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RESUMO 

A diminuição no tamanho dos dispositivos nas tecnologias do futuro traz consigo um grande 
aumento na taxa de erros dos circuitos, na lógica combinacional e seqüencial. Apesar de 
algumas potenciais soluções começarem a ser investigadas pela comunidade, a busca por 
circuitos tolerantes a erros induzidos por radiação, sem penalidades no desempenho, área ou 
potência, ainda é um assunto de pesquisa em aberto. Este trabalho propõe duas soluções para 
lidar com este comportamento imprevisível das tecnologias futuras: a primeira solução, 
chamada MemProc, é uma arquitetura baseada em memória que propõe reduzir a taxa de 
falhas de aplicações embarcadas micro-controladas. Esta solução baseia-se no uso de 
memórias magnéticas, que são tolerantes a falhas induzidas por radiação, e área de circuito 
combinacional reduzida para melhorar a confiabilidade ao processar quaisquer aplicações. A 
segunda solução proposta aqui é uma implementação de um IP de infra-estrutura para o 
processador MIPS indicada para sistemas em chip confiáveis, devido a sua adaptação rápida e 
por permitir diferentes níveis de robustez para a aplicação. A segunda solução é também 
indicada para sistemas em que nem o hardware nem o software podem ser modificados. Os 
resultados dos experimentos mostram que ambas as soluções melhoram a confiabilidade do 
sistema que fazem parte com custos aceitáveis e até, no caso da MemProc, melhora o 
desempenho da aplicação. 

 

Palavras-chaves: Arquiteturas tolerantes a falhas, arquiteturas baseadas em memória, 
SoCs confiáveis, técnicas de detecção de erros, taxa de soft error.  



 

ABSTRACT 

Device scaling in new and future technologies brings along severe increase in the soft error 
rate of circuits, for combinational and sequential logic. Although potential solutions are being 
investigated by the community, the search for circuits tolerant to radiation induced errors, 
without performance, area, or power penalties, is still an open research issue. This work 
proposes two solutions to cope with this unpredictable behavior of future technologies: the 
first solution, called MemProc, is a memory based architecture proposed to reduce the fault 
rate of embedded microcontrolled applications. This solution relies in the use magnetic 
memories, which are tolerant to radiation induced failures, and reduced combinational circuit 
area to improve the reliability when processing any application. The second solution proposed 
here is an infrastructure IP implementation for the MIPS architecture indicated for reliable 
systems-on-chip due to its fast adaptation and different levels of application hardening that 
are allowed. The second solution is also indicated for systems where neither the hardware nor 
the software can be modified. The experimental results show that both solutions improve the 
reliability of the system they take part with affordable overheads and even, as in the case of 
the MemProc solution, improving the performance results. 

Keywords: Fault tolerant architectures, memory based architectures, reliable SoCs, 
error detection techniques, soft error rate.   
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1 INTRODUCTION 

The constant growth of the semiconductor industry in the past years has led to a great 

improvement in the fabrication of circuits with smaller and faster transistors. This new 

technology era allows the fabrication of transistors with 100 nm and even smaller dimensions. 

It allows the integration of billions of transistors in the same chip, giving the designer the 

possibility to implement more functions in the same device. In this new scenario, designers 

are developing systems that use more than one processing component in the same chip, with 

ever growing computation capabilities. These systems are called system-on-chip (SoC) and 

are used in the development of embedded systems such as cell phones, palm tops, GPS 

systems, etc.   

However, the technology improvement is bringing an increased concern regarding the 

reliability of these new circuits. Although the good advance in terms of performance, these 

new generations of technologies are more sensible to process variations due to their reduced 

dimension transistors. Also, high energy particle strikes, such as neutrons from cosmic rays 

and alpha particles from packaging material, once a concern only for spatial application 

devices, are now becoming important sources of radiations that are affecting not only memory 

components but also logic components at low altitude and even at sea level. These strikes can 

produce or stimulate bit flips, also known as single event upsets (SEUs), or generate transient 

pulses, known as single event transient (SETs), which in certain circumstances, can 

compromise the correct functionality of the circuit, provoking soft errors (SE). A soft error is 

a random error induced by an event that corrupts the data stored in or produced by the device, 

but does not damage the device itself. 

Not only the number of transistors, but also the chip density, in number of transistors 

per area unit, has been growing exponentially in the past years. This fact has given 

researchers a new concern related to multiple faults caused by a single particle hit, which is 
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called multiple bit upset (MBU). This phenomenon, in the past present only at memory 

devices due to its high density, is now affecting the logic part of a circuit.  

The reduced size of transistors provided by nanotechnology circuits makes them faster 

than the ones in the previous technologies, which allows the circuit to run at higher clock 

frequencies. This improvement in the clock frequency increases the number of operations that 

can be performed per time unit. On the other hand, with higher frequencies and consequently 

lower periods, the circuit is more likely to propagate a transient pulse to generate a bit flip or 

even a multiple bit flip, according to the number of outputs generated by the hit component. 

As shown in Figure 1.1, from (BAUMANN, 2005), while the soft error rate (SER) of SRAM 

memories remains almost stable with technological scaling, the SER of logic has been always 

increasing. This new scenario makes architects more concerned with the impacts of soft errors 

on their designs. In future and even in today’s circuits, the SER is becoming as important as 

the performance or power characteristics. In order to survive in this scenario, it is clear that 

new fault tolerance techniques must be defined, not only for safety critical systems, but to 

general purpose computing as well.  

 
Figure 1.1: Evolution of SER: SRAM vs. Logic, from (BAUMANN, 2005) 

Current fault tolerance techniques are effective, with some overhead, for SEUs and 

SETs. However, they are unlikely to withstand in an efficient way the occurrence of multiple 
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simultaneous faults that is foreseen with those new technologies (CONSTANTINESCU, 

2003; EDENFELD, 2004). To face this challenge, either completely new materials and 

manufacturing technologies will have to be developed, or fully innovative circuit design 

approaches must be taken. 

Several techniques have been proposed to mitigate SEUs and SETs. There are 

techniques in all stages of a circuit production, from process modifications to hardware and 

software design techniques for dedicated systems or general purpose ones. Most of these 

techniques are able to reduce significantly the number of faults, with some performance 

and/or area and/or power overheads. Process variation solutions usually are too expensive for 

low production volumes. Generally, hardware system solutions tend to have a considerable 

cost in area, while software system solutions somehow affect the resulting performance of the 

circuit. Thus, the search for reliability in digital systems still lacks efficient solutions, and 

therefore there is still space for solutions that cope with single and multiple faults without 

adding undesirable costs to the system development. 

Geometric regularity and the extensive use of regular fabrics are being considered as a 

probable solution to cope with parameter variations and improve the overall yield in 

manufacturing with future technologies. Regularity brings the reduction of the cost of masks, 

and also allows the introduction of spare rows and columns that can be activated to replace 

defective ones in memory circuits (SHERLEKAR, 2004). Together with the proposal of using 

regular fabrics, the introduction of new memory technologies that can withstand the effects of 

transient faults, such as ferroelectric and magnetic RAMs (FRAMs and MRAMs, 

respectively) (ETO, 1998), brings back the concept of using memory to perform 

computations.  

In this work, the use of memory is proposed as a novel mitigation technique for 

transient faults, by reducing the area of the circuits that can be affected by soft errors. This 
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way, this work introduces a processor architecture to cope with the SEU/SET problem 

without imposing any performance overhead, while favoring a regular architecture that can be 

used to enhance yield in future manufacturing processes. The proposed architecture is a 

memory-based embedded core processor, named MemProc, designed for use in control 

domain applications as an embedded microcontroller. 

There are situations in which neither the hardware nor the software can be modified, 

due to the high costs involved in adding extra hardware or when the source code is not 

available. In these cases, alternative techniques are needed for providing the system with an 

adequate level of dependability. To deal with this kind of applications, this work proposes a 

second alternative to improve the reliability in digital systems, that combines on-line software 

modifications with a special-purpose hardware module (known as infrastructure IP, or I-IP) 

which was previously proposed in (BERNARDI, 2006). The development of an I-IP core to 

improve reliability of the MIPS RISC processor is presented in this work.  

This work is divided as follows: in the second chapter the context of this work is 

reviewed. In the third chapter, the first experiments on using memory based circuits to 

improve reliability are presented. The fourth chapter describes the developed architecture and 

its key characteristics that contributed to the good fault tolerance and performance results. 

The fifth chapter presents the obtained experimental results, in terms of fault coverage, area, 

and performance. The sixth chapter presents the second solution that was developed to cope 

with the faulty behavior of future technologies without applying any change to the hardware 

or the software of the system. The seventh chapter presents the obtained results for the second 

solution, in terms of fault detection, and its area and performance overhead. In the eighth 

chapter the conclusions and possible evolution of the work that is presented here are 

discussed. 
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2 CONTEXT OF THE RESEARCH 

This chapter presents a description of the different types of spatial radiation that can 

produce or stimulate bit flips in circuits. This chapter is divided in three sections. In the first 

one, the most commonly found sources of radiation and their effects in digital circuits are 

discussed. In the second section, the most used metrics that are applied to measure the 

vulnerability of the circuits are described and, in the third and last section, some of the most 

used and known techniques applied to detect and mitigate errors in digital circuits are 

presented and analyzed, together with a discussion of the positive and negative aspects of 

each technique. 

2.1 RADIATION SOURCES AND THEIR EFFECTS 

There are different types of space radiation that can cause soft errors. In this section 

the most known and relevant types of radiation sources that can cause SEUs and SETs are 

presented, and the effects that SEUs and SETs can cause,. and which are the conditions to an 

error occur are discussed (HEIJMEN, 2002). 

2.1.1 Sources of Radiation 

The main sources of radiation catered from space are: 

a) alpha particles; 

b) high energy cosmic neutrons; 

c) boron fission induced by low energy neutrons. 

There are other kinds of particles that can cause soft errors, like heavy ions for 

instance, but they will not be discussed here because they are only relevant for aero-space 

applications, due to their occurrence only in space or in the highest parts of the earth 

atmosphere. 
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2.1.1.1 Alpha Particles  
 

An alpha particle is a doubly ionized helium atom, made of two protons and two 

neutrons. Alpha particles can be found in circuits packaging materials, solder points of the 

integrated circuits or in wafers, which are thin slices of semi-conductor material, upon which 

circuits are constructed. When an alpha particle hits a beta or gamma ray, it looses energy and 

generates transient current pulses that, depending on their intensity, can cause an SEU (single 

event upset) which can result in a soft error if it compromises the correct functionality of the 

circuit.  

 

2.1.1.2 High Energy Cosmic Neutrons 
 

This kind of particle is formed by the collision of galactic particles and solar wind 

particles with the terrestrial atmosphere. Most of cosmic rays are reflected or captured by the 

geomagnetic field of the earth, and only 1% of the high energy cosmic neutrons hit the earth 

surface, generating a flux of 25 neutrons/cm2.hr (ZIEGLER, 1981) with energy higher than 1 

MeV (1 million electron volt) at sea level. Only neutrons with 5 MeV or higher energy are 

capable of generating soft errors. 

 

2.1.1.3 Boron Fission Induced by Low Energy Neutrons 
 

Another form of radiation can occur when low energy neutrons interact with boron 

atoms (BAUMANN, 1995). As a result, a lithium core and an alpha particle are generated by 

fission, as depicted in Figure 2.1. Both particles resulting from this reaction are capable of 

generating SEUs or SETs that can cause the undesired soft errors. 
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Figure 2.1:  Boron fission induced by low energy neutron, from (BAUMANN, 2001). 

2.1.2 Effects of SEUs and SETs in Digital Circuits 

A particle hit can affect a combinational as much as a sequential part of a circuit 

(ALEXANDRESCU, 2002). In sequential circuits, like the one shown in Figure 2.2, SEUs 

can occur only in memory elements (the registers in Figure 2.2). On the other hand, the 

combinational components can be affected by SETs which, given the right circumstances, can 

cause an error. The hit of a radiation particle in a memory element does not imply that an 

SEU will be registered. In order to an SEU occur, it is necessary that this particle has enough 

charge to create a significant current pulse. In other words, it is necessary that the charge 

generated by the particle is greater than or equal to the so called critical charge (Qcritical) of the 

hit element. The Qcritical will be explained with more details in the next section.  

Combinational logicinput output

clock  
Figure 2.2:  Sequential circuit. 



 
 

21

The occurrence of an SET in combinational logic, does not mean that an error will 

result. In order to an error occur, a combination of events must happen, allowing the SET to 

be captured or generate and erroneous operation. First, it is necessary that the charge 

generated by the radiation source be equal or higher than the Qcritical of the element that was 

hit. Second, the combinational circuit must be fast enough to propagate the error, and third, 

the logic of the architecture must allow that the wrong logic value that was generated 

propagates to some memory element during its latching window or generate an erroneous 

operation. In Figure 2.3, one can see an example in which the combinational circuit does not 

allow the SET propagation. The figure shows a little combinational circuit in two different 

situations. In the first situation (a), the circuit is free of the radiation effects, while in the 

second (b) the circuit is being affected by a source of radiation. One can see that in booth 

circuits the result is the same even in the presence of radiation.  

A

B 0

1 0
0

a) Without radiation

A

B 0

1 1
0

b) With radiation  
Figure 2.3: Combinational circuit without radiation (a) and with radiation (b). 

2.2 METRICS TO EVALUATE THE VULNERABILITY OF CIRCUITS TO SOFT ERRORS 

The vulnerability of a circuit to soft errors indicates the probability of the circuit to 

have an error. This probability indicates to the end user how much he can rely on the correct 

operation of the circuit. With the growing concern about circuit reliability, companies are 

using some metrics to evaluate their products. In this section, some of the most used metrics 

proposed by scientists and designers to evaluate the vulnerability of the circuits, which is 

known as the soft error rate (SER), are presented. 
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2.2.1 Failures in Time (FIT) 

The fault rate of a circuit can be measured through the number of failures that occur in 

a certain period of time. This metric is known as Failures in Time, or FIT. If a circuit has a 

fault rate of 1 FIT, it means that in a period of 1 billion hours 1 fault will probably occur. 

Some companies, like IBM, are using this metric as a reference to the design of their 

products. IBM sets its target for undetected errors caused by SEUs to 114 FIT (BOSSEN, 

2002), which means that 1 fault may occur in the time range of about 9 million (8.771.930 to 

be more precise) hours of device operation. The additive property of FIT makes it convenient 

for calculation of the fault rate of large systems, because the designer just needs to sum the 

FIT of all components that are part of the system to have the system FIT.  

2.2.2 Mean Time to Failure – MTTF 

Another metric that can be applied to measure the fault rate of a system is the mean 

time to failure. Differently from the FIT, the MTTF is more intuitive, because it indicates the 

mean time that will elapse before an error occurs. The MTTF has an inverse relation to the 

FIT, which is expressed by the following equation : 

( )
FIT

hoursMTTF
910

=  (1) 

2.2.3 The Soft Error Rate Estimation 

The soft error rate (SER) of a system can also be expressed in terms of the nominal 

soft error rates of individual elements that are part of the system, such as SRAMs, sequential 

elements such as flip-flops and latches, combinational logic, and factors that depend on the 

circuit design and the microarchitecture (NGUYEN, 2003; SEIFERT, 2004), as follows: 
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∑ ××=
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design AVFTVFSERSER min  (2) 

where i stands for the ith element of the system. 

The SERnominal for the ith element is defined as the soft failure rate of a circuit or node 

under static conditions, assuming that all the inputs and outputs are driven by a constant 

voltage. The TVFi, time vulnerability factor (also known as time derating) stands for the 

fraction of the time that the element is susceptible to SEUs  that will cause an error in the ith 

element. The AVFi, architectural vulnerability factor (also known as logic derating) represents 

the probability that and error in the ith element will cause a system-level error. 

The SERnominal is defined by the probability of occurrence of an SEU in a specific node 

of the element. This probability depends on the element type, transistor size, node capacitance 

and other characteristics of the element. For instance, to estimate the SERnominal for a latch, 

one must know the Qcritical, which identifies the minimum charge necessary to cause the 

element to fail. This can be done by injecting waveforms of alpha an neutron particle hits on 

all relevant nodes. Then, it is necessary to evaluate the alpha and neutron flux to which the 

circuit is submitted. More details can be found in (NGUYEN, 2003).  

The timing vulnerability factor can be summarized as the fraction of time that the 

element can fail. For example, the timing vulnerability factor of a latch is equal to the portion 

of the time that the latch is in its store mode. For combinational logic, the timing vulnerability 

factor depends on its type, which can be data path or control path. More details on these and 

other TVF evaluation aspects can be seen in (NGUYEN, 2003; SEIFERT, 2004).  

The architectural vulnerability factor of an element can be understood as the 

probability that a fault in that element causes an error in the system. In Table 2.1 some 

approaches to estimate the AVF, its major issues, advantages and disadvantages are 

presented. 
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Table 2.1: Architectural-vulnerability-factor (AVF) estimation approaches 

source: (MITRA, 2005)  

The AVF value of an element depends on its inputs and also on how important that 

element is for the circuit considering its functionality. As an example, suppose that the 

contents of a flip-flop are erroneous. If the flip-flop output drives to an AND gate with 

another signal whose logic value is 0, the error will have no effect on the output of the AND 

gate. 

2.3 MITIGATION TECHNIQUES FOR SEUS AND SETS 

In the first years of spatial exploration, the reliability of the circuits started to become 

an important concern for designers. At that time, the major technique used to protect circuits 

was shielding. This shielding technique worked by reducing the particle flow to smaller levels 

and consequently, reducing the number of errors caused by particle hit to zero. During many 

years this technique was widely used in aero-spatial applications and guaranteed the correct 

Approach Description Major issues 
 

Advantages 
 

Disadvantages 
 

Fault 
injection 

Inject error(s) and 
simulate to see if 
injected error(s) 
cause(s) system-
level error(s) by 
comparing the 
system response 
with simulated fault-
free response 

* Which inputs 
to simulate; 

* How many 
errors to 
inject; 

* Which signals 
to inject errors 
in; 

* Which signals 
to use for 
comparison. 

* Applicable 
to any 
design; 

* Easy 
automation. 

* Long 
simulation 
time (several 
days or 
weeks) for 
statistically 
significant 
results; 

* Dependence 
on chosen 
stimuli. 

Fault-free 
simulation 

Perform 
architectural or logic 
simulation and 
identify situations 
that do not 
contribute to system- 
level errors, such as 
unused variables and 
dead instructions. 

* Which inputs 
to simulate; 

* How to 
identify 
situations that 
do not 
contribute to 
system-level 
errors. 

 

* Much 
faster 
compared 
to fault 
injection; 

* Easy 
automation.  

* Applicable to 
very specific 
designs and 
not general 
enough; 

* Dependence 
on chosen 
stimuli. 
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operation of the circuits. However, with the technology evolution up to nanometer scale, 

circuits became more susceptible to particle hits, making this shielding technique obsolete for 

special circuits and even for circuits to be used at sea level. 

Trying to reach the level of reliability that once belonged to shielding, scientists have 

proposed several techniques in the past years, each one with its pros and cons, to mitigate 

SEUs and SETs. In this section, some of these techniques are presented and their costs, in 

terms of area and processing time overheads, are discussed. 

2.3.1 Process Modification related techniques 

Several process solutions have been proposed to reduce SER sensitivity of circuits, 

including the usage of well structures, buried layers, deep trench isolation, and implants at the 

most sensitive nodes. Also wafer thinning has been proposed as a way to reduce SEU 

sensitivity (DODD, 2001). It was shown that the overall SEU threshold LET (linear energy 

transfer) can be significantly increased if the substrate thickness is reduced to 0.5 μm. In 

practice, however, several criteria would have to be met to make the thinning of fully 

processed wafers possible. Another reduction of the SER can be achieved by reducing to 

almost zero the contribution of errors caused by the particles resulted by the boron fission 

reaction. This can be done by eliminating BPSG (boron phosphor-silicate glass) from the 

process flow. If the use of BPSG is necessary, enriched 11B could be used in the BPSG layers 

(BAUMANN, 2001). Silicon-on-insulator (SOI) technologies are relatively insensitive to soft 

errors. Applying SOI technology instead of the corresponding bulk process improves the SER 

with a factor in the range of 2 to 8 (HARELAND, 2001). However, the cost of materials, 

especially of the wafers, is higher for SOI. In general, these process modification solutions are 

expensive and are applied just for a few designs.  
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2.3.2 Component Hardening Techniques 

There are two basic approaches to improve SER sensitivity at the circuit level. On one 

hand, the components applied in the design can be modified such that they become less 

susceptible to soft errors. The main goal of this approach, often named design hardening, is to 

manufacture SER-reliable circuits using standard CMOS processing without additional masks 

(VELAZCO, 1994). On the other hand, one can accept that soft errors occur at a certain rate 

and include extra circuitry to detect and correct them. Error detection and correction 

techniques are discussed in the next subsection. 

Solutions to reduce the SER sensitivity of components can be categorized as 

techniques to increase the capacitance of the storage node, to reduce the charge collection 

efficiency, or to compensate for charge loss. The applied design style can have an important 

effect on SER. For instance, in (SEIFERT, 2001) it is demonstrated that level-sensitive 

latches using transmission gates are more sensitive than edge-triggered static latches, because 

the former use floating nodes to store information.  

Another method to improve SER sensitivity is to enlarge the critical charges by 

increasing the capacitance of the storage nodes. In fact, if all critical charges are sufficiently 

large, alpha particles are not able to upset a circuit and neutrons are the only source of soft 

errors that can affect the circuit. In (KARNIK, 2001), an explicit feedback capacitor is added 

to the node capacitances. In (OOTSUKA, 1998), a SER-hardened SRAM cell used stacked 

cross-coupled interconnects to increase the capacitor area. Enlargement of the node 

capacitances are not only applied in memory design, but were also shown to be an efficient 

way to improve the SER sensitivity of sequential or domino nodes in high-performance 

circuits (KARNIK, 2002). The main drawback of increasing the node capacitances is that 

generally the cell area is increased affecting the memory overall area. The SER sensitivity of 

SRAM cells and latches can also be improved by adding feedback resistors between the 
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output of one inverter and the input of the other, as shown in Figure 2.4. This SRAM cell 

topology was proposed in (SEXTON, 1991). The transient pulse induced by an ionizing 

particle is filtered by the two resistors, which slow down the circuit such that it does not have 

sufficient time to flip state. However, the inclusion of feedback resistors in a memory element 

has the drawback that the write speed is lowered (VELAZCO 1994). 

 
Figure 2.4:  SRAM cell hardened by the inclusion of two feedback resistors 

2.3.3 Circuit Design SEU and SET Hardware Mitigation Techniques 

As stated in a previous subsection, process modification solutions are expensive and 

are used just in few designs with high volume. Also, component hardening techniques involve 

costs in energy, area and performance that sometimes may not be reasonable for 

manufacturers. Therefore, the development of techniques not related to the process variation 

or component modification has been stimulated during the past years, and some design based 

mitigation techniques have been proposed for the scientific community. In this section, some 

of the most know and widely used design techniques that have been proposed by researchers 

worldwide are presented. These techniques are divided into two main groups: error detection 

techniques and error detection and correction techniques.  

 



 
 

28

2.3.3.1 Hardware Error Detection Techniques 
The error detection techniques are based in redundancy to detect if an error has 

occurred. This redundancy can be hardware redundancy, also know as space redundancy, or 

time redundancy. The hardware redundancy approach called duplication with comparison 

(DWC) is based in the duplication of the module which failing behavior has to be detected, 

followed by the comparison of the outputs of both modules. If the results do not match, an 

error signal is activated. This technique can be used to detect either SETs in combinational 

circuits or SEUs in memory elements. Figure 2.5 illustrates these two situations, time 

(situation a) and space (situation b) redundancy, to detect SEU and SET, both with one error 

detected.  

FF 1

FF 2
1 => SEU detected
0 => SEU not detected

clock

clock
1

1

1

0
1

(a)

1
0

1 => SET detected
0 => SET not detected 

1
Combinational

logic 1

Combinational 
logic 2

(b)  
Figure 2.5:  Detection of an SEU in a memory element (a) and detection of an SET in a 

combinational circuit (b) by using space (or hardware) redundancy. 

Time redundancy can be used to detect SETs in combinational logic. This technique 

detects SETs by capturing the output of the combinational circuit in two different moments in 

time. The two captured values are compared, and in case of different values, an SET detection 

is indicated. Figure 2.6 illustrates the use of time redundancy to detect an SET in a 

combinational circuit.  
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FF 1

FF 2
1 => SET detected
0 => SET not detected

clock

0

1

0
1Combinational logic

clock+ Δ

ocurred betwen clock and clock+Δ

1

 
Figure 2.6:  Use of time redundancy to detect an SET in a combinational circuit. 

The circuit designer must set the “Δ” time wide enough to allow the SET propagation, 

but also short enough not to loose the pulse. If a particle hits one of the memory elements 

used to capture the values, an SEU will be registered and an SET will be erroneously 

detected. The main drawbacks of detection techniques based on duplication are: the hardware 

area is more than doubled, and they are only able to detect the events, and not to avoid the 

occurrence of an error. This way, if the designer wants the circuit to operate correctly, it is 

necessary that the event detection flag indicates that the operation needs to be repeated and 

the wrong value must be discarded. 

2.3.3.2 Hardware Error Detection and Correction Techniques 
With the necessity of not only detecting but also correcting the soft errors, researches 

have proposed some detection and correction techniques based on redundancy of modules. In 

this section some techniques that rely on redundancy to improve systems reliability are 

presented. 

2.3.3.2.1 Triple Modular Redundancy - TMR 

The triple modular redundancy (JOHNSON`, 1994) first proposed by Von Neumann 

in 1956, uses the redundancy of modules to guarantee the correct functionality of the circuits 

in which it is implemented. This technique is based on the triplication of the protected module 

in a way that, if any of the three modules fails, the other two will guarantee the correct 

operation of the system. The redundancy used in this technique can be time redundancy or 

space redundancy. In Figure 2.7, the use of space redundancy of the component that is being 
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protected, together with a voter block, is illustrated. The voter is the module that votes, or 

chooses, for the majority result from the component blocks to be the circuit result. 

Circuit
Module 1

Circuit
Module 2

Circuit
Module 3

Voter
Result

 
Figure 2.7:  Use of space redundancy to detect an SET in a combinational circuit. 

Since all the three modules operate in parallel, this technique corrects any failure in 

one of the three modules with the performance penalty of the voter delay. On the other hand, 

the area overhead is more 200%, due to the triplication of the protected module and the voter. 

Depending on the size of the module, this area penalty can be a price that the designer can not 

afford. In Figure 2.8, the use of TMR with time redundancy to correct a fault in one module is 

illustrated. The TMR with time redundancy only triplicates the memory elements responsible 

for capturing the result of the circuit at different moments in time. If we compare the area of 

both TMRs, the time and the space one, we can say that the time TMR has the lower area 

overhead if the size of the circuit is smaller than the memory element. On the other hand, the 

time redundancy TMR will have bigger performance penalty due to the different need to 

capture the circuit values at three different moments in time. Also, the clock circuit with the 

two “Δ” delays adds some extra complexity to the circuit design.  
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M 1

M 2

M 3

Circuit
clock

clock + Δ

clock + 2Δ

Voter Result

 
Figure 2.8:  TMR with time redundancy. 

However, the voter is not free of faults and if a fault hits the voter, the system 

reliability can be compromised. It is important to mention that the TMR technique is only 

effective against single faults and in case of a double faults, which means two faults affecting 

each one a different module, the voter can choose a wrong answer as if it were correct. To 

guarantee the system reliability against multiple faults, the redundancy has to be increased. 

This way, N-MR - Modular Redundancy of order N, uses a higher number of modules to 

guarantee that the majority of the modules operates correctly. In case of double faults, the 

number of duplicated modules must be five. This way, if two blocks fail, the other three will 

operate correctly and the voter will be able to choose the right result from the majority. 

Despite its tolerance to multiple faults, the N-MR has a huge area overhead, which gets to 

more then 400% for the 5-MR, due to the addition of four copies of the protected module and 

the voter block. Also, the size of the voter grows geometrically when compared to the TMR 

version. Since the voter is sensible to faults, the reliability of the system can be compromised 

if the size of the voter grows too much. 

2.3.3.2.2 Error Detection and Correction Codes - EDAC 

Error detection and correction codes are commonly used to protect storage devices 

against single and multiple events. There are examples of software techniques (SHIRVANI, 

2000), which will be discussed in the next section, and hardware techniques (REDINBO, 
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1993) that perform SEU mitigation using EDAC. An example of EDAC is the Hamming 

code, which is useful to protect memories against SEUs because of its efficient ability to 

correct single upsets per coded word with reduced area and performance overheads 

(HENTSCHKE, 2002). However Hamming code is not effective in protecting memories 

against multiple bit upsets (MBUs). For this kind of event, researchers have proposed Bose-

Chaudhuri-Hocquenghem (BCH) and Reed-Solomon (RS) codes, based on finite-field 

arithmetic (also known as Galois field).  

BCH codes can correct a given number of bits at any position of the word, whereas RS 

codes group the bits in blocks to correct them. The drawback of these two approaches is that 

they have complex and iterative decoding algorithms, and use tables of constants in the 

algorithm. However, some studies have shown that the elimination of the table constants can 

simplify the RS codes (NEUBERGER, 2003). In (NEUBERGER, 2005), the authors propose 

a technique to improve the RS code through the individual optimization of the multipliers for 

specific constants. However, the area overhead imposed by the parity bits required for this 

technique may not be low for devices with small storage capacity. Also, the coder and 

decoder blocks, necessary to the generation of the parity bits and the correction of faults, are 

not protected against faults, and its correct functionality is crucial for the reliability of this 

technique. Therefore, their reliability must be guaranteed by some other protection technique. 

2.3.4 SEU and SET Error Mitigation Techniques for Software-Based Systems 

In the previous sections some hardware techniques used to mitigate soft errors that add 

some penalty in area, performance, or both, have been presented. However, when we are 

dealing with complex architectures made of many different components, such as computer 

architectures for instance, we can not simply triplicate the whole system like the TMR 

technique proposes. This way, other solutions with less overhead must be proposed to 
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guarantee the reliability of these systems. This section presents some solutions for software-

based systems, divided into three broad categories: software-implemented techniques, which 

exploit detection mechanisms implemented purely in software, hardware-based ones, which 

add extra hardware, and hybrid ones, that combine both software and hardware error detection 

mechanisms. 

2.3.4.1 Software Implemented Hardware Fault Tolerance (SIHFT) techniques 
Software based detection and correction techniques are based on modifying the 

software executed by the processor, introducing some sort of redundancy, so that faults are 

detected before they become errors. They focus on checking the consistency between the 

expected and the executed program flow, either by inserting additional code lines or by 

storing flow information in suitable hardware structures. In the next sections, some of these 

software based techniques will be discussed with their pros and cons. 

Software implemented hardware fault tolerance techniques exploit the concepts of 

information, operation, and time redundancy to detect the occurrence of errors during 

program execution. Some of those techniques can be automatically applied to the source code 

of a program, thus simplifying the task of software developers and reducing development 

costs significantly. 

Techniques aiming at detecting the effects of faults that modify the expected 

program’s execution flow are known as control flow checking techniques. These techniques 

are based on partitioning the code of the program into basic blocks (AHO, 1986). Among the 

most important solutions based on the notion of basic blocks proposed in the literature, there 

are the Enhanced Control Flow Checking using Assertions  (ECCA) (ALKHALIFA, 1999), 

the Control Flow Checking using Assertions (CCA) (MCFEARING, 1995), and the Control 

Flow Checking by Software Signatures (CFCSS) (OH, 2002b) techniques. 

ECCA is able to detect all single inter-block control flow errors, but it is neither able 

to detect intra-block control flow errors, nor faults that cause an incorrect decision in a 
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conditional branch. In (ALKHALIFA, 1999), ECCA technique was tested with an SET of 

benchmark applications, and was able to detect an average of 98% of the control flow errors, 

with a minimum of 78.5% and a maximum of 100% obtained for one of the benchmarks. 

Although the authors claim that this technique implies in minimal memory and performance 

overheads, the exact figures are not presented in the paper. However, the implementation of 

the technique requires modification of the application software and a non trivial 

performance/overhead analysis, and for this reason the authors themselves propose the 

development of a preprocessor for the GCC compiler to insert the assertions in the code 

blocks to be fortified. 

The CFCSS technique works assigning a single and unique signature to each basic 

block of the program. The runtime signature is held by a global variable and, in the absence of 

errors, the variable contains the signature associated to the current basic block. At the 

beginning of the program, the global variable is initialized with the signature of the first block 

then, at the beginning of each basic block, an additional instruction computes the signature of 

the destination block from the signature of the source block by computing the XOR function 

between the signature of the current node and the signature of the destination node. If the 

control can enter from multiple blocks, an adjusting signature is assigned in each source block 

and used in the destination block to compute the signature. As a limitation, CFCSS cannot 

cover control flow errors if multiple nodes share multiple destination nodes. The use of 

control flow assertions was also proposed in (GOLOUBEVA, 2003) by inserting additional 

assertions to check the control flow of the program. An SET of 16 benchmarks has been 

hardened against transient errors using the proposed technique, and tested with SEU fault 

injection in the bits of the immediate operands of branch instructions. The results have shown 

that this approach has an improvement over CFCSS (OH, 2002b) and ECCA (ALKHALIFA, 
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1999), however the technique proved to be very expensive in terms of memory and 

performance overheads, even though the overheads are application dependent. 

CCA, ECCA and CFCSS only detect control flow errors in the program. As far as 

faults affecting program data are considered, several techniques have been recently proposed 

that exploit information and operation redundancy (CHEYNET, 2000; OH, 2002a). The most 

recently introduced approaches modify the source code of the application to be hardened 

against faults by introducing information redundancy and instruction duplication, and adding 

consistency checks to the modified code to perform error detection. The approach proposed in 

(CHEYNET, 2000) exploits several code transformation rules that require duplication of each 

variable and each operation among variables. The approach proposed in (OH, 2002a), named 

Error Detection by Data Diversity and Duplicated Instructions (ED4I), consists in developing 

a modified version of the program, which is executed along with the original one. If results 

mismatches are found, an error is reported. Both approaches introduce overheads in memory 

and execution time. The approach proposed in (CHEYNET, 2000) minimizes the latency of 

faults; however, it is suitable to detect transient faults only. Conversely, the approach 

proposed in (OH, 2002a) exploits diverse data and duplicated instructions, and thus is suitable 

for both transient and permanent faults. As a drawback, its fault latency is generally grater 

than in (CHEYNET, 2000). The ED4I technique requires a careful analysis of the size of used 

variables, in order to avoid overflow situations. 

Although very effective, SIHFT techniques may introduce time overheads that limit 

their adoption only to applications in which performance is not a critical issue. Also, in some 

cases they imply a memory overhead to store duplicated information and additional 

instructions, what demands an extensive work from the application programmer when the 

automation is not possible. These approaches also require access to the source code of the 
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application, precluding the use of commercial off-the-shelf software components from a 

library. 

2.3.4.2 Hardware Techniques for Software-Based Systems 
Software based solutions usually impose high cost to the system performance, which 

for certain types of applications are simply not acceptable. For this kind of systems, hardware 

techniques are more indicated, as their performance overhead is lower. In this section, some 

hardware based solutions to cope with SEUs and SETs in software based systems are 

presented. 

2.3.4.2.1 Dynamic Implementation Verification Architecture - DIVA 
“Dynamic verification”, a hardware-based technique, is detailed in (AUSTIN, 2000) 

for a pipelined core processor. It uses a “functional checker” to verify the correctness of all 

computations executed by the core processor. The checker only permits correct results to be 

passed to the commit stage of the processor pipeline. The so-called DIVA architecture relies 

on a functional checker that is simpler than the core processor, because it receives the 

instruction to be executed together with the values of the input operands and of the result 

produced by the core processor. This information is passed to the checker through the re-order 

buffer (ROB) of the processor’s pipeline, once the execution of an instruction by the core 

processor is completed. Therefore, the checker does not have to care about address 

calculations, jump predictions and other complexities that are routinely handled by the core 

processor. Once the result of the operation is obtained by the checker, it is compared with the 

result produced by the core processor. If they are equal, the result is forwarded to the commit 

stage of the processor’s pipeline, to be written to the architected storage. When they differ, the 

result calculated by the checker is forwarded, assuming that the checker never fails. If a new 

instruction is not released for the checker after a given time-out period, the pipeline of the 

core processor is flushed, and the processor is restarted using its own speculation recovery 

mechanism, executing again the instruction. The DIVA approach cannot be implemented in 
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SoCs based on FPGAs that have an embedded processor, because the checker is implemented 

inside the processor’s pipeline. Also, it assumes that the checker never fails, due to the use of 

oversized transistors in its construction and extensive verification in the design phase. 

Originally conceived as an alternative to make a core processor fault-tolerant, this 

work also evolved to the use of a similar checker to build self-tuning SoCs. To demonstrate 

the benefits of the proposed solution, the authors implemented the DIVA architecture for the 

Alpha 21264 and created the so called REMORA (WEAVER, 2001). Results of an 

architectural simulation of nine SPEC95 benchmarks showed that the performance penalty 

was less than 1%. The area and power overheads were 6% and 1.5% respectively. Although 

the good results, the authors do not indicate which fault injection model was used. Also, in 

case of memory bit flips the technique will not be reliable, because both processors will use 

corrupted data to perform the operations. 

2.3.4.2.2 Simultaneous and Redundantly Treaded (SRT) Processor 

In (REINHARDT, 2000) the authors propose the use of a simultaneous and 

redundantly treaded processor, which is derived from a Simultaneous Multi Threaded (SMT) 

Processor (DEAN, 1996; DEAN, 1998), to detect faults by running two copies of the same 

thread at the SRT processor. The authors introduce the concept of the sphere of replication, 

which indicates what components will have the redundant execution mechanism to detect 

faults. All activity and states within the sphere are replicated, either in time or in space. 

Values that cross the boundary of the sphere of replication are the outputs and inputs that 

require comparison and replication, respectively, and the components that are out of the 

sphere of replication need other fault detection techniques. The proposed technique brings 

some challenges that are not present at a lock-stepped, physically-replicated design, like 

deciding when to compare the outputs and also when and which inputs need to be replicated. 

To solve these questions, the authors propose the use of some queues and buffers to indicate 

and store the values that need to be compared and keep the values that need to be replicated. 
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More details can be found in (REINHARDT, 2002). The proposed technique is only a 

detection technique and needs a recovery mechanism or some jump trigger to a safe state to 

guarantee the reliability of the processor. Also, the authors do not provide the overheads in 

terms of area and performance implied by the proposed approach.  

2.3.4.3 Hybrid Techniques 
Hybrid techniques such as (BERNARDI, 2006) combine some SIHFT techniques with 

an infrastructure IP core in the SoC. The software running on the processor core is modified 

by inserting instruction duplication and information redundancy together with some 

instructions for communication with the I-IP. The I-IP works concurrently with the main 

processor, implements consistency checks among duplicated instructions, and verifies 

whether the correct program execution flow is executed. Such techniques are effective, since 

they provide a high level of dependability while minimizing the added overhead, both in 

terms of memory occupation and performance degradation, but they require the availability of 

the source code of the application. 

There are cases in which the software of the application is not available or the costs 

involved in modifying the application software are too high. To solve this problem, the 

authors of (LISBOA, 2006) proposed the idea of introducing an I-IP between the 8051 multi-

cycle processor and the instructions memory, making the I-IP replace on-the-fly the fetched 

code by a hardened one.  

In this work a hybrid solution, such as the one proposed in (LISBOA, 2006) for the 

MIPS RISC pipelined architecture, is also presented, and its effectiveness in detecting control 

flow errors and instruction hardening caused by particle hits in the architecture registers, 

without adding any memory overhead or architecture modification of the MIPS architecture, 

is demonstrated. 

In this chapter several techniques to improve the fault tolerance in all the stages of a 

system production circuit design have been presented. As it was previously mentioned, 
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process modification techniques usually increase the production costs. On the other hand, 

hardware redundancy techniques imply in high area overhead (greater than 200%), while 

software redundancy techniques generally adds undesirable performance and memory 

overheads.  

The work presented here proposes two different solutions that provide improvement in 

the system reliability without the overheads implicit in the existing solutions. The first 

approach of this work proposes the replacement of the combinational circuit by magnetic 

memory based circuits, which is intrinsically protected against radiation induced bit flips due 

to its magnetic way of storing information. As we are just replacing part of the circuit, the 

area overhead introduced by this technique is potentially low. Also, due to some key 

architectural control techniques, the performance results showed that the proposed 

architecture not only has no small overhead but is faster than the equivalent non protected 

architectures that were compared to this work. 

The second solution presented in this work is a hybrid technique that uses an I-IP to 

improve the system reliability through instruction hardening and the detection of control flow 

errors. This technique implies in neither memory overheads nor requires any modification of 

the hardware, like the other software and hybrid techniques do. 
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3 USING MEMORY BASED CIRCUITS TO COPE WITH SEUS AND SETS 

The use of memory not only as a storage device, but also as a computing device, has 

been a subject of research for some time. In order to explore the large internal memory 

bandwidth, designers decided to bring some functions executed by the processor into 

memory, to make effective use of all these available data. In (ELLIOTT, 1999) the 

Computational-RAM is presented, bringing processor functions into the memory. This 

technique was originally used as a SIMD Processor (Single Instruction Multiple Data 

Processor) in some DSP applications. Also, memories come with intrinsic protection against 

manufacturing defects due to its spare columns and spare rows that can be activated to replace 

the malfunctioning ones. Also, as it was previously mentioned, they can be protected by 

Reed-Solomon codes, such as the one proposed in (NEUBERGER, 2005), with relatively low 

overhead. 

The fact that the contents stored in new memory technologies like MRAMs and 

FRAMs can not be flipped by particle hits, together with the fact that faults affecting logic 

components are becoming as common or even more than the ones affecting memory 

elements, makes the use of memory based circuits a good design strategy to implement more 

robust circuits for future technologies. So, if we reduce the quantity of combinational circuit, 

by replacing it with memory components, we will reduce the overall architectural 

vulnerability factor (AVF) and, consequently, the soft error rate. 

To test this assumption, two memory based circuit for a 4x4-bit multiplier, and one 

memory based circuit for a 4-tap 8-bit Finite Impulse Response (FIR) filter were 

implemented, and compared with their combinational counterparts through single and double 

simultaneous fault injection campaigns (RHOD, 2006a). All memory elements were protected 

with the RS code proposed in (NEUBERGER, 2005), to tolerate multiple bit flips. 
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3.1 4X4-BIT MEMORY BASED MULTIPLIER 

In those circuits based on the use of memory, the memory works as a truth table that 

receives the inputs and returns the outputs according to the implemented function. Since the 

size of a truth table depends on the width of the input and output, the memory size, in bits, 

also depends on the input and output widths. This relationship can be described as follows: 

    Size = I2 × O     (3) 

where I and O are the input and output widths, respectively, both in bits. 

For instance, let us consider an AND gate with two inputs A and B. The memory 

element that would replace this gate would have 2 inputs, representing the A and B values, 

and one output, to drive the result of the AND operation. The memory size would be equal to 

22 x 1, which gives us 4 bits. In Figure 3.1 the truth table of the 2 bits AND operation is 

illustrated. 

A   B    C
0    0     0
0    1     0
1 0     0
1    1     1

 
Figure 3.1: AND truth table. 

In Figure 3.1, one can identify the inputs A and B which in our memory circuit will 

become our address bits, and the result column indicated by the column C, which will be the 

4-bits memory content. The memory content has to be organized according to the truth table, 

which for this AND example means the positions 0, 1 and 2 have to hold the value ‘0’ and the 

position 3 holds the value ‘1’.  

It is important to mention here some self imposed design restrictions that we had to 

comply with and that led us to the proposed solutions for the multiplier test case: 
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Very small memories are not area efficient, because a significant area is needed to 

implement the decoders and a smaller proportion of area is used for data storage; 

The size of the memory used to replace the combinational parts is smaller than the size 

of the memory needed to implement the whole function, in our case, the 4x4-bit 

multiplication; otherwise, we would have a fully truth table implementation of the function of 

the circuit. So, in this case, the memory size must be smaller than 2048 bits; 

The size of the combinational circuit must be smaller than the size of the fully 

combinational circuit of the 4x4 bit multiplier of Figure 3.2, since the goal is to avoid faults in 

the combinational circuit part. 

In order to illustrate the different ways that a memory based circuit can be 

implemented using memory, two different solutions for the 4x4-bit multiplier, with different 

amounts of memory and combinational circuits, were proposed. The first one, here called the 

column multiplier, had more combinational circuit and less memory than the second one, here 

called the line multiplier. Using simulated fault injection to calculate the fault propagation 

rates of these two solutions, we compared the obtained results with the Architectural 

Vulnerability Factor (AVF) of the 4x4-bit multiplier implemented with the fully 

combinational circuit shown in Figure 3.2. 

 
Figure 3.2: Fully combinational 4x4-bit multiplier. 
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The column multiplier, as the name implies, makes the multiplication column by 

column. 

Therefore, to perform a 4x4-bit multiplication, 7 cycles of operation are necessary. 

During the first cycle, all operations required to generate bit P0 (Figure 3.3) of the product are 

performed. During the second cycle of operation, bit P1 is generated, and so on, until the last 

cycle, when bits P6 and P7 are generated. In Figure 3.3 one can see the implemented column 

multiplier circuit. In this circuit, memory performs the function of one to three full adders of a 

column, depending on the column that is being calculated. Figure 3.3 also shows that some 

additional circuitry has been added in order to properly generate control signals. To save the 

carry-out signals for the next cycle, a 3-bit register is used. A 6-bit shift register was also 

required to save and shift the product. Another control requirement was a 3-bit counter to 

generate the selection signals for the multiplexer. 

In Figure 3.3, the combinational circuit that is sensible to faults is highlighted with a 

dashed rectangle. 

 
Figure 3.3: Column multiplier circuit. 

In the Line multiplier circuit, multiplication is performed line by line. In this case, the 

number of cycles necessary to make a multiplication is equal to the number of bits of the 
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inputs, which in our case are four. During the first three cycles, only one result bit per cycle is 

generated and the four remaining bits are calculated in the last cycle. 

In Figure 3.4 we can see the implemented line multiplier circuit. In this circuit, 

memory performs the function of all 4 full-adders in a line. Like in the previous 

implementation, it was also necessary to include some additional circuitry for control and to 

save some values from one cycle to other. But in this circuit only a 3-bit shift-register to store 

and shift the product was necessary, against the 6-bit register used in the previous solution. 

 
Figure 3.4: Line multiplier circuit. 

The area characteristics of the proposed solutions are compared with those of the 

TMR and 5-MR in Table 3.1. This table also shows the costs of the Reed Solomon protection 

used for registers and the memory, together with the coder and decoder area costs, which 

were obtained using the tool proposed in (NEUBERGER, 2005). 

Table 3.1: Area for Each Solution in number of transistors. 

Circuit Comb. 
Circuit 

Flip-Flops Voter Memory RS Cod. 
/Decoder 

Total 

5-MR 3,270 - 672 - - 4,392 
TMR 2,232 - 240 - - 2,472 
Combin. 744 - - - - 744 
Column 200 468 - 3,048 96 3,812 
Line 42 346 - 7,650 96 8,134 
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To evaluate the area, we have considered that each bit of ROM memory demands 4 

transistors. For the logic gates we computed the area as follows: 6 transistors for AND, OR 

and XOR gates, 4 for NAND and NOR gates and 12 for each flip-flop.  

One important thing that must be taken into consideration is the additional unprotected 

area that the voters add to the TMR and 5-MR solutions. In TMR, the voter is almost 15% of 

the total area, and in 5-MR it is more than 28%. In the memory solutions, the area added for 

the Reed-Solomon encoder and decoder is less than 4% in the column multiplier solution and 

less than 2% in the line multiplier solution.  

The injection of faults was simulated using CACO-PS (Cycle-Accurate Configurable 

Power Simulator) (BECK, 2003a), a cycle-accurate, configurable power simulator, which was 

extended to support single and double simultaneous transient faults injection. The simulator 

works as follows: first, it simulates the normal operation of the circuit and stores the correct 

result. After that, for each possible fault combination in the circuit, the simulation is repeated. 

Then, the output of each simulation is compared to the correct one. If any value differs, it 

means that the fault was propagated to the output. All the process is repeated again, for each 

combination of input signals of the circuit. Both implementations of the multiplier using 

memory were compared with the fully combinational solution and with the classical TMR and 

5-MR solutions. The resulting fault propagation rates can be seen in Table 3.2, for single and 

two simultaneous faults injection. In the same table, one can also find the critical path timing 

of all solutions. These results were obtained with electrical simulation of the circuits. We used 

the Smash Simulator for 0.35 μm technology. 

In Table 3.2, one can see that the architectural vulnerability factor for single faults (3rd 

column) and for double faults (4th column) was higher in the solutions using memory than in 

the TMR and 5-MR ones. That happened because we have reduced the area susceptible to 

faults, and consequently increased the influence of that portion of the circuit in the final 
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result. But, if we take into account that the circuit with less area has less probability to be 

affected by a transient fault, and make a proportional AVF evaluation (5th and 6th column), as 

the percentage of observable faults at the output, one can see the benefits of the proposed 

solutions.  

Table 3.2: Architectural Vulnerability Factor and Timing Results for Single and 
Double Faults 

Circuit #of gates 
that fail 

AVF % 
(1 fault) 

AVF % 
(2 faults) 

Prop. AVF % 
(1 fault) 

Prop. AVF % 
(2 faults) 

Critical Path 
Timing (ns) 

5-MR 492 8.80 20.50 8.80 20.50 18.5 
TMR 268 5.49 16.26 2.99 8.86 18.2 
Combin. 76 49.11 63.60 7.59 9.82 17.5 
Column 33 15.92 28.05 1.07 1.88 15.0 
Line 9 36.22 54.07 0.66 0.99 16.5 

 

When contrasting the results in Tables 3.1 and 3.2, one can notice that the 5-MR 

solution almost doubles the area required for TMR, and also increases by a factor of 2.5 the 

percentage of faults that are propagated to the output of the circuit. That happens due to the 

significant increase in non-protected area introduced by the voter in the 5-MR approach. The 

conclusion, then, is that future solutions based upon increasing the redundancy in terms of 

modules will no longer be a good alternative when multiple simultaneous faults become a 

concern. Another important observation is that, depending on the design alternative, the area 

versus fault tolerance trade-off may impact quite differently, according to the adopted 

solution, when contrasted with the TMR approach. For the column multiplier, the area 

increases 1.5 times, while the fault propagation percentage is reduced 4.7 times. For the line 

multiplier, however, the area increases by a factor of 3.2, while the AVF decreases by a factor 

greater than 8.  

When one looks at the timing results in Table 3.2, one can notice that the critical path 

in the memory solutions has decreased. That happened because the proposed memory 

solutions reduced most of the combinational circuit, and added a memory and flip-flop based 
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circuit that contributes less to the critical path than the combinational circuit that was 

replaced. On the other hand, the total computation time has increased by a factor of almost 4 

for the line memory and almost 7 for the column memory. That happened because the new 

memory solutions compute the multiply in 4 and 7 cycles, for the line and column memory 

solutions, respectively. The final computation time is bigger for the memory based circuits 

than for the others. It is important to remember that the objective of this work was to show 

that, when replacing a fully combinational circuit with a protected memory and a smaller 

combinational circuit, we can have some benefits in terms of reliability, which for this 

memory circuit was 4.7 for the column solution and more than 8 for the line solution, 

respectively. 

3.2 4-TAP, 8-BIT FIR FILTER MEMORY BASED CIRCUIT 

In a second case study we implemented a 4-tap, 8-bit FIR filter. We compared the 

fully combinational solution (Figure 3.5) with a solution using our approach, with memory 

replacing part of the combinational circuit.  

* * * *

+ + +

In 3 In 2 In 1 In 0

Coef 0 Coef 1 Coef 2 Coef 3

17 18 18

16 16 1616

 
Figure 3.5: Combinational circuit for the 8-bit FIR filter with 4 taps. 

The filter implementation using memory to replace part of the combinational logic is 

illustrated in Figure 3.6.  
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Figure 3.6: 8-bit FIR filter with 4 taps, using memory. 

The filtering function is performed in 8 cycles and the memory function can be 

described by the following equation:  

 (4) 

where n is the bit position (from 0 to 7), k is the tap number (from 0 to 3) and M is the 

order of the filter.  

In our solution using memory, we pipelined the multiply and add operations, in order 

to reduce the memory size. The comparison between the area of the combinational filter and 

the memory one is shown in Table 3.3.  

Table 3.3: Area results for the filter implementations in number of transistors. 

Filter Circuit Combin. 
Circ. 

Flip-flops Memory RS cod./dec. Total 

Combinational 16,494 - - - 16,494 
Memory based 540 1,700 900 484 3,624 

 

Since this is a pipelined filter, it was necessary to include a 10-bit adder to add the 

partial products generated in each cycle, and drive the result to the output. We also included a 
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register to store the sum from one cycle to the next and an 8-bit shift register to shift and store 

the 8 least significant bits, which are generated one per cycle.  

Differently from the multiplier, it was not possible to simulate the injection of all 

possible combinations of faults in the filter in an exhaustive way, because it would take too 

long to get the results.  

However, from the experience with a previous case study, where we noticed that only 

a small number of randomly injected faults (less than one percent of the total number of 

possible faults) was necessary to reach an approximately stable result, in terms of percentage 

of faults that propagate to the output, we decided to use a randomly generated set of input 

combinations and single/double faults injection to evaluate the AVF for the fully 

combinational solution and for the one using memory.  

To implement the fault injection in a faster way, the filter was implemented in VHDL 

and both filter architectures have been synthesized in an FPGA (Altera EP20K200EFC484-

2X). The results are shown in Table 3.4, for single and double faults. 

In this case study we can see, from Table 3.4, that the proportional AVF of the 

memory solution was more than 20 times smaller than that of the combinational solution for 

single and double simultaneous faults.  

Table 3.4: AVF results for single fault in FIR filter implementations. 

Circuit  # of gates 
that fail  

Proportional 
AVF (1 fault)  

Proportional 
AVF (2 faults) 

Combinational  1,631  48,21  67.35  
Memory  50  1.39  2.11  

 

It is clear that the memory based solution has a greater performance overhead, but as it 

was stated before, our objective with this work was to show the reduction of the AVF that one 

can obtain when using a memory based circuit instead of the traditional combinational one, 

since, as stated in the equation 2 from the previous chapter, the SER of a circuit is 
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proportional to its AVF. So, if we reduce the circuit AVF it is the same as reducing the circuit 

soft error rate.  

In this chapter, two different applications where traditional combinational circuits 

were replaced by memory based ones to reduce their AVF were presented. We saw that, 

depending on the application, and also on the designer strategy, different AVF reductions can 

be achieved. Despite the good results obtained using this idea, it is not possible to propose a 

memory based circuit for every combinational circuit that exists nowadays. Also, this idea 

was proposed to improve only hardware modules, and sometimes it is simply too expensive to 

convert a software algorithm into a hardware one to improve its reliability. This way, in the 

next chapter a memory based core processor architecture is presented, as an evolution of the 

idea proposed in this chapter. 
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4 MEMPROC: A MEMORY BASED, LOW-SER EFFICIENT CORE PROCESSOR 

ARCHITECTURE 

In the previous chapter a study on how the use of memory based circuits can affect the 

AVF, and consequently the SER, of a circuit was presented. Despite the good results, the 

proposed memory solutions imply some performance and area overheads and require a 

different design for every application. Also, the costs involved to implement the proposed 

idea for software applications might not be worth.  

In this chapter, an innovative general purpose memory-based core processor, designed 

to be reliable against SETs and SEUs, without adding significant performance or area 

overhead is presented. At the same time, we favor a regular architecture that can be used to 

enhance yield in future manufacturing processes. This architecture is called MemProc and 

was presented in (RHOD, 2006b). 

4.1 THE MEMPROC ARCHITECTURE 

The processor architecture that is presented here is a multi-cycle 16-bit processor with 

a Harvard architecture that performs its operations using a microcode memory. Figure 4.1 

shows the main functional blocks of the proposed architecture. 
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Figure 4.1: MemProc overall architecture. 

The microcode memory receives the initial address of the microcode that executes the 

current operation from the ROM memory and generates the control signals for the data 

memory, ALU, and operation masks memory. The operation masks memory is responsible for 

passing the operation masks to the ALU. All arithmetic and logic operations results are stored 

in the RAM memory, and the register bank is also mapped into this memory. Each logic or 

arithmetic instruction takes at least 4 cycles to be executed. During the first cycle, the fetch 

and decoding of the instruction are performed by the microcode memory, and all the operands 

are fetched from the RAM memory during the second cycle. During the third cycle the 

operation is executed, and its result is stored in the RAM memory during the fourth cycle. 

4.1.1 The Macroinstruction 

The macroinstruction of the MemProc architecture is 56 bits wide and is unique for all 

types of instructions. In Figure 4.2, the macroinstruction format is illustrated, with its 

different fields and the width of each field. The opcode field of the macroinstruction 

represents the code of the operation that is being executed and is 8 bits wide. The operand1 

and operand2 fields can indicate the address or the value of the operands used in the 
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instruction. The destination field indicates the destination address of the operation that is 

being executed. In case of a branch instruction, the destination field indicates the address of 

the branch.  

opcode operand1 operand2 destination

8 16 16 16

55 0

 
Figure 4.2: Macroinstruction format. 

As mentioned before, the MemProc architecture is a multi-cycle machine and, 

depending on the instruction, the execution of the operation can take different numbers of 

cycles. For instance, the instruction MOV can take from 2 to 4 cycles to be executed, 

depending on the types of the operands. A complete list of the 48 instructions that were 

implemented in MemProc up to now, and the number of cycles that each instruction takes in 

the execution stage is in the Appendix A. 

4.1.2 The Microcode 

The microinstructions of the proposed architecture are 66 bits wide and composed by 

three fields: the deviation address, the operation masks code and the control signals, as it can 

be seen in Figure 4.3. 

deviation. addr. oper. masks code control signals

32 7 27

65 0

 
Figure 4.3: Microinstruction format. 

The deviation address field stores 4 possible deviation addresses in the microcode. 

This field was introduced to allow deviations in the microcode to accelerate some instructions 

and also to allow the reuse of the code. The operation masks code indicates to the “operation 

masks memory” which are the operation masks that will be used in the next execution cycle. 
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The operation masks will be explained in more details in the next section. The control signals 

field generates the control signals for all hardware structures of the architecture, such as: 

memory enable, multiplexors selection and register enable signals. 

4.1.3 The Arithmetic and Logic Unit - ALU 

The MemProc architecture was designed with the purpose of reducing the area that is 

more sensitive to SEUs and SETs. As mentioned before, there are several ways to protect 

memory with low overhead, like EDAC or by using intrinsically protected memories like 

MRAM, as it is used in this work. However, when it comes to protect the combinational logic, 

the costs in area are relatively high. This way, in this architecture it is proposed to use 

simplified combinational logic hardware and more memory elements to improve the 

architecture reliability in the presence of particle hits. Therefore, due to its simplicity, the 

ALU of MemProc is based on the Computational RAM approach (ELLIOTT, 1999). 

The ALU is composed by 8:1 multiplexors, which are able to generate all the 

minterms for a given 3-bit boolean function, according to the values of bits X, Y, and Z (or 

M). Figure 4.4 depicts a MemProc ALU block for processing 1bit of data. The complete 

MemProc ALU is 16-bit wide and its 16 blocks work in parallel, being able to perform bit 

serial arithmetic and logic operations. To accelerate addition operations, two 8:1 muxes are 

used, instead of a single one, as done in the Computational RAM approach; one is responsible 

to calculate the sum and the other, to calculate the carry out.  

The operation masks feed the ALU to calculate all arithmetic, logic and conditional 

branch operations. Each line of the operation masks memory has 32 masks, with 8-bit width, 

which gives a total of 256 bits of information. Figure 4.5 highlights a complete line of 

operation masks used during the addition operation.  
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Figure 4.4: ALU for one bit operation. 

96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96

255 128

e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8

127 0

 
Figure 4.5: Operation masks used during the addition operation. 

Figure 4.6 illustrates how the ALU works. In this figure, an addition operation for one 

bit of the ALU is presented. One can see, from the truth table, that the hexadecimal values of 

the operation masks for the “sum” and the “cout” (carry out) outputs of the multiplexors are 

96 and e8, respectively. Also in Figure 4.6, one can see the presence of two wired-or buses. 

These buses implement an “or” operation of all the multiplexors’ outputs. These wired-or 

busse are extremely important to allow the control of stopping an arithmetic operation as soon 

as the final result is ready, and also for the improvement in performance when executing 
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conditional branch instructions. The way these gains are achieved will be explained in more 

details in the section that follows. 

8

X Y Z M

3A  B Cin Sum Cout
0   0   0       0       0
0   0   1       1       0
0   1   0       1       0
0   1   1       0       1
1   0   0       1       0
1   0   1       0       1
1   1   0       0       1
1   1   1       1       1 8

Operation
code B
(Cout)

Operation
code A
(Sum)

2-bit addition:
Truth table

96 e8

e8

96

wired or A
wired or B

 
Figure 4.6: 2-bit addition using MemProc ALU. 

 

4.2 DESIGN STRATEGIES THAT IMPROVED PERFORMANCE 

The MemProc architecture was designed to have a simplified combinational hardware 

to reduce the sensible area of the architecture. As it was explained in the previous section, the 

ALU is capable of 1-bit operations only; therefore, this introduces a performance degradation 

for operations that need information from a previous cycle to compute the next cycle, like for 

instance the addition operation, that needs the carry out from one cycle to calculate the sum 

and the next carry out values. In order to accelerate some operations, we introduced the 

wired-or buses and also an extra flip-flop called “M” to accelerate multiply operations. 

The way MemProc achieves its high performance is based on the fact that it the 

execution of any operation takes only the exact number of cycles necessary to get the 

operation result. In traditional computer architectures, the ALU does its arithmetic and logic 
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operations using combinational hardware which takes always the same time to perform the 

complete operation, regardless of the value of the operands. In MemProc, the hardware 

executes only the number of cycles necessary to get the result, according to the carry 

propagation chain. To explain it clearly, Figure 4.7 illustrates this paradigm with an 8-bit 

addition operation. 
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Figure 4.7: 8-bit addition paradigm. 

In Figure 4.7 we can see that MemProc needs to wait only for 5 of the 8 operating 

units to complete their operations in order to get the result, which means that it takes 5/8 of 

the time that traditional architectures require to perform this addition. To detect when the 

operation is finished, MemProc uses the wired-or bus to evaluate when there are no more 

carry outs to propagate, which means that the addition is finished. This way, we can say that 

the proposed architecture takes advantage on the value of the operands. For instance, one 

addition can require from 3 to 18 cycles to be performed, depending on the number of carries 

to be propagated, which depends on the value of the operands.  

Multiplications are also performed in order to take advantage of the value of the 

operands, since the number of cycles depends on the number of bits equal to zero in the 

operands. The multiplication operation is the same as a sequence of sums and shifts of one 
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operand, and the number of sums is proportional to the number of ‘1s’ that the operands have. 

Therefore, the number of required cycles decreases as the number of bits equal to zero in the 

operands increases.  

So, in general, the lower the values of the operands the lower is the number of cycles 

it will take to perform an operation. One could say that if the values of the operands are high 

the proposed approach would not have any advantage. Nevertheless, in (RAMPRASAD, 

1997) results show that the transition activity for some multimedia benchmarks is more 

intense in the 8 least significant bits. This means that, for this kind of application, most of the 

data tends to be in the range from 0 to 255, and can be represented in 8 bits, which gives us a 

low probability of the necessity of more than 8 carry propagations. 

Other gains arising from the strategy of computing just the necessary can be achieved 

when we are dealing with the “for loop” control structure. Most of the time, this loop structure 

is used to count up by one,to control the number of repetitions of some block of code. If we 

analyze just the addition operation present in this loop, we will see that this addition operation 

produces no carry in 50% of the additions and only one carry in other 25% of the cases. This 

way, we can assume that for this kind of loop structure, the MemProc architecture will take 3 

cycles for 50% of the additions and 4 cycles for other 25%. More results related to MemProc 

performance gains will be shown in the next chapter. 

4.3 CODE GENERATION 

In other to accelerate code generation, it was decided to generate the MemProc 

program code based in another language. Instead of making a compiler or modifying an 

existing one to, it was created a C program to work as a translator from the Java compiled 

code to MemProc’s language. In Figure 4.8 the code generation process created for MemProc 

is illustrated. During the first step, the application programmer writes the Java code of the 
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application. Since MemProc does not support dynamic space allocation, nor recursive 

functions, the programmer can not use these programming resources when writing the Java 

application code. Therefore, all variables and methods must be created statically to have their 

space reserved. After the code is written, it is compiled and the mnemonic Java code (Java 

bytecodes) is produced. At the next step, the code translator is applied and the MemProc 

instruction code is obtained. Then, in the last step, the MIF generation program, also 

developed as part of this work, is ran to obtain the Memory Initialization File (.mif) of the 

MemProc program code. 

Programmer

Java code

Compiler
javac

Mnemonic
code
iload_0
istore_2
iload_1
istore_3
getstatic

for(..;..;..) {
if(...)

a[i]=i;
}

Translator

MemProc
code

MOV 1fa, 10

CALL 5, 1f2, 2

MOV 1fe, 11

MOV 1fd, #8
RET 1f3

.mif file
Generator

MIF file
0 : 020000001001fa;
1 : 060005000201f2;
2 : 020000001101fe;
3 : 010000000801fd;
4 : 07000001f30000;
5 : 010000000001f9;
6 : 05001d00000000;
7 : 22000101fa01fe;

Developed as part of  another work

Developed as part of this work  
Figure 4.8: Code generation process for MemProc. 

From the blocks that compose Figure 4.8, the code translator was the one that 

demanded more time to be finished. That happened because the source code (the Java one), is 

a stack based code, which in other words means that all operands need to be stacked before 

they are used in any operation. On the other hand, the MemProc architecture is more like a 

RISC one, which needs fewer instructions to perform the same operation. So, it was necessary 

for the translator to make an intensive code analysis in other to find the correct operands for 

each operation in the MemProc code. 
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5 MEMPROC: EXPERIMENTAL RESULTS 

In order to evaluate the feasibility of the proposed architecture, both in terms of fault 

tolerance, area, and performance, extensive simulations have been executed, to compare the 

MemProc architecture with two different architectures: a 16-bit processor, with a 5-stage 

pipeline, named FemtoJava (BECK, 2003b) and a well known RISC architecture, the MIPS 

processor (PATTERSON, 2002). In the first section of this chapter the characteristics of the 

two architectures that are being compared with MemProc are presented. The second section 

shows the tools that were used to evaluate the architectures. At the third section the fault rate 

and area evaluation experimental results are explained. Finally, in the last section, the 

performance results of the proposed architecture are presented. 

5.1 ARCHITECTURES COMPARED WITH MEMPROC 

The first architecture that was compared with MemProc is the pipelined version of the 

FemtoJava processor family. This processor family has a Harvard architecture that executes 

Java bytecodes based on stack operations. The first version of the FemtoJava processor was 

the multicycle version proposed by (ITO, 2001). The next version was the 16 and 32 bits, 5-

stage, pipelined version (BECK, 2003b), also called FemtoJava Low Power. In other to 

explore dynamic parallelism and parallelism during compilation time, a superscalar and a 

VLIW (Very Large Instruction Word) versions (BECK, 2004) have also been proposed. In 

this work, the MemProc architecture is compared with the 16-bit 5-stage, pipelined version 

presented in Figure 5.1. 

 
Figure 5.1: FemtoJava pipeline block scheme. 
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The FemtoJava architecture illustrated in Figure 5.1 is a pipelined architecture with 5 

stages: the instruction fetch stage, the decoding stage, the operand fetch stage, the write-back 

stage and the execution stage. This architecture also counts with the forwarding unit in other 

to accelerate the delivery of operands to the execution stage.   

The other architecture that was used to evaluate the MemProc architecture is the 5-

stage pipelined MIPS illustrated in Figure 5.2. It is a Harvard architecture with a reduced 

instruction set. Differently from FemtoJava, the MIPS architecture has the instruction decode 

together with the operand fetch. On the other hand, the FemtoJava processor has the data 

memory access together with the execution stage and in the MIPS processor they are in 

different stages. 

 
Figure 5.2: The pipelined MIPS architecture. 

5.2 TOOLS USED IN THE FAULT INJECTION, PERFORMANCE AND AREA EVALUATION 

All architectures were described in a tool named CACO-PS (BECK, 2003a). As the 

name says, this tool is a cycle-accurate simulator, which performs the architectural behavioral 

simulation cycle by cycle. The CACO-PS tool uses basically three descriptions files to work. 
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An architecture description file is used to list the components that take part of the 

architecture, its inputs, outputs and control signals. 

A behavioral description file describes all components that are part of the architecture. 

In this file, the behavior of each component is described using the C language, and this 

description allows each component to be instantiated as many times as necessary, and in any 

architecture where it is required. 

The third and last file is the power description file. This file has the description of the 

function that will be executed to calculate the power consumption of the component, 

according to its transition activity. In this work the power consumption was not evaluated, 

therefore this file was not necessary. 

The CACO-PS tool has the option to load the program and data codes from a memory 

initialization file.  

The FemtoJava architecture description file was already described by another student, 

so it was only necessary to describe the MemProc architecture and the MIPS one in order to 

run the performance evaluation. Both architecture description files can be found in the 

Appendixes B and C respectively.  

For the fault injection procedure it was necessary to add different components to the 

architectural description file, in order to simulate the faulty behavior of all the three 

architectures. To simulate the behavior of SETs in the combinational hardware, a component 

to flip the selected bit of the hit component output just for the duration of one cycle was 

created. On the other hand, if the component that was hit is a memory element, the kind of 

event generated is a SEU, whose effects remain active until a new value is written in the 

memory element. To simulate this faulty behavior, a function already present in the tool was 

used to write values in memory elements.  
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To describe each architecture version for fault injection, it was necessary to add one 

component to inject fault for each component in the architecture, according to the type of 

event the component receives, SEU or SET. In other to accelerate the insertion of these extra 

components for all the three architectures, it was created a C program that reads the 

architecture description file and creates the architecture description file for fault injection 

automatically, saving time and avoiding human errors in the conversion. To test if the 

“conversion program” created the faulty architecture correctly, a simple test was done. The 

“faulty” architecture ran a selected application without the fault injection and the program 

result was compared with the normal architecture running the same application. This test was 

repeated for all available applications and, since the final result was the same for both 

architectures, it was verified that the “conversion program” did the conversion with no error. 

In other to evaluate the maximum frequency each architecture supports, the 

architectural critical paths of the three architectures were described in VHDL and synthesized 

for a 0.35 μm cell library in the Leonardo Spectrum tool (MENTOR, 1981). This tool was 

also used to evaluate the area consumption in terms of “equivalent gates” for the more 

complex components such as the decoders and queues and registers of the FemtoJava and the 

MIPS architecture. The other components were evaluated as follows: all AND, XOR, NAND, 

NOR and NOT gates were considered to have the same area, equivalent to one “equivalent 

gate” like the ones from the Leonardo tool. The 2:1 multiplexors were considered to be equal 

to one “equivalent gate” and the other multiplexors were constructed with 2:1 multiplexors, to 

be calculated as one “equivalent gate” for each 2:1 multiplexor. 
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5.3 FAULT RATE AND AREA EVALUATION 

To evaluate the fault rate of the processors, random faults were injected during their 

operation. During fault injection, the behavior of each processor was compared to the 

behavior of its fault free version when executing the same application with the same data.  

Since some faults may hit parts of the circuit which are not being used at a specific 

moment in time, to detect if a fault has been propagated or not it is not necessary to compare 

the value of all functional units or registers. It is only necessary to compare those components 

that are vital for the correct operation of the system. For the FemtoJava and the MIPS 

processors, the units to be checked are the program counter, in order to detect wrong 

branches, and the RAM data and address registers during write operations, to identify silent 

data corruption (SDC). In the case of MemProc, besides the program counter, the microcode 

counter was checked to identify wrong branches and the write address and write data registers 

contents were checked to identify SDC. Figure 5.3 depicts the fault injection scheme 

implemented to measure fault rate in both processors. The CACO-PS tool has also been used 

to implement the fault injection and detection circuits. 

Gold 
Processor

Fault 
Sensitive
Processor

Random
Fault Injection

comparator

Error
 

Figure 5.3: Error detection scheme. 
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It is clear that the probability of a component being hit by a fault increases with the 

area of the component. So, to be as realistic as possible, the random fault injector was 

implemented following this probabilistic fault behavior. To do so, it was created a file with all 

the important information about the components, such as component size in number of gates, 

the component type (memory or combinational), number of outputs and outputs widths. When 

the fault injection process starts, this component information file is loaded by the random 

fault injector and is used to determine which is the component that fails in each fault injection 

cycle, according to a probability based on its area. 

Another important variable in the fault injection process is the amount of faults that 

are injected and the interval between the fault injections. In this work, we decided to use a so 

called environmental acceleration (MITRA, 2005), otherwise, we would have to wait for long 

simulation times in order to get an error. To make calculations easier, we assumed that the 

particle flow is able to produce 1 SEU or SET per cycle in the FemtoJava processor, which is 

the one with the biggest sensible area. To calculate the corresponding number of faults per 

cycle for the MIPS and the MemProc processors according to their sensible area and 

maximum frequency, it was used the area and frequency information that was obtained with 

the Leonardo Spectrum tool, as explained in the previous section. Table 5.1 illustrates those 

results and the corresponding time between fault injections for all processors. 

Table 5.1: Area and time between fault injections. 
Architecture ROM 

(bits) 
Op. Masks 
mem. (bits) 

Opcode 
mem. (bits) 

# of sensible 
gates 

Max. freq. 
(MHz) 

# faults per 
cycle 

Time bet. 
fault inj.  

MemProc 1,792 19,712 40,326 1,409 254 1/130 514,3 ns 
MIPS 2,488 - - 9,619 54 1/4 75,3 ns 
FemtoJava 600 - - 23,918 33 1 30,3 ns 

 

The first column of Table 5.1 presents the size of the ROM memory, also know as 

code memory, for the “bubble sort” application. We can see that the FemtoJava architecture 

has the lowest memory consumption. That happened because the Java code operates using the 
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operands that are at the top of the stack and stores the result of the operation at the top of the 

stack automatically. This strategy saves some space, since the instruction does not need to 

indicate where the operands are, nor where the result needs to be stored. Also, the MemProc 

and the MIPS instructions have always the same size, even if the instruction does not use all 

its width. On the other hand, the Java code has instructions with 1, 2, and 3 bytes of width, 

and consequently does not waste memory space as the MIPS and the MemProc do. 

Consequently, the FemtoJava decoder is more complex and demands more area than the 

MIPS and the MemProc ones. 

In Table 5.1 we can see why MemProc is called a memory-based processor. In the 

MemProc architecture, the combinational circuit is very small when compared to the size of 

its memory elements. In our approach, all memory contents are not sensible to faults, since we 

are simulating the use of fault tolerant memory technologies, such as MRAM, FRAM, and 

flash memories, already referred to. Even for the MRAM and FRAM technologies, the 

decoding circuit is not tolerant to faults. So, to be as realistic as possible, the area 

corresponding to these circuits was also counted together with the sensible gates of MemProc, 

and the decoding circuit was constructed as a separated component at the architecture 

description, to have its behavior simulated during the fault injection. The two MemProc 

memories have more than 60,000 bits together. If we consider that each 2 bits of memory 

have the same area of one equivalent gate, then the total area introduced by the memory 

components is equal to more than 30,000 gates, which makes MemProc have the largest area 

among the three processors. However, the area corresponding to the memory elements is not 

sensible to faults.  

The fault injection process injected random faults according to the probability of the 

component being hit, together with the calculated time between fault injections, which is in 

the 8th column of Table 5.1. In this process, faults were injected until one error or a silent data 
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corruption (SDC) was detected. This process was repeated 100 times and the mean time to 

failure for these 100 errors for all the three architectures was calculated and is presented at 

Table 5.2. 

Table 5.2: Fault rates for all architectures. 
Architecture # of injected faults # of errors # of SDC # of cycles MTTF (µs) 
MemProc 4,943 98 2 865,412 31.83 
MIPS 2,160 90 10 4,320 1.83 
FemtoJava 2,127 84 16 2,127 0.64 
 

Table 5.2 lists the fault injection results for the MemProc, MIPS and Femtojava 

processors. In the second column, the number of simulated injected faults in the entire process 

until the detection of 100 errors or SDCs is shown. The third and fourth columns present the 

number of errors and SDCs that occurred during this process, respectively. The fifth column 

shows the total number of cycles that were necessary to detect all 100 errors and SDCs. In the 

last column, one can see the corresponding Mean Time to Failure value. as one can see, the 

MTTF of the MemProc architecture is more than 49 times bigger than the FemtoJava’s one.  

When comparing the Mean Time to Failure of MemProc and the MIPS architecture, 

one can see that the MTTF of the proposed architecture is more than 17 times bigger than the 

MIPS one. 

These results show the significant reduction in the MTTF that can be obtained by 

using the proposed architecture. In the next section, performance results are presented, and  

show that, despite the fault tolerance improvement introduced by the MemProc architecture, 

no performance degradation is observed at the proposed architecture when compared to the 

FemtoJava and the well known MIPS architectures. 
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5.4 PERFORMANCE EVALUATION 

The performance evaluation was done using four different application programs, with 

different processing characteristics: three sort algorithms (the bubble, insert and select sort 

algorithms), one DSP algorithm, and the IMDCT (Inverse Modified Discrete Cosine 

Transform) algorithm, part of the MP3 coding/decoding algorithm, were executed in 

MemProc, MIPS and FemtoJava architectures. The obtained results are shown in Table 5.3. 

Table 5.3: Performance when executing benchmark applications. 

Application MIPS (54 MHz) FemtoJava (33 MHz) MemProc (254 MHz) 
Performance 

ratio compared 
to:  

 # of 
cycles 

Comp. 
time (µs) # of 

cycles 
Comp. 

time (µs) 
# of 

cycles 

Comp. 
time  
(µs) 

FJ MIPS 

Bubble Sort 2,280 42.2 2,468 74.8 4,720 18.4 4.06 2.29 
Insert Sort 1,905 35.3 1,571 47.6 2,508 9.8 4.86 3.60 
Select Sort 1,968 36.4 1,928 58.4 2,501 9.7 6.02 3.75 
IMDCT 38,786 718.3 41,061 1,244.2 142,951 562.8 2.23 1.28 

 

From Table 5.3 we can see that MemProc executes the bubble sort algorithm in 

approximately 4.7 thousand cycles, while FemtoJava and MIPS take the half of the number of 

cycles. As stated before, MemProc requires several cycles to perform arithmetic (bit serial) 

operations, and the number of cycles also depends on the value of the operands. That is the 

reason why the number of cycles spent by MemProc is higher than the other architectures. On 

the other hand, MemProc’s critical path is determined by the access time of the microcode 

memory and the operational masks memory, while in FemtoJava and MIPS the critical path is 

determined by the multiplier delay. So, the maximum frequency of MemProc is more than 7 

times higher than that of FemtoJava and almost 5 times higher than that of MIPS, and, as 

consequence, the MemProc is more that 4 times faster than FemtoJava and more than 2 times 

faster than MIPS when running the sort algorithms.  
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If we look at the results when executing IMDCT we can see that MemProc was only 

2.23 times faster than FemtoJava and 1.28 times faster that MIPS. That happened because this 

algorithm makes intensive use of the multiply instruction, which can take up to 48 cycles to 

be executed in MemProc. It is important to mention here that MemProc is a multi-cycle 

machine, while FemtoJava and MIPS are pipelined ones, which are expected to be faster than 

their multi-cycle versions. So, we can conclude that if we were comparing MemProc with the 

multicycle versions of FemtoJava and MIPS, performance results would be even better. Also, 

the performance gains of MemProc come from the fact that the number of cycles it takes to 

perform an operation depends on the operation and on the operands value. For instance, let us 

consider that FemtoJava needs 1 cycle to perform one add operation. Since MemProc’s 

frequency is more than 7 times higher, if the operands are such that the number of carry 

cycles is less than 7, MemProc will finish the addition operation earlier than FemtoJava.  

To evaluate how the value of the operands contributes to the MemProc performance 

gains, the mean time to execute each type of instruction in the MemProc and the MIPS 

architectures were simulated for the sorts and the IMDCT algorithms. The results are 

presented in Figure 5.4. The MIPS architecture always takes the same time to execute each 

type of instruction, so its results are independent to the application.  

 
Figure 5.4: Mean time to execute each type of instruction for all applications 

0

10

20

30

40

50

60

70

80

90

100

Move Uncond. Branch Cond. Branch Sum Logic and Arith. 
Type of instruction 

IMDCT MemProc

Buble MemProc

Select MemProc

Insert MemProc

MIPS - all aplications

Time (ns) 



 
 

70

In Figure 5.4 one can see that MemProc executes move instructions, conditional and 

unconditional branches faster than MIPS. On the other hand, it is slower than MIPS to 

execute logic and arithmetic operations, except for add instructions. That happened because 

the proposed architecture takes larger number of cycles to implement the multiply and the 

subtraction instructions. In the IMDCT application, the percentage of arithmetic and logic 

instructions is 63%, which explains why MemProc’s performance for this application was 

slower than for the sort applications, in which the percentage of logic and arithmetic 

instructions was 51%, 36%, and 49% for bubble, select, and insert, respectively. One can 

conclude that the lower the percentage of arithmetic instructions, such as multiplications and 

subtractions, the higher is the performance of MemProc in comparison to MIPS. This results 

show that MemProc has greater performance when executing control flow than data flow 

applications. The reason for the good performance when executing conditional branches is the 

unique way MemProc executes the comparison. In traditional architectures, such as MIPS and 

FemtoJava, the comparison in the conditional branch is done by the subtraction operation. If 

MemProc would do the comparison using subtraction it would take 18 cycles to get the result 

of the comparison due to the time it takes to get the last carry propagation, which indicates the 

signal of the subtraction. The way MemProc does the comparison of two values is by 

identifying which is the value that has the most significant level ‘1’ bit in a position that the 

other value does not have, by using binary search. For instance, let us consider the example in 

Figure 5.5. 

A (14)  - 1110
B (10)  - 1010

 
Figure 5.5: The way MemProc does comparisons. 
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In Figure 5.5, two values in decimal, 14 and 10, and their binary representations are 

shown. From this figure, one can see that the value that has the most significant level ‘1’ bit in 

a position that the other value does not have is the ‘A’ value, therefore the ‘A’ value is greater 

than the ‘B’ value. MemProc performs binary search to find which of the two values is the 

biggest and, for a value of 16 bits, MemProc takes at most 4 cycles to identify the biggest one. 

In case of two negative values, the value that has the most significant level ‘1’ bit in a 

position that the other value does not have is the lowest one, due to the 2’s complement 

representation for negative values. Consequently, MemProc takes 1 cycle to identify if any of 

the two numbers is negative, 1 more to see if they are equal and 4 more to identify which is 

the biggest one, which gives us a total of only 6 cycles at most, to perform any comparison 

operation. As it was said before, if MemProc would do comparison trough subtraction, it 

would take 18 cycles, which is 2 times more cycles than MemProc actually takes. 
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6 I-IP: A NON-INTRUSIVE ON-LINE ERROR DETECTION TECHNIQUE FOR 

SOCS 

The growing demands and competitive needs of the embedded systems market, with 

ever shrinking time to market requirements, has made the use of SoCs incorporating 

previously tested IPs, or the use of FPGAs with built-in factory supplied processors, preferred  

alternatives to provide  fast deployment of new products. As to the software of SoCs, the use 

of standard library applications, for which the source code is not always available, provides 

another path to fast product development. Even for these systems, the technology evolution 

towards nanoscale brings along higher sensitivity of the hardware to radiation induced soft 

errors.  For this kind of SoCs, neither the hardware nor the software can be modified, either 

because of the high costs involved in adding extra hardware, or simply because the hardware 

is not accessible or the source code is not provided.  

In this chapter we describean infrastructure IP (I-IP) that can be inserted in the SoC 

without any change in the core processor architecture, able to monitor the execution of the 

application and detect control flow and instruction execution errors generated by transient 

faults. In the first section the I-IP approach proposed in (LISBÔA, 2006) is presented, 

together with a description of its internal blocks. The next section describes the adaptations 

that were implemented in the I-IP for the MIPS processor case study. 

6.1 THE PROPOSED APPROACH 

The system to be protected is a SoC where a processor core is used to run a software 

application, and the proposed approach can be used to harden applications executed by any 

processor core, independent of its internal architecture. In order to confirm this assumption, 

we have conducted experiments aiming the implementation of the I-IP in the well known and 

widely used MIPS RISC processor. The proposed I-IP is inserted between the memory storing 
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the code and the main processor core, and monitors each instruction fetch operation. In this 

work it is assumed that the bus connecting the instruction cache to the processor is not 

accessible from outside the core, as it often happens for processor cores, and therefore it is 

assumed that the instruction cache either does not exist, or is disabled. Moreover, it is 

considered that the instruction memory and the data memory located outside the processor are 

hardened with suitable error detection/correction codes or somehow protected, and so the data 

read from memory can be considered reliable. 

6.1.1 The I-IP 

The I-IP aims at minimizing the overhead needed to harden a processor core, with 

particular emphasis in minimizing the amount of memory used by the hardened application, 

and in being applicable even when the application’s source code is not available, by 

exploiting the concepts described in the following paragraphs. 

Instruction hardening and consistency check: data processing instructions are executed 

twice, producing two results that are checked for consistency; and an error is notified 

whenever a mismatch occurs. 

Control flow check: each time the processor fetches a new instruction, the fetch 

memory address is compared with the expected one, and an error is notified if a mismatch is 

detected. 

As stated before, the I-IP is inserted between the processor core and the code and data 

memories, as illustrated in Figure 6.1, with the indication of the address bus, control bus and 

data bus. While the I-IP must be tailored to the specific core processor in a given SoC, the 

architecture and the technique described here are generic, and can be implemented in any SoC 

in which additional modules can be inserted. 
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Figure 6.1: I-IP overall architecture. 

Whichever the core processor existing in the SoC, the I-IP implementing the concepts 

of the proposed technique works as follows. 

Instruction hardening and consistency check: the I-IP decodes the instructions fetched 

by the processor. Each time a data processing instruction is fetched, like that shown in Figure 

6.2, whose format is opcode dst,src1,src2, and which is stored in memory at address 

FETCH_ADX, the I-IP replaces it with the sequence of instructions in Figure 6.3, which is 

sent to the processor. 

 
FETCH_ADX: opcode dst,src1,src2 

Figure 6.2: Original instruction. 

       store  I-IP-adx,src1 
       store  I-IP-adx,src2 
       opcode dst,src1,src2 
       store  I-IP-adx,dst 
       branch FETCH_ADX+OFFSET 

Figure 6.3: Source operands and result fetching. 

 
Therefore, from the point of view of the processor, in this case the fetched instructions 

are no more those contained in the code memory, but those issued by the I-IP. The sequence 

of instructions that replaces each data processing one includes two instructions whose purpose 
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is to send to the I-IP the value of the source operands of the instruction. The third instruction 

(in boldface) is the original instruction coming from the program, while the fourth one is used 

to send to the I-IP the computed result. Finally, the last instruction is used to resume the 

original program execution, starting from the instruction following the original one, which is 

located as address FETCH_ADX+OFFSET, being OFFSET the size of the original instruction. 

Concurrently to the main processor, the I-IP executes the fetched data processing instructions 

by exploiting its own arithmetic and logic unit, and compares the obtained results with that 

coming from the processor. In case a mismatch is found, it activates an error signal, otherwise 

the branch instruction is sent to the core processor, in order to resume its normal program 

flow. 

Control flow check: concurrently with instruction hardening and consistency check, 

the I-IP also implements a simple mechanism to check if the instructions are executed 

according to the expected flow. Each time the I-IP recognizes the fetch of a memory transfer, 

a data processing, or an I/O instruction stored at address A, it computes the address of the next 

instruction in the program (Anext) as A+offset, where offset is the size of the fetched 

instruction. Conversely, each time the I-IP recognizes the fetch of a branch instruction, it 

computes the address of the next instruction in the two cases corresponding to the branch 

taken situation (Ataken) and to the branch not taken one (Anext). The former is computed taking 

into account the branch type, while the latter is computed as A+offset, where offset is the size 

of the branch instruction. When the next instruction is fetched from address ‘D’, the I-IP 

checks if the program is proceeding along the expected control flow by comparing the value 

of D with the destination address calculated as described here. If D differs from both Anext and 

Ataken, the error signal is raised to indicate that a fetch from an unexpected address has been 

attempted.  
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6.1.2 The I-IP Modules 

The I-IP that was developed is organized as shown in Figure 6.4, and it is composed of 

the following modules: 

1) CPU interface: connects the I-IP with the processor core. It decodes the bus 

cycles the processor core executes, and in case of fetch cycles it activates the 

other modules of the I-IP. 

2) Memory interface: connects the I-IP with the code and data memories, to allow 

access to the program instructions and to the data sent by the processor. This 

module executes commands coming from the “Fetch logic”, and handles the 

details of the communication with the memory. 

3) Fetch logic: issues to the “Memory interface” the commands needed for 

loading a new instruction in the I-IP and feeding it to the “Decode logic”. 

4) Decode logic: decodes the fetched instruction, whose address in memory is A, 

and sends the details about the instruction to the “Control unit”. This module 

classifies instructions according to three categories:  

i. Data processing: if the instruction belongs to the set of instructions 

that the I-IP is able to harden, which is defined at design time, the I-

IP performs instruction hardening and consistency check. 

Otherwise, the instruction is treated as “other”, as described in item 

“c”. Moreover, for the purpose of the control-flow check, the 

address Anext of the next instruction in the program is computed, as 

described previously. 

ii. Branch: the instruction may change the execution flow. The I-IP 

forwards it to the main processor and it computes the two possible 
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addresses for the next instruction, Anext and Ataken, as described 

previously. 

iii. Other: the instruction does not belong to the previous categories. 

The I-IP forwards it to the main processor and only computes the 

address of the next instruction in the program (Anext), , as described 

previously. 

5) Control unit: supervises the operation of the I-IP. Upon receiving a 

request for an instruction fetch from the “CPU interface”, it activates 

the “Fetch logic”. Then, depending on the information produced by the 

“Decode logic”, it either issues to the main processor the sequence of 

instructions summarized in Figure 6.3, to implement instruction 

hardening and consistency check, or it sends to the processor the 

original instruction. Moreover, it implements the operations needed for 

control-flow check. Finally, it receives interrupt requests (IRQs) and 

forwards them to the processor core at the correct time. This means 

that, in case an IRQ is received by the I-IP during the execution of a 

substitute sequence of instructions sent by the I-IP to the core 

processor, this IRQ will be forwarded to the core processor only after 

all the hardening instructions have been fully executed. 

6) ALU: it implements a subset of the main processor’s instruction set. 

This module contains all the functional modules (adder, multiplier, etc.) 

needed to execute the data processing instructions the I-IP manages. Its 

complexity varies according to the set of instructions to be hardened, 

which is chosen at design time. 
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Figure 6.4: Architecture of the I-IP. 

Two customization phases are needed to successfully deploy the I-IP in a SoC: 

Processor adaptation: the I-IP has to be adapted to the main processor used in the SoC. 

This customization impacts the “CPU interface”, the “Memory interface”, the “Fetch logic”, 

and the “Control unit” only. This phase has to be performed only once, each time a new 

processor is adopted. Then, the obtained I-IP can be reused each time the same processor is 

employed in a new SoC. 

Application adaptation: the I-IP has to be adapted to the application that will be 

executed by the main processor (mainly affecting the set of data processing instructions to be 

hardened by the I-IP). This operation impacts the “Decode logic” and the ALU of the I-IP, as 

it defines which instructions the I-IP will execute and check. In this phase, designers must 

decide which of the instructions of the program to be executed by the main processor have to 

be hardened. The application adaptation phase may be performed several times during the 

development of a SoC, for example when new functionalities are added to the program 

running on the main processor, or when the designers tune the SoC 

area/performance/dependability trade-off.  
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6.2 PROCESSOR AND APPLICATION ADAPTATIONS FOR MIPS 

In this section we will present the processor and application adaptations that were 

implemented in the proposed I-IP to harden the instruction execution and the control flow of 

the widely used RISC MIPS processor. The MIPS used in our experiments has a 16-bit RISC 

architecture, with a 5-stage pipeline, and no branch prediction. The selection of this 

architecture was due to its widespread use in the implementation of SoCs by the industry. 

Because the MIPS architecture has a 5-stage pipeline, with fetch, decode, execution, 

memory write and write back stages, the I-IP works (only from the logical standpoint) as 

being an additional stage, between the fetch and the decode stages. That happens because the 

I-IP requires one cycle to decode the fetched instruction and decide which instruction(s) to 

send to the processor, and that makes the processor receive the fetched instruction one cycle 

later. 

Due to this virtual extension of the number of pipeline stages, the I-IP needs to send a 

different sequence of instructions, depending on the fetched one, to prevent erroneous 

situations: 

1) In the case of an unconditional branch, the number of instructions that need to 

be flushed from the pipeline is increased by one, because, as explained before, 

the I-IP works as an extra pipeline stage. To correct this situation, the I-IP 

sends to the core processor an extra nop (no operation) instruction, each time 

an unconditional branch is fetched. 

2) When a jal (jump and link) - a subroutine call  instruction - is executed, the 

MIPS processor saves the subroutine return address in a register. Since the I-IP 

causes a delay of one cycle in the execution of instructions, the saved address 

is also one cycle ahead the correct one. To solve this problem, when fetching a 

jal instruction the I-IP sends to the core processor one instruction that 
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restores the PC value to the correct one, followed by a j (jump) instruction, 

instead of only sending the jal one. The first instruction is used to save the 

correct address in the register that is used to store the return address, and the j 

instruction performs the jump to the subroutine entry point; 

3) In case of a jr (jump through register) instruction, the I-IP needs to get the 

address value stored in the register that indicates the address, to check if the 

branch was taken correctly. Therefore, the I-IP has to provide a sw (store 

word) instruction to receive the target address of the branch before the original 

jr instruction is executed.  

Due to the pipelined architecture of MIPS, the I-IP must wait a few cycles until a 

branch is executed and only then compare the calculated destination address with the one in 

the program counter. Therefore, the I-IP has an internal circular register file, used to store up 

to four destination addresses, that will be compared to the program counter a few cycles later. 

In the next chapter the experimental results of the I-IP alternative for the MIPS RISC 

processor are presented and compared with the results presented in (LISBOA, 2006). 
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7 I-IP EXPERIMENTAL RESULTS 

This chapter presents the reduction of failures that can be obtained by applying the I-

IP technique to the MIPS architecture and compares the achieved results with those of the 

implementation of the I-IP in the 8051 processor obtained in (LISBOA, 2006). In the first 

section, the fault injection procedure that was implemented in order to test the proposed IP is 

described. The second section presents the fault detection results obtained for the two 

architectures, the 8051 and the MIPS, together with the area and performance overhead 

discussions.  

7.1 FAULT INJECTION EXPERIMENTS 

To evaluate the performance of the I-IP in instruction hardening and control flow error 

detection, the tool named CACO-PS (Cycle-Accurate Configurable Power Simulator), 

described in a previous chapter, was used to simulate the architecture of the SoC and check 

the results of fault injection. 

The I-IP and the MIPS architectures were described in the language used by CACO-

PS. The fault model used in all experiments is the SEU in internal memory elements of the 

core processor. During the fault injection procedure, 2,000 faults were injected randomly in 

time and space, causing SEUs in randomly chosen bits of the MIPS architecture registers, 

while executing a software implementation of the Viterbi algorithm for encoding a stream of 

data, like it was done in (LISBOA, 2006) for the 8051 processor. 

To detect if a fault caused an error, two copies of the SoC (including the MIPS core 

processor, the I-IP and independent code memories), both running the same application, have 

been used. Faults have been injected in one of the two architectures, while the other remained 

free of faults. Then, at every core processor cycle, the simulation tool compared the value of 

the program counters from both copies, to check if a control flow error occurred. In order to 
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check if an instruction execution error occurred, the RAM memory content was also 

monitored, by comparing the address and the data of the memory write operations. 

At the same time, all errors detected by the I-IP were recorded in a log file, indicating 

the type of error that was detected and other information used in the analysis of the simulation 

results, which will be discussed in the next section. Figure 6.5 illustrates the error detection 

scheme described here. 

Golden
Processor

Fault 
Sensitive
Processor

Random
Fault Injection

comparator

Error

I-IPI-IP

MemoryMemory

 
Figure 6.5: Error detection scheme. 

To evaluate how the quantity of hardened instructions impacts the area and 

performance overheads, two experiments were implemented, one hardening only the ADDU 

instruction and the other hardening the ADDU, ANDI and SRA instructions. In the MIPS 

experiment, the choice of instructions to be hardened in the was based on runtime statistics, 

shown in Table 6.1, and not on static analysis of the code, as in the 8051 experiment.  
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Table 6.1: Runtime frequency of instructions. 

Viterbi execution 
(7,182 instructions) 

Instruction Frequency % 
LW 
SW 
ADDU 
ANDI 
SRA 
ADDIU 
SLL 
SUBU 
JALL 
SRL 
JR 
Others 

2,105 
1,349 
1,072 

716 
716 
429 
271 
152 

77 
76 
76 

143 

29.3 
18.8 
14.9 
10.0 
10.0 

6.0 
3.8 
2.1 
1.1 
1.0 
1.0 
2.0 

 

Because the experiments with the MIPS core have been done using a cycle-accurate 

simulator, only 1,000 faults have been injected in each of the implementations of the I-IP with 

the MIPS core, and the obtained results are shown in Table 6.2. 

Table 6.2: Error detection results for the two architectures. 

Application 8051 MIPS 
 
Hardened Instructions 

INC INC 
ADD 

ADDU ADDU 
ANDI 
SRA 

Reduction of failures (%) 81.3 87.5 74.5 79,2 
Area overhead due to I-IP (%) 13.1 15.7 12.7 12.9 
Performance overhead (%) 292.0 314.0 99.0 196.8 

 

7.2 RESULT ANALYSIS 

The experiments results described in (LISBOA, 2006) have shown that not all the 

faults can be detected by the I-IP in the 8051 processor. Indeed, some failures have been 

observed for the hardened SoC. Some of the escaped faults affected memory elements that 

change the configuration of the processor core. For example, they change the register bank 

select bit, switching from the used register bank to the unused one. This kind of fault makes 
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both the I-IP and the main processor fetch the operand from a wrong source, which makes 

them produce the same wrong operation result. Since the I-IP detects faults by testing if the 

two results are different, these faults escape from the error detection mechanisms provided by 

the I-IP. The other type of faults that escaped affect the execution of branch instructions in 

such a way that the taken branch is consistent with the program control flow, but it is taken to 

the wrong destination. A typical example of this type of fault is an SEU affecting the carry bit 

of the processor status word that hits the SoC before a conditional branch is executed. In this 

case, the wrong execution path is taken, based on a wrong value of the carry flag. However, 

the control flow is transferred to a legal basic block, which is consistent with the program’s 

control flow, and therefore it escapes the control flow check that the I-IP employs. Finally, 

some of the escaped faults affected un-hardened instructions, mainly the LW (load word) and 

the SW (store word) instructions, due to its high occurrence in the program. 

When it comes to the area overhead analysis, one can see from Table 6.2 that the I-IP 

introduces a slightly smaller area overhead in the MIPS based SoC, due to the fact that the 

MIPS core processor is much more complex, and therefore larger, than the 8051 

microcontroller. However, the reduction was not very significant, because the I-IP 

implemented with the MIPS core must keep track of the evolution of the instructions inside 

the pipeline, which also requires a more complex hardware than that of the I-IP for the 8051. 

Concerning performance, the implementation for MIPS has provided a significantly smaller 

overhead. At this point, it is worth to recall that the performance overhead is mainly due to 

the execution of additional instructions sent by the I-IP to the core processor, as it was 

presented in the previous chapter, each time an instruction that must be hardened is fetched 

from memory by the core processor. 

When analyzing the percentage of reduction of failures, one can see that the ability to 

detect faults in the MIPS implementation was smaller than that in the 8051 implementation. 
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The fault model used in all experiments is the SEU in internal memory elements of the core 

processor. Therefore, since the MIPS processor is pipelined, there is a larger amount of 

memory elements subject to SEUs in its architecture than in the 8051 microcontroller, where 

most of the memory elements are registers used for data or address storage, not for control. 

The use of a cycle-accurate simulator in the experiments with the MIPS processor, 

however, provided more information about the cases in which faults are not detected by the I-

IP, thereby allowing a more detailed analysis of the problem. So, besides those cases already 

mentioned for the 8051 microcontroller, our analysis has shown that, among the undetected 

faults, a large number was due to SEUs affecting the register file of the MIPS processor 

before the operands are read and their values forwarded to the I-IP. In those cases, the same 

corrupted data values are used by the core processor and by the I-IP during the parallel 

execution of the data processing instruction, and therefore the results are the same and no 

error is flagged. These findings point out that the protection of some internal memory 

elements of the core processor, such as the register file, would be an improvement factor for 

the fault coverage, when the approach proposed here is applied. 
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8 CONCLUSIONS AND FUTURE WORK 

8.1 CONCLUSIONS 

In this work, two candidate solutions to cope with the SEU and SET problem that is 

concerning designers of digital systems for future and even current technologies were 

presented. The first solution presented here was the MemProc processor core architecture, 

based on the use of memory technologies not sensible to SEU and reduced combinational 

circuits. The second solution was the I-IP core for the MIPS processor, which is proposed for 

cases where neither the hardware nor the software of the system can be modified. 

Both solutions have their pros and cons. As an example, in the MemProc case the final 

area of the solution, increased mainly due to the two memories (the microcode and the 

operation masks memories), was more than 2 times larger than the one in MIPS and 1.3 times 

than that of FemtoJava, but on the other hand, the fault tolerance and performance results 

have shown a 17 times bigger mean time to failure, and more than 1.2 performance gain when 

compared to MIPS and more than 49 times bigger MTTF and 2.2 performance gain when 

compared to FemtoJava. The proposed architecture, while not being a final solution, reflects 

the focus in the search for new processor design alternatives that might be used in the future, 

when current ones will start to fail due to the weaknesses of new technologies. It innovates in 

several design features, even providing better performance when compared to a well known 

architecture for embedded applications (the MIPS processor), while providing much more 

reliability against transient faults.  

In the case of the I-IP core, results have shown that this approach can be implemented 

for any kind of architecture, either RISC (like the MIPS case study presented here) or CISC 

(like the 8051 presented in (LISBOA, 2006)). Although the performance overheads are 

considerably high, due to the number of instructions hardened, the area overhead is below 
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15.7%, with more than 74.5% of the errors detected. The great advantage of this approach is 

that it is neither hardware nor software intrusive, which makes it easily adaptable for any kind 

of processor core, with the possibility of different configurations in the number of hardened 

instructions and control flow error detection. 

In this work, two different solutions were presented to cope with particle hit induced 

events that is foreseen in the new technologies. Although the presented solutions do not 

eliminate the possibility of a soft error occurrence, a significant reduction in the soft error rate 

and error detection percentage, with considerably low overheads, were achieved with the 

solutions here presented, which represent an  important step towards a complete and feasible 

solution for reliable systems in future technologies.  

8.2 FUTURE WORK 

The MemProc processor architecture presented here has shown great performance 

results due to the architectural innovations that accelerated addition and comparison 

operations, as it was described in a previous chapter. Although, some operations, such as 

subtraction and multiplication, still need to be improved in other to reduce the number of 

cycles they take to be executed, which are now 18 for the subtractions, and from 35 to 49 for 

the multiplications. Another point that can be improved in the MemProc architecture is the 

reduction of the size of the microcode and the operation masks memories, which will 

positively impact the area overhead introduced by these components. 

In the case of the I-IP, the next steps will be the repetition of the experiments with a 

broader set of benchmark applications, and the development of tools to automate the 

generation of new I-IP versions for other core processors, according to the set of instructions 

that need to be hardened, and also the type of control flow instructions to be monitored. 
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Since this work proposes two widely different solutions, an innovative and interesting 

evolution of this work is the integration of both solutions in an unique architecture designed 

for fault tolerant applications. This way, the I-IP core will have to be modified to harden the 

MemProc instruction set and monitor the two main sources of control deviation, which are the 

microcode and the ROM memories. Since the MemProc architecture is vulnerable at the 

instruction execution sector, the I-IP would complement the good results of MemProc by 

hardening the instructions that are being executed. On the other hand, the I-IP vulnerability 

stands at the memory elements, which in the MemProc case are hardened by the MRAM 

technology. This way, the integration of these two solutions promises to provide good results 

in terms improving the fault tolerance during the execution of critical applications. 
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APENDIX A: MEMPROC LIST OF INSTRUCTIONS 

Number 
of cycles 

Instruction Syntax Description 

min max 
NOP nop - 1 1 

mov k, m copy constant k to mem. addr. ‘m’  2 2 
mov m2, m1 copy value in mem. addr. ‘m1’ to mem. addr. ‘m2’ 3 3 

mov m2, *m1 copy value indicated by the pointer in ‘m1’ to mem. 
addr. ‘m2’ 3 3 MOV 

mov *m2, m1 copy value in mem. addr. ‘m1’ to mem. addr. indicated 
by the pointer ‘m2’ 4 4 

if_icmpeq k, m, j if constant ‘k’ equal to value in mem. addr. ‘m’ then 
jump to addr. ‘j’ 4 4 

IF_ICMPEQ 
if_ icmpeq m1, m2, j if value in mem. addr. ‘m1’ equal to value in mem. 

addr. ‘m2’ then jump to addr. ‘j’ 4 4 

if_icmpne k, m, j if constant ‘k’ not equal to value in mem. addr. ‘m’ 
then jump to addr. ‘j’ 4 4 

IF_ICMPNE 
if_ icmpne m1, m2, j if value in mem. addr. ‘m1’ not equal to value in mem. 

addr. ‘m2’ then jump to addr. ‘j’ 4 4 

if_icmplt k, m, j if constant ‘k’ less then value in mem. addr. ‘m’ then 
jump to addr. ‘j’ 4 9 

if_icmplt m, k, j if value in mem. addr. ‘m1’ less then constant ‘k’ then 
jump to addr. ‘j’ 4 9 IF_ICMPLT 

if_icmplt m1, m2, j if value in mem. addr. ‘m1’ less then value in mem. 
addr. ‘m2’ then jump to addr. ‘j’ 4 9 

if_icmple k, m, j if constant ‘k’ less or equal then value in mem. addr. 
‘m’ then jump to addr. ‘j’ 4 9 

if_icmple m, k, j if value in mem. addr. ‘m1’ less or equal then constant 
‘k’ then jump to addr. ‘j’ 4 9 IF_ICMPLE 

if_icmple m1, m2, j if value in mem. addr. ‘m1’ less or equal then value in 
mem. addr. ‘m2’ then jump to addr. ‘j’ 4 9 

if_icmpgt k, m, j if constant ‘k’ greater then value in mem. addr. ‘m’ 
then jump to addr. ‘j’ 4 9 

if_icmpgt m, k, j if value in mem. addr. ‘m1’ greater then constant ‘k’ 
then jump to addr. ‘j’ 4 9 IF_ICMPGT 

if_icmpgt m1, m2, j if value in mem. addr. ‘m1’ greater then value in mem. 
addr. ‘m2’ then jump to addr. ‘j’ 4 9 

if_icmpge k, m, j if constant ‘k’ greater or equal then value in mem. 
addr. ‘m’ then jump to addr. ‘j’ 4 9 

if_icmpge m, k, j if value in mem. addr. ‘m1’ greater or equal then 
constant ‘k’ then jump to addr. ‘j’ 4 9 IF_ICMPGE 

if_icmpge m1, m2, j if value in mem. addr. ‘m1’ greater or equal then value 
in mem. addr. ‘m2’ then jump to addr. ‘j’ 4 9 

IFEQ ifeq m, j if value in mem. addr. ‘m’ is equal to zero then jump to 
addr. ‘j’ 4 4 

IFNE ifne m, j if value in mem. addr. ‘m’ is not equal to zero then 
jump to addr. ‘j’ 4 4 

IFLT iflt m, j if value in mem. addr. ‘m’ is less then zero then jump 
to addr. ‘j’ 4 4 

IFLE ifge m, j if value in mem. addr. ‘m’ is less or equal to zero then 
jump to addr. ‘j’ 4 4 

IFGT ifgt m, j if value in mem. addr. ‘m’ is greater then zero then 
jump to addr. ‘j’ 4 4 

IFGT ifge m, j if value in mem. addr. ‘m’ is greater or equal then zero 
then jump to addr. ‘j’ 4 4 
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Number 
of cycles 

Instruction Syntax Description 

min max 

add d, m, k adds value in mem. addr. ‘m’ to constant ‘k’ and stores 
in mem. addr. ‘d’ 3 18 

ADD 
add d, m1, m2 adds value in mem. addr. ‘m1’ to value in mem. addr. 

‘m2’and stores in mem. addr. ‘d’ 3 18 

sub d, m, k subtracts value in mem. addr. ‘m’ from constant ‘k’ 
and stores in mem. addr. ‘d’ 18 18 

sub d, k, m subtracts constant ‘k’ from value in mem. addr. ‘m’ 
and stores in mem. addr. ‘d’ 18 18 SUB 

sub d, m1, m2 subtracts value in mem. addr. ‘m1’ from value in mem. 
addr. ‘m2’ and stores in mem. addr. ‘d’ 18 18 

addc d, m, k adds with carry value in mem. addr. ‘m’ to constant ‘k’ 
and stores in mem. addr. ‘d’ 3 18 

ADDC 
addc d, m1, m2 adds with carry value in mem. addr. ‘m1’ to value in 

mem. addr. ‘m2’ and stores in mem. addr. ‘d’ 3 18 

mul d, m, k multiply value in mem. addr. ‘m’ by constant ‘k’ and 
stores in mem. addr. ‘d’ 35 49 

MUL 
mul d, m1, m2 multiply value in mem. addr. ‘m1’ by value in mem. 

addr. ‘m2’and stores in mem. addr. ‘d’ 35 49 

iushr d, m, k unsigned shift right the value in mem. addr. ‘m’ ‘k’ 
times 3 18 

IUSHR 
iushr d, m1, m2 unsigned shifts right the value in mem. addr. ‘m’ the 

value in mem. addr. ‘m2’ times 3 18 

ishl d, m, k shifts left the value in mem. addr. ‘m’ ‘k’ times 3 18 
ISHL ishl d, m1, m2 shifts left the value in mem. addr. ‘m1’ the value in 

mem. addr. ‘m2’ times 3 18 

NEG neg d, m negates value in mem. addr. ‘m’ and stores in mem. 
addr. ‘d’ 3 18 

and d, m, k make “logic and” with the value in mem. addr. ‘m’ 
with the constant ‘k’ and stores in mem. addr. ‘d’ 3 3 

AND 
and d, m1, m2 make “logic and” with the value in mem. addr. ‘m1’ 

and ‘m2’ and stores in mem. addr. ‘d’ 3 3 

or d, m, k make “logic or” with the value in mem. addr. ‘m’ with 
the constant ‘k’ and stores in mem. addr. ‘d’ 3 3 

OR 
or d, m1, m2 make “logic or” with the value in mem. addr. ‘m1’ and 

‘m2’ and stores in mem. addr. ‘d’ 3 3 

JMP jmp d jumps to the destination in mem. addr. ‘m’ 3 3 

CALL call f, r jumps to subroutine in the address ‘f’ and stores the 
return addres in mem. addr. ‘r’ 2 2 

RET ret r returns to the address in mem. addr. ‘r’ 3 3 
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APENDIX B: MEMPROC ARCHITECTURE DESCRIBED IN CACO-PS TOOL 
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APENDIX C: MIPS ARCHITECTURE DESCRIBED IN CACO-PS TOOL 
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Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo
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