Tese apresentada à Pró-Reitoria de Pós-Graduação e Pesquisa do Instituto Tecnológico de Aeronáutica, como parte dos requisitos para obtenção do título de Mestre em Ciências no Programa de Pós-Graduação em Engenharia Eletrônica e Computação na área de Microondas e Optoeletrônica.

Francisco Eduardo de Carvalho

CARACTERIZAÇÃO DA ANISOTROPIA NA PERMISSIVIDADE COMPLEXA EM COMPÓSITOS DE

FIBRA CARBONO

Tese aprovada em sua versão final pelos abaixo assinados:

"Wy de fas Q Prof. Dr. Alberto José de Faro Orlando

Orientador

Prof. Dr. Celso Massaki Hirata Pró-Reitor de Pós-Graduação e Pesquisa

Campo Montenegro São José dos Campos, SP - Brasil 2009

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Dados Internacionais de Catalogação-na-Publicação (CIP) Divisão de Informação e Documentação

Carvalho de, Francisco Eduardo

Caracterização da Anisotropia na Permissividade Complexa em Compósitos de Fibra Carbono / Francisco Eduardo de Carvalho

São José dos Campos, 2009.

Número de folhas no formato 123f.

Tese de mestrado – Engenharia Eletrônica e Computação, Microondas e Optoeletrônica Instituto Tecnológico de Aeronáutica, 2009. Orientador: Ph, D. Alberto José de Faro Orlando.

1. Anisotropia. 2. Permissividade elétrica. 3. Fibra de Carbono. I. Comando-Geral de Tecnologia Aeroespacial. Instituto Tecnológico de Aeronáutica. Divisão de Ensino à qual está vinculado o orientador. II. Título

REFERÊNCIA BIBLIOGRÁFICA

DE CARVALHO, Francisco Eduardo. - **Caracterização da Anisotropia na Permissividade Complexa em Compósitos de Fibra Carbono**. 2009. 123f. Tese de Mestrado em Engenharia Elétrica e Computação - área de optoeletrônica e microondas – Instituto Tecnológico de Aeronáutica, São José dos Campos

CESSÃO DE DIREITOS

NOME DO AUTOR: Francisco Eduardo de Carvalho TÍTULO DO TRABALHO: Caracterização da Anisotropia na Permissividade Complexa em Compósitos de Fibra Carbono. TIPO DO TRABALHO / ANO: Tese / 2009

É concedida ao Instituto Tecnológico de Aeronáutica permissão para reproduzir cópias desta tese e para emprestar ou vender cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta tese pode ser reproduzida sem a sua autorização (do autor).

Francisco Eduardo de Carvalho

R. Celso Vilhena Vieira, 53, Vista Verde

CARACTERIZAÇÃO DA ANISOTROPIA NA PERMISSIVIDADE COMPLEXA EM COMPÓSITOS DE FIBRA CARBONO

Francisco Eduardo de Carvalho

Composição da Banca Examinadora:

Prof.	Dr. Marcelo Marques.	Presidente – ITA
Prof.	Dr. Alberto J. de Faro Orlando	Orientador – ITA
Prof.	Dr. Pedro José de Castro	Membro Externo – INPE
Prof.	Dr. Antonio C. C. Migliano	Membro Externo – IEAv
Prof.	Dr. Gefeson M. Pacheco	Membro Interno – ITA

Dedicatória

Dedico este trabalho...

Aos meus filhos, para que se torne um exemplo de luta ...

À minha esposa, que me incentivou em todos os momentos dessa luta...

Aos meus pais, que me ensinaram a perseverar na luta e combater o bom combate.

Agradecimentos

Ao meu orientador, o professor Alberto José de Faro Orlando e os demais professores do Instituto Tecnológico de Aeronáutica (ITA) que participaram desta etapa da minha formação.

Ao Instituto de Estudos Avançados (IEAv) por disponibilizar sua infraestrutura e possibilitar a realização de todos os experimentos no Laboratório de Sistemas Eletromagnéticos (LSE). Particularmente, quero agradecer ao Professor Antônio Carlos da Cunha Migliano, responsável pelo LSE, por acompanhar e orientar a parte experimental deste trabalho.

Ao Comando-Geral de Tecnologia Aeroespacial, que incorpora as instituições supracitadas e um corpo técnico de alto nível de capacitação, para dar suporte as atividades técnico-científicas relacionadas à pesquisa e o desenvolvimento do setor aeronáutico.

Há homens que lutam um dia e são bons. Há outros que lutam um ano e são melhores. Há os que lutam muitos anos e são muito bons. Porém, há os que lutam toda a vida. Esses são os imprescindíveis. Bertolt Brecht

Resumo

A caracterização da anisotropia na permissividade relativa complexa do Compósito de Fibra de Carbono (CFC) tornou-se importante para avaliar os efeitos diretos e indiretos causados por impacto de raio em aeronaves construídas com esse material. Esta importância está associada à relação que existe entre a blindagem eletromagnética utilizada para proteger os equipamentos de bordo e a permissividade do CFC. Devido a estas relações e sua relevância para a indústria aeronáutica, foi realizada uma extensa investigação da permissividade do CFC.

Foram medidas as partes real e imaginária ($\varepsilon' \ e \ \varepsilon''$) da permissividade na faixa de freqüência de 1 kHz a 10 MHz, a 25°C, a partir de amostras cilíndricas extraídas de uma mesma placa multicamadas de CFC, com seus eixos ortogonais entre si e paralelos aos eixos cartesianos. Os resultados destas medidas foram compilados em uma base de dados para serem utilizados em um software de simulação baseado no Método das Diferenças Finitas no Domínio do Tempo (FDTD). Como resultado, foi possível representar em três eixos o campo próximo e a intensidade da energia eletromagnética a que pode ser submetida uma estrutura de CFC com geometria arbitrária no espaço tridimensional de uma placa de CFC do material iluminada pela componente elétrica. Além disso, foi observada a anisotropia entre os planos YZ e YX, apontando que a maior anisotropia ocorre na direção do eixo Y. O material analisado apresentou baixa perda, com ε " tendendo assintoticamente a zero.

Abstract

The anisotropy characterization of the complex relative permittivity of the Carbon Fiber Composite (CFC) has become important to evaluate the direct and indirect damage effects caused by lightning strike in aircrafts built with this material. This importance is associated with the relation that exists between the electromagnetic shielding used to protect the airborne equipment and the CFC permittivity. Due to this relation and its relevance to the aeronautic industry thorough investigation of the CFC permittivity was performed.

The real and imaginary parts ($\varepsilon' \ e \ \varepsilon''$) of the permittivity have been measured in the frequency range from 1kHz through 10 MHz, at 25°C, from cylindrical samples extracted from a multilayer plate of CFC, with it axis mutually orthogonal and parallel to this Cartesian axis. The results from those measurements were compiled in the data base to be used in a software simulation based in the Finite Difference Time Domain Method (FDTD). As a result, it was possible to represent the near field and the electromagnetic energy intensity that a CFC structure can be submitted with arbitrary geometry in the three-dimensional space of a multilayer plate of the material being illuminated by electrical component. In addition, the anisotropy between YZ and YX plans was observed, indicating that the greatest anisotropy occurs in the Y axis. The analyzed materials shows low loss, with ε'' tending asymptotically to zero.

LISTA DE FIGURAS

Figura 1	(a) Potencial a que fica Submetida a Estrutura em Função de seu Efeito Resistivo;	20
	(b) Acoplamento do Campo Magnético;	
	(c) Acoplamento do Campo Elétrico.	
Figura 2	Ocorrência de Centelha em junção de CFC.	22
Figura 3	Laboratório de Alta Tensão e Alta Corrente do	23
	Centro de Pesquisas de Energia Elétrica (CEPEL)	
Figura 4	Estrutura de Compósito Painel Múltiplo.	33
Figura 5	Estrutura com Painel Simples de Fibra de Material Composto	35
Figura 6	Modelo não Homogêneo de Painel com 3 Camadas	37
Figura 7	Seção Cruzada Típica de uma Matriz de Fibra	38
Figura 8	Meio Laminado Periódico,	38
Figura 9	Coordenada de Transformação para Painel Simples com Estrutura de Fibra de Carbono.	40
Figura 10	Modelo Homogêneo de 3 Camadas,	41
Figura 11	Representação para o Período da Célula do Modelo Homogêneo de 3 Camadas	41
Figura 12	Modelo Homogêneo de 1 Camada	42
Figura 13	Representação do Período da Célula para o Modelo Homogêneo de 1 Camada,	43
Figura 14	Magnitude do Coeficiente de Reflexão para Painel de Fibra Compósito Simples com: D = 0,05 mm, p = 0,1 mm, L = 0,75 mm, $C_m = 2,0C_o$, $C_f = 2,0C_o$ e $\sigma_b = 10000$ S/m.	46
Figura 15	Magnitude do Coeficiente de Reflexão para Painel de Fibra Compósito Simples com: D = 0,05 mm, p = 0,1 mm, L = 0,75 mm, $C_m = 2,0C_o$, $C_f = 2,0C_o$ e vários valores de σ	47
Figura 16	Magnitude do Coeficiente de Reflexão para Painel de Fibra Compósito Simples com: D = 7,5 mm, P = 15 mm, L = 15 mm, t = 3,75mm, $C_m = 2,0C_o$, $C_f = 4,0C_o$ e $\sigma = 0$. λ é o comprimento de onda no espaço livre e o campo <i>E</i> é ortogonal as fibras.	48

- Figura 17 Magnitude do Coeficiente de Reflexão para Painel de Fibra Compósito Simples 48 com: D = 7,5 mm, P = 15 mm, L = 15 mm, t = 3,75mm, $C_m = 2,0C_o$, $C_f = 4,0C_o$ e $\sigma = 0$ S/m. λ_o é o comprimento de onda no espaço livre
- Figura 18 Compósito de Fibra de duas Camadas com: D = 7.5 mm, P = 15 mm, L = 15 50 mm, t = 3,75 mm
- Figura 19 Magnitude do Coeficiente de Reflexão para Fibra de Compósito de duas 51 Camadas com: D = 7,5 mm, P = 15 mm, L = 15 mm, t = 3,75 mm, $\mathcal{C}_m = 2,0\mathcal{C}_o$, $\mathcal{C}_f = 4,0\mathcal{C}_o$ e $\sigma = 0$ S/m.
- Figura 20 SE para uma Fibra de Compósito de duas Camadas com: D = 7,5 mm, P = 15 53 mm, L = 15 mm, t = 3,75 mm, $C_m = 2,0C_o$, $C_f = 4,0C_o$ e $\sigma = 0$ S/m.
- Figura 21 SE para uma Fibra de Compósito de Camada Simples com: D = 0,05 mm, P = 540,10 mm, L = 0,75 mm, $C_m = 2,0C_o$, $C_f = 2,0C_o$ para ambos $\sigma = 1$ S/m. e $\sigma = 1$. 10^4 S/m. o campo E incidente está paralelo às fibras
- Figura 22 SE para quatro Painéis de Fibra Compósito com cada Painel tendo: D = 0.05 55 mm, P = 0.10 mm, L = 0.75 mm, $C_m = 2.0C_o$, $C_f = 2.0C_o$ para ambos $\sigma = 1$ S/m. e $\sigma = 1.10^4$ S/m. O campo E incidente é ortogonal às fibras no primeiro painel
- Figura 23 SE para dois Painéis de Fibra Compósito com cada Painel tendo: D = 0.05 mm, 56 P = 0.10 mm, L = 0.75 mm, $C_m = 2.0C_o$, $C_f = 2.0C_o$ para ambos $\sigma = 1 \text{ S/m. e } \sigma$ $= 1. 10^4 \text{ S/m}$. O campo E incidente é ortogonal às fibras no primeiro painel.
- Figura 24 (a) Placa de CFC de 60 Camadas; (b) Amostras Retiradas de 3 Eixos 62
- Figura 25Amostra usinada63Figura 26(a) Seleção Visual das Amostras ; (b) Teste Passa-Não Passa no Conector.64
- Figura 27 Montagem da Ligação do Analisador de Impedância e Fase no PC. 65
- Figura 28 (a) Configuração da bancada de teste;(b)Detalhe do Porta Amostras HP 1608 66
- Figura 29 Gráficos representando o comportamento da permissividade relativa Real (curva 67 azul) e Imaginária (curva amarela)
- Figura 30 Medidas da Permissividade Relativa Complexa no Eixo X. Componente Real. 68
- Figura 31 Medidas da Permissividade Relativa Complexa no Eixo X . Componente 68 Imaginária
- Figura 32 Medidas da Permissividade Relativa Complexa no Eixo Y. Componente Real. 69
- Figura 33 Medidas da Permissividade Relativa Complexa no Eixo Y. (Componente 69 Imaginária

Figura 34	Medidas da Permissividade Relativa Complexa no Eixo Z .(a) Componente Real.	70
Figura 35	Medidas da Permissividade Relativa Complexa no Eixo Z. Componente Imaginária	70
Figura 36	Resultado final para o eixo X: Permissividade Real.	72
Figura 37	Resultado final para o eixo X: Permissividade Imaginária.	72
Figura 38	Resultado final para o eixo Y: Permissividade Real.	73
Figura 39	Resultado final para o eixo Y: Permissividade Real.	73
Figura 40	Resultado final para o eixo Z: Permissividade Real.	74
Figura 41	Resultado final para o eixo Z: Permissividade Imaginária.	74
Figura 42	Relação da permissividade entre eixos	75
Figura 43	Célula Básica do Método FDTD	79
Figura 44	Volume representativo do material visualizado através de malha.	84
Figura 45	Máscara de parãmetros do XFDTD	85
Figura 46	Representação da Intensidade de energia eletromagnética instantânea através do Método FDTD	85
Figura 47	Componentes z do Vetor de Poynting(Sz), considerando a maior anisotropia nos eixos.	86

LISTA DE TABELAS

Tabela 1	Medidas das Cotas da Amostra	63
Tabela 2	Discrepância de Medidas entre Amostras	71

LISTA DE SIMBOLOS

Densidade de fluxo de campo magnético em Wb/m² B Velocidade da luz no vácuo $\approx 2.997925 \text{ x } 108 \text{ em m/s}$ с С Capacitância elétrica em Coulomb Densidade de fluxo de campo elétrico em C/m² D E Intensidade de campo elétrico em V/m Η Intensidade de campo magnético em A/m Densidade de corrente elétrica em A/m² J L Indutância em H Indutância do vácuo em H L_0 Velocidade de propagação da onda no material em m/s v V Tensão elétrica em V Х Reatância Ζ Impedância em Ω Impedância característica do vácuo \approx 376,991 em Ω Z_0 Impedância de entrada em Ω Z_{in} Permissividade em F/m 3 Permissividade elétrica complexa em F/m £* ε' Componente real da permissividade elétrica complexa г" Componente imaginária da permissividade elétrica complexa Permissividade elétrica do vácuo $\approx 8,854 \text{ x } 10\text{-}12 \text{ em F/m}$ **E**_ Permissividade elétrica relativa; \mathcal{E}_r ε_r^* Permissividade elétrica complexa relativa

- ε_r Componente real da permissividade elétrica complexa relativa;
- ε_r " Componente imaginária da permissividade elétrica complexa relativa
- λ Comprimento de onda em m
- λx Comprimento de onda da freqüência de interesse em m
- η Impedância intrínseca do meio em Ω
- μ Permeabilidade magnética em H/m
- μ^* Permeabilidade magnética complexa em H/m
- μ ' Componente real da permeabilidade magnética complexa
- μ " Componente imaginária da permeabilidade magnética complexa
- μ_{θ} Permeabilidade magnética do vácuo \approx 1,256 x 10-6 em H/m
- μ_r Permeabilidade magnética relativa
- μ_r^* Permeabilidade magnética complexa relativa
- μ_r Componente real da permeabilidade magnética complexa relativa
- μ_r " Componente imaginária da permeabilidade magnética complexa relativa
- ρ Resistividade elétrica em Ω .m
- σ Condutividade elétrica em S/m
- χ Susceptibilidade magnética
- ω Coefficiente angular em rad/s
- Ω Ohm

SUMÁRIO

1	INTRODUÇAO	18
1.1	Objetivos do trabalho	21
1.2	Justificativa e Motivação	22
1.3	Metodologia Experimental e Dificuldades Inerentes à Pesquisa	24
2.	REVISÃO DA TEORIA DAS RELAÇÕES CONSTITUTIVAS	26
2.1	Anisotropia	26
2.2	Permissividade	26
2.3	Medida dos Tensores de Permissividade e Permeabilidade	28
2.4	Materiais Dielétricos Anisotrópicos	29
2.5	Vetor de Poynting	30
2.6	Condutividade Elétrica	31
3.	FUNDAMENTOS TEÓRICOS SOBRE COMPÓSITOS DE FIBRA	32
3.	FUNDAMENTOS TEÓRICOS SOBRE COMPÓSITOS DE FIBRA DE CARBONO	32
3. 3.1	FUNDAMENTOS TEÓRICOS SOBRE COMPÓSITOS DE FIBRA DE CARBONO Materiais Compósitos	32 32
3. 3.1 3.2	FUNDAMENTOS TEÓRICOS SOBRE COMPÓSITOS DE FIBRA DE CARBONO Materiais Compósitos Compósitos Estruturais	32 32 33
 3.1 3.2 3.3 	FUNDAMENTOS TEÓRICOS SOBRE COMPÓSITOS DE FIBRA DE CARBONO Materiais Compósitos Compósitos Estruturais Desempenho Elétrico dos Materiais Compósitos	32323334
 3.1 3.2 3.3 3.4 	FUNDAMENTOS TEÓRICOS SOBRE COMPÓSITOS DE FIBRADE CARBONOMateriais CompósitosCompósitos EstruturaisDesempenho Elétrico dos Materiais CompósitosModelos Equivalentes de Camadas	 32 32 32 33 34 35
 3.1 3.2 3.3 3.4 3.4.1 	FUNDAMENTOS TEÓRICOS SOBRE COMPÓSITOS DE FIBRA DE CARBONO Materiais Compósitos Compósitos Estruturais Desempenho Elétrico dos Materiais Compósitos Modelos Equivalentes de Camadas	 32 32 33 34 35 37
 3.1 3.2 3.3 3.4 3.4.1 3.4.2 	FUNDAMENTOS TEÓRICOS SOBRE COMPÓSITOS DE FIBRA DE CARBONOMateriais CompósitosMateriais CompósitosCompósitos EstruturaisDesempenho Elétrico dos Materiais CompósitosModelos Equivalentes de CamadasModelos não Homogêneo de 3 CamadasModelo Homogêneo de 3 Camadas	 32 32 33 34 35 37 41
 3.1 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 	FUNDAMENTOS TEÓRICOS SOBRE COMPÓSITOS DE FIBRA DE CARBONOMateriais CompósitosCompósitos EstruturaisCompósitos EstruturaisDesempenho Elétrico dos Materiais CompósitosModelos Equivalentes de CamadasModelos não Homogêneo de 3 CamadasModelo Homogêneo de 1 Camada	 32 32 33 34 35 37 41 42
 3.1 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 3.5 	FUNDAMENTOS TEÓRICOS SOBRE COMPÓSITOS DE FIBRA DE CARBONOMateriais CompósitosCompósitos EstruturaisCompósitos EstruturaisDesempenho Elétrico dos Materiais CompósitosModelos Equivalentes de CamadasModelos não Homogêneo de 3 CamadasModelo Homogêneo de 1 CamadaEstruturas de Compósito de Painel Múltiplo.	 32 32 33 34 35 37 41 42 43

3.5.2	Painel Simples de Compósito de Fibra de Carbono	45
3.5.3	Painel Múltiplo de Compósito de Fibra de Carbono.	49
4.	MEDIDAS DE PERMISSIVIDADE RELATIVA COMPLEXA	58
4.1	Mecanismos de Acoplamento	59
4.1.1	Modelo Físico-Matemático para Caracterização da Anisotropia na	59
	Permissividade Relativa Complexa.	
4.1.2	Usinagem das amostras	62
4.1.3	Tratamento Superficial das Amostras	64
4.1.4	Arranjo Experimental e Calibração da Instrumentação	64
4.1.5	Medidas de Permissividade Relativa	66
4.1.6	Análise dos Resultados	71
4.2	Determinação da Condutividade Característica do Compósito de Fibra de	76
	Carbono	
5.	SIMULAÇÃO DE UMA PLACA DE COMPÓSITO DE FIBRA DE	77
	CARBONO SUBMETIDA A UM PULSO DA DESCARGA	
	ATMOSFÉRICA	
5.1	Introdução	77
5.2	Método das diferenças finitas no domínio do tempo	78
5.3	Algoritmo FDTD para as equações eletromagnéticas	81
5.4	Procedimentos para aplicação do método FDTD	83
5.5	Definição do modelo geométrico adotado	83
5.6	Ambientes para simulação	84
5.7	Resultados obtidos	85

6. CONCLUSÕES E COMENTÁRIOS

87

7. PROPOSTAS DE TRABALHOS FUTUROS	88
8. REFERÊNCIAS	89
APÊNDICE A - MATERIAIS COMPOSTOS	92
APÊNDICE B – EXEMPLO DE TABELA DE MEDIDAS DE PERMISSIVIDADE COMPLEXA (REAL E IMAGINÁRIA)	100
APÊNDICE C – ARP 5412-A	117

1. INTRODUÇÃO

O estudo da anisotropia na permissividade complexa em amostras de Fibra de Carbono Composto (CFC) tornou-se importante para o entendimento dos efeitos de descargas elétricas em estruturas aeronáuticas, para que não ocorram prejuízos estruturais quando submetidos aos pulsos de corrente de alta magnitude [2].

Tem sido significativo o aumento da utilização do Composto de fibra de carbono (CFC) na construção de aeronaves, em substituição aos materiais metálicos, dadas as vantagens em relação às propriedades mecânicas e químicas, tais como: baixo peso, alta rigidez e robustez, baixa corrosão, baixo custo de usinagem e facilidade de fabricação [1]. Entretanto, a qualidade desse material sob efeitos de descargas elétricas vem sendo avaliada nesta última década, visando a garantia de robustez das aeronaves sob um ambiente eletromagnético com altos níveis de potência de radiação não-ionizante (RNI).

O interesse da comunidade científica na caracterização do desempenho eletromagnético (EM) dos compósitos tem aumentado pelo fato desses materiais estarem sendo usados com mais frequência como caixas e blindagem de dispositivos elétricos e eletrônicos para proteção de sistemas complexos, levando a investigações experimentais e teóricas de diversos aspectos dos compósitos [1], tais como:

- O efeito direto da corrente originada por impacto de raio sobre estruturas de compósito [2];
- 2) Capacidade de manipulação da corrente dos materiais compósitos [3];
- o desempenho das blindagens das estruturas de compósito com forma planar, cilíndrica ou complexa [4];
- os efeitos da difusão de campo magnético através de encapsulamento de metal pelo compósito [5];

5) Métodos de medida [6].

Os projetos de pesquisa para desenvolvimento de material compósito de alto desempenho visam melhorar a eficiência da blindagem, a capacidade de manuseio de corrente, e a absorção eletromagnética existente [16]-[17].

Uma vez que o efeito resistivo na fuselagem associado à corrente elétrica da descarga determina a distribuição espacial do potencial elétrico nessa estrutura, torna-se necessário caracterizar sua anisotropia elétrica. Estes dados podem definir um modelo elétrico equivalente que possibilite determinar as condições de contorno no seu processo de montagem em camadas, garantindo sua rigidez dielétrica.

Atualmente, são necessários ensaios em um ambiente eletrostático que simule tal cenário, até que o limiar de centelhamento seja atingido, levando-se em conta a aplicação de um pulso de corrente de alta magnitude sobre toda a superfície estudada.

Deve-se levar em conta a necessidade de um elevado número de corpos de prova devido a degradação do material submetido a grandes potenciais elétricos e que os resultados obtidos nesses ensaios são binários, ou seja, podem ocorrer ou não o aparecimento de centelha. De outra maneira, um número de amostras reduzido resultaria em um programa de teste que limitaria os dados disponíveis sobre o efeito da exposição ambiental sobre o material [2].

Um dos desafios tecnológicos para viabilizar o emprego do CFC é a sua baixa resistência a impactos de raios, que pode causar danos a sua superfície, incluindo a pirólise da resina e fratura dos laminados, devido a onda de choque da descarga. Esses efeitos ocorrem no ponto de impacto ou em regiões circundantes, em razão, principalmente, do pico inicial da corrente de descarga, onde a extensão do dano decorre principalmente do tipo de da espessura do CFC, da isolação imposta pela espessura da pintura e acabamentos bem como da intensidade da descarga [7].

Figura 1 - (a) Potencial a que fica Submetida a Estrutura em Função de seu Efeito Resistivo;
(b) Acoplamento do Campo Magnético;
(c) Acoplamento do Campo Elétrico.

Ao analisarmos os efeitos causados sobre uma superfície de compósito percorrida por uma corrente de alta magnitude, decorrente de descarga atmosférica, além da impedância associada ao material, os campos elétrico e magnético devem ser considerados como mecanismos de acoplamento, conforme ilustrado na figura 1. Basicamente, o efeito resistivo da estrutura associado à corrente elétrica da descarga, determina o potencial a que a mesma fica submetido. Se considerarmos a estrutura de uma aeronave de CFC, com valor típico de resistência em corrente contínua (CC) da ordem de 60 m Ω percorrida por uma corrente de 200KA, a tensão gerada entre as suas extremidades seria da ordem de 12000 Volts [19].

Atualmente, o modelo utilizado em laboratório para execução de ensaios de descarga atmosférica em Compósito de Fibra de Carbono para atender aos requisitos aeronáuticos está orientado na ARP 5412-A [8] que está reproduzida parcialmente no ANEXO C.

Neste trabalho, adotou-se um método não destrutivo e que requereu poucos recursos financeiros, dado que para caracterizar a anisotropia na permissividade complexa no CFC foram necessárias somente algumas amostras extraídas de uma placa do material estudado.

Os dados obtidos contribuirão para a caracterização de outros parâmetros minimizando os esforços empreendidos nas investigações quanto aos efeitos da corrente originada por impacto de raio.

Admitindo que o material estudado não é magnético, pode-se considerar a permeabilidade magnética complexa relativa do material igual a um (μ *=1).

A permissividade elétrica relativa complexa (\mathcal{E}^*) do mesmo é obtida através de resultados de medidas em laboratório, utilizando amostras de uma mesma placa, extraídas em três eixos ortogonais entre si, denominados X, Y e Z.

Para a caracterização da anisotropia na permissividade complexa do CFC, foi realizado um conjunto de medidas constituído de no mínimo 6 amostras de cada eixo distinto (X, Y e Z), considerando o campo TEM nas direções transversal e longitudinal da fibra. Isto minimiza custo e requer um arranjo experimental menos complexo.

Os resultados dessas medidas foram compilados para formar as bases de dados para construção de gráficos representativos do comportamento da permissividade do material estudado na faixa de freqüências de 1KHz a 10 MHz, à 25°C possibilitando uma generalização analítica em contraposição à generalização estatística.

1.1 Objetivos do Trabalho

Este trabalho tem como objetivo caracterizar a anisotropia elétrica do composto de fibra de carbono, a partir de medidas da permissividade complexa desse material. Deste modo é possível conferir as propriedades elétricas do material através da utilização de um método computacional, que trata dos fundamentos do método das diferenças finitas em uma forma adequada a aplicações que envolvam interações eletromagnéticas em materiais com dielétrico penetrável e geometria complexa.

Através desse procedimento pode-se estabelecer um modelo equivalente que possibilite determinar as condições de contorno ótimas na montagem em camadas de um material, de forma a garantir sua rigidez dielétrica quando este for submetido a uma descarga atmosférica

1.2 Justificativa e Motivação

A motivação para o desenvolvimento deste trabalho foi encontrada após os testemunhos das campanhas de ensaios feitos pela Empresa Brasileira de Aeronáutica (EMBRAER) para pesquisar os efeitos diretos causados pela ocorrência de centelha (spark) em junções de placas de CFC originados por descargas elétricas, conforme ilustra a figura 2.

Figura 2 - Ocorrência de Centelha em junção de CFC.

Estes ensaios foram realizados no Laboratório de Alta Tensão e Alta Corrente do Centro de Pesquisas de Energia Elétrica (CEPEL), localizado no Rio de Janeiro, como ilustrado na figura 3. Basicamente, os ensaios consistiam em submeter junções de placas de CFC às correntes com magnitudes similares às que ocorrem em descargas atmosféricas, sendo necessário descarregar a corrente armazenada em bancos de capacitores, imposta pela tensão retificada da linha de transmissão.

Figura 3 - Laboratório de Alta Tensão e Alta Corrente do Centro de Pesquisas de Energia Elétrica (CEPEL)

O objetivo desses ensaios era identificar os níveis de correntes que dão origem ao fenômeno estudado, estabelecendo uma relação com o dano causado e constituindo um método de avaliação que estabeleça parâmetros para utilização de compósito de Fibra de Carbono na construção de aeronaves. Todos os esforços foram somados no sentido de possibilitar o desenvolvimento de uma metodologia de análise estatística que agregasse um nível de confiabilidade associado à tolerância ao dano causado por um impacto de raio.

Para qualificar este material para uso aeronáutico, os ensaios deveriam comprovar que o mesmo atende aos requisitos estabelecidos pelas autoridades aeronáuticas, conforme estabelecido pela ARP 5412 [20]. A realização desses ensaios demandou um delineamento experimental complexo e caro, requerendo um número significativo de amostras para se testar exaustivamente cada configuração. Foram providos os meios para registrar a ocorrência de centelhamento em corpos de prova e efetuar as medidas dos parâmetros relacionados aos danos e capacidade de geração de faíscas. Não obstante, junções de CFC têm a propriedade de se modificar após a exposição a impactos de raios, reduzindo a centelha no próximo impacto. Isto limitaria o número de testes que poderia ser desenvolvido em uma amostra, até que o pior caso fosse experimentado. Outra consideração é que os resultados de testes de impacto de raios são binários por natureza, ainda que uma fonte de ignição seja observada ou não [2]. Não há possibilidade de conhecer o início de uma falha testando um único modelo para se estabelecer um nível de qualidade desses painéis sob efeitos de descargas elétricas, visando a garantia de robustez das aeronaves sob um ambiente eletromagnético com altos níveis de potência de radiação não-ionizante (RNI).

1.3 Metodologia Experimental e Dificuldades Inerentes à Pesquisa.

A partir da análise de modelos em camadas equivalentes do CFC [1] definiu-se um método para validação dos resultados do método estatístico empregado para estimar o limiar do centelhamento em junções de compósito [2]. Como parâmetro a ser estudado foi escolhida a permissividade complexa relativa do CFC uma vez que a sua caracterização serviria para obtenção de outros parâmetros associados ao material. Delineou-se então uma configuração experimental mais econômica para buscar resultados mais confiáveis levando-se em conta que os ensaios são NÃO DESTRUTIVOS (NDT) dado a preservação estrutural da amostra.

Essas medidas foram efetuadas dentro do Laboratório de Sistemas Eletromagnéticos (LSE) que possui infra-estrutura adequada e está instalado dentro do Instituto de Estudo Avançados (IEAv) que pertence ao Comando da Aeronáutica. A obtenção de resultados para caracterização do material foi planejada de forma sistemática para ser executada em etapas.

Inicialmente, além da familiarização com os procedimentos experimentais de configuração e calibração dos equipamentos, as dificuldades em se obter uma placa nas dimensões apropriadas para a extração das amostras, bem como a usinagem e preparação das mesmas, uma vez que se tratava de um material muito duro, impuseram certa morosidade na realização das primeiras medidas, que foram descartadas em decorrência da obtenção de resultados divergentes.

A partir da adoção de procedimentos detalhados no capítulo 4 foram adquiridas dez amostras de cada um dos três eixos (X, Y e Z) para que seis delas, no mínimo, compusessem o espaço amostral de cada eixo. O processo de aquisição das amostras de cada eixo foi dividido em cinco fases antes que fosse efetuada a medida de permissividade propriamente dita.

Na primeira fase, houve a necessidade de acompanhamento da usinagem para que as amostras fossem confeccionadas numa geometria cilíndrica com formato toroidal apropriado para o acoplamento físico no porta-amostra do medidor de impedância.

A segunda fase foi dedicada à limpeza e seleção das amostras quanto às medidas de comprimento e diâmetros externo e internas do cilindro coaxial. A terceira fase constituiu-se de um recobrimento das faces externa e interna da amostra com tinta qualificada. A quarta fase foi destinada à realização de medidas de permissividade propriamente dita. Na quinta fase, constituiu-se da análise de resultados. Finalmente, as amostras foram identificadas e armazenadas para conferências futuras.

2. REVISÃO DA TEORIA DAS RELAÇÕES CONSTITUTIVAS

Neste capítulo são revistos alguns conceitos e fundamentos físicos necessários ao entendimento da caracterização da permissividade elétrica complexa do material e de uma simulação utilizando o método das diferenças finitas no domínio de tempo que permite a visualização do fluxo de energia (Vetor de Poynting) através de uma placa do material estudado.

2.1 Anisotropia.

A anisotropia é a característica que uma substância possui em que certa propriedade física varia com a direção e é uma propriedade intrínseca do material que está relacionada a sua estrutura. Um meio é anisotrópico se suas propriedades eletromagnéticas dependem das orientações dos campos a que é submetida [9].

2.2 Permissividade

A permissividade é determinada pela capacidade de um material de polarizar-se em resposta a um campo elétrico aplicado e, dessa forma, cancelar parcialmente o campo dentro do material. Está diretamente relacionado com a susceptibilidade elétrica. Por exemplo, um capacitor uma alta permissividade faz com que a mesma quantidade de carga elétrica seja guardada com um campo elétrico menor e, portanto, a um potencial menor, levando a uma maior capacitância do mesmo.

Em eletromagnetismo define-se um campo de indução elétrica D, que representa como um campo elétrico E influirá na ordenação das cargas elétricas no meio [9]-[10], por exemplo, redistribuição de cargas e reorientação de dipolos elétricos.

A relação de ambos os campos (para meios lineares) com a permissividade é

$$D = \varepsilon. E \tag{2.1}$$

Onde ε é um tensor, sendo de ordem zero ou um escalar, se o meio é isotrópico ou de segunda ordem, que é representado por uma matriz quadrada 3 por 3 se for anisotrópico,

A permissividade é medida em função da frequência e tem valores reais ou complexos. Geralmente, não é uma constante, uma vez que pode variar com a posição do meio, a frequência do campo aplicado, a umidade ou a temperatura, entre outros parâmetros. Em um meio não linear, a permissividade pode depender da magnitude do campo elétricoe sua unidade de medida no Sistema Internacional é o Farad por metro (F/m).

O campo de deslocamento D é medido em Coulombs por metro quadrado (C/m²), enquanto que o campo elétrico E se mede em Volts por metro (V/m). D e E representam o mesmo fenômeno, a interação entre objetos carregados. D é relacionado com as densidades de carga associada a esta interação e E se relaciona com as forças e diferenças de potencial envolvidas.

A permissividade do vácuo ε_0 é o fator que relaciona os valores de D e E nesse meio, e apresenta um valor igual a 8,8541878176...x10⁻¹² F/m obtido da expressão:

$$\varepsilon_0 = \frac{1}{c^2 \mu_0} \tag{2.2}$$

onde c é a velocidade da luz e μ_0 é a permeabilidade no vácuo.

A permissividade no vácuo está relacionada a Lei de Coulomb, usada para expressar a força de atração entre duas cargas unitárias no vácuo e encontra-se inserida no termo $1/4\pi\varepsilon_0$ denomidado Constante Dielétrica.

A permissividade de um material é usualmente dada em relação à permissividade do vácuo, denominando-se Permissividade Relativa, ε_r .

Pode-se determinar a permissividade absoluta $\boldsymbol{\varepsilon}$ a partir da expressão:

$$\varepsilon = \varepsilon_r \varepsilon_0 = (1 + \chi_e) \varepsilon_0, \qquad (2.3)$$

onde χ_e é a suscecibilidade elétrica do material.

No caso comum de um meio isotrópico, D e E são vetores paralelos e ε é um escalar, mas em meios anisotrópicos, este não é o caso e ε é um tensor de segunda ordem. A permissividade elétrica ε e a permeabilidade magnética μ de um meio determinam a velocidade de fase de radiação eletromagnética ν dentro do mesmo, conforme a expressão a seguir:

$$\varepsilon\mu = \frac{1}{\nu^2} \tag{2.4}$$

Quando um campo elétrico é aplicado a um meio, uma corrente flui. A corrente total que percorre um material real está, em geral, composta de duas partes: uma corrente de indução outra de deslocamento. A corrente de indução pode ser descrita como a resposta de um material ao campo elétrico aplicado. Ao aumentar a magnitude do campo elétrico aplicado, a corrente de indução é armazenada no material, e quando a intensidade do campo diminui, o material libera a corrente. A corrente de deslocamento pode ser separada entre uma contribuição do vácuo e outra do material, como segue:

$$D = \varepsilon_0 E + P = \varepsilon_0 E + \varepsilon_0 \chi E = \varepsilon_0 E (1 + \chi), \qquad (2.5)$$

onde *P* é a polarização do meio e a permissividade relativa e a susceptibilidade do material estão relacionadas através da expressão $\varepsilon_r = \chi + 1$. (2.6)

2.3 Medida dos Tensores de Permissividade e Permeabilidade.

Os materiais anisotrópicos têm encontrado aplicações importantes em engenharia e dentre elas estão os substratos para circuitos integrados de microondas, radomes de antena e absorvedores de onda eletromagnética [6]. Se considerarmos uma onda incidente em uma placa de CFC, suas propriedades anisotrópicas podem ser sentidas em função do ângulo de incidência da onda com a superfície do material. Embora a teoria eletromagnética dos materiais anisotrópicos esteja bem estabelecida, as técnicas experimentais estão sempre necessitando de determinação para os parâmetros constitutivos desses materiais. A

determinação dos parâmetros constitutivos dos materiais anisotrópicos é um problema inverso típico, e o problema é complicado pelo fato de que tais materiais têm perdas e são dispersivos. Primeiramente, devemos nos assegurar de que os dados medidos são necessários e suficientes para a determinação inequívoca dos parâmetros constitutivos. Posteriormente, devemos desenvolver configurações experimentais que sejam apropriadas para colher os dados necessários. Nas décadas passadas, muitos recursos foram gastos para caracterização de materiais anisotrópicos e, como resultado, muitos métodos foram desenvolvidos para diferentes aplicações.

2.4 Materiais Dielétricos Anisotrópicos

Para um material dielétrico anisotrópico, a relação entre o tensor deslocamento [D] e o tensor de campo elétrico [E] é dado por:

$$\begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}$$
(2.7)

Para um material fisicamente real, seu tensor permissividade é definido por $\varepsilon_{ij} = \varepsilon_{ij}^*$. Então a matriz pode ser diagonalizada usando as coordenadas principais de x, y e z, como segue:

$$\begin{bmatrix} D_x \\ D_y \\ D_z \end{bmatrix} = \begin{bmatrix} \varepsilon_{xx} & 0 & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix} \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix}$$
(2.8)

onde ε_{xx} , ε_{yy} e ε_{zz} são componentes de permissividade principal.

A densidade de energia elétrica U pode então ser expressa como:

$$U = \frac{1}{2} \left(\frac{D_x^2}{\varepsilon_{xx}} + \frac{D_y^2}{\varepsilon_{yy}} + \frac{D_z^2}{\varepsilon_{zz}} \right)$$
(2.9)

Definindo as quantidades X, Y e Z ao longo do eixo espacial principal,

$$X = \frac{D_X}{\sqrt{2\varepsilon_{XX}U}} \tag{2.10}$$

$$Y = \frac{D_y}{\sqrt{2\varepsilon_{yy}U}} \tag{2.11}$$

$$Z = \frac{D_Z}{\sqrt{2\varepsilon_{ZZ}U}} \tag{2.12}$$

A equação (2.9) pode ser reescrita como:

$$\frac{X^2}{\varepsilon_1} + \frac{Y^2}{\varepsilon_2} + \frac{Z^2}{\varepsilon_3} = 1$$
(2.13)

com

$$\varepsilon_1 = \frac{\varepsilon_{xx}}{\varepsilon_0} \tag{2.14}$$

$$\varepsilon_2 = \frac{\varepsilon_{yy}}{\varepsilon_0}$$
(2.15)

$$\varepsilon_3 = \frac{\varepsilon_{zz}}{\varepsilon_0} , \qquad (2.16)$$

Das equações acima, o tensor permissividade relativa no eixo principal representa o grupo de materiais anisotrópicos e pode ser expresso como:

$$[\varepsilon_i] = \begin{bmatrix} \varepsilon_1 & 0 & 0\\ 0 & \varepsilon_2 & 0\\ 0 & 0 & \varepsilon_3 \end{bmatrix}$$
(2.17)

2.5 Vetor de Poynting

É um vetor cujo módulo representa a densidade superficial instantânea de energia eletromagnética que se propaga por unidade de tempo na direção e sentido da onda eletromagnética associada, e por definição na direção e sentido do vetor de Poynting em si [12]. Seu módulo representa portanto a quantidade de energia que atravessa uma seção reta

imaginária de área unitária em posição perpendicular à direção de propagação da onda eletromagnética por intervalo de tempo adequadamente considerado.

Formalmente, podemos definir o vetor de Poynting como o produto vetorial do campo elétrico pelo campo magnético da respectiva onda eletromagnético e representá-lo pelo símbolo \vec{S} , e tem por unidade o Joule por metro quadrado e por segundo [J/m²s], ou Watt por metro quadrado [W/m²].

$$\vec{S} = \vec{E} \times \vec{H} = \frac{1}{\mu} \vec{E} \times \vec{B}$$
(2.18)

onde \vec{E} representa o campo elétrico, \vec{H} representa o vetor indução magnética e \vec{B} o campo magnético.

2.6 Condutividade Elétrica (σ)

Condutividade elétrica ou condutância específica é uma medida da capacidade do material de conduzir corrente elétrica entre dois pontos e é dependente das dimensões geométricas do material [10]. A condutividade é o inverso da resistividade (ρ) sendo sua unidade de medida o [Ω . m]⁻¹ ou Siemens e pode ser representada por:

$$\sigma = \frac{1}{\rho} \tag{2.19}$$

onde ρ é a resistividade elétrica [Ω .m].

3. FUNDAMENTOS TEÓRICOS SOBRE COMPÓSITOS DE FIBRA DE CARBONO

A caracterização das propriedades de um material é uma disciplina da ciência que envolve investigação das correlações existentes com suas estruturas e contrasta com a atividade de engenharia que utiliza em seus projetos, os resultados obtidos em pesquisa, para produzir um conjunto de propriedades pré-estabelecidas. As tecnologias modernas requerem materiais com combinações de propriedades não usuais para atender as tendências do segmento aeroespacial, bem como a grande demanda do setor aeronáutico. Tem aumentado a preferência pelos materiais compósitos, uma vez que suas propriedades são uma função das propriedades das fases constituintes, das suas quantidades relativas e da geometria da fase dispersa e não podem ser atendidas por ligas metálicas, cerâmicas e materiais poliméricos [1], [9]. Para idealizar e planejar este trabalho, alguns conceitos físicos, bem como as teorias que os envolvem, tiveram que ser revistos conforme apresentados a seguir.

3.1 Materiais Compósitos.

Os materiais compósitos, também conhecidos como materiais conjugados ou materiais compostos, são materiais projetados de modo a conjugar características desejáveis de dois ou mais materiais. Um exemplo típico é o compósito de fibra de vidro em matriz polimérica usado nos radomes das aeronaves, devido à sua transparência em relação aos sinais na faixa de microondas. A fibra de vidro confere resistência mecânica, enquanto a matriz polimérica, na maioria dos casos constituída de resina de epóxi, é responsável pela flexibilidade do compósito. Não obstante, a matriz pode ser polimérica, metálica ou cerâmica. Outro composto usado com freqüência pela engenharia aeronáutica é constituído de Fibra de Carbono. Nos dois casos, a condutividade elétrica apresentada por esses materiais é muito baixa, sendo ligeiramente maior no composto de fibra de carbono [1].

3.2 Compósitos Estruturais.

Um compósito estrutural é normalmente composto de materiais homogêneos ou materiais compósitos cujas propriedades dependem não apenas das propriedades dos materiais constituintes, mas também do projeto geométrico dos vários elementos estruturais. São normalmente montados em camadas e podem ser constituídos de uma matriz de ligação de vários materiais diferentes (ex. metálico, polimérico, cerâmico, etc.) reforçados por inclusão de diferentes formas (fibras longas e curtas, flocos, filamentos). Atualmente em sua quarta geração, os materiais compósitos avançados são materiais relativamente novos originados de indústria de plástico de fibra de vidro reforçado. São compostos por uma matriz de resina reforçada por fibras de alto esforço, tais como grafite, boro, vidro, carbono ou aramida [14]. Os painéis de compósito são manufaturados por um processo de prensagem e ligação de diversas matrizes de laminados reforçados com diferentes orientações nas fibras. Cada camada é preenchida com um reforço unidirecional ou tecido conforme ilustrado na figura 4, onde D representa o diâmetro da fibra, P é a distância entre elas e L é a espessura de cada painel [1].

Figura 4 – Estrutura de Compósito Painel múltiplo.

3.3 Desempenho Elétrico dos Materiais Compósitos

Devido à natureza não homogênea dos compósitos, a resistividade superficial e volumétrica do painel de compósito de fibra carbono pode ser definida por uma média. Ambas as resistividades superficial e volumétrica, assim como a eficiência da blindagem eletromagnética imposta pela estrutura de compósito são fortemente afetadas pala fração ou percentagem de fibra carbono. As principais vantagens desse material em relação aos metais são as propriedades mecânicas e químicas tais como baixo peso, alta rigidez e robustez, baixa corrosão, baixo custo de usinagem, e grande facilidade de fabricação. Em contra partida, o material compósito não é eletricamente condutivo como os metais. Por exemplo, um compósito de fibra carbono reforçado (CFRC- Carbon Fiber Reinforced Composite) tem uma condutividade elétrica cerca de 1000 vezes menor do que a maioria dos metais [15].

O desempenho elétrico dos materiais compósito depende fortemente das características de fabricação. Um tipo de compósito de fibra reforçada é feita de fibras flácidas que são misturadas com resinas e um agente de cura para formar um compósito sólido (figuras 4 e 5). Outro tipo de compósito é constituído de fibras unidirecionais préimpregnadas com resinas como mantas ou tecido em trama que são colocados em camadas para formar o material compósito acabado. A condutividade elétrica e a resistência mecânica são maiores na direção do reforço das fibras, conforme indicado na figura 4.

A alta blindagem eletromagnética dos materiais compósitos avançados é alcançada usando fibras de grafite com bromina ou por uma composição alógena, ou coberta com níquel. Para este propósito, têm sido desenvolvidos coberturas e filmes finos. Recentemente, tem-se conseguido painel laminado de material compósito avançado com alto desempenho mecânico e alta capacidade de absorção de energia eletromagnética. Este material tem uma estrutura do tipo sanduíche, e é caracterizado por um coeficiente de absorção menor do que 17 dB na faixa de freqüência de 7 a 18 GHz [18].

Figura 5- Estrutura com Painel Simples de Fibra de Material Composto

3.4 Modelos Equivalentes de Camadas.

Para discutir a eficiência da blindagem, a reflexão e transmissão da onda eletromagnética incidente em um painel de material composto, como mostrado na figura 5, são apresentados três modelos que abordam as propriedades efetivas do material com diferentes ordens de aproximação. Os resultados desses modelos são comparados com resultados numéricos obtidos de métodos de elementos finitos (FE). Como esperado, quanto mais detalhes são adicionados (alta ordem de aproximação) para os modelos, o limite de freqüência superior de validação é aumentado [1].

Uma aproximação que pode ser usada para analisar interações eletromagnéticas em compósito de fibras de carbono é a aproximação numérica que embora seja uma boa ferramenta, requer um tempo computacional proibitivo para serem resolvidas [1]. As aproximações numéricas requerem fibras de material composto com painéis multicamadas finos para ser resolvido por degraus de discretização muito pequenos que necessitam resolver as características geométricas das fibras de compósito. Mesmo os métodos de subdivisão não
são suficientes para análise de painéis de compósito finos excitados por fontes eletromagnéticas em freqüências maiores que 100 MHz, sendo necessário um método mais eficiente [1].

Trabalhos anteriores [20]-[22] mostram que, se o período de uma estrutura periódica é pequeno comparado com o comprimento de onda, as ondas vêem o compósito como um meio efetivo, e os campos médios de ordem zero (fundamental) são descritos por:

$$\nabla \times \left(\overline{E^{\circ}}\right)_{avg} = -j\omega[\mu^{h}] \left(\overline{H^{\circ}}\right)_{avg}$$
(3.1)

e $\nabla \times \left(\overline{H^{\circ}}\right)_{ava} = -j\omega[_{\varepsilon}h] \cdot \left(\overline{E^{\circ}}\right)_{ava}$ (3.2)

Estas expressões fazem com que os campos médios no domínio da frequência satisfaçam as equações de Maxwell em um meio homogêneo anisotrópico caracterizado pelos tensores $[\varepsilon^h]$ e $[\mu^h]$ e as propriedades efetivas do material são chamadas permissividade e permeabilidade homogeneizadas.

Uma vez que os campos médios tratam a média periódica como uma região efetiva anisotrópica não homogênea com tensor permissividade [ε^h] e tensor permeabilidade [μ^h], os coeficientes de reflexão e/ou transmissão homogeneizados da estrutura de compósito podem ser obtidos com aproximação das médias clássicas das camadas ou pelos métodos de linhas de transmissão clássica [23].

Houve uma atenção no passado para determinar propriedades eficazes de regiões dos compósitos onde um exame deste trabalho pode ser encontrado em [24]-[26]. Este trabalho apresenta três modelos para tratar as propriedades efetivas do material de uma estrutura periódica que se assemelha a seção transversal das hastes da fibra encaixado em um meio

dielétrico conforme mostrado na figura 5. Estes três modelos são apresentados a seguir e estão baseados na redução do compósito em três diferentes representações de camadas equivalentes para representarem os diferentes níveis de aproximação.

3.4.1 Modelos não Homogêneo de 3 Camadas.

Neste modelo, o painel de composto mostrado na figura 5 é representado pelo modelo de 3 camadas mostrada na figura 6. Como a onda se propaga no interior do painel de fibra de compósito, como mostrado na figura 5, ela experimenta as três regiões separadas. A onda inicialmente entra no painel e vê uma camada homogênea (região1 da figura 6).

Figura 6 - Modelo não Homogêneo de Painel com 3 Camadas

Esta camada tem as propriedades do material constante, que correspondem a matriz ou resina, que envolve a fibra. A camada tem uma espessura t que corresponde a distância da borda do painel 1 até a borda da fibra, e $\varepsilon = \varepsilon_m$.

Como a onda se propaga dentro da segunda região, definida como sendo de uma borda da fibra até a outra, indicada como região 2 da figura 6, ela enxerga um aumento da seção cruzada da fibra até que o seu centro da fibra ser alcançado. Neste ponto, a onda vê um decréscimo da seção cruzada da fibra. A figura 7 ilustra este caso. Ela sugere uma camada não homogênea, e as propriedades do material de uma camada é dado abaixo. A espessura da camada é D (o diâmetro das fibras). A onda finalmente entra numa camada homogênea (região 3 da figura 7). Esta camada é idêntica a camada 1, onde a constante do material é $\varepsilon = \varepsilon_m$ e espessura t.

Figura 7 - Seção Cruzada Típica de uma Matriz de Fibra

Em uma dada seção cruzada qualquer da camada não homogênea (região 2), as propriedades do material são aproximadas pelas propriedades efetivas do material da média periódica do laminado mostrado na figura 8.

Figura 8 – Meio Laminado Periódico, onde, $s = \sqrt[2]{D_{y'} - y'^2}$ y' é a distância dentro da região 2 e D o diâmetro das fibras.

Onde ε_{a} , μ_{a} , ε_{b} , e μ_{b} estão indicados na Figura 5, e g é o volume relativo do espaço ocupado pelo material com ε_{b} , ou μ_{b} . Este tipo de comportamento médio é conhecido como uma anisotropia uniaxial mas o material homogêneo com o seguinte tensor (possivelmente complexo) de permissividade e permeabilidade.

$$[\epsilon] = \begin{bmatrix} \epsilon_x & 0 & 0\\ 0 & \epsilon_y & 0\\ 0 & 0 & \epsilon_z \end{bmatrix}$$
(3.3)

e

$$[\mu] = \begin{bmatrix} \epsilon \mu_x & 0 & 0 \\ 0 & \mu_y & 0 \\ 0 & 0 & \mu_z \end{bmatrix}$$
(3.4)

$$\epsilon_{x}^{-1} = (1 - g)\epsilon_{a}^{-1} + g\epsilon_{b}^{-1}$$

$$\mu_{x}^{-1} = (1 - g)\mu\epsilon_{a}^{-1} + g\mu_{b}^{-1}$$

$$\epsilon_{y} = \epsilon_{z} = (1 - g)\epsilon_{a} + g\epsilon_{b}$$

$$\mu_{y} = \mu_{z} = (1 - g)\mu_{a} + g\mu_{b}$$
(3.5)

As propriedades efetivas do material de camada não homogênea (região 2) podem ser aproximadas pela expressão dada em (3.5) para permitir que ε_a represente o material em torno das hastes (ou ε_m), ou permitindo ε_b representar a permissividade das fibras (ou ε_f), onde g é o volume relativo do espaço ocupado pelas fibras a uma dada distância y' como definido na figura 7.

Ao contrário do meio laminado, g para região 2 na Figura 3 é função da distância (y') medida da superfície até a borda posterior das hastes e é dada

$$g = \frac{2\sqrt{D_{y'} - y'^2}}{p}$$
(3.6)

Onde y' varia de 0 a D (ver Figura 4). Este modelo captura maiores detalhes do painel de fibra de carbono dos três modelos apresentados neste trabalho. Este modelo é mais preciso para altas freqüências do que os outros modelos mostrados a seguir.

Em algumas situações, as coordenadas principais das fibras podem não corresponder as coordenadas do campo eletromagnético incidente sobre a estrutura de compósito, como mostrado na figura 9. Nesta figura, os eixos ψ e ξ correspondem respectivamente aos eixos x e z rotacionados por um ângulo α .

Figura 9 - Coordenada de Transformação para Painel Simples com Estrutura de Fibra de Carbono.

Quando isto ocorre, as seguintes coordenadas de transformação podem ser usadas.

$$\begin{bmatrix} E_z \\ H_x \\ E_x \\ H_z \end{bmatrix} = [R] \begin{bmatrix} E_{\psi} \\ H_{\xi} \\ H_{\xi} \\ H_{\psi} \end{bmatrix}$$
(3.7)

onde [R] é uma raiz de transformação 4 x 4, dada por

$$[R] = \begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) & 0\\ 0 & \cos(\alpha) & 0 & -\sin(\alpha)\\ -\sin(\alpha) & 0 & \cos(\alpha) & 0\\ 0 & \sin0(\alpha) & 0 & \cos(\alpha) \end{bmatrix}$$
(3.8)

3.4.2 Modelo Homogêneo de 3 Camadas.

Neste modelo, o painel de compósito mostrado na figura 5 é representado por um modelo de 3 camadas mostrado na figura 10. Este modelo difere da seção anterior pelo fato de que o centro da camada é homogêneo (i.e., ε_{off} é constante na região 2).

Figura 10- Modelo Homogêneo de 3 Camadas, onde $\varepsilon = \varepsilon_{off}$ é constante em toda camada 2

Daqui em diante, este modelo será denominado modelo de 3 camadas homogêneo. Neste modelo, as camadas 1 e 3 tem uma espessura t e as propriedades constantes do material ε_{off} . A camada 2 tem uma espessura D e as propriedades do material são dadas em (3). O fator de preenchimento g necessário para expressar o modelo de 3 camadas homogêneo é constante com y', e representa simplesmente o volume relativo do espaço ocupado pela fibra no período da célula representado pela figura 11.

Figura 11 - Representação para o Período da Célula do Modelo Homogêneo de 3 Camadas

O fator de preenchimento pode ser expresso por:

$$g = \frac{\pi D^2}{4PD} = \frac{\pi D}{4P} \tag{3.9}$$

Entretanto, este modelo captura menos detalhes do painel de fibra que o modelo de 3 camadas não homogêneo anteriormente descrito.

3.4.3 Modelo Homogêneo de 1 Camada.

Este modelo é mais simples que os modelos discutidos anteriormente e consiste em representar um painel de fibra compósito como um material de camada simples e está ilustrado na figura 12.

Figura 12 – Modelo Homogêneo de 1 Camada

Esta camada simples tem espessura L e suas propriedades materiais são dadas na expressão mostrada na Equação (3). O fator de preenchimento g necessário nesta expressão para este modelo é constante, é o volume relativo do espaço ocupado pela fibra num período da célula como ilustrado na Figura 13, e o fator g de preenchimento é dado pela expressão:

$$g = \frac{\pi D^2}{4PL} \tag{3.10}$$

Figura 13 - Representação do Período da Célula para o Modelo Homogêneo de 1 Camada,

Este modelo (i.e., modelagem de um painel simples com uma camada equivalente) é uma aproximação do modelo de três camadas [1], [27], [28]. A diferença entre o modelo de três camadas e o modelo de uma camada está na expressão usada para as propriedades efetivas da camada. O modelo de uma camada considera menos detalhes das fibras que os dois modelos de 3 camadas, sendo menos acurado para altas freqüências do que os outros dois modelos anteriores.

Os três modelos apresentados nas seções 3.4 não são os únicos modelos de camada eficazes que podem ser obtidos, logo, se diferentes formas de calcular a média são usadas, parâmetros eficazes diferentes podem ser obtidos. Entretanto, os três modelos apresentados aqui são simples de se obter, possuem boa precisão e podem ser usados para ilustrar que quanto mais detalhes da geometria da fibra de compósito é considerada com os diferentes modelos, o limite da freqüência superior para validação aumenta.

3.5 Estruturas de Compósito de Painel Múltiplo.

È necessário um esclarecimento sobre o uso de modelos em camadas apresentados na seções anteriores, quando usados para analisar estruturas de painéis de múltiplas camadas como mostrado na figura 4. Quando o termo painel de fibra compósito é aqui usado, este se refere à estrutura mostrada na figura 5, que é uma estrutura consistindo em fibras alinhadas em uma só direção, encaixada no centro de uma matriz, ou resina, com espessura *L*. Algumas estruturas de compósito analisadas consistem de duas ou mais estruturas de painéis de múltipla camada, como mostrada na figura 4. Em geral, as fibras em cada painel da estrutura de compósito podem ser orientadas em diferentes direções. Quando é usado um dos modelos apresentados aqui, cada painel de uma estrutura de painel múltiplo é representado por um dos três modelos discutidos anteriormente.

Por exemplo, considere-se a estrutura de compósito de três painéis conforme mostrada na figura 1. Se qualquer um dos modelos de 3-camadas apresentados na seção 3.4 for usado para esta estrutura de painel múltiplo, então cada painel será representado por três camadas. Assim, os três painéis de compósito da figura 4 serão representados por um total de nove camadas. Por outro lado, se o modelo de uma camada (seção 3.4.3) foi usado para representar esta estrutura de painéis múltiplos, então cada painel será representado por uma camada somente. Assim, os três painéis de compósito da cada painel será representado por uma camada somente. Assim, os três painéis de compósito mostrados na figura 4 serão representados por um total de três camadas. Temos que ter sempre em mente que quando as fibras são orientadas em direções diferentes do campo incidente, logo a transformação discutida na seção 3.4.1 será necessária.

3.5.1 Exemplo Numérico com Discussão dos Diferentes Modelos.

Conforme encontrado na literatura [1], os vários painéis de compósito são investigados para avaliar a exatidão dos três modelos apresentados. Os primeiros exemplos investigam a habilidade dos modelos de calcular propriedades da reflexão dos painéis compostos, e o último conjunto de exemplos investiga a habilidade dos modelos de calcular a eficiência da blindagem dos painéis. Para este fim, são estudadas as diferentes ordens de aproximação associada com os três modelos. Os resultados dos três modelos de camadas equivalentes são comparados com os resultados obtidos da solução numérica de onda completa do composto periódico real da fibra, onde uma solução numérica pode ser escolhida para esta comparação.

Os resultados do Método dos Elementos Finitos (MEF) são considerados convergentes para uma solução numérica precisa onde uma tolerância desejada é obtida. Para os resultados mostrados neste trabalho, os resultados do MEF foram calculados para aumentar a resolução até que uma convergência de 10⁻⁵ fosse obtida (como medido pela mudança dos coeficientes de reflexão ou transmissão na maior freqüência apresentada).

Faz-se necessário entender como o cálculo do coeficiente de reflexão e a eficiência da blindagem foram obtidos com os modelos de camadas equivalentes. Uma vez que o compósito de fibra é substituído pela camada equivalente, o coeficiente de reflexão e a eficiência da blindagem são obtidos resolvendo um problema clássico de onda plana incidente sobre um meio em camadas. Nesta aproximação, Os parâmetros efetivos dos materiais para cada camada são usados para determinar a constante de propagação, a impedância e a admitância de cada camada, de onde o coeficiente de transmissão ou recepção pode ser calculado eficientemente [29], [30], [31] e [32]. Quando uma camada não homogênea está presente, a mesma pode ser subdividida em muitas subcamadas [30].

Nos resultados apresentados neste trabalho, somente 10 ou 15 subcamadas (na região 2 do modelo não homogêneo de 3 camadas) são necessários para capturar com precisão o comportamento de camadas não homogêneas.

3.5.2 Painel Simples de Compósito de Fibra de Carbono.

A primeira estrutura de compósito investigada é um painel simples, com as fibras orientadas na direção z (ver figura 6). A figura 14 mostra os resultados do coeficiente de reflexão obtidos de um modelo não homogêneo de 3 camadas para D = 0,05 mm, p = 0,1 mm, L = 0,75 mm, $C_m = 2,0C_o$, $C_f = 2,0C_o$ e $\sigma_b = 10000$ S/m. Os resultados nesta Figura são

para um campo elétrico (E) polarizado nas direções z e x. Ainda nesta figura são mostrados os coeficientes de reflexão obtidos de soluções utilizando Elementos Finitos para um campo E propagando-se através da fibra de compósito. A comparação com resultados numéricos indica que o modelo não homogêneo de 3 camadas bastante acurado na aproximação com a reflexão da fibra de compósito. A forte natureza anisotrópica da reflexão indica que esta condução na fibra se comporta como uma grade do período eletromagnético [33], [34]. Quando o comprimento de onda é grande comparado com o período, o campo incidente *E* paralelo as fibras não penetra nas fibras de compósito e é totalmente refletido, visto que o campo incidente *E* paralelo às fibras é quase totalmente transmitido. A figura 12 nos mostra o resultado da mesma estrutura para várias condutividades da fibra (com polarização em *z*). Mais uma vez, podemos notar a correlação entre as duas soluções sobre uma larga faixa de freqüências [1] e para vários valores de σ_b .

Figura 14 – Magnitude do Coeficiente de Reflexão para Painel de Fibra Compósito Simples com: D = 0,05 mm, P = 0,1 mm, L = 0,75 mm, $C_m = 2,0C_o$, $C_r = 2,0C_o$ e $\sigma_b = 10000$ S/m[1].

Esta comparação indica que o modelo não homogêneo de 3 camadas é mais preciso. Pode-se definir também qual o modelo menos preciso. Na figura 14 estão os resultados do modelo de 1 camada discutido na seção 3.4.3. Para essa estrutura particular é mostrado que o modelo de 1 camada captura detalhes físicos do painel suficientes para ser considerado acurado. Entretanto, este não é o caso se as dimensões do painel aumentam, se a estrutura se torna mais complicada, e/ou se a freqüência de operação aumenta como veremos mais adiante.

Figura 15 - Magnitude do Coeficiente de Reflexão para Painel de Fibra Compósito Simples com: D = 0,05 mm, p = 0,1 mm, L = 0,75 mm, $C_m = 2,0C_o$, $C_f = 2,0C_o$ e vários valores de $\sigma[1]$.

A próxima estrutura de compósito a ser investigada é um painel simples com fibras orientadas na direção z (ver figura 15) e o campo polarizado na direção x. Para este exemplo D = 7,5 mm, P = 15 mm, t = 3,75 mm, $C_m = 2,0C_o$, $C_f = 4,0C_o$ e $\sigma_b = 0$. A figura 16 mostra o coeficiente de reflexão para os três modelos. Também nesta figura são mostrados os resultados obtidos da solução de MEF. Note que o modelo não homogêneo de três camadas é o mais preciso. Os resultados para o modelo de três camadas começam a cair em 4 GHz, e os resultados para o modelo de 1 camada começa a cair em 2,5 GHz.

Figura 16 - Magnitude do Coeficiente de Reflexão para Painel de Fibra Compósito Simples com: D = 7,5 mm, P = 15 mm, L = 15 mm, t = 3,75mm, $C_m = 2,0C_o, C_f = 4,0C_o$ e $\sigma = 0. \lambda$ é o comprimento de onda no espaço livre e o campo *E* é ortogonal as fibras[1].

A figura 17 mostra os resultados para a mesma estrutura, mas para o campo E com polarização paralela as fibras.

Figura 17 - Magnitude do Coeficiente de Reflexão para Painel de Fibra Compósito Simples com: D = 7,5 mm, P = 15 mm, L = 15 mm, t = 3,75 mm, $C_m = 2,0C_o, C_f = 4,0C_o$ e σ .= 0 S/m. λ_o é o comprimento de onda no espaço livre [1].

3.5.3 Painel Múltiplo de Compósito de Fibra de Carbono.

Os exemplos acima trataram até agora de painéis de compósito simples (ver Figura 2). A real distinção entre os três diferentes modelos pode ser visto para estruturas de compósito mais complicadas. No próximo exemplo, o compósito de dois painéis como é mostrado na figura 18 é analisado. Nesta estrutura, as fibras nos dois painéis estão alinhadas ortogonalmente umas com as outras. Um conjunto de fibras está alinhado ao longo do eixo x e a outra ao longo do eixo y.

Para cada painel, D = 7.5 mm, P = 15 mm, L = 15 mm, t = 3,75 mm, $C_m = 2,0C_o, C_f = 4,0C_o$ e σ .= 0 S/m. Cada painel desta estrutura de compósito de dois painéis é substituído por um dos três modelos discutidos na Seção 3.4. Para o modelo não homogêneo de 3 camadas, cada painel é representado por três camadas. Entretanto, a estrutura de dois painéis é modelada por um total de seis camadas, referindo-se ao modelo não homogêneo de seis camadas e o modelo homogêneo de seis camadas, respectivamente. Enquanto para o modelo de 1 camada, duas camadas diferentes são usadas para o painel composto de duas camadas, resultando num total de duas camadas e indicado como um modelo de duas camadas para este exemplo. A Figura 19 mostra o coeficiente de reflexão obtido dos três modelos. Esta Figura mostra também os resultados obtidos de uma solução usando Elementos Finitos. O modelo não homogêneo de seis camadas é muito preciso na freqüência de 9,5 GHz, enquanto os outros modelos quebram os valores em freqüências mais baixas. O modelo de painel de duas camadas cai em 3 GHz e o modelo homogêneo de seis camadas cai em aproximadamente 7,5 GHz.

Figura 18 - Compósito de Fibra de duas Camadas organizadas ortogonalmente com: D = 7.5 mm, P = 15 mm, L = 15 mm, t = 3,75 mm

A razão pela qual os diferentes modelos caem em diferentes freqüências pode ser explicada por argumentos físicos. Note que para freqüências acima de 10 GHz, o coeficiente de reflexão experimenta diversas ressonâncias. Os diferentes modelos exibem diferentes comportamentos de ressonância, os quais são resultados diretos do número e espessura de cada camada usada nos diferentes modelos. Estes modelos diferentes capturarão diferentes níveis ou ordens de ressonância na estrutura de compósito de dois painéis.

Para ilustrar este ponto, devemos observar como cada painel da estrutura de compósito de dois painéis é modelado. Por exemplo, quando cada painel é modelado como um painel simples, a ressonância em cada painel é governada por uma camada simples com espessura de 15 mm. Por outro lado, quando cada painel é modelado com modelo de 3 camadas homogêneo ou não homogêneo, a ressonância em cada painel é governada pela ressonância do meio das três camadas. No painel de compósito puro há um comportamento de ressonância complicado resultado da onda se propagando através do painel. Primeiramente, uma vez que a onda entra no painel e se propaga pelas fibras, a reflexão ocorrer na sua superfície. A onda continua a se propagar através das fibras e a reflexão ocorrerá no final das mesmas. Reflexões contínuas ocorrerão com a propagação da onda

através da região não homogênea das fibras (i. e., a onda enxerga diferentes seções cruzadas de fibras quando se propaga através das mesmas). Esta complicada interação do campo, fica melhor representada por um modelo não homogêneo, como visto na figura 19. A terceira camada do modelo homogêneo captura mais fenômenos de ressonância entre as camadas, mas não captura a ressonância que ocorre através das fibras.

O campo E é polarizado na direção x, com as fibras da primeira camada alinhadas perpendicularmente ao campo incidente e as fibras da segunda camada alinhadas paralelamente ao mesmo campo.

A importância de se capturar maiores detalhes do painel de compósito, especialmente nas altas freqüências, é enfatizada a seguir.

Uma aproximação que pode ser usada para modelar uma estrutura de compósito do tipo painel-múltiplo é modelar a estrutura inteira do painel simples como uma camada simples.

Figura 19 - Magnitude do Coeficiente de Reflexão para Fibra de Compósito de duas Camadas com: D = 7,5 mm, P = 15 mm, L = 15 mm, t = 3,75 mm, $C_m = 2,0C_o$, $C_f = 4,0C_o$ e $\sigma = 0$ S/m[1].

Tal modelo será válido somente para baixas freqüências e, desde que não seja considerada a ressonância nenhuma camada. Por exemplo, o painel duplo da figura 15 seria modelado como um painel simples com espessura de 2L, com as propriedades do material dadas por [35] e [36]

$$\epsilon_{ef} = \sqrt{\epsilon_z \epsilon_x}$$

onde $\epsilon_z e \epsilon_x$ são dados em (3.5) e o valor de g em (3.10).

Neste modelo de camada simples, a forte natureza anisotrópica das fibras orientadas ortogonalmente pode ter sua média calculada pela média geométrica das propriedades dos dois materiais ortogonais (i.e., $C_x \in C_z$). A figura 16 mostra os resultados este modelo de camada simples da estrutura de compósito de dois painéis comparada com outros modelos e com os resultados do MEF. O modelo de camada simples não pode capturar as ressonâncias complicadas da estrutura de compósito de duas camadas. Entretanto, como esperado, o modelo que captura mais ressonâncias fundamentais da estrutura de painel múltipo (i. e., modelo não homogêneo) fica mais acurada com o aumento da frequência. Estes pontos serão melhor estudados nos 4 exemplos seguintes. Devemos estar atentos ao cálculo da eficiência da blindagem (SE) com estes modelos de camadas equivalentes. A eficiência SE é que pode ser definida como a taxa (em dB) do campo elétrico *E* transmitido através do compósito pelo campo elétrico *E* incidente.

$$E = -20Log_{10}\left(\frac{E^t}{E^i}\right) \tag{3.11}$$

Onde E^{t} é o campo elétrico transmitido através da estrutura de compósito e E^{i} é o campo elétrico incidente. O primeiro exemplo é do compósito de duas camadas com as mesmas dimensões do compósito analisado na figura 16 (i.e., um conjunto de fibras está alinhado ao longo do eixo x e o outro está alinhado ao longo do eixo z, e para cada painel D = 7,5 mm, P = 15 mm, t = 3,75 mm, $C_m = 2,0C_o$, $C_f = 4,0C_o$ e $\sigma = 0$ S/m). A figura 17 mostra uma comparação do SE obtido de um modelo não homogêneo de 3 camadas com o resultado

obtido utilizando o MEF. Novamente, é possível notar uma boa correlação entre os dois resultados para o SE calculado, mesmo para P/λ_0 próximo de 1, onde λ_0 é o comprimento de onda no espaço livre.

Figura 20 – SE para uma Fibra de Compósito de duas Camadas com: D = 7,5 mm, P = 15 mm, L = 15 mm, t = 3,75 mm, $C_m = 2,0C_o$, $C_f = 4,0C_o$ e $\sigma = 0$ S/m[1].

No próximo conjunto de exemplos, olharemos para o compósito com dimensões muito menores para examinar em qual freqüência estes diferentes modelos de camadas falham. Na figura 18 é mostrado a efeciência da blindagem SE para um painel de compósito com D =0,05 mm, P = 0,10 mm, L = 0,75 mm, $C_m = 2,0C_o$, $C_f = 2,0C_o$ para ambos $\sigma = 1$ S/m. e $\sigma = 1$. 10^4 S/m. Note que o modelo não homogêneo de 3 camadas e o modelo de uma camada capturam a oscilação para este caso de baixa condutividade e são indistinguível dos resultados de MEF para freqüências da ordem de 100 GHz. Entretanto, para o caso de alta condutividade, o modelo de 1-camada é falho na freqüência que está em aproximadamente numa ordem de magnitude mais baixa do que a magnitude do modelo de 3-camadas Assim, podemos ver que como a condutividade aumenta, o modelo não homogêneo desempenha melhor a captura de ressonâncias internas do que o modelo de 1-camada.

Figura 21 - SE para uma Fibra de Compósito de Camada Simples com: D = 0,05 mm, P = 0,10 mm, L = 0,75 mm, $C_m = 2,0C_o$, $C_f = 2,0C_o$ para ambos $\sigma = 1$ S/m. e $\sigma = 1. 10^4$ S/m. o campo E incidente está paralelo às fibras [1].

Para painéis-múltiplos de fibras de compósito, as ressonâncias internas das diferentes camadas tornam-se importantes, e o modelo de 1 camada não pode capturar este comportamento, visto que o modelo de 3-camadas faz um excelente trabalho de representação de um painel múltiplo de material composto, Isto será ilustrado no exemplo final. A próxima estrutura a ser analisada consiste de quatro painéis com fibras orientadas em diferentes direções. No primeiro painel, as fibras são orientadas ao longo do eixo x. No segundo painel, as fibras são orientadas ao longo do eixo z. O terceiro painel tem fibras orientadas ao longo do eixo x, e o último painel tem fibras orientadas ao longo do eixo z. Para cada painel, L = 0,75 mm, D = 0,05 mm, P = 0,10 mm, e $C_m = C_f = 2,0C_o$. Cada painel da estrutura de quatro painéis é representado por um dos três modelos discutidos na Seção 3.4. A eficiência da blindagem SE obtida de dois desses três modelos é mostrada na figura 19 para ambos $\sigma = 1$ S/m e $\sigma = 1.10^4$ S/m. Os resultados obtidos de MEF também são mostrados nessas figuras. Note que para o caso de baixa condutividade, o modelo não homogêneo e o modelo de 1-camada produzem uma boa correlação. Por outro lado, para o caso de alta condutividade, o modelo de 1-camada falha em aproximadamente 2 GHz, enquanto os resultados do modelo não homogêneo são indistinguíveis (mesmo capturando as ressonâncias) se comparados com os resultados obtidos a partir de MEF para freqüências próximas de 100 GHz.

Figura 22 – SE para quatro Painéis de Fibra de Compósito com cada painel tendo: D = 0,05 mm, P = 0.10 mm, L = 0,75 mm, $C_m = 2,0C_o$, $C_f = 2,0C_o$ para ambos $\sigma = 1$ S/m. e $\sigma = 1.10^4$ S/m. O campo E incidente é ortogonal às fibras no primeiro painel [1].

A comparação com os resultados numéricos indica que o modelo não homogêneo é mais preciso na aproximação da SE do painel-múltiplo de fibra de compósito. Podemos ver que, como a condutividade se torna alta, o modelo não-homogêneo trabalha melhor do que o

modelo de 1 camada na captura de ressonâncias internas desta estrutura múltipla de painel de compósito, especialmente para freqüências altas.

Conclusões similares às acima expostas podem ser feitas sobre uma estrutura de dois painéis. A figura 20 mostra a SE para uma estrutura de compósito de dois painéis onde, para cada painel L = 0, 75 mm, D = 0,05 mm, P = 0.10 mm, L = 0,75 mm e $C_m = C_f = 2,0C_o$. Como no último exemplo, note que para o caso de baixa condutividade, o modelo não homogêneo e o modelo de 1-camada produzem uma boa correlação.

Figura 23 – SE para dois Painéis de Fibra de Compósito com cada painel tendo: D = 0,05 mm, P = 0.10 mm, L = 0,75 mm, $C_m = 2,0C_o$, $C_f = 2,0C_o$ para ambos $\sigma = 1$ S/m. e $\sigma = 1.10^4$ S/m. O campo E incidente é ortogonal às fibras no primeiro painel [1].

Em contrapartida, para o caso de alta condutividade, o modelo de 1-camada falha em aproximadamente 2 GHz, enquanto que os resultados do modelo não-homogêneo são indistinguíveis (mesmo capturando as ressonâncias) em relação aos resultados obtidos de

MEF para freqüências tão altas quanto 100 GHz. Novamente, isto indica que o modelo nãohomogêneo é mais preciso na aproximação da SE de painéis múltiplos de fibra de compósito

Cada painel individual para as três estruturas de compósito analisadas nas figuras 18, 19 e 20 é o mesmo. É interessante observar os resultados dessas três figuras; vemos que, como o número de painéis aumenta (i.e., um aumento na espessura total da estrutura), a localização da freqüência da primeira ressonância na resposta do compósito diminui.

Os resultados aqui apresentados são para incidência normal somente. Entretanto, a representação do tensor \mathcal{E} e μ , como mostrado em (1) e (2) fazem com que os parâmetros efetivos trabalhem em um ângulo de incidência arbitrário. Note que, como o ângulo de incidência muda de 0° para 90°, o período máximo pelo qual os parâmetros efetivos trabalharão é diminuído, uma vez que os lóbulos (modos de primeira ordem) que tocam o ponto de incidência irão aparecer precocemente.

A formulação das propriedades do material equivalente ao caso homogêneo é também muito útil em códigos numérico para análise de penetração de campo (SE) dentro de estruturas, eliminando a necessidade de resolver espacialmente as fibras.

Com estes modelos de camada eficazes, é possível desenvolver as condições de limite eficientes da matriz de transferência (TMBC) para códigos computacionais grandes para analisar o acoplamento do EM para vários problemas, incluindo o acoplamento em estruturas compostas [1]. Neste caso, é usada uma técnica para tornar-se eficiente as matrizes de transformação de admitância e de impedância de transferência da camada de compostos. O uso do TMBC elimina a necessidade resolver espacialmente detalhes característicos do material composto, o que diminui o tempo de execução computacional do problema do acoplamento.

A aproximação de TMBC requer ainda uma solução de um meio mergulhado em sua execução.

4. MEDIDAS DE PERMISSIVIDADE RELATIVA COMPLEXA

O Laboratório de Sistemas Eletromagnéticos da Divisão de Física Aplicada do Instituto de Estudos Avançados dispõe de instrumentação para a realização de ensaios de Permissividade e Permeabilidade Relativas Complexas ($\epsilon^* = \epsilon' - j\epsilon''$) na faixa de Radio Freqüência (RF) em materiais sólidos.

Uma vez tendo esta disponibilidade, foi evidenciada a necessidade de se medir permissividade relativa complexa do material para se obter um indicativo dos efeitos da anisotropia na fibra com relação às descargas elétricas,

A partir das medidas de permissividade poderão ser obtidas outras propriedades eletromagnéticas tais como: refletividade, condutividade, etc.

Os experimentos para realização dessas medidas foram delineados levando-se em conta uma configuração de montagem de RF que garantisse com objetividade as medidas em três eixos (X, Y e Z) com um número reduzido de amostras para a análise dos resultados com o menor erro experimental da medida da variável de resposta.

A técnica empregada para efetuar as medidas de caracterização de impedância foi a técnica de medida em uma linha coaxial com terminação em aberto.

Por se tratar de material rígido, pré-impregnado em resina epóxi, levando-se em conta que no início deste estudo não se detinha experiência anterior com o mesmo e considerando a forma como um painel de compósito de multicamadas pode ser atingido por uma descarga elétrica, optou-se por utilizar uma estrutura e uma tecnologia conhecida pelos colaboradores do laboratório. Desta forma, as amostras foram confeccionadas em função da disponibilidade dos recursos e equipamentos disponíveis.

O delineamento dos experimentos, considerando desde a concepção do modelo físicomatemático adotado até a análise dos resultados requereu o estabelecimento de uma metodologia aplicada aos ensaios realizados como descritos a seguir.

4.1 Metodologia Aplicada aos Ensaios de Permissividade.

A metodologia aplicada aos ensaios foi dividida em seis etapas, como segue:

- 1º Modelo físico-matemático para caracterização da anisotropia
 na permissividade Complexa;
- 2° Usinagem das amostras;
- 3° Tratamento superficial
- 4º Arranjo Experimental e Calibração da Instrumentação
- 5° Medidas de Permissividade
- 6° Análise dos resultados.

4.1.1 Modelo Físico-Matemático para Caracterização da Anisotropia na Permissividade Relativa Complexa.

O modelo Físico-Matemático para Caracterização da Anisotropia na Permissividade Complexa do Compósito de Fibra de Carbono foi definido a partir da escolha da técnica de medida em RF, que era a técnica disponível no LSE. Para a faixa de freqüências desejada, optou-se por usar uma linha de transmissão terminada em aberto, compatível com a faixa dinâmica do equipamento e cujo equacionamento é apresentado como segue:

Considerando-se as impedâncias de entrada de uma linha de transmissão e que o material estudado é um dielétrico [37], podemos admitir que a permeabilidade complexa da amostra é igual a $1(\mu^2=1, \mu^2=0)$, então:

$$\mu_r = \mu_r - j \,\mu_r^{"} \tag{4.1}$$

O valor da permissividade do material pode ser determinado a partir da equação da impedância para uma terminação aberta [37], como segue:

$$Z_{in}^{open} = -jZ_0^{cot\,(\gamma d)} \tag{4.2}$$

Para uma amostra com comprimento d muito pequena é válida a aproximação:

$$\cot(\gamma d) \cong \frac{1}{\gamma d}$$
 (4.3)

Então a impedância de entrada será:

$$Z_{in} = -jZ_0 \frac{1}{\gamma d} \tag{4.4}$$

onde a constante de propagação γ para a amostra no modo TEM pode ser escrita como segue:

$$\gamma = k_0 \sqrt{\mu_r \varepsilon_r} \tag{4.5}$$

onde k é o número de onda no vácuo pode ser escrito como:

$$k_0 = \frac{\omega}{c} \tag{4.6}$$

sendo c a velocidade da luz no vácuo.

como $\mu_e = 1$ $\gamma = k_0 \sqrt{\varepsilon_r}$ (4.7)

E sua impedância característica pode ser obtida como segue:

então,

$$Z_0 = \frac{\eta}{2\pi} \sqrt{\frac{1}{\varepsilon_r}} \log\left(\frac{a}{b}\right) \tag{4.8}$$

onde η é a impedância intrínseca do material no vácuo e pode ser escrita como:

$$\eta = \sqrt{\frac{\mu_0}{\varepsilon_0}} \tag{4.9}$$

fazendo, $\mu_0 = 1$,

temos que

$$\eta = \sqrt{\frac{1}{\varepsilon_0}} \tag{4.10}$$

É conveniente expressarmos a impedância característica Z_{\circ} em termos de impedância Z_{\circ}^{ar} característica da mesma linha exposta ao ar como segue:

$$Z_0 = \sqrt{\frac{1}{\varepsilon_r}} Z_0^{ar} \tag{4.11}$$

Substituindo as equações (6) e (7) em (4) temos:

$$Z_{in} = -j \frac{c}{\omega d_{\varepsilon_r}} Z_0^{ar}$$
(4.12)

Para tornar explícita a permissividade escrevemos:

$$\varepsilon_r = -j \frac{c}{\omega d} \left(\frac{Z_0^{ar}}{Z_{in}} \right) \tag{4.13}$$

Sabendo-se que \mathcal{E}_r é uma grandeza complexa, esta pode ser representada por:

$$\varepsilon_r = \varepsilon_r' - j\varepsilon_r'' \tag{4.14}$$

A parte real pode ser definida por:

$$\varepsilon_r'' = -\left[\frac{c}{\omega d} \frac{Z_0^{ar}}{|Z_{in}|^2}\right] X_{in}$$
(4.15)

E a parte imaginária por:

$$\varepsilon_r^{"} = -\left[\frac{c}{\omega d} \frac{Z_0^{ar}}{|Z_{in}|^2}\right] R_{in}$$
(4.16)

Os eixos das amostras cilíndricas são paralelos aos eixos cartesianos, proporcionando a avaliação qualitativa da anisotropia na permissividade complexa do material. Desta maneira, a permissividade efetiva da estrutura do CFC pode ser representada pelo tensor:

$$\varepsilon_{eft} = \begin{pmatrix} \alpha e_i & \beta e_j & 0\\ 0 & \beta e_j & \gamma e_k\\ \alpha e_i & 0 & \gamma e_k \end{pmatrix}$$
(4.17)

A avaliação da anisotropia elétrica é efetuada com a diagonalização do tensor de permissividade.

4.1.2 Usinagem das amostras

A partir de uma placa de Fibra de Carbono Composto de sessenta camadas foram fabricadas dez amostras, no mínimo, em cada um dos três eixos, como ilustrado na figura 22 (a) e (b).

Figura 24 - (a) Placa de CFC de 60 Camadas;

(b) Amostras Retiradas de 3 Eixos

As amostras foram usinadas obedecendo a uma geometria cilíndrica com um furo axial, conforme ilustrada na figura 25, para acondicioná-la adequadamente no conector de um porta-amostra acoplado ao medidor [38].

Figura 25 – Amostra de CFC usinada

Para oferecer um bom casamento de impedância, as amostras foram confeccionadas com certa precisão, de modo a diminuir o erro introduzido pela permissividade do ar, caso a mesma fique com folga dentro do conector. As medidas relacionadas a cada cota indicada na figura anterior constam na tabela 1.

Cota	Medida (mm)
a	6,93±0,05
d	$10,0\pm 0,1$
ф	2,93±0,05

Tabela 1-Medida das Cotas da Amostra

Os eixos das amostras cilíndricas foram fresados paralelamente aos eixos cartesianos para proporcionarem a avaliação qualitativa da anisotropia na permissividade complexa do material em direções ortogonais.

Quanto aos procedimentos de medidas geométricas das amostras, o furo central foi medido nas dependências do IFI-CTA, utilizando o sistema SISMETRA, que fornece medidas com precisão de milésimos de milímetros para um refinamento na escolha das seis amostras em cada eixo. Após uma seleção visual para identificar possíveis fissuras (trincas) e/ou assimetria através da medição da altura e do diâmetro externo, um teste PASSA/NÃO PASSA (GO-NO GO) foi realizado no pino central do conector porta-amostra para identificar a necessidade de ajuste no furo central da amostra como pode ser ilustrado nas figuras 26(a) e (b).

Figura 26 – (a) Seleção Visual das Amostras; (b) Teste Passa-Não Passa no Conector.

4.1.3 Tratamento Superficial das Amostras

A seguir, as extremidades das amostras sofreram uma leve abrasão para então serem limpas com álcool isopropílico até eliminar qualquer possibilidade de curto-circuito entre as faces de contato com o conector.

Para reduzir o erro de medida com a introdução da permissividade relativa complexa do ar, as faces das amostras que fazem contato com o conector foram recobertas com tinta a base de prata e qualificada para garantir um bom casamento de impedância na execução das medidas.

4.1.4 Arranjo Experimental e Calibração da Instrumentação

Para a execução das medidas de permissividade relativa das amostras foi definido um arranjo experimental conforme esquematizada pela figura 27.

Figura 27 - Montagem da Ligação do Analisador de Impedância e Fase no PC.

- 1 Analisador de Impedância e fase modelo HP 4194A;
- 2 Acoplador
- 3 Porta Amostra com Terminação Aberta;
- 4 Terminação em curto-circuito;
- 5 Conexão padrão GPIB;
- 6 Conexão padrão USB;
- 7 Notebook;
- 8 Cabo para comunicação de dados;

Nos terminais do analisador de impedância e fase foi conectado um porta-amostra com terminação em aberto apropriada para acondicionar a amostra.

Um microcomputador compatível PC foi empregado para controlar o analisador via interface IEE488. Uma rotina computacional que possibilita extrair os dados de impedância foi desenvolvida no ambiente Vee Pro 8.0. O algoritmo utilizado seguiu o equacionamento apresentado na seção 5.1.

O cabo utilizado para comunicação de dados possuía uma conexão GPIB na extremidade do medidor enquanto a extremidade conectada ao computador utilizava a entrada USB, conforme esquematizado.

O medidor de impedância e fase, o porta-amostra, com prazos de aferição dentro da validade, foram configurados em uma bancada de teste junto ao microcomputador, conforme ilustrado nas figuras 28(a) e (b), com todos os itens utilizados nesta configuração.

Figura 28 - (a) Configuração da bancada de teste; (b)Detalhe do Porta Amostras HP 1608A

Anteriormente à execução das medidas foi feita uma calibração do medidor inicialmente com uma terminação em curto, seguido de uma terminação em aberto, finalizando com uma carga padrão de 50 Ω para a faixa de freqüência dinâmica onde a linha de entrada do equipamento apresentou uma impedância R=(50,0 ± 0,1) Ω , considerada praticamente resistiva, pois a reatância X apresentou-se menor que 10 m Ω .

4.1.5 Medidas de Permissividade Relativa

As medidas de permissividade relativa complexa do CFC, considerando o eixo de simetria da amostra o versor \vec{i} e suas partes real (ϵ ') e imaginária ($j\epsilon$ ''), foram obtidas por meio de medidas de impedâncias (capacitância e fator de dissipação), na faixa de freqüência de 100 Hz a 40 MHz. Para as condições sob as quais ocorreram os ensaios estabeleceu-se um ambiente com umidade e temperatura controlada.

O analisador de impedância mostrou em sua tela os gráficos que representam o comportamento do parâmetro analisado no domínio da freqüência, conforme ilustrado na

figura 29, onde a medida de permissividade relativa real está representada pela curva azul e o a permissividade relativa imaginária pela curva amarela.

Figura 29 – Gráfico representando o comportamento da permissividade relativa-Real (curva azul) e Imaginária (curva amarela)

Após cada medida, os dados referentes à mesma foram salvos e agrupados em uma tabela EXCEL (ver APÊNDICE 2) para cada seis amostras de cada eixo.

Em seguida foram exportados para o software ORIGIN-PRO Versão 8.0®, possibilitando mostrar em um só gráfico as medidas das amostras de um mesmo eixo, como ilustrado nas figuras 30, 31, 32, 33, 34, 35, como segue:

A figura 30 representa a série de dados obtidos no eixo X para as medidas de permissividade relativa real, onde cada cor representa uma amostra, conforme indicada na legenda que acompanha o gráfico. A figura 31 representa a série de dados obtidos no eixo X para as medidas de permissividade relativa Imaginária.

Figura 30 – Medidas da Permissividade Relativa Complexa no Eixo X. Componente Real.

Figura 31 – Medidas da Permissividade Relativa Complexa no Eixo X. Componente Imaginária.

Analogamente, as figuras 32 e 33 representam a série de dados obtidos no eixo Y para as medidas de permissividade relativa real e imaginária, respectivamente.

Figura 32 – Medidas da Permissividade Relativa Complexa no Eixo Y. Componente Real.

Figura 33 – Componente Imaginária

Idem para as figuras 34 e 35 quanto ao eixo Z.

Figura 34 – Medidas da Permissividade Relativa Complexa no Eixo Z. Componente Real.

Figura 35 - Medidas da Permissividade Relativa Complexa no Eixo Z - Componente Imaginária

4.1.6 Análise dos Resultados.

Foram efetuadas diversas medidas de permissividade para os eixos X, Y e Z. Devido à problemas técnicos no equipamento de medida ou folga das amostras no conector, algumas séries de dados foram descartadas, sendo consideradas somente as curvas recorrentes. Desta forma, foram utilizadas seis séries de dados para o eixo X, cinco para o eixo Y, e quatro para

o eixo Z. A partir da série de dados, foi obtida a média dos valores medidos para cada fregüência. Sendo assim, por exemplo, para o eixo X, onde se considerou seis séries de dados,

tomou-se o valor da permissividade real para uma freqüência de 117,5 Hz. Como há seis séries de dados, existem seis valores de permissividade para esta freqüência. Então, tomou-se simplesmente a média desses valores como o valor experimental da permissividade para esta

freqüência. A Tabela 2 mostra uma discrepância que justifica o procedimento adotado.

O valor adotado como válido encontra-se na tabela com o nome de PARTE REAL MÉDIA. Esse procedimento foi estendido para os outros valores de permissividade para diferentes permissividades gerando as diferentes linhas da tabela de dados.

Além do cálculo aqui descrito, a tabela também obtém a permissividade média imaginária e o desvio padrão das medidas.

REQÜÊNCI	AMOSTRA 01		AMOSTRA 0			4OSTRA 06						
	REAL	IMAGINÁRIA	REAL	IMAG			IMAGINÁRIA		DESTION ADDINO		DESTION ADDINO	
100,00	21,92235535	-2,02196636	19,16474288	5,840		1 99	4,912069414	21,38	2,10	3,42	2,80	
103,28	30,03792509	5,425065968	20,89513965	2,70		38	2,314755263	23,08	3,69	2,23	2,83	
106,66	22,0673426	-1,04117304	24,46547958	-0,50		087	4,288474867	24,35	2,77	1,55	2,61	
110,16	27,85294787	2,908440522	15,52047851	-0,29		7161	2,197516987	23,34	5,24	2,25	1,33	
113,77	20,73444518	2,627360847	21,44111727	1,804		493	3,193510939	23,19	1,75	0,53	2,83	
117,50	24,10376646	3,054708312	22,43417724	0,398	()	273	1,496045135	23,76	1,42	1,98	1,11	
121,35	25,84108839	2,355682525	21,78461795	2,147	• •	289	2,929680479	23,91	2,48	2,42	0,90	
125,33	21,65996907	0,63818361	21,11382985	3,336		039	2,634713017	22,22	1,70	1,39	1,50	
129,43	24,61777291	1,067545323	18,19129612	1,876		31	2,153794674	23,04	2,76	1,24	1,43	
133,67	24,48571796	1,944323994	21,91104794	2,185		228	1,913715157	23,88	1,41	2,07	0,68	
138,06	25,53660996	1,392174937	19,41299603	3,376		341	1,115860166	22,34	2,30	0,81	1,65	
142,58	20,58540939	-0,10764047	22,68143585	1,505		771	2,616186819	23,96	2,23	1,52	1,00	
147,25	24,11713237	1,116996089	19,51084452	0,002		384	-0,03308312	22,92	2,31	0,32	0,82	
	REQÜÊNCI, 100,00 103,28 106,66 110,16 113,77 117,50 121,35 125,33 129,43 138,06 142,58 147,25	AMOS FEAL 100,00 21,8223555 103,28 30,03792509 106,66 22,0673426 110,16 27,85234787 111,77 20,73444518 112,35 25,84108839 125,33 21,65398507 129,43 24,6177291 133,67 24,4871796 138,67 25,53660936 142,58 20,85840339 142,58 20,85840339 147,25 24,11713237	AMOSTRA 01 REQÜÊNCI IMAGINÁRIA 100.00 21,9223655 -2,02196636 103,28 30,0379209 5,425065968 106,66 22,067342 -1,04117304 1010,6 27,8529476 2,908440522 113,77 20,73444518 2,62736847 113,77 20,73444518 2,62736847 113,77 20,73444518 2,62736847 113,77 20,73444518 2,62736847 121,35 25,6410839 2,355682525 125,33 21,65998907 0,63818361 129,43 24,61777291 1067545323 133,67 24,4877736 1,94232394 138,06 25,5366096 1,392174373 142,58 20,58540393 -0,0764047 142,58 20,58540393 -0,0764047	AMOSTRA 01 AMOS REQÜCNC: REAL IMAGINÁRIA FEAL 100.00 2(3223555 -2,0219658 19,6474288 103,28 30,0379209 5,42506598 20,951965 106,66 22,067342 -1,0411734 24,46547958 101,16 27,8529477 2,9844052 15,52047851 113,77 20,73444518 2,627360847 21,44117274 113,70 24,40376646 3,054708312 24,3417724 121,55 21,65996907 0,63818361 21,1136285 125,34 24,61777281 1,067545323 18,1192612 133,67 24,48571766 1,392174391 21,9104714 138,66 20,55860393 -0,10764047 24,68473652 142,58 20,55860393 -0,016764074 26,8143563 142,58 20,55860393 -0,016764074 26,8143563	AMOSTRA 01 AMOSTRA 01 REQÜENCI REAL IMAGINÁRIA REAL IMAG 100,00 21,9225553 -2,0216658 19,1647428 5,44 103,28 30,0378294 5,4250658 2,0895139 2,01 106,60 22,0673428 -1,0411730 2,46547958 6,00 101,61 2,78529478 2,0044052 15,5047851 6,00 113,77 20,7344451 2,62730087 2,4411727 10,03 113,77 20,7344451 2,62730087 2,4411727 10,03 113,77 20,7344518 2,62730087 2,4411727 10,03 12,153 2,14037664 3,05470821 2,4411727 10,03 12,153 2,14037664 3,05470821 2,1411727 1,03 12,153 2,14037664 3,05470821 2,1411727 1,03 12,53 2,14037664 1,05761323 18,192361 3,33 13,67 2,4,487779 1,04543239 1,9114949 3,137 13,86 2,5566	AMOSTRA 01 AMOSTRA 0 REQÜENCI REAL IMAGINÁRIA REAL IMAG 100.00 21,322555 -2,0216636 19,1647428 5,84 103,28 30,037260 5,4250656 20,861396 2,70 106,66 22,067342 -1,0411730 24,46547958 -0,29 110,76 20,73444518 2,82736084 2,4411727 1,00 117,75 20,73444518 2,82736084 2,4411727 1,03 121,35 25,8410839 2,35568255 2,17461795 2,141 121,53 21,65936807 0,638183 2,1132295 3,336 129,43 24,6177729 1,0675452 18,1912612 1,876 133,67 24,48571766 1,94132394 2,19104794 2,185 133,67 24,48571766 1,94132394 2,19104794 2,185 142,58 20,58540333 0,01764047 2,26813585 1,505 142,58 20,58540333 0,01764047 2,26813585 1,505 142,58	AMOSTRA 01 AMOSTRA 0 AOS AOS AOS FEAL IMAGINÁRIA FEAL IMAG IMAG	AMOSTRA 01 AMOSTRA 0 MOSTRA 0 PEQÜENCI 100,00 21,3225555 -2,02196536 19,16474288 5,841 193 4,91269414 103,28 30,0379205 5,425065968 20,8513965 2,70 38 2,314755263 106,66 22,0673426 -1,04117304 24,46547958 -0,50 087 4,28847867 113,77 20,73444518 2,827360847 21,44111727 1,00 18,1325033 2,137516335 3,13510333 117,50 24,10376646 3,054708312 22,43417724 0,381 () 493 3,133510333 121,35 25,8410839 2,35568255 2,144111727 1,00 433 3,133510333 121,35 25,8410839 2,35568255 2,14411727 1,00 433 2,133510333 121,35 25,8410839 2,055168323 1,1132985 3,33 03 2,26347150 129,43 24,4177291 1,067545324 1,91104794 2,185 228 2,91311577 133,67 24,4871736 1,	AMOSTRA 01 AMOSTRA 0 MOSTRA 08 AOSTRA 08 ANTERAL MÉDIA FIEAL IMAGINÁRIA FIEAL IMAG IMAGINÁRIA FIEAL IMAGINÁRIA FIEAL IMAGINÁRIA FIEAL IMAGINÁRIA FIEAL IMAG IMAGINÁRIA FIEAL FIEAL	AMOSTRA 01 AMOSTRA 0 REQÜÊNCI 100.00 CISTRA 01 AMOSTRA 0 IMAGINÁRIA REAL IMAGINÁRIA </th <th>AMOSTRA 01 AMOSTRA 0 REQÜÊNCI REAL IMAGINÁRIA REAL IMAG 100.00 21,3225635 2,02196363 19,1647428 5,84 100,00 21,3225635 2,02196363 19,1647428 5,84 100,00 21,3225635 2,02196363 19,1647428 5,84 100,66 22,0673426 1,04117304 24,46547956 0,50 101,66 22,0673426 1,04117304 24,46547956 0,29 113,77 2,073444518 2,827360847 2,41411727 10,86 113,77 20,73444518 2,827360847 2,41411727 10,86 113,77 20,73444518 2,827360847 2,41411727 10,86 113,77 20,73444518 2,827360847 2,41411727 10,86 121,55 25,6410839 2,35568255 2,174411727 10,86 121,55 26,8410839 2,35568255 2,17441795 2,18 121,55 26,8410839 2,10545032 18,1129261 1,87 121,55 <td< th=""><th>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</th></td<></th>	AMOSTRA 01 AMOSTRA 0 REQÜÊNCI REAL IMAGINÁRIA REAL IMAG 100.00 21,3225635 2,02196363 19,1647428 5,84 100,00 21,3225635 2,02196363 19,1647428 5,84 100,00 21,3225635 2,02196363 19,1647428 5,84 100,66 22,0673426 1,04117304 24,46547956 0,50 101,66 22,0673426 1,04117304 24,46547956 0,29 113,77 2,073444518 2,827360847 2,41411727 10,86 113,77 20,73444518 2,827360847 2,41411727 10,86 113,77 20,73444518 2,827360847 2,41411727 10,86 113,77 20,73444518 2,827360847 2,41411727 10,86 121,55 25,6410839 2,35568255 2,174411727 10,86 121,55 26,8410839 2,35568255 2,17441795 2,18 121,55 26,8410839 2,10545032 18,1129261 1,87 121,55 <td< th=""><th>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</th></td<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Tabela 2 – Discrepância de Medidas entre Amostras
A partir dos valores médios foi possível construir gráficos que mostrassem a variação da permissividade real (a) e imaginária (b) em função da freqüência da onda incidente no material. Esse resultado é mostrado abaixo, nas Figuras 36, 37, 38, 39, 40 e 41 para os eixos X, Y e Z, respectivamente.

Figura 36 - Resultado final para o eixo X: Permissividade Real.

Figura 37 - Resultado final para o eixo X: Permissividade Imaginária.

Para cada um dos eixos foi suposta uma exponencial decrescente mais uma reta de inclinação nula como representativa do comportamento dos dados. O comportamento

exponencial foi tratado como ruído, pois sua existência de deve a particularidades do funcionamento do equipamento de medida.

O valor tomado como resultado da medida foi a reta de inclinação nula. As curvas descritas acima, mostradas nos gráficos em cor preta em oposição aos dados medidos mostrados como uma curva vermelha foram obtidas por meio do método de mínimos quadrados a partir de processamento via software Origin®.

Figura 38 – Resultado final para o eixo Y: (a) Permissividade Real.

Figura 39 - Resultado final para o eixo Y: Permissividade Imaginária.

Figura 40 - Resultado final para o eixo Z: (a) Permissividade Real

Figura 41 - Resultado final para o eixo Z: Permissividade Imaginária.

Como resultado final dessa redução de dados, obteve-se aproximadamente, o valor de permissividade real de 20, 40 e 20, para os eixos X, Y e Z, respectivamente. O valor da permissividade imaginária ficou, para os três eixos, por volta de 0,01. As variações destes valores observadas nos gráficos podem ser atribuídas a ruído no equipamento de medida.

O resultado obtido para o valor da permissividade real foi coerente com a orientação das fibras de carbono que compõem o material compósito. Isto é, como a fibras de orientam nas direções X e Z, a permissividade real nesses eixos foi idêntica. O valor de permissividade maior no eixo Y mostra que nesse eixo, a onda eletromagnética incide perpendicularmente ao plano da trama de fibras de carbono. O valor aproximadamente idêntico para a permissividade imaginária demonstra que as perdas no material se devem predominantemente ao epóxi que compõem o material compósito. O comportamento é bastante coerente, visto que o epóxi consiste de um material dielétrico enquanto que a fibra é um condutor, portanto as perdas devem ocorrer no primeiro. Os valores das constantes dielétricas (cr) das amostras mostraram terem sido influenciados pela direção das fibras em relação ao eixo em que cada uma foi usinada, sendo determinada uma permissividade de aproximadamente 20 nas direções X e Z e 40 na direção Y. A figura 42 relaciona os dados da permissividade complexa nos três eixos e permite observar a maior anisotropia entre os planos YZ e YX estão mais afastados do eixo diagonal, apontando que a maior anisotropia é na direção Y.

Figura 42 - Relação da permissividade entre eixos

4.2 Determinação da Condutividade Característica do Compósito de Fibra de Carbono.

Partindo da definição da Condutividade Elétrica vista no capítulo 2, pode-se determinar a Condutividade Característica (σ) do Compósito de Fibra de Carbono a partir de sua resistência elétrica em cada eixo (X, Y e Z), conforme descrito a seguir:

Sabendo-se que $\sigma = \frac{1}{\rho}$, ρ pode ser determinado pela equação 5.18, a seguir

$$\rho = \frac{R.S}{l} \tag{4.18}$$

Onde R é a resistência medida na direção considerada, S é a área do volume considerado na mesma direção, a exemplo de l que designa o seu comprimento.

Portanto σ pode ser expresso pela equação 5.19, como segue:

$$\sigma = \frac{1}{R.S} \tag{4.19}$$

Para um volume com cota de 15 mm na direção X, 35 mm na direção Y e 36 mm na direção Z, foram medidos os seguintes valores de resistência:

$$Rx = 9,3 \Omega$$
$$Ry = 281 k \Omega$$
$$Rz = 11,8 \Omega$$

Substituindo na equação 5.19, é possível determinar o valor da condutância característica em cada direção supracitada, conforme valores apresentados a seguir:

$$σ x = 1,07 \text{ S/m}$$

 $σ y = 2,9 \ 10^{-6} \text{ S/m}$
 $σ z = 11,8 \text{ S/m}$

Estes resultados foram requeridos para a execução da simulação e declarados no ambiente do software utilizado, como visto no capítulo seguinte.

5 . SIMULAÇÃO DE UMA PLACA DE COMPÓSITO DE FIBRA DE CARBONO SUBMETIDA A UM PULSO DA DESCARGA ATMOSFÉRICA

Este capítulo apresenta exemplo de simulação computacional, onde as equações de Maxwell são resolvidas numericamente utilizando o Método das Diferenças Finitas no Domínio do Tempo (FDTD), levando-se em conta a densidade superficial de energia eletromagnética que se propaga por unidade de tempo na direção e sentido da onda eletromagnética causados pelas componentes de uma descarga atmosférica, com valores estabelecidos por requisitos.

Para se estimar computacionalmente, os efeitos causados em uma placa de compósito de fibra de carbono com alto grau de complexidade, submetida a um pulso de corrente com forma de onda especificada pela SAE ARP 5412 (APÊNCICE C) e possibilitar a obtenção de resultados próximos da realidade, foi necessário um estudo em etapas como exposto a seguir:

5.1. Introdução

A forma mais usual de utilização do método da diferenças finitas é no domínio tempo (FDTD). O método baseia-se na discretização das equações de Maxwell diretamente no tempo e espaço, dividindo o volume de interesse em células unitárias. Usualmente a malha gerada por tais células necessita ser uniforme, sendo assim a densidade da malha é determinada pelo menor detalhe de interesse do modelo. A idéia principal do algoritmo é aplicar o conceito de diferenças finitas na forma diferencial das equações de Maxwell [39].

O FDTD [40] é um método bastante apropriado para a análise da resposta de uma aeronave submetida a uma descarga atmosférica, possibilitando a avaliação de geometrias de malhas de terra irregulares, meios não lineares e com perdas. A malha de elementos do FDTD é composta por células retangulares onde cada aresta é associada a um campo elétrico. Foram implementadas rotinas para construção de paralelepípedos discretizados em termos de células Yee cúbicas, cujas propriedades dielétricas são ajustáveis.

È possível especificar materiais diferentes para cada aresta da malha, conferindo ao método propriedade de anisotropia para a análise de conjunto ar / aeronave. O FDTD é um método iterativo, onde o campo elétrico e magnético é calculado a cada passo de tempo. Estes campos são posteriormente propagados através da malha de elementos, representando desta forma o fenômeno transitório [41].

A formulação de campo espalhado do FDTD foi inicialmente aplicada para uma aeronave F-111 para calcular cargas e correntes superficiais induzidas a partir de um campo gerado por um pulso eletromagnético (Electromagnetic pulse - EMP) simulado. Este procedimento reuniu todos os elementos representativos da modelagem FDTD, e por esta razão e por certo senso histórico o esforço na modelagem é discutido em detalhes [40].

O uso típico do FDTD para a simulação de problemas de aterramento impulsivo envolve a excitação do sistema modelado por um pulso de corrente sendo gravadas as totalidades dos campos ao longo das células da malha durante todo o período de transitório. Na seqüência, algoritmos da Transformada de Fourier permitem a extração do domínio da freqüência e de parâmetros de dispersão.

O FDTD é um método explícito onde todo o domínio computacional é discretizado, não sendo necessário resolver um conjunto de equações lineares.

5.2. Método das diferenças finitas no domínio do tempo

O Método do Domínio do Tempo por Diferenças Finitas (Finite Difference Time Domain Method) é um modo versátil de resolver problemas de eletromagnetismo pela integração das equações diferenciais de Maxwell,

$$\nabla x H - \frac{\partial D}{\partial t} = 0 \tag{5.1}$$

$$\nabla xE + \mu_0 \frac{\partial H}{\partial t} = 0 \tag{5.2}$$

$$D(t) = \varepsilon \varepsilon_0 E(t) \tag{5.3}$$

O Método dos Elementos Finitos consiste em dividir o domínio de estudo em um número finito de pequenas regiões (elementos). Neste caso foram utilizados cubos como células básicas (Yee Cell), ilustrada pela figura 43, que permitem a determinação dos valores de campo nos pontos de interesse (vértices ou arestas destes elementos).

Cada um dos elementos gera uma matriz chamada Matriz de Contribuições, cuja forma depende da célula. Estas matrizes levam em conta a geometria do problema, os materiais envolvidos e as fontes de excitação.

Figura 43 – Célula básica do Método FDTD

O método de FDTD calcula o campo elétrico e o campo magnético em cada célula integrando as equações de Maxwell de forma iterativa até que o de estado estacionário seja alcançado.

No caso de uma fonte de excitação senoidal, o regime estacionário é alcançado quando todos os campos dispersos variarem senoidalmente no tempo. Entretanto, as relações constitutivas para um meio material com características de anisotropia são escritas como:

$$D = [\varepsilon]E; (5.4)$$

$$B = [\mu]H, \tag{5.5}$$

sendo que $[\varepsilon]$ e $[\mu]$ são, respectivamente, os tensores permissividade elétrica e permeabilidade magnética do meio anisotrópico.

Com esta notação as equações de Maxwell, assumindo os campos com dependência harmônica no tempo na forma $e^{j\omega t}$, tornam-se:

$$\nabla \times E = -j\omega[\mu]H; \qquad (5.6)$$

$$\nabla \times H = j\omega[\varepsilon]E \quad . \tag{5.7}$$

Considerando-se um meio anisotrópico uniaxial podemos escrever:

$$[\varepsilon] = \varepsilon (diag \{a, b, c\}) = \varepsilon[\Lambda]; \qquad (5.8)$$

$$[\mu] = \mu (diag \{a, b, c\}) = \mu[\Lambda] \quad , \tag{5.9}$$

sendo que a, b e c são os elementos pertencentes a diagonal da matriz $[\Lambda]$, ou seja:

$$[\Lambda] = (diag\{a, b, c\}) \tag{5.10}$$

que em geral são também complexos, adimensionais e constantes. Para este caso as equações de Maxwell (6.6) e (6.7), expressas em termos do vetor propagação β^{an} em que o índice *an* indica a região anisotrópica na qual a onda é transmitida), ficarão escritas como:

$$\beta^{an} \times E = \omega \mu[\Lambda] H \tag{5.11}$$

$$\beta^{an} \times H = \omega \varepsilon[\Lambda] E \tag{5.12}$$

sendo ε e μ ., respectivamente, a permissividade elétrica e a permeabilidade magnética absoluta do meio analisado.

5.3. Algoritmo FDTD para as equações eletromagnéticas

A formulação apresentada anteriormente é válida para uma região elétrica qualquer. Este mesmo problema pode ser aplicado na geometria do método FDTD da figura 44. Além disso, a energia transmitida através dos contornos deve ser dissipada em níveis que não permitam reflexões capazes de interferir na região central tomada para analises efetivas. Assim, é necessário generalizar estes conceitos a uma forma adequada às necessidades deste problema [33].

Os parâmetros constitutivos serão nesta Sessão determinados em função da escolha adequada dos valores de a, b e c, pertencentes a matriz $[\Lambda]$ e representada em (5.10). Tomando-se inicialmente o tensor $[\Lambda]$, neste trabalho o valor escolhido para a é dado por

a=1+ σ /j $\omega\epsilon$.

Com isso, as perdas no meio, para a direção z, são incluídas através deste tensor, fazendo-se:

$$[\Lambda z] = \begin{vmatrix} 1 + \frac{\sigma}{j\omega\varepsilon} & 0 & 0\\ 0 & 1 + \frac{\sigma}{j\omega\varepsilon} & 0\\ 0 & 0 & 1 + \frac{\sigma}{j\omega\varepsilon} \end{vmatrix}$$
(5.13)

Para esta equação tem-se:

$$\beta_z^{an} = (1 - j\varepsilon/\omega\varepsilon)\beta_z^i \tag{5.14}$$

sendo que a parte real é idêntica ao caso isotrópico e o fator de atenuação complexo é mantido devido ao perfeito casamento de impedâncias entre os meios.

Portanto, esta formulação garante uma onda plana incidente na fronteira entre dois meios, com

$$\varepsilon 1 = \varepsilon 2 \tag{5.15}$$

$$\mu 1 = \mu 2 \tag{5.16}$$

$$\sigma\varepsilon/\varepsilon = \sigma m/\mu \,, \tag{5.17}$$

seja totalmente transmitida independentemente do ângulo de incidência, polarização e freqüência da onda incidente e pode ser verificado em uma região plana.

Para estender esta idéia à geometria FDTD, para um espaço tridimensional, com perdas nas direções x, y e z, um grupo similar de parâmetros constitutivos deve ser definido. Matematicamente, isso pode ser feito como segue:

$$\begin{vmatrix} \frac{1}{1+\frac{\sigma_{x}}{j\omega\varepsilon}} & 0 & 0\\ 0 & 1+\frac{\sigma_{x}}{j\omega\varepsilon} & 0\\ 0 & 0 & 1+\frac{\sigma_{x}}{j\omega\varepsilon} \end{vmatrix} \cdot \begin{vmatrix} 1+\frac{\sigma_{y}}{j\omega\varepsilon} & 0 & 0\\ 0 & \frac{1}{1+\frac{\sigma_{y}}{j\omega\varepsilon}} & 0\\ 0 & 0 & 1+\frac{\sigma_{y}}{j\omega\varepsilon} \end{vmatrix} \cdot \begin{vmatrix} 1+\frac{\sigma_{z}}{j\omega\varepsilon} & 0 & 0\\ 0 & 1+\frac{\sigma_{z}}{j\omega\varepsilon} & 0\\ 0 & 0 & \frac{1}{1+\frac{\sigma_{z}}{j\omega\varepsilon}} \end{vmatrix}$$
(5.18)

O produto destes três tensores é a forma mais geral de um tensor uniaxial e sua aplicação é válida tanto para regiões planas que representam as paredes do cubo FDTD quanto para seus cantos, restando apenas levá-lo às equações de Maxwell.

5.4 Procedimentos para aplicação do método FDTD

Após a caracterização da permissividade elétrica das amostras de fibra de carbono, obtida por meio de ensaios práticos em laboratório, aplicou-se a técnica FDTD para simulação do caso real descrito anteriormente usando o software comercial XFDTD, que se constitui no estado da arte e oferece algumas vantagens tais como modelamento, simulação e ferramenta de análise. Neste caso, é permitido visualizar o fluxo de energia associado a onda eletromagnética e as atenuações que a mesma sofre ao atravessar uma região plana de uma placa de compósito. Primeiramente, é feita uma breve descrição do modelo geométrico que representa a estrutura de um painel de compósito. A seguir, os resultados obtidos para os eixos X,Y e Z são comparados quanto ao fluxo de energia contida em cada eixo.

5.5 Definição do modelo geométrico adotado

Antes de realizar a simulação, foi necessário, primeiramente, delimitar o espaço computacional, a partir do modelo do problema. Após a análise, verificou-se que o problema apresenta simetria magnética e, portanto, não é necessário simular toda a estrutura de uma aeronave, mas apenas uma parte, desde que a mesma fosse maior que o comprimento de onda (λ) do sinal considerado e que englobasse três volumes: ar, parte plana da placa e ar. Usualmente este material é fixo a uma estrutura metálica de aeronave, que possui condutividade característica da ordem de 1000 vezes maior que o material estudado.

O volume definido para representar o material analisado tem dimensões de 10 m x 10 m x 10 m e pode ser visualizado através de uma malha composta pelos elementos que contém as propriedades do material, conforme ilustrado pela figura 44.

Figura 44 – Volume representativo do material visualizado através de malha.

5.6 Ambientes para simulação

Para a simulação física da placa com características do compósito estudado foi disponibilizada uma página de parâmetros, dentro do qual foi possível declarar a forma de onda desejada para ser aplicada, conforme ilustra a figura 45.

Figura 45 – Página de parãmetros do XFDTD

5.7 Resultados obtidos

A figura 46 ilustra um exemplo de simulação computacional utilizando o Método do Domínio do Tempo por Diferenças Finitas para representar a intensidade instantânea da energia eletromagnética a que fica submetida uma estrutura de CFC com geometria arbitrária no espaço tridimensional.

Figura 46 - Representação da Intensidade de energia eletromagnética instantânea através do Método FDTD

A influência da anisotropia pode ser ilustrada pela componente z do Vetor de Poynting (Sz), considerando a maior anisotropia nos eixos X(a), Y(b) e Z(b) ilustrada na figura 47.

Fig. 47. Componentes z do Vetor de Poynting(Sz), considerando a maior anisotropia nos eixos.

6. CONCLUSÕES E COMENTÁRIOS

Esse trabalho contribui com o estudo do comportamento elétrico do Compósito de Fibra de Carbono submetido a um campo eletromagnético gerado por uma descarga atmosférica dado que a caracterização da anisotropia na permissividade complexa do CFC permite uma aproximação do configuração mais adequada, minimizando o número de amostras necessárias para ensaios de certificação. Para reproduzir uma descarga atmosférica em laboratório em atendimento aos requisitos aeronáuticos são necessários recursos de custo elevado e os resultados obtidos podem ser binários[2], [8].

Através da caracterização da permissividade realizada neste trabalho pode-se deduzir outros parâmetros tais como campo eletromagnético e potencial elétrico a que fica submetido esse compósito para uma avaliação do risco e monitoramento em tempo real da tolerância ao dano da estrutura de uma aeronave. Pelos resultados obtidos pode concluir que esse material apresenta baixas perdas, com a parte imaginária tendendo assintoticamente a zero.

Apresenta-se aqui um exemplo de simulação baseado no método das diferenças finitas que permite a visualização da energia através de uma placa, de onde podem ser observados os níveis elevados de energia no instante em que ocorre a descarga, e nos instantes subseqüentes, onde a mesma difunde-se pela placa.

Verifica-se portanto que os resultados obtidos numericamente concordam com a solução analítica no limite em que a permissividade complexa tem apenas sua parte real.

As simulações foram executadas num computador pessoal baseado em processador de 2 GHz e memória RAM de 3 Gbytes. Nesta configuração os tempos de simulação ficaram em torno de 30 minutos para a menor malha.

7. PROPOSTA DE TRABALHOS FUTUROS

No trabalho aqui apresentado, utilizou-se a formulação das Diferenças Finitas no Domínio do Tempo [31] para solução das equações de Maxwell em sua forma rotacional considerando o meio como sendo anisotrópico e sem perdas.

Tal técnica tem como principal vantagem a obtenção de uma solução do tipo onda completa para os campos calculados durante todo o processo de simulação, calculando-se assim de forma automática reflexões, refrações e difrações nas estruturas envolvidas no processo de propagação, tornando assim os resultados obtidos bastante realistas.

Deve-se agora investigar as várias soluções possíveis para os diferentes tipos de argumentos complexos em ambientes que variam com a pressão temperatura e umidade, bem como pesquisar possíveis funções complexas que descrevam precisamente a permissividade de determinados materiais associados a este compósito, tais como malhas metálicas para dispersão de corrente de alta magnitude. Uma vez embasadas as teorias que justifiquem essas soluções, devem ser realizados outros experimentos como sugerido a seguir:

- o monitoramento em tempo real da integridade física de estruturas de aeronaves;

- os efeitos indiretos causados por irradiação de alta intensidade (HIRF - High

Intensity Radieted Fields) e/ou análise de risco quanto à ocorrência deste fenômeno.

 métodos numéricos diferentes para simulação de casos semelhantes, com a construção de estruturas representativas no modelo analisado.

8. REFERÊNCIAS

[1] HOLLOWAY, C.L.; Senior Member, IEEE, SARTO, M. S., Senior Member, IEEE, and MARTIN JOHANSSON, Member, IEEE. Analyzing Carbon-Fiber Composite Materials With Equivalent-Layer Models. Received October 29, 2003; revised May 17, 2005.

[2] HEIDLEBAUGH, D. L. Statistical Method in Estimation Sparking Threshold for Fastened Composite Joints, Electromagnetic Effects Technology. Boeing Phantom Works, 2003

[3] EVANS, R. W. **Design guidelines for shielding effectiveness**. NASA contractor Report 4784, prepared for Marshall Space Flight Center. ag. 1997

[4] CASEY, K. F. Advanced composite materials and electromagnetic shielding. In: ELECTROMAGNETIC COMPATIBILITY SYMPOSIUM, IEEE. New York, 1978.

[5] D'AMORE, M. and SARTO, M. S. Theoretical and experimental characterization of the EMP-interaction with composite-metallic enclosures. IEEE, Trans. Electromag. Compat., vol. 42, pp. 152–163, May 2000.

[6] HIPPEL, A. R. V. Dielectric Materials and Applications. New York, USA: Massachusetts Institute of Technology, John Wiley, 1954.

[7] LIBRANTZ, H.; LIBRANTZ, A. F. L. Descargas elétricas atmosféricas e suas interações com aeronaves. São Paulo: Exacta, v. 4, n. 2, p. 247-258, jul./dez. 2006.

[8] AEROSPACE RECOMMENDED GROUP. ARP 5412 - Rev. A, SAE Aerospace, publicada em Nov 1999 e revisada em Fev. 2005

[9] CALLISTER, W.D. Materials Science and Engineering: an introduction. Department of Metallurgical Engineering, 1940, 7th ed.

[10] EDMINISTER, J.A. Eletromagnetismo. São Paulo: Mac-Graw-Hill do Brasil, 1980

[11] KONG, J.A. **Theory of electromagnetic Waves**. John Wiley & Sons, United States of America, 1975.

[12] DINIZ, A.B.; FREIRE, G.F.O. **Ondas Eletromagnéticas**. São Paulo: Editora Universidade de São Paulo, 1973

[13] REINHART T. J. **Engineered Materials Handbook** - Composites, Vol 1; 2th ed, May 1988, prepared under direction of the ASM International Handbook Committee;

[14] PILATO, L. A. and MICHINO, M. J. Advanced Composite Materials. 1th ed. Berlin, Spring-Verlag, 1994.

[15] FLOWER, H.M. **High Performance Materials in Aerospace**. Chapman&Hall, vol 29, 3th ed, set 1999.

[16] DIXON, D. S. and MASI, J. Thin coatings can provide significant shielding against low frequency EMF/magnetic fields. In: Proc. 1998 IEEE Int. Symp. Electromagnetic Compatibility, Denver, CO, Aug. 24–28, 1998, pp. 1035–1040.

[17] GAIER, J. R. et al. Effect of intercalation in graphite epoxy composites on the shielding of high energy radiation. J. Mater. Res., vol. 13, no. 8, pp. 2297–301, Aug. 1998

[18] CANEVA, C.; NANNI, F. and SARTO, M. S. Electromagnetic and mechanical properties of a new composite material. In: Proc. Int. Symp. on Electromagnetic Compatibility, EMC'98 ROMA, Rome, Italy, Sep. 14–18, 1998.

[19] FISHER, F.A. et al. Aircraft Lightning Protection Handbook. DOT/FAA/CT-89/22, Pittsfield, MA, USA, September 1989.

[20] KUESTER, E. F. and HOLLOWAY, C. L. A low-frequency model for wedge and pyramidal absorbers-I: Theory. IEEE Trans. Electromagn. Compat, vol. 36, no. 4, pp. 300–306, Nov. 1994.

[21] JOHANSSON, M.; HOLLOWAY, C. L. and KUESTER, E. F. Effective electromagnetic properties of honeycomb composite, and hollow pyramidal and alternating wedge absorbers. IEEE Trans. Antennas Propag. vol. 53, no. 2, pp. 728–736, Feb. 2005.

[22] HOLLOWAY, C. L.et al. Comparison of electromagnetic absorber used in, anechoic and semianechoic chambers for emissions and immunity testing of digital devices. IEEE Trans. Electromagn. Compat. vol. 39, no. 1, pp. 33–47, Feb. 1997.

[23] KUESTER, E. F. and HOLLOWAY, C. L. A low-frequency model for wedge and pyramidal absorbers-I: Theory. IEEE Trans. Electromagn. Compat. vol. 36, no. 4, pp. 300–306, Nov. 1994.

[24] NEELAKANTA, P. S. Handbook of Electromagnetic Materials: Monolithic and Composite Versions and Their Applications. CRC Press, Boca Raton, FL, 1995.

[25] SIHVOLA, A. H. Electromagnetic Mixing Formulas and Application. London, U.K.: IEE, 1999.

[26] KUESTER, E. F. and HOLLOWAY, C. L. Comparison of approximations for effective parameters of artificial dielectrics. IEEE Trans. Microw. Theory Tech. vol. 38, no. 11, pp. 1752–1755, Nov. 1990.

[27] CASEY, K. F. EMP Penetration Through Advanced Composite Skin Panels. Interaction Notes 315, Dec. 1976.

[28] Advanced composite materials and electromagnetic shielding. In: Proc. 1978 IEEE Int. Symp. EMC, Atlanta, GA, Jun. 20–22, 1978, pp. 228–232.

[29] KUESTER, E. F. and HOLLOWAY, C. L. A low-frequency model for wedge and pyramidal absorbers-I: Theory. IEEE Trans. Electromagn. Compat., vol. 36, no. 4, pp. 300–306, Nov. 1994.

[30] HOLLOWAY, C. L. and KUESTER, E. F. A low-frequency model for wedge and pyramidal absorbers - II: Computer and measured results. IEEE Trans. Electromagn. Compat., vol. 36, no. 4, pp. 307–313, Nov. 1994.

[31] BREKHOVSKIKH, L. M. Wave in Layered Media. NewYork: Academic, 1960, pp. 79–86, 215–233.

[32] PARISE, M. and SARTO, M. S. Efficient formulation of high-order boundary conditions for the high-frequency modeling of multilayer composite slabs. in Proc. 2003 IEEE Symp. Electromagentic Compatibility, Boston, MA, Aug. 11–22, 2003, pp. 753–758.

[33] LARSEN, T. A survey of the theory of wire grids. IRE Trans. Microw. Theory Tech., vol. 10, no. 3, pp. 191–201, May 1962.

[34] WAINSHTIEN, L. A. On the electrodynamic theory of grids. In: High-Power Electronics. Oxford: Pergamon Press, 1966, pp. 14–48.

[35] JOHANSSON, M.; HOLLOWAY C. L. and KUESTER, E. F. Effective electromagnetic properties of honeycomb composite, and hollow pyramidal and alternating wedge absorbers, IEEE Trans. Antennas Propagations, vol. 53, no. 2, pp. 728–736, Feb. 2005.

[36] NEVARD, J., KELLER, J. Reciprocal relations for effective conductivities of anistotropic media, J. Math. Phys., vol. 26, no. 11, pp. 2761–2765, 1985.

[37] CORTEZ, A. et al , **Practical Aspects of the Characterization of Ferrite Absorber Using One-port Device at RF Frequencies**. Proceedings of The Progress In Electromagnetics Research Symposium (PIERS 2007), v. 1, p. 683-687, 2007. Beijing, China, pp 6883-6, march, 2007.

[38] CARVALHO, F.E et al , Caracterização da Anisotropia na Permissividade Complexa em Compósito de Fibra de Carbono, SIGE - Simpósio Internacional de Guerra Eletrônica, Set. 2009, www.sige.ita.br.

[39] KUNZ, K.S.; LUEBBERS, R.J. Finite Difference Time Domain Method for Eletromagnetics, United States, FL, CRC Press, 1993, 448 p.

[40] GAZZANA, D. S. et al. Metodologias Aplicadas para a Modelagem e Análise de Sistemas de Aterramento Impulsivo – Revisão do Estado da Arte, 11th Spanish-Portuguese Conference on Electrical Engineering, Nov. 2009.

[41] ALMEIDA, J. F. et al. Algoritmo FDTD para Implementação da Técnica de Condições de Fronteiras Absorventes UPML, www.lane.ufpa.br/publicacoes/sbc_2004.pdf último acesso em 07/08/2009.

APÊNDICE A - MATERIAIS COMPOSTOS

MATERIAIS COMPOSTOS

Definição

Um material composto é um material estrutural que consiste na combinação de dois ou mais constituintes de natureza diferentes, resultando em um material de desempenho superior àquele de seus componentes tomados separadamente[27]. Um dos constituintes é denominado de fase de reforço (no caso constituído por fibras) e o outro é responsável pela impregnação do reforço, conhecido como matriz, sendo um material geralmente contínuo (resina).

As fibras conferem ao material composto suas características mecânicas, como resistência à ruptura, rigidez, etc, pois a resina não tem função estrutural, sendo apenas um elemento de ligação. As fibras atualmente mais utilizadas no setor aeronáutico são: fibra de vidro (fiberglass), fibra de carbono e fibra de aramida (Kevlar).

Já as matrizes (resinas) possuem funções de transmitir esforços (solicitações mecânicas) entre as fibras e de protegê-las do ambiente externo. As resinas mais utilizadas no setor aeronáutico são: resina epoxy, resina fenólica e resina polimida.

Figura 1 - Composição dos Materiais Compostos

Fabricação

As operações básicas para obtenção da peça final têm a seguinte seqüência:

Seguem as etapas do processo de fabricação de peças em material composto:

Figura 2 - Processo de Fabricação

A sequência obtida neste processo de fabricação é:

- Inicialmente, os materiais compostos são corretamente estocados, em local climatizado e propício.
- Após a liberação do desenho da peça pelo Projeto, inicia-se a processo de fabricação, com o corte dos materiais através de uma máquina programada via CNC que estará encarregada além de fazer a tarefa do corte, em otimizar o consumo dos materiais.
- A seguir, é feita a distribuição sobre o gabarito (laminação), contendo as camadas da matriz, do reforço e demais componentes que irão formar o material composto, orientadas de forma a resultar em uma peça com excelentes características de resistência mecânica. De acordo com as inovações deste processo, é possível obter materiais pré-impregnados, como a Fibra de Carbono já com a resina epoxy, ou então a tela de metalização também impregnada com o filme adesivo.
- Ocorre então a Preparação à Vácuo, onde uma "bolsa" evitará descontinuidades, garantindo a confecção correta do material composto na próxima etapa.
- Com o material disposto sobre o molde (gabarito) e com a "bolsa de vácuo" instalada, o conjunto é levado para cura em "Autoclave", uma estufa que o submeterá à polimerização, ocorrendo processos térmicos que se encarregarão de solidificar a montagem, constituindo o material composto.
- Quando sai da Autoclave, a moldagem da peça é desfeita para que possa ser feito o acabamento, retirando sobras e pequenos defeitos gerados na fabricação.
- Com o processo produtivo encerrado a peça é inspecionada, conferindo as medidas estabelecidas no desenho do Projeto, recebendo a "conformidade" e disponibilizada para montagem na aeronave.

O Material Composto possui vantagens e desvantagens, como segue:

Vantagens:

- Combinação de alta rigidez e resistência específica com baixa densidade;
- Aumento da vida em serviço;
- Ausência de corrosão;
- Maior resistência à fadiga;
- Obtenção de geometrias complexas com menor custo.

Desvantagens:

- Maior custo de matéria prima;
- Usinabilidade limitada;
- Absorção de umidade acentuada;
- Inspeções rigorosas;
- Ensaios necessários;
- Armazenamento de matéria-prima (produto perecível);
- Processo de manufatura com diversas variáveis.

As boas características os tornam atrativos como alternativas para ligas de alumínio em aplicações aeronáuticas.

<u>Exemplo:</u> Alteração de peça de Liga de Alumínio para Estrutura Integrada de Fibra de Carbono.

Dimensão aproximada da peça: 1,6 x 0,8 m

Ganhos:

- Redução de peso: 16 para 12 kg
- Fabricação: de 100 para 33 componentes.

Figura 3 - Exemplo de utilização de Materiais Compostos

Laminados

Os laminados ou estruturas laminadas são constituídos de sucessivas camadas de fibras impregnadas em resina segundo uma orientação conforme a figura 21.

Figura 4 – Constituição de um Laminado

A desginação dos laminados é efetuada segundo a disposição das camadas e a orientação da camada com relação ao eixo de referência, conforme mostrado na figura 22.

Figura 5 – Designação de um Laminado

Apesar destas excelentes características, os materiais compostos possuem uma grande desvantagem: não são bons condutores de eletricidade, provocando, assim, a descontinuidade elétrica na fuselagem.

Tendo como base que esta alta sensibilidade dos materiais compostos à exposição dos raios existe em virtude de apresentarem pouca ou nenhuma condutância, estas estruturas devem então sempre receber proteção a fim de garantir a continuidade da corrente elétrica gerada pelo raio, pois quanto melhor a corrente elétrica fluir, menores serão os danos causados.

No que se refere aos efeitos diretos do raio, a preocupação está no material que compõe a estrutura. Como os materiais compostos estão sendo cada vez mais utilizados na estrutura das fuselagens dos aviões, cresce a busca pela proteção dos mesmos contra os raios.

No projeto de uma aeronave, o que determina se uma estrutura precisa ou não ser protegida, é a função que a mesma está exercendo no conjunto que constitui a fuselagem; e também, as conseqüências frente aos danos que poderão ser causados. Se a perda de parte da estrutura não comprometer a segurança de vôo, a proteção pode não ser requerida e a substituição da peça após o dano já estará prevista pelo fabricante, tendo em vista que a troca se dará rapidamente, visando o menor impacto para o operador da aeronave.

Classificação dos Materiais Compostos

Os materiais compostos podem ser classificados de acordo com as fibras utilizadas, em:

Materiais compostos condutivos (Fibra de Carbono, ou CFC).

Figura 6 – Tecido de Fibra de Carbono

Materiais compostos não condutivos. (Fibras de Vidro ou de Aramida).

Figura 7 – Fibra de Vidro

Material Placa CDP. Fibra de carbono com Resina Epóxi: Hexcel P1142 Fornecedor: Hexcel Composites SA.

APÊNDICE B

EXEMPLO DE TABELA DE MEDIDAS DE PERMISSIVIDADE

COMPLEXA (REAL E IMAGINÁRIA)

5950	AMOS	TRA 01	AMOS	TRA 02	AMOS	TRA 03	AMOS	TRA 04	AMOS	TRA 05	AMOS	TRA 06	PARTE REAL	DESVIO	PARTE IMAG.	DESVIO
FREQ.	REAL	IMAGINÁRIA	REAL	IMAGINÁRIA	REAL	IMAGINÁRIA	REAL	IMAGINÁRIA	REAL	IMAGINÁRIA	REAL	IMAGINÁRIA	MÉDI A	PADRA O	MÉDI A	PADRA O
100,00	21,9223553 5	۔ 2,021966364	19,1647428 8	5,843100928	24,4397295 6	3,610824401	20,5833300 7	4,627829068	22,9155050 4	3,547258445	19,2421849 9	4,912069414	21,38	2,10	3,42	2,80
103,28	30,0379250 9	5,425065968	20,8951396 5	2,706111132	20,8443245 7	- 3,091123217	22,2091629 9	3,025286792	24,2153148 4	2,971657998	20,2561138	2,314755263	23,08	3,69	2,23	2,83
106,66	22,0673426	- 1,041173036	24,4654795 8	- 0,500435641	29,1259383	4,655848341	21,5574866 5	2,580453308	23,3383444	- 0,688338882	25,5272308	4,288474867	24,35	2,77	1,55	2,61
110,16	27,8529478 7 20 7344451	2,908440522	13,3204783 1 21 4411172	- 0,294220785	18,1013703	2,901771689	1	3,464067669	27,2023711 3 24 5497967	2,346503969	24,3033710 1 24 9595349	2,197516987	23,34	5,24	2,25	1,33
113,77	20,7544451 8 24 1037664	2,627360847	7 7 22 4341772	1,80498556	9 24 4077396	0,372258046	24,2813257 22 3855949	4,583219297	4 26 1126816	0,508312037	3	3,193510939	23,19	1,75	0,53	2,83
117,50	25.8410883	3,054708312	4 21.7846179	0,398654591	2	3,080480115	5 27.3331165	1,216379708	1 24.5594139	2,634835701	3 20.7678128	1,496045135	23,76	1,42	1,98	1,11
121,35	9 21,6599690	2,355682525	5 21,1138298	2,147912126	6 24,9214159	0,969887083 -	9 22,9964465	3,687062477	6 19,9962363	2,43474231	9 22,6046203	2,929680479	23,91	2,48	2,42	0,90
125,33	7 24,6177729	0,63818361	5 18,1912961	3,336/42188	8 23,4896725	0,008252859 -	4 25,0734911	0,322648065	4	2,054910835	9	2,634/1301/	22,22	1,70	1,39	1,50
129,43	1 24,4857179	1,067545323	2 21,9110479	1,876284635	3 24,7776602	1,463766555	6	2,530/8//48	25,3421231 22,8053288	1,288818822	23,5347322	2,153/946/4	23,04	2,76	1,24	1,43
133,67	6 25,5366099	1,944323994	4 19,4129960	2,185/29830	1 22,7760199	-	23,7938491 24,2532062	-	6 20,6179897	0.608640952	8 21,4187034	1,913/1515/	23,88	1,41 2 30	2,07	1.65
138,06	6 20,5854093	1,392174937 -	3 22,6814358	1 505923027	8 26,9618383	1,605242809 1 58565	1 25,4745299	0,011771541 2 467852269	4 23,5460184	1 071011027	1 24,4992677	2 616186819	22,34	2,30	1 52	1,05
142,58	9 24,1171323	0,107640467	5 19,5108445	0.002370035	1 26,1321355	1 521502863	4 22,7008131	-	4 21,3295858	-	1 23,7261038	-	23,50	2,23	0.32	0.82
147,25	7 25,8224301	1,116996089	2 22,5173796	2,963098006	6 23,4412641	0,233031964	4 20,7403303	0,633413084 0,470195172	9 26,2485513	0,024769641 0,812938586	4 17,7284612	0,033083116 0,278382557	22,75	3,21	0,97	1,03
152,08	8 25,3675780	1,048540911	6 20,6965098	-	22,3950160	1,093136017	2 22,4048138	-	8 24,4571137	0,943041489	7 26,2580953	2,039890927	23,60	2,11	0,53	1,13
162.21	22.0054855	0,000764650	2 20,2616757	0,0385225794	8 23,3564759	-	9 24,7843883 2	0,548944573	2 23,9435438 7	-	4 19,1787675	1,190318409	22,26	2,19	0,37	0,69
167 53	22,9375467 9	2 102536362	20,3568943	1,05330631	22,1191254 1	1,165358956	22,4215424	0,543346094	, 19,2240926	2,923317368	20,9643146 2	0,038992686	21,34	1,41	1,30	1,05
173.02	24,4832858 1	0.495961266	20,1409926 1	0,405620942	26,4379036 3	0,133799485	23,7813568 2	0,260039482	21,1867711 8	-0,24067547	23,1410732 8	1,395119231	23,20	2,28	0,41	0,55
178,69	23,4822574 5	- 0,464106225	21,7670053	1,978124867	20,2250737 3	1,791358927	22,5027829 2	0,46964194	26,1201908 7	0,018054477	21,9813946 7	2,502631848	22,68	1,99	1,05	1,20
184,54	20,4146232 8	0,519438232	21,2662924 7	1,406660744	24,1758625 8	0,785089928	22,2119441 8	1,005676033	22,3916819 1	2,077651247	22,6338846 4	0,672645232	22,18	1,28	1,08	0,58
190,59	22,9642585 5	0,495800843	18,5717561 7	0,106293355	24,4965330 2	0,29256221	23,5543581 2	1,016613119	24,0261106 3	-0,08483844	22,5444854 9	0,191868795	22,69	2,14	0,34	0,39
196,84	24,1364793 8	2,18266939	22,3966373 1	0,288345509	21,5125702 8	0,70244184	24,2132201 3	0,37573406	22,3971964 9	1,674817188	20,5820272 2	0,38036297	22,54	1,43	0,93	0,80
203,29	22,7310169 5	0,316507164	19,7999332	- 0,068913387	23,6872767 1	0,465698369	21,9079519	- 0,996491474	23,5422211 3	0,887900633	21,8017219 2	0,159901294	22,25	1,43	0,13	0,64
209,95	21,9691379 1	0,028312941	20,8638541 2	0,660916646	21,5698999 1	- 0,084796651	22,7964811 9	1,31994289	21,1280975 3	- 0,543217289	21,6632051 9	0,393609983	21,67	0,68	0,30	0,65

	22,5869979		17,6569748	-	22,3499820	-	22,8370044	-	24,2155116	1 002005014	20,6024553	0 220772757	24 74	2.20	0.00	0.00
216,83	4	0,352065917	9	0,179093005	5	0,571321627	6	0,367212873	3	1,093605014	2	0,238/72757	21,71	2,30	0,09	0,60
	23,8556134		18,9496605	0 53077482	23,9281449	0 397922702	21,9043925	0 2/11/9211	22,6714572	0 544549362	22,4031852	0 968017721	22.29	1 87	0.34	0.54
223,94	1	-0,65053681	1	0,55077402	3	0,337322702	4	0,241145211	5	0,344343302	7	0,500017721	22,25	1,02	0,54	0,54
	21,3284605		21,0532962	0.400256956	22,3093972	0.631146908	23,4575415	0.580534714	23.2080176	0.210552875	20,8088707	-	22.03	1.13	0.26	0.38
231,28	1	0,174124004	9	-,	6	-,	2	-,		-,	5	0,407703472	,	_,	-,	-,
220.00	23,2875216	0.44550.4060	19,7126643	0,731321969	22,5775452	0,605789294	20,9766058	1,182618991	19,7784070	-	21,7989281	-	21,36	1,47	0,22	0,84
238,86	3	0,415594862	4		22.0062582		6		4	0,761387624	3	0,859264604				
246 69	24,6097101	0.005518022	19,3985095	-	22,0903582	0,727123438	23,7710924	0,154893419	22,1213135	0,603296111	21,3923001	1,237134051	22,23	1,83	0,40	0,55
240,09	21 6466194		20 3253073	0,210907210	23 7976258		22 4834456		21 9494420		20 3388577					
254.77	4	0.359150939	8	0,183416624	7	0,30448866	5	0,460199843	2 2	1,087704364	8	1,371590237	21,76	1,33	0,51	0,63
	20,9314840	-,	19,3798935	-	22,8321668	-	21,6732721	-	21,9391190	-	21,9611894	-				
263,12	5	-0,20410692	2	0,194951959	2	0,659861144	7	0,337499061	9	1,220829446	8	0,824963089	21,45	1,18	-0,57	0,41
	23,0419988		19,4340559	0 204054267	20,9373790	0.255026022	23,3803280	-	22,6331801	-	20,5556334	0 144096251	21.66	1 50	0.19	0.20
271,74	4	0,559773817	9	0,294954307	2	0,355920022	4	0,127472751	7	0,135615095	1	0,144980351	21,00	1,58	0,18	0,28
	22,1677081		20,7271310	-	23,0606565	0 136761/02	21,4376619	0 147566314	22,4646844	0 793115/72	21,2421865	0 770449967	21.85	0.87	0.30	0.42
280,65	6	0,261661715	7	0,293642098	8	0,130701402	9	0,147500514	1	0,755115472	3	0,770445507	21,05	0,07	0,50	0,42
	21,6771661		17,5650630	0.595373355	21,9263088	-	21,5914590	-	20,9327025	0.70956065	20,4352606	-	20.69	1.63	0.27	0.64
289,85	5	1,177517475	5	-,	1	0,218679259	9	0,368386096	6	-,	5	0,281151534	-,	,	-,	-,-
200.25	23,0262533	-	19,4973982	-	21,/214/49	0,692651753	21,4941949	0,424629605	22,381048	-	21,33/08/8	0,228870295	21,58	1,20	-0,07	0,65
299,35	31 2026212	1,084790632	3 19 0049373	0,31115/111	3 20 0540420		4 21 0151111			0,355281352	1 4022004					
309 16	21,3930312	0 705219707	10,9040275 A	0,122901972	20,9549450	0,031761321	21,8131114	0,22176996	21,8257758	0,516906407	21,4033904	0,527056231	21,05	1,10	0,35	0,27
305,10	22 1031455	0,703213707	19 7279636		22 1845728		21 9477434	-		-	0					
319.29	6	0.270322496	5	0,142231425	8	0,202143106	6	0.012260548	21,1815706	0.158841683	20,0600952	0,076258657	21,20	1,08	0,09	0,16
,	21,5576096	,	18,9544929	0 50040205	22,9171651	0 (22001207	22,1348457	0 572644200	21,4407807	0.074025004	21,2243517	0 525717002	21.27	1 22	0.50	0.05
329,75	7	0,570850293	8	0,59849295	9	0,623001207	1	0,572641208	6	0,674825964	2	0,525717083	21,37	1,33	0,59	0,05
	21,5395276		19,5444338	0 022708207	21,8331002	-	21,7705757	0 486866787	22,3894421	-	21,0936787	0 222006612	21.26	0 00	0.00	0.26
340,56	7	0,164750828	2	0,023708207	3	0,138461295	1	0,480800282	3	0,244576823	4	0,223000013	21,30	0,99	0,03	0,20
	22,5102497	-	18,5903995	0.103503219	21,9438484	0.134249931	21,4579448	0.746173435	22,1919840	0.261894366	20,6583675	0.698537699	21.23	1.44	0.30	0.36
351,72	7	0,166185848	3	-,	9	-,	9	-,	4	-,	8	-,		_,	-,	-,
262.25	21,7920639	0.2005.02.44	18,6725495	-	21,7306894	0,174789425	21,941/158	0,025867572	21,5158223	0,34241977	19,/134901	0,4007039	20,89	1,37	0,20	0,17
363,25	22 5040652	0,26859341	19 6722611	0,017578606	2		4		9 21 4527645		9					
375 16	22,3949032	0.007566451	10,0755011	0,452121062	21,5859005	0,495254374	21,5750002	0,168380799	21,4557045 A	0,39297961	20,7382984	0,366475017	21,10	1,33	0,31	0,19
373,10	21 3022343	0,007300431	19 1650438		5		21 8931576		20 6754900		, 20 7910649					
387.45	8	0.468203943	3	0,047534128	21,8878688	0,22833352	4	0,401842782	2	0,478331031	6	0,241544412	20,95	1,02	0,31	0,17
,	21,6319554	,	18,7131358	0 1 () 7 7 7 1 7 7	21,4967069	0 00 42 4705 4	22,0343354	0.015540010	20,7889499	0.004275222	21,0435448	0.070740076	20.05	1 1 0	0.07	0.00
400,15	6	0,064906001	8	0,162775127	7	0,084247851	3	0,015548818	4	0,004375223	1	0,072743276	20,95	1,18	0,07	0,06
	21,2176623	-	18,9905190	0 106525722	21,3264399	-	21 0076201	0 221246004	21,2637483	0 122720126	19,9849529	0 020107226	20.79	1.09	0.02	0.10
413,26	8	0,287300688	6	0,100555752	9	0,015778353	21,8870381	0,231240094	1	0,133730130	5	0,030107320	20,78	1,00	0,03	0,18
	21,5256402		19,0635667	-	20,6384556	0.078382753	21,2125432	0.362451514	20,8818366	-	20,1089136	0.257571773	20.57	0.88	0.12	0.18
426,81	4	0,158976668	6	0,010376487	4	-,	5	-,	6	0,140725189	4	-,		-,	-,	-,
440.00	21,6049666	0.265000245	18,5418794	0,209684485	21,9981907	-	20,4562073	-	21,5851624	0,422492166	19,5913343	-	20,63	1,36	0,08	0,29
440,80	1	0,365900245	2 10 335 3703		3	0,178370747	4	0,129937977	8 20 9049227		2	0,222013185				
455 24	21,0772200 5	0 246231322	10,3232783	0,203878395	6	0,155278378	21,3390009	- 0 2/13826197	20,0548237	0,317601406	20,0420888	0,273080415	20,48	1,15	0,16	0,20
+55,24	21 7570173	0,240231322	2 18 0365938		21 2141067		21 3079175	-	21 2434929		20 1080290					
470.16	-1,7570175	0.109329113	4	0,115668866	8	0,228682601	9	0.109236377	4	0,096027493	7	0,425361088	20,61	1,37	0,14	0,18
	20,8396705	-	18,8491041	0.45000000	21,4347918	0.000550055	21,7849727	0.00000000	21,0258017	0.074-00-1-1	19,8567811	0.005050.005	20.00	4.00	0.10	
485.57	. 1	0.011979343	5	0,152329379	. 8	0,383553859	. 9	0,2655/3492	1	0,071782474	3	0,225250408	20,63	1,09	0,18	0,14

501 48	21,1970325 9	-0 16988435	17,9934117	0,336527594	21,0476752 2	0,042407402	20,7896009 4	0,304005213	20,9430930 2	- 0 011954181	19,8440241 3	0,300082507	20,30	1,23	0,13	0,21
517 92	21,7372242 9	0 287278224	18,3515052	0,203181786	21,0927632	- 0.049840821	21,1323877 5	- 0 023/9/793	20,8614837 8	0,235540236	19,4350418 9	0,397705234	20,44	1,28	0,18	0,18
524.80	21,1465141	- 0.245846277	18,9713243	- 0 112501624	21,5512614	0,123156555	21,3117939	0,079030773	21,3130691	0,18135254	20,3331059	0,231957226	20,77	0,98	0,04	0,18
552 43	, 21,0904060 5	- 0.032945032	, 18,1398768 9	- 0.010458542	20,9186898 3	0,2169622	21,2638624 6	0,308620492	21,1444312 1	- 0.066659248	19,7492415 3	0,168533555	20,38	1,23	0,10	0,15
570 53	21 5752908	0.079062592	18,7056914	0,135624786	21,5971720 4	0,118812027	21,2491107 1	0,014399812	20,7953606	0,593784686	19,7433075 6	- 0.061023736	20,61	1,16	0,15	0,23
589.23	21,0222198	0 387310751	18,0401145 9	- 0.000726184	21,033879	0,33570792	21,3085138 6	0,209655003	20,9016596 1	- 0 080720443	20,1589362 6	0,134099436	20,41	1,22	0,16	0,18
608.54	21,2097933	0.009932836	18,6347874 3	0,025027196	21,1385999 9	0,026627152	21,1287757 7	0,1898886	20,4762299	0.104651121	19,1962553 3	0,5048823	20,30	1,12	0,11	0,22
628.48	20.9552146	0.159420297	18,4051969 4	0,005800634	20,8752160 1	- 0.035182622	21,1958400 5	- 0.023057157	20,4216497 2	0,257379482	19,5899095 6	0,220519355	20,24	1,06	0,04	0,16
649.08	20,9386087 9	0.103268085	18,4624538 2	0,418105344	20,9420191 4	0,105627851	20,6688405 5	0,07622204	20,4437765	- 0.092162206	20,1179725 2	0,210155719	20,26	0,94	0,14	0,17
670,35	21,2383842 3	0,103277377	18,4412133 8	0,075305795	21,2435279 5	- 0,012407729	21,3429645 4	- 0,056813314	20,7413652 1	0,10788243	19,6964838 3	- 0,151420928	20,45	1,16	0,01	0,10
670,35	21,2383842 3	0,103277377	18,4412133 8	0,075305795	21,2435279 5	0,012407729	21,3429645 4	- 0,056813314	20,7413652 1	0,10788243	19,6964838 3	- 0,151420928	20,45	1,16	0,01	0,10
692,32	21,0023402 9	0,208124263	18,2044019 9	0,327409067	20,8976314 2	0,183360012	20,6466287	0,147418554	20,3680564 6	0,228589972	20,1112304 3	- 0,042757338	20,21	1,03	0,18	0,12
715,01	20,7823342 9	- 0,075487806	18,5179393 1	- 0,082037732	20,9355233	- 0,118613431	20,8685300 8	0,147140157	20,5795273 5	0,491360021	19,3664789 8	0,079917432	20,18	1,00	0,07	0,23
738,45	21,0043513 1	0,321581537	18,1462284 2	0,013979789	20,8697585 7	0,32793805	20,9016375 5	0,006665875	20,7596558	- 0,061797795	19,5411999 4	0,50240159	20,20	1,14	0,19	0,23
762,65	21,3203761 8	۔ 0,285835697	17,7598787 8	0,027748564	20,8379391 2	0,254249855	20,6016454	0,134261	20,7938140 2	0,014655739	19,4669623 8	- 0,056725364	20,13	1,31	0,01	0,18
787,64	21,3263097 1	0,267360825	18,0230721 2	0,288559995	20,7968140 9	0,110676841	20,9260639 3	0,149565037	20,6502834	- 0,132960585	19,4147488 4	- 0,163556116	20,19	1,24	0,09	0,19
813,46	21,1636590 2	0,258493032	18,2158674 7	- 0,125729911	21,0408644 3	- 0,176982808	20,8202166 3	0,099308025	20,3401810 5	0,134890692	19,2723314 4	- 0,049099181	20,14	1,17	0,02	0,17
840,12	21,1166022 3	0,134490988	18,2894406 2	- 0,064236807	20,9316895 7	- 0,040567589	20,6723278 8	- 0,031851336	20,6289449 6	0,12923378	19,5752449 7	0,190690444	20,20	1,08	0,05	0,11
867,65	20,6088267 5	0,037051573	18,3237797 9	0,127996301	20,7042007	- 0,001787857	21,0820457 1	0,067617184	20,4125966 8	0,09612809	19,4736507 7	0,01397951	20,10	1,02	0,06	0,05
896,09	20,9143973 4	0,141908017	18,012646	0,106838164	20,5086591 9	- 0,070912947	20,6066663 7	0,021806475	20,4793547 4	- 0,009393501	19,2887586 8	- 0,005734701	19,97	1,11	0,03	0,08
925,46	20,8749997 5	۔ 0,048756921	17,800279	- 0,082888126	20,9172845 2	- 0,096213429	20,8210764 1	0,075660677	20,1938988 9	- 0,082414818	19,3175002 1	0,051336674	19,99	1,23	-0,03	0,07
955,79	20,6201152 4	۔ 0,002246103	17,8664884 9	0,05192023	20,6712926 8	- 0,025582946	20,5882848 8	0,247445429	20,4477656 9	0,001723664	19,4331369 8	-0,08984147	19,94	1,12	0,03	0,12
987,11	20,693604	۔ 0,046739297	18,2074449 6	0,180549627	20,8208589 7	0,109151115	20,7593856 5	0,094633998	20,4016658 1	0,034811865	19,3420955 2	0,171661666	20,04	1,05	0,09	0,09
1019,46	20,8584973 9	0,075694804	18,0624319 7	0,064826285	20,8154152 3	0,095063064	20,7607923	0,035818897	20,3657544 8	0,057499336	19,4254498	0,018123993	20,05	1,11	0,06	0,03
1052,87	20,8156595 3	0,052461246	18,0874465 7	0,022867433	20,8222926 9	0,045055863	20,7515494 1	0,051319968	20,4177901	0,039784934	19,3086713 8	0,1025485	20,03	1,11	0,05	0,03
1087,38	20,7681371 9	0,067981764	18,0536947 4	0,086325784	20,7943570 9	0,061503056	20,6582445 2	0,068607162	20,4185693 7	0,024620367	19,3671977 6	0,098921161	20,01	1,10	0,07	0,03

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	524 19,' 842 19,' 227 19,' 482 19,' 552 19,' 302 19,'	08 1,11 02 1,11 02 1,11 03 1,12 04 1,12	0,05 0,05 0,06 0,08	0,04 0,05 0,04 0,03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	842 19, ⁷ 227 19, ⁷ 482 19, ⁷ 552 19, ⁷ 302 19, ⁷	92 1,11 92 1,11 92 1,11 89 1,12 89 1,12	0,05 0,06 0,08	0,05 0,04 0,03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	227 19, 482 19, 552 19, 302 19,	32 1,11 32 1,11 39 1,12 39 1,12	0,06 0,08	0,03 0,04 0,03
1237,09 2 0,050238482 6 0,030480/26 1 0,020184281 5 0,05605/807 7 0,040709988 1 0,13441 1237,09 20,7147457 17,8856397 0,117955417 20,6544527 20,35624216 20,2457160 9 0,075321327 19,2653695 1 0,08079 1277,64 6 0,0403186 9 0,117955417 20,6297933 20,5281678 20,3871427 19,2581990	482 19, 552 19, 302 19,	32 1,11 39 1,12 39 1,12	0,06	0,04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	482 19, 552 19, 302 19,	39 1,12 39 1,12	0,08	0,03
20.022852 20.5281078 20.5281078 20.5871427 19.2581990	552 19, 302 19,	39 1,12		
1319,51 3 0,061622251 17,8801412 0,025226519 9 0,027309702 4 0,082065814 7 0,01079867 3	302 19,		0,04	0,03
1362,75 5 0,004421935 2 0,058433431 20,6134644 0,01370121 20,5506033 1 20,2786429 0,010852752 19,2337637 0,11960		37 1,12	0,04	0,05
20,6005567 17,8802675 0,043858436 20,6182165 0,008546012 20,6016285 20,019727383 20,2558047 19,1286785 19,1286785 4 0,0162 1407,42 2 0,095549466 6 0,043858436 6 0,008546012 2 0,019727383 7 0,008388376 19,1286785 4 0,0162	914 19,	35 1,12	0,03	0,03
20,5081303 17,8780198 20,5860540 - 20,4629826 9 0,032683544 19,1795524 19,1795524 4 0,0718	835 19,	30 1,08	0,04	0,04
20,6010342 17,8617903 0,002815177 20,6284137 0,051753236 20,4784993 - 20,1396061 0,049603622 19,1908089 0,07510	926 19,	32 1,10	0,03	0,04
20,5605229 150,308 20,5605229 17,8612198 17,8612198 17,8612198 17,8612198 17,8612198 17,8612198 17,8612198 17,8612198 10,030887411 10,030874 10,03087411 10,030874 10,0	897 19,	78 1,09	0,02	0,04
1330,38 0 0,001103/48 0,028023039 5 4 4 0 0 4 4 20,0000000 10,000000 10,000000 10,000000 10,00000000	137 19,	31 1,10	0,04	0,03
1601,19 3 0,009926964 6 5 6 9 8 20,5457429 17,7885164 0,006554699 20,5442446 0,042264345 20,4942139 0,044017507 20,1777575 0,012686467 19,0888184 0,03337	506 19.	77 1.12	0.03	0.02
1653,67 1 0,040064994 4 0,0100 4 0,0100 5 0,0100 1 0,0000 8 0,0000 1 0,0000 8 0,0000 1 0,0000 8 0,0000 1 0,0000 8 0,0000 1 0,0000 8 0,0000 1 0,0000 8 0,0000 1 0,0000 8 0,0000 8 0,0000 1 0,0000 8 0,00000000	10	1 1 13	0.03	0.02
1707,86 6 0,024551831 6 0,050215121 2 0,041000717 5 0,013020200 9 0,055550052 9 0,00938	327	4 1,15	0,05	0,02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	659 19,	73 1,09	0,02	0,03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	085 19,	75 1,09	0,01	0,03
20,4960776 - 17,7648831 20,4752411 - 20,4658546 20,0997367 19,0528733 9,0059 1881,35 4 0,028508403 7 0,005654557 1 0,014514698 3 0,058904856 6 0,015035193 19,0528733 0,0059	883 19,	73 1,11	0,01	0,03
20,5481819 - 17,7463571 0,026185579 20,4166777 0,009288953 20,4550537 0,007330011 2 0,002604601 1 0,02979	.945 19,	72 1,11	0,00	0,02
20,4929290 - 17,8217159 20,4352362 - 20,4196258 - 20,0491747 - 19,1107828 - 20059206546 6 0.042393449 5 0.049611452 9 0,0754	046 19,	2 1,07	-0,02	0,05
20,4632734 - 17,7590645 - 20,4383295 - 20,4696410 - 20,0697772 0.004716858 19,0581023 0.0291	373 10	1 1 10	-0.01	0.02
2072,45 3 0,007603244 3 0,028387473 7 0,031227367 6 0,021838485 7 0,004710038 6 0,02317	.373 13,	1 1,10	-0,01	0,02
2140,37 1 0,001941175 8 0,033701449 2 0,020400218 8 0,005288234 20,0004028 - 18,5788301 - 10,578801 - 10,57880000 - 10,57880000000000000000000000000000000000	628 ^{19,}	58 1,11	-0,01	0,02
20,4840156 - 17,7633463 0,010256064 20,4517142 0,005742524 20,4081121 0,024784851 9 0.022679236 19,0159117 0,00274	238 19,	70 1,10	0,00	0,02
20,4199135 - 17,7677522 - 20,4265964 - 20,4012734 - 20,0564072 - 19,0610954 - 2282.97 - 2 0,004993017 - 9 0,020208293 - 3 0,004765728 - 6 0,023657284 - 20,0564072 - 19,0610954 -	857 19,	59 1,08	-0,02	0,01
20,4061685 - 20,4092598 - 20,4017239 - 20,0544056 - 18,9910631 -	19	56 1 10	-0.02	0.02
2357,79 9 0,005181013 17,7205291 4 0,011199633 2 0,014284882 0,009861737 4 0,05486	639	1,10	5,02	3,02
2435,06 7 -0,02629251 5 0,045047148 8 0,021693551 3 -0,01204741 20,0610658 0,020246628 1 0,0242	349 19,	56 1,10	-0,02	0,02
20,4579755 - 17,6890850 20,4034545 - 20,01020448 20,3861142 - 20,0564658 - 18,9906796 0.0287	272 19,	56 1,11	-0,01	0,03

			17,7059810	-	20,4010725	-	20,3426495	-	20,0392121	-	19,0020484	-	10.00	1 10	0.02	0.02
2597,29	20,4565638	0,008313195	7	0,008624543	1	0,032238298	1	0,023425183	8	0,030948929	5	0,012336264	19,66	1,10	-0,02	0,02
	20,4148063	-	17,6878133	-	20,3978860	-	20,3652684	-	20,0493417	-	18,9751923	-	19.65	1 1 1	-0.03	0.02
2682,41	8	0,012857096	7	0,025691113	7	0,039125556	6	0,054530411	5	0,022454008	9	0,011316883	15,05	1,11	0,05	0,02
	20,4087594	-	17,7027183	-	20,3874329	-	20,3956509	-	20,0336767	-	18,9775257	-	19.65	1.10	-0.03	0.01
2770,32	7	0,042601257	8	0,035234492	4	0,031549557	1	0,031104855	9	0,024354925	6	0,016617257		_,	-,	-,
2064.42	20,4133334	-	17,7051802	-	20,3942309	-	20,3244656	-0,03152619	20,0019806	-	18,9837186	-	19,64	1,09	-0,02	0,01
2861,12	1	0,026691344	2	0,007199731	8	0,029084241	2		9	0,017005522	4	0,035613208	-			-
2054.80	20,4421341	-	17,6941090	-	20,3921567	-	20,3324271	0,015023477	20,0184795	-	18,9560535	-	19,64	1,10	-0,03	0,02
2954,89	9 20 4171620	0,055196115	1	0,013887479	5	0,031401158	20 2402058	_	4	0,040963608	2 18 0581701	0,033989724				
3051 73	20,4171030	0 020214078	17,6683425	0 041217758	20,4360614	0 034075367	1	0 024991936	9	0 038331534	6	0 015327679	19,65	1,12	-0,03	0,01
3031,73	20 3759688		17 6906379	-		-	20 3250021	-	20 0136700	-	18 9370399	0,013327075				
3151.75	20,0700000	0.033982309	8	0.015697547	20,3870664	0.027708263	7	0.016007541	6	0.026722929	9	0,010115437	19,62	1,10	-0,02	0,02
,		-	17,6897662		20,3983677	-	20,3414012	-	20,0127536	-		-				
3255,04	20,3736031	0,020947743	1	-0,02928251	1	0,040377775	6	0,017538736	8	0,043309782	18,9447687	0,043572622	19,63	1,10	-0,03	0,01
	20,3852159		17,6967897	0.004060400	20,3772929	-	20,3484798	-	20,0129906	-	18,9309499	-	10.02		0.00	0.00
3361,72	8	-0,06078924	1	0,004369428	2	0,067199692	2	0,027508947	9	0,030337172	9	0,024025501	19,63	1,10	-0,03	0,03
	20,4068728	-	17,7113815	-	20,3678205	-	20,3446953	-	20,0006426	-	18,9415189	-	10.62	1.00	0.04	0.02
3471,89	3	0,059481363	6	0,022725467	7	0,023211552	4	0,054251335	1	0,036535793	6	0,021154061	19,05	1,09	-0,04	0,02
	20,3634000		17,7083607	-	20,3976031	-	20,3490103	-	20,0101892	-	18,9335962	0 002711834	19.63	1 09	-0.03	0.02
3585,68	5	-0,04657064	4	0,020442883	4	0,017798635	9	0,056195736	6	0,045720552	2	0,002/11034	15,05	1,05	0,00	0,02
	20,3569567		17,6538663	-	20.3763631	-	20,3260334	-	19,9938129	-	18,9366561	-	19.61	1.10	-0.02	0.02
3703,20	1	0,005441993	7	0,007704925		0,042219516	4	0,030692624		0,029704098	9	0,037184398		_,	-,	-,
2024.56	20,3827318	-	17,6587616	-	20,3439980	-	20,3169552	-	20,0174253	-	18,9357589	-0,01468979	19,61	1,10	-0,02	0,01
3824,56	9	0,021438693	6 17 (52(277	0,002449076	4	0,01/28/656	2	0,016437144	9	0,019086036	5		-			-
2040.01	20,3745847	0.000010457	17,6526277	-	20,3651023	0,000998075	20,3293243	-	19,9826794	0,008356467	18,9128894	-	19,60	1,11	-0,01	0,02
3949,91	9 20 2710270	0,008918457) 17 6574696	0,039470706	5 20 27/2192		5 20 2121420	0,038229069	4		10 00/E101	0,010807432				
4079 36	20,3719370	- 0.012/39577	6	0,009934044	20,3743182	-	20,3121429	-0,02340352	20,0000087	- 0.020337388	10,0945191	0,007031383	19,60	1,11	-0,01	0,01
4075,50	20 3641128	0,012435577	17 6419866	-	20 3277931	-	20 3051921	-	19 9693218	-	-	-				
4213.06	4	0.013493182	8	0.009629003	6	0.003894706	2	0.014404923	3	0.008064362	18,9248702	0.032634931	19,59	1,10	-0,01	0,01
,	20,3782987		17,6586263	-	20,3271651		20,3150554		20,0006964	-		-,				
4351,14	9	0,005508418	7	0,006563731	6	0,01123036	9	0,00131257	2	0,000757844	18,9034644	0,001260884	19,60	1,10	0,00	0,01
	20,3730271	-	17,6540110	0.010100202	20,3593999	0.000746466	20,3280768	0.01542471	19,9831900	0.010077101	18,9119577	-	10.00	4 4 4	0.01	0.01
4493,74	5	0,002923677	5	0,019199203	1	0,002746466	8	0,01543471	5	0,010377121	9	0,009665393	19,60	1,11	0,01	0,01
	20,3653992		17,6461397	0 02/2/0565	20,3549601	0 002700721	20 2066801	0 011108002	19,9703445	0.026480102	18,8973631	0 0278/0122	10 50	1 10	0.02	0.01
4641,01	5	0,015459523	7	0,024349303	1	0,002/99/21	20,3000891	0,011198003	1	0,020480103	4	0,027849122	19,39	1,10	0,02	0,01
	20,3424339		17,6392503	0.009578255	20,3392640	0.019128083	20,3082821	0.023308797	19,9664169	-	18,8972587	0.021307029	19.58	1.10	0.01	0.01
4793,12	1	0,018502199	7	-,	2	-,	8	-,	8	0,008466017	9	-,		_,	-,	-,
1050.24	20,3563701	0.040765504	17,6356502	0,035771554	20,3325047	0,033659523	20,2839615	0,02100031	19,9648149	0,045636821	18,8785764	0,046823909	19,58	1,10	0,04	0,01
4950,21	8	0,042765591	17 (105100		2		4		8		1		-			-
F112 44	20,3352588	0.019407661	17,6185108	0,038163051	20,3307369	0,002392983	20,2944644	0,041936743	19,9680713	0,029131934	18,8658175	0,028250482	19,57	1,11	0,03	0,01
5112,44	٥	0,018497661	9 17 6217297		7		/		10 0/78868		4					
5279 99	20 3235057	0 049853749	7	0,052672321	20,3274218	0,037014414	20,2711471	0,041640521	19,9478808	0,036555533	18,8844403	0,05216725	19,56	1,10	0,04	0,01
5215,55	20,3235037	0,045055745	,		20 3326709		20 2778462		19 9494016		, 18 8791966					
5453.04	_0,0040407	0.016327725	17,6183473	0,045385179	8	0,029570036	6	0,043227325	8	0,026320916	6	0,05930757	19,57	1,10	0,04	0,02
	20,3567071	.,	17,6231208	0.00000000	20,3113343		20,2883540				18,8627850		10 - 5			
5631,76	3	0,067933626	1	0,06277995	5	0,062184873	9	0,060349915	19,9385374	0,04112268	4	0,083405766	19,56	1,11	0,06	0,01
	20,3472612		17,6224191	0.050612072	20,3369091	0.052418866	20,2661268	0.000175470	19,9431626	0.062922125	18,8673928	0.060042176	10 56	1 10	0.06	0.01
5816,33	4	0,059028681	5	0,0590130/3	9	0,053418866	8	0,0081/54/6	4	0,003823135	2	0,069043176	19,50	1,10	0,06	0,01

	20,3306411		17,6056486	0 084792076	20,3147009	0 063385703	20,2541398	0 068524557	19 9439578	0 070270721	18,8824637	0 093859199	19 56	1 10	0.08	0.01
6006,95	9	0,075196855	2	0,001/020/0	4	0,000000700	4	0,00002.007	10.0405015	0,07.027.07.21	1	0,0000000000	10,00	1,10	0,00	0,01
6203.82	20,3140273	0.06714014	17,0083305	0,076913871	20,3006373	0,064779677	20,2006328	0,074545814	19,9405015 6	0,093658984	18,8406497 6	0,091800451	19,54	1,10	0,08	0,01
,	20,3237007	-,	17,6063255	0 07000/85	20,2902199	0 101671225	20 2477488	0 070072222	19,9564136	0.068868227	18,8535598	0.00065501	10 55	1 10	0.08	0.02
6407,14	6	0,065561216	7	0,079090483	3	0,1010/1323	20,2477400	0,070073222	9	0,008808237	1	0,09903391	19,55	1,10	0,08	0,02
6617 13	20,3121219	0 098193159	17,6053509 3	0,091033361	20,3057028	0,099035404	20,2421496	0,080254451	19,9292613	0,08261484	18,8219391	0,103230888	19,54	1,10	0,09	0,01
0017,15	20,2732957	0,050155155	17,5922136	0.070200020	20,2871847	0 000107000	20,2394252	0.0004555	19,9250354	0.000000000	18,8269268	0.10045122	10.52	1.10	0.10	0.01
6834,00	5	0,11100237	6	0,079209038	9	0,099187866	4	0,0864555	6	0,092368846	7	0,10645132	19,52	1,10	0,10	0,01
7057.07	20,2741256	0.005207166	17,5801668	0,088962958	20,2800611	0,109985677	20,2147034	0,085808207	19,8995979	0,106219005	18,8152997	0,105597773	19,51	1,10	0,10	0,01
1057,97	٥	0,095397100	4 17.5661393		20.2563521		0 20.2379424		3		3 18.8159005					
7289,29	20,2948083	0,09428548	6	0,073777052	2	0,097582683	8	0,083525718	19,8833209	0,102998851	8	0,118761638	19,51	1,10	0,10	0,02
7520.40	20,2667037	0.000000704	17,5413740	0,081897837	20,2523388	0,101304293	20,2181020	0,096563334	19,8780446	0,112540126	18,7832109	0,130916711	19,49	1,11	0,10	0,02
7528,18	7 20 2650865	0,098929701	9 17 5371121		4 20 2367669		8 20 1992331		8 19 8707157	-	6 18 7849596	-				
7774,91	5	0,107428212	5	0,106688394	3	0,10484949	7	0,113908422	7	0,111869311	4	0,114839003	19,48	1,11	0,11	0,00
			17,5289494	0,092100781	20,2362368	0,112179696	20,1909180	0,112703652	19,8472430	0,106101085	18,7813121	0,116388323	19,47	1,10	0,11	0,01
8029,72	20,240067	0,108626073	17/1967539		1 20 2250022		2 2 20 177093/		9 19 8785952		18 7693/38	,	,	,	,	,
8292,88	20,2330093	0,118732107	7	0,094571329	5	0,072932469	5	0,100525309	3	0,13639053	7	0,127827889	19,46	1,11	0,11	0,02
	20,2438561		17,5457964	0 118909591	20,2048246	0 128226963	20,1758906	0 106945003	19,8363208	0 106735806	18,7798362	0 115127957	19 46	1 09	0 11	0.01
8564,67	3	0,092310971	4	0,110505051	3	0,120220300	4	0,2000 10000	2	0,200,00000	2	0,11012,007	10)10	2,00	0)11	0,01
8845,37	20,2188178	0,109677575	17,5260770 6	0,114034628	20,2073746 6	0,111994321	20,1095933	0,099167149	19,8296318	0,096441092	18,7488303	0,133692699	19,45	1,10	0,11	0,01
,	20,2132630		17,5155345	0 094990767	20,1919356	0 112418448	20,1493685	0 105097683	19,8246620	0 110923476	18,7265178	0 123758081	19 44	1 10	0 11	0.01
9135,26	5	0,109285405	5	0,054550707	1	0,112410440	5	0,105057085	8	0,110525470	3	0,123730001	13,44	1,10	0,11	0,01
9434.66	20,1956730	0.105860449	17,4911984 5	0,099124903	20,1929913	0,098095585	20,1538015	0,109805419	19,8177184 5	0,100598435	18,7362321 9	0,142807329	19,43	1,10	0,11	0,02
	20,1821268	-,	17,4855436	0 002014007	20,1874566	0 101547002	20,1427012	0 10200621	19,7971123	0 114092415	18,7224876	0 117266782	10.42	1 10	0.11	0.01
9743,87	8	0,100347327	6	0,093914907	8	0,101347093	5	0,10309021	1	0,114083413	5	0,117300782	19,42	1,10	0,11	0,01
10063 21	20,1876192	0.086776534	17,5005091	0,093249572	20,16/9640	0,080341094	20,1283970	0,091091132	19,8160648 1	0,100362648	18,7275698	0,101305588	19,42	1,09	0,09	0,01
10003,21	20,1728535	0,000770334	17,4857971	0 007807018	20,1659819	0 002424502	, 20,1242577	0.002461606	19,7878608	0 118640225	18,7011535	0 145010525	10.41	1 10	0.11	0.02
10393,02	5	0,09702036	8	0,097897018	1	0,083424582	9	0,093401090	8	0,118040235	5	0,145919525	19,41	1,10	0,11	0,02
10722.62	20,1554764	0 005181472	17,4597053	0,091413126	20,1460478	0,093156043	20,1154025	0,09669157	19,7924665	0,093223559	18,703328	0,124353438	19,40	1,10	0,10	0,01
10755,05	20,1680378	0,095181475	17,4561470	0.000000440	20,1508895	0.004470064	, 20,1214492	0 07070500	19,7800810	0.000000000	18,6964802	0.406400000	40.40	1.40	0.00	0.04
11085,41	8	0,090514688	4	0,089939149	5	0,091173064	8	0,07978539	3	0,096220581	3	0,106122223	19,40	1,10	0,09	0,01
11440 72	20,1596948	0.000836861	17,4522387	0,09758069	20,1437230	0,082668467	20,1099790	0,096103844	19,7691697	0,079256585	18,6790017	0,121311611	19,39	1,10	0,09	0,01
11448,72	9	0,090836861	9 17.4328319		, 20.1751311		4 20.0873542		9 19.7675846		9 18.6608662					
11823,94	20,1476293	0,12408147	2	0,053288393	1	0,136892727	7	0,087198651	3	0,079472271	8	0,107038503	19,38	1,11	0,10	0,03
42244.45	20,1333323	0.004640444	17,4203669	0,098808489	20,1379420	0,100805553	20,0377565	0,146954631	19,7408263	0,037008383	18,7089164	0,121735201	19,36	1,09	0,10	0,04
12211,45	6 20 1215152	0,091610141	17 4568063		5 20 0851891		/ 20.0855532		7 19 8185065	-	9 18 6727388	-				
12611,67	3	0,095606649	2	0,057741874	4	0,087621134	4	0,057532933	1	0,038968377	6	0,132370141	19,37	1,09	0,08	0,03
	20,1036063		17,4133013	0.064982005	20,1055151	0.088102021	20,0488291	0.066572488	19.7281905	0.078131677	18.6552207	0.091967874	19.34	1.10	0.08	0.01
13025,00	3	0,080960277	1	.,	3	.,	8	.,	10 7270/20	-,	18 6162269	.,	,- ·	_,	-,	-,
13451,87	20,1073037	0,099502238	9	0,081518648	3	0,080362824	6	0,084763423	5	0,066398085	2	0,095796315	19,34	1,10	0,08	0,01

13892 7/	20,1076857	0 059278118	17,3998581 5	0,065946109	20,0799223 9	0,054716165	20,0564232	0,098101374	19,7265215 1	0,082024997	18,6254619 3	0,092599177	19,33	1,10	0,08	0,02
13032,74	20,1006413	0,0000270110	17,4082308	0,064058689	20,0945239	0,081456203	20,0338994	0,060994089	19,7073822	0,070063539	18,6243479	0,087404169	19,33	1,10	0,07	0,01
14348,06	4 20,1067874	0,065487883	7 17,3860785	0.047840165	5 20,0814839	0.064538918	8 20,0487001	0.053164042	19,7140500	0.062909326	2 18,5979177	0.078712786	19.32	1.11	0.06	0.02
14818,30	5 20,1283914	0,034987271	3 17,4159210	0.020667508	3 20,1009209	0.017602602	9 20,0357028	0.048622214	3 19,6747330	0.065083033	5 18,6210680	0.060118112	10.22	, 1 10	0.05	0.02
15303,95	6 20,0980802	0,065751763	3 17,3899131	0,025007550	1 20,0914631	0,017052005	1 20,0287414	0,040032214	7 19,7010462	0,00000000000	1 18,5943319	0,0007012	10,00	1,10	0,05	0,02
15805,51	5 20.0633727	0,037148222	4 17.3733149	0,040562355	8 20.0826556	0,039601697	7 20.0380589	0,051093167	9 19.6909845	0,044585953	2	0,00078130	19,32	1,10	0,05	0,01
16323,52	2 20 0584445	0,030367404	8	0,018730657	3	0,030562747	8 20.0364844	0,042052039	1 19 7058883	0,038537043	18,5971242	0,059006813	19,31	1,10	0,04	0,01
16858,50	3	0,03281551	8	0,051888853	20,0664271	0,011869576	1	0,024892273	4	0,018101784	3	0,064616298	19,32	1,07	0,03	0,02
17411,01	20,0926026 7	0,007423269	17,4231793 9	- 0,020567097	20,0687377 9	0,034173298	20,0439171 6	0,027533312	19,7562604 3	0,019414362	18,5940056 6	0,025917395	19,33	1,10	0,02	0,02
17981,63	20,0918135 3	0,017043142	17,4114265 3	0,037692522	20,0881958 4	0,018257046	20,0101510 3	0,018099177	19,7065712 9	0,01416073	18,6033251 1	0,037267658	19,32	1,09	0,02	0,01
18570,96	20,0971583 5	0,033871794	17,4197755 9	0,010363687	20,0953547 1	- 0,035935843	20,0283670 2	0,014514904	19,7078040 8	0,012848774	18,5614009 9	0,026821164	19,32	1,10	0,01	0,02
19179,60	20,1521737 2	0,017343582	17,3931490 5	0,007003532	20,0411167 6	- 0,025472638	20,0467992 6	0,085349129	19,7453958 2	- 0,078519996	18,6056052 5	- 0,145079502	19,33	1,11	-0,02	0,08
19808.18	20,1076100 1	0.023693628	17,4529677 7	0,026753713	20,1357295 8	0,076443133	20,0592516 8	0,010235464	19,7159844 2	0,010306955	18,5928078	0,015725382	19,34	1,10	0,03	0,03
20457 37	20,2625220 9	0 241997321	17,4207664 8	0,016038491	20,0879260	- 0.033686045	20,0531127	0,005875603	19,7315307 3	- 0 001779894	18,6162306 8	0,014219029	19,36	1,12	0,04	0,10
21127.82	20 2040081	0.012712284	17,4132413	0,001594439	20,1055206	0,015061648	20,0727154	-	19,7244090	0,022401965	18,6192240	0,005004502	19,37	1,13	0,01	0,01
21127,05	20,0111059	0.24217122	17,4492796	0,006550412	20,0709174	-	, 20,0575526 7	0,033720524	, 19,7552931	0,01165432	18,6164871	0,011539251	19,33	1,07	-0,03	0,10
21820,27	20,1062994	-0,24217132	4 17,4203220	0,015254034	8 20,1442504	-	, 20,0643263	-	19,7066520	0,010204479	6 18,6334920	0,01628225	19,35	1,10	0,00	0,04
22535,40	9 20,1583192	0,032471049	8 17,4433761	-	5 20,1761109	0,068/48241	2 20,1078887	0,015172954 -	/ 19,7423096	-	5 18,6322601	-	19 38	1 11	0.00	0.03
23273,96	8 20,1401269	0,007444578 -	7	0,047984023	5 20,1339590	0.014545492	9 20,0804467	0,006977139 -	6	0,014075528	7	0,007803855	10.26	1 10	0,00	0.01
24036,74	3 20,1235683	0,004787953	17,4571692	-	1 20,1612215	0,014545482	8 20,0854319	0,001470161	19,7444684	-	18,6473126	0,013033380	19,50	1,10	0,01	0,01
24824,51	5 20.1247547	0,012569138	17,4505776	0,005537024	9 20.1172969	0,016664782	5 20.0825702	-	8 19.7472401	0,006299814	7 18.6548455	0,011611955	19,37	1,10	0,01	0,01
25638,10	4	0,02287806	1	0,000236558	2	0,003096252	4 20.0824891	0,003338315	7 19 7707144	0,000542904	7 18 6298294	0,005694015	19,36	1,10	0,00	0,01
26478,35	20,1421488	0,017550398	2	0,021908175	20,1319705	0,020338972	7	0,010540946	8	0,017775656	1	0,005701958	19,36	1,11	0,01	0,02
27346,14	20,1431488	0,004806858	5	0,010331986	8	- 0,016005781	1	- 0,002411274	19,7673789	0,009211185	18,0529040 6	0,015612899	19,37	1,11	0,00	0,01
28242,38	20,1417359 3	0,013334273	17,4391865 9	- 0,002761463	20,1018073 2	0,045314351	20,0713956 1	0,019347553	19,7548838 8	0,004974078	18,6523846 6	0,016263806	19,36	1,10	0,02	0,02
29167,98	20,1365469 9	0,005317044	17,4555229 5	- 0,004206268	20,1394909 9	0,000987308	20,0949181 9	0,013073485	19,7590137 7	0,003064374	18,6561406 5	0,012291948	19,37	1,10	0,01	0,01
30123,92	20,1753932 7	0,030102664	17,4789142 6	0,028980796	20,1720408 1	0,030569909	20,1206649 8	0,032507495	19,7932631 3	0,030534303	18,6877021 3	0,026527594	19,40	1,10	0,03	0,00
31111,20	20,1682206 7	0,027627451	17,4716410 6	0,024418567	20,1532000 2	0,035498716	20,1155016 4	0,024339282	19,7915042 8	0,0314465	18,683467	0,020400683	19,40	1,10	0,03	0,01
22120.92	20,1724839	0 020021495	17,4634178 °	0,032735319	20,1390347	0,025603688	20,1209209	0,020705145	19,7805575	0,016555385	18,6757995	0,022292713	19,39	1,10	0,02	0,01
-----------	--------------------------	--------------	------------------	--------------	-----------------	------------------	-----------------	-------------	-----------------	--------------	-----------------	----------------	-------	------	------	------
32130,82	20,1724839	0,029931485	° 17,4634178	0.032735319	20,1390347	0.025603688	20,1209209	0.020705145	0 19,7805575	0.016555385	3 18,6757995	0.022292713	19.39	1.10	0.02	0.01
32130,82	1 20.1610238	0,029931485	8 17.4611839	-,	6 20.1686800	-,	6 20.1109908	-,	6 19.7779988	-,	3 18.6729438	-,		_,	-,	-,
33183,87	7	0,029978462	1	0,027388468	7	0,026919349	4	0,026615231	2	0,029120359	3	0,026348726	19,39	1,11	0,03	0,00
34271,42	20,1539819	0,021319763	17,4639415 1	0,021385773	20,0927986 8	- 0,013259808	20,1038315 8	0,042888442	19,7657298 9	0,022945212	18,6711228 7	0,017105997	19,38	1,09	0,02	0,02
25204.62	20,1519547	0.000004.044	17,4590205	0,018116875	20,1506417	0,018588665	20,1032761	0,0226997	19,7633109	0,013789626	18,6644275	0,015220839	19,38	1,10	0,02	0,00
35394,62	4 20,1588459	0,022961641	9 17,4577189	0.015570100	2 20,1226232	0.019622720	9 20,0988368	0 00000245	5 19,7685478	0.015166127	1	0.010455002	10.29	1 10	0.01	0.00
36554,64	7	0,015753536	1	0,015578198	8	0,018632729	2	0,00999245	9	0,015166137	18,660087	0,010455002	19,38	1,10	0,01	0,00
37752,66	20,1471055	0,005980707	17,4639198 8	0,011700374	20,1509459	0,022148379	4	0,008765794	19,7696689 7	0,011488623	18,0709853 6	0,012352688	19,39	1,10	0,01	0,01
28080.06	20,1565226	0.012100606	17,4624525 7	0,011424838	20,1438031	0,01299465	20,1038487	0,012845453	19,7701682	0,009627697	18,6681683	0,009464467	19,38	1,10	0,01	0,00
38989,90	, 20,1598217	0,012109090	, 17,4655286	0 017078575	20,1584669	0 000682700	4 20,1078044	0 01205244	19,7720320	0 00002/1788	18,6635996	0 000/02011	10.20	1 10	0.01	0.00
40267,80	1 20 15/1791	0,011583631	2 17 //705733	0,017078575	2	0,009083799	8 20 1089826	0,01333344	3	0,009934788	8 18 673//90	0,009492011	19,39	1,10	0,01	0,00
41587,52	3	0,010309607	4	0,01070088	8	0,007730568	5	0,017893484	19,7661506	0,01868753	7	0,003276229	19,39	1,10	0,01	0,01
42950 50	20,1543531 5	0 007595326	17,4624803 8	0,006372382	20,1653540 1	0,008067946	20,1098226 8	0,013622753	19,7701928	0,010548907	18,6726388 6	0,002248179	19,39	1,10	0,01	0,00
12556,550	20,1553448	0,007.000020	17,4623081	0 008892391	20,1461415	0 011491826	20,1084635	0 012540367	19,7724866	0 005367998	18 6690956	0 004948145	19 39	1 10	0.01	0.00
44358,14	1 20.1416361	0,008853495	1 17.4726061	0,0000052051	4 20.1815710	-	3 20.1043355	0,012010007	6 19.7824748	0,000007550	18.6680438	0,00 10 101 10	15,05	1)10	0,01	0,00
45811,92	7	0,009025309	5	0,002465675	5	0,043433119	2	0,005558861	1	0,004387569	2	0,006258251	19,39	1,10	0,00	0,02
47313,34	20,1549129 4	0,0099503	17,4640932 4	0,010849949	20,1324958	0,007777495	20,1074373 1	0,00830731	19,7783015 2	0,009414794	18,6687021 8	0,00308946	19,38	1,10	0,01	0,00
10062.00	20,1615413	0.012710644	17,4598654	0,009857582	20,1389827	0,006065068	20,1041400	0,007844384	19,7724641	0,0078516	18,6669275	0,00426527	19,38	1,10	0,01	0,00
48863,98	4 20,1601612	0,012710644	5 17,4605077	0.007404000	4 20,1550620	0.0000000000	3 20,1074913	0.010000010	9 19,7753836	0.040007727	9 18,6675678	0.010045564	10.00		0.04	0.01
50465,43	5	0,021642741	4	0,007434983	3	0,006185802	1	0,012802049	1	0,018097727	8	0,010045561	19,39	1,10	0,01	0,01
52119,36	20,1526807 9	0,014747522	17,4677994 6	0,009872726	20,1540463	0,018705487	20,0971987 1	0,006736004	19,7741514 2	0,01774633	18,6643923 4	-0,00103477	19,39	1,10	0,01	0,01
E2827 E0	20,1540399	0.001600215	17,4593812 2	0,007797546	20,1544203	0,033478039	20,1070586	0,008714632	19,7809507	0,023394827	18,6709997 2	0,012618166	19,39	1,10	0,01	0,01
55627,50	, 20,1586629	0,001000215	2 17,4634868	0 002404264	20,1487282	0 00/8211/1	20,1066575	0 00/010056	4 19,7723337	0.006/11151	3 18,6709569	-	10.20	1 10	0.00	0.00
55591,63	6 20 1565077	0,00664666	3 17 4616444	0,002454504	7 20 1507984	0,004031141	1 20 1043341	0,004515550	5 19 7749101	0,000411151	8 18 6666570	0,000384744	15,55	1,10	0,00	0,00
57413,57	7	0,006280176	1	0,003215828	7	0,018588363	9	0,008064731	6	0,003823396	9	0,000250861	19,39	1,10	0,01	0,01
59295.22	20,1572870 1	0.002630848	17,4629438 8	0,004891835	20,1471636 5	- 0.003330805	20,1073679 8	0,005170808	19,7760724 2	0,006268354	18,6688180 3	0,000195969	19,39	1,10	0,00	0,00
	20,1605212	-,	17,4645288	0.010273441	20,1513927	0.011394327	20,1119881	0.008853342	19,7772420	0.013177536	18,6677588	0.005422191	19.39	1.10	0.01	0.00
61238,54	9 20.1638825	0,01189835	8 17.4617144		1 20.1495969		7 20.1100837		6 19.7791883		5 18.6723583					
63245,55	2	0,008450888	6	0,010559391	3	0,010759209	8	0,013785548	9	0,013244962	8	0,011065182	19,39	1,10	0,01	0,00
65318,34	20,1606087	0,002682918	17,4636205 7	0,003478165	20,1495007 8	- 0,006811731	20,1090601 3	0,000759402	19,7749976 7	0,007617538	18,6750523 1	0,000144001	19,39	1,10	0,00	0,00
67450.00	20 4502222	0.005202422	17,4628238	0,003605535	20,1530260	0,00203348	20,1109375	0,005353747	19,7772996	0,006926695	18,6710031	-	19,39	1,10	0,00	0,00
67459,06	20,1583232 20,1600134	0,005292133	/ 17,4635218	0.00445320	8 20,1534234	0.011444072	3 20,1128893	0.000000465	9 19,7762207	0.004633343	1 18,6712882	0,000357367	10.20	1 10	0.01	0.00
69669,94	5	0,003829539	7	0,00445739	9	0,011441972	9	0,009098165	9	0,004633212	6	0,003353467	19,39	1,10	0,01	0,00

	20,1613634		17,4737912	0.002961039	20,1559806	-0.00100241	20,1028705	0.00758248	19,7754010	0.003565489	18,6741405	0.003768602	19.39	1.10	0.00	0.00
71953,28	9 20 1607288	0,005082657	3 17 4652690	-,	3 20 1483332	-,	9 20 1079189	-,	1 19 7729559	-,	5 18 6706306	-,	,	_,	-,	-,
74311,45	6	0,006169175	2	0,004627663	9	0,014330325	3	0,01067141	5	0,008166398	7	0,006147514	19,39	1,10	0,01	0,00
	20,1584721		17,4651023	0.014585811	20,1347187	0.007731753	20.0935833	0.034848202	19,7939327	0.003051481	18,6573895	0.009193244	19.38	1.10	0.01	0.01
76746,91	4	0,015697965	5	-,	6 20 1272500	-,	20 10/2585	-,	5	-,	9 18 6672257	-,		_,	-,	-,
79262,19	20,1327221	0,020990407	6	0,011628213	20,1373390	0,016962117	20,1042383 9	0,020842434	8	0,015884028	3	0,012732599	19,38	1,10	0,02	0,00
	20,1563139		17,4623225	0.014625187	20,1424871	0.014527877	20,1056570	0.017921232	19,7731604	0.017264057	18,6672565	0.013517356	19.38	1.10	0.02	0.00
81859,90	4	0,017646052	6	0,011020107	3	0,01102/0//	7	0,017521202	8	0,017201007	3	0,01001,000	10,00	1,10	0,02	0,00
84542,75	20,1347049	0,017882961	6	0,012269796	20,1394797	0,028849506	20,1020382	0,021120428	19,7692828	0,019287918	7	0,007659566	19,38	1,10	0,02	0,01
, -	20,1625623	.,	17,4624260	0 008371112	20,1484732	0 010125882	20 1072109	0.010076045	19,7722928	0 008333548	18,6661527	0 00070004	10 30	1 10	0.01	0.00
87313,52	7	0,006006858	9	0,008371112	9	0,010123882	20,10/2109	0,010070043	7	0,008333348	3	0,00070004	19,39	1,10	0,01	0,00
90175 10	20,1558336	0 005580564	17,4624055 8	0,007758752	20,14/03//	0,006209297	20,1041475	0,008717626	19,774343	0,008465561	18,6699592 9	0,004217475	19,39	1,10	0,01	0,00
50175,10	20,1575463	0,005500504	17,4642713	-	20,1586570	0 001000044	20,1057020	0 000005 400	19,7748192	0 0007777000	18,6680415	0.0071.20022	10.20	1.10	0.01	0.01
93130,47	4	0,013272665	7	0,000644013	4	0,021203941	2	0,009335466	9	0,002777692	4	0,007126833	19,39	1,10	0,01	0,01
06182 70	20,1544141	0.007562702	17,4645576	0,005076451	20,1622344	-	20,0994898	0,011162458	19,7648673	0,006657617	18,6676153	0,005074395	19,39	1,10	0,00	0,01
96182,70	ہ 20.1584520	0,007562702	5 17.4655792		1 20.1491867	0,009748498	20.1048355		° 19.7690563		ہ 18.6673946					
99334,95	9	0,007840464	6	0,005520783	1	0,015058687	4	0,006724727	3	0,008701675	2	0,004982489	19,39	1,10	0,01	0,00
	20,1537252		17,4596853	0,015823117	20,1435429	0,020410849	20,1020631	0,019600485	19,7733966	0,018218445	18,6652188	0,016061806	19,38	1,10	0,02	0,00
102590,52	/ 20 15/6511	0,016/51923	4 17 4634327		6 20 1365839		9 20.0957533		6 19 7735/118		6 18 6581189		,	,	,	,
105952,79	5	0,019001846	6	0,01446558	3	0,023269403	3	0,022688345	7	0,016767746	1	0,007354382	19,38	1,10	0,02	0,01
	20,1516822		17,4594482	0.016445389	20.1439246	0.017912887	20,1020985	0.020363437	19.7717527	0.020271633	18,6653721	0.015184739	19.38	1.10	0.02	0.00
109425,25	7	0,017010851	3	-,	20 1497910	-,	2	-,	10 7709577	-,	1	-,	-,	, -	-,-	-,
113011,52	20,1300772	0,008737183	3	0,007103806	20,1487819 9	0,011656292	20,1048555	0,00880176	4	0,008616729	18,6675227	0,005643222	19,38	1,10	0,01	0,00
	20,1544982		17,4610497	0 008145329	20,1461822	0 007759181	20,1035481	0 010015875	19,7718815	0 008547485	18 66676	0 007147859	19 38	1 10	0.01	0.00
116715,32	8	0,006615728	1	0,000145525	5	0,007733101	1	0,010013073	6	0,000347403	10,00070	0,007147035	15,50	1,10	0,01	0,00
120540.50	20,1544272	0.008752477	17,4612802	0,007332422	20,14/0/83	0,009565093	20,1028146 6	0,007839526	19,7722608	0,009391878	18,6667316	0,00666013	19,38	1,10	0,01	0,00
	20,1544471	-,	17,4601804	0 008422025	20,1477063	0 007222614	20,1027783	0 010919701	19,7714449	0 008742471	18,6660269	0 007272201	10.28	1 10	0.01	0.00
124491,05	6	0,009903099	9	0,008433333	4	0,007323014	4	0,010818701	4	0,008743471	4	0,007272201	19,30	1,10	0,01	0,00
128571.08	20,1514291	0 008327584	17,4597209	0,00904308	20,1481267	0,008247356	20,1030400 8	0,009146254	19,7700027	0,01031493	18,6660602 8	0,007805434	19,38	1,10	0,01	0,00
120371,00	20,1545818	0,000327304	17 4502010	0.005842120	20,1431677	0 010475104	20,1035470	0.008057224	19,7712219	0 000705 31 3	18,6667032	0.007220055	10.29	1 10	0.01	0.00
132784,83	4	0,00804361	17,4593919	0,005842139	3	0,010475104	9	0,008957224	1	0,009795312	1	0,007330955	19,38	1,10	0,01	0,00
127126.67	20 152822	0.010020028	17,4684650	0,008972723	20,1548363	0,021856697	20,1015969	0,009391159	19,7675893	0,011585451	18,6685127	0,008181457	19,39	1,10	0,01	0,01
137130,07	20,153835	0,010030038	0 17,4645789	0.000504.000	20,1493516	0.000050000	20,1092163	0.044765405	19,7773284	0.04044.0040	4 18,6595789	0.01000011	10.00	4.40	0.01	0.04
141631,14	6	0,001327883	9	0,006591688	3	0,002658303	8	0,011765495	6	0,013118018	7	0,01230241	19,39	1,10	0,01	0,01
146272.01	20 1526707	0.006226506	17,4576210	0,006388351	20,1357666	0,004327171	20,1007149	0,010638696	19,7712647	0,009987434	18,6630600	0,007618073	19,38	1,10	0,01	0,00
140272,91	20,1526797	0,000330500	ہ 17.4549286		20.1374171		ہ 20.0992542		7 19.7663012		9 18.6627448					
151066,81	2	0,021766321	5	0,016999404	4	0,017265238	8	0,020406651	2	0,020688301	4	0,018254982	19,38	1,10	0,02	0,00
45001500	20,1499339	0.000	17,4556685	0,017495571	20,1393060	0,018790701	20,0987188	0,021046354	19,7666467	0,019431687	18,6619813	0,017398693	19,38	1,10	0,02	0,00
156017,82	1 20.1500980	0,020/154/8	17.4560477		1		/ 20.0983993		5		4					
161131.09	2	0.021630131	3	0,018948919	20,140037	0,021815496	2	0,019846431	19,7658292	0,019712165	18,6611958	0,018544823	19,38	1,10	0,02	0,00

166411.04	20,1512324	0.000030508	17,4576876	0,007494797	20,1427114	0,007980806	20,1003961	0,009833537	19,7692726	0,010094857	18,6646006	0,00842537	19,38	1,10	0,01	0,00
100411,94	20,1508105	0,008939508	3 17,4574026	0 000217904	9 20,1417650	0.012605022	1 20 1010176	0 010942420	9 19,7702010	0.010497004	18,6637426	0 009744466	10.20	1 10	0.01	0.00
171865,87	20 1515608	0,010261963	1	0,009217894	5	0,013093032	20,1010170	0,010642439	9	0,010487094	5	0,008744400	19,50	1,10	0,01	0,00
177498,54	20,1515008	0,010255089	17,4578515	0,009614481	1	0,010039425	20,101197	0,01081939	9	0,009813865	3	0,009330795	19,38	1,10	0,01	0,00
192215 92	20,1502208	0 000880003	17,4564496	0,009640825	20,1335261	0,014511025	20,0915676 1	0,013582865	19,7681294 o	0,011205658	18,6630875 1	0,008771163	19,38	1,10	0,01	0,00
185515,82	20,1468792	0,009880093	17,4593990	0 000842241	20,1345192	0 007601282	20,0904804	0 01/222/25	19,7702942	0 008006406	18,6643573	0.012804062	10.28	1 10	0.01	0.00
189323,75	5 20 1/18/08	0,015065447	8 17.4558968	0,000042041	3 20 1360640	0,007001202	3	0,014223435	2	0,000050450	8 18 6625681	0,012004505	15,50	1,10	0,01	0,00
195528,58	6	0,01392688	6	0,009295226	5	0,016153089	7	0,014790462	19,7601368	0,014755247	7	0,009942619	19,37	1,10	0,01	0,00
201936 77	20,1430465 o	0 010802817	17,4533450 1	0,020616577	20,1372694 9	0,014354638	20,0927918	0,014135097	19,7628245 3	0,012937748	18,6551328 3	0,010574539	19,37	1,10	0,01	0,00
201550,77	20,1462970	0,010002017	17,4504812	0 01/15/17053	20,1356865	0.015511658	20,0912238	0 0139/1121	19,7620297	0 013672772	18 6539887	0 010893118	19 37	1 10	0.01	0.00
208554,97	6 20 1/35003	0,011144437	9	0,014547055	7 20 1335971	0,015511050	7 20.0928167	0,013541121	9 19 7618737	0,013072772	18 6542828	0,010055110	15,57	1,10	0,01	0,00
215390,08	4	0,011848002	17,4507641	0,014005215	5	0,014443581	5	0,013714361	9	0,014486951	4	0,011440158	19,37	1,10	0,01	0,00
222//19 20	20,1400927	0 017/12775	17,4485469 8	0,012102069	20,1289463	0,015013476	20,0903855	0,017003103	19,7598910 9	0,016081019	18,6539984	0,014888507	19,37	1,10	0,02	0,00
222445,20	20,1406166	0,017412775	17,4483076	0 014137777	20,1299197	0 019541693	20 0904331	0 01575652	19 7592689	0 015770185	18,6559317	0 012826264	19 37	1 10	0.02	0.00
229739,67	3 20 1358611	0,014620189	5 17 //8717/	0,014137777	4 20 1323512	0,015541055	20,0304331	0,01575052	19 7581584	0,013770103	3 18 6571342	0,012020204	15,57	1,10	0,02	0,00
237269,08	4	0,016333908	1	0,01486091	4	0,016657676	20,0082712	0,014522836	7	0,012778452	10,0571542	0,013352257	19,37	1,10	0,01	0,00
245045 25	20,1329513	0 012171055	17,4471375 2	0,014278561	20,1309281 8	0,011057821	20,0912526 1	0,016818355	19,7558420 8	0,01461314	18,6524483 2	0,013231198	19,37	1,10	0,01	0,00
243043,23	, 20,1410773	0,012171055	17,4476138	0 015038136	20,1329053	0 014901138	20,0888149	0 017943471	19 7552728	0 016237737	18,6527468	0 013764827	19 37	1 10	0.02	0.00
253076,28	9	0,015690493	9 17 4469093	0,010000100	8 20 1340933	0,011001100	1 20.0886429	0,01/01/01/1	19 7563365	0,01010107707	4	0,010,0102,	10,07	1)10	0,01	0,00
261370,52	20,1406263	0,014235533	7	0,014712774	2	0,016674217	4	0,015759153	7	0,016947242	18,6539752	0,014254399	19,37	1,10	0,02	0,00
269936 58	20 139623	0 015491726	17,4472874 2	0,015317263	20,1383209 7	0,016754365	20,0871111 9	0,018077623	19,7578038 5	0,013749998	18,6525515 8	0,014661639	19,37	1,10	0,02	0,00
	20,1415058	-,	17,4447339	0 016745106	20,1297062	0 014827373	20,0872425	0 01811518	19,7510384	0 013728857	18,6516165	0 014625033	19 37	1 10	0.02	0.00
278783,39	5 20.1381121	0,02083518	2 17.4468699	0,0107 10100	2	0,011027070	1 20.0874322	0,01011010	9 19.7547374	0,010720007	5	0,011020000	10,07	1)10	0,01	0,00
287920,14	6	0,015969704	7	0,016590738	20,1306817	0,016646411	6	0,017458356	9	0,016169766	18,6519728	0,015406858	19,37	1,10	0,02	0,00
297356.34	20,1401039 8	0.01671474	17,4460072 4	0,015594654	20,1312984	0,015321293	20,0903478	0,017021076	19,7592300 2	0,016242165	18,6550179 8	0,015288594	19,37	1,10	0,02	0,00
	20,1417949	-,	17,4453048	0.016764767	20,1315260	0.015088085	20,0902990	0.018311904	19,7583270	0.015845323	18.6543941	0.015636748	19.37	1.10	0.02	0.00
307101,79	3 20.1414903	0,017921976	3 17.4474366	-,	6 20.1289989	.,	7 20.0889737	-,	5 19.7572150	-,	18.6522183	-,	- / -	, -		-,
317166,64	4	0,020960938	9	0,015752413	4	0,023331141	4	0,019315322	1	0,01650055	1	0,015221392	19,37	1,10	0,02	0,00
327561.34	20,1401381 3	0.019494186	17,4461533 1	0,016506379	20,1300975 4	0,017423914	20,0872442 8	0,018297574	19,7583112 8	0,01838253	18,6542555 6	0,015892965	19,37	1,10	0,02	0,00
,-	20,1373756		17,4460912	0.015910892	20.1299073	0.020427069	20,0861649	0.019741992	19,7553092	0.018365537	18,6511937	0.017384381	19.37	1.10	0.02	0.00
338296,73	9 20,1374625	0,018334442	4 17,4445282		20,1280188		6 20,0860300		1		8 18,6507268					
349383,95	6	0,018298146	7	0,017144849	8	0,019504276	3	0,019596417	19,754523	0,019120531	9	0,017369657	19,37	1,10	0,02	0,00
360834,53	20,1360594 4	0,017043373	17,4448131 6	0,015450829	20,1266036 1	0,020191224	20,0871479 6	0,020758823	19,754969	0,018092239	18,6500479 9	0,017643231	19,37	1,10	0,02	0,00
	20,1362048		17,4451414	0,017023636	20,1278016	0,021565148	20,0857175	0,019927519	19,7551106	0,019622352	18,6497335	0,017862393	19,37	1,10	0,02	0,00
372660,40	3	0,019797164	1	.,	6	,	6	.,	.,	, -		,	- ,	,		.,

384873.84	20.1366011	0.020281481	17,4447682 9	0,017739701	20,1293855	0,024634428	20,0847744 6	0,021488689	19,7545027	0,021753306	18,6492953	0,018744629	19,37	1,10	0,02	0,00
307/87 56	20,1350713	0.021118780	17,4420797	0,01813116	20,1292810	0,020383602	20,0853425	0,02149354	19,7521393	0,021798663	18,6500020	0,017851463	19,37	1,10	0,02	0,00
410514 (0	20,1364373	0,021110703	17,4449509	0,017339164	20,1267904	0,024053556	20,0856132	0,019570855	19,7534489	0,020955836	18,6498957	0,018845336	19,37	1,10	0,02	0,00
410514,68	20,1351903	0,020663276	9 17,4439724	0.018250454	20,1275094	0.021602584	3 20,0846478	0.021844311	9 19.7535072	0.021306074	2 18.6486499	0.019642663	19.37	1.10	0.02	0.00
423968,75	1 20,1321989	0,021281244	2 17,4412678	0 019027833	2 20,1297206	0.023162305	8 20,0863457	0.023003215	19,7533350	0 022598599	18,6483882	0 020863961	19 37	1 10	0.02	0.00
437863,75	7 20,1388325	0,023955644	5 17,4419442	0.01877749	4	0.020012271	7 20,0895227	0 022280522	2 19,7570042	0.021664626	6 18,6484218	0.021602707	10.27	1 10	0.02	0.00
452214,15	5 20,1342125	0,030548603	1 17,4442503	0,010052014	20,1193989	0,023312271	3	0,023289555	9 19,7543865	0,021004020	6	0,021032707	19,37	1,10	0,02	0,00
467034,86	6 20.1332326	0,022754971	5 17.4443109	0,018853914	1 20.1280375	0,024047709	20,0843887	0,023723288	8 19.7548221	0,021494532	18,6493637	0,021074119	19,37	1,10	0,02	0,00
482341,29	3	0,023201952	6	0,019133923	5	0,02603078	4	0,024770403	5	0,023643404	6	0,02142222	19,37	1,10	0,02	0,00
498149,38	20,1344785	0,02384913	3	0,019005694	4	0,025846913	20,0834144 9	0,024171423	19,7522916	0,022242629	18,6483624	0,022397221	19,36	1,10	0,02	0,00
514475,56	20,1329943 2	0,023855998	17,4420292 2	0,021490939	20,1265979 3	0,026139697	20,0824231 7	0,025748476	19,7489576	0,024031714	18,6465791 3	0,023081752	19,36	1,10	0,02	0,00
531336,80	20,1312482 1	0,017920764	17,4405656 7	0,02233798	20,1241178 3	0,026495594	20,0809375	0,02622621	19,7511617 2	0,024774197	18,6473270 5	0,024841412	19,36	1,10	0,02	0,00
548750.65	20,1331148 4	0.021550918	17,4415831 4	0,022532905	20,1308625 2	0,025181126	20,0841759 7	0,029406118	19,7522746 3	0,024097788	18,6411233 3	0,025513757	19,36	1,10	0,02	0,00
566725 21	20,1325019	0.026221222	17,4408878	0,022745057	20,1247194	0,028536533	20,0807364	0,027001252	19,7495682	0,025833594	18,6460730	0,024144506	19,36	1,10	0,03	0,00
505200.40	20,1325503	0,020321332	17,4404662	0,023267993	20,1238461	0,027401051	20,0801898	0,027619548	19,7494245	0,026513961	, 18,6455159	0,02452978	19,36	1,10	0,03	0,00
585309,19	1 20,1310457	0,027041356	17,4416204	0.023489816	9 20,1249678	0.027930306	9 20.0805003	0.027402909	9 19,7500867	0.027550825	9 18,6466952	0.025325001	19.36	1.10	0.03	0.00
604491,91	6 20,1319301	0,025985682	3 17,4408968	0.024424444	1 20,1236955	0.028218041	20,0808881	0.028812054	4 19,7497561	0.02746965	4 18,6459956	0.024442285	10.26	1 10	0.02	0.00
624303,32	9 20,1315013	0,026658143	4 17,4404746	0,024424444	7 20,1233106	0,020210041	1	0,020813034	5 19,7493812	0,02740305	8	0,024443585	19,50	1,10	0,03	0,00
644764,02	5	0,027171499	6 17 4388391	0,024413323	7 20 1230791	0,028332466	20,0798303	0,028803349	1 19 7479268	0,028060779	18,6454712	0,024695839	19,36	1,10	0,03	0,00
665895,29	5	0,029353994	5	0,02568015	1	0,029198646	1	0,029951596	7	0,029124125	18,6435155	0,026922245	19,36	1,10	0,03	0,00
687719,11	20,1299789	0,030292261	5	0,02620105	5	0,030713798	5	0,030986851	19,7473715 5	0,030146057	18,6433906	0,02774946	19,36	1,10	0,03	0,00
710258,18	20,1292595 8	0,030781346	17,4381970 9	0,02707251	20,1212912 4	0,03167328	20,0780927 8	0,032164959	19,7472984	0,030781766	18,6431422 9	0,028643365	19,36	1,10	0,03	0,00
733535,94	20,1280437 5	0,031724556	17,4375610 6	0,027445801	20,1197082 8	0,032927973	20,0768898 1	0,032736815	19,7461203 5	0,031535647	18,6421387 7	0,029310709	19,36	1,10	0,03	0,00
757576,59	20,1270075 9	0,032400588	17,4367401 4	0,028135091	20,1193698 1	0,033045572	20,0758967 1	0,032982586	19,7452940 9	0,032414361	18,6413485 9	0,029719906	19,36	1,10	0,03	0,00
782405 14	20,1263601	0.033517244	17,4362249 6	0,028712328	20,1180285 6	0,033729762	20,0753412 6	0,033389287	19,7445288 6	0,03269962	18,6407134 8	0,030186935	19,36	1,10	0,03	0,00
808047 41	20,1251736	0.024720070	17,4365865	0,029776554	20,1164230	0,03513528	20,0758040	0,034255919	19,7450937	0,032440328	18,6395261	0,031500902	19,36	1,10	0,03	0,00
808047,41	20,1256133	0,034739979	9 17,4352205	0,029905268	, 20,1169210	0,035270809	ہ 20,0745350	0,035321187	, 19,7435372	0,033843188	4 18,6393704	0,031701619	19,36	1,10	0,03	0,00
834530,08	6	0,034848565	5 17,4346532	0 030883397	1 20,1164794	0.035804/02	5 20,0736529	0.036373/92	6 19,7430936	0.03/926126	18,6389680	0.032368252	19.36	1 10	0.03	0.00
861880,68	20,1250074	0,035664448	3	0,030003397	1	0,033004493	2	0,030373462	8	0,034320120	6	0,032300232	19,30	1,10	0,03	0,00

890127.65	20,1242823	0.036723102	17,4344439	0,031797426	20,1161912 8	0,037258822	20,0729939 4	0,037319666	19,7425313 6	0,036166304	18,6386784 3	0,033640524	19,35	1,10	0,04	0,00
919300 39	20,1247852	0.037513082	17,4343702	0,032401919	20,1165053	0,038028029	20,0729404	0,038298887	19,7424690 9	0,03661155	18,6387050 4	0,034155533	19,35	1,10	0,04	0,00
9/9/29 22	20,1238698	0.038/26681	17,4340847	0,033211968	20,1153156	0,039026584	20,0722459	0,03900986	19,7420937 8	0,037540331	18,6380967 8	0,035189074	19,35	1,10	0,04	0,00
980545 48	20,1230328	0.038621839	17,4333868 9	0,033608463	, 20,1145884 7	0,03915368	20,0714944 2	0,03937777	19,7410618 4	0,037987972	18,6373432 5	0,035499932	19,35	1,10	0,04	0,00
1012681 54	20,1440475	0.002899975	17,4514353 7	0,00244729	20,1362640	0,002889247	20,0925683 2	0,003720236	19,7623874 8	0,003541205	18,6578018	0,001313349	19,37	1,10	0,00	0,00
1045870 81	20,1449645	0.003620173	, 17,4525665 6	0,003534426	20,1372111 9	0,004198358	20,0940194 7	0,003527486	19,7631096 6	0,003206502	- 18,6592482	0,002978633	19,38	1,10	0,00	0,00
1080147 82	20,1454916	0.004236754	17,4516450	0,004279858	20,1362166	0,004522916	20,0936056 5	0,004878947	19,7626964 4	0,004571608	18,6582452 4	0,0039084	19,37	1,10	0,00	0,00
1115548 21	20,1445027	0.004200607	17,4524662	0,004550477	20,1369217	0,005286572	20,0941406 9	0,005078858	19,7629532	0,004654225	18,6579912 4	0,003791077	19,37	1,10	0,00	0,00
1152108 80	20,1431268	0 000489793	17,4486313 4	-0,00074207	20,1431337	0,010601774	20,0942706 1	0,00525878	19,7632057	0,004079748	18,6573614 7	0,004638467	19,37	1,10	0,00	0,00
1189867 61	20,1452109	0.005313797	17,4527869	0,003182083	20,1390471 9	0,0070534	20,0924799 9	0,00623197	19,7627910 7	0,005133532	, 18,6580914 9	0,003779861	19,38	1,10	0,01	0,00
1228863 92	20,1444533	0.005137669	17,4515130 9	0,004503234	20,1362899	0,005424885	20,0933343 1	0,005021347	, 19,7619307 1	0,00498308	18,6579957	0,003934757	19,37	1,10	0,00	0,00
1269138 28	20,1443813	0.005059134	17,4521223	0,004863346	20,1363273	0,005527563	20,0929113 5	0,005483459	19,7621434	0,004706111	18,6574059 1	0,004152535	19,37	1,10	0,00	0,00
1310732 58	, 20,1442946 2	0.004589422	17,4518000 6	0,003561212	20,1361216	0,005021036	20,0928621 6	0,007778399	19,7624171 5	0,005697885	18,6566410 5	0,00295148	19,37	1,10	0,00	0,00
1353690.07	20,1438168	0.004337701	17,4515148 3	0,004888753	20,1350759 9	0,004587188	20,0922534 9	0,005612382	19,7614349 5	0,004815342	18,6570183 9	0,00406457	19,37	1,10	0,00	0,00
1398055.44	20,1432659	0.005068493	17,4501291	0,004115641	20,1353645	0,005234437	20,0923410 1	0,005364621	19,7615437 5	0,004646449	18,6568908 3	0,004308881	19,37	1,10	0,00	0,00
1443874.82	20,1434527	0.004874302	17,4504606 9	0,004475665	20,1270487 2	0,007750281	20,0833446 7	0,007832237	19,7612837 1	0,004855052	18,6569464 9	0,003627221	19,37	1,10	0,01	0,00
1491195.88	20,1342205 8	0.007406697	17,4501219 9	0,004172039	20,1265735 6	0,008185094	20,0833290 6	0,008525847	19,7526505 2	0,006727262	18,6563004 3	0,003669648	19,37	1,10	0,01	0,00
1491195.88	20,1342205	0.007406697	17,4501219 9	0,004172039	20,1265735 6	0,008185094	20,0833290 6	0,008525847	19,7526505 2	0,006727262	18,6563004 3	0,003669648	19,37	1,10	0,01	0,00
1540067.81	20,1342751 7	0.007911854	17,4506923 7	0,003861219	20,1263424 8	0,007736844	20,0827451 5	0,007919836	19,752491	0,006865188	18,6561970 6	0,003611809	19,37	1,10	0,01	0,00
1590541,46	20,1335776 6	0,006878135	17,4430417 8	0,005818025	20,1266577 6	0,008055637	20,0828845 1	0,008037703	19,7526535 4	0,007621057	18,6485793 6	0,006256219	19,36	1,10	0,01	0,00
1642669,31	20,1340383	0,007061239	17,4429649 9	0,00631669	20,1267794 6	0,007117428	20,0830266	0,007803155	19,7523967 7	0,007121441	18,6485916 9	0,006262309	19,36	1,10	0,01	0,00
1696505,58	20,1342264 7	0,00733358	17,4438873 7	0,005979939	20,1260120 9	0,007477085	20,0823716 1	0,008430701	19,7519663 8	0,007838999	18,6483976 2	0,006277018	19,36	1,10	0,01	0,00
1752106,27	20,1336985 5	0,007308399	17,4421896 1	0,006862671	20,1258233 6	0,007369419	20,0825284	0,007340623	19,7525268 9	0,007322852	18,6481250 2	0,006567529	19,36	1,10	0,01	0,00
1809529,19	20,1330414 1	0,00773384	17,4421558 6	0,006339292	20,1258695 9	0,007255152	20,0824981 2	0,008335358	19,7517428 4	0,007533339	18,6478277 1	0,006024548	19,36	1,10	0,01	0,00
1868834,07	20,1334970 7	0,007672717	17,4427268 1	0,006630816	20,1256402 2	0,008038409	20,0824311 5	0,008035721	19,7515670 2	0,007186632	18,6478193 9	0,00688671	19,36	1,10	0,01	0,00
1930082,59	20,1332246 3	0,007478543	17,4426035 6	0,006948312	20,1253021 3	0,007976054	20,0822278 6	0,007961457	19,7515358 3	0,007315682	18,6477525	0,006422999	19,36	1,10	0,01	0,00

1993338 //5	20,1333841 1	0.00803513	17,4421739	0,006608763	20,1252147	0,007801203	20,0819481	0,008263766	19,7511435 7	0,007738937	18,6472485 8	0,00674059	19,36	1,10	0,01	0,00
1555550,45	20,1331952	0,00003313	17,4420174	0,006545258	20,1251918	0,008108223	20,0816833	0,008170733	, 19,7514238	0,00752915	18,6469362	0,006852432	19,36	1,10	0,01	0,00
2058667,43	4 20,1328872	0,007683757	8 17,4415836	0.000001001	5 20,1250439	0.000550.400	6 20,0817162	0.000107000	4 19,7508908	0.007200015	5	0.00000000	10.20	1 10	0.01	0.00
2126137,48	2	0,008083004	6	0,006901964	9	0,008559406	4	0,009137892	5	0,007360015	18,647282	0,006688966	19,36	1,10	0,01	0,00
2195818,77	20,1325834	0,00926331	17,4420428 5	0,006954221	20,1242505	0,008474476	20,0814080	0,008140305	2	0,007699048	7	0,006700558	19,36	1,10	0,01	0,00
2267783,77	20,1322828 4	0,007718714	17,4415956 1	0,006902546	20,1244485 8	0,008339264	20,0812361 9	0,008879854	19,7510138 8	0,00790939	18,6470985 8	0,007082338	19,36	1,10	0,01	0,00
23/2107 33	20,1323424 3	0.00867685	17,4414659 8	0,006973412	20,1248895 1	0,008389055	20,0812458 7	0,008911026	19,7507382 7	0,007386957	18,6467169 7	0,007141338	19,36	1,10	0,01	0,00
2342107,55	20,1324846	0,00007005	17,4413872	0,007104485	20,1240191	0,008643658	, 20,0807833	0,008707992	, 19,7506164	0,00832544	, 18,6469008	0,007192522	19,36	1,10	0,01	0,00
2418866,74	4	0,008446467	6 17,4413636	0.006786065	6 20,1240227	0.008600678	2 20,0809967	0.000702405	7 19,7503560	0.000207516	9 18,6466159	0.007012027	10.26	1 10	0.01	0.00
2498141,84	20,1322264	0,008457491	1 17 //1/168	0,000780005	1 20 1240453	0,008009078	1	0,008782485	9 19 7503658	0,008307510	2 18 6463268	0,007013937	19,30	1,10	0,01	0,00
2580015,07	8	0,008361229	6	0,007156626	7	0,008528461	8	0,008705311	5	0,008269785	10,0405200	0,007203218	19,36	1,10	0,01	0,00
2664571,59	20,1319407 4	0,008453161	17,4411309 9	0,006841853	20,1242128 5	0,008139468	20,0807169 6	0,008781778	19,7507591	0,007707684	18,6462491 9	0,007250223	19,36	1,10	0,01	0,00
2751899 33	20,1319184 8	0 007877772	17,4411643 1	0,006585565	20,1241533	0,008326845	20,0806615 8	0,008596177	19,7505274	0,007756118	18,6463014 9	0,007230302	19,36	1,10	0,01	0,00
2042000 42	20,1318001	0.007007400	17,4412982	0,006828441	20,1240218	0,007650785	20,0807306	0,007995469	19,7505790	0,007548352	18,6461256	0,0064858	19,36	1,10	0,01	0,00
2842089,13	5 20,1317449	0,007327199	ь 17,4408802	0.006225038	4 20,1241684	0.007516182	2	0.00783847	5 19,7508366	0.007/3567	8 18,6465316	0.006373335	19.36	1 10	0.01	0.00
2935234,77	9 20.1320010	0,007282523	5	0,000223030	8 20.1239255	0,007510102	20.0807121	0,00703047	9 19.7503214	0,00743307	8 18.6461768	0,000373333	15,50	1,10	0,01	0,00
3031433,13	2	0,007524523	17,4411487	0,006140234	9	0,007403772	3	0,007889381	4	0,006858693	1	0,00625956	19,36	1,10	0,01	0,00
3130784,27	20,1316039 2	0,006826044	17,4411238 7	0,006355879	20,1236113 3	0,006951075	20,0803256 3	0,007344957	19,7503319 1	0,007506208	18,6465249 9	0,005322455	19,36	1,10	0,01	0,00
3233391.51	20,1315035 2	0.006571808	17,4406648 1	0,00594547	20,1238263 4	0,007495318	20,0803778	0,007482141	19,7499241 5	0,006858722	18,6457657 8	0,006178133	19,36	1,10	0,01	0,00
2220201 50	20,1315483	0.000000.4200	17,4408269	0,005889519	20,1237272	0,007172578	20,0801174	0,007362295	19,7502173	0,006834977	18,6458097	0,005964414	19,36	1,10	0,01	0,00
3339301,50	ı 20,1314102	0,006864388	, 17,4405567	0 005889014	9 20 1237/31	0 0068/1919	1 20,0801817	0 007173994	9 19,7498747	0 006384778	9 18 6/58351	0 005882679	19 36	1 10	0.01	0.00
3448804,63	4 20.1314977	0,006499399	3 17.4409808	0,000000014	20,1237431	0,000041515	6 20.0802510	0,007173334	8 19.7498164	0,000304720	18.6457548	0,000002075	15,50	1,10	0,01	0,00
3561834,56	2	0,006685104	3	0,00547768	20,1239307	0,007076704	2	0,007350054	6	0,0065541	2	0,005996496	19,36	1,10	0,01	0,00
3678568,88	20,1312088	0,006595213	17,4412492 7	0,005392599	20,1239095	0,00678806	20,0802865 5	0,007178055	3	0,006669309	18,0458839 3	0,005694097	19,36	1,10	0,01	0,00
3799129,02	20,1314722 7	0,006469577	17,4407663	0,006071837	20,1240072 5	0,006723569	20,0800954	0,007077359	19,7499872 2	0,006416645	18,6460981 7	0,005868104	19,36	1,10	0,01	0,00
2022640.26	20 121/100	0 006620808	17,4407376	0,005651453	20,1239143	0,006831367	20,0805961	0,006922236	19,7504578 7	0,006553689	18,6461540 1	0,005849771	19,36	1,10	0,01	0,00
3923040,30	20,1314193	0,000030898	17,4411208	0.00586011	20.1242717	0.006798072	20,0808521	0.007226966	, 19,7507191	0.006338296	18,6462529	0.005603207	19.36	1.10	0.01	0.00
4052232,38	2 20,1320878	0,006513292	8 17,4410886	0.005505024	20,1245758	0.0000000001	8	0.000001771	3 19,7507326	0.00000.4707	4 18,6464340	0.005461742	10.20	1.10	0.01	0.00
4185038,84	4 20 1323169	0,006415351	5 17 4417417	0,005585821	4 20 12/8250	0,006682201	20,0808238	0,006931//1	3 19 7511734	0,006024797	2 18 6468161	0,005461743	19,30	1,10	0,01	0,00
4322197,85	8	0,00618204	6	0,005515869	8	0,006085582	3	0,006459939	1	0,006109638	10,0400101	0,005225555	19,36	1,10	0,01	0,00
4463852,06	20,1326443 3	0,005898823	17,4423891 3	0,004721904	20,1253097 5	0,005939404	20,0815788 1	0,006305831	19,7517987 2	0,005671257	18,6471331 7	0,005051551	19,36	1,10	0,01	0,00

4610148.80	20,1328124 5	0.005537171	17,4427144	0,00483257	20,1256178 9	0,005430669	20,0819460 1	0,005805397	19,7519325 1	0,00520912	18,6472192 5	0,004746462	19,36	1,10	0,01	0,00
4761240.21	20,1329373	0.004632076	17,4424909	0,004282171	20,1256988	0,004920673	20,0821242 6	0,005226085	19,7520634 7	0,004747656	18,6475347 5	0,004276265	19,36	1,10	0,00	0,00
4917283 44	20,1329191	0.004127636	17,4427317 5	0,003338325	20,1254811	0,004069373	20,0821570	0,004583906	19,7520469 7	0,003955734	18,6474806 7	0,003635973	19,36	1,10	0,00	0,00
5078440.78	20,1326307	0.003942946	17,4422879 5	0,003412587	20,1252487	0,003852014	20,0819267 2	0,004431794	19,7517760 3	0,003825782	18,6473541	0,003503982	19,36	1,10	0,00	0,00
5244879 84	20,1331476	0 00443149	17,4426334 3	0,003783761	20,1255825 7	0,004576494	20,0821860 7	0,004790604	19,7521435 5	0,004279422	18,6479748 3	0,004232692	19,36	1,10	0,00	0,00
5416773 71	20,1339563 7	0.005491084	17,4434874 1	0,004531164	20,1266761	0,005488672	20,0829193 7	0,005830686	19,7530458 6	0,005150023	18,6484219 5	0,00502885	19,36	1,10	0,01	0,00
5594301 17	20,1348225	0.006131952	17,4440938 7	0,005318619	20,1275536	0,006081643	20,0835431	0,006325217	19,7534830 1	0,005888049	18,6489680 9	0,005474541	19,37	1,10	0,01	0,00
5777646.85	20,1347357	0.005881586	17,4443811 7	0,005561243	20,1276464 3	0,006300812	20,0838904 9	0,00661788	19,7537975 5	0,006104271	18,6491089 9	0,005655212	19,37	1,10	0,01	0,00
5967001 44	20,1349454	0.006187287	17,4442195	0,005424579	20,1278522 6	0,006353311	20,0841523 9	0,006773493	19,7541091 1	0,005884588	18,6493049 9	0,005845066	19,37	1,10	0,01	0,00
6162561.87	20,1352163	0.006282452	17,4445510 5	0,005350817	20,1281538	0,006135443	20,0844306 9	0,006676388	19,7544454 9	0,006252719	18,6497908 5	0,00572521	19,37	1,10	0,01	0,00
6364531.53	20,1356298	0.006268259	17,4449929	0,005504307	20,1283146 6	0,006159312	20,0849104 3	0,006772596	19,7548168 2	0,006046817	18,6501725 4	0,005769248	19,37	1,10	0,01	0,00
6573120.48	20,1360092	0.006310953	17,4450901 2	0,005449171	20,1288264	0,006295438	20,0850861 8	0,006945988	19,7547486 1	0,006118074	18,6504767 7	0,006291162	19,37	1,10	0,01	0,00
6788545.65	20,1360260	0.006236401	17,4451696 4	0,005320993	20,1290502 9	0,006040397	20,0852702	0,006389137	19,7548670 4	0,005647821	18,6505857 3	0,005797871	19,37	1,10	0,01	0,00
7011031.08	20,1361573 8	0.005690422	17,4454201 2	0,005123573	20,1290166 8	0,005587698	20,0851049	0,005788607	19,7548245 1	0,005131481	18,6503852	0,005265682	19,37	1,10	0,01	0,00
7240808,18	20,1362736 7	0,004751567	17,4457395 1	0,004569017	20,1292718 4	0,005006689	20,0856155 5	0,005356079	19,7552113 6	0,004748848	18,6507684 7	0,004473123	19,37	1,10	0,00	0,00
7478115,91	20,1367451 9	0,004024008	17,4460298 5	0,004024444	20,1298421 3	0,004284127	20,0860858	0,004646691	19,7558810 4	0,004075572	18,6513126 8	0,004219125	19,37	1,10	0,00	0,00
7723201,08	20,1372171 8	0,003686006	17,4465564 6	0,00284697	20,1308930 7	0,003563361	20,0872240 4	0,003547794	19,7569025 6	0,003075351	18,6524297 8	0,003440136	19,37	1,10	0,00	0,00
7976318,59	20,1389532 1	0,002793233	17,4478221 3	0,002738309	20,1317371 2	0,002419894	20,0883027 3	0,003472655	19,7580385 4	0,002967382	18,6533021 3	0,003152751	19,37	1,10	0,00	0,00
8237731,69	20,1401281 3	0,002163143	17,4487958 1	0,002414556	20,1329710 2	0,001711684	20,0893802 7	0,002805871	19,7591561 3	0,002223662	18,6543670 3	0,002627896	19,37	1,10	0,00	0,00
8507712,24	20,1412605 6	0,001437778	17,4499474 1	0,001516787	20,1343390 7	0,00108027	20,0907353 6	0,001606682	19,7603040 4	0,001169855	18,6556602 2	0,001792792	19,37	1,10	0,00	0,00
8786541,05	20,142769	0,000971842	17,4511690 2	0,001307499	20,1357686 8	0,000450769	20,0921139 2	0,000642666	19,7618671 2	0,000412955	18,6567997 4	0,001024406	19,37	1,10	0,00	0,00
9074508,09	20,1442135 5	-3,89E-05	17,4524619 6	0,000886179	20,1374029 1	-7,94E-05	20,0937922 9	-6,58E-06	19,7632220 9	- 0,000139888	18,6581706 8	0,000460567	19,37	1,10	0,00	0,00
9371912,87	20,1460830 1	-0,00113968	17,4539546	9,12E-05	20,1391448 7	- 0,000734127	20,0954740 9	- 0,000397445	19,7651271 5	- 0,000856867	18,6597593 5	- 0,000368795	19,38	1,10	0,00	0,00
9679064,69	20,1483114 8	۔ 0,001424436	17,4560348 7	- 0,000469152	20,1415582 6	- 0,001205406	20,0977859 4	- 0,000901959	19,7673107 1	- 0,001058467	18,6616909 7	- 0,000366462	19,38	1,10	0,00	0,00
9996282,99	20,1507701 6	۔ 0,000635125	17,4583502 2	0,000112494	20,1444043 9	- 0,000905059	20,1005614 3	- 0,000163332	19,7698339 8	- 0,000139077	18,6643149 6	0,000247283	19,38	1,10	0,00	0,00
10323897,7 0	20,1670823 3	0,047905311	17,4723133 3	0,041326906	20,1606296 1	0,047564407	20,1165092 7	0,048196867	19,7861430 3	0,046986187	18,6796947 9	0,044316137	19,40	1,10	0,05	0,00

10662249,5	20,1699161	0.05000.4400	17,4742967	0,043313482	20,1632794	0,049776388	20,1196350	0,050831018	19,7888109	0,048602357	18,6816386	0,046249372	19,40	1,10	0,05	0,00
3 11011690,3	2 20,1714057	0,050394409	6 17,4763616	0.044000000	8 20,1654482	0.054704476	3 20,1221126	0.052602742	9 19,7910330	0.0500000000	9 18,6840493	0.047644550	40.40		0.05	0.00
9	3	0,051803404	9	0,044932839	3	0,051701176	4	0,052602713	5	0,050266233	4	0,047641558	19,40	1,10	0,05	0,00
11372583,7	20 17/080/	0.052260/15	17,4784588 5	0,045900855	20,1678552	0,053581838	20,1237008	0,05450076	19,7928122	0,052262577	18,6862709	0,048702343	19,40	1,10	0,05	0,00
11745304,8	20,1740894 20,1771445	0,055500415	17,4810869	0.047571165	7	0.055240204	° 20,1265471	0.055260500	4 19,7953384	0.052007000	° 18,6877256	0.0400055555	10.41	1 10	0.05	0.00
2	7	0,055117178	6	0,047571165	20,1697549	0,055240204	8	0,055360598	6	0,053887989	1	0,049885666	19,41	1,10	0,05	0,00
12130241,3	20,1795721 8	0 055853745	17,4830914	0,047626567	20,1726957 3	0,056131049	20,1286271 1	0,05728163	19,7980202 8	0,054752479	18,6898500 8	0,050944928	19,41	1,10	0,05	0,00
12527793,6	20,1818187	0,000000740	17,4848940	0.040064248	20,1670398	0.06011222	20,1224058	0.060827170	19,7998397	0.056622204	18,6924697	0 05228212	10.41	1 10	0.06	0.00
7	9	0,057319768	4	0,049004348	7	0,00011223	9	0,000837173	2	0,030022204	2	0,05528212	19,41	1,10	0,00	0,00
12938375,2	20,1745511	0.062641014	2	0,050294448	20,1693740 6	0,061179533	20,1260365 9	0,061916399	19,8020542 7	0,057644707	18,6945316	0,054024223	19,41	1,10	0,06	0,00
13362413,0	20,1786433	-,	17 4890814	0 051831085	20,1726776	0 062973377	20,1288815	0 063415816	19,7973347	0 062146182	18,6970180	0 055836812	19 41	1 10	0.06	0.00
4	3	0,06268774	17,4030614	0,001001000	9	0,002373377	2	0,003413010	1	0,002140102	9	0,00000012	13,41	1,10	0,00	0,00
3	20,1850848	0,064514242	17,4929585 9	0,053131462	4	0,064244407	20,1327731	0,064750444	19,8010330	0,06296388	4	0,058707223	19,41	1,10	0,06	0,00
14252635,9	20,1859771		17,4882964	0.056225104	20,1795949	0.065309473	20,1362811	0.065044742	19,8046004	0.064104419	18,6961912	0.060432641	19.42	1.10	0.06	0.00
4	6 20 1871192	0,064990878	2	-,	4 20 1806153	-,	3 20.1370062	.,	3	-,	1 18 6967105	-,	- /	, -	-,	-,
8	20,1071152	0,065611096	8	0,056736568	7	0,065895364	6	0,066334499	8	0,064524843	8	0,060943175	19,42	1,10	0,06	0,00
15202166,7	20,1890260		17,4904194	0,05764744	20,1818472	0,065849071	20,1372009	0,066909156	19,8072449	0,065306344	18,6984316	0,06151265	19,42	1,10	0,06	0,00
5 15700397 2	1 20 1935518	0,06687754	5 17 4952484	-,	8 20 1878251	-,	20 1440469	-,	8 19 8119937	-,	4 18 7033345	-,	- /	, -	-,	-,
8	9	0,066512419	9	0,056920617	7	0,065909554	20,1440405	0,066700301	9	0,065300639	7	0,06099733	19,42	1,10	0,06	0,00
16214956,6	20.200224	0.00000000	17,5006811	0,056594359	20,1944373	0,065900245	20,1506967	0,066087954	19,8190037	0,065037864	18,7096603	0,061204061	19,43	1,10	0,06	0,00
5 16746380.0	20,2000221 20,2054533	0,06626395	2 17.5051053		6 20.1997899		9 20.1559169		8 19.8253408		5 18.7145896					
1	8	0,066526257	8	0,057143867	2	0,065721693	2	0,066723581	3	0,06484986	6	0,061078993	19,43	1,10	0,06	0,00
17295220,0	20,2120037	0 066146574	17,5104532	0,056641907	20,2057955	0,065531234	20,1625322	0,066503918	19,8314793 °	0,063516125	18,7203977	0,061083355	19,44	1,10	0,06	0,00
17862047,5	, 20,2206824	0,000140374	2 17,5184013		,		20,1712067		° 19,8399818		, 18,7281276					
8	9	0,065071097	7	0,055801667	20,2145261	0,06458441	6	0,064760364	3	0,062734922	7	0,059439828	19,45	1,10	0,06	0,00
18447452,1	20 2206215	0.065010251	17,5264484	0,056301269	20,2248514 E	0,064488046	20,1798964	0,064575369	19,8483117 E	0,063223663	18,7364862	0,059577545	19,46	1,11	0,06	0,00
19052042,5	20,2387062	0,005015551	17,5351178	0.05000015	20,2339180	0.00570005	20,1893354	0.000440075	19,8579207	0.004220540	18,7450133	0.000720054	10.47		0.00	0.00
1	2	0,066258409	6	0,056809915	7	0,065769985	5	0,066416875	6	0,064330519	9	0,060729051	19,47	1,11	0,06	0,00
19676447,5 3	20,2497512 م	0.06655055	17,5438626 1	0,057354648	20,2446248 1	0,066268709	20,201001	0,067181512	19,8689504	0,064984442	18,7552065 4	0,061569403	19,48	1,11	0,06	0,00
20321316,5	20,2619273	0,00033033	17,5536203	0.059491101	20,2564157	0 06780624	20,2128566	0.069005205	19,8798319	0.066120272	18,7659258	0.06220975	10.40	1 1 1	0.07	0.00
9	6	0,068176649	9	0,036461191	5	0,00789034	7	0,008903203	1	0,000139273	5	0,00329873	19,49	1,11	0,07	0,00
20987320,3	20,2741684 1	0.070444799	17,5649845 4	0,060751857	20,2688473	0,070453962	20,2248429 6	0,071435598	19,8931165 1	0,069116648	18,///636/	0,065440421	19,50	1,11	0,07	0,00
21675151,5	20,2876999	0,070111155	17,5768713	0.063/87328	20,2817615	0 073676857	20,2392185	0 07/803995	19,9065107	0 072153913	18,7896357	0.068448364	19 51	1 1 1	0.07	0.00
0	6	0,074069651	1	0,005407520	9	0,075070057	2	0,074003555	3	0,072133313	1	0,000440504	15,51	1,11	0,07	0,00
22385525,3 9	20,3014376	0,077990991	3	0,067037706	20,2960174	0,077756835	20,2521063 5	0,07859526	19,9208969	0,07664231	10,0020005	0,072524572	19,53	1,11	0,08	0,00
23119180,8	20,3164064		17,6017694	0.071359026	20,3112070	0.082331689	20,2675576	0.082770954	19,9350135	0.081410894	18,8164658	0.076598563	19.54	1.11	0.08	0.00
2	6 20 3302129	0,082614557	4	2,07 2000020	9 20 3254204	2,302001005	9	2,0027700004	4	2,002.120004	2	2,07 0000000	10,01	-,	0,00	0,00
23070000,8	4	0,087670845	6	0,075797461	3	0,087412969	20,2809167	0,0879164	3	0,085885593	2	0,081504638	19,55	1,11	0,08	0,00

24659413,4	20,3438447	0 004687605	17,6258712	0,081935393	20,3389403	0,09442073	20,2946171	0,094987741	19,9623775 1	0,092169807	18,8419004	0,088880054	19,57	1,11	0,09	0,01
25467592,4	20,3585037	0,094087095	17,6388082	0,087593814	20,3544606	0,100811645	20,3098632	0,101498982	19,9771993	0,099058357	18,8551895	0,095232151	19,58	1,11	0,10	0,01
/ 26302258,4	6 20,3753651	0,100592854	8 17,6532693	0,090356938	6 20,3709038	0,103887202	8 20,3273432	0,105117542	2 19,9944196	0,102970189	9 18,8712026	0,098476745	19,60	1,11	0,10	0,01
9 27164279,5	2 20,3916924	0,104361122	7 17,6669418	0 096022287	4 20,3874075	0 110396818	3 20,3433234	0 111146472	7 20,0107532	0 10915845	18,8861534	0 104334681	19.61	1 11	0 11	0.01
8 28054552,2	5 20,4085527	0,110780556	1	0 100966678	3 20,4041296	0 115979822	4	0 116760623	9 20,0268493	0 11//81895	7 18,9016027	0 109568085	19.63	1 1 2	0.11	0.01
4 28974002,3	2 20,4250217	0,116617977	17,6963958	0,100500070	4 20,4209481	0,113575022	20,3770284	0,110/00025	8 20,0439566	0,114401000	5 18,9171206	0,105500005	15,05	1,12	0,11	0,01
9	5	0,121631116	6 17 7110747	0,105514019	2	0,121189245	6	0,122108711	8	0,119469944	5	0,114556921	19,65	1,12	0,12	0,01
7	20,4424303	0,125813826	3	0,109468076	6	0,124939251	20,3348330	0,125554963	8	0,123513922	8	0,118799864	19,66	1,12	0,12	0,01
30904291,5 0	20,4638591 1	0,1305452	17,7308868 5	0,113805334	20,4605797	0,12990177	20,4167473 9	0,130343781	20,0828599	0,128122244	18,9534677 4	0,123483975	19,68	1,12	0,13	0,01
31917138,0 1	20,4867536 1	0,134768687	17,7506354	0,117333383	20,4835011 8	0,133972841	20,4392113 6	0,135199461	20,1058049	0,13217724	18,9738913	0,127505615	19,71	1,12	0,13	0,01
32963179,2 0	20,5108694 9	0.139522045	17,7715389 1	0,121635702	20,5077807 1	0,138618505	20,4638268 1	0,139368902	20,1296956 4	0,136620216	18,9963101 9	0,131405132	19,73	1,12	0,13	0,01
34043502,9 8	20,5366763 4	0 143952114	17,7942896 6	0,125277507	20,5338929 4	0,143044841	20,4890527 3	0,144234085	20,1558605 6	0,141702909	19,0207900 6	0,136347625	19,76	1,12	0,14	0,01
35159232,9	20 5664222	0 1 4 7 2 0 6 2 7 7	17,8206908	0,128271302	20,5637568	0,145640863	20,5184782	0,147246377	20,1857862	0,144262361	19,0485724	0,13893146	19,78	1,12	0,14	0,01
36311529,4	20,5946327	0,147200377	17,8457356	0,13279732	, 20,5923592	0,151071776	20,5476693	0,152284892	20,2139364	0,148994331	19,0746547	0,143266017	19,81	1,13	0,15	0,01
1 37501590,8	9 20,6270481	0,152181941	1 17,8744524	0.137271445	20,6256372	0.156018816	ь 20,5803266	0.157062333	9 20,2469380	0.153922624	4 19,1052009	0.147689763	19.84	1.13	0.15	0.01
6 38730654,9	3 20,6622757	0,15697115	5 17,9053007	0 141602001	7 20,6610206	0 161536999	5 20,6166912	0 162245206	1 20,2822424	0 150184417	8 19,1374097	0 15 295 1746	10.99	1 1 2	0.16	0.01
7	3 20 2004177	0,162300635	3	0,141092001	2	0,101320888	5	0,102245306	9	0,139184417	9	0,152851746	19,88	1,13	0,16	0,01
4000000,0 0	20,7004177	0,1654657	5	0,14373877	6	0,164914348	20,0545455 9	0,164998894	4	0,162885469	1 <i>3</i> ,1724409 7	0,155283017	19,91	1,13	0,16	0,01

APÊNDICE C

ESTE APÊNDICE APRESENTA PARTE DAS INSTRUÇÕES PARA CUMPRIMENTO COM OS REQUISITOS DE EFEITOS DIRETOS DE DESCARGAS ATMOSFÉRICAS, CONFORME CONSTA NA

ARP 5412- REV. A

	SAL ARP5412 Revision A
5.6	Lightning Strike Zones:
	Due to the lightning attachment process, not all locations on an aircraft are exposed to the same lightning environment components. To optimize lightning protection, the aircraft will therefore, be divided into different lightning strike zones. These zones will then be protected against their applicable components of the lightning environment.
	In general an aircraft can be divided into the following zones:
	Zone 1A: First Return Stroke Zone Zone 1B: First Return Stroke Zone with Long Hang-On Zone 1C: Transition Zone for First Return Stroke Zone 2A: Swept Stroke Zone Zone 2B: Swept Stroke Zone with Long Hang-On Zone 3: Current Conduction Zone
	Zone definitions and methods of locating them on particular aircraft are given in ARP5414
6. I	DEALIZED STANDARD LIGHTNING ENVIRONMENT:
6.1	General:
	The environment waveforms presented in this chapter represent idealized environments which are to be applied to the aircraft for purposes of analysis and testing. The waveforms are not intended to replicate a specific lightning event, but they are intended to be composite waveforms whose effects upon aircraft are those expected from natural lightning.
	The standard lightning environment is comprised of individual voltage waveforms and current waveform components which represent the important characteristics of the natura lightning flashes.
	In the waveform descriptions that follow, parameters of particular importance to the effect (direct or indirect) to be considered, are included whereas other parameters are omitted. For example, for direct effects evaluations, peak current amplitude, action integral and time duration are of primary importance, whereas for indirect effects evaluations, rates of current rise and decay as well as peak amplitude are important.
	Not all surfaces of an aircraft need to be designed to survive the same lightning threat. The applicable design parameters and test waveforms for each zone are presented in 6.4
	This section presents waveforms and their related parameters to be applied for aircraft structures and equipment lightning protection design and verification purposes.

6.2	Idealized Voltage Waveforms:
	The idealized voltage waveform represents that portion of the electric field important for assessment of lightning attachment to aircraft structures.
	The basic voltage waveform to which vehicles are subjected for analysis or test is one that represents an electric field which increases until breakdown occurs either by puncture of solid insulation such as the fiberglass skin of a radome, or flashover through the air or across an insulating surface. The path that the flashover takes, either puncture or surface flashover, depends in part on the waveshape of the electric fields.
	It is sometimes necessary to determine the critical voltage amplitude at which breakdown occurs. This critical voltage level depends upon both the rate-of-rise of voltage and the rate of voltage decay. Two examples are: (1) determining the strength of the insulation used on electrical wiring; and, (2) determining the points from which electrical streamers appear on a vehicle as a lightning flash approaches.
	Since there is a wide range of possible electric field waveforms produced by natural lightning, two voltage waveforms have been established, representing fast and slow rates of field rise. These are Waveform A described in 6.2.1 and Waveform D presented in 6.2.4.
	Two other high voltage waveforms designated B and C are described in 6.2.2 and 6.2.3 respectively. The first is a full voltage waveform to be used wherever an impulsive field that does not reach breakdown is required, i.e. streamer testing. The second waveform is employed for fast front model tests. Waveform D can also be used for slow front model tests.
	It has been determined in laboratory testing that the results of attachment point testing of aircraft models are influenced by the voltage waveform. Fast rising waveforms (rise in the order of a few microseconds) produce a relatively small number of attachment points, usually to the apparent high field regions on the model and may produce a greater likelihood of puncture of dielectric skins. Slow front waveforms (in the order of hundreds of microseconds) produce a greater spread of attachment points, possibly including attachments to lower field regions.
	The voltage waveforms presented in this ARP are intended for evaluation of possible lightning attachment locations and/or dielectric breakdown paths through non-conducting surfaces or structures.
6.2.'	Voltage Waveform A: This waveform rises at a rate of 1000kV/µs (±50%) until its increase is interrupted by voltage breakdown of the intervening air gap, resulting in the puncture of, or flashover across, the object under test. At that time the voltage collapses to zero. The rate of voltage collapse or the decay time of the voltage if breakdown does not occur (open circuit voltage of a lightning voltage generator) is not specified. The voltage Waveform A is shown in Figure 5.

FOL	HA DE REGISTRO	DO DOCU	MENTO	
1. CLASSIFICAÇÃO/TIPO	2. DATA	^{3.} REGISTRO N	1°	^{4.} N° DE PÁGINAS
DM	25 de fevereiro de 2010	CTA/ITA/D	M-149/2009	123
^{5.} TÍTULO E SUBTÍTULO:				
Caracterização da Anisotropia 1	na Permissividade Compl	exa em Comp	oósito de Fibra	a de Carbono (CFC)
6. AUTOR(ES):				
Francisco Eduardo de Carval	ho			
7. INSTITUIÇÃO(ÕES)/ÓRGÃO(S)	INTERNO(S)/DIVISÃO(ÕES):		
Instituto Tecnológico de A	veronáutica – ITA			
8. PALAVRAS-CHAVE SUGERIDA	AS PELO AUTOR:			
9. Anisotropia; Permissiv	idade Complexa, Cor	npósito de	Fibra de Ca	rbono
9.PALAVRAS-CHAVE RESULTANT	'ES DE INDEXAÇÃO:			
Materiais compósitos; Fi	bras de carbono; M	ledição de	permissivic	dade; Anisotropia
Blindagem: Radiação elet	romagnética: Estrutu	ras de aero	naves: Lam	inados: Ensaios de
materiais: Engenharia de r	nateriais			
10. APRESENTAÇÃO:	X	Nacional	Internaci	onal
ITA, São José dos Campos. Cu Computação. Área de Microor em 22/12/2009. Publicada em 2	rso de Mestrado. Prograr Idas e Optoeletrônica. O 2009.	na de Pós-Gra rientador: All	aduação em Es perto José de	ngenharia Eletrônica (Faro Orlando. Defesa
11. RESUMO:				
A ~ 1	. ,		1	

A caracterização da anisotropia na permissividade relativa complexa do Compósito de Fibra de Carbono (CFC) tornou-se importante para avaliar os efeitos diretos e indiretos causados por impacto de raio em aeronaves construídas com esse material. Esta importância está associada à relação que existe entre a blindagem eletromagnética utilizada para proteger os equipamentos de bordo e a permissividade do CFC. Devido a estas relações e sua relevância para a indústria aeronáutica, foi realizada uma extensa investigação da permissividade do CFC.

Foram medidas as partes real e imaginária ($\varepsilon' \ e \ \varepsilon''$) da permissividade na faixa de freqüência de 1 kHz a 10 MHz, a 25°C, a partir de amostras cilíndricas extraídas de uma mesma placa multicamadas de CFC, com seus eixos ortogonais entre si e paralelos aos eixos cartesianos. Os resultados destas medidas foram compilados em uma base de dados para serem utilizados em um software de simulação baseado no Método das Diferenças Finitas no Domínio do Tempo (FDTD). Como resultado, foi possível representar em três eixos o campo próximo e a intensidade da energia eletromagnética a que pode ser submetida uma estrutura de CFC com geometria arbitrária no espaço tridimensional de uma placa de CFC do material iluminada pela componente elétrica. Além disso, foi observada a anisotropia entre os planos YZ e YX, apontando que a maior anisotropia ocorre na direção do eixo Υ. O material analisado apresentou baixas perdas, com ε" tendendo assintoticamente a zero.

^{12.} GRAU DE SIGILO:

(X) OSTENSIVO () RESERVADO () CONFIDENCIAL () SECRETO

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo