‘Centro

~d9lnform:-itic

P&6s-Graduacao em Ciéncia da Computacao

“A Cloud Deployed Repository for a Multi-View
Component-Based Modeling CASE Tool”

Por

Breno Batista Machado

Dissertacao de Mestrado

12N
I
new

[

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE, Agosto/2009



Livros Gratis

http://www.livrosgratis.com.br

Milhares de livros gratis para download.



UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMATICA

Breno Batista Machado

A Cloud Deployed Repository for a
Multi-View Component-Based Modeling
CASE Tool

ESTE TRABALHO FOI APRESENTADO A POS-GRADUACAO EM CIENCIA DA
COMPUTACAO DO CENTRO DE INFORMATICA DA UNIVERSIDADE
FEDERAL DE PERNAMBUCO COMO REQUISITO PARCIAL PARA
OBTENCAO DO GRAU DE MESTRE EM CIENCIA DA COMPUTACAO.

A MASTER THESIS PRESENTED TO THE FEDERAL UNIVERSITY OF
PERNAMBUCO IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF M.SC. IN COMPUTER SCIENCE.

ADVISOR:
Prof. Jacques Pierre Louis Robin

RECIFE, 31 de AGOSTO de 2009



Machado, Breno Batista

A cloud deployed repository for a multi-view
component-based modeling CASE tool / Breno Batista
Machado. - Recife: O Autor, 2009.

xvii, 141 folhas : il., fig., tab.

Dissertacdo (mestrado) - Universidade Federal de
Pernambuco. CIN. Ciéncia da Computagao, 2009.

Inclui bibliografia, glossario e apéndice.

1. Engenharia de software. 2. Arquitetura de software.
3. MDA. |I. Titulo.

005.1 CDD (22. ed.) MEI2010 — 057



Aos meus pais, meus exemplos.



ACKNOWLEDGEMENTS

Agradeco a Deus.

Agradeco também a todos, que de uma forma ou de outra, me ajudaram nesta longa jornada:

Ao meu orientador Jacques Robin, pela orienta¢é@o, paciéncia, compreensao e por sempre acreditar

em mim.
Ao Weslei que me ajudou a desenvolver este trabalho, sempre compartilhando e discutindo ideias.

A minha namorada Renata, por toda ajuda e apoio, e por seu imenso amor, sem 0s quais nao

conseguiria terminar.

Aos meus pais, Benicio e Neumann, e minha irmézinha querida, Bruninha, que sempre acreditaram

em mim e sempre me apoiaram, sempre foram meu porto-seguro.
A toda a minha familia por todo apoio que me deram.

Em especial aos meus amigos Cleyton, Fabio e Geovane, que me ajudaram nos momentos finais da

escrita da dissertacao.
Ao pessoal da SWFactory pelo incentivo sempre.

A todos os meus amigos, da Casa do Mar, de Campo do Meio, de Lavras, de Belo Horizonte, de

Recife, e de onde mais se espalharam.

Aos membros da banca, Hendrik e Ana Cristina, que se dispuseram a avaliar este trabalho, e

principalmente pelas 6timas contribuicdes que fizeram para melhorar a qualidade deste trabalho.
A equipe do CIn/UFPE pela infraestrutura e ajudas que foram necessarias.
Ao CNPq, pelo apoio financeiro para o desenvolvimento deste trabalho.

Por final, a todos aqueles que n&o citei, mas sabem que me ajudaram.



RESUMO

Modelos oferecem abstracfes de um sistema que possibilitam aos engenheiros
raciocinarem sobre o sistema se focando apenas nos aspectos relevantes, ignorando
detalhes que ndo sdo relevantes. UML se tornou um padrdo de fato para analise e projeto
de sistemas, mas possui algumas limitacdes Obvias: (1) o conjunto de elementos é muito
heterogéneo e grande, e (2) o suporte de ferramentas néo é satisfatorio. Se faz necessario

um sistema de regras que governem o processo de analise e projeto, UML é geral demais.

Desenvolvido pela UFPE em conjunto com a Universidade de Mannheim, o
objetivo do método KobrAz2 € resolver essas limitacdes através da incorporacdo de visdes
especiais de layout, navegacdo e comportamento de componentes da GUI, e pela
introducdo do conceito de engenharia de software ortografica, na qual a construcdo de
Modelos Independentes de Plataforma (PIM) para cada componente de software é
realizado em pequenas partes através da construcdo ortogonal de visdes especificas para
cada preocupacdo do componente. Estas visdes sao entdo integradas dentro de um Modelo
Unificado (SUM) que por sua vez verifica a conformidade com os artefatos do meta-
modelo de KobrAz2. Para gerar ganhos de produtividade, esta integracdo e verificagdo deve
ser automaticamente implementada através da transformacdo de modelos interna a uma
ferramenta CASE. Conseqlientemente, para ter sucesso, KobrA2 precisa de uma

ferramenta que dé suporte ao seu processo de engenharia de sistemas.

Esta dissertagdo de mestrado é parte do projeto WAKAME (Wep App KobrA2
Modeling Environment) que tem por objetivo a construcdo desta ferramenta CASE. Além
de ser a primeira ferramenta CASE dirigida por processo e que da suporte a um ambiente
OO, ortografico, dirigido por modelos e baseado em componentes, para engenharia de
aplicac@es, incluindo a construcdo de GUI PIMs, WAKAME também procura inovar por
ser (a) distribuida em uma plataforma de cloud computing e acessivel universalmente
através de qualquer navegador Web, (b) ser de muito facil aprendizagem gracas a sua GUI
minimalista, com poucos icones, no estilo do Google, e (c) de uso eficiente gracas ao seu

cliente projetado para ser leve e com pouco uso de memdria e que fornega um esquema de



navegacdo multidimensional, ortografico e independente de plataforma, entre visbes de

baixa granularidade, especifica a preocupacoes, e locais, de um componente.

Dentro do projeto WAKAME, esta dissertacdo de mestrado investiga trés principais
questdes em aberto. A primeira é o projeto do KWAF (KobrA2 Web App Framework), um
modelo de ambiente genérico e independente de plataformas para ser instanciado para o
projeto especifico de aplicacdes Web. O segundo € um PIM detalhado do WAKAME
como um exemplo de instanciacdo do KWAF. O terceiro é a implementacao e a avaliacéo
de servicos baseados na nuvem que (a) persistentemente armazenem as visoes PIM e
ortogréficas de componentes KobrAz2, (b) integre estas visées em um SUM persistente, (C)
verifique a conformidade do SUM com o meta-modelo de artefatos de KobrA2, (d) use as
restricbes do meta-modelo tanto para propagar mudancas em uma Visdo para outras
relacionadas ou enviar mensagens de aviso especificas de uma visao a respeito da violagao

de restrigoes.

As principais contribui¢cGes desta dissertacdo sdo: (a) o projeto de KWAF, o
primeiro estudo de caso para avaliacdo do processo KobrA2 para aplicacbes Web ricas
com graficos 2D, (b) o projeto de alto nivel do WAKAME como estudo de caso para
avaliacdo de KWAF, (c) a implementacdo de servigos baseados em nuvem computacional
para persisténcia das visdes e integracdo e validacdo das visdes em um SUM persistente, e
(d) a integracdo e testes destes servi¢cos com a parte cliente do WAKAME que permite a

edicdo ortografica das visdes.

Vi



ABSTRACT

Models offer abstractions of a system that allows engineers to reason about that system
while ignoring details that are not relevant to focus on the most relevant aspects. The
Unified Modeling Language (UML) has become a de facto standard for system analysis
and design but, in fact, UML has some obvious shortcomings: (1) the set of result types is
too large and heterogeneous, leading the user to ambiguous interpretation, and (2) its tool
support is not satisfactory. It is necessary a system of rules which governs the analysis and

design process, UML is too general.

Developed jointly by Universitdt Mannheim and UFPE, the KobrA2 method aims
to addresses these weaknesses by incorporating special views to model the layout,
navigation and behavior of GUI components and introducing the concept of orthographic
software engineering in which building a Platform-Independent Model (PIM) for each
software component is piecemealy carried out by constructing largely orthogonal concern-
specific views of the component. These views are then integrated into a Single Unified
Model (SUM) which is in turn verified for conformance to the KobrA2 artifact metamodel.
To bring productivity gains, this integration and verification must be automatically
implemented by model transformations built in a CASE tool. Therefore, to be successful

KobrA2 needs a tool that gives support to its system engineering process.

This Master's Thesis is part of the WAKAME (Web App KobrA Modeling
Environment) project that aims at constructing such CASE tool. In addition to be the first
CASE tool to be process-driven and to support orthographic, model-driven, component-
based OO framework and application engineering, including GUI PIM construction,
WAKAME also aims to innovate by being (a) deployed on a cloud computing platform
and accessible ubiquitously through any web browser, (b) being very easy to learn thanks
to a minimalist, few icons, few actions, Google-style GUI and (c) efficient to use thanks to
a thin client, lightweight design and a multi-dimensional navigation scheme among

cognitively fine-grained, concern-specific, local, orthographic component PIM views.

Within the WAKAME project, this Master's Thesis investigates three main open
questions. The first is the design of KWAF (KobrA Web App Framework), a platform-

vii



independent model of a generic OO framework to be instantiated to design specific web
applications. The second is the detailed PIM of WAKAME as an example instantiation of
KWAF. The third is the implementation and evaluation of cloud-based services that (a)
persistently store orthographic views of KobrA2 component PIM, (b) integrate them into a
persistent SUM, (c) verify SUM conformance to the KobrA2 artifact metamodel, (d) uses
the metamodel constraints to either propagate changes from one view to related ones or

send view-specific warning messages about constraint violations.

The main contributions of the thesis are: (a) the design of KWAF, the first case
study to validate the KobrA2 method for rich web applications with 2D graphics, (b) the
high-level design of WAKAME as a case study validating KWAF, (c) the implementation
of cloud-based services for view persistence, view integration into a persistent SUM and
SUM verification and (d) the integration and testing of these services with WAKAME's
GUI web client for orthographic view edition.

viii



CONTENTS

Chapter 1 INErOAUCEION .........eeueeceiiiiinreniiisiiiiiiiiiriniisissssissssssmisssssssssssssmssssssssssssssssssssssssssssssnns 1
1.1. Context and MOTIVAtION ...occuuiiiiiiiee et e e st e e s sbee e e seateeeesanee 1
1.2. RESEAICN GOQIS . .uviiiiiiiie ettt e e et ee e e st e e e s bte e e e s e e s s nabee e e eanes 5
1.3. Research MethodOlOgY ..........uuiiiiiii e e e e e e e e rerae e e e e e e eeanrnnes 6
1.4, Master TheSis SEIUCLUIE ...ovviiei ittt et sre e st e e s st e e s sbee e e sentaeeesanes 7

Chapter 2 Software Engineering BACKGroUnd.................uueeeeueeeeeeeeeeeeeenunsesessesseeennsssssssssssssnnns 9
2.1. Model-Driven ENGINEEIING ..ccccccviieieee ettt e e eece e e e e e ecbeee e e e e e s e saarte e e e e e e e snnssaneaeeseenns 9

2.1.1 MDE Goals, PrincCiples and ViSiON ........cocccuiiiiiiiiiiciiiieeee e e eecveree e e e s e eaveane s 9
2.1.2 Precise Modeling and Metamodeling with OCL2.0........cccoovviiiiiieeeeeieiccieeeee s 12
2.2. Component-Based MDE ...........cooicuiiieiieieeciiee e eriree et e e e ree e s sare e e e abae e e e abae e e s nteeeennranas 12
2.2.1 Component-Based Software ENgiNEering .........cccveevvviveeeiiieee et e e evvee e 12
2.2.2 The KObrA1 CBIMIDE Method .....ccocuiiiiiiiiiiriee ettt 13
2.2.3 The KObrA2 CBIMIDE Method .....ccccuiiiiiiiiiieieecieeeeeste ettt 19
20 T o1 0 Lo I @o T s oo YU 1 V-SRI 26
2.3.1 Principles and Related CONCEPLS ...uiiiiciiiiiiiiieecciiie ettt e e s e e 26
2.3.2 Benefits of Cloud COMPULING ..oocviiiiiiieiece e e 29
2.3.3 GOOEIE APP ENGINE ettt e st e e s te e e e sbae e e e eataeeeeanee 30
2.3.4 Google App Engine and others cloud computing platform.........ccccceeveiiiivieeeeienninnns 35
2.4. MOAEl-Driven CASE TOOIS.....ccociuiiiieee e ettt ettt e e e e e e ttree e e e e e e e ttbaaeeee e e s ababeseeaeenns 36
D B Y1 ] 7 XY i e Yo £ S 39
T € o - o1 £ gl 2= 0 F= T USSP 47

Chapter 3 WAKAME Project...........ccceueuuusieeiisiiinsnunsssssssssssssssssssssssssssssmssssssssssssssssssssssssssssns 49
3.1. Long-Term Goals and PrinCiples.......cuiuuieiiiiiiee et e s bee e s 49
T8 QY PSS 52

3.2.1 KWAF Framework: Principles, Structure and Case Study .......cccccceeeeeieeiciiiieeeeeeecnnnns 52
3.2.2 Structural models of the KWAF COMPONENT......c.ueiiiiciiieeiiiiie ettt eireee e 54
3.2.3 Structural Models of the Webservice Component .........cccccveeeeciieeeciiieeecciiee e, 55
3.2.4 Structural Models of GUIClient COMPONENT .........ceeeiciiiiiiiiiie et 60
3.2.5 KWAF AsSeSSMENT REMAIKS ..cceiiiiiiiiiiieei ettt e s e e s 63
3.3. WAKAME TOP-LEVEI PIM ...ttt ettt et e e et ae e e aba e e e ntee e e enraeas 64
3.3.1 WAKAME as an INstance of KWAF .......coociiiiiiiiieniieniee ettt s 64
3.3.2 The WAKAME COMPONENT ...vviiiiiiieieciieeeeiieeeeectteeeeeteeeeeeataeeesstaeeessnsaeessassnesessssneasanes 66
R O - o =T gl 2 0= 4 = PR 69

Chapter 4 The WAKAMEWebService and the Model Repository.............cccccevuuuueeeuneenseansennnee 70
4.1. The KWAF instance Platform Independent Model for the WAKAMEWebService and Model
REPOSIEONY ittt bt atabbbbebananen 70

4.1.1 The Component WAKAMEWEDSEIVICE .....ccccuiiiiiiiiie ittt seee e e sveee s 70



4.1.2 The Component WAKAMEMOAEL........ccoooiiiiiiie it e e e 72

4.1.3 The Component PIMManipulationACLioN ........cevviiiiiiciiieeie e 73
4.1.4 The Component ViewManipulatioNACION........cceviiieiciiiieeee e 75
4.1.5 The Component ModelIOACLION .......eeviiiiecciiieeee e e e e e e e e eanees 80
4.1.6 The Component OCLENGINE ....ccceiiiiiiee ettt e e ererre e e e e e e s savrar e e e e e e e ennnes 81

4.2. The WAKAMEWebService and the Model Repository Implementation...........ccccceennees 82
4.2.1 Platform DefinitioN.......ccuiii it e e e aaae e 83
4.2.2 Model Repository With PYEMOF ........cccuiiiiiiiie ettt e e e evee e seaaee e 83
4.2.3 Model Repository With EMF.........c..ceiiiiiiieiiiiee e ccieee et cvne e e e s saae e e senaaee e 87
4.2.4 The KobrA2 Metamodel in ECOME .....uiiiiiiiiiiieciieeeccitee et e ecree e e s eavee e e eaaeee s 88
4.2.5 Model Repository GENEIratioN......cc.ueiiecuiieeiiieee et et e et e e e sre e e s saae e e seaaeeean 97
4.2.6 Server IMplementation ... e 98
4.2.7 WAKAMEWebService Integration with WAKAMEGUI, Tests and Deployment ....... 103

4.3, WAKAME OVEIAIl....euviiiicieee ettt ettt eetre e e e e tae e e eearee e e eareeeeenbeeeeennnes 105
Chapter 5 Assessment Experiments with EQrly AdOPLErs ...........cueuueeeeeeereereeenneervenneeneennenns 111
5.1. EXperiment Definition ......cooiii it 111
5.2. Execution and Analysis of the Case Study.......cccceriiciiiieii e 115
5.3, EXPeriment FINAINGS .....uuuiiiiiii ittt e e erree e e e e s et ra e e e e e e e e eanaraaeeeee s 124
R @ o F- o1 £ gl 34=T 0 0 =1 U 125
CRAPLEr 6 CONCIUSION .....cuvuveneeericiiiiiiirrneiiisesisiiiisssuissesssssisssssssssssssssssssssssssssssssssssssssssssssssns 126
3 R @] oY 1 o YU T o TSRS 126
6.2. WAKAME Server LIMItatioNs .......uuuiiiiiiiiiieiiieieieeeceeeeereeeeeeeeeeeeeeeeseeeseeeeeeaeaaaaeasaaasaaesaneneens 127
6.3. Future Work 0N WAKAIME SEIVET ....cuiiiiiicicivieiee e e eeecittee e e e s essnree e e e e s e ssassneeeeessesnnsenneeas 127
6.4. Limitations of WAKAME @S @ WhOIE ........ccooiiiiiiieee ettt 128
6.5. Future work on WAKAME @S @ WhOIE ......eevviiiiieiicceee e 128
6.6. CONCIUAING REMAIKS ....vvviiieiiii ettt ettt e e e e steee e e e e s s sbere e e e e e e e esanbraneeeees 128
Chapter 7 BibliOGrapPRY ...............eeeeeeeeeeeeeeeeeieeeeenensesessssseeensssssssssssssssmsssssssssssssssnnsssssssssnns 130
Appendix A Survey: WAKAME EVAIUQLION ...........eeeeeeeeeereeeeeeeeeeeeesrneeeennnssseesssesssnnnsssssssssnns 137



LIST OF FIGURES

Figure 2.1. - Typical MDE Transformation sCheme .........cccccoeeeeciiiiiie e 11
Figure 2.2 - Locality Principle of KOBIA ... ....oori et araaee e e 15
Figure 2.3. KOmMpPonent StruCTUre. ... 17
Figure 2.4 - Multiple VIews With SUM. ...ttt ssrre e e e e e e enrraae e e e 21
FIZUrE 2.5 — KODIAZ VIBWS eeiiiiiiiiiiieee ettt e ettt e e e e e ettt a e e e e e e e e e anbaeeeeaeeesnntaaaseeeseennnnranseaaanans 22
Figure 2.6 - Prototypical Structural Class Service VIEW......ccceeevcciiieieee et 23
Figure 2.7 - Prototypical Structural Class TYPe VIEW.......uueiiiiiiiiiiiiieee et ecvtree e 23
Figure 2.8 - Prototypical Specification Operational Service VIeW........cccoccveeeeecieeeeciieeecciiee e 24
Figure 2.9 — Services offered by Cloud Computing. (Source: Levitt, 2009).......ccccceeeervreercrrerercnnnenn. 27
Figure 2.10 — Layers in a computer system in the clouds. (Source: Yousef et al, 2008)................... 27
Figure 2.11 - Ecore Metamodel. (Source: ECore, 2009) ........cceccuiieeriiieeeiiieeeeiieeeesireeeesireeessnseeeens 40
Figure 2.12 - Example of GUI generated by EMF ..........cooociiiiiiiiiecceeeeeree e e e 42
Figure 2.13 - Framework for Generated Model. (Source: Backvanski and Graff, 2005).................. 43
Figure 2.14 - Epsilon Architecture. (Adapted from: Kolovos et al, 2008) .........cccceeeverveeeiciveeesinnenn. 45
Figure 2.15 - ATL IMOGUIE. ...uviiiiiiee ettt ettt ettt e e et e e et e e e sbae e e ssataeessntaeesssaneesnes 46
Figure 2.16 - ALTL ModUule EIEMENT. ...oiiiiiiiie ettt et e e st e e sba e e s enaaeeeeans 46
Figure 2.17 - ALT Input and OUtPUL Patterns. ......cciiiciiii et eree e e st e s saaee e e 47
Figure 3.1 - The Web Application Photo AIDUM ........cuiiiiiiiiiiieecee e 53
Figure 3.2 - Structural Model of the KWAF COMPONENt .......cccccviiiiiiiiiieiiiieee e e esree e siveee e 54
Figure 3.3 - The WebService Component with its sub-components: Service Controller, MVCAction
ANA MVCIMOAEN ..ttt et e st e bt e e sab e e sateesabeeesabeesabeesnneeneees 56
Figure 3.4 - Platform Independent Model of the of the Photo Album application WebService

(00e] 0] oo ] 1= o | SRR U P PP P PPPPNN 56
Figure 3.5 - Platform Specific Model of the Photo Album application WebService component..... 57
Figure 3.6 - The MVCModel Component STrUCTUre ........uevviiiiiiciieeee e 59
Figure 3.7 - Entities and data types for the MVCModel component, representing the Model in
1YY PP P U PPP PP PPPPPPPORE 59
Figure 3.8 - GUIClient cOmMpPOoNeNt STFUCTUIE ... .eeiiiiiciiiieec et e e e savaane e e e 60
Figure 3.9- PhotoAlbum GUI Navigation Model...........c..uvveiiiiiiiiieeec e 61
Figure 3.10 - PhotoView Component Structural Model.........cccccuvviiiiiiiiicieiecceee e 61
Figure 3.11 - GUIController Component Structural Model..........ccovciiiiiiiiiiiciiee e 62

Figure 3.12 - PhotoAlbumGUIController Component and the Definition of one Action using OCL 63

Xi



Figure 3.13 - WAKAME TOP-LEVEI ..uuvieeeieieeee ettt e e e e e brra e e e e e e e snaraaeeaa e 65

Figure 3.14 — KWAF cOMPONENt STIUCTUI . cccciiiiiiiiieieeeeeeeeee e 65
Figure 3.15 - WAKAME Specification Structural Class Service VIieW .........cccceeecieeeeicieeecciieeeecneenn, 66
Figure 3.16 - WAKAME Realization Structural Class Service VIEW .......ccoovcciviveeieiiccciiieee e 67
Figure 3.17 - WAKAME Realization Structural Class Type VIEW .......ceevviiiiiiiiieiee e 67
Figure 4.1 - WAKAMEWebService Specification Structural Class Service ........cccocvveecvereeccveeeecnnnenn. 71
Figure 4.2 - WAKAMEWebService Realization Structural Class Service........cccoevveeevciveeeiciieeesinnenn, 71
Figure 4.3 - WAKAMEModel Specification Structural Class Service.......ccccovveevvieeeeiiveeeeiineeeecneennn 72
Figure 4.4 - WAKAMEModel Specification Structural Class TYPE ....ccccveeeveieeeeiiieeeciieeeeeee e 72
Figure 4.5 - PIMManipulationAction Specification Structural Class Service.........cccoevveeerciveeeeinnnn. 73
Figure 4.6 - PIMManipulationAction Specification Operation SErvice .........cccocevveeeiciveeeicieeeccnnenn, 74
Figure 4.7 - ViewManipulationAction Specification Structural Class Service View..........cccceeeenneen. 75
Figure 4.8 - ViewManipulationAction Realization Structural Class Service .......cccccevevveevicveeeeinnenn. 76
Figure 4.9 - ViewManipulationAction Realization Operational Service ........ccccovvvevcieeeiicveeescnnenn, 77
Figure 4.10 — Transformations Abstractions and a Expression Transformaton example. ............... 78
Figure 4.11 - Transformations Specification Structural Class Service .......cccccvvvvivveiiiieeesiiieeesineennn 79
Figure 4.12 - Transformations Specification Operational Service.........cccoccvivveeeiiiccciiiieeee e, 80
Figure 4.13 - ModellOAction Specification Structural Class Service ........ccccvvveeeeiieicciiieeee e, 80
Figure 4.14 - ModellOAction Specification Operational Service.......ccccccovcciiieeeiiieccciiieee e, 81
Figure 4.15 - OCLEngine Specification Structural Class SErvice .......cccceevviiiiieeeee e, 82
Figure 4.16 - metaWAKAME Archit@CtUIE.......cciiii it e e e e nrree e 85
Figure 4.17 — metaWAKAME Prototype. .. 86
Figure 4.18 - Dependencies between KObrA2 and UML.......ccoocciiiiieeiiiiciiiiiieec e 90
Figure 4.19 - Dependencies between KObrA2 and OCL ......cccoivcciiieiieeiicciiiieeee e 91
Figure 4.20 - Dependence between SUM and UML. ........cooiiiiiiiiiiieeic e 91
Figure 4.21 - Classes Package from KobrA2 metamodel.........cccueiieiiiiiiiiiie et 92
Figure 4.22 — OCL Constraint on COmMPONENECIASS ..........ccccuueeeecueeeeiiieeeeiieeeeccreeeesireeeesareeeeareeeens 92
Figure 4.23 - KobrA2 View Package NeStING. ....ccccceccciieiiiiiie ettt ectre e stree e sstae e ssnte e e s snrne e 93
Figure 4.24 - Package Dependencies between Views and SUM. .........cccecviieiiiiieeiiciececcieee e 94
Figure 4.25 - Package dependencies between Views and SUM...........cccoecviieiiiiieeciiec s 94
Figure 4.26 - "Subject" component and its View-SUM relationship. .....ccccccceeveiiiiiiiieieiciiee e, 94
Figure 4.27 — Relationship between View and Subject ComponentClass.........ccccevevevieeiicrveeernnnenn. 95
Figure 4.28 - Transformation AbStratioNns. ........cueiiiiiiii i e 96
Figure 4.29 - Transformation AbStraction .........ccueiiiiiiii i 96
Figure 4.30 — OCL CONSLraiNt ON VIBW ....ccocvviiiiiiiiiiiiiiiiieceeeeeeeeeeeeeeeeee e 96
Figure 4.31 - KobrA2 Metamodel Packages in ECOIe ......cccvuiiiiciiiiiiiieie et e e 97

Xii



Figure 4.32 - Process to Generate the Model Repository from Ecore File .......ccccooeeciiiieeeeeeicnnnneen, 98

Figure 4.33 - Package Structure of WAKAMEWebService Implementation. ...........cccoceeeeevreeennee. 100
Figure 4.34 — Example of Transformation OCL EXPression .......cccceeeeeveeeeecieeeeeiieeeeeiieeeeeveee e e 102
Figure 4.35 - WAKAME ISSUE TraCKEI ..ceiiiiieiiieeie ettt st e e e e e e sitee e e e e e e e anvae e e e e e e e s nenanes 105
Figure 4.36 - WAKAME Main Page ..cccviiiiiiiiiieiee e 106
Figure 4.37 - WAKAME Create MOdel PAgE ......uuuiiiiiiiiiiiieee ettt etnne e e e s 107
Figure 4.38 - WAKAME IMpPOort MOdel Page......c..ueiieiiiiiiiiiiee ettt e 107
Figure 4.39 - WAKAME Select MOl PAgE ....ccccuvvieieiiiee ettt ettt s 108
Figure 4.40 - WAKAME Edit MOl PAge......ueiiiiiiieieiiiee ettt ettt et e e e e s sare e e e anaee s 108
Figure 4.41 - WAKAME MOEIING PAGE ....c.uvviiieiiiie ettt e st e e e e st e e e e e s 110
Figure 5.1 - Educational Level of Participants .........ccccuueiieiiiie i 116
Figure 5.2 - Familiarity of the Participants with the RSM and WAKAME tools.........ccccceeevereennneen. 116
Figure 5.3 — Model Completeness COMPAriSON. ......cccuueieeiiiieeeriiieeerireeeesreeeesreeeessreeeesreeeessareeas 117
Figure 5.4 —Availability Related Answers COmMPariSON. ......cueeeeevieeeeiiieeerieeeesieeeesreee e s sereeeesneeas 118
Figure 5.5 - Performance Related Answers COmMPariSON. .......ccccueeeeriieeesiieeeesiieeessreeeessveeeessneens 119
Figure 5.6 - Ease of Use Related Answers COmMPariSON.........ueeecvieeeeiiieeeiiieeeesiieeeesieeeessveeeesneeas 122
Figure 5.7 - Diagram Layout Control and Legibility Related Answers Comparison.........cccccceeuuniee 123
Figure 5.8 - Standard Compliance Related Answers CompariSON. .........ccccvuveeereeeeeciiiieeeeeeeeecnneeens 124

Xiii



LIST OF TABLES

Table 2.1- Equivalences between the Ecore and EMOF concrete elements .........ccccceeeeeeecnvriennn.n. 41
Table 4.1 - Model REPOSIEOrY IMELIICS ......uviiiiiiee ettt e e et e e e e e e eearaae e e e e e eesannraaaeaaaeas 98
Table 4.2 - Transformations IMELIICS .....cocuiiiiiiriiiie e s 103
Table 4.3 — WAKAMEWebService Implementation Metrics .......cocccveeeeeeiiiiieeee e, 103
Table 5.1 - Familiarity of Participants with the Tools RSM and WAKAME..........ccccccoviveeeeeevcnnneen. 118
Table 5.2 — ASSESSMENT SUMMIAIY ..ciiiiiiiiiiiiieee et e e e e e e e e e e s et are e e e e e e esabtreeeeeeseennnstnneeaeeean 125

Xiv



LIST OF ACRONYMS

API — Application Programming Interface
ATL — ATLAS Transformation Language
AWS — Amazon Web Service

CASE - Computer Aided Software Engineering
CBD - Component Based Development
CBE - Component Based Engineering
CIM — Computer Independent Model
CMOF - Complete MOF

CPU - Central Processing Unit

CSS - Cascading Style Sheets

DSL - Domain-specific language

DSML - Domain-Specific Modeling Languages
ECL - Epsilon Comparison Language
EJB - Enterprise Java Beans

EGL - Epsilon Generation Language
EMC - Epsilon Model Connectivity

EMF - Eclipse Modeling Framework
EML - Epsilon Merging Language
EMOF - Essential MOF

EOL - Epsilon Object Language

ETL — Epsilon Transformation Language
EVL - Epsilon Validation Language

EWL - Epsilon Wizard Language

XV



GAE - Google App Engine

GQL - Google App Engine Query Language
GUI — Graphical User Interface

HTML - Hypertext Markup Language
HTTP — HyperText Transfer Protocol
HTTPs — HyperText Transfer Protocol Secure
laaS — Infrastructure as a Service

IDE - Integrated Development Environment
JAR - Java Archive

JDO - Java Data Objects

JPA - Java Persistence API

JPEG - Joint Photographic Experts Group
JSP - Java Server Pages

KM3 — Kernel Meta MetaModel

KWAF — KobrA Web App Framework
MARTE — Modeling and Analysis of Real-Time and Embedded Systems
MDA — Model Driven Architecture

MDD - Model Driven Development

MDE — Model Driven Engineering

MDR - Metadata Repository

MDT - Model Development Tools

MOF — Meta Object Facility

MT — Model Transformation

MVC - Model View Controller

OCL - Object Constraint Language

OMG - Object Management Group

XVi



OO - Object Oriented

ORCAS - Ontologies and Reasoning Components for Agents and Simulations
PaaS — Platform as a Service

PIM — Platform Independent Model
PNG - Portable Network Graphics

PSM - Platform Specific Model

QVT - Query/View/Transformation
RAM - Random Access Memory

RSM — IBM Rational Software Modeler
SaaS - Software as a Service

SDK - Software Development Kit

SOA - Service Oriented Architecture
SQL - Structured Query Language
SVN - Subversion

SysML - Systems Modeling Language
SUM - Single Unified Model

UML - Unified Modeling Language
URI — Universal Resource Identifier
URL - Universal Resource Locator

VM - Virtual Machine

WAKAME - Web App KobrA Model Engineering
WAR - Web Archive

XML - Extensible Markup Language
XMI — XML Metadata Interchange
XSD — XML Schema Definition

XSL - EXtensible Stylesheet Language

XVii



CHAPTER 1

INTRODUCTION

In this chapter we present the context on which this work is present, the motivation for this

work, its goals, the used methodology and its structure.

1.1. Context and Motivation

According to (Beydeda and Gruhn, 2005) it’s tempting to say that software development is
easy, but many issues such as the complete understanding of the problem space, large
numbers of restrictions applied on the solutions being considered and many types of
changes in all stages of development make it much more challenging. Software
Engineering presents many methodologies that searches for addressing these issues in
software development. These methodologies can be divided into two main groups (Vinekar
et al, 2006): the traditional methodologies — like the Rational Unified Processs (RUP)
(Kruchten, 2003) — and the agile methodologies — where are highlighted SCRUM
(Schwaber, 2004) and XP (Beck and Andres, 2004).

The traditional methodologies, like RUP, also known as “heavy weighted”
methodologies, are characterized by being subdivided into large well defined phases
(Pressman, 2009) and are focused in documentation. The main contributions of these
methodologies are: (i) project decomposition in phases largely orthogonal to process steps;
(it) CASE tool assisted construction of digitally stored, abstract requirement, architecture
and design models, prior to coding; (iii) use of visual, standard notation for these models
(UML); and (iv) allow a high level of customization in their processes and steps. These
methodologies are usually applied to large, distributed projects with a heterogeneous
development time with a high turnover during the lifecycle. As weaknesses, we can depict
the lack of practices and guidance to: software reuse; the specification of which part of the
UML2 metamodel to use; the code generation from behavioral models; and how to build

test models.



In contrast to the traditional methodologies we have the agile methodologies, also
called “lightweight”, which are focused on deliverable artifacts development and
cooperation and communication among team members. The eXtreme Programming (XP),
one of the agile methodologies, present a set of practices, principles and values where we
can highlight as strengths: (i) pair artifact construction; iterative requirement test
construction after partial only partial requirement elicitation and before requirement
implementation; (ii) focus on artifacts that directly lead to running code; and (iv)
continuous integration to tested running prototype. Another agile methodology, which is
more focused in management practices, is the SCRUM, from where we can highlight the
informal, collective task allocation and time estimates with focus on creating team spirit
and maintaining motivation. The common scope of agile methodologies are projects that
present a small stable teams of developers with solid experience with application type,
implementation platform(s), all software engineering roles with continuous access to
known and committed users. However, agile methodologies present drawbacks, such as
lack of practices and guidelines for software reuse; deployment platform fragmentation and
rapid changes; team turnover, team geographical scattering, rookies; innovative
applications with no experienced developers nor even know users; and high-level

architectural design of large, complex software and product lines.

In an attempt to overcome the existing limitations present in these two methodology
groups, the traditional and agile methodologies, the Model-Driven Engineering (MDE)
(Stahl et al, 2006) depict as principles: separate business analysis and design refinement
from platform-specific coding; build a Platform-Independent Model (PIM) refined enough
to serve as input to full code generators, including behavioral code; reuse integrated
consolidated comprehensive self-extensible standard modeling language family like
Metamodel Object Facility (MOF2) (MOF, 2006), Object Constraint Language (OCL2),
Unified Modeling Language (UMLZ2), Diagram Interchange (DI). The MDE application
scope is domains with platform heterogeneity, fragmentation and rapid evolution (e.g.,
mobile and desktop clients, cloud servers). In despite of this attempt to overcome previous
limitations MDE is mere an engineering philosophy, no consolidated and only widely
adopted with specific methods yet. Other limitations of MDE is the lack of practice and
guidelines for reusing functionalities across applications, and how to define for each

artifact which part of the huge UML2 metamodel to use.



At the opposite side of the use of a set of standards for MDE, we have the Domain
Specific Modeling Languages (DSML) (Luoma et al, 2004) that creates specific languages
for each kind of domain. A Domain-Specific Language (DSL), whether used for model-
driven engineering is a piece of critical infrastructure that is developed during the system
engineering process: DSLs show an increased correspondence of languages constructs to
domain concepts when contrasted with general purpose languages. As a result, a DSL will
more accurately represent domain practices and will more accurately support domain
analysis (Kolovos et al, 2006). On the other hand, the Unified Modeling Language (UML)
has become a de facto standard for system analysis and design but, in fact, UML has some
obvious shortcomings (Stutz et al, 2002): (1) the set of result types is too large and
heterogeneous, leading the user to ambiguous interpretation, and (2) tool support is not
satisfactory to DSLs - It is necessary a system of rules which governs the analysis and
design process, UML is too general.

In addition, UML is not really a practical modeling language; it is more a modeling
language tool-Kkit that tries to offer many different ways of modeling may different aspects
of many different software projects. Because of the redundancy, general-purpose, gigantic
size of the UML plus the lack of support from UML tools to customize the interaction
experience with the users, some developers adopts the user of a UML profile, not so much
to extend UML, but also to restrict UML, that is to say to select few constructs and
diagrams relevant for the application domain and system engineering process. Other
developers use domains specific languages renouncing all together to UML, and yet others
doesn’t use modeling practices, renouncing all together to Platform Independent Models
(PIM).

Thinking about overcome the weaknesses of the MDE and UML, Atkinson et al
(2001) developed the KobrA method at Fraunhofer-Gesellschaft Institute in Experimental
Software Engineering (IESE), Kaiserlautern, Germany. KobrA integrates MDE with
Component-Based Development (CBD) and Product Line Engineering (PLE). Focused on
engineering Platform Independent Models (PIM) for reuse and with reuse, this method
precisely prescribes what artifacts and sub-artifacts to build at each process step, together
with constraints that must hold among them. KobrA was first published in the book
“Component-Based Product Line Engineering in UML” (Atkinson et al, 2001) and it was
extended for components test modeling in the European Research Project Component++
project which happened between 2000 and 2003. This project was developed in academic

3



and industrial environments across ten countries, originating a second book, “Component-
Based Software Testing in UML” (Gross, 2004). However the KobrA method use an
informal mix of UML1.4 diagrams, ad-hoc tables and natural language in its models.

To overcome the problems of the first version of the KobrA method, the KobrA2
method was developed jointly by Universitdt Mannheim and UFPE, and addresses these
weaknesses by integrating in synergy three software reuse approaches: Model-Driven
Engineering (MDE), Component-Based Development (CBD) and Object-Oriented (OO)
frameworks. Beyond this integration, KobrA2 also innovates in two other ways. First it
incorporates special views to model the layout, navigation and behavior of GUI
components. Second, it introduces the concept of orthographic software engineering in
which building a Platform-Independent Model (PIM) for each software component is
piecemealy carried out by constructing largely orthogonal concern-specific views of the
component. These views are then integrated into a Single Unified Model (SUM) which is
in turn verified for conformance to the KobrAz2 artifact metamodel. In comparison with its
first version, the KobrA2 method substitutes all informal mix of UML1.4 and natural
language to natural language free semi-formal diagrams using UML2 with OCL2
expressions. In addition, KobrA2 defined the concept of Orthographic Software
Engineering, defined automatic PIM constraints check mechanisms and view to SUM and

SUM to view transformations.

To create KobrA2 models in a productive way, all the integration and verification
of models in orthographic modeling defined in the method KobrA2 must be automatically
implemented by model transformations built in a CASE tool. So, to be successful KobrA2
needs a tool that gives support to its system engineering process. Current UML and MDE
CASE tools lack to support orthographic modeling (i.e., to separate concerns in separate
views), and do not offer modeling with metamodel extensions nor do the offer modeling
GUI customization. Another limitation of many UML tools is related with the usability
problem, leading the users to repel it. Other tools cover only a tiny part of UML, generally
not motivated by an underlying methodological choice, but that is unexplained and
arbitrary. Yet other do not include an OCL IDE with friendly messages and hence cannot

support robust and refined PIM and full behavioral code generation.

In synthesis, the current UML and MDE CASE tools: (1) can't support process-
driven customization of modeling experience; (2) do not support orthographic modeling;

(3) leads to DSML; (4) are very large program requiring complex installation process and
4



consumes a lot of memory; and (5) prevents using them for KobrA2, a comprehensive
reuse-oriented process. These problems in existing CASE tools difficult the KobrA2

method usage in a productive way and as a consequence motivated this work.

1.2. Research Goals

Based on the motivation described in Section 1.1, we defined the WAKAME Project,
where WAKAME stands for Web App KobrA Model Engineering. The goal of this
research project is the development of a web tool, named also WAKAME, which supports
the creation of models described in the KobrA2 method. This project initially comprises
the work of two masters students, being this master thesis the results of part of the project.

Hence, the project scope is divided into:

e Research and development of the WAKAME Server, part of the WAKAME tool.
The WAKAME Server is a repository of KobrA models, comprising components for:
processing the model, importing and exporting models to XMI and integration with

the GUI component; and

o the research and development of the Graphic User Interface (GUI) client for the
WAKAME tool, which is the scope of this master thesis. This GUI Client will enable
the user to interact with the tool for the creation and manipulation of KobrA2

models. This GUI will also be integrated with the server.

The general goal of this work is to develop and evaluate of the server component of
the WAKAME tool, based on cloud computing, that allows (a) the persistence of the
orthographic views of KobrA2 component PIM, (b) the integrations of these views into a
persistent SUM (Single Unified Model), (c) the conformity verification of SUM in
agreement with the KobrA2 artifacts defined into the metamodel, (d) the usage of defined
restrictions in the metamodel to spread the changes of a specific view for the another that
are related with it, and to send messages for the specific views about the violations of

restrictions.
The specific goals of the development of this work are:

e Develop a framework to enable the modeling of a web applications PIM (KWAF) in
collaboration with the master’s student Weslei Alvim de Tarso marinho and the PhD

candidate Fabio Moura Pereira;



o Validate KWAF with a case study through the modeling of a PIM of an simple web
application for a Photo Album, trying to identify limitations and possible

improvements in the framework;
¢ Definition of the principles and requirements for a modelling tool for KobrA2;

e Implement a Repository of Models for KobrAz2, that is aligned with its metamodel
and that executes the transformations defined in KobrA2 for the maintenance of the

models consistence;

e Implement the component server of WAKAME on top of a cloud platform
computing following modeled PIM and that uses the developed Repository of
Models;

e Publish the tool for the KobrA2 community's use.

Through these goals we will validate the theoretical hypothesis that it is possible to
design and validate a KobrA2 models repository that implements transformations and
constraint check in a cloud computing environment, allowing it to be accessed from a Web
GUI client. If this hypothesis demonstrates to be true, the repository will enjoy the
advantages of a cloud computing application, like scalability and availability that this
platform provides, having all its information processing in the cloud, instead of in the
user’s hardware. The repository will be published in the Web, allowing more than one GUI
client can access its services. With the integration of the repository with a Web GUI client
it will be possible to access the application from anywhere, regardless software installation
needs. And finally, with the WAKAME tool we will have a productivity gain in KobrA2
modeling, because WAKAME will give all technology support needed for the method.

1.3. Research Methodology

The research methodology of this work is the Action Research (Thiollent, 1986;
Kock,2007), which has an empirical base that is designed and carried out in close
association with an action or a solution to collective problem. In the Action Research the
researchers and participants of the situation or problem are involved in cooperative or

participatory mode.

The action research comprises methods that fit in the concept of doing a research

and to apply it in a development work, in this case, “research for the action” (Rodrigues,

6



2004). Here fits the methodology to be used in this work, because it will be done a research
of technologies for the solution of a particular problem, in this case the lack of a CASE
tool that supports KobrA2 method, and after it, to use one of those technologies in the
solution of this problem.

Based on this methodology it has been defined three main phases for this work: (i)
gathering of information on subjects related to our problem, (ii) the development of the
tool which would solve the problem, (iii) and perform of a case study to assess the tool

performance.

o The first phase focused on the finding information through bibliographic review and
pragmatic studies about techniques and standards needed for this work development,
which comprises MDE, cloud computing and CASE tools.

e The second phase aimed to define an architecture for platform-independent models
(PIM) for web applications and validate it through a case study (the PIM of an web
PhotoAlbum), develop the PIM for the WAKAME Server, implement the
components according to the defined PIM, integrate the Server with the WAKAME
GUI and finally perform verification through the use of both integration and system

testing.

In the third and final phase, an experiment was conducted as a case study to
validate our hypothesis, where the experiment participants were asked to perform a
modeling session using the WAKAME tool, and do the same in another MDE tool, the
IBM Rational Software Modeler (RSM). This case study comprised four steps: (i)
presentation of KobrA2 method for all participants; (ii) present the KWAF framework,
which would be modeled by all participants of the case study; (iii) KWAF modeling
session in the WAKAME tool; and (iv) KWAF modeling session in RSM tool. With the
comparison of models drawn in both tools we could have real results and thus measure the
quality and feasibility of WAKAME usage.

1.4. Master Thesis Structure
This master thesis is organized in this introductory chapter and more six chapters:

In the Chapter 2 the basic concepts necessary for the accomplishment of this work
related to the Model Driven Engineering (MDE) are presented. Are presented the

beginnings and visions of MDE, the patterns used for modeling and MDE, the Component-
7



Based Engineering (CBE) concepts, and the Kobra2 method, the related concepts to Cloud
Computing, and for finally it is presented an analysis and comparison among some of the
most important CASE tools for MDE, especially the used for transformations of models

and generation of repository of models.

In the Chapter 3 it is present the WAKAME project, exhibiting their principles and
objectives. It also presents the architecture for PIM of web applications defined in this
work, the KWAF, and it presents the top-level PIM of the WAKAME tool.

In the Chapter 4 the specific modeling of the PIM of the server component of
WAKAME is described, how its PIM was implemented, detailing the chosen technologies,
the faced problems, the integration with the client component of WAKAME and the

accomplished tests.

In the Chapter 5 it is described the case study accomplished for evaluation of the
tool developed in this work, as well as the results and conclusions obtained through the use

of the same.

In the Chapter 6 it is presented the conclusion and a summary of the contributions
of the work, as well as the limitations and future works of the general WAKAME tool, and

also the server component in specific, that was the focus of this work.

At the end of this work there are the Annexes and Appendixes, in which additional

information referenced along the text are presented.



CHAPTER 2

SOFTWARE
ENGINEERING
BACKGROUND

In this chapter we describe the key technologies of software engineering we use to develop
the components of our proposed application. In particular, we present the ideas of model-
driven engineering and component-based development, a set of principles and technologies

that provide the structural basis of this thesis.

2.1. Model-Driven Engineering

Model-Driven Engineering (MDE) was put forward by the Object Management Group, a
consortium of large companies and academic centers, under the initiative known as Model-
Driven Architecture (MDA). MDE proposes essentially to raise the level of abstraction
where most of the development effort is spent from source code to models, metamodels

and model transformations.
2.1.1 MDE Goals, Principles and Vision

The fundamental long-term vision of MDE is that systems may be specified and realized in
a completely refined way in a so called platform independent model (PIM). Then this PIM
is translated to platform-specific models, which in turn are translated to source code either
manually or by model transformations. The MDE initiative expects several benefits from
this shift. Among them are: platform-independent business model reuse, increasing
productivity and increasing deployment speed, easier applications maintenance and as a

consequence of all three, economic gains in the software life-cycle as a whole.

Model-Driven Engineering pursues two related goals. The first is to minimize the
cost of deploying the same functionalities on a variety of platforms, i.e. modeling once and

having it deployed many times in different computational environments such as web

9



services, EJB, .NET etc. The second goal is to automate an ever growing part of the

development process required during the life cycle of an application.

To achieve these goals, MDE switches the software engineering focus away from
low-level source code towards high-level models, metamodels (i.e., models of modeling
languages) and Model Transformations (MT) that automatically map one kind of model
into another. MDE prescribes the construction of a fully refined Platform Independent
Model (PIM) together with at least two sets of MT rules to translate the PIM into source

code via an intermediate Platform Specific Model (PSM).

In MDE, development starts by constructing a precise model of the application
domain, which in MDE terminology is called a Computational Independent Model
(CIM). This first artifact defines the common, more abstract entities of the business
domain in question, allowing the engineers to understand the big picture in which the
future software system will be placed. The CIM must also be described using UML
artifacts (such as Use-cases, statechart diagrams etc) but must not include any information
about the application realization nor its behavior. A CIM should come fully equipped with
traceability links to its further refinements in order to provide (semi) automated translation
to the next refined artifacts.

A CIM generates a Platform Independent Model (PIM) of the application. This
PIM should be a refinement of the software design down to the level of instructions
available as built-in by the most widely used platform for a particular domain (e.g., Open
GL or Direct3D methods for computer graphics, EJB or .Net for web information systems).

It constitutes the most strategic, persistent, reusable asset of the MDE process.

To ease the automation of such translating task, MDE proposes to divide it in two
stages: first from the PIM to a Platform Specific Model (PSM) and then from such PSM
to source code. The PSM is still a hybrid visual and textual notation but it incorporates
concepts that are specific to one target implementation platform. The modeling languages
used for the PIM and PSM must be formalized by a metamodel. The translations from PIM
to PSM can then be specified as transformation rules from a source metamodel pattern to a
corresponding target metamodel pattern. Pattern matching is then used to generate the
PSM from the PIM and the code from the PSM.

Nowadays, a MDE CIM, PIM and PSM can be fully specified using the UML?2

standard (OMG, 2009) for it incorporates (a) a platform independent component

10



metamodel, (b) the high level OO functional constraint language OCL2 (OMG, 2009) to
fully detail, constraint and query UML2 models, and (c) the Profile mechanism to define,
in UML2 itself, UML2 extensions with platform specific constructs for diverse PSM. MT
for PIM to PIM and PIM to PSM to code translation can be specified using the rule-based,
hybrid declarative-procedural Atlas Transformation Language (ATL) (ATL, 2009).

2.1.1.1. Automated Model Transformations

In MDE, the generation of deployment artifacts and ultimately a running application is
obtained through incremental translation of these models (e.g. PIM to PSM, PSM to code).
These translations are encoded as model transformations, which establish the traceability

links from abstract models down to the platform-specific deployment level.

A transformation takes as input a source model accompanied with its metamodel
(i.e. its specification) and generates a target model again according to a given metamodel
(typically target and source metamodels are different, but not necessarily). Figure 2.1
shows this general transformation scheme. In MDE, a typical transformation pipeline
would take as input a platform-independent model (and associated metamodel) and
generate some PSM, according to a corresponding target metamodel. From the PSM

another transformation in the pipeline would generate the final source code.

Metamaodel B

Metamodel A

onforms to

Model Engine suptus | Model

Source Target
ATL ] OVT ——//
Rules

Figure 2.1. - Typical MDE Transformation scheme

A transformation tool must obviously contain a way to express a description of how
a model should be transformed, i.e. a transformation specification. In general, a
transformation consists of a collection of transformation rules, which are unambiguous
specifications of the way that the objects of the source model can be used to create the
objects of the target model. A transformation is expressed at metamodel level; in fact a
transformation expresses the structural mappings between the source metamodel and the
target metamodel. They are however applied and executed on the input models, not the
input metamodel to produce the output model (again not the output metamodel).

11



2.1.2 Precise Modeling and Metamodeling with OCL2.0

The Object Constraint Language (OCL) is a semi-formal specification with a hybrid
functional object-oriented syntax. It is used to define constraints and queries over UML
models and MOF metamodels. OCL expressions can be used to specify invariants over
classes, pre- and pos-conditions over operations execution, derived attributes of a class and

finally side-effect free operations as queries over a model. UML modelers can use OCL to
specify:

e Arbitrary complex structural constraints among potentially distant elements of an

application UML structural diagram or language metamodel; for this purpose OCL

has the expressive power of first-order logic, and allows specifying class invariants
and derived attributes and associations;

e Arbitrary complex algorithms that combine behavior of class operations or message
passing; for this purpose is Turing-complete and allows specifying operations

preconditions read-only operation bodies and read-write operations post-conditions.

2.2. Component-Based MDE

A Component-Based MDE process (Atkinson et al, 2001) structures the PIM, PSM and
source code as assemblies of reusable components, each one clearly separating the services
interfaces that it provides to and requires from other components from its encapsulated

realization of these services (itself potentially a recursive sub-assembly).
2.2.1 Component-Based Software Engineering

While Model-driven Development fosters reuse of application models across platforms,
CBD fosters reuse of functionalities across applications. A software component
encapsulates a set of basic functionalities whose need recurs in diverse applications. It
contains metadata that specifies how to assemble these functionalities with those

encapsulated in other components to build more complex functionalities through assembly.

According to (Eriksson et al, 2003) “a component is a self-contained unit that
encapsulates the state and behavior of a set of classifiers”. All the contents of the
components, including its sub-components, are private. A component is always associated
to provided and required interfaces. The key feature of CBD is the ability to promote the
reuse of software components. The full encapsulation and separation of interface from

12



implementation enables a component to be a substitutable unit that can be replaced at

design time or run time by another component that offers equivalent functionality.

In an assembly, a given component may act as both a server to some component
and a client to another component. The assembly structural meta-data of a component
includes provided interfaces, the operations (together with their input and output parameter
types) that are available by connecting to the server ports of the component. It may also
include required interfaces, the operations (together with their input and output parameter
types) that the component expects to be available in the deployment environment through
connections to its client ports. A component may also include assembly behavioral meta-
data that describes the pre- and post-conditions of the operations provided and required at
its ports in terms of its states and the states of its clients and servers in the assembly. Such
meta-data allows defining a contract between a client-server component pair. Such design
by contract permits black-box reuse, which is ideal for leveraging third party software and
more cost-effective than the white-box reuse by inheritance in object-oriented frameworks.
A component can be substituted at any time by another one that is internally different but

respect the same contracts at its ports, without affecting the rest of the software.
2.2.2 The KobrAl1l CBMDE Method

The KobrA method integrated Component-based development, MDE and product-line
engineering (Atkinson et al, 2001), together with standard techniques such as top-down
refinement and object-oriented development, in a coherent and comprehensive whole. It is

a significant breakthrough in CBMDE because:

e It promotes reuse over the entire range of development stages, from requirement to

modeling, implementation, testing, quality insurance and maintenance;

e In contrast to previous methods, it provides precise guidelines for most software
engineering aspects, including a finely grained recursive process, the artifacts to
specify at each step, well-formed rules for each of these artifacts as well as for the

relations between them and quality metrics and control;

13



It is fully platform and tool independent by relying on the UML standard as to

specify all the software artifacts'.

A fundamental feature of KobrA is the distinction between products (software
artifacts) and processes (software engineering tasks). A KobrA project defines the products
independently from the processes that might be applied. Many methods mix up the
description of what to do with how to do it. This makes difficult to decide what is
absolutely necessary to perform and what is optional. This distinction has been adopted as
an OMG standard in the Software Process Engineering Metamodel 2.0 (SPEM, 2009).

Other important concerns that KobrA distinguishes are the organization of the
method in terms of three orthogonal dimensions: the first dealing with the level of
abstraction; the second dealing with the level of genericity; and the third dealing with the
level of composition. In a typical KobrA project development begins with a generic,
abstract, black-box description of the system. To create an application from this first black-
box it is necessary to: i) remove the genericity of the black-box (instantiation), ii)
decompose the black-box into smaller parts (decomposition) and iii) reduce the level of

abstraction to create an executable version of the system (embodiment).

In KobrA all three dimensions can be dealt with separately. The genericity
dimension is tackled by the product line engineering approach; the composition dimension
comes under the umbrella of component modeling, and development concerning the
abstraction dimension comes under the component embodiment activity. These concerns

can be tackled in various orders, and even arbitrarily interwoven (Atkinson et al, 2001).
2.2.2.1. Principles

A central goal of KobrA is to enable the full expressive power of the UML to be used in
the modeling of components. To this end the use of the UML in KobrA is driven by four
basic principles:

Uniformity: Every behavior-rich entity is treated as a Component, and every

Component is treated uniformly, regardless of its granularity or location in the containment

! Except for code that is beyond the scope of the UML and for which KobrA puts forward the “Normal
Object Format”, an abstract language that integrates the semantically common constructs of C++, Java and
C# while abstracting from their syntactic differences.

14



tree. In particular, the system as a whole is viewed and modeled as a Component, albeit a
large-grained one. This endows a Component containment tree (and the applications
created from them) with the property of a fractal, since the products (and the
accompanying processes) are identical at all levels of granularity. It also promotes reuse,
because any Component, anywhere in a containment tree, can be made into a system if it

satisfies the needs of some customer.

Encapsulation: The description of what a software unit does is separated from the
description of how it does it. Encapsulating and hiding the details of how a unit works
facilitates a “divide and conquer” approach in which a software unit can be developed
independently from its users. This allows new versions of a unit to be interchanged with

old versions provided that they do the same thing.

Locality: All descriptive artifacts represent the properties of a Component from a
local perspective rather than a global perspective. This means that there are no diagrams, or
other descriptive artifacts, that take a global perspective and cover all aspects of the
system. Even the largest Component at the root of the containment tree only has a black-
box view of its sub-Components, and thus its models only describe its local properties. By
reducing the coupling between components this promotes reuse. Figure 2.2 illustrates this

principle.
Run-time Hierarchy Development Time Description
475 =7
NN Traditional
approaches

defines  set of models

KobrA
ke -:’-'f'f‘-‘-i’-t:t:yy (Principle of
o I / Locality)

Figure 2.2 - Locality Principle of KobrA

Parsimony: Every descriptive artifact should have "just enough™ information, no

more and no less. This means that all models and diagrams should contain the minimum
15



amount of information needed to describe the necessary properties, but no more. Including
more model elements than necessary simply obscures the essential information, and

complicates the models.
2.2.2.2. Artifacts

In the most abstract level, KobrA prescribes a software product-line approach. A
framework as defined by the methodology is a set of generic artifacts that might create
several similar applications. There is a decision model associated with each artifact in
order to indicate how to instantiate the framework into a specific application. This
information is gathered together in the context realization, which is the initial analysis and
modeling of the environment in which the systems it is to execute. The KobrA context
realization produces the same artifacts as the realization of Komponents we describe

below.

The intermediate level of granularity of KobrA is the component-based paradigm.
Applications are organized in terms of hierarchical composition of reusable KobrA logical
components (usually referred as Komponent). Each Komponent is built using the same
artifacts in a recursive fashion. At development time a containment tree that composes
recursively Komponents and sub-Komponents until the most basic component level

represents a system.

A Komponent is modeled in terms of a specification, which describes what kind of
services the Komponent provides for other Komponents that might be associated to it
through a client-sever or ownership relation, hence a Komponent specification is a
description of the requirements that the Komponent is expected to fulfill. The Komponent

Specification artifacts prescribed by KobrA are:

A Structural Model: that defines classes, operations, attributes and the other
required Komponents, and relationships of the structural part of the Komponent.

A Behavioral Model: that specifies via pre and post-conditions in OCL the behavior
of each operation of the Komponent. Defines via state charts the internal states of the
Komponent, the available services of the Komponent in each state and how the operations
trigger the transitions to each state.

16



A Komponent may also have one realization associated to its specification, which
describes precisely how a Komponent implements its specification (partly with the help of

server Komponents). The Komponent Realization artifacts prescribed by KobrA are:

A Strucutral Model: that defines the classes, operations and attributes and

relationships of the structural part of the Komponent.

A Behavioral Model: that defines via OCL expressions, activity and sequence

diagrams, the algorithms that realize the operations shown in the specification view.

Figure 2.3 illustrates the two views of a Komponent.

Behavioral Hodel

Specification Models (UM statechart diagram)

Behavioral Hodel

(DCL expressions) . Structural Hodel

(UML classtobject diagrams)

Behavioral Hodel \ —
. Structural Hodel
(UML activity and Lﬁ%ﬁ - 7/’ ; d
interaction diagrams) \ / Cg {UHL classiobject diagrams)

el

Behavioral Model
(OCL expressions)

& / Komponent -—

Realization Models

Figure 2.3. Komponent Structure.

Finally, Komponent embodiment is concerned with reducing the abstraction level
of the artifacts. There are two basic strategies for achieving a deployed version of a
Komponent: developing it from scratch or reuse an existing Komponent that is capable of
providing conformant properties. Reuse is of course the less expensive way of realizing a
Komponent implementation, but it is not always the case there is available reusable
Komponents. Developing a Komponent from scratch must deliver a tool processable form
of a Komponent that can be automatically transformed in executable binary elements. In
many development environments this is source code. However KobrA separates the
transformation process into distinct refinement and translation steps. Refinement is
concerned with describing model elements at a lower level of detail, but using the same
notation, while translation is concerned with mapping model elements into program
elements. Separating these concerns allows KobrA to be quite conformant to the MDA

approach.

17



2.2.2.3. Process

The shape of the KobrA method is tightly coupled to that of the product, with many
activities usually taking the same name as that artifact, which they create. At the highest
level of granularity is Framework Engineering that is concerned with the construction of a
framework, which captures all the properties of a product-line in a generic way by
explicitly highlighting variant features and indication to which variants of the system each
feature belongs. Framework engineering involves Komponent modeling and Komponent

embodiment.

A sub-activity of Framework engineering is the context realization activity. Its goal
is to create the set of artifacts that make up a context realization. It follows the use-case
analysis strategy but accommodates genericity to include analysis of variabilities and

commonalities in a product line.

The other sub-activities of Framework engineering are the Komponent
Specification, which creates the artifacts for the Komponent specification from the
previous realization; and the Komponent specification that is based on the same underlying
approach as context realization. Data and activities are initially analyzed independently,
and are then integrated by focusing on interaction modeling.

Application engineering can involve all the activities of the framework engineering
activity but without the parts dealing with the variabilities and commonalities. Instead of
this, it includes activities dealing with the instantiation of the framework, namely: i) the
context realization instantiation, which analyses if a given generic context realization can
be tailored to a specific domain or if it is better to start from scratch; ii) specification and
realization instantiation which deals with recursively instantiating the Komponents within

the framework by resolving the decision models and removing the irrelevant features.
2.2.2.4. Strenghts
1. Only comprehensive full life cycle reused oriented software method.

2. Follow a few simple principles and apply them uniformly.

w

. Thorough separation of concerns by integrating MDE with CDB and PLE.

S

. Fully prescriptive for the UML artifact to produce at each step of the process.

(62}

. Detailed guidelines on how to produce those artifacts.

18



2.2.2.5. Weaknesses

1. Based on UML 1.4, tables and natural language which prevents the most advanced

model-transformation based flavor of MDE.
2. Says nothing specifically for GUI modeling.

3. PLE approach presupposes that framework model contains all artifacts of all possible

product instantiation, which is unpractical in many real cases.

4. Focuses on PIM modeling, saying very little on PIM to PSM and PSM to code
translation tasks.

5. Not modeled explicitly in SPEM.

6. No capability and maturity model to adopt it incrementally, which is a very serious
practical barrier due to its artifact heavy nature and incorporation of three cutting

edge reuse oriented techniques that are not yet wide spread.

7. Focuses on software engineering for reuse, saying very little about software

engineering with reuse of legacy software.

8. Last but not least, has a very limited set of case studies that can serve as models for

software engineering teams.

Except for the last one, most of these weaknesses are shared by most other software

engineering methods.
2.2.3 The KobrA2 CBMDE Method

A second version of the KobrA method is currently being developed by the ORCAS Group
(CIn — UFPE) with the Fakultat fir Mathematik und Informatik, Universitat Mannheim
(FMI-UM), in Mannheim, Germany. KobrA2 expect to accommodate new trends such as

support for more advanced forms of MDE and Component Based Engineering (CBE):

e By leveraging the latest OMG standards: UML 2.1 modular metamodel and better
founded profiles; UML 2.1 full life cycle components; OCL 2.0 to model PIM, PSM,
metamodels and UML 2.0 profiles that are fully refined and free of natural language
ambiguities, thus viable input to fully automatic model transformation; MOF 2.0 and
Ecore to define the KobrA2 metamodel; and

19



e By leveraging model transformation to weave product-specific elements onto
framework components instead of or in addition to instantiating them, and to add on
and take off Built-In Contract Testing (BICT).

The Specification and Realization views in KobrA2 are described via a metamodel
that reuses and extends a minimal, consolidated, UML2 core, restricting model elements
and enforcing consistency between views via OCL expressions. A comprehensive
technical report about KobrA2 is in (Atkinson et al, 2009).

The KobrA2 method integrates three software reuse approaches: Model-Driven
Engineering (MDE), Component-Based Development (CBD) and Object-Oriented (OO)
frameworks. Beyond this integration, KobrA2 also innovates in two other ways. First it
incorporates special views to model the layout, navigation and behavior of GUI
components. Second, it introduces the concept of orthographic software engineering in
which building a Platform-Independent Model (PIM) for each software component is
piecemeal carried out by constructing largely orthogonal concern-specific views of the
component. These views are then integrated into a Single Unified Model (SUM) which is

in turn verified for conformance to the KobrAz2 artifact metamodel.
2.2.3.1. KobrA2 Principles
The main principles of the KobrA2 method are:

Separation of Concerns - Separates functionalities of whole software concerns into
reusable components. For each component separate: (a) PIM from PSM from code; (b)
general product line framework model from specific product application model; (c)
execution model from testing model; (d) specification from private, encapsulated
realization; (e) structural model from behavioral model from operational model; (f)
computational service aspects from data structures aspects; (g) concept (class) from

instance (object) model.

Multiple Views — for each component, provide one view for each point in the multi-
dimensional space of separated concerns and reconcile these views into a Single Unified
Model (SUM). The Figure 2.4 shows the relationship between the SUM and the views.

20



Partial View 1 to SUM automated transformation
View1 [~

SUM to View 1 automated transformation Metamodel
conformance

Partial l View 2 to SUM automated transformation Single verification
-
[ ]

\ View2 ||~ \t\> Unified automated )
SUM to View 2 automated transformafion transformations

\ Model

\ View N to SUM automated transformation B

Partial
View N SUM to View N automated transformation

Figure 2.4 - Multiple Views with SUM.

Prescriptiveness — KobrAz2 strives to precisely prescribe, as much as possible for a
general purpose software engineering method, which UML2 and OCL2 model elements as
basis to the development of each view of a KobrA component.

Formally Specified Rules to Automatically Conformance Checking — KobrA2
defines rules to check the conformance of the model in the following levels: (a) view-level;

(b) component-level; and (c) assembly-level.

Parsimony — avoid as much as possible redundant model elements and views. To do
this, KobrA2 choose a minimum model elements and diagram subsets of UML2, able to

cover the key aspects/concerns of a software component.

Locality — all KobrA2 Views are local to a given component, and this component
has the stereotype <<subject>> to specify the component owner of the View. The whole
PIM of the system is derivable from the union of all these local views.

Uniformity — the sole first-class modeling entity deserving to possess its own
multiple views is the KobrA2 component. All behaviorally complex entities are modeled
as a KobrA2 component, including the system itself, and only behaviorally trivial system
entities are modeled as KobrA2 classes.

Top-down Decomposition — the realization of any KobrA2 component K potentially
consist of an assembly of finer-grained components, encapsulated in K and not directly

visible outside of K.
2.2.3.2. KobrA2 Views

KobrA2 defines sixteen Views which can be seen in Figure 2.5 and that are described

below.
21



Specification kamergeu ----------------- Realization

Structural Structural
Class Class
Service Type Service Type

Instance Instance
Service Type Service Type

Operational Operational
Service Type Service Type

Behavioral Behavioral

Protocol Algorithmic
|
Derived
ComponentClassDependencies ‘ OperationDependencies ‘

Figure 2.5 — KobrA2 Views

e Specification Structural Class Service View - specifies the local assembly
connections of the subject component class, and its interface. Allow only public
operations and attributes. The elements allowed in this kind of view are
ComponentClass, Class, Generalization, associations stereotyped  with
<<acquires>> and <<creates>> and structural OCL constraints like invariants,
initialization, derivation and definitions. A prototypical Specificatin Structural Class

Service View can be seen in Figure 2.6.

e Specification Structural Class Type View — defines the non-primitive data types used
by the subject component class in the Specification Structural Class Service View.
The elements allowed are Enumerations, Classes, Association Classes, Associations,
Generalizations and structural OCL constraints. The operations and attributes need to
be public. A prototypical Specification Structural Cass Type View is shown in Figure
2.7.

22



inv: gqicco
def: at3ccO:Integer=q2ccO
def: op4cc0()=q3ccO

__ |+/at2ccO : Boolean

<<ComponeniClass>> <<ComponeniClass>> cn ciz
! e Laticll sinteger || Tl+aticl2 : Integer o —init: 42 I
+opicei( pal : OrderedSet(Eni) ) : Set(CI3) +aticc2 : Real +/at2ci1 : Boolean +at2cl2 1 Real o
T +opich 1cl2() : Stri
+ricc2 ) ) opici) il 2 derive: g4cl2
micc3.niced {incomplete, overlapping
TH N
N
miceO..n1ccO P inv: gbicl2
<<C:r:su?|]:r(|:t1(>il>ass>> def: at3cl2:String= g2ci2
<<acquires>> +ricco pgco def: op2ci2() = g3cl2
+aticc0 : String T — 1. BI
init: '‘acme’

Figure 2.6 - Prototypical Structural Class Service View

+op2ccO( pat : Integer ) : String
+op3ce0( pat : Real )

+opiccO( pal : GI11, inout pa2 : Integer, out pa3 : String ) : CH

m2cc0..n2ccl

<<Creates>>

micc2..nicc2

asicclcc3

cc3

<<ComponentClass>>

+atice3 : Set(String)

+op1cc3( out, pai : Bag(Cl3), pa2 : Sequence(CC2)

derive: gaccl I

Figure 2.7 - Prototypical Structural Class Type View

23

ci3 cl Ci5 clé
. i — . __|inv:gbiclé
= def: aticl6: ClB=q2cl6
{complete, digjoint} def: op2cl6():pt1=q3cl6
:CI3
cr7 | ci8 cl9
+at1cl8 : Integel +at1cl9 : Bag(String) o — — |derive:
et T +op1cl9() : CCO Sl
<<ComponentClass>=
B r26c0 wrtali0 | m2ci10-n2el10 \
asfocOelio | €0 +r2el10 cin ch2 I
m2cc0..n2ec0 sl +aticli1 : Ent
+racl
asicccl14 m3cl10..n3cl10)
micl14..n2cl14
cl13 - cha <<enumeration>> Op1ccOException
A En1
+at1cl13 : Boolean ACT +aticl14: Real —
| ~opicli4() =i
| EI3
|
AC1 cihs
+atlaci : Integer +aticl5: Integes— init: 42BI
+oplact()



e Specification Structural Instance Service View — defines typical instantiation patterns
of the Specification Structural Class Service View of the subject component class. It

allows ComponentObjects with public slots, and Acquires and Creates associations.

e Specification Structural Instance Type View — defines typical instantiation patterns of
the Specification Structural Class Type View of the subject component class. It

allows ComponentObjects with public slots, and Acquires and Creates associations.

e Specification Operational Service View - declaratively specifies the behavioral
contracts between the component classes of the Specification Structural Class
Service View of the subject component class. It shows the OCL precondition, post-
condition or body constraints of the operations. A prototypical Specification

Operational Service View is shown in Figure 2.8.
lécontext ViewPersistenceHandler::actionPerformed|

1 triggeredEventzs : GUI-PIM-UF::Events::Event[*])

Lipost:

19 triggeredEvents-»exiats(e: Event | e.ocllsTyvpeOf(ActionEvent)

20 and (e.source.name = "fromClond' or e.source.name = "toClond'))

21 implies

22 je.source.name = 'fromClond' implies self,wREAMEGUIController”fromCloud())
23 and (e.zource.name = 'toClond' implies self,wAEAMEGUIController”toCloud())

Figure 2.8 - Prototypical Specification Operational Service View

e Specification Operational Type View - declaratively specifies the behavioral
contracts between the component classes, (data) classes and association classes of the
Specification Structural Type View of the subject component class. It shows the OCL
precondition, post-condition or bodies constraints of the operations.

e Specification Behavioral Protocol View - defines the external visible state transitions
of the subject component class together with the restricted subset of its public
operation that is available for invocation in each of these states. Contains a simple
UML2 protocol state machine. The sequence of operations on the state machine
transitions represent the protocol to follow to satisfy the invocation contract of the
services provided by the subject component class.

¢ Realization Structural Class Service View - defines the internal component assembly
that realizes the services described in the Specification Structural Class Service View

of the subject component. It shows the private attributes and operations signatures of
24



the subject component; the nested components of the subject with their public
attributes and operations. It allows ComponentClass, Class, Generalization,
stereotyped associations with <<acquires>>, <<creates>> and <<nests>>, and

structural OCL constraints.

Realization Structural Class Type View — it is for the Realization Structural Class
Service View what the Specification Structural Class Type View is for the
Specification Structural Class Service View. Defines the non-primitive data types
used by either: (a) the private operations of subject component class; (b) the internal
assembly of the subject component class; (c) but not used neither by its public
operation nor by its external server components. The elements allowed are
Enumerations, Classes, Association Classes, Associations, Generalizations, and

structural OCL constraints.

Realization Structural Instance Service View — it defines typical instantiation patterns
of the Realization Structural Class Service View of the subject component class. It

allows ComponentObject with public slots, Acquires, Nests, and Creates.

Realization Structural Instance Type View - defines typical instantiation patterns of
the Realization Structural Class Type View of the subject component class. It allows
ComponentObject with public slots, Acquires, Nests, and Creates.

Realization Operational Service View - declaratively specifies the behavioral
contracts between the component classes of the Realization Structural Class Service
View of the subject component class. It shows the OCL precondition, post-condition

or body constraints of the operations.

Realization Operational Type View - declaratively specifies the behavioral contracts
between the component classes of the Realization Structural Class Type View of the
subject component class. It shows the OCL precondition, post-condition or body

constraints of the operations.

Realization Behavioral Algorithmic View — Defines the algorithms for each operation
appearing in the subject component’s Realization Structural Class Service View.
Contains m X n simple UML2 activity diagrams, where n is the average number of
activity diagrams needed to fully specify the algorithms implemented by the
operations.

25



e Derived Operational Dependencies View - automatically derived from the
Operational and Algorithmic Views, local to each component, it shows the

dependencies between the operations in the model.

e Derived Component Class Dependencies - automatically derived from the global
operation dependency view and the local structural class views of each component, it

shows the dependencies between the component classes in the model.

2.3. Cloud Computing

According to Yousef et al (2008) the term “Cloud Computing” is based on the collection
of various old and new concepts of some areas of research as “Service-Oriented
Architecture (SOA)”, “distributed and grid computing”, and also “virtualization”, although
this subject is also related to other fields of research. In recent years, this term has gained
much interest due to its enormous potential and the advance of diverse technologies in this

area.

The term cloud is used as a metaphor based on how the Internet is represented in
diagrams of computer networks, and also as an abstraction for the complex infrastructure it

conceals (Scanlon and Wieners, 2009).
2.3.1 Principles and Related Concepts

There are four types of services offered by cloud computing shown in Figure 2.9, along

with some suppliers of these service (Levitt, 2009):

e Internet-based Services — provides services such as storage (Data-Storage as a

Service), middleware and collaboration;

o Infrastructure as a Service (laaS) — provides a complete computing infrastructure by

the Internet;

e Platform as a Service (PaaS) — provides a complete or partial development

environment, that users can access and use online;

e Software as a Service (SaaS) — provides a complete application, such as complex

application like CRM by Internet.

26



Internet-based services Infrastructure as a service Platform as a service Software as a service
Management Management Management Management
and provisioning and provisioring and provisioning and provisioning
Configurators/ Application
APIs software
Virtual platform Virtual platform
Virtualization Virtualization software software
| Disks I I Servers I I Disks | I Servers “ Disks I
| S | Sni— | —— | AR L E——
I I I I :
! « Amazon 53 I+ Amazon EC2 I+ Bungee Lab’s Bungee I+ Oradle Saas platform 1
| - Box.net 1 - Joyent 1 Connect |« Salesforce Sales Force Automation :
: « Google Base : « Sun Microsoft's : « Etelos : + NetSuite 1
i+ Mozy 1 Network.com i« Coghead 1« Google Apps |
: « Amazon SimpleDB : + HPFlexible Computing : « Google App Engine : « Workday Humazn Capital 1
1+ TrackVia I Services | + HP Adaptive Infrastructure | Management :
: « Microsoft S3DS : « IBM Blue Cloud : as a Service : I
| |+ 3tera |+ Salesforce.com 1 :
] | - OpSource |« LongJump h 1
1 1« Jamcracker | ] Siirce: Yankee Goup

Figure 2.9 — Services offered by Cloud Computing. (Source: Levitt, 2009)

Yousef et al (2008) define also five layers in a computer system in clouds (Figure
2.10), being each layer responsible for one or more of the services offered by cloud

computing:

Application;

Software Environment;

Software Infrastructure;

Software kernel; and

Firmware/Hardware.

Cloud Application

{e.g. SaaS)

(=.0. Paas)

Cloud Software Environment

Cloud Software Infrastructure

Computational
Resources (laaS)

Storage
(Daas)

(Caa3)

Communications

Software Kernel

Firmware / Hardware (Haas)

Figure 2.10 — Layers in a computer system in the clouds. (Source: Yousef et al, 2008)

27



2.3.1.1. Cloud Application Layer

This is the most visible layer for end users of the cloud. Normally, it provides services
through an application for the end user. The idea of providing services may be referred as
SaaS. The main idea of SaaS is that the end user will pay for the use of a server provided
by a software, but he will not pay for the software itself. That is, instead of the user buy the

software it needs, it will pay to use it while necessary.

For cloud computing, the idea of “to pay” is abstract, and the service provided may
be paid or not. Instead of user having to download, install and configure the software it

needs, it simply can access it from a browser.

Examples of applications in this layer of the cloud can be the Google Apps (GApps,
2009), the SalesForce CRM (SalesForce, 2009), PayPal (PayPal, 2009) and Yahoo! Maps
(Y!Maps, 2009).

2.3.1.2. Cloud Software Environment Layer

Users of this layer are typically developers of applications for the cloud. This layer
provides a development environment in the level of development with a clear set of APIs
to facilitate integration between the environments and applications in cloud, as to speed up
the deployment and to give support for the scalability needed of these applications. The
service provided by this layer can be called PaaS.

Examples of systems in the level of this platform are the Google App Engine
(GAE) (GAE, 2009), which provides a development environment for the languages Python
and Java, and a set of APIs to interact with the cloud environment of Google. Another
example is the Azure (Azure, 2009), the Microsoft competitor service to GAE.

2.3.1.3. Cloud Software Infrastructure Layer

This layer provides the essential resources to the subsequent layers, which can be used to

build new environments of software and applications in the cloud.
The services provided by this layer may be categorized into:

e Computational Resources — Through the concepts of laaS, this service provides
virtual machines (VM) with computational resources to the cloud. These VM allow

the software infrastructure customization, which will run with the best performance

28



and efficiency. An example of this service is the Amazon Elastic Compute Cloud
(EC2) (EC2, 2009).

e Data storage — This service, known as DaaS, allows users to store their data on
remote disks and access them from anywhere. This service is expected to have a high
availability, reliability, performance, replication and consistency of data, so that it
can allow a high scalability for application in cloud. An example of this service is the
Amazon Simple Storage Service (S3) (S3, 2009).

e Communication — A vital component for an application in cloud is its network
infrastructure, which provides communication between the various modules of an
application in cloud. For this, it is used the concept of “Communication as a Service
(CaaS)”, which says that it is necessary that the capacity of communication for
systems in the cloud be service-oriented, configurable, predictable, reliable and with

planning tasks.
2.3.1.4. Software Kernel Layer

In this layer, there is the software for the basic management of physical servers that make
up the cloud. Typically, these software are operational systems, VM monitors and
clustering middleware. At this level, the systems have as task, the abstract virtualization in

grid computing, load balancing and setting up the checkpoints to migration.
2.3.1.5. Hardware / Firmware Layer

This is the base of the stack in the cloud computing, where all the physical hardware
switches that form the backbone of the cloud are located. Usually large IT companies are
required to provide the physical infrastructure. This layer is known as “Hardware as a

Service (HaaS)”.
2.3.2 Benefits of Cloud Computing

Leavitt (2009) says that companies that run their own software platform need to buy and
maintain their own software and hardware infrastructure, besides hiring a team to take care
of these systems, which can be expensive and time consuming. In addition, in order to
provide an environment that supports the intense use of the system, a augment of the
capacity of processing and storage infrastructure is required, though in most of the time
this resource becomes idle. Forrester’s Staten (Leavitt, 2009) also supports this idea,

29



saying “Most enterprise data centers are using less than 50 percent of the total capacity of

their resources”.

The cloud computing aims to overcome this problem, offering a platform that is
kept outside the user company, and is hired as needed of the user. A cloud computing
system must have high availability and reliability, being executed by an infrastructure with
various physical resources, and with redundancy of equipment to have a greater

availability than an “in-house” infrastructure of a small or medium company.

Another advantage of computing in the cloud is the flexibility regarding the use of
resources, which can grow during an intense use, or decrease during a stagnation of the use

of the services. Even so, the user would pay only for the resource used in practice.
2.3.3 Google App Engine

Google App Engine (GAE, 2009) is an environment that lets anyone to run Web
applications on Google’s infrastructure. GAE was launched by Google in April 2008 and is
still undergoing tests. GAE proposal is to make, maintain and scale simple applications,
even when the traffic of access and data storage needs increase. The aim is that GAE
allows the development of a reliable application easily, even under intense use and access
to large volume of data.

2.3.3.1. GAE Principles
GAE has three key aspects (GAE, 2009):

First it provides an infrastructure for running Web applications, focusing on making
them easy to execute, build and to scale. The GAE is not only a solution for grid
computing, it does not provides only a basic virtual machine. The GAE environment
provides means to package the source code, to specify how it will respond to requests,

besides providing the environment for the execution of its code.

The second aspect is that GAE environment provides a necessary infrastructure for
the entire cycle of a web application, i.e., it provides means to run both the dynamics as

well as the static portion of the application, supplies the database, allows the creation of

30



logs and methods to update to new versions. All this effort is an attempt to provide a

simple alternative to the traditional LAMP? stack.

And finally, the third aspect is that the GAE provides access to Google’s
infrastructure, which allows creating systems with the same power of distribution,
scalability and processing as the other applications of Google uses. The GAE also allows
the use of the infrastructure for authentication (Google Accounts)(GACC, 2009), of disk
storage (GFS) (GFS, 2009) and storage in the database (Bigtable) (BIGTABLE, 2009).

2.3.3.2. GAE Components
The GAE structure is divided in seven components (GAE, 2009):
e Web Server;
e Environment for Phyton Implementation;
e Environment for Java Implementation;
e Environment for offline development;
e Administrative Environment;
e Database;
e App Engine Services.

Web Server

One of the first components of GAE is the scalable infrastructure for publication of
applications. The infrastructure implementation contains a distributed system that
leverages automatically the application scalability, whenever the amount of accesses
comes to grow. When uploading the application, GAE itself allocates the resources for the
application, that is, the code is sent to diverse machines, and is responsible for making the
connection between the user requests and the instance running the application. The GAE,
automatically, provides more resources for the application, when it needs, but GAE also

reduces the resources allocated, if the application is not using them.

2 LAMP stack — refers to the solution architecture of open source software systems for configuration of web
servers: Linux, Apache, MySQL e PHP/Perl/Python. It is used here meaning any set of software for web
servers, representing the operating system, web server, database server and programming language.

31



The application runs in a secure environment (Sandbox), which leads to some
limitations. For the sake of security, GAE restricts access to operational system, isolating
the application and so it is independent of hardware, operational system and physical
location of the web server. It is through these limitations imposed by Sandbox, GAE can

distribute the requests to the web application across multiple servers.
GAE main limitations are:

e The application can only be accessed through solicitations using HTTP and HTTPS

protocols.

e The application can not write to the file system and can only read files that were

loaded with the application code.

e The application runs only in response to a web request, and should return the answer
in a few seconds. When dealing with a request, the application can not create a sub-

process or perform any operation after the response has been sent.

Environment for Python Implementation

For the development and execution of applications, one of the programming languages
used by GAE is Python. This environment already includes the standard library of Python,
but with some modules disabled, specifically those which directly access the operational

system.
In addition to the standard library of Python, GAE includes some frameworks:

e Django 0.96.1 (DJANGO, 2009) - to support fast development, such as mapping

object/relational, automatic creation of forms and templates system;
e WebOb 0.9 (WEBOB, 2009) — to deal with HTTP requests and responses;
e PyYAML 3.05 (PYYAML, 2009) — as a format for data serialization.

If the user wanted to include other frameworks, the environment can include the

implementation of these codes along with the application code.

Environment for Java Implementation

Another environment of execution supported by GAE is Java. In this environment, Java
applications run using the Java 6 virtual machine (JVM)(JAVA, 2009). The JVM runs in a
safe “sandbox” environment that isolates the application for security reasons. The sandbox

ensures that applications can only perform actions that do not interfere with the

32



performance and scalability of other ones. For example, it does not allow other threads to

be called as well as it avoids data to be recorded on the file system location.

GAE uses the Java Servlet standard (SERVLET, 2009) for web applications,
providing servlet classes, JavaServer Pages (JSPs), static files and the deployment

descriptor (a web.xml file) in a WAR file directory structure.

The data persistence can be achieved through two standards for Java: Java Data
Obijects (JDO) 2.3 (JDO, 2009) and Java Persistence API (JPA) 1.0 (JPA, 2009), and the

user is free to choose one.

Finally, from the standard Java library, the GAE released a White List (GAEJRE,

2009) to show which class library is allowed.

Environment for Offline Development

The GAE provides a SDK (Software Development Kit) for developing the application
offline, both for the Python environment, and for the Java environment. The SDK allows
development, debugging and testing the application through the APIs emulation provided
by the GAE. Besides allowing the local application development, the SDK also provides a
tool to automatic upload an application to the GAE servers, and also allows the update of

an application already available at GAE.

Administrative Environment

In order to facilitate the setting of applications, the GAE provides an administrative web
environment, which gives access to the information of the applications available. This
administrative interface allows checking the status of the application, the published
version, access to logs of the application, the configuration of the domain name, access to
the database, among other things.

It provides a panel with real-time information on the situation of the application, the

requests, errors, resource allocation, all integrated in the administrative environment.

Database

The GAE provides a powerful distributed data storage service that has a query engine and
transactions. It supports a huge data set with millions of entities, but internally it is not
based on a cluster of SQL servers, but in Bigtable, the same system that Google uses for its
massive and scalable applications. This system of data storage, unlike the traditional, is not

relational, it is object/relational.

33



The data storage API of Python provides a modeling interface that defines the
structure of the entities of storage. Thus, it is not necessary to create structures for storage

in the database, which are only defined in the application code.

As previously mentioned, the data storage system does not use SQL, but for
information recovery, the GAE provides a query language, based on SQL, in GQL layer,

allowing the easy creation of queries.

GAE Services
The GAE has a variety of services, through APIs that are described below:

e Integration with Google Accounts - APIs for integration with the authentication
system of Google, Google Accounts, are available. These enable integration with the

various personal services powered by Google.

e Access by URL - This service allows recovering resources of the application through
URLSs, using the same infrastructure that Google uses to retrieve web pages of their

products.
e Email - It allows the application to use the Google infrastructure for sending e-mails.

e Memcache - The Memcache service provides a memory space for the application of
high performance that can be accessed by multiple instances of the application. This
is useful when the data need not be persisted, as temporary data that need quick

aCcCess.

e Manipulation of Images - The application can resize, trim, rotate and invert images in
JPEG and PNG.

e Scheduling Tasks — This service allows scheduling tasks to run regularly at a set time

or set intervals of time.
2.3.3.3. Strengths

The advantage that Google App Engine promises is to ignore from the development and
publication of web applications, the concerns of scalability, configuration and maintenance

of the environment of implementing the application.

The GAE, automatically and transparently, provides the scalability needed for the

application, in accordance with the amount of requests it receives, making the whole

34



process of load balancing and distribution of the application. This is done without having

to write one line of code.

Further, all the necessary concern about installation and maintenance of operational
systems, web servers, database servers as well as the need for physical equipment, such as
a grid computing for applications that have a large amount of access are also handled by
GAE.

It is not necessary to create structures for data storage, since they are described in
the application code itself and created automatically with the implementation. Better,
everything is done in a transparent way for the developer.

Another strong point is the use of an infrastructure used by widely known products,
Google’s products, which are already established in the market. This also implies, using an
infrastructure that has been validated and improved for years by one of the biggest
companies in the business of web applications.

2.3.3.4. Limitations

The first limitation is that Google App Engine is in pre-release that is, in beta phase and is
not yet fully complete. Furthermore, though the use of GAE is free, it is limited. There are
limits, such as bandwidth, amount of views per month, size of storage, amount of files for

applications.

But for some of these limitations, whenever necessary to use more than the limit
imposed, you can buy more resource, that is, you pay for what you used beyond the pre-
established limit.

Due to security restrictions addressed by GAE, other limitations were created as:
the compulsory use of only HTTP and HTTPS requests, which prevents the use of sockets,
and the processing is only done when a request is made, which prevents the execution of
scheduled tasks.

Also, the total dependence of the application with the Google can be considered a
limitation, since the GAE is not an open infrastructure. To port the application to another

environment will require the recoding of the same.
2.3.4 Google App Engine and others cloud computing platform

The GAE offers services at PaaS level, providing an environment for development and

implementation for applications in the clouds. Similarly, there is Azure (Azure, 2009)
35



which also provides similar services, but one of the main differences is about the
technology used. While Azure provides a development environment based on platform
Net (DOTNET, 2009), the GAE provide environments in Python and Java. Another
difference is that the GAE only allows the deployment on their own servers (unless the
development environment), while a proposal of Azure is to allow companies to also use its
infrastructure in internal servers. Thus, their application would be available only in the

company intranet, which is a security measure for the application.

Another platform for cloud computing is provided by Amazon Web Services
(AWS) (EC2, S3, 2009). The AWS provides various services at the level of 1aaS. One of
the services is the Amazon Elastic Compute Cloud (EC2, 2009) which provides virtual
processing units, that is, virtual machines on which you can set up their infrastructure
software, such as the operational system, the software that will run. Additionally, it allows,
according to need, increase or decrease the processing power of your virtual drive.

Another interesting service provided by the AWS is the Amazon Simple Storage
Service (S3, 2009), a robust service for persistence of data that can be accessed from
anywhere. Another advantage is that there are no limits on quantity of objects to be
persisted, and these objects can have from 1 B to 5 GB.

The main difference between the AWS and GAE is the kind of service that both
provide. As said before, the GAE provides an environment for development and
implementation of its application in the clouds, while the AWS provides services to create
the environment for development and implementation. Another difference is that the use of
AWS is paid, while the GAE is free, but with several limitations. The advantage of the
AWS on GAE is that, as one can build its proper environment for implementing the
applications, he will not have the restrictions addressed by GAE. By the other hand,
unfortunately, you have to take care of the whole infrastructure of the environment of
implementation, while with the GAE you will be only worried about the maintenance of

the application.

2.4. Model-Driven CASE Tools

CASE is an acronym to Computer Aided Software Engineering. According to (FFIEC,
2009) CASE tools are a kind of software that automates many of the activities involved in
software development life cycle phases. For example, when establishing the functional

36



requirements of a proposed application, prototyping tools can be used to develop graphic
models of application screens to assist end users to visualize how an application will look
after development. Subsequently, system designers can use automated design tools to
transform the prototyped functional requirements into detailed design documents.
Programmers can then use automated code generators to convert the design documents into
code. Automated tools can be used collectively, as mentioned, or individually. For
example, prototyping tools could be used to define application requirements that get passed
to design technicians who convert the requirements into detailed designs in a traditional
manner using flowcharts and narrative documents, without the assistance of automated

design software.

UML CASE tool represents a subset of CASE tools that is a software application
that supports some or the entire notation and semantics associated with the Unified
Modeling Language (UML).

The UML tool term is used broadly to include application programs which are not
exclusively focused on UML, but which support some functions of the Unified Modeling

Language, either as an add-on, as a component or as a part of their overall functionality.

UML tools generally support the following kinds of functionality, such as
diagramming, round-trip engineering, code generation, reverse engineering, model and

diagram interchange and model transformation.

Diagramming in the context of UML CASE Tools means creating and editing UML
diagrams; that is diagrams that follow the graphical notation of the Unified Modeling
Language. The use of UML diagrams as a means to draw diagrams of — mostly — object-
oriented software is generally agreed upon by software developers. When developers draw
diagrams of object-oriented software, they usually follow the UML notation. On the other
hand, it is often debated whether those diagrams are needed at all, during what stages of
the software development process they should be used, and how (if at all) they should be

kept up-to date.

Another functionally provided by UML CASE Tools is round-trip engineering,
what refers to the ability of a UML tool to perform code generation from models, and
model generation from code (a.k.a., reverse engineering), while keeping both the model
and the code semantically consistent with each other. Code generation and reverse

engineering are explained in more detail below.

37



The code generation provided by UML CASE Tools means that the user creates
UML diagrams, which have some connoted model data, and the UML CASE Tool derives
from the diagrams parts or all of the source code for the software system. In some tools,
the user can provide a skeleton of the program source code, in the form of a source code
template where predefined tokens are then replaced with program source code parts during
the code generation process. There is some debate among software developers about how
useful code generation as such is. It certainly depends on the specific problem domain and

how far code generation should be applied.

Another useful functionality is the reverse engineering, that is, the UML CASE
Tool reads program source code as input and derives model data and corresponding
graphical UML diagrams from it (as opposed to the somewhat broader meaning described
in the article “Reverse engineering”). Some of the challenges of reverse engineering are:
The source code often has much more detailed information than one would want to see in
design diagrams. This problem is addressed by software architecture reconstruction.
Diagram data is normally not contained with the program source, such that the UML tool,
at least in the initial step, has to create some random layout of the graphical symbols of the
UML notation or use some automatic layout algorithm to place the symbols in a way that
the user can understand the diagram. For example, the symbols should be placed at such
locations on the drawing pane that they don’t overlap. Usually, the user of such a
functionality of a UML tool has to manually edit those automatically generated diagrams
to attain some meaningfulness. It also often doesn’t make sense to draw diagrams of the
whole program source, as that represents just too much detail to be of interest at the level
of the UML diagrams.

UML CASE tools also does models and diagram interchange, what is defined by
the OMG standard: XML Metadata Interchange (XMI). Unfortunately, XMI does not yet
support diagram interchange, which is a significant shortcoming for a visual modeling
language. Consequently, even when you can import a UML model from one tool to another

with XMI, you will likely need to redraw your diagrams.

A Kkey concept associated with the Model-driven architecture initiative is the
capacity to transform a model into another model. Some UML CASE Tools also provide
this functionality. For example, one might want to transform a platform-independent
domain model into a Java platform-specific model for implementation. It is also possible to

refactor UML models to produce more concise and well-formed UML models. Finally, it is
38



possible to generate UML models from other modeling notations, such as Business Process
Modeling Notation (BPMN). The standard that supports this is called QVT for

Queries/Views/Transformations.

This chapter describes a MDE CASE tools analysis including their common

standard architectures and deployment platforms, as well specific and common limitations.
2.4.1 MDE CASE Tools

Among the various Model-Driven Engineering (MDE) CASE tools that have arisen lately,

just those focusing on the following two characteristics were taken for analysis:

e Models Store — tools that provide support for the creation of repositories of models
for a specific metamodel. Moreover, we seek the tools that allow the instantiation of
the elements of the model, in addition to functionalities to load and save them in
XMI format. In this category, amongst the tools identified, we just have taken into
account the following: Eclipse Modeling Framework (EMF, 2009; Budinsky et al,
2003) and PyMOF (PYMOF, 2009).

e Engines for Model Transformation — this category addresses the tools specialized
in carrying transformations of models, in the context of MDE, allowing to lower the
abstraction of a Platform Independent Model (PIM) to various Platform Specific
Models (PSM). Amongst the various tools available in this category, we selected two
to present: ATLAS Transformation Language (ATL, 2009) and Epsilon (Epsilon,
2009), in particular the Epsilon Transformation Language (ETL).

In the following subsections, we detail briefly each one, highlighting their positive

features.
2.4.1.1. Eclipse Modeling Framework (EMF)

The Eclipse Modeling Framework (EMF) is an open-source project belonging to the family
of projects that Eclipse (Eclipse, 2009) holds. The EMF is a modeling framework and Java

code generator for creation of model repositories.

With EMF you can define a metamodel, generate a repository for it, and set up
interfaces for editing the repository through the GUI of Eclipse. However, for the
definition of metamodels, the EMF does not use the standard MOF supported by OMG, but
it defines a metamodeling language called Ecore (Ecore, 2009), which is EMOF-based

(MOF, 2009) besides being optimized for Java implementation (EMF, 2009a).
39



As previously mentioned, the Ecore metamodel, depicted in Figure 2.11, is quite
similar to the EMOF metamodel. In a way, one can say there is a relationship one-to-one
among their concrete elements. The main difference between the Ecore and EMOF
emerges from the structural features: while Ecore explicitly differentiates an attribute
(EAttribute), which is for primitive (EDataType) and enumeration types, and a reference
(EReference) that are used for class (EClass), in EMOF both are equivalent to Attribute,
which can be used for both primitive types (PrimitiveType) and class (Class). Furthermore,
others mismatches arise from: (i) the hierarchy of abstract elements, and (ii) the name of
concrete elements of the metamodels, (iii) and in terms of their properties and associations.
A survey of equivalence between the concrete elements of Ecore and EMOF are listed in
Table 2.1.

EModeiElament

+etlodelElement

‘getEAnnotationfsource : String) : EAnnotation

0.7 | +eAnnotations
‘ | +eFactorylnstance

1
E}.‘\nnutatlon [ e p— EFactory
@source : String

details : EStringToStringMapEntry CHEIFTS - Sy

‘create(eCIass : EClass) : EOhject
z} ‘createFromStrlng(eDataType - EDataType, literalvalue : String) : EdavaObject

‘convenToStrmg(eDataType : EDataType, instanceMalue : EJavaObject) : String

| +ePackage | 1
ETypedElement EClzssifier EPackage

gordered © hoolean = true ginstanceClasshame : String ¢nsURI: String

unigue : boolean = true +eType | ¢instanceClass | ElavaClass &nsPrefix : String

GlowerBound - int gdefaulti/alue : ElavaObject

@upperBound ©int =1 0.1 ) ) ) ®getEClassifier(name ; String) : EClassifier

@
gmany : boolean isinstance(object : EJavaObject) : boolean D*
grequired : boolean SgetClassifierdD] : int L] ! +eSubpackages | -
Z> +eExceptions| 0.+ 0.*|  +eClassifiers +ePackage +eSuperPackage
_EOperatiDn _EF‘arameter ‘ ‘
— ——
I
! +e0peration 0.x EClass EDsTalyRe

P abstract : boolean serializable : boolean = true

e +eFarameters ginterface : boolean

+eCperations +eCantainingClass ‘isSuperTypeOf(someClass : EClass) : boolean A
getEStructuralFeature(featurelD © int) : EStructuralFeature n* 1
+edllOperations ®getEStucturalFeature(featureMame © String) © EStructuralFeature EEnumLiteral
0 0. grealue int
l/—‘* +eRef: T instance : EEnumerator
+eAlStructuralFeatures |0 0 - +eContainingClass 1| +ekeferanceType +eSuperTypes
EStructuralFest +eliterals | 0.7
PUCTRNGIEa; f”e +eStructuralFeatures +eAllContainments +eA/|SuperTypes

changeable : boolean = true 0
gwolatile : boolean EReferance = +eAttributeType
gtransient ; boolean grontainment - hoolean o*
pdefaultalueliteral © String geontainer - hoolean T +eEnum
pdefaultvalue : ElavaObject ¢resolvePraxies © hoolean = true| TEAIREIEIENCES B
punsettable | boolean 0*

d d: bool . . . .
gderived . boolean +e0pposite 0.1 +eReferences SyetEEnumLiteralname : String) : EEnurmLiteral
SgetFeaturelDy) : int i +edllAttibutes SgetEEnumLiteralfvalue © int) : EEnurnLiteral
’getCUnlainerCIassO : EJavaClass EAttribute 0.x +eAttributes

D : boolean 0.1 +elDAttribute

Figure 2.11 - Ecore Metamodel. (Source: Ecore, 2009)

The metamodels generated by the user are the input to the engine to generate code

for the repository of EMF models. However, the EMF allows to take as inputs other

40



formats as annotated Java interfaces, XML and XSD files and UML models. Before
processing, all input formats take the form of Ecore models. Through the ECore
metamodel, the model to set the configurations for the code generation, namely the
GenModel, is defined.

Table 2.1- Equivalences between the Ecore and EMOF concrete elements

Ecore EMOF

EModelElement Element
EPackage Package
EClass Class
EDataType PrimitiveType
EEnum Enumeration
EEnumL.iteral EnumerationL.iteral
EParameter Parameter
EOperation Operation
EAttribute Attribute
EReference Attribute
EAnnotation Tag

EFactory Factory

Hence, it is possible to create, based on the GenModel together with the EMF, three
sorts of plug-ins for Eclipse, the repository model and a GUI example to create models
generated through this repository (Backvanski and Graff, 2005):

e EMF.model - this plug-ins holds the complete implementation of the repository of
model from a specific defined metamodel, along with the mechanisms to ensure
persistence, and to import and export from/to XMI format. Usually, just the methods
previously defined in the input metamodel are subject to be changed, or even

implemented.

e EMF.edit — This plug-in allows the creation of an adapter for the plug-in interfaces
EMF.model, regardless of the presentation layer. This plug-in provides an interface
to access all features of the model like a layer of presentation needs. One of its
responsibilities is to separate the GUI and business rules stored in the repository of

models. Normally, just small changes in the generated code are necessary.

e EMF.editor — the GUI for Eclipse to allow access to the repository (model). The
GUI is the standard interface used by the EMF, using resources as the tree of
elements and the pallet of properties for editing the model. A snapshot can be seen in
Figure 2.12. To create more complex interfaces, such as those using graphical

diagrams, the user must code manually to replace the non-appropriate plug-in.
41



However, regarding the proposals of our work, we highlight the EMF.model
amongst these three Eclipse plug-in, since the repository of models generated is stored
within it. One positive aspect is the possibility to reuse the repository of models outside the
Eclipse, in another applications and projects.

3 "My.music 52 . 2 = 02 properties 57 (B
i) Resource Set Property Value
4 @ platforms/resource/quichient/My.music Name 1= Red Hot Chili Peppers
4 4 Library My Personal Library Notes =
4 4 Artist Nirvana
4 1989: Bleach
4 1991 Nevermind
4 1993:In Utera
4 1994 MTV Unplugged in New York
4 1996: From the Muddy Banks of the Wishkah
4 Artist Red Hat Chili Pepper-
4 Adist Foo Fighters New Child P % Work
4 ArtistIron Maiden New Sibling v T
4 ArtistMallu Magalhses |
4 Adtist Chico Buarque <7 Undo Set Ctrl+Z
Rede Carle¥

of Cut

=| Copy
Paste

#  Delete

Validate
Control...

Figure 2.12 - Example of GUI generated by EMF

Each modeled class in the user metamodel leads to a pair of Java entities: an
interface and a class to realize it. Additionally, the code generated implements two
frameworks, one to guarantee the data persistence and a second yielding warning and all
the sorts of notifications. Figure 2.13 shows an example with the structure decompounds in
layers. Note the interface Artist, regarding a user metamodel class, and its realization by
the class Artistimpl. All the classes defined by EMF implements the interface EObject,
which provides the data-persistence and the API reflexive. By the transitive closure, each
class implements also the Notifier interface, which in turn allows other elements to observe

the class.

The repository defined by EMF allows to program the instantiation of the elements
of the metamodel dynamically. This is possible through the interface Factory that provides
methods for instantiate each concrete element in the repository.

2.4.1.2. PyEMOF

PYEMOF (PYEMOF, 2009) is an implementation of EMOF specification, exclusive for
Python development, made by prof. PhD Raphaél Marvie from the University of Lille. As
expected, the PyEMOF allows the generation of a repository of models in Python. The
PYEMOF vyields files in XMI format, saving or loading any model, ensuring thus its
persistence. Going a bit beyond with respect the tools already discussed, it allows also as

input to create the repository, text files in a notation similar to KM3.
42



<<Interface>>
Notifier [

i‘ T

<<Interface>>
<]

------------ BasicNotifierlmpl Notification/Observer
Layer

------------ BasicEObjectimpl

EObject
Common Implementation
t‘[\ Layer
EObjectimpl
<<Interface>> . Business
Artist S R Artistimpl Layer

Figure 2.13 - Framework for Generated Model. (Source: Backvanski and Graff, 2005)

However the PyEMOF project is not widely used, with few references and little
documentation. Furthermore, the PYyEMOF is not aligned with the latest version of the
EMOF specification and, moreover, it has no support for enumerators and for the reflexive
API. Another gap is the lack of support for generation of repositories from metamodels
structured in more than one package. Nevertheless, nowadays the PyEMOF is the only tool

to an environment Python-based.
2.4.1.3. Epsilon

Epsilon (Epsilon, 2009) is an open-source project among the projects of Generative
Modeling Technologies (GMT) of Eclipse. The Epsilon is a platform for building
consistent and interoperable languages for specific tasks as model transformations, code
generation, comparison of models, merging, and validation (Kolovos et al, 2008). As said
before, it defines some languages for specific tasks, and for each language, provides an

interpreter and IDE Eclipse-based. These languages are (Kolovos et al, 2008):

e Epsilon Object Language (EOL) — is an action language built over the navigational
mechanisms of OCL, but includes additionally support for sequencing of sentences,
access to multiple models, conventional programming statements, such as repetitions
structures. EOL can be seen as a standalone language for managing models, but it
also is reused in other languages defined in Epsilon (Kolovos et al, 2006).

e Epsilon Validation Language (EVL) - this language validates restrictions written
in the models. To achieve this goal, it provides dependent restrictions, significant

43



errors messages and separation of critical from non-critical (alert) (Kolovos et al,
2006) restrictions.

Epsilon Transformation Language (ETL) — is a language based on rules. An ETL
module consists of a set of transformations-rules that can translate elements of a
source model to elements of a target model. Similarly to ECL match-rules, each
transform-rule has a declarative signature accompanied by an imperative body in
EOL (Kolovos et al, 2006).

Epsilon Comparison Language (ECL) — ECL is a language based on rules adapted
to compare models. An ECL specification is formed by match-rules which can
compare two elements of an input model. Declaratively, each match-rule is
decomposed into two essential parts: the compare and the conform, to decide if the
elements under investigation match and are in conformance to each other. The body
of the both parts is expressed in EOL (Kolovos et al, 2006).

Epsilon Merging Language (EML) — this language addresses the common tasks of
merging models and metamodels. To this end, EML language reuses the ECL match-
rules and the ETL transformation-rules, besides adding new specific rules, namely
the merge-rules, which allows the composition of specifications of merging in a
structured and comprehensive way (Kolovos et al, 2006).

Epsilon Wizard Language (EWL) - provides an effective and appropriate support

for updating transformation models of various metamodels (Kolovos et al, 2008).

Epsilon Generation Language (EGL) - is a model-driven-template-based language
for model to text code generation, built on top of the Epsilon architecture and reusing
EOL. It supports content-destination decoupling, protected areas to support the
automatic generation as well as the manual inclusion of code, and coordination of

templates (Kolovos et al, 2008).

As can be seen in Figure 2.14, EOL is the basis for all the other languages defined.

But for communication with the repository of models, the Epsilon sets the Epsilon Model

Connectivity (EMC) which is the interface between EOL and the repositories of

persistence and serialization of models. It permits also heterogeneous repositories, such as
EMF or the Metadata Repository (MDR) (MDR, 2009) of NetBeans.

44



Future Epsilon Languages

/] Epsilon Generation Language (EGL)

Epsilon

Eclipse-based | | Transformation

Development | | Language (ETL)
Tools

Epsilon Merging || Epsilon Wizard
Language (EML) || Language (EWL)

Epsilon Epsilon Epsilon
Transformation Comparison Validation
Language (ETL) | | Language (ECL) | | Language (EVL)

Epsilon Object Language (EOL)

Figure 2.14 - Epsilon Architecture. (Adapted from: Kolovos et al, 2008)

Epsilon stands out positively by the diversity of specific languages for each MDE
tasks (as specific as these languages) giving supporting to the broad set of MDE activities.
However, in the main source of reference, The Epsilon Book (Kolovos et al, 2008), there
are several inconsistencies in the languages metamodels, besides being incomplete.
Another negative aspect is, in addition to having an IDE for each language, these IDEs
does not have many resources, such as auto-complete, and also the infrastructure for
debugger is too weak. Also, not so nice for the company have been the numerous
complaints from the employees regarding the bugs in the tool and the definition of

languages.
2.4.1.4. ATLAS Transformation Language

The ATLAS Transformation Language (ATL), developed by the research group ATLAS
INRIA & LINA (ATLAS, 2009), was proposed as a response to the OMG QVT RFP.
However it was not adopted as a standard by the OMG, but became a project of the Eclipse
open-source. ATL is a full implementation of a language to transformation of models, rule-
based, declarative-procedural hybrid that allows developers to specify how a given set of
source models produce a set of target models. Obviously, the source and target models
need to be in agreement to its respective metamodels, which is associated with the
transformation. The ATL Development Tool (ATL-DT) (an Eclipse plug-in), is the one to

provide support to the development and execution of ATL transformations.
45



The abstract syntax of ATL is specified as a MOF metamodel where each element
has a textual concrete syntax. Figure 2.15 illustrates the basic construction of the ATL
module, which encapsulates all the transformation, the components, libraries and also

indicates the source and target metamodel.

LInit +libraries 0.*
+name : String

j\_\ +inhdodels 1.%

- Ocodel

|
fodule |ege +elements 0 *

LibraryRef

ModuleElement

+oulhodels 17 Ochodel

Figure 2.15 - ATL Module.

A ModuleElement is either a Rule or a Helper as depicted in Figure 2.16. The
Helpers act as object-oriented methods both associated with a context of a module or a

specific metaclasse of the source metamodel. Helpers with zero arguments are attributes.

hodileE emant Aule -
. +name: Sting |
Param eter K{ 01 +acion3lock 0 FoLtPattem

| ActiorBlack ‘ OutPattsm ‘

L aryhdalcieduls

*Yperameters
GalledR Jle

MatchedRule

O..1 +inPatten

Figure 2.16 - ALTL Module Element.

ATL distinguishes three types of rules:
e Matched rules are the purely declarative rules, fired only when matching a pattern;
e Lazy matched rules are possible to fire more than once;

e ¢ Called rules are the ones explicitly called while firing another rule; elements of the
target model of this sort of rules are triggered by explicit layers within the imperative

portions of code, both indirectly through pattern-matching and by lazy rules.

A rule may also contain a imperative block of action, specifying the sequence of

instructions that must to be executed after the generation of the standard output.

46



A matching rule sets an input pattern, which specifies a set of elements of models
from the input metamodel, associated with names of variables and optionally using a
Boolean OCL expression. These input elements are mapped to an output pattern. Both
types are OCL types. This output pattern, in turn, is a set of elements of models from the
target metamodel, associated with names of variables and bindings. When the rule with the
standard output is fired, the target elements are created. A binding relation specifies the
value used to initialize a specific property of an instance. Figure 2.17, shows the

metamodel for the input/output patterns.

PatternElem ant +ype 0.7 Noﬂ%%e

Wraim L}

T
+elements 1. +mapsTo

InPattern InPatiernBement ‘ OutF‘dﬂemEIement

r xelemems (o
Hiter 0.1 OclExpression
(rrorrﬁj QL) +bindings 0. m

F Binding
+alle +Hiropertyhame: String

Figure 2.17 - ALT Input and Output Patterns.

A strong point of ATL is that it takes advantage of Ecore as the engine to represent
the metamodels, that is, it makes reuse of the EMF, which is widely used by several tools.
However, even with an IDE for development, this is not very rich in terms of resources
available and, unfortunately, has a very illegible debugger. Another negative factor,
especially in this work, is that the realization of transformations is made through batch
jobs, and through reading/generation of input and output files based on the file system. As
this work will be developed on a cloud environment, in particular in the Google App
Engine (GAE), this becomes an obstacle because the GAE does not allow access to
read/write directly to the file system.

2.5. Chapter Remarks

This chapter exhibited the methodological and technological background for this research.
It was presented the Model Driven Engineering and its principles, standards and
technologies, Component Based Engineering with the KobrA method, cloud computing
principles and analyzed MDE CASE Tools. The MDE principles among CBE practices
were the methodological reference for the development of this work, because the produced

tool aimed to overcome the lack of standards compliant tools to support these practices.

47



The cloud computing principles and goals were used to plan and define the WAKAME
tool architecture. The analyzed tools were used to identify its weakness and strengths in
such way that the WAKAME tool could benefit from both aspects.

48



CHAPTER 3

WAKAME PROJECT

In this chapter we describe the foundations and requirements of the WAKAME tool, the
modeling of KWAF, a framework for PIM modeling Web applications, and the modeling
of a case study for the KWAF evaluation, the PhotoAlbum. After this we will show the
modeling of the WAKAME'’S top-level PIM as an instantiation of KWAF.

3.1. Long-Term Goals and Principles

The WAKAME project - a Web App for KobrA2 Model Engineering - has as intention the
development of a CASE tool which supports the modeling with the KobrA2 method. This
project is being developed by the research group ORCAS, and it is being accomplished by
two master's degree students: Breno Machado (author of this master thesis) and Weslei
Marinho (2009).

For the development of the WAKAME tool, the following scope separation was
defined:

e Breno Machado - modeling and implementation of the component regarding the
WAKAME tool server, where he should define the Repository of Models capable to
execute the transformations: View to SUM, SUM to View, and SUM to SUM,
defined by KobrA2;

e Weslei Marinho - modeling and implementation of the component regarding the
WAKAME's client, where it should define the implementation for Views edition
defined by KobrA2, creating a minimalist GUI with little icons and actions to

possess a smaller learning curve.

In this research UML tools has been analyzed both standalone and the few online
tools we could find. The analyzed tools are shown in Section 2.4 and we could define, by
looking at them, the main features that a tool for KobrA2 method could offer, as its

requirements:

49



Draw diagrams — The tool must support easy rendering of the diagrams in the
modeling language. The tool should be “intelligent” enough to understand the
purpose of the diagrams and know simple semantics and rules, so it can warn the

user and prohibit the inappropriate or incorrect use of the model elements.

Act as a repository — The tool must support a common repository, so the collected
information about the model must be stored in the same place. For instance, if the
name of a class is changed in one diagram, the change must be reflected in all other
diagrams in which the class is used. The integration with a configuration
management system must keep the repository information consistent and

synchronized.

Navigation support — The tool should make it easy to navigate through the model, to
trace an element from one diagram to another, or to expand the description of an

element.

Provide multiuser support — The tool should support multiple users and enable them
to work on the same model without interfering with or disturbing each other.

Generate code — An advanced tool should be able to generate code, where all the
information in the model is translated into code skeletons that are used as a base for

the implementation phase.

Reverse engineer — An advanced tool should be able to read existing code and
produce models from it. Thus, a model could be made from existing code, or a

developer could iterate between working in the modeling tool and programming.

Web accessibility — The tool should be able to be accessible through the web, without
the user needing to install the tool at his/her computer. Therefore, the user doesn’t
need to download the tool installer, to install and then execute it.

Lightweight — It should be one of the primary goals for a CASE tool since it could be
accessible from web. The user should not have to wait for a long time to have the

tool downloaded before he/she could use it.

Simple User Interface — As the tool could be used for different people, the User
Interface should be simple. For instance, to find the option to set up an attribute in

one element could not take a long time. The use of the property panels should be kept

50



to the minimum as possible, allowing the user to configure model elements directly

in the diagram via its concrete syntax.

¢ Low learning curve — The tool should offer a low learning curve, in such way that the
user should spend little time and energy in order to use it productively. If the tool has
a high learning curve, it requires substantial study and experimentation before it
actually become useful. Providing a low learning curve, the tool allows the average

user to be able to pick it up and intuitively learn how to use it.

¢ Integration with other tools — A tool should be integrated with other tools, both with
development environments such as an editor, compiler, and debugger, and with other

enterprise tools such as configuration-management and version-control systems.

e Cover the model at all abstraction levels — The tool should be easy to navigate from
the top-level description of the system (as a number of packages) down to the code
level. For instance, to access the code for a specific operation in a class, you should
be able to click the operation name in a diagram.

e Interchange of models — A model or individual diagrams from a model should be
able to be exported from one tool and then imported into another tool, as Java code is
produced in one tool and then used in another tool, the same interchange should

apply to models in a well defined language.

Besides these requirements that we identified through the observation of several
UML tools, to assist the principles of KobrAz2, presented in the section 0, we listed other

requirements that the tool should have:

e Allow multi-views — For each component, provide one view for each point in the

multi-dimensional space of separated concerns;

e To maintain the consistence between the SUM and the visions — the tool must to
reply, through transformations of models, all the modification that the views suffer,

and to update these views in agreement with the modifications made in the SUM,;

e To allow the use and validation of OCL expressions — for the definition of behavioral
models, and to create the restrictions on the structural models;

e To maintain the consistence among the visions — when modifying an information in a
view, the other views that share this information should be updated to maintain the

conformity among them;
51



e Local visions — a vision of a component should bring only the information really
necessary for the understanding of the same;

e Navigation - to allow navigating among the components, and through the views of

each component.

These were the requirements used as the basis for the development of the
WAKAME tool. In the next section, it will be described the KobrA2 Web App Framework
(KWAF) - that is the architecture that WAKAME were build above. In the section 3.3 the
top-level modeling of WAKAME will be exhibited, that is common for the two

collaborators that are working in this project.

3.2. KWAF

The development of applications is a complex task that demands high investment of time
and resources. In addition, Web applications evolve so much faster than traditional
applications, not only because of changes in requirements, but also because the platforms
are in constant development evolution. The KWAF (Marinho et al, 2009) is a framework
that shapes aspects of a generic Web application, from the GUI to the Web services,
through the data model. The main idea is that through the specialization of the KWAF
abstract models, new models for specific web platforms could be generated, increasing
productivity and reducing development costs. Main issues related in development of Web
applications are presented, abstracted and mapped to the KWAF framework. The use of

KWAF is illustrated by a toy example of a Web photo album application.
3.2.1 KWAF Framework: Principles, Structure and Case Study

Raising the level of abstraction for dealing with complex problems through the use of
models is one of the most important principles of software engineering. The use of
frameworks allows the specialization of abstract reusable models, increasing the
productivity through the ceiling of choices during the model development, especially in

complex systems.

The goal of the KWAF framework is to define a general architecture to Web-based
systems, i.e., its basic structure, components and relationships between them. To use the
framework, a developer should extend its components, making changes according the used
application domain and adding specific functionality. KWAF reduces the overhead

associated with the modeling and development of Web applications.
52



KWAF is comprised of components represented by the UML stereotype
componentClass, unlike general UML models, using a specific representation for

components. These components are related by two types of associations also stereotyped:

o Nests association, which indicates that a component is a sub-component of another,
and;

e Acquires association, which indicates that a component use services of another
component.

Other used stereotypes are defined bellow:

e subject - indicates that a diagram is related to the component marked with this

stereotype, and;
e GUI - indicates that this is a graphical user interface component.

To illustrate the KWAF framework instantiation, we present the model of an online
photo album (Figure 3.1 shows an example of its main screen), a toy application that
allows exploit the key concepts defined by the framework. In the following sections we
describe the framework in detail, illustrating it with the Photo Album application

examples.

©3 PHOTD ALBUM - Morilla Firefex

Ao [t Dghir  [Soorko  Fayokos  [erasentss  Ajds

T R e
B a=s

Narme;

Almocm Bm CHnca

Description:

Regiona, perto do
FuiTasio Rartona

Uncale miormston .

Acr] photre ]
Dok o |

Cu-ﬂid:

Figure 3.1 - The Web Application Photo Album

53



3.2.2 Structural models of the KWAF Component

This section presents a Platform Independent Model — PIM, of the KWAF components.
According to (Mendes and Moses, 2006), a Web application consists of a system available
through the World Wide Web that combines the characteristics of a hypermedia
application with the features of a traditional application. (Shklar and Rosen, 2003) states
that a Web application is a client-server application that uses a Web browser as the client
program and conducts an interactive service through the connection to servers via the
Internet, showing dynamic content customized based on request parameters, user behavior
and security considerations. (Fowler and Stanwick, 2004) claim that a Web application
client can be represented by a hybrid application, using both: a traditional application and a
web browser. To give support to all these definitions and allowing flexibility in the

framework use for Web applications modeling, we defined the KWAF component.

The KWAF component abstracts a Web application as a whole, do not requiring or
using the services of any other external component. In order to increase flexibility and
reusability, this abstraction was not set to be accessed externally, whereas the Web
application would be self-contained. This representation defines a structure where the sub-
components are nested. The KWAF component nests two sub-components, the first sub-
component will perform the graphical user interface presentation and user interaction
(GUIClient component), while the second sub-component handles business services,
represented by Web services (WebService component). The organization of these
components is shown in Figure 3.2.

«RealizationStructuralClassServices
B3 KWAF.RSS

«subject, componentCass»
KWAF

wnestse
anestse

1”*

1
«3CqUiress
«componentClass, GUL» g «componentdass»
GUICent WebService

Figure 3.2 - Structural Model of the KWAF Component
54



The sub-component that provides Web services based on application business rules
is presented in Section 3.2.3. The sub-component GUIClient, responsible for user
interaction and information presentation via graphical interface, is detailed in Section
3.2.4.

3.2.3 Structural Models of the Webservice Component

The WebService component is responsible to handle services that Web application will
provide. According to the definition shown by Lewandowski (1998), we can consider that
this component would be the server in terms of the Client/Server architecture. The Web
component provides a single interface for communication, where any client can request the
available services. This interface is provided through only one method, the
process(request: Request): Response method. In this method all the exchange of
information will be done through the Request and Response class objects (WebObject,
2009), after being invoked, this method will then delegate the responsibility to fulfill that
operation to the same method signature of the ServiceController component. The
WebService component structure comprises three other sub-components that are nested:
ServiceController, MVCAction and MVCModel, as is illustrated in Figure 3.3.

These three sub-components represent the model role (components MVCModel and
MVCAction) and the controller role (component ServiceController) in the Model-View-
Controller (MVC) architectural pattern (Buschmann et al, 1996; Gamma et al, 1994; Leff
and Rayfield, 2001). To the generation of a Platform Specific Model (PSM), the Web
component can be directly mapped to specific technologies, such as: JEE; Servlets, or the
API provided by RequestHandler Google App Engine (GAE) in Python (GAE, 2009; Lutz,
2006).

In the KWAF framework case study (the Photo Album application PIM) we created
the PhotoAlbumWebService, a component that extends the WebService component. With
this, the PhotoAlbumWebService will obtain the specific methods and objects already

defined in the Webservice, as shown in Figure 3.4.

55



«RealizationStructuralClassServices
£3 WebService.RSS

«subject, componentClases
WebService

+ process | request : Request | : Responze
E

1
1
; «hestse
fetes wnesten
1
1.
1
«componentClasss» 1 1.+ «componentClasss «componentClasss
ServiceController £ MVCAction E MVCModel
«acguiress 1.+ =acquiress 9

+ process | request : Request | : Responze

Figure 3.3 - The WebService Component with its sub-components: Service Controller, MVCAction and
MVCModel

«RealizationStructuralServices
3 WebService.RSS

«componentClasss
WebService

1 + process | request : Request ) : Response
«nestss
1. 1
«subject, componentClasss
«componentClasss PhotoAlbumWebService estse
El mvcaction
1 ¥ %
1
1
=componentClasss
E MvcModel
neskss =nestss «nestss snestss
1 i 1
1!
«componentdasss «componentdass» «componentdass» «componentdass»
Q AddPhoto Q AddComment El ListPhotos E PhotoManager

Figure 3.4 - Platform Independent Model of the of the Photo Album application WebService Component

In a typical implementation of this PIM to the Python/GAE PSM, we can map the
PhotoAlbumWebService component directly to a Python class that extends the Python class
RequestHandler, which belongs to the GAE application programming interface (API), as
shown in Figure 3.5. This class would be required only to override the post() method,
because it is the method that deals with HTTP POST requests (TheServerSide, 2009). This
post() method accesses the objects Request and Response through the RequestHandler

class, since they are its attributes.

56



= «Python Class=
RequestHandler
(from googlerappenginezextawebapp)
+ request : Request
+ response : Response
+ get [ *args)
+ post [ *args )

«Python Class»
PhotoAlbumWeb5ervice

«Python Classs
ServiceController

+ process [ request : Reguest ) : Response

*

«Python Class»
MVCAction

+ do (request : Request ) : Response

*

=Python Classs
ListPhotos

+ do [ reguest : Reguest ) : Response

«Python Class=
AddComment

+ do [ request : Reguest ) : Response

+ post [ "args )
«Python Class=
Photo

+ data : BlokProperty
+ description : StingProperty

«Python Class= + date : DateTimeProperty

=Python Class=

AddPhoto PhotoManager
+ do [ reguest : Reguest ) : Response
2l zPython Class= «Python Class=
Model «F'}"thon.Clasn- Comment
(from googlesappenginesext:ab) Entity + userMarme ; StringProperty
+get (] : Model + date : DateTimeProperty
+all(): Medel + description : StringProperty
+put (]
+ delete ()

Figure 3.5 - Platform Specific Model of the Photo Album application WebService component

3.2.3.1. The ServiceController Component

The ServiceController component can be considered part of the controller role in the MVC
architectural pattern at the server side. The ServiceController is provided by the same
method of the Webservice component because it has the responsibility to the services

requested by the latter, as can be seen in Figure 3.3.

The task of the ServiceController is to provide a mapping between the client’s
requests and the actions requested by them. Because of this feature, this component has
only one method, which is concrete, not requiring any specialization for the framework
users. It will be necessary only to link the MVCAction components that will be defined
latter in the application. The process() method of this component will check which is the
action requested by the client, and call the MVCAction’s method do() of the corresponding

action, passing the Request and Response objects received.

The mapping of the ServiceController component to a particular PSM can be linked
directly to a class, for example, a Python or Java class, or the configuration/mapping files
available in Java frameworks, such as struts-config.xml file for Struts Framework

(Cavaness, 2004), where the mapping of the application actions is done.

57



In the case study for the KWAF framework, during the definition of the Photo
Album application PIM it was not necessary to redefine the ServiceController component.
For the PSM, this component was transformed into a Python class that have its process()
method called by the PhotoAlbumWebService class. The corresponding action is obtained
from the name of the action present in the Request object, so the relevant Action class
responsible for provide that operation will have its do(request:Request):Response method

called.
3.2.3.2. The MVCAction Component

The MVCAction component performs all the services (or actions) provided by the
application, as shown in Figure 3.3. It represents part of the Model in the MVC
architectural pattern, handling the business rules. The developer that uses the KWAF
framework needs to specialize this component to every action that may be performed, so
different applications using this framework will have different components that are
specializations of the it. The do(request: Request):Response method should be specified to

perform the action in question, and this is the method called by the ServiceController.

For the persistent data access, the MVCAction component manipulates the entities
defined in the MVCModel component, for both: recovery and persistence of data. The
mapping of this component to the PSM can occur, for example, in Java using MVC
frameworks like Struts to its own Action classes, or even directly to a class, such as find in
GAE/Python.

In the PhotoAlbum case study, when defining the PIM we defined three actions:
add pictures, add comments and list photos. For that were created three components that
extend MVCAction: AddPhoto, AddComment and ListPhotos, shown in Figure 3.4. For
each of these action components was defined a Python class in the PSM, which
implements the do(request:Request):Response method for the needed functionality.

3.2.3.3. The Component MVCModel

The MVCModel component is responsible for keeping the entities and data types of the
application, which generally requires persistence capabilities. It represents the Model in the
MVC architectural pattern. The MVCModel component has the class Entity which
represents an entity of the application to be shared across all the Web application, in the
server side as well on the client side. The MVCModel provide the functionality for

persistence and data recovery, as shown in Figure 3.6.
58



«SpecificationStructuralClassTypes
B3 MVCModel 55T

=subject, componentClass=
MVCModel + medels [H Entity

+all (type: Entity) : Entity ['] | . | *id:String

+ get [ eid : String ) : Entity

+ delete [ model : Entity )

+ put [ model : Entity )

Figure 3.6 - The MVVCModel Component Structure

For technologies that have a framework for object-relational data mapping, like the
Java framework Hibernate (Bauer and King, 2004), the entities and the MVCModel should
be mapped to Java Beans which Java/Hibernate annotations specifying persistence data
location and constraints on its fields. The methods for recovery and persistence of
MVCModel should be inserted into Data Access Object (DAO, 2009) classes that
implement these features. Using Python for a PSM and GAE the entities can be mapped
directly to classes that inherit from Expando Model, which already provides the methods
for treatment of persistence, what does not need therefore to create DAO classes and does
not need to map the MVCModel.

«SpecificationStructuralType»
PhotoManager.S5T

«subject, componentClass» + models Entity

PhotoManager 1 . | +id:String

. Comment

+ commen ;
Phgto + userhame : String
+ data: String + text: String

+ description : String 1 = *

N 1
+ date Timestamp + date
1 | +year: Integer
+ moenth : Integer
+ day : Integer
+ hour: Integer
<+ minute : Integer
+ second : Integer

Figure 3.7 - Entities and data types for the MVVCModel component, representing the Model in MVC

For the PhotoAlbum case study, we created the PhotoManager component, which
is shown in Figure 3.4, and we created the persistent entities Photo and Comment, which

are subclasses of Entity, shown in Figure 3.7. For the creation of the PSM, they were
59



mapped to Python classes that inherit from the Python/GAE Model class, thereby obtaining
the functions needed for the persistence from GAE Model class, as can be seen in Figure
35

3.2.4 Structural Models of GUIClient Component

The GUIClient component, depicted in Figure 3.8, is responsible for modeling the client’s
side of the Web application and it is composed of the sub-components MVCView,
corresponding to the view in the MVC architectural pattern and the GUIController,
representing the client part of the controller role in the MVC pattern. MVCView is
responsible for modeling the graphical user interface (GUI) and the GUIController is
responsible for the modeling of events and treat user interaction with the application in the
GUI. Note that we chose the architecture “push”, where actions that process events send

data to the view layer so it can be shown to the users.

=RealizationStructuralService=

£J GUIient.RSS

usLbject, componentClass, GUI»
H uiclient

whnestgm

1
«“ComponentClasss: 1 1 «componentClasss
= MVCVIiew i = Gurcontrofier

1
“arauies»

1

«componentClasss
WebService

Figure 3.8 - GUIClient component structure

3.2.4.1. The Component MVCView

The MVCView component is composed of sub-components that represent the application
windows and its navigation models. Each of these components is modeled using a
framework for GUI modeling elements, called GUIPIMUF (GUI PIM Profiled UML?2
Framework). The GUIPIMUF contains a number of elements for modeling the structural,
navigation, and behavioral aspects of the GUI here we present the generated GUI models

with its elements.

The navigation model of the PhotoAlbum Web application is shown in Figures 3.9:

from the MainWindow, the user can navigate to the PhotoViewer when he/she clicks on
60



any picture (image element type), or open the dialog window to select a new image, using
an imageChooser, when he/she clicks on the addPhoto button.

] mainwindow : PrimaryWindow

] imageChooser : FileChooser

+ 50urce + target

o photos : Image ] addPhoto : Button

+ 50Urce

| getImageLink : InternalLink
+ transitionKind = : Transitionkind = lockSource

] photoViewLink : InternalLink
+transitionKind = : TransitionKind = lockSource

+ target

] photoView : SecondaryWindow

Figure 3.9- PhotoAlbum GUI Navigation Model

An example of component windows modeled with the GUIPIMUF can be seen in Figure
3.10 - the model for the secondary window PhotoViewer, which aims to present to the user
a photo and its comments. Note that all models are compatible with UML2 and they were

produced using the IBM Rational Software Modeler (RSM, 2009).

%

3 PhotoView.SSIL

Q photoView : SecondaryWindow

g photo : Image
+ stretch = : Boolean = true

‘| comments : Text

g okBt : Button

Figure 3.10 - PhotoView Component Structural Model

61



3.2.4.2. The Component GUIController

The GUIController component is responsible for making the connection between the GUI
elements and the server side of the web application. It is composed by several sub-
components carrying out the mapping between actions performed by users (for mouse
events, keyboard, window, etc.) and calls to the server (WebService) as well the handling
of presentation logic, such as control widgets behavior or appearance. Figure 3.11 shows
the GUIController component and an example of a sub-component to control user actions.
The EventListener controller checks if generic actions/events like mouse clicks or a
keyboard inputs such as the ‘Enter’ key being pressed when a widget presented in the
screen such as a menu item, buttons or text field, was focused. The behavior of these
actions is defined with the use of OCL (Warmer and Kleppe, 2003).

«RealizationStructuralSenice»
£3 GuIController.RSS =SpecificationStructuralServices
EventListener.555

=subject, componentClassz

GUIController .
Q Eventlistener

1 + actionPerformed ( tnggeredEvents  Event{*])

«restss

5 - E Event +sourcy H Guitlement
- Eventlistener N . {from GUI-PIM-UF::Layout)
+ actionPerformed ( triggeredEvents : Event [*] ) + getWindow () : Window

Figure 3.11 - GUIController Component Structural Model

Below (Figure 3.12) we present the structural model of the Photo Album
GUIController application (PhotoAloumGUIController). Note that the behavior of each
user action mapped to the controller is specified by OCL constraints. In the example
model, the actionPerformed() method of the component RemoveButtonActionEvent was
specified, defining that it should create a request and calls the process() service of the

PhotoAlbumWebService component.

62



«RealizationStructuralService»
3 PhotoAlbumGUIController.RSS

= Eventiistener

+ actionPerformed | tiggeredEvents : Fvent ] )

= okButtonActionEventListener = RemoveButtonActionEventListener = ImageChooserClosedEventListener
+ actionPerformed ( triggeredEvents : Event[*]) + actionPerformed ( triggeredEvents : Event[*]) + actionPerformed ( triggeredEvents : Event[*])

il

= SendButtonActionEventListener = PhotoviewOpenedEventListener

al + actionPerformed ( triggeredEvents : Event[*]) + actionPerformed [ triggeredEvents : Event[*]) 1
il E

enesiss anestss
il
1 1
b «subject, componentClasss
PhotoAlbumGUIController =hestss

-- ActionEvent (click) on the MainWindow"s Remove Photo button
context RemoveButtonActionEventListener::actionPerformed(
triggeredEvents : GUI-PIM-UF::Events::Event)
pre: triggeredEvents->exists(e: Event | e.ocllsTypeOf(ActionEvent)
and e.source.name = "removePhotoBt")
post: let elements = source.getWindow().getNestedElements(),
cell = elements->select(oclIsKindOf(GridCell))->any(
c | c.photolmage.isSelected),
ind = cell.position.x * 2 + cell_position.y + 1
in rg:Request and rg.ocllIsNew() and
rq.set("action®, "DeletePhoto") and rqg.set("photold®, ind) and
PhotoAlbumWebService”process(rq)

Figure 3.12 - PhotoAlbumGUIController Component and the Definition of one Action using OCL

3.2.5 KWAF Assessment Remarks

This case study aimed to define and evaluate a PIM framework called KWAF, which is a
framework for modeling and development of Web applications that cover modeling
aspects for both: the server and client side of a web application. This framework simplifies
the development of new Web applications, reducing the specification time, increasing
productivity, making the developer to be concerned only with the business aspects of the
application, disregarding the Web applications features. This consequently reduces the

development time of new models and simplifies the overall development process.

Another important point is the fact that specific models for a given platform can be
automatically generated through the adoption of the framework, once it standardizes
common aspects found in a variety of platforms. The framework can also be extended to

address issues relevant to any kind of particular applications.

63



In this research we also noted that although the framework simplifies the
development of Web applications using a model driven architecture, the lack of adequate
tools to create the model acts as a barrier to this process. The current UML tools do not
allow you to easily make an effective modeling, focusing on one concern at a time. For
example, the user cannot to be concerned first with the structural aspects of the application
and only afterwards to worry about the operational, functional and behavior aspects of the
application, without having to rename multiple model elements that were supposed to be

the same or propagating changes through the models.

The generation of 100% of code is another barrier found in the current tools, which
completely ignore the interaction behavior models and generate only a sketch of the
structural part of the application. Another problem found with the use of current tools is the

difficult to reuse an existing model.

These aspects were the main motivation to define a better tool, which could
minimize the effects and lack of features found on current tools. This tool is defined on
Section 3.3 and as it is defined as a web application, it is also modeled as an instance of the
KWAF framework.

3.3. WAKAME Top-Level PIM

In this section the Platform Independent Model of WAKAME is presented, using the
KobrA2 method. We will explain how each component of the tool has been specified,

showing additionally the interactions among these components.

The models were built using the IBM Rational Software Modeler version 7.0.5
(RSM, 2009) modeling tool, and are available for reading in the open-source repository of
Google Code in http://kobra2.googlecode.com/svn/trunk/workspace/WAKAME/.

3.3.1 WAKAME as an Instance of KWAF

The PIM of WAKAME was defined using the KWAF architecture, and by so, WAKAME
has been designed as a web tool, and its responsibilities were decomposed according to the
MVC pattern and the client/server architecture used in KWAF. In this sense, the client
would be the components of the Graphical User Interface (GUI) while the server would be

the component responsible for running the services requested by the GUI component.

64



The strategy adopted for reusing both the architecture as the components of KWAF
was to merge the contents of its UML package within the WAKAME package, as shown in

Figure 3.13. Through this merge, we can redefine the components defined in KWAF for
our application, adding the necessary features to them.

KWAF

«Merges

WAKAME

Figure 3.13 - WAKAME Top-Level

As shown before, KWAF has the structure of components presented in the Figure

3.14.
<<nests> KWAF <nests>>
N h' '
Web GUIClient
Service
MVC .
- -
Model <<nests> MVC View
<<nests>
MVC GUI
> , L >
Action Controller
Service
Controller

Figure 3.14 — KWAF component structure.

In the next subsections we will present how these components of KWAF were
redefined to create the PIM of WAKAME, through the views that have been defined for
each component, in accordance with the KobrA2 method.

65



3.3.2 The WAKAME Component

According to KobrA2 method, a model is composed by nesting minor sub-components,
and for this specific model, the top-level component is the WAKAME. This component will
encapsulate all other sub-components of the application. Furthermore, it specializes the
abstract KWAF component, at the Specification Structural Class Service view, as depicted
in Figure 3.15. By doing this, we elegantly define in our top-level component, WAKAME,
all the architecture provided by KWAF, nevertheless remaining necessary the additional
specification of its sub-components. It is worth to notice that WAKAME has no methods,
because it is a self-contained application that allows only user interaction.

«SpecificationStructuralClassServices
£ WAKAME.SSS

Blsy bject, componentClasss
KWAF

«subject, componentClasss
WAKAME

Figure 3.15 - WAKAME Specification Structural Class Service View

In the realization of the WAKAME component, Realization Structural Class
Service view (Figure 3.16), the sub-components WebService and GUIClient of KWAF are
redefined to WAKAMEWebService and WAKAMEGUIClient, respectively, where the
former is the responsible for providing all services of the application for the second sub-
component. In the latter, in turn, will be presented: (i) the user interface of the application,
(if) how the user interaction will take place, and (iii) the navigation among the windows. A
third abstract sub-component not addressed by the KWAF component is the OCLEngine,
which boils down the abstraction of an OCL engine to assist in the validation and query the
components in the application. These sub-components will be explained in subsequent

sections.

66



«RealizatienStructuralClassServices
£ WAKAME.RSS

sy bject, componentClasss

KWAF
1
nestss 1 enestss
] =
FkcomponentClass, GUl» | 1+ L
GUICliemt EcompcnentClass»
1 El WebService
=subject, componentClasss
H wakame
1
1 1
1 «nestss «nestss
anests 1 «componentClasss
«componentClass, GUL» ] WAKAMEWebService
WAKAMEGUIClient 1 1
1 :
«=componentllasss wacquiress
OCLEngine

Figure 3.16 - WAKAME Realization Structural Class Service View

The entities handled by this application have been defined in Realization Structural
Class Type view, Figure 3.17, since they will be manipulated by both sub-components,
WAKAMEWebService and WAKAMEGUIClient. In this view, the package
WAKAME.RST merges the content of Kobra2 package, to be able to represent a model in
KobrA2, and Diagram Interchange (DI) of the OMG (DI, 2005), to allow graphical
representation of each element of the model.

=] a|
KobrA2 DI
«merges emerges

=RealizationStructuralClassTypes
WAKAMERST

Entity o Pl obrA2:Transformation::Common:zAll
i 7 + abstraction = :
: + st Vi ::Abstracti
£30's Stiifig ZobrA2:SUM:=Structure:FlementszElement i = e S
i
i
+ ownedTypes 1 = abstraction
PIM + model 1 1
St + gbstraction
e KobrA2:SUM:Constraint:Structural:P: B
+authors: Stmng [1 oD Ol ran ructural a(kage 1o}
+ description : String 1 1 &
+ errors ; String [*] 1 |+ve
1 I e =
K25emanticModelBridge & %ohrAZ::Vl:ws::[ancreteiyntax::ﬂement
+ dateCreated + lastModified +di
1 il 1 +view
Timestamp
+ year: Integer

“KobrA2:Views:Subject:View

+ month : Integer =Dy hange::DI. icModelBridge
+ day : Integer

+ hour : Integer

+ minute : Integer

+ second : Integer

Figure 3.17 - WAKAME Realization Structural Class Type View

67



The main entity of this application is the PIM, defined by any arbitrary user with
the tool WAKAME. It inherits the abstract class Entity of KWAF, ensuring its persistence.

It possesses the following attributes:
e name - the PIM model name, labeled by the proper user;
e authors - the list of authors of the PIM model;
e description — a description of the model;
e errors — errors and warnings when validating the model;
o dateCreated — a time indication about when the model was built;

e |astModified — a time indication about when the model was modified for the last

time; and
e model — represents the proper Kobra2 model elements under discussion.

The visual representation of the model elements will be stored in a Package
(KobrA2::Constraint::Structural::Package) of KobrA2, through the composition model.

This package encapsulates all these elements.

A KobrA2 model is constituted by the Single Unified Model (SUM), which
integrates the views in a single representation for the model application. The SUM may
only be modified indirectly, through changes on views. These, in turn, represent only a
partial copy of the elements in SUM, showing only a particular point of view. For each
component in SUM, there may be different Views (defined by KobrA2) and the coherence
between the Views and SUM is ensured through transformations of models between them.

The connection between the SUM and Views is made through Abstraction, which
connects each element of a View (KobrA2::Views::ConcreteSyntax::Element) with its
corresponding SUM element(KobrA2::SUM::Structure::Elements::Element). However, as
each element of the SUM may appear in different Views, it can have several Abstractions
and, as expected, each one also has a link to the View it represents
(KobrA2::Views::Subject::View).

In order to store the graphical representation of each element of a View, (e.g.,
position, size, color, among others), we use the K2SemanticModelBridge. This class
extends the SemanticModelBridge class defined in the DI metamodel, avoiding the loss of

visual information, which could jeopardize the readability.

68



The WAKAMEWebService components (focus of this work) will be detailed in
Section 4.1, while the specification of the WAKAMEGUI component will be
accomplished by the other collaborator of this project (Marinho, 2009).

3.4. Chapter Remarks

This chapter exhibited the cornerstones of the WAKAME tool. It showed the principles
and goals for the WAKAME tool, a framework for PIM modeling of Web applications,
which was the base architecture for the WAKAME tool and the evaluation of the

framework in a case study, which was the modeling of a Photo Album web application.

69



CHAPTER 4

THE
WAKAMEWEBSERVICE
AND THE MODEL
REPOSITORY

In this chapter, we explain how the WAKAMEWebService has been modeled, showing its
sub-components and their interactions, and finally detailing the activities undertaken to

implement it.

4.1. The KWAF instance Platform Independent Model
for the WAKAMEWebService and Model Repository

The WAKAME tool was planned since its beginning to be a Web Application. Its models
were conceived on top of the WebApp framework, which has been described in Chapter 3.
The overview of the WAKAME tool models are also depicted in Chapter 3.

The main components of the WAKAME Server are depicted in the following
sections: Section 4.2.1, Section 4.2.2 and Section 4.2.3.

4.1.1 The Component WAKAMEWebService

The WAKAMEWebService component is responsible for processing all the services
requested by WAKAMEGUIClient component, as well as being responsible for the
persistence of the data. Besides specializing the WebService component of KWAF in the
Specification Structural Class Service view, Figure 4.1, it does not redefines the method
process(request: Request): Response, because it is already fully specified in the framework
of KWAF.

70



«SpecificationStructuralClassServices
E WAKAM EWebService.55S

Z =subject, compenentClasss

WebService

+ process [ request : Request ) : Response

«subject, componentllasss
WAKAMEWebService

Figure 4.1 - WAKAMEWebService Specification Structural Class Service

In the realization of the component WAKAMEWebService, namely the Realization
Structural Class Service view shown in Figure 4.2, the sub-component responsible for the
persistence of data, the WAKAMEModel, implements the abstract MVCModel component.
Additionally, the MVCAction KWAF componentClass is a generalization for the following
WAKAMEWebService sub-components: the PIMManipulationAction,
ViewManipulationAction and ModellOAction, all of them responsible for processing the

available services of the tool.

«RealizationStructuralClassServices
1 WAKAMEWebService .RSS

Bl asubject compenentClasss
1 WebService i
nestss
ot EleomponentClasss
5 + process [ request : Request ) : Response 1 o MVCAction
i H
FhcomponentClasss
MVCModel
ssubject, componentClasss
'WAKAMEWebService
1 1
wnestss & n s R,
nest
A
«nestss L
«componentClasss =compenentClasss
WAKAMEM odel 1 ModelOAction
1
scomponentClasss
s 5 + do ( request : Request ) : Response
«compenentClasss I o S et + importFromXML { xmi : String, pim : PIM )

ViewManipulationAction + do ( request : Request) : Response + exportToXMI [ pim : PIM ) : String

+ createPIM { pim: PIM )

+do [ request: Request ) : Response + editPIM L PIM
+ setView [ view : View ) : ComponentClass [*] & :st‘PIMf ‘[;W;IM M )
+ getiiew [ view : View ) : CompenentClass [7] < showPThMMetadats { pim : PV}

+ deletePIM [ pim : PIM )

Figure 4.2 - WAKAMEWebService Realization Structural Class Service

It appears that the specification of some sub-components of WAKAMEWebService
does not need be displayed. Actually, it happens these specifications were already done in
the KWAF, as the ServiceController component, responsible for mapping requests in the

corresponding actions.

71



4.1.2 The Component WAKAMEModel

The WAKAMEModel component, as told before, is the one responsible for the data-
persistence. Through it, an instance of PIM can be saved or recovered. By specializing
MVCodel KWAF component, the Specification Structural Class Service view (Figure 4.3),
all necessary methods to ensure the persistence are inherited directly, and therefore need

not be redefined.

«SpecificationStructuralClassServices
WAKAMEModel.555

=componentllasss
MVCModel

+ all [ type: Entity ) : Entity [*]
+ get [ eid : String ) : Entity
+ delete [ moedel : Entity )

+ put [ model : Entity )

«subject, componentClass»
WAKAMEModel

Figure 4.3 - WAKAMEModel Specification Structural Class Service

The model at Specification Structural Class Type view of the WAKAMEModel
Component, Figure 4.4, restricts this componentClass to hold only PIM entities.
Graphically, the composition which associates the MVCModel to Entity is specialized into
the one relating WAKAMEModel to, exclusively, PIM entities. This guarantees that the
WAKAMEModel component will go only to deal with entities of type PIM.

«SpecificationStructuralClassTypes
WAKAMEModel.SST

=componentClasss

MVCModel

Entity
+ all [ type: Entity ) : Entity [] 1 . +id: String
+ qget [ eid : String ) : Entity
+ delete [ model : Entity )
+ put [ model : Entity )

PIM
«subject, componentClasss * nair:'l:e: StrSi:S -

WAKAMEModel * aurnors: strng
1 * + description : String

+ errors ; String [*]

Figure 4.4 - WAKAMEModel Specification Structural Class Type

Before moving to the next component, the reader may question the lack of

realization views for this component. However, as the WAKAMEModel only (1) inherits

72



the methods of MVCModel, (2) specializes the composition from this componentClass to
Entity, at the KWAF level, and above all, (3) has no sub-components, these views simply

do not exist.
4.1.3 The Component PIMManipulationAction

All activities related to the manipulation of PIM model instances defined in the tool are
represented by the component PIMManipulationAction. As it is a component that will
provide services (or actions), it specializes MVCAction component of KWAF, as shown in
the Specification Structural Class Service view depicted in Figure 4.5. The communication
between the solicitant of the action (the WAKAMEGUIClient) and the action itself (some
specialization of MVCAction) is done by the method do(request:Request):Response,
invoked by the ServiceController. As input parameter (request), the method takes the

action to be done.

«SpecificationStructuralClassServices

PIMManipulationAction.555
«componentClasss
: MVCModel
asubject, componentClasss
MVCActi : iress . -
on acdpure + all ([ type : Entity ) : Entity [*
+ do (request : Request ) : Response 1 1 ﬂwﬂ
+ delete [ model : Entity )
+ put [ model : Entity )
asubject, componentClasss
PIMManipulationAction
+ do ( request : Request ) : Response scomponentClasss
+ createPIM [ pim : PIM ) «aCquiress WAKAMEM odel
+ editPIM ( pim: PIM ) 1 1

+ listPIMs () : PIM [*]
+ showPIMMetadata ( pim: PIM )
+ deletePIM ( pim: PIM }

Figure 4.5 - PIMManipulationAction Specification Structural Class Service

However the PIMManipulationAction component will be responsible for providing
more than one service, therefore another necessary methods was defined. In this case, the
method do() will be responsible for redirecting the action to the solicitant, indicated by the
parameter subaction given through the parameter request, and as response, it will also be
responsible for defining an object of Response type. One pre-condition addressed by this

method ensures the request parameter be a subaction.

The operational behavior pre/post conditions attached to each one of these methods

can be found below, in the Specification Operational Service view (Figure 4.6).

73



context PIMManipulationAction::do(request: Request): Response
pre: not request.get("“subaction®).ocllsUndefined()
post:
result.oclIsKindOf(Response) and result.ocllIsNew() and
request.get(“subaction®) = “createPIM" implies
result™write("ok") and self~createPIM(request.get(“model*))
and requestiget(“subaction®) = "editPIM" implies
result™write("ok®) and self*editPIM(request.get("model*))
and requestiget(“subaction®) = "listPIMs" implies
result™write(self._listPIMs())
and requestiget(“subaction®) = “"showPIMMetadata® implies
result™write(self.showPIMMetadata(request.get("model")))
and request”~get(“subaction®) = "deletePIM" implies
result®™write("ok®) and self~rdeletePIM(request.get(“model*))

context PIMManipulationAction::createPIM(pim: PIM)
pre: pim.id.ocllsUndefined()
post: self._mvcmodel™put(pim)

context PIMManipulationAction: :editPIM(pim: PIM)
pre: not self.mvcmodel.get(pim.id).ocllsUndefined()
post: self.mvcmodel™put(pim)

context PIMManipulationAction::listPIMs() : Set(PIM)
post: result = self.mvcmodel.all()

context PIMManipulationAction::showPIMMetadata(pim: PIM): PIM
pre: not self.mvcmodel.get(pim.id).ocllsUndefined()
post: result = self.mvcmodel.get(pim.id)

context PIMManipulationAction::deletePIM(pim: PIM)
pre: not self.mvcmodel.get(pim.id).ocllsUndefined()
post: self.mvcmodel .delete(pim)

Figure 4.6 - PIMManipulationAction Specification Operation Service

With regard yet to PIMManipulationAction component, it must acquires the
services of WAKAMEModel, because it will call the methods responsible for the entity
persistence. Hence, this component will be responsible for keeping the data from the
model, such as name, authors and others. Handling the model elements is the liability
addressed by the component ViewManipulationAction, which will be explained in more

detail throughout this master thesis. The methods in PIMManipulationAction were:

e createPIM(pim: PIM) — responsible for creating a new model (PIM). It takes as
parameter an instance of the PIM entity with the initial valuation for the attributes,
and the object, then, turns persistent. To register a PIM entity, its identifier must be

unique, that is, none object have been created with the same id.

o editPIM(pim: PIM) — responsible for editing an existing model. The data that this
method changes are: name, authors, description and last modified date. As input
parameter, the method takes an instance of PIM entity together with the values to be

modified. The pre-condition is that there is some model with the id parameterized.

74



e listPIMs() — this method will find all instances stored in a PIM and return them in a
list, if any.

e showPIMMetadata(pim: PIM): PIM - this method will fetch data from a given
model. While as input, it takes an indentified PIM instance, as output it returns
another PIM instance, but with filled data. The soundness of this method lies in the

identified model input.

o deletePIM(pim: PIM) — allow (only) identified PIM instance to be deleted from the
diagram.

4.1.4 The Component ViewManipulationAction

This component will be responsible for handling the elements defined by the user in the
modeling tool. As for the methodology KobrA2, the model is accessed and modified from
the Views, two actions have been identified for this component: one to retrieve a View to
be displayed to the user through the component WAKAMEGUIClient, and another to
transmit the changes carried through in any view to the SUM.

The Specification Structural Class Service view (Figure 4.7) of the
ViewManipulationAction shows that this component specializes MVCAction. Besides
redefining the do() method, it redirects the execution of the action to the appropriate
method according to the parameter subaction. In response, this method will send the (i)
return of the methods called, (ii) a list of possible inconsistencies of the model and also

(iii) a list of components, so that the GUI can build the navigation tree between them.

«SpecificationStructuralClassServices

ViewManipulationAction.S55
«subject, componentClasss «componentClasss
MVCAction MVCModel
+do (request : Request ) : Response + qet [ eid : String ) : Entity
+ put { model : Entity )
«subject, componentClass»
ViewManipulationAction

. «=componentClasss
+ do | request : Request) : Response “acquiress WAKAMEModel
+ setView [ view : View ) : ComponentClass [7] 1 1
+ getView [ view : View ) : ComponentClass [*]

Figure 4.7 - ViewManipulationAction Specification Structural Class Service View

In the Realization Structural Class Service view (Figure 4.8), the

ViewManipulationAction nests a sub-component Transformations, responsible for aligning

75



the changes between the SUM and the Views. More specifically, it yields how the SUM
derives the required View and also how to update it whenever a change is made in any
View. In order to access the instances of the model already saved and save them again after
the changes, the component ViewManipulationAction acquires the services of
WAKAMEModel component. Moreover, the actions that this component performs should
return a list of ComponentesClass that constitutes the navigation tree among components

of the tool, because potentially these updates could have modified the tree.

«RealizationStructuralClassServices

ViewManipulationAction.R5S
«subject, componentClass= «=componentClasss
MVCAction MVCModel
+ do (request : Request ) : Response + get [eid : String ) : Entity

+ put ( model : Entity )

«subject, componentClass»
ViewManipulationAction

=componentClasss

+ do [ request : Request ) : Response “BCQUITESS o ke AMEModel

+ setView [ pim : PIM, view : View ) : ComponentClass [*] 1 1
+ getView [ pim : PIM, view : View ) : ComponentClass [*]

1
«nests»
1

«componentdasss:
Transformations

+ viewToSum [ model : PIM, view : View ) : String [*]
+ sumnToView ( model : PIM, view : View )

Figure 4.8 - ViewManipulationAction Realization Structural Class Service

Following, the Realization Operational Service view (Figure 4.9) highlights the

conditions regarding each method defined in the ViewManipulationAction component.

The method setView(pim: PIM, view: View): Sequence (ComponentClass) is
responsible to bring up to date the SUM from a View modified by the user. This method
receives as parameter an object containing the PIM model to be modified, which is
recovered from the id, and a View object containing the changes made by the user. To
update the SUM, the method setView() delegates the changes to the method viewToSum()
of the Transformation sub-component . Also the method setView () is responsible for
saving the model changed with the updates made to the SUM, and finally returns a

sequence of ComponentClass, which will compose the tree of components.

76



context ViewManipulationAction::do(request: Request): Response
pre: not request.get("“subaction®).ocllsUndefined()
and not self_mvcmodel .get(request.get(“"model®).id).ocllIsUndefined()
post: let pim: PIM = self.mvcmodel.get(request.get(“model*).id),
view: View = request.get("view") in
result._oclIsKindOf(Response) and result.ocllIsNew() and
request.get(“subaction®) = "getView" implies
result®™write(self.getView(pim, view)) and result™write(view)
and request.get("subaction®) = "setView" implies
result™write(self.setView(pim, view))

context ViewManipulationAction::setView(pim: PIM, view: View): Sequence(ComponentClass)
post: self. transformations.viewToSum(pim, view) and self.mvcmodel.put(pim) and
result = pim.model .ownedType->collect(
cc:ComponentClass | cc.ocllsTypeOf(ComponentClass))

context ViewManipulationAction::getView(pim: PIM, [inout] view: View):
Sequence(ComponentClass)
post: self. transformations.sumToView(pim, view) and
result = pim.model.ownedType->collect(
cc:ComponentClass | cc.ocllsTypeOf(ComponentClass))

Figure 4.9 - ViewManipulationAction Realization Operational Service

The method getView(pim: PIM, [inout] view: View):Sequence (ComponentClass)
searches the SUM seeking a specific View. For this, it takes as input parameter the model
(PIM) and a View object with the necessary information to determine what type of View is
requested, and what component this View belongs to. To avoid redundancy, the View
parameter is typed with input/output modifier, in such a way it will have the necessary data
for the search of the View, so as it will serve to return the version updated. Internally, to
search one View, the method sumToView () of Transformations sub-component will carry
out the necessary changes required to meet the request. Just as the other, the method
getView() returns the sequence of ComponentClass.

4.1.4.1. The Component Transformation

In KobrA2, changes made in Views are transmitted to the SUM through several
transformations of models that were specified in the metamodel KobrA2 by OCL
expressions. Not only the replication of changes from the Views to SUM is given by
transformations, but also the election of which information of SUM will appear in one
View. It is worth to notice that the integrity of the SUM is ensured by these

transformations too.

These transformations, defined in the KobrAz2, can be categorized in three types:

77



e SUM to View — the election of which elements of SUM and what information
regarding these elements will be shown in a View for the component under

discussion.

e View to SUM - it yields the transformations to align the SUM with changes done in
a view. It specifies which elements need be created, updated or removed from the

SUM as well as the information about theses elements subject to change.

e SUM to SUM - the transformations used to validate the SUM integrity as a whole.
After a normal View to SUM transformation, some inconsistencies can be inserted. It
is then up to this transformation to detect the failures of integrity, so that messages
and warning can help the user to fix the problems find out.

In the KobrA2 metamodel, the rules of transformations are defined in terms of OCL
expressions. The element Abstraction can be composed of a TransformationExpression, as
shown in Figure 4.10. This latter element stores the expression of transformations for each
entity within the SUM. Again, the same figure shows some Ocl invariants highlighting an
example of transformation for the ComponentClass concerning the Specification Service

View.

KobrA2:Transformation:Common:AllViews

Abstraction + abstraction + view
KobrA2:Views:Subject:View
L= 1
+ transformationExpression | TransformationExpression

0.1 0.1
+ ghstracticn

+ abstracticn
KobrA2::5UM::ConstraintzBehavioral:ExpressionInOcl

+se| 1

KobrA2:SUM:Structure::Elements:Element
1 |+ve

KobrA2:Views:zConcreteSyntax:Element

context ComponentClassAbstraction

inv: ve.superClass = se.superClass

inv: ve.ownedAttribute = se.ownedAttribute->select(visibility=#public)
inv: ve.ownedOperation= se.ownedOperation->select(visibility=#public)
inv: ve.inv = se.inv

inv: ve._hasStereotypes->includes("componentClass"®)

Figure 4.10 — Transformations Abstractions and a Expression Transformaton example.

78



In this sense, the component Transformation had been defined within the
component ViewManipulationAction to hold these transformations. To make this possible,
the component acquires the OCLEngine componentClass for evaluation of the OCL
expressions of the transformations defined in the KobrA2 metamodel, as shown in the
Specification Structural Class Service view (Figure 4.11).

«SpecificationStructuralClassServices
Transformations.555

«subject, componentClasss»

Transformations «componentClasss
«3CqUIress OCLEngine
+ viewToSum [ model : PIM, view : View ) : 5tring [*] 3 1
=+ sumToView [ medel : PIM, view : View ) + evaluateQCL [ pim : PIM, constraint : Constraint ) : String [*]

+ sumToSum [ model : PIM } : String [*]

Figure 4.11 - Transformations Specification Structural Class Service

For each transformation, the Specification Operational Service view (Figure 4.12)
addresses one correspondent method. The first method, viewToSum([inout] pim: PIM,
view: View): Set (String) is responsible for making updates to the SUM in accordance with
the changes in the View. Through this method, for each element of View, the
correspondent entity in the SUM is taken (if no entity exists one will be created), based on
the abstraction association that connects the two elements. Following, this abstraction fills
the  evaluateOcl()  parameters  with  the  expression of  transformation
(transformationExpression) and the corresponding model to be modified. This method will
evaluate the OCL expression, and will further perform the transformation, taking into
account all the necessary changes at SUM. After updating, SUM enters in the integrity
consistency phase through the call to method sumToSum(). The argument of return, the
inconsistency messages, is used as the output of method viewToSum(). This later takes as
input parameters the PIM model (also an output parameter with the modifications made to
the SUM) and a View instance with the changes that will be used.

The method sumToView(pim: PIM, [inout] view: View) is responsible for carrying
out the change recovering a View of a component. As input parameter, this method takes
the model and an instance of the View with the information to identify the requested one.
This parameter also assumes an output direction, with the View from the SUM. For each
element in the subject component of the View, the method evaluateOCL() of OclEngine
will be invoked based on the transformation expression attached to the Abstraction of the

view.

79



context Transformations::viewToSum([inout] pim: PIM, view: View): Set(String)
post: view.ownedElement->forAll(
ve:ViewElement | pim.model.ownedType->any(
se:SUMElement | se.abstraction->any(a | a.ve = ve)) and
oclengine”evaluateOCL(pim, ve.abstraction.transformationExpression))
and result = self._sumToSum(pim)

context Transformations::sumToView(pim: PIM, [inout] view: View)
post: view.subject.packagedElement->forAll(
se: SUMElement | oclengine”evaluateOCL(pim, se.abstraction->any(
a: Abstraction | a.view = view).transformationExpression))

context Transformations::sumToSum(pim: PIM) : Set(String)
post: result.ocllIsKindOf(Set(String)) and result.ocllsNew() and
pim.model .ownedType->forAll(
se: SUMElement | result->include(oclengine.evaluateOCL(
pim, se.abstraction->any().transformationExpression)))

Figure 4.12 - Transformations Specification Operational Service

Finally the method sumToSum (pim: PIM): Set (String) implements the rules to
ensure the entire consistency of the SUM. It can investigate every part, assessing the
transformationExpression by the evaluateOCL() method, detecting and returning all the

inconsistencies found.
4.1.5 The Component ModellOAction

For services like export and import the models defined in the tool, there is the
ModellOAction component. The standard used for exchange of models is the XML
Metadata Interchange (XMI) (2007), which is the already used standard for exchanging
models between most modeling tools. Being a component that will provide services to the
component WAKAMEGUIClient, it specializes MVCAction in the Specification Structural
Class Service view (Figure 4.13). Again, it is through the method do() that each processing

action will be guided for the appropriate method by the parameter subaction.

«SpecificationStructuralClassServices

ModellOAction.S55
«componentClasss
«subject, componentClasss . MVCModel
. «3Cquiress
MVCAction d + get [ eid: String ) : Enfity
+ do (request : Request ) : Response 1 1 = put [ model : Entity )
«subject, componentClass»
ModelOAction <l
+ do [ request : Request ) : Response «acquiress ;::IE::’IEEM;::I
+ imnportFromXMI [ xmi: String, pim: PIM ) 1 1

+ exportTeXMI | pim : PFIM ) : String

Figure 4.13 - ModellOAction Specification Structural Class Service

80



We have defined the following methods for the actions that this component will

provide, which are fully specified in Specification Operational Service view (Figure 4.14):

e importFromXMI(xmi: String, pim: PIM) — this method takes a model in XMI
format to import the new model into the tool. As can be noted in the signature of the
operation, two parameters are needed: a string in XMI format, which will have the
information of the model to be imported, and an instance of PIM containing

information such as name of the model, authors, and others to create it.

o exportToXMI(pim: PIM): String — this method is responsible for exporting the
information from a model in XMI format. It takes as input parameter an instance of
PIM with the id of the model to be exported. This method returns a string in XMl

format.

context Modell0OAction::do(request: Request): Response
pre: not request.get("“subaction®).ocllsUndefined()
post: result.ocllsKindOf(Response) and result.ocllsNew() and
request.get("subaction®) = "importFromXMI® implies
result™write("ok®) and selfrimportFromxMI(request.get("xmi*®),
request._get(“model "))
and request.get(“subaction®) = "exportToXMI® implies
result™write(selfexportToXMI(request.get(“model*)))

context ModellIOAction: :importFromXMI(xmi: String, pim: PIM)
pre: pim.id.ocllsUndefined()
post: pim.model = xmi.toModel() and self.mvcmodel”put(pim)

context ModellOAction: exportToXMI(pim: PIM): String
pre: not self.mvcmodel.get(pim.id).ocllsUndefined()
post: result = self.mvcmodel .get(pim.id).toString()

Figure 4.14 - ModellOAction Specification Operational Service

4.1.6 The Component OCLENngine

In order to implement the changes described in the KobrA2 metamodel, we use the
abstraction of a component for validation and evaluation of OCL expressions, the
OCLENgine. The idea is to abstract the features existing in the various OCL engines
(Dresden, 2009; OCLMDT, 2009; OCLE, 2009; Octopus, 2009) to meet the needs of this

application.

For this, we have define a single method on the component OCLEngine, the
evaluateOCL ([inout] pim: PIM, constraint: Constraint): Set (String) (Figure 4.15), since
it takes the model under validation, and a constraint (defined in the metamodel KobrA2)
with some extra information, as the element that contains the restriction, the OCL

expression, among others.
81



«SpecificationStructuralClassServices
OCLEngine.555

sgomponentClasss
OCLEngine

+ evaluateQCL [ pim : PIM, constraint : Constraint ) : String [*]

Figure 4.15 - OCLEnNgine Specification Structural Class Service

For the sake of expediency, this abstract method would perform the evaluations of
OCL expressions, and based on the results, it would return the validations messages, but
also implement corrective measures from the validation. Just the Specification Structural
Class Service view (Figure 4.15) was considered here, because this component is an

interface representing a possible OCL engine available.

4.2. The WAKAMEWebService and the Model Repository
Implementation

To implement the model repository and the WAKAMEWebService, some planning tasks

was need:
e Setting the platform for implementation of WAKAMEWebService;

e Evaluate and choose among the tools supporting the creation of repositories of
models, the one most appropriate to the requirements of WAKAME and the platform

chosen;
e Development of the Model Repository;

e Deployment of WAKAMEWebService over the platform and the repository of

models defined:;

e Evaluate and choose among the tools and technologies to transformation of models,
the one with the best adaption to the needs of WAKAME to assist the development

of transformations defined in the KobrA2 metamodel;

¢ Implement the changes defined in KobrA2, using the technology chosen in the above

item;
e Perform unit testing of WAKAMEWebService;

e Perform the integration with WAKAMEGUI followed by the appropriate tests, and,

82



¢ Provide a web tool with wide access by the public.
The next sections will describe the activities mentioned above.
4.2.1 Platform Definition

One requirement in the creation of the tool was the availability on the web, so we have
decided to develop it on top of a cloud computing platform, now available in the market.
As seen in Section 2.3.4, we have evaluated some existing platforms, and after this analysis
we chose to use Google App Engine (GAE). Using the platform offered by GAE, the
programmer can abandon several worries already addressed by GAE, for example, a
scalable architecture, allowing the load balancing and multiple machines processing (e.g.

grid computing).

Another positive aspect is that GAE already provides a ready environment for the
implementation of the application. This avoids additional worries as what is the operational
system running, the application server, the server database, which compiler/interpreter for
the language chosen. These advantages allow the developers to keep the focus only on the
business rules application to be developed. Additionally, the free services offered by GAE
(but with some limitations) were another factor of choice, when compared to other cloud

computing platforms available.

When the platform analysis was carried out, the applications in GAE could only be
done based on Python. However, along the development of this work, the GAE started also
to support the Java programming language, thus opening more opportunities for reuse of

existing tools and frameworks, since Java has a higher popularity than Python.
4.2.2 Model Repository with PYEMOF

Once chosen the platform, a research regarding MDE tools was performed, as detailed in
Section 2.4.1, in particular, tools allowing the development of model repositories. As the
single programming language supported by GAE was Python in the beginning of our
application, we had chosen to reuse PyEMOF (2.4.1.2) as the tool for developing the
model repository, because it was the only tool available for programming in Python.

Unfortunately, PYEMOF has some shortcomings, so that was necessary to adapt it
for use in this work. This was possible because the PYEMOF is an open-source tool with
source code available for modification. The changes made in PyEMOF to correct its

shortcomings were:

83



e Adjustment of EMOF metamodel within the PyEMOF to follow the latest
specification available, released by OMG. The first change was to add the EMOF
elements not supported by PyEMOF: Comment and UnlimitedNatural. After that, we
made the modification of the following elements: Element (to support the property
ownedComment), Type (to support the property package), Datatype (for removal of
properties not in the specification of EMOF). Finally, the mechanism to generate

identifiers for instances, namely the id, has been restructured;

¢ Adjustment of Class Factory, responsible for define each element of the metamodel
to support the new elements added. It was done a restructuring of the Repository
class, which is responsible for the storage of instantiated elements of the metamodel,
in order to modify the way as the element instances are stored and also to create
methods to search for specific instances;

e Modification of the classes responsible to export/import the PyEMOF instance
models to XMI format. These changes were made to reflect the changes made in the
metamodel, besides being in accordance with the XMI standard used by EMF, since

there are many available tools that support this standard;

e Restructuring the engine for automatic generation of code to create model
repositories based on a model defined in EMOF. In addition to the adjustments made
to include the changes to the metamodel, the engine was redesigned to allow the
generation of codes for various models organized into packages, which was not

supported by the tool, so far.

These changes in PYEMOF are available in a repository of source code powered by
Google Code that allows any public access. This repository can be accessed via the
following web address: http://code.google.com/p/pymof.

Once the improvements made to PYEMOF were realized, we have checked the
compatibility on the platform offered by GAE. For this validation, was developed a simple
web application that allowed the creation of metamodels in EMOF through a screen based
on a tree navigation mechanism and palettes of properties. This application has two

components, as depicted in Figure 4.16:

84



User GUI Server (GAE)

Facade

Python Classes

HTTP
HTML

JavaScript
CSS
XSL

Figure 4.16 - metaWAKAME Architecture

e User GUI - is the component that interacts with the user. For the development were
used the following web technologies: HTML, JavaScript, CSS, and XSL. It allows
the user create/edit/import/export metamodels. On the main screen for edition of
models (Figure 4.17) we can note on the left, the tree of elements presented. By
selecting any of these elements, its properties will appear on the right side, allowing
the user to just consult or even change these properties. The User GUI also contains
links to the creation of new elements. Like any arbitrary web application, the User

GUI communicates with the Server through HTTP protocol;

e Server (GAE) - is the component in which was implemented all the functionality of
the application. The Server is deployed on the GAE platform. This component is sub-

divided into two minor components:

= Facade - in this component was realized a facade of features that can access the
model repository. It was implemented through Python classes. We can list as its
most important purposes: (i) define what are the possible actions in the
application, and (ii) implement the necessary manipulation of the data sent by the
user, in order to use the applications of the model repository, and therefore,
allowing the edition/creation of such models. Architecturally, this component is
arranged between the user interface (GUI) and the Model Repository.

= Model Repository — this component is the EMOF model repository, but
generated by PyEMOF. All activities related to management of models, such as
creating, editing, export or import, and even the data persistence is under the

responsibility of this component.

85



The development of an example of a real application led to a better implementation

of the tests on the developed metamodel, because it allowed, in a way easier than

programmatically, the definition of models and for import and export these to XMl

notation, where a set of format validation was carried out. Another objective achieved with

the implementation of this tool was to check the compatibility of using the repository
created on PYEMOF, under the GAE platform.

As already mentioned, this application was developed and deployed in GAE and

has a content of public access through the link http://emof.appspot.com.

Home - Create or Edit a Mode] -

B[z KobraA2-MM
B- —) Data
----- {7 DiagraminterchangeMetamodel
El-5 KobrA2
E-£3 SUM
El-=5 Structure
- Feature
E-H Generalization
#-H Classifier
----- B Package
-] Types
B3 Classes
E-EAssociation
E-EProperty
----- EOperation
H-HUsage
BB Generalization Set
----- BAssociationClass

BB Parameter

----- BProvides

..... HAcquires

..... QRequires

----- B Generalization

----- Binterface
----- ENests

----- HCreates
#-EHComponentClass
-] Elements
-] Instances
B Constraint
[H-{Z7] Behavior
B-{Z] Transformation
-7 Views

B+ UML

H{] OCL

----- {77 UsedForPresentation
----- {7 UML StandardProfile

----- H StructuredClassifier

----- HPackageableElement

Import Models from a XM - Send a Feedback

metaWAKAME
Name: ComponentClass
isAbstract: [ClisAbstract
Insert superClass
superClass: Component - Delete
Interface - Delete
StructuredClassifier - Delete
* ownedAttribute
* powertypeExtent
* ownedOperation
ownedAtrribute: * packagedElement
® protocol
® superClass
ownedOperation:
package: Classes
ownedComment:
tag
Attribute
Insert new elements: Operation
Comment
Tag
Save

Figure 4.17 — metaWAKAME Prototype

The development of an example of a real application led to a better implementation

of the tests on the developed metamodel, because it allowed, in a way easier than

86



programmatically, the definition of models and for import and export these to XMI
notation, where a set of format validation was carried out. Another objective achieved with
the implementation of this tool was to check the compatibility of using the repository
created on PYEMOF, under the GAE platform.

As already mentioned, this application was developed and deployed in GAE and

has a content of public access through the link http://emof.appspot.com.
4.2.3 Model Repository with EMF

Along the development of this work, yet during the definition of the model repository, the
GAE was assigned with an additional language for development: the Java programming
language. This opened the area of production to use other MDE tools which gives support
to generate models repository, which were even more mature, since the PYEMOF is not yet
widely used, and so, as usually happens in the large area of information systems, is subject
to faults and bugs.

At this epoch, it was carried out a research concerning the tools to support
repositories of existing models for Java, and among those found, stood out the Eclipse
Modeling Framework (EMF) (2009) and Metadata Repository (MDR) (2009). However,
we instantly, discard the MDR because it is based on the specification of MOF 1.3, which
is an old specification. Another negative aspect relies on the project has not changed since
2004, which says that either the project was abandoned or, at least, there is no more

interest in its continuity by the researches.

Consequently, we decided to use the EMF (consult Section 2.4.1.1 for further
references). The advantage of using the EMF on PyEMOF is that the former began to be
developed for some years and there are many people who use it, showing thus, stability.
Another point is that EMF is reused by several modeling tools such as IBM Rational
Software Modeler (RSM, 2009), Papyrus (Papyrus, 2009), Epsilon (Epsilon, 2009),
Kermeta (Kermeta, 2009) among others. Finally, the EMF provides an environment for
development of models integrated with Eclipse and has several libraries to assist the
manipulation of these models, such as the MDT-OCL (OCLMDT, 2009) for evaluation of
OCL expressions, and the EMF Validation Framework (EMFV, 2009) for validation of
models.

87



4.2.4 The KobrA2 Metamodel in Ecore

With the redesign of the tool (EMF) to create the repository of models, the next step taken
was to define the KobrA2 metamodel regarding the specific format of this tool. In this
case, the Kobra2 metamodel should be defined in Ecore in terms of restrictions on the
EMF.

For this work, due to the size of the KobrA2 metamodel, it was necessary to choose
carefully which part of the KobrA2 metamodel would be implemented in WAKAME.
Currently, the KobrA2 method has 16 types of Views:

o Specification Structural Class Service;

Specification Structural Class Type;

o Specification Structural Instance Service;
o Specification Structural Instance Type;

e Specification Operational Service;

o Specification Operational Type;

¢ Specification Behavioral Protocol;

¢ Realization Structural Class Service;

¢ Realization Structural Class Type;

¢ Realization Structural Instance Service;

¢ Realization Structural Instance Type;

¢ Realization Operational Service;

o Realization Operational Type;

¢ Realization Behavioral Algorithm;

e Derived ComponentClassDependencies; e
e Derived OperationDependencies.

Amongst these views, we choose only the ones most important while modeling an

arbitrary system. Hence, the eight views chosen are summarized below:

e Specification Structural Class Service — addressing the component specification;

88



Specification Structural Class Type — holding the types used at the component
specification;

Specification Operational Service — to define the pre/post conditions as well as the
body of the methods listed in the component specification;

Specification Operational Type — the same of the last view, but regarding the

methods of the types associated to the component specification;
Realization Structural Class Service — addressing the component realization;

Realization Structural Class Type — holding the types used at the component

realization;

Realization Operational Service — to define the pre/post conditions as well as the

body of the methods listed in the component realization, and,;

Realization Operational Type — the same of the last view, but regarding the methods

of the types associated to the component realization.

With this defined scope for the implementation of the model repository, the tool

WAKAME will not be able to model neither the views of instances of a particular situation

nor complex models in which activities and protocol state machines diagram are necessary.

However, the WAKAME is able to model various systems, including itself, since its PIM

does not use any of the views that were not covered in this work.

After the election of views that would be implemented, the next step was to

disregard the unnecessary packages of the KobrA2 metamodel, since some packages define

the elements of Views out of the scope. The following KobrA2 metamodel packages, are

not supported::

KobrA2::SUM::Behavior and the sub-packages;
KobrA2::Views::Specification::Structural::Instance and the sub-packages;
KobrA2::Views::Specification::Behavioral::Protocol;
KobrA2::Views::Realization::Structural::Instance and the sub-packages;
KobrA2::Views::Realization::Behavioral::Algorithm;
KobrA2::Views::Derived and the sub-packages;

KobrA2::Views::Derived::OperationDependencies;
89



o KobrA2::Transformation::Specification::Structural::Instance;

o KobrA2::Transformation::Specification::Behavioral::Protocol;

e KobrA2::Transformation::Realization::Structural::Instance;

e KobrA2::Transformation::Realization::Behavioral::Algorithm; and
e KobrA2::Transformation::Derived and the sub-packages.

To create the KobrA2 metamodel to generate the model repository was used the
RSM tool, because there was a full KobrA2 metamodel (without the parties dependent on
the UML metamodel and OCL) modeled in UML in this tool.

With the withdrawal of the above mentioned packages, it was also essential to
remove the remaining dependencies on other packages. As the KobrA2 makes use of
subparts of the UML 2 metamodel, these portions were added into the metamodel under
development. For this, we used the metamodel of UML 2 in the old format of Rational
Rose (which is compatible with RSM) and is available on the website of the OMG (OMG,
2009a). And finally, it was necessary to model the metamodel for OCL 2 to be added into
the KobrA2 metamodel. Figure 4.18 shows Kobra2 and UML 2 metamodel dependencies
and, Figure 4.19 depicts the dependencies between KobrA2 and OCL 2.

3 KobrA2=SUM:Structure

=

Elements ----------------"T0EE o= UML=Classes=Kernel
merge»i A
______________ b wmerges 1
Types i &
! UML::Classes:PowerTypes
Classas [T emeraes A
i H
| oo FMEOER o eiiio-Z UML:ClasseszDependencies
| ]
R hhh bty R e e e = UML:Classes:AssociationClasses

[=]
e oo 3 UML:CommonBehaviorszCommunications

Figure 4.18 - Dependencies between KobrA2 and UML

90



&3 KobrA2:5UM::Constraint=OclExpressions

«mefges
2 |
i ocCL
| =
: . «merges | UM L:Classes:K 1
| W wpackageimports | B I - seiterne
OclExpressions ------- &----- > OclTypes

b «elementimports
i . - mmmmm e mmma - - -~ 2x AIMLi:Actionsz:BasicActions:CallOperationAction
&
oce|ementimport»
W
FUML:StateMachines:ProtocolStateMachines:State

Figure 4.19 - Dependencies between KobrA2 and OCL

Along this phase, we noticed some inconsistencies in the original KobrA2
metamodel, defined by its authors that had to be corrected to enable the creation of the
repository of models. They were:

9. The dependencies between the sub-packages of KobrA2::SUM::Structure of KobrA2
with the UML packages, where only the package Structure merges the content of the
Kernel package, as outlined in Figure 4.20. However, it was essential to extend the
merge to all the sub-packages, instead of the Structure itself. The result of this

change is shown in Figure 4.18.

I(nbrhz::SUH::Strut:tud )
UML ::Classes :Kernel
P g —
[
UML::Classes::PowerTypes
KobrA2: SUM::Structure::Clagses| T ==memes — -3
! |
| L _| UML::Classes::Depandencies
| T T TEememes—
|
|
|

|

UNIL :: Classe s A ssocialionGlasse 5

— — — — —emmemgEmr—

[ T

- UML::CommonBehaviors: Communications

Figure 4.20 - Dependence between SUM and UML.
91



10. The need to create an OCL restriction in the ComponentClass shown in Figure
4.21, to express the behavior of the association Nests. When an association Nests is
realized between two ComponentClass, it means the target ComponentClass is

included “inside" the source, by the packagedElement composition. This OCL
restriction can be visualized Figure 4.22.

KobrA2::SUM::Structure::Classes |

|I.IHL::Compomnt::Packaqinqumpomms::Cmpomm |

T - StructuredClassifier UML ::Classes::Kernel::Classifier
L

ComponentClass

Property

componantClass +ownadAttribute
0.1 .
[subsets class)

+POWBITY o +powsitypeExtent | generalizationSat
0.1 *

i
|

kt Class ﬁ% AssociatienClass ..
{superClass

{subsats suparClass)

compongntClass +packagedElement] Packageable |Cmatas | |A:q.|Iras | |H&m|
0.1 + | Element

[sulbsets class)
tcomponsntClass +ownedOperation.| Operation |1..” Jused . Usage

0.1

{subssts supplier}
[subsets class)

{subssts clisnt)

+HsuperClass

Figure 4.21 - Classes Package from KobrA2 metamodel

context ComponentClass:

inv: let nest:Set(Nests) = ownedAttribute.association->select(a | a.ocllsKindOf(Nests)),
nestComp: Set(ComponentClass) =

nest.navigableOwnedEnd->select(c | c.ocllsKindOf(ComponentClass))
in nestedComp->forAll(c | self.packagedElement->includes(c))

Figure 4.22 — OCL Constraint on ComponentClass

11. The merge relationship between the packages KobrA2::Views::Realization and
KobrA2::Views::Specification, shown in Figure 4.23, which semantically wants to
represent a realization Kobra2 model, merging its current specification. However,

this has been incorrectly defined, as this merge is being held at the metamodel, and it

92



does not address the desired semantics. This merge should exist at the model level,
which was programmatically done in our repository. Hence, the merge at metamodel

level has been removed.

Views |
Spacification
il Bahavioral
Class Instance
3 [ )
service | | Type i sarvice | | Type i Proweor
i —————
| Dperational :
' |
! service | [ Type |
«rrdlrga:-:- cmparts
|
| i |
[ | |
' e |
| Realization B |
| |
| Struciural T |
A= v iora
Subject
Class Instance ) Concratesyntax
cemerges || (] 1 1 [ Algorithm | || =<imoort-=
| sarvicas || Trpe sarvice Type I.
' |
|
| Cperaticnal :
U ] I
| Barvice Type |
|
|
|
|
! I
-crrdlrgac- cimport
| Kobra 2: Views: Darivad :
l I
—————— componentClassDependencies OparationDependencies | — — — — —

Figure 4.23 - KobrA2 View Package Nesting.

12. The dependencies between the sub-packages of KobrA2::Views with the sub-
packages of  KobrA2::SUM, (Figure 4.24), since the package
KobrA2::Views::Specification::Structural::Class::Type merges erroneously the
package KobrA2::SUM::Constraint:: Structural as would be the correct the package
KobrA2::Views::Realization::Structural::Class::Type realize such association. It
was also necessary that the package
KobrA2::Views::Specification::Structural::Class::Service would merge the SUM
package above mentioned. These corrections were made in our metamodel, in Figure
4.25.

93



= ==
KobrA2:V p ass:Typel _ _ _ KobrA2::SUM::Constraint::Structural
<<MaIgEs>
T
I
KobrA2::Views::Realization::Structural::Class::Serviee | |
<<meiges=>

KobrA2::Vi Specificati KobrA2::SUM: Constraint::Be havioral

vice

Figure 4.24 - Package Dependencies between Views and SUM.

=merges B3 KobrA2:SUM:=Constraint=Structural
KobrA2::Vi ization:Structural:Class:Type

A M

: '

| !

B3 KobrA2:Vi RealizationzStructural:ClasszService SMErges ! :

i

i

i

i

KobrA2:Views:SpecificationzStructuralzClasszService sMmerge: :
3 KobrA2:Views=S pecificationzOperational:Service smerger 3 KobrA2:SUM::ConstraintzBehavioral

Figure 4.25 - Package dependencies between Views and SUM

KobrA2: Views::Subject

suemponantClass

| KobrAZuSUM:SIrusture (Classe ‘ Kobra2::SUM:Stuciue ; Packags

ComponentClass | ,cinject par Element

2
izsunjzet: Bockear(T T8 View
+ancapeuiation | Encapsulationkind

+projechion : Prajactionkind
+BAVIcEVETypa | SarviceVsType Kind

+EGIohal ; BXalean
ceanUmarations:: <8 UMErations ﬂm: l;-iuﬁaen
Encapsulationkind | | SarviceVsTypaKind
spacificalion sarvica T
r2alization pe
<<anlme faticns s e
Projectioniing T
stuctural
oparational |
Bk Specification Realization Componemclass Sparation
i De pandancies Depandancies

Spacification Spa cification ‘Spacifizaton :m::}
Structural Bahavicral P

Realization
oparational

Realization Realization Activities
= e Struetural Seructural
Struciral Struciural
Class Immiarc Class Instanca
o tion P ] |Pmm=n| | |Spacification Realization R R
Structural Structural | op 1 O —
viea Sarvies ClassSarvica Instancasarvics Sarvice

, I d p 1 d Raalization RAeplization
Structural Structural | perational Structural = —
ClassTypa InstanceTy pa Type ClassTypa InstancaTy pa Type

Figure 4.26 - "Subject" component and its View-SUM relationship.

94




KobrA2:Views:Subject

«enumerations =enumeration= cenumerations Element KobrA2:SUM:=Structure=:Package
EncapsulationKind ProjectionKind ServiceVsTypeKind
+ specification + structural + service [|§
+ realization + operational + type
+ behavioral View
+ encapsulation : EncapsulationKind
+ projection : ProjectionKind
< subject  + packageableElement |+ serviceVsType : ServiceVsTypeKind

KobrAZ:5UM:StructurezClasses:Comp Class - - + mlobat = Boclean
1 1.16 | +islnstance: Boclean
+ isLeaf : Boolean
Local
' |
Specification
Realization
Specification Specification _| = | -
Structural Operational Realization Realization
Structural Operational
Specification Specification Specification L‘r 3 o =
Structural Operational Operational Realization R ion R ion
Class Service Type Structural Operational Operational
g Class Service Type
Specification Specification r— e
Structural Structural Realization Realization
ClassService ClassType Structural Structural
ClassService ClassType

Figure 4.27 — Relationship between View and Subject ComponentClass

13. The ComponentClass class, which inherits from
KobrA2::SUM::Structure::Classes::ComponentClass, (Figure 4.26), need not exist,
so this class was removed and the relationship between it and the element View has

to be made by the super-class, as shown in Figure 4.27.

14. The association between the elements of the SUM with the elements View and
Abstraction, shown in Figure 4.28, was wrongly defined. This association wants to
say that each element of the SUM is associated with one or more Abstraction, and
this, in turn, is associated with a single element of View. Thus, the SumElement
elements, which inherits from Element of SUM, and, ViewElement, which specializes
Element of the View, it would not allow entity of the SUM, which inherits from
Element, to be related to Abstraction by SumElement because in this case, they were
"siblings™ and not "father-son". The same thing applies to the element ViewElement.
To correct this problem was essential to associate Abstract directly with the Element
of SUM and the Element of View, as depicted in Figure 4.29.

15. The need of an OCL constraint in the OCL View, Figure 4.29, to ensure that the
views elements associated with an Abstraction are the same view elements belonging
to View entity associated to the Abstraction. Figure 4.30 shows the OCL constraint.

95



KobrA2::Transformation::Common::AllViews

Abstraction
1.0 1
View KobrA2::Views::Subject::View |
0.1 0.1 X -
[subsets mappingl ’]T —_cn |
+abstraction +abstraction

1.7 1

[subsets supplisrDependency) {subsets clientDepandency}

KobrA2::SUM: :Constraint::Be havioral::Exp|

. ressioninOcl
[subsets supplier} {subsets client}
1 1
+58 ; +e
‘SumElement | |V|ewE|emenl

|KobrAZ::SUM.-:Stmcrure:_-EJemnts_-:Eremem | |KWA-’L’-‘-'WWS-‘-'COHWI‘&S‘}‘”*?"-'-'E’EWW|

Figure 4.28 - Transformation Abstrations.

KobrA2:TransformationzCommon:AllViews

Abstraction 1.7 R m—
View KobrA2:Views:Subject:View
0.1 0.1
-

TransformationExpression

+ gbstrac IDT . abstraction

KobrA2:5UM::Constraint:Behavioral:ExpressionInOcl

1 [+wve

1 KobrA2:Views:ConcreteSyntax:Element
+5€

KobrA2:SUM:StructurexElements:Element

Figure 4.29 - Transformation Abstraction

context View:
inv: self_abstraction->forAll(a | self.ownedElement->includes(a.ve))

Figure 4.30 — OCL Constraint on View

After making the necessary changes in the KobrA2 metamodel, together with the
inclusion of the dependencies of UML and OCL, we have reached the first, stable UML
Model in RSM. Then, the model was exported to an Ecore notation, one service also
supported by RSM. Thus the model repository could be created through the EMF.

However, the conversion cannot preserve the merge associations between the packages,

since these are not supported by Ecore.

The way to avoid this problem was the implementation of a routine for carrying out
the merge. This routine takes the source and the target packages. Furthermore, it was
necessary to perform the routine for each merge in the UML model regarding the correct

order of dependencies; however we had to make the modification of the references in the

96




packages manually. When this step was completed, we included the UML and OCL
portions used in the KobrA2 packages, besides removing that which were no longer

needed.

Nowadays, the Ecore Kobra2 metamodel is constituted by forty-nine EPackages
and two thousand one hundred and sixty-five EClass defined. Figure 4.31 displays the
package structure in the final metamodel.

a 2] platform:/resource/br.com.orcarwakame kobra/model/Kobra2.ecore
4 f KobriZ
4 # 5UM
4 H Structure
+ # Types
. @ Classes
. 8 Elements
a4 B Constraint
. # Common
. Structural
. # OclExpressions
- # OclTypes
. f Behavioral
4 H Transformation
4 @ Specification
4 @ Operational
. # ServiceOperation
. # TypeOperation
4 8 Structural
. H Service
- 8 Type
4 H Realization
4 @ Operational
. # ServiceOperation
. # TypeOperation
- @ Structural
4 @ Common
. 8 Feature
. Monlnstance
. AllViews
a4 # Views
4 # Specification
4 Structural
4 H Class
. Service
- Type
4 @ Operational
. # Service
. # Type
4 i Realization
4 Structural
a4 f Class
. Service
- Type
4 # Operational
. ## Service
- Type
- # ConcreteSyntax
. 8 Subject

Figure 4.31 - KobrA2 Metamodel Packages in Ecore

4.2.5 Model Repository Generation

With the completion of the Ecore Kobra2 metamodel, the process for generating the code

of the model repository (Figure 4.32) was finally carried out. Initially, the Ecore leads to
97



Genmodel file, in which the information need to generate the code are inserted. Next, from
the Genmodel, it is possible to generate the three plug-ins by EMF: EMF.model, EMF.edit
and EMF.editor, as explained in Section 2.4.1.1. However, concerning this work, we adjust
the process for a single plug-in creation, the EMF.model, because the model repository is

stored within it.

EMF Code
Generator

Figure 4.32 - Process to Generate the Model Repository from Ecore File

At the end of this process, the model repository for the KobrA2 metamodel in the
Java programming language was finally completed. For each EClass in the metamodel is
created an interface and a Java class that implements it. Table 4.1 summarizes some

metrics about the model repository.

Table 4.1 - Model Repository Metrics

Statistic Value
Packages 90
Classes 3.493
Total of Lines of Code 467.465
Size of Implementation 38,3 MB
Size of JAR 6,27 MB

4.2.6 Server Implementation

As stated previously, the platform chosen for developing the tool was Google App Engine
(GAE). The GAE provides environments for implementation in Python and Java
languages, but as we have used EMF for generating the model repository, the language

chosen for the server component development was Java.

For the development of the server, it was conjectured the following development

environment:

e Google App Engine SDK for Java 1.2.2 (GAE, 2009a) — local development

environment for GAE;

o Eclipse 3.4 (Eclipse, 2009) With Google plug-in (GoogleP, 2009) — Eclipse was the
chosen IDE for Java development, because it possess the plug-in Google that

supports the implementation and deployment of GAE applications;

e Subclipse (Subclipse, 2009) — SVN plug-in for Eclipse to version control of code;

and,
98



e EMF 2.4 (EMF, 2009) — plug-in for Eclipse for the repository of models. This one
addresses the dependencies for the creation and serialization of models via the
repository. However, not all plug-ins that come with the EMF have been taken to
use. Those selected to conduct our application (and without which, such application
would not be possible to be performed) were: org.eclipse.emf.ecore,

org.eclipse.emf.common and org.eclipse.emf.ecore.xmi.

The server implementation was done according to the architecture defined in PIM,
detailed in Section 4.1. However, for the encoding based on PIM, some platform-specific

projects decisions were necessary:
e Structure of packages for code organization and definition of responsibilities;
e Communication with the client; and,

e Technologies, framework and/or tools to perform the transformations defined in
KobrA2.

According to the PIM set in the server, the WAKAMEWebService is divided into
three types of components: the ServiceController, responsible for the management of
request and the redirection to the specific entity; MVCAction specializations, which are
responsible to realize the requests made by the client, that is, it is the place where all the
business rules are implemented, and, finally, the WAKAMEModel responsible for data
persistence. In accordance with these components, the structure of package is depicted out
in Figure 4.33.

O pacote br.com.orcas.wakame.webservice.service contém as classes que
implementam o ServiceController. Como este componente tem a responsabilidade de
redirecionar as requisi¢Bes para as a¢des especificas, ele foi implementado utilizando Java
Servlets[19] para poder manipular as requisi¢fes dos clientes.

99



a 5 src

br.com.orcas.wakamewebservice.action
br.com.orcas.wakame.webservice.action.transformations
br.com.orcas.wakame.webservice.action.transformations.sumtoview
br.com.orcas.wakame.webservice.action.transformations.viewtosum
br.com.orcas.wakame.webservice.action.viewsmanipulations
br.com.orcas.wakamewebservice.model
br.com.orcas.wakamewebservice.model.dac
br.com.orcas.wakame.webservice.model.entity

ARG AFRAR

br.com.orcas.wakame.webservice.service

Figure 4.33 - Package Structure of WAKAMEWebService Implementation.
The package br.com.orcas.wakame.webservice.service contains the classes that implement
the ServiceController. As this component has the responsibility to redirect requests for
specific actions, it was implemented using Java Servlets (SERVLET, 2009) to be able to
handle the requests of clients.

Following, the package br.com.orcas.wakame.webservice.model and its sub-
packages implement the WAKAMEModel component, responsible for data persistence. The
GAE has a mechanism of data persistence transparent to the programmer, since it is only
necessary to define which entities are persistent and the properties for the persistence of the
attributes of each entity. In our case, the PIM class defined in the WAKAME modeling is
persistent. Another responsibility of this package is, through the repository of models, to
save and/or load the models created, and additionally, to import/export the model

repository to XMI format.

The package br.com.orcas.wakame.webservice.action and its sub-packages
implements the actions defined in the modeling of WAKAMEWebService. Within this
package, there is a minor one, transformations, which is the implementation of the
component  Transformations, which lies within the existing component
ViewManipulationAction. Continuing, within the action package there is yet the
viewsmanipulations package, with the necessary mechanism for serialization of model
elements in a pattern that will be used for communication with the client. We chose to
implement a proper serialization, because this avoids sending data that are not relevant to
the model, with information about the class of the Java object. Thus, the amount of data
that will travel in this communication decreases. Another advantage of not using the
existing serialization in Java, is due the client is not tied to one specific technology. Hence,

the client may be implemented in any technology.

100



To establish the communication between the server with the GUI, we carried out a
survey of existing technologies for communication over the HTTP protocol. Currently, the
most used is XML (XML, 2009), however, it defines a verbose markup language,
generating an overhead due the huge amount of data to be transferred between the GUI and
the server. Another researched pattern was JSON (JSON, 2009), which is similar to XML
when talking about the transfer of plain texts over HTTP. However, JSON has the
advantage of defining a more concise format compared to XML, thus generating a lower
overhead in the amount of data transferred during communication. For this reason, JSON

was used as standard for communication between GUI and server.

The biggest challenge in implementing the WAKAMEWebService were the
transformations defined in the KobrA2 metamodel. Being transformations of model, we
searched for specific tools and technologies that could support this activity. The tools that
stood out were ATL and Epsilon, as detailed in the section 2.4.1.3. Although these tools
gave support for most of the requirements, some deficiencies, exclusively for our
application, could be verified. The first negative aspect was the difficulty to debug the code
developed in these two tools, because the IDE available in both, sinned by lack of
readability. The second, and most critical, is the transformations of both being done in
batch, through reading/writing files, which is not allowed in GAE. Finally, it was also
taken into account the high level of experience and Java skills programming by the author,
when compared with the tools mentioned above. Thus, the Java language was chosen for
the implementation of the transformation, because it has a great IDE for development and

debug.

Therefore, with the package
br.com.orcas.wakame.webservice.action.transformations ~ were implemented the
transformations defined in the KobrA2 metamodel. The code was organized into sub-
packages with the transformations of View to SUM in viewtosum, and, in opposite

direction, the transformations from SUM to View in sumtoview.

The transcript of the transformations was made following the OCL constraints
defined in the package KobrA2::Transformation. However, these restrictions are bi-
directional, that is, they are defined once and refer to both the changes to View to SUM
and SUM to View. Thus, for each OCL constraint were defined two transformation rules in

Java, one for each type of transformation.

101



These OCL expressions consist of several invariants defined on each element type
of the metamodel. As an example, Figure 4.34 shows the transformation rules between the
ComponentClass of Specification Structural Class Service View with the ComponentClass
of SUM.

context ComponentClassAbstraction

inv: ve.superClass = se.superClass

inv: ve.ownedAttribute = se.ownedAttribute->select(visibility=#public)
inv: ve.ownedOperation= se.ownedOperation->select(visibility=#public)
inv: ve.inv = se.inv

inv: ve._hasStereotypes->includes("componentClass"®)

Figure 4.34 — Example of Transformation OCL Expression

The expression in Figure 4.34 shows that the ComponentClass of Specification
Structural Class Service View possess all super classes, invariants, public attributes and
methods of the ComponentClass of SUM. And finally, the ComponentClass of the view is
stereotyped with componentClass. The rules for the properties of ComponentClass are
defined in other context, of the elements specialized by ComponentClass, which are

Classifier/NamedElement/Element.

By codifying the expressions for the transformation from View to SUM, for each
constrained element, there are two methods: one to check whether it already exists in SUM
(update) and update the basic attributes, that does not reference other elements, and,;
another method (populate) to fill the references to other elements. For each existing
element in the View, to be processed, will run the update method for the specific element,
for the creation of elements not yet existing in the SUM. After that, will run the populate
method to update the references. The update method will ensure that when you run the

populate action, all references have already been created.

In the same sense, for the transformation from SUM to View, it was created only
one method for each constrained element of the metamodel. This method will update,
create or delete the elements of View, according to the modifications that occurred in
SUM.

Because Java is not a proper language for transformations of models, for certain
transformation rules were needed many lines of codes, especially when it came to
properties that are collections of elements, such as the, ownedAttribute and

ownedOperation of ComponentClass.

102



As an example of comparison regarding the code size, we can cite the methods
implemented for transformations View to SUM and SUM to View of the ComponentClass.
These methods had two hundred and twenty lines of code to perform the six lines of the
OCL restriction shown in Figure 4.34. The Table 4.2 displays the metrics of the
codification of the transformations rules of the KobrA2 metamodel portion taken as study

in this work.

Table 4.2 - Transformations Metrics

Statistic Value
Packages 3
Classes 9
Total of Lines of Code 7.151
Size of Implementation 304 KB

A Table 4.3 shows the metrics related to general implementation of
WAKAMEWebService, including the transformation metrics, but not taking into account
the metrics of the model repository. All the WAKAMEWebService code and
transformations were implemented manually, while the code of the model repository,
presented in Section 4.2.5 was automatically generated by EMF, requiring few manual

corrections.

Table 4.3 - WAKAMEWebService Implementation Metrics

Statistic Value
Packages 11
Classes 57
Total of Lines of Code 23.528
Size of Implementation 931 KB

4.2.7 WAKAMEWebService Integration with WAKAMEGUI, Tests

and Deployment

Throughout the implementation phase were performed unit tests of classes and methods, as
they were developed. In these unit tests, several bugs were found and fixed by the author,

thus ensuring a minimum quality of the code.

For the integration of WAKAMEWebService with the implementation of
WAKAMEGUI, an environment has been created on Google App Engine to store both
implementations, Server and GUI. This environment created to perform integration testing
is similar to the production environment in which the tool WAKAME is published. This is
excellent for testing, because in this way, we avoid (unpleasant) "surprises" when it is

published in a production environment, which is likely to occur when dealing with
103



differences in environments. The test environment can be accessed through the address

http://wakameemf.appspot.com.

Both code, WAKAMEWebService and WAKAMEGUI, were placed on version
control through SVN, so that both authors could have access to the modifications occurred

in the components during the integration phase.

This integration phase consisted primarily of providing the services of
WAKAMEWebService through URLs, so that the WAKAMEGUI could access. The
communication was set to both through HTTP requests in JSON format, as stated in
Section 4.2.6. Therefore, at this stage, we tested the formats of communication defined in

the implementation phase, and the bugs have been fixed as they were identified.

After the tests of integration between WAKAMEWebService and WAKAMEGUI,
some general WAKAME tests were taken. For these, we have used the same environment
of the integration tests. It was created also a project called WAKAME on Google Project
Hosting to manager the coordination of the tests. This project provides an issue tracker, so
that each issue found in testing, could be registered to be discussed, besides taking the
necessary corrections. The issue tracker was used to manage the bugs found, but also to
allow requests for improvements in the tool. This tracker can be accessed through the
address http://code.google.com/p/wakame/issues/list. Additionally, the main types of
problems were categorized, if, for example, they are related to Component Ul, Logic or
Persistence. As the tool WAKAME was released in a web environment for testing, anyone
could access it, and if any problem or suggestion is found, it could register it in the issue
tracker. Figure 4.35 shows the screen of the issue tracker that displays the list of existing

issues.

The tests were performed and reported by the authors and several collaborators
from the research group, in which the tool was performed. Until this date, were opened one
hundred and twenty four issues in the project and sixty-seven have been corrected, thirteen
issues were invalid, and seven was duplicate, remaining forty-one issues open.

Nevertheless, thirty issues are related to improvements.

104



== | =1
@ wakame

W wakame
Project Home Issues Administer
Hew issue | Search | Openissues |zl for | Advanced search |
Search tips
Tip: Type 2 forissue tracker keyboard shortcut help. hide
Select: All None | actiens... 1-320f 32 List | Grid
ID™ Type™ Status ¥ |Priority ¥ Owner ™ Summary + Labels
Fl & Defect Accepted Critical weslei ' Add packages support
L 12 Defect Accepted  Critical weslei ' Update wakame GUI models
L 21 Defect Accepted Medium brenomachado  Random generation of IDs for CC of views
L 33 Defect Accepted  Madium weslel * Adapt GUI Client te show status and to disable user —
interaction with the current diagram when there are errors
O 38 Enhancement Accepted Low weslei * Allow to clean the messages in panel of messages
O 39 Defect Accepted  Medium weslei * Allow componentClasses and classes to be active
i 44 Enhancement Accepted Low brenomachado  Model import/export
O 45 Enhancement Accepted Low brenomachado  Model copy
Fl 51 Defect Accepted Medium weslei * Provide Support to Generalization Sets
L 52 Defect Accepted  Medium weslei ' Provide support to N-ary associations and association
classes
F 53 Enhancement Accepted Low weslel ' Provide support to Bi-Directional Association Classes
O 58 Enhancement Mew High robinjacques  Option to hide attribute and/or operation compartments
O 53 Enhancement Mew High robin.jacques  Attribute and operation reordering
O 63 Defect MNew Critical robinjacques  Wissing cardinality and OCL collection types in attributes

and operations

Figure 4.35 - WAKAME lIssue Tracker

To perform the case study, the tool was published in a production environment,
available at http://wakametool.appspot.com. However, the test environment was not
removed because the improvements and bug fixes are published first on it and only after

validation; these changes are published in a production environment.

4.3. WAKAME Overall

Figure 4.36 displays the main page of WAKAME, in which there is a brief
description of the project and participants, and from there, one can navigate to the model

selection page, create a new model, importing an existing model or go to issue tracker

page.

105



= e % |

/ o \WAKAME - Web App for .. \?_}:_

- C |l wakametool.appspot.com PO F-

WAKAME - Web App for KobrA Model Engineering

WAKAME is the first process-driven CASE tool to support orthographic, model-driven,
component-based 00 framework and application engineering.

WAKAME is being developed by master's candidates Breno B. Machado and Weslel A. de T.
Marinho under advising of PhD Jacques Robin at CIn/UFPE.

wa-ka-me [ waa kdamee ] (plural wa-ka-mes or
wa-ka-me )

noun

Definition:

a brown seaweed used in cooking: an edible brown
seaweed. Use: dried, in Japanese and Chinese cooking.

Native to: coasts of Japan, China, and Korea. Latin
name Undaris pinnakbifida .

[ Sowrce: Encarta)

Getting started:

Worl with existing KobrA Model
Create new KobrA Model
Import KobrA Model from XM
Issue List

LI I

Figure 4.36 - WAKAME Main Page

Figure 4.37 displays the page to create a new model in the tool. Firstly, the user sets
the model name, a description and the authors. The page to import a model from a XMl
file, Figure 4.38, is similar to the registration page, with only one extra field, which is the
one to upload the XMI file. This feature allows only importing KobrA2 models in XMl
format; WAKAME does not support importing other types of models, such as UML, MOF

or Ecore.

106



o . WAKAME - Web App for ...

€ - |C | v hiip://wakametool.appspot.com/createModel.ntmi P O S~

WAKAME - Web App for KobrA Model Engineering

Create KobrA Model

Name:

Description:

Authors (separated by
semi-colon):

Create! - Go to Main Page!

Figure 4.37 - WAKAME Create Model Page

o . WAKAME - Web App for ...

.(- ',-_ C_ _‘i} http://wakametool.appspot.com/importModel html P O~ ﬁv_
WAKAME - Web App for KobrA Model Engineering

Import a Existing KobrA Model

Name:

Description:

Authors (separated by
semi-colon):

M File: Escolher arquive | Nenhum a.._cionada

Import! - Go to Main Page!

Figure 4.38 - WAKAME Import Model Page

107



Figure 4.39 displays the page for selection of models. The list of model on the
server is available through a combobox, and by selecting a model, the user can navigate to
the modeling page, edit/view the details of the model, to export to XMI format or delete
this model. The screen to edit/view the details of the model, Figure 4.40, displays and lets
you modify the data that were registered, and also displays, but read-only, the date of
creation of the model and date of last change. By requesting to export the model to the

XMI format, will be downloaded the XMl file to the computer user.

: =[E] & ]
,."' o\ AKAME - Web App for ... ‘\' 4]_:_
- C |l 2 wakametool.appspot.com : » O~ F~

WAKAME - Web App for KobrA Model Engineering

Choose a KobrA Model View/Edit or Delete.

Select a Model [

Go to Model! - View/Edit Model Details - Export KobrA Model to XMI - Delete - Go to Main Page!

Figure 4.39 - WAKAME Select Model Page

: [=[E] &= |
[,."' o . \WAKAME - Web App for ... ‘\' o
s C || st wakametool.appspot.com P O F-

WAKAME - Web App for KobrA Model Engineering

Model: Test

Name:

Description:

Date Created: 12/08/2009 19:18:04
Date Last Modified: 14/08/2009 00:57:38

Authors (separated by
semi-colon):

Go to Model! - Edit - Export KobrA Model to XMI - Delete - Go to Main Page!

Figure 4.40 - WAKAME Edit Model Page

108



Once you select the link "Go to Model”, for a specific model, the user will be
redirected the modeling page, Figure 4.41. This is the main project WAKAME page,
which allows modeling any system. On the left side, are displayed the combo-boxes for

selecting the view, according to the possible different perspectives:

¢ Encapsulation — Specification to select the views of the component specification, or,

Realization, which lets you select the realization views of the component;

e Projection — Structural, for the views of structural modeling of the component, or,
Operational, for the views of modeling, in OCL, of the operations declared in

structural view; and,

¢ View — allows the options: Service, for the views of services that the component will

provide, or Type, the views of types used in the component.

Below the combo-boxes for selecting the appropriate view, there are the buttons
"fromCloud" to refresh the selected view with the new view on the server, and "toCloud"

to persist the view on the server.

On the right side, we have the "component navigation tree", which allows
navigation of the views for the component. Just below there is the "element selection tree",
which lets you drag to the current view, an existing element to the current view. The
bottom of the tool has a panel for displaying the messages, which can be notifications,

error or debug messages.

The center of the tool is the free area for modeling and has at its top, the tool bar
with the possible elements for modeling the view in question. The content of this tool bar

will vary for each type of view, since each one allows a set of different elements.

109



o . WAKAME -Web App for .., ¢

w2 hiip://wakametool.appspot.com/openiis

ndel. jsp?modeld=1

D

BEEEEEINIEE

==ComponentClass==
««gubject==

Inventory Manager

 [E1!

¥ - :
o inventon:
—| | - €] DataBase

£]cul

e

elemem selection tree

‘l2£] InventoryManager
|- £] DataBase

e

- [02:23 - DEBUG]:

{"fiqg": {"viewEdges": [1}, "status”:1,"sc": [{"element": {"superC.

[02:23 - INFO]:View loaded by GUI in: 187 ms
[02:23 - INFO]:Total view load time: 906 ms
[02:23 - INFO]:Data loaded sucessfully!
A

£l cul
B co

Figure 4.41 - WAKAME Modeling Page

110



CHAPTER 5

ASSESSMENT
EXPERIMENTS WITH
EARLY ADOPTERS

This chapter exhibits the evaluation of the WAKAME tool against the IBM Rational

Software Modeler tool, the obtained results and our findings.

5.1. Experiment Definition

A productive way to assess whether a case tool fits its purpose is to determine the business
objectives that the tool should met and then compare the tool against these objectives.
After the analysis of several CASE tools, we states that the common features that a CASE

tool should provide are mainly classified in terms of:

e Availability — This criteria relates to the degree to which a system, subsystem, or
equipment is operable and in a committable state at the start of a mission, when the
mission is called for at an unknown, i.e., a random, time. Simply put, availability is
the proportion of time a system is in a functioning condition. Availability also relates
to the ratio of (a) the total time a functional unit is capable of being used during a

given interval to, and (b) the length of the interval.

e Performance — Computer performance is characterized by the amount of useful work
accomplished by a computer system compared to the time and resources used. It may
be defined in terms of short response time for a given piece of work, high throughput
(rate of processing work), low utilization of computing resource(s), high availability
of the computing system or application, fast (or highly compact) data compression

and decompression, and high bandwidth / short data transmission time.

e Ease of use — The term ease of use is used to denote the how ease a people can
employ a particular tool or other human-made object in order to achieve a particular

goal.
111



e Diagram layout control and legibility — This aspect relates to the amount of control
the user has over the working diagram and how legible is the diagram for the user.

e Standard compliance — This criteria takes in consideration aspects related to whether
the tool is adherent to its standards and constrains the models created by the user to

fit these standards.

However it is very difficult to obtain objective measurement data to determine
whether the tool could fit these goals, or even to state the level of its agreement, since they
have high subjectivity. Therefore we decided to compare the performance of the
WAKAME tool with another tool. This comparison had to happen according to the
identified business objectives, and the modeling performance would be measured
considering the same business objectives in both tools. For accomplish this, we needed to
choose a CASE tool where the user could create KobrA2 models and that meets the

following constraints:

e UML 2 compliance - For being compliant to the UML 2, a tool should present both:
concrete and abstract syntax compliance. Concrete syntax compliance, relates to
whether users can continue to use a notation they are familiar with across different
tools and have their communication easier, because the elements could have the same
meaning across different tools. Abstract syntax compliance means that users can
move models across different tools, even if they use different notations, what is
essential when the language is used as a basis for model-driven development. The
user might want to use tool A for creating the model, tool B for validating the model,
tool C for somehow transforming/enhancing the model and tool D for generating
code from it, this is only possible if all the tools are compliant to the UML 2 abstract

syntax.

e OCL 2 support — The tool should be compliant with the OCL metamodel and to

support constraints as well.

¢ Availability — The tool should be available for use, so if the tool A is proprietary and

we have no license for its use it could not be used in the comparison.

¢ Industry acceptance — The tool had to be widely accepted by the software industry
around the globe. By satisfying this constraint, the tool would be considered one of
the most important tools in its application area.

112



o Portability — The tool should be able to operate under different platforms, so its user

would not be restricted to use tool under one specific environment.

e Multi user support — The tool should allow different users to shared and work on the

same model.

For comparison, the tool we found that met these constraints was the IBM Rational
Software Modeler (RSM). The RSM could offer both, high and concrete syntax
compliance to the UML 2 metamodel and support to OCL 2 expressions. Regarding its
availability, we had academic licenses of this tool at UFPE, place where the case study
would be executed, and the RSM tool has high industry acceptance as an UML and model
driven CASE tool. The IBM RSM is also developed in Java technology what means that it
can work in different operational systems and hardware platforms, and it enables multiple
developers working with the same model through the use of an external version control

system.

Once defined the experiment, its goals and the tool that was going to be used, we
had to choose a KobrA2 model for the experiment. We decided to use a representative
KobrA2 model, in terms of number of components, number of views and model
applicability. The chosen model was the KobrA Web App Framework, which comprises 8
components with a total of 18 views and represents a real world model, being also part of
this work (Section 3.2). The KWAF model was also consolidated, so the experiment
participants wouldn’t have to take design choices, or to create the model from scratch.
Instead, they would follow the existing model, and focus their attention only on the model

creation.

To the user’s evaluation, we developed a survey, which would take in account
aspects related to availability, performance, ease of use, diagram layout control and
legibility and standard compliance, since these were our main goals to meet. These criteria

and the survey coverage to them are explained bellow:

¢ Auvailability — At the survey, the availability questions were related to time and ease
of installation of the tool and the ease to setup one environment for multiple users

collaborate in the same model.

e Performance — This criteria has been broken down into the survey in questions
regarding startup time; upload and download time from and to a persistent medium;

and resource consumption (RAM, CPU, network bandwidth).
113



e Ease of use — In the survey, the ease of use was taken in account by considering the
number of menus needed to go through to start drawing models, the number of
actions (clicks, go to pane, fill up fields, etc.) needed to add a model element or
property, the number of features on the screen that you don’t understand and need,
ease of navigation between various diagrams of the same model, ease of previously
created model elements for inclusion in current diagram, ease of drag and drop

elements between diagrams and overall modeling speed.

e Diagram layout control and legibility — In the survey, this aspect was covered by
questions related to the ease to change diagram layout (boxes and links), legibility of
automatically re-laid-out functionality (after change), maximum size of diagramming
area which is based in the ability of hide unwanted elements in the screen to

maximize the working area and ease of undoing changes.

e Standard compliance — This aspect was broken down in the survey questioning
metamodel non-conformance detection, helpfulness of warning messages, enforced
coherence between several diagrams of the same model and ease of introducing

process-specific constraints on models.

The user could fill in the survey questions regarding these criteria about IBM
Rational Software Modeler and the same questions about WAKAME tool. The survey also

contained questions regarding the user’s education level and both tools familiarity.

For participating on the experiment, we invited the ORCAS Research Group
members, which comprises researchers of different scholarship degree, starting from
undergraduate students to PhD holders. They also have different levels of knowledge about
KobrA2 and experience in IBM RSM tool.

After the definition of the experiment goal, the tool that we were going to compare
WAKAME with it, the comparison criteria and the experiment participants, we created a
planning for the case study execution. Therefore, a schedule for the experiment was

defined containing the following activities:

1. Presentation of the KobrA2 method to the participants, its principles, the main views

and sample views (Error! Reference source not found.);

2. Presentation of the KWAF model, which was going to be modeled by the
participants in the two CASE tools;

114



3. Distribution of the case study;
4. Installation of the IBM RSM at the computers that don’t have it;

5. Half of the participants model for 50 minutes using the IBM RSM, while the others
model with the WAKAME tool also for 50 minutes;

6. After 50 minutes, who were modeling with the IBM RSM starts to model with the
WAKAME tool, while the other group would take the IBM RSM;

7. After finishing the specified time the participants were surveyed about their

experience in modeling with both tools (Appendix A).

5.2. Execution and Analysis of the Case Study

For the execution of the case study, a room was reserved for accomplishment of the
presentation and to make possible that all the participants were in the same atmosphere to

not suffer influences of different external factors.

Among the 26 members of the ORCAS research group invited to participate, only
fourteen attended. The execution happened according to the planned stages, being: 30
minutes for the presentation of the KobrA2 method; 20 minutes for the presentation of the
KWAF model; 40 minutes for the installation of the IBM RSM tool; and, 1 hour and 50
minutes for the accomplishment of the models by the participants (50 minutes in one tool,
10 minutes for interval, and 50 minutes in another tool). After these stages, all the

participants answered the survey.

Among the participants, eight didn’t possess the tool RSM installed in their
computers and they had to accomplish this installation. The IBM RSM application has
approximately 1.2 GB of size in disk and after the installation it occupies 980 Mb
approximately. The installation of RSM in the participants’ computers happened without

problems, and it took on average 15 minutes each installation.

Now we will present the results obtained in the research. The Figure 5.1 displays a
graph with the educational level of the case study participants. It can be observed that the
educational level among the participants was diversified, tends, from undergraduate
student to a person PhD. holder. Already the participants’ experience with the RSM and

WAKAME tools can be seen in the Figure 5.2, where it can be observed that most never

115



used none of the both tools. However, we see a larger number of people that already had
some contact with RSM than with WAKAME.

Education Level

7
3 3
3 l l
Undergraduate  Master Student PhD.Student PhD. Holder
Student

Number of Participants
[=TRN N I ) B [= BN I - ]

Figure 5.1 - Educational Level of Participants

Familiarity with Tools

12

10

ORsM

Numberof Participants

EWAKAME

(=T ST R -1

Neverused. Useda few Several  lam a trained
times months of expert
self-taught
use.

Figure 5.2 - Familiarity of the Participants with the RSM and WAKAME tools.

The first item verified in the case study was the percentage of the models
accomplished in each tool by the participants in the given time (50 minutes). To calculate
this measured, the weight of each view of the model used for the case study was defined
through the amount of existent elements: ComponentClasses, Classes, Enumerations,
Operations, Attributes, Parameters, Associations and Stereotypes (since the same is not
generated automatically in RSM as it is in WAKAME). For the operational views, that are
just textual for the OCL constraints writing, the weight ONE was defined. The Figure 5.3
exhibits the percentage of the model done in each tool, for each participant, where each
line represents a participant (P1 to P14). The left side of the graph represents the
percentage done in WAKAME and the right side the percentage done in RSM. The graph
bellow exhibits the general average, of all the participants, of the percentage done in each
tool. Observing these results, we can say that the time spent for modeling in RSM is

approximately the double of the time spent in WAKAME.

116



Models Completeness by Tools

oPil4

opi3
mriz
opil
Lt
ors
mFs
or7
mFs
ops
mr4
or3
mr2
100% [l

Average of Models
Completeness

RSM WAMAKE

Figure 5.3 — Model Completeness Comparison.

Looking more closely, in comparison with Table 5.1, we noticed that only the
participants that already had some contact with the RSM tool got to model at least 40% of
the proposed model, differently of the result obtained by WAKAME, where all did more
than 40% of the model. It was also observed that the participants P2 and P3, that never had
contact with the WAKAME tool, got to complete the modeling. However, it is also
observed that these two participants, and the others that got finish the model in the
WAKAME tool, P1, P8, P9 and P10, already had at least some contact with the RSM tool.

Of these observations, we can say that the WAKAME tool possesses a better
performance for the accomplishment of KobrA2 models, on average the double of the
performance in relation to RSM, and for users that already had some contact with the
RSM, the learning curve is very low, as in the participants’ case P2 and P3. Finally, it is
noticed that the participants that never had provided with none of the two tools had the

lowest performance.

After having done the analysis of the percentage of the models accomplishment, the
analysis of the answers from the participants to the form began, we compile these answers

by criteria.

117



The first criterion to be analyzed is Availability (Figure 5.4). It can be observed that
the RSM tool had in larger part the answers Sub-par and Dismal for both questions done,
while WAKAME had most of the answers Excellent. A possible reason for this fact is that
RSM possess a relatively slow installation process and the same has a difficult download
process. Another fact is that RSM doesn’t possess any preinstalled tool for aid in the
teamwork development, being necessary the plug-in installation. On the other hand, the
WAKAME tool, for being Web, is easily accessible and for its execution it is necessary
just to download the necessary JARSs file, which the browser automatically does. The size

of these necessary files is of approximately 1.5 Mb, almost a thousand times minor than

Table 5.1 - Familiarity of Participants with the Tools RSM and WAKAME.

How familiar are you with the Tool?
WAKAME RSM

P1 | Used a few times Used a few times

P2 | Never used Used a few times

P3 | Never used Several months of self-taught use
P4 | Never used Never used

P5 | Never used Never used

P6 | Never used Never used

P7 | Never used Never used

P8 | Used a few times Used a few times

P9 | | am atrained expert | Several months of self- taught use
P10 | I am a trained expert | Several months of self- taught use
P11 | Never used Never used

P12 | Never used Never used

P13 | Never used Never used

1P4 | Never used Never used

the RSM installation file.

Availability

Dismal

Sub-par

Good enough

Excellent

Availability and Ease of Installation?

Ease to Set Up Environment for Teamwork on
Same Model?

Dismal

Sub-par

Good enough

Excellent

14

H WAKAME
O RSM

In the criterion Performance (Figure 5.5), the first question refers to the necessary

time to start the tool, for it to be ready for the use. In this point, in understanding of the

Figure 5.4 —Availability Related Answers Comparison.

118




participants, the WAKAME tool had a better performance than the RSM tool, being most
of the answers Good enough for WAKAME against Sub-par for RSM. In this case, the
time spends of start-up of WAKAME is practically the time spend for the download of the
necessary files, because, due to its reduced size, the download is fast. Yet RSM, for being a
quite robust tool, and also for using the Eclipse’s platform its time of load to the memory is

large, though it is not necessary to download any file.

Performance

Start-up Time? Upload and Download Time from and to

: Persistent Medium?
Disrnal |2 1
5
1 Dismal g
Sub-par 2 s ] a
Sub-par 5
Good enough 8 ]
e Good enough 3 1
Ex 4
cellent 0 Excellent

W

v} 2 4 6 8 10 0 2 4 6 8 10 12
Resource Consumption (RAM, CPU, Network
Bandwidth)
pismal ‘:;:;:l 5
Sub-par 0 | 7
EWAKAME
Good enough 8 ORSM
Excellent 0 6
o 2 4 & 8 10

Figure 5.5 - Performance Related Answers Comparison.

The second question, of the Performance criterion, refers to the necessary time to
load and to save a model in a persistent medium. The RSM had a better evaluation in
relation to the other questions of this criterion. It occurs because the persistent medium
used by RSM is the local disk of the computer, which possesses a fast access, but the
processing necessary to do it still little costly. As the medium of persistence used by
WAKAME is in the cloud, the result of this subject is directly tied to the user’s band
width. In this case, as the case study was accomplished at CIn/UFPE, and it has a

satisfactory access to the internet, WAKAME obtained a good result.

The last evaluated question of the Performance criterion was related to the
consumption of computational resources. Again, WAKAME had the results between Good

enough and Excellent, because its client component is light and it demands little processing
119



and memory, but it already makes use of a considerable band width. Yet the RSM had the
majority of the answers Sub-par and Dismal, due to its size, consuming a lot of processing
resource and memory. To execute the RSM satisfactorily it is necessary a machine with a
good hardware configuration, different from WAKAME, that doesn’t have this need.

The next criterion evaluated, Ease of Uses, that can be considered one of the most
important, because if a tool is complicated to use its learning curve is high and,
consequently it is necessary a high investment for its adoption, what usually discourages
the tool adoption. In general, WAKAME obtained very good evaluations in contrast with
the terrible evaluations of RSM, what can be perceived in the Figure 5.6. This happened
because RSM is a tool with several objectives and with support to several functionalities,
what generates an enormous overhead of information and options for work. Differently,
WAKAME was projected to assist only the needs of the KobrA2 method, leaving its
interface simple with only the necessary information and options.

The first question of the Ease of Use criterion has the intention of evaluating the
necessary “effort” to begin modeling, in other words, how many screens, how many choice
options, how many buttons are necessary to click for the user begin to writhe the model.
WAKAME has the option of accessing a model already existent or to begin a new one. To
access an existent model the user should access the page of models listing, to choose the
model wanted in the combo-box and, finally, to access the modeling screen. For the
creation of a new model, the user should access the page of model register, in which is
necessary to fill out few information and after this to make the process described to access
an existent model. That is contemplated in the result of the evaluation with most of the

answers Excellent, due to the easiness and intuitive access/creation of models.

To access a model in RSM, so a new model, as a model already existent, it is
necessary, in the beginning of the tool execution, to choose the wanted workspace, as the
whole tool that is based on Eclipse. After this, it is necessary to choose the creation of a
new modeling project, among the several other different project options. Then it is
necessary to choose, among several options of modeling templates, which will be used for
modeling, to finally to begin modeling. To access an existent model it can be done directly,
if the same is already in the work place, otherwise, it is necessary to do the whole
procedure of project import provided by the Eclipse. In the case study, it was noticed

certain difficulty among the participants that never had contact with RSM to begin a new

120



model. This occurred because if the chosen modeling template is not the most specific,

some necessary modeling elements for KobrA2 are hidden.

The next question of the Ease of Use criterion has as objective to measure the
usability in agreement with the amount of necessary clicks to include a new element in the
model, or a new property of an existing element. In this case, WAKAME was evaluated, in
the major part, as Excellent and, the RSM as Dismal. As dictated previously, WAKAME
only makes available what is necessary for the view in subject, facilitating like this, the
insertion of a new element. To add properties of an element, in WAKAME it happens
through the inclusion of its concrete syntax, without the need to access the properties
palette, as in RSM. In the question regarding the number of available features for the user,
the evaluation was similar to the previous, this happened because of the same reason
already explained before - WAKAME only exhibits the necessary and RSM, because of its
general purpose, exhibits more information and options than the user usually needs.

The next three questions of the Ease of Use criterion refers to the navigation and
the easiness to include items in diagrams. In the first one, that it is the navigation easiness,
WAKAME had a good evaluation, in contrast with RSM. That is due to the fact of the
navigation in WAKAME to be guided through component and the orthographically options
of the views. Yet in RSM, depending on the nesting of the packages, to navigate through
the diagrams becomes very complex. However, in the other two questions, regarding the
inclusion of existent elements in different diagrams both tools had a similar result, where
WAKAME was between Good enough and Excellent, and RSM among Dismal, Sub-par

and Good enough.

The last question of Ease of Use refers to the speed for the creation of models. This
question depends directly of the previous evaluations, because, a tool with a good usability
usually possesses a good speed for development due to the learning curve, simplicity and
intuition of its interface. Due to the simple and objective interface for the KobrA2 method,
the time spent to model KobrA2 in WAKAME is much smaller than in RSM.

121



Ease of Use

Number of Menus to go Through to Start
Drawing Models?

Model Element or Property?

Dismal

Dismal

Sub-par

Good enough

Excellent

Sub-par

Good enough

Excellent

o 2 4 6 B

Number of Actions Neededto Add a

10 12 ] 2 4 6 8

10

Dismal

Sub-par

Good enough

Excellent

Number of Features on the Screen that
You don't Understand and Need?

Ease of Navigation Between Various
Diagrams of the Same Model?

Dismal

Sub-par

Good enough

Excellent

10 12 a 2 4 6 B 10

12

Elements for Inclusion in Current
Diagram?

Dismal

Ease of Previously Created Model

Ease of Drag and Drop Elements
Between Diagrams?

pisma ”:;: 5 ‘
- 1
Sub-par F 8
Good enough e
7
Excellent 0
t
B o] 2 4 6 B

10

Dismal

Sub-par

Good enough

Excellent

EWAKAME

CORSM

Figure 5.6 - Ease of Use Related Answers Comparison.

Another evaluated criterion was Diagram Layout Control and Legibility, where the

122

result can be seen in the Figure 5.7. In the first two questions WAKAME had a good
evaluation, because its interface allows easily manipulation of the size and position of the
elements and mainly it allows total control above the disposition of the links in the model.

Yet in RSM, its low rate in this criterion, pointed by the participants, is due because of its




low usability, mainly for the manipulation and links formatting that the tool possesses. In
the question regarding the maximum area of the diagram, both tools had a good appraised
performance, because both possess resources to hide the undesirable options and to exhibit
only the modeling area. However, WAKAME was gotten a larger useful area than RSM.

The last question of the criterion mentioned above, concerns to allow to undo
modifications, WAKAME had an inferior evaluation then RSM. This occurs because
WAKAME still doesn’t possess the functionality to undo actions. However, WAKAME
allows not to save the modifications done (before sending to cloud) and to bring the
information from the cloud and overwrite the current information. Yet RSM obtained the
evaluation Good enough, because it provides the action Undo, even this not work for a

certain subset of actions.

Diagram Layout Control and Legibility

Ease to Change Diagram Layout (Boxes Legibility of Automatically Re-laid-out
and Links) According to your Wishes? Functionality (After Change)?

N NS PO I

Sub-par ﬂz_‘; .

Good enough

Dismal

Sub-par

Good enough

Excellent Excellent

Maximum Size of Diagramming Area? Ease of Undoing Changes

Dismal 2

a
Sub-
ub-par |

EWAKAME
7

Good enough

7
Excellent
ceen%

a 2 4 6 8 10 0 1 2 3 4 5 6 7

6 ORsM

Figure 5.7 - Diagram Layout Control and Legibility Related Answers Comparison.

The last appraised criterion was Standard Compliance. Were appraised questions
as: the detection of no conformities with the metamodel, the capacity to express the non
conformities through warning messages, the capacity to maintain the coherences of
elements that appear in several diagrams and the capacity of inserting specific restrictions

of process in the model.

123



Standard compliance

Meta-model Non-conformance Detection Helpfulness of Warning Messages
ol | § el e
Sub-par 2 1 10 sty N : »
Excellast _ ) Exeallent | ©
F 4 i1 13 (1] 2 4 L 12
Enforced Coherence Between Several Ease of Introducing Process-specific Constraints
Diagrams of the Same Model onMaodels
Dismal 2 Dy L .
ls K]
il = E ] e
W AEANME
Gosdenough ?5 Gucdenzugh _ —
Excellent _ 7 Excellent _ 5

1] 2 4 & 2 0 2 4 [ 8 1]
Figure 5.8 - Standard Compliance Related Answers Comparison.

The Figure 5.8 shows the results of this criterion, where WAKAME stood out in the
capacity to verify no conformities in the model, in the capacity to maintain the coherence
between the diagrams (views) of a model (SUM) and in the capacity to include specific
restrictions of process in the model. However, in the subject regarding warning messages,
WAKAME received Good enough and Sub-par. Yet RSM, had an evaluation close to
Dismal and Sub-par, except for the question regarding the checking of no conformities,

because in this case RSM made these verifications in the UML model level.

5.3. Experiment Findings

During the execution of the case study, some new issues of the WAKAME tool were
discovered, and properly reported in the issue list of the project.

Another factor observed, that was not in the survey, is that the participants that
didn’t know none of the tools, didn’t also have knowledge, or had little knowledge, on
KobrA2. Differently, the participants that already knew one of the tools, already possessed
a reasonable knowledge about KobrA2. The factor of a participant to have knowledge in
KobrA2 might have influenced his performance in WAKAME.

124



Also this case study helped to show improvement points in the tool, as example, the
need of the functionality Undo, also the need to define a way to reduce the traffic of data in

the net in way to improve the warning messages.

It is important to emphasize that WAKAME is a specialist tool, in the sense of
assisting only the KobrA2 method, differently of RSM that is of general purpose. This
makes possible that WAKAME has a simple interface and a low learning curve in relation
to RSM, for models done in the KobrA2 method.

In general WAKAME had a better performance in relation to RSM, in almost all
points evaluated. Making a weighted average of the answers of the questions related to
amount of answers (considering Dismal - 1, Sub-par - 2, Good enough — 3, and Excellent -

4) we have in Table 5.2 the summary of the evaluation.

Table 5.2 — Assessment Summary

Assessment Summary
WAKAME RSM

Availability Excellent (4) Sup-par (2)
Performance Good enough(3) Sub-par(2)
Ease of use Excellent(4) Sub-par(2)
Diagram layout control and Good enough(3) Sub-par(2)
legibility

Standard compliance Good enough(3) Sub-par(2)

With the data of Table 5.2 we noticed that the strong points of the WAKAME tool,
in general, are its availability, for being web, and its use easiness, consequence of being

totally specific for KobrA2.

5.4. Chapter Remarks

This chapter exhibited the evaluation study of the tool WAKAME. It showed the
experiment definition, its execution, the obtained data and the identified findings, which
demonstrated good acceptance and promising results for the WAKAME tool.

125



CHAPTER 6

CONCLUSION

This Chapter presents the contributions and limitations of the WAKAME Server, future
work on WAKAME Server, limitations of WAKAME tool, future work of WAKAME tool

and concluding remarks.

6.1. Contributions

This work presents contributions that were organized and classified as contributions to the
CASE Tool Engineering; to MDE, KobrA2 and CBE.

The identified Contributions to CASE Tool Engineering were:

e Definition of an architecture to model and implement Web CASE tools for

diagramming elements related to one specific metamodel;

¢ Production of a CASE tool that: (a) verifies conformance of diagram elements to the
metamodel definition; (b) create models based on UML2 with OCL support; (c) is
lightweight, cross platform, Web, easy to use and to extend; and (d) is the first tool to

support KobrAz2.
Identified contributions to MDE, KobrA2 and CBE:

e The creation of KWAF, a framework for modeling web applications, presented in the
Section 3.2. Also the modeling of a web application of photo album was

accomplished to the first evaluation of KWAF;

e The implementation of a repository of models aligned with the metamodel of
KobrA2, presented in the Section 4.2.4 and 4.2.5;

¢ Implementation of transformation rules to spread the modifications done in a view of
the SUM and from the SUM to the related views related with the modification,
exhibiting warning messages when found some restriction violation, presented in the
Section 4.2.6;

126



e Implementation of the WAKAMEWebService component in the GAE platform in
agreement with the developed PIM and its integration with the WAKAMEGUIClient

component , as shown in the Section 4.2.6;

e Creation and publication of a CASE tool for MDE, CBE and KobrA2 that supports
the separation of concerns and orthographic modeling - the WAKAME as a

completely;

¢ Validation of the method and of KobrA2 through the accomplishment of the models
elaborated in this work, KWAF, Photo Album and WAKAME tool, accomplished in
the sections 3.2, 3.3 and 4.1;

¢ Reuvision and correction of the KobrA2 metamodel during the implementation of the
repository of models. The identified corrections are striped in the section 4.2.4;

e The evaluation of the KobrA2 metamodel through the WAKAME tool, because with
the tool it is possible to create models totally compatible with the specification of the
KobrA2 metamodel.

6.2. WAKAME Server Limitations

The base of the WAKAME tool is completed but at the time of this writing, there are
limitations regarding the WAKAME Server, which are:

e WAKAME Server current implementation doesn't support all the KobrA2

metamodel elements, as can be seen in section 4.2.4;

e WAKAME Server does not handle concurrency for a real time multi user

collaborative model edition, and;

e It does not allow from one model to refer elements from another models defined in

the tool.

In addition these limitations, there are still bugs and enhancement opportunities
registered at the project issue tracker at the address

http://code.google.com/p/wakame/issues/list.

6.3. Future work on WAKAME Server

The identified possibilities of future works for WAKAME Server are:

127



e The resolution of the limitations exhibited in the Section 6.2;

e Maodifications in the repository of models so that the personalization is allowed, by
the user, of the used metamodel, and;

e Refactoring of the structure of packages of the metamodel and elimination of the
elements that are not used and updating of the metamodel to the last available

version of KobrA2.

6.4. Limitations of WAKAME as a whole
We can enumerate the following limitation to the WAKAME tool:
e The tool doesn’t support all KobrA2 metamodel,;
e There is still no support to create GUI models (GUIPIMUF), and;

e It does not handle real time multi user collaborative model edition.

6.5. Future work on WAKAME as a whole

The identified possibilities of future works for WAKAME as a whole are:
e The resolution of the limitations exhibited in the Section 6.4;
o Allow the user to define your metamodel and use it in the WAKAME tool, and,

e Executable code generation from models defined in the tool.

6.6. Concluding Remarks

With the realization of this work, we could confirm the theoretical hypothesis that it is
possible to define and validate a KobrA2 model repository that implements View-Sum-
View transformations and does automatic constraint verification in these models. It was
exhibited that this repository allows its integration with a Web GUI client, composing as a
whole one CASE tool that supports KobrA2 method. As it was described, this work has
justified itself because, the modeling process using the KobrA2 method using the existent
modeling CASE tools is a complicated and costly task, because none of these tools
possesses support for the multi-view modeling with the rules of transformations defined by

KobrA2 for consistencies among these views.

128



The development of the WAKAME tool took place through the collaboration
among two master's degree students (being one of these the author). The focus of this work
was the development of the server component of the tool, responsible for the persistence of
the model, and creation of the transformations rules for the propagation of the changes

among View-SUM-View.

The work was accomplished in three stages. The first consisted of the
bibliographical rising of the related areas to the subject of the research. The second stage
was the accomplishment of the modeling and implementation of the WAKAME Server.
And the third and last stage was accomplished a case study for the evaluation of the
WAKAME tool, and of this case study it was obtained positive results in relation to

usability, performance and availability.

The main contributions at the end of this work were: (a) the first case study to
validate the KobrA2 method for rich web applications with 2D graphics, (b) the high-level
design of WAKAME as a case study validating KWAF, (c) the implementation of cloud-
based services for view persistence, view integration into a persistent SUM and SUM
verification and (d) the integration and testing of these services with WAKAME's GUI

web client for orthographic view edition.

129



CHAPTER 7

BIBLIOGRAPHY

Atkinson et al, 2001

Atkinson et al, 2009

ATL, 2009

Azure, 2009

Backvanski and
Graff, 2005

Bauer and King, 2004

Beck and Andres,
2004

Beydeda and Gruhn,
2005

BIGTABLE, 2009

Budinksy et al, 2003

Buschmann et al,

1996

Cavaness, 2004

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O.,
Lagua, R., Muthig, D., Paech, B., Wist, J. and Zettel, J.
“Component-Based Product Line Engineering with UML”.
The Component Software Series. Addison-Wesley. 2001.

Atkinson, C., Robin, J. P. L. and Stoll, D. “Kobra2 Technical
Report”, 2009.

ATLAS Transformation Language. 2009. Awvailable at:
<http://www.eclipse.org/m2m/atl/>. Last access: 03/01/2009.

Microsoft Azure. 20009. Available at:
<http://www.microsoft.com/azure/default.mspx>. Last access:
05/03/2009.

Backvanski, V. and Graff, P. “Mastering Eclipse Model

Framework”. EclipseCon2005. 2005.

Bauer, C. e King, G.
Publications. 2004.

“Hibernate in Action”. Manning

Beck, K., Andres, C. “Extreme Programming Explained:
Embrace Change”. Addison-Wesley Professional. 2 ed. 2004.

Beydeda, S. and Gruhn V. “Model-Driven Software
Development”. Springer-Verlag New York, Inc. Secaucus. NJ.
2005.

Google BigTable. 2009. Available at:
<http://labs.google.com/papers/ bigtable-osdi06.pdf>. Last access:
02/01/2009.

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R. and Grose, T.,
J. “Eclipse Modeling Framework: A Developer's Guide”.
Addison Wesley. 2009.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal
M. “Pattern-Oriented Software Architecture: A System of
Patterns”. John Wiley and Sons. 123- 168. 1996.

Cavaness, C. “Programming Jakarta Struts, 2nd Edition”.
O’Reilly. 2 ed. 2004.

130



DAO, 2009

DI, 2005

DJANGO, 2009

DOTNET, 2009

Dresden, 2009

EC2, 2009

Eclipse, 2009

Ecore, 2009

EMF, 2009

EMF, 2009a

EMFV, 2009

Epsilon, 2009

Eriksson et al, 2003

FFIEC, 2009

Data  Access Object Pattern. 2009. Available at:
<http://java.sun.com/blueprints/corej2eepatterns/Patterns/
DataAccessObject.html>. Last access: 21/02/20009.

Object Management Group. “UML Diagram Interchange (D)
Specification”. 2005. Available at: <http://www.omg.org/ cgi-
bin/doc?ptc/2005-06-07>.

DJango. 2009. Available at: <http://www.djangoproject.com>.
Last access: 07/01/2009.

Microsoft .Net. 2009. Available at:
<http://www.microsoft.com/NET/>. Last access: 29/05/2009.

Dresden OCL Toolkit. 2009. Available at: <http://dresden-
ocl.sourceforge.net/>. Last access: 04/01/2009.

Amazon Elastic Compute Cloud (Amazon EC2). 2009. Available
at: <http://aws.amazon.com/ec2/>. Last access: 05/03/20009.

Eclipse Project. 2009. Available at: <http://www.eclipse.org/>.
Last access: 05/01/2009.

Ecore. 20009. Available at:
<http://help.eclipse.org/help33/index.jsp?
topic=/org.eclipse.emf.doc/references/javadoc/org/eclipse/
emf/ecore/package-summary.html>. Last access: 25/04/2009.

Eclipse  Modeling  Framework.  2009.  Available at:
<http://mwww.eclipse.org/modeling/emf/>. Last access: 07/08/20009.

The Eclipse Modeling Framework (EMF) Overview. Available at:
<http://help.eclipse.org/ganymede/index.jsp?topic=/
org.eclipse.emf.doc/references/overview/EMF.html>. Last access:
20/03/2009.

The Eclipse Modeling Framework (EMF) Validation Framework
Overview. 2009. Available at: <http://help.eclipse.org/ganymede/
topic/org.eclipse.emf.doc/references/overview/
EMF.Validation.html>. Last access: 04/01/2009.

Epsilon. 20009. Available at:
<httpr://www.eclipse.org/gmt/epsilon/>. Last access: 14/03/20009.

Eriksson, H. E., Penker, M., Lyons, B. And Fado, D. “UML 2
Toolkit”. Wiley Computer Publishing. 2003.

“Software Development Techniques”. 2009. Available at:
<http://www.ffiec.gov/ffiecinfobase/booklets/d_a/10.html>. Last
access: 31/06/2009.

131



Fowler and Stanwick,
2004

Frankel and Parodi,
2002

GACC, 2009

GAE, 2009

GAE, 2009a

GAEJRE, 2009

Gamma et al, 1994

GApps, 2009

GFS, 2009

GoogleP, 2009
Gross, 2004

JAVA, 2009

JDO, 2009

JPA, 2009

JSON, 2009

Kermeta, 2009

Fowler, S. e Stanwick, V. “Web Application Design Handbook:
Best Practices for Web-Based Software”. Morgan Kaufmann
Publishers. 2004.

Fowler, S. e Stanwick, V. “Web Application Design Handbook:
Best Practices for Web-Based Software”. Morgan Kaufmann
Publishers. 2004.

Google Account API. 2009. Available at:
<http://code.google.com/apis/accounts>. Last access: 02/01/2009.

Google App Engine. 2009. Available at:
<http://code.google.com/appengine/>. Last access: 05/03/2009.

Google App Engine SDK for Java v.1.2.2. 2009. Available at:
<http://code.google.com/appengine/downloads.html>. Last access:
13/07/20009.

The GAE JRE Class White List. Available at:
<http://code.google.com/intl/en/appengine/docs/java/jrewhitelist.h
tml>. Last access: 29/05/2009.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. M. “Design
Patterns: Elements of Reusable Object-Oriented Software”.
Addison-Wesley Professional. 1994.

Google App. 2009. Available at:
<http://www.google.com/apps/intl/en/business/index.html>.  Last
access: 03/01/2009.

Google File System. 2009. Available at: <http://code.google.com/
p/google-gears/wiki/FileSystemAPI>. Last access: 02/01/2009.

Google Plug-in for Eclipse. 2009. Available at:
<http://code.google.com/eclipse/>. Last access: 13/07/2009.
Gross, H. G. “Component-Based Software Testing with UML".
Springer. 1 ed. 2004.

Java. 2009. Available at: <http://www.java.com>. Last access:
21/05/2009.

Java Data  Objects (JDO). 2009. Available at:
<http://java.sun.com/jdo/>. Last access: 21/05/2009.

Java Persistence API (JPA). Available at:
<http://java.sun.com/javaee/technologies/persistence.jsp>. Last
access: 21/05/2009.

JavaScript Object Notation (JSON). 2009. Available at:
<http://www.json.org/>. Last access: 04/01/20009.

Kermeta. 2009. Available at: <http://www.kermeta.org/>. Last
access: 04/01/2009.

132



Kock, 2007

Kolovos et al, 2006

Kolovos et al, 2008

Kruchten, 2003

Leff and Rayfield,
2001

Levitt, 2009

Lewandowski, 1998

Luoma et al, 2004

Lutz, 2006

Marinho et al, 2009

Marinho, 2009

MDR, 2009

Mendes and Moses,
2006

MOF, 2006

Kock, N (ed.). “Information Systems Action Research”.
Integrated Series in Information Systems, Springer, New York.
2007.

Kolovos, D. S., Paige, R. F. and Polack, F. A. C. “Eclipse
Development Tools for Epsilon”. Eclipse Summit Europe. 2006.

Kolovos, D., Paige, R., Rose, L. and Polack, P. “The Epsilon
Book”. 2008. Available at:
<http://www.eclipse.org/gmt/epsilon/doc/book/>.

Kruchten, P. “The Rational Unified Process: An Introduction”.
Addison-Wesley Professional. 3 ed. 2003.

Leff, A. e Rayfield, J. T. “Web-Application Development Using
the Model/View/Controller Design Patter”. Proc. IEEE
International  Enterprise  Distributed  Object  Computing
Conference. IEEE. 2001.

Leavitt, N. “Is Cloud Computing Really Ready for Prime
Time”. Innovative Technology for Computer Professionals. 2009

Lewandowski S. C. “Frameworks for Component-Based
Client/Server Computing”. ACM Computing Surveys. 1998.

Luoma, J., Kelly, S., and Tolvanen, J.-P. “Defining Domain-
Specific Modeling Languages - Collected Experiences”. 4th
Object-Oriented  Programming  Systems, Languages, and
Applications Workshop on Domain-Specific Modeling (OOPSLA
2004). 2004.

Lutz, M. “Programming Python”. O’Reilly. 3 ed. 2006.

Marinho, W. A. T., Machado, B. B., Pereira, F. M. and Robin, J.
P. L. “Um Framework UML2 para Modelagem de Aplicacdes
Web dentro de um Processo de Engenharia de Software
Dirigido por Modelos e Baseado em Componentes”. Il
Workshop de Desenvolvimento Rapido de Aplicac6es. 20009.

Marinho, W. A. T. “A Web GUI for a Multi-View Component-
Based Modeling CASE Tool”. Master Thesis (Master Degree) —
Federal University of Pernambuco, Recife, 20009.

Metadata Repository. 2009. Available at:
<http://mdr.netbeans.org/>. Last access: 01/03/2009..

Mendes, E. and Mosley, N. “Web Engineering”. Springer. 2006.

Object Management Group. “Meta-Object Facility (MOF) 2.0
Specification”. 2006. Available at:
<http://www.omg.org/spec/MOF/2.0/>.

133



OCLE, 2009

OCLMDT, 2009

Octopus, 2009

OMG, 2009

OMG, 2009a

Papyrus, 2009

PayPal, 2009

Pressman, 2009

PYMOF, 2009

PYYAML, 2009

Rodrigues, 2004

RSM, 2009

S3, 2009

SalesForce, 2009

Scanlon and Wieners,

2009

OCLE 2.0 - Object Constraint Language Environment. 2009.
Available at: <http://Ici.cs.ubbcluj.ro/ocle/index.htm>. Last
access: 04/01/2009.

Eclipse OCL MDT. 2009. Available at:
<http://www.eclipse.org/modeling/mdt/downloads/?project=ocl>.
Last access: 04/01/2009.

Octopus: OCL Tool for Precise Uml Specifications. 2009.
Available at: <http://octopus.sourceforge.net/>. Last access:
04/01/2009.

Object Management  Group. 2009.
<http://www.omg.org/>. Last access: 03/01/2009.

Object Management Group. “UML 2.0 Metamodel in Rose”.
2009. Available at: <http://www.omg.org/spec/UML/2.1.2/>. Last
access: 04/01/2009.

Papyrus UML. 2009. Available at: <http://www.papyrusuml.org/>.
Last access: 09/06/20009.

Available at:

PayPal. 2009. Available at: <http://www.paypal.com/>. Last
access: 04/01/20009.

Pressman, R. “Software Engineering: A Practitioner’s
Approach”. McGraw-Hill. 7 ed. 2009.

PYEMOF. 20009. Available at:
<http://www2.lifl.fr/~marvie/software/pyemof.html>. Last access:
15/04/20009.

PyYAML. 2009. Available at: <http://pyyaml.org>. Last access:
08/01/2009.

Rodrigues, M. G. C. “Metodologia da Pesquisa Cientifica”. Rio
de Janeiro, 2004.

IBM Rational Software Modeler. 2009. Awvailable at:
<http://www-
01.ibm.com/software/awdtools/modeler/swmodeler/>. Last access:
07/08/20009.

Amazon Simple Storage Service (Amazon S3). 2009. Available at:
<http://aws.amazon.com/s3/>. Last access: 05/03/2009.

SalesForce. 2009. Available at: <http://www.salesforce.com/>.
Last access: 04/01/2009.

Scanlon, J., H. and Wieners, B. “The Cloud Computing”.
Available at:
<http://www.thestandard.com/article/0,1902,5466,00.html>. Last
access: 05/03/2009.

134



Schwaber, 2004

SERVLET, 2009

Shklar and Rosen,
2003

SPEM, 2009

Stahl et al, 2006

Stutz et al, 2002

Subclipse, 2009

TheServerSide, 2009

Thiollent, 1986

Vinekar et al, 2006

Warmer and Kleppe,

2003

WEBOB, 2009

WebObiject, 2009

Schwaber, K. “Agile Project Management with Scrum”.
Microsoft Press. 1 ed. 2004

Java Servlet Technology. 2009.
<http://java.sun.com/products/servlet/>. Last access: 21/05/2009.

Shklar, L. and Rosen, R. “Web Application Architecture:
Principles, Protocols and Practice”. John Wiley & Sons, Ltda.
2003.

Object Management Group. “Software Process Engineering
Meta-Model, Version 2.0”. 2009. Available at:
<http://www.omg.org/technology/documents/formal/spem.htm>.
Last access: 03/01/2009.

Stahl, T., Voelter, M., Czarnecki, K. “Model-Driven Software
Development: Technology, Engineering, Management”. Wiley.
1 ed. 2006.

Stutz, C., Siedersleben, J., Kretschmer, D., Krug, “W. Analysis
Beyond UML.”. In Proceedings of the IEEE Joint International
Conference on Requirements Engineering, p.215-222, 2002.
Subclipse. 2009. Available at: <http://subclipse.tigris.org/>. Last
access: 04/01/2009.

“Post/Redirect/Get pattern for web applications”. 2008.
Available at:
<http://www.theserverside.com/patterns/thread.tss?thread_id=209
36>. Last access 02/03/2009.

Thiollent, M. “Metodologia da pesquisa-a¢do”. Sdo Paulo,
Cortez, 1986.

Vinekar, V., Slinkman, C. W., Nerur, S. “Can Agile and
Traditional Systems Development Approaches Coexist? An
Ambidextrous View”. Information System Management, Volume
3, Issue 3. 2006.

Warmer, J., Kleppe, A. “The Object Constraint Language:
Getting Your Models Ready for MDA”. Addison Wesley. 2 ed.
2003.

WebOb. 2009. Available at: <http://pythonpaste.org/webob>. Last
access: 08/01/2009.

“WebObjects Web Applications Programming Guide: How
Web  Applications  Work”. 2009. Available at:
<http://developer.apple.com/documentation/WebObjects/
Web_Applications/ Articles/1_Architecture.html>. Last access:
03/03/2009.

135



XMl, 2007

XML, 2009

Y !Maps, 2009

Yousef et al, 2008

Object Management Group. “XML Metadata Interchange
(XM), v2.1.1”. 2007. Available at: <http://www.omg.org/
technology/documents/formal/xmi.htm>.

Extensible Markup Language (XML). 2009. Available at:
<http://www.w3.0org/XML/>. Last access: 04/01/20009.

Yahoo! Local Maps. 20009. Available at:
<http://maps.yahoo.com/>. Last access: 04/01/20009.

Youseff, L., Butrico, M. and Silva, D. “Toward a Unified
Ontology of Cloud Computing”. Grid Computing Environments
Workshop. 2008.

136



APPENDIX A

SURVEY: WAKAME
EVALUATION

1)

2)

3)

4)

What is your education level?
1 Undergraduate Student

1 Master Student

71 PhD. Student

(1 PhD. Holder

How familiar are you with IBM RSM (Rational Software Modeler)?
11. Never used.

[12. Used a few times.

[13. Several months of self-taught use.

(4. 1 am a trained expert.

How familiar are you with WAKAME?
711. Never used.

[12. Used a few times.

] 3. Several months of self-taught use.

(4.1 am a trained expert

How would you assess RSM in terms of:
A: Availability:
Availability and ease of installation?

1a. Excellent, [ b. Good enough, (1 c. Sub-par, [1 d. Dismal.

Ease to set up environment for teamwork on same model?

1a. Excellent, [ b. Good enough, (1 c. Sub-par, [1d. Dismal.

B: Performance:
Start-up time?
137



1a. Excellent, [ b. Good enough, [ c. Sub-par, [1d. Dismal.

Upload and download time from and to persistent medium?

1a. Excellent, [ b. Good enough, 1 c. Sub-par, [1d. Dismal.

Resource consumption (RAM, CPU, network bandwidth)
] a. Excellent, [ b. Good enough, [1 c. Sub-par, [1 d. Dismal.

C: Ease of use:
Number of menus to go through to start drawing models?

1a. Excellent, [1b. Good enough, 1 c. Sub-par, [1d. Dismal.

Number of actions (clicks, go to pane, fill up fields, etc.) needed to add a model
element or property?

1a. Excellent, [ b. Good enough, [ c. Sub-par, [1d. Dismal.

Number of features on the screen that you don't understand and need?

1a. Excellent, [1b. Good enough, 1 c. Sub-par, [1d. Dismal.

Ease of navigation between various diagrams of the same model?

] a. Excellent, [ b. Good enough, [ c. Sub-par, [1d. Dismal.

Ease of previously created model elements for inclusion in current diagram?

1a. Excellent, [ b. Good enough, (1 c. Sub-par, [1 d. Dismal.

Ease of drag and drop elements between diagrams?

1a. Excellent, [ b. Good enough, (1 c. Sub-par, [1d. Dismal.

Overall modeling speed?

1a. Excellent, [1b. Good enough, 1 c. Sub-par, [1d. Dismal.

D: Diagram layout control and legibility:
Ease to change diagram layout (boxes and links) according to your wishes?
1a. Excellent, [ b. Good enough, [ c. Sub-par, [1d. Dismal.

Legibility of automatically re-laid-out functionality (after change)?

1a. Excellent, [ b. Good enough, 1 c. Sub-par, [1d. Dismal.
Maximum size of diagramming area?

138



5)

1a. Excellent, [ b. Good enough, [ c. Sub-par, [1d. Dismal.

Ease of undoing changes:

1a. Excellent, [ b. Good enough, 1 c. Sub-par, [1d. Dismal.

E: Standard compliance:
Metamodel non-conformance detection?

1a. Excellent, [ b. Good enough, (1 c. Sub-par, [1d. Dismal.

Helpfulness of warning messages?

1a. Excellent, [ b. Good enough, 1 c. Sub-par, [1d. Dismal.

Enforced coherence between several diagrams of the same model?

1a. Excellent, [1b. Good enough, (1 c. Sub-par, [1d. Dismal.

Ease of introducing process-specific constraints on models?

1a. Excellent, [ b. Good enough, (1 c. Sub-par, [1 d. Dismal.

How would you assess WAKAME in terms of:
A: Availability:
Availability and ease of installation?

1a. Excellent, [ b. Good enough, [ c. Sub-par, [1d. Dismal.

Ease to set up environment for teamwork on same model?

1a. Excellent, [ b. Good enough, 1 c. Sub-par, [1d. Dismal.

B: Performance:
Start-up time?

1a. Excellent, [ b. Good enough, [ c. Sub-par, [1d. Dismal.

Upload and download time from and to persistent medium?

1a. Excellent, [ b. Good enough, 1 c. Sub-par, [1d. Dismal.

Resource consumption (RAM, CPU, network bandwidth)
] a. Excellent, [ b. Good enough, [1 c. Sub-par, [] d. Dismal.

C: Ease of use:
Number of menus to go through to start drawing models?

1a. Excellent, [ b. Good enough, 1 c. Sub-par, [1d. Dismal.
139



Number of actions (clicks, go to pane, fill up fields, etc.) needed to add a model
element or property?

1a. Excellent, [ b. Good enough, [ c. Sub-par, [1d. Dismal.

Number of features on the screen that you don't understand and need?

1a. Excellent, [ b. Good enough, 1 c. Sub-par, [1d. Dismal.

Ease of navigation between various diagrams of the same model?

] a. Excellent, [ b. Good enough, [ c. Sub-par, [] d. Dismal.

Ease of previously created model elements for inclusion in current diagram?

1a. Excellent, [ b. Good enough, (1 ¢. Sub-par, [1 d. Dismal.

Ease of drag and drop elements between diagrams?

1a. Excellent, [ b. Good enough, [ c. Sub-par, [1d. Dismal.

Overall modeling speed?

1a. Excellent, [ b. Good enough, 1 c. Sub-par, [1d. Dismal.

D: Diagram layout control and legibility:
Ease to change diagram layout (boxes and links) according to your wishes?

1a. Excellent, [ b. Good enough, (1 c. Sub-par, [1d. Dismal.

Legibility of automatically re-laid-out functionality (after change)?

1a. Excellent, [ b. Good enough, 1 c. Sub-par, [1d. Dismal.

Maximum size of diagramming area?

] a. Excellent, [ b. Good enough, [ c. Sub-par, [1 d. Dismal.

Ease of undoing changes:

1a. Excellent, [ b. Good enough, (1 c. Sub-par, [1 d. Dismal.

E: Standard compliance:
Metamodel non-conformance detection?

] a. Excellent, [ b. Good enough, [ c. Sub-par, [1 d. Dismal.

Helpfulness of warning messages?

1 a. Excellent, [ b. Good enough, (1 ¢. Sub-par, [1 d. Dismal.

Enforced coherence between several diagrams of the same model?
140



1a. Excellent, [ b. Good enough, [ c. Sub-par, [1d. Dismal.

Ease of introducing process-specific constraints on models?

1a. Excellent, [ b. Good enough, 1 c. Sub-par, [1d. Dismal.

141



Dissertacao de Mestrado apresentada por Breno Batista Machado Pés-Graduagio em
Ciéncia da Computacio do Centro de Informatica da Universidade Federal de
Pernambuco, sob o titulo “A Cloud Deployed Repository for a Multi-View
Component-Based Modeling CASE Too”, orientada pelo Prof. Jacques Pierre Louis

Robin e aprovada pela Banca Examinadora formada pelog professores:

Prof. Jacques Wis obi
Centro de Inforpdtica / UFPE
et

Prof. Hindiik Keixe' a Ramos
— Depto. de Ciéntia dg Computagio e Estatistica / UFS
C Q\.\
Profzﬁna isti iller
Departamento de Estatistica ¢ Informati B

Visto e permitida a impressao.
Recife, 31 de agosto de 2009.

i ; ’
\_;JLQS\!W”\ A \u_‘::U’\/\.k\y Thgyo
Prof. Nelson Souto Rosa

Vice-Coordenador da Pés-Graduacio em Ciéncia da Computagio do
Centro de Informdtica da Universidade Federal de Pernambuco.




Livros Gratis

( http://www.livrosgratis.com.br )

Milhares de Livros para Download:

Baixar livros de Administracao

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciéncia da Computacao
Baixar livros de Ciéncia da Informacéo
Baixar livros de Ciéncia Politica

Baixar livros de Ciéncias da Saude
Baixar livros de Comunicacao

Baixar livros do Conselho Nacional de Educacdo - CNE
Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos
Baixar livros de Economia

Baixar livros de Economia Doméstica
Baixar livros de Educacao

Baixar livros de Educacdo - Transito
Baixar livros de Educacao Fisica

Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmacia

Baixar livros de Filosofia

Baixar livros de Fisica

Baixar livros de Geociéncias

Baixar livros de Geografia

Baixar livros de Histdria

Baixar livros de Linguas



http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1

Baixar livros de Literatura

Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matematica

Baixar livros de Medicina

Baixar livros de Medicina Veterinaria
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Musica

Baixar livros de Psicologia

Baixar livros de Quimica

Baixar livros de Saude Coletiva
Baixar livros de Servico Social
Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo



http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1

