

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

CRISTIANO ANDRÉ DA COSTA

Continuum:

A Context-aware Service-based
Software Infrastructure for

Ubiquitous Computing

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor of
Computer Science

Prof. Dr. Cláudio Fernando Resin Geyer
Adviser

Porto Alegre, November 2008.

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenadora do PPGC: Profa. Luciana Porcher Nedel
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Costa, Cristiano André da

Continuum: A Context-aware Service-based Software
Infrastructure for Ubiquitous Computing / Cristiano André da
Costa – Porto Alegre: Programa de Pós-Graduação em
Computação, 2008.

170 f.:il.

Tese (doutorado) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação. Porto Alegre, BR –
RS, 2008. Orientador: Cláudio Fernando Resin Geyer.

1.Sensibilidade ao Contexto. 2.Computação Ubíqua.
3.Computação Pervasiva. 4.Infra-estrutura de Software.
5.Middleware. 6. Ontologia. I. Geyer, Cláudio Fernando Resin. II.
Título.

ACKNOWLEDGEMENTS

My most sincere thanks are due to my adviser Cláudio Geyer, who accepted me
under his supervision as a PhD student, and for his support during almost three and half
years in the development of this work.

I would like to express my deepest thanks to my great friend Adenauer Yamin, for
helping me all through this work, from the choosing of the thesis’ theme to the various
revisions and suggestions in the final text. Without his support, this work would not be
the same.

I would like to thank in particular Luciano Cavalheiro, my colleague at UFRGS, for
his contribution in many discussions, project directions, and articles.

I would also like to express my thanks to the colleagues that developed the
prototypes and conducted the experiments presented in this work, particularly, Felipe
Kellermann, Óliver Pessutto, and Rodolfo Stoffel. Thank you for your dedication.

I would like to express my gratitude to my dear friend Andrei Cunha, who is my
English (and French) instructor, assisting me in the proofing of this text (and also in
obtaining the proficiency certification in French). Many thanks for his patience in
reading all the material produced and undoubtedly improving the quality of the text.

Special thanks are due to my beloved wife Adriana, who supported me throughout
the writing of this work. I thank you for standing by me during all the moments we
missed together because I was working on the thesis.

I would like to thank Unisinos for the institutional support. I would also like to
thank the Institute of Informatics at UFRGS, which provided an excellent environment
for research and science development. I thank all the professors and staff of this
institution.

This work would not have been possible without the help of many researchers that
read the papers produced, gave suggestions, and devoted their time in the improvement
of the research. Furthermore, I would like to express my thanks to the organizations that
support academic events and journals worldwide, such as SBC, ACM, and IEEE.

Thanks to Apple Inc., for developing outstanding hardware and software. Carrying
out this work using Mac computers was a great and enjoyable experience.

I would like to dedicate this work to the excellent professors that I had during my
academic journey so far, at ETFPEL, UCPEL, and UFRGS. Without their commitment
and competence, I would never have achieved this goal.

TABLE OF CONTENTS

LIST OF ABREVIATTIONS AND ACRONYMS ...7

LIST OF FIGURES...11

LIST OF TABLES...13

ABSTRACT..14

RESUMO..15

1 INTRODUCTION...16

1.1 Background and History.. 17
1.2 The Problem... 19
1.2.1 Sample Scenarios .. 20
1.3 Thesis Goals.. 21
1.4 Project Name.. 23
1.5 Thesis Outline... 23

2 AN APPRAISAL OF UBIQUITOUS COMPUTING26

2.1 Defining Pervasive Computing.. 27
2.2 Evolution .. 28
2.3 Ubiquitous Computing Challenges.. 30

PART I: CONTINUUM AS A SERVICE-BASED SOFTWARE
INFRASTRUCTURE FOR UBIQUITOUS COMPUTING34

3 A COMPREHENSIVE ARCHITECTURAL MODEL FOR UBIQUITOUS
COMPUTING..35

3.1 Implementing Ubiquitous Applications .. 35
3.2 Architectural Model... 36
3.3 Infrastructure Characteristics... 38
3.3.1 Heterogeneity.. 38
3.3.2 Scalability ... 39
3.3.3 Dependability and Security ... 39
3.3.4 Privacy and Trust .. 40
3.3.5 Spontaneous Interoperation ... 41
3.3.6 Mobility .. 42

3.3.7 Context Awareness.. 42
3.3.8 Context Management .. 44
3.3.9 Transparent User Interaction ... 46
3.3.10 Invisibility... 47
3.4 Related Architectures and Systems... 48
3.4.1 Aura.. 48
3.4.2 Gaia .. 49
3.4.3 One.World .. 51
3.4.4 ISAM.. 52

4 CONTINUUM SOFTWARE INFRASTRUCTURE.......................................55

4.1 Continuum as an Evolution of ISAM and EXEHDA 55
4.2 Software Architecture.. 56
4.3 Modeling the Physical World in Continuum .. 58
4.4 Infrastructure Layer.. 63
4.5 Pluggable Services.. 65
4.5.1 Distributed Architecture for Service Support ... 66
4.5.2 Proposed Services ... 68
4.6 Subsystems ... 69
4.6.1 Distributed Execution.. 69
4.6.2 Adaptation Management ... 76
4.6.3 User Interaction... 79
4.7 Framework... 83
4.7.1 Execution Profiler ... 85

PART II: CONTINUUM AS A CONTEXT-AWARE SYSTEM88

5 THE ARCHITECTURE OF CONTEXT AWARENESS................................89

5.1 Overview... 89
5.2 Context Model.. 90
5.2.1 Context Representation ... 91
5.2.2 Context Storage... 94
5.2.3 Context Utilization.. 96
5.3 Context Awareness Subsystem .. 99
5.3.1 Monitor ... 100
5.3.2 Discovery.. 101
5.3.3 Processor... 102
5.3.4 Aggregator .. 103
5.3.5 Contextdb.. 104
5.3.6 Context Action.. 105

6 CONTEXT AWARENESS: DISCUSSION AND RELATED
APPROACHES...107

6.1 Context-aware design principles ... 107
6.1.1 Sensor ... 108
6.1.2 Acquisition.. 109
6.1.3 Transformation.. 109
6.1.4 Synthesis... 110

6.1.5 Discovery.. 110
6.1.6 Storage.. 110
6.1.7 Query / Inference .. 111
6.1.8 Subscription and Delivery ... 111
6.1.9 Application ... 112
6.2 Related Context-aware Systems .. 112
6.2.1 Context Toolkit ... 113
6.2.2 Solar ... 114
6.2.3 Framework for Context-aware Pervasive Computing Applications 114
6.3 Comparison of Approaches ... 116

7 THE ANALYSIS AND ASSESSMENT OF CONTINUUM.........................118

7.1 Methodology... 118
7.2 Case Study 1: Distributed Service Architecture ... 119
7.2.1 Objective... 119
7.2.2 Research Questions ... 119
7.2.3 Experimental Environment.. 119
7.2.4 Experiments and Analysis of Results... 120
7.3 Case Study 2: Ontology Representation and Inference............................... 127
7.3.1 Objective... 127
7.3.2 Research Questions ... 127
7.3.3 Experimental Environment.. 127
7.3.4 Experiments and Analysis of Results... 129
7.4 Case Study 3: Context Awareness Subsystem.. 134
7.4.1 Objective... 134
7.4.2 Research Questions ... 134
7.4.3 Experimental Environment.. 134
7.4.4 Experiments and Analysis of Results... 135

8 CONCLUSION AND FUTURE WORK..139

REFERENCES ...144

GLOSSARY..157

APPENDIX A CONTINUUM: UMA INFRA-ESTRUTURA DE SOFTWARE
SENSÍVEL AO CONTEXTO E BASEADA EM SERVIÇOS PARA A
COMPUTAÇÃO UBÍQUA...162

APPENDIX B RELATED WORK ON CHALLENGES OF UBIQUITOUS
COMPUTING..166

APPENDIX C COMPETENCY QUESTIONS FOR CONTINUUM ONTOLOGY
..168

APPENDIX D LIST OF IMPORTANT TERMS IN CONTINUUM ONTOLOGY
AND THEIR MEANING ..169

LIST OF ABREVIATTIONS AND ACRONYMS

AJAX Asynchronous Java Script + XML

ANSI American National Standards Institute

AOP Aspect Oriented Programming

API Application Program Interface

APPELO Ambiente de Programação Paralela em Lógica (Parallel Logical
Programming Environment)

ATM Automatic Teller Machine

AVU Ambiente Virtual do Usuário (Virtual User Environment)

CAC CoApp Configuration

CAI CoApp Implementation

CAR CoApp Resources

CD Compact Disc

CDC Connected Device Configuration

CLDC Connected Limited Device Configuration

CLOPn Sistemas Escaláveis de Alto Desempenho para Programação Lógica

com Restrições (Hi-performance Scalable Systems for Constraint
Logical Programming)

CML Context Modeling Language

CMU Carnegie Mellon University

CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico
(National Counsel of Technological and Scientific Development)

CoApp Continuum Application

CoBrA Context Broker Architecture

CoDSA Continuum Distributed Service Architecture

COM Component Object Model

CORBA Common Object Request Broker Architecture

CSS Cascading Style Sheets

DBMS Database Management System

DFS Distributed File System

DHCP Dynamic Host Configuration Protocol

DL Description Logic

DNS Domain Name System

DOM Document Object Model

DSLP Distributed Scheduler for Logic Programming

DUMMBO Dynamic Ubiquitous Mobile Meeting Board

EPA Espaço Pervasivo de Arquivos (Pervasive File Space)

E-R Entity-Relationship

EXEHDA Execution Environment for Highly Distributed Applications

FOAF Friend of a Friend

GaiaOS Gaia Operating System

GeneAl Grid Approach for Genetic Sequence Alignment

GPS Global Positioning System

GRANLOG Granularity Analyzer for Logic Programming

GUI Graphical User Interface

HCI Human-computer interaction

Holo Holoparadigm

HP Hewlett-Packard

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

I/O Input/Output

IBM International Business Machines

ID Identification

IDE Integrated Development Environment

IEC International Electrotechnical Commission

II Instituto de Informática

INCITS International Committee for Information Technology Standards

IoS Internet of Services

IP Internet Protocol

ISAM Infra-estrutura de Suporte às Aplicações Móveis (Mobile Applications
Support Infrastructure)

ISAMpe ISAM Pervasive Environment

ISO International Organization for Standardization

Java ME Java Micro Edition

Java SE Java Standard Edition

JDBC Java Database Connectivity

JVM Java Virtual Machine

KB Knowledge Base

LIME Linda in Mobile Environment

MultiS Multi-Sensor Context Server

MVC Model-View-Controller

NSF National Science Foundation

OOP Object Oriented Programming

Opera Or Parallel Prolog

ORB Object Request Broker

ORM Object-Role Modeling

OS Operating System

OWL Ontology Web Language

P2P Peer-to-peer

PACE Pervasive Autonomic Context-aware Environments

PC Personal Computer

PDA Personal Digital Assistant

PerDiS Pervasive Discovery Service

PHD Portable Help Desk

PloSys Parallel Logic System

QoS Quality of Service

RDB Relational Database

RDF Resource Description Framework

RFID Radio Frequency Identification Badge

RMI Remote Method Invocation

RPC Remote Procedure Call

RuleML Rule Markup Language

SaaS Software as a Service

SDK Software Development Kit

SMTP Simple Mail Transfer Protocol

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SOC Service-Oriented Computing

SOCAM Service-Oriented Context-Aware Middleware

SOUPA Standard Ontology for Ubiquitous and Pervasive Applications

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SWRL Semantic Web Rule Language

TCP Transfer Control Protocol

TTL Time To Live

Ubicomp Ubiquitous Computing

UCE Ubiquitous Computing Environment

UCPel Universidade Católica de Pelotas (Catholic University of Pelotas)

UDP User Datagram Protocol

UFRGS Universidade Federal do Rio Grande do Sul (Federal University of Rio
Grande do Sul)

UFRJ Universidade Federal do Rio de Janeiro (Federal University of Rio de
Janeiro)

UI User Interface

UIUC University of Illinois at Urbana-Champaign

UML Unified Modeling Language

UNISINOS Universidade do Vale do Rio dos Sinos (University of Valley of Rio
dos Sinos)

URI Uniform Resource Identifier

URL Uniform Resource Locator

VM Virtual Machine

W3C World Wide Web Consortium

Web World Wide Web

Wi-Fi Wireless Fidelity

WSDL Web Service Description Language

XHTML Extensible Hypertext Markup Language

XML Extensible Markup Language

LIST OF FIGURES

Figure 1.1: Continuum logo – the Möbius strip ... 23
Figure 1.2: Text structure and organization... 24
Figure 3.1: Comprehensive architectural model for ubiquitous computing 37
Figure 3.2: Aura architecture (GARLAN et al., 2002)... 49
Figure 3.3: Gaia architecture (RÓMAN et al., 2002) ... 50
Figure 3.4: One.World architecture (GRIMM et al., 2004).. 52
Figure 3.5: ISAM architecture (YAMIN, 2004) .. 53
Figure 4.1: Continuum development process... 56
Figure 4.2: Continuum software architecture... 57
Figure 4.3: A sample CoDimension .. 61
Figure 4.4: A Continuum dimension with some gadgets.. 62
Figure 4.5: Continuum Distributed Service Architecture... 66
Figure 4.6: WSDL conceptual model (DHESIASEELAN, 2007) 68
Figure 4.7: Generic UML representation of a WSDL interface.................................... 69
Figure 4.8: Continuum subsystems ... 69
Figure 4.9: Distributed Execution subsystem .. 69
Figure 4.10: Executor service interface ... 70
Figure 4.11: CIB service interface... 71
Figure 4.12: Communicator service interface.. 72
Figure 4.13: CoSpace service interface ... 72
Figure 4.14: Service Manager interface... 73
Figure 4.15: Security service interface .. 74
Figure 4.16: Dependability service interface ... 76
Figure 4.17: Adaptation Management subsystem .. 77
Figure 4.18: Adaptation Control service interface. .. 77
Figure 4.19: Cyber Foraging service interface... 78
Figure 4.20: Actuator service interface.. 79
Figure 4.21: User Interaction subsystem ... 79
Figure 4.22: Persistence service interface.. 80
Figure 4.23: Trust Manager service interface .. 81
Figure 4.24: Interface Selector service .. 81
Figure 4.25: Ubiquitous Guru service interface ... 82
Figure 4.26: Execution Profiler organization... 87
Figure 5.1: Class hierarchy of Continuum ontology ... 93
Figure 5.2: Continuum ontology with relationships... 94
Figure 5.3: Sample of a context search.. 96
Figure 5.4: Activity diagram of context change... 97

Figure 5.5: Activity diagram of context subscription... 98
Figure 5.6: Activity diagram of context search.. 98
Figure 5.7: Activity diagram of context probe... 99
Figure 5.8: Context Awareness subsystem .. 100
Figure 5.9: Monitor service interface .. 100
Figure 5.10: Discovery service interface ... 101
Figure 5.11: Processor service interface .. 103
Figure 5.12: Aggregator service interface.. 104
Figure 5.13: Contextdb service interface... 105
Figure 5.14: Context Action service interface ... 105
Figure 6.1: Multi-tiered model for context-aware systems... 107
Figure 7.1: CoApp conceptual vision .. 121
Figure 7.2: Calendar CoApp description ... 122
Figure 7.3: Deploying applications in Continuum ... 124
Figure 7.4: Applications becoming services in Continuum.. 124
Figure 7.5: Service replication in Continuum.. 125
Figure 7.6: Service migration in Continuum.. 126
Figure 7.7: Execution of an inference machine.. 128
Figure 7.8: CoBase class modeling in Protégé... 129
Figure 7.9: Sample scenario for the second experiment... 130
Figure 7.10: Instance modeling in Protégé .. 130
Figure 7.11: An SWRL rule to provide services to nodes .. 131
Figure 7.12: A SPARQL query to find available services.. 131
Figure 7.13: An SWRL rule to aggregate context information................................... 135
Figure 7.14: Database connection using Jena .. 137
Figure 7.15: Database query using ARQ... 137
Figure 7.16: SPARQL query with mutiple data sources... 138
Figure 8.1: Relationships between comprehensive architecture and Continuum 140
Figure 8.2: Relationships between multi-tiered context-aware model and Continuum140

LIST OF TABLES

Table 2.1: Ubiquitous computing challenges... 31
Table 4.1: Continuum basic abstractions... 63
Table 4.2: Continuum Relationships ... 63
Table 4.3: Messages exchanged in CoDSA... 67
Table 4.4: Proposed features for Continuum framework.. 85
Table 6.1: Context-aware systems comparison.. 117

ABSTRACT

The present work is a proposal of a context-aware software infrastructure for
ubiquitous computing (ubicomp) named Continuum. The ubicomp area, also called
pervasive computing, presupposes a strong integration with the real world, with focus
on the user and on keeping high transparency. For the development of applications in
this scenario, we need an adequate software infrastructure. The infrastructure designed
in this work is based on service-oriented architecture (SOA), making use of framework
and middleware, and employing a redefinition of follow-me semantics. In this redefined
vision, users can go anywhere carrying the data and application they want, which they
can use in a seamlessly integrated fashion with the real world. The specific focus of our
work is context awareness: the perception of characteristics related to users and
surroundings. We consider the resources available in the environment and keep a
history of context data. Furthermore, we propose the representation of context to
promote reasoning and knowledge sharing, using ontology. In this way, context is
represented in a considerably expressive, formal approach, different from many
solutions that exist today, which still use ad hoc representations models. Our work is
then at the intersection of these three main areas: software infrastructures for ubicomp,
context awareness, and ontologies. In the development of this thesis, we also survey the
field of ubiquitous computing, suggesting a general architectural model to deal with its
fundamental challenges. Based on the established requirements for this model, we
propose a set of services for Continuum. The services are designed considering the
previous works developed by our research group, namely ISAM (Infra-estrutura de

Suporte às Aplicações Móveis – Mobile Applications Support Infrastructure), and
particularly the middleware EXEHDA (Execution Environment for Highly Distributed
Applications). We further extend these projects, by adding aspects to them that had not
been considered at the time of their development. Particularly, we improve context
awareness support, proposing an ontology for the formalization of context information.
We have conducted some analysis, using case study methodology, to evaluate the main
propositions of our work. Based on these assessments, we present lessons learned and
draw the conclusion of our work. As a result, Continuum is a software infrastructure
that addresses many aspects of ubiquitous computing, seamlessly integrating many
different challenges.

Keywords: context awareness, ubiquitous computing, pervasive computing, software
infrastructure, middleware, ontology.

Continuum: Uma Infra-estrutura de Software Sensível ao Contexto e Baseada em
Serviços para a Computação Ubíqua

RESUMO

Este trabalho apresenta uma proposta de infra-estrutura de software sensível ao
contexto para a computação ubíqua (ubicomp) denominada Continuum. A área de
ubicomp, também chamada de computação pervasiva, pressupõe uma forte integração
com o mundo real, com foco no usuário e na manutenção de alta transparência. Para o
desenvolvimento de aplicativos nesse cenário, é necessária uma infra-estrutura de
software adequada. A infra-estrutura projetada é baseada no padrão da arquitetura
orientada a serviços (service-oriented architecture ou SOA), fazendo uso de framework
e middleware, e empregando uma redefinição da semântica siga-me. Nessa visão
redefinida, os usuários podem ir para qualquer lugar carregando os dados e os
aplicativos que desejam, os quais podem ser usados de forma imperceptível e integrada
com o mundo real (seamless integration). O foco particular desse trabalho é
sensibilidade ao contexto: a percepção de características relacionadas aos usuários e ao
entorno. No trabalho são considerados os recursos disponíveis no ambiente e é mantida
a história dos dados de contexto. Além disso, é proposta a representação do contexto
para promover raciocínio e compartilhamento de conhecimento, empregando uma
ontologia. Dessa forma, contexto é representado de uma maneira formal e bastante
expressiva, diferente de muitas soluções existentes hoje em dia que ainda usam modelos
de representação ad hoc. Esta tese está então na interseção destas três áreas principais:
infra-estrutura de software para ubicomp, sensibilidade ao contexto e ontologias. No
desenvolvimento desta tese, também examina-se o campo da computação ubíqua, e
sugere-se um modelo de arquitetura geral que enfrente esses desafios fundamentais.
Baseado nos requisitos estabelecidos para esse modelo, propõe-se um conjunto de
serviços para o Continuum. Os serviços são projetados considerando o trabalho
previamente desenvolvido pelo nosso grupo de pesquisa, mais especificamente o
projeto ISAM, e particularmente o middleware EXEHDA. A proposta estende esses
projetos, adicionando aspectos que não haviam sido considerados no momento do seu
desenvolvimento. Particularmente, o suporte a sensibilidade de contexto é melhorado
com a proposta de uma ontologia para a formalização da informação de contexto.
Algumas análises, usando a metodologia de estudo de caso, foram conduzidas para
apreciar as principais proposições da tese. Baseado nessas avaliações, foram
apresentadas algumas lições aprendidas e traçada a conclusão do trabalho. Como
resultado, Continuum é uma infra-estrutura de software que endereça muitos aspectos
da computação ubíqua, integrando imperceptivelmente diferentes desafios.

Palavras-Chave: sensibilidade ao contexto, computação ubíqua, computação
pervasiva, infra-estrutura de software, middleware, ontologia.

1 INTRODUCTION

“The most profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it” (WEISER,
1991). Mark Weiser’s statement from his classic and visionary article about
computation for the 21st Century summarizes what is expected from pervasive or
ubiquitous computing (ubicomp): user access to the computational environment,
everywhere and at all times, by means of any device. The difficulty lies in how to
develop applications that will continually adapt to the environment and remain working,
as people move or change devices (GRIMM et al., 2004).

The more traditional mobility goal of providing computation any time and anywhere
is considered a reactive approach to information access. However, it represents a
proactive step toward ubicomp. This is what we mean by the expression all the time,

everywhere (SAHA and MUKHERJEE, 2003). For this purpose, we need a new class of
software. The development of this field, however, is still hindered by the limited
number of frameworks and tools available (ROMÁN et al., 2002).

Ubiquitous applications need middleware to interface between many different
devices and end-user applications (SAHA and MUKHERJEE, 2003). The aim is to hide
environment complexity, by isolating applications from the explicit management of
protocols, distributed memory access, data replication, communication faults, etc.
Middleware can also solve heterogeneity problems related to architectures, operating
systems, network technologies, and even programming languages, promoting their
interoperation. On the other hand, a framework is an environment, composed of APIs,
user interfaces, and tools, which simplifies software development and management in a
specific domain (BERNSTEIN, 1996). We can use frameworks to develop middleware
and to build software that runs on that middleware.

This middleware must allow users to access their computational environment
(applications and data) at any time and place. One possible solution is to apply follow-

me semantics (AUGUSTIN et al., 2004; YAMIN et al., 2003). The idea behind this
concept is that applications and data go along with users, providing a virtual
environment and adapting to the current context. This adaptation is fundamental to
ubiquitous computing vision, and involves the perception of the context (context

awareness) and the proper adjustment of the system based on this perceived information
(context management).

In this perspective, the defended thesis is that the use of a software infrastructure

specifically aimed at ubicomp can reduce the distance between Weiser’s vision and the

current distributed computing scenario. To accomplish this goal, our work focuses on

17

the proposal of a service-based software infrastructure for ubiquitous computing,
employing framework and middleware.

The main focus of our work is on context awareness, so that the environment
encompasses the characteristics that the users need, enhancing the real world. To
achieve this goal, we propose a redefinition of the follow-me semantics concept: users
can go anywhere carrying the data and application they want, which they can use in a
seamlessly integrated fashion with the real world. This notion differs from the original
one in two aspects: first, there is no idea of virtual user environment but rather the idea
of using the actual environment. Second, the user’s session is not sustained for all
applications and data; instead, we propose that users choose which applications and data
they want to carry with them. We believe that with this new approach, we break with
the idea of replicating the user desktop session in every scenario and increase the
applicability of the solution to more general situations.

Our proposal differs from other works, such as Aura (GARLAN et al., 2002;
SOUSA et al., 2006), Gaia (RÓMAN and CAMPBELL, 2000; RÓMAN et al., 2002),
and One.World (GRIMM et al., 2004), to the extent that we have a more general focus
on enhancing the real world. Aura concentrates on users, and specifically on their
attention. Gaia adopts an opposite view, and emphasizes smart spaces, i.e., particular
physical environments with embedded services and devices. One.World, in its turn,
aims mainly at providing a set of libraries and services for building applications.

In this thesis, we propose a software infrastructure, not specifically aimed at the user
nor at specific environments, but rather at a global view, unhindered by a local or
personal scope. Differently from One.World, we investigate and propose innovative
solutions to deal with context. Also, we have distinctive assumptions related to
infrastructure, software development model, and to the set of services that should be
available to the user.

The work presented here makes use of ISAM (Infra-estrutura de Suporte às

Aplicações Móveis – Mobile Applications Support Infrastructure) (AUGUSTIN et al.,
2004), especially of EXEHDA (Execution Environment for Highly Distributed
Applications) middleware (YAMIN, 2004). We propose an evolution of the ISAM
project, modifying EXEHDA middleware to better support context awareness issues
involved. EXEHDA focus is on execution support and the provision of an infrastructure
for the development of pervasive applications. Perhaps the main changes are
consequence of the difference in the execution model by the redefinition of follow-me
semantics.

This chapter establishes the background of the thesis, presenting motivation, goal,
and description of the research problem. At the end, the organization of the text as a
whole is presented.

1.1 Background and History

Various projects in which we have been involved since the past decade have had an
influence on the contents of this thesis. In this section, the main projects are highlighted
and their historical evolution explained in chronological order.

18

The OPERA project was started in the Laboratory of Génie Informatique in
Grenoble, at University Joseph Fourier, and its development extended to the Informatics
Institute (II) at UFRGS in the late 1980s. OPERA is a parallel Prolog implementation
intended to increase the speed of logic programming execution towards the OR
parallelism exploitation. Besides, another OPERA aim is to offer an alternative to
simplify the programming of parallel architectures.

At the beginning of the 90’s, some researchers of our group at UFRGS were
involved in the development of a distributed operating system to foster heterogeneity
among different computers, named HetNOS (BARCELLOS et al., 1994). The aim of
this project is to simplify distributed programming, by providing a layer over native
operating systems. With the development of HetNOS, our research team gained
experience on middleware development and, more specifically, on addressing
heterogeneity issues in distributed systems.

At the same time, OPERA gave rise to many other projects: exploitation of AND
parallelism has been added (YAMIN, 1994; WERNER, 1994); a new version of
OPERA targeting exploitation of OR parallelism in shared memory architectures has
also been built (named PloSys – Parallel Logic System) (MOREL et al., 1996); and an
environment for the automatic analysis of granularity in logic programming,
GRANLOG – Granularity Analyzer for Logic Programming (BARBOSA, 1996), has
been developed.

Among OPERA’s spin-offs we should highlight DSLP – Distributed Scheduler for
Logic Programming (COSTA, 1998), with which the author of this thesis has been
directly involved. DSLP is a model of hierarchical scheduling for the exploitation of
AND/OR parallelism in logic programming (COSTA and GEYER, 1998). This model
uses granularity information from GRANLOG.

Later, OPERA activities were encompassed by a multi-institutional project named
APPELO (Ambiente de Programação Paralela em Lógica - Parallel Logical
Programming Environment) (GEYER et al., 1999). APPELO has involved researchers
of various Universities: UFRGS, UFRJ, UCPel, University of Porto (Portugal), and
New Mexico State University (NM, USA).

With the end of APPELO funding, researchers gave continuity to the project through
CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico - National
Counsel of Technological and Scientific Development) and NSF (National Science
Foundation / USA) support. The new project was named CLoPn (Sistemas Escaláveis

de Alto Desempenho para Programação Lógica com Restrições - Hi-performance
Scalable Systems for Constraint Logical Programming) (COSTA et al., 1999). The aim
of CLoPn was to develop a program environment that provided a high level declarative
language to the user, towards parallelism exploitation and programmable hardware,
promoting cooperation between Brazilian research groups and the New Mexico State
University research group partner.

From this vast experience in the exploitation of logical programming parallelism, we
started a new research investigation related to multi-paradigm models. This
investigation gave birth to Holoparadigm (BARBOSA, 2002), a distributed
programming model. We found that, due to its inherent characteristics, Holoparadigm
was particularly suitable for use in mobile environments (YAMIN et al., 2003) and Grid
computing-based systems (BARBOSA et al., 2004; BARBOSA et al., 2005).

19

In order to support the distributed execution of such mobile applications with
adaptive behavior, and considering pervasive computing, we conceived Project ISAM
(Infra-estrutura de Suporte às Aplicações Móveis - Mobile Applications Support
Infrastructure). The programming model used in ISAM was Holoparadigm.

In the scope of ISAM, ISAMadapt (AUGUSTIN, 2004) specifies the abstractions to
express, in development time, context adaptation in mobile and distributed applications
targeting pervasive computing. Among others, ISAMadapt defines abstractions to
adapters in applications entities; adaptation policies, which guide decision-making in
the middleware; and also, context elements, which direct adaptive mechanisms of the
execution environment.

The execution of applications in ISAM is managed by a middleware named
EXEHDA (YAMIN, 2004). EXEHDA proposes an architecture of mechanisms for the
coordination, communication, and adaptation, targeting application execution in
pervasive computing. The middleware provides a reactive and active behavior in the
management of application entities, comprising scalability and cooperating support,
based on definitions made in design- and execution-time.

EXEHDA generated various subprojects developed at UFRGS. Among the main
projects, we can highlight: PRIMUS – objects execution and distribution support in
pervasive computing (SILVA, 2003); DIMI – dissemination strategy optimization of
information originated from resource monitoring (MORAES, 2005); PerDiS – resource
discovery service in pervasive computing (SCHAEFFER, 2005); MultiS – a multi-
sensor context server for ubiquitous computing (FEHLBERG, 2007); EPA – use of
application-aware adaptation in pervasive file access (FRAINER, 2008). The present
work describes a more evolved construct, based on ISAM and EXEHDA, of a software
infrastructure for ubiquitous computing.

1.2 The Problem

The complexity of software development increases according to the functionalities
we want to provide to the user. With the advent of ubiquitous computing, we need
software that is able to run using innumerous and assorted network-connected devices,
seamlessly integrate with the real world, to keep the focus on the users, and to disappear
into the environment, as if it was invisible. To these features we should also add the
characteristics that a particular software should provide. Imagine trying to solve a real
world problem in a specific domain, and also having to include all the features of
ubicomp. To draw a parallel in the history of Computing Science, we can compare it to
Lotus 1-2-3 in the beginning of the PC era. The spreadsheet was completely written in
assembly language, which involved the development of various complex routines, such
as floating-pointing and fixed-pointing math (KAPOR, 2007). At that time, assembly
was chosen because the requirements were small memory usage and the fastest speed
possible (KAPOR, 2007). This choice introduced an overhead in software development,
since many libraries and routines had to be implemented.

We are nowadays living the beginning of the Ubicomp era. Although we have had a
huge evolution in languages and tools for software development since the advent of the
PC, when we focus on the ubiquitous computing requirements, we are at the first steps.
We need middleware and framework to smooth the progress of software

20

implementation in this scenario. It is still difficult to find a software infrastructure that
has all the necessary characteristics of ubiquitous computing; besides, the tendency
today is providing middleware or frameworks for specific issues. In spite of this
tendency, we think that a general infrastructure model for software may help to develop
pervasive middleware or frameworks. Our thesis proposes that, in order to fulfill
Weiser’s vision, future ubiquitous infrastructures should seamlessly integrate many
different challenges.

An additional problem in the ubicomp scenario is how the infrastructure can let
users access their data and applications wherever they go and however they move. The
promise of “at all times, everywhere” that came with the idea of ubicomp is difficult to
be obtained. Another related problem is how to use these data and applications in a
seamlessly integrated fashion with the real world. These issues involve the addressing
of mobility, heterogeneity, and scalability among other concerns.

Besides these general problems, we face specific questions related to context
awareness. Regardless of the recent attention given to this area, context-aware software
is still running on labs, rather than the real world every-day situation (HENRICKSEN
and INDULSKA, 2006). The main reasons for that, according to Henricksen and
Indulska (2006), are the overhead imposed by application development, social barriers
related to privacy and usability, and an unclear understanding of the context-aware
possibilities.

Particularly, systems today tend to use ad hoc data structures for representing
context and specific communication mechanisms; there is no standardization format and
protocols, which leads to weak interoperation (BALDAUF et al., 2007). Furthermore,
many projects employ informal models to represent context, making programming more
cumbersome, and also affecting the providing of reasoning and knowledge sharing
among systems (HASELOFF, 2005).

Some of the major drawbacks in context-aware systems available today are the lack
of security and privacy consideration and the absence of a discovery mechanism to find
sensors available in the surroundings (BALDAUF et al., 2007). In the specific case of
ISAM, besides these shortcomings, there is no storing of historical context data, which
limits the establishment of trends and the prediction of future context values. Also,
ISAM does not have a policy for placement of contextual data.

To further illustrate the problems we are trying to address, we present in the next
subsection some scenarios in which the lack of software infrastructure for ubicomp, and
proper addressing of context-aware issues, greatly hinders the development of
applications. Also, we try to show conditions in which our proposal could bring
benefits.

1.2.1 Sample Scenarios

Let us consider a University Campus. A Campus is an attractive environment to the
development of ubiquitous applications due to people familiarity to it and because of its
easy access (GARLAN et al., 2002). Suppose that in this Campus we have a ubiquitous
application named e-Campus (Electronic Context-Aware Mobile Pervasive Ubiquitous
System). This application could offer services to the Campus community classified in
three areas: academic, administrative, and logistic. Services should be available all over

21

the campus area. They could be accessed by various different types of devices, spread
around the campus, such as cell phones, digital displays, desktops, notebooks, PDAs,
etc. A person physically present at the University could benefit from a variety of
services provided by e-Campus:

• Schedule Book: it comprises an administrative service. Its main function is to
provide the management of the person’s agenda everywhere. It also reminds
the person of appointments and anticipates actions needed in the next
appointments, for example: confirming participation in events, preparing the
environment for meetings, informing the location and means of access,
preparing material that will be used in the next appointment, etc.;

• UbiCourse: an academic service that keeps the digital environment related to
a specific course. It allows a course participant, either a professor or a
student, to access all the digital information related to it (not only the current
edition, but also all the past editions). When a student is in class time,
verifiable by the Schedule Book, and at the classroom, UbiCourse shows in
every device, an interface to access the course. For instance, the
presentations that will be used on that day, the past presentations and
exercises which the teacher chooses to disclose, the list of pending activities,
the particular student notes, the public annotations, the calendar of the
course, the data which classmates choose to disclose, the history of the
course over the time, the classmates present in that specific class, etc. In the
class we could have a digital whiteboard, and other devices on the desks and
spread around the room, which facilitate the interaction with the service;

• Digital Transport: a logistic service related to mobility and transport. It
shows the location of rooms and buildings, presents the time someone needs
to go from one place to another, finds people and events, suggests routes,
indicates free parking space in parking lots and special parking spots,
features bus timetables and delays, etc.;

• Service Finder: a logistic feature to locate services available in a specific
place. The system should be proactive and suggest services according to
people’s needs, location, and preferences. Example of services: printing,
visualization, ATM, toilets, etc.

The ideas listed here will be analyzed in order to select case studies in the process of
thesis development. It is not our aim to exhaust, in this subsection, all the possible
services and applications that could be available in a campus; nor is it to present all the
services that could be developed using concepts of the current work.

1.3 Thesis Goals

The general goal of this thesis is to propose a service-based software infrastructure
that facilitates the development of ubiquitous computing applications. In the process of
proposing this software infrastructure, we make use of ISAM and EXEHDA.

The specific focus of this thesis is context awareness. Our major concern is to deal
with context awareness issues in the design of a software infrastructure for ubicomp.
Differently from ISAM, the objective here is not to keep the users’ virtual environment,

22

but rather to enhance the real world making use of software architecture, encompassing
the characteristics that the user needs.

To attain these goals, we need to address some specific concerns:

1) To survey the field of ubiquitous computing, revising the main concepts and
the state of the art;

2) To define a general architectural model that supports ubiquitous computing’s
fundamental challenges, establishing the base for the proposition of our
infrastructure;

3) To create a set of services for the development of ubiquitous applications.
We propose the use of service-oriented architecture (SOA) and web services
for building context-aware services, contributing to the increase of
interoperability and standardization;

4) To use a representation for context to promote reasoning and knowledge
sharing. We employ ontology instead of the markup scheme model originally
used by EXEHDA, giving meaning to context;

5) To make use of the resources available in each and every environment,
obtained dynamically. We propose the utilization of resource discovery in
the process of finding sensors;

6) To keep a history of context data for each entity in the environment. We
propose means of storing context data, suggesting a database of historical
context with querying capabilities. We also deal with the distribution and
placement of context information;

7) To develop a prototype of the architecture for service support, employing the
use of web services;

8) To build an experimental evaluation, based on case studies to describe and
explain the proposed ideas in the context-aware subsystem.

As a result, we propose an evolution of ISAM, and consequently of EXEHDA
middleware, considering these context-aware aspects. The original proposal (YAMIN,
2004) focuses only on partial context awareness: obtaining raw information, distributing
it, and converting it into an abstract context element guided by an XML (eXtensible
Markup Language) description. This work substantially improves the original project
with many features not predicted at that time.

Due to the time, space, and scope limitations for the development of this work, it is
not our goal to tackle certain issues:

• To detail all the services and features that could be available in the
infrastructure; rather, we give a view of which services could be available
and a general set of primitives;

• To specify the Continuum framework. We focus mainly in the middleware,
although the proposed comprehensive architecture presents issues that
should be covered by this framework;

• To fully implement the Continuum software infrastructure;

23

¥ To validate and test all the propositions presented here. Instead, we intend to
provide a case study to demonstrate the main characteristics designed.

The thesis shows throughout its chapters these ideas and developments.

1.4 Project Name

We chose Continuum as the name of our project. The New Oxford American
Dictionary’s definition of the term is “a continuous sequence in which adjacent
elements are not perceptibly different from each other, although the extremes are quite
distinct.” We settled on this name, because we wanted to represent the idea that from
the point-of-view of individuals, the software infrastructure should be almost
imperceptible in their daily activities, even if its use brings about some real world
enhancements and changes in the environment, aiming to create a continuum between
reality and its improvements.

We chose the Möbius strip (Figure 1.1) as the logo of our project because it
represents a continuous curve.

Figure 1.1: Continuum logo – the Möbius strip

1.5 Thesis Outline

The text of the thesis is structured around two main parts. In the first part, located
after the introductory chapters, we define the basis around which the work evolves. The
first part is a horizontal thread, in which the software infrastructure is defined and
detailed, and is composed of chapters 3 and 4. We consider this as a horizontal thread,
because it deals with the general goal of the thesis, and establishes the support for the
development of the work’s focal point.

Built over this foundation, we present then the second part, where the focus is on
context awareness. This comprises the vertical thread, in which the context-aware
architecture of Continuum is revealed and assessed, and is developed in chapters 5 and
6. We consider this as a vertical thread, because it deals with the specific focus of our
thesis, an in-depth study. After this second part, we go on to the prototype
implementation and analysis of results, followed by the conclusion of the work. Figure
1.2 summarizes this structure, presenting its relation with the organization of the text.

The text is organized as follows. Chapter 2 is an overview of the ubiquitous
computing field and of the motivations behind our present work. It presents the
fundamental concepts of ubiquitous computing, and then its evolution. Essential areas
to the field are emphasized and issues that are unique or still open are discussed.

24

In chapter 3 we propose a comprehensive architectural model for ubiquitous
computing. This comprises the main requirements for the development of a software
infrastructure for ubiquitous computing. It starts with the discussion of limitations in the
use of traditional programming models, and then goes on to the proposition of the
architectural model to address these limitations. It is also in this chapter that we
investigate work related to ubiquitous software infrastructure.

Figure 1.2: Text structure and organization

Chapter 4 describes Continuum. It proposes a software infrastructure for ubiquitous
computing, based on the requirements discussed in the previous chapter. We present
the physical organization of devices and also all the layers and services of the proposed
infrastructure.

The design of context awareness in Continuum is detailed in chapter 5. This
includes the description of the context model we employ, as well as its representation
and means of utilization. The ontology proposed is described, along with the
methodology employed to obtain it. We also present the subsystem and services related
to context awareness.

In chapter 6 we reflect on the experience of designing context awareness in this
infrastructure and discuss some points that were only partially addressed. The design

25

principles are described, as well as the main projects related to context awareness. Also,
we discuss points in common and differences between our experience and the state of
the art in context awareness.

Chapter 7 presents the assessment of Continuum along with the analysis of results.
We describe the method used for validation, i.e. case study, and present the
experimental evaluation of the main propositions in the project. Three broad case
studies are conducted. The first one assesses the proposition of the distributed service
architecture. In the second case study, we analyze the formal representation of context
and its ability to infer and represent context information. The third case study, on the
other hand, evaluates the possibilities in terms of available tools and standards for the
implementation of the context awareness subsystem.

Finally in chapter 8, we present the conclusion of this thesis, summarizing the main
contributions, and suggesting future work.

2 AN APPRAISAL OF UBIQUITOUS COMPUTING

In this chapter we briefly review essential concepts of the area, its evolution, and
propose challenges that must be addressed in the field.1 We should begin by defining
ubiquitous computing (also called ubicomp). Mark Weiser created this term, so he is
considered one of the area’s fathers. He presents computer ubiquity as the idea of
integrating computers seamlessly, invisibly enhancing the real world. Weiser (1991)
formulates a “new way of thinking about computers in the world, one that takes into
account the natural human environment and allows the computers themselves to vanish
into the background.” Computers will vanish as a consequence of human psychology:
when people use things without consciously thinking about them, they focus beyond.
This is a phenomenon defined by some philosophers and psychologists (WEISER,
1991): people cease to be aware of something when they use it sufficiently well and
frequently. Philosopher Heidegger calls this phenomenon ready-to-hand

2 and Edmund
Husserl calls it the horizon.3

Heidegger makes a phenomenological analysis of the way people deal with the
world. According to him, our first behavior toward entities such as tools, devices, and
systems within the world is one of use. These entities, viewed from their aspect of use,
are called ready-to-hand. In “Being and Time”4, Heidegger (1996) affirms that:

The peculiarity of what is proximally ready-to-hand is that, in its readiness-
to-hand, it must, as it were, withdraw in order to be ready-to-hand quite
authentically. That with which our everyday dealings proximally dwell is not
the tools themselves. On the contrary, that with which we concern ourselves
primarily is the work.

Edmund Husserl was the first to propose the horizon concept (KEEN, 1975).

Husserl was a philosopher, one of the founders of phenomenology, and a
mathematician. The concept refers to human experience as a background that turns

1 To further facilitate the understanding of the area, we added at the end of this volume
a glossary with the definition of the main terms used in ubiquitous computing.
2 Vorhandenheit in the original.
3 Horizont in the original.
4 The book was first published in 1927 with the title Sein und Zeit. For this text the
translation to English published in 1996 was used.

27

experiences possible. Horizon points to a network of known meanings focusing not
much on physical things, but on an ordered pattern which we formulate implicitly in our
act of being (KEEN, 1975).

To achieve the physical integration of computers into the world, as a background,
we must apply some conceptual changes. In this perspective, Weiser also defines
embodied virtuality in opposition to virtual reality, as computers cannot be limited to
their devices and software installed. Moreover, it is inadequate to consider the Internet
or distributed file systems access as an example of seamless integration. Weiser points
out that the power of ubiquitous computing does not stem from the capacity of a
particular device, but rather from the interaction of all devices.

Besides computer interaction, scale and location are two important topics
highlighted by Weiser. There will be many computers per room, in different sizes, with
different user’s interfaces, and suitable for specific jobs. Computers must also know
where they are and use this information to adapt to the environment. Adaptation is then
currently one of the crucial concerns in ubicomp.

Analyzing Weiser’s vision, Saha and Mukherjee (2003) state that, in spite of
significant hardware developments, computers are still machines that run programs in
virtual environments and not yet a “portal into an application-data space.” Want et al.
(2002) agree that many hardware components are now ready for ubiquitous computing,
as a consequence of many improvements since Weiser’s seminal article, including
wireless networks, high-performance low-powered processors, enhancements in
displays, high-capacity, and low-powered storage devices.

To achieve ubiquitous computing, we need advances in physical integration and in
spontaneous interoperation as defined by Kindberg and Fox (2002). Integration between
devices and the physical world is crucial. There should be system boundaries and
specifications for the scope of the environment, but these should not be a constraint to
interoperation. As components move among devices and environments, they must
change both identity and functionality in order to interoperate.

We must understand and support everyday practices of people to reach Weiser’s
vision, offering different forms of interactive experiences through heterogeneous
devices connected via integrated network components (ABOWD et al., 2000).

2.1 Defining Pervasive Computing

The origin of the term pervasive computing is frequently associated with IBM. This

is perhaps because it was used as the main subject of a whole issue of the IBM System
Journal (Vol. 38, No. 4, 1999). This issue defines pervasive computing as a change in
the way we view computers and their use. Computers are everywhere and are used not
as distinct machines but rather as “sophisticated, computerized, networked machines”
(HOFFNAGLE, 1999), i.e. parts of larger devices.

A group of IBM researchers (BANAVAR et al., 2000) defined three characteristics
associated to pervasive computing:

28

First, it concerns the way people view mobile computing devices, and use
them within their environments to perform tasks. Second, it concerns the way
applications are created and deployed to enable such tasks to be performed.
Third, it concerns the environment and how it enhanced by the emergence
and ubiquity of new information and functionality.

As a consequence of these characteristics, authors maintain that a new application
model is needed in pervasive computing. Devices must be a portal into application and
data space; applications are means for performing tasks; and the environment is the
physical world with the user’s information (BANAVAR et al., 2000).

Grimm et al. (2004) affirms that pervasive computing suggests a “computing
infrastructure that seamlessly and ubiquitously aids users in accomplishing their tasks
and that renders the actual computing devices and technology largely invisible.” This
vision creates the need for smart devices in the real world. Devices must coordinate
with each other, in order to accomplish user’s tasks. The difficulty lies in designing,
building, and deploying applications in these circumstances (GRIMM et al., 2004).

Another definition (SATYANARAYANAN et al., 2001) suggests that the essence
of pervasive computing is “the creation of environments saturated with computing and
communication capability, yet gracefully integrated with human users”. Satyanarayanan
also asserts that pervasive computing and ubiquitous computing are basically different
terms used to describe the same concept. The main difference between both concepts is
that pervasive computing is a bottom-up vision that emerged from the widespread
exploitation of computing services, while ubiquitous computing is a top-down approach
were these services are used in a transparent manner and integrated with the
environment (ROBINSON et al., 2005). In this text, we adhere to this vision, although
many authors nowadays treat both terms as synonyms.

2.2 Evolution

The advent of Personal Computers (PCs) in the mid 1970s, besides making
computers popular, brought them closer to people and represented a first step in the
direction of ubiquitous computing (SAHA and MUKHERJEE, 2003). However, making
the computer personal is a technological misplacement in Weiser’s vision. The
computer remains the focus of attention, and is thus isolated from the overall situation
(WEISER, 1993).

Distributed computing is generally considered a major step in ubicomp evolution.
The need to exchange information and communication stimulated the development of
computer networks. Distributed systems benefited from this already existing
infrastructure, acting as a set of interconnected computers using communications links
in different media and topology. In such systems, processing entities exchange
information using message passing through a variety of protocols to perform an
execution of distributed tasks. To accomplish this distributed computing, more research
was and is still needed in many areas.

Satyanarayanan (2001) emphasizes some areas important to pervasive computing
foundation in the spectrum of distributed systems:

29

• Remote communication: techniques such as message passing, remote
procedure call (RPC) and group communications are common possibilities
for interaction in distributed systems. More recently, with the wide
dissemination of object-oriented programming, approaches like remote
method invocation (RMI) and code mobility are being widely used. RMI
integrates RPC with the object-oriented paradigm. Code Mobility is a
different method that makes it possible to create a dynamic change of
location in which objects are executed (FUGGETTA et al., 1998). This is an
interesting concept to apply to ubiquitous computing;

• Fault Tolerance: the aim is to make computing systems more reliable in
handling faults. Faults are defects at the lowest level and may cause errors.
An error, in effect may lead to a failure deviating the system from its correct
specification (GÄRTNER, 1999). An important measure in this field is the
dependability of a system, which is the ability to avoid service failures that
are more frequent and more severe than acceptable (AVI!IENIS et al.,
2004);

• High availability: availability is concerned with the readiness for correct
services (AVI!IENIS et al., 2004). High availability requires mechanisms
such as data replication and recovery. By data replication we mean
maintaining multiple copies of data in different machines. This increases
availability by allowing access to data even when some computers are
unavailable. Optimistic replication increases availability and is better suited
for mobile computing (SAITO and SHAPIRO, 2005);

• Remote information access: distributed file system (DFS) and databases are a
common information repository. They allow users of distributed computers
to share data across the network in a transparent manner (LEVY and
SILBERSCHATZ, 1990). An important aspect of DFS is user mobility. In
the system users can log and use their files from any machine. It is up to the
system to locate the data and to transport them to the client machine;

• Security: an important issue in distributed systems is how to ensure
authenticity, authority, integrity, confidentiality, and non-repudiation.
Security mechanisms such as cryptography and secure protocols are used.
Privacy and trust are major concerns and these increase with ubiquitous
computing. Another concern is that users must trust infrastructure and the
exchange of information. It is important to define how much information or
how many resources should be disclosed to others (ROBINSON et al.,
2005). The application of trust management systems and models is
necessary.

Another important step in evolution is the World Wide Web (hereafter referred to
simply as the Web). With the Web, information and communication have become
nearly ubiquitous. The simple mechanism used for linking resources is a good way of
integrating distributed information and a potential starting point for pervasive
computing, even though the Web does not integrate the physical world (SAHA and
MUKHERJEE, 2003).

The final step in evolution is mobile computing. This arises from advances in two
areas: wireless networking and portable devices. With these devices the user can access

30

information anywhere, regardless of their physical location or mobility (JING et al.,
1999). The difference from traditional computing is that computing services go with
people and become more present, providing expanded capabilities. Combined with
network access, those services transform computing “into an activity that can be
carried” (LYYTINE and YOO 2002).

Limited resources such as wireless bandwidth, battery life, computational power,
screen size, etc. are typical mobile constrains. On the other hand, software does not
change significantly as we move. To address these problems, adaptation is needed. This
consists in reacting to changes and creating a dynamic balance between available
resources and applications needs.

Moreover, Jing et al (1999) discusses two other major research aspects of mobile
computing, apart from adaptation: extended client-server model

5 and mobile data

access. The former consists of dynamically partitioning responsibilities between client
and server, while the latter covers issues related to remote data access, cache
consistency, and ways of structuring data.

An additional contribution from mobile computing in this evolution, emphasized by
Satyanarayanan (2001), is location sensitivity. Research in this field proposes
algorithms and techniques for sensing physical location. Certain systems also provide
location-aware behavior.

The integrated possibilities brought about by the development of PC, distributed
systems, the Web, as well as mobile computing, set the stage for ubiquitous computing
to evolve. The main issues involved in achieving ubiquity will be described in the next
section.

2.3 Ubiquitous Computing Challenges

To achieve ubiquitous computing, as proposed by Weiser, some challenges must be
addressed. A number of previous studies enumerate issues unique or still open in
pervasive computing (BANAVAR et al., 2000; GRIMM et al., 2001; KINDBERG and
FOX, 2002; NIEMELÄ and LATVAKOSKI, 2004; SAHA and MUKHERJEE, 2003;
WANT and PERING, 2005).6 In this section the key challenges are presented and
discussed. The study presented here was published in IEEE Pervasive Computing
(COSTA et al., 2008). Table 2.1 summarizes the main challenges and presents their
aliases, areas in which they gain focus and central motivations to address these in the
scope of ubicomp.

Heterogeneity is a concern derived from distributed systems. Applications must be
able to run in different kinds of devices, with assorted operating systems, and user’s
interfaces. Software must mask differences in infrastructure to the user and manage the
required conversions from one environment to another. As a result, we must address
protocol mismatches. In this scenario, it is impossible to recreate device-specific

5 In the context of ubiquitous computing referred as cyber foraging.
6 See Appendix B for a related work analysis of ubiquitous computing challenges.

31

software. Consequently, application logic must be created only once with a device-
independent approach.

Table 2.1: Ubiquitous computing challenges

Issue Alias Focus
Area

Motive

Heterogeneity Distributed
systems

- Variety and difference
- Different types of devices, networks, systems,
and environments

Scalability Localized
Scalability7

Distributed
systems

- Large scale
- Increase in the number of resources and users

Dependability
and Security

Fault
Tolerance8

Mission-
critical and
Distributed
Systems

- Avoiding failures that are more frequent and
more severe than acceptable
- Providing availability, confidentiality, reliability,
safety, integrity, and maintainability

Privacy and
Trust

 Internet
and Mobile
computing

- Protecting against bad use of personal data
- Defining the trustworthiness of interacting
components

Spontaneous
Interoperation

Volatility Mobile
computing

- Allowing interaction with a set of components
that can change both identity and functionality
- Permitting association and interaction

Mobility Follow-me
applications

Mobile
computing

- Application and data access anywhere and any
time
- The user environment goes along

Context
awareness

Perception Mobile and
Ubiquitous
computing

- Perceiving user’s state and surroundings
- Inferring context information

Context
management9

Smartness,
Masking
uneven
condition,
Adaptability

Mobile and
Ubiquitous
computing

- Modifying the behavior of the system based on
the perceived context information
- Adapting

Transparent
User Interaction

Human-
computer
interaction10

Ubiquitous
computing

- Merging user interface with the real world
- Allowing user focus on tasks with minimal
distraction

Invisibility Ubiquity,
Pervasively

Ubiquitous
computing

- Allowing users focus on task, not tools
- Making computers disappear in the background

Another related issue inherited from distributed systems is scalability. In pervasive
computing, a large number of users, devices, applications, and communications are
expected on a scale never established before. Furthermore, it would be impractical to
explicitly distribute and install applications. We must avoid centralized solutions for

7 This term was used by Satyanarayanan (2001) and means that physical distance is a
significant issue in pervasive computing and that we must consider the important role
played by local interactions.
8 Actually this term is more restrictive. Recently the community is converging to use the
more general word dependability.
9 Some authors consider context management as a part of context awareness.
10 This term is used in a more general sense.

32

better scalability and bottleneck prevention. Moreover, distant interactions must be
reduced to a minimum.

Sometimes, the system cannot execute according to functional specifications.
Additionally, there might arise problems related to misspecifications. These situations
lead to failures. A failure is defined as a transition from a correct service to an incorrect
service (AVI!IENIS et al., 2004). A correct service is obtained when the system
implements the desired function. Incorrect service should be detected and execution
restored to a correct state. Avoiding failures that are more frequent and more severe
than acceptable leads to dependability, a concept that integrates the attributes of
availability, reliability, safety, integrity, and maintainability. The term pervasive
dependability has been used to refer to these needs in the scope of ubicomp (FETZER
and HÖGSTEDT, 2002).

Security is a concept strictly related to the dependability of a system. A system is
considered secure if there are measures to assure availability, integrity, and
confidentiality. There are many mechanisms to provide security in distributed systems
that could also be used in ubicomp. However, these actions must be lightweight, to
preserve both the spontaneity of interactions and the limitations of some devices, in the
provision of security for resources and user data (COULOURIS et al., 2005).

The privacy of that user data is a noteworthy matter. As ubicomp becomes more a
part of everyday life, almost invisible devices will collect user information, including
personal data, without even being noticed. Guarantee the ways in which such
information could be used or passed on will be extremely difficult. Another associated
challenge is trust. In a very heterogeneous and dynamic scenario, the trustiness of
interacting components should be evaluated. Since there is no fixed infrastructure and
neither a specific domain, we must use a trust management system to measure what
should be disclosed to other components (ROBINSON et al., 2005).

Bringing together varied components available in several devices, as well as making
communication and understanding among these possible, is a challenge identified as
spontaneous interoperation. A component interoperates spontaneously if it “interacts
with a set of communication components that can change both identity and functionality
over time as its circumstances change” (KINDBERG and FOX, 2002). We need this
spontaneity because of the volatile nature of ubicomp. The components are in
movement and interacting with a constantly changing set of services.

Another challenge named mobility provides access to applications and data
wherever users go and however they move (AUGUSTIN et al., 2002). This is because,
in portable devices, such as PDAs and notebooks, the environment goes along with the
user. However, physical mobility (of equipments or the users) is not the only option.
Moving components such as applications, data and services (logical mobility) is also
desirable. Nowadays, many of these components are attached to a specific device, so
that the user cannot carry them along. Applications should move from one device to
another, and data access should be maintained (follow-me applications) (AUGUSTIN et
al., 2002).

Mobile computing has also introduced the idea of context awareness, i.e., inferring
context to supply information or services to the user when the availability of services is
limited or intermittent (DEY, 2001). The concept is broader in ubicomp than in mobile
computing, as devices must sense changes and software should act proactively. Context

33

is defined as any information that can be used to describe the situation of entities
(persons, places, or objects) (DEY, 2001). It is generally acquired using embedded
computers or sensors. However, most devices today cannot sense their environment,
and neither can the software react to these changes.

Since it is possible to perceive context, it is necessary to use this information and act
proactively. Context management is action in response to sensing. Based on sensed
data, the system makes decisions such as configuring services according to
environmental change or keeping memory of past environments to restart services when
users reenter in those (LYYTINEN and YOO, 2002). Management can also expand the
capacity of devices by using available resources in the current context.

Human-computer interaction (HCI) design is also a significant subject. With
ubicomp there will be many ways of interacting with users. On top of that, as computers
become ‘smarter’, the intensity and quality of human-computer interaction is bound to
increase (SAHA and MUKHERJEE, 2003). Focus on user interface evolved from
software design, but it acquired a different meaning since the emergence of mobile
computing and new modes of interaction. Merging user data with the real environment
is another condition for HCI development in ubicomp. This redirects the attention to

transparent user interaction. The idea is to preserve human attention, avoiding
information saturation (SIEWIOREK, 2002). Users must be able to focus on the task
without distractions from the system.

The last issue is directly related to ubicomp itself. Invisibility is about keeping user
focus on the task, not on the tool (WEISER, 1994). To fulfill this vision, software must
satisfy user intent, by helping, not obstructing it. Software should learn with users and,
in some cases, let they change their preferences, interacting “almost at a subconscious
level” (SATYANARAYANAN, 2001).

To address these challenges, a software infrastructure is needed. The next chapter
focuses on this subject. It starts with a discussion on why traditional models do not fit
pervasive computing. A general architectural model for ubiquitous computing is then
presented. Finally, some current projects are discussed.

PART I:
CONTINUUM AS A SERVICE-BASED SOFTWARE

INFRASTRUCTURE FOR UBIQUITOUS COMPUTING

3 A COMPREHENSIVE ARCHITECTURAL MODEL FOR
UBIQUITOUS COMPUTING

Ubiquitous applications need a middleware to interface between many different
devices (desktops, notebooks, PDAs, wireless equipment, etc.) and end-user
applications (SAHA and MUKHERJEE, 2003). The aim is to hide environment
complexity isolating applications from explicit management of protocols, distributed
memory access, data replication, communications faults, etc. A middleware can also
solve heterogeneity problems related to architectures, operating systems, network
technologies, and even programming languages, promoting the interoperation of them.
On the other hand, a framework is an environment, composed of APIs (Application
Program Interfaces), user interfaces and tools, that simplifies software development and
management in a specific domain (BERNSTEIN, 1996). A framework is used to build
software that runs on a middleware. The middleware itself can be developed using
existing frameworks.

In this chapter we propose a comprehensive architectural model targeting ubicomp
that uses framework and middleware. This model considers all the challenges we
believe significant in the ubiquitous computing field. The focus of this comprehensive
architectural model is on highlighting numerous requirements necessary to ubiquitous
computing that should be covered by a software infrastructure. Before presenting this
model, we argue why traditional development models do not fit ubiquitous computing.
An abridged version of this chapter appeared in IEEE Pervasive Computing (COSTA et
al., 2008).

3.1 Implementing Ubiquitous Applications

A great effort is dedicated today to the development of distributed systems. Many
languages and frameworks have been in use to implement such systems. The Object
Oriented Paradigm (OOP) is the dominant programming model utilized. Distributed
objects are accordingly becoming more common. Despite the use and dissemination of
this model, some authors affirm that this is not sufficient to ubiquitous computing and a
new programming framework is required. Some of the major reasons for that are the
challenges presented in the previous chapter: the traditional programming models does
not usually address all topics discussed.

In this text, traditional programming models are considered the techniques currently
used when implementing software. In general, these models are applied for the

36

development of distributed software and based in OOP. In the core of these models are
programming languages such as Java, C++, and C#.

There are three central limitations, in the traditional programming models presently
in use, to implement distributed systems that affect pervasive computing (GRIMM et
al., 2004):

• Distribution is transparent: communications mechanisms employed such as
distributed objects, RMI, and DFS hide physical location to developers. This
transparency simplifies programming, since both local and remote resources
can be used practically in the same manner, but that makes context
awareness and management more difficult;

• Components integration via interfaces: All objects export an interface of
methods to be used by other components. This facilitates composition among
objects but presupposes a tight coupling, complicating the addition of new
behaviors. Usually the interface is considered quite stable;

• Object abstraction: objects encapsulate code and data. Keeping data inside
objects makes data sharing more difficult. Also, data is usually stored
without proper format definition.

In addition to these limitations, traditional computing development models usually
are based on static assumptions: architectures, applications, data, operating systems, etc.
Moreover, in general, all resources that are used must be known a priori. To make
matters more complicated application interfaces are commonly developed integrated
with the program logic. As a result, it is not easy to create pervasive and seamlessly
integrated applications using only traditional models and OOP.

An important shortcoming of traditional models is the lack of support for changes in
the system. Frequently, manual intervention is required to address these changes. Saha
and Mukherjee (2003) defend that adaptation to the environment is one of the chief
characteristics that differentiate ubiquitous computing from traditional computing.

Although there is need to address many features in traditional computing to
conceive ubiquitous applications, we must consider support for legacy applications,
popular operating systems, use of existing data, and users’ knowledge on how to use
current software and systems (KINDBERG and FOX, 2002). Because of that, it is
normal that architectures for the development and execution of ubiquitous applications
be based on traditional models with extended functionalities. Typically, a software
infrastructure is built, creating layers of abstraction for ordinary hardware, operating
systems, and traditional programming models, adding a set of new services to address
general limitations.

3.2 Architectural Model

A comprehensive architectural model targeting ubiquitous computing is presented.
This model considers all the challenges explained before (in section 2.3). Nevertheless,
this model should widen the spectrum of commonly used languages and systems. In
effect, current methods for remote communication, fault tolerance, high availability,
remote information access, and security could be inherited. The focus of this general
architectural model is on highlighting numerous requirements necessary to ubiquitous

37

computing that should be covered by a software infrastructure. This model could also be
useful in classifying proposals and suggesting needed features.

Figure 3.1 presents the comprehensive infrastructure model we propose, including
each of the issues highlighted before and the corresponding characteristics that should
be available to address it. The structure is then divided considering the application life
cycle (design time, load time, and runtime) (as in BANAVAR et al., 2000). Design time
is when the application is conceived, extended, or maintained. At load time,
applications are loaded to specific devices. At runtime, applications are executed and
utilized by the user.

Figure 3.1: Comprehensive architectural model for ubiquitous computing

Each row presents a challenge (in an oval box at the leftmost side of the figure) and,
on its right side, we can see the essential characteristics to be addressed at design time,
load time, and runtime, respectively. Some challenges, such as dependability and

security and privacy and trust, are more closely related to each other than others (these
are represented without a separating horizontal line). In this situation, we can define
dependability as the ability to deliver services that we can justifiably trust. Moreover, to
attain privacy protection, collected personal data should be secure. Close dependence

38

also involves context awareness / context management and transparent user interaction

/ invisibility, making it difficult to draw an exact borderline.

The order of the issues does not imply a layered model, in which each tier depends
on the services provided by the other. Services appear bottom-up, low-level services
first. At the bottom, we introduce the challenges already tackled in distributed systems.
The figure also shows issues more related with mobile computing in the middle, and the
challenges that arise with ubicomp at the top.

A framework can provide the abstractions needed to ubiquitous computing at design
time. The design time column shows all the characteristics of this stage. The same
applies to load time and runtime. However, to provide the characteristics required in
these stages, we suggest the use of middleware.

3.3 Infrastructure Characteristics

In the next subsections is a more detailed discussion of each row of the general
architectural model. Since the challenges were described before (section 2.3), the focus
will be on the characteristics proposed to address each one of those.

3.3.1 Heterogeneity

There are several levels of heterogeneity both in hardware (networks, devices,
screen sizes, power capability, etc.) and in software (languages, component models,
structures, etc.). To facilitate the bridging between heterogeneous systems, we should
use open standards, with published interfaces and standardized communications
mechanisms, allowing easier system extension or re-implementation.

Also, frameworks for device-independent projects can make it possible for different
hardware, even from diverse vendors, to use the same source-code, sometimes with
little alteration. Thus, we can keep the developed application almost unmodified,
limiting change to device-drivers or to the framework itself.

The current solution to heterogeneity is to use middleware with a common and
integrated Application Programming Interface (API), and a unified binary format. This
binary file should run on a virtual machine, like Java, which would be available on all
platforms. However, depending on device capability, we cannot always employ the
same virtual machine, run the same binary code, or expect that the set of available
features remain unchanged. For instance, Java has different virtual machines for mobile
devices and PCs. Nevertheless, the use of virtual machine reduces the cost of
heterogeneity because fewer changes are needed compared to languages that generate
specific machine codes.

Finally, we need to focus on the interoperability of components, the “ability to
understand the exchanged information and to provide something new originating from
the exchanged information” (NIEMELÄ and LATVAKOSKI, 2004). Interoperability
languages, such as XML, are commonly used, making it possible to represent data in a
standard and structured form, more portable between applications. In other cases,
software converts source data into an expected format. This conversion is transparent to
the user, but differences may occur between the source and destination versions.

39

Besides, protocols that can negotiate services and resources between applications and
devices must be available, allowing integration during load and execution.

3.3.2 Scalability

To address the problem of scalability, we need to develop software that considers
the abundance of users, interactions, components and devices, avoiding centralized
solutions and bottlenecks. The management and loading of applications should be
automatically done at load time. Besides, whenever a new application is available, it
should be automatically deployed and installed, since manual distribution and
installation of software for each device would be impractical.

During execution time, interaction with distant resources should be reduced. This
idea, localized scalability (SATYANARAYANAN, 2001) should be a goal of ubicomp,
even if it disagrees with the current guideline of network transparency, in which local
and remote resources are accessed with identical operations, their physical location
notwithstanding. We should consider the location of resources and give priority to local
interactions over distant ones.

3.3.3 Dependability and Security

Among the attributes encompassed by dependability, in the scope of ubicomp, we
need to maximize reliability, availability, and safety. It is also vital to minimize the cost
of maintainability and the effort to preserve integrity. In terms of security, we have to
deal directly with the attribute of confidentiality, but also with availability and integrity.

During the development of applications, verification could diagnosis and remove
faults. Verification is the process of checking if the system adheres to certain
characteristics. Causing faults should otherwise be diagnosed, corrected, and the
verification process should be repeated (AVI!IENIS et al., 2004). Testing is a widely
used type of dynamic verification.

Failure detection and recovery strategies used today (such as checkpointing,
compensation, isolation, or reconfiguration) could be applied to ubicomp as well.
However, there are some concerns to address in ubicomp, because requirements are
different from those of traditional computing, since applications execute in
environments, and there is always a context involved. Also, devices are means of access
to applications, but some failures in devices may not be specified in application or
middleware. Besides devices and applications failure, we should also consider network
and services failure (CHETAN et al., 2005).

We ought to differentiate failures from changes in the system, i.e., situations
requiring detection and recovery mechanisms from those where adaptation takes place.
In order to have an adaptable system, we need to specify which types of changes will
cause adjustments, even though we cannot predict all kinds of possible situations.
Sometimes, some unpredicted changes occur. The system may also generate unspecified
results. These are examples of failures, in which no adaptation mechanism is possible.
In these cases, we must detect and recover the failures. We also should not consider
disconnections as failures, but rather as part of the system specifications, treating them
with adaptation mechanisms.

40

There are some approaches that can be used in ubiquitous system to increase
dependability (CHETAN et al., 2005):

• Using a surrogate: when a failure of an application is detected, one common
technique is to restart this application with the last state saved in a stable
store. Sometimes however, the application has failed because of a device
problem. In this case, a surrogate device can be used to run the restarted
application. Other possibility is that this device could not run the same
application, and in that case an equivalent one can be used;

• Alternate notification mechanisms: if the system detects that a
communication with the user has failed, other communication interfaces can
be used. Various ways of interacting with the user provide redundancy;

• Handling Errors in sensing and inferring context: to avoid errors in the
perception of context, multiple sensors and/or algorithms to infer context can
be used. A complementary approach is to permit users to indicate errors
observed by the system;

• N-versions approach: the idea is to use redundant modules with different
implementations to execute the same task. A software arbitrator is then used
to determines the correct answer and provide the result.

The security design of a ubiquitous system must consider some aspects (DOURISH
et al., 2004). First, it should be user-centered, i.e., consider usability. Users can
circumvent security mechanisms that are discordant to common practices (BARDRAM,
2005). Second, security depends on the context and because of that mechanisms should
be near the activity in which it makes sense. Third, the design must be made in a way
that users understand and manage the employed solutions. Only thus can the user
choose the suitable mechanism according to the security needed in each action and
context.

The mechanisms to deal with security in the perspective of ubicomp must also
consider three characteristics. They should be scalable to devices with limited
resources, expect lack of knowledge, and allow dynamicity of mobility (ROBINSON et
al., 2005). For instance, user authentication for each and every device through login and
password would not be feasible. We need other methods; for example, the system could
exploit biometric information, or authenticate based on the location of people.

3.3.4 Privacy and Trust

Directly related with the security concerns are the aspects of privacy and trust. They
are treated separately from the previous issue because of their magnitude in ubicomp.
Although privacy is typically a subject of legislation, technology should be applied in
this new scenario of ubiquity due to the risks of the user exposing too much personal
information to an environment, sometimes even unaware of the surveillance. On top of
that, an increase is expected in the amount and accuracy of data collected. Furthermore,
the protection of privacy is particularly difficult in ubiquitous system because of
location-sensitivity. The context-aware mechanism of sensing the exact user location
could be exploited for tracking purposes. With this mechanism, it is possible to infer the
movement of the users and their activities, associating it with their personal
information.

41

During design, we can apply privacy standards. These standards are enforced by
jurisdiction and market, and consist of a group of procedures that should be observed in
the collection of data (ROBINSON et al., 2005). During the execution phase, we can
employ protection mechanisms to realize these standards. For instance, data could be
accumulated anonymously or deleted after a period of time.

A trust management can establish the trust in the relationship among components to
the exchange of information and resources access. The difficulty lies in precisely
defining the trustworthiness of an interacting entity and grant permissions based on that
decision. In some cases, there is little or even no evidence available about an entity and,
as in our daily trust decisions, it is more of a subjective notion. Apart from being
subjective, trust has other characteristics (CAHILL et al., 2003): non-symmetry (two
interacting components can have different trust in each other), situation-specific
(dependent of context), dynamic (increase or decrease in time), and it is inherently
associated with risk (no reason to trust if there is no risk involved). Because of these,
there should be trust reasoning support. This reasoning analysis is made based on
available information and considering the various aspects of trust. In this case, solutions
for uncertainty should also be present.

3.3.5 Spontaneous Interoperation

The first step is the design of spontaneous components, i.e., entities that support a
frequent change in the communicating partners and that can easily interact with others.
To accomplish this design, we need not a fixed, but a dynamic environment, with
assorted infrastructure and partners. The availability of a framework can facilitate the
development of spontaneous components and provide a generic interface, which will be
combined to specific entities during execution. Ideally, we should employ a uniform
description language for the specification of components, and build them independently
of context (NIEMELÄ and LATVAKOSKI, 2004).

During execution, components associate with each other. Association is the logical
relationship established between components that allow interactions; we call these
interactions interoperation (COULOURIS et al., 2005). When assessing association,
three points are important (COULOURIS et al., 2005; KINDBERG and FOX, 2002):
scale – efficiently choosing components to associate in a scenario with various possible
partners; scope – defining the extent to which components must be considered and
including all possible partners; boundary principle – considering the physical limits (or
other criteria) when defining the scope of association. We can also use discovery
services (in this architectures, a context awareness characteristic) as a part of the
association solution.

Interoperation depends on the communication models employed. In ubicomp, we
tend to use models based on event systems or tuple spaces, due to the asynchronous
nature of the former, or the ease of development and inherent persistence of the latter.
Occasionally, both models are used in the same middleware. Conversely, we can apply
other forms of communication such as message passing, remote invocation, or agent
systems.

Composition is a special case of association, in which external components control
inner ones, since all interoperation passes through the former, redirecting or modifying
the association. Composition facilitates adaptation and mobility. Each device can have a

42

specific component nesting all others and making all the required changes to their
specific interfaces and capabilities. When a component migrates from one device to
another, it enters in the specific device components and continues to issue the same set
of operations. The adaptation process is up to the outer component of each device, as is
the redirection of messages or events arriving after an inner component has migrated.

3.3.6 Mobility

In ubicomp, users changes devices frequently, but user applications and data must
always be available. This means that the environment should migrate from one device
to another. Besides, migration also helps reducing communication costs or preventing
disconnection.

To support code migration during load- and runtime, components must be designed
with mobile technology. We can obtain this by using languages and systems
compatible with code mobility (FUGGETTA et al., 1998). During execution,
middleware has to deal with the mobile component and manage migration. To achieve
this, the middleware should be aware of the network, and not treat it in a transparent
manner.

We must also address data mobility. We cannot always employ remote data access,
due to the possibility of disconnection or deficiency of resources. In these situations,
data could be moved or copied to different locations, provided attention is given to data
coherence and synchronization. Also, conversion between different formats, for specific
applications, or hardware, may be necessary.

Besides code and data mobility support, also known as logical mobility, we need to
consider physical mobility. As people move, the devices in use will change their
network addresses. This is because they will be communicating with different access
points and being assigned to different IP addresses. The DHCP provides this dynamic
acquisition of addresses, allowing devices to maintain service access, regardless of
location. However, it might be difficult for other components to interoperate with those
devices, because the IP routing mechanism is based on fixed locations, and may lose
packets when addresses change. Besides, their updating on the DNS is slow, due to
extensive use of cache.

To support physical mobility, we can employ a location management strategy.
Conceptually, this strategy consists of two operations (ADELSTEIN et al., 2005):
search – operation invoked by a node that needs to communicate with a mobile device;
and update or registration – operation performed by the mobile node to inform its
current location. Another crucial concern is ensuring that a mobile node remains
connected while moving from one scope to another. This is known as handoff, and
involves the following steps (ADELSTEIN et al., 2005): deciding when to change to a
new scope, selecting it, acquiring resources, and rerouting packets to the new location.

3.3.7 Context Awareness

To be ubiquitous, middleware must use relevant information and services available
in the surroundings. Discovery is the component that detects services and devices in the
current context, while sensors infer the significant information that can be used by the
context manager to reason about actions to take. The addition of context awareness

43

characteristics to middleware increases the usability of devices and allows better user
interaction (LOKE, 2006).

We need framework support to assist the implementation of context-aware
applications. Two characteristics are fundamental in this (DEY, 2001): a set of abstract
services that programmers can employ in the building of their components, and high-
level interfaces that hide specific devices or sensors details from the user.

During execution, we must store and share context data generated by sensors. We
suggest a uniform data representation to improve data access anywhere and from any
application. For a truly ubiquitous system, instead of just representing data, we also
need some form of knowledge representation. Ontologies could be used to explicit
semantic representation. One possible model, among various ongoing solutions, is
SOUPA – Standard Ontology for Ubiquitous and Pervasive Applications (CHEN et al.,
2004), that is a shared ontology specifically designed for ubicomp.

To manage this contextual information, middleware must provide four categories of
contextual services (ADELSTEIN et al., 2005; DEY et al., 2001): context subscription

and delivery – a service that can notify a component in the occurrence of some event;
context query – a mechanism to find suitable information or service; context

transformation – the conversion of low-level data into high-level information; context

synthesis – the aggregation of context information to generate a more precise or detailed
context. Besides these services, we also need dynamic resource discovery, which are
detailed in the next subsection.

3.3.7.1 Discovery

Dynamic resource discovery is a mechanism to dynamically locate and enumerate
resources, available in the environment or matching certain requirements (ZHU et al.,
2005). A resource could be a service, application, device or any other component.
Requirements are sets of specifications or characteristics to which the needed resource
must comply.

Many resource discovery systems exist today with different purposes and design.11
However, when applied to ubicomp, these existing approaches have some limitations,
such as interoperability, integration to user, and scalability (FRIDAY, 2004; ZHU et al.,
2005). We desire a system with no need for manual or static configuration, which can
find required resources in every environment at any time.

Besides this dynamicity, we must avoid centralized solutions. The solution could be
using multiple resource providers, in a distributed fashion, or peer-to-peer (hereafter
referred to simply as P2P) approaches. In this last solution, there are direct
communications among nodes without the intermediation of centralized servers. An
important characteristic of P2P is self-organization, i.e. the capacity of dealing with
failures, variable quantities of nodes, and network variations (ANDROUTSELLIS-
THEOTOKIS and SPINELLIS, 2004). Although P2P is suitable for ubiquitous

11 A survey of resource discovery systems can be found in Vanthournout et al. (2005)
and in Edwards (2006).

44

computing, existing systems are limited to file sharing and not general enough for
resource discovery (VANTHOURNOUT et al., 2005).

Below are some of the most important characteristics of resource discovery in the
ubicomp area (FRIDAY et al., 2004):

• Location-awareness: pervasive applications execute in the physical world
and because of that, the pinpointing of resources is essential to discovery
mechanisms. This mechanism should locate resources near to the user, in the
same context. A resource that matches many of the requirements but is
distant is useless to the system;

• Temporal elements: to aid the discovery of services, it is possible to associate
usage profile with resources. With the history and preferences of the
resources, usability can be improved. This can be achieved by finding the
most suitable resource in each context for that specific user;

• Resources states: the discovery resource system must deal with the dynamic
states of resources. Besides meeting specifications and location, states are
central requirements. The representation of states, as well as their dynamic
changes, must be covered;

• Security and control: Many resources need authentication and controlled use.
Resource discovery mechanisms should exploit resources without user
intervention, to maintain invisibility, but with certain constraints. Whenever
possible, it must prevent malicious actions and automate authentication.

3.3.8 Context Management

By detecting context, we can affect system behavior. This change can be made by
adapting the system to the new conditions or augmenting the available resources to
compensate for the lack of some feature. Another possibility is changing the context by
the use of actuators, i.e., software-controlled devices that affect the real world. An
actuator can activate a device; alter a physical condition, such as temperature or
luminosity; or execute a logical action (load code, alter parameterization, move
components, etc.). To support this management, we need abstract interaction elements
in design time. These elements can also be used during execution, according to context.

The two most important characteristics of this issue are adaptation and cyber
foraging. They will be described in the next two subsections respectively.

3.3.8.1 Adaptation

Adaptability is a central concept in pervasive computing. Adaptation consists in
adjusting aspects of applications to changes in operating environments.

Charles Darwin originally formulated the concept of adaptation in the context of
natural selection.12 It is defined as a process that makes species better at surviving.
Piaget, in his developmental theory, states that knowledge development was a

12 A detailed description can be found in The Origin of Species by Charles Darwin
available on-line at <http://www.gutenberg.org/etext/2009>.

45

biological process, and consists of an adaptation by an organism to an environment, as
previous asserted by Darwin. Piaget defined adaptation as a process of assimilation and
accommodation (PIAGET, 1971).

Based on Piaget’s model, Costa and Dimuro (2005) applied the concept of
adaptation to describe how machines adjust to environments: “Adaptation is the process
of self-regulated adjustment of internal and external operations of the computing
machine to the possibilities and constraints determined by the environment.”

This adaptation concept involves assimilation and accommodation, as proposed by
Piaget. The former is the processes of applying currently available operations to internal
and external objects, while the latter is the ability to adjust this set of operations to make
them applicable in those objects (COSTA and DIMURO, 2005).

Satyanarayanan (1996) defines three strategies for adaptation. In the laissez-faire
approach, the individual applications are responsible for adapting. There is no system
support. On the other hand, the system could be totally responsible for its own
adaptation. This approach, called application-transparent, permits existing applications
to continue working in a mobile environment without modifications. The intermediate
approach is called application-aware adaptation. This means collaboration between the
system and the applications. Applications are free to decide how to best adapt, while
maintaining system ability to enforce resource allocation decisions and monitor
resources.

Application-aware adaptation is probably the best-suited strategy for pervasive
computing. It mixes programming with automatic adaptation from the system.
Adaptation at programming level could be more easily achieved with Aspect Oriented
Programming (AOP). The idea in AOP is specifying separately the concerns
(properties) of a system and leaving its composition to the environment. This facilitates
programming, since scattered concerns can be treated together as aspects and not
hierarchically as with OOP (ELRAD et al., 2001). Different aspects can be attached to
or detached from components, facilitating adaptability. In some AOP systems, there are
even some constructors for dealing with unexpected changes (PACE and CAMPO,
2001).

The most common use of adaptation is in resource-aware applications, when there is
a significant difference between resources presented in the environment and those
needed (AUGUSTIN et al., 2002). These resources could be, among others, network
bandwidth, energy, storing space, or computing power. There are some approaches to
resource adaptation: fidelity reduction, quality of service (QoS) systems, or the
suggestion of corrective actions (SATYANARAYANAN, 2001). The first method
consists in changing the application to a minimal use of limited resources. The second
keeps a certain resource at a satisfactory level. The last one relies on user intervention
to make the desired resources available.

Adaptation is important to other kinds of applications besides resource-aware ones.
This gives rise to three other types of applications (AUGUSTIN et al., 2002):

• Location-aware applications need to consider physical location. This is not
only important in resource discovery, but also when adapting. Location-
dependent actions could be made. Location is a key point in determining the

46

context of an application. Therefore, this category can be considered as a
subset of the next one;

• Context-aware applications use sensors or monitors to infer state and better
choose an adaptation strategy. These states describe information related to
the capabilities and preferences of the user, location, devices, and the
environment in general;

• Situation-aware applications
13 use the most general form of adaptation.

These applications, perceive other near applications and their context of
usage. Adaptation takes place depending on usage context and user
preferences. Situation-aware applications are different from the previous
approach, because adaptation decision is made externally to applications.

3.3.8.2 Cyber foraging

A special case of adaptation is cyber foraging. Mobile devices usually have limited
capabilities, such as processor power, memory, and battery life. With those constraints,
it is sometimes difficult to satisfy the user’s computational needs. To minimize this
problem, we can use near machines as computing and data-staging servers, thus
augmenting capability (SATYANARAYANAN, 2001). Cyber foraging means sharing
or dividing code or data among servers and mobile devices, which middleware can
automatically do, during load and execution time. Alternatively, it could be user-
initiated – for instance, when anticipating changes in connectivity or exchange of
device.

Servers used to augment capabilities of mobile devices are sometime called
surrogates (GARLAN, 2002). These surrogates may employ encryption algorithms in
stored data. Thus, the users of these servers cannot access information saved there.

3.3.9 Transparent User Interaction

We should design device-neutral applications, i.e., we should not start with the
presentation and then build up the programming logic from that (BANAVAR and
BERSTEIN, 2002). To accomplish this, during design time we can define abstract user
interfaces and predict different types of interaction, so that the decision of which
interface to use can be postponed to execution-time. Another option is to dynamically
generate the interfaces during execution, based on the abstract definitions, specific
devices features, and contextual information. This option requires less effort during
design, and tends to consume more processor power and communication latency during
execution. However, it facilitates the use of contextual data.

The generation of interfaces suited to each specific device is one of the
characteristics towards achieving transparent user interaction. These interfaces must
consider the most natural form of interaction for those specific devices, and also
contextual information and user behavior (preferences, history needs, etc.) (CANNY,

13 This is actually another way of naming pervasive applications. In the context of this
work, it mixes context-awareness and invisibility issues. For instance, capturing user
intent is required.

47

2006; NYLANDER et al., 2005). For example, speech recognition is one of the best
interfaces for cell phones because they have small screens and tiny buttons and are
optimized for voice communication (CANNY, 2006).

A broader concept would not focus only on the human-computer interface of
devices, but rather on designing the physical interaction itself. This idea leads to
tangible interaction and its use in the scope of ubicomp (HOLMQUIST et al., 2004).
The proposal is to create a richer interaction experience, by coupling digital information
with physical artifacts, using the human body as an interface and combining real objects
and devices with computers in interactive spaces (HORNECKER, 2005). The challenge
consists in creating interfaces seamlessly integrated with the real world, and considering
social, personal, and emotional human experience (ROSS and KEYSON, 2007).
Finally, to achieve a proper transparency, people should be able to focus on their task
intuitively, and to get minimally involved with system issues.

3.3.10 Invisibility

The first step towards an invisible system is to design adaptable applications. We
need framework support that eases this development, following the goals of
disappearing computing and of keeping the user focus on the task. At runtime, we
require uninterrupted use, with minimal user intervention. For instance, disconnection
periods could occur in mobile devices. Actually, the system must mask this
disconnection, by keeping services uninterrupted, and still satisfy the user’s needs,
maybe with some degradation.

An important characteristic towards invisibility is seamless integration, i.e., the
transparent association and cooperation of various components. The idea of components
that interoperate with each other seamlessly requires much effort from the middleware
and careful development of each system element, considering many aspects presented
on the other layers of the architecture proposed. Banavar et al. (2002) propose a task-
based model that links the abstract interaction to the application logic. This model
facilitates integration, since tasks are highly abstract, and can be used at load- and
runtime to compose with other applications, services, and capabilities available in the
pervasive environment. This can bring the notion of a task-aware system (SOUSA et al.,
2006).

To be invisible during runtime, a system must act unobtrusively, meeting the user's
expectations. It also needs minimal human intervention. Saha and Mukherjee (2003)
affirm that “humans can intervene to tune smart environments when they fail to meet
user expectations automatically.” The system should not only respond to actions
initiated by users, but also anticipate users’ needs, in a non-intrusive way, by capturing
their intent. Preserving user attention is another characteristic that has to be considered.
Users are the most important resource in a system, (GARLAN et al., 2002) and keeping
their focused on the task can foster invisibility. Invisibility is the most difficult
characteristic to be obtained in a ubicomp system.

Invisibility is the most difficult issue to be obtained in a ubiquitous computing
system. We are still far from reaching a truly invisible system that fulfils Weiser’s
vision. Some authors are even skeptical about reaching this feature and propose some
solutions near to our reality today, such as engaging computing (ROGERS, 2006). In

48

this, instead of making the surroundings proactive and smart, the goal is in engaging
people more actively in their actions by consciously acting upon the environment.

3.4 Related Architectures and Systems

In this section we present an individual analysis of projects targeting pervasive
computing. It is not our aim here to give a complete description of all proposed software
infrastructures, as a large amount of work in ubicomp area is still under development at
present. We focused our examination on selected infrastructures that are particularly
relevant to our work, because of their broader approach. Some commercial initiatives
were not described, due to the lack of information and published papers. As a
consequence, only academic projects are investigated.

For each of the projects presented here, we give a general structure description
detailing objectives, implementation, architecture, and existing applications. At the end
of this section, we describe the ISAM project. Based on this last project our work is
build.

3.4.1 Aura!

Aura proposes infrastructure and services specifically designed for pervasive
computing. The project focuses on the user’s attention, which is considered a scare
resource. It tries to minimize users’ distractions by adapting to context and to theirs
needs (GARLAN et al., 2002). The main motivation behind this is the fact that human
attention is the most limited resource in computing and not hardware resources, such as
processor speed, main memory, network bandwidth, and disk capacity.

There are two important concepts in Aura Project: proactivity and self-tuning. The
first deals with anticipation requests from the users and other system layers. Prism
(SOUSA et al., 2006) is a system component that maintains the representation of user
intent and provides this proactivity at a high-level. Self-tuning means adapting the
system based on demands made by the user and on the system layers. This adaptation is
obtained by adjusting performance and resource usage.

Aura project is not a complete solution, but rather a set of services and applications
built using basic components. Most of the services run on top of operating systems such
as Linux and Windows. Parts of Aura project can be used on the Carnegie Mellon
University (CMU) campus by their community. Currently, there are some C and Java
API to access these services.

The architecture (Figure 3.2) uses some components created prior to Aura, such as
Coda and Odyssey. Coda (LEE et al., 1999) is a distributed file system that supports
nomadic, disconnected, and adaptive file access. Odyssey (NOBLE, 2000) is
responsible for resource monitoring and adaptation in a file system level. Another basic
component of Aura architecture is Spectra. It is responsible for remote execution and
uses context to decide how to optimally execute a remote call (GARLAN et al., 2002).

Some service layers where added to the basic components (GARLAN et al., 2002).
A Wireless bandwidth advisor was created to estimate future available network
throughput. This can be used to make decisions about the best server or place to access
the network. There is also a service for people location. Based on signal strength and

49

access point information, the People locator can physically locate users. Another
service created to amplify the capabilities of resource-limited clients, such as PDAs, is
Cyber foraging. This service is responsible for cyber foraging and can be used for
computing and data-staging servers.

Prism is atop the multilayered structure of Aura. It even executes above running
applications and captures and manages user intent. Prism creates a task layer to
explicitly represent user intent. At this level, users specify their activities and goals and
it is up to the system to map this into available capabilities (SOUSA et al., 2006).
Services suppliers are provided to offer these capabilities. Besides this task layer, there
are two other components in Prism infrastructure: the environment management and the
environment layer. The first addresses resource monitoring and adaptation, while the
latter includes the applications and devices that can be used.

Some applications were developed using Aura infrastructure (GARLAN et al.,
2002). Portable Help Desk (PHD) is an application that mixes physical location with
scheduling and personal information. It displays the CMU campus map and points out
the location of people and resources on it. PHD uses both a GUI and an audio interface.
Another application is Idealink. It is a virtual collaboration environment that provides a
shared distributed whiteboard. There are graphic and text tools to interact with the
whiteboard. Idealink also supports multiple simultaneous sessions.

Figure 3.2: Aura architecture (GARLAN et al., 2002)

3.4.2 Gaia

Gaia is a distributed middleware infrastructure for active spaces, i.e., physical
environments, with ubiquitous computing devices, aware of their resources and
conditions (RÓMAN and CAMPBELL, 2000). The project, in development at
University of Illinois at Urbana-Champaign (UIUC), focuses on the support of
applications execution in these active spaces. To accomplish this, a metaoperating
system is proposed, called GaiaOS that manages software and devices. Gaia was
created primarily as an attempt to achieve an optimal functionality of the integrated
services rather than their individual capabilities (RÓMAN et al., 2002).

50

The idea of a metaoperating system brings ubicomp the same features an ordinary
operating system provides a personal computer, simplifying management and
application development. In Gaia, these should be user-centric, resource-aware, multi-
device, context-sensitive, and mobile applications (RÓMAN et al., 2002). To achieve
this, common operating system services are provided together with new features
targeting pervasive computing, such as context and location awareness.

There is a prototype developed in a specific room at UIUC.14 The room is equipped
with various devices, such as touch-screen displays, a projector, plasma displays,
wireless networks, and badge detectors. Gaia was implemented using CORBA for
distributed object interaction. Some extensions were also implemented to deal with soft
state, dynamic resource detection, and fault tolerance (RÓMAN et al., 2002). To
program in Gaia, a high-level scripting language named LuaOrb is used, which is a
binding between Lua and CORBA, COM and Java.

Gaia architecture is organized in three layers (Figure 3.3). From bottom to top, the
layers are: the kernel, the application framework, and the active space applications
(RÓMAN et al., 2002). The component management core and a set of basic services
form GaiaOS kernel. The core is responsible for dealing with components and
applications, performing tasks such as dynamic loading, unloading, transferring,
creating and destroying applications. There are five basic services provided by the Gaia
kernel: the space repository stores information about hardware and software; the event

manager is a mechanism used to expose changes in components state; the context file

system is a file system that uses application-defined properties and context; the presence

service detects and maintains information about components, devices, and software;
and, finally, the context service queries and registers context information.

Figure 3.3: Gaia architecture (RÓMAN et al., 2002)

The application framework allows applications targeting active spaces. Another
objective is to facilitate the adaptation of traditional applications to Gaia. The
framework is composed by an infrastructure, a mapping mechanism, customization
policies, and Model-View-Controller (MVC) extensions. The main components to
implement any application are defined in the infrastructure: the model (application
logic), the presentation, the input sensor, the controller (which maps input sensor events
into requests for the model), and the coordinator (which manages all previous
components). The mapping mechanism customizes a generic application to a specific

14 More information can be obtained at <http://gaia.cs.uiuc.edu/>.

51

environment, considering component requirements. Applications should rely on
customization policies to address issues such as mobility and adaptation. The traditional
MVC model is then reused and extended. Active space applications execute atop this
framework.

A Presentation Manager Application (RÓMAN et al., 2002) was developed using
Gaia. The application manages slide presentations in various displays and with many
different input devices. The user can easily move or duplicate presentations through
many different devices and input sensors. For instance, the user may control a
presentation in different output devices, such as plasma displays or projectors, with a
PDA.

3.4.3 One.World

Project One.World (GRIMM et al., 2004) is a complete solution for developing
adaptable applications. The focus of One.World is “to provide an integrated and
comprehensive framework for building pervasive applications” (GRIMM et al., 2004).

The main motivation behind the project is based on the assumption that distribution
must be explicit for the development of pervasive software. In this manner, applications
can detect changes and adapt to them. The system is based on three requirements
(GRIMM, 2004): embracing contextual change, encouraging ad hoc composition, and
recognizing sharing as default.

One.World executes on top of existing operating systems, such as Linux and
Windows, and is mainly coded in Java. Besides Java, it uses some native libraries and
the Berkley DB to implement tuple storage. There is a fully functional prototype of the
system for free download and use.15 Currently, the prototype lacks support for
transactions and for automatic distribution of code among devices (GRIMM et al.,
2004).

The architecture of One.World (Figure 3.4) is based on three layers: foundation
services, system services and library support. There are four foundation services: the
virtual machine, to provide heterogeneity to the system; asynchronous events, to deal
with all communications in the system; tuples, allowing data sharing and creating a
common data model; environments, which are mechanisms for composing, isolating and
storing applications.

The system services are created on top of the foundation services. Migration
provides mobility, offering the possibility to move or copy environments with all their
contents (applications, data and nested environments). After migration, the system can
use the service discovery to find local or remote resources. Another system service is
tuple storage. Also related to tuples is the service query engine, which lets the system
search data. Tuples become accessible in environments through the system service
structured I/O. This service provides the main operations to manipulate data. Remote

events passing is the final system service. It is responsible for forwarding events to
remote services.

15 One.world can be found at <http://www.cs.nyu.edu/rgrimm/one.world>.

52

Figure 3.4: One.World architecture (GRIMM et al., 2004)

User-level libraries offer additional support in the One.world architecture. They
include the logic/operation pattern, support for the development of user interfaces and
for the timed execution of events (GRIMM et al., 2004). The logic/operation pattern
splits computations that can fail (called operations) than other computations (named
logic). Operations can be used for failure detection and for further recovery.

There are some applications built atop One.World system. Emcee is the user and
applications manager. It allows the management of users and their applications, check-
pointing and mobility among devices. Another application is Chat, which is a
messaging system that supports audio and text. Perhaps the most interesting developed
application is Labscape (ARNSTEIN et al., 2002). It automates a real biology
laboratory, making experimental data follow researchers as they move. Labscape also
stores all data in a central repository and can collect experimental data using radio

frequency identification badges (RFID) and barcode scanners.

3.4.4 ISAM

ISAM is a Brazilian acronym for Infra-estrutura de Suporte às Aplicações Móveis

(Mobile Applications Support Infrastructure), developed by researchers from Federal
University of Rio Grande do Sul (UFRGS). The project aims at integrating the concepts
of context-awareness, grid, and mobile computing (YAMIN et al., 2003). The idea
behind ISAM is to build a pervasive computing infrastructure, integrating a
programming language and middleware to support its execution.

Differently from other proposals, ISAM focuses on application development rather
than on the environment and services. Because of that, the project encompasses a
model, a language, and a runtime support to build and execute pervasive applications.
There is a prototype available, built mainly in Java, with some modules in C.16 The

16 ISAM can be downloaded at < http://www.inf.ufrgs.br/~isam>.

53

prototype is fully functional and bundled to a Linux live CD, in order to facilitate its
use. Programmers can develop applications utilizing Java.

To further facilitate the development of pervasive applications, ISAMadapt
(AUGUSTIN et al., 2004) was defined as a framework for a programming language. It
provides some means for expressing dynamic adaptation and context-awareness in
design time. ISAMadapt uses some concepts of a multiparadigm model named
Holoparadigm (hereafter simply referred as Holo) (BARBOSA et al., 2005). In Holo, a
logic blackboard, called history, implements the coordination mechanism, and a new
programming entity, called being, organizes several encapsulated levels of beings and
histories (multi-domains). These “beings” are the main Holo abstractions. They
represent the logical or physical components of the system that is modeled.

The architecture of ISAM (Figure 3.5) is organized in three components: the
infrastructure layer, the intermediate layer, and the superior layer. The infrastructure
consists of the network, the operating system, and the Java Virtual Machine (JVM).
Currently, ISAM programs are developed in Java source code, then compiled, and
executed in the JVM.

Figure 3.5: ISAM architecture (YAMIN, 2004)

The intermediate layer is the Execution Environment for Highly Distributed
Applications (EXEHDA). Designed as middleware, it consists of a collection of
services, such as naming, communication, migration, replication, interoperability,
location, and monitoring. On top of these basic services, EXEHDA executes the User
Virtual Environment, a container for user applications and sessions; the Scheduler, for
migration and remote execution of objects; and the Context Server, for context-aware
adaptive behavior. The superior layer has the ISAMadapt and the distributed mobile
applications. Context awareness is represented as a virtual module, since it is present in
the conception of all other ISAM components (YAMIN, 2004).

Applications run on the ISAM pervasive environment (ISAMpe), which uses
cellular hierarchy. Each cell has a specific host, called base, responsible for
communications among cells. Devices belonging to the same cell can directly

54

communicate with each other and are identified as nodes. The hierarchy allows a cell to
recursively contain other cells.

Applications were implemented using ISAM. WalkEd (AUGUSTIN et al., 2004) is
a text editor that may be used both on desktops and mobile wireless devices. It follows
the user and adapts to the environment. For instance, when the user switches from the
desktop to a PDA, WalkEd migrates to the PDA and changes its presentation to the
interface available. Another interesting application is GeneAl: A Grid Approach for
Genetic Sequence Alignment (SCHAFFER FILHO et al., 2005). GeneAl’s objective is
to find the best N alignment among biosequences spread in distributed databases. It uses
ISAM’s dynamic discovery services to find databases during execution. Another
characteristic of adaptive execution is the dynamic selection of works.

4 CONTINUUM SOFTWARE INFRASTRUCTURE

In this chapter, we propose Continuum software infrastructure, which is an evolution
of project ISAM (section 3.4.4) based partially on the requirements offered by the
comprehensive architecture model (sections 3.2 and 3.3; COSTA et al., 2008), and
partially on context awareness considerations. The latter, including the Context
Awareness subsystem and services, will be detailed in the next chapter.

4.1 Continuum as an Evolution of ISAM and EXEHDA

Continuum (COSTA et al., 2007) is proposed as a service-based software
infrastructure for ubiquitous computing, integrating frameworks and middleware. The
main focus of our work is context awareness, so that the environment encompasses the
characteristics that the user needs, enhancing the real world. The project is based in a
redefined view of follow-me semantics: users can go anywhere carrying the data and
application they want, which they can use in a seamlessly integrated fashion with the
real world.

The project is based on ISAM, but also considers the challenges requirement by the
comprehensive model (section 3.2). Differently from ISAM, Continuum is not tied to a
particular language; neither does it propose new changes for existing languages. That is
due to the fact that programmers usually prefer to use languages they are already
familiar with, allowing them to use legacy codes. Additionally, we want to support the
context awareness without excessively burdening the programmer and the software
development process. We propose the use of a framework, instead of a language, to
achieve these goals. The Continuum framework should maintain all the characteristics
we consider important to support the design time development (see Figure 3.1).
Furthermore, the framework could inherit some important characteristics from
ISAMadapt, in an independent language approach.

Another difference from ISAM is in the redefined view of follow-me semantics. In
ISAM, we are most focused on a desktop vision, in which users’ applications and data,
available in their desktop, can be accessed everywhere, with assorted devices, providing
the idea of a virtual environment (named AVU – virtual user environment – in ISAM).
In Continuum, the idea is to provide services to help the users carry the software
components that they want. Also, we do not intend to provide a virtual environment, but
rather to use those components to enhance the real world in a seamless way.

ISAM is based on a vision that is more pervasive than ubiquitous, considering the
differences that were significant at the time of the project development. Because of that,

56

the higher level services proposed in the comprehensive architecture model (related to
invisibility and transparent user interaction) are not tackled in project ISAM.

Incorporated in Continuum are various services that had already been available in
EXEHDA; others have been redefined; and new ones have been proposed. As the focus
of Continuum is on context awareness, we propose the rebuilding of the EXEHDA
context recognition and adaptation subsystem. The original project (YAMIN, 2004)
focuses only on partial context awareness, i.e. the obtaining of raw information, its
distribution, and the conversion of raw information into abstract context elements,
guided by an XML description. Another important element in ISAM is informality in
the treatment of context. A more detailed description of context awareness in
Continuum will be given in the next chapter.

4.2 Software Architecture

Figure 4.1 illustrates the proposed development process using Continuum. The left
side of the figure shows the environment and the support during design time. It
comprises an Integrated Development Environment (IDE) for the implementation of
ubiquitous applications. The IDE encompasses a language API, a set of development
tools (compiler, editor, linker, debugger, etc.), the Continuum framework, and other
application frameworks as needed. In this environment, we can build the ubiquitous
application source code. The right side of the figure presents, in general terms, the
components required during execution: the application binaries, the Continuum
framework and middleware, and the platform necessary to execution (network,
computer, operating system and additional running support). We identify this runtime
environment as Continuum software architecture.

Figure 4.1: Continuum development process

The proposition for Continuum software architecture is presented in Figure 4.2. The
architecture is divided in layers: foundation, middleware (subsystems and pluggable
services), and user space. The foundation comprises the execution and support
environment, including the network, the operating system, and the language runtime
support. For instance, if the application is developed in Java, this language support
includes the Java Virtual Machine (JVM). The middleware is divided in subsystems,
which are further divided into services. The subsystem layer is conceptual: not an
element in itself, but rather a group of related services.

57

The pluggable services constitute the core of Continuum middleware and supply the
main functionalities during execution. As the name implies, these services can be
loaded on demand. Finally, the user space layer contains user applications and the
Continuum framework support. Applications can use the foundation layer directly and
also interact with the middleware.

The framework incorporates Execution Profiler support, which helps the user choose
the service needed for each application. It also assists the user in selecting which
services will be available in each node. The Execution Profiler parameterizes the
deployment process during load time. This reconfiguration process is needed each time
a node is bootstrapped.

Figure 4.2: Continuum software architecture

During execution, applications may also need to use services on demand. This is
done by a service in the Distributed Execution subsystem, which is responsible for the
distributed processing support and communication in Continuum. In this component,
applications are managed, services are deployed on demand, and then copied or
migrated among nodes. Furthermore, this subsystem keeps the physical organization of
the environment, by storing attributes related to the management of the infrastructure,
i.e. resources, users, and applications.

The Context Awareness subsystem groups the services that deal with a variety of
contextual information, in an independent application manner. The subsystem also
considers user preferences (requirements that vary from user to user and over time). The
Context Awareness subsystem is also in charge of storing context, along with points in
time at which these data have been created, and distributing / localizing them.

Another subsystem is Adaptation Management. Not only does it target at the
adaptation process itself, but also at the management of the adaptation process, which
includes agility aspects and the maintenance of system stability (SILVA et al., 2008).
On one side, we have to address the delay between the perception of a new context state
and the execution of actions to adapt the system to this new environment condition; this
process demands agility. On the other hand, the execution of adaptation actions has a
computational cost and competes with the application itself. In an extreme case,
adaptation actions can be very frequent, leading the system to a state of instability, in

58

which the majority of resources is consumed by the execution of these adaptation
actions. This requires stability maintenance in the environment.

Finally, we have the User Interaction subsystem. Services in the subsystem are in
charge of reinforcing invisibility issues, giving special consideration to user attention
and intent. The main features of this subsystem are to provide ubiquitous access to files,
to deal with trust and privacy, to supply the choice of an interface, and to help with
invisibility issues, more specifically to ensure user attention, to meet user intent, and to
cause minimal user intervention. In the latter functionality, interfaces suitable to each
type of device or environment could be selected. To accomplish this, during design time
we can define abstract user interfaces and predict different types of interaction, with the
aid of the framework, so that the decision of which interface to use can be postponed to
execution-time.

As already pointed out, these subsystems are only a conceptual organization; in
practice, Continuum uses a service-based organization, which selects services on
demand, depending on what functionalities the applications need. These pluggable
services add an adaptive behavior, which is important due to the high heterogeneity of
the many different resources. In addition, Continuum proposes the use of Service-
Oriented Computing - SOC (PAPAZOGLOU and GEORGAKOPOULOS, 2003). In
SOC, the service layer follows the service-oriented architecture (SOA). The purpose of
SOA is to support critical applications, which require the management and deployment
of services and applications; it is also targeted at providing support for open services
(PAPAZOGLOU and GEORGAKOPOULOS, 2003). The application of SOC on the
web is obtained by the use of web services. SOC, SOA, and web services create a
general interface, which makes interaction easier in Continuum; in a more ad hoc
approach, those elements enable many applications to make effortless use of its
services.

Besides being selected on demand, the services are context adaptive, i.e., the
infrastructure is able to use the implementation that is better tuned to each device.
Furthermore, we reduce resource consumption by selecting only services that are
actually necessary. Such scheme is possible because services are defined by their
semantics and interface, instead of a specific implementation. Moreover, it is easy to
add other services, since we make use of SOA architecture. In section 4.6 we present
the services proposed for Continuum, organized by subsystems.

4.3 Modeling the Physical World in Continuum

We propose a model to abstract the entities that will be used in applications
developed with Continuum. As our focus is on context awareness, we choose a model
that considers the three entities that can be distinguished when dealing with context
(according to DEY et al., 2001): places, people, and things. Since the proposed model is
an abstraction of the world, there is no need to model everything, but rather represent
only the entities of interest.

We name the physical abstraction of the involved entities in a given Continuum
application as a CoDimension. From an infrastructural viewpoint, a CoDimension is the
physical organization of a set of devices, in which resources and services are managed
by the software infrastructure. This is based on the previous ISAM pervasive

59

environment – ISAMpe (YAMIN et al., 2003; YAMIN, 2004). As in the original
conception, cells form the topology, which are the union of several mobile and
stationary physical resources in the network infrastructure. Differently from the original
concept, our proposal is broader and incorporates the representation of entities not
considered at that time. Also, we include the concept of composition, which was a
requirement of the comprehensive model (section 3.3.5).

A CoDimension is organized in CoCells, each one representing a place. The degree
of abstraction of a cell can vary according to the application being developed. For
instance, we can represent as a cell a city, a room, a building, an institution, or the entire
earth. A CoCell could encompass other CoCells, benefiting from the composition.

People transit among cells. In Continuum, they are identified individually as
CoPerson. They can be physically present in one cell at a specific time. Things, on the
other hand, can be stationary (always in the same cell) or mobile. We call a thing in
Continuum a CoNode. Usually, we are particularly interested in representing CoNodes
that are computers, sensors, devices, or other electronic components.

There are special kinds of CoNodes in Continuum. The CoCell’s internal
organization might contain a base node (named CoBase) and component nodes, denoted
as CoNodes for stationary devices and CoMobis for mobile ones (the term device will
hereafter be used to refer to a generic host in the system that could be a CoBase, a
CoNode, or a CoMobi).

A CoBase is in charge of all the basic Continuum services for a specific CoCell or a
CoCell and the inner cells, although some services could be distributed among other
devices for scalability issues. This base node executes the middleware and makes
pluggable services available to other nodes.

CoNodes represent nodes that execute users’ applications. They are processing units
presented in the infrastructure, which execute the Continuum middleware. CoNodes use
pluggable services as needed. CoMobi, on the other hand, represents a special kind of
CoNode that is mobile, typically wirelessly connected and with a more restricted
capacity, generally in terms of network latency, processing speed, available memory,
and power supply.

The cell’s external organization is based on peer-to-peer association among cells.
Accordingly, we make use of a super-peer organization (ANDROUTSELLIS-
THEOTOKIS and SPINELLIS, 2004). Generally speaking, the idea is to have only one
dimension in Continuum and embrace all the cells in a hierarchical super-peer
organization (GARCÉS-ERICE et al., 2003; BISCHOFS et al., 2004).

A super-peer organization is very similar to the idea of P2P, except that not every
node in the system is a peer. Only super-peers act as a peer would, in a traditional P2P
system; other nodes act as clients and are connected to a single super-peer only (YANG
and GARGIA-MOLINA, 2003). Compared to traditional P2P systems, super-peers
introduce advantages from both the centralized client-server model, such as efficiency,
and from distributed search, such as autonomy, load balancing, and robustness
(BISCHOFS et al., 2004). Each CoCell in our work is associated with a super-peer,
normally its own CoBase, and the other devices in the cell act as clients.

There is a natural hierarchical relation among entities. This is true both for inter-
cells (among CoCells) and for intra-cells (among nodes belonging to a cell). For

60

instance, a house is situated in a neighborhood, which is located in a city, associated
with a state belonging to a country. Considering a house as a cell, we could have rooms
with appliances and equipments. Besides being natural, hierarchical organization also
allows a general improvement in scalability (GARCÉS-ERICE et al., 2003). Another
advantage of this organization is to employ a hierarchical look-up service to assign and
locate resources in the super-peer network, instead of the most common distributed
“flat” strategy used by many existing P2P middlewares (BISCHOFS et al., 2004).

There are three types of a relationship that a device can establish with the cell (this
is loosely based on BISCHOFS et al., 2004):

• Aggregation: describes a close cooperation between a device and a cell. The
device constitutes a part of the cell. A device connected with this relationship
can move among cells;

• Composition: describes a device that is a constituent part of a cell. The cell
could not exist without it. This type of device cannot be moved and it is
always attached to the same cell. For instance, CoBase nodes have always
this type of connection with the cell where they are located;

• Association: describes a loosely coupled relation, in which, from an
association relationship, no hierarchy is clearly observed.

When considering cells, the only possible relationship is composition, since a place
can always be inside another place. The most general cell is in the dimension. People,
on the other hand, are always associated to cells.

To illustrate our proposal, we present a sample dimension in Figure 4.3. We
developed a notation, partially inspired by UML (Uniform Modeling Language), to
facilitate the visual representation of entities and their relationship. A cloud represents a
CoDimension and an empty oval a CoCell. Drawing one entity inside another represents
composition among those types of entities. The same is true for the relationship between
a CoPerson, which is represented by an oval with an actor inside, and a CoCell. Since
nodes could have different kinds of relationships, there are three distinct representations
for those. We used in this case, the same equivalent in UML to represent aggregation,
composition, and association among classes.17 There is also a special notation for
CoBase, CoNode, and CoMobi, as seen in the figure.

In our example, the outermost cell represents a city. Inside it there are only two cells
represented: a specific neighborhood and a workplace. Observe that there is no need to
model all the neighborhoods in a city, but only those of special interest for our
applications. Additional cells can be modeled during the execution of an application.
They can be added to any level of the hierarchy. For instance, if we want to model the
neighborhood in which our work is located, it can be inserted inside the CoCell that
represents the city and as the external cell of work.

Observe that in the notation, for simplification and better visualization purposes,
some relationships are not shown: among cells, because the only possibility is
composition; between cells and a CoDimension, since the relationship is always
composition; concerning a CoPerson and a CoCell, as persons are always associated to

17 More about UML can be found in FOWLER (2005).

61

cells; and, between a CoBase and the CoCell in which it is located, because, in this case,
the relationship is always composition. Other relationships are always presented in the
notation. For instance, the figure shows the aggregation between a CoNode and the
“Work” CoCell. Another consideration about the notation is that when a CoBase is not
represented inside a CoCell, the next outer cell with a CoBase takes over.

Figure 4.3: A sample CoDimension

The physical organization proposed is in agreement with the scalability
requirements of the comprehensive architecture (section 3.3.2). We have circumvented
centralized solutions by proposing a cellular organization, using hierarchical super-peer
model. This means that the finest granularity at which management needs to be
considered is a cell. To further avoid bottlenecks in our proposal, we foresee the
possibility of CoBase replication or specialization, distributing services among different
nodes in the same CoCell.18 The physical organization of a CoDimension also improves
local interactions over distant ones. This is due to the fact that nodes report to one of the
cell’s CoBase and preferably establish communications with nodes in the same cell.
Finally, the employment of hierarchical structure aims at large-scale utilization.

So far, a limitation of ISAM has been the support of mobile devices, especially
those with hardware constrains, such as cell phones or PDAs. This is because, in ISAM,
EXEHDA middleware must run in each integrating node of the physical topology. The
solution was to use a more restricted version of EXEHDA in these cases. This approach
still presents some issues:

¥ The need to port the middleware to each and every device. Even using Java,
this might involve various changes in the code.19 Besides, a fully compatible
JVM may not be available;

18 This feature must be detailed in a future work.
19 The EXEHDA middleware was only ported to the Sharp Zaurus PDA. This involved
the reimplementation of EXEHDA considering the CDC profile of the particular J2ME
specification for the device.

62

¥ The device memory used to store middleware, virtual machine, and the user
application;

¥ Other devices constraints, such as processor speed, energy consumption, and
network latency.

In Continuum, we consider these mobile devices with hardware constraints as a
special case of CoMobi named CoGadget. In this thesis, we define gadget as a device
that has a practical and specific purpose in daily life. Common examples are smart
phones and PDAs. A CoGadget is a gadget supported by the Continuum that has a
infrastructure layer different from the one shown in Figure 4.2; it also uses the
middleware in a more ad hoc manner. Because of that, the only possible relationship
between a CoGadget and a CoCell is association. Figure 4.4 illustrates a CoDimension
with some CoGadgets. As seen in the figure, we propose a special notation for the
visual representation of gadgets. Since there is only one type of relationship, we just
have to draw a CoGadget inside a cell, meaning that this device is associated with it.

Figure 4.4: A Continuum dimension with some gadgets

The basic abstractions of Continuum are summarized in Table 4.1. The table shows
each abstraction, its visual notation, the entity that it represents, and a brief description.
In Table 4.2, we go over the possible relationships in our notation, presenting their
name; notation; entities that they could relate to, pointing out those that are not shown
in the notation; and their descriptions. The next section describes the infrastructure layer
of Continuum and highlights the different vision used by CoGadgets.

63

Table 4.1: Continuum basic abstractions

Name Notation Entity Description
CoDimension Place A physical abstraction of the real world embracing all modeled

entities.
CoCell Place Represents a place and comprises nodes in that physical location.

CoCells are nested forming a hierarchy.
CoNode Thing A device executing users’ applications and making use of

Continuum services. Typically a stationary device.
CoBase Thing A device in charge of managing a specific CoCell, or a group of

nested cells, and responsible for interaction with other cells.
CoMobi Thing A device with mobile capacity executing users’ applications and

making use of Continuum services. Usually, wirelessly connected
and with a more restricted capacity, generally in terms of network
latency, processing speed, memory available, and power supply.

CoGadget Thing A device that accesses users’ applications in a more ad hoc manner.
In general, a special purpose device such as a smart phone or a
PDA.

CoPerson Person A user registered in the infrastructure that is physically present in
one CoCell.

Table 4.2: Continuum Relationships

Name Notation Relationships Description
Aggregation CoNode ! CoCell

CoMobi ! CoCell
A tightly coupled relation between entities.

Composition CoCell " CoDimension
CoCell " CoCell
CoBase " CoCell
CoNode ! CoCell
CoMobi ! CoCell

An entity that is a constituent part of
another entity.

Association CoPerson " CoCell
CoGadget " CoCell
CoMobi ! CoCell
CoNode ! CoCell

A loosely coupled relation between entities.

Symbols: ! always shown in the notation " not shown in the notation (default relationship)

4.4 Infrastructure Layer

The infrastructure layer is the physical layer of system execution. It comprises the
hardware, with its network interconnection, a native operating system, and the language
runtime support. In the present version, the JVM is used as the runtime support for the
execution of some services. This restriction is due to the fact that we have many
inherited services from EXEHDA middleware, which has been developed using Java.
This limitation does not imply that applications should be built using Java, because the
service interface is based on web services.

Continuum was designed as independently as possible from the native operating
system. This choice causes some drawbacks in our model, since we cannot obtain the
full potential of each device; even if we follow the requirements of the comprehensive

64

architecture. This is because there is an important trade off between portability and a
more thorough use of device capabilities. As a project decision, we preferred to
sacrifice the latter to promote the former.

We call pervasive network the wired or wireless infrastructure available for the
interconnection of devices. The term, as previously employed by Yamin (2004),
highlights the mobile nature of devices and how they can be used with varied protocols,
adapters, network speed, and throughput. Sometimes, the pervasive network may not be
available at all, and this fact is dealt with in the above layers of the Continuum software
infrastructure.

Although the use of the JVM clearly improves portability, it can be inconvenient in
some platforms. First, it may require the installation of additional code that can further
reduce the total memory available. Second, we currently have specific versions of JVM
for different devices. For instance, Java Micro Edition (Java ME) is targeted at mobile
and embedded devices. It is conceptually different from Java Standard Edition (Java
SE). Third, JVM compatibility varies, especially in portable devices: some still support
Personal Java, which is a platform for Java mobile development superseded by Java
ME. A notable omission is the support for Windows Mobile based devices, since Sun
does not currently provide binaries for Java. Even in Java ME, we have two different
implementations: Connected Limited Device Configuration (CLDC) for resource-
constrained wireless phones and communicator-type devices, and Connected Device
Configuration (CDC) for more powerful devices.

Because of these JVM limitations, as well as the previously discussed lack of full
mobile device support of ISAM, we decided to use a different infrastructure in
CoGadgets. We propose the access of Continuum via a web browser using Web 2.0
concepts. This term was coined by Tim O’Reilly in 2005, and describes “a quickly
growing set of web-based applications” (SCHROTH, 2007). O’Reilly (2005) described
Web 2.0 in terms of seven characteristics: the web as a platform, exploitation of the
collective intelligence of web users, ownership of data, end of the software release
cycle, use of lightweight programming models that allow for loosely coupled systems,
software not limited to the single device / PC platform, and richer user experience.

Web 2.0 systems should provide simple interfaces, be scalable, and produce results
that are sensitive to context (LIN, 2007). Among the technologies used in Web 2.0, we
chose to employ AJAX, which is an acronym for Asynchronous Java Script + XML.
AJAX is one of the key paradigms used in the development of Web 2.0 applications
(SCHROTH and JANNER, 2007) and a combination of some other technologies:
XHTML, CSS, and the Document Object Model for presentation management;
XMLHttpRequest for asynchronous data retrieval; and JavaScript for programming.

AJAX, due to its asynchronous nature, lessens the problem of network latency and
gives a better system response than that of the traditional RPC. Its use in cell phones
and other gadgets has become a tendency. As an example, the iPhone20 programming
model is based on AJAX, over a browser, and makes use of a Software Development
Kit (SDK) provided by Apple for granting access to many of the device’s features, such
as e-mails, calls, and Google Maps.

20 More details in <http://developer.apple.com/iphone/>.

65

Recently, the convergence of concepts from Web 2.0 and SOA has become a topic
of discussion (HOWERTON, 2007; SCHROTH and JANNER, 2007; SCHROTH,
2007). These concepts have been considered complementary, and the use of both
together brings the vision of an Internet of Services (IoS). Schroth (2007) defines IoS as
a “global platform allowing both end-users and businesses to seek, combine, customize,
use and publish interoperable resources.” Not only does the author emphasize the need
to use principles from SOA and Web 2.0, he also advocates the need to employ
contextual computing and the concept of Semantic Web.21 Our proposal aligns itself
with this convergence, and reinforces the decision to collectively use all this technology
in the scope of ubicomp.

The infrastructure layer was proposed according to heterogeneity requirements
already presented in section 3.3.1. We used a virtual machine (JVM) to implement
some services, but programmers could employ any language they want to develop
applications. To circumvent JVM limitations, further improving heterogeneity, we
proposed the use of Web 2.0 technology. This choice goes along with the device-
independent approach suggested before, and also with the use of open standards. In the
next section, we present some other characteristics that improve heterogeneity: the use
of SOA for pluggable services and the employment of XML as an interoperability
language.

4.5 Pluggable Services

Each pluggable service in Continuum is defined as a web service, which is the most
common implementation for SOA because it uses XML for data and employs platform-
neutral communications (HOWERTON, 2007). The idea of obtaining functionalities as
network-delivered services corresponds to a model named Software as a Service (SaaS).
Anerousis and Mohindra (2006) have defended the use of SaaS for ubicomp
environments and state that the most significant challenges in this field are how to
handle periodic disconnections and how to address differences in devices. They propose
the use of adaptive services to solve the latter challenge and the caching of data on
devices, enabling offline operations to tackle the former problem. This vision adheres
with our proposition.

In Continuum, pluggable services are accessible in the infrastructure from the
CoBase. Each cell has at least one CoBase that provides the services. For scalability
issues, it is possible to have more than one CoBase in each cell. CoNodes and CoMobi
have remote access to services (from one CoBase in the cell) by default. However, they
can run some services locally to improve autonomy, allowing offline operations in case
of disconnection. When this occurs, the middleware is placed in charge of further
synchronizing modifications with the CoBase of the CoCell to which it belongs.

It is important to reinforce that CoNode, CoMobi and CoBase run the middleware.
The selection of services in these nodes can be made statically (in the middleware
bootstrapping) or dynamically, as needed by the nodes, in a deployment that is on-
demand, on the fly. The Execution Profiler (described in section 4.7.1) controls the

21 More about Semantic Web can be found in <http://www.w3.org/2001/sw/>.

66

static selection of services, and guides the middleware bootstrap. During middleware
execution, the Adaptation Manager (described in section 4.6.2) does the dynamic
selection of services.

CoGadgets do not run the middleware, and access all pluggable services remotely
via a web interface, using AJAX, in a browser. In these cases, services are adapted
accordingly to device capabilities, exposing only a subset of features, making it possible
to use Continuum in small form factor devices.

4.5.1 Distributed Architecture for Service Support

This section describes the Continuum Distributed Service Architecture (CoDSA),
which is a SOA that uses web services for communication. The entities involved in
CoDSA are:

¥ CoService: a basic service in Continuum. A CoService offers well-defined
functions;

¥ CoProvider: a node in the environment that offers CoServices;

¥ CoConsumer: each node, either a CoNode or a CoMobi, that uses
CoServices in the environment;

¥ CoDirectory: a node in each CoCell that lists the available CoServices. This
node runs the pluggable service ServiceManager.

Each node in Continuum, with the exception of CoGadgets, may act as a
CoProvider. In addition, CoGadgets cannot be considered as CoConsumers; they are
indeed a special kind of device that indirectly uses CoServices through a web interface.
Figure 4.5 illustrates the CoDSA, with the entities described above, and also presents
two possibilities in the architecture: CoService migration and replication.

Figure 4.5: Continuum Distributed Service Architecture

67

Migration allows a CoService to change its location from a CoProvider to another.
This occurs in the scope of a CoCell, and is used to improve the system performance,
reducing communication costs and delays. Currently, web service architecture does not
support this feature. However, there are some proposals to address migration in this
scope (HAO et al., 2006). The main concern is how to decide when a CoService should
migrate and to which location. This decision must consider hysteresis and the costs
involved. In our proposal, the Distributed Execution subsystem (section 4.6.1)
evaluates these aspects and makes the decision.

Another option in CoDSA is replication. CoServices can be replicated among
CoProviders in the scope of a CoCell. This can improve system reliability of
CoServices. Whenever a node changes its location or disappears in a CoDimension,
which is common in mobile environments, the CoService it provides becomes
unavailable. If there is a replica, it can be discovered from the CoDirectory. Besides this
discovery and registration feature, we also need a mechanism for the replication and
synchronization of web services. Some methods have been proposed to address these
mechanisms (JUSZCZYK et al., 2006; MOSER et al., 2006). The two main problems
with replication are the synchronization of CoService copies and the decision whether a
replica of a CoService should be made. Moreover, communication costs of the dynamic
copy must be considered. Similarly to what happens during migration, it is the
Distributed Execution subsystem that is in charge of the main operation, as well as of
dealing with the other problems pointed out here.

CoDSA allows the dynamic selection of CoServices, which are chosen according to
the functionalities needed for each node of the system. We can obtain an adaptive
behavior in Continuum by replacing or reconfiguring the CoServices that a
CoConsumer employs. During software design, the Execution Profiler provides support
for the selection of services needed by each node in the system. During execution, it is
the Adaptation Management that takes this decision.

The interaction among nodes in the CoDSA, as illustrated in Figure 4.5, uses SOAP
messages.22 SOAP, an acronym for Simple Object Access Protocol, is a lightweight
communication protocol based on XML that allows the accessing of web services. The
protocol is platform and language independent. As the name implies, it is very simple
and also extensible. SOAP enables asynchronous client-sever communications and can
make use of a wide range of protocols, including HTTP, SMTP, TCP, and UDP.

Table 4.3: Messages exchanged in CoDSA

Message From To Purpose
Query Service CoConsumer CoDirectory Looking up for a CoService
Query Response CoDirectory CoConsumer Informing the location of a CoProvider
Add Service CoProvider CoDirectory Publishing a CoService in the CoDirectory
Remove Service CoProvider CoDirectory Deleting a CoService from the CoDirectory
Update Service CoProvider CoDirectory Updating information about a CoService
Service Request CoConsumer CoProvider Demanding a specific CoService
Service Reply CoProvider CoConsumer Responding to a requested CoService

22 More details about SOAP in <http://www.w3.org/2000/xp/Group/>.

68

The SOAP messages used in the CoDSA are generally described in Table 4.3. It
shows each message along with the origin node, the destination node, and its purpose.

4.5.2 Proposed Services

The Continuum functionalities are presented in terms of services. The next section
presents an overview of the pluggable services proposed. We must emphasize that the
services presented here, as well as their functionalities, do not aim at exhausting all the
possibilities, neither do they cover all the topics discussed in the comprehensive model.
Rather, our goal is to offer an idea of what features might be available in the software
infrastructure, and how they could be provided. In some services, we propose the
integration of other works, developed in the perspective of the ISAM project.

There are two types of services in Continuum:

I. derived from EXEHDA, incorporating new or redesigned features;

II. new services, created specifically for Continuum.

The detailed description of the services of the first type can be found in Yamin
(2004). Special attention is given here to new or redesigned features. The second type of
services is fully described.

The functionalities of the pluggable services are presented in terms of its interface,
as an overall service description. We present the operations belonging to a web service
using a UML class diagram (FOWLER, 2005) for visually modeling key portions of the
Web Services Description Language (WSDL).23 WSDL is commonly used for service
representation. It is a W3C recommendation, defined as an XML schema for
representing the description of a service. Our work is based on WSDL 2.0, which is the
version currently in use.

WSDL 2.0 (hereafter simply referred to as WSDL) describes the functionalities of a
web service in two parts: an abstract part describing messages exchanged through a type
system and a concrete part that defines details such as transport, location, and
implementation (CHINNICI et al., 2007). The abstract description of a web service
comprises three characteristics: messages, operation, and interface (formerly known as
PortTypes in 1.0). The concrete part comprises binding, services, and endpoints. Figure
4.6 summarizes the conceptual WSDL model. For a full description of the WSDL
model, refer to Chinnici et al. (2007).

Figure 4.6: WSDL conceptual model (DHESIASEELAN, 2007)

23 More about WSDL can be found in < http://www.w3.org/2002/ws/desc/>.

69

When describing Continuum services, we are particularly interested in modeling the
property interface of the abstract part of the WSDL conceptual model. Therefore, only a
subset of a WSDL is showed in the UML diagram of the proposed services. Figure 4.7
shows the generic class diagram for this work. In the following subsections we describe
the Continuum services, classified by their type (I or II), and organized in subsystems.

Figure 4.7: Generic UML representation of a WSDL interface

4.6 Subsystems

The concept of subsystem is used to represent an aggregation of services with a
common aim and purpose. In practice, no additional task is provided by the subsystem
itself, but rather it comprises a set of services that are used to achieve some specific
goal of the infrastructure. Some services in the system are used by more than one
subsystem, while others are specific.

Continuum subsystems are presented in Figure 4.8. We describe all Continuum
subsystems with the exception of Context Awareness, which will be presented in the
next chapter (in section 5.3). Each subsystem can be personalized according to the
services that should be available. With the aid of the Execution Profiler, during
bootstrap, services needed in each node of the system are loaded.

Figure 4.8: Continuum subsystems

4.6.1 Distributed Execution

The Distributed Execution subsystem is in charge of Continuum distributed
processing and communication. Figure 4.9 shows the services that are part of the
subsystem. Three services (Executor, CIB, and Co-Space) are redesigned from
previously existent EXEHDA components. The others are new additions to the software
infrastructure. In the next subsections each one of these services is described.

Figure 4.9: Distributed Execution subsystem

70

4.6.1.1 Executor

Executor is a service for management and distribution of applications in Continuum,
derived from an ISAM service with the same name. It is developed regardless of
communication model. Through this service, it is possible to handle application-related
operations. This service should be present in every device that runs Continuum
applications (this does not include CoGadgets, which are executed in an ad hoc
approach via web browser). Executor acts as a thin runtime interface layer for any
application that uses Continuum software infrastructure. The operations of the service
are listed in Figure 4.10. The new operations appear in bold.

Figure 4.10: Executor service interface

We call each piece of software registered in Continuum a CoApp (detailed in the
work KELLERMANN, 2008). A CoApp is a predefined format for the encapsulation of
Continuum applications. It includes a configuration section, which has all the metadata
related to the application, such as different versions, dependences, and XML
codification (schema XSD). Another layer of a CoApp contains the resources. This
layer is optional and may include databases, images, and internationalization data,
among other resources. Finally, there is also the implementation layer. Not only does
this layer include the application code, but also all its dependences, such as the
necessary runtimes and libraries. The interface of a CoApp is a web service and all its
definition follows web service standards, such as communication, localization, and
management protocols.

In Executor, we have some methods to manage CoApps. The operations
startApplication and exitApplication are responsible for the initialization
and finalization, respectively, of Continuum Applications. There is a specific operation,
named statusApplication, to return the state of a CoApp along with its reference
and other related data. Other methods deal with application states:
suspendApplication and resumeApplication. These functions are in charge
of suspending and resuming the execution of a CoApp in the Continuum infrastructure.

It is also possible to obtain a CoApp object from a given identifier. This is
accomplished by the getApplication method. To install an application, we use the
operation deployApplication and to list all Applications locally available in the
current node we use listApplications.

4.6.1.2 CIB (Cell Information Base)

The Cell Information Base (CIB) is in charge of keeping the distributed
infrastructure of Continuum. By way of this service, we can add and remove entities
from a CoCell. This service is based on a previously existing functionality, with the

71

same name, from EXEHDA. The service’s main operations are listed in Figure 4.11,
with the new ones in bold.

Figure 4.11: CIB service interface

The operations addCell and removeCell are used to create and delete cells in
Continuum. In the former, we must pass as an argument which cell it will compose. If
omitted, it will be the top-level cell, directly inside the CoDimension, embracing all
other cells, assuming that they exist. The latter is used to remove a cell. When a cell is
removed, all inner entities and cells are also removed. Operations addNode and
removeNode work closely. The main difference between the two is that the target
here is a node. When using the first method, we have to pass as an argument the type of
node we are creating (node, mobile, or gadget), the cell in which we want to add it, and
the relationship that it will establish with the cell (association, composition, or
aggregation). With the second operation, we can eliminate a node. Only nodes
associated and aggregated to a cell can be deleted. To remove a composed node, we
have to eliminate the cell.

The moveNode operation provides mobility to nodes. This method can be used
with associated and aggregated nodes. As an argument, we inform the destination cell
and the type of relationship that the node will establish with it. The user operations are
analogous to the nodes operations: addUser, removeUser, and moveUser. The
only difference is that there is no need to specify the relationship, since users are always
associated to a CoCell. The move operations of the CIB service provide physical
mobility to Continuum.

The select operations (select, selectByName, and selectByType) are
inherited from EXEHDA and used to find resources in the CIB. The same occurs with
getAttribute and getAttributes, which are used to obtain the features of
nodes. The first fetches one specific resource property, while the latter obtains a list of
features. We add to Continuum two more operations to facilitate the modification node
attributes, named setAttribute and setAttributes. These can be used to
change modifiable features of a node, such as its name, IP address, etc.

4.6.1.3 Communicator

The Communicator service provides an event system for Continuum, based on the
publish-subscriber model. This service replaces the former EXEHDA service named

72

dispatcher, which was based on the request-reply interactions of the client-server model.
We made this change according to the spontaneous interoperation requirements of the
comprehensive architecture model (section 3.3.5). Furthermore, this service is highly
used by the Context Awareness subsystem. The operations we propose for the service
are presented in Figure 4.12.

Figure 4.12: Communicator service interface

The idea of an event system is that a component can react to change occurring in
another component, in an asynchronous way. To achieve this, we propose six
operations. The operation register (and unregister) is used by a component
that wants to publish (unpublish) some particular event. An event in the system has
attributes that can specify details of its occurrence, such as time, name, etc. If a
component wants to be informed of occurrences of some event, it can subscribe to
it. Eventually, when this component does not want to receive any further notification, it
can unsubscribe the event.

If a component wants to find some specific event, it can query the Communicator
service, with a lookup operation, for available events. Finally, the notify operation
is used by a registered component to send an event to a component that has previously
subscribed to it. The event is delivered to all the subscribers asynchronously.

4.6.1.4 CoSpace

The CoSpace service, based on the previous EXEHDA service named CCManager,
provides a tuple space for Continuum. It is also in agreement with the interoperation
characteristics of the general model (section 3.3.5). The idea of providing a tuple space,
besides an event system, is to add synchronous operations, which are easier to program,
to the infrastructure. Another reason is the persistence offered by a tuple. The
operations proposed are shown in Figure 4.13. The new operations appear in bold.

Figure 4.13: CoSpace service interface

73

In the service, there are methods to create and destroy a tuple space
(createSpace and destroySpace) and to enter or depart from a space
(joinSpace and leaveSpace). The operations proposed to manage tuples in the
space were based on LIME, a middleware for mobile environments (MURPHY et al.,
2006):

¥ in: obtains a tuple that matches a given template, and removes it from the
tuple space. If no tuple matches, it waits until one shows up (synchronous);

¥ out: inserts a tuple in the tuple space;

¥ rd: retrieves a copy of a tuple that matches a given template. The tuple
remains in the space. As with method in, this operation is also synchronous;

¥ inp: same as in, but asynchronous. If no tuple matches the given template,
it returns NULL;

¥ rdp: an asynchronous retrieve of a tuple. Same as rd, but if no tuple
matches the template, it returns NULL;

¥ ing: retrieves all tuples that match a given template, removing them from
the space;

¥ outg: writes a set of tuples in the space;

¥ rdg: retrieves a copy of all tuples that match a given template. The tuples
remain on the space.

4.6.1.5 Service Manager

The Service Manager, as the name implies, deals with all pluggable services in
Continuum. Not only does it handle predefined Continuum services, it also allows any
CoApp to be managed as a service in the software infrastructure. This feature enables
the “pluggable” feature of Continuum services. It also collaborates to the extensibility
of the platform, facilitating the use of legacy code.

Service Manager replaces the service WORB of EXEHDA, although they have quite
different functionalities. WORB provides communication that is similar to RMI
(Remote Method Invocation), without the need of maintaining a synchronous
connection. This is not possible anymore in Continuum. Instead, through Service
Manager, we can register a software component as a web service, and access its
operations using SOAP messages. Another option is using the events operations
available in the Communicator service. The Service Manager interface is shown in
Figure 4.14.

Figure 4.14: Service Manager interface

74

Service Manager provides the functionalities of a CoDirectory (see section 4.5.1).
registerService is responsible for registering a service in the directory. In a
complementary way, unregisterService deletes a service from the directory. If
modifications are made in a service, it can be updated in the directory using
updateService. We use lookupService to query services available in the
directory. The method, by default, only looks for services in the current CoCell. A
parameter can define that the query should be passed on to the outer cell and so on,
searching in the entire hierarchy. In this case, the query returns either when it finds the
service or when, at the end of the hierarchy, it has not found anything.

Services can be moved (moveService) or copied (copyService) among
nodes. In the former case, when a service is moved to another cell, it is registered in the
CoDirectory of the target CoCell and removed from the current directory. In the latter
operation, an event is associated with the original service, and all modifications in it
generate notifications to the copy. No modifications are allowed in the copied version,
only in the original service. These notifications are accomplished using the
Communicator service. Another possible use of the Communicator service, in the scope
of ServiceManager, is the possibility to create events for a notification when a specific
service gets registered in the directory.

4.6.1.6 Security

The Security service offers some operations to help users and applications to deal
with security in the ubicomp software infrastructure. When addressing this issue, we
tried to follow the characteristics determined in the comprehensive model (section
3.3.3). Besides security mechanisms being manageable and understandable by users,
due to the spontaneous interoperability of ubicomp, they are mainly an end-user
concern (DOURISH et al., 2004). With these characteristics in mind, we proposed the
Security service interface (Figure 4.15). The new operations appear in bold.

Figure 4.15: Security service interface

The public key management (addPublicKey, removePublicKey, and
getPublicKey) is used to provide end-to-end private communication. Components,
using security service, can easily share public keys. Internally, components can use their
private keys to encrypt or decrypt exchanged data, or to form a secure association
among devices. The methods for encryption and decryption are available through the

75

framework, i.e. not via web service. We chose this strategy, because the private key
must be kept local to the node and not exchanged via the network, in order to further
increase the security of the mechanism. In spite of this approach, not all security issues
have been solved: there remains the possibility of breaking into the node and obtaining
the private key.

The idea of also providing a secure channel, via createSecureChannel and
removeSecureChannel, is to offer a reliable channel. It could be used, for
instance, to perform a direct validation of exchanged public keys between two
communicating components. This secure channel is established using a symmetric key,
instead of the asymmetric public-key method used in the previous operations. Because
the cryptography method is symmetric, it can be employed by portable devices with
resource-limited capabilities (COULOURIS et al., 2005).

To make the establishment of a security channel more reliable, one possibility is to
pass an argument in the createSecureChannel method, signalizing that there is
no need to create the key, since the two communicating devices already share it. Thus,
no key is transmitted over the network, provided that both devices have the key. It can
be hard-coded in the device, or exchanged by a physically constrained channel, such as
infrared, laser, audio, or a barcode/camera method (for more information on the latter,
refer to KATO and TAN, 2007).

The communication using a secure channel takes place via sendS and receiveS,
classical methods for exchanging messages. Communicator and other Continuum
services employ these methods so that reliable communication is available throughout
the infrastructure.

The operation authenticate provides localized authentication in Continuum.
Only persons physically present in one CoCell can use the services available there. The
proper functioning of the operation depends on obtaining the pinpoint of the
authenticating person. The operation uses the context awareness service in order to
access this information.

The last operations are inherited from other preexisting EXEHDA services. The
grant, drop, and renew methods are used to deal with access control. Using these
operations, it is possible to make resources available to applications and users that are
located externally from the CoCell these resources belong to. On the other hand, the
log and trace functions are used for logging purposes, normally applied to the
debugging phase of application development.

4.6.1.7 Dependability

The Dependability service offers some operations that could be used to avoid
failures when they are more frequent or more severe than acceptable. Basically, two sets
of operations are provided: the first simplifies the recovery of failures, by using a
checkpoint mechanism; the second helps the establishment of redundancy for fault
tolerance purposes. The operations proposed are summarized in Figure 4.16. Other
mechanisms available in Continuum could also be used to improve dependability: the
secure channel operations of the previously presented Security service could provide an
alternative communication channel; the Cyber Foraging subsystem (section 4.6.2.2)

76

could be used to mask some uneven conditions; and the replication mechanism for
services in the Service Manager could be employed to improve availability.

Figure 4.16: Dependability service interface

Checkpointing is used to capture the execution state of a specific CoCell. The state
is saved in a tuple using the CoSpace service. This feature was inspired by a similar
functionality from One.World (GRIMM et al., 2004). The operation
addCheckpoint creates a snapshot of the environment state of a CoCell and saves it.
The complementary operation removeCheckpoint deletes the saved state. Finally,
the restoreCheckpoint operation reverts the current execution environment to a
previously saved one. As stated in Grimm et al. (2004), this method “simplifies the task
of gracefully resuming an application after it has been dormant or after a failure.”

The wrapRedundancy operation is used to include some redundancy into a
specific service. Here are some options available:

¥ Hardware redundancy: adding additional nodes that will execute the same
service;

¥ Design diversity (AVI!IENIS et al., 2004): adding software components that
execute the same function, possibly made with a separate design and
implementation;

¥ Time redundancy (AVI!IENIS, 1998): specifying a number of times to
execute a service, repeating the computation;

¥ Any combination of the previous possibilities.

The operation returns a new service that incorporates the chosen redundancies.
When using this service, all the redundant copies are executed a specific number of
times. If the execution involves returning a result, the final result of all replicas is
compared and, if it is the same, returned; otherwise, it could signalize a failure or the
value returned by the majority, according to a parameter passed to the
wrapRedundancy method. The unwrapRedundancy operation does the opposite,
i.e. it eliminates some (or all) redundancy of a specific service.

4.6.2 Adaptation Management

The Adaptation Management subsystem is responsible for context management in
the Continuum software infrastructure. It is composed of three services (Figure 4.17).
Adaptation control is an evolution of a previous EXEHDA service and has been
developed as a doctoral thesis at UFRGS (SILVA, 2008). The two other services are
new propositions made in the scope of Continuum and based on the previously
presented comprehensive architecture.

77

Figure 4.17: Adaptation Management subsystem

4.6.2.1 Adaptation Control

The Adaptation Control is the service in charge of adaptation in the Continuum
infrastructure. The service uses the ACTUS architecture, which provides a general
solution for adaptation control in ubicomp (SILVA, 2008). Based on definitions by
ACTUS, the presented service acts as an application shaper (SILVA, 2008), which
represents an interface of a specific binding solution to the proposal. The planned
service interface is presented in Figure 4.18. Although this module uses ACTUS, the set
of operations proposed are new.

Figure 4.18: Adaptation Control service interface.

The first three operations manage adaptation actions, which are, as defined in
ACTUS, behaviors that are associated with a specific state of some related context
elements (SILVA, 2008). The addAdaptationAction operation inserts actions
related to a specific component. In a complementary fashion,
removeAdaptationAction deletes some action associated with a component. The
listAdaptionAction method presents all actions related to a specific component.

The activateAdaptControl and deactivateAdaptControl functions
rule the start / stop of ACTUS. Once active, ACTUS issues adaptation actions
according to changes in the context. ACTUS chooses the order and timing of each
adaptation. Also, the architecture considers various metrics in this decision process,
such as agility of adaptation, stability of the system, and quality of service (SILVA,
2008). We can also force an execution of ACTUS’s Adaptation Control module by
calling the adapt function, which can possibly generate some adaptation action.

The last set of instructions is related to policies from the perspective of ACTUS. In
the proposal, a policy defines criteria for assessing adaptations suggested by ACTUS
(SILVA, 2008). The addAdaptationPolicy and removeAdptationPolicy
operations insert and delete, respectively, policies related to a specific component. On

78

the other hand, listAdaptationPolicy returns all policies related to a given
component.

4.6.2.2 Cyber Foraging

The Cyber Foraging service is based on the idea of Project Aura to amplify the
capability of devices with low processing power and limited storing capacity
(GARLAN et al., 2002). The service allows the apportioning of near machines as
surrogates, which can act as computing or data-staging servers (for more detail, refer to
section 3.3.8.2). The main operations proposed are listed in Figure 4.19.

Figure 4.19: Cyber Foraging service interface

The addSurrogate operation is used to register a node as a surrogate in a
specific CoCell. It can be subsequently deleted by the complementary
removeSurrogate method. When a node, typically a mobile one, needs a
computing or data-staging server, it may obtain it using the operation
getSurrogate. In this, the caller must specify if it needs a computing or data-
staging server (or both). If none is available, the return is NULL.

Once a surrogate server is returned, it can be configured by
setSurrogateParameter (which alters only one option) or
setSurrogateParameters (which alters a group of options). Complementary get
/ set operations (getSurrogateParameters and SetSurrogateParameter)
are also available.

To activate / deactivate a surrogate, we use the setSurrogateEnabled method.
The last function isSurrogateEnabled returns the current status of a particular
surrogate server.

4.6.2.3 Actuator

This service is intended for controlling actuators. It is inspired by the monitor
service (section 5.3.1), which is aimed at the sensor control. The idea of the API is
similar, but specifically targeted at actuators. The interface is presented in Figure 4.20.

The function getName is used to acquire the specific name of an actuator. Its
reference can be obtained via getActuator. There are also specific methods to
handle their parameters (getActuatorParameter, getActuatorParameters,
setActuatorParameter, setActuatorParameters), to activate/ deactivate
an actuator (setActuatorEnabled), and to verify if an actuator is enabled
(isActuatorEnabled). To obtain the current value of an actuator, we use the

79

probeActuator function. The last method, installActuator, is used to add a
new actuator to the system.

Figure 4.20: Actuator service interface

4.6.3 User Interaction

The User Interaction subsystem deals with the high level layers of the
comprehensive architectural model, namely invisibility and transparent User
Interaction. This subsystem is composed of four services, one of which has been
inherited from EXEHDA (Persistence service). Figure 4.21 presents the main services
of the User Interaction subsystem. Although the persistence service is derived from
EXEHDA, it has been improved by graduate research done at UFRGS (for more details,
refer to FRAINER, 2008).

Figure 4.21: User Interaction subsystem

4.6.3.1 Persistence

This service provides ubiquitous access to files in the Continuum infrastructure and
is detailed in Frainer (2008). The Persistence service integrates distributed file system
concepts with application-aware adaptation. The interface is defined in Figure 4.22,
with the new operations appearing in bold.

The primitives open, create, close, read, and write are, at first view, the
traditional file system operations available in every OS. However, they deal with
pervasive files (FRAINER, 2007). Firstly, a pervasive file is a file that could have many
copies spread among various devices, in a way that increases availability. Secondly, it
could have different versions, to facilitate adaptation. Finally, it can be composed of a
range of smaller files, making it easier to deal with larger files. The Persistence service
automatically manages these pervasive files. The metadata, managed with
getMetaData and setMetaData, consists of high-level pairs – {value, attributed}
–, which can be used to guide adaptation, increase availability, and specify conversion

80

possibilities. The normal low-level OS attributes are obtained and altered using
setAttribute and getAttribute, respectively.

Figure 4.22: Persistence service interface

The prefetch is used to increase file access performance, by creating new copies
of files that have a high probability of being used. The function can be called directly,
but the open function also uses it indirectly. The metadata of the pervasive file are
used to help with this operation.

The addVersionChoiceHeuristic and removeVersionChoice

Heuristic functions are used to manage the decision heuristics that will be used to
open a file. This heuristics is used to guide the decision as to which version should be
employed. The user can register (and unregister) different versions, using
addAlternateVersion (and removeAlternateVersion). Another
possibility is the dynamic creation of versions. These are obtained by using conversion
plug-ins (addConversionPlugin and removeConversionPlugin), which
specify how a file can be transformed from one type into another. The last pair of
operations (addTransferPriority and removeTransferPriority) is used
to define the priority of files in the Continuum environment.

4.6.3.2 Trust Manager

The Trust Manager service deals with trust and privacy in the Continuum
environment. We choose to keep this service in the User Interaction subsystem rather
than in the Distributed Execution one, because, normally, the goal of a trust manager “is
to provide a computational version of the human notion of trust” (SEIGNEUR, 2005),
i.e., the concept is more related to users and their interactions than to processing and
communication. The Trust Manager interface is shown in Figure 4.23.

The first operation (anonymizeData) is related to privacy. With this function, a
pseudonym is given to a set of data that are associated with a user. This can be
employed to manage the identities of users in the infrastructure, in such a way that, if a
data is intercepted, the real person cannot be identified. To insure this behavior, after
the use of anonymizeData, only the pseudonym returned should be used. Cas (2005)
affirms that this technique is not sufficient to guarantee privacy to the user, although it

81

is considered appropriate to at least avoid the necessity of user consent in every act of
giving personal data. Nevertheless, we believe that making data anonymous helps in the
direction of achieving privacy.

Figure 4.23: Trust Manager service interface

The next set of operations is more related with the provision of trust. According to
Seigneur (2005) to take this decision, two modules are needed: one that dynamically
evaluates the trustworthiness of an interaction based on evidences, and another that
assesses the involved risk, helping in choosing the action to be taken. The function
evaluateTrustworthiness is related to the first module, while
evaluateRisk is associated with the second one. A decision-making algorithm,
which takes into account evidences stored in a database, fulfills these evaluations. Thus,
components can use this result to decide whether an interaction should or should not be
made.

The remaining functions related to these two modules (setTrustworthiness,
getTrustworthiness, setRisk, and getRisk) are connected to the
management of an evidence database. Using these functions makes it possible to add or
obtain recommendations and observations connected to trust and risk information,
respectively.

For further detail on this service, we believe that additional studies have to be
conducted. For supplementary information on the subject, refer to Cas (2005), Cahill et
al. (2003), Robinson et al. (2005), Seigneur (2005), and Surie et al. (2007).

4.6.3.3 Interface Selector

The Interface Selector service helps in maintaining and creating a user interface and
the means of interaction for devices in the software infrastructure. The service stores
interfaces in an independent design approach. Those have to be converted to a user
interface (UI) of a specific device. The idea is that the framework layer addresses this
conversion. The service interface is presented in Figure 4.24.

Figure 4.24: Interface Selector service

82

The first three operations are related to the specification of interaction between the
user and the components of the infrastructure. Interactions are actions that services
present to users, and are described independently of device, service, and user interface
type (as in NYLANDER et al., 2005). In the article, Nylander and her colleagues
propose an XML compliant language to encode interaction. We suggest the adoption of
such language in Continuum. In the language, a group of eight interaction acts are
possible (NYLANDER et al., 2005): input to the system, output to the user, select from
a set of choices, modify information stored, create new objects, destroy existing objects,
start session with a component, and stop an interaction with a component.

Using addInteraction operation makes it possible to store an interaction
specification for a component. The complementary removeInteraction deletes a
specification from the infrastructure. The getInteraction and
setInteraction functions are used to, respectively, obtain and alter the behavior of
the interaction in the specification.

The last set of operations deals with the control of presentation information. It is
possible to specify (addInterface) or delete (removeInterface) the UI for a
specific component (also following the work of NYLANDER et al., 2005). As in the
case of interaction, the interface is platform independent and should be converted to a
specific environment (device, language, API, etc.). As in the previous set of functions,
getInterface and setInterface are related to the obtaining and changing of
the stored presentation. The final operation, generateInterface, creates a generic
presentation, based on the interaction specified for any given component. If no
presentation information is specified for a component, this function can be used to
generate a user interface with the default settings. We believe that providing a specific
presentation offers more control to the user, and probably a better experience.

To tackle the specific aspects of tangible interaction, more work has to be done.
There are some proposals with initial results that could be considered (HORNECKER,
2005; ROSS and KEYSON, 2007; STRINGER et al., 2005).

4.6.3.4 Ubiquitous Guru

The service called Ubiquitous Guru is in charge of dealing with invisible issues in
the Continuum infrastructure. This service addresses user attention, user intent, and
seamless integration. The interface proposed for Ubiquitous Guru is presented in Figure
4.25.

Figure 4.25: Ubiquitous Guru service interface

83

The first three functions manage the user’s preferences. They are used in this service
for obtaining user attention and intent, besides being used in adaptation and context
awareness. The addUserPreference and removeUserPreference are
respectively used to include and delete user’s preferences in the infrastructure. The
listUserPreference is used to present all preferences associated with a specific
user. Preferences have the format of a named pair. The first is the context for the
preference to apply, and the second, a scoring expression ranging from 0 to 1, whose
value is directly proportional to its level of desirability, as defined in Henricksen and
Indulska (2006). Not only do these authors provide a score, they also propose the use of
four special values instead: veto, indicating that this choice should not be selected;
obligation, denoting that this choice should always be selected; indifference,
representing an absence of preference; and undefined, signalizing an error condition
(HENRICKSEN and INDULSKA, 2006).

The next set of functions deal with tasks. This is in conformity with the task-aware
system proposed for seamless integration in the invisibility challenge description of the
comprehensive architecture (section 3.3.10). Operation addTask tells the
infrastructure what the user wants to do, removeTask deletes a specific item from the
To Do list, listTask presents the complete list, orderTask permits changing the
order of pending elements, and nextTask returns what is next on the To Do list,
deleting it. The use of tasks in Continuum is based on the work of Sousa et al. (2006) on
the project Aura. In Aura, tasks define explicit representation of user’s activities in a
high-level format, independent from the mechanisms that accomplish these activities.
Based on the user’s preferences, the system can choose the best available mechanism to
carry out the desired task. This is obtained in Continuum by the use of
suggestAction. Tasks are defined by the specification of the service needed and of
the related preferences, as in Sousa et al. (2006). In the original proposal, a vocabulary
is defined for the possible services. We propose the aggregation of this vocabulary in
the ontology designed for modeling the context. Further works should address this
topic.

The last group of primitives handles user feedback. They are used to better tune the
suggesting of actions. Sometimes, simply exposing the preferences may not lead to a
good matching between a task and a mechanism. By using feedback, users can give
information that could modify future choices in the system. The feedback takes the
same format as user preferences. The only difference is that it is always associated with
a suggested action. The addUserFeedback and removeUserFeedback functions
insert / delete feedbacks in Continuum, while listUserFeedback shows all
feedbacks given by a specific user.

4.7 Framework

The Continuum framework is aimed at addressing design time abstractions needed
for the implementation of ubiquitous software. Our proposal suggests that this layer
deal with essential characteristics presented by the comprehensive model, incorporating
some features from ISAMadapt (AUGUSTIN, 2004). This framework must be further
detailed in a future work. Here, we present some general considerations for the
development of this layer.

84

 Continuum framework is intended to help the development of ubiquitous
applications using middleware services. It is also its aim to simplify the use of the
underling middleware services. There are some elements that integrate this framework:

• Application Programming Interface (API): it is composed of a set of
services that uses the API provided by the middleware layer. The framework
API specializes the interface and simplifies its use, providing some private
services not available from the middleware. In the framework, some
information is maintained in order to preserve an environment among
different calls for middleware services. Another characteristic of the
framework API is to provide a work model (as defined in BERNSTEIN,
1996). In this model, the framework does not have to offer all the services
available in the middleware, but rather only those that are significant to a
specific application or environment;

• User Interface (UI): it provides a look and feel adapted to the platform
being used for ubiquitous application design. This UI can help the
development of applications, with icons, layers, and appearance that are
suited for this design task;

• Tools: they represent a set of generic applications to simplify the use of the
framework. It may be composed of editors, help, debuggers, etc. The tools in
Continuum framework are aimed at programmers. One of the available tools
is the Execution Profiler, which assists in the parameterization and
deployment of services in the infrastructure.

Based on these elements, and also on the design time characteristics of the
comprehensive architecture, we propose in Table 4.4, some features for the Continuum
framework. The table summarizes each feature, along with its corresponding
characteristics, and the framework element that should be used to attain this objective.

In the design of Continuum framework, we can employ the language abstractions
proposed for adaptation in the perspective of ISAMadapt. We list here these
abstractions, along with the framework element that can address it:24

• Context element definition: ISAMadapt proposes a UI for the definition of
templates to guide the execution of context services. In addition, the proposal
uses environment variables to help with context identification. These
features may be included in the abstract interaction element characteristics of
the Continuum framework;

• Expressing adaptive behavior: in ISAMadapt, the command onContext is
defined for this task. It can be incorporated in the API of the adaptable
application characteristics;

• Adaptive being and method: it comprises a component or a function, in
ISAMadapt, whose code is defined by context. This feature can be used both
in the definition of the abstract services and in the adaptable application
characteristics;

24 For a detailed description of ISAMadapt language abstractions, refer to AUGUSTIN
(2004).

85

• Adaptation commands: a group of adaptation methods is described in
ISAMadapt that might be added to various frameworks API. Among the
proposed commands, we highlight move and clone, which may be included
in mobile code and data design;

• Adaptation policies: they define a set of guidelines that direct the adaptation
decision in ISAMadapt. They could be employed in the adaptable
applications characteristics of the framework.

Table 4.4: Proposed features for Continuum framework

Design time
characteristics

Framework
element

Main functionality

Device-independent API Exposing the same set of interfaces for different
hardware and drivers

Open standards API Employing published and standardized interfaces for
service access, especially for communication

Scalable solutions without
bottlenecks

Tools Assisting with distribution, replication, and caching to
improve the performance of frequently used resources

Verification Tools Providing diagnostics and tests, facilitating fault
detection and removal during design time

Security design API Presenting an interface to help the security project at
the design stage, enforcing ubicomp aspects

Privacy standards Tools Reinforcing privacy by presenting procedures that
should be observed in the collection of data, including
specific jurisdictions

Trust reasoning Tools Evaluating the trust based on available information at
design and suggesting recommendations and
observations to be considered during run time

Spontaneous component
design

Tools / UI Offering a description language and user interface for
the development of spontaneous components

Mobile code and data
design

API Supporting the project of mobile code and data

Abstract services API Presenting a set of generic services for the
development of software, helping with the
implementation of context-aware applications

High-level interfaces API Generalizing the access to sensors and actuators to
ease their use in ubicomp software

Abstract interaction
elements

API / UI Helping specifying elements that will be used in the
adaptation during execution

Abstract user interfaces UI Designing user interfaces suited to different devices
Interact devices API Improving the way the infrastructure addresses the

interaction style of different devices
Adaptable Applications API Easing the development of ubicomp applications,

providing ways of defining adaptable code

In the next subsection, we concentrate on the description of the Execution Profiler
framework tool. The further development of the Continuum framework is listed at the
end of this work as an intended future work.

4.7.1 Execution Profiler

Execution Profiler is a framework tool intended to configure a CoDimension in
Continuum. In this tool, the user can define the environment in which their ubicomp

86

applications will execute, selecting a group of settings and parameterizing the
deployment process.

The deployment setting is divided in three categories: hardware, software, and user
settings.

The hardware category defines device organization and role in the Continuum
infrastructure. In this, CoCells are defined, with their CoNode, CoBase, CoMobi, and
CoGadget. The types of relationship (aggregation, composition, and association) are
also specified here. This specification is not static, but rather it is the initial organization
available after system bootstrap.

The software part configures which services will be initially available in the system
and at which location. We also inform if the service should be preloaded or loaded on-
demand, according to infrastructure needs. Later, services can be moved, copied, or
reconfigured dynamically. In this category, the components that will be used are also
determined with its parameters.

The final configuration is related to user settings. In this, the initial registered
CoPersons are defined with their identifiers. Also, we set privacy, security policies,
permissions, and roles of users in the Continuum infrastructure. Dynamically, more
users can be added to the system.

The set of all the configurations with the hardware, software, and user setting
categories is called an execution profile. In the definition of this profile, we should
consider the checklist of questions described in Hansen et al. (2006). Briefly, this
checklist defines a group of issues, for each category, that should be observed during
real-world deployment (HANSEN et al., 2006):

• Hardware: cost (equipment, realization, special devices), security (location,
risks, protection), power (requirements, recharging, consumption), network
(connections, infrastructure, latency), space (size, location, convenience),
and safety issues (contingency plans, dependability, interference);

• Software: transmission (transference, scalability, update processes),
debugging (fault detection, error detection, failure detection), security (risks,
confidential information), integration (third-party components,
communication), performance (speed, scalability, requirements), fault
tolerance (recovery, state storing, notification), and heterogeneity
(communication, difference);

• User setting: usability (quantity of users, interface, ease of use), learning
(support, helping, tutorials), politics (control, access), privacy (dealing of
personal information), and adaptation (resistance, changes).

Most of the issues listed here are supported by Continuum services. It is important
that when defining the execution profile, these issues are considered. The idea is that the
Execution Profiler tool could reinforce this checklist, making deployment an easier
process. For this purpose, we suggest the presentation of the checklist to the users and
their manual check of each issue, as a way to help with deployment planning.

Figure 4.26 summarizes the Execution Profiler tool, presenting the three categories
deployment settings, the checklist, and the final result, which is the execution profile.
This profile is then used to accomplish the initial deployment in the infrastructure.

87

Figure 4.26: Execution Profiler organization

PART II:
CONTINUUM AS A CONTEXT-AWARE SYSTEM

5 THE ARCHITECTURE OF CONTEXT AWARENESS

In this chapter we describe the design of context awareness in Continuum software
infrastructure, addressing the specific focus of the current thesis. The proposed
architecture is built on the foundation established in the previous chapter, in terms of
general infrastructure, models, and services. We start by giving an overview of the
architecture, followed by a proposal for a context model. Our context model is based on
an ontology, which is fully detailed in the sequence. Lastly, we discuss the Context
Awareness subsystem and its services.

5.1 Overview

The major concern in this thesis is designing the Continuum architecture of context
awareness. Our current proposal addresses many limitations of ISAM and EXEHDA
middleware:

• The focus is mainly on context gathering, rather then on its modeling;

• The context is represented in a markup scheme, in an ad hoc manner. This
choice is not very expressive and does not meet most context awareness
requirements (STRANG and LINNHOFF-POPIEN, 2004);

• The user is forced to manually define context profiles for each application
and every desired action;

• The representation of context is mixed with its use;

• The quality of context information is not considered;

• The context is considered in the previous follow-me vision, which replicates
the user desktop session.

With these limitations in mind, we propose the context awareness architecture of
Continuum, which has many advantages over the previous project:

• Considering a variety of contextual information;

• Providing a formal representation for context information in an application-
independent manner (including the possibility of detecting implicit context);

• !!!Considering user preferences;

• Storing a historical context data;

• Providing a distributed architecture for context storage and use;

90

• Making available a discovery service to find sensors;

• Easing the interoperability with a common communication mechanism based
on web services.

To attain its objective, Continuum redefines two EXEHDA services. The discovery
service is used to dynamically locate context components. Moreover, the monitoring
service offers interaction with context sensors and the transformation of local data. It
also provides notifications about relevant changes.

Several new services are proposed in the Context Awareness subsystem:

• Processor: responsible for filtering, i.e., eliminating errors from gathered
data and making some low-level derivations of context. It transforms sensed
data into a more high-level representation and also provides uniform
representation for upper layers, thus hiding the details of sensors. In this
service, the explicit context is obtained;

• Aggregator: aggregates contextual information related to real world entities.
It incorporates user preferences and addresses some quality characteristics of
gathered context. It also obtains the context related to entities;

• Contextdb: manages the storing and representation of context information. It
stores generated data along with points in time when these data were created.
Also, it stores all available context sensors according to the type of
information they provide. This service enables the user to infers the context,
reasoning over the database;

• Context Action: obtains information from sensors. This service can also be
employed to subscribe to sensor changes, using event-driven communication
(via the Communicator service). When a modification occurs in a sensor, the
context action service informs its subscribers.

The first step when dealing with context is defining the model we will utilize for its
representation. The next subsection covers this aspect.

5.2 Context Model

In order to represent, store, and utilize context data, we need first to define a context
model. For this, we must have a machine-processable structure of the real world
context. Among the various context model approaches (to know them refer to section
6.1.3) we chose an ontology-based model.

Ontology is an explicit formal definition of a common vocabulary and its relations
to a specific domain of knowledge or discourse (GRUBER, 2007). Developing ontology
may include several steps (NOY and MCGUINNESS, 2001):

• Creating classes to describe concepts in the specific domain;

• Defining a class-subclass hierarchy, arranging the concepts in a taxonomy;

• Characterizing the slots (also called roles or properties), i.e. the properties of
concepts, such as features and attributes, and the allowed values for these;

91

• Describing the facets (also called role restrictions), which are the definitions
of features that a slot can take, such as number of values (cardinality), value
type, and range;

• Generating individual instances for each class, filling in the slot values.

The use of ontology enables structuring information and relationships, forming a
knowledge representation. This description is the base for a Semantic Web (BERNERS-
LEE et al., 2001): an extension of the human-targeted web that brings meaning to
contents in a software-understandable way.

There are several languages for expressing ontology in the context of a Semantic
Web. Among those, we highlight the OWL Web Ontology Language (MCGUINNESS
and HARMELEN, 2004). OWL is a W3C standard for processing the content of
information needed by an application. This standard adds to a stack of other W3C
recommendations related to the Semantic Web: XML, XML Schema, RDF (Resource
Description Framework), and RDF Schema. According to McGuinness and Harmelen
(2004), OWL adds to this stack of standards additional vocabulary for expressing
properties and classes. The choice for OWL seems natural, since it is a W3C
recommendation. Besides, OWL promises high expressiveness, guaranteeing
completeness and decidability, and is adopted by a vast range of tools (AGOSTINI et
al., 2006).

We chose this model because ontologies are the most promising approach for
context representation, thanks to its high expressiveness and reasoning techniques
(BALDAUF et al., 2007; STRANG and LINNHOFF-POPIEN, 2004). In the next
subsection, we will detail the ontology proposed for Continuum.

5.2.1 Context Representation

To define the ontology for context representation, we followed the methodology
proposed by Noy and McGuinness (2001). We started by defining the domain and scope
of the ontology we intend to propose for Continuum. The planned ontology will be used
for modeling entities that are involved in a ubiquitous application. It will be used by a
software infrastructure for ubicomp and must be general enough to allow modeling a
vast range of applications. We should model all entities used by the software
infrastructure, including places, people, and things. Additionally, we must consider the
abstractions proposed for modeling the real world in Continuum (section 4.3). We can
represent the contextual information in the environment and use it for context awareness
and management (including adaptation), via the designed ontology.

To help defining the scope of the ontology, Noy and McGuinness (2001) suggest
listing competency questions, i.e. issues and subjects which should be answered by a
Knowledge Base (KB) built from the designed ontology. Appendix C presents the list
of competency questions proposed for Continuum context representation.

As the second step of the methodology, we should consider reusing existing
ontologies. In this process we consider some libraries of public and reusable ontologies.
After our study, we chose to employ some existing ontologies in Continuum:

• DAML-Time: an ontology for representing temporal content and properties
(HOBBS and PUSTEJOVSKY, 2003). It includes the representation of time

92

instants, time intervals, “before” relations, interval relations, linking time
with events (provided that there is a specific ontology for event
representation), and calendar units;

• SOUPA Space: an ontology for representing special relations, mapped from
geo-referenced coordinates (CHEN et al., 2004). This ontology includes the
description of geographical space, region, location coordinates, and GPS
(Global Positioning System) information;

• SOUPA Event: an ontology designed to support event activities, including
occurrences and schedules (CHEN et al., 2004). It provides the
representation of an event along with its temporal and spatial information,
using the ontology formerly presented;

• REI Policy: an ontology created for representing policies, including
constructions for rights, prohibitions, obligations, and dispensations
(KAGAL et al., 2003). In this ontology, we define actions and conditions,
which are restrictions imposed on actions.

The following methodology stage consists in listing import terms in the perspective
of the proposed ontology. We start the list with the terms used in section 4.3, where we
proposed a representation of the real world in Continuum. In the sequence, we listed
terms that were important to our work, such as time, location, and event. The complete
list of terms, with their definitions, is presented in Appendix D.

Next, we defined the classes and their hierarchy in the proposed ontology. Figure
5.1 shows the result. In this representation, we used the same notation as Gu et al.
(2004). The notation is very similar to the UML class diagram, except that classes are
represented by ovals instead of rectangles. As in the original diagram, a hollow triangle
shape on the supertype class end of the line represents a generalization (“is a”
relationship). We employed the top-down approach (USCHOLD and GRUNINGER
apud NOY and MCGUINNESS, 2001) to develop the class hierarchy: starting from the
most general concepts in the ontology, and successively specializing them. We used this
approach because we had a systematic top-down view of the domain we are modeling.

In the figure, we follow the representation proposed for modeling the physical world
in Continuum (according to section 4.3), adding classes, which are needed for context
description purposes. The hierarchy headed by the Entity class represents all
distinguished entities in the real world: people, things, and places. We named all the
classes using singular nouns, such as Thing and Place. Also, instead of creating a class
named Person, to represent people, we chose to name this class Being, allowing for
future extension, and then representing other kinds of living organisms beside persons,
such as animals and plants.

The main Continuum abstractions, related to entities, are present in the figure:
CoPerson, as a subclass of Being; CoDimension and CoCell, as subclasses of Place;
CoNode, CoBase, CoMobi, and CoGadget as subclasses of Thing. We also added the
class Device, as a superclass of all abstractions for things used in Continuum, to
generically represent any kind of node. Finally, we added two classes for representing
specific kinds of CoNodes: Sensor and Actuator. They represent information related to
these particular devices.

93

Another group of classes in our proposed ontology does the mapping for the
already-existent ontology suggested for reuse: Event class maps for the SOUPA Event
ontology; Policy class corresponds to the main class in the Rei Policy ontology;
Timestamp is the equivalent of the head class of the DAML-time ontology; and Space

class is the same as the SOUPA Space class. Because of their equivalences, these
previously mentioned classes are represented with an equivalence symbol (!) in the
figure.

Figure 5.1: Class hierarchy of Continuum ontology

We further specialize the Event class, proposing the Action class. In our proposal, an
Action is a particular type of event performed by Beings. The remaining classes
describe some characteristics used by the middleware: Resource expresses the attributes
of Devices, such as available memory, processor speed, and so on; Component typifies
all software components, i.e. pieces of software registered in Continuum, which can be
a Service or a plain software component, named Application.

The definition of the properties (or slots) of the classes is the next step in the applied
methodology. We employ the same representation used before (from GU et al., 2004).
The additional graphical symbol used for property is a filled triangle shape on the
contained class end of the line. Also, we used a curved line for this representation,
instead of the straight one used for generalizations. Figure 5.2 presents the class
hierarchy with the main properties. Observe that not all properties are represented in the
diagram, only those that indicate a relationship between classes. Other intrinsic and
extrinsic properties were postponed to the implementation phase.

The main relationships between entities are presented in the figure: performs,
indicating that a Being carries out an Action; isAt, denoting the Place of a Being or a
Thing; location, signalizing the specific pinpoint of an Entity in a Space; uses, meaning
that a CoPerson is utilizing a device; aggregatedTo, associatedTo, and composed,
specifying which type of relation (aggregation, composition, or association) a Device
has with a CoCell; contains, representing the Resources offered by a Device; provides,

94

associating software components with Devices; and finally, emcompasses, representing
the composition among CoCells and for the outermost CoCells, their composition in a
CoDimension.

The other relationships presented in the figure are related to Actions and Events. All
Actions in our ontology should follow a Policy, to guide their behavior. Also, as an
Actions is a specific type of Event, it always occurs with an associated Timestamp.

Figure 5.2: Continuum ontology with relationships

The last two steps proposed in Noy and McGuinness (2001), respectively to define
the facets of the slots and to create the instances, are also delayed to the implementation
phase. In the next subsection we analyze how the context is stored.

5.2.2 Context Storage

In Continuum, we propose the storage of context in a relational database. We choose
this strategy, because databases are a very efficient way of finding information and their
relationship. Additionally, it has been proved that we must use database for ontology
storage to overcome various problems associated with the access of structured data
(LUBYTE, 2007). For instance, the SQL (Structured Query Language) interface is an
adequate way of querying for information.

In our work we propose the conversion of the Continuum ontology into a relational
database. Some current works address the opposite problem: how to convert a relational
database into an ontology (XU et al., 2006; LUBYTE, 2007) or how to use an ontology
to make the integration of heterogeneous databases (DOU and LEPENDU, 2006). One
of the exceptions is the work of Sugumaran and Storey (2006), which proposes the use

95

of ontology for database design. We follow some steps proposed in their work to
achieve our context storage.

The first step in this process is transforming our proposed ontology into an entity-
relationship (E-R) Model. An E-R model abstracts the real world into a group of
objects, named entities, and their relationships. This is close to the idea of classes and
relationships in an ontology model. Entities are created based on the classes identified
in the Continuum ontology. The relationships among those classes become relationships
among the entities. Once the E-R model is obtained, the second step is to convert it into
a real database. There are well-defined rules to map this model into a relational database
(SUGUMAN and STOREY, 2006). The design of the E-R model for Continuum is
postponed until the implementation phase, since it must include all the attributes, which
are the properties with their facets in the ontology.

Since we already have a method for storing ontology in a database, we can use SQL
for the management of data in Continuum. SQL is a powerful and standard solution for
data retrieval in a relational database. Their use in ubiquitous computing for dealing
with context is a natural and straightforward one.

The next challenge in the use of context storage is how to establish a location and
the distribution of the database. For this purpose, we suggest that each CoCell in the
infrastructure keeps a context database. In our proposal, the context related to each cell
is stored inside it. This includes all the entities that are presented in that cell (people,
things, and other cells) and also all the remnant information related to it. The database is
not just a snapshot of the current context situation. Since there is timestamp data, it
keeps all the historical context of the cell. When a person or a device moves from one
CoCell to another, the data is updated to register that this entity is not presented
anymore in the source CoCell and it is stored in the database of the destination place.

Context information is, by default, never deleted. This introduces the overhead of
storing a large database and also maintaining it. Furthermore, for availability purposes a
single copy per cell can introduce some problems. We believe that current replication
solutions and the growing size in storage devices, along with its decreasing in price,
may help to address this drawbacks.

The Contextdb service, as already pointed out, is responsible for storing context.
This service introduces a front-end to help finding context information. Whenever a
query is made, it starts by searching in the current Cell’s database and, if the data is not
found, it propagates the query to the cells composed in it. In the case of another failure
in finding the context, the propagation is then sent to its outer cell. Since the locality is
always related to context, this seems to be a straightforward way of searching for
context data. The idea is that all queries in Continuum follow the hierarchy imposed by
the CoSpace organization.

 Figure 5.3 shows a sample CoDimension of a University Campus, and presents the
steps followed during a context search. In the example, a query (“Where is Lucas?”) is
made in the “Informatics Institute” CoCell to find a CoPerson, whose property name is
equal to “Lucas.” The first search is carried out in the current cell. Since the CoPerson
is not physically present there, it propagates the search, initially in its composed cells
(“Lab. 12” CoCell in the sample), then in the outer cell (“University Campus” CoCell).
Since the CoPerson is also not present there, the outer CoCell propagates the search,
following its inner hierarchy. In the end, “Lucas” is found at the “Cafeteria” CoCell,

96

inside the “Humanities Faculty” CoCell. Instead of querying a context information in
the present, we could have questioned an historical information, for instance “Where
was Lucas yesterday?” To satisfy this specific query, the infrastructure should search all
CoCells presented in the sample CoDimension.

Figure 5.3: Sample of a context search

5.2.3 Context Utilization

There are several ways to use context in Continuum. To illustrate this use and to
increase the understanding of the interaction among various context-related services, we
present here the main workflows related to context. We used the UML activity diagram
(FOWLER, 2005) to attain this objective. We believe that this notation is adequate for
our purpose because we want to present the flow of work and interaction among the
various services related to Context. Also, it represents a high level vision, which is also
the aim of this section.

The first workflow related to context occurs when we have a change in some
monitored condition, i.e., when a sensor detects some alteration. The activity diagram
that represents this action is shown in Figure 5.4. The detection is taken by the Monitor
service, which interacts directly with sensors and fetches the context change from it.
This low-level context is transferred to the Processor service, which filters it, ensuring
quality attributes and keeping only the relevant information, and passing it on to the
Aggregator service. This service, based on the representation used, transforms this
context. Then, context is associated with entities in the system and the considered user
preferences. According to preferences, context can be shaped in a specific format. In the
sequence, the Context Action service verifies if there is any subscriber to this context
information; if so, changes are sent to the subscriber. Concurrently with the execution
of this service, the storing of context data in the Contextdb is performed.

The next workflow starts in the context action service, when a subscription to a
particular context is requested. Figure 5.5 shows the activity diagram. The following
step is then querying the database to see if there is a sensor in it that could provide the
information required by the subscription. If there is no sensor stored, the Discovery
service is activated to try to find a sensor that can capture the context needed. If the
sensor is found, either in the database or by the use of a discovery mechanism, the
subscription is associated with the sensor in the context action service. When we

97

discover a new sensor, there is the additional possibility of not finding the desired
context. In this case, the information that a context cannot be obtained is returned. In
contrast, when a sensor is found, it is always stored in the database for future use. A
situation that is not represented in the workflow may occur when a sensor fails or ceases
to be available. This condition is detected by the Monitor service, which uses the
Contextdb to modify the status of a sensor. Also, subscriptions to this sensor are either
cancelled or transferred to another equivalent unit. When a sensor becomes unavailable,
future subscriptions cannot obtain it directly from the database, but rather have to carry
a discovery operation to find a new one or to check if the sensor became functional
again.

Figure 5.4: Activity diagram of context change

Another possible workflow is context search (activity diagram in Figure 5.6). The
search starts by trying to find a context, reasoning over the database. If the inference is
successful, Contextdb returns the context directly. If not, and if the desired context is
not satisfied with a specific resource, it tries to locate a sensor in the database that could
meet the request. If it is found, a probe is done into the sensor (presented in the next
activity diagram) and the context is returned; if not, a discovery is issued and in the case
that a sensor is found, it is stored in the database and a probe is started. If the sensor is
not available, the information that a context cannot be found is returned.

Sometimes, the context we are trying to find is itself a resource, and not obtainable
by a sensor (e.g. a particular device). In this case, if the resource is not found in the
database, instead of searching for a sensor, Continuum tries to directly discover the
resource itself. If it is found, it is stored in the database and the resource returned. If not,
the information signalizing that the context cannot be found is then sent back. The chief
difference between this workflow and the previous one is the synchronous nature of the
former in contrast with the asynchronicity of the latter.

98

Figure 5.5: Activity diagram of context subscription

Figure 5.6: Activity diagram of context search

99

The last activity diagram (Figure 5.7) shows a context probe workflow. This
operation consists of a direct synchronous verification of context information in a
sensor. It starts in the Context Action service, where information from the sensor is
obtained by instructing monitor service to issue a probe in the sensor. After the sensor
has returned the information, it follows the same steps as the first workflow: filtering
and transformation (Processor service), association to entities and incorporation of user
preferences (Aggregator service), and the concurrent actions of storing in the database
(Contextdb service) and returning context (Context Action service).

Figure 5.7: Activity diagram of context probe

In the next section, we further describe the context services, presenting each
individual service, along with the description of its interface.

5.3 Context Awareness Subsystem

The Context Awareness subsystem congregates all services related to context in the
Continuum infrastructure, as shown in Figure 5.8. There are two services based on
previous EXEHDA components: Monitor and Discovery. These components have been
further improved in graduation research projects done at UFRGS (refer to FEHLBERG,
2007 and SCHAFFER FILHO, 2005, respectively). The other services have been
created specifically for Continuum, considering the various aspects needed to address
context awareness (as defined in the comprehensive architecture in chapter 3).

100

Figure 5.8: Context Awareness subsystem

5.3.1 Monitor

The Monitor service is in charge of interacting directly with sensors and extracting
raw data. It is based on two previously EXEHDA services, namely Collector and
Monitor (YAMIN, 2004). In Continuum, we choose to integrate both services because
the differences between them were very subtle and, in the new architecture proposed for
context awareness, no visible gain is obtained by splitting those services. Additionally,
we considered the improvements made by a graduation research done at UFRGS,
named MultiS (Multi-Sensor Context Server) (FEHLBERG, 2007). The interface
proposed for the Monitor service is presented in Figure 5.9. The new operations are
presented in bold.

Figure 5.9: Monitor service interface

The first function, installSensor, is used to add and initially configure new
physical sensors to the infrastructure. After the installation, configuration can be altered
by the setProperties operation, or checked with getProperties. Later, if we
want to remove an installed sensor, we can employ unistallSensor. To list
information related to a specific sensor, we use getSensor. If we want information
for a group of sensors that adhere to certain characteristics, the getSensors function
can be employed instead. To activate / deactivate sensors, we use enableSensor and
disableSensor, respectively. Sometimes, we just need to check if a sensor is
enabled. This action is accomplished using getStatus.

To obtain the raw data, the first alternative offered is probeSensor. This function
returns the values sensed at that particular time through synchronous communication.
Asynchronous interaction is also possible by the use of consumers. A consumer
subscribes to a particular sensor, and all new information is notified via a callback. The

101

addConsumer and removeConsumer operations deal with the addition / deletion
of consumers to the infrastructure. This asynchronous communication is implemented
using the Communicator service previously presented (section 4.6.1.3).

The last set of functions is used to create (addSoftSensor) or delete
(removeSoftSensor) software sensors. These are special kind of sensors that are
implemented in software. They are also named virtual sensors (INDULSKA and
SUTTON, 2003). They are created as Continuum software components and gather
conditions in the system that can be obtained without special hardware, such as
available memory, processor load, and so on. A parameter to these functions defines the
software component that acts as a sensor. These operations are conceptually the same as
the function pair to install / uninstall sensors, the only difference is that they manage
software sensors. After the addition of software sensors, the same group of operations
that manage normal hardware sensors can be employed to both types of components.

5.3.2 Discovery

The Discovery service is responsible for resource detection in Continuum
infrastructure. A resource in Continuum is either a device represented in the modeling
of the physical world in the infrastructure, such as CoNode, CoMobi, etc., or special
purpose devices, i.e. printers, scanners, monitors, among others.

This service is based on a previous graduation research project done at UFRGS,
named PerDiS (Pervasive Discovery Service) (SCHAEFFER, 2005). The work
improves the preceding EXEHDA Discovery service. PerDiS deals with generic
resources, which are specified using XML. In Continuum, we extend the use of PerDis
to find sensors. In EXEHDA, sensors were added manually to the middleware. The
interface proposed for the Discovery service is presented in Figure 5.10.

Figure 5.10: Discovery service interface

The registerResource and removeResource operations manage the
addition / deletion of resources in Continuum. As a parameter, these functions receive
the resource description in XML, according to the specification defined in Schaeffer
(2005). Resources in Continuum, as in PerDiS and EXEHDA, can have an associated
lease, so that they periodically renew their register. This is accomplished using
renewResource. A lease is a time limit established between the component that
registers the resource and the Discovery service. Before this time expires, the
component must renew its lease with the service; if it fails to renew, the service
removes the resource.

Differently from PerDiS and EXEHDA, there is no obligation to use lease for all
resources. More stable resources could not use this feature, reducing the number of

102

messages in the system. Thus, we reduce the utilization of network bandwidth and
energy, even if we lessen the timeliness. If at some point a component becomes
unavailable, it can be detectable and then a discovery operation can be launched again
to find an equivalent or approximate resource. This detection occurs by using a timeout
mechanism. After a limited number of retransmissions, the infrastructure assumes there
has been a failure, even though it cannot distinguish between a network and a process
failure. Moreover, this failure model does not guarantee that the message sent will be
received.

To discover a resource, we use findResource. As a parameter to this function,
we specify the search criteria. The format for these criteria was defined in Schaeffer
(2005), based on state of the art proposals for service discovery, and combining
characteristics of expressiveness and interoperability. Furthermore, this operation
enables the user to find resources by their name (as in a white pages service) or by some
attribute (as in a yellow pages service). The search criteria can also be used to
asynchronously find resources that adhere to it. For this purpose, we can use
addListener. This operation adds a listener for a particular type of resource using
the Communicator service. The listener can be deleted using removeListener.
Whenever a resource is found, either synchronously or asynchronously, an identifier is
returned to the caller. This means that the resource was found, but does not imply in any
allocation or reservation (YAMIN, 2004; SCHAEFFER, 2005).

The allocation of a resource is accomplished by calling requestResource
(previously named allocResource and presented in EXEHDA’s ResourceBroker
service). This additional step informs the Discovery service that a certain component is
trying to use a resource. Depending on the type of use, shared or exclusive, the access
can be granted or denied. When a resource is allocated exclusively to a component,
others cannot use it. To all mutual exclusive access, a time limit is associated; when it
expires, the user of the resource is notified and its access revoked (YAMIN, 2004).

If a resource is being shared by more than one component, this access must be
canceled before the Discovery service grants exclusive access. However, there is no
problem in granting additional shared access when a resource is already being jointly
used. On the other hand, the exclusive access is only possible for resources that can
cause race conditions or other related synchronization problems. This is specified when
a resource is added to the Discovery service.

Discovery and Monitor are considered low-level services in the Continuum
infrastructure. Programmers should use the Contextdb and Context Action services
instead, to respectively find context information, and obtain or subscribe to sensor data.
These services then employ Discovery and Monitor as needed. Another consideration,
specifically related to Discovery, is that in the original planning of PerDis, user
preferences could be used in the discovery process. We moved the consideration of user
preferences to another service (Aggregator), in order to benefit from their use in various
resources simultaneously.

5.3.3 Processor

This service is responsible for converting low-level sensed data into a high-level
context representation. This is a requirement called context transformation, as already

103

defined in section 3.3.7. It converts the data received by sensors to a format that can be
stored in the database, using the ontology proposed for context representation. In this
service, it is also possible to obtain explicit context directly from sensors. The service
interface is presented in Figure 5.11.

Figure 5.11: Processor service interface

The first four operations control the filtering process of sensed data. The
filterSensedData function takes the data received from sensors and returns a
filtered new version. This process involves modifying the source data according to
parameters defined by setFilterParameters. To obtain a specific parameter, we
use getFilterParameters and, to obtain all configured parameters, we employ
listFilterParameters.

There are five possible parameters for the filtering operation: noiseReduction, which
defines a function to be applied in the sensed data to reduce interference; validRange,
which specifies an interval for the sensed data; errorRange, which defines an interval
for the sensed data to be considered as erroneous; ttl (time to live), which characterizes
a time limit for the validity of sensed data; and accuracy, which describes the deviation
degree from the correct solution for the sensed data (in case of hardware sensors, it is
normally specified by the manufacturer). As observed, some parameters alter the final
sensed value, while others aggregate properties to the sensed data. These properties can
be used as quality metadata. More than one parameter can be added to a filtering
operation; if there are conflicting parameters, an error is returned.

To generate a context from the raw data, we use transformToContext. This
function produces a context in the format proposed by the ontology definition. If the
sensed data has been previously filtered, it also incorporates the added properties and
considers as input the value already modified by this filtering process.

The last function, obtainExplicitContext, returns the explicit context. This
consists of the context returned directly by the sensor, after the filtering process. We
added this function, because we believe that it could be useful for applications requiring
to consider the data acquired by a specific sensor, without additional inference,
aggregation, or transformation.

5.3.4 Aggregator

The Aggregator service combines context information from various sources in a
more detailed and accurate context (context synthesis, according to the requirement
defined in section 3.3.7). In this process, the service considers user preferences. The
Aggregator also provides context generated by the combination of multiple sources. The
interface proposed for this service is in Figure 5.12.

104

Figure 5.12: Aggregator service interface

The addToContext and removeToContext operations respectively insert and
delete context associated with a particular entity. By using the first operation, we can
merge context data obtained from different sources. The second operation removes
sensed data from previously generated context for a specific entity. With the
combination of context from different sources, we may obtain a better context result.

The way in which data will be combined to form the final aggregated context is
configured by using addPreference and removePreference. While the former
adds a new preference to the service, the latter removes it. In case of conflicts, an error
is returned. To obtain a set of preferences related to a particular aggregation, we can
use the listPreference function.

There are seven possible preferences we can specify to obtain the aggregated
context. Some establish equivalence properties, i.e., settings that guide how the
infrastructure will accomplish the aggregation. Other preferences define corrections to
be applied during aggregation. The preferences are configured according to different
parameters: entiEqu – contexts are considered equivalent if they belong to the same
specified entity or entities; posiEqu – contexts are aggregated if they are at the same
location or location range; timeEqu – aggregation is realized only if it occurs at the
same time or within the same time interval; condEqu – the equivalence is only tackled if
some user specified condition, passed as an additional parameter, is observed; propCor

– in the aggregation process corrections are made according to filter parameters
(validRange, errorRange, and ttl) ; acurCor – the filter parameter accuracy is considered
in the aggregation process following some preferred configuration; and udefCor –
additional corrections are made to the aggregated value according to user-defined
settings.

The last function (obtainEntityContext) returns context related to a specific
entity. According to the definition of Indulska and Sutton (2003), this operation acts as
a logical sensor, combining information from different sources, either physical or
virtual.

5.3.5 Contextdb

Contextdb is a service in charge of managing the context database. It has the
traditional SQL data manipulation language. It also introduces an additional function for
inferring context, reasoning over the database. Contextdb covers the category of context
service called context query (as defined in section 3.3.7), and its interface is presented
in Figure 5.13.

105

Figure 5.13: Contextdb service interface

The select operation is used to retrieve data from a table or group of tables in a
database. The function insert adds new rows to tables, while delete removes
them. To modify values from rows, we employ update. On the other hand, merge is
used to combine data from multiple tables. Due to the fact that SQL queries and data
manipulate operations are widely known, we will not further describe their use. The
idea is to employ the ANSI/ISO standard SQL specification (INCITS/ISO/IEC 9075).

The last function is inferContext, which is employed for reasoning over the
database, extracting information not explicitly stored in the ontology model. The
operation receives query requirements and applies inference rules to the stored data.
There are two types of inference rules used (LOPES, 2008): consistence rules, which
verify data consistency, avoiding incoherent queries; and extension rules, which infer
knowledge from data modeled by the ontology. The second rule allows to semantically
extend the ontology.

The detailed model for inference in an ontology database has been developed by
LOPES (2008) in his graduate research project at UCPEL. This project still made use of
EXEHDA, since Continuum had not yet been made available at the time. Later, in the
work PESSUTTO (2008a) we extended Lopes’s model, adapting its implemented
prototype to the Continuum project. This prototype was then used to obtain of the
results presented in section 7.3.

5.3.6 Context Action

The Context Action service is used as a high-level interface to manipulate context
information. Using this service, we can obtain context from sensors and perceive
context changes in Continuum infrastructure. Nevertheless, this service does not fetch
context from the database, so all information is obtained from sensors. Besides, it uses
other services according to the issued action. The service is also in charge of context

subscription and delivery (according to the requirement defined in section 3.3.7). The
Context Action interface is shown in Figure 5.14.

Figure 5.14: Context Action service interface

The getContext function returns context from sensors. This is the operation used
in the context probe activity diagram (previously shown in Figure 5.7). As seen in the

106

diagram, not only does the function get the information from sensors, but it also carries
all the subsequent operations: processing, aggregating, and storing the context in the
database. The listContext operation tries to find all context data related to a
particular entity (passed as an argument). Note that it does not include the information
stored in the database, but rather the data that can be fetched from physical, logical, or
virtual sensors. New context data gathered throughout this process is always stored in
the database for future use.

The subscribeContext and unsubscribeContext operations deal with
the subscription of context information, using the Communicator service (described in
section 4.6.1.3). The former provides a way of subscribing to information from sensors,
while the latter undoes this operation. When subscribing, it may use three kinds of
sensors: physical and virtual ones, managed by the Monitor service; and logical ones,
generated by the Aggregator service. This operation is illustrated in the context
subscription activity diagram (formerly shown in Figure 5.5). Whenever context data is
asynchronously generated, a callback to contextChange occurs (as previously
demonstrated in context change activity diagram – Figure 5.4).

The aim in providing operations for dealing with data obtained directly from
sensors, without considering the database, is three-fold: first, it has to do with the fact
that sometimes we want to consider only real-time explicit data, without historical or
inferred context; second, if we cannot find a context in the database, we still can try this
option, as previously demonstrated in the activity context search diagram (Figure 5.6);
third, it is a possible method for coordinating an operation that involves various
services: Monitor, Discovery, Processor, Aggregator, and Contextdb.

6 CONTEXT AWARENESS: DISCUSSION AND
RELATED APPROACHES

We present in this chapter a discussion of the state of the art in context-aware
systems and reflect on the experience of designing Continuum-related architecture, as
described in the previous section. We start by presenting the main design characteristics
of context-aware solutions, proposing a multi-tiered model. In the sequence, we
describe some of the most representative projects related to the area. Finally, we assess
the Continuum Context Awareness subsystem, by comparing it to the discussed
projects, highlighting their main features and limitations.

6.1 Context-aware design principles

A context-aware system usually has a set of services to deal with context (contextual
services, as previously defined in section 3.3.7). Based on these services and on
previous work on the subject (ADELSTEIN et al., 2005; AILISTO et al., 2002; DEY et
al., 2001; BALDAUF et al. 2007), we propose a multi-tiered model for context-aware
systems (Figure 6.1). Analyzing each tier, we can discuss the main design principles
related to context awareness.

Figure 6.1: Multi-tiered model for context-aware systems

108

Figure 6.1 presents the main components found in context-aware systems. Various
systems have been recently proposed, which differ in architecture, scope, aim, and also
in the name they use for the tiers. Additionally, some systems do not include all the
context services presented in our model, while others integrate some tiers into fewer
components.

The bottom-most tier (sensor) consists of a collection of sensors that gather the raw
data. These sensors are coordinated, parameterized, and controlled by the acquisition
layer. The next tier carries out the transformation of data obtained from sensors into
higher-level information. The following layer is responsible for synthesis, i.e.
aggregating the context information, generating a more detailed context. Then, the
model presents a discovery layer that is employed in the finding of sensors and other
resources. The sixth tier represents a storage that accumulates the context data.
Normally, there is inference atop of this data (or at least straightforward queries) which
is accomplished by the subsequent tier, named query / inference. Next, the subscription
and delivery layer offers event-communication mechanisms for notification of context
events. And finally, the top-most tier represents the context-aware application.

The model shows two common flows of interaction among the tiers. The first one,
represented by a line with a filled shape on both ends, represents the context
subscription action and the subsequent occurrence of the event. Note that some tiers are
not used (represented by a dotted line) in the top-down path, only in the return of the
gathered context data. Furthermore, there are tiers that are not used in this flow. The
second showed flow, denoted by a line with a hollow shape on both ends, indicates a
query on the database. This is usually used to obtain historical data or, in some systems,
to apply a reasoning engine to the available context information.

It is a noteworthy matter that these two flows are not the only possibilities in a
context-aware system; however, they represent the two most common operations related
to the subject. The next subsections detail the main design principles involved in each
tier.

6.1.1 Sensor

There are three types of sensors that can be used in a context-aware system
(INDULSKA and SUTTON, 2003): physical (or hardware) sensors, virtual (or
software) sensors, and logical sensors, indicating that data can be provided either by a
physical or a virtual sensor. A virtual sensor obtains data from a software component,
while a physical sensor fetches data using a hardware device. A logical sensor, on the
other hand, combines assorted sensors with additional information obtained from a
database or other sources (BALDAUF et al., 2007).

Individual nodes, usually physical sensors, can be combined in a more complex
arrangement, generating a sensor network, which mingles relatively simple sensors with
real-time, low-level manipulation and analysis (CHONG and KUMAR, 2003). Usually,
the dynamicity of a sensor network is very high, due to the possibility of adding and
removing nodes from the network during execution.

Sensors can also be classified according to the nature of the obtained information.
The main types of context elements obtained by sensors are location (positioning of an
entity), motion (direction, speed, etc.), activity (progress of an action, consumed

109

resources, etc.), physical conditions (human vital signs, temperature, luminosity, etc.),
emotional state, reachability (getting through to an entity), and surroundings (what is in
some environment) (HASELOFF, 2005).

6.1.2 Acquisition

The main purpose of this tier is to isolate the top layers of the system from the
complexity of gathering data. Some systems do not present acquisition as a separate
layer, reducing the possibility of reusing sensors, and jointly handling both the
obtaining of data and its use or representation.

In the design of the acquisition tier we must deal with the following concerns related
to sensors (DEY, 2000): installation, configuration, ways of communication, and type
of sensed data. Some sensors offer an API to facilitate interaction, while others do not,
so that the designer has to determine how to operate them.

One interesting solution for acquisition is the context widget used in Context Toolkit
(DEY, 2000), which applies the concept of widgets used in GUIs. When used for this
purpose, they are employed to hide the specifics of input devices from the programmer,
causing minimal impact on applications. Analogously, context widgets provide the
same benefits: hiding the complexity of actual sensors, abstracting context information,
and supplying reusable and customizable context acquisition (DEY et al., 2001).

6.1.3 Transformation

This tier, also called context interpretation, transforms the information received
from the acquisition layer into a machine processable format. The main concern in this
process is which context model to use in the representation of context.

There are various data-structure modeling approaches employed in the
representation of context (STRANG and LINNHOFF-POPIEN, 2004; BALDAUF et
al., 2007): key-value models – using pairs of values to represent context; markup-
scheme models – applying a hierarchical data structure with markup tags, such as XML;
graphical models – utilizing a visual representation, for instance UML; object-oriented
models – exploiting OOP techniques in context representation; logic-based models –
employing a logical definition, defining context as facts, expressions, and rules;
ontology-based models – applying ontology for denoting context. Among all the
approaches, the latter, based on ontologies, is the most expressive, and also the solution
that better satisfies the requirements of context modeling (STRANG and LINNHOFF-
POPIEN, 2004).

According to the modeling solution employed for context representation, a particular
mapping strategy should be applied to convert the sensed data into context information.
After that, context information may be directly stored, or sent to the synthesis tier,
depending on the system design.

Another design feature related to transformation is whether the system allows the
filtering of sensed data. This data is prone to sensing errors and noise, and the processor
tier can consider quality metadata, such as certainty and freshness estimates, to address
these flaws (HENRICKSEN and INDULSKA, 2006).

110

6.1.4 Synthesis

Synthesis or aggregation is the process of composing individual context information
related to a specific entity. The module identifies different sources of information and
combines contexts to produce a result that is more precise and easier to use.

The main design principle in this tier is related to the process of aggregation: what
the rules are, or what the domain is, for combining context information (PARK and
LEE, 2005). A simple alternative is to combine data that refer to the same context
element, for instance, to employ some entity ID for matching them. When the layer
receives various sources of context information with the same entity ID, it can put them
together. Another way of aggregating data is to combine all sensed data that are
associated with a common location and timestamp. A third method is to employ a user-
defined combination, i.e. the user determines the parameters to be applied in the
synthesis process. Finally, another possibility is to carry out the aggregation, using
generic processing steps (CHEN and KOTZ, 2002a). For instance, the Solar system
uses this method with a graph-based abstraction, in which data flows though a graph of
operators and, in the end, becomes an aggregated context (CHEN and KOTZ, 2002b).

An additional devised characteristic of the synthesis layer is the possibility of
considering the quality of context, in order to detect ambiguity or unknowns. This is
especially useful when context information generates conflicting values, in the
composing of context representation (HENRICKSEN and INDULSKA, 2006). To
tackle this matter, one possible solution is to consider preferences in the synthesis
process.

6.1.5 Discovery

This tier is responsible for dynamic search and finding resources at run time. When
addressing context awareness, the resources we are particularly interested in are
sensors. Some systems offer services or components that accomplish this process, while
others need to employ built-in sensors or to rely on a pre-configuration. In this case,
failures and the addition of new sensors need to be manually tackled.

One characteristic of the discovery mechanism is the method used for detecting the
dynamic availability of a resource. It is common to employ leases or some pooling
mechanism. Another design principle is the method that is used to look up resources.
Normally, components can be queried using white pages (search by the component
name) or yellow pages (search by a specific attribute) (BALDAULF et al., 2007).

There are various other characteristics related to the discovery layer. This includes
the topology used, transport mechanisms for message exchange, scope, search facilities,
and security mechanisms (EDWARDS, 2006). We will not describe these aspects here,
because they are not directly related to context awareness. For more details on these
other design choices, refer to Edwards (2006).

6.1.6 Storage

The storage tier keeps the context information. Some systems maintain historical
context data that, according to Baldaulf et. al. (2007), “may be used to establish trends
and predict future context values”. The main design principle is related to distribution
and placement. The solutions vary from centralized to totally distributed storage. Trade-

111

off alternatives are also possible, such as employing hierarchical or partially distributed
solutions. The concept of localized scalability (SATYANARAYANAN, 2001) may also
be applied here.

Another design characteristic is related to the storage method. Probably the best
solution is to employ a database. This has the advantage of persistence and also of using
SQL to manage data. Additional options include the possibility of maintaining context
information in volatile memory or using files with a system-specific structure. Other
systems store context data in tuple space, which improves persistence and
synchronization.

6.1.7 Query / Inference

This layer comprises the management of context information. It can vary from
simple mechanisms for querying the data, to powerful reasoning, including the
inference of deduced context. This option constitutes the first design characteristic of
the tier: presence or absence of an inference engine and a KB. This characteristic has an
influence on the type of generated context. The tier could infer only explicit context, or
it could also infer implicit context, i.e. context generated from reasoning.

If an inference engine is available, the characteristics are associated with the
interpreter used: syntax of inference rules, how these rules are stored, capabilities of the
interpreter, etc. Some systems use popular semantic web toolkits, such as Jena
(CARROLL et al., 2004).

Another characteristic of the tier is the query language employed. It can vary from a
system-specific language to the use of a standard query language, such as SQL. Some
systems use other options for consulting context information and for defining inference
rules. For instance, Gaia employs the first-order logic as a means to specify high-level
rules and queries (RANGANATHAN and CAMPBELL, 2001).

Finally, there are security and privacy issues that should be observed in the access of
sensed context data. This is significant, since context may include sensitive information
on people. The mechanisms available in systems vary from simple (users have
ownership of context information) to more sophisticated access control (policy language
to control context use). Another solution used is authentication, for proofing the identity
of users (BAULDAUF et. al, 2007). Some systems also have particular solutions that
address this issue. For example, Gaia has a secure tracking system that further protects
location privacy (ROMÁN et al., 2002).

6.1.8 Subscription and Delivery

Normally associated with context-aware system, is the capability of subscribing to
specific context change. Typically, this operation is based on a publish-subscriber
model. Because of that, we chose subscription and delivery for the tier’s name. This
layer gives asynchronous communication to the context-aware system, while the former
tier generally constitutes a synchronous operation.

When subscribing to a context change, some systems allow the specification of
certain conditions to be observed for the occurrence of an event. Furthermore, particular
attributes that are of interest may be indicated. Another design issue is whether it is

112

possible to subscribe to changes related to specific entities or only to individual sensors.
This defines the subscription element: a sensor or an entity-related context.

The subscription and delivery tier benefits from the existence of a discovery tier in
the system, because this makes the finding of more appropriate and up-to-date context
sources more flexible.

6.1.9 Application

The last tier is represented by the context-aware application. The main design
principle in this layer is connected to the way programs make use of context. This is
strictly related to the context management method, and particularly to the adaptation
strategy.

There are three general strategies for adaptation, as already defined in section
3.3.8.1: laissez-faire, application-aware, and application-transparent. In the latter, since
the adaptation is only a system responsibility, the application involvement with context
is non-existent. In the former, the application is responsible for all management of
context, without system support. The intermediary approach seems to be a good trade-
off, in which context is managed by the application, with some system support. This is
the tendency in the context-aware systems, although some of those systems do not
directly address the adaptation process itself; only context-aware issues are covered,
while context-management characteristics, such as adaptation support, are not directly
tackled.

In the application-aware strategy, since applications manage context information,
they should use an API to interact with the context subsystems. The set of operations
offered to the application is another design principle that varies from system to system
and depends on the tiers and features that are implemented. Normally, jointly developed
with the context-aware systems, some applications or case studies are proposed, in order
to validate or demonstrate the functionality of their projects.

6.2 Related Context-aware Systems

Here we present some of the most representative context-aware architectures
recently developed. Due to the large amount of ongoing proposals, we will not give a
complete description and evaluation of all the systems. Besides, there are several
articles that cover a comprehensive examination and comparison of various proposals
(BALDAUF et al., 2007; CHEN and KOTZ, 2000; DEY, 2000; HASELOFF, 2005;
STRANG and LINNHOFF-POPIEN, 2004).

Therefore, we restrict our analysis only to three significant projects in the field that
are particularly relevant to our thesis. The chief criteria of choice was the impact
generated by the articles that describe these projects and the number of citations they
produced.25 As an additional restriction, we considered only works that propose general
solutions and which were published in the past ten years. Furthermore, we give only a
brief description of each system and present references for supplementary information.

25 This information was obtained at <http://citeseer.ist.psu.edu/>.

113

6.2.1 Context Toolkit

Context Toolkit (DEY et al., 2001; SALBER et al., 1999) is a programming
framework for the development of context-aware applications that has been developed
at Georgia Institute of Technology. The main objective is to provide a reusable solution
for context manipulation, improving the development and deployment of interactive
context-aware software. In the toolkit, a distributed architecture is proposed, using P2P
communication, and five abstractions are used: widgets, interpreters, aggregators,
services, and discoverers.

Widgets are derived from the GUI concept. As already pointed out in section 6.1.2,
they act as an acquisition tier. Furthermore, the subscription of context data is also
addressed by this component, as well as by a mechanism for synchronous
communication. Interpreters, on the other hand, are responsible for the transformation
of low-level sensed data into higher-level context information, possibly combining
various sources of data in this process. Other abstractions, named aggregators, gather
context information related to an entity, thus making it easier for applications to use
them.

The service abstractions are in charge of executing behaviors in the environment.
They are incorporated in widgets, and change the environment by using actuators.
Finally, discoverers are centralized mechanisms employed to dynamically find
components and to maintain a registry of capabilities available in the system. Among
the components discovered are widgets, interpreters, aggregators, and services.

A public release of Context Toolkit, developed in Java, is available.26 In spite of
using Java, the prototype was developed employing programming language-
independence mechanisms, so that it could easily apply components developed in other
languages (DEY et al., 2001). For instance, there are widgets and applications written
in C++, Frontier, Visual Basic, and Python.

Some applications were developed in the Context Toolkit to demonstrate its
functionality. The first, called In/Out Board, shows the status of people in a building, if
they are inside or outside it. Additionally, it presents the day and time when a person
has last entered or left the building. Another interesting application is named
DUMMBO (Dynamic Ubiquitous Mobile Meeting Board), which provides a digitizing
whiteboard to support the capture of spontaneous meetings and the access to captured
data (SALBER et al., 1999).

The project makes it possible to develop context-aware applications and offers a tool
that can easily be employed for gathering context. Many aspects of acquisition,
transformation, synthesis, discovery, and subscription/delivery are tackled. However,
there is no formal model for context; they are represented as a set of widget attributes.
In addition, context acquisition is not separated from its representation. Further
limitations include: lack of support for quality characteristics of context data, no
reasoning over context information, and simplicity of the synthesis process, since it
includes only data type conversions.

26 More information can be found at <http://www.cc.gatech.edu/fce/contexttoolkit/>.

114

6.2.2 Solar

Solar (CHEN and KOTZ, 2002a; CHEN and KOTZ, 2002b; CHEN, 2004) is a
middleware for the development of context-aware applications that collects data from
heterogeneous sources, aggregates this data to obtain high-level context, and carries the
dissemination of this context across network nodes. It has been developed at Dartmouth
College, and the main objective of the project is to employ a graph-based abstraction,
named operator graph, for context aggregation and dissemination.

The operator graph is an interconnected tree of operators to collect and aggregate
desired context. Each operator is an object, which subscribes and processes one or more
information sources and produces an event stream. These sources could be either
physical or virtual sensors, while the output is a sequence of events produced by the
operator. Typically, operators are filters, transformers, or more sophisticated
aggregators, and, as in the case of sources, they can also be subscribed to (CHEN and
KOTZ, 2002b).

In the project, a Solar system consists of a centralized Star and several
interconnected Planets. The former processes subscription requests from applications
and deploys operators into Planets, as needed, while the latter are execution platforms
for Solar objects, such as operators (CHEN, 2004). Planets are the central Solar
abstraction. They manage all subscriptions for each operator physically residing in
them. Sources and applications run outside the Solar system. They access Solar services
and functionalities via a small library, which allows sources to publish events,
applications to send requests to Stars and manage their subscriptions, and to receive
Solar events (CHEN, 2004).

There is a prototype implemented in Java, in which events are modeled as objects,
and event transmissions as object serializations.27 In the future, the authors intend to use
XML or attribute-based representations for events, as most of them have a simple
structure (CHEN and KOTZ, 2002a). Some applications have been developed using
Solar. A SmartReminder exploits context information to remind users of appointments.
A meeting detector is another developed application, which routes incoming phone calls
to voice-mail when a user is in a meeting. Meetings are detected using sensors of
pressure and motion effects on chairs.

Solar is mainly focused on context acquisition, transformation, and synthesis,
allowing a flexible and extensible combination of operators to accomplish these
processes. However, it uses an informal representation for context. In addition, Solar
does not consider the quality of context. Another drawback is the fact that Solar does
not deal with historical context data. Furthermore, context gathering requires direct
involvement from the application, since it must manage sensors, operators, and
requests.

6.2.3 Framework for Context-aware Pervasive Computing Applications

The Framework for Context-aware Pervasive Computing Applications
(HENRICKSEN and INDULSKA, 2006; HENRICKSEN and INDULSKA, 2004;

27 More information can be obtained at <http://www.cs.dartmouth.edu/~solar/>.

115

HENRICKSEN, 2003) has been developed at University of Queensland, as part of the
PACE (Pervasive Autonomic Context-aware Environments) Project.28 The proposal is a
solution for supporting software engineering challenges in the development of context-
aware software. The main objective is to provide a conceptual framework and a
software infrastructure that together address context modeling techniques, a preference
model for requirement representation, and two programming models.

In the framework, context is modeled using a graphical approach named Context
Modeling Language (CML). This is an extension of the Object-Role Modeling (ORM)
and was chosen due to its high expressiveness and formality; also, ORM can easily be
mapped to relational databases (HENRICKSEN and INDULSKA, 2006). In CML, we
can describe types of information (facts), classification (sensed, static, profiled, or
derived), quality metadata, and dependences among different types (HENRICKSEN,
2003).

Context is then stored in a relation database, which can be further accessed
throughout a query mechanism. Additionally, a situation abstraction is provided, based
on predicate logic, to facilitate the implementation of context-aware applications. This
abstraction is used to define context conditions in terms of facts, and they may also be
combined to develop complex situations (HENRICKSEN and INDULSKA, 2004).

In order to support the adaptation process, a preference model is offered. The model
is based on situation abstraction and represents each situation by a named pair, with a
scope and a scoring expression (HENRICKSEN and INDULSKA, 2006). While the
former describes the context to which the preference is related, the latter assigns a grade
to the choice (numerical value ranging from zero to one). The framework also proposes
two programming models: branching, an application logic which helps in the decision
process related to context information; and triggering, an asynchronous mechanism that
activates actions based on context changes (HENRICKSEN and INDULSKA, 2006).

A software infrastructure is proposed with six loosely coupled layers
(HENRICKSEN, 2003): context gathering, in charge of acquiring, transforming, and
synthesizing context data; context reception, responsible for providing a bi-directional
mapping between gathering and upper layers; context management, to store the context
models and their representation; query, used to provide an interface for querying
context information; adaptation, employed in the management of situations,
preferences, and trigger definitions, and also in the evaluation of those on behalf of the
application, which constitutes the upper system layer.

There is a prototype of the software infrastructure implemented using Java and
PostgreSQL. To validate it, a case study was carried out to evaluate the framework
ability to support and develop context-aware software. The application created for this
case study consists of a recommendation tool of communication channels. The tool
suggests forms of contact with people, based on context and preferences.

The proposed framework provides a powerful software engineering methodology for
context-aware software development. However, the offered context model hinders the
representation of complex contexts. Besides, although in the proposal the authors

28 More information about the project can be reached at <http://www.itee.uq.edu.au/
~pace/>.

116

foresee an aggregation process, no method has been described so far. Furthermore, data
filtering can only be applied when related to the same context element. Neither does the
project provide a discovery mechanism, nor a way of reasoning over the relational
database. Nevertheless, the contribution of the proposal in terms of context
management, and more specifically, related to adaptation, is promising and innovative.

6.3 Comparison of Approaches

We compare the design principles of the context-aware systems described in the
previously section with Continuum (Table 6.1). The evaluation was based on the multi-
tiered model proposed in the beginning of the chapter. Each design principle is
considered in the scope of the tier it is related to. Moreover, for each system a symbol
indicates if the characteristics are fully-supported, partially-supported, not-supported, or
not-applicable. For some issues, the comparison consists in defining the way in which
some design principle is tackled in the system, rather than its support or availability.

Examining the comparison, we can observe that none of the systems considers
networks of sensors. This is probably because the main focus is on individual sensors
rather than on a group of them. Another aspect related to acquisition, is that Context
Toolkit and Solar do not separate the gathering process from the use of context data.
The lack of a loose coupling affects the tolerance of component failures and
disconnections.

When assessing the transformation tier, we can perceive that different context
models are used. Among all systems discussed, only Continuum employs an ontology,
which is considered the most expressive model for context representation (BALDAUF
et al., 2007). Besides, filters are only fully considered in Solar and Continuum. In the
synthesis process, Context Toolkit and Solar do not consider quality issues.
Furthermore, the aggregation process differs. We highlight Solar and Continuum, which
provide a more flexible approach.

The discovery layer is also different, depending on the system. The Framework for
Development of Context-aware Pervasive Computing Applications does not provide a
discovery tier, while the others, with the exception of Continuum, only locate resources
by their name. Analyzing the issues related to storage, we conclude that among the
systems, which provide this layer, the employment of database is the method of choice.
Besides, the tendency is to use a centralized solution, which is only avoided by
Continuum, as a way of reducing scalability-related problems.

In the assessment of the query tier, we conclude that only Continuum provides
reasoning capabilities, while all the proposals employ some query language for context
obtaining. The support of inference and machine learning capabilities leverage the
support of implicit context and proactive behaviors (HENRICKSEN and INDUSLKA,
2006). Related to security and privacy, each system has some solution to address these
issues. However, we believe that no sufficient security and privacy is offered by any of
the projects. Further studies have to be conducted in the field, in order to improve this
design principle.

All considered projects have subscription and delivery capabilities. The only
difference rests in the element that can be subscribed. Finally, when assessing the

117

upper-tier, we realized that all solutions employ an application-aware strategy.
Nevertheless, Context Toolkit and Solar do not directly address adaptation, only
questions related to context awareness.

Table 6.1: Context-aware systems comparison

Context-aware tier
- Design principle Context Toolkit Solar

Framework for
Context-aware

P.C. Applications
Continuum

Sensor

- Physical sensor ! ! ! !
- Virtual sensor ! ! ! !
- Logical sensor ! ! ! !
- Network of sensors " " " "
Acquisition ! ! ! !
- Separate from use " " ! !
Transformation ! ! ! !
- Context model key-value key-value graphical ontology
- Filtering capability " ! # !
Synthesis # ! # !
- Aggregation process entity various facts various
- Quality considering " " ! !
Discovery ! ! " !
- Leasing/pooling ! ! " !
- White pages ! ! " !
- Yellow pages " " " !
Storage ! " ! !
- Placement centralized - centralized hierarchical
- Method database - database database
Query/Inference ! ! ! !
- Inference engine " " " !
- Query language ! ! ! !
- Security and

Privacy
ownership policies /

authorization
policies policies /

anonymized data
Subscription ! ! ! !
- Conditions ! ! ! !
- Attributes ! ! ! !
- Subscription

element
widget sensor /

operator
situation sensor /

entity
Application
- Adaptation strategy application-aware application-aware application-aware application-aware
- Adaptation support " " ! !

Symbols: ! fully-supported # partially-supported " not-supported - not-applicable

Many context-aware systems are still using ad hoc data structures to represent
context, and do not fulfill various design principles associated with context awareness,
such as the use of a discovery service and the application of reasoning techniques. In
addition, neither of the context-aware systems presented constitute a complete solution
for ubiquitous computing, addressing all the challenges imposed by this novel field.

7 THE ANALYSIS AND ASSESSMENT OF CONTINUUM

In this chapter, we present the developed prototypes and assess the main innovative
propositions in the Continuum project. The method used for validation is based on
experimental evaluation, i.e., we propose case studies to assess the basic ideas of the
thesis. Some experimental environments were created and used as the base for the
research. It is our aim to concentrate on the assessment of the main contributions of this
work, namely the distributed service architecture, the ontology representation and
storage, and the context awareness subsystem.

7.1 Methodology

The methodology used for the assessment of this thesis and the main proposed
concepts is based on case study. The idea behind this approach is to choose a single
instance, also called an event or a case, in which an in-depth and over-time examination
is prepared (FLYVBJERG, 2006). The cases should be selective, focusing on the main
issues that are important to the subject being analyzed; besides, the choice of the case to
be studied must increase the extent of what can be learned, in the time interval available
for the completion of the work (TELLIS, 1997).

As the first step in the methodology, TELLIS (1997) suggests that we define a case
study protocol, which may include a chain of sections:

• An overview of the case study, including its objective, purpose, and unit of
analysis (i.e., what the case is);

• The specific questions, i.e. the “how” and “why” inquiries, we must keep in
mind and try to answer during the study;

• The sources of information, in our case, the experimental environment
created to assess the proposition; and,

• The outline of the final report, i.e. the format in which the interpretation of
the results is presented.

In this thesis, we followed the protocol proposed by TELLIS (1997), dividing each
case study according to his proposal: objective, experimental environment, research
questions, and experiments and analysis of results.

Regarding experimental environments, we employed some off-the-shelf tools, in
order to accelerate the obtaining of results. Moreover, we chose to apply open standards
and widely accepted protocols whenever possible. What is more, when deciding on

119

programming languages, we considered the ease of programming, productivity gains,
and rapid prototyping.

We decided to employ this methodology in order to abridge the time in obtaining
results for our research. Furthermore, besides being considered a scientific method, case
studies are deemed as acceptable, in terms of perception of the facts involving the
object of study. They also fulfill the three main ideas of the qualitative method:
describing, understanding, and explaining (TELLIS, 1997).

7.2 Case Study 1: Distributed Service Architecture

In this case study, we discuss the proposition of CoDSA, the Continuum distributed
service architecture, based on SOA and web services. To accomplish this goal, we have
modeled and implemented some services (proposed in section 4.6.1) in the distributed
execution subsystem, more specifically Executor and Service Manager. When doing
these experiments, we followed the methodology proposed in the previous section.

7.2.1 Objective

The unit of analysis in this case study is the architecture of CoDSA using web
services. Our purpose is to demonstrate the proposed ideas related to service and
application modeling and the management of web services, supporting replication,
migration, and deployment. The goals derived from these intentions are:

• An assessment of the architecture of distributed services based on SOA and
web services;

• A demonstration of the possibility of implementing deployment, replication,
and migration of services;

• An evaluation of the main drawbacks in using SOA and web services.

7.2.2 Research Questions

In this case study, we have tried to answer the following research questions:

• How can distributed services be implemented, using SOA and web services,
and what are the most important new possibilities for ubicomp, created by
the application of this concept?

• How could the replication, the migration, and the deployment of web
services be implemented?

• What are the main limitations in the proposed architecture and how can we
tackle these drawbacks?

Based on these questions, we have defined our experimental environment,
conducted the development of a prototype, and carried out the analysis of results.

7.2.3 Experimental Environment

We have created a prototype to evaluate this case study. The services were first
defined using WSDL. In doing so, heterogeneity was ensured and the language

120

employed for the implementation was not significant for interoperability purposes. We
chose Python29 as the language for implementing our services. Our choice was based on
various characteristics of the language, such as: platform independence, open source
license, and ease of programming. Perhaps the main motive to employ Python was the
fact that it is considered one of the best languages for quick development and initial
prototyping, since the code is usually shorter and faster to write, due to its high
expressiveness and set of libraries.

The use of web services in Python is provided by various libraries30, which support
SOAP, WSDL, and other related protocols. Among those, we have chosen SOAPpy.
Another library employed in our implementation was ElementTree31. This toolkit helps
the management of XML files in Python, providing a container object to store
hierarchical data structures in memory.

In addition to implementing the services, we have had to detail the CoApp format
(as defined in 4.6.1.1). A CoApp was defined as an XML document with an XSD
specification. Along with these files, a CoApp may also contain various others, such as
bytecodes, images, and databases. Due to the need of bundling together many different
files, a CoApp is encapsulated using the ZIP data compression and archival format.

As the communication protocol, we used the standard TCP/IP stack with HTTP in
the transport layer. For discovery purposes, we employed the Multicast-DNS32 (mDNS)
protocol. By using this protocol, it is possible to apply standard Domain Name Service
(DNS) management in small networks without the need of a DNS server. This protocol
was utilized for CoNodes finding their associated CoBase.

7.2.4 Experiments and Analysis of Results

The complete description of these experiments is detailed in Kellermann (2008).
Here, we briefly discuss their main steps and draw our main conclusions. Our first
experiment started with the definition of the basic functional requirements of CoDSA,
which essentially are the capacity of installation, replication, and migration of services.
Currently, SOA does not support these requirements, so we have needed to complement
the present features of web services. To accomplish that, we have decided to define an
abstraction for representing the instantiation of mobile and distributed services.

We need this abstraction because the current web services standard, which is
modeled using WSDL, does not cover all the requirements of a pluggable service in
Continuum. To draw a parallel, consider the affirmation in Papazoglou (2008), which
states that an XML scheme alone could not define a web service, requiring an additional
standard, i.e. WSDL. The abstraction for representing applications in Continuum is
called CoApp.

29 More about Python can be accessed at <http://www.python.org/>.
30 As can be seen in <http://pywebsvcs.sourceforge.net/>.
31 ElementTree can be found at <http://effbot.org/zone/element-index.htm>.
32 Multicast DNS information can be accessed at <http://www.multicastdns.org/>.

121

A CoApp is an application or a component in the form of a web service that can be
installed, migrated, or copied. It represents an application in the Continuum
infrastructure. The outer interface of a CoApp is always a web service for
interoperability purposes. A CoApp is divided in three sections (KELLERMANN,
2008):

¥ CoApp Configuration (CAC): describes the application and its interface;

¥ CoApp Resources (CAR): details the specific application resources, such as
images and internationalization definitions;

¥ CoApp Implementation (CAI): contains one or more implementations using
a specific runtime.

In Figure 7.1 we present the simplified conceptual vision of a CoApp. The figure
presents the CoApp container, divided in the three sections (CAC, CAR, and CAI). The
lines at the lower part of the representation correspond to the services that the CoApp
exports.

Figure 7.1: CoApp conceptual vision

A CoApp consists of a data format that represents a group of related files
compressed and archived, in which there is a sufficient amount of information to infer
the type of application, different versions, and requirements, such as the execution
runtime needed, the location of resources, and the external service interface. It is our
aim that the CoApp format be as simple and as small as possible.

An application implemented in any language along with its resources and exported
interface (in WSDL format) is wrapped together with the XML definition of the CoApp.
The CAC constitutes this XML definition; the CAR aggregates the resources; and, the
CAI is the sum of all the implementation codes in any language. The transformation
process of a preexisting application in a CoApp is straightforward and involves two
steps. The first step is to describe the application, possibly with a WSDL interface, in a
standard CoApp XML definition, containing the three sections described before. An
XSD is also provided to validate the XML document created. This process is very
simple, but we intend to automate it in the future. The second step is to create a single
archive that has the binary codes, XML definitions, and resources, among others files.
We have used the standard ZIP format in this process with base64 codification.

The next step was to create some CoApps using the proposed definition. Figure 7.2
shows a sample CoApp description of an application, named Calendar, implemented in

122

Python. In the CAC section, we define the elements Name, Version, Author, and
Description. Additional elements are supported, such as License or Copyright. The
element Service defines the service interface, using WSDL. The last element present in
the CAC section of the sample CoApp is Requirements. Requirements of the “Runtime”
type apply during execution. “Component”, a generic type of requirement used for
stating CoApp dependencies, is not shown in the example. In the CAR section, all the
resources employed by the CoApp are listed. According to the runtime requirements
fulfilled in the CAC section, the associated runtime in the CAI section is chosen. In the
example, there are two possibilities in terms of runtime: Python and Lua. Details about
the CoApp description and a group of other developed applications can be obtained in
Kellerman (2008).

Figure 7.2: Calendar CoApp description

Since we are able to create CoApps, the next step would be to manage them in our
distributed architecture. Therefore, we continued our experiment by implementing the
Executor and the Service Manager. These services were implemented using the same
interface proposed in sections 4.6.1.1 and 4.6.1.5, respectively. We described the
WSDL in detail33, with the design of various data types, and provided a python
implementation.

To execute applications in Continuum, we start by installing them (using the
deployApplication method of the Executor service), and then they can be managed
(started, stopped, suspended, and so on) with the Executor interface. An application that
has only been deployed is not considered as a Continuum pluggable service, but rather
as a stand-alone application. To transform this application into a service, we must call
the registerService method of the Service Manager. After that, we can treat a CoApp as
a pluggable service, moving and replicating it as we wish.

Replication consists in copying one CoService from one CoNode to another in the
Continuum infrastructure. The operations offered by this service continue to be

33 The WSDL of Executor and Service Manager services can be reached at
<http://www.continuumproject.com/wsdl>.

123

accessible in the origin, in addition to the new availability at the destination. In the
developed prototype, this operation involves some steps. First of all, a CoConsumer
asks for replication calling copyService. This CoConsumer can be any node, probably
(but not necessarily) the node that contains the service being replicated. After that,
Service Manager verifies if it has the CoApp content; if not, the service calls the
Executor’s getApplication method in the origin node, thus obtaining the desired content.
The next step is to issue deployApplication in the Executor of the destination CoNode,
sending the CoApp content to it. Subsequently, when the destination node accepts the
CoApp, the Service Manager must be updated. This is accomplished by calling
registerService in the CoDirectory that is associated with the destination CoCell. When
a node searches for a specific service, it receives a CoNodeLocation, which contains the
reference of both CoProviders (origin and destination).

Migration is very similar to replication, with a few additional steps. The difference
in this operation is that we move the service from origin to destination. After the
conclusion of this operation, the service is no longer available from the origin CoNode.
If a node tries to access this service in its former location, it receives a message that
indicates that the service is not present. As a consequence, it must call lookupService
from the Service Manager to obtain the new address. To minimize the occurrence of
this situation, whenever a service is migrated, the Service Manager notifies the new
location to the CoConsumers that are currently using the moved service, sending its new
CoServiceReference. To perform this notification, the Service Manager has to call the
Executor’s serviceReference method. Another additional step is the unregistering of the
CoService in the CoDirectory associated with the origin CoCell, which is done by the
unregisterService operation of the Service Manager.

Activities in web services tend to be coordinated, using standards such as BPEL
(Business Process Execution Language), sometimes referred as web services
orchestration in the literature (PAPAZOGLOU, 2008). This coordination reinforces the
fact that services and components should be reutilized. As a consequence, the most
complex operations proposed (replication and migration) are defined as low-level, in a
coordinated approach. We believe that in this way, new features could be added to the
model without any adaptation in the provided infrastructure.

Some cases (or events) were proposed as the next step of the experiment, using the
developed prototype. In this thesis, we show four of those cases: application
deployment, register of a CoApp as a CoService, replication of a CoService, and
migration of a CoService.

In Figure 7.3 we present the deployment process of a CoApp in the infrastructure,
containing one desktop and two mobile devices, highlighting four possible steps. The
deployApplication method is employed, which generates the message
deployApplicationRequest (step 1). This message contains a whole CoApp. As a return
(step 2), the node produces a CoApp descriptor.

An alternative way of deployment is presented as the next steps of Figure 7.3. A
CoNode calls the getApplication operation of the Executor service (step 3), using a
getApplicationRequest message and passing a CoApp descriptor. The response is a
getApplicationResponse message (step 4), which contains the application in its CoApp
format. This received application is then installed in the local CoNode.

124

Figure 7.3: Deploying applications in Continuum

The second case, illustrating the transformation of a CoApp into a CoService, is
presented in Figure 7.4. It considers the same infrastructure employed in the former
event. Whenever a CoApp is registered as a service, its interface is disclosed, so that
other CoNodes can make use of its operations as a pluggable service. The first call is to
the registerService operation of the Service Manager, which uses the
registerApplicationRequest message (step 1), containing a CoApp. As a return (step 2),
we obtain a CoServiceReference composite message. Not only does this message
contain the functional and semantic description of a service, but also its physical
location (represented by CoNodeLocation).

Figure 7.4: Applications becoming services in Continuum

In Figure 7.4 we also present the process of finding a service, accomplished by
calling the lookupService method of the Service Manager. A lookupServiceRequest
message is generated (step 3), containing CoServiceReference. As a result, a
lookupServiceResponse message is produced (step 4), which also contains the same
CoServiceReference. The difference between both messages is that in the first one only
the location of the service is relevant whereas in the second a list of references could be
possibly obtained.

125

Figure 7.5 presents the event of replicating a service. Differently from the previous
cases, this diagram does not present the WSDL messages, but rather only some
symbolic names. This is a simplification of the real process, which also involves
additional steps. The process starts when a node calls copyService (step 1), passing a
CoServiceReference (myService in the figure) and the CoNodeLocation to which the
node will be copied (destination in the figure).

Figure 7.5: Service replication in Continuum

In the case developed, the CoDirectory did not have a copy of the CoApp that
implements the desired service (myService). Therefore, the CoApp must obtain the
application from its origin using the getApplication method (steps 2 and 3). If the
CoApp is available in the CoDirectory, these steps could be omitted. After that, the
service must be deployed in the destination CoNode (step 4). The destination nodes
accept the installation of the CoApp as a trust relationship has been previously created
between this CoNode and the CoDirectory (the aspects of security and trust are out of
the scope of the present work). The Node returns a deployApplicationResponse message
(step 5), which contains the descriptor of the CoApp. An additional step, omitted in the
diagram, is the registering of the new location in the CoDirectory itself. The final step
(6) is the message returned to the CoApp that started the operation, containing the
reference of the newly instantiated service.

Finally, in Figure 7.6 we show the last case, which illustrates the service migration.
This case has also been simplified and has similar steps (from 1 to 6). The only
difference is the called method, which is moveService instead of copyService. The
additional steps are related to the movement of the service from origin to destination
(step 7) and the update of a CoNode that is using the service being migrated (step 8).
This last step consists of updating the references, in nodes that are using the service,
with those of the new location, so that the subsequent accesses employ the new address
(illustrated in step 9).

From the cases developed, we have learned some lessons. The main advantage of
the proposed model is that it does not create a completely new technology, but rather,
while developing the distributed service architecture for Continuum, we are extending
the current web services standards adding a new data abstraction and introducing a set
of service orchestrations. By doing so, not only are we inheriting technological aspects
of the SOC, but we are also inheriting an existing knowledge, terminology, and
understanding on the field. Another important point is that we are reusing existing

126

applications with as little change as possible, making them available in the Continuum
infrastructure.

Figure 7.6: Service migration in Continuum

In the cases developed we also detected some limitations. First, all applications
should have a CoApp description. Currently this is a manual process, which introduces
some overhead in porting legacy code. Second, the execution of existent applications is
only offered for software that uses runtimes, such as those developed for virtual
machines. Programs compiled to a specific platform, are currently not supported. We
tested or prototype with applications implemented in Python and in Java. We do not see
this as a very strong limitation, since the use of virtual machines has been defended as a
solution to improve heterogeneity in ubicomp (COSTA et al., 2008).

Another limitation concerning our current implementation is that we had limited the
discovery and availability of services only to one CoDirectory. This occurs since we did
not yet developed a mechanism for CoDirectory orchestration. Furthermore, the
programmer is entirely responsible for all decisions regarding when and where to
migrate (or to copy) a service. In the future, we can add a specific algorithm to help in
this decision.

Although we observed some limitations, we believe that the use of SOA in ubicomp
is a promising opportunity. It clearly fosters heterogeneity and integration among
software implemented in different languages. Also, concerning our model, we believe
that it helps the deployment and availability of code due to its pluggable feature.
Another strength is related to the possibility of specifying alternative codes in the
CoApp, possibly using distinctive runtimes. This feature adds a certain degree of
adaptability, since code can be select according to the runtime available in the
destination node.

We believe that the use of web services is an appropriate solution for ubicomp, as it
improves the standardization of formats and protocols for describing services and their
communication mechanisms. Moreover, we trust that the development of an
architecture independent of runtime, platform or language incorporate advantages
already obtained by SOA and web services standards. Among those advantages, we

127

highlight the interoperability among heterogeneous environments, the decoupling of the
architecture from the hardware and low-level software infrastructure, and the
independence from any type of proprietary technology, device or manufacturer.

7.3 Case Study 2: Ontology Representation and Inference

This section describes a case study related to the second part of the work, i.e.
Continuum as a Context-aware system. We are particularly interested, in this analysis,
in the formal representation of context and its capability of representing and inferring
knowledge. As in the previous case study, we follow the methodology described in
section 7.1.

7.3.1 Objective

The unit of analysis in this case study is the formal representation of context. Our
purpose is to demonstrate the proposed ideas related to context representation, keeping
historical context data, and supporting reasoning. The goals derived from those
intentions are:

• An assessment of context representation using an ontology;

• Establishing the possibility of storing a history of context data with querying
capabilities;

• An evaluation of the inference capability and possibility of obtaining context
implicitly.

7.3.2 Research Questions

Based on the objectives proposed for this case study, we pose the following research
questions (each one related to an objective previously presented):

1) How is context represented using an ontology, and what are the main
strengths / weaknesses in representing context using this technique?

2) How is it possible to store historical context data, and what are the query
capabilities?

3) What potential, in terms of knowledge, does the proposed context
representation provide, and how can we obtain implicit context?

In the next sections we answer these questions, showing how it was achieved using
the experimental environment created.

7.3.3 Experimental Environment

The main tool used in this experimental environment is Protégé34. This software
constitutes an open-source platform for the development of knowledge-based
frameworks and to edit ontologies. Protégé has been created at Stanford University,

34 The tool can be downloaded at <http://protege.stanford.edu/>.

128

more specifically at the Stanford Center for Biomedical Informatics Research. It
comprises a powerful tool for the representation, management, and visualization of
ontologies, using the most common representation formats, including RDF, OWL, and
XML Schema. Besides, we can also use the software for the definition of a KB,
assigning values to the class properties, defining its facets, and creating the instances.

Besides the modeling of ontologies and knowledge bases, Protégé supports the
specification of rules. These rules are codified using SWRL (Semantic Web Rule
Language), a proposal for a Semantic Web rules-language, which combines OWL and
the Rule Markup Language (RuleML). SWRL was submitted as a W3C proposal
(HORROCKS et al., 2004), not yet homologated as we were writing this work. The
rules in SWRL have the form of an implication between an antecedent and a
consequent, in which the first is normally referred to as body and the last as head. The
interpretation of an implication is whenever the conditions specified in the antecedent

hold, then the conditions specified in the consequent must also hold. Both head and
body have one or more atoms; if a body is omitted, it must be satisfied by every
interpretation; if a head is empty, it should not be satisfied by every interpretation
(HORROCKS et al., 2004).

 To generate new knowledge, we use an inference machine. The execution occurs
according to the description of Figure 7.7. In the Figure, the input consists of the rules
and facts, while the generated output constitutes the new facts.

Figure 7.7: Execution of an inference machine

Besides inferring new knowledge, an inference machine can also be used for
consistency verification, ensuring that an ontology does not have any contradictory
facts, and classification, creating the complete class hierarchy by computing the
relations between modeled classes, among other possibilities.

To execute inferences in Protégé, we can employ a rule engine, such as Jess35. In
rule-based programming, we can apply a group of rules to the stored data, so that an
algorithm combines both, i.e., so that it reasons over the knowledge, by applying a set
of declarative rules. The algorithm chosen by Jess is Rete (FORGY, 82) and is
commonly utilized in the development of expert systems.

Another tool for reasoning available in Protégé is Pellet36, which is an open source
OWL reasoner based on tableaux algorithms for expressive description logics (DL)

35 Jess can be found at <http://www.jessrules.com/>.
36 Pellet information can be reached at <http://pellet.owldl.com/>.

129

(SIRIN et al., 2007). Pellet supports OWL DL, which is an OWL sublanguage that
provides the maximum expressivity possible, while sustaining computational
completeness and decidability (SMITH et al., 2004).

The difference between Pellet and Jess is the distinctive approach for answering
queries: while the former tries to satisfy queries as they are posed, the latter evolves the
KB from an initial stage in order to satisfy queries at a smallest feasible response time
(DELIAS, 2007). Another difference between both reasoners, according to DELIAS
(2007), is that Pellet has minor initialization time but is slower during query executions.
This is because whenever we change parameters in Pellet, the queries must be executed
from scratch, although the sequential execution of the same query is executed
instantaneously.

All queries in Protégé are carried out by SPARQL (SPARQL Protocol and RDF
Query Language), a W3C recommendation (PRUD’HOMMEAUX and SEABORNE,
2008). SPARQL is a query language specifically aimed at RDF, which can be used to
represent queries across various data sources. The main capability of this language is to
query graph patterns, supporting value testing and constraining, and returning result sets
or RDF graphs as the output.

7.3.4 Experiments and Analysis of Results

We started by modeling the ontology in Protégé. First, we represented the classes
(described in section 5.2.1) and created the properties that define relations among
classes (previously presented in Figure 5.2). Next, we defined the other intrinsic and
extrinsic properties, such as data-types (which map to primitive types) and instance-
types (which map to objects). Subsequently, we added facets, i.e. restrictions imposed
to the slots. In this step, we defined the cardinality (the number of values a slot can
have), the slot-value type (primitive or instance of classes), the slot domain (classes to
which a slot is attached), and the range of a slot (allowed classes for instance slots). A
complete description of these phases can be found in PESSUTO (2008a). To exemplify
this modeling, Figure 7.8 shows the Protégé class editor window for the creation of a
CoBase.

Figure 7.8: CoBase class modeling in Protégé

130

After modeling the ontology, we created a sample KB to accomplish this case study.
We have chosen to represent information to characterize the sample scenario for the
hypothetical applications Digital Transport and Service Finder (listed as samples
scenarios in section 1.2.1). For this purpose, we modeled the CoDimension presented in
Figure 7.9. This modeling consists of the definition of the experiment scenario,
involving the selection of classes, the creation of individual instances, and the supplying
of the slot values. As an example, we show in the Figure 7.10 the definition of a CoCell
that represents the Library located in the University Campus.

Figure 7.9: Sample scenario for the second experiment

Figure 7.10: Instance modeling in Protégé

After all classes and instances had been represented, we used Pellet to perform two
actions: check the consistency of the ontology and classify the taxonomy. The first one
consists in ensuring that the ontology does not contain contradictory facts, while the
second computes the relation between classes, generating a complete class hierarchy.
As a consequence of this latter action, superclasses and equivalent classes of every
modeled class were inferred.

Next, we performed some inferences in the KB. We created SWRL rules and, using
Jess, we executed them. In Figure 7.11 we show a sample rule used in the experiments.
In this rule, we defined that a CoCell offers the Services its CoBase provides.

131

Figure 7.11: An SWRL rule to provide services to nodes

Depending on the rule, some inferred knowledge was produced, such as asserted
individuals or asserted axioms. The new inferred knowledge was then added to the KB.
Finally, using SPARQL, we performed some queries over the available data. We
present one of the queries developed to illustrate this process (Figure 7.12). In this
example, we try to find a CoCell that offerd an instance of a Service named
BusinessChat.

Figure 7.12: A SPARQL query to find available services

During the experiment, many use cases were developed in order to answer the
research questions. Bellow, we summarize the main use cases (for a complete and
detailed description refer to PESSUTTO, 2008a and PESSUTTO, 2008b):

1) Guessing the location of people based on the pinpoint of their mobile
devices: we considered in this experiment devices that are normally carried
by people, such as watches or cell phones; if we could infer the location of
such devices, we could also guess the current position of their owners. We
started by defining rules that associate devices to CoCells and that define the
assumption that if some personal devices are at a specific place, their owners
should be located in the same CoCell. After that, we create some queries to
locate people based on their personal devices. The output is the name of the
CoCell;

2) Finding the nearest CoBase from a GPS coordinate (Latitude, Longitude):
each entity in the ontology is related to a set of coordinates (through the
hasCoordinates property). We employed a simple algorithm to calculate the
shortest distance between two points because, for each place, person, or
thing, the hasCoordinates property is inherited. Unfortunately, it was not
possible to carry on this solution using only rules, since SWRL does not
support the necessary sine and cosine functions. The workaround was to use
a programming language subroutine to calculate these;

3) Finding the available services and their location: the idea of this use case is
to obtain a list of places, along with additional information, where a given

132

service is available. By combining this use case with the former, we can also
infer the nearest service, in case of multiple availability;

4) Discovering how to get to a place: in this experiment, we want to obtain the
path from one CoCell to another, in terms of the CoCells that one has to go
through on the way to the final destination. In consequence, the return of the
query should consist of the hierarchy of CoCells, i.e. the branches of the tree
that should be crossed. Currently in SPARQL, there is no built-in support for
querying hierarchical structures of an unknown depth. The only possible
workaround is to repeat queries or to employ a fixed depth37. Such limitation
can be surpassed by the use of a programming language and a well-known
algorithm for the traversing of tree data structures;

5) Finding out how to reach some service: this use case is similar to the former
one, the only difference being the distinctive (service instead of place)
search. The solution is basically the same;

6) Obtaining information on where and when some event occurs or has taken
place: in this experiment, we evaluate the use of historical data. The idea is a
query that can answer the exact CoCell where a particular event occurred, or
will occur, at a specific time. Although this use case is not particularly tied to
the sample scenarios chosen, it is useful for the development of the former
two experiments, which involve location. The result of this query is a
specific CoCell and a timestamp. The latter piece of information is obtained
in the form Date, startTime, and endTime. We can also obtain multiple
results with the developed query;

7) Locating the past event that occurred at some place: this use case is similar
to the previous presented experiment; the only difference is that the input is
the CoCell and the output is the timestamp and the event data;

8) Finding where a person was before or during some event: in this experiment,
we developed a query and some rules that help to pinpoint people before or
during a specific event. For instance, in the sample scenario developed, it
could help to find where the students are during a specific class, provided
they are physically present at the University Campus. To conduct this
experiment, a CoPersonId, the specific Event we are interested in, and the
startTime are provided as input. The query returns all CoCells where a
person had been located from startTime (passed as input) until the end of the
event.

There are lessons to be learned from the results of the experiments. First, as
expected, there is a significant increase in the expressiveness of the context information
stored. Compared to our previous work, which used an ad hoc representation of context,
based on key-value models, there is a huge difference. We can now express context
information, which was not possible before, and in a simpler way. For instance,
composition between places and past events had not been available in ISAM.

37 As suggested in <http://thefigtrees.net/lee/sw/sparql-faq>.

133

In EXEHDA, context elements store the description of how context could be
produced for that particular component and all possible context states (YAMIN, 2004).
It was difficult to find a relation between different context elements in that middleware,
since each element had a separate definition and their data could only be associated with
the component itself. In our work, context can be associated with each and every class
of the ontology. On top of that, the properties of classes can be employed to establish
conditions not directly stored in the context database. For example, in one of the use
cases developed (#1), we could guess a person’s location by pinpointing some personal
device.

Secondly, regarding the inference capabilities, we can deduce conditions and
situations that are not explicitly represented in the stored information. Furthermore,
very sophisticated queries can be posed, which increases the applicability of the
information. To illustrate this conclusion, consider the last use case proposed (#8), in
which we could discover where a person was during a particular event. The information
was obtained merely by combining simpler context data, i.e. the pinpoint of people (or
their personal devices), the location of a particular event, and timestamp data (time and
date).

Thirdly, there is also the possibility of extending both the ontology to particular
domains and the knowledge base. Considering the same scenario applied in the use
cases, we could, for example, model classes specifically suited to the situation, such as
course, class, professor, student, and so on. In fact, this is one of the chief
characteristics of ontologies, i.e. proposing vocabulary for specific domains.

In addition, with the use of an ontology, it is easier to store historical context
information. With the definition of a Timestamp class, data such as events and locations
are stored with a corresponding Date and Time. Thus, we can infer historical-related
information, such as past situations, as we demonstrate in the use cases 6, 7, and 8.

There are still some drawbacks in the use of this solution. SPARQL, the query
language employed, is a recent proposition. It lacks optimization and widespread use.
Besides, in one of the use cases proposed (#4), the lack of support for hierarchical
queries prevented us from obtaining the expected result. Furthermore, SWRL, the
language used for defining the rules, is still a proposition, and not a W3C
recommendation. There is the omission of some typical rule language constructions, in
favor of decidability. Additionally, we were unable to develop certain operations we
needed in some use cases. For example, sine and cosine functions were necessary for
distance determination (in use case #2).

Besides the weakness related to the immaturity of the technology, we could also
foresee some other potential problems in our proposition. The quantity of stored data
tends to increase, and large storage systems could be needed. Furthermore, with the
increasing of the database size, there may also be an overhead at the time needed to find
and relate context information. Regarding the inference capabilities, the more data we
have stored, the wider the possibility of implicit context detection. However, the time
needed to obtain this context also increases. We did not make a suitable analysis of the
overhead of the time the reasoner takes to execute in our solution. But informally, we
can affirm that for a relative small database, the time to execute an inference takes about
a couple of hundred milliseconds, using current off-the-shelf and commercially
available computers. Surely, this time could increase with larger databases and more

134

complex inferences. Nonetheless, we believe that with the constant improvement in the
speed of processors, and in storage/memory capacities, this overhead can be lessened.

7.4 Case Study 3: Context Awareness Subsystem

In this last case study we are particularly interested in analyzing the possibilities of
implementing some of the main features of the context awareness subsystem by
employing current available tools and standards. We concentrated, in this particular
case study, on the study of the technologies that could be used to implement the
subsystem.

7.4.1 Objective

Our objective in this case study is to establish how to provide the main features of
the context awareness subsystem, namely:

• An inquiry into how we can deal with the main features of the Aggregator
service;

• The analysis of the possibility of storing context information in a database;

• An appraisal of the capability of the subsystem to find context data in
different locations.

To attain these objectives, we have started by formulating our research questions in
the next subsection.

7.4.2 Research Questions

 Based on the objectives of this case study the following questions were
formulated:

1) How can we combine context information from various sources and what
means can we apply to take into account the users’ preferences?

2) How can we store context information in a database and what are the main
advantages and limitations involved?

3) What elements of the solution could provide distributed access and find the
location of context data?

 With these questions in mind, we were able to define the experimental
environment.

7.4.3 Experimental Environment

We started this experiment with the same environment employed in the previous
case study. However, we have considered other additional tools and protocols. The
main tool discussed is Jena38. It consists of an open framework, created by Hewlett-
Packard (HP), to the development of web semantics applications in Java (CARROLL et

38 Jena can be obtained at <http://jena.sourceforge.net>.

135

al., 2004). Jena provides an API to handle data represented in RDF and OWL. The
project includes a rule-based inference machine and an interface to other reasoners,
such as Pellet. Another possibility offered by Jena is database integration, to provide
persistence, or the use of in-memory storage. To query this data, we can utilize
SPARQL queries. To do so, we have to use a Jena module named ARQ39. This module
supports multiple query languages and engines.

Besides Jena, we have looked into the use of Java, since it is the only choice when
using this framework. With Java, there is the possibility of employing all capabilities on
hand, in terms of existing packages and libraries. Via JDBC (Java Database
Connectivity), we can integrate our Jena developed programs with various database
management systems (DBMS). Finally, we have studied the integration with an open
source database, more specifically MySQL40.

7.4.4 Experiments and Analysis of Results

We started this experiment by studying the technologies that could be employed to
answer the posed questions. Due to time restrictions, we did not develop a prototype nor
did we carry out a detailed implementation of this case study. Instead, we have
concentrated on showing how we can achieve the desired features by applying the
currently available standards and tools. A complete description of these experiments can
be found in PESSUTO (2008b).

To answer the first question, we began by analyzing how we can combine context
information from various sources. What we want to obtain is a way of aggregating the
context associated with a particular entity, merging information from different sources.
This aggregation can be obtained by using SWRL, with a rule to fulfill this need.

For instance, consider a specific situation in which we want to discover what events
are associated with a place. To answer this question, we have to gather all the events of
this specific place, and also of the composed ones. In order to do that, we need a rule
stating, “if an event occurs in X, and Y encompasses X, then the event occurs in Y”.
Figure 7.13 shows an SWRL rule that accomplishes this aggregation.

Figure 7.13: An SWRL rule to aggregate context information

We believe that in developing SWRL rules we can create conditions that allow
complex aggregations of context, which is difficult to be obtained in other context
models. Compared to the key-based model used in our previous project (ISAM), and
also in projects such as Context Toolkit and Solar, the possibilities in terms of

39 ARQ can be downloaded at <http://jena.sourceforge.net/ARQ/>.
40 More about MySQL can be found at <http://www.mysql.com>.

136

aggregation of context here are wider and less restricted. The difficulty lies in
developing the SWRL rules according to the aggregation needed. To lessen the
programmer’s effort, the infrastructure may provide a set of predefined rules and also a
user interface that facilitates the aggregation of context data, automatically generating
the rules.

Regarding the consideration of user preference, they can be employed during the
aggregation process (as suggested in section 5.3.4), using the parameters specified
there. We have to provide a way of storing these preferences associated with each
Person in the ontology. This could also help answer one of the competency questions,
“Who is John?”, which was suggested after the definition of the Continuum ontology41.
Although user preferences do not correspond to an exact description of who a person is,
it can give us an approximate idea. Moreover, the ontology can be complemented with
additional descriptions, such as physical characteristics, career, friends, and personal
data (name, address, etc.).

As a solution for storing user preferences and other personal descriptions, we can
employ the developed ontologies for social networks, such as the Friend-Of-A-Friend
(FOAF) ontology (MIKA, 2004). FOAF proposes a formal representation for user
profiles and friendship networks. In its vocabulary42, we can describe people with their
personal information, online accounts, projects, groups, documents, and images. The
ontology was designed with further extension in mind, and additional preferences can
be easily added to include the specific needs of the aggregator subsystem.

Considering the second research question, context information can be stored in a
relational database by using Jena. Currently, it is possible to integrate this framework
with MySQL, among other databases43. We can search the database using SPARQL
queries, which are converted into standard SQL queries for the specific database engine.
Jena’s Fastpath Query Processing44 performs this conversion.

Since the Continuum ontology was designed in Protégé, it is already defined as an
RDF model stored in memory. We can then store this in a database, just by converting it
through Jena’s RDB ModelMakers. Once this database model is produced, we can
connect by using a JDBC URL (Uniform Resource Locator), user, password, and
database type. Figure 7.14 illustrates the main steps coded in Java, using Jena, to
establish the connection with a MySQL database. Once connected, we can open an
existing model with the last method shown (openModel).

The next step consists in accessing the database using SPARQL queries. For this,
we have employed Jena’s ARQ module. To illustrate this process, consider a sample
question to obtain all entities, along with its respective classes, which are located in the
CoCell that has the id “Library” (using the same sample scenario of the previous case
study). The corresponding query using Jena and Java, is shown in Figure 7.15.

41 The competency questions can be found in Appendix C.
42 FOAF Vocabulary is described at <http://xmlns.com/foaf/spec/>.
43 A complete list of compatible databases can be found at <http://jena.sourceforge.net/
DB/index.html>.
44 This feature is described at <http://jena.sourceforge.net/DB/fastpath.html>.

137

String M_DB_URL = "jdbc:mysql://www.continuumproject.com/ContinuumContext";
String M_DB_USER = "cac";
String M_DB_PASSWD = "admin";
String M_DB = "MySQL"; //database type
String M_DBDRIVER_CLASS = "com.mysql.jdbc.Driver";

Class.forName(M_DBDRIVER_CLASS);
IDBConnection conn = new DBConnection(M_DB_URL, M_DB_USER, M_DB_PASSWD,
 M_DB); // create a database connection
Model prvModel = maker.openModel("ContinuumModel"); // open an existent model

Figure 7.14: Database connection using Jena

String queryString =
"PREFIX cco: <http://www.continuumproject.com/ContinuumContext.owl> " +
"SELECT ?entity ?entityClass " +
"WHERE {" +
" ?entity cco:isAt ?coCell;" +
" rdf:type ?entityClass." +
" ?coCell cco:coCellId \"Library\"." +
" }";

Query query = QueryFactory.create(queryString);
QueryExecution qe = QueryExecutionFactory.create(query, model);
ResultSet results = qe.execSelect();

Figure 7.15: Database query using ARQ

Ontologies are conceptually different from databases. While the latter is a data
repository with queries that generally return the same data previously stored, the former
consists of a data model, in which queries involve inferences, usually returning new
knowledge, and considering rules, affecting the final result (IBM, 2008). Despite these
differences, it is possible, as shown, to store an ontology in a database. To achieve this
goal, we have used a Java interface (Jena) that addresses these issues.

Storing knowledge bases using DBMS is an approach currently employed by many
proposals. This solution has the advantage of inheriting the vast experience of research
and database use, including improvements in robustness, concurrency control,
scalability, and recovery. However, because of the complexity of typical ontology
queries, DBMS cannot perform optimally for this kind of application (LEE and
GOODWIN, 2005). There are a number of improvements that should be investigated
for the improvement of ontology storage in databases. Lee and Goodwin (2005) point
out various directions for further work that should contribute to this advance, towards
what has been named an Ontology Data Management System (ODMS).

Regarding the use of SPARQL, one limitation of this recommendation is that the
focus is on querying. Therefore, it provides only four query forms
(PRUD’HOMMEAUX and SEABORNE, 2008): select, to return data that matches a
specific pattern; construct, to obtain the result of a query as an RDF graph, combining
various queries solutions, based on a graph template; ask, to find whether a query
pattern matches or not a specific condition (Boolean response); and describe, to restore
an RDF graph that describes the resources found.

However, SPARQL does not specify an update language for RDF graphs (one that
supports insert, update, and delete). Fortunately, researchers from HP have proposed a
SPARQL-based language for updating RDF graphs45. The support of this language is

45 This specification is available at <http://jena.hpl.hp.com/~afs/SPARQL-Update.html>.

138

available through ARQ. Besides, ARQ supports other extensions, which are still not
provided by SPARQL, such as the clause group by and the use of expressions in a select
clause.

The distributed access and location of context data is provided by one of the features
on hand in the standard SPARQL specification, named prefix. This feature allows the
definition of prefixes associated with Uniform Resource Identifiers (URIs).
Consequently, we can use several distributed data sources in a simple way: we can just
define each data source as a different prefix in the query (Figure 7.16 shows an example
of trying to discover where and when an event, WednesdayHappyHour, takes place).
The use of URIs as a universal identifier for the reference of entities and relationships is
one of the benefits of the RDF data model. SPARQL inherits this feature, since it uses
this model.

PREFIX cco: <http://www.continuumproject.com/ContinuumContext.owl#>
PREFIX owlt: <http://www.isi.edu/~pan/damltime/time-entry.owl#>
SELECT ?event ?place ?startTime ?endTime
WHERE {
 ?event rdf:type cco:Event;
 cco:EventId "WednesdayHappyHour";
 cco:takesPlaceAt ?place;
 owlt:begins ?startTimeD;
 owlt:ends ?endTimeD.
 ?startTimeD owlt:inCalendarClockDataType ?startTime.
 ?endTimeD owlt:inCalendarClockDataType ?endTime
}

Figure 7.16: SPARQL query with mutiple data sources

Currently, a prototype of the context awareness subsystem is under development
employing all the solutions studied in this experiment.

8 CONCLUSION AND FUTURE WORK

It is still difficult to find software infrastructure covering all the necessary
characteristics for ubiquitous computing. In the past, projects such as Aura, Gaia,
One.World, and ISAM tried to accomplish many aspects of ubicomp. However, it is
hard to concentrate on many different open research topics in one project. Many
projects nowadays provide solutions for specific issues. In spite of this tendency, we
think that a general solution to the field can help the development of pervasive software.

In this work, we have presented Continuum, a software infrastructure employing
middleware and framework in ubicomp. To achieve this goal, we started by surveying
the field and identifying the main challenges of the area. Subsequently, we proposed a
comprehensive architecture to cover all the characteristics that should be addressed to
accomplish these issues.

Continuum was proposed based on the requirements established in this
comprehensive model. Figure 8.1 characterizes each service proposed for Continuum
middleware and its correspondent position in the general architecture proposed. As
observed, all characteristics planned for load time and runtime were covered in our
proposition. Furthermore, related to design time, general considerations for the
development of a Continuum framework were provided.

In the detailing of Continuum, we described an architecture for service support
based on web services and SOA. According to Baldauf et al. (2007) , the use of web
services is an appropriate solution for context-aware systems, since it improves the
standardization of formats and protocols for describing services and their
communication mechanisms. Using this technology, we detailed various services
organized into five subsystems. The proposition of Continuum infrastructure,
considered as a horizontal thread in our thesis, has formed the necessary basis to
propose the context-aware support for the system.

Context awareness constitutes the specific focus of our work, referred to as a
vertical thread. We defined a context model, specifying an ontology to characterize
context information, based on the model proposed for representation of the real world in
Continuum. A methodology for storing context information, along with the means to
distribute and place the information, have also been pointed out. Some services were
then described to make use of this context.

Next, the state of the art in context-aware systems was presented, and a multi-tiered
model was proposed. This model encompasses all the services that should be available
in a context-aware system. We also evaluated some systems and compared them with
Continuum. As an additional conclusion, we believe that our proposal is the most

140

general and the most complete, dealing with all the layers presented in the multi-tiered
model, as seen in Figure 8.2.

Figure 8.1: Relationships between comprehensive architecture and Continuum

Figure 8.2: Relationships between multi-tiered context-aware model and Continuum

141

Finally, some experimental evaluations were conducted to analyze and assess
Continuum. We have proposed three general experiments, based on case study
methodology. In the first experiment, we discussed the proposition of the distributed
service architecture. We demonstrate that its implementation is possible and present the
main strengths and limitations that it could have.

The second case study regards the representation of context as an ontology and
inference capability. As a result, we have listed some lessons learned. We conclude that,
although the technology is still quite recent and immature, its use is promising and
reinforces the utilization of web semantics for context representation.

The last experiment has shown how we can implement the context awareness
subsystem employing current available tools and standards. Our conclusion is that it is
possible to develop our context awareness subsystem employing only currently existing
technology, although some improvements are desired to ensure better performance and
a wider ranging use.

Briefly, the main contributions of the thesis are:

• A revision of the field of ubiquitous computing, comprehending its origins,
evolution, and main challenges;

• A proposal of a general architecture model for ubiquitous computing,
helping the community to develop and assess middleware and frameworks
for this area. Another aim of this architecture is to highlight the requirements
of a software infrastructure in the field;

• The proposition of the software infrastructure Continuum, as an evolution of
the ISAM project;

• A model, along with a notation, for representing the real world in
Continuum;

• The proposal of an architecture for service support, employing the use of
SOA and web services;

• The suggestion of an infrastructure to improve the support of mobile devices
in Continuum, using Web 2.0 concepts;

• The modeling of twenty services for a software infrastructure in ubiquitous
computing, divided into four subsystems. Thirteen of those services are
totally new, while seven are based on previous works, such as EXEHDA,
ISAMadapt, ACTUS, and other graduate research projects;

• The suggestion of some general consideration for development of the
Continuum framework;

• The design of a Context Awareness subsystem, encompassing the
formalization of context representation; the use of resource discovery; the
proposal of a database for historical context; the distribution and placement
of context information;

• A proposition of a multi-tiered model for context-aware systems,
emphasizing the main services;

142

• The assessment of the context awareness solutions proposed and a
comparison between them and the state of the art in the area;

• The analysis and evaluation of the Continuum’s main contributions. The
method employed for validation was based on case studies, with three series
of experiments;

• The development of a case study to discuss the proposition of the distributed
service architecture. In this experiment, two services were modeled and
implemented along with the conduction of some tests;

• The description of a case study to analyze the formal representation of
context, along with its storage and inference capacity. This experiment was
conducted by employing a set of tools and by defining a sample scenario;

• The last case study conducted, had the objective of examining what tools and
standards could be employed in the context awareness subsystem.

As an additional contribution, we had some articles published in journals and
proceedings during the development of this proposal:

• IEEE PERVASIVE COMPUTING. COSTA, C.; YAMIN, A.; GEYER, C.
Towards a General Software Infrastructure for Ubiquitous Computing. IEEE
Pervasive Computing, Los Alamitos, v.7, n.1, p. 64-73, Jan. 2008.

• ACM SAC / SIGAPP 2008. SILVA, L.; COSTA, C.; GEYER, C.;
AUGUSTIN, I.; YAMIN, A. On the control of Adaptation in Ubiquitous
Computing. In: ANNUAL ACM SYMPOSIUM ON APPLIED
COMPUTING, SIGAPP, 23., Mar. 2008, Fortaleza. Proceedings… New
York: ACM, 2008. p. 2228-2229.

• WPUC 2007. COSTA, C.; SILVA, L.; YAMIN, A.; GEYER, C. Uma
Proposta de Infra-estrutura de Software de Segunda Geração. In: I Workshop
on Pervasive and Ubiquitous Computing, WPUC, 2007, Gramado.
Workshop on Pervasive and Ubiquitous Computing. Anais… 2007.

• ERAD 2007. COSTA, C.; GEYER, C. Uma Proposta de Arquitetura de
Software para a Computacao Ubíqua. In: Escola Regional de Alto
Desempenho, ERAD 2007, 2007, Porto Alegre. Anais… 2007. p. 85-86.

• WPPD 2007. COSTA, C.; SILVA, L.; YAMIN, A.; GEYER, C. . A
Preliminary Outline for a Ubiquitous Computing Software Infrastructure. In:
V Workshop de Processamento Paralelo e Distribuído, WPPD’2007, 2007,
Porto Alegre. Anais… 2007.

• WPPD 2007. SILVA, L.; COSTA, C.; GEYER, C. ACTUS: a Framework
for Adaptation Control in Ubiquitous Computing. In: V Workshop de
Processamento Paralelo e Distribuído, WPPD’2007, 2007, Porto Alegre.
Anais… 2007.

• WPPD 2006. COSTA, C.; GEYER, C. Um Modelo Genérico de Infra-
estrutura de Software para a Computação Ubíqua. In: IV Workshop de
Processamento Paralelo e Distribuído da UFRGS, WPPD’2006, 2006, Porto
Alegre. Anais… 2006.

143

Continuum presents several opportunities for extensibility and future work. In the
proposition presented for modeling the real world in the infrastructure, we can address
the possibility of CoBase replication and specialization. In addition, various middleware
services can be implemented, and some should be further described, such as Trust
Manager and the aspect of tangible interaction in the Interface Selector service. The
task-aware feature of Ubiquitous Guru must also be more deeply investigated.
Moreover, the framework can be detailed and validated.

Related to the context-aware architecture there are also many aspects that can be
improved. We can deal with networks of sensors, as suggested by the final context-
aware system assessment. Additionally, the improvement of privacy and trust in the
context-awareness architecture is also a possibility. Finally, there could be an in-depth
investigation on specific kinds of context, such as emotional states.

We trust that the current work has helped bridge the distance between Weiser’s
vision of ubiquitous computing and the current distributed system scenario. This goal
was accomplished by the proposition of Continuum context-aware service-based
software infrastructure. We believe that the results presented in this thesis reinforce this
objective.

Ubiquitous computing is considered today a hot topic in computer science. There are
many articles, events, publications, funding, and on-going works related to the field.
Although this seems to be an opportunity for research and development, it also
establishes many constrains, and the need for wide-range investigations, levering the
amount of work undertaken during the process of developing this thesis.

Still, the proposal of Continuum has been gratifying work, and we hope to give a
long-lasting contribution to the area. We trust that this proposal could also be useful to
the advance of ubiquitous software development. What is more, we consider that to
fulfill Weiser’s vision, future ubiquitous infrastructure should, as Continuum proposes,
seamlessly integrate many different challenges.

REFERENCES

ABOWD, G.; MYNATT, E.; RODDEN, T. The human experience. IEEE Pervasive
Computing, Los Alamitos, v.1, n.1, p. 48-57, Jan. 2002.

ADELSTEIN, F. et al. Fundamentals of Mobile and Pervasive Computing. New
York: McGraw-Hill, 2005.

AGOSTINI, A.; BETTINI, C.; RIBONI, D. Experience Report: Ontological Reasoning
for Context-aware Internet Services. In: INTERNATIONAL CONFERENCE ON
PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS,
PERCOMM, 4., 2006, Pisa. Proceedings… New York: IEEE, 2006.

AILISTO, H. et al. Structuring Context Aware Applications: five-layer model and
example case. In: WORKSHOP ON CONCEPTS AND MODELS FOR UBIQUITOUS
COMPUTING, 2002, Götenborg. Proceedings… Available at: <
http://www.comp.lancs.ac.uk/~dixa/conf/ubicomp2002-models/papers-list.html>.
Visited on: Apr. 2008.

ANDROUTSELLIS-THEOTOKIS, S.; SPINELLIS, D. A Survey of Peer-to-Peer
Content Distribution Technologies. ACM Computing Surveys, New York, v.36, n.4,
p. 335-371, Dec. 2004.

ANEROUSIS, N.; MOHINDRA, A. The Software-as-a-Service Model for Mobile and
Ubiquitous Computing Environments. In: INTERNATIONAL CONFERENCE ON
MOBILE AND UBIQUITOUS SYSTEMS: NETWORKING & SERVICES,
MOBIQUITOUS, 3., 2006, San Jose. Proceedings… New York: IEEE, 2006. p. 1-6.

ARNSTEIN, L. et al. Labscape: a smart environment for the cell biology laboratory.
IEEE Pervasive Computing, Los Alamitos, v.1, n.3, p. 13-21, July 2002.

AUGUSTIN, I. Abstrações para uma Linguagem de Programação visando
Aplicações Móveis Conscientes do Contexto em um Ambiente de Pervasive
Computing. 2004. 193f. Tese (Doutorado em Ciência da Computação) – Instituto de
Informática, UFRGS, Porto Alegre.

AUGUSTIN, I. et al. ISAM, Joining Context-Awareness and Mobility to Building
Pervasive Applications. In: ILYAS, M.; MAHGOUB, I. (Ed.) Mobile Computing
Handbook. Boca Raton: CRC, 2004. p. 73-94.

145

AUGUSTIN, I. et al. Towards Taxonomy for Mobile Applications with Adaptive
Behavior. In: INTERNATIONAL SYMPOSIUM ON PARALLEL AND
DISTRIBUTED COMPUTING AND NETWORKING, PDCN, 20., 2002, Innsbruck.
Proceedings… Innsbruck: IASTED, 2002.

AVI!IENIS, A. et al. Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and Secure Computing, Los
Alamitos, v.1, n.1, p. 11-33, Jan. 2004.

AVI!IENIS, A. Infrastructure-Based Design of Fault-Tolerant Systems: how to get
high-confidence computing for all. In: IFIP INTERNATIONAL WORKSHOP ON
DEPENDABLE COMPUTING AND ITS APPLICATIONS, DCIA, 1998,
Johannesburg. Proceedings… [S.l.:s.n.], 1998.

BALDAUF, M.; DUSTDAR, S.; ROSENBERG, F. A survey on context-aware
systems. International Journal of Ad Hoc and Ubiquitous Computing, Geneve, v.2,
n.4, p. 263-277, Oct. 2007.

BANAVAR, G. et al. Challenges: an application model for pervasive computing. In:
INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND
NETWORKING, MOBICOM, 6., 2000, Boston. Proceedings… New York: ACM,
2000. p. 266-274.

BANAVAR, G.; BERNSTEIN, A. Software infrastructure and design challenges for
ubiquitous computing applications. IEEE Pervasive Computing, New York, v.1, n.1,
p. 92-96, Jan. 2002.

BARBOSA, J. L. V. et al. GHolo: A Multiparadigm Model Oriented to Development of
Grid Systems. Future Generation Computer Systems, Amsterdam, v.21, n.1, p. 227-
237, Jan. 2005.

BARBOSA, J. L. V. et al. Multiparadigm Model Oriented to Development of Grid
Systems. In: INTERNATIONAL WORKSHOP ON PROGRAMMING PARADIGMS
FOR GRIDS AND METACOMPUTING SYSTEMS, PPGaMS, 1., 2004, Krákow.
Proceedings… New York: Springer-Verlag, 2004. p. 2-9.

BARBOSA, J. L. V. GRANLOG: Um Modelo Para Análise Automática de
Granulosidade na Programação em Lógica. 1996. 167f. Dissertação (Mestrado em
Ciência da Computação) – Instituto de Informática, UFRGS, Porto Alegre.

BARBOSA, J. L. V. Holoparadigma: Um Modelo Multiparadigma Orientado ao
Desenvolvimento de Software Distribuído. 2002. 213f. Tese (Doutorado em Ciência da
Computação) – Instituto de Informática, UFRGS, Porto Alegre.

BARCELLOS, A. M. P.; BELMONTE, V.; GEYER, C. The HetNOS Network
Operating Systems: a tool for writing distributed applications. ACM Operating
Systems Review, New York, v. 28, n. 4, p. 34-47, Oct. 1994.

146

BARDRAM, J. The Trouble with Login: on usability and computer society security in
ubiquitous computing. Personal and Ubiquitous Computing, London, v.9, n.6, p. 357-
367, Nov. 2005.

BERNERS-LEE, T.; HENDLER, J.; LASSILA, O. The Semantic Web. Scientific
American, New York, v. 284, n. 5, p. 34-43, May 2001.

BERNSTEIN P. Middleware: a model for distributed system services.
Communications of the ACM, New York, v.39, n.2, p. 86-98, Feb. 1996.

BISCHOFS, L. et al. A Hierarchical Super Peer Network for Distributed Artifacts. In:
DIGITAL LIBRARY ARCHITECTURES WORKSHOP, DELOS, 2004, Cagliari.
Proceedings… Padova: Edizioni Libreria Progetto, 2004. p. 105-114.

CAHILL, V. et al. Using Trust for Secure Collaboration in Uncertain Environments.
IEEE Pervasive Computing, Los Alamitos, v.2, n.3, p. 52-61, July 2003.

CANNY, J. The Future of Human-Computer Interaction. ACM Queue, New York, v.4,
n.6, p. 24-32, July 2006.

CARROLL, J. et al. Jena: implementing the semantic web recommendations. In:
INTERNATIONAL WORLD WIDE WEB CONFERENCE, WWW, 13., 2004.
Proceedings… New York: ACM, 2004. p. 74-83.

CAS, J. Privacy in pervasive computing environments – a contradiction in terms? IEEE
Technology and Society Magazine, Princeton, v.24, n.1, p. 24-33, Mar. 2005.

CHEN, G. Solar: Building a Context Fusion Network for Pervasive Computing. 2004.
169f. Thesis (Doctor of Philosophy in Computer Science) – Department of Computer
Science, Darthmouth College, Hanover.

CHEN, G.; KOTZ, D. A Survey of Context-aware Mobile Computing Research.
2000. 16 f. Technical Report – Department of Computer Science, Darthmouth College,
Hanover.

CHEN, G.; KOTZ, D. Context Aggregation and Dissemination in Ubiquitous
Computing Systems. In: IEEE WORKSHOP ON MOBILE COMPUTING SYSTEMS
AND APPLICATIONS, WMCSA, 4., 2002, Callicoon. Proceedings… New
York:IEEE, 2002a. p. 105-114.

CHEN, G.; KOTZ, D. Solar: an open platform for context-aware mobile applications.
In: INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING, Pervasive,
1., 2002, Zurich. Proceedings… Heidelberg: Springer-Verlag, 2002b. p. 41-47.

CHEN, H. et al. SOUPA: standard ontology for ubiquitous and pervasive applications.
In: ANNUAL INTERNATIONAL CONFERENCE ON MOBILE AND UBIQUITOUS
SYSTEMS: NETWORKING AND SERVICES, MOBIQUITOUS, 1., 2004, Boston.
Proceedings… [S.l.:s.n.]. p. 258-267.

147

CHETAN, S.; RANGANATHAN, A.; CAMPBELL, R. Towards Fault tolerant
Pervasive Computing. IEEE Technology and Society Magazine, Princeton, v.24, n.1,
p.38-44, 2005.

CHINNICI, R. et al. (Ed). Web Services Description Language (WSDL) Version 2.0
Part 1: core language. W3C Recommendation. [S.l.]: W3C, 2007. Available at:
<http://www.w3.org/TR/wsdl20/>. Visited on: Dec. 2007.

CHONG, C.; KUMAR, S. Sensor Networks: evolution, opportunities, and challenges.
Proceedings of the IEEE, Piscataway, v. 91, n. 8, p.1247-1256, Aug. 2003.

COSTA, A. C. R.; DIMURO, G. P. Interactive Computation: Stepping Stone in the
Pathway From Classical to Developmental Computation. In: WORKSHOP ON THE
FOUNDATIONS OF INTERACTIVE COMPUTATION, FInCo, 2005, Edinburgh.
Proceedings… Edinburgh: LFCS/University of Edinburgh, 2005. v. 1, p. 1-12.

COSTA, C. A. da. GEYER, C. F. R. Uma proposta de escalonamento distribuído para
exploração do paralelismo na programação em lógica. In: SIMPÓSIO BRASILEIRO
DE ARQUITETURA DE COMPUTADORES E PROCESSAMENTO DE ALTO
DESEMPENHO, SBAC-PAD, 10., 1998, Búzios. Anais... Rio de Janeiro: UFRJ: SBC,
1998. p. 61-64.

COSTA, C. A. da. Uma Proposta de Escalonamento Distribuído para a Exploração
do Paralelismo na Programação em Lógica. 1998. 104f. Dissertação (Mestrado em
Ciência da Computação) – Instituto de Informática, UFRGS, Porto Alegre.

COSTA, C. A. da; YAMIN, A. C.; GEYER, C. F. R. Towards a General Software
Infrastructure for Ubiquitous Computing. IEEE Pervasive Computing, Los Alamitos,
v.7, n.1, p. 64-73, Jan. 2008.

COSTA, C. A. da; YAMIN, A. C.; GEYER, C. F. R. Uma Proposta de Infra-estrutura
de Software de Segunda Geração. In: WORKSHOP ON PERVASIVE AND
UBIQUITOUS COMPUTING, WPUC, 1., 2007, Gramado. Anais... Porto Alegre:
UFRGS: SBC, 2007.

COSTA, V. dos S. et al. CloPN - Sistemas Escaláveis de Alto Desempenho para
Programação em Lógica com Restrições. 1999. Proposta de Colaboração CNPq-NSF
Protem-CC-CNPq. Disponível em: <http://www.cos.ufrj.br/~vitor/clopn/>. Acesso em:
set. de 2007.

COULOURIS, G.; DOLLIMORE, J.; KINDBERG, T. Distributed Systems: concepts
and design. Harlow: Addison Wesley, 2005. 927p.

DELIAS, N. et al. A Performance Comparison of Ontology Reasoning and Rule
Engines. In: MOBILE AND WIRELESS COMMUNICATIONS SUMMIT, IST, 16.,
2007, Budapest. Proceedings… [S.l.:s.n.], 2007. p. 1-5.

DEY, A. Providing Architectural Support for Building Context-Aware
Applications. 2000. 170f. Thesis (Doctor of Philosophy in Computer Science) –
College of Computing, Georgia Institute of Technology, Atlanta.

148

DEY, A. Understanding and Using Context. Personal and Ubiquitous Computing,
London, v.5, n.1, p. 4-7, Feb. 2001.

DEY, A.; ADOWD, G.; SALBER, D. A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Application. Human-Computer
Interactions Journal, [S.l.], v. 16, n. 2-4, p. 97-166, 2001.

DHESIASEELAN, A. What's New in WSDL 2.0. [S.l.]: O’Reilly Media, 2004.
Available at: <http://webservices.xml.com/lpt/a/ws/2004/05/19/wsdl2.html>. Visited
on: Dec. 2007.

DOU, D.; LEPENDU, P. Ontology-based Integration for Relational Databases. In:
ACM SYMPOSIUM ON APPLIED COMPUTING, SAC, 21., 2006, Dijon.
Proceedings… New York: ACM, 2006. p. 461-466.

DOURISH, P. et al. Security in the Wild: user strategies for managing security as an
everyday, practical problem. Personal and Ubiquitous Computing, London, v.8, n.6,
p. 391-401, Nov. 2004.

EDWARDS, W. Discovery Systems in Ubiquitous Computing. IEEE Pervasive
Computing, Los Alamitos, v.5, n.2, p. 70-77, Apr. 2006.

ELRAD, T.; FILMAN, R; BADER, A. Aspect-Oriented Programming.
Communications of the ACM, New York,v.44, n.10, p. 28-32, Oct. 2001.

FEHLBERG, F. MultiS: um servidor de contexto voltado à computação pervasiva.
2007. 91f. Dissertação (Mestrado em Ciência da Computação) – Instituto de
Informática, UFRGS, Porto Alegre.

FETZER, C.; HÖGSTEDT, K. Challenges in Making Pervasive Systems Dependable.
In: SCHIPER, A. et al. (Ed.) Future Directions in Distributed Computing. Berlin:
Springer-Verlag, 2002. p.186-190.

FLYVBJERG, B. Five Misunderstandings About Case-Study. Qualitative Inquiry,
Thousand Oaks , v.12, n.2, p. 219-245, Apr. 2006.

FORGY, C. Rete: a fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, Amsterdam, v.19, n. 1, p. 17-37, Sept. 1982.

FOWLER, M. UML Essencial: um breve guia para a linguagem-padrão de modelagem
de objetos. 3. ed. Porto Alegre: Bookman, 2005. 160p.

FRAINER, G. Espaço Pervasivo de Arquivos: habilitando acesso adaptativo e
consciente da aplicação a arquivos em um ambiente pervasivo. 2008. 86 f. Dissertação
(Mestrado em Ciência da Computação) – Instituto de Informática, UFRGS, Porto
Alegre.

FRAINER, G. et al. Utilizando adaptação consciente de aplicação no acesso a arquivos
em um ambiente pervasivo. In: WORKSHOP EM SISTEMAS COMPUTACIONAIS

149

DE ALTO DESEMPENHO, 8., 2007, Gramado. Proceedings... Porto Alegre:
Sociedade Brasileira de Computação, 2007. p. 103-110.

FRIDAY, A. Supporting services discovery, querying and interaction in ubiquitous
computing environments. Wireless Networks, Hingham, v.10, n.6, p. 631-641, Nov.
2004.

FUGGETA, A.; PICCO, G. P.; VIGNA, G. Understanding code mobility. IEEE
Transactions on Software Engineering, Los Alamitos, v.24, n.5, p. 342-361, May
1998.

GARCÉS-ERICE, L. et al. Hierarchical Peer-to-peer Systems. In: ACM/IFIP
INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED
COMPUTING, Euro-Par, 2003, Klagenfurt. Proceedings… Netherlands: Springer,
2003. p. 1230-1239.

GARLAN, D. et al. Project Aura: Toward Distraction-free Pervasive Computing. IEEE
Pervasive Computing, Los Alamitos, v.1, n.3, p. 22-31,Sept. 2002.

GÄRTNER, F. C. Fundamentals of fault-tolerant distributed computing in
asynchronous environments. ACM Computing Surveys, New York, v.31, n.1, p. 1-26,
Mar. 1999.

GEYER, C. F. R. et al. APPELO – Project Parallel Environment for Logic
Programming. In: PROJECTS EVALUATION WORKSHOP, 1999, Rio de Janeiro.
Proceedings… Rio de Janeiro: ProTem – CC/CNpq, 1999. p. 421-464.

GRIMM, R. et al. System support for pervasive applications. ACM Transactions on
Computer Systems, New York, v.22, n.4, p. 421-486, Nov. 2004.

GRIMM, R. One.world: experiences with a pervasive computing architecture. IEEE
Pervasive Computing, Los Alamitos, v.3, n.3, p. 22-30, July 2004.

GRIMM, R. et al. Systems Directions for Pervasive Computing. In: WORKSHOP ON
HOT TOPICS IN OPERATING SYSTEMS, HotOS, 8., 2001, Elmau. Proceedings…
[S.l.:s.n.], 2001. p. 147-151.

GRUBER, T. Ontology. Disponível em: <http://tomgruber.org/writing/ontology-
definition-2007.htm >. Acesso em: nov. 2007.

GU, T.; PUNG, H.; ZHANG, D. Toward an OSGi-Based Infrastructure for Context-
Aware Applications. IEEE Pervasive Computing, Los Alamitos, v.3, n.4, p. 66-74,
Oct. 2004.

GU, T.; PUNG, H.; ZHANG, Q. A service-oriented middleware for building context-
aware services. Journal of Network and Computer Applications, Amsterdam, v. 28,
n. 1, p. 1-18. Jan. 2005.

HAO, W. et al. An Infrastructure for Web Services Migration for Real-Time
Applications. In: INTERNATIONAL WORKSHOP ON SERVICE-ORIENTED

150

SYSTEM ENGINEERING, SOSE, 2., 2006, Shanghai. Proceedings… New York:
IEEE. 2006. p.41-48.

HASELOFF, S. Context Awareness in Information Logistics. 2005. 247f. Thesis
(Doktorin der Ingenieurwissenschaften) – Elektrotechnik und Informatik, Technischen
Universität Berlin, Berlin.

HEIDEGGER, M. Being and time: a translation of Sein and Zeit. New York: State
University of New York, 1996.

HENRICKSEN, K. A Framework for Context-aware Pervasive Applications. 2003.
201f. Thesis (Doctor of Philosophy in Computer Science) – School of Information
Technology and Electrical Engineering, University of Queensland, Brisbane.

HENRICKSEN, K.; INDUSLKA, J. A Software Engineering Framework for Context-
aware Pervasive Computing. In: IEEE ANNUAL CONFERENCE ON PERVASIVE
COMPUTING AND COMMUNICATIONS, PERCOM, 2., 2004, Orlando.
Proceedings… Los Alamitos: IEEE Computer Society. 2004. p. 77-86.

HENRICKSEN, K.; INDUSLKA, J. Developing Context-aware Pervasive Computing
Applications: models and approach. Pervasive and Mobile Computing, Amsterdam,
v.2, n.2, p.37-64, Feb. 2006.

HOBBS, J.; PUSTEJOVSKY, J. Annotating and Reasoning about Time and Events. In:
AAAI SPRING SYMPOSIUM ON LOGICAL FORMALIZATIONS OF
COMMONSENSE REASONING, 2003, Stanford. Proceedings… Menlo Park: AAAI,
2003.

HOFFNAGLE, G. F. Preface. IBM System Journal, Danvers, v.38, n.4 , p. 502, 1999.

HOLMQUIST, L.; SCHMIDT, A.; ULLMER, B. Tangible Interfaces in perspective.
Personal and Ubiquitous Computing, New York, v.8, n.5, p. 291-293, May 2004.

HORNECKER, E. A design theme for tangible interaction: embodied facilitation. In:
EUROPEAN CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE
WORK, ECSCW, 9., 2005, Paris. Proceedings… Netherlands: Springer, 2005. p. 23-
43.

HORROCKS, I. et al. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. W3C Member Submission. [S.l.]: W3C, 2004. Available at:
<http://www.w3.org/ Submission/SWRL/>. Visited on: July 2008.

HOWERTON, J. Service-Oriented Architecture and Web 2.0. IT Professional, Los
Alamitos, v.9, n.3, p. 62-64, May 2007.

INDULSKA, J.; SUTTON, P. Location Management in Pervasive Systems. In:
WORKSHOP OF WERABLE, INVISIBLE, CONTEXT-AWARE, AMBIENT,
PERVASIVE AND UBIQUITOUS COMPUTING, WICAPUC, 1., 2003, Adelaide.
Proceedings… Sydney: Australian Computer Society, 2003. p. 143-152.

151

JING, J.; HELAL, A.; ELMAGARMID, A. Client-server Computing in Mobile
Environments. ACM Computing Surveys, New York, v.31, n.2, p. 117-157, June
1999.

JUSZCZYK, L.; LAZOWSKI, J.; DUSTDA, S. Web Service Discovery, Replication,
and Synchronization in Ad-Hoc Networks. In: INTERNATIONAL CONFERENCE ON
AVAILABILITY, RELIABILITY AND SECURITY, ARES, 1., 2006. Proceedings…
New York: IEEE, 2006. p. 847-854.

KAGAL, L.; FININ, T.; JOSHI, A. A Policy Language for A Pervasive Computing
Environment. In: INTERNATIONAL WORKSHOP ON POLICIES FOR
DISTRIBUTED SYSTEMS AND NETWORKS, 4., 2003. Proceedings… New York:
IEEE. 2003.

KAPOR, M. Recollections on Lotus 1-2-3: benchmark for spreadsheet software. IEEE
Annals of the History of Computing, Los Alamitos, v.29, n.3, p. 32 -40, July 2007.

KATO, H.; TAN, K. Pervasive 2D Barcodes for Camera Phone Applications. IEEE
Pervasive Computing, Los Alamitos, v.29, n.4, p. 76-85, Oct. 2007.

KEEN, E. A primer in phenomenological psychology. New York: Holt, Rinehart and
Winston, 1975.

KELLERMANN, F. Uma Proposta de Arquitetura de Serviços Distribuídos
utilizando Web Services na Infra-Estrutura de Software Continuum. 2008.
Trabalho de Conclusão de Curso (Graduação em Ciência da Computação), UNISINOS,
São Leopoldo.

KINDBERG, T.; FOX, A. A system software for ubiquitous computing. IEEE
Pervasive Computing, Los Alamitos, v.1, n.1, p. 70-81, Jan. 2002.

LEE, Y.; LEUNG, K.; SATYNARAYANAN, M. Operation-based update propagation
in a mobile file system. In: USENIX ANNUAL TECHNICAL CONFERENCE,
USENIX, 1999, Monterey. Proceedings… Berkeley: USENIX Association, 1999. p.
43-56.

LEVY, E.; SILBERSCHATZ, A. Distributed File Systems: concepts and examples.
ACM Computing Surveys, New York, v.22, n.4, p. 321-374, Dec. 1990.

LIN, K. Building Web 2.0. Computer, Los Alamitos, v.40, n.5, p. 101-102, May 2007.

LOKE, S. Context-aware Artifacts: two development approaches. IEEE Pervasive
Computing, Los Alamitos, v.5, n.2, p. 48-53, Apr. 2005.

LOPES, J. EXEHDA-ON: uma abordagem baseada em ontologias para sensibilidade
ao contexto na computação pervasive. 2008. 128 f. Dissertação (Mestrado em Ciência
da Computação) – Escola de Informática, UCPEL, Pelotas.

152

LUBYTE, L. Reusing Relational Sources for Semantic Information Access. In:
CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, PIKM,
2007, Lisboa, Proceedings… New York: ACM, 2007. p. 9-16.

LYYTINEN K.; YOO, Y. Issues and Challenges in Ubiquitous Computing. IEEE
Pervasive Computing, Los Alamitos, v.1, n.1, p. 61-65, Jan. 2002.

MCGUINNESS, D.; HARMELEN, F. (Ed). OWL Web Ontology Language
Overview. W3C Recommendation. W3C, 2004. Available at:
<http://www.w3.org/TR/owl-features/>. Visited on: Jan. 2008.

MIKA, P. Social Networks and the Semantic Web. In: INTERNATIONAL
CONFERENCE ON WEB INTELLIGENCE, 2004. Proceedings… Washington: IEEE,
2004. p. 285-291.

MODAHL, M. UbiqStack: a taxonomy for a ubiquitous computing software stack.
Personal and Ubiquitous Computing, London, v.10, n.1, p. 21-27, Jan. 2006.

MORAES, M. C. DIMI: um Disseminador Multicast de Informações para a Arquitetura
ISAM. 2005. 91f. Dissertação (Mestrado em Ciência da Computação) – Instituto de
Informática, UFRGS, Porto Alegre.

MOREL, E. et al. Side-effects in PloSys or-parallel Prolog on distributed memory
machines. In: COMPULOG NET MEETING ON PARALLELISM AND
IMPLEMENTATION TECHNOLOGY, 1996. Proceedings... [S.l.:s.n.], 1996.

MOSER, L.; MELLIAR-SMITH, P.; ZHAO, W. Making Web Services Dependable. In:
INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND
SECURITY, ARES, 1., 2006. Proceedings… New York: IEEE. 2006. p. 440-448.

MURPHY, A.; PICCO, G.; ROMAN, G. LIME: a coordination model and middleware
supporting mobility of hosts and agents. ACM Transactions on Software Engineering
and Methodology, New York, v.15, n.3, p. 279-328, July 2006.

NIEMELÄ, E.; LATVAKOSKI, J. Survey of Requirements and Solutions for
Ubiquitous Software. In: MOBILE UBIQUITOUS COMPUTING CONFERENCE,
2004, Washington. Proceedings… New York: ACM, 2004. p. 71-78.

NOBLE, B. System support for mobile, adaptive applications. IEEE Personal
Communications, Los Alamitos, v.7, n.1, p. 44-4, Feb. 2000.

NOY, N.; MCGUINNESS, D. Ontology Development 101: a guide to creating your
first ontology. 2001. 25 f. Technical Report – Knowledge Systems Laboratory, Stanford
University, Stanford.

NYLANDER, S.; BYLUND, M.;WAERN, A. Ubiquitous Service access through
adapted user interfaces on multiple devices. Personal and Ubiquitous Computing,
London, v.9, n.3, p. 123-133, May 2005.

153

O’REILLY, T. What is Web 2.0, 2005. Available at: http://www.oreillynet.com/pub/
a/oreilly/tim/news/2005/09/30/what-is-web-20.html>. Visited on: Aug. 2007.

PACE, J. A. D.; CAMPO, M. R. Analyzing the role of aspects in software design.
Communications of the ACM, New York, v.44, n.10, p. 66-73, Oct. 2001.

PAPAZOGLOU M. P.; GEORGAKOPOULOS, D. Introduction: Service-oriented
computing. Communications of the ACM, New York, v.46, n.10, p. 24-28, Oct. 2003.

PARK, H.; LEE, J. A framework of context-awareness for ubiquitous computing
middlewares. In: ANNUAL ACIS INTERNATIONAL CONFERENCE ON
COMPUTER AND INFORMATION SCIENCE, ICIS, 4., 2005, Jeju Island.
Proceedings… Washington: IEEE Computer Society, 2005. p. 369-374.

PESSUTTO, O. D. Semantic Web in the Continuum's Context-Aware Architecture.
2008b. 92f. Memoir de Projet de Recherche (Master Informatique Spécialité Web
Intelligence) – École Nationale Supérieure d’Informatique et de Mathématiques
Appliquées de Grenoble (ENSIMAG), Institut Polytechnique de Grenoble (INPG),
Grenoble.

PESSUTTO, O. D. Web Semântica na Arquitetura de Consciência de Contexto do
Continuum. 2008a. 89f. Trabalho de Graduação (Graduação em Ciência da
Computação) – Instituto de Informática, UFRGS, Porto Alegre.

PIAGET, J. Biology and Knowledge: an essay on the relations between organic
regulations and cognitive processes. Chicago: The University of Chicago, 1971.

PRUD’HOMMEAUX, E.; SEABORNE, A. SPARQL Query Language for RDF.
W3C Recommendation. [S.l.]: W3C, 2008. Available at: <http://www.w3.org/TR/rdf-
sparql-query/>. Visited on: July 2008.

RANGANATHAN, A.; CAMPBELL, R. Reasoning about Uncertain Contexts in
Pervasive Computing Environments. IEEE Pervasive Computing, Los Alamitos, v.3,
n.2, p. 62-70, Apr. 2004.

ROBINSON, P.; VOGT, H.; WAGEALLA, W. Some Research Challenges in Pervasive
Computing. In: ROBINSON, P.; VOGT, H.; WAGEALLA, W. (Ed.) Privacy, Security
and Trust within the Context of Pervasive Computing. Boston: Springer Science +
Business Media, 2005. p. 1-16.

ROGERS, Y. Moving on from Weiser’s Vision of Calm Computing: engaging ubicomp
experiences. In: INTERNATIONAL CONFERENCE ON UBIQUITOUS
COMPUTING, UbiComp, 8., 2006, Orange County. Proceedings… Heidelberg:
Springer-Verlag, 2006. p. 404-421.

ROMÁN, M. et al. A Middleware Infrastructure to Enable Active Spaces. IEEE
Pervasive Computing, Los Alamitos, v.1, n.4, p. 74-83, Dec. 2002.

154

RÓMAN, M.; CAMPBELL, R. H. Gaia: enabling active spaces. In: SIGOPS
EUROPEAN WORKSHOP, 9., 2000, Kolding. Proceedings… Kolding: ACM, 2000.
p. 229-234.

ROSS, P.; KEYSON, D. The case of sculpting atmospheres: towards design principles
for expressive tangible interaction in control of ambient systems. Personal and
Ubiquitous Computing, London, v.11, n.2, p. 69-79, Feb. 2007.

SAHA, D.; MUKHERJEE, A. Pervasive Computing: a paradigm for the 21st century.
Computer, Los Alamitos, v.36, n.3, p. 25-31, Mar. 2003.

SAITO, Y.; SHAPIRO, M. Optimistic replication. ACM Computing Surveys, New
York, v.37, n.1, p. 42-81, Mar. 2005.

SALBER, D.; DEY, A.; ADOWD, G. The Context Toolkit: aiding the development of
context-enabled applications. In: CONFERENCE ON HUMAN FACTORS IN
COMPUTING SYSTEMS, SIGCHI, 17., 1999, Pittsburgh. Proceedings… New York:
ACM, 1999. p. 4340441.

SATYANARAYANAN, M. Fundamental Challenges in Mobile Computing. In: ACM
SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, PODC, 15.,
1996, Philadelphia. Proceedings… New York: ACM, 1996. p. 1-7.

SATYANARAYANAN, M. Pervasive computing: vision and challenges. IEEE
Personal Communications, Los Alamitos, v.8, n.4, p. 10-17, Aug. 2001.

SCHAEFFER FILHO, A. G. PerDis: um serviço para descoberta de recursos no ISAM
Pervasive Environment. 2005. 103f. Dissertação (Mestrado em Ciência da Computação)
– Instituto de Informática, UFRGS, Porto Alegre.

SCHAFFER FILHO, A. G. et al. Applying the ISAM Architecture for Genetic
Alignment in a Grid Environment. In: WORKSHOP DE GRADE COMPUTACIONAL
E APLICAÇÕES, WGCA, Rio de Janeiro. Proceedings… [S.l.:s.n.], 2005.

SCHROTH, C. Web 2.0 versus SOA: converging concepts enabling seamless cross-
organizational collaboration. In: INTERNATIONAL CONFERENCE ON E-
COMMERCE TECHNOLOGY, 9., 2007. Proceedings… New York: IEEE, 2007.

SCHROTH, C.; JANNER, T. Web 2.0 and SOA: converging concepts enabling the
Internet of Services. IT Pro, Los Alamitos, v.9, n.3, p. 36-41, May 2007.

SEIGNEUR, J. Fostering sustainability via trust engines. IEEE Technology and
Society Magazine, Princeton, v.24, n.1, p. 34-37, Mar. 2005.

SIEWIOREK, D. New frontiers of application design. IEEE Pervasive Computing,
Los Alamitos, v.1, n.1, p. 79-82, Jan. 2002.

SILVA, L. C. ACTUS: a Framework for Adaptation Control in Ubiquitous Computing.
2008. Proposta de Tese (Doutorado em Ciência da Computação) – Instituto de
Informática, UFRGS, Porto Alegre.

155

SILVA, L. C. Primitivas para Suporte à Distribuição de Objetos Direcionadas à
Pervasive Computing. 2003. 123f. Dissertação (Mestrado em Ciência da Computação)
– Instituto de Informática, UFRGS, Porto Alegre.

SILVA, L. C.; COSTA, C. A.; GEYER, C.; AUGUSTIN, I.; YAMIN, A. On the control
of Adaptation in Ubiquitous Computing. In: ANNUAL ACM SYMPOSIUM ON
APPLIED COMPUTING, SIGAPP, 23., 2008, Fortaleza. Proceedings… New York:
ACM, 2008. p. 2228-2229.

SIRIN, E. et al. Pellet: A Practical OWL-DL Reasoner. Journal of Web Semantics,
Amsterdam, v.5, n.2, p. 51-53, June 2007.

SMITH, M; WELTY, C; MCGUINNESS, D. (Ed). OWL Web Ontology Language
Guide. W3C Recommendation. [S.l.]: W3C, 2004. Available at: <
http://www.w3.org/TR/ 2004/REC-owl-guide-20040210>. Visited on: July 2008.

SOUSA, J. P. et al. Task-based adaptation for ubiquitous computing. IEEE
Transactions on Systems, Man, and Cybernetics, Part C, New York, v.36, n.3, p.
328-340, May 2006.

STRANG, T; LINNHOFF-POPIEN, C. A Context Modeling Survey. In:
INTERNATIONAL WORKSHOP ON ADVANCED CONTEXT MODELLING,
REASONING AND MANAGEMENT, UbiComp, 1., 2004, Tokyo. Proceedings…
Netherlands: Springer. 2004. p. 34-41.

STRINGER, M. et al. The Webkit Tangible User Interface: a case study of iterative
prototype. IEEE Pervasive Computing, Los Alamitos, v.4, n.4, p. 35-41, Oct. 2007.

SUGUMARAN, V.; STOREY, V. The role of domain ontologies in database design: an
ontology management and conceptual modeling environment. ACM Transactions on
Database Systems, New York, v. 31, n. 3, p. 1064-1094, Sept. 2006.

SURIE, A. et al. Rapid trust establishment for pervasive personal computing. IEEE
Pervasive Computing, Los Alamitos, v.6, n.4, p. 24-30, Oct. 2007.

TELLIS, W. Introduction to Case Study. The Qualitative Report, Fort Lauderdale, v.3,
n. 2, p. 3-15, July 1997.

VANTHOURNOUT, K.; DECONINCK, G.; BELMANS, R. A taxonomy for resource
discovery. Personal and Ubiquitous Computing, London, v.9, n.2, p. 81-89, Mar.
2005.

WANT, R. et al. Disappearing hardware. IEEE Pervasive Computing, Los Alamitos,
v.1, n.1, p. 36-47, Jan. 2002.

WANT, R.; PERING, T. System Challenges for Ubiquitous & Pervasive Computing.
In: INTERNATIONAL CONFERENCE OF SOTWARE ENGINEERING, ICSE, 27.,
2005, St. Louis. Proceedings… New York: ACM. 2005. p. 9-14.

156

WEISER, M. Some computer science issues in ubiquitous computing.
Communications of the ACM, New York, v.36, n.7, p. 75-84, July 1993.

WEISER, M. The Computer for the 21st Century. Scientific American, New York,
v.265, n.3, p. 94-104, Mar. 1991.

WEISER, M. The world is not a desktop. ACM Interactions, New York v.1, n.1, p. 7-
8, Jan. 1994.

WERNER, O. Uma máquina abstrata estendida para o paralelismo E na
Programação em Lógica. 1994. 145f. Dissertação (Mestrado em Ciência da
Computação) – Instituto de Informática, UFRGS, Porto Alegre.

XU, Z.; ZHANG, S.; DONG, Y. Mapping between Relational Database Schema and
OWL Ontology for Deep Annotation. In: IEEE/WIC/ACM INTERNATIONAL
CONFERENCE ON WEB INTELLIGENCE, WI, 2006, Hong Kong. Proceedings…
Washington: IEE Computer Society, 2006. p. 548-552.

YAMIN, A. C. Arquitetura para um Ambiente de Grade Computacional
Direcionada às Aplicações Distribuídas, Móveis e Conscientes de Contexto da
Computação Pervasiva. 2004. 204f. Tese (Doutorado em Ciência da Computação) –
Instituto de Informática, UFRGS, Porto Alegre.

YAMIN, A. C. et al. Towards merging context-aware, mobile and grid computing.
International Journal of High Performance Computing Applications, Thousand
Oaks, v.17, n.2, p. 191-203, May 2003.

YAMIN, A. C. Um ambiente para a exploração de paralelismo na Programação em
Lógica. 1994. 104f. Dissertação (Mestrado em Ciência da Computação) – Instituto de
Informática, UFRGS, Porto Alegre.

YANG, B.; GARCIA-MOLINA, H. Designing a super-peer network. In:
INTERNATIONAL CONFERENCE ON DATA ENGINEERING, ICDE, 19., 2003,
Bangalore. Proceedings… Los Alamitos: IEEE Computer Society, 2003. p. 49-60.

ZHU, F.; MUTKA, M.; NI, L. Service Discovery in Pervasive Computing
Environments. IEEE Pervasive Computing, Los Alamitos, v.4, n.4, p. 81-90, Oct.
2005.

GLOSSARY

Actuator – software-controlled devices that affect the real world.

Adaptation – the action of reacting to changes and creating a dynamic balance between
available resources and applications needs. The process of adjusting aspects of
applications to changes in operating environments.

Association – “the logical relationship formed when at least one of a given pair of
components communicates with the other over some well-defined period of time”
(COULOURIS et al., 2005).

Boundary Principle – the borderline of the system corresponds to those of the real
world, as they are normally defined territorially and administratively (KINDBERG
and FOX, 2001).

Composition – the action of nesting components within one another, making it easy to
extend and compose applications.

Context – “any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves”
(DEY, 2001).

Context Awareness – a system that is “cognizant of its user’s state and surroundings
(…)” (SATYANARAYANAN, 2001). The perception of the context. A user’s
context can have attributes such as physical location, emotional state, personal
history, etc. Also known as perception.

Context Management – a system that modifies its behavior based on the perceived
context information. The action of adjusting the system in response to sensed
information. Basically consists in adapting the system. Also known as smartness.
Using perception effectively (SAHA and MUKHERJEE, 2003).

Cyber Foraging – to “dynamically augment the computing resources of a wireless
mobile computer by exploiting wired hardware infrastructure. (…) ‘waste’
computing resources to improve user experience” (SATYANARAYANAN, 2001).
Cyber foraging uses near infrastructure for compute servers or data staging servers.

Dependability – the “ability to avoid service failures that are more frequent and more
severe than acceptable” (AVI!IENIS et al., 2004). Dependability encompasses
availability (readiness for correct service), reliability (continuity of correct service),
safety (absence of catastrophic consequences on the users and the environment),

158

integrity (absence of improper system alterations), and maintainability (ability to
undergo modifications and repairs).

Deploy – to move code to the location of its execution and bring it into effective action.

Design time – the moment in time when the application is conceived, extended or
maintained.

Discovery Services – the action of registering services and looking them up by their
attributes. “Discovery lets services and devices spontaneously become aware of the
availability and capability of pears on the network without explicit administration”
(EDWARDS, 2006).

Error – “the part of the total state of the system that may lead to its subsequent service
failure” (AVI!IENIS, et al. 2004). Error propagation can lead to a failure.

Evaluation – the qualitative and quantitative (including testing) analysis of a system.

Failure – “an event that occurs when the delivered service deviates from correct
service” (AVI!IENIS et al., 2004). This deviation is caused by the propagation of
error to the service interface. “The failure of a component causes a permanent or
transient fault in the system” (AVI!IENIS et al., 2004).

Fault – a defect at the lowest level that may cause an error. When a fault is active, it
produces error; otherwise, it is dormant (AVI!IENIS et al., 2004).

Follow-me semantics –the idea that users can go anywhere carrying the data and
application they want, which they can use in a seamlessly integrated fashion with
the real world.

Framework – an environment, composed of APIs (Application Program Interfaces),
user interfaces, and tools, that simplifies software development and management in
a specific domain (BERNSTEIN, 1996). Used to build software that runs on a
middleware, which can be developed using existing frameworks.

Heterogeneity – “variety and difference” (COULOURIS et al., 2005). Different types
of devices, networks, systems, and environments.

Interoperation – the interactions between components during association
(COULOURIS et al., 2005). See also spontaneous interoperation.

Invisibility – the action of making computers disappear in the background. Acting
unobtrusively, meeting user’s expectations.

Load time – the moment in time in which applications are loaded to specific devices.

Logical Mobility – the mobility of components (applications, data and services). A
special case is code mobility, a method that makes it possible to create a dynamic
change of location in which objects execute.

Logical Sensor – a sensor that infers information from physical or virtual (software)
sensors (INDULSKA and SUTTON, 2003).

Meet User Intent – to satisfy user expectation. To achieve this, systems need to capture
user intention, acting at an almost subconscious level, and tune themselves without
distracting users (SAHA and MUKHERJEE, 2003).

159

Middleware – “software that provides mediation between other software components,
fostering interoperability between those components across heterogeneous platforms
and varying resource level” (ADELSTEIN et al., 2005). “Software layer that
provides a programming abstraction as well as masking heterogeneity”
(COULOURIS et al., 2005).

Mobile Computing – computing services that go with people and become more
present, providing expanded capabilities. This arises from advances in two areas:
wireless networking and portable devices. With these devices the user can access
information anywhere, regardless of their physical location or mobility (JING et al.,
1999). Combined with network access, those services transform computing “into an
activity that can be carried” (LYYTINE and YOO 2002).

Mobility – the ability to move applications and data freely and easily. Allows access
anywhere and any time, regardless of location or displacement.

Ontology – “defines a set of representational primitives with which to model a domain
of knowledge or discourse” (GRUBER, 2007).

Open Standards – common guidelines that are published and can be extended in
various ways.

Pervasive Computing – a change in the view of computers and their use by humans.
Computers are everywhere and are used not as distinct machines but rather as
“sophisticated, computerized, networked machines” (HOFFNAGLE, 1999).
Computers are parts of larger devices. Pervasive computing and ubiquitous
computing are basically different terms used to describe the same concept. The main
difference between both concepts is that pervasive computing is a bottom-up vision
that emerged from the widespread exploitation of computing services, while
ubiquitous computing is a top-down approach were these services are used in a
transparent manner and integrated with the environment (ROBINSON et al., 2005).

Pervasive Dependability – dependability in the scope of pervasive or ubiquitous
computing. See also dependability.

Physical Mobility – the mobility of users and devices.

Physical Sensor – a hardware device that acts as a sensor.

Privacy – the protection against access to personal data. The protection from being
observed or disturbed by other users. The ability to control the accessibility of
information about the user (COULOURIS et al., 2005).

Runtime – the moment in time when applications are already loaded and ready to
execute or in execution.

Scalability – the property that a system has, so that it “will remain effective when there
is a significant increase in the number of resources and the number of users”
(COULOURIS et al., 2005).

Seamless integration – association and cooperation among various components in a
transparent manner.

Security – guaranteed confidentiality (protection against disclosure to unauthorized
individuals), integrity (protection against alteration and corruption), and availability
(protection against interference with the means to access the resource). Some

160

authors also consider the guarantee of authenticity (guaranteeing the identity of
components), authority (granting protection rights to users), and non-repudiation
(protection against falsely denying sending the data).

Security Mechanisms – technology used in the system to enforce security policies.
Protection mechanisms used to ensure security.

Security Policies – defining in a clearly and non-ambiguous form items to be protected.
It does not specify how to obtain protection.

Semantic Web – an extension of the human-targeted web that brings meaning to
contents in a software-understandable way.

Sensor – “a device that detects or measures a physical property and records, indicates,
or otherwise responds to it” (NEW OXFORD AMERICAN DICTIONARY, 2007).

Smart space – “any physical space with embedded services” (COULOURIS et al.,
2005).

Software sensor – a software component that acts as a sensor. Also named virtual
sensor.

Spontaneous components – components designed to arrive and leave routinely
(KINDBERG and FOX, 2002). Components must conform to a common
interoperation model to interact.

Spontaneous interoperation – an “interaction with a set of communication
components that can change both identity and functionality over time as its
circumstances change. A spontaneously interacting component changes partners
during its normal operation, as it moves or as other components enter its
environment (…).” (KINDBERG & FOX, 2002). Changing the set of components
that a certain component communicates with. Components needed to be associated
before interoperating. See also association and interoperation.

Tangible Interaction – to create a richer interaction experience, by coupling digital
information with physical artifacts, using the human body as an interface and
combining real objects and devices with computers in interactive spaces
(HORNECKER 2005).

Transparent User Interaction – to preserve human attention during human-computer
interaction (HCI).

Trust – Truly believe in an entity. “the establishment of trust enables systems to
exchange information even without the intervention of administrators to authorize
these interactions” (ROBINSON et al., 2005).

Tuple – a sequence of ordered typed values.

Tuple Space – a global and persistent repository of tuples.

Ubiquitous Computing – the idea of integrating computers seamlessly, invisibly
enhancing the real world. A “new way of thinking about computers in the world,
one that takes into account the natural human environment and allows the computers
themselves to vanish into the background” (WEISER, 1991). Ubiquitous computing
and pervasive computing are basically different terms used to describe the same
concept. The main difference between both concepts is that ubiquitous computing is

161

a top-down approach were these services are used in a transparent manner and
integrated with the environment, while pervasive computing is a bottom-up vision
that emerged from the widespread exploitation of computing services (ROBINSON
et al., 2005).

Verification – the process of checking where the system adheres to certain properties,
called verification conditions.

Virtual sensor – the same as a software sensor. The source of sensor information is
obtained by software.

Volatility – “assume that certain changes are common rather than exceptional. The set
of users, hardware and software in mobile and ubiquitous systems is highly dynamic
and changes unpredictably” (COULOURIS et al., 2005).

APPENDIX A CONTINUUM: UMA INFRA-ESTRUTURA
DE SOFTWARE SENSÍVEL AO CONTEXTO E BASEADA

EM SERVIÇOS PARA A COMPUTAÇÃO UBÍQUA

No clássico e visionário artigo sobre computação para o século 21, Mark Weiser
(WEISER, 2001) resume o que é esperado da computação ubíqua (também chamada de
ubicomp): acesso do usuário ao ambiente computacional, de todo lugar e a todo
momento, por meio de qualquer dispositivo. A dificuldade reside em como desenvolver
aplicativos que irão continuamente se adaptar ao ambiente e continuar funcionando, a
medida que as pessoas se movem ou trocam de dispositivos (GRIMM et al., 2001). O
desenvolvimento dessa área, entretanto, ainda é limitado pelo número exíguo de
linguagens e ferramentas disponíveis (ROMÁN et al., 2002). Além disso, aplicações
conscientes de contexto ainda estão sendo executadas em laboratórios ao invés de
estarem presentes em ambientes reais do dia-a-dia (HENRICKSEN and INDULSKA,
2006).

Aplicações ubíquas precisam de um middleware para interoperar entre muitos
dispositivos diferentes e as demandas do usuário final (SAHA and MUKHERJEE,
2003). O objetivo é esconder a complexidade do ambiente, isolando aplicações do
gerenciamento explícito de protocolos, acesso distribuído à memória, replicação de
dados, falhas de comunicação, etc. Um middleware também pode resolver problemas de
heterogeneidade relacionados às arquiteturas, sistemas operacionais, tecnologias de
redes e até mesmo de linguagens de programação, promovendo a interoperação entre
esses componentes. Por outro lado, um framework é um ambiente, composto de APIs
(Interfaces de Programação com os Aplicativos), interfaces com o usuário e
ferramentas, simplificando o desenvolvimento de software e o gerenciamento em um
domínio específico (BERNSTEIN, 1996). É possível utilizar framework para construir
software que executa em um middleware, o qual pode ser desenvolvido utilizando
frameworks existentes.

Um middleware deve permitir que o usuário acesse o ambiente computacional dele
(dados e aplicativos) de qualquer lugar e a qualquer momento. Uma solução possível é
aplicar a semântica siga-me (AUGUSTIN et al., 2004; YAMIN et al., 2003). A idéia
desse conceito é que aplicativos e dados vão juntos com os usuários, fornecendo um
ambiente virtual e adaptando ao contexto corrente. Essa adaptação é fundamental para a
visão de computação ubíqua, e envolve a percepção do contexto (context awareness –
sensibilidade ao contexto) e o próprio ajuste do sistema baseado na informação
percebida (gerência do contexto).

163

A idéia defendida nessa tese é de que o uso de uma infra-estrutura de software
especificamente orientada a ubicomp pode reduzir a distância entre a visão de Weiser e
o cenário atual da computação distribuída. Para atingir esse objetivo, esse trabalho foca
no desenvolvimento de uma infra-estrutura de software baseada em serviços para a
computação ubíqua, empregando framework e middleware, denominada Continuum.
Esta proposta difere de outros trabalhos, tais como Aura (GARLAN et al., 2002), Gaia
(RÓMAN et al., 2002) e One.World (GRIMM et al., 2004), porque o foco principal é
mais geral: Continuum não é especificamente destinado ao usuário ou um ambiente
específico, mas sim para um visão global, não limitada por um escopo local ou pessoal.

O foco principal do trabalho é em sensibilidade ao contexto, de forma que o
ambiente incorpore as características necessárias pelos usuários, melhorando à
experiência no mundo real. Para atingir esse objetivo, foi proposta a redefinição da
semântica siga-me: usuários podem ir para qualquer lugar carregando os dados e os
aplicativos que desejam, os quais podem ser usados de forma imperceptível e integrada
com o mundo real (seamless integration). Para atingir esse objetivo, o trabalho
apresenta o detalhamento do Continuum como um sistema sensível ao contexto,
abrangendo aspectos como: percepção das características do usuário e do entorno,
histórico de dados de contexto e representação desses dados através de uso de
ontologias, promovendo raciocínio e compartilhamento de conhecimento.

Resumidamente, as principais contribuições da presente tese são:

• Uma revisão da área de computação ubíqua, compreendendo origem,
evolução e principais desafios (apresentada no capítulo 2);

• Uma proposta de um modelo de arquitetura abrangente para a computação
ubíqua, auxiliando a comunidade a desenvolver e comparar middleware e
frameworks nessa área. Outro objetivo dessa arquitetura é destacar os
requisitos de uma infra-estrutura de software para a ubicomp (esse modelo é
descrito no capítulo 3);

• A proposição da infra-estrutura de software Continuum, como uma evolução
do projeto ISAM. O projeto ISAM vem sendo desenvolvido na UFRGS há
alguns anos e envolve algumas teses de doutorado e diversas dissertações de
mestrado. A descrição do Continuum como infra-estrutura de software é
apresentada na parte I do texto da tese e detalhada no capítulo 4;

• Um modelo, bem como uma notação, para representar o mundo real no
Continuum. Tal modelo considera as três entidades que podem ser
distinguidas quando se trabalha com contexto (de acordo com DEY et al.,
2001): lugares, pessoas, e coisas. O modelo define oito abstrações básicas
para serem representadas e três tipos de relação (o detalhamento desse
modelo é apresentado na seção 4.3);

• A sugestão de uma infra-estrutura para melhorar o suporte aos dispositivos
móveis no Continuum, empregando conceitos de Web 2.0 (SCHROTH,
2007). Dessa forma, dispositivos móveis de propósitos especiais (gadgets)
acessam a infra-estrutura de forma ad hoc, utilizando um navegador web e
AJAX (detalhes dessa infra-estrutura são apresentados na seção 4.4);

• A proposta de uma arquitetura para suporte a serviços, empregando o uso da
Arquitetura Orientada a Serviços (SOA) e webservices (PAPAZOGLOU and

164

GEORGAKOPOULOS, 2003). A idéia de obter funcionalidade como
serviços disponibilizados via rede, corresponde a um modelo denominado
Software como Serviço (SaaS). A modelagem dessa arquitetura está descrita
na seção 4.5;

• A modelagem de vinte serviços para uma infra-estrutura de software na
computação ubíqua, divididos em quatro subsistema. Treze desses serviços
são totalmente novos, enquanto sete são baseados em trabalhos anteriores do
grupo, tais como EXEHDA (YAMIN, 2004), ISAMAdapt (AUGUSTIN,
2004) e ACTUS (SILVA, 2008). A organização em subsistema é conceitual:
não um elemento nela mesma; mas ao invés um grupo de serviços
relacionados. Os subsistemas propostos são: Execução Distribuída (descrito
na seção 4.6.1), Gerenciamento de Adaptação (detalhado na seção 4.6.2),
Sensibilidade ao Contexto (especificado na seção 5.3) e Interação com o
Usuário (apresentado na seção 4.6.3);

• A sugestão de algumas considerações gerais para o desenvolvimento do
framework do Continuum. A proposta sugere que essa camada lide com
características essenciais relacionadas na arquitetura abrangente (descrita na
seção 4.7);

• O projeto da arquitetura de contexto do Continuum, incorporando a
representação formal de contexto (através de uma ontologia), o uso de
descoberta de recursos, a proposta do armazenamento de contexto histórico
em um banco de dados e a distribuição / localização de informações de
contexto. A apresentação do Continuum como um sistema sensível ao
contexto está na parte II do trabalho e seu detalhamento é realizado no
capítulo 5;

• A proposição de um modelo multicamadas para sistemas sensíveis ao
contexto, enfatizando os principais serviços necessários. Analisando cada
camada do modelo é discutido os principais conceitos de projeto
relacionados a sensibilidade de contexto. O modelo é detalhado no capítulo
6;

• A avaliação da solução proposta para sensibilidade ao contexto e a
comparação com o estado da arte na área (descritas na seção 6.3);

• A análise e avaliação das principais contribuições do Continuum. O método
utilizado para validação foi baseado em avaliação experimental, ou seja,
foram propostos três casos de estudo para apreciar a arquitetura de serviços
distribuídos, a representação da ontologia com o respectivo armazenamento
e o subsistema de sensibilidade ao contexto. O capítulo 7 apresenta os
experimentos realizados e a análise dos principais resultados obtidos;

• O desenvolvimento de um estudo de caso para discutir a proposição da
arquitetura de serviços distribuídos proposta no Continuum. Para atingir esse
objetivo, foram modelados e implementados os serviços Executor e Service

Manager. Um protótipo foi gerado e alguns testes realizados (o estudo de
caso 1 é descrito na seção 7.2);

• A descrição de um estudo de caso relacionado com o Continuum como um
sistema Sensível ao Contexto. Nesse estudo foi analisado a representação

165

formal do contexto e a capacidade de armazenar e inferir conhecimento.
Utilizando um conjunto de ferramentas, tais como Protégé46, Jess47 e Pellet48,
a ontologia foi modelada. A seguir, foi definido um cenário exemplo para
que uma base de conhecimento pudesse ser modelada. Utilizando esses
dados, um conjunto de inferências foi conduzido (o estudo de caso 2 é
detalhado na seção 7.3);

• O último estudo de caso realizado teve por objetivo analisar as possibilidades
na implementação do subsistema de sensibilidade ao contexto, empregando
as ferramentas e padrões abertos disponíveis atualmente. Nesse estudo, não
foi criado nenhum protótipo. O trabalho consistiu em analisar tecnologias
que poderiam ser empregadas no subsistema (o estudo de caso 3 é
apresentado na seção 7.4).

Acreditamos que o trabalho desenvolvido ajuda a diminuir a distância entre a visão
de computação ubíqua do Weiser e o cenário atual de sistemas distribuídos. Esse
objetivo foi alcançado pela proposição da infra-estrutura de software Continuum, como
pode ser observado pelos resultados apresentados. Por fim, consideramos que futuras
infra-estruturas para ubicomp devem, assim como o Continuum propõe, integrar de
forma imperceptível vários desafios diferentes.

46 A ferramenta pode ser baixada em < http://protege.stanford.edu/>.
47 Jess pode ser encontrado em <http://www.jessrules.com/>.
48 Informações sobre o Pellet podem ser obtidas em <http://pellet.owldl.com/>.

APPENDIX B RELATED WORK ON CHALLENGES OF
UBIQUITOUS COMPUTING

Debashis Saha and Amitava Mukherjee (2003) highlight scalability, heterogeneity,
integration, invisibility, context awareness, and context management as challenges to be
addressed. All these aspects, with the exception of integration, which is not directly
debated, are also presented here; instead, we include discussion on integration in
invisibility (focus on the seamless aspect) and in spontaneous interoperation (focus on
association and communication).

Tim Kindberg and Armando Fox (2002) based their proposal on two fundamental
characteristics: physical integration and spontaneous interoperation. They also
emphasize some common areas in ubicomp scenarios, all directly or indirectly
discussed in our proposal, namely: discovery, adaptation, integration, programming
framework, robustness, and security.

The article written by Guruduth Banavar and his colleagues at IBM (2000)
underlines a device-independent application development process, with a highly
dynamic load time system that embraces discovery, negotiation, and dynamic selection
of presentation. At execution, they propose a dynamic sharing of resources, the
migration of applications, and failure detection and recovery. Of these, data sharing is
the only feature that we do not list; instead, we consider it to be a part of (logical)
mobility.

Eila Niemelä and Juhani Latvakoski (2004) propose the following requirements:
interoperability, heterogeneity, mobility, survivability and security, adaptability, self-
organization, and augmented reality with scalable content. Perhaps the main difference
lies in the concept of self-organization, which amplifies the idea of adaptation, and of
augmenting reality, by adding a virtual context to the one sensed by users.

Robert Grimm and his contemporaries at the University of Washington (2001)
suggest three “fault lines” for ubicomp, caused by transparency, heterogeneity, and the
use of a single abstraction for data and code. To address this last issue, they recommend
maintaining data and functionality separated. In our article, this is not tackled, but it is
possible to satisfy this condition by using a different representation for data, such as
tuples.

An article by Intel researchers Roy Want and Trevor Pering (2005) proposes the
following challenges: power management, discovery, user interface adaptation, and
location-aware computing. We do not directly consider power management in this
work; as an alternative, we present a more general approach: context management. The
same applies to location awareness, which is also covered by context awareness.

167

Modahl et al. proposes a taxonomy for the building blocks of a software
infrastructure, UbiqStack. It has five subsystems: registration and discovery; service and
subscription; computation sharing; context management; and data storage and streaming
(Modahl et al., 2006). The first four categories correspond roughly to our more generic
discovery, interoperation, cyber foraging, and adaptation. We do not directly address
the fifth one, but we believe that our proposal is more comprehensive, since we make
allowance for several other categories. This is the only article from the list that proposes
a software architecture for ubicomp, although Banavar and colleagues (2000) offer a
new application model considering its life cycle.

APPENDIX C COMPETENCY QUESTIONS FOR
CONTINUUM ONTOLOGY

• Where is John located?

• Where was John yesterday at 17:00?

• What services are available in this cell?

• What is the history of this place?

• Who is present in this cell now?

• What are the devices in this cell?

• What are the sensors available in this cell?

• Which node is the base of the cell?

• Which are the devices in the cell?

• What is my current location?

• What applications do I have?

• What are the actuators available in this cell?

• What information is attached to this cell?

• What are the resources of this cell?

• Which cell has a specific service?

• Is this device mobile?

• Is this device a gadget?

• Which is the outer cell of this cell?

• What devices are aggregated to the cell?

• What devices are composed inside this cell?

• What devices are associated to a cell?

• Who is John?

APPENDIX D LIST OF IMPORTANT TERMS IN
CONTINUUM ONTOLOGY AND THEIR MEANING

• Action: an event performed by a being;

• Actuator: a particular type of CoNode, which is a software-controlled device
that affects the real world;

• Application: a software component designed to fulfill a particular purpose;

• Being: a living organism, such as animals and human beings;

• CoBase: a device in charge of managing a CoCell and responsible for
interaction with other cells;

• CoCell: an element that represents a place and comprises a CoBase and other
nodes in that physical location. CoCells are nested forming a hierarchy;

• CoDimension: a place that physically abstracts the real world embracing all
modeled entities;

• CoGadget: a device that accesses users’ applications in a more ad hoc
manner. In general, a special purpose device, such as a smart phone or a
PDA;

• CoMobi: a device with mobile capacity, executing users’ applications and
making use of Continuum services. Usually, wirelessly connected and with a
more restricted capacity, generally in terms of network latency, processing
speed, available memory, and power supply;

• Component: each piece of software registered in Continuum, normally an
object or set of objects;

• CoNode: a device executing users’ applications and making use of
Continuum services. Typically a stationary device;

• CoPerson: a person registered in the infrastructure that is physically present
in one CoCell;

• Device: a special purpose thing. In the Continuum infrastructure it is a
CoNode, CoBase, CoMobi, or CoGadget;

• Entity: a place, a thing, or a being with a distinct and independent existence;

• Event: a particular occasion that involves entities and occurs in a specific
timestamp;

170

• Person: a human being;

• Place: a particular area already identified by the human notion;

• Resource: an attribute or a capability offered by a device. The device’s
assets;

• Sensor: a particular type of CoNode, which detects or measures a physical
property;

• Service: a component of Continuum that supplies some functionality to the
user. It follows service-oriented architecture (SOA) and is implemented as a
web service;

• Space: information that denotes the location of a place, such as latitude and
longitude;

• Thing: a material object that can be seen and touched;

• Timestamp: information that denotes date and time, in which a certain event
occurs.

Livros Grátis
(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas

http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1

Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo

http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1

