UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ENERGIA

METODOLOGIA PARA CALCULAR O GRAU DE IMPACTO CAUSADO PELAS

PERTURBAÇÕES REGISTRADAS EM UM SISTEMA ELÉTRICO DE TRANSMISSÃO

ESTUDO DO CASO ELETRONORTE / RONDÔNIA

Elaine Aparecida de Lima Vianna

Itajubá, outubro de 2009.

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ENERGIA

Elaine Aparecida de Lima Vianna

METODOLOGIA PARA CALCULAR O GRAU DE IMPACTO CAUSADO PELAS

PERTURBAÇÕES REGISTRADAS EM UM SISTEMA ELÉTRICO DE TRANSMISSÃO

ESTUDO DO CASO ELETRONORTE / RONDÔNIA

Dissertação submetida ao Programa de Pós-Graduação em Engenharia de Energia como parte dos requisitos para obtenção do Título de Mestre em Ciências em Engenharia de Energia.

Área de Concentração: Planejamento e Gestão de Sistemas Energéticos

Orientador: Prof. Dr. Germano Lambert Torres

Co - Orientador: Prof. Dr. Luiz Eduardo B. da Silva

Outubro de 2009 Itajubá – MG

Dedico este trabalho à minha querida avó Benedita, a saudosa "Vó Tina", cuja proteção e carinho me alcançam até os dias de hoje; aos meus pais Ercílio e Elizabeth, que me ensinaram as primeiras e as mais valiosas lições de vida; ao meu esposo Francisco, amigo e companheiro de todas as horas e às minhas filhas Priscila e Taísa, jóias preciosas que me foram emprestadas por Deus para que eu exercesse na Terra a minha mais importante missão: ser Mãe.

AGRADECIMENTO

Ás Centrais Elétricas de Rondônia – Ceron pelo patrocínio deste mestrado, parte integrante de um projeto inédito relacionado ao Programa de Pesquisa e Desenvolvimento desta empresa.

Ás Centrais Elétricas do Norte do Brasil – Eletronorte, pela disponibilização dos dados para este trabalho e pelo apoio e incentivo dos gerentes e colegas.

Aos professores doutores Germano Lambert Torres e Luiz Eduardo Borges da Silva, pelas preciosas orientações técnicas e por compartilharem seus valiosos conhecimentos com simpatia e simplicidade.

Ao professor doutor Marinaldo Felipe da Silva, pela confiança depositada em mim e pela contribuição, importante e decisiva, para o meu ingresso neste projeto.

À professora mestre Silvia das Dores Rissino, pelo apoio, amizade e carinho, dispensados ao longo da elaboração desta dissertação.

Aos amigos Álvaro Nunes de Magalhães e Michele Nascimento Melo, colegas de mestrado, pela amizade e companheirismo.

Ao meu querido amigo professor doutor Sidinei Pereira, pelo incentivo oferecido desde o início e pelo auxílio técnico na finalização desta dissertação.

Aos meus familiares e amigos, por terem perdoado minhas ausências e contribuído para renovação de minhas forças, durante todo o período de estudos.

Resumo

As perturbações registradas em um Sistema Elétrico de Potência comprometem a qualidade e a continuidade do fornecimento de energia, as quais são mensuradas por meio dos Indicadores de Desempenho, cujas metas constituem importantes objetivos das empresas do setor.

Este estudo sobre as perturbações registradas em um Sistema Elétrico de Potência tem o objetivo de definir os atributos que contribuem para aumentar a gravidade das perturbações registradas nos Sistemas de Transmissão e propor uma metodologia de cálculo do Grau de Impacto causado por elas. Um estudo de caso é apresentado para proporcionar maior confiabilidade ao estudo, por meio da utilização de dados reais. A empresa analisada é a Centrais Elétricas do Norte do Brasil – Eletronorte, mais especificamente o Sistema Elétrico de Rondônia.

O Sistema Elétrico da Eletronorte / Rondônia faz parte dos Sistemas Isolados. Atende o Estado de Rondônia e parte do Estado do Acre, inclusive sua capital Rio Branco, e sua interligação ao Sistema Interligado Nacional — SIN está prevista para o ano de 2009. Foram analisadas as perturbações registradas no Sistema Elétrico da Eletronorte / Rondônia, nos anos de 2007 e 2008.

A utilização dos indicadores de desempenho, no estudo do valor do impacto causado pelas perturbações, possibilita a realização de algumas análises e considerações, úteis para o desenvolvimento e a proposição de uma nova metologia de cálculo do Grau de Impacto.

Esta metodologia possibilita a quantificação do impacto causado por uma perturbação em um Sistema de Transmissão e apresenta uma nova unidade, o *habitante mega watt hora* (habMWh), que permite, facilmente, a comparação entre os impactos causados por perturbações registradas em um mesmo sistema, ou em sistemas distintos.

PALAVRAS-CHAVE: Sistema Elétrico de Rondônia, Indicadores de Desempenho, Perturbações no Sistema Elétrico, Grau de Impacto das Perturbações, Grau de Impacto Equivalente.

Abstract

The perturbations registered in the Electric Power System compromise the quality and continuity of the energy supplying service, that are measured by the Performance Indicators, whose limits constitute important objective for Electric Energy Companies.

This investigate is a study about the perturbations registered in the Electric Power System, its objective is to specify their characteristics which contribute to intensify the perturbations registered in the Transmission System and to search a method to calculate the Impact Grade occasioned for each one of them. A case study is showed to make the research trustful, by the use of real informations. The Centrais Elétricas do Norte do Brasil – Eletronorte is the investigated company, exactly the Rondônia Electric Power System.

The Eletronorte's Rondonia Electric System composes the Brazilians Isolated Systems. It supplies the Rondonia State and part of Acre State, included the capital, Rio Branco, and its interconnection to the National Interconnected System is foreseen to the year 2009. The perturbations analysed were registered in the Rondonia Electric System in 2007 and 2008.

The performance indicators' utilization in the perturbations's impact searching makes possible some analysis and considerations that has been useful to develop and propose a new formula to Impact Grade calculation.

This new formula makes possible the perturbations' impact quantifying registered in a transmission line, and a new unit appears to facilitate, this is the *habitante mega watt hora* (habMWh). The new unit utilization allows an easy comparison among impacts caused by perturbations registered in a same system, or in distinct systems.

KEYWORDS: Rondonia Electric System, Performance Indicators, Electric Systems Perturbations, Perturbations' Impact Grade, Equivalent Impact Grade.

SUMÁRIO

Lista de Siglas	9
Lista de Figuras.	13
Lista de Tabelas	14
Lista de Equações	15
Capítulo 1 - INTRODUÇÃO	16
Capítulo 2 – Metodologia da Pesquisa	19
2.1 Curva de Fornecimento de Energia	19
2.2 Os Indicadores de Desempenho	20
2.2.1 Duração Equivalente de Interrupção de Carga – DREQ [6]	
2.2.2 Freqüência Equivalente de Interrupção – FREQ [6]	
2.2.3 Disponibilidade de Equipamentos – DISP [6]	23
2.3 As Centrais Elétricas do Norte do Brasil - Eletronorte	27
2.3.1 Macro Política da Qualidade da Eletronorte [4]	28
2.4 - O Sistema Elétrico de Rondônia	
2.4.1 A Regional de Produção e Comercialização de Rondônia	33
2.4.2 O Centro de Operação Regional de Rondônia	39
2.5 As Perturbações no Sistema Elétrico de Rondônia	40
2.6 Análises dos Indicadores por Perturbação	51
Capítulo 3 – Metodologia do ONS	53
3.1 Demonstração da Metodologia ONS	53
3.2 Aplicação da Metodologia do ONS	55
3.3 Análises dos Resultados	58
Capítulo 4 – Metodologia Proposta	60
4.1 Principais Atributos das Perturbações	60
4.2 Cálculo Proposto para o Grau de Impacto	60
4.3 Aplicação do Cálculo Proposto para o Grau de Impacto	64
4.4 Cálculo Proposto para o Grau de Impacto Equivalente	72

4.5 Aplicação do Cálculo do Grau de Impacto Equivalente	74
Capítulo 5 — Conclusão	76
Capítulo 6 – Trabalhos Futuros	77
Referências	78
ANEXO – População e Área por Localidade	79

Lista de Siglas

CERON - Centrais Elétricas de Rondônia

COR – Centro de Operação Regional

CRD - Regional de Produção e Comercialização de Rondônia

CRDA – Divisão Administrativa

CRDG - Divisão Térmica

CRDH - Divisão Hidráulica

CRDJ - Divisão de Transmissão de Ji-Paraná

CRDO – Divisão de Operação

CRDQ - Divisão de Qualidade

CRDT - Divisão de Transmissão de Porto Velho

DC - Diretoria de Produção e Comercialização

DE – Diretoria de Planejamento e Engenharia

DF - Diretoria Econômico-Financeira

DFF – Duração da Freqüência Fora de Faixa

DG – Diretoria de Gestão Corporativa

DT – Diretoria de Tecnologia

DTF – Duração da Tensão Fora de Faixa

DISPE – Disponibilidade de Equipamentos

DISPG - Disponibilidade de Geração

DISPL - Disponibilidade de Linhas de Transmissão

DREQ - Duração Equivalente de Interrupção de Carga

Ei – Energia Interrompida

ELETROBRÁS – Centrais Elétricas Brasileiras

ELETRONORTE – Centrais Elétricas do Norte do Brasil

ENERAM - Comitê Coordenador dos Estudos Energéticos da Amazônia

ERAC – Esquema Regional de Alívio de Carga

FEO - Formulário Específico da Operação

FREQ – Freqüência Equivalente de Interrupção de Carga

GIE – Grau de Impacto de Energia

IBGE – Instituto Brasileiro de Geografia e Estatística

ICE – Índice de Carregamento de Equipamentos

ICL – Índice de Carregamento de Linhas de Transmissão

IET - Índice de Eficácia de Treinamento

IRPMP – Índice de Realização do Programa de Manutenção Preventiva

IRT - Índice de Realização dos Treinamentos

ISCE – Índice de Satisfação do Cliente Externo

ISCO – Índice de Satisfação do Clima Organizacional

NBR - Norma Brasileira

NRC – Número de Reclamação do Cliente

ONS - Operador Nacional do Sistema

PCH – Pequena Central Hidrelétrica

Pi – Potência Interrompida

PIE - Produtor Independente de Energia

PPE – Assessoria de Planejamento Empresarial

RAP – Relatório de Análise de Perturbação

RDI – Relatório de Desligamentos e Interrupções

RDO – Relatório Diário de Operação

RIDE – Relatório Integrado de Desempenho Empresarial

SGQ – Sistema de Gestão da Qualidade

SIESE – Sistema de Informação Empresarial do Setor de Energia Elétrica

SIN – Sistema Interligado Nacional

TFA – Taxa de Freqüência de Acidentes

TGA – Taxa de Gravidade de Acidentes

UHE - Usina Hidrelétrica

UTE – Usina Térmica

Siglas de Áreas

AC – Acre

AN - Abunã

AQ - Ariquemes

CA - Cacoal

GJ – Guajará Mirim

ITA – Itapuã

JP - Ji-Paraná

JR - Jaru

NM – Nova Mamoré

PV - Porto Velho

RB - Rio Branco

RL - Rolim de Moura

RO - Rondônia

Siglas de Subestações

SEAE - Subestação Areal

SEAF – Subestação Alfaville

SEGJ – Subestação Guajará Mirim

SEAN - Subestação Abunã

SEAQ – Subestação Ariquemes

SEPV - Subestação Porto Velho

SERM – Subestação Rio Madeira

SESM - Subestação Samuel

SERL – Subestação Rolim de Moura

SEJP – Subestação Ji-Paraná

SEJR – Subestação Jaru

Siglas de Equipamentos

AT – Auto – Transformador

BC – Bancos Capacitores

BR - Barra

LT – Linha de Transmissão

RE - Reatores

SU – Equipamento da Usina Hidrelétrica de Samuel

TF – Transformador

TR – Transformador Regulador

UGD – Unidade Geradora à Diesel

UGG – Unidade Geradora à Gás

UGH – Unidade Geradora Hidráulica

UGV – Unidade Geradora à Vapor

Siglas de Unidades

kV - Kilo Volt

MVA – Mega Volt Ampére

MVAr – Mega Volt Ampére Reativo

MW – Mega Watt

Siglas de Níveis de Tensão

2 - 13,8 kV

3 - 34,5 kV

4-69 kV

 $5 - 138 \; kV$

 $6-230\;kV$

Lista de Figuras

Figura 2.1 – Modelo de Curva de Carga de uma subestação	19
Figura 2.2 – Sistema de Produção e Transmissão da Eletronorte	28
Figura 2.3 – Mapa do Sistema Elétrico da Eletronorte / Rondônia	31
Figura 2.4 – A Interligação do Sistema Rondônia ao SIN	32

Lista de Tabelas

	34
Tabela 2.2 – Relação de Equipamentos – CRDJ	36
Tabela 2.3 – Relação de Linhas de Transmissão – CRDT	37
Tabela 2.4 – Relação de Linhas de Transmissão – CRDJ	37
Tabela 2.5 – Relação de Turbinas – CRDH	38
Tabela 2.6 – Relação de Turbinas – CRDG	38
Tabela 2.7 – Relação de Turbinas – PIE Termo Norte	38
Tabela 2.8 - Dados dos RAPs 2007	41
Tabela 2.9 – Dados dos RAPs 2008	42
Tabela 2.10 – Valores dos Indicadores por RAP 2007	45
Tabela 2.11 – Valores dos Indicadores por RAP 2008	46
Tabela 2.12 – Valores dos RAP por Linha / Equipamento 2007	48
Tabela 2.13 – Valores dos RAP por Linha / Equipamento 2008	49
Tabela 3.1 - Aspectos considerados no Cálculo do Grau de Impacto pelo me	étod
do ONS	54
Tabela 3.2 – Classificação do Grau de Impacto pelo método do ONS	54
Tabela 3.3 – Grau de Impacto de 2007 pelo método do ONS	
Tabela 3.3 – Grau de Impacto de 2007 pelo método do ONS	.56
	.56 .57
Tabela 3.4 – Grau de Impacto de 2008 pelo método do ONS	.56 .57 .65
Tabela 3.4 – Grau de Impacto de 2008 pelo método do ONS	.56 .57 .65
Tabela 3.4 – Grau de Impacto de 2008 pelo método do ONS	.56 .57 .65 66
Tabela 3.4 – Grau de Impacto de 2008 pelo método do ONS	.56 .57 .65 66 68
Tabela 3.4 – Grau de Impacto de 2008 pelo método do ONS	.56 .57 .65 66 68 69
Tabela 3.4 – Grau de Impacto de 2008 pelo método do ONS	.56 .57 .65 66 68 69 70
Tabela 3.4 – Grau de Impacto de 2008 pelo método do ONS	.56 .57 .65 66 68 69 70 71
Tabela 3.4 – Grau de Impacto de 2008 pelo método do ONS	56 57 65 68 69 70 71

Lista de Equações

Equação 2.1 – Cálculo do DREQ	21
Equação 2.2 – Cálculo do FREQ	22
Equação 2.3 – Cálculo do DISP	23
Equação 2.4 – Cálculo do DISPE	24
Equação 2.5 – Cálculo do INDISPE	25
Equação 2.6 – Cálculo do DISPL	25
Equação 2.7 – Cálculo do INDISPL	25
Equação 2.8 – Cálculo do DISPG	26
Equação 2.9 – Cálculo do INDISPG	26
Equação 4.1 – Cálculo da Energia Interrompida	62
Equação 4.2 – Cálculo do Grau de Impacto	63
Equação 5.1 – Cálculo do Grau de Impacto Equivalente	73

Capítulo 1 - INTRODUÇÃO

Perturbações são alterações imprevistas no funcionamento do sistema elétrico, que podem ser acompanhadas por interrupção no fornecimento de energia, oscilação nos valores de tensão e corrente e desligamento de equipamentos.

A definição de "perturbação" utilizada no SIN, pelo ONS é "ocorrência caracterizada pelo desligamento forçado de um ou mais de seus componentes, que acarreta quaisquer das seguintes conseqüências: corte de carga, desligamento de outros componentes do sistema, danos em equipamentos ou violação de limites operativos." Sendo que "ocorrência" para o ONS é "evento ou ação que leve o SIN a operar fora de suas condições normais" [14].

As perturbações comprometem a qualidade e continuidade do fornecimento de energia, e consequentemente, o cumprimento das metas estabelecidas pelas empresas para os seus Indicadores de Desempenho.

O dimensionamento do impacto provocado pelas perturbações registradas em um Sistema Elétrico de Transmissão permite o estabelecimento de prioridades nas manutenções preventivas dos equipamentos causadores das ocorrências mais impactantes ou, se for o caso, a identificação dos pontos para realização de melhorias no sistema.

Este trabalho apresenta um estudo sobre as perturbações registradas no Sistema Elétrico de Potência, cujo objetivo é definir os atributos que contribuem para aumentar a gravidade das perturbações registradas nos Sistemas de Transmissão e pesquisar uma metodologia de cálculo do Grau de Impacto causado por cada uma delas.

Um estudo de caso é apresentado para proporcionar maior confiabilidade à pesquisa, por meio da utilização de dados reais. A empresa pesquisada é a Centrais Elétricas do Norte do Brasil – Eletronorte, mais especificamente o Sistema Elétrico de Rondônia, nos anos de 2007 e 2008.

Foram utilizados os indicadores de desempenho do produto Duração Equivalente de Interrupção de Carga – DREQ, Freqüência Equivalente de Interrupção de Carga – FREQ, Disponibilidade de Equipamentos - DISP E, Disponibilidade de Linhas – DISP L e Disponibilidade de Geradores – DISP G, na pesquisa do valor do impacto, a partir dos quais foram realizadas algumas análises e considerações, resultando no desenvolvimento e proposição de uma nova Metodologia de Cálculo do Grau de Impacto causado pelas perturbações registradas em um Sistema Elétrico de Transmissão.

De acordo com a nova metodologia, a gravidade de uma perturbação é definida pelos seguintes fatores: tempo de interrupção, potência interrompida e população afetada. O cálculo proposto resulta no surgimento de uma nova unidade, que permite dimensionar o Grau de Impacto e, a partir deste, definir o Grau de Impacto Equivalente, que possibilita a avaliação de quão grave é uma perturbação para um Sistema de Transmissão. Além disso, a nova metodologia permite a realização de comparações entre os impactos causados por perturbações registradas em um mesmo sistema durante um determinado período, ou em sistemas distintos, ou ainda, em períodos distintos.

Este trabalho está estruturado em seis capítulos. No presente capítulo encontra-se a Introdução.

O Capítulo 2 apresenta a Metodologia da Pesquisa, explica o fornecimento de energia, por meio de um modelo de curva de carga; descreve as fórmulas e as definições dos Indicadores de Desempenho; apresenta a empresa pesquisada, as Centrais Elétricas do Norte do Brasil – Eletronorte e o Sistema Elétrico de Rondônia, sob responsabilidade da Regional de Produção e Comercialização de Rondônia – CRD; apresenta o trabalho do Centro de Operação Regional de Rondônia – COR / RO, que realiza a análise das ocorrências registradas no sistema, com destaque para as perturbações registradas nos anos de 2007 e 2008, com os seus respectivos indicadores Duração Equivalente de Interrupção de Carga - DREQ, Freqüência Equivalente de Interrupção de Carga - FREQ e Indisponibilidade - INDISP, este último definido a partir do indicador de Disponibilidade – DISP.

O terceiro capítulo apresenta a Metodologia do ONS, a qual é utilizada pelo Operador Nacional do Sistema para o cálculo do Grau de Impacto; apresenta os valores obtidos para cada uma das perturbações ocorridas no Sistema Elétrico Rondônia nos anos de 2007 e 2008, utilizando este método.

O Capítulo 4 apresenta a Metodologia Proposta, define os atributos que contribuem para aumentar a gravidade das perturbações, demonstra os valores do Grau de Impacto proposto e do Grau de Impacto Equivalente, obtidos para as ocorrências registradas no Sistema Rondônia, nos anos de 2007 e 2008. Os valores totais do impacto causado anualmente por cada linha ou equipamento, possibilitam a identificação dos pontos críticos do sistema.

Algumas propostas para trabalhos futuros estão descritas no quinto capítulo, considerando-se as possíveis melhorias identificadas e algumas dúvidas que poderiam ser esclarecidas através de novos estudos e pesquisas.

O sexto capítulo finaliza este trabalho com uma avaliação da Metodologia Proposta para o cálculo do Grau de Impacto.

Capítulo 2 – Metodologia da Pesquisa

Este trabalho foi realizado através do Estudo de Caso no Sistema Elétrico de Rondônia, pertencente às Centrais Elétricas do Norte do Brasil – Eletronorte. Foram utilizadas as informações registradas nos Relatórios de Análises de Perturbações dos anos de 2007 e 2008.

Para realização das análises das perturbações, é importante a compreensão do fornecimento de energia efetuado por um Sistema Elétrico de Transmissão.

2.1 Curva de Fornecimento de Energia

A curva de suprimento de energia, também conhecida como curva de carga do sistema, representa a variação da potência fornecida ao longo do tempo. A energia fornecida no período é dada pela área sob a curva. A Figura 2.1, abaixo, exibe um modelo de curva de carga de uma subestação, durante o período de um dia.

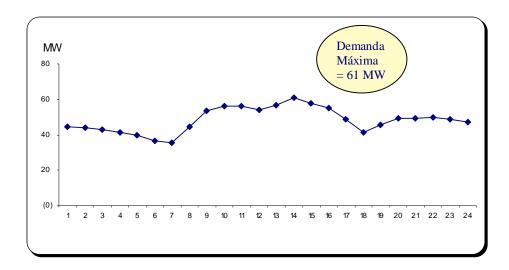


Figura 2.1 – Modelo de Curva de Carga de uma subestação.

Os valores de potência fornecida, exibidos no gráfico da curva de carga, representam as variações no consumo e resultam das ligações ou desligamentos dos equipamentos elétricos dos consumidores ao longo das vinte e quatro horas do dia.

A subestação considerada atende a alimentadores residenciais e comerciais, no Estado de Rondônia. O clima quente da região faz com que a carga representada pelos aparelhos de refrigeração seja expressiva. Com estas informações, é possível analisar as causas das variações de consumo.

A redução do consumo às 7 horas é justificada pelo desligamento dos aparelhos de ar condicionado, que permanecem ligados durante a noite, em função do calor típico da região, e das lâmpadas de iluminação pública. A partir das 8 horas o consumo começa a aumentar em função das ligações dos equipamentos nas residências e no comércio, atingindo o seu valor máximo de 61 MW, às 14 horas, horário em que as pessoas retornam para o trabalho, após o almoço, horário em que o calor é intenso. Às 18 horas ocorre uma redução do consumo justificada pelo desligamento dos equipamentos dos consumidores comerciais, no final do expediente.

O valor máximo atingido pela potência fornecida é denominado demanda máxima. O valor de 61 MW, atingido às 14 horas, representa a demanda máxima da subestação, no dia analisado. A somatória das curvas de carga de todas as subestações resulta na curva de carga do sistema. O levantamento da curva de carga do sistema é realizado diariamente e, comparando-se os valores das demandas máximas diárias obtém-se a demanda máxima mensal do sistema, cujo valor é utilizado no cálculo dos Indicadores de Desempenho.

2.2 Os Indicadores de Desempenho

O cálculo dos Indicadores de Desempenho, para cada uma das perturbações, possibilitou a realização das análises e considerações que resultaram na definição da metodologia para cálculo do Grau de Impacto.

Os Indicadores de Desempenho servem para avaliação da eficiência e integridade do sistema, além da qualidade e continuidade do fornecimento. Serão considerados neste estudo: DREQ, FREQ, DISPE, DISPL e DISPG.

2.2.1 Duração Equivalente de Interrupção de Carga – DREQ [6]

De acordo com o Manual de Procedimentos da Operação – módulo 2.4 – do Operador Nacional do Sistema Elétrico – ONS: "É o tempo equivalente de interrupção da demanda máxima verificada no período".

Calculado mensalmente e anualmente, permite mensurar a confiabilidade do sistema de potência ao consumidor final, através da equação:

$$DREQ = \frac{\sum_{i=1}^{n} (Energia Interrompida no consumidor final)_{i}}{Demanda ma'xima verificada no periodo}$$
 [minutos] (2.1)

Onde:

 $i=\mbox{cada}$ um dos eventos de interrupção de energia, ocorridos no período de observação

Para o cálculo do DREQ são consideradas todas as interrupções de energia ao consumidor final, com duração igual ou superior a 1 (um) minuto.

Para melhor compreensão do significado do DREQ, consideremos que em um mês cuja demanda máxima fosse 300 MW, sejam registradas as três ocorrências seguintes:

- 1ª Ocorrência: Pi = 100 MW e t = 60 minutos, ou seja, Ei = 100 MWh;

- 2ª Ocorrência: Pi = 100 MW e t = 30 minutos, ou seja, Ei = 50 MWh;
- 3ª Ocorrência: Pi = 200 MW e t = 30 minutos, ou seja, Ei = 100 MWh.

Os valores do DREQ para cada uma das ocorrências seriam:

- 1ª Ocorrência: DREQ = 20 minutos;
- 2ª Ocorrência: DREQ = 10 minutos;
- 3ª Ocorrência: DREQ = 20 minutos.

A interpretação do valor do DREQ da 1ª ocorrência, por exemplo, seria que ela equivale a uma interrupção de 20 minutos da demanda máxima do sistema no referido período. O valor do DREQ é o mesmo na 1ª e 3ª ocorrências porque elas apresentam o mesmo valor de energia interrompida, apesar de terem valores diferentes de potência interrompida. A 2ª ocorrência tem um valor menor para o DREQ, apesar de a potência interrompida ser igual à da 1ª ocorrência, porque o tempo de interrupção menor resultou em um valor menor de energia interrompida.

2.2.2 Freqüência Equivalente de Interrupção – FREQ [6]

De acordo com o Manual de Procedimentos da Operação – módulo 2.4 – do Operador Nacional do Sistema Elétrico – ONS: "É o número de vezes em que a demanda é interrompida no período de observação".

Calculado mensalmente e anualmente, permite mensurar a confiabilidade do sistema de potência ao consumidor final, através da equação:

$$FREQ = \frac{\sum_{i=1}^{n} (\text{Potência Interrompida no consumidor final})_{i}}{\text{Demanda máxima verificada no periodo}}$$
 (2.2)

Onde:

i = cada um dos eventos de interrupção de energia, ocorridos no período de

observação

Para o cálculo do FREQ são consideradas todas as interrupções de energia ao

consumidor final, com duração igual ou superior a 1 (um) minuto.

Os valores do FREQ para as três ocorrências exemplificadas no sub-capítulo 2.2.1,

seriam:

- 1ª Ocorrência: FREQ = 0,33;

- 2ª Ocorrência: FREQ = 0,33;

- 3^{a} Ocorrência: FREQ = 0,66.

A interpretação do valor do FREQ para a 1ª ocorrência, por exemplo, seria de que

ela equivale a interromper 0,33 vezes a demanda máxima do sistema no período

considerado. O valor do FREQ é o mesmo na 1ª e 2ª ocorrências, que apresentam o mesmo

valor de potência interrompida; e na 3ª ocorrência é o dobro, porque o valor da potência

interrompida também é o dobro.

2.2.3 Disponibilidade de Equipamentos – DISP [6]

De acordo com o Manual de Procedimentos da Operação - módulo 2.4 - do

Operador Nacional do Sistema Elétrico - ONS: "Indica a probabilidade em que em um dado

momento o equipamento esteja operando satisfatoriamente ou apto para operar".

 $DISP = \frac{n^{\circ} \text{ total de horas disponíveis}}{no período estatistico}$ (2.3)

nº de horas do período estatistico

23

O DISP pode ser calculado mensalmente e anualmente, para equipamentos (DISPE), para linhas de transmissão (DISPL) e para geradores de energia (DISPG).

Neste trabalho, serão calculadas as indisponibilidades dos equipamentos, linhas de transmissão e geradores de energia, causadas pelas perturbações ocorridas. Assim, será adotado o termo INDISP para representá-las, o qual será calculado utilizando-se a mesma fórmula do DISP, apenas substituindo-se o nº de horas disponíveis pelo nº de horas indisponíveis.

DISPE

Demonstra os percentuais de disponibilidade dos equipamentos, no período considerado, através da equação:

$$DISPE = \left(\left(\sum_{i=1}^{n} HD_{i} \right) / (n * HP) \right) * 100 \quad [\%]$$
 (2.4)

Onde:

i = contador do número de equipamentos

n = número de equipamentos

 HD_i = horas disponíveis de cada equipamento (i) durante o período considerado

HP = total de horas do período considerado

Para o cálculo do INDISPE, basta substituir o número de horas disponíveis pelo número de horas indisponíveis de cada equipamento (i) durante o período considerado, conforme equação:

INDISPE =
$$\left(\left(\sum_{i=1}^{n} H I_{i} \right) / (n * H P) \right) * 100 [\%]$$
 (2.5)

Onde:

 HI_i = horas indisponíveis de cada equipamento (i) durante o período considerado

DISPL

Demonstra os percentuais de disponibilidade das linhas, no período considerado, através da equação:

$$DISPL = \left(\left(\sum_{i=1}^{n} (EXTLT_{i} * HD_{i}) \right) / \left(\sum_{i=1}^{n} EXTLT_{i} * HP \right) \right) * 100$$
 [%] (2.6)

Onde:

i = contador do número de linhas

n = número de linhas

 $EXTLT_i = extensão$ (comprimento) de cada linha de transmissão (i)

 $HD_i = \text{horas disponíveis de cada linha de transmissão (i), durante o período considerado$

HP = total de horas do período considerado

Para o cálculo do INDISPL, basta substituir o número de horas disponíveis pelo número de horas indisponíveis de cada linha de transmissão (i) durante o período considerado, conforme equação:

$$INDISPL = \left(\left(\sum_{i=1}^{n} \left(EXTLT_{i} * HI_{i} \right) \right) / \left(\sum_{i=1}^{n} EXTLT_{i} * HP \right) \right) * 100$$
 (2.7)

Onde:

 HI_i = horas indisponíveis de cada equipamento (i) durante o período considerado

DISPG

Demonstra os percentuais de disponibilidade dos geradores, no período considerado, através da equação:

$$DISPG = \left(\left(\sum_{i=1}^{n} (Pe_i * HD_i) \right) / \left(\sum_{i=1}^{n} Pe_i * HP \right) \right) * 100 [\%]$$
 (2.8)

Onde:

i = contador do número de geradores

n = número de geradores

 Pe_i = potência efetiva do gerador (i) em MW

 HD_i = horas disponíveis de cada gerador (i), durante o período considerado

HP = total de horas do período considerado

Para o cálculo do INDISPG, basta substituir o número de horas disponíveis pelo número de horas indisponíveis de cada gerador (i) durante o período considerado, conforme equação:

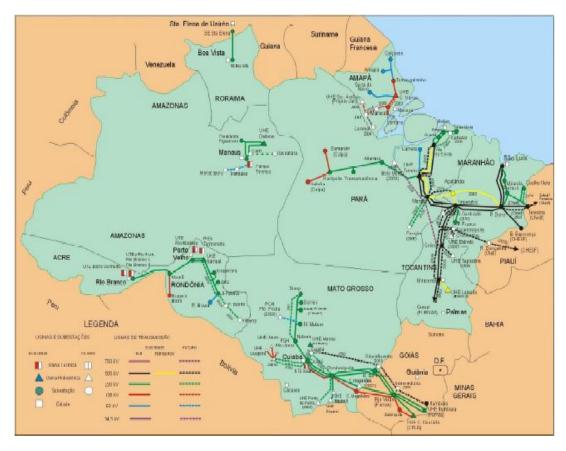
INDISPG =
$$\left(\left(\sum_{i=1}^{n} (Pe_i * HI_i) \right) / \left(\sum_{i=1}^{n} Pe_i * HP \right) \right) * 100$$
 (2.9)

Onde:

 HI_i = horas indisponíveis de cada equipamento (i) durante o período considerado

2.3 As Centrais Elétricas do Norte do Brasil - Eletronorte

As Centrais Elétricas do Norte do Brasil – Eletronorte foram criadas pela Lei 5824, promulgada em 14 de novembro de 1972, por sugestão do Comitê Coordenador dos Estudos Energéticos da Amazônia – ENERAM, que por sua vez foi criado pelas Centrais Elétricas Brasileiras – Eletrobrás [1].


Com o objetivo de atuar como empresa de energia elétrica de âmbito regional, a Eletronorte recebeu o encargo de coordenar o programa de energia elétrica na Amazônia, incluindo a construção e a operação de centrais elétricas e sistemas de transmissão. Instalada oficialmente em 20 de junho de 1973, possuía como área de atuação os Estados e Territórios da região Norte, parte do Mato Grosso e parte de Goiás, equivalente a 58% do território nacional [1].

Atualmente, a Eletronorte gera e fornece energia elétrica para os nove Estados da Amazônia Legal: Acre, Amapá, Amazonas, Maranhão, Mato Grosso, Pará, Roraima, Tocantins e Rondônia; e pode participar dos leilões do mercado de energia elétrica para atuação em todo o país, de acordo com as leis vigentes no setor [2].

Os Sistemas Elétricos dos Estados do Maranhão, Mato Grosso, Pará e Tocantins fazem parte do Sistema Interligado Nacional – SIN, por meio do qual a energia pode ser fornecida a compradores das demais regiões do país. O Sistema Elétrico de Roraima faz a interligação entre Brasil e Venezuela. Os sistemas do Acre, Amapá, Amazonas e Rondônia fazem parte dos Sistemas Isolados [2].

A Eletronorte possui 5 (cinco) hidrelétricas: Tucuruí – PA (8.370 MW), a maior usina genuinamente brasileira e a quarta do mundo, Coaracy Nunes – AP (78 MW), Balbina – AM (250 MW), Curuá-Una – PA (30 MW) e Samuel – RO (216 MW) e várias termelétricas. De forma que a potência total instalada é de 9.787 MW e, o Sistema de Transmissão é composto por mais de 9.840 km de linhas [2].

A configuração do sistema de produção e transmissão da Eletronorte está apresentada na Figura 2.2.

Fonte: ELETRONORTE. Linhas de Transmissão. Disponível em www.eln.gov.br. Acesso em 15/05/2008 [3].

Figura 2.2 – Sistema de Produção e Transmissão da Eletronorte.

2.3.1 Macro Política da Qualidade da Eletronorte [4]

A Política da Qualidade adotada pela ELETRONORTE pode ser relacionada aos Objetivos da Qualidade e seus respectivos indicadores:

1.0 - Garantir a segurança e o funcionamento do sistema elétrico da ELN;

- 1.1 Operar o Sistema Elétrico dentro dos limites que atendam a integridade do Sistema e dos equipamentos.
- ICE Índice de Carregamento de Equipamentos
- ICL Índice de Carregamento de Linhas de Transmissão
- IRPMP Índice de Realização do Programa de Manutenção Preventiva

- 1.2 Garantir a qualidade e a continuidade dos serviços de fornecimento de energia.
- DTF Duração da Tensão Fora de Faixa
- DFF Duração da Freqüência Fora de Faixa (Sistemas Isolados)
- DREQ Duração Equivalente de Desligamentos
- FREQ Freqüência Equivalente de Desligamentos
- DISPE Disponibilidade de Equipamentos
- DISPL Disponibilidade de Linhas de Transmissão
- DISPG Disponibilidade de Geração (Sistemas Isolados)

2.0 - Melhorias contínuas dos resultados e da performance econômica, alinhadas com a prestação de serviços de modo eficaz e eficiente aos clientes;

- 2.1- Eficientizar a prestação dos serviços de fornecimento de energia
- DST Desempenho do Sistema da Transmissão (Sistema Interligado)
- CEM Consumo Específico Médio de Combustível (Sistema Isolado)

3.0 - Satisfazer os requisitos contratuais dos clientes e as regulamentações legais;

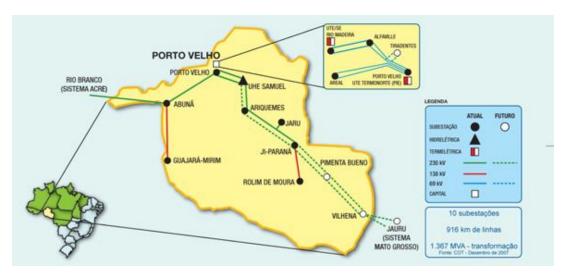
- 3.1 Atender os requisitos dos clientes e as exigências contratuais e regulamentares.
- DTF Duração da Tensão Fora de Faixa (Sistema Isolado)
- ISCE Índice de Satisfação do Cliente Externo
- NRC Número de Reclamação do Cliente

4.0 - <u>Melhorias contínuas</u> no sistema de <u>aprendizado permanente</u> dos empregados, minimizando os <u>riscos de acidentes de trabalho</u> e maximizando o <u>nível de satisfação dos clientes</u> e do sistema produtivo da ELN.

- 4.1 Desenvolver as competências dos colaboradores, para garantir a satisfação dos clientes e a redução dos acidentes de trabalho.
- IET Índice de Eficácia de Treinamento (Avaliação de Impacto da Ação Educacional)
- IRT Índice de Realização dos Treinamentos
- ISCO Índice de Satisfação do Clima Organizacional
- ISCE Índice de Satisfação do Cliente Externo
- TGA Taxa de Gravidade de Acidentes
- TFA Taxa de Freqüência de Acidentes

2.4 - O Sistema Elétrico de Rondônia

No ano de 1981, o parque gerador de Porto Velho foi alienado à Eletronorte, que ficou responsável pela operação dos sistemas elétricos da capital, composto exclusivamente por usinas termelétricas a diesel. A distribuição de energia elétrica na capital Porto Velho, a geração e distribuição em todo o interior do Estado permaneceu sob a responsabilidade das Centrais Elétricas de Rondônia – CERON [1].


Com a entrada em operação da Usina Hidrelétrica de Samuel, com cinco turbinas do tipo Kaplan de 43,2 MW cada, instaladas no período de 1989 a 1996, perfazendo um total de 216 MW, ocorreu a desativação de algumas usinas térmicas. A construção de linhas de transmissão de 230 kV possibilitou o fornecimento da energia da UHE Samuel para as cidades do interior do Estado [1].

Os problemas de racionamento de energia foram constantes durante a construção da UHE Samuel e esta situação crítica se repetiu no período entre 1997 e 1999. Com isso, o produtor independente de energia Termo Norte foi contratado pela Eletronorte, contemplando quatro motores diesel totalizando 64 MW, na denominada Fase I, instalada em 2000, e três turbinas a gás com 147,6 MW cada e uma turbina a vapor com 192,4 MW, na Fase II, instalada em 2002 e 2003 [1].

A cidade de Rio Branco, capital do Acre foi interligada à linha de transmissão da UHE Samuel no ano de 2002, que, mais tarde, foi estendida para outras localidades deste Estado [1].

O Sistema Elétrico de Rondônia faz parte dos Sistemas Isolados e é suprido pela energia gerada pela Usina Hidrelétrica de Samuel, por Pequenas Centrais Hidrelétricas – PCH e por usinas térmicas. É composto pelo Sistema da Eletronorte e por 32 localidades isoladas, atendidas por meio de geração térmica de Produtores Independentes de Energia [1].

O Sistema Hidrotérmico da Eletronorte, conforme a Figura 2.3, é composto pela UHE Samuel, UTE Rio Madeira e UTE do PIE Termonorte, e pela linha de transmissão de 230 kV que parte da UHE Samuel e atende aos pólos de Porto Velho, Ariquemes, Ji-Paraná, Pimenta Bueno, Cacoal, Rolim de Moura, Vilhena, Guajará Mirim e Rio Branco – AC [1].

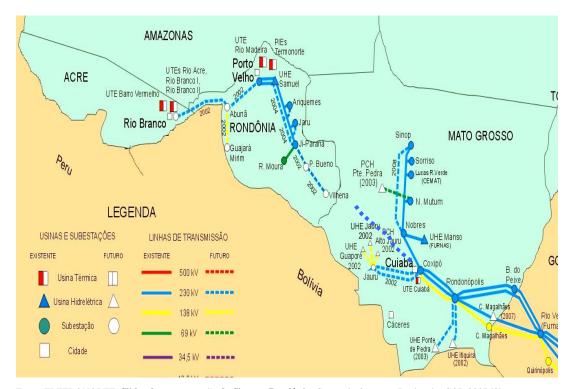

Fonte: ELETRONORTE. Sistema de Transmissão em Rondônia. Disponível em www.eln.gov.br. Acesso em 15/05/2008 [7].

Figura 2.3 – Mapa do Sistema Elétrico da Eletronorte / Rondônia.

A interligação do sistema Rondônia com a rede de transmissão Sudeste/Centro-Oeste, está prevista para o ano de 2009. Com a interligação, os Estados do Acre e de Rondônia deixarão de ser sistemas isolados e passarão a fazer parte do sistema interligado brasileiro. Para isso, a linha de transmissão de 230 kV da Eletronorte, que interliga a Usina Hidrelétrica de Samuel às subestações de Ariquemes e Ji-Paraná, foi estendida, no ano de 2008, até as cidades de Pimenta Bueno (junho) e Vilhena (novembro) [1]. Neste mesmo ano foram realizadas outras ampliações e adequações no sistema, como: a alteração do nível de tensão da linha de transmissão que interliga Ji-Paraná à Rolim de Moura, de 69 kV para 138 kV, incluindo as adequações nas subestações de Ji-Paraná e Rolim de Moura, em agosto; e o reforço no sistema de subtransmissão de Porto Velho realizado por meio da construção da subestação Tiradentes de 69 kV, em novembro.

O segundo circuito da linha de transmissão que interliga a UHE Samuel às cidades do interior do Estado de Rondônia, prosseguindo até a cidade de Vilhena, deverá ser construído pela empresa Jauru Energia, que construiu a linha de 230 kV de Vilhena até

Jauru - MT, em circuito duplo, para interligação do Sistema Rondônia ao Sistema Interligado Nacional - SIN [1].

Fonte: ELETRONORTE. Slides de apresentação do Sistema Rondônia. Centro de Operação Regional – COR.2007 [8].

Figura 2.4 – A Interligação do Sistema Rondônia ao SIN.

Após a interligação, o Sistema Rondônia estará inserido no contexto do Novo Modelo do Setor Elétrico Brasileiro e será operado e controlado pelo Operador Nacional do Sistema – ONS, que opera o SIN de forma integrada. Com isso, as atividades de planejamento da operação, administração da transmissão, programação e operação em tempo real deverão seguir os padrões estabelecidos nos Procedimentos de Rede, elaborados pelo ONS [1].

A inclusão do Sistema Elétrico de Rondônia no SIN permitirá a troca de energia com as demais regiões interligadas e, consequentemente, um melhor aproveitamento da energia gerada, em função dos benefícios proporcionados pelo regime diversificado dos rios das várias bacias hidrográficas brasileiras. Pois, a produção hidrelétrica das diversas regiões registra excedente ou escassez de energia em diferentes períodos do ano, em função das variações climáticas e hidrológicas existentes entre elas. Além disso, a conexão

com o SIN possibilitará a participação no mercado de energia brasileiro, através da compra e venda de energia a preços de concorrência [1].

2.4.1 A Regional de Produção e Comercialização de Rondônia

A ELETRONORTE possui 5 (cinco) diretorias, são elas:

- Diretoria de Planejamento e Engenharia DE;
- Diretoria de Produção e Comercialização DC;
- Diretoria Econômico-Financeira DF;
- Diretoria de Gestão Corporativa DG;
- Diretoria de Tecnologia DT.

A Diretoria de Produção e Comercialização – DC possui 11 (onze) regionais, dentre as quais está a Regional de Produção e Comercialização de Rondônia – CRD, responsável pelo Sistema Elétrico de Rondônia.

A CRD, por sua vez, é composta por 7 (sete) divisões:

- CRDA, Divisão Administrativa;
- CRDQ, Divisão de Qualidade;
- CRDH, Divisão Hidráulica;
- CRDT, Divisão de Transmissão de Porto Velho;
- CRDJ, Divisão de Transmissão de Ji-Paraná;
- CRDG, Divisão Térmica; e
- CRDO, Divisão de Operação.

Os equipamentos instalados no Sistema Elétrico de Rondônia estão descritos nas Tabelas 2.1 e 2.2, e encontram-se sob a responsabilidade da CRDT e CRDJ, respectivamente. Os equipamentos que foram desativados no ano de 2008 estão destacados em verde e os que foram energizados neste mesmo ano estão destacados em rosa.

As siglas que representam os equipamentos são compostas por 4 (quatro) letras: as duas primeiras indicam a subestação a que pertencem, as duas seguintes indicam o

equipamento; as quais são seguidas pelo número que indica o nível de tensão em que ele está conectado, por um hífen e pelo número sequencial do equipamento.

Tabela 2.1 – Relação de Equipamentos – CRDT

SUBESTAÇÃO	EQUIPAMENTO	SIGLA	POTÊNCIA NOMINAL
AREAL SEAE		AEBC2-01	3,6 MVAr
		AEBC2-02	3,6 MVAr
		AEBC2-03	3,6 MVAr
	DANIOGO CADACITODES	AEBC2-04	3,6 MVAr
	BANCOS CAPACITORES 13,8 KV	AEBC2-05	3,6 MVAr
		AEBC2-06	3,6 MVAr
		AEBC2-07	3,6 MVAr
		AEBC2-08	3,6 MVAr
		AEBC2-09	3,6 MVAr
	TRANSFORMADORES 13,8 KV	AETF2-01	0,15 MVA
		AETF2-02	0,15 MVA
		AETF4-01	26,6 MVA
	TRANSFORMADORES 69 KV	AETF4-02	26,6 MVA
		AETF4-03	26,6 MVA
		AFBC2-01	3,6 MVAr
		AFBC2-02	3,6 MVAr
		AFBC2-03	3,6 MVAr
	DANICOS CADACITODES	AFBC2-04	3,6 MVAr
	BANCOS CAPACITORES 13,8 KV	AFBC2-05	3,6 MVAr
	13,0 KV	AFBC2-06	3,6 MVAr
ALFAVILLE		AFBC2-07	3,6 MVAr
SEAF		AFBC2-08	3,6 MVAr
		AFBC2-09	3,6 MVAr
	TRANSFORMADORES	AFTF2-01	0,075 MVA
	13,8 KV	AFTF2-02	0,075 MVA
		AFTF4-01	26,6 MVA
	TRANSFORMADORES 69 KV	AFTF4-02	26,6 MVA
		AFTF4-03	26,6 MVA
		GJBC2-01	2,1 MVAr
	BANCOS CAPACITORES	GJBC2-02	2,1 MVAr
	13,8 KV	GJBC2-03	2,1 MVAr
GUAJARÁ MIRIM		GJBC2-04	2,1 MVAr
SEGJ	TRANSFORMADORES	GJTF2-01	0,11 MVA
	13,8 KV	GJTF2-02	0,11 MVA
	TRANSFORMADOR 138 KV	GJTF5-01	26,6 MVA
ABUNÃ SEAN	TRANSFORMADORES 13,8 KV	ANTF2-01	0,30 MVA
		ANTF2-02	0,30 MVA
	AUTO - TRANSFORMADOR 230 KV	ANAT6-01	55 MVA
	REATORES 230 KV	ANRE6-01	30 MVAr
	REATURES 250 KV	ANRE6-02	30 MVAr

Fonte: ELETRONORTE. **Diagramas Unifilares.** Centro de Operação Regional de Rondônia – COR. 2008 [9].

Tabela 2.1 – Relação de Equipamentos – CRDT. (Continuação)

SUBESTAÇÃO	EQUIPAMENTO	SIGLA	POTÊNCIA NOMINAL
	TRANSFORMADORES	AQTF2-01	0,15 MVA
	13,8 KV	AQTF2-02	0,15 MVA
ARIQUEMES SEAQ	TRANSFORMADORES 230 KV	AQTF6-01	30 MVA
	TRANSFORMADORES 230 KV	AQTF6-02	30 MVA
	REATORES 230 KV	AQRE6-01	20 MVAr
TRANSFORMADORES 13,8 KV TRANSFORMADORES 69 KV		PVTF2-01	0,30 MVA
		PVTF2-02	0,30 MVA
	PVTF4-01	26,60 MVA	
	TRANSI SRWADORES 69 RV	PVTF4-02	26,60 MVA
PORTO VELHO SEPV		PVTF6-01	100 MVA
OLI V		PVTF6-02	60 MVA
	TRANSFORMADORES 230 KV	PVTF6-03	100 MVA
		PVTF6-04	62,50 MVA
		PVTF6-05	62,50 MVA
		RMTF2-01	0,75 MVA
		RMTF2-02	0,75 MVA
	TRANSFORMADORES 13,8 KV	RMTF2-03	0,75 MVA
	13,6 KV	RMTF2-07	2,30 MVA
RIO MADEIRA SERM		RMTF2-08	2,01 MVA
SLIXIVI	TRANSFORMADORES 69 KV	RMTF4-01	30 MVA
		RMTF4-02	30 MVA
		RMTF4-03	35 MVA
		RMTF4-04	75 MVA
	TRANSFORMADORES	SMTF2-01	0,15 MVA
	13,8 KV	CMTE2 02	0.45 M)/A
	SERVIÇOS AUXILIARES SE TRANSFORMADORES	SMTF2-02	0,15 MVA
	13,8 KV	SUTF2-01	2,0 MVA
	SERVIÇOS AUXILIARES UHE	SUTF2-02	2,0 MVA
CAMUEL	TRANSFORMADORES	SUTR2-01	3,00 MVA
SAMUEL SESM	REGULADORES 13,8 KV	SUTR2-02	3,00 MVA
OLOW	SERVIÇOS AUXILIARES UHE	SUTR2-03	7,00 MVA
		SUTF6-01	59,5 MVA
	TRANSFORMADORES 230 KV	SUTF6-02	59,5 MVA
		SUTF6-03	59,5 MVA
		SUTF6-04	59,5 MVA
		SUTF6-05	59,5 MVA
	Bancos Capacitores 13,8 kV	TRBC2-01	3,6 MVAr
		TRBC2-02	3,6 MVAr
	13,6 KV	TRBC2-03	3,6 MVAr
TIRADENTES SETR	Transformadores 13,8 kV	TRTF2-01	0,11 MVA
		TRTF4-01	26,6 MVA
	Transformadores 69 kV	TRTF4-02	26,6 MVA
		TRTF4-03	26,6 MVA

Fonte: ELETRONORTE. Diagramas Unifilares. Centro de Operação Regional de Rondônia - COR. 2008 [9].

Tabela 2.2 - Relação de Equipamentos - CRDJ

SUBESTAÇÃO	EQUIPAMENTO	SIGLA	POTÊNCIA NOMINAL
	BANCOS CAPACITORES	RLBC2-01	3,6 MVAr
	13,8 kV	RLBC2-02	3,6 MVAr
	. 5,5	RLBC2-03	3,6 MVAr
ROLIM DE MOURA	TRANSFORMADOR	RLTF2-01	0,11 MVA
SERL	13,8 kV	RLTF2-02	0,11 MVA
	TRANSFORMADOR 138 kV	RLTF5-02	30 MVA
	TRANSFORMADOR 69 kV	RLTF4-01	26 MVA
	BANCO CAPACITOR 230 kV	JPBC6-01	18,5 MVAr
	TRANSFORMADORES	JPTF2-01	0,30 MVA
_	13,8 kV	JPTF2-02	0,30 MVA
JI-PARANÁ SEJP	AUTO-TRANSFORMADOR 230 kV	JPAT6-01	100,00 MVA
	TRANSFORMADORES	JPTF6-01	60 MVA
	230 kV	JPTF6-02	60 MVA
	REATORES 230 kV	JPRE6-01	20 MVAr
JARU SEJR	TRANSFORMADOR 13,8 kV	JRTF2-01	0,15 MVA
JAKO SLUK	TRANSFORMADOR 230 kV	JRTF6-01	30 MVA
	TRANSFORMADORES	PBTF2-01	0,30 MVA
	13,8 kV	PBTF2-02	0,30 MVA
PIMENTA BUENO	AUTO-TRANSFORMADOR 230 kV	PBAT6-01	55,00 MVA
SEPB	REATORES 230 kV	PBRE6-01	20 MVAr
	REATORES 230 KV	PBRE6-02	20 MVAr
	TRANSFORMADORES	VNTF2-01	0,30 MVA
	13,8 kV	VNTF2-02	0,30 MVA
VILHENA	TRANSFORMADORES 230 kV	VNTF6-03	60 MVA
SEVN	REATORES 230 kV	VNRE6-01	20 MVAr
	REATURES 230 KV	VNRE6-02	20 MVAr

Fonte: ELETRONORTE. Diagramas Unifilares. Centro de Operação Regional de Rondônia - COR. 2008 [9].

As linhas de transmissão do Sistema Elétrico de Rondônia estão descritas nas tabelas 2.3 e 2.4, e encontram-se sob responsabilidade da CRDT e CRDJ, respectivamente. As linhas que foram desativadas no ano de 2008 estão destacadas em verde e as que foram energizadas neste mesmo ano estão destacadas em rosa.

As siglas de linhas de transmissão são representadas por 4 (quatro) letras, que indicam as duas subestações que são interligadas pela linha, em seguida, após o primeiro hífen vêm as letras L e T, que indicam linha de transmissão, e o número que indica o nível de tensão da linha; após o segundo hífen vem o número seqüencial da linha

Tabela 2.3 - Relação de Linhas de Transmissão - CRDT

NÍVEL DE TENSÃO	SUBESTAÇÕES	SIGLA	EXTENSÃO (km)
	SEPV - SEAN	PVAN-LT6-01	188,00
	SESM - SEAQ	SMAQ-LT6-01	151,60
	SESM - SEPV	SMPV-LT6-01	40,55
230 kV	SESIVI - SEF V	SMPV-LT6-02	40,55
		SUSM-LT6-01	0,57
		SUSM-LT6-02	0,57
	UHE SAMUEL - SESM	SUSM-LT6-03	0,57
		SUSM-LT6-04	0,57
		SUSM-LT6-05	0,57
138 kV	SEAN - SEGJ	ANGJ-LT5-01	129,00
	SEAF - SERM	AFRM-LT4-01	15,93
	SLAI - SLINI	AFRM-LT4-02	15,93
	SEPV - SEAE	PVAE-LT4-01	11,82
	SEF V - SEAL	PVAE-LT4-02	13,14
69 kV	SEPV - SETR	PVTR-LT4-01	6,25
OS KV	OLI V - OLIK	PVTR-LT4-02	6,25
	SETR - SEAF	TRAF-LT4-01	7,18
	OLIN OLIN	TRAF-LT4-01	7,18
	SEPV - SEAF	PVAF-LT4-01	16,60
	os do Tronomissão Centre de Oceasão	PVAF-LT4-02	16,60

Fonte: ELETRONORTE. Linhas de Transmissão. Centro de Operação Regional de Rondônia - COR. 2008 [10].

Tabela 2.4 - Relação de Linhas de Transmissão - CRDJ

NÍVEL DE TENSÃO	SUBESTAÇÕES	SIGLA	EXTENSÃO (km)
	SEAQ - SEJR	AQJR-LT6-01	83,82
230 kV	SEJR - SEJP	JRJP-LT6-01	80,69
230 KV	SEJP - SEPB	JPPB-LT6-01	117,80
	SEPB - SEVN	PBVN-LT6-01	160,20
138 kV	SEJP - SERL	JPRL-LT5-01	108,00
69 kV	SEJP - SERL	JPRL-LT4-01	108,00

Fonte: ELETRONORTE. Linhas de Transmissão. Centro de Operação Regional de Rondônia - COR. 2008 [10].

O Sistema Elétrico de Rondônia é suprido pela Usina Hidrelétrica de Samuel, que está sob responsabilidade da CRDH, cujas turbinas estão identificadas na Tabela 2.5; pela Usina Térmica Rio Madeira, que está sob responsabilidade da CRDG, cujos geradores estão identificados na Tabela 2.6; e pela Usina do Produtor Independente de Energia Termo Norte, que se divide em duas fases, UTE Termonorte I e UTE Termonorte II, cujas unidades geradoras estão descritas na Tabela 2.7.

As siglas das unidades geradoras são representadas por 5 (cinco) letras: as 2 (duas) primeiras indicam a usina a que pertencem, as 3 (três) seguintes indicam o tipo de unidade geradora; as quais são seguidas por um hífen e pelo número sequencial do gerador.

Tabela 2.5 - Relação de Turbinas - CRDH

USINA	TIPO DE GERADOR	SIGLA	POTÊNCIA NOMINAL	POTÊNCIA EFETIVA
		SUUGH-01	51,00 MVA	43,20 MW
	GERADORES	SUUGH-02	51,00 MVA	43,20 MW
UHE SAMUEL	HIDRÁULICOS	SUUGH-03	51,00 MVA	43,20 MW
		SUUGH-04	51,00 MVA	43,20 MW
		SUUGH-05	51,00 MVA	43,20 MW

Fonte: ELETRONORTE. Dados de Geração. Centro de Operação Regional de Rondônia - COR. 2008 [11].

Tabela 2.6 – Relação de Turbinas – CRDG

USINA	TIPO DE GERADOR	SIGLA	POTÊNCIA NOMINAL	POTÊNCIA EFETIVA
UTE RIO	GERADORES À	RMUGG-01	21,30 MVA	18,30 MW
MADEIRA	GERADORES A GÁS	RMUGG-02	21,30 MVA	18,30 MW
WINDLINA	CAO	RMUGG-03	21,30 MVA	18,30 MW

Fonte: ELETRONORTE. Dados de Geração. Centro de Operação Regional de Rondônia - COR. 2008 [11].

Tabela 2.7 – Relação de Turbinas – PIE Termo Norte

USINA	TIPO DE GERADOR	SIGLA	POTÊNCIA NOMINAL	POTÊNCIA EFETIVA
LITE		TNUGD-01	21,28 MVA	16,00 MW
UTE TERMONORTE	GERADORES À	TNUGD-02	21,28 MVA	16,00 MW
FASE I	DIESEL	TNUGD-03	21,28 MVA	16,00 MW
17.021		TNUGD-04	21,28 MVA	16,00 MW
		TNUGG-01	115,60 MVA	73,80 MW
UTE	GERADORES À GÁS	TNUGG-02	115,60 MVA	73,80 MW
TERMONORTE		TNUGG-03	115,60 MVA	73,80 MW
FASE II	GERADOR À VAPOR	TNUGV-01	140,00 MVA	118,00 MW

Fonte: ELETRONORTE. Dados de Geração. Centro de Operação Regional de Rondônia - COR. 2008 [11].

As ocorrências registradas no sistema relacionam-se com os equipamentos, linhas ou geradores, de cada Divisão, e impactam os Indicadores de Desempenho.

As Análises das Ocorrências do sistema e o cálculo dos Indicadores de Desempenho são desenvolvidos pelo Centro de Operação Regional de Rondônia, subordinado à CRDO. E, neste contexto encontra-se inserida a análise das perturbações, as quais serão tabuladas e quantificadas para cálculo dos impactos causados ao sistema.

2.4.2 O Centro de Operação Regional de Rondônia

O COR - RO é certificado na NBR ISO 9001:2000 no Escopo de Supervisão, Controle e Monitoramento da Operação em Tempo Real do Sistema Elétrico do Estado de Rondônia. Assim, compromete-se em "estabelecer, documentar, implementar e manter o seu Sistema de Gestão da Qualidade, buscando melhorar continuamente a sua eficácia", de acordo com os requisitos da referida norma [4].

De acordo com o Manual da Qualidade, o COR está estruturado em três processos principais, conforme Figura 3.3, são eles:

- Pré-Operação;
- Tempo Real;
- Pós-Operação.

Algumas das principais atividades desenvolvidas pela equipe da Pré-Operação são:

- elaboração da programação diária de geração;
- análise e aprovação de intervenções no sistema elétrico.
- elaboração e alteração de Normas Operacionais, Instruções de Operação e Diagramas
 Unifilares utilizados no Centro de Operação Regional.

A equipe do Tempo Real, dentre outras atividades, realiza:

- supervisão e controle da operação do sistema elétrico;
- supervisão da tensão e da frequência;
- normalização do sistema elétrico, quando em contingência;
- coordenação dos serviços de intervenção no sistema elétrico;

- elaboração dos Relatórios de Desligamentos e Interrupções (RDI), Relatórios Diários de Operação (RDO) e do Formulário Específico da Operação (FEO);
- fornecimento de informações ao cliente, sobre as condições do sistema elétrico, quando solicitado. E, contribuição com a Análise de Ocorrências no Sistema Elétrico.

Está sob responsabilidade da equipe da Pós-Operação, dentre outras atividades, a realização de:

- acompanhamento do Planejamento Energético;
- acompanhamento da medição de geração e demanda;
- consolidação dos dados de suprimento para Faturamento;
- análise dos relatórios do Tempo Real, com verificação de possíveis erros e discrepâncias;
- cálculo do DREQ e FREQ;
- elaboração dos Relatórios de Análise de Perturbação (RAP), Sistema de Informação Empresarial do Setor de Energia Elétrica (SIESE) e do Relatório Integrado de Desempenho Empresarial (RIDE);
- e, Análise de Ocorrências no Sistema Elétrico de Rondônia.

2.5 As Perturbações no Sistema Elétrico de Rondônia

O Sistema Rondônia é também conhecido como Sistema Acre / Rondônia, por atender à parte do Estado do Acre, inclusive sua capital, Rio Branco. As perturbações ocorridas nas instalações do Acre são registradas e analisadas pela equipe da Pós-Operação do COR – AC, pertencente à Regional de Produção e Comercialização do Acre – CAC, e não estão contempladas neste trabalho.

Os Relatórios de Análise de Perturbação (RAP), emitidos pela equipe da Pós-Operação do COR – RO, registram e analisam as perturbações do Sistema Elétrico de Rondônia com o objetivo de definir, preliminarmente, as possíveis causas e soluções para cada ocorrência. Se o problema persistir, a área de estudos da Diretoria de Produção e Comercialização - DC realiza uma análise mais aprofundada, e propõe, se for o caso, a implantação de ajustes e alterações nas proteções instaladas.

Os RAP informam qual a Divisão responsável pela perturbação, o equipamento envolvido, a data e o horário, o tempo de duração, a causa provável, as empresas

envolvidas, a potência e a energia interrompidas aproximadas, a carga total do sistema, as áreas atingidas, a proteção atuada, as características da normalização e as ocorrências relacionadas. Algumas informações dos RAP de 2007 e 2008 estão nas Tabelas 2.8 e 2.9:

Tabela 2.8 – Dados dos RAP – 2007.

01-2007 CRDT SMAQ LT6-01 9-jan 13h18m-13h40m 22 ITA, AQ, JR, JP, RL e Vizinhas. 02-2007 TN II TNUGG-03 9-jan 13h18m-18h20m 314 Não houve 03-2007 CRDT SMPV LT6-01 18-jan 22h34m-22h40m 6 Não houve 03-2007 CRDT AFAL2-05 1-fev 7h24m-7h26m 2 PV parcial, GJ e RB/AC 05-2007 CRDT AFAL2-05 1-fev 7h24m-7h26m 2 PV parcial GJ e RB/AC 06-2007 CRDT AFAL2-05 1-fev 7h24m-7h26m 2 PV parcial GJ e RB/AC 08-2007 CRDT AFAL2-06 2-4mar 20h5m-03h43m 28 PV parcial 08-2007 CRDT AFAL2-09 4-mar 21h09m-21h37m 52 PV parcial 08-2007 CRDT AFAL2-09 4-mar 21h09m-21h37m 52 PV parcial 08-2007 CRDT PVAN LT6-01 7-mar 15h27m-15h33m 6 GJ e RB/AC 09-2007 CRDT AFAL2-09 4-mar 21h09m-21h37m 52 PV parcial 08-2007 CRDT ANGJ LT5-01 27-mar 15h34m-15h38m 4 AN e GJ 17h AQ, JR, JP, RL, CA e V.Zinhas 11-2007 CRDT ANGJ LT6-01 23-mai 11h58m-12h04m 6 ITA, AQ, JR, JP, RL, CA e V.Zinhas 13-2007 TN TNPV L16-01 e 02 18-jul 13h30m-17h57m 267 Blecaute 14-2007 CRDJ JPTF6-02 6-ago 13h18m-15h01m 103 JP e RL 14-2007 CRDJ JPTF6-02 6-ago 13h18m-15h01m 103 JP e RL 18-2007 CRDJ JPTL4-01 11-set 11h43m-14h57m 9 RL e vizinhas 16-2007 CRDJ JRL-14-01 11-set 14h43m-14h57m 9 RL e vizinhas 18-2007 CRDJ RLTF4-01 19-set 14h48m-14h57m 9 RL e vizinhas 18-2007 CRDJ RLTF4-01 19-set 14h48m-14h57m 9 RL e vizinhas 18-2007 CRDJ RLTF4-01 19-set 14h48m-14h57m 9 RL e vizinhas 18-2007 CRDJ RLTF4-01 19-set 14h48m-14h57m 9 RL e vizinhas 18-2007 CRDJ RLTF4-01 2-out 14h36m-15h11m 15 RL e vizinhas 18-2007 CRDJ RLTF4-01 2-out 14h58m-15h11m 15 RL e vizinhas 18	Nº RAP	DIVISÃO	EQUIPAMENTO	DATA	HORÁRIO	t1 (min)	ÁREAS ATINGIDAS
03-2007 CRDT SMPV LT6-01 18-jan 22h34m-22h40m 6 Não houve	01-2007	CRDT	SMAQ LT6-01	9-jan	13h18m-13h40m	22	ITA, AQ, JR, JP, RL e Vizinhas.
04-2007 TN II	02-2007	TN II	TNUGG-03	9-jan	13h18m-18h32m	314	Não houve
1-16	03-2007	CRDT	SMPV LT6-01	18-jan	22h34m-22h40m	6	Não houve
06-2007 CRDT AQBR2-01 11-lev 7h16m-7h22m 6 AQ 07-2007 CRDT AEBR2-01 e 02 24-lev 22h06m-22h21m 15 PV parcial 08-2007 CRDT AFAL2-10 2-mar 21h09m-21h37m 52 PV parcial 08-2007 CRDT AFAL2-09 4-mar 21h09m-21h37m 52 PV parcial 08-2007 CRDT PVANLT6-01 7-mar 15h27m-15h33m 6 GJ e RB/AC 09-2007 CRDT PVANLT6-01 25-mar 20h19m-20h34m 15 PV e RB/AC 11-2007 TN II TNUGG-01 25-mar 20h19m-20h34m 15 PV e RB/AC 11-2007 CRDT ANGJ LT5-01 27-mar 15h34m-15h38m 4 AN e GJ 12-2007 CRDT SMAQ LT6-01 23-mar 11h58m-12h04m 6 vizinhas 13-2007 TN TNPV LI8-01 e 02 18-jul 13h30m-17h57m 267 Blecaute 14-2007 CRDJ JPTF6-02 6-ago 12h05m-13h15m 70 JP e RL 14-2007 CRDJ JPTF6-02 6-ago 13h18m-15h01m 103 JP e RL 15-2007 CRDJ JPTF6-02 6-ago 13h18m-15h01m 103 JP e RL 15-2007 CRDJ JRBR2-01 5-set 18h43m-18h53m 10 RL e vizinhas 16-2007 CRDJ JRL4-01 11-set 11h40m-12h03m 23 RL e vizinhas 17-2007 CRDJ RLTF4-01 19-set 14h43m-14h57m 9 RL e vizinhas 19-2007 TN I TNUGD-01 21-set 00h43m-00h50m 7 PV parcial e RB parcial 19-2007 CRDJ RLTF4-01 1-out 13h33m-13h44m 11 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h30m-14h41m 11 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h30m-14h41m 11 RL e vizinhas 21-2007 CRDJ RLTF4-01 3-out 05h38m-05h37m 5 GJ e NM 22-2007 CRDJ RLTF4-01 2-out 14h30m-13h44m 5 RL e vizinhas 23-2007 TN II TNUGG-03 9-out 15h2m-15h26m 4 GJ e NM 23-2007 CRDJ RLTF4-01 2-out 14h30m-14h41m 75 PV parcial GJ e NM 25-2007 CRDJ RLTF4-01 2-out 14h30m-14h41m 75 PV parcial GJ e NM 25-2007 CRDJ ANGJ LT5-01 29-out 15h2m-15h26m 4 GJ e NM 25-2007 CRDJ ANGJ LT5-01 29-out 15h42m-15h46m 4 GJ e NM 25-2007 CRDJ ANGJ LT5-01 29-out 15h42m-15h46m	04-2007	TN II	TNUGG-03	30-jan	15h59m-16h20m	21	PV parcial, GJ e RB/AC
O7-2007 CRDT AEBR2-01 e 02 24-fev 22h06m-22h21m 15 PV parcial O8-2007 CRDT AFAL2-10 2-mar 21h09m-21h37m 52 PV parcial O8-2007 CRDT AFAL2-09 4-mar 21h09m-21h37m 52 PV parcial O8-2007 CRDT PVAN LT6-01 7-mar 15h27m-15h33m 6 GJ e RB/AC O8-2007 TN TNUGG-01 25-mar 20h19m-20h34m 15 PV e RB/AC O8-2007 CRDT ANGJ LT5-01 27-mar 15h34m-15h38m 4 AN e GJ O8-2007 CRDT SMAQ LT6-01 23-mai 11h58m-12h04m 6 vizinhas O8-2007 CRDT SMAQ LT6-01 23-mai 11h58m-12h04m 6 vizinhas O8-2007 CRDT SMAQ LT6-01 23-mai 11h58m-12h04m 6 vizinhas O8-2007 CRDJ JPT6-02 6-ago 12h05m-13h15m 70 JP e RL O8-2007 CRDJ JPT6-02 6-ago 13h18m-15h01m 103 JP e RL O8-2007 CRDJ JPT6-02 6-ago 13h18m-15h01m 103 JP e RL O8-2007 CRDJ JPT6-02 6-ago 13h18m-15h01m 103 JP e RL O8-2007 CRDJ JPT6-02 6-ago 13h18m-15h01m 103 JP e RL O8-2007 CRDJ JPT6-02 6-ago 13h18m-15h01m 103 JP e RL O8-2007 CRDJ JPT6-02 G8-200 11h-set 11h40m-12h03m 23 RL e vizinhas O8-2007 CRDJ JRT6-01 11-set 11h40m-12h03m 23 RL e vizinhas O8-2007 CRDJ RLT6-01 19-set 14h43m-14h59m 16 GJ e RB/AC G8-2007 CRDJ RLT6-01 1-out 13h33m-13h44m 11 RL e vizinhas O8-2007 CRDJ RLT6-01 1-out 13h33m-13h44m 11 RL e vizinhas O8-2007 CRDJ RLT6-01 1-out 15h11m-15h21m 10 RL e vizinhas O8-2007 CRDJ RLT6-01 2-out 14h50m-14h41m 11 RL e vizinhas O8-2007 CRDJ RLT6-01 2-out 14h50m-14h41m 15 RL e vizinhas O8-2007 CRDJ RLT6-01 2-out 14h50m-14h41m 75 PV parcial GJ e NM O8-2007 CRDJ ANGJ LT5-01 29-out 15h20m-17h28m 3 GJ e NM O9-2007 CRDJ ANGJ LT5-01 29-out 15h20m-17h28m 3 GJ e NM O9-2007 CRDJ ANGJ LT5-01 29-out 15h20m-17h28m 3 GJ e NM O9-2007 CRDJ ANGJ LT5-01 29-out 15h20m-17h28m 3 GJ e NM O9-2007 CRDJ ANGJ LT5-01 29-out 15h20m-17h28m 3	05-2007	CRDT	AEAL2-05	1-fev	7h24m-7h26m	2	PV parcial
08-2007 CRDT AFAL2-10 2-mar 02h51m-03h43m 28 PV parcial 08-2007 CRDT AFAL2-09 4-mar 21h09m-21h37m 52 PV parcial 09-2007 CRDT PVAN LT6-01 7-mar 15h27m-15h33m 6 GJ e RB/AC 11-2007 TN II TNUGG-01 25-mar 20h19m-20h34m 15 PV e RB/AC 11-2007 CRDT ANGJ LT5-01 27-mar 15h34m-15h38m 4 AN e GJ 12-2007 CRDT SMAQ LT6-01 23-mai 11h58m-12h04m 6 ITA, AQ, JR, JP, RL, CA e vizinhas 13-2007 TN TNPV LI6-01 e 02 8-ago 12h05m-13h15m 70 JP e RL 14-2007 CRDJ JPTF6-02 6-ago 12h05m-13h15m 70 JP e RL 14-2007 CRDJ JPTF6-02 6-ago 12h36m-13h15m 70 JP e RL 14-2007 CRDJ JPTF6-02 6-ago 13h18m-15h07m 10 JP e RL 14-2007 CRDJ JPTF6-02 <td>06-2007</td> <td>CRDT</td> <td>AQBR2-01</td> <td>11-fev</td> <td>7h16m-7h22m</td> <td>6</td> <td>AQ</td>	06-2007	CRDT	AQBR2-01	11-fev	7h16m-7h22m	6	AQ
08-2007 CRDT AFAL2-09 4-mar 21h09m-2th37m 52 PV parcial 09-2007 CRDT PVAN LT6-01 7-mar 15h27m-15h33m 6 GJ e RB/AC 10-2007 TN II TNUGG-01 25-mar 20h19m-20h34m 15 PV e RB/AC 11-2007 CRDT ANGJ LT5-01 27-mar 15h34m-15h38m 4 AN e GJ 12-2007 CRDT SMAQ LT6-01 23-mai 11h58m-12h04m 6 vizinhas 12-2007 TN TNPV L16-01 e 02 18-jul 13h30m-17h57m 267 Blecaute 14-2007 CRDJ JPTF6-02 6-ago 12h05m-13h15m 70 JP e RL 14-2007 CRDJ JPTF6-02 6-ago 13h18m-15h01m 103 JP e RL 14-2007 CRDJ JPTF6-02 6-ago 13h18m-15h01m 103 JP e RL 14-2007 CRDJ JJP-L14-01 11-set 18h43m-18h53m 10 RL e vizinhas 15-2007 CRDJ RLT6-01 1	07-2007	CRDT	AEBR2-01 e 02	24-fev	22h06m-22h21m	15	PV parcial
O9-2007 CRDT PVAN LT6-01 7-mar 15h27m-15h33m 6 GJ e RB/AC O2-2007 TN II TNUGG-01 25-mar 20h19m-20h34m 15 PV e RB/AC O2-2007 CRDT ANGJ LT5-01 27-mar 15h34m-15h38m 4 AN e GJ O2-2007 CRDT SMAQ LT6-01 23-mai 11h58m-15h38m 4 AN e GJ O2-2007 TN TNPV LI6-01 e 02 18-jul 13h30m-17h57m 267 Blecaute O2-2007 CRDJ JPT6-02 6-ago 12h05m-13h15m 70 JP e RL O2-2007 CRDJ JPT6-02 6-ago 13h18m-15h01m 103 JP e RL O2-2007 CRDJ JPE-6-02 6-ago 13h18m-15h01m 103 JP e RL O2-2007 CRDJ JJP-LI4-01 11-set 11h40m-12h03m 23 RL e vizinhas O2-2007 CRDJ JJP-LI4-01 11-set 14h43m-14h59m 16 GJ e RB/AC O2-2007 CRDJ RLT6-01 11-set 14h43m-14h59m 16 GJ e RB/AC O2-2007 CRDJ RLT6-01 12-set 04h43m-13h44m 11 RL e vizinhas O2-2007 CRDJ RLT6-01 1-out 13h33m-13h44m 11 RL e vizinhas O2-2007 CRDJ RLT6-01 1-out 13h33m-13h44m 11 RL e vizinhas O2-2007 CRDJ RLT6-01 2-out 14h30m-14h41m 11 RL e vizinhas O2-2007 CRDJ RLT6-01 2-out 14h56m-15h11m 15 RL e vizinhas O2-2007 CRDJ RLT6-01 3-out 08h38m-08h57m 19 RL e vizinhas O2-2007 CRDJ RLT6-01 3-out 08h38m-08h57m 19 RL e vizinhas O2-2007 CRDJ ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM O2-2007 CRDJ ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM O2-2007 CRDJ ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM O2-2007 CRDJ ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM O2-2007 CRDJ ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM O2-2007 CRDJ ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM O2-2007 CRDJ ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM O2-2007 CRDJ ANGJ LT5-01 24-out 19h01m-20h38m 97 JP parcial O2-2007 CRDJ ANGJ LT5-01 24-out 19h01m-20h38m 97 JP parcial O2-2007 CRDJ JPBR2-01 24-nov 19h01m-20h38m 97 JP parcia	08-2007	CRDT	AFAL2-10	2-mar	02h51m-03h43m	28	PV parcial
10-2007 TN II	08-2007	CRDT	AFAL2-09	4-mar	21h09m-21h37m	52	PV parcial
11-2007 CRDT ANGJ LT5-01 27-mar 15h34m-15h38m 4 AN e GJ 12-2007 CRDT SMAQ LT6-01 23-mai 11h58m-12h04m 6 ITA, AQ, JR, JP, RL, CA e vizinhas 13-2007 TN TNPV L16-01 e 02 18-jul 13h30m-17h57m 267 Blecaute 14-2007 CRDJ JPTF6-02 6-ago 12h05m-13h15m 70 JP e RL 14-2007 CRDJ JPTF6-02 6-ago 13h18m-15h01m 10.3 JP e RL 15-2007 CRDJ JLPL4-01 11-set 18h43m-18h53m 10 RL e vizinhas 16-2007 CRDJ JJJP-L14-01 11-set 11h40m-12h03m 23 RL e vizinhas 17-2007 CRDJ JJJP-L14-01 11-set 14h43m-14h57m 9 RL e vizinhas 19-2007 TN TNUGD-01 21-set 00h43m-00h50m 7 PV parcial e RB parcial 20-2007 CRDJ RLTF4-01 1-out 15h1m-15h21m 10 RL e vizinhas 21-2007 <td< td=""><td>09-2007</td><td>CRDT</td><td>PVAN LT6-01</td><td>7-mar</td><td>15h27m-15h33m</td><td>6</td><td>GJ e RB/AC</td></td<>	09-2007	CRDT	PVAN LT6-01	7-mar	15h27m-15h33m	6	GJ e RB/AC
12-2007 CRDT SMAQ LT6-01 23-mai 11h58m-12h04m 6 TTA, AQ, JR, JP, RL, CA e vizinhas vizinhas 13+2007 TN TNPV Li6-01 e 02 18-jul 13h30m-17h57m 267 Blecaute 14-2007 CRDJ JPTF6-02 6-ago 12h05m-13h15m 70 JP e RL 14-2007 CRDJ JPTF6-02 6-ago 13h18m-15h01m 103 JP e RL 15-2007 CRDJ JRL-14-01 11-set 11h40m-12h03m 23 RL e vizinhas 16-2007 CRDJ JJP-LI4-01 11-set 11h40m-12h03m 23 RL e vizinhas 17-2007 CRDT PVAN LT6-01 11-set 14h43m-14h59m 16 GJ e RB/AC GJ e	10-2007	TN II	TNUGG-01	25-mar	20h19m-20h34m	15	PV e RB/AC
12-2007 CRDT SMAQ LT6-01 23-mai 11h58m-12h04m 6 vizinhas	11-2007	CRDT	ANGJ LT5-01	27-mar	15h34m-15h38m	4	AN e GJ
14-2007 CRDJ JPTF6-02 6-ago 12h05m-13h15m 70 JP e RL 14-2007 CRDJ JPTF6-02 6-ago 13h18m-15h01m 103 JP e RL 15-2007 CRDJ RLBR2-01 5-set 18h43m-18h53m 10 RL e vizinhas 16-2007 CRDJ JJP-LI4-01 11-set 11h40m-12h03m 23 RL e vizinhas 17-2007 CRDJ PVAN LT6-01 11-set 14h43m-14h59m 16 GJ e RB/AC 18-2007 CRDJ RLTF4-01 19-set 14h48m-14h57m 9 RL e vizinhas 19-2007 TN I TNUGD-01 21-set 00h43m-00h50m 7 PV parcial e RB parcial 19-2007 CRDJ RLTF4-01 1-out 13h33m-13h44m 11 RL e vizinhas 20-2007 CRDJ RLTF4-01 1-out 15h11m-15h21m 10 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h56m-15h11m 15 RL e vizinhas 21-2007 CRDJ RLT	12-2007	CRDT	SMAQ LT6-01	23-mai	11h58m-12h04m	6	
14-2007 CRDJ JPTF6-02 6-ago 13h18m-15h01m 103 JP e RL 15-2007 CRDJ RLBR2-01 5-set 18h43m-18h53m 10 RL e vizinhas 16-2007 CRDJ JJP-LI4-01 11-set 11h40m-12h03m 23 RL e vizinhas 17-2007 CRDT PVAN LT6-01 11-set 14h43m-14h59m 16 GJ e RB/AC 18-2007 CRDJ RLTF4-01 19-set 14h48m-14h57m 9 RL e vizinhas 19-2007 TN I TNUGD-01 21-set 00h43m-00h50m 7 PV parcial e RB parcial 20-2007 CRDJ RLTF4-01 1-out 13h33m-13h44m 11 RL e vizinhas 20-2007 CRDJ RLTF4-01 1-out 15h11m-15b21m 10 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h56m-15h11m 11 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h56m-15h11m 15 RL e vizinhas 22-2007 CRDJ <	13-2007	TN	TNPV LI6-01 e 02	18-jul	13h30m-17h57m	267	Blecaute
15-2007 CRDJ RLBR2-01 5-set 18h43m-18h53m 10 RL e vizinhas 16-2007 CRDJ JIJP-LI4-01 11-set 11h40m-12h03m 23 RL e vizinhas 17-2007 CRDT PVAN LT6-01 11-set 14h43m-14h59m 16 GJ e RB/AC 18-2007 CRDJ RLTF4-01 19-set 14h48m-14h57m 9 RL e vizinhas 19-2007 TN I TNUGD-01 21-set 00h43m-00h50m 7 PV parcial e RB parcial 20-2007 CRDJ RLTF4-01 1-out 13h33m-13h44m 11 RL e vizinhas 20-2007 CRDJ RLTF4-01 1-out 15h11m-15h21m 10 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h30m-14h41m 11 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h56m-15h11m 15 RL e vizinhas 22-2007 CRDJ RLTF4-01 3-out 08h38m-08h57m 19 RL e vizinhas 23-2007 TN II	14-2007	CRDJ	JPTF6-02	6-ago	12h05m-13h15m	70	JP e RL
16-2007 CRDJ JIJP-LI4-01 11-set 11h40m-12h03m 23 RL e vizinhas 17-2007 CRDT PVAN LT6-01 11-set 14h43m-14h59m 16 GJ e RB/AC 18-2007 CRDJ RLTF4-01 19-set 14h48m-14h57m 9 RL e vizinhas 19-2007 TN I TNUGD-01 21-set 00h43m-00h50m 7 PV parcial e RB parcial 20-2007 CRDJ RLTF4-01 1-out 13h33m-13h44m 11 RL e vizinhas 20-2007 CRDJ RLTF4-01 1-out 15h11m-15h21m 10 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h30m-14h41m 11 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h56m-15h11m 15 RL e vizinhas 22-2007 CRDJ RLTF4-01 3-out 08h38m-08h57m 19 RL e vizinhas 23-2007 TN II TNUGG-03 9-out 13h26m-14h41m 75 PV parcial, GJ, RL, AQ e RB/AC. 24-2007	14-2007	CRDJ	JPTF6-02	6-ago	13h18m-15h01m	103	JP e RL
17-2007 CRDT PVAN LT6-01 11-set 14h43m-14h59m 16 GJ e RB/AC 18-2007 CRDJ RLTF4-01 19-set 14h48m-14h57m 9 RL e vizinhas 19-2007 TN I TNUGD-01 21-set 00h43m-00h50m 7 PV parcial e RB parcial 20-2007 CRDJ RLTF4-01 1-out 13h33m-13h44m 11 RL e vizinhas 20-2007 CRDJ RLTF4-01 1-out 15h11m-15h21m 10 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h30m-14h41m 11 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h56m-15h11m 15 RL e vizinhas 21-2007 CRDJ RLTF4-01 3-out 08h38m-08h57m 19 RL e vizinhas 23-2007 TN II TNUGG-03 9-out 13h26m-14h41m 75 PV parcial, GJ, RL, AQ e RB/AC 24-2007 CRDT ANGJ LT5-01 19-out 05h38m-05h43m 5 GJ e NM 25-2007 CR	15-2007	CRDJ	RLBR2-01	5-set	18h43m-18h53m	10	RL e vizinhas
18-2007 CRDJ RLTF4-01 19-set 14h48m-14h57m 9 RL e vizinhas 19-2007 TN I TNUGD-01 21-set 00h43m-00h50m 7 PV parcial e RB parcial 20-2007 CRDJ RLTF4-01 1-out 13h33m-13h44m 11 RL e vizinhas 20-2007 CRDJ RLTF4-01 1-out 15h11m-15h21m 10 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h30m-14h41m 11 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h56m-15h11m 15 RL e vizinhas 21-2007 CRDJ RLTF4-01 3-out 08h38m-08h57m 19 RL e vizinhas 22-2007 CRDJ RLTF4-01 3-out 08h38m-08h57m 19 RL e vizinhas 23-2007 TN II TNUGG-03 9-out 13h26m-14h41m 75 PV parcial, GJ, RL, AQ e RB/AC. 24-2007 CRDT ANGJ LT5-01 19-out 17h25m-17h28m 3 GJ e NM 25-2007 CR	16-2007	CRDJ	JIJP-LI4-01	11-set	11h40m-12h03m	23	RL e vizinhas
19-2007 TN I TNUGD-01 21-set 00h43m-00h50m 7 PV parcial e RB parcial 20-2007 CRDJ RLTF4-01 1-out 13h33m-13h44m 11 RL e vizinhas 20-2007 CRDJ RLTF4-01 1-out 15h11m-15h21m 10 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h30m-14h41m 11 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h56m-15h11m 15 RL e vizinhas 22-2007 CRDJ RLTF4-01 3-out 08h38m-08h57m 19 RL e vizinhas 23-2007 TN II TNUGG-03 9-out 13h26m-14h41m 75 PV parcial, GJ, RL, AQ e RB/AC. 24-2007 CRDT ANGJ LT5-01 19-out 05h38m-05h43m 5 GJ e NM 25-2007 CRDT ANGJ LT5-01 29-out 17h25m-17h28m 3 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM 27-2007 CRDT <td>17-2007</td> <td>CRDT</td> <td>PVAN LT6-01</td> <td>11-set</td> <td>14h43m-14h59m</td> <td>16</td> <td>GJ e RB/AC</td>	17-2007	CRDT	PVAN LT6-01	11-set	14h43m-14h59m	16	GJ e RB/AC
20-2007 CRDJ RLTF4-01 1-out 13h33m-13h44m 11 RL e vizinhas 20-2007 CRDJ RLTF4-01 1-out 15h11m-15h21m 10 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h30m-14h41m 11 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h56m-15h11m 15 RL e vizinhas 22-2007 CRDJ RLTF4-01 3-out 08h38m-08h57m 19 RL e vizinhas 23-2007 TN II TNUGG-03 9-out 13h26m-14h41m 75 PV parcial, GJ, RL, AQ e RB/AC. 24-2007 CRDT ANGJ LT5-01 19-out 05h38m-05h43m 5 GJ e NM 25-2007 CRDT ANGJ LT5-01 29-out 17h25m-17h28m 3 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM 27-2007 CRDT ANGJ LT5-01 29-out 18h03m-13h07m 4 GJ e NM 27-2007 CRDT <td< td=""><td>18-2007</td><td>CRDJ</td><td>RLTF4-01</td><td>19-set</td><td>14h48m-14h57m</td><td>9</td><td>RL e vizinhas</td></td<>	18-2007	CRDJ	RLTF4-01	19-set	14h48m-14h57m	9	RL e vizinhas
20-2007 CRDJ RLTF4-01 1-out 15h11m-15h21m 10 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h30m-14h41m 11 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h56m-15h11m 15 RL e vizinhas 22-2007 CRDJ RLTF4-01 3-out 08h38m-08h57m 19 RL e vizinhas 23-2007 TN II TNUGG-03 9-out 13h26m-14h41m 75 PV parcial, GJ, RL, AQ e RB/AC. 24-2007 CRDT ANGJ LT5-01 19-out 05h38m-05h43m 5 GJ e NM 25-2007 CRDT ANGJ LT5-01 24-out 17h25m-17h28m 3 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 15h42m-15h46m 4 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM 27-2007 CRDJ RLTF4-01 8-nov 09h40m-09h45m 5 RL e vizinhas 28-2007 CRDT	19-2007	TN I	TNUGD-01	21-set	00h43m-00h50m	7	PV parcial e RB parcial
21-2007 CRDJ RLTF4-01 2-out 14h30m-14h41m 11 RL e vizinhas 21-2007 CRDJ RLTF4-01 2-out 14h56m-15h11m 15 RL e vizinhas 22-2007 CRDJ RLTF4-01 3-out 08h38m-08h57m 19 RL e vizinhas 23-2007 TN II TNUGG-03 9-out 13h26m-14h41m 75 PV parcial, GJ, RL, AQ e RB/AC. 24-2007 CRDT ANGJ LT5-01 19-out 05h38m-05h43m 5 GJ e NM 25-2007 CRDT ANGJ LT5-01 24-out 17h25m-17h28m 3 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 15h42m-15h46m 4 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM 27-2007 CRDJ RLTF4-01 8-nov 09h40m-09h45m 5 RL e vizinhas 28-2007 CRDT PVAF-LT4-01 e 02 14-nov 13h30m-13h42m 12 PV parcial 17-nov 14h44m-15h03m <td>20-2007</td> <td>CRDJ</td> <td>RLTF4-01</td> <td>1-out</td> <td>13h33m-13h44m</td> <td>11</td> <td>RL e vizinhas</td>	20-2007	CRDJ	RLTF4-01	1-out	13h33m-13h44m	11	RL e vizinhas
21-2007 CRDJ RLTF4-01 2-out 14h56m-15h11m 15 RL e vizinhas 22-2007 CRDJ RLTF4-01 3-out 08h38m-08h57m 19 RL e vizinhas 23-2007 TN II TNUGG-03 9-out 13h26m-14h41m 75 PV parcial, GJ, RL, AQ e RB/AC. 24-2007 CRDT ANGJ LT5-01 19-out 05h38m-05h43m 5 GJ e NM 25-2007 CRDT ANGJ LT5-01 24-out 17h25m-17h28m 3 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 15h42m-15h46m 4 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM 27-2007 CRDJ RLTF4-01 8-nov 09h40m-09h45m 5 RL e vizinhas 28-2007 CRDT PVAF-LT4-01 e 02 14-nov 13h30m-13h42m 12 PV parcial 17-A Q, JR, JP, RL, CA e vizinhas	20-2007	CRDJ	RLTF4-01	1-out	15h11m-15h21m	10	RL e vizinhas
22-2007 CRDJ RLTF4-01 3-out 08h38m-08h57m 19 RL e vizinhas 23-2007 TN II TNUGG-03 9-out 13h26m-14h41m 75 PV parcial, GJ, RL, AQ e RB/AC. 24-2007 CRDT ANGJ LT5-01 19-out 05h38m-05h43m 5 GJ e NM 25-2007 CRDT ANGJ LT5-01 24-out 17h25m-17h28m 3 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 15h42m-15h46m 4 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM 27-2007 CRDJ RLTF4-01 8-nov 09h40m-09h45m 5 RL e vizinhas 28-2007 CRDT PVAF-LT4-01 e 02 14-nov 13h30m-13h42m 12 PV parcial 17-nov 14h44m-15h03m 19 vizinhas 30-2007 CRDJ JPBR2-01 24-nov 19h01m-20h38m 97 JP parcial 31-2007 CRDT ANGJ LT5-01 12-dez 16h47m-16h52m	21-2007	CRDJ	RLTF4-01	2-out	14h30m-14h41m	11	RL e vizinhas
23-2007 TN II TNUGG-03 9-out 13h26m-14h41m 75 PV parcial, GJ, RL, AQ e RB/AC. 24-2007 CRDT ANGJ LT5-01 19-out 05h38m-05h43m 5 GJ e NM 25-2007 CRDT ANGJ LT5-01 24-out 17h25m-17h28m 3 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 15h42m-15h46m 4 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM 27-2007 CRDJ RLTF4-01 8-nov 09h40m-09h45m 5 RL e vizinhas 28-2007 CRDT PVAF-LT4-01 e 02 14-nov 13h30m-13h42m 12 PV parcial 17-nov 14h44m-15h03m 19 Vizinhas 30-2007 CRDT SMAQ LT6-01 17-nov 14h44m-15h03m 19 JP parcial 31-2007 CRDT PVAN LT6-01 12-dez 14h08m-14h15m 7 GJ e RB/AC 32-2007 CRDT ANGJ LT5-01 12-dez 16h47m-16h52m <td>21-2007</td> <td>CRDJ</td> <td>RLTF4-01</td> <td>2-out</td> <td>14h56m-15h11m</td> <td>15</td> <td>RL e vizinhas</td>	21-2007	CRDJ	RLTF4-01	2-out	14h56m-15h11m	15	RL e vizinhas
24-2007 CRDT ANGJ LT5-01 19-out 05h38m-05h43m 5 GJ e NM 25-2007 CRDT ANGJ LT5-01 24-out 17h25m-17h28m 3 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 15h42m-15h46m 4 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM 27-2007 CRDJ RLTF4-01 8-nov 09h40m-09h45m 5 RL e vizinhas 28-2007 CRDT PVAF-LT4-01 e 02 14-nov 13h30m-13h42m 12 PV parcial 17A, AQ, JR, JP, RL, CA e vizinhas 19-2007 CRDT SMAQ LT6-01 17-nov 14h44m-15h03m 19 Vizinhas 30-2007 CRDJ JPBR2-01 24-nov 19h01m-20h38m 97 JP parcial 31-2007 CRDT PVAN LT6-01 12-dez 14h08m-14h15m 7 GJ e RB/AC 32-2007 CRDT ANGJ LT5-01 12-dez 16h47m-16h52m 5 GJ e vizinhas 33-2007<	22-2007	CRDJ	RLTF4-01	3-out	08h38m-08h57m	19	RL e vizinhas
25-2007 CRDT ANGJ LT5-01 24-out 17h25m-17h28m 3 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 15h42m-15h46m 4 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM 27-2007 CRDJ RLTF4-01 8-nov 09h40m-09h45m 5 RL e vizinhas 28-2007 CRDT PVAF-LT4-01 e 02 14-nov 13h30m-13h42m 12 PV parcial 29-2007 CRDT SMAQ LT6-01 17-nov 14h44m-15h03m 19 ITA, AQ, JR, JP, RL, CA e vizinhas 30-2007 CRDJ JPBR2-01 24-nov 19h01m-20h38m 97 JP parcial 31-2007 CRDT PVAN LT6-01 12-dez 14h08m-14h15m 7 GJ e RB/AC 32-2007 CRDT ANGJ LT5-01 12-dez 16h47m-16h52m 5 GJ e vizinhas 33-2007 CRDT ANGJ LT5-01 14-dez 16h06m-16h13m 7 PV parcial 34-2007 CRDT </td <td>23-2007</td> <td>TN II</td> <td>TNUGG-03</td> <td>9-out</td> <td>13h26m-14h41m</td> <td>75</td> <td>PV parcial, GJ, RL, AQ e RB/AC.</td>	23-2007	TN II	TNUGG-03	9-out	13h26m-14h41m	75	PV parcial, GJ, RL, AQ e RB/AC.
26-2007 CRDT ANGJ LT5-01 29-out 15h42m-15h46m 4 GJ e NM 26-2007 CRDT ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM 27-2007 CRDJ RLTF4-01 8-nov 09h40m-09h45m 5 RL e vizinhas 28-2007 CRDT PVAF-LT4-01 e 02 14-nov 13h30m-13h42m 12 PV parcial 29-2007 CRDT SMAQ LT6-01 17-nov 14h44m-15h03m 19 vizinhas 30-2007 CRDJ JPBR2-01 24-nov 19h01m-20h38m 97 JP parcial 31-2007 CRDT PVAN LT6-01 12-dez 14h08m-14h15m 7 GJ e RB/AC 32-2007 CRDT ANGJ LT5-01 12-dez 16h47m-16h52m 5 GJ e vizinhas 33-2007 CRDT ANGJ LT5-01 14-dez 16h06m-16h13m 7 PV parcial 34-2007 CRDT ANGJ LT5-01 19-dez 17h22m-17h25m 3 GJ e vizinhas 35-2007 CRDT ANGJ	24-2007	CRDT	ANGJ LT5-01	19-out	05h38m-05h43m	5	GJ e NM
26-2007 CRDT ANGJ LT5-01 29-out 18h03m-18h07m 4 GJ e NM 27-2007 CRDJ RLTF4-01 8-nov 09h40m-09h45m 5 RL e vizinhas 28-2007 CRDT PVAF-LT4-01 e 02 14-nov 13h30m-13h42m 12 PV parcial 29-2007 CRDT SMAQ LT6-01 17-nov 14h44m-15h03m 19 ITA, AQ, JR, JP, RL, CA e vizinhas 30-2007 CRDJ JPBR2-01 24-nov 19h01m-20h38m 97 JP parcial 31-2007 CRDT PVAN LT6-01 12-dez 14h08m-14h15m 7 GJ e RB/AC 32-2007 CRDT ANGJ LT5-01 12-dez 16h47m-16h52m 5 GJ e vizinhas 33-2007 CRDT PVAE-LT4-01 14-dez 16h06m-16h13m 7 PV parcial 34-2007 CRDT ANGJ LT5-01 19-dez 17h22m-17h25m 3 GJ e vizinhas 35-2007 CRDT ANGJ LT5-01 26-dez 6h36m-6h39m 3 GJ e vizinhas	25-2007	CRDT	ANGJ LT5-01	24-out	17h25m-17h28m	3	GJ e NM
27-2007 CRDJ RLTF4-01 8-nov 09h40m-09h45m 5 RL e vizinhas 28-2007 CRDT PVAF-LT4-01 e 02 14-nov 13h30m-13h42m 12 PV parcial 17-2007 CRDT SMAQ LT6-01 17-nov 14h44m-15h03m 19 ITA, AQ, JR, JP, RL, CA e vizinhas 30-2007 CRDJ JPBR2-01 24-nov 19h01m-20h38m 97 JP parcial 31-2007 CRDT PVAN LT6-01 12-dez 14h08m-14h15m 7 GJ e RB/AC 32-2007 CRDT ANGJ LT5-01 12-dez 16h47m-16h52m 5 GJ e vizinhas 33-2007 CRDT PVAE-LT4-01 14-dez 16h06m-16h13m 7 PV parcial 34-2007 CRDT ANGJ LT5-01 19-dez 17h22m-17h25m 3 GJ e vizinhas 35-2007 CRDT ANGJ LT5-01 26-dez 6h36m-6h39m 3 GJ e vizinhas	26-2007	CRDT	ANGJ LT5-01	29-out	15h42m-15h46m	4	GJ e NM
28-2007 CRDT PVAF-LT4-01 e 02 14-nov 13h30m-13h42m 12 PV parcial 29-2007 CRDT SMAQ LT6-01 17-nov 14h44m-15h03m 19 ITA, AQ, JR, JP, RL, CA e vizinhas 30-2007 CRDJ JPBR2-01 24-nov 19h01m-20h38m 97 JP parcial 31-2007 CRDT PVAN LT6-01 12-dez 14h08m-14h15m 7 GJ e RB/AC 32-2007 CRDT ANGJ LT5-01 12-dez 16h47m-16h52m 5 GJ e vizinhas 33-2007 CRDT PVAE-LT4-01 14-dez 16h06m-16h13m 7 PV parcial 34-2007 CRDT ANGJ LT5-01 19-dez 17h22m-17h25m 3 GJ e vizinhas 35-2007 CRDT ANGJ LT5-01 26-dez 6h36m-6h39m 3 GJ e vizinhas	26-2007	CRDT	ANGJ LT5-01	29-out	18h03m-18h07m	4	GJ e NM
29-2007 CRDT SMAQ LT6-01 17-nov 14h44m-15h03m 19 ITA, AQ, JR, JP, RL, CA e vizinhas 30-2007 CRDJ JPBR2-01 24-nov 19h01m-20h38m 97 JP parcial 31-2007 CRDT PVAN LT6-01 12-dez 14h08m-14h15m 7 GJ e RB/AC 32-2007 CRDT ANGJ LT5-01 12-dez 16h47m-16h52m 5 GJ e vizinhas 33-2007 CRDT PVAE-LT4-01 14-dez 16h06m-16h13m 7 PV parcial 34-2007 CRDT ANGJ LT5-01 19-dez 17h22m-17h25m 3 GJ e vizinhas 35-2007 CRDT ANGJ LT5-01 26-dez 6h36m-6h39m 3 GJ e vizinhas	27-2007	CRDJ	RLTF4-01	8-nov	09h40m-09h45m	5	RL e vizinhas
29-2007 CRDT SMAQ LT6-01 17-nov 14h44m-15h03m 19 vizinhas 30-2007 CRDJ JPBR2-01 24-nov 19h01m-20h38m 97 JP parcial 31-2007 CRDT PVAN LT6-01 12-dez 14h08m-14h15m 7 GJ e RB/AC 32-2007 CRDT ANGJ LT5-01 12-dez 16h47m-16h52m 5 GJ e vizinhas 33-2007 CRDT PVAE-LT4-01 14-dez 16h06m-16h13m 7 PV parcial 34-2007 CRDT ANGJ LT5-01 19-dez 17h22m-17h25m 3 GJ e vizinhas 35-2007 CRDT ANGJ LT5-01 26-dez 6h36m-6h39m 3 GJ e vizinhas	28-2007	CRDT	PVAF-LT4-01 e 02	14-nov	13h30m-13h42m	12	•
31-2007 CRDT PVAN LT6-01 12-dez 14h08m-14h15m 7 GJ e RB/AC 32-2007 CRDT ANGJ LT5-01 12-dez 16h47m-16h52m 5 GJ e vizinhas 33-2007 CRDT PVAE-LT4-01 14-dez 16h06m-16h13m 7 PV parcial 34-2007 CRDT ANGJ LT5-01 19-dez 17h22m-17h25m 3 GJ e vizinhas 35-2007 CRDT ANGJ LT5-01 26-dez 6h36m-6h39m 3 GJ e vizinhas	29-2007	CRDT	SMAQ LT6-01	17-nov	14h44m-15h03m	19	
32-2007 CRDT ANGJ LT5-01 12-dez 16h47m-16h52m 5 GJ e vizinhas 33-2007 CRDT PVAE-LT4-01 14-dez 16h06m-16h13m 7 PV parcial 34-2007 CRDT ANGJ LT5-01 19-dez 17h22m-17h25m 3 GJ e vizinhas 35-2007 CRDT ANGJ LT5-01 26-dez 6h36m-6h39m 3 GJ e vizinhas	30-2007	CRDJ	JPBR2-01	24-nov	19h01m-20h38m	97	JP parcial
33-2007 CRDT PVAE-LT4-01 14-dez 16h06m-16h13m 7 PV parcial 34-2007 CRDT ANGJ LT5-01 19-dez 17h22m-17h25m 3 GJ e vizinhas 35-2007 CRDT ANGJ LT5-01 26-dez 6h36m-6h39m 3 GJ e vizinhas	31-2007	CRDT	PVAN LT6-01	12-dez	14h08m-14h15m	7	GJ e RB/AC
34-2007 CRDT ANGJ LT5-01 19-dez 17h22m-17h25m 3 GJ e vizinhas 35-2007 CRDT ANGJ LT5-01 26-dez 6h36m-6h39m 3 GJ e vizinhas	32-2007	CRDT	ANGJ LT5-01	12-dez	16h47m-16h52m	5	GJ e vizinhas
35-2007 CRDT ANGJ LT5-01 26-dez 6h36m-6h39m 3 GJ e vizinhas	33-2007	CRDT	PVAE-LT4-01	14-dez	16h06m-16h13m	7	PV parcial
	34-2007	CRDT	ANGJ LT5-01	19-dez	17h22m-17h25m	3	GJ e vizinhas
	35-2007	CRDT	ANGJ LT5-01	26-dez	6h36m-6h39m	3	GJ e vizinhas
36-2007 CRDH SUUGH-04 31-dez 19h22m-19h28m 5 PV parcial * t1 = tempo de duração da perturbação		CRDH		31-dez	19h22m-19h28m	5	PV parcial

* t1 = tempo de duração da perturbação

Fonte: ELETRONORTE. Relatórios de Análise de Perturbação 2007. Centro de Operação Regional de Rondônia [12].

Tabela 2.9 – Dados dos RAP – 2008.

Nº RAP	DIVISÃO	EQUIPAMENTO	DATA	HORÁRIO	* t1 (min)	ÁREAS ATINGIDAS
01-2008	CRDJ	RLTF4-01	5-jan	15h13m - 15h16m	3 min	RL e vizinhas
02-2008	CRDJ	JPAT6-01	18-jan	12h50m - 15h09m	139 min	CA, PB e vizinhas
03-2008	CRDH	SUUGH-02	20-jan	21h21m - 21h35m	14 min	PV e Ita
04-2008	CRDJ	JPAT6-01	23-jan	18h33m - 18h49m	16 min	CA, PB e vizinhas
04-2008	CRDJ	JPAT6-01	23-jan	19h10m - 19h17m	7 min	CA, PB e vizinhas
05-2008	CRDH	SUUGH-01	1-fev	10h07m - 10h24m	17 min	Ita
06-2008	CRDG	RMUGG-04	2-fev	19h15m - 21h	105 min	PV
07-2008	CRDJ	JPBR2-01	6-fev	8h24m - 8h31m	7 min	JP
08-2008	CRDH	SUUGH-05	8-fev	14h32m - 14h55m	23 min	PV
09-2008	CRDH	SMAL2-01	10-fev	17h25m - 20h15m	170 min	Ita
10-2008	CRDJ	JPTF6-02	15-fev	4h30m - 5h31m	61 min	JP, RL e vizinhas
11-2008	CRDJ	JPTF6-02	25-fev	11h35m - 11h52m	17 min	JP, RL e vizinhas
12-2008	CRDT	ANGJ-LT5-01	12-mar	2h09m - 2h11m	2 min	GJ e vizinhas
13-2008	CRDH	SUUGH-01	17-mar	14h43m - 15h14m	31 min	PV e RB/AC
14-2008	TN	TNUGG-01	9-abr	15h30m - 15h59m	29 min	PV e RB/AC
15-2008	CRDH	SMAL2-01	20-abr	1h32m - 1h37m	5 min	Ita
15-2008	CRDH	SMAL2-01	20-abr	1h43m - 1h58m	15 min	Ita
15-2008	CRDH	SMAL2-01	20-abr	2h05m - 4h18m	133 min	Ita
16-2008	TN	TNUGG-02	26-mai	14h03m - 14h40m	37 min	PV e RB/AC
17-2008	CRDH	SUUGH-01	3-jun	10h30m - 11h51m	80 min	Blecaute
18-2008	CRDJ	JPAT6-01	9-jun	15h42m - 15h45m	3 min	CA, PB e vizinhas
19-2008	TN	TNUGG-01	4-jul	14h15m - 14h44m	29 min	PV e RB/AC
20-2008	CRDJ	RLBR2-01	6-jul	12h31m - 12h39m	8 min	RL e vizinhas
21-2008	CRDT	AEDJ2-11	14-jul	5h44m - 7h28m	104 min	PV
22-2008	CRDT	AFBR2-02	27-jul	18h22m - 18h35	13 min	Não houve
23-2008	CRDJ	RLTF4-01	27-jul	12h37m - 12h39m	2 min	RL e vizinhas
24-2008	CRDJ	JPDJ4-02	27-jul	10h32m - 12h15m	103 min	RL e vizinhas
25-2008	TN	TNUGG-01	11-ago	9h09m - 9h16m	7 min	PV
26-2008	CRDJ	CAJP-LI5-01	11-ago	17h11m - 17h21m	10 min	CA
27-2008	CRDJ	JPRL-LT4-01	13-ago	14h14m - 16h52m	158 min	JP, RL e vizinhas
28-2008	CRDJ	JPRL-LT5-01	17-ago	12h46m - 13h54m	68 min	CA, RL e vizinhas
29-2009	CRDJ	RLBR2-01	29-ago	4h35m - 5h24m	49 min	RL e vizinhas
30-2008	CRDT	GJBC2-02	1-set	18h50m - 18h54m	4 min	GJ, NM e vizinhas
31-2008	CRDJ	RLDJ2-32	3-set	1h04m - 2h33m	89 min	RL e vizinhas
32-2008	CRDT	GJBR2-01	4-set	14h41m - 14h46m	5 min	GJ, NM e vizinhas
33-2008	CRDJ	RLBR2-01	10-set	14h42m - 14h46m	4 min	RL e vizinhas
34-2008	CRDT	AQTF6-02	21-set	18h54m - 19h17m	23 min	AQ
35-2008	CRDJ	RLBR2-02	2-out	18h43m - 18h47m	4 min	RL e vizinhas
35-2008	CRDJ	RLBR2-02	2-out	19h18m - 19h22m	4 min	RL e vizinhas
36-2008	CRDT	ANGJ-LT5-01	5-out	16h31m - 16h33m	2 min	GJ e vizinhas
36-2008	CRDT	ANGJ-LT5-01	5-out	17h03m - 17h05m	2 min	GJ e vizinhas
37-2008	CPDT	TNUGD-01, 02, 03 e 04	9-out 12-out	22h07m - 22h16m	9 min	PV
38-2008	CRDT	AFAL2-05		13h14m - 14h29m	75 min	
39-2008	CRDJ	JPPB-LT6-01	14-out	16h16m - 17h19m	63 min	Não houve
* t1 = tempo d	CRDJ	JPRL-LT5-01	14-out	17h28m - 17h31m	3 min	RL e vizinhas

^{*} t1 = tempo de duração da perturbação

Fonte: ELETRONORTE. Relatórios de Análise de Perturbação 2008. Centro de Operação Regional de Rondônia [13].

Tabela 2.9 – Dados dos RAP – 2008. (Continuação)

Nº RAP	DIVISÃO	EQUIPAMENTO	DATA	HORÁRIO	* t1 (min)	ÁREAS ATINGIDAS
41-2008	CRDJ	JPPB-LT6-01	15-out	14h54m - 16h26m	92 min	Não houve
42-2008	CRDJ	RLTF5-02	15-out	16h05m - 16h11m	6 min	RL e vizinhas
43-2008	CRDJ	RLTF5-02	18-out	0h37m - 0h39m	2 min	RL e vizinhas
44-2008	CRDT	SMPV-LT6-01	18-out	5h35m - 5h55m	20 min	Não houve
45-2008	CRDT	SMAQ-LT6-01	21-out	14h09m - 14h21m	12 min	AQ, JR, JP, CA, PB, RL e vizinhas AQ, JR, JP, CA, PB,
45-2008	CRDT	SMAQ-LT6-01	21-out	14h30m - 14h49m	19 min	RL e vizinhas
46-2008	CRDT	PVAN-LT6-01	24-out	15h48m - 15h50m	2 min	GJ e RB/AC
47-2008	CRDT	ANGJ-LT5-01	24-out	17h34m - 17h37m	3 min	GJ, NM e vizinhas
48-2008	CRDT	SMAQ-LT6-01	10-nov	12h07m - 12h28m	21 min	AQ, JR, JP, CA, PB, RL e vizinhas
49-2008	CRDJ	RLDB2-01	12-nov	22h24m - 22h28m	4 min	RL e vizinhas
50-2008	CRDJ	PBVN-LT6-01	11-nov	17h04m - 17h51m	47 min	Não houve
51-2008	CRDJ	PBVN-LT6-01	21-nov	15h56m - 16h12m	16 min	VN e vizinhas
52-2008	CRDJ	PBVN-LT6-01	23-nov	16h46m - 17h41m	55 min	VN e vizinhas
53-2008	CRDT	AQTF6-02	25-nov	8h52m - 8h56m	4 min	AQ e vizinhas
54-2008	CRDJ	PBVN-LT6-01	25-nov	16h27m - 16h41m	14 min	VN e vizinhas
55-2008	CRDJ	JPTF6-02	29-nov	9h25m - 9h30m	5 min	JP
55-2008	CRDJ	JPTF6-02	29-nov	11h53m - 11h59m	6 min	JP
56-2008	CRDJ	VNBP4-01	1-dez	11h38m - 14h35m	177 min	VN e vizinhas
57-2008	CRDH	SUUGH-02	3-dez	21h10m - 21h38m	28 min	Ita
58-2008	TN	TNUGG-02	5-dez	20h05m - 20h32m	27 min	PV e RB/AC
59-2008	CRDT	SMPV-LT6-01	10-dez	15h17m - 15h21m	4 min	Não houve
60-2008	TN	TNUGG-02	16-dez	19h07m - 20h07m	1 h	PV
61-2008	CRDH	SMAL2-01	22-dez	13h37m - 13h44m	7 min	Ita
62-2008	CRDJ	COVN-LI4-01	21-dez	15h53m - 15h59m	6 min	VN e vizinhas
62-2008	CRDJ	COVN-LI4-01	22-dez	15h29m - 15h33m	4 min	VN e vizinhas
63-2008	CRDJ	RLBR2-01	26-dez	5h46m - 5h50m	4 min	RL e vizinhas

^{*} t1 = tempo de duração da perturbação

Fonte: ELETRONORTE. Relatórios de Análise de Perturbação 2008. Centro de Operação Regional de Rondônia [13].

As linhas das tabelas, destacadas em azul, constituem ocorrências com equipamentos do PIE Termo Norte.

O Relatório de Análise de Perturbação – RAP descreve e analisa as perturbações com interrupção no fornecimento de energia, ou seja, aquelas que provocam DREQ e FREQ, nestes casos, ocorrem, também, indisponibilidades de equipamentos. No entanto, existem ocorrências com indisponibilidades de equipamentos que não causam DREQ e FREQ, quando a carga é remanejada e o fornecimento de energia não é interrompido. Uma perturbação em um transformador - A de uma subestação, por exemplo, onde exista outro transformador - B, que esteja em condições de assumir a carga do equipamento desligado - A, provocaria INDISP do equipamento envolvido - A, mas não provocaria DREQ e FREQ, pois a carga seria remanejada para o transformador normal – B e não haveria interrupção no fornecimento de energia.

Algumas ocorrências que não produziram corte de carga foram, excepcionalmente, relatadas por meio de RAP para análise das causas e correção das possíveis inconformidades, com o objetivo de evitar novas ocorrências. As ocorrências sem corte de carga podem ser identificadas nas Tabelas 2.8 e 2.9, por meio da verificação da informação de que não houve área atingida pela perturbação. Foram registradas duas ocorrências sem corte de carga em 2007, e seis em 2008.

As Tabelas 2.10 e 2.11 apresentam os seguintes valores por RAP: tempo de desligamento (t2) e indisponibilidade (INDISP), ambos referentes ao equipamento que sofreu a ocorrência, DREQ e FREQ causado pela perturbação e energia interrompida pela mesma (Ei). O tempo de desligamento (t2) é utilizado para o cálculo do valor da indisponibilidade (INDISP) do equipamento.

Através da somatória das potências e energias interrompidas de cada uma das perturbações, pode-se obter o DREQ intempestivo e o FREQ intempestivo do sistema, no período considerado. Para a obtenção do DREQ total e FREQ total do sistema, seria necessário que fossem considerados os valores causados pelos desligamentos programados, ou seja, os desligamentos previstos utilizados para realização de manutenções e/ou melhorias e reforços.

Com relação à indisponibilidade de equipamentos, para a obtenção da INDISP total seria necessário que fossem considerados os valores causados pelos desligamentos intempestivos sem interrupção de energia, e pelos desligamentos programados.

Os RAP consideram apenas os desligamentos intempestivos, geralmente com interrupção no fornecimento de energia, excepcionalmente são relatados os desligamentos sem corte de carga. Nas Tabelas 2.10 e 2.11, a seguir, as ocorrências sem corte de carga apresentam valores nulos para o DREQ, o FREQ e para a energia interrompida (Ei).

Tabela 2.10 – Valores dos Indicadores por RAP 2007.

Nº RAP	DIVISÃO	EQUIPAMENTO	DATA	t2 (min)	DREQ	FREQ	Ei (MWh)	INDISP (%)
01-2007	CRDT	SMAQ LT6-01	9-jan	7	0,069	0,389	17,72	0,016
02-2007	TN II	TNUGG-03	9-jan	-	0,000	0,000	0,00	-
03-2007	CRDT	SMPV LT6-01	18-jan	6	0,000	0,000	0,00	0,013
04-2007	TN II	TNUGG-03	30-jan	-	0,050	0,195	13,11	-
05-2007	CRDT	AEAL2-05	1-fev	-	0,002	0,056	0,54	-
06-2007	CRDT	AQBR2-01	11-fev	-	0,008	0,076	1,99	-
07-2007	CRDT	AEBR2-01 e 02	24-fev	-	0,019	0,050	5,00	-
08-2007	CRDT	AFAL2-10	2-mar	-	0,014	0,016	3,64	-
08-2007	CRDT	AFAL2-9	4-mar	-	0,006	0,014	1,73	-
09-2007	CRDT	PVAN LT6-01	7-mar	4	0,003	0,027	0,84	0,009
10-2007	TN II	TNUGG-01	25-mar	-	0,008	0,036	2,05	-
11-2007	CRDT	ANGJ LT5-01	27-mar	3	0,002	0,030	0,55	0,007
12-2007	CRDT	SMAQ LT6-01	23-mai	6	0,073	0,336	19,34	0,013
13-2007	Blecaute	TNPV LI6-01 e 02	18-jul	-	1,583	0,787	451,15	-
14-2007	CRDJ	JPTF6-02	6-ago	79	0,154	0,199	46,18	0,177
15-2007	CRDJ	RLBR2-01	5-set	-	0,008	0,037	2,508	-
16-2007	CRDJ	JIJP-LI4-01	11-set	-	0,045	0,116	13,80	-
17-2007	CRDT	PVAN LT6-01	11-set	5	0,007	0,031	2,15	0,012
18-2007	CRDJ	RLTF4-01	19-set	4	0,009	0,063	2,90	0,009
19-2007	TN I	TNUGD-01	21-set	-	0,010	0,092	2,95	-
20-2007	CRDJ	RLTF4-01	1-out	12	0,015	0,041	4,29	0,027
21-2007	CRDJ	RLTF4-01	2-out	4	0,004	0,042	1,18	0,009
21-2007	CRDJ	RLTF4-01	2-out	14	0,010	0,042	3,06	0,031
22-2007	CRDJ	RLTF4-01	3-out	3	0,009	0,040	2,79	0,007
23-2007	TN II	TNUGG-03	9-out	-	0,116	0,173	34,98	-
24-2007	CRDT	ANGJ LT5-01	19-out	5	0,002	0,029	0,73	0,011
25-2007	CRDT	ANGJ LT5-01	24-out	3	0,002	0,027	0,62	0,007
26-2007	CRDT	ANGJ LT5-01	29-out	4	0,002	0,029	0,73	0,009
26-2007	CRDT	ANGJ LT5-01	29-out	4	0,003	0,029	0,86	0,009
27-2007	CRDJ	RLTF4-01	8-nov	3	0,004	0,046	1,10	0,007
28-2007	CRDT	PVAF-LT4-01 e 02	14-nov	10	0,030	0,182	8,45	0,023
29-2007	CRDT	SMAQ LT6-01	17-nov	3	0,069	0,354	19,49	0,007
30-2007	CRDJ	JPBR2-01	24-nov	-	0,076	0,047	21,50	-
31-2007	CRDT	PVAN LT6-01	12-dez	3	0,004	0,032	0,98	0,007
32-2007	CRDT	ANGJ LT5-01	12-dez	4	0,002	0,026	0,58	0,009
33-2007	CRDT	PVAE-LT4-01	14-dez	12	0,011	0,178	2,99	0,027
34-2007	CRDT	ANGJ LT5-01	19-dez	1	0,001	0,030	0,29	0,002
35-2007	CRDT	ANGJ LT5-01	26-dez	1	0,001	0,032	0,29	0,002
36-2007	CRDH	SUUGH-04	31-dez	68	0,005	0,061	1,34	0,152

^{*} t2 = tempo de desligamento do equipamento.

Fonte: ELETRONORTE. Relatórios de Análise de Perturbação 2007. Centro de Operação Regional de Rondônia [12].

Tabela 2.11 – Valores dos Indicadores por RAP 2008.

Nº RAP	DIVISÃO	EQUIPAMENTO	DATA	* t2 (min)	DREQ	FREQ	Ei (MWh)	INDISP (%)
01-2008	CRDJ	RLTF4-01	5-jan	3	0,001	0,025	0,32	0,007
02-2008	CRDJ	JPAT6-01	18-jan	139	0,235	0,023	61,16	0,311
03-2008	CRDH	SUUGH-02	20-jan	149	0,022	0,062	5,84	0,334
04-2008	CRDJ	JPAT6-01	23-jan	16	0,025	0,089	6,55	0,036
04-2008	CRDJ	JPAT6-01	23-jan	7	0,023	0,120	4,16	0,036
	CRDH			17				
05-2008		SUUGH-01	1-fev		0,007	0,010	1,83	0,041
06-2008	CRDO	RMUGG-04	2-fev	105	0,016	0,040	4,00	0,251
07-2008	CRDJ	JPBR2-01	6-fev	- 00	0,035	0,040	8,33	- 0.055
08-2008	CRDH	SUUGH-05	8-fev	23	0,015	0,104	3,71	0,055
09-2008	CRDH	SMAL2-01	10-fev	-	0,029	0,007	7,38	-
10-2008	CRDJ	JPTF6-02	15-fev	61	0,031	0,030	7,92	0,146
11-2008	CRDJ	JPTF6-02	25-fev	17	0,015	0,046	3,87	0,041
12-2008	CRDT	ANGJ-LT5-01	12-mar	2	0,003	0,035	0,71	0,004
13-2008	CRDH	SUUGH-01	17-mar	31	0,025	0,083	6,31	0,069
14-2008	TN	TNUGG-01	9-abr	-	0,050	0,111	13,36	-
15-2008	CRDH	SMAL2-01	20-abr	-	0,001	0,007	0,15	-
15-2008	CRDH	SMAL2-01	20-abr	-	0,002	0,007	0,45	-
15-2008	CRDH	SMAL2-01	20-abr	-	0,015	0,007	3,99	-
16-2008	TN	TNUGG-02	26-mai	-	0,089	0,217	24,70	-
17-2008	Blecaute	SUUGH-01	3-jun	39	0,733	0,702	209,54	0,090
18-2008	CRDJ	JPAT6-01	9-jun	3	0,004	0,003	7,97	0,007
19-2008	TN	TNUGG-01	4-jul	-	0,017	0,129	5,15	-
20-2008	CRDJ	RLBR2-01	6-jul	-	0,015	0,014	4,42	-
21-2008	CRDT	AEDJ2-11	14-jul	-	0,022	0,017	6,59	-
22-2008	CRDT	AFBR2-02	27-jul	-	0,000	0,000	0,00	-
23-2008	CRDJ	RLTF4-01	27-jul	2	0,002	0,027	15,61	0,004
24-2008	CRDJ	JPDJ4-02	27-jul	-	0,042	0,023	12,74	-
25-2008	TN	TNUGG-01	11-ago	-	0,010	0,109	3,28	-
26-2008	CRDJ	CAJP-LI5-01	11-ago	-	0,014	0,014	4,43	-
27-2008	CRDJ	JPRL-LT4-01	13-ago	158	0,123	0,079	40,33	0,354
28-2008	CRDJ	JPRL-LT5-01	17-ago	68	0,376	0,088	2,51	0,152
29-2009	CRDJ	RLBR2-01	29-ago	-	0,022	0,026	7,08	-
30-2008	CRDT	GJBC2-02	1-set	-	0,002	0,028	0,58	-
31-2008	CRDJ	RLDJ2-32	3-set	-	0,043	0,029	13,62	-
32-2008	CRDT	GJBR2-01	4-set	-	0,002	0,029	0,76	-
33-2008	CRDJ	RLBR2-01	10-set	-	0,001	0,042	0,44	-
34-2008	CRDT	AQTF6-02	21-set	23	0,032	0,076	10,00	0,053
35-2008	CRDJ	RLBR2-02	2-out	-	0,003	0,033	0,99	-
35-2008	CRDJ	RLBR2-02	2-out	-	0,003	0,040	0,93	-
36-2008	CRDT	ANGJ-LT5-01	5-out	2	0,001	0,023	0,36	0,004
36-2008	CRDT	ANGJ-LT5-01	5-out	2	0,001	0,023	0,36	0,004
37-2008	TN	TNUGD-01, 02, 03 e 04	9-out	-	0,012	0,090	3,91	-
38-2008	CRDT	AFAL2-05	12-out	-	0,014	0,011	4,5	-
39-2008	CRDJ	JPPB-LT6-01	14-out	63	0,000	0,000	0,00	0,141
40-2008	CRDJ	JPRL-LT5-01	14-out	3	0,002	0,035	0,73	0,007
		ento do equipamento.	, out		0,002	0,000	0,70	0,001

^{*} t2 = tempo de desligamento do equipamento.

Fonte: ELETRONORTE. Relatórios de Análise de Perturbação 2008. Centro de Operação Regional de Rondônia [13].

Tabela 2.11 – Valores dos Indicadores por RAP 2008. (Continuação)

Nº RAP	DIVISÃO	EQUIPAMENTO	DATA	* t2 (min)	DREQ	FREQ	Ei (MWh)	INDISP (%)
41-2008	CRDJ	JPPB-LT6-01	15-out	92	0,000	0,000	0,00	0,206
42-2008	CRDJ	RLTF5-02	15-out	6	0,006	0,034	1,91	0,013
43-2008	CRDJ	RLTF5-02	18-out	2	0,002	0,028	0,49	0,004
44-2008	CRDT	SMPV-LT6-01	18-out	20	0,000	0,000	0,00	0,045
45-2008	CRDT	SMAQ-LT6-01	21-out	12	0,107	0,107	33,70	0,027
45-2008	CRDT	SMAQ-LT6-01	21-out	1	0,033	0,440	33,70	0,002
46-2008	CRDT	PVAN-LT6-01	24-out	2	0,004	0,034	1,14	0,004
47-2008	CRDT	ANGJ-LT5-01	24-out	3	0,004	0,026	1,40	0,007
48-2008	CRDT	SMAQ-LT6-01	10-nov	18	0,150	0,397	45,74	0,042
49-2008	CRDJ	RLDB2-01	12-nov	-	0,002	0,036	0,73	-
50-2008	CRDJ	PBVN-LT6-01	11-nov	47	0,000	0,000	0,00	0,109
51-2008	CRDJ	PBVN-LT6-01	21-nov	16	0,013	0,030	3,83	0,037
52-2008	CRDJ	PBVN-LT6-01	23-nov	55	0,009	0,007	2,82	0,127
53-2008	CRDT	AQTF6-02	25-nov	4	0,007	0,107	2,18	0,009
54-2008	CRDJ	PBVN-LT6-01	25-nov	14	0,020	0,054	6,01	0,032
55-2008	CRDJ	JPTF6-02	29-nov	5	0,003	0,038	0,97	0,012
55-2008	CRDJ	JPTF6-02	29-nov	6	0,004	0,038	1,17	0,014
56-2008	CRDJ	VNBP4-01	1-dez	-	0,105	0,035	31,8	-
57-2008	CRDH	SUUGH-02	3-dez	28	0,003	0,008	0,96	0,063
58-2008	TN	TNUGG-02	5-dez	-	0,051	0,176	15,52	-
59-2008	CRDT	SMPV-LT6-01	10-dez	4	0,000	0,000	0,00	0,009
60-2008	TN	TNUGG-02	16-dez	-	0,046	0,166	13,86	-
61-2008	CRDH	SMAL2-01	22-dez	-	0,000	0,003	0,117	-
62-2008	CRDJ	COVN-LI4-01	21-dez	-	0,000	0,002	0,05	-
62-2008	CRDJ	COVN-LI4-01	22-dez	-	0,002	0,027	0,54	-
63-2008	CRDJ	RLBR2-01	26-dez	-	0,001	0,018	0,353	-

^{*} t2 = tempo de desligamento do equipamento.

Fonte: ELETRONORTE. Relatórios de Análise de Perturbação 2008. Centro de Operação Regional de Rondônia [13].

As ocorrências registradas com as unidades geradoras do PIE Termo Norte, as quais estão destacadas em azul, influenciam diretamente no DREQ e FREQ da empresa transmissora. No entanto, a indisponibilidade dos equipamentos do PIE não afetam os DISP do Sistema Transmissão, por isso os t2 das unidades geradoras não precisam ser considerados. Da mesma forma, as ocorrências nas linhas (LI) do PIE não afetam o DISP do Sistema de Transmissão, mas afetam o DREQ e FREQ, quando há corte de carga, como registrado no RAP 13 – 2007 (blecaute).

As ocorrências nos alimentadores (AL) e nas linhas (LI) da concessionária CERON que são registrados nos RAP são de responsabilidade da Transmissão, por isso afetam o DREQ e FREQ. Porém não afetam o DISP e, consequentemente, os respectivos t2 não precisam ser considerados. Da mesma forma, as ocorrências com os disjuntores de alimentadores e de linhas da concessionária (RAP 21-2008 e 24–2008)

não afetam o DISP e seus t2 não precisam ser considerados. Estas perturbações desenergizam linhas e alimentadores da Distribuição, mas foram causadas pelo Sistema de Transmissão.

As Tabelas 2.12 e 2.13 apresentam os valores dos indicadores agrupados por linhas / equipamentos, excluindo-se as ocorrências sem interrupção de carga.

Tabela 2.12 – Valores dos RAP por Linha / Equipamento 2007.

Linha / Equipamento	Nº RAP	DIVISÃO	DATA	t2 (min)	DREQ	FREQ	Ei (MWh)	INDISP (%)
	09-2007	CRDT	7-mar	4	0,003	0,027	0,84	0,009
PVAN-LT6-01	17-2007	CRDT	11-set	5	0,007	0,031	2,15	0,012
	31-2007	CRDT	12-dez	3	0,004	0,032	0,98	0,007
	01-2007	CRDT	9-jan	7	0,069	0,389	17,72	0,016
SMAQ-LT6-01	12-2007	CRDT	23-mai	6	0,073	0,336	19,34	0,013
	29-2007	CRDT	17-nov	3	0,069	0,354	19,49	0,000
	11-2007	CRDT	27-mar	3	0,002	0,030	0,55	0,007
	24-2007	CRDT	19-out	5	0,002	0,029	0,72	0,011
	25-2007	CRDT	24-out	3	0,002	0,027	0,62	0,007
ANGJ-LT5-01	26-2007	CRDT	29-out	4	0,002	0,029	0,72	0,009
ANOS-215-01	26-2007	CRDT	29-out	4	0,003	0,029	0,86	0,009
	32-2007	CRDT	12-dez	4	0,002	0,026	0,58	0,009
	34-2007	CRDT	19-dez	1	0,001	0,030	0,29	0,002
	35-2007	CRDT	26-dez	1	0,001	0,032	0,29	0,002
PVAE-LT4-01	33-2007	CRDT	14-dez	12	0,011	0,178	2,99	0,027
PVAF-LT4-01 e 02	28-2007	CRDT	14-nov	10	0,030	0,182	8,45	0,023
	18-2007	CRDJ	19-set	4	0,009	0,063	2,90	0,009
	20-2007	CRDJ	1-out	12	0,015	0,041	4,29	0,027
RLTF4-01	21-2007	CRDJ	2-out	4	0,004	0,042	1,18	0,009
KEII 101	21-2007	CRDJ	2-out	14	0,010	0,042	3,06	0,031
	22-2007	CRDJ	3-out	3	0,009	0,040	2,79	0,007
	27-2007	CRDJ	8-nov	3	0,004	0,046	1,10	0,007
JPTF6-02	14-2007	CRDJ	6-ago	79	0,154	0,199	46,18	0,177
UHE SAMUEL	36-2007	CRDH	31-dez	68	0,005	0,061	1,34	0,152
	05-2007	CRDT	1-fev	-	0,002	0,056	0,54	-
	06-2007	CRDT	11-fev	-	0,008	0,076	1,99	-
	07-2007	CRDT	24-fev	-	0,019	0,050	5,00	-
DISTRIBUIÇÃO	08-2007	CRDT	2-mar	-	0,014	0,016	3,64	-
DIOTRIBOIÇÃO	08-2007	CRDT	4-mar	-	0,006	0,014	1,73	-
	15-2007	CRDJ	5-set	-	0,008	0,037	2,51	-
	16-2007	CRDJ	11-set	-	0,045	0,116	13,80	-
	30-2007	CRDJ	24-nov	-	0,076	0,047	21,50	-
	13-2007	Blecaute	18-jul	-	1,583	0,787	451,15	-
	19-2007	TNI	21-set	-	0,010	0,092	2,95	-
PIE TERMO NORTE	10-2007	TN II	25-mar	-	0,008	0,036	2,05	-
	04-2007	TN II	30-jan	-	0,050	0,195	13,11	-
	23-2007	TN II	9-out	-	0,116	0,173	34,98	-

^{*} t2 = tempo de desligamento do equipamento.

Fonte: ELETRONORTE. Relatórios de Análise de Perturbação 2007. Centro de Operação Regional de Rondônia [12].

Tabela 2.13 – Valores dos RAP por Linha / Equipamento 2008

Linha / Equipamento	Nº RAP	DIVISÃO	DATA	* t2 (min)	DREQ	FREQ	Ei (MWh)	INDISP (%)
PVAN-LT6-01	46-2008	CRDT	24-out	2	0,004	0,034	1,14	0,004
	45-2008	CRDT	21-out	12	0,107	0,107	33,70	0,027
SMAQ-LT6-01	45-2008	CRDT	21-out	1	0,033	0,440	33,70	0,002
	48-2008	CRDT	10-nov	18	0,150	0,397	45,74	0,042
	51-2008	CRDJ	21-nov	16	0,013	0,030	3,83	0,037
PBVN-LT6-01	52-2008	CRDJ	23-nov	55	0,009	0,007	2,82	0,127
	54-2008	CRDJ	25-nov	14	0,020	0,054	6,01	0,032
	12-2008	CRDT	12-mar	2	0,003	0,035	0,70	0,004
ANGJ-LT5-01	36-2008	CRDT	5-out	2	0,001	0,023	0,36	0,004
ANGJ-L15-01	36-2008	CRDT	5-out	2	0,001	0,023	0,36	0,004
	47-2008	CRDT	24-out	3	0,004	0,026	1,40	0,007
JPRL-LT4-01	27-2008	CRDJ	13-ago	158	0,123	0,079	40,33	0,354
JPRL-LT5-01	28-2008	CRDJ	17-ago	68	0,376	0,088	2,51	0,152
JFINE-ETS-OT	40-2008	CRDJ	14-out	3	0,002	0,035	0,73	0,007
AQTF6-02	34-2008	CRDT	21-set	23	0,032	0,076	10,00	0,053
AQ11 0-02	53-2008	CRDT	25-nov	4	0,007	0,107	2,18	0,009
RLTF4-01	01-2008	CRDJ	5-jan	3	0,001	0,025	0,32	0,007
KLIF4-01	23-2008	CRDJ	27-jul	2	0,002	0,027	15,60	0,004
RLTF5-02	42-2008	CRDJ	15-out	6	0,006	0,034	1,91	0,013
NETT 5-02	43-2008	CRDJ	18-out	2	0,002	0,028	0,49	0,004
	02-2008	CRDJ	18-jan	139	0,235	0,101	61,16	0,311
JPAT6-01	04-2008	CRDJ	23-jan	16	0,025	0,089	6,54	0,036
017110 01	04-2008	CRDJ	23-jan	7	0,016	0,120	4,16	0,016
	18-2008	CRDJ	9-jun	3	0,004	0,003	7,97	0,007
	10-2008	CRDJ	15-fev	61	0,031	0,030	7,91	0,146
JPTF6-02	11-2008	CRDJ	25-fev	17	0,015	0,046	3,87	0,041
01 11 0 02	55-2008	CRDJ	29-nov	5	0,003	0,038	0,97	0,012
	55-2008	CRDJ	29-nov	6	0,004	0,038	1,17	0,014
	05-2008	CRDH	1-fev	17	0,007	0,010	1,83	0,041
	13-2008	CRDH	17-mar	31	0,025	0,083	6,30	0,069
UHE SAMUEL	17-2008	Blecaute	3-jun	39	0,733	0,702	209,54	0,090
0.12 0/022	03-2008	CRDH	20-jan	149	0,022	0,062	5,84	0,334
	57-2008	CRDH	3-dez	28	0,003	0,008	0,96	0,063
	08-2008	CRDH	8-fev	23	0,015	0,104	3,71	0,055
UTE RIO MADEIRA	06-2008	CRDO	2-fev	105	0,016	0,040	4,00	0,251
	37-2008	TN	9-out	-	0,012	0,090	3,91	-
	14-2008	TN	9-abr	-	0,050	0,111	13,36	-
	19-2008	TN	4-jul	-	0,017	0,129	5,15	-
PIE TERMO NORTE	25-2008	TN	11-ago	-	0,010	0,109	3,28	-
	16-2008	TN	26-mai	-	0,089	0,217	24,70	-
	58-2008	TN	5-dez	-	0,051	0,176	15,52	-
* t2 = tempo de desligament	60-2008	TN	16-dez	-	0,046	0,166	13,86	-

^{*} t2 = tempo de desligamento do equipamento.

Fonte: ELETRONORTE. Relatórios de Análise de Perturbação 2008. Centro de Operação Regional de Rondônia [13].

Tabela 2.13 – Valores dos RAP por Linha / Equipamento 2008. (Continuação)

Linha / Equipamento	Nº RAP	DIVISÃO	DATA	* t2 (min)	DREQ	FREQ	Ei (MWh)	INDISP (%)
	07-2008	CRDJ	6-fev	-	0,035	0,040	8,33	-
	09-2008	CRDH	10-fev	-	0,029	0,007	7,38	-
	15-2008	CRDH	20-abr	-	0,001	0,007	0,15	-
	15-2008	CRDH	20-abr	-	0,002	0,007	0,45	-
	15-2008	CRDH	20-abr	-	0,015	0,007	3,99	-
	20-2008	CRDJ	6-jul	-	0,015	0,014	4,42	-
	21-2008	CRDT	14-jul	-	0,022	0,017	6,59	-
	24-2008	CRDJ	27-jul	-	0,042	0,023	12,74	-
	26-2008	CRDJ	11-ago	-	0,014	0,014	4,43	-
	29-2009	CRDJ	29-ago	-	0,022	0,026	7,08	-
	30-2008	CRDT	1-set	-	0,002	0,028	0,58	-
DISTRIBUIÇÃO	31-2008	CRDJ	3-set	-	0,043	0,029	13,62	-
	32-2008	CRDT	4-set	-	0,002	0,029	0,76	-
	33-2008	CRDJ	10-set	-	0,001	0,042	0,44	-
	35-2008	CRDJ	2-out	-	0,003	0,033	0,99	-
	35-2008	CRDJ	2-out	-	0,003	0,040	0,93	-
	38-2008	CRDT	12-out	-	0,014	0,011	4,5	-
	49-2008	CRDJ	12-nov	-	0,002	0,036	0,73	-
	56-2008	CRDJ	1-dez	-	0,105	0,035	31,8	-
	61-2008	CRDH	22-dez	-	0,000	0,003	0,12	-
	62-2008	CRDJ	21-dez	-	0,000	0,002	0,05	-
	62-2008	CRDJ	22-dez	-	0,002	0,027	0,54	-
	63-2008	CRDJ	26-dez	-	0,001	0,018	0,35	-

^{*} t2 = tempo de desligamento do equipamento.

Fonte: ELETRONORTE. Relatórios de Análise de Perturbação 2008. Centro de Operação Regional de Rondônia [13].

As informações dos indicadores distribuídas por linha / equipamento, conforme Tabelas 2.12 e 2.13, facilitou a visualização da localização das perturbações no sistema, com focalização das linhas e equipamentos mais problemáticos da Transmissão. Foram excluídos os RAP que não causaram corte de carga e separadas as perturbações causadas pela Geração e aquelas que provocaram desligamentos na Distribuição.

A análise dos RAP por linha / equipamento, permite identificar rapidamente as funções que sofreram o maior número de perturbações, possibilitando a priorização dos investimentos em manutenções, ou, dependendo do caso, a realização de estudos para implantação de ajustes e correções, para evitar novas ocorrências.

Em 2007 foram registradas 34 (trinta e quatro) ocorrências com corte de carga, e a linha de 138 kV que interliga as subestações de Abunã e Guajará Mirim, ANGJ-LT5-

01, aparece em primeiro lugar em número de ocorrências. Em segundo lugar está o transformador de 69 kV da subestação de Rolim de Moura, RLTF4-01.

No ano de 2008 foram registradas 57 (cinquenta e sete) ocorrências com corte de carga, número consideravelmente superior ao ano anterior. A realização de um grande número de ampliações e adequações, no Sistema Rondônia em 2008, contribuiu para este número elevado de ocorrências.

Em 2008, foi energizada, em Porto Velho, a Subestação Tiradentes, de 69 kV, com suas respectivas linhas de subtransmissão em 69 kV. A linha que interliga Ji-Paraná e Rolim de Moura, antes em 69 kV, JPRL-LT4-01, foi energizada em 138 kV, JPRL-LT5-01; o transformador de 69 kV da subestação de Rolim de Moura, RLTF4-01, foi desativado e instalado o transformador de 138 kV, RLTF5-02. Foram energizadas as Subestações de Pimenta Bueno e de Vilhena em 230 kV e as linhas JPPB-LT6-01 e PBVN-LT6-01, que interligam as subestações de Ji-Paraná com a de Pimenta Bueno, e a de Pimenta Bueno com a de Vilhena, respectivamente.

No ano de 2008, a linha de 138 kV, ANGJ-LT5-01, aparece entre as que tiveram maior número de ocorrências, empatando com a linha de 230 kV que interliga as subestações de Pimenta Bueno e Vilhena, PBVN-LT6-01, energizada em novembro de 2008, e com os transformadores de 230 kV da subestação de Ji-Paraná, JPAT6-01 e JPTF6-02. Destaque para a PBVN-LT6-01, que operou durante menos de dois meses e aparece com um número de quatro ocorrências, em 2008.

2.6 Análises dos Indicadores por Perturbação

O simples número de ocorrências não é suficiente para definir as linhas e equipamentos mais impactantes do sistema. Pode-se observar nas tabelas anteriores, 2.10, 2.11, 2.12 e 2.13, que algumas ocorrências são mais graves que outras, pois afetam mais os indicadores.

A ocorrência de um blecaute, por exemplo, causa grande impacto nos indicadores. No entanto a ocorrência de determinada perturbação repetidas vezes, no mesmo período, pode causar, nos indicadores, o mesmo impacto causado pelo blecaute.

O impacto causado, nos indicadores DREQ e FREQ, por um blecaute não depende apenas do tempo de interrupção, mas também da demanda máxima do período considerado e da potência interrompida. Ou seja, um blecaute registrado no horário de pico de demanda é mais impactante que outro ocorrido em um horário de baixa carga, no mesmo período. Pois, um blecaute é caracterizado pelo desligamento total do sistema, assim se ele ocorrer no horário de demanda máxima teria Pi = demanda máxima, FREQ = 1 e um DREQ igual ao tempo de duração da ocorrência. Porém, um blecaute registrado em um horário de baixa carga teria Pi menor que a demanda máxima, FREQ menor que 1 e DREQ inferior ao tempo de interrupção.

Dois blecautes registrados em horários de pico de demanda, porém em períodos diferentes, podem apresentar os mesmos valores de DREQ e FREQ, mas causar impactos diferentes no sistema, se os períodos apresentarem valores de demanda máxima diferentes, pois os valores de Potência interrompida seriam diferentes.

Existem alguns fatores que definem a gravidade de cada ocorrência, ou seja, o impacto que ela causa no sistema. Dessa forma, as linhas e equipamentos mais impactantes para o sistema são aqueles que provocam as ocorrências de maior gravidade.

O índice que "mede" a gravidade da perturbação é denominado Grau de Impacto.

Capítulo 3 – Metodologia do ONS

3.1 Demonstração da Metodologia ONS

O Operador Nacional do Sistema calcula o Grau de Impacto das ocorrências, com interrupção no fornecimento de energia, registradas no Sistema Interligado Nacional, por meio de um método que analisa 5 (cinco) aspectos da perturbação: o percentual da carga interrompida, o tempo médio da interrupção em minutos, o período do dia em que ela acontece, a abrangência percentual da área da região atendida e o percentual da população atendida afetada pela ocorrência. [15]

Os aspectos considerados são pontuados, de 0,25 a 2,0, de acordo com os valores definidos na Tabela 3.1, e o resultado da soma dos pontos é a "nota" atribuída à perturbação, a qual é utilizada para classificá-la, conforme Tabela 3.2.

Tabela 3.1 - Aspectos Considerados no Cálculo do Grau de Impacto pelo método do ONS.

Aspertas sansidaradas	Pontuação											
Aspectos considerados –	0,25	0,5	0,75	1	1,25	1,5	1,75	2				
% da Carga Interrompida (MW)	C <u><</u> 5%	5% <c<u><10%</c<u>	10% <c<u><20%</c<u>	20% <c<u><40%</c<u>	40% <c<u><60%</c<u>	60% <c<u><70%</c<u>	70% <c<u><80%</c<u>	C>80%				
Tempo Médio – Minutos	0 <t<u><15</t<u>	15 <t<u><30</t<u>	30 <t<u><60</t<u>	60 <t<u><90</t<u>	90 <t<u><120</t<u>	120 <t<u><180</t<u>	180 <t<u><240</t<u>	T>240				
			Dia útil	Dia útil	Dia útil		Dia útil					
Período do dia	Domingo	o / Feriado	00:00-06:00	06:00-08:00	22:00-24:00	Sábado						
r enodo do dia			Sábado	Sábado	Sábado							
	00:00-08:00	08:00-24:00	00:00-08:00	22:00-24:00	08:00-18:00	18:00-22:00	08:00-18:00	18:00-22:00				
% de Abrangência da Região	Até 50% Capital, A≤5% 50% P Industria 5% <a≤′< td=""><td>≥ 50% da Capital, ≥ 50% Pólo Industrial ou10%<a<20%< td=""><td>20%<a<u><40%</a<u></td><td>40%<a<u><60%</a<u></td><td>60%<a<u><70%</a<u></td><td>A>70%</td><td>A>70% das 2 macro- regiões</td></a<20%<></td></a≤′<>		≥ 50% da Capital, ≥ 50% Pólo Industrial ou10% <a<20%< td=""><td>20%<a<u><40%</a<u></td><td>40%<a<u><60%</a<u></td><td>60%<a<u><70%</a<u></td><td>A>70%</td><td>A>70% das 2 macro- regiões</td></a<20%<>	20% <a<u><40%</a<u>	40% <a<u><60%</a<u>	60% <a<u><70%</a<u>	A>70%	A>70% das 2 macro- regiões				
% da População	P <u>≤</u> 5%	5% <p<u><10%</p<u>	10% <p<u><20%</p<u>	20% <p<u><40%</p<u>	40% <p<u><60%</p<u>	60% <p<u><70%</p<u>	70% <p<u><80%</p<u>	P>80%				

Fonte: Operador Nacional do Sistema. BISE nº. 035/2008 – Boletim de Interrupção de Suprimento de Energia no Sistema Interligado Nacional. 20/10/2008 [15].

Tabela 3.2 – Classificação do Grau de Impacto pelo método do ONS.

Grau de Impacto de Energia (GIE)	Classificação
9,5 < GIE ≤ 10,0	Blecaute extremamente grave
8,5 < GIE ≤ 9,5	Blecaute muito grave
7,0 < GIE <u><</u> 8,5	Blecaute grave
5,5 < GIE ≤ 7,0	Perturbação de grande porte
4,0 < GIE ≤ 5,5	Perturbação de médio porte
2,5 < GIE ≤ 4,0	Perturbação de pequeno porte
GIE ≤ 2,5	Perturbação de efeito restrito

Fonte: Operador Nacional do Sistema. BISE nº. 035/2008 – Boletim de Interrupção de Suprimento de energia no Sistema Interligado Nacional.. 20/10/2008 [15].

3.2 Aplicação da Metodologia do ONS

A Metodologia do Operador Nacional apresenta duas formulações, a primeira para a visão no SIN e a segunda para a visão no Estado. As Tabelas 3.3 e 3.4 apresentam o Grau de Impacto de cada ocorrência por Linha / Equipamento de 2007 e de 2008, respectivamente, calculados conforme a Metodologia do ONS na visão apresentada para o SIN, com adaptação para o Sistema Acre / Rondônia.

Para o cálculo do percentual da carga interrompida foi utilizado o valor percentual da potência interrompida com relação ao suprimento total do sistema no momento da perturbação. Os percentuais de abrangência da região e da população atendida afetada foram obtidos a partir dos dados de área e população dos municípios atendidos pelo Sistema Elétrico de Rondônia, obtidos no Censo 2007 do Instituto Brasileiro de Geografia e Estatística – IBGE [16], e distribuídos nas instalações, conforme tabela no Anexo.

Em algumas ocorrências, ocorre atuação do Esquema Regional de Alívio de Carga – ERAC, que efetua um corte automático de uma parcela da carga atendida para restabelecer o equilíbrio entre geração e suprimento. Nestes casos, foi realizada uma estimativa do valor percentual da população e da área atingidas, a partir do valor percentual da potência interrompida de cada região, em comparação com o valor percentual que a mesma representa em termos de população e área para o sistema.

Tabela 3.3 – Grau de Impacto de 2007 pelo método do ONS.

Linha / Equipamento	Nº RAP	DIVISÃO	DATA	Pi (MW)	GIE	Tipo da perturbação
	09-2007	CRDT	7/mar	61,70	4,75	Médio porte
PVAN-LT6-01	17-2007	CRDT	11/set	101,20	5,25	Médio porte
	31-2007	CRDT	12/dez	81,90	5	Médio porte
	01-2007	CRDT	9/jan	116,40	5,75	Grande porte
SMAQ-LT6-01	12-2007	CRDT	23/mai	121,20	5,5	Médio porte
	29-2007	CRDT	17/nov	98,50	5,25	Médio porte
	11-2007	CRDT	27/mar	8,20	3,25	Pequeno porte
	24-2007	CRDT	19/out	8,70	2,25	Efeito restrito
	25-2007	CRDT	24/out	8,20	3,25	Pequeno porte
ANGJ-LT5-01	26-2007	CRDT	29/out	9,50	3,25	Pequeno porte
711400 210 01	26-2007	CRDT	29/out	9,00	3,5	Pequeno porte
	32-2007	CRDT	12/dez	7,20	3,25	Pequeno porte
	34-2007	CRDT	19/dez	8,20	3,25	Pequeno porte
	35-2007	CRDT	26/dez	8,60	2,5	Efeito restrito
PVAE-LT4-01	33-2007	CRDT	14/dez	47,40	2,75	Pequeno porte
PVAF-LT4-01 e 02	28-2007	CRDT	14/nov	51,70	2,75	Pequeno porte
	18-2007	CRDJ	19/set	19,38	3,5	Pequeno porte
	20-2007	CRDJ	1/out	12,00	3,5	Pequeno porte
RLTF4-01	21-2007	CRDJ	2/out	12,80	3,5	Pequeno porte
KEII 4 01	21-2007	CRDJ	2/out	12,80	3,5	Pequeno porte
	22-2007	CRDJ	3/out	12,10	3,75	Pequeno porte
	27-2007	CRDJ	8/nov	13,20	3,5	Pequeno porte
JPTF6-02	14-2007	CRDJ	6/ago	21,60	3,5	Pequeno porte
UHE SAMUEL	36-2007	CRDH	31/dez	16,10	2,5	Efeito restrito
	05-2007	CRDT	1-fev	16,30	1,75	Efeito restrito
	06-2007	CRDT	11-fev	19,90	3,5	Pequeno porte
	07-2007	CRDT	24-fev	18,30	1,75	Efeito restrito
DISTRIBUIÇÃO	08-2007	CRDT	2-mar	3,70	2,75	Pequeno porte
DIOTRIBOIÇÃO	08-2007	CRDT	4-mar	4,20	1,25	Efeito restrito
	15-2007	CRDJ	5-set	11,50	3,75	Pequeno porte
	16-2007	CRDJ	11-set	36,00	2,75	Pequeno porte
	30-2007	CRDJ	24-nov	13,30	3	Pequeno porte
	13-2007	Blecaute	18/jul	303,30	9,75	Extremamente grave
	19-2007	TN I	21/set	31,60	1,5	Efeito restrito
PIE TERMO NORTE	10-2007	TN II	25/mar	20,40	1,25	Efeito restrito
	04-2007	TN II	30/jan	65,10	3	Pequeno porte
	23-2007	TN II	9/out	51,80	3,5	Pequeno porte

Fonte: ELETRONORTE. Relatórios de Análise de Perturbação 2007. Centro de Operação Regional de Rondônia [12].

Tabela 3.4 – Grau de Impacto de 2008 pelo método do ONS.

Linha / Equipamento	Nº RAP	DIVISÃO	DATA	Pi (MW)	GIE	Tipo da perturbação
PVAN-LT6-01	46-2008	CRDT	24-out	10,6	4,25	Médio porte
	45-2008	CRDT	21-out	141,6	5,25	Médio porte
SMAQ-LT6-01	45-2008	CRDT	21-out	138,1	5,5	Médio porte
	48-2008	CRDT	10-nov	121,6	5,5	Médio porte
	51-2008	CRDJ	21-nov	9,2	3,75	Pequeno porte
PBVN-LT6-01	52-2008	CRDJ	23-nov	2,2	2,75	Pequeno porte
	54-2008	CRDJ	25-nov	16,4	3,5	Pequeno porte
	12-2008	CRDT	12-mar	8,8	2,25	Efeito restrito
ANOLITE 04	36-2008	CRDT	5-out	7,2	2	Efeito restrito
ANGJ-LT5-01	36-2008	CRDT	5-out	7,2	2	Efeito restrito
	47-2008	CRDT	24-out	8,1	3,25	Pequeno porte
JPRL-LT4-01	27-2008	CRDJ	13-ago	25,7	5	Médio porte
IDDI LTC 04	28-2008	CRDJ	17-ago	9,3	3	Pequeno porte
JPRL-LT5-01	40-2008	CRDJ	14-out	10,9	3,5	Pequeno porte
AOTE0 00	34-2008	CRDT	21-set	24	2,75	Pequeno porte
AQTF6-02	53-2008	CRDT	25-nov	32,7	3,75	Pequeno porte
DI TE 4 04	01-2008	CRDJ	5-jan	6,4	3	Pequeno porte
RLTF4-01	23-2008	CRDJ	27-jul	1,7	2,25	Efeito restrito
DI TEC 00	42-2008	CRDJ	15-out	10,7	3,5	Pequeno porte
RLTF5-02	43-2008	CRDJ	18-out	8,7	2,5	Efeito restrito
	02-2008	CRDJ	18-jan	26,4	5,25	Médio porte
JPAT6-01	04-2008	CRDJ	23-jan	23,1	4	Pequeno porte
JPA16-01	04-2008	CRDJ	23-jan	31,2	3,75	Pequeno porte
	18-2008	CRDJ	9-jun	20,8	4	Pequeno porte
	10-2008	CRDJ	15-fev	7,7	3,25	Pequeno porte
JPTF6-02	11-2008	CRDJ	25-fev	11,6	3,75	Pequeno porte
JF1F0-02	55-2008	CRDJ	29-nov	11,7	3	Pequeno porte
	55-2008	CRDJ	29-nov	11,7	3	Pequeno porte
	05-2008	CRDH	1-fev	2,5	3	Pequeno porte
	13-2008	CRDH	17-mar	20,8	3,75	Pequeno porte
UHE SAMUEL	17-2008	Blecaute	3-jun	200,9	8,75	Muito grave
OTIL SAMOLL	03-2008	CRDH	20-jan	16,2	1,75	Efeito restrito
	57-2008	CRDH	3-dez	2,3	2,75	Pequeno porte
	08-2008	CRDH	8-fev	26,4	3,75	Pequeno porte
UTE RIO MADEIRA	06-2008	CRDO	2-fev	10	3,5	Pequeno porte
	37-2008	TN	9-out	28,2	2,75	Pequeno porte
	14-2008	TN	9-abr	29,7	4	Pequeno porte
	19-2008	TN	4-jul	39	4,75	Médio porte
PIE TERMO NORTE	25-2008	TN	11-ago	39,9	3,75	Pequeno porte
	16-2008	TN	26-mai	60,2	4,75	Médio porte
	58-2008	TN	5-dez	53,2	4,5	Médio porte
Eonto: EL ETPONOPTE Polotóx	60-2008	TN	16-dez	50	4	Pequeno porte

Fonte: ELETRONORTE. Relatórios de Análise de Perturbação 2008. Centro de Operação Regional de Rondônia [13].

Tabela 3.4 - Grau de Impacto de 2008 pelo método do ONS. (Continuação)

Linha / Equipamento	Nº RAP	DIVISÃO	DATA	Pi (MW)	GIE	Tipo da perturbação
	07-2008	CRDJ	6-fev	10	3,5	Pequeno porte
	09-2008	CRDH	10-fev	1,8	2,75	Pequeno porte
	15-2008	CRDH	20-abr	1,8	1,25	Efeito restrito
	15-2008	CRDH	20-abr	1,8	1,25	Efeito restrito
	15-2008	CRDH	20-abr	1,8	2,5	Efeito restrito
	20-2008	CRDJ	6-jul	4,3	2,25	Efeito restrito
	21-2008	CRDT	14-jul	5,2	3	Pequeno porte
	24-2008	CRDJ	27-jul	7	3,25	Pequeno porte
	26-2008	CRDJ	11-ago	26,6	3,5	Pequeno porte
	29-2009	CRDJ	29-ago	8,5	3	Pequeno porte
	30-2008	CRDT	1-set	8,7	3	Pequeno porte
DISTRIBUIÇÃO	31-2008	CRDJ	3-set	9,2	3,25	Pequeno porte
	32-2008	CRDT	4-set	9,1	3,25	Pequeno porte
	33-2008	CRDJ	10-set	13,1	3,5	Pequeno porte
	35-2008	CRDJ	2-out	10,5	3,75	Pequeno porte
	35-2008	CRDJ	2-out	12,6	3,75	Pequeno porte
	38-2008	CRDT	12-out	3,6	2,25	Efeito restrito
	49-2008	CRDJ	12-nov	10,9	3	Pequeno porte
	56-2008	CRDJ	1-dez	10,6	4,75	Médio porte
	61-2008	CRDH	22-dez	1	2,75	Pequeno porte
	62-2008	CRDJ	21-dez	0,5	2,25	Efeito restrito
	62-2008	CRDJ	22-dez	8,1	3,5	Pequeno porte
	63-2008	CRDJ	26-dez	5,3	2,5	Efeito restrito

Fonte: ELETRONORTE. Relatórios de Análise de Perturbação 2008. Centro de Operação Regional de Rondônia [13].

3.3 Análises dos Resultados

Os aspectos carga interrompida e tempo médio da interrupção estão diretamente ligados à continuidade do fornecimento de energia, assim foram utilizados no estabelecimento da nota do Grau de Impacto do ONS.

No entanto, a definição de cargas a serem consideradas como essenciais, como por exemplo: hospitais, aeroportos, e outros; é recomendável. Assim, o atendimento dessas cargas deve ser considerado prioritário. Portanto uma ocorrência que cause o desligamento deste tipo de carga seria considerada de maior gravidade, em comparação com outra que apresentasse as mesmas características, mas que desligasse somente as cargas consideradas normais. Este aspecto não é considerado no Grau de Impacto do ONS.

Estabelecer pontos diferenciados (de 0,5 a 2,0) para os vários períodos do dia e para os diferentes dias da semana, é o mesmo que eleger dias e horários "mais importantes", o que não constitui uma estratégia recomendável no bom atendimento ao cliente, que é quem compra o produto e elege o grau de importância de acordo com suas necessidades e prioridades.

O percentual da população atingida pela interrupção contribui para maior ou menor gravidade da ocorrência. No entanto, o aspecto abrangência, onde é considerada a área atingida, pode causar um mascararamento no cálculo do grau de impacto, em Estados pouco povoados. Por exemplo, uma ocorrência com uma área de abrangência extensa, porém com baixa densidade populacional não deveria ter a mesma nota que outra ocorrência com a mesma área de abrangência, porém em uma área completamente povoada.

Além disso, o Grau de Impacto adotado pelo ONS apresenta os seguintes incovenientes:

- o estabelecimento de uma "nota" para cada perturbação, não permite que se obtenha o grau de impacto mensal ou anual com um simples somatório;
- as faixas de pontuação estabelecidas são muito extensas, o que faz com que perturbações que causaram impactos diferentes estejam com a mesma nota e com a mesma classificação final. Por exemplo, uma ocorrência com: 21% da carga interrompida, duração de 2 horas e um minuto, 21% de abrangência da região e 21% da população atingida; teria a mesma nota que outra ocorrência com: 40% da carga interrompida, duração de 3 horas, 40% de abrangência da região e 40% da população atingida; se elas tiverem acontecido durante o mesmo período, como por exemplo, em um dia útil. Assim, trata-se de um método de baixa precisão, que pode oferecer resultados satisfatórios quando utilizado no SIN, mas que não seria recomendado para sistemas de menor porte;
- duas notas iguais obtidas em perturbações ocorridas em dois sistemas diferentes, têm significados diferentes, pois são calculadas a partir de referenciais diferentes (valores de demanda diferentes), portanto é inviável a comparação entre graus de impacto de ocorrências de diferentes sistemas.

Capítulo 4 – Metodologia Proposta

4.1 Principais Atributos das Perturbações

O objetivo de um Sistema Elétrico de Transmissão é o atendimento pleno, ou seja, o escoamento de 100% da demanda do sistema, proporcionando o atendimento de 100% dos consumidores, durante 100% do período considerado.

As perturbações provocam interrupção no fornecimento de energia, e o nível de gravidade de cada uma delas depende do quanto elas comprometem o alcance do objetivo do sistema.

Assim, o nível de gravidade de cada perturbação depende dos seguintes parâmetros principais:

- potência interrompida;
- população afetada; e.
- tempo de interrupção de carga.

O cálculo do Grau de Impacto do ONS considera ainda:

- horário da interrupção; e
- áreas atingidas.

No entanto, a consideração destes dois aspectos apresenta alguns inconvenientes, conforme esclarecido no subcapítulo 3.3, além disso, eles encontram-se, de certa forma, representados pela potência interrompida.

Outro aspecto importante é o desligamento de cargas consideradas essenciais.

4.2 Cálculo Proposto para o Grau de Impacto

O Grau de Impacto poderia ser calculado a partir dos valores DREQ, FREQ e INDISP causados pela perturbação. No entanto, a utilização dessas grandezas apresentaria o incoveniente de que o valor da INDISP é percentual e seria aplicada

juntamente com o valor do DREQ, que é dado em horas de interrupção da demanda máxima, e com o FREQ que é adimensional e representa o número de vezes que a demanda máxima foi interrompida, isto quer dizer que seriam aplicadas grandezas muito diferentes.

Diante da tentativa de se definir uma composição matemática adequada para o cálculo do Grau de Impacto, pôde-se perceber que a combinação dos vários indicadores não constituiria um valor para fácil análise e percepção da situação do sistema, nem permitiria a dedução de qual indicador causou maior impacto.

O uso do DREQ e FREQ para calcular o Grau de Impacto apresenta a desvantagem de que estes indicadores dependem do valor da demanda máxima do sistema no período considerado, o que dificultaria comparações entre diferentes sistemas, entre períodos diferentes ou ambos. Assim, se as ocorrências exemplificadas no subcapítulo 2.2.1 ocorresem em um mês cujo valor de demanda máxima fosse de 400 MW, os valores de DREQ e FREQ seriam diferentes:

- 1ª Ocorrência: DREQ = 15 minutos e FREQ = 0,25;
- 2ª Ocorrência: DREQ = 7,5 minutos e FREQ = 0,25;
- 3ª Oorrência: DREQ = 15 minutos e FREQ = 0,50.

Um valor de demanda máxima maior resulta em valores de DREQ e FREQ menores. Assim, ocorrências iguais que são registradas em períodos diferentes resultam em valores de indicadores diferentes.

Com relação ao uso do DISP, ou INDISP, no cálculo do Grau de Impacto, há os seguintes incovenientes:

- a fórmula do DISPE, referente à disponibilidade de equipamentos, não considera "pesos diferentes" para equipamentos de importâncias diferentes, ou seja, o desligamento de um transformador de 13,8 kV de 75 kVA, por exemplo, provoca a mesma redução do DISPE total que o de um transformador de 230 kV de 30 MVA. Pois, o cálculo da indisponibilidade de cada equipamento não considera o valor de sua tensão de operação, nem tão pouco de sua potência;

- a fórmula do DISPL, referente á disponibilidade de linhas, possibilita o estabelecimento de pesos diferentes para linhas de transmissão com extensões diferentes (comprimentos), ou seja, o desligamento de uma linha de 5 km, por exemplo, provoca uma redução no DISPL menor que o de uma linha de 30 km. No entanto, o nível de tensão da linha, a potência transmitida através dela e sua localização estratégica ou não para o sistema, não são considerados.

Além disso, o DISP ou INDISP não afetam, necessariamente, o objetivo do sistema, pois, como já foi dito, há casos em que é possível a realização de um remanejamento de carga.

Analisando a situação pôde-se perceber que a energia interrompida constitui uma grandeza bastante interessante no cálculo do Grau de Impacto, porque ela apresenta intrinsecamente em seu valor, a maioria dos parâmetros que definem o nível de gravidade da perturbação:

- potência interrompida;
- tempo de interrupção de carga;
- horário da perturbação (influencia na potência interrompida);
- áreas atingidas (influenciam na potência interromida).

É importante destacar que com relação ao aspecto horário da perturbação, atribuir maior importância a determinados períodos do dia é uma opção discutível, afinal, cada cliente é quem deve definir qual período do dia é "mais importante" em termos de suprimento de energia, em função de suas necessidades e prioridades. Certamente, que uma ocorrência durante a noite, no horário em que as pessoas estão em casa, jantando ou assistindo televisão poderia chamar mais atenção e parecer mais impactante que uma ocorrência no meio da manhã, por exemplo. No entanto, o valor da carga interrompida, representa bem este grau de importância, e está considerado na energia interrompida.

$$Ei = Pi *t$$
 [MWh] (4.1)

Onde:

Ei = Energia interrompida pela perturbação em mega watt hora (MWh)

Pi = Potência interrompida pela perturbação em mega watt (MW)

t = Tempo de interrupção em horas (h)

Outra grandeza importante para o cálculo do Grau de Impacto é a população atingida pela perturbação, ou seja, o número de habitantes que foram afetados pela interrupção de energia. Esta grandeza não está intrinsecamente considerada na energia interrompida, pois existem diferentes classes de consumidores, de acordo com suas respectivas faixas de consumo. A interrupção de certa quantidade de energia afetando certo número de habitantes de um bairro nobre, com residências equipadas com elevado número de equipamentos eletroeletrônicos, é menos impactante que a interrupção da mesma quantidade de energia afetando um número maior de habitantes de um bairro popular, por exemplo. Isto porque o objetivo é o atendimento de 100% da população pertencente ao sistema, assim, o Grau de Impacto deve ser diretamente proporcional à energia interrompida e ao número de habitantes afetados.

Diante destas considerações, a fórmula para o cálculo proposto para o Grau de Impacto pode ser assim definida:

$$GI = hab * Ei$$
 [habMWh] (4.2)

Onde:

GI = Grau de Impacto em habitante mega watt hora (habMWh)

hab = Número de habitantes afetados pela interrupção de energia

Ei = Energia interrompida pela interrupção em mega watt hora (MWh)

Assim, um Grau de Impacto igual a 10.000 habMWh pode significar uma interrupção de 1.000 MWh que atingiu 10 habitantes, ou uma interrupção de 100 MWh que atingiu 100 habitantes, ou uma interrupção de 10 MWh que atingiu 1.000 habitantes, ou qualquer outra combinação cuja multiplicação resulte em 10.000.

Esta fórmula possibilita a quantificação do impacto causado pela perturbação, facilitando a comparação entre ocorrências registradas em um mesmo sistema, em períodos diferentes, ou em diferentes sistemas.

No entanto, não se encontra contemplado nesta fórmula o agravamento do impacto para o caso de desligamento de cargas consideradas essenciais.

4.3 Aplicação do Cálculo Proposto para o Grau de Impacto

As Tabelas 4.1 e 4.2 apresentam os valores do Grau de Impacto, obtidos por meio da aplicação do cálculo proposto, para as ocorrências registradas em 2007 e em 2008, respectivamente.

Tabela 4.1 – Grau de Impacto de 2007 pelo método proposto.

LINHA / EQUIPAMENTO	Nº RAP	DIVISÃO	DATA	Ei (MWh)	Pop. Atingida (hab)	GI Proposto (1000 habMWh)
	09-2007	CRDT	7-mar	0,840	464.719	390,36
PVAN-LT6-01	17-2007	CRDT	11-set	2,153	464.719	1.000,69
	31-2007	CRDT	12-dez	0,980	464.719	455,42
	01-2007	CRDT	9-jan	17,723	718.401	12.732,46
SMAQ-LT6-01	12-2007	CRDT	23-mai	19,343	718.401	13.896,27
	29-2007	CRDT	17-nov	19,493	718.401	14.004,03
	11-2007	CRDT	27-mar	0,547	39.451	21,57
	24-2007	CRDT	19-out	0,725	39.451	28,60
	25-2007	CRDT	24-out	0,617	39.451	24,33
ANGJ-LT5-01	26-2007	CRDT	29-out	0,725	39.451	28,60
ANGU-LIU-UI	26-2007	CRDT	29-out	0,860	39.451	33,93
	32-2007	CRDT	12-dez	0,583	39.451	23,01
	34-2007	CRDT	19-dez	0,287	39.451	11,31
	35-2007	CRDT	26-dez	0,287	39.451	11,31
PVAE-LT4-01	33-2007	CRDT	14-dez	2,987	148.472	443,44
PVAF-LT4-01 e 02	28-2007	CRDT	14-nov	8,450	156.621	1.322,66
	18-2007	CRDJ	19-set	2,900	169.320	491,03
	20-2007	CRDJ	1-out	4,290	169.320	726,38
RLTF4-01	21-2007	CRDJ	2-out	1,177	169.320	199,23
KEII 4-01	21-2007	CRDJ	2-out	3,058	169.320	517,84
	22-2007	CRDJ	3-out	2,788	169.320	472,12
	27-2007	CRDJ	8-nov	1,100	169.320	186,25
JPTF6-02	14-2007	CRDJ	6-ago	46,183	169.320	7.819,76
UHE SAMUEL	36-2007	CRDH	31-dez	1,342	52.482	70,41
	05-2007	CRDT	1-fev	0,542	74.451	40,33
	06-2007	CRDT	11-fev	1,990	120.230	239,26
	07-2007	CRDT	24-fev	5,000	67.595	337,97
DISTRIBUIÇÃO	08-2007	CRDT	2-mar	3,640	10.697	38,94
DISTRIBUIÇÃO	08-2007	CRDT	4-mar	1,727	15.364	26,53
	15-2007	CRDJ	5-set	2,508	169.320	2.336,62
	16-2007	CRDJ	11-set	13,800	299.726	645,41
	30-2007	CRDJ	24-nov	21,502	49.480	1.063,91
	13-2007	Blecaute	18-jul	451,146	1.577.106	711.505,33
	19-2007	TNI	21-set	2,953	98.480	290,84
PIE TERMO NORTE	10-2007	TN II	25-mar	2,050	82.185	168,48
	04-2007	TN II	30-jan	13,110	192.606	2.525,06
	23-2007	TN II	9-out	34,977	211.088	7.383,16

Tabela 4.2 – Grau de Impacto de 2008 pelo método proposto.

LINHA / EQUIPAMENTO	Nº RAP	DIVISÃO	DATA	Ei (MWh)	Pop. Atingida (hab)	GI Proposto (1000 habMWh)
PVAN-LT6-01	46-2008	CRDT	24-out	1,142	464.719	530,55
	45-2008	CRDT	21-out	33,702	837.490	28.224,81
SMAQ-LT6-01	45-2008	CRDT	21-out	33,70	837.490	28.224,81
	48-2008	CRDT	10-nov	45,738	837.490	38.305,40
	51-2008	CRDJ	21-nov	3,833	119.089	456,51
PBVN-LT6-01	52-2008	CRDJ	23-nov	2,823	119.089	336,23
	54-2008	CRDJ	25-nov	6,013	119.089	716,12
	12-2008	CRDT	12-mar	0,705	39.451	27,81
ANO 1 1 TE 04	36-2008	CRDT	5-out	0,360	39.451	14,20
ANGJ-LT5-01	36-2008	CRDT	5-out	0,360	39.451	14,20
	47-2008	CRDT	24-out	1,398	39.451	55,17
JPRL-LT4-01	27-2008	CRDJ	13-ago	40,328	169.320	6.828,39
IDDL LTE 04	28-2008	CRDJ	17-ago	2,508	169.320	424,71
JPRL-LT5-01	40-2008	CRDJ	14-out	0,727	169.320	123,04
10750.00	34-2008	CRDT	21-set	10,000	120.230	1.202,30
AQTF6-02	53-2008	CRDT	25-nov	2,180	120.230	262,10
DITTION	01-2008	CRDJ	5-jan	0,320	169.320	54,18
RLTF4-01	23-2008	CRDJ	27-jul	15,605	169.320	2.642,24
D. T.T	42-2008	CRDJ	15-out	1,907	169.320	322,84
RLTF5-02	43-2008	CRDJ	18-out	0,492	169.320	83,25
	02-2008	CRDJ	18-jan	61,160	320.282	19.588,45
12.70.01	04-2008	CRDJ	23-jan	6,545	320.282	2.096,25
JPAT6-01	04-2008	CRDJ	23-jan	4,16	320.282	1.332,37
	18-2008	CRDJ	9-jun	7,97	320.282	2.552,65
	10-2008	CRDJ	15-fev	7,915	204.052	1.615,07
IDTE0 00	11-2008	CRDJ	25-fev	3,867	204.052	789,00
JPTF6-02	55-2008	CRDJ	29-nov	0,975	204.052	198,95
	55-2008	CRDJ	29-nov	1,17	204.052	238,74
	05-2008	CRDH	1-fev	1,833	7.905	14,49
	13-2008	CRDH	17-mar	6,305	93.385	588,79
	17-2008	Blecaute	3-jun	209,537	1.696.195	355.415,05
UHE SAMUEL	03-2008	CRDH	20-jan	5,840	57.709	337,02
	57-2008	CRDH	3-dez	0,958	7.905	7,58
	08-2008	CRDH	8-fev	3,712	91.554	339,82
UTE RIO MADEIRA	06-2008	CRDO	2-fev	4,000	37.295	149,18
	37-2008	TN	9-out	3,912	91.115	356,41
	14-2008	TN	9-abr	13,360	184.316	2.462,47
	19-2008	TN	4-jul	5,150	432.514	2.227,44
UTE TERMO NORTE	25-2008	TN	11-ago	3,282	127.407	418,11
	16-2008	TN	26-mai	24,702	314.873	7.777,88
	58-2008	TN	5-dez	15,523	181.653	2.819,86
	60-2008	TN	16-dez	13,865	82.621	1.145,54

Tabela 4.2 – Grau de Impacto de 2008 pelo método proposto. (Continuação)

LINHA / EQUIPAMENTO	Nº RAP	DIVISÃO	DATA	Ei (MWh)	Pop. Atingida (hab)	GI Proposto (1000 habMWh)
	07-2008	CRDJ	6-fev	8,33	40.402	336,55
	09-2008	CRDH	10-fev	7,38	7.905	58,34
	15-2008	CRDH	20-abr	0,15	7.905	1,19
	15-2008	CRDH	20-abr	0,45	7.905	3,56
	15-2008	CRDH	20-abr	3,99	7.905	31,54
	20-2008	CRDJ	6-jul	4,42	169.320	747,83
	21-2008	CRDT	14-jul	6,59	18.532	122,06
	24-2008	CRDJ	27-jul	12,74	169.320	2.156,29
	26-2008	CRDJ	11-ago	4,43	150.962	669,26
	29-2009	CRDJ	29-ago	7,08	169.320	1.199,35
	30-2008	CRDT	1-set	0,58	39.451	22,88
DISTRIBUIÇÃO	31-2008	CRDJ	3-set	13,62	169.320	2.306,42
	32-2008	CRDT	4-set	0,76	39.451	29,92
	33-2008	CRDJ	10-set	0,44	169.320	73,94
	35-2008	CRDJ	2-out	0,99	169.320	168,19
	35-2008	CRDJ	2-out	0,93	169.320	158,03
	38-2008	CRDT	12-out	4,5	14.671	66,02
	49-2008	CRDJ	12-nov	0,73	169.320	123,04
	56-2008	CRDJ	1-dez	31,8	119.089	3.787,03
	61-2008	CRDH	22-dez	0,117	7.905	0,92
	62-2008	CRDJ	21-dez	0,050	119.089	5,95
	62-2008	CRDJ	22-dez	0,540	119.089	64,31
	63-2008	CRDJ	26-dez	0,353	169.320	59,83

4.4 Relação entre DREQ e FREQ, GIE do ONS e GI Proposto

As Tabelas 4.3 e 4.4 apresentam os valores dos indicadores DREQ e FREQ, do Grau de Impacto de Energia do ONS e do Grau de Impacto Proposto para os anos de 2007 e 2008, respectivamente, para uma comparação.

Pode-se observar que, no ano de 2007, a maioria das ocorrências possui valores reduzidos para o DREQ e o FREQ, e recebe a classificação de pequeno porte. O GI proposto apresenta valores diferenciados de *habitante mega watt hora* interrompidos por perturbação e permite a identificação das mais representativas, dentre as classificadas como pequeno porte. As ocorrências com as linhas PVAN-LT6-01 e SMAQ-LT6-01 foram classificadas como médio e grande porte e apresentaram valores mais elevados de *habitante mega watt hora* interrompidos.

Tabela 4.3 – Tabela Comparativa de 2007.

Linha / Equipamento	Nº RAP	DATA	DREQ	FREQ	GI ONS	Tipo da perturbação	GI Proposto (1000 habMWh)
	09-2007	7-mar	0,003	0,027	4,75	Médio porte	390,36
PVAN-LT6-01	17-2007	11-set	0,007	0,031	5,25	Médio porte	1.000,69
	31-2007	12-dez	0,004	0,032	5	Médio porte	455,42
	01-2007	9-jan	0,069	0,389	5,75	Grande porte	12.732,46
SMAQ-LT6-01	12-2007	23-mai	0,073	0,336	5,5	Médio porte	13.896,27
	29-2007	17-nov	0,069	0,354	5,25	Médio porte	14.004,03
	11-2007	27-mar	0,002	0,030	3,25	Pequeno porte	21,57
	24-2007	19-out	0,002	0,029	2,25	Efeito restrito	28,60
	25-2007	24-out	0,002	0,027	3,25	Pequeno porte	24,33
ANGJ-LT5-01	26-2007	29-out	0,002	0,029	3,25	Pequeno porte	28,60
ANGS-E15-01	26-2007	29-out	0,003	0,029	3,5	Pequeno porte	33,93
	32-2007	12-dez	0,002	0,026	3,25	Pequeno porte	23,01
	34-2007	19-dez	0,001	0,030	3,25	Pequeno porte	11,31
	35-2007	26-dez	0,001	0,032	2,5	Efeito restrito	11,31
PVAE-LT4-01	33-2007	14-dez	0,011	0,178	2,75	Pequeno porte	443,44
PVAF-LT4-01 e 02	28-2007	14-nov	0,030	0,182	2,75	Pequeno porte	1.322,66
	18-2007	19-set	0,009	0,063	3,5	Pequeno porte	491,03
	20-2007	1-out	0,015	0,041	3,5	Pequeno porte	726,38
RLTF4-01	21-2007	2-out	0,004	0,042	3,5	Pequeno porte	199,23
IXE11 4-01	21-2007	2-out	0,010	0,042	3,5	Pequeno porte	517,84
	22-2007	3-out	0,009	0,040	3,75	Pequeno porte	472,12
	27-2007	8-nov	0,004	0,046	3,5	Pequeno porte	186,25
JPTF6-02	14-2007	6-ago	0,154	0,199	3,5	Pequeno porte	7.819,76

Tabela 4.4 – Tabela Comparativa de 2008.

LINHA/ EQUIPAMENTO	Nº RAP	DATA	DREQ	FREQ	GI ONS	Tipo da perturbação	GI Proposto (1000 habMWh)
PVAN-LT6-01	46-2008	24-out	0,004	0,034	4,25	Médio porte	530,55
	45-2008	21-out	0,107	0,107	5,25	Médio porte	28224,81
SMAQ-LT6-01	45-2008	21-out	0,033	0,440	5,50	Médio porte	28224,81
	48-2008	10-nov	0,150	0,397	5,50	Médio porte	38305,40
	51-2008	21-nov	0,013	0,030	3,75	Pequeno porte	456,51
PBVN-LT6-01	52-2008	23-nov	0,009	0,007	2,75	Pequeno porte	336,23
	54-2008	25-nov	0,020	0,054	3,50	Pequeno porte	716,12
	12-2008	12-mar	0,003	0,035	2,25	Efeito restrito	27,81
ANGJ-LT5-01	36-2008	5-out	0,001	0,023	2,00	Efeito restrito	14,20
ANGS-LTS-01	36-2008	5-out	0,001	0,023	2,00	Efeito restrito	14,20
	47-2008	24-out	0,004	0,026	3,25	Pequeno porte	55,17
JPRL-LT4-01	27-2008	13-ago	0,123	0,079	5,00	Médio porte	6828,39
JPRL-LT5-01	28-2008	17-ago	0,376	0,088	3,00	Pequeno porte	424,71
3F IXE-E1 3-01	40-2008	14-out	0,002	0,035	3,50	Pequeno porte	123,04
AQTF6-02	34-2008	21-set	0,032	0,076	2,75	Pequeno porte	1202,30
AQ110-02	53-2008	25-nov	0,007	0,107	3,75	Pequeno porte	262,10
RLTF4-01	01-2008	5-jan	0,001	0,025	3,00	Pequeno porte	54,18
KE11 4-01	23-2008	27-jul	0,002	0,027	2,25	Efeito restrito	2642,24
RLTF5-02	42-2008	15-out	0,006	0,034	3,50	Pequeno porte	322,84
KE11 5-02	43-2008	18-out	0,002	0,028	2,50	Efeito restrito	83,25
	02-2008	18-jan	0,235	0,101	5,25	Médio porte	19588,45
JPAT6-01	04-2008	23-jan	0,025	0,089	4,00	Pequeno porte	2096,25
3FA10-01	04-2008	23-jan	0,016	0,120	3,75	Pequeno porte	1332,37
	18-2008	9-jun	0,004	0,003	4,00	Pequeno porte	2552,65
	10-2008	15-fev	0,031	0,030	0 3,25 Pequeno port		1615,07
JPTF6-02	11-2008	25-fev	0,015	0,046	3,75	Pequeno porte	789,00
JF 11 0-02	55-2008	29-nov	0,003	0,038	3,00	Pequeno porte	198,95
	55-2008	29-nov	0,004	0,038	3,00	Pequeno porte	238,74

A Tabela Comparativa de 2008 demonstra, assim como em 2007, a maioria das ocorrências foi classificada como pequeno porte e que as perturbações com as linhas PVAN-LT6-01 e SMAQ-LT6-01, classificadas como médio porte apresentam valores mais elevados de *habitante mega watt hora* interrompidos.

4.5 Cálculo do Grau de Impacto Total

Nas Tabelas 4.5 e 4.6, a seguir, os valores do Grau de Impacto Proposto por Linha / Equipamento e por Usina de Geração dos anos de 2007 e 2008, respectivamente, foram obtidos a partir da soma dos valores dos impactos causados pelos RAP registrados em cada Linha, Equipamento ou unidade geradora. Este enfoque permite a

constatação de que as linhas e os transformadores que sofreram a maior quantidade de perturbações, não constituem os mais impactantes para o sistema.

Tabela 4.5 – Grau de Impacto Total de 2007 pelo método proposto.

LINHA / EQUIPAMENTO	GI Proposto (1000 habMWh)	GI Proposto %
UTE TERMO NORTE	721.872,877	92,377
SMAQ-LT6-01	40.632,761	5,200
JPTF6-02	7.819,762	1,001
DISTRIBUIÇÃO	4.728,966	0,605
RLTF4-01	2.592,854	0,332
PVAN-LT6-01	1.846,483	0,236
PVAF-LT4-01 e 02	1.322,661	0,169
PVAE-LT4-01	443,436	0,057
ANGJ-LT5-01	182,658	0,023
UHE SAMUEL	70,413	0,009
TOTAL	781.442,457	100,000

Tabela 4.6 – Grau de Impacto Total de 2008 pelo método proposto.

LINHA / EQUIPAMENTO	Gl Proposto (1000 habMWh)	GI Proposto %
UHE SAMUEL	356.702,74	68,14
SMAQ-LT6-01	94.755,01	18,10
JPAT6-02	25.569,71	4,88
UTE TERMO NORTE	17.207,71	3,29
DISTRIBUIÇÃO	12.192,45	2,33
JPRL-LT4-01	6.828,39	1,30
JPTF6-02	2.841,76	0,54
RLTF4-01	2.696,42	0,52
PBVN-LT6-01	1.508,86	0,29
AQTF6-02	1.464,40	0,28
JPRL-LT5-01	547,75	0,10
PVAN-LT6-01	530,55	0,10
RLTF5-02	406,09	0,08
UTE RIO MADEIRA	149,18	0,03
ANGJ-LT5-01	111,38	0,02
TOTAL	523.512,43	100,00

Verifica-se que a UTE Termonorte causou as perturbações mais impactantes ao sistema no ano de 2007, destacando-se o blecaute, e por isso foi responsável por um impacto de aproximadamente 721 milhões de habMWh, o que corresponde à 92,377 % do impacto ocorrido durante o ano. A UHE Samuel causou um impacto de aproximadamente 70 mil habMWh, ou seja, 0,009% do impacto total, e as perturbações

provocadas na Distribuição contribuíram com 0,605% do GI de 2007, com aproximadamente 4,7 milhões de habMWh de impacto.

As perburbações mais impactantes do ano de 2008 foram causadas pela UHE Samuel, com um impacto de aproximadamente 356 milhões habMWh. As perturbações de 2007 foram mais impactantes que as de 2008, apesar de que em 2007, ocorreu menor número de perturbações.

As Tabelas 4.7 e 4.8, a seguir, excluem os impactos causados pelas ocorrências registradas na Geração e na Distribuição, e possibilitam uma análise mais detalhada das perturbações causadas pelas linhas / equipamentos da Transmissão.

Tabela 4.7 – Grau de Impacto da Transmissão - 2007 pelo método proposto.

LINHA / EQUIPAMENTO	GI Proposto (1000 habMWh)	GI Proposto %	Nº de interrupções	% de interrupções
SMAQ-LT6-01	40.632,761	74,092	3	13,043
JPTF6-02	7.819,762	14,259	1	4,348
RLTF4-01	2.592,854	4,728	6	26,087
PVAN-LT6-01	1.846,483	3,367	3	13,043
PVAF-LT4-01 e 02	1.322,661	2,412	1	4,348
PVAE-LT4-01	443,436	0,809	1	4,348
ANGJ-LT5-01	182,658	0,333	8	34,783
TOTAL	54.840,614	100,000	23	100,000

Tabela 4.8 – Grau de Impacto da Transmissão - 2008 pelo método proposto.

LINHA / EQUIPAMENTO	GI Proposto (1000 habMWh)	GI Proposto %	Nº de interrupções	% de interrupções
SMAQ-LT6-01	94.755,01	69,03	3	10,71
JPAT6-02	25.569,71	18,63	4	14,29
JPRL-LT4-01	6.828,39	4,97	1	3,57
JPTF6-02	2.841,76	2,07	4	14,29
RLTF4-01	2.696,42	1,96	2	7,14
PBVN-LT6-01	1.508,86	1,10	3	10,71
AQTF6-02	1.464,40	1,07	2	7,14
JPRL-LT5-01	547,75	0,40	2	7,14
PVAN-LT6-01	530,55	0,39	1	3,57
RLTF5-02	406,09	0,30	2	7,14
ANGJ-LT5-01	111,38	0,08	4	14,29
TOTAL	137.260,34	100,00	28	100,00

O Sistema de Transmissão causou perturbações que atingiram aproximadamente 54,8 milhões de habMWh, em 2007. A linha SMAQ-LT6-01 foi a mais impactante,

atingindo o valor de aproximadamente 40,6 milhões de habMWh, ou seja, 74,092 % do impacto total causado pela Transmissão ao sistema, apesar de ter sofrido apenas três interrupções. No entanto, a função ANGJ-LT5-01, que sofreu oito interruções, causou um impacto bastante inferior, no valor de 182,6 mil habMWh, o que equivale a apenas 0,333 % do Grau de Impacto total causado pela Transmissão.

Em 2008, o impacto causado pelas perturbações no Sistema de Transmissão foi maior que o dobro do impacto causado em 2007, com o valor de aproximadamente 137 milhões de habMWh. A SMAQ-LT6-01 foi, novamente, a mais impactante, atingindo o valor de aproximadamente 94,7 milhões de habMWh. A ANGJ-LT5-01 permaneceu entre as que sofreram o maior número de interrupções, e, novamente foi a menos impactante do Sistema de Transmissão.

A verificação das realizações de manutenções nestas linhas e equipamentos possibilita a constatação das consequências registradas nos casos de não cumprimento dos cronogramas de manutenções. A idéia é usar este conhecimento para tomada de decisão a respeito de prioridades de investimentos, em manutenções e em melhorias, para evitar novas ocorrências.

Os valores de potência máxima medida e da população atendida pelas linhas e equipamentos do sistema, possibilitam a obtenção do Grau de Impacto máximo que pode ser causado por cada um deles. Assim, pode-se atuar preventivamente nas linhas e equipamentos potencialmente mais impactantes do sistema.

4.4 Cálculo Proposto para o Grau de Impacto Equivalente

O cálculo do Grau de Impacto em habMWh proporciona a "quantificação" do impacto produzido por uma perturbação qualquer, registrada em um sistema qualquer. Com isso, possibilita as comparações entre ocorrências de períodos diferentes e de sistemas diferentes. No entanto, uma ocorrência com um valor determinado de habMWh de grau de impacto, proporciona efeitos diferentes, em sistemas distintos. Um grau de impacto de 54 milhões de habMWh registrado no Sistema Elétrico de Rondônia,

produz um efeito bastante diferente que um grau de impacto de mesmo valor registrado no Sistema Interligado Nacional (SIN), por exemplo.

Para a avaliação do efeito que uma determinada perturbação causaria em um sistema específico, propõe-se o cálculo do Grau de Impacto Equivalente.

O Grau de Impacto de uma perturbação é calculado a partir dos valores da energia interrompida e do número de habitantes afetados. Assim, o efeito causado em um sistema será inversamente proporcional ao número total de habitantes atendidos e à carga total deste sistema. Pois, a amostra considerada é menos representativa, à medida que se aumenta o universo considerado.

Assim, uma perturbação que produz um determinado Grau de Impacto seria mais representativa em um sistema com menor número total de habitantes, do que em outro sistema com um número total de habitantes maior.

No entanto, considerar o número total de habitantes no cálculo do Grau de Impacto Equivalente não seria suficiente para avaliar os diferentes efeitos que uma perturbação causa em sistemas distintos. Pois, se uma perturbação que produz um determinado Grau de Impacto ocorresse em dois sistemas que atendessem ao mesmo número total de habitantes, ela seria mais representativa no sistema que atendesse a uma carga total menor.

Portanto, a carga atendida pelo sistema também é inversamente proporcional ao efeito causado ao sistema, por uma determinada perturbação. Como o valor da carga total atendida pelo sistema é variável em função do tempo, pode-se utilizar o valor de pico da carga (Demanda máxima) registrado no período considerado.

Diante disso, propõe-se a equação 5.1, para o cálculo do Grau de Impacto Equivalente.

$$GI_{equivalente} = \left(\frac{GI}{Demandam\'{a}ximadoper\'{i}odo*hab_{total}}\right)*3600$$
(5.1)

Onde:

 $GI_{equivalente} = {}_{Grau}$ de Impacto Equivalente (seg). GI = Grau de Impacto da perturbação (habMWh). $Demandam \acute{a} xima do per \acute{i} o do = Potência m \acute{a} xima do per \acute{i} o do considerado (MW).$ $hab_{total} = N$ úmero total de habitantes do sistema.

4.5 Aplicação do Cálculo do Grau de Impacto Equivalente

As Tabelas 4.9 e 4.10 apresentam os valores calculados para o Grau de Impacto Equivalente da Transmissão de 2007 e de 2008, respectivamente, considerando-se:

 $Demandam\'aximadoper\'iodo_{2007} = 403,46$ [MW] (registrada em setembro)

 $Demandam\'{a}ximadoper\'{i}odo_{2008} = 417,45 \text{ [MW] (registrada em agosto)}$

$$hab_{total} = 1.696.195$$
 [habitantes]

Tabela 4.9 – Grau de Impacto Equivalente da Transmissão – 2007.

LINHA / EQUIPAMENTO	Grau de Impacto Equivalente (10 ⁻³ segundos)			
SMAQ-LT6-01	213,748			
JPTF6-02	41,136			
RLTF4-01	13,640			
PVAN-LT6-01	9,713			
PVAF-LT4-01 e 02	6,958			
PVAE-LT4-01	2,333			
ANGJ-LT5-01	0,961			
TOTAL	288,489			

Tabela 4.10 – Grau de Impacto Equivalente da Transmissão – 2008.

LINHA / EQUIPAMENTO	GI Equivalente (10 ⁻³ segundos)		
SMAQ-LT6-01	481,75		
JPAT6-02	130,00		
JPRL-LT4-01	34,72		
JPTF6-02	14,45		
RLTF4-01	13,71		
PBVN-LT6-01	7,67		
AQTF6-02	7,45		
JPRL-LT5-01	2,78		
PVAN-LT6-01	2,70		
RLTF5-02	2,06		
ANGJ-LT5-01	0,57		
TOTAL	697,86		

O Grau de Impacto Equivalente é o tempo de duração que teria uma ocorrência equivalente, ou seja, que produzisse o mesmo valor do Grau de Impacto da ocorrência considerada, e afetasse todos os habitantes do sistema, no horário de pico de carga (demanda máxima do sistema no período considerado).

O Grau de Impacto Equivalente permite a comparação entre os efeitos causados por ocorrências registradas em períodos distintos, em sistemas completamente diferentes, ou ambos.

O grau de impacto de 54 milhões de habMWh interrompidos, causado pelas ocorrências registradas em 2007, correspondem a um desligamento de 288 milissegundos de duração, no horário de demanda máxima do sistema, atingindo todos os habitantes atendidos. Se estes milhões de habMWh interrompidos fossem registradas em um sistema com o mesmo número de habitantes, mas com o dobro da demanda máxima, o Grau de Impacto Equivalente seria de 144 milissegundos.

Capítulo 5 – Conclusão

A metodologia proposta possibilita a obtenção do Grau de Impacto de uma perturbação, por meio da quantificação dos *habitantes mega watt hora* interrompidos. Por conseguinte, viabiliza o cálculo do impacto total produzido pelas ocorrências de determinado sistema, em um determinado período. Com isso, possibilita a comparação entre os impactos, individuais ou totais, produzidos por ocorrências registradas em diferentes períodos, em um mesmo sistema ou em sistemas distintos.

A comparação entre os resultados obtidos para os indicadores de desempenho, o Grau de Impacto pelo método do ONS e o Grau de Impacto pelo método proposto, na avaliação das perturbações de 2007 e 2008 do Sistema Elétrico de Rondônia, demonstra que a nova metodologia apresenta mais precisão e consistência, além de facilitar as comparações entre as ocorrências.

O Grau de Impacto Equivalente representa o tempo de duração de uma ocorrência equivalente, ou seja, com a mesma quantidade de *habitantes mega watt hora* interrompidos, porém, atingindo toda a população atendida no momento de demanda máxima do sistema. Este cálculo permite a avaliação dos diferentes efeitos que poderiam ser causados por uma perturbação, se esta ocorresse em sistemas distintos, e possibilita a comparação entre os efeitos causados em sistemas diferentes, por perturbações diferentes.

A comparação dos valores do Grau de Impacto Equivalente causado por uma determinada perturbação, em diferentes sistemas, permite uma avaliação da "dimensão elétrica" de cada sistema, que seria definida pelo número de habitantes atendidos e pela demanda máxima registrada no período. Assim, o Grau de Impacto Equivalente permite avaliar a "robustez" de diferentes sistemas diante das perturbações.

Capítulo 6 – Trabalhos Futuros

A realização de novos estudos e pesquisas para consideração do desligamento de cargas essenciais, como fator agravante do Grau de Impacto causado pelas perturbações, contribuiria com o aumento de precisão da metodologia.

O levantamento de dados das perturbações registradas no Sistema Acre, e os cálculos dos Graus de Impacto causados por elas, possibilitariam uma complementação deste trabalho.

Após a identificação das Linhas e Equipamentos mais impactantes do Sistema de Transmissão, por meio desta metodologia, pode-se realizar um estudo das causas das perturbações e definir um plano de melhorias, para evitar novas ocorrências.

Referências

- 1 VIANNA, Elaine Aparecida de Lima. A Interligação do Sistema Elétrico de Rondônia ao Sistema Interligado Nacional – SIN. 2007, 53 p. Monografia (Especialização em Engenharia da Energia) – Universidade Federal de Itajubá – UNIFEI.
- 2 ELETRONORTE. A empresa. Disponível em www.eln.gov.br. Acesso em 15/05/2008.
- 3 ELETRONORTE. **Linhas de Transmissão.** Disponível em <u>www.eln.gov.br</u>. Acesso em 15/05/2008
- **4** ELETRONORTE. **Manual da Qualidade.** Sistema de Gestão da Qualidade. Divisão de Operação de Rondônia.
- 5 ELETRONORTE. Plano Estratégico 2007 / 2010. Assessoria de Planejamento Empresarial – PPE.
- 6 OPERADOR NACIONAL DO SISTEMA ELÉTRICO. Manual de Procedimentos da Operação. Módulo 2.4 – MTD 031 – Rev. 1. 1999.
- 7 ELETRONORTE. Sistema de Transmissão em Rondônia. Disponível em www.eln.gov.br. Acesso em 15/5/2008.
- 8 ELETRONORTE. Slides de apresentação do Sistema Rondônia. Centro de Operação Regional de Rondônia. 2007.
- 9 ELETRONORTE. Diagramas Unifilares. Centro de Operação Regional de Rondônia. 2008.
- 10 ELETRONORTE. Linhas de Transmissão. Centro de Operação Regional de Rondônia. 2008.
- **11** ELETRONORTE. **Dados de Geração.** Centro de Operação Regional de Rondônia. 2008.
- 12 ELETRONORTE. Relatórios de Análise de Perturbação de 2007. Centro de Operação Regional de Rondônia.
- 13 ELETRONORTE. Relatórios de Análise de Perturbação de 2008. Centro de Operação Regional de Rondônia.
- 14 OPERADOR NACIONAL DO SISTEMA ELÉTRICO. Manual de Procedimentos de Rede. Glossário de Termos Técnicos. Módulo 20. Submódulo 20.1 – Rev. 1. 2005.
- 15 OPERADOR NACIONAL DO SISTEMA ELÉTRICO. BISE nº. 035/2008 Boletim de Interrupção de Suprimento de Energia no Sistema Interligado Nacional. 20/10/2008.
- 16 INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Censo 2007 População por município. Disponível em www.ibge.gov.br. Acesso em 22/10/2008.

ANEXO – População e Área por Localidade

Subestação / LT	Localidades	População	Área (km2)
PRE	ITAPUÃ DO OESTE	7.905	4.081
SEGJ	GUAJARÁ MIRIM	39.451	24.856
	ARIQUEMES	82.388	4.427
	ALTO PARAÍSO	16.758	2.652
SEAQ	MONTE NEGRO	12.357	1.931
SEAQ	CACAULÂNDIA	5.553	1.962
	RIO CRESPO	3.174	1.718
	TOTAL SEAQ	120.230	12.690
	JARU	52.453	2.944
SEJR	GOV JORGE TEIXEIRA	11.432	5.067
S L S K	THEOBROMA	9.952	2.197
	TOTAL SEJR	73.837	10.208
	OURO PRETO	36.040	1.970
	MIRANTE DA SERRA	12.086	1.192
A.	URUPÁ	13.381	832
SEJP	TEIXEIROPOLES	4.919	460
(13,8 e 69 kV)	NOVA UNIÃO	7.750	807
(15,8 e 09 kV)	JI-PARANÁ	107.679	6.897
	PRESIDENTE MEDICI	22.197	1.758
	TOTAL SEJP	204.052	13.916
	CACOAL	76.155	3.793
	PIMENTA BUENO	32.893	6.241
	ESPIGÃO DO OESTE	27.867	4.518
LT Cacoal	MINISTRO ANDREAZA	10.343	798
	PRIMAVERA DE		
	RONDÔNIA	3.704	606
	TOTAL CAJP-LI5-01	150.962	15.956
	ROLIM DE MOURA	48.894	1.458
	ALTA FLORESTA	23.857	7.067
	NOVA BRASILÂNDIA	17.170	1.155
	SÃO MIGUEL	22.622	8.008
	SANTA LUZIA	9.264	1.198
SERL	ALTO ALEGRE	11.615	3.959
OLIVE	PARECIS	4.583	2.549
	SÃO FELIPE	6.286	542
	NOVO HORIZONTE	9.648	843
	CASTANHEIRA	3.624	893
	SERINGUEIRA	11.757	2.251
	TOTAL JPRL-LT5-01	169.320	29.923
	VILHENA	66.746	11.519
	COLORADO	17.644	1.451
	CEREJEIRAS	16.290	2.783
SEVN	CABIXI	6.575	1.314
	CORUMBIARA	9.476	3.060
	PIMENTEIRAS	2.358	6.015
	TOTAL SEVN	119.089	26.142

Continuação

Subestação / LT	Localidades	População	Área (km2)
-	PORTO VELHO	369.345	34.082
AE, AF,TR	CANDEIAS DO JAMARI	16.736	6.844
	TOTAL PV	386.081	40.926
TOTAL RO		1.270.927	178.698
Subestação / LT	Localidades	População	Área (km2)
	RIO BRANCO	290.639	9.223
SÃO FRANCISCO E	PORTO ACRE	13.716	2.985
TANGARÁ	BUJARI	6.543	3.468
	TOTAL DA SE	310.898,00	15.676,00
	SENADOR GUIOMARD	18.863	1.837
RIO BRANCO (34,5 kV)	PLÁCIDO DE CASTRO	17.258	2.047
100 Brownes (04,0 kV)	ACRELÂNDIA	11.520	1.575
	TOTAL DA SE	47.641	5.459
RIO BRANCO (69 kV)	SENA MADUREIRA	34.230	25.278
The Bruntee (ee kv)	TOTAL DA SE		25.278
	EPITACIOLÂNDIA	13.434	1.659
EPITACIOLÂNDIA	BRASILÉIA	19.065	4.336
	TOTAL DA SE	32.499	5.995
TOTAL ACRE		425.268	52.408
TOTAL GERAL		1.696.195	231.106

Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

<u>Baixar</u>	livros	de	Adm	inis	tra	ção

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciência da Computação

Baixar livros de Ciência da Informação

Baixar livros de Ciência Política

Baixar livros de Ciências da Saúde

Baixar livros de Comunicação

Baixar livros do Conselho Nacional de Educação - CNE

Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos

Baixar livros de Economia

Baixar livros de Economia Doméstica

Baixar livros de Educação

Baixar livros de Educação - Trânsito

Baixar livros de Educação Física

Baixar livros de Engenharia Aeroespacial

Baixar livros de Farmácia

Baixar livros de Filosofia

Baixar livros de Física

Baixar livros de Geociências

Baixar livros de Geografia

Baixar livros de História

Baixar livros de Línguas

Baixar livros de Literatura

Baixar livros de Literatura de Cordel

Baixar livros de Literatura Infantil

Baixar livros de Matemática

Baixar livros de Medicina

Baixar livros de Medicina Veterinária

Baixar livros de Meio Ambiente

Baixar livros de Meteorologia

Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Música

Baixar livros de Psicologia

Baixar livros de Química

Baixar livros de Saúde Coletiva

Baixar livros de Serviço Social

Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo