
Federal University of Rio Grande do Norte

Center of Exact and Earth Sciences

Department of Informatics and Applied Mathematics

Computer Systems Graduation Program

Model-Driven Requirements Engineering

Process aided by Ontologies and Natural

Controlled Languages

Raphael Mendes de Oliveira Cóbe

Natal

June, 2009

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Federal University of Rio Grande do Norte

Center of Exact and Earth Sciences

Department of Informatics and Applied Mathematics

Computer Systems Graduation Program

Model-Driven Requirements Engineering

Process aided by Ontologies and Natural

Controlled Languages

A Thesis Presented to the Computer Sys-

tems Graduation Program at the Depart-

ment of Informatics and Applied Mathemat-

ics department of Federal University of Rio

Grande do Norte In Partial Fulfillment of the

Requirements for the Degree MASTER OF

SCIENCE in Computer Systems.

Raphael Mendes de Oliveira Cóbe

Dr. Paulo Pires
Teacher Advisor

Natal, June, 2009

Abstract

Researches in Requirements Engineering have been growing in the latest few

years. Researchers are concerned with a set of open issues such as: communica-

tion between several user profiles involved in software engineering; scope definition;

volatility and traceability issues. To cope with these issues a set of works are con-

centrated in (i) defining processes to collect client’s specifications in order to solve

scope issues; (ii) defining models to represent requirements to address communica-

tion and traceability issues; and (iii) working on mechanisms and processes to be

applied to requirements modeling in order to facilitate requirements evolution and

maintenance, addressing volatility and traceability issues. We propose an iterative

Model-Driven process to solve these issues, based on a double layered CIM to com-

municate requirements related knowledge to a wider amount of stakeholders. We

also present a tool to help requirements engineer through the RE process. Finally

we present a case study to illustrate the process and tool’s benefits and usage.

Research Area: Requirements and Software Engineering

Key words: Model-Driven development; Requirements Engineering process; Nat-

ural Controlled Languages; Ontologies; ATL.

ii

Resumo

Pesquisas em Engenharia de Requisitos tem crescido ao longo dos últimos anos.

Pesquisadores estão preocupados com uma série de problemas em aberto como:

comunicação entre diversos perf́ıs envolvidos na engenharia de requisito; problemas

na definição de escopo; problemas de volatilidade e ratreabilidade de requisitos. Para

lidar com este conjunto de problemas em aberto, um conjunto de trabalhos estão

concentrados em (i) definir processos para coletar especificações de clientes para lidar

com prolemas de escopo; (ii) definir modelos para representar requisitos para lidar

com problemas de comunicação e rastreabilidade; e (iii) definição de mecanismos e

processos para serem aplicados a modelagem de requisitos para facilitar a evolução

e manutenção de requisitos, lidando com problemas de volatilidade e rastreabilidade

em requisitos. Neste trabalho é proposto um processo dirigido por modelo para

solucionar estes problemas em aberto. Este processo é baseado na idéia de um

CIM dividido em duas camadas de forma que se consiga difundir o conhecimento

relacionado ao requisitos para um número maior de stakeholders. Durante este

trabalho também foi desenvolvida uma ferramenta que tem como objetivo auxiliar

a execução de tal processo. Por fim apresentamos um estudo de caso para ilustrar

os benef́ıcios do uso da ferramenta e do processo.

Area de Concentração: Engenharia de Software e Requisitos

Palavras-Chave: Desenvolvimento Dirigido por Modelos; Processos para Engen-

haria de Requisitos; Linguagens Naturais Controladas; Ontologias; ATL.

iii

Contents

1 Introduction 1

1.1 Problems in RE Processes . 2

1.2 Main Goals . 6

1.3 Proposed Strategy . 7

2 Background 9

2.1 Requirements Engineering . 9

2.1.1 Requirements Elicitation and Analysis 10

2.1.2 Requirements Specification . 11

2.1.3 Requirements Validation . 12

2.2 Model-Driven Engineering . 12

2.2.1 Models, Metamodels and Meta-Metamodels 14

2.2.2 Model Transformation . 16

2.3 Ontologies . 19

2.3.1 RDF(S) and the Ontology Web Language - OWL 22

2.4 Natural Controlled Language - NCL 24

2.4.1 Attempto Controlled English - ACE 26

3 Proposed Approach 31

3.1 Proposed Models and Views . 31

iv

3.1.1 Client’s View . 32

3.1.2 Development Team’s View . 34

3.1.3 PIM . 36

3.2 Proposed process . 37

3.2.1 Detailed Process . 38

3.3 Tool Support . 44

3.3.1 Proposed tool architecture . 47

4 Case Study 60

4.1 The Goal/Question/Metrics plan . 61

4.2 The Case Study Scenario . 72

4.3 The Process Execution . 73

4.3.1 Inconsistencies and Taxonomic Classification 77

4.4 The Case Study Evaluation . 89

5 Related Works 102

6 Final Remarks 105

6.1 General Comments and Case Study Evaluation 105

6.2 Difficulties . 106

6.3 Future Works . 107

A Interviews 120

v

List of Figures

2.1 Requirements Engineering Process . 10

2.2 Several PSMs automatic obtained from a single PIM 14

2.3 MDA’s 4 layered approach . 15

2.4 Mapping between PIM and PSM in MDA’s context [Fra03] 17

2.5 Mapping between CIM, PIM and PSM in MDE’s context 17

2.6 ACE Parser Engine WebClient . 29

2.7 ACEView Protégé Plugin . 30

3.1 4 Layered CIM and partial PIM . 32

3.2 The proposed process (UML 2.0) . 39

3.3 Message given by the Reasoner while trying to reason at an inconsis-

tent ontology . 42

3.4 NCL editor showing conflicting sentences 42

3.5 Proposed Process with specification of Used Tools 45

3.6 The New ACEView . 47

3.7 RE Tool’s Architecture (UML 2.0) 48

3.8 Main Classes of the ACEView Domain 49

3.9 ACEView new Views . 52

3.10 ACEView’s ACESnippetEditor . 53

3.11 ACEView’s ACEIndexViewComponent 53

3.12 ACEView’s ClassesByTagsView . 53

vi

3.13 ACEView’s ACESubjectIndexViewComponent 54

3.14 ACEView’s ACEDateIndexViewComponent 54

3.15 ACEView’s ACEStakeholderIndexViewComponent 54

3.16 ACEView’s ValidationView . 55

3.17 The modified Ontology Definition Metamodel 56

3.18 The XML Metamodel . 57

3.19 The UML Metamodel . 59

4.1 The GQM paradigm level division [BCR94] 62

4.2 The plugin’s new Views . 74

4.3 Built Domain Ontology part 1 . 75

4.4 Built Domain Ontology part 2 . 76

4.5 First Inconsistency shown at the Validation View 78

4.6 Conflicting concepts shown at the Protégé inferred hierarchy view . . 78

4.7 First Inconsistency . 79

4.8 Second Inconsistency . 79

4.9 Third Inconsistency . 80

4.10 Fourth Inconsistency . 80

4.11 Fifth Inconsistency (a) . 81

4.12 Fifth Inconsistency (b) . 81

4.13 Sixth Inconsistency . 82

4.14 Eighth Inconsistency . 83

4.15 Tenth Inconsistency . 83

4.16 ABox Reasoning . 84

4.17 Inferred Hierarchy (a) . 86

4.18 Inferred Hierarchy (b) . 87

vii

4.19 Protégé Inferred Axioms View . 88

4.20 Generated PIM for the interview with the Security Specialist 89

4.21 Generated PIM for the interview with the Health System Specialist . 90

4.22 Generated PIM for the interview with the Medical Specialist 91

viii

List of Tables

4.1 The GQM Measurement Goals . 64

4.2 GQM for Scope Definition Issues . 65

4.3 GQM for Communication Issues . 67

4.4 GQM for Requirements Validation Issues 69

4.5 GQM for Traceability Issues . 71

4.6 Interview Data . 72

4.7 ABox Inconsistencies . 84

4.8 GQM for Scope Definition Issues - Metrics values 92

4.9 GQM for Communication Issues . 94

4.10 GQM for Requirements Validation Issues 96

4.11 GQM for Traceability Issues . 98

ix

Chapter 1

Introduction

The success of a software system can be measured by the degree to which it meets its

envisaged purpose. Software system’s requirements engineering (RE) can be defined

as the process of discovering such purpose, by identifying stakeholders and their

needs, and documenting them in a way that is amenable to analysis, communication,

and subsequent implementation [NE00]. RE activities aim at managing all the

requirements-related knowledge. Commonly such knowledge is stored at an artifact

called Requirements Document. The production of such document is commonly

included among the most difficult activities in the software development process.

An effective RE process raises benefits such as: preventing errors, improving quality

of the final product and reducing risk [Bro87, DPVOD02].

All resources applied in building a solid RE process have shown to pay off,

once studies conducted by renowned IT consultant groups like the Standish, the

Gartner and the Forrester groups pointed that a large number of projects fail to

achieve their goals and some of them are even canceled due to requirements issues

[GBLC05, GPFLC04, PWCC95].

The following sections will present a set of the most common problems encoun-

tered during software development processes and a set of related searches that have

also pointed such problems. We will also discuss briefly the approaches proposed by

such works to deal with these problems. After that we will present our main goals

while developing this research project. Finally we will present the strategy that we

have addopted to acheive our goals.

1. Introduction 2

1.1 Problems in RE Processes

The importance of addressing RE activities has increased in the last years. Nowa-

days, the failure of a software system is no longer considered only as a programmer’s

fault; instead, there is a growing trend to discover the outermost reasons for such

failures at software building processes.

Companies are investing in researches in the area of requirements management.

Researchers are especially interested in identifying the most significant drawbacks

of the existing requirement models and processes. Some of these researches, like

[ARE96, BGMT06, GL93, CK92, NZP04] have already given some clue on what is

wrong with existent RE processes. Following we will show a list of major open issues

pointed by the authors, then we will discuss a little bit about each one.

These are the most common issues:

1. The need for a process to define the requirements scope;

2. The need for supporting for communication among different teams in-

volved in the RE process;

3. A way to deal with the inherent volatility of requirements; and

4. The need for a traceability scheme to help isolating problematic requirements

in further process’ phases.

The correct definition of the system’s limitations and scope is a very important

issue in RE processes, since, most of the time, the client does not know exactly

what he/she needs. Nowadays, such definition is up to the requirements engineer’s,

that has to do an interpretation of the interviews with the client. During this inter-

pretation process the requirements engineer can lose himself/herself among useless

descriptions given by a confuse stakeholder [Pre05, CADW01].

After collecting requirements knowledge from the client’s stakeholders it is im-

portant that the requirements engineer can communicate it to other members in the

requirements and development team. The appropriate notation(s) to represent such

knowledge is then, crucial to ease communication between these teams. It should

meet standard requirements for the RE document presented in Section 2 in order to

better accomplish its goals.

Works like [SP90, MFKH90] established that requirements are volatile and that

evolve along the time, so the requirements evolution and volatility is a great con-

cern in software processes. Commonly requirements evolve due to the knowledge

1. Introduction 3

brought up by the development activities or they are shifted because of unforeseen

organization or environmental pressures [CK92]. Requirements also change over

time because they are collected from several different sources (typically interviews

with client’s stakeholders), which may have different or even contradictory system’s

points of view [DHR89]. It is up to the RE process to manage such changes in

requirements, minimizing their impacts at other artifacts.

The traceability issue is directly connected with the other 3 issues and any initia-

tive to deal with such issues would have direct impact on the established traceability

scheme used at the ongoing software development process. The RE traceability is

concerned with relating requirements with other system’s artifacts and it allows to

follow the life cycle of a requirement artifact both forward and backward through-

out a software development process [GF94, RJ01]. Such links between artifacts

should allow the recording of meta-data about the RE process [GF97], like the

stakeholder’s name, who was the interviewer, etc. Such capability is very desirable

to RE processes, since they are directly related to software maintenance and evo-

lution [CHCC03]. A traceability scheme can help isolating requirements changing

reflexes in later development process’ phases, thus, reducing the costs and impact

of requirements volatility.

Traceability schemes are deeply affected by the notation(s) chosen to represent

requirements during a software development process, so, the choice of notation(s)

should take the traceability scheme in account. Such concern gets greater when we

are dealing with several integrated views with several notations to fully represent

requirements. For example, if we choose to use a certain notation to represent the

static part of the sytem, and an entirely different notation to represent the system

dynamics. Then we should look for traceability schemes that suits both notations.

We should be able to keep the requirements trace dependencies (i.e. the element

that links two artifacts) updated throughout all integrated views[Egy03].

There are many research efforts in the RE area seeking answers to overcome

these open issues. These efforts are concentrated in:

• defining processes to collect the client’s knowledge in order to solve scope issues

like [DMO+06, BLC+03, WEC93];

• defining models to represent requirements in order to address communication

and traceability issues like [vL08, BdPL03, KS06]; and

• working on mechanisms and processes to be applied to requirements modeling

in order to facilitate requirements evolution and maintenance, thus addressing

volatility and also traceability issues like [Egy03, RJ01, CHCC03].

1. Introduction 4

We have analysed these efforts and their proposed solutions in order to categorize

them into a set of key-activities to be taken care off, during the production of

the requirements document. Such set contains potential error-prone key-activities

that, if executed without the necessary care, can lead to the occurrence of the

requirements-related problems that are still considered requirements open issues.

Following we will enumerate our classifications for the tasks to be executed during

the production of the RE document:

• knowledge acquisition like what is proposed at [RW91, WEC93, WH96];

• knowledge representation like what is proposed at [MBJK90, JFH92, Gor04];

• knowledge conflict management and validation like what is proposed at [WJJ06,

DLNS96, Len96]; and

• knowledge evolution like what is proposed at [CK92, CADW01, ELPA05];

This set of key activities show important points while defining a new RE pro-

cess. These activities should be executed with special care, in order to avoid the

occurrence of the mentioned RE problems. Following we describe how each of these

key-activities is related to the occurrence of one or more of the cited problems in

the RE process. Also, we present recent research efforts that propose ways to take

car of each activity.

When the key-activity of knowledge acquisition is compromised, the RE process

may suffer from scope issues, since the requirements may not be fully understood

by the requirements engineer. To cope with this problem, several works propose

methodologies to acquire knowledge directly from stakeholder’s descriptions. The

authors in [BdPL04, BLC+03, DLM+08, DMO+06] suggest the employment of a

restricted natural language (i.e. a natural controlled languages) to represent the

requirements. The usage of this type of language allows requirements to be repre-

sented in a way closer to the natural human representation while keeping it free of

ambiguities and imprecision. Also, the usage of such knowledge acquisition process

helps speeding up and automatizing the collection of information from the client’s

stakeholders.

A misjudgment during the key-activity of knowledge representation may lead

to a process that suffers from issues concerning the communication between devel-

opment teams and stakeholders. It is a consensus in the RE area that the use of

standardized notations to represent requirements can minimize the communication

issues between software development teams and stakeholders. Besides, many works

1. Introduction 5

[Whi04, KL08, vL08] argue that the employment and integration of different nota-

tions is necessary to represent requirements according to the different stakeholders’

point of view, specially [vL08], where the author proposes the use of multiple views,

linked through inter-model links constrained by rules for structural consistency.

These works emphasize the importance of the use of several views and notations

to fully represent requirements.

Researches conducted on the key-activity of conflict management and knowledge

validation propose ways to assure that the requirements are not conflicting with each

other and that they meet all clients demands. Activities of conflict management are

very important to the RE process, specially because of its inherent volatility i.e.

requirements are always evolving, and it is more likely that conflicts occur while

including new requirements.

A failure during the validation of the new requirements may lead to the occur-

rence of problems related to volatility management issues at the RE process. Works

in the area of requirements validation commonly use formal logic and inference mech-

anisms to check the consistency of the requirements and to assure that they are not

in conflict with each other. Following this idea, [WJJ06, KS06, Len96] proposed the

use of first order logic and ontologies to specify and validate knowledge requirements

models.

Knowledge evolution activities are vital to the RE process since requirements

naturally change over time[CK92]. Such activities are also related to the occurrence

of volatility and traceability issues in the RE process. According to [CK92, MFKH90]

this issue should be addressed by an iterative and incremental process. The amount

of damages caused by a problematic requirement discovered at the very beginning of

the software process is dramatically smaller than a missing functionality discovered

after the delivery of the final product [MAJP02].

Both conflict management and knowledge evolution key-activities are deeply re-

lated to the traceability scheme. Such scheme minimizes the impact of the evolution

of knowledge and it helps delimiting and identifying what are the affected require-

ments in conflicting situations. The biggest challenge while trying to implement

a traceability scheme is to maintain the trace dependencies between the artifacts

[Egy03]. Works in the traceability area are concerned in proposing (semi-) auto-

matic processes to keep the trace links updated like the scenario based scheme in

[Egy03] or the event-based scheme proposed in [CHCC03]. Researchers are also

concerned in defining ways to trace the artifacts contributors like the Contribution

Structures proposed in [GF97].

During this work we have developed a RE process that copes with all the key-

1. Introduction 6

activities minimizing the occurrence of the RE open issues. The following Section

explains our goals in details, describing the addopted strategy to specify each key-

activity.

1.2 Main Goals

We have established one macro goal to be achieved during the development of this

work. We intended to deal with all the open issues presented at the earlier section.

We attacked each open issue by specifying the notation to be used at each key-

activity responsible for generating such issue. In order to do so we assumed that

there is no way to fully represent requirements by using a single view. Such principle

has already been pointed by [SdPL06].

So, we needed a simple way to integrate the several views involved in our re-

quirement specification solution. We have adopted a model-driven based approach.

Its model transformation capabilities are fully aligned with our needs and may be

used as means to seamlessly synchronize different views.

We have studied the MDD [Mel04] as a solution for the specification of the knowl-

edge evolution key activity once it provides mechanisms to help keep RE models up

to date. Such mechanisms are called model transformations and once the RE model

changes, the same transformation can be applied to the new model to update the

derived models.

We have studied its abstraction levels and focused on the Computer Independent

Model - CIM to represent the requirements document. We have chosen such ab-

straction level because of its similarities to the requirements document. Both do not

have any specific computational need. Both will be used at later phases of a typical

software process after going through a process that aims to lower the abstraction

level and include computational specific needs.

In order to achieve our macro goal we have divided it in 3 smaller subgoals: to

define a set of views to represent requirements according to the needs of different

profiles (the client, the RE engineer and the development team) in order to estab-

lish the knowledge acquisition and representation key-activities, i.e. to define the

notation adopted to represent the CIM; to integrate such views in order to establish

the knowledge evolution and conflict management key-activities, i.e. to establish

a set of MDD transformations to build a mapping mechanism between views and

develop a mechanism for requirements validation; and to establish a way to verify

the effectiveness of our solution while dealing with the issues previously presented.

1. Introduction 7

1.3 Proposed Strategy

To address all the mentioned key-activities involved in the elaboration of the re-

quirements document as well as the open issues related to each activity, we propose

an iterative and incremental Model Driven RE Process [Mel04]. Its phase division

is aligned with former legacy RE process, defined in literature [Pre02, Som01], al-

though we have proposed new activities, which encompasses all the key-activities.

We believe that requirements should not take computational aspects into account,

so, we use the MDD’s CIM abstraction level to represent knowledge gathered during

the requirements engineering activities. The CIM will compose our RE document.

Our work is focused at the static representation of the system (system dynamics

is outr of scope). We propose the division of the CIM model in two abstraction layers:

the client’s view and the development team’s view. This division was proposed based

on the fact that these profile have very different sets of needs. The first needs an

easy-to-learn notation in order to better understand the requirements provided by

the client. The second needs a high level of detail and a set of tools to manipulate

the requirements knowledge.

We adopted a Natural Controlled Language - NCL to represent the requirements

gathered during interviews with clients. This adoption aids the knowledge acqui-

sition and knowledge representation activities. It provides a language close to the

native language of the client making possible to discuss the requirements specifi-

cation using a notation fully understandable by both requirements engineer and

client.

We adopted ontologies to represent the development team’s viewpoint. Such

adoption deals with knowledge representation, validation and evolution key-activities.

We believe that this representation should be obtained from the system’s descrip-

tions in NCL. In order to keep both views synchronized we have defined a set of

model transformations, used to automatically build the development view from the

client’s viewpoint.

Even though we focus on the CIM model, the proposed process ends with the

building of a Platform Independent Model - PIM, to which we suggest the adoption

of UML’s Class diagrams as the main notation. We believe that such artifact can be

useful at further development phases. The proposed PIM also aims to standardize

the communication through all the software development process. Such communi-

cation can be eased by the addoption of model driven approaches

The remainder of this work is organized as follows: Section 2 presents the needed

background to understand the other sections. Section 3 presents our designed process

1. Introduction 8

an tool in details, Section 4 presents our case study. At Section 5 we listed a few

related works and discussed the difference between such works and ours. Finally,

Section 6 presents our comments about the obtained results and discuss our plans

for future works.

Chapter 2

Background

2.1 Requirements Engineering

A software process defines how a software building is managed, supported, improved

and organized [DKW99]. Every software development project uses a software pro-

cess, be it implicit or explicit. In the worst scenario, the ad-hoc “methodology” is

also considered a software process, an unordered and non standard process, but still

a software process.

Software process are typically divided into life-cycles. The software life-cycle

defines how a process should be conducted from start to end. The main goal of a

software life-cycle is to build and deliver a software that meets, partial or completely,

the client’s needs [Sin96]. Typically a life-cycle is divided in phases and each phase

is driven by a set of activities that produces a set of artifacts. Each activity can

have an input and output set of artifacts.

One of the greatest challenges in a software process is to identify the client’s real

needs (software requirements). Some researches has shown that a large number of

big projects fail because of invalid or misunderstood requirements [Boe84, GL93].

These researchers make clear that the main measure for a software project success

is how much of the clients needs were fulfilled.

This tendency has also been described by [Som01, Pre05]. The authors argue

that the activities developed during initial phases of a software process have great

impact in the final product delivered. So, activities executed at the initial stages of

a software process are crucial for the software development and its later success.

In that context, Requirements Engineering - RE is the process of discovering of

the software purpose, identifying who are the affected stakeholders and what are

2. Background 10

their needs, then documenting such knowledge in a usefull way, so it could be used

in later phases in a software development process [NE00]. More precisely, RE is the

process of discovering, analysis, management and documentation of requirements

[ELPA05, AMEL04, TBF+03]. Such process is driven by the execution of activities

[Som01, Pre05], that aim to build a document that holds the requirements knowledge

(client’s desired functionalities).

Due to the implicit subjectivity in the RE, researchers have not came up with

the silver bullet to solve the RE activities problems. There is no recipe that one can

follow to acquire success in the execution of the RE activities. The figure 2.1 shows

the details of the interaction between the RE phases and their artifacts. This figure

was taken from [Som01].

Figure 2.1: Requirements Engineering Process

2.1.1 Requirements Elicitation and Analysis

This phase has as its main goal, the production of a set of system models that

should contain high-level descriptions of the client’s needs. Such descriptions are

build from interviews with the client himself or with one of his business analysts.

The information needed to build the system models can also be enriched with the

information contained in client’s formularies and reports.

The interview are focused in discovering what activities of the client’s business

process should be implemented in software. This phase aims to collect information

about the domain and the dynamics of the client’s organization [Som01].

This phase has a viability report as its input artifact. This report contains

information about the system boundaries and limitations. Such artifact is needed to

2. Background 11

estimate more precisely deadlines and costs. It is the result of a viability study and

should be taken in consideration by the requirements analyst before electing certain

requirement to be implement, while building the system models.

2.1.2 Requirements Specification

This phase has as main goal to build requirements models. This models are detailed

representations of the system models i.e. they have a lower abstraction level. The

system models are its input artifact and the requirement model is its output artifact.

In order to build correctly the output artifact it is important that the require-

ments analyst, who specified the system models, be present while the process of

detailing is done. The analyst should have collected all information needed about

the client’s business process, like involved entities, decisions to be made, flowcharts,

etc. It is common to conduct new interviews during this phase in order to solve any

remaining conflict.

The term specification has a lot of associated meanings in the software develop-

ment context. All of them are related to ways of representing requirements acquired

during the elicitation phase. So, one can conclude that there is a large number of no-

tations to represent the requirement model artifacts [Pre05]. Among these ways we

can cite: written documents, graphical models, mathematical models and interface

prototypes.

The large number of notations to represent the requirement models turns the

phase of requirements specification into a big concern, specially because there is

no adequate notation to all software projects. Although, there is a set of desirable

properties to the chosen notation [Gog93, GL93, ARE96, CK92]:

• It should be a computational model that could be used in (semi-)automatic

process in order to build other artifacts that are useful during later activities;

• It should be able to hold usefull information for the later activities.;

• It should be readable by the client, so he is able to help the requirements

analyst during the requirements validation activities, being able to certify that

all his needs are fulfilled.

• It should be easy to maintain and evolute, having in mind that requirements

specification is naturally an iterative and incremental activity and that re-

quirements are constantly changing [CK92].

2. Background 12

2.1.3 Requirements Validation

The requirements validation phase has as main goal to make sure that the specified

requirements meets the clients needs. Naturally this phase should be conducted

along with client. Its input is the requirements model, and the output is a require-

ments model approved by the client. The requirements model can then be added to

the requirements document.

There is a set of techniques that can be applied in order to execute this phase,

such as: requirements revisions, prototyping, test-cases generation and automatic

consistency analysis [Som01, Pre05]. Among all of these techniques, the most used

are requirements revisions. [Som01] explains that this technique is a manual process

that involves a large number of the client’s stakeholders. By consequence, such

technique is very error-prone.

Once the requirements definitions should be inspected and agreed by the require-

ment analysis team as well as the client’s business analysts, the notation becomes

a very important choice. A clear and simple representation will help both teams go

through the validation phase faster and less error-prone.

2.2 Model-Driven Engineering

The model-driven engineering (MDE) is the branch of engineering where the rig-

orous commitment to the model analysis is primordial. It tackles the problems of

software development and evolution by promoting models to primary artifacts to be

constructed and maintained [ALPT03]. The term was first used by [Ken02] and was

inspired on the Object Management Group1 - OMG’s Model-Driven Architecture2 -

MDA, which is an initiative that developed a system architecture proposal based on

modeling in several abstraction levels [GDDD04].

MDE has a broader scope than MDA, it has the philosophy of representing any

piece of software in several models that are iteratively transformed in lower level

models until they can finally be executed at a machine [ALPT03]. MDE is con-

cerned with model construction and evolution. It tries to answer more philosophical

questions like: How to build a model? What is the best way to persist models? How

to establish mappings between generated artifacts? Such questions remained open

in MDA’s specifications.

1http://www.omg.org
2http://www.omg.org/mda

2. Background 13

MDE is the result of a tendency in software development researches that intend

to manage complexity through the usage of higher abstraction levels. In MDE, the

software analyst tries to develop a solution based on the software functionalities

and not in platform specifications. This tendency has been observed since the first

compilers and programming languages e.g. the Assembly language was developed

to protect the programming from writing machine code [Sch06].

The several abstraction levels are integrated by model transformation techniques.

They are used to map certain model’s elements at a higher abstraction level to lower

levels. These model’s elements are described by means of meta-models that are a

set of meta-elements used to describe how the model’s elements can be connected

to each other.

The OMG’s MDA specification establishes the existence of three main abstrac-

tion levels (or visions), that can be transformed from one to another linearly [Mel04]

We have based this work on the existence of at least such three views at a software

design process:

• The first abstraction level defines a Computational Independent Model - CIM,

that is free of any reference to the computational concepts (system’s data

structures or low level algorithms). Such models can be seen as abstractions

of the requirements models.

• The second abstraction level is the Platform Independent Model - PIM that

is free of any specific platform detail (operating system, specific frameworks,

persistence technology, etc.). It is focused on the relation between the entities,

what data structure can be used to represent their relationship and what are

the constraints that should affect such relationships.

• The third abstraction level is the Platform Specific Model - PSM, that is built

after some technological decisions have been made (choose of operating system,

programming language, data storage technology, etc.). It is one of the PSM’s

responsibility to merge the PIM with some platform and technological related

aspects.

The integration of such abstraction levels can be seen in the following example:

one client has given his description of the system, in that description he says that:

his domain is composed by students and books and that each student has a set of

books. Such description is found to be the project CIM’s as it is.

During the PIM specification the designer designates that student and book

are both going to be system’s entities and there is going to be an unidirectional

2. Background 14

relationship between them named have that parts from student and arrives at book.

This knowledge can be represented by means of some standard modelling language

like the Unified Modelling Language3 - UML that is based on diagrams that represent

different viewpoints of the system.

After that, the designer chooses to use a relational databases and designates that

each entity is going to be represented by CORBA components. Such knowledge may

be represented using UML too. Of course the diagrams would be enriched by means

of one of the UML extension mechanisms. Suppose that a few time after that,

finally people stop using CORBA. The client wants to migrate his/her system to a

real enterprise framework, like Java’s EJBs. Thanks to MDE transformations, the

development team will be able to generate other platform specific models (EJB).

The whole idea behind this example can be seen in figure 2.2 that was taken from

[Fra03].

Figure 2.2: Several PSMs automatic obtained from a single PIM

The choice of what modeling language will be used to express each of the models

in the system is very important and has great impact in which model transformation

technique can be used to automatic build the lower abstraction level. The following

subsection gives more details on how a modeling process is defined.

2.2.1 Models, Metamodels and Meta-Metamodels

Models have to be according to some modelling rules. These rules play an impor-

tant role in model “syntax” checking. They are responsible for making sure that the

model’s semantics remains unviolated. Such rules are expressed in a meta abstrac-

tion level, called Metamodel. Commonly, metamodels are used to define modelling

3http://www.omg.org/uml

2. Background 15

languages, like UML that is described in Meta-Object Facility4 - MOF.

One of the most important concepts in modeling development is the idea of meta-

model. It is in the metamodel that most of the model transformation approaches

rely on. They manipulates the instantiations of a metamodel by means of the meta-

classes. For instance: transformation rules applied to UML diagrams manipulate

their elements by means of the UML metamodel where the concepts of classes, at-

tributes, etc. are defined. But, metamodel are also models and also have to be

described by means of some other metamodel. This third level of modelling is called

meta-metamodeling.

It is not hard to see that this could go on forever in an infinite loop. To cope

with such problem, the OMG’s MDA proposes the definition of 4 model levels (from

M0 to M3), where the last level (M3) is self-defined, which means that it uses itself

as modelling language [MM+03, KBW03, MM+01]. The figure 2.3 illustrates how

models, metamodels and meta-metamodels are organized.

Figure 2.3: MDA’s 4 layered approach

In figure 2.3 we have, at the M0 level an object of the Student class, that has a

name associated, it is an instance in memory. Such object was described in a domain

model expressed in UML as a Class. The Class concept has also to be described. It

was defined at the UML metamodel, that is expressed in MOF as a MOFClass. The

4http://www.omg.org/mof

2. Background 16

MOF class concept has also to be described. It was defined at the MOF metamodel,

that is also expressed in MOF.

2.2.2 Model Transformation

The whole model-driven-* idea is based on mappings between the abstraction levels,

i.e. PIM, PSM, CIM. Such mapping mechanism is called model transformation

technique. It is composed by the following elements:

1. Input Metamodel;

2. Decorator mechanism;

3. Transformation Procedures;

4. Output Metamodel;

The transformation procedure is based on the elements described in the input

metamodel i.e. meta-elements. It maps such input meta-elements into another set

of elements that are described in the output metamodel. The decorator mechanism

provides the infra-structure to mark an input model element in a way that such

element can be processed by an specific transformation procedure e.g. the UML

profiles’ stereotypes, which are applied to UML model elements, thus enhancing

their semantics and aggregating some meaning to the elements.

MDA only specifies transformation from PIM to PSMs in a linear process and

exclusively from PIM to PSM like what is explained at [Fra03, KBW03]. MDE on the

other hand specifies that transformations should be used all over the model driven

process. So, in the MDE context, one can define bidirectional mappings between

any two abstraction levels. The figure 2.4 illustrates how the transformation process

occurs in the MDA context, while figure 2.5 shows how the model transformation

are defined in the MDE context

There are 3 main kinds of model transformation techniques:

• Programming based transformation;

• XML processing based transformation;

• Transformation languages based transformation;

2. Background 17

Figure 2.4: Mapping between PIM and PSM in MDA’s context [Fra03]

Figure 2.5: Mapping between CIM, PIM and PSM in MDE’s context

One important element in the context of model transformation are the APIs

for model manipulation. Such APIs are available at some popular programming

languages like Ruby or Java. The later one has already very mature projects at the

modelling area. Its main projects are available at the Eclipse Modeling Project5.

Project that has given birth to the Eclipse Modeling Framework6 - EMF, the most

popular framework for model manipulation and code generation [Bud03]. Most of

the transformation techniques use some specific model reading/writing API in order

to manipulate the model elements.

In programming language transformation techniques, the API is in charge of

reading metamodels and providing a manipulation interface to be used by the trans-

formation procedures that are written by the the developer in some imperative

5http://www.eclipse.org/modeling
6http://www.eclipse.org/modeling/emf

2. Background 18

programming language, e.g. Java.

The XML processing based transformation was largely used in the first MDA

projects, since the OMG’s recommendations for model persistence in file is the XML

Metadata Interchange - XMI an XML with set of associated schemas. So, the best

way to manipulate such format was the APIs for XML and processing like the

Document Object Model - DOM [LHLHW+00] and XML stylesheet technologies, like

XML Stylesheet Transformation - XSLT [C+99]. These techniques do not take in

account the concept of metamodels since they deal directly with the XML elements.

So, this is strictly a string manipulation technique.

The evolution of the XML processing based transformation included the use

of transformation APIs to manipulate models. New template engines were also

employed in order to reuse templates based on the metamodel elements. These

modifications made possible the definition of semantics in transformations one they

were developed having the metamodel in mind. An example o XML processing

framework is the AndroMDA7.

The metamodelling based technique uses special domain specific languages de-

signed to manipulate models. The OMG has a propose for specification of such

languages, it is called Query View Transformation - QVT which was designed to

Query, View and Transform MOF based models [GGKH03]. Such specification has

not became popular yet. Nowadays, most of the MDA projects use a language named

Atlas Transformation Language8 - ATL that is a declarative functional language for

model manipulations [JK06] which implements partially the OMG’s specification

[JAB+06].

The ATL language is based on matching of elements of the input metamodel.

Such elements are them used to instantiate output metamodel elements. Commonly,

the ATL transformations are only declarative, but, the ATL designers have also

provide some imperative extensions that can be used to write tricky transformations

[JAB+06]. Each transformation procedure is called rule

The listing 2.1 shows an example of transformation rule that takes an Author

model (that uses the author metamodel) and builds a person (that is described in

the person metamodel). Such transformation only has one rule and that rule does

nothing but a copy of the attributes name and surname from the input model to

the output model.

7http://www.andromda.org/
8http://www.eclipse.org/m2m/atl

2. Background 19

Listing 2.1: Author to Person ATL Transformation

1 module Author2Person ; −− Module Template
2 create OUT : Person from IN : Author ;
3 rule Author {
4 from
5 a : Author ! Author
6 to
7 p : Person ! Person (
8 name <− a . name ,
9 surname <− a . surname

10)
11 }

2.3 Ontologies

Ontologies have been defined and used in a large number of areas, like in philosophy,

as the study of the kinds of things that exist. In the context of system development

they are commonly classified as an Artificial Intelligence - AI theory, a content the-

ory, which describes objects, properties and the relationship among these concepts

[CJB99]. This theory uses First Order Logics to build and represent itself.

There is a large number of languages that can be used to represent ontologies’

classes and properties. In the latest few years, Description Logics Systems - DLS

have been studied as formalizations for these languages. DLSs allow one to represent

a certain domain of knowledge by means of concepts and roles, where concepts

models classes of individuals (objects) and roles model the relationship between

them (properties) [Len96]. These formalizations are the most used in ontology tools.

Altough, the concept of ontology is not so direct. It has an intrinsic duality that

can be seen at the definition given by [CJB99]. According to the authors, the term

ontology may be defined as both:

1. A specialized representation vocabulary to a given domain or subject; and

2. A body of knowledge used to describe certain domain by using a representation

vocabulary;

The first definition states that ontologies define the entities and their relationships.

For instance: in the classic pizza domain ontology [ND01] we have the concepts of

2. Background 20

Pizza and PizzaTopping, then we have the definition of a relationship (predicate)

have between these two concepts. Then the authors defined a restriction R that

states that every Pizza has one or more PizzaTopping i.e.

R = {∀x ∈ Pizza,∃y ∈ PizzaTopping ‖ have(x, y)} (2.1)

The restriction 2.1 works as a constraint to the Pizza concept. It defines rules

of how the concepts relate to each other. According to [Len96], the axiom 2.1 is

classified into the TBox (assertion about the concepts) aspect of DLSs.

The second definition states that ontologies are able to store knowledge about

individuals. In other words, the representation vocabulary expressed at an ontology

provides terms with which we can define facts in some domain. For instance, at the

same Pizza ontology [ND01] one can model a fact F that states that a Mozzarela

P izza have Cheese as its PizzaTopping i.e.

F = {∃x ∈ Pizza,∃y ∈ PizzaTopping ‖ (name(x) = Mozzarela ∧ (2.2)

name(y) = Cheese) → have(x, y)}

The Mozzarela is an instance of the Pizza concept and the relationship between

it and the Cheese (instance of) PizzaTopping is also an instantiation, it has an

specific individual as image and another as domain of the have relationship. The

axiom 2.2 can be classified into the ABox (assertion on individuals) aspect of the

DLSs [Len96]. The ABox axioms are (partial) instantiations of the TBox axioms

that [DLNS96] relate individuals to classes (partial instantiation) or individuals to

each other.

Although the difference between ABox an TBox axioms is very subtle, as both

can compose an ontology, understanding this duality of the ontology concept is cru-

cial so one can understand their role in system development. Bottomline, ontologies

are used to model both, rules and facts. The first ones define the structure of the

knowledge. The second ones are built according to the first ones and can be seen as

instantiations of the first ones [DLNS96].

The process for building ontologies have changed along the years. First they were

commonly built using AI techniques. Furthermore, the AI’s 1990’s approaches for

building ontologies have converged with other area’s approaches, like database de-

signing and object oriented programming [Gor04]. This convergence was a result of

the needing for representing knowledge and, specially, the needing for interchanging

2. Background 21

information among all these research areas. This demand has given birth to a new

research area, called Knowledge Representation - KR, also known as Knowledge En-

gineering - KE which is the application of logic and ontologies for the task of building

computational models for certain domain [Gor04]. Most of the KE researches are

focused in developing and testing methodologies for building and sharing Knowledge

Bases in several areas.

Nowadays, ontologies are still widely used in AI researches, but also at the KE

area [GPFLC04, GDD05, MGG+07], which has been largely used in system develop-

ment projects. For instance, they are used as techniques for integrating and building

web services in the context of the Web Semantics Initiative [Knu04].

The use of ontologies in system’s development delivers a set of new desired fea-

tures to the products, like [GDDS06]:

• The existence of a controlled vocabulary for the system’s terms. This vo-

cabulary should be ambiguity free and the contained terms may be used for

communication between several applications;

• A DLS provides a reasoning capability for their descriptions. This reasoning

process is composed by a set of logical operations that are able to identify

inconsistencies and infer new relationships between classes (taxonomic classi-

fication). These new capabilities provide a clear definition of the relationships

between classes (bringing up some hidden or intrinsic is-a relationships); and

• The use of ontologies provides the bases for knowledge sharing and reuse.

To acquire this knowledge interchanging and reuse purpose, the applications

should be able to interpret the ontology in the same way. This is assured by

the formalization provided by the DLS.

One feature of this set stands out: the reasoning capability. By means of this

capability one is able to: first, check the integrity of the TBox axioms, then clas-

sify the terms. The checking is done by a piece of software named reasoner. The

checking identifies if any of the concept’s constraints are broken. If this is true, the

conflicting concepts may be considered inconsistent and, by consequence, they are

disconsidered. The reasoning process can go on, discarding the conflicting concepts.

The second step of the reasoning process builds the knowledge system’s hierarchy

tree (taxonomic classification). The invalid concepts are classified as subclasses of

the “Nothing” concept [BvHH+04]. The ABox axiom set is also taken in account by

the reasoning process in DLSs, although most of the actual reasoners like the Pellet9

9http://clarkparsia.com/pellet

2. Background 22

and the Fact++ reasoner10 implementations can only check consistency and raise

an exception if any problem is found i.e. some individual instantiation breaks some

contraint defined in the TBox axiom set.

The reasoning feature can assure that certain common knowledge shared among

several applications is free of inconsistencies. This is also very important while

reusing pieces of knowledge and merging them with another pieces of knowledge, at

a process named knowledge base merging, as described in [SM01].

OWL ontologies also have associated query languages, like SWRL [HPSB+04] or

SPARQL [PhS+06], which provides powerful searching mechanisms.

Ontologies can be represented in several first order logic, like the F-Logic [KLW95]

(“F” stands for frames), for instance. F-Logic is a frame based language designed

to capture in a logically clean way a number of knowledge representation scenarios.

The F-Logic although suitable to represent ontologies is still a logical language, a

little bit hard to process and to understand by non logical specialists (programmers

and system analysts, for instance).

Following the whole Semantic Web idea, a different language was proposed to

represent classes (called resources) in a very generic way. This language is based on

predicates and uses XML as its representation language. It is called Resource De-

scription Framework - RDF [LS+99] and was proposed by the W3C web consortium.

The following subsection explains the RDF technology along with its limitations and

the Ontology Web Language - OWL, an specification based on RDF with enhanced

semantics.

2.3.1 RDF(S) and the Ontology Web Language - OWL

RDF describes classes in terms of named properties and their values in an XML

file (ABox). Along with the RDF framework, the W3C specification described the

RDF-Schema - RDFS (TBox) as a mean to represent vocabularies to be used in

RDF descriptions. The Schema approach also allows an easy way to validate an

XML-RDF file. The listing 2.2 presents an example of how the before mentioned

Pizza concept would be defined in RDFS.

Listing 2.2: Pizza RDFS Class

1 <r d f :D e s c r i p t i o n rd f : about="Pizza">
2 <r d f : t yp e r d f : r e s o u r c e="http://pizza.org/Class"/>

10http://owl.man.ac.uk/factplusplus/

2. Background 23

3 . . . o ther p r op e r t i e s
4 </ r d f :D e s c r i p t i o n>

The XML language, although a little bit verbose is easy to process and can use

already established parsing technologies and APIs. The main goal of the RDF(S)

representation is to distribute its descriptions throughout the internet, using an

webservice infra-structure [McB04].

The RDF(S) format, was found to be a little bit too general-purpose. It could

only express part of ontologies. In the paper [AvH04], the authors list a set of

necessary structures that are not delivered in the RDF(S) format. These are the

structures:

• Local scope of properties: the rdfs:range defines the range to all classes,

thus, in RDFS we cannot declare range restrictions that only apply to some

class. The authors in [AvH04] have provided an example for this: take the eat

property for instance. In RDF(S) it is impossible to state the predicate P that

states that cows only eat vegetables, while other animals may eat meat as

well i.e. P = {∀x ∈ Cow ∩ Animal,∀y ∈ Food ‖ eat(x, y) → y ∈ V egetable}

• Disjointness of Classes: it is impossible to state that a class is disjoint from

another. For example: Man and Woman are disjoint concepts. In RDF(S)

only subtype relationships can be described i.e. P = {Man ∩Woman = ∅}

• Boolean Combination of Classes: one may want to build new concepts by

applying some set theory operation to other two classes, like the union, inter-

section or complement e.g. the Person concept may be defined as the union

of the concept Man and Woman i.e. Person = Man ∪Woman.

• Cardinality description: sometimes the ontology designer needs to specify

the amount of distinct values a property can have. For example, we would

state that a Person has exactly one Mother i.e. P = {∀x ∈ Person,∃!y ∈
Mother ‖ has(x, y)}.

• Special characteristics of properties: sometimes we need to specify certain

characteristics of properties the transitiveness of a property for instance like the

smallerThan property, for example (i.e. a ≤ b ≤ c → a ≤ c), or the inverse of

some property like the isMotherOf that has the hasMother as its inverse (i.e.

P = {∀x ∈ Person,∃y ∈ Person ‖ hasMother(x, y) ↔ isMotherOf(y, x)}).

The OWL format was designed to supply these needs. It is an extension of the

RDF(S) with an enhanced semantics and expression power. It is considered a richer

2. Background 24

language but its expressiveness does not reduce its reasoning efficiency, once the

richer the language the more inefficient the reasoning process is [AvH04]. Extremely

rich languages reach levels that the reasoning crosses the computability border.

The OWL language is divided into three constructions subsets [BvHH+04]:

• The OWL-Full that holds all OWL constructs. It is extremely expressive,

but this expressiveness has a price, it does not support full reasoning in their

descriptions.

• The OWL-DL (DL stands for description logic) and its set of constructs ensure

that the language correspond to a DLS, thus, supporting efficient reasoning.

This is the most common subset of OWL and is supported by most of the

ontologies authoring tools.

• The last set of constructs is called OWL-Lite. It is a simplification of the OWL-

DL (excluding disjointness properties, properties cardinality among other things).

It has as main advantages its simplicity to users and developers. This simplic-

ity is also a disadvantage because it reduces considerably the expressiveness

as a side effect.

The OWL authoring support counts with a large number of tools, like the Pro-

tégé11, Swoop12and JOE13. This project has used the Protégé editor because of its

popularity and source code available. The Protégé tool in its later version (Protégé

4.0) has a modular and highly extensible architecture based on events and a view

plugin system that makes possible to write ontology visualization plugins that listen

and respond to some ontology management related events.

2.4 Natural Controlled Language - NCL

Commonly, the human knowledge is expressed in Natural Language, which does not

require any extra learning effort. This representations are most of the time informal,

vague, ambiguous and potentially inconsistent [FKK08a]. A Natural Controlled

Language - NCL14 is a subset of the natural languages that can be processed by

11http://protege.stanford.edu/
12http://www.mindswap.org/2004/SWOOP
13http://www.cse.sc.edu/research/cit/demos/java/joe/joeBeta-jar.html
14We have choose to use the Natural Controlled Language term because it is very common in the

literature, although it has an implicit paradox i.e. if certain language is natural then, by definition,
it is not controlled and vice-versa.

2. Background 25

machines. NCLs have constrained terminology, syntax and/or semantics. Still, its

constructs are expressive enough to allow its intuitive usage by non specialists. Its

concept is quite similar to the concept of a sublanguage, which is a language used in

certain domain, commonly it has a set of domain-specific terms associated [Alt00].

A NCLs aim to reduce or completely eliminate the existing ambiguity, vagueness,

informality and inconsistencies in Natural Languages [Alt00].They are composed by

the same elements as natural languages: a lexicon and a grammar. The crucial

difference between the controlled language and the natural language lies in the ex-

pression power of the language. Pure Natural Languages are slightly more expressive

than controlled languages.

Controlled languages are largely used in commercial or industrial applications

such as the authoring of user manuals, where large amounts of documents are gener-

ated and updated on regular basis and the document’s terminology is domain specific

[Alt00, NMH03], like the specification of the aircraft domain-specific maintenance

language in [WHH98, WH96] or the Caterpillar Technical English - CTE described

in [KAMN98]. They are also used in texts that might be translated to several lan-

guages, since they impose simpler constructs and, most of the time, ambiguity-free

sentences.

In the computational area, NCLs have been widely used in the context of the

Web Semantics Initiative to express knowledge about distributed resources like the

PENG-D [ST04] that can be translated into first order logic fragments. The whole

idea of replacing first order logic languages and formal methods with NCLs descrip-

tions has become very popular in the latest years. This initiative is explained at

[FST99, FKK08a].

In Software Engineering NCLs have been used to specify several parts of soft-

ware (in several process phases and activities). Requirements knowledge specifi-

cation in Requirements Engineering activities, for instance have been proposed by

[FdSBdPL03, BLC+03, dSdPLB04]. Even procedural descriptions of systems have

been using NCLs for its specifications like proposed in [LPCD06] to be used in con-

struction (software coding) phases in software engineering process. Following we’ll

give some NCLs statements examples.

• Attempto Controlled English - ACE:

– Every man is a human.

– Tom is a human.

2. Background 26

At this example we stated that there is a concept man that is a concept of the

concept human i.e.Every man is a human. Then we described the individual Tom

as an instance of the human concept i.e. Tom is a human. Following we will state

the same sentences in Common Logic Controlled English - CLCE and Sydney OWL

Syntax - SOS:

• CLCE

– For every X, if X is a man, then X is a human.

– There is a man X, such that X is Tom.

• SOS

– If X is a man then X is a person.

– If X is Tom then X is a man.

One can see that the same descriptions are done quite differently. In CLCE

there is no distinction between individuals or classes. Such language is close to

common predicate logic. The SOS language is part of an initiative that proposes

NCLs to replace OWL, like the ACE language. The SOS altough close to a common

unrestricted language uses a lot of variables, making the sentences harder to read and

understand. On the other hand, the ACE sentences look a lot like non constrained

language’s descriptions. It can also use variables to express more complex sentences.

There is a large number of NCLS. We have chosen the ACE language to develop

our work for its simplicity, intuitive learning capability and its tool set and editors.

The next subsection will cover the ACE language.

2.4.1 Attempto Controlled English - ACE

ACE is a NCL with English syntax developed by the Attempto Project15. Accord-

ing to its authors [FHK+05, FSS99, FKK08a] ACE is so simple that can be used

by people who do not know its restrictions. The authors relate that learning the

construction and interpretation rules takes about two days.

ACE is, more precisely, a well-defined, tractable subset of full English that can

be automatically and unambiguously translated into first order logic [FKK08a]. One

could describe ACE as a first order logic language with an associated English syntax.

15http://attempto.ifi.uzh.ch

2. Background 27

In fact, ACE’s parser engine produces a variant of first order logic from the ACE

sentences. Such variant is called Discourse Representation Structures - DRSs and

can be translated easily into any formal language equivalent to (a subset of) first

order logic (including description logic systems). It can also be used as an inter-

change format, making possible to share knowledge among several first order logic

languages.

The following subsection covers in more details the ACE construction rules. It

was based on [FKK08a]. Also most of the following examples were taken from

[FKK08a], we have suppressed the citations for better reading. More details on

ACE can be found at [FKK08b].

2.4.1.1 ACE construction rules

The vocabulary of ACE is composed of predefined function words (e.g. determiners,

conjunctions, prepositions), some predefined phrases (there is/are, it is true that...)

and content words (nouns, verbs, adjectives and adverbs).

The set of the ACE sentences is called the ACE Text. Each sentence can be

either simple or composite. The ACE sentences are build using a simple set of

Construction Rules16. In a similar way, the sentences interpretation is done by a set

of Interpretation Rules17.

The simple sentences are used to describe a fact, an event or a state. They have

the following structure:

Subject + V erb + {Complements} + {Adjuncts}

The verbs complements are optional since they are only applied to transitive (in-

sert something) and di-transitive (give something to somebody) verbs. The adjuncts

(adverbs, prepositional phrases) are also optional. Following we will show examples

of simple sentences:

• A customer inserts 2 cards.

• The temperature is -2 C.

• At least 3 cards and exactly 2 codes are valid.

16http://attempto.ifi.uzh.ch/site/docs/ace constructionrules.html
17http://attempto.ifi.uzh.ch/site/docs/ace interpretationrules.html

2. Background 28

The nouns can have their descriptions enriched by the addition of adjectives.

For instance, the sentence: “A customer inserts 2 cards.” can be enriched by the

characterization of the subject customer and the object cards e.g. “A new customer

inserts 2 valid cards.”.

Composite sentences are build from simples sentences. To compose sentence one

can use: coordination, subordination, quantification, and negation. Following we

will give several examples of each type of composite sentences:

• Coordination by and (phrases must have the same syntactic type):

– A customer inserts a card and the machine checks the code.

• Coordination by or (phrases must have the same syntactic type):

– A customer inserts a card or the machine checks the code.

• If-then Subordinated sentences (conditional or hypothetical situations):

– If a card is valid then a customer inserts it.

• Modality Subordinated sentences (express possibility and necessity):

– A trusted customer can insert a card. (possibility)

– A trusted customer must insert a card. (necessity)

• Sentence Subordination sentences:

– It is true that a customer inserts a card. (= A customer inserts a card.)

• Quantification:

– Every customer inserts a card. (universal quantification)

– There is a card that every customer inserts. (existential quantifier)

• Negation:

– A customer does not insert a card.

– No customer inserts more than 2 cards. (negation of quantifier)

– It is false that a customer inserts a card. (sentence negation)

The language also has query campability that allows to interrogate an ACE Text.

Currently ACE only supports yes/no-queries and wh-queries (who, which, what and

how).

2. Background 29

The Attempto project provides a set of tools and APIs to manipulate and modify

ACE Texts, including a semantic wiki (ACEWiki), an OWL Verbalizer, a Reasoner

(RACE), a Rule Framework (ACERules), a Visualization Plugin for the Protégé

Tool (ACEView) and a Parser Engine (APE). We will focus on the later two as they

were largely used and modified during this project.

The ACE Parser Engine implements the ACE interpretation rules in Prolog. It

uses a built-in lexicon of function and basic words of over a 100000 entries. This

lexicon can be extended by users, who may want to upload domain specific lexicons.

It takes user descriptions (ACE Text) and their domain specific lexicon (if there is

any) as input and produces a large number of outputs, like the already mentioned

DRSs. The figure 2.6 shows the APE web interface18 with a sentence converted

into a DRS representation. The APE is distributed with a LGPL license. It is also

available through an WebService.

Figure 2.6: ACE Parser Engine WebClient

At our project, the most interesting feature implemented by the APE was the

conversion from an ACE Text to an OWL file, like described in [KF06]. The listing

2.3 shows the OWL generate by the sentence: “Every man is a human.”.

Another important part of the Attempto project was the ACE Text authoring

tool: the ACEView Protégé plugin [Kal08]. It implements several views to better

editing ACE Texts. These views are used for traceability purpose. With them one

18http://attempto.ifi.uzh.ch/ape/

2. Background 30

can isolate each noun and relate it to each sentence where it was defined or cited.

Figure 2.7 has a screenshot of the ACEView Plugin. The figure shows 3 of the

several implemented views. The (a) view shows the division of the ACE sentences

by content word, the (b) view shows the list of all snippets; and The (c) view is the

ACE Snippet (sentence) editor, where one can edit each sentence.

Listing 2.3: Generated OWL file

1 <rdf:RDF
2 xml:base="http://attempto.ifi.uzh.ch/ontologies/owlswrl/test"
3 xmlns="http://attempto.ifi.uzh.ch/ontologies/owlswrl/test#"
4 xmlns:owl="http://www.w3.org/2002/07/owl#"
5 xmlns:owl11="http://www.w3.org/2006/12/owl11#"
6 xmlns : swr l="http://www.w3.org/2003/11/swrl#"
7 xmlns : swr lb="http://www.w3.org/2003/11/swrlb#"
8 xmlns : rd f="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
9 xmlns : rd f s="http://www.w3.org/2000/01/rdf-schema#">

10 <owl:Ontology rd f : about=""/>
11 <owl :C la s s rd f : about="#man">
12 <rd f s : subC la s sO f>
13 <owl :C la s s rd f : about="#human"/>
14 </ rd f s : subC la s sO f>
15 </ ow l :C la s s>
16 </rdf:RDF>

Figure 2.7: ACEView Protégé Plugin

Chapter 3

Proposed Approach

In order to address all mentioned key-activities (in Section 1.1) involved in the elab-

oration of the requirements document as well as the open issues related to each

activity, we propose an iterative and incremental MDE based process to RE. The

proposed process encompasses all the key-activities and focuses on the MDE’s Com-

puter Independent Model, since this model has the proper abstraction level to ex-

press the knowledge captured in the requirements document. The proposed process

defines a CIM model split in two viewpoints: (i) the client’s static view; and (ii) the

development team’s (static) view.

The following subsection explains our proposed models and shows how these

models and views are used to address the other mentioned RE open issues (Section

1.1). Then we will explain the process step-by-step and finally we will present the

project of a tool developed to help the process execution.

3.1 Proposed Models and Views

The adoption of our 2 layered representation for RE documents instantiates the

knowledge representation key-activity (Section 1.1). We argue that, due to its com-

plexity, the knowledge encompassed in RE cannot be fully expressed with a singled

view model. To deal with this expressiveness problem we propose a CIM organized

in two main abstraction levels, the client’s view and the development team’s

view. During the build of the proposed CIM we also considered that each of these

views can be naturally organized into behavioral or dynamic requirements and

static requirements. However, representing dynamic requirements are out of the

scope of this work.

3. Proposed Approach 32

In our approach, we have also proposed a mapping strategy between the client’s

and the development team’s views. Such mapping facilitates the communication

between the profiles involved at the software development process, thus addressing

communication issues, providing a trustable communication channel between teams.

The proposed mapping strategy is also able to trace dependencies between views,

making possible to follow the requirements throughout the development cycle, main-

taining metadata about the requirements elicitation process (stakeholder’s name,

subject and date of interview, etc.). Such capability addresses the traceability is-

sues. For instance, it makes possible to know, at a design phase, which stkeholder

has given information about certain entity.

Although we focus on the CIM model, the proposed process ends with the build-

ing of a Platform Independent Model. Again, we are focused only at the static

representation of the system. The PIM is composed by models that refine the de-

velopment team’s view models towards a detailed representation of the gathered

requirements. We propose the usage of UML Class diagrams to represent the PIM.

Figure 3.1 shows the proposed subdivision in 2 views of the Computer Indepen-

dent Model. Besides the CIM, Figure 3.1 shows our two PIM representation of the

system. The following subsections will explain each viewpoint in more details.

Figure 3.1: 4 Layered CIM and partial PIM

3.1.1 Client’s View

This view aims to build a representation of the knowledge gathered during the RE

process at an abstraction level that allows the client to understand such knowledge,

thus facilitating his/her active participation in the requirements validation process.

The main goal of this view is to enable the communication between the requirements

3. Proposed Approach 33

engineer and the client’s stakeholders. To achieve this goal, requirements are repre-

sented in this view through a natural controlled language. This approach is similar

to those proposed in [BdPL04, BLC+03].

The Client view is used to store the result of the execution of the knowledge

acquisition and representation key-activities in the proposed RE process. It intends

to represent the requirements of the system at the client’s stakeholders point of

view. Such knowledge is obtained by interviews. In order to build this view, one

can also use a set of documents used by the client’s employees during the execution

of the client’s business process, such as reports. Although, most of the time, these

documents have to be aligned with the NCL restrictions, so they will have to be

reviewed to use only NCL constructions.

Representing requirements with natural languages unburden the stakeholders of

learning specific RE modeling notations, which commonly are not part of their ex-

pertise. Therefore, the adoption of natural languages facilitates the communication

between stakeholders and requirements engineers minimizing potential misunder-

standings and misinterpretations. In our process, we used the ACE [FSS99] NCL.

The choice for an NCL based notation to represent the elicited requirements has a

positive impact on the communication issues, since it provides a common communi-

cation mechanism between client’s stakeholders and requirements engineers. More

specifically, our choice for the ACE controlled language was based on its expression

power, simplicity to use and learn and on the fact that it is also powerful enough to

represent the fundamental concepts used to specify requirements, such as entities,

relationships and restrictions.

Unfortunately, ACE does not have a defined traceability scheme, so in order to

deal with traceability issues we have added the tagging capability (to trace depen-

dencies) to the Attempto NCL. The tags are metadata used to mark sentences. It

allows one to keep track of when a statement was given, who made that statement

and what is it about (its subject).

The tags are kept through all the RE process. So, one is able to know what

concepts were added by each interview. For example, one is able to know that the

domain class client is related to the concept client that first appeared at an interview

with the business specialist at December 10, 1966.

The inclusion of the tagging mechanism at the ACE NCL was done by extending

its editor and its ontology metamodel, allowing the user to tag any sentence with

anything he/she wants and persisting such information. The tagging mechanism

is pretty generic and any kind of metadata information can be associated to the

sentences.

3. Proposed Approach 34

3.1.2 Development Team’s View

Commonly, the development team needs differ from both the clients and the RE

team needs. Motivated by the works in [KS06, BdPL03] we enumerated the most

common of these needs.

1. The need for a greater level of details in the requirements specification;

2. The need for a strategy to manage the complexity of requirements knowledge;

3. The need for tools that facilitate the access, authoring, reasoning, and search-

ing of the requirement’s knowledge;

Our proposed Development Team’s View fulfills all these needs. The first and

second needs are addressed by modularizing the requirements gathered in the client’s

view using different models that are expressive enough to refine such requirements

and, at the same time, are in an abstraction level close to NCL.

The benefits of a modular representation are well-known from many areas of

computer science and we use it, not only to support distributed development and

re-use (as it is commonly done in software engineering), but mainly to manage

the complexity of RE knowledge. Furthermore, modular representations potentially

increase the efficiency of reasoning about requirements.

The third need is achieved by using models based on languages that are supported

by standards bodies such as OMG and W3C1. Standardization efforts have been

producing specifications that are broadly implemented as tools provided by several

companies, many of them as open-source solutions.

For the development team view, we propose the use of ontologies, which allow

a high-level and precise representation of a given domain in terms of its concepts

and their relations. Moreover, it is possible to reason about a given ontology using

available reasoning mechanisms. More precisely, we propose the use of OWL to

model ontologies in this view. The adoption of ontologies to represent knowledge in

development team’s view addresses the key-activities of knowledge representation,

knowledge evolution and knowledge validation.

Within our proposed process one can build this view in a (semi-)automatic way,

having the client’s view as input. This mapping addresses communication issues,

allowing the requirements engineering team to communicate with the development

1http://www.w3c.org

3. Proposed Approach 35

team in a much simpler way, where the descriptions are (semi-)automatically mapped

to ontologies.

The evolution and change of the knowledge stored at an ontology can use well

stablished merging strategies, such as [SM01, SGP98, NM00]. The merging makes

possible to reuse part of or the entire previous version of the requirements definitions

(domain ontology), thus addressing volatility and evolution issues.

The use of reasoning mechanisms is crucial to execute merging tasks. Ontologies

allow one to reason about its contained knowledge. The reasoning is composed

by two activities. The first one is the consistency checking, where the reasoning

mechanism verifies if there is any individual breaking any class constraint (ABox

reasoning). For example: If it has been established that only old clients can withdraw

more than R$ 100,00 at an ATM, the following logical expression formalizes such

restriction

C = {∀x ∈ Clients ∃y ∈ Integer ‖ (withdraw(x, y) ∧ y ≥ 100) → x ∈ OldClients}(3.1)

Suppose that after that someone states that a new Client has withdraw more

than R$100,00 at an ATM, i.e.

C = {∃x ∈ Clients ∃y ∈ Integer ‖ (withdraw(x, y) ∧ y ≥ 100) ∧ x ∈ NewClients}(3.2)

Once we can assume that the NewClients and OldClients concepts are disjoint,

i.e. NewClients ∩ OldClients = ∅, one can infer from axioms 3.2 and 3.1 that

there is an individual that has violated the disjointness constraint of its containing

class.

The reasoning mechanism also verifies if any structural class constraint is broken

(TBox reasoning), for instance, if any disjoint class have descendants in common.

We will take the Pizza ontology [ND01] as an example it is a well known ontol-

ogy example and its implementation is distributed with the Protegé OWL editor.

At the example, the concepts of V egetableP izza and MeatP izza are disjoint i.e.

V egetableP izza ∩ MeatP izza = ∅. The concept V egetableP izza is defined as

“Every Pizza that has a VegetableTopping” i.e.

V egetableP izza = {∀x ∈ Pizza ∃y ∈ V egetableTopping ‖ hasTopping(x, y)}(3.3)

3. Proposed Approach 36

In a similar way, the concept MeatP izza is defined as “Every Pizza that has a

MeatTopping” i.e.

MeatP izza = {∀x ∈ Pizza ∃y ∈ MeatTopping ‖ hasTopping(x, y)} (3.4)

Suppose that after these definitions, one wants to define a HealthP izza that is

“Every Pizza that has both VegetableTopping and MeatTopping” i.e

HealthP izza = {∀x ∈ Pizza ∃y ∈ MeatTopping ∃z ∈ V egetableTopping ‖ (3.5)

hasTopping(x, y) ∧ hasTopping(x, z)} (3.6)

Using axioms 3.5, 3.4 and 3.3, one could easily infer that HealthP izza is both

a V egetableP izza and a MeatP izza i.e HealthP izza ∈ (V egetableP izza ∩
MeatP izza) what clearly breaks our constraint that V egetableP izza and MeatP izza

are disjoint concepts. Other constraint violations can also be revealed by the TBox

reasoning process, like break of domain-image integrity, cardinality violation, etc.

The previous example showed the importance of using a logical representation

for requirements. The adoption of ontologies deals with volatility issues, providing

tools to check if the requirements base is free of inconsistencies. Such tools can

be used when new requirements are added or when old requirements are reviewed

and consequently modified. The usage of these tools assures that modified or new

requirements don’t lead to an inconsistent knowledge base.

The second activity executed by the reasoner is the taxonomic classification,

where the mechanism uses the logical description of the concepts and their relation-

ships and infer new relations between concepts.

The choice for ontologies also makes possible to keep our trace dependencies

(knowledge tags). The tag information is stored at the ontology by means of their

annotation capability. The propagation of trace dependencies (i.e. the NCL tags)

is done automatically during the MDA transformation. The tags are stored in

ontologies annotations.

3.1.3 PIM

Finally, the last step of our RE process, aims to build a PIM, which is also composed

of two views, one that represents the static system’s view and another that represents

the dynamic system’s view. Again, the specification of the system dynamics is out

of this work’s scope.

3. Proposed Approach 37

Our specification proposal does not cover a full PIM generation. Still, we propose

to generate a PIM sketch composed of useful artifacts, that should help one to start,

more quickly a design phase. We do not claim this PIM to be complete. It contains

an UML class diagram, with the mapped entities and their relationships derived

from the domain ontology. This PIM is not considered complete due to the fact

that ontologies are not fully capable of keeping behavioral knowledge thus, our PIM

does not contain any behavioral information about the system.

The transformation process responsible for the PIM generation is also able to

keep the trace dependencies, making sure that the information provided during the

client’s interviews is still present at the PIM classes. Such information is used for

traceability purposes, helping to group the PIM classes, by subject, for instance. To

represent the requirements at the PIM static system’s view we propose a transfor-

mation that derives UML class diagram from ontologies, by using a metamodelling

model transformation technique. In this case, we developed the transformation using

ATL rules.

This model transformation technique, as we have already said, is based on the

idea of metamodels, where we should specify metamodels for the input and out-

put of the transformation. OMG has already specified the UML metamodel.We

have used the implementation provided by the Eclipse Modeling Framework - EMF

framework. Also, to facilitate the employment of these model transformation tech-

niques on ontologies, OMG has also defined the Ontology Definition Metamodel

- ODM [CRH+06], a metamodel to manipulate ontologies through metamodelling

transformations.We have used an ODM implementation in EMF provided by the

ATL transformation park2.

In Section 3.3.1.3 we describe the model driven transformation from ontologies

to UML class diagrams developed in this work.

3.2 Proposed process

The RE process that we have proposed follows the RE process definition stated by

Pressman [Pre05] and Sommerville [Som01] and it is divided in the following phases,

which are executed in an iterative way:

1. requirements elicitation and analysis;

2. requirements specification; and

2http://eclipse.org/m2m/atl/usecases/

3. Proposed Approach 38

3. requirements validation.

Our process intends to keep compatibility with legacy software processes that use

common RE approaches. And, although we have adopted the same phase structure

proposed in the literature, the activities executed during each phase were modified in

order to produce MDE artifacts by means of model transformations. Each phase is

conducted by specific actors. The following subsections present the roles responsible

for executing the process activities and the proposed process in detail.

3.2.1 Detailed Process

Each activity of our process is carried out by an specific actor. We have included

new actors to the set described at Pressman [Pre05, Som01], specially the Ontology

Engineer. The set of actors of our process is composed by:

• Requirements Engineer: collects information from the client and registers all

information that is useful for the system modeling.

• Ontology Engineer: responsible for analyzing, merging and validating ontolo-

gies.

• System Analyst: selects which information is relevant while specifying and

building a computational system.

The process with its artifacts is illustrated in Figure 3.2.

The first phase of our process is the requirements elicitation and analysis. The

activities placed into this phase are conducted by the requirements engineer and

his/her main goal is to gather system information from the stakeholders. Such

activities are: (i) gathering information from client’s stakeholders (activity 1, Figure

3.2), (ii) reviewing such information (activity 2, Figure 3.2), and (iii) specifying the

system’s behaviors (activity 3, Figure 3.2 - out of this work’s scope). The output

artifact of these three activities is a description of the system requirements in NCL,

represented in the proposed RE process as the Client’s definition of the system.

The information used during our ER process, like most of the software devel-

opment process, is collected through interviews with the client (activity 1a, Figure

3.2) or by analyzing a set of documents provided by the client (activity 1b, Figure

3.2). As we agued in Section 3.1.1 such documents should be reviewed in order to

get aligned with the NCL restrictions.

3. Proposed Approach 39

Figure 3.2: The proposed process (UML 2.0)

3. Proposed Approach 40

Often the interviews and documents provided by the client include unnecessary

information, so the relevant information has to be initially filtered in order to build

a consistent view of the system requirements. Activity 2 is responsible for accom-

plishing such goal. In this activity the requirements engineer builds a system’s

description in NCL. In order to provide traceability support, during this activity,

the requirements engineer must include metadata information about the process

of requirement acquisition, such as date of the interview, name of the interviewed

stakeholder and subject of the interview. These metadata information is stored as

tags at each sentence.

The second phase is the RE specification, where the models of the development

team’s view are built, i.e. the system’s domain ontology, which represents the domain

knowledge related to the system. The domain ontology model can be automatically

derived from the NCL descriptions by an ontology engineer (activity 3a.1), by means

of an MDE transformation. At our tool we used an MDE transformation written by

the Attempto project to build an OWL ontology from our ACE NCL descriptions.

First he/she has to build a partial ontology, which encompasses all the client’s

provided knowledge at the previous phase. To do so, the ontology engineer makes

use of an automatic ontology derivation mechanism, such as the Ace-to-OWL MDE

transformation provided by the Attempto project, which we have incorporated into

our process’ support tool. Such transformation uses NCL as input and builds an

OWL ontology from it.

After building the partial ontology, the ontology engineer can reuse some previ-

ously defined knowledge base (activity 3a.2), through an ontology merging operation.

This predefined ontology may have been built on previous interactions of the pro-

cess, by means of automatic NCL to ontology MDE transformations. This ontology

can also be a well-known domain ontology used to represent a specific aspect of the

system, for example: a monetary ontology to represent monetary concepts. Such

reuse is not mandatory (however it is encouraged) and the process can go on with-

out any ontology merging. In this case, the partial ontology is promoted to domain

ontology.

By the end of the second phase, the CIM view will be complete and ready to

be validated. The third phase of the proposed process is the the requirements val-

idation that aims to find inconsistencies or conflicts at the requirements knowledge

base. To accomplish this goal, we propose a (semi-)automatic approach that uses

inference mechanisms implemented by reasoners. During the validation phase, two

types of inconsistency can be found: inconsistencies between facts (individuals) and

structural rules (concepts and relations) i.e. ABox inconsistencies; and inconsis-

3. Proposed Approach 41

tencies between concepts and relations constraints (constraints violations) i.e. TBox

inconsistencies.

If the first case occurs, the inconsistent knowledge base becomes useless (it be-

comes locked) until the conflict is solved. This happens because most of the reasoners

are unable to reason in this kind of inconsistent knowledge base. So, by consequence,

the process also becomes locked, i.e. it enters at a loop and only leaves the loop

if the knowledge base becomes unlocked again, which means that the problem is

fixed. The process becomes locked because inconsistent requirements were discov-

ered and any generated artifact from inconsistent requirements has no guarantee of

being consistent.

In order to solve this kind of inconsistency, the descriptions written in NCL must

be reviewed. The requirements engineer should look for stated facts that caused the

inconsistency and discard them (activity 4.2, Figure 3.2).

For example, the statement “Tom is a man.” reveals the Man concept. However,

the Tom (single and specific) individual does not tell much about the system’s

domain and once this statement has been processed, the concept Man has been

added to the knowledge base, so the Tom individual can be removed without causing

any further damage to the knowledge base. The track of the conflicting sentences

is helped by the traceability scheme implemented at the supporting tool. After

the validation of the ontology by the reasoner, the requirements engineer can track

down the conflicting individuals and discover which are the sentences they belong to.

After selecting the conflicting individuals and reviewing their conflicting sentences,

the ontology engineer can successfully remove them. Suppose, for instance, that one

has gathered the following information from a client’s stakeholder:

1. Every man is a human.

2. Every human has a last name.

3. Tom has no last name.

4. Tom is a man.

After that, the ontology engineer fed the reasoner with the ontology generated by

such set of sentences. The reasoner must answer that such ontology is inconsistent

and as a matter of fact that’s what it does. It presents the error message displayed

at Figure 3.3 to the user.

3. Proposed Approach 42

Figure 3.3: Message given by the Reasoner while trying to reason at an inconsistent

ontology

After that, the ontology engineer can use the NCL editor to view where each

individual is used, i.e. at which sentence the name of the individual is used. Figure

3.4 shows the NCL editor. One can see that the individual Tom, selected at the left

panel was used at both sentences: “Tom has no last name.” and “Tom is a man.”.

The origin of the conflict is in the fact that “Every man is a human.” and “Every

human has a last name.”, but “Tom is a man.” and “Tom has no last name.”. The

tool then highlights the sentences in which the Individual Tom is cited, helping the

ontology engineer to discover what are the conflicting sentences.

Figure 3.4: NCL editor showing conflicting sentences

Following our process, the ontology engineer would remove the Tom individual

and re-run the reasoner, but at this time no error message is received. Also, no

concept has been lost. And thanks to the traceability scheme one is able to track

which conflicting individual is used at each sentence and vice-versa.

If the second case of inconsistency occurs, the requirements engineer should con-

duct a new interview with the client’s stakeholder, whose descriptions resulted in

inconsistencies. The identification of such stakeholders can be done by using the

traceability scheme implemented at the supporting tool. It provides means to iden-

tify who is the stakeholder and when he/she has given the conflicting statement.

The engineer can, additionally, collect a new set of documents. After solving the

3. Proposed Approach 43

conflict the process cycle should start all over, but at this time, the static knowledge

already specified in the previous iterations can be merged with the new knowledge.

This kind of inconsistency allows one to continue adding knowledge to the re-

quirements base (it does not become locked), but the conflicting concepts are inval-

idated. The reasoning process classifies them as subclasses of the Nothing concept,

which is an special ontology class that allows its sub-concepts to be inconsistent.

Since the requirements base did not become locked, the RE engineer can add

new knowledge to it. The invalid concepts should be treated by further MDE trans-

formations (e.g the PIM generation transformation). At our tool, the sub-concepts

of the nothing concept are just ignored during the PIM generation.

The use of the reasoner during the validation phase also has the power to dis-

cover new relationships of type is-a between the concepts, during the process of tax-

onomic classification. These relationships are built based on inference rules executed

against the domain ontology’s concepts (i.e. ontology classes) and their constraints

that were defined by the NCL declarations and transformed into ontology’s suffi-

cient constraints. These constraints are typically built for sentences that start with

“Every” or “Everything” and define new concepts from old ones or object properties.

For example: suppose that at a medical domain scenario a stakeholder declared that

“Every person that has a disease is a patient.”, where the concept patient is defined

in function of the has property, with disease as its image. i.e.

C = {∀x ∈ Person ∃y ∈ Disease ‖ has(x, y) → x ∈ Patient} (3.7)

Afterwards, another stakeholder states that “Every victim is a person and every

victim has a disease” i.e.

V1 = {∀x ∈ V ictim ‖ x ∈ Person} (3.8)

V2 = {∀x ∈ V ictim ∃y ∈ Disease ‖ has(x, y)} (3.9)

Thus, during the taxonomic process, the reasoner can infer, based on axioms 3.7,

3.8 and 3.9 that “Every Victim is a Patient” i.e.

P = {∀x ∈ V ictim ‖ x ∈ Patient} (3.10)

The next activity of our RE process is the (partial) PIM generation, which is not

commonly included within traditional RE processes. We consider this phase as a

3. Proposed Approach 44

transitional phase to the next development software phase. The goal of this phase is

to automatically build a useful artifact for the design phase of software development

life cycle. The PIM generation is carried on by a system analyst that executes

model-driven transformation taking as input the RE knowledge bases generated in

the developer team’s view, producing the PIM. We believe that, at a MDD-based

process, the PIM generation activity should also take the system’s dynamic definition

as input, although this functionality is out of the scope of this work.

3.3 Tool Support

In this section we will explain the architecture and functionalities of the tool that we

have implemented. Also we will relate its parts and functionalities with the proposed

process.

To support the proposed process we have used and extended a few tools. Each

tool plays an important role at the process execution. We have modified our process

activity diagram to show where and when each tool is used. The modified diagram

can be seen at figure 3.5.

The first applied tool was ACEView and such tool is used as an NCL editor, so

every interaction with the NCL descriptions occurs through the ACEView plugin.

It is first used at activity 2, when the requirements engineer searches throughout the

descriptions and documents provided by the client for relevant information about the

system. We have extended the ACEView to add the tagging capability in order to

implement our interview traceability scheme. These modifications have the purpose

of fully aligning the tool with the proposed RE process. Our extensions enable

grouping NCL statements by interviews, which represent the artifact generated as

output of activity 2 in Figure 3.2. Also, the tagging feature provides traceability

information, indicating which interviews brought each piece of knowledge up, thus

addressing traceability issues.

The requirements engineer uses the editor to mark each NCL statement with a

set of tags that identifies the interview to which the sentence belongs to. To encap-

sulate an interview we have proposed a structure called Subject-Date-Stakeholder

- SDS, which is composed of information (tags) about the requirements elicitation

process (date of interview, name or role of Stakeholder and subject of interview).

For example: suppose that at April first, 2009 the requirements engineer interviewed

a security analyst from a certain company in order to collect information about the

user control subsystem. So, the SDS tags for this situation would be: “User Control”,

“1/4/2009” and “Security Analyst”.

3. Proposed Approach 45

Figure 3.5: Proposed Process with specification of Used Tools

3. Proposed Approach 46

The SDS object must be filled for each sentence. The set of sentences marked

with the same SDS composes a complete interview. The designed tagging capability

is very extensible and generic. The RE engineer is able to include any kind of

information into each sentence. Such design choice makes possible for one to extend

our solution providing new capabilities, for example, making possible to add support

for document storing, where such document can be provided by the client or a

transcription or even the audio record of the interview process.

After the definition of the sentences by the requirements engineer, an ontology

engineer builds the domain ontology from such descriptions. He uses the ACE Parser

Engine - APE, developed and provided by the Attempto project to transform the

textual description into ontology concepts and properties. This is the first MDE

transformation addopted at our tool.

Assuming that we already have a domain ontology, we addopted the Pellet rea-

soner to validate it. The ontology engineer is able to use any reasoner he/she finds

suitable. We also have made a few tests with the Fact++ reasoner and it showed

the same results, so, as far as we have tested these two are interchangeable for the

validation activity.

After the validation activity the System Analyst is able to select the relevant

information from the domain ontology. We have chosen to use the Protégé editor for

ontologies for its popularity, simplicity to use and source code availability. Also it is

the base platform for the ACEView editor. It presents a simple to understand event-

driven interface that helped us understing the ACEView design when we needed to

modify it.

Finally, we have implemented a series of ATL transformations to build our PIM

from the OWL ontology. Such transformations automatize the mapping between

the CIM and PIM views. Since this mapping occurs at an automatic way, once our

transformation rules are well defined, the same behaviour would be applied to every

entity at the input model. The adoption of this automatic approach helps deal-

ing with communication issues since it defines an uniform mapping for the entities.

We have chosen the ATL model transformation language to implement these trans-

formations because of its maturity level and active development community. This

transformation based approach also helps dealing with traceability issues. We have

defined our transformation in a way that no interview trace goes missing during the

mapping process. The transformation rules guarantee that the PIM will also carry

those traces.

Bottomline, the implemented MDE transformations map the NCL statements of

an interview into a set of ontologies concepts (or entities) and their relationships.

3. Proposed Approach 47

Later, these ontologies are transformed into classes at the PIM class diagram. The

transformation workflow was defined by using specific Ant tasks provided by the

AM33 eclipse project. We have built an Ant build that reads the input models (OWL

files and ODM XMI models), its metamodels and executes the transformation.

The Figure 3.6 shows a screenshot of our modified tool.

Figure 3.6: The New ACEView

3.3.1 Proposed tool architecture

Figure 3.7 shows the architecture of the implemented RE tool, which delivers the

following functionalities to the users in order to provide support for the proposed

process:

1. reading of descriptions written in NCL. The ability of reading NCL descriptions

is important to provide support for activities 2 and also activity 3 at our

process.

2. transform NCL descriptions into ontologies and validate them. This require-

ment makes possible to implement activity 3 of our process.

3http://www.eclipse.org/gmt/am3/

3. Proposed Approach 48

3. parsing ontologies files and building ontology models. This is the first step on

the transformation from the CIM into the PIM. The ontology model represents

the ontology by means of model description techniques. Such transformation

is needed in order to execute the ATL model transformation rules. We had

to make a little modification at the ontology metamodel, which describes the

ontology itself. We have introduced the Tag concept at it. This functionality

is required in order to implement the support for activity 6 of our process.

4. applying transformation rules to build UML models from ontology models.

This is the second step needed to build the PIM from the CIM. Thus, it is

needed to implement support for the activity 6 of our process.

Figure 3.7: RE Tool’s Architecture (UML 2.0)

The components in Figure 3.7 are organized in UML packages according to their

responsibilities. Following we explain the responsibility of each package.

3.3.1.1 NCL package

This package provides features to edit and parse textual descriptions as well as

build ontologies from such descriptions. It implements the required support to the

activities 2 and 3 from our process. Its main components are the ACE Parser and the

ACEView Editor plugin, which we have extended, by adding the tagging capability.

The plugin takes the clients NCL descriptions as input and uses the Attempto

Parser Engine - APE for parsing them. The APE’s main functionality is to execute

3. Proposed Approach 49

the first MDE transformation whose goal is to convert textual descriptions into

OWL files. APE also provides a function that converts OWL ontologies into textual

descriptions. Both functionalities are available via Web Services [FKK08b].

The NCL package functionalities are mainly used at the requirements elicitation

and analysis phase (activity 2 in Figure 3.2.). It also aids the specification phase

of our process, more precisely at activity 3a.1 in the building of the partial domain

ontology. The language parser and the basic editor are provided by the Attempto

Project4.

In the proposed process, textual descriptions are produced by using the ACE

language’s editor of the AceView. The plugin defines a set of views that aid users to

write their ACE descriptions. The editor is mainly composed by visualization and

domain components. Figure 3.8 shows the main domain classes of the ACEView.

The classes ACETextManager, ACESnippet, and ACEText had to be modified in or-

der to implement the tagging of sentences feature. The class SDS was completely

implemented in the context of this work the rest of the classes were implemented by

the Attempto Project. Following we will explain each one of them.

Figure 3.8: Main Classes of the ACEView Domain

The ACESentence class is used to record each sentence declared by the user

4http://attempto.ifi.uzh.ch

3. Proposed Approach 50

of the editor. This class is responsible for inspection operations on the Sentences

objects, such as the isQuestion() operation that answers if the target sentence is

a question.

The ACESentence stores a sentence as a set of ACETokens, which are the smallest

part of a sentence and are built from a common String, by the ACETokenizer class.

An ACEToken can be a verb, a preposition, punctuation or any of the elements

described in Section 2.

The ACESentences are grouped into ACESnippets, which may contain a set of

sentences given by the user of the plugin. The ACESnippet is important, since each

statement given by every stakeholder may be composed by one or more sentences,

e.g. the composite sentences presented in Section 2. The ACESnippet is composed by

a set of sentences, and we added a set of tags and a SDS object, which represents the

requirements elicitation process information (stakeholder’s name, date and subject).

The ACESnippet’s set of sentences is built by the ACESentenceSplitter which

receives a String, converts it into phrases, then, each phrase is used to build an

ACESentence composed by a set of ACETokens.

The ACESnippets are grouped into an ACEText, which is responsible for storing

all sentences, be them simple or composite ones. It maintains an instance of the

current ACESnippet which is being edited (selectedSnippet property in Figure

3.8). To organize the snippets into the ACEText, it uses a comparator object, the

SnippetComparator, which serves mainly to check if a new provided snippet has

already been registered. Also, the ACEText maintains a set of Maps in order to

group sentences by several criteria and optimize searches within the ACESnippets.

The entityToSnippets SortedMap, for instance, helps relating each one of the

ontologies entities to the set of Snippets into what they have been cited. The same

principle applies to the sentenceToSnippets, which maps a sentence to a set of

snippets in what it has been declared. We added a new map to this class, the

tagsToSnippets, which relates a tag to all Snippets marked with such tag.

The ACE parser engine has an additional feature that makes possible to para-

phrase a sentence, which is another way to express the content of each sentence

(composite or simple) by means of other sentences. In the diagram in Figure 3.8

this feature is represented by the two relationships between ACESnippet and ACE-

Sentence, named para1 and para2.

All operations related to ACEText edition are done by a service class named

ACETextManager, which is responsible for accessing the parser webservice, storing

3. Proposed Approach 51

and finding within the ACETexts. Following we will enumerate the main operations

of the ACETextManager and discuss its usage:

1. createACEText(): responsible for creating the ACEText. It receives an URI,

provided by the user that identifies the underlying ontology;

2. getActiveACEText(): returns the ACEText which is currently being edited;

3. add(): adds the ACESnippet given as a parameter to the current active ACE-

Text;

4. remove(): removes the ACESnippet given as a parameter from the current

active ACEText;

5. addSentences(): adds a set of sentences (simple sentences), given as param-

eters, to the current active ACEText;

6. removeSentences(): removes a set of sentences (simple sentences), given as

a parameter, from the current active ACEText;

7. createOntology(): creates the underlying ontology;

8. createACETagAnnotation(): the provided tags into the underlying ontology

as an ontology Axiom Annotation;

9. parse(): parses the current active ACEText into an OWL file, by acessing the

APE webservice;

We have also extended the editor with new views that help the traceability

scheme of requirements and execution of MDE transformations. We have organized

these views into a new Protégé ontology tab, called RE View Tab. Figure 3.9 shows

a class diagram that lists the components of the new developed views. The class

ACESnippetEditor was modified to add the tagging capability. The classes Val-

idationView, REViewTab, ClassesByTagsView, ACESubjectIndexViewComponent,

ACEStakeholderIndexViewComponent, and ACEDateIndexViewComponent are en-

tirely new components. The other class was provided by ACE and did not suffer

any modification. Following we will discuss the purpose of each one of this views,

along with screenshots from the tool.

1. ACESnippetEditor: this component is used to create, remove and edit ACE-

Sentences. It should also be used to enter the user defined tags and the SDS

tags (subject, date and stakeholder’s name). This view is composed of a list

3. Proposed Approach 52

Figure 3.9: ACEView new Views

of all given sentences (a); edition fields to modify the sentences and a set of

components that helps the user to inspect each sentence (b), like the list of

tags used to mark such sentence (c), for instance. Figure 3.10 shows such

component;

2. ACEIndexViewComponent: this component groups the snippets by the entities

cited on them. Figure 3.11 shows such component;

3. ClassesByTagsView: this view groups the ontology classes by which tags mark

them; Figure 3.12 shows such component;

4. ACESubjectIndexViewComponent: this component groups the snippets by the

subject tag which marks them. This component can be seen at Figure 3.13;

5. ACEDateIndexViewComponent: This component groups the snippets by the

date tag which marks them. It can be seen at Figure 3.14;

6. ACEStakeholderIndexViewComponent: This component groups the snippets

by the stakeholder tag which marks them; Such component can be seen at

Figure 3.15;

7. ValidationView: this view provides the functionality to check the consistency

of the underlying ontology and in case there are conflicting concepts it shows

the snippets which contain them, classified by subject and date tags, as can

be seen at Figure 3.16;

3. Proposed Approach 53

Figure 3.10: ACEView’s ACESnippetEditor

Figure 3.11: ACEView’s ACEIndexViewComponent

Figure 3.12: ACEView’s ClassesByTagsView

3. Proposed Approach 54

Figure 3.13: ACEView’s ACESubjectIndexViewComponent

Figure 3.14: ACEView’s ACEDateIndexViewComponent

Figure 3.15: ACEView’s ACEStakeholderIndexViewComponent

3. Proposed Approach 55

Figure 3.16: ACEView’s ValidationView

3.3.1.2 Ontology package

This package is responsible for providing the infra-structure (i.e. metamodels and

transformation files) needed to build a model representation of the domain ontology

(output artifact activity 3a, 3.2). Such representation is necessary to implement

the MDE transformation process executed in the PIM generation phase of our RE

process (activity 6 of our process).

To formally define the ontology model representation, we have used an OWL

metamodel, which describes the allowed elements of domain ontologies. We have

chosen to use the Ontology Definition Metamodel - ODM [CRH+06], since it is

specified by the OMG and it is considered a standard ontology metamodel.

At our implementation we made a slight modification at ODM, by introducing

the Tag concept, which is responsible for keeping the information about the source

of the provided knowledge (interviews), for traceability purposes. Such modification

and the simplified metamodel can be seen in Figure 3.17. The metaclass Ontolo-

gyElement was at the original version of ODM and was modified to add the tagging

capability. Also, we introduced the Tag concept. The other metaclasses were reused

from the ODM definition.

This package also provides a parser for reading the OWL files. We have im-

plemented this parser using a set of ATL rules that are executed against the XML

3. Proposed Approach 56

Figure 3.17: The modified Ontology Definition Metamodel

metamodel (provided by the XML package), which can be seen in Figure 3.18.

These rules build an ODM model that is saved into a XMI file. We adopted the

OWL ontology as the format accepted by our parser, since this representation is rec-

ommended by the W3C consortium. It is the reference specification used to specify

OWL ontologies.

In order to construct the OWL parser we have implemented a library to process

XML and OWL files. Such library provides common XML processing operations and

OWL specific operations. These operations were designed to run against a DOM5

XML processing model and are available as ATL helpers that can be used within any

XML or OWL file. Following we will list the most important operations. We will

use the ATL terminology to specify the parameters and return values types. The

ATL rules format uses an exclamation point to separate the metamodel from its

contained metaelement referred by the rule, i.e. METAMODEL!METAELEMENT.

• getAttribute(): this operation returns the value of the attribute given as a

parameter or returns an empty String if this attribute does not exist;

• getText(): returns the text child activity belonging to the activity whose

name was given as a parameter;

5http://www.w3.org/DOM

3. Proposed Approach 57

Figure 3.18: The XML Metamodel

• getOWLClass(): searches within the main ontology for the class whose name

was given as a parameter and returns it or returns OCL!Undefined if such class

does not exist;

• isOwlClass(): checks if the provided XML!Element represents an OWL!Class;

• isOwlThing(): checks if the provided OWL!Class is the owl:Thing named

class, from which all OWL!Class descend;

• getAllOwlClasses(): returns all OWL!Class; and

• getTag(): searches within the provided ontology for the OWL!Tag element

whose named was given as a parameter and returns it, or returns OCL!Undefined

if such tag cannot be found.

The transformation file is composed of the following transformation rules:

• rule Root2Ontology: this rule builds an OWL!Ontology from the XML!Root

element;

• rule Class: this rule builds OWL!Class elements from XML!Element instances,

which represent elements of OWL!Class and are not owl:Thing ;

• lazy rule buildTag(): this rule is called inside the Class rule after checking

if already exists an OWL!Tag with the name caught at the owl annotation that

references the OWL!Class, which is being built. If it is the case that such tag

does not exist, this rule creates one and returns it; and

3. Proposed Approach 58

• rule ObjectProperties: this rule is responsible for creating OWL!ObjectProperty

elements, which represent a property that connects two sets of concepts (i.e.

OWL!Class elements) by means of the domain and range attributes.

3.3.1.3 ATL package

This package contains the core components responsible for executing the last phase

of the proposed RE process, the PIM generation (activity 6, Figure 3.2). Such

components are responsible for applying the MDE transformation rules to build

UML class models from ODM models.

To do so, we have implemented a set of transformation rules in ATL to convert

ODM entities and properties into UML class models:

• rule Ontology2Package: this rule transforms the main ontology into a root

package that will contain all the elements in the UML model;

• rule OWLClass2UMLClass: this rule transforms an OWL!Class into an UML!Class

keeping its properties and super-classes;

• rule OWL2UMLProfile: this rule creates a new profile for the main ontology in

the ODM model. Such profile is used to group the stereotypes that identify

which interview defined the entities used to built such class;

• lazy rule Tag2Stereotype: this rule is called to build a new UML!Stereotype

from each tag. Then, the stereotype is applied to the UML!Class which corre-

sponds to the source OWL!Class;

• rule ObjectProperty2Property: this rule transforms the OWL!ObjectProperty

to an UML!Property;

3.3.1.4 UML and XML

These packages contain the UML and XML metamodels and are used along with

the ODM metamodel to transform ODM into UML. The XML metamodel is used

to build ODM models from XML files and was already presented in Figure 3.18.

We adopted OMG UML2 (v.2.1). Its metamodel was built using the EMF and

it is available at the eclipse UML2 project6. Following we will present a diagram in

Figure 3.19 that illustrates the UML metamodel main elements which were used in

our transformation.
6http://www.eclipse.org/uml2

3. Proposed Approach 59

Figure 3.19: The UML Metamodel

Chapter 4

Case Study

We have conducted a case study to illustrate the execution of our process, showing its

application and benefits. Our case study models the Health Watcher system (HW),

a well-known testbed adopted by the AOSD Europe 1, whose goal is to register

complaints about the public health system and also be used as guide to the public

health care system, describing health units, and their specialties.

The system registers three kinds of complaints: animal-complaint, special-complaint

and food-complaint. Each complaint has a set of data to identify the occurrence. The

system also keeps track of each health unit and which diseases are treated by them.

The HW system is used to validate Aspect-Oriented projects and initiatives and

we have chosen it because of the availability of documents describing its requirements

and use cases. We have extended its specification to describe requirements related to

the security aspects. Also, we have added information about the pharmacy, medical

procedure and health unit staff (doctors, nurses, etc.) to the systems specification.

After this extension, it has an appropriate domain size and the newer use cases

specifications can show all the benefits of our process.

The complete description of the system can be found at [SLB02]. The system

has several specification documents and 7 implementations. Each one adds new

aspects to the system. All 7 versions share the same domain. We have compared

this domain with the PIM generated by our tool. In order to obtain the domain we

used the source code and a reverse engineering tool. We have compared the concepts

one by one and such comparison showed that our process was able to capture all the

concepts described at the previous domain version. From now on, we will refer to

the domain obtained from the reverse engineering process as “Old Domain”.

1http://www.aosd-europe.net

4. Case Study 61

We adopted a Goal/Question/Metrics (GQM) approach [BCR94] to analyze the

case study. Such analysis evaluates the process’ effectiveness while dealing with

the remaining open issues explained in Section 1. So, our evaluation provides a

quantitative study divided according to the following RE open issues presente in

section 1:

1. Scope Definition issues;

2. Communication issues;

3. Knowledge Validation issues; and

4. Traceability Scheme issues.

4.1 The Goal/Question/Metrics plan

The GQM approach is based upon the assumption that to measure software aspects

in a purposeful way, an organization have to define the goals for itself or its processes;

then it should map those goals to the data measures that intend to define them at

the operational level, and provide a framework to interpret the collected data with

respect to the stated goals [BCR94].

GQM is a top-down approach to establish a goal-driven measurement system for

software development. The approach is divided into three layers: the organizational

goals which defines measurement goals (conceptual level); the questions to address

the goals (operational level); and the metrics that provide answers to the questions

(quantitative level). Figure 4.1 illustrates the GQM paradigm and its division in

levels as it was proposed by its authors [BCR94].

The usage of the GQM started with the process of evaluating defects of a set of

projects at the NASA Space Flight Center [BW84]. Although the process was first

designed to be used in order to evaluate particular goals at an specific project con-

text, it has been expanded to broader contexts and goals [BCR94]. It is a widespread

method to gather reliable empirical data and knowledge about an organization’s

software practices to drive systematic process improvements.

GQM is particularly useful for the following purposes [Wal05]:

• Understanding and baselining software practices of an organization;

• Guiding and monitoring software processes;

4. Case Study 62

Figure 4.1: The GQM paradigm level division [BCR94]

• Assessing new software engineering technologies; and

• Evaluating and certifying improvement activities.

The result of the application of the GQM approach is the specification of a

measuring system targeting a particular set of issues and a set of rules for the

interpretation of the collected measurement data [BCR94].

Basically, the literature [BCR94, Wal05, BW84] describes the GQM as a six step

process. The first three steps are used to identify the right metrics by means of

measurement goals, whose definition is guided by the organization business goals.

The last three steps define ways to collect the measurement data and use it do drive

decision making and process improvements [Wal05] Following we will list the GQM

six-step process [Bas05]:

1. Develop a set of corporate, division and project business goals and asso-

ciated measurement goals for productivity and quality;

2. Generate questions that define those goals as completely as possible in a

quantifiable way;

3. Specify the measures needed to be collected to answer those questions and

track process and product conformance to the goals;

4. Develop mechanisms for data collection;

5. Collect, validate and analyze the data in real time to provide feedback

to projects for corrective action; and

4. Case Study 63

6. Analyze the data in a postmortem fashion to assess conformance to the

goals and to make recommendations for future improvements.

GQM process starts with the definition of some measurement goals (conceptual

level in Figure 4.1). Such definition is guided by the organization business process

goals. After the definition of the measurement goals, the process team (project

managers, development team, process analyst etc.) should define a set of questions

(operational level in Figure 4.1) to further clarify and refine the goals. Such questions

are used to describe the goals in a quantitative way [Bas05].

After the definition of the questions, the process team establishes metrics that

will provide answers to the questions (quantitative level in Figure 4.1). What distin-

guishes GQM from other measurement paradigms [PKCS95, KN05, PWCC95] is its

hierarchical tree structure used to maintain the relationships among goals, questions

and metrics as one can see in Figure 4.1 [Wal05].

After the establishment of the appropriate metrics to answer the posed questions,

the last three steps of the GQM process are concerned with how the metrics are going

to be used in a way that ensures that the goals are going to be acquired. Most of the

works in GQM [Bas05, BCR94, BW84, Wal05] discuss the importance of defining

how the data are going to be collected and, more important, how the collected data

should be organized and presented in order to maximize their value to the process

team that will interpret the results in relation to the goals. The data measurement

is very important and the bad use of it is described as the primary cause of failure

in metric based process improvement and analysis programs [Wal05].

We followed the six-step GQM process proposed by [Bas05] in order to define our

process improvement and analysis program to analyze and evaluate the effectiveness

of the process that we proposed. Also the same program was used to analyze and

evaluate the effectiveness of the tool that we’ve designed and implemented.

The first activity of the GQM process intends to define the measurement goals

according to some business goals. Our main business goal is to prove that our process

is effective while dealing with RE open issues (Section 1). So, we have defined four

main measurement goals for our GQM plan and they were used to indicate that our

process and tool are effective while dealing with RE open issues presented in Section

1.

Table 4.1, describes our measurement goals in order to evaluate our proposed

process and tool. The descriptions of the measurement goals were written according

to GQM template in [Wal05]. The data will be collected from the case study ex-

4. Case Study 64

plained at the very beginning of this Section. The details related to the case study

and process execution can be found at Section 4.3.

Table 4.1: The GQM Measurement Goals

GQM Measurement Goals

First Goal To Analyze the usage of the proposed process and tool in a re-

quirements engineering phase of a software process;

For the purpose of evaluating their usage effectiveness in real

software development;

With respect to dealing with the scope definition issues presented

in Section 1;

From the viewpoint of requirements engineer and clients stake-

holders;

In the context of information system development process.

Second Goal To Analyze the usage of the proposed process and tool in a re-

quirements engineering phase of a software process;

For the purpose of evaluating their usage effectiveness in real

software development;

With respect to dealing with communication issues (Section 1)

among teams involved in the software development process;

From the viewpoint of requirements engineer and the software

design team;

In the context of information system development process.

Third Goal To Analyze the usage of the proposed process and tool in a re-

quirements engineering phase of a software process;

For the purpose of evaluating their usage effectiveness in real

software development;

With respect to dealing with requirements validation and evolu-

tion issues (Section 1);

From the viewpoint of requirements engineer, the software de-

sign team and client’s stakeholders;

In the context of information system development process.

4. Case Study 65

Fourth Goal To Analyze the usage of the proposed process and tool in a re-

quirements engineering phase of a software process;

For the purpose of evaluating their usage effectiveness in real

software development;

With respect to dealing with traceability issues (Section 1);

From the viewpoint of requirements engineer and the software

design team;

In the context of information system development process.

It is worth noting that the evaluation of the case study is not concerned with

measuring the productive gain and/or the quality improvement obtained while using

the RE process and tool.

Following, at Tables 4.8, 4.9, 4.10 and 4.11 we will present a set of questions

and measures that describes the goals defined to indicate the process effectiveness

against each one of the RE process open issues presented in Section 1.

Table 4.2: GQM for Scope Definition Issues

Scope Definition Issues

Question Metrics Observations

What is the difference

between the number of

entities at the HW

domain generated using

our process and the old

domain, i.e. previous

AOSD implementations

(Enew−old)?

Nenew = Number of En-

tities at the Domain On-

tology.

This question intends to

compare the data

between the new version

of the HW and the older

one in order to

characterize the process

and tool’s capability of

discovering entities at

textual descriptions.

Neold = Number of Enti-

ties at the Domain of the

HW previous version.

Enew−old = Nenew −
Neold

4. Case Study 66

What is the average

number of entities per

interview (Nepi)?

Ne = Number of entities

at the domain ontology.

This question intends to

characterize the process’

capability of isolating

the entities provided at

each interview. This

number can also be used

to evaluate the interview

process.

Ai = Total Amount

of interviews with client’s

stakeholders.

Nepi = Ne
Ai

What is the highest

number of entities per

subject tag (Nepsu)?

Nej = Number of enti-

ties at the domain ontol-

ogy marked with the jth

subject tag.

This question intends to

characterize the process’

capability of isolating

the entities related to

each subject. This

number can be used to

evaluate the complexity

(based on the number of

entities) of each part of

the system concerned

with a certain subject.

These numbers are

compared among them

and the highest one

indicates the subject

with the highest number

of entities (and the

highest complexity)

As = Total Amount

of subject in interviews

with the client’s stake-

holders.

Nepsu = Max(Nej
As

),

being j = 1...n where n

is the last subject tag.

What is The number of

the inferred relationships

(Ninfe)?

Ninfe = Number of enti-

ties moved after the tax-

onomic classification.

This questions helps

describing the process

capability of discovering

relationships between

the entities.

4. Case Study 67

Which stakeholder was

involved at the larger

number of conflicts (Sc)?

As = Total amount of

sentences.

This question intends to

characterize the ability

of the process of

discovering which

stakeholders make a

high number of mistakes

in his/her specifications.

Sci = Total amount

of conflicting sentences

given by the ith stake-

holder.

Sc = Max(Sci
As

), where

i = 1...n, being n the to-

tal amount of stakehold-

ers.

What is the average

number of sentences

removed after the

validation activity

(Naer)?

Ns = Number of sen-

tences at the client’s in-

terviews.

This question intends to

evaluate the applied

interview techniques. A

low number represents a

high number of

inconsistent sentences at

the interviews.

Ars = Total Amount of

Sentences removed after

the validation activity.

Naer = Ns
Ars

Table 4.3: GQM for Communication Issues

Communication Issues

Question Metrics Observations

What is the amount of

the removed entities at

the PIM generation

Phase (Epim−domain)?

Nedomain = Number of

Entities at the Domain

Ontology.

This question helps to

characterize the amount

of data mistakenly

captured as entities

instead of primitive

properties.

Nepim = Number of En-

tities after the PIM gen-

eration.

4. Case Study 68

Epim−domain = Nepim −
Nedomain

What is the average

number of PIM classes

per domain ontology

entities (Ncpe)?

Nc = Number of PIM

classes.

This question intends to

characterize the process’

capability of mapping

discovered entities into

PIM classes.

Ne = Number of entities

at the domain ontology.

Ncpe = Nc
Ne

What is the average

number of inconsistent

entities per number of

removed sentences to fix

such inconsistencies

(Niprs)?

Nic = Number of incon-

sistent concepts at the

domain ontology.

This question intends to

characterize the amount

of inconsistent

knowledge at the

requirements base. A

high number means that

very little work was

done at the system’s

descriptions in order to

solve the requirements

knowledge

inconsistencies.

Nrs = Number of re-

moved sentences to solve

the ontology’s inconsis-

tencies.

Niprs = Nic
Nrs

What is The number of

the inferred relationships

(Ninfe)?

Ninfe = Number of enti-

ties moved after the tax-

onomic classification.

This questions helps de-

scribing the process/tool

capability of discover-

ing relationships between

the entities. Relation-

ships that, otherwise,

would remain undiscov-

ered thanks to communi-

cation problems.

4. Case Study 69

Table 4.4: GQM for Requirements Validation Issues

Requirements Validation Issues

Question Metrics Observations

Which stakeholder was

involved in the highest

number of conflicts (Sc)?

As = Total amount

Number of sentences.

This question intends to

characterize the ability

of the process of

discovering which

stakeholder has made

more mistakes in his/her

descriptions. It can be

used to classify/identify

irrelevant stakeholders

to the software building

process.

Sci = Total amount

of conflicting sentences

given by the ith stake-

holder.

Sc = Max(Sci
As

), where

i = 1...n, being n the to-

tal amount of stakehold-

ers.

Which subject had the

larger number of

conflicts (Subc)?

As = Amount of sen-

tences.

This question intends to

characterize the process’

ability of discovering

which subject has the

greatest amount of

inconsistencies. Such

data can be used to

evaluate the complexity

of relationships between

entities at each subject.

It can be used to classify

and group the

requirements by their

subjects and level of

difficulty to specify.

Sci = Total amount

of conflicting sentences at

the ith subject.

Subc = Max(Sci
As

),

where i = 1...n, being

n the total amount of

subjects and Sci the

amount of conflicts at

subject i.

What is the percentage

of inconsistencies

between facts about

individuals and

concepts(Niapis)?

NicABox = The amount

of the domain ontol-

ogy concepts involved in

ABox conflicts.

This question intends to

characterize the process’

ability of discovering

inconsistencies between

individuals and

concepts.

4. Case Study 70

Nic = The amount of

conflicting individuals at

domain ontology.

Ncas = The amount

of conflicting sentences

about facts whose indi-

viduals are involved at

conflicts.

Acs = The total amount

of conflicting sentences.

Niapis = (Ncas
Acs

) ∗ 100%

What is the percentage

of inconsistencies

between

concepts(Nitpis)?

NicTBox = The amount

of concepts at the do-

main ontology involved

in TBox conflicts.

This question intends to

characterize the process’

ability of discovering

inconsistencies between

concepts.

Ncts = The amount

of conflicting sentences

about concepts that are

involved at conflicts.

Acs = The total amount

of conflicting sentences.

Nitpis = (Ncts
Acs

) ∗ 100%

4. Case Study 71

Table 4.5: GQM for Traceability Issues

Traceability Issues

Question Metrics Observations

What is the difference

between the number of

interviews conducted

with the client’s

stakeholder and the

number of SDS (Subject-

Date-Stakeholder) tags

at the domain ontology

(NiCli−Ont)?

NiCli = The amount

of interviews given by the

client’s stakeholders.

This question intends to

characterize the process’

ability of keeping

metadata about the RE

process after the

construction of the

domain ontology. This

number is greater or

equal to zero, where zero

indicates that all

interviews were kept and

a non-zero value

indicates that some

interview information

went missing.

NiOnt = The amount of

interview tags at the do-

main ontology

NiCli−Ont = NiCli −
NiOnt

What is the difference

between the number of

interviews data

(Subject-Data-

Stakeholder) before, at

the domain ontology and

after the PIM generation

(NiOnt−PIM)?

NiOnt = The amount

of interviews given by the

client’s stakeholders rep-

resented as SDS tags at

the domain ontology.

This question intends to

characterize the process’

ability of keeping

metadata about the RE

process after the PIM

generation. This number

is greater or equal to

zero, where a zero result

indicates that all

interviews were kept and

a non-zero value

indicates that some

interview information

went missing.

NiPIM = The amount of

interviews after the PIM

generation.

NiOnt−PIM =

NiOnt −NiPIM

4. Case Study 72

What is the difference

between the number of

concepts inside each

interview (entities

marked with the same

SDS tags) before, at the

domain ontology and

after the PIM generation

(NciOnt−PIM)?

NciOntj = The amount

of concepts defined at a

jth interview given by the

client’s stakeholders.

This question intends to

characterize the process’

ability of keeping the

concepts untouched

during the PIM

generation. This number

is greater or equal to

zero, where a zero result

indicates that all

interviews were kept and

a non-zero value

indicates that some

interview information

went missing.

NciPIMj = The

amount of concepts

(classes) inside the jth

interview at the PIM

built from the domain

ontology.

NciOnt−PIM =
n∑

j=1

NciOntj − NciPIMj,

where n is the total

amount of interviews.

4.2 The Case Study Scenario

In the case study we defined one scenario where the requirements engineer inter-

viewed three different stakeholders: one responsible for non-functional requirements

of system access control, identified by the name of Security Specialist. The infor-

mation from this specialist was added to enhance the domain of the HW in order to

show all the benefits of our approach. Another person is responsible for the whole

complaining system, identified as Health System Specialist. The last one was

responsible for the health service, identified as Medical Specialist. Table 4.6 lists

the interview date, subject and stakeholder.

Table 4.6: Interview Data

Interview data

Stakeholder Date Subject

Medical Specialist 09/12/2008 Health System Organiza-

tion

4. Case Study 73

Health System Specialist 10/12/2008 Complaint System.

Security Specialist 11/12/2008 User Access Control

During the first phase of the proposed process (requirements elicitation and anal-

ysis), the requirements engineer conducted interviews with the stakeholders and

business analysts to gather information about the business domain. The Appendix

A presents the detailed content of the interviews, divided by the interview tags

(Subject-Date-Stakeholder).

The following subsection will explain the process execution after the first process

activity (Figure 3.2, activity 1a and 1b), where the RE engineer has to gather

information from client’s stakeholders. At our example, we will suppose that the

engineer collected information only from interviews. We did not use documents

describing the domain because such documents would require translations to English.

Furthermore, the definition of document revision techniques are out of the scope of

this work.

4.3 The Process Execution

The second activity (activity 2, Figure 3.2) of the first phase is also done by the

requirements engineer, whose job is to collect all the relevant information about

the domain of the system and feed the NCL editor with it. The result of this

activity is the description of the system containing only the relevant information.

The requirements engineer should also register the information about what interview

brought each part of knowledge up (client’s view). Figure 4.2 illustrates the extended

AceView after the execution of activity 2 of the proposed process. The Protégé

view (a) shows the (ACE) sentences sorted by the Subject tags in which they have

appeared. View (b) shows the sentences sorted by the date that they occurred. View

(c) shows the other tags used to mark the selected sentence. Finally, view (d) shows

all the sentences that contain each concept.

Figure 4.2 shows that the sentence “Every employee has a password.” is marked

with three ordinary tags: “Security”, “Access”, and “Control”. Moreover, such

4. Case Study 74

Figure 4.2: The plugin’s new Views

sentence is also marked with the subject tag “User Access Control”, the date tag

“11/12/2008” and the stakeholder tag “Security Specialist”. So, from the SDS tags,

one can conclude that the sentence was given by the security specialist, at December

11, 2008 and it is related to the subject user access control.

According to our proposed RE process, after feeding the tool with the collected

requirements information, the next step is to build the domain ontology (activity

3a, Figure 3.2). Since AceView is a plug-in for the Protégé tool, the ontology, which

represents the development team’s view is built on-the-fly while sentences, collected

by means of the interviews or document reviewing, are added into the tool. So,

nothing needed to be done. Figures 4.3 and 4.4 show the generated ontology using

a graph notation where the edges represent is-a relationships between the concepts,

expressed as nodes. The graph was divided in two parts for readability’s sake. The

graph should be read from right to left and the relationship between the nodes are of

the “is-a” type. Such relationship is denoted by the edges between the nodes. Take

for instance the Doctor concept, it is-a update security role, which is-a security role,

which is a Thing.

4. Case Study 75

Figure 4.3: Built Domain Ontology part 1

4. Case Study 76

Figure 4.4: Built Domain Ontology part 2

4. Case Study 77

The next phase is the requirements validation where the ontology consistency is

checked by a reasoner. In our tool, this was done by the Pellet reasoner bundled with

the Protégé tool. Besides the domain ontology consistency, new relationships may

be discovered through the taxonomic classification process. The following subsection

will resume the inconsistencies discovered during the validation phase.

4.3.1 Inconsistencies and Taxonomic Classification

Our process, as already said, is able to discover both TBox and ABox inconsistencies.

At our case study we were able to find ten TBox inconsistencies. Following we will

enumerate each inconsistency and discuss the adopted strategy to solve them.

“Every victim is a system user.” was the sentence responsible for the first de-

tected inconsistency. The sentence was declared by the Health System Specialist at

December 10, 2008 and it generated conflicts with three other sentences: “No victim

has a password.” “No victim has a login.” and“If something X is a system user then

X has a login and a password.”, all given by the Security Specialist at December 11,

2008. The conflict happens because the second stakeholder states that no victim

has a password nor a login and that to be a system user, these data are needed.

The first stakeholder contradicts such information by stating that every victim is a

system user, even though it does not have a password nor a login.

In order to solve this conflict, the requirements engineer conducted a new in-

terview with both conflicting stakeholders and resolved to remove the conflicting

sentence “Every victim is a system user.”. Figure 4.5 shows the Validation View of

our tool after the validation phase. It provided important information about the

source of the conflicting sentences, showing which stakeholders are in conflict at the

top frame, in this case the Health System and Security Specialists. Also, it provides

information about the date that each conflicting sentence was given at the bottom

frame.

Figure 4.6 shows the Protégé inferred hierarchy view that lists which concepts

are in conflict along with all classes to which they are related. This view can be

used together with the Validation and the ACE Index view that lists all sentences

at which each concept was used, as can be seen in Figure 4.7. Crossing these three

information facilitates the tracking of the problem’s origin.

4. Case Study 78

Figure 4.5: First Inconsistency shown at the Validation View

Figure 4.6: Conflicting concepts shown at the Protégé inferred hierarchy view

4. Case Study 79

Figure 4.7: Sentences at which the conflicting concepts were used shown at the

ACEIndex View

The second inconsistency was a result of the sentence “Everything that has a

problem location data is an animal complaint.” given by the Health System Spe-

cialist. It gets in conflict with the sentence “Every special complaint has a prob-

lem location data.” also given by the same stakeholder, both given at December 10,

2008. The conflict was a result of the definition of animal complaint and special

complaint as disjoint concepts. Such information was given by the sentence: “No

animal complaint is a special complaint.”, also given by the same stakeholder at the

same date.

In order to solve this inconsistency the RE engineer conducted a new interview

with the Health System Specialist and he decided to remove the sentence “Every-

thing that has a problem location data is an animal complaint” since he though to

be interesting that special complaints also have problem location data. Figure shows

the Protégé inferred hierarchy view, which shows the animal complaint and spe-

cial complaints as conflicting concepts.

Figure 4.8: Conflicting concepts shown at the Protégé inferred hierarchy view

4. Case Study 80

The third inconsistency was a result of the sentences “Everything that exe-

cutes medical procedures is a doctor.” and “Every nurse executes at least 1 med-

ical procedure.”. This inconsistency is a result of the constraint that states that “No

doctor is a nurse.” i.e. doctor and nurse are disjoint concepts - doctor ∩ nurse = ∅.
All sentences were given by the Medical specialist at December 9, 2008. Figure 4.9

shows the conflicting concepts related to medical procedure. In order to solve such

conflict, the RE engineer interviewed again the Medical Specialist and he recognized

that both doctors and nurses execute medical procedure, so the RE engineer removed

the sentence “Everything that executes medical procedures is a doctor.”.

Figure 4.9: Conflicting concepts shown at the Protégé inferred hierarchy view

The fourth inconsistency was a result of the following conflicting sentences: “Ev-

erything that has a symptom is a disease.” given by the Medical Specialist at

December 9, 2008, and “Every food complaint has at least 1 symptom.”, given

by the Health System Specialist at December 10, 2008. These concept is a re-

sult of the complaint super class that states that “No complaint is a disease.” i.e.

disease ∩ complaint = ∅. Figure 4.10 shows the conflicting concepts in Protégé

inferred hierarchy view. This time we chose to use the ontology graph representation

to show that it also can display inconsistent concepts, which are shown as red nodes.

Figure 4.10: Conflicting concepts shown at the Protégé graph view

In order to solve such conflict, the RE engineer conducted new interviews with

both conflicting stakeholders and they come to the conclusion that a food complaint

should also have symptoms, this was done by loosing the restriction that states

that “Everything that has a symptom is a disease.”, so the interviewer changed such

sentence to “Every disease has at least 1 symptom.”.

4. Case Study 81

The fifth inconsistency was a result of the the conflicting sentence given by the

Security Specialist: “Every nurse is a no access role.” at December 11, 2008. This

sentence conflicts with the sentences: “Everything that has a login and a password

is a system user.” and “No system user is a no access role.” also given by the same

stakeholder at the same date. The root of the conflict is the taxonomic process that

classifies the nurse concept as a system user, since it has a login and password associ-

ated. So, the nurse concept is, at the same time, a system user and a no access role.

Figure 4.11 shows the nurse concept represented as a red node because it is in con-

flict. The nurse concept does not have an is-a labeled arch connecting it with the

system user concept because it is also classified as as subclass of Nothing, as can

be seen in Figure 4.12, so it can be a subclass of any concept. Thus, the graph

representation after the taxonomic classification would show an arch connecting the

nurse concept with every concept in the ontology.

Figure 4.11: Conflicting concepts shown at the Protégé graph view

Figure 4.12: Conflicting concepts shown at the Protégé inferred hierarchy view

In order to solve these conflicts, the RE engineer conducts a new interview with

the Security Specialist and he recognizes the mistake and he came to the conclusion

that a system user can also be a no access role. The RE engineer then removes the

sentence that states that “No system user is a no access role.”.

4. Case Study 82

The sixth inconsistency was a result of the following conflicting sentences: “Every

suspicious food establishment is a problem location data.” and “Everything that has

a problem location data is an animal complaint.”, both stated by the Health System

Specialist at December 10, 2008. These sentences conflict due to the fact that com-

plaint and suspicious meals are disjoint sets i.e. complaint ∩ suspicious meal = ∅.

In order to solve the sixth conflict, the RE engineer conducted a new interview

with the Health System Specialist and he decided to remove the sentence “Every

suspicious food establishment is a problem location data.” since it defines that a

suspicious food establishment is a problem without any further analysis. Figure

4.13 shows the representation of such conflict using the Protégé graph view.

Figure 4.13: Conflicting concepts shown at the Protégé graph view

The seventh inconsistency was a result of the following sentences: “Everything

that has a victim is an animal complaint.” and“Every food complaint has a victim”,

both given by the Health System Specialist at December 10, 2008. And the root of

the conflict resides in the fact that food complaint and animal complaint are disjoint

concepts i.e. food complaint ∩ animal complaint = ∅. Such inconsistency also

can be seen at Figure 4.13.

The eighth inconsistency was a result of the sentences: “Everything that has

a treatment is a disease.” given by the Medical Specialist at December 9, 2008

and “Every food complaint has a treatment.”, given by the Health System Specialist

at December 10, 2008 and it happened because of the same reason as the fourth

inconsistency, the food complaint concept is disjoint from the disease concept.

To solve this inconsistency the same strategy was adopted, the restriction that

only diseases have treatment has been loosed and replaced by a new one that states

that “Every disease has at least 1 treatment.”. This inconsistency can be seen at

Figure 4.14.

4. Case Study 83

Figure 4.14: Conflicting concepts shown at the Protégé graph view

The ninth inconsistency was a result of the sentences: “Everything that has a

symptom is a disease.” and “No patient is a disease.”, both provided by the Medical

Specialist at December 9, 2008. This case is similar to the fourth inconsistency case

and is solved by the same modification, which looses the constraint stating that only

diseases have symptoms.

Finally, the last inconsistency was a result of the sentences: “No observer is a

citizen.” e “Every observer registers at least 1 animal complaint.”, both given by the

Health System Specialist at December 9, 2008. The root of this conflict resides in

the fact that an animal complaint is a sub class of complaint and that only citizens

can register complaints. Also, at the same time citizen and observers are disjoint

concepts. The set of conflicting classes can be seen in Figure 4.15, using the Protégé

graph view.

Figure 4.15: Conflicting concepts shown at the Protégé graph view

In order to solve this inconsistency all we had to do was to remove the observer

and citizen disjointness sentence.

Our process has also identified ten ABox knowledge, i.e. the ontology individuals.

They were all solved using the same strategy, removing the ABox sentences from

the RE knowledge base in order to continue the reasoning process unlocking the

knowledge base. Figure 4.16 shows the reasoning response while trying to process

an inconsistent ontology.

4. Case Study 84

Figure 4.16: Reasoner response to an inconsistent knowledge base

Following, at Table 4.7 we will list the ABox sentences along with the TBox

sentence with which it is in contradiction and the stakeholder who gave the ABox

statement.

Table 4.7: ABox Inconsistencies

ABox Inconsistencies

ABox Sentence TBox Sentences Stakeholder

“A victim has a pass-

word.”

“No victim has a pass-

word.”

Health System Specialist

“A food complaint has no

victim.”

“Every food complaint

has at least 1 victim.”

Medical Specialist

“A nurse has no pass-

word.”

“Every nurse has a pass-

word.”

Health System Specialist

“A flu is a disease that

has no symptoms.”

“Every disease has at

least 1 symptom.”

Health System Specialist

“A visitor doctor is a

doctor that has no login.”

“Every doctor has a lo-

gin.”

Medical Specialist

4. Case Study 85

“A general practitioner

is a doctor that has no

specialty.”

“Every doctor has at least

1 specialty.”

Medical Specialist

“An auxiliar nurse is a

nurse that executes no

medical procedure.”

“Every medical procedure

is executed by a nurse.”

and “Every nurse exe-

cutes at least 1 medi-

cal procedure.”

Medical Specialist

“A natural medicine

is a drug that has no

side effects.”

“Every drug has at least 1

side effect.”

Medical Specialist

“An observer registers a

complaint.”

“If something X registers

a complaint then X is a

citizen.” and “No ob-

server is a citizen.”

Health System Specialist

“An ani-

mal poisoning complaint

is an animal complaint.”

and “An ani-

mal poisoning complaint

is a food complaint.”

“No food complaint is an

animal complaint.”

Health System Specialist

After solving the inconsistencies, the taxonomic classification takes place the new

ontology built can be seen at Figures 4.17 and 4.18. We have chose to split the figure

in two for readability’s sake.

At our case study, thirty three new relationships were inferred by the reasoner.

The Figure 4.3.1 shows the Protégé Inferred Axioms view. Each line at the view

shows a subClassOf axiom, whose used to express the subclass relationship between

two concepts.

4. Case Study 86

Figure 4.17: Inferred Hierarchy (a)

4. Case Study 87

Figure 4.18: Inferred Hierarchy (b)

4. Case Study 88

Figure 4.19: Protégé Inferred Axioms View

4. Case Study 89

We would like to point some of the inferred relationships. The (a) axiom classifies

a citizen as a contact data, while the (b) axiom classifies it as a contact address. The

(c) axioms are a result of the sentence “Everything that has a name is a person.”.

Following the process execution we’ve reached the PIM generation phase. The

first activity of such phase is the domain cleaning activity. At our case study we

have removed the properties which we thought to be primitive types, like: name,

phone number, address, etc. After the cleaning activity, it is time to generate the

PIM, executing the Ant script with the defined transformation flow. We have divided

the generated PIM according to their interviews for readability’s sake. Figure 4.3.1,

4.3.1 and 4.3.1 shows, in order, the PIM for the Security Specialist, Health System

Specialist and Medical Specialist interviews.

Figure 4.20: Generated PIM for the interview with the Security Specialist

4.4 The Case Study Evaluation

Following we will present the collected metrics values for our GQM questions and

provide some interpretations for such values. We have structured this section ac-

cording to the section 4.1 when these questions were first presented.

4. Case Study 90

Figure 4.21: Generated PIM for the interview with the Health System Specialist

4. Case Study 91

Figure 4.22: Generated PIM for the interview with the Medical Specialist

4. Case Study 92

Table 4.8: GQM for Scope Definition Issues - Metrics

values

Scope Definition Issues

Question Metrics Interpretations

What is the difference

between the number of

entities at the HW

domain generated using

our process and the old

domain, i.e. previous

AOSD

implementations(Enew−old)?

Number of Entities at

the Domain Ontology.

Nenew = 25

The 25 discovered

concepts includes all the

concepts specified at the

HW implementations.

So we were able to

identify the same scope

than the original HW

version.2

Number of Entities at the

Domain of the HW previ-

ous version. Neold = 10

Enew−old = 25 − 10 =

15

What is the average

number of entities per

interview (Nepi)?

Number of entities at the

domain ontology. Ne =

64

This number can be

used to estimate the size

of each “subsystem”

whose information was

provided by each

stakeholder. Such

information can be used

to estimate the amount

of resources to be

allocated to each

subsystem. The

Medical Specialist

revealed the existence of

22 entities. The

Health System Specialist

33. And the

Security Specialist 9.

Total Amount of inter-

views with client’s stake-

holders. Ai = 3

Nepi = Ne
Ai
/ 21.33

2The comparison showed that our process captured a larger number of entities. The initial value
of Nenew was high (64) because our process extended the HW basic domain. Also, it did not take
into account the primitive properties. So, primitive attributes are considered ontology concepts.
After removing the concepts that represent primitive attributes and the new requirements related
to medical organization of the health unit, the pharmacy and the security system, our Nenew

reduces to 25.

4. Case Study 93

What is the highest

number of entities per

subject (Nepsu)?

Number of entities at the

domain ontology marked

with the jth subject tag.

Ne1 = 22, Ne2 =

33,Ne3 = 9

This number can be

used to evaluate the

complexity of each part

of the system concerned

with a certain subject.

The result of the

Complaint System as

the highest number of

entities (33) shows that

this subject is an strong

candidate for reviewing.

Total Amount of sub-

ject in interviews with

the client’s stakeholders.

As = 3

Nepsu = Max(Nej
As

) =

11, being j = 1...n where

n is the last subject tag.

What is the number of

entities removed from

the generated PIM

(Ne−epim)?

Number of entities at the

domain ontology. Ne =

64

This number means that

from 64 entities, the

system engineer had to

remove 25.

It can be seen as the

amount of work needed

while ”cleaning” the

domain ontology. The

closer to zero, the

better. Our case study

had a high number of

entities to be removed.

This happened because

of the ACE NCL

inability to represent

primitive properties, like

Strings, Integers, etc...

Total Amount of entities

at the generated PIM.

Nepim = 39

Ne−epim = Ne−Nepim =

25

4. Case Study 94

What is The number of

the inferred relationships

(Ninfe)?

Number of entities

moved after the tax-

onomic classification.

Ninfe = 17

This number shows that

our process did find a

few new relationships

at the domain ontology,

for instance the defini-

tion of the System User

concept and also the

person concept and the

Contact data concept.

The greater the distance

from zero, the better,

it shows that a lot of

relationships, that oth-

erwise would remain

undiscovered were found.

Which stakeholder was

involved at the larger

number of conflicts (Sc)?

Total amount of sen-

tences. As = 148

This number shows that

the system presented a

low level of inconsistency

even considering the

stakeholder that has

gave the largest number

of inconsistent

statements. At our

example, the stakeholder

involved at the larger

number of conflicts was

the SHealth System Specialist

with13 inconsistences.

Sci = Total amount

of conflicting sen-

tences given by

the ith stakeholder.

SHealth System Specialist =

13(7 TBox, 6 ABox),

SMedical Specialist = 8

(2 TBox, 6 ABox),

SSecurity Specialist = 1

(TBox only)

Sc = Max(Sci
As

) / 0.09

Table 4.9: GQM for Communication Issues

Communication Issues

Question Metrics Observations

4. Case Study 95

What is the average

number of sentences

removed after the

validation activity

(Naer)?

Number of sentences at

the client’s interviews.

Ns = 148

This number indicates

that almost 1 sentence is

invalid at every 10

Sentences. The lower

the coefficient the

better. We believe that

the communication has

flown at an acceptable

level.

Total Amount of Sen-

tences removed after

the validation activity.

Ars = 19

Naer = Ars
Ns

= 0.12

What is the amount of

the removed entities at

the PIM generation

Phase (Epim−domain)?

Number of Entities at

the Domain Ontology.

Nedomain = 64

These data means that a

large number of entities

had to be removed from

the domain. Although,

none of the removed

entities were out of the

domain. They were all

primitive properties

missinterpreted as

entities.

Nepim = 39Number

of Entities after the PIM

generation.

Epim−domain = Nepim −
Nedomain = 25

What is the average

number of inconsistent

entities per number of

removed sentences to fix

such inconsistencies

(Niprs)?

Number of inconsistent

concepts at the domain

ontology. Nic = 42 (32

TBox, 10 ABox)

Our value indicates that

we were able to keep

more than half of the

conflicting sentences,

which means that once

communication issues

happened, we were able

to keep some conflicting

sentences. Not

conflicting sentence had

to be discarded.

Number of removed sen-

tences to solve the on-

tology’s inconsistencies.

Nrs = 20 (10 TBox, 10

ABox)

Niprs = Nic
Nrs

= 2.1

4. Case Study 96

Table 4.10: GQM for Requirements Validation Issues

Requirements Validation Issues

Question Metrics Observations

Which stakeholder was

involved in the highest

number of conflicts (Sc)?

Total amount Number of

sentences. As = 148

Our process is able to

track the stakeholder

who has gave the largest

amount of inconsistent

statements. Such

information is useful

while dealing with

validation issues helping

to decide which

stakeholder to interview

if the provided

requirements are

inconsistent. Our

processed showed that

the

Health System Specialist

was involved at the

highest number of

conflicts. The 0.09 value

showed that 9 percent of

the sentences were

inconsistent and were

given by this specialist.

SHealth System Specialist =

13(7 TBox, 6 ABox),

SMedical Specialist = 8

(2 TBox, 6 ABox),

SSecurity Specialist = 1

(TBox only).

Sc = Max(Sci
As

) / 0.09.

4. Case Study 97

Which subject has the

larger number of

conflicts (Subc)?

Amount of sentences.

As = 148

This number shows that

the process is able to

classify the subjects

according to their level

of inconsistency. Such

data can be used to

evaluate the complexity

of relationships between

entities at each subject.

At our case study, the

Health System subject

was the one with the

highest index of

inconsisntecies (9

percent of the amount of

sentences.

SHealth System = 13(7

TBox, 6 ABox),

SMedical = 8 (2 TBox,

6 ABox), SSecurity = 1

(TBox only).

Subc = Max(Sci
As

) /
0.08.

What is the percentage

of inconsistencies

between facts about

individuals and

concepts(Niapis)?

The amount of the do-

main ontology concepts

involved in ABox con-

flicts. NicABox = 17

These numbers show

that our process is able

to distinguish between

ABox and TBox

inconsistencies. It also

shows that the ABox

inconsistencies were a

small part of the total

inconsistencies.

The amount of conflict-

ing individuals at domain

ontology. Nic = 10

The amount of conflict-

ing sentences about facts

whose individuals are

involved at conflicts.

Ncas = 10

4. Case Study 98

The total amount of con-

flicting sentences. Acs =

34

Niapis = (Ncas
Acs

)∗100% /
29%

What is the percentage

of inconsistencies

between

concepts(Nitpis)?

The amount of concepts

at the domain ontology

involved in TBox con-

flicts. NicTBox =

These numbers show

that our process is able

to distinguish between

ABox and TBox

inconsistencies. It also

shows that the TBox

inconsistencies were a

great concern at the

interview process.

The amount of conflict-

ing sentences about con-

cepts that are involved at

conflicts.Ncts = 24

Acs = 34 The to-

tal amount of conflicting

sentences.

Nitpis = (Ncts
Acs

)∗100% /
70%

Table 4.11: GQM for Traceability Issues

Traceability Issues

Question Metrics Observations

What is the difference

between the number of

interviews conducted

with the client’s

stakeholder and the

number of SDS tags at

the domain ontology

(NiCli−Ont)?

The amount of interviews

given by the client’s

stakeholders. NiCli = 3

This measure shows that

no information about

the interview process

has gone missing during

the first transformation

process, when the

domain ontology is

generated.

4. Case Study 99

The amount of inter-

view tags at the domain

ontology.NiOnt = 3

NiCli−Ont = NiCli −
NiOnt = 0

What is the difference

between the number of

interviews before, at the

domain ontology and

after the PIM generation

(NiOnt−PIM)?

The amount of interviews

given by the client’s

stakeholders represented

as SDS tags at the do-

main ontology. NiOnt =

3

This measure indicates

the same as the data

presented before: we

were able to keep track

of all information from

the interview process

throughout the MDE

generation process.

The amount of interviews

after the PIM generation.

NiPIM = 3

NiOnt−PIM = NiOnt −
NiPIM = 0

What is the difference

between the number of

concepts inside each

interview (entities

marked with the same

SDS tags) before, at the

domain ontology and

after the PIM generation

(NciOnt−PIM)?

The amount of con-

cepts defined at a jth

interview given by

the client’s stakeholders.

NciOntMedical Specialist =

22,

NciOntHealth Specialist =

33,

NciOntSecurity Specialist =

9

Our elevated value

shows that a little bit of

information related to

the entities of the

system may have gone

missing. As a matter of

fact, the missing

information is related to

the missinterpreted

primitive properties,

mapped to the PIM. If

the PIM has not been

”cleaned” this number

tends to be 0

4. Case Study 100

The amount of con-

cepts (classes) inside

the jth interview at

the PIM built from

the domain ontology.

NciPIMMedical Specialist =

22,

NciPIMHealth Specialist =

33,

NciPIMSecurity Specialist =

9

NciOnt−PIM =
n∑

j=1

NciOntj − NciPIMj,

where n is the total

amount of interviews.

Following we summarize the relevant points of the case study analyzes:

In order to deal with scope issues, the most important data collected indicates

that we were able to capture the same entities as the original version of the Health

Watcher. The data also revealed the importance of the domain ontology cleaning

activity. We have defined a higher number of entities at the domain, thus, our process

may overestimate the scope of the designed software, so the activity of cleaning the

domain ontology should be carried out more carefully as it can reduce the risk of

overestimating.

Also to deal with scope issues, we showed that our process is able to provide

some help while classifying the requirements complexity by showing the number

of sentences related to each subject. Such data can be used to indicate the scope

missdefinition risk for each requirement. Requirements containing less information

have higher risk of suffering from scope issues.

In order to deal with communication issues, the most important data collected

indicates that no information was lost during the MDE transformation process other

than the information removed during the ontology cleaning activity. Again this

4. Case Study 101

data draw our attention to the importance of this activity at our process. Also the

process showed to be capable of removing inconsistent and contradicting sentences

what definitely helps to provide a clear communication channel between teams.

In order to deal with validation issues, the most important data collected showed

that our process is able to track the inconsistencies down and relate them to the

stakeholder who has gave the statement that generated such inconsistency. Other

than that we were fully able to make the separation of ABox and TBox inconsisten-

cies and point different strategies to deal with each one.

In order to deal with traceability issues, the most important data collected proved

that our process is able to keep information about the interviews at each level of

the MDE process. It showed to be effective to help identify the stakeholders at

the knowledge validation activity, providing the information needed to relate each

inconsistency with the stakeholder who is responsible for it.

Chapter 5

Related Works

The related works were analyzed and compared to our proposal taking into account

three criteria: methodology to represent requirements models, MDE compliance and

employed technologies.

We have researched for a few works that use ontologies to represent the require-

ments model, such as [Knu04], where the authors propose the adoption of ontologies

instead of UML semantics to model the domain of the system. Even though ontolo-

gies are powerfull enough to support the requirements representation and validation,

as we have discussed before, such representation is hard for a regular requirements

engineer to understand. Our multi-viewed approach deals with such need, defining

three abstraction levels, among them one specific to represent requirements in a

friendly fashion. Also, our proposal differs from [Knu04] for being MDE compliant,

while their proposal only define a single level of abstraction, thus ignoring the fact

that there are several profiles involved at a development process and that every

single one of them has special needs.

Also, we have found a few works at the Natural Controlled Language field, such

as [BLC+03, FdSBdPL03] where the authors establish a process for requirements

gathering using NCL descriptions. Such approaches are, as far as we know, not

compatible with MDE process since they are not model centered approaches. An

MDE infrastructure lowers the coupling between the NCL and the requirements

specification language. Also, the MDE infrastructure would help keeping the models

synchronized once the transformations written are bidirectional

A few authors realized, like us, that one requirements engineering process is not

able to supply the needs of all profiles at a development process by using a single

view. We have studied a few works that also try to unify the use of ontologies and

NCLs, like [DMO+06, BdPL04, SdPL06, dSdPLB04], where the authors propose a

5. Related Works 103

process to build ontologies from natural language and apply them in the context

of semantic web systems. All the authors adopt the Language-Extended-Lexicon

(LEL) to represent the domain specifications. LEL divides text descriptions into

notions and behavioral responses. The authors claim that ontologies are products

built during a requirements engineering process. In our work, ontologies models

represent domain knowledge and are used in several activities of the RE process.

Also, LEL approach is less formal than our approach regarding the RE process, since

we use a MDE approach to build ontologies, which imposes a better separation of

responsibilities and modularization while these works still use simple XML parsing

and processing techniques.

Requirements validation is also a concern and has been studied for a while. We

have found a few works that, like ours, take advantage of the power of the first order

logic beneath ontologies to help discovering inconsistencies. The work in [KS06]

proposes the use of ontologies to represent the requirements knowledge in the context

of requirements elicitation. This work proposes the use of automatic consistency

checking tools to validate requirements models. The main difference between their

work and ours is the use of MDE to convert the requirements into models to be

used in further development phases, while theirs use ontologies only to check the

requirements consistency and completeness. The authors also do not mention any

specific methodology to build ontologies, what may turn the requirements analyst

job harder.

Another alternative to NCL is a set of works that proposed the use of goal models

to represent requirements. Goal models approaches are common and such models

are very popular in RE. The work in [KL08] presents a comparative study with the

most common approaches in goal models. The work classifies the contributions of

goals-based approaches at each RE process activity. However, as far as we know,

none of these works proposes the integration of goals-based approaches into a single

RE process. Also, these approaches do not propose any mean of requirements valida-

tion. Furthermore, most of them do not use MDE nor natural language techniques.

Another very important work in the area of goal modeling is the [vL08], where the

author proposes a refining model to better model requirements through goals. The

author also proposes the use of multiple views, linked through inter-model links con-

strained by rules for structural consistency. This is a very solid work but the author

does not use any automatic technique to collect requirements. Also, the proposed

derivation of the object model is not done by using any MDE technique. He also

did not propose any mean to validate the requirements model.

We have also researched for works that use an MDE process to gather require-

ments and their usage as a Computation Independent Model. We have found a

5. Related Works 104

very interesting work that unifies an MDE process for Requirements Engineering

and NCLs [DMO+06]. The authors propose a process for requirements gathering

through the usage of business models, also using NCL description to represent such

models. Their work proposes a function to map descriptions in structured Por-

tuguese into UML Use-Case diagrams. Our work differs from theirs in the chosen

NCL. Our is much more general. Also, they were not worried in aligning their pro-

cess with the ones specified at the RE literature. Also, the chosen Use-Case notation

does not provide the formalism required to validate requirements models.

There are also another projects developed in the area of requirements specifica-

tion that uses stronger logic formalism and MDE processes to represent requirement,

like [GLGCGB05, GBLC05], that use a graph transformation approach integrated

with an MDE process in order to build an architecture model from a feature model.

These works differ from ours at the requirements specification notation and its ex-

pressiveness power. We have chosen to use NCLs for its simplicity and, still, power

to represent and validate requirements. The choice for feature models restricts the

expressiveness level, as such notation is used to model variability and common sys-

tem features in family of systems. It does not allow the specification of relationship

among system entities.

Finally, we have also examined works in the traceability area of knowledge.

Among the researched articles, we would like to cite the [ARNRSG06] where the

authors propose a complex and effective traceability scheme for model driven pro-

cesses. Such work defines a general purpose metamodel to be used in traceability

schemes. In that way, the work is more complete than ours. Nevertheless, the au-

thors have not considered other requirements specification techniques/languages like

the NCL or ontology. Their work is exclusively applied to UML model transforma-

tions.

Chapter 6

Final Remarks

At this section we will give a quick review of what we have presented throughout this

work, discussing the obtained results and also indicating a few improvements points.

We also have dedicated a single session to list the main difficulties encountered during

the development of this work. By the end, we intend to present our plans for the

future of this research.

6.1 General Comments and Case Study Evalua-

tion

The research on the area of RE has grown fast in the last few years. In despite of

this, there are still opened issues. In our work we researched the RE study area,

looking for the main issues in RE process, we indicated those issues, listing the main

initiatives that are trying to solve them. We also proposed ways to overcome these

issues. To do so we presented a process and associated tool to improve current

RE process through a MDE-based approach that represents requirements at several

abstraction levels in order to communicate the knowledge among a greater number

of involved user profiles, from both user and development teams view points.

The tool was built using state of art techniques and technologies. It makes pos-

sible to collect requirements knowledge direct from the stakeholders system descrip-

tions. It also makes possible to transform this descriptions into lower abstraction

level representations in order to meet the needs of the development team. Also, the

presented tool builds representations that help the development team to manipulate

and search within requirements in an easier way.

6. Final Remarks 106

We have developed a case study to illustrate the execution of the proposed process

and show that the developed RE tool is useful at the execution of the process. We

believe we have acquired the desired goal and the process, with the help of the

designed tool, was able to show hidden relationships among the entities and some

inconsistencies.

In the case study we were able to transform a high level system description

into a domain ontology, validate it, discover new relationships among their entities

and finally derive, automatically, a PIM level UML class diagram using the XMI

standard format.

In order to evaluate our case study we established a GQM [BCR94] plan, looking

for improvement points and trying to quantify data about the execution of our

process.

The results draw from our case study indicates, that a clear communication

channel between teams minimizes most of the scope and communication issues,

since both parts can express their view about the system’s scope using a suitable

notation. Moreover, the proposed process and tool provide a simple, but useful,

traceability scheme, based on the idea of interviews, the most common requirements

gathering technique. Our interview concept is very close to the idea of scenarios and

actors proposed at [LB03]’s traceability model.

Our case study have also shown that our employed knowledge validation tech-

nique can be applied to help dealing with volatility issues. Once we were able to

track down requirements inconsistencies by using ontologies and reasoning mecha-

nisms. Thus, we provide some kind of insurance, in case the requirements change

over the time (and they will), if the new requirement conflicts with some older one,

the tool is able to alert the user. Our case study also showed that our approach can

be used to integrate several views to represent RE knowledge, once no information

was lost during the transformation.

6.2 Difficulties

The most difficult part of the development of this work was definitely to deal with

the Model Driven Development tools. Since such area is constant development

we encountered a large number of differences between different versions, like the

definition of the UML 2.0 metamodel that presents a lot of changes from version 1.x

to 2.x, mainly regarding the UML extensibility mechanisms (profile definition).

6. Final Remarks 107

Also the ATL language is not an easy to learn language. The programmer have

to be used to deal with functional languages in order to understand its semantics.

Also the OCL library available at the ATL language is poorly documented. The

used XML Injector did not make our job easy while writing the OWL parser. We

came to the conclusion that this language was not designed to process text files, that

is why we needed to pre-process our owl file before feeding it into the transformation

engine.

Otherwise, the ATL syntax is not complicated at all and the iteration over col-

lections scheme is very similar to the SmallTalk iterator scheme, which has proven

to be an easy to use and highly productive scheme.

The study of the requirement engineering processes and opened issues also took

a long time because requirements engineering is still an evolving area and a lot of

works are being produced to deal with each one of the RE opened issues.

6.3 Future Works

In future works we plan to conduct a more complete study on ACE language’s limits

in order to better evaluate its capability to express requirements. We also intend to

study ways to effectively specify the system dynamics, in order to provide a more

complete requirements modeling process.

We have already started to search for suiting technologies and our primary studies

points that the usage of a Business Rules approach may solve the problems to specify

requirements, providing a notation fully understandable by stakeholders since a few

implementations also use Natural languages.

At the development team level, works like [KLS08] have been studying the us-

age of BPMN to specify the business process of an enterprise and also providing

transformation techniques in order to build a BPMN specification from a Business

Rules Specification. We believe that such processes are close to the system dynamics

requirements, so this notation should be studied in order to evaluate its simplicity

to use and compatibility with MDE processes.

The GQM evaluation of our case study revealed the importance of the ontology

cleaning activity. Such activity works as a filter, removing misinterpreted informa-

tion from the concepts. This activity is definitely an improving point and at future

works we will research for ways to represent primitive properties at NCLs. One way

to deal with this is to extend the ACE notation, defining some specific namespace

6. Final Remarks 108

for primitive properties. After that, the requirements engineers should be trained to

identify primitive properties and use the specific namespace. We do recognize that

such solution may degrade the reading level of the requirements specification.

We still found out that our approach using stereotypes for interview visualization

may affect badly the PIM readability. At future works we will look for better ways

to represent such information at the PIM level, perhaps using an UML 1.0 tagged

value like approach.

Bibliography

[ALPT03] M. Alanen, J. Lilius, I. Porres, and D. Truscan. Realizing a Model

Driven Engineering Process. Technical report, Technical Report 565,

TUCS, Nov 2003, 2003.

[Alt00] R . Altwarg. Controlled languages: An introduction. disponivel

em:http://www.shlrc.mq.edu.au/masters/students/raltwarg/clindex.htm,

2000.

[AMEL04] J.L.N. Audy, A. Majdenbaum, R. Espindola, and Lopes. Uma Análise

Cŕıtica dos Desafios para Engenharia de Requisitos em Manutenção

de Software. VII Workshop on Requirements Engineering, 2004.

[ARE96] Amer Al-Rawas and Steve Easterbrook. Communication problems in

requirements engineering: A field study, 1996.

[ARNRSG06] N. Aizenbud-Reshef, B.T. Nolan, J. Rubin, and Y. Shaham-Gafni.

Model traceability. IBM Systems Journal, 45(3):515–526, 2006.

[AvH04] G. Antoniou and F. van Harmelen. Web Ontology Language: OWL.

Handbook on Ontologies, 2:45–60, 2004.

[Bas05] V.R. Basili. Using Measurement to Build Core Competencies in Soft-

ware. In Seminar sponsored by Data and Analysis Center for Soft-

ware, 2005.

[BCR94] V.R. Basili, G. Caldiera, and H.D. Rombach. The Goal Question

Metric Approach. Encyclopedia of Software Engineering, 1:528–532,

1994.

[BdPL03] K.K. Breitman and J.C.S. do Prado Leite. Ontology as a requirements

engineering product. Requirements Engineering Conference, 2003.

Proceedings. 11th IEEE International, pages 309–319, Sept. 2003.

Bibliography 110

[BdPL04] K.K. Breitman and J.C.S. do Prado Leite. Lexicon Based Ontol-

ogy Construction. LECTURE NOTES IN COMPUTER SCIENCE,

pages 19–34, 2004.

[BGMT06] JM Bhat, M. Gupta, SN Murthy, and I. Technologies. Overcoming

Requirements Engineering Challenges: Lessons from Offshore Out-

sourcing. Software, IEEE, 23(5):38–44, 2006.

[BLC+03] B. Bryant, B. Lee, F. Cao, W. Zhao, C. Burt, J. Gray, R. Raje,

A. Olson, and M. Auguston. From natural language requirements to

executable models of software components. In Proc. of the Monterey

Workshop on Software Engineering for Embedded Systems: From Re-

quirements to Implementation, pages 51–58, 2003.

[Boe84] Barry W. Boehm. Software engineering economics. IEEE Trans.

Software Eng., 10(1):4–21, 1984.

[Bro87] F.P. Brooks. No Silver Bullet: Essence and Accidents of Software

Engineering. IEEE Computer, 20(4):10–19, 1987.

[Bud03] F. Budinsky. Eclipse Modeling Framework: A Developer’s Guide.

Addison-Wesley, 2003.

[BvHH+04] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuin-

ness, P.F. Patel-Schneider, L.A. Stein, et al. OWL Web Ontology

Language Reference. W3C Recommendation, 10:2006–01, 2004.

[BW84] VR BASILI and DM WEISS. A methodology for collecting valid soft-

ware engineering data. IEEE transactions on software engineering,

10(6):728–738, 1984.

[C+99] J. Clark et al. XSL Transformations (XSLT) Version 1.0. W3C Rec-

ommendation, 16(11), 1999.

[CADW01] Ryan A. Carter, Annie I. Anton, Aldo Dagnino, and Laurie Williams.

Evolving beyond requirements creep: A risk-based evolutionary pro-

totyping model, 2001.

[CHCC03] J. Cleland-Huang, C.K. Chang, and M. Christensen. Event-based

traceability for managing evolutionary change. Software Engineering,

IEEE Transactions on, 29(9):796–810, Sept. 2003.

[CJB99] B. Chandrasekaran, JR Josephson, and VR Benjamins. What are

ontologies, and why do we need them? 1999.

Bibliography 111

[CK92] M.G. Christel and K.C. Kang. Issues in Requirements Elicitation.

Carnegie Mellon University, Software Engineering Institute, 1992.

[CRH+06] RM Colomb, K. Raymond, L. Hart, P. Emery, C. Welty, GT Xie,

and E. Kendall. Version 3.3: The Object Management Group Ontol-

ogy Definition Metamodel. Ontologies for Software Engineering and

Software Technology, pages 1–25, 2006.

[DHR89] E. Dubois, J. Hagelstein, and A. Rifaut. Formal Requirements Engi-

neering with ERAE. Philips Journal of Research, 43(4), 1989.

[DKW99] J.C. Derniame, B.A. Kaba, and D. Wastell. Software Process: Prin-

ciples, Methodology, and Technology. Springer, 1999.

[DLM+08] N. Debnath, M.C. Leonardi, M.V. Mauco, G. Montejano, and D. Ri-

esco. Improving model driven architecture with requirements models.

Information Technology: New Generations, 2008. ITNG 2008. Fifth

International Conference on, pages 21–26, April 2008.

[DLNS96] F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning

in description logics. Principles of Knowledge Representation, pages

191–236, 1996.

[DMO+06] F. Dias, G. Morgado, P. Oscar, D. Silveira, A.J. Alencar, P. Lima,

and E. Schmitz. Uma Abordagem para a transformação automática

do Modelo de Negócio em Modelo de Requisitos. IX Workshop on

Requirements Engineering (WERE’06), 2006.

[DPVOD02] J. Drew Procaccino, J.M. Verner, S.P. Overmyer, and M.E. Darter.

Case study: factors for early prediction of software development suc-

cess. Information and Software Technology, 44(1):53–62, 2002.

[dSdPLB04] L.F. da Silva, J.C.S. do P Leite, and K.K. Breitman. C & L: uma

ferramenta de apoio à engenharia de requisitos. PUC, 2004.

[Egy03] A. Egyed. A scenario-driven approach to trace dependency anal-

ysis. Software Engineering, IEEE Transactions on, 29(2):116–132,

Feb. 2003.

[ELPA05] R. Espindola, L. Lopes, R. Prikladnicki, and J.L.N. Audy. Uma Abor-

dagem Baseada em Gestão do Conhecimento para Gerência de Req-

uisitos em Desenvolvimento Distribúıdo de Software. VIIIWorkshop

on Requirements Engineering, 2005.

Bibliography 112

[FdSBdPL03] C.H. Felićıssimo, L.F. da Silva, K.K. Breitman, and J.C.S.

do Prado Leite. Geração de Ontologias subsidiada pela Engen-

haria de Requisitos. sl. les. inf. puc-rio. br/cel/Artigos/Felicis-

simo WER2003. pdf>, 12, 2003.

[FHK+05] Norbert E. Fuchs, Stefan Höfler, Kaarel Kaljurand, Fabio Rinaldi,

and Gerold Schneider. Attempto Controlled English: A Knowledge

Representation Language Readable by Humans and Machines. In

Norbert Eisinger and Jan Ma#luszyński, editors, Reasoning Web, First

International Summer School 2005, Msida, Malta, July 25–29, 2005,

Revised Lectures, number 3564 in Lecture Notes in Computer Science.

Springer, 2005.

[FKK08a] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto

Controlled English for Knowledge Representation. In Cristina

Baroglio, Piero A. Bonatti, Jan Ma#luszyński, Massimo Marchiori,

Axel Polleres, and Sebastian Schaffert, editors, Reasoning Web,

Fourth International Summer School 2008, number 5224 in Lecture

Notes in Computer Science, pages 104–124. Springer, 2008.

[FKK08b] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Discourse

Representation Structures for ACE 6.0. Technical Report ifi-2008.02,

Department of Informatics, University of Zurich, Zurich, Switzerland,

2008.

[Fra03] D.S. Frankel. Model driven architecture. Wiley New York, 2003.

[FSS99] Norbert E. Fuchs, Uta Schwertel, and Rolf Schwitter. Attempto con-

trolled english - not just another logic specification language. In Pierre

Flener, editor, Logic-Based Program Synthesis and Transformation,

number 1559 in Lecture Notes in Computer Science, Manchester, UK,

June 1999. Eighth International Workshop LOPSTR’98, Springer.

[FST99] N.E. Fuchs, U. Schwertel, and S. Torge. Controlled natural language

can replace first-order logic. Automated Software Engineering, 1999.

14th IEEE International Conference on., pages 295–298, Oct 1999.

[GBLC05] B. González-Baixauli, M.A. Laguna, and Y. Crespo. Product Lines,

Features, and MDD. EWMT 2005 Workshop, 2005.

[GDD05] D. Gašević, D. Djurić, and V. Devedžić. Bridging MDA and OWL

Ontologies. Journal of Web Engineering, 4(2):118–143, 2005.

Bibliography 113

[GDDD04] D. Gašević, D. Djurić, V. Devedžić, and V. Damjanovic. Approaching

OWL and MDA Through Technological Spaces. 3rd Workshop in

Software Model Engineering (WiSME 2004), Lisbon, Portugal, 2004.

[GDDS06] D. Gašević, D. Djurić, V. Devedžić, and B. Selic. Model Driven

Architecture and Ontology Development. Springer-Verlag New York,

Inc. Secaucus, NJ, USA, 2006.

[GF94] O.C.Z. Gotel and C.W. Finkelstein. An analysis of the requirements

traceability problem. Requirements Engineering, 1994., Proceedings

of the First International Conference on, pages 94–101, Apr 1994.

[GF97] O. Gotel and A. Finkelstein. Extended requirements traceability:

results of an industrial case study. Requirements Engineering, 1997.,

Proceedings of the Third IEEE International Symposium on, pages

169–178, Jan 1997.

[GGKH03] T. Gardner, C. Griffin, J. Koehler, and R. Hauser. A review of OMG

MOF 2.0 Query/Views/Transformations Submissions and Recom-

mendations towards the final Standard. In MetaModelling for MDA

Workshop, 2003.

[GL93] J. A. Goguen and C. Linde. Techniques for requirements elimination.

In Proc. Int. Symp. Req. Engineering, pages 152–164, Los Alamitos,

California, 1993. IEEE CS Press.

[GLGCGB05] F.J.P. Garćıa, M.A. Laguna, Y.C. González-Carvajal, and

B. González-Baixauli. Requirements variability support through

MDD and graph transformation. International Workshop on Graph

and Model Transformation (GraMoT05), Electronic Notes in Theo-

retical Computer Science, pages 161–173, 2005.

[Gog93] J. Goguen. Social issues in requirements engineering, 1993.

[Gor04] M. Gordon. Knowledge representation: Logical, philosophical, and

computational foundations. Distributed Systems Online, IEEE,

5(1):9.1–9.3, 2004.

[GPFLC04] A. Gómez-Pérez, M. Fernández-López, and O. Corcho. Ontological

Engineering: With Examples from the Areas of Knowledge Manage-

ment, E-Commerce and the Semantic Web. Springer, 2004.

Bibliography 114

[HPSB+04] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and

M. Dean. SWRL: A Semantic Web Rule Language Combining OWL

and RuleML. W3C Member Submission, 21, 2004.

[JAB+06] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and

Patrick Valduriez. Atl: a qvt-like transformation language. In OOP-

SLA ’06: Companion to the 21st ACM SIGPLAN symposium on

Object-oriented programming systems, languages, and applications,

pages 719–720, New York, NY, USA, 2006. ACM.

[JFH92] W.L. Johnson, M.S. Feather, and D.R. Harris. Representation and

presentation of requirements knowledge. IEEE Transactions on Soft-

ware Engineering, 18(10):853–869, 1992.

[JK06] F. Jouault and I. Kurtev. Transforming Models with ATL. LEC-

TURE NOTES IN COMPUTER SCIENCE, 3844:128, 2006.

[Kal08] Kaarel Kaljurand. ACE View — an ontology and rule editor based

on Attempto Controlled English. In 5th OWL Experiences and Direc-

tions Workshop (OWLED 2008), Karlsruhe, Germany, 26–27 October

2008. 12 pages.

[KAMN98] C. Kamprath, E. Adolphson, T. Mitamura, and E. Nyberg. Con-

trolled Language for Multilingual Document Production: Experience

with Caterpillar Technical English. In Proceedings of the Second In-

ternational Workshop on Controlled Language Applications, volume

146, 1998.

[KBW03] A.G. Kleppe, W. Bast, and J.B. Warmer. MDA Explained: The

Model Driven Architecture: Practice and Promise. Addison-Wesley

Professional, 2003.

[Ken02] S. Kent. Model Driven Engineering. LECTURE NOTES IN COM-

PUTER SCIENCE, pages 286–298, 2002.

[KF06] Kaarel Kaljurand and Norbert E. Fuchs. Bidirectional mapping be-

tween OWL DL and Attempto Controlled English. In Fourth Work-

shop on Principles and Practice of Semantic Web Reasoning, Budva,

Montenegro, 2006.

[KL08] E. Kavakli and P. Loucopoulos. Goal Driven Requirements Engineer-

ing: Evaluation of Current Methods. In Proc. 8th CAiSE/IFIP8,

volume 1, 2008.

Bibliography 115

[KLS08] S. Kherraf, É. Lefebvre, and W. Suryn. Transformation From CIM

to PIM Using Patterns and Archetypes. Proceedings of the 19th Aus-

tralian Conference on Software Engineering - ASWEC, pages 338–

346, 2008.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-

Oriented and Frame-Based Languages. Journal of the Association

for Computing Machinery, 42(4):741–843, 1995.

[KN05] R.S. Kaplan and D.P. Norton. The Balanced Scorecard: Mea-

sures that Drive Performance. HARVARD BUSINESS REVIEW,

83(7):172, 2005.

[Knu04] H. Knublauch. Ontology-Driven Software Development in the Con-

text of the Semantic Web: An Example Scenario with Protege/OWL.

Proceedings of MDSW2004, Monterey, USA, 2004.

[KS06] H. Kaiya and M. Saeki. Using domain ontology as domain knowl-

edge for requirements elicitation. In Proceedings of the 14th IEEE

International Requirements Engineering Conference (RE’06), pages

186–195. IEEE Computer Society Washington, DC, USA, 2006.

[LB03] J. Leite and K. Breitman. Experiences Using Scenarios to En-

hance Traceability. In 2nd International Workshop on Traceability

in Emerging Forms of Software Engineering at the 18th IEEE Con-

ference on Automated Sofware Engineering, Oct, 2003.

[Len96] Maurizio Lenzerini. Tbox and abox reasoning in expressive descrip-

tion logics. In In Proc. of KR-96, pages 316–327. Morgan Kaufmann,

1996.

[LHLHW+00] A. Le Hors, P. Le Hegaret, L. Wood, G. Nicol, J. Robie, M. Cham-

pion, and S. Byrne. Document Object Model (DOM) Level 2 Core

Specification. W3C Recommendation, pages 1–107, 2000.

[LPCD06] L.N. Leal, P.F. Pires, M.L.M. Campos, and F.C. Delicato. Natu-

ral MDA: Controlled Natural Language for Action Specifications on

Model Driven Development. LECTURE NOTES IN COMPUTER

SCIENCE, 4275:551, 2006.

[LS+99] O. Lassila, R.R. Swick, et al. Resource Description Framework (RDF)

Model and Syntax Specification. 1999.

Bibliography 116

[MAJP02] S. Martin, A. Aurum, R. Jeffery, and B. Paech. Requirements engi-

neering process models in practice. In Seventh Australian workshop

on requirements engineering (AWRE02), Melbourne, Australia, pages

141–155, 2002.

[MBJK90] J. MYLOPOULOS, A. BORGIDA, M. JARKE, and

M. KOUBARAKIS. Telos: Representing Knowledge About

Information Systems. 8(4):325–362, 1990.

[McB04] B. McBride. The Resource Description Framework (RDF) and its

Vocabulary Description Language RDFS. Handbook on Ontologies,

pages 51–66, 2004.

[Mel04] S.J. Mellor. MDA Distilled: Principles of Model-Driven Architecture.

Addison-Wesley Professional, 2004.

[MFKH90] L. Macaulay, C. Flower, M. Kirby, and A. Hutt. USTM: a new ap-

proach to requirements specification. Interacting with Computers,

2(1):92–118, 1990.

[MGG+07] M. Milanović, D. Gašević, A. Giurca, G. Wagner, and V. Devedžić.

Model Transformations to Share Rules between SWRL and R2ML.

2007.

[MM+01] J. Miller, J. Mukerji, et al. Model Driven Architecture (MDA). Object

Management Group, Draft Specification ormsc/2001-07-01, July, 9,

2001.

[MM+03] J. Miller, J. Mukerji, et al. MDA Guide Version 1.0. 1. Object Man-

agement Group, pages 03–06, 2003.

[ND01] N Noy and McGuiness D. Ontology Development 101 - A guide to

creating your first ontology. 2001.

[NE00] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering:

a roadmap. In ICSE - Future of SE Track, pages 35–46, 2000.

[NM00] N.F. Noy and M.A. Musen. PROMPT: Algorithm and Tool for Auto-

mated Ontology Merging and Alignment. Proceedings of the National

Conference on Artificial Intelligence (AAAI), pages 450–455, 2000.

[NMH03] E. Nyberg, T. Mitamura, and W.O. Huijsen. Controlled language for

authoring and translation. Computers and Translation-A Translator’s

Guide. Amsterdam/Philadelphia, pages 245–281, 2003.

Bibliography 117

[NZP04] N. Nurmuliani, D. Zowghi, and S. Powell. Analysis of requirements

volatility during software development life cycle. Software Engineer-

ing Conference, 2004. Proceedings. 2004 Australian, pages 28–37,

2004.

[PhS+06] E. Prud hommeaux, A. Seaborne, et al. SPARQL Query Language

for RDF. W3C Working Draft, 20, 2006.

[PKCS95] K. Pulford, A. Kuntzmann-Combelles, and S. Shirlaw. A quantita-

tive approach to software management: the AMI handbook. Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1995.

[Pre02] R.S. Pressman. Engenharia de software. McGraw-Hill, 2002.

[Pre05] R.S. Pressman. Software Engineering: A Practitioner’s Approach.

Boston, 2005.

[PWCC95] M.C. Paulk, C.V. Weber, B. Curtis, and M.B. Chrissis. The capa-

bility maturity model: guidelines for improving the software process.

Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,

1995.

[RJ01] B. Ramesh and M. Jarke. Toward reference models for requirements

traceability. Software Engineering, IEEE Transactions on, 27(1):58–

93, Jan 2001.

[RW91] HB Reubenstein and RC Waters. The Requirements Apprentice: au-

tomated assistance for requirements acquisition. Software Engineer-

ing, IEEE Transactions on, 17(3):226–240, 1991.

[Sch06] D.C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineer-

ing. COMPUTER, pages 25–31, 2006.

[SdPL06] L.F. Silva and J.C.S. do Prado Leite. Generating Requirements

Views: A Transformation-Driven Approach. Proceedings of the 3rd

Workshop on Software Evolution through Transformations, 2006.

[SGP98] G. Steve, A. Gangemi, and D.M. Pisanelli. lntegrating Medical Ter-

minologies with ONIONS Methodology. Information Modelling and

Knowledge Bases IX, 1998.

[Sin96] R. Singh. International Standard ISO/IEC 12207 Software Life Cycle

Processes. Software Process Improvement and Practice, 2(1):35–50,

1996.

Bibliography 118

[SLB02] S. Soares, E. Laureano, and P. Borba. Implementing distribution

and persistence aspects with aspectJ. ACM SIGPLAN Notices,

37(11):174–190, 2002.

[SM01] G. Stumme and A. Maedche. FCA-Merge: Bottom-up merging of

ontologies. 7th Intl. Conf. on Artificial Intelligence (IJCAI01), pages

225–230, 2001.

[Som01] I. Sommerville. Software Engineering. 6th. Ed., Harlow, UK.:

Addison-Wesley, 2001.

[SP90] A.P. Sage and J.D. Palmer. Software systems engineering. John Wiley

& Sons, New York, NY, USA, 1990.

[ST04] R. Schwitter and M. Tilbrook. Controlled Natural Language meets

the Semantic Web. In Proceedings of the Australasian Language Tech-

nology Workshop, pages 55–62, 2004.

[TBF+03] D.F. TOGNERI, SR BRITO, RA FALBO, OL TAVARES, and

CS MENEZES. Um ambiente para aprendizagem cooperativa de

engenharia de requisitos orientado a projetos. Proceedings of the

International Conference on Engineering and Computer Education

(ICECE2003). Anais Eletrônicos... São Paulo, 2003.

[vL08] A. van Lamsweerde. Requirements engineering: from craft to dis-

cipline. In Proceedings of the 16th ACM SIGSOFT International

Symposium on Foundations of software engineering, pages 238–249.

ACM New York, NY, USA, 2008.

[Wal05] E. Walker. Goal-question-metric (gqm) approach. Technical report,

USA Department of Defense Information Analysis Center - DACS,

2005.

[WEC93] D.B. Walz, J.J. Elam, and B. Curtis. Inside a software design team:

knowledge acquisition, sharing, and integration. Communications of

the ACM, 36(10):63–77, 1993.

[WH96] R.H. Wojcik and H. Holmback. Getting a Controlled Language Off

the Ground at Boeing. In Proceedings of the First International

Workshop on Controlled Language Applications, pages 22–31, 1996.

[WHH98] R. Wojcik, H. Holmback, and J. Hoard. Boeing Technical English:

An Extension of AECMA SE beyond the Aircraft Maintenance Do-

Bibliography 119

main. In Proceedings: Second International Workshop on Controlled

Language Applications (CLAW 98), Pittsburgh, PA, 1998.

[Whi04] S. White. Process Modeling Notations and Workflow Patterns. Work-

flow Handbook, pages 265–294, 2004.

[WJJ06] S. Wang, L. Jin, and C. Jin. Ontology Definition Metamodel based

Consistency Checking of UML Models. In Computer Supported Co-

operative Work in Design, 10th International Conference on, pages

1–5, 2006.

Appendix A

Interviews

This Appendix presents the content of the interviews conducted during the Case

Study.

Listing A.1: Interview with Medical Specialist

1 −−Hea l th un i t

2 Every hea l th un i t a l l o c a t e s at l e a s t 1 s p e c i a l t y .

3 Every s p e c i a l t y i s a l l o c a t e d by a hea l th un i t .

4 Everything that a l l o c a t e s an s p e c i a l t y i s a hea l th un i t .

5 Every hea l th un i t da ta has a phone number .

6 Every hea l th un i t da ta has a complement .

7 Every hea l th un i t da ta has a z ip code .

8 Every hea l th un i t da ta has a s t r e e t .

9 Every hea l th un i t da ta has a c i t y .

10 Every hea l th un i t l o c a t e s at l e a s t 1 doctor .

11 Every hea l th un i t has med ica l procedures .

12

13 −−Disease

14 Every d i s e a s e has at l e a s t 1 symptom .

15 Every d i s e a s e i s t r ea t ed by at l e a s t 1 s p e c i a l t y .

16 Every s p e c i a l t y t r e a t s at l e a s t 1 d i s e a s e .

17 Every d i s e a s e has a d e s c r i p t i o n .

18 Every d i s e a s e i s a symptom cause .

19 Every d i s e a s e has a treatment .

20 Every treatment has drugs .

21 Every drug has at l e a s t 1 s i d e e f f e c t .

22 Everything that s e l l s a drug i s a pharmacy .

23 Everything that i s t r ea t ed i s a d i s e a s e .

A. Interviews 121

24

25 −−Symptom

26 Every symptom has a d e s c r i p t i o n .

27 Every symptom has a symptom cause .

28 Everything that has a symptom i s a d i s e a s e .

29

30 −−Pat ient

31 Every pa t i en t has a name .

32 Every pa t i en t has a phone number .

33 Every pa t i en t has a complement .

34 Every pa t i en t has a z ip code .

35 Every pa t i en t has a s t r e e t .

36 Every pa t i en t has a c i t y .

37 Every pa t i en t has at l e a s t 1 symptom .

38 Every pa t i en t i s t r ea t ed by at l e a s t 1 doctor .

39 No pat i en t i s a d i s e a s e .

40

41 −−Doctor .

42 Every doctor has a name .

43 Every doctor has a phone number .

44 Every doctor has a complement .

45 Every doctor has a z ip code .

46 Every doctor has a s t r e e t .

47 Every doctor has a c i t y .

48 Every doctor t r e a t s at l e a s t 1 pa t i en t .

49 Every doctor attends to at l e a s t one s p e c i a l t y .

50 Every doctor i s l o ca t ed by at l e a s t 1 hea l th un i t .

51 Every medica l procedure i s executed by a doctor .

52 Everything that execute s med ica l procedures i s a doctor .

53 Every doctor p r e s c r i b e s med i c a l p r e s c r i p t i o n s .

54 Everything that p r e s c r i b e s med i c a l p r e s c r i p t i o n s i s a doctor .

55 Every med i c a l p r e s c r i p t i o n has at l e a s t one drug .

56 No doctor i s a nurse .

57 Every doctor has at l e a s t 1 s p e c i a l t y .

58 −−Nurse

59 Every nurse has a name .

60 Every nurse has a phone number .

61 Every nurse has a complement .

62 Every nurse has a z ip code .

A. Interviews 122

63 Every nurse has a s t r e e t .

64 Every nurse has a c i t y .

65 Every medica l procedure i s executed by a nurse .

66 Every nurse execute s at l e a s t 1 medica l procedure .

Listing A.2: Interview with Health System Specialist

1 −−Complaint

2 −−compla in t s ta tus

3 Every complaint has a compla in t s ta tus .

4 Every opened complaint i s a compla in t s ta tus .

5 Every c l o s ed compla in t i s a compla in t s ta tus .

6 Every suspended complaint i s a compla in t s ta tus .

7 Every compla in t s ta tus has a reason .

8 −−compla in t s ta tus

9

10 Every complaint has a compla int data .

11 −−Complaint data .

12 Every compla int data has a complainer name .

13 Every compla int data has an obse rvat i on .

14 Every compla int data has a feedback .

15 Every compla int data has a date .

16 −−Complaint data

17 Every re spons ib l e emp loyee i s an employee .

18 Every complaint has a r e spons ib l e emp loyee .

19

20 Every sp e c i a l c omp l a i n t i s a complaint .

21 Every food compla int i s a complaint .

22 Every animal compla int i s a complaint .

23 −−Complaint

24

25 −−Food Complaint

26 No food compla int i s a sp e c i a l c omp l a i n t .

27 No food compla int i s an animal compla int .

28 Every food compla int has an amount o f a f f e c t ed peop l e .

29 Every food compla int has a v ic t im .

30 Every food compla int has a l o c a t i on o f t r e a tmen t .

31 Every l o c a t i on o f t r e a tmen t a l l o c a t e s a s p e c i a l t y .

32 Every food compla int has a su sp i c i ou s mea l .

33 Every su sp i c i ou s mea l has a su sp i c i ou s f o od e s t ab l i s hmen t .

A. Interviews 123

34 Every su sp i c i ou s f o od e s t ab l i s hmen t i s a prob l em locat i on data .

35 No susp i c i ou s mea l i s a complaint .

36 −−Food Complaint

37

38 −−Animal Complaint

39 No animal compla int i s a sp e c i a l c omp l a i n t .

40 No animal compla int i s a food compla int .

41 Every animal compla int has an amount of animals .

42 Every animal compla int has a type o f the an ima l .

43 Every animal compla int has a da t e o f ob s e r va t i on .

44 Every animal compla int has a prob l em locat i on data .

45 Every animal compla int has at l e a s t 1 v ic t im .

46 −−Prob lem locat ion data

47 Every prob l em locat i on data has a phone number .

48 Every prob l em locat i on data has a complement .

49 Every prob l em locat i on data has a z ip code .

50 Every prob l em locat i on data has a s t r e e t .

51 Every prob l em locat i on data has a c i t y .

52 −−Prob lem locat ion data

53 Every animal compla int has an obse rve r .

54 −−Observer

55 Every obse rve r has a name .

56 Every obse rve r has a phone number .

57 Every obse rve r has a z ip code .

58 Every obse rve r has a s t r e e t .

59 Every obse rve r has a c i t y .

60 −−Observer

61 −−Animal Complaint

62

63 −−Spec ia l Compla int

64 No spe c i a l c omp l a i n t i s an animal compla int .

65 No spe c i a l c omp l a i n t i s a food compla int .

66 Every sp e c i a l c omp l a i n t has a complement .

67 Every sp e c i a l c omp l a i n t has a c i t y .

68 Every sp e c i a l c omp l a i n t has a d i s t r i c t

69 Every sp e c i a l c omp l a i n t has a phone number .

70 Every sp e c i a l c omp l a i n t has a s t r e e t .

71 Every sp e c i a l c omp l a i n t has a z ip code .

72 Every sp e c i a l c omp l a i n t has an age .

A. Interviews 124

73 Every sp e c i a l c omp l a i n t has an occupat ion .

74 Every sp e c i a l c omp l a i n t has a d e s c r i p t i o n .

75 −−Spe c i a l Complaint

76

77 −−Ci t i z en

78 I f something X r e g i s t e r s a complaint then X i s a c i t i z e n .

79 Every complaint i s r e g i s t e r e d by a c i t i z e n .

80 Every c i t i z e n has a name .

81 Every c i t i z e n has a s t r e e t .

82 Every c i t i z e n has a z ip code .

83 Every c i t i z e n has a c i t y .

84 Every c i t i z e n has a phone number .

85 −−Ci t i z en

86

87 −−Victim

88 Every v ic t im has a name .

89 Every v ic t im has a v ic t im data .

90 −−Victim data

91 Every v ic t im data has a phone number .

92 Every v ic t im data has a z ip code .

93 Every v ic t im data has a c i t y .

94 −−Victim data

95 −−Victim

96

97 −−I n f e r e n c e s

98 Everything that has a phone number i s a contact data .

99 Everything that has a z ip code i s a contac t addre s s .

100 −−I n f e r e n c e s

Listing A.3: Interview with Security Specialist

1 Every employee has a l o g i n .

2 Every employee has a password .

3 No vict im has a password .

4 No vict im has a l o g i n .

5 Every c i t i z e n has a l o g i n .

6 Every c i t i z e n has a password .

7 Every doctor has a l o g i n .

8 Every doctor has a password .

9

A. Interviews 125

10 I f X i s a system user then X has a l o g i n and X has a password .

11 I f something X has a l o g i n and X has a password then X i s a system user .

12

13 Every system user i s a s e c u r i t y r o l e .

14 Every qu e r y s e c u r i t y r o l e i s a s e c u r i t y r o l e .

15 Every upda t e s e c u r i t y r o l e i s a s e c u r i t y r o l e .

16 Every no a c c e s s r o l e i s a s e c u r i t y r o l e .

17

18 Every c i t i z e n i s a qu e r y s e c u r i t y r o l e .

19 Every employee i s an upda t e s e c u r i t y r o l e .

20 Every doctor i s an upda t e s e c u r i t y r o l e .

21 Every v ic t im i s a n o a c c e s s r o l e .

22 Every obse rve r i s a n o a c c e s s r o l e .

23

24 Every complaint i s r e g i s t e r e d by an upda t e s e c u r i t y r o l e .

25 Everything that r e g i s t e r s a complaint i s an upda t e s e c u r i t y r o l e .

26

27 −−I n f e r e n c e s

28 Everything that has a name i s a person .

29 −−I n f e r e n c e s

Livros Grátis
(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas

http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1

Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo

http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1

