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STUDYING SIGNATURES OF ALTERNATIVE COSMOLOGIES IN
THE COSMIC MICROWAVE BACKGROUND

RESUMO

In the present thesis we study the signatures of four alternative cosmological models
in the Cosmic Microwave Background: Massive Gravity, the Modified Fierz-Pauli
model (MFP), DBI inflation and Tachyacoustic Cosmology. The first two models
are studied as alternatives to the Friedmann-Robertson-Walker cosmology, and we
showed that both models lead to the same results for tensor perturbations, whereas
for vector modes the MFP model leads to non-decaying amplitudes, unlike Massive
Gravity and General Relativity (GR), where such modes are washed out by the
expansion of the universe. We calculated the vector and tensor contributions to
the Sachs-Wolfe (SW) effect, and derived the corresponding Boltzmann equations,
arguing qualitatively that vector modes in the MFP model would leave a distinct
signature in CMB polarization. Also, we calculated the power spectrum for CMB
anisotropies induced by the tensor modes in Massive Gravity, and showed that such
massive modes would leave a clear signature for low multipoles, ¢ < 30.

We derived new solutions for DBI inflation, and showed that they encompass all the
well-known inflationary potentials found in the canonical model. We also worked out
a particular case, a non-canonical model with large-field potentials, and compared
our predictions with the current available data, showing that our solutions in DBI
are in good agreement with observations. A distinguishing feature of our solutions
is the production of large amplitudes of non-gaussianity, which can be a powerful
observable to discriminate among inflationary models.

We also propose an alternative to inflation, the tachyacoustic model, in which we
do obtain a nearly scale-invariant spectrum of primordial perturbations and solve
the horizon problem in a decelerating universe. These goals are achieved by a k-
essence model with superluminal speed of sound, which is causally self-consistent.
The tachyacoustic model does not solve entirely the flatness problem, but a work in
progress is being conducted to tackle this issue.
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1 Introduction

The best way to introduce a subject is through its title. If the author is fortunate
enough to come up with the right title, then it would guide us through the main
motivations of the work as the Sibyl guided Aeneas! or Virgil guided Dante Alighieri

in the deepest darkness of the underworld.

In our case, the title says Studying Signatures of Alternative Cosmologies in the
Cosmic Microwave Background. As scientists, we must ask questions, and the

following ones seem to be the most appropriate:
e Why Alternative Cosmologies?
e Why look for Signatures in the CMB?

A sketch of the answers is provided below. We hope they suffice!
1.1 Why Alternative Cosmologies?

The flat homogeneous and isotropic universe became the most successful cosmologi-
cal paradigm proposed so far. The great success of this model lays on two fundamen-
tal predictions: the primordial nucleosynthesis, which establishes the abundances of
light nuclei formed in the first three minutes of the universe (ALPHER et al., 1948)3,
and the generation of the Cosmic Microwave Background, a relic radiation emerging
from the formation process of the first neutral atoms of the universe, which took
place around 380.000 years after the Big Bang (DICKE et al., 1965; PEEBLES, 1968).
Both predictions had been successfully borne out by high-precision experiments
thanks to the great technological leaps achieved in the past three decades. However,
the same experiments that endorsed the homogeneous and isotropic universe also
uncovered another problems; among them, it is worth mentioning the problems of
the cosmological horizon and flatness, of the “missing matter", and the problem of
present-day acceleration of the universe. To tackle these issues, three main theoreti-
cal ideas have been pushed forward to a certain degree of success: the mechanism of
Cosmological Inflation to provide the answers to the problems of the early universe
(GUTH, 1981; LINDE, 1982; ALBRECHT; STEINHARDT, 1982), the existence of Dark

1See The Aeneid, one of the jewels of Ancient Literature.
2See Dante Alighieri’s The Divine Comedy, the monument of the Pre-Renaissance Literature.
3See reference (I0CCO et al., 2009) for an updated account of this subject.
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Matter (DM) * and Dark Energy (DE)® as components in the cosmic inventory.
These three ingredients (with the cosmological constant A playing the role of DE),
associated with a flat, isotropic and homogeneous description of the universe make
up what we call today the Standard Cosmological Model (also called inflation plus
ACDM model), the most widely accepted paradigm to understand the universe as a

whole.

However, even being supported by the current experiments, there is a plethora of

open questions which still “haunts" the standard paradigm:

1. Cosmological Inflation, in its current form, does not solve the key problem
of the initial singularity. Also, it predicts density perturbations with Gaussian cor-
relations, which might not be true: WMAPS results suggest that such correlations
are likely non-Gaussian (KOMATSU et al., 2009).

2. What is the nature of DM? Is the missing mass problem an indication

that GR needs some modification on cosmological scales?

3. What is the nature of DE? Is the present-day acceleration of the universe
driven by this exotic component, or does GR fail on large scales, demanding a

modification?

These unanswered questions in the SCM framework clearly indicate that our
current cosmological paradigm cannot be the ultimate theory of the whole universe
(or the best possible approximation of that). The SCM provides a good starting
point, but further steps should be taken. The quest for such additional steps
motivates the study of Alternative Cosmologies. However, how would such modified
models look like?

Our starting point is the SCM itself. It starts with the inflationary phase after the
Big Bang, whose end is characterized by the decay of its scalar field (the inflaton)
into ultra-relativistic particles (the reheating process - see (BASSETT et al., 2006) for

a review), and hence initiating the radiation-dominated phase. From this point on,

4See (EINASTO, 2009) for the astrophysical evidence of DM, (BERTONE et al., 2005) for a review
of Particle DM and (TAOSO et al., 2008) for the requirements that must be fulfilled by the DM
candidates.

®See (COPELAND et al., 2006) and (FRIEMAN et al., 2008) for a review of the problems and the
candidates for DE.



the standard FRW model with DM and DE comes into play and drives the expansion
of the universe. Therefore, the structure of the SCM model is composed of an initial
phase at the early universe (canonical inflation), then followed by a transition epoch
(reheating), which bridges the first with the third phase characterized, among other
well-known phenomena, by the primordial nucleosynthesis, recombination, and the

present-day acceleration. We summarize this structure in Table 1.1.

TABLE 1.1 - The structure of the SCM.

Model Initial phase Transition epoch Final phase
(Prelude) (Interlude) (Postlude)
SCM | Canonical Inflation Reheating FRW model with DM and DE

Following the structure shown above, we could knit together different models to
build up an alternative cosmology. In Table 1.2 we summarize all the possibilities

obtained by changing the structure delineated in Table 1.1.

TABLE 1.2 - The structure of the Alternative Cosmologies.

Alternative Prelude Interlude Postlude
Model
1. Canonical Reheating Modified FRW model
Inflation to mimic DM and/or DE
2. Modified Field FRW model
Inflation decay
3. Non-inflationary Field FRW model
phase decay
4. Non-inflationary Field Modified FRW model
phase decay to mimic DM and/or DE

We could have set up other structures for the alternative cosmologies, but the four
ones introduced seem to be the simplest to start with, in particular the first three.
By the way, analogy with well grounded theories and simplicity will be the guiding
principles of this work. They will be also leading principles to choose among the the

models to be studied in this thesis, which we briefly outline below.



1.1.1 A modified model for gravitation: Massive Gravity

Let us take a deeper look at the possible constructions proposed in Table 1.2. The
first class of models preserves canonical inflation, but requests a modified FRW
model. This model should, in turn, be a cosmological solution to a modified theory
of gravitation, in the same way as the usual FRW model is a particular solution to
the Einstein equations. Then, what is the simplest modification that can be made

to GR in order to derive such cosmological model? QFT provides a precious clue.

In QFT the simplest models are related to massless and neutral free fields. The
next degree of complexity is implemented by adding mass and charge to the field.
Then, more complex constructions can be made by adding interactions, and so forth.
Since GR deals with classical gravitational fields, whose “quanta" are massless spin-2
particles (the gravitons), the next natural step toward a modified version of gravity
is the inclusion of massive spin-2 particles into the theory, analogously to what is
done in the realm of QFT. Therefore, it seems that the simplest generalization of
GR is a theory of gravitation with massive gravitons. There are several attempts to
introduce massive gravitons in GR, but in this thesis we will address two particular
models: the modified Fierz-Pauli model, as studied in (FINN; SUTTON, 2002), and
Massive Gravity, as developed in (RUBAKOV, 2004) and (DUBOVSKY, 2004). We shall
investigate the cosmological consequences of massive gravitons (BESSADA; MIRANDA,
2009b; BESSADA; MIRANDA, 2009a) as representatives of the alternative cosmologies
in the Class 1 of Table 1.2.

1.1.2 A non-canonical model of inflation: DBI Inflation

The second class of models presented in Table 1.2 includes models with modified
inflationary phases and the standard FRW cosmology. What would be the simplest
modification to be done in the canonical inflationary model? As it is well-known,
the kinetic term of the canonical inflaton is proportional to the time derivative of
the field squared; then, what makes a single-field inflationary model differ from any
other is its potential term, for different potentials lead to different inflationary pic-
tures (DODELSON et al., 1997). Then, an interesting option left for modification is the
mathematical form of the kinetic term, which gives rise to the so-called k-inflation
(ARMENDARIZ-PICON et al., 1999). A particular form of k-inflation, called DBI in-
flation (SILVERSTEIN; TONG, 2004), (ALISHAHIHA et al., 2004) (see (MCALLISTER;
SILVERSTEIN, 2008) for a review), where DBI stands for Dirac, Born and Infeld,



may give answers that canonical inflation cannot do. As an example, canonical in-
flation is phenomenological in character, and a fundamental explanation of it is still
missing; in other words, canonical inflation was simply “put by hand" to solve the
cosmological puzzles at the early universe, and does not seem to be derived from any
fundamental physical theory. DBI inflation, on the other hand, is a low-energy solu-
tion in String theory, which is one of the candidates to be such fundamental theory
of the Nature. String theory predicts a broad class of scalar fields associated with
the compactification of extra dimensions and the configuration of lower-dimensional
branes moving in a higher-dimensional bulk space. This fact gave rise to some phe-
nomenologically viable inflation models, such as the KKLMMT scenario (KACHRU
et al., 2003), Racetrack Inflation (BLANCO-PILLADO et al., 2004), Roulette Inflation
(BOND et al., 2007), alongside with DBI scenario. But why DBI inflation, and not

any other of the models mentioned above?

First of all, DBI inflation is a particular case of a wider class of scalar-field models,
the so-called k-inflation, which is characterized by a far-reaching feature: they possess
a varying speed of sound. General k-inflationary models possess a complex flow
hierarchy (AFSHORDI et al., 2007b), which depends on the derivatives with respect
to the number of e-folds N of the Hubble parameter H, of the speed of sound c,,
and of Lx, the derivative of the k-essence Lagrangian with respect to the canonical
kinetic term X. In the case of DBI inflation, the flow hierarchy is simplified due to the
property that Lx = c;!; also, DBI inflation admits several exact solutions to the flow
equations (SPALINSKI, 2007a; CHIMENTO; LAZKOZ, 2008; SPALINSKI, 2008; KINNEY;
TZIRAKIS, 2008; TZIRAKIS; KINNEY, 2009). Another important feature is connected
to the fact that a low sound speed leads to substantial non-Gaussianity (ALISHAHIHA
et al., 2004; CHEN et al., 2007; SPALINSKI, 2007a; BEAN et al., 2008a; LOVERDE et al.,
2008), which would be a distinguishing signature of such non-canonical inflationary

model.

Therefore, due to this wealth of possible solutions and results, DBI inflation is a
potential candidate to provide better responses to the current open questions in
the canonical inflationary scenario. We shall investigate the consequences of new
solutions of DBI inflation (BESSADA et al., 2009) as representatives of the alternative
cosmologies in the Class 2 of Table 1.2.



1.1.3 A non-inflationary model: Tachyacoustic Cosmology

Last, but not least, let us say some words about the third class of models presented in
Table 1.2. They have a non-inflationary model to drive the cosmological phenomena
at the very early universe. But, why should we look for non-inflationary models?
The answer is quite simple: inflation is not the unique way to solve the cosmological
puzzles of the very early universe. Also, it is not the only mechanism to generate
a nearly scale-invariant spectrum as observed today. Actually, any model in which
the comoving Hubble radius shrinks will not only solve the horizon problem, but
will generate the desired spectrum of perturbations. Another alternatives are the
models with a contracting phase, like the Bouncing cosmologies (see (NOVELLO;
BERGLIAFFA, 2008) for a review) and the Ekpyrotic scenario (GRATTON et al., 2004)
to construct a cosmology consistent with observations. It is also possible to decouple
the horizon and flatness problems, for example in theories with a varying speed of
light, so that the causal horizon is much larger than the Hubble length (ALBRECHT;
MAGUEIJO, 1999). It is also possible to solve the horizon problem by a universe which
is much older than a Hubble time as in string gas cosmology (BRANDENBERGER,
2009) or island cosmology (DUTTA; VACHASPATI, 2005; DUTTA, 2006), or by the
inclusion of extra dimensions (STARKMAN et al., 2001b; STARKMAN et al., 2001a).
However, it has been argued that inflation and ekpyrosis are the only mechanisms
for generating a scale-invariant spectrum of perturbations (GRATTON et al., 2004;
KHOURY; PIAZZA, 2009).

Therefore, there is enough room for more alternative non-inflationary models. We
propose a new alternative, the Tachyacoustic Cosmology (BESSADA et al., 2009), in
which we solve the horizon problem and generate a nearly scale-invariant spectrum
of the fluctuations. The flatness problem is not yet solved, but a work in progress is
striving for tackling this issue. We shall investigate the cosmological consequences
of the Tachyacoustic model as a representative of the alternative cosmologies in the

Class 3 of Table 1.2.
1.2  Why look for Signatures in the CMB?

In the paragraphs above we have outlined some possible theoretical alternatives to
tackle the problems found in the SCM. However, it seems quite natural to expect
that the laws of Nature emerge from a single theory, not from many. How can we

distinguish among the candidates? At this point it is quite appropriate to quote



Feynman’s words:

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you

are. If it doesn’t agree with experiment, it’s wrong".

Then, we must find some “laboratory" in the universe to probe the predictions made
by such alternative cosmologies. Since we are interested in the physical processes that
took place in the very early universe, it is quite natural to search for signatures of
such alternative cosmologies in some observable that has been generated back then.
But what is the cosmological observable that has been generated so far in the past?
Primordial gravity waves (PGW) are by far the best, since they could probe the Big
Bang (or whatever model that claims to replace it) itself. However, this task has
been not yet accomplished experimentally (see (SATHYAPRAKASH; SCHUTZ, 2009)
for the current status of GW Astronomy), and only in the near future PGW could

be used as a probe of the very early universe.

The next candidate is CMB. This relic radiation, released around 380.000 after
the Big Bang, after the physical processes called recombination and decoupling, is
the oldest “snapshot" of the early universe available. Although recombination took
place a long time after inflation (or whatever drove the very early stages of the
universe), CMB anisotropies and polarization encode the imprints of the very early
universe since classical density perturbations at recombination grew out of quantum
fluctuations produced during this period. Such imprints are so powerful that even
with the current technological limitations, WMAP5 data acted as a “razor" on the
inflationary models, ruling out many of them (KINNEY et al., 2008). Then, future
measurements are promising, and the satellite Planck®, launched last year, is likely

to bring great news in the upcoming months.

These are the points that motivate us to look for signatures of alternative cosmologies
in the CMB.

Shttp://www.rssd.esa.int /index.php?project=planck






2 The Homogeneous and Isotropic Universe

In this chapter we summarize the key features of the homogeneous, isotropic and
expanding universe as first proposed by Alexander Friedmann in 1922 and 1924. We
follow closely (MUKHANOV, 2005), (WEINBERG, 2008), (KINNEY, 2009) and (BAU-
MANN, 2009).

2.1 The Friedmann-Robertson-Walker Metric

The first ingredient to build a cosmological model rests on the so-called Cosmological
Principle, which states that the universe is homogeneous (i.e., looks the same in
every point) and isotropic (that is, looks the same in all directions) on the largest
scales (larger than 100 or 200 Mpc). In addition to this assumption, which is in
agreement with observations, we also consider the fact that the universe is expanding,
as discovered by Edwin Hubble in the late 1920s. Given such empirical facts, let us
now consider a spacetime characterized by a manifold M and a metric g,3, whose

line element is expressed as
ds® = goodt® + 2go;dtdx’ + g;jda'dx? (2.1)

for some coordinate chart {x*}. The Cosmological Principle demands an isotropic
spatial section of M, which implies that the displacements +da? and —dz’ give ex-
actly the same contribution; hence, the terms dtdz® cannot appear in (2.1), which is
consistent only if go; = 0. The vanishing of gy; allows for a foliation of the manifold
into spatial 3-surfaces ¥ of constant time; as a result, any observer sitting on 3
measures the same time ¢, the so-called cosmic time. If we demand that > be homo-
geneous, the component gy must be constant, otherwise two points on two spatial
sections Yy and Y at times ¢; and ¢y would be distinguishable, which violates the
requirement of homogeneity. Since we can get rid of ggg by a time redefinition, we
simply take the normalization gog = 1 for the sake of simplicity. It can be proved
(WEINBERG, 1972) that isotropy at all points of ¥ implies homogeneity, so that %

is a mazimally symmetric subspace of M, and then

dr?

2 2 2
dS —dt —a(t) 1——f(7'2

+r? (d6? + sin® 0 dp?) |, (2.2)

where a(t) is the scale factor, which characterizes the relative size of the spacelike

hypersurfaces ¥ at different times, and we have adopted the spherical coordinates



r,0,p to characterize this spatial section. The curvature parameter K takes the

values —1, 0 or +1, for a negatively, flat or positively curved X, respectively. The
quantity defined by :
a(t

H(t) = m, (2.3)

also called Hubble parameter, measures the expansion rate of the universe, and it

is one of the key cosmological parameters. The metric (2.2) is called Friedmann-

Robertson- Walker (FRW) metric.

It is convenient to cast the FRW metric into a more symmetric form, which can be

done by means of cartesian coordinates; the result is

da? + dy? + dz?
ds* = dt* — a(t)? [ v eyt 22 ] , (2.4)
(1+ Kr2/4)
where
r? = 2%+ y* + 22 (2.5)
Also, we can write the FRW metric (2.4) as
ds® = dt* — a(t)*y; do'da? (2.6)
where ;5 is the metric of the hypersurface X, given by
1

. —
(14 Kr2/4)*"

Since every hypersurface X is described by a static spatial metric «;;, we can set up a
very convenient coordinate system to describe the physical variables in an expanding
universe. This static property establishes that every distance Ax measured by means
of the spatial metric (2.7) on a given hypersurface is constant, not evolving with
time; this would correspond to the coordinate system attached to an observer at
rest relative to expansion. A physical separation X,,s between such points evolves

in time, so that it is clear from (2.2) that it obeys

AXppys = a(t)Ax. (2.8)
The coordinate system (¢,x) attached to an observer at rest relative to expansion
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is called a comoving coordinate system. The same idea can be applied to the time

coordinate; defining the conformal time T as

dr = M, (29>

the FRW metric becomes
ds* = a(7)? [dr® — yijda’da’] (2.10)

that is, the introduction of a conformal time factorizes the FRW metric into a static

metric multiplied by a conformal factor a(7).

Conformal time is a “clock" that slows down with the expansion of the universe, and
it is specially useful in measuring cosmological distances, which we address in the

next section.
2.2 Cosmological Distances and Horizons

Once we are given a metric that describes the cosmological spacetime, we can now
take a further step and use it to measure cosmological distances. To do so, let us

first rewrite the spatial section of the FRW metric in spherical coordinates,

di* = dx* + Py (Xz) (d92 + sin? Hdgpz) , (2.11)
where
sinh®y K = -1
P=dk () = ! K=0 (2.12)
sin?y K = +1,
so that

ds* = a(7)? (dr* — d?) . (2.13)

If a photon is emitted from a given source at a time ¢;, and an observer detects it

at the instant ¢, we have, along the line of sight (that is, with 6, ¢ constant), that
dx = +dr, (2.14)

since photons travel on null geodesics, ds* = 0. Equation (2.13) has a twofold im-

11



portance; first, its integration gives
X (1) = £7 + const., (2.15)

which, in a 7 — x plane, correspond to straight lines, preserving the light cone
structure of a Minkowski spacetime (but notice that the FRW spacetime is curved).

Second, integrating equation (2.14) using (2.9), we see that the quantity

") =1 -1 = /t ad% (2.16)

represents the maximum comoving distance that a photon can propagate from its
emission at a time t; up to its detection at the time ¢. The physical or proper distance
d, between such two points comes from (2.8), that is,

d, = a(t)de™. (2.17)

p

If we take t; = 0, equation (2.16) gives the maximum comoving distance that a
photon can travel from the ‘initial time’ (assuming that the universe had one) up

to a given time t. This defines the comoving cosmological horizon as the conformal

—/ a% (2.15)

time lapse between 0 and t¢:

Using the definition of the Hubble parameter (2.3), we can rewrite the definition

(2.18) in terms of the scale factor a,

T:/tdlnd Ay (@) (2.19)

where
1

dy(a) = i (2.20)
is the so-called comoving Hubble radius. The difference between the comoving hori-
zon and the comoving Hubble radius is the following (quoting (DODELSON, 2003)):
if the particles are separated by distances greater than 7, they never could have com-
municated with one another; if they are separated by distances greater than (aH)_l,

they cannot talk to each other now!

12



Therefore, if any comoving scale A is larger than dy, it is outside the horizon, that
is, cannot be in causal contact with a given observed scale, whereas if \ is smaller
than dy it is inside the horizon. Since we normally deal with wavenumbers & oc A1
rather than A itself, we can say whether a scale is inside or outside the horizon by

means of the following rule:

k
i < 1 = Scale A is outside the horizon (Superhorizon Scale) (2.21)
a

iH > 1 = Scale A is inside the horizon (Subhorizon Scale) (2.22)
a

These concepts play a crucial in the discussion on quantum fluctuations generated

by inflation, as we shall see in Section 4.5.

2.3 Cosmological Dynamics: The Friedmann and Raychaudhuri Equa-

tions

Once we have discussed the basic features of the FRW metric, let us now derive the
dynamical equations that rule the Friedmann cosmological model. We first discuss

the Hubble parameter in terms of the conformal time, which is simply given by

H= % (2.23)

where a prime denotes a derivative with respect to the conformal time, and we have

used q p
— =a—. 2.24
dr  dt (2.24)
Defining
a/
=2 2.25
H=", (225)
it follows that
H
H=—. (2.26)
a

Using the definition of conformal time (2.9) and the metric (2.10), it follows that
the Christoffel symbol of the second kind is given by

1 0 0 HEF;
Ios="H , Thy= . Ky . i : (2.27)
0 7 Mot =5 [vad®s) — 2ty

13



where we have defined .

(2.28)

From (2.27) and using (A.9) we calculate the Ricci tensor, whose components are
R% =-3a*H, R%=0, RYy=-a?(H+2H*+2K)J;, (2.29)
and the scalar curvature, given by (A.10)
R=—6a?(H +H*+K). (2.30)

Substituting expressions (2.29) and (2.30) into (A.11) we find the components of the

Einstein tensor,

Gho=3a"(H+K), G%=0, Gj=-a’@2QH +H +K)d; (2.31)

Since the Einstein equation relates the geometry to the energy-matter content, let
us now drop a few words on the stress energy-tensor to source this geometry. The
assumption of a homogeneous and isotropic universe demands that its energy and
matter content also be homogeneous and isotropic; hence, we can approximate them
as perfect fluids. We first consider a family of fundamental observers whose worldlines

are tangent to the timelike four-vector

ut = %, (2.32)
where 7T is the proper time of the observer, and satisfies
Gopuu’ = 1. (2.33)
The fluid is then written as
Top = (p+ P)ugug — Pgag, (2.34)

where P is the pressure of the fluid and p is its energy density in the rest frame.
Since the cosmic time is measured by the observers’ clocks at rest with respect to

the matter content of the universe, we take the four-velocity in the comoving frame

14



u® = (1,0,0,0), so that
T (x)=p(t), T%(@x)=0, T'(x)=-P(t)d, (2.35)

(homogeneity implies that the pressure and density are functions of the cosmic time

only).

The energy or matter content of the universe is also assumed to satisfy an equation
of state of the form
P(p) = wp, (2.36)

where w is the equation of state parameter.

Since the stress energy-momentum energy tensor is conserved, T, = 0, it follows

from (2.35) the continuity equation
p=—-3H(p+P), (2.37)
or, in terms of the conformal time,

p=-3H(p+P). (2.38)

The dynamical equations for the scale factor can be obtained by plugging (2.31) and
(2.35) into (A.12), yielding

a\ 2 a?
P
and
a// 5
P

in terms of the conformal time 7. In terms of the cosmic time ¢, equations (2.39)
and (2.40) become

N2
a 1 K
) = 5 241
(a) 3Mf2,p a?’ (2:41)
and i 1 K
a
. P)— = 2.42
a 6M?2 (p+3P) a? ( )

Expressions (2.39) and (2.41) are two versions of the Friedmann equation, whereas

15



expressions (2.40) and (2.42) are two versions of the Raychaudhuri equation. There
is a third version of each of the above equations, which encompasses the so-
called cosmological constant, denoted by A, and can be understood as follows. We
know from tensor calculus that the Einstein tensor satisfies the Bianchi identity
VoG = 0; in addition to that, the stress-energy tensor also satisfies a conservation
law, Vo7 = 0. Since the covariant derivative of the metric tensor also vanishes,

Vag®® = 0, we see that a modified Einstein equation like

1

—T, 2.43

Gag — Agag =
also satisfies the Bianchi and energy conservation constraints. In this case, in terms
of the Hubble parameter defined as functions of the cosmic (2.3) and of the conformal

(2.25) times, the Friedmann and Raychaudhuri equations read:

1 A K
H2:mp+§—¥, (244)
. 9 K
H+H =—crm (p+3P)+ A - —. (2.45)
P
2 2A
M2 = ;Wp + QT ~ K, (2.46)
P
! 2 _ 1 . 2 20
H +H" = e (p—3P)a*+a*A — K, (2.47)
P
where )
g: i+ H?, (2.48)
al/
- =H +H>. (2.49)

2.4 The Energy and Matter Content of the Universe

The simplest equation to be solved in cosmology is the continuity equation, (2.37).
It relates the energy or matter content of the universe, given by their density p,
with its expansion, given by the scale factor a. To solve this equation for a given

component, we simply substitute (2.36) into (2.37), which gives

p@=m(2) o (2.50)

Qg
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For the sake of simplicity, let us consider for a moment that the universe has a single
component characterized by an equation of state parameter w; then, substituting
(2.50) into the Friedmann equation (2.41) for K = 0, we find

£\ 2/304w)
) (2.51)

a(t) = agp (%
for w # —1. ag and t, are integration constants; we shall always take these quantities
at present time (unless otherwise stated), and reserve the subscript “0" to denote
them. For the rest of this chapter we normalize the present time value of the scale
factor as ag = 1; however, other normalizations can be adopted, as we shall see in
Section 5.2.

The solution w = —1 is of special interest, since it is related to the cosmological
constant. To see this, let us solve the Friedmann equation (2.44) in the vacuum

(p = 0): in this case, the Hubble parameter is constant, and given by

HQZé

T (2.52)

so that the dynamical evolution of the scale factor in the presence of a cosmological
constant is given by
a(t) = age=), (2.53)

Also, from (2.52), we see that A plays the role of an energy density, for, defining
pr = MEA, (2.54)

we see that equation (2.44) is equivalent to the Friedmann equation without a cos-
mological constant, (2.41). Since p, is constant, as defined in expression (6.15), from
the continuity equation (2.37) we see that p), = 0 implies py + Py = 0, which is
satisfied only if

pr = —Py = w=—1. (2.55)

This empty spacetime filled with a cosmological constant is called de Sitter space.

The three usual values for the equation of state parameter, as well as the corre-

sponding solutions for p, a and H are summarized in Table 2.1.
It is obvious that a single-component universe is just an idealized picture, since it is
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TABLE 2.1 - The basic constituents of the universe.

| Component | w | p(a) |a(t) | a(r) | H() |

Photons | 1/3 | a* | /2] 7 1/t

Matter 0 a3 | B 72 1/t
A —1 | const. | et | —771 | const.

clearly multi-component; however, when a given species dominates over the others,
that is, its density contribution is much larger than the other contributions, we can
approximate the solution of the Friedmann and Raychaudhuri equations by a single-
component universe. In the general case, with a plethora of constituents, the total

density and pressure are given by

p=>_ =pn P=3 =P (2.56)

It is convenient to introduce a dimensionless quantity to describe the densities of
the species p. This quantity, which we call density parameter, and denote by €, is
simply written as the energy density of a given species normalized by the critical
density, which is defined as the energy density of the universe in the case where
A=K =0,

pe = 3MpH?; (2.57)

then, for each species 7, and the total content of the universe, the density parameter

are given by

= %, a=>"q, (2.58)

From equation (2.41) and the definitions (2.58) we deduce an important expression,

(2.59)

The current observations of CMB and the large-scale structure favor a cosmological
model composed of baryonic matter (subscript B), dark matter (subscript DM),
and a vacuum energy that plays the role of the dark energy (subscript A), in the
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following proportions today (KOMATSU et al., 2009):
Qp ~0.04, Qpuy~023 Qu~0.72, (2.60)

which indicates that the universe is nearly flat today, €2y ~ 1. This observationally-
favored model is called the ACDM or cosmic concordance model. Together with the
inflationary paradigm, the ACDM model makes up the widely accepted model to
describe the universe, the SCM.

2.5 The Birth of CMB: Recombination and Decoupling

Let us now briefly comment on the history of the universe since its early days. We
have seen in Section 2.4 that the energy density of the photons goes like p, o< a™*
(Table 2.1); then, using the well known Stefan-Boltzmann law p, oc T*, we easily
find that

1
Tx—=1+z, (2.61)
a

where z is a quantity called redshift. Then, the universe was very hot in the past, and
went on cooling down as it expanded; by reaching a temperature around 7" ~ 101°K,
the first nuclei were formed by primordial nucleosynthesis, so that the universe
became filled with an ionized plasma of light nuclei, electrons and photons. The
universe was opaque, that is, the mean free path of the photons were too small
to allow for free propagation; they were almost immediately absorbed after being
emitted. The amount of radiation was much larger than the amount of matter, so
the universe was dominated by radiation. For the sake of simplicity, assuming that
the matter content of the universe were composed solely of hydrogen at early times,
eventually a proton could capture an electron and form a neutral hydrogen atom by

means of the radiative recombination reaction,
p+e — H+n; (2.62)

however, the high temperature of the plasma were far above the ionization energy
of the hydrogen, so that the high-energy photons ionized these atoms by means of
the reaction

H+~vy—p+e . (2.63)

Therefore, hydrogen atoms formed even in the radiation-dominated period, but they

were extremely short-lived, and were dissociated by photo-ionization. As the universe
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cooled down, more matter were formed, and the photon energies dropped; then at
the temperature T' ~ 9730K, the energy densities of radiation and matter became
equal, thus inaugurating the era of radiation-matter equality. Thereafter, more and
more atoms of hydrogen were formed since less photon were sufficiently energetic
to photo-ionize the neutral atoms. When the number density of the neutral atoms
became nearly equal to the number density of the ions, the recombination process
took place: the ionization fraction of the universe dropped quickly, so that more
free electrons were captured to form neutral atoms. At this time, the rate of the
interaction photon-electron I' were larger than the expansion rate of the universe
H; then, by the time of equality I' = H, the photon-electron scattering froze-out,
that is, photons no longer interacted with the electrons and then free-streamed in

the universe when I' < H. This event is called decoupling, and took place around

Decoupling :  zgee ~ 1100,  Tyee ~ 3000K | (2.64)

After decoupled, the photons were scattered for the last time by the electrons, and

this event makes up what is called the last scattering surface (LSS)!.

Then, after the LSS, the CMB is born!

!To be more precise, the LSS should be dubbed LSL, last scattering layer, for not all the photons
are last-scattered at the same time!
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3 The Theory of Cosmological Perturbations

In the Chapter 2 we have discussed the key ingredients of a homogeneous, isotropic
and expanding universe. In what follows we shall add fluctuations to the metric
and to the energy-momentum tensor, which is going to play an essential role in
the theory of CMB anisotropies and polarization. We follow closely (MUKHANOV et
al,, 1992), (KODAMA; SASAKI, 1984), (MUKHANOV, 2005), (WEINBERG, 2008)) and
(GIOVANNINI, 2005).

3.1 Disturbing the smoothness of the universe
3.1.1 Metric fluctuations

Let us consider a general metric g,g describing such inhomogeneous and anisotropic

spacetime. To first-order, this metric can be split up into two pieces?,
9os = Vgas + 89as, (3.1)
with the supplementary condition
0gas] < 1 (3.2)

where ©) gap Plays the role of a background metric (the FRW metric, for example),
and dg.p represents the metric fluctuations. Since dg,p is symmetric, we must have
ten independent components in four dimensions, which can be written in terms of
independent scalar (S), vector (V'), and tensor (T) fields. As usual, the spacetime
M is foliated into ‘smooth’ hypersurfaces of constant time Y, and each perturbation

is defined on Y. Such decomposition is written as

69@,@ = 559@,@ + (5Vgoc,6’ + 5Tgaﬁa (33>

where the condition [07g.5| < 1, I = S, V,T, must be fulfilled in order to guaran-

tee that the fluctuations are independent. The expressions for d;g,s3 are given below.

e Scalar Perturbations

Tt is important to stress that the equality symbol = here means that such approximation is
valid only up to first-order. For the sake of simplicity we keep this symbol henceforth, but bearing
in mind that this is a weak equality.
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The component dggy is a pure scalar, whereas the vector components g,
can be built from first-order derivatives of a scalar field. As to tensor perturbations,
there are two ways to construct a tensor from a scalar: either we multiply a scalar
by the 3-metric 7;; on X, or take second-order derivatives of it. Since the fields are
defined on ¥, we only care about the spatial components of covariant derivatives.

Therefore, scalar perturbations are given by

_ 2 2 —By;

where ¢, B, ¢ and E are scalar fields, and the subscript “;" indicates a covariant

derivative on a spacelike hypersurface Y. Such scalar fields contribute with four

independent components to the metric perturbations.
e Vector Perturbations

We know from classical electrodynamics that a massless vector field A, satis-
fies a Maxwell-like equation
DW= JP, (3.5)

where W,5 = Ay — Apo and J? is the analog of a current density. The Maxwell

tensor W,z is invariant under gauge transformations
Ay = Ao — 0u€, (3.6)

where £ is an arbitrary function. Then, using this gauge freedom, we can eliminate
some degrees of freedom of the vector field A, by imposing some constraint as, for

example, the Lorentz condition
0, A% = 0. (3.7)

In the cosmological context, dgoy gives no vector contribution, since it is scalar,
but dgo; does, since it is a vector. The tensor part dg;; also can be constructed
from vectors by taking covariant derivatives of them. Therefore, putting these facts

together, we have, for vector perturbations,

0 —S5;
5 o = —Q\T 2 ! . 38
v9ap (7) (—Si Fij+Fj|i> (3:8)
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where S; and F; are vector fields. These fields must satisfy Maxwell-like equations
as (3.5) which also allows for a gauge choice. We impose the analog of the Lorentz
gauge (3.7),

S =F' =0, (3.9)

since the vectors are constructed on Y. Hence, each vector has two independent
components, and, altogether, contribute with four independent components to the

metric perturbations.
e Tensor Perturbations

Tensor perturbations can be constructed as

0 0
0rgas = —a(T)? ( 0 . ) : (3.10)
ij

where h;; is a tensor defined on . We can also fix the number of components of h;;
by means of gauge transformations in analogy with the weak-field approximation

(see Appendix C.2.2 for details); we then impose
hji=h'; =0, (3.11)

which means that h;; is a transverse trace-free (TTF) tensor (B.19). Therefore,

tensor perturbations contribute with two independent components.

Adding up the contributions of S (4), of V' (4) and of T' (2), we get the ten inde-

pendent contributions to the metric perturbations, given by

8gas = a(r)? 4 | . (3.12)
Si— Bii —Fy — Fji + 2¢i; — 2Ei; — hij

The corresponding perturbations to the fundamental tensors of GR can be deduced

as follows. We start with the inverse metric ¢®° which, to first order, is given by

g®h = O gl _ 5498, (3.13)
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Substituting relations (3.1) and (3.13) into the usual equation

gm’gwg = (Sag, (3.14)
it can be shown that
5gF = =) gar(0) gBrsq . (3.15)
Due to the linear character of the perturbations, the Christoffel symbol of first kind
reads
Tugy = OTus, + 0 s (3.16)

notice that the linearity property of the perturbations makes the ‘0’ symbol ‘act’
like a linear differential operator; then, we could have used this “operator"? instead

of algebraic manipulations performed. From (A.4), we have that

1
5Pfﬁﬁ’Y = 5 [8759H5 + 6559'yn - an5gﬁv] . (317)

From the definition of the Christoffel symbol of second kind, (A.5), we find

o, = Ore, +re, (3.18)
where
51—\0467 — (0)gom5FHBW + (Sgom(O)Fmﬁ77 (319)
which leads to
o 1 R
ol By — 5(0)9 [v’)/égfiﬁ + vﬂagwm - Vnégﬂ'y] y (320)

where we have used expression (A.4).

The linearity property also allows us to write down the Ricci tensor (A.9) as

Ros = YR.5+ 0Rup, (3.21)

2Strictly speaking, § is not a differential operator, since the perturbation expansion stops at
first-order; however, the similarity between a differential operator and the algebraic result as shown
in (3.16) due to the first-order expansion allows for its use as if it were an operator.
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where

0Rap = 0p00" a5 — 050 a4 OT" 50T oy + 01" 45T
— OpF AT 5 — 0T%, OT 5. (3.22)

Rewriting the derivatives of the perturbed Christoffel symbols in terms of their

covariant derivatives (A.4), we see that
SRop = VI ¥us — VT . (3.23)

Using the same techniques, the mixed tensor 0 R4, the scalar curvature R and the

Einstein tensor 0G,g read

0R%s = g™ 6R 5+ 69" O R, (3.24)
SR = (O)ga/YCSR’YQ’ + 59047(0)]%70” (325)

1
0Gop = 0Rap — 5 [0905" R + Vgasd ] . (3.26)

3.1.2 Density Perturbations

As discussed in Chapter 2, the energy and matter content of the universe can be
treated as a perfect fluid, whose expression is given by (2.34). To first-order, we
can decompose the stress-energy tensor into its background contribution, (O)Tag,

described by the expression (2.34), and a perturbation 67,3, so that

Top = OTop + 6Tpp. (3.27)

The same linearity argument accounts for similar decompositions for the elements
of (3.27), that is,

u* = Oy 4 5ue, (3.28)
P = DBy+6P, (3.29)
p = po+ip, (3.30)

where F,, po stand for the background values of the pressure and energy density,
respectively. Then, substituting (3.28), (3.29) and (3.30) into (3.27), and using ‘9’
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as a linear differential operator, it follows that

5Taﬁ = (5p + 5P) (O)Ua(o)Ug + [po + Po] [5UQ(O)Uﬂ + (O)U(Xéuﬁ]
— D450 P — Podgag. (3.31)

Expression (3.31) is not yet the most general way to produce small inhomogeneities
and anisotropy in a perfect background fluid; we can also introduce the anisotropic
stresses in the spatial components of 07,3, represented by the quantity II;;, which

can be decomposed exactly in the same fashion as in the metric (3.3):

IL;; = Hsij + Hvij + HTij7 (3.32)
where
S 1 2
1
nt, = I, (3.35)
subject to the constraints

exactly as in (3.9) and (3.11). Notice that, by construction, the full anisotropic
stress tensor is traceless, as it should be. Anisotropic stresses arise, for example, in

the neutrino free-streaming.

We can calculate every component of §T,5 as follows: since Vu, = (1,0,0,0) for

the background fluid, we have, in conformal units,
Oug (1) = (a(r),0,0,0); (3.37)
then, using ¢ as an operator, it follows from (2.33) that

1
© 05 Quldu® = —i(o)ua(o)uﬁégag. (3.38)
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Next, plugging the 00 component of (3.12), and (3.37) into (3.38), we get
¥
ou’ = -~ 3.39
W= (3.39)

However, the component du’ cannot be determined by means of expression (3.38),
since this equality is identically zero on both sides for the 0: component of the
background metric and the i component of the four-velocity. We then introduce a

new vector field, which we define to be

ou'

Il
SIS

: (3.40)

where v’ is the 3-velocity of matter defined with respect to the spatial coordinates

x'. The covariant version of du’ is
ou; = a (SZ- — B — v|i) , (3.41)
where we have used
Oy = (5ga5(0)uﬁ + (O)gaﬁéuﬁ, (3.42)

which is the “perturbed version" of the usual expression to raise indices.

Once we have the components of the four-velocity perturbation, we can easily eval-
uate the components of 07,5 as given in (3.31) and (3.33-3.35)

0Too = a®[6p+ 2poy]

6Ty = a [~ (po+ Po)vi+po (Si— By)],
1
5T, = o {— (513 — 2Py — gvm) Y+ 2RE +TI)

+  2[PyFuy) + 25)] + Pohyj + 1L} (3.43)

In general, the pressure depends not only on the energy density p, but also on the

entropy per baryon ratio S; then,

oP
0P = (=) dp+9P., 44
(3P>5 P+ d (3.44)
= 20p+ 6Paa, (3.45)

where the first term on the right-hand side represents an adiabatic process, i.e.,
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with constant entropy, and the second one stands for a non-adiabatic process. For
hydrodynamical matter, s plays the role of the the speed of sound, given by (D.15),

in plain analogy with the propagation of acoustic waves in a material medium.
3.2 Gauge Symmetries for Cosmological Perturbations

As discussed in the Appendix B, gauge transformations play a fundamental role in
GR; they allow the existence of GWs, for example. In cosmology they also play a
fundamental role, and are extremely important for all the investigations that we will

undertake in this thesis. This is why we shall discuss this issue in some detail.

To begin with, we assume the FRW metric in Cartesian coordinates (2.10) as our
background metric, where 7;; is the metric on the 3-spaces X, given by (2.7). As
we have earlier discussed, such subspaces are maximally symmetric, and hence the
background metric is form-invariant, that is (WEINBERG, 1972)

Do (@) = P gas (7). (3.46)
Property (3.46) implies that
a(7) = a(7), (3.47)
and
Vi (%) = 7i5(%). (3.48)

In the cosmological context the local coordinate transformations (B.2) are slightly
different due to the adoption of the conformal time 7 as our evolution parameter.

Hence, these coordinate transformations read
F=7+&, =2+ (3.49)

in the same way, we can show that the metric transformation (3.1), given by equation
(B.5), changes slightly,
5%5 = 691)5 — Vaeg — VBEQ, (350)

where €, = a(7)? (£, —&;). It is convenient to decompose the spatial part of £, into

a vector and a scalar component,

& =&+ G (3.51)
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where (; is a divergenceless vector, ¢,/ = 0. This constraint eliminates one of the

components of (;, leaving just two independent quantities which, together with the

scalar &, make up the three components of &;, hence validating the decomposition

(3.51).

With these vectors we are now in position to derive the gauge transformations for the

metric fluctuations. Taking each component of the metric (3.12) in the coordinate

system S, and substituting it into the equation (3.50), we find

Sdgoo = 2a(7)*¢

6§ = —a(7)*By; + a(7)%S;

= aﬁy[—3u+5%—&u+gu+Cﬂ,
0gi; = al7)’ [2?/;%5 — 2Ej;; — Fyy — Fjyi + 7%}
= a(r

+ hy).

[2( — HE) v — 2(E — )iy — (B — &)y — (B — )i

(3.52)

(3.53)

(3.54)

Therefore, reassembling the variables in (3.52), (3.53) and (3.54), we find all the

gauge transformations for the metric fluctuations:

a) Gauge transformations for scalar perturbations

¢:¢—%—H®

B=B+¢& ¢,
Y = + Hé,
E=FE-¢,

b) Gauge transformations for vector perturbations

gi - Sz + CI'N

29

(3.55)

(3.56)
(3.57)

(3.58)

(3.59)

(3.60)



c) Gauge transformations for tensor perturbations

We now turn to the gauge transformations for the energy-matter sector. Since 7,3 is
a second rank tensor, it transforms as (B.1) under the local transformations (3.49).

After some algebra we can show that

5Taﬂ(i'> = 5Taﬁ($)—(O)Tav(x)gw+(0)T7ﬂ($)fa|y
— Opey ()7 (3.62)

then, raising one of the indices of (3.43) and substituting into (3.62), we find

0p(z) = dp(z) — &opo(), (3.63)
SP(%) = 0P(z)— &PY(z), (3.64)
0i(7) = wix)+&;+ ¢ (3.65)

In particular, decomposing the velocity field v; in the same way as we did in (3.51),
Vi = U\i + Wi, (366)
where w;l" = 0, and using (3.51) we see that

v = v+¢, (3.67)

Once we have established the gauge transformations for the metric components, let
us now analyze the gauge-fixing procedure for the parameters £ and €. From (3.58)
it follows that

E=F—F, (3.69)

then, from (3.56) and (3.69),

&= (B—FE)—(B—-E. (3.70)



Substituting (3.70) into (3.55), we find
p=¢p—(B-EY+(B-FE)-H [(B _EY—(B- E')] L (371
Defining the scalar field
b=9p+HB—-FE)+(B-FE'Y, (3.72)

it is clear from expression (3.71), that the field ® is invariant under the gauge
transformations (3.55) and (3.58). Likewise, substituting (3.70) into (3.57), we find

b=v+H[(B-E)-(B-F)|; (3.73)
then, defining the scalar field
U=y —-H(B-E, (3.74)

it is also clear that W is also invariant under the gauge transformations (3.55) and
(3.58). The fields ® and ¥ are called Bardeen potentials.

As to vector fields, we can fix the gauge (; by means of equation (3.60),

G=F-F, (3.75)

Si= S+ (F, — F; (3.76)

then, defining the vector field

it follows that the vector field W is invariant under the gauge transformations (3.59)
and (3.60).

As for tensor perturbations, expression (3.61) shows immediately that the tensor

field h;; is invariant under gauge transformations,
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We can also construct gauge-invariant quantities in the matter sector. Plugging
(3.70) into (3.63) and (3.64), it is immediate to see that the quantities

(GI)

op op+pp (B—E), (3.79)
§P¢) = §P+ P)(B—F') (3.80)

are also invariant under the the same transformations. As to the 3-velocity of the

fluid, from (3.69), we conclude that the quantity
V=v4+E (3.81)

is invariant under the coordinate transformations (3.49). Also, from (3.75) and
(3.76), the quantities

are invariant under the transformations (3.68).

Along with the gauge-invariant variables defined above, we can also use the gauge-
fixing procedure to write down the Einstein equations for the cosmological per-
turbations in more convenient coordinate systems. A special gauge is particularly
convenient for computations, the so-called longitudinal gauge or conformal Newto-
nian gauge, which we next discuss. We take B = E = 0 in this gauge, which fixes
completely the coordinates. Then, in the coordinate system S the potentials ® and
U take the form

b=y, U =y, (3.84)

where the subscript L stands for conformal Newtonian. In this gauge, the fields ¢y,
and 17, coincide with their corresponding invariant potentials. Also, in this case, the

line element takes the simplified form
ds* = a(7)* [(1+2®) dr* — (1 — 20) y;;dz’da’] (3.85)

which bears resemblance to the Newtonian line element in GR. The difference lies
on the fact that, in Newtonian approximation in GR, ® = W. The physical interpre-
tation of ® is immediate in this analogy: it acts as a gravitational potential. To see

the physical interpretation of W, let us calculate the fluctuations in the spatial cur-
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vature, 6R®). A convenient gauge to do such calculation is the comoving orthogonal
gauge, in which an observer sits on a given hypersurface. In this case, for scalar per-
turbations, the perturbation to the fluid 3-velocity du; is zero, so that, from (3.41)
and (3.66), we have

5u§com) =0= V(com) + B(com) = 07 (386>

where the subscript (com) stands for “comoving". In this gauge, using the definition
of the curvature of a hypersurface, R® = ¢% RS’), and expression (3.25), we find
that A
3 2
5R( ) = gv ¢(com) (387)

in the comoving gauge. Hence, ¢ (com) plays the role of a curvature perturbation.
Therefore, in (3.85) the Bardeen variable ® plays the role of a Newtonian potential,

whereas W is associated with curvature perturbations.

We can connect 9)(com) wWith any other gauge by means of expressions (3.56), (3.57)
and (3.67),
¢ = 2/j(com) +H (U + B) s (388)

where we have used relation (3.86). Plugging (3.74) and (3.81) into (3.88) we find

Vicom) = ¥ — HV. (3.89)

The gauge-invariant variable
R=—[U—HV (3.90)

represents the comoving curvature perturbation, and will be of fundamental impor-

tance to discuss the generation of quantum fluctuations during inflation in Section
4.5.

3.3 Einstein equations for Cosmological Perturbations

Using the techniques introduced in Section 3.1 we see that the Einstein equation for
the fluctuations (A.12) takes the form

1

5Gos = 312

5T . (3.91)
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Substituting the metric (3.12) into expression (3.15), and using the corresponding
expressions for the background (2.10) and (2.27), and plugging this result into ex-
pression (3.16) first, and then into (3.17) in the sequel, we find all the components
of the perturbed Christoffel symbol of second kind. Then, plugging them into ex-
pression (3.23), and so forth, we derive the components of the Einstein tensor by
means of equation (3.26) and the background expressions discussed in Chapter 2,

Section 2.3. For a flat universe, with K = 0, we have

Gy = 2V*U — 6Hy/, (3.92)
1
0Go; = —(H*+2H') (B, — Si) +2(V' +HP), + §V2Wi
+ (W -H*)(B-FE),, (3.93)

6Giy; = {20"+2(H*+2H) (P + ¥) 4+ 2H (P' +20') + V* (® — U)

+ 2(H"+HH)(B—E} 6+ [V —® -2 (H* +2H) E]
1
2

it
W+ HW/ — (H* +2H) F;| + (i < j)
J

+ % (b + 2Hhy; — VPhi; — 2 (H? +H') hyj] . (3.94)

From expressions (3.43) and (3.91-3.94) we finally find the Einstein equations for cos-
mological perturbations for the gauge-invariant quantities (3.72), (3.74) and (3.77-

3.83). For scalar perturbations, the Einstein equations are

2
VAU — 3H(U + HP) = QGWMG”, (3.95)
P
2
(V' +HP), = 5 (po + Po) Vs, (3.96)
P

1
U+ H (P +20) + (H*+2H) @ + §v2 (® — )

_ @ (spen _ Ly (3.97)
2M2 3 ! '
CL2
V2(d— ) = ——V2II. (3.98)

M
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The Einstein equations for vector perturbations are

2 2
VAW, = _ig (po+ Fo) Si, (3.99)
Mp
, 2a?
Wi + 2HW; = — 11, (3.100)
Mp
whereas for tensor perturbations
" 2 / 20'2

In the absence of anisotropic stresses the solution to equation (3.100) is

Ci

a?’

W; = (3.102)

where C; is a constant vector. Therefore, vector perturbations decay quickly as
the universe expands, and we do not expect them to endure up to the time of
recombination. This is the reason why vector perturbations are completely neglected

in the current cosmological paradigm.

From the evolution equations for the scalar modes we can recast the definition of the
curvature on comoving hypersurfaces (3.90) into a very useful form, as we shall see
in Chapter 4. First, subtracting —2H? on both sides in equation (2.47), and using
equation (2.46), we have, for K = A =0,

CL2

HQ _ H/ —
2N

(po+ Po); (3.103)

then, plugging equations (3.96) and (3.103) into (3.90) we see that R becomes

H(HD + 1)

R=—-V—
HZ_H/

(3.104)
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4 The Inflationary Universe

In this chapter we introduce the inflationary cosmology. We follow closely (KINNEY,
2009), (BAUMANN, 2009), and (RIOTTO, 2002), together with (MUKHANOV, 2005)
and (WEINBERG, 2008).

4.1 The Cosmic Puzzles

The ACDM model has a number of successes in explaining the structure of the uni-
verse from primordial nucleosynthesis up to large scales. However, when applied to
the very early universe, to the tiny fractions of time right after the initial singularity
(as the standard lore has it'), the standard paradigm failed completely. Basically,

the standard FRW has four problems when applied to the very early universe?:

a) The Flatness problem
b) The Horizon problem
¢) The Entropy problem

d) The Monopole problem.

In particular, we briefly review the first two problems in the subsections below, to

see how the inflationary “miracle" works.
4.1.1 The Flatness Problem

As we have discussed in Section 2.4, the current observations favor a flat universe
today, 0y ~ 1. However, was the universe nearly flat throughout all its history? The
answer can be understood as follows. Using the Friedmann equation in the form
(2.59), and taking its derivative with respect to the logarithm of the scale factor, it

follows that
d|Q—1]

dlna

where we have used the equation of state (2.36). If the universe is flat, it remains flat

= (1+3w)Q|Q 1], (4.1)

at all times; however, if there is a slight deviation from flatness, the term (1 + 3w)

IDespite we do not discuss non-singular models here and stick to the current Big Bang picture,
it is worth mentioning that the initial singularity is completely absent in some cosmological models;
see (NOVELLO; BERCLIAFFA, 2008) for a review.

2Not to mention the initial singularity, the worst of the SCM problems, where all physical laws
do fail!
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is positive for a radiation- or matter-dominated universe, which means that a flat

universe is unstable for

|2 —1| -
dlna

hence, small deviations from flatness at early times would grow due to the expansion

0; (4.2)

of the universe and, as a result, the universe today would be anything but flat.
Since the primordial nucleosynthesis limit is [, — 1| < 107!2, it is clear that such
minute deviation from flatness would diverge at late times. The situation is even
worse at the Planck epoch, since |Q2p; — 1| < 107%; then, the FRW universe filled
with radiation or matter cannot explain the present-time flatness of the universe due

to the instability presented in equation (4.2). This is the so-called flatness problem.
4.1.2 The Horizon Problem

As we have seen in Section 2.2, the comoving cosmological horizon is defined as the
maximum comoving distance travelled by a photon since the initial singularity up to
a time ¢, and it is given by the conformal time 7 (2.18); also, any physical distance
in cosmology is related to a comoving length by means of the scale factor (2.8). In
particular, for a radiation- or matter-dominated universe, the scale factor evolves as
a(t) o< t", where n = 1/2 for radiation of n = 2/3 for matter; then, using expressions
(2.18) and (2.20), it follows that

a(t) oct" = 7 ot ~ dy. (4.3)

Since for both radiation- or matter-dominated universe 1 — n is always positive,
we conclude that the comoving cosmological horizon grows with time, and is finite;
also, in this case, the comoving cosmological horizon coincides with the Hubble
radius (2.20). Comoving scales entering the horizon today were outside the horizon
at LSS, which means that they were not in causal contact. An accurate calculation
shows that in the standard FRW universe two photons separated by an angular
distance larger than around 1° were not in causal contact (RIOTTO, 2002). This fact
would imply a very inhomogeneous temperature in the microwave sky; however,
observational evidence shows exactly the opposite: the temperature is homogeneous
up to 10~°K even for angular separations larger than 1°! This apparent lack of causal
connection among primordial scales due to the finite horizon is called the horizon

problem.
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Both the flatness and the horizon problems are related. Using the fact that the
Hubble parameter is H(t) oc t~! for a(t) oc t" (see Table 2.1), together with relations
(2.18) and (2.59), the ratio between a comoving scale A and the comoving horizon

is a constant, given by
A\ 2
(—) |2 — 1| = k = const. (4.4)
du

Taking the derivative of (4.4) with respect of Ina, and using (4.1), we have

d /A ko1 d|0—1]
) == 4.
dlna( ) 2|0 —1? dna ’ (4:5)

which is negative for (1 + 3w) > 0, since relation (4.2) holds:

d A

The inequality (4.6) shows that the comoving horizon size grows with time, so that
certain scales become causally connected only at later times. Equation (4.5) is the

link between the flatness problem and the horizon problem.
4.2 The Inflationary Paradigm

The key to solve both the flatness and the horizon problem is term (1 + 3w) in (4.1):

if it is positive, as we have seen, both problems arise; if it is negative, though,

4|0 - 1] d [ A
dlna <9, dlna <@)>O’ (4.7)

which means that the point 2 = 1 is stable, that is, the universe evolves toward
flatness, and that the cosmological horizon shrinks in comoving units, so that a given
scale would be inside the horizon at early times. Then, a fluid with an equation of
state parameter satisfying w < —1/3 would solve both cosmological puzzles. Notice
that, from the Raychaudhuri equation (2.42), such fluid would cause a period of

acceleration in the early universe:

1 a 1
—— —=——p(1+3 0. 4.8
w < 3:>a 6M1%p(+w)> (4.8)
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This period of accelerated expansion at the very early universe is called inflation.
Inflation solves not only the flatness and horizon problems, but also the other two,

namely the entropy and the monopole problems, as shown in (RIOTTO, 2002).

Once we have a solution to the cosmological puzzles by means of an accelerated
expansion, the next task is: how to implement inflation? Scalar fields provide the
simplest way to do the job. We define the scalar field ¢, which we call inflaton, to
be the responsible to drive inflation. The dynamics of general scalar field theories
is described by the action (D.1), whose simplest form is given by the Lagrangian
density

LIX, ¢]=X-V(9), (4.9)

X being the kinetic term defined in (D.2), and V (¢) is the potential that describes
the self-interactions of the field. The equation of motion for the inflaton field follows
from (4.9) and (D.4),

—_g(?a (\/—_g((?agb) + Vd; - O, (410)

jH

where we have defined

Vo= (4.11)

do
For a flat FRW metric (2.6) and a homogeneous scalar field, ¢ (t,x) = ¢(t) - which
we assume to be the case throughout this Section, unless otherwise stated -, the

equation of motion (4.10) becomes

¢+ 3H)+Vy=0. (4.12)

Equation (4.12) is basically a Klein-Gordon equation in an expanding spacetime.

The extra contribution 3H¢ is a friction term due to the expansion of the universe.

The hydrodynamic approach is set up as follows. First, the stress-energy momentum

for the inflaton is obtained by plugging (4.9) into (D.9),

1
Taﬂ = ¢,a¢,ﬁ — Gap égHAQS,NQS,A -V (¢) . (413)

The energy density and pressure for the inflaton field are derived by substituting
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(4.9) into (D.10) and (D.11), which, for a flat FRW metric (2.6), gives

Py = %2 +V(9), (4.14)
Py = %2 —V(¢). (4.15)

The corresponding Friedmann equation for the inflaton field is given by plugging
(4.9) into (D.17),

52
Z V()

HZL

= . 4.16
B (4.16)

From the definition of the equation of state (2.36), and expressions (4.14) and (4.15),
we find

w, = £ =20 (4.17)

T 2rov(e)

hence, when the potential term dominates the kinetic term,
V(¢) > ¢*, (4.18)

that is, when the inflaton is slowly rolling down the potential - this is why this

condition is called slow-roll limit -, it follows that
Py~ —pg, (4.19)

and then 143w < 0, which implements the accelerated expansion. Expression (4.19)
is called de Sitter limit, in analogy to the corresponding solution obtained for an
empty universe filled with a cosmological constant as discussed in Section 2.4. From
the continuity equation (2.37) and the de Sitter limit (4.19), we deduce that pl, ~ 0,
and then p, is nearly constant. This fact implies that H is also nearly constant, since
Friedmann equation states that H? oc p,. Therefore, the inflationary spacetime is
approximately de Sitter, and the universe expands quasi-exponentially according to
expression (2.53),

a(t) ~ et (4.20)
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FIGURE 4.1 - The solution to the horizon problem in the inflationary cosmology. Figure
borrowed from (BAUMANN, 2009).

The conformal time for a quasi-de Sitter expansion is (Table 2.1)

1

T~ (4.21)
so that conformal time is negative during inflation, and tends to zero at late times.
This means that if inflation took place before the radiation-dominated phase, its
negative conformal time could be arbitrarily pushed back toward —oo depending
on the duration of inflation. The time 7 = 0 represents the transition from the
inflationary expansion to radiation domination. In this case, the past light cones
of two events taking place at CMB would intersect thanks to such “extrapolation”
to negative conformal times due to inflation. This overlap of the past light cones
causally connects the events, solving the horizon problem. The conformal diagram

depicted in Figure (4.1) illustrates how this mechanism work.

The duration of inflation can be parameterized conveniently by the introduction of

a new variable. Integrating the equation that defines the Hubble parameter, (2.3)
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between a given instant ¢ and the end ¢, of inflation, we have

a(t) = a. exp {— /t “arn (t')} | (4.22)

showing that the universe underwent an exponential expansion during inflation.
Defining the number of e-folds, N as

dN = —Hdt, (4.23)

and choosing the value of N at the end of inflation as N, = 0, expression (4.22)
reads
a(N) = ace™. (4.24)

The definition of N looks awkward, since it goes backward in time; however, since we
have observational access only to the end of inflation (KINNEY, 2009), it is convenient
to assume N, = 0 by the same reason that we take the initial time as ¢, = O:
simplicity. The number of e-folds required for inflation ranges from N = 46 to
N =60 (see (LIDDLE; LEACH, 2003) for a discussion on these limits).

Therefore, the inflationary solution in the slow-roll approximation provides a very
successful solution to the mentioned cosmological puzzles. In the next section we
discuss in more detail the consequences of slow-roll approximation, and derive a full

set of parameters that will become fundamental to our investigations.
4.3 Flow Hierarchy in Inflation

As we have seen in the previous Section, in the slow-roll limit (4.18) the poten-
tial term dominates over the kinetic term, so that the Friedmann equation can be

described as

1

H?~ —
3M2

Vi(o); (4.25)

since the Hubble parameter is nearly constant, equation (4.25) implies that the

potential is approximately flat; such condition can be formalized as

Ve < V. (4.26)
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Since gb slowly varies with time, its derivative ng must negligible, so that the equation

of motion (4.12) becomes

: Vv

¢ ~ —3—’1_1‘;. (4.27)
Then, in the slow-roll limit the time evolution of the inflaton field depends on the
variation of the potential with respect to the field itself. Since V' (¢) is a function
of ¢, with no explicit time dependence, equation (4.27) suggests that all the time
evolution can be replaced by evolution in ¢ if it is a monotonic function in time. In
this sense, the field ¢ acts as a “clock". This property works well for the slow-roll
approximation, but is it valid in the general case? To answer this question let us
take the derivative of the Hubble parameter in (4.16) with respect to ¢ and use its

equation of motion (4.12); the result is
¢ =—2M2%H 4, (4.28)

which shows that we can express the Hubble parameter as a function of ¢, H =
H (¢). Plugging equation (4.28) into (4.16) we have that

O] - g O - v @), (1.20)

Equations (4.28) and (4.29) are called Hamilton-Jacobi equations for inflation (MUS-
LIMOV, 1990), (SALOPEK; BOND, 1990). The Hamilton-Jacobi equation describes the
evolution of the Hubble parameter entirely in terms of the inflaton field, which is

very convenient for computational purposes.

From equation (4.28) we can express the time derivative of the Hubble parameter

H in terms of ¢ solely,
H = —2MpH>; (4.30)

then, from equations (2.48) and (4.30), we see that the acceleration of the universe

can be expressed in terms of ¢-dependent functions,

i

11— (9], (4:31)
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where we have defined the flow parameter € as

H 2
e=2M? (#’) . (4.32)

In terms of the flow parameter €, the Hamilton-Jacobi equation (4.29) becomes

1 1
H(¢)|1—= = 4.
@ 1 -3¢0 = 3V @), (1.33)
whereas the equation of state for the inflaton field reads
2
Py = |3€(0) =1 py, (4.34)

where we have substituted into expression (4.17) the relations (4.28) for ¢ and the
Hamilton-Jacobi equation (4.33) for V, and used definition (4.32).

We can also rewrite higher-order time derivatives of ¢ in terms of H (¢) and its

derivatives. In particular, ¢ reads

Q.b' = —QMIQDH,¢¢§Z.5, (4.35)

so that the equation of motion (4.12) can be completely written in terms of ¢
(3=n)Ho+ V=0, (4.36)

where we have defined the second flow parameter n as

H
= o292 4.37
n P H ( )

Notice that the value of the flow parameter € literally controls inflationary expansion:

i>0<=e<1], (4.38)

so that inflation lasts as long as the flow parameter € is less than one. Also, both

parameters € and 7 dictate the slow-roll approximation: taking ¢ < 1, the equation
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of state (4.34) becomes

in agreement with (4.19), whereas the Hamilton-Jacobi (4.33) reads

1

1] — H?~
€< 3M2

V (o), (4.40)

which coincides with expression (4.25), (the consequence of the slow-roll approxi-

mation (4.18)). In turn, taking n < 1, equation (4.36) becomes
n<l=¢~—2 (4.41)

which coincides with relation (4.27), (the consequence of the approximate flatness
of the potential, given by (4.26)).

Hence, the flow parameters € and 7 play a decisive role to determine the conditions
for inflation and slow-roll. In particular, if € varies with time (it can be a constant,

as we shall see in the next Section), inflation ends when ¢ reaches the value ¢ = ¢.,

‘End of inflation : € (¢e) =1 ‘ (4.42)

If € is constant, additional physics must be introduced to enforce inflation to end.

Along with the flow parameters € and 1 we can derive a whole hierarchy of higher-
order parameters as follows. First of all, we adopt the convention that the sign of
/€ is the same of H 4,

H
Ve = +\/§MPF’¢; (4.43)

then, taking the derivative of the parameter 7, for example, we get

dn o Hpso M/
L _opa e : 4.44
d¢ P H \/§MP ( )

which may be simplified by defining

2 H g H ppp
b)

e = (g et

(4.45)
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leading to

dyp & —en
- — , 4.46
AN TR 40
and so forth. Proceeding this way, the ¢ — th parameter, with ¢ = 3, ..., 00, is given
by (KINNEY, 2002)
-1 0+1
A= (2M3) (7> EdquHH’ (4.47)

In particular, we can get rid of the extra factors appearing in (4.46) by simply
changing the variable ¢ to the number of e-folds, N, defined in (4.23), so that

d 1 d
— = —_—, 4.48
dp  \/2eMpdN ( )
and then
dn 2
— =& —en. 4.4
v =& e (4.49)
In terms of N, the flow parameter € assume the following equivalent (and simpler)
form
1 dH
— 4.
€= TN (4.50)

The flow parameters (4.32), (4.37), (4.45) and (4.47) satisfy an infinite set of first-

order differential equations, the so-called flow hierarchy

de

dd—N = € (277 — 26) s
a2

dN 5 6777

d@)\ ‘ J4 /+1

Solutions to this infinite hierarchy of flow equations are equivalent to solutions of

the scalar field equation of motion.
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4.4 Inflationary Potentials

Inflation acquires different properties depending on the shape of the scalar potential
V' (¢). We summarize below the different classes of inflationary potentials according
to the classification pushed forward by (DODELSON et al., 1997). All figures are
adapted from (KINNEY, 2003).

4.4.1 Large-Field Inflationary Potentials

In these models, the inflaton field is displaced far from its minimum to a value ¢ ~ pu
(several times the value Mp), and then rolls down toward its minimum at the origin

on a potential

Qb p
V(g) = A* (—) : (4.52)
i
where A is the energy scale of inflation, and p > 1 (Figure 4.2). In this case, ¢ > ¢k,

and then inflation occurs when the inflaton field strength is larger than its minimum.

¢

» Large field

V(¢) =A% (¢/p)’

V() = Aedl

FIGURE 4.2 - Large-field polynomial potentials.

The flow parameters are given by

e(¢) = %% (4.53)
o) = D (4.54
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whereas inflation ends when

G _ b (4.55)

Mp /2
4.4.2 Small-field polynomial potentials

Small-field polynomial potentials in canonical inflation arise from a spontaneous
symmetry breaking in the presence of a “false" vacuum in unstable equilibrium with
nonzero vacuum energy density and a “physical" vacuum, for which the classical
expectation value of the scalar field is nonzero, (¢) # 0 (KINNEY; MAHANTHAPPA,
1996). A typical potential of this form arises in the so-called “natural" inflation mod-
els (FREESE et al., 1990). These models are characterized by an effective symmetry-
breaking scale p o< (¢) such that ¢ < u < Mp, the field rolls down from an unstable

equilibrium at the origin toward pu; hence, for positive ¢ we have always (b > 0, see

Figure 4.3. Vo) — ot [1 1 <?>p:| (4.56)
p\u) |’ |

where (1 is the effective symmetry-breaking scale given by (KINNEY; MAHANTHAPPA,
1996)

_ [<m - 1>!v<¢>} v

V/dgn | 37

$=0

and m is the order of the lowest nonvanishing derivative of the potential at the origin.

Potential (4.56) has to be regarded as the lowest-order term in a Taylor expansion,
since higher order terms can be neglected due to the smallness of ¢ in comparison
to . In the canonical small-field scenario the initial unstable equilibrium state is
characterized by the vacuum energy density A%, which is the height of the potential
at the origin, A* = V/(0).

The flow parameter € assumes the form

o) = (3)() , (458)

whereas from (4.58) we see that inflation ends at

(4.59)
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1 Small_field
A4 V() = A[1 —(¢/w)"]

FIGURE 4.3 - Small-field polynomial potentials.

4.4.3 Hybrid potentials

This family of inflationary models is characterized by two scalar fields: one field
¢ drives inflation, whereas the other 1 makes inflation end. The original hybrid
potential was pushed forward by Linde, (LINDE, 1994; LINDE, 1991)

V(p) = %2¢2 + %/w2¢2 + % (M* — ¢2)2 , (4.60)

where M is a given energy scale, and m, A and X coupling constants. For ¢ > ¢, =
AM? /N, that is, its critical value, the potential for ¢ has a minimum at ¢y, = 0,
which occurs during inflation. The field v is kept at this minimum, so that ¢ slowly
rolls down the effective potential

MY m?

+ —¢?, (4.61)

Vi) =+

until it reaches the critical value ¢., which shifts the minimum of ¢ to ¢, = £ M.

The field 1 then rolls down toward one of these minima, enforcing inflation to end.

In general, the effective potentials for hybrid models are of the form

V(gp) ~ A* {1 + (%)p} : (4.62)

where, again, expression above is the lowest-order term of a Taylor expansion. The

behavior of the inflaton field on the hybrid potential is depicted in Figure 4.4.
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& Hybrid
V($) = A*[1 4 (¢/19)"]

Dc

FIGURE 4.4 - Hybrid potentials.

4.4.4 Exponential potentials - Power-law Inflation

Exponential potentials make up a very important class of inflationary models, and

are characterized by

V(g) = Atexp E(Mip)Q : (4.63)

where p > 0. In this case, the Hubble parameter also has an exponential form, and
then leads to a scale factor with power-law dependence on ¢, a oc tP. This class of
inflationary models were studied by Lucchin and Matarrese under the name power-

law inflation (LUCCHIN; MATARRESE, 1985). One of the most important features of

these models is that the flow parameters are constant:

e(¢) =n(¢) = —; (4.64)

H=—. (4.65)

The inflaton in this class of models behaves exactly as large-field models, as depicted

in Figure 4.2.
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4.5 Quantum Fluctuations from Inflation

Once we have introduced the fundamental ideas concerning the dynamics of inflation,
let us now discuss one of the most fundamental results of the inflationary cosmology:
the generation of nearly scale-invariant spectrum of perturbations, which seeds the
structure formation of the universe. We have introduced perturbations in Chapter
3, but a question remains unanswered: what created such tiny primordial fluctu-
ations? Inflation is a mechanism that provides this answer?. Instead of a classical
inflaton field evolving classically on a potential V' (¢), as we have considered so far,
small quantum fluctuations d¢ around its classical trajectory couple to the spacetime
curvature, originating then the primordial density fluctuations. Such quantum fluc-
tuations evolve during inflation, until they exit the horizon and become classically
“frozen", and only much time later they re-enter the horizon and act as the classical
seeds to the small inhomogeneities that will grow into structure by gravitational
instability. Therefore, inflation solves in a very elegant and physically rich way the

problem of the generation of the small fluctuations in the universe.

In the next section we treat in detail the generation of such small fluctuations
provided by inflation. We drop the subscript , ¢ to indicate derivatives in the sequel,

and simply write it as ¢.
4.5.1 Introducing Perturbations

To see how the inflaton fluctuations couple with the inhomogeneities discussed in
Chapter 3, let us derive first the equation of motion (4.10) for the perturbations. To

do so, we take the metric in the longitudinal gauge (3.85) with tensor perturbations,
ds* = a(7)* {(1 4 2®) dr* — [(1 — 20) &;; + hyj] da'dz’ } (4.66)
and use J as an “operator" on (4.10), whose result is

§¢" + 2HS¢ — V25 — ¢ (¥ + 3V') + 2a° PV, + a*Vyy0¢ = 0. (4.67)

3 Although other proposals also do provide an answer. See the Introduction and Chapter 8.
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Proceeding the same way for the stress energy-momentum tensor (4.13), we have

6T = ¢8¢" +2a*®V + a*V,60,
67—;‘0 = ¢I§¢7
6T, = [_ (®+ ) ¢'2 + @00 + a® 29V — V¢5¢)] ij; (4.68)

next, using expressions (3.92-3.94) for the Einstein tensor, and (4.68) for the energy-

momentum tensor, the Einstein equations (3.91) read

V20 — 3H(V + HP) = e (08¢ — ¢ ® + a®Vyd9) | (4.69)
P
/ _ 1 /
U+ HP = le%qﬁ 50, (4.70)

U+ H (P 4 20") + (H* +2H') @
1

- 5112 (cp(p'? — 58 + a2V¢5gz5> . (4.71)

The equation for the tensor perturbations is identical to (3.101) without anisotropic
stresses, and is given by
hi; = V?hi; + 2Hhl; = 0. (4.72)

Equations (4.69-4.71) show the coupling between the inflaton perturbation d¢ and
the scalar modes ® and V¥, whereas tensor modes do not couple. Despite tensor modes
will not play any role in the density perturbations at the time of recombination, they
do generate CMB temperature anisotropies by inducing a gravitational redshift on
the photons frequency using the same mechanism of horizon exit and re-entry. More

on this topic will be discussed in Chapter 5.
4.5.2 Evolution of the Scalar Modes

Equation (4.70) shows that the comoving curvature perturbation (3.104) is con-
nected to the perturbation of the inflaton field, d¢; to see this, we first substitute
the expressions for the energy density (4.14) and for the pressure (4.15) into expres-
sion (3.103); then, going to conformal time, we get ¢ = ¢/ /a, and

1
2M32

HP—H = ¢, (4.73)
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so that, from (3.104), (4.70) and (4.73), we find

R:—\I/—H(;—QS.

¢/

(4.74)

Therefore, the small fluctuations of the inflaton field induce curvature perturbations

by means of equation (4.74). In particular, taking the derivative of equation (4.74),

and using (4.69) and (4.71), we find

2MEH

R' =
¢l

V2

then, defining the variable z as
aq’
z (1) = =

H Y
and using again (4.69), (4.71) together with (4.75) and (4.76), we find

R + 2%72’ ~ V2R = 0.

Introducing the Mukhanov-Sasaki potential u as

u=zR,
equation (4.77) turns to
z//
u’ — Vi — “u = 0.
z

Expanding the Mukhanov-Sasaki potential « in its Fourier modes,

d3k ik-x
u(r,z) = /Wuk(T)e )

we obtain the mode equation for curvature perturbations,

,Z//
ulé+<k2——)uk:0>
z

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

which shows that the mode functions u; depend only upon the magnitude of the

comoving wave vector k.
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4.5.3 Evolution of the Tensor Modes

We now turn our attention to the equation for tensor perturbations, given by (4.72).
We first go the the Fourier space, expanding the tensor h;; according to (C.28) and
(C.29), and following the discussion in Section C.2.2,

d3k. ik-x
hij (7, 2) = / PEE [hg) (1) e ) + hY) (7) L0 (k)] e, (4.82)

(+:%)
]
into equation (4.72), we get

where ¢ are the polarization tensors given by (C.33). Plugging expansion (4.82)

Ry + 2Hh), + k*hy = 0, (4.83)

for both modes 4+ and x, whence we deduce that the tensor modes hj depend only
on the magnitude of the modes k. Defining the quantity (GRISHCHUK, 1975),

pr (1) = —a (1) hg (1), (4.84)

we obtain the mode equation for tensor perturbations

"

i+ {k - %] | (4.85)

which has the same functional form as the corresponding equation for the curvature
fluctuations (4.81).

4.5.4 Quantizing the Modes

Before undertaking the task of solving the mode equations (4.81) and (4.85) for
scalar and tensor perturbations, it is important to gain some insight by studying
the asymptotic behavior of the mode functions wu; and p. Since these equations
have the same functional form, we solve for the function wu, first, and them write

down the similar solutions for p;. The asymptotic limits are discussed below.

e Short-wavelength limit: Subhorizon scales
This limit is characterized by
"

K> (4.86)

z
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so that the mode equation (4.81) becomes

uf + k*uy = 0. (4.87)

This is the equation of a simple harmonic oscillator, whose solution is given

by

AkeikT + Bke—ik'r

u (1) = 4.88
¢ Long-wavelength limit: Superhorizon scales
In this case,
Z”
k< =, (4.89)
z
and so equation (4.81) yields
Z//
uy — k= 0, (4.90)
whose solution is
ul/ Z//
£ = — (1) x 2 (7). (4.91)
U z

The arbitrary normalization constants can be fixed as follows. We first expand

u (7,%) as a quantum operator,

u(r,x) = —d3k [u (1) e X + ul (1) e ikexgt (4.92)
| 2r)” L o K |

where ay and dlt are respectively the annihilation and creation operators, and satis-

fies the well known commutation relations
il | =00k~ K), (4.93)

and, for the vacuum state |0),
ax|0) = 0. (4.94)

Inverting the operators ay and di to express them in the configuration space, after

a hard work we can show that (4.93) implies the Wronskian condition

upu) — ujuy = i (4.95)
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Substituting expression (4.92) into (4.95), we obtain
|Akl* = |Bi|* = 1, (4.96)

which is the normalization condition. The second condition that provides a way to
fix one of the constants is the choice of the quantum vacuum. In quantum field
theory, the vacuum is defined as the a zero-particle state as seen by an inertial ob-
server in the Minkowski spacetime, where a quantum state representing a particle
with momentum k can be built from the creation operators le(. In the case of quan-
tum cosmological fluctuations, the vacuum choice must be performed on subhorizon
scales, since all the comoving scales were deep inside the Hubble horizon and then in
causal contact. Subhorizon scales correspond to the short-wavelength limit, where
the mode equation switches to a harmonic oscillator-like equation (4.87), whose solu-
tions lead to a Minkowski vacuum as long as k is time-independent. Since condition
k* > 2"/z implies |kT| — oo, contribution ¢*7 in (4.80) goes to infinity on sub-
horizon scales. To ensure a Minkowski vacuum we must discard this contribution,
so that we set

Ap =1, B =0, (4.97)

which guarantees that ax|0) = 0, as desired. Choice (4.97) is called the Bunch-Davies
vacuum. Using conditions (4.96) and (4.97) we completely fix the constants Aj and
By.

As for superhorizon scales, (4.91), it follows from the definition of the mode wuy,
equation (4.78), that

Ry = LIS const.; (4.98)
z

hence, modes with wavelengths larger than the horizon have constant nonzero ampli-
tude for the curvature on comoving hypersurfaces. That is, the quantum amplitudes
of the long wavelength modes, outside the horizon, asymptote to a constant nonzero
amplitude. This is the well known phenomenon of mode freezing, which allows for a
quantum fluctuation to exit the horizon as a perturbation with constant amplitude
and re-enter the horizon as a classical inhomogeneity that seeds the future structure

formation.
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4.6 Solutions to the Mode Equation

Once we have discussed the main features of the asymptotic limits of the quantum

fluctuations, we next work out some full solutions to the mode equations.
4.6.1 Slow-Roll Solutions

Let us now study the slow-roll solution to the mode equation (4.81). One of the
key ingredients to finding such solutions is provided by the flow parameters (4.32),
(4.37) and (4.45); they come into play through equation (4.28), from which we have

% = % = —\/QM%E, (4.99)

so that the variable z becomes

z = —ay/2M?3e. (4.100)

Next, using definitions (2.24) and (4.23), we get

o = o (4.101)

so that the acceleration term z”/z turns to (KINNEY, 2002)
2 2 172 2
—EaHF(e,n,f), (4.102)
2

where
F =2+2¢—3n+26 — den +n* + €2, (4.103)

and then the mode equation (4.81) becomes
1 & ?
N Uk + i — F
aH dr? aH

Note that the ratio k/(aH) appearing in equation (4.104) determines whether a

given wavelength is in- or outside the horizon (2.21-2.22); then, it is convenient to

introduce a new variable (KINNEY, 2005)

y (4.105)

ko
aH’
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such that y < 1 for superhorizon and y > 1 for subhorizon scales. In terms of y,

the derivative with respect to the conformal time reads

L ey (1—¢)? 2d—2+G( ) a4 (4.106)
dT2 - €)Yy dy2 6777 ydy ) .
where
G = —2en + 2€%. (4.107)

Therefore, the mode equation (4.104) becomes

2u du
Y dy; - (—26?7 + 262) yd—yk + [y2 — F} up = 0, (4.108)

so that to first order in slow-roll, it turns to
2

d“u
2 k
(1—-2¢)y T

+ [y* =2 —2¢+3n] w, =0, (4.109)

whose solution is

u(y) = y? {aHS) (1 Y ) + BH® (Lﬂ , (4.110)

—€ 1—¢€

where « and (3 are constants and H, ,51), H are Hankel functions of first and second

kind, respectively, and

3
1/:§+2€—17. (4.111)

Using the normalization condition established by the Wronskian (4.95) and fixing
the Bunch-Davies vacuum (4.97), we have § = 0, so that we find from (4.110) the

normalized solution
T Y 1 Y
- H . 4.112
k (1 — e) v (1 — e) ( )

4.6.2 The Power-Law Solution

ug(y) =

The power-law solution is characterized by constant slow-roll parameters, and give

rise to inflationary exponential models like (4.63). For ¢ = const., from definition
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(4.76) we have

Z// a//

e (4.113)

’
z a

so that the same solution works for both tensor and curvature modes. Equations
(2.48) and (4.31) yield

a//

— =a*(2—¢) H? (4.114)
a

then, using the definition of conformal time, (2.9) and (4.65), we find
1 1

= — — 4.115
T 1—¢ecalH ( )

From the definition of the variable y, (4.105), and (4.115), it follows that

k
y=——T (4.116)
1—c¢
so that the mode equation (4.81) and (4.85) become
2 2d2uk 2
(1—e)y i + [y = 2-¢]u =0. (4.117)
The solution to equation (4.117) is given by
_ /2 (Y @ (_Y
wly) = y* | o HY +oH® (2], (4.118)
1—ce¢ 1—e¢
where now 5
—€
= — 4.119
"To1—e (4.119)

From the normalization condition established by the Wronskian (4.95) and fixing
the Bunch-Davies vacuum (4.97), we have § = 0, so that from (4.116) and (4.118)

we find the normalized solution

1 |7 ( —kT —kT
N (1)
ug(y) S\ % (1_€>HV (1_€> : (4.120)

which is an exact solution to all wavelengths.
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4.6.3 The de Sitter Solution

For the de Sitter solution, H = const., so that ¢ = 0. The mode equation is the same
as (4.117) for e = 0, so that the de Sitter solutions (4.118) read

u(r) = V=k7 |aH})) (—kr) + BHS ) (—k7) | (4.121)

where we have used the result v = 3/2 from (4.119). Using the expressions for
the Hankel functions Hs/, (see, e.g., (ABRAMOWITZ; STEGUN, 1972)), and using
the asymptotic limits —k7 — 0 and k7 — oo to apply the Bunch-Davies vacuum
condition, and normalizing the modes as we did in the previous subsection, we find

that (4.121) becomes
1 l '
wr) = (1= ) e, (1122

which is valid for all wavelengths, and is an exact solution.
4.7 Power Spectrum

Once we have found solutions to the mode equations (4.81) and (4.85) the next
important step is the computation of the amplitude of the quantum fluctuations.
For a generic function f (7,x) (which can be either the Mukhanov-Sasaki potential

or the tensor amplitude), the two-point correlation function is defined as

E(r,r) =(0|f (7,x) f (1,x +1)"|0), (4.123)

where ¢ depends on r = |r| by isotropy. Expanding f in Fourier modes as in (4.80),
we find from (4.123) that

= &k __dk 0 5 (1) ]0)e™ T 4.124
5(7—7T) - (27‘(’)3/2 (271')3/2< |fk (T) fk’ (7—)| >€ ) ( : )
assuming that the Fourier modes fj are normally distributed, we define the power

spectrum P(k) as

(O1icfiel0) = T P() (ke — K, (1125)
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where the normalization 27%/k% has been chosen to render the power spectrum

dimensionless. Therefore,

(£ (7.1} = [P0, (4.126)

For curvature perturbations, from the definition of the Mukhanov-Sasaki potential

we have Ry = ug/z, so that the corresponding power spectrum (4.126) is

k3 2

T on?

U,

z

Pr(k) (4.127)

As we have seen in Section 4.5.4, on superhorizon scales the curvature perturbation
(4.98) is nearly constant, so that we can approximate the mode function uy by a de

Sitter solution (4.122) which, on superhorizon scales —k7 — 0, yields

1 1

up(7) = —\/—2—kg; (4.128)

next, using the expression for the conformal time given by (4.115) with ¢ < 0, that
is, 7 ~ —1/(aH), it follows from (4.128) that

1aH
V2K

Next, using (4.100), (4.127) and (4.129), we find, at the horizon exit k = aH,

(4.129)

u(T) ~

1 H?
Pt == 4.130
R 8w M2y (4.130)
For tensor perturbations, the power spectrum is given by
k3 9
Pr(k) = — [ll”, (4.131)

where the factor 2 accounts for the two polarization states of the graviton. In the

slow-roll limit, the solution for y is given by (4.129) on superhorizon scales,

iaH
297 (T) = \/ﬁ;

(4.132)



then, substituting (4.84) and (4.132) into (4.131), we find, at the horizon exit,

2 H?

Pr=— —
2 2 :
7w Mp|—un

(4.133)

Another important quantity, whose upper bound is measured by CMB satellites,
is the tensor-to-scalar ratio, r, which is nothing but the tensor power spectrum

normalized to its scalar counterpart, that is,

(4.134)

ﬁ
I
o7

We can usually approximate both the scalar and tensor power spectra on k by a
power-law, P(k) oc k™; then, the spectral scalar index, ng, and the tensor spectral
index can be evaluated by means of the expressions
ne—1 = ——==,
d(In k)
d(ln PT)
= -7 4.135
nr d(In k) (4.135)
respectively. The spectral indices measure the scale dependence of the power spec-

trum on the Fourier mode k. In the slow-roll limit, we have

ng—1 = —4e—+ 2n,
np = —2e. (4.136)
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5 Theory of CMB Anisotropies and Polarization generated by Primordial

Tensor Modes

In this Section we discuss the basic mechanism for generating small anisotropies and
polarization in CMB. Unlike the previous chapters, in the present we will keep the
usual constants ¢, h and k. In what follows we shall use the terms “tensor modes"
and “PGWs" indistinguishably.

5.1 Boltzmann Equations in Cosmology

As we have briefly discussed in Section 2.5, CMB photons freely propagate after
decoupling. They move along geodesics, and we can treat this photon gas using the

techniques of statistical mechanics, namely, the Liouville equation

4 _

= 1
= (51)

where f = f (z®,p®) is the photon distribution function, and p® is the photon four-

momentum, given by
pr= (52)
d\
where \ parameterizes the photon’s trajectory. Equation (5.1) is also called collision-
less Boltzmann equation. Since the photon four-momentum satisfies the mass-shell
condition

Gapp™p” =0, (5.3)

the phase-space of the photon mass-shell is seven-dimensional, {z®, p'}, since p° can
be determined in terms of the components of the momentum vector by means of
equation (5.3),
P’ =p, (5.4)

where

P’ = —a2gyp'p, (5.5)
the metric g;; has the general form (3.1), and the physical photon energy FE is related
to p® through E = ap®.

In terms of f = f (z*,p"), Liouville equation (5.1) becomes

G o orw oray
dr Or Ozt dr  Opdr’

(5.6)
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where we have neglected the dependence on

of dp'
opt dt

(5.7)

since it is of second-order in the perturbation series, and here we are only concerned
about first-order terms. The second term on the rhs of (5.6) is related to the unit

vector along the photon trajectory; to see this, we simply use expressions (5.2) and

(5.4), so that
dxt B dx® d\ B P’

Then, the rate of change of the photon distribution function is
af _of | ;0f  Ofdp
J Ly 2 5.9
dr 8T+eaxz+3pd7 (59)

In the presence of collisions, particles will be coming in and out of a given volume of
the phase space; however, on cosmological scales, the mean free path of the particles
is very long, so that we can use the ideal gas approximation to describe this gas of
particles. But, in this case, the rate of change of the particle distribution function
is no longer zero; instead, it depends on the physical process that describes the

collisions, which we call C'[f]. Then, equation (5.1) becomes

a _

and is called Boltzmann equation. Combining expressions (5.9) and (5.10) we find

that the Boltzmann equation, in its general form, is given by

of  ,0f [ Ofdp
E+68xi+8pd7_

il (5.11)

It is important to mention that the Boltzmann equation (5.11) holds for non-

relativistic matter as well. In this case, we also have a seven-dimensional phase-

2

space, but the mass-shell condition is determined by the constraint g,gp®p® = m?,

where m is the mass of the particle. The final form of the Boltzmann equation is the
same as (5.11), but the collision term changes. In Figure 5.1 we present a summary

of the interactions among the different species by the time of recombination.
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Coulomb

Scattering

FIGURE 5.1 - Interactions taking place at recombination. Adapted from (DODELSON,
2003).

5.2 Radiative Transfer induced by Tensor Modes

As we have mentioned in Chapter 1, we are primarily interested in the signatures
of the tensor modes. In order to study the anisotropies and polarization of CMB
generated by such tensor modes, we have to evaluate the respective Boltzmann
equation (5.11), first studied in a seminal paper by Polnarev (POLNAREV, 1985). To
pursue the task of deriving the Boltzmann equation for the CMB photons interacting
with free electrons in the presence of PGWs, we first discuss the collisional term of

the Boltzmann equation (5.11).

As we have seen in Section 2.5, the free electrons prior and during recombina-
tion scatter the photons tightly coupled to the baryon-photon plasma via Thom-
son scattering. The collisional term due to Thomson scattering is given by (CHAN-
DRASEKHAR, 1960)

C[f] = _UTNea<T>{f(Ta r,v, L, 90)
1 [t R
- 4—/ dp'de P(u,so,u’,w')f(ﬂr,V,u’,w’)}, (5.12)
™ J-1

where f is the photon distribution function and P (u,p, ', ¢’) is the scattering
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matrix whose form is

P, i, @) = Q{PO i) + V1 — 21— 2P (o, it )

+ P (u 01t ) } (5.13)
where
1 000
01 00
= ) 5.14
@ 01 00 ( )
000 2
2(1 = p®) (L = p?) +p2p? p* 00
3 ' 1 0 O
P'==C , 5.15
4 0 0 0 O ( )
0 0 0
dpp/ cosyy 0 —2psinygy 0
3 0 0 0 0
P! =" o , (5.16)
41 2u'sinyy 0 cosv 0
0 0 0 cos ¢
prp? cos 2y —p?cos2y —pPu'sin2y 0
3 —u'? 2 2 "sin 2 0
p2_3 M,Q C.OS Y cos. Y u/51n Y | (5.17)
41 pp?sin2¢  —psin2y  pup'cos2y 0
0 0 0 0

or is the Thomson scattering cross-section, N,(7) is the number of free electrons in

the unit comoving volume, and we have defined p = cos € and ¢ = ¢ — ¢'.

Next, let us consider a given beam of radiation characterized by its Stokes parameters
{I,Q,U,V} (CHANDRASEKHAR, 1960), where I is the total intensity of the wave,
the parameters () and U measure the linear polarization of the wave, and V' measures
its circular polarization. They are integrated over all radiation frequencies, so that
there is a set of Stokes parameters for each monochromatic component wave of the
radiation beam with frequency v, {I(v,0,¢),Q(v,0,¢),U(v,0,¢), V(v,0,¢)}. If
the universe were isotropic, the Stokes parameters ), U and V' would be zero, since
an isotropic radiation beam does not induce any polarization (CHANDRASEKHAR,

1960); then, CMB would be polarized only in presence of an anisotropic radiation
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beam. Such anisotropies and polarization are generated not only by the fluctuations
of the geometry, but fundamentally by a “source of handedness" provided by the
tensor character of the fluctuations. Therefore, to deal with an anisotropic radiation
beam, it is convenient to cast the photon distribution function into a symbolic vector
of the form (CHANDRASEKHAR, 1960)

fl(T,r,V,,u, 90)
f<7—7 r,v,u, 90) = f2(7—7 r,v,u, (;0) ) (518)
fg(T,r,]/,,LL, QO)

where f1, fo and (fi + fo + f3)/2 represent the number of photons with frequency
v and direction z passing through a slit parallel to the directions x, y and x +
v, respectively. The relation between f and the Stokes parameters are given by
(CHANDRASEKHAR, 1960), (POLNAREV, 1985),

|2 I'+@Q
A c
—2U

Then, the photon distribution functions ﬁ “encode" the influences of the small fluc-
tuations of the metric, so that they can be also decomposed into its zeroth-order
contribution, £O) 4, e., in the absence of the tensor perturbations, and its first-order
correction £,

f=fO 4§ (5.20)

A

£(O) represents a situation where the radiation field is homogeneous, isotropic and
unpolarized, since there is no perturbations caused by the metric fluctuations. In
this case, as discussed before, ) = U = 0 and, from (5.19), we find that

A 1
jo_ L 5.21
2 hy3 Lf (5:21)
0
or, by writing f©(r,v) = ¢2I/2h13,
£O(r,v) = FO(r, )1, (5.22)
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where

a=11|. (5.23)

Plugging (5.22) into (5.12) with the explicit forms of (5.13), (5.14), (5.15), (5.16)
and (5.17), integrating over the angles p/ and ¢, we find that C [f(o)} = 0, so that

the Boltzmann equation for £© is given by

af© af©
or — v ov

=0, (5.24)

whose solution is f®) = f; (a (7) v), and then equation (5.24) admits the blackbody

radiation function as a solution,

1

fO(V) = ehv/ksT _ 1’ (525)

where the present-time value of T is 2.725 K.

Once we have discussed the unperturbed case, we can now consider the equation for
the perturbations in GR. The third term in equation (5.11) can be evaluated from
the geodesic equation for the photon, (A.6), which can be recast into the form

dp,, 1

e By, 9

next, plugging the the photon mass-shell constraint (5.4) into the definition of tensor
perturbations (3.10), we find

(p0)2 =p* = (0 + hij) PP (5.27)

Substituting (3.10) and (5.27) into (5.26), it follows that the geodesic equation for

tensor perturbations reads

dp’ 10hy
% - v {H 5 5P p]] (5.28)

Before going to the Fourier space to solve this equation, it is convenient to introduce
a new parametrization into this model (BOSE; GRISHCHUK, 2002). Let us write

down the present-day scale factor a(7y) as a quantity with dimension of length;
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then, setting Ry = ¢/ H, as the present-day Hubble radius, we define a(m) = 2Rpg.
Now, since the wavenumber of the tensor modes k is very small (in the frequency
range which could produce a signature on CMB), with wavelength comparable to
the present-day Hubble radius Ry, we introduce a dimensionless time-independent
vector n which has the same direction of k, and whose modulus is exactly the

proportionality factor between the modulus of k and Ry:
n = 2Ryk. (5.29)

Bearing these definitions in mind, we expand h;; in an analogous fashion to (4.82),

d3n in-x
h”(nx)::/ZZBEE[hg>@)4jkny+hy>@qggxn)e , (5.30)

(+.9)
ij
(5.28), the geodesic equation becomes

where € are the polarization tensors given by (C.33). Then, plugging (5.30) into

a1 / ' {On"(T) ), O0(0) 00| i s
dr 2 or U or Y

_ (271_)3/2 g | p'ple™ . (5.31)

The remaining contribution to be evaluated in (5.31) is related to e;;p'p’; now,
defining
FO9(0, ) = e p'p, (5:32)

we can evaluate this term precisely by means of the photon angular distribution. This
can be constructed as follows: supposing that the modes travel along an arbitrary
direction k, we introduce the two polarization vectors {é’(”l), é&)}, defined as

€5 = S ~ E@if () (5.33)
and satisfying

Hence, the trihedron {57("1), é(z), R} is orthogonal. Thus, we can use this trihedron as
a basis; now, choosing our reference frame such that its axes coincide with the the

directions defined by the above trihedron, and decomposing p = p € in spherical
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coordinates in this basis, we have

~

k-é&=cosf, £E@)-€=sinfcosy, (5.35)

E2) - € =sinfsingp, (5.36)

as depicted in Figure 5.2.

¥

L

FIGURE 5.2 - Coordinate system for the photon momentum p.

With these definitions it follows that

€y =\1—p2cosp, €é,=+/1—p2sing. (5.37)

Therefore, plugging (C.33) and (5.37) into (5.32), we obtain,

1

FO0,) = 5(1 = 1) cos 2 o Va 12 (11, 0) (5.38)
() 1 2 o

FU(0, ) = 5(1 — 1) sin2p o< Yo o (11, ) (5.39)
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where Yy, (4, ¢) are the usual spherical harmonics (ABRAMOWITZ; STEGUN, 1972).
The results (5.38) and (5.39) show us that a GW leaves an imprint on the pho-
ton angular distribution in the form of a quadrupole Y5 1o and, as a consequence,
shifts the photon frequency along the line of sight. This is the so-called Sachs- Wolfe
(SW) effect induced by tensor modes (GIOVANNINT, 2005). Note that the SW effect
is purely gravitational, and has nothing to do with the details of the interaction be-
tween the photons and electrons. Also, there are also the scalar and vector versions
of the SW effect, but they will not be considered here.

Now let us address the question of Thomson scattering of the CMB photons by elec-
trons. Prior to Thomson scattering, the photons are unpolarized, and their angular
distribution are of the form (5.38) and (5.39) due to the tensor SW effect. Hence,
the Stokes parameters are given by (POLNAREV, 1985),

i (pp) = 5 (1—p?)cos2p 1,

aco () = = (1—p?)sin2p 1, (5.40)

N~ DN~

where we have introduced the vector 1 in (5.23). Now, defining the operator P as

1

A A 1 ~
PE (p, p) = E/ dp'de" P (0,1, ¢") € (1) (5.41)
—1
where P is the scattering matrix (5.13), it is straightforward to see, for é = a

(dropping the polarization index for the moment), that
Pa = aa + (b, (5.42)
where a and 3 are constants, and b is a vector which under P behaves as
Pb=a'a+ (b, (5.43)

where o/ and [’ are constants as well. From (5.13), (5.40), (5.42) and (5.43) we
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readily see that

(14 p?) cos2¢p

~ 1
b)) = 5| —(+pH)cos2e |,
4psin 2¢
. (1 + p?)sin 2¢
boolmp) = 5| —(1+p%)sin2p |. (5.44)
—4p4cos 2¢p

Therefore, the Thomson interaction changes the angular pattern of the photons from
the unpolarized state characterized by (5.40) to the polarized state characterized by
the (5.44). In this sense, the PGWs act as “sources of handedness" for the CMB

polarization.

The angular distribution functions a and b are closed under Thomson scattering, so
that they can be used as a basis. This fact holds only for linear polarization; for a
circular pattern, as it is well known, the polarization vectors are a complex linear

combination of the polarization vectors. Then, in this case,

1

CALT(N; gp) = 5 (1 _ MQ) 6:t2i‘P ﬁ)
L A
bT(:uv 90) = 5 - (1 + NQ) 6i2w}7 (545)
Fdip

where r = 1 corresponds to a left-hand polarization, and r = 2 to the right-hand one.
Now, with this general basis (5.45), we may expand the function f®(z, p) in terms
of it. Since the function £ has no dependence on the modulus of photon momenta
(remember that we are considering only first-order terms in h), we can simply write
this function as depending on the photon direction, €; its the p’-dependence can
be written simply as v-dependence; therefore, f’(l)(x,p) = f'(l)(T, r,v,e). Now, since

equation (5.11) is linear, we can expand £ in the same way as we did in (5.30),

A d3 « ,
e = [ G 3 B (5.46)

r=-,X

which allows us to rewrite the Boltzmann equation (5.11) in the following way: using

the fact that p° = hv, where v is comoving photon frequency, and the constraint
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(5.3), substituting these elements plus (5.31) and (5.46) into (5.11), we get

NN 1 o dh!
[827 +q(7) + 1€ - f] fgﬁ(r, v,e) = §p(u)e’ej5;7j(n) 5T<T>ﬁ
+¥ / dQY P(e; )t (1, v, 8), (5.47)
- ,
where we have defined
_, 4 5.48
p(v)=v o (5.48)
and introduced the scattering rate q(7) by
q(7) = orNe(1)a(T). (5.49)

Now we have to evaluate the integral on the right-hand side of (5.47). To do so, it
is convenient to factor out the angular dependence of f,§12, and this can be achieved
using the basis (5.45) and the Fourier expansion (5.46),
a(1) 1 :
fn,r (T7 v, iy 90) = §p(y) [anﬂ’ (T7 /j’)ar(/% 90>
+ B (T, b (11, 0)], (5.50)

where an, (7, 1) and By (7, pt) are functions to be determined by the solutions of the
Boltzmann equation. Now, substituting (5.50) into (5.11) and (5.12), using (5.20),
(5.31), (5.49) and (5.50), we obtain the Boltzmann equations for the radiative trans-
fer in the presence of weak gravitational fields (dropping the indices n, r for the sake
of simplicity) (POLNAREV, 1985), (BASKARAN et al., 2006),

S 5(r, 1) + la(r) + ing] B 1) = 1xa(r)I(7) | (5:51)
) , d
5-6(m ) + [a(r) +inp] €(7, 1) = ——h(7)|, (5.52)
where we have defined
E(r, 1) = T, p) + BT, 1), (5.53)
and . .
2= [t [0 - 50— Pen|. B
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The solutions to the Boltzmann equations (5.51) and (5.52), given by the functions
a(t, n) and B(T, p), are the essential elements for the computation of the anisotropies

and polarization of the CMB, as we sketch in the next section.
5.3 The T, E and B-Modes

In this section we derive the explicit forms of the T, E and B-mode functions and
the correlation function Cy for polarization. We follow closely (KAMIONKOWSKI et
al., 1997) and (CABELLA; KAMIONKOWSKI, 2004), introducing the harmonic analysis
on the full sky.

To begin with, let us first construct the polarization tensor associated with the Stokes
parameters Q(0, ) and U(6, ¢), where the coordinates (6, ) describe the position
of a given region of the sky. We consider first the simplest case, associated with a
flat 2-dimensional surface. For a radiation beam linearly polarized propagating in
the Z-direction, its polarization vectors lie on the x — y plane; then, rotating the

axes by an angle « around Z, the coordinates transform as

x’ cosa  sin o x
= ‘ , (5.55)
y —sina  cosa Yy

whereas the Stokes parameters () and U transform as (CHANDRASEKHAR, 1960)

Q' _ c?s 200 sin 2« Q ' (5.56)
U’ —sin2a  cos2a U
Now, calling A, the 2 X 2 matrix in (5.56), it follows that the quantity

1

Pap(0, ) = 5 ( (5.57)

QO.¢)  Ub.9) )
transforms as a tensor under rotations of the x — y axes, that is, P!, = AucApaPed-
Since the tensor (5.57) is built on the two polarization parameters ) and U, we
shall denote it as the symmetric-trace-free (STF) part of the polarization tensor, for
it satisfies the relations Py, = Py, and ¢®P,, = 0 respectively, where the metric
is simply given by g, = diag{1,1} on a flat space. The full polarization tensor is

composed of a symmetric contribution P (but not necessarily trace-free) plus the
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antisymmetric P and STF part:

Py = Plap) + Plap) + Pab; (5.58)
now, the expressions for P and Py can be easily implemented as

Plap) X gab,  Plab) X Eap, (5.59)

where g, is the completely antisymmetric pseudotensor whose components are 15 =

—E&91 = 1.

The polarization tensor (5.58) provides all the information concerning the radiation
beam, i.e., it contains the radiation intensity and polarization pattern. From the
STF contribution (5.57) we see that it contains the linear polarization information;
he have only to include the intensity and the circular polarization patterns into Py,
which are given by the remaining Stokes parameters I and V. Since [ is a scalar
and V' is a pseudoscalar (CHANDRASEKHAR, 1960), we can rewrite (5.59) as

1
P(ab) (97 QD) = _1(97 So)galn P[ab] (97 90) = _§V<97 90)56157 (560>

so that the polarization tensor (5.58) is now

1 .
Pab<87 30) = 51(07 gp)gab - %V(67 @)E:ab + Pab<e7 @) (561>

The generalization of the tensor (5.61) to the 2-sphere is straightforward. We have
only to specify g, and &4, which are given by (KAMIONKOWSKI et al., 1997),
(CABELLA; KAMIONKOWSKI, 2004)

1 0 0 —1
(0, 0) = . ew(0,0) =sinf . 5.62
9(0,) (0 SW) (0, 0) = sin (1 0) (5.62)

Now, using the properties Puyp = Ppa, 9°Pap = 0 and (5.62), we find that the STF

part of the polarization tensor is

1

'Pab(e,@) = 5 <

Q —Usin6 ) | (5.63)

—Usinf —Qsin%6
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whereas the polarization tensor itself is

(5.64)

Pu(6,0) = =
(0, ) 2\ —(U+iV)sinf (I —Q)sin*0

1( 1+Q —(U—iV)siné’)
On the two-sphere tensor analysis can be easily implemented; the “divergence" and
“curl" of a symmetric rank-2 tensors are respectively given by 7%.,, and T.,.g%,
where “:" denotes covariant differentiation. With these elements on hand, we in-
troduce invariants which can be built up from the polarization tensor P, and its

derivatives. The only possible invariants which can be built from P,; solely are
1(0,9) = g Pu(0, ), V(0,9) = ic®Pu(6, ¢); (5.65)

the first derivatives of P,, do not give rise to invariants, but the second derivatives
do, in the form of a “divergence" and a “curl" (BASKARAN et al., 2006),

E(6,0) = —2P, %, B(f,¢) = —2Py b, (5.66)

respectively. With these invariants we get a very convenient way to completely char-
acterize the radiation beam, since they do not depend on the reference frame chosen.
We now proceed to expand the invariants (I, E, B, V') in spherical harmonics in or-
der to perform an analysis on the each multipole of the radiation field (BASKARAN
et al., 2000)

00 )4
1(0790) = Z Z agmyﬁm(evw)7 (567)

=0 m=—/
00 l %
By = 3% [Eﬁfiﬂ 0F Yin(0.0), (5.68)
(=2 m=— ’
00 l %
B0 = 33 (] e (5.69)
V(O,0) = D> ap,Yum(0,9). (5.70)

It is important to stress that these expansions are consistent with the similar def-
initions in the literature (KAMIONKOWSKI et al., 1997), (ZALDARRIAGA; SELJAK,
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1997).

We are now in position to write down the T, E and B-mode functions (5.67), (5.68)
and (5.69) in terms of the functions a(u, ¢) and B(u, ¢) introduced in (5.50). From

(5.18) and (5.19) we obtain for a monochromatic radiation beam

hv?
I(T7U,9,<p) = ?[fl(T,I/,Q,QD)—|—f2(7',l/,9,90)],
h 3
Q(T7V79790) = C_Vg[(fl(’ral/?a@)_f2(7_7’/a9a90)]7
3
Ulrv0,0) = —A" fy(r,.0,9), (5.71)

so that from (5.45), (5.50) and (5.71) we get (restoring the n-dependence of the

Fourier expansion),

hv3 .
hrlrn.0) = P FOW) 1 p)an () (L - i), (572
% 2\ _+2ip
QH,T<T7 v, 0’ 90) = C_2 (l/)ﬁn,r(Ta M)(l + 2 )6 ) (573)
% +2ip
Un,T<7_7 v, 9’ 30) = :Fzyp(y)ﬁn,r (Ta M)Me : (574)

From equations (5.73) and (5.74) we may readily evaluate the expressions for F
and B, using (5.62), (5.63), (5.66) and (5.72-5.74); then, integrating over photon

frequencies, we obtain

Y

]n,r (:ua 90) = 7 [(1 - ,UQ) A e (7-7 :u) ei%ﬂ]
2

d d '
Enr = - 1— 2 1 2y 7 8 _ 12 - +2ip
7(Iu’90) ’7|:( ﬂ)(( +Iu)d,u2+ Iud/lj—i_ )ﬁ,(T7H)e )
n,r ) d/,(,2 d,LL n,r 9 , .
where we have defined
hv?
%E/ﬁv;;ﬂ%w, (5.76)

and

h 3
'yzb/du—é; (v) = —4I,. (5.77)
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Once we have the key expressions for evaluating the power spectrum correlation
function all we must do now is solving the Boltzmann equations (5.51) and (5.52),

which we handle in the next section.
5.4 The Solutions to the Boltzmann Equations

In the paper (BASKARAN et al., 2006) the authors discuss an analytical method for
solving the Volterra equation represented by (5.51) in terms of a series expansion,
and compare their results with the exact numerical solutions. Here we follow only

their numerical approach, which we sketch below. To do so, we introduce first the

functions
O(1) = 13—69(7')1(7'), (5.78)
H(r) = e—““)%@, (5.79)

where the function x(7) represents the optical depth of the universe, and is defined

within a time interval 7" and 7:

H(T,T/)E/ dr"q(7"),

!

where ¢(7) is the scattering rate (5.49), g(7) is the visibility function, written as

d
g(1) = q(1)e ") —(m) (5.80)

:Ee

and satisfying

/070 g(T)dr = 1. (5.81)

Taking 7" = 79, we further write the optical depth from a given conformal instant 7

to the present as k(7,7) = k(7), that is

K(T) = /TO dr'q(1"). (5.82)

Next, using these definitions, the formal solutions to the equations (5.51) and (5.52)
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are given by the integral relations (BASKARAN et al., 2006)

B(r, p) = ern=inur / dr’ o(7')em (5.83)
0

E(T, 1) = e”(T)_m“T/ dr’ H(T/)em“T/. (5.84)
0

Now, since the function H(7) is known, we can obtain a single integral equation for
the function (5.78) by plugging (5.83) and (5.84) into (5.54), so that

I(r) = et /11 /OTd,udT,{(l‘f‘MQ)zq)(T/)

(1) H(T’)}e"””(T’—T); (5.85)

DN | —

such expression can be further simplified by introducing the kernels Ki(7 — 7'),

defined as

1
Ka(r — 1) = / du(1 4 p2)2eimnr=), (5.86)
1

so that expression (5.85) yields

I(r) = e /O Tdr’{m(r—f’)cp(r’)

1
- §K_(T - T/)H(T/)}. (5.87)
The final equation for ®(7) is obtained by multiplying both sides of this equality by
(3/16)g(7)e™*() and using the expression (5.78), so that

3

O(r) = 1—661

(7) /OT dr'®(" YK (t — ") + F(7), (5.88)

where F'(7) is related to the function (5.79) by

F(r) = —%q(f) /0 i HK (7 — 7). (5.89)

The solution to Volterra integral equation (5.88) provides the values of the functions

a and 3 for every conformal instant 7; in particular, to the present-day 7y, the
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expressions a(7y, 1) = a(p) and B(1, u) = S(p) are respectively given by

() = /OTO dr (Hy o (17) — ©pp (7)) e

B (1) = /0 e @, (e, (5.90)

where we have introduced the variable { = n(7y — 7).

We are now ready to compute the coefficients a;\ : we substitute expressions (5.67-

5.69) and (5.90) into (5.75), and integrate over angular variables, so that

a’%m,m" - <_i)5_2 (52,m6177’ + (5—2,m6277’) G’anv
a’fm,mﬂ - (_i)g_2 (52,m51,r + 6—277”6277“) G’Zmﬂv
B = ()72 (Sambi — 2y ) ol (5.91)

where

i 7\/4ﬂ<2€-+-1)/€n0dn (Hoo () — 0 (m) THCO). (5.92)
0f, = /A1) / " 0 B () EA(C). (5.93)
o, = 7\/4W(2€+-1)]€m)dn Do, (1) Bi(O), (5.94)

and Ty(C), Ee((), Be(¢) are the multipole projection functions which appear after

the integration over the angular variables, whose form are given by

(€ +2)!j0(C)

Tu(C) (—2)0 &
Ef(¢) = Kz—“@“)mo—éﬂ1<<>],
Bi¢) = 2[—“ g%@)m_xo] (5.95)

5.5 Correlation functions

So far we have discussed the theoretical aspects of the interaction between the PGWs
and the CMB photons; however, a compelling theory must predict some quantity

which can be confronted with observations. In the case of CMB, the most powerful
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observable is the correlation function CXX'| where X = T, E, B,V represents its
temperature fluctuations and the polarization modes. Satellites like COBE, WMAP
and Planck and balloon-borne or ground experiments measure the power spectrum
CXX" x { to some extent, and then the arena to the confrontation ‘theory versus
experiment’ is set. The expression for the correlation functions for anisotropies and
polarization are given by (BASKARAN et al., 2006)

: C2 ¢ ,
XX o x P
= e / nedn Y 3 (i

r=12m=—¢

+ a?ﬁ:,nraif?;,nr]' (596>

where the amplitudes a;, come from the expressions (5.95). The evaluation of this
integral is not an easy task, and it must be carried out numerically (despite some
approximations can lead to analytical results as given in references (PRITCHARD;
KAMIONKOWSKI, 2005) and (XIA; ZHANG, 2009)); then, as an application of all the
theory we went through so far, and to set the basis for the discussion in the next

chapter, we develop a computation of the CMB power spectrum for anisotropies
induced by PGWs in GR.

The first step in this computation concerns the numerical solution to the evolution
equation of the PGWs, (4.85). Since the events we have been talking about take
place at the time of recombination, the scale factor appearing in equation (4.85)
must be of a typical universe dominated by matter. However, to be more precise
in our calculations, we also include radiation; then, for the parametrization chosen
a(1p) = 2Ry, the scale factor for a flat universe filled with radiation and matter, is
given by (BASKARAN et al., 2006)

o(r) = 2Ry (M) - <T + ﬂ) , (5.97)

2+ Zeq 1T+ 24

where z., is the redshift associated with the epoch of radiation-matter equality,

whose value is z., ~ 3 x 10?, and the corresponding conformal instant 7., is

NoEes
e = (V2 - )Y 765 1075, (5.98)

1+ 2z¢g

Substituting the scale factor (5.97) into (4.85), we obtain exact analytical solu-
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tions for the functions pu,(7) (BOSE; GRISHCHUK, 2002). Following (BASKARAN et
al., 2006), we normalize the GW amplitudes h,(7) in terms of its value at 7, = 1076
(in terms of redshift, z, ~ 3 x 107); the resulting numerical solutions are displayed
in the figure 5.3.

GW Normalized Amplitude for different wavenumbers
1.2 T .

1 ~~~~~~~~
0.8F
_ 06f
=
c
£ 04r
£
P
0.2F
—n=10
ofF ____n=102 ¥ fSer? \//‘
----- n=10°
20.2F [ n=10%
- Decoupling
-0.4

10°

FIGURE 5.3 - The time evolution of the normalized GW amplitudes h,(7)/hy (7). Com-
pare with Figure 1 of (BASKARAN et al., 2006).

After having the evolution of the modes, the next steps are the numerical integration
of the Volterra equation (5.88). To perform this we have first to derive the expressions
for the scattering rate (5.49), which depends on the number of free electrons in the
unit comoving volume, N,(7), given by (PEEBLES, 1993)

) = (1= ) 20 ()

2 my a(T)

where X (7) can be approximated by the fitting function (HU; SUGTYAMA, 1995)

Xelr) = (1 a %)_1 (1880) (%fgf,pc) % (10200)02_1 <GE/) (L+2)7
(5.99)

In these formulae Y, ~ 0.23 is the primordial helium mass fraction, {2, is the baryon

content, and m, is the mass of a proton. The constants are given by ¢; = 0.43,
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¢ =16 4+ 1.8InQp, and we take 0, = 0.046 (KOMATSU et al., 2009).

Along with the pre-recombination era, there was another epoch in the history of the
universe in which ionization played another momentous role. As we have stated in
Chapter 2.5, at decoupling the universe underwent a transition from a completely
ionized state to a state in which neutral hydrogen and helium atoms were formed. In
this process the radiation decoupled from the matter, originating the CMB radiation
and a neutral pre-galactic baryonic medium (PGM). Then, at some redshift between
14 < z < 6 the PGM was ionized again by the UV radiation from the first luminous
objects, leaving the intergalactic medium (IGM) ionized (FAN et al., 2006). Such
process is called reionization, and would leave observable imprints on the CMB
polarization spectrum due to the interactions of the CMB photons with the free
electrons now available due to the reionized medium. However, the reionization
epoch is still not fully understood, and many models have been proposed to shed a
light on the physics of this process (see (LEE, 2009) and references therein), which
can be homogeneous models with a sudden reionization (e.g. as discussed in (XIA;
ZHANG, 2009), (GIANNANTONIO; CRITTENDEN, 2007)), or extended models with
double reionization (CEN, 2003), among others (see (XIA; ZHANG, 2009) for a more

comprehensive list of papers).

Since in this work simplicity is our guiding principle, we shall consider solely the
epoch of recombination, whose physical process is very well understood. Despite
reionization is fundamental to understand the low-multipole behavior of CMB
polarization, it can be neglected in a first-approximation to study temperature
anisotropies generated by the tensor modes. Having said that, all we have to do
now is to compute numerically the coefficients (5.91), and then integrate expression
(5.96) to get the final result, which is depicted in Figure 5.4.
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6 Signatures of Massive Gravitons in the CMB

In this Chapter we study the signatures of vector and tensor modes of theories with
massive gravitons, as an example of the Class 1 of alternative cosmologies in the
Table 1.2.

6.1 Theories of Gravity with Massive Gravitons

As we have argued in Section 1.1.1, it seems that the simplest and most natural
modification to GR is the introduction of a mass for the gravitons. The study of
theories with massive gravitons dates back to 1939 in the pioneering work of M. Fierz
and W. Pauli (FIERZ; PAULI, 1939), who investigated a linearized field theory of spin-
two massive particles. The Lorentz invariance of the Fierz-Pauli (FP) lagrangian
yields a spin-two massive state with six polarization modes (states with helicities
+2, +1 and 0), differing from GR where one finds only a spin-two state with the
two tensor polarization modes (helicities +2). Such extra degrees of freedom yield
an additional contribution of one vector and one real scalar massless particles with
helicities +1 and 0, respectively. The scalar particle couples to the trace of the
stress energy-momentum tensor, causing a discontinuity in the propagator when
one switches from the massive to the massless regime. This is the so-called van
Dam-Veltman-Zakharov (vDVZ) discontinuity (DAM; VELTMAN, 1970; ZAKHAROV,
1970), whose net effect for a theory of a massive spin-two graviton is catastrophic
(BOULWARE; DESER, 1972): it would not even pass the solar-system tests for a theory
of gravity (the prediction of the angle concerning the bending of the light by the

Sun, for example).

However, in a full theory of gravity, we must consider nonlinear effects; the FP
theory is valid only in the linear approximation. Nonlinear effects eliminate the vDVZ
discontinuity in the classical level (VAINSHTEIN, 1972; DEFFAYET et al., 2002), so that
classically we may reconcile the massive theory with the GR predictions. Moreover,
at the quantum level, the nonlinear interactions appear at the loop diagrams, so
that the theory becomes strongly coupled above the energy scale A = (m*Mp)'/?,
where m is the graviton mass and Mp is the Planck mass (ARKANI-HAMED et al.,
2003; AUBERT, 2004). For masses m ~ Hy, where Hj is the present-day value of the
Hubble parameter, the energy scale A is too small, well below the expected value,
A = (mMp)'/2. In brane-world models (CHARMOUSIS et al., 2000; GREGORY et al.,

2000; KOGAN et al., 2000; DVALI et al., 2000) a similar problem occurs: either they
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have ghosts (LUTY et al., 2003; DUBOVSKY; LIBANOV, 2003; CHACKO et al., 2004; PILO
et al., 2000), or are strong coupled at low energies (LUTY et al., 2003; DUBOVSKY;
LIBANOV, 2003; CHACKO et al., 2004; RUBAKOV, 2003).

A great step forward was taken in the works (ARKANI-HAMED et al., 2004) and
(RUBAKOV, 2004). In reference (ARKANI-HAMED et al., 2004) the authors proposed
a consistent modification of gravity in the infrared as an analog of the Higgs mech-
anism in GR. In this model, Lorentz invariance is spontaneously broken and the
graviton, as a result, acquires a mass. In reference (RUBAKOV, 2004) the author
introduces a Lorentz-violating massive gravity model in which the vDVZ disconti-
nuity, ghosts and the low strong coupling scale are absent. In reference (DUBOVSKY,
2004) the author studies the most general Lorentz-violating gravitational theory
with massive gravitons, showing that there is a number of different regions in the
mass parameter space of this theory in which it can be described by a consistent

low-energy effective theory without instabilities and the vDVZ discontinuity.

Therefore, the theory of Massive Gravity, as developed in (RUBAKOV, 2004) and
(DUBOVSKY, 2004) gives rise to physical propagating modes, and is free of the
pathologies mentioned above. Also, there is a version of the FP model - which we
call modified Fierz-Pauli model (MFP), which neither suffers the vDVZ discontinuity
nor is discarded by solar-system measurements (FINN; SUTTON, 2002). Also, GR is
recovered in this model when m — 0. We start our analysis of the signatures of

these massive models with the MFP model.
6.1.1 The Modified Fierz-Pauli Model

Let us now analyze how do GWs arise in the case of the MFP model. In this case,
the graviton mass lagrangian appears as a quadratic term in the perturbation of
the metric tensor h,p in the weak-field limit, so that its action is given by (FINN;
SUTTON, 2002), (GABADADZE; GRUZINOV, 2005):

M?
S = ?P / A7 [hag h® = 2hag R | + 2hes "™ — B°h,
1
— AMpPhasT™? — m? (haﬁhaﬁ — 5}9)} : (6.1)

where h is given by (B.10). If instead of the contribution m?h?/2 to the last term on
the right-hand side of (6.1) one had m?h?, this model would correspond to the origi-
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nal Fierz-Pauli action, which is plagued by the vDVZ discontinuity (DAM; VELTMAN,
1970).

The Einstein equations associated with the action (6.1) follow from (A.12),
Ohas = ha” 45— hg" o+ hap + Naph™ 45

1
nag[lh + m2 <hag - inaﬂh) = —2M1;2Ta5; (62)

then, imposing the conservation of the stress energy-momentum tensor, V,7% = 0,
we get, in a Minkowski background, the same constraint Baﬁ’a = 0 found in GR
(B.18), where h,s has the same form as (B.9). However, unlike GR, in the present
case it emerges as a constraint from the conservation of the stress energy-momentum
tensor rather than a gauge choice. This constraint eliminates four degrees of freedom
out of the ten independent components of the space-time metric, leaving then only
six independent modes. Since these modes correspond exactly to the polarization
states of the GW, we may readily associate the components of h,s with the cor-
responding ones of (C.27), so that the only nonzero contributions are the spatial

components h;;.

Using the arguments above and plugging equation (B.18) into (6.2), we obtain, in
the absence of sources,
(O+m?) hy =0, (6.3)

which is clearly a Klein-Gordon equation for a wave propagating in the direction

k = 2. For the sake of simplicity we henceforth drop the bar over the tensor ﬁij.

Due to the oscillatory character of equation (6.3) we may expand the tensor field h;;
into the Fourier modes as we did in (C.28) and (C.29); in particular, for the TTF
component of the tensor perturbation to the metric h;; (corresponding to the NP

amplitude U, mode with r = 4,5), we write
71 47074 7
hi; = ey (R)h* (k) + e3;(k)R° (k), (6.4)

whereas for the longitudinal polarization state we extend the definition (6.4) to the

U3 modes (associated with r = 2,3) as

his = e, (k)h? (k) + 2, (k)h® (k); (6.5)

)
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2,3,4,5
where 7

are the polarization tensor given in (C.27). Then, by Fourier transform-
ing (6.4) and (6.5) back to the configuration space, we see that both hjj’” satisfies
(6.3), that is

(O +m?) b =0, (6.6)

j
which reduces to the GW equation for GR in the limit m = 0. The tensor hfj
encompasses both transverse polarization modes “+" and “x" characteristic of GR.
As for the scalar modes W, and ®4, we will not consider them here, since scalar

fluctuations are not “sources of handedness" to excite the CMB B-polarization mode.
6.1.2 Massive Gravity

As we have pointed out at the beginning of this section, the key ingredient to con-
struct a physically-consistent theory of gravitation with massive gravitons lies on
the spontaneous violation of the Lorentz symmetry. In what follows we do not go
into the technical details of the construction of this model; we just summarize the
basic ideas. A more thorough review of these topics can be found in (RUBAKOV;
TINYAKOV, 2008) and (BEBRONNE, 2009).

As in the Higgs analog in the Standard Model of electroweak interactions, we intro-
duce, following (DUBOVSKY, 2004) and (DUBOVSKY et al., 2005), a set of four scalar
Goldstone fields ¢°(z), ¢'(z), such that the action for Massive Gravity is written as

S = / d*z/—g [-MPR + AN F(X, V', W) + Linatter] , (6.7)

where the first term on the right-hand side represents the usual Einstein-Hilbert
action, and F' is an arbitrary function of the metric components, their derivatives,
and the Goldstone fields. The lagrangian for ordinary matter, L£,,qzer, is assumed to
be minimally coupled to the metric. The simplest way to combine the derivatives
of the Goldstone fields to enter the argument of F' is given by the set of scalar

quantities

X = A1920,¢°05¢°, V' = A"1970,0°05¢",
ViV
X )

Wil = A1g39, 60507 — (6.8)

where A is the parameter which characterizes the cutoff scale of the theory. The sec-

ond term on the right-hand side of (6.7) is invariant under the spatial reparametriza-
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tion symmetry z°(t) — z'(t) + £'(t) and rotations.

We now introduce the “vacuum" solutions for the model (6.7),
Gap = a27704,6’7 Qbo = A2t7 ¢Z = A2xi7 (69)

which corresponds to the flat FRW space; in the “unitary gauge" described by (6.9)
the action will depend solely on the metric components. Now, in order to study
linear cosmological perturbations around a flat FRW space, we spontaneously break
the Lorentz symmetry of the model by fixing the Goldstone fields to the vacuum
(6.9), so that the only remaining perturbations are given by (3.12) supplemented by
the constraints (3.9) and (3.11).

Now, in the unitary gauge (6.9) we expand /—g + dg, X (g+0d9), Vi (g+dg), W4 (g+
dg) and F(g + dg) in powers of the metric perturbation dg, and substitute these
results into the massive term in (6.7), so that the lagrangian for the second-order
perturbations reads

2

oM

5 [m&dgse + 2midgs; — m309;; + m309:09;; — 2m309000gii) (6.10)

where mg, mqy, mo, mz and my are parameters related to the function F' and its

derivatives,
2 _ A [ XFx +2X*Fxx|, m 2A —XFy —WH +1XWF
mg = M2 X XX my = M2 X w Vi
2 2A4 2 2 A4
my = el [WFW — 2 FWW2} y Mg = M2 [WFW +2W FWWl] ’
P
A4
mi: —5 [XFX+2XWwa] (6'11>
Mp
where W = —1/36,;W* and
OF O%F O*F
Fy = — F = — Fy 5@ = Atsiats0
X X’ XX oxX2’ Vv ij OVioV i
OF O*F
Wi owi X WOy OXOWii
O*F
g = Fwwi0idu + Fuwa(0adi + 8ade). (6.12)
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(see Appendix A in references (DUBOVSKY et al., 2005) and (BEBRONNE; TINYAKOV,
2007) for details). The spatial indices in (6.10) are summed over and, as argued in
the reference (RUBAKOV, 2004), the mass parameters m; are proportional to some

scale denoted by m.

The Einstein equations for the model (6.7), with the Goldstone fields in the unitary
gauge (6.9), and metric (3.12) read (for computational details, see Appendix A of
the references (DUBOVSKY et al., 2005) and (BEBRONNE; TINYAKOV, 2007)),

2
s
H* = —3M§)(pm + Py + pa);
! 2 a2
A(a*Fx X1/?) =0, (6.13)
where p,, and p,, stand for the density and pressure for the ordinary matter respec-
tively, and
Py = A4XFX, Py = A4WFw, (614)
A* A?

6.2 Cosmological Perturbations in Massive Theories of Gravity

Once we have established the dynamical equations for the background, let us now
turn our attention to the metric perturbations. The steps toward obtaining the
dynamical equations for the massive metric perturbations are the same as followed
in Section 3.3, despite of the slight modifications in the perturbed metric of the

these two distinct massive theories. We start with an analysis of the MFP model.
6.2.1 Cosmological Perturbations in the MFP Model

In Chapter 3 we have discussed the concepts and techniques of the theory of cosmo-
logical perturbations. The core of this powerful tool lies on the metric decomposition
(3.12), in which the fluctuations are represented by scalars, transverse vectors and
TTF tensors. In the case of the modified Fierz-Pauli model the same metric de-

composition cannot be performed due to the extra polarization modes; we instead
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introduce (BESSADA; MIRANDA, 2009b)

20 Xi— Gy ) , (6.16)

(59015:@(7')2 ( X—Q —h
i K 1j

where ¢ and () are scalar fields, X; is a divergenceless vector field, and h;; is the
cosmological version of the tensor given by the solution to equation (6.3), carrying
the corresponding six polarization modes spanned in the NP formalism. The two
scalar fields, plus the two components of the transverse vector field and the six
modes of the tensor field give exactly the required ten degrees of freedom. The mass
Lagrangian for this model can be constructed analogously as in (6.1), that is, it
appears as a quadratic term in the metric (6.16). The full action is then obtained
by adding up this contribution to the usual Einstein-Hilbert one, and the Einstein
equations can be derived using the standard tools. Before doing that, it is convenient
to decompose the tensor perturbation h;; into its TTEF and longitudinal parts in
the Fourier space. In (C.28) the whole time-dependence of h;; is contained in the
exponential since it is a solution to a wave equation of the form (6.3); now, such
time-dependence changes because of the extra temporal function a(7) appearing in
(6.16), which introduces a damping in the oscillation. Therefore, we Fourier-expand

the massive tensor perturbation h;; as

d3k ~7" r ik-x
Z/ s (7)< ) (6.17)

so that the TT and longitudinal components of ﬁij can be written in the same foot

as (6.4) and (6.5), that is

his (1.Kk) (6.18)
hy(r.k) = e(k)h? (r,k) + < (k) h° (. k) ; (6.19)

If
@m
<
F

>

W
5
x
+
m
o
=
S~—
>
&)
—~
=
x

now, deducing the Einstein equations for the cosmological MFP model according to
the techniques discussed in Section 3.3, we see that both fields hfj and hyj satisfy
the same dynamical equations
Wt — VPR + 2HRS + aPmPh = 0, (6.20)
W — V2Rl 4 2Hnl + a?m?nl = o, (6.21)
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Therefore, both the transverse tensor modes and the longitudinal vector modes
evolve in the same way, unlike GR, in which vector (3.99-3.100) and tensor (3.101)
modes behave quite differently. This fact will represent an important signature, as

we shall discuss later.
6.2.2 Cosmological Perturbations in Massive Gravity

In the case of Massive Gravity, the cosmological perturbations to the metric are
given by (3.12), together the following set of perturbations to the Goldstone fields
in the unitary gauge (6.9), (BEBRONNE; TINYAKOV, 2007)

@0 =" + A2\, P =g+ AP (N N, (6.22)

where \° e \ are scalar fields and A is a divergenceless vector field. Now, under
the infinitesimal coordinate transformations (3.49), we can show that the following

vector fields

are invariant.

The action for Massive Gravity on a flat FRW background is then given by (6.7)
with (3.12) and the Goldstone fields set to their vacuum values (6.9); the matter
lagrangian L, 1S assumed to be described by a perfect fluid whose perturbations
for the fluid four-velocity are the same as in (3.68). With these features, the Einstein
equations for the tensor field h;; are given by (BEBRONNE; TINYAKOV, 2007),

h,/ij - v2h2‘j + QHI'L;J + a2m§hzj = 0, (624)

whereas for the gauge-invariant vector fields defined by (6.23) the Einstein equations

read, in the longitudinal gauge,

VW, — 2a2pmM]§2(1 +w)w; =0, W/ 4+ 2HW; — a*mio; = 0,
m3Vio; =0, (6.25)

where ¢ = v — (E' 4+ B), and w is the equation of state parameter of the ordinary
matter (BEBRONNE; TINYAKOV, 2007).

By solving equations (6.25) we conclude that the only relevant vector field is W,
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whose amplitude decays with a™2 as in (3.102), which is exactly the same behavior

of vector fields as derived in GR.

To end this section let us discuss an important aspect concerning the mass param-
eters of Massive Gravity. As we have pointed out at the beginning of this Section,
there are regions in the mass parameter space in which this theory is free of ghosts
and instabilities; this means that the mass parameters mg, mi, mo, mg and my
cannot be chosen arbitrarily, but they have to satisfy some constraints (RUBAKOV,
2004), (DUBOVSKY, 2004). Since in this work we deal only with the mass parameter
ms, there is a number of choices on these parameters in which the model is physi-
cally healthy; therefore, any of these choices would produce a physically acceptable
theory. We simply assume that the mass parameters in our work are within the

region in which the pathologies are absent.

Specific restrictions on the function F' are discussed in (DUBOVSKY et al., 2005). In
this reference, the authors demonstrate the existence of a wide class of functions F'
for which expanding cosmological solutions are compatible with constant graviton
masses and allow for the effective field theory description. Therefore, we may simply
restrict F' in such a way the mass msy is constant along the story of the universe,

which we assume to hold throughout this work.
6.3 Primordial Massive Tensor Modes

It is important to note that both the MFP model and Massive Gravity give rise
to the same results for the TTF polarization modes of the tensor perturbations as
can be seen from equations (6.20) and (6.24), whereas for vector perturbations the
situation changes drastically. Then, the behavior of the tensor modes is the same

for both models, which we next analyze.

We first Fourier-expand the massive tensor field h;; as in (5.30), (with the

parametrization (5.29)) and then plug into equation (6.24), whose result is

R 1 9HA™ 4 (n? 4+ m2a®) h(™ = 0, (6.26)

n n

where the superscript (m) stands for massive. In (6.26) we have dropped the GW
polarization indices r since they give the same contribution. Defining an analogous

variable to (4.84) for the massive case, u\” (1) = a(7)h\"(7), and substituting it
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into equation (6.26), we find (BESSADA; MIRANDA, 2009a)

n

plm” {n2 +mia? - L uim™ = 0. (6.27)
a

As we have discussed in Section 5.5, the scale factor (5.97) represents very well the
periods of the universe relevant to recombination, so that it makes sense to employ
it in Massive Gravity as well, since we may expect that the contribution of massive
gravitons to the expansion of the universe is negligible in its early epochs; then, as a
first approximation, we may neglect the contribution of the components py, equation
(6.14), and py, equation (6.15), in (6.13).

Now, using the above arguments and consequently the scale factor (5.97), we can
solve numerically equation (6.27) for different wavenumbers n and masses m. We
choose the graviton masses m using the following argument: in GR, only GW
with frequencies v within the range 107 Hz to 107*® Hz may leave a signature
on CMB polarization; these frequencies correspond to wavenumbers k£ within the
range 107°cm™! (n ~ 5 x 10%) to 1072e¢m ™! (n ~ 10). For Massive Gravity, we use
the same values for k, but now we vary the frequencies in order to obtain constant

nonzero graviton masses through the dispersion relation
w? = k? +m?, (6.28)

which comes straight from (6.24), where now w = 27v. As a result, we find that
if the values of the mass m lie within the range 107 - 107%2¢, the corresponding
frequencies have values very close to the expected in GR. In particular, we’ve found
that if the graviton mass is m = 107%¢g ~ 107*¢m ™1, the behavior of the GWs in
Massive Gravity is exactly the same of GWs in GR. Therefore, if the graviton mass
is equal or less than the graviton mass limit m; = 107%g, the effects of Massive
Gravity are indistinguishable from GR (BESSADA; MIRANDA, 2009a).

It is important to mention that there has been a lot of efforts to constrain the
masses of the tensor modes over the past few decades: (GOLDHABER; NIETO, 1974)
(m < 2.0 x 107%%g), (TALMADGE et al., 1988) (m < 7.68 x 10~%°¢g), (FINN; SUTTON,
2002) (m < 1.4 x 10752g), and (COORAY; SETO, 2004) (~ 107°%g). A recent and
comprehensive review of the methods to determine the bounds for the masses of
gravitons and photons can be found in (GOLDHABER; NIETO, 2008), which we refer
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to for further details.

Since we are interested in investigating signatures of massive gravitons, we shall
consider only graviton masses higher than the limit m = 107%g; the numerical solu-
tions to the massive tensor perturbation equations (6.27) are depicted in the Figure
6.1 below. For sake of comparison we depict the general-relativistic GW amplitudes
in each graph as well. We have used the same normalization as (BASKARAN et al.,
2006), and the plots start at 7 = 7, = 1075. The mass m = 2.843 x 10~ ®¢m ™!

correspond to m = 107%g, and so forth.

Let us now analyze in detail the behavior of massive gravitons in the light of equation
(6.27) (BESSADA; MIRANDA, 2009a). In the very early universe, before the time of
equality radiation-matter, the value of a(7) is very low, and then the m?a® on the
left-hand side of (6.27) can be dropped; therefore, we recover the characteristic tensor
mode equation of GR, (4.85), and the behavior of massless and massive gravitons are

the same. On superhorizon scales, n < a”/a, the resulting equation for the tensor

modes is
my _ @ )
e 0, (6.29)
whose solution is given by ,u%m) = f(n)a, which means that the tensor amplitudes

are “frozen", no matter the gravitons are massless or not. This particular behavior
can be clearly seen from figures 6.1 - 6.6, where the amplitudes are constant for all

the modes considered prior to decoupling.

However, as the universe evolves, the tensor modes “fall" into the horizon, so that
their amplitudes are no longer constant; on subhorizon scales, n > a”/a, we can

neglect the effect of the term a”/a, so that we are left with
pm" 4 (0% + m*a?] ™ = 0. (6.30)

On subhorizon scales the massive term becomes dominant over low values of n,
so that it “enforces" the tensor modes to fall into the horizon earlier than in the
massless case. It is clear from equation (6.30) that the heavier the gravitons, the
earlier their modes fall into the horizon. This effect can be clearly seen in the figures
6.1, 6.2 and 6.4, where the n values are sufficiently low to account for this effect.
However, for larger values of n, this effect weakens, since n? > m?2a? in the time of

decoupling, and the massive term will be predominant only for low redshifts, as can
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h, (1)

FIGURE 6.1 - The time evolution of the normalized GW amplitudes for n = 5.
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be seen in figures 6.5, 6.6 and 6.7.
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FIGURE 6.7 - The “tail of Figure 6.4 zoomed in, showing the phase difference in the tensor
modes at very low redshifts for both massless and massive gravitons.

In particular, for low n (corresponding to tensor modes with long wavelengths), its

constant contribution to (6.30) can be completely neglected, so that we are left with

uim" + {n2 +mPa® — %ﬂ} plm =0, (6.31)
and then the oscillatory behavior is strikingly different from the massless case, as
shown in figures 6.1, 6.2. For higher n (that is, tensor modes with short wavelengths),
tough, this effect is not so strong, but induces a slight phase difference in the os-
cillatory behavior of the tensor modes. Such phase difference is stronger for higher
masses; as an example of it, we have zoomed in the “tail" of figure 6.2 to show this

fact. This is presented in figure 6.7.

Hence, from this analysis we may conclude that the tensor modes of Massive Gravity
behave similarly to the massless modes of GR, but the heavier the tensor modes are,
the more distinct are their physical evolution if compared to the massless modes.
Nevertheless, if massive gravitons do exist, they likely have left a signature on some

physical observable; then, by comparing the predicted signatures of the massless and
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the massive modes with the observed ones, one should be able to determine whether
they possess or not a nonzero mass. As argued in Chapter 1, the best observable is

the CMB, and is in there we will be looking for such signatures.
6.4 Boltzmann Equations for Massive Gravitons

As we have seen in Section 6.2, the MFP model and Massive Gravity are equivalent
with respect to the TTF tensor modes, but only the vector modes of the first model
may give rise to relevant contributions to CMB polarization and anisotropies. In
this Section, using the techniques developed in Chapter 5, we investigate how these

contributions modify the radiative transport equations.

6.4.1 The Sachs-Wolfe effect induced by Massive Gravitons

We have discussed in Section 5.2 that the CMB photons are polarized due to the
Thomson scattering with the free electrons in the epoch of recombination. Prior
to Thomson scattering, the cosmological perturbations imprint a signature on the
photon angular pattern, the SW effect. As we have seen, this effect can be computed
through the geodesic equation (5.28), thus providing the source of the SW effect
given by the product (5.32), F' = &;;p'p’. In turn, the angular pattern was calculated
according to the polarization vectors defined in (5.33); then, we expressed the photon
momentum p in the basis (5.34), depicted in Figure 5.2. Therefore, using (C.27) and
(5.35-5.36), it follows that (BESSADA; MIRANDA, 2009b)

g?]pzp] =l 1-— /l2 COS ¢ X }/27-5-1 (M) 90) ) (632>
elp'p’ = puy/1— p2sing o< Yoy (1, ), (6.33)
gzljpzp] = (1 — /L2) COS 280 X }6,+2 (M? SO) ) (634>
5?jpipj = (1 — /LQ) sin2p o< Yo _9 (M7 90) ; (6'35>

The results (6.32-6.35) show that theories of gravitation with the V3 and ¥, modes
leave an imprint on the photon angular distribution in the form of a quadrupole, with
m = %2 for the ¥, modes (r = 4, 5, which coincides with GR), and with m = +1 for
the W3 modes (r = 2, 3). Since the MFP model has non-decaying vector modes, they
will leave an imprint of the form (6.32-6.33). The tensor modes will contribute with
the SW effect through relations (6.34-6.35) for both the MFP model and Massive
Gravity, and they coincide with the GR result (5.38-5.39) (BESSADA; MIRANDA,

102



2009b).
6.4.2 The Basis for Thomson Scattering

We now turn to the derivation of the Thomson scattering term (5.12) for massive
gravitons. As we have discussed in Section 5.2, CMB polarization is generated by
means of Thomson scattering by converting the unpolarized state characterized by
(5.40) to the polarized state characterized by the (5.44). In order to find an analog
effect in both the MFP and Massive Gravity we must derive first the basis for
the Thomson scattering. Following the same steps as taken in Section 5.2, we find
(BESSADA; MIRANDA, 2009b)

a) W3 Modes:

o 1 3 AT | 5o

0= Sp 1—p?cospt, a = oH 1 — p?sing 4, (6.36)
b) ¥, Modes:

41 2 L5 1 2\ N

a 25(1—,u)(3052g0u, a :5(1—M)sm2gpu, (6.37)

where the vector @ is given by (5.23). Note that the tensor SW effect for massive
gravitons (6.37) is the same as for GR, (5.38-5.39). Next, using the operator (5.41),
and (5.42-5.43), it follows, for £=a (r = 2,3,4,5), that (BESSADA; MIRANDA,
2009b)

a) W3 Modes:
. 1L COS ¢ 1 psin g
b = 5 1—p2| —pcose |, 0= 3 1—yp? | —psing |, (6.38)
2sin @ —2cosp
b) W, Modes:
(1 + p?) cos2¢p (1 + p?)sin2¢p
bt = 3| (1+ p?)cos2p |, 0 = 5|~ (1+p*)sin2¢ | . (6.39)
4 8in 2 —4p1cos 2¢p
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The Thomson basis vectors given by (6.36) and (6.38), (6.37) and (6.39) allows us
to factor out the angular dependence of the photon distribution vectors, and they

constitute the first-order contribution to f, as in (5.20).
6.4.3 The Full Boltzmann Equations

Once we have obtained the form of the photon distribution vector (5.20) for the
TTF and longitudinal GW modes, we are able to write down the full Boltzmann
equations (5.11). They are given by (BESSADA; MIRANDA, 2009b)

a) W3 Modes:
X" (o) + lq(r) 4+ inp] X" (7, p) = H" (1), (6.40)
F (o) + o) g () = 20 () T, (64

for r = 2,3, and

J' (1) = / dp’ X" (ry ) (1= ) + 87 (1 1!) (1 + p = 20) ] (6.42)

1

b) ¥, Modes:
€ (o) + la(r) + inpl € (ro ) = 1" (7). (6.43)
5 (o) + lalr) +in 7 () = g (DKT() (6.44)
for r = 4,5 and

)= [ | ) (2 - 56 G -] (609

1

In the equations above, ¢(7) is the scattering rate, defined in (5.49), and the functions
E(myp), x (,p) and H" (1) are defined as

T=a T, X = - (6.46)
10h"(n)
H =— . 4
> (6.47)
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Equations (6.43) and (6.44) for massive gravitons with ¥, mode are identical in
form to the corresponding ones in GR, given by (5.51) and (5.52), as well as the
integral term (6.45) to (5.54). However, the terms (6.47), which carry the content of
the GW, are different for the massless and massive modes, so that we may expect

different signatures for the massive tensor modes as compared to the massless ones.

The Boltzmann equations for the W3 modes, (6.40) and (6.41), do not appear in
GR. Since the vector and tensor modes satisfy the same dynamical equation, and
the mathematical form of the equations (6.40) and (6.41) is very different from (6.43)
and (6.44), it is clear that the vector polarization modes of massive gravitons leave a
characteristic signature distinguishable from the tensor ones, which could, in princi-
ple, be probed by measurements on the CMB E and B-modes (BESSADA; MIRANDA,
2009b). Since the experiments in the Planck satellite will improve the WMAP5 re-
sults for the E-mode, we may expect that such future measurements might decide
whether nontrivial GW signatures - as we showed here through equations (6.40)
and (6.41) for U3-modes - appear or not in the CMB polarization spectrum. In this
case, we conclude that CMB polarization measurements may be decisive to test al-
ternative theories of gravitation - in particular, the massive model as we discussed

here.
6.5 CMB Anisotropies induced by Massive Tensor Modes

As an application of the results found in the last Section, here we numerically solve
the Boltzmann equations (6.43-6.44) for the tensor massive modes. We use the results
found in Section 6.3 and apply the techniques developed in Section 5.5 to evaluate
the correlation functions for the massive tensor modes. For the reasons discussed in
Section 5.5, we do not consider reionization in the present work, which implies that
no signature of massive gravitons can be seen in the polarization spectrum. This
happens because in this case the visibility function (5.80) is zero at this epoch, and
then the source functions ® (5.78) will be zero, since they depend linearly on g(7).
However, this fact does not affect CMB anisotropies, since the mode coefficients af,
given by (5.92), depends on H(7), defined by (5.79), and (6.47), which is not zero
even in the absence of reionization. Since the source function H(7) depends on the
tensor mode amplitudes, and massive and massless modes are different at late times,
we conclude that the massive modes would leave a distinct signature on CMB low

multipoles even without reionization.
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As we have discussed in Section 6.3, if the mass of the tensor mode is less or equal
than m;, Massive Gravity produces the same results as GR; we choose then masses

1

within the range m = 1072"em ™! - m = 10%em ™!, whose associated anisotropies

power spectrum is depicted in Figure 6.8 (BESSADA; MIRANDA, 2009a).

CMB Anisotropy for tensor modes
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FIGURE 6.8 - The correlation functions C’;‘FT for GR and Massive Gravity. Note that the
massive gravitons leave a signature on the spectrum for low multipoles.

This figure show distinct signatures for massless and massive gravitons, as we have
argued above. Therefore, for the range of masses selected, massive tensor modes
leave a clear signature on low multipoles ¢ < 30. Figure 6.9 shows the low-multipole

region of the correlation function 6.8 in detail.

Since the heavier modes fall into the horizon earlier, they have the stronger signature,
as shown. If we had chosen a different mass, say m = 10~2'em ™!, the signature would
be stronger, and possibly would appear for multipoles ¢ > 30. This can be explained
by simply analyzing the trend shown in figures 6.1 and 6.2: the heavier the mass,
the earlier the modes fall into the horizon, which correspond to higher multipoles.
However, even in this case, as the trend shown in figure 6.9 indicates, the signature

will be particularly strong on low multipoles. Therefore, if the tensor modes of
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CMB Anisotropy for tensor modes
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FIGURE 6.9 - The low-multipole “tail" in the TT correlation function. Note the quite
distinct signatures for £ < 30 for the mass range selected.

the metric fluctuations are massive, they could be detected directly by the CMB
anisotropy power spectrum if their mass are greater than the limit m; ~ 10~*em 1!,

and their signatures would be noticeable specially on low multipoles.

Therefore, the results above indicate clearly that the future measurements on the
TT correlation might be decisive for probing the existence of massive tensor modes,
for the signature left by them could be strong enough to be distinguished from those
of the massless modes (BESSADA; MIRANDA, 2009a).
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7 Signatures of DBI Inflation in the CMB

In this Chapter we derive new solutions in the context of DBI inflation and ana-
lyze their observational consequences as an example of the Class 2 of alternative
cosmologies in the Table 1.2. We change the current notation used so far, so that a

prime denotes a derivative with respect to the field ¢.
7.1 DBI Inflation - An Overview

In warped D-brane inflation (see (MCALLISTER; SILVERSTEIN, 2008) and (CLINE,
2006) for a review), inflation is regarded as the motion of a D3-brane in a six-
dimensional “throat" characterized by the metric (KLEBANOV; STRASSLER, 2000)

dsy = h* (r)dsi +h™> (r) (dr® + r?ds%,) (7.1)

where h is the warp factor, X5 is a Sasaki-Einstein five-manifold which forms the
base of the cone, and r is the radial coordinate along the throat. In this case, the
inflaton field ¢ is identified with r as ¢ = /T3r, where Ty is the brane tension. The
dynamics of the D3-brane in the warped background (7.1) is then dictated by the
DBI Lagrangian

L=—f(O)VI=-2f(0) X —f(8) =V (d), (7.2)

where f71(¢) = T3h(¢)?* is the inverse brane tension, V(¢) is an arbitrary potential,
and X is the kinetic term, defined in (D.2). We also assume that the background
cosmological model is described by the flat FRW metric (2.6).

A quick inspection of the DBI Lagrangian (7.2) shows that it is a special case of
k-inflation, characterized by a varying speed of sound ¢, as described in Appendix
D. In particular, the speed of sound for DBI models can be calculated from (7.2)
and (D.15), whose result is

(@) = v1—=2f(0)X. (7.3)

In those models it is convenient to introduce an analog of the Lorentz factor, related

to cs(9) by:

V(¢) = : (7.4)
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We next introduce the generalization of the inflationary flow hierarchy for DBI
models (PEIRIS et al., 2007). Taking the derivative of (7.2) with respect to X we see
that

Lx =7(9); (7.5)

then, in order to find the analogs of the flow parameters and equations derived in
Appendix D, all we have to do is substitute (7.5) into equations (D.23), (D.25) and
(D.26),

_ 2MR (H(9)) X
@) = 7(¢)<H(¢)) | (76a)

L DBH(©)7(6)
0 = 50 = T H6) 1(9)

(7.6b)

note that in the DBI model s = s, which reduces the number of parameters. The n
in the DBI model comes from (D.24)

2Mp H" (9)
v(¢) H(¢)

which suffices for our present discussion. The remaining flow parameters can be
found in (PEIRIS et al., 2007).

n(p) = (7.7)

From the definition of the number of e-folds, (4.23), and expression (7.6a), we find

J— / e \/7 (7.8)

In terms of the number of e-folds, the flow parameters (D.28-D.30) become

1 dH
€= Han’ (7.9)
1 dvy
= .9b
s S dN (7.9b)

The dynamics of the inflaton field can be completely described by this hierarchy

of equations, which are equivalent to the Hamilton-Jacobi equations (SPALINSKI,
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2007b)

] 2M123 !
¢ -—7(¢>f1(¢% (7.10a)
2 772 . _ 1(¢) — 1
3MpH" () V(g) = o) (7.10Db)

which follows from (7.5) and (D.20-D.21). Using (7.3) and (7.10a-7.10b), we have
that

(@) = \/1+4MEF(6) [H(9)]* (7.11)

In terms of the flow parameter €, the potential, V' (¢), and the inverse brane tension,
f(¢), can be written as

2¢ vy
=3MiH? (1 - ——— 7.12
Vo —sap (1-5 ). (7.12)
and . )
/>/ p—
= 1
respectively.

As for perturbations, the techniques introduced in Section D.3 can be applied to the
present case, since the DBI model is a particular case of k-essence. Since for DBI
inflation relation s = § (7.6b) holds, it follows, from (D.49) and (D.50) that

ns — 1 = —4e+ 2n — 2s, (7.14)

and
r = 16ecs. (7.15)

7.2 The Model
7.2.1 The General Setting

The usual approach to the construction of a model of inflation normally starts with a
choice of the inflaton potential, V'(¢); then, all the flow parameters are derived, and
the dynamical analysis is performed. In this work we adopt the reverse procedure:

we first look for the solutions to the differential equation satisfied by the Hubble
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parameter H(¢),

O —6(2\}?), (7.16)

and only afterwards derive the form of the potential. Equation (7.16) can be easily
derived from the definition of the flow parameter €, given by (7.6a), and the sign
ambiguity indicates in which direction the field is rolling. Notice that in order to
solve equation (7.16) we must know the form of the functions €(¢) and v(¢); we

choose them to be power-law functions of the inflaton field (BESSADA et al., 2009),

e(¢) = (g) ) : (7.17a)

é B

o) = (2) (7.170)
Pe

where 7, is the value of the Lorentz factor at the end of inflation', and o and 3 are

constants. Another case worth studying appears when € is constant, so that
€(¢) = € = const., (7.18)

with the same parametrization for v. We have kept ¢, for the following reason: in
the I R DBI model the inflaton field rolls down from the tip of the throat toward the
bulk of the manifold with increasing speed of sound; then, when the field enters the
bulk ¢s becomes equal to 1, and then inflation “ends". In the UV case the behavior is
the opposite, that is, the field evolves away from the bulk and reaches the tip when
c¢s = 1. To reproduce both cases we could have set 7. = 1 from the onset, so that
¢s(¢e) = 1, as required; also, cs(¢) = 1 in the canonical limit, that is, when g = 0.
However, by taking ~,. arbitrary, we also reproduce the non-canonical models with
constant speed of sound introduced by Spalinski (SPALINSKI, 2008). It is clear that in
the latter case v, does not refer necessarily to the end of inflation, so that if we take
e > 1 it does not mean a superluminal propagation (as would be the case if 3§ # 0).

Bearing this distinction in mind we can use the same notation unambiguously.

When « # 0, substituting (7.17a) and (7.17b) into (7.16), we see that the Hubble

'Henceforth all the variables with a subscript e are evaluated at the end of inflation.
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parameter takes the form

Hw>=,mwpk ﬁé%muwr (7.19)

where we have defined

¢
I(¢) = / dg'¢/ T2, (7.20)

and o accounts for the sign ambiguity appearing in (7.16). When € is constant, the
solution to (7.16) reads

H@):.mwpk ;@;er (7.21)

where the integral 1(¢) is the same as in (7.20).

It is clear that the integral (7.20) admits two distinct solutions: a logarithmic one
when o + f = —2, and power-law for o + 3 # —2. These two solutions will give
rise to different classes of inflationary potentials, which we shall address in the next

subsections.

To conclude this section we derive the general formula for the number of e-folds. For
a # 0 this expression can be determined by equations (7.8), (7.17a), and (7.17b), so
that

Ve ™"
N() = o\ | 51 T0) (722
where .
J(¢) = / do' ¢!, (7.23)

e

if & = 0 we must use the parametrization (7.18), so that expression (7.22) changes
to

N@%w'iéigﬂ@, (7.24)
where ) i’ »
i) = [ o™ (7.25)

e

In the next section, we discuss particular cases of this general class of solutions.
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7.2.2 The Solutions o + 3 = —2.

For this class of solutions, the parameters o and ( are related by
a=-2-0, (7.26)

notice that the case a = 0 implies = —2, which corresponds to the case where
the flow parameters € and s are constant (KINNEY; TZIRAKIS, 2008). Evaluating the
integral (7.20) and substituting it into (7.19), we find

H(¢) = He (%)m : (7.27)

where the exponent p is determined by

(7.28)

Let us now analyze the sign ambiguity appearing in (7.28). We first write the ex-
pression (7.27) as

In (H(¢)/H.)
=2——" 7.29
n(0/6,) (729
then, for v < 0, we have, from (7.17a), in the slow-roll limit,
¢ —|e
e(o) = (5) <1, (7.30)

which implies ¢ > ¢, and ¢ < 0 for ¢ > 0 (the large-field limit, see subsection
4.4.1), so that In (¢/@.) > 0. Since the weak-energy condition implies that H < 0,
we have H(¢) > H., and then In(H(¢)/H.) > 0. Therefore, from (7.29), o < 0
implies p > 0. From definition (7.28) we see that p > 0 implies 0 = —1 if ¢ < 0, and
oc=+1if ¢ > 0.

Conversely, if a > 0, we have, from (7.17a), in the slow-roll limit,

(o) = (%) - < 1, (7.31)

which implies ¢ < ¢, and ¢ > 0 for ¢ > 0 (the small-field limit, see subsection
4.4.2), so that In (¢/¢.) < 0. Again, In (H(¢)/H.) > 0, so that, from (7.29), « > 0
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implies p < 0. From definition (7.28) we see that p < 0 implies 0 = —1 if ¢ > 0, and
oc=+1if ¢ <O0.

Therefore, what really distinguishes the models is the sign of the exponent of «; the
sign of o simply dictates which direction the field is rolling in, exactly as in canonical
inflation. We are left with two distinct models, whose properties are summarized in
Table 7.1. (For ¢ < 0 the sign rule is easily obtained by flipping all the signs of the
quantities present in Table 7.1.)

TABLE 7.1 - The sign rule for models with a+ 3 = —2 and ¢ > 0 (BESSADA et al., 2009).

Model 1. || p>0,a<0|o=+1|¢p>0] <0
Model 2. || p<0,a>0|o=+1|¢p>0] <0

7.2.3 The Solutions a + (§ # —2

Let us first consider the case a # 0. The solution to the integral (7.20) is

oK ¢,

H(¢) = ﬁe exp [m

plotir2)/ 2} , (7.32)

where we have defined

(7.33)

_ 27 -9
K_1/M]%, ¢_¢e. (7.34)

In order to fix the sign ambiguity let us rewrite expression (7.32) as

20K ¢,

dln H =
" a+3+2

dqg(a+ﬂ+2)/2; (735)

then, as we have seen in (7.30), the condition o < 0 corresponds to the large-field
limit, ¢ >> ¢.: so, if a+B+2 < 0 and ¢ > 0, we have dp@tP+2)/2 > 0, so that from
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(7.35),

20K ¢,

din H = ——"°_ qpla+h+2/2

—~— a4+ f+2 e

<0 >0
o K|¢e|

- <0 7.36
la + 3+ 2] ’ (7.36)

implying that ¢ = +1. Applying the same analysis for a + 3+ 2 < 0 and ¢ < 0, we
find o = —1. For a + 3+ 2 > 0 we find 0 = +1 for ¢ > 0, and 0 = —1 for ¢ < 0.
The results in the large-field limit are summarized in Table 7.2. The same reasoning
also applies for a > 0, that is, the small-field limit, given by (7.31); the results are

summarized in Table 7.3, where we have four distinct models: As in the previous

TABLE 7.2 - The sign rule for models with a + 8 # —2, a < 0, and ¢ > 0 (BESSADA et
al., 2009).

Model 3. || a+3+2>0|oc=+1 |0 <0
Model 4. || a+04+2<0|o=+1 | ¢ <0

TABLE 7.3 - The sign rule for models with o + 3 # 0, @ > 0 and ¢ > 0 (BESSADA et al.,
2009).

Model 5. || a+3+2>0|oc=-1|¢>0
Model 6. || a4+ 54+2>0|0=41 ] ¢ <0
Model 7. || a+4+2<0|o==1 ¢ >0
Model 8. || a+0+2<0|o=+1 ]| <0

case, the model ¢ < 0 is easily obtained by flipping all the signs of the quantities
present in Tables 7.2 and 7.3.

In the case € = const., § # —2, the solution to the integral (7.20) is given by
- / 267, pB+2)/2
H =H.exp |o

116

, (7.37)




where

. (7.38)

~ 26, gﬁ+2)/2
H.=H.exp |—0 it 3
MEge o+ 3+ 2

It is straightforward to see that the same sign rules shown in Tables 7.2 and 7.3 also

apply to this case.
7.3 Classes of inflationary potentials in DBI inflation

In this section we proceed to analyze the solutions obtained in the last section. The
key ingredient, in order to understand the physics associated with these classes of
solutions, is the study of the form of the inflationary potential, which is obtained
from the expressions (7.12), (7.17b), and the corresponding expression for the Hubble
parameter, given by either (7.27) or (7.32). Once we have the form of such non-
canonical potentials, we can compare these expressions with the usual canonical
inflationary potentials discussed in Section 4.4. To do so, we must make some choices
for the exponents o and [ first, and then on the corresponding dynamics of the
field; hence, as we have seen in the Tables 7.1, 7.2 and 7.3, we have eight distinct
models altogether. Our main aim is to reproduce the classes of the inflationary
potentials found in Section 4.4; then, in doing so, we leave out some interesting
solutions, but our emphasis here is on understanding the physics of the non-canonical
models, which can be achieved through a close comparison with the well-established

potentials found in the literature.
7.3.1 Large-field polynomial potentials

A quick look at expressions (7.12) and (7.27) suggests that the model 1 in Table
7.1, characterized by p > 0 and a < 0, is the non-canonical counterpart of large-
field polynomial models, for its potential also goes like ¢”. To check this, let us first
analyze the behavior of the speed of sound (7.17b). Since the equality (7.26) implies
B> —2, we see from (7.17b) that 5 > 0 corresponds to

¢

|8l
¢—> =7 —00 as ¢ — o0, (7.39)

V(D) = e (

or, in terms of the speed of sound,

cs — 0 as ¢ — oc; (7.40)
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since in the large-field limit the field strength is very large at early times, we conclude
from (7.40) that the speed of sound starts off with a subluminal value. Also, from
(7.39), we see that /(v + 1) — 1; then, using this fact and plugging (7.27) into
(7.12), we find (BESSADA et al., 2009)

V() ~ 3MpH; <g)p (7.41)
which behaves exactly as a canonical large-field potential, (4.52). The non-canonical
potential (7.41) shows that the inflaton field starts evolving from a value ¢ ~ p
with a very low speed of sound, and then rolls down toward its minimum at origin.
Once there, the speed of sound becomes unity as well as the flow parameter € and
then inflation ends. The potential evaluated at p corresponds to the vacuum energy

density,
V(p) = A = A* ~3M}HZ, (7.42)

so that in terms of these two quantities, the Hubble parameter (7.27) and the infla-

tionary potential (7.41) assume the form

H(¢) = \/57% (%)W (7.43)

V(g) = A" <?>p, (7.44)

I

respectively.

The end of inflation is achieved when ¢ = ¢., whose value can be determined from
(7.28) and the sign rule for the model 1 in Table 7.1:

Pe P
N T (7.45)
then, in terms of the expression (7.45) the flow parameter € takes the form
)
€(@) = — , 7.46
o= (4 (7.46)
whereas the two other relevant flow parameters s and 7 are given by
20
s(¢) = ?e(cb), (7.47)
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(o) = €(¢), (7.48)

where we have used (7.6b), the first expression of (7.7), plus (7.17b), (7.43) and
(7.45). The expression for the number of e-folds is obtained from expressions (7.22),
(7.23) and (7.26) for o # 0, so that

__p 1
N =535 L(@ - 1] | (7:49)

In the analysis performed above we have considered solely models with o < 0 and
B > 0; the case a = 0 has been studied in the paper (KINNEY; TZIRAKIS, 2008),
and leads to potentials like (7.44) in the UV limit s < 0. The case § =0, 7. = 1,
corresponds to canonical large-field models; in this limit, the expressions for the flow

parameters € and 7, given by (7.46) and (7.48), yield

e(¢) = %% (7.50)
o) = D2, (751

which coincides with the corresponding canonical expressions (4.53) and (4.54), re-

spectively. Also in this limit, from (7.45) we see that inflation ends when

A
i U5 (7.52)

which coincides with the canonical expression found in (4.55). Hence, all large-field

polynomial models with p > 2 are particular cases of this non-canonical version.
Also, if 7, # 1, we recover the Spalinski model (SPALINSKI, 2008) with a polynomial
potential as well. Another particular case of this general class is isokinetic inflation,
proposed in (TZIRAKIS; KINNEY, 2009). For this model, we can show that by setting
a=—p/2—1and § = p/2—1, we reproduce all the expressions derived in (KINNEY;
TZIRAKIS, 2008) up to a redefinition of the exponent of the potential?.

Therefore, we have a completely well-defined D-brane inflationary scenario with

large-field potentials like (7.44), a flow parameter e given by (7.17a) with a < 0,

2In isokinetic inflation the potential has the form V(¢) oc ¢?Pise (TZIRAKIS; KINNEY, 2009),
whereas in our model we have defined the exponent p (expression (7.28)) such that V(¢) o< ¢P.
Then D = 2Piso-
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and a small speed of sound characterized by (7.17b) with § > 0, reproducing not
only the canonical large-field polynomial potentials, but also other models discussed
in the literature. For these reasons we will call this class non-canonical large-field

polynomial models.

In particular, as we will see in section 7.4, these models predict values for the scalar
spectral index and tensor-to-scalar ratio which agree very well with WMAP5 obser-

vations.
7.3.2 Small-field polynomial potentials

For non-canonical models we can express the small-field limit ¢ < p by choosing
a > 0; also, as we have derived in section 7.2.3, the condition ng > 0 for ¢ > 0 is
satisfied when 0 = —1 and a4+ 3+ 2 > 0, which corresponds to the model 5 in Table
7.3. In this case, the Hubble parameter (7.32) takes the form

~ K¢ _
H(¢) = H.exp | ———— <a+ﬁ+2>/2} ; 7.53
(@) = oo |~ 00 (759
where K and ¢, are given by (7.34); since ¢ = ¢/¢. in the small-field limit, and
a+ 342> 0, we can expand expression (7.53) to first-order in ¢, so that

K.

H(¢) =HeeXp |:1—m

Hla+6+2) /2} . (7.54)

Since § > —2 — a and a > 0, we see that § can take either sign; in particular, for
B> 0, from (7.17b) we have the following relation

¢

-8
¢_> = v —00 as ¢ — 0, (7.55)

(o) =
or, in terms of the speed of sound,

cs — 0 as ¢—0. (7.56)

In the small-field limit, we have always ¢ < ¢., so that ¢ — 0 corresponds to early
times; then, from (7.56) we conclude that the field propagates with subluminal speed
of sound at early times. Also, property (7.55) implies that /(v + 1) — 1, so that
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by using this fact and plugging (7.54) into (7.12), we find

2K ¢,

. 9 _
V() ~3MEH? |1 — ¢ — ——“—

é(a+ﬂ+2)/2 (7'57)

in the slow-roll limit. It is clear that we can derive out of expression (7.57) different
sort of potentials, depending on the relations between the exponents. Let us analyze

one of such possible choices; we define first the exponent

2
p_—o‘+§+ , (7.58)

and we choose o and 3 such that p is always integer. Then, if a > p, we see that
a > 3+ 2, and the potential (7.57) takes the form
2 772 K¢e 7
V(p) ~3MpH, |1 — —¢7|, a>[F+2. (7.59)
p

In the canonical small-field model, the energy scale of inflation is given by A* = V(0),

so that in the non-canonical case, the vacuum energy density is given by
A* = 3MEH?, (7.60)

whereas the effective symmetry-breaking scale (4.57) reads

1 2%
v\ e 7oy

then, in terms of these two quantities, the inflationary potential (7.57) becomes, in
the small-field limit, (BESSADA et al., 2009)

V() = A* {1 2! (?ﬂ : (7.62)

D \H

which coincides with the canonical small-field potential (4.56), as expected.

Then, in the non-canonical case the field also rolls down from an unstable vacuum
state whose energy density is given by (7.60) with very low speed of sound, and
evolves toward a minimum characterized by a scale p given by (7.61) for « > p > 2,

and such behavior is exactly the same as the canonical case.
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From (7.61) we see that inflation ends when

, (7.63)

1/(p—1)
= ]

e | 1
[

so that the flow parameters are given by
Mp }(1)—1)/& (¢>a
(@) = | —= -, 7.64
0= [ T (60

2
s(9) = =54/ ij\i’; , (7.65)
M2
M) = (@ + By [ 5502 4 (@), (7.66)

where we have used (7.6b), the first expression of (7.7), plus (7.17a), (7.17b), (7.53)
and (7.63).

In particular, in the canonical limit § = 0, 7. = 1 we have a > 2, so that for even
values of « all the potentials with p > 2 are reproduced. In this limit, from (7.58)

we see that o = 2(p — 1); then, from (7.64) the flow parameter € assumes the form

o) = <§)() , (7.67)

whereas from (7.63) we see that inflation ends at

Pe ,u\/§

1/(p—1)
— = | — 7.68
Y {MP } (7.68)

Expressions (7.67) and (7.68) agree with the corresponding canonical expressions
(4.58) and (4.59), respectively.

Therefore, in the slow-roll limit all canonical small-field polynomial models with
p > 2 are particular solutions to the non-canonical model described in this section
when 0 = 0, 7. = 1 and « even; hence, we have again a well-defined D-brane
inflationary scenario with a small-field potential like (7.62), a flow parameter € given
by (7.17a) with o > 0, and a small speed of sound characterized by (7.17b) with
6 < 0, reproducing all the canonical small-field polynomial potentials when 5 = 0.

For these reasons we will call this class non-canonical small-field polynomial models.
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7.3.3 Hybrid potentials

In the last two sections we have discussed the small-field models characterized by
é > () for positive ¢, given by the model 5 in Table 7.3. Let us now examine a similar
model, with o« + 3 + 2 > 0 but with gb < 0 for positive ¢. In this case, 0 = +1,
(model 6 in Table 7.3); then, the Hubble parameter (7.32) takes the form

3 Ké. -
H = H, _ Ve gla+p+2)/2 ’ 7.69
(0) = Hooxp | 50 (769
where the constant K and variable ¢ are given by the definitions (7.34). Since ¢ < 0
and p > 0, where p is given by (7.58), we expand expression (7.69) to first-order in

¢,
. Ko, -
H(¢) = H.exp {1 + 2—¢¢p] . (7.70)
p
The analysis leading to the sign of (3 is identical to that made in section 7.3.2 since,
as in that case, § > —2 — a and a > 0; then, using the same arguments we find

that the field rolls down the potential with a subluminal speed of sound. Also, since

v/(v+ 1) — 1 at early times, we have, plugging (7.70) into (7.12), that

Koe s } (7.71)

- 9 _
V(6) ~ 3MBA? {1 o =
p
in the slow-roll limit. As in the model derived in section 7.3.2, we choose o and (3
such that p is always integer; then, for o > p, the potential (7.71) takes the form

K¢ -
) qbp} : (7.72)

V(¢) ~ 3MEH? {1 +

In this case, the minimum of the potential is at the origin, as in the small-field
polynomial case, but now V(¢) > V(0) around ¢ = 0. Therefore, the field rolls
toward the minimum with nonzero vacuum energy, A* = V(0). This is exactly the
behavior of the canonical hybrid potentials (LINDE, 1991; LINDE, 1994). Then, we
may write the potential (7.69) as (BESSADA et al., 2009)

-]

V(g) ~ A
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where we have defined

11 27,
= ol (7.74)

which coincides with its canonical counterpart (4.62).

7.3.4 Exponential potentials

Since the general expression for the Hubble parameter derived in section 7.2.3 is of
a exponential form, we focus on its large-field limit solution, given by the model 4
in Table 7.2. In this case ¢ < 0 for positive ¢, so that o = +1. The expression for
the Hubble parameter (7.32) for a < 0, is given by

~ 1 Qb a+B+2
H(6) = i, exp \/% (E) , (7.75)

where we have defined

(7.76)

m+ﬂ+m2(@>am
476 M P '

Since a + 3 4+ 2 > 0, the exponent of the speed of sound is restricted to the values
g > —a — 2; then, for 3 > 0, we have that v — oo as ¢ — oo, and then ¢; — 0
at early times since ¢ is in the large-field limit. Hence, the field propagates with a
subluminal speed of sound at early times, and v/(y + 1) — 1. Using this fact and
substituting (7.75) into (7.12) we find (BESSADA et al., 2009)

N 2 b a+B+2
V(¢) ~ 3MpH exp \/2—? (E) : (7.77)

Then, the field rolls down the potential toward the minimum at origin, characterized
by a nonzero vacuum energy V(0) = A* with a subluminal speed of sound. This is
similar to the behavior of exponential potentials in canonical models, except for the

fact that ¢, = 1. Since A* = 3MpH?, the final form of the non-canonical potential

(7.77) is
. 2 ¢ a+B+2
V(p) ~ A% exp \/2_9 (m) : (7.78)
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Before we study the non-canonical limit of the potential (7.78), let us have a look
first at the flow-parameter e. We have used the parametrization associated with
a # 0, given by (7.17a), but we can make it general as follows: substituting and
(7.17b) and (7.76) into (7.17a), we find

€(¢) =

(0t f+2)7 ( 4 >a+ﬁ. (7.79)

4p7(<b) Mp

which holds even when a = 0, for €(¢) = € = const. in that case. The other two flow

parameters s and 7 are given respectively by

oo\ [2(9)
s(¢) =p (Mp> &) (7.80)

at/f ¢)_1 6<¢)+€(¢)7 (7.81)

n(¢) = NG (FP
where we have used (7.6b), the first expression of (7.7), plus (7.17b) and (7.75).

Then, with the parametrization defined by (7.79), we see that in the canonical case
a=3=0,7 =1, expressions (7.78), (7.79) and (7.81) give

V(p) = Atexp % (Mip) . (7.82)
() = (@) = ~ (7.83)
= ’r’ pr— p7 .

which matches the results derived for the canonical case given by (4.63) and (4.64)
respectively. Expression (7.83) shows that we have to restrict the values of (7.76) to

be p > 1, so that we get ¢ < 1 in the canonical limit.

Therefore, we have a completely well-defined D-brane inflationary scenario with
exponential potentials like (7.78), a flow parameter € given by (7.79) with o < 0,
and a small speed of sound characterized by (7.17b) with 5 > 0, which reproduces
the corresponding canonical model. We will call this class non-canonical exponential

models.

The four distinct non-canonical classes obtained so far are summarized in Table 7.4

below.
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TABLE 7.4 - A summary of the distinct models discussed in this work.

model o 16 P V(o)
Large-field | a=—3-2| (>0 e ] 2 At (2"
arge-fie o= > e/ A2 :
a+8+2 1 (6\?
Small-field a>p | B<0 atft2 A [1 _ <;> }

Hybrid a>p #<0 atgt A* [1 + (%)p}

a+p a+F+2
Exponential a<0 >0 % (A‘Z—P> A exp [ 12) (i) ]

7.4 An Application of Non-Canonical Large-Field Polynomial Models

In this section we study some applications of the large-field models derived in section
7.3.1. We choose this class of non-canonical potentials because the expressions for
the scalar spectral index, the tensor/scalar ratio and the level of non-gaussianity are
particularly simple, depending on two parameters solely, p and 3. Let us first derive

an expression for the flow parameter € in terms of N. From (7.46) and (7.49) we find

. p
N = N (7.84)

The other two flow parameters s and 7 are given by

_ 26
___r-2

where we have used (7.6b), the first expression of (7.7), plus (7.17b), (7.43) and
(7.84). Inserting (7.84), (7.85) and (7.86) into (7.14), we find, in the slow-roll limit,

2(p+206+2)

ng = T 2T N (7.87)
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The expression for the speed of sound in terms of N can be calculated in the same
way: we use (7.17a), (7.17b) and (7.49), so that

e(N) =~ |7

Ye {p +2(B+2)N (7.88)

} B/(6+2)

Next, using (7.15), (7.84) and (7.88) we can derive a general expression for the

tensor /scalar ratio, which is given by

r<N):5{ p

Ye [P+2(B+2)N

2(8+1)/(8+2)
] (7.89)

The expression for the level of non-gaussianity fyy, is given by (PEIRIS et al., 2007)

35 (1
Inp = ~108 (g — 1) , (7.90)

which can be easily evaluated by using expression (7.88).

Scalar spectral index for N=46 Tensor—to-scalar ratio for N=46

0.965 0.45
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FIGURE 7.1 - The observables ng (left), r (right) as a function of the exponent of the
speed of sound 3 for each value of p (V(¢) xx ¢P) for N = 46.

Therefore, the tensor/scalar ratio will have a power-law dependence as well, with
exponent 2(5 + 1)/(5 + 2), which means that, for a given value of p, a larger (3
corresponds to a smaller r. Since § > 0 for non-canonical large-field models, we
have, from (7.4) and (7.17b), that ¢, < ¢~?; then, fields rolling with slower speed of

sound would produce lower tensor/scalar ratios. However, from (7.90), we see that
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Scalar spectral index for N=60 Tensor-to-scalar ratio for N=60
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FIGURE 7.2 - The observables ng (left), r (right) as a function of the exponent of the
speed of sound f for each value of p (V(¢) x ¢P) for N = 60.

fnz depends on c¢; 2, and then a low speed of sound would produce a larger level of
non-gaussianity; then, for large-field models low-r tensor modes are strongly corre-
lated with the amplitude of non-gaussianity, as has been discussed in the reference
(TZIRAKIS; KINNEY, 2009) for isokinetic inflation. Then, the suppression of tensor
modes by a large amount of non-gaussianity is a feature shared by all non-canonical

models with large-field polynomial potentials.

Level of non-gaussianity for N=46 Level of non—gaussianity x Tensor-to-scalar ratio for N=46

50|
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o 05 1 15 2 25 3 10° 107 107 10°

B r

FIGURE 7.3 - The observable fxn as a function of the exponent of the speed of sound 3
(left) for each value of p (V(¢) oxx ¢P) for N = 46. On right is depicted the
behavior of fy compared to r.

Let us next make some predictions on the values of ng, r and fxnr through expres-
sions (7.87), (7.89) and (7.90) respectively, when the modes cross the horizon 46
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Level of non-gaussianity for N=60 Level of non—gaussianity x Tensor-to-scalar ratio for N=60
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FIGURE 7.4 - The observable fxn as a function of the exponent of the speed of sound 3
(left) for each value of p (V(¢) oxx ¢P) for N = 60. On right is depicted the
behavior of fy compared to r.

or 60 e-folds before the end of inflation. As we have discussed in section 7.2.1, we
have set 7. = 1, which characterizes the end of inflation; the results are depicted in
figures 7.3 and 7.4. In both figures, the left plots refer to the variation of the scalar
index in terms of 3 for each value of p. The right plots in Figs. 7.3 and 7.4 show
the corresponding tensor/scalar ratio. In these plots we see that for larger values
of p and small  the modes have large values of r (the observable lower bound is
r < 0.22); then, as [ increases, the speed of sound gets lower and, in consequence,
the tensor /scalar ratio as well. For fy, (7.90), a field rolling very slowly produces
a large amount of non-gaussianity, as can be seen in the left plots of figures 7.3 and
7.4. Therefore, as was first discussed in the particular case of isokinetic inflation
(TZIRAKIS; KINNEY, 2009), the production of large non-gaussianity is strictly cor-
related with low tensor amplitudes, and this is a feature common to all large-field
polynomial potentials. This behavior is shown in the bottom right plots of figures
7.3 and 7.4.

We next compare the results obtained with the current WMAP5 data (KOMATSU
et al., 2009), (KINNEY et al., 2008). The results are depicted in Fig. 7.5 for different
values of p. Straight lines indicate the different values of (3, with the left (right)
extremity indicating the value of (ng,r) evaluated at N = 46 (N = 60). Green lines
correspond to = 0 (canonical limit), blue lines to 5 = 1, orange lines to § = 2
and light blue lines to 5 = 3. The left (right) extremity of each line correspond to
the case where a mode crossed the sound horizon 46 (60) e-folds before the end of

inflation.
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FIGURE 7.5 - 68 % (black) and 95 % C.L. (red) on the ng and r parameter space for
WMAPY5 alone. In each panel we plot the values of ns and r for a specific
potential V' (¢) o ¢ according to the exponent [ of the speed of sound.

As shown in (KINNEY et al., 2008), all canonical models with p > 2 are ruled out by
WMAP5 data alone; however, in the non-canonical case, figure 7.5 shows that the
models with p < 5 are also consistent with the observable data. A field evolving with
slow-varying speed of sound produces low-amplitude tensors, then pushing the values
(ns,r) inwards the observable region. However, a large amount of non-gaussianity
is produced, which is a distinct signature of non-canonical large-field polynomial

models and can be a powerful observable to discriminate among inflationary models.
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8 Signatures of Tachyacoustic Cosmology in the CMB

In this Chapter we introduce a new mechanism to solve the horizon problem and to
generate a nearly scale-invariant spectrum for the fluctuations as an example of the
Class 3 of alternative cosmologies in the Table 1.2. As in the former Chapter, here

a prime denotes a derivative with respect to the field ¢.
8.1 Tachyacoustic Cosmology

As we have discussed in Chapter 4, inflaton solves the flatness and horizon problems
by means of a fluid with negative pressure, so that 2 = 1 turns to a stable fixed
point (that is, the universe evolves toward flatness), and the Hubble horizon shrinks
as the universe expands, so that at very early times all the comoving scales were
far inside the horizon. These results can be summarized by the expressions in (4.7).
Furthermore, the solution to the horizon problem and the flatness problem are linked

in inflation via a conservation law,

d |Q—1]
dlna d%

—0. (8.1)

Through this conservation law, a universe with shrinking comoving horizon size is
identical to a universe which is evolving toward flatness, (4.7). Inflation therefore
solves the horizon and flatness problems of the standard Big Bang with a single

mechanism: accelerated expansion.

However, inflation is not the only way to accomplish this goal, as can be seen from
the fact that the acceleration @ appears nowhere in the conservation law (8.1). To
solve both the horizon and flatness problems, it is sufficient to have a shrinking
comoving Hubble radius. We then propose a method of solving the cosmological
horizon problem and seeding scale-invariant primordial perturbations in a cosmology
with decelerating expansion and a corresponding growing comoving Hubble horizon
(BESSADA et al., 2009). The key to implementing such a model is the fact that
curvature perturbations are not generated at the Hubble horizon, but at the acoustic

horizon determined by the speed of sound of a scalar field,

(8.2)

For canonical field theories, the two are identical, but for non-canonical field the-
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ories, they are not. If one has a decaying, superluminal sound speed, curvature
perturbations can be generated outside the Hubble horizon without inflation. We
propose the term tachyacoustic for such cosmologies, which are closely related to
varying speed of light theories. This idea has some history: such cosmologies were
first proposed by Armendariz-Picon in the context of modified dispersion relations
(ARMENDARIZ-PICON, 2006), and the generation of perturbations in such cosmolo-
gies was further considered by Piao (PTAO, 2007). The idea re-emerged in the context
of varying speed of light theories by Magueijo (MAGUEIJO, 2008), and non-canonical
Lagrangians by Magueijo (MAGUELJO, 2009) and Piao (PTIAO, 2009a).

In this work, we consider a way of generating scale-invariant superhorizon cosmo-
logical perturbations based on non-canonical scalar field Lagrangians with a speed
of sound faster than the speed of light, ¢, > 1. If the universe is dominated by a
scalar field with speed of sound c,, the relevant horizon for the generation of density
perturbations is not the Hubble horizon dgy but the acoustic horizon, Dy, given by
(8.2). Mode freezing at the acoustic horizon is well-known in non-canonical inflation
models, for example k-Inflation (ARMENDARIZ-PICON et al., 1999) and DBI inflation
(SILVERSTEIN; TONG, 2004). In non-canonical inflation models, the Hubble hori-
zon and the acoustic horizon are both shrinking in comoving units, resulting in the
generation of density perturbations at the acoustic horizon and gravitational wave
perturbations at the Hubble horizon (GARRIGA; MUKHANOV, 1999) (see also Sec-
tion D.3). However, the comoving Hubble horizon need not be shrinking to generate
curvature perturbations: all that is required is that the acoustic horizon be shrink-
ing, dDy/dIna < 0. In this case, if curvature perturbations are to be generated on
scales larger than the Hubble horizon, it is necessary that the acoustic horizon be
larger than the Hubble horizon, which requires a speed of sound greater than the
speed of light. Such theories were studied recently by Babichev et al. (BABICHEV et
al., 2006; BABICHEV et al., 2008), who showed that k-essence theories with ¢, > 1 are
causally self-consistent (see Appendix D.4), and can be mapped to bimetric theories
with two “light cones”, one given by the Hubble horizon, and the other given by the
acoustic horizon, which can be larger than the Hubble horizon without the presence
of closed timelike loops. This opens the possibility that one can construct a deceler-
ating cosmology which nonetheless generates perturbations on super-Hubble scales

via a superluminal, shrinking acoustic cone.

To explicitly construct such a model, consider a DBI Lagrangian (7.2) as a phe-
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nomenological ansatz. There is a class of exact solutions (CHIMENTO; LAZKOZ, 2008;
KINNEY; TZIRAKIS, 2008) to the equation of motion for the field ¢ where the two
flow parameters € (7.9a) and s (7.9b) are constant, so that the scale factor evolves
as a power-law, a oc t'/¢; then, the expansion is accelerating (i.e. inflation) for ¢ < 1.

The speed of sound (7.3) evolves as
cs o< e N, (8.3)
and the Hubble parameter evolves as
H= g o e, (8.4)

The parameter € is a positive-definite quantity for Py > —p4, so that the Hubble
constant always decreases with expansion. In contrast, the parameter s can take
either sign, with s > 0 corresponding to a sound speed which increases with expan-
sion, and s < 0 corr