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RESUMO 
 

Nesta tese buscamos explicar o papel do hipocampo dorsal e do estriado dorsolateral 
e a interação entre eles na navegação em um labirinto aquático. Dados na literatura têm 
mostrado a dissociação entre estas duas estruturas no aprendizado e na memória. Onde, o 
hipocampo dorsal é importante para desempenhar a versão espacial, mas não a versão com 
pista visual, do labirinto aquático. Enquanto que o estriado é importante para a versão com 
pista visual, mas não para a versão espacial. Entretanto, vários trabalhos mostram que estes 
sistemas não trabalham de forma isolada, eles podem interagir entre si. A natureza desta 
interação ainda é bastante controversa. Para contribuir na solução desta controvérsia, 
avaliamos a interação entre o estriado dorsolateral e o hipocampo no aprendizado em tarefas 
do labirinto aquático. Para isto, submetemos animais com lesões isoladas do estriado 
dorsolateral ou hipocampo e animais com lesões das duas estruturas em diferentes versões do 
labirinto aquático: com pista visual ou espacial, dependentes do estriado dorsolateral ou 
hipocampo respectivamente. Animais com lesões isoladas no hipocampo apresentaram um 
prejuízo no aprendizado da versão espacial, mas não na versão com pista visual do labirinto 
aquático. Mas, todos os animais conseguiram aprender a tarefa com mais sessões de 
treinamento. Os animais com lesão no estriado dorsolateral aprenderam as duas versões como 
os animais controle.  Quando os animais foram pré-treinados em uma das versões e testados 
na outra versão, i.e. pré-treinados na versão com pista visual e testados na versão espacial e 
vice-versa, não foi observado este prejuízo. Entretanto, aqueles animais com lesão dupla (do 
estriado dorsolateral e do hipocampo) apresentaram um prejuízo severo em ambas as versões, 
tal como se não apresentassem nenhuma evidência de aprendizado e estes prejuízo não 
desapareceram ao longo das sessões de treinamento e nem com o pré-treinamento em outra 
versão. Estes resultados sugerem que tanto o estriado dorsolateral como o hipocampo dorsal 
são necessários para os dois tipos de aprendizados, contrariando a teoria vigente na literatura 
de que há uma dupla dissociação: versão espacial dependente do hipocampo, mas não do 
estriado e versão com pista visual dependente do estriado (dorsolateral) e não do hipocampo. 
Isto sugere que estes dois sistemas não só atuam de forma cooperativa, como que eles 
desempenham papéis complementares essenciais para a navegação e aprendizado espacial. As 
implicações destes resultados para o modelo do mosaico dos espelhos quebrados também é 
discutido nesta tese. 
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ABSTRACT 
 

In this thesis we proposed an explanation for the role of the dorsal hippocampus and 
of the dorsolateral striatum and the interaction between them in the navigation in water maze 
task. Data in the literature have been showing the double dissociation between these structures 
in the learning and memory. Where, the dorsal hippocampus is important to perform the 
spatial version, but not the cued version, of the water maze task.  While striatum is important 
for the cued version, but not for the spatial version. However, several works showed that these 
systems didn't work in an isolated way, they can interact between them. The nature of this 
interaction is still controversial. In order to contribute with a solution for this controversy, we 
evaluated the interaction between dorsolateral striatum and the hippocampus in the learning of 
water maze task. For this, we submitted animals with isolated lesions on the dorsolateral 
striatum or hippocampus and animals with lesions of both structures in different versions of 
the water maze: cued or spatial, dorsolateral striatum- or hippocampus-dependent, 
respectively. Animals with isolated lesions in the hippocampus showed impairment in the 
spatial version, but not in the cued version of the water maze task. But, all the animals learned 
this task when submitted to more training sessions. The animals with lesion in the dorsolateral 
striatum learned the two versions as the control animals. When the animals were pre-trained 
in one of the versions and tested in the other version, i.e. pretrained in the cued version and 
tested in the spatial version and vice-versa, this damage was not observed. However, those 
animals with double lesion (dorsolateral striatum and hippocampus) presented a severe 
impairment in both versions, as if they didn't present any learning evidence and this 
impairment didn't disappear along the training sessions nor with the pre-training in another 
version. These results suggest that both dorsolateral striatum and dorsal hippocampus are 
necessary for the two types of learning, contradicting the current theory in the literature that 
there is a double dissociation: spatial version dependent of the hippocampus but not of the 
striatum and cued version dependent of the striatum (dorsolateral) and not of the 
hippocampus. This suggests that these two systems not only interact in a cooperative way, but 
they play a complementary role, that is essential for the navigation and spatial learning. The 
implications of these results for the mosaic of broken mirrors model are also discussed in this 
thesis. 
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1 INTRODUÇÃO 
 

A organização da memória no cérebro dos mamíferos e os sistemas neurais que 

medeiam os processos de aprendizado e memória têm um papel importante nos nossos 

pensamentos, emoções, escolhas, ações e personalidade. Perder a memória leva à perda de si 

mesmo, à perda da história de uma vida e das interações duradouras com outros seres 

humanos. O enfraquecimento normal da memória com a idade e o prejuízo causado pelas 

doenças de Alzheimer, Parkinson e Huntington são apenas os exemplos mais conhecidos de 

um grande número de doenças que afetam a memória.  

Durante muito tempo debateu-se intensamente a possibilidade de a memória ser 

considerada uma função unitária ou ser decomposta em diferentes sistemas. Rejeitada de 

início pelos cientistas, a idéia de que podem existir várias formas ou tipos de memória hoje 

afinal se impôs (Poldrack e Packard, 2003; Squire, 2004; Squire, Stark et al., 2004; 

Voermans, Petersson et al., 2004; Doeller, King et al., 2008; Lee, Duman et al., 2008; Berke, 

Breck et al., 2009). Esta hipótese dos vários tipos de memória recebeu um importante apoio 

com o estudo de Scoville e Milner em 1957 (Scoville e Milner, 1957). Estes autores 

estudaram o paciente H.M., um homem que se tornou amnésico após a retirada cirúrgica do 

seu lobo temporal medial para melhorar suas crises epilépticas. H.M. apresentou um prejuízo 

em algumas tarefas de memória (principalmente as memórias episódica), entretanto, ele ainda 

conseguia aprender certas tarefas (traçar o contorno de uma estrela olhando por um espelho), 

sugerindo que existiria outro tipo de memória. 

 

1.1 TIPOS DE MEMÓRIA 
 

Existem várias classificações diferentes para as memórias. Uma dessas classificações 
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que podem ser encontrada é a seguida por Izquierdo (Izquierdo, 2002), onde ele classifica as 

memórias quanto ao tempo de duração em:  

• Memória de longa duração - é aquela que dura muitas horas, dias ou 

anos; 

• Memória de curta duração - é o processo ou conjunto de processos que 

mantém a memória funcionando durante estas horas iniciais em que a memória de 

longa duração ainda não assumiu sua forma definitiva; e, 

• Memória operacional (“working memory”) - que mantém a informação 

“viva” durante segundos ou poucos minutos, enquanto ela está sendo percebida 

conscientemente ou processada em uma operação mental. 

 

Além dessa classificação, as memórias de longa duração podem ser subdivididas em 

dois grandes grupos de memória (figura 1) (Salmon e Butters, 1995; Izquierdo, 2002; Squire, 

2004):  

 

1) as memórias declarativas ou explícitas 

São aquelas que nós humanos podemos relatar e evocar de forma consciente. Elas 

guardam informações factuais sobre eventos que vivenciamos no passado. Este tipo de 

memória pode ser também subdividido em: memória episódica (representações de 

experiências pessoais específicas que ocorreram em um contexto de tempo e espaço – saber o 

que, onde e quando) e memória semântica (conjunto de conhecimentos generalizados sobre o 

mundo sem nenhuma vinculação com uma experiência pessoal específica).  
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2) as memórias não-declarativas ou implícitas 

São aquelas que podemos adquirir e evocar de forma automática ou inconsciente. 

Este tipo de memória pode ser subdividido em: memória de procedimento, o priming 

(aperfeiçoamento da capacidade de detectar ou identificar palavras ou objetos após uma 

experiência recente com eles), o condicionamento e memórias formadas por aprendizado não-

associativo (habituação e sensibilização). 

 

FIGURA 1 – ESQUEMA DA CLASSIFICAÇÃO DA MEMÓRIA DE LONGA DURAÇÃO E AS 
ESTRUTURAS CEREBRAIS IMPORTANTES PARA CADA TIPO DE MEMÓRIA. 

FONTE: modificado de SQUIRE, L.R. Memory systems of the brain: a brief and current perspective. 
Neurobiology of Learning and Memory. v. 82, p. 171-177, 2004. 

 

 

Vários autores sugerem que estes diferentes grupos de memórias sejam organizados e 

controlados por sistemas neuroanatômicos distintos (Packard e White, 1990; Packard e 

Mcgaugh, 1992; Mcdonald e White, 1994; Salmon e Butters, 1995; Oliveira, Bueno et al., 

1997; Packard e Teather, 1997; 1998; Eichenbaum, 2004; Squire, 2004; Doeller, King et al., 
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2008; Lee, Duman et al., 2008; Berke, Breck et al., 2009). Dois exemplos bem definidos 

destes sistemas de memória são: o sistema de memória declarativa, o qual tem o hipocampo 

como estrutura central (Eichenbaum, 2004; Squire, 2004; Gold e Squire, 2006; Squire, 2009), 

e o sistema de memória de procedimento, o qual tem os gânglios da base como núcleo central 

(Knowlton, Mangels et al., 1996; Da Cunha, Gevaerd et al., 2001; Miyoshi, Wietzikoski et 

al., 2002; Packard e Knowlton, 2002; Da Cunha, Wietzikoski et al., 2003; Da Cunha, Silva et 

al., 2006; Prediger, Batista et al., 2006; Da Cunha, Wietzikoski et al., 2007; Da Cunha, 

Wietzikoski et al., 2009; Prediger, Rial et al., 2009).  

Em humanos, a memória declarativa episódica é sempre expressa na forma de 

recordações conscientes de experiências pessoais específicas (o sujeito dentro de um contexto 

espacial e temporal). Como os animais não possuem uma linguagem equivalente à de 

humanos, estas propriedades (ser declarativa e consciente) não podem ser estudas em modelos 

animais. Entretanto, a memória declarativa humana tem diversas outras propriedades além da 

lembrança consciente e declarativa, podendo, muitas delas, serem estudadas. 

Por exemplo, a memória declarativa é elaborada para representar objetos e eventos 

no mundo externo e as relações (espaciais, temporais e lógicas) entre eles. Esta organização 

associativa das memórias declarativas resulta em uma representação flexível (relacional) do 

espaço e do tempo. Animais podem aprender relações entre itens armazenados e, então, ter 

sua memória episódica testada em situações onde precisem usar estas relações de forma 

flexível para resolver uma tarefa de aprendizagem e memória (Eichenbaum, 2004).   

Já a memória de procedimento foi sempre fácil de entender intuitivamente com algo 

especial, diferente da evocação comum de eventos recentes. Eles não são declarativos: não 

precisamos “declarar” coisa alguma nem ser capazes de, mesmo quando pressionados, dizer 

muito sobre o que estamos fazendo. Adquirimos muitos hábitos e habilidades no início da 

vida, sem esforço óbvio e sem observarmos o momento em que tal aprendizado ocorreu.  
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Um modo de se estudar este tipo de memória em animais é expondo-os a uma tarefa 

onde o animal, a partir de um determinado estímulo, deve exercer uma determinada resposta 

para obter reforço. Este é um tipo de aprendizado é chamado de estímulo-resposta-

consequência (S-R-O).  

Na formação de memórias resposta-consequência (R-O) ou ação-consequência 

(action-outcome), o sujeito aprende que uma ação ou resposta têm como consequência um 

estímulo (incondicionado) cuja percepção envolve uma avaliação hedônica de 

“recompensador” ou “aversivo”. Na linguagem da psicologia experimental, o pareamento de 

um estímulo reforçador, subsequente a uma resposta do sujeito resulta em uma maior 

probabilidade de que ele emita esta resposta no futuro. Ainda segundo esta corrente teórica, a 

apresentação de um estímulo punidor, subseqüente a uma resposta, diminui a probabilidade de 

que esta resposta seja emitida no futuro. Porém, se após a aprendizagem, a consequência 

reforçadora ou punidora não ocorrer, esta memória entra em processo de extinção (Yin e 

Knowlton, 2006; Balleine, Liljeholm et al., 2009).  

Já na formação da memória de hábito, um estímulo (condicionado) é repetidamente 

pareado com uma resposta incondicionada, i.e. que é emitida de forma inata pelo sujeito em 

reação ao estímulo (Thorndike, 1911; Hull, 1943). Ainda há muita divergência sobre a 

natureza desta memória.  

Nos primórdios da psicologia comportamental, este tipo de aprendizagem era 

chamado de “controle por estímulo” e dizia-se que o que é aprendido é a associação entre o 

estímulo condicionado e a resposta incondicionada, daí o nome de hábito estímulo-resposta 

(S-R). Já os teóricos modernos, tais como o americano Balleine, dizem que a formação do 

hábito é uma decorrência de um aprendizado instrumental muito prolongado (onde se pareia 

resposta e consequência).  

Segundo Balleine, em situações onde as consequências de uma resposta a um 
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estímulo não mudam, a repetição deste pareamento S-R-O leva a uma automação da resposta, 

de forma que o indivíduo a escolhe e executa de forma automática. Após um treino extensivo, 

a resposta (ação/comportamento) deixa de ser controlada pela consequência e passa a ser 

controlada pelo estímulo condicionado (S-R) (Balleine, Liljeholm et al., 2009). 

Um exemplo de experimento que pode ser utilizado para avaliar estes tipos de 

memórias é o labirinto aquático de Morris. Esta tarefa do labirinto aquático foi desenvolvida 

por Richard Morris em 1982 e consiste em colocar o animal em uma piscina circular com 

água. Em algum lugar da piscina havia uma plataforma que permanecia logo abaixo do nível 

da água (invisível para o rato).  

Os ratos nadavam muito bem, mas preferiam subir na plataforma para fugir da água. 

Subir na plataforma era uma recompensa eficiente, chamada na psicologia comportamental de 

reforço negativo. Em cada tentativa, o animal foi colocado em pontos diferentes da borda da 

piscina. Os ratos aprenderam a usar uma estratégia espacial (relação entre as pistas localizadas 

fora do labirinto) para encontrar a plataforma. Isto pode ser observado pela redução na 

latência para encontrar a plataforma.  

Morris e seus colaboradores demonstraram que a lesão do hipocampo causa um 

prejuízo no desempenho desta tarefa (Morris, Garrud et al., 1982). A partir deste trabalho de 

Morris e colaboradores, esta tarefa do labirinto aquático passou a ser bastante útil para a 

pesquisa de aprendizado e memória em animais. Isto pode ser observado através de uma 

pesquisa no site da “Web of Science” com as seguintes palavras chaves: “Morris water maze” 

AND (learning OR memory) no período de 1982 até 2009. Realizando esta busca, 

encontramos 3014 artigos com estas características (pesquisa realizada no dia 16 de setembro 

de 2009).  

A flexibilidade da memória episódica e a relativa inflexibilidade de memórias não-

declarativas são vivamente ilustradas em um estudo sobre aprendizado e memória espacial em 
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ratos. Eichenbaum e colaboradores (Eichenbaum, Stewart et al., 1990) avaliaram o 

desempenho de animais com lesão hipocampal em uma versão modificada do labirinto 

aquático de Morris.  

Neste estudo os animais foram liberados para nadar somente de um ponto de partida 

e deveriam encontrar a plataforma submersa oculta. Tanto os animais com lesão hipocampal 

como os animais controle aprenderam a localização da plataforma submersa, conforme 

avaliado por reduções marcantes no tempo de natação e na distância percorrida até atingir a 

plataforma. Assim, à medida que o aprendizado progredia, os ratos aprendiam a nadar 

diretamente até a plataforma. Depois de completar-se o aprendizado, os animais foram 

submetidos a testes adicionais para que se determinasse que tipo de informação haviam 

adquirido sobre a localização da plataforma.  

Nessas sessões, os ratos eram liberados de um novo ponto de partida. Os animais 

intactos eram capazes de descobrir a plataforma rapidamente a partir de qualquer ponto 

inicial, indicando que haviam adquirido uma representação flexível (declarativa) do espaço na 

memória. Mais especificamente, eles haviam aprendido sobre as relações espaciais entre a 

localização da plataforma e as várias dicas externas que estavam disponíveis nas paredes que 

circundavam o tanque (mapa relacional).  

Este tipo de aprendizado foi classificado por White como sendo do tipo estímulo-

estímulo (S-S). Em contraste, os ratos com lesões hipocampais eram incapazes de encontrar a 

plataforma a partir de novos pontos de partida e tinham de recomeçar a busca empregando 

uma estratégia do tipo tentativa-e-erro ao longo do labirinto.  

Estudos posteriores mostraram que o aprendizado espacial em ratos depende 

criticamente da integridade do hipocampo, mas não do estriado (Packard e Mcgaugh, 1992; 

White e Mcdonald, 2002; Da Cunha, Wietzikoski et al., 2007; Goodrich-Hunsaker, 

Livingstone et al., 2009; Xavier e Costa, 2009). 
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Resultados semelhantes foram obtidos por Da CUNHA e colaboradores (Da Cunha, 

Wietzikoski et al., 2003) através da administração de lidocaína no hipocampo dorsal de ratos 

submetidos à versão espacial (S-S) da tarefa do labirinto aquático. Os animais inicialmente 

aprenderam a encontrar a plataforma submersa, pois o tempo de latência para encontrá-la 

diminuiu. Entretanto, a administração de lidocaína intra-hipocampal, antes da exposição ao 

labirinto, promoveu um aumento no tempo de latência, sugerindo um prejuízo na memória 

espacial (S-S). 

Outro trabalho que usou estas versões do labirinto aquático de Morris foi realizado 

por PACKARD e McGAUGH (Packard e Mcgaugh, 1992). Eles mostraram que animais com 

lesão do estriado dorsal conseguem aprender a desempenhar a versão espacial (S-S) da tarefa 

do labirinto aquático. Mas estes animais têm um prejuízo na versão com pista visual (S-R-O) 

da tarefa do labirinto aquático (Packard e Mcgaugh, 1992). Nesta versão, o animal deve 

encontrar uma plataforma que possui uma pista visual sobre ela e visível ao animal, mas sua 

posição se altera entre uma tentativa e outra. 

Então, o estriado é visto como uma região importante para o aprendizado de relações 

entre um único estímulo e uma resposta recompensada, ou seja, aprendizado S-R-O (White e 

Mcdonald, 2002). Há evidências de que ocorra uma dissociação entre o estriado dorsolateral 

(DLS, equivalente ao putamen de primatas) e o estriado dorsomedial (DMS, equivalente ao 

núcleo caudado em primatas), onde o primeiro seria importante para o aprendizado S-R-O 

(Devan, Mcdonald et al., 1999) e o último para o aprendizado espacial (S-S) (White, 2009). 

Outros estudos também mostraram esta dissociação entre o sistema hipocampal 

(memória declarativa) e o sistema dos gânglios da base (memória de procedimento), como por 

exemplo um importante estudo realizado por PACKARD e colaboradores (Packard, Hirsh et 

al., 1989). Eles treinaram ratos para realizar duas tarefas diferentes, que mostravam diferenças 

chaves entre a memória de hábito e a memória declarativa episódica. Em uma tarefa, os 
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animais deveriam procurar por alimento nos oito braços de um labirinto radial. A cada dia, 

durante diversos dias, os ratos eram colocados no labirinto e, após, retirados quando tivessem 

recolhido uma recompensa de cada um dos oito braços do labirinto. Um erro era registrado 

cada vez que o animal entrasse pela segunda vez em um braço no curso da coleta das oito 

recompensas. O desempenho nessa tarefa de memória é prejudicado por lesão do sistema 

hipocampal, porém, a lesão do estriado dorsal não tem efeito. Em uma tarefa semelhante que 

utilizou o mesmo labirinto, os animais aprenderam a visitar quadro dos oito braços, os quais 

eram sinalizados, através de uma luz, que continham o alimento como recompensa. Após duas 

semanas de treino, os animais gradualmente aprenderam a entrar nos braços corretos. Nessa 

tarefa, onde o animal deveria associar o estímulo (luz) com a resposta recompensada (entrar 

para comer o alimento) o aprendizado foi prejudicado por lesão do estriado dorsal, mas não 

por lesão do sistema hipocampal. 

Algum tempo depois, um questionamento que começou a ser feito foi se estes 

sistemas funcionavam de forma isolada ou eles poderiam interagir entre si? E, nas últimas 

cinco décadas, pesquisadores têm focado seus estudos na dissociação entre os sistemas de 

memórias e suas funções no armazenamento de informações e adaptação do comportamento 

(Scoville e Milner, 1957; Packard e White, 1990; Packard e Mcgaugh, 1992; Mcdonald e 

White, 1994; Packard e Teather, 1997; 1998; Miyoshi, Wietzikoski et al., 2002; Da Cunha, 

Silva et al., 2006; Doeller, King et al., 2008).  

Entretanto, pode ser que os sistemas de memória trabalhem de uma forma integrada, 

e não de forma isolada (White e Mcdonald, 2002; Voermans, Petersson et al., 2004; Hartley e 

Burgess, 2005; Albouy, Sterpenich et al., 2008; Doeller, King et al., 2008; Lee, Duman et al., 

2008; Berke, Breck et al., 2009). 

A maioria destes estudos observou o prejuízo causado pela lesão de uma estrutura 

cerebral no desempenho de tarefas (Da Cunha, Gevaerd et al., 2001; Da Cunha, Angelucci et 
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al., 2002; Da Cunha, Wietzikoski et al., 2003; Mcdonald, Hong et al., 2004). E, quando uma 

lesão de determinada estrutura prejudicava o desempenho de determinada tarefa, concluíam 

que aquela estrutura era importante para aquele tipo de aprendizado e memória. Por exemplo, 

concluiu-se que a SNc é importante para a memória S-R-O e operacional (mas não para a 

memória espacial) porque sua lesão causou um prejuízo no desempenho da versão com pista 

visual e na versão da memória espacial operacional do labirinto aquático de Morris e não 

prejudicou o desempenho na versão espacial (Miyoshi, Wietzikoski et al., 2002). Mas, 

estudos recentes sugerem que ocorre uma interação (competição e/ou cooperação) entre os 

diferentes sistemas neurais de memória (Poldrack e Packard, 2003; Voermans, Petersson et 

al., 2004; Albouy, Sterpenich et al., 2008; Lee, Duman et al., 2008; Berke, Breck et al., 2009). 

A interação competitiva entre os sistemas de memória pode ser revelada pelos 

estudos em que a lesão de um dado sistema resulta em melhora na aprendizagem da tarefa 

dependente da estrutura encefálica intacta (Poldrack e Packard, 2003). Por exemplo, animais 

com lesão do hipocampo dorsal têm um desempenho melhor do que animais controles na 

tarefa de esquiva de duas vias (dependente do estriado e da SNc) (Guillazo-Blanch, Nadal et 

al., 2002; Torras-Garcia, Costa-Miserachs et al., 2003). 

A interação cooperativa entre os sistemas de memória foi observada por Voermans e 

colaboradores (Voermans, Petersson et al., 2004) através de um estudo de neuroimagens em 

pacientes com doença de Huntington desempenhando uma tarefa de memória de navegação 

espacial. Nesta tarefa, o participante navega em uma sequência de vídeos com uma visão em 

primeira pessoa. Durante a fase de aquisição, o vídeo é parado em cinco pontos de decisão, 

que são locais onde o participante deve escolher uma direção (esquerda ou direita) e esta 

direção é indicada por setas. Os participantes devem relembrar a direção a ser seguida em 

cada ponto de decisão. Durante a fase de navegação, o participante vê a mesma sequência e 

deve indicar a direção a ser seguida em cada ponto de decisão (sem auxílio das setas). Esta 
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tarefa emprega um sistema que adquire gradualmente sequências de resposta para 

determinada situação (i.e. seguir uma rota fixa repetidamente, S-R-O) e é dependente do 

estriado. Os pacientes com doença de Huntington que estavam no estágio leve a moderado 

tinham grande ativação do estriado durante a realização da tarefa, enquanto que os pacientes 

nos estágios mais graves apresentaram maior ativação do hipocampo. Os pacientes 

apresentaram escores semelhantes ao do grupo controle na realização desta tarefa, sugerindo 

uma compensação hipocampal para desempenhar a tarefa. 

Dados de nosso laboratório também sugerem uma interação cooperativa, onde os 

animais com lesão da SNc que são previamente treinados na versão espacial (S-S) do labirinto 

aquático (dependente do hipocampo) não tem prejuízo em desempenhar a versão com pista 

visual (S-R-O, dependente dos gânglios da base) (Da Cunha, Wietzikoski et al., 2007). Isto 

mostra a necessidade de se estudar mais sobre a função do hipocampo e dos gânglios da base 

nos processos de aprendizado e memória e as interações que ocorrem entre estas estruturas. 
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2 OBJETIVO GERAL 
 

Avaliar a interação entre os sistemas dos gânglios da base e do hipocampo na 

navegação em um labirinto aquático. 

 

2.1 OBJETIVOS ESPECÍFICOS 
 

2.1.1 Objetivo 1 

 

Avaliar o papel do DLS no aprendizado da versão com pista visual do labirinto 

aquático de Morris, um modelo animal de memória de procedimento (S-R-O). 

 

2.1.2 Objetivo 2 
 

Avaliar o papel do hipocampo dorsal no aprendizado da versão espacial do labirinto 

aquático de Morris, um modelo animal de memória relacional (S-S). 

 

2.1.3 Objetivo 3 
 

Avaliar a interação entre o DLS e o hipocampo dorsal no aprendizado das versões 

com pista visual e espacial do labirinto aquático de Morris. 
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3 ARTIGO 
 

Neste trabalho avaliamos o papel do hipocampo, do estriado dorsolateral e da 

interação entre eles nos processos de aprendizado e memória. O manuscrito deste trabalho foi 

submetido à revista “HIPPOCAMPUS” neste ano de 2009. Neste estudo apresentamos 

resultados obtidos de animais com lesão do estriado dorsolateral e/ou do hipocampo 

submetidos a diferentes versões (dependentes do estriado ou do hipocampo) do labirinto 

aquático. 
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ABSTRACT 

 

The multiple memory systems theory proposes that the hippocampus and the 

dorsolateral striatum are the core structures of the spatial/relational and 

stimulus-response (S-R) memory systems, respectively. This theory is 

supported by double dissociation studies showing that the spatial and cued 

(stimulus-response) versions of the Morris water maze are impaired by lesions 

in the dorsal hippocampus and dorsal striatum, respectively. In the present 

study we further investigated this hypothesis by testing whether adult male 

Wistar rats bearing double and bilateral electrolytic lesions in the dorsal 

hippocampus and dorsolateral striatum were as impaired as rats bearing single 

lesions in just one of these structures in learning both versions of the water 

maze. Such prediction, based on the multiple memory systems theory, was not 

confirmed by our findings. Although, compared to the controls, the latency to 

find the escape platform of the animals with single lesions decreased more 

slowly in one of the versions, the animals with double lesions presented no 

improvement at all in both versions of the water maze. These results suggest 

that both the dorsal hippocampus and the dorsolateral striatum are needed for 

learning cue- and spatial-based navigation in the water maze. Therefore, it 

seems that, instead of independent systems supporting S-R or spatial learning, 

the hippocampus and dorsal striatum play critical roles in these two kinds of 

learning.  
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INTRODUCTION 

 

In the recent past the hippocampus was taken as the brain structure 

playing the main role in spatial navigation learning and performance. 

Contributed to this reputation the discovery of the hippocampal place cells, 

neurons that discharge when the animal is in a particular place of the 

environment (Nadel and O’Keefe, 1978). The finding that rats bearing lesions in 

the hippocampus are impaired to learn the Morris water maze task, also caused 

a great impact and made this memory task to be considered a “gold standard” 

test of the hippocampal function and as a model of spatial/relational memory 

(Morris et al., 1982; Eichenbaum, 2002; Squire et al., 2004).  

Nowadays, navigation learning and performance is seen as the result 

of computations that involve not only the hippocampus, but also other brain 

structures. An influential model proposes that the representation of the 

environment and its reconstitution in the brain is based on a process called 

pattern integration that points out the location of the animal based on its own 

movements. According to this theory, an allocentric parahippocampal 

representation of the environment is translated into an egocentric medial 

parietal representation (Byrne et al., 2007). This process also depends on the 

posterior parietal cortex and the retrosplenial cortex/parieto-occipital sulcus 

(Bird and Burgess, 2008). Still according to this view, in addition to the 

hippocampal place cells, pattern integration depends on the so called grid cells 

of the enthorhinal cortex and on the head direction cells found along the 

Papez’s circuit (Hafting et al., 2005; Bird and Burgess, 2008).   

The striatum is not usually seen as playing a role in spatial navigation. 

Contributed to this view, the seminal double dissociation studies reporting that 

the lesion of the fimbria/fornix, but not of the dorsal striatum, impaired rats to 

learn the spatial version of the Morris water maze and of the win-shift (spatial) 

version of the 8-arm radial maze tasks, while lesions of the dorsal striatum, but 

not of the fimbria/fornix, impaired learning of cued versions of these tasks 

(Packard et al., 1989; Packard and McGaugh, 1992; McDonald and White, 

1994). In order to explain these findings, some authors proposed that both the 

hippocampus and the striatum can hold control over navigation by using 

different strategies, and that in some instances they compete for the control 
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over behavior (White and McDonald, 2002; Chavarriaga et al., 2005; Lee et al., 

2008; Berke et al., 2009). According to them, the hippocampus uses the 

relations among environmental stimuli to form a kind of “cognitive map”, as 

proposed by Tolman (1948) and supported by the hippocampal place cells 

(O'keefe and Nadel, 1978), and uses it to plan flexible navigation strategies 

(White and McDonald, 2002).  The striatum, on its turn, learns the relations 

between single environmental stimulus and rewarded responses and thus, can 

guide navigation by approaching a specific individual cue that signalizes a 

rewarding outcome (White and McDonald, 2002). These two strategies are 

sometimes referred to as spatial (or S-S, stimulus-stimulus) and cue-based (or 

S-R, stimulus-response) navigation, respectively. 

Thus, this theory proposes that navigational behavior can be controlled 

by two parallel memory systems that sometimes compete for control over 

behavior: the hippocampal system mediating spatial/relational navigation and 

the striatal system mediating cue-based navigation. However, some years after 

this theory was proposed (see White and McDonald, 2002), another study 

presented evidence that at least the dorsal medial part of the striatum (DMS) is 

also needed for spatial learning (Devan et al., 1999). Then, the 

hippocampal/striatal parallel memory systems theory was modified to 

incorporate the DMS into the hippocampal-based spatial memory system and 

restricted the memory system that supports  the cue-based navigation learning 

to the dorsolateral striatum (DLS) (White, 2009).  

Some authors claim that a differential pattern of striatal inputs of the 

DMS and DLS may allow them to play different roles in navigation: that the 

inputs from the prefrontal cortex and hippocampus to the DMS may enable it to 

elaborate flexible navigation strategies based on spatial/contextual information 

and the inputs from the sensorymotor cortex to the DLS may enable it to 

elaborate rigid and egocentric/cue-based strategies (Potegal et al., 1971; 

Veening et al., 1980; McGeorge and Faull, 1989; Ramanathan et al., 2002; 

Voorn et al., 2004). However, a recent study by Cenquizca and Swanson (2007) 

showed that most projections from the rat field 

CA1 to the caudate-putamen are indirect, mediated by the prefrontal cortex, and 

is virtually impossible to differentiate between projections to the DMS or 

DLS.  
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Defining insensibility to reward devaluation as a feature that 

distinguishes S-R habits and response-outcome (R-O) behaviors, Balleine, 

Knowlton, Yin, and co-workers presented the following evidence that these 

kinds of learning are mediated by the DLS and DMS, respectively:  Overtraining 

and interval schedules of reinforcement are known to convert instrumental R-O 

responding into S-R habits (Yin and Knowlton, 2006; Balleine et al., 2009). In a 

study by Yin et al. (2004), lesions in the rat DLS reversed this effect of the 

overtraining, thus turning habitual into R-O responding. In addition, the 

inactivation of the DLS of rats enhanced the sensitivity of their instrumental 

responding to the omission of a rewarding outcome (Yin et al., 2006). 

Conversely, inactivating the posterior DMS, but not the DLS, of rats prevented 

the decrease of instrumental responding contingent of the devaluation of a 

rewarding outcome (Yin et al., 2005) and the discrimination of two stimuli that 

differentially signaled reinforcement for response to one or the other of two bars 

(Balleine et al., 2009). 

All these findings strengthen the hypothesis that the hippocampus and 

the DMS mediate more flexible behavior, while the DLS supports S-R habit 

learning. However, there are some inconsistencies between these hypotheses 

and some findings reported in the literature. Although it was not tested whether 

rats overtrained in the cued version of the water maze are insensitive to reward 

devaluation, this task have been taken as a model of S-R learning (White, 2004; 

Packard, 2009; White, 2009). It is also generally accepted that the spatial 

version of this task is a good model of the spatial/relational learning, the kind of 

learning supported by the hippocampus and DMS, as stressed above. Then, it 

is expected that the lesion of the DLS, but not of the DMS, would impair 

learning of the cued version. However, the study by Devan et al. (1999) did not 

confirm this prediction: they found out that the lesion of the rat DMS impaired 

learning of both versions while the lesion of the DLS did not impair any of them. 

The assumption that the DLS is not involved in spatial navigation is also in 

disagreement with the finding that some neurons in the striatum respond to the 

animal location and head direction (Wiener, 1993; Mizumori et al., 2009). It is 

important to mention that these neurons are not restricted to the DMS, but were 

found in all regions of the striatum, including the DLS (Mizumori’s personal 

communication).  
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Such inconsistencies had lead to alternative theories about the 

interactions between the hippocampus and striatum in learning and 

performance of spatial navigation. Mizumori and co-workers (2009) 

hypothesized that, in addition to the hippocampus, all regions of the striatum 

contribute to spatial navigation. They proposed that, instead of competing for 

control over behavior, while the hippocampus extracts a spatial/relational map 

of the environment from sensory inputs, the striatum selects the proper actions 

to navigate according to the directions that can be taken from this map and that 

leads to a reward. According to them, the striatum performs this selection by 

applying the same computational pattern to the different inputs arriving to 

different parts of the striatum. Da Cunha and co-workers (2009) recently 

proposed a model called “the mosaic of broken mirrors” to explain the 

computational contribution of the striatum on learning and memory. In short, this 

model proposes that objects and locations are represented in functional units of 

the striatum, as well as the subject’s body (and body parts). The association of 

these units encodes the action of the subject (or the subject’s body part) 

towards a particular location or object of the environment. The indirect striatal 

inputs from the hippocampus make it a likely candidate to feed the striatum with 

information of near locations in relation to the subject. However, instead of 

encoding these locations based on the spatial relations among them (like the 

hippocampus does), according to the mosaic of broken mirrors model, they are 

encoded as fragments of the environment that are individually related to specific 

actions, but that cannot reconstitute the environment based on multiple relations 

among the environmental pieces.  

Thus, instead of parallel memory systems that sometimes compete for 

the control over behavior, the hippocampus and the striatum may be systems 

with complementary roles in spatial navigation. If this is true, the lesion of the 

striatum plus the hippocampus would result in a deeper impairment in learning 

of both the spatial and cued versions of the Morris water maze. Such prediction 

is more particularly in confront with the prediction of the competition theory, if 

the striatum lesion were restricted to the DLS, which lesion is known to not 

affect the learning of both versions of this task (Devan et al., 1999). Testing this 

prediction is the aim of the present study. 
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MATERIALS AND METHODS 

 

Subjects 

Adult male Wistar rats from our own breeding stock weighing 280-320 g 

at the beginning of the experiments were used. The animals were housed 

individually in a temperature-controlled room (22 + 2oC) on a 12/12-h dark/light 

cycle (lights on at 7:00 a.m.) with food and water available ad libitum. All 

experimental procedures were in compliance with the guidelines laid down by 

the National Institute of Health and the Brazilian Society for Neuroscience and 

Behavior guidelines and were approved by the Institutional Animal Care and 

Use Committee of the Federal University of Paraná State. 

 

Surgery 

Fourteen days before the beginning of the behavioral experiments, the 

animals received atropine sulfate (0.4 mg/kg, i.p.) to suppress salivation, 

penicillin G-procaine (20,000 U in 0.1 ml, i.m.) to prevent infection, and were 

anesthetized with 3 ml/kg i.p. equithesin (1% sodium thiopental, 4.25% chloral 

hydrate, 2.31% magnesium sulfate, 42.8% propylene glycol, and 3.7% ethanol 

in water). The animals were randomly assigned to one of four lesion groups, 

hereafter referred to as the dorsal hippocampus- (HIP), dorsolateral striatum- 

(DLS), dorsal hippocampus plus dorsolateral striatum- (HIP+DLS), and  SHAM-

lesioned groups (SHAM). The rats were placed in a stereotaxic frame (Kopf 

Instruments, Tujunga, CA) with the nose bar at - 3.3 mm from the interaural line 

and bilateral lesions in the HIP and/or DLS were performed by passing an 

anodic current of 2 mA for 15 s (HIP) and 6 mA for 20 s (DLS) through an 

stainless steel electrode insulated except for 0.7 mm from the tip. The following 

coordinates were used:  HIP, anteroposterior (AP), -2.5, -3.5, -4.5 and -5.2 mm 

from the bregma; mediolateral (ML), ± 1.5, ± 2.0, ± 2.5 and ± 4.0 mm from the 

midline; dorsoventral (DV), −3.5, -4.0, -4.0 and -4.0 mm from the skull, 

respectively; DLS, AP = 0.0 and +1.0 mm, ML = ± 4.0 and ± 3.5 mm from the 

midline, DV = −5.5 and -5.5 mm, respectively. The SHAM group underwent the 

same procedures, with the electrode lowered to a position just to the target 

areas, but no current passed through the electrode. 
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Behavioral procedures 

The experiments were conducted between 1:00 and 6:00 p.m. The 

Morris water maze sessions were conducted in a round tank, 170 cm in 

diameter and 40 cm deep, filled with water. The water temperature was 

maintained at 22oC. Several distal visual cues were placed on the walls of the 

water maze room. During the experiments, the tank was videotaped and the 

traveled distance and latency to reach the escape platform, the swimming 

speed, and the swimming paths were recorded by an image analyzer (HVS 

System, Buckingham, UK).  

The spatial version of the water maze task consisted of training the 

animals for various consecutive days, 4 trials per day, during which each animal 

was left in the tank facing the wall and allowed to swim freely to a transparent 

acrylic escape platform (11 x 14 cm) placed at a fixed location in the center of 

one of the quadrants of the tank, 35 cm away from the edge of the pool. The 

platform location was kept constant throughout the training days. The platform 

was submerged 2 cm under the water surface and could not be seen by the 

rats. The initial position in which the animal was left in the tank was one of the 4 

cardinal vertices of the pool quadrants and varied among trials in a 

pseudorandom manner. If the animal did not find the platform during a period of 

60 s it was gently guided to it. Then, it was allowed to remain on the platform for 

20 s and removed from the tank, and this procedure was repeated with all the 

other rats, each of them returning to the tank in the next initial starting position 

until the 4 trials of that training day were completed. Scores of traveled 

distances and latencies to find the platform for the individual trials were 

averaged by a block of four trials conducted on the same day.  

The cued version of the water maze task was similar to the previous 

experimental procedure, except that the position of the escape platform was 

cued by a 7-cm diameter white ball attached to the top of the platform and 

protruding above the water. Furthermore, the location of the platform was 

changed in a pseudorandom manner in each trial and was never repeated. 

 

Test schedules 
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Experiment 1 was planned to test the prediction (based on the 

hypothesis that spatial learning depends on both the hippocampus and DLS) 

that the HIP+DLS rats would present worse scores than HIP rats to learn the 

spatial version of the Morris water maze.  

Experiment 2 aimed to test the converse prediction, based on the 

hypothesis that cued learning also depends on both the hippocampus and DLS: 

it tested whether the HIP+DLS rats present worse scores than HIP or DSL rats 

to learn the cued version of the water maze. 

Experiment 3 was an extension of Experiment 1, and was aimed to test 

the prediction that pretraining the HIP rats in the cued version would reverse 

their deficit to learn the spatial version and that the HIP+DLS rats would not 

have the same benefit. This prediction was also based on the hypothesis that 

spatial learning depends on both the hippocampus and DSL. 

Experiment 4 was an extension of Experiment 2, and was intended to 

test the prediction that pretraining the STR, but not the HIP+DLS, rats in the 

spatial version would reverse their deficit to learn the spatial version. This 

prediction was based on the hypothesis that cued learning depends on both the 

hippocampus and DSL.  

 In  experiments 1 and 3,  10 SHAM, 10 HIP, 6 DLS, and 5 HIP+DLS rats 

were given 5 days of training in the spatial version of the water maze, and then 

2 more training days in the cued version.  In experiments 2 and 4 other 10 

SHAM, 7 HIP, 6 DLS, and 6 HIP+DLS rats were given 5 days of training in the 

cued version and then 2 days in the spatial version. 

 

Histology 

 

At the end of the experimental procedures, all rats were killed with an 

overdose of pentobarbital and were perfused transcardially with saline (NaCl 

0.9%) followed by 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4 ; the 

brains were immediately removed and placed in the same paraformaldehyde 

solution for 72 h before sectioning. The brains were then cut in the frontal plane 

in 30 µm thick sections with a vibrating blade microtome (Leica, VT1000 S, 

Bensheim, Germany). The sections were mounted on gelatin-coated slides and 

stained with thionin. Only the animals with lesions limited to the DLS and the 
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dorsal hippocampus were included in the present analysis. The lesions were 

plotted with the aid of a camera lucida from the thionin-stained sections, and 

transferred onto a series of standard rat brain drawings (Swanson, 1992). 

 

Statistics 

 

Escape latencies and traveled distances for the individual trials were averaged 

by trial block and analyzed by two-way ANOVA with repeated measures (trial 

block), followed by the Newman-Keuls test. Differences were considered to be 

statistically significant when p ≤ 0.05.  

 

 

RESULTS 

 

Two weeks after surgery, when submitted to the behavioral tests, no 

gross sensorimotor deficit was observed in the lesioned animals. They swam 

normally and the mean swimming speed did not differ significantly among the 

groups (SHAM = 20.3 ± 0.9 cm/s; HIP = 20.3 ± 1.0 cm/s; DLS= 21.2 ± 1.3 cm/s; 

HIP+DLS= 21.8 ± 2.9 cm/s; F(3,25) = 0.22, P = 0.88 ANOVA).  Therefore, 

similar results were obtained for latencies or traveled distances to find the 

platform. In order to avoid presenting unnecessary information, only latency 

scores are shown. 

Experiment 1 examined whether combined lesions of the dorsal 

hippocampus and DLS of the rats cause a higher impairment to learn the spatial 

version of the water maze than the lesion of just one of these structures. The 

results presented in Figs. 1A and 4 show that this is the case. A two-way 

ANOVA showed significant group (F(3,27) = 12.47, P < 0.001) and session 

effects (F(4,108) = 20.89, P < 0.001), and a significant interaction between 

these factors (F(12, 108) = 2.38, P < 0.01). The DLS rats learned the task as 

the controls. The HIP rats took longer to find the hidden platform compared to 

SHAM rats, but the HIP+DLS rats performed even worse (see Fig. 1A for 

statistics). They presented no sign of learning at all.  Although after the 3rd day 

of training the HIP group no longer significantly differed from the SHAM group 

(Fig. 1A), only the SHAM rats could swam directly to the hidden platform on the 
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last training day (first column of the Fig. 4). The HIP rats typically swam a little 

longer to find the platform and the HIP+DLS rats presented a random swimming 

path, as if they were completely lost.  

Experiment 2 examined the converse situation - whether the lesion of 

the dorsal hippocampus, in addition to the lesion of the DLS, causes higher 

impairment in the learning of the cued version of the water maze.  This 

prediction was also confirmed, as can be seen in Fig. 1B and Fig. 5. A two-way 

ANOVA showed a significant group (F(3,25) = 8.15, P < 0.001) and session 

effects (F(4,100) = 62.64, P < 0.001), and a significant interaction between 

these factors (F(12, 100) = 3.77, P < 0.001).  The HIP and DLS rats learned the 

task as effectively as the SHAM rats, and only the HIP+DLS rats were deeply 

impaired to learn this version. Along the 5 training days they barely decreased 

the latency to find the cued platform (see Fig. 1B for post hoc statistics). As 

shown in the first column of Fig. 5, SHAM, HIP, and DLS, but not the HIP+DLS, 

rats swam directly to the cued platform in the last trial of the 5th training day. 

Experiments 3 and 4 further tested the hypothesis that the 

hippocampus and the DLS play complementary roles in spatial and cued 

learning. Experiment 3 tested the prediction that pretraining the HIP, but not the 

HIP+DLS, rats in the cued version would reverse their deficit to learn the spatial 

version. The converse prediction was tested in Experiment 4: the prediction that 

pretraining the HIP+DLS rats in the spatial version would not reverse their 

deficit to learn the cued version. Both predictions were confirmed.  

As shown in Figs. 2B and 5, pretraining the HIP rats in the cued version 

reversed their deficit to learn the spatial version, but the HIP+DLS rats did not 

get such benefit. A two-way ANOVA showed a significant group (F(3,25) = 4.37, 

P < 0.05) and session  (F(1,25) = 6.77, P < 0.05)  effects. No significant 

interaction between these factors was found (F(3, 25) = 1.26, P = 0.30).  Data of 

the first 2 trial blocks of the naive rats trained in the spatial version are repeated 

in Fig. 2A just for comparison purpose. Post hoc statistics can be seen in Fig. 

2B. Both the naive DLS rats and the DLS rats pretrained in the spatial version 

were not impaired to learn the spatial version. The pretraining of the HIP+DLS 

rats in the cued version did not reverse their deficit to learn the spatial version.  

Conversely, HIP+DLS, but not DLS, rats were impaired to learn the 

cued version - even those pretrained in the spatial version (see Figs. 3 and 4).  
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A two-way ANOVA showed significant group (F(3,27) = 6.06, P < 0.001) and 

session effects (F(1,27) = 20.38, P < 0.001). No significant interaction between 

these factors was found (F(3, 27) = 0.02, P = 0.88). Further statistic details can 

be seen in Fig. 3B.  It is interesting to note that, as shown in Fig. 4, in their first 

trial in the cued version, SHAM and DLS rats typically searched for the platform 

in the place that it was during the previous pretraining sessions in the spatial 

version. This behavior was not observed in HIP rats. Later on, the SHAM, HIP, 

and DLS rats learned to swim more directly to the cued platform (Fig. 4). On the 

other hand, the HIP+DLS rats presented a random (and many times 

thigmotactic) swimming in their first trial in the cued version. Even in the last trial 

in the cued version, they kept presenting a disoriented swimming pattern, many 

times spending more time swimming near the starting location (Fig. 4). 

The patterns of hippocampal and striatal lesions are presented in Fig. 6 

and Fig. 7, respectively.  The lesions of the hippocampus affected the dorsal 

CA1 and dentate gyrus. For the striatal lesions, we excluded those centered in 

the DMS, and kept the remaining lesions mostly restricted to the DLS. The 

nucleus accumbens was always spared in the striatum-lesioned rats. 

 

 

DISCUSSION 

 

We replicated the results of previous studies showing that the learning 

impairment of HIP rats was selective to the spatial version of the water maze 

(Morris et al., 1982; Packard and McGaugh, 1992; Lee et al., 2008); while rats 

bearing lesions in the dorsal striatum (sparing most parts of the DMS) 

presented no impairment in both versions of the water maze (Whishaw et al., 

1987; McDonald and White, 1994). Our results are also in agreement with a 

study by Devan et al. (1999) that showed that the lesion of the DMS, but not of 

the DLS impaired rats to learn the cued version of the water maze (but see 

Furtado and Mazurek, 1996). These findings have been taken as evidence of 

the “multiple memory systems” theory that proposes that the hippocampus and 

the dorsal striatum are, respectively, core structures in the memory systems 

specialized in spatial/relational and in cued-based (S-R) learning and memory 

(White and McDonald, 2002; Squire, 2004).  
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However, such view is inconsistent with the present findings that 

combined lesions of DLS and dorsal hippocampus caused a learning 

impairment in both the spatial and cue-guided versions of the water maze that 

was dramatic compared to the impairment caused by the lesion of just one of 

them (see Fig. 1). Neither do our findings support the view of the hippocampus 

and the striatum as two systems competing for the control over navigation 

behavior (McDonald and White, 1993; Poldrack et al., 2001; Poldrack and 

Packard, 2003; Avila et al., 2009).  On the contrary, our finding confirms our 

predictions based on the hypothesis that both the hippocampus and striatum 

are critical for spatial and cue-based navigation, as has been proposed more 

recently (Mizumori et al., 2009). 

This hypothesis is also supported by our finding that pretraining HIP 

rats in the cued version reversed their impairment to learn the spatial version 

(see Fig. 2), a result similar to that reported in a study with DMS rats by Devan 

et al. (1999). Conversely, we found that the pretraining of DLS rats in the spatial 

version has improved their learning of the cued version (see Fig. 3). We have 

also reported similar results in a previous study with substantia nigra pars 

compacta (SNc)-lesioned rats (Da Cunha et al., 2007). However, the HIP+DLS 

rats had no benefit from the pretraining treatment on either conditions (Figs. 2 

and 3). These results suggest that a kind of latent learning mediated by the DLS 

occurred during the pretraining sessions of the HIP rats in the cued version and 

that it helped them to solve the spatial version. Conversely, it seems that a 

latent learning mediated by the dorsal hippocampus occurred during the 

pretraining sessions in the spatial task, helped the DLS rats to solve the cued 

version.  

Cooperative interactions between the hippocampus and the dorsal 

striatum during learning of other tasks have also been reported  in previous 

studies (Hikosaka and Wurtz, 1983; Hikosaka et al., 1989; Gardiner and Kitai, 

1992; Devan and White, 1999; Mizumori et al., 2000; Ragozzino et al., 2001; 

White and McDonald, 2002; Tariot et al., 2004; Voermans et al., 2004; 

Yeshenko et al., 2004; Gengler et al., 2005; Hartley et al., 2005; Eschenko and 

Mizumori, 2007; Bonsi et al., 2008; Puryear and Mizumori, 2008; Tort et al., 

2008). In addition, both the hippocampus and striatum are active while humans 

perform spatial and cued-based navigation tasks (Henke et al., 2003; Degonda 
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et al., 2005; Schendan and Stern, 2008). However, there are also reports of 

competitive interactions between the hippocampus and the dorsal striatum 

during learning of some other tasks (McDonald and White, 1993; Poldrack et 

al., 2001; Poldrack and Packard, 2003; Mizumori et al., 2004; Avila et al., 2009).  

The main role of the hippocampus in navigation is to process sensory 

information in order to map the subject’s environment (Wilson and McNaughton, 

1993). However, no action is associated to this map. Therefore, the 

hippocampus cannot provide an action solution while navigating to search for a 

reward. It only provides the information necessary for another system to choose 

the proper action to achieve such goal. The striatum, on the other hand, fulfills 

the attributes to play this action-selection role (Frank and Claus, 2006). While 

the hippocampal place cells do not encode actions and reward, the striatal cells 

encode place-action and cue-action associations (Schmitzer-Torbert and 

Redish, 2008). Striatal neurons also fire in response to specific locations, 

egocentric movements, directional heading, and reward expectation (Wiener, 

1993; Lavoie and Mizumori, 1994; Mizumori et al., 2000; Schultz, 2006; 

Eschenko and Mizumori, 2007; Lau and Glimcher, 2007; Puryear and Mizumori, 

2008; Schmitzer-Torbert and Redish, 2008; Mizumori et al., 2009).  

Many studies also showed striatal neurons reorganization when the 

spatial context is changed. However, a recent study by Berke et al. (2009) 

reported not having found such place-related cells in the striatum of rats 

performing a cued version of a plus maze task. In this task, thirsty animals keep 

entering the arm signaled by a visual cue in order to get drops of sweet water. 

This strategy, called win-stay, is considered to depend on the dorsal striatum, 

but not on the dorsal hippocampus (Packard et al., 1989; McDonald and White, 

1993). At Berke’s at al. study (2009), they recorded simultaneously from the 

dorsal hippocampus and from different regions of the dorsal and ventral 

striatum. They found more than 70% of the projection neurons recorded in the 

CA1 region of the dorsal hippocampus firing unambiguously when the rat was in 

a specific place in the maze (place cells), but they found no striatal neuron with 

this firing pattern. Some striatal neurons fired when the animals were in the 

center of the maze, when they arrived to the end of the baited arm, and when 

they were at the same distance from the end of a baited arm. These results 
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were taken as evidence against the theory that the striatum can encode spatial 

locations, at least at that task.  

Another recent study by Schmitzer-Torbert and Redish (2008) also 

reported that they did not find neurons in the striatum that fired when a rat was 

in a particular location during performance of the take-5 task. This task cannot 

be solved with the use of a spatial strategy. However, by using ensembles of 

striatal neurons, they could reconstitute the position of the rat in the maze when 

it was performing a spatial task called multiple-T. Therefore, differently from the 

place cells of the hippocampus, some striatal neurons seem to encode spatial 

parameters only when performing a task in which the goal can be 

unambiguously associated to a location. These neurons can also respond to the 

stage of the task and to rewards, properties not found in the hippocampal place 

cells. These findings may explain why Berke et al. (2009) did not find striatal 

place-related cells, since they recorded from animals that were performing a 

task that could not be unambiguously solved by using a spatial strategy.  

However, this hypothesis cannot explain why, in the present study, the lesion of 

the DLS plus the dorsal hippocampus caused impairment in the learning of the 

cued version of the water maze that was dramatic, compared to impairment 

caused by the lesion of the hippocampus, since this task can be solved with a 

non-spatial strategy.  

The “mosaic of broken mirrors model” can accommodate these 

apparently contradictory findings. It proposes that the striatum does not encode 

the space as a continuum. Instead, it breaks the environment into fragments, 

i.e., objects or locations that the animal should approach to be rewarded (Da 

Cunha et al., 2009). This may explain why Berke and his colleagues (2009) 

found striatal neurons that fired when the rat was at the same distance from the 

end of the maze, no matter in which arm it was. Remember that, in this task, the 

reward is placed just in the end of the cued arm and the striatal neurons are 

expected to fire to encode the distance between the animal and a cue that 

signals the reward location. The “mosaic of broken mirrors model” can also 

explain why the striatum cannot distinguish ambiguous locations without using a 

visual cue as a landmark (White and McDonald, 2002). According to this model, 

the striatal neurons are expected to fire as if they encoded the animal’s location 

only in situations with different cues marking the place of a reward, a condition 
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not available in the take-5 task (Schmitzer-Torbert and Redish, 2008). The 

worse navigation of the HIP+DLS rats in relation to the DLS rats when they 

performed the cued version of the water maze suggests that the striatum picks 

up the fragmented locations of the environment from the hippocampal cognitive 

map. This provides a relevant role for the projection neurons of the dorsal 

hippocampus to sustain the encoding of the location of the reward by the striatal 

neurons, even when the animal is performing a non-spatial task, as observed by 

Berke et al. (2009). The encoding of the space in unrelated pieces (sometimes 

cued by objects of the environment) also makes sense considering the 

dimensionality reduction that occurs in cortical to striatal encoding of 

sensorymotor information (Bar-Gad et al., 2003; Da Cunha et al., 2009).  

According to the “mosaic of broken mirrors model”, during this process, the 

cognitive map of the space, based on multiple relations among the objects of 

the environment, is reduced into places cued only by a particular object or into 

places that are at the same distance from a relevant cue. 

According to this view, the results of the present study can be 

compared to the situation of two guys looking for an address in Rio de Janeiro. 

One of them, Hippocampus, has the map but cannot drive. The other, Striatum, 

is a driver without the map. Hippocampus says to Striatum – turn right on 

Copacabana Ave., go straight ahead for three blocks, turn left at Rodolfo 

Dantas St., turn left again at Barata Ribeiro St., and stop at Cardeal Arco Verde 

Square. Striatum looks for the names of the roads and uses egocentric 

orientation to make the correct turns. Trial after trial, Striatum learns to relate 

the corners to other sights – turn right at the Coffee place, turn left at the mall, 

and so on. After habituation, he no longer needs the Hippocampus’ map to find 

the address. He drives randomly if he cannot count on Hippocampus. He takes 

much longer, but can eventually find the address by chance and, trial after trial, 

he learns to find it by using cues in an egocentric strategy. However, he gets 

lost when departing from the opposite side of the city. Hippocampus, on his 

way, is in trouble to find the address without the driver. He can ask someone 

else to drive him there, but this person is not used to his instructions and takes 

longer to find the address. However, the more dramatic situation is when both 

Striatum and Hippocampus are missing – then, the car is empty.  
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In conclusion, instead of parallel memory systems competing for the 

control over navigational behavior, the hippocampus should be seen as the 

system that encodes the environmental/contextual space and the striatum as 

another system that selects the action that heads navigation towards the reward 

location, both systems with memory properties.  
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FIGURE LEGENDS 

 

Fig. 1. Effects of the bilateral lesion of the dorsal hippocampus (HIP) and/or 

dorsolateral striatum (DLS) on learning the spatial (A) and cued (B) versions of 

the water maze. Data are expressed as mean ± SEM. * P < 0.05 compared to 

the SHAM group; # P < 0.05 compared to HIP group; Newman Keuls after two-

way ANOVA. 

 

Fig. 2. Effect of pretraining in the cued version rats with bilateral lesions in the 

dorsal hippocampus (HIP) and/or dorsolateral striatum (DLS) on learning the 

spatial version of the water maze. The pretraining consisted of 4 trials in the 

cued version for 5 days.  Data are expressed as mean ± SEM to find the 

platform before (A) and after (B) the pretraining sessions.* P < 0.05 compared 

to the SHAM group; # P < 0.05 compared to the HIP group; Newman Keuls 

after two-way ANOVA. 

 

Fig. 3. Effect of pretraining in the spatial version rats with bilateral lesions in the 

dorsal hippocampus (HIP) and/or dorsolateral striatum (DLS) on learning the 

cued version of the water maze. The pretraining consisted of 4 trials in the 

spatial version for 5 days.  Data are expressed as mean ± SEM to find the 

platform before (A) and after (B) the pretraining sessions. * P < 0.05 compared 

to the SHAM group; # P < 0.05 compared to the DLS group; Newman Keuls 

after two-way ANOVA. 

 

Fig. 4. Individual swim paths of rats bearing bilateral lesions in the dorsal 

hippocampus (HIP) and/or dorsolateral striatum (DLS), that were trained in the 

spatial version of the water maze for 5 days and then in the cued version for 2 

further days. The paths shown are representative of the last trial of the 5th 

training day in the spatial version of the water maze, of the first trail in the cued 

version, and of the last trial in the cued version. The black circle indicates the 

location of the cued platform, the black square the location of the hidden 

platform, and the dotted square the location in which the hidden platform was in 

the previous trial. 
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Fig. 5. Individual swim paths of rats bearing bilateral lesions in the dorsal 

hippocampus (HIP) and/or dorsolateral striatum (DLS), that were trained in the 

cued version of the water maze for 5 days and then in the spatial version for 2 

further days. The paths shown are representative of the last trial of the 5th 

training day in the spatial version of the water maze, of the first trail in the cued 

version, and of the last trial in the cued version. The black circle indicates the 

location of the cued platform and the black square the location of the hidden 

platform. 

 

Fig. 6. Reconstruction of coronal sections through the hippocampus showing 

the smallest (dark gray) and the largest (gray) lesion centered in the dorsal CA1 

and dentate gyrus. In the upper right corner of each figure, the approximate 

distance (mm) from the bregma is indicated. 

 

Fig. 7. Reconstruction of coronal sections through the striatum showing the 

smallest (dark gray) and the largest (gray) lesion centered in the DLS. In the 

upper right corner of each figure, the approximate distance (mm) from the 

bregma is indicated. 
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Fig. 1. Effects of the bilateral lesion of the dorsal hippocampus (HIP) and/or dorsolateral striatum 
(DLS) on learning the spatial (A) and cued (B) versions of the water maze. Data are expressed as 
mean ± SEM. * P < 0.05 compared to the SHAM group; # P < 0.05 compared to HIP group; 

Newman Keuls after two-way ANOVA.  
125x174mm (600 x 600 DPI)  
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Fig. 2. Effect of pretraining in the cued version rats with bilateral lesions in the dorsal hippocampus 

(HIP) and/or dorsolateral striatum (DLS) on learning the spatial version of the water maze. The 
pretraining consisted of 4 trials in the cued version for 5 days.  Data are expressed as mean ± SEM 
to find the platform before (A) and after (B) the pretraining sessions.* P < 0.05 compared to the 
SHAM group; # P < 0.05 compared to the HIP group; Newman Keuls after two-way ANOVA.  

99x65mm (600 x 600 DPI)  
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Fig. 3. Effect of pretraining in the spatial version rats with bilateral lesions in the dorsal 
hippocampus (HIP) and/or dorsolateral striatum (DLS) on learning the cued version of the water 
maze. The pretraining consisted of 4 trials in the spatial version for 5 days.  Data are expressed as 
mean ± SEM to find the platform before (A) and after (B) the pretraining sessions. * P < 0.05 

compared to the SHAM group; # P < 0.05 compared to the DLS group; Newman Keuls after two-
way ANOVA.  

90x61mm (600 x 600 DPI)  
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Fig. 4. Individual swim paths of rats bearing bilateral lesions in the dorsal hippocampus (HIP) 
and/or dorsolateral striatum (DLS), that were trained in the spatial version of the water maze for 5 
days and then in the cued version for 2 further days. The paths shown are representative of the last 
trial of the 5th training day in the spatial version of the water maze, of the first trail in the cued 

version, and of the last trial in the cued version. The black circle indicates the location of the cued 
platform, the black square the location of the hidden platform, and the dotted square the location in 

which the hidden platform was in the previous trial.  
200x194mm (600 x 600 DPI)  
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Fig. 5. Individual swim paths of rats bearing bilateral lesions in the dorsal hippocampus (HIP) 
and/or dorsolateral striatum (DLS), that were trained in the cued version of the water maze for 5 
days and then in the spatial version for 2 further days. The paths shown are representative of the 
last trial of the 5th training day in the spatial version of the water maze, of the first trail in the cued 
version, and of the last trial in the cued version. The black circle indicates the location of the cued 

platform and the black square the location of the hidden platform.  
196x190mm (600 x 600 DPI)  
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Fig. 6. Reconstruction of coronal sections through the hippocampus showing the smallest (dark 
gray) and the largest (gray) lesion centered in the dorsal CA1 and dentate gyrus. In the upper right 

corner of each figure, the approximate distance (mm) from the bregma is indicated.  

117x116mm (400 x 400 DPI)  
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Fig. 7. Reconstruction of coronal sections through the striatum showing the smallest (dark gray) 
and the largest (gray) lesion centered in the DLS. In the upper right corner of each figure, the 

approximate distance (mm) from the bregma is indicated.  
88x189mm (400 x 400 DPI)  
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4 DISCUSSÃO 

 
Uma teoria bastante aceita na literatura é a dupla dissociação entre o sistema 

hipocampal e o sistema estriatal nos processos de aprendizado e memória, onde o hipocampo 

é importante para a memória declarativa, enquanto que o estriado é importante para a 

memória de procedimento (Packard e Mcgaugh, 1992; Mcdonald e White, 1994; Packard e 

Knowlton, 2002; White e Mcdonald, 2002; Packard, 2009; White, 2009). Os nossos 

resultados reforçam a teoria de que o hipocampo dorsal é importante para a navegação 

espacial no labirinto aquático de Morris, já que os animais com lesão apenas do hipocampo 

dorsal apresentaram um prejuízo no desempenho desta versão do labirinto (Morris, Garrud et 

al., 1982; Packard e Mcgaugh, 1992). Além disso, mostramos também que quando 

lesionamos bilateralmente apenas o hipocampo dorsal não alteramos o desempenho dos 

animais na versão com pista visual (Packard e Mcgaugh, 1992). Isto sugere que o hipocampo 

dorsal é importante apenas para o aprendizado relacional (S-S) e não tem influência no 

aprendizado S-R-O. 

Entretanto, como os animais com lesão apenas do DLS não apresentaram prejuízo 

em ambas as versões do labirinto aquático, estes resultados contradizem a teoria de Packard e 

Mcgaugh (1992), a qual sugere que o estriado dorsal prejudica apenas a versão com pista 

visual (Packard e Mcgaugh, 1992). Entretanto, no trabalho realizado por Packard e Mcgaugh 

(1992) foram lesionados os estriados dorsais, sem delimitar estas lesões no DMS ou DLS. As 

lesões foram tanto no DMS quanto no DLS. 

Os nossos resultados estão de acordo com os trabalhos de DEVAN e colaboradores 

(Devan, Mcdonald et al., 1999) que mostram uma dissociação entre o DMS e o DLS, onde a 

lesão do DLS não prejudica nenhuma versão (espacial e com pista visual) do labirinto 

aquático. Estes resultados diferentes encontrados com as lesões do DLS e do DMS levaram a 
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subdivisão funcional do estriado. Nesta nova visão, o DMS passou a ser considerado por estes 

autores com parte do sistema hipocampal de memória espacial ou S-S (White, 2009) enquanto 

o sistema estriatal, ou S-R-O, ficou restrito ao DLS (White, 2009). Porém, mesmo esta nova 

visão não consegue explicar todos os resultados disponíveis, pois os animais com lesão 

apenas do DLS não apresentaram prejuízo na versão com pista, sugerindo que o DLS não 

seria importante para o aprendizado S-R-O. 

Resultados interessantes foram obtidos quando submetemos os animais a um pré-

treinamento no labirinto aquático. Quando os animais com lesão do hipocampo dorsal são 

pré-treinados, na versão com pista visual do labirinto aquático, e então testados na versão 

espacial, eles apresentaram um desempenho semelhante aos animais do grupo SHAM. Isto 

sugere que alguma informação adquirida pelo DLS no pré-treinamento foi utilizada para 

auxiliar a navegação espacial no labirinto aquático.  

Como sabemos que foi o DLS que participou na aquisição desta informação? É 

porque quando lesionamos o hipocampo dorsal e o DLS (grupo HIP+DLS), mesmo com o 

pré-treinamento os animais não conseguiram aprender a versão espacial do labirinto aquático. 

Então, isto sugere que o DLS interage com o sistema hipocampal na navegação em um 

labirinto aquático. Além disso, que esta interação é do tipo cooperativa (Mizumori, Cooper et 

al., 2000; Voermans, Petersson et al., 2004; Hartley e Burgess, 2005). Isto também sugere 

que não só o hipocampo dorsal, mas também o DLS tem um papel na navegação espacial no 

labirinto aquático (Mizumori, Puryear et al., 2009). 

Esta cooperação entre o hipocampo dorsal e o DLS também foi observada quando os 

animais foram pré-treinados na versão espacial e depois testados na versão com pista visual. 

Os animais SHAM, HIP e DLS apresentaram um desempenho semelhante na versão com 

pista visual. Mas, os animais com lesão dupla (grupo HIP+DLS) apresentaram um 

desempenho pior que estes três grupos. Ou seja, quando a lesão ocorre só no hipocampo ou só 
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no DLS, os animais desempenham normalmente a tarefa, mas quando a lesão ocorre em 

ambas as estruturas estes animais apresentam um prejuízo. Isto sugere este papel cooperativo 

entre o hipocampo dorsal e o DLS na navegação no labirinto aquático (Mizumori, Puryear et 

al., 2009). 

Como vários trabalhos mostram que o hipocampo dorsal tem a capacidade de 

codificar o ambiente formando um mapa cognitivo através da atividade de neurônios 

denominados de células de lugar ou place cells (Wilson e Mcnaughton, 1993). Uma 

explicação alternativa é que o papel do hipocampo dorsal na navegação no labirinto aquático 

é processar as informações sensoriais para mapear o ambiente através dos diversos estímulos 

(objetos) presentes fora do labirinto aquático. Porém, o hipocampo não tem a capacidade de 

coordenar as respostas motoras (ações) e nem detectar as recompensas obtidas durante a 

realização desta navegação. Quem desempenharia esta seleção de quais as ações deveriam ser 

tomadas para se conseguir uma recompensa seria o estriado ou ao menos uma parte dele, i.e., 

DLS. Isto porque o estriado dorsal apresenta neurônios que se ativam quando o animal 

executa movimentos com orientação egocêntrica, direcionamento da cabeça para locais 

específicos e também em função da expectativa de recompensa (Lavoie e Mizumori, 1994; 

Mizumori, Cooper et al., 2000; Schultz, 2006; Schmitzer-Torbert e Redish, 2008; Mizumori, 

Puryear et al., 2009). 

Este papel do DLS na seleção de ações durante a navegação no labirinto aquático 

pode ser explicado pelo modelo do mosaico dos espelhos quebrados (anexo 2) (Da Cunha, 

Wietzikoski et al., 2009). Segundo este modelo, o córtex sensorial e motor enviam projeções 

para o estriado de forma convergente e repetitiva. Em função destas projeções estímulos 

sensoriais (partes do corpo, objetos e partes do ambiente) são representados de forma 

fragmentada e repetida no estriado. Cada fragmento forma uma unidade funcional no estriado. 

Quando uma unidade funcional do estriado é ativada ao mesmo tempo por projeções do 
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sensorial (representando uma parte do corpo e um objeto), por projeções do córtex motor 

(representando a ação da parte do corpo sobre objeto) e por projeções de neurônios 

dopaminérgicos mesencefálicos (ativados de forma fásica pela novidade) ocorrem fenômenos 

de plasticidade sináptica que podem fortalecer ou enfraquecer estas associações. Este 

fortalecimento desta associação na via direta (estriado – Gpi/SNr) e o enfraquecimento da via 

indireta (estriado – Gpe – NST – Gpi/SNr) faz com que a aquela ação recompensada que foi 

deflagrada por aquele estímulo seja reforçada.  

Portanto, nossos resultados sugerem que a interação entre o hipocampo dorsal e o 

DLS não é de forma cooperativa ou competitiva, mas complementar, ou seja, que estas duas 

estruturas desempenhem funções diferentes, mas indispensáveis para a navegação espacial e 

também na navegação orientada por pistas. Nesta complementariedade, o hipocampo 

mapearia o ambiente enquanto que o estriado selecionaria quais são as ações a serem tomadas 

durante a navegação. 
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5 CONCLUSÕES 

 
Os resultados desta tese questionam de forma crítica a teoria de que o hipocampo 

dorsal seja suficiente para controlar o comportamento de navegação espacial baseado em 

memórias relacionais (S-S), tal como na versão espacial do labirinto aquático de Morris. 

Assim como, de que o DLS seja suficiente para mediar a navegação baseada em pistas 

(aprendizagem S-R-O), tal como na versão com pista visual do labirinto aquático de Morris. 

Ou seja, esta tese apresenta evidências de que tanto o hipocampo dorsal quanto o DLS sejam 

necessários para mediar a aquisição de comportamentos de navegação baseados tanto em 

memórias S-S como S-R-O. 
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ANEXOS 
 

Além deste trabalho realizado durante a tese, foram publicados outros artigos. 

Apresento aqui, nos anexo, estes trabalhos que foram publicados. No primeiro trabalho 

revisamos os trabalhos que mostram o papel da substância negra nos processos de 

aprendizado e memória, exemplificando com o que acontece em pacientes com doença de 

Parkinson. No segundo trabalho, a partir de trabalhos já publicados, elaboramos e 

apresentamos uma nova teoria para explicar como os gânglios da base participam nos 

processos de aprendizado de memórias de procedimentos. 
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ABSTRACT

Although Parkinson’s disease (PD) is classically considered to be a motor 
system disease, subtle cognitive impairments can be observed even during 
the early phases of PD. In this article we review behavioral and neurochemi-
cal studies on the cognitive alterations observed in rats treated with intranigral 
infusion of the neurotoxin MPTP. The critical role of dopamine release in the 
dorsal striatum and its modulation by adenosine receptors is also reviewed 
as a potential strategy to treat the cognitive disabilities of PD patients who do 
not improve with levodopa therapy. Most of the impairments presented by rats 
treated with intranigral infusion of MPTP are similar to those observed during 
the early phase of PD, when a moderate loss of nigral dopamine neurons 
(40-70%) results in sensory and memory defi cits with no major motor impair-

* This work was supported by CNPq, Fundação Araucária, Institutos de Milênio, and CAPES. 
Corresponding author: Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, 
Departamento de Farmacologia, UFPR, C.P. 19.031, 81.531-980, Curitiba-PR, Brazil. Phone 55 

RMAC_dic_2006.indd   219RMAC_dic_2006.indd   219 21/05/2007   01:30:00 p.m.21/05/2007   01:30:00 p.m.



220 DA CUNHA, PREDIGER, MIYOSHI AND TAKAHASHI

ments. These animals also model the working memory and habit learning 
defi cits, with long-term spatial (episodic) memories being mostly spared as 
observed in non-demented PD patients. The intranigral infusion of MPTP in 
rats has led to the development of useful models, which do not present gross 
motor impairments that would otherwise compromise the interpretation of the 
performance of the animals in cognitive tasks. 

Keywords: Parkinson’s disease, learning, memory, cognition, MPTP, rats, 
animal model.

RESUMEN

Aunque el mal de Parkinson (DP) es considerado clásicamente como un 
desorden del sistema motor, pueden observarse ligeros deterioros cognitivos 
aun en las fases iniciales del DP. En este artículo revisamos estudios conduc-
tuales y neuroquímicos sobre alteraciones cognitivas observadas en ratas 
tratadas con infusiones intranigrales de la neurotoxina MPTP. El papel crítico 
de la liberación de dopamina en el estriado dorsal y su modulación por los 
receptores de adenosina también es revisada como una estrategia potencial 
para tratar los deterioros cognitivos en pacientes con desorden de Parkinson 
(PD) que no mejoran con la terapia de levo dopa. Resultados: La mayoría 
de de los daños presentados en ratas con infusiones intranigrales de MPTP 
son similares a los observados en las primeras fases de PD, una pérdida 
moderada de neuronas nigrales dopaminérgicas (40-70%) que causa défi -
cits sensoriales y motores y poco deterioro motor. Estos animales también 
modelan los défi cits de memoria de trabajo y aprendizaje de hábitos, con la 
memoria de largo plazo espacial (episódica) mayormente preservada como 
se observa en los pacientes sin DP. La infusión intranigral de MPTP en ratas 
a llevado al desarrollo de modelos útiles, ya que no presentan un deterioro 
motor excesivo que podría de otra manera comprometer la interpretación de 
de la ejecución de los animales en tareas cognitivas.

Palabras clave: mal de Parkinson, aprendizaje, memoria, cognición, 
MPTP, ratas, modelo animal.

Parkinson’s disease (PD) is the second most common neurodegenerative 
disorder, following Alzheimer’s disease, affecting approximately 1% of the 
population older than 50 years (Duvoisin 1991). Current estimates from the 
American Parkinson’s Disease Foundation put the number of American citi-
zens suffering from this disease at more than 1.5 million individuals. Since the 
incidence of the disease increases with age (the most important risk factor), 
it is likely that the number of people suffering from PD will rise as improved 
health care lengthens the average life span. 
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Classically, PD is considered to be a motor system disease and its diag-
nosis is based on the presence of a set of cardinal motor signs (e.g. rigidity, 
bradykinesia, rest tremor and postural refl ex disturbance). These symptoms 
of PD mainly result from the progressive degeneration of dopamine neurons 
of the substantia nigra pars compacta (SNc) that project predominantly to the 
striatum (Hirsch et al. 1988), a fact that contributes to the prevailing view that 
the basal ganglia are mainly concerned with motor control functions (Heikkila 
et al. 1989). More recently, an increasing amount of evidence has suggested 
that this system is also critically involved in learning and memory processes 
(Brown et al. 1997), as indicated by the fact that many cognitive impairments, 
including memory defi cits, occur during the early stage of PD even before the 
development of its classical symptoms (Dubois and Pillon 1997; Owen et al. 
1995). The non-motor symptoms that include cognitive defi cits can be more 
important than the motor defi cits to determine the patients’ quality of life and 
represent an important factor to determine the need for nursing home care. 

On the other hand, animal models are an invaluable tool for studying the 
pathogenesis and progression of human diseases, as well as for testing new 
therapeutic intervention strategies. PD is one of many human diseases which 
do not appear to have arisen spontaneously in animals. The characteristic 
features of the disease can, however, be more or less faithfully mimicked in 
animals through genetic approaches and the administration of various neuro-
toxic agents that interfere with dopaminergic neurotransmission. Despite the 
recent discovery of mutations in the alpha-synuclein gene (and some other 
genes) in a few PD patients that has led to the development of gene-based 
PD models (von Bohlen und Halbach et al. 2004), the administration of differ-
ent neurotoxins such as 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phe-
nyl-1,2,3,6,-tetrahydropyridine (MPTP), which disrupt or destroy the dopami-
nergic system, remains the most widely used animal model for the study of 
PD. Although these models have undoubtedly contributed to a better under-
standing of many features of PD, most studies have focused on the ability of 
these models to induce nigrostriatal pathway damage and motor alterations 
associated with advanced phases of PD. However, until recently, no well-ac-
cepted model of the early phase of PD was available in the literature. The 
present review seeks to document these challenges using our earlier review 
(Da Cunha et al. 2002) as a basis for integrating the subsequent behavioral 
and neurochemical studies showing that the intranigral infusion of MPTP into 
rats causes a partial loss of dopamine neurons in the SNc and depletion of 
striatal dopamine, resulting in sensory and memory defi cits with no major mo-
tor impairments, thus representing a model of the early phase of PD. 

Finally, the fact that most of the drugs currently available for the treatment 
of PD (such as levodopa) are more effi cient in alleviating motor than cogni-
tive impairments has led many researchers to postulate non-dopaminergic 
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mechanisms for the cognitive symptoms of this disease. Here, we will briefl y 
review clinical and non-clinical studies evaluating the potential of caffeine and 
other adenosine receptor antagonists to restore defective learning and mem-
ory processes in PD.

COGNITIVE IMPAIRMENTS IN PARKINSON’S DISEASE

In addition to the characteristic motor symptoms, subtle cognitive impairments 
can be observed even during the early phases of PD (Dubois and Pillon 1997; 
Bosboom et al. 2004). They comprise a dysexecutive syndrome that includes 
attentional and working memory impairments accompanied by secondary 
defi cits in the internal representation of visuospatial stimuli and in the use of 
declarative memory storage (Bradley 1989; Owen et al. 1993; Dubois and Pil-
lon 1997; Tamaru 1997; Bosboom et al. 2004). Skill and habit learning is also 
impaired in these patients (Knowlton et al. 1996). Almost one-third of patients 
may eventually progress to dementia (Aarsland et al. 1996). 

Dysexecutive syndrome represents the core of the cognitive impairments 
and dementia observed in PD, and appears even during early stages of the 
disease (Dubois and Pillon 1997; Tamaru, 1997; Bosboom et al. 2004; Owen 
2004; Zgaljardic et al. 2004). Executive function describes a wide range of 
cognitive functions required for goal-directed, adaptive behavior in response 
to new, challenging environmental situations, including planning, task man-
agement, attention, inhibition, monitoring, and coding. All of these functions 
are attributable to the prefrontal cortex and therefore, PD cognitive disabilities 
resemble cognitive defi cits found in frontal cortex patients (Tamaru 1997; Ma-
rie et al. 1999; Owen 2004). 

A recent positron emission tomography study by Aalto et al. (2005) has 
shown increased dopamine release in the frontal cortex of human subjects 
performing a working memory task. Working memory (Stebbins et al. 1999; 
Marie and Defer 2003), especially spatial working memory (Pillon et al. 1996, 
1997; Owen et al. 1997), fails in non-demented PD patients. The articulatory 
(verbal-phonological) component of the working memory is usually preserved, 
but when a verbal working memory task demands more attention, a defi ciency 
is also observed in these patients (Moreaud et al. 1997; Owen 2004). These 
impairments are possibly the consequence of failure of the central executive 
component that manages the short-term memory. Thus, these impairments 
appear when the working memory tasks present a higher demand on execu-
tive functions such as planning and attention shifting (Bosboom et al. 2004). 

Many studies have tested whether PD patients, who are known to have 
a striatal depletion of dopamine, present non-declarative learning and mem-
ory defi cits (Bondi and Kaszniak 1991). These patients fail to improve mirror 
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reading of words that appeared only once during the test, an impairment at-
tributable to a skill learning defi cit (Thomas et al. 1996; Koenig et al. 1999). 
PD patients have been shown to present impaired skill learning not only for 
visuoperceptual but also for motor skill tasks such as puzzle assembly, press-
ing specifi c keys on a computer keyboard in response to a stimulus present-
ed on the computer screen, and drawing lines in hidden mazes (Bondi and 
Kaszniak 1991; Thomas et al. 1996; Moreaud et al. 1997). Many defi cits of 
PD patients in performing non-declarative tasks relay on the initial learning 
phase (Dujardin and Laurent 2003). On the other hand, there is no consensus 
about whether PD spares declarative memory (Thomas et al. 1996; Bondi and 
Kaszniak 1991). PD patients are generally not impaired to encode and store 
consolidated new information, but they present diffi culties in retrieving this in-
formation, particularly when they have to self-initiate remembering strategies 
(Dujardin and Laurent 2003). A failure in executive functions may explain this 
defi cit. However, the non-intentional and automatic nature of a non-declara-
tive task, such as learning a list of words or matching pairs of words, may also 
determine whether it can be learned normally or not by PD patients (Faglioni 
et al. 1995, 1997; Roncacci et al. 1996). Some authors explain the declara-
tive defi cits reported in some studies involving PD patients as resulting from 
the fact that they require a larger number of repetitions of the task to translate 
non-declarative (procedural) into declarative knowledge (Pascual-Leone et 
al. 1993). 

Habits are by defi nition stimulus-response associations that are uncon-
sciously learned through repetitively rewarded experiences. The main diffi cul-
ty to model a habit task is to guarantee that the subjects will not respond con-
sciously in order to receive the reward. One of the main well-designed studies 
planned to test whether non-demented PD patients are impaired in stimu-
lus-response habit learning used a probabilistic classifi cation task (Knowlton 
et al. 1996). The probabilistic structure of the task permitted the subjects to 
learn the task unconsciously by trial-and-error. PD patients scored worse than 
Alzheimer’s disease patients and healthy subjects, but when asked about 
it, they remembered to have participated in the previous training sessions. 
Alzheimer’s disease patients, on the other hand, learned this task like healthy 
subjects, but barely remembered the training episode. This study supports 
the double dissociation proposed for the medial temporal- and basal ganglia-
mediated declarative (episodic) and non-declarative (implicit habit learning) 
memory systems, respectively (Packard and Knowlton 2002). 

 The risk of developing dementia is up to six times higher in PD pa-
tients than in healthy subjects of the same age (Aarsland et al. 1996). The 
core of the impairments lies in executive functions (e.g. set-shifting) (Girot-
ti 1986). Mood (e.g. depression), and psychotic (e.g. visual hallucinations) 
symptoms are also common in demented PD patients. Other common im-
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pairments include visuospatial and visuoconstructive skills. Speech and lan-
guage diffi culties, such as naming and sentence comprehension, are also 
common. Furthermore, poor verbal fl uency would be predictive of dementia 
in PD. Declarative memory impairments are present, but are less severe, as 
compared to Alzheimer’s disease. There is a defi cit in free recall, but it can be 
compensated for by semantic cueing. Furthermore, PD patients have more 
problems to recall than to encode declarative memories, i.e., their impairment 
relies on diffi culties in activating processes involved in the functional use of 
memory storages, probably as a consequence of the dysexecutive syndrome. 
Recognition memory is relatively intact (Bosboom et al. 2004). Some of these 
cognitive impairments, especially attention impairment, are aggravated by a 
degeneration of cholinergic neurons in the nucleus basalis of Meynert and 
of noradrenaline neurons in the locus ceruleus that also occur in PD. On the 
other hand, impairments in declarative memory, aphasia and apraxia, when 
present, are related to cortical pathology indicative of Alzheimer’s disease or 
Lewy body dementia. Regarding the last co-morbidity, it is noteworthy how 
many characteristics of PD dementia resemble Lewy body dementia. Addi-
tionally, postmortem studies have revealed that many Lewy body disease pa-
tients had been wrongly diagnosed in life as having PD patients and many PD 
patients develop Lewy body disease later on (Zgaljardic et al. 2004). 

THE BASAL GANGLIA SYSTEM OF LEARNING AND MEMORY

As important as knowing the cause of PD is to know the normal function of 
the brain components affected by this disease. Dopamine neurons of the SNc 
modulate the basal ganglia, which are composed of the caudate nucleus and 
putamen (altogether called striatum) and the globus pallidus. Due to their re-
ciprocal connections with these core structures of the basal ganglia, the sub-
stantia nigra, ventral tegmental area and the subthalamic nucleus are con-
sidered to be associated basal ganglia structures (Alexander and Crutcher 
1990). Neurons from all parts of the neocortex project to the striatum. Striatal 
neurons, in turn, project to the globus pallidus or to the substantia nigra pars 
reticulata which projects to the ventrolateral thalamus that, in turn, projects 
back to the frontal cortex (Alexander and Crutcher 1990). Therefore, the ac-
tivity of sensory and motor parts of the cortex affects the activity of the basal 
ganglia that, in turn, modulate the activity of motor and cognitive parts of the 
frontal cortex. The positive modulation exerted by glutamate thalamic neurons 
on the frontal cortex is under inhibitory control of GABAergic neurons of the 
globus pallidus and the substantia nigra pars reticulata. This inhibition can 
be either blocked by a direct pathway or increased by an indirect pathway of 
neurons that arise in the striatum. Midbrain dopamine neurons play a dual 
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role in the modulation of the activity of these striatal neurons. Acting on D1-
like or D2-like dopamine receptors, the dopamine released by these neurons 
activates the direct pathway and inhibits the indirect pathway, respectively. 
Both actions result in a positive modulation of the motor and cognitive func-
tions of the frontal cortex (Alexander et al. 1986). According to this view, it is 
clear that the loss of midbrain dopamine neurons that occurs in PD results in 
the impairment of both motor and cognitive functions. 

How does the decrease of dopamine concentration in the striatum, and 
its consequent decrease in the positive modulation exerted by the basal gan-
glia loop on the frontal cortex, causes the cognitive impairments observed 
in PD? Let us start with motor skills and habit learning. The primary motor 
cortex, supplementary motor area and somatosensory cortex neurons di-
rectly control the fi ring of spinal motor neurons, leading to consciously willed 
movements. Motor programs are the orchestrated sequences of commands 
to functional groups of muscles that govern movements at or around the joints 
(Alexander and Crutcher 1990). Where are these motor programs encoded 
and stored? The striatum is in a strategic position to participate in the encod-
ing of such motor programs that will constitute the framework of the motor 
skills and habits (Packard and Knowlton 2002). The ability to perform a skill 
demands the coordinated activity of muscle groups from different parts of the 
body, the continuous integration of information about the contraction state of 
these muscles, and the visual follow-up of the movement in order to make 
fi ne adjustments for proper movements. Habit learning consists of increasing 
the probability that a sensory stimulus triggers a motor program designed for 
a particular behavioral response (White and McDonald 2002). As mentioned 
above, both sensory and motor regions of the entire cortex project to the 
striatum. The primary motor cortex also presents a somatotopic organization. 
Inputs from regions of the primary motor (MI) and sensory (SI) cortex that rep-
resent the same part of the body send projections to the same region within 
the striatum (Flaherty and Graybiel 1998). However, while the cortical regions 
form a single and continuous representation of the entire body, the represen-
tation of these areas of the body in the striatum is broken into a mosaic and is 
redundant, i.e., each part of the body is represented by multiple striatal units 
called matrisomes. After these somatosensorimotor inputs are processed in 
the striatum, the multiple matrisomes representing the same body parts send 
overlapping projections to the globus pallidus, where a unique and continuous 
representation of the body is restored (Graybiel 1998). Primary cortex regions 
for other sensory modalities, i.e., vision, hearing and smell, also send projec-
tions to the striatum (Calabresi et al. 1996). Notice that the multiple mosaic 
representation of sensory and motor information in the striatum allows the 
association of different stimuli with the activation of movement sequences in-
volving different parts of the body. The capacity of dopamine neurons to either 
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inhibit or stimulate the basal-cortical output and to induce fi ring-dependent 
plasticity in the corticostriatal synapses enables this system to form experi-
ence-driven stimulus-response programs that are the basis of skills and habit 
learning (Graybiel et al. 1994; Graybiel 1998).

Working memory and executive functions, also affected in PD, depend 
on the activity of the prefrontal cortex (Dirnberger et al. 2005). There are 
loops integrating the dorsolateral and the orbitofrontal areas of the prefron-
tal cortex with the basal ganglia (Alexander et al. 1986). A study by Postle 
and D’Esposito (1999) showed increased activity of these cortical regions and 
the dorsal striatum when subjects were performing spatial working memory 
tasks. Furthermore, Lewis et al. (2003) reported that cognitive impairments in 
early PD, including working memory, are accompanied by a reduced activity 
in the frontostriatal neural circuitry. The concept of working memory involves 
the integration and maintenance of information for its prospective use when 
selecting the appropriate behavior (Baddeley 2003). This process could in-
volve the transformation of sensory cues into a code response. The prefrontal 
cortex is at the top hierarchy of the sensory and motor systems (Faw 2003). 
Like the striatum, it can receive information from all sensory modalities and 
control the motor output. While doing this, it works in consonance with basal 
ganglia loops. These corticobasal loops can run parallel subroutines that are 
unconsciously operated, while the prefrontal cortex is involved in solving con-
scious demands for the ongoing behavior. Like the striatum, the prefrontal 
cortex is also modulated by dopamine neurons arising in the midbrain (Costa 
et al. 2003). Therefore, it is easy to understand how the abnormal depletion 
of dopamine levels in these brain regions as observed in PD can affect work-
ing memory. In the same way, attention and other executive functions of the 
prefrontal cortex will be affected by dopamine depletion in the striatum and 
prefrontal cortex (Dubois and Pillon 1997; Owen 2004).

MPTP-LESIONED RAT AS AN ANIMAL MODEL OF COGNITIVE 
IMPAIRMENTS OBSERVED DURING THE EARLY PHASE OF 

PARKINSON’S DISEASE

In the early 1980s, the dopaminergic neurotoxin MPTP was accidentally dis-
covered when a group of young drug addicts in California developed an idio-
pathic parkinsonian syndrome. Investigation revealed that the syndrome was 
caused by self-administration of a “synthetic heroin” analogue that had been 
contaminated with a byproduct (MPTP) during manufacturing (Davis et al. 
1979; Langston et al. 1983). At present, MPTP represents the most important 
and most frequently used neurotoxin applied to animal models of PD, pre-
senting advantages over all other toxic PD models since it causes a specifi c 
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loss of dopamine neurons and induces symptoms identical to PD in humans 
(Przedborski and Vila 2003). 

MPTP is highly lipophilic and readily crosses the blood-brain barrier. It 
is then converted in the glia into its active metabolite, 1-methyl-4-phenyl-
pyridinium cation (MPP+), by monoamine oxidase B, an enzyme involved in 
catecholamine degradation. MPP+ is taken up by the dopamine transporter 
and accumulates in dopamine neurons. Absorbed MPP+ concentrates in mi-
tochondria where it inhibits complex I of the electron transport chain, thereby 
reducing ATP generation and causing the production of reactive oxygen spe-
cies, inducing apoptotic death of dopamine neurons (see Beal 2001).

MPTP can be given in a variety of regimens (e.g. gavage or stereotactic 
injection), but the most common and reproducible form is systemic admin-
istration (e.g. subcutaneous, intravenous, intraperitoneal or intramuscular) 
(Przedborski et al. 2001). In primates such as humans, monkeys and ba-
boons, MPTP causes irreversible and severe parkinsonian symptoms that are 
indistinguishable from those of sporadic PD (Bezard et al. 1997, 2001; Pzed-
borski et al. 2001). In contrast to primates, rodents are less sensitive to MPTP 
toxicity (Schmidt and Ferger 2001). Nevertheless, the C57 black mouse strain 
was found to be sensitive to systemic injection of MPTP and was signifi cantly 
more selective than other mouse strains in terms of affecting mesencephalic 
dopamine neurons (Sedelis et al. 2000, 2001; Schmidt and Ferger 2001). 
Therefore, because of the economical, logistic and ethical constraints related 
to experimental research in primates, the MPTP mouse model has become 
the most commonly used animal model of PD to study neuropathological and 
neurochemical changes (Schmidt and Ferger 2001; Schober 2004). 

On the other hand, few studies have used MPTP-lesioned rats. The main 
reason for this is that shortly after the discovery that MPTP causes a parkin-
sonian syndrome when systemically administered to humans and non-human 
primates (Langston et al. 1983), no susceptibility of rats to MPTP has been 
reported when the drug was administered systemically (Chiueh et al. 1984; 
Kalaria et al. 1987). The conspicuous insensitivity of rats to MPTP toxicity 
may be related to a species-specifi c MPTP metabolism and/or sequestration 
of MPP+, which could be different in rats compared to mice and monkeys (Jo-
hannessen et al. 1985; Kalaria et al. 1987; Schmidt and Ferger 2001). For this 
reason some authors (see Schmidt and Ferger 2001; Schober 2004) did not 
recommend rats for MPTP research. Recently, this view has been re-evalu-
ated following the fi ndings that the infusion of MPTP directly into the rat SNc 
causes a partial loss of dopamine neurons and depletion of striatal dopamine 
that result in sensory and memory defi cits (Harik et al. 1987; Da Cunha et al. 
2001, 2002).

Rats with SNc lesion induced by intracerebral administration of 6-OHDA 
have been successfully used to study the physiology of nigrostriatal pathway 
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disruption, and have become a very popular model of motor alterations re-
lated to advanced phases of PD characterized by gross motor alterations (Un-
gerstedt 1968; Shwarting and Huston 1996). However, until recently, no well-
accepted model of the early phase of PD was available in the literature. Such 
model is very important to study the mechanisms of the defi cits characteristic 
of this phase and to screen putative drugs able to improve and maintain the 
quality of life of PD patients during a phase when they can better benefi t from 
treatment and be more effectively cared for.

Since the early phase of PD is characterized by only partial lesion of the 
SNc (less than 70% cell loss), mild motor impairment and cognitive defi cits, we 
have proposed that bilaterally MPTP-lesioned rats represent a good model of 
this early phase of the disease. This model of PD seems to be appropriate for 
this purpose because, in contrast to unilaterally SNc-lesioned rats, animals 
with bilateral lesions do not present gross motor alterations that would other-
wise confound the interpretation of poor scores in memory tasks as indicative 
of cognitive impairment. Extensive tests have shown that 3 weeks after sur-
gery these animals present no signifi cant sensorimotor disturbances. At this 
time, the animals are not aphagic or adipsic and their exploratory behavior 
scored in an open fi eld or in a shuttle-box, as well as their time of permanence 
in a rota-rod, is normal (Da Cunha et al. 2001; Miyoshi et al. 2002). The rea-
son for this lack of motor impairment is probably due to a combination of the 
following factors: 1) the partial nature of the SNc lesion and striatal dopamine 
depletion induced by MPTP, 2) a compensatory neural plasticity in the basal 
ganglia circuit during the 3 weeks after surgery, and 3) the bilateral nature of 
the lesion. 

Since bilateral lesion of the SNc by MPTP does not cause motor impair-
ments in rats, the next step was to study what kinds of memory are affected 
in these animals. Nowadays, it is generally accepted that there are multiple 
memory systems. Two of the most studied examples are the hippocampal 
and the basal ganglia memory systems, which process and store information 
independently and in different styles. According to this view, the hippocampal 
system processes spatial-temporal memories involving relations among en-
vironmental cues (e.g. episodic memory in humans), while the basal ganglia 
system is involved in habit learning in which a single stimulus is repeatedly 
associated with a response (Packard and Knowlton 2002; McDonald et al. 
2004; White 2004). As pointed out above, there is evidence to support the 
idea that PD patients present defi cits to learn habit tasks (Knowlton et al. 
1996; Dubois and Pillon 1997). Other studies consistently reported that PD 
patients are impaired in spatial working memory and other central executive 
functions (Owen et al. 1997; Owen 2004). Our studies using MPTP-induced 
SNc-lesioned rats as a model of PD are consistent with this view. Two differ-
ent versions of the Morris water maze task proved to be particularly suitable 
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to test spatial memory or habit learning. In the spatial version, rats learn to 
escape to a submersed platform that is maintained in the same location in the 
water maze from the beginning to the end of the experiment. In this case, the 
animals need to make associations among the spatial environmental cues in 
order to form a cognitive map that helps them to fi nd the platform (Morris et 
al. 1982). In the habit version, the animals learn to associate the position of a 
white ball attached to the platform and protruding above the water. The posi-
tion of the platform is changed randomly among trials. In this case, a single 
stimulus (the ball) is repeatedly associated with a response of approaching the 
platform. Spatial memory critically depends on the integrity of the hippocam-
pus but not of the dorsal striatum, whereas habit learning critically depends on 
the integrity of the dorsal striatum but not of the hippocampus (Packard and 
McGaugh 1992; White and McDonald 2002). 

Studies from our laboratory have shown that SNc lesion does not affect 
learning or memory in the spatial version of the water maze, but hippocampal 
inactivation with lidocaine prevents animals from fi nding the submersed plat-
form. An opposite response was observed with the cued version, since SNc 
lesion, but not hippocampal inactivation, impairs learning and memory. No 
signifi cant interaction was observed between the SNc lesion and hippocam-
pal inactivation conditions in terms of affecting scores in the spatial or in the 
cued version of the water maze (Miyoshi et al. 2002; Da Cunha et al. 2002). 
These results suggest that the nigrostriatal pathway is an essential part of 
the basal ganglia memory system which processes stimulus-response habit 
learning and works independently of the hippocampal memory system which 
processes spatial/relational memories. 

MPTP rats also presented a defi cit in the working memory version of the 
Morris water maze (Miyoshi et al. 2002). In this version, the position of the 
platform is maintained constant during four subsequent trials performed on 
the same day, but its position is changed on each subsequent training day. 
With this protocol, the animal cannot use the previous day reference memory 
to fi nd the platform and, thus, has to use its working memory of the previous 
trial to fi nd it. Another rat learning and memory task affected by bilateral le-
sion of the SNc is two-way active avoidance (Da Cunha et al. 2001). This task 
models multiple kinds of memory, but habit learning is an important compo-
nent of this task, in which a single cue (a sound signal) is repeatedly associ-
ated with a foot shock that can be avoided by crossing to the opposite side 
of a shuttle box. The impairing effect of nonspecifi c (electrolytic) SNc lesion 
on this task has been previously reported by Mitcham and Thomas (1972). 
The dependency to learn this task on the integrity of the dorsal striatum has 
also been reported in other studies (Kirkby and Polgar 1974; El Massioui and 
Delatour 1997).

The defi cit of MPTP rats has also been observed in another working 
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memory task named delayed alternation in a Y-maze (Braga et al. 2005). In 
this task, the rats have to alternate between two arms of a Y-maze in order to 
fi nd a food pellet. During the 20-s intertrial intervals the animals have to main-
tain in their working memory which arm they had previously visited in order to 
alternate correctly. SNc lesion with MPTP increased the number of errors in 
both pretrained and naive rats. In another study, we have shown that the left 
SNc seemed to be more critical than the right SNc for the performance of the 
working memory of rats in a version of the Morris water maze (Bellissimo et 
al. 2004).

EFFECTS OF DOPAMINERGIC DRUGS ON THE MPTP RAT MODEL OF 
MEMORY IMPAIRMENTS RELATED TO PD

Controversy exists regarding the dopaminergic nature of the cognitive impair-
ments in PD. Since neurons producing other neurotransmitters (e.g. acetyl-
choline, serotonin, noradrenaline) are also reported to degenerate in this dis-
ease (Braak et al. 2003), some authors consider that they may cause some 
cognitive and behavioral dysfunction, especially in demented patients (Dujar-
din and Laurent 2003; Zgaljardic et al. 2004). On the other hand, other inves-
tigators have reported a correlation between the loss of dopamine neurons of 
the nigrostriatal pathway and the degree of dementia (Rinne et al. 1999) and 
performance in neuropsychological tests in PD patients (Marie et al. 1999; 
Bruck et al. 2001). Animal models can contribute to establish the specifi c im-
plications of each neurotransmitter system in the cognitive impairments of 
PD. The role of dopamine can be studied by using models that are specifi c 
for dopamine depletion, such as the MPTP models, and by investigating the 
effects of dopamine receptor antagonists on cognition.

Ogren and Archer (1994) reported that haloperidol and other dopamine 
receptor antagonists impair acquisition and retention in the two-way active 
avoidance task, indicating that the performance of this task depends on nor-
mal dopaminergic neurotransmission. The sensitivity of this task to SNc le-
sions and striatal dopamine manipulations and the facility to perform this task 
– only two sessions are necessary in an automated apparatus – make it par-
ticularly suitable to test drugs with a potential to treat the cognitive symptoms 
of PD. Thus, we tested the effect of the most effi cient drug used in the treat-
ment of the motor symptoms of PD, levodopa, on SNc-lesioned rats. The 
administration of benserazide/levodopa to MPTP-lesioned rats, at a dose that 
restores the striatal level of dopamine, did not reverse the MPTP-induced 
learning and memory impairment (Gevaerd et al. 2001a). 

In humans, the benefi cial effect of levodopa on improving the cognitive 
function affected in PD is controversial. While some studies indicate an im-
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provement of cognitive functions in PD patients treated with levodopa (Beard-
sley and Puletti 1971; Loranger et al. 1972; Girotti et al. 1986; Cooper et al. 
1992; Cools et al. 2001), others have shown that this treatment may cause no 
or only mild improvement (Pillon et al. 1989; Growdon et al. 1998; Rektorova 
et al. 2005), or may even aggravate PD cognitive impairments (Huber et al. 
1989; Poewe et al. 1991; Prasher and Findley 1991; Cools et al. 2001). Go-
tham et al. (1988) proposed that the detrimental effects of levodopa observed 
in some cognitive tasks may be due to excessively high concentrations of 
dopamine in areas such as the prefrontal cortex where dopamine depletion 
is less severe. We showed that this was the case for MPTP rats treated with 
levodopa (Gevaerd et al. 2001a). The levodopa dose necessary to restore a 
normal striatal level of dopamine caused a large increase of dopamine levels 
in extrastriatal brain regions. Therefore, that study proves that, at least for 
the MPTP rat model of PD, levodopa therapy is not effective in improving 
the observed memory impairment because it appears to tilt the balance be-
tween dopamine levels in the striatum and in extrastriatal regions such as the 
prefrontal cortex (and also limbic structures), resulting in a cognitive defi cit. 
In accordance with this idea, a recent work by Bruck et al. (2005) showed 
that the fi nding of early phase PD patients scoring poorly in tests measuring 
frontal lobe functions was positively correlated with increased cortical Fdopa 
uptake. 

Furthermore, the various cognitive impairments of PD may depend on 
different brain areas that are differently depleted of dopamine, such as the 
dorsal striatum and prefrontal cortex. A study by Swainson et al. (2000) has 
shown that non-medicated PD patients performed better than medicated pa-
tients in a reversal test that depends on the striatum and ventral frontal cortex. 
However, the same patients performed worse than medicated patients in a 
spatial recognition memory task that depends on the dorsolateral frontal cor-
tex. The authors suggested that the levodopa treatment overdosed the dorso-
lateral frontal cortex, which was less affected by the disease, at the same time 
that it restored a normal level of dopamine in the striatum and ventral frontal 
cortex. Cools et al. (2001) reported similar results showing that levodopa-
treated patients can perform better or worse in tasks depending on different 
components of the frontostriatal circuitry. In that study, levodopa withdrawal 
improved performance in probabilistic reversal learning, a task that depends 
on the orbitofrontal cortex, ventral frontal cortex, and ventral striatum. How-
ever, levodopa withdrawal impaired performance in a set-shifting task, which 
depends on the dorsolateral frontal cortex and dorsal caudate nucleus. 

Therefore, although the above studies discourage the use of levodopa 
therapy to treat some PD cognitive symptoms, it does not imply that these 
cognitive symptoms are not related to the degeneration of the nigrostriatal 
pathway. In addition to the observed impairment in two-way active avoid-
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ance learning caused by the depletion of striatal dopamine in MPTP-lesioned 
rats, other important fi ndings suggest that mnemonic processes depend on 
a normal level of stimulation of the striatal dopamine receptors. Packard and 
White (1991) and Packard and McGaugh (1994) showed improved cognitive 
performance after intrastriatal administration of a D2 receptor agonist to rats. 
Also, Schneider et al. (1994) observed a cognitive improving effect of the 
systemic administration of a D1-receptor agonist to MPTP-lesioned monkeys. 
D1-receptor agonists have also been reported to release acetylcholine in the 
frontal cortex and dorsal striatum and to improve cognitive performance in 
rats (Steele et al. 1997). More recently, other authors have suggested that D1 
receptor agonists can be useful in the treatment of cognitive impairments of 
PD (Nichols and Lewis 2004; Salmi et al. 2004), and it would be interesting to 
test them in an animal model such as the MPTP rat model used here.

The failure of levodopa to reverse the memory impairment of MPTP rats 
in the two-way active avoidance task is likely to be related, at least in part, 
to the failure of this treatment to improve the cognitive impairments of PD 
patients, as mentioned above. Since this was equally observed in some clini-
cal studies and in our rat model of memory impairments related to PD, these 
results encouraged the use of the rat MPTP model in studies on alternative 
drug therapies for the treatment of the cognitive impairments of PD. 

EFFECTS OF ADENOSINE RECEPTOR ANTAGONISTS ON THE MPTP 
RAT MODEL OF MEMORY IMPAIRMENTS RELATED TO PD

It is well known that adenosine receptors are densely expressed in the striatum 
and exert a modulatory infl uence on dopamine neurotransmission (Moreau 
and Huber 1999; Svenningsson et al. 1999). The understanding of the role of 
adenosine in basal ganglia and its anatomical and functional relationship with 
the striatal dopamine D1 and D2 receptors has increased over the last years, 
providing evidence of an antagonistic interaction between A(2A)/D2 and A(1)/
D1 receptors in the striatum (Fuxe et al. 1998; Franco et al. 2000). Moreover, 
neuroprotective properties of caffeine and A(2A) adenosine receptor antago-
nists have been reported for dopamine neurons in the SNc (Chen et al. 2001). 
Furthermore, adenosine receptor-related drugs seem to be promising candi-
dates for the symptomatic treatment of PD, since there is evidence that caf-
feine directly increases dopamine release from striatal nerve terminals (Okada 
1997). This dopamine-releasing effect of caffeine was also observed with the 
A(2A) adenosine receptor antagonist, ZM 241385, in striatal synaptosomes 
(Da Cunha et al. 2002). All these putative anti-Parkinson effects may explain 
the fi nding that the risk of PD is signifi cantly reduced among coffee drinkers 
(Paganini-Hill 2001). Based on these promising effects, adenosine receptor 
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antagonists are being pursued as putative drugs to treat PD (Ferre et al. 2001; 
Wardas 2001).

Caffeine has also been reported to improve learning and memory in a 
variety of animal (Pare 1961; Molinengo et al. 1995; Cestari and Castellano 
1996; Howell et al. 1997) and human studies (Riedel et al. 1995; Pollina and 
Calev 1997). In our laboratory we also demonstrated that pretraining and pre-
test systemic administration of caffeine can improve the memory of rats in 
various tasks (Angelucci et al. 1999, 2002; Prediger and Takahashi 2005; Pre-
diger et al. 2005a,b,c). Due to the failure of levodopa to reverse the memory 
impairments caused by SNc lesion in rats, we decided to test whether caffeine 
is effective to do so. Caffeine (0.1 to 0.3 mg/kg, i.p.) reverses the impairing 
effect of the MPTP-induced SNc lesion of rats on the avoidance scores in the 
training and test sessions of a two-way active avoidance task (Gevaerd et al., 
2001b). This result suggests that the effects of caffeine and other adenosine 
receptor antagonists acting on the striatal dopaminergic system can be useful 
to restore defective learning and memory processes in PD.

CONCLUDING REMARKS

The data reviewed here indicate the successful refi nement of an experimental 
model of PD, and describe behavioral tests that can be used in rodents to study 
early PD-related cognitive defi cits. Because an animal model cannot provide the 
full range of effects of such complex human neurodegenerative disease, a ro-
dent model by injecting MPTP into the SNc was constructed by drawing from 
various sources, which included tests of spatial memory, working memory and 
habit learning. Measures of cognitive impairments in the absence of compromis-
ing sensory and/or motor disabilities have been obtained and tentatively related 
to current theoretical constructs of human cognition. The studies reviewed here 
stress the critical role of the dopaminergic nigrostriatal pathway as an essential 
element of the basal ganglia neural circuit, participating in specifi c learning and 
memory processes in the brain. The proposed MPTP rat model of PD-related 
memory impairments proved to be appropriate for studies of the neural circuits 
supporting this cognitive pathology. Moreover, our studies consistently suggest 
that adenosine receptor antagonists (e.g. caffeine), previously reported as puta-
tive drugs for treating the motor symptoms of PD, are also promising drugs to 
treat the cognitive impairments related to this disease. Considering the failure of 
levodopa to treat these cognitive disabilities, the development of a new class of 
drugs for incorporation into the pharmacological options for the treatment of PD 
is noteworthy. Certainly, additional studies are necessary to better understand the 
neurobiological substrates of early cognitive impairment in PD, as well as the de-
velopment of novel therapeutic strategies for this neurodegenerative disorder.
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a b s t r a c t

In the present review we propose a model to explain the role of the basal ganglia in sensorimotor and
cognitive functions based on a growing body of behavioural, anatomical, physiological, and neurochem-
ical evidence accumulated over the last decades. This model proposes that the body and its surrounding
environment are represented in the striatum in a fragmented and repeated way, like a mosaic consisting of
the fragmented images of broken mirrors. Each fragment forms a functional unit representing articulated
parts of the body with motion properties, objects of the environment which the subject can approach
or manipulate, and locations the subject can move to. These units integrate the sensory properties and
movements related to them. The repeated and widespread distribution of such units amplifies the com-
binatorial power of the associations among them. These associations depend on the phasic release of
dopamine in the striatum triggered by the saliency of stimuli and will be reinforced by the rewarding
consequences of the actions related to them. Dopamine permits synaptic plasticity in the corticostriatal
synapses. The striatal units encoding the same stimulus/action send convergent projections to the inter-
nal segment of the globus pallidus (GPi) and to the substantia nigra pars reticulata (SNr) that stimulate or
hold the action through a thalamus-frontal cortex pathway. According to this model, this is how the basal
ganglia select actions based on environmental stimuli and store adaptive associations as nondeclarative
memories such as motor skills, habits, and memories formed by Pavlovian and instrumental conditioning.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

At the first half of the last century, Parkinson’s and Hunting-
ton’s diseases were known by their motor disabilities. The discovery
that these diseases are caused by the degeneration of compo-
nents of the basal ganglia led to the theory that this system is
exclusively involved in motor functions [13,55,164]. Over the last
decades a growing body of evidence has shown that Parkinson’s
and Huntington’s disease patients also present marked cognitive
disabilities [78,112,127,142,155]. It also became evident that the
malfunctioning of components of the basal ganglia contributes to
cognitive disabilities in mental diseases such as schizophrenia [93],
attention-deficit/hyperactivity disorder [24], and addiction [11,58].

The involvement of the basal ganglia in cognitive processes also
became evident from studies on learning and memory carried out
after the second half of the last century. Studies involving patients
who became amnesic after lesion to the medial temporal lobe
(such as patient H.M.) have shown that these patients conserved
some learning and memory abilities later named nondeclarative
or procedural memories [190,196]. These clinical studies, com-
plemented by investigations on animals with experimental brain
lesions (i.e., the hippocampal formation and the dorsal striatum),
supported the theory of multiple memory systems in the brain
([136,137,157,159–162], see also Refs. [196,214] for a review). In this
context, the hippocampus and the adjacent cortex of the medial
temporal lobe were considered to be components of the declara-
tive memory system and the striatum was considered to be a critical
component of the nondeclarative or procedural memory system.

Nowadays there are many theories to explain the role
of the basal ganglia in cognitive and motor functions. One
view accepted by many researchers is that the basal ganglia
form a system selecting actions appropriate under specific cir-
cumstances [6,30,64,83,102,108,114,135,174,191]. In this context,
procedural memories are products of basal ganglia processing.
Motor skills [51,52,95,189], Pavlovian conditioning [10,187], action-
outcome instrumental conditioning [7,143,173,217,222], and habits
[7,136,214,222] are examples of procedural memories processed by
the basal ganglia.

What kind of computation do the basal ganglia do that result
in these types of procedural memory? The term procedural mem-
ory means knowing “how to do something” rather than “what
to do”, which is a kind of knowledge encoded as a declarative
memory. As suggested by some authors, the expression of pro-
cedural memories is the product of an action selection process
[6,83,135,149,174] based on associations, i.e., sequential associa-
tions of a chain of movements in skill learning; association of
an action-eliciting stimulus with a neutral stimulus in Pavlovian
conditioning; association of a discrete stimulus with the out-
come of a specific action in instrumental conditioning. In all of
these cases, the choice of the most adaptive association in a given
situation is learned in a reinforcement-driven gradual process
[53,158,214].

The present paper proposes a unified model to explain how
the basal ganglia process learning and memories. This model, here
named the ‘mosaic of broken mirrors’, is based on the known cir-
cuit and properties of the basal ganglia, most of them reviewed in

this special issue of Behavioural Brain Research. It explains how the
associative process occurs in the basal ganglia and how the choice of
the most adaptive associations increases as a function of the novelty
and salience of a stimulus and the outcome of the action associated
with it.

2. The basal ganglia circuitry

A detailed review of the anatomy, physiology, and biochem-
istry of the basal ganglia is beyond the scope of this article and
can be found elsewhere [15,48,163]. The description that follows
is a concise view of the basal ganglia components and proper-
ties sufficient for readers to understand the model proposed in
the article to explain the basal ganglia processing of learning and
memory.

The core components of the basal ganglia are the dorsal and
ventral striatum and the globus pallidus (GP). The dorsal stria-
tum is formed by the caudate nucleus and the putamen. Many
authors refer to the ventral striatum as the nucleus accumbens
(NAc), its main part. The GP consists of an internal (GPi) and
an external (GPe) segment and of the ventral pallidum. Due to
their reciprocal connections with these core structures, the sub-
stantia nigra, ventral tegmental area, and subthalamic nucleus
(STN) are considered to be associated basal ganglia structures. The
substantia nigra comprises two parts: the substantia nigra pars
compacta (SNc), and the substantia nigra pars reticulata (SNr) parts
[163].

The basal ganglia nuclei form partially closed loops with the
neocortex and thalamus (Fig. 1). Neurons from most parts of the
neocortex project to the striatum [48]. Sensorimotor subthalamic
structures also project directly to the striatum or by innervating
other thalamic regions that project to the striatum [131]. Stri-
atal neurons project to the GP or to the SNr which projects to
specific thalamic nuclei that, in turn, project back to the frontal
cortex. Projection neurons of the neocortex, STN, and thalamus
are excitatory (glutamatergic), whereas projection neurons of the
striatum, GP, and SNr are inhibitory (GABAergic). Therefore, the
activity of different regions of the neocortex affects the activity
of the basal ganglia that, in turn, modulate motor and cognitive
parts of the frontal cortex. The positive modulation exerted by
thalamic neurons in the frontal cortex is under inhibitory con-
trol of the GPi and SNr. This inhibition can be either blocked
by a direct pathway or can be increased by an indirect path-
way of neurons that arise in the striatum. The direct pathway is
a projection of the striatum to the GPi/SNr. The indirect path-
way is formed by striatal neurons that project to the STN which,
in turn, projects to the GPe. The latter then sends projections to
the GPi/SNr. Both the GPe and the STN present reciprocal projec-
tions to many nuclei of this circuit, thus working as relay stations.
Midbrain dopaminergic neurons project mainly to the striatum.
Dopamine released by these neurons activates the direct path-
way and inhibits the indirect pathway by acting on ‘D1-like’ (D1
and D5) or on ‘D2-like’ (D2, D3, and D4) dopamine receptors,
respectively. Both actions result in a positive modulation of the
motor and cognitive functions of the frontal cortex [2,30,48,163].
The segregation of the direct and indirect pathways seems to be
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Fig. 1. An updated and simplified diagram of the Alexander et al. [2] cortico-basal
ganglia network. Glutamatergic synapses are indicated by green arrows, GABAergic
synapses by red arrows and dopaminergic synapses by blue arrows. Abbreviations:
D, dopamine receptors; GPe, external globus pallidus; GPi, internal globus pallidus;
SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; STN,
subthalamic nucleus; VTA, ventral tegmental area.

incomplete, with many projection neurons of the striatum express-
ing both D1 and D2 receptors [199]. In these cases, one family of
dopamine receptors may predominate in each subpopulation of
neurons.

Almost 95% of the neurons of the striatum consist of
GABAergic projection neurons called medium spiny neurons
(MSNs). The other striatal neurons are interneurons that interact
and modulate the activity of MSNs, including parvalbumin-
containing, GABA-releasing interneurons; NADPH diaphorase-
and somatostatin-positive interneurons, and giant cholinergic
aspiny interneurons, also called tonically active neurons (TANs)
[107,166,201].

The homogeneity of the cytoarchitecture of the striatum
is only apparent. The MSNs of the direct and indirect path-
ways are homogenously mixed [71,72]. However, the MSNs form
patches of acetylcholinesterase-poor but � opioid receptor-rich
regions, named striosomes. Striosomes are surrounded by a dense
acetylcholinesterase-rich matrix [81].

The striatum is the input unit of the basal ganglia. Practi-
cally all modalities of cortical regions project to the striatum.
Elegant studies conducted by [62,63] regarding the projections
of the primary somatosensory and motor cortices of monkeys to
the striatum have revealed that units of different modalities of
somatosensory and motor information, encoded in different areas
of the cortex, project to the same area of the striatal matrix. The
authors called each region of the matrix representing a part of
the body a matrisome. The cortical regions encoding, for example,
the motor and sensory (pain, temperature, and pressure sensi-
tivity) properties of a finger of a monkey overlap in the same
matrisome. More intriguing, the authors found several matri-
somes in the striatum encoding for the same functional part of
the body. This indicates that a regions in the cortex that repre-
sent a body part project to several matrisomes in the striatum.
In this respect, the distribution of matrisomes in the striatum is
a mosaic of multiple sensorimotor units that are repeatedly repre-
sented.

The concept of corticostriatal convergence and disperse repeti-
tion of matrisomes in the striatum is in contrast to the concept of
segregated and parallel corticostriatal circuits. There is a current
debate about which of these concepts better explains corticostri-
atal functioning [22,72]. Many studies have shown convergent and
overlapping corticostriatal projections, including regions beyond
the somatosensorimotor areas such as the prefrontal [22,87,192],
posterior parietal [28,175], secondary visual [28,175], and cingulate
cortex [224], among others [123,150,179,221].

Zheng and Wilson [224] showed that the axonal arborizations of
corticostriatal neurons form a pattern of multiple focal and dense
innervations dispersed within a vast area of the striatum, similar to
the matrisomes. The same pattern of multiple focal cortical projec-
tions with widespread terminal fields in the striatum have also been
reported by other investigators [22,72]. In addition to these patchy
corticostriatal projections, these authors also found diffuse projec-
tions that would “broadcast” the cortical activity to different areas
of the striatum, thus increasing the probability of corticostriatal
convergence.

However, corticostriatal convergence may not be complete and
is certainly not homogeneous throughout the striatum. Areas of
predominantly (but not absolutely segregated) sensorimotor, asso-
ciative or limbic cortical projections in the striatum exist, as
proposed by the parallel segregated loops model [2] and in agree-
ment with experimental evidence [105,177].

3. The ‘mosaic of broken mirrors’ model

The model is inspired by the properties of the cortico-basal cir-
cuitry described above. It proposes that the striatum processes
cortical information in an operation similar to the generation of
images of a person and his environment in a mirror house. The
images are repeatedly represented in the many mirrors. The mir-
rors are broken into many pieces that conserve fragments of the
image. The repetition of the multiple pieces facilitates their com-
bination into a mosaic. The mosaic is the product of a particular
combination.

3.1. Breaking the mirrors: functional convergence and widespread
repetition

The first postulate of this model is based on the generalization
of the finding that corticostriatal projections from the somatosen-
sory and motor cortex form matrisomes in the striatum [62,63].
According to this postulate, all cortical projections to the striatum
are functionally convergent and form ‘matrisome-like’ units widely
dispersed within the striatum (see Figs. 3 and 4). The term matri-
some was proposed by Flaherty and Graybiel because they found
out that all corticostriatal projections from the somatosensory and
motor cortices made synapses with MSNs of the matrix and not of
the striosomes [62,63]. However, more recent studies have reported
focal projections from other cortical regions forming ‘matrisome-
like’ terminals in both the matrix and the striosomal compartments
of the striatum [224]. Thus, these “matrisome-like” units will be
named here ‘functional units’ of the striatum.

3.2. Building functional units

3.2.1. Body parts
The first question is what do these ‘functional units’ represent?

Let us go back to the ‘functional units’ called matrisomes by Flaherty
and Graybiel [62,63]. The matrisomes integrate different sensory
and motor properties of articulated parts of the animal’s body, i.e.,
a functional part with motion properties. The model proposes that
functional units allow the striatum to program actions based on the
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movement of articulated parts of the body in relation to each other
and to the environment.

3.2.2. Objects
What about the representation of sensory information of the

surrounding world in the striatum? We propose that they are also
encoded in the pieces of the ‘broken mirrors’. Each piece individu-
alizes an object with which a part, or the whole body, can interact.
Each object is repeatedly encoded in many striatal units. These units
are the same that also represent each body part in a repeated and
random way. Therefore, when an object appears in the receptive
field of a unit representing a body part, the firing of its neurons will
increase. In other words, the firing of the neurons of a unit repre-
senting a body part increases when an object is close enough to that
body part (see Fig. 2). Touching the left eye with the right index fin-
ger, kicking a ball, eating an apple, sitting on a chair, are examples of
such actions. Therefore, we propose that, due to the repetition of the
units representing the same objects and body parts, the increased
excitation of a unit representing an object can move though the
units representing different body parts as illustrated in Fig. 2. We
also propose that objects are encoded in the striatum in a multi-
sensory way. That means that the units encoding the body part that
is approaching an object will respond to the view, touch, smell, or
sound of that object.

Many known characteristics of the cortical projections to the
striatum are coherent with our model. The ventral stream of visual
information concerning object cognition is directed into the area
TE, located in the inferior temporal cortex [212]. In primates, TE
projects to the tail of the caudate nucleus and caudal/ventral

Fig. 2. These diagrams illustrate how the striatum encodes actions of a body part
towards an object, according to the ‘mosaic of the broken mirrors’ model. Functional
units of the striatum are represented by interlinked squares. They encode body parts
that can interact with objects of the nearby environment. These objects are also
represented by these units in a repeated way. The representation of an object and a
body part can overlap in the same unit. Overlapping representation of a specific body
part with an object seen, heard or smelled occurs by chance, due to the widespread
distribution of these units. Each unit encodes an object in body part-coordinates, i.e.,
in coordinates centered in the body part that it also represents. Polymodal neurons of
these units, like a hand-vision neuron, respond to an object only when it is seen near
the hand. In the left sketch, a striatal foot-unit is activated to release a movement
of the foot towards a ball seen close to it. In the right sketch, a striatal hand-unit is
activated to release a movement towards a ball that approaches that hand.

portions of the putamen in a patchy manner [88,212]. The stria-
tum, in turn, projects back to TE via SNr/thalamus [134]. This
remarkable exception of the rule that basal ganglia output is
exclusively directed at the frontal cortex, stress how important
representing objects in the striatum is. The striatal neurons receiv-
ing these patchy projections from TE are intermixed by striatal
neurons with receptive fields of one or more sensory modal-
ities: visual [18,31,33,60,82,88,89,96,104,130,146,148,150,167,176],
somatosensory [62,96,148], auditory [29,148,184], gustatory [67],
and olfactory [193]. Inputs from sensory neurons of other higher
visual cortical areas, extra-geniculate sensory thalamus, and the
superior colliculus are also likely to contribute to the sensory
and movement properties of the objects represented in the stria-
tum [148]. In agreement with the view that the striatum encodes
body parts and objects, visual and somatosensory modalities pre-
dominate among striatal neurons [82,148] and many of them are
selective to approaching stimuli [82,150,194]. Except for the patchy
projections from TE [88], these neurons present large size receptive
fields and no signs of retinotopic or continuous somatotopic orga-
nization ([147], but see Refs. [36,82]). Their receptive fields cover
the whole visual field, auditory perimeter, and body surface [148].

The striatum is widely regarded as being involved in sensori-
motor integration [9,48,163,121,214,222]. According to our model
this integration can be achieved if the locations of an object are
encoded in the striatum, not in the retinotopic-, but in body part-
coordinates. In other words, we propose that the striatal neurons
located in the unit representing a hand will respond to the vision of
an object only when it is near to that hand (see Fig. 2). This model
predicts that the closer the hand is to the object, the higher the fir-
ing rate of the visual neurons of that unit will be. It is exactly the
picture found by Graziano and Gross [82] while recording from the
ventral putamen of anesthetized monkeys. They reported that some
neurons presented a tactile receptive field covering the whole body
and visual fields restricted to a visual angle. Others, responsive to
the touch of a cotton swab in the monkey’s face while its eyes were
covered, increased their firing after the animal had its eyes uncov-
ered so that it could see this object approaching its face. The same
neuron did not respond before the object was 10 cm or less from the
animal’s face. They defined the visual receptive field of this neuron
as “corresponding to the solid angle centered at the tactile receptive
field and extending out approximately 10 cm” [82]. They reported
receptive fields centered in other body parts extending from some
centimeters (e.g., a hand) to more than a meter away out to the wall
of the room (e.g., an arm). Coherent with the hypothesis that these
striatal neurons encode objects that can be manipulated by a body
part, when the arm of the animal was moved out of its vision, a
typical “arm + vision neuron” no longer responded to the presence
of the object to its field of view. Based in these findings they pro-
pose that the striatum encodes objects located in the visual space
surrounding the subject in body part, rather than in retinotopic
coordinates. Our model not only incorporates this theory, but also
proposes a mechanism by which this body part-centered coordi-
nates may arise in the striatum (see Fig. 2).

Such model also explains why the dysfunctions of the basal
ganglia (and their loop with TE) lead to alterations in visual per-
ception, like visual hallucinations [134], impaired reaction times in
visual search [116], and impaired pattern/object location associa-
tive learning [60,116,134].

3.2.3. Locations
While the actions towards objects located in the space imme-

diately surrounding the subject demand body part-centered
coordinates, actions toward distal targets demand spatial coordi-
nates. No consensus exists that the spatial context is represented in
the striatum [49,128,139,141,214,222]. Behavioural studies report-
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ing a double dissociation between the dorsolateral striatum and
the hippocampus for spatial and stimulus-response (S-R) learn-
ing tasks have initially led to the view that the striatum is not
important for spatial tasks. These studies included spatial and cued
versions of the Morris water maze [156,159], radial maze [159],
and plus-maze tasks [160]. Other studies from our group have also
shown this dissociation between the SNc and the hippocampus
[38,40,42,43,61,138].

However, even the cued tasks mentioned above require some
degree of spatial information to be solved. In those studies, the cue
(i.e., a ball, a salient platform, a light) can be conceived as an object
which the animal needs to approach in order to be rewarded. Since
this object is located in a specific place of the maze, the behaviour
of the rat can be conceived as “to go to that object located in that
place”. In some instances, such as in a plus-maze or T-maze, the
reference is not an object but a hemi-side of the animal’s body
(egocentric orientation) which permits encoding behaviours such
as making a right or left turn to be rewarded [16,106]. Even in these
cases, the task involves performing an action (turn) in a specific
place.

Evidence that the striatum encodes spatial information about
the environment came from studies reporting that, like the hip-
pocampus [153], the striatum also contains place-related cells,
neurons that discharge when the animal is in a particular place of
the environment [57,139–141,172,213]. Compared to the hippocam-
pal place cells, those found in the striatum are more influenced
by other parameters of the task [111]: they also encode egocen-
tric movements and are more sensitive to visual cues [141] and
reward variables [111,126,140,141,194]. The striatum, as well as the
hippocampus, also contains a subpopulation of neurons called head
direction cells that fire preferentially when the animal’s head is
aligned with a particular orientation, irrespective of the animal’s
location [139,141]. These neurons are probably involved in egocen-
tric movement.

The difference between the tasks depending on the dorsal stria-
tum and those depending on the hippocampus is that, in the former,
the location of the target does not need to be defined in terms of
multiple relations between distal cues. In a recent study, we have
shown that inactivation or lesion of the striatum or of the SNc does
not impair the ability of rats to navigate in a water maze when they
always depart from the same starting point to find a hidden plat-
form kept in the same place in the maze ([40], see Ref. [159]). The
animals learn this task probably by using a single object of the envi-
ronment as a distal cue. Animals with intact striatum and a lesion
in the hippocampus may orient themselves in an environment, but
this orientation is not sufficient to disambiguate places equidis-
tant to the same environmental object. This dissociation has been
shown by McDonald and White [128] in rats searching for food in
two adjacent arms of an 8-arm radial maze. Rats with a hippocam-
pal disconnection, but with an intact striatum, were unable to solve
this task. However, the same rats were not impaired to discriminate
in which of the two arms, separated by other two or more arms,
they would find the food. In the latter case the animals probably
use different distal cues to discriminate between arms.

According to the ‘mosaic of broken mirrors’ model, the represen-
tation of space in the striatum may account for the characteristics of
the tasks that can be learned with the participation of the striatum.
This model postulates that cortical projections to the striatum are
fragmented into pieces, with each piece representing a location. In
other words, this model assumes that, while the hippocampus rep-
resents space as a continuum, the place fields in the striatum are
repeated and intermixed. This configuration facilitates the asso-
ciation of objects (cues) with particular places, but breaks the
orthogonal relationships among different locations. Therefore, the
hippocampus is in a position to compare the current spatial context

Fig. 3. This diagram illustrates the redundancy and functional convergence prop-
erties that the ‘mosaic of broken mirrors’ model proposes to the functional units of
the striatum. The indirect pathway and the dopaminergic modulation are not repre-
sented in order to simplify the diagram. Abbreviations: GPi, internal globus pallidus;
SNr, substantia nigra pars reticulata.

of the environment with the context found in the past. On the other
hand, the striatum is in a position to choose an action that can move
the “pieces of the mosaic (the subject’s body, body’s parts, objects)
to a particular location. According to this view, the hippocampal
representation of the environment is globally oriented, while the
striatal actions depend on breaking the environment into pieces in
order to move them. Hence, tasks such as the cued version of the
water maze or the win-stay version of the radial maze can be easily
solved by the striatum by associating the approaching action with
the place in which an object (cue) is located.

The action of approaching a location cannot be encoded in the
hippocampus since it does not have direct connections with motor
areas of the neocortex. This location-approaching action associa-
tion is probably done in the striatum that receives direct inputs
from the hippocampal formation to the shell region of the NAc, and
indirect inputs to the core of the NAc through the prefrontal cortex
and to the ventromedial striatum through the medial entorhinal
cortex [66,119,129,202].

We recently obtained some curious results in experiments of
latent learning that can be explained by the assumption of the
‘mosaic of broken mirrors’ model that the striatum represents space
in a fragmented way. We found that the impairment of SNc-lesioned
rats to perform the cued version of the water maze disappeared
when the animals were pre-trained in the spatial version of this
task [42]. Curiously, SNc-lesioned rats were not impaired to per-
form the spatial version. A series of control experiments showed
that the presence of the hidden platform and the view of the distal
cues during the pre-training sessions were critical for that benefi-
cial effect. More intriguing was the finding that this improvement
was observed even when the locations of the distal cues (posters
fixed on a curtain around the maze) were changed in relation to
the pre-training session. Our model explains these data by assum-
ing that the spatial map formed during the pre-training sessions
was broken into pieces, each containing a distal cue. Hence, a par-
ticular cue could be associated with the action of approaching it,
irrespective of its relationship with the other cues.
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Fig. 4. This diagram demonstrates the combinatorial, associative, learning, and action selection properties of the mosaic of broken mirrors model. Neurons are represented
by boxes and circles. The colours of the arrows linking glutamatergic cortical neurons to striatal neurons denote their origins. Arrows linking the other components of the
basal ganglia circuit represent axons of GABAergic (red) or glutamatergic (green) neurons. (A) Before learning occurs, the circuit allows the association of any environmental
cue with any action. (B) After pairings of the salient Cue 1 with Action 1, coincident with a phasic release of dopamine (not shown), the following alterations occur, restricted
to the synapses between cortical neurons representing Cue 1 and those representing Action 1 that converge to the same striatal neurons: LTP in the direct pathway for Cue
1; LTD in the indirect pathway for Cue 1; LTP in the indirect pathway for Action 1; LTD in the direct pathway for Action 1. Alterations in the synapses of Cue 1 increase the
probability that it will induce the choice of Action 1. The alterations in the synapses of Action 1 lead to the conclusion of the action. Abbreviations: GPe, external globus
pallidus; GPi, internal globus pallidus; SNr, substantia nigra pars reticulata; St, striatum; STN, subthalamic nucleus; Th, thalamus.

In another study carried out in our laboratory, we found further
evidence that units of the striatum encode actions directed at a goal
(unpublished results). In that study, rats with complete hemilesion
of the SNc induced by 6-hydroxydopamine were trained to enter the
lighted arm of a radial maze in order to find a sucrose pellet. The
lesion prevented the animals from running directly to the lighted
arm when it was located on the side contralateral to the lesion.
However, these animals made ipsiversive turns in order to adjust
their pathway and enter the lighted arm. This result suggests that
the action of approaching a goal, but not the goal per se, depends
on the release of dopamine in the striatum contralateral to the goal
location. Although SNc-hemilesioned rats have lost the basal gan-
glia modulation that helps them to choose making contraversive
turns, they could still approach a goal located on their contralateral
side by means of other actions (i.e., ipsiversive turns). When the
dopaminergic receptors of the hemilesioned striatum were stim-
ulated by the administration of a dopamine receptor agonist (i.e.,
apomorphine), these animals did not only recover their ability to
perform contraversive turns, but also overdid this action due to
supersensitization of D2 dopamine receptors [41]. These results
are in agreement with the postulate of the “mosaic of broken mir-
rors” model that the activation of specific actions (such as turns)
directed at a goal is encoded by the functional units of the stria-
tum. Other actions involved in the practice of innate behaviours,
such as grooming [34] and predatory hunting [183], have also been
reported to depend on the striatum.

Therefore, the model proposes that not only the hippocampus,
but also the striatum, is needed to solve spatial versions of water
and radial mazes. The poor performance of striatum-lesioned rats
in these tasks has been attributed to lesions more restricted to the
dorsolateral striatum, sparing other regions that receive direct or

indirect projections from the hippocampus, i.e., the dorsomedial
striatum [49,141,222]. According to this view, spatial navigation
depends on both the hippocampus and the striatum. The hip-
pocampus provides the map and the striatum the pathway to
navigate through it. Coherent with this postulate, neurons encod-
ing for particular behaviours such as turns have been found in the
striatum, but not in the hippocampus [141]. Mulder et al. [145]
reported the existence in the striatum of “goal”-like neurons that
fire continuously while a rat moves from one location to another in
a plus-maze. These neurons may encode the paces of movements
between landmarks of a route made up by pieces of the spatial map.

3.2.4. Other functional units of the striatum
The inputs to the striatum are not restricted to sensory, spatial

or motor areas of the cortex. Prefrontal and limbic areas of the cor-
tex also project to the striatum in a convergent and widespread
manner. Convergence refers to afferents departing from different
regions of the cortex to overlap in restricted areas of the cortex
forming ‘matrisome-like’ functional units. These units are widely
distributed in vast regions of the striatum. What is the functional
nature of these units? They may refer to affective meaning and to
abstract information such as symbols, words, digits, thoughts, and
plans. The processing of these functional units by the basal ganglia
would explain the involvement of the latter in working memory
and executive and affective functions [26,132,154].

3.3. Building associative units

Once objects, locations, body parts, symbols, and associated
actions or plans are individualized into functional units in the
striatum, what is the function of their repeated representation?
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The answer is associative learning. The body, the surrounding
world and the mental world can be combined into more flexible
associations if they are broken into pieces (see Fig. 3). Repeti-
tion increases the probability of association among pieces and
explains the involvement of the basal ganglia in different kinds
of associative learning: Pavlovian conditioning for the associa-
tion between a conditioned stimulus (CS) (a neutral stimulus)
and an unconditioned stimulus (US) (a rewarding or aversive
outcome) [10,187]; instrumental or operant conditioning for the
association of a predictive cue with an action outcome (reinforce-
ment or punishment) [143,173,217]; addiction for the association
between a drug with strong rewarding properties and its com-
pulsive consumption [11,58]; skill learning for the association of a
sequence of motor actions [1,51,52,95,189]. The associative property
of basal ganglia proposed by this model also permits the striatum
to play a role in action selection based on reinforcement of pre-
vious cue-action associations [6,7,30,64,114,191]. The ingredients
for these associations are the synapses between the corticostri-
atal neurons and the MSNs encoding the functional units of the
striatum.

3.3.1. Synaptic plasticity in the striatum
What are the mechanisms underlying the association of func-

tional units of the striatum? The most likely candidates are the
synaptic plasticity phenomena known to occur in the striatum.
Both long-term potentiation (LTP) and long-term depression (LTD)
have been reported to occur in synapses between the corticos-
triatal neurons and MSNs [20,50,218]. According to Hebb’s rule,
LTP occurs when presynaptic and postsynaptic neurons are depo-
larized at the same time. LTP can be induced in the striatum by
repeated activation of cortical terminals [27]. Therefore, corticos-
triatal synapses are the binding elements associating information
arriving from different regions of the cortex. This association
may occur when LTP is induced in the synapses of the two cor-
ticostriatal neurons with the same MSN and requires a triple
coincidence: the two cortical neurons and the MSN must be depo-
larized at the same time. Such coincidence fulfil the needs for
the induction of heterosynaptic associative LTP [124]. The partially
closed loops between the striatum–GPi–thalamus–striatum and
the striatum–GPi–thalamus–cortex–striatum (Fig. 1) may result in
reverberant activation of MSNs, a factor contributing to keep these
neurons depolarized. Other loops involving the GPe and/or the STN
may also play a role in such reverberation and/or in the modulation
of this circuit. High-frequency firing of the corticostriatal neurons
may also induce LTD in their synapses with MSNs ([19,120,211], see
also Refs. [50,218] for a review). The concentration of dopamine
and how dopamine receptors are distributed among MSNs are crit-
ical factors to determine the induction of LTD or LTP, as will be
discussed in the next section. LTP and LTD of synapses associating
different cortical inputs with the same MSNs may build the mem-
ory trace of associative learning mediated by the basal ganglia (see
Figs. 3 and 4).

3.3.2. Dopamine-dependent synaptic plasticity
The synaptic plasticity necessary for the occurrence of associa-

tive learning in the striatum requires a learning signal, a message
that signals when and how learning occurs. This message seems to
be the release of dopamine ([99,187], but see Ref. [218]). The activa-
tion of dopamine receptors in MSNs is necessary for the induction
of LTP or LTD. D2-like and (maybe) D1-like dopamine receptors are
required for the induction of LTD, but the activation of D2 recep-
tors favours the induction of LTD over LTP in some instances ([21],
see also Ref. [218] for a different view). Activation of DB1 cannabi-
noid and adenosine A2A receptors also seems to be involved in the
induction of the striatal LTD [50,70,218]. On the other hand, LTP

requires the activation of D1 receptors [25] and is inhibited by the
activation of D2 receptors [21].

D1 receptors occur mainly in MSNs of the direct pathway
(those projecting to the GPi/SNr), whereas D2 receptors are mainly
expressed in neurons of the indirect pathway (those projecting to
the GPe) [71,72]. Therefore, in the presence of dopamine, LTP is
more likely to occur in the direct pathway and LTD in the indirect
pathway. The direct pathway positively modulates actions encoded
by the frontal cortex, while the indirect pathway inhibits their
occurrence (see Section 2 above). According to the ‘mosaic of broken
mirrors’ model, in the presence of dopamine, the concomitant acti-
vation of corticostriatal neurons encoding, for example, an object
and the action of approaching it, would induce LTP in their synapses
with MSNs of the direct pathway and LTD in synapses with MSNs of
the indirect pathway. This feature would increase the firing prob-
ability of MSNs encoding the association between the stimulus
(object) and the action of approaching it [101].

The complete segregation of the direct and indirect pathways
is currently a matter of debate [48,87,218]. Induction of LTD that
requires the activation of D2 receptors occurs in most MSNs [19,50].
In addition, there is evidence for the co-expression of D1 and D2
receptors in a subpopulation of neurons [199]. In these neurons
the induction of LTP or LTD depends on the level of dopamine and
on the depolarization state of MSNs. D2 receptors present a higher
affinity for dopamine than D1 receptors [103]. As a consequence,
lower levels of dopamine favour the induction of LTD and higher
levels favour the induction of LTP [25].

What happens when the act of approaching an object is rein-
forced? The corticostriatal neurons encoding the object and the
action of approaching it are activated at the same time. As a conse-
quence, LTP or LTD would occur in the connections of MSNs that
receive overlapping projections from these active corticostriatal
neurons, with the occurrence of LTP in MSNs of the direct pathway
and LTD in those of the indirect pathway (see above). This feature
would increase the firing probability of these MSNs and the conse-
quent occurrence of the approaching action when the same object
is seen by the subject in the future.

3.3.3. Novelty-driven reinforcement learning
Midbrain neurons release dopamine in the striatum in tonic

or phasic patterns [68,75–77]. A small amount of dopamine is
spontaneously and continuously released by these neurons in a
tonic pattern, providing a baseline level of extrasynaptic dopamine
required to run the motor programs already set up [75]. The pha-
sic firing of dopaminergic neurons causes a transient and robust
release of dopamine and serves as a learning signal, inducing neu-
ral plasticity in the striatum. Coherent with this theory, the phasic
release of dopamine is critical for Pavlovian conditioning [10,187]
instrumental learning [143], and other types of associative and rein-
forcement learning [114,185].

The influential studies by Schultz and other groups sug-
gested that the phasic release of dopamine occurs in response to
unpredicted rewarding stimuli [10,143,188], with the amount of
dopamine released being proportional to the difference between
expected and obtained reward [188]. This difference is called
reward prediction error. More recently, this theory has been con-
tested by the argument that the latency for a stimulus to induce
the phasic release of dopamine is too short to permit the sen-
sory processing necessary to evaluate the stimulus identity and
reward value [173]. The fact that the unpredicted presentation of
non-rewarding salient stimuli such as light flashes or tones elic-
its a phasic dopamine response also disagrees with the reward
prediction error theory [99,100,118]. Habituation to a stimulus abol-
ishes the phasic dopamine response [118,187]. The omission of an
expected reward causes a brief cessation in the firing of midbrain
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dopaminergic neurons at the time the stimulus was expected to
occur [186]. Aversive or detrimental stimuli (usually those that
cause pain) induce a pause in the firing of dopaminergic neurons for
the duration of the event, followed by a rebound response [32,210].
Therefore, the phasic dopamine response seems to signal the pres-
ence of new biologically significant stimuli, with a positive response
(increased release do dopamine) to non-harmful stimuli (neutral or
rewarding) and a negative response to harmful stimuli [173].

As stressed above, striatal synaptic plasticity depends on the
activation of dopamine receptors. Therefore, the phasic release of
dopamine serves as a permissive signal for learning processes that
occur in the striatum. The fragmentation of the sensory repre-
sentation of the environmental world and functional parts of the
body involved in actions permits the individualization of these
elements and their repetition increases the combinatorial asso-
ciation among them. After repeated presentation of novel stimuli
associated with actions, the continuous reinforcement of the asso-
ciations between pairs of stimuli or stimulus-action units that
always appear together causes them to be more strongly associated
than the stimuli and actions that are associated only occasionally.
According to the ‘mosaic of broken mirrors’ model, it is the prin-
ciple of the associative learning that forms expectations based on
current stimuli and actions (see also [114,149,207,219]). After learn-
ing, the occurrence of a salient stimulus can be predicted and it will
no longer induce the phasic dopamine response. The memory for
this association becomes stable.

According to this model, the association of an action with its out-
come depends on their representation in the striatum at the same
time as the concentration of dopamine in the synapses are high
due to the phasic response. Otherwise, the synaptic plasticity to
strengthen the synapses between overlapping corticostriatal neu-
rons and MSNs would be lacking. The phasic dopamine response
seems to appear too early and to be too short [65,84,99,188] to per-
mit the association of a stimulus with an action and its rewarding
outcome [173]. However, the clearance of dopamine released in the
striatum, particularly in the NAc and medial regions of the striatum,
takes longer compared to the dorsolateral striatum [151,198,216].
This fact would explain MSNs in the striatum responding to pre-
vious actions and their reward outcome [35,92,97,114,115]. The
clearance of dopamine may range from a few hundreds of mil-
liseconds in the dorsolateral striatum to several seconds in the NAc
[151,198,216]. This difference can account for the higher involve-
ment of the NAc in action-outcome reinforcement learning and of
the dorsolateral striatum in S-R habits [149,222]. The fast clearance
of dopamine in the dorsolateral striatum opens a time window too
tight to include the reward outcome to the S-R association. This
might be the reason for the slow learning rate of S-R habits and
for the fact that these habits are relatively insensitive to reward
devaluation. On the other hand, in the NAc the slow clearance of
dopamine after a phasic response is probably long enough to asso-
ciate the outcome (reward) with the action, a fast learning that
fades more easily after reward withdrawal or devaluation.

This postulate is in line with imaging and electrophysiological
studies showing increased activity in the striatum in response to
a reward [47,91,113,114] and reward prediction errors [90,152]. It
is also supported by studies reporting that the lesion or manip-
ulation of the rat SNc or striatum disrupts associative reinforced
learning in various tasks such as the cued version of the Mor-
ris water maze [42,43,61,138], two-way active avoidance task
[39,73,74,110], inhibitory avoidance [23,46,133,165,170,171,181],
Pavlovian conditioning [168], and cued instrumental tasks
[12,59,168,169]. Similar associative reinforced and habit learning
deficits have also been observed in mouse and monkey models
of Parkinson’s disease, as well as in Parkinson’s disease patients
[60,78,109,112,178,182,200].

3.3.4. Aversively motivated learning
Associative learning mediated by appetitive reinforcement can

be easily explained by the postulates of the ‘mosaic of the broken
mirrors’ model since a short latency phasic dopamine response fol-
lows the reward presentation [186], as mentioned above. However,
aversively motivated associative learning demands further elabora-
tion since, as also mentioned above, aversive stimuli may induce a
pause in the firing of midbrain dopaminergic neurons for the dura-
tion of the event, followed by a rebound response [101,210]. How
can a reduction in the extracellular dopamine levels in the striatum
induce learning, a process that demands neuronal plasticity? Let us
discuss two popular models of aversively motivated learning: the
active and the inhibitory avoidance tasks.

Learning the two-way active avoidance task, a kind of con-
ditioned avoidance response (CAR), demands from a rodent to
actively run away from a footshock (unconditioned stimulus) sig-
nalled by a cue (usually a tone or the light of the chamber, i.e., the
conditioned stimulus) [39]. Training is carried out by the pairing of
the CS and US in a two-chamber shuttle box. The CS starts before and
turns off together with the US. After many consecutive pairings, the
animal learns to avoid the US by crossing to the opposite chamber
just after the presentation of the CS. Electrophisiological studies
reported that most, if not all [210], midbrain dopamine neurons
respond to noxious stimuli with a short latency increase in the fir-
ing rate, followed by a rebound offset ([32,69,98,122,173,208,210],
but see Ref. [125]). The temporal resolution of microdialysis stud-
ies is not enough to detect the decrease in dopamine release in the
striatum after a footshock, but these studies consistently detect the
increase that may result from the rebound response that follows the
ending of the noxious stimulus [100,205,223].

Thus, the increase in the extracellular concentration of
dopamine probably coincide with the presentation of the “crossing”
action that turns the US and CS off. The higher level of dopamine
favours the induction of LTP between the corticostriatal neurons
encoding the CS that converge to MSNs to which the corticostriatal
neurons encoding the “crossing” action also project (see Section
3.3.2). This “crossing response” of the animal may be seen as the
action of running away from the CS. Note that running away from a
painful stimulus (US) is an innate behaviour, independent of learn-
ing.

Inhibitory avoidance, also called passive avoidance, demands
that the animal (usually a rodent) avoids entering a particular place.
Inhibitory avoidance training may be performed in the same two-
chamber box used for two-way active avoidance conditioning [3].
The animal is placed in a lit chamber and receives a brief footshock
when it enters the dark chamber. Usually only one session is needed
for the animal to learn to inhibit the innate tendency of entering
the dark chamber. In other words, it learns not to go to that loca-
tion. The novelty of exploring the lit chamber probably induces a
phasic response of the midbrain dopaminergic neurons ([117,118],
but see Ref. [44]). The footshock probably induces the cessation of
their firing [32,173,187]. Therefore, the act of remaining in the lit
chamber will coincide with higher levels of extracellular striatal
dopamine and the act of entering the dark chamber with the low-
ering in the level of dopamine. The former situation favours the
induction of LTP between the corticostriatal neurons encoding the
location of the lit chamber and MSNs receiving projections of cor-
ticostriatal neurons encoding the action of remaining there (see
Section 3.3.2).

Therefore, we propose that in aversively motivated learning, it is
not the reduction of the firing of midbrain dopamine neurons that
induces learning, but the increase in the release of dopamine in the
striatum before and after the aversive stimulus. In both active and
inhibitory avoidances, the action that coincides with higher levels
of dopamine is associated with the concomitant cue or location.
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This hypothesis is coherent with the findings that manipulations in
the SNc [39,73,74] or in the striatum [23,46,110,133,165,170,171,181]
impair learning of these tasks.

Note that inhibitory avoidance may be learned as the association
of an action with a place. However, such association would impair
learning of the two-way active avoidance task in which the animal
must successively return to the place in which it was punished. In
this situation, the hippocampus, that encodes an environment as a
place [153], is expected to play a detrimental influence. This pre-
diction is in agreement with studies reporting that the lesion of the
septum [180,206] or fimbria-fornix [85] improves learning of the
inhibitory avoidance task. This illustrates a case in which the stria-
tum and the hippocampus play competitive roles on learning [214].
It is coherent with the present view that the striatum encodes dis-
crete stimuli and locations (see Section 3.2.3). The representation
of both discrete cues and locations in the striatum does not mean
that they will be always associated with the current actions. Only
the activation of the striatal units that coincide with an action per-
formed under high levels of striatal dopamine will be associated to
this action. During learning of the two-way active avoidance, the
act of running to a specific location (chamber) will be coincident
with the release of dopamine only in 50% of the trials. On the other
hand, the action of running from the CS will be reinforced by the
release of dopamine in all occasions. As a consequence, the compe-
tition between the associations of the CS-“running from it” and the
location-“avoid running to it” will be won by the former as trials go
on. Such learning may be faster if the influence of the hippocampus
is inhibited.

3.4. Building action units

3.4.1. Driving MSNs to an ‘up’ or ‘down state’
The membrane potential of MSNs oscillates between ‘up’ (sub-

threshold depolarized) and ‘down’ (hyperpolarized) states [220].
LTP is more likely to occur during the former and LTD during the
latter state [20,50]. The higher activity of corticostriatal neurons
representing actions and current features of the external or internal
environment favours the ‘up state’ in MSNs to which they converge
[197]. Since these functional units are represented in a repeated way
[62,63,87], at least some of them probably overlap, thus present-
ing a higher probability to be in the ‘up state’ or depolarized. This
probability is increased by the diffuse corticostriatal projections to
a broader area of the striatum [22].

3.4.2. Go/NoGo units
The result of striatal processing flows to the GPi and SNr, the

output doors of the basal ganglia through the direct or indirect
pathway (see Figs. 1 and 4). They build the ‘Go’ and ‘NoGo’ prod-
ucts of the basal ganglia processing [64] (see Figs. 3 and 4). The
direct pathway is a GABAergic (inhibitory) connection between the
striatum and GPi/SNr. The indirect pathway connects the striatum
to the GPi by a sequence of neurons that finally exert an excitatory
effect. Therefore, the direct pathway (Go) relieves the thalamocor-
tical neurons from the tonic inhibition of the GPi/SNr. The indirect
pathway (NoGo) results in the opposite effect [2] (see Section 2
above).

Since the ‘Go’ and ‘NoGo’ units affect almost exclusively the
frontal cortex (through thalamocortical projections) and subcorti-
cal motor areas, they result in the induction/repression of actions,
action planning, and other executive functions.

3.5. Gathering action units

The smaller number of neurons in the striatum, compared to
the neocortex, imposes a convergence of the information originat-

ing from the neocortex to transform it into functional units [8,144].
In rats, 17 × 106 corticostriatal neurons converge onto 1.7 × 106

MSNs in the striatum [224]. The corticostriatal convergence is
probably higher due to the repetition of the functional units (see
Figs. 3 and 4).

The lateral inhibition among MSNs is seen as evidence for par-
allel and independent processing in the striatum [215]. However,
other studies reported that this lateral inhibition is unilateral and
restricted to less than one-third of the tested pairs [37,209], a find-
ing favouring the proposal that the functional units of the striatum
are formed by patches of MSNs receiving convergent and overlap-
ping cortical projections. In this case, lateral inhibition may help
isolate neighbouring functional units from one another. Since the
functional units are repeated and widespread throughout the stria-
tum, they may be distant enough to avoid lateral inhibition from
their peers.

This repeated and widespread distribution of the functional
units imposes a binding problem to coordinate the firing and
plasticity between equal units. Recent studies suggest that this
problem might be solved by a class of interneurons, presumed
to be cholinergic, called TANs (see Section 2). These interneurons
present a broad distribution, lying mainly at the borders of the
striosome-matrix [4], and a low spontaneous firing rate that results
in inhibitory effects on the excitability of MSNs [225]. TANs respond
to rewarding events with a phasic decrease in their firing rate,
at the same time that dopaminergic neurons increase their fir-
ing rate [5,14,79,143,195]. However, while in some instances the
response of dopaminergic neurons seems to be proportional to
the reward prediction error (see Section 3.3.2), the response of
TANs is indifferent to reward predictability [143]. The dopamine
response is timed to novel salient stimuli (including rewarding
stimuli), but the time necessary to remove dopamine from the
synapse is longer compared to the rapid removal of acetylcholine
by dense acetylcholinesterase [225]. The sharp response of TANs to
rewarding stimuli may result in a temporal synchronization of the
repeated functional units formed by the patches of MSNs spread
throughout the striatum. In other words, TANs may signal to MSNs
when to learn, midbrain dopaminergic neurons may signal how to
learn, and corticostriatal neurons may signal what to learn [143].
Coherently, the number of TANs responding to the reward signal
increases in parallel with learning of Pavlovian [4] and instrumental
[143] learning tasks. Learning probably results in a gradual recruit-
ment of the numerous functional units of the striatum as learning
progresses.

The projection of the striatum to the GPi and SNr imposes a sec-
ond convergence of the order of 102–103 [8] (see Figs. 3 and 4).
This convergence probably accounts for the re-unification of the
repeated functional units of the striatum [79], i.e., as learning pro-
gresses by recruiting a larger number of repeated units of the
striatum, the activation of these convergent units of the GPi/SNr
increases. Since the GPi/SNr projects almost exclusively to the
frontal cortex (through the thalamus) and brainstem motor nuclei,
they probably encode mainly actions and plans.

4. Emergent properties of the ‘mosaic of broken mirrors’
model

Most of the attributes of nondeclarative memories are emergent
properties of the ‘mosaic of broken mirrors’ model. These memories
are said to be implicit (unconscious) [196], rigid (inflexible) [56],
procedural (expressing how to do something) [196], and suitable
to guide cue-based and egocentric navigation [214]. The learning of
most of these memories is a slow and gradual [54,158,222] asso-
ciative process that depends on reinforcement [58,94,204], and
sometimes forms habits after overtraining [136,222].
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The implicit nature of memories that depend on basal ganglia
processing is explained by the fragmentation of the information
that occurs in the striatum, so that neither the subject’s own body
nor its environment are globally perceived during learning. Instead,
few components of the environment are associated with discrete
actions. This learning process is highly adaptive in order to adjust
automatic responses (actions) to discrete changes in environmental
elements. However, the meaning of this behaviour does not make
sense in the global environment, simply because it is not globally
oriented.

The rigid or inflexible aspects of these memories may be
explained by this model for the same reasons. Since these mem-
ories are formed by associations of fragments of information about
the environment and specific actions, their expression cannot be
flexibly used in another context of the environment because of the
lack of a global view of the environment. Even chains of actions
performed in a skill are not oriented as an action of the subject
in a complex environment, but as an automatic sequence of single
actions.

Since the output of the basal ganglia is almost exclusively the
frontal cortex and brainstem motor nuclei, the memories encoded
by this system must be expressed as actions. This explains the pro-
cedural nature of these memories.

The fragmented representation of the environment in the stria-
tum also explains the cue-based and egocentric navigation during
basal ganglia-dependent learning. This type of navigation is not ori-
ented towards a global view of the environment, but rather relies
on discrete environmental cues or sequences of movements based
on egocentric orientation [17,45,203]. The broken representation
of the environment favours the association of units of informa-
tion (cues) relevant as reward predictors with actions performed
to approach the place in which the reward is delivered. However,
this fragmentation does not allow multiple relations between envi-
ronmental elements to form a spatial map. As a consequence, it
stores information sufficient only to guide the navigation by steps
based on sequential approaches to cues or sequences, for example,
of right/left turns at specific locations.

One of the most evident properties of the ‘mosaic of broken
mirrors’ model is that it is ideal to perform reinforcement asso-
ciative learning. The repetition of the functional units formed
in the striatum by convergent projections of the cortex ampli-
fies the combinatorial power of the system. The dependence on
dopamine to strengthen or weaken the associations among stimuli,
actions and outcomes makes this associative process conditional.
The release of dopamine only when the stimulus or the outcome
are unpredictable (unlearned) becomes the driving force of learning
mediated by this system.

The slow and gradual learning of procedural memories can
be explained by two characteristics of this model. Reinforcement
learning starts with trial and error associations, followed by eval-
uation of the outcome, and progresses by multiple comparisons
between the reward prediction and/or the novelty of stimuli and
the outcome during each trial. It is by definition a gradual process.
The gradual recruitment of the functional units that are repeated
in the striatum also contributes for learning to become slow and
gradual.

Some types of instrumental learning result in a strong asso-
ciation between a stimulus and an action that becomes resistant
to reward devaluation. This kind of associative memory, in which
the stimulus becomes stronger than the outcome to trigger the
response, is called habit [222]. The repetition of the functional units
in the striatum mediating this association after extensive learn-
ing may partly account for this property. The more this associative
memory becomes represented by a larger number of associative
units, the more difficult it will be to erase them when the reward

outcome or the novelty decreases. In addition, the spreading of
these associative units throughout the striatum increases the prob-
ability of their occupying striatal regions less sensitive to the reward
outcome. Recent findings suggesting a gradient from the ventral to
the dorsal striatum in the clearance of dopamine and regional dif-
ferences in dopamine-dependent synaptic plasticity may account
for these differences [216]. The formation of association units less
sensitive to a reward is slower and so is their dissociation after
reward withdrawal. If this is the case, the ventral striatum (NAc)
would account for a fast and transient learning observed during the
first trials of an instrumental task, while the dorsal striatum would
account for the slow and strong (more resistant to reward devalu-
ation or withdrawal) learning (habit) achieved after overtraining.

5. Conclusion

In figurative words, we propose that the cortico-basal process-
ing of procedural memories is similar to a mosaic consisting of
pieces of images of several broken mirrors. According to this model,
neurons of the sensory, motor and associative cortices send conver-
gent projections to the striatum that result in functional units (see
Figs. 3 and 4). These striatal units encode articulated parts of the
body and portions of the surrounding world that can be moved
or manipulated, such as surrounding objects (Fig. 2). These units
also encode specific locations to which the subject can move. The
association of these functional units results in programs to perform
motor skills and movements of the arms, eyes, or other body parts
to a specific target (object or location), or in the locomotion of the
subject to specific targets. The combinatorial power of these asso-
ciations is amplified by the repeated and widespread distribution
of the functional units in the striatum.

According to this model, learning in this system depends on the
alteration in the strength of the synapses between the corticostri-
atal neurons and MSNs that encode the functional units (Fig. 4).
It occurs when an environmental stimulus becomes salient in an
unpredictable way. At this time, the midbrain dopaminergic neu-
rons release dopamine in the striatum in a phasic pattern. The
activation of dopaminergic neurons is a condition for the occur-
rence of synaptic plasticity in the striatum. The synchronization
of neurons of the repeated functional units encoding the same
action in relation to the salient stimulus is performed by a pause
in the release of acetylcholine by TANs. The striatal units encod-
ing the same stimulus/action send convergent projections to the
GPi and SNr that, in turn, drive the encoded action to the frontal
cortex (passing by the thalamus) (Fig. 3). The partially closed loops
involving the GPe, STN, thalamus, and striatum may result in rever-
beration that facilitates the induction of LTP or LTD in the striatum.
These loops may also have other modulatory functions in this sys-
tem.

Still according to this model, the stronger association between
the functional units of the striatum encoding an action triggered
by a stimulus makes the occurrence of this association no longer
unpredictable. As the novelty is reduced, the salience of the stim-
ulus decreases and no further learning occurs. In this respect, this
learning system is driven by novelty.

After a phasic dopamine response, the high concentration of
dopamine takes longer to be cleared in the synapses of the NAc
compared to the dorsal striatum [151,198,216]. In other words, the
learning signal that allows synaptic plasticity lasts longer in the
NAc than in the dorsal striatum. Accordingly, this learning signal
is long enough to incorporate the evaluation of the reward value
of the action outcome in the NAc, but not in the dorsal striatum.
It explains why learning mediated by the NAc is driven by the
reward outcome of the action, while learning mediated by the dor-
sal striatum forms S-R habits that are less sensitive to reward. This
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model explains the gradual learning and many known properties of
different types of procedural memories, such as allowing cue and
egocentric navigation and their implicit, inflexible and associative
nature.

Several postulates of the ‘mosaic of broken mirrors’ model
need to be tested in future studies, particularly those that
are the core of this model and differentiate it from other
models of basal ganglia functioning: the postulation of the
existence of repeated functional units in the striatum and
their associative combination to form procedural memories.
Nevertheless, these postulates are coherent with current find-
ings, such as the “matrisomes” discovered by Flaherty and
Graybiel [62,63], evidence for convergence and widespread pro-
jections from different regions of the cortex to the striatum
[22,28,72,123,150,175,179,192,221,224], cue and egocentric naviga-
tion mediated by the basal ganglia [38,40,42,43,61,138,159], and
place-related cells in the striatum that also encode movements
[141], among other findings reported in this review. The remaining
postulates of this model were mainly incorporated from existing
models [2,8,64,80,86,144,158,173,214,216], except for the mecha-
nism proposed to explain how the NAc and dorsal striatum encodes
action-outcome expectancies and S-R habits, respectively.

A model can be considered as equivalent to a map of a new
land based on the landmarks discovered by explorers that made
blind navigations through it. This map results from the recreation
of the cartographer that tries to accommodate the landmarks to his
logic and imagination. This map is not an infallible orientation to
new explorers, but it can provide routes to the exploration of this
land. The explorers may confirm or not the locations in this land
according to the map. Such is the case for the striatum according
to the ‘mosaic of broken mirrors’ model; the map can be improved
based on the outcome of these intents. We hope that the ‘mosaic
of broken mirrors’ model may be of some help to guide the work
of researchers interested in understanding how the basal ganglia
mediate procedural learning.
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