UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

LUCIANA FOSS

Transactional Graph Transformation
Systems

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Profa. Dr. Leila Ribeiro
Advisor

Prof. Dr. Andrea Corradini
Coadvisor

Porto Alegre, July 2008

Livros Gratis

http://www.livrosgratis.com.br

Milhares de livros gratis para download.

CIP — CATALOGING-IN-PUBLICATION

Foss, Luciana

Transactional Graph Transformation Systems / Luciana.Foss
— Porto Alegre: PPGC da UFRGS, 2008.

123 f.: 1l

Thesis (Ph.D.) — Universidade Federal do Rio Grande do Sul.
Programa de P6s-Graduacdo em Computacédo, Porto Alegre, BR—
RS, 2008. Advisor: Leila Ribeiro; Coadvisor: Andrea Cormad

1. Graph transformation. 2. Transactions. 3. Refinement.
4. Interaction pattern. |. Ribeiro, Leila. Il. Corradinindrea.
[Il. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. José Carlos Ferraz Hennemann

Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca

Pro-Reitora de P6s-Graduacédo: Prdflquiria Linck Bassani

Diretor do Instituto de Informatica: Prof. Flavio Rech Wagn
Coordenadora do PPGC: Ptofuciana Porcher Nedel
Bibliotecéaria-chefe do Instituto de Informatica: BeafRegina Bastos Haro

To my mother Celina, my
brother André and my niece Julia.
In the memory of my father, Luiz Foss.

TABLE OF CONTENTS

LISTOFFIGURES. e 6
LISTOF TABLES e e 8
ABSTRACT . . . e 9
RESUMO 10
1 INTRODUCTION e e e e e e e e 11
1.1 Outline e 13
1.2 PhD Thesis Motivation and Definition 13
121 GoalsofThesis 14
2 TYPED GRAPH TRANSFORMATION SYSTEMS 15
2.1 Operational Semantics. 18
2.2 CategoryGTS e 23
3 TRANSACTIONAL GRAPH TRANSFORMATION SYSTEMS 27
3.1 Introduction to Transactional GTS 27
3.2 CategoryTGTS e 33
3.3 AbstractGTsassociatedtoa-GTS 38
3.4 Transactions as graph processes. 39
3.41 GraphProcesses Q 4
3.4.2 Transactional Processes i i e 44
3.4.3 AbstracGTsforaT-GTsSbasedonprocess 45
3.5 Implementation morphisms for7-GTss. 47
3.6 Adjunction betweenGTS and TGTS™ 63
4 TRANSACTIONAL GRAPH TRANSFORMATION SYSTEMS WITH DE-
PENDENCY RELATION e 66
4.1 CategoriedGTS anddTGTS 70
4.2 Abstract d-GTs for a T-GTs with dependency relation 72
4.3 Implementation morphismfordr-GTs 77
4.4 Adjunction betweendGTS anddTGTS™ 79
4.5 ComparingT-GTSwithdT-GTS 81
4.6 Construction of the abstract system associated to arelsTs 85

4.7 Refinement of transactional graph transformation systms. 87

5 CONCLUSIONS 91

5.1 Theoretical contribution oL 91
5.2 Software Engineering contribution L oL 92
53 Futurework 96
REFERENCES e 98
APPENDIX A CATEGORICAL DEFINITIONS 105
APPENDIX B PROPER QUOTIENT PRODUCTIONS 108
APPENDIX C TRANSACTIONS OFADT-GTS 109
APPENDIXD RESUMO ESTENDIDODATESE 119
D.1 Contribuigdes e 121
D.1.1 Contribuicdes paraa éreatebrica wu.u .. 121
D.1.2 Contribuicbes para a area de Engenharia de Software 122

D.1.3 Trabalhos futuros 122

Figure 2.1: Typedgrapty. 16
Figure 2.2: Agraph production., 17
Figure 2.3: Example o6Ts: a pump operator of a gas station system. 18
Figure 2.4: Direct derivation frort/ to H using ACCEpPTbasedonn. 19
Figure 2.5: Two sequentially independent direct derivagio 20
Figure 2.6: Sequential independence. 20
Figure 2.7: Parallel production. 21
Figure 2.8: Parallel productiaon + ¢, and a proper quotient productigrof ¢; +¢.. 21
Figure 2.9: Derivation shift-equivalent to derivation ilgére 2.5. 22
Figure 2.10: Isomorphism of derivations. 23
Figure 2.11: Partial morphistfy. 24
Figure 2.12: Translation ofi®P production with respect t¢;: STOP production

(left), pulling back alond, (center) and $oF typed over?; (right). 24
Figure 2.13: Productions@f;. 26
Figure 3.1: TransactionaTs PumpOper for a pump operator of a gas station. . 28
Figure 3.2: TransactionaTs Customer for a customer of a gas station. 29
Figure 3.3: Stabilisedgraph. L. 30
Figure 3.4: A transaction of theGTS PumpOper in Example 3.1. 32
Figure 3.5: GTsmorphismf does not define >s morphism. 34
Figure 3.6: Derivatiots(p) and its equivalent derivation via proper quotient pro-

duction. 36
Figure 3.7: Derivationg; (p) andf7(8). oo 37
Figure 3.8: Abstract production associated to the trarmaat Figure 3.4. 39
Figure 3.9: Type graph (top-left), the maximal and the maligraphs (bottom-

left), and productions (right) of the process associatedetavation

inFigure 3.4. 42
Figure 3.10: Isomorphismof processes.« oo ... 43
Figure 3.11: Class of shift-equivalent derivations (left)d the equivalent graph

process (right) 44
Figure 3.12: AbstractTs associated to the-GTs PumpOper, depicted in Fig-

ure 3.1. . . . 46
Figure 3.13: Transactional procesgmplements productiop. 47
Figure 3.14: Implementation morphism from the absti@ats A(Customer) to

theT-GTSCustomer. i i i e 48
Figure 3.15: Transactional processes of customer system.. 48

LIST OF FIGURES

Figure 3.16: Composition of implementatiorcTs morphisms is assomatwe .. 55

Figure 3.17:

Figure 4.1:
Figure 4.2:
Figure 4.3:

Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:

Figure 4.8:
Figure 4.9:
Figure 4.10:
Figure 4.11:
Figure 4.12:
Figure 4.13:

Universality of z in TGTS™. 64
Transactions implementing® production depicted in Figure 3.1. . 67
Adep-production. 68
AT-GTS DepPumpOper with dependency relation for gas station
SYStEM. e e 70
dep-productiongp; andp,.o 72
Transactional process atdTS DepPumpOper. 73
dep-production associated to the process in Example4.4.76
Abstract &sTs Z, associated to theTdGTs Dep PumpOper, de-
scribedin Example4.2.. o 76
Universality ofz indTGTS™. 80
Transaction constructed from dep-productioon Figure 4.2. . . 83
TheTGTS 2. . . o . o e e e e e e e 84
Productions@cepTand FANISH forthedr-cTs 2. 84
Arefinement®dGTs Z for Dep PumpOper (Figure 4.3). 90
An unstable transactional process assodiatstbp production. . . 90

LIST OF TABLES

Table 4.1: Dependency relations of productions of transaat process,. . . . 74
Table 4.2: Transitive closure of dependency relations oflpction of¢;. 75
Table 4.3: Dependency relation associated to transatfooeessy;. 75

Table 4.4: Transitive closure of dependencies of produstiof ¢ depicted in
Figure 4.9. L 82

ABSTRACT

Reactive systems, in contrast to transformational systarasharacterised by having
to continuously react to stimuli from its environment. Ify addition to reactiveness,
we consider that for many applications the specificationhwetshould provide a way
to describe the spatial distribution of states, graph foansation seems to be a suitable
specification technique. Some applications with theseadaristics are mobile systems
and biological pathways. However, the approaches provimtegtaph transformations so
far are not adequate to explicitly describe interactioneas.

Furthermore, several approaches to specify reactive rmgspFopose to use asyn-
chronous languages to specify communication between coemte and define mecha-
nisms to describe a set (or sequence) of activities thatemfermed atomically. How-
ever, scarce attention has been devoted to the idea of éxgssuss in order to allow the
specification of atomic activities.

Inspired by the ideas of zero-safe Petri nets, an extendigmaph transformation
systems ¢Tss) — calledtransactionalGTs (T-GTS) — was defined, equipping them with
a transaction notion. A transaction, in this approach, riless a set of actions that are
executed in an atomic way and it is defined by distinguishiegésources that are visible
or invisible from an external point of view, where the lasesrare considered temporary
and are forgotten at a more abstract level.

In this thesis, we give a more theoretical foundatiorm4eTs defining a notion of
implementation morphisms betwegGTss (associating graph productions of a system
with transactions of other system) and using this notion emahstrate the existence of
an adjunction between categoriesaifss andT-GTss with implementation morphisms.
Moreover, we extends transactior@tss with a mechanism to describe interaction pat-
terns of reactive systems, by means of dependency relaticlusied in the graph produc-
tions. The idea is that a system interacts with its enviramrbg consuming and creating
elements visible to this environment, obeying a causal niggecy. Finally, we propose
a notion of glass-box refinement forGTss with dependency relations, where some in-
ternal aspects are preserved. In an abstract level, thensystspecified by productions
describing (in an atomic way) complete reactions, wheredtéffgendency relations give
some constraints on the internal structure of these reetid refinement of a system is
given by a total implementation morphism, that associaées ¢abstract) production to
a transaction. Hence, the refined system preserves alhexteehaviour of the original
system and the internal constraints given by the dependetetyons.

Keywords: Graph transformation, transactions, refinement, intemagtattern, Graph
transformation, transactions, refinement, interactidrepa

Sistemas de Transformacado de Grafos Transacionais

RESUMO

Em contraste aos sistemas transformacionais, sistenta®sesfio caracterisados por
reagir continuamente a estimulos provinientes seu anghieAtém da reatividade, se
considerarmos que muitas aplicagfes requerem métodopeeifemncao que possibili-
tam descrever a distribuicdo espacial dos estados, sisteéenaansformacédo de grafos
parecem ser uma técnica de especificacdo bastante adedugdanas aplicacbes com
essas caracteristicas sdo sistemas moveis e vias biaogica

Além disso, diversas abordagens para especificacdo denagsteativos propdem
usar linguagens assincronas para especificar a comungaitd@omponentes e definem
mecanismos para descrever um conjunto (ou sequéncia)iadis que sao realizadas
atomicamente. Porém, pouca aten¢do tem sido dada a id&tedeer sistemas de trans-
formacéao de grafos para permitir a especificacdo de atigglatbmicas.

Recentemente, inspirada nas idéias das redes de Petrisaierofoi definida uma
extensao de sistemas de transformacao de grafg ¢ denominada&Ts transacional
(T-GTS) — equipando-0s com uma nogéo de transacdo. Uma transagém abordagem,
descreve um conjunto de acdes que sdo executadas de um rbodooaé € definida
através de uma distin¢cao entre os recursos visiveis eveigsile um ponto de vista ex-
terno, onde os ultimos séo considerados temporarios eéeglps” em um nivel abstrato.

Nesta tese € dada uma fundamentacdo mais teérica{earss definindo uma nocao
de morfismos de implementac&as TS (associando produgdes de um sistema com tran-
sacdes de outro) e, usando essa nocado, € demonstrada ackxideEuma adjuncéo entre
as categorias deTss e T-GTSs com morfismos de implementacdo. Além diss0ss
transacionais sao estendidas com um mecanismo para dgsgaevOes de interacao de
sistemas reativos através de relaces de dependénciaaschas producdes. A idéia é
gue um sitema interage com seu ambiente consumindo e crid@mentos visiveis para
a esse ambiente, uma relagdo de causalidade. Finalmespenprs uma no¢ao de refi-
namento para-GTss com relagao de dependéncia caracterizada por uma vigéa-tex
vidro”, onde alguns aspectos internos sao preservados.nienivel abstrato, o sistema é
especificado por producdes que descrevem (de uma maner@ga}deacoes completas,
onde a relacédo de dependéncia determina algumas restnig@sdrutura interna dessas
reacfes. Um refinamento de um sistema € definido por um morfataiale implemen-
tacdo que associa cada produgéao (abstrata) a uma trangeggm, o sistema refinado
preserva todo o comportamento externo do sistema origiaalrestricdes da estrutura
interna determinadas pelas relacfes de dependéncia.

Palavras-chave:Transformacao de grafos, transacdes, refinamento, padiatedacao.

11

1 INTRODUCTION

The complexity of today systems requires the use of devedmpmethods that guar-
antee correctness and quality. Formal specification is goiitant instrument used to
achieve these goals. A specification is a description of gi@biour of a system and/or
its structure.

Graph transformation systenisTss) are a flexible formalism for the specification of
complex systems, that may take into account aspects sudbjexg-orientation, concur-
rency, mobility and distribution (EHRIG et al., 1999a). bct, graphs can be naturally
used to provide a structured representation of the statespétem, which highlights its
subcomponents and their logical or physical interconoesti Then, the events occur-
ring in the system, which are responsible for the evolutimmf one state into another,
are modelled by applications of suitable transformatidegucalled (graph) productions.
Such a representation is precise enough to allow the formaysis of the system under
scrutiny, as well as amenable of an intuitive, visual regnégtion, which can be easily
understood also by a non-expert audience.

Along the years several enrichments of the original franteva@ave been introduced,
extendingGTss with structuring concepts that are needed to master theleaity of
large specifications. Several modularity and refinemenionsthave been proposed,
providing basic mechanisms for encapsulation, abstmaeti@ information hiding — see
(HECKEL et al., 1999; SCHURR; WINTER, 2000; KREOWSKI; KUSKH999),
(DREWES et al., 2000; HECKEL et al., 1998; TAENTZER; SCHURR95; GROSSE-
RHODE; PARISI-PRESICCE; SIMEONI, 1999; EHRIG; ENGELS, 399996). How-
ever, to our knowledge, scarce attention has been devotbe idea of extendingTss
in order to allow the specification of transactional ackesgt Abstractly, a transaction is
an activity, involving the execution of a group of events,jebhcan either bring the sys-
tem to a successful state or fail. In the last case the pastedution of the transaction is
discarded and has no effect on the system. In concrete ingpliatmons this is achieved
with a roll-back mechanism which restores the startingestdten a failure is detected.

In an introductory work (BALDAN et al., 2008), inspired byehdeas of zero-safe
Petri nets, we define an extension®fss, calledtransactional graph transformation
systemgT-GTS), equipping them with a transaction notion. Roughly spegkistates
(graphs) are partitioned into a stable and a non-stabledlles parts, and a transaction is
defined as a computation that starts and ends in states thogsisly of stable items, in
which all intermediate states have some unstable parts.apuroach is motivated by the
understanding of graph transformation ataga-flowformalism, where the productions of
a system are applied non-deterministically, and any formooitrol on the application of
productions has to be encoded in the graphs. Thus, traosaetie more naturally defined
indirectly, by identifying parts of the state which repneséemporary (or “unstable”)

12

resources, only visible within a transaction. Transa&ioan be seen in two different
levels of abstraction. In a lower level, both stable and ainistitems, and thus also the
internal structure of transaction, are visible. But at a enabstract level, the unstable
items can be forgotten and only the complete transactiom®lbservable. Intuitively,
this gives rise to anothesTs, where abstract transactions of the origimadTs become
productions which rewrite directly the source stable Stattethe target stable state.

Reactive systems, in contrast to transformational systamescharacterised by con-
tinuous having to react to stimuli from its environment. iif,addition to reactiveness,
we consider that for many applications the specificationhwetshould provide a way
to describe the spatial distribution of states, graph faansation seems to be a suitable
specification technique. Some applications with theseadaristics are mobile systems
and biological pathways.

Several methods for design and analysis of reactive sygiempsse synchronous lan-
guages as specification formalism (BERRY, 2000; HALBWACHS8lg 1991; LEGUER-
NIC et al., 1991), where the time of reaction to an event is. nGither methods (SE-
CELEANU; SECELEANU, 2004; MAIA; IORIO; BIGONHA, 1998; RIESO; TUYA,
2004) propose to use asynchronous languages to specify goitation between com-
ponents and define mechanisms to describe a set (or sequérativities that are per-
formed atomically. Therefore, we can use the notion of tnahens to describe, at an ab-
stract level, these atomic activities. Moreover, in (MAI®RIO; BIGONHA, 1998) an
approach to specify interaction pattern explicitly usings&act State Machines (ASM)s
was proposed, where the designer, besides specifies thatiopserof component, can
describe signals that are sent to and received from envieahnThe designer can also
partially specify the environment showing only the intéi@t specification.

However, the approaches for graph transformations do rasigle @ mechanism to
explicitly specify patterns of interaction between a systnd its environment. Some of
them restrict the interaction pattern to functions (andstacatually describe transforma-
tional systems), and others just allow very restricted foohinteractions. In (HECKEL,
1998), it is proposed to use graph transformation systermsgdoify reactive systems: the
interaction between system and its environment it not ekplispecified, instead, it is
described in the semantical level, where the states of tsteisyshow effects that are not
determined by rule applications. Therefore, we extend ridwesactional graph transfor-
mations systems to explicitly express interaction.

In this thesis, we firstly develop a more elaborated work angactionalcTs. we
define a more manageable characterisation of transacsayraph processes, which sim-
plifies categorical definitions; based on the characteoisatf transactions as processes,
we show how the internal structure of transactions can bieaadted away, by considering
an abstracGTs associated to >sS,; and, we demonstrate that the concreteTs and
its associated abstractrs have the same behaviour in terms of transactions by charac-
terising this construction as a functor from the category-Gfrss to the category a6Ts
and showing that it is the right adjoint to the inclusion ftoran the opposite direction. In
order to do this, we define appropriated morphisms in botbgmates, specially a notion
of implementation morphism for the categorym6GTss. Using the notion of implemen-
tation morphism it is possible to describe the behaviour system at an abstract level
and assure that the refined system really executes accaaligs abstract behaviour.
Preliminary results of this work was published in (BALDANadt, 2006).

Next, we extend-GTs to a version of--GTs with dependency relations{esTS), by
providing a mechanism to describe a weaker dependency aoreated and consumed

13

items of a production. We extend, too, all concepts and testithe original version to
d71-GTss. The notion of dependency is extended to transactionst aeflieicts the depen-
dencies generated by internal items of the transaction.ebar, this relation restricts
the definition of implementation morphisms giving additabnonstraints to possible re-
finements for each production. Preliminary results of thaskwvas published in (FOSS,;
MACHADO; RIBEIRO, 2007). Finally, we propose to use-dTs to specify reactive
systems. The idea, in our proposal, is that a componengattewith its environment by
consuming and creating elements visible to this environmeénese actions may be de-
scribed as (abstract) graph productions in the abstractfgation that are implemented
by a series of other productions in the more concrete spatdit Defining a relationship
between these different levels of abstraction we can hawgiamof refinement. Addi-
tionally, the dependency relation associated to eachadigproduction can describe a
complex pattern of interaction between a system and itg@mvient.

1.1 Outline

In Chapter 2, some concepts of double-pushout approaciidedtgraph transforma-
tion systemsg&TS) will be presented. An extension of this formalism, callexhsactional
graph transformation systems-¢T1s), will be presented in Chapter 3. We review all
definitions of transactions and abstract system assodiatetd-GTs. In this chapter, we
also introduce a characterisation of transactions as gvegtesses that is used to define
implementation morphisms and to demonstrate the existehae adjunction between
categories ofsTs and T-GTs with implementation morphism. A further extensionTof
GTSs is given in Chapter 4, where all definitions and resultsiobthin Chapter 3 are
reproduced fomr-GTss with dependency relations. In the last section of this @rape
propose a notion of refinement for specification of reactygeans. And, in the last chap-
ter (5), we summarise the contributions of this work, giveaerview about related work
and describe the future directions of this research. In piperadices, some of the formal
definitions and theorems used/proved along of this promasabe found.

1.2 PhD Thesis Motivation and Definition

This research is inserted in a cooperation project betweanilBand Italy, called 1Q-
Mobile, which has as main goal to improve the software quadit open environments,
specially mobile and distributed applications, using farmethods. Within the scope of
this project, some aspects of Java language and graphdrarsfon systems were com-
pared: the object model; the support and treatment of cosieey; systems composed
of several classes. After analysing these aspects sonsdatians between Java acd's
were considered. The interest in these translations haaswects: on the one hand, the
possibility of to mapGTss in a programming language; and on the other hand, if Java
constructions can be translatedams, one can analyse Java systems by means of for-
mal techniques. Therefore, some work was developed in émsesGTss were mapped
into Java classes (DOTTI et al., 2005) and vice-versa (CORRAet al., 2004). Some
questions arose from the last translation:

e in this mapping we had to consider several details of Javéeimgntation, thus the
concept of transaction became an important mechanismaw #hle abstraction of
these details;

14

e the Java language, with its class concepts, allows a modaislopment of large
systems. An interest in leading these modularity concey¢saTS arose as a result
of comparison between the languages.

Thus, as a first step, a transaction notion was defined (BALRAAI., 2008), where
a transaction is a computation with some special propertMsreover, a transaction
can be seen at an abstract level, where some intermedigtecsia be forgotten. This
introductory work presented some basic definitions witHfatther formal foundations.

It would be nice to express the abstraction constructionfae@or from the category of
transactionat Tss to the category aTSs, giving raise, as in the case of Petri nets, to the
right adjoint to the inclusion functor in the opposite diten. This allows us to relate the
abstract and concrete systems by means of morphisms anel thiaivthey are equivalent
from an external observer point of view. For this, it seena the appropriate choice of
morphisms in the category aftGTss must allow to map a production into a transaction.
Therefore, the following step in this research was to givategorical foundations for
T-GTSS.

Other researchers proposed, in the scope of IQ-Mobile girag@ approach to verify
partial systems using restricted ss, called object-based graph grammars (DOTTI et al.,
2006). This work was based on the assume-guarantee apgooaehification (PNUELI,
1985). The basic idea is to see each part of a system as anygiems a system whose
behaviour is not fully specified and that depends on interastwith its environment.
In order to verify a component alone, one can assume an ement behaviour and,
based on this assumption, try to prove the desired propestithe component. In their
approach, they describe several steps to allow this veiditand the first two are: (1)
define the interface and (2) define interaction pattern as¥u In the second step, a
description of the desired interaction pattern betweersyistéem and its environment is
required. Inspired in (DOTTI et al., 2006), we, finally, defian extension of-GTss
incorporating a notion of dependency relation and proposespecify reactive systems.

1.2.1 Goals of Thesis
The main goals of this thesis are:

¢ to define a notion of atomic activity fa@Tss;
e to demonstrate that atomic activities are preserved inlagniggvel of abstraction;

e to propose a mechanism to describe interaction pattern laysnef graph produc-
tions to specify reactive systems;

¢ to define a notion of refinement which take in account the autison pattern.

15

2 TYPED GRAPH TRANSFORMATION SYSTEMS

In this chapter, the basic definitions of typed graph trams&tion systems in the
algebraic approach are reviewed. Typing discipline fopgsawill allow us to distinguish
between stable and unstable items in a given graph. Typingréphs (see (HECKEL
et al., 1996; CORRADINI; MONTANARI; ROSSI, 1996) for moretdds) can be seen
as a labelling technique, which allows to label each grapdr avstructure that is itself
a graph (called thgype graph. The base of this approach is the category of graphs and
graph morphisms.

(Typed) Graph and graph morphisms A graphis composed by vertices and edges
connecting source and target vertices. We can relate twahgrid they are structurally
compatible. This relation is given by means ofi@ph morphisma mapping between
graphs that respects the source and the target of each eglgeach edge mapped into
another must have its source and target vertices mappedhi@tsource and the target
vertices of the other, respectively. Besides, we can labeh é&em of a graph mapping
it into other graph, called type graph. tped graphs a graph equipped with tgping
morphismfrom it into a type graph. The compatibility between grapyysed over the
same type graph is determined typed graph morphismshat are mappings respecting
the type of each item of the graph, i.e., the vertices andsdfa graph can be mapped
only into vertices and edges of another if they have the sgpe tf the typing mapping
of a graph is injective, the graph is callegective as well.

Definition 2.1 ((Typed) Graph and graph morphisms) A graphis a tupleG = (Vg,
Eq,s%,t%), whereV; and E; are sets of vertices and edges, atdt“ : E; — V are
the source and target function.(fotal) graph morphisnf : G — G’ is a pair of functions
(fv : Vg — Vi, fe : Eq — Eg) such thatfy o s¢ = s o fpand fy o t% =t o fg.
The category of graph and total graph morphisms is callachph.

LetT € Graph be a fixed graph, called type graph/Zatyped graphG? is given by a
graphG and a graph morphismy; : G — T. When type graph is obvious we will write
G instead ofGr. A morphism of/-typed graphsf : GT — G'" is a graph morphism
f: G — @' that satisfies o f = t. A typed graphG? is calledinjectiveif the typing
morphisny is injective. The category @f-typed graphs and’-typed graph morphisms
is the comma categoryGraph | T'), shorted byI'-Graph.

Example 2.1 ((Typed) Graph and graph morphisms) Figure 2.1 shows two grapHhs

andG and a morphisnf between them. The vertices are represented by round squares
and circles, for exampl®perator andFree; and the edges are represented by arrows
with names (inscribed in polygons or not), for examf@asy andStart. When source

and target of an edge are the same vertex, we omit the souitee jctures, for example,

16

the edgeBusy has the pump vertex as source and target. Morplfisnaps the vertices
and edges df; into vertices and edges 0f, respectively. This mapping is defined by the
numbering. Graphs and morphisny compose a typed gragh’ = (G, f).

G

< preord |
[Coupon >~ c1
o1 b

5
o

> prepay |
eeo]|
- Comage]

Operator

Figure 2.1: Typed grapty.

_

The behaviour of a graph transformation system is deteminryethe application of
rewriting rules, also called graph productions (ROZENBER@97).

Productions. At an abstract level, @roductionis composed by three graphs: tiedt-

hand sidel, theright-hand sideR, and annterface K which represents the parts that
and R have in common. It specifies that, once an occurrence of éyehdy is found in

the current stafeit can be replaced with the gragt) preservingk .

Definition 2.2 (Productions) A T-typed (graph) productiois a tupleq : L, & K, NN
R,, whereq is the name of the productiod,,, K, and R, are T-typed graph/, is an
inclusion andr, is an injective morphism. The class of @lityped graph production is
denoted by-Prod.

In this work we will only consider consuming production.j. productions must
consume something.

Example 2.2 (Productions) Figure 2.2 shows a productigrwhose left-hand side, right-
hand side and interface are grapghs R, andK ,, respectively. Graplk, is mapped into

L, andR, by two morphismst andr. This production can be applied in a state containing
graphL, (i.e. containing vertices typed &ustomer andOperator, and edge typed
asPr epay from theCustomer to theOperator), resulting in a graph whereér epay
was deletedCustomer andOperator were preserved; ardoupon andPr eOr d were
created.

1The graph representing the current state of the system.

17

Rq

| r

Figure 2.2: A graph production.

Graph transformation systems A graph transformation systei defined by a collec-
tion of graph productions typed over a fixed type graph. lfd®n is given by a type
graph, a set of production names, and a function associa#ioy production name to a
typed production.

Definition 2.3 (Graph transformation systems -GTS) A (typed) graph transformation
systemis a tupleG = (T', P,), whereT is a type graphp is a set of production names,
7 is a function mapping production names to productiongifProd.

Example 2.3 (Graph transformation systems)An example will be used to illustrate the
main presented concepts. We will model an adapted versiargak station system pre-
sented in (DOTTI et al., 2006) usingrss. In this example, a customer prepays a certain
amount of money to the operator of a gas station for the gasiifiebe supplied by the
pump. If the operator is free, the pump supplies the gas ardttie operator returns the
change to the customer, based on the real amount of monendegdy the customer.
Otherwise, the customer receives a message advising higetrjo Another activity re-
alised in the gas station is the analysis of the pump in ozt the purity or impurity
of its gas.

In Figure 2.3, thesTs modelling the system of a pump operator of a gas stationsyste
is shown. The type graph of the system is depicted at therpaifahe figure. We have, in
this system, three entities modelled by vertidgastomer, Operator, andPump. Each
entity can have attributes (for exam@ld’ or F'ree) and receive messages (for example
Prepay or Suppl y). Each entity can have a reference to other one, that rapggese
an attribute as well. Both, attributes and messages arelfeddes edges. So, by type
graph we can see theump entity with their attributes: the operatasp) that operates
it and three flags indicating if it is freéce), or activated F'F'), or busy Busy). The
Customer entity has only a reference to the operatgr)(as attribute; and th@perator
has as attributes the pump that it operates.(

The behaviour of this system is described by the producttise top of Figure 2.3
— the interface graphs of the productions were omitted bey ttan be built as the in-
tersection between the left-hand side and the right-hamel gf each production. The
Operator entity controls the access to tRemp when a customer tries to use it. If pump
is not being used, the operator accepts (generatiPiged d message) the prepayment
and gives to customer a coupaRECEPT production) and it prepares the pump to be ac-
tivated (SERVE production). Thé®ump maybe activated, changing its flag frdimee to
FF (ACTIVATE production) and it may start supplying gas changing its ftagnfF' F’ to
Busy (START production). Eventually, theump finishes supplying the gas — changing
its flag from Busy to Free again — and it indicates to the operator (genera@ngr ge
message) the real amount that the customer expersienb(production). Finally, the

Operator

Operator Prepay Operator Operator

Activate Activate
[Operator } Customer} W > Pump
Serve pu
Start
Cust Supply Start
Activate

Operator Customer Operator
" Operator
Stop
>
op

Reject

-

Customer

Busy

ARl

Operator

chenge

Finish

-

Customer

Customer

Pure Impure
> >

op

AnalysE Analysg

Customer

Start
>

Operator

Analyse

.

Figure 2.3: Example o6Ts. a pump operator of a gas station system.

operator can return the change to the custorf@i§H production). If pump is being
used, the operator advises customer (sending a meBaage to try again REJECT pro-
duction). Moreover, th®perator entity can perform an analysis of the pumps, verifying
if the provided gas is pure or noOPUREANALYSIS or IMPUREANALYSIS productions,
respectively).

2.1 Operational Semantics

The operational semantics of7atyped GTs is given by derivations. A derivation
describes the application of a production to a graph reptegpa state of the system.
In the double-pushout approach, a derivation is given im$sof pushouts iff’-Graph.
Intuitively, the pushout of two graphs with respect to aeothne, called interface graph,
is given by the gluing of these two graphs together, idemtifythe items in the interface
(see appendix A).

Direct derivation and derivations. If there exists amccurrenceof the left-hand side of a
productionin a graph, this production can be applied to it. An applmatf a production

19

is given by a direct derivation in the double pushout appnoda this approach, direct
derivationis defined by two pushouts: the first deletes all items that beaconsumed
and the second includes all items that shall be createdré-&yd shows a direct derivation

using the production BCEPT.
Operator PreOrd

KAccept

<

Pump

Figure 2.4: Direct derivation frortr to H using ACCEPTbased onn.

A derivationis a finite or infinite sequence of direct derivations wheeefthal graph
of one is the start graph of another.

Definition 2.4 (Direct derivation and derivations) Given al’-typed graphz, aT-typed
graph productiory = L, & K, - R, and a match (i.e. an injectivE-typed graph mor-
phism)m : L, — G, adirect derivationfrom G to H usingq (based onmn) exists if
and only if the diagram below can be constructed, where bqtlaes are pushouts in
T-Graph. In this case the direct derivation is denotedbyG & Hord : G = H if
we do not make explicit.

L,~'OK+">R,
m| (1) kl 2) J{m*
G=p—D——H

Given acTs G = (T, P,x), aderivationp : GT """ T "2 GT... of Gis a
finite or infinite of direct derivations; : GT "=" HT, whereGY,, = H! andi > 0. If
a derivationp : G "= ... "2 GT s finite we callG] and GT of initial and final
graphs, respectively. The semanticgjos the class of all derivations i, denoted by
Der(G).

The construction of the diagram above depends on the egsstarthe pushout com-
plementD. In order to guarantee this existengemust satisfy thg@luing conditionwith
respect ta. This condition is partitioned in twodangling conditioni.e., if a vertex is
deleted, there are not edges that are incident to it; andémification conditioni.e., two
vertices can be identified by, only if they are preserved. Since the considered matches
are injective, the identification condition is always d&i$, so it remains to verify the
dangling condition (see appendix A).

Sequential independence If two direct derivationg: GT =" XT 22 HT overlap
only on items preserved by both, they are calbeduential independenfor example,

20

the Figure 2.5 shows two independent direct derivationscélYesee in this example (in
a lighter colour) that the items used by both productiongaeserved by them.

BT e of'w'\%

Y Y \\

Figure 2.5: Two sequentially independent direct derivatio

Definition 2.5 (Sequential independencelCORRADINI et al., 1997) Let, : G “="
X andd, : X £ H (as in Figure 2.6) be two direct derivations. They amquentlally
independentf my(Ly) N mi(Ry) € mao(la(K2)) N mi(ri(Ky)), i.e., if the images in
X of the L, and R; overlap only on items that are preserved by both derivatieps
In categorical terms, this condition can be expressed byiraty the existence of two
arrowss : Ly — Dy andu : Ry — D, such that} o s = my andl; o u = mj. In this
case(s, u) is said to be an independence pairf@fandd,.

T QK?%Rl 7 &)K?HRQ
| N |-

G H

2
* * *
13 T3

Figure 2.6: Sequential independence.

Parallel productions. A parallel productionassociated to a sét of productions is given
by the disjoint union of them.

Definition 2.6 (Parallel productions) (CORRADINI et al., 1997) Let, .. ., ¢, be pro-

ductions. Aparallel productiorassociated witlyy, . . ., g, is the productiony; + ...+ ¢,

= ((q1,in1), ..., (qn,iny,)) : L L K I R (depicted in Figure 2.7), where < 0,

¢ L & K, % R, € P, for eachi € {1,...,n}, L, K and R are the coprod-
uct objects of the graphs iy, ..., L,), (K,..., K,) and (R, ..., R,), respectively.
Moreover,[and r are uniquely determined by the families of arroys,...,[,} and
{ry,...,rn}, respectively. Finally, for eache {1,...,n}, in; is the triple of injections
(ink - L — L,inf : K; — K,inf: R, — R).

By the classical parallelism theorem (CORRADINI et al., ZPfr the double-push-
out approach o&Ts, two sequentially independent direct derivat@r?® H, 2 H may
be replaced by a single parallel direct derivati®n="> . But if we are using injective

matches, this is not always true:pif andp, preserve the same item, there is no injective
match that allows to construct the corresponding parailtettderivation. This situation

21

P2

Qg L:ElJr...JrALn(#K:;[(1+...1KHL>R;Rl+...+Rn
Figure 2.7: Parallel production.

makes necessary the notion of proper quotient producti@npafrallel production. In the
following, we present the definition of proper quotient pwotions and the parallelism
theorem considering proper quotient productions as iniced in (HABEL; MULLER;
PLUMP, 2001).

Proper quotient productions. Because we are using injective matches, sometimes we
cannot find a match from a parallel production into a graphhgbat this derivation is
equivalent to another, where productiongirare applied in a sequential way. This is be-
cause, if we have two independent direct derivations spareast one preserved item,
the parallel production associated to these derivatioh&axe two different items for this
shared preserved item. Since we use injective matches,mieawa two different matches
to pointing to shared item, but we cannot have one match frarallel production to the
same shared item. So we will upeoper quotient productionsf parallel productions

in order to have an equivalent production for which therenisrgective match (see ap-
pendix B for formal definitions). In (HABEL; MULLER; PLUMP,@1), a method for
constructing the set of all proper quotient productions,of ¢, is presented. It is based
on the idea of “gluing’Z.T and LY, KT andK7, RT andR} according to a graph which
relates the productiong andg,, based on its relationship in a derivation. For example, in
Figure 2.8 we have the parallel productiongpfandg, and its proper quotient production
(at the bottom line of the figure) — the lighter colourgin+ ¢- indicates the items that are
identified ing.

[l N

./ \.
N/

\ \ Y
Havs Wi v!

Figure 2.8: Parallel production + ¢» and a proper quotient productiqrof ¢; + ¢».

Parallelism theorem Considering the above sequential independent deriatlpnthe
Parallelism Theorem (Theorem 7.8 in (HABEL; MULLER; PLUME)01)), we can ob-
tain an equivalent direct derivation, applying a suitabledoictiong € PQ(q1 + ¢2) —a
proper quotient of the parallel productign+ ¢, — via an injective match. This means

22

thatq; andg, can be applied in a reverse order resulting in the same gigple., there

is a derivatiory’: G "= = xT q:> HT where the two derivation steps are “switched”.

Theorem 2.1 (Parallelism theorem) (HABEL; MULLER; PLUMP, 2001) Given two
productionsy; andg., the following statements are equivalent:

1. There is a parallel direct derivatio = H, for some production € PQ(q1+q2);

2. There are sequentially independent derivatioh$" H, 2 H;
3. There are sequentlally|ndependentder|vat|6.hs:> Hy * H

Shift-equivalence The equivalence on derivations induced by switchings qtisatial
independent direct derivations is callghift-equivalencén Figure 2.9, a derivation shift-
equivalent to the derivation in Figure 2.5 is shown. In thréswhtion,q; andg, are applied

in reverse order. It is easy to see that we can apply the popprent productiory (see
Figure 2.8) toGT obtaining #” in a single step derivation, i.e., there exists the direct

derivationGT &' HT.
@FI*'

qz : ‘C'/\‘O‘<—>

4

Figure 2.9: Derivation shift-equivalent to derivation iigé&re 2.5.

Definition 2.7 (Shift equivalence) (BALDAN; CORRADINI; MONTANARI, 1998a)
Given a derivationp = G "= X “X* H, consisting of two sequentially indepen-

dent direct derivationgy’ = G qg%é X' qlingll H is obtained as in the Theorem 2.1, where
productionsg; and g, are applied in the reverse ordey’ is called a switching op and

is denoted by ~*" p’. Theshift equivalence=*" on derivations is the transitive and
“context” closure of~*", i.e., the least equivalence, containing®, such that ifp =*" o/

thenpy; p; po =*" p1; p'; pa.

Abstract traces. If we want to abstract the concrete identities of the iterh$yped
graphs involved in a derivation, i.e., considering graplis whe same structure as be-
ing the same (abstract) graph, we can consider classdsstfict equivalent derivations
Combining shift-equivalence with abstraction equivatemee obtain the so-calledb-
stract truly-concurrent equivalenceEquivalence classes of derivations, with respect to
abstract truly-concurrent equivalence, are denotdd|asnd are calledbstract traces

Definition 2.8 (Abstraction equivalence) Letp : G "= L GLandy G T

q” " G’ (whosei'" step is depicted in the low arrows of the dlagram in Flgureﬂa 1

be two derlvatlons Then they aabstraction equivalentienoted by = o/, if n = n/,

23

¢ = ¢; for 1 <i < n and there exists a family of isomorphisis,, : X,, i— X/ |X €
{G, D},0 < i < n}, between corresponding graphs in the two derivations, shahthe
resulting diagram (stepdepicted in Figure 2.10) commutes. Equivalence classes®f d
orated derivations with respect ta®*are calledabstract derivationand are denoted by

[plans, Wherep is an element of the class (BALDAN; CORRADINI; MONTANARISH).

lgj 1y Tqi+1

di+1 - L(11+1 K(111+1 Rf11,+1

m ki m
!
[T
, 9i+1 , 941
/ GZ / D7 i+l
ba Op; 0641
G \\/ D, \/ G \/
i 1 i * i+1
41 9i41

Figure 2.10: Isomorphism of derivations.

Definition 2.9 (Abstract truly-concurrent equivalence) The abstract truly-concurrent
equivalence=" on derivations is the transitive closure of the union of tetions=*
and=*". Equivalence classes of derivations with respecttoare denoted a$|, and
are calledabstract trace@ALDAN; CORRADINI; MONTANARI, 1998a).

2.2 CategoryGTS

We can relate twa TSs by mapping the source type graph and production names into
the target ones. This mapping is given by morphisms in cayegfocTS. This definition
will be used as the base for definitions of morphisms intreduao the next chapters.
Various notions of morphisms for graph transformationayst have been introduced
in literature (CORRADINI et al., 1996; GROSSE-RHODE; PARFRESICCE; SIME-
ONI, 1999; HECKEL et al., 1996; RIBEIRO, 1996; BALDAN, 2000Pur morphisms
onGTsSs are a slight variation of morphisms in (BALDAN, 2000). Thepping between
type graphs must allow to forget some items, therefore wkeusé# partial morphisms to
relate them.

Partial graph morphisms A partial relation between two graphs maps only part of the
source graph to the target one. Here, we use the definitiarsitihalates a partial graph
morphism using a pair of total graph morphisms, with origimisubgrapkom (f) of the
source graph (domain of the partial graph morphism). Therficrphism mapgom(f)

into source graph and the second one maps(f) into target graph.

Definition 2.10 (Partial graph morphisms) A partial graph morphisnf : G; — Gy is
a total graph morphism from a subgraph@f, calleddom(f), to Gs, and is depicted as

Iy rs
G1 <= dom(f) = Go.

Example 2.4 (Partial graph morphisms) In Figure 2.11, a partial morphistfy from
the type graph of the pump operaters to a graphl} is depicted. The mapping is
described by numbering, where the items without a numbenatén the range of the
morphism. It means, that items1f.,..,0,., that are not inlom(fr) are all forgotten by
morphismfr.

24

TPu mpOper

dom(f)

Coupon
.

Pure

Customer

s \

Pure

5
Operator
M

puf 7

Operator

Analyse }

Impure

Figure 2.11: Partial morphisrfy-.

_

Proposition 2.1 Graphs and partial graph morphisms form a category, dendigd
Graph® (see (HECKEL et al., 1996)).

The mapping between productions must preserve them, so liveeguiire that the
target production be a translation of the source one, witheet to the mapping between
the type graphs. Formally, this is given by a pullback functiat, intuitively, forgets
all items whose type is not preserved by the type graph mgpiad then by typing the
production over the target type graph. For example, thekaséion of the production®P
by means the pullback functor, with respectftois shown on the center of Figure 2.12
and, on the right, it is typed ovér,. One can see that productiom®& | T} is not a
consuming production, since it defines an isomorphism.

Operator Operator
Figure 2.12: Translation of 1®P production with respect t@g,: SToP production (left),

pulling back alond, (center) and $oP' typed overZ; (right).

Customer

Definition 2.11 (Pullback functor) Given an object of a categoryC, theslice category
C| A has allC-arrows with targetA as objects; an arrow:.: f — ¢ inC| A is aC-arrow
h suchthatyo h = f.2

Letm: A — B be an arrow in a category with pullbacks. Chosen a pullback
square as (1) below for any: D — B, thepullback functoralongm: A — B, denoted
m*: C|B — C|l A, maps an objectf: D — B) € C| B to (m*(f): m*(D) — A) €
ClA.

Givenarrowsn: A — Bandf: D — B ofC, we writeg =, 4 m*(f) if there exists
an arrowC' — D such that square (2) below is a pullback.

m*(D)——=D C——D
mn) (1)) 9 (2) s
A———B A—=B

2Thus, for example]-Graph = Graph|7T as in Definition 2.1.

25

In the following lemmas we prove that pullback functor presgushouts and com-
mutativity.

Lemma 2.1 (pullback functor preserves pushouts).et the square (1) be a pushout in
T-Graph. LetG’ be a graph obtained fror@';, applying the pullback functor. Then the
square (2) is a pushout ilom(f7)-Graph.

Go G
PN Go a
! / 0
2 GS / 3) /
G €
Go Gy 1 1
NV O N . N
Gy Gs T dom(fr)

Proof: By definition of pullback functor, all arrowsg : Go — G4 in T-Graph, we haveg’ :

G, — G} indom(fr)-Graph, such that the squar8) above is a pullback. It holds by definition
of pullback functor and Lemma A.5, sing€&,, Go, dom(fr),T) and(G}, G1,dom(fr),T) are
pullbacks. Therefore, the right, front, left and back s@sam cube diagram above, are pullbacks.
Thus, by Lemma A.6, the top square is a pushout, as well. O

Lemma 2.2 (pullback functor preserves commutativity)Let (1) be a commuting dia-
gram in7-Graph. LetG’ be a graph obtained frortr;, applying the pullback functor.
Then(1’) is a commuting diagram idom(fr)-Graph.

ng2 @ g1
G’Q\ - G < /G’l

NV
dom(fT)

dom(fr)

Proof: We must prove thai o f = g;. By Lemma A.5, there exist; : G} — G|, g2 : G, — G|,
andf : G} — G4 suchthabog; =c¢,bogy =aandao f =c. Thus,we haveo f =bog; =
bo go o f. Sinceb is injective, them o f = g;. O

GTS morphism A GTs morphismf : G; — G, is given by two components. The firgt;,

is a partial and non injective morphism between the typelgaihat besides allowing to
forget some type item, allows to identify two items of thetfss s into one of the second.
The second component,, is a partial mapping between the production names such that
the mapped the productions are preserved.

Definition 2.12 (GTs morphism) LetG, = (T3, P, m) andGy = (Ty, P>, m3) be GTSs.
AGTsmorphismf: G, — Gsisapair f = (fr, fp), Wwhere

- fr: Ty — Ty is a partial graph morphism,;

- fp: Pi — P is apartial function on production names, such that forjalt P;:

26

—if fp(p) = q, then there are morphismg-(p), fX(p) and ff(p) such that
the diagram below commutes, affigf (p) Zgrapnx, t,(lf) (See Defini-
tion 2.11) forX € {L, K, R};

— if fp(p) is not defined, then morphismis (K,,) — [} (L,) andl} (K,) —
I}, (R,) are isomorphisms.

R,
/ fE(p) /
/Kp IE (p
‘ tr, \ tr,
N txp/ff(p) \
rg \L BN w ta \

T Jdom(fT) HT2
Ly

Example 2.5 GTs morphism) If we consider acTs G,, where the type graph g, in
Figure 2.11 and the productions in Figure 2.13, we can havesamorphismf from the
GTS of the pump operator system@. The component on the type grapfisis defined

as in Figure 2.11 and the component on the production sets RaREANALISYS and
IMPUREANALISYS into ¢q; andq,, respectively. The other productions are not mapped,
because their translations result in isomorphisms, as waea for the productioBTOP

in Figure 2.12.

Figure 2.13: Productions df;.

_

Then in the following proposition we show thatrss andGTs morphisms form a
category, proving that the composition and identities aet definedcTs morphisms, i.e.,
they preserve the existence of a mapping between compookptseductions, required
by Definition 2.12.

Proposition 2.2 GTss andGTs morphisms form a category, denoted®&I'S, in which
composition and identities are defined componentwise.(EEKEL et al., 1996))

Chosen a pullback functdt,, as in Definition 2.12, the partial morphisfa: 77 —
T5 induces aretyping functor f7: T1-Graph — 7T5-Graph, defined on objects as
fr'(te: G — Ty) = 14, o 13 (). The condition on morphisms involving the pullback
squares ensures that all the itemsXipwhose type is preserved by occur in Xy,).
Thus,GTs morphisms are simulations, meaning that, for a derivationg,, (any choice
of) the retyped diagranfi”(d) is a derivation inG,. This fact is showed in the following
proposition.

Proposition 2.3 (GTs morphisms preserve derivations)Let f : G; — G,, and leto; :
G1 =, H, be adirectderivation irgj;. Then there exists corresponding direct derivation
1 (61) = 021 f77(G1) = o) 7 (H1) In G, (see (HECKEL et al., 1996)).

27

3 TRANSACTIONAL GRAPH TRANSFORMATION SYS-
TEMS

In this chapter, we present the basic definitions @Ta extension with support to
the notion of transactions. A transaction in this approag$cdbes a set of actions that
must be executed in an atomic way. The notion of transactamnbeen originally de-
fined and studied in the realm of database management systedanly later it has been
considered in programming and specification formalisnke, firocess calculi, program-
ming languages and Petri nets. A transaction represent# afunteraction with the
management system, that is treated in a coherent and eeliay, independently of other
transactions, and that must be either entirely completedborted.

Transactions can be introduced in different ways in a modglspecification or pro-
gramming formalism. Ircontrol-centered formalisméke process calculi and program-
ming languages, where the execution of computations id huyle@xpressive control mech-
anisms, typically new control structures are introducedstarting/committing transac-
tions. Indata-centered formalismsee (SHIELDS, 2007) and Section 2.3 of (GAJSKI
et al., 2000) for data vs. control flows), like rewriting faafisms and Petri nets, where the
control structures are typically poor and the emphasis igherstructure of the state that
evolves during a computation, transactions are more ribtaiefined indirectly, by iden-
tifying parts of the state which represent temporary (oistable”) resources, only visible
within a transaction. This is the approach that has beenatkforzero-safe net BRUNI;
MONTANARI, 2001, 2000).

3.1 Introduction to Transactional GTS

Inspired by the work on zero-safe netignsactional graph transformation systems
(T-GTss), introduced in (BALDAN et al., 2008), are an extensionite tlouble-pushout
(DPO) approach to graph transformation, providing a simple wiagxpressing transac-
tional activities. The basic tool is a typing mechanism faphs which induces a distinc-
tion betweerstableandunstablegraph items. Given a typed graph, representing a system
state, we can identify a subgraph which represent its “stgidrt, i.e., the fragment of
the state which is visible for an external observer. Tramsas in aT-GTS are thus ab-
stract, “minimal” computations starting from a completstgble graph, evolving through
graphs with unstable items and eventually ending up in a te&esstate. Definitions and
propositions of this section, as well as corresponding fsta@n be found in (BALDAN
et al., 2008).

Transactional GTS. A transactionalcTsis defined as a collection of productions, typed
over a fixed type graph —i.e. a graph transformation systemnth-asubgraph of this type

28

graph determining the stable items, i.e., the items thatiarele for an external observer.
The other items are considered temporary, so, they arabiej®r unstable.

Definition 3.1 (Transactional GTS) A transactionatzTsis a pair (G, T), whereg is a
T-typedGTsandTy is a subgraph of the type graphof G, called thestable type graph

Example 3.1 (transactionalcTs) One can consider some activities of the system de-
scribed in Example 2.3 being executed as transactionsder ¢ do this, we must define
the temporary items of the system, i.e., the items that ddpmseen at a more abstract
level. For example, when the operator receives a prepaymeretan be interested only
in the supplied gas, without considering the series of stef@chieve this goal. To do
this, the messagés eOr d, Act i vat e andChar ge will become unstable in the trans-
actional GTs PumpQOper, as shown in Figure 3.1. Thus, when an operator receives a
prepayment and accepts ACCEPT and SERVE productions), &t art message (sign-
ing that gas can be supplied) is sent to customer, but theatioth of the pump becomes
unobservable ACTIVATE production). In the type graph (depicted at the bottom of the
figure) we marked the temporary (or unstable) messagesatéatsed to perform some
steps of the pump operator activities, with dashed linedgvithe stable ones are depicted

with solid lines.

Activate
» Pump R N
o TLLFE

{ Operator } Customer J
Serve pu
> Start
Start
» Pump N
g 4 Busy
Operator [+ -~ Charge [- Operator

!

B CUStomer
Impure
>

Analysg

Customer

Stop

Pure
>

Analysg

Customer
(- «’I:PreOrd fffff
Operator o
. Charge -
Analyse

T

Figure 3.1: Transaction&@Ts PumpOper for a pump operator of a gas station.

29

In Figure 3.2, ther-GTs Customer, modelling the customer system, is shown. The
type graph (bottom) shows us the same three entities in thgomperator system and
its behaviour is described by the productions at the top isffigure. In this system,

a Customer entity has a cyclic behaviour. It initiates prepaying an antaof money

in order to get some gasNIT production). If the pump is being used the customer is
advised by the operatoREJECT production), then it retries to be supplied (witBasy
message). Otherwise, the operator accepts the prepayirth@ustomer can initiate to
supply itself with gas $TARTSUPPLY production). It goes until the wanted volume of
gas was reached, when the customer can stop the pEspSUPPLY production) and
receive the change and a coupon from the operator. At thisenbthe pump is set free
and then the customer is ready to start all the process aBa@mART production).

7741:::83[6':):}7: End

op! »

777777 : Supply
Operator

Change Restart
Customer >
- "Stop - Coupon
Start Customer {__Stop :
Supply | Retry
Supply Pump - Customer >

Customer

Customer

Customer

Customer

op
Customer
Operator

Figure 3.2: Transaction&Ts Customer for a customer of a gas station.

_

Inspired by the approach for Petri nets proposed in (BRUNOMTANARI, 2000)
and extended to nets with read arcs in (BRUNI; MONTANARI, 2)Gtable steps, trans-
actions and abstract transactions are introduced. In ¢odgive these definitions, we
need a notion of stable graphs.

Stabilising functor. We can get the stable part of a graph considering only timesite
typed over the stable type graph. Formally, this operatsoodefined by a functor. We
denote byS: T-Graph — T,-Graph the functor that maps each graph typed over
T, to its subgraph consisting of its stably-typed items oalyd each morphism to its
restriction to stable items: thu$ called thestabilising functoyis a concrete choice for
the pullback functor induced by, where the morphisn§(G) — G is an inclusion.

Definition 3.2 (Stabilising functor) Let Z2 = (T, P,), T) be aT-GTsandi,: T —
T be the inclusion morphism determined by subgrdplof 7. Thestabilising functor
S : T-Graph — T,-Graph is defined by:

e on objects: for eactGr, S(GT) = (i*(G),i:(t¢)), wherei, (see diagram(1)
below) is an inclusion, and

30

e on morphisms: for each morphisfn: Gr — Hrp, S(f) = g, whereg : i*(G) —
i*(H) is the morphism uniquely determined by universal propeftyutiback (2)
below, such that3) commutes.

Sometimes, when it does not cause confusion, we wilf (15&) to denote th&-Graph
graph (it (G),is o il (tg)).

(G- R ~i3(H)
i#(10) “ ()
ii(G)——=G T,
i:(tc)l (1) ltc is (2)
I,———T T
s / \\
G 7 H

Customer

Operator

Analyse }

TPumpOper

Figure 3.3: Stabilised graph.

If a graph has only visible items, i.e., it is type oVE it is calledstable otherwise,
it is unstable

Definition 3.3 (Stable graph) A T-Graph G7 is calledstableif S(GT) = G7 (i.e., if
the morphismi’, — in diagram(1) above — is the identity). It is calleghstableotherwise.

Stabilised GTs. The stabilising functor can be applied pointwise to anydpiation of a
givenT-GTS, producing astabilisedcTs — aGTstyped over the stable type graph.

31

Definition 3.4 (StabilisedGTs) Given aT-typed1-GTs Z2 = ((T, P,x),Ts), the sta-
bilisedcTs S(2) is given by(T, P, n'), wheren’(q) = S(n(q)) for anyq € P.

The functorS, when applied to a derivation in a giversTs Z = (G, T}), produces a
derivation inS(Z). An indirect proof of this fact can be obtained by observimatthere
exists a typedsTs morphism(idr, : T — T, idp), in the sense of (BALDAN; CORRA-
DINI; MONTANARI, 1998b), which essentially forgets abounet unstable items. Then,
using the fact thatTs morphisms are simulations (Proposition 2.3), one can cuaiecl
the mentioned fact.

Proposition 3.1 Let Z = (G, T,) be at-GTsand letp = G, "= G, “2&2* .. "X g,
be a derivation inZ. Then

S(p) = 8(Go) "X s(Gy) PE A s,
is a derivation inS(Z).

Now, we are ready to define stable steps and transactionshelfoliowing, Z =
(G, Ty) is a fixedT-GTS,
Stable step and transaction A stable steps, intuitively, a computation whickil) starts
and ends in stable states. Moreover, stable items whichesrergted are “frozen”, in the
sense that they cannot be preserved nor consumed by otltkrctions inside the same
step; similarly, stable items which are deleted cannot lbsgwed by other productions.
Therefore,(2) the dependencies between productions occurring in a stepduced by
unstable items: this implies that at the abstract level,re/liastable items are forgotten,
all such productions are applicable in paralleftransactionis a stable step whe(8) the
start graph contains exactly what it needs to reach a sufatessl — so, in a computation,
it can be embedded into a larger context — &hdhone of its sub-derivations is a transac-
tion as well, so all intermediated graphs must be unstabiie.férmal definition is given
as follows, where each above restrictions are defined byitons with corresponding
numbers.

Definition 3.5 (Stable step and transaction)A stable stejis a derivationp = G, “="
G, 22 . "&" @G, which satisfies the following properties:

1. Gy andG,, are stable graphs;

2. the derivatiorS(p) is equivalentinS(G) to a direct derivation via a proper quotient

of the productiony;, + ... + ¢, and a suitable match, i.e.,S(G,) PRl Lgran).m

S(Gy,) is a derivation inS(G).
A transactions a stable step additionally satisfying
3. the matchn is an isomorphism;

4. any intermediate grap&’; (i # 0,n) is not stable.

Remark 3.1Note that by restriction (2) (a stable item created by a transaction
cannot be used within this transaction) a stable connected graph must be created
by a single production, this is because we need to preserve a vertex in order to
add an edge over it. Therefore, one cannot define a T-GTS which generates stable
connected graphs of arbitrary size.

32

ACCEPT M1 FINISH,m¢
——— e —

Example 3.2 (transaction) Figure 3.4 shows the derivatidr,
Gg of the T-GTS PumpOper (Example 3.1). G, andGg are the initial and the final
graphs, respectively, and the morphisms are described mpeuing, i.e., two related
items have the same number. We can see that this derivatisesponds to a transaction,

B . AN i

S ; Y :

1

1

Accept | Operator| [Customer| erator|

PL | operator | {p J { j Serve %p J

1

E pu pu
ﬁ Customer|

2 2 F'ump3 3 8~

P
Mg

-
;~ Charger
;
,,,,,, 16
1J| Stop | (operator| [Customer||| - GrargeT-
1 of|| g Tereer ; -
Finish
2 [o) o
2 3 Pum 1 2 1 2
G

Gs

pu

Y

Figure 3.4: A transaction of theGTS PumpOper in Example 3.1.

since it respects the requirements of Definition 3.5, Lethe initial (G,) and final (z¢)
graphs are stable) dependency between direct derivation is given only on st&éimns,
since the unique items created by one production and cortsbynanother are unstable
(e.g. ACCEPT production createBr eor d which is consumed b$ERVE production);3)

all items inG, are used (i.e. at least one production preserves or constenesinG,);
and4) intermediate states, to G5 are not stable.

_

Actually, since we are considering a concurrent model ofatation, the fact that all
the intermediate graphs are not stable should not be rdlatbe specific order in which
productions are applied. Rather, this property shoultllstid for any derivation which
is obtained from the original one by exchanging independteys of computation, i.e.,
shift-equivalent derivations. Moreover, we also want tetedt the concrete identities of
items in the involved graphs, i.e., considering graphs updmorphism.

Abstract transaction. An abstract transactioms defined as an abstract trace (a class of
shift-equivalent derivations where the involved graptesamsidered up to isomorphism)
containing only transactions.

33

Definition 3.6 (Abstract stable transaction) Anabstract stable transactiman abstract
derivation tracep],, such that for any’ € [p], the derivationy’ is a stable transaction.
The class of all abstract stable transaction of-&Ts Z is denoted bybsTrans(Z).

It follows from the definition that if two abstract transawts can be applied in parallel
to a stable graph, then all direct derivations of one arepaddent of the direct derivations
of the other one. Thus, as desired, the transactions carndsteaved in an arbitrary way.

In order to use transactions to define relations betweesdrional graph transfor-
mations systems — e.g., a refinement relation, where a ptiodus associated to a trans-
action — we must be able to compose transactions. This catiggos defined as an
operation in an appropriated category. The definition afdemtions as derivation traces
can be hard to cope with, since traces are equivalence slassktheir composition is
not simple. Therefore, a more manageable characterisafiatstract stable transac-
tions would be desirable. This characterisation can bengbyeusing the idea of graph
processes (BALDAN; CORRADINI; MONTANARI, 1998a), where emgraph process
represents a whole class of shift-equivalent derivati@n, & derivation trace. In follow-
ing sections we will present this characterisation andiutsaliefine a notion of refinement
or implementation morphism and abstraats.

3.2 CategoryTGTS

In this section we introduce a definitiancTs morphism, which relates productions
of sourceT-GTS to productions of target one, and prove thatTss and these morphisms
form a category. These results will be used to characteassactions as graph processes
in subsection 3.4.1.

Two T-GTss are related by a specialrs morphism between their underlyir@rss.
This morphism must preserve transactions, i.e., eachactiog of the source-GTs must
be “translated” to a transaction in the targetTs. Thus, we impose two restrictions to
thisGTs morphism to guarantee that transactions are preservetirshene requires that
it is total on unstable items and that these items are prederweach unstable item is
mapped into another unstable item; and the second one esghait the stable items are
preserved — each mapped stable item must be related to astdb& item. Preserving
stable items we avoid that a stable graph in the source becameinstable graph in
the target. In addition, requiring preservation of andlityt@n unstable items we avoid
to turn unstable intermediary states of a transaction itdble graphs. For example,
Figure 3.5 illustrates what can happen if the restrictioeset imposed: in the left, it is
showed a mapping between type graphs (given by numbersisthat total on unstable
items (the unstable arrowof 77 is not mapped) and it does not preserve the stable items
(the stable arrow if 7} is mapped into an unstable arrowiik); in the right, it is showed
(at the top) a transaction in the soumrceTs and (at the bottom) its translation, which is
not a transaction, since the intermediated gr&f)his not unstable and the initial graph
G} is not stable.

T-GTS morphisms. A T-GTS morphisnbetween twor-GTss is acTs morphism between
their underlyingGTss, such that the type component preserves the stable arablenst
items and it is total on unstable ones.

Definition 3.7 (T-GTS morphism) Let Z; = (G, T1,) and 25 = (G, Ty,) be T-GTss. A
T-GTS morphismf: Z;, — Z, is aGTSs morphismf: G; — G, between the underlying
GTSs, such that

34

Figure 3.5:GTs morphismf does not define >s morphism.

1. forall z € Ty \ T1,, we have thaf(z) is defined and’r(z) € Ty \ Ts,;
2. forall z € T, if fr(z) is defined therfr(z) € Ta,.

Proposition 3.2 T-GTss andT-GTsS morphisms form a category, denoted B¢ TS, in
which composition and identities are defined a&3i'S.

Proof:

1. Composition is well-defined.et f : Z; — Z; andg : Z, — Z3 beT-GTS morphisms and
g o f be their composition. By definition af-GTs morphismVz; € 71 \ T, . fr(z1) =
29 € Ty \ Tog, VYV € To\ Tog« gr(22) = 23 € T3\ T3, V21 € Th5. fr(21) = 22 €
To, V fr(z1) = undefined; andVzo € Th, . gr(22) = 23 € T3, V fr(z2) = undefined.
Therefore, by composition of graph morphisms:

(@) V21 € Th \ T15 we have thayr (fr(z1)) = z3, with z3 € T3 \ Ts,;

(b) Vz1 € Th, if fr(z1) andgr(z2) are defined, thegr(fr(z1)) = 23 € Ts,, else
gr(fr(21)) = undefined.

2. ldentities are well-defined morphismset idz = (idr,idp) be the identity onZ =
(T, P,m),Ts). By definition of identity onGTS, we have that'z € T .idr(z) = z,
therefore:

@) VzeT\Ts.idp(z) € T\ Ts;
(b) Vz € Tgvidp(z) € Ts.

3. Neutrality of identity and associativity of compositidallow from these properties in
GTS.
O

In order to ensure that morphisms are simulations in thiseng@neral framework,
we prove thatr-GTs morphisms preserve abstract transactions, i.e., if tvgrss are
related by ar-GTs morphism, each transaction in the soureeTs when retyped using
the retyping functor induced by the morphism between the ty@aphs gives raise to a
transaction in the targatGTs. The following proposition describes this property.

35

Proposition 3.3 (-GTS morphisms preserve transactions)et f: 2, — 2, be aT-
GTsmorphism and lefp|, be an abstract transaction i&,. Then[f;"(p)]. is an abstract
transaction inZ,.

Proof: Assume that the derivationin Z; has the following shape:

Lp1 <—>Kp1 e Rp1 Lp2 <—>Kp2 e Rp2 Lpn <—>Kpn — an
| | NS | AN e | |
Go<—D, Gy ° Dy Gy - G,<=—D, — G,

By 2.3, we have thaf;"(p) is a derivation inZ;. Let us considetf; be the graph obtained
from G;, by applying the pullback functor. We have to prove that:

1. Hy and H,, are stable graphswe have to show tha§(H,) ~ H, andS(H,,) ~ H,.
As Hj is obtained fromG,, by applying the pullback functor, the squdne, in diagram
below, is a pullback. Sincér preserves the stable iten{d) and(5) are pullbacks, as well.
Moreover, by definition of, (2) and(3) are pullbacks.

sHY S H—T 6 " s
(0)\LS(H0)—/7 0 0‘$LGO— (0)
's lg) Zl
K@ Ty<="—dom(fr) =171 ©® |i
S AN
LT: (4) o (5) LT
. T N
T23 X Tls

Since Gy is stable, i.e. S(Gy) ~ Gy, then there existz;’G0 : Gy — S(Gyp) such that
Lg, © LGo = ids(ay) @Ndig, o g, = idg,. Moreover, we have:

a. by universal property of pullbadk), 3!s : Hy — X, such that:

i. oos=gand

ii. nos=joug of.
b. by (a.i),l 0 g =l 0 00 s and by commutativity of4),l o g = v, om o s;
c. by universal property of pullbadR), 3!t : Hy — S(H), such that:

I ts(H,) ©t = idp, and

ii. kot =mos.

Sincers(x,) is surjective (by(c.i)) and injective (because @2) is a pullback andr, is
injective), then it is an isomorphism. Therefore, we h&\(él,) ~ Hy. By symmetry we
also haveS(H,,) ~ H,, as we want to prove.

2. (&) = S(Ho) 2 S(H,) is a derivation InS(2,). LetS(8) = S(Go) 22 S(G.) be
the derivation vig : L <« K — R, the proper quotient production pf + ... + p,. The
derivationS(p) is depicted by solid lines in Figure 3.6 asdo) is depicted by dashed ones.
The dotted part of represents the construction of propetiepioproductionp. Note that,
for the sake of clearness, we will consider 2, but the proof can be trivially extended for
derivation with any length. Moreover, as all graphs in theegdam is stabilised we omitted
the “S”, e.g., we use7 to referS(Gp).

By definition of proper quotient production, we have that sugares(6) and (X, R,,,
L,,,G;) are a pullbacks, and the squates, (2), (3), (4), (5), (D, L, D1, Gy), (DF, D*,
Dy, Gy), (D3, D*, Dy, G1), (D5, R, Da,G2), (Kpy, Lp,, K, D7), (Kp,,Rp,, K, D3) and

36

(X, K,,, K,,, K) are pushouts. By definition of transactiof§p) ~ S(J), then we

have that the squarg§) and (8) are pushouts an@®) is a pullback. Moreover, since
(K,L,D,Gyp) and (D7, L, D1, Gy) are pushouts the(X, D, D, D;) is a pushout (by
Lemma A.4). By symmetry K, D5, D, D) is a pushout, as well. Sinck- preserves the

Figure 3.6: Derivatiorss(p) and its equivalent derivation via proper quotient prodrct

stable and unstable items and by propositions 2.3 and 3.hawethatf" (S(p)) = S(p')
and f77(S(0)) = S(¢') are derivations inS(Z2;). Therefore, it remains to prove that
p': L' «— K' — R'is the proper quotient ofp(p1) + ... + fp(p2) and thaty’ ~ ¢’

Figure 3.7 depicts the derivatiopsandd’ obtained fromp and¢’, applying the pullback
functor on each graph . Thus we have that the squdtésL’, D}, Hy), (K}, R}, D}, Hy),
(K}, L, Dy, Hy), (Kb, Ry, Db, Ho), (K', L', D', Hy) and(K', R', D', Hs) are pushouts.
Then we must prove that:

e the squaresl’), (2), (3), (4), (3'), (D}, L', D}, Hy), (D}', D*' D}, H,), (D%,

DY, Dy, Hy), (D3',R', Db, Hs), (K}, L;,,K', DY), (K, R, K' D5), (X',
K, , K,,,K'), (K,D7,D,Dy) and (K, D3, D, Dy) are pushouts. It holds by
Lemma 2.1;

e the square$t’) and(9’) are pullbacks. In the following diagratm) we have that the
top and bottom squares are pushouts and the back and lefescara pullbacks (by
Lemma A.1). Then, by Lemma A.§¢') is a pullback.

Ky, K’ K’ Dy’
AN AN O | N
Ly, Dy’ Dy’ % D
(6")
Ky, + D3’ D % Dj
N A NV @) N
L1/02 D*! Dé H,

(a) (b)

In the diagram(b) above we have that the top square is a pullback and the bdick, le
front and right are pushouts. Then, by Lemma A%®) is a pullback.

e the diagramg=), in Figure 3.7 commute: it holds by Lemma 2.2.

37

Figure 3.7: Derivationg; (p) and ;" (6).

3. the matchm’ is an isomorphism considering the Figure 3.6, sinee : L — Gy is an
isomorphism, there exists an morphigm Gy — L as depicted in diagram below, such
thatg o m = id;, andm o g = idg,.

AT
Go \ G

a

T

dom(fT)

G{, and L’ are obtained fron@x, and L, respectively, by applying the pullback functor. We
must prove thay’ om’ = id;, andm’o g’ = idGé' By commuting diagram above, we have
that:

(1) mogoa=idg,oa;

(2) mobog =a;

(3) aom/og' = q;

(4) aom'og =ao idgy, by property of identity;

(5) mog = id%, sincea is injective; and

(6) gomob=idy ob;

(1) goaom' =b;

(8) bog om! =b;

(9) bog om’ =boidys, by property of identity;

(10) ¢’ o m/ = idy,, sinceb is injective.
Therefore, by(5) and(10), m’ is an isomorphism, as well.

4. any intermediate graplH; (i # 0,n) is not stable we have to prove thaix ¢ H; .

38

r¢.(d(x)) € Ty \ Ta,. Considering the diagram below we have:

G~

T1 ﬁ dom(fT)r? T2

(a) By definition ofT-GTS morphisms:

I. fristotal on unstable itemg. is surjective on unstable itemsjz € 71\ 7',
z € dom(fr) \ S(dom(fr));
ii. fr preserves unstable itemér € dom(fr) \ S(dom(fr)).r.(x) € Ty \ Tog
(b) By definition ofS and graph morphism&fy € G;\ S(G;) .3z € T1\T15.9(y) = x;
() By (aui) and (b)vy € Gi \ S(Gy) « 3u € dom(fr) \ S(dom(fr)) A g(y) = =;
(d) By definition of pullbacks irGraph:
i. Sincely, is surjective on unstable (a.i), thely € G;\ S(G;).3z € H; h(z) =
y A g(h(2)) = 15 (d(2));
ii. By (d.i) and sincely, is an inclusion:Vy € G; \ S(G;),z € H; . h(z) =
y-g(h(z)) = d(z).
(e) By definition of transactionsly € G; \ S(G;);
(f) By (d.)and (e):3y € G; \ S(G;)+3z € H; v h(z) = y;
(9) By (c)and (f):3y € G; \ S(G;) 3z € H; . 3z € dom(fr) \ S(dom(fr))«h(z) =
yAgly) =
(h) By (d.ii)and (9):3 € H; .3z € dom(fr) \ S(dom(fr)).g(h(z)) =z = d(2);
(i) By (a.ii)and (h):3z € H; .d(z) € dom(fr) \ S(dom(fr)) Ars.(d(z)) € To \ Tas

Therefore, by ()3z € H; . s, (d(2)) € To \ Tas.

3.3 Abstract GTS associated to ar-GTS

As mentioned in the introduction, BGTS can be seen at two different levels of ab-
straction. It can be viewed as a standard graph transfasmayistem, where both stable
and unstable items of states are visible. But we can alsoaabstway from the unstable
states and observe only complete transactions. Formhi$/gtves rise to anothesTs,
where the productions are all transactions of the originairs. This definition requires
the notion of the production induced by a derivation seqgagadknown construction in
the literature (CORRADINI et al., 1997).

Induced production of a derivation. Theproduction inducedby a derivatiorp : Gy =*

G, hasG as left-hand side an@d,, as right-hand side. The interface graph is the subgraph
of GGy which, intuitively, consists of all the items which are praged by all the direct
derivations occurring in the sequence.

Definition 3.8 (Induced production of a derivation) Given a derivatiorp : G, "=
et @, for aT-GTs Z, theinduced production o is Gy L K I G, wherekK is

39

the limit object obtained as in diagram belows [o p; andr = 77 o p,,.

LléKlﬁRl LQQKQH'RQ LnQKn%Rn
Voo NS | AN / Vo
GO :JDl Gl)Dg G2 Gn QDN % Gn

T T oK~

Without loss of generality, we will assume a concrete chfiicés, by imposing that
the morphisnp; in the limit diagram above is an inclusion.

Example 3.3 (Induced production of a derivation) Figure 3.8 shows the abstract pro-
duction associated to the transaction in Figure 3.4.

(o

pu 1

Figure 3.8: Abstract production associated to the trarwaat Figure 3.4.

_

Abstract GTS. TheabstractGTs associated to the giveRGTs Z, denoted byA(Z), is a
GTswhere the type graph is the stable type grap& pthe set of production names con-
tains all abstract stable transactionsgond each abstract stable transaction is associated
to the production induced by it.

Definition 3.9 (Abstract GTS) Let Z = (G, T;) be aT-GTs. Given an abstract stable
transactionsp|,, a production induced by is called abstract productiofor the trans-
action [p],. TheabstractcTs associated to the givenGTs, denoted byAz, is theGTs
(Ts, P',7") where P’ is the set of abstract stable transactidpg, and «’([p],) is an ab-
stract production for the transactiop),,.

3.4 Transactions as graph processes

Inspired by the classicalon-sequential processésr Petri nets (GOLTZ; REISIG,
1983),graph processebave been proposed in (CORRADINI; MONTANARI; ROSSI,
1996; BALDAN; CORRADINI; MONTANARI, 1998a) as a faithful presentation of
the derivations of &Ts up to shift-equivalence. Since abstract transactions efieet
as abstract traces we will introduce an equivalent, and ygermanageable, definition
of transaction based on graph processes — this presenatised to provide a universal
characterisation for the class of transactions of a giverTs.

40

A graph procesdor a T-GTs Z is defined as an “occurrence grammé?; i.e., a
grammar satisfying suitable acyclicity constraints, gged with ar-cTs morphism from
O to Z. This definition is given in terms of structural propertibat we can use a more
concrete definition where a graph processZois constructed from a derivation i by
means of an explicitly colimit construction.

An occurrence grammar is a graph grammar-(@rs with start graph) that represents
a class of derivations, so, it contains the items used in grevation and the applied
productions. Each item in the type graph of this kind of graanrepresents an occurrence
of this item in the derivation and can be created, consumpteserved by its productions.
Therefore, an occurrence grammar must satisfy some iestisc all reachable graphs
from the start graph, applying some sequence of produgctimenge an injective typing
morphism; the type graph items and the productions have yali@adependence among
them; the start graph coincides with the graph obtainedicéag the type graph to the
items that are not created by any production; all produsticem be applied; and each
type graph item is created or deleted at most once.

For any graph process, we can obtain a derivation applyingratiuctions exactly
once, in any compatible order, from its initial graph. THisw&s to realise that a process
defined as above can be seen as a representative of a clagivafiales of the origi-
nal T-GTs, where only the independent steps may be switched, that iabstract trace.
Thus, we can construct a graph process from a trace: sinaeags represents a class of
derivations, any derivation in this class can be choseniigtcoct the equivalent process.

3.4.1 Graph Processes

In this subsection, we review some definitions about grapbgases (CORRADINI;
MONTANARI; ROSSI, 1996; BALDAN, 2000), (BALDAN; CORRADINI MONTA-
NARI, 1998a).

Graph process from a derivation Intuitively, the colimit construction applied to a
derivation of Z essentially constructs the type graph as a copy of the sguagd plus
the items created during the rewriting process. Produstare instances of production
applications and are related to the original ones by meaideafities in the category of
typed graphs over (the type graph of).

Definition 3.10 (process from a derivation) Let Z = ((T', P, 7), T,) be aT1-GTS, and let

q1,1m1 q2,1m2

p =G "G =" @, be aderivation inZ. A processp associated tp is
aT-GTs morphismp = (o7, ¢p): Oy — Z, WwhereOy = ((Ty, Py, 4), Ty,) is obtained
as follows

— Tg = (T}, tr,) is a colimit object (in7-Graph) of the diagram representing
derivationp, as depicted (for a single derivation step) in the diagranobewhere
cx,: X' — T is the induced injection fok € {D, G, L, K, R};

= Ty, =Ty =t7,(Ts = T);

— Py ={(ag9) |ie{l,....n}}

— mol(qi i) = (Lien,) & (Ky ex) = (Ri,cg,) (see the diagram below);
— ¢r =tr,

— ¢p({g;,1)) = q;, foralli e {1,...,n}.

41

.. TT ST i T
CK,- B
i ' ki hi .
b; d; ;
T i T i T
Gi—l Di g Gi

. s, b, [eh

s
cr; rars CR;
>l < :

Since in a derivation all matches are assumed to be injeativiee associated process
all productions are injectively typed, so we can say thatapction consumes, preserves
or creates elements of the type graph. Considering theatiagbove, ifr € T¢T and
q = (g, 1), we say that the productianconsumes if z is in the image of:;,, and not in
that of ck,; thatq createsr if x is in the image oz, and not in that of,; and thaty
preserveg if it is in the image ofck,. This leads to the following net-like notation

q=cr,(Li \li(K:)) ¢*=cr(Ri\7mi(K;)) q=ck,(K)

We say thayy consumescreatesandpreservestems in®g, ¢* andgq, respectively. Simi-
larly, the sets of productions which consume, create ansepver € T, are denoted by

r, x andz, respectively.

Minimal and maximal graphs. Considering the sets defined above, we can obtain the
minimal and the maximal graphs of a graph process, i.e, titialiand final graphs of
the derivation associated to it. The minimal graph is a saigiof the type graph whose
items are not created by any production of the process anthaéixénal is a subgraph of
the type graph whose items are not consumed by any production

Definition 3.11 (minimal and maximal graphs) Let ¢ : ((T, Py, 7). T4,) — G be a
process of a7s G. Theminimal graphof ¢, denoted by\/in(O,), is the subgraph df,
consisting of the items such that’x = @, and* is the same graph typed ovérby the
restriction of¢,. The maximal graph af, denoted byaz(O,), is the subgraph df}, i
consisting of the items such that:®* = @, and¢* is the same graph typed ovér

Example 3.4 (graph process)As an example, in Figure 3.9 (top-left), we show the type
graph of the process, associated to the derivation of Figure 3.4 — it was constdiat a
gluing of all graphs in the derivation. The injections frolne graphs of the derivation are
implicitly represented by using an index pair for the itenghva creation indexon the
first position of the pair, anddeletion indexon the last one. The creation index is missing
(—) in the items that are not created, i.e., that belong to e gtaph, and symmetrically
for the deletion index. The image of graph of the derivation, withi € {0,...,6},
contains all items with creation index, if any, smaller thaand deletion index, if any,
larger than or equal to The minimal and the maximal graphs of this process are skaown
the bottom-left side of the figure. The productions (see @9 (right)) of the process
are all productions in Figure 3.4 typed over the process gyaph.

_

If we consider two productions in a graph process, we can Hédferent situations
concerning their application: if they do not use items that @mmon to both or only
preserve them, these productions can be applied in patalieif one of the productions

42

--~_Preord:----,

Accept
Operator ICustomer| - Operator ICustomer,

Customer
Serve
>

i
,,,,,

,,,,,,, “Charget-----------1 = % Activate
>

Start
>

Stop

!

Finish
| Operator| ICustomer|

Figure 3.9: Type graph (top-left), the maximal and the maligraphs (bottom-left), and
productions (right) of the process associated to derimatid-igure 3.4.

consumes (or preserves) the same item that is preservede@ed) by the other, the

latter must be applied before the former. Thus we can defireuaat relation between

all elements (items of the type graph and productions) ohalgprocess, considering the
relation described above.

Definition 3.12 (causal relation) Thecausal relatiof a process is the least transitive
and reflexive relatior<, overT, W Py such that for allz,y € T, W Py andqy, g2 € Pyt

) z <, yif x € % and

i) ¢ <y if ((1°Ng2) V(e N) # 2.

Reachable setsReachable sets of a process are subsets of elements of agbeajithese
processes. Each of them represents a graph reachable froimahgraph, applying a
subset of productions of a process. A reachable set is @otéi@sed on the causal relation
and contains all items that are created/preserved and @areonsumed by considered
productions.

Definition 3.13 (Reachable sets) et ¢ be a process. For any;-left-closedP’ C P,
the reachable set associatedfbis the setSp: C T, defined by

r€Sp Mt VgePy(x<,q=q&P)N(q<sx=q€P).

Graph processes which have the same structure but, for éxadifferent identities
of vertices, edges and productions should be considere€iiag equivalent.

Abstract process. An abstract process is a class of isomorphic processesrates.
Two processes of >S Z are isomorphic if their type graphs are isomorphic (they

43

have the same structure) and their productions are ingasfdbe same productions of
Z. Since each item in the type graph of a process representscarrence of this item,
the typing morphisms of productions indicate, for each jtdma productions that created,
consumed and/or preserved it. Therefore the isomorphiswelea the type graphs must
be compatible with the typing of productions.

Definition 3.14 (Abstract process)Let (O,,, ¢1) and (O,,, ¢2) be two graph processes
of aGTsg. Theng, and ¢, are isomorphic if only if there exists a paifr, fp), where:

o fr: Ty, p17) — (T, P2p) is anisomorphism if’-Graph

o fp: Py, — Py, isabijection, suchthap,p = ¢2po fp

T, T, T, T, T, T,
e for eachq; : qul &K D Ry E P¢1,q2 fe(q) : Ly? <& & Ki? 2 R €

Py, if g = ¢1p(q1) = d2p(q2) : LqT — KI' = RT € P, the diagram in Figure 3.10
commutes.

iqu ’iqu t q
L(h \ Lq tr / L(I2 X s
>L th/ tr, 7 >L -
N Y 3

Figure 3.10: Isomorphism of processes.

If two processe®; and ¢, are isomorphic, then we will writeé; = ¢,. Moreover,
given any process, we will write [¢] to denote{¢'|¢’ = ¢}, and we will call[¢] an
abstract process

From the theory of graph processes (see (BALDAN; CORRADMONTANARI,
1998a)) we know that the abstract processes Bfzas Z are in one-to-one correspon-
dence with the abstract traces &f More precisely, iflp], is an abstract trace & and
o, p" € [pl. are two derivations, then the processes associatgdaod o” are isomor-
phic. This defines a functioh P z mapping the abstract traces 8fto abstract processes
for Z. Vice versa, if¢ is a process fog, andp, o’ are two derivations 08,, then the
retyped derivation®s (p) and ¢5 (p') of Z (see the observation after Proposition 2.2)
are abstract truly-concurrent equivalent, and thus belorige same abstract trace. This
defines a functiorP7 = mapping the abstract processes i1to abstract traces of.
Moreover, it can be proved that functiois? ; andP7 = are inverse to each other. By
Proposition 3.4 an isomorphism between abstract traceslasttact processes is estab-
lished: hence, the latter provides an alternative, egemntatharacterisation of the former
ones.

44

Proposition 3.4 Let Z be aT-GTs. Then|¢] is an abstract t-process & iff P7 z([¢]) is
an abstract transaction (see (BALDAN; CORRADINI; MONTANAR98a)).

Figure 3.11 shows an abstract representation of the re&dtip between derivation
traces and graph processes: in the left, we have a classfokghivalent derivations
containing three direct derivations, (9, andds) occurring in different order; and, in the
right, we have the correspondent process, where the diegiwtions are not ordered.

~

TENVEAYEN

Go G, G, Gs

IENENEN A

G0 G,ZI. G,Z GS GO ————Gc— G3
—

Gy G;

G Gy

J

Figure 3.11: Class of shift-equivalent derivations (leftd the equivalent graph process
(right)

3.4.2 Transactional Processes

Since we can build a process from any derivation, we can cterse the processes
that can be obtained from transactions, these processeal@transactional processes

Transactional process.A transactional process is a process having the minimallaad t
maximal graphs stable and the remaining reachable graghsrastable; moreover, all
items in the minimal graph must be used and the stable typesitan be or consumed,
or created, or preserved by the productions in the process.

Since transactional processes are used to define impleto@ntaorphisms, where
productions are mapped into processes, we need to conssdea avider class of pro-
cesses, thanstable transactional processeasghich may start and end in unstable states.
These processes are used to define implementations of lengtatuctions.

Definition 3.15 (transactional process)Let Z = ((T, P,), Ts) be aT-GTS. Anunsta-
ble transactional process (ut-proceiss) process of Z such that

1. foranyx € T, at most one of the sets, z°, z is not empty;
2. foranyxr € Min(O,), there existg € P4 such that either € g or z € g;

3. for any reachable seip associated to a non-empty C P,, there exists: € Sp/
such thatr ¢ Min(O,) U Maz(Oy).

If Min(O4)UMaz(Og4) C T, theng is calledtransactional process (t-processhe fam-
ily of abstract ut-processes &fis denoted byit Proc(Z) andtProc(Z) C utProc(2)
denotes the class of all abstract t-processeg of

45

Note that if a representative of an abstract process is agtable) transactional one,
then all the other members of the equivalence class areatrdosal processes, as well.
Condition 1 implies that each stable item is either in thaseuor in the target state of the
process. Additionally, each stable item that is preseryeat least one production cannot
be generated nor consumed in the process itself: this wodlete a dependency between
productions, violating the defining requirements for teat®ns (see Definition 3.5). By
condition 2, any item in the source state is used in the coatiput. Condition 3 ensures
that the process is not decomposable into “smaller piedetglls that by executing only
an initial, non-empty subsét’ of the productions of the process, we end up in a giaph
which is not entirely contained it/in(O,) U Maz(Oy), i.e., which contains at least one
unstable item. Finally, in a transactional process thecand target states are required
to be stable. For example, the process described in Exampls Bansactional.

3.4.3 AbstractGTs for a T-GTS based on process

Since the abstract transaction and the abstract t-prace$sg-GTs have an one-to-
one relationship, we can redefine abstratss associated to >ss using this more
manageable representation for the transactions. This eénitébn will be used to char-
acterise the operation that associates an absinegto aT-GTS as an adjunction.

In this chapter, we consider a class of equivalent transaakiprocesses which does
not take in account the causal relation. Since an abstraceps is defined as a class of
isomorphic processes, two processes with same produgctgmmorphic type, minimal
and maximal graphs may not be in the same abstract process (@f equivalence) if
there are two elements with the same type but with differansal relation. Therefore,
we define a notion of equivalence of processes which is wehkarisomorphic process,
allowing to consider the mentioned process as equivalab¢dwveak equivalencerhus,
we will use all classes of weak-equivalent processes tesemnt all transactions ofa
GTS. This definition allows us to characterise the abstractjeration as an adjunction:
if we had used abstract processes (class of isomorphic ggesgas transactions, this
characterisation could not be established, because tilsala@lation is lost in abstraction
operation.

Weak processesTwo abstract processes are weak-equivalent if there aneoigahisms
between their type graphs, minimal graphs and maximal giagofd they have the same
instances of productions. Note that here, the conditiorypmg of productions is disre-
garded.

Definition 3.16 (Weak-equivalence, wut-processed)et ¢; and ¢, be two ut-processes.
Then,¢; and ¢, are weak-equivalentwritten ¢; =" ¢,, if only if there exists a pair

(fr, fp), where:

o fr Ty, 01p) — (T, P2p) is an isomorphism in-Graph, such that
Min(Oy,) = Min(Oy,) and Maz(Oy,) ~ Maz(O,,)

e fp: P, — P, isabijection, suchthap, , = ¢op o fp

A weak abstract ut-process (wut-proceissilefined as an equivalence class of ut-
processes with respect to weak equivalence, denotied afor a representative. The set
of wut-processes of &#GTS Z is denoted bywutProc(Z). The set ofweak t-processes
(wt-processesytProc(Z2) is defined in an analogous way.

46

Underlying span. Like for the traces, we can associate to each transactionaeégs a
production, i.e., amnderlying spanwhere the left- and right-hand side are the minimal
and the maximal graphs of the process, respectively, anthtédace is the intersection
between these graphs. In order to associate a concrete gpanabstract process, we
need to assume a chosen representative for any equivalesse€ processes.

Definition 3.17 (span underlying abstract process)Given a process for a T-GTS Z,
we havdl(¢) = % < % N ¢* — ¢°* (intersection is taken component-wise).

Let us assume for eachGTs Z a choice functiorchz, mapping each wut-proces$s.,,
to a concrete representativh z ([¢].,) € [¢],. Theunderlying spamf a wut-proces§p).,
is defined aslz([¢].,) = I(chz([¢]w))-

We are now able to define the abstract system associated wihTa using trans-
actional processes. This definition differs from that in Digéfon 3.9 to use the weak
equivalence, therefore, some different transactions ifinidien 3.9 can be the same in
the following definition.

Abstract GTS. An abstract system associated torasTs Z is a graph transformation
systemA(Z) that have as type graph the stable type grapf ahd the set of production
names contains all wt-processes ®f where each one is associated to its underlying
production.

Definition 3.18 (Abstract GTS) Let Z = (G, T,) be aT-GTS. TheabstractGTs associ-
ated toZ, denoted byl z, is theGTs (7, wtProc(Z2), I1z) wherewtProc(Z) is the set
of wt-processes of andIlz is as in Definition 3.17.

Example 3.5 (AbstractGTs) As an example, we can see in Figure 3.12 the abstract sys-
tem associated tBumpOper (see Example 3.1).

Prepay
[l
>
Customer

Busy >—=
‘<—<Prepay

Analyse
Operator op
Impure ‘
puf \

9]

op

Figure 3.12: AbstractTs associated to the GTS PumpOper, depicted in Figure 3.1.

Itis easy to see that the type graph of this system is theestigté graph dPumpQOper.
The productions of thisTs are all transactional process of the originatTs:

e the proces$p, |, is shown in Example 3.4;

e the processes)., [¢3]. and|¢,)., are those which have as the only productions
REJECT, PUREANALYSIS andIMPUREANALYSIS, respectively.

a7

3.5 Implementation morphisms for T-GTSs

As described in the previous sectiorm-&Ts can be viewed as a standads, where
the unstable states are abstracted away and only the cenyalesactions are observable.
This transformation defines a mapping from the objects ot#diegoryT'GTS to those
of GTS. Interestingly, equipping the category of transactiasieds with a more general
notion of morphism, — calleonplementation morphismthis mapping can be turned into
a functor, which is the right adjoint to the inclusion functo the opposite direction.

Then, we equig-GTss with a suitable notion of implementation morphism, allogyi
to relate two systems, mapping the productions of one iatgstictions of the other — this
notion is also used to relate the components of a module:dtg is the implementation
of the interface. Figure 3.13 shows a schematic represemtat mapping of a produc-
tion into a transaction: a production is depicted at the top] a transactional process
implementing this production is depicted at the bottom. iitag@ping from production to
process must preserve the left- and right-hand sidesallé&ems in these graphs, whose
types are preserved, must be in minimal and maximal graptieqgirocess, respectively.

P Lo KT Ry

a1 9 93

¢ : Min(g) To Max(p)
Figure 3.13: Transactional procesgmplements productiop.

T-GTS implementation morphisms. An implementation morphisis aT-GTS morphism
that maps each given production of the source system to a wurestkbletransactional
process of the target system.

Definition 3.19 (T-GTs implementation morphisms) GivenT-G1s Z; = ((T;, P;, m;),
Tis), letZ; = ((T;, wutProc(Z2;),11z,), T;,) be aT-GTs having all weak ut-processes of
Z, as productions foi € {1,2}. An(T-GTS) implementation morphisnf: 2, — 2, is
theT-GTS morphism{ fr, fp): Z; — 27\2

Example 3.6 ((-GTS) implementation morphism) In Figure 3.14 we can see an im-
plementation morphism between the absti@ts of the customer system to the concrete
T-GTS of this system.

The type component, is the obvious inclusion and the production comporient
maps each productidp;)., of A(Customer) into the corresponding weak t-procégg,,
of Customer. In Figure 3.15, the type graphs and the set of name prodigctib each
wt-process ofustomer system are shown.

_

To provide a correct definition of the category havingTss as objects and imple-
mentation morphisms as arrows, we have to explain how imghtéation morphisms com-
pose. This is summarised by the next propositions. In omeoimpose implementation

48

Customer

Customer

Customer Customer

[¢1]w= [¢2] Wy,

Operator

Change

op
Customer
Operator

op

Customer

»

€1
Customer e
- - AR End
Init ‘ .
o 0
777777“ Supply
Operator

- —
,,,,,,, Customer > Customer
Start 74:\775}9977:”7

| .
Supply Supply - Customer > Customer

Customer

op
Customer
Operator

Figure 3.14: Implementation morphism from the absters A(Customer) to theT-GTS

Customer.

Customer

il

Customer

~—Prepay Finish o
Operator ump
i | Supply
P¢1 ={inir} P¢2 ={STARTSUPPLY,ENDSUPPLY}
T¢3

Customer

P¢3 ={ResTarT} P¢4 ={ReTrv}

Figure 3.15: Transactional processes of customer system.

morphisms, we first have to know how to map wut-processeswtsa-GTsS into wut-
processes of target one. Proposition 3.5 shows how to othtisimapping extending the
mapping of productions of source-GTS) into wut-processes of target one. The proof of
this proposition is divided in two partg:1) the definition of the extension; an@) the

49

proof that the extension is well-defined, i.e., it result@iaonique implementation mor-
phism (the productions component maps each wut-proces®ionique class of weak
ut-processes, independently of the concrete choice famtgeping between productions
and t-processes).

Given aT-GTs Z and a productiorp in Z, below we denote by,,;, the process
associated (see Definition 3.10) to the one-step derivattooh applies to its left-hand
side L, with the identity match.

Proposition 3.5 Given aT-GTs Z;, let Z; be as in Definition 3. 19, for € {1 2}. Then
anyT-GTs morphismf: Z; — Zz extends to a-GTS morphlsmf Zl — Zz

Proof:

1. fis defined by(fr, f), where for all weak ut-process],, € wutProc(Z1), fr([dw) =
[¢]w, With [¢], € wutProc(Z;) andy : O, — 25 = (@7, pp) defined as follows:

o forl <i < j<nandn = #P,, (T,, ¢r) is the colimit (in7>-Graph) of the diagram
(a) depicted (only for the processes andy,, — the other ones are omitted) below:

X(LW,R%)
tL@Z OPLy, tR&pj OPR"”J'
X<L¢17L¢j> X(R%,R,*aﬁ
(R¢ L)
tLy, OPLy, t;@ pR iHej fL L OPLy va opr,,
/ tR\a OPR*Q tLWJ DLy,
X
g o Ton (v, B
T(Lep; L,cj "3”<R¢ L) B PAy; . . pB%
Cley Clipy,
" Ay, By,
; = t oid ofA(\)\\ /Oid ofB(i)
AN F i Ap; Ot Ay, OJ " (Pi By, 0idp) of; D
<T</Ja 99T> T¢

(a) (b)

Wherepi S P¢, [(pl]w = fp(gbp(pi)), HZg([‘Pi]w) = L% — K(’DZ — RSOi and
(X A%,Bw,pAw,pBwﬁ is the pullback (inGraph) of the diagram(b) above, with

A,B € {L,R} and fA(p;) andf.”(p;) are any choice for the isomorphisms required by
definition of GTS morphism.

o P ={dlge Py k=1.4PFs}
o forallq € Py, if ¢ € P, thenpp(q) = prp(q).
o Ty, = Ty = @p(Tas — 1)

e % andy®, minimal and maximal graphs, respectively, are defined iynits (4) and
(4’) depicted in diagrams below, whe®), (2), (3), (1'), (2') and(3") are pullbacks.

50

/\/

991 c 9977, Wl c 9971
X(Loy Lon) KRy Ron)
A[nw 3)]Wn%]\/[3/;991 , @]Wx%
~ a b 7 <. a b T

" Xam XMz

T, . @ y Ty, Ty,
S
%
v
T,

(c) (d)

2. f is well-defined. Sincef is aT-GTs morphism, fr is a graph morphism and preserves
stable and unstable items. By definition/of, V[¢]., € wutProc(Z1) . fr([¢]w) = [©]w-
It remains to prove that any choice of the isomorphisifip;) andeB(p]), in diagram (b)
above, determines the same weak ut-process. Therefore,usiepmove that all concrete
process obtained as above from the same praogem® weak equivalent, i.e., there exists a
bijection between their sets of productions and their typ@imal and maximal graphs are
isomorphic. Since the set of productions are always the samdependent of the choice
for fA(p;) and fB(p;), we only must prove that type, minimal and maximal graphs are
isomorphic.
By definition of T-GTs morphism, there existg (p;) such that(1) below is a pullback,
with A, B € {L, R}.

JA (Do)
Ap, Ay,

w-l @ lt\

T =— dom(fT) —1T5

If there exists a different arrow”’(p;) A, — Ap, such that(1) is a pullback, then

7

() 3z € Ay, « fAPi) (@) # £ (pi) () only if ta, (fA(pe) () = ta, (£ (0i) ().

(&) Type graphs are isomorphic: If we use, in diagrétmabove,ff‘/(pi) instead of
fA(ps), we will obtain a graphX'éAw_ B,y as depicted in the following diagram,
ie;

51

which is equivalent td{(z‘mva: in the following we will usef’, = ta,, oida, ©
fE(pi)y fa = ta, oida,, o fA(pi) andfp = tp, oidp, o f5(p;).
e By (i), we have:
(i) Ve € A« fA(pi)(e) # F2 (pi)(e) only if ¢r(fa(e)) = r(fa(e));
e By definition of pullbacks:
(i) Vep € A%. AVey € B@j . fB(EQ) = fA(el)-
v € Xa,, B, - falpa,, (z)) = f8(pB,, (*))
(iv) Vep € A%. ANVey € B@j . fB(EQ) = f;x(el).
3’ € XéAw,Bw - [aPla,, (@) = B, (@)
e By (ii), (iii) and (iv), we can define:

W) b Xa, B,) = X, b,

zy, if pa(x) =eA fale) = fyle),
where p/y (z]) = €;

xy, ifpa(z) =eA fale) # fii(e) = ¢,
where f/) (p'y(z5)) = €.

where, by definitionp4 = p/; o handpp = p/s o h.

) @S follows:Vz € X4, By))

h(z) =

(vi) n': XZA%_7B¢J_> — X<A%B¢j>, as follows:Vz' € XZAWBWJ?

zy, ifpl(a’) =eA fale) = fl(e),
where pa(z1) = e;

xg, if ply(a’) = e file) # fale) =€,
where fa(pa(z2)) = ¢'.

where, by definitionp’; = pp o b’ andp’y =paoh'.

W(a') =

e By commutativity of diagram above, we have:

fhovy=feopy

(vii) fhopaoh’ = fpoply by (vi)
fhopyohoh! = fgopy by (v)
fpopgohoh! = fpopy by definition of pullback
fpopgohoh' = fgopyo idsz . by definition of identity
@i By

(viil) hoh =idy by injectivity of f5 o py

(p,L-,Btpj>

e By commutativity of diagram above, we have:

faopa= fpopp

faopyoh=fpops by (v)
faopaoh'oh= fpopp by (vi)
feopgpoh’oh= fgopg by definition of pullback

feoppoh’oh= fpoppoidx, by definition of identity

(i) Woh=idx,

(pi,Btpj>

by injectivity of fpopp

B)

o By (vii), (ix) and (i) we haveX 4 5)~ X|
1

Ay, By.) in T1-Graph.
77 J

Using X4, Bo,) andXZAWB%_

T;, respectively, as the colimits depicted in diagram beloawNve must prove that

 to construct the type graph gfwe obtain7,, and

52

/
X<A<Pi 7Bij>

t /
! <* > h Bej PBe;

X(A%‘ 7B<Pj>

y !By, °PBy;
T

®
/%

/
tA%_ OpAwi

!
Clis ?;

e By (v) and (vi) we have:

(x) ta, P4, =ta, opa, ol andta, opa, =ta, opy, oh
(xi) ts,, opB,, =ts,, OPIB%_ ohandtp,, OPIB%_ =tp,, opp, oW

e By (x), (xi) and commutativity of diagram above, we have:

. / _ / /

(xii) cty, ota, opa, = cty, ota,, ©Pla,, © h
! /

Cty, otB,, °Pp,, oh

= Ct:ﬂj o tB‘Pj o pBwj
and
(xiii) cty, ota,, Op:“w = cty,ota, opa, oh
= Ct% o thj Oszoj oh'
ctp; 0tp, © Pp,,

e By (xii) and (xiii), we have:g : T, — T, andg’ : T/, — T,, as the morphisms
uniquely determined by universal property of colimits, Istizat:

(xiv) gocty, = ct, andgocty, = cty,
(xv) g oct, =cty and g oct), = cty,

e By commutativity of diagram above and by definition of idées, we have:

idTw © Ctﬂoi © tAsoi © pA%. - Ct@j © thj © pBwj
= Jo ct:pj otp, °pB,, by (xv)
= gJoct, ota, opa,, by (xii)
g'ogocty ota, opa, by (xiv)
and
ideo © Ctﬁpj © tBeoj © pB‘Pj = Ct%‘ © tAw CPA,
= goct, ota, opa,, by (xv)
= goct,o tB,, ©PB,, by (xii)

gogocty, o tB,, °PB,, by (xiv)

e Sincect,, ot Ap, O DA, andcty,; o thj °pp,, are jointly surjective, we have:

53

(xvi) idr, =g'og

Z.dT;, o ct:Di o tA%. o p;‘%_ = Ct:Dj o thj o p’B(pj
= gocty, o thj o p%vj by (xiv)
= gocty ota, © p;‘%_ by (xiii)
gog o Ct:m ota,, © p;‘w by (xv)
and
idT(’p o Ct:pj o] tB‘Pj o pjgwj = Ct:pi o ZL/A(pi © p/Awi
= gocty ota,, o p/A% by (xiv)
= goctyotp, o pj%j by (xiii)

= gogoct, otp, opp, by (xv)
e Sincect, otya, o p;‘w andct:pj otp,, © pj% are jointly surjective, we have:
(XViii) Z.dep =go g,
e Therefore, by (xvii) and (xviii), we have thatl, ~ T{D.

(b) Minimal graphs are isomorphic: If we use, in diagrém above,f;“/(pi) instead of
fA(p:), we will obtain a graph\in, , as depicted in the diagraa) below,

— h‘\;

Mnspi-e—h’—an:pi . XEWTL .
. (],l B /ﬂ \ / /
" g Y - b
XMn
a b
yo_h / \ v
Mn@1_>Mn§01 Mnﬁon
W \ %
tLPi OidLPi ofE(pi) q ‘ -C-l _ .Qb v
Ty ‘ /
T ¢ k\(71@’
e I~
(e) ’
€
(f)
which is equivalent taVIn,: it holds by symmetry with)(gj%“]%> ~ X<A‘Pi7B‘Pj>

proved above. Using/n,, and Mn;i to construct the pullback objecis,,,, and
X'\, We haveg andg’ uniquely defined by universal property of pullbacks, where
(aog =nod,(iybog =V, (iii) hoa=a ogand (iv)t o g =b.

hoh'oa =hoaog by (i)

idnny, © a' =hoaog by definition of h and /.

a =hoaog by definition of identity.

a=dogog by (iii)

a'oidy, =a'ogog by definition of identity.
(v) ddx; =go q by injectivity of a’.

hohoa=hod og by (i)

idpn,, ©a=h oa’og by definition of h and /.

a="hodog by definition of identity.

a=aogog by (i)

aoidx,, =aog og by definition of identity.
(vi) ddx,,, =g og by injectivity of a.

54

By (v) and(vi) we haveX),, ~ Xy, If we construct'y and®%’ as in the diagram
(f) above, we havé andk’ uniquely determined by property of colimits, where (vii)
eoh=koe, (Vii) ff=ko f,(iX)eoh/ =K o and (X)f =Kk o f'.

Koeoh=eoh'oh by (ix)
k'oe'oh= e oidprn,, by definition of h and K.

kKocdoh=ce by definition of identity.
Kokoe=e by (vii)
(xi) K okoe= id-(’p oe by definition of identity.
Kokof=Ff by (x) and (viii)

(xii) K okof= id-(’p o f by definition of identity.

koeoh'=¢ ohoh’ by (vii)
koeoh' =¢ o idMn:O1 by definition of h and ’.
koeoh =¢ by definition of identity.
kok'oe =¢ by (ix)

(xiii) kok'oe = id.gpf oe¢’ by definition of identity.

kok'of =f by (viii) and (x)
(xiv) kok'of = id.(p/ o f' by definition of identity.

Sincee and f are jointly surjective and by (xi) and (xii), theif o k = z‘d.(’p. By
symmetryk o k' = z’d.(p/. Therefore®p ~ %',

(c) Maximal graphs are isomorphic: by symmetry with minirgedphs, we have® ~
o/
.

O

Now we can explain how to compose implementation morphismthe next propo-
sition, we define this composition and prove that it is welfided and associative. More-
over, we define the identities of this morphisms and provenéstrality with respect
to composition. Figure 3.16 shows a schema of the compaositigdhree implementa-
tion morphisms, on the productions component: the blacgrdia describes the map-
ping of productions of ong-GTs into wut-processes of another, whefge : Pz, —
wutProc(2;), gp : Pz, — wutProc(Z;) andhp : Pz, — wutProc(Z2,), all de-
picted by dashed arrows. Moreover, we have that P, andr; € F,,, fori € {1,...,n}
andj = {1,...,m,..., k, ..., z}. The composition of two implementation morphisms
must map each production of the firstzTs to a wut-process of the third one. Then, if
we want to define the compositigno f we have to maps each production 8f to a
wut-process ofZ;. Since we have thatr maps each production &; to a wut-process
of Z, andgp maps each wut-process 8 to a wut-process of3, we define the com-
positiong o f on productions agp o fr. The blue diagram describes the composition of
hp o (gp o fp) (dashed blue arrows) mapping prod/uc_:iﬁﬁn Z1) to wut-process) k.

(in Z4) and the red one describes the composiﬂfmao gp) o fp) (dashed red arrows)
mapping the same productiontg,,,. (in Z,). In order to prove that composition of im-
plementation morphisms is associative we need to show tthtdompositions (blue and
red) are equivalent, i.efy,,x. ~* v1,,.,. The blue and red processes in this figure are
obtained gluing other ones, for example, the proggsss obtained gluing the processes
@; (i € {1,n}) with respect to their items in common f#}, (X,). In Proposition 3.6
we define this composition and prove its associativity. Tdlewing lemmas are used to
prove this proposition.

55

| A\Y/ A \
I \gpofp
, | T
!

, Lq1 = Ktn = qu Ly, <Kq,> Ry,
A A

A

o .
Pn =< A > Pn

|/

Pn

) fy, ®
Vim <= — Vim

N/

o/ ol .
imkz =7 Yimkz

NP4

Figure 3.16: Composition of implementatiorG TS morphisms is associative.

Lemma 3.1 Given the following diagram irfGraph, obtained by the extension of im-
plementation morphisms defined as in Proposition 3.5, wliere(2) and (X;, b, b7)
are pullbacks and’ o b, o bg = ¢4 o b5 o b;. Then there exisk : Mz, — V1,°,

56

b1y : M!L’wm — @Dm' andbl5 : @Dlm. — T¢1m’ such thatg obsoby; =bi500.

Tdn bra .‘(3)

Y
Twlm

Proof: by, is defined by pullback (2).X’ is obtained as pullback object 6§ and by, andb is
defined by the colimit3). bi5 : ¢1,,* — Ty,,, is uniquely determined by the universal property
of the colimit (3), such thatc; o b5 o bj; = b5 o b. Moreover,t/ : 11,,* — ¢1°® is uniquely
determined by universal property of colingt), such that’ o b = by. O

Lemma 3.2 Let us consider the following commutative diagram, whépeis a colimit
and(2) — (5) are pullbacks. Then there exists X, — Mux,,,, such thab;; o g = eyq;
and there existg : Xy — Mny,, such thatl;; o f = ey.

Ty
e13 3) e14
801. €5 X(] €6 .QOn
2N - N - N
[} - - es
N pa
M"Ewm 2) T<,01 er: (1) Tcpn (4) anpk
A ' A
b11 % & S €10 k di1
wm. T@ln .,l/)k?
g gl f
_ en ») e12 _

idx, idx,

X2 X2 X2

57

Proof:
(i) rng(eg) Nrng(eip) = rng(ey) by (1) and (3)
(ii) rng(eg) Nrng(ein) 2 rng(eq) by (5)
rng(e1) 2 rng(e) by (i)
(i) rng(b2) D rng(er) by (3) and by 0 e5 = e
() (rng(bs) — rg(bs)) Nrng(er) =@ by (itd)
(v) rng(e2) Nrng(er) = by (2) and (i)
rng(bs) Nrng(er)
(vi) rng(er) 2 rng(bsoeiq) by (i) and commuta—
(vii) rng(bs) 2 rng(bs o ey) tivity of diagram above
(viii) rng(er) Nrng(bs) 2 rng(bsoeyr) by (vi) and (vii)
(ix) rng(e2) Nrng(er) 2 rng(bsoeir) by (v) and (viii)
rng(es) 2 rng(bs o eqq)
rng(bs o by1) 2 rng(bs o e1) by (ix) and e = b3 0 by
(x) rng(b11) 2 rng(eir) by injectivity of bs

By symmetry, (xi)rng(di1) 2 rng(e12). By (X) and (xi), we have thalg : Xo — Muxy,,
and3f : Xo — Mny,, defined as follows:

Vo € Xo.g(z) =y, whereby (y) =
Vo € X2+ f(z) = y, wheredy; (y) =
O

Lemma 3.3 Let us consider diagram below, whéet2) is a pushout and2) and(3+4)
are pullbacks. There exists : Xo — X/, such that; oy, =bogandigoy, =do f.

g de]/ L]
m
Xy (O (G
f egoen (D)
e/ €100€3 €9 b
¢k TSpln TSpl
X i
] by
e i3 . b .
T<P1n ¥1 7vblm
7;d.1/);C €10 (1) s
mo
192 > T(i) es
. ©) @ is
o/ €3 da °
wk T@n So’fl €6 XO -
mi
d 3 -
Y
.wkz X2

14

58

Proof:

i1 : Tg’m — T,,, andmsy : Tg’m — Ty are uniquely determined by universal property of
pushout(1 + 2). Moreover,m; : X, — X, is uniquely determined by universal property of
pullback(2).

By commutativity of diagram above, we have:

ejpoezof = egoeyoyg
eloodzod’odof = egonOb'obog
t10i90d odof = i410i30b obog
(i) ipododof = izolbobog by injectivity of i;

By (i) and commutativity of diagram above, we have:

mooigod odof = mgoizob obog
(ii) euod odof = ezobobog

Since(3 + 4) is a pullback and by (ii), we have that : X, — X/, is uniquely determined by
universal property of3 + 4), such thats; o yo = bo gandiy oy = do f. O

Proposition 3.6 (composition and identity for T-GTs implementation morphisms)
Given aT-GTsS Z, let Z be as in Definition 3.19. Then, the properties below hold.

1. Givenimplementation morphisrfis Z, — Z, andg: Z, — Z3, let their composi-
tiongo f: Z; — Z; be defined by the-cTs morphism{hr, hp): go f: 21 — Z;.
Then the composition is well defined and it is associative.

2. Foreacht-GTs Z, letidz = (idzp,idzp): Z — Z be defined as

e the type graph componefitz is the identity;
e each production is mapped byd: » to the abstract proces®;q, |.,;

Thenidz is well-defined and it is the identity of.

Proof:

1. Since we proved, by Proposition 3.5, thiammaps each wut-process 85 into a wut-process
of Z3 and it is well-defined, then the compositigre f is well defined. It remains to prove
that the composition is associative. Lgt 2, — 25,9 : Zo — Zz andh : Z3 — Z4 be
implementation morphism. Then we must prove:

(hog)of=ho(gof)

(@) (hrogr)o fr=hro(gro fr): by associativity of partial graph morphisms.

(b) (hpogp) o fp = hp o (Gp o fp): as depicted in Figure 3.16, for each production
JARS Pl . fP(p) = [Qﬂun §P([¢]w) :A[Soln]w and hP([Qpln]w)\ = [¢1mkz]w- Moreover,
fOBLQi € PZ 'gP(Qi) = [‘pi]wv hP([‘pl]w) = [wlm]w- hP([‘Pn]w) = [wkz]w and
(hp o gp)([dlw) = [¥),.x.Jw- By definition of composition, the sets of productions
of [},k,)Jw @and Y1) contain the same productions (in Figure 3.16: the union of
productions iN[t)1]w, v [Umlws o [Wklws - [¥:]w). Then it remains to prove that

Twlmkz ~ Twimkz

59

i A Ty,,,. — Ty, such that the following diagram commutes, i®.¢ ¢} =
mkKz

wo e, cgoch =u0cCy, g0y =U0Cy, CgOCE =UOCs Cyo ;= uocgand

cgoch =uocr.

I
Vimkz

SinceTy,, .. is the colimit of diagram depicted in blue in diagram aboueis
determined by universal property of this colimit. Then wesinprove that exists
morphismsy; : X1 — X7, y2 : Xo — X} andys : X3 — X3 such that the diagram
commutes.
o dly1: Xy — X{.ployr =p1Apyoyr =prand3lys : X3 — X5.p5oys =
ps A pg o ys = pg. Consider the commuting diagram below, where (1) is a
pullback and (@p1 = pi2 o p11, (0) Pi = p12 © Piy, (€) p2 = P22 © pa1, (d)
p’2 = P22 0p§1-

Pin

Sinced} o po1 = a, o p11 (by commutativity of diagram above), then the mor-
phismy; : X; — X/ is determined by the universal property of pullbdak,
such thap); o y1 = p11 andpy; o y1 = pa1. Thenp o yy = paz o phy o y1 =
P22 0 P21 = pg @Ndp} o y1 = p12 0Py 0 Y1 = pr2 o p11 = p1- Y3 : X3 — X3

is determined by symmetry.

60

o Jlys : Xo — X} .psoys =p3 Apjoys =pa.

Xo
e1l e12
bnt o, wm
bs A A ds
bini di1
¥ \ AV
Ty, My, X5 Mny, Ty,
N
b d
Y Y
cf Y1m® (o ck
bis dis
T¢1m kaz

By the commuting diagram above, wherg = b5 o €11, ps = ds o €12, pi =

bi5 015 andp, = dy50i4, We haveis oyy = bob andigoys = do f. Moreover,

by commutativity of diagram:

- dhobsoe;; =csobsobiiog =bisobog = bi;0is0ys. By definition of
p3 andps, c3 o p3 = p3 o Yo

- dhodsoely=ciodsodiiof=disodo f=djsoi40ys. Bydefinition
of py andplj, ¢ o ps = plyoyo

But, in order to construct the diagram above, we must prove:

A. There existh : Mxy, — ¥1,,°% b1 : Mxy,, — ¥,* andbis @ Y1,,° —

Ty,,,» SUCh that} o bs 0 by = b5 0b. It holds by Lemma 3.1. By symmetry,
we have that there exigt: Mny, — %Y., di1 : Mny, — %, andd;s :
Y. — Ty,., such that o ds o dy = dy5 o d; and there existd’ : *y, —
*on, such that!’ o d = dyy.
B. There existyy : Xy — Muxy,,, such thath;; o g = eqq; and there exists
f:Xo — Mny,, suchthatiy; o f = ej2. It holds by Lemma 3.2.
C. There existg;, : Xo — X}, such that; oy =bogandigoys, =do f. It
holds by Lemma 3.3.
i. dv Ty = Ty,,.,such that ocs = ¢ andv o cg = g2, as depicted in
diagram below.

61

Since (1) and (2) are pushouts, then there exigt : Ty, — Ty, .. andgs :
Ty.. — Tpy,,,.. Such that (@1 = g1 o ¢}, (b)c3 = g1 o, (&) 5 = g2 0 ¢ and
(b") ¢z = g2 o ¢;. By definition,u o ¢; = ¢g o ¢} andu o ¢3 = cg o ¢. Then, by
(@),uo0qioc, =cgod, and, by (b),uoq ody = cg 0. Sincec; andd; are
jointly surjective (chu o g1 = cg. By symmetry, we have (d) o g2 = c9. Moreover,
by definition, cs o py = ¢9 o plj. By (c) and (d),u o ¢; o p = uo gg 0 pjy. Since
u is injective, then (e} o p; = g2 0 ply. By (e),v : Ty, o Ty is uniquely
determined by universal property of colimit (3), such tha:tg = ¢q; andvocg = ¢o.

iii. vou= szw1 anduov = ZdTv/

By i. and ii., We have that: e

vocgod, = qod
vouoc, = qod
vouoc, = ¢ by ii.(a)
(a) wowoc = idTwlmkz oc; by definition of identity
vocgody = qock
vouocy = q0C,
vouocs = c3 by ii.(b)
(b) wvowocg = idp, . ocg by definition of identity
vocgocs = gquods
vouocs = qu0dk
vouocs; = cs by ii.(a")
(c) wvowocs = idp, —ocs by definition of identity
vocgod, = quod;
vouoec; = qod;
vouocy = c7 by ii.(b)
(d) vowocer = idTw17,Lkz o ¢y by definition of identity

By (a)-(d) and sincey, c3, c5 andc; are jointly surjective, then

Moreover, by i., we have:

(e)vou=idp,

cgocdy = woqy
= woqod by ii.(a)
= wovocgocd, byil
(f) ZdeL ocgocdy = wovocgod, by definition of identity
1mkz
cgody = wocs
= woq od by ii.(b)
/ .o
= wovocgocy byii
(2) idT{pl L 0Cs0 5 = wowocgody by definition of identity
mRKz
cgocdy = wocs
= wogqyod by ii.(a’)
= wovocgoc; byil
(h) ddp ocgocs = wovocgocs by definition of identity

Vimkz

62

cgock = wocy
wogqgod, by ii.(b)
uovocgod, by il

(i) idry, ocgoc, = wovocgod, by definition of identity
Yimkz

Sinced] andd; ¢f andc;; andcg andeg are jointly surjective, theng o ¢}, cg o ¢,
cg o ¢y andeg o ¢ are jointly surjective, as well. Therefore,

() idy, =wov
Yimkz

Thus, by (e) and (j), we have thay, =~ T

Vimkz"

2. (@) idz is well-defined Sinceidz is an identity, then it is total and preserves stable and
unstable items. Moreoveidzp» maps each production & into a wut-process of,
it remains to prove that, for all productigne P . idzp(p) = [¢ia,]w, there are three
morphisms fromilz([$iq,]w) t0 L, <« K, — R,. Since[¢;q,]. is the wut-process
containing onlyp as production, its underlying span is isomorphidtp«— K, — R,,
then the required morphisms are given by any triple of is@iiems mapping the span
Hz([¢iq,)w) to L, «— K, — R, and making the two resulting squares commute.

(b) idz is the identity For each implementation morphisfn: Z; — Z andg : Z — Zo,
then:
i. iddzof=f
e idz7 o fr = fr by definition of identity of graphs.
° @P o fp = fp. Since each productignof Z is mapped into a wut-processes
which containsp as the unique production, for al],, € wutProc(Z2),
idz p([¢]w) = [¢]w. This holds by definition ofdz p:

— Let us consider, as the set of productions @([Qs]w). ThenP, is com-
posed of all productions of the wut-processes associatédprnaductions of
[0]w- Sinceidzp associates each production to a process containing it as
unique production, theR, is the same set of productions[af,,.

— By definitions of graph process (type graph is a colimit obagsted deriva-
tion) and of wut- process (all items in minimal graph are)se@ have that
the type graph of¢],, is the colimit of components of all its productions.
Let us considef’;, the type graph oz‘@([gzb]w), thenTy is obtained as col-
imit of type graphs of all wut-processes associated withpttoeluctions of
[¢]- As each one of these wut-processes contains only one pialuits
the type graph is the colimit of the production componentsen7y is the
colimit of components of all productions i, and thereford’; is the same

type graph of¢),,.
il. go idz =g
e gr oidzp = gr by definition of identity of graphs.
e gpoidzp = gp. By definition of composition, for allkp;g, |.. in wutProc(Z)
we have gp([¢iq,]w) = gp(p). Then,

Vp € P. gp(idz(p)) = gp([did,lw) = gp(p)-

Then, by i. and ii. we can conclude thaltz is the identity onZ.
g

The Proposition 3.6 allows to introduce a category with ienpéntation morphisms.

63

Definition 3.20 (categoryTGTS") We denote bf'GTS"™ the category having-
GTSs as objects and-GTs implementation morphisms as arrows.

3.6 Adjunction betweenGTS and TGTS"

A T-GTS can be described in a higher level of abstraction, where tiobservable
items are hidden and each transaction is performed in aesatghic step. This abstract
system is given by aTs obtained as described in Definition 3.18.

The main result of this chapter is that the abstigcs associated to >s has the
same behaviour of the originatGTs, from the point of view of an external observer.
This is proven by using a universal construction in the aatiegl setting: an adjunction
between the categori€$TS andTGTS"". This construction is given by two functors:
the abstraction functod(_) : TGTS"” — GTS, that maps each-GTsinto its abstract
counterpart; and the funct@(_) : GTS — TGTS"", that allows to see aTs as a
T-GTswhose items are all stable.

Using these functors, we can relate an abstract system twitsrete counterpart
through an implementation morphism, mapping each produdtf the source) into the
transaction (of the target) that originated it — remembat tiine productions of the abstract
systems are all transactions of the concrete one. Sinceaalptions of the abstract sys-
tem are completely stable, they are also the transactiotisso$ystem. Thus, we have a
one-to-one relation between the transactions of the altstral the concrete systems.

Theorem 3.1 (Universality of abstraction) The functor4 : TGTS" — GTS, that
maps everyr-GTs Z into its abstractcTs (see Definition 3.9), has a left adjoift :
GTS — TGTS"”, which can be seen as the inclusion@T'S into TGTS"".

Proof: This proof can be divided in three parts:
1. Definition of the functoZ(_) : GTS — TGTS"":

e onobjects: lety = (T, P,) be aGTs, thenZ(G) = ((T, P,), T);

e on morphisms: for any : Gi — Ga, Z(f): Z(G1) — Z(G2) = (fr, fp), Where
Vp € P. fp(p) = [¢id,)w, such thatfp(p) = ¢.

2. Definition of the functotd(_) : TGTS"™ — GTS:
e on objects: leZ be aT-GTs, thenA(Z) = Az = (T, wtProc(2),11z);
e on morphisms: for any : 2y — 25, A(f) : A(Z1) — A(Z3) = (hp, hp), Where:
= hr = <fTv\VT1S7fTE\ETls>;
~ V[élw € WtProc(Z1) « hp((8lu) = Fr((dlw)-
3. To prove thaf () is left-adjoint to.4(_) (as depicted in Figure 3.17) we have to show

VG € GTS,VZ € TGTS™ Vf :T(G) » Z.3h:G — A(Z) vezoZ(h) = f

For eachr-GTs Z, we define the component &t of the counitez: Z(A(Z)) — Z. This
is an implementation morphism, thug&Ts morphismez: Z(A(Z)) — Z is defined as
follows:

-ezp =T =T,

64

TGTS"™ GTS

Z = T(A(Z)) < T > A(2)
f i Z(h) € h
He a0

Figure 3.17: Universality ofz in TGTS"".

- V[¢lw € wtProc(Z2).ezp([¢]w) = [¢]w (remember that productions in(Z) are
exactly the wt-processes &).

It remains to show that given@rs G and ar-GTs Z, for each implementation morphism
f:Z(G) — Z,thereis auniqué: G — A(Z) such thakz o Z(h) = f.

(a) Definition of GTs morphism)h : G — A(Z).
- hpr = fr (since fr maps the type graph ¢f into stable items of);

- Vp € P.hp(p) = fp(p) (since productions inl(Z) are exactly the wt-processes
of Z and f maps each production ¢fto a wt-process oE).

(b) ezoZ(h) = .

- €zT oI(hT> = fT.
By definition, ez = v, andhr = fr. SinceZ(hr) is the restriction ofir
to stable items andi; relates only stable items (the type graplZdg) is totally
stable), therZ (hr) = fr. Thereforeezp o I(hr) = i1, o fr. Sinceir,_ is
the inclusionl’z; — Tz and fr relates only stable items, theq, o fr = fr.
Thereforeez o Z{(hr) = fr.

- ézpoZ{hp) = fp.
Since all productions af (A(Z)) are totally stable (they are all transactions of
Z), thenZ(A(Z)) have one wut-processés;q, . for each productions],
(see the observation before Proposition 3.5). Moreoveddinition of ez p,
we haveez p((¢id,, lw) = [¢]w By definition, hp = fp andZ(hp) maps each
productionp € Fg to wut-processgiq, , , |w, thenvp € Pg ezp(Z(hp)(p)) =

ezp([bidy,) lw) = fP(P)-
(c) hisunique. Let us suppose that exists- (ur,up) # h, such thatz o Z(u) = f:

- Sinceuy (itis agTsmorphism) relates only stable items and by definifign)
is the restriction ofur to stable items, theff (ur) = up. Sinceezp is the
inclusionTz, — Tz andur relates only items iz, thenezr o Z{ur) =
ur = fT. Sincehr = fT, thenup = hyp;

- By definition of Z(_), Vp € Pg . Z{up)(p) = [¢idup<p)]w- and, by definition of
€z p, We haveez p([dida,,, Jw) = [¢lw- Thereforeyp € Pg.ézp(Z(up)(p)) =
ezp([did, ,plw) = ur(p) = fp(p). SinceVp € Pg . hp(p) = fr(p), then
Vp € Pgwup(p) = hp(p).

O

65

Proving thatA(_) is the right adjoint ofZ(_) we have that the abstract system as
defined in Definition 3.18 is the best approximation af-aTs when the unstable items
are forgotten. Moreover, if we consideicTss from an abstract point of view,aGTs Z
has the same behaviour df{ Z), i.e., the transactions of both systems are isomorphic.

66

4 TRANSACTIONAL GRAPH TRANSFORMATION SYS-
TEMS WITH DEPENDENCY RELATION

In this section, we present an extensiomafTss to include a dependency relation in
the productions. This dependency gives us an extra infeemabout the relationship be-
tween the deleted and created elements in each productenddpendency information
can be used to determine implementations (by transactming)joductions, restricting
the set of possible valid implementations. A first approaas \wublished in (FOSS;
MACHADO; RIBEIRO, 2007).

When a production is applied, we can observe a total reldigiween the created
elements and the consumed/preserved ones, i.e., all ele@encreated because of the
existence of all the elements (consumed or preserved) itetikband side of the pro-
duction. However, if we want to associate to a productionnaplémentation composed
by many productions applied in a specific way, we should be &blspecify the rela-
tion between the elements of left- and right-hand sides iroeersophisticated way. For
example, if we consider the productiorr@& depicted in Figure 3.1, we can have dif-
ferent transactions implementing it. In Figure 4.1, two lempentations for production
Stop are shown. In first transaction (at the top), when the pumpHas supplying gas,
it is freed before operator to verify the charge of suppliad.grhusF'ree flag of pump
andChar ge message depend on babhusy flag of pump and=i ni sh message. In the
second transaction (at the bottom), when the pump finishgslydng gas, the charge of
supplied gas can be verified even if the pump is not free. TChust ge message depends
only onFi ni sh message anfiree flag of pump depends on bol ni sh message and
Busy flag. Both transactions implement&p production, since their minimal and max-
imal graphs are equal to left- and right-hand sides of thiglpction, respectively, but
the dependencies dfree andChar ge in their maximal graphs are different. However,
if we want to specify that only one of them is a desirable impdatation of the $opr
production, we need a mechanism to describe these diffdependencies. Therefore,
we will add to each production a relation describing the rddx¢ dependency between
its created and consumed/preserved items that must beleoediwhen the production is
implemented.

Since we want to use productions with dependencies, cajegroductions, to model
a transactions in an abstract way, the dependency relagmotted to a production must
satisfy some restrictions, such that a transaction impteimg this production exists, i.e.,
the transaction must produce the same observable effadt) more steps and possibly
using unobservable items. Therefore, the dependencyorelaita production must allow
to decompose it in a set of productions, which together ¢omsta transaction. The first
two restrictions of the next definition assure us that this§eroductions exists(1) the

67

Operator Customer

~ Stopped - 'c’ﬁé?’é"

Busy

; T .
Min(®1) 1 Opera’tor j;:(;: A
o |

Customer . ! 3
[Finish > o Busy
"

Busy

Customer Operator ,,,,,,,,,

Min(‘Pz)

T(Pz
Operator Customer
op: lesh
Pump

Busy

- (oo o~ F585 |gp |[ur
M Customer Busy
-~ Ch -

Figure 4.1: Transactions implementingd® production depicted in Figure 3.1.

left- and right-hand sides and the interface of the produstare graphs, i.e., all edges in
these graphs have the source and the target vertizesjl productions are consuming,
i.e., all of them consume something. The next restrictioargntees that these produc-
tions compose a transactio(8) all observable created items cannot be used (deleted or
preserved) in the transaction. In order to define the lagstriction, we need to get the
(weakly) connected component (DIESTEL, 2005) of the grajgated by a production
(i.e. the greatest subgraph in the right-hand side of theymtion containing only created
elements). These components must be created in the sameotimewise it would be
necessary to use the vertices created within the transacticreate the edges.

We defineC(G) as the set of connected components/qfisregarding the directions
of the edges).

Definition 4.1 (dependency relation)Given a7'-typed production : L, L K, > R,.
A dependency relatior,, for p is a relation overL, x (R, — K},), such that

1. each created iterhh depending on a preserved or consumed edge must depend on
its target and source vertices, i.e.,

Ve € Er, Vb € Ryue <, b= t"(e) <, bAs™(e) <, b
2. (a) all created items that depends on a preserved one nep&di on a deleted
item as well, i.e.,
Vbe R,.Vae€ K,va=<,b=3d" € (L,— K, Na' <,b

68

(b) if there exists a preserved item that is not related talaimg, then there exists
a deleted item that is not related to anything as well, i.e.,

Ja € K, Vb€ Ry,va£,b=3d € (L, — K,).VbE R,.a' A, b

3. all the items of a connected component of the graph crdatdte production (all
created items of the production, excluding the created &thigeing either source
or target preserved), must have the same dependency, i.e.,

VG € C(R,) Vb,V € GNa€ Ly.a<,bsa=,0,

where R, = (Vg,, Ery, st 1),
Vi, = (Vr, — Vi,)U
{olv € Vie, A 3e € Epy . (s (e) = vV 17 (
Ep, = {ele € (Eg, — EKp) (s (e) & Vi, V
Ve € ER; .SR;’(G) _ 4R ()/\tR/() — tRp(e)

e) =)},
(¢) & Vi,)} and

By the three conditions of definition above, we assure thet gossible to have a
transaction implementing a production with an associaggeddency relation, where this
relation must be preserved and reflected, i.e., the reladitime same in both production
and transaction. Considering a productipmvith a dependency relation, conditidn
requires that all elements which depend on an edge, depetiteorsource and target
vertices, too. This assures that we can define producti@etmsume/preserve edges of
p using their source and target vertices. Condifiga andb), assures that the productions
in the transaction are all consuming, by requiring that fopeeserved items, there exists
one deleted item with the same dependency (avoiding primshscthat preserve but do
not consume something). Conditi@nassures that no created observable item is used
in the transaction where it was created. This is done by reguihat all items in each
connected component created by a production have the sgmeadkncy, which forces
them to be all created at the same time (in the same prodji¢tea Remark 3.1). This
restriction avoids the need to read (preserve) verticesdardo create edges over them.

Definition 4.2 (dep-production) A dep-productionis a tuple (L, «— K, — R,, <,),
whereL, — K, — R, is the span of productiop and <,, is a dependency relation for
p. The class of all'-typeddep-production is denoted by-DProd.

Example 4.1 dep-production) If we consider that th&Ttop production (Figure 3.1) can
be partitioned into more steps, as depicted at the bottongoifé& 4.1, we will obtain the
dep-production in Figure 4.2. The dependency is defined by ttierkx,y, z, b, d and
h, relating each created element (in the right-hand sidd) thi¢ set of all consumed or
read elements (in the left-hand side) on which it depends.

<¥)C%PJ!>
cUsmmeg - \thi[q%,‘
Stop
Finish ¢ Customer| -

Figure 4.2: Adep-production.

Operator
operato]
ib

op
Pump

X~~~ Busy’

Then the corresponding dependency relation associatée 8rop production is:

69

op <siwp Free op <swp Charge

Punp <sip Free Punp <sip Charge
Operator =g, Free Operator <g4, Charge
Custonmer —<gp, Free Custunmer g, Charge
Finish <g, Free Fi nish <g4, Charge

Busy —<sip Free

where theFr ee attribute was created because bBthsy andFi ni sh are consumed,
and theChar ge message was created only becausé-th& sh message was consumed;
the preserved (or read) elements Bienp, Operator, Customer andop (for bothFr ee
andChar ge).

_

A T-GTs with dep-productions is defined astacTs where ther function maps each
production name into dep-production.

Definition 4.3 (GTs and T-GTS with dependency relation) A graph transformation sys-
tem with dependency relatiofd-GTS) is a GTs (7, P, 7), wherer is a total function
mapping production names tzp-productions inf-DProd.

A transactional graph transformation system with dependezlation(dT-GT9) is a
T-GTS ((T, P,), Ts), where(T, P, r) is a d-GTS.

Example 4.2 (-GTs with dependency relation) As an example of -GTS, we can con-
sider the gas station system of Example 3.1 adding dependelations to productions.
The resulting d-GTs DepPumpOper is shown in Figure 4.3, where all of them, but
STOP, have total dependencies, i.e., all created elements depeall deleted and pre-
served ones. The type graph is the same shown in Figure 3eldépendencies restrict
implementations of these productions: for exampBiepp can be implemented by trans-
actiong, in Figure 4.1 (at the bottom), but not lpy in the same figure. The choice of a
total dependency, for example, for tBERVE production, establishes that tha.sy flag
must be created only if boBuppl y message anfiree flag are consumed, even if this
consumption and creation are done in several small steps.

_

The dependency relation of productions does not interfetled semantics of & GTS.
The match is not restricted by dependency, it only gives draesyntactic information
about possible refinement or implementation. Therefore skmantics of 1GTss are
given by direct derivations and derivations like in Defioiti2.4, substituting productions
by dep-productions.

Definition 4.4 (direct derivations and derivations of dr-cTss) Given al-typed graph
G, a T-typed graphdep-productiong = (L, L K, - R, =,) and a match (i.e. an
injectiveT-typed graph morphismy. : L, — G, adirect derivatiorfrom G to H using

q (based onm) exists if and only if the diagram below can be constructeagre both

squares are pushouts ifi-Graph. In this case the direct derivation is denoted by
G Hord:G= Hif we do not make explicit..

L,~'OK+">R,
m| (1) kl 2) lm*
G=p—D——H

70

Operator
y
z

Operator -2 preord” -
yJ TR
pu

_yze>
Operator = -~Z_Preord -,
Accept | | P SEteds !

|
|
<y,z,c> |
|

Coupon Customer {-*

Customer}

Operator n Operator
ReleCt -

<y,z,c>
Customer
Activate <«xfj>

» Pump R il

o TR

Start <x,e,k>

» Pump e et

o “{Busy’

-~ Charge -, D
3 Operator , 74\\9@?[9’%;1 Finish Operator
Customer |-- ! >

A

Customer
z

Operator }

Serve

<X\y.z,a,9>

Stop

-

|
i <y.zl>
<xy,zb,dh> Customer |--- Customer
Z

<Xy.b,i>

Pure Impure
> >

AnalysE Analysg

Customer

Operator | -

Analyse

”

Figure 4.3: AT-GTS DepPumpOper with dependency relation for gas station system.

Given a d-GTs Z = ((T, P,), T,), aderivationp : G§ "= GT "22 GT ... of Z
is a finite or infinite of direct derivations, : GT "= Il whereGY,, = H! andi > 0.
If a derivationp : GF "= ... "= GT s finite we callGf and G of initial and final
graphs, respectively. The semantics?ofs the class of all derivations i&, denoted by
dDer(Z2).

4.1 CategoriesdGTS anddTGTS

If we want to relate two dsTss we need to consider the dependency relation associ-
ated to their productions. Therefore, the production nmagppnust respect this relation,
i.e., a production can be mapped only into another if theetaoge has the same de-
pendency relation between the translated elements. T$tiscteon reduces the possible
relationships between dTss, with respect taTss, because we impose an extra restric-
tion, excluding same relationships valid feTss.

Definition 4.5 (d-GTs morphism) Given two deTss G; andG,. Ad-GTS morphismf :
G, — Gy isaGTsmorphism betwee@;, andg, such that the production mapping respects
dependency relations, i.e., for all € P, and for each concrete choice @¢f(p;), with

71

fp(pl) = P2, WE have thatVal, bl c Pl -\V/ag, bg c Pg . (fLL(pl)(CLQ) = N fLR(pl)(bg) =

b1) =

((a1 =p, b1) & (az <y, b2)).

Proposition 4.1 d-GTss and deTs morphisms form a category, denoted d§T'S, in
which composition and identities are defined a&3i'S.

Proof:

1.

Composition is well-defined_et f : G — G andg : Go — G3 be dGTS morphisms and
g o f be their composition. By Proposition 2.2, we have thatf is acTs morphism, then
it remains to prove thagp o fp respects dependency relations, i.e., forpalle P, and

for each concrete choice ¢f(p1) o g,(p2), with fp(p1) = p2 andgp(p2) = ps, we have

that: V(a1 <p, b1) - V(ag <p, b3) « ££(p1)(g/ (p2)(as)) = a1 A [T (p1)(g] (p2)(b3)) =
bi .« (a1 <p, b1) & (a3 <p, b3). By definition the following statements hold:

(@) V(a1 =p, b1) «V(az <p, b2)« fE(p1)(a2) = a1 A fE(p1)(b2) = b1« (a1 <p, b1) &
(a2 =p2 b2);

(b) V(az <p, b2) - V(as <p; b3) « gF(p2)(as) = az A gl (p2)(bs) = bz« (ag <p, b2) &
(a3 =ps3 b3)'

By (a) and (b), we have that:

V(al =ps bl) -\V/(ag =pa bg) . V(ag =p3 bg).
FE@1)(az) = ar A fE (1) (b2) = b1 A g (pa) (b3) = ba A g/ (p2)(b3) = ba-
(al =p1 bl) g (a2 <p2 b2) N ((Ig =p2 b2) g (a3 =ps b3)

Therefore,

V(al -<p1 bl) .V(ag -<p3 bg).
fE0)(gl (p2)(a3)) = a1 A fF (1) (9 (p2) (b3)) = b
(a1 =<p1 bl) <~ (a3 =p3 bg)

Identities are well-defined morphisméet idg = (idr,idp) be the identity onG =
(T, P, 7). By definition of identities inGTS, for all p € P.idp(p) = p andid,(p) =
(idr,,idk,,idg,). By definition of identities irl-Graph, we have

V(a <, b)widp,(a) = a Nidg,(b) =b.(a <, b) & (a <, b)
Neutrality of identity and associativity of compositidollow from these properties in

GTS.
O

As defined forT-GTss, dr-GTs morphisms are @&sTs morphisms that, preserves stable
and unstable items, and are total on unstable ones.

Definition 4.6 (dT-GTS morphism) Let 2, = (G, T1,) and 2, = (G,, T5,) be dr-GTss.
A dT-GTsS morphismf: Z; — Z,is ad-GTs morphismf: G; — G, between the under-
lying d-GTss, such that

1.
2.

forall z € Ty \ T1,, we have thafr(z) is defined and’r(z) € Ty \ Ts,;

forall z € Ty, if f7(z) is defined therfr(z) € Tas.

72

P ek

° <x,y,z,9lb,,s:>
<. Ch -

***\

Figure 4.4:dep-productiong; andps.

Example 4.3 (dr-GTs morphism) The dep-productionStop, defined in Example 4.1,
could be mapped by atdcTs morphismf to the productiom, in Figure 4.4, but not to
pe, because, has a different dependency relation. We consider the mgppi8Top)
defined by{ P — Pump, O — Operator,C' — Customer, B — Busy, F' — Finish,
Fr— Free,Ch w— Charge,o— op} for bothp, andp,.

_

Proposition 4.2 dT-GTss and d-GTs morphisms form a category, denotedd¥GT'S,
in which composition and identities are defined asl@T'S.

Proof: This proof follows from Propositions 4.1 and 3.2. O

Since the introduction of dependencies does not modifydheasitics of a graph trans-
formation system and graph processes are obtained fronatleris, the graph processes
of a dr-GTs are obtained as in Definition 3.10, substituting produdiongraph pro-
cesses bylep-productions, i.es((g;, 7)) = ((L;, cr,) & (K, cx,) 25 (Riycr.), <g,)
whererz(q;) = (L; < K; — R;, <,,). Moreover, the transactional process offaairs
is defined like in Definition 3.15 anddc TS morphisms preserve transactionstasTs
morphisms.

4.2 Abstract d-GTs for a T-GTS with dependency relation

Since we are consideringep-productions, abstract transactions must consider the
dependencies of their productions. Here, we will distispweak ut-processes with dif-
ferent relation dependencies. The relation dependencypobeess can be obtained as
the transitive closure of dependencies of their produstidfioreover, at a more abstract
level, we only see the minimal and maximal graphs of a trarmactherefore, we will
consider only the dependencies on elements in these graphs.

Definition 4.7 (Dependency relation of a processiziven a proces® of a dr-GTs Z,
the dependency relation of a procesgss the relation<, over % x ¢* — (% N ¢°),
defined by

< ==2p, N R,

where=p, is the transitive closure ovaepd) <yandR = {(a,b) l[a €% A be ¢°}.

The transitive closure of dependency relations of produstiof a graph process give
us the dependency resulting of application of these prichgin the associated deriva-
tion. For example, by two productiopsandq of a proces®, if in p we haveu <, b (a is
consumed/preserved in order to creigtand ing we haveb <, ¢ (b is cosumed/preserved

73

in order to create:), we will have in the dependency relation ¢fa <4 ¢ (a is con-
sumed/preserved in order to creaje The intersection op, with R (set of pairs of
elements in minimal and maximal graphsg@j) give us the restriction of the transitive
closure of dependency relations of productions ito pairs of elements in minimal and
maximal graphs fop.

Example 4.4 (Dependency relation of a processlrigure 4.5 shows the transactional
processy, of dT-GTS presented in Example 4.2.

Max(¢,)

Serve
>

\

I Activate | Activate

|

Start
T Busy

Yz
Finish
> | o1 c1

Figure 4.5: Transactional process atdTs Dep PumpOper.

\

Stop

|

\

The dependency relations of all productiongére illustrated in Table 4.1. The tran-
sitive closure of these relations is shown in Table 4.2. Taeditive closure includes in a
dependency relation a pair= c if the pairsa < b andb < c are already in the relation.
In the example, we have that operator accepts a prepaymirif tirere is some prepay-
ment being offered it himRr epay <accerr Pr €Or d); moreover, we have that activation
of pump is triggered only if the operator has accepted a prapat PreOr d <serve
Acti vat e). Consequently, we will have that the activation of the pusifriggered
only if someone has offered a prepaymePtgpay <p, Activate). Besides, the
pump is activated only if the activation has been triggefed { vat € <acrivare F'F).
Therefore, pump is activated only if a prepayment has befeneaf Pr epay <p, FF).
Finally, Table 4.3 shows the restriction to minimal and mai graphs of), of the re-
lation shown in Table 4.2. This restriction eliminates frtme dependency relation of
all pairs containing elements that are not in minimal or meatigraphs. For example,
the pairChar ge <p, Change is eliminated sinc€har ge is not in minimal neither in
maximal graphs.

_

Now, we can define the class of abstract transactions camgjdie dependency re-
lation. A dependency weak ut-process is a class of weak algmiyprocesses that have
the same dependency relation.

74

Table 4.1: Dependency relations of productions of transaat process;.

o1 o1
Cl <accerr Preord Cl <accerr Coupon
Pr epay Pr epay
o1 o1
P1 P1
Cl <seree Start Cl <swe Activate
pU U
Preord Preord
P1 P1
Free! <acrwvare FF FF <smrr Busy
Activat e Suppl y
o1
P1 o1
E’; <stop Free? gi <srop Charge
Busy op
Fi ni sh Fi ni sh
o1
C1 ~FINISH Change
Char ge

Definition 4.8 (Dependency weak processed)et ¢, and ¢, be two weak equivalent ut-
processes andl; : Ty, — T, be the isomorphism between type graphs of the processes.
Then,¢, and ¢, are dep-weak-equivalenwritten ¢, ~? ¢., if only if:

Ya,b € *1 U p1° A VCL/, b e 0o U o°
if fr(a)=a A fr(b) =0 then a <y b a <4V

A dependency weak ut-process (dwut-procésslefined as an equivalence class of
ut-processes with respect to dep-weak-equivalence, ééras¢], for a representative
¢. The set of dwut-processes ofr&Ts Z is denoted byDwutProc(Z). The set of
dep-weak t-processes (dwt-procesdas)tProc(Z) is defined in an analogous way.

We can obtain @ep-production associated to a transaction, considering thigimal
and maximal graphs as left- and right-hand sides, and tbesittion of them as interface
of the production. The dependency relation of this produncis given by the dependency
relation associated to the transactional process. Thusbten an abstract description
(dep-production) of a transaction, and can see the transactian anplementation of this
abstract description.

Definition 4.9 (dep-production associated to a dwut-process)siven a proces® for a
dT-GTS Z, we have

[I(¢) = (% — %N ¢* — ¢* <),
where the intersectiof N ¢* is taken componentwise and, is the dependency relation
associated t@.
Let us assume for eaclta5Ts Z a choice functiorch z, mapping each dwut-procegs
to a concrete representativéhz ([¢]4) € [¢]a. Thedep-production associated {d], is
defined aslz([¢]q) = II(chz([¢]a)).

Example 4.5 (ep-production associated to a process)rhe dep-production associated
to the process in Example 4.4 is shown in Figure 4.6. The &dedcdependency

Table 4.2: Transitive closure of dependency relations oflpction of¢;.

01 01
Cl =p, Preord Cl1 =p, Coupon
Pr epay Pr epay
01 01
P1 P1
cl =p, Start cl =p,, Activate
pu ! pu !
Pr epay Pr epay
Preord Preord
01
01 P1
P1 C1
C1 op
pu pu
Free! Free!
FF jp(bl Busy FF jp(bl Free?
Pr epay Busy
Preord Pr epay
Activate Preord
Suppl y Acti vat e
Suppl'y
Fi ni sh
01 01
P1 P1
CO:; =p,, Charge i; =p,, Change
Fi ni sh Fi ni sh
Char ge
01
P1
C1
U
Freil =P, FE
Pr epay
Preord
Activate

Table 4.3: Dependency relation associated to transat{ooeessy; .

01
o1 P1
Cl <4, Coupon Cl =<, Start
Pr epay pU
Pr epay
o1
P1
C1 01
op P1
pu <y, Free? Cl <,, Change
Freel op
Pr epay Fi ni sh
Suppl'y
Fi ni sh

75

76

(Table 4.3) is described by the letters. This productiorcdless an execution of the
system in an abstract way and the dependency relation gisemg information about
the interaction of the system with its environment, for epéenthe system only sends
a Coupon or aSt art message if it has received previouslyPaepay message, and
only sends £&hange message after it has receive®aepay, Suppl ay andFi ni sh
messages.

op

d —
P1

<x,y,z,b,d
PL L suppiy]
y (FreeD

<x\y.z,ab,c,d.ef>

Figure 4.6:dep-production associated to the process in Example 4.4.

_

We are now able to define the abstract system associated @itleas. An abstract
system associated to a-aTs Z is defined as for-GTss (Definition 3.18), where the set
of productions names contains all dwt-processes .of

Definition 4.10 (Abstract d-GTS) LetZ = (G, T;) be a d-GTS. Theabstract dsTs as-
sociated taZ, denoted byl z, isthe d&6Ts (T, DwtProc(Z2),I1z) whereDwtProc(Z)
is the set of dwt-processesBfandllz is as in Definition 4.9.

Example 4.6 (Abstract d-GTS) In Figure 4.7, we can see the abstract sysfgarnassoci-
ated to d-GTS Dep PumpOper (Example 4.2).

<y.z,c>

<X,y,b,i>

<x,y,z,b,d>

Operator

pu

[0,

[Busy >—» Suply
Customer
<< Prepay Pump

Analyse |
Operator

(Feey™

Figure 4.7: Abstract @sTs Z; associated to theTdcTs Dep PumpOper, described in
Example 4.2.

As for the ordinaryT-GTS, the type graph ofZ, is the stable type graph of
DepPumpOper. The productions of, are all transactional process of the originat d
GTS:

77

e the proces$p,|, is shown in Figure 4.5;

e the processel®»|q, [¢s3]a and[¢4]q are those which have as the only productions
REJECT, PUREANALYSIS andIMPUREANALYSIS, respectively.

4.3 Implementation morphism for dT-GTS

In this section we describe the relationship between a miosgract d-GTs and its
implementation. This definition is analogous to thatfasTss. Here, an implementation
is given by a pair of mapping$a) a morphism between the type graphs &nd function
mapping each production of the source@Ts into a transaction of the target one. If we
consider§2 be the d-GTs having the same type graph g% and thedep-productions
associated to all unstable transactional processés,ofie can define a implementation
relationship betweendGcTss Z, and Z, as a d-GTs morphism, where the productions
component associates each productioxoto a production o@, i.e., to a transaction
of Z.

Definition 4.11 (dr-GTs implementation morphisms) Given dr-GTs Z; = ((T;, P;, m;),
Ty,), fori € {1,2}. Let Z, = ((T;, DwutProc(Z;),11z,),T;,) be a dr-GTs having
all dep-weak ut-processes 8f as productions. AdT-GTS) implementation morphism
f: 21 — Zyisadr-gtsmorphismfr, fp): 21 — Z’;

Example 4.7 (implementation morphisms for d-GT1ss) Consider the @-GTs Z; de-
picted in Figure 4.7. We can define an implementation morptbetweenz, and the
d1-GTS of the gas station system (Example 4.2). The type mappiny&n@y the in-
clusion ofTz, into the type graph of the gas station system (Figure 3.1f mapping
between the productions is defined by;], is mapped to the transaction in Example 4.4;
[b2]a, [03]a @nd|ps)q are mapped to transactions containing productRBsECT, PURE-
ANALYSIS and IMPUREANALYSIS, respectively. Note that dependencies of all produc-
tions are respected, i.e., they have the same dependertoy wéhsactions to which they
are mapped.

_

In the following,D=(a, a’) is true if a anda’ have the same dependencies<ni.e.,
they are related with the same elementsfyhat is

DY true iffVz.(a<z<d <z)and (v <aex<d)
D~ (a,d") = :
fal se otherwise.
Proposition 4.3 Given a d-GTs Z;, let Z; be as in Definition 4.11, for {1 2}. Then
any dr-cts morphismf: 2z, — 32 extendsto adGTS morphlsmf Zl — 32

Proof: The definition offis given as in Proposition 3.5. Then it remains to prove j‘ﬁhstwell—
defined. By Proposition 3.5, all concrete processes are wegaikalent, then it remains to prove
that all concrete processes have the same dependencgmelati

78

If we would chose a different concrete process(dep-weak-equivalent tg;) in Proposi-
tion 3.5, we would obtain a different proceg§ such thatf(qb) = ¢'. By definition off, we
have thatP, = P, andT,, ~ T,,. Moreover, in order to obtain the dependency relatiop,ofve
can get the transitive closure of - - - ¢,,, because the dependencies between elements of these
processes is given only on those elements in maximal andmalrgraphs.

By definition of dr-GTs implementation morphismx,, and<¢l can differ only on elements
having the same dependency, i.e.,

()Va € %1 Upr*« £ (1) (hr (@) # £ (1)(a) = D™ (hr(a), d)),
wherefA(p;) and f’(p1) are defined as in diagram beloi : T;,, — T, is an isomorphism,
A=A{LR}, fAp1)(a) = 2 (01)(@),

Lpl = Kpl > Rp1
fE(p) 5 (p1) fE(p1)
FE (p1) FE (p1) FE (pr)
%1 < %01 Nr® > p1°
m , hT'm'ﬁX\ , , hTWl"
%01’ < 01" Np1® - p1*

Let us considerf* (p1)(a’) = fA(p1)(a). By definition of the dependency relation of a
process, for alla, z) €<, and all(y,a) €<,,, withi = L.n, if £2'(p1)(hr(a)) = fA(p1)(a),
then there exist$hr(a),z) €<, and(y,z) is in <, usingy; or ¢|; otherwise, usingp;, we
have(y, z) €<, and usingy} we have(y, z) as well, because, bt), there existga’, z) €<.
This holds for all(z, a) €<, and all(a, y) €<, by symmetry. ad

Now we can define the composition and identity far@Ts implementation mor-
phisms.

Proposition 4.4 (composition and identity for dr-GTs implementation morphisms)
Given a d-GTs Z, let Z be as in Definition 4.11. Then, the properties below hold.

1. Given d-GTs implementation morphismg: 2, — 2, andg: 2, — Z3, let
their compositionhr, hp) = go f: Z; — Z3 be defined by ©GTS morphism

—

(hr,hp): go f: Z; — Z3. Then the composition is well defined and it is associa-
tive.

2. Foreach d-GTs Z, letidz = (idzr,idzp): Z — Z be defined as

e the type graph componefitz is the identity;
e eachdep-productionp is mapped byd: p to the dwut-proces;q, |q-

Thenidz is well-defined and it is the identity of.

Proof:

1. Since we proved, by Proposition 4.3, tlgahaps each dwut-process &f into a dwut-process
of Z3 and it is well-defined, then the compositigr f is well defined. It remains to prove that
the composition is associative. Lgt: 21 — 25, g : Z9 — Z3 andh : Z3 — Z, be dr-GTs
implementation morphisms. Then we must prove:

(hog)of=ho(gof)

79

(@) (hyogr)o fr =hro(gro fr): by associativity of partial graph morphisms.
() (hpogp)ofp=nhpo(grofp): since extensiorf for any implementation morphisth
is defined in the same way farGTss and d-GTss and by Proposition 3.6, we have that

Vp € Pr.((hpogp)o fp)(p) = (hp o (Gr o fr))(p), i.e., both compositions result
in the same wut-process. Then it remains to prove that therdigmcy relations of these
processes are the same: it holds by associativity of unioelations.

2. (a) idz is well-defined Sinceidz1 is an identity, then it is total and preserves stable and
unstable items. Moreoveifdz » maps eachiep-production ofZ into a dwut-process
of Z. It remains to prove that, for allep-productionp € P .idzp(p) = |[¢id,)d
there are three morphisms froliz ([¢;q,]a) t0 L, < K, ~— R,. Since[¢q,]q is
the dwut-process containing onpyas production, its underlying span is isomorphic to
L, «— K, — R,, then the required morphisms are given by any triple of ispiisms
mapping the spahl z ([¢;q,]q) to L, < K, — R, and making<¢idp:<p.

(b) idz is the identity It holds by Proposition 3.6
O

Definition 4.12 (categorydTGTS"") We denote bdTGTS"" the category having
dT-GTss as objects anddG TS implementation morphisms as arrows.

4.4 Adjunction betweendGTS and dTG TS

As like for T-GTss, we will show that the abstract@rs associated to a™®GTs has
the same behaviour of the originat-& TS, from the point of view of an external observer.
This is done by using an adjunction between the categd@¥S anddTGTS"".

In order to prove that the adjunction exists, we define twators: the abstraction
functor and the inclusion functor. Using these functorscae relate an abstract system
to its concrete counterpart through an implementation imerp, showing the one-to-one
relation between transactions of &dT1s and those of its abstract counterpart.

Theorem 4.1 (Universality of abstraction) The functor4A” : dTGTS"” — dGTS,
that maps every@GTs Z into its abstract deTs (see Definition 4.10), has a left adjoint
7P : dGTS — dTGTS"”, which is the inclusion ciGTS intodTGTS"™.

Proof: This proof can be divided in three parts:
1. Definition of the functoZ?(_) : dGTS — dTGTS""*:
e onobjects: leg = (T, P,) be adeTs, thenZP(G) = (T, P,x),T);

e on morphisms: for anyf : G, — G, ZP(f): IP(G,) — f@> = (fr, fp),
whereVp € P. fp(p) = [biq,la, Such thatfp(p) = ¢. Note that dependency of
p is preserved by<¢idq because<q:<¢idq and fp preserves dependency pf(by
definition).

2. Definition of the functotd? () : dTGTS"™ — dGTS:

e on objects: leZ be a d-GTs, thenAP (Z) = Az = (T,, DwtProc(2),11z);

e on morphisms: for any : Z; — 2y, AP(f) : AP(21) — AP(Z3) = (hy,hp),
where:

= hr = <fTv\VT1S7fTE\ETls>;

80
— V[¢]q € DwtProc(Z1) . hp([¢]a) = fr([¢]4). Note that, by definition of p,
the dependency db)|, is preserved bep(Md)'

3. To prove thaf?{_) and.AP(_) form an adjunction we have to prove that

VG € dGTS,VZ € dTGTS™ Vf :IP(G) — Z2.3h: G — AP(Z).ez0TP(h) = f

dTGTS™™ dGTS
Z = IP(AP(Z)) < S > AP(2)
f : 00 - "
e g T

Figure 4.8: Universality ofz in dTGTS™.

For each d-GTs Z, we define the component &t of the counitez: ZP(AP(Z)) — Z.
This is an implementation morphism, thus B@&TS morphismez: ZP(AP(Z)) — Zis
defined as follows:

-ezp=Ts — T,

- V[¢la € DwtProc(Z2) . ezp([¢]s) = [¢]a (remember that productions AP (Z)
are exactly the dwt-processes®y.

It remains to show that given a@lfs G and a d-GTs Z, for each d-GTs implementation
morphismf: ZP(G) — Z, there is a uniqué: G — AP(Z) such thakz o ZP(h) = f.

(a) Definition of (deTs morphism)h : G — AP(Z).
- hp = fr (since fr maps the type graph ¢f into stable items oE);
-Vp € P.hp(p) = fp(p) (since productions iMP(Z) are exactly the dwt-
processes o and f maps each production ¢fto a dwt-process of).
(b) ez o IP(h) = f.
- ezp o IP(h7) = fr. This holds by item (3.b) of Theorem 3.1.
- ezpoIP(hp) = fp.
Since all productions of”(AP(Z)) are totally stable (they are all transac-
tions of), thenZ?{AP(Z)) have one dwut—process&ﬁidwd]d for eachdep-

production[¢], (see the observation before Proposition 3.5). Moreoveddsy
inition of €z p, we havee/gp([¢id[¢]d]d) = [¢]a, with =iy, =6 By defini-
d

tion, hp = fp andZP(hp) maps eachlep-productionp € Pg to dwut-process
[bid,) then¥p € Pg . €2 p(ZP(hp)(p)) = €z p([bid,,(,a) = fr(p), with
<¢idfp(p) ==fp(p)-

(c) hisunigue. It holds by item (3.c) of Theorem 3.1.

81

4.5 ComparingT-GTS with dT-GTS

In this section, we companmeGTss and d-GTss in terms of information that each one
can express. The inclusion of dependencies in a producties ot modify its semantics,
but in adds information about its implementation. This @xtformation permits to iden-
tify resources needed to produces partial results. For pkarthe dependency relation
associated to theéep-production in Figure 4.6 determines that messagepon maybe
sent after a messagre epay has been received, even if the otheé8a§pl ay, Fi ni sh
and F'ree) are not received. Using this information, we can restraggible implemen-
tations for a production, because only transactions whespect its dependency relation
can be valid implementations.

We can say that a-GTs (or dT-GTS) Z implements another ong&’, if there exists
an implementation morphisrfi : Z — Z’, where fr is total. Moreover, when dep-
production can be related to a transaction (by means of afemgntation morphism),
we say that the transaction implements the production. i@eriag this relationship be-
tweendep-productions and transactions, we will show that/aj-production can be im-
plemented by some transaction. This is due to the restngiimposed on the dependency
relation, that guarantee the existence of at least oneactine implementing thdep-
production.

Proposition 4.5 There exists at least one transaction that implementspaproduction.

Proof: The proposition holds because, for afyp-productionp, we can obtain a transactiah

which implements. A transaction can be constructed as follows: consider and ¢ ranging
over the deleted, created and preserved items wspectively;z;, be the graph created by(as
defined in Definition 4.1); and' = C(R,,) ranging over the connected componentgpf The set
of productions ofp contains:

deleting productions one production for each, deletinga; preserving the source and target of
a, if it is an edge; and creating an unstable itémb) for eachb that depends on, where
if a is a vertex theria, b) will be a vertex, elséa, b) will be an edge with same source and
target ofa;

creating productions one production for

e eachG, deleting all unstable items, b), whereb is in G; preserving each such that
someb in G depend on it; and creating an unstable ité®) (used for synchronisa-
tion) and creating abb in G;

e eachx € R, — Ky Nz ¢ R; (edges created over preserved vertices), deleting all
unstable itemsa, x); preserving alk such that: depends on it; and creatingand
unstable vertexz, “s”)

synchronisation production one production deleting all vertéXs) and(x, “s”).

The dependency relations associated to productionsaoé total, i.e., the created items depend of
all items in the left-hand side. Besides, the type graph ©fthe graph obtained joining all left-
and right-hand sides and interfaces of all deleting, angatind synchronisation productions.

One can note that is a transaction becausg:) all productions create unstable items, but the
synchronisation one. As this production can be applied afibr all stable items g are created,
it is the last production to applied, resulting in a stabkdest Therefore, the intermediate states
have always at least one unstable ité®); all created stable items are not used in the transaction
because the deleting productions (which are the only oredsditlete stable items) delete only

82

items in the initial state; an) all items consumed and preserved are used, because thee is o
production for each deleted item and the preserved onessatkini the creating productions.
Besides, we can see thatimplementsp because the minimal graph (all deleted and preserved
items) coincides withL,, the maximal graph (all created and preserved items) abescivith

R, and, as the productions are constructed considering thendepcy relationg preserves the

dependency op.

O

The ut-proces® depicted in Figure 4.9 is a transaction that implements thedyz-
tion Storin Figure 4.2, obtained as defined in Proposition 4.5. Thdyertions named as
dDeleted Element and 'reated Element (cCreatedGraph) are productions obtained
as described in deleting and creating productions, resspéctThe synchronisation pro-
duction has the obvious name. The type graph, depicted &pheght, is constructed as
the gluing of all graphs of productions and the minimal (mai) graph is composed by
items of type graph that are not created (consumed) by amlption. Table 4.4 describes
transitive closure of all dependency relations of produngiofy, and the corresponding
restriction to minimal and maximal graphs is:

op

Punmp
Oper at or
Cust omrer
Fi ni sh
Busy

<4 Free

op

Punmp
Operator =<,

Cust uner

Fi ni sh

Char ge

Observing the minimal and maximal graphs, one can see teahthimal and maximal
graphs ofp are isomorphic to left- and right-hand sides afd® production, respectively.
Moreover, the dependency relation associategl fescribed above) is equivalent to that
associated to 8P production.

Table 4.4: Transitive closure of dependencies of produstad ¢ depicted in Figure 4.9.

Pump

Fi ni sh/ Free Bus
Customer =p, i 1i ghy Char ge Pumyp =p, Busy/Free
Fi ni sh
op
Pump op
Customer Pump
Operator Free Customer Char ge
Busy —% Free/“s’ Operator —%¢ Charge/"s"
Fi ni sh Fi ni sh
Fi ni sh/ Free Fi ni sh/ Char ge
Busy/Free

As mentioned, the association of the dependency relatigmdductions of ar-GTs
restricts the possible valid implementations. This re8tm means that, when we are in
the context off-GTss, we can have different transactions implementing a prioaiug.
Even if they have different dependencies between theiraésnthey are still implemen-
tations ofp, since dependencies are not being taken into account. Quthiee hand, if
we consider the same productiptaving two different dependency relations associated
to it, we would have twalep-productionsp; andp, differing only on the dependencies.
Some implementations of are, now, implementations gf, while other ones may be
implementations of», but there are no common implementation for both, because th

83

> ‘ <x,z,d> o !
“FinishiCharge - | Reerst (L |
. = Charge -
dBusy Pump |, <> S op .

- ey BusyIFree ! :

_ <xz,d>
i Customer} -Finish/Free~
dF'n'Sh ‘ | v Customer

. (\é‘u syl Frg};‘/

Customery -~

<xyzb|>

cCharge

<xyz ka> ini //—/’\/B/ljéj\/

cFree

Customer|

op

Pump | K il Pum <X,Y,Z,bjk>

Customer

,,,,,,,,, NP ‘synchronisation
Charge/s | Free/"s"} ‘ =‘

Figure 4.9: Transaction constructed from dep-productionrSn Figure 4.2.

implementation relationship must preserve the dependsn@iherefore, if we choosg
we will be discarding all implementations pf (which are valid forp) and vice-versa.
We demonstrate this fact in the following theorem.

In the following, the sef (Z) contains allr-GTss (or dr-GTss) that implemeng.

Theorem 4.2 (dependency relation restricts the implementeons of aT-GTS) Given a
d1-GT1sZ = ((T, P,m),T;) and aT-GTSU(Z) = ((T, P,n'), Ts), whereVp € PAn(p) =
(L, — K, = R,,<,).7'(p) =L, — K, = R,.

Ifdpe PAR(p)=(L,— K, — Ry, <,) A3 4;7&41,
then 32’ ¢ I(Z). 2" € IU(Z)) A Z' = U(Z")

Proof: The theorem holds by definition of implementation relatiipsthat differs fronm-cTsto
dT-GTs by including a restriction for ¢GTS: it must preserve the dependency relations. Consid-
ering at-GTS Z containing only the productiop, if there are two different dependency relations
<1 and <y for p, then we can consider two different-¢Tss Z; and Z, containing thedep-
productions(p, <1) and(p, <2), respectively. For eachrecTs Z; there exists an implementation
Z! associating the transactidg; |, with the production(p, <;). By definition of implementation
relationship, the @GTs Z| cannot be an implementation f&. When we consider-GTss, the
restriction on dependencies does not exist and, thereformn be implemented by both] and

Z/, (forgetting the dependency relations). O

Example 4.8 (restriction of implementations) Let us consider theWGTS Z, depicted

in Figure 4.10. Note thag,, in Figure 4.7, andZ, differ only in the dependency for
Coupon in the productiorp;: here theCoupon message is sent only after the system
have received ther epay, Fi ni sh andSuppl y messages.

84

<x,y.z.ab,c,d,ef>
e R o
y) 2
pu <Starth
o Customer
<y,z,c>

<x,y,b,i>

P1

[Busy >—» Suply
Customer
=< Prepay Pump

Analyse |
Operator

(Feey™

Figure 4.10: The ®-GTS Z;.

As shown in Example 4.6DepPumpQOper (in Example 4.2) is a possible imple-
mentation o2, but we can see thatep PumpOper cannot be an implementation 8§,
because it does not have a transaction with the same derééation ofp,. A possible
implementation fo2,, would be a d-GTs Z), with the same type graph and productions
of Dep PumpOper, substituting theACCEPT and FINISH productions by those shown in
Figure 4.11. If we forget the dependenciesZagfand Z, we obtain the same-GTs that

<y.zc> (| (|y ______
PR A | - -
c 77&1 reord g 77(\;(;he}[g’ef—‘
Accept| J T 1 Y Finish
i <y.zl>
Customer
z

|
|
””””””” ' Customer [------------=

Figure 4.11: Productions@cepTand FNISH for the dr-GTs Z.

Coupon
<y,z,I> Customer

can be implemented by bothep PumpOper and Z, (forgetting their dependencies, as
well).

The proposed extension BfGTss including dependency relations on productions al-
lows us to describe (abstractly) more information than éssion without dependencies,
for example, interactions between systems (or betweentarsyand its environment).
Comparing the abstract systems depicted in Figures 3.12.d@nd/e can see that describ-
ing the same wut-procegs(described in Figures 3.9 and 4.5) using the produdtieh,
(version without dependencies) we are requiring that aksagedr epay, Fi ni sh
andSt ar t are present, as well as the pump is free, in order to prodsicesult (to send
Change, Coupon andSt art messages and to free the pump). But if we consider the
implementation of this production, we can see, for exantpetCoupon message is sent
as soon as ther epay message is received. This situation is perfectly desciiyetthe
dependency relation o6, |, (version with dependencies).

85

4.6 Construction of the abstract system associated to arelcTs

It can be useful to have a method to construct an abstraemyfsbm a d-GTs. This
construction be used to obtain automatically the abstriaet of a system and to verify
the correction of an implementation, since each produatioan abstract system must
be associated to a transaction of the concrete one. In DefiMt14, we propose an
algorithm to construct the abstraction of #dTs. However, this construction can not be
performed for any ¢GTs, only for systems with finite number of transactions. In orde
to guarantee the finiteness of the system, we must restadtitid of dr-GTss used to
specify our modules. Therefore, we will consider only sgstevhose productions do not
have cycles on unstable items, i.e., if we consider the ¢taegendency of the unstable
part of the type graph, we do not allow one element to depeniseif. In order to
simplify the construction we will restrict toTdGTss whose productions create or delete
only one element of each type and do not consume vertices.

In order to construct the abstract system associated to@rd we must obtain the
set of transactions of this system. The construction of ehasactions of aTWGTS is
formally described as in Definition 4.13. Summarising tluestruction, we first initialise
the set of transactions (line 1): we pick each stable proolictut of set of productions
and include one transaction containing this productionhasunique production; next
we construct the se’ of all possible subsets of productions of the system; finalty
eliminate from PP’ those subsets which do not contain at least one productitintheé
left-hand side stable and other with the right-hand sidelsta hen, we select (among the
remaining subsets i) the production subsets that constitute transactions anstizict
them (line2 — 43).

A set of productions is balanced if all unstable items cidte these productions
are consumed by them. In lirsg for each subset of productions(in P’) the function
preTransactions returns a list of pairs of initial graph and balanced protung (based
on productions iM). First, we test if the productions are balanced and, iftéssfail, we
test if it is possible to obtain other sets of balanced prtidos, including new instances
of these productions. The inclusion of new instances ismmhand may result in several
new subsets (if there are more than one way to balance thegirods). Then, for each
subset of balanced productions (basedAnwe construct all possible initial graphs:
gluing the stable part of left-hand side of all productiansall possible ways.

For each pair of initial graph and balanced productions,evestruct the graph process
(lines4 — 30), test if the this process is transactional (lidés- 35) and exclude processes
that have @ep-equivalent process in the set of transactions (lites40). The description
of functions used in the algorithm below are presented inefoix C.

Definition 4.13 (construction of transactions of a d-GTs) Given a d-GTS Z =
((Tz, Pz,7z),T=,), the set of its transactioldwtProc(Z) can be obtained as follows:

1: (P, DwtProc(Z2)) = init(Pz) > initialise the seDwtProc(Z) of transactions of
Z with one-step transactions anfl’ with subsets
of Pz containing no stable production and at least
one production with left-hand side stable
and other with right-hand side stable

2: forall A€ P’ do I> repeat for each set of productions #f

3 = preTrcmsactions(A) > generate initial graph and (balanced — possibly with
different instances of a same production) productions
of all possible processes with productions4dn

86

10:
11:
12:
13:
14:
15:
16:
17:

18:

19:

20:

21:
22:
23:
24:
25:

26:
27:
28:
29:
30:
31:
32:

33:
34:
35:
36:
37:

38:

©ce N a-r

while! # X do > repeat for each pair ir
(G, P) = head(l) > get the first initial graphG and set of production®
[= tail(l) > eliminate the first element of
U=go D> initialise the set of graph processes containing produtim P
Uy=9 B> initialise the first state of/
U; = {¢ = <¢T7 ¢p>1 <<G, I, @>,S(G)> — Z}, where

o = (idg,tg): G — Tz is a partial morphism and
op=9: 3 — Pz > initialise U, (second state df) with a graph process
composed of type graph and none production

1=2
while U; # U;_, do > repeat until there is no change I;
for all ¢;: ((T;, P;,m;), T;;) — Z € U; do > repeat for each process iif;
if P, = P then > if all productions inP were used in the process, it is complete
¢ € Uiy > and it is included inJ;
else
x=0 > initialise = indicating that there is no change ity

for all (p,k) € Pand(p,k) ¢ P, do >> repeat for each production i that
was not used im;
for all matchm : L]? — (T, 74,,) do > repeat for each match of selected
production in the type graph af;
if m(L,) is a concurrent subgraph df; then > if the range of selected
match contains only
concurrent elements
makez (b, (p, k), m) € Uiy > then include, i, the process);
updated with used production and
created elements in the type graph

r=1 > and assigrl to x to indicate thatp; was changed
end if
end for
end for
if x =0then ¢, € U;y > if 2 was not changed in lin21, the process);
cannot be changed and it is includedlify, ;
end if
end if
end for
1=1+1 > increment in order to get next state @f
end while
for all p € U;_; do I> get each process in the last statelof
if P, = P andtransaction(¢) then > if this process contains all productions
in P and is a transaction
pelU > then include it in the set of transactiof’s
end if
end for
for all p € U do > for each transaction i/

if there exist®) € U.¢' # ¢ AdepEq(¢, ¢) then > if there is other transaction

in U that is dep-equivalent
on selected transaction

U=U—-{¢} > exclude it of/

87

39: end if

40: end for

41: DwtProc(Z) = DwtProc(2) UU >> include the transactions obtained usi6g
as initial graph andP as set of produc-
tions in the set of transactions &f

42: endwhile

43: end for

Analysing the algorithm described above, we can see thatxtbeutions of (almost)
all loops are controlled by finite structures, for exampbeforall loop at lines2 — 43 is
repeated for each element i?i, that is a set containing a finite number of productions.
However, thewhile loop at linesl1 — 30 does not work in the same way: it stops if the
set of graph processes does not change in a previous iteraftus loop always stops
because this set is not changed if all production®iare applied (lined3 — 15) or if
there is no production i® that can be applied (lineés — 26). Then, considering that
all functions used in Definition 4.13 stop (see Appendix Cg ean conclude that the
proposed algorithm always stops.

Moreover, the algorithm generates exactly the set of ticitses of the considered
dT-GTsS. It is easy to see that the generated processes atepadiquivalent transactional
processes (by tests in lind3 — 34 and37 — 39) obtained using productions &f. Then,
it remains to see if all transactions are generated: thesadions with one production
are constructed in the algorithm initialisation and theeotbnes are constructed based
on all possible subsets of productions with possible mihnejgetitions, i.e., the number
of different instances of a same production is limited by dedinition of transaction,
in particular by the fact that a transaction can not be dividgo small transactions.
Moreover, for each subset of productions®f the possible initial graphs are obtained
considering all possible ways to compose the left-hand sfd@oductions (remember
that all items in the minimal graph must be used). Since tloegsses are constructed
considering all possible ways to apply the productions iinilal graphs, there can not
be transactions that are constructed using productiogsapfplying in different ways (all
ways have been considered).

Now, we can construct the abstract system of-&das Z, using the stable type graph
of Z as type graph and the set of transactiong ¢bbtained as in Definition 4.13).

Definition 4.14 (abstraction construction) Givenad-GT1s 2 = ((T, P, m), T;), we can
construct the abstract system associated s the systerf{’;, DwtProc(Z2), II), where
DwtProc(Z2) is obtained as in Definition 4.13 and for eaghe DwtProc(Z), I1(¢)
is defined as in Definition 4.9.

4.7 Refinement of transactional graph transformation systms

Since the aim of transformational systems is to produce ari@salt, given an input,
they can be appropriately specified as a relation betwegaliand final states. However,
the functionalities of reactive systems are given by an orggimteraction with their envi-
ronment, rather than by an output upon termination. In thigext, notions of reactivity
and concurrency are closely related. For example, a goodavayplain the difference
between transformational and reactive systems is thatgitransformational case, a sys-
tem and its environment act sequentially, while in the ligaatase they act concurrently
(MANNA; PNUELI, 1992).

88

Graph transformation systems are a suitable formalism @égipcomplex systems,
since graphs are used to describe naturally the structuaesgtem focusing attention
on its components and their interconnections. Moreoves ftimalism give us a simple
manner to describe concurrency, where all productions e@fttstem can be applied in
parallel if they are independent. By means of the extensidhé transactional version,
introduced in Chapter 3, we can use graph transformatiotesgsto describe atomic
activities in a more detailed way and use a more abstract wieen it is interesting.

Several methods for design and analysis of reactive sygiempsse synchronous lan-
guages as specification formalism (BERRY, 2000; HALBWACH 8lg 1991; LEGUER-
NIC et al., 1991), where the time of reaction to an event is$. nthis characteristic is
important to simplify the model, but frequently, it does motrespond to the reality, as
is the case of distributed systems, where the communicagbmeen components may
take some time. Thus, new approaches were introduced toinersgnchronous compo-
nents and asynchronous communication (FILALI; MAURAN; REIDJ, 1993; BERRY,;
RAMESH; SHYAMASUNDAR, 1993; RIESCO; TUYA, 2004).cGTss have an asyn-
chronous semantics and with the introduction of transadtiation, it becomes possible
to synchronise internal activities of a component, modglthem as transactions. Thus,
at a more abstract level, we can consider a transaction asraediate reaction, where
the intermediate steps are considered to take a null timmeSy cited approaches use
similar notions to model the synchronous behaviour of sgstemponents.

Moreover, the extension of transactiorls to express causal relation between input
and output signals allows us to explicitly describe intéoacpatterns. The dependency
associated with each production will be used to describeddpendency between ex-
changed messages/signals, as proposed in (FOSS; MACHAIREIRO, 2007): we
describe the interaction of the system with its environmerdrder to realise their op-
erations: which signals are sent to environment in readtareceived ones. Thus, the
transactionatsTs with dependency relation becomes a interesting formalsspecify
reactive systems, that are characterised by an ongoingatiten and atomic reactions.

In a top-down approach to develop a reactive system, oneteanabstracting the
behaviour of the system defining only the interaction betwaestem and its environment
and then, to refine the specification adding new details dif esaction.

There are different notions of refinement, among them, biehead refinement is more
usual, where the properties of the abstract specificatiennaplied by properties of the
refined specification. Since we are describing the absteltd\nour of a system by its
interaction with the environment, we can consider two kihdystem views: black and
glass-box views (BROY; STALEN, 2001). While in the black<boew only the input
and output signals are observable, and what happens insm@rgponent between the
consumption of an input signal and the generation of theespwnding output signal
is hidden, in the glass-box view some constraints on thenatestructure or behaviour
can be defined. Using the defined implementation morphismamedefine a glass-box
refinement, where besides the external behaviour, alsepart aspects of the internal
structure are preserved. The internal structure to be p@s$en our approach is the
relation dependency between the input and output signddsrefore, we can say that a
dT-GTS Z; is a refinement of >s Z, if there is an implementation morphism fraf
to Z,, where the type mapping is total and surjective on stabhestand the production
mapping is total and must associate a transactional prafegs to each transactional
process ofZ,. These requirements guarantee that all external behavarerpreserved
and the definition of implementation morphism guaranteas dependency relation is

89

preserved. The verification of correction of refinement carglyen by comparing the
abstractions of both systems: the abstractions of origindlrefined specifications must
be the same.

Definition 4.15 (refinement) Let Z, = (T3, P1,m), T1,) and 2y = ((Ty, Py, mo), To,)
be two d-GTss. Z, is arefinementof Z; if there exists an implementation morphism
f: Z1 — Z5 such that,

o fr: Ty — Tyistotal andS(fr(11)) = Tss;
e fp: P — DwutProc(Z2) is total;

o V[s]w € DwtProc(Z,) . 3[é1], € DWtProc(2) « fr([61]w) = [¢2)w.

Based on this notion of refinement, a first refinement step @fathstract system in
Figure 4.7 can result in therdsTs presented in Example 4.2. The implementation mor-
phism defined between them is described in Example 4.7. #d9g # see that both have
the same external behaviour, since the abstract speafidatindeed the abstract system
associated to the concrete one.

A further refinement step can result in the-dTs shown in Figure 4.12. The im-
plementation morphism fror®ep PumpOper to Z is defined as follows: on the type
graphs it is defined by the obvious inclusion@f., pumpoper iIN Tz and on productions
it is defined by mapping each production, except thi@iSproduction, into a process
containing itself as unique production. Thed® production is mapped into the unstable
transactional process|, depicted in Figure 4.13. Itis easy to see that the abstraatsl-
associated t& is the same one associated?ep PumpOper depicted in Figure 4.7, this
means that both systems have the same abstract behaviotheaatbreZ is a correct
refinement ofDep PumpOper .

Here, we propose to userasTss to specify, in an abstract way, reactive systems,
using the dependency relation to specify reactions of tlséegy to events/signals from
the environment.

90

y

Accept

»

Customer
z

>
<y,z,6>

Customer

Reject

»
>

<y,z,c>
Customer

Customer }

Serve pu
>

|
|

|

|

|

Customer | _!

Customer }
z

<Xy.z,a,9>

Activate
>

Start

>

[Finish >*

Stopping

Yy

|

|

|

i

i

Customer ---
z

Finish

>

S
IR =
N

T Busy

<y,z,I>

Free

Customer
<y,z,n>

— 3
777‘

Pure
>

Analysg

<xy,b,i>

Impure
>

AnalysE

<X,y,b,i>

Operator

Customer

<—_Impure

—<_ Start [—

Analyse }‘

ot

Pump

ou'

Figure 4.12: A refinement™dGTs Z for Dep PumpOper (Figure 4.3).

[Operator }
Y

Customer

Finish

Stopping

<x,y,z,b,d>

} Operator [~ Stopped -
z

Customer |

m.---- -

---_ Freeing

Pump . hoolll
o T Busys

| Free

Min(y)

y

n P S
s 4:\ S;hia’rg’ei ‘r |
7 7“

z

<y,z,n>

Customer ‘

[Operator }

Figure 4.13: An unstable transactional process assodiat8topr production.

91

5 CONCLUSIONS

The contributions of this work are related to two differerdas of computer science:
theoretical area, by providing a theoretical foundationirahsaction concept for graph
transformation; and software engineering area, by progasiformalism to specify reac-
tive systems, where interactions between system and itso@nvent can be described by
dependency relations associated to productions. Morgaserg implementation mor-
phisms a method of incremental development can be definadingt from an abstract
view of the system and adding more details in each refinentept s

5.1 Theoretical contribution

In this work, we give the theoretical foundations of the antbf transactional ac-
tivities in graph transformation. A transaction is definedaeaclass of derivations, where
starting and ending states are stable and all intermed&tessare unstable. Thus unstable
items represent temporary resources, only visible withmamsaction, and the distinction
between stable and unstable items is enforced by a typinganéem. This definition of
transactions is inspired by the work on zero-safe nets (BRUNDNTANARI, 2000). It
is motivated by the data-driven nature of graph transfolondbrmalism, where any form
of control on the application of productions has to be endadéhe graphs. The main the-
oretical result of the present work is the characterisatidhe abstract system oflaGTs,
including all transactions as productions, in terms of aversial construction, presented
as a right adjoint functor. In order to obtain this result, fivst characterise transactions
as graph processes and define the notion of implementatigohism, allowing to map
productions to transactional processes. The notion ofemphtation defined for-GTss
are more general than that defined in (BRUNI; MONTANARI, 2déecause our mor-
phisms can relate unstable productions with unstableddions and, consequently, we
can also refine the implementations of stable productions.

Since stable items cannot be used within the transactiorhiohathey are created, if
we need to create stable vertices connected (by edgesgréaison must be defined in a
unique production. Otherwise. it would be necessary tohusereated vertices in order to
create the connecting edges. This restriction is not inghoséBRUNI; MONTANARI,
2000), because Petri Nets can be seen a3 where the states are represented by
discrete graphs, i.e., graphs having only vertices.

Besides the above mentioned results, the extension otitdasal graph transforma-
tions, introduced in Chapter 41{e5TS), enriches the information given byGTs graph
productions, making explicit the dependency between edeahd consumed/preserved
items. This relation can be used to restrict the refinemethetransactions, since the
notion of implementation morphism forrdsTss must respect the dependencies. This

92

extension does not change the semantics ofta&ss, only give an abstract information
about desired dependencies in an implementation.

There are other notions of transactional activities in tiea@f graph transformations.
Traditional notions of transaction have been considerezkstimportantly in the design
of PROgramed Graph REwriting Systems (SCHURR, 1991; SCHURRITER; ZUN-
DORF, 1999; SCHURR; WINTER, 2000). PROGRES provides a @gwmaknt environ-
ment where basic operations, defined by graph transformatiles, can be combined
using a rich set of control structures, including tradiibprogramming language con-
structs, various kinds of non-deterministic choices, ab agetransactions. It is a mixed
textual and diagrammatic language. A basic specificati®dROGRES is composed by a
graph schema and a set of graph procedures. The graph scpeaifées the static prop-
erties of a class of graphs, defining all used types of nodigeseand their attributes. The
graph procedures are defined by productions or transactibims productions describe
the modifications on a graph and have a graphical repregamtathile the transactions
are described textually and provide control structure® FROGRES approach is there-
fore similar to the way transactions are introduced in progning languages and other
control-centered formalism.

The graph transformation units, used in the GRACE (KREOWSUISKE, 1996;
ANDRIES et al., 1999) approach, give a “kind of transactiation” based on control-
flow. A transformation unit comprises a set of local rulesgtaf used transformation
units and a control condition which regulates how used wamts rules must be applied,
allowing infinite applications of them. We cannot considéraamsformation unit as a real
transaction because a basic characteristic of a transastio be a finite computation.

In (GROSSE-RHODE; PARISI-PRESICCE; SIMEONI, 1999), a aotof synchro-
nous activities for typed graph transformation systemsefindd. This notion is given
by syntactical compositions: sequential and amalgamationpositions. Therefore we
cannot extract any causal relation between the state etsmen

5.2 Software Engineering contribution

The visual and data-driven approachaafss, makes then a natural formalism to spec-
ify reactive system, where the behaviour of componentsfiaei# by the flow of signals
(data) that are generated by the environment and not by theotdlow of the compo-
nents. The transaction and dependency relation notiorsdunted in this work turn this
formalism even more adequate to specify reactive systeheselextensions improea s
formalism with a mechanism to specify atomic reactions éimais, allow us to describe,
at an abstract level, synchronous systems. We also givesaghtron vertical structuring
proposing a notion of refinement to relate abstract and ev@apecifications, where the
dependencies between input and output events/signals/areexplicitly as an additional
information about of abstract behaviour of the system. Trifarmation can be useful to
specify the environment behaviour and for verification j@sgs, as will be discussed in
section 5.3.

We can find, in the literature, several formalisms and fraorks for specification,
verification and code generation of reactive systems, sucht tStatecharts
(HAREL, 1987; SEKERINSKI, 1998), Esterel (BERRY; COURONNEONTHIER,
1988; BERRY, 2000; GIL; FERRO; BERNHARD, 1996; BHATTACHARE et al.,
1999), CRP (Communicating Reactive Processes) (BERRY; RBM;, SHYAMASUN-
DAR, 1993), UML diagrams (KERSTEN et al., 2002; ALAVIZAEDHNEKOO; SIR-

93

JANI, 2007; ALAVIZADEH; SIRJANI, 2006), Graph Transformah Systems
(HECKEL, 1998), Abstract State Machines (BORGER; GLASSEB95; MAIA; 10-

RIO; BIGONHA, 1998; LAMCH; WYRZYKOWSKI, 2006), SynchronauEstelle (RI-
ESCO; TUYA, 2004).

Statecharts are a visual approach to design reactive sysidmy extends finite state
diagrams (graphical representation of finite state mashingh tree concepts: hierar-
chy concurrency and communication. Statecharts are useiffenent frameworks as a
language for graphical specification and are mapped inter dtimal languages for au-
tomatic verification and code generation (BHATTACHARJEEakt 1999; KERSTEN
et al., 2002; SEKERINSKI, 1998). In (SEKERINSKI, 1998), t¢thors propose a trans-
lation of Statecharts to Abstract Machine Notation (AMN)tlié B method for analysis
and refinement purposes. In this approach, a state diagraplést form of statecharts)
is composed by a finite number of states and transitions hwdrie translated into AMN as
enumerated set type and operations, respectively. Thertdistate is stored in a variable
and the operations reflect the state change. Refinemennsatie given by AMN refine-
ment rules, i.e., they are only for the translated code. BHsermce of a refinement rela-
tionship is that it preserves already proved system prigsett is based on observational
substitutivity: any behaviour of the refined specificatisione of the possible observable
behaviours of the initial specification. More specificafyyIN refinement allows design-
ers to reduce non-determinism of operations (strengthreepdkt-condition), to have more
input values (weaken their preconditions) and to changedhiable space. At the most
abstract level it is mandatory to describe the static ptogseof a model by means of an
invariant predicate. The refinement steps give rise to a euwiproof obligations, which
guarantee their correctness with respect to the invaramth proof obligations are dis-
charged by the proof tool using automatic and interactie®@fpprocedures supported by a
proof engine. This approach uses a visual language to gpeeiftive systems, where the
interaction pattern is described by labelled transiticine state diagram. In a large spec-
ification, with several and complex interactions, the stéégram can become very large
and difficult to understand. In our approach, each eventwnwg simpler interactions can
be described by an individual production, which is easidsgdanderstood. Moreover, it
IS not necessary to know a different language (like Abstkéathine Notation) to refine
the specified system. In (SCHOLZ, 1998), a refinement cadcidustatecharts was pro-
posed where the charts are obtained from non-determigistjaential automata, hiding,
and parallel composition. A reaction of a system is definettims of instants, where
all input signals are received and all output signals ar¢ aed the I/O behaviour of a
system is described in terms of communication historiese ddmmunication histories
are given by streams carrying a set of signals, relationrthetisignals with output ones.
They define a notion of refinement that requires that all irgmat output signals must be
preserved (it is possible to extend them) and all behavielating these signals must be
preserved, as well. Syntactic rules whose applicationaniaes a correct refinement step
are defined. This approach avoids translations to otheuksges, but does not permit to
describe a weaker relation between input/output signadsmbre abstract level.

Esterel is a control-driven textual design language thatbmused to generate com-
plex state machines automatically. In this context, anragsion called perfect synchrony
hypothesis (or atomic reaction) is made in order to simphfybehavioural specifications
of reactive systems. This hypothesis states that the sysi@rts instantaneously to an in-
put event, and the execution of reactions does not overldpeaich other. Other assump-
tion made in Esterel is that the systems are deterministis their statements and con-

94

structs are guaranteed to be deterministic, as well. Thgulage provides interface refine-
ment. The interface of a system define signals which are eggthto interact with other
systems and can be refined to add new signals. Moreover, én to'deduce the number
of states of the system, relations restricting input sigiaa¢ provided. These restrictions
are about incompatibility and master-slave combinatiosighals. In (BHATTACHAR-
JEE et al., 1999), an graphical interface for Esterel wapgsed. They integrate the
graphical formalism of Statecharts with verification enwiments of Esterel, translating
Statecharts specifications into Esterel program. CRP (BERRMESH; SHYAMA-
SUNDAR, 1993) is a unification of Esterel and CSP (HOARE,)9@8guages, where
their synchronous and asynchronous capabilities are cwdbiln this paradigm, a set
of individually reactive synchronous processes is linkgd$ynchronous communication
channels. The unification is given by a minor extension tcBskerel language. A prim-
itive to permit asynchronous rendezvous is included, wlieeesending process emits
a signal requesting for a rendezvous and receives rendeza@upletion signals, by a
given communication channel. The automatic verificatio€BP programs is provided
by a translation into a process calculus Meije (BOUDOL, 198Ehese languages dif-
fer from dr-GTss mainly by their control-driven nature that requires thsigieer to pay
attention in control issues instead of concentrating ootieas of the system.

Synchronous Estelle is another language that merges batthiynous and asyn-
chronous paradigms. The main idea is the same in CRP, butshelaronous com-
munication is given by means of message passing insteashdézgous. Moreover, it is
possible specify asynchronous systems, too. In Standdedld=a system is viewed as a
black-box and is specified by a state in a finite state machhiehacan be refined into a
set of substates. Synchronous Estelle extends the stamdatuly including synchronous
systems, which are specified by a state in a hierarchica stathine, i.e., a set of states
(with a hierarchy) that is seen as a unique state. Using thehsgnous version, it is
possible specify reactive systems, while the communioaietween them is specified
using the standard version. The execution of synchronatsiss is divided into a set of
computations steps, which are also divided into microsstsimilar to the idea of transac-
tions. At the beginning of the computation step, all messaggving to the synchronous
system are processed (possible generating internal ¢eentst the end all external mes-
sages generated by the computation are sent. The semah8gaahronous Estelle is
deterministic, using priorities on messages for choicgppses. The development envi-
ronment of Synchronous Estelle includes a graphical (lie@e8harts) editor, a compiler,
a graphical animation. Moreover, they provide a transtatiom Synchronous Estelle to
PROMELA (PROMELA LANGUAGE REFERENCE, 2008), for model clkéty pur-
poses. The main difference from our approach is that thigdage is also control-driven,
requiring to pay attention in control issues.

UML is a general-purpose visual modelling language thatides a complex family
of diagrams to specify, construct and document the arsifatta software system. Be-
cause of this complexity, usually, this family of diagrarmsastricted by UML profiles. A
UML profile is a subset of UML concepts which is adequate torgefipecific domains.
Thus, most of the approaches to model reactive systems tlig{anguage propose a
profile for this purpose. In general, class diagrams are tesddfine static aspects of the
system and Statecharts or sequence diagrams are used sdiafamic ones. Moreover,
despite of semi-formal semantics definition for UML, seVeggproaches use translations
to formal languages in order to define a formal semanticdisianguage, that is used as
a graphical interface for visual specification. Most reskan the formalisation of UML

95

refinements adhere to the approach of mapping the graplotation into a formal do-
main, for example the works presented in (LEDANG; SOUQUIBRE002; USELTON;
SMOLKA, 1994) among others. In (ALAVIZADEH; SIRJANI, 200&LAVIZAEDH,;
NEKOO; SIRJANI, 2007), a UML profile for reactive systems vpmeposed, using class
and object diagrams to describe the structure of systemeaneace diagrams to describe
the behaviour of it. Besides, they propose a translationebelRa language (SIRJANI;
MOVAGHAR, 2001), that, in its turn, has translations to PREIM\ and Java languages,
in order to provide automatic verification and code generatiespectively. A Rebeca
model is an actor-based language, with independent reashijects and asynchronous
message passing. The communication is given by means é&fedf messages and ex-
ecution of atomic associated methods. They prefer to useeseg diagrams instead of
Statecharts, since the latter is more appropriate to gpeljécts which have a interesting
lifecycle and the reactive objects of Rebeca have a limitgdler of states (idle, wait-
ing and running) and actions (sending a message). Thusgetieviour of these objects
can be better described by its message exchange patteritsvghvironment/other ob-
jects. In (KERSTEN et al., 2002), a translation of the UML fidecfor reactive systems to
Ada (ADA 95 REFERENCE MANUAL, 1995) was proposed, to achiautomatic code
generation. This profile uses class diagrams to specificsapects and Statecharts to
specify dynamic aspects. The notion of refinement of this@gugh is applied to translated
code. Different ofcTss, UML is not a formal language and requires knowledge ofrothe
languages to have notions of refinement and verification.elhgr, different languages
(diagrams) are necessary to describe static and dynamectaspvhile inGTss both as-
pects are described in the same specification, avoidingvi® teecheck the compatibility
between these two points of view.

In (HECKEL, 1998), a different semantics for graph transfations was defined,
which allows to represent effects of environment’s eventshe system states. This ap-
proach substitutes the pushout operation in definition ofvdgon by a pullback con-
struction and permits to express more transformations thase specified by the sys-
tems’ graph productions, simulating events from environtm&he author proposes this
semantics to provide a compositional verification of re@ctiystems, where a system is
decomposed in views that anticipate the potential behawbiihe complete system. The
composability of this approach ensures that propertiesafmaplete system can be de-
rived from those properties shown for its views. The intevitg with the environment
is described only semantically and there is no construgtiadhe formalism allowing to
specify this interaction explicitly. Moreover, this appah produces an overhead on spec-
ification of properties, where, in addition of desired pndjgs, some constraints must be
described to ensure that the additional information geadrim the behaviour of a view
can be produced only by productions in the other views. Aamotif refinement for typed
GTss was proposed in (HECKEL et al., 1996), where two systemsedated by par-
tial graph morphisms and each rule is mapped into another lglogeover, the abstract
production is required to be an instance of concrete praslucte., the visible part of
the refined production must not coincide with the originaéornTherefore, the refine-
ment relation guarantees only the existence of specialisedformations in the refining
system. Another notion of refinement fairss was proposed in (GROSSE-RHODE;
PARISI-PRESICCE; SIMEONI, 2000), where an abstract sysseralated to a concrete
one by a total graph morphism and a mapping associating detiaet production to an
expression over the name productions of the concrete sy&bepnessions are syntactical
descriptions of sequential and parallel compositions oflpctions. The retyped produc-

96

tion of the abstract system must coincide with the refiningdpction. This requirement
guarantees that refinement relations preserve the fulMomireof abstract system. In this
notion of refinement it is not possible to describe causdatityhe expressions describing
composition of productions.

Abstract State Machines (GUREVICH, 1995) (ASM) are a mathigrally defined,
high-level environment for the system design, verificatiomnd analysis
(LAMCH; WYRZYKOWSKI, 2006). An Abstract State Machine is @aage machine
which in each step computes a set of updates of variablesdrepecific vocabulary, in
accordance with transaction rules. In one execution steyp@ates are committed simul-
taneously. ASMs have been introduced in (GUREVICH, 1985kasomputation model
thatis more powerful and more universal than standard caimpan models Nowadays,
there exist several extensions for ASMs, such as distribuéactive and timed versions.
In (BORGER; GLASSER, 1995), a predecessor of ASM, exteunattions are proposed
to express environment effects in the system behaviournétion is called external to a
set of rules if it does not appear in any update in these riilleis.kind of function is used
to define the imported operations of a system and can be gukatfany abstraction level.
In this model is not possible to maintain a causal relatiawben elements of the system
states, without adding explicit control to do this. In (MAIFORIO; BIGONHA, 1998),
an extension of original model of ASMs is proposed, that iexht enables the designer
to define how the interactions occur between a system andviisoement. There, a sys-
tem is defined as a set of unit definitions and instances, wherenits can be classified
as system units (that are completely defined) and envirohométs (that are partially de-
fined). A unit is composed by three parts: function, intecacand rules specifications.
The interaction specification is defined by interaction af@s that allow inputs and out-
puts within a unit, synchronisation and complex interactpatterns (using well-known
composition operations: non-deterministic choice, parahd sequential compositions).
The environment units are restrictions of units, showinlg time interaction specification,
and play the role of interfaces of these units. There is alsot@n of atomic reactions
defined by interactions cycle. No notion of refinement is afifor this extension.

In the following section, we present some hints about howniprove our design
environment.

5.3 Future work

The following open issues will be subject of future works:

e If we restrict our model to a special kind 6fr ss called Object-Based Graph Gram-
mars (OBGG), we can use a development environment for vigeadification, sim-
ulation, automatic verification and code generation (DO&fTal., 2005, 2006). In
(DOTTI et al., 2006) an approach was proposed to verify ghgystems using
OBGGs based on the assume-guarantee approach. The basis tdesee each
part of a system as an open system - a system whose behaviotfusly specified
and that depends on interactions with its environment. tieoto be possible we
use this approach, it is necessary to describe the bothanpinput interactions.
The former interaction is already specified by the interfacd it is derived from
the body behaviour. The input interaction (i.e., the readifrom the environment
to the system events/signals) cannot be derived form thersyspecification, then
itis necessary to include a mechanism to explicitly degdtilis kind of interaction.

97

It can be done by adding a new dependency relation for eactuption in a inter-
face module. This extension can permit restrict the sermofimodules, since we
have more dependencies to consider in order to completeddelmbehaviour.

Besides, if we consider aresTs and its abstraction related by an implementation
morphism, as defined in Theorem 4.1, we can define a modulematihere the
abstract system is the interface, describing the intemadietween system and its
environment; and theTdGTs is the body that implements the interface. Moreover,
in order to define notions of module composition, it is neags$o define first a
notion of interaction compatibility, that requires thahmmosed modules must have
transactions of dual interaction patterns. Moreover,\iar transactions (of differ-
ent modules) holding to interaction compatibility, canstslynchronising elements,
I.e., stable items that are created by one transaction amliooed by the other, be-
fore the end of former. In the composed module, these obisleredements must
become unobservable because the transactions must bedmérgenecessary to
reasoning more about the resulting composed interfaceethasy the semantics of
composed module.

Other notions of refinement must be studied, for example, areconsider a-
GTS without dependency relation as an abstract specificatiohtannclude the
dependency in a refinement of this specification. Other kiméftnement that can
be considered is on the dependency relation: in the abdeweel it can be less
restrictive and in the concrete level it more restrictive.

The OBGG model is extended, in (MICHELON; COSTA; RIBEIRO 080, with
time notions. We must consider to apply this extension, deoto try to express
synchronicity in the concrete level and preemption notions

98

REFERENCES

ADA 95 Reference Manual. ISO/IEC 8652: 1995.ed. [S.I.]: U&&nment, 1995. Avail-
able at: http://www.adahome.com/Resources/Referdntoals Visited on: Apr. 2008.

ALAVIZADEH, S. F.; SIRJANI, M. Using UML to Develop Verifiald Reactive Sys-
tems. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERB\RE-
SEARCH AND PRACTICE & CONFERENCE ON PROGRAMMING LANGUAGES
AND COMPILERS, SERP, 2006, Las Vegas, USAoceedings. . [S.l.]: CSREA Press,
2006. v.2, p.554-561.

ALAVIZAEDH, S. F.; NEKOO, A. H.; SIRJANI, M. ReUML: a UML profie for mod-
eling and verification of reactive systems. In: INTERNATI@N CONFERENCE ON
SOFTWARE ENGINEERING ADVANCES, ICSEA, 2., 2007, Cap EsteFeance Pro-
ceedings. . Washington: IEEE Computer Society, 2007. p.50.

ANDRIES, M. et al. Graph Transformation for Specificationda®rogramming Sci-
ence of Computer Programming Amsterdam, The Netherlands, v.34, n.1, p.1-54,
April 1999.

BALDAN, P. Modelling Concurrent Computations: from contextual petri nets to graph
grammars. 2000. PhD Thesis — University of Pisa.

BALDAN, P.; CORRADINI, A.; DOTTI, F. L.; FOSS, L.; GADDUCCIF.; RIBEIRO,
L. Towards a Notion of Transaction in Graph Rewriting. INTIERNATIONAL WORK-
SHOP ON GRAPH TRANSFORMATION AND VISUAL MODELING TECHNIQUE,
GT-VMT, 5., 2006, Vienna, AustrigProceedings. . Amsterdam: Elsevier, 2008. p.39—
50. (Electronic Notes in Theoretical Computer Sciencel 1)2

BALDAN, P.; CORRADINI, A.; FOSS, L.; GADDUCCI, F. Graph Traactions as Pro-
cesses. In: INTERNATIONAL CONFERENCE ON GRAPH TRANSFORMAINS,
ICGT, 3., 2006, Natal, BraziProceedings. . .Berlin: Springer, 2006. p.199-214. (Lec-
ture Notes in Computer Science, v.4178).

BALDAN, P.; CORRADINI, A.; MONTANARI, U. Concatenable Gr&pProcesses: re-
lating processes and derivation traces. In: INTERNATIONBOLLOQUIUM ON AU-
TOMATA, LANGUAGES AND PROGRAMMING, ICALP, 25., 1998, Aalbg, Den-
mark. Proceedings. . .Berlin: Springer, 1998. p.283-295. (Lecture Notes in Cotepu
Science, v.1443).

BALDAN, P.; CORRADINI, A.; MONTANARI, U. Unfolding of Doubk-Pushout Graph
Grammars is a Coreflection. In; INTERNATIONAL WORKSHOP ON EBRY AND

99

APPLICATION OF GRAPH TRANSFORMATIONS, TAGT, 6., 1998, Patlern, Ger-
many.Proceedings. . .Berlin: Springer, 1998. p.145-163. (Lecture Notes in Cotepu
Science, v.1764).

BERRY, G. The foundations of Esterdtroof, language, and interaction: essays in
honour of Robin Milner , Cambridge, USA, p.425-454, 2000.

BERRY, G.; COURONNE, P.; GONTHIER, G. Synchronous prograngrof reactive
systems: an introduction to esterel. In: FRANCO-JAPANESMM®OSIUM ON PRO-
GRAMMING OF FUTURE GENERATION COMPUTERS, 1., 1986, Tokycapan.
Proceedings. . Amsterdam: Elsevier, 1988. p.35-56.

BERRY, G.; RAMESH, S.; SHYAMASUNDAR, R. K. Communicatingaetive pro-
cesses. In: SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUES,
POPL, 20., 1993, Charleston, USRroceedings. . .New York: ACM, 1993. p.85-98.

BHATTACHARJEE, A. K. et al. A Graphical Environment for th@&cification and Ver-
ification of Reactive Systems. In: INTERNATIONAL CONFERER®N COMPUTER
SAFETY, RELIABILITY AND SECURITY, SAFECOMP, 18., 1999, Tdouse, France.
Proceedings. . .London: Springer, 1999. p.431-444.

BORGER, E.; GLASSER, Wodelling and Analysis of Distributed and Reactive Sys-
tems using Evolving Algebras Aarhus: University of Aarhus, 1995. Technical Report.
(BRICS-NS-95-4).

BOUDOL, G. Notes on algebraic calculi of procesdasgics and models of concurrent
systems New York, p.261-303, 1985.

BROY, M.; STALEN, K.Specification and development of interactive systems$ocus
on streams, interfaces, and refinement. New York: Sprir2§€].

BRUNI, R.; MONTANARI, U. Zero-Safe Nets: comparing the aadtive and individual
token approachesnformation and Computation, Duluth, USA, v.156, n.1-2, p.46-89,
2000.

BRUNI, R.; MONTANARI, U. Transactions and zero-safe neta: |EHRIG, H.
et al. (Ed.).Unifying Petri Nets, Advances in Petri Nets London: Springer, 2001.
p.380—426. (Lecture Notes in Computer Science, v.2128).

CORRADINI, A.; DOTTI, F. L.; FOSS, L.; RIBEIRO, L. Translatg Java Code to Graph
Transformation Systems. In: INTERNATIONAL CONFERENCE ONMRGPH TRANS-
FORMATION, ICGT, 2., 2004, Roma, ItalyProceedings...Berlin: Springer, 2004.
p.383-398. (Lecture Notes in Computer Science, v.3256).

CORRADINI, A. et al. The Category of Typed Graph Grammars asdAdjunctions
with Categories of Derivations. In: INTERNATIONAL WORKSH®DON GRAPH GRA-
MARS AND THEIR APPLICATION TO COMPUTER SCIENCE, TAGT, 5., 94,
Williamsburg, USA.Selected Papers.Berlin: Springer, 1996. p.56—74. (Lecture Notes
in Computer Science, v.1073).

100

CORRADINI, A. et al. Algebraic Approaches to Graph Transfation I: basic concepts
and double pushout approach. In: ROZENBERG, G. (EtBhdbook of Graph Gram-
mars and Computing by Graph Transformation. River Edge: World Scientific, 1997.
v.1, p.163-245.

CORRADINI, A.; MONTANARI, U.; ROSSI, F. Graph Processé&sindamenta Infor-
maticae, Amsterdam, The Netherlands, v.26, n.3-4, p.241-265,.1996

DIESTEL, R.Graph Theory. 2nd.ed. New York: Springer, 2005. (Graduate Texts in
Mathematics).

DOTTI, F. L.; DUARTE, L. M.; FOSS, L.; RIBEIRO, L.; RUSSI, D.SANTOS,
O. M. dos. An environment for the development of concurrdapect-based applications.
In: INTERNATIONAL WORKSHOP ON GRAPH-BASED TOOLS, GRABAT2004,
Rome, ItalyProceedings. . [S.l.]: Elsevier, 2005. n.1, p.3—13. (Electronic Notes et
oretical Computer Science, v.127).

DOTTI, F. L.; RIBEIRO, L.; SANTOS, O. M. dos; PASINI, F. Veyiing Object-based
Graph Grammars: an assume-guarantee appré&udtware and Systems Modeling
Berlin, v.5, n.3, p.289-311, September 2006. Special @e&aper.

DREWES, F. et al. Graph Transformation Modules and their @msition. In: INTER-
NATIONAL WORKSHOP ON APPLICATIONS OF GRAPH TRANSFORMATIOSI
WITH INDUSTRIAL RELEVANCE, AGTIVE, 1999, Kerkrade, The NeerlandsPro-
ceedings...Berlin: Springer, 2000. p.15-30. (Lecture Notes in Comp8eience,
v.1779).

EHRIG, H.; ENGELS, G.Towards a module concept for graph transformation sys-
tems Leiden, Netherlands: Leiden University, 1993. TechnReport. (TR93-34).

EHRIG, H.; ENGELS, G. Pragmatic and Semantic Aspects of a We&€oncept for
Graph Transformation Systems. In: INTERNATIONAL WORKSHGMN GRAPH
GRAMARS AND THEIR APPLICATION TO COMPUTER SCIENCE, TAGT, 51994,
Williamsburg, USA Selected PapersBerlin: Springer, 1996. p.137-154. (Lecture Notes
in Computer Science, v.1073).

EHRIG, H. et al. (Ed.)Handbook of Graph Grammars and Computing by Graph
Transforpmation. River Edge: World Scientific, 1999. v.2.

EHRIG, H. et al. (Ed.)Handbook of Graph Grammars and Computing by Graph
Transformation. River Edge: World Scientific, 1999. v.3.

FILALI, M.; MAURAN, P.; PADIOU, G. Unity, as a Tool for Reacte Systems Speci-
fication and Derivation. In: EUROMICRO WORKSHOP ON REAL-TBASYSTEMS,
EWRTS, 5., 1993Proceedings. . [S.l.]: IEEE Press, 1993. p.274-279.

FOSS, L.; MACHADO, R.; RIBEIRO, L. Graph productions with pndencies. In:
BRAZILIAN SYMPOSIUM ON FORMAL METHODS, SBMF, 10., 2007, OarPreto,
Brazil. Proceedings. . [S.l.: s.n.], 2007. p.128-143.

GAJSKI, D. D. et al.Specc specification language and methodology. [S.l.]: Springer
2000.

101

GIL, J. G.; FERRO, M. V.; BERNHARD, R. Communication protdégweerification with
Esterel. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEENG IN
HIGHER EDUCATION, SEHE, 2., 1995, Alicante, SpaiRroceedings...Billerica:
Computational Mechanics, 1996. p.255-265.

GOLTZ, U.; REISIG, W. The nonsequential behaviour of Pegisninformation and
Control, [S.I.], v.57, n.2-3, p.125-147, 1983.

GROSSE-RHODE, M.; PARISI-PRESICCE, F.; SIMEONI, M. Refirents and Mod-
ules for Typed Graph Transformation Systems. In: INTERNANAL WORKSHOP
ON RECENT TRENDS IN ALGEBRAIC DEVELOPMENT TECHNIQUES, WADT
13., 1998, Lisbon, Portugdbelected Papers.Berlin: Springer, 1999. p.138-151. (Lec-
ture Notes in Computer Science, v.1589).

GROSSE-RHODE, M.; PARISI-PRESICCE, F.; SIMEONI, M. Refireats of Graph
Transformation Systems via Rule Expressions. In: INTERNNAL WORKSHOP ON
THEORY AND APPLICATION OF GRAPH TRANSFORMATIONS, TAGT, 61998,
Paderborn, Germangelected Papers.London: Springer, 2000. p.368-382. (Lecture
Notes in Computer Science, v.1764).

GUREVICH, Y. A New Thesis. American Mathematical Society Abstracts [S.l.],
p.317, August 1985.

GUREVICH, Y. Evolving Algebras 1993: Lipari Guide. In: BORER, E. (Ed.) Specifi-
cation and Validation Methods. [S.l.]: Oxford University Press, 1995. p.9-37.

HABEL, A.; MULLER, J.; PLUMP, D. Double-Pushout Graph Trémsnation Revis-
ited. Mathematical Structures in Computer Science [S.l.], v.11, n.5, p.637-688, Oc-
tober 2001.

HALBWACHS, N. et al. The synchronous data-flow programmiagdguage LUSTRE.
Proceedings of the IEEE [S.l.], v.79, n.9, p.1305-1320, September 1991.

HAREL, D. Statecharts: a visual formalism for complex syseScience of Computer
Programming, Amsterdam, The Netherlands, v.8, n.3, p.231-274, 1987.

HECKEL, R. Compositional Verification of Reactive SystempeS@ified by Graph
Transformation. In: INTERNATIONAL CONFERENCE ON FUNDAMEML AP-
PROACHES TO SOFTWARE ENGINEERING, FASE, 1., 1998, Lisboortigal.Pro-
ceedings. . .Berlin: Springer, 1998. p.138-153. (Lecture Notes in Cotap&cience,
v.1382).

HECKEL, R. et al. Horizontal and Vertical Structuring of Bg Graph Transformation
SystemsMathematical Structures in Computer Science [S.l.], v.6, n.6, p.613-648,
1996.

HECKEL, R. et al. Simple Modules for GRACE. In: INTERNATIONAWORKSHOP
ON THEORY AND APPLICATION OF GRAPH TRANSFORMATIONS, TAGT,.6
1998, Paderborn, GermarBroceedings. . .Berlin: Springer, 1998. p.383—-395. (Lecture
Notes in Computer Science, v.1764).

102

HECKEL, R. et al. Classification and Comparison of Module €apts for Graph Trans-
formation Systems. In: EHRIG, H. et al. (EdHandbook of Graph Grammars and
Computing by Graph Transformation . River Edge: World Scientific, 1999. v.2, p.669—
689.

HOARE, C. A. R. Communicating sequential proces§€gsnmunications of the ACM,
New York, v.21, n.8, p.666—677, August 1978.

KERSTEN, M. et al. Customizing UML for the development oftdisuted reactive sys-
tems and code generation to Ada 88a User Journal, [S.l.], v.23, n.3, September 2002.

KREOWSKI, H.-J.; KUSKE, S. Graph Transformation Units andddles. In: EHRIG,
H. et al. (Ed.)Handbook of Graph Grammars and Computing by Graph Transfor-
mation. River Edge, USA: World Scientific, 1999. v.2, p.607—638.

KREOWSKI, H.-J.; KUSKE, S. On the interleaving semanticgrahsformation units

- A step into GRACE. In: INTERNATIONAL WORKSHOP ON GRAPH GRAARS
AND THEIR APPLICATION TO COMPUTER SCIENCE, TAG, 5., 1994, WWamsburg,
USA. Selected Papers.Berlin: Springer, 1996. (Lecture Notes in Computer Science
v.1073).

LAMCH, D.; WYRZYKOWSKI, R. Specification, analysis and tesg of grid envi-
ronments using Abstract State Machines. In: INTERNATIONAYMPOSIUM ON
PARALLEL COMPUTING IN ELECTRICAL ENGINEERING, PARELEC, 206, Bia-
lystok, PolandProceedings. . Washington: IEEE Computer Society, 2006. p.116-120.

LEDANG, H.; SOUQUIERES, J. Integration of UML and B Specifioca Techniques:
systematic transformation from ocl expressions into BABIA-PACIFIC SOFTWARE
ENGINEERING CONFERENCE, APSEC, 9., 2002, Gold Coast, Aalstr Proceed-
ings. .. Washington: IEEE Computer Society, 2002. p.495-504.

LEGUERNIC, P. et al. Programming real-time applicationdw8IGNAL. Proceedings
of the IEEE, [S.l.], v.79, n.9, p.1321-1336, September 1991.

MAIA, M. A.; IORIO, V. O.; BIGONHA, R. S. Interacting AbstrdcState Machines.
In: INTERNATIONAL WORKSHOP ON ABSTRACT STATE MACHINES, ASM
5., 1998, Magdenburg, GermarBroceedings. ..Magdenburg: Magdeburg University,
1998. p.37-49.

MANNA, Z.; PNUELI, A. The Temporal Logic of Reactive and Concurrent Systens
specification. Berlin: Springer, 1992.

MICHELON, L.; COSTA, S. A. da; RIBEIRO, L. Specification of ReTime Systems
with Graph Grammars. In: SIMPOSIO BRASILEIRO DE ENGENHARDE SOFT-
WARE, SBES, 20., 2006, Florianépolis, Bradinais. .. [S.l.: s.n.], 2006. p.97-112.

PNUELI, A. In transition from global to modular temporal seaing about programs.
In: KRZYSZTOF, R. A. (Ed.)Logics and Models of Concurrent SystemsNew York:
Springer, 1985. p.123-144. (Nato Asi Series F: Computer 3ygtems Sciences, v.13).

PROMELA Language Reference. [S.l.: s.n.], 2008. Available http://cm.bell-
labs.com/cm/cs/what/spin/Man/promela.html. Visited @épr. 2008.

103

RIBEIRO, L. Parallel composition and unfolding semantics of graph grammars.
1996. PhD Thesis — Technical University of Berlin.

RIESCO, M.; TUYA, J. Synchronous Estelle: just another $yonous language? In:
SYNCHRONOUS LANGUAGES, APPLICATIONS AND PROGRAMMING, SLRA 2.,
2003, Porto, PortugaProceedings. . .[S.l.]: Elsevier, 2004. p.71-86. (Electronic Notes
in Theoretical Computer Science, v.88).

ROZENBERG, G. (Ed.)Handbook of Graph Grammars and Computing by Graph
Transformation. River Edge: World Scientific, 1997. v.1.

SCHOLZ, P. A refinement calculus for statecharts. In: INTERNONAL CONFER-
ENCE FUNDAMENTAL APPROACHES TO SOFTWARE ENGINEERING, FASE,
1998, Lisbon, PortugalProceedings...Berlin: Springer, 1998. p.285-301. (Lecture
Notes in Computer Science, v.1382).

SCHURR, A. PROGRESS: a VHL-language based on graph grammatdNTERNA-
TIONAL WORKSHOP ON GRAPH-GRAMMARS AND THEIR APPLICATION TO
COMPUTER SCIENCE, 4., 1990, Bremen, GermdPpceedings. . London: Springer,
1991. p.641-659. (Lecture Notes in Computer Science, ¥.532

SCHURR, A.; WINTER, A. J. UML Packages for PROgrammed GrafwRting Sys-
tems. In: INTERNATIONAL WORKSHOP ON THEORY AND APPLICATIONDF
GRAPH TRANSFORMATIONS, TAGT, 6., 1998, Paderborn, Germ&bwlected Pa-
pers. Berlin: Springer, 2000. p.396-410. (Lecture Notes in Cotap8cience, v.1764).

SCHURR, A.; WINTER, A.; ZUNDORF, A. The PROGRES Approachngaage and
environment. In: EHRIG, H. et al. (Ed.Handbook of Graph Grammars and Com-
puting by Graph Transformation . River Edge, NJ, USA: World Scientific, 1999. v.2,
p.547—-668.

SECELEANU, C. C.; SECELEANU, T. Synchronization Can Impgd¥eactive Systems
Control and ModularityUniversal Computer Science [S.l.], v.10, n.10, p.1429-1468,
2004.

SEKERINSKI, E. Graphical Design of Reactive Systems. In.-TERRNATIONAL B
CONFERENCE ON RECENT ADVANCES IN THE DEVELOPMENT AND USE OF
THE B METHOD, B, 2., 1998, Montpellier, FrancBroceedings...London: Springer,
1998. p.182-197. (Lecture Notes in Computer Science, 8)139

TAYLOR, 1. J. et al. (Ed.)Control- Versus Data-Driven Workflows. London: Springer,
2007. p.167-173.

SIRJANI, M.; MOVAGHAR, A. An Actor-Based Model for Formal Modelling of Re-
active SystemsRebeca. Tehran, Iran: Computer Engineering Dept, Shauifeysity of
Technology, 2001. Technical Report. (CS-TR-80-01).

TAENTZER, G.; SCHURR, A. DIEGO, another step towards a medwaincept for graph
transformation systems. In: JOINT COMPUGRAPH/SEMAGRAPHORKSHOP ON
GRAPH REWRITING AND COMPUTATION, SEGRAGRA, 1995, \olterrtaly. Pro-
ceedings...[S.l.]: Elsevier, 1995. p.277-285. (Electronic Notes Tietical Computer
Science, v.2).

104

USELTON, A. C.; SMOLKA, S. A. A Process Algebraic Semantios Statecharts via
State Refinement. In: IFIP WORKING CONFERENCE ON PROGRAMMNHNCON-
CEPTS, METHODS AND CALCULI, PROCOMET, 1994, San Miniatalit Proceed-
ings... Amsterdam: North-Holland Publishing, 1994. p.267-286I1RI Transactions,
V.A-56).

105

APPENDIX A CATEGORICAL DEFINITIONS

Definition A.1 (Pushout and pushout complement)(CORRADINI et al., 1997) Given
a categoryC and two arrows : K — Landk : K — D of C, atriple (G,I* : D —
G,m : L — @) asin the diagram below is called a pushoutbfk) if

Commutativity mol =1[* ok, and

Universal Property for all objectsG’ and arrowsg’ : L — G’ and /' : D — @', with
g ol = f" ok, there exists a unique arrow : G — G’ such thath o m = ¢’ and
hol* = f.

In this situation,G is called apushout objecof (I, k). Moreover, given the arrows :
K — Landm : L — G, apushout complemerdf (I, m) is the triple (D, k : K —
D.l* : D — G) such that(G,m,[*) is a pushout of/, k). In this caseD is called a
pushout complemerdf (I, m).

Proposition A.1 (Existence and uniqueness of pushout comghent) (CORRADINI
etal., 1997) Let : K — L andm : L — G be two morphisms ifi’-Graph, wherem is
injective. Then there exists a pushout complen@nt : K — D,I* : D — G) of (I, m)
iff the following condition is satisfied:

Dangling condition No edgee € FEg — mg(Fp) is incident to any vertex in
gv(Ve = 1,(Vk)).

In this case(l, m) satisfies thegluing condition(or m satisfies the gluing condition with
respect tol). If morphismi is injective, then the pushout complement is unique up to
isomorphism.

106

Lemma A.1 Considering the following commuting diagram, witlmono, thern(1) is a
pullback in any category:

Proof: For all objectX and two morphismg and f, such thato g = bo f, thendlz : X — A
such thatid o x = g anda o x = f. By definition of identityz = g, then it remains to prove
aog = f. By commutativity of(1), thenboao g = bo f. Sincebis mono, them o g = f as we
want to prove. O

In the following, we consider the following commutative giiam:

Lemma A.2 (composition of pushouts and pullbacks)(HABEL; MULLER; PLUMP,
2001) If diagramg1) and(2) are pushouts (pullbacks) théih+2) is a pushout (pullback)
as well.

Lemma A.3 (decomposition of pushouts and pullbacks)lf diagrams(1 + 2) and(1)
are pushouts the(®) is a pushout. If diagramél + 2) and (2) are pullbacks theril) is
a pullback (HABEL; MULLER; PLUMP, 2001).

Lemma A.4 (Special decomposition)(HABEL; MULLER; PLUMP, 2001) If diagrams
(1 +2) and(2) are pushouts an@ — C'is injective, ther(1) is a pushout. If diagrams
(1 + 2) is pullback,(1) is a pushout, and’ — F'is injective, ther{2) is a pullback.

Lemma A.5 Consider the following commuting diagram$et

A B
N
C<=D
@ N
E I

If the two internal square§l) and (2) are pullbacks, then the outer square with vertices
A, B, E and F is a pullback as well ().

Lemma A.6 (3-cube lemma)(CORRADINI et al., 1996) Consider the following com-
muting diagram irSet, with bottom and top morphisms injective.

A B

N N
C D

!
AN N

Cl
We have the following 3-cube lemmata:

D/

107

1. If the bottom square is a pushout, the back and left squarepullbacks, then the
top square is a pushout if and only if the front and right seasaare pullbacks.

2. If the top square is a pullback, the front and right squaases pushouts, then the
bottom square is a pullback if and only if the back and leftssga are pushouts.

108

APPENDIX B PROPER QUOTIENT PRODUCTIONS

In the following, for a setP of productions, we will writeG? L H when there is a
direct derivation fronz to H using a production irP.

Definition B.1 (Quotient production) Given a production;; = L, & K, 3 Ry, a

productiong, = Lo & K, 2 R, is a quotient production af; if there are two pushouts
(in Graph) of the form
Ly=— K — R

l) J/ (2) l

L2<;K24>R2

where the vertical morphisms are surjective. The set ofignbproductions ofy; is
denoted byQ (¢).

By the next lemma we have that every application of a prodaatorresponds to an
application of one of its quotient productions obeying thgctivity restriction. So, if
there is a derivation using a quotient production, thenethgran equivalent derivation
using the original production. Moreover, if there is a dation using a production based
on an arbitrary match, then there exists an equivalenta@ivusing some quotient pro-
duction of it based on an injective match.

Lemma B.1 (Quotient Lemma)For all graphsG and H, and all productiorny:
1. ¢ Y HimpliesG % H:
2. G2 HimpliesG 2" [for ¢ € Q(q) and some injective:’.

The construction of proper quotient production for a patgdfoduction can be find in
(HABEL; MULLER; PLUMP, 2001).

109

APPENDIX C TRANSACTIONS OF ADT-GTS

In this chapter we define the functions used to construct ¢hefstransactions of a
dT-GTS. We do an analysis of termination for each function, aftediefinition, when is
necessary, i.e., when there are loops in its definition.

Definition C.1 (Initialisation) Let Pz be a set of production. The initialisation of set of
transactions, denoted hy.it(Pz), is defined by the paitP’, DwtProc(Z)) as in the
following:

1: forall p € Pz do > for each production in Pz
2. if S(p) = pthen > if this production is stable
3 biq, € DwtProc(Z) > then include in the set of transactions®fthe process
containingp as its unique production

4: Pz =Pz —{p} > exclude productiop from set of production®z
5. endif

6: end for

7. P'="P(Pz) I> assign toP’ the power set of remaining productionsity
8: forall A e P’ do > for all subset4 of Pz
9 if Ape A.(S(L,) =L,V S(R,) = R,)then » if there is no production with left-hand

side stable or no production with
right-hand side stable
10: P =P —{A} I> then the subset of productions cannot compose a transamtidn
it is excluded fromP’
11: endif
12: end for

The function defined above always stops since we can seehthatxecutions of all
loops are controlled by finite structures (set of produdiBg and P’).

Definition C.2 (Making a process)Let 2 = ((Tz,Pz,7z),Tz,) be a dr-GTS,
¢ = ((Ty, Py, mg), Ty,) — Z be a graph processp, k) be a pair wherep € Pz and
m : L1z — (T4, r4,) be amatch. For eacl, the process constructed by applyifg k)
in T, based orm, denoted bynakez(¢, (p, k), m), is defined by, as follows:

1 Touz = gluey, iy (p, m, Ty) > constructT,,... applying(p, k) in T, based onn

2: Puw =Py U{(p,k)} I> assign toP,..,. the set of productions af plus (p, k)

3! Mauw = e U{((, k), (Lp, m) — (K,,mk,) — (R,,t))}, where

mz(p) = L7 — K!? — RI= andt: R, — T, is defined by
m(x), ifx e K,

Hz) = { <x(, <;), k), otherwise.

110

I> associate production name, k) to the spant. ,, xy < K1y — Rp iy,
whereL, ;y and K, .y are typed ovefl,,, by m and R, ;, is typed over
T.... by m on preserved items and the created itemsare mapped to
(x, (p, k) (item included irT,.,,. by application of(p, k))
4: auer = ¢ U{((z, (D, k), tr, () | v € R, —rng(rp)} > include in the type graph
mapping the elements created
by (p. k)
5 Gauzp = Op U{((p,k),p)} &> include in the production mapping the productign k)

Definition C.3 (Concurrent graph) Let ¢ be a graph process. A subgraghof T} is
called concurrent ifGG is a subgraph of a graph reachable froidin(¢) by means of a
derivation which applies all productions 1), .|z |, where[z| = {p | p € PyAp =4 x}

Definition C.4 (Gluing) Letp: L, «— K, — R, be a production(a graph,m: L, —
G a graph morphism and any symbol. The gluing & and R,, according tom and
marked by, denoted byjlue,(p, m, G) is the graphV, E. s, t), where:

V ={VaeUm,.(Vg,)} E={EgUm.(Eg,)}

with m,, defined by:
ma(z) =

m(z), ifzxe Ky
(x,*), otherwise.

The source and target functions are inherited fréhand iz,,.

Definition C.5 (Pre-transactions) Let A be a set of’-Graph productions. The list of
initial graphs and productions, which can possible conséta transaction, based a#,
denoted byreTransactions(A), is the listl of graphs and production sets, defined as
follows:

1 X ={{({p,1) | pe A}} > initialise X with one set of productions containing
one instance of each production ih
2: =) D> initialise the list of pre-transactions (initial graph armatoduction instances that
can constitute a transaction) with an empty list
3: ok = false > initialise ok indicating that the list of pre-transactions is not complet
4: while —ok do > repeat while there are new production instances to be censiti
to construct the pre-transactions
5. ok =true > assigntrue to ok, that is set tcfalse if new instances are need
6: Xpue =60 > assign empty set t& ... (Set containing sets of production instances
generated in order to balance productions in All in X)
7. forall X' € X do > for each set of production instancé® in X
8: for all (p,k) € X' do > for each production instanc@, k) in X’
o: ifxeL,—S(L,) — K, then
10: (x,(p,k)) € L > include in L (set of unstable elements consumed by productions
in X’) all unstable items consumed by, k)
11: end if
12: ifxr e R, — S(R,) — K, then
13: (x,(p,k)) € R > include inR (set of unstable elements created by productions

in X’) all unstable items created Hy, k), and
14: end if

15:
16:

17:

18:
19:

20:
21:

22:

23:

24

25:

26:

27:

28:

29:

30:

31:

32:
33:

34:
35:
36:
37:

38:

39:

111

if 2 € K, — S(K,) then
(x,(p,k)) e K > include inK (set of unstable elements preserved by productions
in X’) all unstable items preserved Wy, k)
end if
end for
if V(z, (p,k)) € K.y, (¢, k) € Rutg,(x) =tgr,(y) A
V(z, (p, k) € L3y, (g k) € Ruty, () = tr,(y) A
Wy, (a, k) € R.3a, (p, k) € Lutr,(y) = 11, () then
> if all unstable items preserved/consumed (created) byymtian instaces
in X’ are created (consumed) by some production instancé’in

for all (z, (p, k)) € L do > then, for each consumed elemerih L
if Iy, (¢,K)) € Rty (x) = tg,(y) then > if there is one created element
with the same type af
L=L—-{{z,{(p,k))} > excluder consumed byp, k) from set of elements
consumed by productions X’
R=R—{{y,(¢,k))} > excludey created by(q, k') from set of elements
created by productions i’
end if
end for

if L= andR = @ then > if all unstable elements consumed (created) by produc-
tion instances inX’ are created (consumed) by some
production instance X’

[=1.InitGraph(X’) > then, add to list of pre-transactions, the list of pairs of
initial graphs and productions ok, and
Xo=0 > assign empty set t&, (set containing sets of production instances

generate in order to balance all production instances ofteat),
indicating that is not necessary to add new production insés toX’

else
X = {X’} > otherwise, initialiseX; (set containing sets of production instances
genereted for eacX’ in order to balance the consumed elements with
created ones, if it is necessary) with the set of productistainces\’
if L # @ then > and, if there are consumed elements that are not created
by some production instance iy’
for all (x, (p,k)) € L do > then, for each consumed element remaining in
forallC e X;doX¢c =9 > initialise an empty seX ¢ for each
set of production instances ik
end for
for all C' € X, do > for each set of production instancesif and
forall g € Ado > for each productiony in A
ifJy € Ry — Ky« tp,(x) = tg,(y) then > such thay creates elements
of same type that

Xe={{{¢e,.#D + 1)} UC} U X,
whereD = {{q,1) | (¢,i) € C}
> include a new instance qfin X (set containing sets of
production instances generated for ea€hin X in order to
create items in’), and
ok = false > assignfalse to ok, indicating that there are new
production instances to be considered

112

40:
41:
42:
43:
44

45:
46:
47:

48:

49:
50:

51:
52:
53:
54:

55:

56:

57:
58:
59:
60:
61:

62:
63:
64:
65:

66:
67:

68:
69:

end if
end for
end for
UCeXl
X1 > after generate all sets of production instancesXip,
uptdate X; with sets of production instances genereted
in order to create all itemgz, (p, k)) in L
end for
end if
Xo=X4 > initialise X, with all new sets of production instances that
creates all elements ih
if R # @ then > if there are created elements that are not consumed
by some production instance iy’
for all (y, (¢, k")) € Rdo > then, for each created element remainingin
for all C eEXodo X =0 > initialise an empty seX ¢ for each
set of production instances ik,
end for
for all C € X, do > for each set of production instancesif, and
forall p € Ado > for each productiom in A
if dv € Ly — K« tr,(y) = tr,(x) then o suchthap creates elements
of same type thaj
Xe={{{p,#D+1)}UC}U X,
whereD = {(p,i) | (p,i) € C'}
> include a new instance @fin X (set containing sets of
production instances generated for ea€hin X, in order to
consume items i), and
ok = false > assignfalse to ok, indicating that there are new
production instances to be considered
end if
end for
end for
UcEx
X2 > after generate all sets of production instancesip,
uptdate X> with sets of production instances genereted
in order to consume all itemiy, (¢, k') in R
end for
end if
end if

dseX, = o > if there is an unstable element consumed/preserved (aebyeproduction
instances inX’ that is not created (consumed) by some other instance
production in X', assign empty set t&> (it is because the considered
set of instance productions cannot constitute a transagtio

end if
Xowe = Xoua U Xo > updateX .. with the sets of production instances generate
in order to balance the productions ik’
end for
X = Xoue > updateX with new sets of production instances generate in the pusvio

iteration in order to balance the productions in afl’ in X

113

70: end while

In the function above, almost all loops are controlled bytdirstructures, buvhile
loop (at lines4 — 70) is repeated up t@ = true. x is set totrue at the begin of each
iteration and becomegulse when an instance of a production is included to compensate
a consumed/created item (lings — 40 and54 — 57). Since productions of considered
T-GTSs do not have cycles on creation and consuming of unstabies jtthhe number of
needed instances of each production in a transaction isyalfigite. Consequentlyy
eventually is not set tgalse and the loop stops.

Definition C.6 (Initial graphs) Let X be a set of sets df-Graph productions which
have balanced unstable items. The possible initial graptisfar eachX’ € X, denoted
by InitGraph(X), is given by list of graphs and production sets, defined as follows:

1. [l= A\ > initialise the list of initial graphs and productions witmampty list
2: forall X’ € X do > for each set of production instancesin
3 ord=order(X’) > order the production instances based on possibility of agibn

(created and consumed unstable items)

4: foral G € GI(ord) do > for each initial graph obtained from ordered productionsin
5: =G, X))l B> include the pair of initial graph and productions in list
6: endfor

7. endfor

whereorder(X') orders the production&’ based on typing of unstable items, which is
defined by as follows:

1. l= A\ > initialise the ordered list of productions iX’
2. U=0 D> initialise the current unstable items (set of items credtgd@onsidered
productions that are not consumed by them)
3: for all (p, k) € X' do > for each production inX’
4. if L,=S(L,) then > if its left-hand side is stable then
5: L=1.{(p,k)) > include it in the list/, and
6: U=UU{{(z,(p,k)) |z € R,—S(R,) — K,} > include inU the unstable items
created by the production, and
7: X' =X"—{(p,k)} > exclude the production frooy’
8: endif
9: end for
10: while X’ # @ do > repeat while there is some productiond that is not used
11: Ur=9 > initialise the set of unstable items created by all enabledipctions in
each iteration
12: for all (p,k) € X’ do > for each productior{p, k) in X' that can be applied in the
graph containing the current items i
13: Co={x|zreL,—S(L,)} >> assign the set of unstable items consumed/preserved
by (p, k) to C,,
14: Upie = U > assign the set of current items &g, which will be used to updateé
excluding items consumed by, k)
15: C=g0 > initialise the set of unstable items consumed/preservég.ly for which
there exists a corresponding item{f .
16: forall z € C, do > for each unstable itern consumed/preserved by, k)
17: if 3y, (¢, 7)) € Ugua » t1,(x) = tg,(y) then > if there is an item i, with

same type of

114

18: ifv € L, — K, then > then, ifz is consumed byp, k)
19: Usie = Uauz —{(y, (@, J))} > then, exclude the item with same type:of
from Uz, and
20: end if
21 C=CU{x} > includez in C
22: end if
23: end for
24: if C = C),then > ifall unstable items consumed/preservedyk) are currently inUq.
25: L=1.{(p,k)) > then, include(p, k) in the listZ, and
26: X' =X"—{(p,k)} > exclude(p, k) from X" indicating that it was already used, and
27: U = Uz > updateU, excluding the unstable items consumedzhy:), and
28: Up =UrU{(z,(p,k)) |z € R, —S(R,) — K,} I> include inU all unstable
items created byp, k)
29: end if
30: endfor
3. U=UUUg > include in set of current items all unstable items creategiogluctions
enabled in the current iteration
32: end while

GI(l) is the set of possible initial stable graphs for the prodoes in/, applied in the
order in which they appear ih It is defined as follows:

1: (p, k) = head(l) > get the first the first production i

2: 1 =tail(l) > exclude the first production froin

3 Go=L,U(R,—S(R,)) >> initialise the partial initial graph with items consumed py
and unstable items created py

4. C = {GO} > initialise the set of initial graphs with items the first paitinitial graph G

5. whilel # X\ do I> repeat up to all productions ihto be considered

6: forallGeCdoCs=o2 > for each graph inC, initialise a setC, which will

contain all graphs obtained applying irG the
production on the top af

7 endfor
g8: foral G e Cdo > for each partial initial graphG' in C
9 (p, k) = head(l) >> get the production on the top bf
10: for all ¢ € Pr(p) do > and for each production, which include in the partial initial
graphG all stable items consumed lgy, k) and parts of stable
items preserved bip, k) (the preserved items must be consid-
ered because they can be preserved only/h¥) and must be
included inG)
11: for all matchm: L, — G do > and for each match af in G
12: Ce = HUCg, whereG & H > include inC¢ the graph obtained by applying
q in G based on match
13: end for
14: end for
15: endfor
16: Couz = UGec Cq > get the union of partial initial graphs obtained from &lin C'
17 C = Chu > actualiseC' with all partial initial graphs obtained with base on
production(p, k) on the top of
18: | =tail(l) > exclude the production on the toplof

19: end while

115

and Pr(p) contains, for each possible subgraplof preserved stable part of production
p, a production that consumes all unstable item consumeg; lyreservesL plus all
unstable items preserved pyand creates all stable part af,, which is not contained
in L, plus all unstable items created py It is defined by sek as follows, wherg is a
T-Graph production:
1. X =0 > initialise the set of productions which create all stabkmits consumed by
and some stable items preservedpby
2: for all subgraphL of S(rng(l,)) do > for each subgrapli of L, containing only stable
preserved items
3 X=XU{q} > include inX a production that consumes the unstable items consumed
by p and creates the stable items bf that is not inL and the unstable
items created by
whereg is theT-Graph productionZ, < K, 2 R,, with
Lq = <Van Ean SLq, tLq>
Vi, =V UV uv,

By, = E,UE,
E,={elec Ey, Nty (e) €T} I> set of unstable edges consumed or
preserved by
V={v|(v=sl(e)vVv=tlr(e) Nee E,} >> set of vertices that are
source or target of
edges ink,
Vi={v]veVy Aty (v) €T} >> set of unstable vertices consumed or

preserved by
the functionss’+ and¢*« and the typing morphism are inherited frafy
Kq = <VKq7 Equ SKq, th>
Vi, =V, uVuvy

Ex, = B, UE,
Vi={v|veV,ANverng(l,} I> set of unstable vertices preservedby
El ={elec E,Necrng(l,)} I> set of unstable edges preservedpby

the functionss”« and¢*s and the typing morphism are inherited frabyp
Rq = <VRq7 Equ SRq, th>
VRq = VS(Lp) U VLZ UV
ERq = ES(LP) U E/u U Ej
Vi={v|veVr ANvgVsw,) Nv&rng(r,)} > setofunstable vertices
created byp
E,={e|lec Eg, Ne & Esr,y Ne & rng(r,)} > set of unstable edges
created by
the functionss”« andt¢* and the typing morphism are inherited fraiyp
andR,
Ve Ky ly(x) =idy, (z) Arg(r) =idp,(x) > mapbyl, andr, each preserved
item to itself
4: end for

The functionPr(p) always stops since the execution of its loop is realised &ohe
subgraph ofS(rng(l,)), that is a finite graph. Thehile loop (at lines5 — 19) of G1(I)
function is executed up tbbecomes empty. Since one element & excluded in each
iteration this loops eventually finishes. Therefore, sifeg¢p) andwhile loop finishes,
the functionG (1) always stops. The unique loopdnder(X’) that is not controlled by a

116

finite structure is thevhile loop at linesl0 — 32. This loop is repeated up t&’ becomes
empty. Each productiofp, k) of X’ is eliminated when the productions ordered in the
previous iterations create all unstable items used fynes24 — 29). Since the produc-
tions in X’ are balanced (i.e., all unstable items consumed/preségedch production
are created by others) all productions will be eliminatedéf Therefore, the function
order(X') always finishes. Finally, sincE andGI(ord) are finite andrder(X') always
finishes, the functiodnitGraph(X) always stops.

Definition C.7 (transactions test) Let¢ : O — Z be a graph procesgransaction(¢)
is true if ¢ is an transactional process and it false otherwise. It is define by as
follows:

1. b=true D> initialise b indicating that¢ is a transaction

2: forall x € T, do > for each stable item in the type graph¢of

3 preg={p|pe PyANy€L,—dom(l,) Nt (y) = x} > assign all productions
that consume: to pre,

4: conty ={p|pe PyNyc K, Ntg,(y) =z} > assign all productions that

preserver to cont,,
5: posty={p|p€ Py Ny € R,—rng(r,) Ntg,(y) =z} > assign all productions
that creater to post,

6: if pre, # @ then > if pre, and
7 if cont, # @ then > cont, are not empty
8: b = false > then assigrfalse to b indicating thate is not a transaction
9: elseif post, # @ then > if pre, andpost, are not empty
10: b = false B> then assigrfalse to b indicating thate is not a transaction
11: end if
12: €eseif cont, # @ then > if cont,, and
13: if post, # @ then > post, are not empty
14: b = false > then assigrfalse to b indicating thate is not a transaction
15: end if
16: endif
17: end for
18: Min =< > initialise the set of items of minimal graph of
19: Max = @ > initialise the set of items of maximal graph®f
20: for all z € T}, do > for all item z in the type graph of
21 ifVpe Py, Ay € R, —rng(ry) - tg,(y) = v then > if there is no production that
createsr
22: Min = Min U {z} > then includer in Min
23: endif
24: ifVp e Py By € L, — dom(l,) . t1,(y) = x then > if there is no production that
consumes
25: Max = Max U{z} > then includer in Max
26: endif
27: end for
28: if 3z € Min Az ¢ T then > if there is an unstable item i/ in
29: b = false > then assigrfalse to b indicating thate is not a transaction
30: end if
31: if 3z € Max Nx € Ty, then > if there is an unstable item it/ ax
32: b =false > then assigrfalse to b indicating thate is not a transaction

33: end if

117

34: for all x € Min do > for all elementz in Min
35 ifvpe Py.(AycL,.t,(y) =x)then > if there is no production preserving or
consuminge
36: b = false > then assigrfalse to b indicating thate is not a transaction
37: endif
38: end for
39: Reachable = & > initialise the set containing sets with elements of eaclplyr@achable
from Min applying production of
40: for all P' C Py do > for each subseP’ of productions of
41: ifVp e P'.Vx € L,
((tr,(x) € Min)V (3¢ € P'.3y € Ry —rng(r,) « tr,(y) = tr,(x))) then
> if for all production in P’, all consumed/preserved item arefifiin
or are created by another production i
42: Spr={x|x e Ty N((x € Min ANVp € P'. Ay € L, —dom(l,).tr,(y) =x) V
(IpeP.IyeR,—rng(ry) tg,(y) =) A
(Vp' € P'v Az € Ly —dom(ly) «tr,(2) =)))}

> then assign t&'p: the set of all items iy, such that these items are Min

and are not consumed by any production, or they are created by one

production inP’ and are not consumed by any other productio®in
43: Reachable = Reachable U {Sp/} > include the seBp: in Reachable
44: endif
45: end for
46: for all S € Reachable do > for all setS in Reachable
47: ifVox e S.x €T, then > if all items in S are stable
48: b = false > then assigrfalse to b indicating thate is not a transaction
49: endif
50: end for

All loops in functiontransaction(¢) are controlled by finite structures, then its com-

putations always stop.

Definition C.8 (dep-weak-equivalence test] et¢,; and¢, be two transactional process.
depEq(¢p1, ¢2) IS true if the processes aréep — weak-equivalent and it idalse other-
wise.depEq(¢1, ¢2) is defined by as follows:

1

2:

b = false b initialise b indicating that¢; and ¢, are not dep-weak-equivalent
if there is an isomorphisni: 7,,, — T}, and there is a bijection: P, — P,,
such tha'ﬂ"ng(f‘Mm(m)) = MZTL((ﬁg), rng(f‘Max(m)) = Md$(¢2) and
Pap O g = P1p then > if there is an isomorphism between type graphs such thatmaini
and maximal graphs are preserved and there is a bijection
between productions such that two related productions must
be mapped to the same production in th&a@rs to which
the processes are associated

R¢1 =g D> initialise the relation resulting of translation of depestity relation of,
into type ofp, w.r.t f
for all (a,b) €<, do > for all pair in the dependency relation g
Ry, = Ry, U{(f(a), f(D))} > include in Ry, the pair of elements in type graph

of ¢ associated by the isomorphisfrio ¢ andb
end for

118

7. if Ry, =<4, then b = true > if the translation of<,, is equal<,, then assign
true to b indicating that¢, and ¢, are dep-weak-
equivalent

8: endif

9: endif

Since the loop in function defined above is controlled by &efistructure the compu-
tation of dep E'q(¢1, ¢-) always stops.

119

APPENDIX D RESUMO ESTENDIDO DA TESE

A complexidade dos sistemas atuais requer o uso de métodiesdevolvimento que
garantam correcdo e qualidade. Especificacdo formal € uoriamte instrumento usado
para atingir estes objetivos. A especificacdo é uma desadig&omportamento de um
sistema e/ou sua estrutura.

Sistemas de transformacédo de grafasss) € um formalismo adequado para a es-
pecificacao de sistemas complexos, que podem levar em @p#etas como orientacao-
a-objetos, concorréncia, mobilidade e distribuicao (EBIRt al., 1999a). De fato, grafos
podem ser naturalmente usados para fornecer uma repigBeeruturada dos estados
de um sistema, a qual destaca seus subcomponentes e suaEnées logicas e fisicas.
Os eventos que ocorrem no sistema, que sao responsaveasqelgéo de um estado para
outro, sdo modelados por aplicagbes de regras de trangf@oradequadas, chamadas de
producdes (de grafos). Esta representacgéo é suficienteprecisa para permitir analise
formal do sistema em consideracéo, e também oferece unesegpacao intuitiva visual
que pode ser facilmente compreendida por pessoal naokaisgiac

Ao longo dos anos, o “framework” original foi sendo enrigaec estendendaTss
com conceitos de estruturacdo que sdo necessarios paradidaa complexidade de
grandes especificagdes. Diversas no¢des de modularidefiessrrento foram propostas,
proporcionando mecanismos basicos para encapsulaméstmgio e ocultacdo de in-
formacéo — veja (HECKEL et al., 1999; SCHURR; WINTER, 200REOWSKI; KUS-
KE, 1999; DREWES et al., 2000; EHRIG; ENGELS, 1996; HECKElakt 1998; TA-
ENTZER; SCHURR, 1995; GROSSE-RHODE; PARISI-PRESICCE; BOMI, 1999;
EHRIG; ENGELS, 1993). Contudo, pouca aten¢éo tem sido datfaeade estendesTss
para permitir a especificacao de atividades transacioAdistratamente, uma transacao
€ uma atividade, envolvendo a execucédo de um grupo de eyentgsais podem levar o
sistema a um estado de sucesso ou falha. No Ultimo caso, @éxguarcial da transacéo
€ descartada e ndo tem efeito no sistema. Em implementaghesetas esta nocéo é
obtida com mecanismos de “roll-back” que restaura o estaidiai quando a falha é
detectada.

Em um trabalho introdut6rio (BALDAN et al., 2008), foi defilei uma extenséo de
GTSs, chamadasistemas de transformacéo de grafos transacio(misTs), equipando-
0S com a nocao de transacdo. Rudemente falando, estadfos)g@o divididos em
partes estaveis e ndo-estaveis (instaveis), e uma transagéfinida como uma com-
putacdo que comeca e termina em estados contendo somaeatesité&veis, na qual todos
os estados intermediarios tem alguma parte instavel. bstal@agem é motivado pela
natureza “data-flow” deste formalismo, onde as producdesstemna sédo aplicadas néo-
deterministicamente, e qualquer forma de controle daagdic das producdes deve ser
codificada nos grafos. Assim, transa¢des sdo mais naturrdefinidas indiretamente,

120

através da identificacdo de partes do estado que represestarsos temporarios (ou
“instaveis”), visiveis somente dentro da transacao. Begbss podem ser vistas em dois
diferentes niveis de abstracdo. Em um nivel mais baixo, arobdtens estaveis e in-
staveis, e assim também a estrutura interna da transagéaisg&is. Mas em um nivel
mais abstrato, os itens instaveis podem ser “esquecidastierge transacdes completas
séo observaveis. Intuitivamente, um navos é obtido, onde transac¢des W@ TS orig-
inal tornam-se producdes que reescrevem diretamente doesdtaorigem no estado de
destino.

Sistemas reativos, em contraste aos sistemas transfoma#s;i sdo caracterizados
pela continua reacao a estimulos provenientes do seu ambga) além da reatividade,
considerarmos que muitas aplicacdes o método de espegdidageria prover um modo
de descrever a distribuicdo espacial dos estados, tramsfées de grafos parecem ser
uma técnica de especificagdo adequada. Algumas aplicagbesstas caracteristicas
sao sistemas moveis e vias bioldgicas.

Diversos métodos para projeto e analise de sistemas reatiopdem linguagens sin-
cronas como formalismo de especificacdo (BERRY, 2000; HARBWS et al., 1991;
LEGUERNIC et al., 1991), onde o tempo de reacdo a um eventdoé Qutros meto-
dos (SECELEANU; SECELEANU, 2004; MAIA; IORIO; BIGONHA, 189 RIESCO;
TUYA, 2004) propdem usar linguagens assincronas paraiéispea comunicagao entre
0s componentes e definem um mecanismo para descrever unmtco(@u sequéncia)
de atividade que séo realizadas atomicamente. Portargagyat®emos usar a hocao de
transacoes para descrever, em um nivel abstrato, estamdés atdbmicas. Além disso,
foi proposta, em (MAIA; IORIO; BIGONHA, 1998), uma abordag@ara especificar ex-
plicitamente padrées de interacdo usando Maquinas dedsstdudtratas (ASMs), onde o
projetista, além de especificar as opera¢des do compopete descrever 0s sinais que
sao enviados e recebidos do ambiente. O projetista pod€tamépecificar parcialmente
o ambiente mostrando somente a especificacao das interacdes

Contudo, as abordagens para transformacdes de grafos m@cdon mecanismos
para especificar explicitamente padrées de interacdo esistema e seu ambiente. Al-
gumas delas restringem o padrao de interagéo a funcdesrtereseealidade descrevem
sistemas transformacionais), e outras apenas permitenfiouma muito restrita de inter-
acoes. Em (HECKEL, 1998), foi proposto o uso de sistemasatsformacao de grafos
para especificar sistemas reativos: a interacdo entreesrsist seu ambiente ndo é ex-
plicitamente especificado, ao invés, ela é descrita em ueh sgmantico, onde os estados
do sistema descrevem efeitos que ndo sdo determinadoslpacéps de regras. Por-
tanto, sistemas de transformacao de grafos transaciciaisstendidos para expressar
interacdes explicitamente.

Nesta tese, é desenvolvido um trabalho mais elaborade s transacionais para
permitir a abstragéo da estrutura interna das transacoemendtrar que um-GTS e
sua abstracdo tém o mesmo comportamento em termos de Gassalém disso7-
GTss foram estendidos com um mecanismo para descrever padrdgsidcao entre um
sistema e seu ambiente, 0 que permite especificar sisteatamse A idéia, nesta pro-
posta, € que um componente interage com seu ambiente cakuenériando elementos
visiveis ao seu ambiente. Estas a¢6es podem ser descritapcoducdes (abstratas) de
grafos na especificacéo abstrata que sdo implementada®aaseuie de outras producdes
em uma especificacdo mais concreta. Uma relacao entre egesg\wkis de abstracao foi
definido, resultando em uma nogé&o de refinamento.

Mais especificamente, o0s principais objetivos desta tese sa

121

¢ definir uma nocédo de atividade atémica pansss: alcancado atraves da definicdo
da nocéo de transacoes;

e demonstrar que atividades atdmicas sao preservadas envehmais alto de ab-
stracdo: atingido através da definicdo de morfismos de ingpltagdo e da demon-
stracao da existéncia de uma adjuncédo entre as categosiasad® com morfis-
mos de implementacao e desss com morfismos padrao. Resultados preliminares
deste trabalho foram publicados em (BALDAN et al., 2006);

e propor um mecanismo para descrever padrdes de interagiiéstte producdes de
grafos para especificar sistemas reativos: obtido atravdefthicdo de relacbes de
dependéncia associadas as producfesrdwsss. Resultados preliminares deste
trabalho foi publicado em (FOSS; MACHADO; RIBEIRO, 2007);

e definir umanocao de refinamento que leve em conta os padragsidedo: atingido
através da definicdo de uma nocao de refinamento baseada rfisnos de im-
plementacao.

D.1 Contribuicoes

As contribuicBes desta tese estéo relacionadas a duasndéerareas da Ciéncia da
Computacédo: a area teorica, através da fundamentacacatedrconceito de transacdes
para transformacao de grafos; e a area de engenharia dersgfpropondo um formal-
iIsmo para especificar sistemas reativos, onde as interagfreso sistema e seu ambiente
podem ser descritas por rela¢des associadas as produd¢desdidso, usando morfismos
de implementacgé&o, pode-se definir um método de desenvaitarireremental, iniciando
com uma Vvisao abstrata do sistema e adicionando mais detalteda passo de refina-
mento.

D.1.1 ContribuicBes para a area tedrica

Nesta tese foi dada a fundamentacéo tedrica da nocao diedid transacionais em
transformacéo de grafos. Uma transacéo € definida como aseeale derivacdes, onde
os estados inicial e final sdo estaveis e todos os estadomédi@rios sdo instaveis.
Assim, 0s itens instaveis representam recursos tempgr&igiveis somente dentro da
transacdo. A distincdo entre elementos estaveis e instavieircada pelo mecanismo
de tipagem. Esta definicdo de transacfes € inspirada ndhiwakabrezero-safe nets
(BRUNI; MONTANARI, 2000) e € motivada pela natureza “datasn” do formalismo
de transformacéao de grafos, onde qualquer forma de com@aa@licacéo das producdes
é codificada nos grafos. Um dos principais resultados e®deste trabalho é a caracter-
izacdo do sistema abstrato de mB TS (que contém todas as transacfeg-dors como
producdes) em termos de uma construcdo universal: um fadfanto a direita. Para
obter este resultado, inicialmente, as transacfes foreamteazadas como processos de
grafos e apos foi definida a nocéo de morfismo de implementagéa importante con-
tribuicdo tedrica), permitindo associar produc¢fes a @msaetransacionais. Essa nogéo
de morfismo de implementacao é ainda mais geral que a nocaddedm (BRUNI,
MONTANARI, 2000), permitindo que producdes instaveis possser implementadas
por transacdes instaveis e, conseqientemente, poderse tafnfbém as implementacdes
das producdes.

122

Além dos resultados mencionados, a extensao de transfoesag grafos transa-
cionais, introduzida no Capitulo 41gsTS), enriquece a informacao dada pelas producdes
de grafos das-GTss, tornando explicita a dependéncia entre elementos sreadansum-
idos/preservados. Esta relacéo pode ser usada paragestriefinamento das transacoes,
uma vez que a nogdo de morfismo de implementacao paeass deve respeitar as de-
pendéncias. Assim, usando esta extensdo podemos dar agfdemabstratas a respeito
das dependéncias desejadas nas implementacdes.

D.1.2 Contribuicdes para a area de Engenharia de Software

A abordagem visual e dirigida a dados dasss, faz delas um formalismo natural
para especificar sistemas reativos, onde o comportamestoatoponentes € definido
pelo fluxo dos sinais (dados) que sé&o gerados pelo ambieidie geto fluxo de controle
dos componentes. As noc¢des de transacao e relacdo de depand&oduzidas nesta
tese tornam o formalismo ainda mais adequado para a espeédide sistemas reativos.
Estas extensdes incrementam o formalismades com um mecanismo para especificar
reacdes atdmicas e, assim permite descrever, em um nitetabsistemas sincronos.
Nesta tese, também foi apresentada uma idéia inicial settduracao vertical, propondo
uma noc¢ao de refinamento para relacionar especificacoeatabst concretas, onde as
dependéncias entre eventos/sinais de entrada e saidads&oedtalicitamente como uma
informacéo adicional a respeito do comportamento do saté&sta informacao pode ser
atil para especificar o comportamento do ambiente e paradinverficacdo, como sera
discutida na secéo 5.3.

Na secao a seguir, sdo apresentadas algumas idéias inal@escomo incrementar
este framework.

D.1.3 Trabalhos futuros

As seguintes questdes serdo temas de trabalhos futuros:

e se este modelo for restringido a um tipo especiataies chamado de Gramatica
de Grafos Baseadas em Objetos (OBGG), pode-se usar umandéentdeedesen-
volvimento para especificacao visual, simulacao, verifiosgutoméatica e geragéo
de cddigo (DOTTI et al., 2005, 2006). Em (DOTTI et al., 200&)droposta uma
abordagem, para verificar sistemas parciais usando OB@&satia na abordagem
“assume-guarantee”. A idéia basica é ver cada parte dongEistemo um sistema
aberto - um sistema cujo comportamento ndo estd completaraspecificado e
que depende das interacdes com seu ambiente. Para quesséje hasar esta abor-
dagem, é necessério descrever ambas as interacfes daensi@da. As Ultimas
sao especificadas pela interface e sao derivadas do compaittado corpo do sis-
tema. Asinteracdes de entrada (i.e., as reacdes provestmambiente resultantes
dos eventos/sinais do sistema) ndo podem ser derivadagetafiesacao do sistema,
entao é necessario incluir um mecanismo para descrevécieplente este tipo de
interacdo. Isto pode ser feito adicionando uma nova reldeddependéncia para
cada producao na interface do médulo. Esta extenséo pegsitigir a semantica
dos médulos, uma vez que tem mais dependéncias para cansidezompletar o
comportamento do modulo.

e além disso, considerando umadTsS e sua abstracao relacionadas por um mor-
fismo de implementacéo, como definido no Teorema 4.1, podefsg uma no¢cao

123

de modulo, onde o sistema abstrato é a interface, descieeeimeracdo entre o
sistema e seu ambiente; &dTsS € 0 corpo que implementa a interface. Além
disso, para definir no¢cdes de composicdo de médulos € ndoesdshnir inicial-
mente uma noc¢ao de compatibilidade entre as interacoegraglo que os moédu-
los compostos devem ter transacdes com padrdes de intehlagé&o Além disso,
para duas transactes (de modulos diferentes) com contipatile de interagdes,
deve existir elementos de sincronizacao, i.e., itens estgue sdo criados por uma
transacao deve ser consumidos pela outra, antes do finaingieinar. Em um mo-
dulo composto, estes elementos observaveis devem t@maotsservaveis pois as
transacdes devem ser fundidas. E necessario ainda estelttar sobre a interface
composta resultante, bem como, a seméantica do modulo cempos

outras nog¢odes de refinamento devem ser estudadas, por esengpisiderando-se
umaT-GTS sem relagdo de dependéncia como uma especificagdo absadita e
cionar a relacao de dependéncia no refinamento desta espgiifi Outro tipo de
refinamento que pode ser considerado é o refinamento dacelagiependéncia:
em um nivel abstrato ela pode ser menos restritiva e em urhaoivereto ela pode
ser mais restrita.

O modelo das OBGGs ¢é estendido, em (MICHELON; COSTA; RIBEIR@D6),
com nocOes de tempo. Pode-se considerar aplicar esta@&xi@asa tentar expres-
sar sincronia e no¢des de preempg¢do no nivel concreto.

Livros Gratis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

Baixar livros de Administracao

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciéncia da Computacao
Baixar livros de Ciéncia da Informacéo
Baixar livros de Ciéncia Politica

Baixar livros de Ciéncias da Saude
Baixar livros de Comunicacao

Baixar livros do Conselho Nacional de Educacdo - CNE
Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos
Baixar livros de Economia

Baixar livros de Economia Doméstica
Baixar livros de Educacao

Baixar livros de Educacdo - Transito
Baixar livros de Educacao Fisica

Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmacia

Baixar livros de Filosofia

Baixar livros de Fisica

Baixar livros de Geociéncias

Baixar livros de Geografia

Baixar livros de Histdria

Baixar livros de Linguas

http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1

Baixar livros de Literatura

Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matematica

Baixar livros de Medicina

Baixar livros de Medicina Veterinaria
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Musica

Baixar livros de Psicologia

Baixar livros de Quimica

Baixar livros de Saude Coletiva
Baixar livros de Servico Social
Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo

http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1

