd))'" 5 O=!(a*(b+c*d)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(b+c(d+e)))'" 6 O=!(a*(b+c*(d+e))); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(b+(c+d)(e+f)))'" 7 O=!(a*(b+(c+d)*(e+f))); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(bc+de))'" 6 O=!(a*(b*c+d*e)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(bc+d(e+f)))'" 7 O=!(a*(b*c+d*(e+f))); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(bc+(d+e)(f+g)))'" 8 O=!(a*(b*c+(d+e)*(f+g))); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(b+c+d))'" 5 O=!(a*(b+c+d)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(b+c+de))'" 6 O=!(a*(b+c+d*e)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(b+cd+ef))'" 7 O=!(a*(b+c*d+e*f)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(bc+de+fg))'" 8 O=!(a*(b*c+d*e+f*g)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(c+d))'" 5 O=!((a+b)*(c+d)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(c+de))'" 6 O=!((a+b)*(c+d*e)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(c+d(e+f)))'" 7 O=!((a+b)*(c+d*(e+f))); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 
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GATE "((a+b)(c+(d+e)(f+g)))'" 8 O=!((a+b)*(c+(d+e)*(f+g))); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(cd+ef))'" 7 O=!((a+b)*(c*d+e*f)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(cd+e(f+g)))'" 8 O=!((a+b)*(c*d+e*(f+g))); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(cd+(e+f)(g+h)))'" 9 O=!((a+b)*(c*d+(e+f)*(g+h))); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(c+d+e))'" 6 O=!((a+b)*(c+d+e)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(c+d+ef))'" 7 O=!((a+b)*(c+d+e*f)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(c+de+fg))'" 8 O=!((a+b)*(c+d*e+f*g)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(cd+ef+gh))'" 9 O=!((a+b)*(c*d+e*f+g*h)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+bc)(d+e+f))'" 7 O=!((a+b*c)*(d+e+f)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b(c+d))(e+f+g))'" 8 O=!((a+b*(c+d))*(e+f+g)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+(b+c)(d+e))(f+g+h))'" 9 O=!((a+(b+c)*(d+e))*(f+g+h)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((ab+cd)(e+f+g))'" 8 O=!((a*b+c*d)*(e+f+g)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((ab+c(d+e))(f+g+h))'" 9 O=!((a*b+c*(d+e))*(f+g+h)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((ab+(c+d)(e+f))(g+h+i))'" 10 O=!((a*b+(c+d)*(e+f))*(g+h+i)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b+c)(d+e+f))'" 7 O=!((a+b+c)*(d+e+f)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b+c)(d+e+fg))'" 8 O=!((a+b+c)*(d+e+f*g)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b+c)(d+ef+gh))'" 9 O=!((a+b+c)*(d+e*f+g*h)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b+c)(de+fg+hi))'" 10 O=!((a+b+c)*(d*e+f*g+h*i)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(abc)'" 4 O=!(a*b*c); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab(c+d))'" 5 O=!(a*b*(c+d)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab(c+d+e))'" 6 O=!(a*b*(c+d+e)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 
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GATE "(a(b+c)(d+e))'" 6 O=!(a*(b+c)*(d+e)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(b+c)(d+e+f))'" 7 O=!(a*(b+c)*(d+e+f)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(b+c+d)(e+f+g))'" 8 O=!(a*(b+c+d)*(e+f+g)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(c+d)(e+f))'" 7 O=!((a+b)*(c+d)*(e+f)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(c+d)(e+f+g))'" 8 O=!((a+b)*(c+d)*(e+f+g)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(c+d+e)(f+g+h))'" 9 O=!((a+b)*(c+d+e)*(f+g+h)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b+c)(d+e+f)(g+h+i))'" 10 O=!((a+b+c)*(d+e+f)*(g+h+i)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+b)'" 3 O=!(a+b); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+bc)'" 4 O=!(a+b*c); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+b(c+d))'" 5 O=!(a+b*(c+d)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+b(c+de))'" 6 O=!(a+b*(c+d*e)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+b(cd+ef))'" 7 O=!(a+b*(c*d+e*f)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+(b+c)(d+e))'" 6 O=!(a+(b+c)*(d+e)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+(b+c)(d+ef))'" 7 O=!(a+(b+c)*(d+e*f)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+(b+c)(de+fg))'" 8 O=!(a+(b+c)*(d*e+f*g)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+bcd)'" 5 O=!(a+b*c*d); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+bc(d+e))'" 6 O=!(a+b*c*(d+e)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+b(c+d)(e+f))'" 7 O=!(a+b*(c+d)*(e+f)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+(b+c)(d+e)(f+g))'" 8 O=!(a+(b+c)*(d+e)*(f+g)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab+cd)'" 5 O=!(a*b+c*d); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab+c(d+e))'" 6 O=!(a*b+c*(d+e)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 
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GATE "(ab+c(d+ef))'" 7 O=!(a*b+c*(d+e*f)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab+c(de+fg))'" 8 O=!(a*b+c*(d*e+f*g)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab+(c+d)(e+f))'" 7 O=!(a*b+(c+d)*(e+f)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab+(c+d)(e+fg))'" 8 O=!(a*b+(c+d)*(e+f*g)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab+(c+d)(ef+gh))'" 9 O=!(a*b+(c+d)*(e*f+g*h)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab+cde)'" 6 O=!(a*b+c*d*e); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab+cd(e+f))'" 7 O=!(a*b+c*d*(e+f)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab+c(d+e)(f+g))'" 8 O=!(a*b+c*(d+e)*(f+g)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab+(c+d)(e+f)(g+h))'" 9 O=!(a*b+(c+d)*(e+f)*(g+h)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(b+c)+def)'" 7 O=!(a*(b+c)+d*e*f); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(b+cd)+efg)'" 8 O=!(a*(b+c*d)+e*f*g); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a(bc+de)+fgh)'" 9 O=!(a*(b*c+d*e)+f*g*h); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(c+d)+efg)'" 8 O=!((a+b)*(c+d)+e*f*g); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(c+de)+fgh)'" 9 O=!((a+b)*(c+d*e)+f*g*h); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "((a+b)(cd+ef)+ghi)'" 10 O=!((a+b)*(c*d+e*f)+g*h*i); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(abc+def)'" 7 O=!(a*b*c+d*e*f); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(abc+de(f+g))'" 8 O=!(a*b*c+d*e*(f+g)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(abc+d(e+f)(g+h))'" 9 O=!(a*b*c+d*(e+f)*(g+h)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(abc+(d+e)(f+g)(h+i))'" 10 O=!(a*b*c+(d+e)*(f+g)*(h+i)); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+b+c)'" 4 O=!(a+b+c); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+b+cd)'" 5 O=!(a+b+c*d); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 
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GATE "(a+b+cde)'" 6 O=!(a+b+c*d*e); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+bc+de)'" 6 O=!(a+b*c+d*e); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+bc+def)'" 7 O=!(a+b*c+d*e*f); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(a+bcd+efg)'" 8 O=!(a+b*c*d+e*f*g); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab+cd+ef)'" 7 O=!(a*b+c*d+e*f); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab+cd+efg)'" 8 O=!(a*b+c*d+e*f*g); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(ab+cde+fgh)'" 9 O=!(a*b+c*d*e+f*g*h); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 

GATE "(abc+def+ghi)'" 10 O=!(a*b*c+d*e*f+g*h*i); 

PIN * INV 1 999 1.0 0.2 1.0 0.2 
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APPENDIX C VIRMA USER GUIDE 

How to run VIRMA tool (and Java Virtual Machine setup) 

java -Xmx512m -Xms256m -jar virma.jar <parameters> [options] 

If you run it without any parameter or option, a brief help will be printed out. You 
do not need to specify the parameters and options in a pre-defined order. It is 
recommended to use 512Mb for the main memory and 256Mb for the stack memory.  

Parameter description 

• Input netlist: VIRMA can read EQN and BLIF files. 

• Output netlist: the output netlist is a “mapped” EQN file. In this file, each equation 
represents a cell and it is associated to a logic style (CSP or NCSP). The logic 
style is used for the cell generator. 

• Constraints and the Virtual Library: the virtual library is defined by two 
constraints: pu and pd. They determine the maximum number of transistors in the 
pull-up (pu) plane and in the pull-down (pd) plane of a cell. The parameters 
‘max_tree_k_cut’ and ‘max_dag_k_cut’ define the maximum number of variables 
for matches generated from trees and DAGs. The implemented algorithm for 
finding the k-cuts is very limited. Therefore, practical values for these constraints 
are 10 and 6, respectively. Otherwise, it could take too long time for mapping a 
circuit. 

• Options: since VIRMA maps a circuit for a virtual library, a list of cells can be 
provided for a cell generator. This list will contain all cells used in the mapped 
circuit. In order to generate it, you just need to specify the file name through the 
option ‘-output_library’. If you use the option ‘-lc’ (short for library costs), the 
CSP and NSCP costs will be written in the output library file. The options ‘–CSP’ 
and ‘–NSCP’ are used to specify the logic style used for mapping. By default, the 
NSCP is taken. If you choose CSP, only the standard series/parallel CMOS cells 
will be used. 
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Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo
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