

ESTUDO DO EQUILÍBRIO DE FASES DO SISTEMA TERNÁRIO GÁS + HEXADECANO + ÁGUA DE PRODUÇÃO: DADOS EXPERIMENTAIS E MODELAGEM TERMODINÂMICA

Carlos Eduardo Pereira Siqueira Campos

Tese de Doutorado apresentada ao Programa de Pós-graduação em Engenharia Química, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Doutor em Engenharia Química.

Orientadores: Angela Maria Cohen Uller Fernando Luiz Pellegrini Pessoa

Rio de Janeiro Agosto de 2009

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

ESTUDO DO EQUILÍBRIO DE FASES DO SISTEMA TERNÁRIO GÁS + HEXADECANO + ÁGUA DE PRODUÇÃO: DADOS EXPERIMENTAIS E MODELAGEM TERMODINÂMICA

Carlos Eduardo Pereira Siqueira Campos

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIAS EM ENGENHARIA QUÍMICA.

Aprovada por:

Prof. Angela Maria Cohen Uller, Dr. Ing.

Prof. Fernando Luiz Pellegrini Pessoa, D.Sc.

Prof. Cristiano Piacsek Borges, DSc.

Prof. Frederico Wanderley Tavares, DSc.

Prof. Lúcio Cardozo Filho, DSc.

RIO DE JANEIRO, RJ - BRASIL AGOSTO DE 2009 Campos, Carlos Eduardo Pereira Siqueira

Estudo do Equilíbrio de Fases do Sistema Ternário Gás + Hexadecano + Água de Produção: Dados Experimentais e Modelagem Termodinâmica / Carlos Eduardo Pereira Siqueira Campos. – Rio de Janeiro: UFRJ/COPPE, 2009.

XXIV, 255.: il.; 29,7 cm.

Orientadores: Angela Maria Cohen Uller

Fernando Luiz Pellegrini Pessoa

Tese (doutorado) – UFRJ/ COPPE/ Programa de Engenharia Química, 2009.

Referências Bibliográficas: p. 175-200.

 Equilíbrio de Fases. 2. Solubilidade de Gases em Líquidos. 3. Medidas Experimentais. 4. Modelagem Termodinâmica. I. Uller, Angela Maria Cohen *et al.*. II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Química. III. Título. Há homens que lutam **um dia**.... E são **bons**....

Há homens que lutam **muitos dias**.... E são **melhores**....

Há homens que lutam anos.... E são excelentes....

Mas há homens que lutam

toda a vida....

E estes são os

imprescindíveis.

(Bertold Brecht)

DEDICATÓRIA I

(Aos meus pais)

Dedico **EM ESPECIAL** essa tese ao meu **pai Carlos Cesar** e a minha **mãe Sandra Regina** que sempre me apoiaram e incentivaram na realização do meu Mestrado (finalizado em 2005) e agora do meu Doutorado. Vocês foram, são e sempre serão "fora de série". A finalização desse estudo representa a conquista de mais uma grande etapa da minha vida onde vocês figuraram como atores principais. Amo muito vocês!!!

DEDICATÓRIA II

(À minha irmã)

Como sempre muito presente e muito mais do que uma amiga, você minha **irmã Carla Regina (Carlinha)** merece todo meu agradecimento e reconhecimento por me fortalecer ao longo de toda a vida com conselhos e ajuda na realização de todos os meus sonhos e objetivos. Você é muito especial. Te amo demais e para sempre!!!

DEDICATÓRIA III

(À minha namorada e futura esposa)

Como um dos meus pilares de sustentação para a conclusão dessa pesquisa de tese de Doutorado, você, minha atual namorada e futura esposa, **Bruna Bahiense Rajão** (**Bruninha**), foi fundamental para o desenvolvimento e finalização desse estudo através de sua compreensão e paciência. Muito obrigado por ter entrado na minha vida ao longo dessa pesquisa. Amo-te incondicionalmente!!!

DEDICATÓRIA IV

(in Memorian)

Dedico também a conclusão desse trabalho a todos meus entes queridos e amigos que passaram dessa para outra vida e até hoje fazem muita falta. Em especial, ao meu **avô Annibal Pereira (Bimbal)**, que há exatos 13 anos da data de defesa dessa tese (27/08/1996), nos deixou. De onde estiver, certamente, foi um dos responsáveis por essa conquista e merece meu reconhecimento. A saudade é imensa!!!

DEDICATÓRIA V

(Aos Amigos)

Ao meu cunhado, **Ricardo Maia**, e a amiga **Maria José**, em nome de todos os meus amigos, dedico esse trabalho como gesto de agradecimento por todo o incentivo e apoio ao longo de sua execução. Valeu!!!

AGRADECIMENTOS

A Deus, criador do universo, pois sem ele nada disso existiria.

Ao AMIGO Prof. Fernando Luiz Pellegrini Pessoa pelo incentivo e orientação ao longo de toda a pesquisa, não medindo esforços para me ajudar a vencer mais essa batalha da vida. Valeu meu amigo de fé, meu irmão camarada.

À Prof. Angela Maria Cohen Uller, que mesmo ocupando o cargo de Pró-Reitora de Pós-Graduação e Pesquisa da UFRJ não hesitou em me receber em seu gabinete, me escutar e me aconselhar por diversas vezes no decorrer da tese, estando sempre disponível quando necessário. Muito obrigado por tudo.

A todos os professores do PEQ/COPPE, que direta ou indiretamente colaboraram para o meu crescimento profissional e conclusão dessa etapa.

A duas pessoas fundamentais na elaboração, montagem e discussão para a obtenção dos dados experimentais desse estudo: Beatriz Maria Cohen Chaves, pela orientação e inúmeras discussões a respeito da parte experimental e João Vilaça Filho, pela ajuda na montagem de todo aparato experimental.

Aos amigos e funcionários do LADEQ/EQ que participaram do dia a dia dessa pesquisa. Em especial, a amiga Joana Lopes Borges que muito contribuiu com discussões e interpretações dos fenômenos presentes, bem como na elaboração final dessa dissertação. Não posso deixar de agradecer também aos alunos de iniciação científica que muito colaboraram: Hugo Villardi, Joana Penello e Fábio Pinto.

Aos amigos do PEQ/COPPE, em especial ao amigo de turma desde o início do mestrado Diego Prata, pela amizade e companheirismo para atingirmos nosso objetivo final.

Aos funcionários do PEQ, sempre dispostos a resolver qualquer problema administrativo.

Ao CNPq, pelo apoio financeiro.

Resumo da Tese apresentada à COPPE / UFRJ como parte dos requisitos necessários para a obtenção do grau de Doutor em Ciências (D.Sc.)

ESTUDO DO EQUILÍBRIO DE FASES DO SISTEMA TERNÁRIO GÁS + HEXADECANO + ÁGUA DE PRODUÇÃO: DADOS EXPERIMENTAIS E MODELAGEM TERMODINÂMICA

Carlos Eduardo Pereira Siqueira Campos

Agosto / 2009

Orientadores: Angela Maria Cohen Uller Fernando Luiz Pellegrini Pessoa

Programa: Engenharia Química

O petróleo explorado e processado em territórios brasileiros é caracterizado como um óleo pesado, onde o principal desafio encontra-se no desenvolvimento de tecnologias capazes de realizar seu processamento. A caracterização do equilíbrio de fases é primordial para essas tarefas através da obtenção de condições experimentais do equilíbrio e do desenvolvimento de modelos termodinâmicos. Dentre as substâncias presentes destaca-se um contato direto entre óleo, água de produção e gás. Em estudos teóricos as propriedades médias de um petróleo brasileiro são aproximadas pelas propriedades do hexadecano e o gás pode ser representado pelo metano ou pelo dióxido de carbono. Sendo assim, essa pesquisa apresentou como objetivo o estudo do equilíbrio de fases do sistema ternário gás + hexadecano + água de produção. 108 novos dados experimentais da solubilidade de um gás - metano ou dióxido de carbono - em um líquido - água destilada, hexadecano ou água de produção (NaCl 1M) - foram mensurados nas temperaturas de 30 °C, 40 °C e 50 °C e em pressões de até 6,3 atm. Posteriormente, cinco modelos termodinâmicos foram avaliados para correlacionar os dados de equilíbrio obtidos nesse trabalho, bem como prever os dados disponíveis na literatura. A abordagem termodinâmica ϕ - ϕ para o equilíbrio liquido – vapor se mostrou mais satisfatória na descrição desses sistemas, utilizando a equação de estado de Peng-Robinson em ambas as fases através do ajuste de seus parâmetros de interação binária.

Abstract of Thesis presented to COPPE / UFRJ as a partial fulfillment of the requirements for the degree of Doctor of Science (D.Sc.)

PHASE EQUILIBRIUM STUDY OF THE TERNARY SYSTEM GAS + HEXADECANE + PRODUCTION WATER: EXPERIMENTAL DATA AND THERMODYNAMIC MODELING

Carlos Eduardo Pereira Siqueira Campos August / 2009

Advisors: Angela Maria Cohen Uller Fernando Luiz Pellegrini Pessoa

Department: Chemical Engineering

Brazilian exploited and processed oil has been characterized as heavy oil and the development of new technologies capable of performing its processing is the main challenge to obtain products with higher final prices. The phase equilibrium characterization is essential for these studies through equilibrium experimental conditions measurement and development of thermodynamic models. Among the existing compounds, there is a direct contact between oil, production water (elevated concentration of salts) and gas. Normally, in theoretical works the average properties of typical Brazilian oil can be approximated by hexadecane properties and the gas can be represented by methane or carbon dioxide. Thus, this research presented as objective the phase equilibrium study for the ternary system gas + hexadecane + production water. 108 experimental gas - methane or carbon dioxide - solubility data in liquids - water, hexadecane or production water (NaCl 1M) – were measured at 30 °C, 40 °C and 50 °C, in pressures up to 6,3 atm. Following, five thermodynamic models were analyzed in order to represent the equilibrium data, where the results showed better performance for the ϕ - ϕ thermodynamic approach, applying Peng-Robinson equation of state in both phases and estimating the binary interaction parameters of original van der Waals mixing rule.

	Pág.
Lista de Figuras	XV
Lista de Tabelas	xix
Nomenclatura	xxii
CAPÍTULO 1	1
INTRODUÇÃO	2
CAPÍTULO 2	8
REVISÃO BIBLIOGRÁFICA	9
2.1. PARTE EXPERIMENTAL	9
2.2. PARTE TEÓRICA	27
2.3. CONCLUSÕES PARCIAIS	46
CAPÍTULO 3	47
PARTE EXPERIMENTAL	48
3.1. SOLUBILIDADE DE GASES EM LÍQUIDOS	48
3.2. METODOLOGIA EXPERIMENTAL	50
3.2.1. MATERIAIS	50
3.2.2. MÉTODOS	51
3.2.2.1. APARATO EXPERIMENTAL	51
3.2.2.2. PROCEDIMENTO EXPERIMENTAL	54
3.2.2.3. ALGORITMO PARA O CÁLCULO DA SOLUBILIDADE	55
3.3. RESULTADOS E DISCUSSÃO	58
3.3.1. DETERMINAÇÃO DOS VOLUMES MORTOS	58
3.3.2. VALIDAÇÃO DO APARATO EXPERIMENTAL	61
3.3.2.1. SISTEMA CO ₂ / H ₂ O	62
3.3.2.2. SISTEMA CH_4 / H_2O	68
3.3.3. DADOS DE SOLUBILIDADE DO CO_2 OU CH_4 EM LÍQUIDOS	73
3.3.3.1. SISTEMA BINÁRIO CO ₂ / H ₂ O	75
3.3.3.2. SISTEMA BINÁRIO CO ₂ / C ₁₆ H ₃₄	78
3.3.3.3. SISTEMA BINÁRIO CH ₄ / H ₂ O	
3.3.3.4. SISTEMA BINÁRIO CH ₄ / C ₁₆ H ₃₄	
3.3.3.5. SISTEMA TERNÁRIO CO ₂ / H ₂ O / NaCl (1M)	
3.3.3.6. SISTEMA TERNÁRIO CH ₄ / H ₂ O / NaCl (1M)	86
3.3.3.7. INFLUÊNCIA DO SAL NA SOLUBILIDADE DO CO ₂ OU CH ₄	
3.4. CONCLUSÕES PARCIAIS DA PARTE EXPERIMENTAL	94

SUMÁRIO

CAPÍTUL	0 4	
PARTE TI	EÓRICA	97
4.1. N	IODELAGEM TERMODINÂMICA	98
4.2. N	IODELOS TERMODINAMICOS	103
4.2.1.	MODELO M1: ESTRATÉGIA MODIFICADA DE PRADO (2004)	103
4.2.2.	MODELO M2: PRADO (2004) + EQUAÇÃO VIRIAL	105
4.2.3.	MODELO M3: PRADO (2004) + EQUAÇÃO PR-VDW	
4.2.4.	MODELO M4: EQUAÇÃO PR-VDW	110
4.2.5.	MODELO M5: EQUAÇÃO PR-HK	111
4.3. R	ESUMO DOS TIPOS DE MODELOS	113
4.4. E	STRATÉGIAS DE CÁLCULOS UTILIZADAS	114
4.5. R	ESULTADOS E DISCUSSÕES	123
4.5.1.	ESCOLHA DA MELHOR SEQUÊNCIA E MODELO	125
4.5.2.	OBTENÇÃO DE UM ÚNICO CONJUNTO DE PARÂMETROS PAR	A CADA
SISTE	EMA COM DADOS DA LITERATURA	137
4.5.3.	MODELAGEM DOS DADOS DOS SISTEMAS BINÁRIOS OBTIDO	S NESSA
PESQ	UISA	151
4.5.4.	MODELAGEM DOS DADOS DOS SISTEMAS TERNÁRIOS OBTIL	OS NESSA
PESQ	UISA	161
4.5.5.	CONCLUSÕES PARCIAIS DA PARTE TEÓRICA	167
CAPÍTUL	0 5	169
CONCLUS	SÕES E SUGESTÕES	170
REFERÊN	CIAS BIBLIOGRÁFICAS	175
ANEXO A		
ANEXO B		
ANEXO C		
ANEXO D		

LISTA DE FIGURAS

	Pág.
Figura 1 – Evolução da produção de petróleo no Brasil por localização	2
Figura 2 – Evolução do grau API dos petróleos nacionais processados	3
Figura 3 – Separador trifásico comum em unidades offshore.	4
Figura 4 – Formação de hidratos no interior de tubulações.	5
Figura 5 – Fluxograma do aparato experimental para determinação da solubilidade	5
de gases em líquidos	51
Figura 6 – Visão geral do aparato experimental	53
Figura 7 – Equipamento no interior da capela.	53
Figura 8 – Vista superior da parte do equipamento imersa no banho	53
Figura 9 – Linhas de gases dos cilindros	53
Figura 10 – Célula de equilíbrio	53
Figura 11 – Algoritmo para o cálculo da solubilidade experimental do gás no líqui	do56
Figura 12 – Análise estatística dos erros de medidas (outliers)	60
Figura 13 – Validação do aparato: solubilidade do CO_2 (1) em H ₂ O (2) a 25 °C	64
Figura 14 – Validação do aparato: solubilidade do CO_2 (1) em H ₂ O (2) a 40 °C	65
Figura 15 – Validação do aparato: solubilidade do CO_2 (1) em H ₂ O (2) a 50 °C	65
Figura 16 – Desvio percentual para o sistema $CO_2(1)$ / $H_2O(2)$ a 25 °C	66
Figura 17 – Desvio percentual para o sistema $CO_2(1)$ / $H_2O(2)$ a 40 $^{\circ}C$	66
Figura 18 – Desvio percentual para o sistema $CO_2(1)$ / $H_2O(2)$ a 50 $^{\circ}C$	67
Figura 19 – Dados de solubilidade para o sistema $CO_2(1)$ / $H_2O(2)$	76
Figura 20 – Dados de solubilidade para o sistema $CO_2(1) / C_{16}H_{34}(2)$	79
Figura 21 – Dados de solubilidade para o sistema $CH_4(1) / H_2O(2)$	81
Figura 22 – Dados de solubilidade para o sistema $CH_4(1) / C_{16}H_{34}(2)$	83
Figura 23 – Dados de solubilidade para o sistema $CO_2(1) / H_2O(2) / NaCl 1M(3)$)85

Figura 24 – Dados de solubilidade para o sistema $CH_4(1) / H_2O(2) / NaCl 1M(3)88$
Figura 25 – Influência do sal no sistema $CO_2(1)$ / $H_2O(2)$ / NaCl 1M (3) a 30 $^{\circ}C$ 89
Figura 26 – Influência do sal no sistema $CO_2(1)$ / $H_2O(2)$ / NaCl 1M (3) a 40 °C90
Figura 27 – Influência do sal no sistema CO ₂ (1) / H_2O (2) / NaCl 1M (3) a 50 °C90
Figura 28 – Influência do sal no sistema $CH_4(1)$ / $H_2O(2)$ / NaCl 1M (3) a 30 °C91
Figura 29– Influência do sal no sistema $CH_4(1)$ / $H_2O(2)$ / NaCl 1M (3) a 40 $^{\circ}C$ 91
Figura 30 – Influência do sal no sistema CH ₄ (1) / H ₂ O (2) / NaCl 1M (3) a 50 $^{\circ}$ C92
Figura 31 – Sistema CO_2 / $C_{16}H_{34}$: ajuste dos dados experimentais a 30 °C (\blacklozenge) pela
equação de estado PR ()152
Figura 32 – Sistema CO_2 / $C_{16}H_{34}$: ajuste dos dados experimentais a 40 °C (\blacksquare) pela
equação de estado PR ()153
Figura 33 – Sistema $CO_2 / C_{16}H_{34}$: ajuste dos dados experimentais a 50 °C (\blacktriangle) pela
equação de estado PR ()153
Figura 34 – Sistema CH_4 / $C_{16}H_{34}$: ajuste dos dados experimentais a 30 °C (\blacklozenge) pela
equação de estado PR ()154
Figura 35 – Sistema CH_4 / $C_{16}H_{34}$: ajuste dos dados experimentais a 40 °C (\blacksquare) pela
equação de estado PR ()154
Figura 36 – Sistema CH ₄ / $C_{16}H_{34}$: ajuste dos dados experimentais a 50 °C (\blacktriangle) pela
equação de estado PR ()155
Figura 37 – Sistema CO ₂ / H ₂ O: ajuste dos dados experimentais a 30 $^{\circ}$ C (\blacklozenge) pela
equação de estado PR ()157
Figura 38 – Sistema CO ₂ / H ₂ O: ajuste dos dados experimentais a 40 $^{\circ}$ C (\blacksquare) pela
equação de estado PR ()158
Figura 39 – Sistema CO ₂ / H ₂ O: ajuste dos dados experimentais a 50 $^{\circ}$ C (\blacktriangle) pela
equação de estado PR ()158

Figura 40 – Sistema CH ₄ / H ₂ O: ajuste dos dados experimentais a 30 $^{\circ}$ C (\blacklozenge) pela
equação de estado PR ()159
Figura 41 – Sistema CH ₄ / H ₂ O: ajuste dos dados experimentais a 40 $^{\circ}$ C (\blacksquare) pela
equação de estado PR ()159
Figura 42 – Sistema CH ₄ / H ₂ O: ajuste dos dados experimentais a 50 $^{\circ}$ C (\blacktriangle) pela
equação de estado PR ()160
Figura 43 – Sistema CO ₂ / H ₂ O / NaCl 1M: ajuste dos dados experimentais a 30 $^{\circ}$ C (\blacklozenge)
pela equação de estado PR ()163
Figura 44 – Sistema CO ₂ / H ₂ O / NaCl 1M: ajuste dos dados experimentais a 40 $^{\circ}$ C (\blacksquare)
pela equação de estado PR ()163
Figura 45 – Sistema CO ₂ / H ₂ O / NaCl 1M: ajuste dos dados experimentais a 50 $^{\circ}$ C (\blacktriangle)
pela equação de estado PR ()164
Figura 46 – Sistema CH ₄ / H ₂ O / NaCl 1M: ajuste dos dados experimentais a 30 °C (\blacklozenge)
pela equação de estado PR ()164
Figura 47 – Sistema CH ₄ / H ₂ O / NaCl 1M: ajuste dos dados experimentais a 40 $^{\circ}$ C (\blacksquare)
pela equação de estado PR ()165
Figura 48 – Sistema CH ₄ / H ₂ O / NaCl 1M: ajuste dos dados experimentais a 50 °C (\blacktriangle)
pela equação de estado PR (—)165
Figura A.1 – Análise estatística das medidas para o transdutor de pressão202
Figura A.2 – Análise estatística das medidas para a tubulação203
Figura A.3 – Análise estatística das medidas para a célula Nº1205
Figura A.4 – Análise estatística das medidas para a célula Nº2206
Figura A.5 – Análise estatística das medidas para a célula Nº3208
Figura A.6 – Análise estatística das medidas para a célula Nº4209
Figura A.7 – Análise estatística das medidas para a célula Nº5210

Figura A.8 – Análise estatística das medidas para a célula Nº6	212
Figura A.9 – Análise estatística das medidas para a célula Nº7	213
Figura A.10 – Análise estatística das medidas para a célula Nº8	215

LISTA DE TABELAS

Tabela 1 – Resumo dos dados experimentais encontrados na literatura	25
Tabela 2 – Resumo dos modelos termodinâmicos encontrados na literatura	43
Tabela 3 – Volumes mortos determinados	61
Tabela 4 – Validação do aparato experimental através do sistema	
CO ₂ (1) / H ₂ O(2)	63
Tabela 5 – Solubilidade para o sistema $CH_4(1)$ / $H_2O(2)$ a 40 °C: variação	
do volume parcial molar do gás.	69
Tabela 6 – Desvios calculados para a solubilidade do sistema $CH_4(1)$ / $H_2O(2)$	
a 40°C: variação do volume parcial molar do gás	70
Tabela 7 – Influência da massa de água e tempo de solubilização na	
solubilidade do sistema CH ₄ (1) / H_2O (2) a 40 $^{\circ}C$	72
Tabela 8 – Propriedades dos componentes puros	74
Tabela 9 – Dados de solubilidade para o sistema $CO_2(1)$ / $H_2O(2)$	76
Tabela 10 – Constante aparente de Henry para o sistema CO_2 / H_2O	77
Tabela 11 – Dados de solubilidade para o sistema $CO_{2}(1) / C_{16}H_{34}(2)$	78
Tabela 12 – Constante aparente de Henry para o sistema CO_2 / $C_{16}H_{34}$	80
Tabela 13 – Dados de solubilidade para o sistema $CH_4(1)$ / $H_2O(2)$	80
Tabela 14 – Constante aparente de Henry para o sistema CH_4 / H_2O	82
Tabela 15 – Dados de solubilidade para o sistema $CH_4(1) / C_{16}H_{34}(2)$	83
Tabela 16 – Constante aparente de Henry para o sistema CH_4 / $C_{16}H_{34}$	84
Tabela 17 – Dados de solubilidade para o sistema $CO_2(1)$ / $H_2O(2)$ / $NaCl(1M)$ (3)85
Tabela 18 – Constante aparente de Henry para o sistema CO_2 / H_2O / $NaCl$ (1M)	86
Tabela 19 – Dados de solubilidade para o sistema CH_4 (1) / H_2O (2) / $NaCl 1M$ (3))87
Tabela 20 – Constante aparente de Henry para o sistema CH ₄ / H ₂ O / NaCl (1M)	88

Tabela 21 – Modelos termodinâmicos utilizados	113
Tabela 22 – Banco de dados utilizado na modelagem termodinâmica	115
Tabela 23 – Propriedades das substâncias	123
Tabela 24 – Resultados para cada sistema binário	127
Tabela 25 – Desvio médio global para cada modelo	136
Tabela 26 – Desvios para a obtenção de um único par de parâmetros	138
Tabela 27 – Parâmetros finais obtidos para cada sistema	150
Tabela 28 – Predição dos novos dados experimentais	151
Tabela 29 – Desvios obtidos estimando todos os dados a baixas pressões	156
Tabela 30 – Predição dos dados dos sistemas ternários	161
Tabela 31 – Estimação dos parâmetros para os sistemas com sal: todas as	
temperaturas simultaneamente	162
Tabela 32 – Estimação dos parâmetros para os sistemas com sal: para cada	
temperatura individualmente	166
Tabela 33 – Resumo dos resultados obtidos	167
Tabela A.1 – Massa de água: transdutor de pressão	
Tabela A.2 – Massa de água: tubulação do equipamento	203
Tabela A.3 – Massa de água: célula Nº1	204
Tabela A.4 – Massa de água: célula Nº2	
Tabela A.5 – Massa de água: célula Nº3	207
Tabela A.6 – Massa de água: célula Nº4	209
Tabela A.7 – Massa de água: célula Nº5	210
Tabela A.8 – Massa de água: célula Nº6	211
Tabela A.9 – Massa de água: célula Nº7	213
Tabela A.10 – Massa de água: célula Nº8	214

Tabela B.1 – Cálculo do termo τ_{mh}	presente no modelo UNIFAC	
---	---------------------------	--

NOMENCLATURA

Latina

Símbolo	Descrição
a	parâmetro a da regra de mistura original
a _T	constante a de Tsonopoulos
AA	constante A da equação de Antoine
AB	constante B da equação de Antoine
AC	constante C da equação de Antoine
A ₀	parâmetro 0 de Tsonopoulos
A ₁	parâmetro 1 de Tsonopoulos
A ₂	parâmetro 2 de Tsonopoulos
В	parâmetro b da regra de mistura original
b _T	constante b de Tsonopoulos
В	segundo coeficiente da equação virial
С	constante da equação de Peng-Robinson
С	terceiro coeficiente da equação virial
D	desvio
f	fugacidade da espécie pura
F1	parâmetro 1 da fugacidade de referência
F2	parâmetro 2 da fugacidade de referência
F3	parâmetro 3 da fugacidade de referência
G	energia livre de Gibbs
Κ	parâmetro de interação binária do termo atrativo
k _H	constante de Henry
1	parâmetro de interação binária do termo de forma e tamanho

LIC	limite inferior de confiança
LSC	limite superior de confiança
n	número de moles
N	número de pontos experimentais
Р	pressão
R	constante universal dos gases
S	entropia
Т	temperatura
V	volume
X	fração molar da fase líquida
у	fração molar da fase vapor
Z	fator de compressibilidade
Grega	
Símbolo	Descrição
α	parâmetro do termo atrativo
χ	variável mensurada

_	
χ	média da variável mensurada

Δ	variação
Δ	variação

- φ coeficiente de fugacidade
- γ coeficiente de atividade
- μ potencial químico
- σ desvio padrão
- v volume molar
- ω fator acêntrico

Sobrescritos

Símbolo	Descrição
exp.	experimental
E	propriedade em excesso
L	fase líquida
lit.	literatura
vap	vapor
V	fase vapor
0	estado padrão
,	aparente
α	fase α de um sistema
β	fase β de um sistema
γ	fase γ de um sistema
Subscritos	
Subscritos Símbolo	Descrição
Subscritos <i>Símbolo</i> 1	<i>Descrição</i> componente 1
Subscritos Símbolo 1 2	<i>Descrição</i> componente 1 componente 2
Subscritos Símbolo 1 2 c	<i>Descrição</i> componente 1 componente 2 propriedade crítica
Subscritos Símbolo 1 2 c CM	<i>Descrição</i> componente 1 componente 2 propriedade crítica propriedade crítica média
Subscritos Símbolo 1 2 c CM E	Descrição componente 1 componente 2 propriedade crítica propriedade crítica média condição experimental de equilíbrio
Subscritos Símbolo 1 2 c CM E gás	Descrição componente 1 componente 2 propriedade crítica propriedade crítica média condição experimental de equilíbrio componente gás
Subscritos Símbolo 1 2 c CM E gás i	Descrição componente 1 componente 2 propriedade crítica propriedade crítica média condição experimental de equilíbrio componente gás componente i
Subscritos Símbolo 1 2 c CM E gás i I	Descrição componente 1 componente 2 propriedade crítica propriedade crítica média condição experimental de equilíbrio componente gás componente i
Subscritos Símbolo 1 2 c CM E gás i I I	Descrição componente 1 componente 2 propriedade crítica propriedade crítica média condição experimental de equilíbrio componente gás componente i condição experimental inicial
Subscritos Símbolo 1 2 c CM E gás i I I m M	Descrição componente 1 componente 2 propriedade crítica propriedade crítica média condição experimental de equilíbrio componente gás componente i condição experimental inicial mistura

CAPÍTULO 1

"Esta é a essência da ciência:

faça uma pergunta impertinente e cairá no caminho da resposta pertinente."

(Jacob Bronowski)

<u>INTRODUÇÃO</u>

O Brasil é reconhecido mundialmente como um dos maiores produtores de petróleo, ocupando o 15º lugar, segundo o último anuário estatístico publicado pela Agência Nacional do Petróleo. Essa posição foi consolidada através do aumento de 3,6% das reservas de petróleo detectadas no território brasileiro, apresentando uma produção nacional de petróleo e gás natural liquefeito aproximadamente igual a 1.833 milhões de barris/dia no ano de 2007, como pode ser observado na Figura 1 (ANP, 2009).

Figura 1 – Evolução da produção de petróleo no Brasil (1998 – 2007). Fonte: ANP, 2009.

O petróleo explorado e processado em territórios brasileiros apresenta propriedades como a viscosidade, a densidade e o grau API similares a de um óleo pesado, onde atualmente o principal desafio é o processamento dessa crescente produção ilustrada na Figura 2 (PETROBRAS, 2004), permitindo a conversão em derivados de alto valor agregado. Para isso, diversos investimentos e grandes avanços tecnológicos estão sendo desenvolvidos e implementados, possibilitando que o petróleo nacional possa atingir uma percentagem maior de produtos nobres, aumentando sua rentabilidade de comercialização.

Figura 2 – Evolução do grau API dos petróleos nacionais processados. Fonte: PETROBRAS, 2004.

A composição do petróleo brasileiro pode ser identificada por uma marcante presença de parafinas com elevadas massas moleculares, bem como pela existência de asfaltenos e água de produção. Normalmente, em estudos teóricos as propriedades médias desse petróleo característico podem ser aproximadas pelas propriedades de um composto representativo que aparece em grandes proporções na composição desse óleo: o hexadecano ($C_{16}H_{34}$). Enquanto que na água de produção observa-se a presença de compostos iônicos, principalmente, os sais de cloretos.

Frente à produção desse óleo pesado, existe grande interesse de desenvolvimento de novas tecnologias capazes de solucionar os problemas oriundos desse processamento, principalmente relacionadas à fase de exploração do óleo em reservatórios petrolíferos. Um dos tópicos a serem abordados e fundamentados é a identificação das possíveis fases existentes entre as substâncias encontradas em uma jazida de petróleo. Para essa caracterização é primordial uma descrição do comportamento das fases em função das condições de temperatura e pressão que as

mesmas encontram-se submetidas.

Dando um enfoque mais específico no interior de reservatórios de petróleo, bem como em unidades de processamento, *offshore* e *onshore*, identifica-se um contato direto entre óleo, água de produção e gás. Como exemplo ilustrativo, a Figura 3 apresenta um separador trifásico existente nas plataformas de produção para tratamento inicial do óleo explorado dos reservatórios.

Figura 3 – Separador trifásico comum em unidades offshore.

Na grande maioria desses sistemas, o gás pode ser representado pelo gás natural, que apresenta elevados teores de metano em sua composição, ou então pelo dióxido de carbono, muito utilizado no processo de injeção de gases para uma maior recuperação em reservatórios. Essa recuperação é favorecida quando a pressão sob a qual o óleo encontra-se submetido atinge o valor da pressão mínima de solubilidade do gás no óleo, fazendo com que sua viscosidade seja reduzida e o escoamento facilitado.

Já a presença da água de produção com elevada concentração de íons torna-se um problema muito comum na indústria de óleo e gás, uma vez que o seu reaproveitamento é limitado em virtude dos sais, podendo ocasionar deposição dos mesmos e uma conseqüente incrustação nos trocadores de calor, dutos, entre outros equipamentos de processo. Como forma de solucionar esse problema, diversos estudos encontram-se disponíveis na literatura abordando o tratamento dessa água e sua possível reutilização através de separações eletrostáticas, bem como o seu enquadramento nas normas ambientais para descartes futuros. Outro agravante relacionado com a presença de água de produção juntamente com componentes leves gasosos em correntes de gás natural e em reservatórios de petróleos está no efeito sinérgico desses componentes em contato ocasionando corrosões e, principalmente, a formação em condições específicas de temperatura e pressão de compostos indesejados chamados de hidratos, conforme ilustrado na Figura 4. Além disso, a solubilidade de hidrocarbonetos em água é um aspecto importante do ponto de vista ambiental, uma vez que a legislação restringe a quantidade desses compostos em depósitos de água.

Figura 4 – Formação de hidratos no interior de tubulações.

Com a recente descoberta da camada de pré-sal na costa brasileira, não só benefícios estão surgindo, mas também certas complicações na exploração desses reservatórios em lâminas d'água ultraprofundas (mais de 1.500 metros). Uma das principais desvantagens encontra-se no forte desprendimento de dióxido de carbono que ocorrerá na etapa de perfuração dessa camada de sal. Assim, uma vez que o Brasil não é

um país credor na emissão de gases na atmosfera, será necessária a proposição de uma solução para esse grande volume gasoso, onde a sua reinjeção nos reservatórios de onde foram obtidos aparece como uma alternativa bem satisfatória, acarretando em um aumento da produção de óleo através de uma recuperação mais eficiente.

Para a realização desses estudos em sistemas da indústria petrolífera, bem como em outros processos químicos, a obtenção de informações do diagrama de fases das substâncias presentes é fundamental para as etapas de projeto e otimização, onde dados experimentais dos sistemas envolvidos e modelos termodinâmicos capazes de prever esses comportamentos são fundamentais.

Sendo assim, essa pesquisa de tese de Doutorado teve como objetivo principal o estudo do comportamento de fases do sistema ternário gás + hexadecano + água de produção, através da análise dos respectivos sistemas binários envolvidos. Dentre os objetivos específicos, essa pesquisa pode ser dividida duas partes: a primeira, a parte experimental, com objetivo de determinação da solubilidade dos gases (dióxido de carbono e metano) em um líquido (água destilada, hexadecano e solução aquosa de cloreto de sódio 1M) nas temperaturas de 30 °C, 40 °C e 50 °C e pressões de até 6,3 atm; e a segunda, a parte teórica, com objetivo de estudar e avaliar cinco diferentes modelos termodinâmicos capazes de descrever e prever o comportamento de fase dos sistemas de interesse.

Os capítulos que compõe essa dissertação são: Capítulo 2 onde será apresentada a revisão bibliográfica contendo os trabalhos relacionados com o tema proposto e as lacunas identificadas; Capítulo 3 onde será abordada a parte experimental da pesquisa com suas respectivas conclusões parciais; Capítulo 4 onde a parte teórica será desenvolvida apresentando os modelos termodinâmicos estudados e suas respectivas performances; Capítulo 5 onde serão apresentadas as conclusões finais do

6

estudo, bem como sugestões para trabalhos futuros; posteriormente, as referências mencionadas ao longo do texto; e por fim os anexos pertinentes.

CAPÍTULO 2

"Um acúmulo de fatos não faz uma ciência,

tal como um conjunto de pedras não faz uma casa."

(Jules Poincaré)

<u>REVISÃO BIBLIOGRÁFICA</u>

O sistema ternário formado por gás / hidrocarboneto / água com a presença de sais possui um comportamento complexo e muitos estudos são realizados abordando os respectivos sistemas binários (gás / água, gás / hidrocarboneto e água / óleo) e os resultados obtidos utilizados para tentar descrever o comportamento do respectivo sistema ternário.

A seguir, diversos trabalhos disponíveis na literatura relacionados ao estudo do EF em sistemas ternários e binários formados por gás, hidrocarboneto e água de produção (solução aquosa de NaCl 1M) serão apresentados e analisados. Na presente revisão, quase a totalidade dos trabalhos datados do ano de 2000 até a presente data será discutida, porém os demais estudos anteriores não serão descartados e estarão presentes na construção do banco de dados para as análises da parte teórica.

Esse capítulo encontra-se dividido em três partes: a primeira apresenta os trabalhos relacionados com a etapa experimental da pesquisa, reportando os dados experimentais disponíveis dos sistemas de interesse, bem como os métodos utilizados em sua obtenção, a segunda, relacionada à parte teórica, destacando os principais modelos desenvolvidos e a terceira destaca as conclusões parciais dessa revisão.

2.1. PARTE EXPERIMENTAL

HARUKI *et al.* (2000) determinaram dados do EF de sistemas formados por água e hidrocarbonetos através de um equipamento baseado no método contínuo de amostragem, determinando o equilíbrio em regiões próximas e superiores à temperatura crítica da água em elevadas pressões. Para o sistema água / decano os dados foram medidos a 573,2 K na faixa de pressão de 12,1 até 30,3 MPa e a 593,2 K na faixa de 15,4 até 25,1 MPa e para o sistema água / tolueno a 553,2 K na faixa de 15,1 até 30,1 MPa e a 573,2 K na faixa de 17,2 até 30,5 MPa. Ambos os sistemas tiveram seus dados experimentais modelados através da equação SRK (Soave – Redlich – Kwong) como apresentada por SANDARUSI *et al.* (1986) acoplada a uma regra de mistura exponencial (HIGASHI *et al.*, 1994), apresentando correlações satisfatórias para os dados obtidos. Entretanto, esses dados encontram-se restritos nas faixas experimentais medidas.

No mesmo ano, dados experimentais somente em regiões próximas ao ponto crítico dos componentes puros que compõem o sistema dióxido de carbono / n-alcanos (etano, propano, butano) foram determinados por HORSTMAN *et al.* (2000) através de um aparato que opera em regime dinâmico. Os autores aplicaram a equação de estado PSRK (Soave – Redlich – Kwong preditiva) proposta por HOLDERBAUM E GMEHLING (1991) para realização de cálculos como a determinação de pontos críticos, determinação do ELV (equilíbrio líquido – vapor), formação de azeótropos, cálculo de entalpias, volumes de excesso e coeficiente de Henry. Com a utilização dessa equação, somente um par de parâmetros de interação binária dependentes da composição foi obtido para cada sistema estudado.

BAMBERGER *et al.* (2000) reportaram dados do ELV em altas pressões para os sistemas binários dióxido de carbono / água e dióxido de carbono / ácido acético utilizando um equipamento de medição contínua nas temperaturas de 323, 333 e 353 K para o sistema com a água e 313, 333 e 353 K para o sistema com ácido acético, ambos na faixa de pressão de 1,10 a 14,11 MPa. Apesar da estreita faixa de temperatura estudada, esses dados foram correlacionados utilizando a equação de estado PR (Peng – Robinson) modificada por MELHEM *et al.* (1989) acoplada à regra de mistura de

PANAGIOTOPOULOS E REID (1986), apresentando uma dependência dos parâmetros de interação binária com a temperatura. Especificamente para o sistema com o ácido, os resultados não foram muito satisfatórios, uma vez que a dimerização dessa molécula não foi computada nos cálculos desenvolvidos, influenciando diretamente o comportamento do EF desse sistema.

No ano seguinte, FISCHER E WILKEN (2001) determinaram a solubilidade de gases em álcoois e éteres através de um equipamento de equilíbrio estático. Dados experimentais foram obtidos na faixa de temperatura de 298 a 398 K para os sistemas O_2 / metanol, O_2 / propanol, O_2 / tolueno, O_2 / octano, O_2 / dibutiléter, N_2 / propanol, N_2 / etanol e N_2 / 2-metil-hidrofurano, todos em pressões de até 10 MPa. Os resultados foram utilizados para estender a região de aplicabilidade da equação PSRK na determinação de solubilidade do ar em solventes orgânicos e em misturas, através do ajuste dos parâmetros dos grupos de interação gás – líquido. Esses resultados foram comparados aos dados experimentais disponíveis no banco de dados DDB de Dortmund (GMEHLING *et al.*, 1978) em termos de coeficiente de Henry e apresentaram-se qualitativamente satisfatórios.

CAI *et al.* (2001) determinaram a solubilidade de gases em meio líquido, como óleo pesado, resíduo de petróleo ou hidrocarboneto levemente volátil, através de um equipamento contendo uma célula de equilíbrio acoplada a uma técnica de raio-X para identificação do número de fases e se as mesmas encontravam-se perfeitamente misturadas. Esses dados foram determinados na faixa de temperatura e pressão desde a condição ambiente até 723,15 K e 30 MPa. Para gases solúveis como hidrogênio, os dados de solubilidade em hexadecano e tetralina apresentaram-se com desvios relativos em torno de 5% para pressões maiores que 2 MPa, porém para solubilidade em cortes de petróleo não representaram bem os dados a baixas pressões.
Ainda em 2001, PEDERSEN *et al.* (2001) reportaram dados experimentais do EF de sistemas contendo água e misturas de gases condensados através de uma célula de equilíbrio PVT (pressão – volume – temperatura). Essas misturas foram compostas basicamente por C₁ (70%), C₂ (8%), C₃ (4%), C₇ (2,5%) e os demais (2,5%) com suas medidas conduzidas a 308,15, 393,15 e 473,15 K, na faixa de pressão de 70 a 100 MPa. Os valores obtidos revelaram que a solubilidade mútua da água e de fluidos de reservatórios de petróleo pode ser considerada em elevadas temperaturas e pressões. Esses dados experimentais foram satisfatoriamente modelados através da equação SRK acoplada à regra de mistura clássica HV (HURON E VIDAL, 1979).

Como um dos últimos trabalhos de 2001, SÉRVIO E ENGLEZOS (2001) determinaram a influência da pressão e da temperatura na solubilidade do dióxido de carbono em água, na presença de hidratos gasosos nas faixas reduzidas de temperatura de 273 a 284 K e pressões de 2 a 6 MPa. Um aparato foi utilizado para a determinação desse EF na presença de hidratos constituído por um cristalizador e duas janelas de safira para visualização. Através dos resultados obtidos, pode-se observar que o valor da solubilidade diminuía com a redução de temperatura na presença do hidrato, porém na ausência do mesmo, um comportamento reverso foi detectado, sendo demonstrado também que a pressão não se comportou como um fator de influência na solubilidade do gás na água.

Enquanto na literatura existem diversos dados de solubilidade para o sistema dióxido de carbono / água, dados para esse sistema na presença de eletrólitos são escassos. Assim, KIEPE *et al.* (2002) mediram dados de solubilidade do CO_2 em H₂O na presença de eletrólitos através do método estático. Os dados foram obtidos para os sistemas CO_2 / H₂O (313,20 a 393,17 K), CO_2 / H₂O / NaCl (313 e 353 K) e CO_2 / H₂O / KCl (313 e 353 K) sob pressões de até 10 MPa. Para modelar esses dados

experimentais, o modelo PSRK foi utilizado, apresentando resultados satisfatórios na caracterização do seu comportamento.

O EF a elevadas pressões para sistemas contendo CO_2 supercrítico e parafinas $(C_{12}, C_{16}, C_{20}, C_{24}, C_{28} e C_{36})$ foi caracterizado experimentalmente por NIEUWOUDT e RAND (2002) através de duas células de equilíbrio estático na faixa de temperatura de 313 a 367 K e pressões de até 36 MPa. Quatro equações de estado, SRK (SOAVE, 1972), PT (PATEL E TEJA, 1982), CSPHC (WANG E GUO, 1993) e a modificação na equação PR (STRYJEK E VERA, 1986a e 1986b), foram utilizadas para modelar esses dados experimentais, onde a equação PT foi a que apresentou o melhor ajuste para os sistemas analisados, porém não revelou características preditivas.

No ano seguinte, KIM *et al.* (2003) estudaram experimentalmente o EF dos sistemas metano / água e etano / água, com e sem a formação de hidratos, dando ênfase na fase aquosa e utilizando o mesmo equipamento proposto por YANG *et al.* (2000), porém alterando a determinação da concentração do gás solubilizado na fase líquida. Os dados de solubilidade para ambos os sistemas foram obtidos somente na temperatura de 298,15 K e na faixa de pressão de 2,3 a 16,6 MPa para o sistema com o metano e de 1,4 a 3,9 MPa para o sistema com o etano. Embora a faixa das condições experimentais tenho sido estreita, os dados reportados apresentaram um comportamento qualitativo satisfatório quando confrontados com dados da literatura.

Dando continuação às pesquisas com sistemas eletrolíticos, KIEPE *et al.* (2003a) determinaram a solubilidade de dióxido de carbono em soluções aquosas de nitrato de sódio e de potássio nas temperaturas de 313, 353 e 373 K, pressões de até 10 MPa e molalidade do sal de até 10 mol/kg. O mesmo equipamento com base no método estático proposto por KIEPE *et al.* (2002) foi utilizado nessa determinação, porém em uma estreita faixa de temperatura. Esses dados foram utilizados na obtenção dos

coeficientes de Henry e no ajuste dos parâmetros de interação da equação SRK acoplada ao modelo LIFAC (LI *et al.*, 2001), demonstrando a influência de diferentes espécies iônicas no comportamento desse EF. O efeito *salting-out* devido a elevadas constantes de Henry experimentais foi verificado, fazendo com que a solubilidade do gás no líquido na presença do eletrólito diminuísse com o aumento de temperatura e de concentração do sal. Esse equipamento ainda foi utilizado na determinação dos dados de solubilidade do metano em soluções aquosas eletrolíticas (KIEPE *et al.*, 2003b) nas mesmas condições anteriores de temperatura e pressão, porém com molalidades do sal de até 8 mol/kg. Esses dados obtidos foram utilizados para determinar novos parâmetros de interação entre os grupos presentes e aplicados na equação PSRK acoplada ao modelo LIFAC para a predição do ELV de sistemas contendo eletrólitos. Além disso, os coeficientes de Henry foram calculados a partir dos dados experimentais e comparados aos resultados obtidos através dessa equação, apresentando desvios relativos na ordem de 3,51%.

CHAPOY *et al.* (2003a) apresentaram novas medidas de solubilidade da distribuição aquosa na fase vapor do sistema binário metano / água próximo às condições experimentais de formação de hidratos. Essas medidas foram obtidas através de um equipamento analítico estático, composto por um amostrador capilar pneumático acoplado a um diluidor exponencial. As isotermas do ELV e do equilíbrio vapor – hidrato foram determinadas a 283,08, 288,11, 293,11, 298,11, 303,12, 308,11, 313,12 e 318,12 K sob pressões de até 35 MPa. Esses oito conjuntos de dados foram modelados com a equação PR utilizando uma função alfa (TREBBLE E BISHNOI, 1987), as regras de mistura clássicas para fase vapor e a lei de Henry para a fase líquida. A distribuição da fase aquosa nas condições de formação do hidrato foi calculada utilizando o modelo de van der Waals e Platteeuw (VAN DER WAALS E PLATTEEUW, 1959), sendo os

Revisão Bibliográfica

dados obtidos bem representados e o modelo capaz de correlacioná-los.

CHAPOY *et al.* (2003b) através do mesmo aparato apresentado no trabalho anterior realizaram medidas experimentais da composição da fase vapor do sistema binário etano / água caracterizando o EF próximo às condições de formação de hidratos. Esses dados da fase vapor de ambos equilíbrios, líquido – vapor e hidrato – vapor, foram determinados em seis temperaturas distintas (278,08, 283,11, 288,11, 293,11, 298,11 e 303,11 K) sob pressões diferentes até a pressão de vapor do etano, caracterizando uma estreita faixa experimental. Todos os dados obtidos foram representados através da equação PR utilizando uma função α proposta por MATHIAS E COPEMAN (1983) e a regra de mistura MC-HV (HURON E VIDAL, 1979) que envolve o modelo de composição local NRTL e a lei de Henry para o comportamento da fase aquosa. A equação resultante, PR/MC-HV-NRTL, foi utilizada para ajustar os dados disponíveis na literatura, apresentando desvios relativos em torno de 5%.

Como último trabalho desse ano, WANG *et al.* (2003) determinaram a solubilidade do metano, etano e uma mistura gasosa desses gases em água pura e álcoois, bem como em soluções aquosas de metanol e etileno glicol, utilizando duas unidades PVT, simultaneamente. A faixa de temperatura estudada em todos os sistemas foi de 283,2 a 303,2 K e a faixa de pressão para o sistema CH_4 / H_2O e mistura gasosa / H_2O foi de 2 a 40 MPa, enquanto que para o sistema C_2H_6 / H_2O foi de 0,5 a 4,5 MPa. Os dados obtidos, embora em uma reduzida faixa de condições experimentais, apresentaram bons comportamentos do EF.

Já em 2004, MOHAMMADI *et al.* (2004) utilizando o equipamento reportado por CHAPOY *et al.* (2003a) apresentaram um novo conjunto de dados e uma modelagem termodinâmica para caracterização da quantidade de água em sistemas gasosos formados por metano / água e etano / água. As medidas experimentais desse

equilíbrio foram conduzidas em duas distintas e reduzidas condições experimentais na faixa de 282,98 a 313,32 K e pressões de até 2,846 MPa, e de 282,93 a 293,10 K e pressões de até 2,99 MPa. A equação PT modificada por VALDERRAMA (1990) – VPT – acoplada a uma regra de mistura independente de densidade foi utilizada na modelagem das fases fluidas. A fase hidrato foi modelada através da teoria de solução de van der Waals e Platteeuw (VAN DER WAALS E PLATTEEUW, 1959) aplicando os parâmetros potenciais de Kihara (TODIHI E KALORAZI, 1995). O conjunto de dados gerado foi comparado às predições calculadas por esse modelo termodinâmico, bem como ao de outros métodos preditivos, revelando um satisfatório ajuste qualitativo dos dados experimentais.

TELES (2004) avaliou a utilização do método acústico de ultra-som (US) na determinação do equilíbrio de fases do sistema contendo dióxido de carbono supercrítico e óleos pesados. O aparato experimental foi constituído de uma célula de equilíbrio à alta pressão e um transdutor de pressão de US, acoplado em uma janela acústica de polietileno de alta massa molar. O equipamento foi validado através da determinação de dados do equilíbrio para o sistema formado pelo dióxido de carbono e o hexadecano a 35 °C e para o sistema dióxido de carbono supercrítico e óleo pesado proveniente do Campo de Marlin (Bacia de Campos) na faixa de temperatura de 50 °C a 70 °C. Os resultados demonstraram que a determinação da transição do equilíbrio líquido-vapor foi facilmente detectada, porém algumas limitações foram identificadas na caracterização do equilíbrio líquido-líquido. Esse tipo de determinação facilita a caracterização de sistemas nos quais a mudança de fases não pode ser visualmente identificada.

CHAPOY *et al.* (2004a) apresentaram novos dados experimentais da solubilidade de dióxido de carbono em água na faixa de temperatura de 274,14 a 351,31

K e pressões de até 10 MPa, utilizando um método baseado na medida da pressão do ponto de bolha em condições isotérmicas no interior de uma célula PVT. Os dados obtidos foram comparados a dados presentes na literatura demonstrando a capacidade de aplicação da técnica utilizada. Na etapa de cálculos, a mesma modelagem apresentada no trabalho de MOHAMMADI *et al.* (2004) foi empregada, onde nesse estudo o coeficiente de fugacidade da água no estado sólido foi calculado pela correção da fugacidade de saturação da água a mesma temperatura através da correção de Poynting. Conforme MOHAMMADI *et al.* (2004), os dados reportados apresentaram-se qualitativamente satisfatórios apesar da estreita faixa de condições experimentais.

Em seqüência aos estudos anteriores, CHAPOY *et al.* (2004b) apresentaram novos dados de solubilidade para o sistema nitrogênio / água na faixa reduzida de temperatura de 274,18 a 363,02 K e pressão de até 7,16 MPa, utilizando um aparato analítico estático. Para modelar o ELV foi utilizada a equação VPT, combinada com regras de misturas independentes da densidade. Os dados da quantidade de água obtidos foram comparados a dados similares presentes na literatura e aos obtidos através da utilização da equação proposta, demonstrando um ajuste qualitativo satisfatório.

No mesmo ano, CHAPOY *et al.* (2004c) reportaram medidas experimentais e uma modelagem termodinâmica da solubilidade do metano e de uma mistura de hidrocarbonetos (CH₄ + C₂H₆ + C₄H₁₀) em água. Essas medidas foram conduzidas na faixa de temperatura de 275,11 a 313,11 K e pressões de até 18 MPa para o metano e para a mistura, na faixa de 278,14 a 213,12 K e pressões de até 12,6 MPa. A equação VPT com uma regra de mistura independente da densidade foi utilizada na modelagem das fases fluidas com os parâmetros de interação binários previamente determinados. Além desses dados, CHAPOY *et al.* (2004d) apresentaram 61 novos dados de solubilidade do propano em água na faixa de temperatura de 277,62 a 368,16 K e pressões reduzidas de até 3,92 MPa, utilizando na etapa de modelagem a mesma equação anterior (VPT) e obtendo um ajuste qualitativo satisfatório dos modelos aos dados gerados experimentalmente.

TSUJI *et al.* (2004) desenvolveram dois tipos de equipamentos experimentais para determinação da pressão do ponto de bolha em sistemas contendo dióxido de carbono supercrítico e o óleo lubrificante poliaquileno glicol (PAG-1). O primeiro aparato foi baseado em um método sintético estático apresentando uma célula de volume variável e uma janela de observação para identificação do ponto de bolha. Já o segundo equipamento apresentou característica dinâmica sendo acoplado a um densímetro para determinação da densidade da fase líquida. Para validar o aparato dados experimentais similares dos sistemas CO₂ / decano e CO₂ / PAG-1 foram obtidos na temperatura de 344,3 K e demonstraram-se bem próximos aos disponíveis na literatura. Na etapa de modelagem termodinâmica, esses dados experimentais foram correlacionados através da equação PR, apresentando um ajuste qualitativo satisfatório.

Por fim em 2004, VALTZ *et al.* (2004) determinaram novos dados para o ELV do sistema binário dióxido de carbono / água na faixa de temperatura de 278,2 a 318,2 K e pressões de até 8 MPa através de um equipamento analítico estático composto por dois amostradores capilares pneumáticos. Aplicaram três modelos distintos para representação desse novo conjunto de dados, onde o primeiro foi constituído pela equação PR incluindo regras de mistura clássicas, no segundo foi utilizada a mesma equação com duas regras de mistura – WS (Wong – Sandler) e HV – e, por fim, no terceiro empregada a equação de estado SAFT – VR (*statistical association fluid theory*) apresentada em VILLEGAS *et al.* (1997) e GALINDO (1998). Todos os modelos apresentaram uma representação satisfatória dos dados experimentais, onde o primeiro modelo permitiu uma melhor predição dos dados, o segundo revelou uma precisão maior na predição da composição da fase vapor em todas as temperaturas e o terceiro forneceu uma determinação similar ao primeiro modelo para a predição da solubilidade do dióxido de carbono. Entretanto, os dados experimentais apresentaram uma reduzida faixa de pressão.

No ano seguinte, SOMEYA *et al.* (2005) desenvolveram um aparato experimental estático composto de um vaso de altas pressões com três janelas circulares de observação e determinaram a solubilidade do dióxido de carbono em água em condições de baixas pressões, de 7 a 12 MPa, e temperaturas de 275,65 a 293,15 K. O efeito da pressão na presença de hidratos gasosos foi analisado e constatado que a solubilidade dos gás diminuía com a redução de temperatura e pressão frente à formação do hidrato, embora alguns trabalhos destacassem que a redução em elevadas condições de pressão e temperatura de 280 K não fosse observada na influência do hidrato.

Novos dados experimentais da solubilidade da água em metano e em uma mistura sintética gasosa (94% em mol de metano, 4% em mol de etano e 2% em mol de butano) foram reportados por CHAPOY *et al.* (2005), utilizando um equipamento analítico estático com amostrador para a fase vapor. Dados da quantidade de água em metano foram determinados na faixa estreita de temperatura de 277,8 a 297,9 K e em misturas sintéticas gasosas na faixa de 303,1 a 361,4 K, ambas em pressões de até 4,9 MPa. A modelagem termodinâmica dos dados experimentais foi similar à realizada por eles em trabalho anterior (CHAPOY, 2004a). O conjunto de dados apresentado foi comparado às predições calculadas, bem como ao de outros métodos preditivos apresentando resultados qualitativamente satisfatórios.

Através de um equipamento estático, conhecido como aparato de Cailletet (PETERS *et al.*, 1987), as solubilidades de dióxido de carbono em água e em soluções

aquosas de sulfato de sódio foram determinadas por BERMEJO *et al.* (2005). Para o sistema CO_2 / H_2O , os dados experimentais foram determinados na faixa de temperatura de 296,73 a 367,86 K e pressões de até 5,07 MPa e para o sistema na presença do sulfato ($CO_2 / H_2O / H_2SO_4$), na faixa de temperatura de 288 a 368 K, pressões de até 13,11 MPa e concentração do sal de 0,25, 0,5 e 1 mol/kg. Conforme esperado, os dados obtidos demonstraram que a pressão de equilíbrio aumentou com a temperatura e com a concentração de dióxido de carbono, sendo detectado o efeito *salting-out*. Os dados obtidos foram comparados a outros dados da literatura, revelando bons resultados em uma estreita faixa de temperatura. Para modelagem do sistema $CO_2 / H_2O / Na_2SO_4$ a equação AP (Anderko – Pitzer), apresentada por ANDERKO E PITZER (1993) e desenvolvida para sistemas aquosos salinos em elevadas temperaturas e pressões, foi adotada, apresentando melhores resultados nas correlações dos dados analisados do que nas predições.

Ainda em 2005, através de um equipamento experimental estático e com amostrador em série, PORTIER E ROCHELLE (2005) quantificaram a solubilidade do dióxido de carbono em água pura e em soluções salinas aquosas com a composição típica da água do Mar do Norte. Os dados foram obtidos na faixa de temperatura de 291 a 393 K e na faixa de pressão de 8 a 12 MPa. Alguns sistemas foram formados por uma mistura hipotética de sais, onde o principal constituinte salino foi o cloreto de sódio. Posteriormente, um modelo termodinâmico foi utilizado para descrever o comportamento do EF dos sistemas formados por $CO_2 / H_2O / NaCl$. As equações utilizadas foram a equação de estado de Peng-Robinson para a fase gasosa e a equação proposta por HELGESON *et al.* (1981) para a fase líquida, revelando uma capacidade preditiva dessa equação quando comparada aos dados experimentais obtidos, bem como a outros dados disponíveis na literatura, na faixa de temperatura de 273 a 573 K,

Revisão Bibliográfica

pressões de 0,1 a 30 MPa e concentrações do sal de até 3 molal.

No ano seguinte, o ELV dos sistemas binários dióxido de carbono / octano e dióxido de carbono / decano foram determinados experimentalmente por GALLEGOS *et al.* (2006) utilizando um aparato experimental analítico estático constituído basicamente por uma célula de equilíbrio projetada para operar em pressões de até 60 MPa. Os dados para o sistema CO_2 / C_8H_{18} foram determinados nas temperaturas de 322,39, 348,25 e 372,53 K e pressões de até 14 MPa e para o sistema CO_2 / $C_{10}H_{22}$ nas temperaturas de 319,11, 344,74 e 372,94 K e pressões de até 16 MPa, caracterizando uma reduzida faixa de condições experimentais. Ambos sistemas foram modelados com a equação de estado PR juntamente às regras de mistura original e WS, apresentando a segunda um melhor ajuste dos dados experimentais.

MOHAMMADI *et al.* (2006) geraram um conjunto de dados da quantidade de água presente em amostras de gás natural para ajustar os parâmetros de interação binária de uma equação de estado capaz de descrever o comportamento desses sistemas. Através de um equipamento estático analítico, como descrito por CHAPOY *et al.* (2005), novos dados para o sistema metano (94%), etano (4%) e n - butano (2%) / água a baixas temperaturas (277,82 – 292,88 K) e pressões de até 3,028 MPa foram obtidos. Para descrever o comportamento do EF desse sistema um modelo termodinâmico foi proposto ajustando os parâmetros de interação binária e os resultados experimentais e teóricos comparados à equação VPT. O ajuste qualitativo satisfatório obtido demonstrou uma boa performance do modelo proposto, porém deve-se destacar uma faixa experimental reduzida para os dados apresentados. Além desses dados, medidas presentes em outras referências foram utilizadas para validação do modelo termodinâmico.

No mesmo ano, YARRISON et al. (2006) apresentaram dados de solubilidade

da água em metano e etano supercríticos na faixa de temperatura de 310 a 477 K e pressão de 3,4 a 110 MPa, utilizando uma célula de medição contínua bem como técnicas gravimétricas e resistência elétrica na determinação dessas solubilidades na fase gasosa. A modelagem desses dados foi realizada combinando a equação de estado PR para o cálculo das fugacidades e do coeficiente de fugacidade da fase vapor e a equação de Wagner e Pruss (WAGNER E PRUSS, 2002) para o cálculo das fugacidades da fase aquosa ou através de uma modificação na correlação proposta por Saul e Wagner (SAUL E WAGNER, 1987). O modelo proposto apresentou uma boa correlação dos dados obtidos utilizando apenas um único parâmetro de ajuste, no entanto aplicado somente a esses dois tipos de sistemas estudados.

DALMOLIN *et al.* (2006) reportaram a solubilidade do dióxido de carbono e as constantes de Henry para esse gás em água pura, etanol puro e suas misturas, através de um equipamento para caracterização do EF. As composições da fase líquida foram calculadas através de um procedimento iterativo considerando a validade da lei de Henry para a fugacidade do componente mais leve. Os dados de solubilidade do gás foram obtidos na faixa de temperatura de 288 a 323 K e pressões de 0,47, 0,54 e 0,61 MPa para os sistemas com água pura, etanol puro e uma mistura de água / etanol, respectivamente. Deve-se destacar que essa metodologia experimental foi empregada na presente pesquisa de Tese de Doutorado, porém com algumas modificações pertinentes.

Por último em 2006, KOSCHEL *et al.* (2006) estudaram a dissolução do dióxido de carbono em água e em soluções aquosas de cloreto de sódio através da medida experimental da variação de entalpia de mistura de um gás supercrítico na fase líquida. As medidas foram realizadas utilizando um calorímetro isotérmico com fluxo diferencial de calor, adaptado a partir de determinações com gases ácidos (H₂S e CO₂) em água e soluções salinas. Esses calor de misturas foram medidos na faixa de temperatura de 323,1 a 373,1 K, em pressões de até 20 MPa, regiões onde a solução encontrava-se insaturada ou saturada por um gás e concentrações de sal de até 3 molal. Por fim, o efeito *salting – out* não variou significativamente com a temperatura, pressão e concentração da solução salina, revelando uma boa representação dos dados experimentais obtidos frente a outros trabalhos da literatura. Além disso, foi possível determinar o limite de solubilidade desses gases através da medida calorimétrica.

Um ano depois, FONSECA *et al.* (2007) propuseram um aparato experimental onde uma amostra de líquido era colocada em contato com uma determinada quantidade de gás e quando o equilíbrio era atingido, pela variação de volume da fase gasosa, a solubilidade do gás na fase líquida determinada. Esse aparato foi desenvolvido baseado nos equipamentos apresentados por BEN-NAIM *et al.* (1963) e TOMINAGA *et al.* (1986), permitindo a determinação da solubilidade em pressões abaixo da pressão atmosférica e em condições ambiente. Sua validação foi realizada determinando as solubilidades de dióxido de carbono e óxido nitroso em água na faixa de temperatura de 290 a 303 K, apresentando resultados qualitativamente satisfatórios nessa estreita faixa de dados analisada.

Já em 2008, QIN *et al.* (2008) utilizaram um equipamento hidrotérmico similar ao descrito por SEYFRIED *et al.* (1979) para determinação de medidas do ELV do sistema ternário $CO_2 / CH_4 / H_2O$ nas reduzidas faixas de temperatura de 324,3 a 375,5 K e pressões de 30,4 a 49,9 MPa. Inicialmente, realizaram medidas do ELV dos sistemas binários CO_2 / H_2O na faixa de temperatura de 323,6 a 375 K e pressões de 30,1 a 49,9 MPa e do sistema CH_4 / H_2O na faixa de temperatura de 324,2 a 375,8 K e pressões de 30,1 a 49,9 MPa. Os resultados demonstraram que os valores de solubilidade do metano e do dióxido de carbono no sistema ternário apresentaram desvios elevados quando comparados aos obtidos através da interpolação dos valores para a constante de Henry dos respectivos sistemas binários.

NAIDOO *et al.* (2008) propuseram um novo aparato experimental de volume variável para determinação do ELV em elevadas pressões utilizando um método de determinação estático. Esse equipamento apresentava uma janela de safira para visualização do equilíbrio, uma técnica de amostragem utilizando cromatografia gasosa capaz de operar em uma faixa de temperatura entre 250 e 393 K e faixa de pressão desde a pressão absoluta de vácuo até 12 MPa. Isotermas do ELV para os sistemas CO_2 / tolueno (283,25, 311, 15, 353,15 e 391,45 K), CO_2 / metanol (263,15, 273,15, 313,15, 363,15 e 373,15 K) e propano / propanol-1 (323,15, 378,15 e 398,15 K) foram obtidas para validação do equipamento proposto.

A Tabela 1 destaca, de forma sucinta, os dados experimentais encontrados na literatura para cada sistema analisado nos diversos trabalhos, bem como as suas faixas de temperatura e pressão. Deve-se destacar que o tipo de comportamento observado na grande maioria dos trabalhos destacados foi o ELV, sendo muito pouco observado ELL (equilíbrio líquido – líquido) e EHV (equilíbrio hidrato – vapor).

Tabela I – Resul	no dos dados experiment	tais encontrados na l	iteratura.
Referência	Sistema	T (K)	P (MPa)
		573,2	12,1-30,3
HARUKI et al.	$H_2O / C_{10}H_{22}$	593,2	15,4-25,1
2000	H_2O/C_7H_8	553.2	15.1 - 30.1
	2 1 0	573.2	17.2 - 30.5
		311.05.327.75	
HORSTMAN et al	CO_2/C_2H_2	344 43 361 15	Até 7 5
2000	CO_2/C_3H_8	311.09.344.43	$\Delta t \neq 8$
2000		301 60	All 0
DAMDEDCED at al		202 222 252	
	CO_2/H_2O	323, 333, 333	1,10 - 14,11
2000		515, 555, 555	
	O_2 / metanol,	200 200	
FISCHER E WILKEN	propanol, eter, C_8H_{18}	298 - 398	Até 10
2001	N_2 / etanol, propanol,	298 – 398	
	furano		
CAI et al.	gás / óleo	723 15	30
2001	gus / 0100	725,15	50
PEDERSEN <i>et al</i> .	H_2O /	308,15, 393,15,	70 e 100
2001	gás condensado	473,15	70 € 100
SERVIO E			
ENGLEZOS	CO_2/H_2O	273 - 284	2 - 6
2001			
	CO ₂ / H ₂ O		
KIEPE <i>et al</i> .	$CO_2 / H_2O / NaCl$	313 - 393	Até 10
2002	$CO_2 / H_2O / KCl$		
NIEUWOUDT E	$\frac{CO_2(\text{supercrit})/C_{12}}{CO_2(\text{supercrit})/C_{12}}$		
RAND	C_{12} (Supercent) / C_{12} ,	313 - 367	Até 36
2002	$C_{16}, C_{20}, C_{24}, C_{28}$	515 507	<i>I</i> I C 50
KIM at al	$\frac{CH_{1}/H_{2}}{CH_{2}/H_{2}}$		23 166
2003	$C_{14}/H_{2}O$	298,15	2,3 - 10,0 1 / 3 0
	$\frac{C_2\Pi_6/\Pi_2O}{CO/N_2NO}$		1,4 - 5,9
$\begin{array}{c} \text{KIEPE et al.} \\ 2002_{2} \end{array}$	$CO_2/INAINO_3$	313 - 373	Até 10
2005a	CO_2/KNO_3		
KIEPE <i>et al</i> .	CH ₄ / eletrólitos	313 - 373	Até 10
20036			
		283,08, 288,11,	
CHAPOY <i>et al</i> .	CH_4 / H_2O	293,11, 298,11,	Até 35
2003a		303,12, 308,11,	110 55
		313,12, 318,12	
CHADON at al		278,08, 283,11,	
	C_2H_6/H_2O	288,11, 293,11,	Até $P_{C,H}^{vap}$
20036		298,11, 303,11	02116
	CH_4 , C_2H_6		
WANG et al.	$CH_4+C_2H_6/H_2O$ ou	283.2 - 303.2	0.5 - 40
2003	Álcoois	,	,- · · ·
MOHAMMADI et al	CH ₄ / H ₂ O	282.98 - 313.32	Até 2.846
2004	C_2H_6/H_2O	282.93 - 293.10	Até 2.99
 TELES	$\frac{C_{2}}{C_{1}} \frac{C_{1}}{C_{1}} \frac{H_{2}}{H_{2}}$	308 - 343	
2004	CO_2 (i) CO_3	323 - 343	Até 20
2001			

Tabela 1 – Resumo dos dados experimentais encontrados na literatura.

Tabela 1 – Continuação.			
Referência	Sistema	T (K)	P (MPa)
CHAPOY <i>et al.</i> 2004a	CO_2/H_2O	274,14 - 351,31	0,19 - 9,333
CHAPOY <i>et al.</i> 2004b	N_2 / H_2O	274,18 - 363,02	Até 7,16
CHAPOY <i>et al.</i> 2004c	C_3H_8 / H_2O	277,62 - 368,16	Até 3,915
CHAPOY <i>et al.</i> 2004d	CH ₄ / hidrocarbonetos	275,11 - 313,11	Até 18
TSUJI <i>et al.</i> 2004	$CO_2 / C_{10}H_{22}$	344,3 - 344,5	Até 11,59
VALTZ et al. 2004	CO_2/H_2O	278,2 - 318,2	Até 8
SOMEYA et al. 2005	CO_2 / H_2O	275,65 - 293,15	7 – 12
CHAPOY <i>et al.</i> 2005	CH ₄ / H ₂ O CH ₄ / C ₂ H ₆ / C ₄ H ₁₀	277,8-297,9 303,1-361,4	Até 4,9
BERMEJO et al. 2005	CO_2 / $\mathrm{H}_2\mathrm{O}$ / $\mathrm{Na}_2\mathrm{SO}_4$	288 - 368	Até 14
PORTIER E ROCHELLE 2005	CO ₂ / H ₂ O CO ₂ / H ₂ O / sal	291 - 393	8 – 12
GALLEGOS et al. 2006	CO ₂ / C ₈ H ₁₈ CO ₂ / C ₁₀ H ₂₂	322 – 372 319 – 372	2,013 - 13,772 3,485 - 16,060
MOHAMMADI <i>et al.</i> 2006	CH ₄ / H ₂ O CH ₄ / H ₂ O CH ₄ / C ₂ H ₆ / C ₄ H ₁₀	275,11 - 313,11 277,8 - 297,6 277,82 - 292,88	$\begin{array}{r} 0,973-17,998\\ 0,491-4,374\\ 0,501-3,028 \end{array}$
YARRISON <i>et al.</i> 2006	${ m H_{2}O}/{ m CH_{4}}\ { m H_{2}O}/{ m C_{2}H_{6}}$	310 - 477	3,45 - 110,32
DALMOLIN <i>et al.</i> 2006	CO_2 / H_2O	288 - 323	0,092 - 0,473
KOSCHEL et al. 2006	CO ₂ / H ₂ O CO ₂ / H ₂ O / NaCl	323,1 - 373,1	Até 20
FONSECA et al. 2007	CO ₂ / H ₂ O NO / H ₂ O	290 - 303	0,1
QIN <i>et al.</i> 2008	CO ₂ / H ₂ O CH ₄ / H ₂ O CO ₂ / CH ₄ / H ₂ O	323,6 - 375 324,2 - 375,8 324,3 - 375,5	$\begin{array}{c} 30,1-49,9\\ 30,1-49,9\\ 30,4-49,9\end{array}$
NAIDOO <i>et al.</i> 2008	CO ₂ / tolueno CO ₂ / metanol propano / 1-propanol	250 - 393	Até 12

2.2. PARTE TEÓRICA

Frente às limitações da equação de estado PR na determinação do equilíbrio de certos tipos de sistemas, WU E PRAUSNITZ (1998) identificaram duas dessas limitações e propuseram uma extensão capaz de caracterizar o comportamento de misturas de hidrocarbonetos, água e sal. A equação PR foi utilizada na determinação da energia de Helmholtz para um sistema de referência e então somada às contribuições adicionais referentes às ligações de hidrogênio e às cargas elétricas das interações iônicas existentes computadas pela equação SAFT. Dados experimentais de sistemas constituídos por água / hidrocarboneto (metano, etano, propano e hexano), água / cloreto de sódio e metano / água / cloreto de sódio foram estudados segundo o modelo proposto em estreitas faixas de temperatura e pressão. Os resultados demonstraram que a equação apresentada (PR + SAFT) revelou um bom ajuste qualitativo para misturas líquidas de água / hidrocarbonetos ricas no segundo componente, porém nas misturas ricas em água não foi corretamente representado.

Em 2000, HORSTMAN *et al.* (2000) obtiveram dados experimentais para a região de condições críticas do sistema CO_2 / C_2H_6 na faixa de temperatura de 230 a 298,15 K e pressões de até 7 MPa, onde o modelo PSRK foi utilizado para descrever o comportamento termodinâmico desses dados e modelar outros dados disponíveis na literatura para os sistemas CO_2 / C_3H_8 e CO_2 / C_4H_{10} . Os resultados demonstraram que para sistemas contendo dióxido de carbono / alcanos (etano, propano, butano e hexadecano) foi possível correlacionar os dados do EF utilizando-se o modelo PSRK com o mesmo grupo de parâmetros de interação obtidos para o sistema CO_2 / C_2H_6 . Entretanto, a predição do ELV desses sistemas não revelou resultados satisfatórios, necessitando de uma estimação individual dos parâmetros de interação binária.

Duas equações de estado, a primeira, CPA (*Cubic Plus Association*) proposta por KONTOGEORGIS *et al.* (1996) que computa as associações das substâncias através de cálculos de contribuições de grupos, e a segunda, a equação SAFT modificada por HUANG E RADOSZ (1990 e 1991), foram aplicadas por VOUTSAS *et al.* (2000) para prever o EF do sistema água, n-alcanos e 1-alcenos, bem como o equilíbrio à baixas e elevadas pressões de misturas binária água / hidrocarboneto. Sistemas como H₂O / CH₄, H₂O / C₂H₆ e H₂O / C₃H₈ tiveram seus dados experimentais correlacionados por ambas equações na faixa de temperatura de 310,93 a 510,93 K e pressões de até 70 MPa. Os resultados demonstraram que o aumento de complexidade do termo físico da equação de estado SAFT frente à equação CPA não ofereceu melhorias na modelagem de sistemas com comportamentos não ideais.

Ainda em 2000, ISLAM *et al.* (2000) propuseram uma equação empírica para descrever a relação da solubilidade com a pressão parcial dos sistemas amônia / água, cloro / água, dióxido de enxofre / água e ácido clorídrico / água nas temperaturas de 283, 293 e 313 K para os três primeiros sistemas e na temperatura de 293 K para o último. Dentre os sistemas estudados, somente o sistema HCl / H₂O não apresentou um tipo de sorção de Henry devido à alta polaridade do gás, necessitando assim da adição de um termo de concentração para validação do modelo proposto na temperatura de 293 K, ajustando eficientemente os dados de solubilidade da literatura.

PASSARELLO *et al.* (2000) utilizaram a equação SAFT original proposta por CHAPMAN *et al.* (1990) para modelar a solubilidade mútua de sistemas formados por dióxido de carbono / alcanos (n-C₃ até n-C₄₄), considerando que os alcanos normais são formados por segmentos idênticos, mas em diferentes quantidades. Através dessa hipótese, somente três parâmetros foram necessários para toda série de n-alcanos e outros três para o dióxido de carbono. Para as misturas, dois parâmetros de interação

Capítulo 2

binária adicionais foram utilizados no modelo e uma extensão para sistemas binários contendo CO_2 / alcanos ramificados foi apresentada, onde todos os cálculos realizados em termos das pressões parciais foram qualitativamente satisfatórios.

No ano seguinte, GROSS E SADOWSKI (2001) desenvolveram uma expressão de dispersão para cadeias de moléculas aplicando a teoria de perturbação, ajustando suas constantes às propriedades dos compostos puros de alcanos normais. Essa equação de estado ficou conhecida como PC-SAFT (*perturbed chain* - SAFT) e foi desenvolvida utilizando os mesmos termos de cadeia e de associação presentes na equação original de SAFT, incorporando a teoria de BARKER E HENDERSON (1967) ao fluido de referência de cadeia rígida. Os parâmetros dessa equação foram determinados para 78 hidrocarbonetos distintos e quando aplicada ao cálculo do ELV de misturas apresentou características preditivas e boas correlações qualitativas para os dados experimentais de sistemas formados por hidrocarbonetos. Além disso, comparada à equação SAFT proposta por HUANG E RADOSZ (1991) e à equação de estado PR, a equação proposta apresentou melhores resultados, sendo desenvolvida uma extensão para

LI *et al.* (2001) acoplaram o modelo LIFAC proposto por LI E POLKA (1994) à equação de estado PSRK na determinação do EF de sistemas eletrolíticos. Esse modelo realiza o cálculo da energia de excesso presente nas regras de misturas através de um método de contribuição de grupos. Quatro novos grupos iônicos (Na⁺, NH₄⁺, Ca²⁺ e Cl⁻) foram adicionados aos 73 grupos não iônicos já disponíveis na literatura e o comportamento de sistemas formados por um gás (CO₂, CH₄ ou N₂), água e um sal (NH₄Cl, NaCl ou CaCl₂) foi analisado. Os resultados da solubilidade dos gases em sistemas aquosos eletrolíticos foram qualitativamente satisfatórios dentro das faixas experimentais estudadas: temperatura de 290 a 530 K, pressão de 0,1 a 70 MPa e

Revisão Bibliográfica

concentração do sal de 0 a 6 M.

No mesmo ano, HARUKI *et al.* (2001) propuseram uma equação de estado baseada em um método de contribuição de grupos adotando a teoria de ISHIZUKA *et al.* (1980) que utilizava uma aproximação de Flory – Huggins nos cálculos da densidade da fase líquida e do calor de vaporização dos hidrocarbonetos próximos às suas temperaturas críticas. Os dados experimentais do EF do sistema contendo água / hidrocarboneto / álcool foram modelados pela equação proposta em condições de elevadas temperaturas e pressões, revelando bons resultados comparados aos dados da literatura.

NASRIFAR E MOSHFEGHIAN (2001) apresentaram uma equação de estado cúbica com dois parâmetros dependentes da temperatura e propuseram novos métodos para calcular os parâmetros de atração e de co-volume existentes. A determinação da pressão de vapor desses compostos especialmente em regiões próximas ao ponto crítico e o cálculo da pressão do ponto de bolha de misturas binárias (N_2 / CH₄ e CO₂ / C₄H₁₀) apresentaram resultados qualitativamente satisfatórios quando comparados a dados da literatura. Essa equação foi aplicada a hidrocarbonetos e algumas misturas de gases contendo oxigênio, porém a determinação de propriedades térmicas não revelou bons resultados.

YANG E ZHONG (2001) propuseram uma modificação no modelo PSRK para aumentar sua capacidade preditiva do ELV de sistemas altamente assimétricos através da introdução de um fator na regra de mistura MHV1 (MICHELSEN, 1990) que computasse a assimetria molecular. Esse modelo foi testado para vários sistemas binários e ternários entre dióxido e monóxido de carbono, hidrogênio e alcanos normais até o C₄₄, apresentando resultados qualitativamente mais satisfatórios do que utilizando a regra de mistura LCVM (*Linear Combinatorial Vidal and Michelsen*) proposta por BOUKOUVALAS et al. (1994) e a equação PSRK modificada (LI et al., 2001).

O cálculo dos equilíbrios líquido – vapor, líquido – líquido e sólido – líquido para misturas com eletrólitos foram determinados por SANTOS JR. (2002) desenvolvendo uma extensão do modelo UNIQUAC para eletrólitos segundo a convenção simétrica. Esse modelo caracterizou a não idealidade da fase líquida para diversos sistemas solvente / sal e mistura de solventes / sal, determinando um único conjunto de parâmetros de interação binária para cada tipo de sistema. Os resultados obtidos por esse modelo apresentaram a mesma ordem de grandeza quando comparados às determinações utilizando o modelo NRTL estendido para eletrólitos.

Uma vez que a solubilidade mútua de hidrocarbonetos e água pura pode ser caracterizada com eficiência através de uma equação de estado cúbica acoplada a uma regra de mistura não clássica para o parâmetro de interação binária, SORENSEN *et al.* (2002) utilizaram a equação SRK modificada por PENELOUX *et al.* (1982) juntamente com a regra de mistura HV para descrever o EF de sistemas gás / óleo, já que a formação de água afeta diretamente na solubilidade de gases em líquidos. Entretanto, nesse tipo de sistema, água de produção junto com óleo e gás revela certas quantidades de compostos salinos, os quais influenciam diretamente nessa solubilidade. Assim, a modelagem termodinâmica descrita foi utilizada para computar a presença de sais como o cloreto de sódio, cloreto de potássio e cloreto de cálcio no EF, obtendo resultados qualitativamente satisfatórios dentro da reduzida faixa experimental analisada.

AHLERS E GMEHLING (2002b) desenvolveram uma nova equação de estado baseada no método de contribuição de grupos para suprir as deficiências apresentadas pela equação PSRK. Esse novo modelo consistia na combinação de quatro termos: o primeiro referente à equação PR para volumes deslocados – VTPR (AHLERS E GMEHLING, 2001 e 2002a) – representando o volume do líquido; o segundo, uma

função α (TWU *et al.*, 1995) para extrapolação da temperatura; o terceiro, uma regra de mistura baseada no modelo UNIFAC para o cálculo da energia em excesso livre de Gibbs; e por fim, o quarto destinado aos parâmetros de interação dependentes da temperatura, sendo esses ajustados através de dados ELV disponíveis na literatura. Esse novo modelo foi analisado para sistemas formados por alcanos e diferentes gases (CH₄, CO₂, C₂H₆, CO e H₂S), onde os resultados comparados à equação PSRK apresentada por HOLDERBAUM E GMEHLING (1991) e à modificada por LI *et al.* (2001) revelaram uma melhor caracterização do equilíbrio para os sistemas assimétricos.

Utilizando uma nova regra de mistura (NM), NASRIFAR E MOSHFEGHIAN (2002a) calcularam a solubilidade mútua em sistemas formados por água e hidrocarbonetos através de três equações diferentes (SRK, PR e NM). Essa nova regra foi desenvolvida baseada na regra de mistura de van der Waals para o parâmetro de energia atrativa considerando as interações hidrofóbicas na fase rica em água, não caracterizando assim uma regra de mistura quadrática, bem como não satisfazendo a condição limite de baixa densidade. Para cada sistema binário, de três a quatro parâmetros de interação foram necessários para representar o ELL, apresentando um consistente ajuste aos dados experimentais.

Ainda em 2002, NASRIFAR E MOSHFEGHIAN (2002b) utilizaram a equação NM (NASRIFAR E MOSHFEGHIAN, 2001) para prever o ELV de misturas multicomponentes. As regras de misturas de van der Waals foram utilizadas e nenhum parâmetro para os compostos puros necessitou de ajuste. Os sistemas estudados eram formados por CO₂, CO e alguns hidrocarbonetos em água, apresentando valores para as solubilidades calculadas bem próximos aos dados experimentais em reduzidas faixas de temperatura e pressão com desvios absolutos máximos iguais a 8,5%.

Um ano depois, SPYCHER et al. (2003) apresentaram um procedimento direto

para o cálculo da composição do EF entre o dióxido de carbono comprimido e a água, baseado no equacionamento de potenciais químicos e utilizando a equação de estado RK (REDLICH E KWONG,1949) para expressar o desvio da idealidade de misturas entre dióxido de carbono e água. Esse método determinou novos parâmetros de interação para a mistura CO_2 / H_2O , bem como a solubilidade mútua entre dióxido de carbono e água em função da temperatura. Dados da solubilidade mútua dessas substâncias foram utilizados na faixa de temperatura de 288 a 373 K e valores de pressão de até 60 MPa, apresentando resultados similares a outros estudos da literatura.

DUAN E SUN (2003) apresentaram um modelo termodinâmico para o cálculo da solubilidade de dióxido de carbono em água pura e em soluções aquosas de cloreto de sódio na faixa de temperatura de 273 a 533 K, pressões de 1 a 200 MPa e concentração iônica de 0 a 4,3 molal. Esse modelo foi baseado em uma teoria específica de interações de partículas para a fase líquida (PITZER, 1973) e para fase vapor foi utilizado a equação de estado proposta por DUAN *et al.* (1992). Além disso, uma capacidade do modelo em prever a solubilidade do dióxido de carbono em outros sistemas, como $CO_2 / H_2O / CaCl_2 e CO_2 / H_2O_{(mar)}$ foi analisada, não sendo necessário um novo ajuste dos parâmetros para esses dados experimentais.

SOLMS *et al.* (2003) realizaram duas modificações no modelo PC-SAFT (GROSS E SADOWSKI, 2001) visando simplificar os cálculos de propriedades do EF para sistemas associados e não associados. A primeira modificação consistia na proposição de uma nova expressão para o cálculo da função de distribuição radial e a segunda, uma equação para a determinação da energia de Helmholtz reduzida. Sistemas do tipo solvente / polímero foram os mais focados nesse estudo, porém sistemas como $CH_4 / C_2H_6 e CH_4 / C_{12}H_{26}$ também tiveram seus comportamentos modelados. Os resultados obtidos encontraram-se bem próximos aos obtidos por equações de estado tradicionais, porém uma redução no tempo computacional de cálculo foi observada.

Também em 2003, POLISHUK *et al.* (2003a) desenvolveram uma abordagem semi – preditiva do diagrama de fases global (GPDA) originalmente proposta por VAN KONYNENBURG E SCOTT (1980), onde essa necessitava apenas de dois a três dados experimentais de um composto para prever o comportamento completo de sua série homóloga. Essa abordagem utilizava a equação de estado desenvolvida por POLISHUK *et al.* (2000) incorporando uma expressão em função da temperatura para o parâmetro de colisão. Essa metodologia foi comparada às equações de estado LCVM e PSRK para sistemas formados por dióxido de carbono e alcanos pesados. Os resultados demonstraram que essas duas últimas equações apresentaram boas performances para correlação dos dados, porém não para sua predição. Já a abordagem GPDA apresentou resultados qualitativamente satisfatórios para correlação e predição de ambos os equilíbrios. Posteriormente, POLISHUK *et al.* (2003b) compararam a abordagem GPDA aos modelos PSRK e LCVM para a caracterização do EF de sistemas CH₄ / nalcanos, obtendo resultados similares aos apresentados no trabalho anterior.

Frente a uma extensa quantidade de dados experimentais da solubilidade de dióxido de carbono em água pura presente na literatura, DIAMOND E AKINFIEV (2003), inicialmente, aplicaram testes de consistência termodinâmica a esses dados e detectaram 158 dados inconsistentes no universo de 520 pontos experimentais analisados. Posteriormente, um modelo termodinâmico para determinação da solubilidade do CO_2 em água pura foi proposto baseado na lei de Henry e após avaliar sua performance, uma correção empírica em função da concentração de dióxido de carbono e da temperatura foi apresentada para uma boa determinação dos dados experimentais selecionados.

Uma vez que inúmeros modelos termodinâmicos presentes na literatura

destinados à caracterização da solubilidade de gases em compostos orgânicos a elevadas condições experimentais não realizam a extrapolação de dados experimentais, GHOSH *et al.* (2003) avaliaram a capacidade da equação PC-SAFT em correlacionar e prever a solubilidade de gases (H₂, CO, CH₄ e C₂H₆) em hidrocarbonetos (alcanos e alcenos). Um único parâmetro de interação binária foi obtido em elevadas condições experimentais, independendo do número de carbonos e da temperatura na maioria dos casos para cada par gás / série homóloga estudado. Os resultados demonstraram que essa equação foi capaz de modelar corretamente dados de solubilidade desse tipo de sistema.

No ano seguinte, GARCIA *et al.* (2004) testaram a aplicabilidade da equação PC-SAFT para cálculos de propriedades de compostos puros, misturas de solvente e gases, ELL e ELV de sistemas poliméricos. Além disso, aplicaram essa equação na determinação do EF, do comportamento PVT e do fenômeno crítico de misturas de dióxido de carbono e hidrocarbonetos (C_2 a C_{40}), detectando uma predição qualitativa satisfatória frente aos dados experimentais utilizados.

PRADO (2004) apresentou uma nova alternativa para a predição da solubilidade do dióxido de carbono em polímeros, utilizando um modelo de coeficiente de fugacidade calculado por equações de estado cúbicas (SRK ou PR) para definir a não idealidade da fase rica em dióxido de carbono e um modelo de coeficiente de atividade para a fase polimérica, calculado pelo método de contribuição de grupos UNIFAC. Uma correlação para a fugacidade de referência do gás foi proposta baseada na equação de PRAUSNITZ E SHAIR (1961) para cálculos em temperaturas superiores a temperatura crítica do dióxido de carbono. Os resultados apresentaram-se satisfatórios para a predição da solubilidade desse gás em diversos polímeros e misturas poliméricas.

POLISHUK et al. (2004) propuseram um método para extensão do modelo

GPDA (POLISHUK *et al.*, 2003a) aplicado a sistemas com alcanos pesados, sendo baseado em dados dos componentes puros disponíveis no DIPPR – *Design Institute for Physical Property Data* – desenvolvido por DAUBERT *et al.* (1989 – 2002). Sistemas formados por misturas de hidrocarbonetos pesados foram estudados e através dos resultados foi possível observar ambas as equações, GPDA modificada e PSRK, foram capazes de prever os dados experimentais de sistemas simétricos. Entretanto, a complexidade do modelo GPDA quando comparado à equação PSRK justifica sua capacidade em descrever o comportamento de sistemas assimétricos, permitindo a predição de ambos os conjuntos de dados, crítico e subcrítico, mesmo para sistemas extremamente assimétricos, como propano e hexatetracontano.

Ainda em 2004, VOUTSAS *et al.* (2004) a fim de solucionar problemas na predição do EF em elevadas temperaturas e predições incorretas do calor de mistura utilizando uma regra de mistura com o modelo UNIFAC independente de temperatura, propuseram uma união da equação de estado t-mPR (MAGOULAS *et al.*, 1990) a esse modelo, porém com os parâmetros de interação dependentes linearmente da temperatura. A performance do modelo proposto (UMR-PRU) foi avaliada utilizando os parâmetros de interação do modelo UNIFAC disponíveis na literatura e os parâmetros obtidos nesse trabalho para os gases estudados aos pares na determinação do ELV, ELL, ELLV (equilíbrio líquido – líquido – vapor) e ESV (equilíbrio sólido – vapor). Os resultados apresentaram-se qualitativamente satisfatórios tanto na correlação quanto na predição de sistemas com diversos graus de assimetria e não idealidade, incluindo sistemas poliméricos.

Para estender a aplicabilidade da equação PC-SAFT, SÁNCHEZ *et al.* (2004) a empregaram para descrever o ELV de sistemas formados por nitrogênio / hidrocarbonetos normais e ramificados. Os resultados obtidos revelaram a capacidade

do modelo de correlacionar os dados dos sistemas binários e prever os dados sistemas ternários e quaternários, utilizando apenas os parâmetros de interação obtidos para os sistemas mais simples (binários).

Como último trabalho em 2004, GAO *et al.* (2004) descreveram o ELV de sistemas assimétricos através da equação PT acoplada a uma nova regra de mistura assumindo que a energia de Helmholtz em excesso na pressão infinita fosse considerada igual a zero. Com apenas um único parâmetro independente de temperatura, essa nova regra de mistura foi testada para diversos sistemas assimétricos, binários e ternários, formados pelo C₂H₄, CO, CO₂ ou CH₄ / alcanos, obtendo resultados mais próximos dos dados experimentais quando confrontados às regras de misturas MHV1 (P \rightarrow 0), LCVM (P \rightarrow P^{REF}) e van der Waals.

Um ano mais tarde, SPYCHER *et al.* (2005) estenderam as correlações por eles apresentadas (SPYCHER *et al.*, 2003) para a solubilidade mútua entre dióxido de carbono / água, incluindo o efeito de sais cloretos no comportamento das substâncias presentes na fase líquida. Isso foi feito através da inserção na formulação original de um termo para o cálculo do coeficiente de atividade do dióxido de carbono aquoso na presença de sais, como o cloreto de sódio. Os melhores resultados foram obtidos utilizando os modelos propostos por RUMPF *et al.* (1994) e DUAN E SUN (2003), uma vez que permitem uma extensão para outras soluções salinas diferentes do cloreto de sódio. Essa abordagem permitiu cálculos em soluções de concentrações salinas de até 6 molal para o NaCl e 4 molal para o CaCl₂.

FU *et al.* (2006) utilizaram a equação PC-SAFT para estudar o ELV de misturas binárias de dióxido de carbono supercrítico / hidrocarbonetos leves e pesados. Os parâmetros necessários para o dióxido de carbono puro e para hidrocarbonetos com número de carbonos inferior ou igual a vinte foram retirados de GROSS E SADOWSKI

(2001). Para os demais alcanos, uma extrapolação foi realizada a partir de relações lineares entre os parâmetros e as massa moleculares dos compostos. Os resultados demonstraram que a equação PC-SAFT foi capaz de representar o equilíbrio em estudo para sistemas CO_2 / hidrocarbonetos leves ou hidrocarbonetos pesados (até C_{44}), nas estreitas faixas de condições experimentais.

FERRANDO *et al.* (2006) realizaram comparações entre modelos termodinâmicos para descrição do ELV e ESL (equilíbrio sólido – líquido) de sistemas formados por um gás, água e um sal. Primeiramente, três modelos – PITZER (1973), JAGER *et al.* (2003) e UNIQUAC estendido (SANDER *et al.*, 1986) – foram analisados para a predição da redução da atividade da água na presença de inibidores (NaCl, CaCl₂ e MEG). Posteriormente, realizaram o acoplamento de constantes de Henry às equações de estado (SRK e PR) e modelos de G^E para calcular a solubilidade do metano e do dióxido de carbono em soluções salinas (salmouras). A comparação dessas associações destacou a importância dos parâmetros de interação, das constantes de Henry e das equações de estado na determinação das solubilidades dos gases em soluções eletrolíticas.

Duas simples equações de estado e três mais complexas foram estudadas por VOUTSAS *et al.* (2006). As duas primeiras consistiam na equação PR, onde uma delas utilizava as propriedades críticas e o fator acêntrico dos componentes e a outra ajustava os parâmetros de interação através da pressão de vapor dos componentes puros e de dados do volume de líquido saturado. Já nas demais, as equações SL (SANCHEZ E LACOMBE, 1976a e 1976b), a equação SAFT original e a equação PC-SAFT foram utilizadas, sendo essas equações utilizadas para descrever o ELV de misturas binárias e multicomponentes formadas pelo metano ou etano / hidrocarbonetos. Os resultados demonstraram que para esse tipo de sistemas, equações de estado mais complexas (SAFT e PC-SAFT) não oferecem vantagens significativas frente às equações mais simples, onde a equação PR revelou uma aplicabilidade superior na modelagem do EF em reservatórios de petróleo.

No mesmo ano, um modelo baseado na teoria de solução diluída foi estendido segundo FALABELLA *et al.* (2006) para o cálculo das constantes de Henry de gases e compostos orgânicos voláteis em soluções aquosas, com ou sem a adição de sais, em função da temperatura, pressão e concentração de sal até o limite de solubilidade. A fim de extrapolar esse modelo para uma faixa mais ampla de concentração salina foi realizada a incorporação de um parâmetro dependente da mesma, aproximado pela constante de Setchenov a 298 K (WEN-HUI *et al.*, 1990). Para a extrapolação na pressão foi utilizada uma equação similar à de KRICHEVSKY E KASARNOVSKY (1935), onde o volume parcial molar do gás ou do composto orgânico na diluição infinita foi utilizado como parâmetro de ajuste. Os valores obtidos nos cálculos para obtenção desse parâmetro apresentaram bons resultados comparados aos dados experimentais de volumes parciais molares para os sistemas CH₄ / H₂O e CH₄ / H₂O / sal em pressões de até 100 MPa.

Ainda em 2006, o EF para misturas binárias e ternárias formadas por água, hidrocarboneto e álcool em elevadas temperaturas e pressões foi descrito através da equação de estado SRK modificada por SANDARUSHI *et al.* (1986) acoplada à regra de mistura HV. Nesse trabalho, SHIMOYAMA *et al.* (2006) utilizaram informações do método COSMO – RS, descrito nos trabalhos de KLAMT (1995), KLAMT E ECKERT (2000) e ECKERT E KLAMT (2002), para solventes reais na determinação dos coeficientes de atividade das misturas. Além disso, realizaram uma extrapolação do parâmetro da regra de mistura MHV para sua aplicação em regiões de elevadas temperaturas e pressões. O modelo proposto apresentou uma caracterização do EF de misturas assimétricas mais satisfatória, quando comparado à equação PSRK.

COLLINET E GMEHLING (2006) estenderam a equação VTPR, utilizada para predição do EF de sistemas com compostos em condições sub e supercríticas, para sistemas fortemente eletrolíticos. Para isso, realizaram o acoplamento do modelo termodinâmico LIFAC (YAN *et al.*, 1999) que realiza o cálculo da energia livre em excesso de Gibbs nas regras de misturas através do método de contribuição de grupos UNIFAC. Primeiramente, essa abordagem foi empregada no cálculo do ELV de sistemas binários e ternários contendo eletrólitos fortes (2 solventes e 1 sal) utilizando os parâmetros já disponíveis na literatura. Para determinação da solubilidade do gás nesses sistemas, novos parâmetros de interação (gás – íon) foram obtidos e os dados experimentais existentes no banco de dados DDB de Dortmund (GMEHLING *et al.*, 1978) foram modelados. Os resultados para solubilidade de metano e dióxido de carbono em misturas aquosas eletrolíticas em uma estreita faixa de temperatura, pressão e concentração de sal apresentaram-se coerentes conforme esperado.

HASHEMI *et al.* (2006) aplicaram a regra de mistura de van der Waals e Platteeuw e o modelo de Holder (HOLDER *et al.*, 1980) à equação de estado de Trebble – Bishnoi (equação de estado cúbica com quatro parâmetros) para calcular o equilíbrio de fases dos sistemas CH_4 / H_2O e CO_2 / H_2O . Os valores obtidos pelo modelo e para as predições da lei de Henry foram comparados aos dados experimentais disponíveis na literatura, demonstrando bons resultados. Além disso, os valores dos parâmetros foram reajustados utilizando dados da literatura para os equilíbrios vapor / $H_2O_{(1)}$ e vapor / $H_2O_{(1)}$ / hidrato desses sistemas.

MAO E DUAN (2006) apresentaram um modelo termodinâmico para o cálculo da solubilidade do nitrogênio em água pura (273 a 590 K e 0,1 a 60 MPa) e em soluções aquosas de NaCl (273 a 400 K, 0,1 a 60 MPa e 0 a 6 mol/kg). O desenvolvimento desse

modelo foi baseado em uma equação semi-empírica proposta por BATTINO *et al.* (1984), utilizada para calcular a composição da fase gasosa no sistema H_2O / N_2 , apresentando resultados bem próximos aos dados experimentais na faixa analisada.

FOLAS *et al.* (2006) compararam a equação de estado CPA proposta por KONTOGEORGIS *et al.* (1996), que computava as ligações de hidrogênio incorporando o termo de associação da família SAFT à equação SRK utilizando a regra de mistura HV com o modelo NRTL para descrever o comportamento de misturas de compostos polares e apolares. Os resultados demonstraram uma performance superior da equação de estado CPA necessitando de uma menor quantidade de parâmetros de interação frente à equação SRK acoplada a um modelo de energia livre de excesso para os sistemas formados pela água ou glicóis / hidrocarbonetos.

DUAN *et al.* (2006) apresentaram um modelo para o cálculo da solubilidade de dióxido de carbono em soluções aquosas contendo íons Na⁺, K⁺, Mg²⁺, Cl⁻ e SO₄²⁻ na faixa de temperatura de 273 a 533 K, pressões de 0 a 200 MPa e concentrações dos sais de até 4,5 molal. A modificação feita no modelo apresentado três anos atrás (DUAN E SUN, 2003) consistia no desenvolvimento de uma equação não iterativa em substituição da original para o cálculo do coeficiente de fugacidade do dióxido de carbono, revelando uma redução no tempo computacional dos cálculos. Através do ajuste aos novos dados de solubilidade desse gás, essa nova equação não apresentou bons resultados para dados em condições de temperatura inferiores a 288 K.

No ano seguinte, estendendo a aplicabilidade da equação UMR-PRU (VOUTSAS *et al.*, 2006), LOULI *et al.* (2007) avaliaram novos parâmetros de interação de grupos do modelo UNIFAC para diversos gases, apresentando resultados satisfatórios na predição de vários tipos de dados ELV de sistemas multicomponentes, incluindo gases condensados e misturas de óleos. Essa equação foi comparada a

Revisão Bibliográfica

tradicional equação de estado PSRK e ao modelo LCVM.

OLIVEIRA *et al.* (2007) descreveram a aplicabilidade da equação de estado CPA em descrever o ELL de sistemas formados por água / hidrocarbonetos. Os resultados demonstraram que para hidrocarbonetos alifáticos foi possível caracterizar satisfatoriamente a solubilidade mútua desses compostos, onde um único parâmetro de interação binária independente da temperatura foi necessário para ajustar os dados experimentais utilizados.

Em 2008, uma vez que a abordagem de sofisticadas equações de estado nos simuladores convencionais apresenta um esforço computacional maior que, por exemplo, as equações de estado cúbicas, HASSANZADEH *et al.* (2008) reduziram esse problema através da proposição de um modelo do tipo "caixa – preta" para sistemas oleosos. Esse método era formado por um algoritmo simples e eficiente, onde dados de composição obtidos a partir de equações de estado eram convertidos em dados tradicionais PVT e a equação de estado RK utilizada nos cálculos termodinâmicos. Com essa modificação, esse método foi capaz de prever satisfatoriamente densidades e solubilidades de misturas de CO_2 / óleos, apesar da limitação da equação utilizada para a descrição do comportamento das substâncias na fase líquida.

Completando o trabalho iniciado por JAUBERT *et al.* (2004 e 2005) e VITU *et al.* (2006) que consistia na utilização da equação de estado PR com o parâmetro de interação binária (k_{ij}) dependente da temperatura, VITU *et al.* (2008) propuseram novos parâmetros para o grupamento referente ao dióxido de carbono e os demais grupos já definidos, tornando essa equação preditiva na caracterização de sistemas formados por esse CO₂ / hidrocarbonetos ou compostos naftênicos.

Da mesma forma como apresentado na Tabela 1, a Tabela 2 apresenta um resumo dos trabalhos disponíveis na literatura referente ao desenvolvimento e

Capítulo 2

comparação de modelos termodinâmicos para caracterização do EF dos diversos tipos de sistemas abordados.

Referência	Sistema	Modelo / Equação	Regra de mistura
WU E PRAUSNITIZ 1998	H ₂ O / CH ₄ , C ₃ H ₈ , C ₆ H ₁₄	Extensão da equação PR	-
HORSTMAN et al. 2000	$\frac{\text{CO}_2/\text{C}_3\text{H}_8, \text{C}_4\text{H}_{10}}{\text{C}_{16}\text{H}_{34}}$	PSRK	-
VOUTSAS <i>et al.</i> 2000	H ₂ O / hidrocarbonetos	SAFT modificada	-
ISLAM <i>et al.</i> 2000	H ₂ O / gases reativos	Equação empírica	-
PASSARELLO et al. 2000	CO_2 / alcanos	SAFT original	-
GROSS E SADOWSKI 2001	hidrocarbonetos	PC-SAFT	-
LI <i>et al.</i> 2001	eletrólitos	PSRK + LIFAC	-
HARUKI et al. 2001	H ₂ O / HC	Teoria de ISHIZUKA <i>et al</i> .	-
NASRIFAR E MOSHFEGHIAN 2001	$\frac{N_2 \ / \ CH_4}{CO_2 \ / \ C_4 H_{10}}$	NM	2 parâmetros dependentes de temperatura
YANG E ZHONG 2001	CO ₂ , CO, H ₂ / alcanos(até o C ₄₄)	PSRK + termo de assimetria molecular	-
SANTOS JR. 2002	H ₂ O / Na ₂ CO ₃ H ₂ O / ciclohexanona / Na ₂ CO ₃	UNIQUAC estendido	-
SORENSEN <i>et al.</i> 2002	Gás / óleo / sal	SRK modificada	HV
AHLERS E GMEHLING 2002	CH ₄ , CO ₂ , C ₂ H ₆ , CO, H ₂ S / alcanos	VTPR + densidades líquidas	-
NASRIFAR E MOSHFEGHIAN 2002ª	H ₂ O / HC	-	VDW + interações hidrofóbicas
NASRIFAR E MOSHFEGHIAN 2002b	CO ₂ , CO / HC / H ₂ O		VDW + interações hidrofóbicas
SPYCHER et al. 2003	CO_2 / H_2O	RK	-

Tabela 2 – Resumo dos modelos termodinâmicos encontrados na literatura.

Tabela 2 – Continuação.				
Referência	Sistema	Modelo / Equação	Regra de mistura	
DUAN E SUN 2003	$\begin{array}{c} \text{CO}_2 \ / \ \text{H}_2\text{O} \\ \text{CO}_2 \ / \ \text{H}_2\text{O} \ / \ \text{NaCl} \\ \text{CO}_2 \ / \ \text{H}_2\text{O} \ / \ \text{CaCl}_2 \\ \text{CO}_2 \ / \ \text{H}_2\text{O} \ (\text{mar}) \end{array}$	Pitzer + equação de DUAN <i>et al</i> .	-	
SOLMS et al. 2003	sistemas associados, não associados, polímeros	PC-SAFT modificada	-	
POLISHUK <i>et al.</i> 2003a	CO ₂ / alcanos pesados	GPDA	-	
POLISHUK et al. 2003b	CH ₄ / alcanos normais	GPDA	-	
DIAMOND E AKINFIEV 2003	CO ₂ / H ₂ O	Modelo baseado na lei de Henry	-	
GHOSH <i>et al.</i> 2003	H ₂ , CO, CH ₄ , C ₂ H ₆ / compostos orgânicos	PC-SAFT	-	
GARCÍA <i>et al.</i> 2004	$CO_2 / C_2 \; a \; C_{40}$	PC-SAFT	-	
PRADO 2004	CO ₂ / polímeros	SRK ou PR + fugacidade de referência nova	-	
POLISHUK <i>et al.</i> 2004	sistemas simétricos	GPDA estendida	-	
VOUTSAS <i>et al.</i> 2004	sistemas assimétricos	t-mPR	UNIFAC (T)	
SÁNCHEZ et al. 2004	N ₂ / hidrocarbonetos	PC-SAFT	-	
GAO <i>et al.</i> 2004	sistemas assimétricos	РТ	-	
SPYCHER et al. 2005	CO ₂ / H ₂ O / NaCl CO ₂ / H ₂ O / BaCl ₂	$RK + modelo \; de \; \gamma$	-	
FU <i>et al.</i> 2006	CO ₂ supercrítico / HC	PC-SAFT	-	
FERRANDO <i>et al.</i> 2006	CH ₄ , CO ₂ / soluções eletrolíticas	Dhima, Duan e Shock, Helgeson + SRK ou PR	-	
VOUTSAS et al. 2006	CH ₄ , C ₂ H ₆ / alcanos	PR modificada SAFT e PC-SAFT	-	
FALABELLA E KIZZIE 2006	CH ₄ / H ₂ O CH ₄ / H ₂ O / sal	Teoria de solução diluída + equação de Krichevsky – Kasarnovsky	-	
SHIMOYAMA et al. 2006	H ₂ O / HC / álcoois	COSMO-RS + SRK	HV	

I abela 2 – Continuação.			
Referência	Sistema	Modelo / Equação	Regra de mistura
COLLINET E GMEHLING 2006	sistemas eletrolíticos	VTPR + LIFAC	-
HASHEMI <i>et al.</i> 2006	CH ₄ / H ₂ O CO ₂ / H ₂ O	Modelo de VDW e Platteeuw, modelo de Holder + Trebble – Bishnoi	-
MAO E DUAN 2006	N ₂ / H ₂ O N ₂ / H ₂ O / NaCl	Equação semi- empírica + teoria de interação	-
FOLAS <i>et al.</i> 2006	sistemas polares e apolares	CPA vs. SRK + NRTL	HV
DUAN <i>et al.</i> 2006	CO ₂ / H ₂ O / sais	DUAN E SUN (2003) + equação não iterativa	-
LOULI et al. 2007	Gases / líquidos	UMR – PRU	UNIFAC
OLIVEIRA <i>et al.</i> 2007	H ₂ O / hidrocarbonetos	СРА	parâmetro dependente de T
HASSANZADEH et al. 2008	CO ₂ / óleos	Algoritmo para conversão de dados de EE para dados PVT	-
VITU <i>et al.</i> 2008	CO ₂ / HC ou naftênicos	PR	k _{ij} (T)

Tabela 2 – Continuação.

2.3. CONCLUSÕES PARCIAIS

Frente à revisão bibliográfica realizada é possível destacar algumas observações e conclusões de importância e motivação para essa pesquisa de tese de doutorado.

Na parte experimental, verifica-se (i) uma escassez de dados experimentais para sistemas binários constituídos por óleos (hidrocarbonetos) e um gás, bem como (ii) os trabalhos que abordam esse tipo de sistema possuem estreitas faixas de temperatura e pressão. Além disso, (iii) essa insuficiência foi verificada para sistemas ternários (gás / hidrocarboneto / água).

Já na parte teórica referente ao desenvolvimento de modelos termodinâmicos para correlação e predição de dados experimentais desses sistemas, (iv) grande parte dos **modelos** revelou uma **estrutura matemática complexa** e (v) uma **excessiva quantidade de parâmetros** a serem determinados, sendo (vi) **aplicados** em grande parte em **faixas reduzidas** de condições experimentais. Por fim, (vii) a maioria desses **modelos não apresentava característica preditiva** e (viii) aqueles que eram **capazes de prever** dados experimentais **não se aplicavam a sistemas formados por hidrocarbonetos**.

CAPÍTULO 3

"Há uma coisa que é essencial a uma grande experiência:

uma natureza experimentalista."

(Walter Bagehot)
PARTE EXPERIMENTAL

3.1. SOLUBILIDADE DE GASES EM LÍQUIDOS

A solubilidade de gases em líquidos destaca-se como um importante tema de estudo nos processos químicos, já que o contato entre fases gasosas e líquidas é frequentemente encontrado em processos petrolíferos e nos sistemas da indústria química em geral.

Diversos processos industriais envolvem solubilização, como a recuperação de gases das correntes de processos que envolvem misturas com líquidos, a gaseificação de bebidas (refrigerantes) e processos de absorção para tratamento de efluentes gasosos industriais. Além disso, os processos de absorção e desorção (*stripping*) são muito usados na concentração de correntes gasosas, na produção de substâncias químicas (ácidos, amoníaco, amônia), no tratamento de gases de combustão do carvão e de refinarias do petróleo, na remoção de compostos tóxicos ou de odor desagradável (como o gás H₂S) e na separação de hidrocarbonetos gasosos.

Ao se colocar um gás em contato com um meio líquido, onde essa substância gasosa é solúvel, a composição desse soluto no líquido vai evoluir até atingir um valor de equilíbrio, instante a partir do qual o número de moléculas de soluto que passa de uma fase para outra (gasosa \leftrightarrow líquida) se iguala. A esse ponto atribui-se a definição da solubilidade máxima do soluto (gás) no líquido, para as condições experimentais em que foi realizado o ensaio. A solubilidade do gás no líquido é função (i) da natureza de ambos os componentes, (ii) da temperatura, (iii) da pressão e (iv) da composição do líquido, diminuindo em geral com a temperatura e aumentando com a pressão do sistema.

Em grande parte desses sistemas, a solubilidade é avaliada através da determinação da quantidade máxima de gás capaz de solubilizar em uma quantidade de líquido previamente conhecida. Diversas técnicas encontram-se desenvolvidas e fundamentadas na literatura para essa determinação como, por exemplo, a cromatografia gasosa, onde o gás solubilizado em uma solução é removido através da passagem de uma corrente gasosa (gás hélio) sobre o líquido e essa corrente analisada em um detector. Outra técnica que apresenta grande aplicação é a determinação da solubilidade através da detecção visual da variação de volume da fase gasosa, onde essa diferença caracteriza a solubilização do gás no meio líquido. Além dessas, existem equipamentos tradicionais e muito utilizados em diversos trabalhos disponíveis na literatura, conforme apresentado no Capítulo 2, podendo-se destacar equipamentos que utilizam métodos estáticos ou dinâmicos acoplados a métodos contínuos de amostragem para determinação da composição das fases presentes, células de equilíbrio PVT (pressão volume – temperatura), equipamentos constituídos por um cristalizador e janelas de safira para visualização do equilíbrio no seu interior e técnicas para determinação da mudança de fase como a de ultra-som utilizada por TELES (2004).

Por fim, é necessário mencionar a existência de técnicas de determinação indireta dessa solubilidade, onde variáveis intermediárias são avaliadas e através de cálculos sequenciais, a solubilidade pode ser quantificada. Como um exemplo desse tipo de medida, pode-se citar a determinação das pressões inicial e de equilíbrio para um sistema gás / líquido, onde através desses valores é possível calcular uma diferença de pressão e assim a quantidade de gás solubilizada no líquido. Esse procedimento foi adotado na determinação experimental dessa pesquisa de doutorado e será detalhado ao longo desse capítulo.

3.2. METODOLOGIA EXPERIMENTAL

3.2.1. MATERIAIS

Os sistemas de interesse para obtenção dos dados de solubilidade de gases em líquidos foram divididos da seguinte maneira:

- Sistemas binários formados por um gás e um líquido;
- Sistemas ternários formados por um gás, a água destilada e um sal.

Sendo assim, os materiais utilizados na obtenção dos dados experimentais foram:

• Gases: **dióxido de carbono** (CO₂) e **metano** (CH₄), ambos provenientes da Linde Gases Ltda, com 99,9% de pureza;

• Líquidos: água destilada (H₂O) em uma única etapa; n-hexadecano

 $(C_{16}H_{34})$ 99% P.A. proveniente da VETEC Química Fina e **solução salina** de cloreto de sódio (**H**₂**O** + **NaCl 1M**) preparada no laboratório.

Sal: cloreto de sódio (NaCl) 99,9% P.A. proveniente da VETEC
 Química Fina.

É importante mencionar que (i) a água foi destilada somente em uma única etapa; (ii) o óleo foi representado pelo hexadecano uma vez que suas propriedades aproximam-se das propriedades médias de um petróleo tipicamente brasileiro (pesado); e (iii) a solução salina foi preparada em uma concentração igual a 1M, conforme apresentado por ROCHA *et al.* (1998) para caracterização da concentração típica de cloreto de sódio em águas de produção de reservatórios brasileiros.

3.2.2. MÉTODOS

3.2.2.1. APARATO EXPERIMENTAL

Para a determinação da solubilidade do gás em líquidos, um aparato experimental similar ao proposto por OLIVEIRA E ULLER (1989) foi construído, onde a Figura 5 representa seu fluxograma.

Figura 5 – Fluxograma do aparato experimental para determinação da solubilidade de gases em líquidos (1 – banho termostático; 2 – célula de equilíbrio; 3 – engate rápido; 4 – transdutor de pressão; 5 – reservatório para armazenamento de gás; 6, 9 ao 12 – válvulas de duas vias; 7 – proteção para a bomba de vácuo; 8 – bomba de vácuo; 13 ao 15 – válvulas de três vias).

A parte do aparato experimental onde o gás foi inserido para entrar em contato com o líquido permaneceu imersa em um banho retangular termostático Fisatom (1) apresentando um controle de temperatura digital com microprocessador PID ($\Delta T = \pm 0,1$ K). A célula de equilíbrio (2) foi fabricada em aço inox 316L com volume interno total aproximado de 30 cm³ e acoplada a um agitador magnético externo ao banho a fim de promover uma maior solubilização do gás no líquido. Além disso, uma barra magnética foi inserida na célula para auxiliar nesse processo.

Após a célula de equilíbrio foram instalados uma válvula de 2 vias (9) para comunicação com a célula e para não permitir a difusão de nenhuma quantidade de solvente pelas linhas do equipamento e um engate rápido (3) para desconectá-la do restante do aparato quando necessário.

Um transdutor de pressão Smar (4) (modelo LD301) foi inserido no sistema para determinação da pressão apresentando uma precisão de \pm 0,04%. Todas as linhas eram formadas por tubulação de aço inox 316L com 0,635 cm de diâmetro externo (OD=1/4") e espessura de 0,200 cm.

Para armazenamento do gás proveniente dos cilindros externos ao sistema, uma célula de armazenamento (5) foi utilizada com um volume total aproximado de 100 cm^3 conectada a uma válvula de 2 vias (11).

Como sistemas auxiliares foram acoplados à válvula de 3 vias (14) dois cilindros de gás, um de metano e outro de dióxido de carbono, e uma bomba de vácuo (8) com um banho (7) de gelo + álcool para proteção ao longo de sua operação. Além disso, todo sistema imerso no banho termostático apresentava uma válvula de 2 vias (10) para alívio atmosférico do inventario de gás nas linhas do equipamento.

A Figura 6 representa uma visão frontal do sistema como um todo. Já a Figura 7 destaca o aparato usado onde é possível visualizar grande parte dos equipamentos citados, como o agitador externo (cor azul) localizado embaixo do banho. A Figura 8 destaca a parte do sistema imersa na água e as Figuras 9 e 10, uma vista aproximada das alimentações de gases oriundos dos cilindros e uma ilustração da célula de equilíbrio utilizada, respectivamente.

Figura 6 – Visão geral do aparato experimental.

Figura 7 – Equipamento no interior da capela.

Figura 9 – Linhas de gases dos cilindros.

Figura 8 – Vista superior da parte do equipamento imersa no banho.

Figura 10 – Célula de equilíbrio.

3.2.2.2. PROCEDIMENTO EXPERIMENTAL

Inicialmente, o procedimento para a determinação da solubilidade do gás no líquido consistiu na pesagem de uma quantidade do líquido de interesse inserido no interior da célula de equilíbrio com auxílio de uma balança digital analítica com precisão de 0,1 mg. Posteriormente, a amostra líquida foi submetida a um processo de deaeração para que nenhum gás originalmente solúvel na amostra líquida pudesse interferir na determinação da real solubilidade em estudo. Esse processo foi conduzido congelando a massa de líquido dentro da célula utilizando nitrogênio líquido e realizando vácuo de três a quatro vezes consecutivas.

Após a deaeração da amostra, todo o equipamento foi submetido a vácuo total e com a válvula (9) fechada, o gás proveniente do cilindro foi alimentado no reservatório de armazenamento no interior do banho. Uma vez ajustada a temperatura, aguardou-se aproximadamente 20 minutos para que o gás inserido fosse estabilizado nas condições do experimento. Ao final desse tempo, vácuo total foi realizado na tubulação, estando o aparato pronto para o início da determinação da solubilidade do gás no líquido. Vale a pena ressaltar que o tempo de 20 minutos aguardado para que o gás estivesse nas mesmas condições experimentais de todo o sistema imerso no banho foi otimizado na etapa de verificação de vazamento nas linhas e ajustes físicos do aparato experimental.

Posteriormente, alimentou-se o gás do reservatório de armazenamento na tubulação com a válvula (9) fechada até um determinado valor de pressão inicial. A seguir, o processo de solubilização foi iniciado, onde essa válvula foi aberta e fechada inúmeras vezes consecutivas até que a pressão atingisse um valor constante, chamada de pressão final ou pressão de equilíbrio. De posse da pressão inicial do experimento (P₁) e

54

da pressão de equilíbrio (P_E), uma variação de pressão foi determinada ($\Delta P = P_I - P_E$).

Sendo assim, essa variação de pressão estava associada à expansão do gás pelo volume morto do equipamento, bem como pela quantidade de gás solubilizada no líquido. Uma vez descontando-se a parcela de variação provocada pela expansão do gás no volume morto calculado, chega-se a um valor final de ΔP referente à quantidade real de gás que solubilizou na fase líquida. Através de um algoritmo de cálculos, descrito no item seguinte, foi possível determinar a quantidade de gás solubilizada em termos de sua composição (fração molar).

Para cada amostra de líquido alimentada na célula foram realizados experimentos em seqüência, ajustando o valor inicial da pressão do ponto seguinte sempre maior que a pressão de equilíbrio do ponto experimental anterior. Com isso, foi possível determinar diversos pontos de equilíbrio por temperatura utilizando a mesma amostra de líquido. Todos os experimentos foram realizados em triplicata para obtenção de uma reprodutibilidade dos dados.

3.2.2.3. ALGORITMO PARA O CÁLCULO DA SOLUBILIDADE

Ao término de cada ponto experimental, o valor referente ao volume morto do equipamento foi descontado da diferença de pressão medida, chegando a um valor de variação de pressão (ΔP) para ser convertido em número de moles de cada componente e, consequentemente, nas respectivas frações molares. Essa sequência de cálculos pode ser observada na Figura 11 e será descrita a seguir.

Figura 11 – Algoritmo para o cálculo da solubilidade experimental do gás no líquido.

O algoritmo apresentado requer como dados de entrada as propriedades críticas dos componentes, seus volumes molares, o parâmetro de solubilidade do líquido, os valores calculados da pressão de vapor da substância pura e do volume parcial molar do gás a diluição infinita. Além desses, os dados obtidos ao longo de cada experimento completam os requisitos, a saber: temperatura inicial e temperatura de equilíbrio, pressão inicial e pressão de equilíbrio, o volume de líquido na célula e o volume morto do equipamento.

Duas sequências de cálculos foram realizadas. Na primeira, foi considerado que todo o soluto alimentado à célula passa para a fase líquida, ou seja, todo o CO_2 ou CH_4 solubiliza no líquido. Já na segunda, foi considerado que nem todo soluto passa para a fase líquida, porém na fase gasosa só existe o CO_2 ou CH_4 , não permitindo que o líquido difundisse para a fase vapor. Com os valores obtidos nas duas etapas anteriores parte-se para o cálculo rigoroso da distribuição dos componentes nas fases líquida e gasosa, chegando-se assim ao valor final da solubilidade do CO_2 ou CH_4 .

Analisando a Figura 11, observa-se a presença de dois *loops* iterativos. No primeiro, a convergência é calculada em termos da fração molar do CO_2 ou CH_4 na fase líquida com uma tolerância de 10^{-6} . Já no segundo, a convergência mais externa é realizada na fração molar do CO_2 ou CH_4 na fase vapor, com o mesmo critério de tolerância. Em todos os cálculos, os fatores de compressibilidade foram determinados através da equação de estado PR com as regras de mistura de van der Waals.

Quando todo o procedimento iterativo convergir, os resultados para as frações molares em cada etapa estarão determinados, bem como a fração molar para o método completo. Por fim, a constante de Henry aparente para cada experimento foi calculada.

57

3.3. RESULTADOS E DISCUSSÃO

Os resultados obtidos encontram-se divididos em três etapas: a primeira referese à determinação dos volumes mortos existentes no equipamento construído, a segunda retrata a validação do aparato, visando demonstrar sua aplicabilidade e a terceira reporta os novos dados de solubilidade dos gases nos líquidos, bem como a influência do sal nessas medidas.

3.3.1. DETERMINAÇÃO DOS VOLUMES MORTOS

A determinação precisa do volume morto do aparato experimental utilizado é de extrema importância para a quantificação da solubilidade gasosa real. Deve-se observar que a solubilidade experimental apresenta valores bem reduzidos e o quanto menor for o volume morto de todo o equipamento, mais precisa será a sua quantificação. Para isso, esse equipamento foi construído visando a minimização de linhas e volumes, reduzindo sua influência na determinação experimental.

Todo o aparato experimental imerso no banho a partir da válvula (13) foi considerado como a célula de equilíbrio quando a válvula (9) encontrava-se aberta. Esse conjunto foi dividido em três segmentos para determinação de seus respectivos volumes mortos: (i) a célula de equilíbrio propriamente dita, (ii) o transdutor de pressão e (iii) a tubulação. Para representar o primeiro segmento, oito células de equilíbrio diferentes foram utilizadas e validadas.

O procedimento para essa determinação foi realizado através da inundação de cada segmento em estudo e a quantificação da massa de água destilada necessária. Com os valores da temperatura na qual essas medidas foram realizadas e da densidade para a

Capítulo 3

água destilada nessa temperatura, o volume de água utilizado em cada procedimento pode ser determinado. Cada segmento teve seu volume morto determinado inúmeras vezes já que essa medida interfere diretamente no valor da solubilidade experimental.

Posteriormente, uma análise estatística dos dados obtidos para a massa de água destilada em cada segmento foi realizada através da exclusão de dados considerados possíveis erros grosseiros (*outliers*) com um intervalo de 95% de confiança nos dados obtidos. A Equação (1) apresenta o cálculo para o desvio padrão de um determinado conjunto de medidas, enquanto que as Equações (2) e (3), os cálculos dos limites inferior (LIC) e superior (LSC) de tolerância em cada intervalo, respectivamente, onde N representa a quantidade de pontos medidos, χ_i o valor da massa de água em cada ponto, $\overline{\chi}$ a média para cada conjunto de medidas, σ_{x_i} o desvio padrão obtido e 1,96 o valor constante devido a consideração de 95% de confiança. Caso essa precisão fosse alterada para 98% ou 99,7%, o valor da constante seria alterado para 2,33 ou 3,00, respectivamente. Entretanto, o intervalo de confiança sofreria uma expansão para exclusão de possíveis erros de medida.

$$\sigma_{\chi_i} = \left[\frac{\sum_{i=1}^{N} \left(\chi_i - \bar{\chi}\right)^2}{N - 1}\right]^{1/2} \tag{1}$$

 $LIC = \bar{\chi} - 1,96 \cdot \sigma_{\chi} \tag{2}$

 $LSC = \bar{\chi} + 1,96 \cdot \sigma_{\chi} \tag{3}$

Capítulo 3

A Figura 12 ilustra a representação gráfica dessa análise que será aplicada para identificação dos *outliers*.

Figura 12 – Análise estatística dos erros de medidas (outliers).

Aplicando a análise apresentada foi possível determinar o volume morto de cada parte do aparato experimental e o resumo dos resultados obtidos são apresentados na Tabela 3. Uma discussão mais detalhada com os resultados completos por segmento encontra-se disponível no Anexo A.

Segmento	$V(cm^3)$	Segmento	$V(cm^3)$
Transdutor de pressão	12,6	Célula Nº4	31,8
Tubulação	8,7	Célula Nº5	33,1
Célula Nº1	32,8	Célula Nº6	31,3
Célula Nº2	33,8	Célula Nº7	31,4
Célula Nº3	32,0	Célula Nº8	31,4

Tabela 3 – Volumes mortos determinados.

3.3.2. VALIDAÇÃO DO APARATO EXPERIMENTAL

Para a validação do equipamento construído, dados disponíveis na literatura do sistema binário formado por dióxido de carbono / água foram avaliados nas mesmas condições experimentais. O sistema metano / água foi utilizado somente para otimizar algumas variáveis como a massa de líquido inicial no interior da célula e o volume parcial molar do CH₄ presente no algoritmo de cálculo para os sistemas formados por esse componente, já que sua solubilidade apresenta valores mais reduzidos do que a solubilidade do dióxido de carbono. Antes da realização dessas medidas, inúmeros testes para detecção de vazamento ou perda de gás ao longo da tubulação foram realizados, visando minimizar o acúmulo de erros experimentais.

3.3.2.1. SISTEMA CO₂ / H₂O

Os dados disponíveis nos trabalhos de DALMOLIN *et al.* (2006) e KIEPE *et al.* (2002) foram utilizados para o sistema CO_2 / H_2O , uma vez que as condições experimentais desses dados encontram-se na mesma faixa de operação do presente trabalho.

Uma vez determinados os volumes mortos, os valores para a solubilidade do dióxido de carbono em água destilada foram obtidos nas temperaturas de 25, 40 e 50 °C e pressões de até 0,4 MPa (4 atm). Deve-se destacar que como nesses experimentos obtêm-se valores para diferença de pressão (ΔP), existe uma dificuldade na obtenção de um valor fixo de pressão de equilíbrio para cada ponto experimental, não sendo possível repetir ou até mesmo reproduzir certos dados da literatura com valores exatos. Esses dados dependem da condição de temperatura e, principalmente, de pressão inicial do experimento. Entretanto, a determinação em uma mesma faixa de condições experimentais foi possível, validando assim o aparato construído, bem como o procedimento através de análises qualitativas e quantitativas. Essa comparação foi realizada através de uma interpolação dos dados reportados na literatura para atingir um mesmo valor da pressão de equilíbrio e, consequentemente, obter um valor respectivo para a solubilidade. A Tabela 4 apresenta os valores medidos da solubilidade (x) nas três temperaturas, bem como os valores calculados pelos trabalhos da literatura, juntamente com cada desvio individual (Dx₁), calculado pela Equação 4, e um desvio médio global por isoterma $(Dx_1)_M$, calculado pela Equação 5.

$$Dx_{1} = \frac{\left|x_{1}^{\exp} - x_{1}^{lit.}\right|}{x_{1}^{lit.}} \cdot 100$$
(4)

$$\left(Dx_{1}\right)_{M} = \frac{\sum_{i=1}^{N} Dx_{1}}{N}$$

Т	Р	$10^{4*} x_1$	$10^{4*} x_1^a$	Dx ₁	Т	Р	$10^{4} * x_{1}$	$10^{4*} x_{1}^{a}$	Dx_1
(°C)	(atm)	(exp.)	(lit.)	(%)	(°C)	(atm)	(exp.)	(lit.)	(%)
(0)	1,6	8,82	9,33	5,5		2,4	7,84	8,49	7,7
	2,5	16,34	15,09	8,2		2,5	9,10	8,52	6,8
	2,8	18,14	16,81	8,0		2,5	9,06	8,54	6,2
	2,8	18,07	16,83	7,3		2,4	8,03	8,42	4,6
	1,7	10,83	10,37	4,4		2,0	7,08	6,76	4,8
	0,6	3,35	3,17	5,7		2,3	8,27	7,81	5,9
25	1,2	7,25	6,80	6,6	50	3,5	11,69	12,35	5,3
23	1,8	11,42	10,65	7,3		2,2	8,07	7,78	3,8
	2,7	17,59	16,31	7,9		3,5	11,45	12,32	7,1
	3,7	25,01	23,05	8,5		2,2	8,16	7,79	4,8
	4,9	33,25	30,49	9,1		3,5	11,49	12,35	7,0
	0,6	2,87	3,28	12,4		2,5	8,83	8,64	2,2
	2,0	11,44	12,26	6,7		1,1	3,39	3,51	3,4
	4,0	23,22	24,78	6,3			$(Dx_1)_N$	1	5,4
	($(Dx_1)_M$		7,4					
Т	Р	$10^{4*} x_1$	$10^{4*} x_1^b$	Dx_1					
(°C)	(atm)	(exp.)	(lit.)	(%)					
	1,0	3,99	3,84	4,0					
	2,7	11,34	11,02	2,9					
	0,9	3,90	3,69	5,8					
40	2,6	11,94	10,38	14,9					
τU	0,9	3,94	3,69	6,6					
	1,0	3,76	3,73	0,8					
	2,6	11,77	10,43	12,9					
	2,2	9,99	8,82	13,3					
	($(\mathbf{D}\mathbf{x}_1)_{\mathbf{M}}$		7,6					

Tabela 4 – Validação do aparato experimental através do sistema $CO_2(1) / H_2O(2)$.

^a – correlação dos dados de DALMOLIN *et al.* (2006); ^b – correlação dos dados de KIEPE *et al.* (2002); exp. – dados obtidos na presente pesquisa; lit. – dados da literatura.

Para analisar qualitativamente os dados obtidos, gráficos contendo os dados da literatura e os dados dessa pesquisa foram traçados em função da pressão de equilíbrio nas Figuras 13, 14 e 15, para as temperaturas de 25, 40 e 50 °C, respectivamente. Além desses, as Figuras 16, 17 e 18 ilustram os resultados da análise quantitativa, identificando o desvio percentual de cada ponto, com suas barras de erros respectivas, onde $\Delta x = x^{exp.} - x^{lit.}$

Figura 13 – Validação do aparato: solubilidade do CO_2 (1) em H₂O (2) a 25 °C.

Figura 14 – Validação do aparato: solubilidade do CO_2 (1) em H₂O (2) a 40 °C.

Figura 15 – Validação do aparato: solubilidade do CO_2 (1) em H₂O (2) a 50 °C.

Figura 16 – Desvio percentual para o sistema $CO_2(1)$ / $H_2O(2)$ a 25 ^{o}C .

Figura 17 – Desvio percentual para o sistema $CO_2(1) / H_2O(2)$ a 40 °C.

Figura 18 – Desvio percentual para o sistema $CO_2(1) / H_2O(2)$ a 50 °C.

Analisando a Tabela 4 e as Figuras 16, 17 e 18, observa-se que os dados obtidos apresentaram desvios de 7,4%, 7,6% e 5,4%, encontrando-se dentro da faixa do erro experimental reportado nos trabalhos presentes na literatura (DALMOLIN *et al.*, 2006 e KIEPE *et al.*, 2002) e, além disso, esse desvio é considerado bem reduzido, uma vez que o valor da fração molar obtida é na ordem de grandeza de 10⁻³, onde qualquer tipo de vazamento ou perda de gás ao longo do experimento afeta diretamente o valor da solubilidade. Já as Figuras 13, 14 e 15 demonstram um comportamento qualitativo similar aos dados da literatura. Sendo assim, o aparato experimental, bem como o procedimento empregado, foram validados com eficiência, estando o equipamento habilitado para determinações da solubilidade de gases em líquidos.

3.3.2.2. SISTEMA CH₄ / H₂O

Uma vez validado o equipamento pelo sistema com dióxido de carbono / água destilada, não seria necessária uma nova validação para determinação da solubilidade de um outro gás no líquido. Porém, conforme alguns trabalhos da literatura (QIN *et al.*, 2008, SVANDAL *et al.*, 2006, MOHAMMADI *et al.*, 2004 e KIEPE *et al.*, 2003b) para essa determinação utilizando o metano, alguns fatores tais como pouca quantidade de líquido dentro da célula, pequenas frações de solvente na fase gasosa, fator de compressibilidade do solvente e volume parcial molar do CH₄ solubilizado no solvente influenciam diretamente os resultados finais. Sendo assim, a massa de líquido inserida na célula de equilíbrio, o tempo de solubilização e o volume parcial molar do CH₄ utilizado no algoritmo de cálculo, foram avaliados para o sistema CH₄ / H₂O, evitando o uso indevido do valor de alguma variável nesse tipo de sistema. O problema relativo às pequenas quantidades de líquido na fase gasosa não ocorreu nesses experimentos já que existe uma válvula de retenção logo após a célula, sendo essa aberta lentamente para evitar a difusão do soluto pela tubulação. Já o fator de compressibilidade foi inserido nos cálculos termodinâmicos utilizando a equação de estado PR.

• Volume parcial molar do CH₄

Primeiramente, para o cálculo do volume parcial molar do CH_4 a diluição infinita foi utilizada a mesma equação empregada para o sistema com dióxido de carbono / água conforme apresentado por DALMOLIN *et al.* (2006). Essa equação foi desenvolvida utilizando os dados do volume a diluição infinita para diversos gases reportados por LYCKMAN *et al.* (1965) e HANDA E BENSON (1982).

Para o sistema CH₄ / H₂O, uma extrapolação desse volume foi realizada a fim de verificar sua influência no valor final da solubilidade do CH₄, onde o mesmo procedimento iterativo foi utilizado apenas variando o valor dessa variável na faixa de 0 até 450 cm³/mol, em uma temperatura intermediária igual a 40 °C. A Tabela 5 destaca os valores obtidos para as solubilidades (x) em diversas pressões e seus valores calculados variando o volume parcial molar do gás. A Tabela 6 reporta os desvios obtidos entre essas medidas.

	va	riaçao do v	volume pai	rcial molai	r do CH_4 .				
V_1 (cm ³ /mol)	0	30	60	90	120	150	180		
$10^{2*}x_1$ (exp.)		$10^{2} * x_1$ (calc.)							
10,23	10,16	10,17	10,18	10,20	10,22	10,23	10,25		
29,09	28,60	28,69	28,78	28,88	28,97	29,07	29,16		
49,07	47,70	47,95	48,20	48,46	48,72	48,98	49,25		
65,47	63,13	63,56	63,99	64,43	64,88	65,33	65,79		
V_1 (cm ³ /mol)	210	240	270	300	350	400	450		
$10^{2*}x_1$ (exp.)			10	$0^{2*}x_1$ (calc	:.)				
10,23	10,26	10,28	10,29	10,31	10,33	10,36	10,38		
29,09	29,26	29,35	29,45	29,55	29,71	29,88	30,05		
49,07	49,52	49,79	50,07	50,34	50,81	51,29	51,78		
65,47	66,26	66,73	67,21	67,70	68,52	69,37	70,24		

Tabela 5 – Solubilidade para o sistema $CH_4(1) / H_2O(2)$ a 40 °C: variação do volume parcial molar do CH_4 .

V – volume parcial molar a diluição infinita; x – solubilidade do CH₄ no líquido; exp. – valores experimentais; calc. – valores calculados nas mesmas condições alterando o volume.

a 40°C: variação do volume parcial molar do CH ₄ .							
V_1 (cm ³ /mol)	0	30	60	90	120	150	180
$(Dx_1)_1$ (%)	0,8	0,6	0,5	0,3	0,2	0,1	0,1
$(Dx_1)_2$ (%)	1,7	1,4	1,1	0,7	0,4	0,1	0,2
$(Dx_1)_3$ (%)	2,8	2,3	1,8	1,2	0,7	0,2	0,4
$(Dx_1)_4$ (%)	3,6	2,9	2,3	1,6	0,9	0,2	0,5
$(Dx_1)_m (\%)$	2,2	1,8	1,4	1,0	0,6	0,1	0,3
V_1 (cm ³ /mol)	210	240	270	300	350	400	450
$(Dx_1)_1$ (%)	0,2	0,4	0,6	0,7	0,9	1,2	1,5
$(Dx_1)_2$ (%)	0,6	0,9	1,2	1,6	2,1	2,7	3,3
$(Dx_1)_3$ (%)	0,9	1,5	2,0	2,6	3,6	4,5	5,5
$(Dx_1)_4$ (%)	1,2	1,9	2,6	3,4	4,7	5,9	7,3
$(Dx_1)_m (\%)$	0,7	1,2	1,6	2,1	2,8	3,6	4,4
$(Dx_1)_{\sigma}$ (%)	1,7	•	·			·	

Tabela 6 – Desvios calculados para a solubilidade do sistema $CH_4(1) / H_2O(2)$ a 40 °C: variação do volume parcial molar do CH_4 .

V – volume parcial molar a diluição infinita; Dx_1 – desvio na solubilidade do CH_4 em cada medida; subscritos de 1 a 4 – medidas individuais; m – desvio médio; g – desvio global.

Observando os valores reportados nas Tabela 5 e 6, verifica-se que o volume parcial molar a diluição infinita do CH_4 não alterou os valores da solubilidade experimental, onde seus desvios apresentaram um valor global de 1,7%. Sendo assim, a mesma equação implementada para o sistema com dióxido de carbono poderá ser utilizada para o sistema formado pelo metano no algoritmo de cálculo.

• Massa de líquido e tempo de solubilização

Tendo em vista que a solubilidade do metano em água destilada apresenta valores mais reduzidos do que a do dióxido de carbono, a quantidade de líquido utilizada no interior da célula de equilíbrio será avaliada para comprovar sua influência no valor da solubilidade conforme mencionado por SVANDAL *et al.* (2006).

Para esse estudo, partiu-se do mesmo valor da quantidade de água destilada utilizada nos experimentos envolvendo o sistema CO_2 / H_2O em torno de 10 g. Deve-se relembrar que as células de equilíbrio utilizadas apresentaram volumes internos na ordem de 30 cm³, onde essa massa de água destilada representa cerca de 33% do volume total. Inicialmente (exp 1), o valor do desvio global obtido foi aproximadamente igual a 380%, destacando uma descrição incorreta da solubilidade do CH₄ na água destilada quando comparados a dados disponíveis na literatura. Posteriormente (exp 2), a massa de solvente foi aumentada para 21 g, representando 70% do volume da célula e o desvio reduzido para 97%. Nesse mesmo experimento, os pontos com tempo de solubilização superior a 40 minutos foram excluídos do desvio global (exp 3) e o mesmo continuou inalterado, demonstrando que esse tempo não influenciou na solubilização do CH₄. A massa de água destilada foi aumentada mais uma vez para 25 g (83% do volume) e a mesma análise com o tempo foi realizada (exp 4), porém o desvio não sofreu variações consideráveis apresentando um valor de 97%. Por fim, conforme sugerido por KIEPE et al. (2003b) foi utilizada uma massa de líquido em torno de 90% do volume da célula no caso do presente trabalho, igual a 28 g que corresponde a 93%, apresentando uma redução do desvio global para 72% (exp 5). O tempo de solubilização foi novamente analisado, onde pontos com tempos superiores a 60 minutos foram retirados (exp 6), obtendo um desvio igual a 62% e por último (exp 7), o pontos com tempos entre 40 e 60 foram excluídos, chegando a um desvio de 45%, dentro da faixa de erros experimentais reportados na literatura. A Tabela 7 resume todas as análises mencionadas com suas respectivas alterações e desvios finais.

Experimento	Р	$10^{4} x_1$	$10^{4} x_1$	Dx ₁	m _{H2O}	$(Dx_1)_g$
Experimento	(atm)	(exp.)	(correl.)	(%)	(g)	(%)
	1,3	1,02	0,27	276,4	-	
ovn 1	2,9	2,91	0,59	392,8	10.63	380
exp 1	4,6	4,91	0,96	412,2	10,05	380
	5,9	6,55	1,22	434,9		
	1,8	0,54	0,36	51,0		
exp 2	3,5	1,53	0,72	112,1	21,03	97
	5,2	2,49	1,09	127,3		
	1,8	0,55	0,36	52,3		
exp 3	3,5	1,54	0,72	112,5	21,03	97
	5,2	2,47	1,09	125,8		
	2,0	0,59	0,4	47,1		
ovn /	3,7	1,52	0,78	95,9	25.01	07
exp 4	5,7	2,56	1,18	117,4	23,01	71
	6,8	3,2	1,41	126,7		
	2,2	0,67	0,45	47,6		
exp 5	4,6	1,72	0,95	80,8	28,07	72
	5,7	2,23	1,19	87,2		
	2,2	0,6	0,46	31,4		
exp 6	4,6	1,65	0,95	73,4	28,07	62
	5,7	2,17	1,19	82,1		
	2,2	0,53	0,46	16,4		
exp 7	4,6	1,5	0,95	57,2	28,07	45
	5,7	1,93	1,19	61,6		

Tabela 7 – Influência da massa de água e tempo de solubilização na solubilidade do sistema CH_4 (1) / H_2O (2) a 40 $^{\circ}C$.

x – solubilidade; Dx_1 – desvio da solubilidade; g – desvio global; exp. – dados obtidos experimentalmente; correl. – dados obtidos através de uma correlação dos dados de KIEPE et al (2003b).

Através dos resultados apresentados, observa-se que a massa de líquido no interior da célula influencia diretamente na determinação da solubilidade do metano no líquido conforme descrito por KIEPE *et al.* (2003b), onde o valor aproximado de 90% do volume total da célula será utilizado para a massa de líquido em sistemas com o CH₄. Já o tempo ótimo de solubilização foi de 40 minutos. Além disso, deve-se destacar que esses resultados devem ser analisados enfocando mais a parte qualitativa do que a quantitativa, uma vez que os dados da literatura encontravam-se em uma faixa bem restrita precisando ser extrapolados para cobrir os dados medidos nessa análise.

3.3.3. DADOS DE SOLUBILIDADE DO CO₂ OU CH₄ EM LÍQUIDOS

Os sistemas analisados foram divididos em sistemas binários e ternários, a saber:

- Sistemas binários: CO₂ / H₂O, CO₂ / C₁₆H₃₄, CH₄ / H₂O e CH₄ / C₁₆H₃₄;
- Sistemas ternários: CO₂ / H₂O / NaCl 1M e CH₄ / H₂O / NaCl 1M.

As propriedades utilizadas no algoritmo de cálculo apresentado na Figura 11, para a determinação da solubilidade do CO_2 ou CH_4 no líquido a partir de um diferencial de pressão obtido experimentalmente, encontram-se listadas na Tabela 8, onde T_c e P_c representam as propriedades críticas dos componentes, ω o fator acêntrico, \overline{v} o volume molar, MM a massa molecular, δ o parâmetro de solubilidade do solvente, (AA,AB,AC) as constantes de Antoine e (M,N, Γ) os parâmetros para a correlação proposta por AZNAR E TELLES (1997) do termo atrativo da equação de estado PR utilizada para o cálculo do coeficiente de fugacidade.

	-			
Propriedade	CO ₂	CH ₄	H ₂ O	C ₁₆ H ₃₄
T _c (K)	304,12 ^a	190,56 ^a	647,14 ^a	723,00 ^a
P _c (bar)	73,74 ^a	45,99 ^a	220,64 ^a	14,00 ^a
\bar{v} (cm ³ /mol)	-	-	18,000 ^a	294,213 ^a
MM (g/gmol)	-	-	18,015 ^a	226,446 ^a
$\delta (cal/cm^3)^{1/2}$	-	-	23,37 ^b	7,92 ^b
ω	0,225 ^a	0,011 ^a	0,344 ^a	0,718 ^a
AA	-	-	5,11564 ^a	4,15357 ^a
AB	-	-	1687,537 ^a	1830,510 ^a
AC	-	-	230,17 ^a	154,45 ^a
М	0,46189 ^c	0,33181 ^c	0,81473 ^c	1,03097 [°]
Ν	0,16353 ^c	0,04863 ^c	0,02707 ^c	0,13214 ^c
Г	0,94571 ^c	0,96106 ^c	0,96611 ^c	0,88876 ^c
^a POLING <i>et al.</i>	(2001), ^b DAU	BERT et al.	(1989 - 200)	2). °AZNAR E

Tabela 8 – Propriedades dos componentes puros.

^aPOLING *et al.* (2001), ^bDAUBERT *et al.* (1989 – 2002), ^cAZNAR E TELLES (1997).

Através das constantes de Antoine apresentadas, as pressões de vapor para os solventes foram calculadas através da Equação (6).

$$\log P^{vap}(bar) = AA - \frac{AB}{T(K) + AC}$$
(6)

Para os sistemas ternários, onde o solvente foi formado por uma solução aquosa de cloreto de sódio com a concentração igual a 1M, as mesmas propriedades da água pura foram utilizadas exceto as constantes de Antoine que foram recalculadas devido à presença do sal.

Conforme apresentado por ZEMAITIS (1986), uma nova pressão de saturação para a solução H_2O / NaCl 1M foi calculada e os parâmetros de Antoine estimados em valores iguais a 20,5441, 5155,35 e -1,68432 para AA, AB e AC respectivamente. Todos os sistemas tiveram as solubilidades do CO_2 ou CH_4 no líquido determinadas em triplicatas nas temperaturas de 30, 40 e 50 °C e pressões de até 0,63 MPa (6,3 atm). Os arquivos de saída gerados contendo as propriedades de cada componente do sistema, o volume parcial molar a diluição infinita do soluto, as condições experimentais utilizadas, a solubilidade do CO_2 ou CH_4 e a constante aparente de Henry, encontram-se disponíveis no Anexo B.

Deve-se ressaltar que como demonstrado por OHGAKI *et al.* (1983), essa constante aparente de Henry foi calculada pela Equação (7), onde k'_H representa a constante, y_{gas} a fração molar do CO₂ ou CH₄ na fase vapor, x_{gas} a fração molar do CO₂ ou CH₄ na fase líquida, ϕ_{gas} seu coeficiente de fugacidade e P a pressão de equilíbrio do sistema. Além disso, a constante de Henry efetiva (k_H), foi determinada em cada temperatura, uma vez que basta realizar esses cálculos fazendo a pressão do sistema tender a zero, conforme apresentado na Equação (8).

$$k'_{H} = \frac{y_{gas}\phi_{gas}P}{x_{gas}}$$

$$k_{H} = \lim_{P \to 0} k'_{H}$$
(7)
(8)

3.3.3.1. SISTEMA BINÁRIO CO₂ / H₂O

O sistema formado por dióxido de carbono / água destilada foi utilizado para validação do aparato experimental conforme descrito anteriormente. Entretanto, após esse procedimento, novos dados experimentais da solubilidade do dióxido de carbono na água destilada foram obtidos a fim de ampliar a faixa de condições experimentais reportadas na literatura. A Tabela 9 destaca os valores determinados e a Figura 19 ilustra seu comportamento.

T =	30 °C	$T = 40 \ ^{\circ}C$			
P (atm)	$10^{4} * x_1$	P (atm)	$10^{4} * x_1$		
$0,6 \pm 0,01$	$3,19 \pm 0,01$	$0,7\pm0,02$	$2,46 \pm 0,03$		
1,2 ± 0,02	$6{,}67 \hspace{0.1in} \pm \hspace{0.1in} 0{,}15$	$1,3 \pm 0,02$	$5,37 \pm 0,04$		
1,8 ± 0,03	10,43 \pm 0,18	$1,9\pm0,03$	8,44 ± 0,06		
$2,8 \pm 0,03$	16,11 \pm 0,24	2,8 ± 0,04	13,06 \pm 0,10		
3,9 ± 0,04	$22,93 ~\pm~ 0,36$	$4,0\pm0,04$	18,55 \pm 0,14		
5,0 ± 0,02	$30,74 ~\pm~ 0,76$	$5,2 \pm 0,05$	$24{,}56~\pm~0{,}19$		

Tabela 9 – Dados de solubilidade para o sistema $CO_2(1)$ / $H_2O(2)$.

Tabela 9 – Continuação.									
T = 50 °C									
Р	(atm)	$10^{4} x_1$							
0,7	± 0,01	$2,03 \pm 0,03$							
1,3	± 0,02	$4{,}51 \hspace{0.15cm} \pm \hspace{0.15cm} 0{,}07$							
2,0	± 0,02	7,10 \pm 0,09							
2,9	± 0,03	11,06 \pm 0,15							
4,1	± 0,04	15,77 \pm 0,21							
5,3	± 0,05	$20,\!98~\pm~0,\!29$							

Figura 19 – Dados de solubilidade para o sistema $CO_2(1) / H_2O(2)$.

Analisando os valores obtidos para a fração molar do CO_2 na fase líquida, observa-se uma redução da solubilidade com o aumento da temperatura a pressão constante, sendo esse comportamento esperado para dados de solubilidade de um gás em líquido.

Ao longo de cada ponto experimental, a constante aparente de Henry foi determinada e a Tabela 10 apresenta os valores obtidos. Extrapolando-se a pressão para zero, a constante de Henry efetiva pode ser calculada apresentando valores de 1905,5, 2458,9 e 3059,8 atm nas temperaturas de 30, 40 e 50 °C, respectivamente. Já na literatura observa-se a existência de uma faixa para esses valores da constante de Henry em cada temperatura, apresentando valores na ordem de 1858,7, 2355,8 e 2917,2 atm para as temperaturas de 30, 40 e 50 °C, respectivamente, retratando uma determinação satisfatória dos valores obtidos nessa pesquisa.

T = 30 °C		T =	40 °C	$T = 50 \ ^{\circ}C$		
P (atm)	k ['] _H (atm)	P (atm)	k ['] _H (atm)	P (atm)	k ['] _H (atm)	
0,6	1894,4	0,7	2431,1	0,7	3008,8	
1,2	1758,5	1,3	2214,9	1,3	2676,0	
1,8	1714,8	1,9	2142,8	2,0	2571,4	
2,8	1667,4	2,8	2089,1	2,9	2502,2	
3,9	1633,1	4,0	2054,0	4,1	2452,7	
5,1	1584,3	5,2	2024,7	5,3	2401,0	

Tabela 10 – Constante aparente de Henry para o sistema CO_2 / H_2O .

3.3.3.2. SISTEMA BINÁRIO CO₂ / C₁₆H₃₄

A mesma sequência de determinações experimentais foram realizadas para os demais sistemas binários, bem como para os ternários. A Tabela 11 destaca os valores da solubilidade do dióxido de carbono em hexadecano e a Figura 20, o comportamento dos dados obtidos.

			- 2 () - 10 54 (
T =	30 °C	$T = 40 \ ^{\circ}C$			
P (atm)	$10^{3} * x_1$	P (atm)	$10^{3} x_1$		
$0,5\pm0,01$	$6{,}63 \hspace{0.1in} \pm \hspace{0.1in} 0{,}38$	$0,5\pm0,01$	$4,\!85 \pm 0,\!45$		
$1,0 \pm 0,01$	$15{,}64~\pm~0{,}51$	1,1 ± 0,02	$12,\!56~\pm~1,\!04$		
$1,6 \pm 0,01$	$25{,}90~\pm~0{,}61$	$1,7 \pm 0,03$	$21,\!34 ~\pm~ 1,\!83$		
$2,5 \pm 0,01$	$41,\!66~\pm~0,\!62$	$2,5 \pm 0,03$	$35,\!26~\pm~2,\!86$		
$3,5 \pm 0,01$	$62{,}18~\pm~0{,}55$	$3,6 \pm 0,04$	53,47 \pm 3,78		
4,6 ± 0,01	$86{,}72~\pm~0{,}53$	$4,7 \hspace{0.1in} \pm \hspace{0.1in} 0,03$	75,61 ± 4,53		

Tabela 11 – Dados de solubilidade para o sistema $CO_2(1) / C_{16}H_{34}(2)$.

Tabela 11 – Continuação.										
	T = 50 °C									
Р	(atı	m)	10	³ *x	K ₁					
0,6	±	0,01	3,90	±	0,38					
1,1	±	0,02	10,87	±	0,71					
1,7	±	0,02	18,93	±	1,30					
2,6	±	0,03	31,85	±	2,04					
3,6	±	0,03	48,71	±	2,79					
4,8	±	0,03	69,14	±	3,54					

Figura 20 – Dados de solubilidade para o sistema $CO_2(1) / C_{16}H_{34}(2)$.

Um comportamento análogo em relação à redução da solubilidade do dióxido de carbono com o aumento da temperatura a pressão constante foi observado para esse sistema, porém os valores apresentaram uma ordem de grandeza superior ao sistema anterior. Este fato se deve a uma maior similaridade entre as moléculas do CO_2 com as de $C_{16}H_{34}$, apresentando maior afinidade do que em relação às moléculas de H_2O .

A determinação da constante aparente de Henry foi realizada e a Tabela 12 apresenta os valores obtidos. Fazendo a pressão do sistema tender a zero, a constante de Henry efetiva foi calculada, apresentando valores de 87,7, 140,8 e 202,4 atm nas temperaturas de 30, 40 e 50 $^{\circ}$ C, respectivamente.

$T = 30 \ ^{\circ}C$		T = 4	40 °C	T = 5	T = 50 °C	
P (atm)	k _H (atm)	P (atm)	k _H (atm)	P (atm)	k _H (atm)	
0,5	77,0	0,5	112,2	0,6	149,0	
1,0	66,9	1,1	86,6	1,1	104,2	
1,6	62,5	1,7	78,3	1,7	90,9	
2,5	59,0	2,5	71,4	2,6	81,1	
3,5	55,4	3,6	65,8	3,6	74,0	
4,6	52,3	4,7	61,0	4,8	68,1	

Tabela 12 – Constante aparente de Henry para o sistema $CO_2 / C_{16}H_{34}$.

3.3.3.3. SISTEMA BINÁRIO CH₄ / H₂O

A Tabela 13 destaca os valores obtidos para a solubilidade do metano em água destilada nas condições experimentais estudadas. Devido à similaridade menor entre as moléculas, os valores de solubilidade possuem uma ordem de grandeza mais reduzida.

T =	30 °C	T =	40 °C
P (atm)	$10^{5*}x_1$	P (atm)	$10^{5} * x_1$
1,1 ± 0,01	1,83 ± 0,03	1,1 ± 0,01	1,66 ± 0,03
$1,8 \pm 0,01$	$5,11 \pm 0,02$	1,8 ± 0,01	$4{,}45 \hspace{0.1in} \pm \hspace{0.1in} 0{,}05$
2,4 ± 0,01	$8,\!39 \hspace{0.1in} \pm \hspace{0.1in} 0,\!20$	$2,5 \pm 0,01$	7,36 ± 0,11
$3,7 \pm 0,01$	$13,\!99 ~\pm~ 0,\!04$	$3,7\pm0,01$	12,35 \pm 0,13
$5,0 \pm 0,01$	$19,70 ~\pm~ 0,48$	4,8 ± 0,37	16,76 \pm 1,05
$6,3 ~\pm~ 0,01$	$25,\!96~\pm~0,\!01$	$6{,}2 \hspace{0.2cm} \pm \hspace{0.2cm} 0{,}07$	$22{,}51~\pm~0{,}84$

<u>Tabela 13 – Dados de solubilidade para o sistema CH₄ (1) / H₂O (2).</u>

Tabela 13 – Continuação.			
	T = 50 °C		
Р	(atm)	$10^{5} * x_1$	
1,1	± 0,01	0,91 ± 0,06	
1,8	± 0,01	$3,59 \pm 0,10$	
2,5	± 0,01	6,20 ± 0,04	
3,7	± 0,01	$10{,}85~\pm~0{,}02$	
5,0	± 0,01	$15{,}70~\pm~0{,}54$	
6,3	± 0,01	$21,02 ~\pm~ 1,31$	

A Figura 21 ilustra o comportamento qualitativo para a solubilidade do metano em água destilada, verificando-se também uma redução do seu valor com o aumento da temperatura a pressão constante.

Figura 21 – Dados de solubilidade para o sistema CH_4 (1) / H_2O (2).

Capítulo 3

A Tabela 14 destaca os valores calculados da constante aparente de Henry para o sistema metano / água destilada. Da mesma forma, a constante de Henry efetiva foi determinada com valores iguais a $1,5.10^5$, $1,6.10^5$ e $3,9.10^5$ atm nas temperaturas de 30, 40 e 50 °C, respectivamente.

T =	30 °C	T =	40 °C	T =	= 50 °C
P (atm)	k _H (atm)	P (atm)	k _H (atm)	P (atm)	k _H (atm)
1,1	58484,0	1,1	63808,9	1,1	111452,5
1,8	34399,2	1,8	39154,5	1,8	47054,7
2,5	28816,0	2,5	32630,7	2,5	37836,6
3,7	25707,1	3,7	28975,2	3,7	32485,1
5,0	24716,9	4,8	27706,1	5,0	30611,5
6,3	23674,0	6,2	27134,9	6,3	29022,6

Tabela 14 – Constante aparente de Henry para o sistema CH_4 / H_2O .

3.3.3.4. SISTEMA BINÁRIO CH₄ / C₁₆H₃₄

A Tabela 15 apresenta os valores para a solubilidade do metano em hexadecano, onde os valores obtidos apresentam duas ordens de grandeza maior do que o sistema anterior, já que as moléculas das substâncias são mais similares. Já a Figura 22 ilustra o comportamento dos dados obtidos, onde as diferenças dos valores de solubilidade entre as temperaturas estudadas apresentaram-se menores, evidenciando assim uma influência mais reduzida dessa variável na solubilidade do metano para esse sistema.

T =	30 °C	T =	40 °C
P (atm)	$10^{3} * x_1$	P (atm)	$10^{3} * x_1$
$0,6 \pm 0,01$	$2,\!67 \pm 0,\!44$	$0,6\pm0,01$	$1,78 \pm 0,01$
$1,2 \pm 0,01$	$7{,}51 \hspace{0.1cm} \pm \hspace{0.1cm} 0{,}47$	$1,2 \pm 0,01$	$6{,}16 \hspace{0.1in} \pm \hspace{0.1in} 0{,}25$
$1,8 \pm 0,01$	$12,\!80~\pm~0,\!48$	$1,8\pm0,01$	11,05 \pm 0,37
$2,8 \pm 0,02$	$20{,}50~\pm~0{,}49$	$2,8 \pm 0,01$	$18,\!94 ~\pm~ 0,\!50$
$3,9 \pm 0,01$	$31,\!00~\pm~0,\!79$	$3,9 \pm 0,01$	$28{,}83~\pm~0{,}75$
5,0 \pm 0,01	$43,\!90~\pm~0,\!65$	5,1 ± 0,01	$40{,}81~\pm~0{,}65$

Tabela 15 – Dados de solubilidade para o sistema CH_4 (1) / $C_{16}H_{34}$ (2).

Tabela 15 – Continuação.			
	T = 50 °C		
P (atm)		$10^{3} * x_1$	
0,6	± 0,01	$1,54 \pm 0,49$	
1,2	± 0,01	$5,90 \pm 0,69$	
1,8	± 0,01	$10{,}78~\pm~0{,}70$	
2,7	± 0,01	$18{,}49~\pm~0{,}66$	
3,8	± 0,01	$28{,}40~\pm~0{,}58$	
5,0	± 0,01	$39,70~\pm~0,48$	

Figura 22 – Dados de solubilidade para o sistema CH_4 (1) / $C_{16}H_{34}$ (2).
Capítulo 3

Os valores para a constante aparente de Henry foram calculados através dos dados experimentais obtidos, sendo apresentados na Tabela 16. A constante de Henry efetiva foi determinada com os valores de 349,3, 767,3 e 940,3 atm nas temperaturas de 30, 40 e 50 °C, respectivamente.

abera 10 – Constante aparente de frem y para o sistema C114 / C_{16}								
	T = 3	30 ℃	T = 4	40 °C	$T = 50 \ ^{\circ}C$			
	P k _H (atm) (atm)		P k _H (atm) (atm)		P (atm)	k _H (atm)		
	0,6	234,0	0,6	376,1	0,6	431,5		
	1,2	161,3	1,2	199,7	1,2	207,2		
	1,8	142,9	1,8	165,9	1,8	169,8		
	2,8	134,7	2,8	144,6	2,7	148,4		
	3,9	123,7	3,9	133,4	3,8	134,6		
	5,0	114,0	5,1	122,6	5,0	126,2		

Tabela 16 – Constante aparente de Henry para o sistema $CH_4 / C_{16}H_{34}$.

3.3.3.5. SISTEMA TERNÁRIO CO₂ / H₂O / NaCl (1M)

Nos sistemas ternários estudados, após a obtenção da solubilidade do CO_2 ou CH_4 na solução aquosa de cloreto de sódio, foi necessário o cálculo da fração molar real dos componentes presentes em cada sistema. Para isso, utilizou-se a massa de solução introduzida na célula de equilíbrio, a concentração do sal igual a 1M e a solubilidade aparente determinada.

A Tabela 17 destaca os valores da fração molar do CO_2 e do sal determinadas em cada condição experimental para o sistema CO_2 / H_2O / NaCl (1M) e a Figura 23, o comportamento desses dados.

	$T = 30 \ ^{\circ}C$		$T = 40 \ ^{\circ}C$				
P (atm)	$10^{4} * x_1$	10*x ₃	P (atm)	$10^{4} x_1$	10*x ₃		
0,6 ± 0,02	$2,76 ~\pm~ 0,04$	0,18	$0,7\pm0,01$	$1,96 \pm 0,01$	0,18		
$1,3 \pm 0,03$	$5,77 \pm 0,05$	0,18	1,3 ± 0,01	$4,30 \pm 0,01$	0,18		
1,9 ± 0,03	$8,\!89 \hspace{0.1in} \pm \hspace{0.1in} 0,\!06$	0,18	1,9 ± 0,01	$6,79 \hspace{0.1in} \pm \hspace{0.1in} 0,01$	0,18		
$2,8 \pm 0,03$	$13,66 \pm 0,15$	0,18	2,8 ± 0,01	$10{,}51~\pm~0{,}01$	0,18		
$3,9 \pm 0,12$	20,58 ± 1,91	0,18	4,0 ± 0,01	$14,\!90~\pm~0,\!01$	0,18		
4,9 ± 0,24	29,64 ± 4,85	0,18	5,2 ± 0,01	$19,68 \pm 0,04$	0,18		

Tabela 17 – Dados de solubilidade para o sistema $CO_2(1) / H_2O(2) / NaCl 1M(3)$.

Tabela 17 -	- Continuação.

$T = 50 \ ^{\circ}C$											
P (atm)	$10^{4} x_1$	10*x ₃									
0,7 ± 0,01	1,57 ± 0,09	0,18									
1,3 ± 0,01	$3,54 \pm 0,07$	0,18									
1,9 ± 0,01	$5,59\pm0,05$	0,18									
2,9 ± 0,01	$8{,}69}\pm0{,}09$	0,18									
4,0 ± 0,01	$12,\!46~\pm~0,\!12$	0,18									
$5,2 \pm 0,01$	$16,50 \pm 0,16$	0,18									

Figura 23 – Dados de solubilidade para o sistema $CO_2(1)$ / $H_2O(2)$ / NaCl 1M (3).

Analisando a Figura 23, observa-se que com o aumento da pressão o valor de solubilidade do CO₂ na solução aquosa apresentou uma diferença mais acentuada na temperatura de 30 °C em relação na temperatura de 40 °C. Uma análise mais criteriosa a respeito da influência do sal na solubilidade do CO₂ será realizada no item após a apresentação dos dados para o segundo sistema ternário.

A Tabela 18 apresenta os valores para a constante aparente de Henry calculados para esse sistema ternário.

T = 3	$T = 30 \ ^{\circ}C$ $P \qquad k_{H}$ (atm) (atm)		40 °C	T = 50 °C		
P (atm)			k _H (atm)	P (atm)	k _H (atm)	
0,6	33,6	0,7	33,2	0,7	33,1	
1,3	66,7	1,2	65,7	1,3	65,7	
1,9	99,4	1,9	98,5	1,9	99,1	
2,8	145,2	2,8	146,3	2,9	148,4	
3,9	190,0	4,0	200,0	4,0	203,5	
4,9	230,8	5,2	254,9	5,3	260,3	

Tabela 18 – Constante aparente de Henry para o sistema CO_2 / H_2O / NaCl (1M).

3.3.3.6. SISTEMA TERNÁRIO CH₄ / H₂O / NaCl (1M)

A Tabela 19 apresenta os valores para a fração molar do metano e do sal determinadas experimentalmente para o sistema ternário $CH_4 / H_2O / NaCl (1M)$, onde se pode observar que a solubilidade do CH_4 apresenta uma ordem de grandeza menor que o sistema anterior devido à baixa similaridade entre o CH_4 e a H_2O , bem como a quantidade de solvente disponível.

Capítulo 3

	$T = 30 \ ^{\circ}C$			$T = 40 \ ^{\circ}C$	
P (atm)	$10^{5} * x_1$	10*x ₃	P (atm)	$10^{5} * x_1$	10*x ₃
1,1 ± 0,01	$0,90 \pm 0,14$	0,18	1,1 ± 0,01	$0,01$ \pm $0,06$	0,18
1,8 ± 0,01	$3,15 \pm 0,16$	0,18	1,8 ± 0,01	$2,\!20 \hspace{0.1in} \pm \hspace{0.1in} 0,\!31$	0,18
2,4 ± 0,01	$5,39 \pm 0,05$	0,18	2,4 ± 0,01	$4{,}28 \hspace{0.1in} \pm \hspace{0.1in} 0{,}58$	0,18
3,6 ± 0,01	8,68 ± 0,11	0,18	3,6 ± 0,01	$7,75 \hspace{0.1in} \pm \hspace{0.1in} 0,85$	0,18
4,9 ± 0,01	$12{,}60~\pm~0{,}04$	0,18	4,9 ± 0,01	11,27 \pm 0,81	0,18
6,2 ± 0,01	$16{,}09 ~\pm~ 0{,}50$	0,18	6,2 ± 0,01	$14{,}56~\pm~0{,}65$	0,18

Tabela 19 – Dados de solubilidade para o sistema $CH_4(1) / H_2O(2) / NaCl(1M)(3)$.

Tabela 19 – Continuação.												
	T = 50 °C											
Р	(atm)	$10^{5} * x_1$	10*x ₃									
1,1	± 0,01	$0{,}10}{\pm}0{,}02$	0,18									
1,8	± 0,01	$1,56 \pm 0,07$	0,18									
2,5	± 0,01	$2,98 \pm 0,11$	0,18									
3,6	± 0,01	$5,91 \pm 0,10$	0,18									
4,9	± 0,01	9,28 \pm 0,47	0,18									
6,3	± 0,01	$12,07 ~\pm~ 0,20$	0,18									

A Figura 24 representa o comportamento dos dados de solubilidade obtidos em função da pressão de equilíbrio do sistema. Mais uma vez, observa-se uma redução no valor dessa solubilidade com o aumento da temperatura a pressão constante.

Figura 24 – Dados de solubilidade para o sistema $CH_4(1) / H_2O(2) / NaCl(1M)(3)$.

Por fim, a Tabela 20 destaca os valores da constante aparente de Henry obtidos para esse sistema ternário.

$T = 30 \ ^{\circ}C$		T = 4	40 °C	$T = 50 \ ^{\circ}C$		
P (atm)	k ['] _H (atm)	P (atm)	k ['] _H (atm)	P (atm)	k _H (atm)	
1,1	57,9	1,1	57,8	1,1	56,1	
1,8	97,4	1,8	96,6	1,8	95,2	
2,4	134,5	2,4	133,5	2,4	132,1	
3,6	199,8	3,6	198,9	3,6	197,6	
4,9	270,2	4,9	269,6	4,9	268,4	
6,2	341,6	6,2	341,3	6,3	340,7	

Tabela 20 – Constante aparente de Henry para o sistema CH₄ / H₂O / NaCl (1M).

3.3.3.7. INFLUÊNCIA DO SAL NA SOLUBILIDADE DO CO2 OU CH4

Frente aos dados de solubilidade medidos para ambos os sistemas ternários, é possível observar que a presença do eletrólito (cloreto de sódio) reduz a solubilidade do CO_2 ou CH_4 no líquido, conforme esperado.

As Figuras 25, 26 e 27 ilustram o comportamento da solubilidade do dióxido de carbono na água destilada em função da pressão do sistema com e sem a presença do sal e as Figuras 28, 29 e 30 apresentam a mesma comparação para o sistema com o metano.

Figura 25 – Influência do sal no sistema CO $_2$ (1) / H $_2O$ (2) / NaCl 1M (3) a 30 $^{\rm o}C.$

Figura 26 – Influência do sal no sistema $CO_2(1) / H_2O(2) / NaCl 1M(3)$ a 40 °C.

Figura 27 – Influência do sal no sistema $CO_2(1)$ / $H_2O(2)$ / NaCl 1M (3) a 50 $^{\circ}C$.

Figura 28 – Influência do sal no sistema $CH_4(1)$ / $H_2O(2)$ / NaCl 1M (3) a 30 $^{\circ}C$.

Figura 29– Influência do sal no sistema CH_4 (1) / H_2O (2) / NaCl 1M (3) a 40 $^{\circ}C$.

Figura 30 – Influência do sal no sistema CH_4 (1) / H_2O (2) / NaCl 1M (3) a 50 °C.

Observando o comportamento para cada sistema, verifica-se que o aumento de temperatura fez com que a presença do eletrólito cause um maior efeito no sistema CO_2 / H_2O / NaCl (1M), onde a redução da solubilidade foi sendo acentuada com o aumento da temperatura. Enquanto que no sistema CH_4 / H_2O / NaCl 1M, essa influência não revelou os mesmos acréscimos com o aumento da temperatura.

Qualitativamente, pode-se justificar essa redução de solubilidade do CO_2 ou CH_4 no líquido devido a menor quantidade de moléculas livres de solvente (água destilada), uma vez que o sal absorve moléculas de água para formar a solução aquosa. Assim, o CO_2 ou CH_4 possui uma menor quantidade disponível de água para ser solubilizado em comparação aos sistemas sem a presença do composto salino.

Já de forma quantitativa, pode-se comprovar o fato citado, onde um valor médio para a redução da solubilidade em cada temperatura foi calculado por sistema. O primeiro sistema, com o dióxido de carbono, apresentou uma redução de 12%, 20% e 36% nos valores da solubilidade do CO_2 nas temperaturas de 30, 40 e 50 °C, respectivamente. Já o segundo, com o metano, a redução observada foi de 38%, 48% e 54% na solubilidade do CH_4 nas temperaturas de 30, 40 e 50 °C, respectivamente. Pelos valores apresentados, verifica-se que o aumento de temperatura de 30 °C para 50 °C resultou em reduções da solubilidade do gás entre essas temperaturas iguais a 24% (35,8–12,2) para o sistema com o dióxido de carbono e de 16% (54,4–37,9) para o sistema com metano, comprovando o comportamento qualitativo observado pelas figuras anteriores.

Por outro lado, analisando o valor percentual da redução em cada sistema, observa-se que o sal apresentou maior influência na solubilidade do CH_4 na solução salina (1M). Este fato pode ser explicado pelo quadrupolo existente nas moléculas de CO_2 , revelando um caráter levemente polar a essa substância o que não é observado na molécula de metano. Assim, na presença do sal, a polaridade da molécula da água é acentuada, fazendo com que a solubilidade de moléculas apolares (CH_4) em soluções aquosas seja mais reduzida frente a moléculas levemente polares (CO_2).

3.4. CONCLUSÕES PARCIAIS DA PARTE EXPERIMENTAL

Após a realização da metodologia apresentada e da discussão dos resultados obtidos, algumas conclusões a respeito do comportamento dos sistemas estudados podem ser relacionadas.

Primeiramente, uma influência do volume morto do equipamento na medida da solubilidade do CO_2 ou CH_4 foi verificada, já que essa variável apresenta uma ordem de grandeza reduzida, fazendo que qualquer tipo de vazamento ou acúmulo indevido de CO_2 ou CH_4 ao longo do aparato comprometa o seu valor final da quantidade solubilizada no líquido. Equipamentos com mínimo possível de volumes mortos são mais indicados para essa determinação experimental, evitando o acúmulo de incertezas. Além disso, a realização de uma análise estatística dos dados referentes à massa de água destilada necessária para inundação de cada segmento do equipamento foi indispensável, permitindo a exclusão de pontos considerados como erros grosseiros, não afetando o valor médio da massa de água destilada utilizada nesse procedimento. Após a determinação dos volumes mortos foi possível observar que a célula de equilíbrio apresentou um valor médio (aproximadamente 30 cm³) bem superior aos outros segmentos (12 e 8 cm³), fazendo com que esses não afetassem de forma significativa a solubilidade do CO_2 ou CH_4 .

Na parte de validação do equipamento construído, ambos os sistemas estudados (CO_2 / H_2O e CH_4 / H_2O) apresentaram desvios da solubilidade na mesma ordem de grandeza das incertezas experimentais reportadas por trabalhos da literatura, demonstrando a aplicabilidade do aparato, bem como do procedimento experimental.

Para o sistema com o metano, alguns fatores capazes de interferir na solubilidade desse gás no líquido, conforme mencionado por outros autores, foram

94

investigados. Os resultados demonstraram que o volume parcial molar do CH_4 a diluição infinita não influenciou os valores obtidos. Entretanto, a massa de solvente utilizada no interior da célula e o tempo de solubilização apresentaram uma influência direta nas medidas, podendo destacar os valores de massa de água destilada iguais a 10 e 28 g e os valores do tempo de solubilização iguais a 60 e 40 minutos para os sistemas dióxido de carbono / água destilada e metano / água destilada, respectivamente.

Os novos dados de solubilidade encontrados revelaram um comportamento qualitativo similar aos reportados por outros trabalhos da literatura, onde essa variável apresentou um aumento no seu valor com o aumento de pressão a temperatura constante ou redução da temperatura a pressão constante. Dentre os sistemas estudados, observouse uma diferença na ordem de grandeza dos valores obtidos devido à similaridade das moléculas presentes. Para os sistemas formados por moléculas de mesma polaridade, essa solubilidade apresentou valores mais elevados do que no demais. Além desses dados de solubilidade, os valores para a constante aparente de Henry foram determinados utilizando os dados obtidos. Deve-se destacar que ao analisar os resultados, observou-se que essa constante para os sistemas contendo metano e água destilada apresentou valores superiores do que os demais, sendo justificado pela redução na ordem de grandeza da solubilidade do CH₄ nesses sistemas, fazendo com que o produto $k_{H} \cdot x_{gas}$ apresentasse mesma ordem de grandeza entre os sistemas. Realizandose uma extrapolação matemática fazendo a pressão do sistema tender a zero, a constante efetiva de Henry dos sistemas foi determinada para cada temperatura e apresentou valores similares aos valores reportados na literatura.

Por fim, a influência de um eletrólito na solubilidade do CO_2 ou CH_4 foi observada nos dois sistemas avaliados e os resultados obtidos apresentaram-se de acordo com trabalhos da literatura.

95

CAPÍTULO 4

"Se os fatos não se encaixam na teoria, modifique os fatos."

(Albert Einstein)

<u>PARTE TEÓRICA</u>

Após a determinação experimental dos dados de solubilidade de gases em líquidos para sistemas binários e ternários, se faz necessária à utilização de um modelo termodinâmico capaz de correlacioná-los, caracterizando o comportamento das fases presentes em equilíbrio. Nos processos químicos, bem como nos processos petrolíferos, inúmeros modelos e equações são desenvolvidos e aplicados conforme apresentado na revisão bibliográfica do Capítulo 2. Esses estudos têm como um dos principais objetivos a obtenção dos parâmetros de interação entre as substâncias presentes no equilíbrio em cada sistema a partir de seus dados experimentais os quais são fundamentais para uma satisfatória representação de tal comportamento.

Além disso, deve-se destacar que raros modelos disponíveis na literatura apresentam capacidade preditiva na descrição da solubilidade de gases em líquidos, isto é, a utilização de parâmetros de interação obtidos para sistemas binários na caracterização do comportamento de sistemas mais complexos, bem como a descrição de séries homólogas ou compostos similares.

Sendo assim, a modelagem termodinâmica utilizada nessa pesquisa destaca definições tradicionais, detalhando cada equação utilizada para a descrição do comportamento dos sistemas em estudo.

4.1. MODELAGEM TERMODINÂMICA

Considerando um sistema fechado formado por **n** fases, pode-se dizer que cada fase presente encontra-se aberta e em contato com a fase adjacente, possibilitando a ocorrência de transferência de massa entre ambas. Segundo a Termodinâmica Clássica (SMITH *et al.*, 2007), aplicando a equação para a determinação da energia livre de Gibbs (G) a partir das variáveis canônicas, temperatura (T) e pressão (P), e utilizando a definição de potencial químico (μ) chega-se às Equações 9 e 10 que representam as expressões para essa energia de um sistema bifásico, onde α e β identificam as fases, S representa a entropia, V o volume e n o número de moles.

$$d(nG)^{\alpha} = (nV)^{\alpha} dP - (nS)^{\alpha} dT + \sum_{i} \mu_{i}^{\alpha} dn_{i}^{\alpha}$$
(9)

$$d(nG)^{\beta} = (nV)^{\beta} dP - (nS)^{\beta} dT + \sum_{i} \mu_{i}^{\beta} dn_{i}^{\beta}$$
(10)

Sabendo-se que a variação da energia livre de Gibbs total de um sistema bifásico é igual a soma da parcela referente a cada fase, obtém-se a Equação 11 para esse sistema com duas fases.

$$d(nG) = (nV)dP - (nS)dT + \sum_{i} \mu_i^{\alpha} dn_i^{\alpha} + \sum_{i} \mu_i^{\beta} dn_i^{\beta}$$
(11)

Uma vez atingido o equilíbrio termodinâmico do sistema, não existirá variações de temperatura e pressão, fazendo com que os dois primeiros termos do lado direito da Equação 11 sejam iguais a zero, chegando a Equação 12.

$$\sum_{i} \mu_i^{\alpha} dn_i^{\alpha} + \sum_{i} \mu_i^{\beta} dn_i^{\beta} = 0$$
(12)

As variações do número de moles dos componentes em cada fase $(dn_i^{\alpha}e dn_i^{\beta})$ são obtidas através dos processos de transferência de massa e aplicando o princípio de conservação da massa obtém-se a Equação 13 para relação entre essas variações. Essa relação aplicada na Equação 12 pode-se obter a Equação 14, apresentando como solução a Equação 15 que caracteriza o princípio de igualdade de potencial químico para uma substância presente em duas fases em equilíbrio químico, sendo possível aplicá-la para N substâncias presentes em π fases em equilíbrio.

$$dn_i^{\alpha} = -dn_i^{\beta} \tag{13}$$

$$\sum_{i} (\mu_i^{\alpha} - \mu_i^{\beta}) dn_i^{\alpha} = 0 \tag{14}$$

$$\mu_i^{\alpha} = \mu_i^{\beta} = \dots = \mu_i^{\pi} \qquad (i = 1, 2, \dots, N)$$
(15)

Esse potencial químico pode ser relacionado diretamente com a fugacidade de cada substância (f_i) através da equação introduzida por G. N. Lewis e representada na Equação 16, onde R representa a constante universal dos gases. Realizando-se sua integração, obtém-se a Equação 17 para determinação do potencial químico, onde o sobrescrito 0 representa o estado de referência padrão adotado. Embora μ_i° e f_i° sejam arbitrários, ambos não podem ser escolhidos independentemente, quando um é escolhido o outro é fixado.

$$d\mu_i = RTd\ln f_i \tag{16}$$

$$\mu_i = \mu_i^0 + RT \ln\left(\frac{f_i}{f_i^0}\right) \tag{17}$$

Assim, aplicando a Equação 17 em ambos os lados da Equação 15 e adotandose o mesmo estado de referência para ambas as fases, é possível obter a Equação 18 que destaca o princípio de isofugacidade para um sistema com π fases em equilíbrio.

$$f_i^{\alpha} = f_i^{\beta} = \dots = f_i^{\pi}$$
 (18)

Os sistemas abordados nessa pesquisa retratam um gás (CO₂ ou CH₄) sendo solubilizado em um líquido, caracterizando a existência de um equilíbrio líquido – vapor (ELV), onde a Equação 18 pode ser aplicada para uma substância presente em ambas as fases substituindo os sobrescritos α e β por L (líquido) e V (vapor), respectivamente.

A fugacidade de uma substância presente na fase vapor pode ser descrita pela Equação 19, onde y_i representa a fração molar da substância, ϕ_i^V o seu coeficiente de correção do desvio da idealidade e P a pressão do sistema. Para as substâncias presentes na fase vapor, normalmente, utiliza-se como estado de referência o componente vapor puro e com comportamento ideal na pressão de 1 atm e temperatura do sistema, resultando na utilização da fugacidade de referência para essa fase a pressão P do sistema, conforme apresentado na equação que segue.

$$f_i^V = y_i \phi_i^V P \tag{19}$$

Já para a representação da fugacidade de uma substância presente na fase

líquida, existem dois caminhos a seguir. O primeiro consiste na mesma representação utilizada para a fase vapor e ilustrada na Equação 20, onde x_i representa a fração molar da substância na fase líquida.

$$f_i^L = x_i \phi_i^L f_i^0 \tag{20}$$

O segundo utiliza um modelo de energia livre de Gibbs em excesso (G^E) para obter a equação para o coeficiente de atividade (γ_i) que computa o desvio da idealidade das substâncias existentes nessa fase. A Equação 21 reporta o cálculo da fugacidade de uma substância nessa fase, onde f_i^o representa a fugacidade padrão de referência que será discutida em cada estratégia utilizada para a caracterização do comportamento dos sistemas de interesse.

$$f_i^L = x_i \gamma_i f_i^0 \tag{21}$$

De acordo com as Equações 19, 20 e 21 apresentadas, existem dois tipos de abordagem para o equilíbrio termodinâmico: a abordagem $\phi - \phi$ e a abordagem $\gamma - \phi$.

Na primeira abordagem ($\phi - \phi$), descreve-se o comportamento da substância presente em cada fase através das Equações 19 e 20, obtendo-se a Equação 22 para caracterização do equilíbrio. Em ambas as fases, o coeficiente de fugacidade (ϕ) é calculado através de uma equação de estado, onde essa pode ser aplicada em toda a faixa de temperatura e pressão experimental conforme destacado na revisão bibliográfica do Capítulo 2. Essas equações podem ser divididas em dois grandes grupos: as equações de estado cúbicas e as equações baseadas na termodinâmica estatística. Além disso, nessa abordagem o estado de referência escolhido para ambas as fases foi idêntico, podendo a fugacidade de referência (f_i^0) ser eliminada do equacionamento.

$$x_i \phi_i^L = y_i \phi_i^V \tag{22}$$

Já na segunda abordagem ($\gamma - \phi$), para a fase vapor a mesma estratégia de cálculo anterior é utilizada e para a fase líquida o coeficiente de atividade (γ) é empregado para a correção do desvio da idealidade, chegando-se à Equação 23.

$$x_i \gamma_i f_i^0 = y_i \phi_i^V P \tag{23}$$

Normalmente, modelos de energia livre em excesso (G^E) são utilizados na obtenção dos coeficientes de atividade das substâncias presentes na fase líquida. Para o estado de referência considera-se líquido puro a mesma pressão e temperatura do sistema e desprezando o efeito de pressão, a fugacidade de referência pode ser calculada como a pressão de saturação da substância pura. Esse tipo de abordagem é recomendado para misturas, simples ou complexas, a pressões baixas ou moderadas, porém não se utiliza a elevadas pressões uma vez que não considera os efeitos dessa propriedade em seu equacionamento.

Por fim, as principais equações de estado apresentadas na literatura para determinação dos coeficientes de fugacidade em ambas as abordagens podem ser citadas: Redlich-Kwong, Soave-Redlich-Kwong e Peng-Robinson com as regras de misturas originais (van der Waals) e LCVM. Para os coeficientes de atividades, os dois modelos de energia livre em excesso mais aplicados são o modelo UNIQUAC e o modelo UNIFAC (original e modificado), ambos apresentados no Anexo C. Além disso, existe uma estratégia de cálculo onde esses modelos da energia de Gibbs em excesso são incorporados nas regras de mistura das equações de estado como é realizado, por exemplo, nas regras de mistura de Heideman e Kokal e de Huron e Vidal.

4.2. MODELOS TERMODINAMICOS

Após a apresentação das possíveis descrições do equilíbrio líquido – vapor dos sistemas de interesse nessa pesquisa, as estratégias teóricas abordadas serão discutidas individualmente, apresentando as considerações adotadas com seus respectivos modelos termodinâmicos. Cinco estratégias diferentes foram implementadas, sendo duas correspondentes ao tipo de abordagem $\phi - \phi$ e três a abordagem $\gamma - \phi$.

4.2.1. MODELO M1: ESTRATÉGIA MODIFICADA DE PRADO (2004)

No modelo M1, o cálculo termodinâmico utilizado apresentou uma abordagem do tipo γ - ϕ partindo-se da Equação 23. Considerando o comportamento de gás ideal para a fase vapor, o coeficiente de fugacidade de uma substância i presente pode ser igualado a unidade ($\phi_i = 1$) e sabendo-se que $\sum_i y_i \cdot P = P$, chega-se a Equação 24 que representa o cálculo da pressão do ponto de bolha do sistema no ELV. Para um sistema binário (componentes 1 e 2), essa equação pode ser resumida a Equação (25).

$$P = \sum_{i} x_i \gamma_i f_i^0 \tag{24}$$

$$P = x_1 \gamma_1 f_1^0 + x_2 \gamma_2 f_2^0$$
(25)

A mesma estratégia proposta por PRADO (2004) para o cálculo da fugacidade de referência para o CO_2 (supercrítico) e um polímero foi utilizada. Na determinação dessa fugacidade, PRADO (2004) utilizou a Equação (26) proposta por PRAUSNITZ E SHAIR (1961) já que as condições experimentais dos sistemas em estudo encontravamse em regiões supercríticas do dióxido de carbono, onde P_c representa sua pressão crítica e T_r sua temperatura reduzida. Para o solvente (água destilada ou hidrocarboneto), o estado de referência de um líquido puro nas mesmas condições de pressão e temperatura do sistema foi adotado, onde a fugacidade de referência pode ser calculada pela sua própria pressão de saturação ($f_2^0 = P_2^{sat}$), considerando que seja independente de pressão.

$$f_1^0 = (P_c)_1 \exp\left[7,81 - \frac{8,06}{(T_r)_1} - 2,94\ln(T_r)_1\right]$$
(26)

Entretanto, os resultados preliminares apresentaram um desvio constante e similar para o valor da solubilidade do CO_2 . Assim, foi observada a existência de um fator de correção F constante, sendo proposta a sua incorporação no cálculo da fugacidade de referência do CO_2 ou CH₄, onde os novos resultados revelaram desvios médios na ordem de 12,7% para a correlação dos dados de solubilidade, bem como em suas predições, demonstrando-se satisfatórios. Então, para o cálculo da fugacidade de referência dos gases (CO₂ e CH₄), a Equação 27 foi adotada, onde F1, F2 e F3 representam os parâmetros a serem estimados.

$$f_{1}^{0} = (P_{c})_{1} \exp\left[F1 - \frac{F2}{(T_{r})_{1}} - F3\ln(T_{r})_{1}\right]$$
(27)

4.2.2. MODELO M2: PRADO (2004) + EQUAÇÃO VIRIAL

Para o modelo M2, a mesma abordagem $\gamma - \phi$ descrita anteriormente foi adotada. Entretanto, a única modificação realizada foi considerar a fase vapor não ideal, sendo o coeficiente de fugacidade de cada substância calculado pela equação virial, onde o seu segundo coeficiente foi calculado através da correlação proposta por TSONOPOULOS (1974), conforme descrita a seguir.

A forma da equação virial é similar a outras equações de estado expressas em termos da pressão, podendo também ser escrita como polinômios na forma inversa em função do volume, como apresentado na Equação 28 (RAMAN, 1985). Essa equação é uma série infinita de potências na qual B é o segundo coeficiente virial, C o terceiro e assim por diante.

$$Z = 1 + \frac{B(T)}{V} + \frac{C(T)}{V^2} + \dots$$
(28)

Para temperaturas superiores às temperaturas críticas das substâncias, a Equação 28 pode ser truncada no terceiro termo e para valores da densidade das misturas com valores inferiores à metade da densidade crítica das substâncias, essa equação pode ser truncada no segundo termo como demonstrado na Equação 29 e utilizada nesse estudo.

$$\frac{PV}{RT} = 1 + \frac{B(T)}{V} = 1 + \frac{BP}{RT}$$
(29)

Para misturas, o segundo coeficiente virial (B) pode ser determinado pela Equação 30, onde y representa a fração molar dos componentes i e j presentes na fase vapor e B_{ij} os coeficientes calculados pela correlação de TSONOPOULOS (1974).

$$B = \sum_{i} \sum_{j} y_{i} y_{j} B_{ij}$$
(30)

Para moléculas apolares ou levemente polares, a Equação 31 determina esse coeficiente para moléculas idênticas, onde R é a constante universal dos gases, $T_c e P_c$ as propriedades críticas, ω o fator acêntrico, $A_0 e A_1$ são calculadas pelas Equações (32) e (33), respectivamente, e A_2 é igual a zero.

$$B_{ii} = \frac{RTc}{Pc_i} (A_0 + \omega_i A_1 + A_2)$$
(31)

$$A_{0} = 0,1445 - \frac{0,3300}{Tr_{i}} - \frac{0,1385}{Tr_{i}^{2}} - \frac{0,0121}{Tr_{i}^{3}} - \frac{0,000607}{Tr_{i}^{8}}$$
(32)

$$A_{1} = 0,0637 + \frac{0,3310}{Tr_{i}^{2}} - \frac{0,4230}{Tr_{i}^{3}} - \frac{0,0080}{Tr_{i}^{8}}$$
(33)

Já para moléculas apolares e distintas, as alterações na Equação 31 para a determinação de B_{ij} são a utilização de uma temperatura crítica média (T_{CM}) no lugar de T_{ci} , de uma pressão crítica média (P_{CM}) no lugar de P_{ci} e de um fator acêntrico médio (ω_M) no lugar de w_i . As Equações 34, 35 e 36 apresentam os cálculos de T_{CM} , P_{CM} e ω_M , respectivamente.

$$T_{CM} = \frac{Tc_i^{1/2}Tc_j^{1/2}Vc_iVc_j}{[0,5(Vc_i^{1/3} + Vc_j^{1/3})]^6}$$
(34)

$$P_{CM} = \frac{4T_{CM}}{(Vc_i^{1/3} + Vc_j^{1/3})^3} \left(\frac{Pc_i Vc_i}{Tc_i} + \frac{Pc_j Vc_j}{Tc_j}\right)$$
(35)

$$\omega_{M} = 0,5(\omega_{i} + \omega_{j}) \tag{36}$$

A Equação 31 também é utilizada para as moléculas polares, onde a única diferença encontra-se na determinação de A_2 através das Equações (37) e (38) para substâncias idênticas e diferentes, respectivamente, onde a_i e b_i representam as constantes de Tsonopoulos.

$$A_2 = \frac{a_{Ti}}{Tr_i^8} - \frac{b_{Ti}}{Tr_i^{10}}$$
(37)

$$A_{2} = \frac{(a_{Ti} + a_{Tj})}{2Tr_{i}^{8}} - \frac{(b_{Ti} + b_{Tj})}{2Tr_{i}^{10}}$$
(38)

No caso de sistemas onde o valor do parâmetro a_i encontra-se inferior a 10^{-8} , como em sistemas formados por substâncias que não apresentam ligações de hidrogênio (cetonas, aldeídos, éteres etc), a Equação (39) é empregada para sua determinação, onde μ_R representa o momento dipolar do sistema calculado pela Equação 40 em função dos momentos dipolares (μ_i) das substâncias individuais.

$$a_{Ti} = -2,14.10^{-4} \mu_R - 4,308.10^{-21} \mu_R^{\ 8} \tag{39}$$

$$\mu_{R} = \frac{10^{5} {\mu_{i}^{2} P c_{i}}}{T c_{i}^{2}}$$
(40)

Uma vez determinado o segundo coeficiente virial, o coeficiente de fugacidade (ϕ_i) para cada substância presente na fase vapor pode ser determinado pela Equação 41

para sistemas com
$$\left(\frac{BP}{RT}+0.25\right) \ge 0$$
, onde $Z=\left(\sqrt{\frac{BP}{RT}}+0.25\right)+0.5$ e pela Equação 42 para

sistemas com
$$\left(\frac{BP}{RT}+0,25\right)<0$$
.

$$\ln \phi_i = \frac{2P}{ZRT} \sum_j x_j B_{ij} - \log Z \tag{41}$$

$$\ln \phi_i = \frac{2P}{RT} \sum_j x_j B_{ij} - B \tag{42}$$

4.2.3. MODELO M3: PRADO (2004) + EQUAÇÃO PR-VDW

O modelo M3 é o terceiro modelo com abordagem γ - ϕ utilizado nessa pesquisa, apresentando a mesma modelagem dos modelos M1 e M2, alterando apenas a equação de estado para determinação dos coeficientes de fugacidade das substâncias presentes na fase vapor. Nesse modelo a equação de estado PR (Peng - Robinson) foi utilizada para o cálculo desses coeficientes conforme descrita a seguir.

Segundo PENG E ROBINSON (1976), as equações de estado semi-empíricas geralmente são expressas pela soma de dois termos: um referente às forças de repulsão (P_R) e outro às forças de atração (P_A). A Equação 43 ilustra uma forma geral para representação da soma de ambas as parcelas, onde v representa o volume molar, a_m o parâmetro a de mistura que leva em consideração a força atrativa entre as moléculas e b_m o parâmetro b de mistura que avalia o tamanho das moléculas consideradas esferas rígidas. Para a equação de estado PR, c₁=1+ $\sqrt{2}$ e c₂=1- $\sqrt{2}$.

$$P = \frac{RT}{v - b_m} - \frac{a_m}{(v + c_1 b_m)(v + c_2 b_m)}$$
(43)

Capítulo 4

Reescrevendo a Equação 43 em função do fator de compressibilidade (Z), chega-se à Equação 44, onde A, B e Z podem ser obtidos através das Equações 45, 46 e 47, respectivamente.

$$Z^{3} - (1 - B)Z^{2} + (A - 3B^{2} - 2B)Z - (AB - B^{2} - B^{3}) = 0$$
(44)

$$A = \frac{a_m P}{R^2 T^2} \tag{45}$$

$$B = \frac{b_m P}{RT} \tag{46}$$

$$Z = \frac{Pv}{RT}$$
(47)

Assim, frente às equações apresentadas pode-se obter o coeficiente de fugacidade para uma substância em uma mistura conforme demonstra a Equação 48, onde a_i e b_i representam os parâmetros dos componentes puros, a_m e b_m esses parâmetros em misturas e A e B calculados anteriormente.

$$\ln \phi_{i} = (Z-1) \left(2\frac{b_{i}}{b_{m}} - 1 \right) - \log(Z-B) - \frac{A}{2\sqrt{2}B} \log \left(\frac{Z+c_{1}B}{Z+c_{2}B} \right) \left[2 \left(\frac{a_{i}}{a_{m}} - \frac{b_{i}}{b_{m}} \right) + 1 \right]$$
(48)

Para o cálculo dos parâmetros de mistura, as regras de misturas originais de van der Waals (VDW) foram utilizadas, sendo o parâmetro a_m calculado através da Equação 49, onde k_{ij} representa o parâmetro de interação binária ajustável aos dados experimentais e a_i caracteriza o parâmetro para o componente puro, calculado pela Equação 50. Já o parâmetro b_m pode ser calculado através da Equação 52, onde l_{ij} representa o parâmetro de interação binária o parâmetro para o

componente puro, determinado pela Equação 53.

$$a_m = \sum_i \sum_j x_i x_j (a_i^{1/2} a_j^{1/2}) (1 - k_{ij})$$
(49)

$$a_{i} = 0,45725 \frac{R^{2}Tc_{i}^{2}}{Pc_{i}} \alpha$$
(50)

$$\alpha = [1 + (0,37464 + 1,54226\omega_i - 0,26992\omega_i^2)(1 - Tr_i^{1/2})]^2$$
(51)

$$b_{m} = \sum_{i} \sum_{j} x_{i} x_{j} \left(\frac{b_{i} + b_{j}}{2} \right) (1 - l_{ij})$$
(52)

$$b_i = 0,0778 \frac{RTc_i}{Pc_i} \tag{53}$$

4.2.4. MODELO M4: EQUAÇÃO PR-VDW

O modelo M4 representa a primeira abordagem do tipo ϕ - ϕ , onde o coeficiente de fugacidade é utilizado em ambas as fases para corrigir o desvio da idealidade do comportamento das substâncias em equilíbrio. Para essa abordagem

utiliza-se a Equação 22 para o cálculo da constante de equilíbrio
$$\left(K_i = \frac{y_i}{x_i} = \frac{\phi_i^L}{\phi_i^V}\right)$$
.

A equação de estado PR descrita anteriormente com as regras de mistura originais de van der Waals (VDW) foi utilizada para o cálculo desses coeficientes em ambas as fases.

4.2.5. MODELO M5: EQUAÇÃO PR-HK

Esse último modelo corresponde à segunda abordagem do tipo ϕ - ϕ estudada, sendo bem similar ao modelo M4. A modificação realizada encontra-se na alteração da regra de mistura acoplada à equação de estado PR. Nesse modelo M5, a regra de mistura proposta por HEIDEMAN E KOKAL (1990) foi empregada, onde um modelo de energia livre de Gibbs em excesso é incorporado no cálculo do parâmetro a_m de mistura.

Na determinação desse parâmetro (a_m) , utiliza-se a Equação 54, onde b_m é calculado pela Equação 52 e β pela Equação 55.

$$a_m = \beta b_m RT \tag{54}$$

$$\beta = \left[\frac{1}{1-\xi} - \sum_{i} x_{i} h_{i}\right] (1+C_{1}\xi) \frac{(1+C_{2}\xi)}{\xi}$$
(55)

O valor de ξ utilizado na Equação 55 pode ser determinado pela solução da Equação 56, onde f(ξ) é descrita pela Equação 57.

$$f(\xi) - S = 0 \tag{56}$$

$$f(\xi) = (1 + C_1 \xi)(1 + C_2 \xi)g\left[\frac{1}{(1 - S)} - \sum_i x_i h_i\right] + \ln\left[\frac{(1 - \xi)}{\xi}\right]$$
(57)

$$h_{i} = \frac{1}{(1 - \xi_{i})} - \frac{\beta_{i}\xi_{i}}{(1 + C_{1}\xi)(1 + C_{2}\xi)}$$
(58)

Para P = 0, ξ_i é determinado pela Equação 59 e para P \neq 0, ξ_i pela Equação 60, com σ = -0,030082157186, δ = 0,003041741701 e β_i determinado pela Equação 61. Os parâmetros a_i e b_i são calculados pelas Equações 50 e 53, respectivamente.

$$\xi_i = \frac{\left[1 + \left(1 - 4RT \frac{b_i}{a_i}\right)^{1/2}\right]}{2} \tag{59}$$

$$\xi_i = 1 + \sigma \beta_i^2 + S \beta_i^3 \tag{60}$$

$$\beta_i = \frac{a_i}{b_i RT} \tag{61}$$

Além disso, o termo ξg presente na Equação 57 pode ser calculado pela Equação 62, onde a quantidade $\xi_i g_i$ é a mesma avaliada para a substância pura e S determinado pela Equação 63, sendo o modelo UNIQUAC utilizado para a determinação de ΔG^E .

$$\xi_g = \left[\frac{1}{(c_1 - c_2)}\right] \ln\left[\frac{(1 + c_2\xi)}{(1 + c_1\xi)}\right]$$
(62)

$$S = -\frac{\Delta G^{E}}{RT} + \sum_{i} x_{i} \left\{ \beta_{i} g_{i} \xi_{i} + \ln[(1 - \xi_{i})] + \ln\left(\frac{b_{i}}{b_{m}}\right) \right\}$$
(63)

4.3. RESUMO DOS TIPOS DE MODELOS

A Tabela 21 apresenta um resumo com os cincos modelos termodinâmicos avaliados com suas respectivas características.

	Tabela	21 - Wouch		inneos un	nzauos.	
Modelo	Tipo de abordagem	Fase líquida	Fase vapor	$\left(f_{i}^{0} ight)_{liq.}$	$\left(f_{i}^{0} ight)_{vap.}$	K _i
M1	γ-φ	UNIFAC	Gás ideal	Eq. 27	Р	$K_i = \frac{\gamma_i f_i^0}{P}$
M2	γ-φ	UNIFAC	Equação Virial	Eq. 27	Р	$K_i = \frac{\gamma_i f_i^0}{\phi_i^V P}$
M3	γ-φ	UNIFAC	Equação PR-VDW	Eq. 27	Р	$K_i = \frac{\gamma_i f_i^0}{\phi_i^V P}$
M4	φ - φ	Equação PR-VDW	Equação PR-VDW	f_i^0	f_i^0	$K_i = \frac{\phi_i^L}{\phi_i^V}$
M5	φ - φ	Equação PR-HK	Equação PR-HK	f_i^{0}	f_i^{0}	$K_i = rac{oldsymbol{\phi}_i^L}{oldsymbol{\phi}_i^V}$

Tabela 21 – Modelos termodinâmicos utilizados

 K_i - constante de equilíbrio; γ - coeficiente de atividade; φ - coeficiente de fugacidade; PR equação de estado de Peng-Robinson; VDW - regra de mistura de van der Waals; HK - regra de mistura de Heideman e Kokal; f_i^0 - fugacidade de referência.

4.4. ESTRATÉGIAS DE CÁLCULOS UTILIZADAS

De posse dos dados experimentais da solubilidade de gases em líquidos, a modelagem termodinâmica desses dados foi realizada através da obtenção dos parâmetros presentes nos modelos utilizados, seguindo algumas estratégias.

No presente trabalho, diversos modelos termodinâmicos foram propostos e testados para o cálculo da solubilidade de gases em líquidos, determinando através de um estudo criterioso a melhor equação e a melhor maneira de obtenção dos parâmetros de interação presentes em cada formulação matemática. Posteriormente, esses resultados foram utilizados na etapa de modelagem dos dados experimentais obtidos nessa pesquisa.

Com o objetivo de selecionar o modelo ótimo a ser empregado na caracterização do comportamento de fases dos sistemas de interesse, primeiramente foi elaborado um banco de dados contendo dados da solubilidade de gases em líquidos presentes na literatura. Esses sistemas não foram limitados somente aos sistemas com os mesmos gases e líquidos adotados na parte experimental descrita no Capítulo 3. Diversos sistemas binários formados pelo CO_2 ou CH_4 e um líquido tiveram seus comportamentos analisados (ELV) e a Tabela 22 apresenta um resumo com todos os dados experimentais retirados da literatura. Deve-se mencionar que todos os estudos iniciais e estimação de parâmetros foram conduzidos para os sistemas presentes na revisão bibliográfica, bem como dados reportados anteriormente ao ano de 2000, a fim de selecionar a melhor estratégia de cálculo para caracterização dos dados obtidos frente a um conjunto de 2859 medidas experimentais.

Tabela 22 – Banco de dados utilizado na modelagem termodinâmica.

Sistema	Trabalho	Dados	T (K)	P (atm)	BP	AP	NPT
CO ₂ / H ₂ O	Bamberger <i>et al.</i> (2000)	PTXY	323,2 a 353,1	39,97 a 139,26	8	21	29
CO ₂ / H ₂ O	Chapoy <i>et al.</i> (2004a)	PTX	273,15 a 373,15	1,87 a 92,11	25	-	25
CO ₂ / H ₂ O	Dalmolin <i>et al</i> . (2006)	PTX	288 a 323	0,908 a 4,672	49	-	49
CO ₂ / H ₂ O	Kiepe <i>et al.</i> (2002)	PTX	313,2 a 393,17	0,071 a 91,36	35	8	43
CO ₂ / H ₂ O	Sérvio e Englezos (2001)	PTX	273,95 a 283,15	19,74 a 59,21	21	-	21
CO ₂ / H ₂ O	Teng <i>et al.</i> (1997)	PTX	278,15 a 293,15	63,56 a 291,04	-	24	24
CO ₂ / H ₂ O	Valtz <i>et al.</i> (2004)	PTX	278,22 a 318,23	4,59 a 78,59	40	7	47
CO ₂ / H ₂ O	Qin <i>et al</i> . (2008)	PTXY	323,6 a 375	297,1 a 492,5	-	7	7
CO ₂ / H ₂ O	Koschel <i>et al.</i> (2006)	PTX	323,1 a 373,1	19,7 a 197,4	-	8	8
CO_2 / CH_4	Wei <i>et al.</i> (1995)	PTXY	230 a 270	25,18 a 82,71	36	16	52
CO_2 / C_2	Horstman <i>et al.</i> (2000)	PTX	304,12	73,74	7	-	7
CO_2 / C_2	Wei <i>et al.</i> (1995)	PTXY	207 a 270	4,38 a 35,20	75	-	75
CO_2 / C_4	Niesen (1989)	PTXY	311,09 a 394,06	3,25 a 49,59	81	25	106

Tabela 22 – Continuação.

Sistema	Trabalho	Dados	T (K)	P (atm)	BP	AP	NPT
CO ₂ / C ₄	Shibata <i>et al.</i> (1989)	PTXY	310,7 a 410,9	3,51 a 79,53	26	7	33
CO_2 / C_4	Leu <i>et al.</i> (1987)	PTXY	368,15 a 418,15	13,68 a 77,98	19	8	27
CO_2 / C_4	Kalra <i>et al.</i> (1976)	PTXY	283,15 e 227,98	0,33 a 40,8	13	16	29
CO ₂ / iC ₄	Leu <i>et al.</i> (1987)	PTXY	383,15 e 398,15	24,24 a 59,19	17	-	17
CO_2 / C_8	Gallegos <i>et al.</i> (2006)	PTXY	322,39 a 372,53	19,87 a 135,92	10	18	28
CO_2 / C_9	Jennings <i>et al.</i> (1996)	PTXY	343,25	36,81 a 116,5	-	6	6
CO ₂ / C ₁₀	Shaver <i>et al.</i> (2001)	PTX	344,3	8,78 a 125,32	8	21	29
CO ₂ / C ₁₀	Sebastian <i>et al.</i> (1980)	PTXY	462,55 a 583,65	14,25 a 51	16	-	16
CO ₂ / C ₁₀	Reamer <i>et al.</i> (1963)	PTXY	277,59 a 510,93	3,4 a 171,11	44	38	82
CO ₂ / C ₁₀	Nagarajan <i>et al.</i> (1986)	PTXY	344,3 a 377,6	63,01 a 162,64	-	44	44
CO ₂ / C ₁₀	Gallegos <i>et al.</i> (2006)	PTXY	319,11 a 372,94	31,99 a 158,5	8	21	29
CO ₂ / C ₁₀	Chou <i>et al.</i> (1990)	PTXY	344,25 a 377,55	40,17 a 152,48	-	6	6
CO ₂ / C ₁₀	Tsuji <i>et al.</i> (2004)	PTX	344,1 a 345,5	25,46 a 114,38	-	11	11
CO ₂ /C ₁₂	Gardeler <i>et al.</i> (2002)	PTXY	318,15	9,4 a 88,18	6	4	10

116

Tabela 22 – Continuação.								
Sistema	Trabalho	Dados	T (K)	P (atm)	BP	AP	NPT	
CO_2 / C_{16}	Breman <i>et al.</i> (1994)	PTXY	305,7 a 512,3	12,26 a 32,49	43	-	43	
CO_2/C_{16}	Charoensombut- Amon <i>et al.</i> (1986)	PTXY	308,15 313,15 323,15	6,80 a 254,7	16	60	76	
CO_2 / C_{16}	Schwarz <i>et al.</i> (1987)	PTX	295,8 a 297,4	4,20 a 16,47	7	-	7	
CO_2 / C_{16}	Sebastian <i>et al.</i> (1980)	PTXY	463,05 a 663,75	19,8 a 50,1	16	-	16	
CO_2 / C_{16}	Spee <i>et al.</i> (1991)	PTXY	393,2 294,4 a 413,3	99,68 a 252,7 246,7	-	20	2	
CO_2 / C_{16}	Tanaka <i>et al</i> . (1993)	PTX	313,15	17,03 a 63,88	7	-	7	
CO_2/C_{16}	Kordikowski e Schneider (1993)	PTXY	353,2	98,7 a 197,4	-	7	7	
CO_2 / C_{16}	Brunner <i>et al.</i> (1994)	PTXY	473,15 573,15	99,7 a 253,6	-	9	9	
CO_2/C_{16}	D'Souza <i>et al.</i> (1988)	PTXY	314,15 333,15 353,15	75,9 a 159,1	-	17	17	
CO_2 / C_{20}	Gasem <i>et al.</i> (1985)	PTX	323,2 a 373,2	6,13 a 66,69	21	-	21	
CO_2 / C_{20}	Huang <i>et al.</i> (1988)	PTX PTXY	323,25 a 573,35	9,76 a 49,97	20	-	20	
CO_2 / C_{20}	Kordikowski e Schneider (1993)	PTXY	353,2 e 393,2	98,7 a 315,82	-	15	15	

Sistema	Trabalho	Dados	T (K)	P (atm)	BP	AP	NPT
CO ₂ / C ₂₈	Gasem <i>et al.</i> (1985)	PTX	348,2 373,2 423,2	7,96 a 94,78	17	6	23
CO_2/C_{32}	Spee <i>et al</i> . (1991)	PTXY	393,2	98,69 a 621,76	-	10	10
CO_2 / C_{36}	Gasem <i>et al.</i> (1985)	PTX	373,2 e 423,2	5,17 a 85,17	17	-	17
CH ₄ /H ₂ O	Yang e Zong (2001)	PTX	298,1	23 a 123,14	-	19	19
CH_4/H_2O	Wang <i>et al.</i> (2003)	PTX	283,2 a 303,2	19,74 a 395,06	-	17	17
CH ₄ /H ₂ O	Mohammadi <i>et al.</i> (2006)	PTX	275,11 a 313,11	9,60 a 177,63	11	5	16
CH_4/H_2O	Lekvam <i>et al.</i> (1997)	PTX	274,19 a 285,67	5,59 a 89,63	12	6	18
CH_4/H_2O	Kim <i>et al.</i> (2003)	PTX	298,15	22,7 a 163,83	-	16	16
CH_4/H_2O	Kiepe <i>et al.</i> (2003b)	PTX	313,35 a 373,29	0,072 a 91,38	16	13	29
CH_4/H_2O	O'Sullivan <i>et al.</i> (1970)	PTX	324,65 a 398,15	100 a 608	-	18	18
CH_4/C_2	Wei <i>et al.</i> (1995)	PTXY	210 a 270	13,03 a 64,02	30	24	54
CH_4/C_4	Elliot <i>et al.</i> (1974)	PTXY	189,06 a 277,59	3,43 a 122,48	62	49	111
CH_4/C_4	Sage <i>et al.</i> (1940)	PTXY	294,26 a 394,26	2,72 a 129,29	44	74	118

Tabela 22 – Continuação.

Sistema	Trabalho	Dados	T (K)	P (atm)	BP	AP	NPT
CH ₄ / C ₅	Chu <i>et al.</i> (1976)	PTXY	176,21 a 273,16	1,37 a 136,09	25	21	46
CH_4/C_6	Srivastan <i>et al.</i> (1992)	PTX	310,9 a 377,6	10,66 a 84,08	14	19	33
CH_4/C_6	Lin <i>et al.</i> (1977)	PTXY	182,46 a 273,16	1,35 a 180,32	80	72	152
CH_4/C_6	Poston <i>et al.</i> (1966)	PTXY	310,93 a 444,25	24,76 a 197,41	-	39	39
CH_4/C_7	Reamer <i>et al.</i> (1956)	PTXY	277,59 a 510,93	13,61 a 238,16	15	73	88
CH_4/C_8	Kohn <i>et al.</i> (1964)	PTXY	223,15 a 323,15	10,0 a 70,0	24	32	56
CH ₄ / C ₁₀	Srivastan <i>et al.</i> (1992)	PTX	310,9 a 410,9	10,26 a 67,70	14	18	32
CH ₄ / C ₁₀	Lin <i>et al.</i> (1979)	PTXY	423,15 a 583,05	27,2 a 184,4	-	28	28
CH ₄ / C ₁₀	Reamer <i>et al.</i> (1942)	PTXY	310,93 a 510,93	1,36 a 340,23	45	112	157
CH ₄ / C ₁₆	Lin <i>et al.</i> (1980)	PTXY	462,45 a 703,55	20,02 a 249,3	8	16	24
CH_4 / C_{20}	Huang <i>et al.</i> (1988)	PTX PTXY	373,35 a 573,15	9,93 a 49,86	-	15	15
C_2 / C_{10}	Gardeler <i>et al.</i> (2002)	PTXY	410,95 a 444,25	6,95 a 113,5	10	22	32
C_2 / C_{10}	Bufkin <i>et al.</i> (1986)	PTX	277,6 a 410,9	3,89 a 81,28	58	66	124
C ₃ /C ₁₀	Jennings <i>et al.</i> (1996)	PTXY	310,95 a 393,85	10,27 a 45,46	48	53	101
		Tabela 2	22 – Continuação.				
----------------	-----------------------------------	----------	-------------------	--------------	----	----	-----
Sistema	Trabalho	Dados	T (K)	P (atm)	BP	AP	NPT
C_3 / C_{12}	Gardeler <i>et al.</i> (2002)	PTXY	419,15 a 457,65	4,01 a 75,82	14	25	39
C_3/H_2O	Kobayashi <i>et al.</i> (1953)	PTX	285,37 a 422,04	4,9 a 189,64	19	50	69
C_4 / C_{10}	Reamer <i>et al.</i> (1964)	PTXY	310,93 a 510,93	1,70 a 47,63	32	-	32
C_4/H_2O	Reamer <i>et al.</i> (1944)	PTXY	310,93 a 424,09	3,57 a 43,38	18	26	44

T, P - faixa de temperatura e pressão, respectivamente; BP - dados experimentais em baixa pressão; AP - dados experimentais em alta pressão; NPT - total de dados de cada trabalho; PTX - dados experimentais de pressão, temperatura e fração molar da fase líquida; PTXY - dados experimentais de pressão, temperatura e fração molar de ambas as fases.

É necessário destacar que o critério utilizado para definição da classe dos dados experimentais divididos em baixa ou alta pressão foi o mesmo reportado na literatura, onde se consideram dados a baixa pressão àqueles que possuem valores inferiores a 15% da pressão crítica do componente predominante na fase gasosa dos sistemas. Em casos superiores a esse valor, os mesmos foram considerados dados a altas pressões.

Frente aos cinco modelos apresentados e às condições experimentais observadas na Tabela 22, duas questões precisam ser respondidas:

1) Já que os dados de solubilidade da literatura apresentam condições experimentais em altas e baixas pressões, qual seria a melhor sequência de cálculo a ser realizada? Utilizar os dados a baixas pressões na obtenção dos parâmetros de interação presentes nas equações e, posteriormente, prever os dados em altas pressões (BP \rightarrow AP)? Ou realizar o oposto, correlacioná-los em altas pressões e com os parâmetros obtidos, prever os dados a baixas pressões (AP \rightarrow BP)? Além dessas, ainda resta a opção de utilizá-los simultaneamente na etapa de correlação, sem distinção de condição experimental (BP + AP).

Em termos práticos, a obtenção experimental de dados em baixas pressões (BP) apresenta um custo reduzido, uma vez que os equipamentos envolvidos são de uma menor simplicidade do que os aparatos utilizados em condições de altas pressões (AP). Assim, realizando a obtenção dos dados experimentais a baixas pressões, os parâmetros de interação das substâncias são calculados e os dados a pressões elevadas podem ser preditos através dos modelos termodinâmicos (BP \rightarrow AP). Esse processo facilita a descrição do comportamento dos sistemas em condições experimentais distintas. Além disso, existe também uma possibilidade de determinação dos dados em ambas as faixas, ou seja, em pressões baixas e altas (BP + AP). Entretanto, essa alternativa requer um número maior de equipamentos e tempo operacional, encarecendo-a e fazendo com que os parâmetros obtidos fossem apenas empregados na correlação dos dados obtidos.

2) Dentre os cinco modelos apresentados (M1 ao M5), qual deles seria o melhor para caracterização do comportamento da solubilidade dos gases nos líquidos para os sistemas analisados?

Com essas respostas, seria possível realizar o tratamento teórico dos dados experimentais obtidos nesse estudo, onde o melhor modelo seria empregado com a melhor sequência de cálculo para a determinação da solubilidade de gases em líquidos.

Assim as etapas que serão apresentadas foram seguidas nessa avaliação teórica e seus resultados apresentados e discutidos no item que segue.

<u>1^a Etapa</u>: obtenção dos parâmetros dos modelos M1, M2, M3, M4 e M5 utilizando somente dados da literatura a baixas pressões (BP) e com esses, realizar a predição dos dados a pressões elevadas (AP), sendo possível verificar para essa

121

estratégia o modelo mais satisfatório;

<u>**2**</u>^a **Etapa**: realização do procedimento invertido, onde os dados a pressões elevadas foram utilizados para obter os parâmetros e os dados a pressões baixas tiveram seus comportamentos preditos;

<u>**3**</u>^a **Etapa**: obtenção de um único conjunto de parâmetro que realizasse uma predição satisfatória da solubilidade do CO_2 ou CH_4 em cada sistema analisado utilizando o melhor modelo e a melhor estratégia de cálculo escolhidos através da análise dos resultados das etapas anteriores;

<u>**4**</u>^a <u>Etapa</u>: frente a alguns resultados não muito eficientes na 3^a etapa, realização de uma estratégia de estimação dos parâmetros do melhor modelo utilizando todos os dados da literatura para cada sistema;

<u>5^a Etapa</u>: modelagem dos dados experimentais obtidos nessa pesquisa para os sistemas binários, onde esses tiveram seus comportamentos preditos utilizando os parâmetros obtidos;

<u>**6**^a Etapa</u>: reestimação dos parâmetros de interação por temperatura para os sistemas CO_2 / H_2O e CH_4 / H_2O já que os resultados da 5^a etapa não foram muito satisfatórios;

<u>**7**^a Etapa</u>: cálculo de um valor médio para cada parâmetro através dos parâmetros obtidos por temperatura e predição dos dados experimentais;

<u>8ª Etapa</u>: como última etapa da modelagem dos sistemas binários, avaliação da alternativa de estimação dos parâmetros do modelo utilizando os dados da literatura junto aos dados obtidos nessa pesquisa para os sistemas contendo água;

<u>**9**</u>^a **Etapa**: modelagem dos dados experimentais para os sistemas ternários utilizando o modelo sugerido na 3^a etapa, obtendo seus parâmetros de interação.

122

4.5. RESULTADOS E DISCUSSÕES

Para a realização dos estudos visando obter as respostas para as duas questões apresentadas e realização da modelagem dos dados reportados na parte experimental, diversas propriedades dos componentes puros são indispensáveis ao longo dos cálculos termodinâmicos e são resumidas na Tabela 23 (POLING *et al.*, 2001).

Tabela 23 – Propriedades das substâncias.											
Substância	MM (g/gmol)	V _C (cm ³ /mol)	T _C (K)	P _C (bar)	ω	AA	AB	AC			
CO_2	44,010	94,07	304,12	73,74	0,225	6,9355	1347,785	272,990			
CH_4	16,043	98,60	190,56	45,99	0,011	3,7687	395,744	266,681			
C_2H_6	30,070	145,50	305,32	48,72	0,099	3,9540	663,720	256,681			
C_3H_8	44,097	200,00	369,83	42,48	0,152	3,9282	803,997	247,040			
C_4H_{10}	58,123	255,00	425,12	37,96	0,200	3,9326	935,773	238,789			
$C_{5}H_{12}$	72,150	311,00	469,70	33,70	0,252	3,9778	1064,840	232,014			
$C_{6}H_{14}$	86,177	368,00	507,60	30,25	0,300	4,0013	1170,875	224,317			
$C_{7}H_{16}$	100,204	428,00	540,20	27,40	0,350	4,0202	1263,909	216,432			
$C_{8}H_{18}$	114,231	492,00	568,70	24,90	0,399	4,0507	1356,360	209,635			
C ₉ H ₂₀	128,258	555,00	594,60	22,90	0,445	4,0735	1438,030	202,694			
$C_{10}H_{22}$	142,285	624,00	617,70	21,10	0,490	4,0685	1495,170	193,858			
$C_{12}H_{26}$	170,338	754,00	658,00	18,20	0,576	4,1228	1639,270	181,840			
$C_{16}H_{34}$	226,446	1034,00	723,00	14,00	0,718	4,1535	1830,510	154,450			

^a - calculados pela equação de Wagner (POLING *et al.*, 2001); ^b - estimados pelo método de Joback (POLING *et al.*, 2001); MM - massa molecular; T_c , P_c e V_c - propriedades críticas; ω - fator acêntrico; AA, AB e AC - constantes da equação de Antoine.

		10	1001a 25	Contin	iuaçao.			
Substância	MM (g/gmol)	V _C (cm ³ /mol)	T _C (K)	P _C (bar)	ω	AA	AB	AC
$C_{20}H_{42}$	282,554	1170,00	768,00	10,70	0,865	4,2771	2032,700	132,100
$C_{24}H_{50}$	338,661	1410,00	800,00	8,70	1,023	2,2733 ^a	1833,017 ^a	136,814 ^a
$C_{28}H_{58}$	394,772	1630,00	1030,18 ^b	6,55 ^b	0,557	1,4308 ^a	1834,003 ^a	120,688 ^a
$C_{32}H_{66}$	450,880	1860,00	1158,50 ^b	,44 ^b	0,287	1,1522 ^a	1833,045 ^a	137,301 ^a
C ₃₆ H ₇₄	506,988	2090,00	972,42 ^b	4,58 ^b	-0,009	1,2281 ^a	1830,267 ^a	181,744 ^a
H ₂ O	18,015	18,07	647,1	220,64	0,344	5,1156	1687,537	230,170

Tabela 23 – Continuação.

Para a única substância polar listada (H₂O), devem-se mencionar suas propriedades, obtidas de TSONOPOULOS (1974), a serem utilizadas na equação virial: momento dipolar igual a 1,8 e as constantes a_{Ti} e b_{Ti} ambas iguais a 0,0279. Além disso, para o cálculo da pressão de vapor das substâncias foi utilizada a equação de Antoine conforme apresentada na Equação 64, onde a temperatura encontra-se em ^{*o*}*C* e a pressão calculada em *atm*.

$$\log P_i^{vap} = AA - \frac{AB}{T + AC} \tag{64}$$

^a - calculados pela equação de Wagner (POLING *et al.*, 2001); ^b - estimados pelo método de Joback (POLING *et al.*, 2001); MM - massa molecular; T_c , P_c e V_c - propriedades críticas; ω - fator acêntrico; AA, AB e AC - constantes da equação de Antoine.

4.5.1. ESCOLHA DA MELHOR SEQUÊNCIA E MODELO

Primeiramente, a determinação da melhor sequência para a estimação dos parâmetros de interação binária e o modelo que apresenta uma descrição mais satisfatória do comportamento da solubilidade do CO_2 ou CH_4 em um líquido foram verificados. A Tabela 24 apresenta os resultados obtidos em termos de desvios na pressão (DP) e na fração molar do CO_2 ou CH_4 na fase vapor (Dy), onde esses foram calculados pelas as Equações 65 e 66, respectivamente, com *nexp* representando o número de pontos experimentais, *exp* o valor determinado experimentalmente e *calc* o valor calculado pelo modelo termodinâmico. O método de otimização para obtenção dos parâmetros de interação utilizados ao longo de toda a parte teórica foi o Simplex (NELDER E MEAD, 1965).

$$DP = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\left| P^{\exp} - P^{calc} \right|}{P^{\exp}} \right)^2 100$$
(65)

$$Dy = \frac{1}{N} \sum_{i=1}^{N} \left| y^{\exp} - y^{calc} \right|$$
(66)

É importante destacar que: (i) ao longo do texto e das tabelas, a representação C_n indica um hidrocarboneto normal com *n* átomos de carbono; (ii) alguns sistemas apresentavam somente dados a baixa ou alta pressão, não sendo possível realizar a predição dos mesmos na condição oposta; (iii) alguns sistemas apresentavam dados do tipo PTX (pressão – temperatura – fração molar da fase líquida), não permitindo a verificação do desvio na fração molar da fase vapor calculada pelos modelos termodinâmicos; (iv) para sistemas com mais de uma fonte de dados da literatura, os desvios foram calculados de maneira individual para cada trabalho, porém na Tabela 24

apenas um desvio médio foi apresentado; (v) o modelo M4 aparece duas vezes nessa tabela devido à existência de dois parâmetros em sua regra de mistura, onde para a primeira representação M4 apenas o parâmetro de interação k_{ij} foi estimado e na segunda, ambos os parâmetros, k_{ij} e l_{ij} foram analisados.

Tabela 24 – Resultados para cada sistema binario.									
Sistama	Fa	В	Р	BP –	→ AP	А	P	AP –	→ BP
Sistema	Eq.	DP (%)	Dy						
	M1	9,04	0,0330	5,80	0,0250	0,14	0,1200	21,42	0,1400
	M2	4,81	0,0005	7,31	0,0017	6,12	0,0930	8,31	0,1100
	M3	-	-	-	-	-	-	-	-
CO_2 / H_2O	M4	28,13	0,0517	4,48	0,4999	6,65	0,0051	768,36	0,0054
	M4	26,60	0,0513	4,43	0,4997	6,01	0,0051	42,54	0,0053
	M5	17,60	0,9812	9,37	0,9769	-	-	-	-
	M1	15,87	0,0637	14,73	0,1097	25,33	0,1763	14,35	0,1100
	M2	9,12	0,0661	28,56	0,1114	24,05	0,5500	150,00	0,1573
CO ₂ / CH ₄	M3	1,69	0,0037	1,91	0,0062	3,82	0,1779	10,71	0,1265
	M4	1,65	0,0032	1,93	0,0070	2,33	0,1666	12,12	0,1840
	M4	30,30	0,2877	21,69	0,2594	-	-	-	-
	M5	30,19	0,2877	21,40	0,2594	-	-	-	-
	M 1	8,14	0,0771	-	-	-	-	-	-
	M2	17,67	0,0774	-	-	-	-	-	-
CO_{2}/C_{2}	M3	-	-	-	-	-	-	-	-
$\mathbf{co}_2 / \mathbf{c}_2$	M4	1,37	0,0091	-	-	-	-	-	-
	M4	1,51	0,0090	-	-	-	-	-	-
	M5	12,46	0,1025	-	-	-	-	-	-
	M1	10,70	0,1704	7,30	0,1352	16,05	0,1376	40,11	0,1750
	M2	12,22	0,1013	14,27	0,1137	11,07	0,1861	16,20	0,3316
CO_2 / C_4	M3	-	-	-	-	-	-	-	-
	M4	7,31	0,0554	6,02	0,0399	1,51	0,0911	12,55	0,0904
	M4	5,97	0,0543	4,86	0,0376	1,24	0,0910	9,30	0,0957

Tabela 24 – Resultados para cada sistema binário.

						<u> </u>			
Sistema	Fa	В	Р	BP –	→ AP	А	P	AP –	→ BP
Sistema	Ľq.	DP (%)	Dy	DP (%)	Dy	DP (%)	Dy	DP (%)	Dy
CO_2 / C_4	M5	1,85	0,1334	1,63	0,1303	-	-	-	-
	M1	6,18	0,0103	4,58	0,0225	20,97	0,0200	6,68	0,2900
	M2	1,23	0,2587	2,60	0,3922	5,08	0,1100	4,51	0,1350
CO / C	M3	-	-	-	-	-	-	-	-
CO_2 / C_8	M4	17,38	0,0034	4,63	0,0042	6,63	0,1938	27,64	0,0421
	M4	17,10	0,0036	4,48	0,0046	6,65	0,1936	27,95	0,0422
	M5	13,81	0,6853	42,40	0,3804	-	-	-	-
	M1	-	-	-	-	2,46	0,0108	-	-
	M2	-	-	-	-	0,97	0,0222	-	-
CO ₂ / C ₉	M3	-	-	-	-	-	-	-	-
	M4	-	-	-	-	66,02	0,4138	-	-
	M4	-	-	-	-	32,51	0,4008	-	-
	M5	-	-	-	-	-	_	-	-
	M 1	15,26	0,0332	9,81	0,0225	8,78	0,0254	19,46	0,0507
	M2	6,36	0,0271	7,87	0,0446	3,37	0,0267	6,40	0,0452
CO_{2}/C_{10}	M3	-	-	-	-	-	-	-	-
CO_2 / C_{10}	M4	3,84	0,0164	4,78	0,0069	4,44	0,0755	11,23	0,0495
	M4	3,44	0,0164	4,52	0,0075	4,56	0,0755	11,59	0,0496
	M5	72,04	0,6467	173,03	0,1956	-	_	-	-
	M1	8,20	0,0006	10,63	0,0024	-	-	8,88	0,0024
	M2	3,44	0,0003	4,80	0,0023	-	-	1,29	0,0063
CO_2 / C_{12}	M3	-	-	-	-	-	-	-	-
	M4	3,04	0,0001	3,53	0,0019	8,79	0,0014	3,60	0,0007

Tabela 24 – Continuação.											
Sistema	Fa	В	Р	BP –	→ AP	А	Р	AP –	→ BP		
Sistema	Lq.	DP (%)	Dy								
CO_2/C_{12}	M4	3,43	0,0001	3,75	0,0018	8,80	0,0014	3,62	0,0007		
	M5	-	-	-	-	-	-	-	-		
	M1	8,44	0,1206	7,72	0,0578	2,61	0,1080	6,30	0,3017		
	M2	1,73	0,0264	3,13	0,0412	0,76	0,0584	4,85	0,2517		
CO ₂ / C ₁₆	M3	-	-	-	-	-	-	-	-		
	M4	3,04	0,0179	8,89	0,1067	4,89	0,1472	4,18	0,0471		
	M4	2,98	0,0179	7,48	0,1029	4,65	0,1466	4,29	0,0471		
	M5	91,67	0,0017	-	-	-	-	-	-		
	M1	20,48	-	3,59	0,0280	0,03	0,0375	2,69	-		
	M2	6,19	-	6,56	0,0280	0,02	0,0272	2,80	-		
CO / C	M3	-	-	-	-	-	-	-	-		
CO_2 / C_{20}	M4	3,14	-	8,45	0,1389	6,87	0,2041	1,95	-		
	M4	2,30	-	9,60	0,1388	2,10	0,2043	1,47	-		
	M5	-	-	-	-	-	-	-	-		
	M1	-	-	-	-	0,04	0,0194	-	-		
	M2	-	-	-	-	5,52	0,0193	-	-		
CO_{2}/C_{2}	M3	-	-	-	-	-	-	-	-		
CO_2 / C_{24}	M4	-	-	-	-	21,02	0,2416	-	-		
	M4	-	-	-	-	17,68	0,2420	-	-		
	M5	-	-	-	-	-	-	-	-		
	M1	16,83	-	19,67	-	9,49	-	0,27	-		
CO_2 / C_{28}	M2	9,12	-	12,07	-	14,83	-	0,25	-		
	M3	-	-	-	-	-	-	-	-		

Tabela 24 – Continuação.												
Sistema	Fa	B	P	BP –	→ AP	А	P	AP –	→ BP			
Sistema	Lq.	DP (%)	Dy									
	M4	4,27	-	3,77	-	1,98	-	3,66	-			
CO_2 / C_{28}	M4	2,04	-	1,94	-	1,35	-	1,59	-			
	M5	-	-	-	-	-	-	-	-			
	M1	-	-	-	-	0,02	0,1017	-	-			
CO ₂ / C ₃₂	M2	-	-	-	-	21,03	0,2235	-	-			
	M3	-	-	-	-	-	-	-	-			
	M4	-	-	-	-	2,29	0,1783	-	-			
	M4	-	-	-	-	1,08	0,1783	-	-			
	M5	-	-	-	-	-	_	-	-			
	M1	12,87	-	-	-	-	-	-	-			
	M2	8,57	-	-	-	-	-	-	-			
CO_{1}/C_{1}	M3	-	-	-	-	-	-	-	-			
CO_2 / C_{36}	M4	1,65	-	-	-	-	-	-	-			
	M4	1,53	-	-	-	-	-	-	-			
	M5	-	-	-	-	-	-	-	-			
	M1	26,05	-	5,25	-	3,00	-	12,30	-			
	M2	54,77	-	16,91	-	5,59	-	11,61	-			
СН. / Н.О	M3	-	-	-	-	-	-	-	-			
CH4 / H2O	M4	7,18	-	4,06	-	1,90	-	137,87	-			
	M4	7,08	-	3,42	-	1,69	-	7,66	-			
	M5	16,69	-	3,98	-	-	-	-	-			
СН./С	M1	2,09	0,0661	4,10	0,1090	5,77	0,1600	4,79	0,0670			
CH ₄ / C ₂	M2	7,92	0,0107	6,72	0,0453	3,12	0,0841	5,19	0,0445			

Sistamo	Fa	В	P	BP –	→ AP	А	P	AP –	→ BP
Sistema	Ľq.	DP (%)	Dy						
	M3	-	-	-	-	-	-	-	-
CH./C.	M4	5,05	0,0110	3,91	0,0111	2,97	0,1767	101,49	0,1914
CII_4 / C_2	M4	1,26	0,0058	1,45	0,0053	-	-	-	-
	M5	75,80	0,2644	48,39	0,2235	-	_	-	-
	M1	9,52	0,1257	17,15	0,2001	6,07	0,2059	15,13	0,1717
CH ₄ / C ₄	M2	9,61	0,1045	24,47	0,1641	14,44	0,1868	16,66	0,1079
	M3	-	-	-	-	-	-	-	-
	M4	5,93	0,0828	11,44	0,1072	2,22	0,1499	6,39	0,1123
	M4	5,95	0,0823	10,90	0,1070	2,46	0,1501	6,69	0,1148
	M5	69,15	0,4107	36,65	0,3629	-	-	-	-
	M1	16,16	0,0015	15,39	0,0065	0,27	0,0725	11,33	0,0794
	M2	12,98	0,0005	9,62	0,0039	5,36	0,0077	9,22	0,0038
CH_{4}/C_{2}	M3	-	-	-	-	-	-	-	-
	M4	8,41	0,0002	6,86	0,0007	4,26	0,0011	6,75	0,0006
	M4	8,31	0,0002	6,85	0,0007	4,25	0,0011	6,59	0,0006
	M5	42,01	0,7641	35,66	0,5984	-	-	-	-
	M1	9,08	-	20,66	0,1226	2,78	0,0972	16,36	-
	M2	8,08	-	9,48	0,0918	10,70	0,0913	12,84	-
CH_4/C_2	M3	-	-	-	-	-	-	-	-
CH_4 / C_6	M4	3,06	-	4,40	0,0461	4,02	0,0698	3,21	-
	M4	4,37	-	4,72	0,0571	3,95	0,0698	3,18	-
	M5	19,30	-	47,57	0,1518	-	-	-	-
CH_4 / C_7	M1	8,51	0,0577	15,35	0,0754	4,08	0,0919	12,34	0,1200

Tabela 24 – Continuação.

		В	P	BP –	→ AP	AP		$AP \rightarrow BP$	
Sistema	Eq.	DP (%)	Dv	DP (%)	Dv	DP (%)	Dv	DP (%)	Dv
	M2	5 24	0.0218	12.72	0.0555	7 72	0.0651	7.62	0.0596
	M3	-	-	-	-	-	-	-	-
CH_4 / C_7	M4	1.77	0.0117	2.87	0.0119	3.68	0.0062	3.43	0.0071
. ,	M4	2,68	0,0124	4,33	0,0193	3,28	0,0064	3,01	0,0073
	M5	266,61	0,2120	101,36	0,1271	_	-	_	-
	M1	12,28	_	14,47	_	3,41	_	30,28	-
	M2	4,50	-	4,37	-	5,73	-	5,93	-
	M3	-	-	-	-	-	-	-	-
CH ₄ / C ₈	M4	1,78	-	2,01	-	1,94	-	1,93	-
	M4	1,94	-	2,03	-	1,91	-	2,07	-
	M5	3,27	-	11,74	-	-	-	-	-
	M1	7,03	0,2558	16,57	0,2041	3,85	0,1506	9,53	0,1500
	M2	3,76	0,2481	12,03	0,3014	5,72	0,1404	14,32	0,1155
CH_4/C_{10}	M3	-	-	-	-	-	-	-	-
	M4	17,37	0,1509	13,52	0,1414	3,98	0,0451	1,90	-
	M4	17,37	0,1484	12,20	0,1429	4,17	0,0571	2,16	-
	M5	77,80	0,5557	9,25	0,0886	-	-	-	-
	M1	8,53	0,0883	16,14	0,0663	0,03	0,0833	9,63	0,4500
	M2	8,22	0,0860	16,05	0,0665	0,35	0,0715	28,14	0,0358
CH4 / C16	M3	-	-	-	-	-	-	-	-
	M4	5,05	0,0765	5,14	0,0695	4,49	0,2940	5,39	0,0705
	M4	3,02	0,0774	4,97	0,0693	4,84	0,3869	20,43	0,0922
	M5	-	-	-	-	-	-	-	-

		B	P	BP –	→ AP	γΟ. Α	Р	$AP \rightarrow BP$		
Sistema	Eq.	DP (%)	Dy	DP (%)	Dy	DP (%)	Dy	DP (%)	Dy	
	M1	_	-	_	-	5,49	0,3400	_	-	
	M2	-	-	-	-	15,38	0,3300	-	-	
	M3	-	-	-	-	-	-	-	-	
CH ₄ / C ₂₀	M4	-	-	-	-	2,18	0,0450	-	-	
	M4	-	-	-	-	1,88	0,0452	-	-	
	M5	-	-	-	-	-	-	-	-	
	M1	7,74	0,0173	11,08	0,0289	15,29	0,0308	16,02	0,0332	
	M2	3,60	0,0081	5,42	0,0195	19,21	0,0190	9,78	0,0211	
C_2 / C_{10}	M3	-	-	-	-	-	-	-	-	
C_2 / C_{10}	M4	5,39	0,0061	3,78	0,0084	4,90	0,0241	8,14	0,0099	
	M4	3,20	0,0056	2,76	0,0070	4,86	0,0224	6,16	0,0083	
	M5	86,12	0,7083	65,72	0,3447	-	-	-	-	
	M 1	4,42	-	4,74	-	10,71	-	6,17	-	
	M2	-	-	-	-	24,45	-	4,84	-	
C_2/C_{10}	M3	-	-	-	-	-	-	-	-	
037 010	M4	0,15	-	0,13	-	2,80	-	2,78	-	
	M4	0,15	-	0,13	-	3,05	-	2,60	-	
	M5	6,92	-	6,50	-	-	-	-	-	
	M1	5,17	0,0273	8,79	0,0375	15,44	0,0423	11,70	0,0397	
	M2	3,92	0,0178	5,10	0,0295	13,88	0,0367	5,42	0,0288	
C_3 / C_{12}	M3	-	-	-	-	-	-	-	-	
	M4	2,97	0,0121	2,43	0,0131	9,70	0,0660	6,52	0,0124	
	M4	2,98	0,0121	2,44	0,0131	10,70	0,0671	5,74	0,0133	

Tabala 24 Continuação

Tabela 24 – Continuação.											
Sistema	Fa	В	Р	BP –	→ AP	А	P	AP -	→ BP		
Sistema	Ľq.	DP (%)	Dy								
C_3 / C_{12}	M5	68,11	0,7184	52,93	0,5070	-	-	-	-		
	M1	1,74	-	0,79	-	0,21	-	0,78	-		
C3 / H2O	M2	8,11	-	3,67	-	0,19	-	0,77	-		
	M3	-	-	-	-	-	-	-	-		
	M4	1,33	-	1,35	-	2,21	-	21,53	-		
	M4	1,33	-	1,33	-	1,94	-	2,11	-		
	M5	48,96	-	19,23	-	-	_		-		
	M1	5,31	0,0093	-	-	-	-	-	-		
	M2	4,03	0,0020	-	-	-	-	-	-		
$\mathbf{C}_{\mathbf{r}}/\mathbf{C}_{\mathbf{r}}$	M3	-	-	-	-	-	-	-	-		
C_4 / C_{10}	M4	1,15	0,0020	-	-	-	-	-	-		
	M4	1,14	0,0020	-	-	-	-	-	-		
	M5	16,91	0,3831	-	-	-	-	-	-		
	M1	8,77	0,0428	13,63	0,0476	1,89	0,0544	3,33	0,0481		
	M2	6,71	0,0428	11,78	0,0475	3,46	0,0541	22,39	0,0480		
	M3	-	-	-	-	-	-	-	-		
C ₄ / H ₂ O	M4	0,52	0,0053	0,45	0,0076	2,24	0,0207	0,71	0,0072		
	M4	0,52	0,0054	0,46	0,0076	2,42	0,0241	1,01	0,0112		
	M5	84,77	0,0364	59,24	0,0338	-	-	-	-		

BP: desvios obtidos correlacionando os dados a baixas pressões; AP: desvios obtidos correlacionando os dados a altas pressões; BP \rightarrow AP: predição dos dados a altas pressões utilizando os parâmetros obtidos a baixas pressões; AP \rightarrow BP: predição dos dados a baixas pressões utilizando os parâmetros obtidos a altas pressões.

Analisando a Tabela 24, observa-se que como os resultados iniciais para o modelo M3 não contribuíram para a redução dos desvios obtidos, esse modelo foi descartado das análises seguintes, uma vez que a correção da fase vapor utilizando a equação virial já retratou resultados satisfatórios quando confrontada ao modelo M3. Por essa razão, diversos sistemas não tiveram os resultados para o modelo M3 reportados. Além disso, observa-se que a correção utilizando a equação virial não apresentou melhoras significativas quando comparada ao comportamento dos dados obtidos pelo modelo M1, que utiliza a estratégia de Prado para a fase líquida e considera a fase vapor ideal. Sendo assim, das três abordagens $\gamma - \phi$ analisadas, a primeira devido à sua simplicidade e os resultados atingidos foi caracterizada como a mais satisfatória dentre essas, porém apresentando alguns desvios elevados na caracterização do equilíbrio de fases de certos tipos de sistemas.

Passando ao segundo tipo de abordagem, verifica-se que o **modelo M4** apresentou os **menores desvios** possíveis tanto comparados ao modelo M5 quanto aos modelos anteriores. Pela mesma razão do modelo M3, o modelo M5 foi descartado devido aos elevados desvios obtidos para os sistemas inicialmente analisados, retratando um comportamento menos eficiente do que o modelo M4. Em relação à estimação de um ou dois parâmetros do modelo M4, foi adotada a estratégia de se obter sempre o melhor ajuste utilizando apenas um dos parâmetros (k_{ij} ou l_{ij}) e caso essa correlação não apresentasse resultados satisfatórios realizar-se-ia a estimação do segundo parâmetro.

Por fim, a Tabela 25 apresenta um desvio médio global de todos os modelos utilizados para todos os sistemas apresentados na Tabela 24.

Sistema	Fa	B	Р	BP →	AP	A	P	AP —	→ BP			
Sistema	Ľq.	DP (%)	Dy									
	M1	10	0,01	11	0,07	6	0,10	12	0,14			
	M2	9	0,01	10	0,09	9	0,11	15	0,09			
Todos os	M3	-	-	-	-	-	-	-	-			
Sistemas	M4	5	0,03	5	0,07	7	0,12	50	0,05			
	M4	6	0,04	5	0,08	5	0,12	8	0,04			
	M5	53	0,43	41	0,31	-	-	-	-			

Tabela 25 – Desvio médio global para cada modelo.

Ao analisar a Tabela 25, as duas respostas de interesse são obtidas:

i) <u>**BP**</u> \rightarrow <u>**AP**</u>: a estratégia de correlacionar os dados a baixas pressões, obtendo os parâmetros de interação binária presentes em cada modelo termodinâmico, e prever os dados a altas pressões, foi a melhor estratégia de cálculo verificada para esse tipos de sistemas gás / líquido;

ii) <u>M4</u>: o modelo M4, que utiliza a abordagem ϕ - ϕ empregando a equação de estado PR em ambas as fases, foi o que apresentou os menores desvios para correlação e predição dos dados experimentais dos sistemas analisados, sendo considerado o mais efetivo para a caracterização da solubilidade do CO₂ ou CH₄.

4.5.2. OBTENÇÃO DE UM ÚNICO CONJUNTO DE PARÂMETROS PARA CADA SISTEMA COM DADOS DA LITERATURA

Uma vez determinada a melhor sequência de cálculos e o melhor modelo (M4) para descrição do comportamento da solubilidade de um gás no líquido, um par de parâmetros de interação binária (k_{ij} e l_{ij}) foi obtido para cada conjunto de dados experimentais de cada sistema da literatura. Nesse item, um estudo visando à determinação do melhor conjunto de parâmetros para cada sistema foi realizado através da correlação e / ou predição dos dados disponíveis. Para cada conjunto de dados um par de parâmetros foi obtido, os demais sistemas foram preditos com esses e, posteriormente, a menor média dos desvios percentuais obtidos foi selecionada, caracterizando os melhores parâmetros para o sistema em análise.

A Tabela 26 destaca os resultados dessa etapa, onde cada sistema apresenta na terceira coluna os desvios para a pressão calculada utilizando somente cada conjunto de dado referente ao trabalho da primeira coluna e as demais colunas representam uma predição dos outros dados com esses parâmetros estimados. Os menores desvios atingidos para cada sistema encontram-se marcados em negrito. A Tabela 27 destaca os valores para cada par de parâmetros de interação estimados.

Capítulo 4

					Prediçã	ăo – DP (%)					
CO ₂ / H ₂ O	Estimação DP (%)	Bamberger et al. (2000)	Chapoy <i>et al.</i> (2004a)	Dalmolin <i>et al.</i> (2006)	Kiepe et al. (2002)	Koschel et al. (2006)	Qin <i>et al.</i> (2008)	Sérvio e Englezos (2001)	Teng <i>et al.</i> (1997)	Valtz <i>et al.</i> M (2004)	Média
Bamberger et al. (2000)	3,01	1,89	54,91	82,09	42,11	12,52	2,06	2,06	2,09	28,57 2	23,13
Chapoy <i>et al.</i> (2004a)	17,83	2,16	-	78,13	29,59	2,03	2,38	2,48	3,21	4,73 1	15,84
Dalmolin <i>et al.</i> (2006)	15,33	26,25	22,96	-	23,73	7,14	1,89	2,58	2,05	11,03 1	12,55
Kiepe <i>et al.</i> (2002)	15,77	2,11	18,27	78,38	29,59	1,95	2,30	2,34	3,16	4,77 1	15,86
Sérvio e Englezos (2001)	2,04	67,63	370,71	516,51	76,10	37,65	2,13	-	2,10	182,87 13	39,75
Valtz <i>et al.</i> (2004)	5,19	2,11	18,26	78,46	29,60	1,93	2,26	2,28	3,02	4,78 1	14,79

Tabela 26 – Desvios para a obtenção de um único par de parâmetros.

			-	Tabela 26 –	Continuaça	0.			
	Estimação	Prediçã	o – DP (%)						
$\operatorname{CO}_2/\operatorname{C}_1$	DP (%)	Wei <i>et al.</i> (1995)	Média						
Wei <i>et al.</i> (1995)	1,65	1,93	1,79						
	Estimação		Predição – DP (%)						
$\operatorname{CO}_2/\operatorname{C}_2$	DP (%)	Horstman <i>et al.</i> (2000)	Wei <i>et al.</i> (1995)	Média					
Horstman et al. (2000)	2,03	-	0,98	1,51					
Wei <i>et al.</i> (1995)	0,98	2,03	-	1,51	_				
	D			Predição – DP	(%)			 	
CO ₂ / C ₄	Estimaçao DP (%)	Kalra <i>et al.</i> (1976)	Leu <i>et al.</i> (1987)	Niesen (1989)	Shibata <i>et al</i> . (1989)	Leu <i>et al.</i> (1987)	Média		
Leu <i>et al.</i> (1987)	2,01	13,10	2,50	6,48	6,36	4,53	5,83		
Niesen (1989)	3,35	14,61	2,57	3,53	3,45	5,05	5,43		

Tabela 26 – Continuação

				Tabela 26 –	Continu	ação.		 	
Shibata <i>et al.</i> (1989)	3,88	12,69	1,75	4,19	3,77	4,64	5,15		
Leu <i>et al.</i> (1987)	3,54	13,10	2,50	6,48	4,53	-	6,03		
Kalra <i>et al</i> . (1976)	17,07	9,74	19,28	94,64	74,42	14,00	38,19		
		Predição -	– DP (%)						
CO ₂ / C ₈	Estimação DP (%)	Gallegos <i>et al.</i> (2006)	Média						
Gallegos <i>et al.</i> (2006)	3,20	5,02	4,11						
		Predição -	– DP (%)						
CO ₂ / C ₉	Estimação DP (%)	Jennings et al. (1996)	Média						
Jennings et al. (1996)	-	4,68	4,68						

				Tabela 26	– Continuação).			
	Estimação				Predição – DP	(%)			
CO ₂ / C ₁₀	DP (%)	Chou <i>et al.</i> (1990)	Gallegos <i>et al.</i> (2006)	Nagarajan <i>et al</i> . (1986)	Reamer <i>et al.</i> (1963)	Sebastian et al. (1980)	Shaver <i>et al.</i> (2001)	Tsuji <i>et al.</i> (2004)	Média
Gallegos <i>et al.</i> (2006)	7,05	2,47	10,86	2,55	9,21	4,94	5,90	2,50	5,70
Reamer <i>et al.</i> (1963)	4,07	11,85	14,42	11,21	4,68	2,51	10,14	2,39	7,70
Sebastian et al. (1980)	1,60	16,48	19,10	15,75	7,50	-	17,95	2,45	11,50
Shaver <i>et al.</i> (2001)	1,03	9,06	12,09	8,44	3,74	2,32	7,61	4,77	6,10
	E-time a ~	Predição -	- DP (%)						
CO ₂ / C ₁₂	DP (%)	Gardeler et al. (2002)	Média						
Gardeler et al. (2002)	3,43	3,75	3,59						

					Prediç	ão – DP (%)					
CO ₂ / C ₁₆	Estimação DP (%)	Breman <i>et al.</i> (1994)	Brunner <i>et al.</i> (1994)	Charoensom- but-Amon et al. (1986)	D'Souza et al. (1988)	Kordikowski e Schneider (1993)	Schwarz <i>et al.</i> (1987)	Sebastian et al. (1980)	Spee <i>et al.</i> (1991)	Tanaka <i>et al.</i> (1993)	Média
Charoensom- but-Amon <i>et al.</i> (1986)	4,81	4,91	3,12	21,02	13,65	6,45	2,26	5,93	3,33	1,55	6,70
Breman <i>et al.</i> (1994)	1,82	-	21,87	37,10	33,83	17,26	2,13	10,68	2,44	2,49	14,40
Schwarz <i>et al.</i> (1987)	2,49	21,41	3,49	27,08	38,61	51,63	-	6,30	2,96	1,56	17,30
Sebastian et al. (1980)	4,00	14,7	6,96	9,52	11,46	4,91	5,88	-	2,50	2,50	6,90
Tanaka <i>et al.</i> (1993)	1,79	4,91	3,12	21,02	13,65	6,45	2,26	5,93	3,33	-	6,90

Tabela 26 – Continuação.

				Tabela 26 –
	Estimação	P	cedição – DP (%)	
CO_2 / C_{20}	DP (%)	Gasem <i>et al.</i> (1985)	Huang <i>et al.</i> (1988)	Média
Gasem <i>et al.</i> (1985)	1,97	-	2,05	2,01
Huang <i>et al.</i> (1988)	2,63	2,51	-	4,50
	Estimação	Predição -	- DP (%)	
CO ₂ / C ₂₈	DP (%)	Gasem <i>et al.</i> (1985)	Média	
Gasem <i>et al.</i> (1985)	2,04	1,94	1,99	
	Estimação	Predição -	- DP (%)	
CO ₂ / C ₃₂	DP (%)	Spee <i>et al.</i> (1991)	Média	
Spee <i>et al.</i> (1991)	-	1,88	1,88	

Capítulo 4

]	abela $26 - C$	ontinuação.					
	Estimação	Predição	– DP (%)							
CO ₂ / C ₃₆	DP (%)	Gasem <i>et al.</i> (1985)	Média							
Gasem <i>et al.</i> (1985)	1,53	-	1,53							
					Predição – I	OP (%)				
CH ₄ / H ₂ O	Estimação DP (%)	Kiepe <i>et al.</i> (2003)	Lekvam <i>et al</i> . (1997)	Mohammadi <i>et al.</i> (2006)	O'Sullivan et al. (1970)	Qin <i>et al.</i> (2008)	Wang <i>et al.</i> (2003)	Yang e Zhong (2001)	Kim <i>et al.</i> (2003)	Média
Kiepe <i>et al.</i> (2003b)	24,61	14,16	1,74	1,71	2,55	4,06	2,19	2,26	1,53	6,10
Lekvam <i>et al.</i> (1997)	1,74	194,53	1,54	1,75	2,06	1,97	2,52	1,71	1,86	23,30
Mohammadi et al. (2006)	1,72	195,77	2,04	1,40	2,30	2,12	1,91	1,98	2,33	23,50

Tabela 26 – Continuação

			-	1 abela 20 - Co	onunu	uaça0.			
	Estimação	Predição	– DP (%)						
CH ₄ / C ₂	DP (%)	Wei <i>et al.</i> (1995)	Média						
Wei <i>et al.</i> (1995)	1,26	1,45	1,40						
	Estimação	F	Predição – DP (%)			·	 		
CH ₄ / C ₄	DP (%)	Elliot <i>et al.</i> (1974)	Sage <i>et al.</i> (1940)	Média					
Elliot <i>et al.</i> (1974)	3,94	3,27	9,48	5,60					
Sage <i>et al.</i> (1940)	7,95	219,83	18,52	82,10					
	Estimoção	Predição	– DP (%)						
CH ₄ /C ₅	DP (%)	Chu <i>et al.</i> (1976)	Média						
Chu <i>et al.</i> (1976)	8,31	6,85	7,60						

Tabela 26 – Continuação

Capítulo 4

				Tabela 26 – Co	ontinuaç
	Estimação		Predição – D	P (%)	
CH ₄ / C ₆	DP (%)	Poston <i>et al.</i> (1966)	Lin <i>et al.</i> (1977)	Srivastan et al. (1992)	Média
Lin <i>et al</i> . (1977)	4,26	4.41	5.34	2.09	3.64
Srivastan <i>et al.</i> (1992)	2,12			_,.,	0,01
	Estimação	Predição -	– DP (%)		
CH ₄ / C ₇	DP (%)	Reamer <i>et al.</i> (1956)	Média		
Reamer et al. (1956)	2,68	4,33	3,50		
	Estimação		Predição – DP (%)		
CH_4 / C_8	DP (%)	Kohn <i>et al.</i> (1964)	Média		
Kohn <i>et al.</i> (1964)	1,94	2,03	2,00		

~

				Tabela $26 - Co$	ontinuação.
	Estimação		Predição – D	P (%)	
CH ₄ / C ₁₀	DP (%)	Lin <i>et al.</i> (1979)	Reamer <i>et al.</i> (1942)	Srivastan et al. (1992)	Média
Reamer <i>et al.</i> (1942) Srivastan <i>et al.</i> (1992)	26,10 2,59	3,84	22,85	16,46	14,37
		Predição -	– DP (%)		
CH ₄ / C ₁₆	Estimação DP (%)	Lin <i>et al.</i> (1980)	Média		
Lin <i>et al</i> . (1980)	3,02	4,97	4,00		
	Estimação	Predição -	– DP (%)		
CH ₄ / C ₂₀	DP (%)	Huang <i>et al.</i> (1988)	Média		
Huang <i>et al.</i> (1988)	-	4,10	4,10		

			r	Tabela 26 – C
	Estimação	Р	redição – DP (%)	
C ₂ / C ₁₀	DP (%)	Gardeler	Bufkin <i>et al.</i>	Média
		<i>et al.</i> (2002)	(1980)	
Gardeler	3,48	2,68	2,56	2,90
Duffin et al				
(1986)	2,91	12,16	2,84	6,00
		Predição -	– DP (%)	
C ₃ / C ₁₀	Estimação	Jennings		
	DI (70)	et al. (1996)	Média	
Jennings	0.15	0.13	0.10	
<i>et al.</i> (1996)			0,10	
	Estimação	Predição -	- DP (%)	
C ₃ / C ₁₂	DP (%)	Gardeler	Média	
		et al. (2002)	moun	
Gardeler	2,98	2,44	2,70	
<i>et al</i> . (2002)				

	Estimação	Predição -	- DP (%)
C ₃ / H ₂ O	DP (%)	Kobayashi <i>et al.</i> (1953)	Média
Kobayashi <i>et al.</i> (1953)	1,33	1,33	1,30
	Estimação	Predição -	- DP (%)
C ₄ / C ₁₀	DP (%)	Reamer e Sage (1964)	Média
Reamer e Sage (1964)	1,14	-	1,10
	Estimação	Predição -	- DP (%)
C ₄ / H ₂ O	DP (%)	Reamer <i>et al.</i> (1944)	Média
Reamer <i>et al.</i> (1944)	0,52	0,46	0,50

Tabela 26 – Continuação

Sistema	\mathbf{k}_{ij}	l_{ij}	Sistema	\mathbf{k}_{ij}	l_{ij}
CO_2 / H_2O	0,0001	0,0810	CH_4 / C_2	0,0340	0,0345
CO_2 / C_1	0,1021	0,0020	CH_4 / C_4	0,0107	0,0008
CO_2 / C_2	0,1326	0,0015	CH_4 / C_5	0,0228	0,0007
CO_2 / C_4	0,1679	0,0308	CH_4 / C_6	0,0340	0,0001
CO_2 / C_8	0,1309	0,0035	CH_4 / C_7	0,0325	0,0053
CO_2 / C_9	0,0958	0,0100	CH_4 / C_8	0,0562	0,0065
$CO_2 \ / \ C_{10}$	0,0958	0,0100	$CH_4 \ / \ C_{10}$	0,0001	0,4800
CO_2 / C_{12}	0,1045	0,0013	CH_4 / C_{16}	0,0181	0,0089
$CO_2 \ / \ C_{16}$	0,0958	0,0009	$CH_4 \ / \ C_{20}$	0,0181	0,0089
$CO_2 \ / \ C_{20}$	0,0958	0,0009	C_2 / C_{10}	0,0142	0,0198
CO_2 / C_{24}	0,2070	0,1850	C_3 / C_{10}	0,0151	0,0135
$CO_2 \ / \ C_{28}$	0,0992	0,0051	C_3 / C_{12}	0,0413	0,0002
CO_2 / C_{32}	0,0992	0,0051	C_3 / H_2O	0,0001	0,3000
$CO_2 \ / \ C_{36}$	0,0992	0,0051	$C_4 \ / \ C_{10}$	0,0085	0,0007
CH_4 / H_2O	0,0001	0,1140	C_4 / H_2O	0,5201	0,0014

Tabela 27 – Parâmetros obtidos para cada sistema.

Ao observar os resultados obtidos na Tabela 26, verifica-se que todos os sistemas apresentaram desvios reduzidos para a caracterização da solubilidade do gás no líquido, sendo os pares de parâmetros de interação obtidos para cada sistema os que devem ser utilizados com a equação de estado PR.

Deve-se destacar que ao final dessa análise, uma segunda alternativa foi avaliada a fim de verificar se para algum sistema era possível melhorar a média dos desvios obtidos. Essa etapa consistiu na estimação dos parâmetros utilizando todos os dados disponíveis em cada sistema simultaneamente e uma posterior predição dos demais a altas pressões experimentais. Uma melhora na representação do equilíbrio de fases foi observada para os sistemas $CH_4 / C_6 \in CH_4 / C_{10}$, tendo os seus desvios reduzidos de 5,2% e 32,0% para 3,6% e 14,4%, respectivamente. Os valores dos parâmetros listados na Tabela 27 para esses dois sistemas já representam os valores finais encontrados.

4.5.3. MODELAGEM DOS DADOS DOS SISTEMAS BINÁRIOS OBTIDOS NESSA PESQUISA

A etapa de modelagem dos dados experimentais para os quatro sistemas binários obtidos nessa pesquisa (CO₂ / H₂O, CO₂ / C₁₆H₃₄, CH₄ / H₂O e CH₄ / C₁₆H₃₄) teve início realizando suas predições com os parâmetros apresentados no item anterior e os desvios obtidos são reportados na Tabela 28. O Anexo D apresenta todos os arquivos de saída gerados nessa parte teórica destacando os desvios individuais, bem como os parâmetros obtidos.

Tabela 28 – Predição dos novos dados experimentais.

Sistema	$\mathbf{k}_{\mathbf{ij}}$	$\mathbf{l}_{\mathbf{ij}}$	DP (%)
CO_2 / H_2O	0,0001	0,0810	23
CH_4 / H_2O	0,0001	0,1140	45
CO_2 / C_{16}	0,0958	0,0009	7
$CH_4 \ / \ C_{16}$	0,0181	0,0089	10

Analisando a Tabela 28, verifica-se que para ambos sistemas formados pelo CO_2 ou CH_4 e o hexadecano, os parâmetros obtidos utilizando os dados disponíveis na literatura foram capazes de realizar uma predição satisfatória dos novos dados experimentais. As Figuras 31 a 36 ilustram o comportamento dessas predições, destacando os desvios encontrados para cada temperatura.

Figura 31 – Sistema $CO_2 / C_{16}H_{34}$: ajuste dos dados experimentais a 30 °C (\blacklozenge) pela equação de estado PR (-).

Figura 32 – Sistema $CO_2 / C_{16}H_{34}$: ajuste dos dados experimentais a 40 °C (\blacksquare) pela equação de estado PR (-).

Figura 33 – Sistema $CO_2 / C_{16}H_{34}$: ajuste dos dados experimentais a 50 °C (\blacktriangle) pela equação de estado PR (---).

Figura 34 – Sistema $CH_4 / C_{16}H_{34}$: ajuste dos dados experimentais a 30 °C (\blacklozenge) pela equação de estado PR (-).

Figura 35 – Sistema $CH_4 / C_{16}H_{34}$: ajuste dos dados experimentais a 40 °C (\blacksquare) pela equação de estado PR (-).

Figura 36 – Sistema $CH_4 / C_{16}H_{34}$: ajuste dos dados experimentais a 50 °C (\blacktriangle) pela equação de estado PR (---).

Já para os dois sistemas com a água, ambos apresentaram desvios levemente elevados, sendo necessária a determinação de novos parâmetros para uma caracterização satisfatória da solubilidade do CO_2 ou CH_4 no líquido.

Primeiramente, essa estimação foi realizada utilizando os dados de todas as isotermas simultaneamente (30, 40 e 50 $^{\circ}$ C), reduzindo os desvios para 12% do sistema CO₂ / H₂O e para 25% do sistema CH₄ / H₂O. Posteriormente, uma tentativa de ajuste dos parâmetros por temperatura, ou seja, para cada isoterma individual foi avaliada, revelando uma redução nos desvios do sistema com dióxido de carbono para aproximadamente 6%, porém para o sistema com o metano os desvios aumentaram significativamente para 20%. Além disso, essas estratégias geravam novos parâmetros de interação, diferentes dos obtidos através dos dados da literatura, para esses dois tipos de sistemas.
A fim de verificar a aplicabilidade desses novos parâmetros estimados na descrição dos dados retirados da literatura, os mesmos tiveram seus comportamentos preditos, apresentando desvios bem superiores aos reportados no item anterior.

Sendo assim, para reduzir os desvios obtidos dos sistemas CO_2 / H_2O e CH_4 / H_2O e obter um único conjunto de parâmetros que descrevesse satisfatoriamente os dados da literatura, bem como os dados obtidos nessa pesquisa, a opção de estimação dos parâmetros utilizando todos os dados a baixas pressões (literatura + presente trabalho) foi estudada. A Tabela 29 retrata os desvios obtidos.

Tabela 29 – Desvios obtidos estimando todos os dados a baixas pressões.										
		Estimação – DP (%)								
	$l_{ij} = 0,0690$	Bamberger	Chapoy	Dalmolin	Kiepe	Sérvio e	Valtz	Presente		
H_2O		et al.	et al.	et al.	et al.	Englezos	et al.	Trabalho		
		(2000)	(2004a)	(2006)	(2002)	(2001)	(2004)	(2009)		
		28	40	30	17	2	17	12		
O_2 /	01	Predição -	DP (%)							
Ŭ	$k_{ij} = 0.00$	Koschel	Qin	Teng				Média		
		et al.	et al.	et al.				Global		
		(2006)	(2008).	(1997)				DP (%)		
		5	2	2				15		
		Estimação	– DP (%)							
		Kiepe	Mohammadi	Lekvam	Pre	esente				
	$l_{ij} = 0,1316$	et al.	et al.	et al.	Tra	balho				
		(2003)	(2006)	(1997)	(2	009)				
H_2O		21	2	2		21				
I 4 /]	1	Predição -	DP (%)							
CH	0,000	O'Sullivan	Qin	Wang	Yang e	Kim		Média		
	.:⊋	et al.	et al.	et al.	Zhong	et al.		Global		
	k	(1970)	(2008)	(2003)	(2001)	(2003)		DP (%)		
		2	4	2	3	3		7		

Pelos resultados reportados na Tabela 29, observa-se que essa estratégia de estimação de todos os dados em uma única etapa revelou desvios mais reduzidos do que os demais trabalhos da literatura para o sistema CH_4 / H_2O e na mesma ordem de grandeza para o sistema CO_2 / H_2O . Assim, os parâmetros apresentados na Tabela 27 para esses dois sistemas podem ser atualizados pelos valores obtidos nesse item: $k_{ij} = 0,0001$ e $l_{ij} = 0,0690$ para o sistema CO_2 / H_2O ; $k_{ij} = 0,0001$ e $l_{ij} = 0,1316$ para o sistema CH_4 / H_2O . As Figuras 37 a 42 representam os ajustes dos sistemas com água, identificando seus respectivos desvios, onde se observa que os menores valores foram obtidos na temperatura intermediária de 40 °C em ambos os sistemas. Além disso, apesar dos elevados desvios encontrados nas outras temperaturas, esses apresentam a mesma ordem de grandeza de outros trabalhos da literatura, caracterizando um ajuste satisfatório e uma elevada dificuldade na caracterização do ELV desse tipo de sistemas.

Figura 37 – Sistema CO_2 / H₂O: ajuste dos dados experimentais a 30 °C (\blacklozenge) pela equação de estado PR (---).

Figura 39 – Sistema CO₂ / H₂O: ajuste dos dados experimentais a 50 °C (\blacktriangle) pela equação de estado PR (-).

Figura 40 – Sistema CH₄ / H₂O: ajuste dos dados experimentais a 30 $^{\circ}$ C (\blacklozenge) pela equação de estado PR (--).

Figura 41 – Sistema CH_4 / H_2O : ajuste dos dados experimentais a 40 °C (\blacksquare) pela equação de estado PR (--).

Figura 42 – Sistema CH₄ / H₂O: ajuste dos dados experimentais a 50 $^{\circ}$ C (\blacktriangle) pela equação de estado PR (-).

4.5.4. MODELAGEM DOS DADOS DOS SISTEMAS TERNÁRIOS OBTIDOS NESSA PESQUISA

A modelagem dos sistemas ternários estudados nessa pesquisa foi realizada de uma forma similar a dos sistemas binários, isto porque o terceiro componente, o cloreto de sódio, não foi tratado como um componente adicional nos sistemas binários. Para esse estudo, foi levado em consideração a presença de um pseudocomponente formado pela água destilada e o sal (NaCl) – uma solução aquosa de cloreto de sódio. Assim, a solubilidade do CO₂ ou CH₄ foi determinada na solução, onde os parâmetros binários estimados representavam a interação entre o CO₂ ou CH₄ e a solução salina.

Inicialmente, os parâmetros obtidos para os sistemas binários foram utilizados para prever os dados de solubilidade do CO_2 ou CH_4 na solução. A Tabela 30 retrata os desvios obtidos com essa predição envolvendo os dois sistemas ternários.

Tabela 30 – Predição dos dados dos sistemas ternários.

Sistema	CO ₂ / H ₂ O / NaCl (1M)			CH ₄ / H ₂ O / NaCl (1M)		
Temperatura	30 °C	40 °C	50 °C	30 °C	40 °C	50 °C
DP (%) médio por temperatura	75	31	14	36	30	38
DP (%) médio global		41			35	

Utilizando parâmetros dos sistemas binários

Ao analisar os desvios apresentados na Tabela 30, verificam-se valores levemente acima dos demais modelos da literatura, caracterizando uma predição insatisfatória utilizando parâmetros dos sistemas binários previamente estimados.

Uma segunda alternativa para redução desses desvios foi realizar a estimação dos dados de todas as temperaturas simultaneamente para cada sistema, onde a Tabela 31 reporta esses desvios.

Tabela 31 – Estimação dos parâmetros para os sistemas com sal: todas as temperaturas simultaneamente.

Sistema	CO ₂ / H ₂ O / NaCl (1M)			CH ₄ / H ₂ O / NaCl (1M)		
Temperatura	30 °C	40 °C	50 °C	30 °C	40 °C	50 °C
DP (%) médio por temperatura	10	16	24	10	27	48
DP (%) médio Global		16			28	

Estimando os parâmetros para todas temperaturas juntas

Ao final dessa estimação, observa-se que os desvios foram reduzidos, porém apresentaram valores levemente elevados quando comparados aos demais trabalhos da literatura. É importante observar que os desvios para cada temperatura apresentaram um aumento gradativo com o aumento dessa condição experimental, fato esse que destaca uma dependência dos parâmetros de interação com a temperatura de equilíbrio do sistema. As Figuras 43 a 48 ilustram os comportamentos obtidos com os respectivos desvios.

Figura 43 – Sistema CO₂ / H_2O / NaCl 1M: ajuste dos dados experimentais a 30 °C (\blacklozenge) pela equação de estado PR (--).

Figura 44 – Sistema $CO_2 / H_2O / NaCl 1M$: ajuste dos dados experimentais a 40 °C (\blacksquare) pela equação de estado PR (-).

Figura 45 – Sistema CO₂ / H_2O / NaCl 1M: ajuste dos dados experimentais a 50 °C (\blacktriangle) pela equação de estado PR (-).

Figura 46 – Sistema CH₄ / H_2O / NaCl 1M: ajuste dos dados experimentais a 30 °C (\blacklozenge) pela equação de estado PR (-).

Figura 47 – Sistema CH₄ / H₂O / NaCl 1M: ajuste dos dados experimentais a 40 °C (■) pela equação de estado PR (--).

Figura 48 – Sistema CH₄ / H₂O / NaCl 1M: ajuste dos dados experimentais a 50 $^{\circ}$ C (\blacktriangle) pela equação de estado PR (-).

Por fim, como uma terceira alternativa de obtenção dos parâmetros para esses dois sistemas, os dados foram correlacionados individualmente por temperatura e ao final um valor médio obtido para cada parâmetro para realização da predição de todos os dados. A Tabela 32 destaca os desvios obtidos, onde se verifica que os mesmos não apresentaram alterações significativas para ambos os sistemas, demonstrando que a estimação dos parâmetros com todos os dados juntos foi a melhor alternativa.

Tabela 32 – Estimação dos parâmetros para os sistemas com sal: para cada temperatura individualmente.

Sistema	CO ₂ / H ₂ O / NaCl (1M)			CH ₄ / H ₂ O / NaCl (1M)		
Temperatura	30 °C	40 °C	50 °C	30 °C	40 °C	50 °C
DP (%) médio por temperatura	9	16	25	10	27	48
DP (%) médio global		16			28	

Estimando os parâmetros por temperatura

4.5.5. CONCLUSÕES PARCIAIS DA PARTE TEÓRICA

O modelo termodinâmico mais satisfatório para a caracterização do comportamento da solubilidade do CO_2 ou CH_4 em um líquido foi desenvolvido baseado em uma abordagem $\phi - \phi$, onde a equação de estado PR com as regras de misturas originais de van der Waals foi utilizada para corrigir o desvio da idealidade das substâncias presentes tanto na fase líquida quanto na fase vapor. Além disso, como conclusão dos estudos preliminares foi observada que a estratégia de correlação dos dados experimentais a baixas pressões, através da estimação dos parâmetros de interação binária presentes nas regras de mistura da equação empregada, acoplada a uma predição dos dados a elevadas pressões, revelou-se como a melhor alternativa de cálculo da solubilidade dos gases nos sistemas analisados.

Posteriormente, a modelagem dos dados obtidos nessa pesquisa foi realizada, onde os parâmetros de interação entre o CO_2 ou CH_4 e o líquido foram estimados e a Tabela 33 destaca os melhores valores encontrados para os mesmos, bem como os desvios obtidos no cálculo da pressão de equilíbrio de cada sistema.

Tabela 55 – Resulto dos Tesultados oblidos.							
Sistema	\mathbf{k}_{ij}	l_{ij}	DP (%)				
CO ₂ / H ₂ O	0,0001	0,0690	12				
CH ₄ / H ₂ O	0,0001	0,1316	21				
$CO_2 \ / \ C_{16}H_{34}$	0,0958	0,0009	7				
$CH_4 / C_{16}H_{34}$	0,0181	0,0089	10				
CO ₂ / H ₂ O / NaCl (1M)	0,0250	0,1000	16				
CH ₄ / H ₂ O / NaCl (1M)	0,0009	0,1440	28				

Tabela 33 – Resumo dos resultados obtidos.

Frente ao resumo apresentado na Tabela 33, conclui-se que para os sistemas que apresentavam o CO_2 ou CH_4 em contato com a água destilada, na presença ou não de um sal, o parâmetro l_{ij} , que leva em consideração o tamanho e a forma das moléculas das substâncias, apresentou valores mais elevados do que o parâmetro k_{ij} , que considera as forças atrativas, destacando assim uma influência maior do tamanho das moléculas no comportamento da solubilidade do CO_2 ou CH_4 no líquido. Para os sistemas com o CO_2 ou CH_4 e o hexadecano, o parâmetro k_{ij} revelou valores mais elevados, caracterizando assim uma influência maior devido às forças de atração entre as moléculas. Ambos comportamentos foram observados na etapa experimental e ratificados no estudo teórico.

CAPÍTULO 5

"Quando pensamos, fazemos com o fim de julgar ou chegar a uma conclusão; quando sentimos, é para atribuir um valor pessoal a qualquer coisa que fazemos."

(Carl Jung)

<u>CONCLUSÕES E SUGESTÕES</u>

Conforme apresentado, as características de um petróleo brasileiro encontramse cada vez mais próximas as de um óleo pesado. Surge, pois, a necessidade de desenvolvimento e adaptação de novas tecnologias capazes de solucionar os problemas relacionados ao seu processamento. Para isso, uma determinação precisa das fases existentes nos sistemas petrolíferos é fundamental, identificando as condições de temperatura e pressão que delimitam suas fronteiras.

Através da revisão dos trabalhos presentes na literatura, foi possível identificar lacunas nos dados experimentais para os sistemas binários e ternários formados por um hidrocarboneto, pelo CO_2 ou CH_4 e pela água, bem como a presença de faixas estreitas de condições experimentais de temperatura e pressão. Em relação aos modelos termodinâmicos, observou-se uma estrutura matemática complexa em grande parte das equações, uma quantidade excessiva de parâmetros a serem determinados e uma ausência de característica preditiva para os sistemas formados por hidrocarbonetos.

Assim, essa pesquisa de tese de Doutorado apresentou como objetivo principal o estudo experimental e teórico do comportamento de fases dos sistemas binários e ternários formados por hexadecano, água de produção (forte presença de compostos iônicos) e pelo CO₂ ou CH₄.

A primeira etapa dessa pesquisa foi focada no estudo experimental do equilíbrio de fases de seis sistemas formados pelo metano ou dióxido de carbono e um solvente (água destilada e hexadecano) na presença ou não de um eletrólito (NaCl 1M).

Dados da solubilidade do CO_2 ou CH_4 nos líquidos para seis valores distintos de pressão foram obtidos em três temperaturas diferentes (30 °C, 40 °C e 50 °C), totalizando um conjunto de 108 novos dados experimentais.

De uma maneira geral, pode-se concluir que, conforme esperado, a solubilidade do CO_2 ou CH_4 apresentou valores menores com o aumento da temperatura a pressão constante. Esse fato ilustra que em temperaturas cada vez mais altas, a quantidade de CO_2 ou CH_4 dissolvido no líquido apresenta valores menores. Já o aumento da pressão a temperatura constante revelou um acréscimo no valor da solubilidade do CO_2 ou CH_4 para todos os sistemas estudados. Efeitos químicos, como a diferença de polaridade das moléculas, acarretaram na redução do valor da solubilidade.

Ao longo das medidas, foi constatado que qualquer fonte de vazamento acarretaria determinações equivocadas, uma vez que os valores de solubilidade apresentam ordem de grandezas muito reduzidas. Adicionalmente, foi verificado que o menor volume morto possível ao longo de todo o equipamento ocasionaria em um menor acúmulo de incertezas experimentais. Ainda, análises da influência do volume parcial molar do CH_4 a diluição infinita, da massa de solvente no interior da célula de equilíbrio e o tempo em que o sistema atingiu o equilíbrio foram fundamentais para a otimização e precisão das solubilidades nos sistemas contendo metano.

As constantes de Henry aparentes foram determinadas para cada condição experimental, sendo os valores obtidos para os sistemas com o metano maiores quando comparados aos sistemas com o dióxido de carbono. Isto ocorre para compensar a redução da solubilidade do metano no líquido. Além disso, as constantes de Henry efetivas foram determinadas através de uma extrapolação matemática e comparadas aos dados da literatura, revelando valores na mesma ordem de grandeza.

Complementando os estudos experimentais, foi verificada a influência de um eletrólito na solubilidade do CO_2 ou CH_4 nos dois sistemas ternários avaliados. A redução de água destilada livre para solubilização do gás fez com que a solubilidade apresentasse valores mais reduzidos nos sistemas ternários do que para os dados obtidos

sem a presença do sal.

Da parte teórica dessa pesquisa, conclui-se que a melhor estratégia para estimação dos parâmetros dos modelos estudados foi a correlação dos dados a baixas pressões experimentais e predição dos dados a altas pressões. A equação de estado PR com regras de mistura originais de van der Waals foi aplicada na abordagem tradicional $\phi - \phi$ do equilíbrio termodinâmico, caracterizando melhor os comportamentos das fases em equilíbrio. Os parâmetros de forma e tamanho e atração entre as moléculas presentes nas regras de misturas foram estimados de acordo com o tipo das substâncias dos sistemas.

Para os sistemas formados pelo CO_2 ou CH_4 e a água destilada, na presença ou não de um sal, o parâmetro referente à forma e tamanho das moléculas (l_{ij}) apresentou uma influência predominante frente ao parâmetro relativo às forças atrativas (k_{ij}). Já para os sistemas com o CO_2 ou CH_4 e o hexadecano, o parâmetro k_{ij} revelou uma influência maior devido às forças de atração entre as moléculas.

Sendo assim, o objetivo principal, bem como os objetivos específicos dessa pesquisa de tese de doutorado foram atingidos, onde o comportamento do equilíbrio de fases para os sistemas de interesse foi determinado.

Com esses dados de equilíbrio, uma faixa mais ampla de condições experimentais compõe o banco de dados disponível na literatura e a caracterização da solubilidade do CO_2 ou CH_4 em líquidos para esse tipo de sistemas pode ser mais bem descrita utilizando os parâmetros estimados para a equação de estado escolhida. Algumas sugestões podem ser apresentadas para serem realizadas em trabalhos futuros.

- Ampliação gradual das faixas experimentais de temperatura e pressão, verificando os dados de solubilidade para os sistemas propostos, uma vez que a faixa de dados da literatura encontra-se bem estreita, principalmente para sistemas ternários;
- Utilização de outros gases como o nitrogênio, hidrogênio e misturas sintéticas de metano, etano, propano e butano, aproximando-se cada vez mais da composição típica do gás natural;
- Utilizar como solvente uma mistura de hexadecano e hidrocarbonetos superiores a fim de se aproximar da composição típica de um petróleo brasileiro;
- Avaliar a influência de soluções aquosas salinas mais concentradas, superiores a 1 molar, já que a água de produção pode apresentar concentrações de sais mais elevadas dependendo do seu campo produtor;
- Substituição do cloreto de sódio por outro sal presente nas águas de produção, o cloreto de cálcio, e verificar a influência de um composto com força iônica maior;
- Desenvolver uma correlação para o parâmetro de interação binária presente nas regras de misturas em função da temperatura de equilíbrio dos sistemas ternários, já que os resultados por temperatura apresentaram redução dos desvios calculados com a mudança dessa variável;

- Modelar os sistemas ternários considerando a água destilada e o sal como compostos independentes em vez de considerá-los como um composto único hipotético (aparente), através da inserção da contribuição iônica no modelo proposto a fim de verificar a possível redução dos desvios obtidos;
- Utilizar um método híbrido de otimização para estimação dos parâmetros de interação binária, avaliando sua melhor caracterização do equilíbrio ao invés de utilizar um único método (Simplex).

<u>REFERÊNCIAS BIBLIOGRÁFICAS</u>

AHLERS, J., GMEHLING, J., 2001, "Development of a Universal Group Contribution Equation of State I. Prediction of Liquid Densities for Pure Compounds with a Volume-Translated Peng-Robinson Equation of State", **Fluid Phase Equilibria**, v.191, pp.177-188.

AHLERS, J., GMEHLING, J., 2002a, "Development of a Universal Group Contribution Equation of State II. Prediction of Vapor-Liquid Equilibria for Asymmetric Systems", **Industrial & Engineering Chemistry Research**, v.41, pp.3489-3498.

AHLERS, J., GMEHLING, J., 2002b, "Development of a Universal Group Contribution Equation of State III. Prediction of Vapor-Liquid Equilibria, Excess Enthalpies, and Activity Coefficients at Infinite Dilution with the VTPR Model", **Industrial & Engineering Chemistry Research**, v.41, n.33, pp.5890-5899.

ANDERKO, A., PITZER, K. S., 1993, "Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K", **Geochimica et Cosmochimica Acta**, v.57, pp.1657–1680.

ANP, 2009. Disponível em: http://www.anp.gov.br/conheca/anuario_2008.asp. Acesso em: 12 mar. 2009, 11:22:30.

AZNAR M., TELLES A. S., 1997, "A Data Bank of Parameters for the Attractive Coefficient of the Peng-Robinson Equation of State", **Brazilian Journal of Chemical Engineering (online)**, v.14, ISSN:0104-6632, doi:10,1590/S0104-66321997000100003

BAMBERGER, A., SIEDER G., MAURER G., 2000, "High-pressure (vapor_liquid) equilibrium in binary mixtures of (carbon dioxide_water or acetic acid)

at temperatures from 313 to 353 K", Journal of Supercritical Fluids, v.17, pp.97-110.

BARKER, J. A., HENDERSON, D., 1967, "Perturbation Theory and Equation of State for Fluids I. The Square-Well Potential", **Journal of Chemical Physics**, v.47, pp.2856-2861.

BATTINO, R., RETTICH, T.R., TOMINAGA, T., 1984, "The Solubility of Nitrogen and Air in Liquids", Journal of Physical and Chemical Reference Data, v.13, pp.563–600.

BEN-NAIM, A., BAER, S., 1963, "Method for Measuring Solubilities of Slightly Soluble Gases in Liquids", **Transactions of the Faraday Society**, v.59, pp.2735-2738.

BERMEJO, M. D., MARTIN, A., FLORUSSE, L. J. *et al.*, 2005, "The Influence of Na₂SO₄ on the CO₂ Solubility in Water at High Pressure", **Fluid Phase Equilibria**, v.238, pp.220-228.

BOUKOUVALAS, C., SPOLIOTS, N, COUTSIKOS, P. et al, 1994, "Prediction of vapor-liquid equilibrium with the LCVM model: a linear combination of the Vidal and Michelsen mixing rules coupled with the original UNIF", **Fluid Phase Equilibria**, v.92, pp.75-106.

BREMAN, B. B., BEENACKERS, A. A. C. M., RIETJENS, E. W. J. *et al.*, 1994, "Gas-Liquid Solubilities of Carbon Monoxide, Carbon Dioxide, Hydrogen, Water, 1-Alcohols ($1 \le n \le 6$), and n-Paraffins ($2 \le n \le 6$) in Hexadecane, Octacosane, LHexadecanol, Phenanthrene, and Tetraethylene Glycol at Pressures up to 5.5 MPa and Temperatures from 293 to 553 K", **Journal of Chemical and Engineering Data**, v.39, pp.647-666.

BRUNNER, G., TEICH, J., DOHRN, R., 1994, "Phase equilibria in systems containing hydrogen, carbon dioxide, water and hydrocarbons", Fluid Phase

Equilibria, v.100, pp.253-268.

BUFKIN, B. A., ROBINSON Jr., R. L., 1986, "Solubility of Ethane in n-Decane at Pressures to 8.2 MPa and Temperatures from 278 to 411 K", Journal of Chemical and Engineering Data, v.31, pp.421-423.

CAI, H. Y., SHAW, J. M., CHUNG, K. H., 2001, "Hydrogen Solubility Measurements in Heavy Oil and Bitumen Cuts", **Fuel**, v.80, pp.1055-1063.

CHAPMAN, W. G., GUBBINS, K. E., JACKSON, G. *et al.*, 1990, "New Reference Equation of State for Associating Liquids", **Industrial & Engineering Chemistry Research**, v.29, pp.1709.

CHAPOY, A., COQUELET, C., RICHON, D., 2003a, "Solubility Measurement and Modeling of Water in the Gas Phase of the Methane/Water Binary Systems at Temperatures from 283.08 to 318.12 K and Pressures up to 34.5 MPa", **Fluid Phase Equilibria**, v.214, pp.101-117.

CHAPOY, A., COQUELET, C., RICHON, D., 2003b, "Measurement of the Water Solubility in the Gas Phase of the Ethane + Water Binary System near Hydrate Forming Conditions", **Journal of Chemical and Engineering Data**, v.48, pp.957-966.

CHAPOY, A., MOHAMMADI, A. H., CHARETON, A. *et al.*, 2004a, "Measurement and Modeling of Gas Solubility and Literature Review of the Properties for the Carbon Dioxide–Water System", **Industrial & Engineering Chemistry Research**, v.43, n.7, pp.1794-1802.

CHAPOY, A., MOHAMMADI, A. H., TODIHI, B. *et al.*, 2004b, "Gas Solubility Measurement and Modeling for the Nitrogen + Water System from 274.18 K to 363.02 K", **Journal of Chemical and Engineering Data**, v.49, n.4, pp.1110-1115.

CHAPOY, A., MOHAMMADI, A. H., TODIHI, B. *et al.*, 2004c, "Estimation of Water Content for Methane + Water and Methane + Ethane + n-Butane + Water

Systems Using a New Sampling Device", Journal of Chemical and Engineering Data, v.50, n.4, pp.1157-1161.

CHAPOY, A., MOKRAOUI, S., VALTZ, A. *et al.*, 2004d, "Solubility Measurement and Modeling for the System Propane-Water from 227.62 to 368.16 K", **Fluid Phase Equilibria**, v.226, pp.213-220.

CHAPOY, A., MOHAMMADI A. TOHIDI H. B. *et al.*, 2005, "Estimation of Water Content for Methane + Water and Methane + Ethane + n-Butane + Water Systems Using a New Sampling Device", **Journal of Chemical & Engineering Data**, v.50, pp.1157-1161.

CHAROENSOMBUT-AMON, T., MARTIN, R. J., KOBAYASHI, R., 1986, "Application of a generalized multiproperty apparatus to measure phase equilibrium and vapor phase densities of supercritical carbon dioxide in n-hexadecane systems up to 26 MPa", **Fluid Phase Equilibria**, v.31, pp.89-104.

CHOU, G. F., FORBERT, R. R., PRAUSNITZ, J. M., 1990, "High-pressure Vapor-Liquid Equilibria for CO₂/n-Decane, CO₂/Tetralin, and CO₂/n-Decane/Tetralin at 71 .1 and 104.4°C", **Journal of Chemical and Engineering Data**, v.35, pp.26-29.

CHU, T., CHEN, R. J. J., CHAPELEAR, P. S., KOBAYASHI, R., 1976, "Vapor-Liquid Equilibrium of Methane-n-Pentane System at Low Temperatures and High Pressures", **Journal of Chemical and Engineering Data**, v.21, pp.41-44.

COLLINET, E., GMEHLING, J., 2006, "Prediction of Phase Equilibria with Strong Electrolytes with the Help of the Volume Translated Peng-Robinson Group Contribution Equation of State (VTPR)", **Fluid Phase Equilibria**, v.246, pp.111-118.

DALMOLIN, I., SKOVROINSKI, E., BIASI, A. *et al.*, 2006, "Solubility of Carbon Dioxide in Binary and Ternary Mixtures with Ethanol and Water", **Fluid Phase Equilibria**, v.245, pp.193-200.

DAUBERT, T. E., DANNER, R. P., SIBUL, H. M., *et al.*, 1989–2002. **Physical and Thermodynamic Properties of Pure Chemicals**. 2 ed. Taylor & Francis, Data Compilations, Bristol, PA.

DIAMOND, L. W., AKINFIEV, N. N., 2003, "Solubility of CO₂ in Water from
– 1.5 to 100°C and from 0.1 to 100 MPa: Evaluation of Literature and Thermodynamic
Modeling", Fluid Phase Equilibria, v.208, pp.265-290.

D'SOUZA, R., PATRICK, J. R., TEJA, S., 1988, "High pressure phase equilbria in the carbon dioxide – n-hexadecane and carbon dioxide – water systems", **The Canadian Journal of Chemical Engineering**, v.66, pp.319-323.

DUAN, Z., MOLLER, N., WEARE, J. H., 1992, "An equation of state for the CH₄-CO₂-H₂O system: I. Pure systems from 0 to 1000°C and 0 to 8000 bar", **Geochimica et Cosmochimica Acta**, v.56, pp.2605-2617.

DUAN, Z., SUN, R., 2003, "An Improved Model Calculating CO₂ Solubility In Pure Water and Aqueous NaCl Solutions form 273 from 533 K and 0 to 2000 bar", **Chemical Geology**, v.193, pp.257-271.

DUAN, Z., SUN, R., ZHU, C. *et al.*, 2006, "An improved model for the calculation of CO2 solubility in aqueous solutions containing Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, and SO4^{2"-}, **Marine Chemistry**, v.98, pp.131–139.

ECKERT, F., KLAMT, A., 2002, "Fast solvent screening via quantum chemistry: COSMO-RS approach", AIChE Journal, v.48, pp.369–385.

ELLIOT, D. G., CHEN, R. J. J., CHAPPELEAR, P. S. et al, 1974, "Vapor-Liquid Equilibrium of Methane-n-Butane System at Low Temperatures and High Pressures", **Journal of Chemical and Engineering Data**, v.19, pp.71-77

FALABELLA, J. B., KIZZIE, A. C., TEJA, A. S., 2006, "Henry's constants of Gases and Volatile Organic Compounds in Aqueous Solutions", Fluid Phase

Equilibria, n.241, pp.96-102.

FERRANDO, N., LUGO, R., MOUGIN, P., 2006, "Coupling Activity Coefficient Models, Henry Constant Equations of State to Calculate Vapor-Liquid and Solid-Liquid Equilibrium Data", **Chemical Engineering and Processing**, v.45, pp.773-782.

FISCHER, K., WILKEN, M., 2001, "Experimental Determination of Oxygen and Nitrogen Solubility in Organic Solvents up to 10 MPa at Temperatures between 298 K and 398 K", **Journal of Chemical Thermodynamics**, v.33, pp.1285–1308.

FOLAS, G. K., KONTOGEORGIS, G. M., MICHELSEN, M. L. *et al.*, 2006, "Vapor-Liquid, Liquid-Liquid and Vapor-Liquid-Liquid of Binary and Multicomponent Systems with MEG Modeling with the CPA EoS and an EoS/G^E Model", **Fluid Phase Equilibria**, v.249, pp.67-74.

FONSECA, I. M. A., ALMEIDA, J. P. B., FACHADA, H. C., 2007, "Automated apparatus for gas solubility measurements", Journal of Chemical Thermodynamics, v.39, pp.1407–1411

FREDENSLUND, A., JONES, R. L., PRAUSNITZ, J. M., 1975, "Group-Contribution of Activity Coefficients in Nonideal Liquid Mixtures", AIChE Journal, v.21, pp.1086.

FREDENSLUND, A., GMEHLING, J., RASMUSSEN, P., 1977, "Vapor-Liquid Equilibria Using UNIFAC", Elsevier, Amsterdam.

FU, D., LIANG, L., LI, X. S. *et al.*, 2006, "Investigation of Vapor-Liquid Equilibria for Supercritical Carbon Dioxide and Hydrocarbon Mixtures by Perturbed-Chain Statistical Associating Fluid Theory", **Industrial & Engineering Chemistry Research**, v.45, n.12, pp.4364-4370.

GALINDO, A., DAVIES L. A., GIL-VILLEGAS A. et al., 1998, "The

thermodynamics of mixtures and the corresponding mixing rules in the SAFT-VR approach for potentials of variable range", **Molecular Physics**, v.93, pp.241–252.

GALLEGOS, R. J., GALICIA-LUNA, L. A., ELIZALDE-SOLIS, O., 2006, "Experimental Vapor-Liquid Equilibria for the Carbon Dioxide + Octane and Carbon Dioxide + Decane Systems", **Journal of Chemical and Engineering Data**, v.51, pp.1624-1628.

GAO, J., LI, L. D., ZHU, Z. Y. *et al.*, 2004, "Vapor-Liquid Equilibria Calculation for Asymmetric Systems Using Patel-Teja Equation of State with a New Mixing Rule", **Fluid Phase Equilibria**, v.224, pp.213-219.

GARCIA, J., LUGO L., FERNÁNDEZ, J., 2004, "Phase Equilibria, PVT Behavior, and Critical Phenomena in Carbon Dioxide + n-Alkane Mixtures Using the Perturbed-Chain Statistical Associating Fluid Theory Approach", **Industrial & Engineering Chemistry Research**, v.43, n.26, pp.8345-8353.

GARDELER, H., FISCHER, K., GMEHLING, J., 2002, "Experimental Determination of Vapor-Liquid Equilibrium Data for Asymmetric Systems", Industrial and Engineering Chemistry, v.41, pp.1051-1056.

GASEM, K. A. M., ROBINSON Jr, R. L., 1985, "Solubilities of Carbon Dioxide in Heavy Normal Paraffins (C_{20} - C_{44}) at Pressures to 9.6 MPa and Temperatures from 323 to 423 K", **Journal of Chemical and Engineering Data**, v.30, pp.53-56.

GHOSH, A., CHAPMAN, W. G., FRENCH, R. N., 2003, "Gas Solubility in Hydrocarbons – A SAFT-based Approach", Fluid Phase Equilibria, v.209, pp.229-243.

GMEHLING, I., ONKEN, U., ARLT, W, 1978, "Vapor-liquid equilibrium data collection", DECHEMA CHEMISTRY DATA SERIES.

GROSS, J., SADOWSKI, G., 2001, "Perturbed-chain SAFT: An equation of

state based on perturbation theory for chain molecules", **Industrial & Engineering Chemistry Research**, v.40, n.4, pp.1244-1260.

GUGGENHEIM, E.A., 1952, Mixtures, Oxford, Clarendon Press.

HANDA Y. P, G. C. BENSON, 1982, "Partial molar volumes of gases dissolved in liquids. Part I. Selected literature data and some estimation techniques", **Fluid Phase Equilibria**, v.8, pp.161–180.

HANSEN H. K., COTO B., KUHLMANN B., 1992, Phase Equilibria and Separation Processes - UNIFAC with Lineary Temperature – Dependent Group – Interaction Parameters, Institute for Kemiteknik, Lyngby, Denmark.

HARUKI, M., IWAI, Y., NAGAO, S. *et al.*, 2000, "Measurement and Correlation of Phase Equilibria for Water + Hydrocarbon Systems near the Critical Temperature and Pressure of Water", **Industrial & Engineering Chemistry Research**, v.39, n.12, pp.4516-4520.

HARUKI, M., IWAI, Y., ARAI, Y., 2001, "Prediction of Phase Equilibria for the Mixtures Containing Polar Substances at High Temperatures and Pressures by Group-Contribution Equation of State", **Fluid Phase Equilibria**, v.189, pp.13-30.

HASHEMI, S., MACCHI, A., BERGERON, S., SERVIO, P., 2006, "Prediction of Methane and Carbon Dioxide Solubility in Water in the Presence of Hydrate", **Fluid Phase Equilibria**, v.246, pp.131-136.

HASSANZADEH, H., DARVISH, M. P., ELSHARKAWY A. M. *et al.*, 2008, "Predicting PVT data for CO2–brine mixtures for black-oil simulation of CO2 geological storage", **International Journal of Greenhouse Gas Control**, v.12, pp.65-77.

HEIDEMAN, R. A., KOKAL, S. L., 1990, Combined Excess Free Energy Models and Equations of State, **Fluid Phase Equilibria**, v.56, pp.17-37. HELGESON, H.C., KIRKHAM, D.H., FLOWERS, G.C., 1981, "Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 8C and 5 kb.", **American Journal Science**, v.281, pp.1249-1516.

HIGASHI, H., FURUYA, T., ISHIDAO, T. *et al.*, 1994, "An Exponent-Type Mixing Rule for Energy Parameters", **Journal of Chemical Engineering of Japan**, v.27, pp.677.

HOLDER, G. D., CORBIN, G., PAPADOPOULOS, K. D., 1980, "Thermodynamic and Molecular Properties of Gas Hydrates from Mixtures Containing Methane, Argon, and Krypton", **Industrial & Engineering Chemistry Fundamentals**, v.19, pp.282–286.

HOLDERBAUM, T., GMEHLING, J., 1991, "PSRK: A group Contribution Equation of State Based on UNIFAC", **Fluid Phase Equilibria**, v.70, pp.251-265.

HORSTMAN, S., FISCHER, K., GMEHLING, J., 2000, "Experimental Determination of the Critical Line for (Carbon Dioxide + Ethane) and Calculation of Various Thermodynamic Properties for (Carbon Dioxide + n-Alkane) Using the PSRK Model", **Journal of Chemical Thermodynamics**, v.32, pp.451-464.

HUANG, S. H., LIN, H., CHAO, K., 1988, "Solubility of Carbon Dioxide, Methane, and Ethane in n-Eicosane", Journal of Chemical and Engineering Data, v.33, pp.145-147.

HUANG, S. H., RADOSZ, M., 1990, "Equation of state for small, large, polydisperse and associating molecules", **Industrial & Engineering Chemistry Research**, v.29, pp.2284.

HUANG, S. H., RADOSZ, M., 1991, "Equation of State for Small, Large,

Polydisperse, and Associating Molecules: Extension to Fluid Mixtures", **Industrial & Engineering Chemistry Research**, v.30, pp.1994.

HURON, J. M.; VIDAL, J., 1979, "New Mixing Rules in Simple Equations of State for Representing Vapor-Liquid Equilibria of Strongly Non-Ideal Mixture", Fluid Phase Equilibria, v.3, pp.255-271.

ISHIZUKA, I., SARASHINA, E., ARAI, Y. *et al.*, 1980, "Group contribution model based on the hole theory", **Journal of Chemical Engineering of Japan**, v.13, pp.90–97.

ISLAM, M. A., KALAM, M. A., KHAN, M. R., 2000, "Reactive Gas Solubility in Water: An Empirical Relation", **Industrial & Engineering Chemistry Research**, v.39, n.7, pp.2627-2630.

JAGER, M. D., BALLARD, A. L., SLOAN, E. D., 2003, "The next generation of hydrate prediction. II. Dedicated aqueous phase fugacity model for hydrate prediction", **Fluid Phase Equilibria**, v.211, pp.85–107.

JAUBERT, J. N., MUTELET, F., 2004, "VLE predictions with the Peng– Robinson equation of state and temperature dependent kij calculated through a group contribution method", **Fluid Phase Equilibria**, v.224, pp.285–304.

JAUBERT, J. N., VITU, S., MUTELET, F. *et al.*, 2005, "Extension of the PPR78 model (predictive 1978, Peng–Robinson EOS with temperature dependent kij calculated through a group contribution method) to systems containing aromatic compounds", **Fluid Phase Equilibria**, v.237, pp.193–211.

JENNINGS, D. W., SCHUCKER R. C., 1996, "Comparison of High-Pressure Vapor-Liquid Equilibria of Mixtures of CO₂ or Propane with Nonane and C₉ Alkylbenzenes", **Journal of Chemical and Engineering Data**, v.41, pp.831-838.

KALRA, H., KRISHNAN, T. R., ROBINSON D. R., 1976, "Equilibrium-Phase

Properties of Carbon Dioxide-n-Butane and Nitrogen-Hydrogen Sulfide Systems at Subambient Temperatures", Journal of Chemical and Engineering Data, v.21, pp.222-225.

KIEPE, J., HORSTMANN, S., FISCHER, K., *et al.*, 2002, "Experimental Determination and Prediction of Gas Solubility Data for $CO_2 + H_2O$ Mixtures Containing NaCl or KCl at Temperatures Between 313 and 393 K and Pressures up to 10 MPa", **Industrial & Engineering Chemistry Research**, v.41, n.17, pp.4393-4398.

KIEPE, J., HORSTMANN, S., FISCHER, K. *et al.*, 2003a, "Experimental Determination and Prediction of Gas Solubility Data for $CO_2 + H_2O$ Mixtures Containing NaNO₃ or KNO₃", **Industrial & Engineering Chemistry Research**, v.42, n.16, pp.3851-3856.

KIEPE, J., HORSTMANN, S., FISCHER, K. *et al.*, 2003b, "Experimental Determination and Prediction of Gas Solubility Data for Methane + Water Solutions Containing Different Monovalent Electrolytes", **Industrial & Engineering Chemistry Research**, v.42, n.21, pp.5392-5398.

KIM, Y. S, RYU, S. K., YANG, S. O. *et al.*, 2003, "Liquid Water–Hydrate Equilibrium Measurements and Unified Predictions of Hydrate-Containing Phase Equilibria for Methane, Ethane, Propane, and Their Mixtures", **Industrial & Engineering Chemistry Research**, v.42, pp.2409 – 2414.

KLAMT, A., 1995, "Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena", Journal of Physical Chemistry, v.99, pp.2224–2235.

KLAMT, A., ECKERT, F., 2000, "COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids", **Fluid Phase Equilibria**, v.172, pp.43–72.

KOBAYASHI, R., KATZ, D. L., 1953, "Vapor-Liquid Equilibria for Binary Hydrocarbon-water Systems", **Industrial and Engineering Chemistry**, v.45, pp.440-446.

KOHN, J. P., BRADISH, W. F., 1964, "Multiphase and Volumetric Equilibria of the Methane-+Octane System at Temperatures between -110^oC and 150^oC", **Journal of Chemical and Engineering Data**, v.9, pp.5-8.

KOJIMA K., TOCHIGI, K., 1979, Prediction of Vapor-Liquid Equilibria by the ASOG Method, Kodansha / Elsevier.

KONTOGEORGIS, G. M., VOUTSAS, E. C., YAKOUMIS, I. V. *et al.*, 1996, "An Equation of State for Associating Fluids", **Industrial & Engineering Chemistry Research**, v.35, pp.4310.

KORDIKOWSKI, A., SCHNEIDER, G. M., 1993, "Fluid phase equilibria of binary and ternary mixtures of supercritical carbon dioxide with low-volatility organic substances up to 100 MPa and 393K: cosolvency effects and miscibility windows", **Fluid Phase Equilibria**, v.90, pp.149-162.

KOSCHEL, D., COXAM, J. Y., RODIER, L. *et al.*, 2006, "Enthalpy and solubility data of CO2 in water and NaCl(aq) at conditions of interest for geological sequestration", **Fluid Phase Equilibria**, v.247, pp.107–120

KRICHEVSKY, I.R., KASARNOVSKY, Y. S., 1935, "Thermodynamical Calculations of Solubilities of Nitrogen and Hydrogen in Water at High Pressures", **Journal of the American Chemical Society**, v.57, pp.2168–2171.

LARSEN, B. L., RASMUSSEN, P., FREDENSLUND, A., 1987, "A modified UNIFAC group contribution model for the prediction of phase equilibria and heats of mixing", **Industrial & Engineering Chemistry Research**, v.26, pp.2274-2286.

LEKVAM, K., BISHNOI, P. R., 1997, "Dissolution of methane in water at low

temperatures and intermediate pressures", Fluid Phase Equilibria, v.131, pp.297-309.

LEU, A., ROBINSON, D.B., 1987, "Equilibrium Phase Properties of the n-Butane-Carbon Dioxide and Isobutane-Carbon Dioxide Binary Systems", Journal of Chemical and Engineering Data, v.32, pp.444-447.

LI, J., POLKA, H. M., 1994, "A g^{E} model for single and mixed solvent electrolyte systems: 1. Model and results for strong electrolytes", Fluid Phase Equilibria, v.94, pp.89-114.

LI, J., TOPPHOFF, M., FISCHER, K. *et al.*, 2001, "Prediction of Gas Solubilities in Aqueous Electrolyte Systems Using the Predictive Soave-Redlich-Kwong Model", **Industrial & Engineering Chemistry Research**, v.40, n.16, pp.3703-3710.

LIN, Y., CHEN, R. J. J., CHAPPELEAR P. S. *et al.*, 1977, "Vapor-Liquid Equilibrium of the Methane-n-Hexane System at Low Temperature", Journal of Chemical and Engineering Data, v.22, pp.402-408.

LIN, H., SEBASTIAN, H. M., SIMNICK, J. J. et al, 1979, "Gas-Liquid Equilibrium in Binary Mixtures of Methane with n-Decane, Benzene, and Toluene, Journal of Chemical and Engineering Data, v.24, pp.146-149.

LIN, H., SEBASTIAN, H. M., CHAO, K, 1980, "Gas-Liquid Equilibrium in Hydrogen + n-Hexadecane and Methane + n-Hexadecane at Elevated Temperatures and Pressures", **Journal of Chemical and Engineering Data**, v.25, pp.252-254.

LOULI, V., BOUKOUVALAS, C., VOUTSAS, E. *et al.*, 2007, "Application of the UMR-PRU model to multicomponent systems: Prediction of the phase behavior of synthetic natural gas and oil systems", **Fluid Phase Equilibria**, v.261, pp.351–358

LYCKMAN E. W., ECKERT C. A., PRAUSNITZ J. M., 1965, "Generalized reference fugacities for phase equilibrium thermodynamics", Chemical Engineering

Science, v.20, pp.685-691.

MAGOULAS, K., TASSIOS, D., 1990, "Thermophysical properties of n-Alkanes from C1 to C20 and their prediction for higher ones", **Fluid Phase Equilibria**, v.56, pp.119–140.

MAO, S., DUAN, Z., 2006, "A Thermodynamic Model for Calculation Nitrogen Solubility, Gas Phase Composition and Density of the N₂-H₂O-NaCl System", Fluid Phase Equilibria, v.248, pp.103-114.

MATHIAS, P. M.; COPEMAN, T. W., 1983, "Extension of the Peng-Robinson Equation of State to Complex Mixtures: Evaluation of the Various Forms of the Local Composition Concept.", **Fluid Phase Equilibria**, v.13, pp.91-108.

MELHEM, G. A., SAINI, R., GOODWIN, B. M., 1989, "A modified Peng– Robinson equation of state", **Fluid Phase Equilibria**, v.47, pp.189-237.

MICHELSEN, M. L., 1990, "A modified Huron-Vidal mixing rule for cubic equations of state", **Fluid Phase Equilibria**, v.60, pp.213-219.

MOHAMMADI, A. H., CHAPOY, A., RICHON, D. *et al.*, 2004, "Experimental Measurement and Thermodynamic Modeling of Water Content in Methane and Ethane Systems", **Industrial & Engineering Chemistry Research**, v.43, n.22, pp.7148-7162.

MOHAMMADI, A. H., CHAPOY, A., RICHON, D. *et al.*, 2006, "Gas Solubility: A Key to Estimating the Water Content of Natural Gases", **Industrial & Engineering Chemistry Research**, v.45, n.13, pp.4825-4829.

NAGARAJAN, N., ROBINSON, Jr., R. L., 1986, "Equilibrium Phase Compositions, Phase Densities, and Interfacial Tensions for CO2, + Hydrocarbon Systems. 2. CO_2 + n-Decane", **Journal of Chemical and Engineering Data**, v.31, pp.168-171.

NAIDOO, P., RAMJUGERNATH, D., RAAL, J. D., 2008, "A new high-

pressure vapour–liquid equilibrium apparatus", **Fluid Phase Equilibria**, v.269, pp.104-112.

NASRIFAR, Kh., MOSHFEGHIAN, M., 2001, "A new cubic equation of state for simple fluids: pure and mixture", **Fluid Phase Equilibria**, v.190, pp.73-88.

NASRIFAR, Kh., MOSHFEGHIAN, M., 2002a, "Liquid-Liquid Equilibria of Water-Hydrocarbon Systems from Cubic Equations of State", **Fluid Phase Equilibria**, v.193, pp.261-275.

NASRIFAR, Kh., MOSHFEGHIAN, M., 2002b, "Vapor-Liquid Equilibria of LNG and Gas Condensate Mixtures by the Nasrifar-Moshfeghian Equation of State", **Fluid Phase Equilibria**, v.200, pp.203-216.

NELDER, J. A., MEAD, R., 1965, "A Simplex Method for Function Minimization", **The Computer Journal**, v.7, pp.308-313.

NIESEN, V. G, 1989, "(Vapor + liquid) equilibria and coexisting densities of (carbon dioxide + n-butane) at 311 to 395 K", **The Journal of Chemical Thermodynamics**, v.21, n.9, pp.915-923.

NIEUWOUDT, I., RAND, M., 2002, "Measurement of Phase Equilibria of Supercritical Carbon Dioxide and Paraffins", **Journal of Supercritical Fluids**, v.22, pp.185-199.

OHGAKI K., NISHII H., KATAYAMA T., 1983, "A Method for Gas-Solubility Measurement", Journal of Chemical Engineering of Japan, v.16, pp.72-73.

OLIVEIRA J. V., ULLER A. M. C., 1989, "Solubility of 1,3-butadiene and methyl propene in n-methyl-2-pyrrolidone", **Fluid Phase Equilibria**, v.46, pp.267-280.

OLIVEIRA, M. B., COUTINHO, J. A. P., QUEIMADA, A. J., 2007, "Mutual solubilities of hydrocarbons and water with the CPA EoS", Fluid Phase Equilibria, v.258, pp.58 – 66.

O'SULLIVAN, T. D., SMITH, N. O., 1970, "The Solubility and Partial Molar Volume of Nitrogen and Methane in Water and in Aqueous Sodium Chloride from 50 to 125 and 100 to 600 Atm", **The Journal of Physical Chemistry**, v.74, pp.1460-1466.

PANAGIOTOPOULOS, A. Z., REID, R. C., 1986, "New mixing rule for cubic equations of state for highly polar, asymmetric systems", in: CHAO, K. C. and ROBINSON, R. L., **Equations of state: theories and applications.** ACS Symposium Series, American Chemical Society, Washington, DC, pp.571.

PASSARELLO, J. P., BENZAGHOU, S., TOBALY, P., 2000, "Modeling Mutual Solubility of n-alkanes and CO₂ Using SAFT Equation of State", **Industrial & Engineering Chemistry Research**, v.39, n.7, pp.2578-2585.

PATEL, N. C., TEJA, A. S., 1982, "A new cubic equation of state for fluids and fluid mixtures", **Chemical Engineering Science**, v.37, n.3, pp.463-473.

PEDERSEN, K. S., MILTER, J., RASMUSSEN, C. P., 2001, "Mutual Solubility of Water and a Reservoir Fluid at High Temperatures and Pressures Experimental and Simulated Data", **Fluid Phase Equilibria**, v.189, pp.85-97.

PENELOUX, A., RAUZY, E., FREZE, R., 1982, "A consistent correction for Redlich-Kwong-Soave volumes", Fluid Phase Equilibria, v.8, pp.7.

PENG, D. Y., ROBINSON, D. B., 1976, "A New Two-Constant Equation of State", Industrial & Engineering Chemistry Fundamentals, v.15, pp.59-64.

PETERS, C. J., ROO, J. L., LICHTENTHALER, R. N., 1987, "Measurements and calculations of phase equilibria of binary mixtures of ethane + eicosane. Part I: vapour + liquid equilibria", **Fluid Phase Equilibria**, v.34, pp.287-308.

PETROBRAS, 2004. Disponível em: http://www2.petrobras.com.br/ /portal/frame_ri.asp?pagina=/ri/port/>. Acesso em: 12 mar. 2009, 11:37:30.

PITZER, K.S., 1973, "Thermodynamics of electrolytes I. Theoretical basis and

general equations", Journal of Physical Chemistry, v.77, pp.268-277.

POLING B. E., PRAUSNITZ J. M., O'CONNELL J. P., 2001, The properties of gases and liquids, 5 ed, USA, McGraw-Hill.

POLISHUK, I., WISNIAK, J., SEGURA, H. *et al.*, 2000, "Prediction of the critical locus in binary mixtures using equation of state II. Investigation of van der Waals-type and Carnahan-Starling-type equations of state", **Fluid phase Equilibria**, v.172, pp.1–26.

POLISHUK, I., WISNIAK, J., SEGURA, H., 2003a, "Simultaneous Prediction of the Critical and Sub-critical Phase Behavior in Mixtures Using Equation of State II. Carbon Dioxide-heavy n-alkanes", **Chemical Engineering Science**, v.58, pp.2529-2550.

POLISHUK, I., WISNIAK, J., SEGURA, H., 2003b, "Simultaneous Prediction of the Critical and Sub-critical Phase Behavior in Mixtures Using Equation of State III. Methane-n-alkanes", **Chemical Engineering Science**, v.58, pp.4363-4376.

POLISHUK, I., STATEVA, R. P., WISNIAK, J. *et al.*, 2004, "Simultaneous Prediction of the Critical and Sub-critical Phase Behavior in Mixtures Using Equation of State IV.Mixtures of chained n-alkanes", **Chemical Engineering Science**, v.59, pp.633-643.

PORTIER, S., ROCHELLE, C., 2005, "Modelling CO2 solubility in pure water and NaCl-type waters from 0 to 300 8C and from 1 to 300 bar. Application to the Utsira Formation at Sleipner", **Chemical Geology**, v.217, pp.187 – 199.

POSTON, R. S., McKETTA, J. J., 1966, "Vapor-Liquid Equilibrium in the Methane-n-Hexane System", Journal of Chemical and Engineering, v.11, pp.362-363.

PRADO, M. P., 2004, Modelo preditivo para cálculo da solubilidade de dióxido
de carbono em polímeros, Tese M.Sc., COPPE/UFRJ, Rio de Janeiro, Brasil.

PRAUSNITZ, J. M., SHAIR, F. H., 1961, "A thermodynamic correlation of gas solubilities", **AIChE Journal**, v.7-4, pp.682-687.

QIN J., ROSENBAUER R. J., DUAN Z., 2008, "Experimental Measurements of Vapor–Liquid Equilibria of the H2O + CO2 + CH4 Ternary System", Journal of Chemical & Engineering Data, v.53, n.6, pp.1246-1249.

RAMAN R., 1985, Chemical Process Computations, Elsevier Science Publish, New York, USA.

REAMER, H. H., OLDS, R. H., SAGE, B. H. *et al.*, 1942, "Composition of dew-point gas in ethane-water system", **Industrial and Engineering Chemistry**, v.35, pp.790-793.

REAMER, H. H., OLDS, R. H., SAGE, B. H. et al, 1944, "Compositions of the coexisting phases of n-butane-water system in the three-phase region", **Industrial and Engineering Chemistry**, v.36, pp.381-383.

REAMER, H. H., SAGE, B. H., LACEY, W. N., 1956, "Phase Equilibria in Hydrocarbon Systems. Volumetric and Phase Behavior of the Methane-n-Heptane System", **Chemical and Engineering Data Series**, v.1, pp.29-42.

REAMER, H. H., SAGE, B. H., 1963, "Phase Equilibria in Hydrocarbon Systems.Volumetric and Phase Behavior of the n-Decane-CO₂ System", **Journal of Chemical and Engineering Data**, v.8, pp.508-513

REAMER, H. H., SAGE, H., 1964, "Phase Equilibria in Hydrocarbon Systems Phase Behavior in the n-Butane-n-Decane System", Journal of Chemical and Engineering Data, v.9, pp.24-28.

REDLICH, O., KWONG, J. N. S., 1949, "On the thermodynamics of solutions.V. An equation of state. Fugacities of gaseous solutions", Chemical Reviews, v.44,

pp.233–244.

ROCHA A. A., MIEKELEY N., SILVEIRA C. L. P. *et al.*, 1998, "Determination of organic phosphorus in oil production waters by ICPAES and ICP-MS after preconcentration on silica immobilized C18", **Química Nova**, v.21, n.5, pp.584-589.

RUMPF, B., NICOLAISEN, H., OCAL, C. *et al.*, 1994, "Solubility of carbon dioxide in aqueous solutions of sodium chloride: experimental results and correlation", **Journal of Solution Chemistry**, v.23, pp.431–448.

SAGE, B. H., HICKS, B. L., LACEY, W. N., 1940, "Phase Equilibria in Hydrocarbon Systems. The Methane-n-Butane System in the Two-Phase Region", **Industrial and Engineering Chemistry**, v.32, pp.1085-1092.

SANCHEZ, I. C., LACOMBE, R. H., 1976a, "An elementary molecular theory of classical fluids. Pure fluids", **Journal of Physical Chemistry**, v.80, pp.2352–2362.

SANCHEZ, I. C., LACOMBE, R. H., 1976b, "Statistical thermodynamics of fluid mixtures", Journal of Physical Chemistry, v.80, pp.2568 – 2580.

SANCHEZ, F. G., JIMENEZ, G. E., OLIVER, G. S. *et al.*, 2004, "Vapor–liquid equilibria of nitrogen–hydrocarbon systems using the PC-SAFT equation of state", **Fluid Phase Equilibria**, v.217, pp.241-253.

SANDARUSI, J. A., KIDNAY, A. J., YESAVAGE, V. F., 1986, "Compilation of Parameters for a Polar Fluid Soave-Redlich-Kwong Equation of State", **Industrial and Engineering Chemistry Process Design and Development**, v.25, pp.957.

SANDER, B., FREDENSLUND, A., RASMUSSEN, P., 1986, "Calculation of vapour–liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation", **Chemical Engineering Science**, v.41, pp.1171–1183.

SANTOS JR., M. C. DOS, 2002, Cálculo do Equilíbrio Líquido – Vapor, Sólido – Líquido e Líquido – Líquido em Misturas com Eletrólitos, Tese de M.Sc., COPPE/UFRJ, Rio de Janeiro, Brasil.

SAUL, A., WAGNER, W., 1987, "International equations for the saturation properties of ordinary water substance", **Journal of Physical and Chemical Reference Data**, v.16, pp.893-901.

SCHWARZ, B. J., PRAUSNITZ, J. M., 1987, "Solubilities of Methane, Ethane, and Carbon Dioxide in Heavy Fossil-Fuel Fractions", **Industrial & Engineering Chemistry Research**, v.26, pp.2360-2366.

SEBASTIAN, H. M., SIMNICK, J. J., LIN, H. *et al.*, 1980, "Vapor-Liquid Equilibrium in Binary Mixtures of Carbon Dioxide + n-Decane and Carbon Dioxide + n-Hexadecane", **Journal of Chemical and Engineering Data**, v.25, pp.138-140.

SERVIO, P., ENGLEZOS, P., 2001, "Effect of Temperature and Pressure on the Solubility of Carbon Dioxide in Water in the Presence of Gas Hydrate", Fluid Phase Equilibria, v.190, pp.127-134.

SEYFRIED, W. E., JR., GORDON, P. C., DICKSON, F. W., 1979, "A New Reaction Cell for Hydrothermal Solution Equipment." American Mineralogist, v.64, pp.646–649.

SHAVER, R.D., ROBINSON, R. L., GASEM, K. A. M., 2001, "An automated apparatus for equilibrium phase compositions, densities, and interfacial tensions: data for carbon dioxide + decane", **Fluid Phase Equilibria**, v.179, pp.43-66.

SHIBATA, S. K., SANDLER, S. I., 1989, "High-pressure Vapor-Liquid Equilibria Involving Mixtures of Nitrogen, Carbon Dioxide, and n-Butane", Journal of Chemical and Engineering Data, v.34, pp.291-298.

SHIMOYAMA, Y., IWAI, Y., TAKADA, S. et al., 2006, "Prediction of Phase

Equilibria for Mixtures Containing Water, Hydrocarbons and Alcohols at High Temperatures and Pressures by Cubic equation of State with G^E Type Mixing Rule Based on COSMO-RS", **Fluid Phase Equilibria**, v.243, pp.183-192.

SMITH, J. M., VAN NESS, H. C., ABBOTT, M. M., 2007, Introdução à Termodinâmica da Engenharia Química, 7ª ed., LTC, São Paulo, Brasil.

SOAVE, G., 1972, "Equilibrium constants from a modified Redlich-Kwong equation of state", **Chemical Engineering Science**, v.27, pp.1197.

SOLMS, N., MICHELSEN, M. L., KONTOGEORGIS, G. M., 2003, "Computational and Physical Performance of a Modified PC-SAFT Equation of State for Highly Asymmetric and Associating Mixtures", **Industrial & Engineering Chemistry Research**, v.42, n.5, pp.1098-1105.

SOMEYA, S., BANDO, S., CHEN, B. *et al.*, 2005, "Measurement of CO₂ Solubility in Pure Water and the Pressure Effect on it in the Presence of Clathrate Hydrate", **International Journal of Heat and Mass Transfer**, v.48, pp.2503-2507.

SORENSEN, H., PEDERSEN, K. S., CHRISTENSEN, P. L., 2002, "Modeling of gas solubility in brine", **Organic Geochemistry**, v.33, pp.635-642.

SPEE, M., SCHNEIDER, G. M., 1991, "Fluid phase equilibrium studies on binary and ternary mixtures of carbon dioxide with hexadecane, 1-dodecanol, 1,8octanediol and dotriacontane at 393.2 K and at pressures up to 100 MPa", **Fluid Phase Equilibria**, v.65, pp.263-274.

SPYCHER, N., PRUESS, K., ENNIS-KING, J., 2003, "CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar", **Geochimica et Cosmochimica Acta**, Vol. 67, n.16, pp.3015–3031.

SPYCHER, N., PRUESS, K., 2005, "CO2-H2O mixtures in the geological

195

sequestration of CO2. II. Partitioning in chloride brines at 12–100°C and up to 600 bar", **Geochimica et Cosmochimica Acta**, v.69, n. 13, pp.3309–3320.

SRIVASTAN, S., DARWISH, N. A., GASEM, A. M., 1992, "Solubility of Methane in Hexane, Decane, and Dodecane at Temperatures from 311 to 423 K and Pressures to 10.4 MPa", Journal of Chemical and Engineering Data, v.37, pp.516-520.

STRYJEK, R., VERA, J. H., 1986a, "An Improved Equation of State", in: CHAO, K. C. and ROBINSON, R. L., **Equations of state: theories and applications.** ACS Symposium Series, American Chemical Society, Washington, DC, pp.560.

STRYJEK, R., VERA, J. H., 1986b, "PRSV: an improved Peng–Robinson equation of state for pure compounds and mixtures", **Canadian Journal of Chemical Engineering**, v.64, pp.323.

SVANDAL A., KUZNETSOVA T., KVAMME B., 2006, "Thermodynamic properties and phase transitions in the H₂O/CO₂/CH₄ system", **Fluid phase Equilibria**, v.246, pp.177-184.

TANAKA, H., YAMAKI, Y., KATO, M., 1993, "Solubility of Carbon Dioxide in Pentadecane, Hexadecane, and Pentadecane + Hexadecane", Journal of Chemical and Engineering Data, v.38, pp.386-388.

TELES, A. P. F., 2004, O Uso do Ultra-Som na Determinação do Equilíbrio de Fases de Sistemas Envolvendo Óleos Pesados Brasileiros em CO₂ Supercritico, Tese de D.Sc., COPPE/UFRJ, Rio de Janeiro, Brasil.

TENG, H., YAMASAKI, A., 1997, "Solubility of liquid CO_2 in water at 2 temperatures from 278K to 293K and pressures from 6.44 MPa to 29.49 MPa and densities of the corresponding aqueous solutions", **Journal of Chemical Thermodynamics**, v.29, pp.1301-1310.

TOHIDI, B. K., 1995, *Gas Hydrate Equilibria in the Presence of Electrolyte Solutions*. Ph.D. Dissertation, Heriot-Watt University, Edinburgh, Scotland.

TOMINAGA, T., BATTINO, R., GOROWARA, H. K. *et al.*, 1986, "Solubility of gases in liquids. 17. The solubility of helium, neon, argon, krypton, hydrogen, nitrogen, oxygen, carbon monoxide, methane, carbon tetrafluoride, and sulfur hexafluoride in tetrachloromethane at 283 to 318 K", **Journal of Chemical & Engineering Data**, v.31, pp.175–180.

TREBBLE, M. A., BISHNOI, P. R., 1987, "Development of a new fourparameter cubic equation of state", **Fluid Phase Equilibria**, v.35, n.1-3, pp.1-18.

TSONOPOULOS C., 1974, "An Empirical Correlation of Second Virial Coefficients", AICHE Journal, v.20, pp.263-272

TSUJI, T., TANAKA, S., HIAKI, T. *et al.*, 2004, "Measurements of Bubble Point Pressure for CO_2 + Decane and CO_2 + Lubricating Oil", **Fluid Phase Equilibria**, v.219, pp.87-92.

TWU, C. H.; COON, J. E.; CUNNINGHAM, J. R., 1995, "A New Generalized Alpha Function for a Cubic Equation of State Part 1. Peng-Robinson Equation", Fluid Phase Equilibria, v.105, pp.49-59.

VALDERRAMA, J. O., 1990, "A Generalized Patel-Teja Equation for Polar and Nonpolar Fluids and their Mixtures", **Journal of Chemical Engineering of Japan**, v.23, n.1, pp.87-91.

VALTZ, A., CHAPOY, A., COQUELET, C. *et al.*, 2004, "Vapor-Liquid Equilibria in the Carbon Dioxide-Water System, Measurement and Modeling from 278.2 to 318.2 K", Fluid Phase Equilibria, v.226, pp.333-344.

VAN DER WAALS, J. H., PLATTEEUW, J. C., 1959, "Clathrate Solutions.", Advances in Chemical Physics, v.2, pp.2-57.

VAN KONYNENBURG, P. H., SCOTT, R. L., 1980, "Critical lines and phase equilibria in binary van der Waals mixtures", **Philosophical Transactions of the Royal Society of London**, v.298, pp.495–540.

VILLEGAS, A. G, GALINDO, A., WHITEHEAD, P. J. *et al.*, 1997, "Statistical associating fluid theory for chain molecules with attractive potentials of variable range", **Journal of Chemical Physics**, v.106, pp.4168–4186.

VITU, S., JAUBERT, J. N., MUTELET, F., 2006, "Extension of the PPR78 model (predictive 1978, Peng–Robinson EOS with temperature dependent kij calculated through a group contribution method) to systems containing naphthenic compounds", **Fluid Phase Equilibria**, v.243, pp.9–28.

VITU, S., PRIVAT, R., JAUBERT, J. N. *et al.*, 2008, "Predicting the phase equilibria of CO2 + hydrocarbon systems with the PPR78 model (PR EOS and kij calculated through a group contribution method)", **Journal of Supercritical Fluids**, v.45, pp.1–26.

VOUTSAS, E. C., BOULOUGOURIS, G. C., ECONOMOU, I. G. *et al.*, 2000, "Water/Hydrocarbon Phase Equilibria Using the Thermodynamic Perturbation Theory", **Industrial & Engineering Chemistry Research**, v.39, n.3, pp.797-804.

VOUTSAS, E. C., MAGOULAS, K., TASSIOS, D., 2004, "Universal Mixing Rule for Cubic Equations of State Applicable to Symmetric and Asymmetric Systems: Results with the Peng-Robinson Equation of State", **Industrial & Engineering Chemistry Research**, v.43, pp.6238-6246.

VOUTSAS, E. C., PAPPA, G. D., MAGOULAS, K. *et al.*, 2006, "Vapor Liquid Equilibrium Modeling of Alkane Systems with Equations of State: Simplicity versus Complexity", **Fluid Phase Equilibria**, v.240, pp.127-139. WAGNER, W., PRUSS, A., 2002, "The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use", **Journal of Physical and Chemical Reference Data**, v.31, pp.387-535.

WANG, L. S., GUO, T. M., 1993, "A cubic simplified perturbed Hard-Chain equation of state for fluids with chainlike molecules", **Canadian Journal of Chemical Engineering**, v.71, pp.591–604.

WANG, L. K., CHEN, G. J., HAN, G. H. *et al.*, 2003, "Experimental study on the solubility of natural gas components in water with or without hydrate inhibitor", **Fluid Phase Equilibria**, v.207, pp.143 – 154.

WEI, M. S.-W., BROWN, T. S., KIDNAY, A. J. et al, 1995, "Vapor + Liquid Equilibria for the Ternary System Methane + Ethane + Carbon Dioxide at 230 K and Its Constituent Binaries at Temperatures from 207 to 270 K", **Journal of Chemical and Engineering Data**, v.40, pp.726-731.

WEIDLICH, U., GMEHLING, J., 1987, "A modified UNIFAC model. 1. Prediction of VLE", **Industrial & Engineering Chemistry Research**, v.26, pp.1372-1381.

WEN-HUI, X., JING-ZHE, S., XI-MING, X., 1990, "Studies on the activity coefficient of benzene and its derivatives in aqueous salt solutions", **Thermochimica Acta**, v.169, pp.271–286

WU, J., PRAUSNITZ, J. M., 1998, "Phase Equilibria for Systems Containing Hydrocarbons, Water and Salt: An Extended Peng-Robinson Equation of State", **Industrial & Engineering Chemistry Research**, v.37, n.5, pp.1634-1643.

YAN, W., TOPPHOFF, M., ROSE, C. *et al.*, 1999, "Prediction of vapor–liquid equilibria in mixed-solvent electrolyte systems using the group contribution concept", **Fluid Phase Equilibria**, v.162, pp.97–113.

YANG, S. O., YANG, I. M., KIM, Y. S. *et al.*, 2000, "Measurement and Prediction of Phase Equilibria for Water + CO2 in Hydrate Forming Conditions", **Fluid Phase Equilibria**, v.175, pp.75-89.

YANG, Q., ZHONG, C., 2001, "A modified PSRK model for the prediction of the vapor-liquid equilibria of asymmetric systems", **Fluid Phase Equilibria**, v.192, pp.103-120.

YARRISON, M., COX, K. R., CHAPMAN, W. G., 2006, "Measurement and Modeling of the Solubility of Water in Supercritical Methane and Ethane from 310 to 477 K and Pressures from 3.4 to 110 MPa", **Industrial & Engineering Chemistry Research**, v.45, n.20, pp.6770-6777.

ZEMAITIS J. F., 1986, Handbook of Aqueous Electrolyte Thermodynamics: Theory and Application, New York, American Institute Chemistry Engineering Design Instrumental Physical Properties Data, USA.

<u>ANEXO A</u>

Este anexo A apresenta os resultados detalhados obtidos na determinação dos volumes mortos para cada segmento do equipamento. É importante ressaltar que esses resultados para a célula de equilíbrio serão apresentados para todas as oito células possíveis de serem utilizadas na determinação das medidas de solubilidade dos gases.

A.1) TRANSDUTOR DE PRESSÃO

A Tabela A.1 destaca os valores para a massa de água destilada utilizada na inundação do corpo interno do transdutor de pressão e a Figura A.1 ilustra essas medidas com os intervalos de confiança calculados.

Tubble 11.1 Mubble de agua. Hanbautor de pressuo.				
Experimento	Massa H ₂ O (g)	Experimento	Massa H ₂ O (g)	
1	12,5568	10	12,4891	
2	12,5672	11	12,4478	
3	12,5544	12	12,4748	
4	12,5311	13	12,5175	
5	12,5497	14	12,5072	
6	12,5121	15	12,5489	
7	12,5362	16	12,4746	
8	12,5703	17	12,5689	
9	12,5485	18	12,5331	

Tabela A.1 – Massa de água: transdutor de pressão.

Figura A.1 – Análise estatística das medidas para o transdutor de pressão.

Analisando a Tabela A.1, observa-se que o valor médio para a massa de água destilada obtida no procedimento de inundação do transdutor de pressão foi igual a 12,5271 g. Entretanto, ao observarmos a Figura A.1, identifica-se a presença de um ponto fora dos limites estabelecidos, sendo esse ponto (11) excluído e um novo valor para a média calculado igual a 12,5318 g. Utilizando o valor para a densidade da água destilada igual a 0,9947 g/cm³, na temperatura de 25 °C, chega-se ao valor do volume morto do transdutor de pressão igual a **12,5986 cm³**.

A.2) TUBULAÇÃO DO EQUIPAMENTO

A Tabela A.2 destaca os valores para a massa de água destilada utilizada na inundação da tubulação do aparato experimental e a Figura A.2 ilustra essas medidas com os respectivos intervalos de confiança.

140014112	1110554 40 4844	the ana gue as a	Junpannenter
Experimento	Massa H ₂ O (g)	Experimento	Massa H ₂ O (g)
1	8,7586	17	8,5771
2	8,6511	18	8,7201
3	9,0454	19	8,7221
4	8,6295	20	8,6398
5	8,7805	21	8,6741
6	8,7355	22	8,6498
7	8,8749	23	8,6559
8	8,9200	24	8,5455
9	8,7519	25	8,6224
10	8,7496	26	8,6237
11	8,8180	27	8,5816
12	8,7594	28	8,6926
13	8,7175	29	8,5916
14	8,6734	30	8,5308
15	8,6979	31	8,5696
16	8,7905		

Tabela A.2 – Massa de água: tubulação do equipamento.

Figura A.2 – Análise estatística das medidas para a tubulação.

Analisando a Tabela A.2 observa-se que o valor médio para a massa de água destilada obtida no procedimento de inundação da tubulação foi igual a 8,7016 g. Entretanto, ao observarmos a Figura A.2, identifica-se a presença de um ponto fora dos

limites estabelecidos, sendo esse ponto (3) excluído e um novo valor para a média calculado igual a 8,6902 g. Utilizando o mesmo valor anterior para a densidade da água destilada, chega-se ao valor do volume morto da tubulação do equipamento igual a **8,7365 cm³**.

A.3) CÉLULA Nº1

A Tabela A.3 destaca os valores para a massa de água destilada utilizada na inundação da célula Nº1 e a Figura A.3 ilustra essas medidas com os intervalos de confiança.

Tabela A.5 – Massa de agua: celula N 1.					
Experimento	Massa H ₂ O (g)	Experimento	Massa H ₂ O (g)		
1	32,4806	12	32,4302		
2	32,7096	13	32,4736		
3	32,6741	14	32,5239		
4	32,7552	15	32,5195		
5	32,4192	16	32,4717		
6	32,6728	17	32,6473		
7	32,7746	18	32,6628		
8	32,7278	19	32,6173		
9	32,7093	20	31,6734		
10	32,6682	21	32,7058		
11	32 5471	22	32,6871		

Tabela A.3 – Massa de água: célula Nº1

Figura A.3 – Análise estatística das medidas para a célula Nº1.

Analisando a Tabela A.3 observa-se que o valor médio para a massa de água destilada obtida no procedimento de inundação da célula Nº1 foi igual a 32,5705 g. Entretanto, ao observarmos a na Figura A.3, identifica-se a presença de um ponto fora dos limites estabelecidos, sendo esse ponto (20) excluído e um novo valor para a média calculado igual a 32,6132 g. Utilizando o mesmo valor para a densidade da água destilada, chega-se ao valor do volume morto da célula Nº1 igual a **32,7870 cm³**.

A.4) CÉLULA Nº2

A Tabela A.4 destaca os valores para a massa de água destilada utilizada na inundação da célula Nº2 e a Figura A.4 ilustra essas medidas com os intervalos de confiança.

		0	
Experimento	Massa H ₂ O (g)	Experimento	Massa H ₂ O (g)
1	33,6314	10	33,6176
2	33,6444	11	33,6386
3	33,6465	12	33,6265
4	33,6998	13	33,6091
5	33,637	14	33,6019
6	33,7336	15	33,618
7	33,7242	16	33,6786
8	33,6473	17	33,6132
9	33,6538	18	33,6162

Tabela A.4 – Massa de água: célula Nº2.

Analisando a Tabela A.4 observa-se que o valor médio para a massa de água destilada obtida no procedimento de inundação da célula Nº2 foi igual a 33,6465 g. Entretanto, ao observarmos a na Figura A.4, identifica-se a presença de dois pontos experimentais fora dos limites estabelecidos, sendo esses pontos (6 e 7) excluídos e um novo valor para a média calculado igual a 33,6362 g. Utilizando o mesmo valor para a densidade da água destilada, chega-se ao valor final para o volume morto da célula Nº2 igual a **33,8154 cm³**.

Figura A.4 – Análise estatística das medidas para a célula Nº2.

A.5) CÉLULA Nº3

A Tabela A.5 destaca os valores para a massa de água destilada utilizada na inundação da célula Nº3 e a Figura A.5 ilustra essas medidas com os intervalos de confiança.

Experimento	Massa H ₂ O (g)	Experimento	Massa H ₂ O (g)
1	31,8728	10	31,8590
2	31,7684	11	31,8054
3	31,7610	12	31,8038
4	31,7733	13	31,7757
5	31,7667	14	31,7375
6	31,8279	15	31,8193
7	31,7970	16	31,7627
8	31,8412	17	31,7783
9	31,8632	18	31,7629

Tabela A.5 – Massa de água: célula Nº3.

Analisando a Tabela A.5 observa-se que o valor médio para a massa de água destilada obtida no procedimento de inundação da célula Nº3 foi igual a 31,7987 g. Ao analisarmos a Figura A.5, não se identifica a presença de pontos fora dos limites estabelecidos e utilizando o mesmo valor para a densidade da água destilada, chega-se ao valor do volume morto da célula Nº3 igual a **31,9681 cm³**.

Figura A.5 – Análise estatística das medidas para a célula Nº3.

A.6) CÉLULA Nº4

O mesmo procedimento de determinação dos volumes mortos adotado para as três primeiras células foi o mesmo aplicado às células de 4 a 8, porém com uma alteração. Uma vez que a conexão da célula de equilíbrio com a tubulação do sistema encontrava-se fixa, sem possibilidade de alteração, os volumes mortos para as células seguintes foram calculados em relação à célula Nº1, onde após a determinação do volume morto de cada célula, o mesmo foi corrigido por um fator devido a essa limitação, obtendo-se um valor mais correto.

A Tabela A.6 destaca os valores para a massa de água destilada utilizada na inundação da célula Nº4 e a Figura A.6 ilustra essas medidas com os intervalos de confiança.

Experimento	Massa $H_2O(g)$
1	30,7265
2	30,8090
3	30,6488
4	31,0267
5	30,9800
6	30,8915
7	30,8416
8	30,9285
9	30,8651

Tabela A.6 – Massa de água: célula Nº4.

Figura A.6 – Análise estatística das medidas para a célula Nº4.

Analisando a Tabela A.6 observa-se que o valor médio para a massa de água destilada obtida no procedimento de inundação da célula Nº4 foi igual a 30,8575 g. Ao analisarmos a Figura A.6, não se identifica a presença de pontos fora dos limites estabelecidos. Conforme descrito, aplicando o fator de correção experimental identificado para cada célula e utilizando o mesmo valor para a densidade da água destilada, chega-se ao valor final para o volume morto da célula Nº4 igual a **31,7887** cm³.

A.7) CÉLULA Nº5

A Tabela A.7 destaca os valores para a massa de água destilada utilizada na inundação da célula Nº5 e a Figura A.7 ilustra essas medidas com os intervalos de confiança.

	0
Experimento	Massa $H_2O(g)$
1	32,1023
2	32,1222
3	32,1149
4	32,1049
5	32,1381
6	32,1579
7	32,1053
8	32,0891
9	32,1081

Tabela A.7 – Massa de água: célula N°5. Experimento Massa H₂O (g)

Figura A.7 – Análise estatística das medidas para a célula Nº5.

Analisando a Tabela A.7 observa-se que o valor médio para a massa de água

destilada obtida no procedimento de inundação da célula N^o5 foi igual a 32,1159 g. Ao analisarmos a Figura A.7, não se identifica a presença de pontos fora dos limites estabelecidos. Conforme descrito, aplicando o fator de correção experimental e utilizando o mesmo valor para a densidade da água destilada, chega-se ao valor do volume morto da célula N^o5 igual a **33,0538 cm³**.

A.8) CÉLULA Nº6

A Tabela A.8 destaca os valores para a massa de água destilada utilizada na inundação da célula Nº6 e a Figura A.8 ilustra essas medidas com os intervalos de confiança.

Experimento	Massa $H_2O(g)$
1	30,4336
2	30,4060
3	30,3756
4	30,2919
5	30,4797
6	30,3798
7	30,3812
8	30,3835
9	30,3793
10	30,3671
11	30,3548

Tabela A.8 – Massa de água: célula Nº6.

Figura A.8 – Análise estatística das medidas para a célula Nº6.

Analisando a Tabela A.8 observa-se que o valor médio para a massa de água destilada obtida no procedimento de inundação da célula Nº6 foi igual a 30,3848 g. Ao analisarmos a Figura A.8, não se identifica a presença de pontos fora dos limites estabelecidos. Conforme descrito, aplicando o fator de correção experimental e utilizando o mesmo valor para a densidade da água destilada, chega-se ao valor do volume morto da célula Nº6 igual a **31,3135 cm³**.

A.9) CÉLULA Nº7

A Tabela A.9 destaca os valores para a massa de água destilada utilizada na inundação da célula Nº7 e a Figura A.9 ilustra essas medidas com os intervalos de confiança.

Experimento	Massa $H_2O(g)$
1	30,4536
2	30,4960
3	30,5010
4	30,4659
5	30,4844
6	30,4895
7	30,4906
8	30,4692
9	30,4817
10	30,4630

Tabela A.9 – Massa de água: célula Nº7.

Analisando a Tabela A.9 observa-se que o valor médio para a massa de água destilada obtida no procedimento de inundação da célula N^o7 foi igual a 30,4795 g. Ao analisarmos a Figura A.9, não se identifica a presença de pontos experimentais fora dos limites estabelecidos. Conforme descrito, aplicando o fator de correção experimental e utilizando o mesmo valor para a densidade da água destilada, chega-se ao valor do volume morto da célula N^o7 igual a **31,4087 cm³**.

Figura A.9 – Análise estatística das medidas para a célula Nº7.

A.10) CÉLULA Nº8

A Tabela A.10 destaca os valores para a massa de água destilada utilizada na inundação da célula Nº8 e a Figura A.10 ilustra essas medidas com os intervalos de confiança.

Experimento	Massa H ₂ O (g)
1	30,4640
2	30,4384
3	30,5049
4	30,5072
5	30,5090
6	30,5099
7	30,4554
8	30,4337
9	30,4707

Tabela A.10 – Massa de água: célula $N^{\circ}8$.

Analisando a Tabela A.10 observa-se que o valor médio para a massa de água destilada obtida no procedimento de inundação da célula Nº8 foi igual a 30,4770 g. Ao analisarmos a Figura A.10, não se identifica a presença de pontos fora dos limites estabelecidos. Conforme descrito, aplicando o fator de correção experimental e utilizando o mesmo valor para a densidade da água destilada, chega-se ao valor final do volume morto da célula Nº8 igual a **31,4061 cm³**.

Figura A.10 – Análise estatística das medidas para a célula Nº8.

<u>ANEXO B</u>

Este Anexo B reporta as medidas obtidas na parte experimental da pesquisa, destacando os dados de solubilidade dos gases nos líquidos. Dentre eles são identificadas as propriedades críticas e o fator acêntrico do gás e do líquido, bem como os valores de temperatura, pressão, solubilidade e constante aparente de Henry (CAH) para cada ponto experimental. Além desses, destacam-se os valores para o volume parcial molar do soluto à diluição infinita e o fator de compressibilidade calculado a partir das condições experimentais.

SISTEMA: CO₂ / H₂O

MEDIDA 1:				
CÉLULA Nº: 3				
PROPRIEDAD	ES DOS COMPONENTE	S		
COMP	TEMP. CRITICA (K)	PRES.	CRITICA (bar)	FATOR ACÊNTRICO
1	647,14	220	0,6400	0,3440
2	304,12	73,	7400	0,2250
V MOLAR SOI	LUTO A DIL. INF. [CM ³ /	GMOL]:	154,99	
FATOR DE CC	MPRESSIBILIDADE: 0	,973032		
	DADO	OS EXPEI	RIMENTAIS OB	TIDOS
	P[ATM]	T[°C]	XGAS*1000	САН
	0,6272	30,10	0,3197213	1820,8672
	1,2314	30,10	0,6825470	1729,3834
	1,8584	30,10	1,0645031	1688,2514
	2,7897	30,10	1,6332334	1656,7255
	3,9016	30,10	2,3110503	1635,1709
	5,0621	30,10	3,1027130	1574,6269
MEDIDA 2: CÉLULA Nº: 3 PROPRIEDAD	ES DOS COMPONENTE	S		
COMP	TEMP. CRITICA (K)	PRES.	CRITICA (bar)	FATOR ACÊNTRICO
1	647,14	22	0,6400	0,3440
2	304,12	73	,7400	0,2250
V MOLAR SOL	LUTO A DIL. INF. [CM ³ /	GMOL]:	154,99	
FATOR DE CO	MPRESSIBILIDADE: 0	,973113		
	DADOS	EXPERIN	MENTAIS OBTII	DOS
	P[ATM]	T[°C]	XGAS*1000	CAH
	0,6450	30,10	0,3067138	1955,6009
	1,2399	30,00	0,6657392	1785,8857
	1,8749	30,00	1,0359370	1750,5903
	2,7876	30,00	1,6146319	1674,6742
	3,8784	29,90	2,3174411	1621,2195
	5,0468	30,10	3,1312094	1555,6773

MEDIDA 3:				
CÉLULA Nº: 2				
PROPRIEDAD	ES DOS COMPONENTES	S		
		DDEC		
COMP	TEMP. CRITICA (K)	PRES.	CRITICA (bar)	FATOR ACENTRICO
1	647,14	22	20,6400	0,3440
2	304,12	2/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5,7400	0,2250
V MOLAR SO	LUTO A DIL. INF. [CM ² /0	GMOLJ:	154,95	
FATOR DE CO	DADO	,973221 S EVDED		יוחסני
			VCAS*1000	
	P[ATM]	1[C] 20.00	AGAS*1000	CAH 1006 6649
	1 2008	30,00	0,5002525	1760 2818
	1,2008	30,00	1.0300167	1700,2818
	2 7322	30,00	1,0300107	1670 8475
	3 8101	30,00	2 2510513	16/2 0035
	5,0217	30,00	2,2517515	1622 7070
	5,0217	50,00	2,9872559	1022,7070
MEDIDA 1:				
CÉLULA Nº: 3				
PROPRIEDAD	ES DOS COMPONENTES	S		
COMP	TEMP. CRITICA (K)	PRES.	CRITICA (bar)	FATOR ACÊNTRICO
1	647,14	22	20,6400	0,3440
2	304,12	73	3,7400	0,2250
V MOLAR SO	LUTO A DIL. INF. [CM ³ /0	GMOL]:	159,06	
FATOR DE CO	OMPRESSIBILIDADE: 0	,974598		
	DADO	S EXPEF	RIMENTAIS OB	TIDOS
	P[ATM]	T[°C]	XGAS*1000	САН
	0,6932	40,00	0,2454956	2511,3544
	1,3003	40,00	0,5394961	2257,0491
	1,9334	40,00	0,8492823	2167,6354
	2,8834	40,10	1,3174660	2101,5433
	4,0111	40,00	1,8705841	2063,4570
	5,2347	40,10	2,4767322	2030,8948
MEDIDA 2.				
CÉLUI A N ^{0} · 2				
PROPRIEDAD	ES DOS COMPONENTE	8		
COMP	TEMP CRITICA (K)	PRES	CRITICA (bar)	FATOR ACÊNTRICO
1	647.14	2	20.6400	0.3440
2	304,12	7	3,7400	0.2250
V MOLAR SO	LUTO A DIL. INF. [CM ³ /	GMOL]:	159.06	- ,
FATOR DE CO	MPRESSIBILIDADE: 0	,975020	,	
	DADO	S EXPE	RIMENTAIS OB	FIDOS
	P[ATM]	T[°C]	XGAS*1000	САН
	0,6612	40,10	0,2484511	2352,0848
	1,2583	40,20	0,5398843	2177,2024
	1,8853	40,10	0,8444635	2123,5719
	2,8205	40,10	1,3028717	2078,1201
	3,9337	40,10	1,8498411	2046,1618
	5,1468	40,10	2,4497746	2019,1136
MEDIDA 3:				
CELULA N°: 2		c		
COMP	TEMD CONTROLENTES	ט סידות	CDITICA (has)	EATOD ACÊNTRICO
	$1 \text{ ENT}. \text{ CKITICA}(\mathbf{K})$ $\epsilon 47.14$	PKES	. CRITICA (Daľ)	D 2440
1	047,14	2	20,0400 13 7400	0,3440
	$\begin{array}{c} 304,12 \\ 1 \text{ UTO A DII INF } 1 \text{ OM}^{3} \end{array}$	GMOU 1.	159.06	0,2250
THOLAK SU		ontolj.	107,00	

FATOR DE COMPRESSIBILIDADE: 0,975050

	DADO	S EAFEI	KIMEN I AIS OB I	IDOS
	P[ATM]	T[°C]	XGAS*1000	САН
	0,6682	40,10	0,2433523	2429,8285
	1,2601	40,10	0,5327431	2210,5375
	1,8830	40,10	0,8381107	2137,0475
	2,8222	40,10	1,2977574	2087,5920
	3,9341	40,10	1,8443037	2052,5110
	5,1407	40,10	2,4409340	2024,0152
	,	,	,	,
MEDIDA 1:				
CÉLULA Nº: 3				
PROPRIEDADES	DOS COMPONENTES	3		
COMP	TEMP CRITICA (K)	PRES	CRITICA (bar)	FATOR ACÊNTRICO
1	647 14		220 6400	0.3440
1 2	30/ 12	-	73 7400	0,2250
	TO A DIL INF $(CM^3/C$		163 14	0,2250
V MOLAK SOLU	DESCIPILING CM /C	076280	105,14	
FATOR DE COM	PRESSIBILIDADE: 0,	970289 8 EVDEI		TIDOS
		5 EAPEI	XIMENTAIS OB I	
	P[AIM]	[[¹ C]	AGAS*1000	CAH 2020.0724
	0,7479	50,10	0,2048839	3029,0734
	1,3532	50,20	0,4535877	2688,3464
	1,9834	50,20	0,7143079	2576,2928
	2,9547	50,00	1,1070319	2521,7867
	4,0942	50,10	1,5782414	2468,3905
	5,3139	50,10	2,1031975	2408,7372
MEDIDA 2:				
CELULA Nº: 2				
PROPRIEDADES	DOS COMPONENTES	5		
COMP	TEMP. CRITICA (K)	PRES	S. CRITICA (bar)	FATOR ACÊNTRICO
1	647,14	4	220,6400	0,3440
_				
2	304,12	-	73,7400	0,2250
2 V MOLAR SOLU	304,12 TO A DIL. INF. [CM ³ /C	GMOL]:	73,7400 163,05	0,2250
2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0,	GMOL]: 976612	73,7400 163,05	0,2250
2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO	GMOL]: 976612 S EXPEI	73,7400 163,05 RIMENTAIS OBT	0,2250 TIDOS
2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM]	GMOL]: 976612 S EXPEI T[℃]	73,7400 163,05 RIMENTAIS OBT XGAS*1000	0,2250 TIDOS CAH
2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200	GMOL]: 976612 S EXPEI T[°C] 50,10	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552	0,2250 TIDOS CAH 2972,6431
2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1.3168	GMOL]: 976612 S EXPEI T[°C] 50,10 50.00	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693	0,2250 `IDOS CAH 2972,6431 2672,1496
2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1.9395	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891	0,2250 TIDOS CAH 2972,6431 2672,1496 2570,2610
2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153	0,2250 TIDOS CAH 2972,6431 2672,1496 2570,2610 2502.8442
2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049	0,2250 TIDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955
2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,90	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197	0,2250 TIDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196
2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,90	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197	0,2250 TIDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196
2 V MOLAR SOLU FATOR DE COM MEDIDA 3 [.]	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,90	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197	0,2250 YIDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA Nº: 3	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,90	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197	0,2250 YIDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA №: 3 PROPRIEDADES	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197	0,2250 YIDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA Nº: 3 PROPRIEDADES COMP	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197	0,2250 TIDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196 EATOR ACÊNTRICO
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA №: 3 PROPRIEDADES COMP 1	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312 DOS COMPONENTES TEMP. CRITICA (K)	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,90	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197 S. CRITICA (bar)	0,2250 'IDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196 FATOR ACÊNTRICO 0.3440
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA Nº: 3 PROPRIEDADES COMP 1 2	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312 DOS COMPONENTES TEMP. CRITICA (K) 647,14 204 12	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,90	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197 5. CRITICA (bar) 220,6400 73,7400	0,2250 `IDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196 FATOR ACÊNTRICO 0,3440 0 2250
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA Nº: 3 PROPRIEDADES COMP 1 2 V MOLAB SOLU	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312 PDOS COMPONENTES TEMP. CRITICA (K) 647,14 304,12 TO A DIL INE (CM ³ /C	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,90	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197 S. CRITICA (bar) 220,6400 73,7400 162,00	0,2250 `IDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196 FATOR ACÊNTRICO 0,3440 0,2250
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA Nº: 3 PROPRIEDADES COMP 1 2 V MOLAR SOLU	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312 DOS COMPONENTES TEMP. CRITICA (K) 647,14 304,12 TO A DIL. INF. [CM ³ /C	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,90	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197 3. CRITICA (bar) 220,6400 73,7400 163,09	0,2250 TIDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196 FATOR ACÊNTRICO 0,3440 0,2250
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA Nº: 3 PROPRIEDADES COMP 1 2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312 5 DOS COMPONENTES TEMP. CRITICA (K) 647,14 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0,	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,90 5 PRES GMOL]: 976305	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197 5. CRITICA (bar) 220,6400 73,7400 163,09	0,2250 TIDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196 FATOR ACÊNTRICO 0,3440 0,2250
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA Nº: 3 PROPRIEDADES COMP 1 2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312 5 DOS COMPONENTES TEMP. CRITICA (K) 647,14 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,90 5 PRES GMOL]: 976305 S EXPEI	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197 S. CRITICA (bar) 220,6400 73,7400 163,09 RIMENTAIS OBT	0,2250 'IDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196 FATOR ACÊNTRICO 0,3440 0,2250 'IDOS CAU
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA Nº: 3 PROPRIEDADES COMP 1 2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312 DOS COMPONENTES TEMP. CRITICA (K) 647,14 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM]	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,90 976305 S EXPEI T[°C] T[°C]	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197 3. CRITICA (bar) 220,6400 73,7400 163,09 RIMENTAIS OBT XGAS*1000	0,2250 'IDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196 FATOR ACÊNTRICO 0,3440 0,2250 'IDOS CAH 2005
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA Nº: 3 PROPRIEDADES COMP 1 2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312 DOS COMPONENTES TEMP. CRITICA (K) 647,14 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7441 1,2420	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,90 49,80 49,90 5 PRES GMOL]: 976305 S EXPEI T[°C] 50,10 50,00 5 S EXPEI	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197 S. CRITICA (bar) 220,6400 73,7400 163,09 RIMENTAIS OBT XGAS*1000 0,2039192 0,4550227	0,2250 'IDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196 FATOR ACÊNTRICO 0,3440 0,2250 'IDOS CAH 3024,8238 26671,6661
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA Nº: 3 PROPRIEDADES COMP 1 2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312 DOS COMPONENTES TEMP. CRITICA (K) 647,14 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7441 1,3492	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,90 976305 S EXPEI T[°C] 50,10 50,10	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197 6. CRITICA (bar) 220,6400 73,7400 163,09 RIMENTAIS OBT XGAS*1000 0,2039192 0,4558827 0,4558827	0,2250 YIDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196 FATOR ACÊNTRICO 0,3440 0,2250 YIDOS CAH 3024,8238 2667,6061
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA Nº: 3 PROPRIEDADES COMP 1 2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312 DOS COMPONENTES TEMP. CRITICA (K) 647,14 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7441 1,3492 1,9820	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,90 976305 S EXPEI T[°C] 50,10 50,10 50,00	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197 3. CRITICA (bar) 220,6400 73,7400 163,09 RIMENTAIS OBT XGAS*1000 0,2039192 0,4558827 0,7166393 1000	0,2250 TIDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196 FATOR ACÊNTRICO 0,3440 0,2250 TIDOS CAH 3024,8238 2667,6061 2567,6172
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA Nº: 3 PROPRIEDADES COMP 1 2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312 DOS COMPONENTES TEMP. CRITICA (K) 647,14 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7441 1,3492 1,9820 2,9428	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,80 49,90 S PRES GMOL]: 976305 S EXPEI T[°C] 50,10 50,10 50,00 50,10	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197 3. CRITICA (bar) 220,6400 73,7400 163,09 RIMENTAIS OBT XGAS*1000 0,2039192 0,4558827 0,7166393 1,1198265	0,2250 YIDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196 FATOR ACÊNTRICO 0,3440 0,2250 YIDOS CAH 3024,8238 2667,6061 2567,6172 2482,0341
2 V MOLAR SOLU FATOR DE COM MEDIDA 3: CÉLULA Nº: 3 PROPRIEDADES COMP 1 2 V MOLAR SOLU FATOR DE COM	304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7200 1,3168 1,9395 2,8891 4,0180 5,2312 DOS COMPONENTES TEMP. CRITICA (K) 647,14 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,7441 1,3492 1,9820 2,9428 4,0783	GMOL]: 976612 S EXPEI T[°C] 50,10 50,00 49,90 49,80 49,80 49,80 49,80 49,90 S PRES GMOL]: 976305 S EXPEI T[°C] 50,10 50,10 50,00 50,10 50,10	73,7400 163,05 RIMENTAIS OBT XGAS*1000 0,1994552 0,4433693 0,6998891 1,0903153 1,5548049 2,0673197 8. CRITICA (bar) 220,6400 73,7400 163,09 RIMENTAIS OBT XGAS*1000 0,2039192 0,4558827 0,7166393 1,1198265 1,5967393	0,2250 'IDOS CAH 2972,6431 2672,1496 2570,2610 2502,8442 2459,3955 2412,8196 FATOR ACÊNTRICO 0,3440 0,2250 'IDOS CAH 3024,8238 2667,6061 2567,6172 2482,0341 2430,1780

SISTEMA: CH₄ / H₂O

MEDIDA 1: CÉLULA Nº: 6				
PROPRIEDADES	DOS COMPONENTES	S		
COMP	TEMP. CRITICA (K)	PRE	ES. CRITICA (bar)	FATOR ACÊNTRICO
1	647,14		220,6400	0,3440
2	190,56		45,9900	0,0110
V MOLAR SOLU	TO A DIL. INF. [CM ³ /0	GMOL]:	155,10	
FATOR DE COM	PRESSIBILIDADE: 0,	,986644		
	DADO	S EXPE	RIMENTAIS OBTI	IDOS
	P[ATM]	T[°C]	XGAS*1000	САН
	1,1172	30,00	0,0181157	59153,78
	1,8047	30,0 0	0,0509675	34427,62
	2,4680	30,00	0,0853054	28273,28
	3,6674	30,00	0,1401919	25647,49
	4,9674	30,00	0,1936413	25159,34
	6,2687	30,00	0,2596201	23659,88
MEDIDA 2: Desp	rezada em virtude de des	svios exp	perimentais identific	ados nos dados obtidos.
MEDIDA 3: CÉLULA Nº: 6				
PROPRIEDADES	DOS COMPONENTES	S		
COMP	TEMP. CRITICA (K)	PRE	S. CRITICA (bar)	FATOR ACÊNTRICO
1	647 14		220 6400	0 3440
2	190 56		45 9900	0.0110
V MOLAR SOLU	TO A DIL INF $[CM^3/($	GMOLI	155 10	0,0110
FATOR DE COM	PRESSIBILIDADE: 0	986626	100,10	
I HIOR DE COM	DADO	S EXPE	RIMENTAIS OBTI	IDOS
	P[ATM]	TIOCI	XGAS*1000	CAH
	1 1155	30.00	0.0185062	57814.26
	1,1155	30,00	0.0512279	3/370 75
	2 4764	30,00	0.082/3/6	29358 71
	2,4704	30,00	0,002+5+0	25556,71
	3,0079	20,00	0,1393023	23700,71
	4,9000	20,00	0,2004010	24274,47
	6,2771	30,00	0,2596551	23688,19
MEDIDA 1:				
CELULA Nº: 6				
PROPRIEDADES	DOS COMPONENTES	\$		^
COMP	TEMP. CRITICA (K)	PRE	ES. CRITICA (bar)	FATOR ACENTRICO
1	647,14		220,6400	0,3440
2	190,56		45,9900	0,0110
V MOLAR SOLU	TO A DIL. INF. $[CM^3/C$	GMOL]:	159,17	
FATOR DE COM	PRESSIBILIDADE: 0,	,987735		
	DADO	S EXPE	RIMENTAIS OBTI	IDOS
	P[ATM]	T[°C]	XGAS*1000	CAH
	1,1333	40,00	0,0169198	62425,42
	1,8226	40,00	0,0445564	39081,77
	2,4880	40,00	0,0736639	32594,36
	3,6871	40,10	0,1223034	29314,88
	4,9818	40,10	0,1720708	28235,42
	6,2989	40,00	0,2154931	28528,77
MEDIDA 2:				

MEDIDA 2: CÉLULA Nº: 6 PROPRIEDADES DOS COMPONENTES

COMP 1 2	TEMP. CRITICA (K) 647,14 190 56	PRE	S. CRITICA (bar) 220,6400 45,9900	FATOR ACÊNTRICO 0,3440 0.0110
V MOLAR SOLU	TO A DIL INF $[CM^3/C$		159 21	0,0110
FATOR DE COM	PRESSIBILIDADE: 0.	987760	109,21	
	DADO	OS EXPI	ERIMENTAIS OBT	TIDOS
	P[ATM]	T[°C]	XGAS*1000	САН
	1,1359	40,00	0,0162299	65238,37
	1,8268	40,00	0,0449965	38792,13
	2,4871	40,00	0,0724474	33129,34
	3,6792	40,10	0,1234620	28976,71
	4,9832	40,00	0,1751147	27754,52
	6,2911	40,10	0,2295243	26750,15
MEDIDA 3:				
CÉLULA Nº: 5				
PROPRIEDADES	DOS COMPONENTES	5		
COMP	TEMP. CRITICA (K)	PRE	S. CRITICA (bar)	FATOR ACÊNTRICO
1	647,14		220,6400	0,3440
2	190,56		45,9900	0,0110
V MOLAR SOLU	TO A DIL. INF. [CM ³ /C	GMOL]:	159,17	
FATOR DE COM	PRESSIBILIDADE: 0,	992581		
	DADO	OS EXPE	ERIMENTAIS OBT	IDOS
	P[ATM]	T[°C]	XGAS*1000	САН
	1,1367	40,10	0,0166117	63762,97
	1,8266	40,10	0,0440753	39589,48
	2,4888	40,00	0,0746636	32168,54
	3,6753	40,00	0,1248183	28634,06
MEDIDA 4:				
CÉLULA Nº: 6				
PROPRIEDADES	DOS COMPONENTES	5		
COMP	TEMP. CRITICA (K)	PRE	S. CRITICA (bar)	FATOR ACÊNTRICO
1	647,14		220,6400	0,3440
2	190,56		45,9900	0,0110
V MOLAR SOLU	TO A DIL. INF. [CM ³ /C	GMOL]:	159,17	
FATOR DE COM	PRESSIBILIDADE: 0,	987978		
	DADO	OS EXPI	ERIMENTAIS OBT	TIDOS
	P[ATM]	T[°C]	XGAS*1000	САН
	4,3311	40,00	0,1555471	27128,39
	6,1666	40,00	0,2303683	26125,87
MEDIDA 1: CÉLULA Nº: 5				
PROPRIEDADES	DOS COMPONENTES	5		
COMP	TEMP. CRITICA (K)	PRE	S. CRITICA (bar)	FATOR ACÊNTRICO
1	647,14		220,6400	0,3440
2	190,56		45,9900	0,0110
V MOLAR SOLU	TO A DIL. INF. $[CM^3/C$	GMOL]:	163,28	
FATOR DE COM	PRESSIBILIDADE: 0,	988672		
	DADO	OS EXPI	ERIMENTAIS OBT	TIDOS
	P[ATM]	T[°C]	XGAS*1000	САН
	1,1426	50,00	0,0086794	117023,37
	1,8293	50,10	0,0352258	48196,92
	2,4866	50,00	0,0616937	38097,72
	3,6766	50,10	0,1086953	32444,22
	4,9766	50,00	0,1608514	29886,66
	6,2818	50,10	0,2194157	27739,42

MEDIDA 2: CÉLULA Nº: 6 PROPRIEDADES	DOS COMPONENTE:	5		
COMP	TEMP. CRITICA (K)	PRE	ES. CRITICA (bar)	FATOR ACÊNTRICO
1	647,14		220,6400	0,3440
2	190,56		45,9900	0,0110
V MOLAR SOLU	$\Gamma O A DIL. INF. [CM3/0]$	GMOL]:	163,24	
FATOR DE COMPRESSIBILIDADE: 0,988661				
	DAD	OS EXF	PERIMENTAIS OB	FIDOS
	P[ATM]	T[°C]	XGAS*1000	CAH
	1,1424	50,00	0,0095908	105881,69
	1,8129	50,00	0,0366373	45912,40
	2,4761	50,00	0,0622744	37575,41
	3,6/34	50,00	0,1083436	32525,96
	4,9708	50,10	0,1552095	31330,38 20205 81
	6,2839	50,00	0,2009212	30305,81
MEDIDA 3: Despr	ezada em virtude de de	svios exj	perimentais identific	ados nos dados obtidos.
SISTEMA: CO ₂ /	<u>C₁₆H₃₄</u>			
MEDIDA 1: CÉLULA Nº: 1 PROPRIEDADES	DOS COMPONENTE:	5		
COMP	TEMP. CRITICA (K)	PRE	ES. CRITICA (bar)	FATOR ACÊNTRICO
1	723,00		14,0000	0,7180
2	304,12	~	73,7400	0,2250
V MOLAR SOLU	FO A DIL. INF. [CM ³ /(GMOL]:	1106,39	
FATOR DE COM	PRESSIBILIDADE: 0	975595		
	DADU	JS EXP.	ERIMENTAIS OB I	
	P[ATM]	I[C]	AGAS*1000	CAH 92 5097
	0,3214	20,00	0,2200112	60,0857
	1,0018	30,00	25 2631597	64 3286
	2 4928	30,00	41 0117818	59 9975
	3 5142	30,10	61 6622723	55 9584
	4.6458	30.10	86.2238841	52,5890
	.,			,
MEDIDA 2: CÉLULA Nº: 1				
PROPRIEDADES	DOS COMPONENTES	יחת	CDITICA (har)	EATOR A CÊNTRICO
	$\frac{1 \text{EMP. CRITICA}(\mathbf{K})}{723.00}$	PKE	14,0000	CATOR ACENTRICO
1	725,00		73 7400	0,7180
	504,12	MOL 1	1106 30	0,2250
FATOR DE COM	PRESSIBIL IDADE 0	975552	1100,59	
THIOR DE COM	DAD	OS EXP	ERIMENTAIS OBT	TIDOS
	P[ATM]	T[°C]	XGAS*1000	САН
	0.5111	30,10	6,6995920	76,0786
	1.0520	30,00	15,7496454	66,4287
	1,6351	30,10	25,9700347	62,4288
	2,4899	30,10	41,7193424	58,9124
	3,5183	30,10	62,1391067	55,5901
	4,6538	30,10	86,6444407	52,4219
MEDIDA 3:				

MEDIDA 3: CÉLULA Nº: 1 PROPRIEDADES DOS COMPONENTES

COMP 1 2 V MOLAR SOLUT	TEMP. CRITICA (K) 723,00 304,12 FO A DIL. INF. [CM ³ /C	PRE	S. CRITICA (bar) 14,0000 73,7400 1106,04	FATOR ACÊNTRICO 0,7180 0,2250		
FATOR DE COMPRESSIBILIDADE: 0,975001 DADOS EXDEDIMENTAIS ODTIDOS						
	P[ATM] 0,4982 1,0405 1,6239 2,4799 3,4976 4,6397	T[°C] 30,10 30,10 30,10 30,00 30,00 30,00	XGAS*1000 6,9737544 16,0963279 26,4695871 42,2484055 62,7532201 87,2820475	CAH 71,2483 64,2948 60,8352 57,9432 54,7278 51,8841		
MEDIDA 1: CÉLULA Nº: 1 PROPRIEDADES COMP 1 2 V MOLAR SOLU ⁷ FATOR DE COMI	DOS COMPONENTES TEMP. CRITICA (K) 723,00 304,12 FO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0,9	PRE GMOL]: 977507	S. CRITICA (bar) 14,0000 73,7400 1141,48	FATOR ACÊNTRICO 0,7180 0,2250		
	DADOS E	XPERI	MENTAIS OBTIDO	os CALL		
	P[A1M] 0.5500	1[°C] 40.00	AGAS*1000 A 4633311	LAH 122 9068		
	1 1061	40,00	11 4761200	95 8778		
	1,7025	40.00	19.3195633	87.4192		
	2,5761	40.00	32.0455337	79.4171		
	3,6066	40,00	49,1806207	72,0961		
	4,7395	40,00	70,4488940	65,7861		
MEDIDA 2: CÉLULA Nº: 1 PROPRIEDADES COMP 1 2	DOS COMPONENTES TEMP. CRITICA (K) 723,00 304,12	PRE	S. CRITICA (bar) 14,0000 73,7400	FATOR ACÊNTRICO 0,7180 0,2250		
V MOLAR SOLU	ΓΟ A DIL. INF. [CM ³ /C	HOL]:	1141,48			
FATOR DE COM	PRESSIBILIDADE: 0,9	977760 SS EVDI		IDOG		
		JS EAPI TI°CI	XGAS*1000			
	0.5439	40.00	4.7497259	114.2281		
	1,0847	40,00	12,6627770	85,2268		
	1,6662	40,00	21,8318610	75,7223		
	2,5229	40,00	36,2345467	68,8038		
	3,5499	40,00	54,9259075	63,5568		
	4,6867	40,00	77,4164614	59,2137		
MEDIDA 3: CÉLULA Nº: 1 PROPRIEDADES COMP	DOS COMPONENTES TEMP. CRITICA (K)	PRE	S. CRITICA (bar)	FATOR ACÊNTRICO		
2	304.12		73,7400	0.2250		
V MOLAR SOLU FATOR DE COM	ΓΟ A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0,9	GMOL]: 977810	1141,48	0,2200		

	DADO	JS EXPE	ERIMENTAIS OBT	IDOS
	P[ATM]	T[°C]	XGAS*1000	САН
	0,5333	40,00	5,3475784	99,4746
	1.0721	40.00	13.5432890	78.7626
	1.6520	40.00	22.8777797	71.6490
	2 5088	40.00	37 5041593	66 1080
	3 5382	40,00	56 31/18/169	61 7882
	3,5382	40,00	79 0572925	57,0222
	4,0/05	40,00	18,9312823	51,9522
MEDIDA I:				
CELULA N°: 5				
PROPRIEDADES	DOS COMPONENTES			â
COMP	TEMP. CRITICA (K)	PRE	S. CRITICA (bar)	FATOR ACENTRICO
1	723,00		14,0000	0,7180
2	304,12		73,7400	0,2250
V MOLAR SOLU	TO A DIL. INF. [CM ³ /C	GMOL]:	1177,28	
FATOR DE COM	PRESSIBILIDADE: 0.	979448		
	DAD	OS EXPE	ERIMENTAIS OBT	IDOS
	P[ATM]	T[°C]	XGAS*1000	САН
	0 5736	50.00	4 0535217	141 1449
	1 1 2 0 1	50,00	11 6517802	05 6737
	1,1201	50,00	20.2172957	92,0737
	1,7080	50,00	20,2175657	03,0079
	2,5847	50,00	33,6726062	/5,916/
	3,6328	50,10	51,0560362	70,0556
	4,7841	50,10	71,9534025	65,1410
MEDIDA 2: CÉLULA Nº: 5 PROPRIEDADES	DOS COMPONENTES	5		
COM				•
	TEMD CDITICA (V)	DDD	C CDITICA (horn)	EATOD ACÊNTDICO
COMP	TEMP. CRITICA (K)	PRE	S. CRITICA (bar)	FATOR ACÊNTRICO
	TEMP. CRITICA (K) 723,00	PRE	S. CRITICA (bar) 14,0000	FATOR ACÊNTRICO 0,7180
1 2	TEMP. CRITICA (K) 723,00 304,12	PRE	S. CRITICA (bar) 14,0000 73,7400	FATOR ACÊNTRICO 0,7180 0,2250
1 2 V MOLAR SOLU	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C	PRE GMOL]:	S. CRITICA (bar) 14,0000 73,7400 1176,93	FATOR ACÊNTRICO 0,7180 0,2250
1 2 V MOLAR SOLU' FATOR DE COM	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0,	PRE GMOL]: 979438	S. CRITICA (bar) 14,0000 73,7400 1176,93	FATOR ACÊNTRICO 0,7180 0,2250
1 2 V MOLAR SOLU' FATOR DE COM	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD	PRE GMOL]: 979438 OS EXPI	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT	FATOR ACÊNTRICO 0,7180 0,2250
1 2 V MOLAR SOLU FATOR DE COM	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM]	PRE. GMOL]: 979438 OS EXPI T[°C]	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000	FATOR ACÊNTRICO 0,7180 0,2250 YIDOS CAH
1 2 V MOLAR SOLU FATOR DE COM	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,5884	PRE GMOL]: 979438 OS EXP T[°C] 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373	FATOR ACÊNTRICO 0,7180 0,2250 YIDOS CAH 169,2004
1 2 V MOLAR SOLU' FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,5884 1,1332	PRE GMOL]: 979438 OS EXPI T[°C] 50,00 50,10	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632	FATOR ACÊNTRICO 0,7180 0,2250 TIDOS CAH 169,2004 105,1773
1 2 V MOLAR SOLU' FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD P[ATM] 0,5884 1,1332 1,7218	PRE GMOL]: 979438 OS EXPI T[°C] 50,00 50,10 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472	FATOR ACÊNTRICO 0,7180 0,2250 YIDOS CAH 169,2004 105,1773 90,1030
1 2 V MOLAR SOLU FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD P[ATM] 0,5884 1,1332 1,7218 2,5900	PRE GMOL]: 979438 OS EXPI T[°C] 50,00 50,10 50,00 50,10	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856	FATOR ACÊNTRICO 0,7180 0,2250 TIDOS CAH 169,2004 105,1773 90,1030 79,4693
1 2 V MOLAR SOLU FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,5884 1,1332 1,7218 2,5900 3.6332	PRE GMOL]: 979438 OS EXPI T[°C] 50,00 50,10 50,00 50,10 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175	FATOR ACÊNTRICO 0,7180 0,2250 YIDOS CAH 169,2004 105,1773 90,1030 79,4693 72,3175
1 2 V MOLAR SOLU' FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818	PRE 979438 OS EXPI T[°C] 50,00 50,10 50,00 50,00 50,00 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536	FATOR ACÊNTRICO 0,7180 0,2250 YIDOS CAH 169,2004 105,1773 90,1030 79,4693 72,3175 66,6228
1 2 V MOLAR SOLU' FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818	PRE GMOL]: 979438 OS EXPI T[°C] 50,00 50,10 50,00 50,00 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536	FATOR ACÊNTRICO 0,7180 0,2250 YIDOS CAH 169,2004 105,1773 90,1030 79,4693 72,3175 66,6228
1 2 V MOLAR SOLU' FATOR DE COMI MEDIDA 3: CÉLULA Nº: 5	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818	PRE GMOL]: 979438 OS EXPI T[°C] 50,00 50,10 50,00 50,00 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536	FATOR ACÊNTRICO 0,7180 0,2250 YIDOS CAH 169,2004 105,1773 90,1030 79,4693 72,3175 66,6228
1 2 V MOLAR SOLU' FATOR DE COMI MEDIDA 3: CÉLULA Nº: 5 PROPRIEDADES	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818 DOS COMPONENTES	PRE 979438 OS EXPI T[°C] 50,00 50,10 50,00 50,00 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536	FATOR ACÊNTRICO 0,7180 0,2250 YIDOS CAH 169,2004 105,1773 90,1030 79,4693 72,3175 66,6228
1 2 V MOLAR SOLU' FATOR DE COMI MEDIDA 3: CÉLULA Nº: 5 PROPRIEDADES COMP	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818 DOS COMPONENTES TEMP. CRITICA (K)	PRE 979438 OS EXPI T[°C] 50,00 50,10 50,00 50,00 50,00 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536 S. CRITICA (bar)	FATOR ACÊNTRICO 0,7180 0,2250
1 2 V MOLAR SOLU' FATOR DE COMI MEDIDA 3: CÉLULA Nº: 5 PROPRIEDADES COMP 1	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818 DOS COMPONENTES TEMP. CRITICA (K) 723,00	PRE 979438 OS EXPI T[°C] 50,00 50,10 50,00 50,00 50,00 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536 S. CRITICA (bar) 14,0000	FATOR ACÊNTRICO 0,7180 0,2250 YIDOS CAH 169,2004 105,1773 90,1030 79,4693 72,3175 66,6228 FATOR ACÊNTRICO 0,7180
1 2 V MOLAR SOLU' FATOR DE COMI FATOR DE COMI EDIDA 3: CÉLULA Nº: 5 PROPRIEDADES COMP 1 2	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818 DOS COMPONENTES TEMP. CRITICA (K) 723,00 304,12	PRE 979438 OS EXPI T[°C] 50,00 50,10 50,00 50,00 50,00 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536 S. CRITICA (bar) 14,0000 73,7400	FATOR ACÊNTRICO 0,7180 0,2250 YIDOS CAH 169,2004 105,1773 90,1030 79,4693 72,3175 66,6228 FATOR ACÊNTRICO 0,7180 0,2250
1 2 V MOLAR SOLU' FATOR DE COMI FATOR DE COMI FATOR DE COMI SCÉLULA Nº: 5 PROPRIEDADES COMP 1 2 V MOLAR SOLU'	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818 DOS COMPONENTES TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C	PRE GMOL]: 979438 OS EXP T[°C] 50,00 50,10 50,00 50,00 50,00 S	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536 S. CRITICA (bar) 14,0000 73,7400 1176,93	FATOR ACÊNTRICO 0,7180 0,2250
1 2 V MOLAR SOLU' FATOR DE COMI FATOR DE COMI MEDIDA 3: CÉLULA Nº: 5 PROPRIEDADES COMP 1 2 V MOLAR SOLU' FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818 DOS COMPONENTES TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0,	PRE GMOL]: 979438 OS EXP T[°C] 50,00 50,10 50,00 50,00 50,00 S	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536 S. CRITICA (bar) 14,0000 73,7400 1176,93	FATOR ACÊNTRICO 0,7180 0,2250
1 2 V MOLAR SOLU' FATOR DE COMI FATOR DE COMI CÉLULA Nº: 5 PROPRIEDADES COMP 1 2 V MOLAR SOLU' FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818 DOS COMPONENTES TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD	PRE GMOL]: 979438 OS EXPI T[°C] 50,00 50,10 50,00 50,00 50,00 S0,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536 S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT	FATOR ACÊNTRICO 0,7180 0,2250 TIDOS CAH 169,2004 105,1773 90,1030 79,4693 72,3175 66,6228 FATOR ACÊNTRICO 0,7180 0,2250
1 2 V MOLAR SOLU' FATOR DE COMI FATOR DE COMI CÉLULA Nº: 5 PROPRIEDADES COMP 1 2 V MOLAR SOLU' FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818 DOS COMPONENTES TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD PIATM1	PRE GMOL]: 979438 OS EXP T[°C] 50,00 50,10 50,00 50,00 50,00 S	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536 S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000	FATOR ACÊNTRICO 0,7180 0,2250 TIDOS CAH 169,2004 105,1773 90,1030 79,4693 72,3175 66,6228 FATOR ACÊNTRICO 0,7180 0,2250
1 2 V MOLAR SOLU' FATOR DE COMI FATOR DE COMI CÉLULA N°: 5 PROPRIEDADES COMP 1 2 V MOLAR SOLU' FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818 DOS COMPONENTES TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD P[ATM] 0 5722	PRE GMOL]: 979438 OS EXP T[°C] 50,00 50,10 50,00 5	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536 S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 4,1786340	FATOR ACÊNTRICO 0,7180 0,2250 TIDOS CAH 169,2004 105,1773 90,1030 79,4693 72,3175 66,6228 FATOR ACÊNTRICO 0,7180 0,2250 TIDOS CAH 136,6055
1 2 V MOLAR SOLU' FATOR DE COMI MEDIDA 3: CÉLULA N°: 5 PROPRIEDADES COMP 1 2 V MOLAR SOLU' FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818 DOS COMPONENTES TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD P[ATM] 0,5722 1 1520	PRE GMOL]: 979438 OS EXPI T[°C] 50,00 50,10 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536 S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 4,1786340 10,2514235	FATOR ACÊNTRICO 0,7180 0,2250 YIDOS CAH 169,2004 105,1773 90,1030 79,4693 72,3175 66,6228 FATOR ACÊNTRICO 0,7180 0,2250 YIDOS CAH 136,6055 111 8190
1 2 V MOLAR SOLU' FATOR DE COMI MEDIDA 3: CÉLULA N°: 5 PROPRIEDADES COMP 1 2 V MOLAR SOLU' FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818 DOS COMPONENTES TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD P[ATM] 0,5722 1,1520 1 7524	PRE GMOL]: 979438 OS EXPI T[°C] 50,00 50,10 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536 S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 4,1786340 10,2514235 17,6188052	FATOR ACÊNTRICO 0,7180 0,2250 TIDOS CAH 169,2004 105,1773 90,1030 79,4693 72,3175 66,6228 FATOR ACÊNTRICO 0,7180 0,2250 TIDOS CAH 136,6055 111,8190 98 7172
1 2 V MOLAR SOLU' FATOR DE COMI MEDIDA 3: CÉLULA N°: 5 PROPRIEDADES COMP 1 2 V MOLAR SOLU' FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818 DOS COMPONENTES TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD P[ATM] 0,5722 1,1520 1,7524 2,6222	PRE GMOL]: 979438 OS EXPI T[°C] 50,00 50,10 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536 S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 4,1786340 10,2514235 17,6188052 20,6420032	FATOR ACÊNTRICO 0,7180 0,2250 TIDOS CAH 169,2004 105,1773 90,1030 79,4693 72,3175 66,6228 FATOR ACÊNTRICO 0,7180 0,2250 TIDOS CAH 136,6055 111,8190 98,7172 87,8222
1 2 V MOLAR SOLU' FATOR DE COMI MEDIDA 3: CÉLULA N°: 5 PROPRIEDADES COMP 1 2 V MOLAR SOLU' FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. $[CM^{3}/C]$ PRESSIBILIDADE: 0, DADO P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818 DOS COMPONENTES TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. $[CM^{3}/C]$ PRESSIBILIDADE: 0, DAD P[ATM] 0,5722 1,1520 1,7524 2,6332 2,6945	PRE GMOL]: 979438 OS EXPI T[°C] 50,00 50,10 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536 S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 4,1786340 10,2514235 17,6188052 29,6439033 45,6241726	FATOR ACÊNTRICO 0,7180 0,2250
1 2 V MOLAR SOLU' FATOR DE COMI MEDIDA 3: CÉLULA N°: 5 PROPRIEDADES COMP 1 2 V MOLAR SOLU' FATOR DE COMI	TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DADO P[ATM] 0,5884 1,1332 1,7218 2,5900 3,6332 4,7818 DOS COMPONENTES TEMP. CRITICA (K) 723,00 304,12 TO A DIL. INF. [CM ³ /C PRESSIBILIDADE: 0, DAD P[ATM] 0,5722 1,1520 1,7524 2,6332 3,6845 4 8245	PRE GMOL]: 979438 OS EXPI T[°C] 50,00	S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 3,4688373 10,7216632 18,9694472 32,2323856 49,4637175 70,3194536 S. CRITICA (bar) 14,0000 73,7400 1176,93 ERIMENTAIS OBT XGAS*1000 4,1786340 10,2514235 17,6188052 29,6439033 45,6241736 651621628	FATOR ACÊNTRICO 0,7180 0,2250

SISTEMA: CH₄ / C₁₆ H₃₄

MEDIDA 1:				
CÉLULA Nº: 6				
PROPRIEDADES	S DOS COMPONENTES			
COMP	TEMP. CRITICA (K)	PRES	. CRITICA (bar)	FATOR ACÊNTRICO
1	723,00	1	4,0000	0,7180
2	190,56	4	5,9900	0,0110
V MOLAR SOLUTO A DIL. INF. [CM3/GMOL]: 1106,19				
FATOR DE COM	IPRESSIBILIDADE: 0,9	989505		
	DAI	DOS EXP	PERIMENTAIS O	BTIDOS
	P[ATM]	T[°C]	XGAS*1000	CTE HENRY
	0,6220	30,00	2,3541851	263,85
	1,2149	30,00	7,1735208	168,92
	1,8357	30,00	12,4424649	146,97
	2,7589	30,00	20,8011457	131,87
	3,8550	30,00	31,5401535	121,25
	5,0524	30,00	44,3274976	112,78
MEDIDA 2:				
CELULA N : 0				
PROPRIEDADES	5 DUS COMPONENTES			EATOR ACÊNTRICO
	1EMP. CRITICA(K)	PRES	4.0000	FATOR ACENTRICO
1	723,00	1	4,0000	0,7180
	190,30		1106.10	0,0110
V MULAR SULU	DIUADIL. INF. [UM5/U		1100,19	
FATOR DE COM	IPRESSIBILIDADE: 0,	989300		
		OS EXPE	FRIMENTAIS OB	TIDOS
	P[ATM]	T[°C]	XGAS*1000	CTE HENRY
	0 6091	30,00	2 9791664	204 18
	1 2078	30.00	7 8418171	153 63
	1,2370	30.00	13.1191126	138,86

MEDIDA 3: Desprezada em virtude de desvios experimentais identificados nos dados obtidos.

30,00

30,00

30,00

2,7821

3,8703

5,0518

MEDIDA 1: CÉLULA Nº: 6 PROPRIEDADE:	S DOS COMPONENTES		
COMP	TEMP CRITICA (K)	PRES CRITICA (bar)	FATOR ACÊNTRICO
1	723.00	14.0000	0.7180
2	190,56	45,9900	0,0110
V MOLAR SOLU	UTO A DIL. INF. [CM3/GI	MOL]: 1141,63	,
FATOR DE COM	IPRESSIBILIDADE: 0,99	90590	

DADOS EXPERIMENTAIS OBTIDOS

20,1131464

30,4284466

43,4108352

137,52 126,17

115,15

P[ATM]	T[°C]	XGAS*1000	CTE HENRY
0,6266	40,00	1,7812224	351,35
1,2175	40,00	6,3389292	191,63
1,8366	40,00	11,3160622	161,74
2,7592	40,00	19,2870313	142,32
3,8592	40,00	29,3563814	130,51
5,0605	40,00	41,2655101	121,48

MEDIDA 2:				
CÉLULA Nº: 6				
PROPRIEDADES	DOS COMPONENTES	5		
COMP	TEMP. CRITICA (K)	PRE	S. CRITICA (bar)	FATOR ACÊNTRICO
1	723,00		14,0000	0,7180
2	190.56		45,9900	0.0110
V MOLAR SOLU	TO A DIL. INF. [CM3/0	GMOL1:	1141.63	-,
FATOR DE COM	PRESSIBILIDADE: 0.	990589	,	
	DAI	DOS EX	PERIMENTAIS OI	BTIDOS
	P[ATM]	TIPCI	XGAS*1000	CTE HENRY
	0 6284	40 10	1 7864815	351 35
	1 2222	40.00	5 9816511	203.86
	1,2222	40.10	10 7902730	170.06
	2 7621	40,10	18 5844108	147.86
	2,7021	40,00	28 3017775	135 71
	5,0007	40,00	20,3017775 40 3475165	124 25
	5,0008	40,00	40,5475105	124,25
MEDIDA 3: Despi	rezada em virtude de des	vios exp	perimentais identific	ados nos dados obtidos.
-		-		
MEDIDA 1:				
CÉLULA Nº: 6				
PROPRIEDADES	DOS COMPONENTES	5		
COMP	TEMP. CRITICA (K)	PRE	S. CRITICA (bar)	FATOR ACÊNTRICO
1	723,00		14,0000	0,7180
2	190,56		45,9900	0,0110
V MOLAR SOLU	TO A DIL. INF. [CM3/0	GMOL]:	1177,08	
FATOR DE COM	PRESSIBILIDADE: 0,	991595	*	
	DA	DOS EX	XPERIMENTAIS C	BTIDOS
	P[ATM]	T[°C]	XGAS*1000	CTE HENRY
	0,6338	50.00	1,1903290	531,89
	1,2197	50,00	5,4141060	224,82
	1,8330	50,00	10,2863466	177,65
	2,7529	50.10	18,0192648	152.07
	3.8437	50.10	27,9933055	136.43
	5 0450	50.00	39 3555767	127.11
	5,0150	20,00	57,5555767	127,11
MEDIDA 2.				
CÉLULA Nº: 6				
PROPRIEDADES	DOS COMPONENTES			
COMP	TEMP CRITICA (K)	PRF	S CRITICA (har)	FATOR ACÊNTRICO
1	723.00	IRL	14 0000	0.7180
2	190 56		<i>1</i> 4 ,0000	0,0110
	TO A DIL INF (CM3/	SMOLI-	1177.08	0,0110
FATOR DE COM	PRESSIBIL IDADE: 0	001576	1177,00	
I ATOK DE COM	I RESSIBILIDADE. 0,	//15/10		
	DA	DOS F	XPERIMENTAIS (OBTIDOS
	ο Γατώι	TIOU	XGAS*1000	CTE HENRY
	0.6242	50.00	1 88270/1	331.18
	1 21 47	50,00	6 30/21241	180 57
	1,214/ 1,227/	50,10	11 2752401	162.01
	1,0324	50,00	11,2132494	102,01
	2,/331	50,00	10,7307/04	144,00
	5,8499 5.05 <i>6</i> 4	50,10	20,0152030	132,70
	5,0564	30,00	40,0313609	125,25

MEDIDA 3: Desprezada em virtude de desvios experimentais identificados nos dados obtidos.

SISTEMA: CO₂ / H₂O / NaCl 1M

MEDIDA 1:					
CÉLULA Nº: 3					
PROPRIEDADES	DOS COMPONE	NTES			
COMP	TEMP CRITIC	A(K)	PRES CRITIC	A (bar)	FATOR ACÊNTRICO
1	647.14	/ (I X)	220 6400	/ (0ul)	0.3440
1	304.12		73 7400		0,2250
	TO A DIL INE [CM^3/CM	(15,7400)		0,2230
V MOLAK SOLU		CM / GM	OLJ. 154,95		
FATOR DE COM	PRESSIBILIDAD	E: 0,975	0151		
					~~
		DADOS I	EXPERIMENTA	AIS OBTID	OS
	P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
	0,6574	30,00	0,2732439	34,21	0,0176917
	1,2826	30,00	0,5764033	67,53	0,0176863
	1,9193	30,00	0,8898417	100,12	0,0176808
	2,8525	30,00	1,3833986	145,32	0,0176720
	3,7288	30,00	2,2709888	181.43	0.0176563
	4,6670	30.00	3,4625906	213.90	0.0176352
	,	,	-,		-,
MEDIDA 2.					
CÉLULA Nº. 2					
	DOS COMPONE	NTES			
COMD	TEMP CDITIC		DDES CDITIC	A (han)	EATOR ACÊNTRICO
	TENIP. CRITIC	A (K)	PRES. CRITIC	A (bar)	PATOR ACENTRICO
1	047,14		220,6400		0,3440
2	304,12	an Alan A	/3,/400		0,2250
V MOLAR SOLU	TO A DIL. INF. [CM ³ /GM	OL]: 154,95		
FATOR DE COM	PRESSIBILIDAD	E: 0,972	2584		
	DAI	DOS EXF	PERIMENTAIS	OBTIDOS	
	P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
	0,6226	30,10	0,2807899	32,26	0,0176916
	1,2350	30,00	0,5822143	64,94	0,0176863
	1,8701	30,00	0.8956885	97,49	0.0176807
	2.8113	30.00	1.3571696	143.42	0.0176725
	3 9271	30,00	1,9018502	194 52	0.0176629
	5,1442	30,00	2 / 9/08/9	246.48	0.0176524
	5,1442	50,00	2,4940049	240,40	0,0170324
MEDIDA 2.					
$\begin{array}{c} \text{MEDIDA 5:} \\ \text{CÉLULA N}^0, 2 \end{array}$					
CELULA N : 3		NTEC			
PROPRIEDADES	DOS COMPONE	NIES			
COMP	TEMP. CRITIC	A (K)	PRES. CRITIC	A (bar)	FATOR ACENTRICO
1	647,14		220,6400		0,3440
2	304,12	2	73,7400		0,2250
V MOLAR SOLU	TO A DIL. INF. [CM ³ /GM	OL]: 154,95		
FATOR DE COM	PRESSIBILIDAD	E: 0,973	671		
]	DADOS I	EXPERIMENTA	AIS OBTID	OS
	P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
	0.6609	30.00	0.2728304	34.40	0.0176917

P[AIM]	ΠU	AGA5*1000	САП	ASAL
0,6609	30,00	0,2728304	34,40	0,0176917
1,2829	30,00	0,5717865	67,56	0,0176864
1,9254	30,00	0,8830313	100,47	0,0176809
2,8775	30,00	1,3569676	146,79	0,0176725
3,9380	30,00	1,9998332	194,11	0,0176611
4,9407	30,00	2,9362732	231,91	0,0176446

MEDIDA 1: CÉLULA Nº: 2 PROPRIEDADES DOS COMPONENTES

COMP	TEMP. CRITICA (K)		PRES. CRITICA (bar)		FATOR ACÊNTR	ICO
1	647,14		220,6400		0,3440	
2 304,12			73,7400		0,2250	
V MOLAR SOLU' FATOR DE COMI	FO A DIL. INF. [(PRESSIBILIDAD	CM ³ /GM E: 0,974	OL]: 159,02 4764			
DADOS EXPERIMENTAIS OBTIDOS						
	P[ATM]	T[°C]	XGAS*1000	CAH	XSAL	
	0,6658	40,00	0,1948227	33,17	0,0176933	
	1,2655	40,10	0,4312826	65,51	0,0176892	
	1,8925	40,00	0,6801890	98,28	0,0176848	
	2,8453	40,10	1,0519783	146,06	0,0176782	
	3,9834	40,10	1,4840384	200,32	0,0176706	
	5,2018	40,00	1,9670150	254,88	0,0176620	
MEDIDA 2:						
CELULA Nº: 2						
PROPRIEDADES	DOS COMPONE	NTES				100
COMP	TEMP. CRITIC	A (K)	PRES. CRITIC	A (bar)	FATOR ACENTR	ICO
1	647,14		220,6400		0,3440	
2	304,12	~ 3 ~ ~	73,7400		0,2250	
FATOR DE COM	PRESSIBILIDAD	CM ³ /GM E: 0,974	OLJ: 159,02 4792			
DADOS EXPERIMENTAIS OBTIDOS						
	P[ATM]	T[°C]	XGAS*1000	CAH	XSAL	
	0,6649	40,00	0,1973235	33,12	0,0176933	
	1,2697	40,10	0,4286081	65,75	0,0176892	
	1,8972	40,10	0,6795532	98,51	0,0176848	
	2,8526	40,00	1,0503302	146,47	0,0176782	
	3,9776	40,00	1,4921072	199,96	0,0176704	
	5,1961	40,00	1,9728188	254,53	0,0176619	
MEDIDA 3:						
CÉLULA Nº: 2						
PROPRIEDADES	DOS COMPONE	NTES				
COMP	TEMP. CRITIC	A (K)	PRES. CRITIC	A (bar)	FATOR ACÊNTR	ICO
1	647,14		220,6400		0,3440	
2	304,12		73,7400		0,2250	
V MOLAR SOLU'	ΓΟ A DIL. INF. [CM ³ /GM	OL]: 159,06			
FATOR DE COM	PRESSIBILIDAD	E: 0,974	4759			
DADOS EXPERIMENTAIS OBTIDOS						
	P[ATM]	T[°C]	XGAS*1000	CAH	XSAL	
	0,6675	40,00	0,1962687	33,26	0,0176933	
	1,2728	40,10	0,4312869	65,90	0,0176892	
	1,8988	40,00	0,6783827	98,62	0,0176848	
	2,8484	40,00	1,0495242	146,26	0,0176782	
	3,9747	40,00	1,4949158	199,79	0,0176704	
	5,2076	40,10	1,9641220	255,19	0,0176621	
MEDIDA 1:						
UELULA N°: 2 PROPRIEDA DES COMPONENTES						
PROPRIEDADES DOS COMPONENTES						100
COMP TEMP. CRITICA (K) PRES. CRITIC			A (bar)	FATOR ACENTR	JCO	
1	1 647,14 220,6400				0,3440	
2 MMOLAD COLU	304,12		73,7400		0,2250	
V MULAR SOLU	IU A DIL. INF. [0	CM [°] /GM	ULJ: 163,05			
FATOR DE COM	RESSIBILIDAD	E: 0,970	040/			
DADOS EXPERIMENTAIS OBTIDOS

P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
0,7149	50,00	0,1583311	33,33	0,0176944
1,3161	50,00	0,3560955	65,97	0,0176909
1,9486	50,00	0,5644802	99,38	0,0176872
2,9170	50,00	0,8762212	148,81	0,0176817
4,0459	50,00	1,2545904	203,72	0,0176750
5,2749	49,90	1,6574772	260,61	0,0176679

MEDIDA 2: CÉLULA N°: 2 PROPRIEDADES DOS COMPONENTES COMP TEMP. CRITICA (K) 1 647,14 2 304,12

CA (K)	PRES. CRITICA (bar)	FATOR ACÊNTRICO
	220,6400	0,3440
	73,7400	0,2250
[CM ³ /GM	IOL]: 163,09	

V MOLAR SOLUTO A DIL. INF. [CM³/GMOL]: FATOR DE COMPRESSIBILIDADE: 0,976532

DADOS EXPERIMENTAIS OBTIDOS

P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
0,7207	50,00	0,1478115	33,67	0,0176946
1,3162	50,00	0,3466129	66,01	0,0176910
1,9405	50,10	0,5543040	98,97	0,0176874
2,8972	49,90	0,8724847	147,83	0,0176817
4,0367	50,00	1,2505434	203,29	0,0176751
5,2643	50,00	1,6619372	260,01	0,0176678

MEDIDA 3:

CÉLULA Nº: 1

PROPRIEDADES DOS COMPONENTES

COMP	TEMP. CRITICA (K)	PRES. CRITICA (bar)	FATOR ACÊNTRICO
1	647,14	220,6400	0,3440
2	304,12	73,7400	0,2250
V MOLAR SOLU	JTO A DIL. INF. [CM ³ /GM	IOL]: 163,14	
FATOR DE COM	IPRESSIBILIDADE: 0,97	6555	

DADOS EXPERIMENTAIS OBTIDOS

P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
0,6971	50,00	0,1655697	32,33	0,0176942
1,3009	50,00	0,3595156	65,13	0,0176908
1,9392	50,10	0,5592283	98,87	0,0176873
2,9092	50,00	0,8591884	148,53	0,0176820
4,0382	50,00	1,2327959	203,55	0,0176754
5,2632	50,10	1,6321780	260,32	0,0176683

SISTEMA: CH4 / H2O / NaCl 1M

MEDIDA 1: Desprezada em virtude de desvios experimentais identificados nos dados obtidos.

MEDIDA 2:			
CÉLULA Nº: 6			
PROPRIEDADES	S DOS COMPONENTES		
COMP	TEMP. CRITICA (K)	PRES. CRITICA (bar)	FATOR ACÊNTRICO
1	647,14	220,6400	0,3440
2	190,56	45,9900	0,0110
V MOLAR SOLU	JTO A DIL. INF. [CM ³ /GM	IOL]: 155,10	
FATOR DE COM	IPRESSIBILIDADE: 0,98	86767	

DADOS	EXPERIM	IENTAIS	OBTIDOS
	L'II LIUII	ILA IT ID	ODIDOD

P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
1,0662	30,00	0,0099970	57,78	0,0176961
1,7754	30,00	0,0327041	97,46	0,0176957
2,4437	30,00	0,0542631	134,65	0,0176953
3,6230	30,00	0,0859679	199,88	0,0176948
4,9086	30,00	0,1263088	270,28	0,0176941
6,2178	30,00	0,1644045	341,32	0,0176934

MEDIDA 3: CÉLULA N°: 6 PROPRIEDADES DOS COMPONENTES COMP TEMP. CRITICA (K) 1 647,14 2 190,56

 COMP
 TEMP. CRITICA (K)
 PRES. CRITICA (bar)
 FATOR ACÊNTRICO

 1
 647,14
 220,6400
 0,3440

 2
 190,56
 45,9900
 0,0110

 V MOLAR SOLUTO A DIL. INF. [CM³/GMOL]:
 155,10
 155,10

FATOR DE COMPRESSIBILIDADE: 0,986747

DADOS EXPERIMENTAIS OBTIDOS

P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
1,0712	30,10	0,0080246	58,05	0,0176962
1,7733	30,00	0,0303970	97,35	0,0176958
2,4387	30,00	0,0535196	134,38	0,0176953
3,6193	30,00	0,0875486	199,66	0,0176947
4,9049	30,00	0,1257218	270,09	0,0176941
6,2272	30,00	0,1574740	341,97	0,0176935

MEDIDA 1:

CÉLULA Nº: 6

PROPRIEDADES DOS COMPONENTES

COMP	TEMP. CRITICA (K)	PRES. CRITICA (bar)	FATOR ACÊNTRICO
1	647,14	220,6400	0,3440
2	190,56	45,9900	0,0110
V MOLAR SOLU	JTO A DIL. INF. [CM ³ /GM	IOL]: 159,17	

FATOR DE COMPRESSIBILIDADE: 0,987880

DADOS EXPERIMENTAIS OBTIDOS

P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
1,0963	40,00	0,0015568	57,83	0,0176963
1,7880	40,00	0,0244145	96,56	0,0176959
2,4493	40,00	0,0471871	133,40	0,0176955
3,6308	40,00	0,0843189	198,79	0,0176949
4,9229	40,00	0,1192055	269,75	0,0176942
6,2374	40,00	0,1520716	341,36	0,0176937

MEDIDA 2:	
CÉLULA Nº: 6	
PROPRIEDADES DOS COMPONENTES	
COMP TEMP. CRITICA (K) PRES. CRITICA (bar) F	FATOR ACÊNTRICO
1 647,14 220,6400	0,3440
2 190,56 45,9900	0,0110
V MOLAR SOLUTO A DIL. INF. [CM ³ /GMOL]: 159,17	
FATOR DE COMPRESSIBILIDADE: 0,987896	

DADOS EXPERIMENTAIS OBTIDOS

P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
1,0907	40,00	0,0003732	57,52	0,0176964
1,7814	40,10	0,0196278	96,20	0,0176960
2,4450	40,00	0,0383240	133,22	0,0176957

	3,6168	40,00	0,0707208	198,16	0,0176951
	4,9011	40,00	0,1061913	268,74	0,0176945
	6,2287	40,00	0,1391819	341,13	0,0176939
MEDIDA 3:					
CÉLULA Nº: 6					
PROPRIEDADES	DOS COMPON	JENTES			
COMP	TEMP. CRIT	ICA (K)	PRES. CRIT	ICA (bar)	FATOR ACÊNTRICO
1	647,14		220,640	00	0,3440
2	190,56		45,9900)	0,0110
V MOLAR SOLU	TO A DIL. INF.	$[CM^3/G$	MOL]: 159,21		
FATOR DE COM	PRESSIBILIDA	DE: 0,9	087893		
	Γ	DADOS H	EXPERIMENTA	IS OBTID	OS
	P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
	1,1013	40,10	0,0006415	58,09	0,0176963
	1,7957	40,00	0,0185159	97,02	0,0176960
	2,4563	40,00	0.0361501	133.87	0.0176957
	3,6437	40,00	0,0685986	199,68	0.0176951
	4,9279	40.00	0.1043452	270.25	0.0176945
	6.2358	40.10	0.1447439	341.40	0.0176938
	-,	,	•,- · · · · · · · ·	,	-,
MEDIDA 1:					
CÉLULA Nº: 6					
PROPRIEDADES	DOS COMPON	JENTES			
COMP	TEMP. CRIT	ICA (K)	PRES. CRIT	ICA (bar)	FATOR ACÊNTRICO
1	647.14	~ /	220.640)0	0.3440
2	190.56		45,9900)	0.0110
V MOLAR SOLU	TO A DIL. INF.	[CM ³ /G	MOL1: 163.24		- ,
FATOR DE COM	PRESSIBILIDA	DE: 0.9	088748		
		,,,			
	Ι	DADOS	EXPERIMENTA	AIS OBTID	OS
	P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
	1 1140	50.10	0.0011596	5612	0.0176064

P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
1,1142	50,10	0,0011586	56,13	0,0176964
1,8055	50,00	0,0160926	94,93	0,0176962
2,4712	50,00	0,0306437	132,10	0,0176959
3,6484	50,00	0,0597951	197,46	0,0176954
4,9313	50,10	0,0961751	268,06	0,0176947
6,2603	50,00	0,1220475	340,85	0,0176943

MEDIDA 2:

CÉLULA Nº: 6 PROPRIEDADES DOS COMPONENTES

COMP	TEMP. CRITICA (K)	PRES. CRITICA (bar)	FATOR ACÊNTRICO
1	647,14	220,6400	0,3440
2	190,56	45,9900	0,0110
V MOLAR SOLU	JTO A DIL. INF. [CM ³ /GM	IOL]: 163,24	
FATOR DE COM	IPRESSIBILIDADE: 0,98	38745	

DADOS EXPERIMENTAIS OBTIDOS

P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
1,1187	50,10	0,0008715	56,39	0,0176964
1,8168	50,00	0,0151193	95,57	0,0176962
2,4784	50,00	0,0290430	132,52	0,0176959
3,6553	50,10	0,0583583	197,83	0,0176954
4,9447	50,10	0,0895010	268,90	0,0176949
6,2618	50,00	0,1192780	340,99	0,0176943

MEDIDA 3:			
CÉLULA Nº: 6			
PROPRIEDADE	S DOS COMPONENTES		
COMP	TEMP. CRITICA (K)	PRES. CRITICA (bar)	FATOR ACÊNTRICO
1	647,14	220,6400	0,3440
2	190,56	45,9900	0,0110
V MOLAR SOLU	UTO A DIL. INF. [CM ³ /GM	10L]: 163,28	
FATOR DE COM	APRESSIBILIDADE: 0,98	88768	
	DIDOGEN		a

DADOS EXPERIMENTAIS OBTIDOS

P[ATM]	T[°C]	XGAS*1000	CAH	XSAL
1,1068	50,10	0,0000902	55,72	0,0176964
1,8062	50,00	0,0146910	94,97	0,0176962
2,4643	50,10	0,0328645	131,67	0,0176959
3,6476	50,00	0,0624007	197,39	0,0176953
4,9358	50,00	0,0970440	268,32	0,0176947
6,2529	50,10	0,1238342	340,38	0,0176943

<u>ANEXO C</u>

Este Anexo C descreve os modelos de energia livre de Gibbs em excesso utilizados no cálculo dos coeficientes de atividade para correção do desvio da idealidade do comportamento das substâncias presentes na fase líquida.

MODELO UNIQUAC

O modelo UNIQUAC representa o termo $g = G^E/RT$ sendo formado por duas partes aditivas, uma combinatorial e outra residual. Esse modelo é uma extensão da teoria quase-química de GUGGENHEIM (1952) para misturas não-randômicas aplicada à soluções contendo moléculas de tamanho e forma diferentes.

A parte combinatorial $[G^{E(C)}]$ descreve a contribuição entrópica, que depende somente da composição, forma e tamanho das espécies químicas, necessitando apenas dos seus dados individuais. Já a parte residual $[G^{E(R)}]$ contempla as forças intermoleculares responsáveis pela entalpia de mistura sendo representada pelos parâmetros de interação binária.

Assim, a energia livre de Gibbs em excesso pode ser determinada pela Equação C.1, onde n representa o número de moles total da solução, R a constante universal dos gases e T a temperatura.

$$\frac{G^{E}}{RT} = \frac{G^{E(C)}}{RT} + \frac{G^{E(R)}}{RT}$$
(C.1)

O termo combinatorial, que considera os efeitos da diferença de forma e tamanho entre as espécies, pode ser escrito segundo a Equação C.2.

Modelos de G^E

$$\frac{G^{E(C)}}{RT} = \left[\sum_{i=1}^{nspec} x_i \ln\left(\frac{\phi_i}{x_i}\right) + \frac{z_i}{2} \sum_{i=1}^{nspec} q_i x_i \ln\left(\frac{\theta_i}{\phi_i}\right)\right]$$
(C.2)

Para o cálculo da fração de área superficial da espécie i (θ_i) utiliza-se a Equação C.3 e para o cálculo da fração de volume das espécie i (ϕ_i) a Equação C.4, onde nspec representa o número das diferentes espécies presentes na solução, q_i o parâmetro de área superficial, r_i o parâmetro de volume e x_i a fração molar da espécie i.

$$\theta_i = \frac{x_i q_i}{\sum_{i=1}^{nspec} x_k q_k}$$
(C.3)

$$\phi_i = \frac{x_i r_i}{\sum_{i=1}^{nspec} x_k r_k}$$
(C.4)

O termo residual que leva em consideração as interações entre as espécies é determinado pela Equação B.C, onde Ψ_{ik} é calculado pela Equação C.6 com $a_{ik} = u_{ki} - u_{ii}$. As parcelas u_{ik} e u_{ii} representam os parâmetros de interação binária, independentes da temperatura e da concentração. É importante ressaltar que $a_{ik} \neq a_{ki}$, mas $u_{ik} = u_{ki}$.

$$\frac{G^{E(R)}}{RT} = -\sum_{i=1}^{nspec} x_i q_i \left(\sum_{k=1}^{nspec} \theta_k \psi_{ik} \right)$$
(C.5)

$$\psi_{ik} = \exp\left(-\frac{a_{ik}}{T}\right) \tag{C.6}$$

Sendo assim, sabendo-se que a Equação C.7 destaca a relação entre a energia livre de Gibbs em excesso (G^E) e o coeficiente de atividade de uma substância i (γ_i), pode-se corrigir o desvio da idealidade das substâncias presentes na fase líquida através

da Equação C.8.

$$\ln \gamma_i = \frac{\partial \left(\frac{nG^E}{RT}\right)}{\partial n_i} \tag{C.7}$$

$$\ln \gamma_i = \ln \gamma_i^C + \ln \gamma_i^R \tag{C.8}$$

Os parâmetros estruturais r_i e q_i caracterizam o volume e a área de van der Waals de cada espécie química, respectivamente.

MODELO UNIFAC

O modelo UNIFAC é um método de contribuição de grupos dependente do conceito de que uma mistura líquida pode ser considerada uma solução das unidades estruturais a partir das quais as moléculas são formadas ao invés de uma solução das próprias moléculas. Essas unidades são chamadas de subgrupos, onde um número identifica cada subgrupo. Em seu equacionamento, o volume relativo (r_k) e a área superficial relativa (q_k) são levados em consideração, sendo propriedades características dos subgrupos.

Quando é possível construir uma molécula com mais de um conjunto de subgrupos, o conjunto composto pelo menor números de diferentes subgrupos é admitido como o conjunto correto.

O método UNIFAC está baseado no modelo UNIQUAC, aplicada a uma solução formada por diferentes grupos, onde o termo combinatorial é calculado pela Equação C.9 e o residual pela Equação C.10. As Equações C.11 a C.18 determinam os termos intermediários presentes nas equações C.9 e C.10.

Anexo C

Modelos de G^E

$$\ln \gamma_{i}^{C} = 1 - J_{i} + \ln J_{i} - 5q_{i} \left(1 - \frac{J_{i}}{L_{i}} + \ln \frac{J_{i}}{L_{i}} \right)$$
(C.9)

$$\ln \gamma_i^R = q_i \left[1 - \sum_k \left(\theta_k \frac{\beta_{ik}}{s_k} - e_{ki} \ln \frac{\beta_{ik}}{s_k} \right) \right]$$
(C.10)

$$J_i = \frac{r_i}{\sum_j r_j x_j}$$
(C.11)

$$L_i = \frac{q_i}{\sum_j q_j x_j} \tag{C.12}$$

$$r_i = \sum_k v_k^{(i)} R_k \tag{C.13}$$

$$q_i = \sum_k v_k^{(i)} Q_k \tag{C.14}$$

$$e_{ki} = \frac{v_k^{(i)} Q_k}{q_i} \tag{C.15}$$

$$\beta_{ik} = \sum_{m} e_{mi} \tau_{mk} \tag{C.16}$$

$$\theta_k = \frac{\sum_{i} x_i q_i e_{ki}}{\sum_{j} x_j q_j} \tag{C.17}$$

$$s_k = \sum_m \theta_m \tau_{mk} \tag{C.18}$$

Modelos de G^{E}

Muitos estudos têm sido realizados para analisar a dependência do termo τ_{mk} com a temperatura. A Tabela C.1 destaca algumas formas de calcular esse termo apresentadas na literatura, onde o termo UNIFAC modificado 3 (HANSEN *et al.*, 1992) foi utilizado nessa pesquisa.

Tabela C.1 – Calculo do termo t_{mk} presente no modelo UNITAC.			
Modelo	Referência	$ au_{mk}$	
UNIFAC original	FREDESLUND <i>et al.</i> (1975, 1977)	exp (-a _{mk} /T)	
ASOG	KOJIMA e TOCHIGI (1979)	$\exp\left(a_{mk}+b_{km}/T\right)$	
UNIFAC modificado 1	LARSEN <i>et al.</i> (1987)	exp {[- a_{mk} - b_{mk} (T-T ₀)- c_{mk} (Tln(T/T ₀) + T-T ₀)]/T}	
UNIFAC modificado 2	WEIDLICH e GMEHLING (1987)	$\exp\left(-a_{mk}/T - b_{mk}/T - c_{mk}T\right)$	
UNIFAC modificado 3	HANSEN <i>et al.</i> (1992)	exp (-a _{mk} /T-b _{mk})	

Tabela C.1 – Cálculo do termo τ_{mk} presente no modelo UNIFAC.

<u>ANEXO D</u>

Este anexo D reporta os desvios no cálculo da pressão (DP) obtidos na parte teórica dessa pesquisa, através da predição e / ou correlação dos dados mensurados para os sistemas binários e ternários.

SISTEMAS BINÁRIOS

PREDIÇÃO: Resultados obtidos realizando a predição dos dados obtidos nessa pesquisa através dos parâmetros obtidos fazendo a correlação dos dados da literatura.

$\underline{CO_2 + H_2O}$

DADOS: S	IQUEIRA CAM	POS		
Parâmetros	$kij = 0,0001 e^{-1}$	ij = 0,0810		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	0,6380	0,5076	0,1304	20,4429
2	1,2400	1,0563	0,1838	14,8228
3	1,8744	1,6344	0,2400	12,8031
4	2,8063	2,5115	0,2949	10,5074
5	3,9172	3,5721	0,3451	8,81050
6	5,1099	4,7952	0,3147	6,15943
7	0,6830	0,4649	0,2182	31,9395
8	1,2896	0,9412	0,3484	27,0170
9	1,9255	1,4435	0,4820	25,0348
10	2,8795	2,2036	0,6759	23,4720
11	4,0117	3,1112	0,9004	22,4456
12	5,2421	4,1109	1,1312	21,5789
13	0,7470	0,4596	0,2874	38,4680
14	1,3573	0,8887	0,4686	34,5244
15	1,9942	1,3381	0,6561	32,8982
16	2,9674	2,0257	0,9417	31,7361
17	4,1169	2,8479	1,2690	30,8243
18	5,3532	3,7635	1,5896	29,6951
18			0,5820	23,5100

$\underline{CH_4 + H_2O}$

DADOS: SIG	QUEIRA CAM	POS		
Parâmetros:	kij=0,0001 e lij	=0,1140		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	1,1310	0,9550	0,1760	15,5620
2	1,8315	2,6130	0,7815	42,6686
3	2,5047	4,2874	1,7827	71,1760
4	3,7158	7,1894	3,4735	93,4806
5	5,0289	10,204	5,1757	102,9180
6	6,3553	13,574	7,2188	113,5860
7	1,1502	0,7781	0,3720	32,3488
8	1,8494	1,9873	0,1379	7,4613
9	2,5207	3,2527	0,7320	29,0399
10	3,7288	5,4492	1,7203	46,1347
11	4,8280	7,4096	2,5815	53,4693
12	6,3344	10,003	3,6695	57,9296
13	1,1575	0,4494	0,7080	61,1735
14	1,8450	1,4488	0,3962	21,4759
15	2,5139	2,4254	0,0885	3,5205
16	3,7233	4,1822	0,4589	12,3259
17	5,0391	6,0308	0,9917	19,6812
18	6,3655	8,0762	1,7107	26,8746
18			1,7875	45,04595

$\underline{CO_2+C_{16}H_{34}}$

DADOS:	SIQUEIRA CAM	POS		
Parâmetro	s: kij= 0,0958 e li	j=0,0009		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	0,5169	0,4456	0,0712	13,7760
2	1,0652	1,0862	0,0210	1,9753
3	1,6541	1,6237	0,0304	1,8400
4	2,5202	2,5696	0,0494	1,9622
5	3,5561	3,5690	0,0129	0,3628
6	4,7075	5,1695	0,4620	9,8151
7	0,5495	0,3677	0,1817	33,0754
8	1,1019	1,1129	0,0110	1,0001
9	1,6956	1,7114	0,0158	0,9326
10	2,5692	2,5956	0,0264	1,0275
11	3,6117	3,6037	0,0079	0,2210
12	4,7626	4,8372	0,0746	1,5672
13	0,5857	0,3295	0,2561	43,7279
14	1,1500	1,1615	0,0114	0,9996
15	1,7501	1,7882	0,0381	2,1783
16	2,6368	2,6485	0,0117	0,4465
17	3,6982	3,8959	0,1976	5,3458
18	4,8632	4,9364	0,0732	1,5066

18			0,0862	6,7644
<u>CH4+C16H</u>	<u>34</u>			
DADOS: SI	IQUEIRA CAM	POS		
Parâmetros:	kij=0,0181 e lij	=0,0089		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	0,6236	0,3895	0,2341	37,5348
2	1,2272	1,2395	0,0123	1,0001
3	1,8563	1,8498	0,0064	0,3466
4	2,8070	2,8385	0,0315	1,1220
5	3,9134	3,8382	0,0752	1,9223
6	5,1185	5,1950	0,0765	1,4940
7	0,6358	0,2792	0,3566	56,0838
8	1,2359	1,2483	0,0124	1,0014
9	1,8631	1,8922	0,0291	1,5593
10	2,7970	2,8319	0,0350	1,2500
11	3,9148	4,0241	0,1094	2,7942
12	5,1272	5,1442	0,0170	0,3322
13	0,6373	0,2560	0,3813	59,8266
14	1,2332	1,2456	0,0123	0,9995
15	1,8568	1,8754	0,0186	1,0000
16	2,7902	2,4694	0,3209	11,5000
17	3,8974	3,9483	0,0510	1,3083
18	5,1171	5,4779	0,3607	7,0491

ESTIMANDO: Resultados obtidos realizando a estimação dos parâmetros de interação presentes na equação de estado de Peng-Robinson para correlacionar os dados obtidos nessa pesquisa em conjunto com os dados disponíveis na literatura para os sistemas CO_2+H_2O e CH_4+H_2O .

0,1189

10,4513

$\underline{CO_2 + H_2O}$

18

Parâmetros:	kij=0,0001 e lij=	=0,0690		
DADOS: V	ALTZ et al. (200)4)		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	4,6500	4,1756	0,4743	10,2008
2	10,4500	9,0787	1,3712	13,1216
3	18,6300	15,9651	2,6648	14,3039
4	19,8400	17,2052	2,6347	13,2800

5	29,7000	30,3178	0,6178	2,0803
6	30,0100	30,6112	0.6012	2,0034
7	39,6900	41,0245	1,3345	3,3624
8	39,7700	40,3706	0,6006	1,5103
9	49,5200	50,4369	0.9169	1.8515
10	49.8200	50.7210	0.9010	1.8085
11	59,7800	61.0005	1.2205	2.0417
12	59,9200	61,1442	1,2242	2.0431
13	69.2300	70.6488	1,4188	2.0494
14	69.8400	71.2584	1,4184	2.0310
15	79,3300	80,9416	1,6116	2,0315
16	5 7900	6 0263	0,2363	4 0814
17	18 8900	19 5379	0.6479	3 4302
18	29 5000	28 4556	1 0443	3 5400
19	30,2900	30,1866	0 1033	0 3411
20	40,0500	40 8070	0,7569	1 8901
20	49,8500	50 8612	1 0112	2 0286
$\frac{21}{22}$	59 / 1900	60 7088	1,0112	2,0200
22	50, 4 ,000	62,0067	1,2100	2,0407
23	69,7700	71 1478	1,2307	2,0331
2 4 25	69,7200	71,1478	1,4278	2,0479
25	70,2000	71,2875	1,4274	2,0455
20	70,2900	71,720J 81 2623	1,4365	2,0403
27	79,0300	61,2025	1,0322	2,0498
20	3,0400	0,3040	1,4040	29,0390
29 20	10,0700	15,0279	2,9379	29,3741
30 21	14,9000	19,5202	4,3002	29,1438
22	24,8300	25,6524	1,0024	4,0571
32 22	34,9100	33,0071 45.9292	0,0971	1,9970
33 24	44,9200	45,8383	0,9183	2,0444
34 25	55,2400	56,3464	1,1064	2,0029
35	4,9600	7,8652	2,9052	58,5737
36	11,0300	17,7803	6,7503	61,2002
37	19,4100	19,8257	0,4157	2,1420
38	27,7700	28,3389	0,5689	2,0488
39	37,1900	37,9651	0,7751	2,0842
40	46,0100	46,9584	0,9484	2,0613
41	50,5900	51,6394	1,0494	2,0743
42	5,0100	10,8687	5,8587	116,9419
43	7,5500	16,2755	8,7255	115,5702
44	10,1600	21,9007	11,7407	115,5583
45	13,2200	28,8685	15,6485	118,3705
46	16,7400	17,0820	0,3420	2,0434
47	20,3100	20,7238	0,4138	2,0376
47			2,1243	17,0142
DADOS: 7	TENG et al. (1997	')		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	64,4000	65,7423	1,3423	2,0844
2	98,7000	100,7660	2,0659	2,0931

3	147,7000	150,8015	3,1015	2,0998
4	196,8000	200,9431	4,1431	2,1052
5	245,8000	250,9807	5,1806	2,1076
6	294,9000	301,1328	6,2327	2,1135
7	64,4000	65,7410	1,3410	2,0823
8	98,7000	100,7547	2,0547	2,0817
9	147,7000	150,7872	3,0872	2,0901
10	196,8000	200,9212	4,1212	2,0941
11	245,8000	250,9580	5,1579	2,0984
12	294,9000	301,0983	6,1983	2,1018
13	64,4000	65,7272	1,3272	2,0609
14	98,7000	100,7456	2,0456	2,0725
15	147,7000	150,7700	3,0700	2,0785
16	196,8000	200,9074	4,1073	2,0870
17	245,8000	250,9402	5,1402	2,0912
18	294,9000	301,0813	6,1812	2,0960
19	64,4000	65,7384	1,3384	2,0783
20	98,7000	100,7286	2,0285	2,0552
21	147,7000	150,7459	3,0459	2,0622
22	196,8000	200,8886	4,0885	2,0775
23	245,8000	250,9175	5,1174	2,0819
24	294,9000	301,0459	6,1459	2,0840
 24			3 6526	2 0866
27			5,0520	2,0000
DADOS: S	ERVIO e ENGLE	EZOS (2001)		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	20.0000	20.4103	0.4103	2.0517
2	20,0000	20.4125	0.4125	2.0628
3	20,0000	20.3996	0.3996	1,9984
4	37,0000	37,7580	0,7580	2,0487
5	37,0000	37,7661	0,7661	2,0706
6	37,0000	37.7635	0.7635	2.0635
7	42,0000	42.8593	0.8593	2.0461
8	42,0000	42,8643	0.8643	2.0580
9	42,0000	42,8631	0,8631	2,0551
10	50,0000	50,9851	0,9851	1,9702
11	50,0000	51,0241	1,0241	2,0482
12	50,0000	51,0386	1,0386	2,0773
13	60,0000	61,2074	1,2074	2,0124
14	60,0000	61,2240	1,2240	2,0400
15	60,0000	61.2469	1.2468	2.0781
16	20,0000	20,4070	0.4070	2.0352
17	20.0000	20.4041	0.4041	2.0209
18	20,0000	20.3899	0.3898	1,9494
19	30,0000	30.6156	0.6156	2,0521
20	30.0000	30.6143	0.6143	2.0478
21	37,0000	37,7501	0,7501	2,0273
 21			0.7621	2 0200
$\angle 1$			0,7021	2,0300

DADOS: Q	QIN et al. (2008)			
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	499,0000	509,1343	10,1343	2,0309
2	403,0000	411,2194	8,2194	2,0395
3	304,0000	310,1944	6,1944	2,0376
4	203,0000	207,1469	4,1468	2,0427
5	106,0000	107,3677	1,3677	1,2903
6	496,0000	506,2579	10,2578	2,0681
7	301,0000	307,3790	6,3789	2,1192
 7			6,6713	1,9469
DADOS [,] k	COSCHEL et al. ((2006)		
ND ND	PEXP	PCAL	PEXP-PCAL	DP/PEXPI*100
1	20,6000	15 2729	5 3270	25 8595
$\frac{1}{2}$	51,0000	51 8545	0.8545	1 6756
2	105 3000	107 / 382	2 1382	2,0306
5	142,0000	107,4362	2,1302	2,0300
4	142,0000	144,0042	2,0042	2,0311
5	202,0000	200,1201	4,1200	2,0420
0	50,5000	51,0359	1,1359	2,2493
/	100,8000	101,4236	0,6236	0,6186
8	194,7000	198,6567	3,9567	2,0322
8			2,6308	4,8174
DADOS: K	XIEPE <i>et al.</i> (2002	2)		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	0.0718	0.0647	0.0070	9.8823
2	0.5082	0.4400	0.0681	13.4017
3	0.9509	0.8486	0.1022	10,7487
4	1,0078	0.9677	0.0400	3.9782
5	1 3423	0.9838	0 3584	26 7014
6	1,5125	1 3508	0.4047	23,0539
0 7	1,7550	1,9221	0,0023	0 1231
8	1,72+3 2 0454	2 0000	0,0023	2 2158
0	2,0434	2,0000	0,0433	11 0301
10	2,4374	2,1001	1 / 1 8/	35 0332
10	3,9473	2,5290	0.4176	10 5061
11	5,9751	3,5574	1,0522	10,5001
12	5,0979	3,1430	1,9322	10 7802
13	5,3001	4,9002	0,0024	10,7805
14	5,7858	3,7720	2,0157	34,8043
15	6,1990 7,1025	3,7710	2,4279	39,1665
16 17	7,1035	6,3609	0,7425	10,4535
17	7,9506	4,6670	3,2835	41,2992
18	8,4651	5,0001	3,4649	40,9319
19	8,8933	7,9546	0,9386	10,5541
20	9,3380	5,9868	3,3511	35,8875
21	11,2480	10,0770	1,1709	10,4107
22	13,6920	7,7085	5,9834	43,7003

22				
23	14,5820	9,2222	5,3597	36,7560
24	15,3450	7,9199	7,4250	48,3876
25	18,3440	16,4327	1,9112	10,4191
26	20,4360	12,8076	7,6283	37,3281
27	21,3360	11,7299	9,6060	45,0227
28	27,2890	16,9867	10,3023	37,7525
29	33,1710	34,0056	0.8346	2,5160
30	42,3030	42,5385	0,2355	0,5566
31	44,3780	44,7666	0,3886	0,8756
32	46,6710	47,5837	0,9127	1,9557
33	49,3900	50,4111	1,0210	2,0674
34	56,6400	57,7963	1,1563	2,0416
35	58,8470	60,0522	1,2052	2,0481
36	63,2260	64,9490	1,7230	2,7251
37	66,4380	67,8063	1,3683	2,0595
38	66,9990	69,4071	2,4081	3,5943
39	71,2800	72,4279	1,1479	1,6104
40	81,8690	84,6697	2,8007	3,4210
41	85,5030	87,1583	1,6553	1,9360
42	92,3190	94,2442	1,9252	2,0854
43	92,5760	94,6412	2,0652	2,2308
 43			2,1429	16,5409
DADOS: D	ALMOLIN <i>et al</i>	. (2006)		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	1.1509	1,/860	0,6351	55.1856
•	1 0 4 6 1	1 0207	0.0005	
2	1,2461	1,9397	0,6935	55,6547
2 3	1,2461 1,3403	1,9397 2,1513	0,6935 0,8109	55,6547 60,4973
2 3 4	1,2461 1,3403 1,7071	1,9397 2,1513 2,7495	0,6935 0,8109 1,0423	55,6547 60,4973 61,0599
2 3 4 5	1,2461 1,3403 1,7071 1,9553	1,9397 2,1513 2,7495 3,0594	0,6935 0,8109 1,0423 1,1041	55,6547 60,4973 61,0599 56,4652
2 3 4 5 6	1,2461 1,3403 1,7071 1,9553 2,1012	1,9397 2,1513 2,7495 3,0594 3,1565	0,6935 0,8109 1,0423 1,1041 1,0552	55,6547 60,4973 61,0599 56,4652 50,2189
2 3 4 5 6 7	1,2461 1,3403 1,7071 1,9553 2,1012 2,6443	1,9397 2,1513 2,7495 3,0594 3,1565 4,1507	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677
2 3 4 5 6 7 8	1,2461 1,3403 1,7071 1,9553 2,1012 2,6443 2,6848	1,9397 2,1513 2,7495 3,0594 3,1565 4,1507 4,0920	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113
2 3 4 5 6 7 8 9	1,2461 1,3403 1,7071 1,9553 2,1012 2,6443 2,6848 2,7182	1,9397 2,1513 2,7495 3,0594 3,1565 4,1507 4,0920 4,1115	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565
2 3 4 5 6 7 8 9 10	1,2461 1,3403 1,7071 1,9553 2,1012 2,6443 2,6848 2,7182 3,4487	1,9397 2,1513 2,7495 3,0594 3,1565 4,1507 4,0920 4,1115 5,2325 5,2325	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932 1,7837	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565 51,7219
2 3 4 5 6 7 8 9 10 11	1,2461 1,3403 1,7071 1,9553 2,1012 2,6443 2,6848 2,7182 3,4487 3,4842	1,9397 2,1513 2,7495 3,0594 3,1565 4,1507 4,0920 4,1115 5,2325 5,2918	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932 1,7837 1,8076	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565 51,7219 51,8798
2 3 4 5 6 7 8 9 10 11 12	1,2461 1,3403 1,7071 1,9553 2,1012 2,6443 2,6848 2,7182 3,4487 3,4842 3,6534	1,9397 2,1513 2,7495 3,0594 3,1565 4,1507 4,0920 4,1115 5,2325 5,2918 5,7673	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932 1,7837 1,8076 2,1139	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565 51,7219 51,8798 57,8622
2 3 4 5 6 7 8 9 10 11 12 13	1,2461 1,3403 1,7071 1,9553 2,1012 2,6443 2,6848 2,7182 3,4487 3,4487 3,4842 3,6534 4,0870	1,9397 2,1513 2,7495 3,0594 3,1565 4,1507 4,0920 4,1115 5,2325 5,2918 5,7673 6,3247	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932 1,7837 1,8076 2,1139 2,2376	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565 51,7219 51,8798 57,8622 54,7499 52,6542
2 3 4 5 6 7 8 9 10 11 12 13 14	1,2461 $1,3403$ $1,7071$ $1,9553$ $2,1012$ $2,6443$ $2,6848$ $2,7182$ $3,4487$ $3,4842$ $3,6534$ $4,0870$ $4,6615$ $2,0100$	1,9397 2,1513 2,7495 3,0594 3,1565 4,1507 4,0920 4,1115 5,2325 5,2918 5,7673 6,3247 7,1257	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932 1,7837 1,8076 2,1139 2,2376 2,4642	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565 51,7219 51,8798 57,8622 54,7499 52,8642
2 3 4 5 6 7 8 9 10 11 12 13 14 15	1,2461 $1,3403$ $1,7071$ $1,9553$ $2,1012$ $2,6443$ $2,6848$ $2,7182$ $3,4487$ $3,4842$ $3,6534$ $4,0870$ $4,6615$ $0,9199$ $1,9292$	1,9397 2,1513 2,7495 3,0594 3,1565 4,1507 4,0920 4,1115 5,2325 5,2918 5,7673 6,3247 7,1257 1,2556	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932 1,7837 1,8076 2,1139 2,2376 2,4642 0,3357 0,2041	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565 51,7219 51,8798 57,8622 54,7499 52,8642 36,4945 57,922
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1,2461 $1,3403$ $1,7071$ $1,9553$ $2,1012$ $2,6443$ $2,6848$ $2,7182$ $3,4487$ $3,4842$ $3,6534$ $4,0870$ $4,6615$ $0,9199$ $1,0293$	1,9397 2,1513 2,7495 3,0594 3,1565 4,1507 4,0920 4,1115 5,2325 5,2918 5,7673 6,3247 7,1257 1,2556 1,4135	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932 1,7837 1,8076 2,1139 2,2376 2,4642 0,3357 0,3841 0,5925	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565 51,7219 51,8798 57,8622 54,7499 52,8642 36,4945 37,3183
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1,2461 $1,3403$ $1,7071$ $1,9553$ $2,1012$ $2,6443$ $2,6848$ $2,7182$ $3,4487$ $3,4842$ $3,6534$ $4,0870$ $4,6615$ $0,9199$ $1,0293$ $1,7041$	1,9397 $2,1513$ $2,7495$ $3,0594$ $3,1565$ $4,1507$ $4,0920$ $4,1115$ $5,2325$ $5,2918$ $5,7673$ $6,3247$ $7,1257$ $1,2556$ $1,4135$ $2,2850$	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932 1,7837 1,8076 2,1139 2,2376 2,4642 0,3357 0,3841 0,5809	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565 51,7219 51,8798 57,8622 54,7499 52,8642 36,4945 37,3183 34,0913
$ \begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 12 \end{array} $	1,2461 $1,3403$ $1,7071$ $1,9553$ $2,1012$ $2,6443$ $2,6848$ $2,7182$ $3,4487$ $3,4842$ $3,6534$ $4,0870$ $4,6615$ $0,9199$ $1,0293$ $1,7041$ $1,8844$	1,9397 $2,1513$ $2,7495$ $3,0594$ $3,1565$ $4,1507$ $4,0920$ $4,1115$ $5,2325$ $5,2918$ $5,7673$ $6,3247$ $7,1257$ $1,2556$ $1,4135$ $2,2850$ $2,6433$	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932 1,7837 1,8076 2,1139 2,2376 2,4642 0,3357 0,3841 0,5809 0,7589 0,7589	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565 51,7219 51,8798 57,8622 54,7499 52,8642 36,4945 37,3183 34,0913 40,2715
$ \begin{array}{c} 2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\22\end{array} $	1,2461 $1,3403$ $1,7071$ $1,9553$ $2,1012$ $2,6443$ $2,6848$ $2,7182$ $3,4487$ $3,4842$ $3,6534$ $4,0870$ $4,6615$ $0,9199$ $1,0293$ $1,7041$ $1,8844$ $2,3353$	1,9397 $2,1513$ $2,7495$ $3,0594$ $3,1565$ $4,1507$ $4,0920$ $4,1115$ $5,2325$ $5,2918$ $5,7673$ $6,3247$ $7,1257$ $1,2556$ $1,4135$ $2,2850$ $2,6433$ $3,1226$	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932 1,7837 1,8076 2,1139 2,2376 2,4642 0,3357 0,3841 0,5809 0,7589 0,7873 0,9270	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565 51,7219 51,8798 57,8622 54,7499 52,8642 36,4945 37,3183 34,0913 40,2715 33,7152 24,0747
$ \begin{array}{c} 2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\end{array} $	1,2461 $1,3403$ $1,7071$ $1,9553$ $2,1012$ $2,6443$ $2,6848$ $2,7182$ $3,4487$ $3,4842$ $3,6534$ $4,0870$ $4,6615$ $0,9199$ $1,0293$ $1,7041$ $1,8844$ $2,3353$ $2,6868$ $2,0421$	1,9397 $2,1513$ $2,7495$ $3,0594$ $3,1565$ $4,1507$ $4,0920$ $4,1115$ $5,2325$ $5,2918$ $5,7673$ $6,3247$ $7,1257$ $1,2556$ $1,4135$ $2,2850$ $2,6433$ $3,1226$ $3,6239$	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932 1,7837 1,8076 2,1139 2,2376 2,4642 0,3357 0,3841 0,5809 0,7589 0,7873 0,9370 1,9011	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565 51,7219 51,8798 57,8622 54,7499 52,8642 36,4945 37,3183 34,0913 40,2715 33,7152 34,8747 26,9622
$ \begin{array}{c} 2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\20\\21\end{array} $	1,2461 $1,3403$ $1,7071$ $1,9553$ $2,1012$ $2,6443$ $2,6848$ $2,7182$ $3,4487$ $3,4842$ $3,6534$ $4,0870$ $4,6615$ $0,9199$ $1,0293$ $1,7041$ $1,8844$ $2,3353$ $2,6868$ $2,9421$	1,9397 $2,1513$ $2,7495$ $3,0594$ $3,1565$ $4,1507$ $4,0920$ $4,1115$ $5,2325$ $5,2918$ $5,7673$ $6,3247$ $7,1257$ $1,2556$ $1,4135$ $2,2850$ $2,6433$ $3,1226$ $3,6239$ $4,0263$	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932 1,7837 1,8076 2,1139 2,2376 2,4642 0,3357 0,3841 0,5809 0,7589 0,7873 0,9370 1,0841 1,2014	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565 51,7219 51,8798 57,8622 54,7499 52,8642 36,4945 37,3183 34,0913 40,2715 33,7152 34,8747 36,8498 25,0275
$ \begin{array}{c} 2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\22\\22\end{array} $	1,2461 1,3403 1,7071 1,9553 2,1012 2,6443 2,6848 2,7182 3,4487 3,4842 3,6534 4,0870 4,6615 0,9199 1,0293 1,7041 1,8844 2,3353 2,6868 2,9421 3,5338	1,9397 $2,1513$ $2,7495$ $3,0594$ $3,1565$ $4,1507$ $4,0920$ $4,1115$ $5,2325$ $5,2918$ $5,7673$ $6,3247$ $7,1257$ $1,2556$ $1,4135$ $2,2850$ $2,6433$ $3,1226$ $3,6239$ $4,0263$ $4,8353$	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932 1,7837 1,8076 2,1139 2,2376 2,4642 0,3357 0,3841 0,5809 0,7589 0,7873 0,9370 1,0841 1,3014 1,2525	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565 51,7219 51,8798 57,8622 54,7499 52,8642 36,4945 37,3183 34,0913 40,2715 33,7152 34,8747 36,8498 36,8276 27,72077
$ \begin{array}{c} 2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\2 \end{array} $	1,2461 1,3403 1,7071 1,9553 2,1012 2,6443 2,6848 2,7182 3,4487 3,4842 3,6534 4,0870 4,6615 0,9199 1,0293 1,7041 1,8844 2,3353 2,6868 2,9421 3,5338 3,6139	1,9397 $2,1513$ $2,7495$ $3,0594$ $3,1565$ $4,1507$ $4,0920$ $4,1115$ $5,2325$ $5,2918$ $5,7673$ $6,3247$ $7,1257$ $1,2556$ $1,4135$ $2,2850$ $2,6433$ $3,1226$ $3,6239$ $4,0263$ $4,8353$ $4,9774$	0,6935 0,8109 1,0423 1,1041 1,0552 1,5064 1,4071 1,3932 1,7837 1,8076 2,1139 2,2376 2,4642 0,3357 0,3841 0,5809 0,7589 0,7873 0,9370 1,0841 1,3014 1,3635 0,2004	55,6547 60,4973 61,0599 56,4652 50,2189 56,9677 52,4113 51,2565 51,7219 51,8798 57,8622 54,7499 52,8642 36,4945 37,3183 34,0913 40,2715 33,7152 34,8747 36,8498 36,8276 37,7297

25	1,8814	2,1961	0,3147	16,7276
26	2,4356	3,0574	0,6218	25,5298
27	2,6088	3,1809	0,5720	21,9284
28	3,0353	3,8002	0,7648	25,1973
29	3,6746	4,5264	0,8517	23,1799
30	4,0110	5,0269	1,0158	25,3260
31	4,6594	5,8652	1,2057	25,8783
32	1,0850	1,1548	0,0697	6,4324
33	1,3606	1,4114	0,0507	3,7312
34	2,2775	2,3558	0,0783	3,4393
35	2,7679	2,8736	0,1057	3,8193
36	2,9817	3,0899	0,1082	3,6291
37	3,4518	3.5451	0.0933	2.7036
38	3.6128	3.7189	0.1060	2,9349
39	4.0961	4.2197	0.1236	3.0179
40	4,4244	4.5255	0.1010	2.2845
41	4,7334	4.9195	0.1861	3.9328
42	1.1357	0.9707	0.1649	14.5241
43	1.3302	1.1299	0.2002	15.0551
44	1,7608	1,4488	0.3120	17,7196
45	2,1417	1.7682	0.3735	17,4393
46	2,4558	1,9968	0,4590	18,6919
47	3,0353	2,4548	0,5805	19 1266
48	3,0637	2,5006	0,5630	18 3783
49	3.6524	3,0290	0,6233	17,0661
	5,0521	5,0270		
49			0.7641	29,7025
-			- ,	- ,
DADOS: C	HAPOY et al. (2	004)		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	1,9000	4,5811	2,6811	141,1138
2	12,0100	28,5787	16,5687	137,9581
3	13,2700	28,9889	15,7189	118,4546
4	2,2800	4,7308	2,4508	107,4941
5	14,2600	29,4093	15,1493	106,2368
6	17,3200	17,6424	0,3224	1,8614
7	2,8700	4,9460	2,0760	72,3367
8	39,3800	40,1819	0,8019	2,0365
9	3,2900	5,0884	1,7984	54,6649
10	20,6200	21,0922	0,4722	2,2904
11	48,4400	49,4451	1,0051	2,0749
12	51,7200	52,7742	1,0542	2,0382
13	23,4900	24,0099	0.5199	2,2133
14	3.8500	5.2529	1.4029	36.4408
15	27.8000	28.2673	0.4673	1.6809
16	10.0800	12,5535	2.4735	24.5387
17	4,5200	5,4452	0.9252	20.4698
18	4,9900	5.5900	0.6000	12.0243
19	6,3000	5.8177	0.4822	7,6551
20	41,1900	41,9924	0,8024	1,9482
	,	,	,	· · · ·

21	7,7900	6,1033	1,686	6	21,6515
22	52,1600	52,9535	0,793	5	1,5213
23	9,1300	6,3516	2,778	3	30,4311
24	10,8600	6,6482	4,211	.7	38,7823
25	12,4300	6,9448	5,485	51	44,1282
25			3,309	1	39,6818
DADOS: B.	AMBERGER e	et al. (2000)			
ND	PEXP	PCAL	PEXP-P	CAL L	P/PEXP *100
1	40,5000	27,3831	13,110	68	32,3873
2	50,6000	34,8503	15,74	96	31,1257
3	60,6000	42,0802	18,51	97	30,5605
4	70,8000	49,5791	21,220	08	29,9729
5	80,8000	55,5788	25,22	11	31,2143
6	90,9000	60,8060	30,093	39	33,1066
7	100,9000	64,7800	36,120	00	35,7978
8	111,0000	107,3772	3,622	7	3,2637
9	121,0000	118,1486	2,851	3	2,3564
10	141,1000	139,0463	2,053	б	1,4554
11	40,5000	24,7107	15,78	92	38,9857
12	50,6000	32,2004	18,39	95	36,3627
13	60,6000	38,0747	22,52	52	37,1703
14	70,8000	44,9961	25,80	38	36,4461
15	80,8000	49,3779	31,422	20	38,8886
16	90,9000	55,6141	35,28	58	38,8183
17	100,9000	60,3915	40,50	84	40,1471
18	111.0000	94,2117	16.78	82	15.1245
19	121.0000	118.0405	2.959	4	2,4458
20	141,1000	139,1523	1,947	7	1,3803
21	40,5000	21,6466	18,85	33	46,5514
22	60,6000	32,7707	27,82	92	45,9228
23	70,8000	38,3777	32,422	22	45,7941
24	80,8000	43,6755	37.12	44	45,9461
25	90,9000	49.3459	41.55	40	45.7140
26	100,9000	54,7695	46,13	04	45,7190
27	111,0000	107.3007	3,6992	2	3,3326
28	121.0000	118.1139	2.886	0	2.3851
29	131,0000	128,6485	2,3514	4	1,7950
 29			20,443	31	27,5921
		1 (2000)			
DADOS: B.	AMBERGER e	et al. (2000)	NOAT		T 1
	ND	YEXP	YCAL	YEXP-YCA	AL
	1	0,995400	0,994333	0,001066	
	2	0,996400	0,995136	0,001263	
	3	0,996300	0,995530	0,000769	
	4	0,996600	0,995548	0,001051	
	5	0,996600	0,995563	0,001036	
	0	0,995900	0,995485	0,000414	

7	0,995500	0,995344	0,000155
8	0,995000	0,985673	0,009326
9	0,994500	0,981397	0,013102
10	0,993900	0,974826	0,019073
11	0,993400	0,990259	0,003140
12	0,994500	0,991733	0,002766
13	0,994500	0,992337	0,002162
14	0,994900	0,992799	0,002100
15	0,995000	0,992889	0,002110
16	0,995300	0,992962	0,002337
17	0,995100	0,992868	0,002231
18	0,994700	0,988927	0,005772
19	0,994200	0,981366	0,012833
20	0,992200	0,972256	0,019943
21	0,985700	0,974678	0,011021
22	0,989100	0,980598	0,008501
23	0,989600	0,981954	0,007645
24	0,990300	0,982803	0,007496
25	0,990800	0,983324	0,007475
26	0,990700	0,983559	0,007141
27	0,991000	0,974623	0,016376
28	0,990400	0,971348	0,019051
29	0,990000	0,968014	0,021985
			0.007010
29			0,00/219

DADOS: SIQUEIRA CAMPOS

ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	0,6381	0,6759	0,0378	5,9308
2	1,2401	1,4215	0,1814	14,6291
3	1,8744	2,2085	0,3340	17,8216
4	2,8063	3,4048	0,5984	21,3245
5	3,9172	4,8558	0,9386	23,9599
6	5,1099	6,5350	1,4251	27,8885
7	0,6831	0,5985	0,0846	12,3862
8	1,2896	1,2343	0,0553	4,2903
9	1,9255	1,9056	0,0200	1,0368
10	2,8795	2,9230	0,0435	1,5108
11	4,0117	4,1403	0,1287	3,2074
12	5,2421	5,4845	0,2423	4,6225
13	0,7470	0,56880	0,1782	23,8558
14	1,3573	1,1322	0,2251	16,5855
15	1,9941	1,7229	0,2713	13,6056
16	2,9674	2,6274	0,3400	11,4577
17	4,1169	3,7109	0,4060	9,8614
18	5,3531	4,9197	0,4335	8,0983
18			0,3302	12,3372

$\underline{CH_4 + H_2O}$

Parâmetros: DADOS: W	kij=0,0001 e lij= ANG <i>et al</i> . (200	=0,1316 3)		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	60,5000	61,6442	1,1441	1,8912
2	40,4000	40,9206	0,5206	1,2886
3	20,0000	20,2003	0,2003	1.0018
4	210.0000	212.6054	2.6054	1.2406
5	180.0000	183.4270	3.4269	1.9038
6	150,0000	153.1562	3.1561	2,1041
7	120,0000	121,9460	1.9460	1.6216
8	90.0000	91.2788	1.2788	1.4209
9	60.0000	59.6515	0.3484	0.5808
10	30,0000	30,2696	0.2696	0.8986
11	400 3000	405 1073	4 8073	1 2009
12	350,8000	357,4930	6,6930	1,9079
13	301,1000	302,7214	1.6214	0.5385
13	251 5000	253 0918	1 5917	0,6329
15	201,5000	205 2192	3 6192	1 7952
16	151 8000	184 7484	32 9484	21 7051
10	102 2000	103 5662	1 3661	1 3367
17	102,2000	105,5002		1,5507
17			3,9731	2,5335
DADOS: Q	IN et al. (2008)			
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	499,0000	529,1863	30,1863	6,0493
2	402,0000	406,8908	4,8907	1,2166
3	302,0000	290,3794	11,6205	3,8478
4	206,0000	221,5841	15,5840	7,5650
5	109,0000	111,8790	2,8789	2,6412
6	495,0000	494,1175	0,8824	0,1782
7	301,0000	314,2708	13,2708	4,4089
7			11,3305	3,7010
DADOS: O	SULLIVAN E S	SMITH (1970)		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	101,3150	104,0136	2,6986	2,6635
2	202,6300	204,7020	2,0719	1,0225
3	303,9450	308,7391	4,7940	1,5772
4	405,2600	412,6842	7,4241	1,8319
5	506,5750	517,2221	10,6470	2,1017
6	607,8900	600,3254	7,5645	1,2443
7	102,3281	103,5237	1,1955	1,1683
8	203,6431	207,3035	3,6603	1,7974
9	305,9713	316,9289	10,9575	3,5812

10	408,2994	412,2331	3,9336	0,9634
11	509,6144	519,3386	9,7241	1,9081
12	611,9426	623,1685	11,2259	1,8344
13	104,3544	105,2294	0,8749	0,8384
14	206,6826	208,7496	2,0670	1,0000
15	309,0107	328,9547	19,9440	6,4541
16	410,3257	438,1652	27,8394	6,7847
17	513,6670	525,0857	11,4186	2,2229
18	615,9952	624,7199	8,7246	1,4163
18			8,1537	2,2450
DADOS: L	EKVAM et al. (1	1997)		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	15,6500	15,8065	0,1565	1,0002
2	23,2300	23,7618	0.5318	2,2893
3	28.2000	28,9355	0.7355	2,6084
4	18.1000	18.2809	0.1809	0.9996
5	27.5600	28.3128	0.7528	2.7318
6	59.7700	61.5750	1.8050	3.0200
7	25.4200	25.6739	0.2539	0.9991
8	59.2200	60.0462	0.8262	1.3951
9	159.0700	162.2148	3.1448	1.9770
10	25.3400	25.5926	0.2526	0.9969
11	77.9800	79.2208	1.2408	1.5912
12	179,9800	182,6745	2,6944	1,4970
12			1,0479	1,7588
DADOS: M	IOHAMMADI e	t al. (2006)		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	25,3200	28,1305	2,8105	11,1001
2	24,8100	24,8910	0,0810	0,3266
3	25,1500	25,3627	0,2127	0,8459
4	17,6500	17,7096	0,0596	0,3379
5	28,0600	27,6321	0,4279	1,5249
6	15,0500	15,2005	0,1505	1,0000
7	90,8200	92,0722	1,2522	1,3788
8	87,8900	88,9283	1,0383	1,1813
9	70,5800	71,7148	1,1348	1,6078
10	27,9800	28,4105	0,4304	1,5385
11	23,3100	23,5431	0,2331	1,0000
12	46,3000	47,0371	0,7371	1,5920
13	70,4600	70,2751	0,1848	0,2624
14	45,9900	46,3466	0,3566	0,7755
15	27,9900	28,6897	0,6997	2,4998
16	17,6500	17,8265	0,1765	1,0003
16			0,6241	1,7483

DADOS: K	IM et al. (2003)			
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	50,0000	50,8030	0,8030	1,6060
2	51,0000	52,1860	1,1860	2,3256
3	51,0000	52,0374	1,0374	2,0341
4	51,0000	51,7676	0,7675	1,5050
5	101,0000	88,3407	12,6592	12,5339
6	102,0000	101,8427	0,1573	0,1542
7	102,0000	105,6692	3,6691	3,5972
8	102,0000	103,5023	1,5022	1,4728
9	127,0000	129,1390	2,1389	1,6842
10	127,0000	133,4009	6,4008	5,0400
11	127,0000	127,6287	0,6287	0,4950
12	127,0000	129,0880	2,0880	1,6441
13	143,0000	145,4768	2,4768	1,7320
14	144.0000	146.7024	2.7023	1.8766
15	143.0000	147.5594	4.5594	3.1884
16	143,0000	145,7633	2,7633	1,9323
16			2,8463	2,6763
DADOS: K	IEPE et al. (2003)		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	0,0722	0,0652	0,0075	10,3815
2	4,3297	2,6037	1,7259	39,8635
3	10,9790	6,6247	4,3542	39,6594
4	13,0740	8,0828	4,9911	38,1761
5	15,1770	9,2578	5,9191	39,0008
6	34,9120	35,2611	0,3491	1,0001
7	43,0710	43,6321	0,5611	1,3029
8	60,0100	61,6491	1,6391	2,7314
9	66,4630	67,1276	0,6646	1,0000
10	78,2130	80,7279	2,5149	3,2155
11	84,2570	88,1632	3,9061	4,6360
12	0,4647	0,4413	0,0233	5,0188
13	3,4043	1,3333	2,0709	60,8320
14	6,5724	2,2286	4,3437	66,0914
15	9,5284	2,9470	6,5813	69,0707
16	28,4110	28,6952	0,2842	1,0006
17	40,3280	40,7313	0,4033	1,0002
18	58,5890	60,1214	1,5324	2,6156
19	69,2690	70,3115	1.0425	1,5050
20	84,1760	85,1122	0.9362	1,1122
21	90,2530	92,2652	2.0122	2,2295
22	1.0142	0,9687	0.0454	4.4792
23	5.4459	2,2990	3.1468	57.7836
24	11.3710	3,3055	8,0654	70.9300
25	17,9340	4,7754	13,1585	73,3720
	,		-	<i>,</i>

26	36.3700	36,7337	0.3637	1.0001
27	66,9530	68.0781	1.1251	1.6804
28	78.3150	80.4691	2.1541	2,7505
29	92.5950	96.5136	3.9186	4.2320
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 0,0100		
29			2,6842	20,9542
DADOS: Y	ANG et al. (2001)		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	23,3000	23,5329	0,2329	0,9995
2	41,1000	41,46874	0,3687	0,8971
3	44,0000	45,11485	1,1148	2,5337
4	48,8000	49,55201	0,7520	1,5410
5	56,5000	62,20083	5,7008	10,0899
6	60,1000	60,87281	0,7728	1,2858
7	66,1000	67,20611	1,1061	1,6733
8	67,2000	68,70738	1,5073	2,2431
9	73,9000	82,99863	9,0986	12,3120
10	76,7000	79,96318	3,2631	4,2544
11	78,2000	79,22806	1,0280	1,3146
12	80,0000	80,78637	0,7863	0,9829
13	81,8000	82,2612	0,4612	0,5639
14	84,0000	85,5321	1,5321	1,8240
15	87,5000	86,1656	1,3343	1,5249
16	95,6000	96,7859	1,1859	1,2405
17	116,8000	117,5749	0,7748	0,6634
18	118,4000	119,5455	1,1455	0,9675
19	126,8000	129,1116	2,3116	1,8230
19			1,8146	2,5650
DADOS: S	IQUEIRA CAMP	POS		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	1,1310	0,6213	0,5097	45,0647
2	1,8315	1,6740	0,1575	8,6013
3	2,5047	2,7329	0,2282	9,1138
4	3,7158	4,5586	0,8427	22,6807
5	5,0289	6,4422	1,4133	28,1032
6	6,3553	8,5313	2,1759	34,2377
7	1,8494	1,3195	0,5298	28,6508
8	2,5207	2,1427	0,3779	14,9949
9	3,7288	3,5666	0,1622	4,3505
10	4,8280	4,8321	0,0041	0,0849
11	6,3344	6,4990	0,1646	2,5992
12	1,8450	1,0055	0,8395	45,5027
13	2,5139	1,6574	0,8565	34,0704
14	3,7233	2,8273	0,8960	24,0649
15	5,0391	4,0543	0,9847	19,5427
16	6,3655	5,4072	0,9582	15,0536

16

21,0448

SISTEMAS TERNÁRIOS

0,6938

PREDIÇÃO: Resultados obtidos realizando a predição dos dados obtidos nessa pesquisa para os sistemas ternários através dos parâmetros obtidos para os sistemas binários respectivos, fazendo a correlação dos dados da literatura.

CO₂+H₂O+SAL

Parâmetros	: kij=0,0001 e lij=	=0,0690		
DADOS: S	IQUEIRA CAMI	POS		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	0,6555	0,9925	0,3369	51,4094
2	1,2834	2,0470	0,7635	59,4935
3	1,9299	3,1527	1,2228	63,3605
4	2,8845	4,8588	1,9743	68,4447
5	3,9154	7,3869	3,4714	88,6620
6	4,9819	10,7976	5,8157	116,7355
7	0,6748	0,7706	0,0957	14,1938
8	1,2859	1,6198	0,3338	25,9586
9	1,9211	2,5289	0,6077	31,6368
10	2,8862	3,8972	1,0110	35,0282
11	4,0309	5,5390	1,5081	37,4139
12	5,2702	7,3485	2,0783	39,4351
13	1,3283	1,4291	0,1008	7,5915
14	1,9683	2,2003	0,2320	11,7889
15	2,9460	3,3734	0,4274	14,5088
16	4,0934	4,8133	0,7199	17,5870
17	5,3367	6,3774	1,0406	19,5004
 17			1,2788	41,3382

$\underline{CH_4+H_2O+SAL}$

kij=0,0001 e lij	=0,1316		
IQUEIRA CAM	POS		
PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1,0827	0,5532	0,5294	48,9001
1,7977	1,8542	0,0565	3,1455
2,4733	3,1540	0,6807	27,5227
3,6688	5,0854	1,4166	38,6128
4,9713	7,4226	2,4513	49,3103
6,3043	9,5301	3,2258	51,1685
	kij=0,0001 e lij QUEIRA CAM PEXP 1,0827 1,7977 2,4733 3,6688 4,9713 6,3043	kij=0,0001 e lij=0,1316 IQUEIRA CAMPOS PEXP PCAL 1,0827 0,5532 1,7977 1,8542 2,4733 3,1540 3,6688 5,0854 4,9713 7,4226 6,3043 9,5301	kij=0,0001 e lij=0,1316 IQUEIRA CAMPOS PEXP PCAL PEXP-PCAL 1,0827 0,5532 0,5294 1,7977 1,8542 0,0565 2,4733 3,1540 0,6807 3,6688 5,0854 1,4166 4,9713 7,4226 2,4513 6,3043 9,5301 3,2258

_	4 4 9 7 9		0.0074	
7	1,1078	0,1124	0,9954	89,8522
8	1,8081	1,1641	0,6440	35,6196
9	2,4793	2,2064	0,2729	11,0088
10	3,6714	3,9671	0,2957	8,0548
11	4,9765	5,7671	0,7905	15,8858
12	6,3150	7,4687	1,1536	18,2684
13	1,1311	0,3064	0,8247	72,9097
14	1,8350	0,7907	1,0443	56,9104
15	2,5073	1,4140	1,0932	43,6035
16	3,6999	2,7012	0,9986	26,9906
17	5,0029	4,1982	0,8046	16,0839
18	6,3434	5,4406	0,9027	14,2315
18			1,0100	34,8933

ESTIMANDO: Resultados obtidos realizando a estimação dos parâmetros de interação presentes na equação de estado de Peng-Robinson para correlacionar os dados obtidos desses sistemas ternários estimando todas as temperaturas experimentais mensuradas.

CO₂+H₂O+SAL

ADOS: S	IOUEIRA CAM	=0,1000 POS		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	0,6555	0,6270	0,0284	4,3396
2	1,2834	1,2764	0,0069	0,5423
3	1,9299	1,9549	0,0250	1,2972
4	2,8845	2,9967	0,1121	3,8892
5	3,9154	4,5283	0,6129	15,6542
6	4,9819	6,5706	1,5887	31,8892
7	0,6748	0,5124	0,1623	24,0635
8	1,2859	1,0501	0,2358	18,3389
9	1,9211	1,6243	0,2967	15,4481
10	2,8862	2,4857	0,4005	13,8780
11	4,0309	3,5144	0,5164	12,8127
12	5,2702	4,6420	0,6281	11,9184
13	1,3283	0,9669	0,3613	27,2035
14	1,9683	1,4668	0,5014	25,4767
15	2,9460	2,2253	0,7206	24,4613
16	4,0934	3,1533	0,9401	22,9666
17	5,3367	4,1572	1,1794	22,1012
 17			0,4892	16,2518

Parâmetros: kij=0,0250 e lij=0.1000 D

CH4+H2O+SAL

Parâmetros	: kij=0,0009 e lij	=0,1440		
DADOS: S	IQUEIRA CAM	POS		
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	1,7977	1,3472	0,4505	25,0609
2	2,4733	2,2819	0,1913	7,7381
3	3,6688	3,6669	0,0018	0,0509
4	4,9713	5,3366	0,3653	7,3495
5	6,3043	6,8362	0,5319	8,4372
6	1,8081	0,8721	0,9360	51,7656
7	2,4793	1,6365	0,8427	33,9922
8	3,6714	2,9251	0,7463	20,3277
9	4,9765	4,2387	0,7378	14,8255
10	6,3150	5,4771	0,8378	13,2677
11	1,8350	0,6183	1,2166	66,3005
12	2,5073	1,0837	1,4236	56,7779
13	3,6999	2,0434	1,6564	44,7708
14	5,0029	3,1573	1,8455	36,8892
15	6,3434	4,0801	2,2632	35,6786
15			0,9364	28,2155

ESTIMANDO: Resultados obtidos realizando a estimação dos parâmetros de interação presentes na equação de estado de Peng-Robinson para correlacionar os dados obtidos desses sistemas ternários estimando cada temperatura individualmente.

CO2+H2O+SAL

Parâmetros: kij=0,0250 e lij=0,1000 DADOS: SIQUEIRA CAMPOS

 $T = 30^{\circ}C$

000				
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	0,6555	0,6266	0,0288	4,4061
2	1,2834	1,2745	0,0089	0,6936
3	1,9299	1,9503	0,0203	1,0554
4	2,8845	2,9855	0,1010	3,5030
5	3,9154	4,5026	0,5872	14,9982
6	4,9819	6,5162	1,5342	30,7970
6			0,3801	9,2422

$T = 40^{\circ}C$				
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	0,6748	0,5122	0,1626	24,0957
2	1,2859	1,0490	0,2369	18,4230
3	1,9211	1,6216	0,2995	15,5903
4	2,8862	2,4790	0,4071	14,1072
5	4,0309	3,5009	0,5299	13,1469
6	5,2702	4,6183	0,6518	12,3693
6			0,3813	16,2888
$T = 50^{\circ}C$				
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	1,3283	0,9662	0,3620	27,2579
2	1,9683	1,4650	0,5033	25,5702
3	2,9460	2,2208	0,7251	24,6146
4	4,0934	3,1439	0,9495	23,1961
5	5,3367	4,1406	1,1961	22,4136
 E			0.7472	24 6105
3			0,/4/2	24,0105

$\underline{CH_4+H_2O+SAL}$

Parâmetros: kij=0,0009 e lij=0,1440 DADOS: SIQUEIRA CAMPOS

$T = 30^{\circ}C$				
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100
1	1,7977	1,3472	0,4505	25,0609
2	2,4733	2,2819	0,1913	7,7381
3	3,6688	3,6669	0,0018	0,0509
4	4,9713	5,3366	0,3653	7,3495
5	6,3043	6,8362	0,5319	8,4372
5			0,3082	9,7273
$T = 40^{\circ}C$	DEVD		DEVD DCAL	
1	1 8081	0.8721	$ \mathbf{FLAF}-\mathbf{FCAL} $	DF/FEAF *100
2	2,4793	1,6365	0,8427	33,9922
3	3,6714	2,9251	0,7463	20,3277
4	4,9765	4,2387	0,7378	14,8255
5	6,3150	5,4771	0,8378	13,2677
5			0,8201	26,8357
$T = 50^{\circ}C$				
ND	PEXP	PCAL	PEXP-PCAL	DP/PEXP *100

1	1,8350	0,6183	1,2166	66,3005
2	2,5073	1,0837	1,4236	56,7779
3	3,6999	2,0434	1,6564	44,7708
4	5,0029	3,1573	1,8455	36,8892
5	6,3434	4,0801	2,2632	35,6786
5			1,6811	48,0834

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo