Pt

UNIVERSIDADE
DEPERNAMBUCO

Universidade de Pernambuco
Escola Politécnica de Pernambuco
Departamento de Sistemas e Computacao
Programa de P4s-Graduagdo em Engenharia da Computacao

Gabriel Ramos Falconieri Freitas

Refactoring Annotated Java Programs: A
Rule-Based Approach

Dissertacdo de Mestrado

Recife, July 2009

Livros Gratis

http://www.livrosgratis.com.br

Milhares de livros gratis para download.

UNIVERSIDADE DE PERNAMBUCO
DEPARTAMENTO DE SISTEMAS E COMPUTACAO
PROGRAMA DE POS-GRADUACAO EM ENGENHARIA DA COMPUTACAO

GABRIEL RAMOS FALCONIERI FREITAS

Refactoring Annotated Java Programs: A
Rule-Based Approach

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. Cornelio Marcio
Advisor

Recife, July 2009

CIP - CATALOGING-IN-PUBLICATION

Falconieri Freitas, Gabriel Ramos

Refactoring Annotated Java Programs: A Rule-Based Ap-
proach / Gabriel Ramos Falconieri Freitas. — Recife: PPGEC
da UPE, 2009.

240 f.: il

Thesis (Master) — Universidade de Pernambuco. Programa de
Pés-Graduagao em Engenharia da Computagdo, Recife, BR-PE,
2009. Advisor: Cornelio Marcio.

1. JML, design by contract, programming laws, refactoring,
Java. 1. Marcio, Cornelio. II. Titulo.

To my mother, Ldcia.

“Every passing minute,

is another chance to turn it all around.”
— CAMERON CROWE

Acknowledgments

Primeiramente gostaria de agradecer a Deus e ao meu guia Sri Sathya Sai Baba que me
acompanhou desde o colegial até aqui. Agradeco também a minha mae Lucia — a quem
dedico este trabalho — que sempre me aconselhou e me deu forgas, atenc¢do, incentivos,
etc para estar aqui. A meu pai que com certeza estd rezando por mim la de cima e muito
feliz em me ver onde estou hoje. A minha v6 que rezou por tantos dias para eu ter forcas
para alcangar meus objetivos. Ao meu irmdo Bruno que sempre esteve mesmo de longe,
lado a lado comigo me ajudando e me dando forcas. A Alexandrina por ter incrivelmente
aguentado a minha "auséncia" durante todo este tltimo ano.

Gostaria de agradecer muito a Alessandro, Keity, Douglas e Paulinho por terem me
entendido e me concedido dias preciosos para que eu pudesse estudar, realizar minhas
pesquisas e concluir este trabalho.

Agradeco enormemente meus colegas de time, em especial, Zanini, Pacheco, Camp-
inho, Helen e Anderson por terem sempre me incentivado e dizendo que mesmo trabal-
hando drduamente eu conseguiria chegar onde cheguei.

Agradeco também a todos os meus professores do Departamento de Sistemas Com-
putacionais em especial ao professor Carlos Alexandre por ter sido fundamental durante
toda minha vida académica. E principalmente ao meu orientador Mércio Cornélio que é
uma das pessoas mais excepcionais e atensiosas que ja conheci na ida, sempre atencioso e
presente como um companheiro. Também agradeco ao professor Tiago Massoni e Rohit
Gheyi pelas sempre muito importantes ajudas.

Por fim, agradeco aos meus amigos da faculdade que sempre estiverem comigo me
acompanhando principalmente nas madrugadas de estudo, em especial o meu amigo
Flavio Oliveira, fiel companheiro dessa longa caminhada.

Contents

LIST OF ABBREVIATIONS AND ACRONYMS oo on v
LISTOFFIGURES ittt et et ettt ennn vi
LISTOFTABLES o ittt it e e it e it et i e e vii
ABSTRACT ottt e e e it e it e i et e e viii
RESUMO i ittt e e e e ettt ittt e e i et ae e ix
1 INTRODUCTION. ittt it ittt it e ittt ie e n e 1
1.1 Objectives v i e e e e 2
1.2 Motivating Exampleo 2
1.3 Contributions 4
1.4 Organization 5
2 THE JAVAMODELINGLANGUAGEo.. 6
2.1 JMLinanutshell o 6
2.2 Assertions and Expressions oL 7
23 Attributes L 8
2.3.1 Specification Visibility 0oL 8
2.3.2 NonNull References, 8
24 Methods Specifications L L Lo 9
2.4.1 Specification Clauses e 9
2.4.2 Heavyweight and Lightweight Specifications 11
2.4.3 Syntactic Sugars e 12
2.4.4 Privacy of Specifications and Visibility 13
2.4.5 Not Null References in Methods 13
2.5 Type Specifications 14
251 Invariantso e e 14
2.5.2 History Constraints i 15
253 iniatiallyClause 16
2.5.4 Abstract Specifications: model fields and methods and ghost fields 16
2.6 Languagelevels 16
2.7 How JML Deals with Specification Inheritance 17
2.77.1 Joinofspecifications. 17
2.7.2 Specification Inheritance Lo 18
2.8 Behavioral Subtyping L 19
2.8.1 Refinement of Methods Specifications 19

2.8.2 A Definition of Behavioral Subtyping forJML 19

2.9 JML Tools s, 20

29.1 Thejmlc e 20
292 JET e e 21
293 ESC/Java2 e e 21
294 Krakatoa L 22
3 LAWS o e e e e e e e e e e e e e e e e 24
3.1 Introduction e 24
3.2 Generalconventions 25
33 Laws . .o 27
33.1 Classes o o i e e 27
332 Invariants e 29
3.3.3 Attributes oL e e e 32
334 Methods e 36
3.3.5 Constructors i e e e e e e e e e e 56
3.3.6 Commands and Expressions 62
3.3.7 Predicates 62
34 SummaryofLaws 63
4 A SPECIFICATION-AWARE NORMALFORM 66
4.1 Introduction e e 66
42 Normal Form e 66
43 Reduction Strategy e 67
4.4 Reduction Strategy in Action 68
4.4.1 Create a new root class and make all classes inheritit 70
4.4.2 Make attributes public L 70
4.4.3 Move Attributes Upwards Towards _Object 70
4.4.4 Eliminate Custom Constructors Calls 70
4.4.5 Eliminate Custom Constructors 72
4.4.6 (Trivial) CastIntroduction 72
447 Introduce (Trivial) Method Redefinitions 74
4.4.8 Eliminate Methods Calls viasuper 74
4.49 Move Methods Towards _Object 74
4.4.10 Change Type to _Object i i ittt 75
4.4.11 Castelimination i it 75
4.4.12 Move Invariants Upwards Towards _Object 77
4.4.13 Methods Elimination 78
4.5 Reduction Strategy Considerations 80
5 APPLICATION: CODE AND SPECIFICATION REFACTORING 81
5.1 AProgramtoRefactor. 81
5.1.1 The Meta Data APlinFocus 82
5.2 Laws Applicationin Action o 84
5.2.1 Eliminating Duplicate Code and Introducing Common Interface via Extract
Superclass 84
5.2.2 Introducing Replace Conditional With Polymorphism 97

5.2.3 Extracting a More Specialized Superclass to Number-Based Validation Rules 102
5.2.4 Evolving Our Validation Rules API: Creating a Fresh Validation Rule Class 106
5.2.5 Final actions and considerations 107

6 CONCLUSIONS ittt ittt ettt e et aaeen 109

6.1 Related Work 111
6.2 Future Work 112
REFERENCES ittt it i it ettt it et e e n 113
APPENDIRAS et e e e e e e e e e e 118
Al ClIasses o 118
A2 Invariants. L e e e 122
A3 Attributes L L 126
A4 Methods 136
AS Constructors oL e e 178
A.6 Commands and Expressions 185
A7 Predicates 187
APPENDNMXHAL AND FINAL SOURCE-CODE OF THE EXP1 INTERPRETER 189
B.1 Initial Source-Code of the Expl Interpreter 189
B.2 Final Source-Code of the Expl Interpreter 192
APPENBDXIRCE-CODE OF THE META DATA API FROM THE BEGIN-
NINGTOTHEEND ittt it ittt 198
C.1 Original source-code of MetaData API 198
C.2 Classes after extracting superclass Data 223
C.3 Validation rules classes after Replace Conditional with Polymorphism 228
C.4 Number-based validation rules classes after extracting superclass Abstract-
NumberValidationRule 237

C.5 The new validation rule class: NotNullRule 240

List of Abbreviations and Acronyms

JML Java Modeling Language

RAC Run Time Assertion Check

MES Manufacturing Execution System
DbC Design by Contract

BISL Behavior Interface Specification Language

List of Figures

Figure 1.1:

Figure 1.2:

Figure 2.1:
Figure 2.2:

Figure 2.3:

Figure 2.4:
Figure 2.5:

Figure 2.6:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:

Figure 4.5:
Figure 4.6:

Figure 4.7:
Figure 4.8:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:

Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:

Figure 5.10:
Figure 5.11:

JML specification of the class PositiveInteger. In ensures clauses,

\result stands for the result that is returned by the method. 3
JML specification of the class EvenInteger. 4
Person class source-code. 7
addweight method of Person class - a version with two specification

cases separated using addWeight. 10
addweight method of Person class - a version with a unique specifica-

HON CASE. . . v v v v v e e e e e e e e e e 11
Desugaring multiple requires and ensures clauses. 12
What you can and can not do when taking care about specification

visibility and Java visibility rules. 14
Example of history constraints and iniatially predicates. 15
Extended class diagram of our JML-specified example program 69
Example program source-code - attributesup 71
Example program source-code - reduced constructors 73
Example program source-code - Excerpt of _Object class with all

methods declarations oL Lo 76

Example program source-code - proposed reduced getRightExp method. 77
Example program source-code - classes (excepts for _Object) without

methods 77
Example program source-code - Excerpt of _Object attheend. 78
Example program source-code - Excerpt of Main class at the end. 79
Original object diagram from Meta Data API 83
Excerpt of DateData class source-code. 86
Excerpt of IntegerData class source-code. 87
Data class source-code with attributesup. 88
validate method immediately after moved up from DateData to Data

class. . ..o 90
The final version of validate method in Dataclass. 91
AbstractValidationRule class with a zoom in the validate method. 92
AbstractValidationRule class with a zoom in the validate method

after replace expression by variable tmpl 93
AbstractValidationRule class with a zoom in the validate method.

Version with data parameter changed dobata. 94
AbstractValidationRule class with a zoom in the validate method. 95
AbstractValidationRule class with a zoom in the validateMaxSize

method after laws application. 96

Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:

Figure 5.18:
Figure 5.19:

Figure 5.20:
Figure 5.21:

Figure 5.22:
Figure 5.23:

Invariants moved up to Data class immediately before reduction. . . . 97
Excerpt of the original version of Main class of our target program. 98
Excerpt of the final version of Main class of our target program after

execution of Extract Superclass Data. 99

Excerpt of class MaxValueRule after the first step of Replace Condi-
tional with Polymorphism. 101
Excerpt of class MaxValueRule after the conditionals reducing in step

2 of Replace Conditional with Polymorphism. 102
Excerpt of class MaxValueRule after the application Replace Condi-

tional with Polymorphism refactoring. 103
AbstractNumberValidationRule class source-code with attribute up. . . 104

setReferenceValue method immediately after moved up from MaxSizeRule
to AbstractNumberValidationRuleclass. 105

The final version of setReferenceValue method in AbstractNumberValidationRule

class. . . . 105
Invariants moved up to AbstractNumberValidationRules class imme-
diately before reduction.o 106
NotNullRuleclass. 107
Final object diagram from Meta Data APl 108

List of Tables

Table 3.1:
Table 3.2:

Table 3.3:

Table 5.1:

Auxiliary functionsusedinthelaws 26
Summary of the laws about attributes and methods described in Chap-
ter 3. . e 64
Summary of the laws about classes, invariants, constructors, com-
mands and predicates described in Chapter 3. 65
ValidationRuleso oL 85

Abstract

Formal specification languages has an important role in the development of software
whose reliability we can argue with a sound basis. One methodology that goes in the
direction of practical application of formal specification languages is known as Design by
Contract. In this methodology, a contract is established between classes of a system. How-
ever, changes are inherent to software due to corrective needs or evolution. The strong
dependence between source-code and additional formal specifications may introduce a
number of evolution-related difficulties. In order to accommodate new requirements or
improve the software structure, code may be modified and specifications may become out-
dated. On the other hand, changes in specifications are sometimes needed. In the context
of refactoring, changes must be behavior-preserving, maintaining source-code in confor-
mance with its specification. In this work, we propose a systematic approach to deal
with changes in source-code so that they aware of specifications. Also, we illustrate how
specifications can be modified without affecting specifications already described. Primi-
tive transformations are described by means of programming laws. We introduce a set of
programming laws for object-oriented programming languages like Java combined with
the Java Modeling Language (JML). The set of laws deals with object-oriented features
taking into account specifications. Other laws deal only with features of the specification
language. These laws constitute a set of small transformations for the development of
more elaborate ones. An application is presented to show how a JML-specified version
of a core module from a Manufacturing Execution System is refactored from successive
applications of primitive transformations expressed by means of our laws. We have also
investigated the impact on the reduction of Java programs to a normal form when specifi-
cations written in JML are present.

Keywords: JML, design by contract, programming laws, refactoring, Java.

Resumo

Linguagens de especificacdo formal possuem um papel importante no desenvolvi-
mento de softwares cuja confiabilidade é um requisito forte. Uma metodologia que vai
na direcdo da aplicacdo prética de linguagens de especificagdo formal é conhecida como
Design by Contract. Nesta metodologia, um contrato € estabelecido entre classes do sis-
tema. Contudo, mudangas sdo inerentes aos softwares devido a necessidades de corre¢des
ou evolucdo. A forte dependéncia entre cédigo-fonte e especificacdes formais adicionais
pode acarretar em vérias dificuldades relacionadas e evolucao. Para acomodar novos req-
uisitos ou melhorar a estrutura do software, o cédigo-fonte pode ser modificado tornando
as especificacoes desatualizadas. Por outro lado, mudancas nas espcificagdes também
podem ser necessdrias. No contexto de refatoracdo de programas, as mudangas necessi-
tam preservar o comportamento do programa, mantendo o cédigo-fonte em conformidade
com as suas especificacdes. Neste trabalho nés propomos uma abordagem sistematica
para lidar com mudancas em cédigo-fonte estando elas cientes que o cédigo-fonte tam-
bém possui especificagdes. Adicionalmente, nds ilustramos como especificagdes podem
ser modificadas sem afetar especificacdes ja descritas. Transformacgdes primitivas sdao
descritas como leis de programacdo. NOs introduzimos um conjunto de leis de progra-
magcao para linguagens de orientac@o a objetos como Java combinadas com a linguagem
de especificacdo formal JML (Java Modeling Language). O conjunto de leis lida com
caracteristicas da orientagdo a objetos levando em consideracio especificacdes. Outras
leis lidam apenas com caracteristicas da linguagem de especificacdo formal. Essas leis
constituem um pequeno conjunto de transformagdes que servem como base para o desen-
volvimento de transformacdes mais elaboradas. Um aplicacdo é apresentada para mostrar
como uma versao especificada com anotagdes JML de um médulo central de um Sistema
de Execucdo da Manufatura € refatorado a partir de aplicagdes sucessivas de transfor-
macoes primitivas expressas pelas nossas leis. NOs também investigamos o impacto da
redugdo de programas Java para uma forma normal quando especificacdes escritas em
JML estdo presentes.

Palavras-chave: JML, design by contract, leis de programagdo, refactoring, Java.

Chapter 1

Introduction

Software changes constantly due to maintenance that leads to correction of fails or just to
improve functionalities. However, some changes can take place to achieve quality factors
like reuse and legibility. In these cases, changes should not alter the software behavior
but only its internal structure. Improving the internal software structure is an activity
known as refactoring [31]. To avoid errors due to modifications, every change has to be
done following a discipline. Also, programming laws are a means to change software in
a systematic and rigorous way. For instance, we can use compilation and tests after every
modification.

Programming laws serve as guidelines to informal programming practices and estab-
lish a basis for formal and rigorous program development. They are largely known for
imperative programming [38, 53]. Also, functional programming and logic programming
have a set of laws described by Bird and de Moor [6] and Seres [61], respectively. Laws
of object-oriented programming have also been addressed in [7, 23, 26].

Object-oriented programming laws were initially proposed by Borba, Sampaio and
Cornélio [9] for an object-oriented language called ROOL [13], which was designed to
allow reasoning about object-oriented programs and specification, mixing both constructs
in the sytle of Morgan’s refinement calculus [53]. They propose laws for classes and
commands of ROOL and they define a normal form for object-oriented programs written
in ROOL along with a reduction strategy. Also, they demonstrate that the set of laws is
complete with respect to this normal form. Cornélio [23] proves the laws with respect
the copy semantics of ROOL [13]. Silva, Sampaio, and Liu considers object-oriented
programming laws in a language with a reference semantics [62], applying such laws to
code refactoring. Duarte [26] adapts the programming laws initially written for ROOL for
the Java programming and proposes other laws for language features that are not present
in ROOL.

Programming laws are a good alternative to apply refactorings in a systematic and
rigorous way [7, 23]. The application of programming laws can be seen as an activity
accomplished in two stages. In the first stage, the conditions for the law application must
be verified in order to determine if the law can be applied. The second stage consists
of the transformation of the program as described in the law. For example, to eliminate
a public method one needs to guarantee that the method is not called anywhere in the
program.

Design by Contract (DbC) [51] is a development methodology that aims at the con-
struction of reliable object-oriented systems. Its basic idea is that a contract is established
among classes of a system. In this way, software developers should formally specify what

is required and ensured by methods and types. The use of specification languages, such
as the Java Modeling Language (JML) [10, 42, 28], encourages implementations to fol-
low pre-defined specifications, in order to control complexity, improve verification tool
support and encourage Design by Contract [51].

In this context, software evolution brings additional challenges. When evolution tasks
are carried out, either to fulfill new requirements or improve source-code quality, de-
pendence between program code and specifications must be carefully considered. This
dependence occurs in both directions. Changes in specifications usually must be accom-
panied with program code updates, in order to maintain conformance. On the other hand,
changes in the program code require changes in specifications, where the original specifi-
cation can no longer have the same meaning for the new behavior. For instance, moving
a redefined method to its superclass can be illegal if this transformation weakens pre-
conditions and strengthens post-conditions.

1.1 Objectives

The set of programming laws for object-oriented programming we have nowadays is de-
signed for program transformation with no relation to specifications languages useful for
DbC. Our objective is to define laws of object-oriented programming for Java that are
aware of specifications written in JML. Our proposed hybrid laws were created by ex-
tending object-oriented programming laws from other works [7, 23, 26, 49]. Addition-
ally, we introduce laws for specifications written in JML. The laws precisely indicate the
modifications that can be done to a program, stating their corresponding proof obligations
that are discharged for application. To our knowledge, there is not a comprehensive set
of laws to deal with formally specified Java programs. In Java and JML context, we need
to guarantee that source-code continues meeting its specifications written in JML, taking
into account the semantics of JML specifications along with the notion of specification
inheritance [40].

To demonstrate the applicability of our set of laws, we reduce a Java program with
JML specification to the normal form presented by Duarte [26], which follows the main
steps of the normal form reduction strategy of ROOL. The existence of specifications
impose restrictions leading to a normal form slightly different from the one of Duarte. In
this work, we discuss the main differences between them.

Also, we propose a rigorous and systematic approach to apply some of the refactorings
proposed by Fowler [31] and evolve code through successive applications of primitive
transformations expressed by means of our laws using as study case a JML-specified
version of a core module of a Manufacturing Execution System (MES) [64].

1.2 Motivating Example

In order to show the relevance of the problem we deal with in this work, we present a small
example of two JML-specified Java classes. The class shown in Figure 1.1 represents a
positive integer. In line 2 we find a example of an invariant. The requires clauses in the
specifications of the methods registerValue and format specify two pre-conditions. For
example, the pre-condition of the method registerValue demands that the value to be
registered has to be not null and also has to be at least equals to zero. In the lines 8, 12

public class PositiveInteger {

1

2 //@ private invariant value.intValue() > -1;

3 private Integer value;

4

5 public PositivelInteger () { value = new Integer(0); }

6

7 /%@ requires newValue != null &% newValue.intValue() > -1;
8 @ ensures getValue().intValue() == newValue.intValue();
9 @sx/

10 public void registerValue(Integer newValue) { /* ... */ }
11

12 //@ ensures \result !'= null;

13 public /+x@ pure @x/ Integer getValue() { /* ... */ '}

14

15 /%@ requires getValue() != null;

16 @ ensures !(\result).equals(""); @x/

17 public String format() { /* ... */ }

18}

Figure 1.1: JML specification of the class PositiveInteger. In ensures clauses, \result
stands for the result that is returned by the method.

and 16 we have examples of postconditions. Postconditions start with the ensures clause.
In addition, there is another class EvenInteger (Fig. 1.2) utilized to express even integers.

To characterize a positive integer, constraints (in the form of JML specifications) were
written in the PositiveInteger class. The invariant of line 2 (Fig. 1.1) establishes that the
integer value of value field should be at least equal to zero. Also, the pre-condition of line
7 (Fig. 1.1), obligates that only positive Integer values can be registered.

The EvenInteger class (Fig. 1.2) can only hold even positive integers because of the
invariant written in line 2, assuring that the integer value of the class needs to be module
of 2. And, to reinforce the invariant, pre-conditions of method registerValue guarantee
that only even and positive values are allowed.

It may be assumed that a new type of integer might be implemented, for instance, odd
integers. To accomplish this new requirement, it is important to prepare our source-code
to receive the new code. This situation shows an example of a refactoring: there is a
new class to be implemented and there are two classes that share several features. The
refactoring Extract Superclass is frequently applied to create an abstraction, concentrating
in it all shared or duplicated features of two or more subclasses.

Fowler [31] presents a mechanics of how to extract a superclass from some Java
classes using a suite of tests, which is executed in each step of the mechanics to ensure
that the code continues to meet its original observable behavior. His approach is based
on having suitable test cases to execute and leads only with Java code. The application
of this refactoring considering also formal specifications creates several new issues, such
that:

e Pulling up the field value must be followed by the invariants that it refers to. Thus,
we need to move only invariants that are shared between the subclasses.

e Moving up an invariant to a new generalization class will cause all subclasses to
inherit it, making them potentially more restrictive?

public class EvenInteger {
//@ private invariant value.intValue() % 2 == O0;

1

2

3 //@ private invariant value.intValue() > -1;

4 private Integer value;

5

6 public EvenInteger() { value = new Integer(0); }

;

8 /@ requires newValue != null;

9 @ requires newValue.intValue() % 2 == 0 &% newValue.intValue() >
-1;

10 @ ensures getValue().intValue() == newValue.intValue();

11 @x/

12 public void registerValue(Integer newValue) { /* ... */ }

13

14 //@ ensures \result != null;

15 public /+x@ pure @x/ Integer getValue() { /* ... */ }

16

17 /%@ requires getValue() != null;

18 @ ensures !(\result).equals(""); @x/

19 public String format() { /* ... */ }

Figure 1.2: JML specification of the class EvenInteger.

o It might be useful to pull up methods (and its specifications) having the same mean-
ing.

Regarding the third issue, if we pull up registerValue from EvenIntegerValue to a new
common superclass, the subclass PositiveInteger will inherit its pre- and postconditions.
And hence will generate a new constraint on the PositiveInteger class: objects of type
PositiveInteger would only be able to register even integers.

Consider we want to introduce new features in a class. If we want to introduce a
new redefined implementation of the method registerValue in a hypothetic newly created
OddIntegerData. As a redefined method has the identity specification (pre-condition: true
/ postcondition: false) [40], we can make this specification explicit and thus weaken it to
getValue().intValue()% 2 == 1, for example. Then we can strengthen the postcondition to
ensure that the candidate value is assigned to the value field.

Our approach investigates situations like these, proposing a rigorous behavior-pre-
serving way to execute specification and code transformations. Our approach is based on
laws (primitive transformations) including side-conditions that define when a transforma-
tion may be applied.

1.3 Contributions

The summary of our contributions is presented as follows:

e Creation of programming laws to deal with JML specifications — a set laws to
deal with JML specifications and JML constructs like invariants, pre- and postcon-
ditions and privacy modifiers were defined.

e Adaptation of programming laws for JML-specified Java programs — we present
programming laws for JML-specified Java programs created by reviewing and ex-
tending previously defined laws for ROOL and Java.

¢ Proposition of new laws for Java — we propose some new laws for Java and after
it we extended them to consider JML specifications.

¢ Proposition of new for Commands and Expressions — we propose some new laws
to deal with commands of Java.

¢ Normal form reduction strategy for JML-specified Java programs — a reduction
strategy was proposed to reduce JML-specified Java programs to a normal form
which follows the mains steps of the normal form reduction strategy of Java. We
present an example of the application of our strategy.

e A step by step case study showing how refactorings can be applied using pro-
gramming laws — to demonstrate the applicability of our set of laws we show step
by step how a JML-specified version of a core module from a real Manufacturing
Execution System, get refactored from successive applications of primitive trans-
formations expressed by means of our laws.

1.4 Organization

This dissertation is structured as follows:

Chapter 2: we provide a brief introduction to the Java Modeling Language (JML), fo-
cusing mainly on its fundamentals and in the concepts we use in this work. We also detail
the features and concepts of the language that are necessary to understand the subsequent
chapters.

Chapter 3: we introduce our set of laws to deal with JML-specified Java programs dis-
cussing in depth each law.

Chapter 4: we present our normal form reduction strategy showing how the existence
of specifications impose restrictions to reach the normal form previously defined for Java
and ROOL. A practice example is also used to provide evidences.

Chapter 5: we show a rigorous and systematic approach to apply some refactorings
proposed by Fowler [31]. A case study is used to present the laws application in action.
We use a step-by-step approach in order to provide as much details as possible.

Chapter 6: we present our conclusions and directions for future work. We also discusses
some related works.

Chapter 2

The Java Modeling Language

In this chapter, we provide a brief introduction to the Java Modeling Language (JML),
focusing mainly on its fundamentals and in the concepts were used in this work. First we
present an overview of JML using a short example. Then we detail some of the features
initially introduced in the overview. At the end of the chapter we discuss about some JML
tools like, ESC/Java2 [21], Krakatoa [11] and the JML compiler (jmlic) [10]. A complete
description about JML can be found in innumerable other publications available at [41]
and can be referred in the JML Reference Manual [28].

2.1 JML in a nutshell

The Java Modeling Language (JML) is a behavioral interface specification language [42,
28, 43] tailored to Java. Thus, JML serves to describe contracts with static information
that appear in Java declarations and how they act. JML specifications are written in the
form of special annotation comments that are inserted directly in source code of pro-
grams. These comments must begin with an at-sign (@) and can be written in two ways:
by using //@ ... or /x@ ... @/. In Figure 2.1, we present the class Person, with contracts
written in JML.

The model modifier (lines 2 and 3) introduces specification-only fields, also called
model fields. A model field should be thought of as an abstraction of a set of concrete
fields used in the implementation of this type and its subtypes [28]. In the class Person,
we have two model fields, i.e. name and weight, representing (via represents clause) the
concrete attributes _name and _weight, respectively.

The invariant clause introduces predicates that are true in all visible states of objects of
a class (see Section 2.5.1 for a full explanation). The invariant in the example has public
visibility and establishes that the value of attribute _name is different from an empty string
and the value of _weight is greater than or equal to zero.

The requires clause specifies the obligations of the caller of a method, what must be
true to call a method. For instance, the precondition of the method addkgs insists on the
added value to be greater than zero. A postcondition specifies the implementor’s obliga-
tion, what must be true at the end of a method, just before it returns to the caller. In JML,
the ensures clause introduces a postcondition. In the example, the post-condition introduce
in line 21 asserts the value of the attribute _weight at the end of the method addkgs is equal
to the value of the expression \old(weight + kgs). By using the \old, operator we can refer
to the value of an expression in the pre-state of a method.

The assignable clause gives a frame axiom for a specification. Only locations named

public class Person {
//@ public model int weight;
//@ public model String name;

1
2
3
4
5 private String _name;
6 private int _weight;
;
8
9

//@ private represents name <— _name;
//@ private represents weight <- _weight;

i //@ public invariant !name.equals("") &&

12 //@ weight >= 0;

13

14 public Person(String pname, pweight) { ... }
15

16 //@ ensures \result == weight;

17 public /@ pure @x/ int getWeight() { ... }

19 /+@ requires kgs > 0;

20 @ assignable weight;

21 @ ensures weight == \old (weight + kgs);
2 @sx/

23 public void addKgs(int kgs) { ... }

Figure 2.1: Person class source-code.

and their associations can be assigned during method execution. In method addkgs, we
state that only weight is changeable. The JML modifier pure indicates that the method
doesn’t have any side effects and hence can appear in specifications.

2.2 Assertions and Expressions

The JML specifications, i.e. expressions and assertions, are written in the syntax of
Java [35]. These specifications are added as annotations (in the form of comments) within
the source code of the program, which can be compiled by any Java compiler which fa-
cilitates the use of JML by Java developers.

JML expressions and assertions cannot have side-effects, in other words they must
be pure. Hence, operators like =, +=, —= and other operators related to assignments (eg.
++ and —-) cannot appear in expressions or assertions because they have side-effects. As
we said in Section 2.1 a pure is the one that does not modify any state, that is, does not
cause any side effects to the program. It is important to say that expressions can throw
exceptions even they are pure. Thus, an exceptional expression like person.getiieight
() when person refers to a null instance, is permitted, although it does not terminates
normally.

JML is a superset of Java. Hence, it provides special constructs that are used in ex-
pressions in addition to all the other Java expressions that are free of side-effects. In
the sequel we present some of these constructs, the complete list of JML-constructs is
presented in [28].

e \result (E), refers to the value returned by a method. Its type is the return type of the
method.

\old(E) refers to the value of an expression immediately before a method is called.
\old(E) can also be used in assertions. In these cases, it refers to the value of the
expression just before control reaches the statement in which it appears.

e \not_modified(vl, v2..vn) is used to verify if named fields are not modified. For
example, \not_modified(vl, v2) verifies if the fields v1 and v2 are the same in pre-
and post-states.

e \typeof(E) returns the most-specific dynamic type of an expression’s value.
o T <: T, compares two reference types returning true if 7 is a subtype of 75.
e \forall and \exists are the universal and existential quantifiers, respectively.

e \sum, \product, \max and \min are constructs used to return the sum, product, max-
imum and minimum values of given expressions, respectively. For example, the
follow equations is true: (\maxint i; 0 <=1 && i <5;i) ==4.

2.3 Attributes

2.3.1 Specification Visibility

Java defines four types of access modifiers to an attribute: private, default or package,
protected or public. These access modifiers establishes when one can access (or not)
an attribute, i.e., controls the visibility of attributes. Java modifiers are also used by the
JML compiler (jmlc). However, JML introduces additional rules to deal with visibility
control. A JML-specification cannot refer to elements (eg. an attribute) that have a more
restrictive visibility than the specification itself. For example, a public invariant can only
refer to public attributes, protected invariants can refer protected and public attributes (see
that public elements are less restrictive than protected ones) and so on.

JML provides a way to alter the visibility of attributes only with respect to specifi-
cations. A private or default attribute may have its specification visibility modified to
protected using the keyword spec_protected. In addition, a non-public attribute may have
its specification visibility changed to public using the keyword spec_public. See in the ex-
amples below. The attribute _weight can be also used in public invariants for example,
because for specifications it is public. As well as name can also be used in protected in-
variants.

private /:+@ spec_public @/ String _name;
private /+@ spec_protected @+/ int _weight;

2.3.2 Non Null References

In JML, null is not the default [28, 43]. Any declaration (that is not a local variable)
whose type is a reference type is implicitly declared to be not null, except when one
adorn the declaration with the keyword nullable. Thus, by default, JML always checks if
an (not nullable) attribute is null in all visible states of the class that declares it. In fact,
the JML compiler creates an invariant (eg. //@ invariant _name= null;!) for all attributes
that are declared with a reference type, asserting that these attributes are not null. The

same behavior is achieved declaring an attribute with the non_null modifier (eg. private /«
@ spec_protected non_null @/ int _weight;). The nullable keyword does exactly the opposite
of non_null, that is, it permits an attribute (or other non local variable declarations) to be
null without throwing an exception.

2.4 Methods Specifications

JML contains the essential notations used in the Design by Contract (DbC) methodol-
ogy as well as extends and improves the Hoare-style of using pre- and postconditions,
including heavyweight and lightweight specifications, privacy of specifications, normal
and exceptional postconditions and frame axioms.

Design By Contract [51] establishes a method of building software by explicitly spec-
ifying what each function in a module requires in order to operate correctly, and what
it provides to the caller (contracts). They constitute a collection of assertions - mainly
invariants, pre- and postconditions for methods - that precisely describe what methods
require and ensure with respect to client classes.

In this section we focus on the JML notations related to DbC methodology.

2.4.1 Specification Clauses
2.4.1.1 Pre- and Postconditions

A pre-condition of a method is a predicate that should be satisfied at the beginning of a
call to the method, in other words pre-conditions specifies the obligations of the caller of
a method, what must be true to call a method. JML uses the requires clause to introduce
pre-conditions. In Figure 2.1 the pre-condition of the method addkgs states that the value
for the argument for the formal parameter kgs needs to be greater than zero. This pre-
condition ensures that one can not add a negative value of kilograms.

A postcondition is a predicate that should hold at the end of the method call in the
case that the method call ends without throwing an exception. That is, a postcondition
specifies the implementor’s obligation, what must be true at the end of a method, just
before it returns to the caller. Postconditions start with the ensures clause.

In Figure 2.1 we have two post-conditions, in lines 16 and 21. The first one just assures
that the value the method addkgs returns is equals to the value of the attribute _weight. The
value a method returns is denoted by the expression \result. The second one asserts the
value of the attribute _weight at the end of the method addkgs is equals to the value of
the weight (immediately before the method call) summed with the increment provided by
kgs parameter. The value of an expression right before a method call is obtained via \old
expression (see Section 2.2).

2.4.1.2 Frame axioms

A frame axiom defines which variables can change in the execution of a statement. In
JML, we use the assignable clause to define a list of locations that can be modified in
the execution of a method. Only locations named and their associations can be assigned
during the method execution. Locations can be attributes, model fields representing con-
crete attributes, and so forth. Local variables of a method are excluded from the assignable
rules. When we want to state that a method cannot change anything, we use the keyword

10

\nothing. In the opposite case we use \everything to state that all locations in the program
are changeable.

If one does not declare a assignable clause in a method using lightweight specification,
the JML compiler assumes \not_specified as the default. In fact, for lightweight speci-
fications the JML compiler considers the keyword \not_specified an equivalent keyword
to \everything. In method addkgs of Figure 2.1, only the attribute weight can be modified.

2.4.1.3 The keyword also

Method specifications contain one or more specification cases. A JML specification case
is formed by many clauses, including requires, assignable and ensures clauses [28]. Each
specification case has a pre-condition (when it is omitted it assumes the value true). Two
or more specifications are joined using the keyword also. The postcondition of a spec-
ification case needs to be true when its corresponding pre-condition holds. Normally a
specification of a method consists of one or more specification cases that have to hold
when the method is called.

Specification cases define more than one scenario of execution of a method. JML uses
the keyword also to distinguish these scenarios. Figure 2.2 shows a modified version of
method addkgs. The new specification case (lines 5 to 7) contemplates a scenario when a
zero or negative value is passed as a argument and weight remains intact.

/+@ requires kgs > 0;
@ assignable weight;
@ ensures weight == \old (weight + kgs);
@ also
@ requires kgs <= 0;
@ assignable \nothing;

T T N S S

@ ensures \old(weight) == weight;
Q@sx/
public void addKgs(int kgs) { ... }

Figure 2.2: addweight method of Person class - a version with two specification cases
separated using addWeight.

Leavens [40] introduces the semantics of specification inheritance and discuss how
specification inheritance forces behavioral subtyping. In JML, a subclass inherits not
only attributes and methods from its superclass, it also inherits specifications. Accord-
ing to Leavens’ definition, the extended specification of a type is given by the extended
specification of methods, invariants, history constraints and initially predicates (see more
details in Section 2.7.

The extended specification of an instance method is given by joining the specifications
added by the method itself and the inherited ones. In fact, the semantics of specification
inheritance is the same of the joining of specification cases — via also — of a method.
A specification of an overriden method must begin with the keyword alse. Using the
keyword also in these cases ensures that the specification cases of the overriden method
are joined to the ones declared in the original method (of the superclass).

Joining specifications of a method leads to a pre-condition that is given by disjunction
of the predicates of all pre-conditions (of all specification cases and the inherited ones),
and a postcondition that is given by the conjuction of implications in which the antecedent

11

is the pre-condition of the corresponding specification case in the pre-state (the \old()
operator is used for the precondition), and the consequent is the postcondition of the
corresponding specification case. That is, the postconditions are conjoined in the form A(\
old(p;) = ¢,), where p; is the pre-condition for the corresponding postcondition g; [43].
The join of assignable clauses is the union of the declared locations.
As an example, in Figure 2.3 we present a joined version of the specifications cases
of Figure 2.2.

/%@ requires kgs > 0 || kgs <= 0;

1

2 @ assignable weight;

3 @ ensures (\old(kgs > 0) ==> weight == \old (weight + kgs)) &&
4 (\old (kgs <= 0) ==> kgs > 0);

5 @x/

6 public void addKgs(int kgs) { ... }

Figure 2.3: addweight method of Person class - a version with a unique specification case.

2.4.1.4 signals Clause

One can specify details about the program state — inside specification cases — when ex-
ceptions are thrown by a method. The signal clause is used to specify a predicate that
holds at the end of a method or constructor invocation when this method, or constructor,
ends abnormally by throwing the written exception. A signals clause has the form signals

(E e) R; where E is a class of type Exception or a subclass of it, e is the instance of the
exception in the moment it is thrown and R is a predicate (or \not_specified).

2.4.2 Heavyweight and Lightweight Specifications

In JML, we have two types of method specifications: lightweight and heavyweight. In
lightweight specifications cases the user does not have to specify the complete behavior
of the method, in this case it is up to the user to specify exactly what he really wants. In
contrast, JML provides a style of method specification, called heavyweight, that waits the
user to specify a complete specification case and omits only the parts he knows the default
rules fit.

In fact there are two syntaxes to each of one these two types of method specifications
what helps the user to distinguish when a method uses one type or the other one. In
essence a heavyweight specification case can have three types of behaviors represented by
the keywords, behavior, normal_behavior and exceptional_behavior. A specification case that
does not define one of these three keywords is characterized as a lightweight specification
case. A lightweight specification case is similar to a behavior specification case, but
with different defaults [42]. It is important to say that is possible to desugar all type of
specification cases into behavior specification cases [57].

The different defaults applied by lightweight and heavyweight specification cases may
vary. We highlight in the sequel some of them, along [28] one can discover a complete
list.

e requires clause: Lightweight specification case uses \not_specified. Heavyweight
uses true.

12

e ensures clause: Lightweight specification case uses \not_specified. Heavyweight
specification case uses true.

e assignable clause: Lightweight specification uses \not_specified. For a lightweight
specification case, the default is \everything.

¢ For lightweight specifications the specification visibility for methods (as well of its
specification cases) is the same of the Java visibility of the method itself. For heavy-
weight specifications one can define the specification visibility for each specifica-
tion case. Also, one can change the specification visibility for the method itself us-
ing the JML modifiers spec_protected and spec_public as we explained in Section 2.3.1
for attributes.

The behavior of \not_specified may vary depending on the tool implementation [28].
In our work we consider the implementation of the JML Official Tools [1]. Our focus in
this work is concerned in the foundations of lightweight specification cases since this is
simpler and closer to the DbC techniques.

2.4.3 Syntactic Sugars

There are many syntactic sugars for JML, most of them described in [57]. Theses syn-
tactic sugars inspired us in the development of some laws described in Section 3.3. JML
syntactic sugars are used in special to write method specifications. For example, the spec-
ifications cases of addWeight of Figure 2.2 is desugared of the one of Figure 2.3. This
example show how multiple specification cases can be collapsed in only one.

Another simple example is shown in Figure 2.4. As can be seen, a single specification
case that uses more than one requires clause can be simplified to an unique requires clause
separating each predicated by a && (and) operator. The same reasoning is applied to
ensures clauses. In Figure 2.4 the left side is desugared to the right side.

/+@ requires P1;

1

2 @ requires P2;

3 @ assignable W; /%@ requires Pl && P2;

4 @ ensures P3; @ assignable W;

5 @ ensures P4; @ ensures P3 && P4,

6 @x/ @x/

7 public void m() { ... } public void m() { ... }

Figure 2.4: Desugaring multiple requires and ensures clauses.

The use of non_null clauses as arguments is a short-hand for a argument!=null pre-
condition predicate when the method does not provide any specification. Suppose a
method does not have an explicit specification and has this signature: public /+@ non_null @
%/ Booleanm(/+@ non_null @/ int x), we can eliminate the second occurrence of the non_null
clause and use the pre-condition requires x != null;. For the same signature we can delete
the non_null clause — the one used on the left side of the return type Boolean — and insert
the postcondition ensures \result != null.

Considering the use of pure clause in methods, the use of this clause adds the following
clauses to each specification case for the method. And if the method has no specifications
the following clauses (again) are added as a lightweight specification.

13

diverges false ;
assignable \nothing;

2.4.4 Privacy of Specifications and Visibility

The Java language is built on top of a rigorous set of access control rules for attributes,
methods and constructors. The rules are directly related to the declared visibility of the
cited elements. We can have public, protected, package (default) and private elements.
Public elements may be accessed everywhere, protected may be accessed by subclasses
and by classes of the same package (including the class declares them), package (default)
elements may be accessed by classes declared in the same package (including the class
declares them) and private elements may only be accessed inside the class declares them.

Besides those rules, JML adds the concept of specification visibility. An annotation
context cannot refer to elements that are more hidden than the context’s own visibil-
ity [28]. Thus, for a reference to an attribute x (for example) be legal, the specification
visibility of the specification that does the reference to x must be at least as permissive as
the visibility of x itself. It is important to say that these rule is an addition to the previous
Java visibility rules, i.e., first a reference to an attribute must be valid considering the Java
visibility.

Figure 2.5 presents a great example (from [28]) that shows how Java visibility interacts
with specification visibility. In the example we used invariant specifications, but the same
reasoning is applied to history constraints, methods specifications, initially specifications,
and so forth. In short these are the considerations about the example:

e Specifications with public specification visibility can only refer public elements.

e Specifications with protected specification visibility can refer protected elements
and public elements because public elements are more permissive than protected
ones. Remember that these elements must also visible taking into account the Java
visibility rules.

e Specifications with package (default) specification visibility can refer non-private
elements if these elements are visible considering Java visibility.

e And, specifications with private specification visibility can refer elements with any
declared visibility since they are visible in accord to Java visibility.

2.4.5 Not Null References in Methods

As we said in Section 2.4.5 the non_null clause may appear in method declarations. When
it is used together with a method return type, it indicates that the method must return a
non_null value. As well as when non_null clause is used together with a method formal
parameter which works as a shorthand for a pre-condition stating that the attached formal
parameter may not be null. As non_null acts in the two situations as pre- and postcondi-
tions, thus the clause is inherited in the same way as the equivalent pre- and postconditions
would be. Hence one does not need to redeclare this clause in overriden methods in sub-
types.

The opposite behavior can be achieved using the nullable clause in the two situations
cited above. The nullable modifier is inherited from original methods in supertypes.

14

public class PrivacyDemolLegalAndIllegal {
public int pub;
protected int prot;
int def;
private int priv;

//@ public invariant pub > 0; // legal

//@ public invariant prot > 0; // illegal!
//@ public invariant def > 0; // illegall!
10 //@ public invariant priv < 0; // illegal!

12 //@ protected invariant pub > 1; // legal

13 //@ protected invariant prot > 1; // legal

14 //@ protected invariant def > 1; // illegal!
15 //@ protected invariant priv < 1; // illegal!

17 //@ invariant pub > 1; // legal
18 //@ invariant prot > 1; // legal
19 //@ invariant def > 1; // legal
20 //@ invariant priv < 1; // illegal!

2 //@ private invariant pub > 1; // legal
23 //@ private invariant prot > 1; // legal
2 //@ private invariant def > 1; // legal
25 //@ private invariant priv < 1; // legal

Figure 2.5: What you can and can not do when taking care about specification visibility
and Java visibility rules.

2.5 Type Specifications

Type specifications refer to the set of specifications related to classes and interfaces and
not to their members. This set is composed majorly by invariants predicates, history
constraints, initially clauses and specification-only member declarations.

2.5.1 Invariants

An invariant (i.e., an instance invariant) is a predicate that is true in all visible states
of objects of a class. JML has two types of invariants, instance invariants and static
invariants. A static invariant may refer only static attributes and methods. On the other
hand, instance invariants can refer to both static and instance methods and attributes.
Only instance invariants are inherited by subtypes.

Understanding what the expression "visible state" means is of extreme importance to
realize the semantics of invariants. A state is considered visible for an object o if this state
occurs at one of the following moments in a program’s execution [28]:

e at end of a non-helper ! constructor invocation that is initializing o,

e at the beginning of a non-helper finalizer invocation that is finalizing o,

The helper keyword is used on private methods or constructors when one wants to ignore invariants
and history constraints that are relevant to the method. A non-helper method is the one that is not adorned
with a helper keyword.

15

e at the beginning or end of a non-helper non-static non-finalizer method invocation
with o as the receiver,

e at the beginning or end of a non-helper static method invocation for a method in 0’s
class or some superclass of o’s class, or

e when no constructor, destructor, non-static method invocation with o as receiver, or
static method invocation for a method in o’s class or some superclass of o’s class is
in progress.

In Figure 2.1 we have an instance invariant. It states that the value of the attribute
_name has to be always different from an empty string. It also obliges a object of class
Person to have a weight (attribute _weight) greater than zero. Thus, when (for example)
an object of class Person is instantiated the constructor has to guarantee that a name,
different from an empty string is set to the attribute _name and that a weight is set to the
attribute _weight in order to meet the Person invariant.

2.5.2 History Constraints

History constraints [28] are introduced in JML by the constraint clause. They are used
when one needs to restrict the possible states of an object. History constraints restrict the
way attribute values can be changed during the program execution.

The history constraints work like postconditions for the methods (or for a specific
list of methods determined by the user) of a class. History constraints do not work for
constructors since objects do not have a previous state before the constructor call.

As with invariants, we have two kinds of history constraints: static constraints and
instance ones. An instance constraint must be true only after the execution of instance
methods, a static history constraint must be true after the execution of both instance and
static methods. A constraint must be respect by a method only in the situations when the
pre-conditions of the method are also satisfied.

Figure 2.6 presents a simple example that uses the constraint clause. The class named
InfiniteList represents a list that only grows and has a method to read these elements.
The constraint assures that each method of the list can increase its size or read an element
keeping its size unchanged. In fact, the methods can not delete elements what would
break the constraint.

public class InfinitelList ({
private /+@ spec_public @x/ List list = new ArraylList();
//@ public constraint list.size() >= \old(list.size());
//@ public initially list != null && list.size() >= O0;

public Object getElementAt(int position) {
return list.get(position);

}

public void addElement(Object element) ({

10 list.add(element);

11 }

2}

1
2
3
4
5
6
7
8
9

Figure 2.6: Example of history constraints and iniatially predicates.

16

2.5.3 iniatially Clause

The iniatially clause defines a predicate that have to be satisfied by all object of a class
after its instantiation. An initially predicate works as we write this predicate as a postcon-
dition in all non-helper constructors of a class.

In Figure 2.6, the initially predicate guarantees that the list is not null after instantia-
tion and enforces a non-negative size for the list also after instantiations.

2.5.4 Abstract Specifications: model fields and methods and ghost
fields

JML allows us to define model elements (model fields, model methods, and model classes).
All these model elements are introduced by the model clause. A model element is a
specification-purpose element, i.e., is an element that exists only to be used in specifi-
cations and is not considered as part of the Java source-code itself. These elements serve
to support the specification of certain properties that are not visible outside the specifica-
tion context.

Treating specifically fields, JML also provides ghost fields. Ghost and model fields
differ from each other because a ghost field does not have its value determined by a con-
crete field, i.e. by a represents clause. Ghost fields have its value initialized directly by its
own initialization or by a set-statement [28]. The value of a model field is resolved by the
concrete fields it abstracts from.

In the class Person of Figure 2.1, we have two model fields, i.e. name and weight, repre-
senting (via represents clause) the concrete attributes _name and _weight, respectively. We
use model fields here in the place of spec_public modifiers. It is noticeable that attributes
_name and _weight are private and we have occurrences of them in public methods. We
would use spec_public to make these attributes public for specification purposes or create
model fields (as we did) to represent and use them in the specifications.

In fact spec_public is a modifier which changes the visibility of a field. When we use
spec_public in an attribute declaration, the JML compiler rename the attribute and create a
model field to represent it. Suppose we have the following declaration:

private /=@ spec_public @/ int weight;

For the JML compiler this is a shorthand for the declaration

// @ public model int weight;

private int _weight; //@ in weight;

// @ private represents weight <—_weight;

We consider that the desugared version (strictly above) is more friendly and helps in

maintenance in the sense that one can change the Java field without affecting the readers
of the specification.

2.6 Language Levels

JML is a large and rich language composed for a huge number of features. JML is not
a complete language in the sense some features are not completely implemented and

17

other features are being implemented along the time. There are many tools (i.e. JML
tools) already developed and other tools in the process of development that use different
features of the language. Thus, it may be difficult to manage JML evolution since some
modifications or evolution in the language may affect tools that are (or not) dependent on
the features that are being changed or evolved.

To tackle this situation, research groups working on JML divided the language in
several language levels. As a result, JML become a modular language avoiding part of the
dependence-related problems. This modularity turns JML a language easier to be used,
studied and understood. Another advantage of this modularity is that JML tools need not
to be aware of the whole language focusing their implementation only in specific language
levels of interests.

JML has the following language levels, a more elaborated explanation about JML’s
levels can be found in [28]:

e Level O is the most used and fundamental level and constitutes the core of the lan-
guage. Users must be familiar with this level. It contains language constructs
needed to use JML as documentation, as a formal specification language and as
a DbC language. In addition, all JML tools should implement Level’s O features.

e Level 1 adds three categories of features to level 0: redundancy features, syntactic
sugars, and features to support static verification [21] and run time assertion check
(RAC) [15].

e Level 2 incorporates some features considered more specialized to certain uses of
JML. Some Level’s 2 features are used by JML tools and are important to describe
the JML’s semantics.

e Level 3 contains not well-understood features and features that are not implemented
by several tools.

e Level C incorporates features used to verify and specify concurrent programs.

e Level X has experimental features and some of these features can be moved to other
levels, eventually.

2.7 How JML Deals with Specification Inheritance

In JML, specifications present in a type are inherited by its subtypes, provided they are not
private. This leads us to two concepts: join of specifications and specification inheritance.
In this section these two concepts are described in details.

2.7.1 Join of specifications

In a program written in Java and annotated with JML, classes inherit not only attributes
and methods from superclasses, they also inherit specifications of invariants, methods,
history constraints, and initialisation predicates [40, 44]. Concerning methods, a method
specification may consist of several specifications cases, which are introduced by the
use of clauses such as requires, assignable, ensures [28]. Each specification case has a
precondition that states when the corresponding specification case applies to a call. The

18

keyword also joins specification cases. When a precondition of a specification case holds,
the corresponding postcondition must hold also. The definitions we present here are taken
from [44]. The notation T > (pre, post) is related to a specification case of an instance
method that type checks when its receiver (this) has static type 7. It also type checks in
contexts where this has some subtype of 7. In what follows, we introduce the definition
of the join of JML method specifications [44].

Definition 1. (Join of JML method specifications) Let T'>(pre’, post’) and T>(pre, post)
be specifications of an instance method m. Let U be a subtype of both T and T. Then
the join of (pre’, post’) and (pre, post) for U, written (pre’, post’) UY (pre, post), is the
specification U » (p, q) with precondition p:

pre || pre’

and postcondition q:
(\old(pre’) ==> post’) && (\old(pre) ==> post)
O

In Definition 1, the precondition of the join of two method specifications is their dis-
junction. The postcondition of the join is a conjunction of implications (written ==> in
JML’s notation), stating that when a precondition holds (in the pre-state), the correspond-
ing postcondition must hold.

2.7.2 Specification Inheritance

Specifications of subtypes in JML inherit specifications, besides attributes and methods.
First, we introduce some notation for type specification. For a type T, the invariant pred-
icate declared in the specification of T (without inheritance) is denoted by added_inv" .
Also for a type T, the history constraint predicate declared in the specification of 7' (with-
out inheritance) is denoted by added_hc! and the iniatially predicate in the specification
of T (without inheritance) is denoted by added_init". For a method m declared in a type
T, the notation added_spec!, = (added_pre! , added_post.) is the join of the specifica-
tion cases in type T for m. If m is declared in T with no specification and is not overriding
any method, then added_spec,{l = (true, true), which is the default specification in JML.
We use supers(T) to denote the set of all supertypes of T (including 7") and methods(7")
to denote the set of all instance method names declared in the specifications of the types
inaset7 .

Definition 2. (Extended specification) Suppose T has supertypes supers(T), which in-
cludes T itself. Then the extended specification of T is a specification such that:
methods: for all methods m € methods(supers(T)), the extended specification of m is
the join of all added specifications for m in T and all its proper supertypes

ext_spec! = | |"{added_specV | U € supers(T)}

invariant: the extended invariant of T is the conjunction of all added invariants in T and
its proper supertypes

ext_int" = N'{added_invY | U € supers(T))

19

history constraint: the extended history constraint of T is the conjunction of all added
history constraints in T and its proper supertypes

ext_hc' = /\T{added_th | U € supers(T)}

initially predicate: the extended initially predicate of T is the conjunction of all added
initially predicates in T and its proper supertypes

ext_hc” = N'{added_hcV | U € supers(T)}
O

The definitions we present here were introduced in [44] and are the ones we use in our
work to build our laws.

2.8 Behavioral Subtyping

In JML, each type is a behavioral subtype [46] of each one of its supertypes [40, 44]. This
characteristic is achieved using specification inheritance and methodological restrictions
on invariants, etc. [40, 44]. In this section we briefly explain the notion of behavioral
subtype JML enforces. For more details about this theme refer to [40, 44].

2.8.1 Refinement of Methods Specifications

The next definition, also extracted from [40], enforces the refinement of method specifi-
cations. Since T’ » spec is a specification of method that type checks with a receiver of
static type T we have:

Definition 3. (refinement w.r.t.) Let T'>spec and T spec be specifications of an instance
method m, such that T' is a subtype of T. Then spec’ refines spec with respect to T',
written spec’ 27 spec, if and only if for all calls of m where the receiver’s dynamic type
is a subtype of T', every correct implementation of spec’ satisfies spec.

One can notice that the refining specification, spec’ is stronger than spec, since, to
satisfy spec’, an implementation has to be more restrict than it would be to satisfy spec.
In other words, the set of implementations that satisfies spec is bigger than the one that
satisfies spec’.

2.8.2 A Definition of Behavioral Subtyping for JML

The current JML implementations relies on the notion of behavioral subtyping based on
the Liskov and Wing’s constraint-based definition [46]. In the sequel we show the defini-
tion extracted from [40].

Definition 4. (strong behavioral subtype) Let T’ be a type specification and let T be a
specification for a supertype of T'. Then T’ is a strong behavioral subtype of T if and only
methods: for all instances methods m in T, the method specification form m in T’ refines
that of m with respect to T',

invariant: the instance invariant of T' implies the instance invariant of T’ for objects of

type T’,

20

history constraint: the instance history constraint of T" implies the instance history con-
straint of T for objects of type T’,and

initially predicate: the instance initially predicate of T' implies the initially predicated of
T for objects of type T". O

2.9 JML Tools

Many research groups and independent contributors have collaborated on JML, develop-
ing tools to cover several kinds of necessitates such as writing, and verifying JML speci-
fications. The most basic tools of JML executes type checking and parsing. Additionally,
there are tools to deal with static analysis (e.g. ESC/Java2 [21]), formal verifications
(LOQOP tool [39] and Krakatoa [11]), run time assertion checking (RAC) (for example the
Jjmlrac tool [14]), unit test generation (jmlunit [10]), automated testing (JET [15]), and
documentation generation (see the jmldoc [10] tool).

In this section we present a brief overview of four important JML tools: jmlc, JET,
ESC/Java2 and Krakatoa. The first three were used in our work helping us to elaborate
and validate our laws and checking the conformance of pre- and post-states of our case
study programs.

2.9.1 Thejmlc

The JML compiler (jmlc) is part of the official suite of JML tools [1] developed by the
creators of the language. jmlc was developed at Iowa State University as an extension to
the MultiJava compiler [20]. The goal of jmlc is to translate specifications into run time
assertion checks under the form of bytecode. This bytecode is then inserted in the Java
code to handle specifications violations, i.e. to execute the run time assertion checking
(RAC) of the code. This checking is transparent in the sense that if the program execution
violates no assertions, its behavior (i.e. the behavior of the program before compiled by
Jjmlc) remains unchanged except for performance measures (time and space).
The use of jmlc follows three steps:

Parser checking of Java code and its specifications;

Program compilation with specification translation in run time assertion checking
bytecode;

Insertion of previous generated bytecode in the Java bytecode;

And in the end, the execution of the compiled RAC-modified Java code.

The bytecode generated as output from jmlc functions like a regular Java bytecode,
except for the fact that JML’s runtime library is needed to execute the JML-compiled
bytecode.

An important feature of jmlc is the mechanism of isolating and presenting the prob-
lems occurred in the RAC activity. It provides static information, stating exactly the
specifications violated and the right place in the code where the violation was detected.
Also, the jmlc provides dynamic information about the current values of variables at the
moment the violation occurred and what method calls led to the violation.

21

29.2 JET

JET [15] is a tool for automated test of formally JML-specified Java classes. It tests each
method of a class separately. Tests on JET are completely automated since each step of the
test is performed automatically, including selection and generation of test data, execution
of test and measurement results [17]. JET generates tests that check whether the execution
of each method meets its specifications and the specifications of the class that declares it.
Summarizing, these are the steps JET follows to test a method:

e First, a test case is created. Basically a test case for a specific method is formed by
a receiver object and real parameters. Taking as an example our addkgs method of
Person class (Figure 2.1), JET creates a Person object that acts as the receiver and
generates a random integer to pass as argument to the expected formal parameter kgs
. JET always generates or selects test data randomly. In the cases where the formal
parameter are declared as a reference type, JET executes an algorithm that executes
a series of method invocations preceded by constructor invocations to create random
objects. Random test data generation is described in details in [17].

e Second, the test case is executed. The target method is called by the generated test
case. At this point the Java class that declares the method is compiled by a JML
compiler with run time assertion checks enabled. The JML-compiled version of the
class is tested, in fact only the chosen method is invoked and the specifications of
the class and of the method are tested during the test execution.

o Finally, a test pass or fail according to the occurrences of JML assertion exceptions.
A method is executed only when its pre-condition is satisfied. In general when
a pre-condition is not satisfied the test case is considered incompatible to test the
method. Furthermore, when a postcondition is not satisfied the test fails meaning
that the source-code does not meet the specification for that test case [16].

The most attractive feature of JET is the full automation of unit testing, from test
data generation to test execution and test result determination. Using JET, we can verify
whether Java programs are in conformance with their formal specifications with only one
click.

2.9.3 ESC/Java2

ESC/Java2 [21] is an extension of the ESC/Java [29] tool, a pioneer tool in program static
analysis and formal verification of formal annotated Java programs. ESC/Java2 accepts
as input complete Java programs.

The major function of ESC/Java2 is to find common run-time errors in JML-specified
Java programs by static analysis of the program source-code and its formal specification.
ESC/Java2 has a built-in prover, called Simplify [25] that operates automatically to exe-
cute the static analysis. The amount of source-code that has to be checked and the types
of checking routines are controlled by the users by annotating classes and methods they
want with JML specifications.

ESC/Java2 consists of three macro phases,

e a parsing phase when also occurs syntax checking. In this phase parser errors and
cautions are generated;

22

e a typechecking phase to validate types and execute usage checks;

¢ and the static checking phase that finds potential bugs, executing as a background
process the Simplify prover. This phase produces warnings reporting the result of
the static analysis.

The main warnings (i.e. the report generated after a program execution) are catego-
rized as follows:

e Possible runtime exceptions, like cast, null pointer, division by zero and negative
array index exceptions.

e Possible method specification violations: pre- and postconditions and modifies
clauses written by users in program methods. For example, regarding our class
Person of Figure 2.1. If we write in a method body a code like person.addkgs(-1)
where person is an instance of Person, ESC/Java2 generates a warning like: Warn-
ing: Precondition possibly not established (Pre) addKgs(-1);

e Non null violations. These violations are generated by checks against non_null mod-
ifiers in specifications of fields and formal parameters.

¢ loop and flow specifications like assert specifications.

e possible class specification violations: invariants, history constraints and initially
clauses.

ESC/Java2 does not always report real source-code violations or bugs. In fact, ES-
C/Java2 may produce false positives. However, this is not a functional bug in the tool,
actually, this was a design decision. Eliminating this characteristic of the tool could make
it not automatic requiring user interaction on the static checking execution. Despite this
fact, ESC/Java2 is being used for many people and also in study cases [21, 18].

2.9.4 Krakatoa

Krakatoa [11] is a tool designed to verify Java programs annotated with JML specifica-
tions. The main focus of the Krakatoa development team is to address JavaCard pro-
grams [63], short programs which require high levels of formality and confidentiality.
Besides these programs, Krakatoa also supports Java programs with certain restrictions.

The general purpose of Krakatoa is to verify whether Java programs or JavaCard are in
conformance with their formal specifications. However, its activity is restricted to verify-
ing the conformity of pre- and postconditions (contained in the specifications), invariants
of classes, as well as behavioral exceptions. The verification is made proving that pre-
conditions and invariants are true at the beginning of a method call and, therefore, that
invariants and post-conditions are valid at the end of the method execution. In this disser-
tation the versions we use for tests were 0.6x and 1.11 (the latest known version up to the
writing of this text).

The environment of Krakatoa supports only the following JML constructs for meth-
ods: invariant, requires, assignable, ensures and signal clauses, as well as loop-invariants
and decreases clauses for while-loops and for-loops. For recursive methods, the clause
\measure_by is not supported, and the proof of the correctness of such methods is only

23

partial since Krakatoa does not prove their termination. In assertions (inside annota-
tions), Krakatoa supports a specific subset of constructs, these are: \old, \ result, \ forall,
\exists, \fresh, \not_modified, and specific constructs related to the assignable clause,
like \nothing and \everything (for a complete list see [11]). Model fields are also sup-
ported and are interpreted as new class attributes, however the use of model fields with
represents clause is not allowed yet.

The Krakatoa’s approach excels for the originality of its methodology. To certify Java
annotated programs, the tool translates the program into a input language for Why [11], a
stand-alone tool that produces proof obligations for programs written in its own language,
which was created especially to perform certification of programs. Why uses a methodol-
ogy based on a functional interpretation that utilizes static analysis of effects and monads
and a weakest pre-conditions calculus. The Why input language is a ML-like minimal
language with limited imperative characteristics. Why has the capacity to generate output
for several theorem provers as Coq [5], Simplify [25] and ergo [22].

Chapter 3

Laws

3.1 Introduction

The refactoring activity consists in changing a program structure, to accommodate new
requirements or to improve code structure, without changing its observable behaviour [31,
55].

Nowadays, the use of refactoring is a common activity among developers, and rec-
ommended by Extreme Programming (XP) [4] practitioners. Integrated Development
Environments (IDEs) like Eclipse [30] and Visual Studio [56] give automatic support to
apply refactorings for Java [35] and C# [24], respectively. However, such support do not
work perfectly and present erroneous behavior in certain situations [60]. The reason is
that these IDEs do not build its refactoring implementations on any kind of rigorous or
systematic activity.

Programming laws [38] are a good alternative to transform programs in a systematic
and rigorous way. In the context of object-oriented programming, Borba er al [7] and
Cornélio [23], developed a set of programming laws for a language, named ROOL [12],
that is a subset of Java, buth with a copy semantics. They focused efforts on ROOL’s
object-oriented features and presented how that set of laws is sufficient to transform a
program into on in a normal-form expressed in a small set of constructs of the language.

Cornélio uses programming laws [23] to prove refactorings proposed by Fowler [31].
Each little change in the program is accomplished by the application of a law. To apply a
law some conditions must be satisfied. This approach does not require tests because there
are proofs to ensure that the programming laws are behavior-preserving, provided that
the conditions for application are met. Cornélio proved the ROOL laws using a formal
semantics of the language, ROOL [12].

Duarte [26] adapts programming laws initially proposed for ROOL to the program-
ming language Java. As Java presents more constructs than ROOL, Duarte introduces
laws for dealing with contructors and static methods, for instance.

We characterize the systems where our laws can be applied as limited open sys-
tems [26] in which classes of our systems can only depend on external libraries and no
external elements depend on them. We consider that these systems are codified in only
one package, the default package. We also assume that the identifiers of our classes are
distinct from those of external libraries.

In this chapter, we introduce programming laws to deal with Java programs anno-
tated with the Java Modeling Language (JML). Some laws cope with Java elements of a
program, but it is necessary to take into consideration the existence of JML annotations.

25

Besides these laws, we present laws that only handle the transformation of annotations
written in JML.

3.2 General conventions

The laws are written in an equational style. Each side of the equation corresponds to
a template of a well-formed program. Programming laws relate the left-hand and the
right-hand sides by equality, along with side conditions. These laws precisely indicate the
modifications that can be done to a program, stating their corresponding proof obligations.
In fact, to apply a law, it is necessary to check (syntactic or semantic) side-conditions
that ensure that the transformation is behavior-preserving and also maintains the program
well-formedness. In our approach we consider that we are dealing with only one package
and working in a limited open system [26], in which classes of our system can depend on
external libraries, but external classes do not depend on classes of our system.

The laws may have two sets of proof obligations (provisos). The one started with
"JML" denotes the set of IML provisos. Regarding the "Java" set, it involves only Java
elements for stating conditions.

A JML-annotated Java program has the format cds Main, where cds is the set of all
classes of the program and Main corresponds to the unique class in the program that has
a main method. It is important to emphasize the notion of equivalence used to compare
equations. We use cds; Main; = cds, Main, to denote the equivalence of sets of classes
declarations cds; and cds,, i.e. to denote that the observable behavior of both sets is the
same. We need to stress that this definition take into account only sequential programs.

The notation cd; =.45ma4in cd 1S an abbreviation for cds cd, Main = cds cd, Main,
meaning that the class declarations cd; e cd, are equivalent and cds refers to the set of all
other classes of a program except for the Main class.

In some laws, we write cd| C .45 ma4in ¢d>. This term is an abbreviation of cds cd; Main
C cds cd, Main, and means that the class declaration cd, is refined by cd,.

The expressions cnds, ads and mds that appear inside a class represents the class
constructors, attributes and methods, respectively. We have to emphasize that these ex-
pressions also contain the respective specifications of each constructor or method. It is
not only Java code, we can also have the corresponding JML specifications.

We write rt m (pds) { mbody } to represent a method declaration where m is the
method name, 77 is its return type, pds is the list of formal parameters and mbody is the
method body. We write a(pds) to denote the identifiers of a of formal parameters pds. We
use the function vardecs(pds, e) that introduces a list of variables which have the same
names and types of the formal parameters pds, and are initialized exactly with the values
of the arguments (e) used to call the method.

We use B.a when we want to refer the access of an attribute named a by means of
expressions of static type B, strictly. The notation B.m refers to a call to a method named
m by means of an expression of static type B, strictly. The subclass relationship is denoted
by the symbol ‘<’, thus B < C’ denotes that B is a subclass of C. The T symbol is used
to represent an attribute type.

Predicates are described by the Greek letter y. Frame axioms are described by the
Greek letter w and represents a list of store-references [28] (see Section 2.4.1.2). A store-
reference denotes a set of memory locations in general.

We write @invs, @cons and @inis, in laws to denote the set of invariants, history
constraints and initially clauses of a class, respectively. We use @spec_cases to rep-

26

resent a set of specification cases of a method. The notation @ spec_cases can denote
either one specification case, many specification cases or none. In addition, this nota-
tion may be used in conjunction with other specification cases. In situations like that,
the set represented by @ spec_cases starts with the also keyword, in order to guarantee
the specification cases well-formedness. The same reasoning is applied to the previous
at-sign-started expressions.

The use of the expressions @invs, @cons, @inis, and @ spec_cases in the description
of the laws is not mandatory. To simplify the laws descriptions, we write explicitly only
the expressions used in the side-conditions of the laws. This fact does not mean that the
classes described in the laws have no invariants or history constraints, for example. Every
law of our set of laws was created considering the JML specifications inside the program.

We introduce here, various functions that are used throughout the text. The Functions
fspec, fpre and fpos, when applied to a method, return its specification cases, pre- and
post-conditions, respectively. Particularly the functions fpre and fpos may accept as in-
put a set of specification cases (e.g. @spec_cases). In this case, these functions return
the join of the pre- and postconditions of the set of specification cases, respectively. The
functions finv, fcons and finit return the invariants, history constraints and initially clauses
of a class, respectively. All these functions do not consider inherited specifications. To
consider inherited specifications we use fext_spec fext_pre, fext_pos, fext_inv, fext_cons
and fext_init. We use the convention C.m/pds], to refer a method m, with formal parame-
ters pds of some class C. Therefore, fpre(C.m/[pds]) returns the pre-conditions of method
m of class C. Table 3.1 summarize all the cited functions.

Besides the functions mentioned above, we use the function fassign(specc) that ac-
cepts as argument a specification case or a set of specification cases and returns the set of
locations attached to the assignable clause of specc or the union of the set of locations
attached to all assignable clauses pertaining to each one of specification cases of the set.

Function name | Accepted Inputs Return inherited
specifications?

fspec A method, in the style C.m/pds]. No

fpre A method in the style C.m/[pds], or a set of | No
specification cases like @ spec_cases.

fpos A method in the style C.m/[pds], or a set of | No
specification cases like @ spec_cases.

fext_spec A method in the style C.m/[pds]. Yes

fext_pre A method in the style C.m/[pds], or a set of | Yes
specification cases like @ spec_cases.

fext_pos A method in the style C.m/[pds], or a set of | Yes
specification cases like @ spec_cases.

finv A class name No

feons A method in the style C.m/[pds] . No

Sfinit A class name. No

fext_inv A class name. Yes

fext_cons A method in the style C.m/pds]. Yes

fext_init A class name. Yes

Table 3.1: Auxiliary functions used in the laws

We write ‘=’ to indicate the conditions that must to be satisfied to apply a law from

27

left to right. Likewise, we use ‘-’ to indicate what have to be satisfied to allow the
application of a law in the opposite direction. Conditions that must hold in both directions
are indicated by ‘<.

In Section 3.3 we present a subset of the laws developed in this work. This subset
consists in the most significant and interesting laws we created. The complete set of laws
is presented in Appendix A.

3.3 Laws

Some of the laws described here are inspired on the laws previously described by Borba [7],
Cornélio [23] and Duarte [26]. There are laws completely new since we are not aware
about other works in the same direction. We described the "Java parts" of our laws ex-
tracting the main concepts of the laws, defined in [7, 23, 26], that deal with object-oriented
code. The laws we describe are "JML-aware". We also have laws that only deal with JML
annotations. However, all laws defined in this work take into consideration Java and JML
elements of the program. With respect to JML elements, we mainly focused on a sub-set
of JML’s Level 0 constructs, specially the ones used in lightweight specifications. Some
specific and common constructs of Level 1 (e.g. the pure modifier) are considered too.

Our laws follow the general conventions adopted in Section 3.2. We categorize our
laws in seven sections: Classes, Invariants, Attributes, Methods, Constructors, Commands
and Expressions, and Predicates.

3.3.1 Classes

Classes that are no longer used in a program can be eliminated. In the case of introducing
a new class, we need to check whether the new class name is already present in the pro-
gram and if the superclass of the new class is valid 2.

Law. {class elimination)
cds cdiy Main = cds Main

provided

JML:

(—) The class declared in cd; is not referred in any specification declared in cd's or Main.
Java:

(—) The class declared in cd,; is not referred in cds or Main.

(<) (1) The name of the class declared in cd; is distinct from those of all classes declared
in cds; (2) The superclass appearing in cd; is either Object or declared in cdss.

m]

It is possible to make a concrete class abstract if this class is not instantiated in any

place in the program. In contrast, we can make a abstract class concrete if its all methods
are concrete.

ZRemember that Ob ject is also considered a valid class in Java.

28

Law. {make class abstract)

class C extends D { abstract class C
ads extends D {
cnds =cds,Main ads
mds mds

} }

provided
JML:

(=) ‘new C’ does not occur inside specifications of cds, Main, cnds nor mds.
Java:

(=) ‘new C’ does not occur in c¢ds, Main, cnds nor mds.

(«~-) Every method m of mds is concrete.

O

One can change the superclass of a class from Object to any other class if they do
not share attributes with same names. In addition, it is necessary to guarantee that the
invariant, history constraint and initially clauses of the superclass are weaker than the
corresponding invariant, history constraint and initially clauses of the target class. And
more, if the target class or one of its subclasses has any method with the same signa-
ture to any method of the superclass, the specification of the superclass’ method must be
the stronger pre-condition and the weaker postcondition regarding the specification of the
method with same signature declared in the target class or in one of its subclasses.

Law. (change superclass: from Object to another class)

class C extends Object { class C extends D {
@invs @invs
@cons @cons
@inis @inis
ads ads
cnds cnds
mds mds

} }

cds, Main cds’, Main

where

—

cds’ = cds[/]/@ also fspec(m)/fspec(m)], for every method m in mds that is a redefi-

nition of a method introduced in some class £ such that D < E.

provided
JML:

(=) (1) @invs = finv(D); (2) @cons = fcons(D); (3) @inis = finit(D); (4) For
any method m in mds that redefines a method m declared in D or in any class E

29

such that D < E, fpre(E.m[pds)) = fpre(C.m[pds]) e \old(fpre(E.m[pds])) =
(fpos(C.m[pds]) = fpos(E.m[pds))).

(<) (1) C or any of its subclasses in cds is not used in type casts or tests involving
any expression of type D or of any supertype of D in specifications; (2) this.a
does not appear in specifications of C, nor in specifications of C’s subclasses, for
any attribute a of D or of any superclass of it with specification visibility default,
protected or public; (3) le.a, for any le : C, does not occur in specifications in
cds or Main, for any a of D or of any superclass of it with specification visibility
default, protected or public; (4) There is no method call E.m inside specifications
of cds, for any pure method m, such that E < C and m is declared in D or in any
of its superclasses, but is not redefined in mds; (5) super does not appear in any
specification of C.

Java:

(—) All attributes in ads and in subclasses of C are distinct from those declared in D and
in superclasses of D.

(<) (1) C or any of its subclasses in cds is not used in type casts or tests involving any
expression of type D or of any supertype of D;

(2) There are no assignments of the form /e = exp, for any le whose declared type
is D or any superclass of D and any exp whose type is C or any subclass of C;

(3) Expressions of type C or of any subclass of C are not used as value arguments
in method/constructor calls with a corresponding formal parameter whose type is
D or any superclass of D;

(4) Expressions whose declared type is D or any of its superclasses are not returned
as a method result in calls with an expected result whose declared type is C or any
subclass of C;

(5) this.a does not appear in C, nor in any subclass of C, for any public or protected
attribute a of D or of any of its superclasses;

(6) le.a, for any le : C, does not appear in cds or ¢ for public or protected attribute
a of D or of any of its superclasses;

(7) There is no E.m, for any method m such that, E < C and m is declared in D or
in any of its superclasses, but is not redefined in md.s.

(8) super does not appear in any method in md.s.

Concerning changing the superclass of a class to Object much more conditions need
to be satisfied, both Java and JML conditions.

3.3.2 Invariants

Law (move invariant to superclass) allows us to move an invariant ¥, from a subclass to
its superclass. To apply this law in any direction, we require that calls to super do not
occur in Y, since after law application (in both directions) these calls may refer different
elements. To apply this law from left to right, model fields cannot appear in ¥, and oc-
currences of this must be cast otherwise the elements they refer may not be visible.

30

Law. (move invariant to superclass)

class B extends A { class B extends A {
//@ private invariant ; //@ private invariant i
@invs && ¥,

@invs

ads
cnds ads
mds cnds

} _ mds

class C extends B { ~eds.Main |y
//@ private invariant y,; class C extends B {
@invs’ @invs’
ads’ ads’
cnds’ cnds’
mds’ mds’

} }

where

Y, = this instanceof C ==>
provided
JML:
(<) super does not appear in ¥,.

(—) ¥, does not contain occurrences of model fields declared in C, nor uncast occur-
rences of this.

Concerning the soundness of this law, we take in account the inheritance of specifica-
tions in JML (Section 2.7), in which inherited invariants are conjoined with locally added
invariants. On the left-hand side, the invariant y,, which is present in class C, is inherited
by the subclasses of C and holds for all subclasses. On the right-hand side of the law, the
invariant ¢, (notice that ¢} is actually ¢, with an antecedent condition) is inherited by
all subclasses of B besides those that are not subclasses of C. For those classes that are
subclasses of B, but not subclasses of C, the invariant holds because for objects of these
classes the antecedent instanceof C fails and the whole implication is true, not changing
the meaning of any original local invariant that inherits .

The following three laws allow us to change the specification visibility of an invariant
from default to public, from public to private and from protected to private, as well as in
the inverse directions.

Law. (change invariant visibility: from default to private)

class C extends D {
//@ invariant i ;
@invs

ads
cnds
mds

}

provided
JML:

(<) Every attribute, pure method and model field that occurs in ¢ has non-private spec-

ification visibility;

=cds,Main

class C extends D ({
//@ private invariant i;
@invs

ads
cnds
mds

Law. (change invariant visibility: from public to private)

class C extends D {
//@ public invariant ¢ ;
@invs

ads
cnds
mds

}

provided
JML:

(<) Every attribute, pure method and model field that occurs in i has public specifica-

tion visibility;

=cds,Main

class C extends D ({
//@ private invariant y;
@invs

ads
cnds
mds

32

Law. (change invariant visibility: from protected to private)

class C extends D { class C extends D ({
//@ protected invariant i ; //@ private invariant i;
@invs @invs
ads =cds,Main ads
cnds cnds
mds mds
} }
provided
JML:

(<) Every attribute, pure method and model field that occurs in ¢ has non-public spec-
ification visibility;

O

We can apply directly anyone of the laws (change invariant visibility: from default
to private), {(change invariant visibility: from public to private) and (change invariant
visibility: from protected to private) from left to right, i.e. from any visibility to private
since a private invariant can refer elements of any visibility. Regarding the application of
the laws (change invariant visibility: from default to private), {change invariant visibility:
from public to private) and {(change invariant visibility: from protected to private) in the
opposite direction it is necessary to check if the new visibility of the invariant is at least
as permissive as the visibility of all referred attributes, pure methods and model fields.

The Law (collapse invariants) represents a JML syntactic sugar (see Section 2.4.5).
One invariant written in more than one invariant clause (left-side of the law) can be sim-
plified to an unique invariant clause separating each predicate by a ‘&&’ (and) operator.

Law. (collapse invariants)

class C extends D {
//@ private invariant y;
//@ private invariant y,;

class C extends D {
//@ private invariant

//@ private invariant y,; && Yo && .. && Y

=cds,Main ads
cnds
ads
mds
cnds |
mds

3.3.3 Attributes

In this subsection we present laws that deal with attributes. It is important to emphasize at
this point that we are considering that programs are coded in just one package, the default

33

package . Thus, all attributes (except, the private ones) can be accessed in any part of the
program.

In Java, we have only three laws to alter the visibility of an attribute: from default to
public, protected to public and private to public. But now, due to JML, we need to take into
account the concept of specification visibility (refer to Section 2.4.4 for details). In fact,
we have that attributes with less restricted visibilities can be accessed in more restricted
specification visibilities contexts, i.e. a public attribute can be accessed in specifications
with any more restricted specification visibility (protected, default or private), and public
as well. Thus, we now have fourteen laws to cover all possible visibility changes situa-
tions, including Java visibility and specification visibility modifications. We show three
of them in the sequel while the other laws can be found in Appendix A.3.

Making an attribute public since it is currently private is straightforward. Neverthe-
less, the opposite has to respect some conditions.

Law. (change attribute visibility: from private to public)

class C extends D { class C extends D ({
private T aq; public 7 a;
ads =cds,Main ads
cnds cnds
mds mds
} }
provided
JML:

(<) (1) B.a, for any B < C excepts of strict type C, does not occur in any specifica-
tion of cds or Main; (2) C.a, occurs only inside specifications of C with private
specification visibility.

Java:

(<) (1) B.a, for any B < C excepts of strict type C, does not occur in cds or Main; (2)
C.a occurs only in C’s body.

O

Considering Java, we have to assure that accesses to the attribute occur only through
instances (including this) of static type equal to the class declares it and inside the class.
Taking into account JML, we have two provisos due to specification conformance main-
tenance, specially specification visibility, all accesses to the attribute should appear in
specifications with private visibility. In fact, the specification visibility can not restrict the
current Java visibility. Hence, an access to private attributes can only occur inside private
specification visibility specifications.

JML provides alternatives to modify the specification visibility of attributes, methods
and model fields. An attribute can have its specification visibility modified using the spe-
cial JML modifiers spec_protected and spec_public. We find spec_public modifier in
Law (change spec public attribute visibility: from private to public), a law similar to Law

3Extending our scope to consider also programs with different packages could discharge modifications
in our laws that deal with visibility.

34

18, but that works for private (but specification public) attributes. Regarding Java, private
attributes adorned with the spec_public modifier are still private, but regarding JML they
are public. Thus, it can appear in specifications with public specification visibility. Hence,
the Law (change spec public attribute visibility: from private to public) is equals to Law
18 except for a JML condition that is no longer necessary.

Law. (change spec public attribute visibility: from private to public)

da;ii‘g t:xtends DA class C extends D {
/*@ spec_public @*/ T a; public T a;
ads =cds,Main ads
cends cnds
mds mds
| }
provided
Java:

(<) (1) B.a, for any B < C excepts of strict type C, does not occur in cds or Main; (2)
C.a occurs only in C’s body.

O

Law (change specification visibility of private attribute: from private to public) shows
how it is possible to modify the specification visibility of an attribute. Applying this law
from the left to right is straightforward, whereas, from the right to left it is necessary to
guarantee that the attribute is referenced only inside specifications with private specifica-
tion visibility.

Law. (change specification visibility of private attribute: from private to public)
class C extends D {
private /*@ spec_public

class C extends D {
private 7 a;

@*/ T a;

ads =cds,Main ads
cnds

cnds
mds

| mds

}
provided
JML:

(<) a, occurs only inside specifications with private specification visibility.

O

By using Law (move reference type attribute to superclass), we can move an attribute
to a superclass if it is not already declared in the superclass and if it does not cause name
conflicts. The application of Law (move reference type attribute to superclass), from right
to left, allows us to move an attribute to a subclass. In this case, we allow only accesses

35

to a by C or subclasses of C, including accesses that appear in specifications.

Law. (move reference type attribute to superclass)

class B extends A { class B extends A {
ads public /*@ nullable @*/ T a
cnds ads
mds cnds
} mds
class C extends B { =cdsMain |}
public /*@ nullable @*/ T a class C extends B {
ads’ ads’
cnds’ cnds’
mds’ mds’
} }
provided
JML:

(«=) D.a does not occur inside specifications in cds, Main, cnds, cnds’, mds nor mds’,
forany D<Band D £ C.

Java:
(<) T is not a primitive type.

(=) (1) aisnotdeclared in ads; (2) The attribute name a is not declared by the subclasses
of B in cds.

(=) D.a does not occur in cds, Main, cnds, cnds’, mds nor mds’, forany D < Be D £
C.

O

In Law (move reference type attribute to superclassy, we consider only attributes
whose type is a reference type. There is another law (Law 28) for moving an attribute
of primitive type. The reason for having two disctinct laws for dealing with attributes of
primitive and reference types comes from the nullable keyword in Law (move reference
type attribute to superclassy. In JML, any declaration (except for local variables) whose
type is a reference type is implicitly declared to be not null, except when in the declara-
tion appears the a nullable modifier. Thus, by default, JML always checks if a attribute
is null in all visible states of the class that declares it. When we move an attribute to a
superclass, this is not aware about the newly moved attribute and, therefore, this action
can cause a undesirable behavior. In fact, if one instantiates the superclass, JML will raise
an invariant exception reporting that the new attribute is null. To avoid this, we force at-
tribute nullability to move it up. If we want to move a non-null a attribute, it is necessary
to introduce the nullable modifier before moving it.

We introduce the modifier nullable by applying Law 26. Remember that, in Java,
only reference types can be null.

The type of an attribute may be modified to a superclass type, if every occurrence of
the attribute inside specifications and in source-code is cast with the current attribute type
or subtype. These conditions have to hold also when one changes the attribute type to any

36

type corresponding to a subclass of it. However, in this case it is also a requirement to
check if the expressions assigned to the attribute are of the same type or of any subtype
of it. The Law (change attribute type) allows us to change an attribute type.

Law. (change attribute type)

class B extends A { class B extends A {
public T a; public 77 a;
ads _ . ads
cnds eds.Main cnds
mds mds
} }
provided
JML:

() T < T’ and every occurrence of a inside specifications of B, cds and Main, is cast
with T or any subtype of T in cds.

Java:

(¢2) T < T’ and every non-assignable occurrence of a in expressions of mds, cds e Main,
is cast with T or any subtype of T in cds.

(«-) Every expression assigned to a, in mds, cds e C, is of type T any subtype of T'.

3.3.4 Methods

In this section we show laws that deal with methods as well as laws that treat meth-
ods specifications. Although history constraints are type specifications they impose con-
straints to methods. We do not define laws to deal with history constraints, but some laws
take into consideration the existence of them to define side-conditions.

Law (weaken pre-condition) is an adaptation of the law weaken precondition defined
by Morgan [52]. A predicate /|, is weaker than another predicate y, if ; = ¢]. This
law and the next one are refinement laws.

37

Law. (weaken pre-condition)

class C extends D { class C extends D ({
ads ads
cnds cnds
//@ requires i ; //@ requires y/;
// @ assignable w; //@ assignable w;

//@ ensures i; //@ ensures y»;

@spec_cases Scds. Main @spec_cases

rt m(pds) { rt m(pds) {
mbody mbody

} }

mds mds

} }
provided

JML:

(D) Y = ¥ 2) ¥ = fpre(B.m[pds)), for every class B such that B < C.

Given a method m with pre-condition i, declared in a class C, it is possible to apply
the Law (weaken pre-condition), if the new pre-condition i.e. /| is weaker than ;.
Furthermore, we must ensure that | implies each pre-condition of redefined methods m
in subclasses of C. The previous proviso guarantees that the new pre-condition does not
weaken the contract of redefinitions of methods m in subclasses. In other words, we can
weaken a pre-condition i, if the new pre-condition is stronger than the pre-conditions of
the redefinitions of m.

Another law adapted of Morgan’s work is Law (strengthen post-condition). If a pred-
icate ¥, is stronger than another predicated ¢, if ¢, = y,. Given a method m with
pre-condition ¥, and postcondition ¥, declared in a class C, it is possible to apply the
Law (strengthen post-condition), if the new postcondition i.e. /, is stronger than ;.
In addition, we must guarantee each postcondition of redefined methods m in subclasses
of C implies ¢. The previous proviso guarantees that the new postcondition does not
strengthen the contract of the redefined methods m in subclasses. In other words, the con-
dition (2) assures that whenever a call to m — by an object of type C — satisty ¢, and ¢, 1s
true, then ¢, will also hold. Notice that simplifying the condition (2) by omitting its de-
pendence on the pre-condition makes this condition more restrictive than it should be [40].

38

Law. (strengthen post-condition)

class C extends D { class C extends D ({
ads ads
cnds cnds
//@ requires i ; // @ requires i;
// @ assignable w; //@ assignable w;
//@ ensures i; C _ /] @ ensures y/;
@spec_cases —cds.Main @spec_cases
rt m(pds) { rt m(pds) {

mbody mbody

} }
mds mds

} }
provided

JML:
(D) ¥, = Y5 (2) \old(yr1) = (fpos(B.m[pds]) = V), for every class B such that B < C.

O

In some situations, to write a specification case for a method we need exactly the same
pre-condition as that specified in the other non- \same specification cases of a method or
in the case of an override method we want, for instance, to write another post-condition (a
stronger one) using the same pre-condition of the supertypes. In such cases, we should use
the \same keyword that stands for the disjunction of the pre-conditions in all non- \same
specification cases of the method in question together with all pre-conditions inherited
from the methods specifications of its supertypes. We can insert or remove a specification
case with \same and postcondition default (true) if the method is an override or if the
method has other specification cases and these specification cases must be non- \same’

39

Law. (insert \same specification case)

class C extends D ({
ads
class C extends D { cnds
ads
cnds //@ requires \same;
// @ assignable
@spec_cases \not_specified;
rt m(pds) { =cds.Main // @ ensures true;
mbody @spec_cases
} rt m(pds) {
mbody
mds }
}
mds
}
provided
JML:

(<) (1) @spec_cases has at least one specification case or rt m(pds) is an override;
(2) @spec_cases does not have a specification case with pre-condition equals to
\same.

One can change a assignable clause of a specification case from \not_specified to
\everything directly regarding the method specification is a lightweight specification.

Law. (change assignable from \not_specified 7o \everything)

assignable \not_specified; = assignable \everything;

Given that all specification cases of a method have a \nothing assignable clause,
we can make it pure. Recall that in Section 2.4.5 we showed that pure methods uses
assignable \nothing clause as default. In contrast, to transform a pure method in a non-
pure one, we need to assure that this method is not called in any specification of the
program. The Law (make method pure) allows us to make a method, pure.

40

Law. (make method pure)

class C extends D { class C extends D {
ads ads
cnds cnds
@spec_cases @spec_cases
rt m(pds) { =cds.Main /*@ pure @*/ rt m(pds) {
mbody mbody
} }
mds mds
} }
provided
JML:

(«») For all specification case specc such that specc € @spec_cases, fassign(specc) is
equivalent to \nothing.

(<) B.m(e) does not appear in specifications of cds, Main nor in specifications of C, for
any B such that B < C and B does not redefine m.

The next three laws (Law (collapse pre-conditions), Law {collapse post-conditions)
and Law (collapse also combinations)), represent JML syntactic sugars (see Section 2.4.5).
Law (collapse pre-conditions) and Law (collapse post-conditions) are rather similar to
the Law (collapse invariants). The Law (collapse also combinations) executes the join
(recall Section 2.7.1 for more details) of all specifications cases of a method in only
one specification case. It is important to emphasize the result obtained when various
assignable clauses are joined: the join of the locations of two or more assignable clauses
is the union of these locations as we can see in the where clause of Law (collapse also

combinations).

Law. (collapse pre-conditions)

class C extends D {
ads
cnds

//@ requires i;;
//@ requires i;;

//@ requires Vy;

// @ assignable w;

//@ ensures i;

@spec_cases

rt m(pds) {
mbody

}

mds

Law. (collapse post-conditions)

class C extends D {
ads
cnds

//@ requires i ;
// @ assignable w;
//@ ensures i,;;
//@ ensures V;;

//@ ensures ,;

@spec_cases

rt m(pds) {
mbody

}

md.s

=cds,Main

=cds,Main

41

class C extends D ({
ads
cnds

//@ requires ¥, && yY;
&& ... && Yin;
//@ assignable w;
//@ ensures y;
@spec_cases
rt m(pds) {
mbody

}

mds

class C extends D ({
ads
cnds

//@ requires y;
// @ assignable w;
//@ ensures Y,; && Yy
&& ... && Yoy
@spec_cases
rt m(pds) {
mbody

}

mds

42

Law. (collapse also combinations)
class C extends D {

ads

cnds

class C extends D ({
ads
cnds

//@ requires V;;
//@ assignable w;
//@ ensures ,;;

//@ also ...

// @ also

//@ requires Vy;
//@ assignable w,;
//@ ensures Y,;

//@ requires

8 I B /AT
//@ assignable w;
// @ ensures

=cds,Main (\Old(lpll) ==> 171’21) &&

&& (\old (Y1) ==> ¥Y2n)

rt m(pds) | t ”;Ezg;) {
mbody | Y
}
mds | mds
}
where

w=w Uw,...Uw,

As we described in Section 3.3.3 for attributes, changing visibility imposes constraints
on how Java treats visibility modifiers and how JML deals with specification visibility. To
deal with methods we also have to write laws to deal with pure methods. We define several
laws to address all possible visibility modifications. Here we present Law (change pure
method visibility from: private to public) and Law {(change specification visibility of pure
private method: from private to public). The complete set of method visibility laws,
including laws to deal with non-pure methods, is found in Appendix A.4.

By applying Law (change pure method visibility from: private to public), we can
change the visibility of a pure method from private to public or from public to private.
In lightweight specifications, the specification visibility of the specifications cases of a
method is the same as the method #. Hence, to change the visibility of a method from
private to public we need only to check if the attributes, pure methods and model fields
that appear in the specification cases of the method are public. Recall the fact that public
specifications can refer only public elements.

“Recall that our laws were described considering only lightweight specifications for methods

43

Law. (change pure method visibility from: private to public)

class C extends D { class C extends D ({
ads ads
cnds cnds
@spec_cases @spec_cases
private /*@ pure @*/ =cds.Main public /*@ pure @*/
rt m(pds) { rt m(pds) {
mbody mbody
} }
mds mds
} }
provided
JML.:

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public
specification visibility.

(<) (1) B.m(e), for any B < C except of strict type C, does not occur in any specification
of cds or Main; (2) C.m(e) occurs only inside specifications — that appears only in
C’s body — with private specification visibility.

Java:

(<) (1) B.m(e), for any B < C excepts of strict type C, does not occur in cds or Main;
(2) C.m(e) occurs only in C’s body.

To change the visibility from public to private it is necessary to satisfy several condi-
tions. In the context of JML, we need to assure that calls to the method appear only inside
specifications with private visibility of class C. Regarding Java we, need to ensure that
calls to the method appear only inside C.

Law (change specification visibility of pure private method: from private to public)
changes the specification visibility a the method imposing restrictions only in JML ele-
ments. One can modify the specification visibility of a method from private to public if
the attributes, pure methods and model fields that appear in the specification cases of the
method are public.

44

Law. (change specification visibility of pure private method: from private to public)

class C extends D { class C extends D ({
ads ads
cnds cnds
@spec_cases @spec_cases
private /*@ pure @*/ rt =cds.Main private /*@ spec_public
m(pds) { pure @*/ rt m(pds) {
mbody mbody
} }
mds mds
} }
provided
JML.:

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public
specification visibility.

(«=) m(e) occurs only inside specifications with private specification visibility.

In Java, introducing a method redefinition is possible if the original method is not
abstract and the target class does not declare a method with the same name. However,
the presence of JML creates imposes some restrictions. Invariants and history constraints
of subclasses can not restrict attributes and model fields of their superclasses. Ruby [59]
refers to this constraint as a rule called Super-call authorization rule. He says that "a su-
perclass method may only be called by subclass methods, if it has not been invalidated by
that subclass". This is the condition (from the left to right) addressed in Law (introduce
void method redefinition). To exemplify, suppose the invariant @invs of class B restricts
a integer attribute x of B with the following predicated, x > 10, and also suppose that
mbody is x = 12. Consider that @invs’ has a predicated like x > 12. If a call to m via
super occurs in the body of a redefinition of m in class C, the invariant x > 12 of C will
break.

45

Law. (introduce void method redefinition)

class B extends A {
@invs
@cons
class B extends A {
@invs »
@cons
cnds
i:csis // @ requires y;
//@ assignable w;
//@ requires y; //@ ensures y»;
i void m(pds) {
//@ assignable w; P
// @ ensures i; } y
void m(pds) { -
mbOdy =cds,Main }
} class C extends B {
md.s o
@invs
! @cons’
class C extends B {
@invs’ ,
’ ads
@cons /
cnds
ads ¢ @spec_cases
cnds .
mds’ void m(pds) {
} super.m(a(pds));
}
mds’
}
provided
JML:

() (1) @invs’ and @cons’ does not restrict attributes in ads, model fields of B or any
attribute or model field inherited by B.

Java:

(—) m(pds) is not abstract and is not declared in mds’.

O

Law (move original method to superclass) allows us to move an original method from
a class to its superclass. The proviso concerning super is needed because its semantics
may be affected when we move it from a subclass to a superclass, or vice versa. We can
only move the specification of a method if it does not refer to model fields, attributes and
pure methods of the class in which the method is originally declared. Also, the precon-
dition i1 must be stronger than the precondition of any method with signature rt m(pds)
declared in subclasses of B. On the other hand, the postcondition must be weaker than that
of methods declared in subclasses of B in cds. The where clause of the law ensures that

46

if we have a method with signature r¢ m(pds) with a specification declared in subclasses,
the specifications are modified to start with an also keyword.

Law. (move original method to superclass)

47

class B extends A { class B extends A {
ads ads
cnds cnds
mds

} //@ requires i ;

class C extends B { // @ assignable w;
ads’ // @ ensures y;
cnds’ _ rt m(pds) { mbody }

B mds

//@ requires i ; }
// @ assignable w; class C extends B {
//@ ensures i; ads’
rt m(pds) { mbody } cnds’
mds’ mds’

} }

cds, Main cds’, Main

where

—

cds’ = cds[//@ also fspec(m)/fspec(m)], for every method m (with signature rt
m(pds) and that is not a redefinition) of any class E such that £ < B and E £
C.

provided
JML:

(«») (1) super does not appear in ¥ nor in ;; (2) ¥, = fpre(E[rt m(pds)]) for every
class E, such that E < Bbut E £ C, and E introduces a method rt m(pds). (3) For
any specification case for every method r¢ m(pds), declared in any class E such that
E < Bbut E £ C, with pre-condition PRE and postcondition POST, \old(y,) =
(\Old(PRE) = POST) = (\old(y1) =).

(—) Both ¢, and i, do not contain occurrences of model fields declared in C nor uncast
occurrences of this.

Java:

(«») (1) super and private attributes dos not appear in mbody; (2) m(pds) is not declared
in any superclass of B in cds.

(=) (1) m(pds) is not declared in mds; (2) mbody does not contain uncast occurrences of
this nor expressions in the form ((C)this).a and of the form ((C)this).m(e) for any
attribute a nor method m, in ads’ and mds’, respectively, with private visibility.

(<) (1) m(pds) is not declared in mds’; (2) D.m(e), for any D < B and D £ C, does not
appear in cds, Main, mds or mds’.

O

By applying Law (move original method to superclass), from left to right, we move

48

the method m up only if the specification does not refer to elements of the class where
it is declared through uncast occurrences this. Moreover, cast references to attributes or
methods of class C cannot mention attributes whose specification visibility is protected.

By using Law (move redefined method to superclass: overriden method with non-
default specification case), we move a redefined method from a class to its superclass.
The proviso concerning super is needed because its semantics may be affected when we
move it from a subclass to a superclass, or vice-versa. We can only move the specifica-
tion of a method if it does not refer to model fields of the class in which the method is
originally declared. Furthermore, this expressions may occur in the target method speci-
fications only if they are cast. In fact, as in the law the method has default visibility, only
non-private elements can be referenced in its pre- and postconditions. This is similar to
Java: the this expression may appear in mbody’ if it has a cast and mention only non-
private attributes or methods of class C. The right-side of Law (move redefined method to
superclass: overriden method with non-default specification case) introduces instanceof
tests in each one of the specifications. In this way we assure that the original pre- and
postconditions of the redefined method of C will only be applied to callers that are in-
stances of C or instances of any of any subclass of C.

49

Law. (move redefined method to superclass: overriden method with non-default specifi-

cation case)

class B extends A {
ads
cnds

//@ requires i ;
//@ ensures i;
rt m(pds) { mbody }
mds
}
class C extends B {
ads’

cnds’

// @ also

//@ requires y/;
//@ ensures V/;

rt m(pds) { mbody }
mds’

provided
JML:

=cds,Main

(¢>) super does not appear in ¢/ nor in .

class B extends A {
ads
cnds

//@ requires (! (this
instanceof C) && y);
//@ ensures (! (this
instanceof C) && y»);
//@ also
// @ requires (this
instanceof C && ¥));
// @ ensures (this
instanceof C && v/);
//@ also
//@ requires (this
instanceof C && y);
// @ ensures (this
instanceof C && y»);
rt m(pds) {
if (!(this instanceof C))
{ mbody } else { mbody" }
}
mds
}
class C extends B {
ads’
cnds’
mds’

(—) Both ¢ and i, do not contain occurrences of model fields declared in C, nor uncast

occurrences of this.

Java:

(<) (1) super and private attributes do not appear in mbody’; (2) super.m does not appear

in mds’

(—) mbody’ does not contain uncast occurrences of this nor expressions of the form
((C)this).a and of the form ((C)this).m(e) for any attribute a nor method m, in ads’

and mds’, respectively, with private visibility.

(<) m(pds) is not declared in mds’.

50

The type of a method formal parameter may be modified to a superclass type, if every
occurrence of the parameter inside specifications and in the program (only non-assignable
ones) is cast with the current attribute type or subtype. These conditions have to hold also
when one modifies the parameter type (7’, for example) to any type corresponding to a
subclass of it (for instance, 7). However, in this case we also need to assure that every
actual parameter corresponding to the formal parameter we are changing, is of type T or
of a subtype of 7', as well as the occurrences of the formal parameter itself. Law {(change
parameter type of pure method) allows us to change the type of a parameter; Law (change
return type of pure method) changes the type of the value a method returns.

Law (change parameter type of pure method) and Law {(change return type of pure
method) deals with pure methods, there are similar laws that address non-pure methods.
They can be found in Appendix A.4.

Law. (change parameter type of pure method)

class C extends D { class C extends D ({
ads ads
cnds cnds
@spec_cases =cds.Main @spec_cases
/*@ pure @*/ rt /*@ pure @*/ rt
m(T x, pds) { mbody } m(T" x, pds) { mbody }
mds mds
} }
provided
JML:

(«») every occurrence of x in expressions of @spec_cases are cast with T or with any
subtype of T.

(<) every actual parameter associated with x found in specifications of C, cds e Main is
of type T or of any subtype of 7.

Java:

(<) T < T’ and every non-assignable occurrence of x in expressions of mbody are cast
with T or any subtype of 7.

(«-) (1) every actual parameter associated with x in mds, cds and Main is of type T or
any subtype of T'; (2) every expression assigned to x in mbody is of type T or any
subtype of T'; (3) every use of x as the method return in mbody is for a corresponding
declared return of type T or any supertype of 7.

51

Law. (change return type of pure method)

class C extends D { class C extends D ({
ads ads
cnds cnds
@spec_cases _ . @spec_cases
/*@ pure @*/ rt m(pds) { —cds,Main /*@ pure @*/ rt’ m(pds) {
mbody mbody
} }
mds mds
} }
provided
JML:

(=) (1) every call to m(pds) that occurs in specifications in C, cds and Main is cast with
rt; (2) every occurrence of \result in postconditions of @ spec_cases are cast with
rt or any subtype of rt.

Java:
() re<rr.
(—) every call to m(pds) used as a expression is cast to rt.

(<) every expression used in the return return clause in mbody is of type rt or of any
subtype of rt.

To delete a method from a class is not a straightforward action. In the Law (method
elimination: pure, redefined, non-default pre-existent specification) we deal with a spe-
cific situation in which the method has explicit specifications and it has some redefinition.
To insert or remove a method in this situation, the precondition /1 must be stronger than
the precondition of any redefinition introduced in subclasses of C. On the other hand,
the postcondition must be weaker than that of redefinitions declared in subclasses of C in
cds. Consider now a situation of method elimination. Only calls to the method we want
to eliminate, via objects of a subclass of C that does not have a redefinition of m, and that
has direct superclass different of C, are allowed . To insert a method we need to choose a
name that is not used in the target class nor in subclasses and superclasses.

52

Law. (method elimination: pure, redefined, non-default pre-existent specification)
class C extends D {
ads
cnds

//@ requires iy ; class C extends D {

//@ assignable w; ~ j}éj;s
: —cds,Main
/] @ ensures y; o

/*@ pure @*/ rt m(pds) {
mbody
}

mds

}
provided

JML.:

() (1) Yy = fpre(E[rt m(pds)]) for every class E such that E < B, E £ C and E
has a already defined method rt m(pds). (2) For every class E such that E £ C
and E has a already defined method rt m(pds), there is a specification case for
m with pre-condition PRE, post-condition POS T, and frame W where \old(y¥;) =
(\old(PRE) = POST) = (\old(y/1) > yp)and w C W.

(—) B.m(e) does not occur inside specifications of C, cds and Main for any B such that
B < C, B does not redefine m and the first superclass in its hierarchy that declares
mis C or B is strictly C.

Java:
(<) rt m(pds) is already declared in any class E pertaining to cds such that E < C.

(—) B.m(e) does not occur in cds, Main nor in cnds, mds for any B such that B < C, B
does not redefine m and the first superclass in its hierarchy that declares m is C or
B is strictly C.

(«=) rt m(pds) is not declared in mds nor in any superclass or subclass of C in cds.

O

Calls to methods via super can be eliminated using Law (eliminate calls to void meth-
ods via super). In fact, Law (eliminate calls to void methods via super) replace a method
call using super by a copy of the body of the method declared in the superclass provided
that super and return calls does not appear in the body as well as private attributes or
methods. However, just copying the method body is not sufficient. We have to be aware
about JML. When a method call via super is executed, invariants and history constraints
(of the superclass) must be established as well as pre- and postconditions of the method.
And also when the call is finished postconditions of the method must be satisfied and again
the superclass’ invariants. Notice that all these specifications also consider the inherited
specifications from their superclasses.

The strategy we use here — and that is used in all of our laws that involving copy of
method bodies — is based on creating JML-assert expressions to represent all JML speci-

53

fications that need to be satisfied at the beginning and at the end of the super method call
execution. Notice that assert expressions can be created only if model fields representing
private elements or private model fields do not appear in the predicates of the pre- and
postconditions. Also, private attributes, private pure methods and private model fields can
not appear in the invariants and history constraints of the superclass. This condition as-
sures that all these elements will be visible after the super method call elimination. Law
(eliminate calls to void methods via super) deals with void methods; another law deals
with non-void methods.

The assert expressions can be seen at the right-side of the Law (eliminate calls to void
methods via super). We chose JML-assert expressions instead of Java assert expressions
because the JML ones are native and they were built to testing specifications.

Law. (eliminate calls to void methods via super)
CDS is a set of two class declarations as follows.

class B extends A {

ads class C extends B {
cnds ads’

cnds’
@spec_cases mds’
void m(pds) { mbody } }
mds

}

Thus, we have that:

vardecs(pds, e);

/*@ assert fext_inv(B)

&& fext_pre(B[m(pds))), @*/
cds CDS, C > super.m(e) ‘ = mbody

/*@ assert fext_pos(B[m(pds)])
&& fext_inv(B)

&& fext_const(Blm(pds)]) @*/

provided
JML:

(=) (1) super does not occur in fext_pre(B[m(pds)]), fext_pos(B[m(pds)]) nor in
fext_inv(B) and fext_const(B[m(pds)]); (2) Model fields that represent private
attributes do not occur in fext_pre(B[m(pds)]) or in fext_pos(B[m(pds)]); (3)
Private attributes, private pure methods, and model fields that represent private at-
tributes or private model fields, declared in D, for any D such that B < D, do not
occur in finv(D) and fconst(D[m(pds))).

Java:

(—) (1) super, private attributes and private methods declared in ads and mds, respec-
tively, do not occur in mbody.

(2) mbody does not contain return clauses.

54

Method calls can be eliminated by applying Law (void method call elimination) pro-
vided that the method is not redefined, the method body does not refer to super, all meth-
ods and attributes referred inside the method body are non-private and the body does not
contain recursive calls. Notice that in the Java condition (4) we guarantee that the names
of the real parameters are different from the formal ones, and in the Java condition (5) we
force accesses to attributes and method calls to be made via the keyword this °.

Complementing the previous considerations (reasoning now about JML) we have to
ensure that private attributes, private pure methods, and model fields representing private
elements or private model fields do not appear in specifications (i.e. invariants and his-
tory constraints) of the class that declares the method. We also force the use of this in
the specifications as we did in the body of the method called. See that we use the same
strategy (to deal with specifications) we use in Law (eliminate calls to void methods via
super) previously explained. Besides the Law (void method call elimination), we have
other two laws (Law 84 and Law 85) to deal with the elimination of non-void methods
calls. Law 84 deals with a method call when it is used as an expression and Law 85 deal
with a method call then it is used as a statement.

3See the right-side of Law (void method call elimination) when we replace this by le. Not forcing the
use of this we could not replace method calls and accesses to attributes. However this is not a problem,
since we have a law (Law 100) to insert this in expressions and in specifications trivially.

55

Law. {void method call elimination)
Consider that the following class declaration

class

C extends D {

ads
cnds

@spec_cases
void m(pds) { mbody }
mds

}

is included in cds and that cds, A > le : C, meaning that /e has static type C in
the class A. Then

cds, A > le.m(e) =

//@ assert le ! = null;
/*@
assert fext_inv(C)[le/this]
&& fext_pre(Clm(pds)))[le/this];
e/
vardecs(pds, e);
mbody|le/this]
/*a@
assert fext_pos(C[m(pds)])[le/this]
&& fext_inv(C)[le/this]
&& fext_const(C[m(pds)])[le/this];
@*/

provided

JML:

(—) (1) super does not occur in fext_pre(C[m(pds)]), fext_pos(C[m(pds)]) nor in

Java:

fext_inv(C) and fext_const(Clm(pds)]); (2) All attributes, pure methods and
model fields that occur in fext_inv(C) and fext_const(C[m(pds)]) are non-
private. (3) All non-private model fields that occur in fext_pre(C[m(pds))),
fext_pos(Clm(pds)]), fext_inv(C) and fext_const(C[m(pds)]) represent only
non-private attributes; (4) All accesses to non-private attributes and all calls to non-
private pure methods that occur in fext_pre(C[m(pds)]), fext_pos(Clm(pds))),
fext_inv(C) and fext_const(Clm(pds)]), are in the form this.a and this.m(e), re-
spectively, where a is a non-private attribute and m is anon-private method.

(—) (1) m(pds) is not redefined in cds and mbody does not cointain references to super;

(2) all attributes and methods that occur in mbody arenon-private. (3) mbody does
not contain recursive calls; (4) pds does not occur in e; (5) mbody does not contain
return clauses; (5) all accesses to non-private attributes and all calls to non-private
methods that occur in mbody, are of type this.a and this.m(e), respectively, where
a is a non-private attribute and m is anon-private method.

56

We can make a method abstract since all subclasses (of the class that declares the
method) provide a redefinition for the method, otherwise the program well-formedness
will not be preserved.

Law. (make method abstract)

abstract class C abstract class C
extends D { extends D {
ads ads
cnds cnds
=cds,Main
@spec_cases @spec_cases
rt m(pds) { mbody } abstract rt m(pds);
mds mds
} }
provided
Java:

(—) rt m(pds) is already declared in any class E pertaining to cds such that E < C.

In the next Section we will discuss about some constructors laws.

3.3.5 Constructors

This sections is dedicated to the explanation of some constructor laws. All the laws we
defined to deal with constructors can be found in Appendix A.5. Constructors need to
satisfy pre- and postconditions as well as in invariants and initially clauses. We do not
provide laws to deal with initially clauses yet. However this kind of clause is taken into
consideration in laws.

Custom super-constructors may be eliminated using Law (eliminate calls to super(a(pds))).
The strategy used to deal with specifications is the same to that one we explained in Sec-
tion 3.3.4, when we discussed the Law (void method call elimination). By applying Law
(eliminate calls to super(a(pds))), from the left to right, the super constructor body is
copied to the point of the call. Current pre- and postconditions, invariants and initially
clauses that the super constructor need to satisfy are also copied (see in the right-side of
the law). Private elements cannot appear in cbody as well as in the invariants and initially
clauses that are copied. Model fields that represent private elements can not appear in the
specification cases of the super-constructor. We also force that the superclass have an
empty-body default constructor, with no explicit declared specifications, because when
we call a super constructor it calls its default constructor.

57

Law. (eliminate calls to super(a(pds)))

class B extends A {
ads
@spec_cases
class B extends A { B(pds) { cbody }
ads
cnds
@spec_cases mds
B(pds) { cbody } }
class C extends B {
cnds ads’
mds
} @spec_cases’
class C extends B { C(pds) {
ads’ =cds.Main /*@ assert
fpre(@spec_cases);
@spec_cases’ @*/
C(pds) { cbody
super(a(pds)); /*@ assert
cbody’ fpos(@spec_cases)
} && fext_inv(B)
&& fext_init(B);
cnds’ @* /
mds’ cbody’
} }
cnds’
mds’
}
provided
JML:

(—) (1) Private attributes, private pure methods, and model fields that represent private
attributes or private model fields declared in D, for any D such that B < D, do not
occur in finv(D) or in finit(D); (2) Model fields that represent private attributes
or private model fields, declared in B do not occur in fpre(@spec_cases) or in
fpos(@spec_cases); (3) B’s default constructor does not have explicit specification
cases.

Java:
(«») B’s default constructor has a empty body.

(=) (1) cbody does not contain calls to super; (2) B has a default constructor; (3) private
attributes and private methods declared in ads and mds, respectively, do not occur
in chody.

(«-) B has a non-private constructor B(pds), whose body is cbody.

58

Law (eliminate calls to this(e)) uses the same strategy to treat specifications as Law
(void method call elimination). The Java conditions (2) and (3) are necessary to keep the
well-formedness of the program.

Law. {eliminate calls to this(e))

class C extends D {
ads’
@spec_cases
class C extends D { C(pds) { cbody }
ads @spec_cases’
upeccases C(fjrsc,l)ec{s(pds e)
C(pds) { cbody } 40 assurt)
@spec_cases’ @{f”e(@Spec_cases);
C(pdS/) { =cds,Main CbOdy
zll;l;c(leé; /*@ assert
} ’ fpos(@spec_cases)
&& fext_inv(B)
cnds’ @fl/& fext_init(B);
s cbody’
} }
cnds’
mds’
}
provided
Java:

(«») e matches pds.
(=) (1) cbody does not contain calls to super; (2) chody’ does not contain calls to super.

O

Three laws are used to eliminate custom constructor calls: Law (eliminate non-default
constructors: when constructor’s body have to call a superconstructor explicitly) is used
when the constructor’s body have to call a superconstructor explicitly; Law 91 is used
when a call to a super constructor is not necessary; and Law 92 is used when the target
class has no superclass (except for Object). It is needed to have three distinct laws because
Java obligates constructors to call another constructor explicitly or not.

For example, in Law (eliminate non-default constructors: when constructor’s body
have to call a superconstructor explicitly) we describe the situation where a superclass
does not have an explicit default constructor and have only a custom constructor. In this
situation when we apply Law (eliminate non-default constructors: when constructor’s

59

body have to call a superconstructor explicitly), from the right to left, we need to guar-
antee that inside cbody’ we have a call to the custom constructor, otherwise we could
insert a Java compiler error. In Law 91 we consider that the superclass does not have any
declared constructor or has an explicit default constructor. In this way cbody” does not
need to call a constructor explicitly, as Java inserts a default constructor call automatically.

Law. (eliminate non-default constructors: when constructor’s body have to call a super-
constructor explicitly)

class B extends A {
ads
class B extends A {
@spec_cases ads
B(pds) { cbody }

@spec_cases
cnds B(pds) { cbody }
mds

} _ cnds
class C extends B { —cds,Main mds
ads’ }
class C extends B {
@spec_cases’ ads’
C(pds’) { cbody } cnds’

mds’
cnds’ }
mds’

}
provided
JML:

(—) new C(a(pds’)) does not occur inside specifications of B, C, cds and Main.
Java:

() (1) cnds does not have an explicit default constructor; (2) chody’ has a super call like
super(a(pdscngs)) where pdscnqs 1s the formal parameters list of some constructor
that pertains to cnds.

(—) There are no calls to C(pds’) (including calls via super or this)

(<) C(pds’) is not declared in C

O

In order to apply Law (eliminate non-default constructors: when constructor’s body
have to call a superconstructor explicitly) from the left to right, we need to guarantee
that the constructor is not called anywhere (including the program specifications) and that
there is a custom constructor call inside its body. To apply Law (eliminate non-default
constructors: when constructor’s body have to call a superconstructor explicitly) in the
opposite direction, we need to assure that the constructor that is being inserted is not

60

declared and that its body has a custom constructor call.

Law (eliminate calls to non-default constructors) eliminates a call to a non-default
constructor. The strategy to deal with specifications is the same as the one we explained
in Section 3.3.4, when we discussed the Law (void method call elimination). When ap-
plying Law (eliminate calls to non-default constructors), from the left to right, we need
(among other things) to ensure that C has a default constructor (explicit or not) because
even eliminating the constructor call we have to instantiate the class calling its default
constructor. Another important safeguard is about the specifications of the default con-
structor. The default constructor of C cannot have specification cases, because as we
continue to call a constructor (in this case the default constructor) we need to satisfy its
specification cases.

61

Law. (eliminate calls to non-default constructors)
Consider that the following class declaration

class C extends D {
ads

@spec_cases

C(pds) { cbody }

cnds
mds

}

is included in cds and that cds, A > le : C, meaning that le has static type C in
the class A. Then

Cle = new C();

vardecs(pds, e);

/*@ assert
fpre(@spec_cases);
[le/this]

@*/

cbody|le/this]

C le = new C(e); =cds.Main /*@ assert
fpos(@spec_cases)
[le/this]

&& fext_inv(C)
[le/this]

&& fext_init(C);
[le/this]

@*/

provided
JML:

(=) (1) super does not occur in fpre(@spec_cases), fpos(@spec_cases) nor in
fext_inv(C) and fext_init(C); (2) Private attributes, private pure methods, and
model fields that represent private attributes or private model fields declared in
B, for every B such that C < B, do not occur in finv(B) or finit(B); (3) All ac-
cesses to non-private attributes and all calls to non-private pure methods that occur
in fpre(@spec_cases), fpos(@spec_cases), fext_inv(C) and fext_init(C), are in
the this.a and this.m(e), respectively, where a is a non-private attribute and m is a
non-private method; (4) C’s default constructor does not have explicit specification
cases.

Java:

(=) (1) C has a default constructor; (2) there are no calls to super or this() in cbody;
(3) all attributes and methods that occur in chody are non-private. (4) pds does not
occur in e;

62

3.3.6 Commands and Expressions

In this section we show two laws that apply to commands and expressions of Java, which
we regard as small grain constructs. The whole set of laws of commands and expressions
can be found in Appendix A.6.

Casts can be eliminated in expressions since the type of the expression is of the type
of the cast. Notice that inserting a JML-assert expression we guarantee that e is really of
type C.

Law. {eliminate cast of expressions)
If cds, A le: Band cds, A > le : B’, with

cds, A > le := (C) e = /*@ assert (¢ instanceof C);, @*/ le := e O

Variables can have their type changed in a similar way attributes can do as it is stated
in Law 29.

Law. (change variable type)
cds, A > T x; ¢ =T x; c

provided

JML:

() Every occurrence of x inside specifications of ¢, is cast with T or any subtype of 7.
Java:

() T<T.

(<) (1) Every expression assigned to x in c¢ is of type T or any subtype of T'; (2) every
use of x as the return expression in c is for a corresponding declared return of type
T or any subtype of 7.

3.3.7 Predicates

As well as we did in the previous Section we show here another category laws to deal with
small grained constructs: predicates laws. All laws that deal with predicates are found in
Appendix A.7.

If we have a predicate where we have an implication stating that an expression is of a
certain type and this expression is cast to this type, we delete the cast and maintain only
the expression. Law (delete trivial cast in instanceof implications inside predicates) and
Law (eliminate cast of pure method call in predicates) are used to eliminate cast of ex-
pressions in the presence of a type test using an implication.

63

Law. (delete trivial cast in instanceof implications inside predicates)
If cds, A e : C, then

e instanceof C ==> (C) e = e instanceof C ==> e o

Law. (eliminate cast of pure method call in predicates)
If cds,A>e: B, C < B, mis pure and is declared in B or in any of its superclasses in cds
and ((C)e).m(e’) is written in a valid JML predicate, then

cds, A > ((C)e).m(e) = e instanceof C ==> e.m(e’) I

3.4 Summary of Laws

In this section we present a summary of all laws discussed in this chapter. We categorized
the laws with respect to the type of provisos they need to satisfy (JML and Java provisos)
and if they affect Java code or JML specifications:

Need to satisfy JML provisos ((/ML)) — laws which require to satisfy JML provisos.

Need to satisfy Java provisos ((J)) — laws which require to satisfy Java provisos.

Affects JML specifications ([/ML]) — laws that insert, delete or modify JML specifi-
cations.

Affects Java code ([J]) — laws that insert, delete or change Java code.

Table 3.2 and Table 3.3 depict the summary of the laws presented in this chapter. The
complete set of our laws can be found in Appendix A.

64

change attribute visibility: from private to | [J](JML)(J)
attributes public

change spec public attribute visibility: from | [JML]J

private to public

change specification visibility of private at- | [/JML](JML)

tribute: from private to public

move reference type attribute to superclass [JI(JML)(J)

change attribute type [JI(IML)(J)

weaken pre-condition [JML]J(JML)
methods strengthen post-condition [JML)(JML)

insert \same specification case [JML]J(JML)

change assignable from \not_specified to | [JML](J)

\everything

make method pure [JML]J(JML)

collapse pre-conditions [JML]

collapse post-conditions [JML]

collapse also combinations [JML]

change pure method visibility from: private to | [J](JML)(J)

public

change specification visibility of pure private | JML

method: from private to public

introduce void method redefinition [JI(IML)(J)

move original method to superclass [JMLI[JI(UML)(J)

move redefined method to superclass: over- | [JML][J](JML)(J)

riden method with non-default specification

case

change parameter type of pure method [JIUIML)(J)

change return type of pure method [JIUIML)(J)

method elimination: pure, redefined, non- | [J](JML)(J)

default pre-existent specification

eliminate calls to void methods via super [JML][JI(UML)(J)

void method call elimination [JMLI[JI(UJML)(J)

make method abstract [J1())

Table 3.2: Summary of the laws about attributes and methods described in Chapter 3.

65

class elimination/introducion [JIUIML)(J)
classes make class abstract [JIUML)(J)

change superclass: from Object to another | [JML][J](JML)(J)

class

move invariant to superclass [JMLI(JML)
invariants change invariant visibility: from default to | [/JML](JML)

private

change invariant visibility: from public to pri- | JML

vate

change invariant visibility: from protected to | JML

private

collapse invariants [JML]

eliminate calls to super(a(pds)) [JMLI[JI(UML)(J)
constructors eliminate calls to this(e) [JMLI[JI(J)

eliminate non-default constructors: when | [J](JML)(J)

constructor’s body have to call a supercon-

structor explicitly

eliminate calls to non-default constructors [JMLI[JI(UML)(J)

eliminate cast of expressions [JML][J]
commands change variable type [JI(UIML)(J)

delete trivial cast in instanceof implications | [JML]
predicates inside predicates

eliminate cast of pure method call in predi- | [/JML]

cates

Table 3.3: Summary of the laws about classes, invariants, constructors, commands and
predicates described in Chapter 3.

Chapter 4

A Specification-Aware Normal Form

4.1 Introduction

Borba [8] uses a normal form to show that a set of laws for the language ROOL is compre-
heensive. Duarte [26] follows the aproach proposed for ROOL with adaptations for Java
because ROOL is limited to a sequential subset of Java. As a subset of our set of laws
adapts laws originally proposed for object-oriented programming with no specifications
(in the sense of Design by Contract), we follow the same strategy for reducing a program
to a normal form as proposed by Duarte. However, the existence of specifications written
in JML impose restrictions to the application of programming laws. For instance, when
moving an attribute from a class to its superclass, we have to notice how JML deals with
nullity. We could introduce a null reference, but null is not the default in JML [28].

4.2 Normal Form
The normal form that we have as target has the following characteristics:

e There is a Main class with a main method that is supposed to be the program start
point;

e Classes (of our unique package) other than _Object!' contains no attributes and
methods;

e Methods can appear only in the class _Object?;

e All local declarations in the main method are declared with a primitive type, or
_Object;

e No type cast is allowed in the main method;
e Custom constructors are not allowed anywhere;

e Invariants and history constraints can occur only in _Object.

ISince every class in a Java program extends Object, changing this class affects all classes hierarchies
and, in fact, it is part of the Java library. We use the class _Object, which extends Object, as the topmost
class in the class hierarchy we reduce to the normal form.

2Only methods that can not be eliminated by our laws, i.e. recursive methods, and methods with no
mutually exclusive return points.

67

This normal form preserves more constructs of object-oriented programming that
those described for Java [26]. In particular, we cannot obtain a static method in the class
Main, because turning an instance method into a static one requires changing invariants,
referred attributes and pure methods in the method specification in a similar way, which
may be not possible. As we said in Section 2.5.1, static invariants may refer only static
attributes and methods.

Unlike, instance invariants can refer to both static and instance methods and attributes.
Only instance invariants are inherited by subtype as we showed in the section about spec-
ification inheritance (Section 2.7).

Recall that we consider that we are dealing with only one package and working in a
limited open system, in which classes of our system can depend on external libraries. We
also assume that the identifiers of our classes are distinct from those of external libraries.
Remember that in our approach a program has the format cds Main, where cds is the set
of all classes of the program and Main corresponds to the unique class in the program that
has a main method. Also, we make some other assumptions:

e Distinct classes in cds are not allowed to declare attributes with the same name;

¢ Invariants and history constraints of subclasses can not restrict attributes and model
fields of their superclasses;

e All classes in cds must declare a default constructor;
e Pure methods must be accessor methods?;

e All original methods and constructors obey their respective specifications (includ-
ing invariants, initially clauses and constraints).

The first condition avoids name clashes when moving attributes up in the hierarchy.
The second allows us to insert trivial methods redefinitions, which we will discuss in
next sections. The third avoids breaks of invariant and iniatially specifications, as will be
explained in the sequel. Finally, the fourth assumption is needed because it is not possible
to inline a pure method inside a specification if this method contains any command that is
not a getter-like expression.

4.3 Reduction Strategy

We follow the normal form reduction strategy proposed by Duarte [26] as a guideline.
However, the presence of JML specifications impedes us from obtaining the same normal
form as Duarte. As an example of such differences we point out:

e We end with the class _0Object with attributes and methods that are not made static,
whereas in Duarte’s normal form the class _0Object only contains attributes;

e In the normal form of Duarte, recursive methods and other non-inlined methods
(i.e. methods with not mutually exclusive return points) are translated into new
behavior-equivalent static methods in the class Main whereas in our normal form
these kind of methods are placed in the _Object class.

3 Accessor methods are methods that are usually small, simple and provides the means for the state of
an object to be accessed from other parts of a program.

68

Another important difference between the normal form we present here and the one
presented in [26] is the maintenance of explicit default constructors as it is not possible to
eliminate them in the presence of invariants and initially clauses. Recall that Java creates a
default constructor in any class that does not declare any constructor. Thus, since inlining
and eliminating all custom constructors of all classes is a step of our reduction strategy, if
we also eliminate explicit default constructors, Java will create a default constructor that
will possibly not meet the invariant and initially specifications provoking contracts break.

In order to give some extra guarantee to our strategy and provide soundness to our
approach, we applied state of the art JML tools in the program source code after each
law application. In addition, we also ran the Main class to ratify that the program output
was equals to the original one. More specifically, we used two classes of JML tools
(see Section 2.9): the static program checker ESC/Java2 [21] and the test-based run time
assertion checker tool, JET [15]. Moreover, after each step we compiled the source-code
with the official JML compiler, jmlc (see Section 2.9.1), and ran the program with the
official JML-RAC tool [10] to confer the output.

Here we present the steps for reducing a program written in Java and specified with
JML to the normal form we introduced previously. The reduction strategy includes the
five following major steps.

e Create a new root class (_Object), make all classes inherit it and move all the at-
tribute declarations to it;

Eliminate custom constructors;

Move methods up and change types to _Object;

Eliminate casts;

Eliminate methods calls and the corresponding declarations.

In the next section we detail each one of these steps to give a more comprehensive
explanation. We describe the process as a sequence of simple and incremental steps.

4.4 Reduction Strategy in Action

To demonstrate our strategy and show the exact differences between the non-specification-
aware normal form by Duarte [26] and our specification-aware normal form we use the
same example of his work. In this way, we can present and exploit each restriction im-
posed by JML-specifications in the pure Java normal form.

In Figure 4.1 we present the starting class diagram of our example extended with
JML-specifications. This class diagram models a simple interpreter for a little expres-
sion language named Expl that accepts Integer (Integer class) values that can be just
summed (Sum class). The class Expression is the topmost expression class. Every expres-
sion of the language inherit directly or indirectly Expression. Values are subclasses of
the Value class. In our example we have only Integers as values. Binary expressions are
subclasses of BinaryExpression, in particular Sum. The Exp/ interpreter is implemented in
the Interpreter class that basically stores an expression and evaluates it via the method
run. Finally, Main represents (via the method main) the program starting point.

The complete source code of the initial program (before the application of our normal
form reduction) can be found in Appendix B.1. The method main in the class Main has

Value

+ Value{)

¢

Integer

g spec_public @/ val: int

Integer)

Integerival ;int}
assignable; this.sval
ensures: this.wval ==val

i@ pure @ " getval{ : int
ensures; result == val

setWValival :int} : void
assigmable; this.val
ensures: this.val == val

eval() : Value
also ensures; ‘result == this

Expression

+ Expressioni)
+ aval(} : Value

T

BinaryExpression

M@ spec_public @' leftExp: Expression
@ spec_public @ rightExp: Expression

Main

main{args :String[]) - void

BinaryExpression()
BinaryExpression{leftExp :Expression,
rightExp :Expression)
redquires: leftExp = null &5 rightExp = null
assignable: this.leftExp, thisrigitExp
ensures: thisleftExp == leftExp L&
this.rigitExp == rigltExp
set{le :Expression, re :Expression} : void
requires; le == null && re = null
assignable; thisleftExp, this.rightExp
ensures: this.leftExp == le &&
this.rightExp ==re
M pure @ getLeftEXp{) : Expression
ensures result == this.leftExp
i@ pure @ getRIOWEXP() : EXpression
ensures: result == this.rightExp

Interpreter

i@ spec_public @' exp
Expression

constraints

{inttially: this.leftExp == null && this.rightExp =
null}

-

Interpreteri)
Interpreter{Expression :expj
requires: exp = null
assignable: this.exp
ensures; this.exp == exp;
M pure @ " getExpl() :
Expression
ensures; result == this.exp
setExp{exp Expression) : void
redquires exp = null
assignable this.exp
ensures this.exp == exp
rund} : Value

constraints

{imvariam this.exp = null}

&

sSum

+
+

+

Sumfi)
SumileftExp :Expression, rightExp
Expression)
requires: leftExp = null && rightExp =
null
assignable; thisleftExp, thisrightExp
ensures; this.leftExp == leftExp
&5 this.rgltExp == raltExp
evaal() : Value
ensures result = null

Figure 4.1: Extended class diagram of our JML-specified example program

69

70

two integers, 5 and 8. These values are set in a Sum object that is passed as argument to
an instance of Interpreter. Then the Sum object is evaluated and the corresponding values
are assigned to a Value object. After it the program execution ends. The reduction strategy
is detailed in the sequel.

4.4.1 Create a new root class and make all classes inherit it

The first step is to introduce the new root superclass called _object applying Law 1 from
the right to left. Creating a new empty class is straightforward since we need only to
check if there is no class with the same name and if its superclass is a valid class.

After that, we have to make the classes (Expression and Interpreter) inherit _Object.
To achieve it, we apply Law 3, from the left to right.

4.4.2 Make attributes public

In this step of the reduction strategy, we make all attributes public. Attributes with this
visibility are inherited and considered valid by subclasses. Recall that we follow a strategy
similar to those used by Borba [7] and Duarte [26].

To make an attribute public, provided it is currently private is straightforward, even it
has public specification visibility. We have eight laws (Law 19, Law 20, Law 18, Law
21, Law 22, Law 23, Law 24, Law 25) to cover all possible visibility changes situations.
By the successive application of these laws we can make all attributes of all classes public.
Particularly, in our example we apply Law 24 in the attributes val (Integer), leftExp and
rightExp (BinaryExpression) and exp (Interpreter).

4.4.3 Move Attributes Upwards Towards _object

This step consists in moving all attributes from subclasses up to superclasses until they
reach _Object. We can move a public attribute to a superclass by applying Law 27 from
the left to right, if it is not already declared in the superclass and if it is nullable. Before
move them, we have to apply Law 26 from the left to right, in those in order to avoid non
null exception checks (see Section 3.3.3 for more details about this question). Also, we
need to apply Law 28 to primitive attributes. At this point we exhaustively apply Law 27
from the left to right to the reference-typed attributes of Interpreter and BinaryExpression
to move them up to _Object. Then, we apply Law 28 from the left to right to the attribute
val of Integer to move it until it reaches _Object.

The result until here is sketched in Figure 4.2. As can be seen, all attributes are now
nullable, public and are placed only in the class _Object.

4.4.4 Eliminate Custom Constructors Calls

Before eliminating custom constructors, we need to prepare the program — in order to
satisfy the pre-conditions needed to execute the eliminations — executing the following
steps: we apply Laws 101 and 102 in the custom constructors bodies and Laws 101 and
103 in constructors pre- and postconditions, all of them from the left to right, in order
to facilitate inlining. Then, we eliminate calls to super() , to super(a(e)) and calls to
this(e) inside the custom constructors bodies applying Law 89, Law 88 and Law 90,
respectively.

71

© N L R W N =

public class _Object {
public int val;
public /%@ nullable @x/ Expression exp;
public /%@ nullable @x/ Expression rightExp;
public /+x@ nullable @x/ Expression leftExp;

}

public class Expression extends _Object {
public Expression () {}
public Value eval() { return null; }

}

public class Value extends Expression ({
public Value() {}

}

public class BinaryExpression extends Expression {
//@ initially this.leftExp != null && this.rightExp !=

public BinaryExpression() {
this .leftExp = new Integer();
this .rightExp = new Integer();
}
YA
1

public class Sum extends BinaryExpression {
public Sum() {
super () ;
}
YA
}
public class Integer extends Value {
public Integer() {
super () ;
this .val = 0;

/7‘: e -k/
}

public class Interpreter extends _Object {
//@ public invariant this.exp != null;

public Interpreter() f{
super () ;
this .exp = new Integer();

/-.‘: e -.‘:/
}

null ;

Figure 4.2: Example program source-code - attributes up

72

In our example we do not need to insert this in methods calls or attributes access
because all calls and access already have the this keyword. Hence, we apply Law 89to
the two Integer constructors, to the default constructor of Sum, to the default custom con-
structor of BinaryExpression and to both constructors of Interpreter. In our example,
there are no calls to constructors via this . After eliminating every call to super, we elim-
inate the custom constructor call that occurs inside the custom constructor of Sum class.
By applying Law 88 eliminating the super(leftExp, rightExp) call in Sum.

With no calls to super and this inside constructors we can finally eliminate calls to
custom constructors. We use Law 94 to do this task. In the situations in which a new
object instance is not assigned to a expression, we apply Law 107 to create assignments.
So every custom constructor call fits exactly the law template. Applying Law 107 and
Law 94 exhaustively, we eliminate all custom constructor calls in the method eval of the
class sum and in the method main of Main.

4.4.5 Eliminate Custom Constructors

Now, with no calls to custom constructors anywhere in the program, we eliminate all
custom constructor declarations. We have three laws: Law 92, Law 91 and Law 93. Each
law deals with a specific situation as explained in Section 3.3.5. As all provisos are equals
in these laws and all provisos are satisfied at this point because of the execution of previous
steps, we eliminate all custom constructors declarations of Interpreter, BinaryExpression
, Sum and Integer.

The reason we do not delete default constructors is not so obvious. Actually, it is not
possible to inline default constructors, because we have to maintain their calls. We can not
create an object without calling at least the class default constructor. Duarte [26] created a
law called inline default constructor calls and eliminate its body in order to inline default
constructors and eliminate their bodies. But, if one deletes a default constructor body, this
constructor will potentially no longer meet class invariants and initally clauses. Hence,
we decided to keep the default constructors in classes.

At this point, we complete the second major step of our reduction strategy. A snapshot
of the source code we have at this point is presented in Figure 4.3.

4.4.6 (Trivial) Cast Introduction

In order to facilitate the next steps, we introduce a trivial cast in every expression that
access attributes or that is a method call target. By introducing casts we can move methods
to its superclasses. Without the introduction of casts, we cannot move the method eval
of Integer to the class Expression because in Expression, the type of this is Expression,
not Integer, and, hence, the return point return this is ill-typed. The same situation may
occur when we are treating specifications. The postcondition of eval says that the result
of the method has to be equals to the object this itself. If, for example, we first move eval
to Value, this will refer to instances of Value in opposite of Integer, resulting a different
behavior.

Laws 100, 105, and 109 are applied to all attributes accesses and methods calls. If an
attribute access or a method call is not referred using this either in methods and construc-
tors bodies or in specifications, we need to apply one of these laws Law 101, Law 102
and Law 103 to introduce the trival casts afterwords.

73

© o N U AW N =

/F e ¥/
public class BinaryExpression extends Expression ({
//@ initially this.leftExp != null && this.rightExp != null;

public BinaryExpression() {
this .leftExp = new Integer();
this.rightExp = new Integer();
}
/¥ .. F/
}
public class Sum extends BinaryExpression {
public Sum() { }

/+@ also
@ ensures \result != null;
@x/

public Value eval() {
Expression le = this.getLeftExp();
Expression re = this.getRightExp();
Integer lint = new Integer();
Integer rint = new Integer();
lint.setVal (((Integer)le.eval()).getVal());
rint.setVal (((Integer)re.eval()).getVal());
Integer tmp = new Integer();
int val = lint.getVal() + rint.getVal();
tmp.val = val;
/+@ assert tmp.val == val; @x/
return tmp;

}
}

public class Integer extends Value {
public Integer () {
this .val = 0;

/¥ .. F/
}
VA
public class Main {
public static void main(String[] args) {
Interpreter in; Integer nl,n2; Sum s; Value v;
nl = new Integer();
int val = 5;
nl.val = val;
/+@ assert nl.val == val; @x/
n2 = new Integer();
val = 3;
n2.val = val;
/+@ assert n2.val == val; @=x/

VAR

Figure 4.3: Example program source-code - reduced constructors

74

4.4.7 Introduce (Trivial) Method Redefinitions

Following the strategy described in 4.4.2, we make all methods public. We exhaustively
apply laws to modify the visibility of methods to public: Law 57, Law 58, Law 59, Law
60, Law 61, Law 62, Law 63 and Law 64 for pure methods; Law 54, Law 55 , and Law
56 for non-pure methods.

From now, all the methods are public. Our laws that deal with methods consider that
the methods are default. Thus, from now on we consider that before applying the laws of
methods listed throughout this section (except the laws that deal with visibility changes)
we apply a law (for instance, Law 54) to change the visibility of the method to default.
We also consider that at the end of the application of the laws of methods we change
the visibility of the method back to public. This simplification is possible because the
methods were originally public.

Introducing trivial method redefinitions are needed when we move methods up. Classes
have its own methods and also have the methods they inherit. So, before moving up meth-
ods it is necessary to explicit the inherited methods by introducing trivial methods redef-
initions via super. In this way we make the program text uniform and simplify methods
movements. We apply Law 67 to the classes BinaryExpression and Value creating re-
definitions of the method eval of Expression. We also apply Law 67 to the class Sum
creating redefinitions of the methods getLeftExp and getRightExp of BinaryExpression.
Additionally we apply Law 66 to the class Sum creating the redefinition of the method set
of BinaryExpression.

4.4.8 Eliminate Methods Calls via super

The provisos of Laws 68, 69, and 70 (laws we use in the next step to move up the methods)
requires that there are no calls to super in method bodies or specifications, so that we can
move a method (redefined or not) to the superclass of the class that introduces the method
to be moved. The problem that can arise without those provisos are easy to understand.
If you move a method m of a class C to a superclass B and there is a call to m1 of B like
super.m1() in m’s body or in a specification case of m, the call super.m1() will no more
refer to m1 of B, leading to the execution of other method our causing a compiler error.
Hence we eliminate method calls via super.

Two laws are used to eliminate methods calls that have super as target, Law 81 and
Law 82, that fit void and non-void methods, respectively. In our example, we apply Law
81 from the left to right to the method set of Sum and Law 82 (preceded of Law 107) (also
from left to right) to the methods: eval of BinaryExpression; getLeftExp and getRightExp
of Sum; and eval of Value. We start applying the laws to the immediate subclasses of
_Object. Since all attributes of _Object are public and _Object is the topmost class in our
example hierarchy, all the provisos of Law 81 and Law 82 are satisfied.

4.4.9 Move Methods Towards _Object

We safely can move all methods up to _object. We have three laws with this purpose:
Law 68 allows us to move up a method to a superclass when the target method does not
exists in its superclass; Law 69 let us to move up a redefined method to a superclass since
the super method has explicit specification cases; and Law 70 allows us to move up a
redefined method when the super method does not have explicit specification cases. The
side conditions of these laws were previously satisfied by the application of laws in the

75

previous steps. All attributes are public, every call to super has already been eliminated,
and every occurrence of this is casted.

We begin by applying Law 68 and Law 69 from the bottommost classes moving their
methods until they reach _object. Before applying one of these two laws it is necessary
to collapse method’s specification cases in an unique specification case. This is achieved
applying firstly Laws 34 and 35 in methods with incomplete lightweight specification
cases declarations. Then we apply Laws 41, 42 and 43, in this order.

At this point, we can move all methods of Interpreter directly to _Object applying
Law 68 from the left to right as many times as needed. We also move the methods setVal
and getVal of Integer to _Object.

The methods set, getLeftExp and getRightExp originally declared only in the class
BinaryExpression are combined with their respective trivially redefined methods of Sum
via application of Law 69 and after that moved upwards towards _Object.

The method eval of Integer is combined with eval (recently created by trivial redefi-
nition) of Value and subsequent combined with eval of Expression. We do the same with
eval of Sum that is combined with eval of BinaryExpression. Now, we combine it with
the "mixed" eval of Expression. After that, we finally move it to _Object. The result
after all methods movement, is a method that tests for all the possible dynamic types of
Expression.

Method bodies that results from the previous steps can be simplified using laws like
Law 107, Law 96, Law 97 and Law 98 combined with others like Law 99. In the
case of specifications, predicates could be reduced using propositional calculus [54] and
some laws, like for instance Law 41, Law 42, and Law 43. For instance, the method
getRightExp presented in the Figure 4.4 can be simplified using the cited laws (the result
is presented in Figure 4.5). The previous simplification-tasks are not part of our reduction
strategy and their execution is not mandatory, however, our intention is only to show that
these kind of simplifications may be executed.

4.4.10 Change Type to _Object

At this point, all methods and attributes are in _Object. We can change all attributes,
method parameters and return, and local variable to _Object. Then, after that, eliminate
trivial casts introduced before. To apply the laws 29, 72, 71, 74, 73, and 106 in the current
scenario is semantic preserving because of the introduced casts and because the applica-
tion of previous steps. The exhaustive application of these laws, allows the replacement
of the types of all identifiers by _Object. Obviously, attributes, parameters, returns and
variables of primitive types are not affected.

4.4.11 Cast elimination

Laws to deal with casts elimination are detailed in [9]. We eliminate all casts by applying
laws 100, 105, and 109. The side conditions of these laws are satisfied by the fact that
now, all attributes and methods of the program are in _Object. Notice that eliminate all
casts in not only in the code but also in specifications. Figure 4.4 shows an excerpt of
_Object class until here. Figure 4.6 shows the program.

76

public class _Object {
/z‘: .. -.':/

1
2
3
4 //@ ensures \result == this.exp;

5 public /+x@ pure @x/ _Object getExp() {
6 return this.exp;

7

8

9

}
/%@ requires exp != null;
10 @ assignable this.exp;
1" @ ensures this.exp == exp;
12 @sx/
13 public void setExp(_Object exp) {
14 this .exp = exp;
15 }
16
17 public _Object run() {
18 return this.exp.eval();
19
}

21 //@ requires (!(this instanceof Sum) && true);
2 //@ assignable \not_specified;

23 //@ ensures (!(this instanceof Sum) &% (\result == this.rightExp));
24 //@ also

25 //@ requires ((this instanceof Sum) && true);

26 //@ assignable \not_specified;

27 //@ ensures ((this instanceof Sum) && (\result == this.rightExp));
28 //@ also

29 //@ requires ((this instanceof Sum) && true);

30 //@ assignable \not_specified;

31 //@ ensures ((this instanceof Sum) &% (\result == this.rightExp));

» public /+x@ pure @x/ _Object getRightExp() {

34 if (!(this instanceof Sum)) {
35 _Object tmp;

36 tmp = this.rightExp;

37 /+@ assert

38 tmp == this.rightExp;
39 @x/

40

41 return tmp;

) } else {

3 return this.rightExp;

44 }

45 }

46 /* /

47}

Figure 4.4: Example program source-code - Excerpt of _Object class with all methods
declarations

77

//@ requires true;

//@ assignable \not_specified;

//@ ensures \result == this.rightExp;

public /x@ pure @x/ _Object getRightExp() {
return this.rightExp;

L Y T S SO N

}

Figure 4.5: Example program source-code - proposed reduced getRightExp method.

4.4.12 Move Invariants Upwards Towards _Object

Before eliminating methods, we need to inline methods calls by using our laws (Law 83,
Law 84 and Law 85). However, as these laws use invariants and all methods are now
in _Object, we need to move invariants up too using Law S. By applying this law to the
invariant of Interpreter, we move it to _Object.

public class Expression extends _Object ({
public Expression () {}

}

public class Value extends Expression ({
public Value() {}
}

© N ;A W N =

public class Integer extends Value {
10 public Integer () {

11 this .val = 0;

12 }

13}

15 public class BinaryExpression extends Expression ({

16 public BinaryExpression() {

17 this.leftExp = new Integer();

18 this .rightExp = new Integer();
19 }

20 }

2 public class Sum extends BinaryExpression {
23 public Sum() {}

u }

26 public class Interpreter extends _Object {
7 public Interpreter() {

28 this .exp = new Integer();

29 }

30}

Figure 4.6: Example program source-code - classes (excepts for _Object) without meth-
ods

78

4.4.13 Methods Elimination

As we explained before (refer to Section 4.2), only non-recursive and methods that have
no mutually exclusive return points can be eliminated. Unlike Duarte’s approach, we
cannot make these methods static because instance invariants are not applied to static
methods. A law to deal with this situation would be too restrictive and its use would
be quite reduced. This is why in our strategy, we impose that these methods remain in
_Object. All other instance methods that can be inlined are eliminated.

We apply laws 83, 84 and 85 to remove all methods calls. After all methods calls are
replaced with the bodies of the corresponding methods, the methods definitions can be
eliminated using laws 75, 76, 77, for non-pure methods and laws 78, 79 and 80 for pure
methods.

With this step we finish the reduction process. An excerpt of _Object is showed in
Figure 4.7. An excerpt of the resultant Main class can be seen in Figure 4.8. In the
Appendix B.2 we present the final source-code of the program.

public class _Object {

1

2

3 //@ invariant this instanceof Interpreter ==> this.exp != null;

4

5 public int val;

6 public /+x@ nullable @x/ _Object exp;

7 public /x@ nullable @%/ _Object rightExp;

8 public /%@ nullable @x/ _Object leftExp;

9

10 //@ requires ((!(this instanceof BinaryExpression)) && ((!(this
instanceof Value)) || ((this instanceof Value) && ((!(this
instanceof Integer)) || (this instanceof Integer && true)))));

1 //@ assignable \not_specified;

12 //@ ensures ((!(this instanceof BinaryExpression)) && ((\old ((!(
this instanceof Value))) ==> (!(this instanceof Value)))

13 //@ && (\old (((this instanceof Value) && ((!(this instanceof
Integer)) || (this instanceof Integer && true)))) ==> ((this
instanceof Value) &% ((\old (!(this instanceof Integer)) ==> (!(
this instanceof Integer))) && (\old ((this instanceof Integer &&

true)) ==> (this instanceof Integer && \result == this)))))));
14 /+@ also
15 @ requires ((this instanceof BinaryExpression) && ((!(this
instanceof Sum)) || ((this instanceof Sum) && true)));
16 @ assignable \not_specified;
17 @ ensures ((this instanceof BinaryExpression) && ((\old ((!(this

instanceof Sum))) ==> (!(this instanceof Sum))) && (\old (((
this instanceof Sum) && true)) ==> (this instanceof Sum && \

result != null))));
18 @sx/
19 public _Object eval() {
20 /¥ ao. */

21 }
2 }

Figure 4.7: Example program source-code - Excerpt of _Object at the end.

79

1
2
3
4
5
6
7
8
9

public class Main {

public static void main(String[] args)
_Object in;
_Object nl,n2;
_Object s;
_Object v;

nl = new Integer();

int val = 5;

nl.val = val;

/+*@ assert nl.val == val @x/

n2 = new Integer();
val = 3;

n2.val = val;
/+*@ assert n2.val == val @x/

s = new Sum() ;
_Object leftExp =
_Object rightExp =
/+*@ assert

nl;
n2;

leftExp != null && rightExp != null;
@sx/
/+*@ assert
leftExp != null && rightExp != null;
@sx/
s.leftExp = leftExp;
s.rightExp = rightExp;
/+*@ assert
s.leftExp == leftExp && s.rightExp
&& s.leftExp != null && s.rightExp
@sx/

/+@ assert
s.leftExp ==
&& s.leftExp !=
@sx/

in = new Interpreter();

_Object exp = s;

/+*@ assert

exp != null;
@sx/
in.exp = exp;
VA

leftExp && s.rightExp
null && s.rightExp

{

== rightExp

!= null;

rightExp
!= null;

Figure 4.8: Example program source-code - Excerpt of Main class at the end.

80

4.5 Reduction Strategy Considerations

The normal form reduction strategy we proposed here, is a result of the review and adap-
tation of the strategies used for Java and ROOL [9] programs. We can enhance our reduc-
tion strategy elaborating new laws to eliminate invariants, history constraints and initially
clauses, for example. We plan to create laws to distribute invariants and history con-
straints in the methods of the classes they are declared. In this direction it is possible to
create laws to eliminate initially clauses by copying their predicates in the constructors
they affect. As a result we can eliminate methods and transform their specifications in
JML assertions.

Another important point, additional to the one we discussed in the paragraph above, is
the possibility to transform all JML specifications of a program in Java code representing
run time assertion checks (RAC) code. We could do it in the way Krakatoa [11] and
other JML tools like, JAJML [36] and jmlc [1] do. We can transform (after applying
our strategy) all remaining specifications in Java code representing the behavior of the
specifications. Thus, we can obtain a reduction strategy that transforms a JML-specified
Java program into a normal form containing only Java code.

Chapter 5

Application: Code and Specification
Refactoring

Software changes constantly due to maintenance that leads to correction of fails or evo-
lution. However, some changes can take place due to other quality related factors such as
code reuse or legibility. In this case, the changes may not alter the software behavior but
only its internal structure, thus, making it better. This kind of change is an activity known
as refactoring [31]. To avoid errors due to modifications, every change has to be done
following a discipline which can be based on compilation and test cycles, for instance.
Also, programming laws are a means to change software in a rigorous way.

The presence of specifications in source-code may cause a number of evolution-related
difficulties. In special, when refactoring software, in order to either accommodate new
requirements or improve its expressiveness, specifications may become outdated. Ad-
ditionally, changes in specifications are sometimes needed as well. In the context of
refactoring, these changes must be behavior-preserving, since the program must be kept
in conformance with its specification.

In this chapter we show a systematic approach to apply some refactorings proposed
by Fowler [31]. In the sequel, a JML-specified and adapted version of a core module
from a huge Manufacturing Execution System [64] (MES) is refactored from successive
applications of primitive transformations expressed by means of our programming laws
(Chapter 3).

5.1 A Program to Refactor

The Manufacturing Execution Systems were created to fill the communication gap among
manufacturing planning systems (MRP, MRPII, ERP, etc.) and control systems used to
operate equipment in industries. MESA International [2] provides a definition of what
really a MES system is: "Manufacturing Execution Systems (MES) manipulates infor-
mation that allows the optimizing of the production activities, from the creation of the
order to the finished product. Using updated and precise data, the MES guides, initiates,
answers, and reports about the plant activities, as they occur. The immediate response
to the conditions in constant alteration, joined to the goal of minimizing activities that
do not aggregate value to the product, result in processes and operations effective of the
plant. The MES increases the return on the operational assets, delivers in time, profits,
and performance of the capital flow. The MES provides information of critical mission
on the activities of production in all corporations and the supply chain."

82

A MES system just formalizes methods and procedures of production in an integrated
system and presents data in more useful and systematic way. Hence, a MES system
assembles all the activities that are not present in the planning layer nor in devices control
layer.

5.1.1 The Meta Data API in Focus

Here, we describe an essential module (i.e., an Application Program Interface - API) of
the target program we use as an example to the application of our laws. We have chosen
this module because it is independent and needs to be implemented in a rigorous way.

In order to control and manipulate data dynamically and in a highly configurable way,
our target program is built on top of a Meta Data API. This API provides capabilities to
create, edit and delete user-defined data types at execution time as well as to instantiate,
to save, to delete and to edit data values to those types. Basically, the Meta Data API has
two kind of abstractions: meta data which defines the data type, and the rules the concrete
data have to meet, and data, which is used to store concrete values.

When one defines a new meta data, it is necessary to chose the data type, name,
default value, a read-only measure unit and validation rules for it. Thus, a data assigned
to a meta data has to meet all the meta data characteristics. Figure 5.1 briefly presents a
class diagram representing our API. In Appendix C is presented a reduced version of our
API’s source-code.

The possible types for a meta data are: Integer, Double, String, Boolean and Date.
Each one of these types are constants of the class DataType, that is a enumeration-like
class. Besides it, each data type is represented by a specific class; IntegerData, DoubleData
, StringData, BooleanData and DateData. In addition, a data has a status that can be one of
the following types: not registered, valid and invalid. These status compose the values of
the enumeration-like class DateStatus.

We define validation rules for a meta data instantiating one or more rules of the
classes showed in Table 5.1. Each one of the rules listed in Table 5.1 is a value of the
enumeration-like class ValidationType. The use of validation rules by a meta data is not
mandatory. A validation rule can be responsible to validate or invalidate a data or can have
no effect. This behavior is defined by its purpose, defined by the enumeration-like class
ValidationPurpose. If a validation rule has a purpose set to VALIDATE, it can be responsible
to invalidate or validate a data, however if this purpose is set to NONE, this causes no effect.

Data can be registered via the methods registerValue and registerValueFromText. In
addition, we validate using the method validate. This method call the method validate

from all validation rules set in their corresponding meta data as can be seen in Ap-
pendix C.1.

83

IdV ®ie(BRI wolj weidelp 102[qo [euISuQ :1°¢ aIngL]

smelseleq

— - —
L\\% sMEs- mnpﬂmqmj”ﬂm"..m_i:"ﬂm.

|
gleg=ignog elegbulng ejegiabaju) elequeaoog eleQa1eq
ElECIE}BLL ‘ \
./XW. J EleelR U, BlIEEISLU-
h
ejegelaw-
o ejegelsn
_ adi1eleq adijejep-
elegela-
aNyasuelajo] Xep
adA juonepiiea
i
amyadejuadiadadueiao] uny anyan|eaxen amn mwmﬂﬁ.w&wﬂﬁ.ﬁﬁ#:mﬁ
anyazIs Xxep

anyuossaadxaemnbay

anyasueiajo L UNN

=

///Dq\%

ajnyanieAulN

snyuoneplieAloaensqy

asod) q.nﬂm

asodunguonepien

84

5.2 Laws Application in Action

The most common way to determine when to refactor is to identify code bad smells. Code
smells are implementation structures that negatively affect system lifecycle properties,
such as understandability, testability, extensibility, and reusability; that is, code smells
ultimately result in maintainability problems [31, 50, 32].

Following these principles we show here how to refactor some code related to bad
smells by applying two refactorings by applying our programming laws. We show the
usefulness of a systematic approach to evolve source code. It is important to emphasize
that our code is JML-specified and our laws are JML-aware what brings various difficul-
ties and challenges to refactoring activities and code evolution. These issues are addressed
during the rest of this chapter.

5.2.1 Eliminating Duplicate Code and Introducing Common Inter-
face via Extract Superclass

One of the most common example of code bad smell is duplicate code [47, 32]. Analyzing
the source-code of classes IntegerData, StringData, DoubleData, DateData and BooleanData
of Appenidx C.1 is notorious the presence of duplicated code. In Figure 5.2 and Fig-
ure 5.3, we show two code excerpts of the classes DateData and IntegerData. These two
figures show some of the common attributes and methods between these two classes and
the others cited. Code and specifications are the same.

Besides those methods showed in the Figures 5.2 and 5.3 others methods are equally
codified in the classes xData (the notation =Data will be used to refer all data classes,
IntegerData, DateData, and so forth): getRegisteredDate, setRegisteredDate, getStatus,
checkValidationRule, setEditedDate, setValue, validateRule, and getEditedDate. See the
Appendix C.1 to a better understanding. All these methods should be moved to a generic
superclass as well as common attributes, i.e., all attributes listed in the Figures 5.2 and 5.3
and the other with the same name (and semantic) of the classes StringData, DoubleData,
and BooleanData.

Other methods can not be moved, i.e., convertToValue, isValid, registerValueFromText
and getFormattedValue, but we discuss why they cannot be moved later in this section.

Create a generic superclass called Data

The first step is to create a new class to serve as a generic superclass, to keep all common
methods and attributes as well as common method interfaces (methods that need to be
implemented by subclasses and need to be implemented in different manners). We create
a new class called Data applying Law 1 from the left to right. All conditions are satisfied
since Data 1s fresh in cds.

Make all :Data classes inherit Data

Now we can make the classes that represent data (IntegerData, StringData, DoubleData,
DateData and BooleanData) subclasses of the newly created Data class. This is achieved
applying Law 3 from the left to right. As the superclass is new, all the conditions are
satisfied and the applications are executed with no problems.

85

Name Description Java Class
Minimum | the set value in a data connected to a Meta | MinValueRule
Value Data that defines this rule, needs to be

equals or greater than a specific value de-

fined in the rule.
Maximum| the set value in a data connected to a Meta | MaxValueRule
Value Data that defines this rule, needs to be

equals or less than a specific value defined

in the rule.
Maximum| the set value in a data connected to a Meta | MaxSizeRule
Size Data that defines this rule, needs to have

length at maximum equals to a specific

value defined in the rule.
Inferior the set value in a data connected to a Meta | MinTolerancePercentageRule
Toler- Data that defines this rule, will be consid-
ance ered valid if it is in the range of values
Percent- | between the default value (defined in the
age Meta Data) subtracted from the percent-

age of inferior tolerance (a specific value

defined in the rule) and the default value.
Superior | the set value in a data connected to a Meta | MaxTolerancePercentageRule
Toler- Data that defines this rule, will be consid-
ance ered valid if it is in the range of values
Percent- | between the default value (defined in the
age Meta Data), and the default value added

to the percentage of inferior tolerance (a

specific value defined in the rule).
Inferior | work as the inferior tolerance percentage | MaxToleranceRule
Toler- however considers absolute value and not
ance percentage.
Superior | work as the superior tolerance percentage | MinToleranceRule
Toler- however considers absolute value and not
ance percentage
Regular | the set value in a data connected to a Meta | RegularExpressionRule
Expres- | Data that defines this rule will be consid-
sion ered valid if it matches a specific regular

expression (a specific value defined in the
rule).

Table 5.1: Validation Rules

86

VA

> public class DateData {

3 //@ invariant this.getMetaData() != null;

4

5 private /+@ spec_public @x/ DataStatus status /* ... */;
6 private MetaData metaData;

7 private /+@ spec_public nullable @x/ Object value;

8 private /+@ spec_public @x/ Date registeredDate /* ... */;
9 private Date editedDate /* ... */;

10 /¥ ... ¥/

11 public /+x@ pure @x/ Object getValue() {

12 return this.value;

13 }

15 //@ assignable this.registeredDate, this.status;

16 private void doRegisterActions() {

17 this .setRegisteredDate (new Date());

18 this .validate();

19 }

20

21 /%@ requires value != null;

2 @ assignable this.value, this.registeredDate, this.status;

23 @ ensures this.getValue() == value;

24 @x/

25 public void registerValue(Object value) ({

26 this .value = value;

7 this . doRegisterActions () ;

28 }

29

30 /+@ requires this.getValue() != null,;

31 @ assignable this.status;

32 @ ensures true;

33 @sx/

34 public void validate() {

35 if (this.metaData.getValidationRules () != null &% !this.metaData.
getValidationRules () .isEmpty()) {

36 Iterator iter = this .metaData.getValidationRules().iterator();

37 while (iter.hasNext()) {

38 this .validateRule ((AbstractValidationRule)iter.next());

39 }

40 }

41 }

42

43 public /+@ pure @x/ MetaData getMetaData() {
44 return this .metaData;

45 }

46

47 public void setMetaData(MetaData metaData) f{

48 this .metaData = metaData;
49 }

50 /¥ e.. */

st}

Figure 5.2: Excerpt of DateData class source-code.

87

© o N o L AW N =

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

/F e ¥/
public class IntegerData {
//@ invariant this.getMetaData() != null;

private /+@ spec_public @x/ DataStatus status /* ... */;
private MetaData metaData;
private /+@ spec_public nullable @x/ Object value;
private /+@ spec_public @x/ Date registeredDate /* ... */;
private Date editedDate /* ... */;
VA
public /+x@ pure @x/ Object getValue() {
return this.value;

}

//@ assignable this.registeredDate, this.status;
private void doRegisterActions() {

this .setRegisteredDate (new Date());

this .validate();

}

/%@ requires value != null;
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == value;
@x/

public void registerValue(Object value) ({
this .value = value;
this . doRegisterActions () ;

}

/+@ requires this.getValue() != null,;
@ assignable this.status;
@ ensures true;
@=x/

public void validate() {

if (this.metaData.getValidationRules () != null &% !this.metaData.

getValidationRules () .isEmpty()) {

Iterator iter = this .metaData.getValidationRules().iterator();

while (iter.hasNext()) {
this .validateRule ((AbstractValidationRule)iter.next());
}
}
}

public /+@ pure @x/ MetaData getMetaData() {
return this .metaData;

}

public void setMetaData(MetaData metaData) f{
this .metaData = metaData;

}
/7': e 7’:/

Figure 5.3: Excerpt of IntegerData class source-code.

88

public class Data {

o - NV R N VO N

/%@
/%@
/%@
/+@
/%@

spec_public nullable @x/ DataStatus status /* ... */;
spec_public nullable @x/ MetaData metaData;

spec_public nullable @x/ Object value;

spec_public nullable @x/ Date registeredDate /* ... */;
spec_public nullable @x/ Date editedDate /* ... */;

Figure 5.4: pata class source-code with attributes up.

Move all common attributes to Data

As we already said in the introduction of this section, all attributes of «Data classes have
the same meaning. Thus, we can put the attributes in the superclass and remove from the
subclasses !. To do it, we have to execute the following tasks.

Choose one of the subclasses, in our case, we chose BooleanData, to move the com-
mon attributes. First we need to make the attributes public. Public attributes can
appear in specifications of private, default, protected and public methods. To make
them public, we apply Law 18 from the left to right to the attributes metaData and
editedDate and Law 24 from the left to right to the attributes status, value and
registeredDate. See the difference between these two laws, a private spec public
attribute works like a public attribute if one considers only specification visibility.

Secondly, its necessary to make all attributes that are typed with a reference type,
nullable. The attribute value is already nullable, but the others are not. Then we
apply law Law 26 from the left to right to the attributes metaData, registeredDate,
status, and editedDate.

We move each one of the attributes cited above using Law 27. As Data is a new
class it has no attributes, and the unique law condition is satisfied.

The previous step made all attributes in the other Data subclasses shadows. We have
to delete them. In order to delete these attributes we apply Law 30 from the left
to right. Before applying Law 30 we need to make the attributes (in subclasses of
Data) public, applying the same laws as discussed before. The condition expressed
in Law 30 is trivially satisfied since Data is a new class and all its attributes are new
too. All accesses to the now non-existent attributes of IntegerData, StringData,
DoubleData and DateData are now redirected to the same attributes in the superclass
Data.

Normally we use protected attributes in a superclass (not public ones) when we
want to make them visible to its subclasses. However, in our case we make all
attributes default since we consider that there is a unique package context. But, we
also need to consider the JML-specifications. Hence, we make the attributes of Data
default and spec public. We achieve it by applying Law 21 from the right to left.

Figure 5.4 shows the newly created superclass Data.

"'We know that when removing attributes from the subclasses the accesses to these attributes will point
to the attributes of the superclass what characterizes a situation of data refinement. We do not deal with
data refinement in this work and we assume here that we can do this operation safely.

89

Move common methods to the Data class

As we discussed previously, the methods presented in Figures 5.2 and 5.3 and others
methods equally codified in the classes «Data (checkValidationRule, setValue, getStatus,
getRegisteredDate, setRegisteredDate, validateRule, setEditedDate and getEditedDate)
need be moved to the class Data.

The methods cited above are completely equal. But the other methods convertTovValue
, isValid, registerValueFromText and getFormattedValue have behaviors that are specific
to the classes in which they are declared.

We begin with the methods that have the same code. We choose one of the sub-
classes, in our case, we chose BooleanData, to move the common methods. First we
choose to move getter and setter methods: setMetaData, getMetaData, setValue, getValue
, setEditedDate, getEditedDate, getStatus, getRegisteredDate, and setRegisteredDate.
The Data class has no methods, thus we use Law 68 from the left to right, to move up
these methods 2. Almost all conditions are satisfied for these methods. super does not
occur in the methods bodies nor in their specifications. As all methods specifications
are equals which satisfy the JML conditions (2) and (3). At this point all attributes are
default. However, there is one condition that is unsatisfied, all occurrences of this are
uncast. Then, we apply law Law 100 from the left to right to such occurrences. After
these steps we can safely apply Law 68 from the left to right.

Now we move up the others methods that have the same code: doRegisterActions,
validate, registerValue, validateRule and checkValidationRule. All conditions satisfied
by the getter and setter methods cited in the previous paragraph are also satisfied in these
methods for the same reason. Again we have to apply Law 100 from the left to right to
occurrences of this in the bodies of these methods. Before we move the private methods
doRegisterActions, validateRule and checkValidationRule, we need to make them public
in all subclasses of Data (applying Law 56 from the left to right) in order to fit Law 68.
The condition of Law 56 (from the left to right) is satisfied since all attributes are default
and have public specification visibility and pure methods and model fields do not occur
in the specifications. After these steps we apply Law 68 from the left to right 3. It is
important to highlight that all specifications cases of the methods with the same name
of the recently moved methods of BooleanData in the subclasses StringData, DateData,
DoubleData, and IntegerData were changed and now they start with an also clause.

The methods isvalid, convertToValue, registerValueFromText and getFormattedValue
remain in their classes.

The method isvalid has a different implementation and specification cases in the
class StringData. Moving up the method isvalid of classes DoubleData, IntegerData and
DateData would break the conditions 2 and 3 of Law 68 since the postcondition of isvalid
method of DateData does not imply the postcondition of StringData, for example (see Ap-
pendix C.1). The same reasoning is used to treat the methods registerValueFromText and
getFormattedValue. Considering the method convertToValue, the conditions (2) and (3) of
Law 68 are satisfied, however, this method has different implementations in subclasses

2Qur laws that deal with methods consider that the methods are default. Thus, from now on we consider
that before applying the laws of methods listed throughout this section (except the laws that deal with
visibility changes) we apply a law (for instance, Law 54) to change the visibility of the method to default.
We also consider that at the end of the application of the laws of methods we change the visibility of the
method back to public.

Recall that we have to transform the methods to default before applying the law to the methods and
that at the end of the law application we make the methods back to public

90

1 public class Data {
2
3 /¥ ... *F/
4
5

/%@ requires (!(this instanceof DateData)) && this.getValue() !=
null ;

6 @ assignable this.status;

7 @ ensures (!(this instanceof DateData)) && true;

8 @ also

9 @ requires (this instanceof DateData) && this.getValue() != null;

10 @ assignable this.status;

11 @ ensures (this instanceof DateData) && true;

12 @ also

13 @ requires (this instanceof DateData) && this.getValue() != null;

14 @ assignable this.status;

15 @ ensures (this instanceof DateData) && true;

16 @sx/

17 public void validate() {

18 if (!(this instanceof DateData)) {

19 if (this.metaData.getValidationRules() != null && !this.
metaData.getValidationRules () .isEmpty()) {

20 Iterator iter = this.metaData.getValidationRules().iterator ()

21 while (iter.hasNext()) {

2 this .validateRule ((AbstractValidationRule)iter.next());

23 }

2 }

25 } else {

26 if (this . metaData.getValidationRules() != null && !this.
metaData.getValidationRules () .isEmpty()) {

27 Iterator iter = this.metaData.getValidationRules().iterator ()

28 while (iter.hasNext()) {

29 this .validateRule ((AbstractValidationRule)iter.next());

30 }

31 }

kY }

33 }

34

s /F L0 ¥/

36
37}

Figure 5.5: validate method immediately after moved up from DateData to Data class.

91

of Data, thus we keep the methods convertToValue in their classes. We will resume the
discussion about these methods in a later section. After the methods movement, we can
exclude the trivial casts inserted in previous steps using the same laws we used but in
opposite direction.

After moving up setters, getters and the methods doRegisterActions, registerValue
, validate, validateRule, checkValidationRule of BooleanData we need to eliminate the
same methods in the others subclasses of Data. To accomplish it, we need to apply Law
70, from the left to right. In order to satisfy the conditions of this law, we apply Law 100,
from the left to right to cast occurrences of this in methods bodies and to occurrences of
this in specifications of pure methods.

Now we can move up the methods. Each one of the methods setValue, getValue
, setMetaData, getMetaData, setEditedDate, getEditedDate, doRegisterActions, validate,
getRegisteredDate, setRegisteredDate, checkValidationRule, registerValue, getStatus,
and validateRule are moved up by application of Law 70, from the left to right. After
each application we apply Law 97, from the left to right, to reduce if-else clauses to a
single command, and Law 100 from the right to left to uncast back this occurrences. We
apply propositional calculus to reduce specification cases to the original ones. The last
reduction is not mandatory and we applied it only to simplify the specifications (we did
not created laws to execute this task).

In order to exemplify the previous steps we show in Figure 5.5 the method validate
immediately after the application of Law 70 from DateData to Data class. As can be seen,
the disjunction of the conditionals (if-else, lines 18 and 25) is true, and the same command
(lines 19 to 24 and 26 to 32) appears in both branches of the conditionals. We can replace
the alternation by just the command. Considering the specification cases it is not difficult
to realize that the specification cases presented in Figure 5.5 can be simplified to the one
showed in Figure 5.6. In Figure 5.6 we present the version of the method validated in
the class Data at the end of methods movements. Note that there are no casts in this
expressions.

public class Data ({

1

2 VA

3

4 /%@ requires this.getValue() != null;

5 @ assignable this.status;

6 @ ensures true;

7 @x/

8 public void validate() {

9 if (this metaData.getValidationRules() != null &% !this.metaData.
getValidationRules () .isEmpty()) {

10 Iterator iter = this.metaData.getValidationRules().iterator();

1 while (iter.hasNext()) {

12 this .validateRule ((AbstractValidationRule)iter.next());

13 }

14 }

15 }

16

7/ */

Figure 5.6: The final version of validate method in Data class.

92

public class AbstractValidationRule {

VA
public boolean validate(Object data) {
if (this.getType().equals(ValidationType.MAX_VALUE)) {
return this.validateMaxValue(data);
} else if (this.getType().equals(ValidationType.MIN_VALUE)) {
return this.validateMinValue(data);
} else if (this.getType().equals(ValidationType.MAX_TOLERANCE)) {
10 return this.validateMaxTolerance(data);
11 } else if (this.getType().equals(ValidationType.MIN_TOLERANCE)) {
12 return this.validateMinTolerance(data);
13 } else if (this.getType().equals(ValidationType.
MAX_TOLERANCE_PERCENTAGE)) {
14 return this.validateMaxTolerancePercentage(data);
15 } else if (this.getType().equals(ValidationType.
MIN_TOLERANCE_PERCENTAGE)) {
16 return this.validateMinTolerancePercentage(data);
17 } else if (this.getType().equals(ValidationType.REGULAR_EXPRESSION)

) A

© N L AW N =

18 return this.validateRegularExpression(data);
19 } else if (this.getType().equals(ValidationType.MAX_SIZE)) {
20 return this.validateMaxSize(data);

21 } else if (this.getType().equals(ValidationType.NONE)) {
2 return true;

23 } else {

24 return false;
25 }

2%}

7 /* /

Figure 5.7: AbstractValidationRule class with a zoom in the validate method.

Change parameter, return types and local variables types to Data

After moving up all the common elements, we need to check if clients of the subclasses
use only the common interface, i.e., methods that were moved up and now are in Data
class. If so, we can change the required type to Data. In what follows, we describe the
places in which this action can be executed.

In the class Data, the parameter data of the method validate (see Figure 5.7) is of type
object. However, as now we have a generic superclass to represent data abstraction we
can modify the type to Data. Our first intention is to change the type of data directly using
Law 72. Nevertheless, the condition (from the left to right and vice-versa) is not satisfied
because there are no casts in the body of method validate. To address this condition we
have to execute the following tactic:

e Use Law 107, from the left to right introducing a temporary variable tmp1.

e Apply Law 104 from the right to left, to introduce cast in the newly created assign-
ment (line 7, Figure 5.8). Figure 5.8 presents the method validate after these two
steps.

e There is only one occurrence of data inside the body of the method validate body

93

and this is casted. Hence, the condition (from the left to right and vice-versa) of
Law 72 is satisfied.

e We use Law 107 from the right to left to eliminate tmp1 and replace this occurrences

by (Data) data. We also apply Law 100 from the right to left to remove the trivial
casts introduced.

The condition (1) (from the right to left) of Law 72, is not satisfied since there is an
uncast occurrence of validate in the body of the method checkValidationRule of class
Data (see the body of the method in Appendix C.2). Thus, we have to a introduce trivial
cast in this occurrence applying Law 100 from the left to right. There are no specification
cases in the method validate, thus the JML conditions of Law 72 are satisfied. Finally
we can apply Law 72, from the left to right. Figure 5.9 presents the final version of the
method validate of class AbstractValidationRule.

1
2
3
4
5
6
7
8
9

21
2
23
24
25
26
27
28
29 }

5 }

/-k

public class AbstractValidationRule {

*/

public boolean validate(Object data) {

Object tmpl;

/«@ assert (data instanceof Data); @sx/

tmpl = (Data)data;

if (this.getType().equals(ValidationType.MAX_VALUE)) {

}
}

return this.validateMaxValue(tmpl);

else if (this.getType().equals(ValidationType.MIN_VALUE)) {

return this.validateMinValue (tmpl);

else if (this.getType().equals(ValidationType.MAX_TOLERANCE)) {

return this.validateMaxTolerance(tmpl);

else if (this.getType().equals(ValidationType.MIN_TOLERANCE)) {

return this.validateMinTolerance(tmpl);

else if (this.getType().equals(ValidationType.
MAX_TOLERANCE_PERCENTAGE)) {

return this.validateMaxTolerancePercentage(tmpl);

else if (this.getType().equals(ValidationType.
MIN_TOLERANCE_PERCENTAGE)) {

return this.validateMinTolerancePercentage (tmpl);

else if (this.getType().equals(ValidationType.REGULAR_EXPRESSION)
) |

return this.validateRegularExpression(tmpl);

else if (this.getType().equals(ValidationType.MAX_SIZE)) {

return this.validateMaxSize(tmpl);

else if (this.getType().equals(ValidationType.NONE)) {

return true;

else{

return false;

Figure 5.8: AbstractValidationRule class with a zoom in the validate method after re-
place expression by variable tmp1

Continuing the process of changing types, we change the type of parameter data of the
methods validateMaxTolerance, validateMinTolerance, validateMaxTolerancePercentage,

94

public class AbstractValidationRule {

1

2

3 /JF 0. %/

4 public boolean validate(Data data) {

5 /«@ assert (data instanceof Data); @sx/

6 if (this.getType().equals(ValidationType.MAX_VALUE)) {

7 return this.validateMaxValue(data);

8 } else if (this.getType().equals(ValidationType.MIN_VALUE)) {

9 return this.validateMinValue(data);

10 } else if (this.getType().equals(ValidationType.MAX_TOLERANCE)) {

11 return this.validateMaxTolerance(data);

12 } else if (this.getType().equals(ValidationType.MIN_TOLERANCE)) {

13 return this.validateMinTolerance(data);

14 } else if (this.getType().equals(ValidationType.
MAX_TOLERANCE_PERCENTAGE)) {

15 return this.validateMaxTolerancePercentage(data);

16 } else if (this.getType().equals(ValidationType.
MIN_TOLERANCE_PERCENTAGE)) {

17 return this.validateMinTolerancePercentage(data);

18 } else if (this.getType().equals(ValidationType.REGULAR_EXPRESSION)

) A

19 return this.validateRegularExpression(data);
20 } else if (this.getType().equals(ValidationType.MAX_SIZE)) {
21 return this.validateMaxSize(data);

2 } else if (this.getType().equals(ValidationType.NONE)) {
23 return true;

2 } else {

25 return false;
26 }

27}

8 /% .. F/

29 }

Figure 5.9: AbstractValidationRule class with a zoom in the validate method. Version
with data parameter changed do Data.

validateMinTolerancePercentage, validateMaxSize, validateMaxValue and of the method
validateMinValue from Object to Data by applying Law 71 and of we change the type of
the method validateRegularExpression by applying Law 72 since it is not pure. Before
applying these two laws we need to make all those methods default — using Law 59 and
Law 57 for pure methods, and, Law 56 and Law 54 for the non-pure ones — in order
to fit Law 71 and Law 72. We can do it because all pure methods that appear in the
specification cases of those methods are public.

The conditions of Law 59 and Law 56 are satisfied (considering Law 57 and Law 54
there are no conditions to be satisfied). The JML and Java conditions (1) (for right to left)
are satisfied since the methods were private. The Java and JML (for application in both
directions) conditions are satisfied because the parameter type of data is Object and all
accesses to data attributes and methods are cast. And, the Java and JML conditions (2)
(for left to right) are also satisfied. Finally, we modify the type of parameter data of the
methods validateMaxTolerance, validateMinTolerance, validateMaxTolerancePercentage,
validateMinTolerancePercentage, validateMaxSize, validateMaxValue and validateMinValue
by applying Law 71, and of validateRegularExpression, by applying Law 72.

At last, we remove all trivial casts introduced in last steps. and make the methods

95

1 public class AbstractValidationRule {

2 /F .. %/
3 /+@ requires (data instanceof StringData) && ((StringData)data).
getValue() != null

4 && ((MaxSizeRule)this).getReferenceValue() != null;

5 @ assignable \nothing;

6 @ ensures \result == ((String) ((StringData)data).getValue()).
length () <= ((MaxSizeRule)this).getReferenceValue().intValue
05

7 @ also

8 @ requires !(data instanceof StringData);

9 @ assignable \nothing;

10 @ ensures \result == false;

11 @sx/

12 private /+@ pure @x/ boolean validateMaxSize(Object data) {

13 if (data instanceof StringData) {

14 if (((StringData)data).getValue() != null) {

15 return ((String) ((StringData)data).getValue()).length() <= ((

MaxSizeRule)this).getReferenceValue().intValue () ;

16 }

17 }

18 return false;

19 }

0 /% .. /

Figure 5.10: AbstractValidationRule class with a zoom in the validate method.

public by applying Law 57 and Law 54. Figure 5.10 shows the method validateMaxSize
before laws application and Figure 5.11 shows the final version.

Move duplicated and weaker invariants to Data class

This section describes an important step added to the refactoring Extract Superclass.
Common and weaker invariants should be moved up to the most abstract class in the
hierarchy, in our case, the new superclass Data. The same action may be applied to his-
tory constraints however since our program does not use history constraints a detailed
discussion is omitted.

As can be seen in Appendix C.1 we have similar invariants — invariant this .getMetaData
O!=null — in each one of the subclasses of Data: BooleanData, DateData, IntegerData,
DoubleData and StringData. To move each one of the invariants we need apply Law S
from the left to right.

Before apply Law 5, we need to prepare all invariants introducing trivial casts in this
expressions in all invariants applying Law 100, from the left to right. Now it is safe to
apply Law S from the left to right in all invariants. We delete trivial casts using Law 108,
from the left to right. An excerpt of Data class highlighting the recently moved invari-
ants is presented in Figure 5.12. Propositional calculus is used to simplify the invariant
predicates. The invariant of Data is the conjunction of predicates written in lines 3 to 7 of
Figure 5.12. All instanceof expressions cover all possible subtypes of Data which means
that the common predicate can be used in the place of all invariants of lines 3 to 7 of
Figure 5.12. The final invariant of data is: invariant this.getMetaData()!= null.

96

1 public class AbstractValidationRule {

2 /F .. %/
3 /+@ requires (data instanceof StringData) && data.getValue() !=
null
4 && ((MaxSizeRule)this).getReferenceValue() != null;
5 @ assignable \nothing;
6 @ ensures \result == ((String)data.getValue()).length() <= ((
MaxSizeRule) this).getReferenceValue () .intValue();
7 @ also
8 @ requires !(data instanceof StringData);
9 @ assignable \nothing;
10 @ ensures \result == false;
11 @x/
12 public /x@ pure @x/ boolean validateMaxSize(Data data) {
13 if (data instanceof StringData) {
14 if (((StringData)data).getValue() != null) {
15 return ((String)data.getValue()).length() <= ((MaxSizeRule)
this).getReferenceValue().intValue();
16 }
17 }
18 return false;
19 }
0 /% .. %/

Figure 5.11: AbstractValidationRule class with a zoom in the validateMaxSize method
after laws application.

Check common interface and create empty methods for it in the superclass

In this last step we create a common interface in Data class to the methods convertToValue,
isValid, registerValueFromText and getFormattedValue. Following Fowler’s instructions,
we make Data abstract and create abstract methods to represent those methods and obli-
gate new subclasses to implement the common interface. In addition, all calls to those
methods may be made via Data instances and not only via subclasses instances. Hence,
some casts need are eliminated and class Data is used in some places where Object is used.

First we make Data abstract applying Law 2, from the left to right. Second, we apply
Law 87 from the left to right to introduce the four methods convertToValue, isValid
, registerValueFromText and getFormattedValue. All formal parameters, return types,
names, and specification keywords (eg. pure, spec_public) are replicated in the new ab-
stract methods.

Now we have a complete common interface in Data. We can find and change subtypes
occurrences, like declarations, by Data declarations. In fact, in the method main of class
Main we have calls to isValid, registerValueFromText and getFormattedValue with local
variables, which are not declared as of Data class (see Figure 5.13 lines 14, 15, 16, 23, 24,
25, 32, 33 and 34).

We change the local variable types cited above (lines 13, 22, and 31 of Figure 5.13)
and the others found in the method main of class Main applying Law 106 from the left to
right. In order to meet the conditions of that law we apply Law 100 from the left to right
to those occurrences and to the occurrences of the local variables in the assert clauses (see
lines 19, 28 and 37 of Figure 5.13). After that we change local variables types to Data.
Law 105 and Law 109 are used to eliminate trivial casts introduced previously. With this

97

1 public class Data {

2 /F ... %/
3 //@ invariant (this instanceof DateData) ==> this.getMetaData() !=
null ;
4 //@ invariant (this instanceof DoubleData) ==> this.getMetaData() !=
null ;
s //@ invariant (this instanceof IntegerData) ==> this.getMetaData() !=
null ;
¢ //@ invariant (this instanceof StringData) ==> this.getMetaData() !=
null ;
7 //@ invariant (this instanceof BooleanData) ==> this.getMetaData() !=
null;
s /% ... %/
o }

Figure 5.12: Invariants moved up to Data class immediately before reduction.

step, we finish the Extract Superclass refactoring for class Data. Figure 5.14 shows the
excerpt of the class Main after the application of laws. Appendix C.2 shows the whole
program after this refactoring.

5.2.2 Introducing Replace Conditional With Polymorphism

One of the most important features in object-oriented development is polymorphism [31].
Using this feature, one can avoid writing specific conditionals to address specific behav-
iors in a superclass and leaving these responsibilities to subclasses. Even when there are
no subclasses, creating some to implement the specific behavior methods may be a good
choice. As a result the existence of switch statements to deal with type codes or if-then-
else statements which makes selections based on type strings are much less common in
object-oriented programs [31].

The situation explained above can be visualized in the method validate of the class
AbstractValidationRule. Figure 5.9 gives details of that method. We have many if
branches; each branch executes a type test (via the method getType) and, depending on
the type, executes a specific code, i.e., calls a specific method. This situation is a common
example when polymorphism can be used to clean code and to improve code design. The
refactoring Replace Conditional with Polymorphism is commonly used in situations like
that. In what follows we show how this refactoring is applied in the validate method of
AbstractValidationRule class using our laws. We emphasize that our program is not a
common Java program, but a formally specified Java program. The peculiarities of this
fact are discussed along this section.

Introducing method redefinitions in subclasses and copying superclass method body

We must introduce the method validate in each subclass, MinvalueRule, MaxValueRule
, MinValueRule, MaxSizeRule, MinTolerancePercentageRule, MaxTolerancePercentageRule,
MaxToleranceRule, MinToleranceRule and RegularExpressionRule. First, we apply Law
67 from the left to right in all those subclasses. Invariants of those subclasses do not
restrict elements of superclass 4 thus, the JML condition is satisfied. The Java condition

4Calls to super inside a subclasse when the subclasse’s invariant restricts elements of its superclass is
not a good practice in DbC, see [59].

98

public class Main {

1
2
3 public static void main (String[] args) {
4 //Simulating a set of properties to a Product
5 MetaData length = createlLengthProperty();
6 MetaData weigth = createWeigthProperty();
7 MetaData code = createCodeProperty();
8 MetaData productionDate = createProductionDateProperty();
9 MetaData numberOfInternalParts =
createNumberOfInternalPartsProperty () ;
10 MetaData needsPacking = createNeedsPackingProperty();
11
12 //Simulating data registering for Length
13 DoubleData datalLength = new DoubleData(length);
14 datalength.registerValueFromText("10");
15 System.out.println("data value: " + datalength.getFormattedValue
O +
16 " is a " + datalLength.isValid() + " well—-formed value as
expected and " +
17 "its expected status is " +
18 "INVALID, the real status is: " + datalLength.getStatus());
19 //@ assert datalength.getStatus().equals(DataStatus.INVALID);
20
21 //Simulating data registering for Weigth
2 DoubleData dataWeigth = new DoubleData(weigth);
23 dataWeigth.registerValueFromText("4");
2 System.out.println("data value: " + dataWeigth.getFormattedValue
O +
25 " is a " + dataWeigth.isValid() + " well—-formed value as
expected and " +
26 "its expected status is " +
27 "VALID, the real status is: " + dataWeigth.getStatus());
28 //@ assert dataWeigth.getStatus().equals(DataStatus.VALID);
29
30 //Simulating data registering for Code
31 StringData dataCode = new StringData(code);
» dataCode.registerValueFromText ("XYZ001");
3 System.out.println("data value: " + dataCode.getFormattedValue ()
+
34 " is a " + dataCode.isValid() + " well-formed value as
expected and " +
35 "its expected status is " +
36 "VALID, the real status is: " + dataCode.getStatus());
37 //@ assert dataCode.getStatus().equals(DataStatus.VALID);
38
39 /¥ ... ¥/

40 }

a1}

Figure 5.13: Excerpt of the original version of Main class of our target program.

99

1 public class Main {

2 public static void main (String[] args) f{

3 //Simulating a set of properties to a Product

4 MetaData length = createlLengthProperty();

5 MetaData weigth = createWeigthProperty();

6 MetaData code = createCodeProperty();

7 MetaData productionDate = createProductionDateProperty();

8 MetaData numberOfInternalParts =
createNumberOfInternalPartsProperty () ;

9 MetaData needsPacking = createNeedsPackingProperty();

11 //Simulating data registering for Length

12 Data datalength = new DoubleData(length);
13 datalength.registerValueFromText("10");
14 System.out.println("data value: " + datalength.getFormattedValue
O +
15 " is a " + datalLength.isValid() + " well-formed value as
expected and " +
16 "its expected status is " +
17 "INVALID, the real status is: " + datalength.getStatus());
18 //@ assert datalLength.getStatus().equals(DataStatus.INVALID);
19
20 //Simulating data registering for Weigth
21 Data dataWeigth = new DoubleData(weigth);
2 dataWeigth.registerValueFromText("4");
23 System.out.println("data value: " + dataWeigth.getFormattedValue
O +
2 " is a " + dataWeigth.isValid() + " well—-formed value as
expected and " +
25 "its expected status is " +
26 "VALID, the real status is: " + dataWeigth.getStatus());
27 //@ assert dataWeigth.getStatus().equals(DataStatus.VALID);
28
29 //Simulating data registering for Code
30 Data dataCode = new StringData(code);
31 dataCode.registerValueFromText ("XYZ001");
n System.out.println("data value: " + dataCode.getFormattedValue ()
+
33 " is a " + dataCode.isValid() + " well-formed value as
expected and " +
34 "its expected status is " +
35 "VALID, the real status is: " + dataCode.getStatus());
36 //@ assert dataCode.getStatus().equals(DataStatus.VALID);
37 VAV

38 }
30}

Figure 5.14: Excerpt of the final version of Main class of our target program after execu-
tion of Extract Superclass Data.

100

is satisfied because abstract methods does not make sense in this refactoring. Therefore,
we create methods with specific behavior.

Our goal in this step is to have a copy of method validate in subclasses of the class
AbstractValidationRule. Hence, we have to copy the body of validate to the recently
created validate methods in subclasses. To achieve it, we must apply Law 82 from the
left to right, in each method validate of the subclasses of AbstractValidationRule.

We need to satisfy the conditions (only the ones necessary to apply the law from the
left to right) of the Law 82. We follow the micro steps that below:

e Eliminate the multiple return points in method validate, by using Law 65 from the
left to right. Condition (2) is satisfied since we have mutually exclusive condition-
als.

e Before applying Law 65, it is necessary to make validate’s body fit the template of
this law. Thus, we apply Law 107 from the left to right.

The other conditions of Law 82 already are satisfied. JML conditions are satis-
fied because we do not have super and non-private elements in specifications. Now,
we can apply Law 82 from the left to right safely to the methods validate of classes
MaxToleranceRule, MinToleranceRule, MinValueRule, MaxSizeRule, RegularExpressionRule
, MinTolerancePercentageRule, MaxTolerancePercentageRule, MinValueRule, MaxValueRule
and Figure 5.15 shows an excerpt of class MaxValueRule showing the method validate.
The others methods validate of the others subclasses are equals.

Eliminate non specific conditionals and use specific behavior command

As is exemplified in Figure 5.15, the bodies of the method validate of subclasses of
AbstractValidationRule have many conditional branches. However, those branches call a
specific getType method in each subclass. Each one of these methods returns a constant
depending on the subclass. For example, in the method getType of MaxValueRule class
of Figure 5.15, the constant ValidationType .MAX_VALUE is returned. We can reduce all the
branches of validate of MaxValueRule to specific branch where the branch test matches
the constant ValidationType.MAX_VALUE. The same reasoning can be applied to the others
validate methods of the others subclasses of AbstractValidationRule.

Before these steps we apply Law 107 from the left to right followed by Law 65 from
the left to right in each method validate of the subclasses of AbstractValidationRule to
facilitate the application of our strategy. Then, we reduce the conditional branches of the
methods validate. Figure 5.16 shows the validate method of MaxValueRule at this point.
We eliminate the remaining if via Law 96 from the left to right.

At this point we may finish the refactoring. However, to improve code design we
choose to move down the methods validateMaxTolerance, validateMinTolerance, valida
—teMaxSize, validateMaxValue, validateMinValue, validateMaxTolerancePercentage, va—
lidateMinTolerancePercentage, and validateRegularExpression to the corresponding sub-
classes, MaxToleranceRule, MinToleranceRule, MaxSizeRule, MaxValueRule, MinValueRule
, MaxTolerancePercentageRule, MinTolerancePercentageRule, and RegularExpressionRule,
respectively. Hence, we apply Law 68 from the right to left to each of these methods to
their respective target subclasses. To apply this law we need to eliminate each call to the
involved methods inside AbstractValidationRule class. Each call is eliminated by apply-
ing Law 84 from the left to right. After that, all the conditions of Law 68 (for applying

101

public class MaxValueRule extends AbstractValidationRule {
VA
/+@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.MAX_VALUE);
Q@=x/
public /%@ pure @x/ ValidationType getType() {
return ValidationType.MAX_VALUE;

[T N S S

10 }

12 public boolean validate(Data data) f{

13 boolean tmp;

14 /+@ assert this.getPurpose() != null; @x/

15 boolean result;

16 /«@ assert (data instanceof Data); @x/

17 if (this.getType().equals(ValidationType.MAX_VALUE)) {

18 result = this.validateMaxValue(data);

19 } else if (this.getType().equals(ValidationType.MIN_VALUE)) {

20 result = this.validateMinValue(data);

21 } else if (this.getType().equals(ValidationType.MAX_TOLERANCE)) {

2 result = this.validateMaxTolerance(data);

23 } else if (this.getType().equals(ValidationType.MIN_TOLERANCE)) {

2 result = this.validateMinTolerance(data);

25 } else if (this.getType().equals(ValidationType.
MAX_TOLERANCE_PERCENTAGE)) {

26 result = this.validateMaxTolerancePercentage(data);

27 } else if (this.getType().equals(ValidationType.
MIN_TOLERANCE_PERCENTAGE)) {

28 result = this.validateMinTolerancePercentage(data);

29 } else if (this.getType().equals(ValidationType.
REGULAR_EXPRESSION)) {

30 result = this.validateRegularExpression(data);

31 } else if (this.getType().equals(ValidationType.MAX_SIZE)) {

k) result = this.validateMaxSize(data);

33 } else if (this.getType().equals(ValidationType.NONE)) {

34 result = true;

35 } else {

36 result = false;

37 }

38 tmp = result;

39 /+@ assert this.getPurpose() != null; @x/

40 return tmp;

41 }

2}

Figure 5.15: Excerpt of class MaxValueRule after the first step of Replace Conditional with
Polymorphism.

102

1 public class MaxValueRule extends AbstractValidationRule {
2 /¥ ... %/

3 public boolean validate(Data data) f{

4 /«@ assert (data instanceof Data); @x/

5 if (this.getType().equals(ValidationType.MAX_VALUE)) {
6 return this.validateMaxValue(data);

7 }

s}

o }

Figure 5.16: Excerpt of class MaxValueRule after the conditionals reducing in step 2 of
Replace Conditional with Polymorphism.

the law from the right to left) are satisfied since there is no super calls and those methods
are not redefined in their target classes (which satisfies JML conditions). Thus, we move
down the cited methods. To finish this step we make the recently moved down methods
private applying Law 56 from the right to left or Law 59 from the right to left.

Figure 5.17 shows an excerpt of the final version of MaxValueRule class. All the other
subclasses of AbstractValidationRule seems like MaxValueRule, see Appendix C.3 for the
whole source code of these classes.

5.2.3 Extracting a More Specialized Superclass to Number-Based Val-
idation Rules

The subclasses of AbstractValidationRule (except for the class RegularExpressionRule)
base they validation logic in a reference number, see for example the method validateMaxValue
of MaxValueRule in Figure 5.17. These kind of classes, i.e., number-based validation rules,

can be generalized. Thus, we apply the refactoring Extract Superclass again to create a
superclass called AbstractNumberValidationRule.

We follow the same strategy we used in Section 5.2.1, however here, we simplify the
steps and the discussion about them.

Create a generic superclass called AbstractNumberValidationRule

The first step is to create a new class to serve as a superclass, as we did in Section 5.2.1.
We create a new class called AbstractNumberValidationRule, applying Law 1 from the left
to right and make it subclass of AbstractValidationRule by applying Law 3 from the left
to right. All conditions are satisfied since AbstractNumberValidationRule is fresh in cds.

Make all number-based validation rules classes inherit AbstractNumberValidationRule

Now we make the classes MaxValueRule, MinValueRule, MaxToleranceRule MinToleranceRule
, MaxSizeRule, MinTolerancePercentageRule, and MaxTolerancePercentageRule subclasses
of the newly created AbstractNumberValidationRule class by applying Law 4 from the
left to right. As the superclass is a new fresh class, all the conditions are satisfied and the
applications are executed with no problems.

103

public class MaxValueRule extends AbstractValidationRule ({

1

2 //@ invariant this.getReferenceValue() != null;

3 private Double referenceValue;

4 VA

5 /+@ also

6 @ requires \same;

7 @ assignable \nothing;

8 @ ensures \result.equals(ValidationType.MAX_VALUE);
9 @sx/

10 public /%@ pure @x/ ValidationType getType() {

11 return ValidationType.MAX_VALUE;

12 }

13 public void setReferenceValue(Double referenceValue) {
14 this .referenceValue = referenceValue;

15 }

16 public /%@ pure @x/ Double getReferenceValue() {

17 return referenceValue;

18 }
19 /+@ requires (data instanceof DoubleData) && data.getValue() !=

null && ((MaxValueRule)this).getReferenceValue() != null;

20 @ assignable \nothing;

21 @ ensures \result == (((MaxValueRule)this).getReferenceValue().
compareTo(data.getValue()) >= 0);

2 @ also

23 @ requires (data instanceof IntegerData) && data.getValue() !=
null && ((MaxValueRule)this).getReferenceValue() != null;

2 @ assignable \nothing;

25 @ ensures \result == ((Integer)data.getValue()).intValue() >= ((

MaxValueRule) this).getReferenceValue () .intValue();
26 @ also

7 @ requires (!(data instanceof DoubleData) && !(data instanceof
IntegerData));

28 @ assignable \nothing;

29 @ ensures \result == false;

30 @sx/

31 private /+@ pure @x/ boolean validateMaxValue(Data data) {

k2 if (data instanceof DoubleData) {

33 if (((MaxValueRule)this).getReferenceValue().compareTo(data.

getValue()) >= 0) {

34 return true;

35 } else if (data instanceof IntegerData) {

36 return ((Integer)data.getValue()).intValue() >= ((

MaxValueRule)this).getReferenceValue () .intValue();
37 }

38 }

39 return false;
40 }
41 public boolean validate(Data data) {
2 /+@ assert (data instanceof Data); @x/
43 return this.validateMaxValue(data);
44
}

45}

Figure 5.17: Excerpt of class MaxValueRule after the application Replace Conditional with
Polymorphism refactoring.

104

1 public class AbstractNumberValidationRule extends
AbstractValidationRule {

/+@ nullable @x/ Double referenceValue;

[V I R TR Y

Figure 5.18: AbstractNumberValidationRule class source-code with attribute up.

Move attribute referenceValue to AbstractNumberValidationRule

The following steps allows us to move the attribute referenceValue to the class Abstract—
NumberValidationRule:

e We move up referenceValue from MaxValidationRule to the newly created super-
class AbstractNumberValidationRule. First we apply Law 18 from the left to right
to turn it public.

e We apply law Law 26 from the left to right to referencevalue.
e Finally, we move referencevalue applying Law 27, from the left to right.

e The previous step made the attributes named referenceValue in the others number-
based validation rule classes shadows. We have to delete them applying Law 30
(from the left to right). We omit details here as we said before.

e Apply Law 21 from the right to left to referenceValue to make it default.

Figure 5.18 shows class AbstractNumberValidationRule.

Move common methods to AbstractNumberValidationRule class

Now we move the methods related to the attribute referenceValue (setReferenceValue and
getReferenceValue) up to class MaxValidationRule. We use Law 68 from the left to right
to move up setReferenceValue and getReferenceValue. We cast references of this (that
are uncast) by applying Law 100 from the left to right. After this, we apply Law 68 from
the left to right to the methods setReferenceValue and getReferenceValue. Trivial casts
are eliminated using Law 100 from the right to left.

Now we move up the methods setReferenceValue and getReferenceValue of the sub-
classes MinValueRule, MaxSizeRule, MinTolerancePercentageRule, MaxTolerancePercenta—
geRule, MaxToleranceRule and MinToleranceRule. These methods are moved up by appli-
cation of Law 70 from the left to right. After each application, we apply Law 97 from the
left to right to reduce if-else commands to a single command. By using Law 100 from
right to left we remove casts from this occurrences.

In order to exemplify the previous steps we show in Figure 5.19 the method setRefe
—renceValue immediately after the application of Law 70 from MaxSizeRule to Abstract—
NumberValidationRule class. Figure 5.20 shows the version of setReferenceValue method
in AbstractNumberValidationRule class at the end of methods movements. See that there
are no casts in this expressions.

105

public class AbstractNumberValidationRule {

1

2 /¥ ... %/

3 /+@ requires (!(this instanceof MaxSizeRule));

4 @ assignable \not_specified;

5 @ ensures (!(this instanceof MaxSizeRule));

6 @ also

7 @ requires (this instanceof MaxSizeRule && true);
8 @ assignable \not_specified;

9 @ ensures (this instanceof MaxSizeRule && true);
10 @ also

11 @ requires ((this instanceof MaxSizeRule));

12 @ assignable \not_specified;

13 @ ensures ((this instanceof MaxSizeRule));

14 @sx/

15 public void setReferenceValue(Double referenceValue) {
16 if (!(this instanceof MaxSizeRule)) {

17 this .referenceValue = referenceValue;

18 } else {

19 this .referenceValue = referenceValue;

20 }

21 }

2 /* /

Figure 5.19: setReferenceValue method immediately after moved up from MaxSizeRule to
AbstractNumberValidationRule class.

public class AbstractNumberValidationRule extends
AbstractValidationRule {

2 /F .. %/

3 public void setReferenceValue(Double referenceValue) ({

4 this .referenceValue = referenceValue;

s}

VA */

¥

Figure 5.20: The final version of setReferencevValue method in

AbstractNumberValidationRule class.

Move duplicated and weaker invariants to AbstractNumberValidationRule class

As we discussed in Section 5.2.1, common and weaker invariants should be moved up to
the more abstract class in the hierarchy, in this case AbstractNumberValidationRule class.

As can be seen in Appendix C.1 we have similar invariants — invariant this .getRefe—
renceValue()!= null — in each one of classes MinValueRule, MaxSizeRule, MaxToleranceRule
, MinToleranceRule, MinTolerancePercentageRule and MaxTolerancePercentageRule. To
move each one of the invariants we need apply Law 5 (from the left to right).

Before apply this law we need to prepare all invariants to satisfy the law conditions.
Hence, we introduce trivial casts in this expressions in all invariants applying Law 100
from the left to right. Now it is safe to apply Law S from the left to right to all invari-
ants. We remove trivial casts using Law 108 from the left to right. An excerpt of Data
class highlighting the recently moved invariants is presented in Figure 5.21. Propositional
calculus is used to simplify the invariant predicates.

106

The final invariant of data is invariant this .getReferenceValue()!= null. At this point we
finish the Extract Superclass refactoring obtaining the new superclass AbstractNumberValidationRule
. Final source code of the number-base validation rules is presented in Appendix C.4.

1 public class AbstractNumberValidationRule ({

2 /F ... F/

3 //@ invariant this instanceof MaxSizeRule ==> ((MaxSizeRule)this).
getReferenceValue() != null;

4 //@ invariant this instanceof MaxTolerancePercentageRule ==> ((
MaxTolerancePercentageRule) this).getReferenceValue() != null;

5 //@ invariant this instanceof MaxValueRule ==> ((MaxValueRule)this).
getReferenceValue () != null;

¢ //@ invariant this instanceof MinTolerancePercentageRule ==> ((
MinTolerancePercentageRule) this).getReferenceValue() != null;

7 //@ invariant this instanceof MinToleranceRule ==> ((MinToleranceRule
)this).getReferenceValue() != null;

s //@ invariant this instanceof MaxToleranceRule ==> ((MaxToleranceRule
)this).getReferenceValue() != null;

9 //@ invariant this instanceof MinValueRule ==> ((MinValueRule) this).
getReferenceValue() != null;

w /% .. %/

n o}

Figure 5.21: Invariants moved up to AbstractNumberValidationRules class immediately
before reduction.

5.2.4 Evolving Our Validation Rules API: Creating a Fresh Valida-
tion Rule Class

In this section we discuss software evolution. To attend a new requirement, it is necessary
to create a new validation rule. In fact, we must create a new validation rule to check if a
determined data connected to a meta data is not null, in other words to ensure that a data
is a mandatory value. Thus in this section we show how our laws can help to evolve code
safely. The following steps are necessary to accomplish the creation of the new validation
rule.

e Create a new fresh class NotNullRule using Law 1 (from the left to right) with no
problems.

e Create a new method with no specifications with signature: public boolean validate
(Data data) with our own implementation using Law 75 from the right to left since
NotNullRule is new and does not have any superclass or subclass.

e Make NotNullRule inherits AbstractValidationRule by applying Law 3 from the
left to right directly since there are no attributes in NotNullRule class, the recently
created method validate does not have specification cases as well as the remain-
ing (and also unused) validate method of AbstractValidationRule. Note that the
default constructor of NotNullRule automatically introduced by the Java compiler
calls the default constructor of AbstractValidationRule, what satisfies the inherited
invariant from AbstractValidationRule.

107

e To complete the process we insert a specification case for the new validate method.
To do so we apply Law 33 from the left to right. Remember that the method is new
and NotNullRule class too, thus the conditions (1) and (2) are satisfied. After it we
apply Law 31 from the left to right weakening the identity pre-condition from false
to true. To finish we strengthen the identity postcondition true to data != null &&
data.getValue()!= null by applying Law 32. The conditions of these two last laws
are satisfied since NotNullRule has no subclasses. And its over. We have a new
validation rule class.

Figure 5.22 present the final version of NotNullRule class.

public class NotNullRule extends AbstractValidationRule {

1

2

3 /@ also

4 @ requires true;

5 @ assignable \not_specified;

6 @ ensures data != null && data.getValue() != null;
7 @x/

8 public boolean validate(Data data) ({

9 return data != null && data.getValue() != null;

Figure 5.22: NotNullRule class.

5.2.5 Final actions and considerations

Some actions can be executed to finish our macro transformations. The unused validate
method of AbstractValidationRule should become abstract or even deleted. The classes
AbstractValidationRule and AbstractNumberValidationRule may be become abstracts.

We apply Law 2 from the left to right to the class AbstractNumberValidationRule.
There is no instantiations of this class in our program satisfying the conditions. We also
apply Law 2 from the left to right to AbstractValidationRule class with no problems since
only subclasses of this class is instantiated in the program.

And to finish we use Law 86 from the left to right to make the method validate (of
AbstractValidationRule) abstract. All subclasses of AbstractValidationRule implement
the method validate. There are no instantiations of AbstractValidationRule so there are
no dynamic calls to validate via objects of type AbstractValidationRule satisfying the
conditions required to apply Law 86.

Appendix C present the main parts of the source-code of our program involved in
each macro step detailed in this chapter as well as the original source-code. Figure 5.23
presents the diagram of the final version of our Meta Data API.

108

ValidationPurpose

<

_purpnsem

ValidationType

MinValueRule

-
<

AbstractValidationRule

<+

>

NotNullRule

b

AbstractNurpberValidationRule

T STAA

MaxToleranceRule

2

2

MaxSizeRule

metaData

MinToleranceRule

[

i

Regula rEx;lressinnRule

MaxValueRule

MaxTolerancePercentageRule

MinTolerancePercentageRule

<

\L/ DataStatus
DataType MetaData /
datalype
metalata A\ / Skdius
StringData
BooleanData e Data <}
DateData DoubleData IntegerData

Figure 5.23: Final object diagram from Meta Data API

Chapter 6

Conclusions

Programming laws serve as guidelines to informal programming practices and establish a
basis for formal and rigorous program development. Object-oriented programming laws
were initially proposed by Borba, Sampaio and Cornélio [9] for ROOL [13]. They pro-
pose laws for classes and commands of ROOL and they define a normal form for object-
oriented programs written in ROOL along with a reduction strategy. Duarte [26] reviewed
and extended the programming laws written for ROOL for the Java programming and cre-
ated other laws for language features that are not present in ROOL.

In view of the necessity to perform behavior-preserving changes in program source-
code, it is fundamental to execute the changes in a disciplined way. Programming laws
are a means to achieve such purpose.

In this work, we proposed a rigorous approach for refactoring annotated Java pro-
grams, based on successive applications of laws (primitive transformations) for object-
oriented programming in the presence of a behavioral interface specification language.
Our laws are behavior-preserving since they ensure that the program continues to fulfill
its specification described by means of annotations written with the Java Modeling Lan-
guage (JML). Our laws treat source-code transformation considering the impacts caused
by its internal specifications. Some of our laws are inspired on programming laws from
previous work [7, 23] (that were proved to be sound to the language ROOL [12]), and
specially on the laws from Duarte’s work [26]. Other laws of our catalog, specially those
that transform JML specifications are completely new to our knowledge.

Differently from laws that deal only with constructs of object-oriented programming
language, the presence of a behavioral interface specification language (BISL) requires
that we be aware of many issues related to the semantics of a BISL language, like JML:

e The visibility of specifications imposes some drawback to change the Java visibility
of attributes and methods. For example, in a lightweight method specification, the
specification visibility is assumed to be the same as the method visibility. If we
try to change the visibility of a method from private to public we need to check if
the elements referred to in the specification of the method have public specifica-
tion visibility, since the specification visibility of a specification must be at least as
permissive as the visibility of the elements it refers to;

e We need to preserve invariant (history constraint and initially clauses) of a subclass
when introducing calls to super. Introducing a method redefinition calling a super
method is not trivial because the super method can break the invariant, history
constraint and initially clauses predicates;

110

e Changing a parameter type (or a return type) to a supertype requires introducing
casts in occurrences of the parameter in specifications of the method that contains
the parameter in its signature;

e To eliminate a pure method we have to verify if it is used in any specification in a
program;

e In JML, any declaration (except for local variables) whose type is a reference type
is implicitly declared to be not null, except when one adorns the declaration with a
nullable annotation. Thus, by default, JML always verifies if a not nullable attribute
is null in all visible states of the class that declares it. When we move an attribute to
a superclass, this is not aware about the newly moved attribute and, therefore, this
action can cause an undesirable behavior. Hence, to move an attribute whose type
is a reference type, we need before to adorn the attribute with the keyword nullable;

e Invariants, and initially clauses prevent us to eliminate default constructors. Recall
that Java creates a default constructor in any class that does not declare any con-
structor. If we eliminate explicit default constructors of a class in this situation,
Java will create a default constructor that will possibly not meet the invariant and
initially clauses leading to exceptions.

We started our study on the relative completeness of our set of laws by a normal
form reduction strategy. We have applied our set of laws reducing a JML-specified Java
program to a normal form inspired in the one presented by Duarte [26], which follows
the main steps of the normal form reduction strategy of ROOL. A program in the normal
form we defined in Chapter 4, preserves the class hierarchy, but all attributes and methods
that are non-recursive and with no mutually exclusive return points are located in the class
_Object. Also, invariants, initially clauses and constraints are placed in the class Object.
Specification cases of non-eliminated methods are written as JML assert statements. We
still need to evolve our strategy to eliminate all JML elements that appear in the normal
form we have now.

The laws of our catalog were also used to show how a JML-specified version of a core
module from a Manufacturing Execution System, get refactored from successive applica-
tions of primitive transformations expressed by means of our laws. Although our work
does not provide a way to transform programs automatically yet, it provides a reliable,
systematic and extensible alternative to address refactorings.

The example presented in the Chapter 5 shows a real situation in which our laws can be
applied to improve code structure and refactoring code to accommodate new implementa-
tions. Although our application example is very expressive, we do not provide guidelines
to support generic situations where we can apply the same and additional refactorings.
We intend to fulfill this gap using our catalog of programming laws to elaborate guide-
lines to execute the refactorings we applied in this work and other refactorings described
by Fowler [31]. Also, we intend to create more elaborated examples to validate and help
to extend our catalog of laws.

Finally, we can summarize the following contributions resulted from this work: cre-
ation of a catalog of programming laws to deal with JML specifications and JML-specified
Java programs; proposition of a normal form reduction strategy for JML-specified Java
programs; and the presentation (step by step) of a case study — using a real program —
showing how refactorings can be applied using our programming laws.

111

6.1 Related Work

Object-oriented programming laws were initially proposed by Borba, Cornélio and Sam-
paio [9] for ROOL [13], which was designed to allow reasoning about object-oriented
programs and specification, mixing both constructs in the sytle of Morgan’s refinement
calculus [53]. They propose laws for classes and commands of ROOL and they define a
normal form for object-oriented programs written in ROOL along with a reduction strat-
egy. Also, they demonstrate that the set of laws is complete with respect to this normal
form. These laws do not consider specifications and were designed to ROOL while our
laws uses a language used in the industry (Java) as target language.

Cornélio [23] proves the laws with respect the copy semantics of ROOL [13] and
formally justifies, by using programming laws and data refinement, refactoring practices
documented by Fowler [31]. Silva, Sampaio, and Liu considers object-oriented program-
ming laws in a language with a reference semantics [62], applying such laws to code
refactoring. Duarte [26] adapts the programming laws initially written for ROOL for the
Java programming and proposes other laws for language features that are not present in
ROOL.

Although Duarte [26] developed programming laws for Java, his work do not take in
consideration JML specifications or any specification languages. The focus of his work
was using programming laws to perform program parallelization.

Garrido et al. [33] uses Maude [19] to formalize Java and prove some transforma-
tions, i.e. refactorings. Their work do not use programming laws to perform the program
transformations. Although their work guarantees that the transformations are behavior-
preserving in respect to a Java semantic defined by them. It is possible to implement our
programming laws as rules in Maude (as Lira implemented ROOL’s programming laws in
Maude [45]), therefore we could use this rewriting system to implement transformations.

Bannwart [3] proposes a technique to apply refactorings to a program that preserves
the external behavior of the program if the transformed program fulfill the refactoring’s
conditions. Bannwart adds the refactoring conditions to the code in the form of assertions
that can be verified using static verifications tools or used to generate unit tests or even
can be used for runtime assertion checking. Bannwart uses a small sequential class-
based programming language but argues that his technique can be used to handle realistic
languages. Our work treats the refactoring activity as small transformations based on
side-conditions for application and consider a program as the source-code (Java) itself
and its specifications (JML), while Bannwart uses a simple language and do not consider
specifications.

Goldstein developed an eclipse plugin [34] to manipulate DbC specifications and to
perform run time assertion check. In addition, he implemented a set of refactorings that
takes in consideration both Java code and specifications. In [34] is explained how the
plugin acts in the refactorings Extract Superclass and Add Inheritance in the presence of
DbC specifications. However, Goldstein does not provide any formalism or systematiza-
tion, to their methodologies, and focus on its own specification languages in preference to
JML. He presented some techniques used by a plugin to refactor specified Java code. The
plugin uses a theorem prover to verify the relation between the assertions of the specifi-
cations. Our approach to execute refactorings in specified Java code treats refactorings as
behavior-preserving transformations described by the application of programming laws.

112

6.2 Future Work

In this work, we have considered laws that address only a subset of the JML'’s Level 0
constructs as well as some Level 1 constructs, specially for lightweight specifications.
Nevertheless, our preliminary focus is to cover most of the JML constructs that form the
core notation used in the design by contract methodology. As future work, we intend to
describe laws to support other JML clauses like initially , constraint, represents, and model
fields.

Concerning Java, we can elaborate new laws to accept features not addressed by the
laws defined in this work. There are some largely used Java features that we have to
take into consideration to make our approach less restrict. For example, we can consider
exceptions and interfaces and create laws to deal with these features.

In [27], we started to work in proofs for our laws. The JML semantics as well as
the Java semantics are not completely defined restricting the proof work. However, we
intend to prove the JML parts of our laws using the semantics of JML defined by Leav-
ens [40]. Concerning the Java parts, we plan to work in the same direction of the works
of Silva [62], and Massoni [48].

The normal form reduction strategy we proposed in Chapter 4, is a result of the re-
view and adaptation of the strategies used for Java and ROOL [9] programs. As a future
work, we can enhance our reduction strategy elaborating new laws to eliminate invariants,
history constraints and initially clauses, for example. We plan to create laws to distribute
invariants and history constraints in the methods of the classes they are declared. In this
direction it is possible to create laws to eliminate initially clauses by copying their predi-
cates in the constructors they affect. As a result we can eliminate methods and transform
their specifications in JML assertions.

Another idea on enhance our normal form reduction strategy is to transform all JML
specification of a program in Java code representing run time assertion checks (RAC)
code. This is the way Krakatoa [11] and other JML tools like, JAJML [36] and jmlc [1]
works. We can transform (after applying our strategy) all remaining specifications in Java
code representing the behavior of the specifications.

Finally, a challenging and complementary work is to build a tool to support annotated
Java program transformations based on our set of laws. We have many works in this di-
rection like the work of Garrido [33] that uses the rewriting system Maude [19] to execute
behavior-preserving transformations of Java programs. We can extend the Garrido’s work
adding the JML grammar and tokens and after write code to deal with transformations
based on our laws.

Another work is the JAJML project [36] which uses the JastAdd [37] — a extensible
Java compiler framework — to build an extensible runtime assertion checker for JML.
With JAJML is possible to parser a JML-specified Java program creating and inserting
JML specifications and Java code in a program. We can use the JAJML infrastructure to
execute program transformations based on our laws.

The use of JIML6 [58] is another possible future direction of work. JML6 is a clean
Eclipse [30] plug-in that provides a JML intermediate representation and supporting in-
frastructure to unify JML front-ends and backends. As JML6 is an official work of the
JML community, joining in the JML6 team to design and develop a tool to mechanize the
application of our laws would be interesting since in this way we can unify efforts and
work in a unique JML parser/compiler platform.

113

References

[1] Java modeling language (jml) projects website,
http://sourceforge.net/projects/jmlspecs/., 2009.

[2] Mesa international web site., 2009.

[3] Fabian Bannwart and Peter Miiller. Changing programs correctly: Refactoring with
specifications. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM,
volume 4085 of Lecture Notes in Computer Science, pages 492—-507. Springer, 2006.

[4] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1
edition, 1999.

[5] Yves Bertot. Coq in a hurry. Nov 2008.
[6] R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.

[7] P. Borba et al. Algebraic reasoning for object-oriented programming. Sci. Comput.
Program., 52(1-3):53-100, 2004.

[8] P. Borba et al. Algebraic Reasoning for Object-Oriented Programming. Science of
Computer Programming, 52:53—-100, 2004.

[9] P. Borba, A. Sampaio, and M. Cornélio. A Refinement Algebra for Object-oriented
Programming. In Luca Cardelli, editor, European Conference on Object-oriented
Programming, ECOOP’2003, volume 2743 of Lecture Notes in Computer Science,
pages 257-282, Darmstadt, Germany, July 2003. Springer-Verlag.

[10] L. Burdy, Y. Cheon, D., M. D. Ernst, J. Kiniry, G. T. Leavens, K. Rustan M. Leino,
and E. Poll. An overview of JML tools and applications. Software Tools for Tech-
nology Transfer, 7(3):212-232, June 2005.

[11] C. Paulin-Mohring C. Marché and X. Urbain. The krakatoa tool for certificationof
java/javacard programs annotated in jml. Journal of Logic and Algebraic Program-
ming, 58:89—-106, 2004.

[12] A. Cavalcanti and D. A. Naumann. A weakest precondition semantics for refinement
of object-oriented programs. IEEE Trans. Softw. Eng., 26(8):713-728, 2000.

[13] A.L.C. Cavalcanti and D. A. Naumann. A Weakest Precondition Semantics for Re-
finement of Object-oriented Programs. IEEE Transactions on Software Engineering,
26(8):713-728, 2000.

[14] Y. Cheon. A Runtime Assertion Checker for the Java Modeling Language. PhD
thesis, Department of Computer Science lowa State University, April 2003.

114

[15] Y. Cheon and G. T. Leavens. A runtime assertion checker for the java modeling
language (jml). In Proceedings of the International Conference on Software En-
gineering Research and Practice (SERP’02), Las Vegas, pages 322-328. CSREA
Press, 2002.

[16] Y. Cheon and G. T. Leavens. A simple and practical approach to unit testing: The jml
and junit way. In ECOOP 2002, volume 2374 of LNCS, pages 231-255. Springer,
2002.

[17] Y. Cheon and C. E. Rubio-Medrano. Random test data generation for java classes
annotated with jml specifications. In Software Engineering Research and Practice,
pages 385-391, 2007.

[18] J. Chrzaszcz and A. Schubert. Esc/java2 as a tool to ensure security in the source
code of java applications. In Software Engineering Techniques: Design for Quality,
volume Volume 227/2007 of IFIP International Federation for Information Process-
ing, pages 337-348. Springer Boston, 2007.

[19] M. Clavel, E. Duréan, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. F.
Quesada. Maude: Specification and programming in rewriting logic. Theoretical
Computer Science, 2001.

[20] Curtis Clifton, Todd Millstein, Gary T. Leavens, and Craig Chambers. Multijava:
Design rationale, compiler implementation, and applications. ACM Trans. Program.
Lang. Syst., 28(3):517-575, 2006.

[21] D.R. Cok andJ. R. Kiniry. Esc/java2: Uniting esc/java and jml - progress and issues
in building and using esc/java2, including a case study involving the use of the tool
to verify portions of an internet voting tally system. In In Construction and Analysis
of Safe, Secure and Interoperable Smart Devices: International Workshop, CASSIS
2004, Lecture Notes in Computer Science, pages 108—128. SpringerVerlag, 2004.

[22] Sylvain Conchon, Evelyne Contejean, and Johannes Kanig. Ergo : a theorem prover
for polymorphic first-order logic modulo theories, 2006.

[23] M. Cornélio. Refactoring as Formal Refinements. PhD thesis, Universidade Federal
de Pernambuco (UFPE), 2004.

[24] Microsoft Corporation. Microsoft C# Language Specifications. Microsoft Press,
Redmond, WA, USA, 2001.

[25] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for
program checking. J. ACM, 52(3):365-473, 2005.

[26] R. Duarte. Parallelizing java programs using transformation laws. Master’s thesis,
Universidade Federal de Pernambuco (UFPE), 2008.

[27] G. Falconieri Freitas et al. Object-oriented programming laws for annotated java
programs. Electronic Proceedings in Theoretical Computer Science, 2009. To ap-
pear in Proceedings of the Tenth International Workshop on Rule-Based Program-
ming.

[28] G.T. Leavens et al. JML Reference Manual, July 2008.

115

[29] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for java. In PLDI ’02: Proceedings of the ACM SIGPLAN

2002 Conference on Programming language design and implementation, pages 234—
245, New York, NY, USA, 2002. ACM.

[30] The Eclipse Foundation. Eclipse integrated development environment, 2008.
http://www.eclipse.org.

[31] M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[32] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic. Identifying architectural
bad smells. In Andreas Winter, Rudolf Ferenc, and Jens Knodel, editors, CSMR,
pages 255-258. IEEE, 2009.

[33] A. Garrido and J. Meseguer. Formal specification and verification of java refac-
torings. In SCAM ’06: Proceedings of the Sixth IEEE International Workshop on
Source Code Analysis and Manipulation, pages 165—174, Washington, DC, USA,
2006. IEEE Computer Society.

[34] M. Goldstein, Y. A. Feldman, and S. Tyszberowicz. Refactoring with contracts. In
AGILE ’06: Proceedings of the conference on AGILE 2006, pages 53—64, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[35] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification, The.
Addison-Wesley Professional, third edition, 2005.

[36] Ghaith Haddad and Gary T. Leavens. Extensible dynamic analysis for jml: A case
study with loop annotations. Technical Report CS-TR-08-05, School of Electrical
Engineering and Computer Science - University of Central Florida, 2008.

[37] Gorel Hedin and Eva Magnusson. Jastadd: an aspect-oriented compiler construction
system. Sci. Comput. Program., 47(1):37-58, 2003.

[38] C. A. R. Hoare, 1. J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders,
I. H. Sorensen, J. M. Spivey, and B. A. Sufrin. Laws of programming. Commun.
ACM, 30(8):672—-686, 1987.

[39] Bart Jacobs, Joachim van den Berg, Marieke Huisman, Martijn van Berkum,
U. Hensel, and H. Tews. Reasoning about java classes: preliminary report. In OOP-
SLA ’98: Proceedings of the 13th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 329-340, New York,
NY, USA, 1998. ACM.

[40] G.T. Leavens. Jml’s rich, inherited specifications for behavioral subtypes. In Zhim-
ing Liu and Jifeng He, editors, ICFEM, volume 4260 of Lecture Notes in Computer
Science, pages 2-34. Springer, 2006.

[41] G. T. Leavens. Several references to papers on jml can be found on the jml project
website, http://www.cs.iastate.edu/ leavens/jml/papers.shtml., 2009.

116

[42] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of jml: a behavioral
interface specification language for java. SIGSOFT Softw. Eng. Notes, 31(3):1-38,
2006.

[43] G. T. Leavens and Y. Cheon. Design by contract with JML. Draft, available from
jmlspecs.org., 2005.

[44] G.T. Leavens and D. A. Naumann. Behavioral subtyping, specification inheritance,
and modular reasoning. Technical Report 06-20b, Department of Computer Science,
Iowa State University, July 2006.

[45] B. Lira. Automacgao de regras para a programacao orientada a objetos. Master’s
thesis, Universidade Federal de Pernambuco (UFPE), 2002.

[46] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811-1841, 1994.

[47] A. Lozano, M. Wermelinger, and B. Nuseibeh. Assessing the impact of bad smells
using historical information. In IWPSE ’07: Ninth international workshop on Prin-
ciples of software evolution, pages 31-34, New York, NY, USA, 2007. ACM.

[48] T. Massoni. A Model-driven Approach to Formal Refactoring. PhD thesis, Univer-
sidade Federal de Pernambuco (UFPE), 2008.

[49] T. Massoni, R. Gheyi, and P. Borba. Formal model-driven program refactoring. In
José Luiz Fiadeiro and Paola Inverardi, editors, FASE, volume 4961 of Lecture Notes
in Computer Science, pages 362-376. Springer, 2008.

[50] T. Mens and T. Tourwé. A survey of software refactoring. IEEE Trans. Softw. Eng.,
30(2):126-139, 2004.

[51] B. Meyer. Applying design by contract. IEEE Computer, 25:40-51, 1992.

[52] C. Morgan. Programming from specifications. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1990.

[53] C. C. Morgan. Programming from Specifications. Prentice Hall, second edition,
1994,

[54] P. H. Nidditch. Propositional calculus, by P.H. Nidditch. Routledge & K. Paul;
Dover Publications London, New York,, 1965.

[55] W. F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, Champaign,
IL, USA, 1992.

[56] L. Powers and M. Snell. Microsoft Visual Studio 2005: Unleashed. Sams, Indi-
anapolis, IN, 2007.

[57] A.D.Raghavan and G. T. Leavens. Desugaring jml method specifications. Technical
Report 00-03a, 2000.

[58] Robby and Patrice Chalin. Preliminary design of a unified jml representation and
software infrastructure. Technical report, SAnToS Laboratory, Department of Com-
puting and Information Sciences, Kansas State University, April 2009.

[59]

[60]

[61]

[62]

[63]

[64]

117

Clyde D. Ruby. Safely creating correct subclasses without seeing superclass code.
In OOPSLA "00: Addendum to the 2000 proceedings of the conference on Object-
oriented programming, systems, languages, and applications (Addendum), pages
155-156, New York, NY, USA, 2000. ACM.

Max S., T. Ekman, M. Verbaere, and R. Ettinger. Refactoring bugs, 2008. http:
//progtools.comlab.ox.ac.uk/projects/refactoring/bugreports. Last
access in 04/04/2009.

S. Seres. The Algebra of Logic Programming. PhD thesis, Oxfor University Com-
puting Laboratory, 2001.

L. Silva, A. Sampaio, and Z. Liu. Laws of object-orientation with reference seman-
tics. In SEFM °08: Proceedings of the 2008 Sixth IEEE International Conference
on Software Engineering and Formal Methods, pages 217-226, Washington, DC,
USA, 2008. IEEE Computer Society.

Joachim van den Berg, Bart Jacobs, and Erik Poll. Formal specification and veri-
fication of javacard’s application identifier class. In Isabelle Attali and Thomas P.
Jensen, editors, Java Card Workshop, volume 2041 of Lecture Notes in Computer
Science, pages 137-150. Springer, 2000.

R. R. Zagidullin and E. B. Frolov. Control of manufacturing production by means
of mes systems. Russian Engineering Research, 28(2):166—168, February 2008.

118

APPENDIX A

Laws

We present in this appendix our complete catalog of laws. The laws are divided in sections
according to the elements they focus. The laws that start with an asterisk-sign are laws
defined by Duarte [26].

A.1 Classes

Law 1.{class elimination)
cds cdy Main = cds Main

provided

JML:

(—) The class declared in cd, is not referred in any specification declared in cd's or Main.
Java:

(—) The class declared in cd; is not referred in cds or Main.

(<) (1) The name of the class declared in cd, is distinct from those of all classes declared
in cds; (2) The superclass appearing in cd, is either Object or declared in cdss.

119

Law 2. (make class abstract)

class C extends D { abstract class C
ads extends D {
cnds =cds,Main ads
mds mds

} }

provided
JML:

(=) ‘new C’ does not occur inside specifications of cds, Main, cnds nor mds.
Java:
(=) ‘new C’ does not occur in c¢ds, Main, cnds nor mds.

(«~-) Every method m of mds is concrete.

O
Law 3. (change superclass: from Object to another class)
class C extends Object { class C extends D {
@invs @invs
@cons @cons
@inis @inis
ads - ads .
cnds cnds
mds mds
} }
cds, Main cds’, Main
where

cds’ = cds[/]@ also fspec(m)/fspec(m)], for every method m in mds that is a redefi-
nition of a method introduced in some class E such that D < E.

provided
JML:

(=) (1) @invs = finv(D); (2) @cons = fcons(D); (3) @inis = finit(D); (4) For
any method m in mds that redefines a method m declared in D or in any class E
such that D < E, fpre(E.m[pds)) = fpre(C.m[pds]) e \old(fpre(E.m[pds])) =
(fpos(C.mlpds]) = fpos(E.m[pds])).

(<) (1) C or any of its subclasses in cds is not used in type casts or tests involving
any expression of type D or of any supertype of D in specifications; (2) this.a
does not appear in specifications of C, nor in specifications of C’s subclasses, for
any attribute a of D or of any superclass of it with specification visibility default,
protected or public; (3) le.a, for any le : C, does not occur in specifications in
cds or Main, for any a of D or of any superclass of it with specification visibility

120

default, protected or public; (4) There is no method call E.m inside specifications
of cds, for any pure method m, such that E < C and m is declared in D or in any
of its superclasses, but is not redefined in mds; (5) super does not appear in any
specification of C.

Java:

(—) All attributes in ads and in subclasses of C are distinct from those declared in D and
in superclasses of D.

(«=) (1) C or any of its subclasses in cds is not used in type casts or tests involving any
expression of type D or of any supertype of D;

(2) There are no assignments of the form /e = exp, for any le whose declared type
is D or any superclass of D and any exp whose type is C or any subclass of C;

(3) Expressions of type C or of any subclass of C are not used as value arguments
in method/constructor calls with a corresponding formal parameter whose type is
D or any superclass of D;

(4) Expressions whose declared type is D or any of its superclasses are not returned
as a method result in calls with an expected result whose declared type is C or any
subclass of C;

(5) this.a does not appear in C, nor in any subclass of C, for any public or protected
attribute a of D or of any of its superclasses;

(6) le.a, for any le : C, does not appear in cds or ¢ for public or protected attribute
a of D or of any of its superclasses;

(7) There is no E.m, for any method m such that, E < C and m is declared in D or
in any of its superclasses, but is not redefined in mds.

(8) super does not appear in any method in md.s.

Law 4. (change superclass: from an empty class to immediate superclass)

class B extends A {

}

class C extends B {

ads
cnds
mds

}
cds, Main

class B extends A {

}

class C extends A {

ads
cnds
mds

}

cds’, Main

provided

Java:

121

(=) (1) C or any of its subclasses in cds is not used in type casts involving expressions

of type B;

(2) There are no assignments of the form le = exp, for any le whose declared type

is B or any of its superclasses and the type of exp is C or any subclass of C;

(3) Expressions of type C or of any subclass of C are not used as value arguments

in calls with a corresponding formal value parameter whose type is B;

(4) Expressions whose declared type is B are not result arguments in calls with a
corresponding formal result parameter whose declared type is C or any subclass of

C;

(5) Casts to class B are not applied to attributes, variables or parameters of type A
to which are assigned expressions of type C.

122

A.2 Invariants

Law 5. (move invariant to superclass)

class B extends A { class B extends A {
//@ private invariant ; //@ private invariant i
@invs && ¥,

@invs

ads
cnds ads
mds cnds

} B mds

class C extends B { eds.Main -y
//@ private invariant y,; class C extends B {
@invs’ @invs’
ads’ ads’
cnds’ cnds’
mds’ mds’

} }

where

Y, = this instanceof C ==>

provided
JML:
(<) super does not appear in ¥,.

(—) ¥, does not contain occurrences of model fields declared in C, nor uncast occur-
rences of this.

123

Law 6. (change invariant visibility: from default to private)

class C extends D { class C extends D ({
//@ invariant i ; //@ private invariant i;
@invs @invs
ads =cds,Main ads
cnds cnds
mds mds
} }
provided
JML:

(<) Every attribute, pure method and model field that occurs in ¢ has non-private spec-
ification visibility;

Law 7. (change invariant visibility: from public to private)

class C extends D { class C extends D ({
//@ public invariant ¢ ; //@ private invariant ;
@invs @invs
ads =cds,Main ad's
cnds cnds
mds mds
} }
provided
JML:

(<) Every attribute, pure method and model field that occurs in i has public specifica-
tion visibility;

124

Law 8. (change invariant visibility: from protected to private)

class C extends D { class C extends D ({
//@ protected invariant i ; //@ private invariant i;
@invs @invs
ads =cds,Main ads
cnds cnds
mds mds
} }
provided
JML:

(<) Every attribute, pure method and model field that occurs in ¢ has non-public spec-
ification visibility;

Law 9. (collapse invariants)
class C extends D {
// @ private invariant Y ;
//@ private invariant y;

class C extends D ({
//@ private invariant

//@ private invariant y,; && Yo && oo && s

=cds,Main ads
cnds
ads
mds
cnds |
mds

125

Law 10. (delete duplicated invariant from subclass)
class B extends A {
//@ private invariant ;
@invs

class B extends A {
//@ private invariant y;

@invs
ads d
cnds aas
mds cnds
| mds
=cds,Main }
class C extends B { ds.M
//@ private invariant ; class. ¢ ,e xtends B {
@invs’ @invs
, ads’
g
mds’ mds’
| }
Law 11. (insert default invariant)
class C extends D {
class C extends D { //@ private invariant true;
ads
cnds =cds,Main ads
mds cnds
| mds
}

126

A.3 Attributes

Law 12. (change specification visibility of default attribute: from default to public)

class C extends D ({ class C extends D {
T a; /*@ spec_public @*/ T a;
ads =cds,Main ads
cnds cnds
mds mds
} }
provided
JML:

(«=) B.a, for any B < C, occurs only inside specifications with default or private specifi-
cation visibility.

Law 13. (change specification visibility of default attribute: from protected to public)

class C extends D { class C extends D {
/*@ spec_protected @*/ T a; /*@ spec_public @*/ T a;
ads =cds,Main ads
cnds cnds
mds mds
} }
provided
JML:

(«-) B.a, for any B < C, occurs only inside specifications with non-public specification
visibility.

Law 14. (change specification visibility of private attribute: from private to public)

class C extends D {
private T a;

ads
cnds
mds

provided
JML:

=cds,Main

127

class C extends D ({
private /*@ spec_public
@/ T a;

ads
cnds
mds

(<) a, occurs only inside specifications with private specification visibility.

Law 15. (change specification visibility of private attribute: from protected to public)

class C extends D {
private /%@ spec_protected
e/ T a;
ads
cnds
mds

provided
JML:

=cds,Main

class C extends D {
private /*@ spec_public
@/ T a;

ads
cnds
mds

(«=) a, occurs only inside specifications with non-public specification visibility.

128

Law 16. (change specification visibility of protected attribute: from protected to public)

class C extends D {
protected T a;
ads
cnds
mds

provided
JML:

(«<=) B.a, for any B < C, occurs only inside specifications with non-public specification

visibility.

=cds,Main

class C extends D ({
protected /*@ spec_public
@/ T a;

ads
cnds
mds

Law 17. (change specification visibility of private attribute: from private to public)

class C extends D {
private T a;

ads
cnds
md.s

provided
JML:

=cds,Main

class C extends D ({
private /*@ spec_public
@/ T a;

ads
cnds
mds

(<) a, occurs only inside specifications with private specification visibility.

129

Law 18. (change attribute visibility: from private to public)

class C extends D { class C extends D ({
private T a; public 7 aq;
ads =cds,Main ads
cnds cnds
mds mds
} }
provided
JML:

(<) (1) B.a, for any B < C excepts of strict type C, does not occur in any specifica-
tion of cds or Main; (2) C.a, occurs only inside specifications of C with private
specification visibility.

Java:

(<) (1) B.a, for any B < C excepts of strict type C, does not occur in cds or Main; (2)
C.a occurs only in C’s body.

Law 19. (change attribute visibility: from default to public)

class C extends D ({ class C extends D {
T a; public 7 q;
ads =cds,Main ads
cnds cnds
mds mds
} }
provided
JML:

(<) C.a occurs only inside specifications of C and cds with private, or default specifica-
tion visibility.

130

Law 20. (change attribute visibility: from protected to public)

class C extends D {
protected T a;

ads
cnds
mds

}

provided
JML:

=cds,Main

class C extends D ({
public 7 aq;
ads
cnds
mds
}

(=) B.a, for any B < C, occurs only inside specifications of C and cds with non-public

specification visibility.

Law 21.(change spec public attribute visibility: from default to public)

class C extends D {
/*@ spec_public @*/ T a;

ads
cnds
md.s

=cds,Main

class C extends D {
public 7 a;

ads
cnds
mds

Law 22. (change spec protected attribute visibility: from default to protected)

class C extends D {
/*@ spec_protected @*/ T a;

ads
cnds
mds

=cds,Main

class C extends D {
protected T a;

ads
cnds
mds

Law 23. (change spec public attribute visibility: from protected to public)

class C extends D {
protected
/*@ spec_public @*/ T a;

ads
cnds
mds

=cds,Main

class C extends D ({
public 7 aq;
ads
cnds
mds
}

131

Law 24. (change spec public attribute visibility: from private to public)

class C extends D {
private
/*@ spec_public @*/ T a;

ads
cnds
mds

}

provided

Java:

=cds,Main

class C extends D ({
public 7 a;
ads
cnds
mds
}

(<) (1) B.a, for any B < C excepts of strict type C, does not occur in cds or Main; (2)

C.a occurs only in C’s body.

Law 25. (change spec protected attribute visibility: from private to protected)

class C extends D {
private
/*@ spec_protected @*/ T a;

ads
cnds
md.s

}

provided

Java:

=cds,Main

class C extends D {
protected T a;

ads
cnds
mds

(<) (1) B.a, for any B < C excepts of strict type C, does not occur in cds or Main; (2)

C.a occurs only in C’s body.

132

Law 26. (make attribute nullable)

class C extends D |{ class C extends D {
public T aq; public /*@ nullable @*/
ads’ , T a;
cnds’ =cds,Main ads
mds’ cnds’
} mds’
}
provided
Java:

(«») T is not a primitive type.

(«<=) (1) The initial value of a is different from null; (2) null is not assigned to a (directly
or indirectly).

Law 27. (move reference type attribute to superclass)

class B extends A { class B extends A {
ads public /*@ nullable @*/ T a
cnds ads
mds cnds
} mds
class C extends B { =cdsMain |}
public /*@ nullable @*/ T a class C extends B {
ads’ ads’
cnds’ cnds’
mds’ mds’
} }
provided
JML:

(«=) D.a does not occur inside specifications in cds, Main, cnds, cnds’, mds nor mds’,
forany D<Band D £ C.

Java:
(«») T is not a primitive type.

(=) (1) aisnotdeclared in ads; (2) The attribute name a is not declared by the subclasses
of B in cds.

(<) D.a does not occur in cds, Main, cnds, cnds’, mds nor mds’, forany D < Be D £
C.

133

Law 28. (move primitive type attribute to superclass)

class B extends A {
ads
cnds
mds
}
class C extends B {
public 7 aq;
ads’
cnds’
mds’

J

provided
JML:

=cds,Main

class B extends A {
public 7 aq;
ads
cnds
mds
}
class C extends B {
ads’
cnds’
mds’

(=) D.a, for any D < B and D £ C does not occur inside specifications of cds, Main,

cnds, cnds’, mds nor mds’ .

Java:

(«») T a primitive type.

(—) (1) aisnotdeclared in ads; (2) The attribute name a is not declared by the subclasses

of B in cds.

(<) D.a, for any D < B e D £ C does not occur in cds, Main, cnds, cnds’, mds nor

mds’.

134

Law 29. (change attribute type)

class B extends A { class B extends A {
public 7 a; public 7’ a;
ads _ _ ads
cnds —ods,Main cnds
mds mds
} }
provided
JML.:

() T < T’ and every occurrence of a inside specifications of B, cds and Main, is cast
with 7" or any subtype of T in cds.

Java:

() T < T’ and every non-assignable occurrence of a in expressions of mds, cds e Main,
is cast with T or any subtype of T in cds.

(<) Every expression assigned to a, in mds, cds e C, is of type T any subtype of 7.

135

Law 30. (shadowed attribute elimination)

class B extends A {
public 7 aq; class B extends A {
public 7 a;
ads
cnds ads
mds cnds
} _ mds
class C extends B { Teds.Main—
public T a; class C extends B {
ads’
ads’ cnds’
cnds’ mds’
mds’ }
}
provided
JML:

(=) ((B)e).a, for any e < C, does not occur inside specifications of cds, Main, cnds,
cnds’, mds nor mds’ .

(<) All accesses to a inside specifications of cds, Main, cnds, cnds’, mds or mds’ , is of
type ((B)e).a.

Java:
(=) ((B)e).a, for any e < C, does not occur in cds, Main, cnds, cnds’, mds nor mds’ .

(«=) All accesses to a in cds, Main, cnds, cnds’, mds or mds’, is of type ((B)e).a.

136

A.4 Methods

Law 31. (weaken pre-condition)

class C extends D {
ads
cnds

//@ requires i;

// @ assignable w;

//@ ensures i;

@spec_cases

rt m(pds) {
mbody

}

mds

}

provided
JML:

Ecds,Main

class C extends D ({

ads
cnds

//@ requires y;

//@ assignable w;

//@ ensures y;

@spec_cases

rt m(pds) {
mbody

J

mds

(D) Y = ¥ 2) ¥, = fpre(B.m[pds)), for every class B such that B < C.

Law 32. (strengthen post-condition)

class C extends D {
ads
cnds

//@ requires i;

// @ assignable w;

//@ ensures i;

@spec_cases

rt m(pds) {
mbody

}

md.s

}

provided
JML:

(D) ¥, = o5 (2) \old(yr1) = (f pos(B.m[pds]) = V), for every class B such that B < C.

;cds,Main

class C extends D ({

ads
cnds

//@ requires i ;

//@ assignable w;

// @ ensures y/;

@spec_cases

rt m(pds) {
mbody

}

mds

Law 33. (insert identity specification case)

class C extends D {
ads
cnds

rt m(pds) {
mbody

}

mds

provided
JML:

=cds,Main

137

class C extends D ({
ads
cnds

// @ requires false;
// @ assignable

\not_specified;

// @ ensures true;
rt m(pds) {
mbody

}

mds

(—) For every redefined method m(pds), of a class E, such that E < C, m has an explicit

specification case.

Java:

(—) C.m(e) does not appear in cds, Main, or mds.

Law 34. (insert default pre-condition)

class C extends D ({
ads
cnds

//@ assignable w;

// @ ensures y;

rt m(pds) {
mbody

}

mds

=cds,Main

class C extends D {
ads
cnds

//@ requires true;
//@ assignable w;
//@ ensures y;
rt m(pds) {

mbody

}

mds

138

Law 35. (insert default postcondition)

class C extends D {
ads
cnds

//@ requires y;

//@ assignable w;

rt m(pds) {
mbody

}

mds

=cds,Main

class C extends D ({
ads
cnds

// @ requires y;

//@ assignable w;

// @ ensures true;

rt m(pds) {
mbody

}

mds

Law 36. (insert default specification case in a method with no redefinitions)

class C extends D {
ads
cnds

rt m(pds) {
mbody

}

mds

provided
JML:

(«») For every method m(pds), of a class B, such that C < B, m does not provide an

explicit specification case.

Java:

=cds,Main

class C extends D {
ads
cnds

//@ requires true;
// @ assignable
\not_specified ;
// @ ensures true;
rt m(pds) {
mbody

}

mds

(«>) m(pds) is not declared in any class F such that F < C.

139

Law 37. (insert \same specification case)

class C extends D ({
ads
class C extends D { cnds
ads
cnds //@ requires \same;
// @ assignable
@spec_cases \not_specified;
rt m(pds) { = ds.Main // @ ensures true;
mbody @spec_cases
} rt m(pds) {
mbody
mds }
}
mds
}
provided
JML:

(<) (1) @spec_cases has at least one specification case or rt m(pds) is an override;
(2) @spec_cases does not have a specification case with pre-condition equals to
\same.

Law 38. (change assignable from \not_specified 7o \everything)

assignable \not_specified; = assignable \everything;

140

Law 39. (make method pure)

class C extends D { class C extends D {
ads ads
cnds cnds
@spec_cases @spec_cases
rt m(pds) { =cds.Main /*@ pure @*/ rt m(pds) {
mbody mbody
} }
mds mds
} }
provided
JML:

(«») For all specification case specc such that specc € @spec_cases, fassign(specc) is
equivalent to \nothing.

(<) B.m(e) does not appear in specifications of cds, Main nor in specifications of C, for
any B such that B < C and B does not redefine m.

Law 40. (delete duplicated spec case from redefined method)

class B extends A {
ads
cnds

//@ requires i ;

// @ assignable w;

//@ ensures i ;

@spec_cases

rt m(pds) {
mbody

}

mds
}
class C extends B {
ads’

cnds’

//@ also

//@ requires i;

// @ assignable w;

//@ ensures i;

@spec_cases

rt m(pds) {
mbody

}

mds

/

=cds,Main

141

class B extends A {
ads
cnds

//@ requires y;
//@ assignable w;
//@ ensures i ;
@spec_cases
rt m(pds) {
mbody
}
mds
}
class C extends B {
ads’
cnds’

@spec_cases

rt m(pds) {
mbody

}

mds

’

142

Law 41. (collapse pre-conditions)

class C extends D {
ads
cnds

//@ requires i;;
//@ requires i;;

//@ requires Vy;

// @ assignable w;

//@ ensures i;

@spec_cases

rt m(pds) {
mbody

}

mds

Law 42.(collapse post-conditions)

class C extends D {
ads
cnds

//@ requires i ;
// @ assignable w;
//@ ensures i,;;
//@ ensures V;;

//@ ensures ,;

@spec_cases

rt m(pds) {
mbody

}

md.s

=cds,Main

=cds,Main

class C extends D ({
ads
cnds

//@ requires ¥, && yY;
&& ... && Yin;
//@ assignable w;
//@ ensures y;
@spec_cases
rt m(pds) {
mbody

}

mds

class C extends D ({
ads
cnds

//@ requires y;
// @ assignable w;
//@ ensures Y,; && Yy
&& ... && Yoy
@spec_cases
rt m(pds) {
mbody

}

mds

143

Law 43. (collapse also combinations)
class C extends D {
ads
cnds

class C extends D {
ads
cnds

//@ requires V;;
//@ assignable w;
//@ ensures ,;;

//@ also ...

// @ also

//@ requires Vy;
//@ assignable w,;
//@ ensures Y,;

//@ requires

8 I B /AT
//@ assignable w;
// @ ensures

=cds,Main Qold(Y11) ==> Y1) &&

&& (\old (Y1) ==> ¥Y2n)

rt m(pds) | t ”;Ezg;) {
mbody | Y
}
mds | mds
}
where

w=w Uw,...Uw,

Law 44. (change specification visibility of default method: from default to public)
class C extends D {

ads

cnds

class C extends D {
ads
cnds

@spec_cases

@spec_cases — /*@ spec_public @*/ rt

t d
rtmpds) | m(pds) {
| 4 mbody
mds }
| mds
}
provided
JML.:

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public
specification visibility.

144

Law 45. (change specification visibility of a default method: from protected to public)

class C extends D {
ads
cnds

@spec_cases
/*@ spec_protected @*/ rt
m(pds) {
mbody
}

mds

J

provided
JML:

=cds,Main

class C extends D ({
ads
cnds

@spec_cases
/*@ spec_public @*/ rt
m(pds) {
mbody
}

mds

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public

specification visibility.

Law 46. (change specification visibility of a private method: from private to public)

class C extends D ({
ads
cnds

@spec_cases

private rt m(pds) {
mbody

}

mds

provided
JML:

=cds,Main

class C extends D {
ads
cnds

@spec_cases
private /*@ spec_public @*/
rt m(pds) {
mbody
}

mds

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public

specification visibility.

145

Law 47.(change specification visibility of a private method: from protected to public)

class C extends D {
ads
cnds

@spec_cases
private /%@ spec_protected
@*/ rt m(pds) {

=cds,Main

class C extends D ({

ads
cnds

@spec_cases
private /*@ spec_public @*/
rt m(pds) {

mbody mbody
} }
mds mds
}
provided

JML:

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public
specification visibility.

O

Law 48. (change specification visibility of a protected method: from protected to public)
class C extends D {

class C extends D ({
ads
cnds

@spec_cases

protected rt m(pds) {
mbody

}

mds

provided
JML:

=cds,Main

ads
cnds

@spec_cases
protected /*@ spec_public
@*/ rt m(pds) {
mbody
}

mds

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public

specification visibility.

146

Law 49. (change specification visibility of pure default method: from default to public)

class C extends D {
ads
cnds

@spec_cases

/*@ pure @*/ rt m(pds) {
mbody

}

md.s

provided
JML:

=cds,Main

class C extends D ({
ads
cnds

@spec_cases
/*@ spec_public pure @*/
rt m(pds) {
mbody
}

mds

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public

specification visibility.

(«-) B.m(e), for any B < C, occurs only inside specifications with default or private spec-

ification visibility.

O

Law 50. (change specification visibility of pure default method: from protected to public)

class C extends D {
ads
cnds

@spec_cases
/*@ spec_protected pure @*/
rt m(pds) {
mbody
}

mds

}

provided
JML:

=cds,Main

class C extends D {
ads
cnds

@spec_cases
/*@ spec_public pure @*/
rt m(pds) {
mbody
}

mds

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public

specification visibility.

(<) B.m(e), for any B < C, occurs only inside specifications with non-public specifica-

tion visibility.

147

Law 51.(change specification visibility of pure private method: from private to public)

class C extends D {
ads
cnds

@spec_cases
private /*@ pure @*/ rt
m(pds) {
mbody
}

mds

J

provided
JML:

=cds,Main

class C extends D ({
ads
cnds

@spec_cases

private /*@ spec_public

pure @*/ rt m(pds) {
mbody

}

mds

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public

specification visibility.

(«=) m(e) occurs only inside specifications with private specification visibility.

O

Law 52. (change specification visibility of pure private method: from protected to public)

class C extends D {
ads
cnds

@spec_cases

private /*@ spec_protected

pure @*/ rt m(pds) {
mbody

}

mds

}

provided
JML:

=cds,Main

class C extends D ({
ads
cnds

@spec_cases

private /*@ spec_public

pure @*/ rt m(pds) {
mbody

}

mds

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public

specification visibility.

(«=) m(e), occurs only inside specifications with non-public specification visibility.

148

Law 53. (change specification visibility of pure protected method: from protected to pub-

lic)
class C extends D { class C extends D ({
ads ads
cnds cnds
@spec_cases @spec_cases
protected /*@ pure @*/ rt =cds.Main protected /*@ spec_public
m(pds) { pure @*/ rt m(pds) {
mbody mbody
} }
mds mds
} }
provided
JML:

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public
specification visibility.

(«<=) B.m(e), for any B < C, occurs only inside specifications with non-public specifica-
tion visibility.

Law 54. (change method visibility: from default to public)

class C extends D { class C extends D ({
ads ads
cnds cnds
@spec_cases _ ' @spec_cases
rt m(pds) { TedsMain 1 ublic rr m(pds) {
mbody mbody
} }
mds mds
} }
provided
JML:

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public
specification visibility.

149

Law 55. (change method visibility: from protected to public)

class C extends D { class C extends D ({
ads ads
cnds cnds
@spec_cases _ @spec_cases
protected rt m(pds) { cds.Main public rr m(pds) {

mbody mbody

} }
mds mds

} }

provided

JML:

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public
specification visibility.

Law 56. (change method visibility: from private to public)

class C extends D { class C extends D ({
ads ads
cnds cnds
@spec_cases _ @spec_cases
private rt m(pds) { eds.Main public 7t m(pds) {

mbody mbody

} }
mds mds

} }

provided

JML:

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public
specification visibility.

Java:

(<) (1) B.m(e), for any B < C except of strict type C, does not occur in cds or Main; (2)
C.m(e) occurs only in C’s body.

150

Law 57. (change pure method visibility: from default to public)

class C extends D { class C extends D {
ad's ads
cnds cnds
@spec_cases
@spec_cases _ . T .
/:’:@ pure @-,':/ rt m(pds) { =cds,Main pUbllc / @ pure @ /
mbody rt m(pds) {
) mbody
mds)
! mds
}
provided
JML:

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public
specification visibility.

(«-) B.m(e), for any B < C, occurs only inside specifications with default or private spec-
ification visibility.

Law 58. (change pure method visibility: from protected to public)

class C extends D { class C extends D {
ads ads
cnds cnds
@spec_cases @spec_cases
protected /*@ pure @*/ =cds.Main public /*@ pure @*/
rt m(pds) { rt m(pds) {
mbody mbody
} }
mds mds
} }
provided
JML:

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public
specification visibility.

(<) B.m(e), for any B < C, occurs only inside specifications with non-public specifica-
tion visibility.

151

Law 59. (change pure method visibility from: private to public)

class C extends D { class C extends D ({
ads ads
cnds cnds
@spec_cases @spec_cases
private /*@ pure @*/ =cds.Main public /*@ pure @*/
rt m(pds) { rt m(pds) {
mbody mbody
} }
mds mds
} }
provided
JML.:

(—) Every attribute, pure method and model field that occurs in @ spec_cases has public
specification visibility.

(<) (1) B.m(e), for any B < C except of strict type C, does not occur in any specification
of cds or Main; (2) C.m(e) occurs only inside specifications — that appears only in
C’s body — with private specification visibility.

Java:

(<) (1) B.m(e), for any B < C excepts of strict type C, does not occur in cds or Main;
(2) C.m(e) occurs only in C’s body.

Law 60. (change visibility of a spec public pure method: from default to public)

class C extends D { class C extends D {
ads ads
cnds cnds
@spec_cases @spec_cases
/*@ spec_public pure @*/ =cds.Main public /*@ pure @*/
rt m(pds) { rt m(pds) {
mbody mbody
} }
mds mds
} }

152

Law 61. (change visibility of a spec protected pure method: from default to protected)

class C extends D { class C extends D ({
ads ads
cnds cnds
@spec_cases @spec_cases
/*@ spec_protected pure @*/| =4 pain protected /*@ pure @*/
rt m(pds) { rt m(pds) {
mbody mbody
} }
mds mds
} }

Law 62. (change visibility of a spec public pure method: from protected to public)

class C extends D { class C extends D ({
ads ads
cnds cnds
@spec_cases @spec_cases
protected /*@ spec_public =cds.Main public /*@ pure @*/
pure @*/ rt m(pds) { rt m(pds) {
mbody mbody
} }
mds mds
} }

153

Law 63. (change visibility of a spec public pure method: from private to public)

class C extends D {
ads
cnds

@spec_cases

private /*@ spec_public

pure @*/ rt m(pds) {
mbody

}

mds

J

provided
JML:

=cds,Main

class C extends D ({
ads
cnds

@spec_cases
public /*@ pure @*/
rt m(pds) {

mbody

}

mds

(<) (1) B.m(e), for any B < C excepts of strict type C, does not occur in any specification
of cds or Main; (2) C.m(e) occurs only inside specifications of C’s body.

Java:

(<) (1) B.m(e), for any B < C excepts of strict type C, does not occur in cds or Main;
(2) C.m(e) occurs only in C’s body.

Law 64. (change visibility of a spec protected pure method: from private to protected)

class C extends D ({
ads
cnds

@spec_cases

private /%@ spec_protected

pure @*/ rt m(pds) {
mbody

}

mds

J

provided
JML:

=cds,Main

class C extends D ({
ads
cnds

@spec_cases
protected /*@ pure @*/
rt m(pds) {
mbody
}

mds

(<) (1) B.m(e), for any B < C except of strict type C, does not occur in any specification
of cds or Main; (2) C.m(e) occurs only inside specifications of C’s body.

Java:

(<) (1) B.m(e), for any B < C excepts of strict type C, does not occur in cds or Main;
(2) C.m(e) occurs only in C’s body.

154

Law 65. (*eliminate multiple return points)

class C
class C ad(;:xtends D {
extends D {
cnds
ads
cnds @spec_cases
@spec_cases = s Main rt m(pds) {
' rt return,
rt m(pds) {
mbod mbody
} ’ [result = e/ return e]
return result;
mds }
! mds
}
provided
Java:

(—) (1) the variable result is not already declared in mbody; (2) return clauses are present
only inside mutually exclusive conditionals.

Law 66. (introduce void method redefinition)

class B extends A {
@invs
@cons

ads
cnds

//@ requires i ;

//@ assignable w;

//@ ensures i;

void m(pds) {
mbody

}

mds
}
class C extends B {

@invs’

@cons’

ads’
cnds’
mds’

provided
JML:

=cds,Main

155

class B extends A {
@invs
@cons

ads
cnds

//@ requires Y ;
//@ assignable w;
//@ ensures y»;
void m(pds) {
mbody
}
mds
}
class C extends B {
@invs’
@cons’
ads’
cnds’

@spec_cases

void m(pds) {
super.m(a(pds));

}

mds

’

() (1) @invs’ and @cons’ does not restrict attributes in ads, model fields of B or any
attribute or model field inherited by B.

Java:

(—) m(pds) is not abstract and is not declared in mds’.

156

Law 67. (introduce non void method redefinition)

class B extends A {
@invs
@cons

ads
cnds

//@ requires i ;

//@ assignable w;

//@ ensures i;

rt m(pds) {
mbody

}

mds
}
class C extends B {

@invs’

@cons’

ads’
cnds’
mds’

provided
JML:

() (1) @invs’ and @cons’ does not restrict attributes in ads, model fields of B or any

=cds,Main

attribute or model field inherited by B.

Java:

class B extends A {
@invs
@cons

ads
cnds

//@ requires Y ;

//@ assignable w;

//@ ensures y»;

rt m(pds) {
mbody

}

mds
}
class C extends B {

@invs’

@cons’

ads’
cnds’

@spec_cases
void m(pds) {

return super.m(a(pds));

}

mds

’

(—) m(pds) is not abstract and is not declared in mds’.

Law 68. (move original method to superclass)

157

class B extends A { class B extends A {
ads ads
cnds cnds
mds

} //@ requires i ;

class C extends B { // @ assignable w;
ads’ // @ ensures y;
cnds’ _ rt m(pds) { mbody }

B mds

//@ requires i ; }
// @ assignable w; class C extends B {
//@ ensures i; ads’
rt m(pds) { mbody } cnds’
mds’ mds’

} }

cds, Main cds’, Main

where

cds’ = cds[//@ also fspec(m)/fspec(m)], for every method m (with signature rt
m(pds) and that is not a redefinition) of any class E such that £ < B and E £
C.

provided
JML:

(«») (1) super does not appear in ¥ nor in ;; (2) ¥, = fpre(E[rt m(pds)]) for every
class E, such that E < Bbut E £ C, and E introduces a method rt m(pds). (3) For
any specification case for every method r¢ m(pds), declared in any class E such that
E < Bbut E £ C, with pre-condition PRE and postcondition POST, \old(y,) =
(\Old(PRE) = POST) = (\old(y1) =).

(—) Both ¢, and i, do not contain occurrences of model fields declared in C nor uncast
occurrences of this.

Java:

(«») (1) super and private attributes dos not appear in mbody; (2) m(pds) is not declared
in any superclass of B in cds.

(=) (1) m(pds) is not declared in mds; (2) mbody does not contain uncast occurrences of
this nor expressions in the form ((C)this).a and of the form ((C)this).m(e) for any
attribute a nor method m, in ads’ and mds’, respectively, with private visibility.

(<) (1) m(pds) is not declared in mds’; (2) D.m(e), for any D < B and D £ C, does not
appear in cds, Main, mds or mds’.

158

Law 69. (move redefined method to superclass: overriden method with non-default spec-
ification case)

class B extends A {
ads
cnds
//@ requires (! (this
class B extends A { instanceof C) && y);
ads //@ ensures (! (this
cnds instanceof C) && y»);
// @ also
//@ requires i ; //@ requires (this
//@ ensures i; instanceof C && y));
rt m(pds) { mbody } // @ ensures (this
mds instanceof C && y));
} // @ also
class C extends B { =cds.Main //@ requires (this
ads’ instanceof C && y);
cnds’ // @ ensures (this
instanceof C && y»);
//@ also rt m(pds) {
//@ requires y; if (!(this instanceof C))
//@ ensures y/; { mbody } else { mbody" }
rt m(pds) { mbody } }
mds’ mds
} }
class C extends B {
ads’
cnds’
mds’
}

provided
JML:
(«>) super does not appear in ¢/ nor in .

(—) Both ¢ and i, do not contain occurrences of model fields declared in C, nor uncast
occurrences of this.

Java:

(«») (1) super and private attributes do not appear in mbody’; (2) super.m does not appear
in mds’

(—) mbody’ does not contain uncast occurrences of this nor expressions of the form
((C)this).a and of the form ((C)this).m(e) for any attribute a nor method m, in ads’
and mds’, respectively, with private visibility.

(<) m(pds) is not declared in mds’.

159

160

Law 70. (move redefined method to superclass: overriden method with no specification

cases)
class B extends A {
ads
cnds
//@ requires (! (this
class B extends A { instanceof C);
ads // @ assignable
cnds \not_specified;
//@ ensures (! (this
rt m(pds) { instanceof C);
mbody // @ also
} //@ requires (this
mds instanceof C && y));
} //@ assignable «’;
class C extends B { =cds.Main //@ ensures (this
ads’ instanceof C && V));
cnds’ rt m(pds) {
if (!(this instanceof C))
//@ requires y/; { mbody } else {
// @ assignable «'; mbody’
//@ ensures V/; }
rt m(pds) { mbody } }
mds’ mds
} }
class C extends B {
ads’
cnds’
mds’
}
provided
JML:

() (1) super, private attributes and private pure methods does not appear in ¢/} nor in
s

(—) Both ¢ and i, do not contain occurrences of model fields declared in C, nor uncast
occurrences of this.

Java:

(«») (1) super and private attributes do not appear in mbody’; (2) super.m does not appear
in mds’

(—) mbody" does not contain uncast occurrences of this nor expressions of the form
((C)this).a and of the form ((C)this).m(e) for any attribute a nor method m, in ads’
and mds’, respectively, with private visibility.

(<) m(pds) is not declared in mds’.

161

Law 71.(change parameter type of pure method)

class C extends D { class C extends D ({
ads ads
cnds cnds
@spec_cases =cds.Main @spec_cases
/*@ pure @*/ rt /*@ pure @*/ rt
m(T x, pds) { mbody } m(T" x, pds) { mbody }
mds mds
} }
provided
JML:

(<) every occurrence of x in expressions of @spec_cases are cast with T or with any
subtype of T'.

(<) every actual parameter associated with x found in specifications of C, cds e Main is
of type T or of any subtype of T

Java:

(«2) T < T’ and every non-assignable occurrence of x in expressions of mbody are cast
with T or any subtype of 7.

(<) (1) every actual parameter associated with x in mds, cds and Main is of type T or
any subtype of T'; (2) every expression assigned to x in mbody is of type T or any
subtype of T'; (3) every use of x as the method return in mbody is for a corresponding
declared return of type T or any supertype of 7.

162

Law 72. (change parameter type)

class C extends D { class C extends D ({
ads ads
cnds cnds
@spec_cases cds.Main @ spec_cases
rt m(T x, pds) { mbody } rt m(T' x, pds) { mbody }
mds mds

} }
provided

JML.:

(e») every occurrence of x in expressions of @spec_cases are cast with T or with any
subtype of T'.

Java:

(«2) T < T’ and every non-assignable occurrence of x in expressions of mbody are cast
with 7 or any subtype of 7.

(<) (1) every actual parameter associated with x in mds, cds and Main is of type T or
any subtype of T'; (2) every expression assigned to x in mbody is of type T or any
subtype of T'; (3) every use of x as the method return in mbody is for a corresponding
declared return of type T or any supertype of T.

Law 73.(change return type of pure method)

class C extends D {
ads
cnds

@spec_cases

/*@ pure @*/ rt m(pds) {
mbody

}

mds

}

provided
JML:

(=) (1) every call to m(pds) that occurs in specifications in C, cds and Main is cast with
rt; (2) every occurrence of \result in postconditions of @ spec_cases are cast with

rt or any subtype of rt.
Java:

() re<rr.

=cds,Main

class C extends D ({
ads
cnds

@spec_cases

/%@ pure @*/ rt’ m(pds) {
mbody

}

mds

(—) every call to m(pds) used as a expression is cast to rt.

(<) every expression used in the return return clause in mbody is of type rt or of any

subtype of rt.

164

Law 74. (change return type)

class C extends D { class C extends D ({
ads ads
cnds cnds
@spec_cases _ . @spec_cases
rt m(pds) { —cds,Main rt’ m(pds) {
mbody mbody
} }
mds mds
} }
provided
JML:

(—) every occurrence of \result in postconditions of @ spec_cases are cast with rt or
any subtype of rt.

Java:
() resrt
(—) every call to m(pds) used as a expression is cast to rt.

(<) every expression used in the return return clause in mbody is of type rt or of any
subtype of rt.

Law 75. (method elimination: no explicit specification)

class C extends D { class C extends D {
ads
ads
cnds = . cnds
» m(pds) { mbody } —cds,Main
mds
md.s }
}
provided
Java:

(—) B.m(e) does not occur in cds, Main nor in cnds, mds for any B such that B < C, B
does not redefine m and the first superclass in its hierarchy that declares m is C or
B is strictly C.

(<) m(pds) is not declared in mds nor in any superclass or subclass of C in cds.

165

Law 76. (method elimination: some redefinition and non-default specification elimina-
tion)
class C extends D {

ads
o class C extends D ({
//@ requires y; B | Z;Z;s
//@ assignable w; =cds.Main
mds

//@ ensures i;
rt m(pds) { mbody }
mds

}
provided

JML:

() (1) Yy = fpre(Elrt m(pds)]) for every class E such that E < B, E £ C and E
has a already defined method rt m(pds). (2) For every class E such that E £ C
and E has a already defined method rt m(pds), there is a specification case for
m with pre-condition PRE, post-condition POS T, and frame W where \old(¢;) =
((\old(PRE) = POST) = (\old(y;) = yp)and w C W.

Java:
(«») rt m(pds) is already declared in any class E pertaining to cds such that E < C.

(=) B.m(e) does not occur in cds, Main nor in cnds, mds for any B such that B < C, B
does not redefine m and the first superclass in its hierarchy that declares m is C or
B is strictly C.

(«=) rt m(pds) is not declared in mds nor in any superclass or subclass of C in cds.

166

Law 77.(method elimination: no redefinition and non-default pre-existent specification)

class C extends D {
ads
cnds

//@ requires i ;

// @ assignable w;
//@ ensures i;

rt m(pds) { mbody }
mds

=cds,Main

}
provided

Java:

class C extends D {
ads
cnds
mds

(«») rt m(pds) is not declared in any class E pertaining to c¢ds such that E < C.

(—) B.m(e) does not occur in cds, Main nor in cnds, mds for any B such that B < C.

(«=) rt m(pds) is not declared in mds nor in any superclass or subclass of C in cds.

167

Law 78. (method elimination: pure, redefined, non-default pre-existent specification)
class C extends D {
ads
cnds

//@ requires iy ; class C extends D {

//@ assignable w; ~ j}éj;s
: —cds,Main
/] @ ensures y; o

/*@ pure @*/ rt m(pds) {
mbody
}

mds

}
provided

JML.:

() (1) Yy = fpre(E[rt m(pds)]) for every class E such that E < B, E £ C and E
has a already defined method rt m(pds). (2) For every class E such that E £ C
and E has a already defined method rt m(pds), there is a specification case for
m with pre-condition PRE, post-condition POS T, and frame W where \old(y¥;) =
(\old(PRE) = POST) = (\old(y/1) > yp)and w C W.

(—) B.m(e) does not occur inside specifications of C, cds and Main for any B such that
B < C, B does not redefine m and the first superclass in its hierarchy that declares
mis C or B is strictly C.

Java:
(<) rt m(pds) is already declared in any class E pertaining to cds such that E < C.

(—) B.m(e) does not occur in cds, Main nor in cnds, mds for any B such that B < C, B
does not redefine m and the first superclass in its hierarchy that declares m is C or
B is strictly C.

(«=) rt m(pds) is not declared in mds nor in any superclass or subclass of C in cds.

168

Law 79. (method elimination: pure, not redefined, no default pre-existent specification)

class C extends D {
ads
cnds

//@ requires i ;

// @ assignable w;

//@ ensures i;

/*@ pure @*/ rt m(pds) {
mbody

}

mds

—cds,Main

}
provided

JML.:

class C extends D ({
ads
cnds
mds

() rt m(pds) is not declared in any class E pertaining to c¢ds such that E < C.

(—) B.m(e) does not occur inside specifications of C, cds and Main for any B such that

B<C.

Java:

(—) B.m(e) does not occur in cds, Main nor in cnds, mds for any B such that B < C.

(«=) rt m(pds) is not declared in mds nor in any superclass or subclass of C in cds.

169

Law 80. (method elimination: pure, no explicit specification)

class C extends D {
ads
cnds class C extends D {
ads
/*@ pure @*/ rt m(pds) { =cds,Main cnds
mbody mds
} }
mds
}
provided
JML:

(=) B.m(e) does not occur inside specifications of C, cds and Main for any B such that
B < C, B does not redefine m and the first superclass in its hierarchy that declares
mis C or B is strictly C.

Java:

(—) B.m(e) does not occur in cds, Main nor in cnds, mds for any B such that B < C, B
does not redefine m and the first superclass in its hierarchy that declares m is C or
B is strictly C.

(«-) m(pds) is not declared in mds nor in any superclass or subclass of C in cds.

170

Law 81. (eliminate calls to void methods via super)
CDS is a set of two class declarations as follows.

class B extends A {

ads class C extends B {
cnds ads’

cnds’
@spec_cases mds’
void m(pds) { mbody } }
mds

}

Thus, we have that:

vardecs(pds, e);

/*@ assert fext_inv(B)

&& fext_pre(B[m(pds))), @*/
cds CDS, C > super.m(e) ‘ = mbody

/*@ assert fext_pos(B[m(pds)])
&& fext_inv(B)

&& fext_const(Blm(pds)]) @*/

provided
JML:

(—) (1) super does not occur in fext_pre(B[m(pds)]), fext_pos(B[m(pds)]) nor in
fext_inv(B) and fext_const(B[m(pds)]); (2) Model fields that represent private
attributes do not occur in fext_pre(B[m(pds)]) or in fext_pos(B[m(pds)]); (3)
Private attributes, private pure methods, and model fields that represent private at-
tributes or private model fields, declared in D, for any D such that B < D, do not
occur in finv(D) and fconst(D[m(pds)]).

Java:

(—) (1) super, private attributes and private methods declared in ads and mds, respec-
tively, do not occur in mbody.

(2) mbody does not contain return clauses.

171

Law 82. (eliminate calls to non void methods via super)

CDS is a set of two class declarations as follows.

class B extends A {

class C extends B {

@spec_cases
void m(pds) { mbody }

Thus, cds CDS, C >

super.m(e)

rt a;

vardecs(pds, e);

/%@ assert fext_inv(B)

&& fext_pre(Blm(pds)]); @*/
mbody

[a = result | return result]
/%@ assert fext_pos(B[m(pds)])
[a/\result]

&& fext_inv(B)

&& fext_const(B[m(pds)]) @*/

(—) super does not occur in fext_pre(B[m(pds)]), fext_pos(B[m(pds)]) nor in
fext_inv(B) and fext_const(B[m(pds)]); (2) Model fields that represent private
attributes do not occur in fext_pre(@spec_cases) or in fext_pos(@spec_cases);
(3) Private attributes, private pure methods, and model fields that represent
private attributes or private model fields do not occur in fext_inv(B) and

fext_const(B[m(pds)]).

(—) (1) super, private attributes and private methods declared in ads and mds, respec-
tively, do not occur in mbody. (2) mbody does not contain multiple return points.

O

172

Law 83. (void method call elimination)
Consider that the following class declaration

class

C extends D {

ads
cnds

@spec_cases
void m(pds) { mbody }
mds

}

is included in cds and that cds, A > le : C, meaning that /e has static type C in
the class A. Then

cds, A > le.m(e) =

//@ assert le ! = null;
/*@
assert fext_inv(C)[le/this]
&& fext_pre(Clm(pds)))[le/this];
e/
vardecs(pds, e);
mbody|le/this]
/*a@
assert fext_pos(C[m(pds)])[le/this]
&& fext_inv(C)[le/this]
&& fext_const(C[m(pds)])[le/this];
@*/

provided

JML:

(—) (1) super does not occur in fext_pre(C[m(pds)]), fext_pos(C[m(pds)]) nor in

Java:

fext_inv(C) and fext_const(Clm(pds)]); (2) All attributes, pure methods and
model fields that occur in fext_inv(C) and fext_const(C[m(pds)]) are non-
private. (3) All non-private model fields that occur in fext_pre(C[m(pds))),
fext_pos(Clm(pds)]), fext_inv(C) and fext_const(C[m(pds)]) represent only
non-private attributes; (4) All accesses to non-private attributes and all calls to non-
private pure methods that occur in fext_pre(C[m(pds)]), fext_pos(Clm(pds))),
fext_inv(C) and fext_const(Clm(pds)]), are in the form this.a and this.m(e), re-
spectively, where a is a non-private attribute and m is anon-private method.

(—) (1) m(pds) is not redefined in cds and mbody does not cointain references to super;

(2) all attributes and methods that occur in mbody arenon-private. (3) mbody does
not contain recursive calls; (4) pds does not occur in e; (5) mbody does not contain
return clauses; (5) all accesses to non-private attributes and all calls to non-private
methods that occur in mbody, are of type this.a and this.m(e), respectively, where
a is a non-private attribute and m is anon-private method.

173

174

Law 84. (non void method call elimination - when used as expression)
Consider that the following class declaration

class C extends D {
ads
cnds

@spec_cases

rt m(pds) { mbody }

mds
}
is included in cds and that cds, A > le : C, meaning that /e has static type C in
the class A. Then

rt a;
//@ assert le ! = null;
/*@
assert fext_inv(C)[le/this]
&& fext_pre(Clm(pds)])[le/this];
e/
vardecs(pds, e);
mbody|le/this]
[a = result/return result]
/*@
assert fext_pos(C[m(pds)])[le/this]
[a/\result]
&& fext_inv(C)[le/this]
&& fext_const(Clm(pds)])[le/this];
@/

cds, A > rt a = lem(e)

provided
JML:

(—) (1) super does not occur in fext_pre(Clm(pds)]), fext_pos(C[m(pds)]) nor in
fext_inv(C) and fext_const(C[m(pds)]); (2) All attributes, pure methods and
model fields that occur in fext inv(C) and fext const(C[m(pds)]) are non-
private. (3) all non-private model fields that occur in fext_pre(C[m(pds))),
fext_pos(Clm(pds)]), fext_inv(C) and fext_const(C[m(pds)]) represent only
non-private attributes; (4) all accesses to non-private attributes and all calls to non-
private pure methods that occur in fext_pre(Clm(pds)]), fext_pos(C[m(pds)]),
fext_inv(C) and fext_const(C[m(pds)]), are in the form this.a and this.m(e), re-
spectively, where a is a non-private attribute and m is a non-private method.

Java:

(—) (1) m(pds) is not redefined in cds and mbody does not cointain references to super;
(2) all attributes and methods that occur in mbody arenon-private. (3) mbody does
not contain recursive calls; (4) pds does not occur in e; (5) mbody does not contain
multiple return points. (6) all accesses to non-private attributes and all calls to non-
private methods that occur in mbody, are of type this.a and this.m(e), respectively,
where a is a non-private attribute and m is anon-private method.

175

176

Law 85. (non void method call elimination - when used as a statement)
Consider that the following class declaration

class C extends D {
ads
cnds

@spec_cases
rt m(pds) { mbody }
mds

}

is included in cds and that cds, A > le : C, meaning that /e has static type C in
the class A. And assume that _a is fresh, i.e., not used elsewhere. Then

rt _a;
//@ assert le ! = null;
/*@
assert fext_pre(C[m(pds)])[le/this];
@/
vardecs(pds, e);
mbody|le/this]
[_La = result/return result]
/*a@
assert fext_pos(C[m(pds)])[le/this]
[_a/\result]
&& fext_inv(C)[le/this]
&& fext_const(Clm(pds)])[le/this];
@/

cds, A > le.m(e) =

provided
JML:

(=) (1) super does not occur in fext_pre(C[m(pds)]), fext_pos(C[m(pds)]) nor
in fext_inv(C) and fext_const(C[m(pds)]); (2) All non-private model fields
that occur in fext_pre(Clm(pds)]), fext_pos(Clm(pds)]), fext_inv(C) and
fext_const(C[m(pds)]) represent only non-private attributes; (3) All ac-
cesses to non-private attributes and all calls to non-private pure methods
that occur in fext_pre(Clm(pds)]), fext_pos(Clm(pds)]), fext_inv(C) and
fext_const(C[m(pds)]), are in the form this.a and this.m(e), respectively, where
a is a non-private attribute and m is a non-private method.

Java:

(—) (1) m(pds) is not redefined in cds and mbody does not cointain references to super;
(2) all attributes and methods that occur in mbody arenon-private. (3) mbody does
not contain recursive calls; (4) pds does not occur in e; (5) all accesses to non-
private attributes and all calls to non-private methods that occur in mbody, are of
type this.a and this.m(e), respectively, where a is a non-private attribute and m is
anon-private method.

Law 86. (make method abstract)

abstract class C
extends D

ads
cnds

@spec_cases
rt m(pds) { mbody }
mds

}

provided

Java:

(—) rt m(pds) is already declared in any class E pertaining to cds such that E < C.

abstract class C
extends D {
ads
cnds
=cds,Main
@spec_cases
abstract rt m(pds);
mds

Law 87. (insert abstract method declaration)

abstract class C
extends D {
ads
cnds
mds

}
cds’, Main

where

cds’ = cds[/]@ also fspec(m)/fspec(m)], for every method m(pds) of any class E

such that E < C.

provided

Java:

(=) rt m(pds) is already declared in any class E pertaining to cds such that E < C.

abstract class C
extends D {
ads
cnds

abstract rt m(pds);
mds

}
cds’, Main

178

A.5 Constructors

Law 88. (eliminate calls to super(a(pds)))

class B extends A {
ads

@spec_cases

B(pds) { cbody }

cnds
mds
}
class C extends B {
ads’

@spec_cases’

C(pds) {
super(a(pds));
cbody’

}

cnds’
mds’

provided
JML:

(—) (1) Private attributes, private pure methods, and model fields that represent private
attributes or private model fields declared in D, for any D such that B < D, do not
occur in finv(D) or in finit(D); (2) Model fields that represent private attributes
or private model fields, declared in B do not occur in fpre(@spec_cases) or in
fpos(@spec_cases); (3) B’s default constructor does not have explicit specification

cases.

Java:

=cds,Main

() B’s default constructor has a empty body.

(—) (1) cbody does not contain calls to super; (2) B has a default constructor; (3) private
attributes and private methods declared in ads and mds, respectively, do not occur

in chody.

class B extends A {
ads

@spec_cases
B(pds) { cbody '}

cnds
mds
}
class C extends B {
ads’

@spec_cases’
C(pds) {
/*@ assert
fpre(@spec_cases);
@*/
cbody
/*@ assert
fpos(@spec_cases)
&& fext_inv(B)
&& fext_init(B);
@*/
cbody’

cnds’
mds

(«-) B has a non-private constructor B(pds), whose body is chody.

Law 89. (*eliminate calls to super() inside constructors)

class C extends D {
ads

@spec_cases

C(pds) {
super();
cbody

}

cnds

mds

}

provided

Java:

—cds,Main

179

class C extends D ({
ads

@spec_cases

C(pds) {
cbody

}

cnds

mds

(«=) cbody does not contain any call to a super constructor.

180

Law 90. {eliminate calls to this(e))

class C extends D {
ads’
@spec_cases
class C extends D { C(pds) { cbody }
ads @spec_cases’
@spec_cases C(f;lrsd)ec{s(o
C(pds) { cbody } e ass(i-t)
@spec_cases’ @{5re(@spec_cases);
C(pdS/) { =cds,Main
this(e); cbody
cbod ; /*@ assert
} ’ fpos(@spec_cases)
&& fext_inv(B)
cnds’ @fl/& fext_init(B);
} s cbody’
}
cnds’
mds’
}
provided
Java:

(<) e matches pds.
(=) (1) cbody does not contain calls to super; (2) chody’ does not contain calls to super.

O

181

Law 91. (eliminate non-default constructors: when constructor’s body does not have to
call a superconstructor explicitly)

class B extends A {
ads
cnds class B extends A {
mds ads
} cnds
class C extends B { mds
ads’ _ }
TedsMain 1 olags C extends B |
@spec_cases ads’
C(pds’) { cbody } cnds’
mds’
cnds’ }
mds’
}
provided
JML:

(—) new C(a(pds’) does not occur inside specifications of B, C, cds and Main.
Java:

(<) cnds i1s empty or cnds has an explicit default constructor.

(—) There are no calls to C(pds’) (including calls via super or this)

(<) C(pds’) is not declared in C

182

Law 92. (eliminate non-default constructors: Ob ject as superclass)

class C {
ads
class C {
@spec_cases ads
C(pds) { cbody } =cds,Main cnds
mds
cnds }
mds
}
provided
JML:

(—) new C(a(pds) does not occur inside specifications of C, cds and Main.
Java:
(—) There are no calls to C(pds) (including calls via super or this)

(<) C(pds) is no already declared in C

183

Law 93. (eliminate non-default constructors: when constructor’s body have to call a

superconstructor explicitly)

class B extends A {
ads

@spec_cases
B(pds) { cbody }

cnds
mds
}
class C extends B {
ads’

@spec_cases’
C(pds’) { cbody }

cnds’
mds’

}

provided
JML:

(—) new C(a(pds’)) does not occur inside specifications of B, C, cds and Main.

Java:

=cds,Main

class B extends A {
ads

@spec_cases
B(pds) { cbody }

cnds

mds
}
class C extends B {

ads’

cnds’

mds’

() (1) cnds does not have an explicit default constructor; (2) chody’ has a super call like
super(a(pdscngs)) where pdsqngs 1S the formal parameters list of some constructor

that pertains to cnds.

(—) There are no calls to C(pds’) (including calls via super or this)

(«) C(pds’) is not declared in C

184

Law 94. (eliminate calls to non-default constructors)
Consider that the following class declaration

class C extends D {
ads

@spec_cases

C(pds) { cbody }

cnds
mds

}
is included in cds and that cds, A > le : C, meaning that le has static type C in
the class A. Then

Cle = new C();

vardecs(pds, e);

/*@ assert
fpre(@spec_cases);
[le/this]

@*/

cbody|le/this]

C le = new C(e); =cds.Main /*@ assert
fpos(@spec_cases)
[le/this]

&& fext_inv(C)
[le/this]

&& fext_init(C);
[le/this]

@*/

provided
JML:

(=) (1) super does not occur in fpre(@spec_cases), fpos(@spec_cases) nor in
fext_inv(C) and fext_init(C); (2) Private attributes, private pure methods, and
model fields that represent private attributes or private model fields declared in
B, for every B such that C < B, do not occur in finv(B) or finit(B); (3) All ac-
cesses to non-private attributes and all calls to non-private pure methods that occur
in fpre(@spec_cases), fpos(@spec_cases), fext_inv(C) and fext_init(C), are in
the this.a and this.m(e), respectively, where a is a non-private attribute and m is a
non-private method; (4) C’s default constructor does not have explicit specification
cases.

Java:

(=) (1) C has a default constructor; (2) there are no calls to super or this() in cbody;
(3) all attributes and methods that occur in chody are non-private. (4) pds does not
occur in e;

185

A.6 Commands and Expressions

Law 95. (replace switch by if-else clauses)
If i ranges over 1..n, then

switch (e) { if (¢ ==-¢) { c; }
case ¢;: c¢;; break; else if (¢ == ¢) { ¢;; }
case ¢;; ¢;; break; = else { cger; } o

default : Cdef »

}

Law 96. (if true evaluation)
Since e; == e, is evaluated to true in any evaluation, then

if (e, ==) { ¢ } = ¢ O

Law 97. (if-else identical commands)

if (e) { ¢; }
else { c; } = ¢ m]

Law 98. (if identical commands)
If \/i:1..n ee¢; =true, then

if (e) { ¢ }
else if (e;) { ¢; } — c O
else { ¢; }

Law 99. (introduce a trivial JML-assert expression after assignment)
le = e; = /*@ assert (le == e), @/ le = e,
Law 100. (introduce trivial cast in expressions)

If cds, A > e : C, then

cds, A > e = (C) e

186

Law 101. (*eliminate/introduce this in attribute access)
Consider the following class declaration

class C extends D {
public T att;
ads
cnds
mds

then cds, C > att = this.att m|

Law 102. (*eliminate/introduce this in method calls)
Consider the following class declaration

class C extends D {

ads
cnds
rt m(pds) { mbody }
mds
then cds, C > m(e) = this.m(e) O

Law 103. {introduce this in pure method calls in predicates)
Consider the following class declaration and that m(e) is written in a valid JML predicate

class C extends D {

ads
cnds
/*@ pure @*/ rt m(pds) { mbody }
mds
then cds, C > m(e) = this.m(e) m]

Law 104. (eliminate cast of expressions)
If cds, A> le: Band cds, A > le : B, with

cds, A > le := (C) e = /*@ assert (e instanceof C); @*/ le := e
Law 10S. {eliminate cast of method call)
If cds,A>e: B, C < Band mis declared in B or in any of its superclasses in cds, then

cds, A > ((C)e).m(e’) = /*@ assert (e instanceof C); @*/ e.m(e)

187

Law 106. (change variable type)
cds, A > T x; ¢ = T x; c

provided

JML:

(«») Every occurrence of x inside specifications of c, is cast with T or any subtype of 7.
Java:

() T<T.

(<) (1) Every expression assigned to x in c is of type T or any subtype of T'; (2) every
use of x as the return expression in c¢ is for a corresponding declared return of type
T or any subtype of 7.

O

Ct stands for the scope where the expression exp is being used that is usually a method
or constructor body, or conditionals and loops delimited with braces.

Law 107. (*replace expression by variable)
Consider that cds, N > T exp, then cds, N >

ExpType tmp = exp;
Cilexp] _ Ct{tmp = exp]
provided

Java:

(=) (1) tmp is not already declared in Ct; (2) variables used in exp are not assigned in

Ct.
O
A.7 Predicates
Law 108. (delete trivial cast in instanceof implications inside predicates)
If cds, A e : C, then
- e instanceof C ==> e O

e instanceof C ==> (C) e =

188

Law 109. {eliminate cast of pure method call in predicates)
If cds,A>e: B,C < B, mis pure and is declared in B or in any of its superclasses in cds

and ((C)e).m(e’) is written in a valid JML predicate, then

cds, A > ((C)e).m(e) = e instanceof C ==> e.m(¢’) .

189

APPENDIX B

Initial and Final Source-Code of the
Expl Interpreter

This appendix shows the initial and final source-code of the Expl Interpreter used in
Chapter 4.

B.1 Initial Source-Code of the Expl Interpreter

public class Expression {

public Expression () {}
public Value eval() { return null; }

}

public class BinaryExpression extends Expression {
//@ initially this.leftExp != null && this.rightExp != null;

private /+@ spec_public @x/ Expression leftExp;
private /+@ spec_public @x/ Expression rightExp;

public BinaryExpression() ({
this .leftExp = new Integer();
this . rightExp = new Integer();

}

/@ requires leftExp != null &% rightExp != null;
@ assignable this.leftExp, this.rightExp;
@ ensures this.leftExp == leftExp && this.rightExp == rightExp;
@x/

public BinaryExpression(Expression leftExp, Expression rightExp) {
super () ;

this .leftExp = leftExp;
this .rightExp = rightExp;

}

/@ requires le != null && re != null;
@ assignable this.leftExp, this.rightExp;
@ ensures this.leftExp == le && this.rightExp == re;
@x/

public void set(Expression le, Expression re) ({

190

this .leftExp = le;
this .rightExp = re;
}

//@ ensures \result == this.leftExp;
public /%@ pure @x/ Expression getLeftExp () {
return this.leftExp;

}

//@ ensures \result == this.rightExp;
public /+@ pure @x/ Expression getRightExp() {
return this.rightExp;
}
}

public class Value extends Expression ({
public Value() {}

}

public class Sum extends BinaryExpression {
public Sum() {

super () ;
}
/%@ requires leftExp != null && rightExp != null;
@ assignable this.leftExp, this.rightExp;
@ ensures this.leftExp == leftExp && this.rightExp == rightExp;
@x/

public Sum(Expression leftExp, Expression rightExp) {
super (leftExp, rightExp);

}

/+@ also
@ ensures \result != null;
@x/

public Value eval() {
Expression le = this.getLeftExp();
Expression re = this.getRightExp();
Integer lint = new Integer();
Integer rint = new Integer();
lint.setVal (((Integer)le.eval()).getVal());
rint.setVal (((Integer)re.eval()).getVal());
return new Integer(lint.getVal() + rint.getVal());

}

}

public class Integer extends Value {
private /x@ spec_public @x/ int val;

public Integer () {
super () ;
this .val = 0;

}

/«@ assignable this.val;
@ ensures this.val == val;
@x/

191

public Integer(int val) {
super () ;
this .val = val;

//@ ensures \result == val;
public /%@ pure @x/ int getVal() {
return this.val;

}

/+@ assignable this.val;
@ ensures this.val == val;
@x/

public void setVal(int val) {
this .val = val;

}

/+@ also
@ ensures \result == this;
@=x/

public Value eval() {
return this;
}
}

public class Interpreter {

//@ public invariant this.exp != null;
private /+@ spec_public @x/ Expression exp;

public Interpreter() {
super () ;
this.exp = new Integer();

}

/%@ requires exp != null;
@ assignable this.exp;
@ ensures this.exp == exp;
@sx/
public Interpreter(Expression exp) {
super () ;
this .exp = exp;

}

//@ ensures \result == this.exp;
public /+@ pure @x/ Expression getExp() {
return this .exp;

}

/+@ requires exp != null;
@ assignable this.exp;
@ ensures this.exp == exp;
@x/
public void setExp(Expression exp) f{
this.exp = exp;

}

public Value run() {
return this.exp.eval();

192

}
}

public class Main ({

public static void main(String[] args) {
Interpreter in;
Integer nl,n2;
Sum s;
Value v;
nl = new Integer(5);
n2 = new Integer(3);
s = new Sum(nl,n2);
in = new Interpreter(s);
v = in.run();

}

}

B.2 Final Source-Code of the Expl Interpreter

public class _Object {
//@ invariant this instanceof Interpreter ==> this.exp != null;
public int val;
public /+@ nullable @x/ _Object exp;

public /x@ nullable @x/ _Object rightExp;
public /%@ nullable @x/ _Object leftExp;

//@ requires ((!(this instanceof BinaryExpression)) && ((!(this
instanceof Value)) || ((this instanceof Value) && ((!(this
instanceof Integer)) || (this instanceof Integer && true)))));

//@ assignable \not_specified;

//@ ensures ((!(this instanceof BinaryExpression)) && ((\old ((!(this
instanceof Value))) ==> (!(this instanceof Value)))

//@ && (\old (((this instanceof Value) && ((!(this instanceof Integer)
) || (this instanceof Integer && true)))) ==> ((this instanceof
Value) && ((\old (!(this instanceof Integer)) ==> (!(this
instanceof Integer))) &% (\old ((this instanceof Integer && true))

==> (this instanceof Integer &% \result == this)))))));

/+@ also

@ requires ((this instanceof BinaryExpression) && ((!(this

instanceof Sum)) || ((this instanceof Sum) && true)));

assignable \not_specified;

@ ensures ((this instanceof BinaryExpression) && ((\old ((!(this
instanceof Sum))) ==> (!(this instanceof Sum))) && (\old (((this

instanceof Sum) &% true)) ==> (this instanceof Sum && \result
'= null))));

)

@x/
public _Object eval() {

if (!(this instanceof BinaryExpression)) {
if (!(this instanceof Value)) {
_Object tmp;
/+@ assert
true ;

193

@sx/
tmp = null;
/+@ assert

true ;

@x/

return tmp;
} else {

if (!(this instanceof Integer)) {

_Object tmp;

/%@ assert

true ;

@x/

tmp = null;

/+@ assert

true;
@x/

return tmp;
} else {
return this;

}
} else {

if (!(this instanceof Sum)) {

_Object tmp;
/+@ assert
true;
@x/
tmp = null;
/+@ assert
true;
@x/

return tmp;

} else {
_Object le;
//@ assert this != null;
/+@ assert
this instanceof Interpreter ==> this.exp != null
&& ((!(this instanceof Sum) && true) || ((this instanceof
Sum) && true) || ((this instanceof Sum) && true));
@x/

le = this.leftExp;
/+@ assert
((\old ((!(this instanceof Sum) &% true)) ==> (!(this

instanceof Sum) &% (le == this.leftExp)))
&& (\old (((this instanceof Sum) && true)) ==> ((this
instanceof Sum) && (le == this.leftExp)))
&& (\old (((this instanceof Sum) && true)) ==> ((this
instanceof Sum) && (le == this.leftExp))))
&& this instanceof Interpreter ==> this.exp != null;

@x/

194

_Object re; //GETRIGHTEXP

//@ assert this != null;
/+@ assert
this instanceof Interpreter ==> this.exp != null
&& ((!(this instanceof Sum) && true) || ((this instanceof
Sum) && true) || ((this instanceof Sum) && true));
@x/

re = this.rightExp;
/*@ assert
(\old ((!(this instanceof Sum) && true)) ==> (!(this

instanceof Sum) && (re == this.rightExp)))

&& (\old (((this instanceof Sum) && true)) ==> ((this
instanceof Sum) && (re == this.rightExp)))

&& (\old (((this instanceof Sum) && true)) ==> ((this
instanceof Sum) && (re == this.rightExp)))

&& ((!(this instanceof Sum) && true) || ((this instanceof

Sum) && true));
@x/

_Object lint = new Integer();
_Object rint new Integer();

_Object tmp2;
int tmpl;
tmp2 = le.eval();

//@ assert tmp2 != null;

/+@ assert
tmp2 instanceof Interpreter ==> tmp2.exp != null
&& true;

@sx/

tmpl = tmp2.val;
/+@ assert
tmpl == tmp2.val
&& tmp2 instanceof Interpreter ==> tmp2.exp != null;
@x/

int vall = tmpl;

//@ assert lint != null;

/+@ assert
lint instanceof Interpreter ==> lint.exp != null
&& true;

@x/

lint.val = vall;
/+@ assert

lint.val == vall
&& lint instanceof Interpreter ==> lint.exp != null;
@x/

_Object tmp4;
int tmp3;
tmp4 = re.eval();

//@ assert tmp4 != null;

/+@ assert
tmp4 instanceof Interpreter ==> tmp4.exp != null
&& true;

@x/

tmp3 = tmp4.val;

int val2 = tmp3;

//@ assert rint != null;
/+@ assert
rint instanceof Interpreter ==> rint.exp != null
&& true;
@x/
rint.val = val2;
/+@ assert
rint.val == val2
&& rint instanceof Interpreter ==> rint.exp != null;
@x/

/*@ assert
tmp3 == tmp4.val
&& tmp4 instanceof Interpreter ==> tmp4.exp != null;
@x/

_Object tmp = new Integer();
int tmp5;

//@ assert lint != null;
/*@ assert
lint instanceof Interpreter ==> lint.exp != null
&& true;
@x/
tmp5 = lint.val;
/+@ assert

tmp5 == lint.val
&& lint instanceof Interpreter ==> lint.exp != null;
@x/
int tmp6;
//@ assert lint != null;
/+@ assert
rint instanceof Interpreter ==> rint.exp != null
&& true;
@x/

tmp6 = rint.val;
/+@ assert
tmp6 == rint.val
&& rint instanceof Interpreter ==> rint.exp != null;
@x/

int val = tmp5 + tmp6;

/+@ assert
true;
@x/
tmp.val = val;
/+@ assert
tmp.val == val
&& true
&& true;
@sx/

195

196

return tmp;

}

}

public class Expression extends _Object ({
public Expression () {}
}

public class BinaryExpression extends Expression {
//@ initially this.leftExp != null && this.rightExp != null;

public BinaryExpression() {
this .leftExp = new Integer();
this .rightExp = new Integer();
}
}

public class Sum extends BinaryExpression ({
public Sum() {
}

}

public class Value extends Expression ({
public Value() {}

}

public class Integer extends Value {
public Integer () {
this .val = 0;
}
}

public class Main {
public static void main(String[] args) {

_Object in;
_Object nl,n2;
_Object s;
_Object v;

nl = new Integer();
int val = 5;
/%@ assert

true ;

Q@x/
nl.val = val;
/%@ assert

nl.val == val

&& true

&& true;
@x/

n2 = new Integer();

197

val = 3;
/+@ assert
true ;
@x/
n2.val = val;
/+@ assert
n2.val == val
&& true
&% true;
@x/

s = new Sum() ;

_Object leftExp = nl;
_Object rightExp = n2;
/%@ assert

leftExp != null && rightExp != null;
@=x/
/+@ assert
leftExp != null && rightExp != null;
@x/

s.leftExp = leftExp;
s.rightExp = rightExp;
/+*@ assert

s.leftExp == leftExp && s.rightExp == rightExp
&& s.leftExp != null && s.rightExp != null;
@sx/
/+@ assert
s.leftExp == leftExp && s.rightExp == rightExp
&& s.leftExp != null && s.rightExp != null;
@x/

in = new Interpreter();
_Object exp = s;
/«@ assert
exp != null;
@x/
in.exp = exp;
/+*@ assert

in.exp == exp

&& in.exp != null;

@sx/
//@ assert in != null;
/«@ assert

in instanceof Interpreter ==> in.exp != null;
@x/

v = in.exp.eval();
/+@ assert
in instanceof Interpreter ==> in.exp != null;
@sx/

198

APPENDIX C

Source-code of the Meta Data API from
the beginning to the end

This appendix show the source-code snapshots of the Meta Data API during the code and
specification refactorings explained in Chapter 5.

C.1 Original source-code of Meta Data API

import java.util.HashSet;
import java.util.Set;

public class Main {

public static void main (String[] args) {

//Simulating a set of properties to a Product

MetaData length = createlengthProperty();

MetaData weigth = createWeigthProperty();

MetaData code = createCodeProperty();

MetaData productionDate = createProductionDateProperty () ;

MetaData numberOfInternalParts =
createNumberOfInternalPartsProperty () ;

MetaData needsPacking = createNeedsPackingProperty();

//Simulating data registering for Length
DoubleData datalength = new DoubleData(length);
datalength.registerValueFromText("10");
System.out.println("data value: " + datalength.getFormattedValue ()
+
" is a " 4+ datalength.isValid() + " well-formed value as
expected and " +
"its expected status is +
"INVALID, the real status is: " + datalLength.getStatus());
//@ assert datalength.getStatus().equals(DataStatus.INVALID);

//Simulating data registering for Weigth
DoubleData dataWeigth = new DoubleData(weigth);
dataWeigth.registerValueFromText("4");
System.out.println("data value: " + dataWeigth.getFormattedValue ()
+
" is a " 4+ dataWeigth.isValid() + " well-formed value as
expected and " +

}

199

"its expected status is +
"VALID, the real status is: " + dataWeigth.getStatus());
//@ assert dataWeigth.getStatus().equals(DataStatus.VALID);

//Simulating data registering for Code

StringData dataCode = new StringData(code);

dataCode.registerValueFromText ("XYZ001");

System.out.println("data value: " + dataCode.getFormattedValue() +
" is a " + dataCode.isValid() + " well-formed value as expected

"

and +
"its expected status is " +
"VALID, the real status is: " + dataCode.getStatus());

//@ assert dataCode.getStatus().equals(DataStatus.VALID);

DateData productionDateData = new DateData(productionDate);

productionDateData.registerValueFromText("11-11-2008");

System.out.println("data value: " + productionDateData.
getFormattedValue () +

" "

is a + productionDateData.isValid() +
as expected and " +
"its expected status is +
"NOT_REGISTERED, the real status is: " + productionDateData.
getStatus());
//@ assert productionDateData.getStatus().equals(DataStatus.
NOT_REGISTERED) ;

well —formed value

IntegerData numberOfInternalPartsData = new IntegerData(
numberOfInternalParts);

numberOfInternalPartsData.registerValueFromText("5");

System.out.println("data value: " + numberOfInternalPartsData.
getFormattedValue () +

" "

is a + numberOfInternalPartsData.isValid() +
value as expected and " +
"its expected status is " +
"VALID, the real status is: " + numberOfInternalPartsData.
getStatus());
//@ assert numberOfInternalPartsData.getStatus().equals(DataStatus.
VALID) ;

"

well —formed

BooleanData needsPackingData = new BooleanData(needsPacking);

needsPackingData.registerValueFromText("true");

System.out.println("data value: " + needsPackingData.
getFormattedValue () +

" "

is a + needsPackingData.isValid() +
expected and " +
"its expected status is " +
"NOT_REGISTERED, the real status is: " + needsPackingData.
getStatus());
//@ assert needsPackingData.getStatus().equals(DataStatus.
NOT_REGISTERED) ;

"

well —formed value as

private static MetaData createlLengthProperty() {

MetaData length = new MetaData("length", DataType.DECIMAL);
length.setDefaultValue("25");

length.setUseDefaultValue (Boolean.valueOf(true));
length.setMeasureUnit("cm");

length.setDescription("Property to store product’s length");

200

Set rules = new HashSet ()

MaxValueRule maxValueRule = new MaxValueRule();
maxValueRule.setPurpose(ValidationPurpose.VALIDATE);
maxValueRule.setReferenceValue(new Double(30));
rules.add(maxValueRule);

MinValueRule minValueRule = new MinValueRule();
minValueRule.setPurpose(ValidationPurpose.VALIDATE);
minValueRule.setReferenceValue (new Double(20));
rules.add(minValueRule) ;

length.setValidationRules(rules);
return length;

}

private static MetaData createWeigthProperty() {
MetaData weigth = new MetaData("weight", DataType.DECIMAL);
weigth.setMeasureUnit("kg");
weigth.setUseDefaultValue(Boolean.valueOf(true));
weigth.setDefaultValue("5");
weigth.setDescription("Property to store product’s weigth");

Set rules = new HashSet();

MinToleranceRule minToleranceRule = new MinToleranceRule () ;
minToleranceRule.setPurpose(ValidationPurpose.VALIDATE);
minToleranceRule.setReferenceValue (new Double(2));
rules.add(minToleranceRule);

weigth.setValidationRules(rules);
return weigth;

}

private static MetaData createCodeProperty() {
MetaData code = new MetaData ("code", DataType.TEXT);
code.setDescription("Property to store product’s code");

Set rules = new HashSet();

MaxSizeRule maxSizeRule = new MaxSizeRule();
maxSizeRule.setPurpose(ValidationPurpose.VALIDATE);
maxSizeRule.setReferenceValue (new Double(10));
rules.add(maxSizeRule);

code .setValidationRules(rules);

return code;

}

private static MetaData createProductionDateProperty () {
MetaData productionDate = new MetaData("Production date", DataType.
DATE) ;
productionDate.setDescription("Property to store product’s
production date");
return productionDate;

}

private static MetaData createNumberOfInternalPartsProperty() ({
MetaData numberOfInternalParts = new MetaData("Number of internal
parts", DataType.INTEGER);
numberOfInternalParts.setDefaultValue("4");
numberOfInternalParts.setUseDefaultValue(Boolean.valueOf(true));

}

201

numberOfInternalParts.setDescription("Property to store the number
of internal parts of the product");

Set rules = new HashSet ()

MaxTolerancePercentageRule maxTolerancePercentageRule = new
MaxTolerancePercentageRule () ;

maxTolerancePercentageRule.setPurpose(ValidationPurpose.VALIDATE);

maxTolerancePercentageRule.setReferenceValue (new Double(50));

rules.add(maxTolerancePercentageRule);

numberOfInternalParts.setValidationRules(rules);

return numberOfInternalParts;

private static MetaData createNeedsPackingProperty () {

MetaData needsPacking = new MetaData("Needs to Pack", DataType.
BOOLEAN) ;

needsPacking.setDefaultValue("false");

needsPacking.setUseDefaultValue(Boolean.valueOf(true));

needsPacking.setDescription("Property to store whether the product
needs to be packed");

return needsPacking;

public final class DataStatus {

public static final DataStatus NOT_REGISTERED = new DataStatus("

NOT_REGISTERED", 1);

public static final DataStatus INVALID = new DataStatus("INVALID", 2)

public static final DataStatus VALID = new DataStatus("VALID", 3);
private String name;
private int number;

private DataStatus(String name, int number) {

}

this .name = name;
this .number = number;

public String toString() {

return this .name;

}
}

public class DataType {

public static final DataType INTEGER
public static final DataType DECIMAL
public static final DataType BOOLEAN

new DataType ("INTEGER", 0);
new DataType ("DECIMAL", 1);
new DataType ("BOOLEAN", 2);

public static final DataType DATE = new DataType("DATE", 3);
public static final DataType TEXT = new DataType("TEXT", 4);
private String name;
private int number;

private DataType(String name, int number) {

this .name = name;
this .number = number;

import java.util.HashSet;

202

import java.util.Set;
public class MetaData {

private String name;

private String description;

private Boolean useDefaultValue;

private String defaultValue;

private String measureUnit;

private DataType dataType;

private Set validationRules = new HashSet();

public MetaData() f{
}

public MetaData(String name, DataType dataType) {
this .name = name;
this .dataType = dataType;
this .description = "";
this .defaultValue = "";
this .useDefaultValue = Boolean.valueOf(false);

"non

this .measureUnit = ;

}

public /+x@ pure @x/ String getName () {
return this .name;

}

public void setName(String name) {
this .name = name;

1

public /+@ pure @x/ String getDescription() {
return this.description;

}

public void setDescription(String description) {
this .description = description;

1

public /+x@ pure @x/ Boolean getUseDefaultValue() {
return this .useDefaultValue;

}

public void setUseDefaultValue(Boolean useDefaultValue) {
this .useDefaultValue = useDefaultValue;

}

public /%@ pure @x/ String getDefaultValue() f{
return this.defaultValue;

1

public void setDefaultValue(String defaultValue) {
this .defaultValue = defaultValue;

}

public /x@ pure @x/ DataType getDataType() {
return this.dataType;

}

public void setDataType(DataType dataType) {
this .dataType = dataType;

}

public /+@ pure @x/ Set getValidationRules() {
return this.validationRules;

1

public void setValidationRules(Set validationRules) {
this .validationRules = validationRules;

203

}

public /%@ pure @x/ String getMeasureUnit () {
return this .measureUnit;

}

public void setMeasureUnit(String measureUnit) ({
this .measureUnit = measureUnit;

1

}

import java.util.Date;
import java.util.Iterator;

public class BooleanData {
//@ invariant this.getMetaData() != null;

private /%@ spec_public @x/ DataStatus status = DataStatus.
NOT_REGISTERED;

private MetaData metaData;

private /+@ spec_public nullable @x/ Object value;

private /+@ spec_public @x/ Date registeredDate = new Date();

private Date editedDate = new Date();

/%@ requires metaData != null;
@ ensures this.getMetaData() == metaData;
@x/

public BooleanData(MetaData metaData) {
this .metaData = metaData;
this .value = new Boolean(true);

}

/+@ pure nullable @x/ Object convertToValue(String value) {
if ("true".equals(value)) {
return Boolean.valueOf(true);
} else if ("false".equals(value)) {
return Boolean.valueOf(false);
} else {
return null;
}
}

//@ requires this.getValue() != null;
//@ assignable \nothing;
//@ ensures Boolean.valueOf (\result).equals(this.getValue());
public /x@ pure @x/ String getFormattedValue () {
return this.getValue().toString();

}

/+@ requires this.getValue() == null;
@ assignable \nothing;
@ ensures \result == false;
@ also
@ requires this.getValue() != null;
@ assignable \nothing;
ensures \result == true;
Q@x/
public /%@ pure @x/ boolean isValid() {
if (this.value == null) {
return false;

()

204

}

return true;
1
public /+x@ pure @x/ Object getValue() { /* ... */ }

//@ assignable this.registeredDate, this.status;
private void doRegisterActions() { /* ... */}

/%@ requires value.equals("true");
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue().equals(Boolean.valueOf(true));
@ also
@ requires value.equals("false");
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue().equals(Boolean.valueOf(false)):;
@ also
@ requires !value.equals("true") && !value.equals("false");
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == null;
@ =/

public void registerValueFromText(String value) ({
this .value = this.convertToValue(value);

this . doRegisterActions () ;

}

/%@ requires value != null;
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == value;
@x/

public void registerValue(Object value) {
this .value = value;
this .doRegisterActions () ;

}

/%@ requires this.getValue() != null;
@ assignable this.status;
@ ensures true;

@x/
public void validate() {
if (this metaData.getValidationRules() != null && !this.metaData.

getValidationRules () .isEmpty()) {
Iterator iter = this.metaData.getValidationRules().iterator();
while (iter.hasNext()) {
this .validateRule ((AbstractValidationRule)iter.next());
}
}
}

public /x@ pure @x/ MetaData getMetaData() { /* ... */ }
public void setMetaData(MetaData metaData) { /* ... */ }
public /+@ pure @x/ Date getRegisteredDate() { /* ... */ }

//@ assignable this.registeredDate;
public void setRegisteredDate(Date registeredDate) { /* ... */ }

public /x@ pure @:x/ Date getEditedDate ()

{

/ ¥

public void setEditedDate(Date editedDate) { /*

public void setValue(Object value) { /*

//@ assignable this.status;
private void validateRule(AbstractValidationRule rule) {

if (rule.getPurpose().equals(ValidationPurpose.NONE)) {
this .status = DataStatus.VALID;

} else {

}
}

this . checkValidationRule(rule);

//@ assignable this.status;

private void checkValidationRule(AbstractValidationRule rule)

* /

}

if (!this.status.equals(DataStatus.INVALID)) {
if (rule.validate(this)) {
this .status = DataStatus.VALID;
} else {
this .status =

}

public /x@ pure @x/ DataStatus

}

import
import
import
import

public

}

java.
java.
java.
java.

DataStatus.INVALID;

text.ParseException;
text.SimpleDateFormat;

util
util

.Date;

.Iterator;

class DateData {

//@ invariant this.getMetaData() != null;

private /+@ spec_public @x/ DataStatus status

NOT_REGISTERED;
private MetaData metaData;
private /+«@ spec_public nullable @x/ Object value;

private /+@ spec_public @x/ Date registeredDate = new Date();

private Date editedDate = new Date();

/%@ requires metaData

@ ensures this.getMetaData() == metaData;

@x/
public DateData(MetaData metaData) ({

this .metaData = metaData;

this .value =

}

/%@ pure nullable @x/ Object convertToValue(String value)

if (value ==
return null;

}

try {

'= null;

new Date () ;

null

value.equals(""))

{

getStatus() { /*

*/ '}
*/)

7':/ }

DataStatus.

{

205

206

SimpleDateFormat sformat = new SimpleDateFormat("MM-dd-yyyy"):
return sformat.parse(value);
} catch (ParseException p) {
return null;
}
}

/%@ requires this.getValue() != null;
@ assignable \nothing;
@ ensures !\result.equals("");
@sx/
public /+@ pure @x/ String getFormattedValue () {
SimpleDateFormat sformat = new SimpleDateFormat("MM-dd-yyyy"):

String result = sformat.format ((Date)this.value);
return result;
}
/%@ requires this.getValue() == null;
@ assignable \nothing;
@ ensures \result == false;
@ also
@ requires this.getValue() != null;
@ assignable \nothing;
@ ensures \result == true;
@x/
public /x@ pure @x/ boolean isValid() {
if (this.value == null) {
return false;
}
return true;
}
public /+@ pure @x/ Object getValue() { /* ... */ }

//@ assignable this.registeredDate, this.status;
private void doRegisterActions() { /* ... */ }

/+@ requires this.getValue() == null || this.getValue().equals("");
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == null;
@ also
@ requires (this.getValue() != null && !this.getValue().equals(""))
@ assignable this.value, this.registeredDate, this.status;
@ ensures (this.getValue() instanceof Date) || this.getValue() ==
null ;
@x/

public void registerValueFromText(String value) { /* ... */ }

/%@ requires value != null;
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == value;
@sx/

public void registerValue(Object value) { /* ... */ }

/%@ requires this.getValue() != null;
@ assignable this.status;

207

@ ensures true;

@x/
public void validate() { /* ... */ }
public /%@ pure @sx/ MetaData getMetaData() { /* ... */ }
public void setMetaData(MetaData metaData) { /* ... */ }

public /+@ pure @x/ Date getRegisteredDate() { /* ... */ }

//@ assignable this.registeredDate;
public void setRegisteredDate(Date registeredDate) { /* ... */ }

public /+x@ pure @x/ Date getEditedDate() { /* ... */ }
public void setEditedDate(Date editedDate) { /* ... */ }
public void setValue(Object value) { /* ... */ }

//@ assignable this.status;
private void validateRule(AbstractValidationRule rule) { /* ... */ }

//@ assignable this.status;
private void checkValidationRule(AbstractValidationRule rule) { /*

*/)

public /+@ pure @x/ DataStatus getStatus() { /* ... */ }
}

import java.text.NumberFormat;
import java.util.Date;
import java.util.Iterator;

public class DoubleData {
//@ invariant this.getMetaData() != null;

private /%@ spec_public @x/ DataStatus status = DataStatus.
NOT_REGISTERED;

private MetaData metaData;

private /+@ spec_public nullable @x/ Object value;

private /+@ spec_public @x/ Date registeredDate = new Date();

private Date editedDate = new Date();

/%@ requires metaData != null;
@ ensures this.getMetaData() == metaData;
@x/

public DoubleData(MetaData metaData) ({
this .metaData = metaData;
this .value = new Double(0);

}

/+@ pure nullable @x/ Object convertToValue(String value) {
if (value != null) {
try {
return Double.valueOf(value);
} catch (NumberFormatException e) {
return null;

208

}
}

return null;

}

/+@ requires this.getValue() != null;
@ assignable \nothing;
@ ensures !\result.equals("");
@x/

public /+@ pure @x/ String getFormattedValue() {
NumberFormat formatter = NumberFormat.getInstance();
return formatter.format(this.getValue());

}

/%@ requires this.getValue() == null;
assignable \nothing;
ensures \result == false;
also
requires this.getValue() != null;
assignable \nothing;
@ ensures \result == true;
@sx/
public boolean isValid() { /* ... */ }

[SESHSICONS]

public /+x@ pure @x/ Object getValue() { /* ... */ }

//@ assignable this.registeredDate, this.status;
private void doRegisterActions() { /* ... */ }

/%@ requires this.getValue() == null || this.getValue().equals("");
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == null;
@ also
@ requires (this.getValue() != null &% !this.getValue().equals(""))
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == null || (this.getValue() instanceof
Double);
@x/

public void registerValueFromText(String value) { /* ... */ }

/%@ requires value != null;
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == value;
@x/

public void registerValue(Object value) { /* ... */ }
/+@ requires this.getValue() != null;
@ assignable this.status;
@ ensures true;
@sx/
public void validate() { /* ... */ }
public /+@ pure @x/ MetaData getMetaData() { /* ... */ }

public void setMetaData(MetaData metaData) { /* ... */ }

public /+@ pure @x/ Date getRegisteredDate() { /* ... */ }

209

//@ assignable this.registeredDate;
public void setRegisteredDate(Date registeredDate) { /* ... */ }

public /+@ pure @x/ Date getEditedDate() { /* ... */ }
public void setEditedDate(Date editedDate) { /* ... */ }
public void setValue(Object value) { /* ... */ }

//@ assignable this.status;
private void validateRule(AbstractValidationRule rule) { /* ... */ }

//@ assignable this.status;
private void checkValidationRule(AbstractValidationRule rule) { /*

*/ '}

public /+@ pure @x/ DataStatus getStatus() { /* ... */ }
}

import java.util.Date;
import java.util.Iterator;

public class IntegerData {
//@ invariant this.getMetaData() != null;

private /+@ spec_public @x/ DataStatus status = DataStatus.
NOT_REGISTERED;

private MetaData metaData;

private /+«@ spec_public nullable @x/ Object value;

private /+@ spec_public @x/ Date registeredDate = new Date();

private Date editedDate = new Date();

/%@ requires metaData != null;
@ ensures this.getMetaData() == metaData;
@x/

public IntegerData(MetaData metaData) ({
this .metaData = metaData;
this .value = new Integer(0);

}

/%@ pure nullable @x/ Object convertToValue(String value) {
try {
return Integer.valueOf(value);
} catch (NumberFormatException e) {
return null;
}
}

/%@ requires this.getValue() != null;
@ assignable \nothing;
@ ensures Integer.valueOf(\result).equals(this.getValue());
@x/
public /%@ pure @:x/ String getFormattedValue () {
return ((Integer) this.getValue()).toString();

}

210

/%@ requires this.getValue() == null;
@ assignable \nothing;
@ ensures \result == false;
@ also
@ requires this.getValue() != null;
@ assignable \nothing;

ensures \result == true;
@sx/

public boolean isvalid() { /* ... */ }

)

public /+@ pure @x/ Object getValue() {{ /* ... */ }

//@ assignable this.registeredDate, this.status;
private void doRegisterActions() { /* ... */ }

/+@ requires this.getValue() == null || this.getValue().equals("");
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == null;
@ also
@ requires (this.getValue() != null && !this.getValue().equals(""))
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == null || ((this.getValue() instanceof
Integer) ==> this.getValue().equals(Integer.valueOf(value)));
@x/

public void registerValueFromText(String value) { /* ... */ }

/%@ requires value != null;
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == value;
@x/

public void registerValue(Object value) { /* ... */ }
/%@ requires this.getValue() != null;

@ assignable this.status;

@ ensures true;

@x/
public void validate() { /* ... */ }
public /+x@ pure @x/ MetaData getMetaData() { /* ... */ }
public void setMetaData(MetaData metaData) { /* ... */ }
public /x@ pure @x/ Date getRegisteredDate() { /* ... */ }

//@ assignable this.registeredDate;
public void setRegisteredDate(Date registeredDate) { /* ... */ }

public /+@ pure @x/ Date getEditedDate() { /* ... */ }
public void setEditedDate(Date editedDate) { /* ... */ }
public void setValue(Object value) { /* ... */ }

//@ assignable this.status;
private void validateRule(AbstractValidationRule rule) { /* ... */ }

//@ assignable this.status;

private void checkValidationRule(AbstractValidationRule rule)

*/)

public /+@ pure @x/ DataStatus getStatus() { /* ... */ }

import java.util.Date;
import java.util.Iterator;

public class StringData {

//@ invariant this.getMetaData() != null;

private /+@ spec_public @x/ DataStatus status = DataStatus.
NOT_REGISTERED;

private MetaData metaData;

private /+@ spec_public nullable @x/ Object value;

private /+@ spec_public @x/ Date registeredDate = new Date();

private Date editedDate = new Date();

/+@ requires metaData != null;
@ ensures this.getMetaData() == metaData;
Q@x/

public StringData(MetaData metaData) {

this .value = ;
this .metaData = metaData;

}

/%@ pure nullable @x/ Object convertToValue(String value) {
if (value == null) {
return null;

}

return (String) value;

}

/%@ requires this.getValue() != null;
@ assignable \nothing;
@ ensures \result.equals(this.getValue());
@x/
public /%@ pure @x/ String getFormattedValue() ({
return (String) this.value;

}

/%@ requires this.getValue() == null;
@ assignable \nothing;
@ ensures \result == false;
@ also
@ requires this.getValue() != null;
@ assignable \nothing;
ensures ((String)this.getValue()).length() < 255;
@sx/
public /+@ pure @x/ boolean isValid() {
return ((String)this.value).length() < 255;

}

)

public /+@ pure @x/ Object getValue() { /* ... */ }

//@ assignable this.registeredDate, this.status;

{

/ ¥

211

212

private void doRegisterActions() { /* ... */ }

/%@ requires this.getValue() == null;
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == null;
@ also
@ requires !(this.getValue() == null);
@ assignable this.value, this.registeredDate, this.status;

[S)

ensures value.equals(this.getValue());
@x/
public void registerValueFromText(String value) { /* ... */ }

/%@ requires value != null;
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == value;
@x/

public void registerValue(Object value) { /* ... */ }
/%@ requires this.getValue() != null;

@ assignable this.status;

@ ensures true;

@sx/
public void validate() { /* ... */ }
public /+x@ pure @x/ MetaData getMetaData() { /* ... */ }
public void setMetaData(MetaData metaData) { /* ... */ }

public /+@ pure @x/ Date getRegisteredDate() { /* ... */ }

//@ assignable this.registeredDate;
public void setRegisteredDate(Date registeredDate) { /* ... */ }

public /%@ pure @x/ Date getEditedDate() { /* ... */ }
public void setEditedDate(Date editedDate) { /* ... */ }
public void setValue(Object value) { /* ... */ }

//@ assignable this.status;
private void validateRule(AbstractValidationRule rule) { /* ... */ }

//@ assignable this.status;
private void checkValidationRule(AbstractValidationRule rule) { /*
*/)

public /%@ pure @x/ DataStatus getStatus() { /* ... */ }

public class ValidationPurpose {
public static final ValidationPurpose NONE = new ValidationPurpose("

NONE", 0);
public static final ValidationPurpose VALIDATE = new
ValidationPurpose ("VALIDATE", 0);

private String name;
private int number;

private ValidationPurpose(String name, int number) ({

213

this .name = name;
this .number = number;
1
1

public final class ValidationType {

public static final ValidationType REGULAR_EXPRESSION = new
ValidationType ("REGULAR_EXPRESSION", 0);

public static final ValidationType MAX_SIZE = new ValidationType("
MAX_SIZE" , 1);

public static final ValidationType MIN_TOLERANCE
("MIN_TOLERANCE" , 2);

public static final ValidationType MAX_TOLERANCE = new ValidationType
("MAX_TOLERANCE" , 3);

public static final ValidationType MIN_TOLERANCE_PERCENTAGE = new
ValidationType ("MIN_TOLERANCE_PERCENTAGE" , 4);

public static final ValidationType MAX_TOLERANCE_PERCENTAGE
ValidationType ("MAX_TOLERANCE PERCENTAGE", 5);

public static final ValidationType MIN_VALUE = new ValidationType("
MIN_VALUE", 6);

public static final ValidationType MAX_VALUE = new ValidationType("

new ValidationType

new

MAX VALUE", 7);
public static final ValidationType NONE = new ValidationType ("NONE",
8);

private String name;
private int number;

private ValidationType(String name, int number) ({
this .name = name;
this .number = number;
}
}

import java.util.regex.Pattern;

public class AbstractValidationRule {
//@ invariant this.getPurpose() != null;
private ValidationPurpose purpose;

public AbstractValidationRule () {
this .purpose = ValidationPurpose.NONE;

}
public /+@ pure @x/ ValidationPurpose getPurpose() { /* ... */ }

//@ requires true;
public /«@ pure @x/ ValidationType getType() { /* ... */ }

//@ requires purpose != null;
public void setPurpose(ValidationPurpose purpose) { /* ... */ }

//PAREI AQUI
public boolean validate(Object data) {
if (this.getType().equals(ValidationType.MAX_VALUE)) {
return this.validateMaxValue(data);
} else if (this.getType().equals(ValidationType.MIN_VALUE)) {
return this.validateMinValue(data);
} else if (this.getType().equals(ValidationType.MAX_TOLERANCE)) {

214

@
@

@
@
@

*/

return this.validateMaxTolerance(data);

else if (this.getType().equals(ValidationType.MIN_TOLERANCE)) {

return this.validateMinTolerance(data);

else if (this.getType().equals(ValidationType.
MAX_TOLERANCE_PERCENTAGE)) {

return this.validateMaxTolerancePercentage(data);

else if (this.getType().equals(ValidationType.
MIN_TOLERANCE_PERCENTAGE)) {

return this.validateMinTolerancePercentage(data);

else if (this.getType().equals(ValidationType.REGULAR_EXPRESSION)
) |

return this.validateRegularExpression(data);

else if (this.getType().equals(ValidationType.MAX_SIZE)) {

return this.validateMaxSize(data);

else if (this.getType().equals(ValidationType.NONE)) {

return true;

else |

return false;

requires (data instanceof IntegerData) && ((IntegerData) data).

getMetaData () .getDefaultValue() != null

&& ((IntegerData)data).getValue() != null;

assignable \nothing;

ensures \result == (((Integer)((IntegerData)data).getValue()).

intValue () <=

Integer.parselInt (((IntegerData) data).getMetaData().
getDefaultValue()) +

((MaxToleranceRule) this).getReferenceValue () .intValue())

&& ((Integer) ((IntegerData)data).getValue()).intValue() >=

Integer.parselInt (((IntegerData) data).getMetaData().
getDefaultValue());

also

requires (data instanceof DoubleData) && ((DoubleData) data).
getMetaData () .getDefaultValue() != null

&& ((DoubleData)data).getValue() != null;

assignable \nothing;

ensures \result == (((Double) ((DoubleData)data).getValue()).

intValue () <=
Double.valueOf (((DoubleData) data).getMetaData().
getDefaultValue ()).doubleValue () +
((MaxToleranceRule) this).getReferenceValue ().doubleValue())
&& ((Double) ((DoubleData)data).getValue()).doubleValue () >=
Double.valueOf (((DoubleData) data).getMetaData().
getDefaultValue ()).doubleValue () ;
also
requires !(data instanceof IntegerData) &% !(data instanceof
DoubleData);
assignable \nothing;
ensures \result == false;

private /+@ pure @x/ boolean validateMaxTolerance(Object data) {
if (data instanceof IntegerData) {

int defaultValue = Integer.parseInt (((IntegerData) data).
getMetaData () .getDefaultValue());

215

boolean result = ((Integer)((IntegerData)data).getValue()).
intValue () <= defaultValue + ((MaxToleranceRule)this).
getReferenceValue () .intValue();
return result &% ((Integer) ((IntegerData)data).getValue()).
intValue () >= defaultValue;
} else if (data instanceof DoubleData) {
double defaultValue = Double.valueOf(((DoubleData) data).
getMetaData () .getDefaultValue()).doubleValue();
boolean result = ((Double) ((DoubleData)data).getValue()).
doubleValue () <= defaultValue + (((MaxToleranceRule)this).
getReferenceValue()).doubleValue();
return result &% ((Double) ((DoubleData)data).getValue()).
doubleValue () >= defaultValue;
}

return false;

}

/%@ requires (data instanceof IntegerData) && ((IntegerData) data).
getMetaData () .getDefaultValue() != null
&& ((IntegerData)data).getValue() != null;
@ assignable \nothing;
@ ensures \result == (((Integer) ((IntegerData)data).getValue()).
intValue () >=
Integer.parseInt (((IntegerData) data).getMetaData().
getDefaultValue()) -
((MinToleranceRule) this).getReferenceValue () .intValue())
&& ((Integer) ((IntegerData)data).getValue()).intValue() <=
Integer.parselInt (((IntegerData) data).getMetaData().
getDefaultValue());

@ also
@ requires (data instanceof DoubleData) &% ((DoubleData) data).
getMetaData () .getDefaultValue() != null
&& ((DoubleData)data).getValue() != null;
@ assignable \nothing;
@ ensures \result == (((Double) ((DoubleData)data).getValue()).

doubleValue () >=
Double.valueOf (((DoubleData) data).getMetaData().
getDefaultValue()).doubleValue() -
(((MinToleranceRule) this).getReferenceValue()).doubleValue())
&& ((Double) ((DoubleData)data).getValue()).doubleValue() <=
Double.valueOf (((DoubleData) data).getMetaData().
getDefaultValue ()).doubleValue () ;
@ also
@ requires !(data instanceof IntegerData) && !(data instanceof
DoubleData);
@ assignable \nothing;
@ ensures \result == false;
*/
private /+@ pure @x/ boolean validateMinTolerance(Object data) {
if (data instanceof IntegerData) {
int defaultValue = Integer.parselnt (((IntegerData) data).
getMetaData () .getDefaultValue());
boolean result = ((Integer)((IntegerData)data).getValue()).
intValue () >= defaultValue - ((MinToleranceRule)this).
getReferenceValue () .intValue() ;
return result &% ((Integer) ((IntegerData)data).getValue()).
intValue () <= defaultValue;
} else if (data instanceof DoubleData) {

216

double defaultValue = Double.valueOf (((DoubleData) data).
getMetaData () .getDefaultValue()).doubleValue () ;

boolean result = ((Double) ((DoubleData)data).getValue()).
doubleValue () >= defaultValue - (((MinToleranceRule)this).
getReferenceValue()).doubleValue();

return result &% ((Double) ((DoubleData)data).getValue()).
doubleValue () <= defaultValue;

}
return false;
}
/%@ requires (data instanceof IntegerData) && ((IntegerData) data).
getMetaData () .getDefaultValue() != null
&& ((MaxTolerancePercentageRule)this).getReferenceValue() != null

@ assignable \nothing;
@ ensures \result == (((Integer) ((IntegerData)data).getValue()).
intValue () <=
Integer.parseInt (((IntegerData) data).getMetaData().
getDefaultValue()) +
Integer.parselInt (((IntegerData) data).getMetaData().
getDefaultValue()) =
((MaxTolerancePercentageRule)this).getReferenceValue ().
doubleValue() / 100)
&& ((Integer) ((IntegerData)data).getValue()).intValue() >=
Integer.parselInt (((IntegerData) data).getMetaData().
getDefaultValue());

(&)

also

requires (data instanceof DoubleData) && ((DoubleData) data).
getMetaData () .getDefaultValue() != null

&& ((MaxTolerancePercentageRule)this).getReferenceValue() != null

S)

5

assignable \nothing;
ensures \result == (((Integer) ((IntegerData)data).getValue()).
intValue () <=
Double.valueOf (((DoubleData) data).getMetaData().
getDefaultValue ()).doubleValue () +
Double.valueOf (((DoubleData) data).getMetaData().
getDefaultValue()).doubleValue() =
(((MaxTolerancePercentageRule) this).getReferenceValue()).
doubleValue() / 100) &&
((Double) ((DoubleData)data).getValue()).doubleValue() >=
Double.valueOf (((DoubleData) data).getMetaData().
getDefaultValue()).doubleValue () ;

[SY

S)

also
@ requires !(data instanceof IntegerData) && !(data instanceof
DoubleData);
@ assignable \nothing;
@ ensures \result == false;
Q@x/
private /+@ pure @x/ boolean validateMaxTolerancePercentage(Object
data) {
if (data instanceof IntegerData) ({
int defaultValue = Integer.parseInt (((IntegerData) data).
getMetaData () .getDefaultValue());
boolean result = ((Integer) ((IntegerData)data).getValue()).
intValue () <=

217

defaultValue + defaultValue x ((MaxTolerancePercentageRule) this
).getReferenceValue () .doubleValue() / 100;
return result &% ((Integer) ((IntegerData)data).getValue()).
intValue () >= defaultValue;
} else if (data instanceof DoubleData) {
double defaultValue = Double.valueOf (((DoubleData) data).
getMetaData () .getDefaultValue()).doubleValue();
boolean result = ((Double) ((DoubleData)data).getValue()).
doubleValue () <=
defaultValue + defaultValue % (((MaxTolerancePercentageRule)
this).getReferenceValue()).doubleValue() / 100;
return result &% ((Double) ((DoubleData)data).getValue()).
doubleValue () >= defaultValue;
}

return false;

}
/%@ requires (data instanceof IntegerData) && ((IntegerData) data).
getMetaData () .getDefaultValue() != null
&& ((MinTolerancePercentageRule)this).getReferenceValue() !=
null ;
@ assignable \nothing;
@ ensures \result == (((Integer)((IntegerData)data).getValue()).

intValue () >=
Integer.parselnt (((IntegerData) data).getMetaData().
getDefaultValue()) -
Integer.parselInt (((IntegerData) data).getMetaData().
getDefaultValue()) =
((MinTolerancePercentageRule) this).getReferenceValue ().
doubleValue () / 100)
&& ((Integer) ((IntegerData)data).getValue()).intValue ()
<= Integer.parseInt (((IntegerData) data).getMetaData().
getDefaultValue());
@ also
@ requires (data instanceof DoubleData) &% ((DoubleData) data).
getMetaData () .getDefaultValue() != null;
assignable \nothing;
@ ensures \result == (((Double) ((DoubleData)data).getValue()).
doubleValue () >=
Double.valueOf (((DoubleData) data).getMetaData().
getDefaultValue ()).doubleValue() -
Double.valueOf (((DoubleData) data).getMetaData().
getDefaultValue ()).doubleValue () =
(((MinTolerancePercentageRule) this).getReferenceValue()).
doubleValue() / 100)
&& ((Double) ((DoubleData)data).getValue()).doubleValue ()
<= Double.valueOf (((DoubleData) data).getMetaData().
getDefaultValue()).doubleValue();

()]

@ also
@ requires !(data instanceof IntegerData) && !(data instanceof
DoubleData);
@ assignable \nothing;
@ ensures \result == false;
@sx/
private /+@ pure @x/ boolean validateMinTolerancePercentage(Object
data) {
if (data instanceof IntegerData) {

218

}

int defaultValue = Integer.parseInt (((IntegerData) data).
getMetaData () .getDefaultValue());
boolean result = ((Integer)((IntegerData)data).getValue()).
intValue () >=
defaultValue — defaultValue % ((MinTolerancePercentageRule)this
).getReferenceValue () .doubleValue() / 100;
return result &% ((Integer) ((IntegerData)data).getValue()).
intValue () <= defaultValue;
else if (data instanceof DoubleData) {
double defaultValue = Double.valueOf(((DoubleData) data).
getMetaData () .getDefaultValue()).doubleValue();
boolean result = ((Double) ((DoubleData)data).getValue()).
doubleValue () >=
defaultValue — defaultValue % (((MinTolerancePercentageRule)
this).getReferenceValue()).doubleValue() / 100;
return result &% ((Double) ((DoubleData)data).getValue()).
doubleValue () <= defaultValue;

return false;

*
—~—e 00 e e

requires (data instanceof StringData);

assignable \not_specified;
ensures true || false;
also

requires !(data instanceof StringData);
assignable \not_specified;
ensures true;

private boolean validateRegularExpression(Object data) {
boolean result = true;
if (data instanceof StringData) {

}

Pattern regexPattern;
if (((RegularExpressionRule)this).getIgnoreCase().booleanValue())
{
regexPattern = Pattern.compile (((RegularExpressionRule) this).
getValidValue (), Pattern.CASE_INSENSITIVE);
} else {
regexPattern = Pattern.compile (((RegularExpressionRule) this).
getValidValue());
}
result = regexPattern.matcher (((String) ((StringData)data).
getValue())).matches();

return result;

}

/+@

@

[S)

@
@
@
@
@

requires (data instanceof StringData) && ((StringData)data).

getValue() != null

&& ((MaxSizeRule)this).getReferenceValue() != null;

assignable \nothing;

ensures \result == ((String) ((StringData)data).getValue()).length
() <= ((MaxSizeRule)this).getReferenceValue().intValue();

also

requires !(data instanceof StringData);

assignable \nothing;

ensures \result == false;

*/

219

private /+@ pure @x/ boolean validateMaxSize(Object data) {
if (data instanceof StringData) {
if (((StringData)data).getValue() != null) {
return ((String) ((StringData)data).getValue()).length() <= ((
MaxSizeRule) this).getReferenceValue().intValue();
}
}

return false;

}

/+@ requires (data instanceof DoubleData) && ((DoubleData)data).

getValue() != null &% ((MaxValueRule)this).getReferenceValue() !=
null ;
@ assignable \nothing;
@ ensures \result == (((MaxValueRule)this).getReferenceValue().
compareTo (((DoubleData)data).getValue()) >= 0);
@ also
@ requires (data instanceof IntegerData) && ((IntegerData)data).
getValue () != null && ((MaxValueRule)this).getReferenceValue ()
'= null;
@ assignable \nothing;
@ ensures \result == ((Integer)((IntegerData)data).getValue()).
intValue () >= ((MaxValueRule)this).getReferenceValue().intValue
O3
@ also

@ requires (!(data instanceof DoubleData) && !(data instanceof
IntegerData));
@ assignable \nothing;
@ ensures \result == false;
@x/
private /+@ pure @x/ boolean validateMaxValue(Object data) {
if (data instanceof DoubleData) f{
if (((MaxValueRule)this).getReferenceValue ().compareTo (((
DoubleData)data).getValue()) >= 0) {
return true;
} else if (data instanceof IntegerData) {
return ((Integer) ((IntegerData)data).getValue()).intValue() >=
((MaxValueRule) this).getReferenceValue().intValue () ;

}

}
return false;
}
/%@ requires (data instanceof DoubleData) && ((DoubleData)data).
getValue() != null &% ((MinValueRule)this).getReferenceValue() !=
null ;
@ assignable \nothing;
@ ensures \result == (((MinValueRule)this).getReferenceValue().
compareTo (((DoubleData)data).getValue()) <= 0);
@ also
@ requires (data instanceof IntegerData) && ((IntegerData)data).
getValue () != null && ((MinValueRule)this).getReferenceValue ()
!= null;
@ assignable \nothing;
@ ensures \result == ((Integer) ((IntegerData)data).getValue()).
intValue () <= ((MinValueRule)this).getReferenceValue().intValue
O3

@ also

220

}

public class MaxSizeRule

}

@ requires (!(data instanceof DoubleData) && !(data instanceof

IntegerData));
@ assignable \nothing;
@ ensures \result == false;
@x/

private /+@ pure @x/ boolean validateMinValue(Object data) {

if (data instanceof DoubleData) {

if (((MinValueRule)this).getReferenceValue().compareTo (((

DoubleData)data).getValue()) <= 0) {
return true;

}

} else if (data instanceof IntegerData) {

return ((Integer) ((IntegerData)data).getValue()).intValue() <=

MinValueRule) this).getReferenceValue () .intValue () ;

}

return false;

}

//@ invariant this.getReferenceValue() != null;
private Double referenceValue;

public MaxSizeRule() {
this .referenceValue = new Double(0);

}

/+@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.MAX_SIZE);
@x/
public /+@ pure @x/ ValidationType getType() { /*

public void setReferenceValue(Double referenceValue)

public /x@ pure @x/ Double getReferenceValue() { /*

{

extends AbstractValidationRule {

¥ /

public class MaxValueRule extends AbstractValidationRule {

//@ invariant this.getReferenceValue() != null;
private Double referenceValue;

public MaxValueRule () {
this .referenceValue = new Double(0);

}

/+@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.MAX_VALUE);
@x/
public /+x@ pure @x/ ValidationType getType() {
return ValidationType.MAX_SIZE;
}

}
/:‘:

7‘:/

public void setReferenceValue(Double referenceValue) { /*

}

-.':/

:':/

}

}

(«

221

public /+@ pure @:x/ Double getReferenceValue() { /* ... */ }
}

public class MinValueRule extends AbstractValidationRule {
//@ invariant this.getReferenceValue() != null;
private Double referenceValue;

public MinValueRule () {
this .referenceValue = new Double(0);

}

/+@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.MIN_VALUE);
@x/

public /+@ pure @x/ ValidationType getType() {
return ValidationType.MIN_VALUE;

}
public void setReferenceValue(Double referenceValue) { /* ... */ }
public /x@ pure @:x/ Double getReferenceValue() { /* ... */ }

}

public class MaxToleranceRule extends AbstractValidationRule {
//@ invariant this.getReferenceValue() != null;
private Double referenceValue;

public MaxToleranceRule() {
this . referenceValue = new Double(0);

}

/+@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.MAX_TOLERANCE);
@sx/
public /x@ pure @x/ ValidationType getType() {
return ValidationType.MAX_TOLERANCE;
}

public void setReferenceValue(Double referenceValue) { /* ... */ }

public /+@ pure @x/ Double getReferenceValue() { /* ... */ }
}

public class MinToleranceRule extends AbstractValidationRule {
//@ invariant this.getReferenceValue() != null;
private Double referenceValue;

public MinToleranceRule() {
this .referenceValue = new Double(0);

}

/+@ also
@ requires \same;
@ assignable \nothing;

222

@ ensures \result.equals(ValidationType.MIN_TOLERANCE);
@x/

public /+x@ pure @x/ ValidationType getType() {
return ValidationType.MIN_TOLERANCE;

}
public void setReferenceValue(Double referenceValue) { /* ... */ }
public /%@ pure @x/ Double getReferenceValue() { /* ... */ }

}

public class MaxTolerancePercentageRule extends AbstractValidationRule
{
//@ invariant this.getReferenceValue() != null;
private Double referenceValue;

public MaxTolerancePercentageRule () {
this .referenceValue = new Double(0);

}

/+@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.MAX_TOLERANCE_PERCENTAGE);
@x/
public /%@ pure @x/ ValidationType getType() {
return ValidationType.MAX_TOLERANCE_PERCENTAGE;

}

public void setReferenceValue(Double referenceValue) { /* ... */ }

public /x@ pure @x/ Double getReferenceValue() { /* ... */ }
}

public class MinTolerancePercentageRule extends AbstractValidationRule
{
//@ invariant this.getReferenceValue() != null;
private Double referenceValue;

public MinTolerancePercentageRule () {
this .referenceValue = new Double(0);

}

/+@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.MIN_TOLERANCE_PERCENTAGE);
@x/
public /+@ pure @x/ ValidationType getType() {
return ValidationType.MIN_TOLERANCE_PERCENTAGE;

}
public void setReferenceValue(Double referenceValue) { /* ... */ }
public /%@ pure @:x/ Double getReferenceValue() { /* ... */ }

}

public class RegularExpressionRule extends AbstractValidationRule {

private String validValue;
private Boolean ignoreCase;

//@ ensures this.getValidValue() != null && this.getIgnoreCase()

null ;
public RegularExpressionRule() {
this .validvalue = "";
this .ignoreCase = Boolean.valueOf(true);

}

public /+@ pure @x/ String getValidValue() { /* ... */ }
public void setValidValue(String validValue) { /* ... */ }
public /+@ pure @x/ Boolean getIgnoreCase() { /* ... */ }
public void setIgnoreCase(Boolean ignoreCase) { /* ... */ }

/+@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.REGULAR_EXPRESSION);
Q@x/
public /%@ pure @x/ ValidationType getType() {
return ValidationType.REGULAR_EXPRESSION;
}

C.2 Classes after extracting superclass Data

import java.util.Date;
import java.util.Iterator;

public class Data {

//@ invariant this.getMetaData() != null;

/«@ spec_public nullable @x/ DataStatus status = DataStatus.
NOT_REGISTERED;

/%@ spec_public nullable @x/ MetaData metaData;

/%@ spec_public nullable @x/ Object value;

/+@ spec_public nullable @x/ Date registeredDate = new Date();

/@ spec_public nullable @x/ Date editedDate = new Date();

/%@ requires this.getValue() != null;
@ assignable this.status;
@ ensures true;
@x/
public void validate() { /* ... */ }

//@ assignable this.registeredDate, this.status;
public void doRegisterActions() { /* ... */ }

//@ assignable this.status;
public void validateRule(AbstractValidationRule rule) { /*

//@ assignable this.status;
public void checkValidationRule(AbstractValidationRule rule) {

-.':/

223

}

224

if (!this.status.equals(DataStatus.INVALID)) {
if (rule.validate((Data)this)) {
this .status = DataStatus.VALID;
} else {
this .status = DataStatus.INVALID;
}
}

}

/@ requires value != null;
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == value;
@sx/

public void registerValue(Object value) { /* ... */ }
public void setMetaData(MetaData metaData) { /* ... */ }

//@ assignable this.registeredDate;
public void setRegisteredDate(Date registeredDate) { /* ... */ }

public void setEditedDate(Date editedDate) { /* ... */ }
public void setValue(Object value) { /* ... */ }

public /+x@ pure @x/ Object getValue() { /* ... */ }

public /+x@ pure @x/ MetaData getMetaData() { /* ... */ }
public /+x@ pure @x/ Date getRegisteredDate() { /* ... */ }
public /x@ pure @x/ Date getEditedDate() { /* ... */ }

public /+@ pure @«/ DataStatus getStatus() { /* ... */ }
1

public class BooleanData extends Data {

/#@ requires metaData != null;
@ ensures this.getMetaData() == metaData;
@sx/

public BooleanData(MetaData metaData) { /* ... */ '}

/+@ requires value.equals("true");
@ assignable this.value, this.registeredDate, this.status;

@ ensures this.getValue().equals(Boolean.valueOf(true));
@ also
@ requires value.equals("false");
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue().equals(Boolean.valueOf(false));
@ also
@ requires !value.equals("true") && !value.equals("false");
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == null;
@ =/
public void registerValueFromText(String value) { /* ... */ }

/+@ pure nullable @x/ Object convertToValue(String value) { /*

}

-k/

}

225

//@ requires this.getValue() != null;

//@ assignable \nothing;

//@ ensures Boolean.valueOf (\result).equals(this.getValue());
public /+@ pure @x/ String getFormattedValue() { /* ... */ }

/%@ requires this.getValue() == null;
assignable \nothing;
ensures \result == false;
also
requires this.getValue() != null;
assignable \nothing;
@ ensures \result == true;
@x/
public /x@ pure @x/ boolean isValid() { /* ... */ }

D0 0

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

public class DateData extends Data {

}

/%@ requires metaData != null;
@ ensures this.getMetaData() == metaData;
@x/

public DateData(MetaData metaData) { /* ... */ }

/+@ pure nullable @x/ Object convertToValue(String value) { /*
5':/ }

/%@ requires this.getValue() != null;
@ assignable \nothing;
@ ensures !\result.equals("");
@x/
public /%@ pure @x/ String getFormattedValue() { /* ... */ }

/+@ requires this.getValue() == null;
@ assignable \nothing;
@ ensures \result == false;
@ also
@ requires this.getValue() != null;
@ assignable \nothing;
@ ensures \result == true;
@sx/
public /+x@ pure @x/ boolean isValid() { /* ... */ }
/%@ requires this.getValue() == null || this.getValue().equals("");
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == null;
@ also
@ requires (this.getValue() != null &% !this.getValue().equals(""))
@ assignable this.value, this.registeredDate, this.status;
@ ensures (this.getValue() instanceof Date) || this.getValue() ==
null ;
@x/

public void registerValueFromText(String value) { /* ... */ }

226

import java.text.NumberFormat;
public class DoubleData extends Data ({

/%@ requires metaData != null;
@ ensures this.getMetaData() == metaData;
Q@x/

public DoubleData(MetaData metaData) { /* ... */ }

/@ pure nullable @x/ Object convertToValue(String value) { /* */
}
/%@ requires this.getValue() != null;
@ assignable \nothing;
@ ensures !\result.equals("");
@x/
public /x@ pure @x/ String getFormattedValue() { /* ... */ }
/%@ requires this.getValue() == null;
@ assignable \nothing;
@ ensures \result == false;
@ also
@ requires this.getValue() != null;
@ assignable \nothing;
@ ensures \result == true;
@x/
public boolean isValid() { /* ... */ }
/%@ requires this.getValue() == null || this.getValue().equals("");
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == null;
@ also
@ requires (this.getValue() != null &% !this.getValue().equals(""))
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == null || (this.getValue() instanceof
Double);
@sx/
public void registerValueFromText(String value) { /* ... */ }
1
public class IntegerData extends Data {
/+@ requires metaData != null;
@ ensures this.getMetaData() == metaData;
@x/
public IntegerData(MetaData metaData) ({
this .metaData = metaData;
this .value = new Integer(0);
1
/+@ pure nullable @x/ Object convertToValue(String value) { /* */

}

/+@ requires this.getValue() != null;
@ assignable \nothing;
@ ensures Integer.valueOf(\result).equals(this.getValue());
@x/

public /%@ pure @x/ String getFormattedValue() { /* ... */ }

[SESHECNSNS]

@

requires this.getValue() == null;
assignable \nothing;

ensures \result == false;

also

requires this.getValue() != null;
assignable \nothing;

ensures \result == true;

@x/
public boolean isvalid() { /* ... */ }

227

/%@ requires this.getValue() == null || this.getValue().equals("");
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == null;
@ also
@ requires (this.getValue() != null && !this.getValue().equals(""))
@ assignable this.value, this.registeredDate, this.status;
@ ensures this.getValue() == null || ((this.getValue() instanceof
Integer) ==> this.getValue().equals(Integer.valueOf(value)));
@x/
public void registerValueFromText(String value) { /* ... */ }

}

public class StringData extends Data ({

/%@ requires metaData != null;
@ ensures this.getMetaData() == metaData;
@=x/

public StringData(MetaData metaData) { /*

/@ pure nullable @x/ Object convertToValue(String value) { /*

“/)

7':/ }

this .status;

this .status;

}
/%@ requires this.getValue() != null;
@ assignable \nothing;
@ ensures \result.equals(this.getValue());
@x/
public /+@ pure @x/ String getFormattedValue() { /* ... */ }
/%@ requires this.getValue() == null;
@ assignable \nothing;
@ ensures \result == false;
@ also
@ requires this.getValue() != null;
@ assignable \nothing;
@ ensures ((String)this.getValue()).length() < 255;
@x/
public /x@ pure @x/ boolean isValid() { /*
/%@ requires this.getValue() == null;
@ assignable this.value, this.registeredDate,
@ ensures this.getValue() == null;
@ also
@ requires !(this.getValue() == null);
@ assignable this.value, this.registeredDate,
@ ensures value.equals(this.getValue());
@x/

public void registerValueFromText(String value) { /* ... */

}

7':/

228

}

C.3 Validation rules classes after Replace Conditional with
Polymorphism

public class AbstractValidationRule ({
//@ invariant this.getPurpose() != null;
private ValidationPurpose purpose;

public AbstractValidationRule() { /* ... */ }
public /%@ pure @x/ ValidationPurpose getPurpose() { /* ... */ }

//@ requires true,;
public /+«@ pure @x/ ValidationType getType() { /* ... */ }

//@ requires purpose != null;
public void setPurpose(ValidationPurpose purpose) { /* ... */ }

public boolean validate(Data data) { /* unused method */ }

}

public class MaxSizeRule extends AbstractValidationRule {
//@ invariant this.getReferenceValue() != null;
private Double referenceValue;

public MaxSizeRule() {
this .referenceValue = new Double(0);

}

/+@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.MAX_SIZE);
@sx/
public /+@ pure @x/ ValidationType getType() { /* ... */ }

public void setReferenceValue(Double referenceValue) { /* ... */ }
public /+@ pure @x/ Double getReferenceValue() { /* ... */ }

/+@ requires (data instanceof StringData) && ((StringData)data).

getValue () != null
&& ((MaxSizeRule)this).getReferenceValue() != null;
@ assignable \nothing;
@ ensures \result == ((String) ((StringData)data).getValue()).
length() <= ((MaxSizeRule)this).getReferenceValue().intValue();
@ also
@ requires !(data instanceof StringData);
@ assignable \nothing;
@ ensures \result == false;

@x/
private /+@ pure @x/ boolean validateMaxSize(Data data) f{
if (data instanceof StringData) ({
if (((StringData)data).getValue() != null) {
return ((String) ((StringData)data).getValue()).length() <= ((
MaxSizeRule) this).getReferenceValue().intValue () ;

229

}
}

return false;

}

public boolean validate(Data data) {
/*@ assert (data instanceof Data); @x/
return this.validateMaxSize(data);
}
}

public class MaxValueRule extends AbstractValidationRule ({
//@ invariant this.getReferenceValue() != null;
private Double referenceValue;

public MaxValueRule() {
this . referenceValue = new Double(0);

}

/+*@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.MAX_VALUE);
@sx/
public /+x@ pure @x/ ValidationType getType() { /* ... */ }

public void setReferenceValue(Double referenceValue) { /* ... */ }

public /+@ pure @x/ Double getReferenceValue() { /* ... */ }

/+@ requires (data instanceof DoubleData) && data.getValue() != null
&& ((MaxValueRule)this).getReferenceValue() != null;
@ assignable \nothing;
@ ensures \result == (((MaxValueRule)this).getReferenceValue().
compareTo(data.getValue()) >= 0);
@ also
@ requires (data instanceof IntegerData) && data.getValue() != null
&& ((MaxValueRule)this).getReferenceValue() != null;
@ assignable \nothing;
@ ensures \result == ((Integer)data.getValue()).intValue() >= ((
MaxValueRule) this).getReferenceValue () .intValue();
@ also

@ requires (!(data instanceof DoubleData) && !(data instanceof
IntegerData));
@ assignable \nothing;
@ ensures \result == false;
@x/
private /+@ pure @x/ boolean validateMaxValue(Data data) {
if (data instanceof DoubleData) {
if (((MaxValueRule)this).getReferenceValue().compareTo(data.
getValue()) >= 0) {
return true;
} else if (data instanceof IntegerData) {
return ((Integer)data.getValue()).intValue() >= ((MaxValueRule)
this).getReferenceValue () .intValue();

230

return false;

}

public boolean validate(Data data) f{
/+«@ assert (data instanceof Data); @sx/
return this.validateMaxValue(data);
1
}

public class MinValueRule extends AbstractValidationRule {
//@ invariant this.getReferenceValue() != null;
private Double referenceValue;

public MinValueRule () {
this . referenceValue = new Double(0);

}

/+@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.MIN_VALUE);
@sx/
public /x@ pure @x/ ValidationType getType() { /* ... */ }

public void setReferenceValue(Double referenceValue) { /* ... */ }

public /%@ pure @x/ Double getReferenceValue() { /* ... */ }

/%@ requires (data instanceof DoubleData) && data.getValue() != null
&& ((MinValueRule) this).getReferenceValue() != null;
@ assignable \nothing;
@ ensures \result == (((MinValueRule)this).getReferenceValue().
compareTo(data.getValue()) <= 0);
@ also
@ requires (data instanceof IntegerData) && data.getValue() != null
&& ((MinValueRule) this).getReferenceValue() != null;
@ assignable \nothing;
@ ensures \result == ((Integer)data.getValue()).intValue() <= ((
MinValueRule)this).getReferenceValue () .intValue () ;
@ also

@ requires (!(data instanceof DoubleData) && !(data instanceof
IntegerData));
@ assignable \nothing;
@ ensures \result == false;
@sx/
private /+@ pure @x/ boolean validateMinValue(Data data) {
if (data instanceof DoubleData) {
if (((MinValueRule)this).getReferenceValue ().compareTo(data.
getValue()) <= 0) {
return true;
}
} else if (data instanceof IntegerData) {
return ((Integer)data.getValue()).intValue() <= ((MinValueRule)
this).getReferenceValue().intValue();

}

return false;

231

public boolean validate(Data data) {
/«@ assert (data instanceof Data); @sx/
return this.validateMinValue(data);
}
}

public class MaxToleranceRule extends AbstractValidationRule {
//@ invariant this.getReferenceValue() != null;
private Double referenceValue;

public MaxToleranceRule () ({
this .referenceValue = new Double(0);

}
/+@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.MAX_TOLERANCE);
@=x/
public /+x@ pure @x/ ValidationType getType() { /* ... */ }
public void setReferenceValue(Double referenceValue) { /* ... */ }
public /+x@ pure @x/ Double getReferenceValue() { /* ... */ }

}

/+@ requires (data instanceof IntegerData) && data.getMetaData().

getDefaultValue () != null
&& data.getValue() != null;
@ assignable \nothing;
@ ensures \result == (((Integer)data.getValue()).intValue() <=

Integer.parselnt(data.getMetaData().getDefaultValue()) +
((MaxToleranceRule) this).getReferenceValue () .intValue())
&& ((Integer)data.getValue()).intValue() >=
Integer.parselnt(data.getMetaData().getDefaultValue());

@ also

@ requires (data instanceof DoubleData) && data.getMetaDatal().

getDefaultValue () != null
&& data.getValue() != null;
@ assignable \nothing;
@ ensures \result == (((Double)data.getValue()).intValue() <=
Double.valueOf(data.getMetaData().getDefaultValue()).doubleValue
O +

((MaxToleranceRule) this).getReferenceValue () .doubleValue())
&& ((Double)data.getValue()).doubleValue() >=
Double.valueOf(data.getMetaData().getDefaultValue()).doubleValue

0

[S)]

also

requires !(data instanceof IntegerData) && !(data instanceof
DoubleData);

assignable \nothing;

ensures \result == false;

[S)

@
@
@
@sx/

private /+@ pure @x/ boolean validateMaxTolerance(Data data) {

if (data instanceof IntegerData) {
int defaultValue = Integer.parselnt(data.getMetaData().
getDefaultValue());

232

}

boolean result = ((Integer)data.getValue()).intValue() <=
defaultValue + ((MaxToleranceRule)this).getReferenceValue().
intValue () ;

return result &% ((Integer)data.getValue()).intValue() >=
defaultValue;

} else if (data instanceof DoubleData) {

double defaultValue = Double.valueOf(data.getMetaData().
getDefaultValue ()).doubleValue () ;

boolean result = ((Double)data.getValue()).doubleValue() <=
defaultValue + (((MaxToleranceRule)this).getReferenceValue())
.doubleValue () ;

return result &% ((Double)data.getValue()).doubleValue() >=
defaultValue;

}

return false;

}

public boolean validate(Data data) {
/*@ assert (data instanceof Data); @sx/
return this.validateMaxTolerance(data);

}

public class MinToleranceRule extends AbstractValidationRule {

//@ invariant this.getReferenceValue() != null;
private Double referenceValue;

public MinToleranceRule () {
this .referenceValue = new Double(0);

}
/+@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.MIN_TOLERANCE);
@x/
public /x@ pure @x/ ValidationType getType() { /* ... */ }
public void setReferenceValue(Double referenceValue) { /* ... */ }
public /+@ pure @x/ Double getReferenceValue() { /* ... */ }

/+@ requires (data instanceof IntegerData) && data.getMetaData().

getDefaultValue() != null
&& data.getValue() != null;
@ assignable \nothing;
@ ensures \result == (((Integer)data.getValue()).intValue() >=

Integer.parselInt(data.getMetaData().getDefaultValue()) -
((MinToleranceRule) this).getReferenceValue () .intValue())
&& ((Integer)data.getValue()).intValue() <=
Integer.parselInt(data.getMetaData().getDefaultValue());

@ also

@ requires (data instanceof DoubleData) && data.getMetaDatal().
getDefaultValue () != null

&& data.getValue() != null;
@ assignable \nothing;
@ ensures \result == (((Double)data.getValue()).doubleValue() >=

233

Double.valueOf(data.getMetaData().getDefaultValue()).
doubleValue () -

(((MinToleranceRule) this).getReferenceValue()).doubleValue())

&& ((Double)data.getValue()).doubleValue() <=

Double.valueOf(data.getMetaData().getDefaultValue()).
doubleValue () ;

)

also
@ requires !(data instanceof IntegerData) && !(data instanceof
DoubleData);
@ assignable \nothing;
@ ensures \result == false;
*/
private /+@ pure @x/ boolean validateMinTolerance(Data data) {
if (data instanceof IntegerData) {
int defaultValue = Integer.parselnt(data.getMetaData().
getDefaultValue());
boolean result = ((Integer)data.getValue()).intValue() >=
defaultValue — ((MinToleranceRule)this).getReferenceValue().
intValue () ;
return result &% ((Integer)data.getValue()).intValue() <=
defaultValue;
} else if (data instanceof DoubleData) {
double defaultValue = Double.valueOf(data.getMetaData().
getDefaultValue ()).doubleValue () ;
boolean result = ((Double)data.getValue()).doubleValue() >=
defaultValue — (((MinToleranceRule)this).getReferenceValue())
.doubleValue () ;
return result &% ((Double)data.getValue()).doubleValue() <=
defaultValue;

}

return false;

}

public boolean validate(Data data) {
/«@ assert (data instanceof Data); @x/
return this.validateMinTolerance(data);
}
}

public class MaxTolerancePercentageRule extends AbstractValidationRule
{
//@ invariant this.getReferenceValue() != null;
private Double referenceValue;

public MaxTolerancePercentageRule () {
this .referenceValue = new Double(0);

}

/+@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.MAX_TOLERANCE_PERCENTAGE);

@x/
public /+@ pure @x/ ValidationType getType() { /* ... */ }
public void setReferenceValue(Double referenceValue) { /* ... */ }

public /x@ pure @i/ Double getReferenceValue() { /* ... */ }

234

/%@ requires (data instanceof IntegerData) && data.getMetaData().
getDefaultValue() != null
&& ((MaxTolerancePercentageRule)this).getReferenceValue() != null

@ assignable \nothing;

@ ensures \result == (((Integer)data.getValue()).intValue() <=
Integer.parselnt(data.getMetaData().getDefaultValue()) +
Integer.parselInt(data.getMetaData().getDefaultValue()) =
((MaxTolerancePercentageRule) this).getReferenceValue ().

doubleValue() / 100)
&& ((Integer)data.getValue()).intValue() >=
Integer.parselnt(data.getMetaData().getDefaultValue());

@ also

@ requires (data instanceof DoubleData) && data.getMetaData().
getDefaultValue () != null
&& ((MaxTolerancePercentageRule)this).getReferenceValue() != null

@ assignable \nothing;

@ ensures \result == (((Integer)data.getValue()).intValue() <=
Double.valueOf(data.getMetaData().getDefaultValue()).doubleValue

O +
Double.valueOf(data.getMetaData().getDefaultValue()).doubleValue
O *
(((MaxTolerancePercentageRule) this).getReferenceValue()).
doubleValue() / 100) &&
((Double)data.getValue()).doubleValue() >=
Double.valueOf(data.getMetaData().getDefaultValue()).doubleValue

0

5]

also
@ requires !(data instanceof IntegerData) && !(data instanceof
DoubleData);
@ assignable \nothing;
@ ensures \result == false;
@x/
private /+@ pure @x/ boolean validateMaxTolerancePercentage(Data data
) |
if (data instanceof IntegerData) ({
int defaultValue = Integer.parseInt(data.getMetaData().
getDefaultValue());
boolean result = ((Integer)data.getValue()).intValue() <=
defaultValue + defaultValue % ((MaxTolerancePercentageRule) this
).getReferenceValue () .doubleValue() / 100;
return result &% ((Integer)data.getValue()).intValue() >=
defaultValue;
} else if (data instanceof DoubleData) {
double defaultValue = Double.valueOf(data.getMetaData().
getDefaultValue()).doubleValue() ;
boolean result = ((Double)data.getValue()).doubleValue() <=
defaultValue + defaultValue % (((MaxTolerancePercentageRule)
this).getReferenceValue()).doubleValue() / 100;
return result &% ((Double)data.getValue()).doubleValue() >=
defaultValue;
}

return false;

}

public boolean validate(Data data) {

235

/%@ assert (data instanceof Data); @=x/
return this.validateMaxTolerancePercentage(data);
}
}

public class MinTolerancePercentageRule extends AbstractValidationRule

{

//@ invariant this.getReferenceValue() != null;
private Double referenceValue;

public MinTolerancePercentageRule () ({
this .referenceValue = new Double(0);

}
/+@ also
@ requires \same;
@ assignable \nothing;
@ ensures \result.equals(ValidationType.MIN_TOLERANCE_PERCENTAGE);
@x/
public /+x@ pure @x/ ValidationType getType() { /* ... */ }
public void setReferenceValue(Double referenceValue) { /* ... */ }
public /+@ pure @x/ Double getReferenceValue() { /* ... */ }

/+@ requires (data instanceof IntegerData) && data.getMetaData().
getDefaultValue() != null
&& ((MinTolerancePercentageRule)this).getReferenceValue() != null

@ assignable \nothing;

@ ensures \result == (((Integer)data.getValue()).intValue() >=
Integer.parselInt(data.getMetaData().getDefaultValue()) -
Integer.parselInt(data.getMetaData().getDefaultValue()) =
((MinTolerancePercentageRule) this).getReferenceValue ().

doubleValue() / 100)
&& ((Integer)data.getValue()).intValue()
<= Integer.parselInt(data.getMetaData().getDefaultValue());

@ also
@ requires (data instanceof DoubleData) && data.getMetaData().
getDefaultValue() != null;
@ assignable \nothing;
@ ensures \result == (((Double)data.getValue()).doubleValue() >=
Double.valueOf(data.getMetaData().getDefaultValue()).doubleValue
0O -
Double.valueOf(data.getMetaData().getDefaultValue()).doubleValue
() =

(((MinTolerancePercentageRule) this).getReferenceValue()).
doubleValue() / 100)

&& ((Double)data.getValue()).doubleValue()

<= Double.valueOf(data.getMetaData().getDefaultValue()).
doubleValue () ;

[S)]

also

requires !(data instanceof IntegerData) && !(data instanceof
DoubleData);

@ assignable \nothing;

@ ensures \result == false;

@x/

[S)

236

private /+@ pure @x/ boolean validateMinTolerancePercentage(Data data
) |
if (data instanceof IntegerData) {
int defaultValue = Integer.parselnt(data.getMetaData().
getDefaultValue());
boolean result = ((Integer)data.getValue()).intValue() >=
defaultValue — defaultValue % ((MinTolerancePercentageRule)this
).getReferenceValue () .doubleValue() / 100;
return result &% ((Integer)data.getValue()).intValue() <=
defaultValue;
} else if (data instanceof DoubleData) {
double defaultValue = Double.valueOf(data.getMetaData().
getDefaultValue ()).doubleValue () ;
boolean result = ((Double)data.getValue()).doubleValue() >=
defaultValue — defaultValue % (((MinTolerancePercentageRule)
this).getReferenceValue()).doubleValue() / 100;
return result &% ((Double)data.getValue()).doubleValue() <=
defaultValue;
}

return false;

}

public boolean validate(Data data) {
/*@ assert (data instanceof Data); @x/
return this.validateMinTolerancePercentage(data);
}
}

import java.util.regex.Pattern;

public class RegularExpressionRule extends AbstractValidationRule {
private String validValue;
private Boolean ignoreCase;

//@ ensures this.getValidValue() != null &% this.getIgnoreCase() !=
null ;
public RegularExpressionRule () ({
this .validvalue = "";
this .ignoreCase = Boolean.valueOf(true);

}
public /%@ pure @x/ String getValidValue() { /* ... */ }
public void setValidValue(String validValue) { /* ... */ }
public /+x@ pure @x/ Boolean getIgnoreCase() { /* ... */ }
public void setIgnoreCase(Boolean ignoreCase) { /* ... */ }
/+@ also

@ requires \same;

@ assignable \nothing;

@ ensures \result.equals(ValidationType.REGULAR_EXPRESSION);

@x/
public /%@ pure @x/ ValidationType getType() { /* ... */ }

/%@ requires (data instanceof StringData);
@ assignable \not_specified;

}

237

ensures true || false;
also
requires !(data instanceof StringData);
assignable \not_specified;
@ ensures true;
*/
private boolean validateRegularExpression(Data data) {
boolean result = true;
if (data instanceof StringData) {
Pattern regexPattern;
if (((RegularExpressionRule)this).getIgnoreCase().booleanValue())
{
regexPattern = Pattern.compile (((RegularExpressionRule) this).
getValidValue (), Pattern.CASE_INSENSITIVE);
} else {
regexPattern = Pattern.compile (((RegularExpressionRule) this).
getValidValue());

[SESHECNS]

}

result = regexPattern.matcher (((String) ((StringData)data).
getValue())).matches () ;
}

return result;

}

public boolean validate(Data data) f{
/+«@ assert (data instanceof Data); @x/
return this.validateRegularExpression(data);

}

C.4 Number-based validation rules classes after extract-

ing superclass AbstractNumberValidationRule

public class AbstractNumberValidationRule extends

}

AbstractValidationRule {
//@ invariant this.getPurpose() != null;
/+*@ nullable @x/ Double referenceValue;

public void setReferenceValue(Double referenceValue) { /* ... */ }

public /+@ pure @x/ Double getReferenceValue() { /* ... */ }

public class MaxSizeRule extends AbstractNumberValidationRule {

public MaxSizeRule() { /* ... */ }

/@ also
@ requires \same;
@ ..
@x/
public /+x@ pure @x/ ValidationType getType() { /* ... */ }

/+@ requires (data instanceof StringData) && ((StringData)data).
getValue() != null
&& ((MaxSizeRule)this).getReferenceValue() != null;
@ ...
@x/

238

private /+@ pure @x/ boolean validateMaxSize(Data data) { /* ... */

public boolean validate(Data data) { /* ... */ }

}

public class MaxValueRule extends AbstractNumberValidationRule {
public MaxValueRule() { /* ... */ }

/+*@ also
@ ...
@x/
public /%@ pure @x/ ValidationType getType() { /* ... */ }
/%@ requires (data instanceof DoubleData) && data.getValue() != null
&& ((MaxValueRule)this).getReferenceValue() != null;
@ ...
@x/
private /+@ pure @x/ boolean validateMaxValue(Data data) { /* ... */
}

public boolean validate(Data data) { /* ... */ }
}

public class MinValueRule extends AbstractNumberValidationRule ({
public MinValueRule() { /* ... */ }

/+@ also
@ ...

@sx/

public /+x@ pure @x/ ValidationType getType() { /* ... */ }

/+@ requires (data instanceof DoubleData) && data.getValue() != null
&& ((MinValueRule)this).getReferenceValue() != null;
@ ..
@x/

private /+@ pure @x/ boolean validateMinValue(Data data) { /* ... */
}

public boolean validate(Data data) { /* ... */ }

}

public class MaxToleranceRule extends AbstractNumberValidationRule {
public MaxToleranceRule() { /* ... */ }

/+@ also
@ ...

@x/

public /+x@ pure @x/ ValidationType getType() { /* ... */ }

/%@ requires (data instanceof IntegerData) && data.getMetaData().

getDefaultValue() != null
&& data.getValue() != null;

@ ...

@sx/

private /+@ pure @x/ boolean validateMaxTolerance(Data data) { /*
*/)

public boolean validate(Data data) { /* ... */ }

239

}

public class MinToleranceRule extends AbstractNumberValidationRule {
public MinToleranceRule() { /* ... */ }

/+@ also
@ ...

@sx/

public /+x@ pure @x/ ValidationType getType() { /* ... */ }

/+@ requires (data instanceof IntegerData) && data.getMetaData().

getDefaultValue () != null
&& data.getValue() != null;
@ ..
@x/
private /+@ pure @x/ boolean validateMinTolerance(Data data) { /*
*/)

public boolean validate(Data data) { /* ... */ }

}

public class MaxTolerancePercentageRule extends
AbstractNumberValidationRule {
public MaxTolerancePercentageRule() { /* ... */ }

/+@ also
@ ..

@x/

public /+x@ pure @x/ ValidationType getType() { /* ... */ }

/%@ requires (data instanceof IntegerData) && data.getMetaData().
getDefaultValue() != null
&& ((MaxTolerancePercentageRule)this).getReferenceValue() != null
@ ...
@x/
private /+@ pure @x/ boolean validateMaxTolerancePercentage(Data data

Y { /% oo %)

public boolean validate(Data data) { /* ... */ }

}

public class MinTolerancePercentageRule extends
AbstractNumberValidationRule {
public MinTolerancePercentageRule() { /* ... */ }

/+@ also
@ ...

@sx/

public /%@ pure @x/ ValidationType getType() { /* ... */ }

/%@ requires (data instanceof IntegerData) && data.getMetaData().
getDefaultValue() != null
&& ((MinTolerancePercentageRule)this).getReferenceValue() != null

>

@*}.

240

private /+@ pure @x/ boolean validateMinTolerancePercentage(Data data

IR VAR

public boolean validate(Data data) { /* ... */ }
}

C.5 The new validation rule class: NotNullRule

public class NotNullRule extends AbstractValidationRule {

/@ also
@ requires true;
@ assignable \not_specified;

@ ensures data != null &% data.getValue() != null;
@sx/

public boolean validate(Data data) f{
return data != null &% data.getValue() != null;

}

Livros Gratis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

Baixar livros de Administracao

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciéncia da Computacao
Baixar livros de Ciéncia da Informacéo
Baixar livros de Ciéncia Politica

Baixar livros de Ciéncias da Saude
Baixar livros de Comunicacao

Baixar livros do Conselho Nacional de Educacdo - CNE
Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos
Baixar livros de Economia

Baixar livros de Economia Doméstica
Baixar livros de Educacao

Baixar livros de Educacdo - Transito
Baixar livros de Educacao Fisica

Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmacia

Baixar livros de Filosofia

Baixar livros de Fisica

Baixar livros de Geociéncias

Baixar livros de Geografia

Baixar livros de Histdria

Baixar livros de Linguas

http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1

Baixar livros de Literatura

Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matematica

Baixar livros de Medicina

Baixar livros de Medicina Veterinaria
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Musica

Baixar livros de Psicologia

Baixar livros de Quimica

Baixar livros de Saude Coletiva
Baixar livros de Servico Social
Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo

http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1

