Universidade de São Paulo Escola Superior de Agricultura "Luiz de Queiroz"

Modelos de fronteira estocástica: uma abordagem bayesiana

Juliana Garcia Cespedes

Tese apresentada, para obtenção do título de Doutor em Agronomia. Área de concentração: Estatística e Experimentação Agronômica.

Piracicaba 2008

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Juliana Garcia Cespedes Matemático

Modelos de fronteira estocástica: uma abordagem bayesiana

Orientadora: Prof^a. Dr^a. **ROSELI APARECIDA LEANDRO**

Tese apresentada, para obtenção do título de Doutor em Agronomia. Área de concentração: Estatística e Experimentação Agronômica.

Piracicaba 2008

Dados Internacionais de Catalogação na Publicação (CIP) DIVISÃO DE BIBLIOTECA E DOCUMENTAÇÃO - ESALQ/USP

Cespedes, Juliana Garcia

Modelos de fronteira estocástica: uma abordagem bayesiana / Juliana Garcia Cespedes. - - Piracicaba, 2008. 152 p.

Tese (Doutorado) - - Escola Superior de Agricultura Luiz de Queiroz, 2008. Bibliografia.

1. Análise de Fourier 2. Econometria 3. Economia – Eficiência 4. Inferência bayesiana – Inferência estatística 5. Modelos lineares 6. Programação estocástica I. Ťítulo

> CDD 636.513 C422m

"Permitida a cópia total ou parcial deste documento, desde que citada a fonte – O autor"

Dedicatória

À DEUS Senhor todo poderoso.

> À minha família, João Garcia Cespedes, Nair da Graças Lomazini Garcia e Luis Fernando Garcia Cespedes, fundamentais nesta conquista, pelo apoio, amor e confiança, que nortearam minha vida e me fizeram progredir.

Ao meu noivo Douglas Schiavoni Froemming

o amor, a compreensão, a confiança e a ajuda nos momentos mais difíceis.

Agradecimentos

À Prof^a Dr^a Roseli Aparecida Leandro a orientação, a amizade, os ensinamentos, as sugestões, as discussões, a paciência e o apoio, que foram fundamentais para a realização deste trabalho.

Aos professores Clarice Garcia Borges Demétrio e Vitor Augusto Ozaki, as sugestões, as discussões, os ensinamentos e a ajuda.

Aos professores Adriano F. Borgatto, Helio S. Migon, Mark Steel, Willian Greene, João Maurício A. Mota, Juvêncio Nobre, Ricardo Shirota e todos que contribuíram de forma direta para a realização deste trabalho.

Ao meu noivo Douglas Schiavoni Froemming o carinho especial, o conforto nas horas difíceis, a ajuda, a paciência e o apoio, além de fornecer os dados fundamentais para a realização desta tese.

Aos meus pais João Garcia Cespedes e Nair das Graças Lomazini Garcia e ao meu irmão Luís Fernando Garcia Cespedes a força, o amor incondicional, a confiança e a dedicação que me deram nos momentos decisivos.

A todos os amigos do mestrado e doutorado, em especial a Ana Maria, Genevile, Elizabeth, Denise, Ana Alice, Luciano, David, Idemauro, Osmar, Luciana e aos amigos Hugo, Aline e Michele.

Aos professores e funcionários do Departamento de Ciências Exatas da ESALQ/USP, que propiciaram condições para a realização deste trabalho.

À CAPES o apoio financeiro.

A todos, que de forma direta ou indireta, colaboraram para a realização deste trabalho.

SUMÁRIO

RESUMO	7
ABSTRACT	8
1 INTRODUÇÃO	9
Referências	13
2 MODELO DE FRONTEIRA ESTOCÁSTICA DE CUSTO COM FORMA FUN-	
CIONAL FLEXÍVEL FOURIER: UMA ABORDAGEM BAYESIANA	18
Resumo	18
Abstract	18
2.1 Introdução	19
2.2 Desenvolvimento	20
2.2.1 Forma funcional flexível Fourier	20
2.2.2 Modelo de fronteira estocástica de custo com forma funcional flexível Fourier	23
2.2.3 Simulação de dados	27
2.2.4 Aplicação a dados reais	29
2.3 Resultados e discussão	30
2.3.1 Simulação	30
2.3.2 Aplicação empírica	38
2.4 Considerações Finais	45
Referências	46
3 MODELOS GENERALIZADOS DE FRONTEIRA ESTOCÁSTICA	50
Resumo	50
Abstract	50
3.1 Introdução	51
3.2 Desenvolvimento	52
3.2.1 Modelos de fronteira de produção estocástica	52
3.2.2 Modelos lineares generalizados	53
3.3 Modelos generalizados de fronteira estocástica	54
3.3.1 Modelo generalizado de fronteira estocástica para $\ln Y_{it} u_i$ com distribuição Normal	54
3.3.2 Modelo generalizado de fronteira estocástica para $Y_{it} u_i$ com distribuição gama	56
3.3.3 Modelo generalizado de fronteira estocástica para $Y_{it} u_i$ com distribuição normal	57
3.3.4 Modelo generalizado de fronteira estocástica para $Y_{it} u_i$ com distribuição de Poisson .	59
3.3.5 Modelo generalizado de fronteira estocástica para $Y_{it} u_i$ com distribuição binomial	
negativa	60
3.4 Simulação de dados	62

3.5 Aplicação a dados reais	63
3.5.1 Vendedores de autopeças	63
3.5.2 Instituição Financeira	63
3.6 Resultados e Discussão	64
3.6.1 Simulação	64
3.6.2 Aplicação empírica	87
3.7 Conclusões	98
Referências	98
APÊNDICES	03
ANEXOS	17

RESUMO

Modelos de fronteira estocástica: uma abordagem bayesiana

A firma é o principal agente econômico para a produção e distribuição de bens e serviços. Seu constante investimento em melhorias e o aperfeiçoamento de sua capacidade produtiva, visando tornar-se cada vez mais eficiente, transforma-se em um determinante central do bem estar econômico da sociedade. O processo de medir a ineficiência de firmas baseia-se em análises de fronteiras, onde a ineficiência é medida como a distância entre os pontos observados da variável resposta e a função de produção, custo ou lucro verdadeiras, dependendo do modelo assumido para descrever a variável resposta. Existe uma variedade de formas funcionais para essas funções e algumas vezes é difícil julgar qual delas deve ser escolhida, visto que a forma verdadeira é desconhecida e pode ser somente aproximada. Em geral, na literatura, dados de produção são analisados assumindo-se modelos multiplicativos que impõem a restrição de que a produção é estritamente positiva e utiliza-se a transformação logarítmica para linearizar o modelo. Considera-se que o logaritmo do produto dada a ineficiência técnica tem distribuição contínua, independentemente de os dados serem contínuos ou discretos. A tese divide-se em dois artigos: o primeiro utiliza a inferência bayesiana para estimar a eficiência econômica de firmas utilizando os modelos de fronteira estocástica de custo com forma funcional flexível Fourier, que asseguram um bom ajuste para a fronteira, sendo fundamental para o cálculo da ineficiência econômica; o segundo artigo propõem os modelos generalizados de fronteira estocástica, baseando-se nos modelos lineares generalizados mistos com a abordagem bayesiana, para quantificar a ineficiência técnica de firmas (medida de incerteza) utilizando a variável resposta na escala original e distribuições pertencentes à família exponencial para a variável resposta dada a medida de ineficiência.

Palavras-chave: Inferência bayesiana; Modelos de fronteira estocástica; Função de custo Fourier; Eficiência técnica; Eficiência econômica; Modelos lineares generalizados mistos

ABSTRACT

Stochastic frontier models: a bayesian approach

The firm is the main economic agent for the production and distribution of goods and services. Its constant investment in improvements and enhancement of its productive capacity to make itself more efficient becomes a central determinant of economic welfare of society. The measure process of inefficiency is based on frontier analysis, where inefficiency is measured as the distance between the observed points from variable response and real production, cost or profit function, depending on chosen model to describe the variable response. There are several functional forms to these functions and sometimes it is very difficult to decide which one has to be chosen because the true form is unknown and it can just be approximate. Generally, in the literature, production data are analyzed assuming multiplicative models that impose the restriction of what the production is strictly positive and use the logarithm transformation to turn the model lineal. It is considerate that the product's logarithm given the technical inefficiency has distribution continual, independent if the data are continuous or discrete. The papers presented in this thesis are: the first paper uses the bayesian inference to estimate the economic efficiency of firms in the cost stochastic frontier models using the Fourier flexible cost function, that assure a good settlement to the frontier being essential to calculate the economic inefficiency. The second paper proposes a generalized stochastic frontier models, based on generalized linear mixed models with the Bayesian approach, to quantify the inefficiency technical of the firms (uncertainty measures) by using the response variable in the scale original with distributions belonging on the exponential family to the response variable given the measure of inefficiency.

Keywords: Bayesian inference; Stochastic frontier models; Fourier cost function; Technical efficiency; Economic efficiency; Generalized linear mixed models

1 INTRODUÇÃO

Em uma economia de mercado, a firma, sendo o principal agente econômico para a produção e distribuição de bens e serviços, economiza em custos de transação e, mais do que qualquer outra unidade, serve como o centro de atividade econômica. As firmas investem em máquinas mais eficientes, desenvolvem novas tecnologias, vendem novos e melhores produtos, antecipam quais os tipos de insumos que serão utilizados nas atividades de produção e servem como a fonte principal de empregos e renda. Assim, o papel econômico das firmas é tão importante que a eficiência com que desempenham suas atividades torna-se um determinante central do bem-estar econômico da sociedade, e para determinar essa eficiência é necessário considerar toda essa diversidade (THOMP-SON; FORMBY, 1998).

O processo de medir a eficiência de firmas baseia-se nos modelos de fronteira, compostos por uma parte determinística representada por uma forma funcional das funções de produção, custo ou lucro e um componente aleatório que incorpora incertezas. A teoria microeconômica define a função de produção como o máximo produto possível produzido por uma firma dado uma combinação de insumos; analogamente, define a função de custo como o custo mínimo necessário para produzir um conjunto de produtos (a função lucro define o máximo lucro) dado os preços de insumos. Existe uma variedade de formas funcionais utilizadas em modelos de fronteira, elas diferem em muitos aspectos e algumas vezes é difícil julgar qual delas deve ser escolhida, desde que a função (produção, custo ou lucro) verdadeira é desconhecida e pode ser somente aproximada. As formas funcionais mais utilizadas são a Cobb-Douglas, translog e Leontief generalizada.

Baseado no fato de que uma aproximação de uma função por uma série de Fourier permite uma aproximação global desta função, Gallant (1981) propôs a forma funcional flexível Fourier, também conhecida como função de custo Fourier, para fazer uma aproximação da função de custo verdadeira tanto quanto os dados permitirem.

Estudos feitos por McAllister e McManus (1993), Berger et al. (1997), Berger e Mester (1997) e Mitchell e Onvural (1996) mostram que para dados de instituições financeiras a forma funcional flexível Fourier produz melhor ajuste que a forma funcional translog para a fronteira de custo. Ivaldi et al. (1996) mostram a diferença dos modelos de fronteira de custo entre o uso da forma funcional flexível Fourier e o da forma funcional translog para dados de fazendas frutíferas da França. Trabalhos recentes que utilizam a forma funcional flexível Fourier são Huang e Wang (2003, 2004), Rossi et al. (2005), Kraft et al. (2002), Hussein (2004), dentre outros. Os trabalhos encontrados na literatura utilizam a estatística clássica.

O componente aleatório que incorpora incertezas nos modelos de fronteira pode ser dividido em duas partes: a primeira refere-se à ineficiência e a segunda refere-se a uma variação natural que os dados podem conter e que não são controladas, tais como, um funcionário ficar doente, uma máquina quebrar, escassez de chuva em determinada época de plantio, animais envolvidos na produção adoecerem, efeitos de tempo, greves, sorte etc, sobre os valores dos produtos, juntamente aos efeitos combinados de insumos não-especificados na função de produção.

Inicialmente, foram propostos por Aigner e Chu (1968), seguidos por Seitz (1971) e Timmer (1971), os modelos de fronteira de produção determinística, que possuem apenas uma medida de incerteza que se refere a ineficiência técnica orientada ao produto, ou apenas ineficiência técnica, que é medida como a distância entre os pontos observados da variável resposta e a função de produção (FØRSUND et al., 1980). Mesmo contendo uma incerteza, esses modelos foram chamados de determinísticos porque todo o desvio do valor observado em relação à forma funcional deve-se à ineficiência técnica das firmas.

Motivados pela idéia de que os desvios dos dados observados em relação à função de produção podem não estar inteiramente sob o controle das firmas, Meeusen e van den Broeck (1977) e Aigner et al. (1977), independentemente e quase simultaneamente, propuseram os modelos de fronteira de produção estocástica, os quais consideram um erro aleatório no modelo, responsável pela variação natural dos dados que não podem ser controladas, além da ineficiência técnica.

Com poucas alterações no modelo de fronteira de produção estocástica obtém-se o modelo de fronteira de custo estocástica, cuja diferença é a utilização da função de custo, no lugar da função de produção, a qual incorpora, além das quantidades de mais de um produto e insumos, a informação dos preços das variáveis e o custo de produção.

A principal diferença entre os modelos de fronteira de custo e de produção está no fato do modelo de fronteira de produção estocástica quantificar o produto máximo obtido a partir de uma dada quantidade de insumos, e, dessa forma, pode-se apenas estimar a ineficiência técnica orientada ao produto da firma; agora, o modelo de fronteira de custo estocástica minimiza o custo de produção, então, os desvios da fronteira podem ser interpretados como o reflexo de uma mistura das ineficiências técnica orientada aos insumos e alocativa, ou seja, a ineficiência econômica.

Um dos primeiros artigos que utilizam a inferência bayesiana nos modelos de fronteira estocástica foi apresentado por van den Broeck et al. (1994). Nesse trabalho, incorpora-se a incerteza relativa à ineficiência técnica considerando-se a distribuição gama com parâmetro de forma conhecido. Outros trabalhos relevantes que empregam a abordagem bayesiana são de Koop et al. (1995), e utilizam o amostrador de Gibbs para analisar o modelo de fronteira estocástica com distribuição gama para a ineficiência, Fernández et al. (1997) e Koop et al. (1997) utilizam dados em painel, Osiewalski e Steel (1998) discutem aspectos numéricos da análise bayesiana para modelos de fronteira estocástica, Steel e Koop (2001) apresentam uma revisão da abordagem, Migon (2004) utiliza a distribuição log-normal para o termo de ineficiência da firma. Fernández et al. (2000) generalizam o modelo de fronteira de produção estocástica para dados que apresentam múltiplos produtos (um estudo detalhado desse artigo pode ser encontrado em Cespedes (2003)), Fonseca et al. (2005) utilizam a distribuição t-Student para o erro aleatório para avaliar a ineficiência técnica na presença de "outliers", Cespedes e Leandro (2006) comparam os modelos de fronteira estocástica com erro normal e com erro t-Student e aplicam a dados de fazendas produtoras de carne, Tsionas (2000), defrontando-se com alguns parâmetros que não possuem distribuição condicional completa a posteriori completa, utiliza um método de aceitação para gerar valores dessas distribuições, Tsionas (2002) propõe um modelo de fronteira estocástica com coeficientes aleatórios para separar a ineficiência técnica de diferenças tecnológicas de firmas, libertando o modelo de fronteira da suposição restritiva que todas as firmas tenham que compartilhar as mesmas possibilidades tecnológicas, dentre outros.

As distribuições utilizadas para o termo de ineficiência são: a distribuição exponencial (MEEU-SEN; VAN DEN BROECK, 1977; AIGNER et al. 1977), a distribuição meia normal¹ (AIGNER et al., 1977), a distribuição gama (STEVENSON ,1980; GREENE ,1980a, 1980b), a distribuição normal truncada (STEVENSON, 1980) e a distribuição log-normal (MIGON, 2004).

A eficiência de uma firma é medida como uma função da ineficiência, ou seja, uma firma ineficiente é também uma firma não eficiente e uma firma eficiente é uma firma não ineficiente. Koopmans (1951) definiu eficiência técnica por: "Um produtor é tecnicamente eficiente se, e somente se, é impossível produzir mais de um produto qualquer sem produzir menos de outro produto ou usar mais quantidades de alguns insumos". Inspirado nesse trabalho, Farrell (1957) foi o primeiro a medir a eficiência produtiva e mostrou como definir eficiência de custo (ou eficiência econômica) e como decompor a eficiência de custo nos componentes eficiência técnica e eficiência alocativa:

- i) a eficiência técnica refere-se à habilidade de uma firma obter o nível de produto máximo a partir de um dado conjunto de insumos, e considera-se dois casos especiais:
 - a) A eficiência técnica orientada aos insumos: mantém as quantidades de produtos fixas e determina-se o conjunto de quantidades de insumos mínimos, ou seja, quando nenhuma redução em qualquer insumo é possível. É medida a partir dos modelos de fronteira de custo através de uma função da ineficiência técnica orientada aos insumos;
 - b) A eficiência técnica orientada aos produtos: mantém as quantidades de insumos fixas e determina os máximos produtos, ou seja, quando nenhum aumento em qualquer produto é possível. É medida a partir dos modelos de fronteira de produção através de uma função da ineficiência técnica orientada aos produtos.

A medida de eficiência técnica orientada aos produtos é igual à medida de eficiência técnica orientada aos insumos quando a tecnologia de produção satisfaz retornos de escala constante,

¹Distribution half normal, $|x| \sim N^+(a, b)$

ou quando a firma é completamente eficiente (eficiência técnica igual a 1), ou quando a firma é completamente ineficiente (eficiência técnica igual a 0). Caso contrário, a eficiência técnica orientada aos insumos é diferente da eficiência técnica orientada aos produtos. É maior quando o retorno de escala for crescente e menor quando o retorno for decrescente sobre a região da tecnologia de produção, respectivamente (KUMBHAKAR; LOVELL, 2000).

Necessitam-se apenas das informações sobre quantidades de insumos e quantidades de produtos para ser calculada. Pode ser interpretada como a razão do produto observado pelo produto máximo factível;

 ii) a eficiência alocativa envolve a seleção de uma combinação de insumos que produzem uma dada quantidade de produtos à um custo mínimo, reflete a habilidade de uma firma usar os insumos em proporções ótimas, dados seus respectivos preços. É uma medida orientada aos insumos e relaciona a eficiência do custo com a eficiência técnica orientada aos insumos (FARRELL, 1957) e pode ser obtida através da relação:

$$EA_i = \frac{EE_i}{ET_i},\tag{1.1}$$

em que, ET_i é a eficiência técnica orientada aos insumos, EE_i é a eficiência econômica e *i* representa a i-ésima firma; e

iii) a eficiência econômica é uma função que mede a razão do custo mínimo pelo custo observado, é uma combinação das medidas de eficiência técnica orientada aos insumos e alocativa da firma e é obtida a partir do modelo de fronteira de custo através de uma função da ineficiência econômica.

A decomposição da medida de eficiência econômica, que exige algumas condições de regularidade, é possível por meio de modelos de equações simultâneas, que são conhecidas como parcelas de custo, e necessitam de dados do custo total, quantidades de produtos, preços e quantidades dos insumos de cada produtor (KUMBHAKAR; LOVELL, 2000):

$$EE_i = ET_i EA_i.$$

Os artigos apresentados nesta tese foram motivados por situações distintas. A primeira delas surgiu com a dificuldade em estimar a ineficiência nos modelos de fronteira estocástica, e seguindo o raciocínio de Berger e Mester (1997), que asseguram que um bom ajuste da fronteira é crucial no cálculo da ineficiência, procurou-se técnicas de ajuste, sob o ponto de vista bayesiano, com o intuito de facilitar o processo inferencial dos parâmetros da fronteira. A segunda situação surgiu ao encontrar produtos que são discretos, tais como, número de automóveis e eletrodomésticos produzidos ou valores nulos na variável resposta, o que impossibilita utilizar a transformação logarítmica.

O primeiro artigo utiliza-se da inferência bayesiana para estimar a ineficiência econômica de firmas através dos modelos de fronteira de custo estocástica com forma funcional flexível Fourier; faz-se um estudo de simulação para verificar o comportamento das estimativas dos parâmetros da fronteira e do vetor de ineficiências da firma e analisa-se dados reais, previamente analisados por Koop et al. (1997) e Griffin e Steel (2007), que referem-se a 382 hospitais nos Estados Unidos, observados nos anos de 1987 a 1991.

O segundo artigo propõe-se os modelos generalizados de fronteira estocástica, que utilizam modelos lineares generalizados mistos para analisar os dados na escala original, dispensando a necessidade da transformação logarítmica, que permite considerar valores nulos na variável resposta ou ser uma variável na forma de contagem. A inferência bayesiana é utilizada para obtenção dos resumos a posteriori de interesse; faz-se um estudo de simulação para verificar o comportamento das estimativas dos parâmetros e analisa-se dois conjuntos de dados reais. O primeiro refere-se a quantidade de vendas efetuadas por mês, durante os meses de maio a outubro de 2007, de 7 vendedores de uma loja de auto peças. O segundo conjunto de dados refere-se a 52 filiais de uma instituição financeira brasileira que realizam financiamentos de veículos.

REFERÊNCIAS

AIGNER, D.J.; CHU, S.F. On estimating the industry production functions. **American Economic Review**, Pittsburgh, v.58, n.4, p.826-839, 1968.

AIGNER, D.J.; LOVELL, C.A.K.; SCHMIDT, P. Formulation and estimation of stochastic frontier production function models. **Journal of Econometrics**, Los Angeles, v.6, n.1, p.21-37, 1977.

BERGER, A.N.; MESTER, L.J. Inside de black box: what explains differences in the efficiencies of financial institutions. **Journal of Banking and Finance**, Carbondale, v. 21, n.7, p.895-947, 1997.

BERGER, A.N.; LEUSNER, J.H.; MINGO, J.J. The efficiency of bank branches. **Journal of Monetary Economics**, Boston, v. 40, n.1, p.141-162, 1997.

CESPEDES, J.G. **Eficiência de Produção**: um enfoque Bayesiano, 2003. 63p. Dissertação (Mestre em Estatística e Experimentação Agronômica) - Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, 2003. CESPEDES, J.G.; LEANDRO, R.A. Uma aplicação de modelos de fronteira de produção estocástica com erro normal e com erro t-Student. **Revista de Matemática e Estatística**, São Paulo, v.24, n.3, p.25-34, 2006.

FARRELL, M.J. The measurement of productive efficiency. **Journal of the Royal Statistical Society. Series A**, London, v.120, n.3, p.253-290, 1957.

FERNÁNDEZ, C.; KOOP, G.; STEEL, M.F.J. A Bayesian analysis of multiple-output production frontiers. **Journal of Econometrics**, Los Angeles, v.98, n.1, p.47-79, 2000.

FERNÁNDEZ, C.; OSIEWALSKI, J.; STEEL, M.F.J. On the use of panel data in stochastic frontier models with improper priors. **Journal of Econometrics**, Los Angeles, v.79, n.1, p.169-193, 1997.

FONSECA, T.C.O.; MEDRANO, L.A.; FERREIRA, M.A.R.; MIGON, H.S. **Regressão Multivariada com Erro t-Student**: uma análise Bayesiana. Disponível em: www.sbe.org.br/ebe26/031.pdf. Acesso em 9 mar. 2005.

FØRSUND, F.R.; LOVELL, C.A.K.; SCHMIDT, P. A Survey of Frontier Production Functions and of their Relationship to Efficiency Measurement. **Journal of Econometrics**, Los Angeles, v.13, n.1, p.5-25, 1980.

GALLANT, A. R. On the bias in flexible functional forms and an essentially unbiased form: the Fourier flexible form. **Journal of Econometrics**, Los Angeles, v.15, n.2, p.211-245, 1981.

GREENE, W. Maximum likelihood estimation of econometric frontier functions. **Journal of Econometrics**, Los Angeles, v.13, n.1, p.27-56, 1980a.

GREENE, W. On the estimation of a flexible frontier production model. **Journal of Econometrics**, Los Angeles, v.13, n.1, p.101-115, 1980b.

GRIFFIN, J.E.; STEEL, M.F.J. Bayesian stochastic frontier analysis using WinBUGS. Journal of **Productivity Analysis**, Houston, v.27, n.3 p.163-177, 2007.

HUANG, T.H.; WANG, M.H. Estimation of technical and allocative inefficiency using Fourier flexible cost frontiers for Taiwan's banking industry. **The Manchester School**, Manchester, v.71, n.3, p.341-362, 2003.

HUANG, T.H.; WANG, M.H. Comparisons of economic inefficiency between output and input measures of technical inefficiency using the Fourier flexible cost function. **Journal of Productivity Analysis**, Houston, v.22, n.1-2, p.123-142, 2004.

HUSSEIN, K.A. Banking efficiency in Bahrain: Islamic vs conventional banks. **Islamic Development Bank**, Saudi Arabia, N.68, p.1-62, 2004.

IVALDI, M.; LADOUX, N.; OSSARD, H.; SIMIONI, M. Comparing Fourier and Translog specifications of multiproduct technology: evidence from an incomplete panel of French farmers. **Journal of Applied Econometrics**, Cambridge, v.11, n.6, p.649-667, 1996.

KOOP, G.; STEEL, M.F.J.; OSIEWALSKI, J. Posterior analysis of stochastic frontier models using Gibbs sampling. **Computational Statistics**, Germany, v.10, p.353-373, 1995.

KOOP, G.; OSIEWALSKI, J.; STEEL, M.F.J. Bayesian efficiency analysis through individual effects: hospital cost frontiers. **Journal of Econometrics**, Los Angeles, v.76, n.1-2, p.77-105, 1997.

KOOPMANS, T.C. An analysis of production as an efficient combination of activities. In: KOOPMANS, T.C. (Ed.). Activity Analysis of Production and Allocation. New-York: Wiley, 1951.

KRAFT, E.; HOLFER, R.; PAYNE, J. Privatization, foreign bank entry and bank efficiency in Croatia: a Fourier - flexible function stochastic cost frontier analysis. **Croatian National Bank**, Croatia, p.1-17, 2002.

KUMBHAKAR, S. C.; LOVELL C.A.K. **Stochastic Frontier Abalysis**. Cambridge: Cambridge University Press, 2000. 333p.

MEEUSEN, W.; VAN DEN BROECK, J. Efficiency estimation from Cobb-Douglas production functions with composed error. **International Economic Review**, Philadelphia, v.18, n.2, p.435-444, 1977.

MCALLISTER, P.H.; MCMANUS, D. Resolving the scale efficiency puzzle in banking. **Journal** of Banking and Finance, Carbondale, v. 17, n.2-3, p.389-405, 1993.

MIGON, E. Bayesian hierarchical models for stochastic production frontier. **Estadistica**, Santiago do Chile, v. 56, p.10-30, 2004.

MITCHELL, K.; ONVURAL, N.M. Economies of scale and scope at large commercial banks: evidence from the Fourier flexible functional form. **Journal of Money, Credit and Banking**, Ohio, v. 28, n.2 p.178-199, 1996.

OSIEWALSKI, J.; STEEL, M.F.J. Numerical tools for the Bayesian analysis of frontier models. **Journal of Productivity Analysis**, Houston, v.10, n.1, p.103-117, 1998.

ROSSI, S.P.S.; SCHAWAIGER, M.; WINKLER, G. Managerial behavior and cost/profit efficiency in the banking sectors of Central and Eastern European countries. **Oesterreichische Nationalbank**, Austria, p.1-34, 2005.

SEITZ, W.D. Productive efficiency in the steam-electric generating industry. **Journal of Political Economy**, Chicago, v.79, n.4, p.878-886, 1971.

STEEL, M.; KOOP, G. Bayesian analysis of stochastic frontier models in **A Companion to Theoretical Econometrics**. Editors: Baltagi B, 2001. 520-537p.

STEVENSON, R.E. Likelihood functions for generalized stochastic frontier estimation. **Journal of Econometrics**, Los Angeles, v.13, n.1, p.57-66, 1980.

TIMMER, C.P. Using a probabilistic frontier production function to measure technical efficiency. **Journal of Political Economy**, Chicago, v.79, n.4, p.776-794, 1971.

THOMPSON, A.A.; FORMBY, J.P. **Microeconomia da firma:** teoria e prática. Rio de Janeiro: Prentice-Hall do Brasil, 1998. 358p.

TSIONAS, E.G. Full likelihood inference in normal-gamma stochastic models. **Journal of Productivity Analysis**, Houston, v.13, n.3, p.183-205, 2000.

TSIONAS, E.G. Stochastic frontier models with random coefficients. **Journal of Applied Econometrics**, Cambridge, v.17, n.2, p.127-147, 2002.

VAN DEN BROECK, J.; KOOP, G.; OSIEWALSKI, J.; STEEL, M.F.J. Stochastic frontier models: a Bayesian perspective. **Journal of Econometrics**, Los Angeles, v.61, n.2, p.273-303, 1994.

2 MODELO DE FRONTEIRA ESTOCÁSTICA DE CUSTO COM FORMA FUNCIONAL FLEXÍVEL FOURIER: UMA ABORDAGEM BAYESIANA

Resumo

O processo de quantificar a eficiência econômica de firmas consiste em comparar firmas dentro da mesma tecnologia de produção, valorizando as que utilizam melhor seus insumos e produtos e as que minimizam seus custos e baseia-se nos modelos de fronteira de custo, que são compostos por uma forma funcional e um componente aleatório que incorpora incertezas. Existe uma variedade de formas funcionais utilizadas em modelos de fronteira, elas diferem em muitos aspectos e algumas vezes é difícil julgar qual delas deve ser escolhida, visto que a função de custo verdadeira é desconhecida e pode ser somente aproximada. As formas funcionais mais utilizadas são a Cobb-Douglas, translog e Leontief generalizada, que aproximam a função custo verdadeira de maneira local. A forma funcional flexível de Fourier possui a propriedade de flexibilidade global e aproxima a função custo verdadeira tanto quanto desejada na norma de Sobolev. Neste trabalho utiliza-se a inferência bayesiana para calcular a ineficiência econômica de cada firma envolvida no processo de produção utilizando os modelos de fronteira de custo estocástica com forma funcional flexível Fourier. Apresenta-se um estudo de simulação e analisa-se dados reais.

Palavras-chave: Inferência bayesiana; Função de custo Fourier; Modelos de fronteira estocástica; Eficiência econômica

Abstract

The process of quantifying economic efficiency of firms is to compare them within the technology of production, appraising the better use of their inputs and outputs, minimizing their costs or maximizing their profits and this process is based on cost frontier models that are composed of one functional form and one random component who embodies uncertainness. There are a variety of functional forms used in stochastic frontier models and they have many differences among them and sometimes it is very difficult to decide which one has to be chosen because the true form is unknown and it can just be approximated. The most used functional forms are the Cobb-Douglas, translog and generalized Leontief that approximate the true cost function in local form. The flexible Fourier functional form has global flexibility and approximates the true cost function as wanted as Sobolev norm. In this paper it is used the bayesian approach to valuation the economic inefficiency of each firm involved at production process using the cost stochastic frontier models with flexible Fourier functional form. It is showed a study of simulation and analyzed set of real data.

Keywords: Bayesian inference; Fourier cost function; Stochastic frontier models; Economic efficiency

2.1 Introdução

O processo de medir a ineficiência econômica de firmas baseia-se nos modelos de fronteira de custo que são compostos por uma forma funcional, que representa a função de custo, e um componente aleatório que incorpora incertezas. O componente aleatório nos modelos de fronteira de custo estocástica divide-se em duas partes: a primeira refere-se à ineficiência econômica e a segunda refere-se a uma variação natural que os dados podem conter e que não são controladas, tais como, um funcionário ficar doente, uma máquina quebrar, escassez de chuva em determinada época de plantio, animais envolvidos na produção adoecerem, efeitos de tempo, greves, sorte etc, sobre os valores dos produtos, juntamente aos efeitos combinados de insumos não-especificados na função de produção.

Existe uma variedade de formas funcionais utilizadas em modelos de fronteira de custo estocástica que diferem em muitos aspectos sendo, algumas vezes, difícil julgar qual delas deve ser escolhida, visto que a forma verdadeira da função de custo é desconhecida e pode ser somente aproximada. As formas funcionais mais utilizadas são a Cobb-Douglas, translog (Apêndice H) e Leontief generalizada.

Dois métodos bastante utilizados para aproximar uma função são: aproximações em séries de Taylor e aproximações em série de Fourier (Apêndice A). A série de Taylor dá uma aproximação muito boa para uma função nas vizinhanças de um ponto, portanto uma aproximação local, enquanto que a aproximação de uma função em série de Fourier dá uma aproximação global (GAL-LANT, 1981).

Considerando-se a propriedade de aproximação global da expansão em série de Fourier, Gallant (1981) propôs a forma funcional flexível Fourier, também conhecida como função de custo Fourier, para fazer uma aproximação da função de custo verdadeira tanto quanto desejada na norma de Sobolev (Apêndice B), que depende do tamanho amostral. Além disso, essa função possui uma propriedade de flexibilidade global que permite aproximar não somente uma função de custo arbitrária, mas também qualquer de suas derivadas, que são conhecidas como parcelas de custo.

Como a forma funcional flexível Fourier aproxima a função de custo verdadeira tanto quanto os dados permitem, entende-se que a ineficiência será estimada com maior precisão, no entanto, o processo inferencial envolvido na estimação dos modelos de fronteira de custo estocástica com forma funcional flexível Fourier é bastante complexo, pois existem muitos parâmetros a serem estimados.

Estudos feitos por McAllister e McManus (1993), Berger et al. (1997), Berger e Mester (1997) e Mitchell e Onvural (1996) mostram que para dados de instituições financeiras a forma funcional flexível Fourier produz melhor ajuste que a forma funcional translog para a fronteira de custo. Ivaldi et al. (1996) mostram a diferença dos modelos de fronteira de custo entre o uso da forma funcional flexível Fourier e o da forma funcional translog para dados de fazendas frutíferas da França. Trabalhos recentes que utilizam a forma funcional flexível Fourier são Huang e Wang (2003, 2004), Rossi et al. (2005), Kraft et al. (2002), Hussein (2004), dentre outros. Os trabalhos encontrados na literatura utilizam a estatística clássica.

Neste trabalho propõem-se utilizar a inferência bayesiana para estimar a ineficiência econômica de firmas nos modelos de fronteira estocástica de custo com forma funcional flexível Fourier. Na seção 2.2.1 apresenta-se a forma funcional flexível Fourier, na seção 2.2.2 define-se o modelo de fronteira de custo estocástica com forma funcional flexível Fourier na forma matricial e descreve-se a análise utilizando a inferência bayesiana, na seção 2.2.3 faz-se um estudo de simulação para verificar o comportamento das estimativas dos parâmetros da fronteira e da ineficiência econômica das firmas baseado em 50 amostras, na seção 2.2.4 descreve-se os dados reais e os resultados e discussões são apresentados na seção 2.3.

2.2 Desenvolvimento

2.2.1 Forma funcional flexível Fourier

A forma funcional flexível Fourier consiste em dois componentes principais. O primeiro é uma função translog, com algumas modificações, que depende da ordem de aproximação utilizada, e o segundo componente é uma aproximação da expansão em série de Fourier trigonométrica, que possui termos que são combinações lineares de funções de senos e cossenos e podem representar exatamente qualquer função multivariada bem comportada, tal como uma função de custo (HUANG; WANG, 2004).

Considere $\ln c(\boldsymbol{y}, \boldsymbol{w})$ o logaritmo da função de custo verdadeira, em que $\boldsymbol{w} = (w_1, \dots, w_S)'$ é um vetor de preços de insumos de tamanho S e $\boldsymbol{y} = (y_1, \dots, y_H)'$ é um vetor de quantidades de produtos de tamanho H.

Para aproximar uma função por série de Fourier de senos e cossenos é necessário que esta função seja periódica. A função de custo não é periódica, a idéia, então, é limitar as variáveis w_s e y_h no intervalo de $(0, 2\pi)$. Gallant (1982) propôs fazer a seguinte transformação:

$$l_s = \ln w_s + \ln a_s > 0 \quad s = 1, 2, \dots, S,$$

$$q_h = \mu_h (\ln y_h + \ln a_h) > 0 \quad h = 1, 2, \dots, H,$$

sendo l_s e q_h transformações dos vetores de preços de insumos e quantidades de produtos.

Os parâmetros de locação $\ln a_s$ e $\ln a_h$ são comumente especificados como:

$$\ln a_s = -\min(\ln w_s) + 10^{-5}, \tag{2.1}$$

$$\ln a_h = -\min(\ln y_h) + 10^{-5}. \tag{2.2}$$

As equações (2.1) e (2.2) garantem que os valores mínimos da transformação do logaritmo dos preços dos insumos e do logaritmo das quantidades de produtos sejam ligeiramente maiores do que zero.

A notação μ_h é o fator de escala do produto h:

$$\mu_h = \frac{\max(l_1, l_2, \dots, l_S)}{\ln y_h^{\max} + \ln a_h},$$

em que, y_h^{\max} é o valor máximo do produto h na amostra.

O fator de escala comum λ é calculado como:

$$\lambda = \frac{2\pi - \epsilon}{\max(l_1, l_2, \dots, l_S)},$$

para algum ϵ entre 0 e 2π . Gallant (1982) sugere que $2\pi - \epsilon = 6$.

As propostas de λ e μ_h são fazer o valor máximo do logaritmo dos preços dos insumos e o valor máximo das quantidades dos produtos ligeiramente menores do que 2π . Enquanto necessitase que λ seja comum para todos os preços de insumos, para garantir homogeneidade linear, as quantidades de produtos podem ser medidas pelo uso de uma escala distinta de medida, μ_h , sem qualquer impacto na análise (GALLANT, 1984).

Gallant (1981) sugere que o número de termos de senos e cossenos em uma aproximação em série de Fourier de uma função não-periódica pode ser reduzida consideravelmente se um termo linear b'x é incluído; agora, se um termo quadrático $x'\Psi x$ também é incluído, pode-se impor as propriedades de curvatura da função de custo, e assim, a versão logarítmica da função de Fourier, $g_K(x \mid \theta)$, é expressa por:

$$g_{K}(\boldsymbol{x} \mid \boldsymbol{\theta}) = d_{0} + \boldsymbol{b}'\boldsymbol{x} + \frac{1}{2}\boldsymbol{x}'\boldsymbol{\Psi}\boldsymbol{x} + \sum_{\alpha=1}^{A} \left\{ d_{0\alpha} + 2\sum_{j=1}^{J} \left[d_{j\alpha}\cos(j\lambda \boldsymbol{k}_{\alpha}'\boldsymbol{x}) - r_{j\alpha}\operatorname{sen}(j\lambda \boldsymbol{k}_{\alpha}'\boldsymbol{x}) \right] \right\},$$

em que

$$\Psi = -\sum_{lpha=1}^A d_{0lpha} \lambda^2 oldsymbol{k}_lpha oldsymbol{k}_lpha',$$

 \mathbf{k}_{α} são α vetores paramétricos, em que $\alpha = 1, ..., A$ de dimensão E = S + H com componentes inteiros, \mathbf{b} , $\mathbf{d} \in \mathbf{r}$ são vetores de coeficientes a serem estimados, $\mathbf{x} = (\mathbf{l}', \mathbf{q}')$ é a transformação dos vetores dos logaritmos dos preços de insumos e quantidades de produtos. A ordem de aproximação da equação $g_K(\mathbf{x} \mid \boldsymbol{\theta})$ é representada por K.

O termo linear b'x representa a forma funcional Cobb-Douglas e adicionando o termo quadrático $\frac{1}{2}x'\Psi x$ representa-se a forma funcional translog, portanto, pode-se falar que a forma funcional Cobb-Douglas e a forma funcional translog são casos especiais da forma funcional flexível Fourier. O termo $d_{0\alpha} + 2\sum_{j=1}^{J} \left[d_{j\alpha} \cos(j\lambda k'_{\alpha}x) - r_{j\alpha} \sin(j\lambda k'_{\alpha}x) \right]$ representa a aproximação da função em série de Fourier. Para que finalmente $g_K(\boldsymbol{x} \mid \boldsymbol{\theta})$ seja uma função de custo, é preciso impor homogeneidade com respeito ao primeiro elemento do vetor de preços dos insumos. Essa condição se mantém quando $\sum_{s=1}^{S} b_s = 1$ e $d_{0\alpha} = d_{j\alpha} = r_{j\alpha} = 0$, para qualquer α tal que $\sum_{s=1}^{S} k_{\alpha s} \neq 0$.

Recomenda-se que o número de parâmetros a serem estimados na forma funcional flexível Fourier seja igual ao tamanho da amostra efetiva elevado a dois terços (CHALFANT; GALLANT, 1985, EASTWOOD; GALLANT, 1991, MITCHELL; ONVURAL, 1996). A amostra efetiva corresponde ao total de observações amostradas de N firmas em T tempos, ou seja, o tamanho da amostra efetiva é NT. É muito comum encontrar na literatura J = 1 (HUANG; WANG, 2004), neste caso, A será forçado a ser menor do que a metade do tamanho amostral.

Construção dos multi-índices k_{lpha}

A notação de multi-índices reduz a complexidade da notação requerida para denotar derivadas parciais de ordem superiores e as expansões em séries de Fourier multivariadas. Um multi-índice é um vetor com componentes inteiros, possui dimensão E = S + H, e satisfaz as condições:

- i) k_{α} não pode ser um vetor de zeros;
- ii) seu primeiro elemento diferente de zero deve ser estritamente positivo;
- iii) seus elementos não podem ter um divisor inteiro comum; e,
- iv) devem-se rearranjar os k_{α} em uma seqüência tal que $k_1, k_2, \ldots, k_{\alpha}$ são vetores elementares e que seus tamanhos sejam não decrescentes em α .

O valor de K é menor do que ou igual a soma dos valores absolutos dos elementos de cada vetor k_{α} . O critério de escolha desse valor deve-se a dois motivos: o primeiro motivo refere-se ao tamanho amostral, quanto maior o valor de K, um maior número de vetores de multi-índices serão utilizados e, consequentemente, mais parâmetros d e r deverão ser estimados, e o segundo motivo refere-se ao interesse econômico, pois para se obter uma função translog completa no primeiro termo da forma funcional flexível Fourier é necessário que a ordem de aproximação K seja maior do que ou igual a 3. Se a ordem de aproximação for K = 2 os termos da função translog que se referem aos cruzamentos entre os preços de insumos e quantidades de produtos são omitidos.

Como exemplo, considere o caso com dois preços de insumos S = 2 e um produto H = 1. Para a aproximação de ordem K = 3, os elementos dos vetores multi-índices k_{α} possuem dimensão E = S + H = 3 e podem assumir os valores -3, -2, -1, 0, 1, 2 e 3. Observando-se as condições i) a iv) apresentam-se todos os possíveis vetores k_{α} na Tabela 2.1.

A soma dos 2 primeiros elementos dos vetores multi-índices devem ser zero, para impor a restrição de homogeneidade nos preços dos insumos. Sendo assim, neste caso, existem $\alpha = 6$

	K=1						K	=2						K	=3	
$oldsymbol{k}_1$	$oldsymbol{k}_2$	$oldsymbol{k}_3$		$oldsymbol{k}_4$	$oldsymbol{k}_5$	$oldsymbol{k}_6$	$oldsymbol{k}_7$	$oldsymbol{k}_8$	$oldsymbol{k}_9$	$oldsymbol{k}_{10}$	$oldsymbol{k}_{11}$	$oldsymbol{k}_{12}$		$oldsymbol{k}_{13}$	$oldsymbol{k}_{14}$	$oldsymbol{k}_{15}$
0	0	1		0	0	2	0	1	1	0	1	1		0	0	3
0	1	0		0	2	0	1	0	1	1	0	-1		0	3	0
1	0	0		2	0	0	1	1	0	-1	-1	0		3	0	0
							K	=3								
$oldsymbol{k}_{16}$	$oldsymbol{k}_{17}$	$oldsymbol{k}_{18}$	$oldsymbol{k}_{19}$	$oldsymbol{k}_{20}$	$oldsymbol{k}_{21}$	$oldsymbol{k}_{22}$	$oldsymbol{k}_{23}$	$oldsymbol{k}_{24}$	$oldsymbol{k}_{25}$	$oldsymbol{k}_{26}$	$oldsymbol{k}_{27}$	$oldsymbol{k}_{28}$	$oldsymbol{k}_{29}$	$oldsymbol{k}_{30}$	$oldsymbol{k}_{31}$	
1	1	0	1	1	0	2	2	0	2	2	0	1	1	1	1	
0	2	1	0	-2	1	0	1	2	0	-1	2	1	-1	1	-1	
2	0	2	-2	0	-2	1	0	1	-1	0	-1	1	1	-1	-1	

Tabela 2.1 – Possíveis vetores multi-índices (k_{α})

vetores multi-índices admissíveis que encontram-se na Tabela 2.2.

Tabela 2.2 – Vetores multi-índices (\boldsymbol{k}_{α}) admissíveis

K=1	K	=2		K=3			
$oldsymbol{k}_1$	$oldsymbol{k}_2$	$oldsymbol{k}_3$	$oldsymbol{k}_4$	$oldsymbol{k}_5$	$oldsymbol{k}_6$		
0	0	1	0	1	1		
0	0	-1	0	-1	-1		
1	2	0	3	1	-1		

Os cálculos necessários para calcular a forma funcional flexível Fourier a partir dos vetores multi-índices encontram-se no Anexo A.

2.2.2 Modelo de fronteira estocástica de custo com forma funcional flexível Fourier

Considerando-se um conjunto com N firmas diferentes em T tempos, correspondendo a S preços de insumos e H produtos. Define-se o modelo de fronteira estocástica de custo com forma funcional flexível Fourier na forma matricial:

$$\ln C = X\beta + 2Wd - 2Qr + Du + Iv, \qquad (2.3)$$

sendo $X\beta + 2Wd - 2Qr$ a forma funcional flexível Fourier, Du o termo de ineficiência econômica das firmas e Iv o erro aleatório do modelo. O modelo (2.3) é composto por:

i) Forma functional:

A forma funcional do modelo baseia-se nas matrizes X, $W \in Q$ e definem a forma funcional flexível Fourier. A matriz X tem dimensão $NT \times R$, em que R = 1 + S + H, com cada linha composta por uma constante, que indica o intercepto, seguido das transformações dos

logaritmos dos preços dos insumos l e quantidades de produtos q, adicionado dos quadrados e produtos cruzados dessas variáveis, para cada firma i, no tempo t. A matrix X representa a forma funcional translog.

A matriz W tem dimensão $NT \times J\alpha$ e suas linhas são compostas por cossenos de funções das transformações dos logaritmos dos preços dos insumos l e quantidades de produtos q, e, finalmente a matriz Q tem dimensão $NT \times J\alpha$ e suas linhas são compostas por senos de funções das transformações dos logaritmos dos preços dos insumos l e quantidades de produtos q. As matrizes W e Q representam a parte trigonométrica da forma funcional flexível Fourier.

Os vetores $\beta' = (\beta_1, \ldots, \beta_R)$, $d' = (d_1, \ldots, d_{J\alpha})$ e $r' = (r_1, \ldots, r_{J\alpha})$ são vetores de parâmetros a serem estimados.

ii) Termo de ineficiência econômica:

A ineficiência econômica da firma é definida pelo termo Du, sendo D uma matriz $NT \times M$, com $M \leq NT$. Através da escolha de D, define-se como estimar o vetor de ineficiência econômica. Se D é igual à matriz identidade de dimensão M = NT, obtém-se um termo de ineficiência econômica diferente para cada firma i e em cada tempo t. Se M = N, a matriz D tem a forma:

$$\boldsymbol{D} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix},$$
(2.4)

especifica-se um termo de ineficiência para cada firma, mas constante no tempo. Pode-se também especificar o termo de ineficiência econômica para grupos de firmas, por exemplo, para as firmas que pertencem a mesma região, para firmas pequenas, médias e grandes, de acordo com as características de interesse. Necessitam-se apenas de pequenas modificações na matriz D.

O vetor $u = (u_1, u_2, ..., u_m)$ representa a ineficiência econômica das firmas, em que $u_m > 0$ e, geralmente, utiliza-se as distribuições: exponencial, gama, normal-truncada, meia-normal ou log-normal para representá-lo. iii) Erro aleatório:

O modelo considera que a fronteira não é conhecida realmente, portanto, possui uma perturbação aleatória v, com distribuição normal NT-variada com média zero e matriz de variâncias e covariâncias $\sigma_v^2 I_{NT}$, sendo I_{NT} a matriz identidade de dimensão NT.

Portanto, tem-se:

$$\ln \boldsymbol{C} | \boldsymbol{u} \sim N_{NT}((\boldsymbol{X}\boldsymbol{\beta} + 2\boldsymbol{W}\boldsymbol{d} - 2\boldsymbol{Q}\boldsymbol{r} + \boldsymbol{D}\boldsymbol{u}), \sigma_v^2 \boldsymbol{I}_{NT}),$$
$$u_m | P, \theta \sim G(P, \theta), \text{ para } m = 1, \dots, M,$$

em que cada elemento do vetor de ineficiência econômica $\boldsymbol{u} = (u_1, u_2, \dots, u_m)$ possui distribuição gama:

$$p(\boldsymbol{u} \mid P, \theta) \propto \prod_{m=1}^{M} G(u_m \mid P, \theta)$$

sendo $P \in \theta$ efeitos aleatórios.

Considerando-se o termo de ineficiência econômica específico para cada firma, mas constante no tempo, ou seja, utilizando a matriz D como (2.4) e considerando-se M = N, define-se a eficiência econômica da *i*-ésima firma como:

$$EE_i = \exp(-u_i),$$

sendo u_i os elementos do vetor de ineficiência econômica u e i = 1, ..., N.

Para utilizar a abordagem bayesiana (Apêndice C) é necessário incorporar a incerteza relativa as quantidades de interesse. Para tanto, considera-se independência entre os parâmetros β , d, r, P, θ e σ_v^2 e a distribuição a priori conjunta é dada por:

$$\pi(P,\theta,\sigma_v^2,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r}) = \pi(P)\pi(\theta)\pi(\sigma_v^2)\pi(\boldsymbol{\beta})\pi(\boldsymbol{d})\pi(\boldsymbol{r}),$$

para as quais: $P \sim G(a_0, b_0)$; $\theta \sim G(v_0, w_0)$; a distribuição a priori de σ_v^2 é dada pela precisão $\tau = \sigma_v^{-2}$: $\tau \sim G(\alpha, \delta)$; $\beta \sim NT_R(\boldsymbol{a}_{\beta}, \boldsymbol{I}_R \sigma_{\beta}^2) I_{\beta}(\beta)$; $\boldsymbol{d} \sim N_{J\alpha}(\boldsymbol{a}_d, \boldsymbol{I}_{J\alpha} \sigma_d^2)$; $\boldsymbol{v} \sim N_{J\alpha}(\boldsymbol{a}_r, \boldsymbol{I}_{J\alpha} \sigma_r^2)$, sendo G(a, b) a função densidade de probabilidade da distribuição gama com média $\frac{a}{b}$ e variância $\frac{a}{b^2}$, $N_{J\alpha}(m, V)$ a distribuição normal $J\alpha$ -variada e $NT_R(m, V)$ a distribuição normal truncada R-variada (Apêndice D).

A distribuição conjunta a posteriori é dada por:

$$\pi(P,\theta,\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{u}|\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) = (2\pi)^{-\frac{NT}{2}}\tau^{\frac{NT}{2}}\frac{\theta^{MP}}{\Gamma(P)^{M}}\prod_{m=1}^{M}u_{m}^{P-1}$$
$$\exp\left\{-\frac{1}{2}\left[(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})'(\tau\boldsymbol{I}_{NT})(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})\right] -\theta\sum_{m=1}^{M}u_{m}\right\}\pi(P)\pi(\theta)\pi(\boldsymbol{\beta})\pi(\boldsymbol{d})\pi(\boldsymbol{r})\pi(\tau).$$

De forma equivalente, tem-se:

$$\pi(P,\theta,\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{u}|\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \tau^{\frac{NT}{2}} \frac{\theta^{MP}}{\Gamma(P)^{M}} \prod_{m=1}^{M} u_{m}^{P-1}$$

$$\exp\left\{-\frac{1}{2}\left[(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})'(\tau\boldsymbol{I}_{NT})(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})\right] \\ -\theta\sum_{m=1}^{M} u_{m}\right\}P^{a_{0}-1} \exp\{-b_{0}P\} \ \theta^{v_{0}-1} \exp\{-w_{0}\theta\} \ \tau^{\alpha-1} \exp\{-\delta\tau\} \\ \exp\left\{-\frac{1}{2}\left[(\boldsymbol{\beta}-\boldsymbol{a}_{\beta})'(\boldsymbol{I}_{R}\sigma_{\beta}^{2})^{-1}(\boldsymbol{\beta}-\boldsymbol{a}_{\beta})\right]\right\}I_{\beta}(\boldsymbol{\beta}) \exp\left\{-\frac{1}{2}\left[(\boldsymbol{d}-\boldsymbol{a}_{d})'(\boldsymbol{I}_{J\alpha}\sigma_{d}^{2})^{-1}(\boldsymbol{d}-\boldsymbol{a}_{d})\right]\right\} \\ \exp\left\{-\frac{1}{2}\left[(\boldsymbol{r}-\boldsymbol{a}_{r})'(\boldsymbol{I}_{J\alpha}\sigma_{r}^{2})^{-1}(\boldsymbol{r}-\boldsymbol{a}_{r})\right]\right\}.$$

$$\left(2.5\right)$$

Como a distribuição conjunta a posteriori não é tratável algebricamente, resumos a posteriori de interesse são obtidos de amostras da distribuição (2.5) utilizando-se algoritmos MCMC (Apêndice E), tais como, Gibbs *sampling* (CASELLA; GEORGE, 1992; GELFAND, 2000; GELFAND et al., 1990) e Metropolis-Hastings (CHIB; GREENBERG, 1995; HASTINGS, 1970; METROPOLIS et al., 1953). Para a implementação computacional desses algoritmos é necessário o conhecimento das distribuições condicionais completas a posteriori de todas as quantidades desconhecidas de interesse presentes no modelo.

Apresentam-se, a seguir, as distribuições condicionais completas a posteriori associadas a distribuição (2.5). Os cálculos para sua obtenção são apresentados no Anexo B.

i) Distribuição condicional completa a posteriori para θ é gama:

$$\theta | \tau, \boldsymbol{\beta}, \boldsymbol{d}, \boldsymbol{r}, \boldsymbol{u}, P, \boldsymbol{X}, \boldsymbol{W}, \boldsymbol{Q}, \ln \boldsymbol{C} \sim G\left(MP + v_0, w_0 + \sum_{m=1}^{M} u_m\right).$$

ii) Distribuição condicional completa a posteriori para β é normal truncada *R*-variada na região de regularidade do β :

$$\boldsymbol{\beta}|P, \theta, \tau, \boldsymbol{u}, \boldsymbol{d}, \boldsymbol{r}, \boldsymbol{X}, \boldsymbol{W}, \boldsymbol{Q}, \ln \boldsymbol{C} \sim N_R(\boldsymbol{b}_{\beta}, \boldsymbol{H}_{\beta}^{-1})I_{\beta}(\boldsymbol{\beta}),$$

sendo $\boldsymbol{H}_{\beta} = \boldsymbol{X}' \tau \boldsymbol{I}_{NT} \boldsymbol{X} + \boldsymbol{I}_{R} \sigma_{\beta}^{-2}; \boldsymbol{b}_{\beta} = \boldsymbol{H}_{\beta}^{-1}(-\boldsymbol{b}_{1}), \boldsymbol{b}_{1} = -\boldsymbol{X}' \tau \boldsymbol{I}_{NT} \ln \boldsymbol{C} + \boldsymbol{X}' \tau \boldsymbol{I}_{NT} 2 \boldsymbol{W} \boldsymbol{d} - \boldsymbol{X}' \tau \boldsymbol{I}_{NT} 2 \boldsymbol{Q} \boldsymbol{r} + \boldsymbol{X}' \tau \boldsymbol{I}_{NT} D \boldsymbol{u} - \boldsymbol{I}_{R} \sigma_{\beta}^{-2} a_{\beta} \in I_{\beta}(\boldsymbol{\beta})$ corresponde a uma restrição para que os elementos do vetor $\boldsymbol{\beta}$, exceto o intercepto, sejam não negativos.

iii) Distribuição condicional completa a posteriori para d é normal $J\alpha$ -variada:

$$d|P, \theta, \tau, \boldsymbol{u}, \boldsymbol{\beta}, \boldsymbol{r}, \boldsymbol{X}, \boldsymbol{W}, \boldsymbol{Q}, \ln \boldsymbol{C} \sim N_{J\alpha}(\boldsymbol{b}_d, \boldsymbol{H}_d^{-1}),$$

sendo $\boldsymbol{H}_{d} = 2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W} + \boldsymbol{I}_{J\alpha}\sigma_{d}^{-2}$ e $\boldsymbol{b}_{d} = \boldsymbol{H}_{d}^{-1}(-\boldsymbol{b}_{2})$ e $\boldsymbol{b}_{2} = -2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + 2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} + 2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} - \boldsymbol{I}_{J\alpha}\sigma_{d}^{-2}a_{d}.$

iv) Distribuição condicional completa a posteriori para r é normal $J\alpha$ -variada:

$$\boldsymbol{r}|P, \theta, \tau, \boldsymbol{u}, \boldsymbol{\beta}, \boldsymbol{d}, \boldsymbol{X}, \boldsymbol{W}, \boldsymbol{Q}, \ln \boldsymbol{C} \sim N_{J\alpha}(\boldsymbol{b}_r, \boldsymbol{H}_r^{-1}),$$

sendo $\boldsymbol{H}_r = 2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q} + \boldsymbol{I}_{J\alpha}\sigma_r^{-2} \operatorname{e} \boldsymbol{b}_r = \boldsymbol{H}_r^{-1}(-\boldsymbol{b}_3) \operatorname{e} \boldsymbol{b}_3 = 2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} - 2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - 2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} - \boldsymbol{I}_{J\alpha}\sigma_r^{-2}a_r.$

v) Distribuição condicional completa a posteriori para $\tau = \sigma_v^{-2}$ é gama:

$$\tau \mid \boldsymbol{\beta}, \boldsymbol{d}, \boldsymbol{r}, \boldsymbol{P}, \boldsymbol{\theta}, \boldsymbol{u}, \boldsymbol{X}, \boldsymbol{W}, \boldsymbol{Q}, \ln \boldsymbol{C} \sim G\left(\frac{N}{2} + \alpha, \frac{(\ln \boldsymbol{C} - \boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{W}\boldsymbol{d} + 2\boldsymbol{Q}\boldsymbol{r} - \boldsymbol{D}\boldsymbol{u})'(\ln \boldsymbol{C} - \boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{W}\boldsymbol{d} + 2\boldsymbol{Q}\boldsymbol{r} - \boldsymbol{D}\boldsymbol{u}) + 2\delta}{2}\right).$$

vi) Distribuição condicional completa a posteriori para P:

$$\pi(P|\theta,\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{u},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \frac{\theta^{MP}}{\Gamma(P)^M} P^{a_0-1} \exp\left\{P[-b_0+\sum_{m=1}^M \ln(u_m)]\right\}$$

vii) Distribuição condicional completa a posteriori para u:

$$\pi(\boldsymbol{u}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ \exp\left\{-\frac{1}{2}\left[(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})'(\tau\boldsymbol{I}_{NT})(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})\right]\right\} \\ \exp\left\{-\theta\sum_{m=1}^{M}u_{m}+(\boldsymbol{P}-1)\sum_{m=1}^{M}\ln(u_{m})\right\}.$$

As distribuições condicionais completas a posteriori para os parâmetros β , d, r, $\tau \in \theta$, possuem forma fechada, ou seja, são distribuições conhecidas (normal e gama), portanto, pode-se utilizar o algoritmo Gibbs *sampling* para obter amostras dessas distribuições e as distribuições condicionais completas a posteriori para os parâmetros $u \in P$ não possuem forma fechada e amostrar dessas distribuições não é simples. Para amostrar destas distribuições, pode-se utilizar o algoritmo de Metropolis-Hastings.

2.2.3 Simulação de dados

Os dados simulados baseiam-se em valores reais, relativos a produção de leite do Estado de São Paulo. As variáveis referem-se: ao preço do farelo de soja; ao preço da mão de obra e à produção de leite. Coletou-se as médias e as variâncias dos logaritmos dos dados disponíveis no sítio do Instituto de Economia Agrícola¹ e foram utilizadas como base para a simulação das

¹http://www.iea.sp.gov.br/out/banco/menu.php (03 fev. 2008)

variáveis. O logaritmo do preço do insumo farelo de soja, na simulação, possui distribuição normal com média 6,17 e desvio padrão 0,06, o logaritmo do preço da mão de obra possui distribuição normal com média 5,40 e desvio-padrão 0,20 e o logaritmo da produção de leite possui distribuição normal com média 10,50 e desvio-padrão 0,12.

Considere N = 60 firmas em T = 6 tempos, S = 2 preços de insumos e H = 1 quantidade de produto. Os passos a seguir são necessários para obter os dados simulados:

- **Passo 1:** Gera-se os logaritmos dos preços unitários dos dois insumos e o logaritmo da quantidade do produto para cada uma das 60 firmas, que são denotados por $\ln w_{i1}$, $\ln w_{i2}$, e $\ln y_i$ e assume-se que $\ln w_{i1} \sim N(6, 17; 0, 06)$, $\ln w_{i2} \sim N(5, 40; 0, 20)$ e $\ln y_i \sim N(10, 50; 0, 12)$, respectivamente.
- Passo 2: Utiliza-se o caminho aleatório governado pela função densidade de probabilidade da distribuição normal com média 0 e desvio padrão igual a 0, 01 para gerar as variáveis no tempo. Esta idéia foi originalmente proposta por Fernández et al. (2000) e utilizada em Cespedes (2003):

$$\ln w_{it1} = \ln w_{i(t-1)1} + \varsigma,$$

em que ς tem distribuição normal com média 0 e desvio padrão 0,01, i = 1, ..., N e t = 1, ..., T. Se valores negativos são gerados para as variáveis, esses são descartados e gerados novamente. Utiliza-se o mesmo processo para $\ln w_{it2}$ e $\ln y_{it}$.

Passo 3: Faz-se a transformação dos logaritmos dos preços dos insumos e a transformação da quantidade do produto para que todos os valores sejam estritamente positivos e menores do que 2π , obtendo-se assim, $l \in q$, respectivamente. Essas variáveis formam a matriz X de dimensão 360×10 . A linha *i* da matriz X é dada por:

$$\boldsymbol{X}[i,t,] = (1, l_{it1}, l_{it2}, q_{it}, \lambda^2 l_{it1}^2, \lambda^2 l_{it2}^2, \lambda^2 q_{it}^2, \lambda^2 l_{it1} l_{it2}, \lambda^2 l_{it1} q_{it}, \lambda^2 l_{it2} q_{it}).$$

Passo 4: As matrizes $W \in Q$, de dimensão 360×6 são compostas por combinações de cossenos e senos das transformações dos logaritmos dos preços dos insumos e da quantidade de produto: A linha *i* das matrizes $W \in Q$ são definidas como:

$$\begin{split} \boldsymbol{W}[i,t,] &= 2 \bigg(\cos(3\lambda q_{it}), \cos(2\lambda q_{it}), \cos(\lambda q_{it}), \cos(\lambda (l_{it1} - l_{it2} - q_{it})), \\ &\quad \cos(\lambda (l_{it1} - l_{it2} + q_{it})), \cos(\lambda (l_{it1} - l_{it2})) \bigg), \\ \mathbf{e} \\ \boldsymbol{Q}[i,t,] &= 2 \bigg(\operatorname{sen}(3\lambda q_{it}), \operatorname{sen}(2\lambda q_{it}), \operatorname{sen}(\lambda q_{it}), \operatorname{sen}(\lambda (l_{it1} - l_{it2} - q_{it})), \\ &\quad \operatorname{sen}(\lambda (l_{it1} - l_{it2} + q_{it})), \operatorname{sen}(\lambda (l_{it1} - l_{it2})) \bigg). \end{split}$$

A ordem de aproximação utilizada é K = 3. Os cálculos para a obtenção dos multi-índices k_{α} e das matrizes W e Q encontram-se no Anexo A.

Passo 5: Consideram-se os vetores de parâmetros $\beta = (0, 5; 0, 4; 0, 6; 0, 3; 0, 5; 0, 5; 0, 5; 1, 0; 1, 0; 1, 0),$ $d = (d_1, d_2, \dots, d_6) = (1, 1, \dots, 1)$ e $r = (r_1, r_2, \dots, r_6) = (1, 1, \dots, 1)$. Assume-se ineficiência constante no tempo. A matriz D, de dimensão 360×60 é expressa por:

$$m{D} = \left[egin{array}{ccccc} m{\iota}_6 & 0 & \dots & 0 \ 0 & m{\iota}_6 & \dots & 0 \ 0 & 0 & \dots & m{\iota}_6 \end{array}
ight],$$

em que ι_6 é um vetor de uns de tamanho 6.

O vetor de ineficiências possui distribuição gama com parâmetros P = 0, 8 e $\theta = 1$, valores esses sugeridos por Tsionas (2000). Os valores gerados são ordenados de forma que a firma 1 seja a mais eficiente e a firma 60 a menos eficiente.

O fator de escala $\sigma_v^2 = 0,05$ para que a parte da variância da fronteira explicada pela ineficiência econômica, VF, esteja próximo de 95%, em que $VF = \frac{\sigma_u^2}{(\sigma_v^2 + \sigma_u^2)} = 0,9412$ e $\sigma_u^2 = \frac{P}{\theta^2} = 0,8000.$

Passo 6: Obtém-se ln C da distribuição $N((X\beta + 2Wd - 2Qr + Du), I_{360}\sigma_v^2)$.

Repete-se 50 vezes os passos de 1 a 6 e gera-se 50 amostras do $\ln C$, em que obtém-se um vetor de ineficiências diferente para cada amostra.

2.2.4 Aplicação a dados reais

Os dados referem-se a 382 hospitais dos Estados Unidos, observados de 1987 a 1991. Os dados foram previamente analisados por Koop et al. (1997) e Griffin e Steel (2007). Nesses artigos utiliza-se a função de custo translog para o modelo de fronteira estocástica.

Os dados são compostos por:

- i) C = custos (facilidade despesas operacionais),
- i) Y_1 = número de casos (para explicar os serviços médicos),
- ii) $Y_2 = n$ úmero de dias de internação "inpatient" (para explicar enfermagem, acomodação e outros serviços de hospedagem),
- iii) Y_3 = número de leitos (para satisfazer uma opção da procura de serviços hospitalares),
- iv) $Y_4 = o$ número de visitas ambulatoriais,

- v) Y_5 = uma mistura de outros aspectos dos produtos que estão incluídos no custo,
- vi) w_1 = medida de capital social (total de ativos fixos),
- vii) $w_2 =$ índice salarial. Os dados originais contêm apenas um índice agregado dos salários,
- viii) t, t^2 = variável tempo e o quadrado dessa variável. Essas variáveis são adicionadas no modelo para capturar a falta de dimensão temporal de um outro insumo importante que está presente na rotina de um hospital, que são materiais gerais e suprimentos, mas que não estão presentes nos dados. Dado o poder de compra dos hospitais, é razoável supor que o preço dos materiais é relativamente constante em todos os hospitais. Então, lida-se com o preço dos materiais como uma constante. Este tipo de tratamento é, sem dúvida, razoável para dados "cross sectional", mas não é razoável para dados em painel. Assim, a tendência é adicionar uma variável de tempo e o quadrado dessa variável como variáveis explicativas na fronteira de custo, para tentar capturar a falta da dimensão temporal do preço dos materiais ou outras dinâmicas que não são modeladas explicitamente.

2.3 Resultados e discussão

Os resultados dividem-se em duas seções: a primeira refere-se a simulação de 50 amostras da variável resposta obtidas a partir do modelo de fronteira estocástica de custo com forma funcional flexível Fourier e a segunda seção refere-se a aplicação da metodologia a dados reais.

2.3.1 Simulação

Os dados foram gerados, conforme descrição da seção 2.2.3, utilizando o programa estatístico R (R DEVELOPMENT CORE TEAM, 2008). Obteve-se 50 amostras do ln C para N = 60 firmas em T = 6 tempos, S = 2 insumos e H = 1 produto. O programa para gerar as amostras encontrase no Anexo C.

A implementação computacional foi feita usando-se o programa Winbugs (LUNN et al., 2000) gerando uma cadeia com 90.000 valores para cada parâmetro, desprezando os primeiros 30.000 valores para o período de aquecimento da cadeia ("burn-in") e selecionando um a cada 5 dos 60.000 valores restantes ("thin"), formando uma amostra de 12.000 valores. As 50 amostras foram iniciadas em três pontos distintos, totalizando três cadeias e a convergência das estimativas dos parâmetros foi monitorada através do critério de convergência de Gelman e Rubin (1992) (Apêndice F), disponível no programa Winbugs. O programa para analisar os dados encontra-se no Anexo D.

Os hiperparâmetros das distribuições a priori para os parâmetros β , d, r, θ e τ são escolhidos para que as distribuições sejam não informativas. Segundo Tsionas (2002) não é razoável que a distribuição a priori de P seja não informativa, em tais casos não é possível identificar os desvios

da fronteira em relação aos erros de observação, assim, considerou-se informação a priori para esse parâmetro. Os valores dos hiperparâmetros encontram-se na Tabela 2.3.

Parâmetro	Hiperparâmetro						
β_R	$a_{\beta} = 0,00$	$\sigma_{\beta}^2 = 100,00$					
d_{Jlpha}	$a_d = 0,00$	$\sigma_{d}^{2} = 100,00$					
r_{Jlpha}	$a_r = 0,00$	$\sigma_{r}^{2} = 100,00$					
P	$a_0 = 0,80$	$b_0 = 1,00$					
heta	$v_0 = 0,01$	$w_0 = 0,01$					
τ	$\alpha=0,01$	$\delta=0,01$					

Tabela 2.3 – Hiperparâmetros das distribuições a priori dos parâmetros β , d, r, P, θ , τ

A Tabela 2.4 apresenta um resumo a posteriori para cada parâmetro obtido no estudo de simulação.

Tabela 2.4 – Resumo a posteriori para os parâmetros da fronteira

					(c	ontinua)
Par.	V. verd.	Média	d.p.	2,5%	50%	97,5%
β_1	0,5000	0,4818	0,5694	0,2991	0,4985	0,6985
β_2	0,4000	0,4645	0,5409	0,2517	0,4910	0,8097
β_3	0,6000	0,5676	0,6099	0,1727	0,5142	0,8154
β_4	0,3000	0,3496	0,3219	0,1473	0,3307	0,4802
β_5	0,5000	0,4312	0,1251	0,1746	0,3718	0,5860
β_6	0,5000	0,5323	0,2376	0,1344	0,8532	1,1140
β_7	0,5000	0,4586	0,0810	0,1942	0,4480	0,5694
β_8	1,0000	0,9898	0,1415	0,2512	1,1810	1,2677
β_9	1,0000	1,0282	0,0635	0,7128	1,0530	1,1528
β_{10}	1,0000	0,9939	0,2033	0,7039	0,9560	1,3946
d_1	1,0000	1,0172	0,0355	0,9484	1,0169	1,0873
d_2	1,0000	1,0123	0,0576	0,8925	1,0148	1,1183
d_3	1,0000	0,9439	0,0556	0,8367	0,9431	1,0551
d_4	1,0000	1,0543	0,0695	0,9234	1,0529	1,1905
d_5	1,0000	1,2016	0,2478	0,7678	1,1873	1,6816
d_6	1,0000	1,0057	0,1017	0,8115	1,0035	1,2132
r_1	1,0000	1,0046	0,0340	0,9385	1,0045	1,0717
r_2	1,0000	0,9718	0,0554	0,8631	0,9717	1,0808
r_3	1,0000	1,0241	0,0606	0,9072	1,0232	1,1457
r_4	1,0000	1,0211	0,0675	0,8911	1,0203	1,1558
r_5	1,0000	0,9754	0,1503	0,6909	0,9717	1,2823
r_6	1,0000	0,8786	0,1386	0,5619	0,8346	1,1058

				(continuaç			
Par.	V. Verd.	Média	d.p.	2,5%	50%	97,5%	
P	0,8000	0,8468	0,4069	0,4517	0,5424	2,0120	
θ	1,0000	1,1548	0,3662	0,5654	1,1118	1,9915	
σ_v^2	0,0500	0,0518	0,0044	0,0440	0,0516	0,0611	
u_1	0,0063	0,1597	0,1442	0,0032	0,1211	0,5294	
u_2	0,0130	0,1550	0,1287	0,0035	0,1256	0,4735	
u_3	0,0221	0,1850	0,2622	0,0084	0,2718	0,9646	
u_4	0,0331	0,1451	0,1195	0,0042	0,1177	0,4419	
u_5	0,0431	0,1161	0,1111	0,0017	0,0846	0,4041	
u_6	0,0534	0,2286	0,2032	0,0042	0,1748	0,7425	
u_7	0,0654	0,1843	0,1553	0,0034	0,1481	0,5690	
u_8	0,0761	0,2246	0,1600	0,0093	0,1972	0,6017	
u_9	0,0931	0,1345	0,1293	0,0019	0,0970	0,4712	
u_{10}	0,1060	0,1937	0,1367	0,0118	0,1686	0,5204	
u_{11}	0,1181	0,2219	0,1967	0,0056	0,1701	0,7257	
u_{12}	0,1344	0,2589	0,3219	0,0221	0,3863	1,2182	
u_{13}	0,1560	0,2571	0,1736	0,0131	0,2310	0,6571	
u_{14}	0,1663	0,3437	0,3528	0,0065	0,2938	1,2918	
u_{15}	0,1825	0,2601	0,1532	0,0349	0,2390	0,6129	
u_{16}	0,1996	0,3858	0,4616	0,0089	0,3866	1,6875	
u_{17}	0,2214	0,2655	0,2212	0,0068	0,2131	0,8106	
u_{18}	0,2357	0,2256	0,1498	0,0199	0,2012	0,5768	
u_{19}	0,2560	0,2717	0,1781	0,0284	0,2402	0,6961	
u_{20}	0,2721	0,3307	0,1622	0,0666	0,3155	0,6900	
u_{21}	0,2890	0,3372	0,1728	0,0582	0,3198	0,7205	
u_{22}	0,3124	0,2469	0,1823	0,0095	0,2134	0,6794	
u_{23}	0,3332	0,3376	0,2025	0,0389	0,3093	0,8032	
u_{24}	0,3552	0,3779	0,1786	0,0806	0,3619	0,7707	
u_{25}	0,3733	0,5413	0,3080	0,0709	0,5055	1,2223	
u_{26}	0,3974	0,5119	0,2079	0,1486	0,4984	0,9573	
u_{27}	0,4188	0,4917	0,1836	0,1675	0,4794	0,8877	
u_{28}	0,4387	0,5461	0,1869	0,2096	0,5362	0,9428	
u_{29}	0,4673	0,5001	0,1980	0,1555	0,4865	0,9278	
u_{30}	0,4914	0,5465	0,3159	0,0634	0,5083	1,2608	
u_{31}	0,5208	0,5566	0,2053	0,1993	0,5412	1,0037	
u_{32}	0,5473	0,5033	0,2402	0,1145	0,4793	1,0324	
u_{33}	0,5814	0,5563	0,1848	0,2341	0,5433	0,9557	
u_{34}	0,6172	0,6943	0,1581	0,4131	0,6839	1,0371	

Tabela 2.4 - Resumo a posteriori para os parâmetros da fronteira

					(co	nclusão)
Par.	V. Verd.	Média	d.p.	2,5%	50%	97,5%
u_{35}	0,6426	0,7907	0,2226	0,4024	0,7740	1,2752
u_{36}	0,6813	0,6940	0,1702	0,3894	0,6836	1,0604
u_{37}	0,7129	0,5260	0,2175	0,1522	0,4890	0,9883
u_{38}	0,7595	0,7879	0,5012	0,0694	0,7138	1,9339
u_{39}	0,7984	0,8194	0,1807	0,4993	0,8072	1,2110
u_{40}	0,8394	0,8380	0,1583	0,5562	0,8278	1,1809
u_{41}	0,8804	0,8444	0,2208	0,4556	0,8291	1,3222
u_{42}	0,9282	1,0957	0,3573	0,6324	1,2165	2,0331
u_{43}	0,9735	0,8019	0,5336	0,0632	0,7152	2,0386
u_{44}	1,0294	1,0494	0,2256	0,6484	1,0347	1,5337
u_{45}	1,0878	0,9141	0,3974	0,2157	0,8919	1,7489
u_{46}	1,1607	1,1318	0,1989	0,7754	1,1198	1,5578
u_{47}	1,2250	1,3140	0,1755	1,0033	1,3022	1,6932
u_{48}	1,2966	1,3593	0,1623	1,0686	1,3496	1,7081
u_{49}	1,3536	1,4174	0,1858	1,0877	1,4052	1,8181
u_{50}	1,4246	1,4343	0,2148	1,0620	1,4168	1,9051
u_{51}	1,5167	1,3402	0,2109	0,9562	1,3294	1,7866
u_{52}	1,5999	1,4286	0,5687	0,4016	1,4072	2,6017
u_{53}	1,6913	1,5275	0,3063	0,8008	1,3551	2,0045
u_{54}	1,8416	1,6698	0,2915	0,9934	1,5438	2,1405
u_{55}	1,9971	2,0535	0,1925	1,7128	2,0406	2,4691
u_{56}	2,2001	2,2530	0,1606	1,9659	2,2433	2,5985
u_{57}	2,4455	2,4697	0,2102	2,0862	2,4595	2,9127
u_{58}	2,8710	2,8366	0,2388	2,4098	2,8221	3,3455
u_{59}	3,2765	3,2505	0,1681	2,9496	3,2403	3,6122
u_{60}	4,3155	4,3087	0,2330	3,8125	4,2142	4,7290

Tabela 2.4 - Resumo a posteriori para os parâmetros da fronteira

Observa-se que os valores estimados estão próximos dos valores verdadeiros, omitiu-se os valores da estatística R do critério de convergência de Gelman e Rubin, pois encontrou-se valor aproximadamente igual a 1 para todos os parâmetros, o que indica convergência das cadeias. As Figuras 2.1 e 2.2 apresentam os histogramas das médias a posteriori dos parâmetros obtidas nas 50 simulações. A linha vertical azul representa o valor verdadeiro.

Figura 2.1 – Histogramas das médias a posteriori dos parâmetros da fronteira

Figura 2.2 – Histogramas das médias a posteriori dos parâmetros da fronteira

A Figura 2.3 apresenta os histogramas das médias a posteriori da ineficiência econômica das firmas que foram consideradas menos ineficientes, as firmas que estão na posição central e as mais ineficientes, respectivamente. A linha vertical azul representa o valor verdadeiro.

Figura 2.3 – Histograma da média a posteriori da ineficiência econômica de firmas menos ineficientes, medianas e mais ineficientes, respectivamente

Observa-se que a estimativa das firmas mais ineficientes está mais próxima do valor verdadeiro do que as das firmas menos ineficientes.

A Tabela 2.5 mostra a classificação da eficiência econômica das 60 firmas. O índice de eficiência econômica das firmas manteve a ordem de classificação para maioria das firmas, mas algumas posições foram trocadas. Observa-se também que a estimativa das firmas menos eficientes está mais próxima do valor verdadeiro do que as firmas mais eficientes.

Par.	V. verd.	Média	Par.	V. verd.	Média
EE_1	0,9937	0,8524	EE_{31}	0,5940	0,5732
EE_2	0,9871	0,8564	EE_{32}	0,5785	0,6045
EE_3	0,9781	0,8311	EE_{33}	0,5591	0,5733
EE_4	0,9674	0,8649	EE_{34}	0,5395	0,4994
EE_5	0,9578	0,8904	EE_{35}	0,5259	0,4535
EE_6	0,9480	0,7957	EE_{36}	0,5060	0,4996
EE_7	0,9367	0,8316	EE_{37}	0,4902	0,5909
EE_8	0,9267	0,7988	EE_{38}	0,4679	0,4548
EE_9	0,9111	0,8741	EE_{39}	0,4500	0,4407
EE_{10}	0,8994	0,8239	EE_{40}	0,4320	0,4326
EE_{11}	0,8886	0,8010	EE_{41}	0,4146	0,4298
EE_{12}	0,8742	0,7719	EE_{42}	0,3953	0,3343
EE_{13}	0,8556	0,7733	EE_{43}	0,3778	0,4485
EE_{14}	0,8468	0,7091	EE_{44}	0,3572	0,3502
EE_{15}	0,8332	0,7710	EE_{45}	0,3370	0,4009
EE_{16}	0,8191	0,6799	EE_{46}	0,3133	0,3224
EE_{17}	0,8014	0,7668	EE_{47}	0,2938	0,2688
EE_{18}	0,7900	0,7980	EE_{48}	0,2735	0,2568
EE_{19}	0,7741	0,7621	EE_{49}	0,2583	0,2423
EE_{20}	0,7618	0,7184	EE_{50}	0,2406	0,2383
EE_{21}	0,7490	0,7137	EE_{51}	0,2194	0,2618
EE_{22}	0,7317	0,7813	EE_{52}	0,2019	0,2396
EE_{23}	0,7166	0,7135	EE_{53}	0,1843	0,2171
EE_{24}	0,7010	0,6853	EE_{54}	0,1586	0,1883
EE_{25}	0,6885	0,5820	EE_{55}	0,1357	0,1283
EE_{26}	0,6721	0,5994	EE_{56}	0,1108	0,1051
EE_{27}	0,6578	0,6116	EE_{57}	0,0867	0,0846
EE_{28}	0,6449	0,5792	EE_{58}	0,0566	0,0586
EE_{29}	0,6267	0,6064	EE_{59}	0,0378	0,0388
EE_{30}	0,6118	0,5790	EE_{60}	0,0134	0,0135

Tabela 2.5 – Classificação da eficiência econômica das firmas

A Figura 2.4 apresenta o gráfico da eficiência econômica estimada de cada firma versus a eficiência econômica verdadeira.

Figura 2.4 – Eficiência econômica estimada versus eficiência econômica verdadeira

Observa-se que existe uma variabilidade crescente nas estimativas da eficiência econômica. Quanto mais eficiente a firma é, maior o erro na comparação do valor estimado com o valor verdadeiro.

2.3.2 Aplicação empírica

A implementação computacional foi feita usando-se o programa Winbugs gerando uma cadeia com 50.000 valores para cada parâmetro, desprezando os primeiros 10.000 valores para o período de aquecimento da cadeia ("burn-in") e selecionando um a cada 5 dos 40.000 valores restantes ("thin"), formando uma amostra de 8.000 valores.

Os hiperparâmetros das distribuições a priori são escolhidos para que as distribuições sejam não informativas para os parâmetros β , d, r, $\theta \in \tau$. Assume-se informação a priori para o parâmetro P. Os valores dos hiperparâmetros encontram-se na Tabela 2.6.

Outros valores foram testados para os hiperarâmetros da distribuição a priori de *P*. A escolha destes hiperparâmetros foi baseada de acordo com o critério DIC (Apêndice G), que encontra-se na Tabela 2.7.

A Tabela 2.8 apresenta um resumo a posteriori para cada parâmetro da fronteira.

Parâmetro	Hiperparâmetro					
β_R	$a_{\beta} = 0,00$	$\sigma_{\beta}^2 = 100,00$				
d_{Jlpha}	$a_d = 0,00$	$\sigma_d^2 = 100,00$				
r_{Jlpha}	$a_r = 0,00$	$\sigma_{r}^{2} = 100,00$				
P	$a_0 = 0,80$	$b_0 = 1,00$				
heta	$v_0 = 0,01$	$w_0 = 0,01$				
τ	$\alpha=0,01$	$\delta=0,01$				

Tabela 2.6 – Hiperparâmetros das distribuições a priori dos parâmetros β , d, r, P, θ , τ

Tabela 2.7 – Valores do DIC para diferentes hiperparâmetros da distribuição a priori do parâmetro P

Hiperpa	DIC	
$a_0 = 0,01$	$b_0 = 0,01$	-4976,140
$a_0 = 0,80$	$b_0 = 1,00$	-4261,370
$a_0 = 2,00$	$b_0 = 1,00$	-4580,540

Tabela 2.8 – Resumo a posteriori para os parâmetros da fronteira

				,	•
				(continua)
Par.	Média	d.p.	2,5%	50%	97,5%
β_1	13,4700	2,3790	6,7770	14,7300	15,2100
β_2	0,0297	0,0540	0,0003	0,0083	0,1255
β_3	0,0277	0,0663	0,0003	0,0083	0,3333
β_4	0,0477	0,0547	0,0004	0,0181	0,1906
β_5	0,0504	0,1298	0,0002	0,0067	0,4866
β_6	0,0312	0,0619	0,0003	0,0087	0,2415
β_7	0,2069	0,1883	0,0007	0,1760	0,5684
β_8	0,4228	0,5010	0,0061	0,1596	1,5730
β_9	0,0063	0,0080	0,0001	0,0035	0,0329
β_{10}	0,0103	0,0126	0,0002	0,0050	0,0507
β_{11}	0,0056	0,0054	0,0002	0,0040	0,0220
β_{12}	0,0040	0,0055	0,0001	0,0017	0,0204
β_{13}	0,0015	0,0015	0,0000	0,0010	0,0055
β_{14}	0,2140	0,1691	0,0011	0,2039	0,5493
β_{15}	0,0015	0,0014	0,0000	0,0011	0,0051
β_{16}	0,0059	0,0064	0,0001	0,0037	0,0262
β_{17}	0,0049	0,0045	0,0001	0,0034	0,0170
β_{18}	0,0029	0,0031	0,0001	0,0018	0,0131
β_{19}	0,0018	0,0017	0,0000	0,0013	0,0065
β_{20}	0,0053	0,0051	0,0001	0,0035	0,0194

(continuação) d.p. Par. Média 2,5% 50% 97,5% 0,0038 0,0045 0,0001 0,0023 0,0174 β_{21} 0,0022 0,0022 0,0000 0,0014 0,0080 β_{22} 0,0031 0,0001 0,0026 0,0110 β_{23} 0,0035 0,0025 0,0023 0,0001 0,0019 0,0082 β_{24} β_{25} 0,0017 0,0017 0,0000 0,0012 0,0065 β_{26} 0,0055 0,0064 0,0001 0,0031 0,0233 0,0031 0,0052 0,0060 0,0001 0,0218 β_{27} β_{28} 0,0058 0,0065 0,0001 0,0036 0,0237 0,0059 0,0064 0,0001 0,0037 0,0233 β_{29} 0,0062 0,0001 0,0032 0,0225 β_{30} 0,0055 0,0036 0,0038 0,0001 0,0024 0,0138 β_{31} β_{32} 0,0034 0,0035 0,0001 0,0021 0,0130 β_{33} 0,0024 0,0024 0,0001 0,0016 0,0089 0,0027 0,0023 0,0001 0,0020 0,0083 β_{34} 0,0021 0,0024 0,0000 0,0013 0,0089 β_{35} β_{36} 0,0017 0,0017 0,0000 0,0011 0,0062 0,0039 0,1179 β_{37} 0,1185 0,1120 0,12760,0003 0,0002 0,0000 0,0002 0,0009 β_{38} d_1 0.0770 0.0313 0.0210 0.0753 0.1448 d_2 -0.0566 0.0433 -0.1300 -0.0596 0.0546 -0.0975 d_3 0.0440 -0.2069 -0.0874 -0.0360 -0.0280 0.0563 -0.1586 -0.0073 d_4 0.0390 d_5 -0.0264 0.0154 -0.0539 -0.0273 0.0087 d_6 -0.1089 0.1230 -0.4148-0.05140.0046 d_7 -0.0025 0.0111 -0.0242 -0.0025 0.0195 0.0247 d_8 0.0589 0.0177 0.0563 0.1183 d_9 -0.0118 0.0306 -0.0902 -0.0043 0.0296 0.0343 0.0242 -0.0310 0.0389 0.0692 d_{10} d_{11} 0.0114 0.0096 -0.0070 0.0112 0.0313 d_{12} 0.0147 0.0190 -0.0184 0.0133 0.0580 d_{13} -0.00970.0378 -0.10390.0002 0.0414 d_{14} 0.0307 0.0160 -0.0014 0.0309 0.0618 d_{15} 0.0263 0.0102 0.0072 0.0259 0.04800.0225 -0.0934 -0.0313 d_{16} -0.0359 -0.0026 -0.0115 -0.0535 -0.0170 d_{17} 0.0288 0.0635 -0.0268 0.0287 -0.0636 -0.0340 0.0523 d_{18} d_{19} -0.0028 0.0117 -0.0239 -0.0034 0.0220 -0.06430.0440 -0.1224 -0.07720.0391 d_{20} d_{21} 0.0149 0.0287 -0.0230 0.0094 0.0994 d_{22} -0.0308 0.0121 -0.0565 -0.0301 -0.0088

Tabela 2.8 - Resumo a posteriori para os parâmetros da fronteira

				(con	tinuação)
Par.	Média	d.p.	2,5%	50%	97,5%
d_{23}	-0.0059	0.0103	-0.0251	-0.0063	0.0155
d_{24}	-0.0316	0.0223	-0.0960	-0.0266	-0.0025
d_{25}	-0.0058	0.0082	-0.0223	-0.0058	0.0103
d_{26}	-0.0131	0.0125	-0.0365	-0.0135	0.0127
d_{27}	0.0046	0.0082	-0.0111	0.0044	0.0214
d_{28}	0.0003	0.0070	-0.0153	0.0008	0.0126
d_{29}	-0.0163	0.0121	-0.0465	-0.0144	0.0024
d_{30}	0.0019	0.0080	-0.0135	0.0018	0.0178
d_{31}	-0.0022	0.0058	-0.0101	-0.0033	0.0144
d_{32}	-0.0304	0.0379	-0.0790	-0.0414	0.0683
d_{33}	0.0391	0.0304	-0.0106	0.0353	0.1077
d_{34}	-0.0059	0.0271	-0.0726	-0.0019	0.0370
d_{35}	-0.0012	0.0124	-0.0271	-0.0009	0.0220
d_{36}	-0.0042	0.0129	-0.0344	-0.0031	0.0180
d_{37}	-0.0007	0.0172	-0.0340	-0.0009	0.0336
d_{38}	-0.0396	0.0367	-0.1296	-0.0302	0.0113
d_{39}	0.0119	0.0305	-0.0651	0.0202	0.0524
d_{40}	-0.0203	0.0152	-0.0549	-0.0184	0.0051
d_{41}	-0.0200	0.0116	-0.0455	-0.0192	0.0007
r_1	0.0699	0.0979	-0.1980	0.1030	0.1790
r_2	-0.2277	0.0999	-0.4692	-0.1930	-0.1064
r_3	0.0024	0.0544	-0.1480	0.0171	0.0693
r_4	-0.0161	0.0637	-0.2089	0.0045	0.0519
r_5	-0.0389	0.0433	-0.1679	-0.0261	0.0079
r_6	0.1907	0.1799	0.0293	0.1021	0.6478
r_7	0.0605	0.0115	0.0352	0.0613	0.0810
r_8	-0.0543	0.0194	-0.0917	-0.0545	-0.0155
r_9	-0.0513	0.0303	-0.1311	-0.0432	-0.0119
r_{10}	-0.0203	0.0233	-0.0841	-0.0162	0.0135
r_{11}	0.0016	0.0094	-0.0168	0.0017	0.0199
r_{12}	-0.0253	0.0337	-0.0909	-0.0253	0.0429
r_{13}	0.0030	0.0193	-0.0352	0.0032	0.0404
r_{14}	0.0192	0.0215	-0.0380	0.0227	0.0518
r_{15}	0.0023	0.0117	-0.0171	0.0009	0.0321
r_{16}	-0.0040	0.0149	-0.0329	-0.0041	0.0258
r_{17}	0.0296	0.0216	-0.0083	0.0279	0.0790
r_{18}	-0.0105	0.0152	-0.0412	-0.0103	0.0189
r_{19}	-0.0137	0.0115	-0.0355	-0.0139	0.0098
r_{20}	-0.0406	0.0558	-0.1180	-0.0550	0.0890
r_{21}	-0.0472	0.0171	-0.0885	-0.0457	-0.0179

Tabela 2.8 - Resumo a posteriori para os parâmetros da fronteira

				(C	onclusão)
Par.	Média	d.p.	2,5%	50%	97,5%
r_{22}	-0.0076	0.0161	-0.0473	-0.0053	0.0179
r_{23}	-0.0031	0.0095	-0.0207	-0.0035	0.0168
r_{24}	0.0081	0.0118	-0.0179	0.0089	0.0289
r_{25}	0.0099	0.0088	-0.0078	0.0101	0.0269
r_{26}	-0.0251	0.0116	-0.0477	-0.0253	-0.0019
r_{27}	-0.0001	0.0119	-0.0209	-0.0012	0.0260
r_{28}	-0.0011	0.0075	-0.0196	-0.0004	0.0115
r_{29}	0.0078	0.0072	-0.0052	0.0074	0.0236
r_{30}	-0.0016	0.0097	-0.0183	-0.0024	0.0208
r_{31}	0.0069	0.0043	-0.0030	0.0072	0.0144
r_{32}	0.0687	0.0235	0.0281	0.0668	0.1228
r_{33}	-0.0632	0.0602	-0.2031	-0.0413	0.0097
r_{34}	-0,0194	0,0144	-0,0506	-0,0185	0,0064
r_{35}	-0,0131	0,0335	-0,0925	-0,0033	0,0310
r_{36}	-0,0178	0,0090	-0,0351	-0,0180	0,0005
r_{37}	0,0170	0,0377	-0,0290	0,0044	0,1105
r_{38}	0,0441	0,0367	-0,0080	0,0351	0,1327
r_{39}	-0,0165	0,0239	-0,0757	-0,0118	0,0195
r_{40}	0,0196	0,0161	-0,0071	0,0179	0,0590
r_{41}	0,0079	0,0118	-0,0099	0,0061	0,0388
P	10,7100	3,9120	4,2240	10,6300	18,7500
θ	23,6900	6,3580	11,2000	24,8400	33,9600
σ_v^2	0,0041	0,0012	0,0033	0,0036	0,0077

Tabela 2.8 - Resumo a posteriori para os parâmetros da fronteira

Alguns elementos dos vetores de parâmetros da forma funcional flexível Fourier relacionados com a aproximação da expansão em série de Fourier, d e r, são não significativos, pois o valor zero pertence a seus intervalos de credibilidade, ou seja, existe a probabilidade de alguns componentes desses vetores assumirem o valor zero, mas os elementos d_1 , d_3 , d_8 , d_{15} , d_{16} , d_{22} , d_{24} , r_2 , r_6 , r_7 , r_8 , r_9 , $r_{21} e r_{32}$ são significativos, o que indica a importância da expansão da série de Fourier para o ajuste da fronteira.

A média da ineficiência econômica é $\mu_u = \frac{P}{\theta} = 0,4520$ e a variância é $\sigma_u^2 = \frac{P}{\theta^2} = 0,0191$. A parte da variância da fronteira explicada pela ineficiência econômica é $VF = \frac{\sigma_u^2}{(\sigma_v^2 + \sigma_u^2)} = 0,8232$.

A Tabela 2.9 mostra a classificação a posteriori da eficiência econômica dos 382 hospitais.

Os hospitais mais eficientes são os 284 e 320 e os menos eficientes são os 348 e 279. A classificação da eficiência econômica varia de 0, 3839 até 0, 8702, pode-se dizer que o hospital 279 é apenas 38, 39% eficiente economicamente.

								(c	ontinua)
Par.	Média	Par.	Média	Par.	Média	Par.	Média	Par.	Média
EE_1	0,6104	EE_{39}	0,7256	EE_{77}	0,6546	EE_{115}	0,7733	EE_{153}	0,6651
EE_2	0,6494	EE_{40}	0,5554	EE_{78}	0,6149	EE_{116}	0,6060	EE_{154}	0,6487
EE_3	0,6102	EE_{41}	0,6809	EE_{79}	0,6694	EE_{117}	0,6632	EE_{155}	0,5548
EE_4	0,6019	EE_{42}	0,6993	EE_{80}	0,6950	EE_{118}	0,5940	EE_{156}	0,6285
EE_5	0,7519	EE_{43}	0,6759	EE_{81}	0,6609	EE_{119}	0,7186	EE_{157}	0,5248
EE_6	0,5481	EE_{44}	0,7267	EE_{82}	0,6880	EE_{120}	0,7542	EE_{158}	0,6187
EE_7	0,5625	EE_{45}	0,8156	EE_{83}	0,6033	EE_{121}	0,7911	EE_{159}	0,6476
EE_8	0,6249	EE_{46}	0,7723	EE_{84}	0,6609	EE_{122}	0,7337	EE_{160}	0,5728
EE_9	0,6260	EE_{47}	0,7262	EE_{85}	0,6632	EE_{123}	0,6515	EE_{161}	0,5365
EE_{10}	0,5773	EE_{48}	0,6232	EE_{86}	0,6919	EE_{124}	0,7549	EE_{162}	0,6079
EE_{11}	0,6890	EE_{49}	0,7522	EE_{87}	0,7209	EE_{125}	0,5616	EE_{163}	0,6721
EE_{12}	0,5855	EE_{50}	0,5676	EE_{88}	0,7581	EE_{126}	0,7308	EE_{164}	0,6767
EE_{13}	0,6018	EE_{51}	0,7686	EE_{89}	0,6149	EE_{127}	0,6987	EE_{165}	0,5077
EE_{14}	0,5820	EE_{52}	0,6710	EE_{90}	0,6794	EE_{128}	0,6159	EE_{166}	0,6017
EE_{15}	0,6852	EE_{53}	0,6182	EE_{91}	0,7933	EE_{129}	0,7099	EE_{167}	0,5602
EE_{16}	0,5679	EE_{54}	0,6381	EE_{92}	0,7151	EE_{130}	0,6725	EE_{168}	0,5424
EE_{17}	0,5452	EE_{55}	0,6207	EE_{93}	0,6488	EE_{131}	0,5520	EE_{169}	0,5961
EE_{18}	0,5749	EE_{56}	0,6958	EE_{94}	0,6263	EE_{132}	0,6437	EE_{170}	0,6454
EE_{19}	0,5371	EE_{57}	0,6957	EE_{95}	0,6323	EE_{133}	0,7863	EE_{171}	0,4072
EE_{20}	0,7794	EE_{58}	0,7126	EE_{96}	0,7222	EE_{134}	0,6765	EE_{172}	0,6425
EE_{21}	0,7071	EE_{59}	0,6849	EE_{97}	0,6109	EE_{135}	0,7566	EE_{173}	0,5845
EE_{22}	0,6091	EE_{60}	0,6606	EE_{98}	0,7311	EE_{136}	0,6741	EE_{174}	0,6233
EE_{23}	0,7578	EE_{61}	0,6622	EE_{99}	0,6760	EE_{137}	0,6883	EE_{175}	0,5561
EE_{24}	0,7385	EE_{62}	0,6741	EE_{100}	0,6365	EE_{138}	0,7666	EE_{176}	0,5495
EE_{25}	0,6654	EE_{63}	0,6849	EE_{101}	0,5711	EE_{139}	0,6929	EE_{177}	0,6673
EE_{26}	0,7360	EE_{64}	0,6246	EE_{102}	0,6419	EE_{140}	0,6634	EE_{178}	0,6935
EE_{27}	0,6396	EE_{65}	0,6550	EE_{103}	0,6086	EE_{141}	0,6243	EE_{179}	0,5729
EE_{28}	0,8145	EE_{66}	0,6415	EE_{104}	0,6604	EE_{142}	0,5977	EE_{180}	0,5728
EE_{29}	0,7178	EE_{67}	0,6681	EE_{105}	0,6232	EE_{143}	0,6258	EE_{181}	0,5730
EE_{30}	0,7087	EE_{68}	0,6628	EE_{106}	0,6815	EE_{144}	0,6326	EE_{182}	0,5554
EE_{31}	0,7938	EE_{69}	0,6788	EE_{107}	0,6060	EE_{145}	0,6930	EE_{183}	0,5553
EE_{32}	0,7695	EE_{70}	0,6990	EE_{108}	0,7589	EE_{146}	0,6994	EE_{184}	0,5811
EE_{33}	0,7352	EE_{71}	0,6950	EE_{109}	0,5659	EE_{147}	0,6398	EE_{185}	0,6388
EE_{34}	0,6464	EE_{72}	0,6578	EE_{110}	0,5683	EE_{148}	0,5953	EE_{186}	0,6226
EE_{35}	0,6487	EE_{73}	0,7587	EE_{111}	0,5885	EE_{149}	0,6831	EE_{187}	0,6316
EE_{36}	0,7717	EE_{74}	0,8041	EE_{112}	0,5996	EE_{150}	0,5822	EE_{188}	0,5274
EE_{37}	0,7054	EE_{75}	0,6369	EE_{113}	0,7377	EE_{151}	0,6969	EE_{189}	0,7065
EE_{38}	0,8049	EE_{76}	0,6215	$ EE_{114}$	0,5570	$\mid EE_{152}$	0,5734	$ EE_{190}$	0,6532

Tabela 2.9 – Classificação a posteriori da eficiência econômica dos 382 hospitais

								(coi	nclusão)
Par.	Média								
EE_{191}	0,5338	EE_{230}	0,5789	EE_{269}	0,6938	EE_{308}	0,6681	EE_{347}	0,6003
EE_{192}	0,6357	EE_{231}	0,7195	EE_{270}	0,5712	EE_{309}	0,5939	EE_{348}	0,3839
EE_{193}	0,5932	EE_{232}	0,6246	EE_{271}	0,5124	EE_{310}	0,7577	EE_{349}	0,5957
EE_{194}	0,7241	EE_{233}	0,6384	EE_{272}	0,4786	EE_{311}	0,6920	EE_{350}	0,6316
EE_{195}	0,6365	EE_{234}	0,6104	EE_{273}	0,5393	EE_{312}	0,7337	EE_{351}	0,6343
EE_{196}	0,6840	EE_{235}	0,5473	EE_{274}	0,6207	EE_{313}	0,6839	EE_{352}	0,6909
EE_{197}	0,6910	EE_{236}	0,6106	EE_{275}	0,6857	EE_{314}	0,7454	EE_{353}	0,7959
EE_{198}	0,7109	EE_{237}	0,4999	EE_{276}	0,6264	EE_{315}	0,7154	EE_{354}	0,6916
EE_{199}	0,7060	EE_{238}	0,6102	EE_{277}	0,6329	EE_{316}	0,6506	EE_{355}	0,7048
EE_{200}	0,4927	EE_{239}	0,5533	EE_{278}	0,5946	EE_{317}	0,7956	EE_{356}	0,6429
EE_{201}	0,6748	EE_{240}	0,6004	EE_{279}	0,4204	EE_{318}	0,6644	EE_{357}	0,5549
EE_{202}	0,5983	EE_{241}	0,6569	EE_{280}	0,6528	EE_{319}	0,6033	EE_{358}	0,6170
EE_{203}	0,6999	EE_{242}	0,7005	EE_{281}	0,5478	EE_{320}	0,8634	EE_{359}	0,7129
EE_{204}	0,8409	EE_{243}	0,6204	EE_{282}	0,6006	EE_{321}	0,7035	EE_{360}	0,6502
EE_{205}	0,5797	EE_{244}	0,5909	EE_{283}	0,6589	EE_{322}	0,6608	EE_{361}	0,6687
EE_{206}	0,7658	EE_{245}	0,5898	EE_{284}	0,8702	EE_{323}	0,5937	EE_{362}	0,5756
EE_{207}	0,6631	EE_{246}	0,6342	EE_{285}	0,5797	EE_{324}	0,7213	EE_{363}	0,6314
EE_{208}	0,6807	EE_{247}	0,6483	EE_{286}	0,8082	EE_{325}	0,5974	EE_{364}	0,5528
EE_{209}	0,6536	EE_{248}	0,6565	EE_{287}	0,5709	EE_{326}	0,5707	EE_{365}	0,6487
EE_{210}	0,6241	EE_{249}	0,6809	EE_{288}	0,5883	EE_{327}	0,5813	EE_{366}	0,4578
EE_{211}	0,6220	EE_{250}	0,6659	EE_{289}	0,5394	EE_{328}	0,6348	EE_{367}	0,6881
EE_{212}	0,7220	EE_{251}	0,6318	EE_{290}	0,7311	EE_{329}	0,6880	EE_{368}	0,6497
EE_{213}	0,6404	EE_{252}	0,6440	EE_{291}	0,6736	EE_{330}	0,8243	EE_{369}	0,6575
EE_{214}	0,5597	EE_{253}	0,5705	EE_{292}	0,6293	EE_{331}	0,6114	EE_{370}	0,5687
EE_{215}	0,7142	EE_{254}	0,6781	EE_{293}	0,6456	EE_{332}	0,6635	EE_{371}	0,5876
EE_{216}	0,7081	EE_{255}	0,6455	EE_{294}	0,6232	EE_{333}	0,6627	EE_{372}	0,6797
EE_{217}	0,6522	EE_{256}	0,6850	EE_{295}	0,7054	EE_{334}	0,6510	EE_{373}	0,5500
EE_{218}	0,6438	EE_{257}	0,7690	EE_{296}	0,6728	EE_{335}	0,6522	EE_{374}	0,5702
EE_{219}	0,7133	EE_{258}	0,7148	EE_{297}	0,7161	EE_{336}	0,6135	EE_{375}	0,5359
EE_{220}	0,6095	EE_{259}	0,7026	EE_{298}	0,6327	EE_{337}	0,5824	EE_{376}	0,5579
EE_{221}	0,6775	EE_{260}	0,6830	EE_{299}	0,7163	EE_{338}	0,6480	EE_{377}	0,7140
EE_{222}	0,5962	EE_{261}	0,6406	EE_{300}	0,6867	EE_{339}	0,5852	EE_{378}	0,6420
EE_{223}	0,6073	EE_{262}	0,6773	EE_{301}	0,7047	EE_{340}	0,6512	EE_{379}	0,5954
EE_{224}	0,6065	EE_{263}	0,7544	EE_{302}	0,5938	EE_{341}	0,6857	EE_{380}	0,5081
EE_{225}	0,6248	EE_{264}	0,8074	EE_{303}	0,7703	EE_{342}	0,7842	EE_{381}	0,7453
EE_{226}	0,5256	EE_{265}	0,6586	EE_{304}	0,5977	EE_{343}	0,7434	EE_{382}	0,5876
EE_{227}	0,5952	EE_{266}	0,5848	EE_{305}	0,6112	EE_{344}	0,7710		
EE_{228}	0,6872	EE_{267}	0,6334	EE_{306}	0,5668	EE_{345}	0,6447		
EE_{229}	0,7105	EE_{268}	0,7995	EE_{307}	0,6142	EE_{346}	0,6664		

Tabela 2.9 - Classificação a posteriori da eficiência econômica dos 382 hospitais

Para concluir a análise, apresentam-se as distribuições dos postos associados à medida de eficiência econômica para hospitais mais eficientes, medianos e menos eficientes (MEDRANO, 2003). Essas distribuições são diretamente obtidas utilizando as cadeias de Markov. Denota-se por $EE_i^{(m)} = \exp(-u_i^{(m)})$ à medida de eficiência econômica para o *i*-ésimo hospital na *m*-ésima iteração da cadeia de Markov, e ordena-se os $EE_i^{(m)}$ de forma que $i = 1, \ldots, N$, assim, o posto associado ao *j*-ésimo hospital na *m*-ésima iteração é a posição ocupada pela $EE_i^{(m)}$ na ordenação. O objetivo desta última análise é verificar a capacidade do modelo em classificar os hospitais. Nota-se na Figura 2.5 que o modelo diferencia bem hospitais eficientes de hospitais não eficientes.

Figura 2.5 – Distribuição a posteriori do posto associado à medida de eficiência econômica para hospitais eficientes, medianos e não eficientes, respectivamente

2.4 Considerações Finais

Para o estudo de simulação conclui-se que os parâmetros da fronteira estocástica de custo com forma funcional flexível Fourier foram estimados com maior precisão, observou-se que os parâmetros d e r, relativos a expansão em série de Fourier possuem suas médias a posteriori próximas ao valor verdadeiro, o que diminui a imprecisão com relação ao erro natural que os dados podem conter e isso conduz a conclusão que o vetor de ineficiências econômicas das firmas foi estimado com maior precisão. Ainda percebe-se que existe dificuldade em estimar as firmas mais eficientes, sendo o modelo proposto melhor utilizado para estimar as firmas não eficientes.

O tempo computacional necessário para obter o resultado das simulações de cada amostra foi equivalente a 24 horas.

Para os dados reais, conclui-se que o hospital mais eficiente é o 284 e o menos eficiente é o 279. A parte da variância da fronteira explicada pelo termo de ineficiência econômica é aproximadamente 82%.

O tempo computacional necessário para obter o resultado da análise dos dados reais foi equivalente a 7 dias. Existe a necessidade de possuir um processador bastante eficiente para esses casos.

A proposta original deste trabalho foi cumprida, mostrando como calcular eficiência econômica de firmas através dos modelos de fronteira estocástica de custo com forma funcional flexível Fourier, usando a abordagem bayesiana, fundamental para a análise dos dados devido ao excesso de parâmetros.

Possíveis extensões deste trabalho são:

- i) Utilizar diferentes distribuições para o termo de ineficiência econômica, tais como, normal truncada, log normal, etc;
- ii) Utilizar a distribuição t-Student para o erro aleatório do modelo;
- iii) Inserir covariáveis no modelo, com a finalidade de analisar a eficiência econômica das firmas variando no tempo;
- iv) Dividir a eficiência econômica em técnica e alocativa, utilizando as parcelas de custo sob a abordagem bayesiana.

Referências

BERGER, A.N.; MESTER, L.J. Inside de black box: what explains differences in the efficiencies of financial institutions. **Journal of Banking and Finance**, Carbondale, v. 21, n.7, p.895-947, 1997.

BERGER, A.N.; LEUSNER, J.H.; MINGO, J.J. The efficiency of bank branches. Journal of Monetary Economics, Boston, v. 40, n.1, p.141-162, 1997.

CASELLA, G.; GEORGE, E.I. Explaining the Gibbs sampler. **The American Statistician**, Alexandria, v.46, n.3, p.167-174, 1992.

CESPEDES, J.G. **Eficiência de Produção:** um enfoque Bayesiano, 2003. 63p. Dissertação (Mestre em Estatística e Experimentação Agronômica) - Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, 2003.

CHALFANT, J.A.; GALLANT, A.R. Estimating Substitution Elasticities With The Fourier Cost Function. Some Monte Carlo Results. **Journal of Econometrics**, Los Angeles, v.28, n.2, p.205-222, 1985.

CHIB, S.; GREENBERG, E. Understanding the Metropolis-Hastings algorithm. **The American Statistician**, Alexandria, v.49, n.4, p.327-335, 1995.

EASTWOOD, B.J.; GALLANT, A.R. Adaptive rules for semi-nonparametric estimators that achieve asymptotic normality. **Econometric Theory**, New Haven, v.7, p.307-340, 1991.

FERNÁNDEZ, C.; KOOP, G.; STEEL, M.F.J. A Bayesian analysis of multiple-output production frontiers. **Journal of Econometrics**, Los Angeles, v.98, n.1, p.47-79, 2000.

GALLANT, A. R. On the bias in flexible functional forms and an essentially unbiased form: the Fourier flexible form. **Journal of Econometrics**, Los Angeles, v.15, n.2, p.211-245, 1981.

GALLANT, A. R. Unbiased determination of production technologies. **Journal of Econometrics**, Los Angeles, v.20, n.2, p.285-323, 1982.

GALLANT, A. R. The Fourier flexible form. **American Agricultural Economics Association**, Ohio, v.66, n.2, p.204-208, 1984.

GELFAND, A.E.; HILLS, S.E.; RACINE-POON, A.; SMITH, A.F.M. Illustration of Bayesian inference in normal data models using Gibbs sampling. **Journal of the American Statistical Association**, Alexandria, v.85, n.412, p.972-985, 1990.

GELFAND, A.E. Gibbs sampling. Journal of the American Statistical Association, Alexandria, v.95, n.452, p.1300-1304, 2000.

GELMAN, A.; RUBIN, D.B. Inference from iterative simulation using multiple sequences, **Statistical Science**, Beachwood, v.7, n.4, p.457-511, 1992.

GRIFFIN, J.E.; STEEL, M.F.J. Bayesian stochastic frontier analysis using WinBUGS. Journal of **Productivity Analysis**, Houston, v.27, n.3 p.163-177, 2007.

HASTINGS, W.K. Monte Carlo sampling methods using Markov chains and their applications. **Biometrika**, Lausanne, v.57, n.1, p.97-109, 1970.

HUANG, T.H.; WANG, M.H. Estimation of technical and allocative inefficiency using Fourier flexible cost frontiers for Taiwan's banking industry. **The Manchester School**, Manchester, v.71, n.3, p.341-362, 2003.

HUANG, T.H.; WANG, M.H. Comparisons of economic inefficiency between output and input measures of technical inefficiency using the Fourier flexible cost function. **Journal of Productivity Analysis**, Houston, v.22, n.1-2, p.123-142, 2004.

HUSSEIN, K.A. Banking efficiency in Bahrain: Islamic vs conventional banks. **Islamic Development Bank**, Saudi Arabia, N.68, p.1-62, 2004.

IVALDI, M.; LADOUX, N.; OSSARD, H.; SIMIONI, M. Comparing Fourier and Translog specifications of multiproduct technology: evidence from an incomplete panel of French farmers. **Journal of Applied Econometrics**, Cambridge, v.11, n.6, p.649-667, 1996.

KOOP, G.; OSIEWALSKI, J.; STEEL, M.F.J. Bayesian efficiency analysis through individual effects: hospital cost frontiers. **Journal of Econometrics**, Los Angeles, v.76, n.1-2, p.77-105, 1997.

KRAFT, E.; HOLFER, R.; PAYNE, J. Privatization, foreign bank entry and bank efficiency in Croatia: a Fourier - flexible function stochastic cost frontier analysis. **Croatian National Bank**, Croatia, p.1-17, 2002.

LUNN, D.J.; THOMAS, A.; BEST, N.; SPIEGELHALTER, D. WinBUGS: a Bayesian modelling framework: concepts, structure, and extensibility.**Statistics and Computing**, Orsay, v.10, n.4, p.325-337, 2000.

MCALLISTER, P.H.; MCMANUS, D. Resolving the scale efficiency puzzle in banking. **Journal** of Banking and Finance, Carbondale, v. 17, n.2-3, p.389-405, 1993.

MEDRANO, L.A.T. **Análise Bayesiana de Modelos de Fronteiras de Produção Estocásticas**, 2003. 63p. Dissertação (Mestre em Estatística) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2003.

METROPOLIS, N.; ROSENBLUTH, A.W.; ROSENBLUTH, M.N.; TELLER, A.H.; TELLER, E. Equations of state calculations by fast computing machines. **Journal of Chemical Physics**, Chicago, v.21, n.6, p.1087-1092, 1953.

MITCHELL, K.; ONVURAL, N.M. Economies of scale and scope at large commercial banks: evidence from the Fourier flexible functional form. **Journal of Money, Credit and Banking**, Ohio, v. 28, n.2 p.178-199, 1996.

R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. **R Foundation for Statistical Computing**, Vienna, Austria. ISBN 3-900051-07-0, Disponível em: www.R-project.org. Acesso em: 03 fev. 2008.

ROSSI, S.P.S.; SCHAWAIGER, M.; WINKLER, G. Managerial behavior and cost/profit efficiency in the banking sectors of Central and Eastern European countries. **Oesterreichische Nationalbank**, Austria, p.1-34, 2005.

TSIONAS, E.G. Full likelihood inference in normal-gamma stochastic models. **Journal of Productivity Analysis**, Houston, v.13, n.3, p.183-205, 2000.

TSIONAS, E.G. Stochastic frontier models with random coefficients. **Journal of Applied Econometrics**, Cambridge, v.17, n.2, p.127-147, 2002.

3 MODELOS GENERALIZADOS DE FRONTEIRA ESTOCÁSTICA

Resumo

Os modelos de fronteira de produção estocástica são compostos por uma função de produção e medidas de incerteza, em que as variáveis explicativas agem multiplicativamente no modelo. A variável resposta é medida por valores não negativos que podem ser contínuos, tais como, produção de leite (litros) e carne (kilos), ou discretos, como por exemplo, número de automóveis e eletrodomésticos produzidos. Em geral, na literatura, dados de produção são analisados assumindo-se modelos multiplicativos que impõem a restrição de que a produção é estritamente positiva e utiliza-se a transformação logarítmica para linearizar o modelo. Considera-se que o logaritmo do produto dada a ineficiência técnica tem distribuição contínua, independentemente de os dados serem contínuos ou discretos. A proposta deste trabalho é desenvolver os modelos generalizados de fronteira estocástica, baseando-se nos modelos lineares generalizados mistos com a abordagem bayesiana, para quantificar a ineficiência técnica de firmas (medida de incerteza) utilizando a variável resposta dada a medida de ineficiência.

Palavras-chave: Modelos lineares generalizados mistos; Modelos de fronteira estocástica; Eficiência técnica; Inferência bayesiana

Abstract

The stochastic production frontier models are composed by a production function and measures of uncertainty, on which, the explaining variables act multiplicative into the model. The response variable of these models, is measured for values not negatives that can be continuous as milk production (liters) and meat (kilos), or discrete, like putting example, number of motorcars and of appliances that are producing. Generally, in the literature, production data are analyzed assuming multiplicative models that impose the restriction of what the production is strictly positive and use the logarithm transformation to turn the model lineal. It is considerate that the product's logarithm given the technical inefficiency has distribution continual, independent if the data are continuous or discrete. The propose of this paper is to develop generalized stochastic frontier models, based on generalized linear mixed models with the Bayesian approach, to quantify the inefficiency technical of the firms (uncertainty measures) by using the response variable in the scale original with distributions belonging on the exponential family to the response variable given the measure of inefficiency.

Keywords: Generalized Linear Mixed Models; Stochastic frontier models; Technical efficiency; Bayesian inference

3.1 Introdução

Em microeconomia, um problema de interesse prático, é estudar a relação entre produtos e insumos. Essa relação não é perfeita e utilizam-se modelos que envolvem uma parte determinística a qual é representada por uma forma funcional e componentes aleatórios que incorporam incertezas. A forma funcional representa uma função de produção, que é definida como o máximo produto possível produzido por uma firma dada uma combinação de insumos (COELLI et al., 1999), e as formas funcionais mais utilizadas são a Cobb Douglas e a translog (Apêndice H), para as quais assume-se que os insumos agem multiplicativamente. As medidas de incerteza representam a ineficiência técnica orientada ao produto de firmas, que assume valores positivos, e uma variação natural que os dados podem conter.

Inicialmente, Aigner e Chu (1968), seguidos por Seitz (1971) e Timmer (1971), propuseram os modelos de fronteira de produção determinística que possuem apenas uma medida de incerteza que mede a ineficiência técnica orientada ao produto, ou apenas ineficiência técnica. Mesmo contendo uma incerteza esses modelos foram chamados de determinísticos porque todo o desvio do valor observado em relação à forma funcional deve-se à ineficiência técnica das firmas.

Uma crítica relevante a esses modelos é que eles não controlam fatores aleatórios tais como: um funcionário ficar doente, uma máquina quebrar, escassez de chuva em determinada época de plantio, animais envolvidos na produção adoecerem, efeitos de tempo, greves, sorte, juntamente com os efeitos combinados de insumos não-especificados na função de produção.

Motivados pela idéia de que os desvios dos dados observados em relação à função de produção podem não estar inteiramente sob o controle das firmas, Meeusen e van den Broeck (1977) e Aigner et al. (1977), independentemente e quase simultaneamente, propuseram os modelos de fronteira de produção estocástica, os quais consideram um erro aleatório no modelo além da ineficiência técnica.

Um dos primeiros artigos sobre modelos de fronteira estocástica utilizando a abordagem bayesiana, foi apresentado por van den Broeck et al. (1994) que incorporou a incerteza relativa à ineficiência técnica considerando um termo com distribuição gama com parâmetro de forma conhecido. Outros trabalhos relevantes que utilizam a abordagem Bayesiana são Koop et al. (1995), Koop et al. (1997), Osiewalski e Steel (1998), Fernández et al. (2000), Tsionas (2000), Cespedes (2003), Migon (2004), Fonseca et al. (2005), Cespedes e Leandro (2006), dentre outros.

A produção de uma firma é medida por valores não negativos que podem ser contínuos, tais como, produção de leite (litros) e carne (kilos), ou discretos, como por exemplo, número de automóveis e eletrodomésticos produzidos. Em geral, na literatura, dados de produção são analisados assumindo-se modelos multiplicativos que impõem a restrição de que a produção é estritamente positiva e utiliza-se a transformação logarítmica para linearizar o modelo (KUMBHAKAR; LOVELL,

2000). Considera-se que o logaritmo do produto dada a ineficiência técnica tem distribuição contínua, independentemente de os dados serem contínuos ou discretos.

A proposta deste trabalho é analisar os dados na escala original utilizando modelos lineares generalizados mistos, com a abordagem bayesiana, dispensando assim, a necessidade da transformação logarítmica. O artigo é organizado como segue. Na seção 3.2, apresenta-se uma revisão dos modelos de produção estocástica e dos modelos lineares generalizados. Na seção 3.3, propõem-se os modelos generalizados de fronteira estocástica considerando-se diferentes distribuições para a variável resposta dada a ineficiência técnica. Nas seções 3.4 e 3.5, descrevem-se os dados simulados e os dados reais e as discussões são apresentadas na seção 3.6.

3.2 Desenvolvimento

3.2.1 Modelos de fronteira de produção estocástica

O modelo de fronteira de produção estocástica pode ser escrito da seguinte forma:

$$Y_{it} = f(x_{it}, \boldsymbol{\beta}) \exp(v_{it} - u_i), \qquad (3.1)$$

sendo Y_{it} a variável resposta que representa o produto da *i*-ésima firma no *t*-ésimo tempo, i = 1, ..., N e t = 1, ..., T; $f(x_{it}, \beta)$ a função de produção dependente dos insumos e dos coeficientes de regressão, em que x_{it} é o vetor de quantidades de insumos utilizados pela *i*-ésima firma no *t*-ésimo tempo e β o vetor de parâmetros desconhecidos a serem estimados, cuja dimensão depende da forma funcional utilizada; u_i o erro aleatório que assume valores maiores do que zero, associado à ineficiência técnica da *i*-ésima firma e v_{it} o erro aleatório com distribuição simétrica, que se supõe idêntico e independentemente distribuído, com média zero e variância constante, independente de u_i .

De forma equivalente, escreve-se o modelo (3.1) na forma logarítmica:

$$\ln Y_{it} = \ln(f(x_{it}, \boldsymbol{\beta})) + v_{it} - u_i.$$

Por facilidade de cálculos, utiliza-se neste trabalho, a forma funcional Cobb-Douglas e assumese que:

$$\ln Y_{it}|u_i \sim N(\beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_S \ln x_{itS} - u_i, \sigma_v^2), \qquad (3.2)$$
$$u_i|P, \theta \sim G(P, \theta),$$

neste caso, as quantidades desconhecidas associadas ao modelo (3.2) são β , σ_v^2 , P, $\theta \in u$.

Considerando-se a ineficiência técnica específica para cada firma, mas constante no tempo, define-se a eficiência técnica da *i*-ésima firma como:

$$ET_i = \exp(-u_i).$$

3.2.2 Modelos lineares generalizados

Os modelos lineares generalizados podem ser usados quando se tem uma única variável resposta Y associada a um conjunto de variáveis explicativas x_1, x_2, \ldots, x_s e envolve os três componentes (CORDEIRO; DEMÉTRIO, 2007):

i) Componente aleatório: constituído de um conjunto de variáveis respostas, isto é, variáveis aleatórias Y_1, Y_2, \ldots, Y_n provenientes de uma mesma distribuição pertencente à família exponencial na forma canônica, com médias $\mu_1, \mu_2, \ldots, \mu_n$, isto é:

$$f(y_i;\theta_i,\phi) = \exp\left\{\frac{1}{a_i(\phi)}[y_i\theta_i - b(\theta_i)] + c(y_i,\phi)\right\},\tag{3.3}$$

em que b(.) e c(.) são funções conhecidas e θ_i é o parâmetro canônico. Em geral, $a_i(\phi) = \frac{\phi}{w_i}$, sendo w_i pesos a priori e $\phi > 0$, um parâmetro de escala conhecido. Além disso, demonstrase que:

$$E(Y_i) = b'(\theta_i) = \mu_i$$
 e $\operatorname{Var}(Y_i) = a_i(\phi)b''(\theta_i) = a_i(\phi)V(\mu_i),$

sendo $V(\mu_i) = \frac{\partial \mu_i}{\partial \theta_i}$ a função de variância, uma função que depende unicamente da média. A função de variância desempenha papel fundamental nos modelos lineares generalizados, pois caracteriza a distribuição. A importância da família exponencial (3.3) na teoria dos modelos lineares generalizados é que ela permite incorporar dados que exibem assimetria, dados de natureza discreta ou contínua e dados que são restritos a um intervalo do conjunto dos reais.

ii) Componente sistemático: constituído por um conjunto de S variáveis explicativas, isto é, $x_i = (x_{1i}, x_{2i}, \dots, x_{si})$, para $i = 1, 2, \dots, N$, que entram no modelo na forma da soma linear de seus efeitos, constituindo o vetor dos preditores lineares, η , de dimensão $N \times 1$, ou seja, com elementos:

$$\eta_i = \sum_{s=1}^S x_{is} \beta_s,$$

em que β é o vetor de parâmetros desconhecidos.

iii) Função de ligação: uma função que relaciona o componente aleatório ao componente sistemático, ou seja, relaciona a média ao preditor linear, isto é,

$$\eta_i = g(\mu_i),$$

sendo g(.) uma função monótona e diferenciável.

Nos modelos lineares generalizados mistos, incorpora-se um efeito aleatório no preditor linear:

$$\eta_i = \sum_{s=1}^{S} x_{is} \beta_s + \gamma_i, \tag{3.4}$$

em que γ_i tem geralmente distribuição normal com média zero e variância σ_{γ}^2 . Outras distribuições, no entanto, podem ser usadas (ANDERSON; AITKIN, 1985; CHAN et al., 2005; CLAYTON, 1996; DIGGLE et al., 1998; FAHRMEIR; LANG, 2001; HANDCOCK; STEIN, 1993; MCCUL-LOCH; SEARLE, 2001; MCNEIL; WENDIN, 2007; NATARAJAM; KASS, 2000; STIRATELLI et al., 1984; ZEGER; KARIM, 1991; ZHAO et al., 2006).

Utilizando modelos lineares generalizados mistos (3.4) estende-se os modelos de fronteira de produção estocástica (3.1) para variáveis resposta que, eventualmente, possuem valores nulos e que não sejam contínuas.

3.3 Modelos generalizados de fronteira estocástica

3.3.1 Modelo generalizado de fronteira estocástica para $\ln Y_{it}|u_i$ com distribuição Normal

O modelo de fronteira de produção estocástica (3.1), utilizado na literatura, pode ser reescrito utilizando os modelos lineares generalizados mistos (3.4) da seguinte forma:

$$\ln Y_{it}|u_i \sim N(\beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_S \ln x_{itS} - u_i, \sigma_v^2), \qquad (3.5)$$
$$u_i|P, \theta \sim G(P, \theta),$$

e utiliza-se a função de ligação identidade com preditor linear dado por:

$$\eta_{it} = \mu_{it} = \beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_s \ln x_{its} - u_i$$

Para utilizar a abordagem bayesiana (Apêndice C) é necessário incorporar à incerteza relativa as quantidades desconhecidas de interesse P, θ , $\beta \in \tau$. Assumindo-se independência entre estas quantidades, a distribuição a priori conjunta é dada por:

$$\pi(P,\theta,\boldsymbol{\beta},\tau) = \pi(P)\pi(\theta)\pi(\boldsymbol{\beta})\pi(\tau),$$

em que $\tau = \frac{1}{\sigma_v^2}$, $P \sim G(a, b)$, $\theta \sim G(d, w)$, $\beta_s \sim NT(\mu_\beta, \sigma_\beta^2)$, $\forall s = 1, \dots, S \in \tau \sim G(\alpha, \delta)$, sendo que G(a, b) representa a função densidade de probabilidade da distribuição gama com média $\frac{a}{b}$ e variância $\frac{a}{b^2}$; $NT(\mu, \sigma^2)$ representa a função densidade de probabilidade da distribuição normal truncada. A distribuição normal truncada é utilizada porque a forma funcional Cobb Douglas exige que os componentes do vetor β assumam valores positivos (GRIFFIN; STEEL, 2007). Desta forma a distribuição conjunta a posteriori é dada por:

$$\pi(\boldsymbol{\beta}, P, \tau, \theta, u_i | x_{its}, \ln Y_{it}) \propto \tau^{\frac{NT}{2} + \alpha - 1} \exp\left\{-\frac{\tau}{2} \left[\sum_{i=1}^{N} \sum_{t=1}^{T} \left(\ln y_{it} - \eta_{it}\right)^2 - 2\delta\right] - bP \qquad (3.6)$$
$$- \theta\left(d + \sum_{i=1}^{N} u_i\right) - \sum_{s=0}^{S} \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} \prod_{i=1}^{N} u_i^{P-1} P^{a-1} \frac{\theta^{NP+w-1}}{\Gamma(P)^N} I_\beta(\beta).$$

Como a distribuição conjunta a posteriori não é tratável algebricamente, resumos a posteriori de interesse são obtidos de amostras da distribuição (3.6) utilizando-se algoritmos MCMC, tais como, Gibbs *sampling* e Metropolis-Hastings (Apêndice E). Para a implementação computacional desses algoritmos é necessário o conhecimento das distribuições condicionais completas a posteriori de todas as quantidades desconhecidas de interesse presentes no modelo.

Apresentam-se, a seguir, as distribuições condicionais completas a posteriori associadas à distribuição (3.6). Os cálculos para sua obtenção são apresentados no Anexo E.

i) Distribuição condicional completa a posteriori para θ :

$$\theta|\boldsymbol{\beta}, u_i, P, \tau, x_{its}, \ln y_{it} \sim G\left(NP + w, d + \sum_{i=1}^N u_i\right).$$

ii) Distribuição condicional completa a posteriori para P:

$$\pi(P|\boldsymbol{\beta},\tau,\theta,u_i,x_{its},\ln y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \exp\left\{P\left(-b+\sum_{i=1}^N \ln u_i\right)\right\}.$$

iii) Distribuição condicional completa a posteriori para τ :

$$\tau | \boldsymbol{\beta}, \boldsymbol{\theta}, \boldsymbol{u}_i, \boldsymbol{P}, \boldsymbol{x}_{its}, \ln y_{it} \sim G\left(\frac{NT}{2} + \alpha, \frac{\sum_{i=1}^N \sum_{t=1}^T \left(\ln y_{it} - \eta_{it}\right)^2 - 2\delta}{2}\right).$$

iv) Distribuição condicional completa a posteriori para β_S :

$$\beta_s | P, \theta, \beta_{-s}, \tau, u_i, x_{its}, \ln y_{it} \sim NT(\mu_H, \sigma_H^2),$$

sendo
$$\sigma_H^2 = \frac{1}{\sum_{i=1}^N \sum_{t=1}^T \sigma_v^{-2} \ln x_{its}^2 - \sigma_\beta^{-2}} e \mu_H = \left[\sum_{i=1}^N \sum_{t=1}^T \ln x_{its} \sigma_v^{-2} (\ln y_{it} + u_i) - \mu_\beta \sigma_\beta^{-2} \right] \sigma_H^2$$

iv) Distribuição condicional completa a posteriori para u_i :

$$\pi(u_i|P,\theta,\beta,\tau,u_{-i},x_{its},\ln y_{it}) \propto \exp\left\{-\frac{\tau}{2}\left[\sum_{i=1}^N\sum_{t=1}^T u_i^2 - 2u_i\left(\sum_{s=0}^S\beta_s\ln x_{its} - \ln y_{it} + \theta\right)\right]\right\}u_i^{P-1}$$

Observa-se que as distribuições condicionais completas a posteriori para os parâmetros θ , β_s e τ possuem forma fechada, portanto, pode-se utilizar o algoritmo *Gibbs sampling* para amostrar dessas distribuições (CASELLA e GEORGE, 1992; GELFAND et al., 1990; GELFAND, 2000) e as distribuições condicionais completas a posteriori para os parâmetros u_i e P não possuem forma fechada e amostrar dessas distribuições não é simples, utiliza-se o algoritmo de Metropolis-Hastings (CHIB e GREENBERG, 1995; HASTINGS, 1970; METROPOLIS et al., 1953).

3.3.2 Modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição gama

Baseado no modelo descrito em Singer e Andrade (1997), que dispensa a necessidade da transformação logarítmica da variável resposta, propõe-se o modelo:

$$Y_{it}|u_i \sim G\left(\nu^{-2}, \left(\prod_{s=0}^{S} x_{its}^{\beta_s} e^{-u_i}\right)^{-1} \nu^{-2}\right), \qquad (3.7)$$
$$u_i|P, \theta \sim G(P, \theta),$$

neste caso, as quantidades desconhecidas associadas ao modelo (3.7) são β , ν , P, θ e u e utiliza-se a função de ligação logarítmica, $\ln \mu_{it}$, com preditor linear dado por:

$$\eta_{it} = \ln \mu_{it} = \beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_s \ln x_{its} - u_i$$

Dessa forma, $E[Y_{it}] = \prod_{s=0}^{S} x_{its}^{\beta_s} e^{-u_i}$ e $Var[Y_{it}] = (\prod_{s=0}^{S} x_{its}^{\beta_s} e^{-u_i})^2 \nu^2$.

Para utilizar a abordagem bayesiana é necessário incorporar à incerteza relativa as quantidades desconhecidas de interesse P, θ , $\beta \in \nu$. Assumindo-se independência entre estas quantidades, a distribuição a priori conjunta é dada por:

$$\pi(P,\theta,\beta,\nu) = \pi(P)\pi(\theta)\pi(\beta)\pi(\nu),$$

em que $P \sim G(a,b), \theta \sim G(d,w), \beta_S \sim NT(\mu_\beta, \sigma_\beta^2)$ e $\nu \sim G(l,m)$, e assim, a distribuição conjunta a posteriori é dada por:

$$\pi(\boldsymbol{\beta}, P, \nu, \theta, u_i | x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^{N} \sum_{t=1}^{T} \left(\frac{1}{\nu^2} \left[-\frac{y_{it}}{\exp(\eta_{it})} - \eta_{it}\right] + \nu^{-2} \ln(\nu^{-2}y_{it})\right) - \ln(\Gamma(\nu^{-2}))^{NT} - \theta \left(d + \sum_{i=1}^{N} u_i\right) - bP - l\nu - \sum_{s=0}^{S} \frac{(\beta_s - \mu_{\beta})^2}{2\sigma_{\beta}^2}\right\} \prod_{i=1}^{N} u_i^{P-1} P^{a-1} \nu^{m-1} \frac{\theta^{NP+w-1}}{\Gamma(P)^N} I_{\beta}(\beta).$$
(3.8)

Como a distribuição conjunta a posteriori não é tratável algebricamente, resumos a posteriori de interesse são obtidos de amostras da distribuição (3.8) utilizando-se algoritmos MCMC, tais como, Gibbs *sampling* e Metropolis-Hastings. Para a implementação computacional desses algoritmos é necessário o conhecimento das distribuições condicionais completas a posteriori de todas as quantidades desconhecidas de interesse presentes no modelo. Apresentam-se, a seguir, as distribuições condicionais completas a posteriori, os cálculos para sua obtenção são apresentados no Anexo F.

i) Distribuição condicional completa a posteriori para θ :

$$\theta|\boldsymbol{\beta}, \nu, u_i, P, x_{its}, Y_{it} \sim G\left(NP + w, d + \sum_{i=1}^N u_i\right).$$

ii) Distribuição condicional completa a posteriori para P:

$$\pi(P|\boldsymbol{\beta},\nu,\theta,u_i,x_{its},Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \exp\left\{P\left(-b+\sum_{i=1}^N \ln u_i\right)\right\}$$

iii) Distribuição condicional completa a posteriori para β_S :

$$\pi(\beta_s | P, \theta, \beta_{-s}, \nu, u_i, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left(\frac{1}{\nu^2} \left[-\frac{y_{it}}{\exp(\eta_{it})} - \beta_s \ln x_{its}\right]\right) - \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta).$$

iv) Distribuição condicional completa a posteriori para u_i :

$$\pi(u_i|P,\theta,\boldsymbol{\beta},\nu,u_{-i},x_{its},Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \frac{1}{\nu^2} \left[-\frac{y_{it}}{\exp(\eta_{it})} + u_i\right] - \theta u_i\right\} u_i^{P-1}.$$

iv) Distribuição condicional completa a posteriori para ν :

$$\pi(\nu|\boldsymbol{\beta}, P, \theta, u_i, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^{N} \sum_{t=1}^{T} \left(\frac{1}{\nu^2} \left[-\frac{y_{it}}{\exp(\eta_{it})} - \eta_{it} + \ln\nu^{-2} + \ln y_{it}\right]\right) - \ln\Gamma(\nu^{-2})^{NT} - l\nu\right\}\nu^{m-1}.$$

Observa-se que a distribuição condicional completa a posteriori para o parâmetro θ possui forma fechada, portanto, pode-se utilizar o algoritmo Gibbs *sampling* para amostrar dessa distribuição e as distribuições condicionais completas a posteriori para os parâmetros u, β , $\nu \in P$ não possuem forma fechada e para amostrar dessas distribuições pode-se utilizar o algoritmo de Metropolis-Hastings.

3.3.3 Modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição normal

Um problema relatado em Kumbhakar e Lovell (2000) ocorre quando a variável resposta Y_{it} assume valores nulos. Neste caso propõe-se o seguinte modelo:

$$Y_{it}|u_i \sim N\left(\prod_{s=0}^{S} x_{its}^{\beta_s} e^{-u_i}, \sigma_v^2\right), \qquad (3.9)$$
$$u_i|P, \theta \sim G(P, \theta),$$

com função de ligação logarít
mica, $\ln \mu_{it},$ e preditor linear dado por:

$$\eta_{it} = \ln \mu_{it} = \beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_s \ln x_{its} - u_i.$$

Neste caso, as quantidades desconhecidas associadas ao modelo (3.9) são β , P, θ , $\sigma_v^2 e u$ e dessa forma, o modelo (3.9) permite que a variável resposta possua valores iguais a zero.

Para utilizar a abordagem bayesiana necessita-se incorporar à incerteza relativa as quantidades desconhecidas de interesse P, θ , $\beta \in \sigma_v^2$. Assumindo-se independência entre estas quantidades a distribuição a priori conjunta é dada por:

$$\pi(P,\theta,\beta,\nu) = \pi(P)\pi(\theta)\pi(\beta)\pi(\tau).$$

em que $\tau = \frac{1}{\sigma_v^2}$, $P \sim G(a, b)$, $\theta \sim G(d, w)$, $\beta_S \sim NT(\mu_\beta, \sigma_\beta^2)$ e $\tau \sim G(\alpha, \delta)$, e assume-se que a distribuição conjunta a posteriori é dada por:

$$\pi(\boldsymbol{\beta}, P, \tau, \theta, u_i | x_{its}, Y_{it}) \propto \tau^{\frac{NT}{2} + \alpha - 1} \exp\left\{-\frac{\tau}{2} \left[\sum_{i=1}^{N} \sum_{t=1}^{T} \left(\ln y_{it} - \exp(\eta_{it})\right)^2 - 2\delta\right] - bP \quad (3.10) \\ - \theta\left(d + \sum_{i=1}^{N} u_i\right) - \sum_{s=0}^{S} \frac{(\beta_s - \mu_{\beta})^2}{2\sigma_{\beta}^2}\right\} \prod_{i=1}^{N} u_i^{P-1} P^{a-1} \frac{\theta^{NP+w-1}}{\Gamma(P)^N} I_{\beta}(\beta).$$

Como a distribuição conjunta a posteriori não é tratável algebricamente, resumos a posteriori de interesse são obtidos de amostras da distribuição (3.10) utilizando-se algoritmos MCMC, tais como, Gibbs *sampling* e Metropolis-Hastings. Para a implementação computacional desses algoritmos é necessário o conhecimento das distribuições condicionais completas a posteriori de todas as quantidades desconhecidas de interesse presentes no modelo. Apresentam-se, a seguir, as distribuições condicionais completas a posteriori, os cálculos para sua obtenção são apresentados no Anexo G.

i) Distribuição condicional completa a posteriori para θ :

$$\theta|\boldsymbol{\beta}, P, \tau, u_i, x_{its}, Y_{it} \sim G\left(NP + w, d + \sum_{i=1}^N u_i\right).$$

ii) Distribuição condicional completa a posteriori para P:

$$\pi(P|\boldsymbol{\beta}, \theta, \tau, u_i, x_{its}, Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \exp\left\{P\left(-b + \sum_{i=1}^N \ln u_i\right)\right\}.$$

iii) Distribuição condicional completa a posteriori para β_S :

$$\pi(\beta_s|P,\theta,\beta_{-s},\tau,u_i,x_{its},\ln Y_{it}) \propto \exp\left\{-\frac{\tau}{2}\left[\sum_{i=1}^N\sum_{t=1}^T \left(\ln y_{it} - \prod_{s=1}^S x_{its}^{\beta_s} e^{-u_i}\right)^2\right] - \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta)$$

iv) Distribuição condicional completa a posteriori para u_i :

$$\pi(u_i|\beta, u_{-i}, P, \theta, \tau, x_{its}, Y_{it}) \propto \exp\left\{-\frac{\tau}{2}\left[\sum_{i=1}^N \sum_{t=1}^T (\ln y_{it} - \exp(\eta_{it}))^2\right] - \theta u_i\right\} u_i^{P-1}.$$

iv) Distribuição condicional completa a posteriori para τ :

$$\tau | \boldsymbol{\beta}, \boldsymbol{P}, \boldsymbol{\theta}, \boldsymbol{u}_i, \boldsymbol{x}_{its}, \boldsymbol{Y}_{it} \sim G\left(\frac{NT}{2} + \alpha, \frac{\sum_{i=1}^N \sum_{t=1}^T \left(\ln y_{it} - \exp(\eta_{it})\right)^2 - 2\delta}{2}\right)$$

Observa-se que as distribuições condicionais completas a posteriori para os parâmetros $\theta \in \tau$ possuem forma fechada, portanto, pode-se utilizar o algoritmo Gibbs *sampling* para amostrar dessas distribuições e as distribuições condicionais completas a posteriori para os parâmetros $u_i, \beta_s \in P$ não possuem forma fechada e para amostrar dessas distribuições pode-se utilizar o algoritmo de Metropolis-Hastings.

3.3.4 Modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição de Poisson

Considerando-se o fato de que a variável resposta Y_{it} é medida na forma de contagem propõe-se o modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição de Poisson:

$$Y_{it}|u_i \sim \operatorname{Pois}\left(\prod_{s=0}^{S} x_{its}^{\beta_s} e^{-u_i}\right), \qquad (3.11)$$
$$u_i|P,\theta \sim G(P,\theta),$$

e assume-se função de ligação canônica logarítmica, $\ln(\lambda_{it})$, com o preditor linear definido como:

$$\eta_{it} = \ln(\lambda_{it}) = \beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_s \ln x_{its} - u_i.$$

As pressuposições da distribuição de Poisson são (COSTA, 2003) independência entre as observações e a mesma média para todas as firmas, e, quando satisfeitas as pressuposições, a função de variância é dada por $V(Y_{it}) = \mu_{it}$.

Para utilizar a abordagem bayesiana é necessário incorporar à incerteza relativa as quantidades desconhecidas de interesse P, $\theta \in \beta$. Assumindo-se independência entre estas quantidades, a distribuição a priori conjunta é dada por:

$$\pi(P,\theta,\beta) = \pi(P)\pi(\theta)\pi(\beta),$$

em que $P \sim G(a, b), \theta \sim G(d, w)$ e $\beta_s \sim NT(\mu_\beta, \sigma_\beta^2)$, e assume-se que a distribuição conjunta a posteriori é dada por:

$$\pi(P,\theta,\beta,u_i|x_{its},Y_{it}) \propto \exp\left\{\sum_{i=1}^{N}\sum_{t=1}^{T}\left[y_{it}\eta_{it} - \exp(\eta_{it})\right] - \theta\left(d + \sum_{i=1}^{N}u_i\right) - bP - \sum_{s=0}^{S}\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\}\prod_{i=1}^{N}u_i^{P-1}P^{a-1}\frac{\theta^{NP+w-1}}{\Gamma(P)^N}I_\beta(\beta).$$
 (3.12)

Como a distribuição conjunta a posteriori não é tratável algebricamente, resumos a posteriori de interesse são obtidos de amostras da distribuição (3.12) utilizando-se algoritmos MCMC, tais como, Gibbs *sampling* e Metropolis-Hastings. Apresentam-se, a seguir, as distribuições condicionais completas a posteriori, os cálculos para sua obtenção são apresentados no Anexo H.

i) Distribuição condicional completa a posteriori para θ :

$$\theta|\boldsymbol{\beta}, u_i, P, x_{its}, Y_{it} \sim G\left(NP + w, d + \sum_{i=1}^N u_i\right).$$

ii) Distribuição condicional completa a posteriori para P:

$$\pi(P|\boldsymbol{\beta}, \theta, u_i, x_{its}, Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \exp\left\{P\left(-b + \sum_{i=1}^N \ln u_i\right)\right\}.$$

iii) Distribuição condicional completa a posteriori para β_s :

$$\pi(\beta_s|P,\theta,\beta_{-s},u_i,x_{its},Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left[y_{it}\beta_s \ln x_{its} - \exp(\eta_{it})\right] - \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta).$$

iv) Distribuição condicional completa a posteriori para u_i :

$$\pi(u_i|P,\theta,\beta,u_{-i},x_{its},Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left[-y_{it}u_i - \exp(\eta_{it})\right] - \theta u_i\right\} u_i^{P-1}$$

Observa-se que a distribuição condicional completa a posteriori para o parâmetro θ possui forma fechada, portanto, pode-se utilizar o algoritmo Gibbs *sampling* para amostrar dessa distribuição e as distribuições condicionais completas a posteriori para os parâmetros u, $\beta \in P$ não possuem forma fechada e para amostrar dessas distribuições pode-se utilizar o algoritmo de Metropolis-Hastings.

3.3.5 Modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição binomial negativa

Entretanto, se uma das pressuposições da distribuição de Poisson não é satisfeita, a variação residual pode ser maior do que a predita pelo modelo com distribuição de Poisson e uma solução para este caso é assumir uma forma mais geral para a função de variância, através do uso da distribuição binomial negativa (MOLEMBERGHS et al., 2007), que possui função de variância dada por: $V(Y_{it}) = \mu_{it}[1 + \phi\mu_{it}]$.

Propõe-se o modelo generalizado de fronteira estocástica:

$$Y_{it}|u_i \sim BN\left(\prod_{s=0}^{S} x_{its}^{\beta_s} e^{-u_i}, k\right), \qquad (3.13)$$
$$u_i|P, \theta \sim G(P, \theta),$$

e utiliza-se a função de ligação logarítmica, $\ln \mu_{it}$, com o preditor linear dado como:

$$\eta_{it} = \ln \mu_{it} = \beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_s \ln x_{its} - u_i,$$

sendo k um parâmetro fixo e as quantidades desconhecidas associadas ao modelo são β , P, θ e u.

Para utilizar a abordagem bayesiana é necessário incorporar à incerteza relativa as quantidades desconhecidas de interesse P, $\theta \in \beta$. Assumindo-se independência entre estas quantidades, a distribuição a priori conjunta é dada por:

$$\pi(P,\theta,\beta) = \pi(P)\pi(\theta)\pi(\beta),$$

em que $P \sim G(a, b), \theta \sim G(d, w)$ e $\beta_s \sim NT(\mu_\beta, \sigma_\beta^2)$, e assume-se que a distribuição conjunta a posteriori é dada por:

$$\pi(P,\theta,\beta,u_i|x_{its},Y_{it}) \propto \exp\left\{\sum_{i=1}^{N}\sum_{t=1}^{T}\left[y_{it}\eta_{it} + k\ln(1-\exp(\eta_{it}))\right] - \theta\left(d + \sum_{i=1}^{N}u_i\right) - bP - \sum_{s=0}^{S}\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\}\prod_{i=1}^{N}u_i^{P-1}P^{a-1}\frac{\theta^{NP+w-1}}{\Gamma(P)^N}I_\beta(\beta).$$
(3.14)

Como a distribuição conjunta a posteriori não é tratável algebricamente, resumos a posteriori de interesse são obtidos de amostras da distribuição (3.14) utilizando-se algoritmos MCMC, tais como, Gibbs *sampling* e Metropolis-Hastings. Apresentam-se, a seguir, as distribuições condicionais completas a posteriori, os cálculos para sua obtenção são apresentados no Anexo I.

i) Distribuição condicional completa a posteriori para θ :

$$\theta|\boldsymbol{\beta}, u_i, P, x_{its}, Y_{it} \sim G\left(NP + w, d + \sum_{i=1}^N u_i\right).$$

ii) Distribuição condicional completa a posteriori para P:

$$\pi(P|\boldsymbol{\beta}, \theta, u_i, x_{its}, Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \exp\left\{P\left(-b + \sum_{i=1}^N \ln u_i\right)\right\}.$$

iii) Distribuição condicional completa a posteriori para β_s :

$$\pi(\beta_s | P, \theta, \beta_{-s}, u_i, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left[y_{it}\beta_s \ln x_{its} + k \ln(1 - \exp(\eta_{it}))\right] - \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta).$$

iv) Distribuição condicional completa a posteriori para u_i :

$$\pi(u_i|P,\theta,\beta,u_{-i},x_{its},Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left[-y_{it}u_i + k\ln(1-\exp(\eta_{it}))\right] - \theta u_i\right\} u_i^{P-1}.$$

Observa-se que a distribuição condicional completa a posteriori para o parâmetro θ possui forma fechada, portanto, pode-se utilizar o algoritmo Gibbs *sampling* para amostrar dessa distribuição e as distribuições condicionais completas a posteriori para os parâmetros u, $\beta \in P$ não possuem forma fechada e para amostrar dessas distribuições pode-se utilizar o algoritmo de Metropolis-Hastings.

3.4 Simulação de dados

Os dados simulados baseiam-se em valores reais, referentes a produção de leite do Estado de São Paulo. Coletou-se as médias e variâncias dos logaritmos dos dados disponíveis no sítio do Instituto de Economia Agrícola¹ e foram utilizadas como base para a simulação das variáveis. Considerou-se N = 60 firmas em T = 6 tempos, S = 2 insumos e H = 1 produto. Por facilidade de cálculos, a forma funcional para a função de produção considerada é a Cobb-Douglas, e o vetor de coeficientes a ser estimado, β , possui dimensão 3, incluindo o intercepto. Os passos, a seguir, foram necessários para obter os dados simulados para os modelos (3.5), (3.7), (3.9), (3.11) e (3.13):

- **Passo 1:** Gerou-se os logaritmos dos dois insumos para cada uma das 60 firmas, os quais foram denotados por $\ln x_{i1}$ e $\ln x_{i2}$ e assumiu-se que $\ln x_{i1} \sim N(3, 22; 0, 17)$ e $\ln x_{i2} \sim N(4, 80; 0, 10)$, respectivamente.
- Passo 2: Para simular as variáveis no tempo, utilizou-se o caminho aleatório governado pela função densidade de probabilidade da distribuição normal com média 0 e desvio padrão igual a 0, 01. Se valores negativos foram gerados para as variáveis, esses foram descartados e gerados novamente. A idéia desenvolvida acima foi originalmente proposta por Fernández et al. (2000) e utilizada em Cespedes (2003).
- **Passo 3:** Considerou-se o vetor de parâmetros $\beta = (\beta_0, \beta_1, \beta_2) = (0, 5; 0, 3; 0, 7)$. Assumiu-se ineficiência constante no tempo. O vetor de ineficiências possui distribuição gama com parâmetros $P = 0, 8 \text{ e } \theta = 1$, valores esses sugeridos por Tsionas (2000). Os valores gerados foram ordenados de forma que a firma 1 fosse a mais eficiente e a firma 60 a menos eficiente.
- **Passo 4:** Obteve-se o produto Y_{it} (ou $\ln Y_{it}$ para o modelo descrito no item a) a partir das distribuições:
 - a) Normal com média μ_{it} e desvio padrão σ_v com preditor linear dado por $\eta_{it} = \mu_{it} = \beta_0 + \beta_1 \ln x_{it1} + \beta_2 \ln x_{it2} u_i$;
 - b) Gama com parâmetros μ_{it} e ν com preditor linear dado por $\eta_{it} = \ln(\mu_{it}) = \beta_0 + \beta_1 \ln x_{it1} + \beta_2 \ln x_{it2} u_i$;
 - c) Normal com média μ_{it} e desvio padrão σ_v com preditor linear dado por $\eta_{it} = \ln(\mu_{it}) = \beta_0 + \beta_1 \ln x_{it1} + \beta_2 \ln x_{it2} u_i;$
 - d) Poisson com parâmetro λ_{it} e preditor linear dado por $\eta_{it} = \ln(\lambda_{it}) = \beta_0 + \beta_1 \ln x_{it1} + \beta_2 \ln x_{it2} u_i$,

¹http://www.iea.sp.gov.br/out/banco/menu.php (03 fev. 2008)

e) Binomial negativa com parâmetro μ_{it} e preditor linear dado por $\eta_{it} = \ln(\mu_{it}) = \beta_0 + \beta_1 \ln x_{it1} + \beta_2 \ln x_{it2} - u_i$.

Repetiu-se 50 vezes os passos de 1 a 4 e gerou-se 50 amostras de $\ln Y_{it}$ para o modelo com distribuição normal e função de ligação identidade, 50 amostra de Y_{it} para o modelo com distribuição normal e função de ligação logarítmica e 50 amostra de Y_{it} para cada um dos modelos com distribuições gama, Poisson e binomial negativa, em que obteve-se um vetor de ineficiência técnica diferente para cada amostra.

3.5 Aplicação a dados reais

3.5.1 Vendedores de autopeças

A loja de autopeças localiza-se em uma avenida na cidade de São Paulo conhecida por conter muitas lojas do mesmo setor. Desta forma, a concorrência é bastante acirrada e a eficiência com que os clientes são atendidos é fundamental para o faturamento da loja. As vendas desta loja são feitas de duas maneiras: por telefone e por atendimento de balcão, sendo que, as vendas por telefone representam 70% do faturamento e a rapidez com que essas vendas são efetuadas é fundamental para que as linhas estejam desocupadas para receberem outras ligações. Com base nessas informações, um bom funcionário não se qualifica apenas por vender bastante, mas também por atender o cliente com rapidez e agilidade, de forma eficiente.

Neste trabalho, pretende-se calcular a eficiência técnica de 7 vendedores de uma loja de autopeças que atendem clientes tanto por telefone, como no balcão da loja, coletou-se as informações sobre a quantidade de vendas efetuadas por esses funcionários, o tempo médio de atendimento por venda, o acúmulo de outra função na loja e a comissão das vendas desses funcionários, durante os meses de maio a outubro de 2007.

3.5.2 Instituição Financeira

Os dados referem-se a 52 filiais de uma instituição financeira brasileira que realizam financiamentos de veículos. As filias são responsáveis por macro regiões sendo que o raio de atuação de cada uma delas não é limitado ao bairro ou cidade em que tem presença física.

Em cada filial existe um gerente e funcionários responsáveis por setores específicos de vendas. Ainda que as filiais tenham quantidade total de funcionários semelhantes (em cada categoria), existe diferença nas porcentagens de funcionários responsáveis por financiamentos de veículos em relação ao total de funcionários da filial, isso acontece porque existem focos distintos em função de cada região. As metas das filiais são definidas em função da área de atuação e do potencial de cada região, por exemplo, se a região possuir um número elevado de concessionárias com um público mais qualificado define-se um número maior de funcionários responsáveis para vendas de financiamentos de veículos. Definido o quadro de pessoal da filial, a meta anual é o resultado entre a quantidade de operadores multiplicado por 56 contratos.

Os dados reais são compostos por um produto e 3 insumos que são descritos como a quantidade de vendas de financiamentos de veículos (carros/motos/pesados) de até 10 mil reais, o número de funcionários em cada filial, o número de funcionários responsáveis por veículos e as metas de vendas.

3.6 Resultados e Discussão

Os resultados dividem-se em duas seções: a primeira refere-se as simulações de 50 amostras da variável resposta obtidas a partir dos modelos generalizados de fronteira estocástica e a segunda seção refere-se a análise de dois conjuntos de dados.

3.6.1 Simulação

Conforme descrição da seção 3.4, utilizou-se o programa estatístico R (R DEVELOPMENT CORE TEAM, 2008) para simular os dados, obteve-se 50 amostras da variável resposta, Y_{it} (ou $\ln Y_{it}$), para cada um dos cinco modelos generalizados de fronteira estocástica (3.5), (3.7), (3.9), (3.11) e (3.13). O programa para gerar as amostras encontra-se no Anexo J.

A implementação computacional foi feita usando-se o programa Winbugs (LUNN et al., 2000) gerando uma cadeia com 90.000 valores para cada parâmetro, desprezando os primeiros 30.000 valores para o período de aquecimento da cadeia ("burn-in") e selecionando um a cada 5 dos 60.000 valores restantes ("thin"), formando uma amostra de 12.000 valores. Cada uma das 50 amostras foram iniciadas em três pontos distintos, totalizando três cadeias e a convergência das estimativas dos parâmetros foi monitorada através do critério de convergência de Gelman e Rubin (1992) (Apêndice F), disponível no programa Winbugs. O programa para analisar os dados encontra-se no Anexo K.

Os hiperparâmetros das distribuições a priori dos parâmetros β_S , θ , $\nu \in \tau$ foram escolhidos de forma que as distribuições a priori são não informativas. Segundo Tsionas (2002) não é razoável que a distribuição a priori de *P* seja não informativa, pois, em tais casos, não é possível identificar os desvios da fronteira em relação aos erros de observação, então, considerou-se distribuição a priori informativa para esse parâmetro. Os valores dos hiperparâmetros das distribuições a priori considerados nas análises encontram-se na Tabela 3.1.

A Tabela 3.2 apresenta um resumo das distribuições a posteriori para cada parâmetro obtido

Parâmetro	Hiperparâmetro						
β_S	$a_{\beta} = 0,00$	$\sigma_{\beta}^2 = 100,00$					
P	$a_0 = 0,80$	$b_0 = 1,00$					
heta	$v_0 = 0,01$	$w_0 = 0,01$					
au	$\alpha = 0,01$	$\delta = 0,01$					
ν	l = 0,01	m = 0,01					

Tabela 3.1 – Hiperparâmetros das distribuições a priori para os parâmetros β , P, θ , τ e ν

no estudo de simulação para o modelo generalizado de fronteira estocástica para $\ln Y_{it}|u_i$ com distribuição normal (3.5).

Tabela 3.2 – Resumo a posteriori para os parâmetros do modelo generalizado de fronteira estocástica para $\ln Y_{it}|u_i$ com distribuição normal

					(c	ontinua)
Par.	V. verd.	Média	d.p.	2,5%	50%	97,5%
β_0	0,5000	0,5227	0,2100	0,4156	0,5136	0,6851
β_1	0,3000	0,2496	0,1697	0,0292	0,2350	0,5584
β_2	0,7000	0,7508	0,4211	0,1763	0,7387	1,4061
P	0,8000	0,9133	0,3948	0,4788	0,8615	1,6531
θ	0,0500	0,0505	0,0046	0,0430	0,0503	0,0592
σ_v^2	1,0000	1,1249	0,3655	0,5888	1,0902	1,8599
u_1	0,0070	0,0843	0,0922	0,0015	0,0646	0,2749
u_2	0,0150	0,0982	0,0658	0,0046	0,0786	0,3019
u_3	0,0230	0,1076	0,0709	0,0045	0,0910	0,3053
u_4	0,0320	0,1021	0,1488	0,0032	0,0828	0,3075
u_5	0,0430	0,1025	0,0908	0,0026	0,0848	0,3021
u_6	0,0520	0,1280	0,1152	0,0084	0,1112	0,3441
u_7	0,0640	0,1244	0,1397	0,0052	0,1072	0,3433
u_8	0,0760	0,1230	0,1505	0,0034	0,1009	0,3672
u_9	0,0900	0,1511	0,1325	0,0159	0,1373	0,3674
u_{10}	0,1020	0,1432	0,1439	0,0100	0,1276	0,3678
u_{11}	0,1150	0,1341	0,1050	0,0085	0,1166	0,3592
u_{12}	0,1290	0,1884	0,1489	0,0174	0,1749	0,4414
u_{13}	0,1440	0,1983	0,1419	0,0249	0,1868	0,4416
u_{14}	0,1600	0,1712	0,1335	0,0196	0,1588	0,3990
u_{15}	0,1790	0,2014	0,1283	0,0345	0,1900	0,4388
u_{16}	0,1970	0,2394	0,1348	0,0610	0,2304	0,4718
u_{17}	0,2100	0,2111	0,1381	0,0345	0,1992	0,4604
u_{18}	0,2250	0,2285	0,1507	0,0418	0,2160	0,4919
u_{19}	0,2420	0,2712	0,1421	0,0745	0,2640	0,5135
u_{20}	0,2650	0,2717	0,1387	0,0777	0,2642	0,5119
u_{21}	0,2860	0,2902	0,1419	0,0807	0,2845	0,5367

					(co	nclusão)
Par.	V. Verd.	Média	d.p.	2,5%	50%	97,5%
u_{22}	0,3050	0,3093	0,1543	0,0877	0,3034	0,5693
u_{23}	0,3240	0,2968	0,1394	0,0925	0,2904	0,5395
u_{24}	0,3460	0,3353	0,1528	0,1136	0,3289	0,5975
u_{25}	0,3670	0,3797	0,1382	0,1587	0,3751	0,6276
u_{26}	0,3870	0,3842	0,1400	0,1695	0,3792	0,6291
u_{27}	0,4090	0,4235	0,1425	0,1998	0,4201	0,6693
u_{28}	0,4340	0,4314	0,1447	0,2019	0,4273	0,6867
u_{29}	0,4580	0,4778	0,1353	0,2556	0,4746	0,7200
u_{30}	0,4820	0,4801	0,1390	0,2548	0,4765	0,7264
u_{31}	0,5130	0,5092	0,1405	0,2809	0,5051	0,7623
u_{32}	0,5450	0,5610	0,1403	0,3340	0,5574	0,8084
u_{33}	0,5760	0,5954	0,1413	0,3639	0,5910	0,8531
u_{34}	0,6000	0,6227	0,1530	0,3758	0,6176	0,9017
u_{35}	0,6300	0,6224	0,1427	0,3933	0,6183	0,8755
u_{36}	0,6630	0,6471	0,1629	0,3967	0,6428	0,9241
u_{37}	0,6980	0,7142	0,2184	0,3858	0,7046	1,0993
u_{38}	0,7300	0,7508	0,1502	0,5101	0,7455	1,0232
u_{39}	0,7690	0,7978	0,1443	0,5653	0,7930	1,0593
u_{40}	0,8210	0,8059	0,1446	0,5787	0,8020	1,0562
u_{41}	0,8660	0,8391	0,1702	0,5805	0,8341	1,1275
u_{42}	0,9160	0,9147	0,1445	0,6886	0,9109	1,1641
u_{43}	0,9550	0,9564	0,1463	0,7287	0,9527	1,2058
u_{44}	1,0060	1,0439	0,1429	0,8121	1,0409	1,2931
u_{45}	1,0630	1,0643	0,1400	0,8431	1,0608	1,3057
u_{46}	1,1140	1,1114	0,1380	0,8927	1,1077	1,3526
u_{47}	1,1710	1,1963	0,1467	0,9691	1,1928	1,4440
u_{48}	1,2450	1,2596	0,1385	1,0368	1,2555	1,5072
u_{49}	1,3240	1,3165	0,1379	1,0946	1,3125	1,5625
u_{50}	1,4060	1,4087	0,1629	1,1527	1,4024	1,7025
u_{51}	1,4860	1,5048	0,1384	1,2852	1,5011	1,7464
u_{52}	1,5980	1,5990	0,1586	1,3488	1,5930	1,8853
u_{53}	1,7280	1,7408	0,1564	1,4934	1,7350	2,0235
u_{54}	1,8160	1,8363	0,1352	1,6203	1,8328	2,0737
u_{55}	1,9670	1,9873	0,1338	1,7681	1,9837	2,2279
u_{56}	2,1450	2,1582	0,1611	1,9142	2,1545	2,4228
u_{57}	2,3680	2,3783	0,1526	2,1366	2,3756	2,6361
u_{58}	2,7260	2,7601	0,1409	2,5319	2,7555	3,0163
u_{59}	3,1810	3,2032	0,1333	2,9869	3,1997	3,4414
u_{60}	4,0350	4,0509	0,1549	3,8039	4,0484	4,3120

Tabela 3.2 - Resumo a posteriori para os parâmetros do modelo generalizado de fronteira estocástica para $\ln Y_{it}|u_i$ com distribuição normal

A Tabela 3.3 apresenta um resumo a posteriori para cada parâmetro obtido no estudo de simulação para o modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição gama (3.7).

					(c	ontinua)
Par.	V. verd.	Média	d.p.	2,5%	50%	97,5%
β_0	0,5000	0,5157	0,1502	0,2632	0,5069	0,5632
β_1	0,3000	0,2418	0,1380	0,0285	0,2314	0,5350
β_2	0,7000	0,6868	0,3043	0,1598	0,6798	1,3038
P	0,8000	0,8825	0,2968	0,4734	0,8332	1,5773
θ	1,0000	1,0952	0,3269	0,5819	1,0625	1,8011
ν	0,2200	0,2192	0,0132	0,2030	0,2197	0,2375
u_1	0,0070	0,0840	0,0747	0,0027	0,0675	0,2695
u_2	0,0150	0,0831	0,0734	0,0028	0,0640	0,2655
u_3	0,0230	0,0958	0,0796	0,0023	0,0782	0,2821
u_4	0,0320	0,0907	0,0771	0,0038	0,0712	0,2796
u_5	0,0430	0,1165	0,0824	0,0076	0,1047	0,3080
u_6	0,0520	0,1103	0,0839	0,0074	0,0941	0,3083
u_7	0,0640	0,1057	0,0831	0,0050	0,0900	0,3055
u_8	0,0760	0,1179	0,0933	0,0064	0,0977	0,3471
u_9	0,0900	0,1212	0,0843	0,0080	0,1067	0,3169
u_{10}	0,1020	0,1385	0,0920	0,0119	0,1235	0,3518
u_{11}	0,1150	0,1188	0,0892	0,0077	0,1017	0,3280
u_{12}	0,1290	0,1726	0,1063	0,0201	0,1584	0,4066
u_{13}	0,1440	0,1760	0,1029	0,0199	0,1657	0,4038
u_{14}	0,1600	0,1851	0,0998	0,0314	0,1737	0,4037
u_{15}	0,1790	0,1922	0,1028	0,0279	0,1836	0,4166
u_{16}	0,1970	0,2046	0,1010	0,0460	0,1972	0,4268
u_{17}	0,2100	0,2086	0,1087	0,0359	0,1914	0,4395
u_{18}	0,2250	0,2207	0,1139	0,0414	0,2160	0,4720
u_{19}	0,2420	0,2520	0,1119	0,0605	0,2448	0,4796
u_{20}	0,2650	0,2449	0,1080	0,0548	0,2367	0,4706
u_{21}	0,2860	0,2873	0,1118	0,0952	0,2786	0,5226
u_{22}	0,3050	0,3111	0,1236	0,0959	0,3042	0,5586
u_{23}	0,3240	0,3326	0,1127	0,1306	0,3265	0,5669
u_{24}	0,3460	0,3173	0,1200	0,1050	0,3107	0,5638
u_{25}	0,3670	0,3891	0,1174	0,1752	0,3867	0,6245
u_{26}	0,3870	0,3901	0,1186	0,1737	0,3843	0,6242

Tabela 3.3 – Resumo a posteriori para os parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição gama

					(conclusão)		
Par.	V. Verd.	Média	d.p.	2,5%	50%	97,5%	
u_{27}	0,4090	0,4141	0,1152	0,2086	0,4095	0,6492	
u_{28}	0,4340	0,4326	0,1184	0,2115	0,4269	0,6775	
u_{29}	0,4580	0,4637	0,1174	0,2476	0,4639	0,6927	
u_{30}	0,4820	0,4853	0,1187	0,2661	0,4789	0,7148	
u_{31}	0,5130	0,4915	0,1242	0,2690	0,4885	0,7367	
u_{32}	0,5450	0,5608	0,1249	0,3402	0,5529	0,8001	
u_{33}	0,5760	0,5598	0,1230	0,3295	0,5525	0,8003	
u_{34}	0,6000	0,6080	0,1356	0,3687	0,5974	0,8714	
u_{35}	0,6300	0,6180	0,1286	0,3913	0,6129	0,8596	
u_{36}	0,6630	0,6219	0,1343	0,3676	0,6080	0,8840	
u_{37}	0,6980	0,7111	0,1747	0,3963	0,6947	1,0736	
u_{38}	0,7300	0,7201	0,1325	0,4825	0,7120	0,9841	
u_{39}	0,7690	0,7560	0,1324	0,5250	0,7519	1,0040	
u_{40}	0,8210	0,8267	0,1329	0,6042	0,8256	1,0698	
u_{41}	0,8660	0,8460	0,1516	0,5965	0,8412	1,1247	
u_{42}	0,9160	0,9199	0,1306	0,6985	0,9138	1,1634	
u_{43}	0,9550	0,9740	0,1346	0,7582	0,9670	1,2127	
u_{44}	1,0060	1,0309	0,1373	0,8115	1,0225	1,2696	
u_{45}	1,0630	1,0696	0,1354	0,8598	1,0623	1,3040	
u_{46}	1,1140	1,1252	0,1346	0,9114	1,1211	1,3563	
u_{47}	1,1710	1,2090	0,1391	0,9920	1,2032	1,4457	
u_{48}	1,2450	1,2352	0,1377	1,0236	1,2304	1,4744	
u_{49}	1,3240	1,3093	0,1393	1,0979	1,3086	1,5495	
u_{50}	1,4060	1,4131	0,1577	1,1651	1,4069	1,6915	
u_{51}	1,4860	1,4909	0,1432	1,2814	1,4909	1,7277	
u_{52}	1,5980	1,6192	0,1627	1,3788	1,6217	1,8958	
u_{53}	1,7280	1,7388	0,1610	1,5177	1,7510	2,0107	
u_{54}	1,8160	1,8098	0,1460	1,6117	1,8196	2,0501	
u_{55}	1,9670	1,9982	0,1445	1,7976	2,0072	2,2392	
u_{56}	2,1450	2,1741	0,1605	1,9477	2,1774	2,4309	
u_{57}	2,3680	2,4328	0,1644	2,1991	2,4377	2,6786	
u_{58}	2,7260	2,7102	0,1607	2,5005	2,7144	2,9630	
u_{59}	3,1810	3,1700	0,1534	2,9528	3,1525	3,3896	
u_{60}	4,0350	4,0895	0,2110	3,8003	4,0370	4,2976	

Tabela 3.3 - Resumo a posteriori para os parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição gama

A Tabela 3.4 apresenta um resumo das distribuições a posteriori para cada parâmetro obtido no estudo de simulação para o modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição normal (3.9).

					(c	ontinua)
Par.	V. verd.	Média	d.p.	2,5%	50%	97,5%
β_0	0,5000	0,5669	0,0100	0,4408	0,5557	0,6655
β_1	0,3000	0,2997	0,0144	0,2911	0,2997	0,3082
β_2	0,7000	0,6989	0,0139	0,6721	0,6987	0,7267
P	0,8000	1,1100	0,3014	0,6620	1,0638	1,7956
θ	0,0500	1,2676	0,3274	0,7246	1,2346	1,9888
σ_v^2	1,0000	0,0499	0,0041	0,0425	0,0497	0,0586
u_1	0,0070	0,0756	0,0460	0,0241	0,0643	0,1740
u_2	0,0150	0,0831	0,0464	0,0287	0,0722	0,1822
u_3	0,0230	0,0907	0,0462	0,0373	0,0797	0,1895
u_4	0,0320	0,0997	0,0461	0,0473	0,0885	0,1982
u_5	0,0430	0,1095	0,0461	0,0568	0,0983	0,2080
u_6	0,0520	0,1187	0,0464	0,0645	0,1078	0,2177
u_7	0,0640	0,1314	0,0463	0,0775	0,1204	0,2303
u_8	0,0760	0,1427	0,0466	0,0872	0,1321	0,2421
u_9	0,0900	0,1556	0,0462	0,1026	0,1445	0,2543
u_{10}	0,1020	0,1651	0,0461	0,1126	0,1539	0,2636
u_{11}	0,1150	0,1776	0,0461	0,1247	0,1665	0,2762
u_{12}	0,1290	0,1915	0,0465	0,1363	0,1807	0,2906
u_{13}	0,1440	0,2074	0,0463	0,1532	0,1964	0,3062
u_{14}	0,1600	0,2219	0,0462	0,1684	0,2109	0,3207
u_{15}	0,1790	0,2411	0,0463	0,1871	0,2301	0,3400
u_{16}	0,1970	0,2573	0,0462	0,2041	0,2463	0,3560
u_{17}	0,2100	0,2706	0,0462	0,2170	0,2595	0,3693
u_{18}	0,2250	0,2843	0,0463	0,2301	0,2734	0,3832
u_{19}	0,2420	0,2993	0,0461	0,2467	0,2881	0,3979
u_{20}	0,2650	0,3232	0,0461	0,2703	0,3120	0,4218
u_{21}	0,2860	0,3418	0,0461	0,2890	0,3307	0,4404
u_{22}	0,3050	0,3656	0,0461	0,3125	0,3545	0,4642
u_{23}	0,3240	0,3832	0,0461	0,3302	0,3720	0,4818
u_{24}	0,3460	0,4053	0,0461	0,3525	0,3941	0,5038
u_{25}	0,3670	0,4260	0,0462	0,3726	0,4149	0,5247
u_{26}	0,3870	0,4435	0,0461	0,3906	0,4324	0,5421
u_{27}	0,4090	0,4688	0,0461	0,4160	0,4577	0,5674
u_{28}	0,4340	0,4917	0,0462	0,4385	0,4806	0,5903
u_{29}	0,4580	0,5233	0,0462	0,4699	0,5122	0,6220
u_{30}	0,4820	0,5430	0,0462	0,4897	0,5319	0,6416

Tabela 3.4 – Resumo a posteriori para os parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição normal

					(conclusão)		
Par.	V. Verd.	Média	d.p.	2,5%	50%	97,5%	
u_{31}	0,5130	0,5719	0,0462	0,5182	0,5609	0,6707	
u_{32}	0,5450	0,6017	0,0461	0,5486	0,5906	0,7003	
u_{33}	0,5760	0,6314	0,0464	0,5770	0,6206	0,7304	
u_{34}	0,6000	0,6532	0,0467	0,5974	0,6426	0,7526	
u_{35}	0,6300	0,6876	0,0462	0,6342	0,6766	0,7863	
u_{36}	0,6630	0,7228	0,0461	0,6696	0,7118	0,8214	
u_{37}	0,6980	0,7584	0,0475	0,6989	0,7485	0,8590	
u_{38}	0,7300	0,7951	0,0465	0,7398	0,7845	0,8944	
u_{39}	0,7690	0,8285	0,0464	0,7736	0,8177	0,9275	
u_{40}	0,8210	0,8809	0,0461	0,8276	0,8698	0,9794	
u_{41}	0,8660	0,9318	0,0461	0,8781	0,9209	1,0305	
u_{42}	0,9160	0,9801	0,0462	0,9267	0,9692	1,0787	
u_{43}	0,9550	1,0180	0,0461	0,9645	1,0071	1,1166	
u_{44}	1,0060	1,0809	0,0464	1,0262	1,0701	1,1798	
u_{45}	1,0630	1,1431	0,0462	1,0891	1,1322	1,2420	
u_{46}	1,1140	1,1975	0,0462	1,1434	1,1867	1,2961	
u_{47}	1,1710	1,2593	0,0463	1,2049	1,2483	1,3580	
u_{48}	1,2450	1,3256	0,0464	1,2708	1,3149	1,4245	
u_{49}	1,3240	1,4051	0,0464	1,3502	1,3944	1,5040	
u_{50}	1,4060	1,4885	0,0468	1,4314	1,4781	1,5879	
u_{51}	1,4860	1,5583	0,0464	1,5031	1,5477	1,6572	
u_{52}	1,5980	1,6783	0,0467	1,6214	1,6678	1,7775	
u_{53}	1,7280	1,8091	0,0470	1,7512	1,7989	1,9088	
u_{54}	1,8160	1,9063	0,0467	1,8490	1,8959	2,0056	
u_{55}	1,9670	2,0436	0,0470	1,9848	2,0335	2,1432	
u_{56}	2,1450	2,2267	0,0475	2,1653	2,2171	2,3270	
u_{57}	2,3680	2,4658	0,0488	2,4001	2,4567	2,5681	
u_{58}	2,7260	2,8230	0,0498	2,7545	2,8141	2,9272	
u_{59}	3,1810	3,2811	0,0541	3,1992	3,2736	3,3941	
u_{60}	4,0350	3,9148	0,0935	3,7656	3,9048	4,1178	

Tabela 3.4 - Resumo a posteriori para os parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição normal

A Tabela 3.5 apresenta um resumo a posteriori para cada parâmetro obtido no estudo de simulação para o modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição Poisson (3.11).
					(c	ontinua)
Par.	V. verd.	Média	d.p.	2,5%	50%	97,5%
β_0	0,5000	0,5185	0,1539	0,4603	0,5117	0,6170
β_1	0,3000	0,2811	0,1157	0,0684	0,2785	0,5133
β_2	0,7000	0,6961	0,1921	0,3234	0,6924	1,0905
P	0,8000	0,8492	0,2424	0,5375	0,8654	1,4750
θ	1,0000	1,1044	0,2977	0,6315	1,0994	1,7923
u_1	0,0070	0,0461	0,0438	0,0008	0,0340	0,1594
u_2	0,0150	0,0486	0,0454	0,0016	0,0361	0,1666
u_3	0,0230	0,0610	0,0469	0,0030	0,0513	0,1752
u_4	0,0320	0,0630	0,0495	0,0027	0,0524	0,1850
u_5	0,0430	0,0721	0,0489	0,0072	0,0635	0,1885
u_6	0,0520	0,0847	0,0545	0,0095	0,0758	0,2133
u_7	0,0640	0,0830	0,0533	0,0091	0,0742	0,2095
u_8	0,0760	0,0972	0,0637	0,0119	0,0857	0,2505
u_9	0,0900	0,1159	0,0549	0,0289	0,1101	0,2389
u_{10}	0,1020	0,1198	0,0577	0,0304	0,1128	0,2511
u_{11}	0,1150	0,1177	0,0603	0,0249	0,1105	0,2537
u_{12}	0,1290	0,1482	0,0742	0,0279	0,1414	0,3102
u_{13}	0,1440	0,1719	0,0711	0,0501	0,1671	0,3236
u_{14}	0,1600	0,1744	0,0586	0,0743	0,1698	0,3031
u_{15}	0,1790	0,1963	0,0639	0,0840	0,1922	0,3342
u_{16}	0,1970	0,2177	0,0597	0,1132	0,2137	0,3468
u_{17}	0,2100	0,2179	0,0650	0,1039	0,2136	0,3586
u_{18}	0,2250	0,2328	0,0700	0,1105	0,2278	0,3849
u_{19}	0,2420	0,2592	0,0608	0,1522	0,2553	0,3903
u_{20}	0,2650	0,2727	0,0601	0,1667	0,2689	0,4020
u_{21}	0,2860	0,2932	0,0615	0,1837	0,2895	0,4252
u_{22}	0,3050	0,3203	0,0729	0,1869	0,3170	0,4738
u_{23}	0,3240	0,3295	0,0611	0,2206	0,3258	0,4606
u_{24}	0,3460	0,3615	0,0688	0,2377	0,3576	0,5083
u_{25}	0,3670	0,3796	0,0620	0,2697	0,3758	0,5129
u_{26}	0,3870	0,4106	0,0626	0,2986	0,4069	0,5443
u_{27}	0,4090	0,4204	0,0638	0,3057	0,4169	0,5565
u_{28}	0,4340	0,4409	0,0660	0,3225	0,4372	0,5817
u_{29}	0,4580	0,4741	0,0624	0,3625	0,4705	0,6073
u_{30}	0,4820	0,5040	0,0637	0,3899	0,5004	0,6397
u_{31}	0,5130	0,5151	0,0658	0,3976	0,5112	0,6560

Tabela 3.5 - Resumo a posteriori para os parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição Poisson

					(co	nclusão)
Par.	V. Verd.	Média	d.p.	2,5%	50%	97,5%
u_{32}	0,5450	0,5594	0,0658	0,4407	0,5559	0,6991
u_{33}	0,5760	0,5937	0,0676	0,4746	0,5892	0,7400
u_{34}	0,6000	0,6095	0,0754	0,4775	0,6042	0,7739
u_{35}	0,6300	0,6409	0,0692	0,5159	0,6374	0,7873
u_{36}	0,6630	0,6739	0,0793	0,5295	0,6700	0,8413
u_{37}	0,6980	0,7016	0,1042	0,5233	0,6927	0,9339
u_{38}	0,7300	0,7478	0,0741	0,6177	0,7427	0,9090
u_{39}	0,7690	0,7823	0,0721	0,6543	0,7777	0,9375
u_{40}	0,8210	0,8313	0,0729	0,6979	0,8279	0,9843
u_{41}	0,8660	0,8875	0,0881	0,7257	0,8838	1,0717
u_{42}	0,9160	0,9321	0,0750	0,7944	0,9289	1,0889
u_{43}	0,9550	0,9687	0,0768	0,8276	0,9656	1,1294
u_{44}	1,0060	1,0364	0,0857	0,8761	1,0338	1,2124
u_{45}	1,0630	1,0752	0,0789	0,9291	1,0723	1,2387
u_{46}	1,1140	1,1231	0,0771	0,9805	1,1201	1,2833
u_{47}	1,1710	1,2003	0,0848	1,0427	1,1974	1,3758
u_{48}	1,2450	1,2710	0,0816	1,1203	1,2679	1,4408
u_{49}	1,3240	1,3314	0,0833	1,1769	1,3283	1,5038
u_{50}	1,4060	1,4021	0,0937	1,2331	1,3971	1,6011
u_{51}	1,4860	1,5174	0,0903	1,3486	1,5145	1,7030
u_{52}	1,5980	1,5985	0,0985	1,4180	1,5942	1,8047
u_{53}	1,7280	1,7501	0,1017	1,5639	1,7456	1,9637
u_{54}	1,8160	1,8335	0,1019	1,6422	1,8306	2,0420
u_{55}	1,9670	1,9858	0,1118	1,7760	1,9825	2,2144
u_{56}	2,1450	2,1583	0,1307	1,9125	2,1545	2,4254
u_{57}	2,3680	2,4163	0,1502	2,1329	2,4124	2,7216
u_{58}	2,7260	2,7377	0,1506	2,4563	2,7328	3,0468
u_{59}	3,1810	3,2112	0,1972	2,8464	3,2035	3,6193
u_{60}	4,0350	3,9680	0,3355	3,3758	3,9457	4,6885

Tabela 3.5 - Resumo a posteriori para os parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição Poisson

A Tabela 3.6 apresenta um resumo a posteriori para cada parâmetro obtido no estudo de simulação para o modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição binomial negativa (3.13).

Os valores estimados dos parâmetros no modelos generalizados de fronteira estocástica para $\ln Y_{it}|u_i$ com distribuição normal e para $Y_{it}|u_i$ com distribuições gama, normal, Poisson e binomial negativa estão próximos do valor verdadeiro.

					(c	ontinua)
Par.	V. verd.	Média	d.p.	2,5%	50%	97,5%
β_0	0,5000	0,5283	0,1848	0,3871	0,5164	0,7401
β_1	0,3000	0,2669	0,1627	0,1145	0,3159	0,7044
β_2	0,7000	0,7628	0,4206	0,0905	0,7765	1,6398
P	0,8000	0,8758	0,3697	0,4431	0,8532	1,7848
θ	1,0000	1,0898	0,3665	0,5441	1,0499	1,8522
u_1	0,0070	0,1122	0,0988	0,0037	0,0854	0,3566
u_2	0,0150	0,1311	0,1132	0,0048	0,1052	0,4055
u_3	0,0230	0,1354	0,1098	0,0040	0,1118	0,3969
u_4	0,0320	0,1298	0,1087	0,0064	0,1047	0,3929
u_5	0,0430	0,1371	0,1086	0,0052	0,1135	0,3896
u_6	0,0520	0,1288	0,1096	0,0040	0,1045	0,3920
u_7	0,0640	0,1557	0,1180	0,0116	0,1303	0,4325
u_8	0,0760	0,1709	0,1339	0,0090	0,1422	0,4906
u_9	0,0900	0,1561	0,1206	0,0075	0,1333	0,4296
u_{10}	0,1020	0,1833	0,1253	0,0096	0,1572	0,4631
u_{11}	0,1150	0,1658	0,1238	0,0077	0,1391	0,4548
u_{12}	0,1290	0,2084	0,1377	0,0158	0,1825	0,5150
u_{13}	0,1440	0,2226	0,1423	0,0178	0,2042	0,5305
u_{14}	0,1600	0,2415	0,1406	0,0290	0,2151	0,5427
u_{15}	0,1790	0,2268	0,1425	0,0271	0,2083	0,5324
u_{16}	0,1970	0,2372	0,1418	0,0308	0,2208	0,5422
u_{17}	0,2100	0,2291	0,1488	0,0237	0,2086	0,5509
u_{18}	0,2250	0,2291	0,1502	0,0192	0,2071	0,5626
u_{19}	0,2420	0,2663	0,1510	0,0353	0,2571	0,5846
u_{20}	0,2650	0,2772	0,1515	0,0377	0,2630	0,5968
u_{21}	0,2860	0,2923	0,1494	0,0576	0,2727	0,6024
u_{22}	0,3050	0,3319	0,1684	0,0656	0,3188	0,6589
u_{23}	0,3240	0,3369	0,1605	0,0786	0,3254	0,6668
u_{24}	0,3460	0,3488	0,1640	0,0808	0,3293	0,6799
u_{25}	0,3670	0,3812	0,1657	0,0900	0,3685	0,7129
u_{26}	0,3870	0,3955	0,1708	0,1014	0,3834	0,7223
u_{27}	0,4090	0,4184	0,1680	0,1245	0,4101	0,7490
u_{28}	0,4340	0,4211	0,1757	0,1140	0,4073	0,7626
u_{29}	0,4580	0,4736	0,1694	0,1630	0,4724	0,8032
u_{30}	0,4820	0,4533	0,1728	0,1510	0,4437	0,7891
u_{31}	0,5130	0,4954	0,1830	0,1709	0,4887	0,8411
u_{32}	0,5450	0,5406	0,1815	0,2291	0,5326	0,8860
u_{33}	0,5760	0,6050	0,1830	0,2697	0,5987	0,9558
u_{34}	0,6000	0,6071	0,1946	0,2576	0,5969	0,9791
u_{35}	0,6300	0,6467	0,1836	0,3130	0,6385	0,9928

Tabela 3.6 – Resumo a posteriori para os parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição binomial negativa

					(co	nclusão)
Par.	V. Verd.	Média	d.p.	2,5%	50%	97,5%
u_{36}	0,6630	0,6431	0,1962	0,2880	0,6362	1,0111
u_{37}	0,6980	0,7378	0,2524	0,3027	0,7187	1,2272
u_{38}	0,7300	0,7088	0,1903	0,3619	0,7018	1,0804
u_{39}	0,7690	0,7639	0,1904	0,4220	0,7654	1,1269
u_{40}	0,8210	0,8572	0,1907	0,5242	0,8565	1,2062
u_{41}	0,8660	0,8284	0,2014	0,4731	0,8251	1,2248
u_{42}	0,9160	0,9366	0,1891	0,6039	0,9296	1,2800
u_{43}	0,9550	0,9639	0,1886	0,6377	0,9666	1,3161
u_{44}	1,0060	1,0569	0,1925	0,7145	1,0506	1,3958
u_{45}	1,0630	1,0482	0,1890	0,7123	1,0442	1,3836
u_{46}	1,1140	1,1095	0,1916	0,7779	1,0987	1,4435
u_{47}	1,1710	1,2202	0,1962	0,8716	1,2157	1,5617
u_{48}	1,2450	1,2693	0,1963	0,9259	1,2561	1,6163
u_{49}	1,3240	1,3917	0,1972	1,0499	1,3773	1,7316
u_{50}	1,4060	1,4409	0,2181	1,0636	1,4352	1,8384
u_{51}	1,4860	1,4762	0,1929	1,1327	1,4660	1,8234
u_{52}	1,5980	1,6494	0,2119	1,2720	1,6361	2,0397
u_{53}	1,7280	1,7653	0,2135	1,3881	1,7469	2,1492
u_{54}	1,8160	1,8218	0,2105	1,4827	1,8088	2,1843
u_{55}	1,9670	2,0099	0,2134	1,6493	1,9961	2,3880
u_{56}	2,1450	2,1547	0,2368	1,7607	2,1445	2,5681
u_{57}	2,3680	2,4241	0,2518	1,9971	2,4136	2,8377
u_{58}	2,7260	2,7354	0,2563	2,3037	2,7136	3,1658
u_{59}	3,1810	3,2562	0,3067	2,7833	3,2215	3,7812
u_{60}	4,0350	4,0371	0,4736	3,3469	4,0036	4,9370

Tabela 3.6 - Resumo a posteriori para os parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição binomial negativa

Observa-se que a análise recuperou a informação relativa às quantidades de interesse em todos os modelos estudados. Omitiu-se os valores da estatística R do critério de convergência de Gelman e Rubin, pois encontrou-se valor aproximadamente igual a 1 para todos os parâmetros, o que indica convergência das cadeias.

Apresentam-se nas Figuras 3.1, 3.2, 3.3, 3.4 e 3.5 os intervalos de credibilidade obtidos no estudo de simulação para os modelos generalizados de fronteira estocástica para $\ln Y_{it}|u_i$ com distribuição normal (3.5), $Y_{it}|u_i$ com distribuição gama (3.7), $Y_{it}|u_i$ com distribuição normal (3.9), $Y_{it}|u_i$ com distribuição Poisson (3.11) e $Y_{it}|u_i$ com distribuição binomial negativa (3.13), respectivamente. A linhas em preto são os intervalos de credibilidade que cobrem o valor verdadeiro e as linhas em vermelho são os intervalos de credibilidade que não cobrem o verdadeiro valor do parâmetro.

Figura 3.1 – Intervalos de credibilidade para os parâmetros do modelo generalizado de fronteira estocástica para $\ln Y_{it}|u_i$ com distribuição normal

Para o modelo com $\ln Y_{it}|u_i$ com distribuição normal, observa-se que somente em duas amostras os intervalos de credibilidade não cobriram o valor verdadeiro de todos os parâmetros, sendo que um não cobre o valor verdadeiro de β_0 e um não cobre o valor verdadeiro de β_1 , mas isso não se dá simultaneamente.

Figura 3.2 – Intervalos de credibilidade para os parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ distribuição gama

Para o modelo com $Y_{it}|u_i$ distribuição gama, observa-se que somente dois intervalos não cobrem o valor verdadeiro de β_0 , um intervalo não cobre o valor verdadeiro do parâmetro P, um intervalo não cobre o valor verdadeiro de θ e seis intervalos não cobrem o valor verdadeiro de ν , mas isso não se dá simultaneamente. Observa-se que o valor verdadeiro do parâmetro ν é o mais difícil de ser recuperado neste modelo.

Figura 3.3 – Intervalos de credibilidade para os parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ distribuição normal

Para o modelo com $Y_{it}|u_i$ distribuição normal, observa-se que três intervalos não cobrem o valor verdadeiro de β_0 , um intervalo não cobre o valor verdadeiro do parâmetro β_1 , dois intervalos não cobrem o valor verdadeiro de β_2 , dois intervalos não cobrem o valor verdadeiro de P e um intervalo não cobre o valor verdadeiro de θ . Apenas uma amostra não recuperou o valor verdadeiro de mais de um parâmetro (β_0 e P). Os outros intervalos que não cobrem o valor verdadeiro dos parâmetros não acontecem na mesma amostra.

Figura 3.4 – Intervalos de credibilidade para os parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição Poisson

Para o modelo com $Y_{it}|u_i$ com distribuição Poisson, observa-se que somente um intervalo não cobre o valor verdadeiro de β_0 , dois intervalos não cobrem o valor verdadeiro de P e um intervalo não cobre o valor verdadeiro de θ . Apenas uma amostra não cobriu o valor verdadeiro dos parâmetros $P \in \theta$ simultaneamente.

Para o modelo com $Y_{it}|u_i$ com distribuição binomial negativa, observa-se que somente dois intervalos não cobrem o valor verdadeiro de β_0 , um intervalo não cobre o valor verdadeiro do parâmetro β_1 , um intervalo não cobre o valor verdadeiro do parâmetro β_2 , um intervalo não cobre o valor verdadeiro de P e dois intervalos não cobrem o valor verdadeiro de θ . Em uma amostra o

Figura 3.5 – Intervalos de credibilidade para os parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição binomial negativa

valor verdadeiro das quantidades de interesse $\beta_1, \beta_2 \in \theta$ não foram recuperados e em outra o valor verdadeiro de $\beta_0, P \in \theta$ não foram recuperados, simultaneamente.

As Figuras 3.6, 3.7, 3.8, 3.9 e 3.10 apresentam os histogramas das médias a posteriori dos parâmetros obtidas nas 50 simulações para os modelos generalizados de fronteira estocástica para $\ln Y_{it}|u_i$ com distribuição normal (3.5), $Y_{it}|u_i$ com distribuição gama (3.7), $Y_{it}|u_i$ com distribuição normal (3.9), $Y_{it}|u_i$ com distribuição Poisson (3.11) e $Y_{it}|u_i$ com distribuição binomial negativa (3.13), respectivamente. A linha vertical azul representa o valor verdadeiro.

Figura 3.6 – Histogramas das médias a posteriori dos parâmetros do modelo generalizado de fronteira estocástica para $\ln Y_{it}|u_i$ com distribuição normal

Figura 3.7 – Histogramas das médias a posteriori dos parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição gama

Figura 3.8 – Histogramas das médias a posteriori dos parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição normal

Figura 3.9 – Histogramas das médias a posteriori dos parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição Poisson

Figura 3.10 – Histogramas das médias a posteriori dos parâmetros do modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição binomial negativa

A Tabela 3.7 mostra a classificação da eficiência técnica das 60 firmas.

Observa-se que, para a maior parte das firmas, manteve-se a ordem de classificação da eficiência técnica nos modelos generalizados de fronteira estocástica e a estimativa das firmas menos eficientes está mais próxima do valor verdadeiro em todos os modelos. O modelo em que a estimativa das firmas mais eficientes está mais próxima do valor verdadeiro é o modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição de Poisson.

						(continua)
Parâmetro	Valor	Média	Média	Média	Média	Média
	verd.	ln Normal	Gama	Normal	Poisson	Bin. neg.
ET_1	0,9930	0,9228	0,9195	0,9372	0,9549	0,8939
ET_2	0,9851	0,9112	0,9202	0,9301	0,9525	0,8771
ET_3	0,9773	0,9028	0,9086	0,9232	0,9409	0,8734
ET_4	0,9685	0,9077	0,9133	0,9148	0,9389	0,8783
ET_5	0,9579	0,9068	0,8901	0,9059	0,9304	0,8719
ET_6	0,9493	0,8861	0,8956	0,8981	0,9188	0,8792
ET_7	0,9380	0,8888	0,8997	0,8867	0,9203	0,8558
ET_8	0,9268	0,8905	0,8888	0,8766	0,9074	0,8429
ET_9	0,9139	0,8670	0,8859	0,8653	0,8906	0,8555
ET_{10}	0,9030	0,8733	0,8707	0,8574	0,8871	0,8325
ET_{11}	0,8914	0,8812	0,8880	0,8468	0,8890	0,8472
ET_{12}	0,8790	0,8372	0,8414	0,8355	0,8623	0,8119
ET_{13}	0,8659	0,8293	0,8386	0,8223	0,8421	0,8005
ET_{14}	0,8521	0,8510	0,8310	0,8104	0,8400	0,7854
ET_{15}	0,8361	0,8275	0,8252	0,7952	0,8218	0,7971
ET_{16}	0,8212	0,7980	0,8150	0,7824	0,8044	0,7888
ET_{17}	0,8106	0,8196	0,8117	0,7719	0,8042	0,7953
ET_{18}	0,7985	0,8070	0,8020	0,7613	0,7924	0,7953
ET_{19}	0,7851	0,7738	0,7772	0,7499	0,7717	0,7662
ET_{20}	0,7672	0,7739	0,7828	0,7327	0,7613	0,7579
ET_{21}	0,7513	0,7578	0,7503	0,7197	0,7459	0,7465
ET_{22}	0,7371	0,7467	0,7326	0,7028	0,7259	0,7175
ET_{23}	0,7233	0,7554	0,7171	0,6904	0,7193	0,7140
ET_{24}	0,7075	0,7277	0,7281	0,6752	0,6967	0,7056
ET_{25}	0,6928	0,6954	0,6776	0,6611	0,6841	0,6830
ET_{26}	0,6791	0,6963	0,6770	0,6497	0,6633	0,6733
ET_{27}	0,6643	0,6688	0,6609	0,6331	0,6568	0,6581
ET_{28}	0,6479	0,6624	0,6488	0,6188	0,6435	0,6563
ET_{29}	0,6325	0,6327	0,6290	0,5995	0,6225	0,6227
ET_{30}	0,6175	0,6297	0,6155	0,5877	0,6041	0,6355

Tabela 3.7 – Classificação da eficiência técnica das firmas para os modelos generalizados de fronteira estocástica para $\ln Y_{it}|u_i$ com distribuição normal e $Y_{it}|u_i$ com distribuições gama, normal, Poisson e binomial negativa, respectivamente

Tabela 3.7 - Classificação da eficiência técnica das firmas para os modelos generalizados de fronestocástica para $\ln Y_{it}|u_i$ com distribuição normal e $Y_{it}|u_i$ com distribuições gama, normal, Poise binomial negativa, respectivamente

					(conclusão)
Parâmetro	Valor	Média	Média	Média	Média	Média
	verd.	ln Normal	Gama	Normal	Poisson	Bin. neg.
ET_{31}	0,5987	0,6149	0,6117	0,5713	0,5975	0,6093
ET_{32}	0,5798	0,5831	0,5708	0,5550	0,5716	0,5824
ET_{33}	0,5621	0,5638	0,5713	0,5389	0,5523	0,5461
ET_{34}	0,5488	0,5503	0,5444	0,5276	0,5436	0,5449
ET_{35}	0,5326	0,5494	0,5390	0,5099	0,5268	0,5238
ET_{36}	0,5153	0,5379	0,5369	0,4928	0,5097	0,5256
ET_{37}	0,4976	0,5085	0,4911	0,4758	0,4958	0,4782
ET_{38}	0,4819	0,4855	0,4867	0,4582	0,4734	0,4922
ET_{39}	0,4635	0,4620	0,4696	0,4433	0,4574	0,4658
ET_{40}	0,4400	0,4576	0,4375	0,4212	0,4355	0,4243
ET_{41}	0,4206	0,4418	0,4291	0,4003	0,4117	0,4368
ET_{42}	0,4001	0,4097	0,3985	0,3820	0,3937	0,3920
ET_{43}	0,3848	0,3940	0,3776	0,3680	0,3796	0,3814
ET_{44}	0,3657	0,3627	0,3567	0,3457	0,3547	0,3475
ET_{45}	0,3454	0,3532	0,3431	0,3250	0,3412	0,3506
ET_{46}	0,3282	0,3390	0,3246	0,3083	0,3253	0,3297
ET_{47}	0,3101	0,3108	0,2985	0,2904	0,3011	0,2952
ET_{48}	0,2879	0,2940	0,2908	0,2714	0,2805	0,2810
ET_{49}	0,2661	0,2774	0,2700	0,2511	0,2641	0,2487
ET_{50}	0,2451	0,2546	0,2434	0,2313	0,2461	0,2367
ET_{51}	0,2263	0,2308	0,2252	0,2164	0,2193	0,2285
ET_{52}	0,2023	0,2120	0,1981	0,1924	0,2022	0,1922
ET_{53}	0,1776	0,1856	0,1757	0,1713	0,1738	0,1711
ET_{54}	0,1627	0,1684	0,1637	0,1551	0,1598	0,1617
ET_{55}	0,1399	0,1471	0,1356	0,1363	0,1373	0,1340
ET_{56}	0,1171	0,1238	0,1137	0,1141	0,1155	0,1159
ET_{57}	0,0937	0,1017	0,0878	0,0930	0,0893	0,0886
ET_{58}	0,0655	0,0737	0,0665	0,0679	0,0647	0,0649
ET_{59}	0,0415	0,0509	0,0420	0,0467	0,0403	0,0385
ET_{60}	0,0177	0,0251	0,0167	0,0268	0,0189	0,0176

As Figuras 3.11 e 3.12 apresentam os histogramas das médias a posteriori da ineficiência técnica das firmas que foram consideradas menos ineficientes e as mais ineficientes para os modelos generalizados de fronteira estocástica para $\ln Y_{it}|u_i$ com distribuição normal, e para $Y_{it}|u_i$ com distribuição gama, normal, Poisson e binomial negativa, respectivamente. A linha azul representa o valor verdadeiro.

Figura 3.11 – Histograma da média a posteriori da ineficiência técnica de firmas menos ineficientes e mais ineficientes

Figura 3.12 – Histograma da média a posteriori da ineficiência técnica de firmas menos ineficientes e mais ineficientes

A Figura 3.13 apresenta o gráfico da eficiência técnica estimada de cada firma versus a eficiência técnica verdadeira para os modelos para $\ln Y_{it}|u_i$ com distribuição normal e para $Y_{it}|u_i$ com distribuições gama, normal, Poisson e binomial negativa, respectivamente.

Observa-se que as estimativas das firmas menos eficientes estão mais próximas do valor verdadeiro que as firmas mais eficientes nos modelos generalizados de fronteira estocástica com distribuição normal, gama e binomial negativa. O modelo em que a estimativa das firmas mais eficientes está mais próxima do valor verdadeiro é o modelo generalizado de fronteira estocástica com distribuição de Poisson.

Figura 3.13 – Eficiência técnica estimada versus Eficiência técnica verdadeira

De maneira geral, verificou-se a validade dos modelos generalizados de fronteira estocástica para $\ln Y_{it}|u_i$ com distribuição normal e para $Y_{it}|u_i$ com distribuições gama, normal, Poisson e binomial negativa. As estimativas das distribuições a posteriori dos parâmetros estão próximas do valor verdadeiro e manteve-se a classificação das firmas quanto a eficiência técnica.

3.6.2 Aplicação empírica

Os resultados desta seção referem-se a aplicação da metodologia proposta neste trabalho à dois conjuntos de dados: o primeiro refere-se a 7 vendedores de uma loja de autopeças, observados durante 6 meses, ou seja, são dados em painel de dimensão 7×6 e as variáveis observadas referem-se a 1 produto e 4 insumos, em que a variável resposta é medida na forma de contagem. O segundo conjunto de dados é *cross-sectional* e refere-se a 55 filiais de uma instituição financeira, em que as variáveis medidas referem-se a 1 produto e 3 insumos, sendo a variável resposta também medida na forma de contagem.

Vendedores de autopeças

A implementação computacional foi feita usando-se o programa Winbugs (LUNN et al., 2000) gerando uma cadeia com 90.000 valores para cada parâmetro, desprezando os primeiros 30.000 valores para o período de aquecimento da cadeia ("burn-in") e selecionando um a cada 5 dos 60.000 valores restantes ("thin"), formando uma amostra de 12.000 valores. Foram iniciadas três cadeias em pontos distintos e a convergência das estimativas dos parâmetros foi monitorada através do critério de convergência de Gelman e Rubin (1992), disponível no programa Winbugs (Apêndice F).

Os hiperparâmetros das distribuições a priori dos parâmetros β_s e θ foram escolhidos de forma que as distribuições a priori são não informativas e considerou-se informação a priori para o parâmetro P. Os valores dos hiperparâmetros das distribuições a priori considerados nas análises encontram-se na Tabela 3.8.

Tabela 3.8 – Hiperparâmetros das distribuições a priori dos parâmetros β , P, θ

Parâmetro	Hiperparâmetro				
β_s	$a_{\beta} = 0,00$	$\sigma_{\beta}^2 = 100,00$			
P	$a_0 = 0,80$	$b_0 = 1,00$			
θ	$v_0 = 0,01$	$w_0 = 0,01$			

As Tabelas 3.9 e 3.10 apresentam um resumo a posteriori para cada parâmetro obtido nos modelos generalizados de fronteira estocástica com $Y_{it}|u_i$ com distribuição Poisson (3.11) e com binomial negativa (3.13), respectivamente.

A média e a variância da ineficiência técnica para o modelo generalizado de fronteira estocástica com $Y_{it}|u_i$ com distribuição Poisson são $\mu_u = 0,3942$ e $\sigma_u^2 = 0,1709$ e a média e a variância da ineficiência técnica para o modelo generalizado de fronteira estocástica com $Y_{it}|u_i$ com distribuição binomial negativa são $\mu_u = 0,8866$ e $\sigma_u^2 = 0,4882$.

Par.	Média	d.p.	2,5%	50%	97,5%
β_0	-1,6260	0,6857	-2,7810	-1,6940	-0,1693
β_1	0,6743	0,0645	0,5373	0,6788	0,7854
β_2	0,1071	0,0881	0,0034	0,0845	0,3236
β_3	0,0103	0,0101	0,0003	0,0072	0,0375
β_4	3,2860	11,9700	0,0042	0,1173	48,0100
P	0,9094	0,8425	0,0880	0,6552	3,1800
θ	2,3070	2,0340	0,0047	1,8470	7,4470
u_1	4,0990	12,0000	0,4751	0,9287	49,2600
u_2	3,7250	11,9800	0,2529	0,5480	48,6300
u_3	0,0795	0,1774	0,0000	0,0215	0,4940
u_4	0,1709	0,2129	0,0000	0,1239	0,6549
u_5	0,1335	0,2009	0,0000	0,0817	0,5964
u_6	3,4580	11,9800	0,0000	0,2669	48,4700
u_7	0,3687	0,1962	0,2023	0,3223	0,8236

Tabela 3.9 – Resumo a posteriori para os parâmetros no modelo generalizado de fronteira estocástica com $Y_{it}|u_i$ com distribuição Poisson

Tabela 3.10 – Resumo a posteriori para os parâmetros no modelo generalizado de fronteira estocástica com $Y_{it}|u_i$ com distribuição Binomial negativa

Par.	Média	d.p.	2,5%	50%	97,5%
β_0	1,2060	5,0860	0,0116	0,3214	6,6030
β_1	0,5040	0,0799	0,3378	0,5088	0,6608
β_2	0,0831	0,1154	0,0019	0,0514	0,3349
β_3	0,0303	0,0308	0,0007	0,0208	0,1133
β_4	0,5751	2,0240	0,0055	0,1736	3,0850
P	1,6100	1,3070	0,1621	1,2530	5,0470
θ	1,8160	1,4430	0,0768	1,4880	5,4850
u_1	2,9360	7,6480	0,8399	1,6140	18,7900
u_2	2,2860	7,6610	0,2379	0,9515	17,8700
u_3	1,2180	5,8550	0,0000	0,1624	8,9840
u_4	1,4350	5,8110	0,0007	0,4431	9,1940
u_5	1,3560	5,8240	0,0002	0,3457	9,1690
u_6	2,4650	7,4670	0,4475	1,1840	17,5300
u_7	1,5270	5,8470	0,0038	0,5290	9,3380

A Tabela 3.11 apresenta a classificação da eficiência técnica dos 7 funcionários da loja de autopeças.

Parâmetro	Média	Média
	Poisson	Bin. Neg.
ET_1	0,3687	0,2029
ET_2	0,5216	0,3848
ET_3	0,9346	0,7573
ET_4	0,8579	0,6168
ET_5	0,8887	0,6659
ET_6	0,6912	0,3088
ET_7	0,7019	0,5708

Tabela 3.11 – Classificação da eficiência técnica dos funcionários da loja de autopeças para os modelos com $Y_{it}|u_i$ com distribuição Poisson e binomial negativa, respectivamente

Observa-se na Tabela 3.11 que a ordem na classificação para a maioria dos funcionários se manteve nos dois modelos, observa-se apenas uma troca na posição do funcionário 2 com o funcionário 6 no modelo generalizado de fronteira estocástica com distribuição binomial negativa. Isto pode ter acontecido porque o funcionário 6 é o funcionário mais novo da empresa e ainda está em fase de adaptação. O vendedor número 3 é o mais eficiente e o número 1 é o menos eficiente nos dois modelos.

Avaliaram-se os ajustes dos modelos segundo o critério DIC (Apêndice G), os valores encontrados para os modelos com distribuição Poisson e binomial negativa são respectivamente 368, 474 e 379, 862. Segundo esse critério o modelo que melhor se ajusta aos dados é o com distribuição Poisson.

Para concluir a comparação dos modelos, as distribuições dos postos associados à medida de eficiência técnica são apresentados na Figura 3.14 (MEDRANO, 2006). Essas distribuições são diretamente obtidas utilizando as cadeias de Markov. Denota-se por $ET_i^{(m)} = \exp(-u_i^{(m)})$ a medida de eficiência técnica para o *i*-ésimo funcionário na *m*-ésima iteração da cadeia de Markov, e ordenam-se os $ET_i^{(m)}$ de forma que i = 1, ..., N. Assim, o posto associado ao *j*-ésimo funcionário na *m*-ésima iteração é a posição ocupada pela $ET_i^{(m)}$ na ordenação. O objetivo desta última análise é comparar a capacidade dos modelos em classificar os funcionários. Nota-se na Figura 3.14 que o modelo generalizado de fronteira estocástica com distribuição Poisson diferencia melhor as firmas eficientes das não eficientes. Por exemplo, comparando o lado direito da Figura 3.14 com o lado esquerdo, observa-se que a variabilidade da distribuição do posto da eficiência técnica para um vendedor considerado eficiente, 3, no modelo generalizado de fronteira estocástica com distribuição binomial negativa.

Figura 3.14 – Distribuição a posteriori do posto associado à medida de eficiência técnica para os modelos generalizados de fronteira estocástica com $Y_{it}|u_i$ com distribuição Poisson e binomial negativa, respectivamente

Filiais de uma instituição financeira

A implementação computacional foi feita usando-se o programa Winbugs (LUNN et al., 2000) gerando uma cadeia com 90.000 valores para cada parâmetro, desprezando os primeiros 30.000 valores para o período de aquecimento da cadeia ("burn-in") e selecionando um a cada 5 dos 60.000 valores restantes ("thin"), formando uma amostra de 12.000 valores. Foram iniciadas três cadeias em pontos distintos e a convergência das estimativas dos parâmetros foi monitorada através do critério de convergência de Gelman e Rubin (1992), disponível no programa Winbugs.

Os hiperparâmetros das distribuições a priori dos parâmetros β_s e θ foram escolhidos para que as distribuições sejam não informativas e considerou-se informação a priori para o parâmetro P. Os valores dos hiperparâmetros das distribuições a priori considerados nas análises encontram-se na Tabela 3.12.

Tabela 3.12 – Hiperparâmetros das distribuições a priori dos parâmetros β , P, θ

Parâmetro	Hiperparâmetro				
β_s	$a_{\beta} = 0,00$	$\sigma_{\beta}^2 = 100,00$			
P	$a_0 = 0,80$	$b_0 = 1,00$			
θ	$v_0 = 0,01$	$w_0 = 0,01$			

As Tabelas 3.13 e 3.14 apresentam um resumo a posteriori para cada parâmetro obtido nos modelos generalizados de fronteira estocástica com $Y_i|u_i$ com distribuição Poisson (3.11) e binomial negativa (3.13), respectivamente.

Observa-se que os valores das estimativas a posteriori para os parâmetros da fronteira são semelhantes nos dois modelos. A média e a variância da ineficiência técnica para o modelo generalizado de fronteira estocástica com $Y_i|u_i$ com distribuição Poisson são $\mu_u = 0,7986$ e $\sigma_u^2 = 0,1648$ e a média e a variância da ineficiência técnica para o modelo generalizado de fronteira estocástica com $Y_i|u_i$ com distribuição binomial negativa são $\mu_u = 0,6787$ e $\sigma_u^2 = 0,1505$.

				(c	ontinua)
Par.	Média	d.p.	2,5%	50%	97,5%
β_0	3,9340	0,7052	2,5630	3,9600	5,2460
β_1	0,2558	0,1764	0,0111	0,2307	0,6600
β_2	0,5489	0,2001	0,1384	0,5557	0,9192
β_3	0,2487	0,1691	0,0110	0,2251	0,6195
P	3,8690	1,3490	1,8660	3,6580	7,1000
θ	4,8450	1,2370	2,7450	4,7390	7,5770
u_1	1,3620	0,1030	1,2040	1,3460	1,6120
u_2	0,4795	0,1111	0,3150	0,4622	0,7458
u_3	1,0550	0,1057	0,8934	1,0400	1,3080
u_4	0,6098	0,1033	0,4590	0,5919	0,8674
u_5	1,6880	0,1046	1,5250	1,6730	1,9380
u_6	0,1448	0,0975	0,0188	0,1244	0,3940
u_7	0,8314	0,1138	0,6612	0,8140	1,1030
u_8	0,6553	0,1027	0,5079	0,6376	0,9085
u_9	0,6231	0,1156	0,4314	0,6113	0,8834
u_{10}	0,8026	0,1033	0,6477	0,7865	1,0520
u_{11}	0,8852	0,1230	0,6727	0,8746	1,1600
u_{12}	0,9376	0,1360	0,7114	0,9236	1,2400
u_{13}	0,2295	0,1229	0,0437	0,2123	0,5130
u_{14}	1,2030	0,1475	0,9431	1,1930	1,5180
u_{15}	0,6075	0,1535	0,3350	0,5978	0,9339
u_{16}	1,3770	0,1329	1,1460	1,3670	1,6660
u_{17}	1,0790	0,1685	0,7751	1,0710	1,4270
u_{18}	0,9898	0,1567	0,7092	0,9817	1,3170
u_{19}	0,6988	0,1456	0,4410	0,6903	1,0060
u_{20}	1,5990	0,1076	1,4270	1,5860	1,8500
u_{21}	1,0560	0,1322	0,8262	1,0460	1,3410
u_{22}	0,4918	0,1656	0,1957	0,4832	0,8347
u_{23}	0,7345	0,1141	0,5464	0,7224	0,9921
u_{24}	0,3064	0,1167	0,1130	0,2946	0,5673
u_{25}	0,5046	0,1012	0,3518	0,4887	0,7509
u_{26}	0,5494	0,1212	0,3464	0,5383	0,8178
u_{27}	0,5768	0,1213	0,3732	0,5653	0,8454
u_{28}	1,0160	0,1197	0,8178	1,0050	1,2830
u_{29}	0,3576	0,1193	0,1614	0,3452	0,6254
u_{30}	0,7278	0,1040	0,5694	0,7124	0,9774
u_{31}	0,6076	0,1053	0,4476	0,5919	0,8599
u_{32}	0,5950	0,1034	0,4399	0,5789	0,8451
u_{33}	0,3474	0,1439	0,1021	0,3368	0,6554
u_{34}	0,8574	0,1220	0,6583	0,8445	1,1320

Tabela 3.13 – Resumo a posteriori para os parâmetros no modelo generalizado de fronteira estocástica com $Y_i|u_i$ com distribuição Poisson

				(conclusão)	
Par.	Média	d.p.	2,5%	50%	97,5%
u_{35}	0,4755	0,1018	0,3291	0,4578	0,7259
u_{36}	0,6630	0,1196	0,4706	0,6494	0,9353
u_{37}	0,4771	0,1411	0,2386	0,4657	0,7823
u_{38}	1,2360	0,1451	0,9903	1,2250	1,5510
u_{39}	1,0790	0,1209	0,8866	1,0650	1,3550
u_{40}	0,3024	0,1334	0,0829	0,2895	0,5979
u_{41}	0,7906	0,1080	0,6325	0,7730	1,0530
u_{42}	1,3390	0,1083	1,1800	1,3200	1,6030
u_{43}	0,5727	0,1139	0,3999	0,5566	0,8415
u_{44}	1,1490	0,1358	0,9255	1,1360	1,4520
u_{45}	0,7740	0,1105	0,6112	0,7552	1,0470
u_{46}	1,1030	0,1090	0,9457	1,0840	1,3730
u_{47}	0,8369	0,1181	0,6567	0,8200	1,1150
u_{48}	0,3766	0,1227	0,1861	0,3607	0,6608
u_{49}	0,5787	0,1120	0,4166	0,5593	0,8559
u_{50}	0,4958	0,1381	0,2716	0,4815	0,8045
u_{51}	1,0590	0,1196	0,8780	1,0410	1,3470
u_{52}	0,8152	0,1245	0,6204	0,7971	1,1150

Tabela 3.13 - Resumo a posteriori para os parâmetros no modelo generalizado de fronteira estocástica com $Y_i|u_i$ com distribuição Poisson

Tabela 3.14 – Resumo a posteriori para os parâmetros no modelo generalizado de fronteira estocástica com $Y_i|u_i$ com distribuição binomial negativa

				(continua)		
Par.	Média	d.p.	2,5%	50%	97,5%	
β_0	3,8460	0,7521	2,3430	3,8860	5,1820	
β_1	0,2753	0,1813	0,0127	0,2540	0,6673	
β_2	0,4749	0,1896	0,1038	0,4760	0,8445	
β_3	0,2739	0,1823	0,0123	0,2511	0,6700	
P	3,0610	1,2510	1,2880	2,8380	6,1200	
θ	4,5100	1,2710	2,3830	4,3860	7,3310	
u_1	1,1990	0,1481	0,9273	1,1920	1,5100	
u_2	0,3583	0,1466	0,1010	0,3474	0,6773	
u_3	0,9117	0,1444	0,6502	0,9031	1,2210	
u_4	0,4593	0,1505	0,1862	0,4514	0,7788	
u_5	1,5330	0,1449	1,2680	1,5260	1,8400	
u_6	0,1276	0,0930	0,0111	0,1069	0,3627	
u_7	0,6891	0,1542	0,4127	0,6795	1,0190	
u_8	0,5164	0,1460	0,2530	0,5079	0,8277	
u_9	0,5034	0,1449	0,2429	0,4952	0,8110	
u_{10}	0,6631	0,1436	0,4032	0,6549	0,9698	
u_{11}	0,7144	0,1658	0,4092	0,7072	1,0600	

	(conclusão)				
Par.	Média	d.p.	2,5%	50%	97,5%
u_{12}	0,8058	0,1628	0,5087	0,7977	1,1490
u_{13}	0,1805	0,1157	0,0203	0,1601	0,4575
u_{14}	1,0830	0,1657	0,7800	1,0750	1,4300
u_{15}	0,5082	0,1657	0,2096	0,4994	0,8585
u_{16}	1,2470	0,1565	0,9606	1,2390	1,5770
u_{17}	0,9754	0,1760	0,6530	0,9666	1,3440
u_{18}	0,8816	0,1682	0,5757	0,8731	1,2360
u_{19}	0,5930	0,1603	0,3020	0,5845	0,9318
u_{20}	1,4450	0,1464	1,1770	1,4370	1,7530
u_{21}	0,9339	0,1535	0,6552	0,9261	1,2580
u_{22}	0,4098	0,1674	0,1152	0,3990	0,7659
u_{23}	0,6087	0,1451	0,3457	0,6009	0,9187
u_{24}	0,2333	0,1262	0,0355	0,2188	0,5205
u_{25}	0,3701	0,1422	0,1159	0,3614	0,6736
u_{26}	0,4385	0,1466	0,1763	0,4291	0,7525
u_{27}	0,4639	0,1468	0,1999	0,4550	0,7778
u_{28}	0,8867	0,1479	0,6210	0,8780	1,2030
u_{29}	0,2710	0,1351	0,0488	0,2572	0,5721
u_{30}	0,5927	0,1432	0,3342	0,5847	0,8980
u_{31}	0,4791	0,1434	0,2208	0,4709	0,7862
u_{32}	0,4648	0,1425	0,2087	0,4562	0,7697
u_{33}	0,2752	0,1452	0,0433	0,2591	0,6007
u_{34}	0,7297	0,1511	0,4590	0,7206	1,0540
u_{35}	0,3528	0,1407	0,1049	0,3432	0,6572
u_{36}	0,5396	0,1500	0,2732	0,5301	0,8607
u_{37}	0,3795	0,1560	0,1075	0,3678	0,7183
u_{38}	1,1130	0,1643	0,8202	1,1020	1,4650
u_{39}	0,9436	0,1523	0,6717	0,9333	1,2700
u_{40}	0,2347	0,1354	0,0305	0,2161	0,5452
u_{41}	0,6479	0,1499	0,3773	0,6391	0,9687
u_{42}	1,1820	0,1517	0,9083	1,1740	1,5060
u_{43}	0,4462	0,1504	0,1775	0,4364	0,7706
u_{44}	1,0190	0,1610	0,7326	1,0090	1,3650
u_{45}	0,6122	0,1602	0,3192	0,6045	0,9483
u_{46}	0,9444	0,1556	0,6623	0,9356	1,2760
u_{47}	0,6962	0,1567	0,4153	0,6869	1,0330
u_{48}	0,2788	0,1431	0,0473	0,2639	0,6001
u_{49}	0,4346	0,1568	0,1535	0,4255	0,7704
u_{50}	0,3867	0,1606	0,1084	0,3739	0,7375
u_{51}	0,9054	0,1631	0,6116	0,8959	1,2560
u_{52}	0,6462	0,1738	0,3280	0,6378	1,0130

Tabela 3.14 - Resumo a posteriori para os parâmetros no modelo generalizado de fronteira estocástica com $Y_i|u_i$ com distribuição binomial negativa

A Tabela 3.15 apresenta a classificação da eficiência técnica das 52 filiais.

Parâmetro	Média	Média	Parâmetro	Média	Média
	Poisson	Bin. Neg.		Poisson	Bin. Neg.
ET_1	0,2561	0,3015	ET_{27}	0,5617	0,6288
ET_2	0,6191	0,6989	ET_{28}	0,3620	0,4120
ET_3	0,3482	0,4018	ET_{29}	0,6994	0,7626
ET_4	0,5435	0,6317	ET_{30}	0,4830	0,5528
ET_5	0,1849	0,2159	ET_{31}	0,5447	0,6193
ET_6	0,8652	0,8802	ET_{32}	0,5516	0,6283
ET_7	0,4354	0,5020	ET_{33}	0,7065	0,7594
ET_8	0,5193	0,5967	ET_{34}	0,4243	0,4821
ET_9	0,5363	0,6045	ET_{35}	0,6216	0,7027
ET_{10}	0,4482	0,5153	ET_{36}	0,5153	0,5830
ET_{11}	0,4126	0,4895	ET_{37}	0,6206	0,6842
ET_{12}	0,3916	0,4467	ET_{38}	0,2905	0,3286
ET_{13}	0,7949	0,8349	ET_{39}	0,3399	0,3892
ET_{14}	0,3003	0,3386	ET_{40}	0,7390	0,7908
ET_{15}	0,5447	0,6016	ET_{41}	0,4536	0,5231
ET_{16}	0,2523	0,2874	ET_{42}	0,2621	0,3067
ET_{17}	0,3399	0,3770	ET_{43}	0,5640	0,6401
ET_{18}	0,3717	0,4141	ET_{44}	0,3170	0,3610
ET_{19}	0,4972	0,5527	ET_{45}	0,4612	0,5422
ET_{20}	0,2021	0,2357	ET_{46}	0,3319	0,3889
ET_{21}	0,3478	0,3930	ET_{47}	0,4331	0,4985
ET_{22}	0,6115	0,6638	ET_{48}	0,6862	0,7567
ET_{23}	0,4797	0,5441	ET_{49}	0,5606	0,6475
ET_{24}	0,7361	0,7919	ET_{50}	0,6091	0,6793
ET_{25}	0,6037	0,6907	ET_{51}	0,3468	0,4044
ET_{26}	0,5773	0,6450	ET_{52}	0,4426	0,5240

Tabela 3.15 – Classificação da eficiência técnica das filias da instituição financeira para os modelos com $Y_i|u_i$ com distribuição Poisson e binomial negativa, respectivamente

Observa-se na Tabela 3.15 que a ordem na classificação de 23 filias nos dois modelos é mantida com exceção da classificação de 29 filiais. A filial mais eficiente é a filial 6 e a filial 5 é a menos eficiente.

Avaliou-se os ajustes dos modelos segundo o critério DIC, os valores encontrados para os modelos com distribuição Poisson e binomial negativa são respectivamente 579, 555 e 703, 960. Segundo esse critério o modelo que melhor se ajusta aos dados é o modelo com $Y_i|u_i$ com distribuição Poisson.

Para concluir a comparação dos modelos, as distribuições dos postos associados à medida de eficiência técnica (MEDRANO, 2003) são apresentados na Figura 3.15. O objetivo dessa última

análise é comparar a capacidade dos modelos de classificar as filiais. Nota-se na Figura 3.15 que o modelo generalizado de fronteira estocástica com distribuição Poisson diferencia melhor as firmas eficientes das não eficientes. Por exemplo, comparando o lado direito da Figura 3.15 com o lado esquerdo, observa-se que a variabilidade da distribuição do posto da eficiência técnica para a filial 45 no modelo generalizado de fronteira estocástica com distribuição Poisson é bem menor do que utilizando o modelo generalizado de fronteira estocástica com distribuição binomial negativa.

Figura 3.15 – Distribuição a posteriori do posto associado à medida de eficiência técnica para os modelos generalizados de fronteira estocástica com distribuição Poisson e binomial negativa, respectivamente, de firmas eficientes, medianas e não eficientes

3.7 Conclusões

Conclui-se que a abordagem proposta neste trabalho soluciona os problemas encontrados na prática, tais como, a variável resposta possuir valores nulos ou ser uma variável na forma de contagem.

Os modelos generalizados de fronteira estocástica para $\ln Y_{it}|u_i$ com distribuição normal e para $Y_{it}|u_i$ com distribuição normal, gama e binomial negativa estimam melhor as firmas menos eficientes. Isso é menos evidente no modelo generalizado de fronteira estocástica para $Y_i|u_i$ com distribuição de Poisson, que estima bem tanto firmas eficientes como firmas não eficientes.

Os valores estimados nos estudos de simulação estão próximos dos valores verdadeiros.

A proposta original deste trabalho foi cumprida, mostrando como calcular eficiência técnica de firmas utilizando os modelos generalizados de fronteira estocástica sob a abordagem bayesiana.

Possíveis extensões deste trabalho são:

- i) Utilizar diferentes distribuições para o termo de ineficiência técnica, tais como: normal truncada, log normal, etc;
- ii) Utilizar a distribuição t-Student para o erro aleatório do modelo;
- iii) Utilizar diferentes formas funcionais para a função de produção;
- iv) Analisar a eficiência técnica das firmas ao longo do tempo;
- v) Utilizar os modelos generalizados de fronteira estocástica com a função custo para estimar a eficiência econômica de firmas.

Referências

AIGNER, D.J.; CHU, S.F. On estimating the industry production functions. **American Economic Review**, Pittsburgh, v.58, n.4, p.826-839, 1968.

AIGNER, D.J.; LOVELL, C.A.K.; SCHMIDT, P. Formulation and estimation of stochastic frontier production function models. **Journal of Econometrics**, Los Angeles, v.6, n.1, p.21-37, 1977.

ANDERSON, D. A.; AITKIN, M. Variance component models with binary response: Inteviewer variability. **Journal of the Royal Statistical Society, Series B**, Gainesville, v.47, n.2, p.203-210, 1985.

CASELLA, G.; GEORGE, E.I. Explaining the Gibbs sampler. **The American Statistician**, Alexandria, v.46, n.3, p.167-174, 1992.

CESPEDES, J.G. **Eficiência de Produção: um enfoque Bayesiano**, 2003. 63p. Dissertação (Mestre em Estatística e Experimentação Agronômica) - Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, 2003.

CESPEDES, J.G.; LEANDRO, R.A. Uma aplicação de modelos de fronteira de produção estocástica com erro normal e com erro t-Student. **Revista de Matemática e Estatística**, São Paulo, v.24, n.3, p.25-34, 2006.

CHAN, J.S.K.; KUK, A.Y.C.; YAM, C.H.K. Monte Carlo approximation through Gibbs output in generalized linear mixed models. **Journal of Multivariate Analysis**, California, v.94, n.2, p.300-312, 2005.

CHIB, S.; GREENBERG, E. Understanding the Metropolis-Hastings algorithm. **The American Statistician**, Alexandria, v.49, n.4, p.327-335, 1995.

CLAYTON, D. Generalized linear mixed models. In: GILKS, W. R.; Richardson, S.; SPIEGELHALTER, D. J. (Eds.). Markov Chain Monte Carlo in Practice. London: Chapman and Hall, 1996. 275-301p.

COELLI, T.; RAO, D.S.P.; BATTESE, G.E. An introduction to efficiency and productivity analysis. Boston: Klumber Academic Publishers, 1999. 275p.

CORDEIRO, G.M.; DEMÉTRIO, C.G.B. **Modelos lineares generalizados**. Santa Maria: 52 SEAGRO e 12 RBRAS, 2007. 161p.

COSTA, S.C. **Modelos lineares generalizados mistos para dados longitudinais**, 2003. 111p. Tese (Doutor em Estatística e Experimentação Agronômica) - Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, 2003.

DIGGLE, P.J.; TAWN, J.A.; MOYEED, R. A. Model-based geostatistics (with discussion). Journal of the Royal Statistical Society, Series C (Applied Statistics), London, v.47, n.3, p.299-350, 1998. FAHRMEIR, L.; LANG, S. Bayesian inference for generalized additive mixed models based on Markov ran- dom field priors. Journal of the Royal Statistical Society, Series C (Applied Statistics), London, v.50, n.2, p.201-220, 2001.

FERNÁNDEZ, C.; KOOP, G.; STEEL, M.F.J. A Bayesian analysis of multiple-output production frontiers. **Journal of Econometrics**, Los Angeles, v.98, n.1, p.47-79, 2000.

FONSECA, T.C.O.; MEDRANO, L.A.; FERREIRA, M.A.R. e MIGON, H.S. **Regressão Multivariada com Erro t-Studenti: uma análise Bayesiana.** Disponível em: www.sbe.org.br/ebe26/031.pdf. Acesso em: 09 Mar. 2005.

GELFAND, A.E.; HILLS, S.E.; RACINE-POON, A.; SMITH, A.F.M. Illustration of Bayesian inference in normal data models using Gibbs sampling. **Journal of the American Statistical Association**, Alexandria, v.85, n.412, p.972-985, 1990.

GELFAND, A.E. Gibbs sampling. Journal of the American Statistical Association, Alexandria, v.95, n.452, p.1300-1304, 2000.

GELMAN, A.; RUBIN, D.B. Inference from iterative simulation using multiple sequences, **Statistical Science**, Beachwood, v.7, n.4, p.457-511, 1992.

GRIFFIN, J.E.; STEEL, M.F.J. Bayesian stochastic frontier analysis using WinBUGS. Journal of **Productivity Analysis**, Houston, v.27, n.3 p.163-177, 2007.

HANDCOCK, M.S.; STEIN, M.L. A Bayesian analysis of kriging. **Technometrics**, Alexandria, v.35, n.4, p.403-410, 1993.

HASTINGS, W.K. Monte Carlo sampling methods using Markov chains and their applications. **Biometrika**, Lausanne, v.57, n.1, p.97-109, 1970.

KOOP, G.; STEEL, M.F.J.; OSIEWALSKI, J. Posterior analysis of stochastic frontier models using Gibbs sampling. **Computational Statistics**, Germany, v.10, p.353-373, 1995.

KOOP, G.; OSIEWALSKI, J.; STEEL, M.F.J. Bayesian efficiency analysis through individual effects: hospital cost frontiers. **Journal of Econometrics**, Los Angeles, v.76, n.1-2, p.77-105, 1997.

KUMBHAKAR, S. C.; LOVELL C.A.K. **Stochastic Frontier Abalysis**. Cambridge: Cambridge University Press, 2000. 333p.

LUNN, D.J.; THOMAS, A.; BEST, N.; SPIEGELHALTER, D. WinBUGS: a Bayesian modelling framework: concepts, structure, and extensibility.**Statistics and Computing**, Orsay, v.10, n.4, p.325-337, 2000.

MCCULLOCH, C.E.; SEARLE, S.R. Generalized, Linear, and mixed Models. New York: John Wiley and Sons, 2001. 358p.

MCNEIL, J.A.; WENDIN, J. Bayesian Inference for Generalized Linear Mixed Models of Portfolio Credit Risk. **Journal of Empirical Finance**, East Lansing, v. 14, n.2, p.131-149, 2007.

MEDRANO, L.A.T. **Análise Bayesiana de Modelos de Fronteiras de Produção Estocásticas**, 2003. 63p. Dissertação (Mestre em Estatística) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2003.

MEEUSEN, W.; VAN DEN BROECK, J. Efficiency estimation from Cobb-Douglas production functions with composed error. **International Economic Review**, Philadelphia, v.18, n.2, p.435-444, 1977.

METROPOLIS, N.; ROSENBLUTH, A.W.; ROSENBLUTH, M.N.; TELLER, A.H.; TELLER, E. Equations of state calculations by fast computing machines. **Journal of Chemical Physics**, Chicago, v.21, n.6, p.1087-1092, 1953.

MIGON, E. Bayesian hierarchical models for stochastic production frontier. **Estadistica**, Santiago do Chile, v. 56, p.10-30, 2004.

MOLENBERGHS, G.; VERBEKE, G., DEMÉTRIO, C.G. An extended random-effects approach to modeling repeated, overdispersed count data. **Lifetime Data Analysis**, Netherlands, v.13, n.4, p.513-531, 2007.

NATARAJAN, R.; KASS, R. E. Reference Bayesian methods for generalized linear mixed models. Journal of American Statistical Association, v.95, n.449, p.227-237, 2000.

OSIEWALSKI, J.; STEEL, M.F.J. Numerical tools for the Bayesian analysis of frontier models. **Journal of Productivity Analysis**, Houston, v.10, n.1, p.103-117, 1998.

R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. **R Foundation for Statistical Computing**, Vienna, Austria. ISBN 3-900051-07-0, Disponível em: www.R-project.org. Acesso em: 03 fev. 2008.

SEITZ, W.D. Productive efficiency in the steam-electric generating industry. **Journal of Political Economy**, Chicago, v.79, n.4, p.878-886, 1971.

SINGER, J.M.; ANDRADE, D.F. Regression models for the analysis of pretest/posttest data. **Biometrics**, Arlington, v.53, n.2, p.729-735, 1997.

STIRATELLI, R.; LAIRD, N. M.; WARE, J. H. Random effects models for serial observations with binary response. **Biometrics**, Arlington, v.40, n.4, p.961-971, 1984.

TIMMER, C.P. Using a probabilistic frontier production function to measure technical efficiency. **Journal of Political Economy**, Chicago, v.79, n.4, p.776-794, 1971.

TSIONAS, E.G. Full likelihood inference in normal-gamma stochastic models. **Journal of Productivity Analysis**, Houston, v.13, n.3, p.183-205, 2000.

TSIONAS, E.G. Stochastic frontier models with random coefficients. **Journal of Applied Econometrics**, Cambridge, v.17, n.2, p.127-147, 2002.

VAN DEN BROECK, J.; KOOP, G.; OSIEWALSKI, J.; STEEL, M.F.J. Stochastic frontier models: a Bayesian perspective. **Journal of Econometrics**, Los Angeles, v.61, n.2, p.273-303, 1994.

ZHAO, Y.; STAUDENMAYER, J.; COULL, B.A.; WAND, M.P. General design Bayesian generalized linear mixed models. **Statistical Science**, Baltimore, v.21, n.1, p.35-51, 2006.

ZEGER, S.L.; KARIM, M.R. Generalized linear models with random effects: A Gibbs sampling approach. **Journal of the American Statistics Association**, Durham, v.86, n. 413 p.79-86, 1991.

APÊNDICE

APÊNDICE A - Série de Fourier

Uma série trigonométrica é definida como (KHURI, 2003):

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right].$$
(3.15)

Seja f(x) uma função definida e com integral de Riemam sobre o intervalo $[-\pi, \pi]$. Por definição, a série de Fourier associada com f(x) é uma série trigonométrica da forma (3.15), em que:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \quad n = 0, 1, 2, \dots,$$
(3.16)

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \operatorname{sen} nx dx, \quad n = 0, 1, 2, \dots$$
 (3.17)

Neste caso, escreve-se

$$f(x) \sim \frac{a_n}{2} + \sum_{n=1}^{\infty} [a_n \cos nx + b_n \sin nx].$$
 (3.18)

Se a série trigonométrica (3.18) é uniformemente convergente para f(x) sobre $[-\pi,\pi]$ então:

$$f(x) = \frac{a_n}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right].$$

Uma função pode ser aproximada por uma série de Fourier se satisfazer o teorema:

Teorema de Weierstrass: Se f é uma função contínua de período 2π , então f pode ser aproximada uniformemente por uma seqüência de polinômios trigonométricos. Então, para um dado $\epsilon > 0$, existe um polinômio trigonométrico da forma:

$$t_n(x) = \frac{\alpha_0}{2} + \sum_{j=1}^{J} \left[\alpha_j \cos(jx) + \beta_j \operatorname{sen}(jx) \right].$$

tal que $|f(x) - t_n(X)| < \epsilon$ para todos os valores de x.

Neste caso a série de Fourier para f(x) é uniformemente convergente, então $t_n(x)$ pode ser escolhido igual a $S_n(x)$, a *n*-ésima soma parcial da série de Fourier:

$$S_n(x) = \frac{a_0}{2} + \sum_{j=1}^{J} \left[a_j \cos(jx) + b_j \sin(jx) \right],$$

em que a_n e b_n são dados por (3.16) e (3.17), respectivamente.

Este trabalho preocupa-se em aproximar a função de custo verdadeira tanto quanto os dados permitirem. A Figura 3.16 apresenta um estudo de simulação onde considera-se um cenário univariado, com apenas um insumo, em que se conhece a fronteira estocástica de custo, a função de custo

Figura 3.16 – Aproximação de uma função em séries de Fourier.

e os valores observados. Para aproximar a função de custo por uma série de Fourier consideram-se diferentes tamanhos amostrais N = 50 e N = 200 e diferentes valores para J = 1, 7 e 13.

Observa-se na Figura 3.16 que aumentando-se o valor de J a aproximação em séries de Fourier aproxima-se dos valores observados e não da fronteira de custo.

Em quase todas as aplicações encontradas na literatura, considera-se J = 1 (HUANG; WANG, 2004).

Referências

HUANG, T.H.; WANG, M.H. Comparisons of economic inefficiency between output and input measures of technical inefficiency using the Fourier flexible cost function. **Journal of Productivity Analysis**, v.22, n.1-2, p.123-142, 2004.

KHURI, A.I. Advanced calculus with applications in statistics. 2nd ed. United States of America: John Wiley & Sons, 2003. 673p.

APÊNDICE B - Norma de Sobolev

Se $1 \le p < \infty$ e $\Omega^{m,p}(\chi)$ denotar uma coleção de todas as funções complexas estimadas f(x)com $\int_{\chi} |D^{\lambda}f|^p dx < \infty$ para todo λ com $|\lambda|^* \le m$.

Para $f \in \Omega^{m,p}(\chi)$ define-se a norma de Sobolev:

$$||f||_{m,p,\chi} = \left(\sum_{|\lambda|^* \le m} \int_{\chi} |D^{\lambda}f|^p dx\right)^{\frac{1}{p}}.$$

Se $p = \infty$ e $\Omega^{m,\infty}(\chi)$ denotar uma coleção de todas as funções complexas estimadas f(x) com $\sup_{x \in \chi} |D^{\lambda}f| < \infty$ para todo λ com $|\lambda|^* \leq m$.

Para $f \in \Omega^{m,\infty}(\chi)$ define-se a norma de Sobolev:

$$||f||_{m,\infty,\chi} = \sum_{|\lambda|^* \le m} \sup_{x \in \chi} |D^{\lambda}f|.$$

Uma expansão em série de Fourier tem a capacidade de aproximar a função de custo verdadeira $f^*(x)$ tão próximo quanto a derivada da norma de Sobolev, $1 \le p \le \infty$ (GALLANT, 1981).

Portanto, informalmente, entende-se que a norma de Sobolev é uma medida da distância entre as funções verdadeira e aproximada que incluem as informações sobre a proximidade de suas derivadas. Informalmente, a normal de Sobolev sobre a diferença entre a função verdadeira $f^*(x)$ e a função aproximada f(x) é:

$$||f^*(x) - f(x)|| = \left(\sum_{\lambda} \int |D^{\lambda} f^*(x) - D^{\lambda} f(x)|^p dx\right)^{\frac{1}{p}}, \text{ para qualquer inteiro } p \in 1 \le p < \infty.$$

sendo D^{λ} o operador de derivadas sobre o vetor de multi-índices com componentes inteiros não negativos λ (HAVENNER; SAHA, 1999).

Referências

GALLANT, A. R. On the bias in flexible functional forms and an essentially unbiased form: the Fourier flexible form. **Journal of Econometrics**, Los Angeles, v.15, n.2, p.211-245, 1981.

HAVENNER, A.; SAHA, A. Globally Flexible Asymptotically Ideal Models. American Journal of Agricultural Economics, Milwaukee, v.81, n.3, p.703-710, 1999.
APÊNDICE C - Inferência bayesiana

A inferência bayesiana teve seu início, em 1763, com o artigo do Rev. Thomas Bayes: "An essay towards solving a problem in doctrine of chances" (BAYES, 1763), mas foi esquecida durante algum tempo. No século 19, Laplace e Gauss tiveram algum interesse pela área, mas devido às dificuldades na resolução das equações envolvidas no processo inferencial, a estatística bayesiana foi bastante ignorada até o século 20.

Felizmente, vários pesquisadores proeminentes, dentre os mais célebres Harold Jeffreys (um físico) e Arthur Bowley (um econometrista), continuaram a discutir as idéias bayesianas, que chamavam de probabilidade inversa, durante esse período. Então, em meados de 1950, pesquisadores estatísticos tais como L.J. Savage, Bruno de Finetti, Dennis Lindley, Jack Kiefer e muitos outros começaram a defender e difundir os métodos bayesianos.

A abordagem bayesiana considera incertezas associadas com todas as quantidades desconhecidas mesmo que elas são observadas ou não observadas. Constróe-se uma distribuição de probabilidade conjunta de todas essas quantidades baseado em tudo o que é conhecido sobre elas. Esse conhecimento incorpora informações prévias sobre o fenômeno a ser estudado e também se baseia em valores de quantidades observadas, quando elas estão disponíveis (GAMERMAN; LOPES, 2006).

Pelo teorema de Bayes tem-se que, dados dois eventos $A \in B$ quaisquer do espaço amostral Ω , a probabilidade condicional do evento A, dada a ocorrência do evento B, é expressa por:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0$$

ou ainda,

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}, \quad P(B) > 0$$

No contexto bayesiano pode-se utilizar a idéia do Teorema de Bayes para encontrar a distribuição de probabilidade de θ , após a observação dos dados, chamada de distribuição de probabilidade a posteriori de θ da seguinte maneira:

$$\pi(\boldsymbol{\theta} \mid \boldsymbol{y}) = \frac{f(\boldsymbol{y} \mid \boldsymbol{\theta})\pi(\boldsymbol{\theta})}{f(\boldsymbol{y})}$$
$$= \frac{L(\boldsymbol{\theta} \mid \boldsymbol{y})\pi(\boldsymbol{\theta})}{f(\boldsymbol{y})}, \qquad (3.19)$$

em que $f(\boldsymbol{y}) = \sum_{\boldsymbol{\theta}} f(\boldsymbol{y}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta})$, no caso em que $\boldsymbol{\theta}$ é discreto e $f(\boldsymbol{y}) = \int_{\boldsymbol{\theta}} f(\boldsymbol{y}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$, no caso em que $\boldsymbol{\theta}$ é contínuo.

Uma forma equivalente da eq. (3.19) omite o valor f(y), que não depende de θ e, com y fixo, pode, então, ser considerado constante, produzindo uma densidade a posteriori não normalizada:

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) \propto L(\boldsymbol{\theta}|\boldsymbol{y})\pi(\boldsymbol{\theta}).$$
(3.20)

A expressão (3.20) contém o princípio técnico da inferência bayesiana, ou seja, o teorema de Bayes conta que a distribuição para θ posterior aos dados é proporcional ao produto da distribuição a priori para θ e a verossimilhança de θ dado y (BOX e TIAO, 1992).

Usar o teorema de Bayes com um determinado modelo de probabilidade significa que os dados \boldsymbol{y} afetam a distribuição a posteriori (3.20) somente através da função $f(\boldsymbol{y}|\boldsymbol{\theta})$, que, quando considerada como função de $\boldsymbol{\theta}$ para \boldsymbol{y} fixo, é chamada de função de verossimilhança e é denotada por $L(\boldsymbol{\theta} \mid \boldsymbol{y})$. Essa função pode ser vista como a representação do que os dados têm a contar a respeito do parâmetro $\boldsymbol{\theta}$, e permite que o conhecimento a priori sobre $\boldsymbol{\theta}$ seja modificado.

Pode-se justificar a presença do símbolo de proporcionalidade da seguinte maneira: quando se multiplica a função de verossimilhança por uma constante não se altera a inferência relativa ao parâmetro θ e, assim, a distribuição a posteriori não será alterada (LEANDRO, 2001).

Referências

BAYES, T. An essay towards solving a problem in the doctrine of chances. **Philosophical Transactions of the Royal Society of London**, London, v.53, p.370-418, 1763.

BOX, G.E.P.; TIAO, G.C. **Bayesian inference in statistical analysis**. New York: Wiley, 1992. 588p.

GAMERMAN, D.; LOPES, H.F. Markov chain Monte Carlo: Stochastic Simulation for Bayesian Inference. 2nd ed. New York: Chapman and Hall, 2006. 323p.

LEANDRO, R.A. **Introdução à estatística Bayesiana**. Piracicaba: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Departamento de Ciências Exatas, 2001. 51p.

APÊNDICE D - Distribuição normal truncada multivariada

A distribuição de β normal truncada *R*-variada é dada por (HORRACE, 2005):

$$NT_{R}(\boldsymbol{\beta};\boldsymbol{a}_{\beta},\sigma_{\beta}^{2}\boldsymbol{I}_{R}) = \frac{\exp\left\{-\frac{1}{2}\left[(\boldsymbol{\beta}-\boldsymbol{a}_{\beta})'(\boldsymbol{I}_{R}\sigma_{\beta}^{2})^{-1}(\boldsymbol{\beta}-\boldsymbol{a}_{\beta})\right]\right\}}{\int_{c}^{\infty}\exp\left\{-\frac{1}{2}\left[(\boldsymbol{\beta}-\boldsymbol{a}_{\beta})'(\boldsymbol{I}_{R}\sigma_{\beta}^{2})^{-1}(\boldsymbol{\beta}-\boldsymbol{a}_{\beta})\right]\right\}d\boldsymbol{\beta}},$$
(3.21)

sendo $\beta \in \mathbb{R}^{\mathbb{R}}_{\geq c}$, \int_{c}^{∞} é uma integral de Rieman \mathbb{R} -dimensional e $\mathbb{R}^{\mathbb{R}}_{\geq c} = \{\beta \in \mathbb{R}^{\mathbb{R}} : \beta \geq c\}.$

Referências

HORRACE, W.C. Some results on the multivariate truncated normal distribution. **Journal of Multivariate Analysis**, California, v.94, n.1, p.209-221, 2005.

APÊNDICE E - Algoritmos Monte Carlo com cadeias de Markov (MCMC)

Algoritmo Metropolis-Hastings

O algoritmo Metropolis-Hasting permite gerar uma amostra da distribuição conjunta a posteriori $\pi(\theta_1, \theta_2, \dots, \theta_k | \boldsymbol{y})$, a partir das distribuições condicionais completas $\pi(\theta_i | \boldsymbol{y}, \theta_{-i})$, que podem possuir forma fechada ou não (CHIB; GREENBERG, 1995; HASTINGS, 1970; METROPOLIS et al., 1953).

Os fatos principais desse método para gerar amostras de uma distribuição com densidade $\pi(\theta|\boldsymbol{y}) = p(\theta)$ são:

- i) os cálculos dependem de $p(\theta)$ somente através de razões da forma $\frac{p(\theta')}{p(\theta)}$ em que $\theta \in \theta'$ são pontos amostrais. Assim, a constante normalizadora não precisa ser conhecida pois será cancelada no quociente;
- ii) nenhuma fatoração de $p(\theta)$ será necessária;
- iii) os métodos são facilmente implementados, e
- iv) a seqüência de amostras é obtida através de uma cadeia de Markov.

Seja a cadeia de Markov $\{\theta_0, \theta_1, \theta_2, \dots, \theta_z, \dots\}$. Para o algoritmo de Metropolis-Hastings, a cada tempo $t \ge 0$ o próximo estado θ_{t+1} é escolhido, primeiramente, amostrando um ponto candidato Y da distribuição proposta $q(\cdot|\theta_t)$ (a distribuição proposta pode depender do ponto atual, θ_t).

O ponto candidato Y é então aceito com probabilidade $\alpha(\theta_t, Y)$ sendo que:

$$\alpha(\theta_t, Y) = \min\left\{1, \frac{p(Y)q(\theta_t|Y)}{p(\theta_t)q(Y|\theta_t)}\right\}.$$

Quando $q(\cdot|\cdot)$ for simétrica:

$$\alpha(\theta_t, Y) = \min\left\{1, \frac{p(Y)}{p(\theta_t)}\right\}.$$

Se o ponto candidato Y for aceito, o próximo estado será $\theta_{t+1} = Y$. Se o candidato for rejeitado, a cadeia não se moverá, isto é, $\theta_{t+1} = \theta_t$.

O algoritmo Metropolis-Hastings (GILKS et al., 1997) é dado por: Inicie θ_0 ;

Faça t = 0Repita { $\begin{array}{l} \text{Amostre um ponto } Y \mbox{ de } q(\cdot|\theta_t) \\ \text{Amostre um valor } U \mbox{ de uma uniforme}(0,1) \\ \text{Se } U \leq \alpha(\theta_t,Y) \mbox{ faça } \theta_{t+1} = Y \\ \mbox{ caso contrário faça } \theta_{t+1} = \theta_t \\ \text{Incremente } t \\ \end{array} \\ \text{em que } \alpha(\theta_t,Y) = min \left\{ 1, \frac{p(Y)q(\theta_t|Y)}{p(\theta_t)q(Y|\theta_t)} \right\}. \end{array}$

Algoritmo Gibbs sampling

O Gibbs *sampling* é um caso especial do Metropolis-Hastings, que permite gerar uma amostra da distribuição conjunta a posteriori $\pi(\theta_1, \theta_2, \dots, \theta_k | \boldsymbol{y})$, desde que as distribuições condicionais cheias possuam forma fechada, no sentido que seja fácil amostrar de seus elementos (CASELLA; GEORGE, 1992; GELFAND, 2000; GELFAND et al., 1990).

Suponha que θ , um vetor de quantidades desconhecidas, tem componentes $\theta_1, \theta_2, \ldots, \theta_k$. Seja $\pi(\theta_i | \theta_{-i}, y), \quad i = 1, \ldots, k$ a distribuição condicional completa para todos os componentes individuais do vetor de quantidades desconhecidas θ , dadas as observações. Valores especificados para todos os outros componentes θ são facilmente identificados, como função de θ_i pela inspeção da forma $\pi(\theta | y) \propto L(\theta | y)\pi(\theta)$ em qualquer aplicação dada.

Suponha que dado o ponto inicial, $\theta^0 = (\theta_1^{(0)}, \theta_2^{(0)}, \dots, \theta_k^{(0)})$ para uma quantidade desconhecida, implementa-se o seguinte procedimento iterativo:

- i) Gerar $\theta_1^{(1)}$ da densidade condicional cheia $\pi(\theta_1|\theta_2^{(0)},\ldots,\theta_k^{(0)},\boldsymbol{y});$
- ii) Gerar $\theta_2^{(1)}$ da densidade condicional cheia $\pi(\theta_2|\theta_1^{(1)}, \theta_3^{(0)}, \dots, \theta_k^{(0)}, \boldsymbol{y});$
- k) Gerar $\theta_k^{(1)}$ de $\pi(\theta_k | \theta_1^{(1)}, \theta_2^{(1)}, \dots, \theta_{k-1}^{(1)}, \boldsymbol{y});$

e iteragir o processo t vezes.

Executando os passos de (i) - (k) t vezes, segundo Geman e Geman (1984), obtém-se a amostra $\boldsymbol{\theta}^t = (\theta_1^t, \dots, \theta_k^t)$, em que $\boldsymbol{\theta}$ é uma realização da cadeia de Markov, sendo o primeiro elemento amostral da distribuição conjunta $\pi(\theta_1, \theta_2, \dots, \theta_k | \boldsymbol{y})$, isto é, o ponto k-dimensional produzido na t-ésima iteração do esquema amostral converge em distribuição para a variável aleatória cuja distribuição a posteriori é dada por $\pi(\theta_1, \theta_2, \dots, \theta_k | \boldsymbol{y})$ para um t suficientemente grande. Além disso, $\theta_i^{(t)}$ pode ser considerado como uma observação simulada da distribuição marginal a posteriori de $\theta_i, \pi(\theta_i | \boldsymbol{y})$ (CASELLA; GEORGE, 1992).

Referências

CASELLA, G.; GEORGE, E.I. Explaining the Gibbs sampler. **The American Statistician**, Alexandria, v.46, n.3, p.167-174, 1992.

CHIB, S.; GREENBERG, E. Understanding the Metropolis-Hastings algorithm. **The American Statistician**, Alexandria, v.49, n.4, p.327-335, 1995.

GELFAND, A.E.; HILLS, S.E.; RACINE-POON, A.; SMITH, A.F.M. Illustration of Bayesian inference in normal data models using Gibbs sampling. **Journal of the American Statistical Association**, Alexandria, v.85, n.412, p.972-985, 1990.

GELFAND, A.E. Gibbs sampling. **Journal of the American Statistical Association**, Alexandria, v.95, n.452, p.1300-1304, 2000.

GEMAN, S.; GEMAN, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. **IEEE Transactions on Pattern Analysis and Machine Intelligence**, Los Alamitos, v.6, p.721-741, 1984.

GILKS, W.R.; RICHARDSON, S.; SPIEGELHALTER, D.J. Markov chain Monte Carlo in practice. London: Chapman and Hall, 1997. 486p.

HASTINGS, W.K. Monte Carlo sampling methods using Markov chains and their applications. **Biometrika**, Lausanne, v.57, n.1, p.97-109, 1970.

METROPOLIS, N.; ROSENBLUTH, A.W., ROSENBLUTH, M.N.; TELLER, A.H.; TELLER, E. Equations of state calculations by fast computing machines. **Journal of Chemical Physics**, Chicago, v.21, n.6, p.1087-1092, 1953.

APÊNDICE F - Critério de convergência de Gelman e Rubin

Gelman e Rubin (1992) sugerem uma abordagem para averiguar a convergência das cadeias dos métodos Monte Carlo com cadeias de Markov, usando componentes da variância de seqüências múltiplas da cadeia, simuladas a partir de uma variedade de pontos iniciais dispersos. O método funciona do seguinte modo (PAULINO et al., 2003):

Simulam-se $m \ge 2$ seqüências, cada uma de comprimento 2n, a partir de pontos iniciais simulados de uma distribuição sobre dispersa relativamente à distribuição alvo (distribuição de equilíbrio). Usam-se apenas as n últimas iterações de cada seqüência.

Seja U a quantidade escalar de interesse que se pretende estimar (U é tipicamente uma função do parâmetro θ). Designado por u_{ij} o valor que U toma na j-ésima iteração (entre as últimas n das 2n geradas) da *i*-ésima cadeia, calcula-se:

$$\overline{u}_{i.} = \frac{1}{n} \sum_{j=1}^{n} u_{ij},$$

$$s_i^2 = \frac{1}{n-1} \sum_{j=1}^n (u_{ij} - \overline{u}_{i.})^2,$$

em que, \overline{u}_i é a média e s_i^2 é a variância de U para cada seqüência $i = 1, \ldots, m$.

Calculam-se as seguintes componentes da variância:

$$W = \sum_{i=1}^{m} \frac{s_i^2}{m},$$

em que W é a média das m variâncias dentro das seqüências, cada uma baseada em n-1 graus de liberdade, e

$$\frac{B}{n} = \sum_{i=1}^{m} \frac{(\overline{u}_{i.} - \overline{u}_{..})^2}{(m-1)},$$

em que $\frac{B}{n}$ é a variância entre as médias das m seqüências, $\overline{u}_{i.}$, cada uma baseada em n valores de U.

Estima-se a média alvo de U como uma média amostral de todos os mn valores simulados de U, isto é,

$$\widehat{\mu} = \overline{u}_{..} = \frac{1}{m} \sum_{i=1}^{m} \overline{u}_{i..}$$

Estima-se a variância alvo de U como uma média ponderada de W e B:

$$\hat{\sigma}^2 = \frac{n-1}{n}W + \frac{1}{n}B,$$

 $\hat{\sigma}^2$ sobre estima σ^2 se a distribuição inicial for sobre dispersa e é não enviesada sob estacionaridade.

Cria-se uma distribuição t-Student conservativa (com poucos graus de liberdade) para U com locação $\hat{\mu}$, dispersão $\sqrt{\hat{V}} = \sqrt{\hat{\sigma}^2 + \frac{B}{mn}}$ e graus de liberdade $\nu = \frac{2\hat{V}^2}{\operatorname{var}(\hat{V})}$, onde $\operatorname{var}(\hat{V}) = \left(\frac{n-1}{n}\right)^2 \frac{1}{m} \operatorname{var}(s_i^2) + \left(\frac{m+1}{mn}\right)^2 \frac{2}{m-1}B^2$ (m-1)(n-1)n

$$+2\frac{(m-1)(n-1)}{mn^2}\frac{n}{m}[\cos(s_i^2,\overline{u}_{i.}^2)-2\overline{u}_{..}\operatorname{cov}(s_i^2,\overline{u}_{i.}^2)],$$

As variâncias e covariâncias são estimadas a partir dos m valores amostrais de s_i^2 , \overline{u}_i e \overline{u}_i^2 .

Estima-se o fator de redução da escala como:

$$\sqrt{\hat{R}} = \sqrt{\frac{\hat{V}}{W}\frac{\nu}{\nu-2}}.$$

Esta razão decresce para 1 quando $n \to \infty$. Valores de $\hat{R} \approx 1$ sugerem que o período de aquecimento pode terminar e o processo iterativo continuar.

Referências

GELMAN, A.; RUBIN, D.B. Inference from iterative simulation using multiple sequences, **Statistical Science**, Beachwood, v.7, n.4, p.457-511, 1992.

PAULINO, C.D.; TURKMAN, M.A.; MURTEIRA, B. Estatística Bayesiana. Lisboa: Fundação Calouste Gulbenkian, 2003. 446p.

APÊNDICE G - DIC: Deviance Information Criterion

O critério DIC, (*Deviance Information Criterion*) (SPIEGELHALTER et al. 2002) é uma generalização do AIC baseado na distribuição a posteriori de $D_i(\theta) = -2 \ln \frac{f(x \mid \theta, M_i)}{h(x)}$, em que h(x) é uma função apenas dos dados. Propõem como medida da adequabilidade do modelo o valor esperado a posteriori $D_i(\theta)$ e como penalização p_{Di} associada à complexidade do modelo a diferença entre este valor esperado e o valor de $D_i(\theta_i)$ calculado no valor esperado a posteriori de θ_i (PAULINO et al, 2003). Assim

$$p_{Di} = E_{(\theta_i|x,M_i)}[D_i(\theta_i)] - D_i(E_{(\theta_i|x,M_i)}[\theta_i])$$

e

$$DIC_{i} = E_{(\theta_{i}|x,M_{i})}[D_{i}(\theta_{i})] + p_{Di} = 2E_{(\theta_{i}|x,M_{i})}[D_{i}(\theta_{i})] - D_{i}(E_{(\theta_{i}|x,M_{i})}[\theta_{i}]).$$

O modelo com o menor DIC estima-se ser o modelo que melhor consegue prever uma repetição de dados, que possui a mesma estrutura atualmente observada. Segundo o programa Winbugs² é difícil dizer o que constituiria uma diferença importante em DIC. A grosso modo, as diferenças maiores que 10 poderiam descartar definitivamente o modelo com o DIC mais elevado, as diferenças entre 5 e 10 são importantes, mas, se a diferença do DIC é menor que 5 e os modelos são muito diferentes nas inferências, pode ser falso descartar o modelo com menor valor de DIC apenas baseado nessa informação.

Referências

PAULINO, C.D.; TURKMAN, M.A.; MURTEIRA, B. Estatística Bayesiana. Lisboa: Fundação Calouste Gulbenkian, 2003. 446p.

SPIEGELHALTER, D.J., BEST, N.G., CARLIN, B.P.; VAN DER LINDE A. Bayesian Measures of Model Complexity and Fit (with Discussion), **Journal of the Royal Statistical Society, Series B**, Gainesville, v. 64, n. 4, p. 583-616, 2002.

²http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/dicpage.shtml - (07 fev. 2008)

APÊNDICE H - Formas funcionais: Cobb-Douglas e translog

Considere o caso com S insumos, um produto, i = 1, ..., N firmas e t = 1, ..., T tempos, a forma funcional Cobb-Douglas pode ser expressa como:

$$Y_{it} = A \prod_{s=1}^{S} x_{its}^{\beta_s},$$
 (3.22)

sendo Y_{it} o produto, x_{its} os insumos, A é o intercepto e $\beta_1, \beta_2, \ldots, \beta_s$ parâmetros positivos, os quais medem a elasticidade do produto. Considerando-se os quadrados e os produtos cruzados dos insumos obtém-se a função de produção translog:

$$Y_{it} = A \prod_{s=1}^{S} x_{its}^{\beta_s} \prod_{s=1}^{S} \prod_{l=1}^{S} (x_{itl} x_{its})^{\frac{1}{2}\beta_{ls}},$$
(3.23)

que tem como caso especial a função Cobb-Douglas.

A estimação dos parâmetros da forma funcional Cobb Douglas (3.22) não é uma tarefa muito difícil e nem sua manipulação matemática, no entanto, as propriedades impostas pela estrutura de produção exigem retorno constante à escala, isto é, $\sum_{s=1}^{S} \beta_s = 1$. Os retornos à escala refletem o grau em que um aumento proporcional em todas as quantidades de insumos, aumentam as quantidades de produtos (COELLI et al., 1999).

A forma funcional Translog (3.23) não impõe restrições sobre a estrutura de produção. Não há necessidade de considerar retorno à escala constante, mas é mais difícil de manipular algebricamente e pode sofrer com problemas de multicolinearidade.

COELLI, T.; RAO, D.S.P.; BATTESE, G.E. An introduction to efficiency and productivity analysis. Boston: Kluwer Academic Pub Publishers, 1998. 275p.

ANEXO

ANEXO A - Construção dos multi-índices k_{α}

Os vetores de multi-índices são usados para obter a forma funcional Fourier que é composta por dois termos. O primeiro termo refere-se a forma funcional translog, com algumas modificações que devem-se a ordem de aproximação escolhida para a forma funcional Fourier, por exemplo, se K = 2 os termos da forma funcional translog que se referem aos cruzamentos entre os preços de insumos e quantidades de produtos são omitidos, se $K \ge 3$ obtém-se a forma funcional translog completa. O segundo termo refere-se a expansão em série de Fourier.

Considere S = 2 preços de insumos, H = 1 quantidade de produto, os vetores de múlti-índices definidos na Tabela 2.2, o vetor de coeficientes $\mathbf{b}' = (b_1, b_2, b_3)$, o vetor de transformações dos insumos e produtos $\mathbf{x}' = (l_1, l_2, q)$, e $\Psi = -\sum_{\alpha=1}^6 d_{0\alpha} k_{\alpha} k'_{\alpha}$.

A matriz Ψ é dada por:

$$\Psi = \lambda^2 \begin{bmatrix} -d_{02} - d_{03} - d_{06} & d_{02} + d_{03} + d_{06} & d_{02} - d_{03} \\ d_{02} + d_{03} + d_{06} & -d_{02} - d_{03} - d_{06} & -d_{02} + d_{03} \\ d_{02} - d_{03} & -d_{02} + d_{03} & -9d_{01} - d_{02} - d_{03} - 4d_{04} - d_{05} \end{bmatrix}.$$

O primeiro termo da forma funcional Fourier é dado por:

$$\begin{aligned} d_0 + \boldsymbol{b}' \boldsymbol{x} + \frac{1}{2} \boldsymbol{x}' \boldsymbol{\Psi} \boldsymbol{x} &= d_0 + b_1 l_1 + b_2 l_2 + b_3 q + \lambda^2 \left(-\frac{l_1^2}{2} (d_{02} + d_{03} + d_{06}) - \frac{l_2^2}{2} (d_{02} + d_{03} + d_{06}) \right) \\ &- \frac{q^2}{2} (9d_{01} + d_{02} + d_{03} + 4d_{04} + d_{05}) + l_1 l_2 (d_{02} + d_{03} + d_{06}) + l_1 q (d_{02} - d_{03}) \\ &+ l_2 q (-d_{02} + d_{03}) . \end{aligned}$$

O segundo termo da forma funcional Fourier é dado por:

$$\sum_{\alpha=1}^{6} \left\{ d_{0\alpha} + 2 \left[d_{j\alpha} \cos(j\lambda k'_{\alpha} \boldsymbol{x}) - r_{j\alpha} \sin(j\lambda k'_{\alpha} \boldsymbol{x}) \right] \right\} = d_{01} + d_{02} + d_{03} + d_{04} + d_{05} + d_{06} \\ + 2 \left(d_{11} \cos(3\lambda q) + d_{12} \cos(\lambda (l_1 - l_2 - q)) + d_{13} \cos(\lambda (l_1 - l_2 + q)) + d_{14} \cos(2\lambda q) \right) \\ + d_{15} \cos(\lambda q) + d_{16} \cos(\lambda (l_1 - l_2)) \right) - 2 \left(r_{11} \sin(3\lambda q) + r_{12} \sin(\lambda (l_1 - l_2 - q)) \right) \\ + r_{13} \sin(\lambda (l_1 - l_2 + q)) + r_{14} \sin(2\lambda q) + r_{15} \sin(\lambda q) + r_{16} \sin(\lambda (l_1 - l_2)) \right).$$

A forma funcional flexível Fourier com ordem de aproximação K = 3 é dada por:

$$g_{3}(\boldsymbol{x} \mid \boldsymbol{\theta}) = \left(d_{0} + \sum_{\alpha=1}^{6} d_{0\alpha}\right) + b_{1}l_{1} + b_{2}l_{2} + b_{3}q \\ + \lambda^{2} \left(-\frac{l_{1}^{2}}{2}(d_{02} + d_{03} + d_{06}) - \frac{l_{2}^{2}}{2}(d_{02} + d_{03} + d_{06}) - \frac{q^{2}}{2}(9d_{01} + d_{02} + d_{03})\right)$$

$$+ 4d_{04} + d_{05}) + l_1 l_2 (d_{02} + d_{03} + d_{06}) + l_1 q (d_{02} - d_{03}) + l_2 q (-d_{02} + d_{03}))$$

$$+ 2 (d_{11} \cos(3\lambda q) + d_{12} \cos(\lambda (l_1 - l_2 - q)) + d_{13} \cos(\lambda (l_1 - l_2 + q)))$$

$$+ d_{14} \cos(2\lambda q) + d_{15} \cos(\lambda q) + d_{16} \cos(\lambda (l_1 - l_2)))$$

$$- 2 (r_{11} \sin(3\lambda q) + r_{12} \sin(\lambda (l_1 - l_2 - q)) + r_{13} \sin(\lambda (l_1 - l_2 + q)))$$

$$+ r_{14} \sin(2\lambda q) + r_{15} \sin(\lambda q) + r_{16} \sin(\lambda (l_1 - l_2))).$$

Considere $\beta_1 = (d_0 + \sum_{\alpha=1}^6 d_{0\alpha}), \beta_2 = b_1, \beta_3 = b_2, \beta_4 = b_3, \beta_5 = -(d_{02} + d_{03} + d_{06}), \beta_6 = -(d_{02} + d_{03} + d_{06}), \beta_7 = -(9d_{01} + d_{02} + d_{03} + 4d_{04} + d_{05}), \beta_8 = (d_{02} + d_{03} + d_{06}), \beta_9 = (d_{02} - d_{03}), \beta_{10} = (-d_{02} + d_{03}),$ substituindo na equação acima, tem-se:

$$g_{3}(\boldsymbol{x} \mid \boldsymbol{\theta}) = \beta_{1} + \beta_{2}l_{1} + \beta_{3}l_{2} + \beta_{4}q + \frac{\lambda^{2}}{2} \left(\beta_{5}l_{1}^{2} + \beta_{6}l_{2}^{2} + \beta_{7}q^{2}\right) + \lambda^{2} \left(\beta_{8}l_{1}l_{2} + \beta_{9}l_{1}q + \beta_{10}l_{2}q\right) \\ + 2 \left[d_{11}\cos(3\lambda q) + d_{12}\cos(\lambda(l_{1} - l_{2} - q)) + d_{13}\cos(\lambda(l_{1} - l_{2} + q)) + d_{14}\cos(2\lambda q) + d_{15}\cos(\lambda q) + d_{16}\cos(\lambda(l_{1} - l_{2}))\right] - 2 \left[r_{11}\mathrm{sen}(3\lambda q) + r_{12}\mathrm{sen}(\lambda(l_{1} - l_{2} - q)) + r_{13}\mathrm{sen}(\lambda(l_{1} - l_{2} + q)) + r_{14}\mathrm{sen}(2\lambda q) + r_{15}\mathrm{sen}(\lambda q) + r_{16}\mathrm{sen}(\lambda(l_{1} - l_{2}))\right].$$

ANEXO B - Distribuições condicionais completas a posteriori - Fourier

Considere o modelo de fronteira estocástica de custo:

$$\ln \boldsymbol{C} | \boldsymbol{u} \sim N_{NT}((\boldsymbol{X}\boldsymbol{\beta} + 2\boldsymbol{W}\boldsymbol{d} - 2\boldsymbol{Q}\boldsymbol{r} + \boldsymbol{D}\boldsymbol{u}), \sigma_v^2 \boldsymbol{I}_{NT})$$
(3.24)
$$u_m | \boldsymbol{P}, \boldsymbol{\theta} \sim G(\boldsymbol{P}, \boldsymbol{\theta}), \text{ para } m = 1, \dots, M$$

sendo X uma matriz de dimensões $NT \times R$ contendo a transformação do logaritmo dos preços dos insumos e a transformação das quantidades dos produtos, seus produtos cruzados e quadrados, W uma matriz de dimensões $NT \times J\alpha$ contendo os cossenos das combinações das variáveis, Quma matriz de dimensões $NT \times J\alpha$ contendo os senos de combinações das variáveis, β um vetor de coeficientes de dimensão R, $d \in r$ vetores de coeficientes de dimensão $J\alpha$.

As distribuições a priori para os parâmetros são dadas por:

i)
$$\pi(P) = \frac{b_0^{a_0}}{\Gamma(a_0)} P^{a_0 - 1} \exp\{-b_0 P\} \propto P^{a_0 - 1} \exp\{-b_0 P\};$$

ii) $\pi(\theta) = \frac{w_0^{v_0}}{\Gamma(v_0)} \theta^{v_0 - 1} \exp\{-w_0 \theta\} \propto \theta^{v_0 - 1} \exp\{-w_0 \theta\};$

iii) A distribuição a priori de σ_v^2 será escrita em função da precisão $\tau = \frac{1}{\sigma_v^2}$ $\pi(\tau) = \frac{\delta^{\alpha}}{\Gamma(\alpha)} \tau^{\alpha-1} \exp\{-\delta\tau\} \propto \tau^{\alpha-1} \exp\{-\delta\tau\};$

iv)
$$\pi(\boldsymbol{\beta}) = \frac{\exp\left\{-\frac{1}{2}\left[(\boldsymbol{\beta} - \boldsymbol{a}_{\beta})'(\boldsymbol{I}_{R}\sigma_{\beta}^{2})^{-1}(\boldsymbol{\beta} - \boldsymbol{a}_{\beta})\right]\right\}}{\oint_{c}^{\infty} \exp\left\{-\frac{1}{2}\left[(\boldsymbol{\beta} - \boldsymbol{a}_{\beta})'(\boldsymbol{I}_{R}\sigma_{\beta}^{2})^{-1}(\boldsymbol{\beta} - \boldsymbol{a}_{\beta})\right]\right\}d\boldsymbol{\beta}}I_{\beta}(\boldsymbol{\beta})$$
$$\propto \exp\left\{-\frac{1}{2}\left[(\boldsymbol{\beta} - \boldsymbol{a}_{\beta})'(\boldsymbol{I}_{R}\sigma_{\beta}^{-2})(\boldsymbol{\beta} - \boldsymbol{a}_{\beta})\right]\right\}I_{\beta}(\boldsymbol{\beta});$$

v)
$$\pi(d) = (2\pi)^{-\frac{J\alpha}{2}} |I_{J\alpha}\sigma_d^2|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}\left[(d-a_d)'(I_{J\alpha}\sigma_d^2)^{-1}(d-a_d)\right]\right\}$$

 $\propto \exp\left\{-\frac{1}{2}\left[(d-a_d)'(I_{J\alpha}\sigma_d^{-2})(d-a_d)\right]\right\};$

vi)
$$\pi(\mathbf{r}) = (2\pi)^{-\frac{J\alpha}{2}} |\mathbf{I}_{J\alpha}\sigma_r^2|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}\left[(\mathbf{r}-\mathbf{a}_r)'(\mathbf{I}_{J\alpha}\sigma_r^2)^{-1}(\mathbf{r}-\mathbf{a}_r)\right]\right\}$$

 $\propto \exp\left\{-\frac{1}{2}\left[(\mathbf{r}-\mathbf{a}_r)'(\mathbf{I}_{J\alpha}\sigma_r^{-2})(\mathbf{r}-\mathbf{a}_r)\right]\right\}.$

A distribuição a posteriori conjunta é dada por:

$$\begin{aligned} \pi(P,\theta,\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{u}|\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) &= (2\pi)^{-\frac{NT}{2}}\tau^{\frac{NT}{2}}\frac{\theta^{MP}}{\Gamma(P)^{M}}\prod_{m=1}^{M}u_{m}^{P-1}\\ \exp\left\{-\frac{1}{2}\left[(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})'(\tau\boldsymbol{I}_{NT})(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})\right]\\ -\theta\sum_{m=1}^{M}u_{m}\right\}\frac{b_{0}^{a_{0}}}{\Gamma(a_{0})}P^{a_{0}-1}\exp\{-b_{0}P\}\frac{w_{0}^{v_{0}}}{\Gamma(v_{0})}\theta^{v_{0}-1}\exp\{-w_{0}\theta\}\frac{\delta^{\alpha}}{\Gamma(\alpha)}\tau^{\alpha-1}\exp\{-\delta\tau\}\\ \frac{\exp\left\{-\frac{1}{2}\left[(\boldsymbol{\beta}-\boldsymbol{a}_{\beta})'(\boldsymbol{I}_{R}\sigma_{\beta}^{2})^{-1}(\boldsymbol{\beta}-\boldsymbol{a}_{\beta})\right]\right\}}{\int_{c}^{\infty}\exp\left\{-\frac{1}{2}\left[(\boldsymbol{\beta}-\boldsymbol{a}_{\beta})'(\boldsymbol{I}_{R}\sigma_{\beta}^{2})^{-1}(\boldsymbol{\beta}-\boldsymbol{a}_{\beta})\right]\right\}}I_{\beta}(\boldsymbol{\beta})\\ (2\pi)^{-\frac{J\alpha}{2}}|\boldsymbol{I}_{J\alpha}\sigma_{d}^{2}|^{-\frac{1}{2}}\exp\left\{-\frac{1}{2}\left[(\boldsymbol{d}-\boldsymbol{a}_{d})'(\boldsymbol{I}_{J\alpha}\sigma_{d}^{2})^{-1}(\boldsymbol{d}-\boldsymbol{a}_{d})\right]\right\}\\ (2\pi)^{-\frac{J\alpha}{2}}|\boldsymbol{I}_{J\alpha}\sigma_{r}^{2}|^{-\frac{1}{2}}\exp\left\{-\frac{1}{2}\left[(\boldsymbol{r}-\boldsymbol{a}_{r})'(\boldsymbol{I}_{J\alpha}\sigma_{r}^{2})^{-1}(\boldsymbol{r}-\boldsymbol{a}_{r})\right]\right\}\end{aligned}$$

ou ainda,

$$\pi(P,\theta,\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{u}|\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \tau^{\frac{NT}{2}} \frac{\theta^{MP}}{\Gamma(P)^{M}} \prod_{m=1}^{M} u_{m}^{P-1}$$

$$\exp\left\{-\frac{1}{2}\left[(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})'(\tau\boldsymbol{I}_{NT})(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})\right]$$

$$-\theta\sum_{m=1}^{M} u_{m}\right\}P^{a_{0}-1} \exp\{-b_{0}P\} \ \theta^{v_{0}-1} \exp\{-w_{0}\theta\} \ \tau^{\alpha-1} \exp\{-\delta\tau\}$$

$$\exp\left\{-\frac{1}{2}\left[(\boldsymbol{\beta}-\boldsymbol{a}_{\beta})'(\boldsymbol{I}_{R}\sigma_{\beta}^{2})^{-1}(\boldsymbol{\beta}-\boldsymbol{a}_{\beta})\right]\right\}I_{\beta}(\boldsymbol{\beta}) \exp\left\{-\frac{1}{2}\left[(\boldsymbol{d}-\boldsymbol{a}_{d})'(\boldsymbol{I}_{J\alpha}\sigma_{d}^{2})^{-1}(\boldsymbol{d}-\boldsymbol{a}_{d})\right]\right\}$$

$$\exp\left\{-\frac{1}{2}\left[(\boldsymbol{r}-\boldsymbol{a}_{r})'(\boldsymbol{I}_{J\alpha}\sigma_{r}^{2})^{-1}(\boldsymbol{r}-\boldsymbol{a}_{r})\right]\right\}.$$

Para a implementação computacional é necessário o conhecimento das distribuições condicionais completas a posteriori dos parâmetros:

i) Distribuição a posteriori condicional de β

$$\begin{aligned} &\pi(\boldsymbol{\beta}|P,\boldsymbol{\theta},\tau,\boldsymbol{u},\boldsymbol{d},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ &\exp\left\{-\frac{1}{2}\Big[(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})'(\tau\boldsymbol{I}_{NT})(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})\Big] \\ &\exp\left\{-\frac{1}{2}\Big[(\boldsymbol{\beta}-\boldsymbol{a}_{\boldsymbol{\beta}})'(\boldsymbol{I}_{R}\sigma_{\boldsymbol{\beta}}^{-2})(\boldsymbol{\beta}-\boldsymbol{a}_{\boldsymbol{\beta}})\Big]\right\}I_{\boldsymbol{\beta}}(\boldsymbol{\beta}) \end{aligned}\right.$$

$$\begin{aligned} &\pi(\boldsymbol{\beta}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{u},\boldsymbol{d},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ &\exp\left\{-\frac{1}{2}\Big[\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} - \ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - \ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} + \ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} \right. \\ &-\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} - \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} \\ &+\boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} - 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} \\ &+2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} + 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} + 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} \\ &+2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} + 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{Q}\boldsymbol{Q}\boldsymbol{r} \\ &+2\boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - 2\boldsymbol{d}'\boldsymbol{W}'\boldsymbol{\sigma}\boldsymbol{I}_{NT}\boldsymbol{Q}\boldsymbol{Q}\boldsymbol{r} \\ &+2\boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{Q}\boldsymbol{W}\boldsymbol{d} + 2\boldsymbol{r}'\boldsymbol{Q}'\boldsymbol{\sigma}\boldsymbol{I}_{NT}\boldsymbol{Q}\boldsymbol{Q}\boldsymbol{r} \\ &+2\boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{Q}\boldsymbol{W}\boldsymbol{d} + 2\boldsymbol{r}'\boldsymbol{Q}'\boldsymbol{\sigma}\boldsymbol{I}_{NT}\boldsymbol{Q}\boldsymbol{Q}\boldsymbol{r} \\ &+2\boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} + \boldsymbol{\mu}'\boldsymbol{D}'\boldsymbol{\sigma}\boldsymbol{I}_{NT}\boldsymbol{\sigma}\boldsymbol{\beta}^{-2}\boldsymbol{\alpha} - \boldsymbol{\alpha}'\boldsymbol{\beta}\boldsymbol{I}_{R}\boldsymbol{\sigma}^{-2}\boldsymbol{\beta} + \boldsymbol{\alpha}'_{\boldsymbol{\beta}}\boldsymbol{I}_{R}\boldsymbol{\sigma}^{-2}\boldsymbol{\alpha}\boldsymbol{\beta}\right]\right\}\boldsymbol{I}_{\boldsymbol{\beta}}(\boldsymbol{\beta}) \end{aligned}$$

$$\begin{aligned} \pi(\boldsymbol{\beta}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{u},\boldsymbol{d},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ \exp\left\{-\frac{1}{2}\Big[-\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} \right. \\ \left. -\boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} + 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} \right. \\ \left. +\boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\beta}'\boldsymbol{I}_{R}\sigma_{\beta}^{-2}\boldsymbol{\beta} - \boldsymbol{\beta}'\boldsymbol{I}_{R}\sigma_{\beta}^{-2}\boldsymbol{a}_{\beta} - \boldsymbol{a}'_{\beta}\boldsymbol{I}_{R}\sigma_{\beta}^{-2}\boldsymbol{\beta} \right] \right\} I_{\beta}(\boldsymbol{\beta}) \end{aligned}$$

$$\begin{aligned} &\pi(\boldsymbol{\beta}|P,\boldsymbol{\theta},\tau,\boldsymbol{u},\boldsymbol{d},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ &\exp\left\{-\frac{1}{2}\Big[\Big(-\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}+2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}-2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}+\boldsymbol{u}'\boldsymbol{D}'\boldsymbol{I}_{N}\tau\boldsymbol{X}-a_{\beta}'\boldsymbol{I}_{R}\sigma_{\beta}^{-2}\Big)\boldsymbol{\beta}\right. \\ &+\boldsymbol{\beta}'(\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}+\boldsymbol{I}_{R}\sigma_{\beta}^{-2})\boldsymbol{\beta} \\ &+\boldsymbol{\beta}'\Big(-\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C}+\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d}-\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r}+\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u}-\boldsymbol{I}_{R}\sigma_{\beta}^{-2}a_{\beta}\Big)\Big]\bigg\}I_{\beta}(\boldsymbol{\beta}) \end{aligned}$$

Seja

$$\begin{aligned} \boldsymbol{H}_{\beta} &= \boldsymbol{X}' \tau \boldsymbol{I}_{NT} \boldsymbol{X} + \boldsymbol{I}_{R} \sigma_{\beta}^{-2} \\ \boldsymbol{b}_{1}' &= -\ln \boldsymbol{C}' \tau \boldsymbol{I}_{NT} \boldsymbol{X} + 2 \boldsymbol{d}' \boldsymbol{W}' \tau \boldsymbol{I}_{NT} \boldsymbol{X} - 2 \boldsymbol{r}' \boldsymbol{Q}' \tau \boldsymbol{I}_{NT} \boldsymbol{X} + \boldsymbol{u}' \boldsymbol{D}' \tau \boldsymbol{I}_{NT} \boldsymbol{X} - a_{\beta}' \boldsymbol{I}_{R} \sigma_{\beta}^{-2} \\ \boldsymbol{b}_{1} &= -\boldsymbol{X}' \tau \boldsymbol{I}_{NT} \ln \boldsymbol{C} + \boldsymbol{X}' \tau \boldsymbol{I}_{NT} 2 \boldsymbol{W} \boldsymbol{d} - \boldsymbol{X}' \tau \boldsymbol{I}_{NT} 2 \boldsymbol{Q} \boldsymbol{r} + \boldsymbol{X}' \tau \boldsymbol{I}_{NT} \boldsymbol{D} \boldsymbol{u} - \boldsymbol{I}_{R} \sigma_{\beta}^{-2} a_{\beta} \end{aligned}$$

Então

$$\pi(\boldsymbol{\beta}|P, \theta, \tau, \boldsymbol{z}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{X}, \boldsymbol{W}, \boldsymbol{Q}, \ln \boldsymbol{C}) \propto \exp\left\{-\frac{1}{2}\left[\boldsymbol{b}_1^{\prime}\boldsymbol{\beta} + \boldsymbol{\beta}^{\prime}H_{\boldsymbol{\beta}}\boldsymbol{\beta} + \boldsymbol{\beta}^{\prime}\boldsymbol{b}_1
ight]
ight\}I_{\boldsymbol{\beta}}(\boldsymbol{\beta})$$

Portanto

$$\boldsymbol{b}_{eta} = \boldsymbol{H}_{eta}^{-1}(-\boldsymbol{b}_1)$$

Logo,

$$\pi(oldsymbol{eta}|P, heta, au,oldsymbol{u},oldsymbol{u},oldsymbol{X},oldsymbol{W},oldsymbol{Q},oldsymbol{u},oldsymbol{A},oldsymbol{M}_eta) = N_R(oldsymbol{b}_eta,oldsymbol{H}_eta^{-1})I_eta(oldsymbol{eta}) = N_R(oldsymbol{b}_eta,oldsymbol{H}_eta^{-1})I_eta(oldsymbol{eta})$$

ii) Distribuição a posteriori condicional de d

$$\begin{aligned} &\pi(\boldsymbol{d}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{u},\boldsymbol{\beta},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ &\exp\left\{-\frac{1}{2}\Big[(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})'(\tau\boldsymbol{I}_{NT})(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})\Big] \\ &\exp\left\{-\frac{1}{2}\Big[(\boldsymbol{d}-\boldsymbol{a}_d)'(\boldsymbol{I}_{J\alpha}\sigma_d^{-2})(\boldsymbol{d}-\boldsymbol{a}_d)\Big]\right\} \end{aligned}$$

$$\begin{aligned} &\pi(\boldsymbol{d}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{u},\boldsymbol{\beta},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ &\exp\left\{-\frac{1}{2}\Big[\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} - \ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - \ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} + \ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} \right. \\ &-\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} - \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} \\ &+\boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} - 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} \\ &+2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} + 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} + 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} \\ &+2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} + 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} \\ &-\boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} \\ &+\boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} + \boldsymbol{d}'\boldsymbol{I}_{J\alpha}\sigma_{d}^{-2}\boldsymbol{d} - \boldsymbol{d}'\boldsymbol{I}_{J\alpha}\sigma_{d}^{-2}\boldsymbol{a}_{d} - \boldsymbol{a}_{d}'\boldsymbol{I}_{J\alpha}\sigma_{d}^{-2}\boldsymbol{a}_{d} + \boldsymbol{a}_{d}'\boldsymbol{I}_{J\alpha}\sigma_{d}^{-2}\boldsymbol{a}_{d}\right]\right\} \end{aligned}$$

$$\begin{aligned} &\pi(\boldsymbol{d}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{u},\boldsymbol{\beta},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ &\exp\left\{-\frac{1}{2}\Big[-\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} \right. \\ &+ 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} + 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} \\ &+ \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} + \boldsymbol{d}'\boldsymbol{I}_{J\alpha}\sigma_{d}^{-2}\boldsymbol{d} - \boldsymbol{d}'\boldsymbol{I}_{J\alpha}\sigma_{d}^{-2}\boldsymbol{a}_{d} - \boldsymbol{a}_{d}'\boldsymbol{I}_{J\alpha}\sigma_{d}^{-2}\boldsymbol{d}\Big]\right\} \end{aligned}$$

$$\begin{aligned} &\pi(\boldsymbol{d}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{u},\boldsymbol{\beta},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ &\exp\left\{-\frac{1}{2}\Big[\Big(-\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}+\boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}-2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}+\boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\right.\\ &-a_d'\boldsymbol{I}_{J\alpha}\sigma_d^{-2}\Big)\boldsymbol{d}+\boldsymbol{d}'(2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}+\boldsymbol{I}_{J\alpha}\sigma_d^{-2})\boldsymbol{d} \\ &+\boldsymbol{d}'\Big(-2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C}+2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r}+2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u}-\boldsymbol{I}_{J\alpha}\sigma_d^{-2}a_d\Big)\Big]\right\}\end{aligned}$$

Seja

$$\begin{aligned} \boldsymbol{H}_{d} &= 2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W} + \boldsymbol{I}_{J\alpha}\sigma_{d}^{-2} \\ \boldsymbol{b}_{2}' &= -\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W} + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W} + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W} - a_{d}'\boldsymbol{I}_{J\alpha}\sigma_{d}^{-2} \\ \boldsymbol{b}_{2} &= -2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + 2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} + 2\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} - \boldsymbol{I}_{J\alpha}\sigma_{d}^{-2}a_{d} \end{aligned}$$

Então

$$\pi(\boldsymbol{d}|P, heta, au, \boldsymbol{eta}, \boldsymbol{r}, \boldsymbol{X}, \boldsymbol{W}, \boldsymbol{Q}, \ln \boldsymbol{C}) \propto \exp\Big\{-rac{1}{2}\Big[\boldsymbol{b}_2' \boldsymbol{d} + \boldsymbol{d}' H_d \boldsymbol{d} + \boldsymbol{d}' \boldsymbol{b}_2\Big]\Big\}$$

Portanto

$$b_d = H_d^{-1}(-b_2)$$

Logo,

$$\pi(\boldsymbol{d}|\boldsymbol{P}, \theta, \tau, \boldsymbol{u}, \boldsymbol{\beta}, \boldsymbol{r}, \boldsymbol{X}, \boldsymbol{W}, \boldsymbol{Q}, \ln \boldsymbol{C}) \sim N_{J\alpha}(\boldsymbol{b}_d, \boldsymbol{H}_d^{-1})$$

iii) Distribuição a posteriori condicional de r

$$\begin{aligned} &\pi(\boldsymbol{r}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{u},\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ &\exp\left\{-\frac{1}{2}\Big[(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})'(\tau\boldsymbol{I}_{NT})(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})\Big] \\ &\exp\left\{-\frac{1}{2}\Big[(\boldsymbol{r}-\boldsymbol{a}_{r})'(\boldsymbol{I}_{J\alpha}\sigma_{r}^{-2})(\boldsymbol{r}-\boldsymbol{a}_{r})\Big]\right\} \end{aligned}$$

$$\pi(\boldsymbol{r}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{u},\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ \exp\left\{-\frac{1}{2}\Big[\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} - \ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - \ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} + \ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r}\right. \\ \left. -\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} - \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} \\ \left. + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} - 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} \\ \left. + 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} + 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} + 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} \\ \left. + 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} + 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} \\ \left. + 2\boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} \\ \left. + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} \\ \left. + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} + \boldsymbol{r}'\boldsymbol{I}_{J\alpha}\sigma_{r}^{-2}\boldsymbol{r} - \boldsymbol{r}'\boldsymbol{I}_{J\alpha}\sigma_{r}^{-2}\boldsymbol{a}_{r} - \boldsymbol{a}_{r}'\boldsymbol{I}_{J\alpha}\sigma_{r}^{-2}\boldsymbol{r} + \boldsymbol{a}_{r}'\boldsymbol{I}_{J\alpha}\sigma_{r}^{-2}\boldsymbol{a}_{r} \right] \right\}$$

$$\pi(\boldsymbol{r}|P,\theta,\tau,\boldsymbol{u},\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ \exp\left\{-\frac{1}{2}\Big[\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} - \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} - 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} \\ +2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} + 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} \\ -\boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} + \boldsymbol{r}'\boldsymbol{I}_{J\alpha}\sigma_{r}^{-2}\boldsymbol{r} - \boldsymbol{r}'\boldsymbol{I}_{J\alpha}\sigma_{r}^{-2}\boldsymbol{a}_{r} - \boldsymbol{a}_{r}'\boldsymbol{I}_{J\alpha}\sigma_{r}^{-2}\boldsymbol{r}\Big]\right\}$$

$$\begin{aligned} &\pi(\boldsymbol{r}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{u},\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ &\exp\left\{-\frac{1}{2}\Big[\Big(\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}-\boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}-2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}-\boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}-a_{r}'\boldsymbol{I}_{J\alpha}\sigma_{r}^{-2}\Big)\boldsymbol{r}\right. \\ &+\boldsymbol{r}'(2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}+\boldsymbol{I}_{J\alpha}\sigma_{r}^{-2})\boldsymbol{r} \\ &+\boldsymbol{r}'\Big(2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C}-2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d}-2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u}-\boldsymbol{I}_{J\alpha}\sigma_{r}^{-2}a_{r}\Big)\Big]\right\}\end{aligned}$$

Seja

$$\begin{aligned} \boldsymbol{H}_{r} &= 2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q} + \boldsymbol{I}_{J\alpha}\sigma_{r}^{-2} \\ \boldsymbol{b}_{3}' &= \ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q} - \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q} - 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q} - \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q} - a_{r}'\boldsymbol{I}_{J\alpha}\sigma_{r}^{-2} \\ \boldsymbol{b}_{3} &= 2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} - 2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - 2\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} - \boldsymbol{I}_{J\alpha}\sigma_{r}^{-2}a_{r} \end{aligned}$$

Então

$$\pi(oldsymbol{r}|P, heta, au,oldsymbol{eta},oldsymbol{d},oldsymbol{X},oldsymbol{W},oldsymbol{Q},\lnoldsymbol{C}) ~\propto~ \exp\Big\{-rac{1}{2}\Big[oldsymbol{b}_3'oldsymbol{r}+oldsymbol{r}'H_roldsymbol{r}+oldsymbol{r}'b_3\Big]\Big\}$$

Portanto

$$b_r = H_r^{-1}(-b_3)$$

Logo,

$$\pi(\boldsymbol{r}|P, \theta, \tau, \boldsymbol{u}, \boldsymbol{\beta}, \boldsymbol{d}, \boldsymbol{X}, \boldsymbol{W}, \boldsymbol{Q}, \ln \boldsymbol{C}) \sim N_{J\alpha}(\boldsymbol{b}_r, \boldsymbol{H}_r^{-1})$$

iv) Distribuição a posteriori condicional de $\boldsymbol{\theta}$

$$\pi(\theta|\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{u},P,\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \theta^{MP} \exp\Big\{-\theta\sum_{m=1}^{M} u_m\Big\}\theta^{v_0-1}\exp\{-w_0\theta\}$$

$$\pi(heta| au,oldsymbol{eta},oldsymbol{d},oldsymbol{r},oldsymbol{u},oldsymbol{R},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{d},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{d},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{r},oldsymbol{d},oldsymbol{r},oldsymbol{r},oldsymbol{r},oldsymbol{d},oldsymbol{r}$$

$$\pi(\theta|\tau, \boldsymbol{\beta}, \boldsymbol{d}, \boldsymbol{r}, \boldsymbol{u}, P, \boldsymbol{X}, \boldsymbol{W}, \boldsymbol{Q}, \ln \boldsymbol{C}) \sim G\left(MP + v_0, w_0 + \sum_{m=1}^M u_m\right)$$

v) Distribuição a posteriori condicional de σ_v^2 A distribuição a posteriori condicional de σ_v^2 será dada pela precisão $\tau = \frac{1}{\sigma_v^2}$

$$\pi(\tau|P,\theta,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{u},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \tau^{\frac{NT}{2}} \exp\left\{-\frac{1}{2}\left[(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})'(\boldsymbol{\Gamma}\boldsymbol{I}_{NT})(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})\right]\right\}\tau^{\alpha-1}\exp\left\{-\delta\tau\right\}$$

$$\pi(\tau|P,\theta,\beta,\boldsymbol{d},\boldsymbol{r},\boldsymbol{u},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \tau^{\frac{NT}{2}+\alpha-1} \\ \exp\left\{-\frac{\tau}{2}\left[(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})'(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})+2\delta\right]\right\}$$

$$\pi(\tau|P,\theta,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{u},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \tau^{\left(\frac{NT}{2}+\alpha\right)-1} \\ \exp\left\{-\left(\frac{\left[(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})'(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})+2\delta\right]}{2}\right)\tau\right\}$$

Portanto

$$\tau \sim G\left(\frac{NT}{2} + \alpha, \frac{(\ln \boldsymbol{C} - \boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{W}\boldsymbol{d} + 2\boldsymbol{Q}\boldsymbol{r} - \boldsymbol{D}\boldsymbol{u})'(\ln \boldsymbol{C} - \boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{W}\boldsymbol{d} + 2\boldsymbol{Q}\boldsymbol{r} - \boldsymbol{D}\boldsymbol{u}) + 2\delta}{2}\right)$$

vi) Distribuição a posteriori condicional de P

$$\pi(P|\theta,\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{u},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \frac{\theta^{MP}}{\Gamma(P)^{M}} \prod_{m=1}^{M} u_{m}^{P-1} P^{a_{0}-1} \exp\{-b_{0}P\}$$

$$\pi(P|\theta,\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{u},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \frac{\theta^{MP}}{\Gamma(P)^M}P^{a_0-1}\exp\left\{\sum_{m=1}^M(P-1)\ln(u_m)\right\}\exp\{-b_0P\}$$

$$\pi(P|\theta,\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{u},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \frac{\theta^{MP}}{\Gamma(P)^M}P^{a_0-1}\exp\left\{-b_0P+(P-1)\sum_{m=1}^M\ln(u_m)\right\}$$

$$\pi(P|\theta,\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{u},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \frac{\theta^{MP}}{\Gamma(P)^M}P^{a_0-1}\exp\left\{P[-b_0+\sum_{m=1}^M\ln(u_m)]\right\}$$

vii) Distribuição a posteriori condicional de \boldsymbol{u}

$$\begin{aligned} &\pi(\boldsymbol{u}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ &\exp\left\{-\frac{1}{2}\Big[(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})'(\tau\boldsymbol{I}_{NT})(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})\Big] \\ &-\boldsymbol{\theta}\sum_{m=1}^{M}u_{m}\right\}\prod_{m=1}^{M}u_{m}^{P-1} \end{aligned}$$

$$\begin{aligned} \pi(\boldsymbol{u}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ \exp\left\{-\frac{1}{2}\left[(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})'(\tau\boldsymbol{I}_{NT})(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})\right] \\ -\boldsymbol{\theta}\sum_{m=1}^{M}u_{m}\right\}\exp\left\{(\boldsymbol{P}-1)\sum_{m=1}^{M}\ln(u_{m})\right\} \end{aligned}$$

$$\pi(\boldsymbol{u}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ \exp\left\{-\frac{1}{2}\left[(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})'(\tau\boldsymbol{I}_{NT})(\ln\boldsymbol{C}-\boldsymbol{X}\boldsymbol{\beta}-2\boldsymbol{W}\boldsymbol{d}+2\boldsymbol{Q}\boldsymbol{r}-\boldsymbol{D}\boldsymbol{u})\right]\right\} \\ \exp\left\{-\theta\sum_{m=1}^{M}u_{m}+(\boldsymbol{P}-1)\sum_{m=1}^{M}\ln(u_{m})\right\}$$

$$\begin{aligned} &\pi(\boldsymbol{u}|P,\theta,\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ &\exp\left\{-\frac{1}{2}\Big[\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} - \ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - \ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} + \ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r}\right. \\ &-\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} - \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} \\ &+\boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} - 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} \\ &+2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} + 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} + 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} \\ &+2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} + 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} \\ &-\boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - \boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} \\ &+\boldsymbol{u}'\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u}\Big] \right\} \exp\left\{-\boldsymbol{\theta}\sum_{m=1}^{M}\boldsymbol{u}_{m} + (\boldsymbol{P}-1)\sum_{m=1}^{M}\ln(\boldsymbol{u}_{m})\right\} \end{aligned}$$

$$\pi(\boldsymbol{u}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \\ \exp\left\{-\frac{1}{2}\Big[-\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} + \boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} + 2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u} - 2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u}\right]$$

$$-\boldsymbol{u'}\boldsymbol{D'}\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C} + \boldsymbol{u'}\boldsymbol{D'}\tau\boldsymbol{I}_{NT}\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{u'}\boldsymbol{D'}\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d} - \boldsymbol{u'}\boldsymbol{D'}\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r} + \boldsymbol{u'}\boldsymbol{D'}\tau\boldsymbol{I}_{NT}\boldsymbol{D}\boldsymbol{u}\Big]\Big\}$$

exp $\left\{-\theta\sum_{m=1}^{M}u_m + (P-1)\sum_{m=1}^{M}\ln(u_m)\right\}$

$$\pi(\boldsymbol{u}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto \exp\left\{-\frac{1}{2}\left[\left(-\ln\boldsymbol{C}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}+\boldsymbol{\beta}'\boldsymbol{X}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}+2\boldsymbol{d}'\boldsymbol{W}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}-2\boldsymbol{r}'\boldsymbol{Q}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\right)\boldsymbol{u}\right.\\\left.+\boldsymbol{u}'\left(\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\boldsymbol{D}\right)\boldsymbol{u}+\boldsymbol{u}'\left(-\boldsymbol{D}'\tau\boldsymbol{I}_{NT}\ln\boldsymbol{C}+\boldsymbol{D}'\boldsymbol{I}_{N}\tau\boldsymbol{X}\boldsymbol{\beta}+\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{W}\boldsymbol{d}-\boldsymbol{D}'\tau\boldsymbol{I}_{NT}2\boldsymbol{Q}\boldsymbol{r}\right)\right]\right\}\\\exp\left\{-\boldsymbol{\theta}\sum_{m=1}^{M}u_{m}+(\boldsymbol{P}-1)\sum_{m=1}^{M}\ln(u_{m})\right\}$$

Seja

Então

$$\begin{aligned} \pi(\boldsymbol{u}|\boldsymbol{P},\boldsymbol{\theta},\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) &\propto & \exp\left\{-\frac{1}{2}\left[\boldsymbol{b}_{4}^{\prime}\boldsymbol{u}+\boldsymbol{u}^{\prime}\boldsymbol{H}_{u}\boldsymbol{u}+\boldsymbol{u}^{\prime}\boldsymbol{b}_{4}\right]\right\} \\ & & \exp\left\{-\boldsymbol{\theta}\sum_{m=1}^{M}u_{m}+(\boldsymbol{P}-1)\sum_{m=1}^{M}\ln(u_{m})\right\} \end{aligned}$$

Portanto

$$b_u = H_u^{-1}(-b_4)$$

Logo,

$$\pi(\boldsymbol{u}|P,\theta,\tau,\boldsymbol{\beta},\boldsymbol{d},\boldsymbol{r},\boldsymbol{X},\boldsymbol{W},\boldsymbol{Q},\ln\boldsymbol{C}) \propto N_{K}(\boldsymbol{b}_{u},\boldsymbol{H}_{u}^{-1})\exp\left\{-\theta\sum_{m=1}^{M}u_{m}+(P-1)\sum_{m=1}^{M}\ln(u_{m})\right\}$$

ANEXO C - Programa R: simulação dos dados Fourier

```
******
# N=60 FIRMAS em T= 6 TEMPOS, com H=1 PRODUTO, e S= 2 INSUMOS
******
#NÚMERO DE INSUMOS#
S<-2
#NÚMERO DE PRODUTOS#
H<-1
#VARIÁVIES REGRESSORAS#
K=4
#TAMANHO AMOSTRAL#
N<-60
#TEMPOS#
T<-6
# SIMULAR PREÇOS DE INSUMOS#
farelosoja<-NULL
for(i in 1:N) {
wv<-NULL
wx<-rnorm(1,mean=6.17,sd=0.06)</pre>
wy<-wx
wyl<-wy
   for(j in 2:T){
   wy1<-wy1+rnorm(1,mean=0,sd=0.01)</pre>
   if (wy1<0) wy1<-wy1+rnorm(1,mean=0,sd=0.01)
   wy<-c(wy,wy1)</pre>
               }
farelosoja<-round(rbind(farelosoja,wy),3)</pre>
          }
maoobra<-NULL
for(i in 1:N) {
vv<-NULL
vx<-rnorm(1, mean=5.4, sd=0.2)</pre>
vv<-vx
vy1<-vy
   for(j in 2:T){
   vy1<-vy1+rnorm(1,mean=0,sd=0.01)</pre>
   if(vy1<0) vy1<-vy1+rnorm(1,mean=0,sd=0.01) # simulando X2
   vy<-c(vy,vy1)</pre>
               }
maoobra<-round(rbind(maoobra,vy),3)</pre>
           }
w0<-matrix(rep(1,N),N,T)
lnw<-array(c(farelosoja, maoobra),c(N,T,K-2))</pre>
#TRANSFORMAÇÃO DOS PREÇOS DE INSUMOS#
1 < -array(0, c(N, T, K-2))
```

```
lna<-array(0,c(N,T,K-2))</pre>
for(i in 1:N) {
    for(t in 1:T) {
         for(j in 1:S) {
         lna[,,j] <- -min(lnw[,,j])+10^(-5)</pre>
         l[i,t,j] <-round(lnw[i,t,j]+lna[i,t,j],3)</pre>
              } } }
#SIMULAR PRODUTO#
leite<-NULL
for(i in 1:N) {
yy<-NULL
yx<-rnorm(1, mean=10.5, sd=0.12)</pre>
yy<-yx
yy1<-yy
    for(j in 2:T){
    yy1<-(yy1+rnorm(1,mean=0,sd=0.01))</pre>
    if(yy1<0) yy1<-yy1+rnorm(1,mean=0,sd=0.01)</pre>
    yy<-c(yy,yy1)
                    }
leite<-round(rbind(leite,yy),3)</pre>
              }
lny<-leite
#TRANSFORMAÇÃO DO PRODUTO#
q < -matrix(0, N, T)
lnb<-NULL
mu<-NULL
lnb <- -min(lny)+10^(-5)</pre>
mu=max(l)/(max(lny+lnb))
q <- round(mu*(lny+lnb),3)</pre>
#FATOR DE ESCALA#
lambda<-6/max(1)</pre>
#MATRIZ DO PRODUTO E PREÇOS DE INSUMOS#
X0<-matrix(rep(1,N),N,T)</pre>
x<-array(c(X0,q,l),c(N,T,K))</pre>
x34 < -x[,,3] * x[,,4]
x^{23} < -x[,,2] * x[,,3]
x^2 4 < -x[,,2] * x[,,4]
X<-array(c(x,x[,,2]<sup>2</sup>,x[,,3]<sup>2</sup>,x[,,4]<sup>2</sup>,x23,x24,x34),c(N,T,K+6))
#VETOR DE PARAMETROS
beta<-c(0.5,0.2,0.5,0.3,0.5*rep(1,3),rep(1,3))</pre>
u<-rep(1,6)
v<-rep(1,6)
#VETOR DE INEFICIÊNCIAS
```

```
131
```

```
z < -matrix(0, N, 50)
for(a in 1:50) {
z[,a] <- sort(rgamma(N, shape=0.8, scale=1))</pre>
               }
zmedio<-apply(z,1,mean)</pre>
#MATRIZ W e Q
W<- array(c(
\cos(1ambda*3*x[,,2]),
\cos(1ambda * (x[,,3] - x[,,4] - x[,,2])),
\cos(1ambda*(x[,,3]-x[,,4]+x[,,2])),
\cos(1ambda \cdot 2 \cdot x[,,2]),
\cos(1ambda * x[,,2]),
\cos(lambda*(x[,,3]-x[,,4]))), c(N,T,6))
Q<- array(c(
sin(lambda*3*x[,,2]),
sin(lambda*(x[,,3]-x[,,4]-x[,,2])),
sin(lambda*(x[,,3]-x[,,4]+x[,,2])),
sin(lambda*2*x[,,2]),
sin(lambda * x[,,2]),
sin(lambda*(x[,,3]-x[,,4]))), c(N,T,6))
#MÉDIA
mu<-array(0, c(N, T, 50))</pre>
for(i in 1:N) {
  for(j in 1:T) {
   for(a in 1:50) {
mu[i,j,a]<-X[i,j,1:4]%*%beta[1:4]+lambda^2*X[i,j,5:10]</pre>
%*%beta[5:10] + 2*W[i,j,]%*%u - 2*Q[i,j,]%*%v + z[i,a]
                   } } }
#CUSTO
Custo<-array(0, c(N, T, 50))
sigma2e<-0.05
for(i in 1:N) {
  for(j in 1:T){
   for(a in 1:50) {
Custo[i,j,a]<-round(rnorm(1,mean=mu[i,j,a],sd=sqrt(sigma2e)),3)
```

ANEXO D - Programa Winbugs: análise dos dados Fourier

```
model {
    for (i in 1:num.obs) {
        z[i] ~ dgamma(P,theta)
        eff[i] <- exp(-z[i])</pre>
    for(t in 1:num.temp) {
        X[i,t,1] <-y1[i,t]
        X[i,t,2] <- w1[i,t]
        X[i,t,3] <-w2[i,t]
        X[i,t,4] <- pow(y1[i,t],2)
        X[i,t,5] <-pow(w1[i,t],2)
        X[i,t,6] <-pow(w2[i,t],2)
        X[i,t,7] <- y1[i,t]*w1[i,t]
        X[i,t,8] <- y1[i,t]*w2[i,t]
        X[i,t,9] <- w1[i,t]*w2[i,t]
        W[i,t,1] <- \cos(lambda*3*y1[i,t])
        W[i,t,2] <- cos(lambda*(w1[i,t]-w2[i,t]-y1[i,t]))
        W[i,t,3] <- cos(lambda*(w1[i,t]-w2[i,t]+y1[i,t]))</pre>
        W[i,t,4] <- cos(lambda*2*y1[i,t])
        W[i,t,5] <- cos(lambda*y1[i,t])</pre>
        W[i,t,6] <- \cos(lambda*(w1[i,t]-w2[i,t]))
        Q[i,t,1] <- sin(lambda*3*y1[i,t])</pre>
        Q[i,t,2] <- sin(lambda*(w1[i,t]-w2[i,t]-y1[i,t]))</pre>
        Q[i,t,3] <- sin(lambda*(w1[i,t]-w2[i,t]+y1[i,t]))</pre>
        Q[i,t,4] <- sin(lambda*2*y1[i,t])</pre>
        Q[i,t,5] <- sin(lambda*y1[i,t])
        Q[i,t,6] <- sin(lambda*(w1[i,t]-w2[i,t]))</pre>
custo[i,t] ~ dnorm(mu[i,t],tau)
mu[i,t] <- beta0 +inprod(beta[1:3],X[i,t,1:3])+ pow(lambda,2)</pre>
*inprod(beta[4:9],X[i,t,4:9]) + 2*inprod(u[],W[i,t,]) -
2*inprod(v[],Q[i,t,]) + z[i]
beta0 ~ dnorm(0.0,0.01)
for(i in 1:9) {
beta[i] ~ djl.dnorm.trunc(0.0,0.01,0,1000)
    }
for(j in 1:6) {
   u[j] \sim dnorm(0.0, 0.01)
   v[j] \sim dnorm(0.0, 0.01)
              }
lambda <- 6.376128
P \sim dgamma(0.8, 1)
theta~ dgamma(0.01,0.01)
sigmau<-P/pow(theta,2)</pre>
tau \sim dgamma(0.01, 0.01)
sigma2<-1/tau
}
```

ANEXO E - Distribuições condicionais completas a posteriori - $\ln Y_{it}|u_i$ Normal

Considere o modelo generalizado de fronteira estocástica para $\ln Y_{it}|u_i$ com distribuição normal:

$$\ln Y_{it}|u_i \sim N(\beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_S \ln x_{itS} - u_i, \sigma_v^2), u_i|P, \theta \sim G(P, \theta),$$

com função de ligação logarít
mica $\ln \mu_{it}$ e preditor linear dado por:

$$\eta_{it} = \mu_{it} = \beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_s \ln x_{its} - u_i.$$

As distribuições a priori para os parâmetros são:

i)
$$\pi(P) = \frac{b^a}{\Gamma(a)} P^{a-1} \exp\{-bP\} \propto P^{a-1} \exp\{-bP\};$$

ii) $\pi(\theta) = \frac{d^w}{\Gamma(w)} \theta^{w-1} \exp\{-d\theta\} \propto \theta^{w-1} \exp\{-d\theta\};$

iii)
$$\pi(\beta_s) = \frac{\exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\}}{\int_0^\infty \exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} d\beta_s} I_\beta(\beta) \propto \exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta);$$
iv)
$$\pi(\pi) = -\frac{\delta^\alpha}{2\sigma_\beta^2} \pi^{\alpha-1} \exp\{-\delta\pi\} \propto \pi^{\alpha-1} \exp\{-\delta\pi\};$$

iv)
$$\pi(\tau) = \frac{\delta^{\alpha}}{\Gamma(\alpha)} \tau^{\alpha-1} \exp\{-\delta\tau\} \propto \tau^{\alpha-1} \exp\{-\delta\tau\};$$

A distribuição a posteriori conjunta a posteriori é dada por:

$$\begin{aligned} \pi(\boldsymbol{\beta}, \boldsymbol{P}, \tau, \boldsymbol{\theta}, \boldsymbol{u}_i | \boldsymbol{x}_{its}, \ln Y_{it}) &= \prod_{i=1}^N \prod_{t=1}^T \frac{\tau}{\sqrt{2\pi}} \exp\left\{-\frac{\tau}{2} \left[\ln y_{it} - \eta_{it}\right]^2\right\} \prod_{i=1}^N \frac{\boldsymbol{\theta}^P}{\Gamma(P)} \boldsymbol{u}_i^{P-1} \exp(-\boldsymbol{\theta} \boldsymbol{u}_i) \\ & \frac{b^a}{\Gamma(a)} P^{a-1} \exp(-bP) \frac{d^w}{\Gamma(w)} \boldsymbol{\theta}^{w-1} \exp\{-d\boldsymbol{\theta}\} \\ & \frac{\delta^\alpha}{\Gamma(\alpha)} \tau^{\alpha-1} \exp\{-\delta\tau\} \prod_{s=1}^S \frac{\exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\}}{\int_0^\infty \exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\}} I_\beta(\beta), \end{aligned}$$

ou ainda,

$$\begin{aligned} \pi(\boldsymbol{\beta}, P, \tau, \theta, u_i | x_{its}, \ln Y_{it}) &\propto \quad \tau^{\frac{NT}{2} + \alpha - 1} \exp\left\{-\frac{\tau}{2} \left[\sum_{i=1}^{N} \sum_{t=1}^{T} \left(\ln y_{it} - \eta_{it}\right)^2 - 2\delta\right] - bP \\ &- \quad \theta\left(d + \sum_{i=1}^{N} u_i\right) - \sum_{s=0}^{S} \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} \prod_{i=1}^{N} u_i^{P-1} P^{a-1} \frac{\theta^{NP+w-1}}{\Gamma(P)^N} I_{\beta}(\beta). \end{aligned}$$

Para a implementação computacional é necessário o conhecimento das distribuições condicionais completas a posteriori dos parâmetros: i) Distribuição condicional completa a posteriori de β :

$$\pi(\beta_s | P, \theta, \beta_{-s}, \tau, u_i, x_{its}, \ln Y_{it}) \propto \exp\left\{-\frac{\tau}{2} \left[\sum_{i=1}^N \sum_{t=1}^T \left(\ln y_{it} - \eta_{it}\right)^2\right] - \sum_{s=0}^S \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta);$$

$$\pi(\beta_s|P,\theta,\beta_{-s},\tau,u_i,x_{its},\ln Y_{it}) \propto \exp\left\{-\frac{\tau}{2}\left[\sum_{i=1}^N\sum_{t=1}^T\ln y_{it} - \left(\sum_{s=1}^S\beta_s\ln x_{its} - u_i\right)\right]^2 - \sum_{s=0}^S\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\}I_\beta(\beta);$$

$$\pi(\beta_s|P,\theta,\beta_{-s},\tau,u_i,x_{its},\ln Y_{it}) \propto \exp\left\{\frac{\tau}{2}\left[\sum_{i=1}^N\sum_{t=1}^T\left(-2\ln y_{it}\ln x_{its}\beta_s\tau - 2\ln x_{its}\beta_s u_i\tau + \ln x_{its}^2\beta_s^2\tau - \beta_s^2\sigma_\beta^{-2} + 2\beta_s\mu_\beta\sigma_\beta^{-2}\right)\right]\right\}I_\beta(\beta);$$

$$\pi(\beta_s|P,\theta,\beta_{-s},\tau,u_i,x_{its},\ln Y_{it}) \propto \exp\left\{\frac{\tau}{2}\left[\sum_{i=1}^N\sum_{t=1}^T\left(\beta_s^2(\ln x_{its}^2\tau-\sigma_\beta^{-2})+2\beta_S(\ln y_{it}\ln x_{its}\tau+\ln x_{its}u_i\tau-\mu_\beta\sigma_\beta^{-2})\right)\right]\right\}I_\beta(\beta).$$

Considere $\sigma_H^2 = \frac{1}{\sum_{i=1}^N \sum_{t=1}^T \tau \ln x_{its}^2 - \sigma_{\beta}^{-2}} e \mu_H = \left[\sum_{i=1}^N \sum_{t=1}^T \ln x_{its} \tau (\ln y_{it} + u_i) - \mu_{\beta} \sigma_{\beta}^{-2} \right] \sigma_H^2.$ Então,

$$\beta_s | P, \theta, \beta_{-s}, \tau, u_i, x_{its}, \ln y_{it} \sim NT(\mu_H, \sigma_H^2) I_\beta(\beta).$$

ii) Distribuição condicional completa a posteriori θ :

$$\pi(\theta|\boldsymbol{\beta}, P, \tau, u_i, x_{its}, \ln Y_{it}) \propto \theta^{NP+w-1} \exp\left\{-\theta\left(d + \sum_{i=1}^N u_i\right)\right\}.$$

$$\theta|\boldsymbol{\beta}, P, \tau, u_i, x_{its}, \ln Y_{it} \sim G\left(NP + w, d + \sum_{i=1}^N u_i\right).$$

v) Distribuição condicional completa a posteriori de P:

$$\pi(P|\boldsymbol{\beta}, \theta, \tau, u_i, x_{its}, \ln Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \prod_{i=1}^N u_i^{P-1} \exp\left\{-bP\right\};$$

$$\pi(P|\boldsymbol{\beta}, \theta, \tau, u_i, x_{its}, \ln Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \exp\left\{\sum_{i=1}^N (P-1) \ln u_i\right\} \exp\{-bP\}.$$

Portanto,

$$\pi(P|\boldsymbol{\beta}, \theta, \tau, u_i, x_{its}, \ln Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \exp\left\{P\left(-b + \sum_{i=1}^N \ln u_i\right)\right\}.$$

vi) Distribuição condicional completa a posteriori de *u*:

$$\pi(u_i|\beta, u_{-i}, P, \theta, \tau, x_{its}, \ln Y_{it}) \propto \exp\left\{-\frac{\tau}{2}\left[\sum_{i=1}^N \sum_{t=1}^T \left(\ln y_{it} - \eta_{it}\right)^2\right] - \theta\left(d + \sum_{i=1}^N u_i\right)\right\} \prod_{i=1}^N u_i^{P-1}.$$

Portanto,

$$\pi(u_i|P,\theta,\beta,\tau,u_{-i},x_{its},\ln Y_{it}) \propto \exp\left\{-\frac{\tau}{2}\left[\sum_{i=1}^N\sum_{t=1}^T u_i^2 - 2u_i\left(\sum_{s=0}^S\beta_s\ln x_{its} - \ln y_{it} + \theta\right)\right]\right\}u_i^{P-1}.$$

v) Distribuição condicional completa a posteriori de τ :

$$\pi(\tau|\boldsymbol{\beta}, P, \theta, u_i, x_{its}, \ln Y_{it}) \propto \exp\left\{-\frac{\tau}{2}\left[\sum_{i=1}^N \sum_{t=1}^T \left(\ln y_{it} - \eta_{it}\right)^2 - 2\delta\right]\right\}.$$

$$\tau | \boldsymbol{\beta}, \boldsymbol{P}, \boldsymbol{\theta}, \boldsymbol{u}_i, \boldsymbol{x}_{its}, \ln Y_{it} \sim G\left(\frac{NT}{2} + \alpha, \frac{\sum_{i=1}^N \sum_{t=1}^T \left(\ln y_{it} - \eta_{it}\right)^2 - 2\delta}{2}\right).$$

ANEXO F - Distribuições condicionais completas a posteriori - $Y_{it}|u_i$ gama

Considere o modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição gama:

$$\begin{split} Y_{it}|u_i &\sim G\left(\nu^{-2}, \left(A\prod_{s=1}^S x_{its}^{\beta_s} e^{-u_i}\right)^{-1} \nu^{-2}\right) \\ u_i|P, \theta &\sim G(P, \theta), \end{split}$$

com função de ligação logarít
mica $\ln \mu_{it}$ e preditor linear dado por:

$$\eta_{it} = \ln \mu_{it} = \beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_s \ln x_{its} - u_i.$$

As distribuições a priori para os parâmetros são:

- i) $\pi(P) = \frac{b^a}{\Gamma(a)} P^{a-1} \exp\{-bP\} \propto P^{a-1} \exp\{-bP\};$
- ii) $\pi(\theta) = \frac{d^w}{\Gamma(w)} \theta^{w-1} \exp\{-d\theta\} \propto \theta^{w-1} \exp\{-d\theta\};$

$$\begin{aligned} \text{iii)} \quad \pi(\beta_s) &= \frac{\exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\}}{\int_0^\infty \exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} d\beta_s} I_\beta(\beta) \propto \exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta) \end{aligned}$$
$$\begin{aligned} \text{iv)} \quad \pi(\nu) &= \frac{l^m}{\Gamma(m)} \nu^{m-1} \exp\{-l\nu\} \propto \nu^{m-1} \exp\{-l\nu\}; \end{aligned}$$

A distribuição conjunta a posteriori é dada por:

$$\begin{aligned} \pi(\beta, P, \nu, \theta, u_i | x_{its}, Y_{it}) &= \prod_{i=1}^{N} \prod_{t=1}^{T} \exp\left\{\frac{1}{\nu^2} \left[-\frac{y_{it}}{\exp(\eta_{it})} - \eta_{it} \right] + \nu^{-2} \ln(\nu^{-2}y_{it}) - \ln y_{it} - \ln(\Gamma(\nu^{-2})) \right\} \\ &\prod_{i=1}^{N} \frac{\theta^P}{\Gamma(P)} u_i^{P-1} \exp(-\theta u_i) \frac{b^a}{\Gamma(a)} P^{a-1} \exp(-bP) \frac{d^w}{\Gamma(w)} \theta^{w-1} \exp\{-d\theta\} \\ &\nu^{m-1} \exp\{-l\nu\} \prod_{s=1}^{S} \frac{\exp\left\{ -\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2} \right\}}{\int_0^\infty \exp\left\{ -\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2} \right\}} d\beta_s I_\beta(\beta), \end{aligned}$$

ou ainda,

$$\pi(\beta, P, \nu, \theta, u_i | x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^{N} \sum_{t=1}^{T} \left(\frac{1}{\nu^2} \left[-\frac{y_{it}}{\exp(\eta_{it})} - \eta_{it}\right] + \nu^{-2} \ln(\nu^{-2}y_{it})\right) - \ln(\Gamma(\nu^{-2}))^{NT} - \theta\left(d + \sum_{i=1}^{N} u_i\right) - bP - l\nu - \sum_{s=1}^{S} \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} \prod_{i=1}^{N} u_i^{P-1} P^{a-1} \nu^{m-1} \frac{\theta^{NP+w-1}}{\Gamma(P)^N} I_\beta(\beta).$$

Para a implementação computacional é necessário o conhecimento das distribuições condicionais completas a posteriori dos parâmetros:

i) Distribuição condicional completa a posteriori de β :

$$\pi(\beta_s|P,\theta,\beta_{-s},\nu,u_i,x_{its},Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left(\frac{1}{\nu^2} \left[-\frac{y_{it}}{\exp(\eta_{it})} - \eta_{it}\right]\right) - \sum_{s=1}^S \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta);$$

$$\pi(\beta_s|P,\theta,\beta_{-s},\nu,u_i,x_{its},Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left(\frac{1}{\nu^2} \left[-\frac{y_{it}}{\exp(\eta_{it})} - \left(\sum_{s=1}^S \beta_s \ln x_{its} - u_i\right)\right]\right) - \sum_{s=1}^S \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta).$$

Logo,

$$\pi(\beta_s|P,\theta,\beta_{-s},\nu,u_i,x_{its},Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left(\frac{1}{\nu^2} \left[-\frac{y_{it}}{\exp(\eta_{it})} - \beta_s \ln x_{its}\right]\right) - \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta).$$

ii) Distribuição condicional completa a posteriori de θ :

$$\pi(\theta|\boldsymbol{\beta}, P, \nu, u_i, x_{its}, Y_{it}) \propto \theta^{NP+w-1} \exp\left\{-\theta\left(d + \sum_{i=1}^N u_i\right)\right\}.$$

Portanto,

$$\pi(\theta|\boldsymbol{\beta}, P, \nu, u_i, x_{its}, Y_{it}) \sim G\left(NP + w, d + \sum_{i=1}^N u_i\right).$$

v) Distribuição condicional completa a posteriori de P:

$$\pi(P|\boldsymbol{\beta}, \theta, \nu, u_i, x_{its}, Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \prod_{i=1}^N u_i^{P-1} \exp\left\{-bP\right\};$$

$$\pi(P|\boldsymbol{\beta}, \theta, \nu, u_i, x_{its}, Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \exp\left\{\sum_{i=1}^N (P-1) \ln u_i\right\} \exp\{-bP\}.$$

$$\pi(P|\boldsymbol{\beta}, \theta, \nu, u_i, x_{its}, Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \exp\left\{P\left(-b + \sum_{i=1}^N \ln u_i\right)\right\}.$$

vi) Distribuição condicional completa a posteriori de *u*:

$$\pi(u_i|\beta, u_{-i}, P, \theta, \nu, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \frac{1}{\nu^2} \left[-\frac{y_{it}}{\exp(\eta_{it})} - \eta_{it}\right] - \theta\left(d + \sum_{i=1}^N u_i\right)\right\} \prod_{i=1}^N u_i^{P-1};$$

$$\pi(u_i|\beta, u_{-i}, P, \theta, \nu, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \frac{1}{\nu^2} \left[-\frac{y_{it}}{\exp(\eta_{it})} - \left(\sum_{s=1}^S \beta_s \ln x_{its} - u_i\right) \right] - \theta \sum_{i=1}^N u_i \right\} \prod_{i=1}^N u_i^{P-1}.$$

Portanto,

$$\pi(u_i|\boldsymbol{\beta}, u_{-i}, P, \theta, \nu, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \frac{1}{\nu^2} \left[-\frac{y_{it}}{\exp(\eta_{it})} + u_i\right] - \theta u_i\right\} u_i^{P-1}.$$

v) Distribuição condicional completa a posteriori de ν :

$$\pi(\nu|\beta, P, \theta, u_i, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^{N} \sum_{t=1}^{T} \left(\frac{1}{\nu^2} \left[-\frac{y_{it}}{\exp(\eta_{it})} - \eta_{it}\right] + \nu^{-2} \ln(\nu^{-2}y_{it})\right) - \ln\Gamma(\nu^{-2})^{NT} - l\nu\right\} \nu^{m-1}.$$

$$\pi(\nu|\boldsymbol{\beta}, P, \theta, u_i, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^{N} \sum_{t=1}^{T} \left(\frac{1}{\nu^2} \left[-\frac{y_{it}}{\exp(\eta_{it})} - \eta_{it} + \ln\nu^{-2} + \ln y_{it}\right]\right) - \ln\Gamma(\nu^{-2})^{NT} - l\nu\right\}\nu^{m-1}.$$

ANEXO G - Distribuições condicionais completas a posteriori - $Y_{it}|u_i$ normal

Considere o modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição normal:

$$\begin{array}{lll} Y_{it}|u_i & \sim & N\left(\prod_{s=0}^S x_{its}^{\beta_s} e^{-u_i}, \sigma_v^2\right), \\ u_i|P,\theta & \sim & G(P,\theta) \end{array}$$

com função de ligação logarít
mica $\ln \mu_{it}$ e preditor linear dado por:

$$\eta_{it} = \ln \mu_{it} = \beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_s \ln x_{its} - u_i.$$

As distribuições a priori para os parâmetros são:

i)
$$\pi(P) = \frac{b^a}{\Gamma(a)} P^{a-1} \exp\{-bP\} \propto P^{a-1} \exp\{-bP\};$$

ii)
$$\pi(\theta) = \frac{d^w}{\Gamma(w)} \theta^{w-1} \exp\{-d\theta\} \propto \theta^{w-1} \exp\{-d\theta\};$$

iii)
$$\pi(\beta_s) = \frac{\exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\}}{\int_0^\infty \exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} d\beta_s} I_\beta(\beta) \propto \exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta);$$

iv)
$$\pi(\tau) = \frac{\delta^\alpha}{2\sigma_\beta^2} \tau^{\alpha - 1} \exp\{-\delta\tau\} \propto \tau^{\alpha - 1} \exp\{-\delta\tau\};$$

iv)
$$\pi(\tau) = \frac{\delta}{\Gamma(\alpha)} \tau^{\alpha-1} \exp\{-\delta\tau\} \propto \tau^{\alpha-1} \exp\{-\delta\tau\};$$

A distribuição a posteriori conjunta a posteriori é dada por:

$$\begin{aligned} \pi(\boldsymbol{\beta}, \boldsymbol{P}, \tau, \boldsymbol{\theta}, \boldsymbol{u}_i | \boldsymbol{x}_{its}, \boldsymbol{Y}_{it}) &= \prod_{i=1}^{N} \prod_{t=1}^{T} \frac{\tau}{\sqrt{2\pi}} \exp\left\{-\frac{\tau}{2} \left[\ln y_{it} - \exp(\eta_{it})\right]^2\right\} \prod_{i=1}^{N} \frac{\theta^P}{\Gamma(P)} \boldsymbol{u}_i^{P-1} \exp(-\theta \boldsymbol{u}_i) \\ & \frac{b^a}{\Gamma(a)} P^{a-1} \exp(-bP) \frac{d^w}{\Gamma(w)} \theta^{w-1} \exp\{-d\theta\} \\ & \frac{\delta^\alpha}{\Gamma(\alpha)} \tau^{\alpha-1} \exp\{-\delta\tau\} \prod_{s=1}^{S} \frac{\exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\}}{\int_0^\infty \exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\}} I_\beta(\beta), \end{aligned}$$

ou ainda,

$$\pi(\beta, P, \tau, \theta, u_i | x_{its}, Y_{it}) \propto \tau^{\frac{NT}{2} + \alpha - 1} \exp\left\{-\frac{\tau}{2} \left[\sum_{i=1}^N \sum_{t=1}^T \left(\ln y_{it} - \exp(\eta_{it})\right)^2 - 2\delta\right] - bP - \theta\left(d + \sum_{i=1}^N u_i\right) - \sum_{s=0}^S \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} \prod_{i=1}^N u_i^{P-1} P^{a-1} \frac{\theta^{NP+w-1}}{\Gamma(P)^N} I_\beta(\beta).$$

Para a implementação computacional é necessário o conhecimento das distribuições condicionais completas a posteriori dos parâmetros: i) Distribuição condicional completa a posteriori de β :

$$\pi(\beta_s | P, \theta, \beta_{-s}, \tau, u_i, x_{its}, Y_{it}) \propto \exp\left\{-\frac{\tau}{2} \left[\sum_{i=1}^N \sum_{t=1}^T \left(\ln y_{it} - \exp(\eta_{it})\right)^2\right] - \sum_{s=0}^S \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta).$$

Portanto,

$$\pi(\beta_s|P,\theta,\beta_{-s},\tau,u_i,x_{its},\ln Y_{it}) \propto \exp\left\{-\frac{\tau}{2}\left[\sum_{i=1}^N\sum_{t=1}^T\left(\ln y_{it}-\prod_{s=1}^S x_{its}^{\beta_s}e^{-u_i}\right)^2\right] - \frac{(\beta_s-\mu_\beta)^2}{2\sigma_\beta^2}\right\}I_\beta(\beta).$$

ii) Distribuição condicional completa a posteriori θ :

$$\pi(\theta|\boldsymbol{\beta}, P, \tau, u_i, x_{its}, Y_{it}) \propto \theta^{NP+w-1} \exp\left\{-\theta\left(d + \sum_{i=1}^N u_i\right)\right\}.$$

Portanto,

$$\theta|\boldsymbol{\beta}, P, \tau, u_i, x_{its}, Y_{it} \sim G\left(NP + w, d + \sum_{i=1}^N u_i\right).$$

v) Distribuição condicional completa a posteriori de P:

$$\begin{aligned} \pi(P|\boldsymbol{\beta},\boldsymbol{\theta},\tau,u_i,x_{its},Y_{it}) &\propto \quad \frac{\theta^{NP}}{\Gamma(P)^N}P^{a-1}\prod_{i=1}^N u_i^{P-1}\exp\left\{-bP\right\};\\ \pi(P|\boldsymbol{\beta},\boldsymbol{\theta},\tau,u_i,x_{its},Y_{it}) &\propto \quad \frac{\theta^{NP}}{\Gamma(P)^N}P^{a-1}\exp\left\{\sum_{i=1}^N(P-1)\ln u_i\right\}\exp\{-bP\}. \end{aligned}$$

Portanto,

$$\pi(P|\boldsymbol{\beta}, \theta, \tau, u_i, x_{its}, Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \exp\left\{P\left(-b + \sum_{i=1}^N \ln u_i\right)\right\}.$$

vi) Distribuição condicional completa a posteriori de *u*:

$$\pi(u_i|\boldsymbol{\beta}, u_{-i}, P, \theta, \tau, x_{its}, Y_{it}) \propto \exp\left\{-\frac{\tau}{2}\left[\sum_{i=1}^N \sum_{t=1}^T \left(\ln y_{it} - \exp(\eta_{it})\right)^2\right] - \theta\left(d + \sum_{i=1}^N u_i\right)\right\}\prod_{i=1}^N u_i^{P-1}.$$

$$\pi(u_i|\boldsymbol{\beta}, u_{-i}, P, \theta, \tau, x_{its}, Y_{it}) \propto \exp\left\{-\frac{\tau}{2}\left[\sum_{i=1}^N \sum_{t=1}^T \left(\ln y_{it} - \exp(\eta_{it})\right)^2\right] - \theta u_i\right\} u_i^{P-1}.$$

v) Distribuição condicional completa a posteriori de τ :

$$\pi(\tau|\boldsymbol{\beta}, P, \theta, u_i, x_{its}, Y_{it}) \propto \exp\left\{-\frac{\tau}{2}\left[\sum_{i=1}^{N}\sum_{t=1}^{T}\left(\ln y_{it} - \exp(\eta_{it})\right)^2 - 2\delta\right]\right\}.$$

$$\tau|\boldsymbol{\beta}, P, \theta, u_i, x_{its}, Y_{it} \sim G\left(\frac{NT}{2} + \alpha, \frac{\sum_{i=1}^N \sum_{t=1}^T \left(\ln y_{it} - \exp(\eta_{it})\right)^2 - 2\delta}{2}\right).$$

ANEXO H - Distribuições condicionais completas a posteriori - $Y_{it}|u_i$ Poisson

Considere o modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição Poisson:

$$\begin{array}{lll} Y_{it}|u_i & \sim & \mathrm{Pois}\left(A\prod_{s=1}^S x_{its}^{\beta_s}e^{-u_i}\right) \\ u_i|P,\theta & \sim & G(P,\theta), \end{array}$$

com função de ligação canônica logarítmica $\ln(\lambda_{it})$ e o preditor linear dado por:

$$\eta_{it} = \ln(\lambda_{it}) = \beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_s \ln x_{its} - u_i$$

As distribuições a priori para os parâmetros são dadas por:

i)
$$\pi(P) = \frac{b^{a}}{\Gamma(a)} P^{a-1} \exp\{-bP\} \propto P^{a-1} \exp\{-bP\};$$

ii)
$$\pi(\theta) = \frac{d^{w}}{\Gamma(w)} \theta^{w-1} \exp\{-d\theta\} \propto \theta^{w-1} \exp\{-d\theta\};$$

$$\exp\left\{-\frac{(\beta_{s} - \mu_{\beta})^{2}}{2}\right\}$$

iii)
$$\pi(\beta_s) = \frac{\exp\left\{-\frac{(\beta_s - \mu_\beta)}{2\sigma_\beta^2}\right\}}{\int_0^\infty \exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} d\beta_s} I_\beta(\beta) \propto \exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta)$$

A distribuição a posteriori conjunta é dada por:

$$\pi(\boldsymbol{\beta}, P, \theta, u_i | x_{its}, Y_{it}) = \prod_{i=1}^{N} \prod_{t=1}^{T} \exp\left\{y_{it}\eta_{it} - \exp(\eta_{it}) - \ln y_{it}!\right\} \prod_{i=1}^{N} \frac{\theta^P}{\Gamma(P)} u_i^{P-1} \exp(-\theta u_i) \frac{b^a}{\Gamma(a)} P^{a-1} \exp(-bP) \frac{d^w}{\Gamma(w)} \theta^{w-1} \exp\{-d\theta\} \prod_{s=1}^{S} \frac{\exp\left\{-\frac{(\beta_s - \mu_{\beta})^2}{2\sigma_{\beta}^2}\right\}}{\int_0^\infty \exp\left\{-\frac{(\beta_s - \mu_{\beta})^2}{2\sigma_{\beta}^2}\right\} d\beta_s} I_{\beta}(\beta)$$

ou ainda,

$$\pi(\boldsymbol{\beta}, P, \theta, u_i | x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^{N} \sum_{t=1}^{T} [y_{it}\eta_{it} - \exp(\eta_{it})] - \theta\left(d + \sum_{i=1}^{N} u_i\right) - bP\right\}$$
$$- \sum_{s=1}^{S} \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2} \prod_{i=1}^{N} u_i^{P-1} P^{a-1} \frac{\theta^{NP+w-1}}{\Gamma(P)^N} I_\beta(\beta)$$

Para a implementação computacional é necessário o conhecimento das distribuições condicionais completas a posteriori dos parâmetros:

i) Distribuição condicional completa a posteriori de β :

$$\pi(\beta_s | P, \theta, \beta_{-s}, u_i, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T [y_{it}\eta_{it} - \exp(\eta_{it})] - \sum_{s=1}^S \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta)$$
$$\pi(\beta_s|P,\theta,\beta_{-s},u_i,x_{its},Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left[y_{it}\left(\sum_{s=1}^S \beta_s \ln x_{its} - u_i\right) - \exp(\eta_{it})\right] - \sum_{s=1}^S \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta)$$

Logo,

$$\pi(\beta_s|P,\theta,\beta_{-s},u_i,x_{its},Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left[y_{it}\beta_s \ln x_{its} - \exp(\eta_{it})\right] - \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta)$$

ii) Distribuição condicional completa a posteriori de θ :

$$\pi(\theta|\boldsymbol{\beta}, P, u_i, x_{its}, Y_{it}) \propto \theta^{NP+w-1} \exp\left\{-\theta\left(d + \sum_{i=1}^N u_i\right)\right\}$$

Portanto,

$$\pi(\theta|\boldsymbol{\beta}, P, u_i, x_{its}, Y_{it}) \sim G\left(NP + w, d + \sum_{i=1}^N u_i\right)$$

v) Distribuição condicional completa a posteriori de P:

$$\pi(P|\boldsymbol{\beta}, \theta, u_i, x_{its}, Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \prod_{i=1}^N u_i^{P-1} \exp\left\{-bP\right\}$$
$$\pi(P|\boldsymbol{\beta}, \theta, u_i, x_{its}, Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \exp\left\{\sum_{i=1}^N (P-1) \ln u_i\right\} \exp\{-bP\}$$

Portanto,

$$\pi(P|\boldsymbol{\beta}, \theta, u_i, x_{its}, Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \exp\left\{P\left(-b + \sum_{i=1}^N \ln u_i\right)\right\}$$

vi) Distribuição condicional completa a posteriori de *u*:

$$\pi(u_i|\boldsymbol{\beta}, P, \theta, u_{-i}, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T [y_{it}\eta_{it} - \exp(\eta_{it})] - \theta\left(d + \sum_{i=1}^N u_i\right)\right\} \prod_{i=1}^N u_i^{P-1}$$

$$\pi(u_i|\boldsymbol{\beta}, P, \theta, u_{-i}, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left[y_{it}\left(\sum_{s=1}^S \beta_s \ln x_{its} - u_i\right) - \exp(\eta_{it})\right] - \theta \sum_{i=1}^N u_i\right\} \prod_{i=1}^N u_i^{P-1}$$

Portanto,

$$\pi(u_i|\boldsymbol{\beta}, P, \theta, u_{-i}, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left[-y_{it}u_i - \exp(\eta_{it})\right] - \theta u_i\right\} u_i^{P-1}$$

ANEXO I - Distribuições condicionais completas a posteriori - $Y_{it}|u_i$ Binomial negativa

Considere o modelo generalizado de fronteira estocástica para $Y_{it}|u_i$ com distribuição binomial negativa:

$$Y_{it}|u_i \sim BN\left(\frac{kA\prod_{s=1}^{S} x_{its}^{\beta_s} e^{-u_i}}{1-A\prod_{s=1}^{S} x_{its}^{\beta_s} e^{-u_i}}, k\right)$$
$$u_i|P, \theta \sim G(P, \theta),$$

com função de ligação canônica $\ln\left(\frac{\mu_{it}}{\mu_{it}+k}\right)$ e o preditor linear dado por:

$$\eta_{it} = \ln\left(\frac{\mu_{it}}{\mu_{it}+k}\right) = \beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_s \ln x_{its} - u_i,$$

As distribuições a priori para os parâmetros são:

i)
$$\pi(P) = \frac{b^a}{\Gamma(a)} P^{a-1} \exp\{-bP\} \propto P^{a-1} \exp\{-bP\};$$

ii)
$$\pi(\theta) = \frac{d^w}{\Gamma(w)} \theta^{w-1} \exp\{-d\theta\} \propto \theta^{w-1} \exp\{-d\theta\};$$

iii)
$$\pi(\beta_s) = \frac{\exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\}}{\int_0^\infty \exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} d\beta_s} I_\beta(\beta) \propto \exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta)$$

A distribuição a posteriori conjunta é dada por:

$$\begin{aligned} \pi(\beta, P, \theta, u_i | x_{its}, Y_{it}) &= \prod_{i=1}^N \prod_{t=1}^T \exp\left\{y_{it}\eta_{it} + k\ln(1 - \exp(\eta_{it})) + \ln\left(\frac{\Gamma(k + y_{it})}{\Gamma(k)y_{it}!}\right)\right\} \\ &\prod_{i=1}^N \frac{\theta^P}{\Gamma(P)} u_i^{P-1} \exp(-\theta u_i) \frac{b^a}{\Gamma(a)} P^{a-1} \exp(-bP) \frac{d^w}{\Gamma(w)} \theta^{w-1} \exp\{-d\theta\} \\ &\prod_{s=1}^S \frac{\exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\}}{\int_0^\infty \exp\left\{-\frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\}} I_\beta(\beta) \end{aligned}$$

ou ainda,

$$\pi(\beta, P, \theta, u_i | x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^{N} \sum_{t=1}^{T} [y_{it}\eta_{it} + k\ln(1 - \exp(\eta_{it}))] - \theta\left(d + \sum_{i=1}^{N} u_i\right) - bP\right\}$$
$$- \sum_{s=1}^{S} \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2} \prod_{i=1}^{N} u_i^{P-1} P^{a-1} \frac{\theta^{NP+w-1}}{\Gamma(P)^N} I_\beta(\beta)$$

Para a implementação computacional é necessário o conhecimento das distribuições condicionais completas a posteriori dos parâmetros: i) Distribuição condicional completa a posteriori de β :

$$\pi(\beta_s|P,\theta,u_i,\beta_{-s},x_{its},Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T [y_{it}\eta_{it} + k\ln(1-\exp(\eta_{it}))] - \sum_{s=1}^S \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta)$$

$$\pi(\beta_s|P,\theta,\beta_{-s},u_i,x_{its},Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left[y_{it}\left(\sum_{s=1}^S \beta_s \ln x_{its} - u_i\right) + k\ln(1 - \exp(\eta_{it}))\right] - \sum_{s=1}^S \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta)$$

Logo,

$$\pi(\beta_s|P,\theta,\beta_{-s},u_i,x_{its},Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left[y_{it}\beta_s \ln x_{its} + k\ln(1-\exp(\eta_{it}))\right] - \frac{(\beta_s - \mu_\beta)^2}{2\sigma_\beta^2}\right\} I_\beta(\beta)$$

ii) Distribuição condicional completa a posteriori de θ :

$$\pi(\theta|\boldsymbol{\beta}, P, u_i, x_{its}, Y_{it}) \propto \theta^{NP+w-1} \exp\left\{-\theta\left(d + \sum_{i=1}^N u_i\right)\right\}$$

Portanto,

$$\pi(\theta|\boldsymbol{\beta}, P, u_i, x_{its}, Y_{it}) \sim G\left(NP + w, d + \sum_{i=1}^N u_i\right)$$

v) Distribuição condicional completa a posteriori de P:

$$\pi(P|\boldsymbol{\beta}, \theta, u_i, x_{its}, Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \prod_{i=1}^N u_i^{P-1} \exp\left\{-bP\right\}$$

$$\pi(P|\boldsymbol{\beta}, \theta, u_i, x_{its}, Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \exp\left\{\sum_{i=1}^N (P-1) \ln u_i\right\} \exp\{-bP\}$$

Portanto,

$$\pi(P|\boldsymbol{\beta}, \theta, u_i, x_{its}, Y_{it}) \propto \frac{\theta^{NP}}{\Gamma(P)^N} P^{a-1} \exp\left\{P\left(-b + \sum_{i=1}^N \ln u_i\right)\right\}$$

vi) Distribuição condicional completa a posteriori de *u*:

$$\pi(u_i|\beta, P, \theta, u_{-i}, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T [y_{it}\eta_{it} + k\ln(1 - \exp(\eta_{it}))] - \theta\left(d + \sum_{i=1}^N u_i\right)\right\} \prod_{i=1}^N u_i^{P-1}$$

$$\pi(u_i|\boldsymbol{\beta}, P, \theta, u_{-i}, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left[y_{it}\left(\sum_{s=1}^S \beta_s \ln x_{its} - u_i\right) + k \ln(1 - \exp(\eta_{it}))\right] - \theta \sum_{i=1}^N u_i\right\} \prod_{i=1}^N u_i^{P-1}$$

Portanto,

$$\pi(u_i|\beta, P, \theta, u_{-i}, x_{its}, Y_{it}) \propto \exp\left\{\sum_{i=1}^N \sum_{t=1}^T \left[-y_{it}u_i + k\ln(1 - \exp(\eta_{it}))\right] - \theta u_i\right\} u_i^{P-1}$$

ANEXO J - Programa R: simulação dos dados MGFE

```
# NÚMERO DE FIRMAS
N=60
# PERÍODO DE TEMPO
T=6
#Variávies Regressoras
K=3
# MATRIZ DE CORAVIRÁVEIS - CAMINHO ALEATÓRIO
X1<-NULL
for(i in 1:N) {
    xy<-NULL
    xx<-rnorm(1,3.2,0.18)</pre>
    xy<-xx
    xyl<-xy
    for(j in 2:T){
         xy1<-xy1+rnorm(1,0,0.01)</pre>
         if(xy1<0) xy1<-xy1+rnorm(1,0,0.01)
         xy<-c(xy, xy1)</pre>
                 }
X1<-round(rbind(X1,xy),3)
             }
X2<-NULL
for(i in 1:N) {
    vy<-NULL
    vx<-rnorm(1,4.8,0.1)
    vy<-vx
    vyl<-vy
    for(j in 2:T){
         vy1<-vy1+rnorm(1,0,0.01)
         if(vy1<0) vy1<-vy1+rnorm(1,0,0.01)
         vy<-c(vy,vy1)</pre>
                  }
X2<-round(rbind(X2,vy),3)
             }
XO < -matrix(rep(1, N), N, T)
X<-array(c(X0,X1,X2),c(N,T,K))
#BETA
beta < -c(0.5, 0.3, 0.7)
#INEFICIÊNCIA GAMMA
z < -matrix(0, N, 50)
for(a in 1:50) {
z[,a] <- round(sort(rgamma(N, shape=0.8, scale=1)), 3) }</pre>
zmed<-round(apply(z,1,mean),3)</pre>
```

```
#LOG(LAMBDA)
eta < -array(0, c(N, T, 50))
for(i in 1:N) {
  for(j in 1:T) {
   for(a in 1:50) {
    eta[i,j,a]<-X[i,j,]%*%beta - z[i,a] }}</pre>
#MODELO LNY|u ~ NORMAL
sigma2e<-0.05
Y < -array(0, c(N, T, 50))
nu<-0.22
for(i in 1:N) {
  for(j in 1:T) {
   for(a in 1:50) {
Y[i,j,a]<-round(rnorm(1,mean=eta[i,j,a],sd=sqrt(sigma2e)),3) }}</pre>
#MODELO Y|u ~ GAMA
Y < -array(0, c(N, T, 50))
nu<-0.22
for(i in 1:N) {
  for(j in 1:T) {
   for(a in 1:50) {
Y[i,j,a] <- round (rgamma(1, shape=nu^ (-2),</pre>
          rate=1/(exp(eta[i,j,a]))*nu^(-2)),3)
 } } }
#MODELO Y|u ~ NORMAL
sigma2e<-0.05
Y < -array(0, c(N, T, 50))
nu<-0.22
for(i in 1:N) {
  for(j in 1:T) {
   for(a in 1:50) {
Y[i,j,a]<-round(rnorm(1,mean=exp(eta[i,j,a]),sd=sqrt(sigma2e)),3) }}</pre>
#MODELO Y|u ~ POISSON
Y < -array(0, c(N, T, 50))
for(i in 1:N) {
  for(j in 1:T) {
   for(a in 1:50) {
Y[i,j,a]<-rpois(1,exp(loglamb[i,j,a])) }}</pre>
#MODELO Y|u ~ BINOMIAL NEGATIVA
pe<-array(0,c(N,T,50))</pre>
for(i in 1:N) {
  for(j in 1:T) {
 for(a in 1:50) {
pe[i,j,a]<-k/(exp(logmu[i,j,a])+k)}}</pre>
```

```
Y<-array(0,c(N,T,50))
for(i in 1:N){
   for(j in 1:T){
   for(a in 1:50){
      Y[i,j,a]<-round(rnbinom(1, size=k, prob=pe[i,j,a]),3) }}}</pre>
```

ANEXO K - Programa Winbugs: análise dos dados MGFE

```
#MODELO LNY|u ~ NORMAL
model {
    for (i in 1:num.obs) {
    u[i] ~ dgamma(P,theta)
    eff[i] <- exp(-u[i])</pre>
    for(t in 1:num.temp) {
        X[i,t,1] <- x1[i,t]
        X[i,t,2] <- x2[i,t]
mu[i,t] \leq beta0 + beta[1] * (X[i,t,1]-xbar1)
              + beta[2] * (X[i,t,2]-xbar2) - u[i]
y[i,t] ~ dnorm(mu[i,t],tau) }}
#MODELO Y|u ~ Gama
model {
    for (i in 1:num.obs) {
    u[i] ~ dgamma(P,theta)
    eff[i] <- exp(-u[i])</pre>
    for(t in 1:num.temp) {
        X[i,t,1] <- x1[i,t]
        X[i,t,2] <- x2[i,t]
log(mu[i,t]) \leq beta0 + beta[1] * (X[i,t,1]-xbar1)
              + beta[2] * (X[i,t,2]-xbar2) - u[i]
sha[i,t] < -pow(nu,-2)
        b[i,t]<-pow(nu,-2) / mu[i,t]</pre>
y[i,t] ~ dgamma(sha[i,t],b[i,t])}}
#MODELO Y|u ~ NORMAL
model {
    for (i in 1:num.obs) {
    u[i] ~ dgamma(P,theta)
    eff[i] <- exp(-u[i])
    for(t in 1:num.temp) {
        X[i,t,1] <- x1[i,t]
        X[i,t,2] <- x2[i,t]
log(mu[i,t]) <- beta0 + beta[1] * (X[i,t,1]-xbar1)
              + beta[2] * (X[i,t,2]-xbar2) - u[i]
y[i,t] ~ dnorm(mu[i,t],tau) }}
#MODELO Y|u ~ POISSON
model {
    for (i in 1:num.obs) {
        u[i] ~ dgamma(P,theta)
        eff[i] <- exp(-u[i])</pre>
    for(t in 1:num.temp) {
        X[i,t,1] <- x1[i,t]
        X[i,t,2] <- x2[i,t]
```

```
log(mu[i,t]) <- beta0 + beta[1]*(X[i,t,2]-xbar1)</pre>
                 + beta[2] * (X[i,t,2]-xbar2) - u[i]
        y[i,t] ~ dpois(mu[i,t]) }}
#MODELO Y|u ~ BINOMIAL NEGATIVA
model {
    for (i in 1:num.obs) {
    u[i] ~ dgamma(P,theta)
    eff[i] <- exp(-u[i])</pre>
    for(t in 1:num.temp) {
        X[i,t,1] <- x1[i,t]
        X[i,t,2] <- x2[i,t]
    log(mu[i,t]) <- beta0 + beta[1]*(X[i,t,1]-xbar1)</pre>
               + beta[2] * (X[i,t,2]-xbar2) - u[i]
    p[i,t] <- A/(mu[i,t]+A)</pre>
    Y[i,t] ~ dnegbin(p[i,t],A)
              }
                     }
beta0 ~ djl.dnorm.trunc(0.03,0.01,0,1000)
for(k in 1:2) {
    beta[k] ~ djl.dnorm.trunc(0.03,0.01,0,1000)
          }
P \sim dgamma(0.8, 1)
theta~ dgamma(0.01,0.01)
nu ~ dgamma(0.01,0.01)
tau ~ dgamma(0.01,0.01)
sigma2u <- P/pow(theta,2)</pre>
sigma2v <- 1/tau
beta_ini <- beta0 - beta[1]*xbar1 - beta[2]*xbar2</pre>
A <-10 }
```

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo