DETERMINAÇÃO DA MAIOR INTENSIDADE DE ESFORÇO ONDE O CONSUMO MÁXIMO DE OXIGÊNIO É ATINGIDO DURANTE O CICLISMO: INFLUÊNCIA DO ESTADO E ESPECIFICIDADE DO TREINAMENTO AERÓBIO.

FABRIZIO CAPUTO

Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutor em Ciências da Motricidade (Área de Biodinâmica da Motricidade Humana).

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

DETERMINAÇÃO DA MAIOR INTENSIDADE DE ESFORÇO ONDE O CONSUMO MÁXIMO DE OXIGÊNIO É ATINGIDO DURANTE O CICLISMO: INFLUÊNCIA DO ESTADO E ESPECIFICIDADE DO TREINAMENTO AERÓBIO

FABRIZIO CAPUTO

Orientador: Prof. Dr. BENEDITO SÉRGIO DENADAI

Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutor em Ciências da Motricidade (Área de Biodinâmica da Motricidade Humana).

DEDICATÓRIA

Dedico este trabalho aos meus Pais, Italo e Ondina, que apesar de todas as dificuldades, sempre com muito amor e carinho se sacrificaram para que eu conseguisse chegar até aqui e à Mariana, meu amor, que sempre esteve presente e me apoiou nos momentos mais difíceis dessa jornada. Amo muito vocês, muito obrigado!

AGRADECIMENTOS

À Mariana por me ajudar de maneira imprescindível na realização deste trabalho, por me aguentar todo esse tempo, por todo seu carinho amor e dedicação.

Ao meu orientador Prof. Dr. Benedito Sérgio Denadai, pelo importante papel no meu desenvolvimento acadêmico ao longo desses anos de convivência, pela confiança, motivação e principalmente a amizade.

À minha irmã Giuliana, obrigado por tudo.

Ao Meião, à Rita, Belinha e ao Pedrinho, obrigado por todo o carinho, ajuda, preocupação, e pela Nana também.

À amiga Camila, um espírito iluminado, uma lição de vida...

Ao Prof. Dr. Marco Túlio de Mello por ajudar no desenvolvimento deste trabalho.

Ao Harry B Rossiter, PhD, pelas grandes contribuições feitas a respeito do tratamento e ajuste dos dados.

À família Calis, em especial a Margarida, Lauro, Michel e Michele, obrigado por todo o carinho e preocupação.

Ao amigo Ricardo, pelo incentivo inicial pela área científica, e pela boa amizade ao longo desses anos paulistas da minha vida.

Aos amigos de todas as horas Carlos Eduardo, Bola, Runer, Highlander, Tiago, obrigado pela força.

À família Caritá, Dona Sirlei, Bigode e o Juninho, obrigado pelo carinho e preocupação.

A todo o pessoal da casinha (CEPE) e 9º andar, em especial ao Serginho, Hanna, Andréa, Kbça, Marcelo, Marquinho, Sheila e Aniela.

Ao Estevam, muito obrigado pela força e por ceder seus atletas.

Ao China e ao Beto do Laboratório.

À FAPESP pelo apoio financeiro.

À todos os (as) funcionários (as) da pós-graduação, biblioteca e xerox.

À Mila, ao Ted e todos os seus amigos, Nina, Miloca, Rikson, João, Raika, Moly, July e a nova integrante Sofia.

Aos técnicos Fumaça e Tavares por gentilmente cederem seus atletas.

Ao Chevetão *Adventure*, por todas as nossas aventuras juntos... Vou sentir saudades

À todos os amigos (não vou citar nomes para não esquecer ninguém) que direta ou indiretamente ajudaram na realização deste trabalho, e muito, mas muito, além disso, por deixarem à vida muito mais alegre e divertida!!!!

À todos os voluntários e atletas que participaram deste estudo, que tanto se sacrificam para treinarem e serem reconhecidos, neste país do futebol (o protesto parte II, um dia serão ouvidos).

APOIO FINANCEIRO

PROCESSO Nº: 03/08920-9

RESUMO

Os principais objetivos deste estudo foram: 1) Determinar e comparar em cicloergômetro a cinética do consumo de oxigênio (VO₂) em intensidades do domínio severo (constante de tempo - Tau), e a maior intensidade (I_{SUP}) e o menor tempo de exercício (T_{SUP}) onde o VO₂max pode ser alcançado, em ciclistas (CIC), corredores (COR) e indivíduos sem treinamento (ST); 2) Verificar a validade de um modelo para estimar indiretamente a I_{SUP} (I_{SUP}') e T_{SUP} (T_{SUP}'). Onze COR, quinze CIC e dez ST realizaram em dias diferentes os seguintes testes: 1) teste incremental para determinação do VO₂max e da intensidade correspondente ao VO₂max (IVO₂max); 2) Testes de cargas constantes realizados aleatoriamente a 95, 100 e 110%IVO₂max, para determinar o tempo de exaustão (Tlim), Tau, I_{SUP}' e T_{SUP}'; 3) 2 a 4 testes de carga constante onde a intensidade foi aumentada ou diminuída até que o VO₂max não pudesse ser atingido para determinação da I_{SUP} e T_{SUP}. O tempo para atingir o VO₂max (TAVO₂max) foi calculado através de um modelo de ajuste mono-exponencial assumindo um valor de 4,6 vezes o Tau. O T_{SUP}' foi estimado individualmente através da regressão linear entre os TAVO₂max e seus respectivos Tlim. A I_{SUP}' foi estimada através do modelo hiperbólico de potência critica. A I_{SUP} foi considerada como a maior intensidade onde a média do VO₂ de três valores consecutivos de 5 s foi maior ou igual à média do VO₂max obtidos nos testes incremental e de carga constante menos um desvio padrão. O T_{SUP} foi considerado como o Tlim associado à I_{SUP}. Os valores de VO₂max (ml·kg⁻¹·min⁻¹) (ST = 42.2 ± 4.0 ; COR = 54.6 ± 5.5 ; CIC = 64.5 ± 6.4) foram significativamente diferentes entre os grupos. O T_{SUP} e o Tau (todas as intensidades) foram semelhantes entre COR e ST e ambos maiores em relação ao CIC. A I_{SUP} (W) foi semelhante entre ST e COR e ambos menores em relação ao CIC. Apenas nos ST e COR a I_{SUP}' (W) foi semelhante e moderadamente correlacionada com a I_{SUP} . Pode-se concluir que o treinamento aeróbio específico acelerou o T_{SUP} e o Tau em intensidades submáximas, máximas e supramáximas dentro do domínio severo. A I_{SUP} absoluta também foi sensível apenas ao treinamento aeróbio específico. O modelo proposto apresentou uma validade moderada para determinação indireta da I_{SUP} absoluta apenas nos grupos ST e COR. Para o T_{SUP} o modelo não se mostrou válido para estimar tais variáveis.

Palavras chave: Ciclismo, consumo de oxigênio, treinamento aeróbio, especificidade, corredores.

SUMÁRIO

			Pág	gina
1.		INT	RODUÇÃO	1
2.		RE	VISÃO DE LITERATURA	5
	2.1.	Γ	Domínios de intensidade de exercício	5
	2.1	1.1.	Comportamento metabólico	5
	2.1	1.2.	Cinética do Consumo de Oxigênio (VO ₂)	9
	2.1	1.3.	Fatores limitantes e determinantes na cinética do VO ₂	. 12
	2.1	1.4.	Efeito da intensidade na cinética do VO ₂ .	. 15
	2.1	1.5.	Efeito do treinamento na cinética do VO ₂ nos domínios pesado e severo.	17
	2.2.	E	Specificidade do treinamento	. 19
	2.3.	R	Relação intensidade e tempo de exercício	. 23
3.		JUS	STIFICATIVA	. 28
4.		OB.	JETIVOS	. 30
5.		MA	TERIAL E MÉTODOS	. 31
	5.1.	S	ujeitos	. 31
	5.2.	P	rocedimento Experimental	. 31
•	5.3.	Г	Determinação do VO ₂ max, da IVO ₂ max, do LL e do OBLA	. 32
	5.4.	Г	Determinação do Tlim a 95%, 100% e 110% do IVO ₂ max	. 33
	5.5.	Г	Determinação da Potência Critica (PC)	. 34
	5.6.	Г	Determinação da I _{SUP}	. 34
	5.7.	Г	Determinação do lactato sanguíneo	. 36
	5.8.	A	análise estatística	. 36
6.		RES	SULTADOS	. 37

7.	DISCUSSÃO	49
7.1.	Efeito do estado e especificidade do treinamento nos índices de aptid	lão
aerd	óbia, Tlim e cinética do VO ₂ .	49
7.2.	Efeito do estado e especificidade do treinamento na I_{SUP} e T_{SUP}	55
7.3.	Validade do modelo de predição da I_{SUP} e T_{SUP}	57
7.4.	Efeito do estado e especificidade do treinamento nos diferentes domí	ínios de
exe	rcício	60
8.	CONCLUSÃO	63
9.	REFERÊNCIAS BIBLIOGRÁFICAS	65
10.	ABSTRACT	76
11.	APÊNDICE I	78
12.	APÊNDICE II	80

LISTA DE ABREVIATURAS

A – Amplitude

Acl- Amplitude do consumo de oxigênio no componente lento

Acr- Amplitude do consumo de oxigênio no componente rápido

Ap- Amplitude do consumo de oxigênio na fase pulmonar

ATP – Trifosfato de adenosina

CIC – Ciclistas.

COR - Corredores.

CP – Creatina fosfato

CTA – Capacidade de trabalho anaeróbio.

FC – Frequência cardíaca.

FCmax – Frequência cardíaca máxima.

FCpico – Frequência cardíaca pico.

FIO₂ – Fração inspirada de oxigênio.

H⁺ - Prótons de hidrogênio.

 I_{SUP} - Maior intensidade onde o consumo máximo de oxigênio ainda pode ser atingido.

I_{SUP}' – Estimativa indireta da I_{SUP}

IVO₂max – Intensidade referente ao consumo máximo de oxigênio.

[LAC]pico – Concentração pico de lactato sanguíneo

LAn – Limiar Anaeróbio.

LB - Linha de Base

LL – Limiar de lactato.

LV – Limiar Ventilatório.

MLACSS - Máxima fase estável de lactato sanguíneo.

 O_2 – Oxigênio.

OBLA – início de acúmulo de lactato no sangue (onset of blood lactate accumulation).

P – Potência

PC – Potência crítica

Q – Fluxo sanguíneo.

QO₂ – Consumo muscular de oxigênio.

Q_{perna} – Fluxo sanguíneo da perna.

ST – Indivíduos sem treinamento.

TA - tempo para atingir um dado componente ou uma estabilidade no VO₂

TAcl – tempo para atingir o componente lento

TAcr- tempo para atingir o componente rápido

TAVO₂max – Tempo para atingir o consumo máximo de oxigênio.

Tau – Constante tempo da cinética do consumo de oxigênio

τ - Constante tempo da cinética do consumo de oxigênio

Tau cl- Constante de tempo do componente lento

Tau cr- Constante de tempo do componente rápido

Tlim – Tempo limite.

TMVO₂max – Tempo de manutenção do consumo máximo de oxigênio.

T_{SUP} – Menor tempo de exercício onde o consumo máximo de oxigênio ainda pode ser atingido.

T_{SUP}' – Estimativa indireta do T_{SUP}.

VCO₂ – Produção de gás carbônico.

VE – Ventilação pulmonar.

VO₂ – Consumo de oxigênio.

VO₂max – Consumo máximo de oxigênio.

W-Watts

 $W \cdot kg^{\text{-1}}$ - Watts relativo à massa corporal

LISTA DE TABELAS

TABELA 1 - Valores médios \pm DP das características dos sujeitos referentes aos
grupos: sem treinamento (ST), corredores (COR) e ciclistas
(CIC)
TABELA 2 - Valores médios ± DP das variáveis máximas obtidas no teste incremental
realizado no cicloergômetro dos grupos: sem treinamento (ST), corredores (COR) e
ciclistas (CIC)
TABELA 3 - Valores médios ± DP das variáveis submáximas obtidas no teste
incremental realizado no cicloergômetro dos grupos: sem treinamento (ST), corredores
(COR) e ciclistas (CIC)
TABELA 4 - Valores médios ± DP das variáveis obtidas durante os testes de carga
constante a 95, 100 e 110% da intensidade correspondente ao consumo máximo de
oxigênio (IVO ₂ max) dos grupos: sem treinamento (ST), corredores (COR) e ciclistas
(CIC)
TABELA 5 - Valores médios ± DP das variáveis relacionadas com a maior intensidade
onde o VO_2 max ainda pode ser atingido (I_{SUP}) e das amplitudes dos diferentes domínios
de intensidade para os grupos: sem treinamento (ST), corredores (COR) e ciclistas
(CIC)
TABELA 6 - Valores médios <u>+</u> DP das variáveis relacionadas com a maior intensidade
onde o VO ₂ max ainda pode ser atingido (I _{SUP} e T _{SUP}), determinados de forma direta e
estimados para os grupos: sem treinamento (ST), corredores (COR) e ciclistas (CIC). 45
TABELA 7 – Valores médios ± DP dos valores máximos do VO ₂ obtidos nos diferentes
testes para os grupos: sem treinamento (ST), corredores (COR) e ciclistas (CIC)48

LISTA DE FIGURAS

FIGURA 1 - Cinética do consumo de oxigênio (VO ₂) e do lactato sanguíneo nos
domínios moderado, pesado e severo (abaixo do VO2max). A área sombreada
corresponde ao componente lento do consumo de oxigênio
FIGURA 2 - Cinética do consumo de oxigênio e do lactato sanguíneo no domínio
severo para exercícios realizados a 100% e 120%VO ₂ max
FIGURA 3 - Parâmetros utilizados para descrever a cinética do VO ₂ , em um modelo
mono-exponencial (painel superior) bi-exponencial (painel central) e tri-exponencial
(painel inferior)
FIGURA 4 – Determinação da potência critica (PC) e da capacidade de trabalho
anaeróbio (CTA) de acordo com o modelo hiperbólico potência versus
tempo
FIGURA 5 - Dados representativos de um sujeito do grupo ciclista (superior) e um do
grupo sem treinamento (inferior) para a estimativa do T _{SUP} '. No painel da superior,
através do TAVO2max expresso como função do Tlim, é possível estimar um único
Tlim, no qual o VO ₂ max é alcançado ao instante da exaustão (Tsup'), i.e., TAVO ₂ max
= Tlim. No painel inferior, a inclinação da regressão linear foi muito elevada fazendo
com que a mesma não cruzasse a linha de identidade
FIGURA 6 - Valores médios dos diferentes domínios de intensidade de exercício
expressos relativos à intensidade correspondente ao consumo máximo de oxigênio
(IVO ₂ max)
FIGURA 7 - Diagrama de Bland-Altman comparando a maior intensidade onde o
VO ₂ max ainda pode ser atingido determinada diretamente (I _{SUP}) e estimada (I _{SUP} ') nas

figuras da d	ireita, e o te	empo associa	do à I _{SUP} o	determin	ado di	iretamente (T _S	UP) e estimado
(T _{SUP} ') nas	figuras d	la esquerda	para os	grupos	sem	treinamento,	corredores e
ciclistas							46

1. INTRODUÇÃO

Os efeitos do exercício sobre o sistema cardiorrespiratório estão entre os mais interessantes tópicos da fisiologia do exercício. Um dos componentes dessa resposta cardiorrespiratória mediante ao desafio do exercício, é o rápido e concomitante aumento no fluxo sanguíneo (Q) e do consumo de oxigênio (VO₂), para atender ao aumento da demanda metabólica. Em exercícios moderados (i.e. abaixo do limiar de lactato - LL) o VO₂ aumenta mono-exponencialmente, alcançando um novo estado estável dentro de 2-3 min. Já em intensidades de esforços correspondentes ao domínio pesado (> LL) o VO₂ eleva-se bi-exponencialmente, existindo o aparecimento de um segundo componente (componente lento), atrasando o atendimento do novo estado estável (15 a 20 min), apresentando um valor que é maior daquele predito pela relação VO₂ vs. intensidade. Para o domínio severo (i.e. acima da máxima fase estável de lactato ou potência crítica) o VO₂ aumenta progressivamente de maneira bi-exponencial (intensidades abaixo do consumo máximo de oxigênio - VO₂max) ou é projetado exponencialmente (na intensidade correspondente ao VO₂max ou acima), atingindo seus valores máximos ao final do exercício (HILL et al., 2002).

O domínio severo tem sido caracterizado por demonstrar intensidades nas quais o VO₂max pode ser atingido e sustentado. A literatura tem demonstrado que a potência critica (PC), como inicialmente proposto por Gaesser e Poole (1996), seria de

fato o limite inferior do domínio severo. Diversos estudos confirmam essa hipótese, uma vez que durante exercícios realizados na PC o VO2 não atingiu seus valores máximos (HILL et al., 2002), e em muitos casos, apresentando ainda um valor estável (POOLE et al., 1988). Entretanto, quando se exercita um pouco acima da PC (5 – 10%) o VO₂max pôde ser alcançado (HILL et al., 2002). Desta forma, irão existir diversas intensidades na qual o VO₂max pode ser atingido, uma vez que a PC apresenta valores em torno de 70-95% VO₂max dependendo do estado de treinamento aeróbio. Porém, um aspecto que não tem sido questionado, e talvez de grande importância, seria a determinação da maior intensidade na qual o VO₂max ainda pode ser alcançado (I_{SUP}). Esta seria, portanto, a mais alta intensidade ou estímulo capaz de permitir que o sistema aeróbio atinja sua potência máxima, e possivelmente um "limite superior" para o domínio severo. Recentemente, Hill et al. (2002) propuseram um modelo matemático para identificar indiretamente esta possível intensidade em que o VO₂max é atingido imediatamente ao final do exercício (I_{SUP}'). Neste estudo, a intensidade correspondeu a 136% da intensidade referente ao VO₂max (IVO₂max). Porém, os autores não validaram diretamente esta intensidade, não podendo desta forma, verificar se realmente a I_{SUP}' corresponderia à I_{SUP}.

Um importante fator que pode determinar a I_{SUP} e o tempo associado a ela, seria a velocidade da cinética do VO₂. Se o tempo para atingir o VO₂max é determinado pela velocidade da cinética de VO₂, então indivíduos com uma cinética mais rápida, atingiriam o VO₂max mais rapidamente e, consequentemente, precisariam de um menor tempo de exaustão. Alguns estudos têm demonstrado que indivíduos com menor aptidão aeróbia, têm uma cinética do VO₂ mais lenta, tanto para exercícios realizados em intensidades máximas (CAPUTO, DENADAI, 2004) e submáximas

(CHILIBECK et al., 1996). Portanto, indivíduos com menor aptidão aeróbia, precisarão de mais tempo para atingir o VO₂max e provavelmente de uma menor intensidade relativa de esforço. Ao contrário, para os indivíduos de maior aptidão, a intensidade relativa (%VO₂max) correspondente a essa rápida cinética do VO₂ ou curto tempo de exaustão deverá ser bem elevada. Entretanto, vale a pena ressaltar, que a relação intensidade vs. tempo de exaustão apresenta uma grande variação intra e interindividual (BILLAT, KORALSZTEIN, 1996).

Em relação ao limite superior do domínio pesado, existe uma grande diferença de amplitude entre indivíduos treinados e não treinados (PC = 70-90% VO₂max), mas apesar dessas diferenças, o modelo da PC parece descriminar tais diferenças, e realmente determinar o limite superior do domínio pesado, ou a intensidade na qual acima desta (PC) o VO₂max pode ser alcançado (POOLE et al., 1988; HILL et al., 2002). Porém, ainda não foi testado se o modelo utilizado por Hill et al. (2002) para determinar o "limite superior" do domínio severo, é capaz de descriminar tais diferenças, e de fato, determinar a maior intensidade onde o VO₂max é atingido ao instante da fadiga.

Na prática, a determinação de uma intensidade de exercício que possa ser ao mesmo tempo bastante elevada e ainda suficiente para estimular ao máximo o sistema aeróbio, pode ser de extrema importância na tentativa de obter melhoras tanto no VO₂max como na IVO₂max, principalmente em atletas de endurance altamente treinados. Estudos recentes reforçam essa idéia, indicando a necessidade da inclusão de sessões (1 a 2 por semana) de treinamento intervalado de alta intensidade, para que tais atletas consigam obter melhoras de performance aeróbia (DENADAI et al., 2003). Além disso, o tempo máximo de exercício e as respostas fisiológicas associadas a esta

intensidade podem também ser utilizados para a elaboração de maneira individualizada dos estímulos de um treinamento intervalado de alta intensidade. Com isso, este estudo teve o intuito de analisar de maneira transversal os efeitos do estado e especificidade do treinamento aeróbio sobre; os índices de aptidão aeróbia; o tempo máximo de exercício e cinética do VO_2 em intensidades do domínio severo (95% 100% e 110% da IVO_2 max); e a I_{SUP} e o T_{SUP} .

2. REVISÃO DE LITERATURA

2.1. Domínios de intensidade de exercício

2.1.1. Comportamento metabólico

Gaesser e Poole (1996) e, mais recentemente, Hill et al. (2002) têm proposto um modelo onde as intensidades de esforço podem ser divididas em três diferentes domínios: moderado, pesado e severo (FIGURA 1). Neste modelo, baseados em uma série de estudos, os autores propõem que o domínio moderado compreende todas as intensidades de esforço que podem ser realizadas sem a modificação do lactato sanguíneo em relação aos valores de repouso, isto é, abaixo do LL. Para intensidades do domínio moderado, as variáveis metabólicas estabilizam-se rapidamente após o período de transição (1-3 min), e a duração do exercício poderá ser limitada por diversos fatores tais como, depleção de substratos (glicogênio muscular e hepático), desequilíbrio hídrico e eletrolítico ou pela termorregulação.

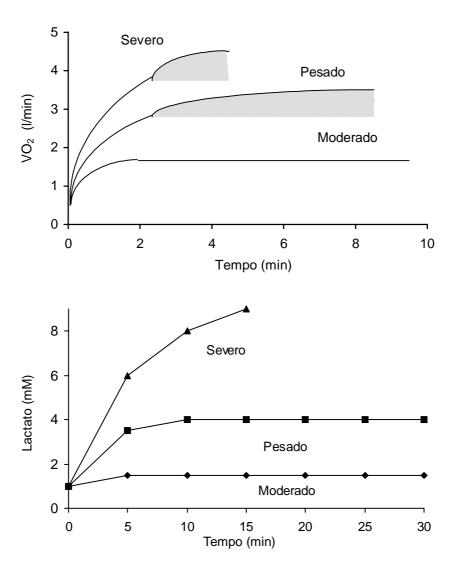


FIGURA 1 - Cinética do consumo de oxigênio (VO₂) e do lactato sanguíneo nos domínios moderado, pesado e severo (abaixo do VO₂max). A área sombreada corresponde ao componente lento do consumo de oxigênio. Adaptado de Gaesser e Poole (1996).

O domínio pesado começa a partir da menor intensidade de esforço onde o lactato se eleva e tem como limite superior a intensidade correspondente à máxima fase estável de lactato (MLACSS) ou a PC. O exercício realizado no domínio pesado ainda permite que variáveis metabólicas alcancem níveis estáveis em poucos minutos após o início do exercício ou em aproximadamente 15-20 min (dependendo da

intensidade). Estas cargas de trabalho induzem um aumento notório do lactato em relação aos valores de repouso, fazendo com que o equilíbrio entre a produção e a remoção ocorra em uma concentração mais elevada de lactato sanguíneo. Parece ocorrer uma perda de eficiência metabólica, fazendo com que o VO₂ apresente um valor maior daquele predito pela relação sub-LL entre o VO₂ e a intensidade (aparecimento do componente lento do VO₂). Apesar do maior estresse metabólico, o organismo ainda é capaz de manter seu equilíbrio possibilitando que o exercício possa ser realizado por um período prolongado. Nestas intensidades de exercício, a sua tolerância tem sido fortemente ligada ao nível inicial de glicogênio muscular, com a fadiga estritamente relacionada com a depleção de glicogênio muscular.

Para o domínio severo (cujo limite inferior é a MLACSS ou PC), as estabilidades das trocas gasosas e do metabolismo não podem ser alcançadas. Especificamente, o lactato sanguíneo, a relação lactato-piruvato e [H⁺] continuam se elevando (presumidamente refletindo mudanças intramusculares), o bicarbonato diminui, e o VO₂ aumenta em direção aos valores máximos (FIGURA 2). Nessas intensidades a amplitude do componente lento é muito maior do que o verificado para as intensidades pesadas, tendo já sido referidos na literatura valores superiores a 1 l/min (XU, RHODES, 1999). Por essas razões, a tolerância ao exercício será muito reduzida, fazendo com que o tempo de exercício realizado nesta intensidade esteja relacionado com o grau/intensidade do desequilíbrio intracelular (razão entre a velocidade de produção e remoção dos metabólitos), provocada pela alta demanda muscular de ATP.

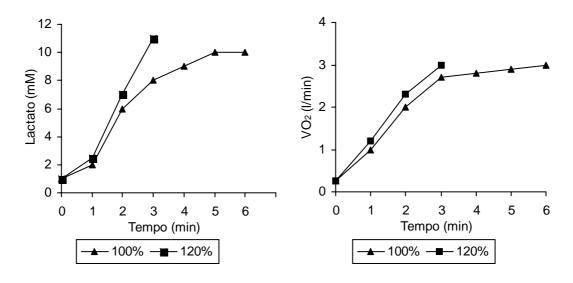


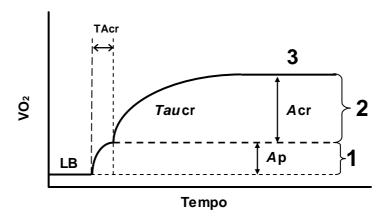
FIGURA 2 - Cinética do consumo de oxigênio e do lactato sanguíneo no domínio severo para exercícios realizados a 100% e 120% VO₂max.

Recentemente, Hill et al. (2002) propuseram que o limite superior do domínio severo seria a maior intensidade de exercício na qual o VO₂max ainda pode ser atingido. Hill et al. (2002) baseiam-se no fato de que o domínio severo é caracterizado por intensidades onde o VO₂max pode ser atingido e sustentado. Desta forma, a intensidade onde o VO₂max é atingido no momento da exaustão, seria o marcador do limite superior do domínio severo. Em seu estudo, utilizando indivíduos ativos, esta intensidade (usando um modelo teórico) correspondeu a 136 % da potência máxima atingida durante um teste incremental na bicicleta ergométrica. No entanto, existe a necessidade da validação de tal modelo, com a real determinação desta intensidade. Além disso, inúmeras pesquisas ainda se fazem necessárias para buscar subsídios físiológicos que solidifiquem a necessidade de um novo domínio de intensidade de exercício e de métodos de análises que possam ser capazes de determinar tais marcadores físiológicos de maneira válida.

2.1.2. Cinética do Consumo de Oxigênio (VO₂)

Dentro destes diferentes domínios, a cinética do VO₂ parece ser bem diferente, determinando que as análises e interpretações dos mecanismos fisiológicos sejam feitas separadamente. Com o refinamento dos equipamentos que permitem que as trocas respiratórias sejam medidas dinamicamente a cada respiração, três fases da cinética do VO₂ foram identificadas e quantificadas (WHIPP et al., 1982) (FIGURA 3):


Fase I – chamada de cardiodinâmica representa os primeiros 15 – 25 seg. de exercício, onde se sugere que a elevação no VO₂ seja primariamente devido ao aumento no trabalho cardíaco (WASSERMAN et al., 1974), e secundariamente à mudanças no conteúdo venoso de O₂ e nos estoques de gases pulmonares (BARSTOW, MOLE, 1987). Contudo, quando um marcador foi infundido na veia femoral durante um exercício submáximo (extensão de joelho), o mesmo apareceu após aproximadamente 10 s na artéria femoral. Este achado indica que durante o exercício, a transição do sangue da musculatura exercitada para o pulmão é consideravelmente menor do que 10 s, e que parte desse aumento no VO₂ pulmonar nos primeiros 20 s de exercício também representa o VO₂ da musculatura que está realizando trabalho externo (BANGSBO, 2000). Esta fase é mais notória quando a transição é feita a partir do repouso do que quando é feita a partir de uma intensidade menor para uma maior. Em alguns estudos (CASABURI et al. 1992; OZYENER et al., 2001) esta fase é geralmente excluída nos ajustes exponenciais utilizados para descrever a cinética do VO₂.


Fase II – tem sido sugerido que a fase II reflete as mudanças no metabolismo oxidativo muscular, com o contínuo aumento do retorno venoso e a maior

extração periférica de O₂. Nesta fase, dependendo do domínio analisado, o VO₂ pode apresentar um componente (rápido) ou dois componentes (rápido + lento). No domínio moderado (abaixo do LL), o VO₂ eleva-se rapidamente de maneira exponencial (componente rápido) em direção a um estado estável, que em indivíduos normais é atingido em 80 – 110 segundos. Para o domínio pesado, o VO₂ eleva-se bi-exponencialmente, existindo o aparecimento de um segundo componente (componente lento), atrasando o atendimento do novo estado estável (15 a 20 min), que apresenta um valor que é maior do que aquele predito pela relação VO₂ vs. carga. No domínio severo (acima da PC ou MLACSS), mas em intensidades abaixo do VO₂max, o VO₂ também se eleva bi-exponencialmente, com esse segundo componente direcionando o VO₂ para o seu valor máximo. Já para as intensidades correspondentes ao VO₂max ou acima deste, a cinética do VO₂ volta a apresentar um único componente, que se eleva exponencialmente até seus valores máximos e;

 $\label{eq:control_eq} Fase \ III-o \ estado \ estável \ do \ VO_2, \ para \ intensidades \ nas \ quais \ ele \ \'e$ atingido.

Na análise da cinética do VO₂, a maioria dos estudos ajusta a curva do pelo tempo de exercício com modelos exponenciais, onde os parâmetros desta curva são utilizados para descrever e analisar os possíveis fatores (intensidade e tipo de exercício, estado de treinamento, idade e patologias) que podem influenciar a cinética do VO₂ (FIGURA 3).

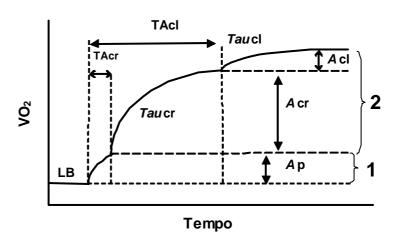


FIGURA 3 - Parâmetros utilizados para descrever a cinética do VO_2 , em um modelo mono-exponencial (painel superior), bi-exponencial (painel central) e tri-exponencial (painel inferior). LB, linha de base: A, amplitude de aumento no VO_2 ; Tau, constante de tempo (definida como o tempo requerido para atingir 63% de A); TA, tempo para atingir um dado componente ou uma estabilidade no VO_2 ; cr, componente rápido; cl, componente lento; 1, fase 1; 2, fase 2; 3, fase 3.

2.1.3. Fatores limitantes e determinantes na cinética do VO₂

Em relação ao mecanismo de controle da cinética do VO₂ no início do exercício, duas hipóteses distintas têm sido propostas. Uma sugere que a taxa de aumento na fosforilação oxidativa é limitada pela capacidade de transporte de oxigênio (convecção e difusão) para musculatura ativa. E a outra hipótese, sugere que a limitação estaria na capacidade da musculatura em utilizar o oxigênio (influenciada pela inércia do metabolismo oxidativo).

Muitos estudos realizados tanto in vitro quanto in vivo, proporcionaram grandes evidências para que o VO₂ seja limitado no nível muscular (GRASSI et al., 1996, GRASSI et al., 1998a; BANGSBO, 2000; GRASSI et al., 2000). Durante um exercício de extensão de joelho, no qual o fluxo sanguíneo foi aumentado antes do início da contração, a diferença entre a oferta de O₂ para a coxa e o VO₂ foi de 0,27 L·min⁻¹ antes do exercício, o qual aumentou para 0,37 L·min⁻¹ após o início do exercício e posteriormente reduzido a um nível constante após 15 s de exercício (BANGSBO, 2000). Isto indica que o suprimento de O₂ estava em excesso em relação à demanda na fase inicial do exercício e que a oferta de O2 não estaria limitando o VO2 da musculatura exercitada. Semelhante a esse estudo, Grassi et al. (1996) determinaram a cinética de ajuste no fluxo sanguíneo da perna (Qperna) e do VO2 da perna em humanos exercitandose durante transições de um exercício onde se pedala sem carga para outro de carga constante abaixo do limiar ventilatório (LV). Os autores demonstraram que Q_{perna} foi significantemente mais rápida, durante os primeiros 10 a 15 s de transição, do que a cinética da diferença artério-venosa de O₂ determinada através do membro exercitado, proporcionando evidências indiretas em favor da hipótese da inércia metabólica. Porém, uma limitação deste estudo seria a presença de um espaço morto no volume de sangue entre o ponto no qual a veia deixa a musculatura e o local onde a amostra venosa foi medida. E além do mais, nesses dois estudos, não pode ser negligenciado o fato que uma não extração máxima de O₂ pela musculatura exercitada na fase inicial do exercício, possa ser decorrente de uma ineficiente distribuição de fluxo (hiperperfusão em áreas do músculo que estão inativas). De qualquer forma, estes e outros estudos concordam com o conceito de que o fluxo sanguíneo da musculatura esquelética aumenta mais rapidamente do que o VO₂ ao início do exercício, decorrente da rápida retirada da estimulação parassimpática e pela ação da bomba muscular.

Na tentativa de restringir tais limitações, permitindo que relevantes variáveis fossem manipuladas e medidas diretamente, foram desenvolvidos estudos utilizando preparações de gastrocnêmios de cães isolados in situ (GRASSI et al., 1998a; GRASSI et al., 1998b GRASSI et al., 2000). Em todos esses estudos, o atraso no ajuste da oferta de O₂ foi eliminado mantendo o fluxo sanguíneo (Q) constante (semelhante ao grupo controle), e uma droga vasodilatadora (adenosina) foi infundida para prevenir vasoconstrição. A difusão periférica de O₂ foi aumentada através do aumento da fração inspirada de O₂ (FIO₂ =1,00) e pela administração de uma droga que atuava como um inibidor alostérico na ligação do O2 com a hemoglobina, causando um deslocamento para direita na curva de dissociação entre hemoglobina e o O₂ (GRASSI et al., 1998b). Todas essas manipulações foram feitas durante o período de transição do repouso para contrações isométricas eletricamente induzidas, correspondendo a 60% (GRASSI et al., 1998a; GRASSI et al., 1998b) e 100% (GRASSI et al., 2000) do VO_2 max muscular. Em todos os casos, uma possível má distribuição do fluxo sanguíneo pode ser significantemente reduzida ou eliminada pela ativação elétrica sincronizada de todas as fibras, além do maior fluxo sanguíneo e a vasodilatação induzida pela adenosina. Como resultado, estes estudos demonstram que a eliminação de todos os possíveis atrasos na oferta de O₂ durante a transição não afetou a cinética do VO₂ muscular na menor intensidade. Porém, a cinética foi significantemente mais rápida na maior intensidade, sugerindo que nas transições do repouso para intensidade submáxima (60%), a cinética do VO₂ muscular não é limitada pela oferta de O₂ para o músculo, embora em intensidades mais elevadas (VO₂max) a oferta de O₂ tenha um papel relativamente pequeno, mas significante como um fator limitante para a cinética do VO₂ muscular.

A possível transferência desses dados para uma resposta similar em humanos pode ser complicada, já que a estimulação elétrica é obviamente diferente da assincronia e heterogeneidade do modelo de ativação das fibras em uma musculatura contraindo fisiologicamente. Além disso, a musculatura canina tem um fluxo sanguíneo de repouso que é 10 vezes maior do que a do músculo humano, em adição a uma maior concentração de enzimas oxidativas. De qualquer forma, semelhante aos resultados descritos acima, MacDonald et al. (1997) demonstraram em humanos uma cinética levemente mais rápida do VO₂ pulmonar durante o exercício de carga constante acima do LV, quando o exercício foi precedido por um aquecimento de alta intensidade, que provavelmente aumentou a oferta de O2 durante o exercício subsequente e também quando os sujeitos estavam inspirando uma mistura em hiperoxia. Por outro lado, as mesmas manipulações não afetaram a cinética pulmonar do VO2 durante o exercício abaixo do LV. Provavelmente em humanos, o LV pode descriminar intensidades nas quais a oferta de O2 é (acima do LV) ou não (abaixo do LV) um dos fatores limitantes para a cinética pulmonar do VO₂ (GRASSI, 2001). Portanto, dentro deste complexo modelo, deve ser reconhecido que alterações experimentais em qualquer um dos possíveis fatores limitadores poderiam resultar em ajustes compensatórios nos outros fatores, ficando dessa forma difícil de separar um como exclusivo fator limitante.

As características da cinética do VO₂ podem diferir com a intensidade do exercício. Contudo, alguns fatores como: treinamento, tipo de fibra muscular predominantemente utilizada, fração inspirada de O₂, posição do corpo ou membro exercitado, idade e patologias podem alterar essa resposta no início do exercício (CROW, KUSHMERICK, 1982; ENGELEN et al., 1996; XU, RHODES, 1999). Alguns desses tópicos serão discutidos detalhadamente mais adiante.

2.1.4. Efeito da intensidade na cinética do VO₂.

Dentro de cada domínio, seja ele moderado, pesado ou severo (até o VO₂max), a cinética do VO₂ é aparentemente independente da intensidade do exercício (BARSTOW, 1994). Entretanto, Hill et al. (2002) e Billat et al. (2000) em intensidades do domínio severo, demonstraram uma cinética do VO₂ mais rápida durante os exercícios supramáximos. Quando se comparam os diferentes domínios de intensidade de exercício, os dados existentes na literatura sobre o comportamento da cinética do VO₂ são muito contraditórios. Os resultados de diversos experimentos não indicam diferenças na cinética do VO₂ (componente rápido), nas maiores intensidades (pesado e severo), comparadas com respostas durante exercícios de baixa intensidade (moderado) (BARSTOW, MOLÉ, 1991; BARSTOW et al., 1993). No entanto, outros estudos, alguns realizados pelo mesmo grupo de pesquisadores, demonstraram uma resposta mais lenta da cinética do VO₂ (componente rápido) nos exercícios do domínio pesado e severo (abaixo do VO₂max), quando comparados com o domínio moderado

(CASABURI et al., 1989; ENGELEN et al., 1996; GERBINO et al., 1996). Recentemente, Carter et al. (2002) analisando a cinética do VO₂ durante a corrida nos diferentes domínios de intensidade, não observaram diferença na cinética do VO₂ (componente rápido) entre os domínios pesado e severo (até o VO₂max), mas valores significantemente mais rápidos no domínio moderado. Dados semelhantes foram encontrados também por Billat et al. (2002a), sendo que os autores não encontraram diferença na cinética do componente rápido entre intensidades correspondentes ao domínio pesado e severo (até o VO₂max) durante a corrida.

Para intensidades próximas ou acima do VO₂max, existem poucos dados na literatura com relação à cinética do VO2 e muita contradição entre os estudos. Margaria et al. (1965) sugeriram que a taxa de aumento no VO₂ seria proporcional à diferença entre o VO2 requerido e o VO2 mensurado, para intensidades acima do VO₂max. Porém, eles concluíram que não houve diferença entre a constante tempo (τ) em intensidades que determinaram a exaustão entre 30-120 s, não sendo diferentes também das obtidas durante o exercício submáximo. Contrastando com estes dados, Hebestreit et al. (1998) observaram uma cinética mais rápida a 100-130% do VO₂max em jovens e adultos. No entanto, notaram que o procedimento de ajuste da curva pode ter causado uma aparente aceleração da cinética do VO2 nas intensidades maiores. Já Hughson et al. (2000) demonstraram que utilizando um modelo de ajuste semilogarítmico a cinética do VO2 no início do exercício próximo ou acima do VO2 max (~96 e ~125% VO₂max), foram mais lentas do que quando ajustados pelo modelos exponenciais. Assim, os resultados que demonstraram uma mais rápida cinética a ~125% comparado com ~57% do VO₂max utilizando o modelo exponencial, se inverteram quando foi utilizado o modelo semi-logarítmico. Baseados nesses resultados os autores especulam que a oferta de O₂ pode limitar a cinética do VO₂ nas maiores intensidades (HUGHSON et al., 2000).

2.1.5. Efeito do treinamento na cinética do VO₂ nos domínios pesado e severo.

Os possíveis efeitos do treinamento sobre a cinética do VO₂ nos domínios pesado e severo (abaixo do VO₂max) serão analisados em conjunto. Adotamos este procedimento, em função de que os critérios utilizados pelos estudos para a escolha da intensidade de exercício, nem sempre nos permitem identificar em que domínio (pesado ou severo) o exercício foi realizado. Isto decorre das diferenças de conceitos e critérios utilizados pelos diferentes estudos, para a determinação da resposta de lactato. Além disso, as fases da cinética do VO₂ nos domínios pesado e severo (abaixo do VO₂max) são as mesmas, embora possam existir diferenças em suas características (duração e amplitude).

Poucos estudos têm analisado os efeitos do treinamento na cinética do VO₂ nos domínios pesado e severo (abaixo do VO₂max). Demarle et al. (2001) analisaram os efeitos de 8 semanas de treinamento (3 sessões de treino contínuo + 2 sessões de treino intervalado/semana) em indivíduos treinados, sobre a cinética do VO₂ durante um exercício realizado a 93% da velocidade correspondente ao VO₂max (vVO₂max). Os indivíduos aumentaram a vVO₂max sem modificação do VO₂max, já que existiu uma melhora da economia de movimento (EM). As cinéticas do VO₂ (componente primário) durante o exercício com a mesma carga absoluta (93% vVO₂max do pré-teste) e relativa (93% vVO₂max do pós-teste) foram significantemente mais rápidas após o treinamento. Billat et al. (2002b), utilizando um modelo de

treinamento semelhante ao estudo anterior, só que aplicado em indivíduos ativos durante 4 semanas, também encontraram melhora da vVO₂max e do LL. Além disso, as cinéticas do VO₂ (componente primário) durante os exercícios com a mesma carga absoluta (90 e 95% vVO₂max do pré-teste) foram mais rápidas após o treinamento. Em contraste com estes estudos, Carter et al. (2000a) não observaram melhora da cinética do VO₂ durante o exercício realizado na v50% Δ [v50 %Δ = vLL + 50% (vVO₂max - vLL)] em indivíduos ativos que realizaram 6 semanas de treinamento de endurance (20 - 30 min/dia, 3 - 5 vezes/semana). Embora neste estudo tenham sido empregadas 2 sessões de treinamento intervalado, elas foram apreciavelmente menos intensas (77% vVO₂max) do que nos estudos citados anteriormente (DEMARLE et al., 2001; BILLAT et al., 2002b). Talvez as diferenças na intensidade do treinamento intervalado entre os estudos analisados possam explicar, pelo menos em parte, os dados antagônicos que foram encontrados. Note-se que nos estudos de Demarle et al. (2001) e Billat et al. (2002b) foram empregados indivíduos com diferentes níveis de treinamento (atletas e ativos, respectivamente).

Recentemente, Caputo e Denadai (2004) analisaram através de um modelo de estudo transversal, o efeito do treinamento aeróbio sobre a cinética do VO₂ durante exercícios máximos. Neste estudo, a velocidade da cinética do VO₂ nos dois tipos de exercício (corrida e ciclismo), foram semelhante entre os corredores, ciclistas e triatletas, e maior quando comparado a um grupo controle de indivíduos sedentários. Desta forma, estes dados simultaneamente demonstram um efeito do treinamento aeróbio com uma ausência de especificidade do treinamento sobre a cinética do VO₂ nos exercícios e intensidade analisados. Os efeitos do treinamento na cinética do VO₂ em exercícios supramáximos ainda não foram estudados.

2.2. Especificidade do treinamento

Quando aplicada ao treinamento, a especificidade se refere às adaptações nos sistemas metabólicos, neuromuscular e cardiorrespiratório, dependendo do tipo de sobrecarga imposta (frequência, intensidade e duração). Um dado estímulo, com exercícios específicos, como um treinamento de força, induziria adaptações específicas de força, enquanto um exercício aeróbio produziria adaptações específicas ao treinamento de endurance. No inicio da década de 70, os estudos se concentraram principalmente sobre a especificidade das adaptações no sistema cardiorrespiratório decorrentes do treinamento e seus efeitos em nível muscular (CLAUSEN et al., 1970; GOLLNNICK et al., 1973). Nas ultimas décadas, estudos têm avaliado a transferência dos efeitos do treinamento entre grupos musculares diferentes, analisando as mudanças no VO₂max nos grupos musculares treinados e não treinados (PATE et al., 1978; BHAMBHANI et al., 1991). Outros, entretanto, buscaram confirmar o principio da especificidade focalizando os estudos em atividades que usam grupos musculares semelhantes (ciclismo e corrida) (LOY et al., 1993; BOUTCHER et al., 1989), e mais recentemente, uma terceira área enfatizou o treinamento em grupos musculares semelhantes com atividades de adaptações distintas, como é o caso da força e endurance (DUDLEY, FLECK, 1987).

Magel et al. (1975) demonstraram a especificidade das adaptações cardiorrespiratórias ao treinamento de natação. Seus resultados mostram um aumento de 11% no VO₂max na natação, com nenhuma mudança significante no VO₂max durante a corrida. Para avaliar os efeitos de diferentes tipos de exercício, no processo de destreinamento, Pate et al. (1978) após 8 semanas de treinamento em cicloergômetro, dividiram seus participantes aleatoriamente em um grupo de treinamento com os braços,

um grupo permanecendo inativo, e outro que continuou o treinamento no cicloergômetro por mais 4 semanas. Após este período, o VO₂max foi maior no grupo treinado no cicloergômetro, do que no grupo treinado com os braços e o grupo inativo, sem diferenças entre os dois últimos grupos. Bhambhani et al. (1991) utilizando 2 grupos de indivíduos sedentários, que treinaram exclusivamente no ergômetro de braço ou no cicloergômetro, notaram um significante aumento tanto no LV quanto no VO₂max, somente quando os testes foram realizados na mesma modalidade do treinamento, descartando uma possível transferência dos efeitos do treinamento. Estes estudos demonstram que utilizando grupos musculares diferentes, ocorre uma pequena adaptação no nível central (cardiorrespiratório), com as melhoras sendo decorrentes principalmente das adaptações periféricas. Entretanto, McArdle et al. (1978) sugerem que quando a massa muscular é suficientemente grande, podem ocorrer algumas adaptações gerais. Lewis et al. (1980) têm proposto que o grau de transferência dos efeitos do treinamento para o segmento não treinado é provavelmente dependente do estado inicial de condicionamento do indivíduo, tamanho do grupo muscular exercitado e intensidade do exercício.

Especificamente para grupos musculares semelhantes, diversos estudos têm demonstrado que os valores de VO₂max para corredores de longa distância são em média 10 a 20% maiores em testes de corrida do que no cicloergômetro. No entanto, ciclistas treinados geralmente não demonstram diferenças significantes entre os testes (VERSTAPPEN et al., 1982), ou quando altamente treinados possam apresentar valores 11% maiores no cicloergômetro do que na corrida (BOUCKAERT et al., 1990).

Para avaliar as possíveis transferências dos efeitos de um treinamento de ciclismo para a corrida e vice-versa, Loy et al. (1993) analisaram as mudanças no

VO₂max (cicloergômetro e esteira rolante) decorrentes de um programa de treinamento de ciclismo ou corrida. Foi observado um aumento do VO₂max em todos os testes realizados, entretanto o treino de ciclismo determinou o mesmo percentual de melhora para os dois tipos de exercício, enquanto o treino de corrida determinou uma adaptação menor para o ciclismo. Esses resultados sugerem que o treinamento de corrida parece ser mais especifico para o desenvolvimento da potência aeróbia. Utilizando um modelo semelhante ao estudo descrito acima, Boutcher et al. (1989) também analisaram as mudanças no LL. Os autores observaram para o grupo treinado em corrida que o LL aumentou para ambos os testes (corrida e ciclismo), enquanto o grupo treinado em ciclismo, o LL aumentou somente no teste em cicloergômetro. Como o VO2max para o grupo treinado em ciclismo aumentou significantemente durante o teste na corrida, estes resultados parecem demonstrar uma maior especificidade para melhora da capacidade aeróbia (LL) decorrente do treinamento em ciclismo. É importante destacar que a população utilizada nos estudos descritos acima, possuía um VO₂max na corrida de 44 a 56 ml·kg⁻¹·min⁻¹ e no ciclismo de 38 a 53 ml·kg⁻¹·min⁻¹, e treinaram a uma intensidade em torno de 90% da FCmax. Dentro de cada nível de aptidão, os estudos sugerem que quanto maior for a capacidade aeróbia, menor será a transferência relativa das adaptações ao treinamento, mesmo entre grupos musculares similares (LOY et al., 1995).

Recentemente Caputo e Denadai (2004) demonstraram através de um modelo de estudo transversal que as transferências do treinamento de corrida para o ciclismo ou vice-versa respondem de forma diferente dependendo da variável analisada. Neste estudo os valores de VO₂max apresentados pelos ciclistas e corredores durante o exercício não especifico para cada grupo, não foram diferentes quando comparados com

os triatletas e significativamente superiores em relação aos sedentários. Isto sugere uma transferência dos efeitos do treinamento em relação à potência aeróbia, tanto do ciclismo para corrida, quanto da corrida para o ciclismo. Esta transferência, entretanto, parece ser apenas parcial, pois os valores de VO₂max foram sempre maiores na modalidade especificamente treinada. Em relação a IVO₂max e LAn, os maiores valores foram sempre demonstrados na modalidade especificamente treinada. Por outro lado, durante a modalidade não especifica os valores destas variáveis foram inferiores em relação aos triatletas, mas continuaram apresentando valores bem superiores em relação aos sedentários. Estes dados demonstram a importância das adaptações periféricas específicas (enzimáticas, neuromusculares e técnica motora) tanto para a IVO₂max (economia de movimento) quanto LAn (resposta do lactato sanguíneo), dificultando as transferências dos efeitos do treinamento. Assim, as transferências dos efeitos do treinamento, mesmo que parciais, parecem ser mais específicas na resposta do lactato e economia de movimento (transferências periféricas) do que no VO₂max (transferência central).

Entretanto, neste mesmo estudo os autores também demonstraram grandes transferências do treinamento na cinética do VO₂ durante um exercício máximo. Seus valores para a constante de tempo da cinética do VO₂ não foram diferentes entre os ciclistas e corredores independente da modalidade analisada, mas foram bem superiores aos dos sedentários. Portanto, a cinética do VO₂ parece ser sensível ao treinamento aeróbio, mas não em relação a sua especificidade (CAPUTO, DENADAI, 2004).

2.3. Relação intensidade e tempo de exercício

A relação entre intensidade e tempo de exercício foi inicialmente analisada por Monod e Scherrer (1965) para pequenos músculos, sendo posteriormente estendido para grandes grupos musculares (ciclismo) (MORITANI, 1981). Nestes estudos os autores notaram uma relação hiperbólica entre a potência e o seu respectivo tempo de exaustão (Tlim), identificando a PC como o valor assimptótico, e a capacidade de trabalho anaeróbio (CTA) como a quantidade constante de trabalho que pode ser realizada acima da PC (FIGURA 4). Deste modo, a PC pode razoavelmente representar a intensidade onde existe uma sustentável taxa de ressíntese de ATP, podendo ser mantida indefinidamente. Por outro lado, a CTA compreende os estoques limitados de energia, que seriam as reservas de fosfatos (ATP e CP), a quantidade de O₂ no sangue e ligados à mioglobina e a glicólise anaeróbia. Assim, a CTA poderia ser considerada equivalente ao déficit de O2, no entanto, diferentes estudos têm demonstrado uma correlação apenas moderada entre a CTA e o máximo déficit acumulado de O2 (MIURA et al., 2002; HILL, SMITH, 1994). Segundo o modelo, os exercícios realizados até a PC, não causariam uma depleção dos estoques de energia (CTA). Ao contrário, em intensidades acima da PC, haveria uma contínua utilização da CTA, a uma taxa determinada pela amplitude da referida intensidade em relação à PC, sendo que o tempo de exaustão poderá ser predito através do modelo hiperbólico da relação potência vs. tempo (FUKUBA et al., 2003).

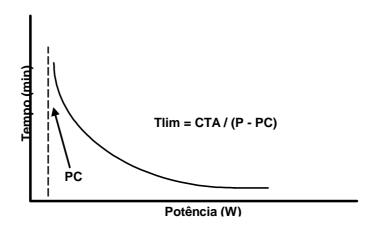


FIGURA 4 – Determinação da potência critica (PC) e da capacidade de trabalho anaeróbio (CTA) do acordo com o modelo hiperbólico potência vs. Tempo (Adaptado de HILL, 1993).

Esta relação potência vs. tempo é vantajosa, porque para intensidades que levam à exaustão dentro de 1-60 min (domínio severo-pesado), conhecendo-se os parâmetros de PC e CTA para um dado sujeito, a duração do exercício poderá ser estimada com certa precisão. Fora desta amplitude, em intensidades extremamente altas, que levariam à exaustão dentro de 60 s, a geração de força mecânica pode tornar-se limitante. Por outro lado, além dos 60 min, a duração do exercício pode ser limitada pela depleção de substratos (glicogênio), desequilíbrio hídrico e eletrolítico, ou pela termorregulação. Obviamente, a natureza precisa do processo de fadiga será influenciada pelo tipo de exercício, sua intensidade e estado de treinamento. Desta forma, já é bem aceito que os fatores que podem induzir a fadiga durante exercícios de alta intensidade, para o qual a duração é tolerada por somente alguns minutos (domínio severo), serão diferentes daqueles encontrados durante exercícios de baixa intensidade que podem ser sustentados por uma ou mais horas (domínios moderado e pesado) (NOAKES, 2000).

A PC tem sido proposta recentemente, como um bom índice para a avaliação da performance aeróbia e predição do LAn determinado através do lactato sanguíneo (WAKAYOSHI et al., 1992; HOUSH et al., 1991) ou do método ventilatório (MORITANI et al, 1981), como o limite superior do domínio pesado e o limiar de intensidade acima da qual o VO₂max pode ser alcançado (HILL et al., 2002). Por ser de fácil aplicação e de baixo custo, este método não-invasivo tem se mostrado adequado para a avaliação de grandes grupos de atletas, independente da fase do treinamento. Como preditor do desempenho aeróbio, a PC parece não sofrer influência do nível de performance como também da idade cronológica (HILL, 1993). No entanto, alguns estudos têm demonstrado que a PC tem superestimado a intensidade correspondente à MLACSS (DEKERLE et al., 2003; PRINGLE, JONES, 2002).

Três diferentes modelos têm sido utilizados para a determinação destes índices (HILL, 1993).

1) modelo hiperbólico da relação potência vs. tempo:

$$t = \text{CTA} / (P - PC) \tag{1}$$

2) modelo linear potência vs. 1/tempo:

$$P = (CTA / t) + PC$$
 (2)

3) modelo linear trabalho vs. Tempo:

$$T = (PC \cdot t) + CTA. \tag{3}$$

Onde t = tempo; CTA = capacidade de trabalho anaeróbio; P = potência; PC = potência crítica; T = Trabalho.

Os modelos utilizados para a identificação da PC, podem influenciar os valores obtidos. Gaesser et al. (1995) e Hill et al. (1995) obtiveram os menores valores através do modelo potência-tempo, um valor intermediário para o modelo trabalho

tempo e os maiores valores para o modelo potência-1/tempo. Segundo Gaesser et al. (1995), este comportamento ocorre porque os modelos diferem com respeito à designação das variáveis dependentes e independentes e a unidade na qual elas são expressas. Com isso, dá-se um peso diferente para cada coordenada (P ou t) e consequentemente aos valores que podem ser encontrados para a PC. No entanto, para o estudo de Hill et al. (1995) essas diferenças desapareceram quando foi permitida uma variação da cadência de pedalada. Além disso, em outro estudo, Hill (2004) novamente não encontrou diferenças entre os três modelos para a determinação da PC quando foram utilizados testes preditivos mais longos do que 3 min e os sujeitos puderam variar a cadência de pedalada. Desta forma, estas contradições entre os estudos parecem ser determinadas pelas diferenças na duração dos testes preditivos e a utilização ou não de uma cadência fixa. Segundo Hill (2004), a utilização de uma cadência variável é preferível em relação a uma cadência fixa, por permitir maiores tempos de exaustão e uma melhor descrição da relação potência-tempo.

Embora o método de identificação da PC possa ser interessante pelo seu baixo custo, é necessário que o indivíduo avaliado realize em princípio múltiplos esforços até a exaustão voluntária. Housh et al. (1990) testaram o numero mínimo de cargas preditivas necessárias para identificar com precisão a PC. Neste estudo, os voluntários realizaram 4 cargas até a exaustão e a PC foi determinada com 2, 3 ou 4 pontos (P vs. T), com todas as combinações possíveis. Os autores verificaram que as PC estimadas com apenas 2 pontos foram altamente correlacionadas (r > 0,96) com os valores encontrados com 4 coordenadas, quando a diferença de tempo entre os dois pontos foi superior a 2,7 min. Com uma diferença maior do que 5 min., as correlações

foram ainda maiores (r > 0,98). Com isso, parece ser possível a utilização de apenas 2 pontos, com diferenças de pelo menos 3-5 minutos, para a identificação da PC.

Como visto anteriormente, a duração das cargas preditivas parece também interferir na determinação da PC. Estudos têm mostrado que a utilização de cargas que não permitam durações de pelo menos 2-3 minutos, podem superestimar a PC (CALIS, DENADAI, 2000; BISHOP et al, 1998). Bishop et al. (1998) propõem que esta influência da seleção das cargas na determinação da PC pode ser explicada pelo efeito da "inércia aeróbia", particularmente em intensidades que geram um tempo de exaustão (Tlim) abaixo de 3 minutos. Portanto, se a PC é um índice que deve representar a capacidade funcional aeróbia, as cargas preditivas devem permitir um Tlim de pelo menos 3 minutos.

Extrapolando a relação para os extremos de intensidade ou duração do exercício, a PC teoricamente poderia ser sustentada por um tempo infinito e que uma potência infinitamente alta poderia ser sustentada por um curto tempo. Desta forma, Morton (1996) introduziu um modelo que inclui um terceiro parâmetro, potência máxima (Pmax). No entanto, os estudos parecem demonstrar que a inclusão desse parâmetro não melhora a descrição da relação potência-tempo em relação ao modelo tradicional com 2 parâmetros, e que para uma determinação razoável (algum significado físiológico e baixo erro de estimativa) da Pmax, seriam necessárias durações bem curtas (< 1min) para as cargas preditivas (MORTON, 1996; HILL, 2004).

3. JUSTIFICATIVA

Dentro da fisiologia do exercício, a divisão da intensidade de exercício em três diferentes domínios vem sendo amplamente utilizada (GAESSER, POOLE 1996). Estes domínios são frequentemente divididos em moderado, pesado e severo. Para separar/delimitar esses diferentes domínios, são utilizados alguns índices fisiológicos, que também já estão bem estabelecidos e descritos pela literatura (DENADAI, 2000). Como estes índices fisiológicos podem variar com o estado e especificidade do treinamento (CAPUTO, 2003), a amplitude correspondente a cada domínio também poderá sofrer variação (NEDER et al., 2000). Em relação a essa diferença de amplitude, especificamente nos domínios pesado e severo, ainda não se sabe os possíveis efeitos tanto do estado, quanto da especificidade do treinamento aeróbio.

O domínio severo é caracterizado por intensidades onde o VO₂max pode ser alcançado. A partir desse pressuposto, Hill et al. (2002) têm proposto um limite superior para este domínio, que seria a maior intensidade onde o VO₂max pode ser alcançado. Os autores propõem ainda, a existência de um quarto domínio, onde as intensidades de exercício seriam tão elevadas, que o VO₂max não pode ser alcançado. Como a velocidade da cinética do VO₂ é o principal determinante do tempo para atingir o VO₂max, seria importante compreender como a cinética do VO₂ se comporta em

exercícios supramáximos. Independente de ser ou não um provável novo limite superior do domínio severo, a determinação da maior intensidade onde o VO₂max pode ser alcançado, e os possíveis efeitos do treinamento aeróbio e sua especificidade sobre esta intensidade, pode ser de extrema importância para entendimento dos fatores que interferem na cinética do VO₂ em intensidades supramáximas. Além disso, esta intensidade pode ser de extrema importância na elaboração de treinamentos intervalados de alta intensidade na tentativa de obter melhoras na performance aeróbia em atletas de endurance altamente treinados. Estudos recentes reforçam essa idéia, indicando a necessidade da inclusão de sessões (1 a 2 por semana) de treinamento intervalado de alta intensidade, para que tais atletas consigam obter melhoras de performance aeróbia (DENADAI et al., 2003). Assim, um modelo de estudo bastante interessante e que pode ajudar no entendimento de parte destas questões, é comparar as respostas de indivíduos treinados e não treinados, e também o comportamento de indivíduos treinados exercitando-se em ergômetros não específicos, como por exemplo, corredores pedalando.

4. OBJETIVOS

Com base nas informações apresentadas anteriormente, os objetivos deste estudo foram:

- 1) Determinar e comparar em cicloergômetro de membros inferiores o VO₂max, IVO₂max, LL, OBLA, e o Tlim e a cinética do VO₂ (tempo para atingir o VO₂max TAVO₂max e tempo mantido no VO₂max TMVO₂max) em intensidades correspondentes a 95% 100% e 110% da IVO₂max, em ciclistas, corredores e sedentários;
- 2) Determinar e comparar a maior intensidade (I_{SUP}) e o menor tempo de exercício (T_{SUP}) onde o VO_2 max pode ser alcançado em ciclistas, corredores e sedentários.
- 3) Verificar a validade do modelo matemático para se estimar indiretamente a I_{SUP} (I_{SUP} ') e T_{SUP} (T_{SUP} ') em ciclistas, corredores e sedentários.
- 4) Comparar a influência do estado de treinamento aeróbio e sua especificidade, sobre a amplitude dos domínios de intensidade de exercício.
- 5) Correlacionar os valores de Tlim com o VO₂max, IVO₂max, TAVO₂max, TMVO₂max e OBLA.

5. MATERIAL E MÉTODOS

5.1. Sujeitos

Participaram deste estudo, 15 ciclistas de endurance (CIC), 11 corredores de endurance (COR) e 10 indivíduos sem treinamento (ST), sendo todos do gênero masculino, considerados sadios após exame clínico, não fumantes e que não faziam uso regular de qualquer tipo de medicamento. As características antropométricas e do treinamento dos grupos CIC e COR estão descritas na TABELA 1, na seção de resultados. Os mesmos foram informados textual e verbalmente sobre os objetivos e métodos desse estudo, assinando posteriormente um termo de consentimento livre e esclarecido (Apêndice I). O estudo foi aprovado pelo Comitê de Ética em Pesquisa do Instituto de Biociências – UNESP - Rio Claro.

5.2. Procedimento Experimental

Todos os indivíduos estudados compareceram ao laboratório em pelo menos seis oportunidades diferentes, com intervalo de no mínimo um e no máximo três dias. Os indivíduos não realizaram treinos exaustivos no dia anterior à avaliação e compareceram alimentados e hidratados no dia do teste.

Na primeira visita, os indivíduos foram submetidos a um protocolo para a determinação do VO₂max, intensidade correspondente ao VO₂max (IVO₂max), intensidade correspondente ao limiar de lactato (LL), e intensidade correspondente ao

OBLA (*onset blood lactate accumulation*) no cicloergômetro. Nas três oportunidades seguintes, eles foram submetidos em ordem aleatória através de sorteio, a um teste de esforço máximo a 95, 100% e 110% da IVO₂max. Na quinta e demais visitas, foram realizados testes de esforço máximo para validação do modelo e/ou a determinação da maior intensidade onde o VO₂max ainda pode ser atingido (I_{SUP}).

5.3. Determinação do VO₂max, da IVO₂max, do LL e do OBLA.

O VO₂max foi determinado utilizando-se um protocolo contínuo de cargas crescentes em um cicloergômetro de membros inferiores de frenagem mecânica (Monark). A carga inicial foi de 35 W (sedentários), 70 W (corredores) e 140 W (ciclistas), com incrementos de 35 W a cada 3 minutos até à exaustão voluntária. Ao final de cada estágio houve coleta de sangue do lóbulo da orelha para a dosagem do lactato sanguíneo. O VO₂ foi mensurado respiração a respiração durante todo o protocolo a partir do gás expirado (K4 b2 - Cosmed), sendo os dados reduzidos às médias de 15 segundos. O VO₂max foi considerado como o maior valor de 15 segundos obtido durante o teste. Para considerarmos que, durante o teste, os indivíduos atingiram o VO₂max, foram adotados os critérios propostos por Taylor et al. (1955) e Lacour et al. (1991). A IVO₂max foi considerada com sendo a menor intensidade de exercício na qual ocorreu o VO₂max (BILLAT, KORALSZTEIN, 1996). O LL foi considerado como a intensidade anterior ao aumento na concentração de lactato acima dos valores da linha de base. Ele foi determinado por dois examinadores experientes e independentes. Havendo discordância entre os examinadores, um terceiro examinador foi utilizado como critério de desempate. O OBLA foi encontrado através de uma interpolação linear (lactato vs. intensidade), considerando uma concentração fixa de lactato de 3,5 mM (HECK et al., 1985).

5.4. Determinação do Tlim a 95%, 100% e 110% do IVO₂max

Inicialmente os indivíduos realizaram um aquecimento de 10 minutos a 50% da IVO₂max. A seguir, repousaram por 5 minutos no cicloergômetro e logo em seguida a intensidade foi ajustada em 95%, 100% ou 110% da IVO₂max até a exaustão voluntária ou até que o indivíduo não pudesse manter a intensidade estipulada (cadência < 67 rpm). O VO₂ foi mensurado continuamente durante todo o protocolo. Foram realizadas coletas de sangue no 3°, 5° e 7° minuto após o exercício. O Tlim foi considerado como o tempo total de esforço mantido na IVO₂max e expresso em segundos.

A cinética de aumento no VO_2 foi descrita por uma função monoexponencial para os testes de carga constante através de um modelo de regressão não linear (Microcal Origin 6.0) utilizando os dados de VO_2 respiração a respiração:

$$VO_2(t) = VO_2base + A \cdot (1 - e^{-(t/\tau)})$$
 (4)

Onde: o $VO_2(t)$ é o VO_2 no tempo t; VO_2 base é a média de 30 s do VO_2 anterior ao teste; A é a amplitude no VO_2 (VO_2 assimptota - VO_2 base); o τ é a constante de tempo (definida como o tempo requerido para atingir 63% de A).

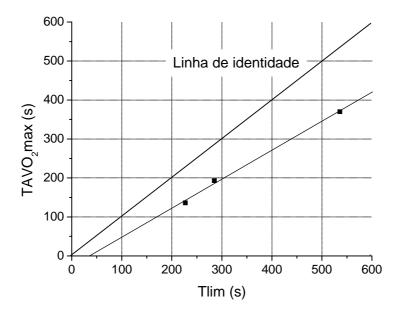
Foi considerado que o VO_2 tenha essencialmente alcançado seu valor máximo quando o valor de $(1-e^{-(t/\tau)})$ a partir da equação 1 fosse igual a 0,99, i.e. para 99% do valor de A, o t = $(4,6 \cdot \tau)$, e assumindo que o VO_2 projetado é igual ao VO_2 max (HILL et al. 2002). Portanto, para cada teste, o $TAVO_2$ max foi definido como $4,6 \cdot \tau$. O tempo mantido no VO_2 max (TMVO $_2$ max) foi calculado subtraindo-se o Tlim do $TAVO_2$ max.

5.5. Determinação da Potência Critica (PC)

Os valores individuais de potência e Tlim obtidos durante os testes de carga constante foram ajustados a partir do seguinte modelo hiperbólico de regressão não linear (HILL, 1993):

$$T\lim = CTA \cdot (P - PC)^{-1}$$
 (5)

Onde: Tlim é o tempo de exaustão na potência realizada (P); CTA é capacidade de trabalho anaeróbio (joules), e PC é a potência critica (W).


5.6. Determinação da I_{SUP} e T_{SUP}

Foram utilizadas técnicas de regressão linear para descrever a relação entre $TAVO_2$ max e Tlim. Através do $TAVO_2$ max expresso como uma função do Tlim foi possível encontrar o único Tlim (T_{SUP}) , no qual o VO_2 max será alcançado ao instante da exaustão $(TAVO_2$ max = Tlim) (FIGURA 5). A intensidade associada com T_{SUP} (I_{SUP}) foi calculada usando a Equação 5 (HILL et al., 2002). Em três indivíduos do grupo ST não foi possível determinar a T_{SUP} e, consequentemente a I_{SUP} , devido a características peculiares na relação entre $TAVO_2$ max e Tlim.

Depois de determinada a I_{SUP}', foram realizados pelo menos dois testes de esforço máximo para validação do modelo ou sua real determinação (I_{SUP} e T_{SUP}). Após um aquecimento de 10 min a 50% da IVO₂max e 5 min de repouso, a intensidade foi ajustada em 100% I_{SUP}' e o indivíduo foi estimulado verbalmente a manter o esforço até a exaustão. Nos outros testes, realizados em dias diferentes, foram aplicados 5% de aumento ou diminuição na intensidade entre cada teste, até que o valor de VO₂max fosse ou não alcançado. Neste caso foi considerada como critério de determinação da I_{SUP}, a maior intensidade onde a média do VO₂ de três valores consecutivos de 5 s, i.e

obtidos no teste incremental e nos testes de carga constante (95, 100 e 110% IVO₂max).

O VO₂ foi mensurado continuamente durante todo o protocolo.

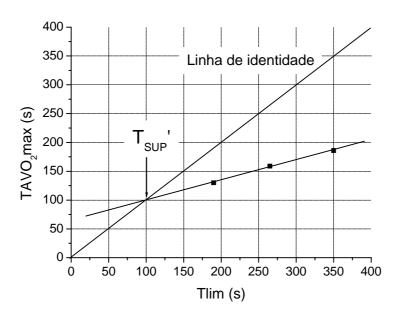


Figura 5 - Dados representativos de um sujeito do grupo ciclista (superior) e um do grupo sem treinamento (inferior) para a estimativa do T_{SUP} '. No painel da superior, através do $TAVO_2$ max expresso como função do Tlim, é possível estimar um único Tlim, no qual o VO_2 max é alcançado ao instante da exaustão (Tsup'), i.e. $TAVO_2$ max = Tlim. No painel inferior a inclinação da regressão linear foi muito elevada fazendo com que a mesma não cruzasse a linha de identidade.

5.7. Determinação do lactato sanguíneo

Para a determinação do lactato sangüíneo foram coletados do lóbulo da orelha, sem hiperemia, 25 μl de sangue em capilar heparinizado, sendo a seguir imediatamente transferido para microtubos de polietileno com tampa - tipo Eppendorff - de 1,5 ml, contendo 50 μl de solução de NaF 1% e armazenado em gelo. A análise do lactato foi realizada através de analisador eletroquímico modelo YSI 2300 STAT.

5.8. Análise estatística

Os dados foram expressos como média + DP. A normalidade das variáveis determinadas neste estudo foi analisada pelo teste de Shapiro Wilk. A análise dos efeitos do treinamento aeróbio e especificidade sobre as variáveis submáximas (LL e OBLA) e máximas (VO₂max, IVO₂max, FCmax e [LAC]pico) obtidos durante o teste progressivo, o Tlim, o TAVO₂max e TMVO₂max obtidos durante o teste máximo a 95, 100 e 110% IVO₂max e a I_{SUP} e T_{SUP}, foram realizadas pela análise de variância ANOVA one-way, complementa pelo teste de Scheffé. A análise dos efeitos do treinamento aeróbio e especificidade sobre as variáveis expressas de maneira relativa (% VO₂max ou da IVO₂max) foram realizadas pelo teste não paramétrico de Kruskal-Wallis. Para analisar o efeito da intensidade nas variáveis obtidas durante os testes de carga constante foi utilizada a análise de variância ANOVA one-way, complementada pelo teste de Scheffé. A validade do modelo de predição da I_{SUP} foi analisada através do teste t para dados pareados e pelo teste de correlação de Pearson. Em adição foram calculados os limites de concordância entre a I_{SUP} e a I_{SUP}' e entre o T_{SUP} e o T_{SUP}'. A correlação entre os valores de Tlim com o VO₂max, IVO₂max, TAVO₂max e OBLA, foram feitas através do teste de correlação de Pearson. Em todos os testes foi adotado um nível de significância de $p \le 0.05$.

6. RESULTADOS

A TABELA 1 mostra as características antropométricas e de treino dos voluntários do presente estudo. Foram encontradas diferenças significantes apenas na massa corporal entre os grupos ST e COR.

TABELA 1 - Valores médios <u>+</u> DP das características dos sujeitos referentes aos grupos: sem treinamento (ST), corredores (COR) e ciclistas (CIC).

ST (n=10)	COR (n=11)	CIC (n=15)
$24,4 \pm 3,3$ ^A	27.2 ± 8.9 A	$25,6 \pm 4,5$ A
74,4 \pm 11,8 $^{\mathrm{A}}$	64.6 ± 5.9 B	67.9 ± 7.2 $^{\mathrm{A}\:\mathrm{B}}$
175,3 \pm 5,4 $^{\rm A}$	$173,1 \pm 5,6$ ^A	175,6 \pm 5,1 $^{\mathrm{A}}$
	$4,2 \pm 2,3$	$9,7 \pm 4,3$
	$105,5 \pm 34,7$	$403,3 \pm 145,7$
	$1025,0 \pm 76,5$	
	$24.4 \pm 3.3^{\text{ A}}$ $74.4 \pm 11.8^{\text{ A}}$	24,4 ± 3,3 ^A 27,2 ± 8,9 ^A 74,4 ± 11,8 ^A 64,6 ± 5,9 ^B 175,3 ± 5,4 ^A 173,1 ± 5,6 ^A 4,2 ± 2,3 105,5 ± 34,7

A, B, C Valores com a mesma letra não são diferentes entre os grupos.

As variáveis máximas obtidas durante o teste incremental estão demonstradas na TABELA 2. O grupo ST obteve o menor valor de VO₂max, enquanto

^{*} Valor de performance mais atual nos 5 km medido em treino ou competição.

o COR apresentou um valor intermediário e o CIC apresentou os maiores valores. A IVO₂max do grupo ST foi semelhante a do grupo COR e ambos menores do que os valores apresentados pelo CIC. Porém, quando a IVO₂max foi expressa de modo relativo à massa corporal, o grupo COR apresentou valores maiores do que ST. Foram observadas diferenças na FCmax apenas entre os grupos COR e CIC. O [LAC]pico foi semelhante entre ST e CIC e ambos maiores do que o COR (TABELA 2).

TABELA 2 - Valores médios ± DP das variáveis máximas obtidas no teste incremental para os grupos: sem treinamento (ST), corredores (COR) e ciclistas (CIC). VO₂max = consumo máximo de oxigênio (ml·kg⁻¹·min⁻¹); IVO₂max = intensidade correspondente ao VO₂max expressa em valores absolutos (W) e relativos (W·kg⁻¹); FCmax = freqüência cardíaca máxima; [LAC]pico = pico da concentração de lactato.

*****	ST	COR	CIC
Variáveis	(n=10)	(n=11)	(n=15)
VO ₂ max (ml·kg ⁻¹ ·min ⁻¹)	$42.2\pm4.0~^{\rm A}$	54,6 ± 5,5 ^B	$64,5\pm6,4$ ^C
IVO_2 max (W)	$231,7 \pm 45,0$ ^A	$257,0 \pm 40,0$ A	$348,\!6\pm28,\!7^{\rm \;B}$
IVO_2max $(W\cdot kg^{-1})$	$3.1\pm0.5~^{\rm A}$	$4.0\pm0.6~^{\rm B}$	5,2 \pm 0,6 $^{\rm C}$
FCmax (bpm)	$186,2\pm9,9$ $^{\mathrm{A}\;\mathrm{B}}$	$176,6 \pm 13,6$ ^A	$187,1 \pm 6,7$ B
[LAC]pico (mM)	11.1 ± 1.8 $^{\rm B}$	8.7 ± 1.5 ^A	$11.4 \pm 2.2^{\mathrm{B}}$

A, B, C Valores com a mesma letra não são diferentes entre os grupos.

As variáveis submáximas obtidas durante o teste incremental estão demonstradas na TABELA 3. O LL expresso em valores absolutos (W) do grupo CIC foi maior em relação ao COR e ST, e o COR apresentou também um valor maior que o grupo ST. Em valores relativos (%VO₂max) o LL foi semelhante entre os grupos ST e

COR e maior para o grupo CIC. No entanto, os valores do OBLA tanto absoluto quanto relativo, foram menores no ST, com o COR demonstrando valores intermediários, e os maiores valores sendo apresentados pelo CIC. A PC (W) foi semelhante entre o ST e COR, e maior para o CIC. Quando expressa de maneira relativa (%VO₂max), a PC foi maior no CIC, um pouco menor para o grupo COR, e novamente o grupo ST apresentou os menores valores.

TABELA 3 - Valores médios \pm DP das variáveis submáximas obtidas no teste incremental realizado no cicloergômetro dos grupos: sem treinamento (ST), corredores (COR) e ciclistas (CIC). LL = Limiar de lactato expresso em valores absolutos (W) e relativos ao VO₂max (%VO₂max); OBLA = *Onset of blood lactate accumulation* em valores absolutos (W) e relativos ao VO₂max (%VO₂max); PC = Potência crítica expressa em valores absolutos (W) e relativos ao VO₂max (%VO₂max).

V:	ST	COR	CIC	
Variáveis	(n=10)	(n=11)	(n=15)	
LL	92,4 ± 32,0 ^A	$124,6 \pm 28,3$ B	219,3 ± 33,6 °	
(W)	<i>72</i> , 1 ± <i>32</i> ,0	12 1,0 ± 20,5	217,5 ± 55,0	
LL	$46.3 \pm 7.1^{\text{ A}}$	52.3 ± 6.5 A	$70.0 \pm 7.4^{\ \mathrm{B}}$	
(%VO ₂ max)	70,5 ± 7,1	32,3 ± 0,3	70,0 ± 7,4	
OBLA	139.7 ± 39.3 ^A	$186.4 \pm 34.1^{\text{ B}}$	$269.1 \pm 38.3^{\circ}$	
(W)	137,7 ± 37,3	100,7 ± 37,1	207,1 ± 30,3	
OBLA	$63.5 \pm 7.8^{\text{ A}}$	72.4 ± 5.8 B	$83.3 \pm 5.1^{\circ}$	
$(\%VO_2max)$	05,5 ± 7,6	72, 4 ± 3,6	65,5 ± 5,1	
PC	$182.3 \pm 62.2^{\text{ A}}$	$222.3 \pm 34.5^{\text{ A}}$	$301.5 \pm 31.5^{\text{ B}}$	
(W)	162,3 ± 02,2	222,3 ± 34,3	$501,5 \pm 51,5$	
PC	78.6 ± 9.4 A	$86.4 \pm 3.3^{\text{ B}}$	$92.1 \pm 2.6^{\circ}$	
(%VO ₂ max)	70,0 ± 9,4	00,4 ± 3,3	12,1 ± 2,0	

A, B, C Valores com a mesma letra não são diferentes entre os grupos para a mesma variável.

As variáveis obtidas durante os testes de carga constante a 95, 100 e 110% da IVO₂max estão demonstradas na TABELA 4. Os valores de Tlim a 95%

IVO₂max apresentados pelo CIC foram semelhantes ao COR e ST. No entanto, o ST apresentou valores menores do que o COR. Não foram observadas diferenças no Tlim a 100 e 110% IVO₂max entre os grupos analisados. Houve uma significante diminuição do Tlim com aumento da intensidade em todos os grupos analisados. Os valores de TAVO₂max a 95, 100, 110 % IVO₂max foram semelhantes entre o COR e ST, e ambos maiores em relação ao CIC. Em relação à intensidade de exercício, os valores de TAVO₂max foram progressivamente menores com o aumento da intensidade para o grupo ST. Nos grupos COR e CIC, os valores de TAVO₂max foram semelhantes tanto a 95 e 100%, quanto a 100 e 110%, com diferenças apenas entre os dois extremos, 95 e 110% IVO₂max.

Os valores de TMVO₂max a 95% IVO₂max foram semelhantes entre CIC e COR, e ambos apresentaram valores maiores do que o ST. A 100% IVO₂max foi encontrada diferença no TMVO₂max entre os grupos CIC e ST, entretanto ambos foram semelhantes ao grupo COR. Nenhuma diferença foi observada no TMVO₂max à 110% IVO₂max entre os grupos analisados. Nos COR e CIC houve uma significante diminuição do TMVO₂max com aumento da intensidade. No grupo ST os valores do TMVO₂max a 95% foram semelhantes a 100% IVO₂max e maiores do que 110%, e nenhuma diferença foi encontrada entre 100 e 110% IVO₂max. Os valores de Tau a 95, 100 e 110% IVO₂max foram semelhantes entre ST e COR, e ambos apresentaram valores maiores do que os CIC. No grupo ST, houve uma significante diminuição no Tau com aumento da intensidade. Nos grupos CIC e COR os valores de Tau a 95 % foram semelhantes a 100% IVO₂max e maiores do que 110%, e nenhuma diferença foi encontrada entre 100 e 110% IVO₂max.

TABELA 4 - Valores médios ± DP das variáveis obtidas durante os testes de carga constante a 95, 100 e 110% da intensidade correspondente ao consumo máximo de oxigênio (IVO₂max) dos grupos: sem treinamento (ST), corredores (COR) e ciclistas (CIC). Tlim = tempo de exaustão; TAVO₂max = tempo para atingir o VO₂max; TMVO₂max = tempo mantido no VO₂max; VO₂ = maior valor de VO₂ obtido; Tau = constante de tempo da cinética do VO₂.

	Intensidade	ST	COR	CIC
Variáveis	(%IVO ₂ max)	(n=10)	(n=11)	(n=15)
	95	$506,6 \pm 142,5$ A 1	$700,3 \pm 93,4$ ^{B 1}	$617,6 \pm 221,0$ AB1
Tlim (s)	100	$358,7 \pm 73,7$ A ²	$404,0 \pm 66,0$ A ²	438.8 ± 135.9 A ²
	110	231,4 \pm 32,3 $^{\mathrm{A}}$ $^{\mathrm{3}}$	236,7 \pm 48,2 $^{\mathrm{A}\mathrm{3}}$	$235,2 \pm 61,8$ ^{A 3}
TANO	95 * #	$288,6 \pm 54,0$ ^{A 1}	$236,6 \pm 50,4$ ^{A 1}	$168,6 \pm 48,1$ ^{B 1}
TAVO ₂ max (s)	100 #	227,2 \pm 54,4 $^{\mathrm{A}\mathrm{2}}$	$203,3 \pm 40,1$ A 1 2	$152,5 \pm 41,8$ B 1 2
	110 *	$171,6 \pm 33,0$ A 3	$161,9 \pm 38,4$ A 2	124.8 ± 29.6 B ²
	95 * #	203.8 ± 150.3 A 1	463.8 ± 112.1 B ¹	$448,0 \pm 210,4$ ^{B 1}
$TMVO_2max$ (s)	100 #	$131,5 \pm 82,7$ A 1 2	$200,7 \pm 84,9$ AB2	$285,2 \pm 130,5$ B ²
(8)	110 *	66.2 ± 43.6 A ²	74.8 ± 52.6 A 3	$110,4 \pm 47,5$ $^{\mathrm{A}\mathrm{3}}$
Tau (s)	95 * #	$62,7 \pm 11,7$ A 1	$51,4 \pm 10,9$ ^{A 1}	$36,6 \pm 10,4$ B 1
	100 #	$49,4 \pm 11,8$ A 2	$44,2 \pm 8,7$ A 1 2	$33,1 \pm 9,1$ B 1 2
	110	37.7 ± 6.9 A 3	$35,2\pm8,3$ $^{\mathrm{A}2}$	$27.1 \pm 6.4^{~\mathrm{B}2}$

^{*} n= 9 para o grupo ST; # n= 14 para o grupo CIC.

Os valores médios da I_{SUP} , T_{SUP} e a amplitude dos diferentes domínios de intensidade estão apresentados na TABELA 5. Os valores da I_{SUP} (W) foram estatisticamente semelhantes entre os ST e COR, e ambos inferiores aos apresentados pelos CIC. Não foram encontradas diferenças entre os grupos CIC e COR quando a I_{SUP}

A, B, C Valores com a mesma letra não são diferentes entre os grupos para a mesma variável.

^{1, 2, 3} Valores com o mesmo número não são diferentes entre as intensidades para a mesma variável.

foi expressa de forma relativa (%IVO2max), contudo, os valores apresentados pelos ST foram menores que os do grupo CIC. Em relação ao T_{SUP}, seus valores foram semelhantes entre os ST e COR, e ambos superiores aos apresentados pelo CIC. Os valores da amplitude do domínio moderado foram significantemente menores no grupo ST, com o COR apresentando os valores intermediários, e o CIC os maiores valores. Para o domínio pesado, não foram encontradas diferenças entre os ST e COR, e ambos maiores que os valores apresentados pelos CIC. Não foram encontradas diferenças entre os grupos para o domínio severo. No grupo ST não houve diferença na amplitude dos diferentes domínios de intensidade. As amplitudes dos domínios pesado e severo não foram diferentes para os COR, porém, ambos foram menores do que a amplitude do domínio moderado. No grupo CIC os valores da amplitude do domínio moderado foram significantemente maiores, com o domínio severo apresentando valores intermediários, e domínio pesado os menores valores. (TABELA 5 e FIGURA 6).

TABELA 5 - Valores médios \pm DP das variáveis relacionadas com a maior intensidade onde o VO₂max ainda pode ser atingido (I_{SUP}) e das amplitudes dos diferentes domínios de intensidade para os grupos: sem treinamento (ST), corredores (COR) e ciclistas

(CIC). $T_{SUP} = o$ tempo de exercício relacionado à I_{SUP} .

Variával	ST	COR	CIC
Variável	(n=10)	(n=11)	(n=14)
I _{SUP} (W)	$276,5 \pm 65,9$ A	317.8 ± 50.3 ^A	449,7 ± 32,5 ^B
I_{SUP} (% IVO ₂ max)	118,4 \pm 6,7 $^{\mathrm{A}}$	123,7 \pm 10,0 $^{\mathrm{A}\mathrm{B}}$	$129{,}4\pm9{,}5$ $^{\mathrm{B}}$
T _{SUP} (s)	202,7 \pm 33,4 $^{\mathrm{A}}$	$176,7 \pm 33,8$ ^A	$119,1 \pm 28,7$ B
Moderado (% IVO ₂ max)	$39,2 \pm 8,5$ ^{A 1}	$48,4\pm6,5$ $^{\mathrm{B}\:1}$	$62,1\pm5,2$ ^{C 1}
Pesado (% IVO ₂ max)	$38,2 \pm 12,1$ A 1	$38,2 \pm 6,4$ A 2	23.8 ± 5.0 ^{B 2}
Severo (% IVO ₂ max)	40.9 ± 8.3 $^{\mathrm{A}}^{\mathrm{I}}$	$37.4 \pm 10.1 ^{\mathrm{A} 2}$	$43,5 \pm 11,4$ ^{A 3}

A, B, C Valores com a mesma letra não são diferentes entre os grupos.

^{1, 2, 3} Valores com o mesmo número não são diferentes entre os domínios de intensidade.

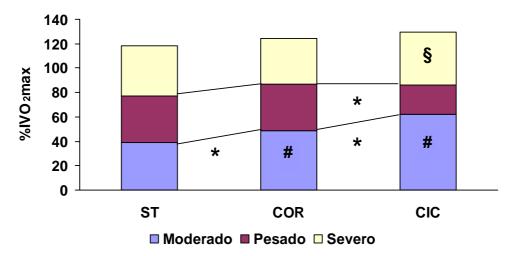


FIGURA 6 – Valores médios dos diferentes domínios de intensidade de exercício expressos relativos à intensidade correspondente ao consumo máximo de oxigênio (IVO₂max). ST, sem treinamento; COR, corredores; CIC, ciclistas; * p < 0,05 em relação aos grupos no mesmo domínio; # p < 0,05 em relação ao pesado e severo para o mesmo grupo; \S p < 0,05 em relação ao pesado para o CIC.

Na tabela 6 estão expressos os valores médios da I_{SUP} e T_{SUP} determinados de forma direta e estimada. Os valores da I_{SUP} (W) determinada diretamente e a estimada para os grupos ST e COR, foram semelhantes e significantemente correlacionadas. No grupo CIC a I_{SUP} estimada foi maior e não significantemente correlacionada com a determinada diretamente. A I_{SUP} estimada foi semelhante entre os grupos ST e COR, e ambos apresentaram valores menores do que o CIC. Os valores relativos da I_{SUP} foram semelhantes, porem não significativamente correlacionados entre a estimada e a determinada nos grupos ST e COR. No grupo CIC a I_{SUP} (% IVO₂max) estimada foi maior e não significantemente correlacionada com a determinada diretamente. Não foram observadas diferenças nos valores relativos da I_{SUP} estimada entre os grupos analisados. Os valores do T_{SUP} determinado e a estimado para os grupos CIC e COR foram semelhantes, porém não significantemente correlacionadas. No grupo ST, os valores entre o T_{SUP} determinado e o estimado foram diferentes e também não correlacionados. O T_{SUP} estimado foi semelhante entre os grupos ST e

COR, e ambos apresentaram valores maiores do que os ciclistas. A média da diferença \pm 95% do intervalo de confiança entre a I_{SUP} e I_{SUP} ' foram [-21,0 (33,0) W], [-12,2 (31,8) W] e [-51,0 (42,3) W] para os grupos ST, COR e CIC, respectivamente. Já entre o T_{SUP} e T_{SUP} ' foram [-50,6 (52,5) s], [-23,6 (36,3) s] e [-11,0 (24,5) s] para os grupos ST, COR e CIC, respectivamente (FIGURA 7).

Tabela 6 - Valores médios \pm DP das variáveis relacionadas com a maior intensidade onde o VO₂max ainda pode ser atingido (I_{SUP} e T_{SUP}) determinado de forma direta e estimado.

Variáveis	Grupos	Determinada	Estimada	Pearson
I_{SUP}	ST (n=7)	$269,0 \pm 73,3$	$290,0 \pm 62,7$ A	0,87 *
(W)	COR (n=11)	$317,8 \pm 50,3$	330,0 \pm 59,2 $^{\mathrm{A}}$	0,63 *
	CIC (n=14)	$449,7 \pm 32,5$	500,7 \pm 82,7 $^{\mathrm{B}\text{\#}}$	0,47
I _{SUP} (% IVO ₂ max)	ST (n=7)	$118,0 \pm 6,5$	128,7 \pm 13,5 $^{\mathrm{A}}$	- 0,40
	COR (n=11)	$123,7 \pm 10,0$	129,2 \pm 20,5 $^{\mathrm{A}}$	0,27
	CIC (n=14)	$129,4 \pm 9,5$	143,7 \pm 19,7 $^{\mathrm{A}\text{\#}}$	0,18
T	ST (n=7)	$209,5 \pm 29,4$	159,4 \pm 38,3 $^{\mathrm{A}\text{\#}}$	- 0,40
T_{SUP}	COR (n=11)	$176,7 \pm 33,8$	$153,1\pm49,8$ $^{\rm A}$	0,20
(s)	CIC (n=14)	$119,1 \pm 28,7$	108,1 \pm 30,7 $^{\mathrm{B}}$	- 0,02

A, B, C - Valores com a mesma letra não são diferentes entre os grupos.

[#] p < 0,05 em relação à determinada.

^{*} correlação significante a p< 0.05.

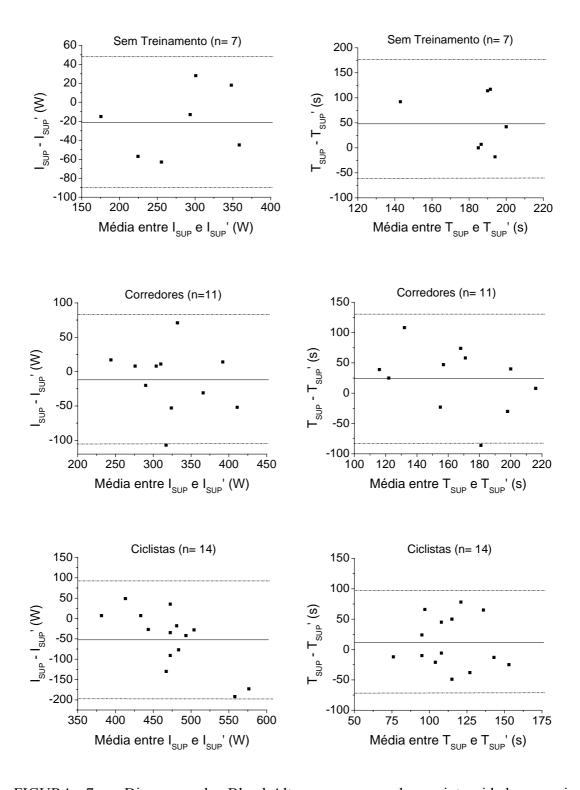


FIGURA 7 - Diagrama de Bland-Altman comparando a intensidade superior determinada (I_{SUP}) e estimada (I_{SUP} ') nas figuras da direita e o tempo superior determinado (T_{SUP}) e estimado (T_{SUP} ') nas figuras da esquerda para os grupos sem treinamento, corredores e ciclistas. A linha sólida representa a media da diferença entre as duas variáveis, e as linhas pontilhadas representam os 95% do limite de confiança entre as duas variáveis.

Os valores de VO_2 max obtidos nos diferentes testes do presente estudo estão demonstrados na TABELA 7. Os valores de VO_2 max foram maiores no grupo CIC, menores para o grupo ST, e intermediários para o grupo COR, em todos os testes analisados. Não foram observadas diferenças no VO_2 max entre os testes, com exceção para os testes realizados logo acima da I_{SUP} (> I_{SUP}), que foram significantemente menores em relação ao VO_2 max na I_{SUP} (TABELA 7). O coeficiente de variação do VO_2 max observado individualmente pela média do VO_2 max obtidos nos teste incremental e de carga constante a 95, 100, 110% IVO_2 max foi semelhante entre os grupos e apresentaram um valor médio de $4,2 \pm 1,9$ %, $3,9 \pm 1,6$ % e $3,5 \pm 1,0$ para o COR, ST e CIC, respectivamente.

Não foram observadas correlações significantes entre o Tlim (em todas as intensidades) e as principais variáveis fisiológicas determinadas neste estudo (VO₂max, IVO₂max, LL, OBLA, Tau) para o grupo COR. No grupo CIC foi observada correlação positiva significante apenas entre o Tlim a 110%IVO₂max com o TAVO₂max (r = 0,67). Para o grupo ST, foi observada correlação positiva significante apenas entre o Tlim a 95%IVO₂max com o OBLA (r = 0,62). Os valores de R^2 gerados na determinação da PC foram semelhantes e respectivamente 0.97 ± 0.03 , 0.97 ± 0.02 e 0.98 ± 0.02 para os grupos ST, COR e CIC. O coeficiente de correlação (r) entre o TAVO₂max e o Tlim para determinação da T_{SUP} foram semelhantes e respectivamente 0.84 + 0.23, 0.85 + 0.20 e 0.82 + 0.21, para os grupos ST, COR e CIC.

TABELA 7 – Valores médios \pm DP dos valores máximos do VO₂ obtidos nos diferentes testes. 95%, 100% e 110%, são os testes de carga constante realizados respectivamente à 95, 100 e 110% da IVO₂max; I_{SUP} , teste no qual a I_{SUP} foi determinada; $> I_{SUP}$, teste realizado em uma intensidade logo acima da I_{SUP} .

		201	
Teste	ST	COR	CIC
	(n=10)	(n=11)	(n=14)
Incremental	42.9 ± 3.5 A	54,6 ± 5,5 ^B	63,3 ± 6,7 °C
95%	45.6 ± 5.0 ^A	54.6 ± 4.1 $^{\rm B}$	$63,3\pm6,2$ ^C
100%	$43.7\pm3.1~^{\rm A}$	55.4 ± 5.9 ^B	63.9 ± 6.9 ^C
110%	$43,1 \pm 4,2$ ^A	$53.2 \pm 5.7^{\mathrm{\ B}}$	$62,5\pm6,1$ ^C
Media *	44.0 ± 3.8 ^A	$54{,}4\pm4{,}8$ $^{\rm B}$	$63,2\pm6,0$ ^C
I_{SUP}	43.2 ± 4.0 $^{\rm A}$	53.6 ± 4.6 $^{\rm B}$	$62,5 \pm 5,4$ ^C
$>$ I_{SUP}	40.2 ± 3.1 A $^{\rm H}$	48,6 \pm 5,3 $^{\rm B\#}$	$57,1\pm7,2$ ^{C #}

^{*} Média <u>+</u> DP dos valores de VO₂max obtidos no teste incremental e nos testes de carga constante a 95, 100, 110% IVO₂max.

A, B, C Valores com a mesma letra não são diferentes entre os grupos.

[#] significativamente diferente em relação à I_{SUP}.

7. DISCUSSÃO

7.1. Efeito do estado e especificidade do treinamento nos índices de aptidão aeróbia, Tlim e cinética do VO₂.

Podemos observar que os valores das variáveis máximas (VO₂max, IVO₂max, FCmax e [LAC]pico) e submáximas (LL, OBLA, PC) apresentadas pelos nossos sujeitos sem treinamento (ST) são semelhantes aos valores encontrados na literatura (HILL et al., 2002; CARTER et al., 2000b; NEDER et al., 2000). Em relação aos grupos treinados em corrida (COR) e ciclismo (CIC), apenas os valores de VO₂max são levemente inferiores ao reportado pela literatura (CAPUTO, DENADAI, 2004; LAURSEN et al., 2003; JEUKENDRUP et al., 2000). É importante salientar a ausência de estudos com corredores sendo avaliados em cicloergômetro, dificultando as comparações com os valores da literatura.

Conforme o esperado, o CIC apresentou os maiores valores para todas as variáveis, excetuando-se a FCmax, onde os valores foram semelhantes ao grupo ST. Isso reforça a necessidade de um treinamento especifico em longo prazo, quando o objetivo é atingir os maiores valores possíveis para as principais variáveis fisiológicas relacionadas com a capacidade (OBLA) e potência aeróbia (VO₂max). É interessante notar que o COR apresentou valores de VO₂max, IVO₂max (W·kg⁻¹) e OBLA inferiores

aos do CIC, mas superiores ao apresentado pelo ST, sugerindo assim uma transferência parcial dos efeitos do treinamento aeróbio, conforme demonstrado também por Caputo e Denadai (2004). Entretanto, para o LL (% VO₂max), as transferências provavelmente não ocorreram por este índice depender de adaptações periféricas bem específicas (e.g. aumento do metabolismo de gorduras, do número de capilares e mitocôndrias) e não das transferências resultantes de adaptações centrais. Desta forma, estes dados sugerem que para um determinado índice, quanto mais dependente ele for das adaptações centrais (aumento do volume de ejeção) maior será a transferência dos efeitos do treinamento.

Os valores de tempo de exaustão (Tlim) durante os testes de carga constante a 100%IVO2max dos grupos CIC, ST e COR foram mais altos do que os valores médios previamente reportados na literatura para ciclistas de elite (225 s) (LAURSEN et al., 2003; FAINA et al., 1997), indivíduos sem treinamento (328 s) (MESSONNIER et al., 2002) e corredores (333 s) (CAPUTO, 2003). Para os testes de carga constante a 95 e 110% IVO₂max, o único estudo que determinou o Tlim durante o ciclismo nestas intensidades foi realizado apenas por indivíduos ativos (558 e 245 s, respectivamente) (HILL et al., 2002). Estes valores de Tlim foram similares ao apresentado pelo grupo ST a 110%IVO2max, mas superior ao determinado a 95%IVO₂max (TABELA 4). É importante ressaltar a grande variabilidade interindividual (30 – 45%) do Tlim demonstrada por todos estes estudos. Além disso, os diferentes protocolos utilizados no teste incremental (carga e duração do incremento) influenciam significativamente na determinação da IVO₂max (COEN et al., 2001), gerando, consequentemente, diferentes valores de Tlim, o que torna dificil a comparação com muitos estudos reportados na literatura. No presente estudo, não foi encontrada diferença entre os grupos para o Tlim a 100 e 110%IVO2max, sugerindo que Tlim não parece sofrer influencia do estado nem da especificidade do treinamento. Além disso, as diferenças encontradas entre os grupos ST e COR a 95%IVO₂max, também não parecem estar associadas com o treinamento, já que os CIC apresentaram valores semelhantes aos ST e COR.

Na tentativa de explicar os fatores determinantes do Tlim, foram correlacionadas as principais variáveis fisiológicas do presente estudo (VO₂max, IVO₂max, LL, OBLA e TAVO₂max) com o Tlim a 95, 100 e 110%IVO₂max. Foram encontradas correlações positivas significantes no grupo CIC a 110%IVO₂max com o $TAVO_2$ max (r = 0,67). Para o grupo ST, foi observada correlação positiva significante apenas entre o Tlim a $95\%IVO_2$ max com o OBLA (r = 0,62). Estes dados concordam parcialmente com os obtidos por Laursen et al. (2003), que reportaram uma correlação positiva com o limiar ventilatório 2, e com os obtidos por Caputo e Denadai (2006), onde foi encontrada uma correlação positiva com o TAVO₂max, ambos a 100% IVO₂max. Contudo, estes resultados diferem dos encontrados por Faina et al. (1997), os quais reportaram uma correlação negativa significante entre o Tlim e VO₂max. Além disso, tem sido sugerido que em intensidades do domínio severo uma aceleração da cinética do VO₂ (e.g. exercício prévio ou treinamento aeróbio) reduz o déficit O₂, economizando substratos anaeróbios e provavelmente prolongando a duração do exercício (DEMARLE et al., 2001; JONES et al., 2003). Uma possível hipótese é que este mecanismo pode explicar as diferenças intra-individuais determinadas pelo treinamento aeróbio (DEMARLE et al., 2001), mas não as possíveis diferenças interindividuais presentes no Tlim em intensidades do domino severo. Certamente, a relação entre o Tlim e as diferentes variáveis fisiológicas medidas em laboratório ainda não estão claras. De fato, não é sabido se as grandes diferenças inter-individuais são causadas por uma maior potência e/ou capacidade aeróbia, ou como sugerido em alguns estudos, por diferenças individuais na capacidade anaeróbia (FAINA et al., 1997). É possível que algumas dessas inconsistências possam também ser devido aos fatores psicológicos inerentes a estes tipos de testes exaustivos (LAURSEN et al., 2003). Portanto, pelo menos nas intensidades e nos grupos de sujeitos analisados neste estudo, não foi possível isolar um possível fator (es) limitante/determinante do Tlim, salvo as duas pequenas exceções feitas ao CIC e ST.

Semelhante ao ocorrido para o Tlim, somente o estudo de Hill et al. (2002) analisou o Tau, TAVO2max e TMVO2max durante o ciclismo realizado a 95 e 110%IVO2max. Os indivíduos ativos do estudo de Hill et al. (2002) apresentaram valores de Tau e TAVO2max menores e TMVO2max maiores a 95 e 100%IVO2max quando comparados ao grupo ST. Entretanto, a 110%IVO2max os valores de TAVO2max, TMVO2max e Tau apresentados pelo grupo ST foi semelhante ao encontrado por Hill et al. (2002). O grupo COR e CIC a 100%IVO2max apresentaram valores de Tau levemente superiores e um TMVO2max maior que o demonstrado por Caputo (2003). Não foram encontrados estudos que determinaram e analisaram TAVO2max (Tau) e TMVO2max em ciclistas e corredores durante o Tlim realizado a 95 e 110% IVO2max em cicloergômetro.

Os valores de Tau foram menores no grupo CIC em relação aos grupos ST e COR em qualquer intensidade de exercício, sugerindo um efeito do treinamento aeróbio especifico na cinética do VO₂, independente da intensidade analisada. No entanto, não foi observada nenhuma transferência dos efeitos do treinamento de corrida para o ciclismo, uma vez que não foram observadas diferenças entre os grupos ST e COR nas intensidades analisadas. Estes dados diferem dos apresentados por Caputo e

Denadai (2004) onde foi demonstrada uma grande transferência dos efeitos do treinamento de corrida para o ciclismo no grupo COR. Alguns fatores poderiam explicar estes dados antagônicos. Primeiro, nossos grupos ST e COR apresentaram valores de VO₂max respectivamente superiores e inferiores em relação aos mesmos grupos do estudo de Caputo e Denadai (2004). Essa diferença de aptidão aeróbia entre os grupos foi provavelmente o que aumentou os valores de Tau do nosso grupo COR e diminuiu para o grupo ST. Isso poderia justificar a ausência de diferença no Tau entre esses dois grupos no presente estudo. Além disso, as diferenças no delineamento experimental (comparações simples vs. múltiplas) número de sujeitos e variabilidade intra e inter sujeitos poderiam influenciar o significado estatístico nos diferentes estudos. Alguns desses fatores (número de sujeitos testados e grande variabilidade intra e inter sujeitos) podem levar ao erro estatístico do tipo II, o que explicaria em parte a ausência de diferença no Tau entre o grupo COR e CIC encontrado por Caputo e Denadai (2004), e entre o grupo ST e COR do presente estudo.

Os dados existentes na literatura são muito contraditórios em relação ao principal fator limitante da cinética do VO₂ ao início do exercício. Seriam eles, os mecanismos responsáveis pela oferta de O₂ (convecção e difusão) ou uma inércia do metabolismo oxidativo (controladores metabólicos e/ou ativação enzimática). Em intensidades submáximas, o mecanismo responsável por este mais rápido aumento no VO₂ após treinamento, parece ter sido decorrente de um mais rápido aumento no débito cardíaco e/ou do fluxo sanguíneo da musculatura esquelética durante o primeiro minuto de exercício (PHILLIPS et al., 1995). Essas alterações na cinética do VO₂ em intensidades submáximas, foram demonstradas estar em paralelo com as mudanças na cinética da frequência cardíaca após treinamento (PHILLIPS et al., 1995).

Contraditoriamente, Grassi (2001) através de estudos *in vitro* demonstrou que nas transições do repouso para intensidade submáxima (60%), a cinética do VO₂ muscular não é limitada pela oferta de O₂ para o músculo, embora em intensidades mais elevadas (VO₂max) a oferta de O₂ tenha um papel relativamente pequeno, mas significante como um fator limitante para a cinética do VO₂ muscular. Assim, o autor sugere que o LV poderia descriminar intensidades na qual a oferta de O₂ seria (acima do LV), ou não seria (abaixo do LV) um dos fatores limitantes da cinética do VO₂. Confirmando esta hipótese, MacDonald et al. (1997) demonstraram também que durante o exercício em cicloergômetro a oferta de O₂ parece ser o fator limitante da cinética do VO₂ em intensidades acima do LV (domínio pesado).

Após um prolongado treinamento de endurance, ocorrem aumentos na concentração de enzimas oxidativas, no tamanho e número de mitocôndrias, que podem também contribuir para uma aceleração na cinética do VO₂. Mesmo com todas essas contradições, é lógico pensar que o treinamento aeróbio deve ter influência sobre todos esses possíveis fatores limitantes, possibilitando uma aceleração na cinética do VO₂ independente da intensidade de exercício. Isto pode ser observado por este estudo realizado em diferentes intensidades do domínio severo (submáxima, máxima e supramáxima) e por outros trabalhos longitudinais realizados em diferentes intensidades submáximas (moderado e severo) (PHILLIPS et al., 1995; DEMARLE et al., 2001; BILLAT et al., 2002b).

O domínio severo tem sido caracterizado por intensidades onde o VO₂max pode ser atingido e sustentado. Diversos trabalhos têm demonstrado que o VO₂max é atingido mais rápido nas intensidades mais elevadas (MARGARIA et al., 1965, BILAT et al., 2000, HILL et al., 2002, HILL, STEVENS, 2005). De fato, houve

uma diminuição do Tau e consequentemente no TAVO₂max, com o aumento da intensidade para o grupo ST. No entanto, para o grupo COR e CIC houve um efeito da intensidade apenas entre 95% e 110% IVO₂max. É importante ressaltar, que a 95% IVO₂max a ocorrência de componente lento eleva lentamente o VO₂ em direção a seus valores máximos, tornando assim mais lenta a resposta total do VO₂ nessa intensidade. Isso pode ter causado a diferença no Tau entre 95% e 110% IVO₂max. Independente disso, nossos dados confirmam que dentro do domínio severo o TAVO₂max é reduzido com o aumento da intensidade de exercício, independente da especificidade do treinamento, mas com algum efeito do estado do treinamento.

7.2. Efeito do estado e especificidade do treinamento na I_{SUP} e T_{SUP}

Os valores referentes à I_{SUP} do grupo CIC são inferiores ao encontrado por Hill et al. (2002) quando expressos em valores relativos à IVO₂max, e maiores quando expresso de maneira absoluta (W). Para os grupos COR e ST, os valores (relativos e absolutos) foram menores daqueles reportados por Hill et al. (2002). Os valores referentes à T_{SUP} apresentado pelo grupo CIC foram menores, e a dos grupos COR e ST maiores daqueles encontrados por Hill et al. (2002) (TABELA 5). Entretanto, é importante ressaltar que os valores da I_{SUP} e T_{SUP} do estudo de Hill et al. (2002) foram determinadas apenas indiretamente. Quando se compara os valores de I_{SUP} e T_{SUP} estimados (I_{SUP} ' e T_{SUP} ') pelo presente estudo com aqueles obtidos por Hill et al (2002) o comportamento não difere do apresentado acima, com exceção da maior I_{SUP} ' relativa encontrada no grupo CIC.

Analisando simultaneamente os grupos do presente estudo, o CIC apresentou I_{SUP} (W) maior e T_{SUP} menor em relação aos demais grupos. Já o COR e ST apresentaram valores semelhantes para I_{SUP} e T_{SUP} (TABELA 5). Entretanto, não foram encontradas diferenças entre os grupos CIC e COR quando a I_{SUP} foi expressa de forma relativa à IVO2max. Como demonstrado nas outras intensidades (95, 100 e 110%IVO₂max), houve um efeito do treinamento aeróbio específico na cinética do VO₂, diminuindo significantemente o T_{SUP} para uma I_{SUP} relativamente semelhante. Para o grupo COR as transferências do treinamento parecem desaparecer durante exercícios de alta intensidade, como pode ser observado para o Tau (principalmente a 110%IVO₂max), a I_{SUP} e T_{SUP}. Esses dados sugerem a necessidade de adaptações específicas para acelerar a cinética durante o ciclismo em intensidades do domínio severo. Esta afirmação parece um pouco contraditória quando se leva em consideração os mecanismos determinantes da cinética do VO2 em exercício intensos como vistos anteriormente, e a transferência central (débito cardíaco) que parece existir para o grupo COR. Portanto, os mecanismos periféricos relacionados com a oferta de O₂ (maior capilarização, melhor controle de fluxo periférico) e com a atividade muscular (extração e utilização de O₂) parecem governar a velocidade de resposta do VO₂ ao início do exercício de alta intensidade. Além disso, as semelhanças encontradas no Tau e no T_{SUP} entre o COR e ST, sugerem que a contribuição dos mecanismos centrais (volume de ejeção) na velocidade da cinética do VO₂ parece ser negligenciável pelo menos durante exercícios severos. Em suma, parecem ser necessárias adaptações específicas tanto centrais, mas principalmente periféricas, para que a máxima interação entre captação, transporte e utilização do O₂ (VO₂max), possa ser atingida em apenas ~2 minutos de exercício.

7.3. Validade do modelo de predição da I_{SUP} e T_{SUP}

O modelo utilizado por Hill et al. (2002) para determinar a I_{SUP}' não pode ser determinada em três indivíduos do grupo ST devido aos seguintes motivos: 1) grandes diferenças entre os valores de TAVO₂max (principalmente entre 95 e 100% IVO₂max) acarretando um amento da inclinação da regressão linear fazendo com que ela não cruzasse a linha de identidade, ou cruzasse em valores fisiologicamente impossíveis (FIGURA 5) e; 2) quando o valor de TAVO₂max projetado pelo ajuste monoexponencial foi maior que o Tlim. Portanto, foram utilizados apenas 7 sujeitos do grupo ST na análise da validade do modelo proposto por Hill et al. (2002).

No grupo CIC a I_{SUP}' superestimou a I_{SUP} expressa de forma absoluta e relativa (TABELA 7). Já para os grupos ST e COR, não foram encontradas diferenças entre a I_{SUP} e I_{SUP}' tanto absoluta quanto relativa. No entanto, apenas quando expressa de forma absoluta a I_{SUP} foi significantemente correlacionada com a I_{SUP}'. Em relação ao T_{SUP}, este foi semelhante ao T_{SUP}' entre os grupos COR e CIC, e subestimado pelo T_{SUP}' para o grupo ST, porém não houve correlações significantes entre a T_{SUP} e T_{SUP}' em nenhum dos grupos analisados. Portanto, analisando de forma geral, o modelo proposto por Hill et al. (2002) parece apresentar uma validade pelo menos moderada para estimar a carga referente à I_{SUP} para os grupos ST e COR. Já para o grupo CIC e mesmo para os grupos ST e COR (I_{SUP} relativo e T_{SUP}) o modelo não apresentou validade para determinação indireta da I_{SUP} e T_{SUP}. É importante ressaltar que a I_{SUP}' é calculada através do T_{SUP}', assim os valores de I_{SUP}' são extremamente dependentes da determinação do T_{SUP}'. Independente disso, o modelo apresentou valores semelhantes e correlacionados de I_{SUP} e I_{SUP}' (W) no grupo ST, apesar das diferenças encontradas

entre a T_{SUP} e T_{SUP}'. Assim, estes dados reforçam o efeito da relação/interação entre os dois modelos (TAVO₂max vs. Tlim e PC) para a determinação indireta da I_{SUP}. Este aspecto associado à ausência de validade para o grupo CIC parece sugerir também uma especificidade do treinamento na validade do modelo em estimar a I_{SUP} absoluta, devido provavelmente à sua influência (especificidade) na relação/interação entre os dois modelos. No entanto, vale a pena ressaltar que não houve diferença na precisão dos parâmetros relacionados aos modelos entre os grupos analisados. Os aspectos relacionados à determinação desses parâmetros serão discutidos posteriormente. Quando o objetivo da determinação da I_{SUP}' e T_{SUP}' for a verificação dos efeitos do treinamento, os mesmos devem ser feitos com alguma cautela, pois além da ausência da validade da I_{SUP}' e T_{SUP}' para o CIC, a I_{SUP}' relativa não foi sensível o suficiente para detectar os efeitos do treinamento aeróbio específico, diferente do ocorrido para a I_{SUP} relativa.

As diferenças entre as variáveis determinadas e as estimadas podem ter ocorrido em função de algumas limitações e/ou de alguns pressupostos assumidos pelo modelo não estarem totalmente corretos. O primeiro pressuposto seria que o TAVO2max diminui linearmente com o aumento da intensidade até que seu valor seja semelhante ao Tlim. Isso é baseado na força da relação entre o TAVO2max e o Tlim. Realmente no presente estudo esta relação não foi tão forte, apresentando um r médio de 0,84. Além disso, é provável também que em intensidades mais elevadas (acima de 110%IVO2max) comece a haver uma quebra dessa provável linearidade com o aparecimento de um platô no TAVO2max, fazendo com que os valores estimados fossem menores do que os determinados diretamente. Uma outra limitação seria que T_{SUP} é dependente também da precisão da determinação do TAVO2max. Como o

TAVO₂max foi definido baseado na cinética do VO₂ (4,6 · Tau), uma possível fonte de erro foi usar um ajuste mono exponencial durante o exercício a 95%IVO₂max devido ao aparecimento do componente lento. Como o presente estudo buscou simplesmente determinar o TAVO₂max e não caracterizar a natureza da resposta, para isso o uso do modelo monoexponencial parece apropriado. Apesar disso, como a estimativa do Tau está associada a um erro (i.e., erro padrão da estimativa), consequentemente, os valores de TAVO₂max também estarão. Assim, esses fatores podem justificar a ausência de validade da relação entre TAVO₂max e Tlim em poder estimar indiretamente o T_{SUP}.

A precisão da estimativa da I_{SUP} torna-se um pouco mais complicada, uma vez que ela depende tanto da precisão da estimativa da T_{SUP} quanto do modelo da PC em estimar a intensidade de exercícios de curta duração. De fato alguns autores têm apontado a limitação do modelo da PC para estimar a intensidade ou o tempo de exaustão em exercícios de alta intensidade (HOPKINS et al., 1989; MORTON, 1996). No entanto, no presente estudo o modelo de PC apresentou um R² médio de 0,97, demonstrando uma razoável precisão de seus parâmetros. Assim, a soma de todas essas fontes de erro (principalmente na relação TAVO₂max e Tlim) parece ter influenciado na estimativa de ambas T_{SUP} e I_{SUP}, gerando as diferenças encontradas entre os valores reais e estimados.

Para a determinação da I_{SUP} nós assumimos que o indivíduo atingiu o VO₂max quando o valor de VO₂ fosse igual ou superior à média menos 1 DP dos valores de VO₂max obtidos nos teste incremental e de carga constante (95, 100 e 110%IVO₂max) (TABELA 7). Diversos estudos demonstraram que o VO₂max é sempre alcançado nestas intensidades tanto na corrida (MORTON, BILLAT, 2000; BILLAT et al., 2000) quanto no ciclismo (HILL et al., 2002; SCHEUERMANN, BARSTOW,

2003). Nós optamos usar este critério por dois motivos: 1) Individualizar a variação biológica (variação intra-sujeito) e o erro de medida do analisador de gases. No presente estudo, o coeficiente de variação ficou em torno de 4%, abaixo dos 5,6 % de variação biológica demonstrado por Katch et al. (1982) e; 2) Não assumir valores fixos como, por exemplo, o VO₂max obtido no teste incremental menos 2,1 ml/kg/min (BILLAT et al., 1999) ou 95% deste valor (BILLAT et al., 2000), uma vez que as variações que ocorreram para o VO₂max nos diferentes testes (incremental e carga constante) demonstraram uma grande individualidade. Portanto, o critério utilizado no presente estudo parece obter um valor individualizado e robusto de VO₂max, para que a I_{SUP} possa ser determinada com certa precisão realizando-se apenas uma transição.

7.4. Efeito do estado e especificidade do treinamento nos diferentes domínios de exercício

Para comparar as amplitudes dos domínios de exercício, nós assumimos a teoria proposta por Hill et al. (2002), na qual a I_{SUP} seria um possível limite superior do domínio severo. Esse pressuposto baseia-se no fato de que o domínio severo é caracterizado por intensidades onde o VO₂max pode ser atingido e sustentado. Assim, a I_{SUP} seria a fronteira para um quarto domínio de exercício, que compreenderia intensidades onde a fadiga se instalaria antes que o VO₂max pudesse ser alcançado. O presente estudo não pretende com isso sugerir a criação de um quarto domínio de exercício, pois a nosso ver, o mesmo não teria ainda subsídios fisiológicos suficientes para isso. A intenção foi apenas de reduzir a noção de infinidade imposta ao domínio severo, e para tais propósitos este pressuposto parece apropriado.

Os valores da amplitude dos domínios moderado e pesado estão dentro da faixa de variação demonstrada na literatura para os grupos CIC e ST (NEDER et al., 2000, ACHTEN, JEUKENDRUP, 2004). Em relação ao grupo COR não existem dados na literatura que analisaram as amplitudes dos domínios de exercício durante o ciclismo. No presente estudo, foi observado um progressivo aumento da amplitude do domínio moderado com o aumento da aptidão aeróbia. Estes dados são diferentes do encontrado por Neder et al. (2000) onde o aumento da amplitude do domínio moderado estava associado com uma diminuição da aptidão aeróbia. Um possível fator que poderia explicar as diferenças entre os estudos seria o modelo utilizado para verificar os efeitos da aptidão aeróbia, e nos mecanismos que causaram essas diferenças. No estudo de Neder et al. (2000), os autores utilizaram o envelhecimento para determinar diferenças na aptidão aeróbia entre os grupos, o qual é sabido que os parâmetros relacionados com a capacidade aeróbia sofrem uma menor redução com o envelhecimento do que os parâmetros relacionados com a potencia aeróbia ou exercício máximo. Este aspecto ocasionou um aumento da amplitude do domínio moderado à custa principalmente da diminuição no domínio severo. Seus resultados devem ser analisados com cautela, já que sugerem uma melhora da capacidade aeróbia com o envelhecimento e camuflam os efeitos deletérios do envelhecimento sobre a capacidade funcional total.

No presente estudo, nós analisamos os efeitos do treinamento aeróbio em longo prazo para determinar diferenças de aptidão aeróbia entre os grupos, fazendo com que o aumento no domínio moderado tenha sido proporcionado por uma diminuição no domínio pesado. Isso concorda com dados da literatura de que o treinamento de endurance em longo prazo promove uma aproximação entre os limiares ou limites e de seus valores com o VO₂max (JONES, CARTER, 2000). Isto pode ser também

observado pelas diferenças observadas entre os grupos para o domínio pesado, onde os valores encontrados no CIC foram inferiores aos demonstrados pelos COR e ST.

Em relação ao domínio severo não foram observadas diferenças entre os grupos. Esses resultados ocorreram exclusivamente em função do baixo valor de PC apresentados pelos ST terem diminuído o limite inferior e consequentemente aumentando sua amplitude. Não parecem existir mecanismos fisiológicos que sustentam a hipótese de que a amplitude do domínio severo deveria ser aumentada com o treinamento aeróbio, uma vez que os seus limites (inferior e superior) parecem caminhar em paralelo entre si.

8. CONCLUSÃO

Com base nos achados do presente estudo nós podemos concluir que:

- 1) Independente do índice de aptidão aeróbia (submáximo ou máximo), as transferências dos efeitos do treinamento parecem ser apenas parciais, existindo a necessidade de que se atenda o princípio da especificidade do movimento, quando se pretende obter um elevado grau de adaptação fisiológica.
- 2) O Tlim realizado a 95, 100, 110% IVO₂max não foi dependente do estado ou especificidade do treinamento aeróbio;
- 3) O treinamento aeróbio específico acelerou a cinética do VO₂ em intensidades submáximas, máximas e supramáximas dentro do domínio severo;
- 4) A I_{SUP} expressa de maneira relativa foi sensível ao treinamento aeróbio, mas não a sua especificidade. Já o T_{SUP} foi sensível apenas ao treinamento aeróbio específico.
- 5) O modelo para a estimativa da I_{SUP} ' apresentou uma validade moderada para determinação indireta da I_{SUP} absoluta apenas nos grupos ST e COR, sugerindo também um efeito do treinamento aeróbio específico, pelo menos para a estimativa da I_{SUP} absoluta. Para a I_{SUP} relativa e T_{SUP} o modelo não se mostrou válido para estimar tais variáveis nos três grupos analisados.

- 6) A melhora da aptidão aeróbia está associada a um aumento do domínio moderado, com os maiores aumentos sendo apresentados pelo grupo CIC, às custas de uma diminuição no domínio pesado.
- 7) As correlações encontradas entre o Tlim e as diferentes variáveis fisiológicas, parecem ser apenas casuais, não possibilitando realmente uma conclusão a respeito dos possíveis fatores determinantes do Tlim em intensidades do domínio severo.

9. REFERÊNCIAS BIBLIOGRÁFICAS

- ACHTEN, J., JEUKENDRUP, A. E. Relation between plasma lactate concentration and fat oxidation rates over a wide range of exercise intensities. **Int J Sports Med**. v.25, Stuttgart, p.32-37, 2004.
- BANGSBO, J. Muscle oxygen uptake in humans at onset of and during intense exercise. **Acta Physiol Scand**. Stockholm, v.168, p. 457-464, 2000.
- BARSTOW, T. J. Characterization of VO₂ kinetics during heavy exercise. **Med Sci Sports Exerc**. Madison, v.26, p.1327-1334, 1994.
- BARSTOW, T. J., CASABURI, R., WASSERMAN, K. O₂ uptake kinetics and the O₂ deficit as related to exercise intensity and blood lactate. **J Appl Physiol**. Bethesda, v.75, p. 755-762, 1993.
- BARSTOW, T. J., MOLE, P. A. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. **J Appl Physiol**. Bethesda, v.71, p.2099-2106, 1991
- BARSTOW, T. J., MOLE, P. A. Simulation of pulmonary oxygen uptake during exercise in humans. **J Appl Physiol**. Bethesda, v.63, p. 2253-2261, 1987.
- BHAMBHANI, Y. N., ERIKSSON, P., GOMES, P. S. Transfer effects of endurance training with the arms and legs. **Med Sci Sports Exerc**. Madison, v.23, p.1035-1041, 1991.

- BILLAT, V. L., HAMARD, L., KORALSZTEIN, J. P. The influence of exercise duration at VO₂ max on the off-transient pulmonary oxygen uptake phase during high intensity running activity. **Arch Physiol Biochem**. Lisse, v.110, p.383-392, 2002a.
- BILLAT, V. L., KORALSZTEIN, J. P. Significance of the velocity at vVO₂max and time to exhaustion at this velocity. **Sports Med**. Auckland, v.22, p.90-108, 1996.
- BILLAT, V. L., MILLE-HAMARD, L., DEMARLE, A., et al. Effect of training in humans on off- and on-transient oxygen uptake kinetics after severe exhausting intensity runs. **Eur J Appl Physiol**. Berlin, v.87, p.496-505, 2002b.
- BILLAT, V. L.; MORTON, R. H.; BLONDEL, N., et al. Oxygen kinetics and modeling of time to exhaustion whilst running at various velocities at maximal oxygen uptake **Eur J Appl Physiol**. Berlin, v.82, p.178-87, 2000.
- BILLAT, V. L., BLONDEL, N., BERTHOIN, S. Determination of the velocity associated with the longest time to exhaustion at maximal oxygen uptake. **Eur J Appl Physiol.** Berlin, v.80, p.159-61, 1999.
- BISHOP, D., JENKINS, D. G., HOWARD, A. The critical power function is dependent on the duration of the predictive exercise tests chosen. **Int J Sports Med**. Stuttgart, v.19, p.125-129, 1998.
- BOUCKAERT, J., VRIJENS, J., PANNIER, J. L. Effect of specific test procedures on plasma lactate concentration and peak oxygen uptake in endurance athletes. **J**Sports Med Phys Fitness. Turin, v.30, p.13-18, 1990.
- BOUTCHER, S. H., SEIP, R. L., HETZLER, R. K. et al. The effects of specificity of training on rating of perceived exertion at the lactate threshold. **Eur J Appl Physiol**. Berlin, v.59, p.365-369, 1989.

- CALIS, J. F. F, DENADAI, B. S. Influencia das cargas preditivas na determinação da potência crítica determinada no ergômetro de braço em dois modelos lineares. **Rev Bras Med Esporte**. Niterói, v.6, p.1-4, 2000.
- CAPUTO, F. Efeitos do treinamento aeróbio e da especificidade do movimento sobre a aptidão aeróbia, tempo máximo de exercício e cinética do consumo de oxigênio: comparação entre corredores, ciclistas, triatletas e sedentários. **Dissertação de Mestrado**. Rio Claro (SP): Universidade Estadual Paulista, 2003.
- CAPUTO, F., DENADAI, B. S. Effects of aerobic endurance training status and specificity on oxygen uptake kinetics during maximal exercise. **Eur J Appl Physiol.** Berlin, v.93, p.87-95, 2004.
- CAPUTO, F., DENADAI, B. S. Exercise mode affects the time to achieve VO2max without influencing maximal exercise time at the intensity associated with VO2max in triathletes. **Int J Sports Med**. Stuttgart, Feb 1, 2006, DOI: 10.1055/s-2005-872962.
- CARTER, H., JONES, A. M., BARSTOW, T. J., et al. Effect of endurance training on oxygen uptake kinetics during treadmill running. **J Appl Physiol**. Bethesda, v.89, p.1744-1752, 2000a.
- CARTER, H., JONES, A. M., BARSTOW, T. J., et al. Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison. **J Appl Physiol**. Bethesda, v.89, p.899-907, 2000b.
- CARTER, H., PRINGLE, J. S. M., JONES, A.M., et al. Oxygen uptake kinetics during treadmill running across exercise intensity domains. **Eur J Appl Physiol**. Berlin, v.86, p.347-354, 2002.

- CASABURI, R., BARSTOW, T.J., ROBINSON, T., WASSERMAN, K. Dynamic and steady-state ventilatory and gas exchange responses to arm exercise. **Med Sci Sports Exerc** Madison, v.24, p.1365-1374, 1992.
- CASABURI, R, BARSTOW, T. J, ROBINSON, T. et al. Influence of work rate on ventilatory and gas exchange kinetics. **J Appl Physiol**. Bethesda, v.67, p. 547-555, 1989.
- CHILIBECK, P. D., PATERSON, D. H., PETRELLA, R. J., et al. The influence of age and cardiorespiratory fitness on kinetics of oxygen uptake. **Can J Appl Physiol**. Champaign, v.21, p.185-196, 1996.
- CLAUSEN, J. P., TRAP-JENSEN, J., LASSEN, N. A. The effects of training on the heart rate during arm and leg exercise. **Scand J Clin Lab Invest**. Oslo, v.26, p.295-301, 1970.
- COEN B, URHAUSEN A, KINDERMANN W. Individual anaerobic threshold: methodological aspects of its assessment in running. **Int J Sports Med**. Stuttgart, v.22, p.8-16, 2001.
- CROW, M. T., KUSHMERICK, M. J. Chemical energetics of slow and fast-twitch muscles of the mouse. **J Gen Physiol**. New York, v. 79, p.147-166, 1982.
- DEKERLE, J., BARON, B., DUPONT, L., et al. Maximal lactate steady state, respiratory compensation threshold and critical power. **Eur J Appl Physiol**. Berlin, v.89, p.281-8, 2003.
- DEMARLE, A. P., SLAWINSKI, J. J., LAFFITE, L. P., et al. Decrease of O(2) deficit is a potential factor in increased time to exhaustion after specific endurance training. **J Appl Physiol**. Bethesda, v.90, 947-953, 2001.

- DENADAI, B. S. Avaliação aeróbia: determinação indireta da resposta do lactato sanguíneo. Motrix, Rio Claro, 2000.
- DENADAI, B. S., Ortiz, M. J., STELLA, S., et al. Validade da velocidade crítica para a determinação dos efeitos do treinamento no limiar anaeróbio em corredores de endurance. **Rev Por Ciênc Desp**. Porto, v.3, p.16 23, 2003.
- DUDLEY, G. A., FLECK, S. J. Strength and endurance training: are they mutually exclusive? **Sports Med**. Auckland, v.4, p.79-85, 1987.
- ENGELEN, M., PORSZASZ, J., RILEY, M. et al. Effects of hypoxic hypoxia on O₂ uptake and heart rate kinetics during heavy exercise. **J Appl Physiol**. Bethesda, v.81, p. 2500-2508, 1996.
- FAINA, M., BILLAT, V., SQUADRONE, R., et al. Anaerobic contribution to the time to exhaustion at the minimal exercise intensity at which maximal oxygen uptake occurs in elite cyclists, kayakists and swimmers. **Eur J Appl Physiol**. Berlin, v.76, p.13-20, 1997.
- FUKUBA, Y., MIURA, A., ENDO, M., et al. The curvature constant parameter of the power-duration curve for varied-power exercise. **Med Sci Sports Exerc**. Madison, v.35, p.1413-1418, 2003.
- GAESSER, G. A., CARNEVALE, T. J., GARFINKEL, A., et al. Estimation of critical power with nonlinear and linear models. **Med Sci Sports Exerc**. Madison, v.27, p.1430-1438, 1995.
- GAESSER, G. A., POOLE, D. C. The slow component of oxygen uptake kinetics in humans. **Exerc Sport Sci Rev**, Baltimore, v.24, 35-70, 1996.

- GERBINO, A., WARD, S. A., WHIPP, B. J. et al. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. **J Appl Physiol**. Bethesda, v.80, p. 99-107, 1996.
- GOLLNICK, P. D., ARMSTRONG, R. B., SALTIN, B. et al. Effect of training on enzyme activity and fiber composition of human skeletal muscle. **J Appl Physiol**. Bethesda, v.34, p.107-111, 1973.
- GRASSI, B. Regulation of oxygen consumption at exercise onset: is it really controversial? **Exerc Sports Sci Rev**. Baltimore, v.3, p.134-138, 2001.
- GRASSI, B., GLADEN, L. B., SAMAJA, M., et al. Faster adjustment of O₂delivery does not affect VO₂ on-kinetics in isolated in situ canine muscle. **J Appl Physiol**. Bethesda, v.85, p.1394-1403, 1998a.
- GRASSI, B., GLADEN, L. B., STARY, C. M. et al. Peripheral O₂ diffusion does not affect VO₂ on-kinetics in isolated in situ canine muscle. **J Appl Physiol**. Bethesda, v.85, p.1404-1412, 1998b.
- GRASSI, B., HOGAN, M. C., KELLEY, K. M., et al. Role of convective O₂ delivery in determining VO₂ on-kinetics in canine muscle contracting at peak VO₂. **J Appl Physiol**. Bethesda, v.89, p.1293-1301, 2000.
- GRASSI, B., POOLE, D. C., RICHARDSON, R. S. et al. Muscle O₂ uptake kinetics in humans: implications for metabolic control. **J Appl Physiol**. Bethesda, v.80, p.988-998, 1996.
- HEBESTREIT, H., KRIEMLER, S., HUGHSON, R. L. et al. Kinetics of oxygen uptake at the onset of exercise in boys and men. **J Appl Physiol**. Bethesda, v.85, p.1833-1841, 1998.

- HECK, H., MADER, A., HESS, G. et al. Justification of the 4mmol/l lactate threshold.

 Int J Sports Med. Stuttgart, v. 6, p.117-130, 1985.
- HILL, D. W. The critical power concept. **Sports Med**. Auckland, v.16, p.237-254,1993.
- HILL, D. W. The relationship between power and time to fatigue in cycle ergometer exercise. **Int J Sports Med**. Stuttgart, v.25, p.357-361, 2004.
- HILL, D. W., POOLE D. C., SMITH J. C. The relationship between power and time to achieve VO₂max. **Med Sci Sports Exerc**. Madson, v.26, p.1327-1334, 2002.
- HILL, D. W., SMITH, J. C. A method to ensure the accuracy of estimates of anaerobic capacity derived using the critical power concept. **J Sports Med Phys Fitness**. Turin, v.34, p.23-37, 1994.
- HILL, D. W., SMITH, J. C., LEUSCHEL, J. L., et al. Effect of pedal cadence on parameters of the hyperbolic power-time relationship. **Int J Sports Med**. Stuttgart, v.16, p.82-87, 1995.
- HILL, D. W., STEVENS, E. C. VO2 response profiles in severe intensity exercise. **J**Sports Med Phys Fitness. Turin, v.45, p.239-247, 2005.
- HOPKINS, W. G., EDMOND, I. M., HAMILTON, B. H., et al. Relation between power and endurance for treadmill running of short duration. **Ergonomics**. London, v.32, p.1565-1571, 1989
- HOUSH, D. J., HOUSH, T. J., BAUGE, S. M. A methodological consideration for the determination of critical power and anaerobic work capacity. **Res Q Exerc Sport**. Reston, v.61, p.406-409, 1990.
- HOUSH, T. J., DEVRIES, H. A., HOUSH, D. J., et al. The relationship between critical power and the onset of blood lactate accumulation. **J Sports Med Phys Fitness**. Turin, v.31, p.31-36, 1991.

- HUGHSON, R. L., O'LEARY, D. D., BETIK, A. C., et al. Kinetics of oxygen uptake at the onset of exercise near or above peak oxygen uptake. **J Appl Physiol**. Bethesda, v.88, p.1812-1819, 2000.
- JEUKENDRUP, A. E., CRAIG, N. P., HAWLEY, J. A. The bioenergetics of world class cycling. **J Sci Med Sport.** Belconnen, v.3, p.414-433, 2000.
- JONES, A. M., CARTER, H. The effect of endurance training on parameters of aerobic fitness. **Sports Med**. Auckland, v.29, p.373-386, 2000.
- JONES, A. M., WILKERSON, D. P., BURNLEY, M., et al. Prior heavy exercise enhances performance during subsequent perimaximal exercise. Med Sci Sports Exerc. Madison, v.35, p.2085-2092, 2003.
- KATCH, V. L, SADY, S. S, FREEDSON, P. Biological variability in maximum aerobic power. **Med Sci Sports Exerc.** Madison, v.14, p.21-5, 1982.
- LACOUR, J. R., PADILLA-MAGUNACELAYA, S., CHATARD, J. C., et al.

 Assessment of running velocity at maximal oxygen uptake. **Eur J Appl Physiol**.

 Berlin, v.62, p.77-82, 1991.
- LAURSEN, P. B., SHING, C. M., JENKINS, D. G. Reproducibility of the cycling time to exhaustion at VO₂peak in highly trained cyclists. **Can J Appl Physiol**. Champaign, v.28, p.605-615, 2003.
- LEWIS S., THOMPSON P., ARESKOG N. et al. Transfer effects of endurance training to exercise with untrained limbs. **Eur J Appl Physiol**. Berlin, v.44, p.25-34, 1980.
- LOY S. F., HOFFMANN J. J., HOLLAND G. J. Benefits and practical use of cross-training in sports. **Sports Med**. Auckland, v.19, p.1-8, 1995.

- LOY S. F., SHAPIRO B. I., HOFFMANN J. J. et al. Effect of running versus cycle training on cycle ergometer, treadmill, and running performance. **Sports Med Train Rehabil**. Philadelphia, v.4, p.1-9, 1993.
- MACDONALD, M., PEDERSEN, P. K., HUGSON, R. L. Acceleration of VO₂ kinetics in heavy submaximal exercise by hyperoxia and prior high-intensity exercise. **J Appl Physiol**. Bethesda, v.83, p.1318-1325, 1997.
- MAGEL, J. R., FOGLIA, G. F., MCARDLE, W. D.. Specificity of swim training on maximal oxygen uptake. **J Appl Physiol**. Bethesda, v.38, p.151-155, 1975.
- MARGARIA, R., MANGILI, F., CUTTICA, F., et al. The kinetics of the oxygen consumption at the onset of muscular exercise in man. **Ergonomics**. London, v.8, 49-54, 1965.
- MCARDLE, W. D., MAGEL, J. R., DELIO, D. J. et al. Specificity of run training on VO₂max and heart rate changes during running and swimming. **Med Sci Sports Exerc.** Madison, v.10, p.16-20, 1978.
- MESSONNIER, L., FREUND, H., DENIS, C., et al. Time to exhaustion at VO₂max is related to the lactate exchange and removal abilities. **Int J Sports Med.** Stuttgart, v.23, p.433-438, 2002.
- MIURA, A., ENDO, M., SATO, H. Relationship between the curvature constant parameter of the power-duration curve and muscle cross-sectional area of the thigh for cycle ergometry in humans. **Eur J Appl Physiol**. Berlin, v.87, p.238-244, 2002.
- MONOD, H., SCHERRER, J. The work capacity of a synergic muscular group. **Ergonomics**. London, v.8, p.329-338, 1965.

- MORITANI, T., NAGATA, A., DEVRIES, H. A., et al. Critical power as a measure of physical work capacity and anaerobic threshold. **Ergonomics**. London, v.24, p.339-350, 1981.
- MORTON, R. H. A 3-parameter critical power model. **Ergonomics**. London, v.39, p.611-619, 1996.
- MORTON, R. H., BILLAT, V. Maximal endurance time at VO2max. **Med Sci Sports Exerc**. Madison, v.32, p.1496-504, 2000.
- NEDER, J. A., JONES, P. W., NERY, L. E., et al. The effect of age on the power/duration relationship and the intensity-domain limits in sedentary men. **Eur J Appl Physiol**. Berlin, v.82, p.326-332, 2000.
- NOAKES, T.D. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. **Scand J Med Sci Sports.**Copenhagen, v.10, p.123–145, 2000.
- OZYENER, F., ROSSITER, H.B., WARD, S.A., et al. Influence of exercise intensity on the on- and off-transient kinetics of pulmonary oxygen uptake in humans. **J Physiol.** London, v.533, p.891-902, 2001.
- PATE, R. R., HUGHES, R. D., CHANDLER, J. V., et al. Effects of arm training on retention of training effects derived from leg training. **Med Sci Sports Exerc**. Madison, v.10, p.71-74, 1978.
- PHILLIPS, S. M., GREEN, H. J., MACDONALD, M. J. et al. Progressive effect of endurance training on VO₂ kinetics at the onset of submaximal exercise. **J Appl Physiol.** Bethesda, v.79, p.1914-1920, 1995.
- POOLE, D. C., WARD, S. A., GARDNER, G., et al. A metabolic and respiratory profile for prolonged exercise in man. **Ergononics**. London, v.31, 1265-1279, 1988.

- PRINGLE, J. S., JONES, A. M. Maximal lactate steady state, critical power and EMG during cycling. **Eur J Appl Physiol**. Berlin, v.88, p.214-226, 2002.
- SCHEUERMANN, B. W., BARSTOW, T. J. O₂ uptake kinetics during exercise at peak O2 uptake. **J Appl Physiol.** Bethesda, v.95, p.2014-22, 2003.
- TAYLOR, H. L., BUSKIRK, E., HENSCHEL, A. Maximal oxygen intake as an objective measure of cardiorespiratory performance. **J Appl Physiol**. Bethesda,v.8, p.73-80, 1955.
- VERSTAPPEN, F. T.J., HUPPERTZ, R. M., SNOECKX, L. H. E. H. Effect of training specificity on maximal treadmill and bicycle ergometer exercise. **Int J Sports Med**. Stuttgart, v.3, p.43-46, 1982.
- WAKAYOSHI, K., YOSHIDA, T., UDO, M., et al. A simple method for determining critical speed as swimming fatigue threshold in competitive swimming. **Int J Sports**Med. Stuttgart, v.13, p.367-371, 1992.
- WASSERMAN, K., WHIPP, B. J., CASTAGNA, J. Cardiodynamic hyperpnea: hyperpnea secondary to cardiac output increase. **J Appl Physiol**. Bethesda, v.36, p.457-464, 1974.
- WHIPP. B. J., WARD, S. A., LAMARRA, N., et al. Parameters of ventilatory and gas exchange dynamics during exercise. **J Appl Physiol**. Bethesda, v.52, p.1506-1513, 1982.
- XU, F., RHODES, E.C. Oxygen uptake kinetics during exercise. **Sports Med**. Auckland, v.27, p.313-27, 1999.

10. ABSTRACT

The main objectives of the present study were: 1) To determine and to compare in cycle ergometer the oxygen uptake (VO₂) kinetics in the severe intensity domain (time constant - Tau), and the highest intensity (I_{SUP}) and the shortest exercise time (T_{SUP}) which VO₂max can be elicited in cyclists (CIC), runners (COR) and untrained subjects (ST); 2) to evaluate the validity of a model for estimating the I_{SUP} (I_{SUP}') and T_{SUP} (T_{SUP}'). Fifteen CIC, eleven COR and ten ST performed in different days the following tests: 1) incremental tests for determination of VO₂max and the intensity corresponding at VO₂max (IVO₂max); 2) fatiguing constant power tests at 95, 100 e 110% IVO₂max to determine the time to exhaustion (Tlim), Tau, I_{SUP}' and T_{SUP}'. 3) 2 to 4 fatiguing constant power tests to determine I_{SUP} e T_{SUP}, the power output was decreased or increased until VO₂max can not be elicited. The time to achieve VO₂max (TAVO₂max) was calculated by a monoexponential fit where was assumed a fixed value of 4.6 times Tau. Linear regression techniques were used to describe the relationship between the TAVO₂max and Tlim to estimate indirectly T_{SUP}'. I_{SUP}' was calculated using the critical power model. I_{SUP} was assumed to be the highest intensity where the 15 s VO₂ values determined from rolling averages of 5 s samples was equal or higher than the average of VO₂max obtained in the incremental and constant power tests minus one standard deviation. T_{SUP} was the Tlim associated with I_{SUP}. VO₂max values (ml·Kg⁻¹·min⁻¹) (ST = 42.2 ± 4.0 ; COR = 54.6 ± 5.5 ; CIC = 64.5 ± 6.4) were significantly different among the groups. No significant differences were found in T_{SUP} and Tau (all exercises intensities) between COR and ST, however both groups showed higher values compared to CIC in. The Groups ST and COR showed similar I_{SUP} (W) values, and both were lower when compared to CIC. I_{SUP}' (W) was not different and

77

significantly correlated with I_{SUP} only in ST e COR groups. We can conclude that T_{SUP}

and VO2 kinetics in submaximal, maximal and supramaximal intensities within severe

domain were speeded by specific aerobic training. The absolute values of I_{SUP} were also

sensible only to the specific aerobic training. The proposed model showed a moderate

validity for estimating I_{SUP} (W) only in ST and COR groups. For T_{SUP} the proposed

model was not valid for estimating these variables.

Key words: Cycling, oxygen uptake, aerobic training, specificity, runners.

11. APÊNDICE I

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

Protocolo de determinação do consumo máximo de oxigênio (VO₂max)

O VO₂max será determinado utilizando-se um protocolo contínuo de cargas crescentes, em uma bicicleta de frenagem mecânica. A carga inicial será de 35 W (sedentários), 70W (corredores) e 140 W (ciclistas), com incrementos de 35 W a cada 3 minutos até à exaustão voluntária Ao final de cada estágio haverá coleta de sangue do lóbulo da orelha para a dosagem do lactato sanguíneo. O VO₂ será mensurado respiração a respiração durante todo o protocolo a partir do gás expirado.

Determinação do tempo máximo de esforço a 95, 100% e 110% da IVO_2 max e 100% da Isup

Inicialmente os indivíduos realizarão um aquecimento de 10 min a 60% IVO₂max. A seguir repousarão por 5 min no ergômetro e a intensidade será ajustada para 95, 100, 110% da IVO₂max ou 100% da Isup (testes em dias diferentes), com o indivíduo sendo estimulado verbalmente a manter o esforço até a exaustão. O VO₂ será também mensurado continuamente durante o protocolo a partir do gás expirado. Ao 3o e 50 minuto haverá coleta de sangue do lóbulo da orelha para a dosagem do lactato sanguíneo.

Direitos da pessoa submetida aos testes

Toda pessoa submetida aos testes terá acesso aos seus dados, assim como aos resultados finais. Nenhum resultado será divulgado ou levado ao conhecimento de pessoas estranhas ao Laboratório de Avaliação da Performance Humana, sem a autorização expressa do sujeito submetido ao teste.

Todo participante poderá abandonar os testes a qualquer momento, sem prestar qualquer tipo de esclarecimento, mas devendo comunicar sua decisão ao responsável dos testes o quanto antes.

Os resultados dos testes poderão ser utilizados para pesquisa, sendo assegurado o anonimato do sujeito, desde que autorizado expressamente neste termo de consentimento.

Riscos dos testes

Os riscos pertinentes ao protocolo são aqueles inerentes a qualquer prática de exercícios extenuantes. Estes riscos podem ser esclarecidos a qualquer momento pelo responsável dos testes e tendem a ser minimizados pela avaliação clínica antes dos testes e pelas condições de pronto atendimento em caso de acidente.

Eu,	,	portador	do	RG
nº	e CPF n°:	tenh	no ciênci	ia dos
meus	direitos e deveres, concordando em me submeter	a este teste.	Desta f	orma,
autoriz	to a utilização dos dados deste teste para fins de	pesquisa do L	aboratói	rio de
Avalia	ção da Performance Humana - UNESP - Rio Claro,	, bem como a	divulgaç	ão de
seus re	esultados por meio de qualquer meio de divulgação,	desde que seja	assegur	ado o
anonin	nato.			
	Rio Claro,//	_		

(assinatura do voluntário/ ou responsável)

12. APÊNDICE II

TABELA 8 - Valores médios \pm DP das variáveis obtidas durante os testes de carga constante a 95, 100 e 110% da intensidade correspondente ao consumo máximo de oxigênio (IVO₂max) dos grupos: sem treinamento (ST), corredores (COR) e ciclistas (CIC). FCpico = Frequência cardíaca pico; [LAC]pico = concentração pico de lactato; LB = linha de base do VO₂; A = amplitude do VO₂.

	Intensidade	4 – ampiitude do ve	- Z.	·
	(%IVO ₂ ma	ST	COR	CIC
Variáveis	x)	(n=10)	(n=11)	(n=15)
Carga	95	220,0 ± 142,5	244,3 ± 37,9	333,2 ± 26,6
(W)	100	$232,6 \pm 45,3$	$257,3 \pm 39,8$	$348,5 \pm 28,4$
(11)	110	$257,2 \pm 49,8$	$283,2 \pm 44,4$	$385,1 \pm 30,7$
FCpico	95	$182,1 \pm 8,0$	$174,5 \pm 8,7$	$185,8 \pm 8,2$
(bpm)	100	$175,1 \pm 12,3$	$172,4 \pm 10,4$	$184,7 \pm 9,5$
(ep)	110	$180,0 \pm 12,6$	$170,3 \pm 12,7$	$182,2 \pm 6,2$
[I A Claige	95	$12,4 \pm 1,7$	9,1 ± 1,5	$10,9 \pm 2,2$
[LAC]pico (mM)	100	$11,9 \pm 3,2$	$9,7 \pm 1,1$	$10,5 \pm 2,3$
(IIIVI)	110	$11,6 \pm 1,7$	$9,9 \pm 1,7$	$12,3 \pm 1,4$
LB	95	$345,9 \pm 51,0$	$346,6 \pm 45,4$	$389,7 \pm 73,3$
(L·min ⁻¹)	100	$345,1 \pm 57,0$	$340,6 \pm 39,3$	$404,2 \pm 75,9$
(2)	110	$351,3 \pm 66,0$	$345,6 \pm 29,8$	$358,8 \pm 47,6$
A	95	2676,1 ± 542,9	2972,2 ± 422,9	3849,1 ± 295,5
(L·min ⁻¹)	100	$2657,0 \pm 479,3$	$3066,0 \pm 468,1$	$3864,1 \pm 396,7$
(L'iiii)	110	$2667,5 \pm 464,6$	$3011,3 \pm 522,3$	$3882,2 \pm 382,5$

Rio Claro 23 de agosto	o de 2006.
-	
	Aluno: Fabrizio Caputo
_	
О	rientador: Prof. Dr. Benedito Sérgio Denada

Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

<u>Baixar</u>	livros	de	Adm	<u>inis</u>	tra	ção

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciência da Computação

Baixar livros de Ciência da Informação

Baixar livros de Ciência Política

Baixar livros de Ciências da Saúde

Baixar livros de Comunicação

Baixar livros do Conselho Nacional de Educação - CNE

Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos

Baixar livros de Economia

Baixar livros de Economia Doméstica

Baixar livros de Educação

Baixar livros de Educação - Trânsito

Baixar livros de Educação Física

Baixar livros de Engenharia Aeroespacial

Baixar livros de Farmácia

Baixar livros de Filosofia

Baixar livros de Física

Baixar livros de Geociências

Baixar livros de Geografia

Baixar livros de História

Baixar livros de Línguas

Baixar livros de Literatura

Baixar livros de Literatura de Cordel

Baixar livros de Literatura Infantil

Baixar livros de Matemática

Baixar livros de Medicina

Baixar livros de Medicina Veterinária

Baixar livros de Meio Ambiente

Baixar livros de Meteorologia

Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Música

Baixar livros de Psicologia

Baixar livros de Química

Baixar livros de Saúde Coletiva

Baixar livros de Serviço Social

Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo