
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

LUCIANA FOSS

Transactional Graph Transformation
Systems

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Profa. Dr. Leila Ribeiro
Advisor

Prof. Dr. Andrea Corradini
Coadvisor

Porto Alegre, July 2008

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

CIP – CATALOGING-IN-PUBLICATION

Foss, Luciana

Transactional Graph Transformation Systems / Luciana Foss.
– Porto Alegre: PPGC da UFRGS, 2008.

123 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2008. Advisor: Leila Ribeiro; Coadvisor: Andrea Corradini.

1. Graph transformation. 2. Transactions. 3. Refinement.
4. Interaction pattern. I. Ribeiro, Leila. II. Corradini, Andrea.
III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valquiria Linck Bassani
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenadora do PPGC: Profa. Luciana Porcher Nedel
Bibliotecária-chefe do Instituto de Informática: BeatrizRegina Bastos Haro

To my mother Celina, my
brother André and my niece Julia.

In the memory of my father, Luiz Foss.

TABLE OF CONTENTS

LIST OF FIGURES . 6

LIST OF TABLES . 8

ABSTRACT . 9

RESUMO . 10

1 INTRODUCTION . 11
1.1 Outline . 13
1.2 PhD Thesis Motivation and Definition 13
1.2.1 Goals of Thesis . 14

2 TYPED GRAPH TRANSFORMATION SYSTEMS 15
2.1 Operational Semantics. 18
2.2 CategoryGTS . 23

3 TRANSACTIONAL GRAPH TRANSFORMATION SYSTEMS 27
3.1 Introduction to Transactional GTS . 27
3.2 CategoryTGTS . 33
3.3 Abstract GTS associated to aT-GTS . 38
3.4 Transactions as graph processes. 39
3.4.1 Graph Processes . 40
3.4.2 Transactional Processes 44
3.4.3 AbstractGTS for a T-GTS based on process 45
3.5 Implementation morphisms forT-GTSs 47
3.6 Adjunction betweenGTS and TGTSimp 63

4 TRANSACTIONAL GRAPH TRANSFORMATION SYSTEMS WITH DE-
PENDENCY RELATION . 66

4.1 CategoriesdGTS and dTGTS . 70
4.2 Abstract d-GTS for a T-GTS with dependency relation 72
4.3 Implementation morphism for dT-GTS 77
4.4 Adjunction betweendGTS and dTGTSimp 79
4.5 Comparing T-GTS with d T-GTS . 81
4.6 Construction of the abstract system associated to a dT-GTS 85
4.7 Refinement of transactional graph transformation systems 87

5 CONCLUSIONS . 91
5.1 Theoretical contribution . 91
5.2 Software Engineering contribution . 92
5.3 Future work . 96

REFERENCES . 98

APPENDIX A CATEGORICAL DEFINITIONS 105

APPENDIX B PROPER QUOTIENT PRODUCTIONS 108

APPENDIX C TRANSACTIONS OF A DT-GTS 109

APPENDIX D RESUMO ESTENDIDO DA TESE 119
D.1 Contribuições . 121
D.1.1 Contribuições para a área teórica 121
D.1.2 Contribuições para a área de Engenharia de Software 122
D.1.3 Trabalhos futuros .122

LIST OF FIGURES

Figure 2.1: Typed graphG. 16
Figure 2.2: A graph production. .. . 17
Figure 2.3: Example ofGTS: a pump operator of a gas station system. 18
Figure 2.4: Direct derivation fromG toH using ACCEPTbased onm. 19
Figure 2.5: Two sequentially independent direct derivations. 20
Figure 2.6: Sequential independence. 20
Figure 2.7: Parallel production. 21
Figure 2.8: Parallel productionq1 +q2 and a proper quotient productionq of q1 +q2. 21
Figure 2.9: Derivation shift-equivalent to derivation in Figure 2.5. 22
Figure 2.10: Isomorphism of derivations. 23
Figure 2.11: Partial morphismfT . 24
Figure 2.12: Translation of STOP production with respect tofT : STOP production

(left), pulling back alonglfT (center) and STOP’ typed overT1 (right). 24
Figure 2.13: Productions ofG1. 26

Figure 3.1: TransactionalGTSPumpOper for a pump operator of a gas station. . 28
Figure 3.2: TransactionalGTSCustomer for a customer of a gas station. 29
Figure 3.3: Stabilised graph. 30
Figure 3.4: A transaction of theT-GTSPumpOper in Example 3.1. 32
Figure 3.5: GTS morphismf does not define aT-GTS morphism. 34
Figure 3.6: DerivationS(ρ) and its equivalent derivation via proper quotient pro-

duction. 36
Figure 3.7: Derivationsf↔

T (ρ) andf↔
T (δ). 37

Figure 3.8: Abstract production associated to the transaction in Figure 3.4. 39
Figure 3.9: Type graph (top-left), the maximal and the minimal graphs (bottom-

left), and productions (right) of the process associated toderivation
in Figure 3.4. 42

Figure 3.10: Isomorphism of processes. 43
Figure 3.11: Class of shift-equivalent derivations (left)and the equivalent graph

process (right) . 44
Figure 3.12: AbstractGTS associated to theT-GTS PumpOper, depicted in Fig-

ure 3.1. 46
Figure 3.13: Transactional processφ implements productionp. 47
Figure 3.14: Implementation morphism from the abstractGTS A(Customer) to

theT-GTS Customer. 48
Figure 3.15: Transactional processes of customer system. 48
Figure 3.16: Composition of implementationT-GTS morphisms is associative. . . . 55

Figure 3.17: Universality ofǫZ in TGTSimp . 64

Figure 4.1: Transactions implementing STOP production depicted in Figure 3.1. . 67
Figure 4.2: Adep-production. 68
Figure 4.3: AT-GTS DepPumpOper with dependency relation for gas station

system. 70
Figure 4.4: dep-productionsp1 andp2. 72
Figure 4.5: Transactional process of dT-GTSDepPumpOper. 73
Figure 4.6: dep-production associated to the process in Example 4.4. 76
Figure 4.7: Abstract d-GTS Z1 associated to the dT-GTS DepPumpOper, de-

scribed in Example 4.2. 76
Figure 4.8: Universality ofǫZ in dTGTSimp . 80
Figure 4.9: Transaction constructed from dep-production STOP in Figure 4.2. . . 83
Figure 4.10: The dT-GTSZ2. 84
Figure 4.11: Productions ACCEPTand FINISH for the dT-GTSZ ′

2. 84
Figure 4.12: A refinement dT-GTSZ for DepPumpOper (Figure 4.3). 90
Figure 4.13: An unstable transactional process associatedto STOP production. . . 90

LIST OF TABLES

Table 4.1: Dependency relations of productions of transactional processφ1. . . . 74
Table 4.2: Transitive closure of dependency relations of production ofφ1. 75
Table 4.3: Dependency relation associated to transactional processφ1. 75
Table 4.4: Transitive closure of dependencies of productions of φ depicted in

Figure 4.9. 82

ABSTRACT

Reactive systems, in contrast to transformational systems, are characterised by having
to continuously react to stimuli from its environment. If, in addition to reactiveness,
we consider that for many applications the specification method should provide a way
to describe the spatial distribution of states, graph transformation seems to be a suitable
specification technique. Some applications with these characteristics are mobile systems
and biological pathways. However, the approaches providedfor graph transformations so
far are not adequate to explicitly describe interaction patterns.

Furthermore, several approaches to specify reactive systems propose to use asyn-
chronous languages to specify communication between components and define mecha-
nisms to describe a set (or sequence) of activities that are performed atomically. How-
ever, scarce attention has been devoted to the idea of extending GTSs in order to allow the
specification of atomic activities.

Inspired by the ideas of zero-safe Petri nets, an extension of graph transformation
systems (GTSs) – calledtransactionalGTS (T-GTS) – was defined, equipping them with
a transaction notion. A transaction, in this approach, describes a set of actions that are
executed in an atomic way and it is defined by distinguishing the resources that are visible
or invisible from an external point of view, where the last ones are considered temporary
and are forgotten at a more abstract level.

In this thesis, we give a more theoretical foundation toT-GTS defining a notion of
implementation morphisms betweenT-GTSs (associating graph productions of a system
with transactions of other system) and using this notion we demonstrate the existence of
an adjunction between categories ofGTSs andT-GTSs with implementation morphisms.
Moreover, we extends transactionalGTSs with a mechanism to describe interaction pat-
terns of reactive systems, by means of dependency relationsincluded in the graph produc-
tions. The idea is that a system interacts with its environment by consuming and creating
elements visible to this environment, obeying a causal dependency. Finally, we propose
a notion of glass-box refinement forT-GTSs with dependency relations, where some in-
ternal aspects are preserved. In an abstract level, the system is specified by productions
describing (in an atomic way) complete reactions, where thedependency relations give
some constraints on the internal structure of these reactions. A refinement of a system is
given by a total implementation morphism, that associates each (abstract) production to
a transaction. Hence, the refined system preserves all external behaviour of the original
system and the internal constraints given by the dependencyrelations.

Keywords: Graph transformation, transactions, refinement, interaction pattern, Graph
transformation, transactions, refinement, interaction pattern.

RESUMO

Sistemas de Transformação de Grafos Transacionais

Em contraste aos sistemas transformacionais, sistemas reativos são caracterisados por
reagir continuamente a estímulos provinientes seu ambiente. Além da reatividade, se
considerarmos que muitas aplicações requerem métodos de especificação que possibili-
tam descrever a distribuição espacial dos estados, sistemas de transformação de grafos
parecem ser uma técnica de especificação bastante adequada.Algumas aplicações com
essas características são sistemas móveis e vias biológicas.

Além disso, diversas abordagens para especificação de sistemas reativos propõem
usar linguagens assíncronas para especificar a comunicaçãoentre componentes e definem
mecanismos para descrever um conjunto (ou seqüência) de atividades que são realizadas
atomicamente. Porém, pouca atenção tem sido dada à idéia de estender sistemas de trans-
formação de grafos para permitir a especificação de atividades atômicas.

Recentemente, inspirada nas idéias das redes de Petri “zero-safe” foi definida uma
extensão de sistemas de transformação de grafos (GTS) – denominadaGTS transacional
(T-GTS) – equipando-os com uma noção de transação. Uma transação, nesta abordagem,
descreve um conjunto de ações que são executadas de um modo atômico e é definida
através de uma distinção entre os recursos visíveis e invisíveis de um ponto de vista ex-
terno, onde os últimos são considerados temporários e “esquecidos” em um nível abstrato.

Nesta tese é dada uma fundamentação mais teórica paraT-GTSs definindo uma noção
de morfismos de implementaçãoT-GTS (associando produções de um sistema com tran-
sações de outro) e, usando essa noção, é demonstrada a existência de uma adjunção entre
as categorias deGTSs e T-GTSs com morfismos de implementação. Além disso,GTSs
transacionais são estendidas com um mecanismo para descrever padrões de interação de
sistemas reativos através de relações de dependência incluídas nas produções. A idéia é
que um sitema interage com seu ambiente consumindo e criandoelementos visíveis para
à esse ambiente, uma relação de causalidade. Finalmente, propomos uma noção de refi-
namento paraT-GTSs com relação de dependência caracterizada por uma visão “caixa-de-
vidro”, onde alguns aspectos internos são preservados. Em um nível abstrato, o sistema é
especificado por produções que descrevem (de uma maneira atômica) reações completas,
onde a relação de dependência determina algumas restriçõesna estrutura interna dessas
reações. Um refinamento de um sistema é definido por um morfismototal de implemen-
tação que associa cada produção (abstrata) a uma transação.Assim, o sistema refinado
preserva todo o comportamento externo do sistema original eas restrições da estrutura
interna determinadas pelas relações de dependência.

Palavras-chave:Transformação de grafos, transações, refinamento, padrão de interação.

11

1 INTRODUCTION

The complexity of today systems requires the use of development methods that guar-
antee correctness and quality. Formal specification is an important instrument used to
achieve these goals. A specification is a description of the behaviour of a system and/or
its structure.

Graph transformation systems(GTSs) are a flexible formalism for the specification of
complex systems, that may take into account aspects such as object-orientation, concur-
rency, mobility and distribution (EHRIG et al., 1999a). In fact, graphs can be naturally
used to provide a structured representation of the states ofa system, which highlights its
subcomponents and their logical or physical interconnections. Then, the events occur-
ring in the system, which are responsible for the evolution from one state into another,
are modelled by applications of suitable transformation rules, called (graph) productions.
Such a representation is precise enough to allow the formal analysis of the system under
scrutiny, as well as amenable of an intuitive, visual representation, which can be easily
understood also by a non-expert audience.

Along the years several enrichments of the original framework have been introduced,
extendingGTSs with structuring concepts that are needed to master the complexity of
large specifications. Several modularity and refinement notions have been proposed,
providing basic mechanisms for encapsulation, abstraction and information hiding – see
(HECKEL et al., 1999; SCHÜRR; WINTER, 2000; KREOWSKI; KUSKE, 1999),
(DREWES et al., 2000; HECKEL et al., 1998; TAENTZER; SCHÜRR,1995; GROSSE-
RHODE; PARISI-PRESICCE; SIMEONI, 1999; EHRIG; ENGELS, 1993, 1996). How-
ever, to our knowledge, scarce attention has been devoted tothe idea of extendingGTSs
in order to allow the specification of transactional activities. Abstractly, a transaction is
an activity, involving the execution of a group of events, which can either bring the sys-
tem to a successful state or fail. In the last case the partialexecution of the transaction is
discarded and has no effect on the system. In concrete implementations this is achieved
with a roll-back mechanism which restores the starting state when a failure is detected.

In an introductory work (BALDAN et al., 2008), inspired by the ideas of zero-safe
Petri nets, we define an extension ofGTSs, calledtransactional graph transformation
systems(T-GTS), equipping them with a transaction notion. Roughly speaking, states
(graphs) are partitioned into a stable and a non-stable (unstable) parts, and a transaction is
defined as a computation that starts and ends in states consisting only of stable items, in
which all intermediate states have some unstable parts. This approach is motivated by the
understanding of graph transformation as adata-flowformalism, where the productions of
a system are applied non-deterministically, and any form ofcontrol on the application of
productions has to be encoded in the graphs. Thus, transactions are more naturally defined
indirectly, by identifying parts of the state which represent temporary (or “unstable”)

12

resources, only visible within a transaction. Transactions can be seen in two different
levels of abstraction. In a lower level, both stable and unstable items, and thus also the
internal structure of transaction, are visible. But at a more abstract level, the unstable
items can be forgotten and only the complete transactions are observable. Intuitively,
this gives rise to anotherGTS, where abstract transactions of the originalT-GTS become
productions which rewrite directly the source stable stateinto the target stable state.

Reactive systems, in contrast to transformational systems, are characterised by con-
tinuous having to react to stimuli from its environment. If,in addition to reactiveness,
we consider that for many applications the specification method should provide a way
to describe the spatial distribution of states, graph transformation seems to be a suitable
specification technique. Some applications with these characteristics are mobile systems
and biological pathways.

Several methods for design and analysis of reactive systemspropose synchronous lan-
guages as specification formalism (BERRY, 2000; HALBWACHS et al., 1991; LEGUER-
NIC et al., 1991), where the time of reaction to an event is null. Other methods (SE-
CELEANU; SECELEANU, 2004; MAIA; IORIO; BIGONHA, 1998; RIESCO; TUYA,
2004) propose to use asynchronous languages to specify communication between com-
ponents and define mechanisms to describe a set (or sequence)of activities that are per-
formed atomically. Therefore, we can use the notion of transactions to describe, at an ab-
stract level, these atomic activities. Moreover, in (MAIA;IORIO; BIGONHA, 1998) an
approach to specify interaction pattern explicitly using Abstract State Machines (ASM)s
was proposed, where the designer, besides specifies the operations of component, can
describe signals that are sent to and received from environment. The designer can also
partially specify the environment showing only the interaction specification.

However, the approaches for graph transformations do not provide a mechanism to
explicitly specify patterns of interaction between a system and its environment. Some of
them restrict the interaction pattern to functions (and thus actually describe transforma-
tional systems), and others just allow very restricted forms of interactions. In (HECKEL,
1998), it is proposed to use graph transformation systems tospecify reactive systems: the
interaction between system and its environment it not explicitly specified, instead, it is
described in the semantical level, where the states of the system show effects that are not
determined by rule applications. Therefore, we extend the transactional graph transfor-
mations systems to explicitly express interaction.

In this thesis, we firstly develop a more elaborated work on transactionalGTS: we
define a more manageable characterisation of transactions as graph processes, which sim-
plifies categorical definitions; based on the characterisation of transactions as processes,
we show how the internal structure of transactions can be abstracted away, by considering
an abstractGTS associated to aT-GTS; and, we demonstrate that the concreteT-GTS and
its associated abstractGTS have the same behaviour in terms of transactions by charac-
terising this construction as a functor from the category ofT-GTSs to the category ofGTS

and showing that it is the right adjoint to the inclusion functor in the opposite direction. In
order to do this, we define appropriated morphisms in both categories, specially a notion
of implementation morphism for the category ofT-GTSs. Using the notion of implemen-
tation morphism it is possible to describe the behaviour of asystem at an abstract level
and assure that the refined system really executes accordingto this abstract behaviour.
Preliminary results of this work was published in (BALDAN etal., 2006).

Next, we extendT-GTS to a version ofT-GTS with dependency relations (dT-GTS), by
providing a mechanism to describe a weaker dependency amongcreated and consumed

13

items of a production. We extend, too, all concepts and results of the original version to
dT-GTSs. The notion of dependency is extended to transactions and it reflects the depen-
dencies generated by internal items of the transaction. Moreover, this relation restricts
the definition of implementation morphisms giving additional constraints to possible re-
finements for each production. Preliminary results of this work was published in (FOSS;
MACHADO; RIBEIRO, 2007). Finally, we propose to use dT-GTS to specify reactive
systems. The idea, in our proposal, is that a component interacts with its environment by
consuming and creating elements visible to this environment. These actions may be de-
scribed as (abstract) graph productions in the abstract specification that are implemented
by a series of other productions in the more concrete specification. Defining a relationship
between these different levels of abstraction we can have a notion of refinement. Addi-
tionally, the dependency relation associated to each abstract production can describe a
complex pattern of interaction between a system and its environment.

1.1 Outline

In Chapter 2, some concepts of double-pushout approach for typed graph transforma-
tion systems (GTS) will be presented. An extension of this formalism, called transactional
graph transformation systems (T-GTS), will be presented in Chapter 3. We review all
definitions of transactions and abstract system associatedto aT-GTS. In this chapter, we
also introduce a characterisation of transactions as graphprocesses that is used to define
implementation morphisms and to demonstrate the existenceof an adjunction between
categories ofGTS andT-GTS with implementation morphism. A further extension ofT-
GTSs is given in Chapter 4, where all definitions and results obtained in Chapter 3 are
reproduced forT-GTSs with dependency relations. In the last section of this chapter, we
propose a notion of refinement for specification of reactive systems. And, in the last chap-
ter (5), we summarise the contributions of this work, give anoverview about related work
and describe the future directions of this research. In the appendices, some of the formal
definitions and theorems used/proved along of this proposalcan be found.

1.2 PhD Thesis Motivation and Definition

This research is inserted in a cooperation project between Brazil and Italy, called IQ-
Mobile, which has as main goal to improve the software quality for open environments,
specially mobile and distributed applications, using formal methods. Within the scope of
this project, some aspects of Java language and graph transformation systems were com-
pared: the object model; the support and treatment of concurrency; systems composed
of several classes. After analysing these aspects some translations between Java andGTS

were considered. The interest in these translations has twoaspects: on the one hand, the
possibility of to mapGTSs in a programming language; and on the other hand, if Java
constructions can be translated inGTS, one can analyse Java systems by means of for-
mal techniques. Therefore, some work was developed in this sense:GTSs were mapped
into Java classes (DOTTI et al., 2005) and vice-versa (CORRADINI et al., 2004). Some
questions arose from the last translation:

• in this mapping we had to consider several details of Java implementation, thus the
concept of transaction became an important mechanism to allow the abstraction of
these details;

14

• the Java language, with its class concepts, allows a modulardevelopment of large
systems. An interest in leading these modularity concepts into GTS arose as a result
of comparison between the languages.

Thus, as a first step, a transaction notion was defined (BALDANet al., 2008), where
a transaction is a computation with some special properties. Moreover, a transaction
can be seen at an abstract level, where some intermediate steps can be forgotten. This
introductory work presented some basic definitions withoutfurther formal foundations.
It would be nice to express the abstraction construction as afunctor from the category of
transactionalGTSs to the category ofGTSs, giving raise, as in the case of Petri nets, to the
right adjoint to the inclusion functor in the opposite direction. This allows us to relate the
abstract and concrete systems by means of morphisms and prove that they are equivalent
from an external observer point of view. For this, it seems that the appropriate choice of
morphisms in the category ofT-GTSs must allow to map a production into a transaction.
Therefore, the following step in this research was to give a categorical foundations for
T-GTSs.

Other researchers proposed, in the scope of IQ-Mobile project, an approach to verify
partial systems using restrictedGTSs, called object-based graph grammars (DOTTI et al.,
2006). This work was based on the assume-guarantee approachfor verification (PNUELI,
1985). The basic idea is to see each part of a system as an open system - a system whose
behaviour is not fully specified and that depends on interactions with its environment.
In order to verify a component alone, one can assume an environment behaviour and,
based on this assumption, try to prove the desired properties of the component. In their
approach, they describe several steps to allow this verification and the first two are: (1)
define the interface and (2) define interaction pattern (assume). In the second step, a
description of the desired interaction pattern between thesystem and its environment is
required. Inspired in (DOTTI et al., 2006), we, finally, define an extension ofT-GTSs
incorporating a notion of dependency relation and propose it to specify reactive systems.

1.2.1 Goals of Thesis

The main goals of this thesis are:

• to define a notion of atomic activity forGTSs;

• to demonstrate that atomic activities are preserved in a higher level of abstraction;

• to propose a mechanism to describe interaction pattern by means of graph produc-
tions to specify reactive systems;

• to define a notion of refinement which take in account the interaction pattern.

15

2 TYPED GRAPH TRANSFORMATION SYSTEMS

In this chapter, the basic definitions of typed graph transformation systems in the
algebraic approach are reviewed. Typing discipline for graphs will allow us to distinguish
between stable and unstable items in a given graph. Typing for graphs (see (HECKEL
et al., 1996; CORRADINI; MONTANARI; ROSSI, 1996) for more details) can be seen
as a labelling technique, which allows to label each graph over a structure that is itself
a graph (called thetype graph). The base of this approach is the category of graphs and
graph morphisms.

(Typed) Graph and graph morphisms. A graph is composed by vertices and edges
connecting source and target vertices. We can relate two graphs if they are structurally
compatible. This relation is given by means of agraph morphism: a mapping between
graphs that respects the source and the target of each edge, i.e., each edge mapped into
another must have its source and target vertices mapped intothe source and the target
vertices of the other, respectively. Besides, we can label each item of a graph mapping
it into other graph, called type graph. Atyped graphis a graph equipped with atyping
morphismfrom it into a type graph. The compatibility between graphs typed over the
same type graph is determined bytyped graph morphisms, that are mappings respecting
the type of each item of the graph, i.e., the vertices and edges of a graph can be mapped
only into vertices and edges of another if they have the same type. If the typing mapping
of a graph is injective, the graph is calledinjective, as well.

Definition 2.1 ((Typed) Graph and graph morphisms) A graph is a tupleG = 〈VG,
EG, s

G, tG〉, whereVG andEG are sets of vertices and edges, andsG, tG : EG → VG are
the source and target function. A(total) graph morphismf : G→ G′ is a pair of functions
(fV : VG → VG′ , fE : EG → EG′) such thatfV ◦ sG = sG

′
◦ fE andfV ◦ tG = tG

′
◦ fE.

The category of graph and total graph morphisms is calledGraph.
Let T ∈ Graph be a fixed graph, called type graph, aT -typed graphGT is given by a
graphG and a graph morphismtG : G → T . When type graph is obvious we will write
G instead ofGT . A morphism ofT -typed graphsf : GT → G′T is a graph morphism
f : G → G′ that satisfiestG′ ◦ f = tG. A typed graphGT is calledinjective if the typing
morphismtG is injective. The category ofT -typed graphs andT -typed graph morphisms
is the comma category(Graph ↓ T), shorted byT -Graph.

Example 2.1 ((Typed) Graph and graph morphisms)Figure 2.1 shows two graphsT
andG and a morphismf between them. The vertices are represented by round squares
and circles, for exampleOperator andFree; and the edges are represented by arrows
with names (inscribed in polygons or not), for example,Busy andStart. When source
and target of an edge are the same vertex, we omit the source inthe pictures, for example,

16

the edgeBusy has the pump vertex as source and target. Morphismf maps the vertices
and edges ofG into vertices and edges ofT , respectively. This mapping is defined by the
numbering. GraphG and morphismf compose a typed graphGT = 〈G, f〉.

5

1 2

2

3

4

5

6

7

1

2

3

4

6

7

8

9

f
T

G

9

8

O1 C1Coupon

PreOrd

Prepay
C2

pu

op

Finish

Start

Free

Suply

Busy

Free

Activate

 Impure
Analyse

 Pure

pu

Prepay FF

op

Busy

Customer

Charge

PreOrd

Coupon

Change

Operator

P1

Pump

Figure 2.1: Typed graphG.

y

The behaviour of a graph transformation system is determined by the application of
rewriting rules, also called graph productions (ROZENBERG, 1997).

Productions. At an abstract level, aproductionis composed by three graphs: theleft-
hand sideL, theright-hand sideR, and aninterfaceK which represents the parts thatL
andR have in common. It specifies that, once an occurrence of the graphL is found in
the current state1, it can be replaced with the graphR, preservingK.

Definition 2.2 (Productions) A T -typed (graph) productionis a tupleq : Lq
lq
←֓ Kq

rq
֌

Rq, whereq is the name of the production,Lq, Kq andRq are T -typed graph,lq is an
inclusion andrq is an injective morphism. The class of allT -typed graph production is
denoted byT -Prod.

In this work we will only consider consuming productions, i.e., productions must
consume something.

Example 2.2 (Productions)Figure 2.2 shows a productionq whose left-hand side, right-
hand side and interface are graphsLq, Rq andKq, respectively. GraphKq is mapped into
Lq andRq by two morphisms:l andr. This production can be applied in a state containing
graphLq (i.e. containing vertices typed asCustomer andOperator, and edge typed
asPrepay from theCustomer to theOperator), resulting in a graph wherePrepay
was deleted;Customer andOperator were preserved; andCoupon andPreOrd were
created.

1The graph representing the current state of the system.

17

l r

Kq qRqL

CustomerCustomer

Prepay Operator

Customer

PreOrdOperator

Coupon

Operator

Figure 2.2: A graph production.

y

Graph transformation systems. A graph transformation systemis defined by a collec-
tion of graph productions typed over a fixed type graph. Its definition is given by a type
graph, a set of production names, and a function associatingeach production name to a
typed production.

Definition 2.3 (Graph transformation systems -GTS) A (typed) graph transformation
systemis a tupleG = 〈T, P, π〉, whereT is a type graph,P is a set of production names,
π is a function mapping production names to productions inT -Prod.

Example 2.3 (Graph transformation systems)An example will be used to illustrate the
main presented concepts. We will model an adapted version ofa gas station system pre-
sented in (DOTTI et al., 2006) usingGTSs. In this example, a customer prepays a certain
amount of money to the operator of a gas station for the gas that will be supplied by the
pump. If the operator is free, the pump supplies the gas and then the operator returns the
change to the customer, based on the real amount of money expended by the customer.
Otherwise, the customer receives a message advising him to retry. Another activity re-
alised in the gas station is the analysis of the pump in order to test the purity or impurity
of its gas.

In Figure 2.3, theGTSmodelling the system of a pump operator of a gas station system
is shown. The type graph of the system is depicted at the bottom of the figure. We have, in
this system, three entities modelled by vertices:Customer, Operator, andPump. Each
entity can have attributes (for exampleFF or Free) and receive messages (for example
Prepay or Supply). Each entity can have a reference to other one, that represents
an attribute as well. Both, attributes and messages are modelled as edges. So, by type
graph we can see thePump entity with their attributes: the operator (op) that operates
it and three flags indicating if it is free (Free), or activated (FF), or busy (Busy). The
Customer entity has only a reference to the operator (op) as attribute; and theOperator
has as attributes the pump that it operates (pu).

The behaviour of this system is described by the productionsat the top of Figure 2.3
– the interface graphs of the productions were omitted but they can be built as the in-
tersection between the left-hand side and the right-hand side of each production. The
Operator entity controls the access to thePump when a customer tries to use it. If pump
is not being used, the operator accepts (generating aPreOrd message) the prepayment
and gives to customer a coupon (ACCEPTproduction) and it prepares the pump to be ac-
tivated (SERVE production). ThePump maybe activated, changing its flag fromFree to
FF (ACTIVATE production) and it may start supplying gas changing its flag fromFF to
Busy (START production). Eventually, thePump finishes supplying the gas – changing
its flag fromBusy to Free again – and it indicates to the operator (generatingCharge
message) the real amount that the customer expended (STOP production). Finally, the

18

op Analysis opop

ImpurePure

op

Stop

RejectAccept

op

pu Serve pu

Finish

Start

Activate

Analysis op

op

Customer

Operator

Free

ChargeOperator Operator

PreOrd PrepayOperatorOperator Operator

Coupon

Operator

Customer Customer

Charge
Operator

Busy

Customer

Finish

Prepay

PreOrdOperator

Customer

Operator

Activate

CustomerChange

Busy

Supply

Free

Activate

Customer Busy Customer

Customer

Operator PureOperator Analyse OperatorOperator Analyse Impure

Start

Customer
 FF

 FF

Operator

Finish

Start

Suply

Busy

Free

Activate

 Impure
Analyse

 Pure

pu

Prepay FF

Busy

Customer

Charge

PreOrd

Coupon

Change

Pump

PumpPump Pump

PumpPump

Pump PumpPumpPump

Pump Pump

Pump

Figure 2.3: Example ofGTS: a pump operator of a gas station system.

operator can return the change to the customer (FINISH production). If pump is being
used, the operator advises customer (sending a messageBusy) to try again (REJECTpro-
duction). Moreover, theOperator entity can perform an analysis of the pumps, verifying
if the provided gas is pure or not (PUREANALYSIS or IMPUREANALYSIS productions,
respectively).

y

2.1 Operational Semantics

The operational semantics of aT -typed GTS is given by derivations. A derivation
describes the application of a production to a graph representing a state of the system.
In the double-pushout approach, a derivation is given in terms of pushouts inT -Graph.
Intuitively, the pushout of two graphs with respect to another one, called interface graph,
is given by the gluing of these two graphs together, identifying the items in the interface
(see appendix A).

Direct derivation and derivations. If there exists anoccurrenceof the left-hand side of a
productionin a graph, this production can be applied to it. An application of a production

19

is given by a direct derivation in the double pushout approach. In this approach, adirect
derivation is defined by two pushouts: the first deletes all items that shall be consumed
and the second includes all items that shall be created. Figure 2.4 shows a direct derivation
using the production ACCEPT.

pu
op

pu
op

D H

op
pu

G

m

LAccept
KAccept RAccept

Busy

CustomerCustomer

Coupon

Operator

Busy

Operator

Busy

Operator

Customer

Operator

Customer

PreOrdOperator

Customer

Operator

Prepay

Prepay

Coupon

PreOrd

Customer

Pump Pump Pump

Figure 2.4: Direct derivation fromG toH using ACCEPTbased onm.

A derivationis a finite or infinite sequence of direct derivations where the final graph
of one is the start graph of another.

Definition 2.4 (Direct derivation and derivations) Given aT -typed graphG, aT -typed

graph productionq = Lq
l
← Kq

r
→ Rq and a match (i.e. an injectiveT -typed graph mor-

phism)m : Lq → G, a direct derivationfrom G to H usingq (based onm) exists if
and only if the diagram below can be constructed, where both squares are pushouts in
T -Graph. In this case the direct derivation is denoted byδ : G

q,m
⇒ H or δ : G

q
⇒ H if

we do not make explicitm.

Lq

(1)m

Kq
l r

k (2)

Rq

m∗

G D
l∗ r∗

H

Given aGTS G = 〈T, P, π〉, a derivationρ : GT
0

p1,m1
⇒ GT

1

p2,m2
⇒ GT

2 · · · of G is a
finite or infinite of direct derivationsδi : GT

i

pi,mi
⇒ HT

i , whereGT
i+1 = HT

i and i ≥ 0. If

a derivationρ : GT
0

p1,m1
⇒ · · ·

pn,mn
⇒ GT

n is finite we callGT
0 andGT

n of initial and final
graphs, respectively. The semantics ofG is the class of all derivations inG, denoted by
Der(G).

The construction of the diagram above depends on the existence of the pushout com-
plementD. In order to guarantee this existence,m must satisfy thegluing conditionwith
respect tol. This condition is partitioned in two:dangling condition, i.e., if a vertex is
deleted, there are not edges that are incident to it; and theidentification condition, i.e., two
vertices can be identified bym, only if they are preserved. Since the considered matches
are injective, the identification condition is always satisfied, so it remains to verify the
dangling condition (see appendix A).

Sequential independence. If two direct derivationsρ : GT q1,m1
⇒ XT q2,m2

⇒ HT overlap
only on items preserved by both, they are calledsequential independent. For example,

20

the Figure 2.5 shows two independent direct derivations. Wecan see in this example (in
a lighter colour) that the items used by both productions arepreserved by them.

q1 : q2 :

Figure 2.5: Two sequentially independent direct derivations.

Definition 2.5 (Sequential independence)(CORRADINI et al., 1997) Letδ1 : G
q1,m1
⇒

X andδ2 : X
q2,m2
⇒ H (as in Figure 2.6) be two direct derivations. They aresequentially

independentif m2(L2) ∩ m
∗
1(R1) ⊆ m2(l2(K2)) ∩ m

∗
1(r1(K1)), i.e., if the images in

X of theL2 andR1 overlap only on items that are preserved by both derivation steps.
In categorical terms, this condition can be expressed by requiring the existence of two
arrowss : L2 → D1 andu : R1 → D2 such thatr∗1 ◦ s = m2 and l∗2 ◦ u = m∗

1. In this
case〈s, u〉 is said to be an independence pair ofδ1 andδ2.

q1 : L1

m1

K1
l1 r1

k1

R1

m∗
1 u

q2 : L2

m2s

K2
l2 r2

k2

R2

m∗
2

G D1l∗1 r∗1
X D2l∗2 r∗2

H

Figure 2.6: Sequential independence.

Parallel productions. A parallel productionassociated to a setP of productions is given
by the disjoint union of them.

Definition 2.6 (Parallel productions) (CORRADINI et al., 1997) Letq1, . . . , qn be pro-
ductions. Aparallel productionassociated withq1, . . . , qn is the productionq1 + . . .+ qn

= 〈(q1, in1), . . . , (qn, inn)〉 : L
l
← K

r
→ R (depicted in Figure 2.7), wheren ≤ 0,

qi : Li
li← Ki

ri→ Ri ∈ P , for eachi ∈ {1, . . . , n}, L, K and R are the coprod-
uct objects of the graphs in〈L1, . . . , Ln〉, 〈K1, . . . , Kn〉 and 〈R1, . . . , Rn〉, respectively.
Moreover, l and r are uniquely determined by the families of arrows{l1, . . . , ln} and
{r1, . . . , rn}, respectively. Finally, for eachi ∈ {1, . . . , n}, ini is the triple of injections
〈inLi : Li → L, inKi : Ki → K, inRi : Ri → R〉.

By the classical parallelism theorem (CORRADINI et al., 1997) for the double-push-
out approach ofGTS, two sequentially independent direct derivationG

p1
⇒ H1

p2
⇒ H may

be replaced by a single parallel direct derivationG
p1+p2
⇒ H. But if we are using injective

matches, this is not always true: ifp1 andp2 preserve the same item, there is no injective
match that allows to construct the corresponding parallel direct derivation. This situation

21

q1 : L1

inL1

K1
l1 r1

inK1

R1

inR1

. . . qn : Ln

inLn

Kn
ln rn

inKn

Rn

inRn

q1 + · · ·+ qn : L = L1 + · · ·+ Ln K = K1 + · · ·+Kn
l r

R = R1 + · · ·+Rn

Figure 2.7: Parallel production.

makes necessary the notion of proper quotient production ofa parallel production. In the
following, we present the definition of proper quotient productions and the parallelism
theorem considering proper quotient productions as introduced in (HABEL; MÜLLER;
PLUMP, 2001).

Proper quotient productions. Because we are using injective matches, sometimes we
cannot find a match from a parallel production into a graph such that this derivation is
equivalent to another, where productions inP are applied in a sequential way. This is be-
cause, if we have two independent direct derivations sharing at least one preserved item,
the parallel production associated to these derivations will have two different items for this
shared preserved item. Since we use injective matches, we can have two different matches
to pointing to shared item, but we cannot have one match from parallel production to the
same shared item. So we will useproper quotient productionsof parallel productions
in order to have an equivalent production for which there is an injective match (see ap-
pendix B for formal definitions). In (HABEL; MÜLLER; PLUMP, 2001), a method for
constructing the set of all proper quotient productions ofq1 + q2 is presented. It is based
on the idea of “gluing”LT1 andLT2 ,KT

1 andKT
2 ,RT

1 andRT
2 according to a graphS which

relates the productionsq1 andq2, based on its relationship in a derivation. For example, in
Figure 2.8 we have the parallel production ofq1 andq2 and its proper quotient production
(at the bottom line of the figure) – the lighter colour inq1 + q2 indicates the items that are
identified inq.

q1 : q2 :

q1 + q2 :

q :

Figure 2.8: Parallel productionq1 + q2 and a proper quotient productionq of q1 + q2.

Parallelism theorem. Considering the above sequential independent derivations, by the
Parallelism Theorem (Theorem 7.8 in (HABEL; MÜLLER; PLUMP,2001)), we can ob-
tain an equivalent direct derivation, applying a suitable productionq ∈ PQ(q1 + q2) – a
proper quotient of the parallel productionq1 + q2 – via an injective match. This means

22

thatq1 andq2 can be applied in a reverse order resulting in the same graphH, i.e., there

is a derivationρ′ : GT
q2,m

′
2⇒ X ′T q1,m

′
1⇒ HT where the two derivation steps are “switched”.

Theorem 2.1 (Parallelism theorem)(HABEL; MÜLLER; PLUMP, 2001) Given two
productionsq1 andq2, the following statements are equivalent:

1. There is a parallel direct derivationG
q
⇒ H, for some productionq ∈ PQ(q1+q2);

2. There are sequentially independent derivationsG
q1,m1
⇒ H1

q2,m2
⇒ H;

3. There are sequentially independent derivationsG
q2,m

′
2⇒ H2

q1,m
′
1⇒ H;

Shift-equivalence. The equivalence on derivations induced by switchings of sequential
independent direct derivations is calledshift-equivalence.In Figure 2.9, a derivation shift-
equivalent to the derivation in Figure 2.5 is shown. In this derivation,q2 andq1 are applied
in reverse order. It is easy to see that we can apply the properquotient productionq (see
Figure 2.8) toGT obtainingHT in a single step derivation, i.e., there exists the direct
derivationGT q,m

⇒ HT .

q2 : q1 :

Figure 2.9: Derivation shift-equivalent to derivation in Figure 2.5.

Definition 2.7 (Shift equivalence) (BALDAN; CORRADINI; MONTANARI, 1998a)
Given a derivationρ = G

q1,m1
⇒ X

q2,m2
⇒ H, consisting of two sequentially indepen-

dent direct derivations,ρ′ = G
q2,m

′
2⇒ X ′ q1,m

′
1⇒ H is obtained as in the Theorem 2.1, where

productionsq1 andq2 are applied in the reverse order.ρ′ is called a switching ofρ and
is denoted byρ ∼sh ρ′. Theshift equivalence≡sh on derivations is the transitive and
“context” closure of∼sh, i.e., the least equivalence, containing∼sh, such that ifρ ≡sh ρ′

thenρ1; ρ; ρ2 ≡
sh ρ1; ρ

′; ρ2.

Abstract traces. If we want to abstract the concrete identities of the items of typed
graphs involved in a derivation, i.e., considering graphs with the same structure as be-
ing the same (abstract) graph, we can consider classes ofabstract equivalent derivations.
Combining shift-equivalence with abstraction equivalence we obtain the so-calledab-
stract truly-concurrent equivalence. Equivalence classes of derivations, with respect to
abstract truly-concurrent equivalence, are denoted as[_]a and are calledabstract traces.

Definition 2.8 (Abstraction equivalence)Letρ : G0
q1,m1
⇒ · · ·

qn,mn
⇒ Gn andρ′ : G′

0

q′1,m
′
1⇒

· · ·
q′n,m

′
n⇒ G′

n (whoseith step is depicted in the low arrows of the diagram in Figure 2.10)
be two derivations. Then they areabstraction equivalent, denoted byρ ≡abs ρ′, if n = n′,

23

qi = q′i for 1 ≤ i ≤ n and there exists a family of isomorphisms{θXqi : Xqi q→ X ′
qi
|X ∈

{G,D}, 0 ≤ i ≤ n}, between corresponding graphs in the two derivations, suchthat the
resulting diagram (stepi depicted in Figure 2.10) commutes. Equivalence classes of dec-
orated derivations with respect to≡absare calledabstract derivationsand are denoted by
[ρ]abs, whereρ is an element of the class (BALDAN; CORRADINI; MONTANARI, 1998a).

qi+1 : Lqi+1

mi
m′
i

Kqi+1

lqi+1

ki
k′i

rqi+1
Rqi+1

m∗
i

m∗
1
′

G′
i D′

i

l∗
′
qi+1

r∗
′
qi+1

G′
i+1

Gi

θGi

Dil∗qi+1

θDi

r∗qi+1

Gi+1

θGi+1

Figure 2.10: Isomorphism of derivations.

Definition 2.9 (Abstract truly-concurrent equivalence) The abstract truly-concurrent
equivalence≡a on derivations is the transitive closure of the union of the relations≡abs

and≡sh. Equivalence classes of derivations with respect to≡a are denoted as[ρ]a and
are calledabstract traces(BALDAN; CORRADINI; MONTANARI, 1998a).

2.2 CategoryGTS

We can relate twoGTSs by mapping the source type graph and production names into
the target ones. This mapping is given by morphisms in category of GTS. This definition
will be used as the base for definitions of morphisms introduced in the next chapters.

Various notions of morphisms for graph transformation systems have been introduced
in literature (CORRADINI et al., 1996; GROSSE-RHODE; PARISI-PRESICCE; SIME-
ONI, 1999; HECKEL et al., 1996; RIBEIRO, 1996; BALDAN, 2000). Our morphisms
on GTSs are a slight variation of morphisms in (BALDAN, 2000). The mapping between
type graphs must allow to forget some items, therefore we will use partial morphisms to
relate them.

Partial graph morphisms A partial relation between two graphs maps only part of the
source graph to the target one. Here, we use the definition that simulates a partial graph
morphism using a pair of total graph morphisms, with origin in a subgraphdom(f) of the
source graph (domain of the partial graph morphism). The first morphism mapsdom(f)
into source graph and the second one mapsdom(f) into target graph.

Definition 2.10 (Partial graph morphisms) A partial graph morphismf : G1 ⇀ G2 is
a total graph morphism from a subgraph ofG1, calleddom(f), toG2, and is depicted as

G1

lf
←֓ dom(f)

rf
→ G2.

Example 2.4 (Partial graph morphisms) In Figure 2.11, a partial morphismfT from
the type graph of the pump operatorGTS to a graphT1 is depicted. The mapping is
described by numbering, where the items without a number arenot in the range of the
morphism. It means, that items inTPumpOper, that are not indom(fT) are all forgotten by
morphismfT .

24

TPumpOper

 FF

Charge

PreOrd

Coupon

Change

 Impure
Analyse

 Pure

Prepay
Customer

Finish

Start

Operator

pu
op

Busy

Suply

Busy

Free

Activate

Pump
6

2

dom(f)T

7

3

5

4

1

Analyse

op

Operator

pu

 Pure

 Impure

Pump
lfT rfT

1

3

1
5

7

2

6

4

T

Figure 2.11: Partial morphismfT .

y

Proposition 2.1 Graphs and partial graph morphisms form a category, denotedby
GraphP (see (HECKEL et al., 1996)).

The mapping between productions must preserve them, so we will require that the
target production be a translation of the source one, with respect to the mapping between
the type graphs. Formally, this is given by a pullback functor, that, intuitively, forgets
all items whose type is not preserved by the type graph mapping and then by typing the
production over the target type graph. For example, the translation of the production STOP

by means the pullback functor, with respect tofT is shown on the center of Figure 2.12
and, on the right, it is typed overT1. One can see that production STOP’ ↓ T1 is not a
consuming production, since it defines an isomorphism.

op

Stop

op

OperatorCustomer

Free

Charge

Finish

Operator

Customer

Busy
Pump Pump

Stop’

op op

OperatorOperator

PumpPump

1Stop’ T

Figure 2.12: Translation of STOP production with respect tofT : STOP production (left),
pulling back alonglfT (center) and STOP’ typed overT1 (right).

Definition 2.11 (Pullback functor) Given an objectA of a categoryC, theslice category
C↓A has allC-arrows with targetA as objects; an arrowh : f → g in C↓A is aC-arrow
h such thatg ◦ h = f .2

Let m : A → B be an arrow in a categoryC with pullbacks. Chosen a pullback
square as (1) below for anyf : D → B, thepullback functoralongm : A→ B, denoted
m∗ : C↓B → C↓A, maps an object(f : D → B) ∈ C↓B to (m∗(f) : m∗(D) → A) ∈
C↓A.

Given arrowsm : A→ B andf : D → B of C, we writeg ∼=C↓A m
∗(f) if there exists

an arrowC → D such that square (2) below is a pullback.

m∗(D)
m∗(f) (1)

D
f

A m B

C
g (2)

D
f

A m B

2Thus, for example,T -Graph = Graph↓T as in Definition 2.1.

25

In the following lemmas we prove that pullback functor preserve pushouts and com-
mutativity.

Lemma 2.1 (pullback functor preserves pushouts)Let the square (1) be a pushout in
T -Graph. LetG′

i be a graph obtained fromGi, applying the pullback functor. Then the
square (2) is a pushout indom(fT)-Graph.

G′
0

(2)

G′
1

G′
2 G′

3

G0

(1)

G1

G2 G3

G0

(3)

G′
0

G1 G′
1

T dom(fT)

Proof: By definition of pullback functor, all arrowsg : G0 → G1 in T -Graph, we haveg′ :

G′
0 → G′

1 in dom(fT)-Graph, such that the square(3) above is a pullback. It holds by definition
of pullback functor and Lemma A.5, since〈G′

0, G0, dom(fT), T 〉 and〈G′
1, G1, dom(fT), T 〉 are

pullbacks. Therefore, the right, front, left and back squares, in cube diagram above, are pullbacks.
Thus, by Lemma A.6, the top square is a pushout, as well. ⊓⊔

Lemma 2.2 (pullback functor preserves commutativity)Let (1) be a commuting dia-
gram inT -Graph. LetG′

i be a graph obtained fromGi, applying the pullback functor.
Then(1′) is a commuting diagram indom(fT)-Graph.

=

G1 G′
1

g1f

=

G0

(1)

G′
0

(1′)

G2 G′
2

g2

T dom(fT)

G′
2

a

g2

=

G′
0

b

(1′)

=

G′
1

c

g1

f

dom(fT)

Proof: We must prove thata ◦ f = g1. By Lemma A.5, there existg1 : G′
1 → G′

0, g2 : G′
2 → G′

0

andf : G′
1 → G′

2 such thatb ◦ g1 = c, b ◦ g2 = a anda ◦ f = c. Thus, we havea ◦ f = b ◦ g1 =

b ◦ g2 ◦ f . Sinceb is injective, thena ◦ f = g1. ⊓⊔

GTS morphism A GTS morphismf : G1 → G2 is given by two components. The first,fT ,
is a partial and non injective morphism between the type graphs, that besides allowing to
forget some type item, allows to identify two items of the first GTS into one of the second.
The second component,fP , is a partial mapping between the production names such that
the mapped the productions are preserved.

Definition 2.12 (GTS morphism) Let G1 = 〈T1, P1, π1〉 andG2 = 〈T2, P2, π2〉 be GTSs.
A GTS morphismf : G1 → G2 is a pairf = 〈fT , fP 〉, where

- fT : T1 ⇀ T2 is a partial graph morphism;

- fP : P1 → P2 is a partial function on production names, such that for allp ∈ P1:

26

– if fP (p) = q, then there are morphismsfLι (p), fKι (p) and fRι (p) such that
the diagram below commutes, andfXι (p) ∼=Graph↓Xp t

∗
Xp

(lf T) (See Defini-
tion 2.11) forX ∈ {L,K,R};

– if fP (p) is not defined, then morphismsl∗fT (Kp) → l∗fT (Lp) and l∗fT (Kp) →
l∗fT (Rp) are isomorphisms.

Rp

tRp

Rq
fRι (p)

tRq

Kp

tKp

Kq
fKι (p)

tKq
Lp

tLp

Lq
fLι (p)

tLq

T1 dom(fT)
lfT

rfT
T2

Example 2.5 (GTS morphism) If we consider aGTS G1, where the type graph isT1 in
Figure 2.11 and the productions in Figure 2.13, we can have aGTS morphismf from the
GTS of the pump operator system toG1. The component on the type graphsfT is defined
as in Figure 2.11 and the component on the production sets maps PUREANALISYS and
IMPUREANALISYS into q1 andq2, respectively. The other productions are not mapped,
because their translations result in isomorphisms, as we can see for the productionSTOP

in Figure 2.12.

q1 q2

Figure 2.13: Productions ofG1.

y

Then in the following proposition we show thatGTSs andGTS morphisms form a
category, proving that the composition and identities are well definedGTSmorphisms, i.e.,
they preserve the existence of a mapping between componentsof productions, required
by Definition 2.12.

Proposition 2.2 GTSs andGTS morphisms form a category, denoted byGTS, in which
composition and identities are defined componentwise. (see(HECKEL et al., 1996))

Chosen a pullback functorl∗fT , as in Definition 2.12, the partial morphismfT : T1 ⇀

T2 induces aretyping functorf↔
T : T1-Graph → T2-Graph, defined on objects as

f↔
T (tG : G → T1) = rfT ◦ l

∗
fT

(tG). The condition on morphisms involving the pullback
squares ensures that all the items inXp whose type is preserved byfT occur inXfP (p).
Thus,GTS morphisms are simulations, meaning that, for a derivationδ in G1, (any choice
of) the retyped diagramf↔

T (δ) is a derivation inG2. This fact is showed in the following
proposition.

Proposition 2.3 (GTS morphisms preserve derivations)Let f : G1 → G2, and letδ1 :
G1 ⇒p1 H1 be a direct derivation inG1. Then there exists corresponding direct derivation
f↔
T (δ1) = δ2 : f↔

T (G1)⇒fT (p1) f
↔
T (H1) in G2 (see (HECKEL et al., 1996)).

27

3 TRANSACTIONAL GRAPH TRANSFORMATION SYS-
TEMS

In this chapter, we present the basic definitions of aGTS extension with support to
the notion of transactions. A transaction in this approach describes a set of actions that
must be executed in an atomic way. The notion of transaction has been originally de-
fined and studied in the realm of database management systems, and only later it has been
considered in programming and specification formalisms, like process calculi, program-
ming languages and Petri nets. A transaction represents a unit of interaction with the
management system, that is treated in a coherent and reliable way, independently of other
transactions, and that must be either entirely completed oraborted.

Transactions can be introduced in different ways in a modelling, specification or pro-
gramming formalism. Incontrol-centered formalisms, like process calculi and program-
ming languages, where the execution of computations is ruled by expressive control mech-
anisms, typically new control structures are introduced for starting/committing transac-
tions. Indata-centered formalisms(see (SHIELDS, 2007) and Section 2.3 of (GAJSKI
et al., 2000) for data vs. control flows), like rewriting formalisms and Petri nets, where the
control structures are typically poor and the emphasis is onthe structure of the state that
evolves during a computation, transactions are more naturally defined indirectly, by iden-
tifying parts of the state which represent temporary (or “unstable”) resources, only visible
within a transaction. This is the approach that has been defined forzero-safe nets(BRUNI;
MONTANARI, 2001, 2000).

3.1 Introduction to Transactional GTS

Inspired by the work on zero-safe nets,transactional graph transformation systems
(T-GTSs), introduced in (BALDAN et al., 2008), are an extension to the double-pushout
(DPO) approach to graph transformation, providing a simple way of expressing transac-
tional activities. The basic tool is a typing mechanism for graphs which induces a distinc-
tion betweenstableandunstablegraph items. Given a typed graph, representing a system
state, we can identify a subgraph which represent its “stable” part, i.e., the fragment of
the state which is visible for an external observer. Transactions in aT-GTS are thus ab-
stract, “minimal” computations starting from a completelystable graph, evolving through
graphs with unstable items and eventually ending up in a new stable state. Definitions and
propositions of this section, as well as corresponding proofs, can be found in (BALDAN
et al., 2008).

Transactional GTS. A transactionalGTS is defined as a collection of productions, typed
over a fixed type graph – i.e. a graph transformation system – with a subgraph of this type

28

graph determining the stable items, i.e., the items that arevisible for an external observer.
The other items are considered temporary, so, they are invisible, or unstable.

Definition 3.1 (Transactional GTS) A transactionalGTS is a pair 〈G, Ts〉, whereG is a
T -typedGTS andTs is a subgraph of the type graphT of G, called thestable type graph.

Example 3.1 (transactionalGTS) One can consider some activities of the system de-
scribed in Example 2.3 being executed as transactions. In order to do this, we must define
the temporary items of the system, i.e., the items that cannot be seen at a more abstract
level. For example, when the operator receives a prepaymentwe can be interested only
in the supplied gas, without considering the series of stepsto achieve this goal. To do
this, the messagesPreOrd, Activate andCharge will become unstable in the trans-
actional GTS PumpOper, as shown in Figure 3.1. Thus, when an operator receives a
prepayment and accepts it (ACCEPT and SERVE productions), aStart message (sign-
ing that gas can be supplied) is sent to customer, but the activation of the pump becomes
unobservable (ACTIVATE production). In the type graph (depicted at the bottom of the
figure) we marked the temporary (or unstable) messages, thatare used to perform some
steps of the pump operator activities, with dashed lines, while the stable ones are depicted
with solid lines.

op

Pure Impure

op

Stop

RejectAccept

op

pu Serve pu

Finish

Start

Activate

Analysis opop Analysis op

op

Customer

Operator

Free

ChargeOperator Operator

PrepayOperatorOperator Operator

Coupon

Operator

Customer Customer

Charge
Operator

Busy

Customer

Finish

Prepay

Customer

Operator

Activate

CustomerChange

Busy

Supply

Free

Activate

Customer Busy Customer

Customer

Operator PureOperator Analyse OperatorOperator Analyse Impure

Start

Customer
 FF

PreOrd

PreOrdOperator

 FF

Operator

Finish

Start

Suply

Busy

Free

Activate

 Impure
Analyse

 Pure

pu

Prepay FF

Busy

Customer

Charge

PreOrd

Coupon

Change

Pump

PumpPump Pump

PumpPump

Pump PumpPumpPump

Pump Pump

Pump

Figure 3.1: TransactionalGTSPumpOper for a pump operator of a gas station.

29

In Figure 3.2, theT-GTS Customer, modelling the customer system, is shown. The
type graph (bottom) shows us the same three entities in the pump operator system and
its behaviour is described by the productions at the top of this figure. In this system,
a Customer entity has a cyclic behaviour. It initiates prepaying an amount of money
in order to get some gas (INIT production). If the pump is being used the customer is
advised by the operator (REJECTproduction), then it retries to be supplied (with aBusy
message). Otherwise, the operator accepts the prepaying and the customer can initiate to
supply itself with gas (STARTSUPPLY production). It goes until the wanted volume of
gas was reached, when the customer can stop the pump (ENDSUPPLY production) and
receive the change and a coupon from the operator. At this moment the pump is set free
and then the customer is ready to start all the process again (RESTART production).

Start

Supply Retry

 End

Supply

Restart

opop Init

Pump

Change

Finish

StartCoupon Customer

Operator

Init

Prepay

Busy

 Stop
Suply

op

Customer
Coupon

 Stop

Finish

Customer

Pump

Busy Customer Customer

Change

 StopCustomerCustomer

Supply

Start

Operator

Init

Pump

Operator

Customer Customer

Prepay

Pump Init

CustomerInit

Customer

Pump

Figure 3.2: TransactionalGTSCustomer for a customer of a gas station.

y

Inspired by the approach for Petri nets proposed in (BRUNI; MONTANARI, 2000)
and extended to nets with read arcs in (BRUNI; MONTANARI, 2001), stable steps, trans-
actions and abstract transactions are introduced. In orderto give these definitions, we
need a notion of stable graphs.

Stabilising functor. We can get the stable part of a graph considering only the items
typed over the stable type graph. Formally, this operation is defined by a functor. We
denote byS : T -Graph → Ts-Graph the functor that maps each graphG, typed over
T , to its subgraph consisting of its stably-typed items only,and each morphism to its
restriction to stable items: thusS, called thestabilising functor, is a concrete choice for
the pullback functor induced byis, where the morphismS(G) →֒ G is an inclusion.

Definition 3.2 (Stabilising functor) LetZ = 〈〈T, P, π〉, Ts〉 be aT-GTS and is : Ts →֒
T be the inclusion morphism determined by subgraphTs of T . Thestabilising functor
S : T -Graph→ Ts-Graph is defined by:

• on objects: for eachGT , S(GT) = 〈i∗s(G), i∗s(tG)〉, wherei′s (see diagram(1)
below) is an inclusion, and

30

• on morphisms: for each morphismf : GT → HT , S(f) = g, whereg : i∗s(G) →
i∗s(H) is the morphism uniquely determined by universal property of pullback(2)
below, such that(3) commutes.

Sometimes, when it does not cause confusion, we will useS(GT) to denote theT -Graph

graph〈i∗s(G), is ◦ i
∗
s(tG)〉.

i∗s(G)
!g

i∗s(tG)
(3)

i∗s(H)

i∗s(tH)

(2)

i∗s(G)

i∗s(tG)

i′s

(1)

G

tG

Ts

is

Ts is
T T

G
f

tG

H

tH

In Figure 3.3, we can see a stabilised graph, whereS(G) is the stable part ofG.

S(G)

pu

O1

Free

Start

C1

P1

sT

Busy

Coupon

Change

Finish

Start Free

Prepay

Customer

op

pu

Operator

 Impure
Analyse

 Pure
SuplyPump

is

G

pu

O1

Activate

Free

Start

C1

P1

TPumpOper

Customer

PreOrd

Coupon

Change

Operator

Finish

Start

Charge
Suply

Busy

Free

Activate

 Impure
Analyse

 Pure

pu

Prepay

op

 FF

Busy

Pump

Figure 3.3: Stabilised graph.

If a graph has only visible items, i.e., it is type overTs, it is calledstable, otherwise,
it is unstable.

Definition 3.3 (Stable graph) A T -Graph GT is calledstableif S(GT) = GT (i.e., if
the morphismi′s – in diagram(1) above – is the identity). It is calledunstableotherwise.

Stabilised GTS. The stabilising functor can be applied pointwise to any production of a
givenT-GTS, producing astabilisedGTS – aGTS typed over the stable type graph.

31

Definition 3.4 (StabilisedGTS) Given aT -typed T-GTS Z = 〈〈T, P, π〉, Ts〉, the sta-
bilisedGTSS(Z) is given by〈Ts, P, π′〉, whereπ′(q) = S(π(q)) for anyq ∈ P .

The functorS, when applied to a derivation in a givenT-GTSZ = 〈G, Ts〉, produces a
derivation inS(Z). An indirect proof of this fact can be obtained by observing that there
exists a typedGTS morphism〈idTs : T ⇀ Ts, idP 〉, in the sense of (BALDAN; CORRA-
DINI; MONTANARI, 1998b), which essentially forgets about the unstable items. Then,
using the fact thatGTS morphisms are simulations (Proposition 2.3), one can conclude
the mentioned fact.

Proposition 3.1 LetZ = 〈G, Ts〉 be aT-GTS and letρ = G0
q1,m1
⇒ G1

q2,m2
⇒ . . .

qn,mn
⇒ Gn

be a derivation inZ. Then

S(ρ) = S(G0)
q1,S(m1)
⇒ S(G1)

q2,S(m2)
⇒ . . .

qn,S(mn)
⇒ S(Gn)

is a derivation inS(Z).

Now, we are ready to define stable steps and transactions. In the following,Z =
〈G, Ts〉 is a fixedT-GTS.

Stable step and transaction. A stable stepis, intuitively, a computation which(1) starts
and ends in stable states. Moreover, stable items which are generated are “frozen”, in the
sense that they cannot be preserved nor consumed by other productions inside the same
step; similarly, stable items which are deleted cannot be preserved by other productions.
Therefore,(2) the dependencies between productions occurring in a step are induced by
unstable items: this implies that at the abstract level, where unstable items are forgotten,
all such productions are applicable in parallel. Atransactionis a stable step where(3) the
start graph contains exactly what it needs to reach a successful end – so, in a computation,
it can be embedded into a larger context – and(4) none of its sub-derivations is a transac-
tion as well, so all intermediated graphs must be unstable. The formal definition is given
as follows, where each above restrictions are defined by conditions with corresponding
numbers.

Definition 3.5 (Stable step and transaction)A stable stepis a derivationρ = G0
q1,m1
⇒

G1
q2,m2
⇒ . . .

qn,mn
⇒ Gn which satisfies the following properties:

1. G0 andGn are stable graphs;

2. the derivationS(ρ) is equivalent inS(G) to a direct derivation via a proper quotient

of the productionq1 + . . . + qn and a suitable matchm, i.e.,S(G0)
PQ(q1+...+qn),m

=⇒
S(Gn) is a derivation inS(G).

A transactionis a stable step additionally satisfying

3. the matchm is an isomorphism;

4. any intermediate graphGi (i 6= 0, n) is not stable.

Remark 3.1Note that by restriction (2) (a stable item created by a transaction
cannot be used within this transaction) a stable connected graph must be created
by a single production, this is because we need to preserve a vertex in order to
add an edge over it. Therefore, one cannot define a T-GTS which generates stable
connected graphs of arbitrary size.

32

Example 3.2 (transaction) Figure 3.4 shows the derivationG0
ACCEPT,m1

=⇒ · · ·
FINISH,m6

=⇒
G6 of the T-GTS PumpOper (Example 3.1).G0 andG6 are the initial and the final
graphs, respectively, and the morphisms are described by numbering, i.e., two related
items have the same number. We can see that this derivation corresponds to a transaction,

1

Accept

GGGG

G G GG

1 2 3

54 63

0

4 5

6

5

7

8

8

9 10

77

7 7

7 7

99 9 10

3

4

10

11

3 3
 Start

12

Stop

op

12

13

3

2
1

21

3

op

14

15 1 2

14

1 2

16

2

1

3

15

16

15

1

2

3

6 6

14

1

2

3 12

13

6

10

11

13

6

1

2

3

13

11

6

13

11

1

2

3

5

6

1

2

3

13

8

11

6

13

11

1

2

3

op

pu

op

pu

op

pu

op

pu

Finish

op

pu

op

pu

op

pu

op

pu

m2 m3

m6m4 m5

m

pu pu

Serve
1

2 32

1
1 2 1

3

2

3
Activate

3

1

2

Customer

Customer

O1

Operator

PreOrd

Coupon

Operator

Customer

Prepay

Operator

Customer

 Finish

O1

C1
Coupon

 FF

 FF

 Start

 Supply

 Finish

Operator

 Charge

Customer

Start

Change

Operator

PreOrd

Operator

Activate

Start

Customer

C1
Coupon

Free

Charge

 Start

C1
Coupon

O1

Supply

Finish

Free

Activate

Free

 Start

Change

Coupon
C1

O1

 FF

 FF

Supply

 Finish

O1

Busy

C1

Busy

Busy

Operator

Finish

Start

Customer

Prepay

 Supply

Free

 Finish

O1

C1
Coupon

Operator

C1

Customer

Charge

Free

Coupon

PreOrd

 Supply

Free

 Finish

O1

 Supply

C1
Coupon

O1

Activate

Free

 Start

P1

Pump

P1 P1

P1

Pump
Pump

Pump
Pump

Pump

P1

Pump

P1

Pump

P1P1

Figure 3.4: A transaction of theT-GTSPumpOper in Example 3.1.

since it respects the requirements of Definition 3.5, i.e.,1) the initial (G0) and final (G6)
graphs are stable;2) dependency between direct derivation is given only on stable items,
since the unique items created by one production and consumed by another are unstable
(e.g.ACCEPTproduction createsPreord which is consumed bySERVE production);3)
all items inG0 are used (i.e. at least one production preserves or consumesitems inG0);
and4) intermediate statesG1 toG5 are not stable.

y

Actually, since we are considering a concurrent model of computation, the fact that all
the intermediate graphs are not stable should not be relatedto the specific order in which
productions are applied. Rather, this property should still hold for any derivation which
is obtained from the original one by exchanging independentsteps of computation, i.e.,
shift-equivalent derivations. Moreover, we also want to abstract the concrete identities of
items in the involved graphs, i.e., considering graphs up toisomorphism.

Abstract transaction. An abstract transactionis defined as an abstract trace (a class of
shift-equivalent derivations where the involved graphs are considered up to isomorphism)
containing only transactions.

33

Definition 3.6 (Abstract stable transaction) Anabstract stable transactionis an abstract
derivation trace[ρ]a, such that for anyρ′ ∈ [ρ]a the derivationρ′ is a stable transaction.
The class of all abstract stable transaction of aT-GTSZ is denoted byabsTrans(Z).

It follows from the definition that if two abstract transactions can be applied in parallel
to a stable graph, then all direct derivations of one are independent of the direct derivations
of the other one. Thus, as desired, the transactions can be interleaved in an arbitrary way.

In order to use transactions to define relations between transactional graph transfor-
mations systems – e.g., a refinement relation, where a production is associated to a trans-
action – we must be able to compose transactions. This composition is defined as an
operation in an appropriated category. The definition of transactions as derivation traces
can be hard to cope with, since traces are equivalence classes and their composition is
not simple. Therefore, a more manageable characterisationof abstract stable transac-
tions would be desirable. This characterisation can be given by using the idea of graph
processes (BALDAN; CORRADINI; MONTANARI, 1998a), where one graph process
represents a whole class of shift-equivalent derivation, i.e., a derivation trace. In follow-
ing sections we will present this characterisation and use it to define a notion of refinement
or implementation morphism and abstractGTS.

3.2 CategoryTGTS

In this section we introduce a definitionT-GTS morphism, which relates productions
of sourceT-GTS to productions of target one, and prove thatT-GTSs and these morphisms
form a category. These results will be used to characterise transactions as graph processes
in subsection 3.4.1.

Two T-GTSs are related by a specialGTS morphism between their underlyingGTSs.
This morphism must preserve transactions, i.e., each transaction of the sourceT-GTS must
be “translated” to a transaction in the targetT-GTS. Thus, we impose two restrictions to
this GTS morphism to guarantee that transactions are preserved: thefirst one requires that
it is total on unstable items and that these items are preserved – each unstable item is
mapped into another unstable item; and the second one requires that the stable items are
preserved – each mapped stable item must be related to another stable item. Preserving
stable items we avoid that a stable graph in the source becomes an unstable graph in
the target. In addition, requiring preservation of and totality on unstable items we avoid
to turn unstable intermediary states of a transaction into stable graphs. For example,
Figure 3.5 illustrates what can happen if the restrictions are not imposed: in the left, it is
showed a mapping between type graphs (given by numbers) thatis not total on unstable
items (the unstable arrow9 of T1 is not mapped) and it does not preserve the stable items
(the stable arrow8 if T1 is mapped into an unstable arrow inT2); in the right, it is showed
(at the top) a transaction in the sourceT-GTS and (at the bottom) its translation, which is
not a transaction, since the intermediated graphG′

1 is not unstable and the initial graph
G′

0 is not stable.

T-GTS morphisms. A T-GTS morphismbetween twoT-GTSs is aGTS morphism between
their underlyingGTSs, such that the type component preserves the stable and unstable
items and it is total on unstable ones.

Definition 3.7 (T-GTS morphism) LetZ1 = 〈G1, T1s〉 andZ2 = 〈G2, T2s〉 beT-GTSs. A
T-GTS morphismf : Z1 → Z2 is a GTS morphismf : G1 → G2 between the underlying
GTSs, such that

34

2

PfP

G0
G1 G2

G’1 G’2G’0

T2

T1

d1 d2

d’2d’1

fT

1

3

5

5

1

3
6

7

6

7

8

8

9

4

4

2
f

Figure 3.5:GTS morphismf does not define aT-GTS morphism.

1. for all z ∈ T1 \ T1s, we have thatfT (z) is defined andfT (z) ∈ T2 \ T2s;

2. for all z ∈ T1s, if fT (z) is defined thenfT (z) ∈ T2s.

Proposition 3.2 T-GTSs andT-GTS morphisms form a category, denoted byTGTS, in
which composition and identities are defined as inGTS.

Proof:

1. Composition is well-defined: Let f : Z1 → Z2 andg : Z2 → Z3 beT-GTS morphisms and
g ◦ f be their composition. By definition ofT-GTS morphism∀z1 ∈ T1 \ T1s � fT (z1) =
z2 ∈ T2 \ T2s; ∀z2 ∈ T2 \ T2s � gT (z2) = z3 ∈ T3 \ T3s; ∀z1 ∈ T1s � fT (z1) = z2 ∈
T2s ∨ fT (z1) = undefined; and∀z2 ∈ T2s � gT (z2) = z3 ∈ T3s ∨ fT (z2) = undefined.
Therefore, by composition of graph morphisms:

(a) ∀z1 ∈ T1 \ T1s we have thatgT (fT (z1)) = z3, with z3 ∈ T3 \ T3s;

(b) ∀z1 ∈ T1s if fT (z1) and gT (z2) are defined, thengT (fT (z1)) = z3 ∈ T3s, else
gT (fT (z1)) = undefined.

2. Identities are well-defined morphisms: Let idZ = 〈idT , idP 〉 be the identity onZ =
〈〈T, P, π〉, Ts〉. By definition of identity onGTS, we have that∀z ∈ T � idT (z) = z,
therefore:

(a) ∀z ∈ T \ Ts � idT (z) ∈ T \ Ts;

(b) ∀z ∈ Ts � idT (z) ∈ Ts.

3. Neutrality of identity and associativity of compositionfollow from these properties in
GTS.

⊓⊔

In order to ensure that morphisms are simulations in this more general framework,
we prove thatT-GTS morphisms preserve abstract transactions, i.e., if twoT-GTSs are
related by aT-GTS morphism, each transaction in the sourceT-GTS when retyped using
the retyping functor induced by the morphism between the type graphs gives raise to a
transaction in the targetT-GTS. The following proposition describes this property.

35

Proposition 3.3 (T-GTS morphisms preserve transactions)Let f : Z1 → Z2 be a T-
GTS morphism and let[ρ]a be an abstract transaction inZ1. Then[f↔

T (ρ)]a is an abstract
transaction inZ2.

Proof: Assume that the derivationρ in Z1 has the following shape:

Lp1 Kp1 Rp1 Lp2 Kp2 Rp2 ... Lpn Kpn Rpn

G0 D1 G1 D2 G2
... Gn Dn Gn

By 2.3, we have thatf↔T (ρ) is a derivation inZ2. Let us considerHi be the graph obtained
fromGi, by applying the pullback functor. We have to prove that:

1. H0 andHn are stable graphs: we have to show thatS(H0) ≈ H0 andS(Hn) ≈ Hn.
As H0 is obtained fromG0, by applying the pullback functor, the square(1), in diagram
below, is a pullback. SincefT preserves the stable items,(4) and(5) are pullbacks, as well.
Moreover, by definition ofS, (2) and(3) are pullbacks.

S(H0) ιS(H0)

k (2)

H0
f

g (1)!s

!t
G0

i

ι′G0
S(G0)ιG0

j(3)T2 dom(fT)
l h

T1

T2s

ιT2

X
m n

o(4) (5)

T1s

ιT1

SinceG0 is stable, i.e.S(G0) ≈ G0, then there existsι′G0
: G0 → S(G0) such that

ι′G0
◦ ιG0 = idS(G0) andιG0 ◦ ι

′
G0

= idG0 . Moreover, we have:

a. by universal property of pullback(5), ∃!s : H0 → X, such that:

i. o ◦ s = g and

ii. n ◦ s = j ◦ ι′G0
◦ f .

b. by (a.i),l ◦ g = l ◦ o ◦ s and by commutativity of(4), l ◦ g = ιT2 ◦m ◦ s;

c. by universal property of pullback(2), ∃!t : H0 → S(H0), such that:

i. ιS(H0) ◦ t = idH0 and

ii. k ◦ t = m ◦ s.

SinceιS(H0) is surjective (by(c.i)) and injective (because of(2) is a pullback andιT2 is
injective), then it is an isomorphism. Therefore, we haveS(H0) ≈ H0. By symmetry we
also haveS(Hn) ≈ Hn, as we want to prove.

2. S(δ′) = S(H0)
p′,m′

=⇒ S(Hn) is a derivation inS(Z2). Let S(δ) = S(G0)
p,m
=⇒ S(Gn) be

the derivation viap : L ←֓ K → R, the proper quotient production ofp1 + . . . + pn. The
derivationS(ρ) is depicted by solid lines in Figure 3.6 andS(δ) is depicted by dashed ones.
The dotted part of represents the construction of proper quotient productionp. Note that,
for the sake of clearness, we will considern = 2, but the proof can be trivially extended for
derivation with any length. Moreover, as all graphs in the diagram is stabilised we omitted
the “S”, e.g., we useG0 to referS(G0).

By definition of proper quotient production, we have that thesquares(6) and 〈X,Rp1 ,
Lp2, G1〉 are a pullbacks, and the squares(1), (2), (3), (4), (5), 〈D∗

1, L,D1, G0〉, 〈D∗
1,D

∗,
D1, G1〉, 〈D∗

2 ,D
∗,D2, G1〉, 〈D∗

2, R,D2, G2〉, 〈Kp2, Lp2 ,K,D
∗
1〉, 〈Kp1 , Rp1 ,K,D

∗
2〉 and

36

〈X,Kp1 ,Kp2 ,K〉 are pushouts. By definition of transactionsS(ρ) ≈ S(δ), then we
have that the squares(7) and (8) are pushouts and(9) is a pullback. Moreover, since
〈K,L,D,G0〉 and 〈D∗

1, L,D1, G0〉 are pushouts then〈K,D∗
1 ,D,D1〉 is a pushout (by

Lemma A.4). By symmetry,〈K,D∗
2 ,D,D2〉 is a pushout, as well. SincefT preserves the

X
= =

Lp1
(2)

Kp1

(3)

Rp1 (1) Lp2 Kp2

(4)

Rp2

(5)

D∗
1

=

D∗ D∗
2

=

L
m (7)

K

(6)

R
(8)

G0 D1
=

G1

(9)

D2
=

G2

D

Figure 3.6: DerivationS(ρ) and its equivalent derivation via proper quotient production.

stable and unstable items and by propositions 2.3 and 3.1, wehave thatf↔T (S(ρ)) = S(ρ′)
and f↔T (S(δ)) = S(δ′) are derivations inS(Z2). Therefore, it remains to prove that
p′ : L′ ←֓ K ′ → R′ is the proper quotient offP (p1) + . . .+ fP (p2) and thatρ′ ≈ δ′.

Figure 3.7 depicts the derivationsρ′ andδ′ obtained fromρ andδ′, applying the pullback
functor on each graph . Thus we have that the squares〈K ′

1, L
′
1,D

′
1,H0〉, 〈K ′

1, R
′
1,D

′
1,H1〉,

〈K ′
2, L

′
2,D

′
2,H1〉, 〈K ′

2, R
′
2,D

′
2,H2〉, 〈K ′, L′,D′,H0〉 and〈K ′, R′,D′,H2〉 are pushouts.

Then we must prove that:

• the squares(1′), (2′), (3′), (4′), (5′), 〈D∗
1
′, L′,D′

1,H0〉, 〈D∗
1
′,D∗′,D′

1,H1〉, 〈D∗
2
′,

D∗′,D′
2,H1〉, 〈D∗

2
′, R′,D′

2,H2〉, 〈K ′
p2
, L′

p2
,K ′,D∗

1
′〉, 〈K ′

p1
, R′

p1
,K ′,D∗

2
′〉, 〈X ′,

K ′
p1
, K ′

p2
,K ′〉, 〈K,D∗

1 ,D,D1〉 and 〈K,D∗
2 ,D,D2〉 are pushouts. It holds by

Lemma 2.1;

• the squares(6′) and(9′) are pullbacks. In the following diagram(a) we have that the
top and bottom squares are pushouts and the back and left squares are pullbacks (by
Lemma A.1). Then, by Lemma A.6,(6′) is a pullback.

K ′
p2 K ′

(6′)

L′
p2 D∗

1
′

K ′
p2 D∗

2
′

(a)

L′
p2 D∗′

K ′

(6′)

D∗
1
′

D∗
2
′

D∗′

D′

(9′)

D′
1

(b)

D′
2 H1

In the diagram(b) above we have that the top square is a pullback and the back, left,
front and right are pushouts. Then, by Lemma A.6,(9′) is a pullback.

• the diagrams(=), in Figure 3.7 commute: it holds by Lemma 2.2.

37

X ′

= =

L′
p1

(2′)

K ′
p1

(3′)

R′
p1

(1′) L′
p2

K ′
p2

(4′)

R′
p2

(5′)

D∗
1
′

=

D∗′ D∗
2
′

=

L′

m′

K ′

(6′)

R′

H0 D′
1

=

H1

(9′)

D′
2

=

H2

D′

Figure 3.7: Derivationsf↔
T (ρ) andf↔

T (δ).

3. the matchm′ is an isomorphism: considering the Figure 3.6, sincem : L → G0 is an
isomorphism, there exists an morphismg : G0 → L as depicted in diagram below, such
thatg ◦m = idL andm ◦ g = idG0 .

L

m

L′

m′

b

G0

g

G′
0

g′

a

T dom(fT)

G′
0 andL′ are obtained fromG0 andL, respectively, by applying the pullback functor. We

must prove thatg′ ◦m′ = idL′ andm′ ◦ g′ = idG′
0
. By commuting diagram above, we have

that:

(1) m ◦ g ◦ a = idG0 ◦ a;

(2) m ◦ b ◦ g′ = a;

(3) a ◦m′ ◦ g′ = a;

(4) a ◦m′ ◦ g′ = a ◦ idG′
0
, by property of identity;

(5) m′ ◦ g′ = idG′
0
, sincea is injective; and

(6) g ◦m ◦ b = idL ◦ b;

(7) g ◦ a ◦m′ = b;

(8) b ◦ g′ ◦m′ = b;

(9) b ◦ g′ ◦m′ = b ◦ idL′ , by property of identity;

(10) g′ ◦m′ = idL′ , sinceb is injective.

Therefore, by(5) and(10), m′ is an isomorphism, as well.

4. any intermediate graphHi (i 6= 0, n) is not stable: we have to prove that∃x ∈ Hi �

38

rfT (d(x)) ∈ T2 \ T2s. Considering the diagram below we have:

Gi

g PB

Hi
h

d

T1 dom(fT)
lfT

rfT
T2

(a) By definition ofT-GTS morphisms:

i. fT is total on unstable items (lfT is surjective on unstable items):∀x ∈ T1 \T1s �

x ∈ dom(fT) \ S(dom(fT));

ii. fT preserves unstable items:∀x ∈ dom(fT) \ S(dom(fT)) � rfT (x) ∈ T2 \ T2s

(b) By definition ofS and graph morphisms:∀y ∈ Gi \S(Gi) �∃x ∈ T1 \T1s �g(y) = x;

(c) By (a.i) and (b):∀y ∈ Gi \ S(Gi) � ∃x ∈ dom(fT) \ S(dom(fT)) ∧ g(y) = x;

(d) By definition of pullbacks inGraph:

i. SincelfT is surjective on unstable (a.i), then∀y ∈ Gi \S(Gi) �∃z ∈ Hi �h(z) =
y ∧ g(h(z)) = lfT (d(z));

ii. By (d.i) and sincelfT is an inclusion:∀y ∈ Gi \ S(Gi), z ∈ Hi � h(z) =
y � g(h(z)) = d(z).

(e) By definition of transactions:∃y ∈ Gi \ S(Gi);

(f) By (d.i) and (e):∃y ∈ Gi \ S(Gi) � ∃z ∈ Hi � h(z) = y;

(g) By (c) and (f):∃y ∈ Gi \ S(Gi) � ∃z ∈ Hi � ∃x ∈ dom(fT) \ S(dom(fT)) � h(z) =
y ∧ g(y) = x;

(h) By (d.ii) and (g):∃ ∈ Hi � ∃x ∈ dom(fT) \ S(dom(fT)) � g(h(z)) = x = d(z);

(i) By (a.ii) and (h):∃z ∈ Hi � d(z) ∈ dom(fT) \ S(dom(fT)) ∧ rfT (d(z)) ∈ T2 \ T2s

Therefore, by (i),∃z ∈ Hi � rfT (d(z)) ∈ T2 \ T2s.
⊓⊔

3.3 Abstract GTS associated to aT-GTS

As mentioned in the introduction, aT-GTS can be seen at two different levels of ab-
straction. It can be viewed as a standard graph transformation system, where both stable
and unstable items of states are visible. But we can also abstract away from the unstable
states and observe only complete transactions. Formally, this gives rise to anotherGTS,
where the productions are all transactions of the originalT-GTS. This definition requires
the notion of the production induced by a derivation sequence, a known construction in
the literature (CORRADINI et al., 1997).

Induced production of a derivation. Theproduction inducedby a derivationρ : G0 ⇒
∗

Gn hasG0 as left-hand side andGn as right-hand side. The interface graph is the subgraph
of G0 which, intuitively, consists of all the items which are preserved by all the direct
derivations occurring in the sequence.

Definition 3.8 (Induced production of a derivation) Given a derivationρ : G0
p1,m1
⇒

· · ·
pn,mn
⇒ Gn for a T-GTSZ, theinduced production ofρ isG0

l
←֓ K

r
→ Gn, whereK is

39

the limit object obtained as in diagram below,l = l∗1 ◦ p1 andr = r∗n ◦ pn.

L1 K1 R1 L2 K2 R2
... Ln Kn Rn

G0 D1

l∗1
G1 D2 G2

... Gn Dn

r∗n
Gn

K

p1 pn

l r

Without loss of generality, we will assume a concrete choicefor K, by imposing that
the morphismp1 in the limit diagram above is an inclusion.

Example 3.3 (Induced production of a derivation) Figure 3.8 shows the abstract pro-
duction associated to the transaction in Figure 3.4.

pu

op

Supply

C1

 Finish

Prepay

Free

O1

P1

op

pp

pu

O1

C1

P1

pu

op

Coupon
Start

Free

C1

Change
O1

P1

Figure 3.8: Abstract production associated to the transaction in Figure 3.4.

y

Abstract GTS. TheabstractGTS associated to the givenT-GTSZ, denoted byA(Z), is a
GTS where the type graph is the stable type graph ofZ, the set of production names con-
tains all abstract stable transactions ofZ and each abstract stable transaction is associated
to the production induced by it.

Definition 3.9 (Abstract GTS) Let Z = 〈G, Ts〉 be a T-GTS. Given an abstract stable
transactions[ρ]a, a production induced byρ is calledabstract productionfor the trans-
action [ρ]a. TheabstractGTS associated to the givenT-GTS, denoted byAZ , is theGTS

〈Ts, P
′, π′〉 whereP ′ is the set of abstract stable transactions[ρ]a andπ′([ρ]a) is an ab-

stract production for the transaction[ρ]a.

3.4 Transactions as graph processes

Inspired by the classicalnon-sequential processesfor Petri nets (GOLTZ; REISIG,
1983),graph processeshave been proposed in (CORRADINI; MONTANARI; ROSSI,
1996; BALDAN; CORRADINI; MONTANARI, 1998a) as a faithful representation of
the derivations of aGTS up to shift-equivalence. Since abstract transactions are defined
as abstract traces we will introduce an equivalent, and yet more manageable, definition
of transaction based on graph processes – this presentationis used to provide a universal
characterisation for the class of transactions of a givenT-GTS.

40

A graph processfor a T-GTS Z is defined as an “occurrence grammar”O, i.e., a
grammar satisfying suitable acyclicity constraints, equipped with aT-GTS morphism from
O to Z. This definition is given in terms of structural properties,but we can use a more
concrete definition where a graph process forZ is constructed from a derivation inZ by
means of an explicitly colimit construction.

An occurrence grammar is a graph grammar (aT-GTS with start graph) that represents
a class of derivations, so, it contains the items used in the derivation and the applied
productions. Each item in the type graph of this kind of grammar represents an occurrence
of this item in the derivation and can be created, consumed orpreserved by its productions.
Therefore, an occurrence grammar must satisfy some restrictions: all reachable graphs
from the start graph, applying some sequence of productions, have an injective typing
morphism; the type graph items and the productions have an acyclic dependence among
them; the start graph coincides with the graph obtained restricting the type graph to the
items that are not created by any production; all productions can be applied; and each
type graph item is created or deleted at most once.

For any graph process, we can obtain a derivation applying all productions exactly
once, in any compatible order, from its initial graph. This allows to realise that a process
defined as above can be seen as a representative of a class of derivations of the origi-
nal T-GTS, where only the independent steps may be switched, that is, an abstract trace.
Thus, we can construct a graph process from a trace: since a process represents a class of
derivations, any derivation in this class can be chosen to construct the equivalent process.

3.4.1 Graph Processes

In this subsection, we review some definitions about graph processes (CORRADINI;
MONTANARI; ROSSI, 1996; BALDAN, 2000), (BALDAN; CORRADINI; MONTA-
NARI, 1998a).

Graph process from a derivation. Intuitively, the colimit construction applied to a
derivation ofZ essentially constructs the type graph as a copy of the sourcegraph plus
the items created during the rewriting process. Productions are instances of production
applications and are related to the original ones by means ofidentities in the category of
typed graphs overT (the type graph ofZ).

Definition 3.10 (process from a derivation)LetZ = 〈〈T, P, π〉, Ts〉 be aT-GTS, and let
ρ = G0

q1,m1
⇒ G1

q2,m2
⇒ . . .

qn,mn
⇒ Gn be a derivation inZ. A processφ associated toρ is

a T-GTS morphismφ = 〈φT , φP 〉 : Oφ → Z, whereOφ = 〈〈Tφ, Pφ, πφ〉, Tφs〉 is obtained
as follows

− T Tφ = 〈Tφ, tTφ〉 is a colimit object (inT -Graph) of the diagram representing
derivationρ, as depicted (for a single derivation step) in the diagram below, where
cXi : X

T
i → T Tφ is the induced injection forX ∈ {D,G, L,K,R};

− Tφs →֒ Tφ = t∗Tφ(Ts →֒ T);

− Pφ = {〈qi, i〉 | i ∈ {1, . . . , n}};

− πφ(〈qi, i〉) = 〈Li, cLi〉
li← 〈Ki, cKi〉

ri→ 〈Ri, cRi〉 (see the diagram below);

− φT = tTφ

− φP (〈qi, i〉) = qi, for all i ∈ {1, . . . , n}.

41

qi : LTi

gi

cLi

KT
i

li ri

ki
cKi

RT
i

hi

cRi

GT
i−1

cGi−1

DT
i

bi di

cDi

GT
i

cGi

T Tφ

Since in a derivation all matches are assumed to be injective, in the associated process
all productions are injectively typed, so we can say that a production consumes, preserves
or creates elements of the type graph. Considering the diagram above, ifx ∈ T Tφ and
q = 〈qi, i〉, we say that the productionq consumesx if x is in the image ofcLi and not in
that of cKi; that q createsx if x is in the image ofcRi and not in that ofcKi; and thatq
preservesx if it is in the image ofcKi. This leads to the following net-like notation

•q = cLi(Li \ li(Ki)) q• = cRi(Ri \ ri(Ki)) q = cKi(Ki)

We say thatq consumes, createsandpreservesitems in•q, q• andq, respectively. Simi-
larly, the sets of productions which consume, create and preservex ∈ Tφ are denoted by
•x, x• andx, respectively.

Minimal and maximal graphs. Considering the sets defined above, we can obtain the
minimal and the maximal graphs of a graph process, i.e, the initial and final graphs of
the derivation associated to it. The minimal graph is a subgraph of the type graph whose
items are not created by any production of the process and themaximal is a subgraph of
the type graph whose items are not consumed by any production.

Definition 3.11 (minimal and maximal graphs) Let φ : 〈〈Tφ, Pφ, πφ〉, Tφs〉 → G be a
process of aGTSG. Theminimal graphof φ, denoted byMin(Oφ), is the subgraph ofTφ
consisting of the itemsx such that•x = ∅, and•φ is the same graph typed overT by the
restriction ofφT . The maximal graph ofφ, denoted byMax (Oφ), is the subgraph ofTphi
consisting of the itemsx such thatx• = ∅, andφ• is the same graph typed overT .

Example 3.4 (graph process)As an example, in Figure 3.9 (top-left), we show the type
graph of the processφ1 associated to the derivation of Figure 3.4 – it was constructed as a
gluing of all graphs in the derivation. The injections from the graphs of the derivation are
implicitly represented by using an index pair for the items with a creation indexon the
first position of the pair, and adeletion indexon the last one. The creation index is missing
(−) in the items that are not created, i.e., that belong to the start graph, and symmetrically
for the deletion index. The image of graphGi of the derivation, withi ∈ {0, . . . , 6},
contains all items with creation index, if any, smaller thani, and deletion index, if any,
larger than or equal toi. The minimal and the maximal graphs of this process are shownat
the bottom-left side of the figure. The productions (see Figure 3.9 (right)) of the process
are all productions in Figure 3.4 typed over the process typegraph.

y

If we consider two productions in a graph process, we can havedifferent situations
concerning their application: if they do not use items that are common to both or only
preserve them, these productions can be applied in parallel, but if one of the productions

42

<_,_>

<5,_>

<0,_>

<_,0>

<0,1>

<4,5>

<1,_>

<_,4>

<4,_>

<_,3>

<1,2>

<_,2>

<2,3>

<3,4>

<_,4> <_,_>

<_,_>

<_,0>
<_,_>

<_,3>

<_,2>

<_,_>

<_,_>

<_,_>

<5,_>

<0,_>

<_,_>

<_,_>
<4,_>

<1,_>

pu

op

pu

op

φ1Max()φ1Min()

Tφ1

O1

Start

C1 Start

Free

Coupon

FinishPrepay

Coupon

Change

Change
O1

Free

Prepay

C1

 Finish
Supply

Busy

Free

Free

Activate

Suply

 FF

Operator

pu op

Customer

Charge

PreOrd

P1P1

Pump

Start

op op

Stop

Finish

Accept

pu pu

Serve

Activate

Busy

Customer

Coupon

Prepay PreOrd

OperatorCustomer

CustomerOperator

CustomerOperator

Activate

PreOrd Start

Change

Busy

Supply

Operator

 FF

Customer

Charge

Operator

 Charge

Activate

 FFFree

Customer

Finish

Customer Operator

Operator

Free

Operator Customer

Pump

Pump Pump

Pump

Pump

Pump

Pump

Pump

Figure 3.9: Type graph (top-left), the maximal and the minimal graphs (bottom-left), and
productions (right) of the process associated to derivation in Figure 3.4.

consumes (or preserves) the same item that is preserved (or created) by the other, the
latter must be applied before the former. Thus we can define a causal relation between
all elements (items of the type graph and productions) of a graph process, considering the
relation described above.

Definition 3.12 (causal relation) Thecausal relationof a processφ is the least transitive
and reflexive relation≤φ overTφ ⊎ Pφ such that for allx, y ∈ Tφ ⊎ Pφ andq1, q2 ∈ Pφ:

i) x ≤φ y if x ∈ •y and

ii) q1 ≤φ q2 if ((q1
• ∩ q2) ∪ (q1 ∩

•q2)) 6= ∅.

Reachable sets.Reachable sets of a process are subsets of elements of type graph of these
processes. Each of them represents a graph reachable from minimal graph, applying a
subset of productions of a process. A reachable set is obtained based on the causal relation
and contains all items that are created/preserved and are not consumed by considered
productions.

Definition 3.13 (Reachable sets)Let φ be a process. For any≤φ-left-closedP ′ ⊆ Pφ,
the reachable set associated toP ′ is the setSP ′ ⊆ Tφ defined by

x ∈ SP ′ iff ∀q ∈ Pφ � (x ≤φ q ⇒ q 6∈ P ′) ∧ (q ≤φ x⇒ q ∈ P ′).

Graph processes which have the same structure but, for example, different identities
of vertices, edges and productions should be considered as being equivalent.

Abstract process. An abstract process is a class of isomorphic processes of aT-GTS.
Two processes of aT-GTS Z are isomorphic if their type graphs are isomorphic (they

43

have the same structure) and their productions are instances of the same productions of
Z. Since each item in the type graph of a process represents an occurrence of this item,
the typing morphisms of productions indicate, for each item, the productions that created,
consumed and/or preserved it. Therefore the isomorphism between the type graphs must
be compatible with the typing of productions.

Definition 3.14 (Abstract process)Let 〈Oφ1 , φ1〉 and〈Oφ2, φ2〉 be two graph processes
of a GTSG. Thenφ1 andφ2 are isomorphic if only if there exists a pair〈fT , fP 〉, where:

• fT : 〈Tφ1 , φ1T 〉 → 〈Tφ2 , φ2T 〉 is an isomorphism inT -Graph

• fP : Pφ1 → Pφ2 is a bijection, such thatφ1P = φ2P ◦ fP

• for eachq1 : L
Tφ1
q1

l1← K
Tφ1
q1

r1→ R
Tφ1
q1 ∈ Pφ1 , q2 = fP (q1) : L

Tφ2
q2

l2← K
Tφ2
q2

r2→ R
Tφ2
q2 ∈

Pφ2, if q = φ1P (q1) = φ2P (q2) : LTq
l
← KT

q

r
→ RT

q ∈ P , the diagram in Figure 3.10
commutes.

Rq1

tRq1

Rq

tRq

idRq idRq
Rq2

tRq2

Kq1

tKq1

Kq

tKq

idKq idKq
Kq2

tKq2

Lq1

tLq1

Lq

tLq

idLq idLq
Lq2

tLq2

Tφ1 φ1T

fT

T Tφ2φ2T

Figure 3.10: Isomorphism of processes.

If two processesφ1 andφ2 are isomorphic, then we will writeφ1
∼= φ2. Moreover,

given any processφ, we will write [φ] to denote{φ′|φ′ ∼= φ}, and we will call [φ] an
abstract process.

From the theory of graph processes (see (BALDAN; CORRADINI;MONTANARI,
1998a)) we know that the abstract processes of aT-GTS Z are in one-to-one correspon-
dence with the abstract traces ofZ. More precisely, if[ρ]a is an abstract trace ofZ and
ρ′, ρ′′ ∈ [ρ]a are two derivations, then the processes associated toρ′ andρ′′ are isomor-
phic. This defines a functionT PZ mapping the abstract traces ofZ to abstract processes
for Z. Vice versa, ifφ is a process forZ, andρ, ρ′ are two derivations ofOφ, then the
retyped derivationsφ↔

T (ρ) andφ↔
T (ρ′) of Z (see the observation after Proposition 2.2)

are abstract truly-concurrent equivalent, and thus belongto the same abstract trace. This
defines a functionPT Z mapping the abstract processes forZ to abstract traces ofZ.
Moreover, it can be proved that functionsT PZ andPT Z are inverse to each other. By
Proposition 3.4 an isomorphism between abstract traces andabstract processes is estab-
lished: hence, the latter provides an alternative, equivalent characterisation of the former
ones.

44

Proposition 3.4 LetZ be aT-GTS. Then[φ] is an abstract t-process ofZ iff PT Z([φ]) is
an abstract transaction (see (BALDAN; CORRADINI; MONTANARI, 1998a)).

Figure 3.11 shows an abstract representation of the relationship between derivation
traces and graph processes: in the left, we have a class of shift-equivalent derivations
containing three direct derivations (δ1, δ2 andδ3) occurring in different order; and, in the
right, we have the correspondent process, where the direct derivations are not ordered.

1 δ2 δ3
G0 G3G2G1

δ3 δ1 δ2
G0 G’1 G’2 G3

δ1 δ3 δ2
G0 G’’1 G3G’’2

δ2 δ3 δ1

G0 G3G

δ

Figure 3.11: Class of shift-equivalent derivations (left)and the equivalent graph process
(right)

3.4.2 Transactional Processes

Since we can build a process from any derivation, we can characterise the processes
that can be obtained from transactions, these processes arecalledtransactional processes.

Transactional process.A transactional process is a process having the minimal and the
maximal graphs stable and the remaining reachable graphs are unstable; moreover, all
items in the minimal graph must be used and the stable type items can be or consumed,
or created, or preserved by the productions in the process.

Since transactional processes are used to define implementation morphisms, where
productions are mapped into processes, we need to consider also a wider class of pro-
cesses, theunstable transactional processes, which may start and end in unstable states.
These processes are used to define implementations of unstable productions.

Definition 3.15 (transactional process)LetZ = 〈〈T, P, π〉, Ts〉 be aT-GTS. An unsta-
ble transactional process (ut-process)is a processφ ofZ such that

1. for anyx ∈ Tφs, at most one of the sets•x, x•, x is not empty;

2. for anyx ∈ Min(Oφ), there existsq ∈ Pφ such that eitherx ∈ •q or x ∈ q;

3. for any reachable setSP ′ associated to a non-emptyP ′ ⊂ Pφ, there existsx ∈ SP ′

such thatx 6∈ Min(Oφ) ∪Max (Oφ).

If Min(Oφ)∪Max (Oφ) ⊆ Tφs, thenφ is calledtransactional process (t-process). The fam-
ily of abstract ut-processes ofZ is denoted byutProc(Z) andtProc(Z) ⊆ utProc(Z)
denotes the class of all abstract t-processes ofZ.

45

Note that if a representative of an abstract process is a(n unstable) transactional one,
then all the other members of the equivalence class are transactional processes, as well.
Condition 1 implies that each stable item is either in the source or in the target state of the
process. Additionally, each stable item that is preserved by at least one production cannot
be generated nor consumed in the process itself: this would induce a dependency between
productions, violating the defining requirements for transactions (see Definition 3.5). By
condition 2, any item in the source state is used in the computation. Condition 3 ensures
that the process is not decomposable into “smaller pieces”.It tells that by executing only
an initial, non-empty subsetP ′ of the productions of the process, we end up in a graphSP ′

which is not entirely contained inMin(Oφ) ∪Max (Oφ), i.e., which contains at least one
unstable item. Finally, in a transactional process the source and target states are required
to be stable. For example, the process described in Example 3.4 is transactional.

3.4.3 AbstractGTS for a T-GTS based on process

Since the abstract transaction and the abstract t-processes of aT-GTS have an one-to-
one relationship, we can redefine abstractGTSs associated to aT-GTSs using this more
manageable representation for the transactions. This new definition will be used to char-
acterise the operation that associates an abstractGTS to aT-GTS as an adjunction.

In this chapter, we consider a class of equivalent transactional processes which does
not take in account the causal relation. Since an abstract process is defined as a class of
isomorphic processes, two processes with same productions, isomorphic type, minimal
and maximal graphs may not be in the same abstract process (class of equivalence) if
there are two elements with the same type but with different causal relation. Therefore,
we define a notion of equivalence of processes which is weakerthan isomorphic process,
allowing to consider the mentioned process as equivalent, calledweak equivalence. Thus,
we will use all classes of weak-equivalent processes to represent all transactions of aT-
GTS. This definition allows us to characterise the abstraction operation as an adjunction:
if we had used abstract processes (class of isomorphic processes) as transactions, this
characterisation could not be established, because the causal relation is lost in abstraction
operation.

Weak processes.Two abstract processes are weak-equivalent if there are isomorphisms
between their type graphs, minimal graphs and maximal graphs, and they have the same
instances of productions. Note that here, the condition on typing of productions is disre-
garded.

Definition 3.16 (Weak-equivalence, wut-processes)Letφ1 andφ2 be two ut-processes.
Then,φ1 and φ2 are weak-equivalent, written φ1 ≈

w φ2, if only if there exists a pair
〈fT , fP 〉, where:

• fT : 〈Tφ1, φ1T 〉 → 〈Tφ2, φ2T 〉 is an isomorphism inT -Graph, such that
Min(Oφ1) ≈ Min(Oφ2) andMax (Oφ1) ≈ Max (Oφ2)

• fP : Pφ1 → Pφ2 is a bijection, such thatφ1P = φ2P ◦ fP

A weak abstract ut-process (wut-process)is defined as an equivalence class of ut-
processes with respect to weak equivalence, denoted as[φ]w for a representativeφ. The set
of wut-processes of aT-GTSZ is denoted bywutProc(Z). The set ofweak t-processes
(wt-processes)wtProc(Z) is defined in an analogous way.

46

Underlying span. Like for the traces, we can associate to each transactional process a
production, i.e., anunderlying span, where the left- and right-hand side are the minimal
and the maximal graphs of the process, respectively, and theinterface is the intersection
between these graphs. In order to associate a concrete span to an abstract process, we
need to assume a chosen representative for any equivalence class of processes.

Definition 3.17 (span underlying abstract process)Given a processφ for a T-GTS Z,
we haveΠ(φ) = •φ ←֓ •φ ∩ φ• →֒ φ• (intersection is taken component-wise).
Let us assume for eachT-GTSZ a choice functionchZ , mapping each wut-process[φ]w
to a concrete representativechZ([φ]w) ∈ [φ]w. Theunderlying spanof a wut-process[φ]w
is defined asΠZ([φ]w) = Π(chZ([φ]w)).

We are now able to define the abstract system associated with aT-GTS using trans-
actional processes. This definition differs from that in Definition 3.9 to use the weak
equivalence, therefore, some different transactions in Definition 3.9 can be the same in
the following definition.

Abstract GTS. An abstract system associated to aT-GTS Z is a graph transformation
systemA(Z) that have as type graph the stable type graph ofZ and the set of production
names contains all wt-processes ofZ, where each one is associated to its underlying
production.

Definition 3.18 (Abstract GTS) LetZ = 〈G, Ts〉 be aT-GTS. TheabstractGTS associ-
ated toZ, denoted byAZ , is theGTS 〈Ts,wtProc(Z),ΠZ〉 wherewtProc(Z) is the set
of wt-processes ofZ andΠZ is as in Definition 3.17.

Example 3.5 (AbstractGTS) As an example, we can see in Figure 3.12 the abstract sys-
tem associated toPumpOper (see Example 3.1).

op

pu [[φ1

pu

op

[[φ2

op op

[[φ3

op op

[[φ4

w

w

w

w

Change

Busy

Change

Coupon

Impure

Pure

pu

Customer

Analyse

Finish

Start

op

Suply

Free

Coupon

Operator

Customer

Operator

Customer

Prepay

Busy

Operator

Operator Operator

Customer Customer

OperatorOperator

 Finish

Analyse Pure

Supply

Free

Prepay

Analyse Impure

Free

Prepay

Operator Operator

Start

Pump

Pump

Pump

Pump

Pump Pump

Pump

Figure 3.12: AbstractGTS associated to theT-GTSPumpOper, depicted in Figure 3.1.

It is easy to see that the type graph of this system is the stable type graph ofPumpOper.
The productions of thisGTS are all transactional process of the originalT-GTS:

• the process[φ1]w is shown in Example 3.4;

• the processes[φ2]w, [φ3]w and[φ4]w are those which have as the only productions
REJECT, PUREANALYSIS and IMPUREANALYSIS, respectively.

y

47

3.5 Implementation morphisms for T-GTSs

As described in the previous section, aT-GTS can be viewed as a standardGTS, where
the unstable states are abstracted away and only the complete transactions are observable.
This transformation defines a mapping from the objects of thecategoryTGTS to those
of GTS. Interestingly, equipping the category of transactionalGTSs with a more general
notion of morphism, – calledimplementation morphism– this mapping can be turned into
a functor, which is the right adjoint to the inclusion functor in the opposite direction.

Then, we equipT-GTSs with a suitable notion of implementation morphism, allowing
to relate two systems, mapping the productions of one into transactions of the other – this
notion is also used to relate the components of a module: the body is the implementation
of the interface. Figure 3.13 shows a schematic representation of mapping of a produc-
tion into a transaction: a production is depicted at the top;and a transactional process
implementing this production is depicted at the bottom. Themapping from production to
process must preserve the left- and right-hand sides, i.e.,all items in these graphs, whose
types are preserved, must be in minimal and maximal graphs ofthe process, respectively.

P

L p

Max()φ TφMin() φ

1q 2q 3q

K p Rpp :

φ :

f

Figure 3.13: Transactional processφ implements productionp.

T-GTS implementation morphisms.An implementation morphismis aT-GTS morphism
that maps each given production of the source system to a weakunstabletransactional
process of the target system.

Definition 3.19 (T-GTS implementation morphisms) Given T-GTS Zi = 〈〈Ti, Pi, πi〉,

Tis〉, let Ẑi = 〈〈Ti,wutProc(Zi),ΠZi〉, Tis〉 be aT-GTS having all weak ut-processes of
Zi as productions fori ∈ {1, 2}. An (T-GTS) implementation morphismf : Z1 → Z2 is
theT-GTS morphism〈fT , fP 〉 : Z1 → Ẑ2.

Example 3.6 ((T-GTS) implementation morphism) In Figure 3.14 we can see an im-
plementation morphism between the abstractGTS of the customer system to the concrete
T-GTS of this system.

The type componenteT is the obvious inclusion and the production componenteP
maps each production[ϕi]w of A(Customer) into the corresponding weak t-process[ϕi]w
of Customer. In Figure 3.15, the type graphs and the set of name productions of each
wt-process ofCustomer system are shown.

y

To provide a correct definition of the category havingT-GTSs as objects and imple-
mentation morphisms as arrows, we have to explain how implementation morphisms com-
pose. This is summarised by the next propositions. In order to compose implementation

48

opop

[

w[ϕ1

[

w[ϕ3

[

w[ϕ2

[

w[ϕ4 Init

Change

Finish

StartCoupon Customer

Operator

Init

Prepay

Busy

Suply

op

CustomerInit Customer

Customer Start Customer

Supply

Finish
PumpPump

Coupon

Operator

Init

Change

Operator

Customer Customer

Prepay

Busy Customer Customer

Pump

e1

Start

Supply Retry

 End

Supply

Restart

opop Init

Pump

Change

Finish

StartCoupon Customer

Operator

Init

Prepay

Busy

 Stop
Suply

op

Customer
Coupon

 Stop

Finish

Customer

Pump

Busy Customer Customer

Change

 StopCustomerCustomer

Supply

Start

Operator

Init

Pump

Operator

Customer Customer

Prepay

Pump Init

CustomerInit

Customer

Pump

Figure 3.14: Implementation morphism from the abstractGTSA(Customer) to theT-GTS

Customer.

R

op

ϕ4
T

ϕ4
P ={ {

ETRY

ϕ1
T

ϕ1
P ={ INIT

{

ϕ2
T

ϕ2
P ={S SUPPLY,TART ENDSUPPLY

{

ϕ3
T

ϕ3
P ={ {

RESTART

Customer

Customer
Init

Prepay

Supply

Finish

Customer

Pump

Start

Customer
Busy

Init
Coupon

Init

Change

Operator

Figure 3.15: Transactional processes of customer system.

morphisms, we first have to know how to map wut-processes of sourceT-GTS into wut-
processes of target one. Proposition 3.5 shows how to obtainthis mapping extending the
mapping of productions of source (T-GTS) into wut-processes of target one. The proof of
this proposition is divided in two parts:(1) the definition of the extension; and(2) the

49

proof that the extension is well-defined, i.e., it results ina unique implementation mor-
phism (the productions component maps each wut-process into a unique class of weak
ut-processes, independently of the concrete choice for themapping between productions
and t-processes).

Given a T-GTS Z and a productionp in Z, below we denote byφidp the process
associated (see Definition 3.10) to the one-step derivationwhich appliesp to its left-hand
sideLp with the identity match.

Proposition 3.5 Given aT-GTSZi, let Ẑi be as in Definition 3.19, fori ∈ {1, 2}. Then
anyT-GTS morphismf : Z1 → Ẑ2 extends to aT-GTS morphismf̂ : Ẑ1 → Ẑ2.

Proof:

1. f̂ is defined by〈fT , f̂P 〉, where for all weak ut-process[φ]w ∈ wutProc(Z1), f̂P ([φ]w) =
[ϕ]w, with [ϕ]w ∈ wutProc(Z2) andϕ : Oϕ → Z2 = 〈ϕT , ϕP 〉 defined as follows:

• for 1 ≤ i < j ≤ n andn = #Pφ, 〈Tϕ, ϕT 〉 is the colimit (inT2-Graph) of the diagram
(a) depicted (only for the processesϕ1 andϕn – the other ones are omitted) below:

X〈Lϕi ,Rϕj 〉

tLϕi
◦pLϕi

tRϕj
◦pRϕj

cx〈Lϕi ,Rϕj 〉

X〈Lϕi ,Lϕj 〉

tLϕi
◦pLϕi

tLϕj
◦pLϕj

cx〈Lϕi ,Lϕj 〉

X〈Rϕi ,Rϕj 〉

tRϕi
◦pRϕi tRϕj

◦pRϕj

cx〈Rϕi ,Rϕj 〉

X〈Rϕi ,Lϕj 〉

tRϕi
◦pRϕi

tLϕj
◦pLϕj

cx〈Rϕi ,Lϕj 〉

Tϕ1

ctϕ1

Tϕn

ctϕn

X〈Aϕi ,Bϕj 〉

pAϕi
pBϕj

Aϕi

tApi
◦idApi

◦fAι (pi)

Bϕj

tBpj
◦idBpj

◦fBι (pj)

〈Tϕ, ϕT 〉 Tφ

(a) (b)

where pi ∈ Pφ, [ϕi]w = fP (φP (pi)), ΠZ2([ϕi]w) = Lϕi ← Kϕi → Rϕi and
〈X〈Aϕi ,Bϕj 〉

, pAϕi , pBϕj 〉 is the pullback (inGraph) of the diagram(b) above, with

A,B ∈ {L,R} andfAι (pi) andfBι (pj) are any choice for the isomorphisms required by
definition ofGTS morphism.

• Pϕ = {q|q ∈ Pϕk , k = 1..#Pφ}

• for all q ∈ Pϕ, if q ∈ Pϕk thenϕP (q) = ϕkP (q).

• Tϕs →֒ Tϕ = ϕ∗
T (T2s →֒ T2)

• •ϕ andϕ•, minimal and maximal graphs, respectively, are defined by colimits (4) and
(4′) depicted in diagrams below, where(1), (2), (3), (1′), (2′) and(3′) are pullbacks.

50

Tφ

•φ
(1) (2)

Lϕ1 Lϕn

X〈Lϕ1 ,Lϕn〉

(3)Mnϕ1

c

e

Mnϕn

d

f

XMn

a b

(4)Tϕ1 Tϕn

•ϕ

Tϕ

(c)

Tφ

φ•

(1′) (2′)

Rϕ1 Rϕn

X〈Rϕ1 ,Rϕn 〉

(3′)Mxϕ1

c′

e′

Mxϕn

d′

f ′

XMx

a′ b′

(4′)Tϕ1 Tϕn

ϕ•

Tϕ

(d)

2. f̂ is well-defined. Sincef is a T-GTS morphism,fT is a graph morphism and preserves
stable and unstable items. By definition off̂P , ∀[φ]w ∈ wutProc(Z1) � f̂P ([φ]w) = [ϕ]w.
It remains to prove that any choice of the isomorphismsfAι (pi) andfBι (pj), in diagram (b)
above, determines the same weak ut-process. Therefore, we must prove that all concrete
process obtained as above from the same processφ, are weak equivalent, i.e., there exists a
bijection between their sets of productions and their type,minimal and maximal graphs are
isomorphic. Since the set of productions are always the same, independent of the choice
for fAι (pi) andfBι (pj), we only must prove that type, minimal and maximal graphs are
isomorphic.
By definition of T-GTS morphism, there existsfAι (pi) such that(1) below is a pullback,
with A,B ∈ {L,R}.

Api

tApi (1)

Aϕi
fAι (pi)

tAϕi

T1 dom(fT) T2

If there exists a different arrowfAι
′
(pi) : Aϕi → Api such that(1) is a pullback, then

(i) ∃x ∈ Aϕi � fAι (pi)(x) 6= fAι
′
(pi)(x) only if tApi (f

A
ι (pi)(x)) = tApi (f

A
ι

′
(pi)(x)).

(a) Type graphs are isomorphic: If we use, in diagram(b) above,fAι
′
(pi) instead of

fAι (pi), we will obtain a graphX ′
〈Aϕi ,Bϕj 〉

, as depicted in the following diagram,

X〈Aϕi ,Bϕj 〉

pAϕi
pBϕj

h

X ′
〈Aϕi ,Bϕj 〉

p′Aϕi
p′Bϕj

h′

Aϕi

tApi
◦idApi

◦fAι (pi)

tApi
◦idApi

◦fAι
′
(pi) Bϕj

tBpj
◦idBpj

◦fBι (pj)

Tφ
φT

T1

51

which is equivalent toX〈Aϕi ,Bϕj 〉
: in the following we will usef ′A = tApi ◦ idApi ◦

fAι
′
(pi), fA = tApi ◦ idApi ◦ f

A
ι (pi) andfB = tBpj ◦ idBpj ◦ f

B
ι (pj).

• By (i), we have:

(ii) ∀e ∈ Aϕi � fAι (pi)(e) 6= fAι
′
(pi)(e) only if φT (fA(e)) = φT (f ′A(e));

• By definition of pullbacks:

(iii) ∀e1 ∈ Aϕi ∧ ∀e2 ∈ Bϕj � fB(e2) = fA(e1)�
∃x ∈ X〈Aϕi ,Bϕj 〉

� fA(pAϕi (x)) = fB(pBϕj (x))

(iv) ∀e1 ∈ Aϕi ∧ ∀e2 ∈ Bϕj � fB(e2) = f ′A(e1)�
∃x′ ∈ X ′

〈Aϕi ,Bϕj 〉
� f ′A(p′Aϕi

(x)) = fB(p′Bϕj
(x))

• By (ii), (iii) and (iv), we can define:

(v) h : X〈Aϕi ,Bϕj 〉
→ X ′

〈Aϕi ,Bϕj 〉
, as follows:∀x ∈ X〈Aϕi ,Bϕj 〉

h(x) =





x′1, if pA(x) = e ∧ fA(e) = f ′A(e),
where p′A(x′1) = e;

x′2, if pA(x) = e ∧ fA(e) 6= f ′A(e) = e′,
where f ′A(p′A(x′2)) = e′.

where, by definition,pA = p′A ◦ h andpB = p′B ◦ h.

(vi) h′ : X ′
〈Aϕi ,Bϕj 〉

→ X〈Aϕi ,Bϕj 〉
, as follows:∀x′ ∈ X ′

〈Aϕi ,Bϕj 〉

h′(x′) =





x1, if p′A(x′) = e ∧ fA(e) = f ′A(e),
where pA(x1) = e;

x2, if p′A(x′) = e ∧ f ′A(e) 6= fA(e) = e′,
where fA(pA(x2)) = e′.

where, by definition,p′B = pB ◦ h
′ andp′A = pA ◦ h

′.

• By commutativity of diagram above, we have:

f ′A ◦ p
′
A = fB ◦ p

′
B

(vii) f ′A ◦ pA ◦ h
′ = fB ◦ p

′
B by (vi)

f ′A ◦ p
′
A ◦ h ◦ h

′ = fB ◦ p
′
B by (v)

fB ◦ p
′
B ◦ h ◦ h

′ = fB ◦ p
′
B by definition of pullback

fB ◦ p
′
B ◦ h ◦ h

′ = fB ◦ p
′
B ◦ idX′

〈Aϕi ,Bϕj 〉
by definition of identity

(viii) h ◦ h′ = idX′
〈Aϕi ,Bϕj 〉

by injectivity of fB ◦ p
′
B

• By commutativity of diagram above, we have:

fA ◦ pA = fB ◦ pB
fA ◦ p

′
A ◦ h = fB ◦ pB by (v)

fA ◦ pA ◦ h
′ ◦ h = fB ◦ pB by (vi)

fB ◦ pB ◦ h
′ ◦ h = fB ◦ pB by definition of pullback

fB ◦ pB ◦ h
′ ◦ h = fB ◦ pB ◦ idX〈Aϕi

,Bϕj
〉

by definition of identity

(ix) h′ ◦ h = idX〈Aϕi ,Bϕj 〉
by injectivity of fB ◦ pB

• By (viii), (ix) and (ii) we haveX〈Aϕi ,Bϕj 〉
≈ X ′

〈Aϕi ,Bϕj 〉
in T1-Graph.

UsingX〈Aϕi ,Bϕj 〉
andX ′

〈Aϕi ,Bϕj 〉
to construct the type graph ofϕ we obtainTϕ and

T ′
ϕ, respectively, as the colimits depicted in diagram below. Now, we must prove that

52

Tϕ ≈ T
′
ϕ.

X ′
〈Aϕi ,Bϕj 〉

h′
tAϕi

◦p′Aϕi
tBϕj

◦p′Bϕj

X〈Aϕi ,Bϕj 〉

h

tAϕi
◦pAϕi

tBϕj
◦pBϕj

Tϕi

ctϕi

ct′ϕi

Tϕj

ctϕj

ct′ϕj

Tϕ

g

T ′
ϕ

g′

• By (v) and (vi) we have:

(x) tAϕi ◦ p
′
Aϕi

= tAϕi ◦ pAϕi ◦ h
′ and tAϕi ◦ pAϕi = tAϕi ◦ p

′
Aϕi
◦ h

(xi) tBϕj ◦ pBϕj = tBϕj ◦ p
′
Bϕj
◦ h and tBϕj ◦ p

′
Bϕj

= tBϕj ◦ pBϕj ◦ h
′

• By (x), (xi) and commutativity of diagram above, we have:

(xii) ct′ϕi ◦ tAϕi ◦ pAϕi = ct′ϕi ◦ tAϕi ◦ p
′
Aϕi
◦ h

= ct′ϕj ◦ tBϕj ◦ p
′
Bϕj
◦ h

= ct′ϕj ◦ tBϕj ◦ pBϕj
and

(xiii) ctϕi ◦ tAϕi ◦ p
′
Aϕi

= ctϕi ◦ tAϕi ◦ pAϕi ◦ h
′

= ctϕj ◦ tBϕj ◦ pBϕj ◦ h
′

= ctϕj ◦ tBϕj ◦ p
′
Bϕj

• By (xii) and (xiii), we have:g : Tϕ → T ′
ϕ andg′ : T ′

ϕ → Tϕ as the morphisms
uniquely determined by universal property of colimits, such that:

(xiv) g ◦ ctϕj = ct′ϕj and g ◦ ctϕi = ct′ϕi
(xv) g′ ◦ ct′ϕj = ctϕj and g′ ◦ ct′ϕi = ctϕi

• By commutativity of diagram above and by definition of identities, we have:

idTϕ ◦ ctϕi ◦ tAϕi ◦ pAϕi = ctϕj ◦ tBϕj ◦ pBϕj
= g′ ◦ ct′ϕj ◦ tBϕj ◦ pBϕj by (xv)

= g′ ◦ ct′ϕi ◦ tAϕi ◦ pAϕi by (xii)

= g′ ◦ g ◦ ctϕi ◦ tAϕi ◦ pAϕi by (xiv)

and
idTϕ ◦ ctϕj ◦ tBϕj ◦ pBϕj = ctϕi ◦ tAϕi ◦ pAϕi

= g′ ◦ ct′ϕi ◦ tAϕi ◦ pAϕi by (xv)

= g′ ◦ ct′ϕj ◦ tBϕj ◦ pBϕj by (xii)

= g′ ◦ g ◦ ctϕj ◦ tBϕj ◦ pBϕj by (xiv)

• Sincectϕi ◦ tAϕi ◦ pAϕi andctϕj ◦ tBϕj ◦ pBϕj are jointly surjective, we have:

53

(xvi) idTϕ = g′ ◦ g

idT ′
ϕ
◦ ct′ϕi ◦ tAϕi ◦ p

′
Aϕi

= ct′ϕj ◦ tBϕj ◦ p
′
Bϕj

= g ◦ ctϕj ◦ tBϕj ◦ p
′
Bϕj

by (xiv)

= g ◦ ctϕi ◦ tAϕi ◦ p
′
Aϕi

by (xiii)

= g ◦ g′ ◦ ct′ϕi ◦ tAϕi ◦ p
′
Aϕi

by (xv)

and
idT ′

ϕ
◦ ct′ϕj ◦ tBϕj ◦ p

′
Bϕj

= ct′ϕi ◦ tAϕi ◦ p
′
Aϕi

= g ◦ ctϕi ◦ tAϕi ◦ p
′
Aϕi

by (xiv)

= g ◦ ctϕj ◦ tBϕj ◦ p
′
Bϕj

by (xiii)

= g ◦ g′ ◦ ct′ϕj ◦ tBϕj ◦ p
′
Bϕj

by (xv)

• Sincect′ϕi ◦ tAϕi ◦ p
′
Aϕi

andct′ϕj ◦ tBϕj ◦ p
′
Bϕj

are jointly surjective, we have:

(xviii) idT ′
ϕ

= g ◦ g′

• Therefore, by (xvii) and (xviii), we have thatTϕ ≈ T ′
ϕ.

(b) Minimal graphs are isomorphic: If we use, in diagram(c) above,fAι
′
(pi) instead of

fAι (pi), we will obtain a graphMn′ϕi , as depicted in the diagram(e) below,

Mnϕi

cLϕi c

h

Mn′ϕi
c′Lϕi c′

h′

Lϕi

tLpi
◦idLpi

◦fLι (pi)

tLpi
◦idLpi

◦fLι
′
(pi) •φ

ι

Tφ
φT

T1

(e)

X ′
Mn

a′
b′g′

XMn
a b

g

Mn′ϕ1

c′

h′

e′

Mnϕ1

c

h

e

Mnϕn
d

f

f ′

•φ

•ϕ

k

•ϕ′

k′

(f)

which is equivalent toMnϕi : it holds by symmetry withX ′
〈Aϕi ,Bϕj 〉

≈ X〈Aϕi ,Bϕj 〉

proved above. UsingMnϕi andMn′ϕi to construct the pullback objectsXMn and
X ′
Mn, we haveg andg′ uniquely defined by universal property of pullbacks, where

(i) a ◦ g′ = h′ ◦ a′, (ii) b ◦ g′ = b′, (iii) h ◦ a = a′ ◦ g and (iv)b′ ◦ g = b.

h ◦ h′ ◦ a′ = h ◦ a ◦ g′ by (i)
idMn′

ϕ1
◦ a′ = h ◦ a ◦ g′ by definition of h and h′.

a′ = h ◦ a ◦ g′ by definition of identity.
a′ = a′ ◦ g ◦ g′ by (iii)
a′ ◦ idX′

Mn
= a′ ◦ g ◦ g′ by definition of identity.

(v) idX′
Mn

= g ◦ g′ by injectivity of a′.

h′ ◦ h ◦ a = h′ ◦ a′ ◦ g by (iii)
idMnϕ1

◦ a = h′ ◦ a′ ◦ g by definition of h and h′.

a = h′ ◦ a′ ◦ g by definition of identity.
a = a ◦ g′ ◦ g by (i)
a ◦ idXMn

= a ◦ g′ ◦ g by definition of identity.
(vi) idXMn

= g′ ◦ g by injectivity of a.

54

By (v) and(vi) we haveX ′
Mn ≈ XMn. If we construct•ϕ and•ϕ′ as in the diagram

(f) above, we havek andk′ uniquely determined by property of colimits, where (vii)
e′ ◦ h = k ◦ e, (viii) f ′ = k ◦ f , (ix) e ◦ h′ = k′ ◦ e′ and (x)f = k′ ◦ f ′.

k′ ◦ e′ ◦ h = e ◦ h′ ◦ h by (ix)
k′ ◦ e′ ◦ h = e ◦ idMnϕ1

by definition of h and h′.

k′ ◦ e′ ◦ h = e by definition of identity.
k′ ◦ k ◦ e = e by (vii)

(xi) k′ ◦ k ◦ e = id•ϕ ◦ e by definition of identity.

k′ ◦ k ◦ f = f by (x) and (viii)
(xii) k′ ◦ k ◦ f = id•ϕ ◦ f by definition of identity.

k ◦ e ◦ h′ = e′ ◦ h ◦ h′ by (vii)
k ◦ e ◦ h′ = e′ ◦ idMn′

ϕ1
by definition of h and h′.

k ◦ e ◦ h′ = e′ by definition of identity.
k ◦ k′ ◦ e′ = e′ by (ix)

(xiii) k ◦ k′ ◦ e′ = id•ϕ′ ◦ e′ by definition of identity.

k ◦ k′ ◦ f ′ = f ′ by (viii) and (x)
(xiv) k ◦ k′ ◦ f ′ = id•ϕ′ ◦ f ′ by definition of identity.

Sincee andf are jointly surjective and by (xi) and (xii), thenk′ ◦ k = id•ϕ. By

symmetry,k ◦ k′ = id•ϕ′ . Therefore,•ϕ ≈ •ϕ′.

(c) Maximal graphs are isomorphic: by symmetry with minimalgraphs, we haveϕ• ≈
ϕ•′.

⊓⊔

Now we can explain how to compose implementation morphisms.In the next propo-
sition, we define this composition and prove that it is well-defined and associative. More-
over, we define the identities of this morphisms and prove itsneutrality with respect
to composition. Figure 3.16 shows a schema of the composition of three implementa-
tion morphisms, on the productions component: the black diagram describes the map-
ping of productions of oneT-GTS into wut-processes of another, wherefP : PZ1 →
wutProc(Z2), gP : PZ2 → wutProc(Z3) andhP : PZ3 → wutProc(Z4), all de-
picted by dashed arrows. Moreover, we have thatqi ∈ Pφ andrj ∈ Pϕi, for i ∈ {1, . . . , n}
andj = {1, . . . , m, . . . , k, . . . , z}. The composition of two implementation morphisms
must map each production of the firstT-GTS to a wut-process of the third one. Then, if
we want to define the compositiong ◦ f we have to maps each production ofZ1 to a
wut-process ofZ3. Since we have thatfP maps each production ofZ1 to a wut-process
of Z2 and ĝP maps each wut-process ofZ2 to a wut-process ofZ3, we define the com-
positiong ◦ f on productions aŝgP ◦ fP . The blue diagram describes the composition of
ĥP ◦ (ĝP ◦ fP) (dashed blue arrows) mapping productionp (in Z1) to wut-processψ1mkz

(in Z4) and the red one describes the composition(̂̂hP ◦ gP) ◦ fP) (dashed red arrows)
mapping the same production toψ′

1mkz (in Z4). In order to prove that composition of im-
plementation morphisms is associative we need to show that both compositions (blue and
red) are equivalent, i.e.,ψ1mkz ≈

w ψ′
1mkz. The blue and red processes in this figure are

obtained gluing other ones, for example, the processϕ1n is obtained gluing the processes
ϕi (i ∈ {1, n}) with respect to their items in common inTφ (X0). In Proposition 3.6
we define this composition and prove its associativity. The following lemmas are used to
prove this proposition.

55

fP

Lp Kp Rp

ĝP ◦fP
̂̂hP ◦gP

•φ φ•

Tφ

X0

gP

Lq1 Kq1 Rq1 Lqn Kqn Rqn

ĥP

•ϕ1 ϕ1
• •ϕn ϕn

•

Tϕ1 Tϕn

•ϕ1n ϕ1n
•

ĥP

Tϕ1n

hP

Lr1 Kr1 Rr1 X1 Lrm Krm Rrm X2 Lrk Krk Rrk X3 Lrz Krz Rrz

•ψ1 ψ1
• •ψm ψm

• •ψk ψk
• •ψz ψz

•

Tψ1 X ′
1 Tψm Tψk X ′

3 Tψz

•ψ1mkz ψ1mkz
•

Tψ1mkz

X ′
2

•ψ1m ψ1m
• •ψkz ψkz

•

Tψ1m Tψkz

•ψ′
1mkz ψ′

1mkz
•

Tψ′
1mkz

Figure 3.16: Composition of implementationT-GTS morphisms is associative.

Lemma 3.1 Given the following diagram inGraph, obtained by the extension of im-
plementation morphisms defined as in Proposition 3.5, where(1), (2) and 〈X1, b6, b7〉
are pullbacks andc′1 ◦ b4 ◦ b6 = c′3 ◦ b5 ◦ b7. Then there existb : Mxψm → ψ1m

•,

56

b11 : Mxψm → ψm
• andb15 : ψ1m

• → Tψ1m , such thatc′3 ◦ b5 ◦ b11 = b15 ◦ b.

Tϕ1

ϕ1
•

b2

(1) (2)

ψ1
•

b1

b4

ψm
•

b3

b5

X1

b6 b7

Mxψ1

b8 b9

b14

Mxψm

b10 b11

b

X ′
b12 b13

(3)Tψ1

c′1

Tψm

c′3

ψ1m
•

b15

b′

Tψ1m

Proof: b11 is defined by pullback (2).X ′ is obtained as pullback object ofb9 andb10, andb is
defined by the colimit(3). b15 : ψ1m

• → Tψ1m is uniquely determined by the universal property
of the colimit (3), such thatc′3 ◦ b5 ◦ b11 = b15 ◦ b. Moreover,b′ : ψ1m

• → ϕ1
• is uniquely

determined by universal property of colimit(3), such thatb′ ◦ b = b10. ⊓⊔

Lemma 3.2 Let us consider the following commutative diagram, where(1) is a colimit
and(2)− (5) are pullbacks. Then there existsg : X2 → Mxψm , such thatb11 ◦ g = e11;
and there existsf : X2 → Mnψk , such thatd11 ◦ f = e12.

Tφ

ϕ1
•

e13

b2

X0
e5

e7

e6

e8

e1 (1)

(3)

•ϕn

e14

d2

Mxψm

b10

b11

(2)

e2

Tϕ1

e9

=

Tϕn

e10

=

Mnψk

d10

d11

(4)

e3

ψm
•

b3

Tϕ1n
•ψk

d3

X2

g

idX2

=

X2

e11
e4

e12
(5)

X2

f

idX2

=

57

Proof:

(i) rng(e9) ∩ rng(e10) = rng(e1) by (1) and (3)

(ii) rng(e9) ∩ rng(e10) ⊇ rng(e4) by (5)
rng(e1) ⊇ rng(e4) by (i)

(iii) rng(b2) ⊇ rng(e7) by (3) and b2 ◦ e5 = e7

(iv) (rng(b3)− rng(b2)) ∩ rng(e7) = ∅ by (iii)

(v) rng(e2) ∩ rng(e7) = by (2) and (iii)
rng(b3) ∩ rng(e7)

(vi) rng(e7) ⊇ rng(b3 ◦ e11) by (ii) and commuta−
(vii) rng(b3) ⊇ rng(b3 ◦ e11) tivity of diagram above

(viii) rng(e7) ∩ rng(b3) ⊇ rng(b3 ◦ e11) by (vi) and (vii)

(ix) rng(e2) ∩ rng(e7) ⊇ rng(b3 ◦ e11) by (v) and (viii)
rng(e2) ⊇ rng(b3 ◦ e11)

rng(b3 ◦ b11) ⊇ rng(b3 ◦ e11) by (ix) and e2 = b3 ◦ b11
(x) rng(b11) ⊇ rng(e11) by injectivity of b3

By symmetry, (xi)rng(d11) ⊇ rng(e12). By (x) and (xi), we have that∃g : X2 → Mxψm
and∃f : X2 →Mnψk , defined as follows:

∀x ∈ X2 � g(x) = y, whereb11(y) = e11(x)
∀x ∈ X2 � f(x) = y, whered11(y) = e12(x)

⊓⊔

Lemma 3.3 Let us consider diagram below, where(1+2) is a pushout and(2) and(3+4)
are pullbacks. There existsy2 : X2 → X ′

2, such thati5 ◦ y2 = b ◦ g andi4 ◦ y2 = d ◦ f .

X2
g

f

ψ′
m

•

e9◦e2

ψ′
m

•
id
ψ′
m

•

e2

b•ψ′
k

e10◦e3 Tϕ1n Tϕ1

e9

T ′
ϕ1n

i1

m2

(1)

ϕ1
•

e13

i3

b2

ψ1m
•b′

(4)

Tφ

(2)

•ψ′
k

e3

d

id•ψ′
k

Tϕn

e10

•ϕn
d2

i2

e14

X0

e5

e6

•ψkz

d′ (3)

X ′
2i4

i5

m1

58

Proof:
i1 : T ′

ϕ1n
→ Tϕ1n andm2 : T ′

ϕ1n
→ Tφ are uniquely determined by universal property of

pushout(1 + 2). Moreover,m1 : X ′
2 → X0 is uniquely determined by universal property of

pullback(2).
By commutativity of diagram above, we have:

e10 ◦ e3 ◦ f = e9 ◦ e2 ◦ g
e10 ◦ d2 ◦ d

′ ◦ d ◦ f = e9 ◦ b2 ◦ b
′ ◦ b ◦ g

i1 ◦ i2 ◦ d
′ ◦ d ◦ f = i1 ◦ i3 ◦ b

′ ◦ b ◦ g
(i) i2 ◦ d

′ ◦ d ◦ f = i3 ◦ b
′ ◦ b ◦ g by injectivity of i1

By (i) and commutativity of diagram above, we have:

m2 ◦ i2 ◦ d
′ ◦ d ◦ f = m2 ◦ i3 ◦ b

′ ◦ b ◦ g
(ii) e14 ◦ d

′ ◦ d ◦ f = e13 ◦ b
′ ◦ b ◦ g

Since(3 + 4) is a pullback and by (ii), we have thaty2 : X2 → X ′
2 is uniquely determined by

universal property of(3 + 4), such thati5 ◦ y2 = b ◦ g andi4 ◦ y2 = d ◦ f . ⊓⊔

Proposition 3.6 (composition and identity for T-GTS implementation morphisms)
Given aT-GTSZ, let Ẑ be as in Definition 3.19. Then, the properties below hold.

1. Given implementation morphismsf : Z1 → Z2 andg : Z2 → Z3, let their composi-
tion g◦f : Z1 → Z3 be defined by theT-GTS morphism〈hT , hP 〉 : ĝ◦f : Z1 → Ẑ3.
Then the composition is well defined and it is associative.

2. For eachT-GTSZ, let idZ = 〈idZT , idZP 〉 : Z → Ẑ be defined as

• the type graph componentidZT is the identity;

• each productionp is mapped byidZP to the abstract process[φidp]w;

ThenidZ is well-defined and it is the identity onZ.

Proof:

1. Since we proved, by Proposition 3.5, thatĝ maps each wut-process ofZ2 into a wut-process
of Z3 and it is well-defined, then the composition̂g ◦ f is well defined. It remains to prove
that the composition is associative. Letf : Z1 → Z2, g : Z2 → Z3 andh : Z3 → Z4 be
implementation morphism. Then we must prove:

(h ◦ g) ◦ f = h ◦ (g ◦ f)

(a) (hT ◦ gT) ◦ fT = hT ◦ (gT ◦ fT): by associativity of partial graph morphisms.

(b) ̂
(ĥP ◦ gP) ◦ fP = ĥP ◦ (ĝP ◦ fP): as depicted in Figure 3.16, for each production
p ∈ P1 � fP (p) = [φ]w, ĝP ([φ]w) = [ϕ1n]w and ĥP ([ϕ1n]w) = [ψ1mkz]w. Moreover,
for all qi ∈ P2 � gP (qi) = [ϕi]w, ĥP ([ϕ1]w) = [ψ1m]w, ĥP ([ϕn]w) = [ψkz]w and

̂
(ĥP ◦ gP)([φ]w) = [ψ′

1mkz]w. By definition of composition, the sets of productions
of [ψ′

1mkz]w and [ψ1mkz]w contain the same productions (in Figure 3.16: the union of
productions in[ψ1]w, ..., [ψm]w, ..., [ψk]w, ..., [ψz]w). Then it remains to prove that
Tψ1mkz

≈ Tψ′
1mkz

:

59

i. ∃!u : Tψ1mkz
→ Tψ′

1mkz
, such that the following diagram commutes, i.e.,c8 ◦ c

′
1 =

u ◦ c1, c8 ◦ c′2 = u ◦ c2, c8 ◦ c′3 = u ◦ c3, c9 ◦ c′5 = u ◦ c5, c9 ◦ c′6 = u ◦ c6 and
c9 ◦ c

′
7 = u ◦ c7.

X ′
1

p′2p′1

c′2

X ′
3

p′6p′5

c′6

X1
p2p1

c2

y1

X2
p4p3

c4

y2

X3
p6p5

c6

y3

Tψ1

c1

c′1

Tψm
c3

c′3

Tψk
c5

c′5

Tψz
c7

c′7

Tψ1mkz

u

X ′
2

p′3 p′4

c′4

Tψ1m

c8

Tψkz

c9

Tψ′
1mkz

SinceTψ1mkz
is the colimit of diagram depicted in blue in diagram above,u is

determined by universal property of this colimit. Then we must prove that exists
morphismsy1 : X1 → X ′

1, y2 : X2 → X ′
2 andy3 : X3 → X ′

3 such that the diagram
commutes.

• ∃!y1 : X1 → X ′
1 � p′1 ◦ y1 = p1 ∧ p

′
2 ◦ y1 = p2 and∃!y3 : X3 → X ′

3 � p′5 ◦ y3 =
p5 ∧ p

′
6 ◦ y3 = p6. Consider the commuting diagram below, where (1) is a

pullback and (a)p1 = p12 ◦ p11, (b) p′1 = p12 ◦ p
′
11, (c) p2 = p22 ◦ p21, (d)

p′2 = p22 ◦ p
′
21.

X1 p11

p21

y1

X ′
1

p′11

p′21 (1)

ψ1
• p12

a′2
a2

Tψ1

•ψm

p22

a′1

a1

Tϕ1

a3

Tψm Tϕ1n

Sincea′1 ◦ p21 = a′2 ◦ p11 (by commutativity of diagram above), then the mor-
phismy1 : X1 → X ′

1 is determined by the universal property of pullback(1),
such thatp′11 ◦ y1 = p11 andp′21 ◦ y1 = p21. Thenp′2 ◦ y1 = p22 ◦ p

′
21 ◦ y1 =

p22 ◦ p21 = p2 andp′1 ◦ y1 = p12 ◦ p
′
11 ◦ y1 = p12 ◦ p11 = p1. y3 : X3 → X ′

3

is determined by symmetry.

60

• ∃!y2 : X2 → X ′
2 � p′3 ◦ y2 = p3 ∧ p

′
4 ◦ y2 = p4.

X2

e11

g f

e12

y2ψm
•

b5

•ψk
d5

Tψm

c′3

Mxψm

b

b11

X ′
2

i5 e4

Mnψk

d

d11

Tψk

c′5ψ1m
•

b15

•ψkz
d15

Tψ1m Tψkz

By the commuting diagram above, wherep3 = b5 ◦ e11, p4 = d5 ◦ e12, p′3 =
b15 ◦ i5 andp′4 = d15 ◦ i4, we havei5 ◦y2 = b◦b andi4 ◦y2 = d◦f . Moreover,
by commutativity of diagram:

- c′3 ◦ b5 ◦ e11 = c′3 ◦ b5 ◦ b11 ◦ g = b15 ◦ b ◦ g = b15 ◦ i5 ◦ y2. By definition of
p3 andp′3, c′3 ◦ p3 = p′3 ◦ y2

- c′5 ◦ d5 ◦ e12 = c′5 ◦ d5 ◦ d11 ◦ f = d15 ◦ d ◦ f = d15 ◦ i4 ◦ y2. By definition
of p4 andp′4, c′5 ◦ p4 = p′4 ◦ y2

But, in order to construct the diagram above, we must prove:

A. There existb : Mxψm → ψ1m
•, b11 : Mxψm → ψm

• andb15 : ψ1m
• →

Tψ1m , such thatc′3 ◦ b5 ◦ b11 = b15 ◦ b. It holds by Lemma 3.1. By symmetry,
we have that there existd : Mnψk →

•ψkz, d11 : Mnψk →
•ψk andd15 :

•ψkz → Tψkz , such thatc′5 ◦ d5 ◦ d11 = d15 ◦ d; and there existsd′ : •ψkz →
•ϕn, such thatd′ ◦ d = d10.

B. There existsg : X2 → Mxψm , such thatb11 ◦ g = e11; and there exists
f : X2 →Mnψk , such thatd11 ◦ f = e12. It holds by Lemma 3.2.

C. There existsy2 : X2 → X ′
2, such thati5 ◦ y2 = b ◦ g andi4 ◦ y2 = d ◦ f . It

holds by Lemma 3.3.

ii. ∃!v : Tψ′
1mkz

→ Tψ1mkz
, such thatv ◦ c8 = q1 andv ◦ c9 = q2, as depicted in

diagram below.

X ′
2

p′3 p′4

(3)Tψ1m
c8

q1

Tψkz
c9

q2

Tψ′
1mkz

v

X1

(1)

X2 X3

(2)

Tψ1

c1

c′1

Tψm

c3

c′3

Tψk

c5

c′5

Tψz

c7

c′7

Tψ1mkz

u

61

Since(1) and (2) are pushouts, then there existq1 : Tψ1m → Tψ1mkz
and q2 :

Tψkz → Tψ1mkz
such that (a)c1 = q1 ◦ c

′
1, (b) c3 = q1 ◦ c

′
3, (a’) c5 = q2 ◦ c

′
5 and

(b’) c7 = q2 ◦ c
′
7. By definition,u ◦ c1 = c8 ◦ c

′
1 andu ◦ c3 = c8 ◦ c

′
3. Then, by

(a), u ◦ q1 ◦ c′1 = c8 ◦ c
′
1 and, by (b),u ◦ q1 ◦ c′3 = c8 ◦ c

′
3. Sincec′1 andc′3 are

jointly surjective (c)u ◦ q1 = c8. By symmetry, we have (d)u ◦ q2 = c9. Moreover,
by definition,c8 ◦ p′3 = c9 ◦ p

′
4. By (c) and (d),u ◦ q1 ◦ p′3 = u ◦ q2 ◦ p

′
4. Since

u is injective, then (e)q1 ◦ p′3 = q2 ◦ p
′
4. By (e),v : Tψ′

1mkz
→ Tψ1mkz

is uniquely
determined by universal property of colimit (3), such thatv◦c8 = q1 andv◦c9 = q2.

iii. v ◦ u = idTψ1mkz
andu ◦ v = idTψ′

1mkz

.

By i. and ii., we have that:

v ◦ c8 ◦ c
′
1 = q1 ◦ c

′
1

v ◦ u ◦ c1 = q1 ◦ c
′
1

v ◦ u ◦ c1 = c1 by ii.(a)
(a) v ◦ u ◦ c1 = idTψ1mkz

◦ c1 by definition of identity

v ◦ c8 ◦ c
′
3 = q1 ◦ c

′
3

v ◦ u ◦ c3 = q1 ◦ c
′
3

v ◦ u ◦ c3 = c3 by ii.(b)
(b) v ◦ u ◦ c3 = idTψ1mkz

◦ c3 by definition of identity

v ◦ c9 ◦ c
′
5 = q2 ◦ c

′
5

v ◦ u ◦ c5 = q2 ◦ c
′
5

v ◦ u ◦ c5 = c5 by ii.(a′)
(c) v ◦ u ◦ c5 = idTψ1mkz

◦ c5 by definition of identity

v ◦ c9 ◦ c
′
7 = q2 ◦ c

′
7

v ◦ u ◦ c7 = q2 ◦ c
′
7

v ◦ u ◦ c7 = c7 by ii.(b′)
(d) v ◦ u ◦ c7 = idTψ1mkz

◦ c7 by definition of identity

By (a)-(d) and sincec1, c3, c5 andc7 are jointly surjective, then

(e) v ◦ u = idTψ1mkz

Moreover, by i., we have:

c8 ◦ c
′
1 = u ◦ c1

= u ◦ q1 ◦ c
′
1 by ii.(a)

= u ◦ v ◦ c8 ◦ c
′
1 by ii.

(f) idT ′
ψ1mkz

◦ c8 ◦ c
′
1 = u ◦ v ◦ c8 ◦ c

′
1 by definition of identity

c8 ◦ c
′
3 = u ◦ c3

= u ◦ q1 ◦ c
′
3 by ii.(b)

= u ◦ v ◦ c8 ◦ c
′
3 by ii.

(g) idT ′
ψ1mkz

◦ c8 ◦ c
′
3 = u ◦ v ◦ c8 ◦ c

′
3 by definition of identity

c9 ◦ c
′
5 = u ◦ c5

= u ◦ q2 ◦ c
′
5 by ii.(a′)

= u ◦ v ◦ c9 ◦ c
′
5 by ii.

(h) idT ′
ψ1mkz

◦ c9 ◦ c
′
5 = u ◦ v ◦ c9 ◦ c

′
5 by definition of identity

62

c9 ◦ c
′
7 = u ◦ c7

= u ◦ q2 ◦ c
′
7 by ii.(b′)

= u ◦ v ◦ c9 ◦ c
′
7 by ii.

(i) idT ′
ψ1mkz

◦ c9 ◦ c
′
7 = u ◦ v ◦ c9 ◦ c

′
7 by definition of identity

Sincec′1 andc′3; c′5 andc′7; andc8 andc8 are jointly surjective, thenc8 ◦ c′1, c8 ◦ c′3,
c9 ◦ c

′
5 andc9 ◦ c′7 are jointly surjective, as well. Therefore,

(j) idT ′
ψ1mkz

= u ◦ v

Thus, by (e) and (j), we have thatTψ1mkz
≈ T ′

ψ1mkz
.

2. (a) idZ is well-defined. SinceidZT is an identity, then it is total and preserves stable and
unstable items. Moreover,idZP maps each production ofZ into a wut-process ofZ,
it remains to prove that, for all productionp ∈ P � idZP (p) = [φidp]w, there are three
morphisms fromΠZ([φidp]w) to Lp ←֓ Kp ֌ Rp. Since[φidp]w is the wut-process
containing onlyp as production, its underlying span is isomorphic toLp ←֓ Kp ֌ Rp,
then the required morphisms are given by any triple of isomorphisms mapping the span
ΠZ([φidp]w) toLp ←֓ Kp ֌ Rp and making the two resulting squares commute.

(b) idZ is the identity. For each implementation morphismf : Z1 → Z andg : Z → Z2,
then:

i. idZ ◦ f = f

• idZT ◦ fT = fT by definition of identity of graphs.

• îdZP ◦ fP = fP . Since each productionp of Z is mapped into a wut-processes
which containsp as the unique production, for all[φ]w ∈ wutProc(Z),

îdZP ([φ]w) = [φ]w. This holds by definition of̂idZP :

– Let us considerPφ as the set of productions of̂idZP ([φ]w). ThenPφ is com-
posed of all productions of the wut-processes associated with productions of
[φ]w. SinceidZP associates each production to a process containing it as
unique production, thenPφ is the same set of productions of[φ]w.

– By definitions of graph process (type graph is a colimit of associated deriva-
tion) and of wut- process (all items in minimal graph are used), we have that
the type graph of[φ]w is the colimit of components of all its productions.

Let us considerTφ the type graph of̂idZP ([φ]w), thenTφ is obtained as col-
imit of type graphs of all wut-processes associated with theproductions of
[φ]w. As each one of these wut-processes contains only one production, its
the type graph is the colimit of the production components. Then,Tφ is the
colimit of components of all productions inPφ, and thereforeTφ is the same
type graph of[φ]w.

ii. g ◦ idZ = g

• gT ◦ idZT = gT by definition of identity of graphs.

• ĝP ◦ idZP = gP . By definition of composition, for all[φidp]w in wutProc(Z)
we have ĝP ([φidp]w) = gP (p). Then,

∀p ∈ P � ĝP (idZ(p)) = ĝP ([φidp]w) = gP (p).

Then, by i. and ii. we can conclude thatidZ is the identity onZ.
⊓⊔

The Proposition 3.6 allows to introduce a category with implementation morphisms.

63

Definition 3.20 (categoryTGTSimp) We denote byTGTSimp the category havingT-
GTSs as objects andT-GTS implementation morphisms as arrows.

3.6 Adjunction betweenGTS and TGTSimp

A T-GTS can be described in a higher level of abstraction, where the unobservable
items are hidden and each transaction is performed in a single atomic step. This abstract
system is given by aGTS obtained as described in Definition 3.18.

The main result of this chapter is that the abstractGTS associated to aT-GTS has the
same behaviour of the originalT-GTS, from the point of view of an external observer.
This is proven by using a universal construction in the categorical setting: an adjunction
between the categoriesGTS andTGTSimp . This construction is given by two functors:
the abstraction functorA〈_〉 : TGTSimp → GTS, that maps eachT-GTS into its abstract
counterpart; and the functorI〈_〉 : GTS → TGTSimp , that allows to see aGTS as a
T-GTS whose items are all stable.

Using these functors, we can relate an abstract system to itsconcrete counterpart
through an implementation morphism, mapping each production (of the source) into the
transaction (of the target) that originated it – remember that the productions of the abstract
systems are all transactions of the concrete one. Since all productions of the abstract sys-
tem are completely stable, they are also the transactions ofthis system. Thus, we have a
one-to-one relation between the transactions of the abstract and the concrete systems.

Theorem 3.1 (Universality of abstraction) The functorA : TGTSimp → GTS, that
maps everyT-GTS Z into its abstractGTS (see Definition 3.9), has a left adjointI :
GTS→ TGTSimp , which can be seen as the inclusion ofGTS into TGTSimp .

Proof: This proof can be divided in three parts:

1. Definition of the functorI〈_〉 : GTS→ TGTSimp :

• on objects: letG = 〈T, P, π〉 be aGTS, thenI〈G〉 = 〈〈T, P, π〉, T 〉;

• on morphisms: for anyf : G1 → G2, I〈f〉 : I〈G1〉 → Î〈G2〉 = 〈fT , f
′
P 〉, where

∀p ∈ P � f ′P (p) = [φidq]w, such thatfP (p) = q.

2. Definition of the functorA〈_〉 : TGTSimp → GTS:

• on objects: letZ be aT-GTS, thenA〈Z〉 = AZ = 〈Ts,wtProc(Z),ΠZ〉;

• on morphisms: for anyf : Z1 → Z2,A〈f〉 : A〈Z1〉 → A〈Z2〉 = 〈hT , hP 〉, where:

– hT = 〈fTV |VT1S
, fTE |ET1S

〉;

– ∀[φ]w ∈ wtProc(Z1) � hP ([φ]w) = f̂P ([φ]w).

3. To prove thatI〈_〉 is left-adjoint toA〈_〉 (as depicted in Figure 3.17) we have to show

∀G ∈GTS,∀Z ∈ TGTSimp ,∀f : I〈G〉 → Z � ∃!h : G → A〈Z〉 � ǫZ ◦ I〈h〉 = f

For eachT-GTSZ, we define the component atZ of the counitǫZ : I〈A〈Z〉〉 → Z. This
is an implementation morphism, thus aT-GTS morphismǫZ : I〈A〈Z〉〉 → Ẑ is defined as
follows:

- ǫZT = Ts →֒ T ;

64

TGTSimp GTS

Z I〈A〈Z〉〉
ǫZ I〈_〉

A〈Z〉

⊥

I〈G〉

I〈h〉

=

f

A〈_〉
G

h

Figure 3.17: Universality ofǫZ in TGTSimp .

- ∀[φ]w ∈ wtProc(Z) � ǫZP ([φ]w) = [φ]w (remember that productions inA〈Z〉 are
exactly the wt-processes ofZ).

It remains to show that given aGTS G and aT-GTSZ, for each implementation morphism
f : I〈G〉 → Z, there is a uniqueh : G → A〈Z〉 such thatǫZ ◦ I〈h〉 = f .

(a) Definition of (GTS morphism)h : G → A〈Z〉.

- hT = fT (sincefT maps the type graph ofG into stable items ofZ);

- ∀p ∈ P �hP (p) = fP (p) (since productions inA〈Z〉 are exactly the wt-processes
of Z andf maps each production ofG to a wt-process ofZ).

(b) ǫZ ◦ I〈h〉 = f .

- ǫZT ◦ I〈hT 〉 = fT .
By definition, ǫZT = ιTZ s andhT = fT . SinceI〈hT 〉 is the restriction ofhT
to stable items andfT relates only stable items (the type graph ofI〈G〉 is totally
stable), thenI〈hT 〉 = fT . Therefore,ǫZT ◦ I〈hT 〉 = ιTZ s ◦ fT . SinceιTZs is
the inclusionTZs →֒ TZ andfT relates only stable items, thenιTZs ◦ fT = fT .
ThereforeǫZT ◦ I〈hT 〉 = fT .

- ǫ̂ZP ◦ I〈hP 〉 = fP .
Since all productions ofI〈A〈Z〉〉 are totally stable (they are all transactions of
Z), thenI〈A〈Z〉〉 have one wut-processes[φid[φ]w

]w for each production[φ]w
(see the observation before Proposition 3.5). Moreover, bydefinition of ǫ̂ZP ,
we havêǫZP ([φid[φ]w

]w) = [φ]w By definition,hP = fP andI〈hP 〉 maps each
productionp ∈ PG to wut-process[φidfP (p)

]w, then∀p ∈ PG � ǫ̂ZP (I〈hP 〉(p)) =

ǫ̂ZP ([φidfP (p)
]w) = fP (p).

(c) h is unique. Let us suppose that existsu = 〈uT , uP 〉 6= h, such thatǫZ ◦ I〈u〉 = f :

- SinceuT (it is aGTSmorphism) relates only stable items and by definitionI〈uT 〉
is the restriction ofuT to stable items, thenI〈uT 〉 = uT . SinceǫZT is the
inclusionTZs →֒ TZ anduT relates only items inTZs, thenǫZT ◦ I〈uT 〉 =
uT = fT . SincehT = fT , thenuT = hT ;

- By definition ofI〈_〉, ∀p ∈ PG � I〈uP 〉(p) = [φiduP (p)
]w, and, by definition of

ǫ̂ZP , we havêǫZP ([φid[φ]w
]w) = [φ]w. Therefore,∀p ∈ PG � ǫ̂ZP (I〈uP 〉(p)) =

ǫ̂ZP ([φiduP (p)
]w) = uP (p) = fP (p). Since∀p ∈ PG � hP (p) = fP (p), then

∀p ∈ PG � uP (p) = hP (p).
⊓⊔

65

Proving thatA〈_〉 is the right adjoint ofI〈_〉 we have that the abstract system as
defined in Definition 3.18 is the best approximation of aT-GTS when the unstable items
are forgotten. Moreover, if we considerT-GTSs from an abstract point of view, aT-GTSZ
has the same behaviour ofA〈Z〉, i.e., the transactions of both systems are isomorphic.

66

4 TRANSACTIONAL GRAPH TRANSFORMATION SYS-
TEMS WITH DEPENDENCY RELATION

In this section, we present an extension ofT-GTSs to include a dependency relation in
the productions. This dependency gives us an extra information about the relationship be-
tween the deleted and created elements in each production. The dependency information
can be used to determine implementations (by transactions)of productions, restricting
the set of possible valid implementations. A first approach was published in (FOSS;
MACHADO; RIBEIRO, 2007).

When a production is applied, we can observe a total relationbetween the created
elements and the consumed/preserved ones, i.e., all elements are created because of the
existence of all the elements (consumed or preserved) in theleft-hand side of the pro-
duction. However, if we want to associate to a production an implementation composed
by many productions applied in a specific way, we should be able to specify the rela-
tion between the elements of left- and right-hand sides in a more sophisticated way. For
example, if we consider the production STOP depicted in Figure 3.1, we can have dif-
ferent transactions implementing it. In Figure 4.1, two implementations for production
STOP are shown. In first transaction (at the top), when the pump finishes supplying gas,
it is freed before operator to verify the charge of supplied gas. Thus,Free flag of pump
andCharge message depend on bothBusy flag of pump andFinish message. In the
second transaction (at the bottom), when the pump finishes supplying gas, the charge of
supplied gas can be verified even if the pump is not free. Thus,Chargemessage depends
only onFinishmessage andFree flag of pump depends on bothFinishmessage and
Busy flag. Both transactions implement STOP production, since their minimal and max-
imal graphs are equal to left- and right-hand sides of this production, respectively, but
the dependencies ofFree andCharge in their maximal graphs are different. However,
if we want to specify that only one of them is a desirable implementation of the STOP

production, we need a mechanism to describe these differentdependencies. Therefore,
we will add to each production a relation describing the desirable dependency between
its created and consumed/preserved items that must be considered when the production is
implemented.

Since we want to use productions with dependencies, calleddep-productions, to model
a transactions in an abstract way, the dependency relation associated to a production must
satisfy some restrictions, such that a transaction implementing this production exists, i.e.,
the transaction must produce the same observable effect, but in more steps and possibly
using unobservable items. Therefore, the dependency relation of a production must allow
to decompose it in a set of productions, which together constitute a transaction. The first
two restrictions of the next definition assure us that this set of productions exists:(1) the

67

op

op
op

p2

φ1Min() φ1Max()
φ1T

p1

q2

q3q1

Tφ2 Max()φ2Min()φ2

op

op

op

op op

op op

Finish

Free

Operator

Customer

Free

Finish

Charge

Operator Customer

Operator Stopped

Customer

Free

Operator

Busy

Customer

Busy

Busy

Stopped

Operator

Freeing

Stopped

Customer

Operator
Charge

Free

Customer

Operator

Operator Stopped

Customer

Finish
Charge

Operator

Finish

Customer

Charge
Operator

Freeing

Customer

Free

Busy

Stopped

Busy

Operator Charge

Customer

Customer

Operator Stopped

Finish

Customer

Operator

Operator
Charge

Free

Customer

Busy

Freeing

Customer

Finish
Pump

Pump

Pump

Pump

Pump Pump

PumpPump

Pump

Pump

Pump

Pump

Figure 4.1: Transactions implementing STOP production depicted in Figure 3.1.

left- and right-hand sides and the interface of the productions are graphs, i.e., all edges in
these graphs have the source and the target vertices;(2) all productions are consuming,
i.e., all of them consume something. The next restriction guarantees that these produc-
tions compose a transaction:(3) all observable created items cannot be used (deleted or
preserved) in the transaction. In order to define the latter restriction, we need to get the
(weakly) connected component (DIESTEL, 2005) of the graph created by a production
(i.e. the greatest subgraph in the right-hand side of the production containing only created
elements). These components must be created in the same time, otherwise it would be
necessary to use the vertices created within the transaction to create the edges.

We defineC(G) as the set of connected components ofG (disregarding the directions
of the edges).

Definition 4.1 (dependency relation)Given aT -typed productionp : Lp
l
←֓ Kp

r
→ Rp.

A dependency relation≺p for p is a relation overLp × (Rp −Kp), such that

1. each created itemb depending on a preserved or consumed edge must depend on
its target and source vertices, i.e.,

∀e ∈ ELp � ∀b ∈ Rp � e ≺p b⇒ tLp(e) ≺p b ∧ s
Lp(e) ≺p b

2. (a) all created items that depends on a preserved one must depend on a deleted
item as well, i.e.,

∀b ∈ Rp � ∀a ∈ Kp � a ≺p b⇒ ∃a
′ ∈ (Lp −Kp) ∧ a

′ ≺p b

68

(b) if there exists a preserved item that is not related to anything, then there exists
a deleted item that is not related to anything as well, i.e.,

∃a ∈ Kp � ∀b ∈ Rp � a 6≺p b⇒ ∃a
′ ∈ (Lp −Kp) � ∀b ∈ Rp � a′ 6≺p b

3. all the items of a connected component of the graph createdby the production (all
created items of the production, excluding the created edges having either source
or target preserved), must have the same dependency, i.e.,

∀G ∈ C(R′
p) � ∀b, b′ ∈ G ∧ a ∈ Lp � a ≺p b⇔ a ≺p b

′,

where R′
p = 〈VR′

p
, ER′

p
, sR

′
p, tR

′
p〉,

VR′
p

= (VRp − VKp)∪

{v|v ∈ VKp ∧ ∃e ∈ ER′
p
� (sRp(e) = v ∨ tRp(e) = v)},

ER′
p

= {e|e ∈ (ERp − EKp) ∧ (sRp(e) 6∈ VKp ∨ t
Rp(e) 6∈ VKp)} and

∀e ∈ ER′
p
� sR

′
p(e) = sRp(e) ∧ tR

′
p(e) = tRp(e)

By the three conditions of definition above, we assure that itis possible to have a
transaction implementing a production with an associated dependency relation, where this
relation must be preserved and reflected, i.e., the relationis the same in both production
and transaction. Considering a productionp with a dependency relation, condition1,
requires that all elements which depend on an edge, depend ontheir source and target
vertices, too. This assures that we can define productions that consume/preserve edges of
p using their source and target vertices. Condition2 (a andb), assures that the productions
in the transaction are all consuming, by requiring that for all preserved items, there exists
one deleted item with the same dependency (avoiding productions that preserve but do
not consume something). Condition3 assures that no created observable item is used
in the transaction where it was created. This is done by requiring that all items in each
connected component created by a production have the same dependency, which forces
them to be all created at the same time (in the same production) (see Remark 3.1). This
restriction avoids the need to read (preserve) vertices in order to create edges over them.

Definition 4.2 (dep-production) A dep-productionis a tuple〈Lp ←֓ Kp → Rp,≺p〉,
whereLp ←֓ Kp → Rp is the span of productionp and≺p is a dependency relation for
p. The class of allT -typeddep-production is denoted byT -DProd.

Example 4.1 (dep-production) If we consider that theSTOPproduction (Figure 3.1) can
be partitioned into more steps, as depicted at the bottom of Figure 4.1, we will obtain the
dep-production in Figure 4.2. The dependency is defined by the lettersx, y, z, b, d and
h, relating each created element (in the right-hand side) with the set of all consumed or
read elements (in the left-hand side) on which it depends.

<x,y,z,b,d,h>

y

x

b

h

d

z

op op

<x,y,z,b,d>

Stop
ChargeCustomer Operator

Busy

Finish

Free

Customer

Operator

Pump Pump

Figure 4.2: Adep-production.

Then the corresponding dependency relation associated to the STOP production is:

69

op ≺Stop Free op ≺Stop Charge

Pump ≺Stop Free Pump ≺Stop Charge

Operator ≺Stop Free Operator ≺Stop Charge

Customer ≺Stop Free Custumer ≺Stop Charge

Finish ≺Stop Free Finish ≺Stop Charge

Busy ≺Stop Free

where theFree attribute was created because bothBusy and Finish are consumed,
and theChargemessage was created only because theFinishmessage was consumed;
the preserved (or read) elements arePump,Operator,Customer andop (for bothFree
andCharge).

y

A T-GTS with dep-productions is defined as aT-GTS where theπ function maps each
production name into adep-production.

Definition 4.3 (GTS and T-GTS with dependency relation) Agraph transformation sys-
tem with dependency relation(d-GTS) is a GTS 〈T, P, π〉, whereπ is a total function
mapping production names todep-productions inT -DProd.

A transactional graph transformation system with dependency relation(dT-GTS) is a
T-GTS 〈〈T, P, π〉, Ts〉, where〈T, P, π〉 is a d-GTS.

Example 4.2 (T-GTS with dependency relation) As an example of dT-GTS, we can con-
sider the gas station system of Example 3.1 adding dependency relations to productions.
The resulting dT-GTS DepPumpOper is shown in Figure 4.3, where all of them, but
STOP, have total dependencies, i.e., all created elements depend on all deleted and pre-
served ones. The type graph is the same shown in Figure 3.1. The dependencies restrict
implementations of these productions: for example,STOP can be implemented by trans-
actionφ2 in Figure 4.1 (at the bottom), but not byφ1 in the same figure. The choice of a
total dependency, for example, for theSERVE production, establishes that theBusy flag
must be created only if bothSupply message andFree flag are consumed, even if this
consumption and creation are done in several small steps.

y

The dependency relation of productions does not interfere in the semantics of aT-GTS.
The match is not restricted by dependency, it only gives an extra syntactic information
about possible refinement or implementation. Therefore, the semantics of dT-GTSs are
given by direct derivations and derivations like in Definition 2.4, substituting productions
by dep-productions.

Definition 4.4 (direct derivations and derivations of dT-GTSs) Given aT -typed graph

G, a T -typed graphdep-productionq = 〈Lq
l
← Kq

r
→ Rq,≺q〉 and a match (i.e. an

injectiveT -typed graph morphism)m : Lq → G, a direct derivationfromG toH using
q (based onm) exists if and only if the diagram below can be constructed, where both
squares are pushouts inT -Graph. In this case the direct derivation is denoted byδ :
G

q,m
⇒ H or δ : G

q
⇒ H if we do not make explicitm.

Lq

(1)m

Kq
l r

k (2)

Rq

m∗

G D
l∗ r∗

H

70

x

b

i

y

z

y

c

<y,z,c>

<y,z,c>

y

op

Stop

RejectAccept

op

pu Serve pu

Finish

Start

Activate

Analysis opop Analysis opop

ImpurePure

z
x

a

g

<x,y,z,a,g>

<x,y,z,a,g>

y

x

z

d

h

b

<x,y,b,i>

z

c

y

<y,z,c>

x

x

y

z

j

f

e

<x,f,j>

k

<x,e,k>

l

<y,z,l>

y

x

b

i
<x,y,b,i>

<x,y,z,b,d>

<x,y,z,b,d,h>

 PureAnalyse

Finish

Busy

PreOrd

Supply

Activate

Coupon

Customer Busy Customer

Customer

Change

Operator

Operator

Operator

Start

Operator

Free

Analyse Impure

Suply

Busy

Customer

PreOrd

PreOrdOperator

Free

Activate

 Impure
Analyse

 Pure

pu

Start

Prepay

Operator

Customer

Operator

op

op

ChargeOperator Operator

Prepay

Free

OperatorOperator Operator

Coupon

Operator

Customer Customer

 FF

Charge

 FF

Operator

Busy

Customer

Finish

Prepay

Customer

 FF

Busy

Operator

Customer

Activate

CustomerChange

Charge

Pump

Pump

PumpPump

Pump

Pump

Pump

Pump

Pump Pump

Pump

Pump

Pump

Figure 4.3: AT-GTSDepPumpOper with dependency relation for gas station system.

Given a dT-GTSZ = 〈〈T, P, π〉, Ts〉, a derivationρ : GT
0

p1,m1
⇒ GT

1

p2,m2
⇒ GT

2 · · · ofZ
is a finite or infinite of direct derivationsδi : GT

i

pi,mi
⇒ HT

i , whereGT
i+1 = HT

i andi ≥ 0.

If a derivationρ : GT
0

p1,m1
⇒ · · ·

pn,mn
⇒ GT

n is finite we callGT
0 andGT

n of initial and final
graphs, respectively. The semantics ofZ is the class of all derivations inZ, denoted by
dDer(Z).

4.1 CategoriesdGTS and dTGTS

If we want to relate two d-GTSs we need to consider the dependency relation associ-
ated to their productions. Therefore, the production mapping must respect this relation,
i.e., a production can be mapped only into another if the target one has the same de-
pendency relation between the translated elements. This restriction reduces the possible
relationships between d-GTSs, with respect toGTSs, because we impose an extra restric-
tion, excluding same relationships valid forGTSs.

Definition 4.5 (d-GTS morphism) Given two d-GTSsG1 andG2. A d-GTS morphismf :
G1 → G2 is aGTSmorphism betweenG1 andG2 such that the production mapping respects
dependency relations, i.e., for allp1 ∈ P1 and for each concrete choice offι(p1), with

71

fP (p1) = p2, we have that:∀a1, b1 ∈ P1 �∀a2, b2 ∈ P2 � (fLι (p1)(a2) = a1∧ f
R
ι (p1)(b2) =

b1)⇒ ((a1 ≺p1 b1)⇔ (a2 ≺p2 b2)).

Proposition 4.1 d-GTSs and d-GTS morphisms form a category, denoted bydGTS, in
which composition and identities are defined as inGTS.

Proof:

1. Composition is well-defined: Let f : G1 → G2 andg : G2 → G3 be d-GTS morphisms and
g ◦ f be their composition. By Proposition 2.2, we have thatg ◦ f is aGTS morphism, then
it remains to prove thatgP ◦ fP respects dependency relations, i.e., for allp1 ∈ P1 and
for each concrete choice offι(p1) ◦ gι(p2), with fP (p1) = p2 andgP (p2) = p3, we have
that: ∀(a1 ≺p1 b1) � ∀(a3 ≺p3 b3) � fLι (p1)(g

L
ι (p2)(a3)) = a1 ∧ f

R
ι (p1)(g

R
ι (p2)(b3)) =

b1 � (a1 ≺p1 b1)⇔ (a3 ≺p3 b3). By definition the following statements hold:

(a) ∀(a1 ≺p1 b1) � ∀(a2 ≺p2 b2) � fLι (p1)(a2) = a1 ∧ f
R
ι (p1)(b2) = b1 � (a1 ≺p1 b1)⇔

(a2 ≺p2 b2);

(b) ∀(a2 ≺p2 b2) � ∀(a3 ≺p3 b3) � gLι (p2)(a3) = a2 ∧ g
R
ι (p2)(b3) = b2 � (a2 ≺p2 b2) ⇔

(a3 ≺p3 b3).

By (a) and (b), we have that:

∀(a1 ≺p1 b1) � ∀(a2 ≺p2 b2) � ∀(a3 ≺p3 b3)�
fLι (p1)(a2) = a1 ∧ f

R
ι (p1)(b2) = b1 ∧ g

R
ι (p2)(b3) = b2 ∧ g

R
ι (p2)(b3) = b2�

(a1 ≺p1 b1)⇔ (a2 ≺p2 b2) ∧ (a2 ≺p2 b2)⇔ (a3 ≺p3 b3)

Therefore,

∀(a1 ≺p1 b1) � ∀(a3 ≺p3 b3)�
fLι (p1)(g

L
ι (p2)(a3)) = a1 ∧ f

R
ι (p1)(g

R
ι (p2)(b3)) = b1�

(a1 ≺p1 b1)⇔ (a3 ≺p3 b3)

2. Identities are well-defined morphisms: Let idG = 〈idT , idP 〉 be the identity onG =
〈T, P, π〉. By definition of identities inGTS, for all p ∈ P � idP (p) = p andidι(p) =
〈idLp , idKp , idRp〉. By definition of identities inT -Graph, we have

∀(a ≺p b) � idLp(a) = a ∧ idRp(b) = b � (a ≺p b)⇔ (a ≺p b)

3. Neutrality of identity and associativity of compositionfollow from these properties in
GTS.

⊓⊔

As defined forT-GTSs, dT-GTSmorphisms are d-GTSmorphisms that, preserves stable
and unstable items, and are total on unstable ones.

Definition 4.6 (dT-GTS morphism) LetZ1 = 〈G1, T1s〉 andZ2 = 〈G2, T2s〉 be dT-GTSs.
A dT-GTS morphismf : Z1 → Z2 is a d-GTS morphismf : G1 → G2 between the under-
lying d-GTSs, such that

1. for all z ∈ T1 \ T1s, we have thatfT (z) is defined andfT (z) ∈ T2 \ T2s;

2. for all z ∈ T1s, if fT (z) is defined thenfT (z) ∈ T2s.

72

p2p1

o o

b

a

x

y z

c

<x,y,z,a,b,c>

<x,y,z,a,b,c>oo

b

a

y

c

z

x

<x,y,z,a,b,c>

<x,y,z,a,c>
F

Ch

C

CO

B

F

CO

B

O

Fr Fr

O Ch

CP PPP

Figure 4.4:dep-productionsp1 andp2.

Example 4.3 (dT-GTS morphism) The dep-productionSTOP, defined in Example 4.1,
could be mapped by a dT-GTS morphismf to the productionp1 in Figure 4.4, but not to
p2, becausep2 has a different dependency relation. We consider the mapping fι(STOP)
defined by{P 7→ Pump,O 7→ Operator, C 7→ Customer, B 7→ Busy, F 7→ Finish,

Fr 7→ Free, Ch 7→ Charge, o 7→ op} for bothp1 andp2.

y

Proposition 4.2 dT-GTSs and dT-GTS morphisms form a category, denoted bydTGTS,
in which composition and identities are defined as indGTS.

Proof: This proof follows from Propositions 4.1 and 3.2. ⊓⊔

Since the introduction of dependencies does not modify the semantics of a graph trans-
formation system and graph processes are obtained from derivations, the graph processes
of a dT-GTS are obtained as in Definition 3.10, substituting productions in graph pro-

cesses bydep-productions, i.e.πφ(〈qi, i〉) = 〈〈Li, cLi〉
li
←֓ 〈Ki, cKi〉

ri→ 〈Ri, cRi〉,≺qi〉,
whereπZ(qi) = 〈Li ←֓ Ki → Ri,≺qi〉. Moreover, the transactional process of a dT-GTS

is defined like in Definition 3.15 anddT-GTS morphisms preserve transactions asT-GTS

morphisms.

4.2 Abstract d-GTS for a T-GTS with dependency relation

Since we are consideringdep-productions, abstract transactions must consider the
dependencies of their productions. Here, we will distinguish weak ut-processes with dif-
ferent relation dependencies. The relation dependency of aprocess can be obtained as
the transitive closure of dependencies of their productions. Moreover, at a more abstract
level, we only see the minimal and maximal graphs of a transaction, therefore, we will
consider only the dependencies on elements in these graphs.

Definition 4.7 (Dependency relation of a process)Given a processφ of a dT-GTS Z,
the dependency relation of a processφ is the relation≺φ over •φ × φ• − (•φ ∩ φ•),
defined by

≺φ = �Pφ ∩ R,

where�Pφ is the transitive closure of
⋃

∀p∈Pφ
≺p andR = {(a, b) |a ∈ •φ ∧ b ∈ φ•}.

The transitive closure of dependency relations of productions of a graph process give
us the dependency resulting of application of these productions in the associated deriva-
tion. For example, by two productionsp andq of a processφ, if in p we havea ≺p b (a is
consumed/preserved in order to createb) and inq we haveb ≺q c (b is cosumed/preserved

73

in order to createc), we will have in the dependency relation ofφ a ≺φ c (a is con-
sumed/preserved in order to createc). The intersection of�Pφ with R (set of pairs of
elements in minimal and maximal graphs ofφ) give us the restriction of the transitive
closure of dependency relations of productions inφ to pairs of elements in minimal and
maximal graphs forφ.

Example 4.4 (Dependency relation of a process)Figure 4.5 shows the transactional
processφ1 of dT-GTS presented in Example 4.2.

yz

d

h
x

bop op

Stop

2

x
Activate

f

j
<x,f,j>

1

y z

c

<y,z,c>

<y,z,c>

Accept

y

g

a

z

x

pu pu

Serve

<x,y,z,a,g>

x

Start
k

e
<x,e,k>

l

zy

<y,z,l>

Finish

2

1

<x,y,z,a,g>

pu

1op
2

pu

op

Tφ1 Min()φ1 Max()φ1

<x,y,z,b,d,h>

<x,y,z,b,d>

Coupon

PreOrd

Prepay

Charge

Start

Finish

FF

Busy

Free

Free

Suply

Charge

Charge

O1

C1

O1 C1 O1

Start

Free

FF

Change

Change

C1O1
O1

C1

pu

Change

Finish

C1

Busy

O1

Free

O1 C1

Activate

C1 O1

Free

C1

O1 C1

C1

Coupon

Prepay PreOrd

O1

Start

Supply

O1

PreOrd

C1

Activate Prepay

Finish

Activate

op

Supply

Free

Busy

Coupon

FF

P1 P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

Figure 4.5: Transactional process of dT-GTSDepPumpOper.

The dependency relations of all productions ofφ1 are illustrated in Table 4.1. The tran-
sitive closure of these relations is shown in Table 4.2. The transitive closure includes in a
dependency relation a paira � c if the pairsa � b andb � c are already in the relation.
In the example, we have that operator accepts a prepayment only if there is some prepay-
ment being offered it him (Prepay ≺ACCEPTPreOrd); moreover, we have that activation
of pump is triggered only if the operator has accepted a prepayment (PreOrd ≺SERVE

Activate). Consequently, we will have that the activation of the pumpis triggered
only if someone has offered a prepayment (Prepay �Pφ1

Activate). Besides, the
pump is activated only if the activation has been triggered (Activate ≺ACTIVATE FF).
Therefore, pump is activated only if a prepayment has been offered (Prepay �Pφ1

FF).
Finally, Table 4.3 shows the restriction to minimal and maximal graphs ofφ1 of the re-
lation shown in Table 4.2. This restriction eliminates fromthe dependency relation ofφ
all pairs containing elements that are not in minimal or maximal graphs. For example,
the pairCharge �Pφ1

Change is eliminated sinceCharge is not in minimal neither in
maximal graphs.

y

Now, we can define the class of abstract transactions considering the dependency re-
lation. A dependency weak ut-process is a class of weak equivalent processes that have
the same dependency relation.

74

Table 4.1: Dependency relations of productions of transactional processφ1.
O1

≺ACCEPT Preord
O1

≺ACCEPT CouponC1 C1
Prepay Prepay

O1

≺SERVE Start

O1

≺SERVE Activate
P1 P1
C1 C1
pu pu

Preord Preord
P1

≺ACTIVATE FF
P1

≺START BusyFree1 FF
Activate Supply

O1

≺STOP Free2 ≺STOP Charge

P1 O1
C1 P1
op C1

Busy op
Finish Finish

O1
≺FINISH ChangeC1

Charge

Definition 4.8 (Dependency weak processes)Letφ1 andφ2 be two weak equivalent ut-
processes andfT : Tφ1 → Tφ2 be the isomorphism between type graphs of the processes.
Then,φ1 andφ2 aredep-weak-equivalent, writtenφ1 ≈

d φ2, if only if:

∀a, b ∈ •φ1 ∪ φ1
• ∧ ∀a′, b′ ∈ •φ2 ∪ φ2

•

if fT (a) = a′ ∧ fT (b) = b′ then a ≺φ1 b⇔ a′ ≺φ2 b
′

A dependency weak ut-process (dwut-process)is defined as an equivalence class of
ut-processes with respect to dep-weak-equivalence, denoted as[φ]d for a representative
φ. The set of dwut-processes of aT-GTS Z is denoted byDwutProc(Z). The set of
dep-weak t-processes (dwt-processes)DwtProc(Z) is defined in an analogous way.

We can obtain adep-production associated to a transaction, considering their minimal
and maximal graphs as left- and right-hand sides, and the intersection of them as interface
of the production. The dependency relation of this production is given by the dependency
relation associated to the transactional process. Thus, weobtain an abstract description
(dep-production) of a transaction, and can see the transaction as an implementation of this
abstract description.

Definition 4.9 (dep-production associated to a dwut-process)Given a processφ for a
dT-GTSZ, we have

Π(φ) = 〈•φ ←֓ •φ ∩ φ• →֒ φ•,≺φ〉,

where the intersection•φ∩ φ• is taken componentwise and≺φ is the dependency relation
associated toφ.
Let us assume for each dT-GTSZ a choice functionchZ , mapping each dwut-process[φ]d
to a concrete representativechZ([φ]d) ∈ [φ]d. Thedep-production associated to[φ]d is
defined asΠZ([φ]d) = Π(chZ([φ]d)).

Example 4.5 (dep-production associated to a process)The dep-production associated
to the process in Example 4.4 is shown in Figure 4.6. The associated dependency

75

Table 4.2: Transitive closure of dependency relations of production ofφ1.
O1

�Pφ1
Preord

O1
�Pφ1

CouponC1 C1
Prepay Prepay

O1

�Pφ1
Start

O1

�Pφ1
Activate

P1 P1
C1 C1
pu pu

Prepay Prepay
Preord Preord

�Pφ1
Busy

O1

�Pφ1
Free2

O1 P1
P1 C1
C1 op
pu pu

Free1 Free1

FF FF
Prepay Busy
Preord Prepay

Activate Preord
Supply Activate

Supply
Finish

O1

�Pφ1
Charge

O1

�Pφ1
Change

P1 P1
C1 C1
op op

Finish Finish
Charge

O1

�Pφ1
FF

P1
C1
pu

Free1

Prepay
Preord

Activate

Table 4.3: Dependency relation associated to transactional processφ1.

≺φ1
Coupon

O1

≺φ1
Start

O1 P1
C1 C1

Prepay pu
Prepay

O1

≺φ1
Free2 ≺φ1

Change

P1
C1 O1
op P1
pu C1

Free1 op
Prepay Finish
Supply
Finish

76

(Table 4.3) is described by the letters. This production describes an execution of the
system in an abstract way and the dependency relation give ussome information about
the interaction of the system with its environment, for example, the system only sends
a Coupon or a Start message if it has received previously aPrepay message, and
only sends aChange message after it has received aPrepay, Supplay andFinish
messages.

<x,y,z,b,d>

2

a b z

c

d

e
f

x

y

<x,z,c>

<x,y,z,a,c>

<x,y,z,a,b,c,d,e,f>

pu

opop

pu

1

Start

Free

O1

Change

O1

C1

Finish

Supply

Prepay

Free

Coupon

C1

P1P1

Figure 4.6:dep-production associated to the process in Example 4.4.

y

We are now able to define the abstract system associated with adT-GTS. An abstract
system associated to a dT-GTSZ is defined as forT-GTSs (Definition 3.18), where the set
of productions names contains all dwt-processes ofZ.

Definition 4.10 (Abstract d-GTS) LetZ = 〈G, Ts〉 be a dT-GTS. Theabstract d-GTS as-
sociated toZ, denoted byAZ , is the d-GTS〈Ts,DwtProc(Z),ΠZ〉whereDwtProc(Z)
is the set of dwt-processes ofZ andΠZ is as in Definition 4.9.

Example 4.6 (Abstract d-GTS) In Figure 4.7, we can see the abstract systemZ1 associ-
ated to dT-GTSDepPumpOper (Example 4.2).

y

c

z <y,z,c>

[[φ2 d

op b

y

x

i

[[φ4
op

<x,y,b,i>
d

<x,y,b,i>

op

[[φ3

op b

y

x

i

d

[[φ1

op

x

y

c

a

b

d

f

pu

op

z

e

pu

2

1

<x,z,c>

<x,y,z,a,c>d

<x,y,z,a,b,c,d,e,f>

<x,y,z,b,d>

Finish

Coupon

Customer

Operator

CustomerBusy

Start

Operator

Analyse

op
Free

Suply

Customer

Analyse

Busy

Change

Coupon

Pure

Impure

 Impure
Analyse

Operator

Operator

pu

OperatorOperator

Prepay

Free

Prepay

 Finish

Operator
Prepay

Supply

Free

Change

Operator Pure

Customer Start

Customer

Operator

Pump

Pump

Pump

Pump

Pump

Pump

Pump

Figure 4.7: Abstract d-GTS Z1 associated to the dT-GTS DepPumpOper, described in
Example 4.2.

As for the ordinary T-GTS, the type graph ofZ1 is the stable type graph of
DepPumpOper. The productions ofZ1 are all transactional process of the original dT-
GTS:

77

• the process[φ1]d is shown in Figure 4.5;

• the processes[φ2]d, [φ3]d and [φ4]d are those which have as the only productions
REJECT, PUREANALYSIS and IMPUREANALYSIS, respectively.

y

4.3 Implementation morphism for dT-GTS

In this section we describe the relationship between a more abstract dT-GTS and its
implementation. This definition is analogous to that forT-GTSs. Here, an implementation
is given by a pair of mappings:(a) a morphism between the type graphs and(b) a function
mapping each production of the source dT-GTS into a transaction of the target one. If we
considerẐ2 be the dT-GTS having the same type graph ofZ2 and thedep-productions
associated to all unstable transactional processes ofZ2, we can define a implementation
relationship between dT-GTSsZ1 andZ2 as a dT-GTS morphism, where the productions
component associates each production ofZ1 to a production of̂Z2, i.e., to a transaction
of Z2.

Definition 4.11 (dT-GTS implementation morphisms) Given dT-GTSZi = 〈〈Ti, Pi, πi〉,

T1s〉, for i ∈ {1, 2}. Let Ẑi = 〈〈Ti,DwutProc(Zi),ΠZi〉, Tis〉 be a dT-GTS having
all dep-weak ut-processes ofZi as productions. An(dT-GTS) implementation morphism
f : Z1 → Z2 is a dT-GTS morphism〈fT , fP 〉 : Z1 → Ẑ2.

Example 4.7 (implementation morphisms for dT-GTSs) Consider the dT-GTS Z1 de-
picted in Figure 4.7. We can define an implementation morphism betweenZ1 and the
dT-GTS of the gas station system (Example 4.2). The type mapping is given by the in-
clusion ofTZ1 into the type graph of the gas station system (Figure 3.1). The mapping
between the productions is defined by:[φ1]d is mapped to the transaction in Example 4.4;
[φ2]d, [φ3]d and[φ3]d are mapped to transactions containing productionsREJECT, PURE-
ANALYSIS and IMPUREANALYSIS, respectively. Note that dependencies of all produc-
tions are respected, i.e., they have the same dependency of the transactions to which they
are mapped.

y

In the following,D≺(a, a′) is true if a anda′ have the same dependencies in≺, i.e.,
they are related with the same elements by≺, that is

D≺(a, a′) =

{
true iff ∀x � (a ≺ x⇔ a′ ≺ x) and (x ≺ a⇔ x ≺ a′)
false otherwise.

Proposition 4.3 Given a dT-GTSZi, let Ẑi be as in Definition 4.11, fori ∈ {1, 2}. Then
any dT-GTS morphismf : Z1 → Ẑ2 extends to a dT-GTS morphismf̂ : Ẑ1 → Ẑ2.

Proof: The definition off̂ is given as in Proposition 3.5. Then it remains to prove thatf̂ is well-
defined. By Proposition 3.5, all concrete processes are weakequivalent, then it remains to prove
that all concrete processes have the same dependency relation.

78

If we would chose a different concrete processϕ′
1 (dep-weak-equivalent toϕ1) in Proposi-

tion 3.5, we would obtain a different processϕ′, such thatf̂(φ) = ϕ′. By definition of f̂ , we
have thatPϕ = Pϕ′ andTϕ ≈ Tϕ′ . Moreover, in order to obtain the dependency relation ofϕ, we
can get the transitive closure ofϕ1 · · ·ϕn, because the dependencies between elements of these
processes is given only on those elements in maximal and minimal graphs.

By definition of dT-GTS implementation morphism,≺ϕ1 and≺ϕ′
1

can differ only on elements
having the same dependency, i.e.,

(1)∀a ∈ •ϕ1 ∪ ϕ1
•
� fAι

′
(p1)(hT (a)) 6= fAι (p1)(a)⇒ D

≺ϕ′1 (hT (a), a′),

wherefAι (p1) andfAι
′
(p1) are defined as in diagram below,hT : Tϕ1 → Tϕ′

1
is an isomorphism,

A = {L,R}, fAι (p1)(a) = fAι
′
(p1)(a

′).

Lp1 Kp1 Rp1

•ϕ1

fLι (p1)

hT
|•ϕ1

′

•ϕ1 ∩ ϕ1
•

hT
|•ϕ1

′∩ϕ1
•′

fKι (p1)

ϕ1
•

fRι (p1)

hT
|ϕ1

•′

•ϕ1
′

fLι
′
(p1)

•ϕ1
′ ∩ ϕ1

•′

fKι
′
(p1)

ϕ1
•′

fRι
′
(p1)

Let us considerfAι
′
(p1)(a

′) = fAι (p1)(a). By definition of the dependency relation of a
process, for all(a, x) ∈≺ϕ1 and all(y, a) ∈≺ϕi , with i = 1..n, if fAι

′
(p1)(hT (a)) = fAι (p1)(a),

then there exists(hT (a), x) ∈≺ϕ1 and(y, x) is in ≺ϕ usingϕ1 or ϕ′
1; otherwise, usingϕ1, we

have(y, x) ∈≺ϕ and usingϕ′
1 we have(y, x) as well, because, by(1), there exists(a′, x) ∈≺ϕ′

1
.

This holds for all(x, a) ∈≺ϕ1 and all(a, y) ∈≺ϕi by symmetry. ⊓⊔

Now we can define the composition and identity for dT-GTS implementation mor-
phisms.

Proposition 4.4 (composition and identity for dT-GTS implementation morphisms)
Given a dT-GTSZ, let Ẑ be as in Definition 4.11. Then, the properties below hold.

1. Given dT-GTS implementation morphismsf : Z1 → Z2 and g : Z2 → Z3, let
their composition〈hT , hP 〉 = g ◦ f : Z1 → Z3 be defined by dT-GTS morphism
〈hT , hP 〉 : ĝ ◦ f : Z1 → Ẑ3. Then the composition is well defined and it is associa-
tive.

2. For each dT-GTSZ, let idZ = 〈idZT , idZP 〉 : Z → Ẑ be defined as

• the type graph componentidZT is the identity;

• eachdep-productionp is mapped byidZP to the dwut-process[φidp]d.

ThenidZ is well-defined and it is the identity onZ.

Proof:

1. Since we proved, by Proposition 4.3, thatĝ maps each dwut-process ofZ2 into a dwut-process
of Z3 and it is well-defined, then the compositionĝ ◦ f is well defined. It remains to prove that
the composition is associative. Letf : Z1 → Z2, g : Z2 → Z3 andh : Z3 → Z4 be dT-GTS

implementation morphisms. Then we must prove:

(h ◦ g) ◦ f = h ◦ (g ◦ f)

79

(a) (hT ◦ gT) ◦ fT = hT ◦ (gT ◦ fT): by associativity of partial graph morphisms.

(b) ̂
(ĥP ◦ gP)◦fP = ĥP ◦ (ĝP ◦fP): since extension̂f for any implementation morphismf
is defined in the same way forT-GTSs and dT-GTSs and by Proposition 3.6, we have that

∀p ∈ P1 � (
̂

(ĥP ◦ gP) ◦ fP)(p) ≈w (ĥP ◦ (ĝP ◦ fP))(p), i.e., both compositions result
in the same wut-process. Then it remains to prove that the dependency relations of these
processes are the same: it holds by associativity of union ofrelations.

2. (a) idZ is well-defined. SinceidZT is an identity, then it is total and preserves stable and
unstable items. Moreover,idZP maps eachdep-production ofZ into a dwut-process
of Z. It remains to prove that, for alldep-productionp ∈ P � idZP (p) = [φidp]d,
there are three morphisms fromΠZ([φidp]d) to Lp ←֓ Kp ֌ Rp. Since [φidp]d is
the dwut-process containing onlyp as production, its underlying span is isomorphic to
Lp ←֓ Kp ֌ Rp, then the required morphisms are given by any triple of isomorphisms
mapping the spanΠZ([φidp]d) toLp ←֓ Kp ֌ Rp and making≺φidp=≺p.

(b) idZ is the identity. It holds by Proposition 3.6
⊓⊔

Definition 4.12 (categorydTGTSimp) We denote bydTGTSimp the category having
dT-GTSs as objects and dT-GTS implementation morphisms as arrows.

4.4 Adjunction betweendGTS and dTGTSimp

As like for T-GTSs, we will show that the abstract d-GTS associated to a dT-GTS has
the same behaviour of the original dT-GTS, from the point of view of an external observer.
This is done by using an adjunction between the categoriesdGTS anddTGTSimp .

In order to prove that the adjunction exists, we define two functors: the abstraction
functor and the inclusion functor. Using these functors, wecan relate an abstract system
to its concrete counterpart through an implementation morphism, showing the one-to-one
relation between transactions of a dT-GTS and those of its abstract counterpart.

Theorem 4.1 (Universality of abstraction) The functorAD : dTGTSimp → dGTS,
that maps every dT-GTSZ into its abstract d-GTS (see Definition 4.10), has a left adjoint
ID : dGTS→ dTGTSimp , which is the inclusion ofdGTS into dTGTSimp .

Proof: This proof can be divided in three parts:

1. Definition of the functorID〈_〉 : dGTS→ dTGTSimp:

• on objects: letG = 〈T, P, π〉 be a d-GTS, thenID〈G〉 = 〈〈T, P, π〉, T 〉;

• on morphisms: for anyf : G1 → G2, ID〈f〉 : ID〈G1〉 → ÎD〈G2〉 = 〈fT , f
′
P 〉,

where∀p ∈ P � f ′P (p) = [φidq]d, such thatfP (p) = q. Note that dependency of
p is preserved by≺φidq because≺q=≺φidq andfP preserves dependency ofp (by
definition).

2. Definition of the functorAD〈_〉 : dTGTSimp → dGTS:

• on objects: letZ be a dT-GTS, thenAD〈Z〉 = AZ = 〈Ts,DwtProc(Z),ΠZ 〉;

• on morphisms: for anyf : Z1 → Z2, AD〈f〉 : AD〈Z1〉 → A
D〈Z2〉 = 〈hT , hP 〉,

where:

– hT = 〈fTV |VT1S
, fTE |ET1S

〉;

80

– ∀[φ]d ∈ DwtProc(Z1) � hP ([φ]d) = f̂P ([φ]d). Note that, by definition of̂fP ,
the dependency of[φ]d is preserved by≺

f̂P ([φ]d)
.

3. To prove thatID〈_〉 andAD〈_〉 form an adjunction we have to prove that

∀G ∈ dGTS,∀Z ∈ dTGTSimp,∀f : ID〈G〉 → Z �∃!h : G → AD〈Z〉 � ǫZ ◦ I
D〈h〉 = f

dTGTSimp dGTS

Z ID〈AD〈Z〉〉
ǫZ ID〈_〉

AD〈Z〉

⊥

ID〈G〉

ID〈h〉

=

f

AD〈_〉
G

h

Figure 4.8: Universality ofǫZ in dTGTSimp .

For each dT-GTS Z, we define the component atZ of the counitǫZ : ID〈AD〈Z〉〉 → Z.
This is an implementation morphism, thus a dT-GTS morphismǫZ : ID〈AD〈Z〉〉 → Ẑ is
defined as follows:

- ǫZT = Ts →֒ T ;

- ∀[φ]d ∈ DwtProc(Z) � ǫZP ([φ]d) = [φ]d (remember that productions inAD〈Z〉
are exactly the dwt-processes ofZ).

It remains to show that given a d-GTSG and a dT-GTSZ, for each dT-GTS implementation
morphismf : ID〈G〉 → Z, there is a uniqueh : G → AD〈Z〉 such thatǫZ ◦ ID〈h〉 = f .

(a) Definition of (d-GTS morphism)h : G → AD〈Z〉.

- hT = fT (sincefT maps the type graph ofG into stable items ofZ);

- ∀p ∈ P � hP (p) = fP (p) (since productions inAD〈Z〉 are exactly the dwt-
processes ofZ andf maps each production ofG to a dwt-process ofZ).

(b) ǫZ ◦ ID〈h〉 = f .

- ǫZT ◦ I
D〈hT 〉 = fT . This holds by item (3.b) of Theorem 3.1.

- ǫ̂ZP ◦ I
D〈hP 〉 = fP .

Since all productions ofID〈AD〈Z〉〉 are totally stable (they are all transac-
tions ofZ), thenID〈AD〈Z〉〉 have one dwut-processes[φid[φ]d

]d for eachdep-
production[φ]d (see the observation before Proposition 3.5). Moreover, bydef-
inition of ǫ̂ZP , we haveǫ̂ZP ([φid[φ]d

]d) = [φ]d, with ≺φid[φ]d

=≺φ. By defini-

tion, hP = fP andID〈hP 〉 maps eachdep-productionp ∈ PG to dwut-process
[φidfP (p)

]d, then∀p ∈ PG � ǫ̂ZP (ID〈hP 〉(p)) = ǫ̂ZP ([φidfP (p)
]d) = fP (p), with

≺φidfP (p)
=≺fP (p).

(c) h is unique. It holds by item (3.c) of Theorem 3.1.
⊓⊔

81

4.5 Comparing T-GTS with d T-GTS

In this section, we compareT-GTSs and dT-GTSs in terms of information that each one
can express. The inclusion of dependencies in a production does not modify its semantics,
but in adds information about its implementation. This extra information permits to iden-
tify resources needed to produces partial results. For example, the dependency relation
associated to thedep-production in Figure 4.6 determines that messageCoupon maybe
sent after a messagePrepay has been received, even if the others (Supplay, Finish
andFree) are not received. Using this information, we can restrict possible implemen-
tations for a production, because only transactions which respect its dependency relation
can be valid implementations.

We can say that aT-GTS (or dT-GTS) Z implements another oneZ ′, if there exists
an implementation morphismf : Z → Z ′, wherefT is total. Moreover, when adep-
production can be related to a transaction (by means of an implementation morphism),
we say that the transaction implements the production. Considering this relationship be-
tweendep-productions and transactions, we will show that alldep-production can be im-
plemented by some transaction. This is due to the restrictions imposed on the dependency
relation, that guarantee the existence of at least one transaction implementing thedep-
production.

Proposition 4.5 There exists at least one transaction that implements adep-production.

Proof: The proposition holds because, for anydep-productionp, we can obtain a transactionφ,
which implementsp. A transaction can be constructed as follows: considera, b andc ranging
over the deleted, created and preserved items ofp, respectively;R′

p be the graph created byp (as
defined in Definition 4.1); andG = C(R′

p) ranging over the connected components ofR′
p. The set

of productions ofφ contains:

deleting productions one production for eacha, deletinga; preserving the source and target of
a, if it is an edge; and creating an unstable item〈a, b〉 for eachb that depends ona, where
if a is a vertex then〈a, b〉 will be a vertex, else〈a, b〉 will be an edge with same source and
target ofa;

creating productions one production for

• eachG, deleting all unstable items〈a, b〉, whereb is inG; preserving eachc such that
someb in G depend on it; and creating an unstable item〈G〉 (used for synchronisa-
tion) and creating allb in G;

• eachx ∈ Rp − Kp ∧ x 6∈ R′
p (edges created over preserved vertices), deleting all

unstable items〈a, x〉; preserving allc such thatx depends on it; and creatingx and
unstable vertex〈x, “s”〉

synchronisation production one production deleting all vertex〈G〉 and〈x, “s”〉.

The dependency relations associated to productions ofφ are total, i.e., the created items depend of
all items in the left-hand side. Besides, the type graph ofφ is the graph obtained joining all left-
and right-hand sides and interfaces of all deleting, creating and synchronisation productions.

One can note thatφ is a transaction because:(1) all productions create unstable items, but the
synchronisation one. As this production can be applied onlyafter all stable items ofp are created,
it is the last production to applied, resulting in a stable state. Therefore, the intermediate states
have always at least one unstable item;(2) all created stable items are not used in the transaction
because the deleting productions (which are the only ones that delete stable items) delete only

82

items in the initial state; and(3) all items consumed and preserved are used, because there is one
production for each deleted item and the preserved ones are used in the creating productions.
Besides, we can see thatφ implementsp because the minimal graph (all deleted and preserved
items) coincides withLp, the maximal graph (all created and preserved items) coincides with
Rp and, as the productions are constructed considering the dependency relation,φ preserves the
dependency ofp. ⊓⊔

The ut-processφ depicted in Figure 4.9 is a transaction that implements the produc-
tion STOP in Figure 4.2, obtained as defined in Proposition 4.5. The productions named as
dDeletedElement and cCreatedElement (cCreatedGraph) are productions obtained
as described in deleting and creating productions, respectively. The synchronisation pro-
duction has the obvious name. The type graph, depicted at thetop-right, is constructed as
the gluing of all graphs of productions and the minimal (maximal) graph is composed by
items of type graph that are not created (consumed) by any production. Table 4.4 describes
transitive closure of all dependency relations of productions ofφ, and the corresponding
restriction to minimal and maximal graphs is:

op

≺φ Free

op

≺φ Charge

Pump
Pump

Operator
Operator

Customer
Custumer

Finish
Finish

Busy

Observing the minimal and maximal graphs, one can see that the minimal and maximal
graphs ofφ are isomorphic to left- and right-hand sides of STOP production, respectively.
Moreover, the dependency relation associated toφ (described above) is equivalent to that
associated to STOP production.

Table 4.4: Transitive closure of dependencies of productions ofφ depicted in Figure 4.9.
Pump

�Pφ

Finish/Free Busy
�Pφ

Busy/FreeCustomer
Finish/Charge Pump

Finish
op

�Pφ

Free

op

�Pφ

Charge

Pump

Free/“s”

Pump

Charge/"s"

Customer
CustomerOperator
OperatorBusy
FinishFinish

Finish/ChargeFinish/Free
Busy/Free

As mentioned, the association of the dependency relation toproductions of aT-GTS

restricts the possible valid implementations. This restriction means that, when we are in
the context ofT-GTSs, we can have different transactions implementing a production p.
Even if they have different dependencies between their elements, they are still implemen-
tations ofp, since dependencies are not being taken into account. On theother hand, if
we consider the same productionp having two different dependency relations associated
to it, we would have twodep-productionsp1 andp2 differing only on the dependencies.
Some implementations ofp are, now, implementations ofp1, while other ones may be
implementations ofp2, but there are no common implementation for both, because the

83

Min()

synchronisation

op

op

d

z

x

dFinish
<x,z,d>

<x,z,d> Tφ

φMax()

op

φ

y

b

op

x

op

cFree
j

z

k

<x,y,z,b,j,k>

<x,y,z,b,j,k>

<x,h>dBusy
x

h

zy

b

<x,y,z,b,i>

cCharge

<x,y,z,b,i>
op

x

op i

Busy/Free

Operator

Operator

Customer

Finish/Free

Customer

Customer

Free

Operator

Free

Customer

Customer

Finish/Charge

Finish/Free

Finish

Customer

Operator

Finish/Charge

Customer

Busy/Free

Charge

Charge

Busy

Charge

Busy

Free

Finish/Charge

Finish

Operator

Finish/Free

Customer

Customer

Busy/Free

Operator
Busy

Operator

Finish

Pump

Pump

Pump

Pump

Pump

Pump

Charge/"s"

Pump

Pump

Pump

Pump

Charge/"s"

Free/"s"

Charge/"s"

Free/"s"
Pump

Free/"s"

Figure 4.9: Transaction constructed from dep-production STOP in Figure 4.2.

implementation relationship must preserve the dependencies. Therefore, if we choosep1

we will be discarding all implementations ofp2 (which are valid forp) and vice-versa.
We demonstrate this fact in the following theorem.

In the following, the setI(Z) contains allT-GTSs (or dT-GTSs) that implementZ.

Theorem 4.2 (dependency relation restricts the implementations of a T-GTS) Given a
dT-GTSZ = 〈〈T, P, π〉, Ts〉 and aT-GTSU(Z) = 〈〈T, P, π′〉, Ts〉, where∀p ∈ P∧π(p) =
〈Lp ←֓ Kp → Rp,≺p〉 � π

′(p) = Lp ←֓ Kp → Rp.

If ∃p ∈ P ∧ π′(p) = 〈Lp ←֓ Kp → Rp,≺p〉 ∧ ∃ ≺
′
p 6=≺p

then ∃Z ′ 6∈ I(Z) � Z ′′ ∈ I(U(Z)) ∧ Z ′ = U(Z ′′)

Proof: The theorem holds by definition of implementation relationship, that differs fromT-GTS to
dT-GTS by including a restriction for dT-GTS: it must preserve the dependency relations. Consid-
ering aT-GTSZ containing only the productionp, if there are two different dependency relations
≺1 and≺2 for p, then we can consider two different dT-GTSs Z1 andZ2 containing thedep-
productions〈p,≺1〉 and〈p,≺2〉, respectively. For each dT-GTSZi there exists an implementation
Z ′
i associating the transaction[φi]d with the production〈p,≺i〉. By definition of implementation

relationship, the dT-GTSZ ′
1 cannot be an implementation forZ2. When we considerT-GTSs, the

restriction on dependencies does not exist and, therefore,Z can be implemented by bothZ ′
1 and

Z ′
2 (forgetting the dependency relations). ⊓⊔

Example 4.8 (restriction of implementations) Let us consider the dT-GTSZ2 depicted
in Figure 4.10. Note thatZ1, in Figure 4.7, andZ2 differ only in the dependency for
Coupon in the productionp1: here theCoupon message is sent only after the system
have received thePrepay, Finish andSupply messages.

84

y

c

z <y,z,c>

p2

op b

y

x

i

4
op

<x,y,b,i>
p

<x,y,b,i>

op
3

op b

y

x

i

p

1

<x,y,z,a,b,c,d,e,f>

x

y

c

a

b

d

f

pu

op

z

e

pu

2

1

<x,y,z,a,c>

<x,y,z,a,c,e,f>

p
<x,y,z,a,b,c,d,e,f>

op

Operator

Change

Analyse

Coupon

Pure

Impure

Analyse
Operator

pu

Prepay

Start

Analyse

OperatorOperator

 Impure
Finish

Operator

Free

Prepay

 Finish

Operator
Prepay

Supply

Free

op

Change

Customer Start

Customer
Customer

Operator

Customer

Operator Pure

Busy

Free

Operator

Coupon

Suply

Customer

Busy

Pump

Pump

PumpPump

PumpPump

Pump

Figure 4.10: The dT-GTSZ2.

As shown in Example 4.6,DepPumpOper (in Example 4.2) is a possible imple-
mentation ofZ1, but we can see thatDepPumpOper cannot be an implementation ofZ2,
because it does not have a transaction with the same dependency relation ofp1. A possible
implementation forZ2, would be a dT-GTSZ ′

2 with the same type graph and productions
of DepPumpOper, substituting theACCEPTand FINISH productions by those shown in
Figure 4.11. If we forget the dependencies ofZ1 andZ2 we obtain the sameT-GTS that

l

Accepty

c

z

<y,z,c>

y

z

Finish

<y,z,l>

<y,z,l>

Operator Operator

Customer CustomerCustomer

PreOrd Operator

Change

Prepay

Coupon

Operator

Customer

Charge

Figure 4.11: Productions ACCEPTand FINISH for the dT-GTSZ ′
2.

can be implemented by bothDepPumpOper andZ ′
2 (forgetting their dependencies, as

well).

y

The proposed extension ofT-GTSs including dependency relations on productions al-
lows us to describe (abstractly) more information than its version without dependencies,
for example, interactions between systems (or between a system and its environment).
Comparing the abstract systems depicted in Figures 3.12 and4.7, we can see that describ-
ing the same wut-processφ (described in Figures 3.9 and 4.5) using the production[φ1]w
(version without dependencies) we are requiring that all messagesPrepay, Finish
andStart are present, as well as the pump is free, in order to produce its result (to send
Change, Coupon andStart messages and to free the pump). But if we consider the
implementation of this production, we can see, for example,thatCouponmessage is sent
as soon as thePrepay message is received. This situation is perfectly describedby the
dependency relation of[φ1]d (version with dependencies).

85

4.6 Construction of the abstract system associated to a dT-GTS

It can be useful to have a method to construct an abstract system from a dT-GTS. This
construction be used to obtain automatically the abstract view of a system and to verify
the correction of an implementation, since each productionof an abstract system must
be associated to a transaction of the concrete one. In Definition 4.14, we propose an
algorithm to construct the abstraction of a dT-GTS. However, this construction can not be
performed for any dT-GTS, only for systems with finite number of transactions. In order
to guarantee the finiteness of the system, we must restrict the kind of dT-GTSs used to
specify our modules. Therefore, we will consider only systems whose productions do not
have cycles on unstable items, i.e., if we consider the causal dependency of the unstable
part of the type graph, we do not allow one element to depend onitself. In order to
simplify the construction we will restrict to dT-GTSs whose productions create or delete
only one element of each type and do not consume vertices.

In order to construct the abstract system associated to a dT-GTS we must obtain the
set of transactions of this system. The construction of set of transactions of a dT-GTS is
formally described as in Definition 4.13. Summarising this construction, we first initialise
the set of transactions (line 1): we pick each stable production out of set of productions
and include one transaction containing this production as the unique production; next
we construct the setP ′ of all possible subsets of productions of the system; finallywe
eliminate fromP ′ those subsets which do not contain at least one production with the
left-hand side stable and other with the right-hand side stable. Then, we select (among the
remaining subsets inP ′) the production subsets that constitute transactions and construct
them (lines2− 43).

A set of productions is balanced if all unstable items created by these productions
are consumed by them. In line3, for each subset of productionsA (in P ′) the function
preTransactions returns a list of pairs of initial graph and balanced productions (based
on productions inA). First, we test if the productions are balanced and, if thistest fail, we
test if it is possible to obtain other sets of balanced productions, including new instances
of these productions. The inclusion of new instances is minimal and may result in several
new subsets (if there are more than one way to balance the productions). Then, for each
subset of balanced productions (based onA), we construct all possible initial graphs:
gluing the stable part of left-hand side of all productions,in all possible ways.

For each pair of initial graph and balanced productions, we construct the graph process
(lines4−30), test if the this process is transactional (lines31−35) and exclude processes
that have adep-equivalent process in the set of transactions (lines36−40). The description
of functions used in the algorithm below are presented in Appendix C.

Definition 4.13 (construction of transactions of a dT-GTS) Given a dT-GTS Z =
〈〈TZ , PZ , πZ〉, TZs〉, the set of its transactionsDwtProc(Z) can be obtained as follows:

1: 〈P ′,DwtProc(Z)〉 = init(PZ) ⊲ initialise the setDwtProc(Z) of transactions of

. Z with one-step transactions andP ′ with subsets

. of PZ containing no stable production and at least

. one production with left-hand side stable

. and other with right-hand side stable

2: for all A ∈ P ′ do ⊲ repeat for each set of productions inP ′

3: l = preTransactions(A) ⊲ generate initial graph and (balanced – possibly with

. different instances of a same production) productions

. of all possible processes with productions inA

86

4: while l 6= λ do ⊲ repeat for each pair inl

5: 〈G,P 〉 = head(l) ⊲ get the first initial graphG and set of productionsP

6: l = tail(l) ⊲ eliminate the first element ofl

7: U = ∅ ⊲ initialise the set of graph processes containing productions in P

8: U1 = ∅ ⊲ initialise the first state ofU

9: U2 = {φ = 〈φT , φP 〉 : 〈〈G,∅,∅〉,S(G)〉 → Z}, where
. φT = 〈idG, tG〉 : G→ TZ is a partial morphism and
. φP = ∅ : ∅→ PZ ⊲ initialiseU2 (second state ofU) with a graph process

. composed of type graphG and none production

10: i = 2
11: while Ui 6= Ui−1 do ⊲ repeat until there is no change inUi

12: for all φi : 〈〈Ti, Pi, πi〉, Tis〉 → Z ∈ Ui do ⊲ repeat for each process inUi

13: if Pi = P then ⊲ if all productions inP were used in the process, it is complete

14: φi ∈ Ui+1 ⊲ and it is included inUi+1

15: else
16: x = 0 ⊲ initialise x indicating that there is no change inφi

17: for all 〈p, k〉 ∈ P and〈p, k〉 6∈ Pi do ⊲ repeat for each production inP that

. was not used inφi

18: for all matchm : LTZp → 〈Ti, rφiT 〉 do ⊲ repeat for each match of selected

. production in the type graph ofφi

19: if m(Lp) is a concurrent subgraph ofTi then ⊲ if the range of selected

. match contains only

. concurrent elements

20: makeZ(φi, 〈p, k〉, m) ∈ Ui+1 ⊲ then include, inUi+1, the processφi

. updated with used production and

. created elements in the type graph

21: x = 1 ⊲ and assign1 to x to indicate thatφi was changed

22: end if
23: end for
24: end for
25: if x = 0 then φi ∈ Ui+1 ⊲ if x was not changed in line21, the processφi

. cannot be changed and it is included inUi+1

26: end if
27: end if
28: end for
29: i = i+ 1 ⊲ incrementi in order to get next state ofU

30: end while
31: for all φ ∈ Ui−1 do ⊲ get each process in the last state ofU

32: if Pφ = P andtransaction(φ) then ⊲ if this process contains all productions

. in P and is a transaction

33: φ ∈ U ⊲ then include it in the set of transactionsU

34: end if
35: end for
36: for all φ ∈ U do ⊲ for each transaction inU

37: if there existsφ′ ∈ U � φ′ 6= φ ∧ depEq(φ′, φ) then ⊲ if there is other transaction

. in U that is dep-equivalent

. on selected transaction

38: U = U − {φ} ⊲ exclude it ofU

87

39: end if
40: end for
41: DwtProc(Z) = DwtProc(Z) ∪ U ⊲ include the transactions obtained usingG

. as initial graph andP as set of produc-

. tions in the set of transactions ofZ

42: end while
43: end for

Analysing the algorithm described above, we can see that theexecutions of (almost)
all loops are controlled by finite structures, for example, theforall loop at lines2− 43 is
repeated for each element inP ′, that is a set containing a finite number of productions.
However, thewhile loop at lines11 − 30 does not work in the same way: it stops if the
set of graph processes does not change in a previous iteration. This loop always stops
because this set is not changed if all productions inP are applied (lines13 − 15) or if
there is no production inP that can be applied (lines25 − 26). Then, considering that
all functions used in Definition 4.13 stop (see Appendix C), we can conclude that the
proposed algorithm always stops.

Moreover, the algorithm generates exactly the set of transactions of the considered
dT-GTS. It is easy to see that the generated processes are alldep-equivalent transactional
processes (by tests in lines32− 34 and37− 39) obtained using productions ofZ. Then,
it remains to see if all transactions are generated: the transactions with one production
are constructed in the algorithm initialisation and the other ones are constructed based
on all possible subsets of productions with possible minimal repetitions, i.e., the number
of different instances of a same production is limited by thedefinition of transaction,
in particular by the fact that a transaction can not be divided into small transactions.
Moreover, for each subset of productions ofZ, the possible initial graphs are obtained
considering all possible ways to compose the left-hand sideof productions (remember
that all items in the minimal graph must be used). Since the processes are constructed
considering all possible ways to apply the productions in all initial graphs, there can not
be transactions that are constructed using productions ofZ applying in different ways (all
ways have been considered).

Now, we can construct the abstract system of a dT-GTSZ, using the stable type graph
of Z as type graph and the set of transactions ofZ (obtained as in Definition 4.13).

Definition 4.14 (abstraction construction) Given a dT-GTSZ = 〈〈T, P, π〉, Ts〉, we can
construct the abstract system associated toZ as the system〈Ts,DwtProc(Z),Π〉, where
DwtProc(Z) is obtained as in Definition 4.13 and for eachφ ∈ DwtProc(Z), Π(φ)
is defined as in Definition 4.9.

4.7 Refinement of transactional graph transformation systems

Since the aim of transformational systems is to produce a final result, given an input,
they can be appropriately specified as a relation between initial and final states. However,
the functionalities of reactive systems are given by an ongoing interaction with their envi-
ronment, rather than by an output upon termination. In this context, notions of reactivity
and concurrency are closely related. For example, a good wayto explain the difference
between transformational and reactive systems is that, in the transformational case, a sys-
tem and its environment act sequentially, while in the reactive case they act concurrently
(MANNA; PNUELI, 1992).

88

Graph transformation systems are a suitable formalism to specify complex systems,
since graphs are used to describe naturally the structure ofa system focusing attention
on its components and their interconnections. Moreover, this formalism give us a simple
manner to describe concurrency, where all productions of the system can be applied in
parallel if they are independent. By means of the extension to the transactional version,
introduced in Chapter 3, we can use graph transformation systems to describe atomic
activities in a more detailed way and use a more abstract viewwhen it is interesting.

Several methods for design and analysis of reactive systemspropose synchronous lan-
guages as specification formalism (BERRY, 2000; HALBWACHS et al., 1991; LEGUER-
NIC et al., 1991), where the time of reaction to an event is null. This characteristic is
important to simplify the model, but frequently, it does notcorrespond to the reality, as
is the case of distributed systems, where the communicationbetween components may
take some time. Thus, new approaches were introduced to combine synchronous compo-
nents and asynchronous communication (FILALI; MAURAN; PADIOU, 1993; BERRY;
RAMESH; SHYAMASUNDAR, 1993; RIESCO; TUYA, 2004).GTSs have an asyn-
chronous semantics and with the introduction of transaction notion, it becomes possible
to synchronise internal activities of a component, modelling them as transactions. Thus,
at a more abstract level, we can consider a transaction as an immediate reaction, where
the intermediate steps are considered to take a null time. Some of cited approaches use
similar notions to model the synchronous behaviour of system components.

Moreover, the extension of transactionalGTS to express causal relation between input
and output signals allows us to explicitly describe interaction patterns. The dependency
associated with each production will be used to describe thedependency between ex-
changed messages/signals, as proposed in (FOSS; MACHADO; RIBEIRO, 2007): we
describe the interaction of the system with its environmentin order to realise their op-
erations: which signals are sent to environment in reactionto received ones. Thus, the
transactionalGTS with dependency relation becomes a interesting formalism to specify
reactive systems, that are characterised by an ongoing interaction and atomic reactions.

In a top-down approach to develop a reactive system, one can start abstracting the
behaviour of the system defining only the interaction between system and its environment
and then, to refine the specification adding new details of each reaction.

There are different notions of refinement, among them, behavioural refinement is more
usual, where the properties of the abstract specification are implied by properties of the
refined specification. Since we are describing the abstract behaviour of a system by its
interaction with the environment, we can consider two kind of system views: black and
glass-box views (BROY; STØLEN, 2001). While in the black-box view only the input
and output signals are observable, and what happens inside of component between the
consumption of an input signal and the generation of the corresponding output signal
is hidden, in the glass-box view some constraints on the internal structure or behaviour
can be defined. Using the defined implementation morphism we can define a glass-box
refinement, where besides the external behaviour, also particular aspects of the internal
structure are preserved. The internal structure to be preserved in our approach is the
relation dependency between the input and output signals. Therefore, we can say that a
dT-GTSZ2 is a refinement of aT-GTSZ1 if there is an implementation morphism fromZ1

to Z2, where the type mapping is total and surjective on stable items and the production
mapping is total and must associate a transactional processof Z1 to each transactional
process ofZ2. These requirements guarantee that all external behaviours are preserved
and the definition of implementation morphism guarantees that dependency relation is

89

preserved. The verification of correction of refinement can be given by comparing the
abstractions of both systems: the abstractions of originaland refined specifications must
be the same.

Definition 4.15 (refinement) LetZ1 = 〈〈T1, P1, π1〉, T1s〉 andZ2 = 〈〈T2, P2, π2〉, T2s〉
be two dT-GTSs. Z2 is a refinementof Z1 if there exists an implementation morphism
f : Z1 → Z2 such that,

• fT : T1 → T2 is total andS(fT (T1)) = T2s;

• fP : P1 → DwutProc(Z) is total;

• ∀[φ2]w ∈ DwtProc(Z2) � ∃[φ1]w ∈ DwtProc(Z1) � f̂P ([φ1]w) = [φ2]w.

Based on this notion of refinement, a first refinement step of the abstract system in
Figure 4.7 can result in the dT-GTS presented in Example 4.2. The implementation mor-
phism defined between them is described in Example 4.7. It is easy to see that both have
the same external behaviour, since the abstract specification is indeed the abstract system
associated to the concrete one.

A further refinement step can result in the dT-GTS shown in Figure 4.12. The im-
plementation morphism fromDepPumpOper to Z is defined as follows: on the type
graphs it is defined by the obvious inclusion ofTDepPumpOper in TZ and on productions
it is defined by mapping each production, except the STOP production, into a process
containing itself as unique production. The STOP production is mapped into the unstable
transactional process[ψ]d depicted in Figure 4.13. It is easy to see that the abstract d-GTS

associated toZ is the same one associated toDepPumpOper depicted in Figure 4.7, this
means that both systems have the same abstract behaviour andthereforeZ is a correct
refinement ofDepPumpOper.

Here, we propose to use dT-GTSs to specify, in an abstract way, reactive systems,
using the dependency relation to specify reactions of the system to events/signals from
the environment.

90

<x,y,b,i>

y

x

b

i

Analysis opop

Pure

<x,y,b,i>

Analysis opop

Impurey

x

b

i

zy

x

op
b

op
Stopping

d

<x,y,z,b,d>

<x,y,z,b,d>

z

y

c

<y,z,c>

<y,z,c>

Accept

y
pu

z
x

a
Serve pu

g

<x,y,z,a,g>

<x,y,z,a,g>

Start

x

e

k

<x,e,k>

Activate

x

j

f

<x,f,j>

Reject

z

c

y

<y,z,c>

Finishy

z

l

<y,z,l>

y

z

n
<y,z,n>

Charge

x

<x,h,m>
m

h
Free

Charge

Freeing

Customer
Operator Operator

 FF

Activate

CustomerPreOrd

Stopped

Analyse
 Impure

Start

 Pure

Free

Charge

Customer

Busy

Operator

StoppedOperator

Busy

Customer

Customer

Operator

Supply

Finish
Change

pu

Customer

Freeing

 FF

op
Freeing

Analyse Operator ImpureAnalyseOperatorOperator

Activate

 PureOperator

OperatorOperator

CouponCustomer Customer

Free

Prepay PreOrd

Busy

 FF

Operator

PreOrd

Stopped

Customer

Customer

Operator

Coupon

Change

Charge

Customer

Operator

Finish

Start

Suply

Prepay

Busy

Operator Operator

Customer Busy Customer

Free

Activate

Prepay

op

Operator

Pump

Pump

Pump

Pump

Pump

Pump

Pump

Pump

Pump

Pump

Pump Pump Pump

Pump

Pump

Figure 4.12: A refinement dT-GTSZ for DepPumpOper (Figure 4.3).

ψ

z

Charge

n

op op

ψMin() ψMax()

T

y

<y,z,n>

x

m

h

<x,h,m>Free

zy

b Stopping

<x,y,z,b,d>

d

x

op op

<x,y,z,b,d>

Stopped

Charge

Operator Operator

Free

Charge

Customer Customer

Freeing

Busy

op

Operator Charge

Customer

Stopped

Free

Finish

Customer

Freeing

Busy

Finish

Busy

Finish

Freeing

Operator CustomerStopped

Operator

Operator Operator

Free

Customer

Customer

Pump

PumpPump

Pump Pump

Pump

Pump

Figure 4.13: An unstable transactional process associatedto STOP production.

91

5 CONCLUSIONS

The contributions of this work are related to two different areas of computer science:
theoretical area, by providing a theoretical foundation oftransaction concept for graph
transformation; and software engineering area, by proposing a formalism to specify reac-
tive systems, where interactions between system and its environment can be described by
dependency relations associated to productions. Moreover, using implementation mor-
phisms a method of incremental development can be defined, starting from an abstract
view of the system and adding more details in each refinement step.

5.1 Theoretical contribution

In this work, we give the theoretical foundations of the notion of transactional ac-
tivities in graph transformation. A transaction is defined as a class of derivations, where
starting and ending states are stable and all intermediate states are unstable. Thus unstable
items represent temporary resources, only visible within atransaction, and the distinction
between stable and unstable items is enforced by a typing mechanism. This definition of
transactions is inspired by the work on zero-safe nets (BRUNI; MONTANARI, 2000). It
is motivated by the data-driven nature of graph transformation formalism, where any form
of control on the application of productions has to be encoded in the graphs. The main the-
oretical result of the present work is the characterisationof the abstract system of aT-GTS,
including all transactions as productions, in terms of a universal construction, presented
as a right adjoint functor. In order to obtain this result, wefirst characterise transactions
as graph processes and define the notion of implementation morphism, allowing to map
productions to transactional processes. The notion of implementation defined forT-GTSs
are more general than that defined in (BRUNI; MONTANARI, 2000), because our mor-
phisms can relate unstable productions with unstable transactions and, consequently, we
can also refine the implementations of stable productions.

Since stable items cannot be used within the transaction in which they are created, if
we need to create stable vertices connected (by edges), thiscreation must be defined in a
unique production. Otherwise. it would be necessary to use the created vertices in order to
create the connecting edges. This restriction is not imposed in (BRUNI; MONTANARI,
2000), because Petri Nets can be seen as aGTSs where the states are represented by
discrete graphs, i.e., graphs having only vertices.

Besides the above mentioned results, the extension of transactional graph transforma-
tions, introduced in Chapter 4 (dT-GTS), enriches the information given byT-GTS graph
productions, making explicit the dependency between created and consumed/preserved
items. This relation can be used to restrict the refinement ofthe transactions, since the
notion of implementation morphism for dT-GTSs must respect the dependencies. This

92

extension does not change the semantics of theT-GTSs, only give an abstract information
about desired dependencies in an implementation.

There are other notions of transactional activities in the area of graph transformations.
Traditional notions of transaction have been considered, most importantly in the design
of PROgramed Graph REwriting Systems (SCHÜRR, 1991; SCHÜRR; WINTER; ZÜN-
DORF, 1999; SCHÜRR; WINTER, 2000). PROGRES provides a development environ-
ment where basic operations, defined by graph transformation rules, can be combined
using a rich set of control structures, including traditional programming language con-
structs, various kinds of non-deterministic choices, as well as transactions. It is a mixed
textual and diagrammatic language. A basic specification inPROGRES is composed by a
graph schema and a set of graph procedures. The graph schema specifies the static prop-
erties of a class of graphs, defining all used types of nodes, edges and their attributes. The
graph procedures are defined by productions or transactions. The productions describe
the modifications on a graph and have a graphical representation, while the transactions
are described textually and provide control structures. The PROGRES approach is there-
fore similar to the way transactions are introduced in programming languages and other
control-centered formalism.

The graph transformation units, used in the GRACE (KREOWSKI; KUSKE, 1996;
ANDRIES et al., 1999) approach, give a “kind of transaction notion” based on control-
flow. A transformation unit comprises a set of local rules, a set of used transformation
units and a control condition which regulates how used unitsand rules must be applied,
allowing infinite applications of them. We cannot consider atransformation unit as a real
transaction because a basic characteristic of a transaction is to be a finite computation.

In (GROSSE-RHODE; PARISI-PRESICCE; SIMEONI, 1999), a notion of synchro-
nous activities for typed graph transformation systems is defined. This notion is given
by syntactical compositions: sequential and amalgamationcompositions. Therefore we
cannot extract any causal relation between the state elements.

5.2 Software Engineering contribution

The visual and data-driven approach ofGTSs, makes then a natural formalism to spec-
ify reactive system, where the behaviour of components is defined by the flow of signals
(data) that are generated by the environment and not by the control flow of the compo-
nents. The transaction and dependency relation notions introduced in this work turn this
formalism even more adequate to specify reactive systems. These extensions improveGTS

formalism with a mechanism to specify atomic reactions and,thus, allow us to describe,
at an abstract level, synchronous systems. We also give an insight on vertical structuring
proposing a notion of refinement to relate abstract and concrete specifications, where the
dependencies between input and output events/signals are given explicitly as an additional
information about of abstract behaviour of the system. Thisinformation can be useful to
specify the environment behaviour and for verification purposes, as will be discussed in
section 5.3.

We can find, in the literature, several formalisms and frameworks for specification,
verification and code generation of reactive systems, such that Statecharts
(HAREL, 1987; SEKERINSKI, 1998), Esterel (BERRY; COURONNE; GONTHIER,
1988; BERRY, 2000; GIL; FERRO; BERNHARD, 1996; BHATTACHARJEE et al.,
1999), CRP (Communicating Reactive Processes) (BERRY; RAMESH; SHYAMASUN-
DAR, 1993), UML diagrams (KERSTEN et al., 2002; ALAVIZAEDH;NEKOO; SIR-

93

JANI, 2007; ALAVIZADEH; SIRJANI, 2006), Graph Transformation Systems
(HECKEL, 1998), Abstract State Machines (BÖRGER; GLÄSSER,1995; MAIA; IO-
RIO; BIGONHA, 1998; LAMCH; WYRZYKOWSKI, 2006), Synchronous Estelle (RI-
ESCO; TUYA, 2004).

Statecharts are a visual approach to design reactive systems. They extends finite state
diagrams (graphical representation of finite state machines) with tree concepts: hierar-
chy concurrency and communication. Statecharts are used indifferent frameworks as a
language for graphical specification and are mapped into other formal languages for au-
tomatic verification and code generation (BHATTACHARJEE etal., 1999; KERSTEN
et al., 2002; SEKERINSKI, 1998). In (SEKERINSKI, 1998), theauthors propose a trans-
lation of Statecharts to Abstract Machine Notation (AMN) ofthe B method for analysis
and refinement purposes. In this approach, a state diagram (simplest form of statecharts)
is composed by a finite number of states and transitions, which are translated into AMN as
enumerated set type and operations, respectively. The current state is stored in a variable
and the operations reflect the state change. Refinement notions are given by AMN refine-
ment rules, i.e., they are only for the translated code. The essence of a refinement rela-
tionship is that it preserves already proved system properties. It is based on observational
substitutivity: any behaviour of the refined specification is one of the possible observable
behaviours of the initial specification. More specifically,AMN refinement allows design-
ers to reduce non-determinism of operations (strengthen the post-condition), to have more
input values (weaken their preconditions) and to change thevariable space. At the most
abstract level it is mandatory to describe the static properties of a model by means of an
invariant predicate. The refinement steps give rise to a number of proof obligations, which
guarantee their correctness with respect to the invariant.Such proof obligations are dis-
charged by the proof tool using automatic and interactive proof procedures supported by a
proof engine. This approach uses a visual language to specify reactive systems, where the
interaction pattern is described by labelled transitions of a state diagram. In a large spec-
ification, with several and complex interactions, the statediagram can become very large
and difficult to understand. In our approach, each event involving simpler interactions can
be described by an individual production, which is easier tobe understood. Moreover, it
is not necessary to know a different language (like AbstractMachine Notation) to refine
the specified system. In (SCHOLZ, 1998), a refinement calculus for statecharts was pro-
posed where the charts are obtained from non-deterministicsequential automata, hiding,
and parallel composition. A reaction of a system is defined interms of instants, where
all input signals are received and all output signals are sent and the I/O behaviour of a
system is described in terms of communication histories. The communication histories
are given by streams carrying a set of signals, relation the input signals with output ones.
They define a notion of refinement that requires that all inputand output signals must be
preserved (it is possible to extend them) and all behaviour relating these signals must be
preserved, as well. Syntactic rules whose application guarantees a correct refinement step
are defined. This approach avoids translations to other languages, but does not permit to
describe a weaker relation between input/output signals ofa more abstract level.

Esterel is a control-driven textual design language that can be used to generate com-
plex state machines automatically. In this context, an assumption called perfect synchrony
hypothesis (or atomic reaction) is made in order to simplifythe behavioural specifications
of reactive systems. This hypothesis states that the systemreacts instantaneously to an in-
put event, and the execution of reactions does not overlap with each other. Other assump-
tion made in Esterel is that the systems are deterministic, thus their statements and con-

94

structs are guaranteed to be deterministic, as well. This language provides interface refine-
ment. The interface of a system define signals which are exchanged to interact with other
systems and can be refined to add new signals. Moreover, in order to reduce the number
of states of the system, relations restricting input signals are provided. These restrictions
are about incompatibility and master-slave combination ofsignals. In (BHATTACHAR-
JEE et al., 1999), an graphical interface for Esterel was proposed. They integrate the
graphical formalism of Statecharts with verification environments of Esterel, translating
Statecharts specifications into Esterel program. CRP (BERRY; RAMESH; SHYAMA-
SUNDAR, 1993) is a unification of Esterel and CSP (HOARE, 1978) languages, where
their synchronous and asynchronous capabilities are combined. In this paradigm, a set
of individually reactive synchronous processes is linked by asynchronous communication
channels. The unification is given by a minor extension to theEsterel language. A prim-
itive to permit asynchronous rendezvous is included, wherethe sending process emits
a signal requesting for a rendezvous and receives rendezvous completion signals, by a
given communication channel. The automatic verification ofCRP programs is provided
by a translation into a process calculus Meije (BOUDOL, 1985). These languages dif-
fer from dT-GTSs mainly by their control-driven nature that requires the designer to pay
attention in control issues instead of concentrating on reactions of the system.

Synchronous Estelle is another language that merges both synchronous and asyn-
chronous paradigms. The main idea is the same in CRP, but the asynchronous com-
munication is given by means of message passing instead of rendezvous. Moreover, it is
possible specify asynchronous systems, too. In Standard Estelle a system is viewed as a
black-box and is specified by a state in a finite state machine which can be refined into a
set of substates. Synchronous Estelle extends the standardone by including synchronous
systems, which are specified by a state in a hierarchical state machine, i.e., a set of states
(with a hierarchy) that is seen as a unique state. Using the synchronous version, it is
possible specify reactive systems, while the communication between them is specified
using the standard version. The execution of synchronous systems is divided into a set of
computations steps, which are also divided into micro-steps, similar to the idea of transac-
tions. At the beginning of the computation step, all messages arriving to the synchronous
system are processed (possible generating internal events) and at the end all external mes-
sages generated by the computation are sent. The semantics of Synchronous Estelle is
deterministic, using priorities on messages for choice purposes. The development envi-
ronment of Synchronous Estelle includes a graphical (like Statecharts) editor, a compiler,
a graphical animation. Moreover, they provide a translation from Synchronous Estelle to
PROMELA (PROMELA LANGUAGE REFERENCE, 2008), for model checking pur-
poses. The main difference from our approach is that this language is also control-driven,
requiring to pay attention in control issues.

UML is a general-purpose visual modelling language that provides a complex family
of diagrams to specify, construct and document the artifacts of a software system. Be-
cause of this complexity, usually, this family of diagrams is restricted by UML profiles. A
UML profile is a subset of UML concepts which is adequate to define specific domains.
Thus, most of the approaches to model reactive systems usingthis language propose a
profile for this purpose. In general, class diagrams are usedto define static aspects of the
system and Statecharts or sequence diagrams are used to define dynamic ones. Moreover,
despite of semi-formal semantics definition for UML, several approaches use translations
to formal languages in order to define a formal semantics for this language, that is used as
a graphical interface for visual specification. Most research on the formalisation of UML

95

refinements adhere to the approach of mapping the graphical notation into a formal do-
main, for example the works presented in (LEDANG; SOUQUIÈRES, 2002; USELTON;
SMOLKA, 1994) among others. In (ALAVIZADEH; SIRJANI, 2006;ALAVIZAEDH;
NEKOO; SIRJANI, 2007), a UML profile for reactive systems wasproposed, using class
and object diagrams to describe the structure of system and sequence diagrams to describe
the behaviour of it. Besides, they propose a translation to Rebeca language (SIRJANI;
MOVAGHAR, 2001), that, in its turn, has translations to PROMELA and Java languages,
in order to provide automatic verification and code generation, respectively. A Rebeca
model is an actor-based language, with independent reactive objects and asynchronous
message passing. The communication is given by means of (buffered) messages and ex-
ecution of atomic associated methods. They prefer to use sequence diagrams instead of
Statecharts, since the latter is more appropriate to specify objects which have a interesting
lifecycle and the reactive objects of Rebeca have a limited number of states (idle, wait-
ing and running) and actions (sending a message). Thus, the behaviour of these objects
can be better described by its message exchange pattern withits environment/other ob-
jects. In (KERSTEN et al., 2002), a translation of the UML profile for reactive systems to
Ada (ADA 95 REFERENCE MANUAL, 1995) was proposed, to achieveautomatic code
generation. This profile uses class diagrams to specify static aspects and Statecharts to
specify dynamic aspects. The notion of refinement of this approach is applied to translated
code. Different ofGTSs, UML is not a formal language and requires knowledge of other
languages to have notions of refinement and verification. Moreover, different languages
(diagrams) are necessary to describe static and dynamic aspects, while inGTSs both as-
pects are described in the same specification, avoiding to have to check the compatibility
between these two points of view.

In (HECKEL, 1998), a different semantics for graph transformations was defined,
which allows to represent effects of environment’s events on the system states. This ap-
proach substitutes the pushout operation in definition of derivation by a pullback con-
struction and permits to express more transformations thanthose specified by the sys-
tems’ graph productions, simulating events from environment. The author proposes this
semantics to provide a compositional verification of reactive systems, where a system is
decomposed in views that anticipate the potential behaviour of the complete system. The
composability of this approach ensures that properties of acomplete system can be de-
rived from those properties shown for its views. The interactivity with the environment
is described only semantically and there is no constructionin the formalism allowing to
specify this interaction explicitly. Moreover, this approach produces an overhead on spec-
ification of properties, where, in addition of desired properties, some constraints must be
described to ensure that the additional information generated in the behaviour of a view
can be produced only by productions in the other views. A notion of refinement for typed
GTSs was proposed in (HECKEL et al., 1996), where two systems arerelated by par-
tial graph morphisms and each rule is mapped into another one. Moreover, the abstract
production is required to be an instance of concrete production, i.e., the visible part of
the refined production must not coincide with the original one. Therefore, the refine-
ment relation guarantees only the existence of specialisedtransformations in the refining
system. Another notion of refinement forGTSs was proposed in (GROSSE-RHODE;
PARISI-PRESICCE; SIMEONI, 2000), where an abstract systemis related to a concrete
one by a total graph morphism and a mapping associating each abstract production to an
expression over the name productions of the concrete system. Expressions are syntactical
descriptions of sequential and parallel compositions of productions. The retyped produc-

96

tion of the abstract system must coincide with the refining production. This requirement
guarantees that refinement relations preserve the full behaviour of abstract system. In this
notion of refinement it is not possible to describe causalityin the expressions describing
composition of productions.

Abstract State Machines (GUREVICH, 1995) (ASM) are a mathematically defined,
high-level environment for the system design, verificationand analysis
(LAMCH; WYRZYKOWSKI, 2006). An Abstract State Machine is a state machine
which in each step computes a set of updates of variables froma specific vocabulary, in
accordance with transaction rules. In one execution step, all updates are committed simul-
taneously. ASMs have been introduced in (GUREVICH, 1985) as“a computation model
that is more powerful and more universal than standard computation models”. Nowadays,
there exist several extensions for ASMs, such as distributed, reactive and timed versions.
In (BÖRGER; GLÄSSER, 1995), a predecessor of ASM, external functions are proposed
to express environment effects in the system behaviour. A function is called external to a
set of rules if it does not appear in any update in these rules.This kind of function is used
to define the imported operations of a system and can be specified at any abstraction level.
In this model is not possible to maintain a causal relation between elements of the system
states, without adding explicit control to do this. In (MAIA; IORIO; BIGONHA, 1998),
an extension of original model of ASMs is proposed, that explicitly enables the designer
to define how the interactions occur between a system and its environment. There, a sys-
tem is defined as a set of unit definitions and instances, wherethe units can be classified
as system units (that are completely defined) and environment units (that are partially de-
fined). A unit is composed by three parts: function, interaction and rules specifications.
The interaction specification is defined by interaction operators that allow inputs and out-
puts within a unit, synchronisation and complex interaction patterns (using well-known
composition operations: non-deterministic choice, parallel and sequential compositions).
The environment units are restrictions of units, showing only the interaction specification,
and play the role of interfaces of these units. There is also anotion of atomic reactions
defined by interactions cycle. No notion of refinement is defined for this extension.

In the following section, we present some hints about how to improve our design
environment.

5.3 Future work

The following open issues will be subject of future works:

• If we restrict our model to a special kind ofGTSs called Object-Based Graph Gram-
mars (OBGG), we can use a development environment for visualspecification, sim-
ulation, automatic verification and code generation (DOTTIet al., 2005, 2006). In
(DOTTI et al., 2006) an approach was proposed to verify partial systems using
OBGGs based on the assume-guarantee approach. The basic idea is to see each
part of a system as an open system - a system whose behaviour isnot fully specified
and that depends on interactions with its environment. In order to be possible we
use this approach, it is necessary to describe the both output and input interactions.
The former interaction is already specified by the interfaceand it is derived from
the body behaviour. The input interaction (i.e., the reactions from the environment
to the system events/signals) cannot be derived form the system specification, then
it is necessary to include a mechanism to explicitly describe this kind of interaction.

97

It can be done by adding a new dependency relation for each production in a inter-
face module. This extension can permit restrict the semantics of modules, since we
have more dependencies to consider in order to complete the module behaviour.

• Besides, if we consider a dT-GTS and its abstraction related by an implementation
morphism, as defined in Theorem 4.1, we can define a module notion, where the
abstract system is the interface, describing the interaction between system and its
environment; and the dT-GTS is the body that implements the interface. Moreover,
in order to define notions of module composition, it is necessary to define first a
notion of interaction compatibility, that requires that composed modules must have
transactions of dual interaction patterns. Moreover, for two transactions (of differ-
ent modules) holding to interaction compatibility, can exist synchronising elements,
i.e., stable items that are created by one transaction and consumed by the other, be-
fore the end of former. In the composed module, these observable elements must
become unobservable because the transactions must be merged. It is necessary to
reasoning more about the resulting composed interface, as well as, the semantics of
composed module.

• Other notions of refinement must be studied, for example, we can consider aT-
GTS without dependency relation as an abstract specification and to include the
dependency in a refinement of this specification. Other kind of refinement that can
be considered is on the dependency relation: in the abstractlevel it can be less
restrictive and in the concrete level it more restrictive.

• The OBGG model is extended, in (MICHELON; COSTA; RIBEIRO, 2006), with
time notions. We must consider to apply this extension, in order to try to express
synchronicity in the concrete level and preemption notions.

98

REFERENCES

ADA 95 Reference Manual. ISO/IEC 8652: 1995.ed. [S.l.]: US Government, 1995. Avail-
able at: http://www.adahome.com/Resources/References.html. Visited on: Apr. 2008.

ALAVIZADEH, S. F.; SIRJANI, M. Using UML to Develop Verifiable Reactive Sys-
tems. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING RE-
SEARCH AND PRACTICE & CONFERENCE ON PROGRAMMING LANGUAGES
AND COMPILERS, SERP, 2006, Las Vegas, USA.Proceedings. . .[S.l.]: CSREA Press,
2006. v.2, p.554–561.

ALAVIZAEDH, S. F.; NEKOO, A. H.; SIRJANI, M. ReUML: a UML profile for mod-
eling and verification of reactive systems. In: INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING ADVANCES, ICSEA, 2., 2007, Cap Esterel, France.Pro-
ceedings. . .Washington: IEEE Computer Society, 2007. p.50.

ANDRIES, M. et al. Graph Transformation for Specification and Programming.Sci-
ence of Computer Programming, Amsterdam, The Netherlands, v.34, n.1, p.1–54,
April 1999.

BALDAN, P. Modelling Concurrent Computations: from contextual petri nets to graph
grammars. 2000. PhD Thesis — University of Pisa.

BALDAN, P.; CORRADINI, A.; DOTTI, F. L.; FOSS, L.; GADDUCCI,F.; RIBEIRO,
L. Towards a Notion of Transaction in Graph Rewriting. In: INTERNATIONAL WORK-
SHOP ON GRAPH TRANSFORMATION AND VISUAL MODELING TECHNIQUES,
GT-VMT, 5., 2006, Vienna, Austria.Proceedings. . .Amsterdam: Elsevier, 2008. p.39–
50. (Electronic Notes in Theoretical Computer Science, v.211).

BALDAN, P.; CORRADINI, A.; FOSS, L.; GADDUCCI, F. Graph Transactions as Pro-
cesses. In: INTERNATIONAL CONFERENCE ON GRAPH TRANSFORMATIONS,
ICGT, 3., 2006, Natal, Brazil.Proceedings. . .Berlin: Springer, 2006. p.199–214. (Lec-
ture Notes in Computer Science, v.4178).

BALDAN, P.; CORRADINI, A.; MONTANARI, U. Concatenable Graph Processes: re-
lating processes and derivation traces. In: INTERNATIONALCOLLOQUIUM ON AU-
TOMATA, LANGUAGES AND PROGRAMMING, ICALP, 25., 1998, Aalborg, Den-
mark.Proceedings. . .Berlin: Springer, 1998. p.283–295. (Lecture Notes in Computer
Science, v.1443).

BALDAN, P.; CORRADINI, A.; MONTANARI, U. Unfolding of Double-Pushout Graph
Grammars is a Coreflection. In: INTERNATIONAL WORKSHOP ON THEORY AND

99

APPLICATION OF GRAPH TRANSFORMATIONS, TAGT, 6., 1998, Paderborn, Ger-
many.Proceedings. . .Berlin: Springer, 1998. p.145–163. (Lecture Notes in Computer
Science, v.1764).

BERRY, G. The foundations of Esterel.Proof, language, and interaction: essays in
honour of Robin Milner , Cambridge, USA, p.425–454, 2000.

BERRY, G.; COURONNE, P.; GONTHIER, G. Synchronous programming of reactive
systems: an introduction to esterel. In: FRANCO-JAPANESE SYMPOSIUM ON PRO-
GRAMMING OF FUTURE GENERATION COMPUTERS, 1., 1986, Tokyo, Japan.
Proceedings. . .Amsterdam: Elsevier, 1988. p.35–56.

BERRY, G.; RAMESH, S.; SHYAMASUNDAR, R. K. Communicating reactive pro-
cesses. In: SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES,
POPL, 20., 1993, Charleston, USA.Proceedings. . .New York: ACM, 1993. p.85–98.

BHATTACHARJEE, A. K. et al. A Graphical Environment for the Specification and Ver-
ification of Reactive Systems. In: INTERNATIONAL CONFERENCE ON COMPUTER
SAFETY, RELIABILITY AND SECURITY, SAFECOMP, 18., 1999, Toulouse, France.
Proceedings. . .London: Springer, 1999. p.431–444.

BÖRGER, E.; GLÄSSER, U.Modelling and Analysis of Distributed and Reactive Sys-
tems using Evolving Algebras. Aarhus: University of Aarhus, 1995. Technical Report.
(BRICS-NS-95-4).

BOUDOL, G. Notes on algebraic calculi of processes.Logics and models of concurrent
systems, New York, p.261–303, 1985.

BROY, M.; STØLEN, K.Specification and development of interactive systems: focus
on streams, interfaces, and refinement. New York: Springer,2001.

BRUNI, R.; MONTANARI, U. Zero-Safe Nets: comparing the collective and individual
token approaches.Information and Computation , Duluth, USA, v.156, n.1-2, p.46–89,
2000.

BRUNI, R.; MONTANARI, U. Transactions and zero-safe nets. In: EHRIG, H.
et al. (Ed.).Unifying Petri Nets, Advances in Petri Nets. London: Springer, 2001.
p.380–426. (Lecture Notes in Computer Science, v.2128).

CORRADINI, A.; DOTTI, F. L.; FOSS, L.; RIBEIRO, L. Translating Java Code to Graph
Transformation Systems. In: INTERNATIONAL CONFERENCE ON GRAPH TRANS-
FORMATION, ICGT, 2., 2004, Roma, Italy.Proceedings. . .Berlin: Springer, 2004.
p.383–398. (Lecture Notes in Computer Science, v.3256).

CORRADINI, A. et al. The Category of Typed Graph Grammars andits Adjunctions
with Categories of Derivations. In: INTERNATIONAL WORKSHOP ON GRAPH GRA-
MARS AND THEIR APPLICATION TO COMPUTER SCIENCE, TAGT, 5., 1994,
Williamsburg, USA.Selected Papers.Berlin: Springer, 1996. p.56–74. (Lecture Notes
in Computer Science, v.1073).

100

CORRADINI, A. et al. Algebraic Approaches to Graph Transformation I: basic concepts
and double pushout approach. In: ROZENBERG, G. (Ed.).Handbook of Graph Gram-
mars and Computing by Graph Transformation. River Edge: World Scientific, 1997.
v.1, p.163–245.

CORRADINI, A.; MONTANARI, U.; ROSSI, F. Graph Processes.Fundamenta Infor-
maticae, Amsterdam, The Netherlands, v.26, n.3-4, p.241–265, 1996.

DIESTEL, R. Graph Theory. 2nd.ed. New York: Springer, 2005. (Graduate Texts in
Mathematics).

DOTTI, F. L.; DUARTE, L. M.; FOSS, L.; RIBEIRO, L.; RUSSI, D.;SANTOS,
O. M. dos. An environment for the development of concurrent object-based applications.
In: INTERNATIONAL WORKSHOP ON GRAPH-BASED TOOLS, GRABATS,2004,
Rome, Italy.Proceedings. . .[S.l.]: Elsevier, 2005. n.1, p.3–13. (Electronic Notes In The-
oretical Computer Science, v.127).

DOTTI, F. L.; RIBEIRO, L.; SANTOS, O. M. dos; PASINI, F. Verifying Object-based
Graph Grammars: an assume-guarantee approach.Software and Systems Modeling,
Berlin, v.5, n.3, p.289–311, September 2006. Special Section Paper.

DREWES, F. et al. Graph Transformation Modules and their Composition. In: INTER-
NATIONAL WORKSHOP ON APPLICATIONS OF GRAPH TRANSFORMATIONS
WITH INDUSTRIAL RELEVANCE, AGTIVE, 1999, Kerkrade, The Netherlands.Pro-
ceedings. . . Berlin: Springer, 2000. p.15–30. (Lecture Notes in Computer Science,
v.1779).

EHRIG, H.; ENGELS, G.Towards a module concept for graph transformation sys-
tems. Leiden, Netherlands: Leiden University, 1993. TechnicalReport. (TR93-34).

EHRIG, H.; ENGELS, G. Pragmatic and Semantic Aspects of a Module Concept for
Graph Transformation Systems. In: INTERNATIONAL WORKSHOPON GRAPH
GRAMARS AND THEIR APPLICATION TO COMPUTER SCIENCE, TAGT, 5., 1994,
Williamsburg, USA.Selected Papers.Berlin: Springer, 1996. p.137–154. (Lecture Notes
in Computer Science, v.1073).

EHRIG, H. et al. (Ed.).Handbook of Graph Grammars and Computing by Graph
Transforpmation . River Edge: World Scientific, 1999. v.2.

EHRIG, H. et al. (Ed.).Handbook of Graph Grammars and Computing by Graph
Transformation . River Edge: World Scientific, 1999. v.3.

FILALI, M.; MAURAN, P.; PADIOU, G. Unity, as a Tool for Reactive Systems Speci-
fication and Derivation. In: EUROMICRO WORKSHOP ON REAL-TIME SYSTEMS,
EWRTS, 5., 1993.Proceedings. . .[S.l.]: IEEE Press, 1993. p.274–279.

FOSS, L.; MACHADO, R.; RIBEIRO, L. Graph productions with dependencies. In:
BRAZILIAN SYMPOSIUM ON FORMAL METHODS, SBMF, 10., 2007, Ouro Preto,
Brazil. Proceedings. . .[S.l.: s.n.], 2007. p.128–143.

GAJSKI, D. D. et al.Specc: specification language and methodology. [S.l.]: Springer,
2000.

101

GIL, J. G.; FERRO, M. V.; BERNHARD, R. Communication protocols verification with
Esterel. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING IN
HIGHER EDUCATION, SEHE, 2., 1995, Alicante, Spain.Proceedings. . .Billerica:
Computational Mechanics, 1996. p.255–265.

GOLTZ, U.; REISIG, W. The nonsequential behaviour of Petri nets.Information and
Control , [S.l.], v.57, n.2-3, p.125–147, 1983.

GROSSE-RHODE, M.; PARISI-PRESICCE, F.; SIMEONI, M. Refinements and Mod-
ules for Typed Graph Transformation Systems. In: INTERNATIONAL WORKSHOP
ON RECENT TRENDS IN ALGEBRAIC DEVELOPMENT TECHNIQUES, WADT,
13., 1998, Lisbon, Portugal.Selected Papers.Berlin: Springer, 1999. p.138–151. (Lec-
ture Notes in Computer Science, v.1589).

GROSSE-RHODE, M.; PARISI-PRESICCE, F.; SIMEONI, M. Refinements of Graph
Transformation Systems via Rule Expressions. In: INTERNATIONAL WORKSHOP ON
THEORY AND APPLICATION OF GRAPH TRANSFORMATIONS, TAGT, 6.,1998,
Paderborn, Germany.Selected Papers.London: Springer, 2000. p.368–382. (Lecture
Notes in Computer Science, v.1764).

GUREVICH, Y. A New Thesis.American Mathematical Society Abstracts, [S.l.],
p.317, August 1985.

GUREVICH, Y. Evolving Algebras 1993: Lipari Guide. In: BÖRGER, E. (Ed.).Specifi-
cation and Validation Methods. [S.l.]: Oxford University Press, 1995. p.9–37.

HABEL, A.; MÜLLER, J.; PLUMP, D. Double-Pushout Graph Transformation Revis-
ited. Mathematical Structures in Computer Science, [S.l.], v.11, n.5, p.637–688, Oc-
tober 2001.

HALBWACHS, N. et al. The synchronous data-flow programming language LUSTRE.
Proceedings of the IEEE, [S.l.], v.79, n.9, p.1305–1320, September 1991.

HAREL, D. Statecharts: a visual formalism for complex systems.Science of Computer
Programming, Amsterdam, The Netherlands, v.8, n.3, p.231–274, 1987.

HECKEL, R. Compositional Verification of Reactive Systems Specified by Graph
Transformation. In: INTERNATIONAL CONFERENCE ON FUNDAMENTAL AP-
PROACHES TO SOFTWARE ENGINEERING, FASE, 1., 1998, Lisbon, Portugal.Pro-
ceedings. . .Berlin: Springer, 1998. p.138–153. (Lecture Notes in Computer Science,
v.1382).

HECKEL, R. et al. Horizontal and Vertical Structuring of Typed Graph Transformation
Systems.Mathematical Structures in Computer Science, [S.l.], v.6, n.6, p.613–648,
1996.

HECKEL, R. et al. Simple Modules for GRACE. In: INTERNATIONAL WORKSHOP
ON THEORY AND APPLICATION OF GRAPH TRANSFORMATIONS, TAGT, 6.,
1998, Paderborn, Germany.Proceedings. . .Berlin: Springer, 1998. p.383–395. (Lecture
Notes in Computer Science, v.1764).

102

HECKEL, R. et al. Classification and Comparison of Module Concepts for Graph Trans-
formation Systems. In: EHRIG, H. et al. (Ed.).Handbook of Graph Grammars and
Computing by Graph Transformation . River Edge: World Scientific, 1999. v.2, p.669–
689.

HOARE, C. A. R. Communicating sequential processes.Communications of the ACM,
New York, v.21, n.8, p.666–677, August 1978.

KERSTEN, M. et al. Customizing UML for the development of distributed reactive sys-
tems and code generation to Ada 95.Ada User Journal, [S.l.], v.23, n.3, September 2002.

KREOWSKI, H.-J.; KUSKE, S. Graph Transformation Units and Modules. In: EHRIG,
H. et al. (Ed.).Handbook of Graph Grammars and Computing by Graph Transfor-
mation. River Edge, USA: World Scientific, 1999. v.2, p.607–638.

KREOWSKI, H.-J.; KUSKE, S. On the interleaving semantics oftransformation units
- A step into GRACE. In: INTERNATIONAL WORKSHOP ON GRAPH GRAMARS
AND THEIR APPLICATION TO COMPUTER SCIENCE, TAG, 5., 1994, Williamsburg,
USA. Selected Papers.Berlin: Springer, 1996. (Lecture Notes in Computer Science,
v.1073).

LAMCH, D.; WYRZYKOWSKI, R. Specification, analysis and testing of grid envi-
ronments using Abstract State Machines. In: INTERNATIONALSYMPOSIUM ON
PARALLEL COMPUTING IN ELECTRICAL ENGINEERING, PARELEC, 2006, Bia-
lystok, Poland.Proceedings. . .Washington: IEEE Computer Society, 2006. p.116–120.

LEDANG, H.; SOUQUIÈRES, J. Integration of UML and B Specification Techniques:
systematic transformation from ocl expressions into B. In:ASIA-PACIFIC SOFTWARE
ENGINEERING CONFERENCE, APSEC, 9., 2002, Gold Coast, Australia. Proceed-
ings. . . Washington: IEEE Computer Society, 2002. p.495–504.

LEGUERNIC, P. et al. Programming real-time applications with SIGNAL. Proceedings
of the IEEE, [S.l.], v.79, n.9, p.1321–1336, September 1991.

MAIA, M. A.; IORIO, V. O.; BIGONHA, R. S. Interacting Abstract State Machines.
In: INTERNATIONAL WORKSHOP ON ABSTRACT STATE MACHINES, ASM,
5., 1998, Magdenburg, Germany.Proceedings. . .Magdenburg: Magdeburg University,
1998. p.37–49.

MANNA, Z.; PNUELI, A. The Temporal Logic of Reactive and Concurrent Systems:
specification. Berlin: Springer, 1992.

MICHELON, L.; COSTA, S. A. da; RIBEIRO, L. Specification of Real-Time Systems
with Graph Grammars. In: SIMPÓSIO BRASILEIRO DE ENGENHARIADE SOFT-
WARE, SBES, 20., 2006, Florianópolis, Brasil.Anais. . . [S.l.: s.n.], 2006. p.97–112.

PNUELI, A. In transition from global to modular temporal reasoning about programs.
In: KRZYSZTOF, R. A. (Ed.).Logics and Models of Concurrent Systems. New York:
Springer, 1985. p.123–144. (Nato Asi Series F: Computer AndSystems Sciences, v.13).

PROMELA Language Reference. [S.l.: s.n.], 2008. Availableat: http://cm.bell-
labs.com/cm/cs/what/spin/Man/promela.html. Visited on: Apr. 2008.

103

RIBEIRO, L. Parallel composition and unfolding semantics of graph grammars.
1996. PhD Thesis — Technical University of Berlin.

RIESCO, M.; TUYA, J. Synchronous Estelle: just another synchronous language? In:
SYNCHRONOUS LANGUAGES, APPLICATIONS AND PROGRAMMING, SLAP, 2.,
2003, Porto, Portugal.Proceedings. . .[S.l.]: Elsevier, 2004. p.71–86. (Electronic Notes
in Theoretical Computer Science, v.88).

ROZENBERG, G. (Ed.).Handbook of Graph Grammars and Computing by Graph
Transformation . River Edge: World Scientific, 1997. v.1.

SCHOLZ, P. A refinement calculus for statecharts. In: INTERNATIONAL CONFER-
ENCE FUNDAMENTAL APPROACHES TO SOFTWARE ENGINEERING, FASE, 1.,
1998, Lisbon, Portugal.Proceedings. . .Berlin: Springer, 1998. p.285–301. (Lecture
Notes in Computer Science, v.1382).

SCHÜRR, A. PROGRESS: a VHL-language based on graph grammars. In: INTERNA-
TIONAL WORKSHOP ON GRAPH-GRAMMARS AND THEIR APPLICATION TO
COMPUTER SCIENCE, 4., 1990, Bremen, Germany.Proceedings. . .London: Springer,
1991. p.641–659. (Lecture Notes in Computer Science, v.532).

SCHÜRR, A.; WINTER, A. J. UML Packages for PROgrammed Graph REwriting Sys-
tems. In: INTERNATIONAL WORKSHOP ON THEORY AND APPLICATIONOF
GRAPH TRANSFORMATIONS, TAGT, 6., 1998, Paderborn, Germany. Selected Pa-
pers. Berlin: Springer, 2000. p.396–410. (Lecture Notes in Computer Science, v.1764).

SCHÜRR, A.; WINTER, A.; ZÜNDORF, A. The PROGRES Approach: language and
environment. In: EHRIG, H. et al. (Ed.).Handbook of Graph Grammars and Com-
puting by Graph Transformation . River Edge, NJ, USA: World Scientific, 1999. v.2,
p.547–668.

SECELEANU, C. C.; SECELEANU, T. Synchronization Can Improve Reactive Systems
Control and Modularity.Universal Computer Science, [S.l.], v.10, n.10, p.1429–1468,
2004.

SEKERINSKI, E. Graphical Design of Reactive Systems. In: INTERNATIONAL B
CONFERENCE ON RECENT ADVANCES IN THE DEVELOPMENT AND USE OF
THE B METHOD, B, 2., 1998, Montpellier, France.Proceedings. . .London: Springer,
1998. p.182–197. (Lecture Notes in Computer Science, v.1393).

TAYLOR, I. J. et al. (Ed.).Control- Versus Data-Driven Workflows. London: Springer,
2007. p.167–173.

SIRJANI, M.; MOVAGHAR, A. An Actor-Based Model for Formal Modelling of Re-
active Systems: Rebeca. Tehran, Iran: Computer Engineering Dept, Sharif University of
Technology, 2001. Technical Report. (CS-TR-80-01).

TAENTZER, G.; SCHÜRR, A. DIEGO, another step towards a module concept for graph
transformation systems. In: JOINT COMPUGRAPH/SEMAGRAPH WORKSHOP ON
GRAPH REWRITING AND COMPUTATION, SEGRAGRA, 1995, Volterra, Italy. Pro-
ceedings. . .[S.l.]: Elsevier, 1995. p.277–285. (Electronic Notes Theoretical Computer
Science, v.2).

104

USELTON, A. C.; SMOLKA, S. A. A Process Algebraic Semantics for Statecharts via
State Refinement. In: IFIP WORKING CONFERENCE ON PROGRAMMING CON-
CEPTS, METHODS AND CALCULI, PROCOMET, 1994, San Miniato, Italy. Proceed-
ings. . . Amsterdam: North-Holland Publishing, 1994. p.267–286. (IFIP Transactions,
v.A-56).

105

APPENDIX A CATEGORICAL DEFINITIONS

Definition A.1 (Pushout and pushout complement)(CORRADINI et al., 1997) Given
a categoryC and two arrowsl : K → L andk : K → D of C, a triple 〈G, l∗ : D →
G,m : L→ G〉 as in the diagram below is called a pushout of〈l, k〉 if

K
l

k

L

m

g′

D
l∗

f ′

G

h

D′

Commutativity m ◦ l = l∗ ◦ k, and

Universal Property for all objectsG′ and arrowsg′ : L → G′ andf ′ : D → G′, with
g′ ◦ l = f ′ ◦ k, there exists a unique arrowh : G → G′ such thath ◦m = g′ and
h ◦ l∗ = f ′.

In this situation,G is called apushout objectof 〈l, k〉. Moreover, given the arrowsl :
K → L andm : L → G, a pushout complementof 〈l,m〉 is the triple〈D, k : K →
D, l∗ : D → G〉 such that〈G,m, l∗〉 is a pushout of〈l, k〉. In this caseD is called a
pushout complementof 〈l,m〉.

Proposition A.1 (Existence and uniqueness of pushout complement) (CORRADINI
et al., 1997) Letl : K → L andm : L→ G be two morphisms inT -Graph, wherem is
injective. Then there exists a pushout complement〈D, k : K → D, l∗ : D → G〉 of 〈l,m〉
iff the following condition is satisfied:

Dangling condition No edge e ∈ EG − mE(EL) is incident to any vertex in
gV (VL − lv(VK)).

In this case,〈l,m〉 satisfies thegluing condition(or m satisfies the gluing condition with
respect tol). If morphisml is injective, then the pushout complement is unique up to
isomorphism.

106

Lemma A.1 Considering the following commuting diagram, withb mono, then(1) is a
pullback in any category:

X g

f

!x

A
id

a (1)

A

c

B
b

C

Proof: For all objectX and two morphismsg andf , such thatc ◦ g = b ◦ f , then∃!x : X → A

such thatid ◦ x = g anda ◦ x = f . By definition of identityx = g, then it remains to prove
a ◦ g = f . By commutativity of(1), thenb ◦ a ◦ g = b ◦ f . Sinceb is mono, thena ◦ g = f as we
want to prove. ⊓⊔

In the following, we consider the following commutative diagram:

A
=

(1)

B

(2)

C

D
=
E F

Lemma A.2 (composition of pushouts and pullbacks).(HABEL; MÜLLER; PLUMP,
2001) If diagrams(1) and(2) are pushouts (pullbacks) then(1+2) is a pushout (pullback)
as well.

Lemma A.3 (decomposition of pushouts and pullbacks).If diagrams(1 + 2) and(1)
are pushouts then(2) is a pushout. If diagrams(1 + 2) and(2) are pullbacks then(1) is
a pullback (HABEL; MÜLLER; PLUMP, 2001).

Lemma A.4 (Special decomposition).(HABEL; MÜLLER; PLUMP, 2001) If diagrams
(1 + 2) and(2) are pushouts andB → C is injective, then(1) is a pushout. If diagrams
(1 + 2) is pullback,(1) is a pushout, andC → F is injective, then(2) is a pullback.

Lemma A.5 Consider the following commuting diagram inSet

A
(1)

B

C D

E

(2)

F

If the two internal squares(1) and(2) are pullbacks, then the outer square with vertices
A, B, E andF is a pullback as well ().

Lemma A.6 (3-cube lemma)(CORRADINI et al., 1996) Consider the following com-
muting diagram inSet, with bottom and top morphisms injective.

A B

C D

A′ B′

C ′ D′

We have the following 3-cube lemmata:

107

1. If the bottom square is a pushout, the back and left squaresare pullbacks, then the
top square is a pushout if and only if the front and right squares are pullbacks.

2. If the top square is a pullback, the front and right squaresare pushouts, then the
bottom square is a pullback if and only if the back and left squares are pushouts.

108

APPENDIX B PROPER QUOTIENT PRODUCTIONS

In the following, for a setP of productions, we will writeG
P
⇒ H when there is a

direct derivation fromG toH using a production inP .

Definition B.1 (Quotient production) Given a productionq1 = L1
l1← K1

r1→ R1, a

productionq2 = L2
l2← K2

r2→ R2 is a quotient production ofq1 if there are two pushouts
(in Graph) of the form

L1

(1)

K1

(2)

R1

L2 K2 R2

where the vertical morphisms are surjective. The set of quotient productions ofq1 is
denoted byQ(q1).

By the next lemma we have that every application of a production corresponds to an
application of one of its quotient productions obeying the injectivity restriction. So, if
there is a derivation using a quotient production, then there is an equivalent derivation
using the original production. Moreover, if there is a derivation using a production based
on an arbitrary match, then there exists an equivalent derivation using some quotient pro-
duction of it based on an injective match.

Lemma B.1 (Quotient Lemma)For all graphsG andH, and all productionq:

1. G
Q(q)
⇒ H impliesG

q
⇒ H;

2. G
q,m
⇒ H impliesG

q′,m′

⇒ H for q′ ∈ Q(q) and some injectivem′.

The construction of proper quotient production for a parallel production can be find in
(HABEL; MÜLLER; PLUMP, 2001).

109

APPENDIX C TRANSACTIONS OF A DT-GTS

In this chapter we define the functions used to construct the set of transactions of a
dT-GTS. We do an analysis of termination for each function, after its definition, when is
necessary, i.e., when there are loops in its definition.

Definition C.1 (Initialisation) LetPZ be a set of production. The initialisation of set of
transactions, denoted byinit(PZ), is defined by the pair〈P ′,DwtProc(Z)〉 as in the
following:

1: for all p ∈ PZ do ⊲ for each productionp in PZ

2: if S(p) = p then ⊲ if this production is stable

3: φidp ∈ DwtProc(Z) ⊲ then include in the set of transactions ofZ the process

. containingp as its unique production

4: PZ = PZ − {p} ⊲ exclude productionp from set of productionsPZ

5: end if
6: end for
7: P ′ = P(PZ) ⊲ assign toP ′ the power set of remaining productions inPZ

8: for all A ∈ P ′ do ⊲ for all subsetA ofPZ

9: if 6 ∃p ∈ A � (S(Lp) = Lp ∨ S(Rp) = Rp) then ⊲ if there is no production with left-hand

. side stable or no production with

. right-hand side stable

10: P ′ = P ′ − {A} ⊲ then the subset of productions cannot compose a transactionand

. it is excluded fromP ′

11: end if
12: end for

The function defined above always stops since we can see that the executions of all
loops are controlled by finite structures (set of productionsPZ andP ′).

Definition C.2 (Making a process) Let Z = 〈〈TZ , PZ , πZ〉, TZs〉 be a dT-GTS,
φ = 〈〈Tφ, Pφ, πφ〉, Tφs〉 → Z be a graph process,〈p, k〉 be a pair wherep ∈ PZ and
m : LTZp → 〈Tφ, rφT 〉 be a match. For eachZ, the process constructed by applying〈p, k〉
in Tφ based onm, denoted bymakeZ(φ, 〈p, k〉, m), is defined byφaux as follows:

1: Taux = glue〈p,k〉(p,m, Tφ) ⊲ constructTaux applying〈p, k〉 in Tφ based onm

2: Paux = Pφ ∪ {〈p, k〉} ⊲ assign toPaux the set of productions ofφ plus〈p, k〉

3: πaux = πφ ∪ {(〈p, k〉, 〈Lp, m〉 ←֓ 〈Kp, m|Kp〉 → 〈Rp, t〉)}, where

. πZ(p) = LTZp ←֓ KTZ
p → RTZ

p andt : Rp → Tφ is defined by

. t(x) =

{
m(x), if x ∈ Kp;
〈x, 〈p, k〉〉, otherwise.

110

. ⊲ associate production name〈p, k〉 to the spamL〈p,k〉 ←֓ K〈p,k〉 → R〈p,k〉,

. whereL〈p,k〉 andK〈p,k〉 are typed overTaux bym andR〈p,k〉 is typed over

. Taux by m on preserved items and the created itemsx are mapped to

. 〈x, 〈p, k〉〉 (item included inTaux by application of〈p, k〉)

4: φauxT = φT ∪ {(〈x, 〈p, k〉〉, tRp(x)) | x ∈ Rp − rng(rp)} ⊲ include in the type graph

. mapping the elements created

. by 〈p, k〉

5: φauxP = φP ∪ {(〈p, k〉, p)} ⊲ include in the production mapping the production〈p, k〉

Definition C.3 (Concurrent graph) Let φ be a graph process. A subgraphG of Tφ is
called concurrent ifG is a subgraph of a graph reachable fromMin(φ) by means of a
derivation which applies all productions in

⋃
x∈G⌊x⌋, where⌊x⌋ = {p | p ∈ Pφ∧p �φ x}

Definition C.4 (Gluing) Let p : Lp ←֓ Kp → Rp be a production,G a graph,m : Lp →
G a graph morphism and∗ any symbol. The gluing ofG andRp, according tom and
marked by∗, denoted byglue∗(p,m,G) is the graph〈V,E, s, t〉, where:

V = {VG ∪m∗(VRp)} E = {EG ∪m∗(ERp)}

withm∗ defined by:

m∗(x) =

{
m(x), if x ∈ Kp;
〈x, ∗〉, otherwise.

The source and target functions are inherited fromG andRp.

Definition C.5 (Pre-transactions) LetA be a set ofT -Graph productions. The list of
initial graphs and productions, which can possible constitute a transaction, based onA,
denoted bypreTransactions(A), is the listl of graphs and production sets, defined as
follows:

1: X = {{〈p, 1〉 | p ∈ A}} ⊲ initialiseX with one set of productions containing

. one instance of each production inA

2: l = λ ⊲ initialise the list of pre-transactions (initial graph andproduction instances that

. can constitute a transaction) with an empty list

3: ok = false ⊲ initialise ok indicating that the list of pre-transactions is not complete

4: while ¬ok do ⊲ repeat while there are new production instances to be considered

. to construct the pre-transactions

5: ok = true ⊲ assigntrue to ok, that is set tofalse if new instances are need

6: Xaux = ∅ ⊲ assign empty set toXaux (set containing sets of production instances

. generated in order to balance productions in allX ′ in X)

7: for all X ′ ∈ X do ⊲ for each set of production instancesX ′ in X

8: for all 〈p, k〉 ∈ X ′ do ⊲ for each production instance〈p, k〉 in X ′

9: if x ∈ Lp − S(Lp)−Kp then
10: 〈x, 〈p, k〉〉 ∈ L ⊲ include inL (set of unstable elements consumed by productions

. in X ′) all unstable items consumed by〈p, k〉

11: end if
12: if x ∈ Rp − S(Rp)−Kp then
13: 〈x, 〈p, k〉〉 ∈ R ⊲ include inR (set of unstable elements created by productions

. in X ′) all unstable items created by〈p, k〉, and

14: end if

111

15: if x ∈ Kp − S(Kp) then
16: 〈x, 〈p, k〉〉 ∈ K ⊲ include inK (set of unstable elements preserved by productions

. in X ′) all unstable items preserved by〈p, k〉

17: end if
18: end for
19: if ∀〈x, 〈p, k〉〉 ∈ K � ∃〈y, 〈q, k′〉〉 ∈ R � tKp(x) = tRq(y) ∧

. ∀〈x, 〈p, k〉〉 ∈ L � ∃〈y, 〈q, k′〉〉 ∈ R � tLp(x) = tRq(y) ∧

. ∀〈y, 〈q, k′〉〉 ∈ R � ∃〈x, 〈p, k〉〉 ∈ L � tRq(y) = tLp(x) then

. ⊲ if all unstable items preserved/consumed (created) by production instaces

. in X ′ are created (consumed) by some production instance inX ′

20: for all 〈x, 〈p, k〉〉 ∈ L do ⊲ then, for each consumed elementx in L

21: if ∃〈y, 〈q, k′〉〉 ∈ R � tlp(x) = tRq(y) then ⊲ if there is one created elementy

. with the same type ofx

22: L = L− {〈x, 〈p, k〉〉} ⊲ excludex consumed by〈p, k〉 from set of elements

. consumed by productions inX ′

23: R = R− {〈y, 〈q, k′〉〉} ⊲ excludey created by〈q, k′〉 from set of elements

. created by productions inX ′

24: end if
25: end for
26: if L = ∅ andR = ∅ then ⊲ if all unstable elements consumed (created) by produc-

. tion instances inX ′ are created (consumed) by some

. production instance inX ′

27: l = l � InitGraph(X ′) ⊲ then, add to list of pre-transactions, the list of pairs of

. initial graphs and productions ofX ′, and

28: X2 = ∅ ⊲ assign empty set toX2 (set containing sets of production instances

. generate in order to balance all production instances of each X ′),

. indicating that is not necessary to add new production instances toX ′

29: else
30: X1 = {X ′} ⊲ otherwise, initialiseX1 (set containing sets of production instances

. genereted for eachX ′ in order to balance the consumed elements with

. created ones, if it is necessary) with the set of production instancesX ′

31: if L 6= ∅ then ⊲ and, if there are consumed elements that are not created

. by some production instance inX ′

32: for all 〈x, 〈p, k〉〉 ∈ L do ⊲ then, for each consumed element remaining inL

33: for all C ∈ X1 do XC = ∅ ⊲ initialise an empty setXC for each

. set of production instances inX1

34: end for
35: for all C ∈ X1 do ⊲ for each set of production instances inX1 and

36: for all q ∈ A do ⊲ for each productionq in A

37: if ∃y ∈ Rq −Kq � tLp(x) = tRq(y) then ⊲ such thatq creates elements

. of same type thatx

38: XC = {{〈q,#D + 1〉} ∪ C} ∪XC ,
. whereD = {〈q, i〉 | 〈q, i〉 ∈ C}
. ⊲ include a new instance ofq in XC (set containing sets of

. production instances generated for eachC in X1 in order to

. create items inL), and

39: ok = false ⊲ assignfalse to ok, indicating that there are new

. production instances to be considered

112

40: end if
41: end for
42: end for
43: X ′

1 =
⋃
C∈X1

XC

44: X1 = X ′
1 ⊲ after generate all sets of production instances inXC ,

. uptdateX1 with sets of production instances genereted

. in order to create all items〈x, 〈p, k〉〉 in L
45: end for
46: end if
47: X2 = X1 ⊲ initialiseX2 with all new sets of production instances that

. creates all elements inL

48: if R 6= ∅ then ⊲ if there are created elements that are not consumed

. by some production instance inX ′

49: for all 〈y, 〈q, k′〉〉 ∈ R do ⊲ then, for each created element remaining inR

50: for all C ∈ X2 do XC = ∅ ⊲ initialise an empty setXC for each

. set of production instances inX2

51: end for
52: for all C ∈ X2 do ⊲ for each set of production instances inX2 and

53: for all p ∈ A do ⊲ for each productionp in A

54: if ∃x ∈ Lq −Kq � tRq(y) = tLp(x) then ⊲ such thatp creates elements

. of same type thaty

55: XC = {{〈p,#D + 1〉} ∪ C} ∪XC ,
. whereD = {〈p, i〉 | 〈p, i〉 ∈ C}
. ⊲ include a new instance ofp in XC (set containing sets of

. production instances generated for eachC in X2 in order to

. consume items inR), and

56: ok = false ⊲ assignfalse to ok, indicating that there are new

. production instances to be considered

57: end if
58: end for
59: end for
60: X ′

2 =
⋃
C∈X2

XC

61: X2 = X ′
2 ⊲ after generate all sets of production instances inXC ,

. uptdateX2 with sets of production instances genereted

. in order to consume all items〈y, 〈q, k′〉〉 in R
62: end for
63: end if
64: end if
65: elseX2 = ∅ ⊲ if there is an unstable element consumed/preserved (created) by production

. instances inX ′ that is not created (consumed) by some other instance

. production inX ′, assign empty set toX2 (it is because the considered

. set of instance productions cannot constitute a transaction)

66: end if
67: Xaux = Xaux ∪X2 ⊲ updateXaux with the sets of production instances generate

. in order to balance the productions inX ′

68: end for
69: X = Xaux ⊲ updateX with new sets of production instances generate in the previous

. iteration in order to balance the productions in allX ′ in X

113

70: end while

In the function above, almost all loops are controlled by finite structures, butwhile
loop (at lines4 − 70) is repeated up tox = true. x is set totrue at the begin of each
iteration and becomesfalse when an instance of a production is included to compensate
a consumed/created item (lines37 − 40 and54 − 57). Since productions of considered
T-GTSs do not have cycles on creation and consuming of unstable items, the number of
needed instances of each production in a transaction is always finite. Consequently,x
eventually is not set tofalse and the loop stops.

Definition C.6 (Initial graphs) Let X be a set of sets ofT -Graph productions which
have balanced unstable items. The possible initial graphs and for eachX ′ ∈ X, denoted
by InitGraph(X), is given by listl of graphs and production sets, defined as follows:

1: l = λ ⊲ initialise the list of initial graphs and productions with an empty list

2: for all X ′ ∈ X do ⊲ for each set of production instances inX

3: ord = order(X ′) ⊲ order the production instances based on possibility of application

. (created and consumed unstable items)

4: for all G ∈ GI(ord) do ⊲ for each initial graph obtained from ordered productions inX ′

5: l = 〈〈G,X ′〉〉 � l ⊲ include the pair of initial graph and productions in listl

6: end for
7: end for

whereorder(X ′) orders the productionsX ′ based on typing of unstable items, which is
defined byl as follows:

1: l = λ ⊲ initialise the ordered list of productions inX ′

2: U = ∅ ⊲ initialise the current unstable items (set of items createdby considered

. productions that are not consumed by them)

3: for all 〈p, k〉 ∈ X ′ do ⊲ for each production inX ′

4: if Lp = S(Lp) then ⊲ if its left-hand side is stable then

5: l = l � 〈〈p, k〉〉 ⊲ include it in the listl, and

6: U = U ∪ {〈x, 〈p, k〉〉 | x ∈ Rp − S(Rp)−Kp} ⊲ include inU the unstable items

. created by the production, and

7: X ′ = X ′ − {〈p, k〉} ⊲ exclude the production fromX ′

8: end if
9: end for

10: while X ′ 6= ∅ do ⊲ repeat while there is some production inX ′ that is not used

11: UR = ∅ ⊲ initialise the set of unstable items created by all enabled productions in

. each iteration

12: for all 〈p, k〉 ∈ X ′ do ⊲ for each production〈p, k〉 in X ′ that can be applied in the

. graph containing the current items inU

13: Cp = {x | x ∈ Lp − S(Lp)} ⊲ assign the set of unstable items consumed/preserved

. by 〈p, k〉 toCp

14: Uaux = U ⊲ assign the set of current items toUaux, which will be used to updateU

. excluding items consumed by〈p, k〉

15: C = ∅ ⊲ initialise the set of unstable items consumed/preserved by〈p, k〉 for which

. there exists a corresponding item inUaux

16: for all x ∈ Cp do ⊲ for each unstable itemx consumed/preserved by〈p, k〉

17: if ∃〈y, 〈q, j〉〉 ∈ Uaux � tLp(x) = tRq(y) then ⊲ if there is an item inUaux with

. same type ofx

114

18: if x ∈ Lp −Kp then ⊲ then, ifx is consumed by〈p, k〉

19: Uaux = Uaux − {〈y, 〈q, j〉〉} ⊲ then, exclude the item with same type ofx

. fromUaux, and

20: end if
21: C = C ∪ {x} ⊲ includex in C

22: end if
23: end for
24: if C = Cp then ⊲ if all unstable items consumed/preserved by〈p, k〉 are currently inUaux

25: l = l � 〈〈p, k〉〉 ⊲ then, include〈p, k〉 in the list l, and

26: X ′ = X ′ − {〈p, k〉} ⊲ exclude〈p, k〉 fromX ′ indicating that it was already used, and

27: U = Uaux ⊲ updateU , excluding the unstable items consumed by〈p, k〉, and

28: UR = UR ∪ {〈x, 〈p, k〉〉 | x ∈ Rp − S(Rp)−Kp} ⊲ include inUR all unstable

. items created by〈p, k〉

29: end if
30: end for
31: U = U ∪ UR ⊲ include in set of current items all unstable items created byproductions

. enabled in the current iteration

32: end while

GI(l) is the set of possible initial stable graphs for the productions in l, applied in the
order in which they appear inl. It is defined as follows:

1: 〈p, k〉 = head(l) ⊲ get the first the first production inl

2: l = tail(l) ⊲ exclude the first production froml

3: G0 = Lp ∪ (Rp − S(Rp)) ⊲ initialise the partial initial graph with items consumed byp

. and unstable items created byp

4: C = {G0} ⊲ initialise the set of initial graphs with items the first partial initial graphG0

5: while l 6= λ do ⊲ repeat up to all productions inl to be considered

6: for all G ∈ C do CG = ∅ ⊲ for each graph inC, initialise a setCG, which will

. contain all graphs obtained applying inG the

. production on the top ofl

7: end for
8: for all G ∈ C do ⊲ for each partial initial graphG in C

9: 〈p, k〉 = head(l) ⊲ get the production on the top ofl

10: for all q ∈ Pr(p) do ⊲ and for each productionq, which include in the partial initial

. graphG all stable items consumed by〈p, k〉 and parts of stable

. items preserved by〈p, k〉 (the preserved items must be consid-

. ered because they can be preserved only by〈p, k〉 and must be

. included inG)

11: for all matchm : Lq → G do ⊲ and for each match ofq in G

12: CG = H ∪ CG, whereG
q,m
⇒ H ⊲ include inCG the graph obtained by applying

. q in G based on matchm

13: end for
14: end for
15: end for
16: Caux =

⋃
G∈C CG ⊲ get the union of partial initial graphs obtained from allG in C

17: C = Caux ⊲ actualiseC with all partial initial graphs obtained with base on

. production〈p, k〉 on the top ofl

18: l = tail(l) ⊲ exclude the production on the top ofl

19: end while

115

andPr(p) contains, for each possible subgraphL of preserved stable part of production
p, a production that consumes all unstable item consumed byp; preservesL plus all
unstable items preserved byp; and creates all stable part ofLp, which is not contained
in L, plus all unstable items created byp. It is defined by setX as follows, wherep is a
T -Graph production:

1: X = ∅ ⊲ initialise the set of productions which create all stable items consumed byp

. and some stable items preserved byp

2: for all subgraphL of S(rng(lp)) do ⊲ for each subgraphL ofLp containing only stable

. preserved items

3: X = X ∪ {q} ⊲ include inX a production that consumes the unstable items consumed

. by p and creates the stable items ofLp that is not inL and the unstable

. items created byp

. whereq is theT -Graph productionLq
lq
← Kq

rq
→ Rq, with

. Lq = 〈VLq , ELq , s
Lq , tLq〉

. VLq = VL ∪ V ∪ Vu

. ELq = EL ∪ Eu

. Eu = {e | e ∈ ELp ∧ tLp(e) 6∈ Ts} ⊲ set of unstable edges consumed or

. preserved byp

. V = {v | (v = sLp(e) ∨ v = tLp(e)) ∧ e ∈ Eu} ⊲ set of vertices that are

. source or target of

. edges inEu

. Vu = {v | v ∈ VLp ∧ tLp(v) 6∈ Ts} ⊲ set of unstable vertices consumed or

. preserved byp

. the functionssLq andtLq and the typing morphism are inherited fromLp

. Kq = 〈VKq , EKq , s
Kq , tKq〉

. VKq = VL ∪ V ∪ V
′
u

. EKq = EL ∪ E
′
u

. V ′
u = {v | v ∈ Vu ∧ v ∈ rng(lp)} ⊲ set of unstable vertices preserved byp

. E ′
u = {e | e ∈ Eu ∧ e ∈ rng(lp)} ⊲ set of unstable edges preserved byp

. the functionssKq andtKq and the typing morphism are inherited fromLp

. Rq = 〈VRq , ERq , s
Rq , tRq〉

. VRq = VS(Lp) ∪ V
′
u ∪ Vs

. ERq = ES(Lp) ∪ E
′
u ∪ Es

. Vs = {v | v ∈ VRp ∧ v 6∈ VS(Rp) ∧ v 6∈ rng(rp)} ⊲ set of unstable vertices

. created byp

. Es = {e | e ∈ ERp ∧ e 6∈ ES(Rp) ∧ e 6∈ rng(rp)} ⊲ set of unstable edges

. created byp

. the functionssRq andtRq and the typing morphism are inherited fromLp

. andRp

. ∀ ∈ Kq � lq(x) = idLp(x) ∧ rq(x) = idLp(x) ⊲ map bylq andrq each preserved

. item to itself

4: end for

The functionPr(p) always stops since the execution of its loop is realised for each
subgraph ofS(rng(lp)), that is a finite graph. Thewhile loop (at lines5 − 19) of GI(l)
function is executed up tol becomes empty. Since one element ofl is excluded in each
iteration this loops eventually finishes. Therefore, sincePr(p) andwhile loop finishes,
the functionGI(l) always stops. The unique loop inorder(X ′) that is not controlled by a

116

finite structure is thewhile loop at lines10− 32. This loop is repeated up toX ′ becomes
empty. Each production〈p, k〉 of X ′ is eliminated when the productions ordered in the
previous iterations create all unstable items used byp (lines24− 29). Since the produc-
tions inX ′ are balanced (i.e., all unstable items consumed/preservedby each production
are created by others) all productions will be eliminated ofX ′. Therefore, the function
order(X ′) always finishes. Finally, sinceX andGI(ord) are finite andorder(X ′) always
finishes, the functionInitGraph(X) always stops.

Definition C.7 (transactions test) Letφ : O → Z be a graph process.transaction(φ)
is true if φ is an transactional process and it isfalse otherwise. It is define byb as
follows:

1: b = true ⊲ initialise b indicating thatφ is a transaction

2: for all x ∈ Tφs do ⊲ for each stable item in the type graph ofφ

3: prex = {p | p ∈ Pφ ∧ y ∈ Lp − dom(lp) ∧ tLp(y) = x} ⊲ assign all productions

. that consumex to prex

4: contx = {p | p ∈ Pφ ∧ y ∈ Kp ∧ tKp(y) = x} ⊲ assign all productions that

. preservex to contx
5: postx = {p | p ∈ Pφ ∧ y ∈ Rp − rng(rp) ∧ tRp(y) = x} ⊲ assign all productions

. that createx to postx
6: if prex 6= ∅ then ⊲ if prex and

7: if contx 6= ∅ then ⊲ contx are not empty

8: b = false ⊲ then assignfalse to b indicating thatφ is not a transaction

9: else if postx 6= ∅ then ⊲ if prex andpostx are not empty

10: b = false ⊲ then assignfalse to b indicating thatφ is not a transaction

11: end if
12: else if contx 6= ∅ then ⊲ if contx and

13: if postx 6= ∅ then ⊲ postx are not empty

14: b = false ⊲ then assignfalse to b indicating thatφ is not a transaction

15: end if
16: end if
17: end for
18: Min = ∅ ⊲ initialise the set of items of minimal graph ofφ

19: Max = ∅ ⊲ initialise the set of items of maximal graph ofφ

20: for all x ∈ Tφ do ⊲ for all itemx in the type graph ofφ

21: if ∀p ∈ Pφ� 6 ∃y ∈ Rp − rng(rp) � tRp(y) = x then ⊲ if there is no production that

. createsx

22: Min = Min ∪ {x} ⊲ then includex in Min

23: end if
24: if ∀p ∈ Pφ� 6 ∃y ∈ Lp − dom(lp) � tLp(y) = x then ⊲ if there is no production that

consumesx

25: Max = Max ∪ {x} ⊲ then includex in Max

26: end if
27: end for
28: if ∃x ∈Min ∧ x 6∈ Tφs then ⊲ if there is an unstable item inMin

29: b = false ⊲ then assignfalse to b indicating thatφ is not a transaction

30: end if
31: if ∃x ∈Max ∧ x 6∈ Tφs then ⊲ if there is an unstable item inMax

32: b = false ⊲ then assignfalse to b indicating thatφ is not a transaction

33: end if

117

34: for all x ∈Min do ⊲ for all elementx in Min

35: if ∀p ∈ Pφ � (6 ∃y ∈ Lp � tLp(y) = x) then ⊲ if there is no production preserving or

. consumingx

36: b = false ⊲ then assignfalse to b indicating thatφ is not a transaction

37: end if
38: end for
39: Reachable = ∅ ⊲ initialise the set containing sets with elements of each graph reachable

. fromMin applying production ofφ

40: for all P ′ ⊆ Pφ do ⊲ for each subsetP ′ of productions ofφ

41: if ∀p ∈ P ′
� ∀x ∈ Lp�

. ((tLp(x) ∈Min) ∨ (∃q ∈ P ′
� ∃y ∈ Rq − rng(rp) � tRq(y) = tLp(x))) then

⊲ if for all production inP ′, all consumed/preserved item are inMin

. or are created by another production inP ′

42: SP ′ = {x | x ∈ Tφ ∧ ((x ∈Min ∧∀p ∈ P ′
� 6 ∃y ∈ Lp− dom(lp) � tLp(y) = x) ∨

. ((∃p ∈ P ′
� ∃y ∈ Rp − rng(rp) � tRp(y) = x) ∧

. (∀p′ ∈ P ′
� 6 ∃z ∈ Lp′ − dom(lp′) � tLp′ (z) = x)))}

⊲ then assign toSP ′ the set of all items inTφ, such that these items are inMin

. and are not consumed by any production inP ′, or they are created by one

. production inP ′ and are not consumed by any other production inP ′

43: Reachable = Reachable ∪ {SP ′} ⊲ include the setSP ′ in Reachable

44: end if
45: end for
46: for all S ∈ Reachable do ⊲ for all setS in Reachable

47: if ∀x ∈ S � x ∈ Tφs then ⊲ if all items inS are stable

48: b = false ⊲ then assignfalse to b indicating thatφ is not a transaction

49: end if
50: end for

All loops in functiontransaction(φ) are controlled by finite structures, then its com-
putations always stop.

Definition C.8 (dep-weak-equivalence test)Letφ1 andφ2 be two transactional process.
depEq(φ1, φ2) is true if the processes aredep − weak-equivalent and it isfalse other-
wise.depEq(φ1, φ2) is defined byb as follows:

1: b = false ⊲ initialise b indicating thatφ1 andφ2 are not dep-weak-equivalent

2: if there is an isomorphismf : Tφ1 → Tφ2 and there is a bijectiong : Pφ1 → Pφ2

. such thatrng(f|Min(φ1)) = Min(φ2), rng(f|Max(φ1)) = Max (φ2) and

. φ2P ◦ g = φ1P then ⊲ if there is an isomorphism between type graphs such that minimal

. and maximal graphs are preserved and there is a bijection

. between productions such that two related productions must

. be mapped to the same production in the dT-GTS to which

. the processes are associated

3: Rφ1 = ∅ ⊲ initialise the relation resulting of translation of dependency relation ofφ1

. into type ofφ2 w.r.t f

4: for all 〈a, b〉 ∈≺φ1 do ⊲ for all pair in the dependency relation ofφ1

5: Rφ1 = Rφ1 ∪ {〈f(a), f(b)〉} ⊲ include inRφ1
the pair of elements in type graph

. of φ2 associated by the isomorphismf to a andb

6: end for

118

7: if Rφ1 =≺φ2 then b = true ⊲ if the translation of≺φ1
is equal≺φ2

, then assign

. true to b indicating thatφ1 andφ2 are dep-weak-

. equivalent

8: end if
9: end if

Since the loop in function defined above is controlled by a finite structure the compu-
tation ofdepEq(φ1, φ2) always stops.

119

APPENDIX D RESUMO ESTENDIDO DA TESE

A complexidade dos sistemas atuais requer o uso de métodos dedesenvolvimento que
garantam correção e qualidade. Especificação formal é um importante instrumento usado
para atingir estes objetivos. A especificação é uma descrição do comportamento de um
sistema e/ou sua estrutura.

Sistemas de transformação de grafos(GTSs) é um formalismo adequado para a es-
pecificação de sistemas complexos, que podem levar em conta aspectos como orientação-
à-objetos, concorrência, mobilidade e distribuição (EHRIG et al., 1999a). De fato, grafos
podem ser naturalmente usados para fornecer uma representação estruturada dos estados
de um sistema, a qual destaca seus subcomponentes e suas interconexões lógicas e físicas.
Os eventos que ocorrem no sistema, que são responsáveis pelaevolução de um estado para
outro, são modelados por aplicações de regras de transformação adequadas, chamadas de
produções (de grafos). Esta representação é suficientemente precisa para permitir análise
formal do sistema em consideração, e também oferece uma representação intuitiva visual
que pode ser facilmente compreendida por pessoal não-especialista.

Ao longo dos anos, o “framework” original foi sendo enriquecido, estendendoGTSs
com conceitos de estruturação que são necessários para lidar com a complexidade de
grandes especificações. Diversas noções de modularidade e refinamento foram propostas,
proporcionando mecanismos básicos para encapsulamento, abstração e ocultação de in-
formação – veja (HECKEL et al., 1999; SCHÜRR; WINTER, 2000; KREOWSKI; KUS-
KE, 1999; DREWES et al., 2000; EHRIG; ENGELS, 1996; HECKEL etal., 1998; TA-
ENTZER; SCHÜRR, 1995; GROSSE-RHODE; PARISI-PRESICCE; SIMEONI, 1999;
EHRIG; ENGELS, 1993). Contudo, pouca atenção tem sido dada àidéia de estenderGTSs
para permitir a especificação de atividades transacionais.Abstratamente, uma transação
é uma atividade, envolvendo a execução de um grupo de eventos, os quais podem levar o
sistema a um estado de sucesso ou falha. No último caso, a execução parcial da transação
é descartada e não tem efeito no sistema. Em implementações concretas esta noção é
obtida com mecanismos de “roll-back” que restaura o estado inicial quando a falha é
detectada.

Em um trabalho introdutório (BALDAN et al., 2008), foi definida uma extensão de
GTSs, chamadassistemas de transformação de grafos transacionais(T-GTS), equipando-
os com a noção de transação. Rudemente falando, estados (grafos) são divididos em
partes estáveis e não-estáveis (instáveis), e uma transação é definida como uma com-
putação que começa e termina em estados contendo somente ítens estáveis, na qual todos
os estados intermediários tem alguma parte instável. Esta abordagem é motivado pela
natureza “data-flow” deste formalismo, onde as produções dosistema são aplicadas não-
deterministicamente, e qualquer forma de controle da aplicação das produções deve ser
codificada nos grafos. Assim, transações são mais naturalmente definidas indiretamente,

120

através da identificação de partes do estado que representamrecursos temporários (ou
“instáveis”), visíveis somente dentro da transação. Transações podem ser vistas em dois
diferentes níveis de abstração. Em um nível mais baixo, ambos os ítens estáveis e in-
stáveis, e assim também a estrutura interna da transação, são visíveis. Mas em um nível
mais abstrato, os ítens instáveis podem ser “esquecidos” e somente transações completas
são observáveis. Intuitivamente, um novoGTS é obtido, onde transações doT-GTS orig-
inal tornam-se produções que reescrevem diretamente o estado de origem no estado de
destino.

Sistemas reativos, em contraste aos sistemas transformacionais, são caracterizados
pela contínua reação a estímulos provenientes do seu ambiente. Se, além da reatividade,
considerarmos que muitas aplicações o método de especificação deveria prover um modo
de descrever a distribuição espacial dos estados, transformações de grafos parecem ser
uma técnica de especificação adequada. Algumas aplicações com estas características
são sistemas móveis e vias biológicas.

Diversos métodos para projeto e análise de sistemas reativos propõem linguagens sín-
cronas como formalismo de especificação (BERRY, 2000; HALBWACHS et al., 1991;
LEGUERNIC et al., 1991), onde o tempo de reação a um evento é nulo. Outros méto-
dos (SECELEANU; SECELEANU, 2004; MAIA; IORIO; BIGONHA, 1998; RIESCO;
TUYA, 2004) propõem usar linguagens assíncronas para especificar a comunicação entre
os componentes e definem um mecanismo para descrever um conjunto (ou seqüência)
de atividade que são realizadas atomicamente. Portanto, nos podemos usar a noção de
transações para descrever, em um nível abstrato, estas atividades atômicas. Além disso,
foi proposta, em (MAIA; IORIO; BIGONHA, 1998), uma abordagem para especificar ex-
plicitamente padrões de interação usando Máquinas de Estados Abstratas (ASMs), onde o
projetista, além de especificar as operações do componente,pode descrever os sinais que
são enviados e recebidos do ambiente. O projetista pode também especificar parcialmente
o ambiente mostrando somente a especificação das interações.

Contudo, as abordagens para transformações de grafos não fornecem mecanismos
para especificar explicitamente padrões de interação entreo sistema e seu ambiente. Al-
gumas delas restringem o padrão de interação à funções (e assim na realidade descrevem
sistemas transformacionais), e outras apenas permitem umaforma muito restrita de inter-
ações. Em (HECKEL, 1998), foi proposto o uso de sistemas de transformação de grafos
para especificar sistemas reativos: a interação entre o sistema e seu ambiente não é ex-
plicitamente especificado, ao invés, ela é descrita em um nível semântico, onde os estados
do sistema descrevem efeitos que não são determinados por aplicações de regras. Por-
tanto, sistemas de transformação de grafos transacionais são estendidos para expressar
interações explicitamente.

Nesta tese, é desenvolvido um trabalho mais elaborado emGTSs transacionais para
permitir a abstração da estrutura interna das transações e demonstrar que umT-GTS e
sua abstração têm o mesmo comportamento em termos de transações. Além disso,T-
GTSs foram estendidos com um mecanismo para descrever padrões de interação entre um
sistema e seu ambiente, o que permite especificar sistemas reativos. A idéia, nesta pro-
posta, é que um componente interage com seu ambiente consumindo e criando elementos
visíveis ao seu ambiente. Estas ações podem ser descritas como produções (abstratas) de
grafos na especificação abstrata que são implementadas por uma série de outras produções
em uma especificação mais concreta. Uma relação entre estes dois níveis de abstração foi
definido, resultando em uma noção de refinamento.

Mais especificamente, os principais objetivos desta tese são:

121

• definir uma noção de atividade atômica paraGTSs: alcançado através da definição
da noção de transações;

• demonstrar que atividades atômicas são preservadas em um nível mais alto de ab-
stração: atingido através da definição de morfismos de implementação e da demon-
stração da existência de uma adjunção entre as categorias dos T-GTS com morfis-
mos de implementação e dosGTSs com morfismos padrão. Resultados preliminares
deste trabalho foram publicados em (BALDAN et al., 2006);

• propor um mecanismo para descrever padrões de interação através de produções de
grafos para especificar sistemas reativos: obtido através da definição de relações de
dependência associadas às produções dosT-GTSs. Resultados preliminares deste
trabalho foi publicado em (FOSS; MACHADO; RIBEIRO, 2007);

• definir uma noção de refinamento que leve em conta os padrões deinteração: atingido
através da definição de uma noção de refinamento baseada nos morfismos de im-
plementação.

D.1 Contribuições

As contribuições desta tese estão relacionadas a duas diferentes áreas da Ciência da
Computação: a área teórica, através da fundamentação teórica do conceito de transações
para transformação de grafos; e a área de engenharia de software, propondo um formal-
ismo para especificar sistemas reativos, onde as interaçõesentre o sistema e seu ambiente
podem ser descritas por relações associadas às produções. Além disso, usando morfismos
de implementação, pode-se definir um método de desenvolvimento incremental, iniciando
com uma visão abstrata do sistema e adicionando mais detalhes a cada passo de refina-
mento.

D.1.1 Contribuições para a área teórica

Nesta tese foi dada a fundamentação teórica da noção de atividades transacionais em
transformação de grafos. Uma transação é definida como uma classe de derivações, onde
os estados inicial e final são estáveis e todos os estados intermediários são instáveis.
Assim, os ítens instáveis representam recursos temporários, visíveis somente dentro da
transação. A distinção entre elementos estáveis e instáveis é forçada pelo mecanismo
de tipagem. Esta definição de transações é inspirada no trabalho sobrezero-safe nets
(BRUNI; MONTANARI, 2000) e é motivada pela natureza “data-driven” do formalismo
de transformação de grafos, onde qualquer forma de controlena aplicação das produções
é codificada nos grafos. Um dos principais resultados teóricos deste trabalho é a caracter-
ização do sistema abstrato de umT-GTS (que contém todas as transações doT-GTS como
produções) em termos de uma construção universal: um funtoradjunto à direita. Para
obter este resultado, inicialmente, as transações foram caracterizadas como processos de
grafos e após foi definida a noção de morfismo de implementação(outra importante con-
tribuição teórica), permitindo associar produções a processos transacionais. Essa noção
de morfismo de implementação é ainda mais geral que a noção definida em (BRUNI;
MONTANARI, 2000), permitindo que produções instáveis possam ser implementadas
por transações instáveis e, conseqüentemente, pode-se refinar também as implementações
das produções.

122

Além dos resultados mencionados, a extensão de transformações de grafos transa-
cionais, introduzida no Capítulo 4 (dT-GTS), enriquece a informação dada pelas produções
de grafos dasT-GTSs, tornando explícita a dependência entre elementos criados e consum-
idos/preservados. Esta relação pode ser usada para restringir o refinamento das transações,
uma vez que a noção de morfismo de implementação para dT-GTSs deve respeitar as de-
pendências. Assim, usando esta extensão podemos dar informações abstratas a respeito
das dependências desejadas nas implementações.

D.1.2 Contribuições para a área de Engenharia de Software

A abordagem visual e dirigida a dados dasGTSs, faz delas um formalismo natural
para especificar sistemas reativos, onde o comportamento dos componentes é definido
pelo fluxo dos sinais (dados) que são gerados pelo ambiente e não pelo fluxo de controle
dos componentes. As noções de transação e relação de dependência introduzidas nesta
tese tornam o formalismo ainda mais adequado para a especificação de sistemas reativos.
Estas extensões incrementam o formalismo deGTSs com um mecanismo para especificar
reações atômicas e, assim permite descrever, em um nível abstrato, sistemas síncronos.
Nesta tese, também foi apresentada uma idéia inicial sobre estruturação vertical, propondo
uma noção de refinamento para relacionar especificações abstratas e concretas, onde as
dependências entre eventos/sinais de entrada e saída são dadas explicitamente como uma
informação adicional a respeito do comportamento do sistema. Esta informação pode ser
útil para especificar o comportamento do ambiente e para fins de verificação, como será
discutida na seção 5.3.

Na seção a seguir, são apresentadas algumas idéias iniciaissobre como incrementar
este framework.

D.1.3 Trabalhos futuros

As seguintes questões serão temas de trabalhos futuros:

• se este modelo for restringido a um tipo especial deGTSs chamado de Gramática
de Grafos Baseadas em Objetos (OBGG), pode-se usar uma ambiente de desen-
volvimento para especificação visual, simulação, verificação automática e geração
de código (DOTTI et al., 2005, 2006). Em (DOTTI et al., 2006) foi proposta uma
abordagem, para verificar sistemas parciais usando OBGGs, baseada na abordagem
“assume-guarantee”. A idéia básica é ver cada parte do sistema como um sistema
aberto - um sistema cujo comportamento não está completamente especificado e
que depende das interações com seu ambiente. Para que seja possível usar esta abor-
dagem, é necessário descrever ambas as interações de entrada e saída. As últimas
são especificadas pela interface e são derivadas do comportamento do corpo do sis-
tema. As interações de entrada (i.e., as reações provenientes do ambiente resultantes
dos eventos/sinais do sistema) não podem ser derivadas da especificação do sistema,
então é necessário incluir um mecanismo para descrever explicitamente este tipo de
interação. Isto pode ser feito adicionando uma nova relaçãode dependência para
cada produção na interface do módulo. Esta extensão permiterestringir a semântica
dos módulos, uma vez que tem mais dependências para considerar ao completar o
comportamento do módulo.

• além disso, considerando uma dT-GTS e sua abstração relacionadas por um mor-
fismo de implementação, como definido no Teorema 4.1, pode-sedefinir uma noção

123

de módulo, onde o sistema abstrato é a interface, descrevendo a interação entre o
sistema e seu ambiente; e dT-GTS é o corpo que implementa a interface. Além
disso, para definir noções de composição de módulos é necessário definir inicial-
mente uma noção de compatibilidade entre as interações, requerendo que os módu-
los compostos devem ter transações com padrões de interaçãoduais. Além disso,
para duas transações (de módulos diferentes) com compatibilidade de interações,
deve existir elementos de sincronização, i.e., ítens estáveis que são criados por uma
transação deve ser consumidos pela outra, antes do final da primeira. Em um mó-
dulo composto, estes elementos observáveis devem tornar-se inobserváveis pois as
transações devem ser fundidas. É necessário ainda estudar melhor sobre a interface
composta resultante, bem como, a semântica do módulo composto.

• outras noções de refinamento devem ser estudadas, por exemplos, considerando-se
uma T-GTS sem relação de dependência como uma especificação abstrata eadi-
cionar a relação de dependência no refinamento desta especificação. Outro tipo de
refinamento que pode ser considerado é o refinamento da relação de dependência:
em um nível abstrato ela pode ser menos restritiva e em um nível concreto ela pode
ser mais restrita.

• O modelo das OBGGs é estendido, em (MICHELON; COSTA; RIBEIRO, 2006),
com noções de tempo. Pode-se considerar aplicar esta extensão, para tentar expres-
sar sincronia e noções de preempção no nível concreto.

Livros Grátis
(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas

http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1

Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo

http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1

