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Resumo

A presente dissertação tem como objetivo principal fazer uma revisão sobre o

uso de estados coerentes para calcular a função de partição gran canônica de sis-

temas fermiônicos, sem empregar integrais de trajetória. Após discutir um método

de cálculo baseado numa expansão de altas temperaturas, formulamos uma teo-

ria de perturbação otimizada empregando campos auxiliares via transformação de

Hubbard-Stratonovich. Aproximações não perturbativas tradicionais de campo mé-

dio tipo Hartree-Fock e de BCS são obtidas em ordem zero da teoria de pertubação

otimizada. Correções não perturbativas à aproximação de ordem zero são imple-

mentadas usando uma expansão em potências de uma interação modificada, em que

os efeitos dos campos médios são subtráıdos da interação original do Hamiltoniano

da teoria.

Palavras Chaves: Estados coerentes, Integrais de trajetória, Férmions, Álgebra

de Grassmann, Transformação de Hubbard-Stratonovich, Teoria de perturbação

otimizada

Áreas do conhecimento: F́ısica Nuclear, Teoria de Campos e Part́ıculas Ele-

mentares, F́ısica da Matéria Condensada
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Abstract

The primary aim of the dissertation is to review the use of coherent states for

the calculation of the grand canonical partition function for fermion systems, with-

out employing path integrals. After discussing a calculational method based on a

high temperature expansion, we formulate an optimized perturbation theory em-

ploying external fields via the Hubbard-Stratonovich transformation. Traditional

non-perturbative mean field approximations like Hartree-Fock and BCS are obtained

in zeroth order in the optimized perturbation theory. Non-perturbative corrections

to the zeroth order approximation are implemented through a power series expan-

sion of a modified interaction,where the effects of the mean fields are subtracted

from the original interaction of the Hamiltonian of the theory.
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Caṕıtulo 1

Introduction

The present dissertation is primarily a review on the use of coherent states in the

evaluation of the quantum grand canonical partition function of a many-particle

system at finite temperature. The main focus of the dissertation are systems of

spin-1/2 fermions. The grand canonical partition function is the fundamental quan-

tity in the mathematical treatment of many-body systems from which all physical

quantities can be derived [1, 2]. However, it can scarcely be calculated in closed

form, a fact that is not surprising in view of the intractability of the many-body

problem. On the other hand, there is great activity on the development of efficient

numerical methods for calculating the partition function non-perturbatively. Monte

Carlo methods have been central to such methods, in particular in the context of

quantum field theory problems. The basic strategy of the Monte Carlo (MC) [3]

method in field theory is to express the trace over field configurations in terms

of a path integral so that the problem is reduced to the evaluation of a multidi-

mensional integral using importance sampling [4]. Path integral formulations of

fermion quantum fields involve the use of anti-commuting Grassmann variables [5],

providing a very useful tool for implementing covariant perturbation theory calcu-

lations in gauge theories [6] and super-symmetric field theories [7]. However, this

approach is problematic for nonperturbative approaches like the MC method. For

models (or theories) involving boson-fermion couplings, like Quantum Electrody-

namics (QED) and Quantum Chromodynamics (QCD), invariably the application

of the MC method involves a formal, exact integration over the Grassmann vari-

ables in favor of determinants that depend only on the boson fields. For models

involving only fermion fields the application of the MC method involves the use of a

Hubbard-Stratonovich transformation [8]. This method introduces auxiliary boson

fields so that the self-interacting part of the interaction becomes quadratic so that

the Grassmann variables representing fermion fields can be integrated. Again this

leads to determinants that involve only boson fields. In many cases the resulting

1



determinants can be rewritten as path integrals over additional boson fields and the

problem is then reduced to the evaluation of multidimensional integrals over boson

degrees of freedom. The problem with this approach is that the resulting determi-

nants are in general complex (when not complex, they might not be positive) and the

use of a MC approach becomes very inefficient or even inapplicable. This problem

of a non-positive determinant is known in the literature as the sign problem.

An alternative to the path integral formulation of the grand canonical parti-

tion function is the direct evaluation of the trace over Grassmann variables. A

particularly interesting novel approach in this direction was introduced a few years

ago by Thomaz and collaborators [9]. The method is based on the high temper-

ature expansion of the Boltzmann factor in the partition function and makes use

of the coherent-state representation of the trace [1]. Each term of the expansion is

evaluated exactly exploiting the anti-commuting nature of the Grassmann numbers.

This novel method builds on previous experience in calculating the high-temperature

expansion of the partition function of an anharmonic fermionic oscillator on a lat-

tice [10] and of the one-dimensional Hubbard model [11]. Crucial to the method

are two results obtained by Thomaz and collaborators in two separate publications.

First, Charret, de Souza and Thomaz [12] have shown that the moments of a Gaus-

sian Grassmann multi-variable integral are related to the co-factors of the matrix

of the Gaussian exponential. This result is important because the expansion of the

Boltzmann factor requires the evaluation of a trace of multiple products of operators.

The trace of a product of operators can be expressed in terms of matrix elements in a

coherent-state representation and this leads to a multi-variable integral over Grass-

mann numbers. Second, I.C. Charret, Corrêa Silva, S.M. de Souza, O. Rojas Santos,

and M.T. Thomaz [13] have shown that the matrix related to the co-factors men-

tioned above can be diagonalized analytically through a similarity transformation.

This result is valid for any dimensionality of the matrix and is model independent,

in that it depends only on the kinematical aspects of the approach. This was a

tremendous achievement, since despite the closed form of the result of the multidi-

mensional Grassmann integral in terms of co-factors, their explicit evaluation is still

a formidable task.

In the present dissertation we review this approach developed by Thomaz and

collaborators. We name this approach the Niterói method. In addition to reviewing

the method, we indicate further developments beyond the high temperature expan-

sion of the Boltzmann factor. In particular we make the case for using the method

in the context of improving mean field type of approximations through the com-

bined use of the Hubbard-Stratonovich transformation and the ideas of optimized

perturbation theory (OPT) [14]. Specifically, the high temperature expansion of the
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partition function can be re-summed in the case of a quadratic Hamiltonian, i.e.

for an Hamiltonian that involves the product of only two field operators. On the

other hand, a mean-field type of approximation is a non-perturbative method that

is able to bring the full Hamiltonian, which in general involves the product of four

field operators, into a quadratic form through a regrouping of the operators. Exam-

ples includes the well known Hartree-Fock and BCS approximation schemes [1, 2].

Initially we show explicitly that known mean field type of approximations can be

obtained trivially within the Niteói method. In addition, we show that one can

reproduce standard formulas for perturbative corrections to the mean field approx-

imations within the same method. As is well known, perturbative corrections to

mean field approximations, like with all kinds of perturbative calculations, become

very involved when higher order corrections are needed. We propose an approach

in that the high order corrections can be calculated in the context of OPT – also

known in some contexts as the δ-expansion Ref. [15], or optimized δ-expansion [16].

A more complete list of references on this subject can be found in Ref. [17].

We envisage application of the proposed method in different fields. One immedi-

ate application is in the context of atomic fermionic gases [18]. The field of fermionic

gases is witnessing explosive interest, both in theoretical and experimental contexts,

and can be considered as a natural follow up of the first experimental realizations of

atomic Bose-Einstein condensates [19]. The first atomic experimental observation

of atomic Fermi gases occurred in 2003 [20] and others followed very soon after-

wards [21]. Good review articles is Ref. [22] and a more complete list of references

and discussions on recent experimental developments can be found at the sites men-

tioned in Refs. [24][25]. The excitement on the subject is due to the possibility

of exploring and manipulating experimentally matter composed of particles with

no classical analogue. Contrary to bosons, fermions cannot be described in terms

of the dynamical dynamical variables like position and momentum, they require

new dynamical variables that are not of common use in Physics, like Grassmann

variables.

Another interesting aspect of Fermi systems is what became known as the uni-

tarity limit. This is meant to be a limit in which much of the phenomena happening

in such systems are well described by assuming point-like fermions interacting very

strongly through very short-ranged interactions – the unitarity limit is realized when

the scattering length characterizing the interaction strength is much larger than the

inter-particle spacing, so that the only scale relevant in the problem is the scattering

length. Such systems are encountered in different fields of physics [23], like in nu-

clear physics in the context of the low-energy properties of the atomic nucleus and

the structure of neutron stars, in astro-particle physics in studies related to quark-
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gluon plasma of the early Universe, in condensed matter physics in the context of

strongly correlated electron systems. Theoretical developments closely related to

these subjects and to the main theme of the present dissertation can be found in

Refs. [26]-[29]. These references deal with the use of coherent states in the combined

framework of path integrals and the Hubbard-Stratonovich transformation, mainly

in context of lattice formulations.

We believe that our proposed method has interest beyond pure academics. A ma-

jor contemporary goal in the physics of atomic Fermi gases is to go beyond the

framework of mean field physics to access manifestations of strong interactions and

correlations. The experimental possibility of tuning the interaction using external

magnetic fields through Feshbach resonances [18] is a powerful experimental tool to

control physics beyond mean field and provides excellent opportunities to test and

understand applicability limits of traditional approximation schemes. Moreover, we

also believe that our proposed method can be extended to more ambitious situa-

tions of quantum field theory, like to lattice QCD [30] [31]. Here we envisage the

applications in the strong coupling limit of the theory, a subject with renewed recent

interest [32] [33]. The strong coupling expansion of the QCD action resembles in

many respects the high temperature expansion and so the Niterói method should

be of direct applicability.

A natural question that might arise is, why one would give up the possibility of

obtaining an exact result and use, instead, an approximate scheme like OPT? The

exact result is actually a formal one, in that one still needs to perform Monte Carlo

simulations to integrate over the auxiliary scalar fields. An exact, numerical result

is of course preferred, but in many cases it does not bring understanding of the basic

processes responsible for observed features of the system. It is hoped that through

an expansion in a modified interaction one can capture most of the physics relevant

to the problem and that a milder, or even no sign problem arises – of course this we

will only know with explicit calculations. Also, it is important to understand how

correlations affect the zeroth-order mean field results, and a systematic expansion

that builds such correlations might be very useful for the insight one can get from

this. And finally, comparison with an exact solution will allow to measure the quality

of such an approximate scheme.

The dissertation is organized as follows. In the next Chapter we review the

second-quantization formalism as employed in the context of non-relativistic quan-

tum many-body theory. The discussion is didactic and an effort is made to present

explicit derivation of important results. In Chapter 3, we review the use of coher-

ent states for calculating traces over fermionic variables. We also discuss the path

integral representation of the partition function using coherent states. The Niterói
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method is discussed with detail in Chapter 4. As in the previous Chapters, our

discussion is deliberately didactic and detailed derivations are given whenever pos-

sible and adequate. In Chapter 5 we present applications of the Niterói method to

simple problems. Initially, we consider the illustrative case of the free Fermi gas and

afterwards we consider mean field type of approximations to the interacting non-

relativistic Fermi gas. In Section 5.3 we discuss how to obtain the well known results

of perturbation theory on the top of the mean field approximation. In Section 5.4 we

propose to use the Niterói method in connection with the Hubbard-Stratonovich [8]

transformation to implement high order optimized perturbation theory [14]-[17] to

improve on the mean field approximation. The aim here is to set up the approach

and no attempt is made to obtain explicit evaluations of high order corrections,

since this would require an specific model and some numerical work. This would

extrapolate the scope of the present dissertation and therefore we leave these issues

for future work. Our Conclusions and Perspectives are presented in Chapter 6. The

dissertation contains also five Appendices, where we collect some demonstrations

cited in the main text.
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Caṕıtulo 2

Second Quantization Formalism

In the present Chapter we will present a very short review on the basics of the

second quantization formalism for a system of identical particles. At the cost of

being sometimes pedantic, our approach is deliberately didactic, in that we make

an effort to present explicit derivation of important results. Our discussion here

is strongly based on the book of Negele and Orland [1]. We will start discussing

the quantum mechanical description of many-particle systems making use of single-

particle basis states. Next the formalism of second quantization and the Fock space

is discussed. Finally, the important issue of changing representation is presented,

with emphasis on the change from the coordinate representation to the momentum

representation.

2.1 Many-particle bases

Let H be a Hilbert space for one particle and {|αi〉} a basis of dimension D. Let us

assume that the basis is orthonormal,

〈αi|αj〉 = δij , (2.1)

and complete
D∑

i=1
|αi〉〈αi| = I. (2.2)

We denote the space for N particles by

HN ≡ H⊗ · · ·N times · · · ⊗ H. (2.3)

For |ψN〉 a vector of HN , it has to satisfy in the configuration space the condition

〈ψN |ψN〉 =
∫

d3r1 · · · d3rN |ψN(r1, · · · , rN)|2 < ∞. (2.4)

A basis for this space can be taken as the external product of one-particle basis

|αi1 · · ·αiN ) ≡ |αi1〉 ⊗ · · · ⊗ |αiN 〉. (2.5)
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It is easily proved that this basis is orthonormal

(αi1 · · ·αiN |αj1 · · ·αjN
) = δi1j1 · · · δiN jN

, (2.6)

and complete
D∑

{i}=1
|αi1 · · ·αiN )(αi1 · · ·αiN | = I, (2.7)

where {i} denotes all the indices i.

For a system of identical particles, it is known that only completely symmetric

or antisymmetric states are observed in nature

ψ(rP1, · · · , rPN) = ςP ψ(r1, · · · , rN), (2.8)

where {rP1, · · · , rPN} denotes a permutation of the indices r1, · · · , rN ; ς is equal to

1 for bosons and −1 for fermions; and the exponent P of ς indicates the parity

of the permutation. In this expression we have dropped the subindex N in the

wave function. If a state vector |ψ1 · · ·ψN〉 is symmetric or antisymmetric under

a permutation of particles, it belongs to a Hilbert space of bosons (particles with

integer spin) HN
+ or to a Hilbert space of fermions (particles with half integer spin)

HN
− , respectively. As we shall see in the following, the restriction to symmetric or

antisymmetric states implies restrictions on many-body observables.

It is useful to define a symmetrization operator S+ and a antisymmetrization

operator S− as

Sς |ψ1〉 ⊗ · · · ⊗ |ψN〉 ≡ 1

N !

∑
P

ςP |ψP1〉 ⊗ · · · ⊗ |ψPN〉, (2.9)

where the factor 1/N ! is conveniently introduced so that Sς is also a projection

operator, i.e.

S2
ς |ψ〉 =

1

N !2


 ∑

P ′even

+ ς
∑

P ′
odd




(
∑

Peven

+ ς
∑

Podd

)
|ψ〉

=
1

N !2


 ∑

P ′evenPeven

+
∑

P ′
odd

Podd

+ ς


 ∑

P ′evenPodd

+
∑

P ′
odd

Peven





 |ψ〉

=
1

N !2

[
N !

2

∑
Peven

+
N !

2

∑
Peven

+ ς

(
N !

2

∑
Podd

+
N !

2

∑
Podd

)]
|ψ〉

=
1

N !

(
∑

Peven

+ ς
∑

Podd

)
|ψ〉

= Sς |ψ〉. (2.10)

The operators Sς are hermitian, as can be verified by comparing its matrix elements

with the ones of its hermitian conjugated. Explicitly, the matrix elements of Sς are

7



given by

(αi1 · · ·αiN |Sςαj1 · · ·αjN
) = 〈αi1| ⊗ · · · ⊗ 〈αiN |

1

N !

∑
P

ςP |αjP1
〉 ⊗ · · · ⊗ |αjPN

〉

=
1

N !

∑
P

ςP 〈αi1|αjP1
〉 · · · 〈αiN |αjPN

〉

=
1

N !

∑
P

ςP δi1,jP1
· · · δiN ,jPN

, (2.11)

while the matrix elements of S†ς are given by

(αi1 · · ·αiN |S†ς αj1 · · ·αjN
) = (αi1 · · ·αiN Sς |αj1 · · ·αjN

)

=
1

N !

∑
P ′

ςP ′〈αP ′i1|αj1〉 · · · 〈αP ′iN |αjN
〉

=
1

N !

∑
P ′

ςP ′δP ′i1,j1 · · · δP ′iN ,jN
. (2.12)

Since the sum over P ′ runs through all the permutations , we can make P ′ = P−1

(αi1 · · ·αiN |S†ς αj1 · · ·αjN
) =

1

N !

∑
P

ςP−1

δP−1i1,j1 · · · δP−1iN ,jN
, (2.13)

and this proves that both expressions are equal term by term, then

Sς = S†ς . (2.14)

A basis for the symmetric or antisymmetric HN
ζ spaces is

|αi1 · · ·αiN} ≡ Sς |αi1 · · ·αiN ) (2.15)

=
1

N !

∑
P

ςP |αPi1〉 ⊗ · · · ⊗ |αPiN 〉. (2.16)

It should be noticed that this basis is over complete, since it has non-independent

elements

|αi1αi2αi3 · · ·αiN} = ς|αi2αi1αi3 · · ·αiN}. (2.17)

The orthogonality of this basis follows from the two properties of Sς we have just

demonstrated, namely S2
ς = Sς and S†ς = Sς ,

{αi1 · · ·αiN |αj1 · · ·αjN
} = (αi1 · · ·αiN |S†ς Sςαj1 · · ·αjN

)

= (αi1 · · ·αiN |S2
ς αj1 · · ·αjN

)

= (αi1 · · ·αiN |Sςαj1 · · ·αjN
)

=
1

N !

∑
P

ςP (αi1 · · ·αiN |αPj1 · · ·αPjN
)

=
1

N !

∑
P

ςP δi1,P j1 · · · δiN ,P jN
, (2.18)

8



this is zero if {αi} 6= {αj}. For the non-zero case and for fermions one can’t have

repeated states, so we are going to have just one permutation that doesn’t vanish

{αi1 · · ·αiN |αj1 · · ·αjN
} =

(−1)P

N !
, (2.19)

instead, for bosons, if the αk are repeated nαk
times so that

D∑
k=1

nαk
= N , one has

{αi1 · · ·αiN |αj1 · · ·αjN
} =

nα1 ! · · ·nαD
!

N !
. (2.20)

Summarizing both cases

{αi1 · · ·αiN |αj1 · · ·αjN
} =

ςP nα1 ! · · ·nαD
!δ{i},{j}

N !
. (2.21)

The closure of this basis is
D∑

{i}=1
|αi1 · · ·αiN}{αi1 · · ·αiN | = Sς . (2.22)

To see why one has the symmetrizer operator appearing on the r.h.s., note that

D∑
{i}=1

|αi1 · · ·αiN}{αi1 · · ·αiN | = Sς

D∑
{i}=1

|αi1 · · ·αiN )(αi1 · · ·αiN |S†ς
= SςIS†ς

= S2
ς

= Sς , (2.23)

where we have used the completeness of the non symmetrized states and the prop-

erties S2
ς = Sς and S†ς = Sς . If we think this thoroughly, Sς is actually the identity

in the symmetrized spaces, since when one applies this operator to any symmetrized

vector we obtain the same vector. In the future when we will mention the identity

I in a symmetric space context we would be referring to Sς . We can express Sς in

the original, unsymmetrized basis as

Sς = SςI

= Sς

D∑
{i}=1

|αi1 · · ·αiN )(αi1 · · ·αiN |

=
1

N !

D∑
{i}=1

∑
P

ςP |αiP1
· · ·αiPN

)(αi1 · · ·αiN |, (2.24)

or

Sς = ISς

=
D∑

{i}=1
|αi1 · · ·αiN )(αi1 · · ·αiN |Sς

=
1

N !

D∑
{i}=1

∑
P

ςP |αi1 · · ·αiN )(αiP1
· · ·αiPN

|. (2.25)
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Finally to normalize the orthogonal basis we use the result in Eq. (2.21) and define

the final basis

|αj1 · · ·αjN
〉 ≡

√
N !

nα1 ! · · ·nαD
!
|αi1 · · ·αiN}

=
1√

N !nα1 ! · · ·nαD
!

∑
P

ςP |αPi1 · · ·αPiN ). (2.26)

The orthonormality expressed in this basis is

〈αi1 · · ·αiN |αj1 · · ·αjN
〉 = ςP δ{i}{j}; (2.27)

and the completeness is

D∑
{i}=1

nα1 ! · · ·nαD
!

N !
|αi1 · · ·αiN 〉〈αi1 · · ·αiN | = Sς . (2.28)

It is important to notice the different notation used to denote the several many-

particle basis we have discussed: the general many-particle state |αj1 · · ·αjN
), the

symmetrized orthogonal state |αj1 · · ·αjN
}, and finally, the symmetrized and or-

thonormal state |αj1 · · ·αjN
〉.

2.2 Many-body operators

Let us consider a many-particle observable Ô. We are going to use a physical

condition to know what property a symmetric operator should have. Using the fact

that a permutation operator (P ) is a unitary operator

〈ψ1 · · ·ψN |Ôζ |ψ1 · · ·ψN〉 = 〈ψP1 · · ·ψPN |Ôζ |ψP1 · · ·ψPN〉
= 〈ψ1 · · ·ψN |P †ÔζP |ψ1 · · ·ψN〉, (2.29)

that is,

Ôζ = P †ÔζP. (2.30)

In other words, a symmetrized operator has to be invariant under any permutation.

If we write the operator using explicitly a basis

Ôζ =
∑
{j,i}

|αj1 · · ·αjN
)O{j,i}(αi1 · · ·αiN |, (2.31)

we can write the r.h.s. of Eq. (2.30) as

P †ÔζP =
∑
{j,i}

|P−1αj1 · · ·αjN
)O{j,i}(αi1 · · ·αiN P †|

∑
{j,i}

|αP−1j1 · · ·αP−1jN
)O{j,i}(αP−1i1 · · ·αP−1iN |.
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Since the indices are dummy, we can reorder them so that

P †ÔζP =
∑
{j,i}

|αj1 · · ·αjN
)O{Pj,P i}(αi1 · · ·αiN |. (2.32)

Finally the condition for a symmetrized operator would be

O{j,i} = O{Pj,P i}.. (2.33)

An operator Ô(1) is said to be an one-body operator when

Ô(1) =
N∑

i=1
Ôi, (2.34)

i.e. it is a sum of operators that depend on one single-particle label only. One

example of such an operator is the kinetic energy

T̂ =
N∑

i=1

p̂2
i

2mi

. (2.35)

The condition (2.33) for this type of operators defined with Eq. (2.34), impose that

Ôi = Ôj (2.36)

for every i, j = 1, ..., N . But still each one acting in its own space.

Another class of operators we are going to consider in the present dissertation is

the one formed by two-body operators, defined as

Ô(2) =
N∑

i,j=1

Ôij, (2.37)

i.e. it is a sum of operators that depend on two single-particle labels only. One

example of such an operator is the interaction potential energy between two particles

V̂ =
1

2

N∑

i 6=j

V̂ij =
N∑

i<j

V̂ij. (2.38)

Such a two-body operator is said to be local or velocity independent when it is

diagonal in configuration space, that is the matrix element of the operator in a

general two-particle state |rirj) is given by

(r1r2|Ô|r3r4) = δ(r1 − r3) δ(r2 − r4) O(r1, r2). (2.39)
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2.3 Creation and annihilation operators

For each single particle state |λi〉 of the space H, we define a boson or fermion

creation operator a†λi
(we are not going to use a hat on these operators) that acts on

a symmetrized vector state in the following way

a†αj
|αjN

· · ·αj1} ≡ |αjαjN
· · ·αj1}. (2.40)

The action of a†λi
on the N-particles state |αjN

· · ·αj1} which belongs to the Hilbert

spaceHN
ζ leads to a N+1-particles state |αjαjN

· · ·αj1}, which belongs to the Hilbert

space HN+1
ζ

a†αj
: HN

ζ → HN+1
ζ . (2.41)

The action of a†λi
over a normalized state can be deduced as following

a†αj
|SζαjN

· · ·αj1)√
nα1 ! · · ·nαj

! · · ·nαD
!(nαj

+ 1)
=

|SζαjαjN
· · ·αj1)√

nα1 ! · · · (nαj
+ 1)! · · ·nαD

!
, (2.42)

that is

a†αj
|αjN

· · ·αj1〉 =
√

nαj
+ 1 |αjαjN

· · ·αj1〉. (2.43)

This leads to the definition of a vacuum state (a state with no particles) |0〉 such

that

a†αi
|0〉 = |αi〉. (2.44)

This state has to be distinguished from the zero-norm state of the H.

For the hermitian conjugated operator aαj
, or annihilation operator

aαj
: HN

ζ → HN−1
ζ , (2.45)

one can deduce its action applying it over an N -particles basis, i.e.

aαj
|αi1 · · ·αiN}. (2.46)

Using the identity of HN−1
ζ on the r.h.s. of Eq. (2.46), one has that

aαj
|αi1 · · ·αiN} =

1

(N − 1)!

D∑
{k}=1

|αk1 · · ·αkN−1
}{αk1 · · ·αkN−1

|aαj
|αi1 · · ·αiN}.

(2.47)

Here we need {αjN
· · ·αj1|aαj

. This can be obtained considering the expression for

the dual of Eq. (2.40),

{αjN
· · ·αj1|aαj

= {αjαjN
· · ·αj1|. (2.48)
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Using this in Eq. (2.47), one obtains

aαj
|αi1 · · ·αiN} =

1

(N − 1)!

D∑

{k}=1

{αjαk1 · · ·αkN−1
|αi1 · · ·αiN}|αk1 · · ·αkN−1

}, (2.49)

and using Eq. (2.21)

aαj
|αi1 · · ·αiN} =

1

(N − 1)!

D∑
{k}=1

∑
P

ςP δj,P i1δk1,P i2 · · · δkN−1,P iN |αk1 · · ·αkN−1
}

=
1

(N − 1)!

∑
P

ςP δj,P i1|αPi2 · · ·αPiN}. (2.50)

Next, we just need to expand the sum and the permutations inside each ket to

obtain (N − 1)! terms for each permutation of the deltas, and we can sum all of

them because of the property

ς|αi3αi2αi4 · · ·αiN} = |αi2αi3αi4 · · ·αiN}. (2.51)

After some algebra, we get

aαj
|αi1 · · ·αiN} =

N∑

k=1

ςk−1δj,ik |αi1 · · · α̂ik · · ·αiN}, (2.52)

where α̂i denotes a state removed from the ket at the indicated position. For an

orthonormal state, one has

aαj
|αi1 · · ·αiN 〉 =

1√
nαj

iN∑
i=i1

ς i−1δj,i|αi1 · · · α̂i · · ·αiN 〉. (2.53)

The exchange symmetry of many-particle systems implies certain commutation

properties for the creation and annihilation operators. Namely,

a†αj
a†αk
|αi1 · · ·αiN} = |αjαkαi1 · · ·αiN}

= ζ|αkαjαi1 · · ·αiN}
= ζa†αk

a†αj
|αi1 · · ·αiN}, (2.54)

or

a†αj
a†αk

− ζa†αk
a†αj

≡ [a†αk
, a†αj

]−ζ = 0. (2.55)

More explicitly, we have defined the commutator and the anticommutator as

[a†αk
, a†αj

]− = a†αk
a†αj

− a†αj
a†αk

,

[a†αk
, a†αj

]+ = a†αk
a†αj

+ a†αj
a†αk

, (2.56)

Taking the hermitean conjugate of Eq. (2.55), one has

[aαk
, aαj

]−ζ = aαk
aαj

− ζaαj
aαk

= 0. (2.57)
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To obtain the (anti)commutator of a and a†, we apply them in sequence on the state

|αi1 · · ·αiN}
aαj

a†αk
|αi1 · · ·αiN} = aαj

|αkαi1 · · ·αiN}
= δjk|αi1 · · ·αiN}+

N∑
l=1

ς lδj,il |αkαi1 · · · α̂il · · ·αiN}, (2.58)

and

a†αk
aαj
|αi1 · · ·αiN} = a†αk

N∑
l=1

ς l−1δj,il|αi1 · · · α̂il · · ·αiN}

=
N∑

l=1
ς l−1δj,il|αkαi1 · · · α̂il · · ·αiN}. (2.59)

Using this last result into the first one

aαj
a†αk
|αi1 · · ·αiN} = δjk|αi1 · · ·αiN}+ ςa†αk

aαj
|αi1 · · ·αiN}. (2.60)

Therefore, we arrived at the result

[aαj
, a†αk

]−ζ = aαj
a†αk

− ζa†αk
aαj

= δαjαk
. (2.61)

2.4 Fock space

Lets define the Fock space as the space in which the creation and annihilation oper-

ator act

Hζ ≡ ⊕∞N=0HN
ζ

= H0
ζ ⊕H1

ζ ⊕H2
ζ ⊕ · · · , (2.62)

with

H0
ζ = λ|0〉. (2.63)

A basis for this space can be the union of all the symmetrized basis, normalized

{|0〉} ∪ {|αi〉} ∪ {|αi1αi2〉} ∪ · · · , (2.64)

or not normalized

{|0)} ∪ {|αi}} ∪ {|αi1αi2}} ∪ · · · . (2.65)

These are in fact orthogonal basis, because every state in HN
ζ is orthogonal with

every state in HN ′
ζ with N 6= N ′. We are not going to give a general proof of this,

but the following example will suffice

{αi|αjαk} = 〈0|aαi
a†αj

a†αk
|0〉 = 〈0|

(
δαiαj

+ ζa†αj
aαi

)
a†αk
|0〉

= δαiαj
〈0|a†αk

|0〉+ ζ〈0|a†αj

(
δαiαk

+ ζa†αk
aαi

)
|0〉

= δαiαj
〈0|a†αk

|0〉+ ζ
(
δαiαk

〈0|a†αj
|0〉+ ζ〈0|a†αj

a†αk
aαi
|0〉

)

= 0. (2.66)
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The closure condition is going to be just the sum of the completeness relations of

every HN
ζ

I = |0〉〈0|+ ∞∑
N=1

1

N !

D∑
{i}=1

|αi1 · · ·αiN}{αi1 · · ·αiN Sς |

= |0〉〈0|+ ∞∑
N=1

1

N !

D∑
{i}=1

nα1 ! · · ·nαD
!|αi1 · · ·αiN 〉〈αi1 · · ·αiN |. (2.67)

2.5 Change of representation

Let us consider a change of basis, from {|αi〉} to a new basis {|λi〉},

|λi〉 =
D∑

j=1

〈αj|λi〉|αj〉. (2.68)

By definition, one has that

a†λj
|λjN

· · ·λj1} ≡ |λjλjN
· · ·λj1} (2.69)

=
D∑

i=1

〈αi|λj〉|αiλjN
· · ·λj1} (2.70)

=
D∑

i=1

〈αi|λj〉a†αi
|λjN

· · ·λj1}. (2.71)

Therefore, the creation and annihilation operators behave under this change of trans-

formation as

a†λj
=

D∑

i=1

〈αi|λj〉a†αi
, (2.72)

and

aλj
=

D∑

i=1

〈λj|αi〉aαi
. (2.73)

The commutation relation between a creation and annihilation operator in the new

basis follows straightforwardly

[aλj
, a†λk

]−ζ =
D∑

i=1

〈λj|αi〉
D∑

l=1

〈αl|λk〉[aαi
, a†αl

]−ζ

=
D∑

i=1

〈λj|αi〉
D∑

l=1

〈αl|λk〉δαiαl

=
D∑

i=1

〈λj|αi〉〈αi|λk〉 = 〈λj|λk〉 = δλjλk
. (2.74)

The commutation relations between two annihilation operators and two creation

operators are easily found to be zero, following exactly the same procedure as above

[aλj
, aλk

]−ζ = 0[a†λj
, a†λk

]−ζ = 0. (2.75)
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As an example of change of representation, lets assume that we start with cre-

ation and annihilation operators in the momentum representation, i.e. these create

or annihilate particles with defined momentum p (other quantum numbers might

be added when needed), and want to change to creation and annihilation operators

in the coordinate representation, where they create and annihilate particles at a

definite position r. This can be accomplished using Eq.’s (2.72) and (2.73)

ψ̂†(r) =
∑
p

〈p|r〉 a†p =
∑
p

φ∗p(r) a†p, (2.76)

and

ψ̂(r) =
∑
p

〈r|p〉 ap =
∑
p

φp(r) ap, (2.77)

where, we have introduced the field operators ψ̂†(r) and ψ̂(r); and

〈r|p〉 = φp(r) =
eip·r/h̄

(2πh̄)3/2
. (2.78)

As it can be seen these equations matches the well known Fourier Transform of

functions.

The commutation relations of the field operators are given by

[ψ̂(r), ψ̂(r′)] = 0, (2.79)

[ψ̂†(r), ψ̂†(r′)] = 0, (2.80)

[ψ̂(r), ψ̂†(r′)] = δ(r− r′). (2.81)

All operators of the theory can be written in terms of creation and annihilation

operators. An easy way to express a general operator in terms of creation and anni-

hilation operator is to use a basis in which the operator is diagonal. The expression

of the operator in another basis, in which the operator is not diagonal, can be ob-

tained by a change of representation. To help us do that, let us define the number

operator

n̂αi
≡ a†αi

aαi
. (2.82)

This operator, when acting on a state |αi1 · · ·αiN}, gives the number of particles in

state with quantum number αi. This can be shown making use of Eqs. (2.52) and

(2.40),

n̂αj
|αi1 · · ·αiN} = a†αj

N∑
k=1

ςk−1δj,ik |αi1 · · · α̂ik · · ·αiN}

=
N∑

k=1
ςk−1δj,ik |αjαi1 · · · α̂ik · · ·αiN}

=
N∑

k=1
δj,ik |αi1 · · ·αik−1

αjαik+1
· · ·αiN}

= nαj
|αi1 · · ·αiN}. (2.83)
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Naturally, the operator that counts all the particles is

N̂ =
D∑

i=1
n̂αi

=
D∑

i=1
a†αi

aαi
. (2.84)

For simplicity, let us consider first a one-body operator Ô, such that all the Ôi, see

Eq. (2.34), are equal and diagonal in the single particle basis {|αj〉}

Ôi|αj〉 = Oj|αj〉. (2.85)

In an arbitrary element of this basis

Ô|αj1 · · ·αjN
} =

N∑

i=1

Ôi
1√
N !

∑
P

ςP |αPj1〉 ⊗ · · · ⊗ |αPjN
〉

=
1√
N !

∑
P

ςP
N∑

i=1
Ôi|αPj1〉 ⊗ · · · ⊗ |αPjN

〉

=
1√
N !

∑
P

ςP
N∑

i=1
OPji

|αPj1〉 ⊗ · · · ⊗ |αPjN
〉

=
1√
N !

∑
P

ςP
D∑

k=1
nαk

Ok|αPj1〉 ⊗ · · · ⊗ |αPjN
〉

=

(
D∑

k=1
nαk

Ok

)
|αj1 . · · ·αjN

}

=
D∑

k=1
Okn̂αk

|αj1 · · ·αjN
}, (2.86)

then

Ô =
D∑

k=1
Oka

†
αk

aαk
. (2.87)

Next, the transformation to another basis |{λi〉} (in general of different dimension

D′)

Ô =
D∑

k=1
Ok

D∑

l=1

δkla
†
αl

aαk
=

D∑

k=1

Ok

D∑
l=1
〈αl|αk〉a†αl

aαk
=

D∑

k,l=1

〈αl|Ôi|αk〉a†αl
aαk

=
D∑

k,l=1

〈αl|



D′∑

p=1

|λp〉〈λp|

 Ôi

(
D′∑
q=1

|λq〉〈λq|
)
|αk〉a†αl

aαk

=
D∑

k,l=1

D′∑
p,q=1

〈αl|λp〉〈λp|Ôi|λq〉〈λq|αk〉a†αl
aαk

=
D′∑

p,q=1

〈λp|Ôi|λq〉
D∑

l=1
〈αl|λp〉a†αl

D∑
k=1
〈λq|αk〉aαk

. (2.88)

Using Eqs. (2.72) and (2.73), one obtains finally

Ô =
D′∑

p,q=1
〈λp|Ôi|λq〉a†λp

aλq . (2.89)
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For example in the configuration representation, one has

Ô =
∫

d3r1d
3r2 〈r1|Ôi|r2〉 ψ̂†(r1)ψ̂(r2). (2.90)

In the case of the kinetic energy operator,

T̂ =
p̂2

2m
, (2.91)

Eq. (2.90) becomes

T̂ =
∫

d3r1d
3r2 〈r1|r2〉

h̄2∇2
r2

2m
ψ̂†(r1)ψ̂(r2)

=
h̄2

2m

∫
d3r1d

3r2 δ(r1 − r2) ψ̂†(r1)∇2
r2

ψ̂(r2)

=
h̄2

2m

∫
d3r ψ̂†(r)∇2 ψ̂(r). (2.92)

For a two body operator, we can do an analogous procedure (see Appendix A),

obtaining the result

Ô =
D′∑

r,s,t,u=1

(λrλs|Ôij|λtλu)a
†
λr

a†λs
aλuaλt . (2.93)

In the configuration representation, one will have

Ô =
∫ (

4∏

k=1

d3rk

)
(r1r2|Ôij|r3r4) ψ̂†(r1)ψ̂

†(r2)ψ̂(r4)ψ̂(r3). (2.94)

For a local or velocity independent operator, see Eq. (2.39), one has

Ô =
∫ (

4∏

k=1

d3rk

)
δ(r1 − r3) δ(r2 − r4) O(r1, r2) ψ̂†(r1)ψ̂

†(r2)ψ̂(r4)ψ̂(r3)

=
∫

d3r1d
3r2 O(r1, r2) ψ̂†(r1)ψ̂

†(r2)ψ̂(r2)ψ̂(r1). (2.95)

18



Caṕıtulo 3

Coherent states and Path Integrals at Finite

Temperature

In the present Chapter we will present a review on the use of coherent states in

the evaluation of the grand canonical partition function. We will show how these

states can be used to obtain a path integral representation of the partition function.

We will also show how they can be used to calculate directly the trace defining the

partition function, without the use of path integrals.

In quantum statistical mechanics description of many-particle systems, the use

of field theoretic methods in Fock space is common practice. In such a formulation,

the use of the grand canonical ensemble is a natural choice, since in Fock space

one deals with states with an indefinite number of particles. The sum over all the

microstates can be written as the trace of the operator in the Fock space as

Z =
∑
α

〈α|e−β(Ĥ−µN̂)|α〉

= Tr e−β(Ĥ−µN̂), (3.1)

where |α〉 is representing an element of a symmetrized many particle basis. Z is

the grand canonical partition function. All possible information on the macroscopic

states of a many-body system can be derived in principle from Z.

It is striking the resemblance with the trace of the well known evolution operator

of Quantum Mechanics

Tr U = Tr e−itĤ/h̄. (3.2)

In the next Section we will briefly review the Feynman path integral in quantum

mechanics. Although out of the main scope of the present dissertation, the subject is

included here for two main reasons. First, to motivate the similarities between path

integrals in quantum mechanics and in statistical mechanics. Second, to motivate

future developments of the Niterói method to problems in quantum field theory, as

will be discussed in a later Chapter in this dissertation.
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3.1 Feynman path integral in quantum mechanics

The starting point of the Feynman path integral in quantum mechanics is the prob-

ability amplitude of finding a particle at position rf at time tf , knowing that it was

at position ri at tf . Specifically, this probability amplitude is given by

U(rf , tf ; ri, ti) ≡ H〈r, tf |r, ti〉H = 〈rf |e−i(tf−ti)Ĥ/h̄|ri〉, (3.3)

where the sub-index H in H〈r, tf |r, ti〉H means Heisenberg representation and Ĥ is

the hamiltonian of the particle

Ĥ = H(p̂, r̂)

=
p̂2

2m
+ V (r̂). (3.4)

The next step is to divide the time interval tf − ti into M equal parts

ε ≡ tf − ti
M

, (3.5)

so that

tn ≡ ti + ε n, n = 0, 1, · · · ,M − 1. (3.6)

and

U(rf , tf ; ri, ti) = 〈rf |
(
e−iεĤ/h̄

)M

|ri〉 = 〈rf |e−iεĤ/h̄ e−iεĤ/h̄ · · · e−iεĤ/h̄|ri〉. (3.7)

Inserting M − 1 closures between the exponentials

U(rf , tf ; ri, ti) = 〈rf |
(
e−iεĤ/h̄

)M

|ri〉 =
∫ M−1∏

j=1

d3rj〈rf |e−iεĤ/h̄|rM−1〉

× 〈rM−1|e−iεĤ/h̄|rM−2〉〈rM−2| · · · |r1〉〈r1|e−iεĤ/h̄|ri〉. (3.8)

Denoting r0 ≡ ri and rM ≡ rf , the probability amplitude can be written in the more

compact form

U(rf , tf ; ri, ti) =
∫

M−1∏
j=1

d3rj

M−1∏
k=0

〈rk+1|e−iεĤ/h̄|rk〉, (3.9)

and one needs therefore to evaluate the matrix elements of the form

U(rk+1, ε; rk, 0) = 〈rk+1|e−iεĤ/h̄|rk〉. (3.10)

This can be calculated as

U(rk+1, ε; rk, 0) = 〈rk+1| exp

[
−iε

h̄

(
p̂2

2m
+ V (r̂)

)]
|rk〉

=
∫

d3pk〈rk+1|pk〉〈pk| exp

[
−iε

h̄

(
p̂2

2m
+ V (r̂)

)]
|rk〉. (3.11)
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For small enough ε, one has

e−iεĤ/h̄ ' I − iε

h̄

(
p̂2

2m
+ V (r̂)

)
, (3.12)

and replacing

U(rk+1, ε; rk, 0) =
∫

d3pk〈rk+1|pk〉〈pk| exp

[
−iε

h̄

(
p2

k

2m
+ V (rk)

)]
|rk〉

=
∫

d3pk〈rk+1|pk〉e−iεH(pk,rk)/h̄〈pk|rk〉

=
∫

d3pk
e−irk+1·pk/h̄

√
2πh̄

e−iεH(pk,rk)/h̄ eirk·pk/h̄

√
2πh̄

=
∫ d3pk

2πh̄
exp

(
−iε

h̄

[
(rk+1 − rk)

ε
· pk + H(pk, rk)

])
. (3.13)

Finally, putting all factors together, one obtains for the probability amplitude the

expression

U(rf , tf ; ri, ti) =
∫ d3p0

2πh̄

∫ M−1∏

j=1

(
d3rj d3pj

2πh̄

)

× exp

(
−iε

h̄

M−1∑

k=0

[
(rk+1 − rk)

ε
· pk + H(pk, rk)

])
. (3.14)

In the limit of M →∞, ε → 0, one recognizes that the exponent is just the i/h̄

times the integral of the classical Lagrangian of the particle

−iε

h̄

M−1∑

k=0

[
(rk+1 − rk)

ε
· pk + H(pk, rk)

]
→ i

h̄

∫ tf

ti
dt L(r, ṙ). (3.15)

Denoting
d3p0

2πh̄

M−1∏

j=1

(
d3rj d3pj

2πh̄

)
≡ [dr][dp], (3.16)

one can write for the probability amplitude

U(rf , tf ; ri, ti) =
∫

[dr][dp] exp
[
i

h̄

∫ tf

ti
dt L(r, ṙ)

]
. (3.17)

We note that one could integrate over the momenta and obtain the traditional

Feynman path integral that involves only integrals over de coordinates. We decided

to leave the integrals over the momenta variables because in the next sections, when

discussing the path integral in terms of coherent states, we will arrive at expressions

involving two coordinates that can formally be related to generalized coordinates

and momenta.
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The above derivation of the path integral representation of the partition function

is not adequate when the Hamiltonian and number operators are given in the second

quantization representation. Specifically, in the second quantization representation

the grand canonical potential operator

Ω̂ ≡ Ĥ − µN̂, (3.18)

that appears in the Boltzmann factor in Eq. (3.1) is given in terms of creation and

annihilation operators a† and a (or field operators ψ† and ψ). In this case, coherent

states provide an adequate framework to express the partition function in terms of

c-number functions. Coherent states are eigenstates of the annihilation operator and

a qualitative understanding of why they are useful is as follows. In the derivation

of the path integral above, we have made repeated use of the completeness of the

momentum eigenstates because in the exponent of the evolution operator one has

the momentum operator. In order to use the same trick with the grand canonical

potential operator in second quantization, which involves in general the operators

in normal order (i.e. all annihilation operators appear to the right of all creation

operators), one would need eigenstates of the second quantized operators. This is

the subject of our next Sections.

3.2 Coherent states for bosons

For convenience we are going to use the occupation number representation. A generic

many-particle state can be represented as

|φ〉 =
∞∑

{nα}=0

φnα1 ···nαD
|nα1 · · ·nαD

〉, (3.19)

where the φnα1 ···nαD
are complex numbers and

|nα1 · · ·nαD
〉 =

D∏

i=1

(
a†αi

)nαi

√
nαi

!
|0〉. (3.20)

Since we are not going to perform any change of basis, there should be no source of

confusion if one simplifies the notation as

nαi
→ ni , (3.21)

so that, for example,

|φ〉 =
∞∑

{n}=0

φn1···nD
|n1 · · ·nD〉, (3.22)
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and

|n1 · · ·nD〉 =
D∏

i=1

(
a†i

)ni

√
ni!

|0〉. (3.23)

We define a coherent state |φ〉 as the eigenstate of the annihilation operators ai

ai|φ〉 = φi|φ〉, (3.24)

where φi is the respective eigenvalue, in general a complex number. Before obtaining

an explicit expression for the eigenstates we should notice the following. Using the

generic notation for the commutation relation for boson and fermion operators, one

sees that

0 = [ak, aj]−ζ |φ〉 = [φk, φj]−ζ |φ〉, (3.25)

which implies that

[φk, φj]−ζ = 0. (3.26)

We see that if we were working with fermions, the “numbers” φi would anticommute,

i.e. they would not be ordinary complex numbers and the concept of anticommuting

c-numbers, known as Grassmann numbers, is required. Here we will concentrate on

bosons, for which the eigenvalues φi are ordinary complex numbers.

Let us come back to Eq. (3.24). From the l.h.s. of this equation, using Eq. (3.22)

one has

ai|φ〉 =
∞∑

{n}=0

ai φn1···nD
|n1 · · ·ni · · ·nD〉

=
∞∑

{n}=0

φn1···nD

√
ni |n1 · · · (ni − 1) · · ·nD〉

=
∞∑

{n}=0

φn1···(ni+1)···nD

√
ni + 1 |n1 · · ·ni · · ·nD〉. (3.27)

On the other hand, from the r.h.s. of Eq. (3.24), one has

φi|φ〉 =
∞∑

{n}=0

φi φn1···nD
|n1 · · ·nD〉. (3.28)

From this and Eq. (3.27), one obtains the following recursive relation for the coeffi-

cients φn1···nD
, for every ni

φn1···(ni+1)···nD

√
ni + 1 = φi φn1···ni···nD

φn1···(ni+1)···nD
= φi

φn1···ni···nD√
ni + 1

. (3.29)
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This can be solved fixing arbitrarily one of such coefficients. The simplest choice is

φn1···nD|{n}=0
= 1, (3.30)

so that

φn1···nD
=

(φ1)
n1

√
n1!

· · · (φD)nD

√
nD!

=
D∏

i=1

(φi)
ni

√
ni!

. (3.31)

In view of this result, the many-particle state in Eq. (3.22) can be written as

|φ〉 =
∞∑

{n}=0

D∏

i=1

(φi)
ni

√
ni!

|n1 · · ·nD〉, (3.32)

and, because of Eq. (3.23),

|φ〉 =
∞∑

{n}=0

D∏

i=1

(
φia

†
i

)ni

ni!
|0〉

=
D∏

i=1

∞∑

ni=0

(
φia

†
i

)ni

ni!
|0〉

=
D∏

i=1

exp
(
φia

†
i

)
|0〉. (3.33)

Since we are working with bosons,

[φia
†
i , φja

†
j]− = φi φj [a†i , a

†
j]− = 0, (3.34)

the product of exponentials can be written as a single exponential as

|φ〉 = exp

(
D∑

i=1

φia
†
i

)
|0〉. (3.35)

This is the final general expression for the eigenstates of the annihilation operators.

It is important to note that this result is valid for any complex numbers φi.

In order to obtain a path integral representation, we need a closure relation for

the coherent states. Here we shall simply give the final expression and in Appendix C

corroborate its correctness. Explicitly, the resolution of the identity for bosonic

coherent states is

I =
1

N
∫ D∏

i=1

dφ∗i dφi exp


−

D∑

j=1

φ∗jφj


 |φ〉〈φ|, (3.36)

where

N = (2iπ)D . (3.37)
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We shall need also expressions for the internal product and for operators in the

coherent representation. A general many-particle state can be written as

|g〉 =
∞∑

{n}=0

gn1···nD
|n1 · · ·nD〉

=
∞∑

{n}=0

gn1···nD

D∏

i=1

(
a†i

)ni

√
ni!

|0〉. (3.38)

If one defines for every state a function

g(x) ≡
∞∑

{n}=0

gn1···nD

D∏

i=1

(x)ni

√
ni!

, (3.39)

we have in the coherent representation the state |g〉 is given by

〈φ|g〉 = 〈φ|g(a†)|0〉 = g(φ∗)〈φ|0〉, (3.40)

where we have used the eigenvalue equation Eq. (3.24). Now, because of the nor-

malization choice in Eq. (3.30), we have that

〈φ|g〉 = g(φ∗) =
∞∑

{n}=0

gn1···nD

D∏

i=1

(φ∗i )
ni

√
ni!

, (3.41)

where the last equality follows from the definition in Eq. (3.39). This allows us to

obtain immediately that the inner product of two general many-particle states |f〉
and |g〉 as

〈f |g〉 =
1

(2iπ)D

∫ D∏

i=1

dφ∗i dφi exp


−

D∑

j=1

φ∗jφj


 〈f |φ〉 〈φ|g〉

=
1

(2iπ)D

∫ D∏

i=1

dφ∗i dφi exp


−

D∑

j=1

φ∗jφj


 [f(φ∗)]∗ g(φ∗)

=
1

(2iπ)D

∫ D∏

i=1

dφ∗i dφi exp


−

D∑

j=1

φ∗jφj


 f ∗(φ)g(φ∗), (3.42)

where, of course,

f ∗(x) ≡
∞∑

{n}=0

f ∗n1···nD

D∏

i=1

(x)ni

√
ni!

. (3.43)

Let us now discuss the coherent-state representation of a general operator given

in terms of creation and annihilation opertors a† and a ,

Ô = O(a†, a). (3.44)
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This representation is most easily obtained when all the creation operators are on

the left of the annihilation operators. Such a repositioning of the operators is always

possible for any operator using the commutation rules. We will call such an ordering

as simple order. As an example, for a one-dimensional Hilbert space we will define

the specific function of operators already ordered by

O¯(a†, a) ≡ O¯
00 + O¯

10a
† + O¯

01a + O¯
11a

†a. (3.45)

Note that in essence the operator is the same

Ô = O¯(a†, a), (3.46)

O¯ is just a specific function of a† and a. In other words, although

Ô(a†, a) = Ô¯(a†, a), (3.47)

in general

O(x, y) 6= O¯(x, y), (3.48)

with x and y any type of variable.

For example, suppose one has an operator of the form

K̂ =
∑

i,j

K(i, j) aia
†
j. (3.49)

Assuming the following commutation relations, [ai, a
†
j]− = δij, and K(i, j) = K(j, i),

one would have

K̂ = K̂¯ =
∑

i,j

K(i, j) aia
†
j

=
∑

i,j

K(i, j)
[
δi,j + a†jai

]
=

∑

i

K(i, i) +
∑

i,j

K(i, j)a†iaj, (3.50)

and so

K¯
00 =

∑

i

K(i, i), K¯
i0 = 0 = K¯

0i, K¯
ij = K(i, j). (3.51)

Having introduced the notion of operators in simple order, one can write their

coherent-state representation as

〈φ|Ô|φ′〉 = 〈φ|O¯(a†, a)|φ′〉 = O¯(φ∗, φ′)〈φ|φ′〉. (3.52)

Here we need the scalar product 〈φ|φ′〉

〈φ|φ′〉 =
∞∑

{n,n′}=0

D∏

i=1

(φ∗i )
ni

√
ni!

D∏

j=1

(
φ′j

)n′j

√
n′j!

〈n1 · · ·nD|n′1 · · ·n′D〉
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=
∞∑

{n}=0

D∏

i=1

(φ∗i )
ni

√
ni!

D∏

j=1

(
φ′j

)nj

√
nj!

=
∞∑

{n}=0

D∏

i=1

(φ∗i φ
′
i)

ni

ni!

=
D∏

i=1

∞∑

ni=0

(φ∗i φ
′
i)

ni

ni!
= exp

(
D∑

i=1

φ∗i φ
′
i

)
. (3.53)

This leads to

〈φ|Ô|φ′〉 = O¯(φ∗, φ′) exp

(
D∑

i=1

φ∗i φ
′
i

)
. (3.54)

Following similar steps, one can obtain a coherent-state representation of the

trace of an operator

Tr Ô =
∞∑

{n}=0

〈n1 · · ·nD|Ô|n1 · · ·nD〉

=
1

(2iπ)D

∞∑

{n}=0

〈n1 · · ·nD|
∫ D∏

i=1

dφ∗i dφi exp


−

D∑

j=1

φ∗jφj


 |φ〉〈φ|Ô|n1 · · ·nD〉

=
1

(2iπ)D

∫ D∏

i=1

dφ∗i dφi exp


−

D∑

j=1

φ∗jφj




∞∑

{n}=0

〈φ|Ô|n1 · · ·nD〉〈n1 · · ·nD|φ〉

=
1

(2iπ)D

∫ D∏

i=1

dφ∗i dφi exp


−

D∑

j=1

φ∗jφj


 〈φ|Ô|φ〉. (3.55)

Using the operator in simple order, one obtains the final expression

Tr Ô =
1

(2iπ)D

∫ D∏

i=1

dφ∗i dφi O
¯(φ∗, φ′). (3.56)

Another case in which we can express an operator in the coherent representation

is when the operator is normal ordered, i.e. all creation operators are put on the

left of all annihilation operators, without using the commutation relations (in case

of fermions, one must keep track of minus signs). The operation of normal ordering

an operator Ô is denoted by : Ô :, and the coherent-state matrix element of : Ô : is

given as (for bosons)

〈φ| :Ô : |φ′〉 = O(φ∗, φ′) exp

(
D∑

i=1

φ∗i φ
′
i

)
, (3.57)

and its coherent-state trace is

Tr(:Ô :) =
1

(2iπ)D

∫ D∏

i=1

dφ∗i dφi O(φ∗, φ). (3.58)
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3.3 Grassmann algebras

When we discussed Eq. (3.26) we faced the need for anticommuting numbers when

dealing with fermions. Grassmann Algebra is the mathematical framework univer-

sally used to address the anticommuting properties of the eigenvalues of the fermionic

annnihilation operators as observed in Eq. (3.26). Here we will review the minimal

material of Grassmann algebras necessary to build fermionic coherent states.

The generators of the Grassmann algebra, or Grassmann numbers(GN) are a set

of objects {ξi} with i = 1, ..., n such that

[ξi, ξj]+ = 0. (3.59)

Note that, in particular

ξ2
i = 0 . (3.60)

We call a basis of a Grassmann algebra all the linearly independent products of the

generators, i.e.

{1, ξ1, · · · , ξn, ξ1ξ2, · · · , ξ1ξn, ξ2ξ3, · · · , ξ2ξn, · · · , ξ1ξ2ξ3, · · · , ξ1ξ2ξn, · · · , ξ1 · · · ξn}.
(3.61)

The number of elements of the basis, or the dimension, is 2n, since each generator

has just two possibilities, or it appears once or it does not appear at all in the

set above, because of the property in Eq. (3.60). An element of the algebra is

any linear combination of the elements of the basis with complex coefficients, this

elements can be labeled as functions of this generators f(ξ). They are going to be

used as the coherent state representation of a state |f〉. Note that a function of just

one generator can only be linear

f(ξ) = f0 + f1ξ . (3.62)

We have to define how these new variables are going to behave under the adjoint

(ξi)
†. As we are using them as numbers, we will need an analog to the complex

conjugate and we will call it conjugation operation (∗)

(ξi)
† = (ξi)

∗. (3.63)

Using the same symbol as the complex conjugate gives us a more friendly notation,

but the two operations will be different by definition. No confusion should arise when

∗ is used because its apearance in both cases are excluyent. Both came from taking

hermitic conjugate †, but in one case is over complex numbers and in the other one

is over Grassmann numbers. To actually define the operation properly, let a GA
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with an even number of generators n = 2p. We select p generators and through this

operation we associate to each element only one element of the remaining p elements

as

ξ∗i ≡ (ξi)
∗ = ξi+p . (3.64)

In order to avoid conflict when we use the symbol ∗ for both operations, we need

the following auxiliary properties

(ξ∗i )
∗ = ξi, (3.65)

(λξi)
∗ = λ∗ ξ∗i , (3.66)

where λ is an ordinary complex number. Now, since the adjoint of the product of

noncommuting mathematical objects in general is given as

(ξiξj)
† = (ξj)

† (ξi)
† , (3.67)

we need

(ξiξj)
∗ = ξ∗j ξ

∗
i . (3.68)

As an example for all these initial definitions, let’s consider the simplest GA with

conjugation operation, n = 2. The dimension of this GA is 22, with generators η

and η∗ that satisfy anticommutation relations according to Eq. (3.59),

[ηξ, η]+ = 0, [η, η∗]+ = 0, [η∗, η∗]+ = 0. (3.69)

A basis of the algebra is

{1, η, η∗, ηη∗}. (3.70)

The conjugated of f(η∗) would be

[f(η∗)]∗ = (f0 + f ∗1 η)∗

= f ∗0 + f ∗1 η

= f ∗(η), (3.71)

as in the Boson case.

We are not going to need a derivative with respect to GN’s too much, but we

are going to see a little of it just to get familiar with such an operation. Since there

is no analog to an infinitesimal differential (∆ξ → 0), one defines the Grassmann

derivative (GD) as
∂λ

∂ξ
≡ 0 and

∂ξ

∂ξ
≡ 1, (3.72)
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where λ is an ordinary complex number, and ξ is a GN. As GN are anticommuting

variables, we need a rule on how to operate with a derivative on a product of two

GN’s, and the convention is

∂

∂ξ
(ξ′ξ) =

∂

∂ξ
(−ξξ′) = − ∂

∂ξ
(ξξ′) = −

(
∂

∂ξ
ξ

)
ξ′ = −ξ′. (3.73)

In contrast to derivatives, we are going to need integrals over GN’s extensively.

Even though there is no analog to the familiar sum motivating the Riemann integral,

and neither can we work with integration limits, we do have three guiding principles

that we can use to define integrals of GN in analogy to ordinary indefinite integrals.

Let us suppose we are able to define coherent states |ξ〉 such that

ai|ξ〉 = ξi|ξ〉, (3.74)

with a a closure relation in the form

I =
∫ D∏

i=1

dξ∗i dξi |ξ〉 k(ξ, ξ∗) 〈ξ|, (3.75)

where k is a general function

k(ξ∗, ξ) ≡ k0 + k1ξ
∗ + k2ξ + k3ξ

∗ξ. (3.76)

We get the inner product in coherent representation using the closure relation as

〈f |g〉 =
∫ D∏

i=1

dξ∗i dξi〈f |ξ〉k(ξ∗, ξ)〈ξ|g〉

=
∫ D∏

i=1

dξ∗i dξif
∗(ξ)k(ξ∗, ξ)g(ξ∗). (3.77)

It is clear that our choice in the definition of the integrals will affect the inner

product, but we want to keep the scalar product representation independent. In

Appendix D, we will make the case for explicitly choosing the following definition

of an integral ∫
dξλ = 0 and

∫
dξξ = 1, (3.78)

where λ is a complex number. This definition is not only for simplicity, it is also for

convenience, as we shall see. Note that the definition above for the integral leads to

results numerically identical to the corresponding derivatives. That means that any

formula obtained for derivatives is valid for integrals as well. It is also customary to

introduce a rule for the integration of products of GN’s similar to the rule for the

derivatives as
∫

dξ ξ′ξ =
∫

dξ (−ξξ′) = −
∫

dξ ξξ′ = −
(∫

dξ ξ
)

ξ′ = −ξ′. (3.79)
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3.4 Coherent states for fermions

In this Section we will obtain an explicit expression for |ξ〉. In order to do so, notice

that we need twice as many generators for any possible state in the one-particle

Hilbert space, in other words

p = D. (3.80)

In the following, for simplicity of presentation will consider just for one generator

(D = 1). The general form for a fermionic coherent state in this case is

|ξ〉 = f(ξ)|0〉+ g(ξ)|1〉, (3.81)

with the defining condition

a|ξ〉 = ξ|ξ〉. (3.82)

As we don’t have any criterion to determine whether the annihilation operators and

its eigenvalues commute or anticommute,

[a, ξ]∓ = 0, (3.83)

we are going to proceed considering both possibilities. Recalling that in general one

can have

f(ξ) = f0 + f1ξ, g(ξ) = g0 + g1ξ, (3.84)

the l.h.s. of Eq. (3.82) can be written as

a|ξ〉 = a [f(ξ)|0〉+ g(ξ)|1〉] = f(±ξ)a|0〉+ g(±ξ)a|1〉
= g(±ξ)|0〉 = (g0 ± g1ξ) |0〉, (3.85)

while its r.h.s. as

ξ|ξ〉 = ξ [f(ξ)|0〉+ g(ξ)|1〉] = f0ξ|0〉+ g0ξ|1〉. (3.86)

Therefore,

g0 = 0, g1 = ±f0. (3.87)

On the other hand, we have

〈0|ξ〉 = f(ξ)〈0|0〉+ g(ξ)〈0|1〉 = f(ξ). (3.88)

Therefore, fixing the iterative constant 〈0|ξ〉

〈0|ξ〉 = 1 ⇒ f(ξ) = 1, (3.89)
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one then has

f0 = 1, f1 = 0, g0 = 0, g1 = ±1. (3.90)

Replacing these results in Eq. (3.81), one finally has

|ξ〉 = |0〉 ± ξ|1〉 = (1± ξa†)|0〉 = e±ξa† |0〉, (3.91)

so that

[a, ξ]∓ = 0 ⇒ |ξ〉 = e±ξa† |0〉. (3.92)

As said in the previous Section, the choice of definition of the Grassmann in-

tegrals determine the final expression for closure. Using the definitions given in

Eq.(3.78) – see Appendix D, the closure is

I =
∫

dξ∗dξe−ξ∗ξ|ξ〉〈ξ|. (3.93)

Its generalization for many generators is

I =
∫ D∏

i=1

dξ∗i dξi exp


−

D∑

j=1

ξ∗j ξj


 |ξ〉〈ξ|, (3.94)

where, for this case, the coherent states are given by

|ξ〉 =
D∏

i=1

exp
(
±ξia

†
i

)
|0〉, (3.95)

where the ± in the exponent depend on the choice for

[ai, ξj]∓ = 0, (3.96)

as discussed above. Here we use the common choice

[ai, ξj]+ = 0. (3.97)

In a vague common sense, the rational for such a choice is that, since we have two

sets of different mathematical objects that anticommute separately (here, the a’s

and the ξ’s), the most “natural” behavior seems to be that all of them anticommute

among themselves. There is no profound physical or mathematical reason for such a

choice and one could equally well pick the other option without any inconvenience.

With this choice, the coherent state is given by

|ξ〉 = exp

(
−

D∑

i=1

ξia
†
i

)
|0〉, (3.98)
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and the corresponding bra by

〈ξ| = 〈0| exp

(
−

D∑

i=1

(
a†i

)†
(ξi)

†
)

= 〈0| exp

(
−

D∑

i=1

aiξ
∗
i

)
. (3.99)

Now, to obtain a coherent-state representation of the inner product of |f〉 and

|g〉 we use Eq. (3.94) so that

〈f |g〉 =
∫ D∏

i=1

dξ∗i dξi exp


−

D∑

j=1

ξ∗j ξj


 〈f |ξ〉〈ξ|g〉

=
∫ D∏

i=1

dξ∗i dξi exp


−

D∑

j=1

ξ∗j ξj


 f ∗(ξ)g(ξ∗), (3.100)

where f and g are now functions of many generators

g(ξ∗) = 〈ξ|g〉 = 〈ξ| ∑

m1,...,mD=0,1

gm1,···,mD
|m1 · · ·mD〉 (3.101)

=
∑

{m}=0,1

gm1,···,mD
〈ξ|

(
a†1

)m1 · · ·
(
a†D

)mD |0〉

=
∑

{m}=0,1

gm1,...,mD
(ξ∗1)

m1 · · · (ξ∗D)mD =
∑

{m}=0,1

g{m}
D∏

i=1

(ξ∗i )
mi , (3.102)

and similarly for f ∗(ξ),

f ∗(ξ) = [f(ξ∗)]∗ =


 ∑

{m}=0,1

fm1,...,mD
(ξ∗1)

m1 · · · (ξ∗D)mD



∗

=
∑

{m}=0,1

f ∗m1,···,mD
ξmD
D · · · ξm1

1 =
∑

{m}=0,1

f ∗{m}
1∏

i=D

ξmi
i . (3.103)

Using these in the expression for the inner product above, one obtains

〈f |g〉 =
∫ D∏

i=1

dξ∗i dξi exp


−

D∑

j=1

ξ∗j ξj


 ∑

{m}=0,1

(
f ∗{m}

1∏

k=D

ξmk
k

)

×
1∑

{n}=0

(
g{n}

D∏

l=1

(ξ∗l )
nl

)

=
∑

{m,n}=0,1

f ∗{m}g{n}
∫ D∏

i=2

dξ∗i dξi exp


−

D∑

j=2

ξ∗j ξj




2∏

k=D

ξmk
k

×
∫

dξ∗1dξ1 exp (ξ1ξ
∗
1) ξm1

1 (ξ∗1)
n1

D∏

l=2

(ξ∗l )
nl
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=
∑

{m,n}=0,1

f ∗{m}g{n}δm1n1

∫ D∏

i=3

dξ∗i dξi exp


−

D∑

j=3

ξ∗j ξj




3∏

k=D

ξmk
k (3.104)

×
(∫

dξ∗2dξ2 exp (ξ2ξ
∗
2) ξm2

2 (ξ∗2)
n2

) D∏

l=3

(ξ∗l )
nl

=
∑

{m,n}=0,1

f ∗{m}g{n}
D∏

i=1

δmini
=

∑

{m}=0,1

f ∗m1,···,mD
gm1,···,mD

. (3.105)

To make it clear, the coherent-state representation of the inner product of two

many-fermion states gives the appropriated value

〈f |g〉 =
∑

{m}=0,1

f ∗m1,···,mD
gm1,···,mD

. (3.106)

For the fermion coherent-state representation of a simple-ordered operator

〈ξ|Ô|ξ′〉 = 〈ξ|Ô¯(a†, a)|ξ′〉 = O¯(ξ∗, ξ′)〈ξ|ξ′〉, (3.107)

one needs to evaluate 〈ξ|ξ′〉. This is given as follows,

〈ξ|ξ′〉 = 〈0|
D∏

i=1

exp (−aiξ
∗
i )

D∏

j=1

exp
(
−ξ′ja

†
j

)
|0〉 = 〈0|

D∏

i=1

exp (ξ∗i ai) exp
(
−ξ′ia

†
i

)
|0〉

= 〈0|
D∏

i=1

(1 + ξ∗i ai)
(
1− ξ′ia

†
i

)
|0〉 = 〈0|

D∏

i=1

(1− ξ′ia
†
i + ξ∗i ai + ξ∗i aiξ

′
ia
†
i )|0〉

= 〈0|
D∏

i=1

(1 + ξ∗i ξ
′
iaia

†
i )|0〉 = 〈0|

D∏

i=1

[1 + ξ∗i ξ
′
i(1− a†iai)]|0〉

= 〈0|
D∏

i=1

(1 + ξ∗i ξ
′
i)|0〉 = exp

(
D∑

i=1

ξ∗i ξ
′
i

)
. (3.108)

Therefore, the result for the fermion coherent-state representation of a simple-

ordered operator is given by

〈ξ|Ô|ξ′〉 = O¯(ξ∗, ξ′) exp

(
D∑

i=1

ξ∗i ξ
′
i

)
. (3.109)

Finally, we consider the coherent-state representation of trace of operators. First,

let us consider the trace of an unordered operator

Tr Ô =
∞∑

{n}=0

〈n1 · · ·nD|Ô|n1 · · ·nD〉
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=
∞∑

{n}=0

〈n1 · · ·nD|
∫ D∏

i=1

dξ∗i dξi exp


−

D∑

j=1

ξ∗j ξj


 |ξ〉〈ξ|Ô|n1 · · ·nD〉

=
∫ D∏

i=1

dξ∗i dξi exp


−

D∑

j=1

ξ∗j ξj




∞∑

{n}=0

〈n1 · · ·nD|ξ〉〈ξ|Ô|n1 · · ·nD〉

=
∫ D∏

i=1

dξ∗i dξi exp


−

D∑

j=1

ξ∗j ξj




∞∑

{n}=0

〈−ξ|Ô|n1 · · ·nD〉〈n1 · · ·nD|ξ〉

=
∫ D∏

i=1

dξ∗i dξi exp


−

D∑

j=1

ξ∗j ξj


 〈−ξ|Ô|ξ〉, (3.110)

where the sign change in the bra 〈−ξ| above comes from the exchange of the relative

positions of 〈n1 · · ·nD|ξ〉 and 〈ξ|Ô|n1 · · ·nD〉 under the integral – this can be shown

by writing each of such factors as in Eq. (3.84) and then regrouping them in reverse

order. One can go a bit further in the evaluation of the above trace taking the

operator in simple order, since then

Tr Ô =
∫ D∏

i=1

dξ∗i dξi exp


−

D∑

j=1

ξ∗j ξj


 〈−ξ|Ô¯(a†, a)|ξ〉

=
∫ D∏

i=1

dξ∗i dξi exp


−

D∑

j=1

ξ∗j ξj


 O¯(−ξ∗, ξ) exp

(
−

D∑

i=1

ξ∗i ξi

)

=
∫ D∏

i=1

dξ∗i dξi exp


−2

D∑

j=1

ξ∗j ξj


 O¯(−ξ∗, ξ). (3.111)

Now, making ξ∗ → −ξ∗, one obtains finally

Tr Ô =
∫ D∏

i=1

dξidξ∗i exp


2

D∑

j=1

ξ∗j ξj


 O¯(ξ∗, ξ). (3.112)

For a normal ordered operator

〈ξ| :Ô : |ξ′〉 = :O(ξ∗, ξ′) : exp

(
D∑

i=1

ξ∗i ξ
′
i

)
, (3.113)

one has the result

Tr
(
:Ô :

)
=

∫ D∏

i=1

dξidξ∗i exp


2

D∑

j=1

ξ∗j ξj


 : O(ξ∗, ξ) : . (3.114)

Note that now it is important to indicate the normal ordering in : O(ξ∗, ξ) : since

ξ∗ and ξ anticommute and as such their relative positions in the function O(ξ∗, ξ)

matters – note that this was not necessary in the case of operators given in terms

of boson operators, since φ∗ and φ are complex numbers and therefore commute.
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3.5 Path integral for bosons and fermions

In the present Section we make use of the formalism of coherent states developed

above to obtain a path integral representation for the grand-canonical partition func-

tion of many-particle systems. The grand-canonical partition function was defined

in Eq. (3.1) and can be written in terms of the grand-potential Ω̂, Eq. (3.18), as

Z = Tr e−β Ω̂. (3.115)

Whenever possible we shall use a common notation for bosons and fermions. To this

extent we denote by |ξ〉 a generic coherent state of bosons or fermions, i.e.

ai|ξ〉 = ξi|ξ〉, |ξ〉 = exp

(
ζ

D∑

i=1

ξia
†
i

)
|0〉, (3.116)

with ζ = 1 for bosons and ζ = −1 for fermions, a†i and ai denote creation and

annihilation operators that satisfy the generic commutation relations

[ai, a
†
j]−ζ = δij, [a†i , a

†
j]−ζ = 0 = [ai, aj]−ζ , (3.117)

and the parameters ξi satisfy

[ξi, ξj]−ζ = 0. (3.118)

The content of this last equation is that for bosons (and ζ = 1), the ξi’s are ordinary

complex numbers (previously denoted as φi) so that they commute trivially. In

addition, the closure relation is denoted as

I =
∫ D∏

i=1

(
dξ∗i dξi

N

)
exp


−

D∑

j=1

ξ∗j ξj


 |ξ〉〈ξ|, (3.119)

with

N ≡




2πi for bosons,

1 for fermions,
. (3.120)

The coherent-state matrix elements of an operator Ô is

〈ξ|Ô|ξ′〉 = O¯(ξ∗, ξ′) exp

(
D∑

i=1

ξ∗i ξ
′
i

)
, (3.121)

and the trace of Ô as

Tr Ô =
∫ D∏

i=1

(
dξ∗i dξi

N

)
exp


−

D∑

j=1

ξ∗j ξj


 〈ζξ|Ô|ξ〉, (3.122)
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or

Tr Ô =
∫ D∏

i=1

(
dξ∗i dξi

N

)
exp


−

D∑

j=1

ξ∗j ξj


 O¯(ζξ∗, ξ) exp


ζ

D∑

j=1

ξ∗j ξj




=
∫ D∏

i=1

(
dξ∗i dξi

N

)
exp


(ζ − 1)

D∑

j=1

ξ∗j ξj


 O¯(ζξ∗, ξ), (3.123)

when Ô is put in simple order.

Having set the notation, one has that the coherent-state representation of the

trace in Eq. (3.115) for both bosons and fermions can be written as

Z =
∫ D∏

i=1

(
dξ∗i dξi

N

)
exp


−

D∑

j=1

ξ∗j ξj


 〈ζξ|e−β Ω̂|ξ〉. (3.124)

Now, following the same strategy used in the derivation of the quantum-mechanical

path integral, the interval [0, β] is partitioned into M equal pieces as

ε ≡ β

M
, (3.125)

so that the matrix element 〈ζξ|e−β Ω̂|ξ〉 appearing in the integral in Eq. (3.124) can

be written as

〈ζξ|e−β Ω̂|ξ〉 = 〈ζξ|[e−ε Ω̂]M |ξ〉 = 〈ζξ|e−ε Ω̂e−ε Ω̂ · · · e−ε Ω̂e−ε Ω̂|ξ〉. (3.126)

Next, we introduce the decomposition of the identity, Eq. (3.119), between any two

consecutive exponentials so that

Z =
∫ D∏

i=1

(
dξ∗i dξi

N

)
exp


−

D∑

j=1

ξ∗j ξj


 (3.127)

× 〈ζξ|e−ε Ω̂
∫ D∏

i=1

(
dξ∗i,M−1dξi,M−1

N

)
exp


−

D∑

j=1

ξ∗j,M−1ξj,M−1


 |ξM−1〉〈ξM−1|

× · · · |ξ2〉〈ξ2|
∫ D∏

i=1

(
dξ∗i,1dξi,1

N

)
exp


−

D∑

j=1

ξ∗j,1ξj,1


 |ξ1〉〈ξ1|e−ε Ω̂|ξ〉

=
∫ D∏

i=1

(
dξ∗i dξi

N

) ∫ D∏

i=1

M−1∏

k=1

(
dξ∗i,kdξi,k

N

)
exp


−

D∑

j=1

ξ∗j ξj




× exp


−

D∑

j=1

M−1∑

l=1

ξ∗j, lξj, l


 〈ζξ|e−ε Ω̂|ξM−1〉 · · · 〈ξ2|e−ε Ω̂|ξ1〉〈ξ1|e−ε Ω̂|ξ〉. (3.128)

Here we have introduced the notation ξi, l to indicate that for every insertion of

the identity decomposition one needs a different dummy variable ξi, so that l =

1, · · · ,M − 1 because we have M − 1 insertions. Defining

ξi,0 ≡ ξi, ξi,M ≡ ζξi, (3.129)
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one can rewrite Eq. (3.128) more succinctly as

Z =
∫ D∏

i=1

M∏

k=1

(
dξ∗i,kdξi,k

N

)
exp


−

D∑

j=1

M∑

l=1

ξ∗j, lξj, l




1∏

m=M

〈ξm|e−ε Ω̂(a†,a)|ξm−1〉. (3.130)

Next, we have to evaluate the matrix elements 〈ξm|e−ε Ω̂(a†,a)|ξm−1〉. We expand the

exponent to first order in ε,

e−ε Ω̂(a†,a) ' 1− ε Ω̂(a†, a) = 1− ε Ω̂¯(a†, a), (3.131)

so that

〈ξm|e−ε Ω̂(a†,a)|ξm−1〉 ' 〈ξm|
[
1− ε Ω̂¯(a†, a)

]
|ξm−1〉

= 〈ξm|ξm−1〉
[
1− ε Ω¯(ξ∗m, ξm−1)

]

' 〈ξm|ξm−1〉 e−ε Ω¯(ξ∗m,ξm−1)

= exp




D∑

p=1

ξ∗p, mξp, m−1


 e−ε Ω¯(ξ∗m,ξm−1). (3.132)

Using this result in Eq. (3.130), one obtains

Z =
∫ D∏

i=1

M∏

k=1

(
dξ∗i,kdξi,k

N

)
exp


−

D∑

j=1

M∑

l=1

ξ∗j, lξj, l




×
1∏

m=M


exp




D∑

p=1

ξ∗p, mξp, m−1


 e−ε Ω¯(ξ∗m,ξm−1)




=
∫ M−1∏

k=0

D∏

i=1

(
dξ∗i,kdξi,k

N

)
e−S(ξ∗,ξ), (3.133)

where S(ξ∗, ξ) is the result of combining the exponentials as

S(ξ∗, ξ) =
M∑

k=1

D∑

j=1

ξ∗j,k (ξj,k − ξj,k−1) + ε
M∑

k=1

Ω¯(ξ∗k, ξk−1)

= ε
M∑

k=1




D∑

j=1

ξ∗j,k
(ξj, k − ξj, k−1)

ε
+ Ω¯(ξ∗k, ξk−1)


 . (3.134)

Now, if one imagines M →∞, then ε → 0, so that the index k in the exponential

becomes a continuous variable τ ,

ξi,k → ξi(τ), (3.135)
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and one recognizes in the same limit that

(ξj,l − ξj,l−1)

ε
→ ∂ξj(τ)

∂τ
and ε

M∑

k=1

f(ξi, k) →
∫ β

0
dτ f(ξi(τ)). (3.136)

In addition, from (3.129) one has that the continuous variables ξi(τ) satisfy the

“boundary condition”

ξi(β) = ζξi(0). (3.137)

Therefore, the partition function can be written as

Z =
∫ ξ(β)

ξ(0)
D[ξ∗(τ)ξ(τ)] e−S(ξ∗,ξ), (3.138)

where

S(ξ∗, ξ) ≡
∫ β

0
dτ




D∑

j=1

ξ∗j (τ)
∂ξj(τ)

∂τ
+ Ω¯(ξ∗(τ), ξ(τ))


 , (3.139)

and we used the notation

∫ D∏

i=1

M∏

k=1

(
dξ∗i,kdξi,k

N

)
→

∫ ξ(β)

ξ(0)
D[ξ∗(τ)ξ(τ)], (3.140)

This is the final result for the path integral representation for the grand-canonical

partition function.

Sometimes it is useful to have an expression for S(ξ∗, ξ) that is symmetrical in

the τ derivatives. This can be achieved averaging both expressions (see Appendix E)

S(ξ∗, ξ) ≡ ε
M−1∑

k=0

{
1

2

D∑
j=1


ξ∗j,k′+1

(ξj,k′+1 − ξj,k′)

ε
−

(
ξ∗j,k+1 − ξ∗j,k

)

ε
ξj,k




+ Ω¯(ξ∗k+1, ξk)

}
. (3.141)

In the ”trajectory” notation

R(ξ∗, ξ) ≡
β∫

0

dτ

{
1

2

D∑
j=1

[
ξ∗j (τ)

∂ξj(τ)

∂τ
−

(
∂ξ∗j (τ)

∂τ

)
ξj(τ)

]

+ Ω¯(ξ∗(τ), ξ(τ))

}
. (3.142)

=
∫ β

0
dτ





D∑

j=1

ξ∗j (τ)

←→
∂

∂τ
ξj + Ω¯(ξ∗(τ), ξ(τ))





, (3.143)

Finally, we note the formal analogy with the quantum mechanical path integral

derived in Section 3.1. First, we note that if one defines in the quantum mechanical
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path integral variables ξi ∼ pi + iri, and ξ∗i ∼ pi− iri, the integration measure would

simply be replaced by

D[ri pi] → D[ξ∗i ξi]. (3.144)

Second, making t → −iτ , the exponent in Eq. (3.17) would be precisely of the

form given above – with the exception that there is no finite limit on the “time”

integral. This formal analogy means that the path integral for the partition function

in statistical mechanics is equivalent to the quantum mechanical path integral for

the probability amplitude in imaginary time τ – with the addition of the fields being

periodic or antiperiodic in β.

One path integral one will need in Chapter 5 is the following

I(A, a∗, a) =
∫

[dξ∗dξ] e−ξ∗Aξ+a∗ξ+ξ∗a

=
∫ [

N∏

i=1

dξ∗i dξi

]
exp


−

N∑

i=1

N∑

j=1

ξ∗i Aijξj +
N∑

i=1

(a∗i ξi + ξ∗i ai)


 ,(3.145)

where A is an N × N matrix and a and a∗ are vectors of N components. Let us

start with the following integral (b is an ordinary number)

I(b) =
∫

dξ∗dξ e−bξ∗ξ
∫

dξ∗dξ (1− bξ∗ξ) =
∫

dξ∗dξ (1 + bξξ∗)

= b
∫

dξ∗dξ ξξ∗ = b. (3.146)

Next, we consider the integral (A is an N ×N matrix)

I(A) =
∫ [

N∏

i=1

dξ∗i dξi

]
exp


−

N∑

i=1

N∑

j=1

ξ∗i Aijξj


 . (3.147)

Initially we prove that an integral over the set of Grassmann variables {ξ∗i , ξi, i =

1, · · · , N} is invariant under unitary transformations. Let U be an N × N unitary

matrix and define new Grassmann variables ξ′i = Uij ξj (here and in the following

we use the convention that there is a sum over repeated indices), then using the

completely antisymmetric symbol in N -dimensions εij···l we can write

N∏

i=1

ξ′i =
1

N !
εij···l ξ′i ξ

′
j · · · ξ′l

=
1

N !
εij···l Uii′ξi′ Ujj′ξj′ · · · Ull′ξl′

=
1

N !
εij···l Uii′ Ujj′ · · · Ull′ ε

i′j′···l′
N∏

i=1

ξi

= (det U)
N∏

i=1

ξi =
N∏

i=1

ξi, (3.148)

40



since U is unitary. Therefore, if we take U as being the unitary matrix that diago-

nalizes the matrix A, and λi are the eigenvalues of A, we obtain the result

I(A) =
∫ [

N∏

i=1

dξ∗i dξi

]
exp


−

N∑

i=1

N∑

j=1

ξ∗i Aijξj




=
∫ [

N∏

i=1

dξ∗i dξi

]
exp

(
−

N∑

i=1

λi ξ
∗
i ξi

)

=
N∏

i=1

λi = det A. (3.149)

With this result we can now consider the integral I(A, a∗, a). If one make the change

of variables

ξ∗ = ξ∗′ + a∗A−1,

ξ = ξ′ + A−1a, (3.150)

one has

−ξ∗Aξ + a∗ξ + ξ∗a = −(ξ∗′ + a∗A−1)A(ξ′ + A−1a)

+ a∗(ξ′ + A−1a) + (ξ∗′ + a∗A−1)a

= −ξ∗′Aξ′ − ξ∗′AA−1a− a∗A−1Aξ′ − a∗A−1AA−1a

+ a∗ξ′ + a∗A−1a + ξ∗′a + a∗A−1a

= −ξ∗′Aξ′ + a∗A−1a, (3.151)

and therefore

I(A, a∗, a) =
∫

[dξ∗dξ] eξ∗Aξ+a∗ξ+ξ∗a

= ea∗A−1a
∫

[dξ∗dξ] eξ∗Aξ

= (det A) ea∗A−1a. (3.152)

Another result we will need in Chapter 5 is related to the functional derivative

of Grassmann functions. In analogy to the bosonic functional derivatives, one has

that
δ

δξi

∫
[
∏

j

dξ′j]f(ξ′j) = f [ξi]. (3.153)
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Caṕıtulo 4

The Niterói Method

In the present Chapter we will review the Niterói method for obtaining the partition

function of a many-fermion system without resorting to the path integral represen-

tation.

The aim is to evaluate the partition function

Z = Tr (e−β Ω̂) (4.1)

where Ω̂ has been defined in Eq. (3.18), given by Ω̂ ≡ Ĥ − µN̂ . As said above, the

starting point is a high-temperature expansion of the exponential in Eq. (4.1) in the

form

Z =
∞∑

s=0

(−β)s

s!
Tr (Ω̂)s. (4.2)

The first term s = 0 of the expansion is trivial. In essence, the method consists

in calculating the remaining traces exclusively in the coherent-state representation.

For a Hamiltonian that is quadratic in the creation and annihilation operators, as we

shall see, the series can be summed and therefore the validity of the result obtained

is not restricted to the high temperatures only.

4.1 Coherent-state representation of the trace of (Ω̂)s

In order to grasp the essential steps to evaluate the traces of multiple products of Ω̂

in Eq. (4.2), we start the discussion for D = 1. In this case, one has that the trace

of an operator Ô is given by Eq. (3.112), which translates for D = 1 to

Tr Ô =
∫

dξdξ∗ e2ξ∗ξ O¯(ξ∗, ξ). (4.3)

We need the trace of the product of s operators in Eq. (4.2). But let us first consider

the trace of the product of two operators using the expression for the trace of an

unordered operator given in Eq. (3.110),

Tr (Ô1Ô2) =
∫

dξ∗dξ e−ξ∗ξ 〈−ξ|ÔÔ|ξ〉. (4.4)
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Next we insert between the two Ô operators in this equation the decomposition of

the identity given in Eq. (3.93)

I =
∫

dξ∗dξ e−ξ∗ξ |ξ〉〈ξ|, (4.5)

so that one obtains,

Tr (Ô1Ô2) =
∫

dξ∗1dξ1dξ2dξ∗2 e−ξ∗1ξ1 e−ξ∗2ξ2 〈−ξ1|Ô1|ξ2〉 〈ξ2|Ô2|ξ1〉. (4.6)

Now, for each coherent-state matrix element above we use the D = 1 equivalent of

Eq (3.109),

〈ξ|Ô|ξ′〉 = eξ∗ξ′ O¯(ξ∗, ξ′), (4.7)

which results in

Tr (Ô1Ô2) =
∫

dξ∗1dξ1dξ∗2dξ2 e−ξ∗1ξ1 e−ξ∗2ξ2 e−ξ∗1ξ2 eξ∗2ξ1 O¯
1 (−ξ∗1 , ξ2) O¯

2 (ξ∗2 , ξ1)

=
∫

dξ1dξ∗1dξ∗2dξ2 eξ∗1ξ1 e−ξ∗2ξ2 eξ∗1ξ2 eξ∗2ξ1 O¯
1 (ξ∗1 , ξ2) O¯

2 (ξ∗2 , ξ1). (4.8)

Making the change of variables ξ1 ↔ ξ2 and rearranging the integration measure,

one obtains the final result

Tr (Ô1Ô2) =
∫

dξ1dξ∗1dξ2dξ∗2 eξ∗1(ξ1+ξ2) eξ∗2(ξ2−ξ1) O¯
1 (ξ∗1 , ξ1) O¯

2 (ξ∗2 , ξ2). (4.9)

It is not difficult to show that this result generalizes for the product of s operators

to

Tr (Ô1 · · · Ôs) =
∫

dξ1dξ∗1 · · · dξsdξ∗s eξ∗1(ξ1+ξs) eξ∗2(ξ2−ξ1) · · · eξ∗s (ξs−ξs−1)

× O¯
1 (ξ∗1 , ξ1) O¯

2 (ξ∗1 , ξ2) · · ·O¯
s (ξ∗s , ξs) . (4.10)

Note that in the first exponential one has a positive sign on ξs. This is due to the

antiperiodic boundary condition of the endpoint Grassmann number in the trace.

The result coincides with the one given by Creutz in Ref. [34] – Eq. (13) of this

reference.

Now, the result for a single-particle Hilbert space of arbitrary dimension D can

be easily generalized from the result for D = 1 in Eq. (4.10). For that matter,

one should notice that instead of only one ξ we will have D ξ′s. Therefore, one

can consider that each ξ in the integral in Eq. (4.10) is actually a vector with D

components, so that ξi = (ξi,1, ξi,2, · · · , ξi,D), for i = 1, 2, · · · , s, and the products

ξ∗1(ξ1 + ξs) and ξ∗2(ξ2 − ξ1), · · · become

ξ∗1(ξ1 + ξs) =
D∑

l=1

ξ∗1,l(ξ1,l + ξ2,l), (4.11)

ξ∗i (ξi − ξi−1) =
D∑

l=1

ξ∗i,l(ξi,l − ξi−1,l), (4.12)
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With i = 2, ..., s. The product of the exponentials can then be rewritten as a single

exponential with an exponent given by the sum

D∑

l=1

s∑

i=1

ξ∗i,l(ξi,l − ξi−1,l), (4.13)

with the boundary condition

ξ0,l = −ξs,l. (4.14)

With this, the final result for the trace of (Ω̂)s is simply

Tr (Ω̂)s =
∫ D∏

k=1

s∏

i=1

dξi,kdξ∗i,k exp

[
D∑

l=1

s∑

i=1

ξ∗i,l(ξi,l − ξi−1,l)

]

× Ω̂¯(ξ∗1,1, · · · , ξ1,D) · · · Ω̂¯(ξ∗s,1, · · · , ξs,D). (4.15)

This is the final expression for the trace of (Ω)s. In the next section we will obtain

the expression for the matrix elements Ω¯(ξ∗, · · · , ξ) in terms of the Grassmann

numbers ξ∗ and ξ.

4.2 Explicit expression for Ω¯(ξ∗, ξ)

Evaluation of the multiple integral in Eq. (4.15) requires an explicit expression for

Ω¯(ξ∗, ξ) in terms of the the Grassmann numbers ξ∗ and ξ. This can be obtained

as follows. Let us start again with the D = 1 case. When Ω̂(a†, a) is not already in

normal order, it can be put in such order through

Ω̂(a†, a) =
∑

m=0,1

∑

n=0,1

Ω¯
m,n (a†)m(a)n, (4.16)

where Ω¯
m,n can be obtained from the explicit representation of Ω̂(a†, a) – for an

example, see Eqs. (3.49)-(3.51). Now, from Eq. (4.7)

Ω¯(ξ∗, ξ) = e−ξ∗ξ 〈ξ|Ô|ξ〉, (4.17)

and inserting Eq. (4.16) in this one obtains

Ω¯(ξ∗, ξ) = e−ξ∗ξ ∑

m=0,1

∑

n=0,1

Ω¯
m,n 〈ξ|(a†)m(a)n|ξ〉

= e−ξ∗ξ ∑

m=0,1

∑

n=0,1

Ω¯
m,n (ξ∗)m (ξ)n 〈ξ|ξ〉. (4.18)

Using the result given in Eq. (3.108), one has the final result

Ω¯(ξ∗, ξ) =
∑

m=0,1

∑

n=0,1

Ω¯
m,n (ξ∗)m (ξ)n. (4.19)
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This can now be extended to a D-dimensional space. First, Eq. (4.16) becomes

Ω̂(a†, a) =
∑

{m}=0,1

∑

{n}=0,1

Ω¯
m1,···,mD;n1,···,nD

(a†D)mD · · · (a†1)m1(a1)
n1 · · · (aD)nD .

(4.20)

Therefore, Ω̂¯(ξ∗1 , · · · , ξ∗D, ξ1, · · · , ξD) is given by

Ω̂¯(ξ∗1 , · · · , ξ∗D, ξ1, · · · , ξD) =
∑

{m}=0,1

∑

{n}=0,1

Ω¯
m1,···,mD;n1,···,nD

× (ξ∗D)mD · · · (ξ∗1)
m1(ξ1)

n1 · · · (ξD)nD . (4.21)

4.3 Evaluation of the Grassmann integrals in Tr(Ω)s

The multidimensional Grassmann integral in Eq. (4.15), with the Ω¯
m1,···,mD;n1,···,nD

given by Eq. (4.21), is not trivial when D > 1. However, it can be done more easily

by condensing the notation. Specifically, instead of using the two sets of indices

{k = 1, · · ·D} and {i = 1, · · · , s}, Eq. (4.15) can be simplified by using a single set

of indices, {I = 1, · · · , sD}, for each Grassmann number.

Let us consider first the example of D = 2. This corresponds to a system with

two degrees of freedom, e.g. k = 1 =↑ and k = 2 =↓. For this case, we have that

the exponent in the integral is given by

D∑

l=1

s∑

i=1

ξ∗i,l(ξi,l − ξi−1,l) =
s∑

i=1

ξ∗i,↑(ξi,↑ − ξi−1,↑) +
s∑

i=1

ξ∗i,↓(ξi,↓ − ξi−1,↓). (4.22)

The sum over ↑ terms can be organized as follows:

s∑

i=1

ξ∗i,↑(ξi,↑ − ξi−1,↑) = + ξ∗1,↑ ξ1,↑ + 0 + · · ·+ 0 + ξ∗1,↑ ξs,↑

− ξ∗2,↑ ξ1,↑ + ξ∗2,↑ ξ2,↑ + 0 + · · ·+ 0 (4.23)

+ 0 + 0 + · · · − ξ∗s,↑ ξs−1,↑ + ξ∗s,↑ξs,↑ (4.24)

=
s∑

i=1

ξ∗i,↑ (A↑↑)i,j ξj,↑ ≡
s∑

i=1

η∗i (A↑↑)i,j ηj, (4.25)

where we have changed the notation ξi,↑ → ηi, and the matrix A↑↑ is, by inspection
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of the sum above, given by

A↑↑ =




1 0 0 · · · 0 1

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · −1 1








s elements (4.26)

Note that we are using the transpose of the matrices used by Charret et al. in

Ref. [9]. It is clear that the matrix corresponding to the sum over ↓ terms, A↓↓, is

precisely the same as A↑↑ , and the sum over ↑ terms is organized as follows:

s∑

i=1

ξ∗i,↓(ξi,↓ − ξi−1,↓) =
s∑

i=1

ξ∗i,↓ (A↓↓)i,j ξj,↓ ≡
2s∑

i=s+1

η∗i (A↑↑)i,j ηj. (4.27)

Moreover, the matrices A↑↓ and A↓↑ are null.

Therefore, if one considers a matrix of the form

A =


 A↑↑ 0

0 A↓↓


 (4.28)

one can write Eq. (4.15) as

Tr (Ω̂)s =
∫ N∏

I=1

dηIdη∗I exp

(
N∑

J=1

N∑

K=1

η∗J AJK ηK

)
Ω¯(η∗1, η1) · · · Ω¯(η∗N , ηN). (4.29)

This integral requires further elaboration. Because the matrix A is block diagonal,

the integral factorizes in a product of 2 multidimensional integrals of dimension s.

The integrand contains the exponential factor and products of Grassmann numbers

coming from the product of s operators Ω¯(ξ∗1 , ξ
∗
2 , ξ1, ξ2). Therefore, in general, each

of the s-dimensional integrals is a moment of a Grassmann Gaussian integral of the

form

M(L,K) =
∫ s∏

i=1

dηidη∗i exp

(
s∑

J=1

s∑

K=1

η∗J Aσσ
JK ηK

)
η∗l1 ηk1 · · · η∗lm ηkm , (4.30)

where L = l1, · · · , lm and K = k1, · · · , km, with m ≤ s. We also assume that the

product of η∗ and η are ordered as l1 < l2 < · · · < lm and k1 < k2 < · · · < km.

Obtention of an explicit solution of an integral like Eq (4.30) is quite involved but

it is possible. In a very detailed and clear derivation, Charret, Corrêa Silva, Souza,

O. Rojas Santos, Thomaz, and Carneiro in Ref. [9] obtained the explicit expression

M(L,K) = (−1)l1+···+lm(−1)k1+···+km A(L,K), (4.31)
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where A(L,K) is a co-factor of the matrix Aσσ with respect to the rows l1, · · · , lm
and the columns k1, · · · , km – the determinant of Aσσ with the rows l1, · · · , lm and

the columns k1, · · · , km removed.

For a system with D degrees of freedom, the dimension of the matrix A is N = sD

and its the structure remains block-diagonal, where each matrix on the diagonal is

equal to the matrices A↑↑ and A↓↓ – instead of the numbers 1 and 0, one actually

have the N × N identity and null matrices. In addition, the integrals necessary to

evaluate the trace of (Ω̂)s, Eq. (4.29), have as solutions Eqs. (4.30) and (4.31), the

only difference as compared to the D = 2 case, is that being that now there are D

of such integrals.

Despite of the closed form of the result of the multidimensional Grassmann

integral, explicit evaluation of the remaining determinants is still a formidable task.

Fortunately, Charret, Corrêa Silva, Souza, Rojas Santos and Thomaz [13] were able

to diagonalize the Aσσ through a similarity transformation, exploiting the block-

structure of these matrices. This was a tremendous achievement, in that it opens

the possibility for explicit evaluation of traces of products of an arbitrary number

of normal-ordered fermionic operators without resorting to large scale computer

evaluations.

This completes the review on the Niterói method. As already commented, the

highlight of the method is its ability of calculating the partition function of a many-

fermion system at finite temperature and chemical potential in closed form in the

high temperature limit, i.e. in principle each term of the series expansion in β,

Eq. (4.2), is known explicitly. Of course, the evaluation of each term becomes

complicated for high powers βs and therefore it will be useful for temperatures

sufficiently high such that the series can be truncated at some low value of s. On

the other hand, when the operator Ω̂ in the Boltzmann factor, Eq. (4.1), is quadratic

in the field operators, one can re-sum the series expansion in β and so the validity

of the result is not restricted to high temperatures.

One might think that quadratic Ω̂’s represent essentially noninteracting parti-

cles, since interaction terms involve at least four field operators. However, this

is not the case, since many approximate, nonperturbative methods in many-body

physics have as starting point an ansatz for Ω̂ that is quadratic in the field operators

and corrections to the ansatz are then calculated perturbatively. Examples include

Hartree-Fock and BCS-type of methods, optimized perturbation theory, etc. An-

other important example is the use of the Hubbard-Stratonovich [8] transformation

that, with the introduction of auxiliary bosonic fields, allows to express a four-

fermion interaction into a quadratic Hamiltonian. Therefore, once one calculates

the trace over the fermionic fields, there remains a trace over bosonic fields that
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can be calculated perturbatively or numerically. Moreover, one ab initio method

of approaching many-body problems is through Monte Carlo simulations on a Eu-

clidean space-time lattice. However, such methods loose accuracy for large values of

the chemical potential because of the non-positivity of the Euclidean action, com-

mented in the Introduction. The Niterói method, on the other hand, can in principle

evade this problem when used in connection with some approximation scheme.

In the next Chapter we will discuss some simple applications of the Niterói

method. In addition, we will indicate further, novel applications of the method to

many systems of modern interest.
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Caṕıtulo 5

Applications to simple problems and possible

extensions

In the present Chapter we present applications of the Niterói method to simple

problems. Initially, in the next Section, we consider the trivial, but illustrative case

of the free Fermi gas. Next, in Section 5.2 we consider mean field type of approxima-

tions to the interacting non-relativistic Fermi gas. Here the aim is to reobtain the

well known results of the traditional Hartree-Fock and BCS approximations [1] [2].

Here we make use of the Bogoliubov-Valatin [36] canonical transformation to bring

the Hamiltonian to a diagonal form such that the Niterói method can be applied

directly and trivially. In Section 5.3 we discuss how to obtain the well known re-

sults of perturbation theory on the top of the mean field approximation. All these

results are not new and actually can be obtained with other methods. It should

be understood that the aim here is to show that the method is reliable and should

be useful in other contexts. With this in mind, in Section 5.4 we propose to use

the Niterói method in connection with the Hubbard-Stratonovich [8] transformation

to implement high order optimized perturbation theory [14]-[17] to improve on the

mean field approximation. And finally, we discuss the application of the method to

the lattice formulation of field theories.

5.1 Non-interacting non-relativistic Fermi gas

Here we consider the problem of calculating the grand-canonical partition function of

the nonrelativistic Fermi gas. We shall initially consider the traditional calculation

of direct evaluation by means of the second quantization formalism. Then we will

reobtain the result using the Niterói method just discussed above.

The Hamiltonian for a system of noninteracting nonrelativistic fermions is given
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in terms of field operators ψσ(x) and ψ†σ(x) as

Ĥ =
∑
σ

∫
d3xψ†σ(x)

(
− 1

2m
∇2

x

)
ψσ(x), (5.1)

where σ =↓, ↑. Here and elsewhere we use h̄ = 1. The field operators satisfy the

usual anticommutation relations

{ψσ(x), ψ†σ′(x
′)} = δσ′σ δ(x′ − x),

{ψ†σ(x), ψ†σ′(x
′)} = 0, {ψσ(x), ψσ′(x

′)} = 0. (5.2)

It is convenient to work in momentum space, so we perform a Fourier decomposition

of the fields in a large volume V of the space

ψσ(x) =
1

V 1/2

∑

k

aσ(k) e−ik·x, (5.3)

ψ†σ(x) =
1

V 1/2

∑

k

a†σ(k) eik·x. (5.4)

Using Eq. (5.2), one can easily shown that aσ(k) and a†σ(k) satisfy the anticommu-

tation relations

{aσ(k), a†σ′(k
′)} = δσ′σ δ(k′ − k),

{a†σ(k), a†σ′(k
′)} = 0, {aσ(x), aσ′(k

′)} = 0. (5.5)

Replacing Eqs. (5.4) in the Hamiltonian, one obtains

Ĥ =
∑
σ

∑

k

k2

2m
n̂σ(k), (5.6)

where

n̂σ(k) = a†σ(k) aσ(k). (5.7)

The number operator N̂ ,

N̂ =
∑
σ

∫
d3xψ†σ(x) ψσ(x), (5.8)

in momentum space is given by

N̂ =
∑
σ

∑

k

n̂σ(k). (5.9)

Given Ĥ and N̂ , the operator Ω̂ in momentum space can be written as

Ω̂ =
∑
σ

Ω̂σ =
∑

k

Ω̂σ(k) =
∑
σ

∑

k

Ωσ(k) n̂σ(k), (5.10)
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where, for later convenience, we have defined the quantities

Ω̂σ =
∑

k

Ω̂σ(k), Ω̂σ(k) = Ωσ(k) n̂σ(k), Ωσ(k) =
k2

2m
− µσ. (5.11)

The dependence on σ in µσ allows the possibility for different numbers of particles

with spin ↑ and ↓ in the system. The grand canonical partition function is given by

Z = Tr e−βΩ̂ = Tr e−β
∑

σ
Ω̂σ = Tr e−β(Ω̂↑+Ω̂↓). (5.12)

Since [Ω̂↑, Ω̂↓] = 0, the partition function is given by the product

Z = Tr↑(e−βΩ̂↑) Tr↓(e−βΩ̂↓). (5.13)

This can be easily shown using as basis the eigenstates {|nσ(k)〉} of the operator

n̂σ(k)

n̂σ(k)|nσ(k)〉 = nσ(k)|nσ(k)〉, with nσ(k) = 0, 1. (5.14)

Moreover, using this same basis, one can also show that

Tr↑ e−βΩ̂↑ = Tr↑e−β
∑

k
Ω↑(k)n̂↑(k) =

∏

k

Tr↑
[
e−βΩ↑(k)n̂↑(k)

]
, (5.15)

and a similar expression for Tr↓ e−βΩ̂↓ .

One can calculate the traces above directly using the basis of Eq. (5.14) as

Tr↑ e−βΩ̂↑ =
∏

k

Tr↑
[
e−βΩ↑(k)n̂↑(k)

]
=

∏

k

e−βΩ↑(k)n↑(k), (5.16)

and so, because n↑(k) = 0, 1 and n↓(k) = 0, 1, we obtain

Z =


∏

k1

e−β Ω↑(k1)n↑(k)





∏

k2

e−β Ω↓(k2)n↓(k)




=
∏

k1

(
1 + e−β Ω↑(k1)

) ∏

k2

(
1 + e−β Ω↓(k2)

)
. (5.17)

This is the final result for the grand-canonical partition function for a polarized (i.e.

different number of particles with spin ↑ and ↓) noninteracting, nonrelativistic Fermi

gas. When µ↑ = µ↓ = µ, we have have Ω↑(k) = Ω↓(k) = k2/2m− µ and obtain the

well-known result for the partition function of a free Fermi gas

Z =

{∏

k

[
1 + e−β (k2/2m−µ)

]}2

. (5.18)
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Next, we reobtain the above results using the Niterói method. We start from

the general result of Eq. (Z-prod-k) and expand the exponential in powers of β

Tr↑ e−βΩ̂↑ =
∏

k

Tr↑
[
e−βΩ↑(k)n̂↑(k)

]
=

∏

k

Tr↑
∞∑

s=0

[−βΩ↑(k)]s

s!
[n̂↑(k)]s

=
∏

k

∞∑

s=0

[−βΩ↑(k)]s

s!
Tr↑ [n̂↑(k)]s

=
∏

k

{
Tr↑(1) +

∞∑

s=1

[−βΩ↑(k)]s

s!
Tr↑ [n̂↑(k)]s

}
. (5.19)

The trace of 1 is simply

Tr↑(1) =
∫

dηdη∗ exp (2η∗η) = 2. (5.20)

The trace of [n̂↑(k)]s is to be calculated using Eq. (5.21). We note that since the trace

is calculated for k held fixed, we can simply ignore k in the Grassmann numbers

when applying Eq. (5.21). Specifically,

Tr [n̂↑]s =
∫ s∏

I=1

dηIdη∗I exp

(
s∑

J=1

s∑

K=1

η∗J A↑↑
JK ηK

)
n¯↑ (η∗1, η1) · · · n¯↑ (η∗s , ηs)

=
∫ s∏

I=1

dηIdη∗I exp

(
s∑

J=1

s∑

K=1

η∗J A↑↑
JK ηK

)
η∗1 η1 · · · η∗s ηs, (5.21)

where we have used the fact that n¯↑ (η∗, η) = η∗ η. The value of the integral is given

by Eq. (5.22), that for the present case is given by

M(, K) = (−1)1+···+s(−1)1+···+1 A(L,K). (5.22)

Removing the first s lines and s first columns from the matrix A↑↑, one obtains that

the determinant of the remaining matrix is simply 1, and so

Tr↑ e−βΩ̂↑(k) = 2 +
∞∑

s=1

[−βΩ↑(k)]s

s!

= 1 + e−β Ω↑(k). (5.23)

Therefore, one obtains precisely the same value for the partition function as calcu-

lated directly.

Note that for a quadratic Ω̂ one can obtain the trace of e−βΩ directly from

Tr Ô =
∫

dξdξ∗ e2ξ∗ξ O¯(ξ∗, ξ). (5.24)

This will be clear in the discussions of the next Section.
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5.2 Interacting nonrelativistic Fermions, canonical transfor-

mations

In this Section we will discuss the application of the Niterói method to an interacting

many-fermion system. However, our aim here is not to use the high temperature ex-

pansion for the entire interacting Hamiltonian. Rather, our aim is to use the method

in conjunction with some nonperturbative approximation schemes. In particular,

here we will use canonical transformations to obtain the traditional mean-field ap-

proximations and to improve on such mean-field approximations within the Niterói

method. We remark that we are not going to obtain new results, rather we will show

how to obtain known results within the Niterói method and indicate future directions

for obtaining new results. The point of showing this is that in some circumstances

when dealing with many-fermion systems, e.g. in a lattice formulation of relativistic

field theory, as commented earlier, the traditional Monte Carlo method cannot be

applied because of the Euclidean action is not real and positive. Therefore, having

an approximation scheme that does not suffer from such a problem is welcomed.

Initially we will start reobtaining the traditional finite-temperature Bardeen-

Cooper-Schrieffer (BCS) gap equation [35] for a many-fermion system. This will

be obtained employing a Bogoliubov-Valatin canonical transformation [36]. The

quadratic part of the resulting Hamiltonian can then be diagonalized and used to

obtain the grand canonical partition function. Certainly there is nothing new here,

however, this provides a stating point for us to discuss possible ways on how to

improve on this in the context of the Niterói method. Notation and the Bogoliubov-

Valatin transformation we are going to use here is heavily based on Section 37 of

the book of Fetter and Walecka [2].

When considering interactions, the most general, nonrelativistic Hamiltonian for

a system of fermions interacting through a local two-body potential V̂ can be written

in terms of the field operators ψσ(x) and ψ†σ(x) as

Ĥ = Ĥ0 + V

=
∑
σ

∫
d3xψ†σ(x)

(
− 1

2m
∇2

x

)
ψσ(x)

+
1

2

∫
d3xd3y ψ†σ1

(x)ψ†σ2
(y) Vσ1σ2,σ3σ4(x− y) ψσ4(y)ψσ3(x), (5.25)

where Vσ1σ2,σ3,σ4(x−y) = Vσ3σ4,σ1σ2(y−x) for identical particles. For the purposes of

simplifying the notation and explaining the main ideas, we will take an interaction

of the form [38]

Vσ1σ2,σ3σ4(x− y) = δσ1σ3 δσ2σ4 δσ1↑ δσ2↓ V (x− y). (5.26)
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As in the noninteracting case, we perform a Fourier transformation and obtain for

the grand canonical operator Ω̂ the following expression

Ω̂ =
∑
σ

∑

k

(
k2

2m
− µσ

)
n̂σ(k)

+
1

2

∑
σ1σ2

∑

k1+k2=k3+k4

〈k1k2|V |k3k4〉 a†↑(k1) a†↓(k2) a↓(k2) a↑(k′), (5.27)

where

〈k1k2|V |k3k4〉 =
1

V 2

∫
d3xd3y e−i(k1·x+k2·y)V (x− y) e−i(k3·x+k4·y). (5.28)

Next, we make a canonical transformation on this Hamiltonian by introducing

new creation and annihilation operators as [2] [37]

b1(k) = u(k) a↑(k)− v(k) a†↓(−k),

b2(k) = u(k) a↓(−k) + v(k) a†↓(k), (5.29)

where u(k) and v(k) are c-number functions to be determined, such that

{b1(k), b†1(k
′)} = δ(k′ − k),

{b2(k), b†2(k
′)} = δ(k′ − k), (5.30)

and all other anticommutators are zero. This leads to the condition that

u2(k) + v2(k) = 1. (5.31)

This condition is not sufficient to determine u and v and more input is needed. This

will be provided by the imposition that part of the resulting Hamiltonian should be

diagonal, which results in addition into a gap equation.

The canonical transformation proceeds in replacing the original operators aσ(k)

and a†σ(k) in favor of the b1(k), b†1(k), b2 and b†2 in the Hamiltonian, and then

arranging them in normal ordering (i.e. putting the resulting Hamiltonian in simple

order). The idea behind this procedure is that such a transformed Hamiltonian can

be brought to a diagonal form, plus an interaction term that should be small. The

meaning of small is in the sense that the main features of the original Hamiltonian

are captured by the diagonal part of the new Hamiltonian. There are different ways

to implement this and as mentioned by Fetter and Walecka [2] the easiest way is to

use Wick’s theorem. We will not review this here, simply quote the final result (we

use µ↑ = µ↓ )

Ω̂ = U +
∑

k

E(k) [b†1(k)b1(k) + b†2(k)b2(k)] + : V̂ (b) :

+
∑

k

F (k) [b†2(k)b†2(k) + b1(k)b2(k)], (5.32)
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where U is a constant (not relevant for our purposes here), and

E(k) = [u2(k)− v2(k)]ε(k) + 2u(k)v(k)∆(k), (5.33)

F (k) = 2u(k)v(k)ε(k)− [u2(k)− v2(k)]∆(k), (5.34)

with

ε(k) =
k2

2m
− µ +

∑

kk′
〈kk′|V̄ |kk′〉v2(k′) [1− 2f(k′)] ,

∆(k) = −1

2

∑

k′
〈k− k|V |k′ − k′〉u(k′)v(k′) [1− 2f(k′)] , (5.35)

where 〈kk′|V̄ |kk′〉 = 〈kk′|V |kk′〉−〈kk′|V |k′k〉+〈k−k′|V |k−k′〉 gives the Hartree-

Fock mean field contribution to the energy, and f(k) is the thermal average of b†b,

f(k) = 〈b†i (k)bi(k)〉 = Tr
[
b†i (k)bi(k) e−βΩ̂

]
, i = 1, 2. (5.36)

In addition, : V̂ (b) : is obtained from the original V̂ in Eq. (5.25) by replacing the

a†σ and aσ with

a†↑(k) = u(k) b1(k) + v(k) b†2(−k),

a↓(k) = u(k) b2(k)− v(k) b†1(−k), (5.37)

and then normal ordering the resulting expression.

The idea now is to diagonalize Ω̂, neglecting : V̂ (b) : on the assumption that the

main effect of the interaction has been captured by the diagonal part, as discussed

above. This is achieved by demanding that the anomalous Bogoliubov term be equal

to zero, i.e.

F (k) = 0 → [u2(k)− v2(k)] ∆(k) = 2u(k)v(k)ε(k). (5.38)

Note that this equation has to be solved under the constraint of Eq. (5.31). As

shown explicitly in Fetter and Walecka [2], this leads to

E(k) =
[
ε2(k) + ∆2(k)

]1/2
, (5.39)

u(k)v(k) =
∆(k)

2E(k)
, u2(k) =

1

2

[
1 +

ε(k)

E(k)

]
,

v2(k) =
1

2

[
1− ε(k)

E(k)

]
, (5.40)

and ∆(k) satisfies the gap equation

∆(k) = −1

2

∑

k′
〈k− k′|V |k′ − k′〉∆(k′)

E(k′)
[1− 2f(k′)] . (5.41)
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All thermodynamic properties of the system can then be obtained from the

partition function calculated with the quadratic grand potential operator Ω̂, which

can be calculated analytically, given by

Z =

[∏

k

(
1 + e−βE(k)

)]2

. (5.42)

Eq. (5.41) always admits a trivial solution, i.e. ∆(k) = 0. In this case one would have

then the familiar Hartree-Fock approximation, which still requires a self-consistent

solution, since the thermal average f(k) appears in in ε(k), see Eq. (5.35).

The central question now is how to include the effects of the neglected term,

: V̂ (b) :, the normal ordered potential. Of course, in case these effects are small,

but not entirely negligible, perturbation theory would be the natural approach ro

pursue. In the next section we discuss this issue.

5.3 Perturbation on the mean field

Let us start reobtaining the traditional perturbative improvement on the mean field

result. We rewrite the Ω̂ of Eq. (5.32) (without the irrelevant constant U and with

the anomalous Bogoliubov term already made zero) as

Ω̂ = Ω̂0 + δ : V̂ :, (5.43)

where

Ω̂0 =
∑

k

E(k) [b†1(k)b1(k) + b†2(k)b2(k)], (5.44)

and where : V̂ : contains all possible normal ordered products of two creation oper-

ators b†1 and b†2, and two annihilation operators b1 and b2 . The parameter δ is just

for bookkeeping purposes, it will be taken δ = 1 at the end. The partition function

is then

Z = Tr e−β(Ω̂0+δ :V̂ :). (5.45)

The idea is to expand the exponent in powers of δ. Since Ω̂0 and : V̂ : do not

commute, the expansion is not straightforward. However, it is well known how such

an expansion can be made, by going to the “interaction representation, as explained

in Refs. [1][2]. Specifically, the expansion is (see Section 24 of Fetter and Walecka,

Ref. [2] )

Z = Tr e−β(Ω̂0+δ :V̂ :)
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= Tr e−βΩ̂0

[
1 +

∞∑

n=1

(−βδ)n

n!

∫ β

0
dλ1

∫ λ1

0
dλ2 · · ·

∫ λn−1

0
dλn

× V̂ (λ1) V̂ (λ2) · · · V̂ (λn)

]

= Tr

[
1 +

∞∑

n=1

(−βδ)n

n!

∫ β

0
dλ1

∫ λ1

0
dλ2 · · ·

∫ λn−1

0
dλn

× V̂ (λ1) V̂ (λ2) · · · V̂ (λn)

]
e−βΩ̂0

≡ Tr Pλ e−βδV̂ (λ) e−βΩ̂0 = Tr V̂ e−βΩ̂0 , (5.46)

where Pλ denotes path ordering in λ, the ordered chain of integrals in λ1, · · · , λn,

and

V̂ (λ) = eλΩ̂0 : V̂ : e−λΩ̂0 . (5.47)

We want to use the coherent-state representation of the trace. First, let us simplify

notation writing

Ω̂0 =
∑

k

E(k) [b†1(k)b1(k) + b†2(k)b2(k)] ≡ ∑

i

Ei b
†
ibi, (5.48)

where we have condensed the indices k and 1 and 2 into i. Next, we use Eq. (4.9)

to write the trace of the product of the two operators V̂ and Û ≡ e−βΩ̂0 as

Tr (V̂ e−βΩ̂0) =
∫

dξdξ∗dξ′dξ′∗ eξ∗(ξ+ξ′) eξ′∗(ξ′−ξ) V¯(ξ∗, ξ) U¯(ξ′, ξ′)

=
∫

dξdξ∗ eξ∗ξ V¯(ξ∗, ξ)

×
∫

dξ′dξ′∗ eξ′∗(ξ′−ξ)+ξ∗ξ′ U¯(ξ′∗, ξ′), (5.49)

where it should be clear here that ξ, ξ′, · · · refer to sets {ξi, ξ
′
i, · · ·}, where the index

i stands for k and 1 and 2, and products like ξ′∗(ξ′− ξ) mean
∑

i ξ
′∗
i (ξ

′
i− ξi). Let us

add source terms into the first integral above as

Tr (V̂ e−βΩ̂0) =
∫

dξdξ∗ eξ∗ξ V¯(ξ∗, ξ) eJ̄ξ+ξ∗J

×
∫

dξ′dξ′∗ eξ′∗(ξ′−ξ)+ξ∗ξ′ U¯(ξ′∗, ξ′), (5.50)
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where Ji and J̄i are Grassmann numbers. Next, one uses the common trick of writing

V¯(ξ∗, ξ) e(J̄iξi+ξ∗i Ji) = V¯
(

δ

δJi

,
δ

δJ̄i

)
e(J̄iξi+ξ∗i Ji), (5.51)

where δ/δJi and δ/δJ̄i are Grassmann functional derivatives – see Eq. (3.153). Then,

the expression for the trace can be written as

Tr (V̂ e−βΩ̂0) = V¯
(

δ

δJi

,
δ

δJ̄i

) ∫
dξdξ∗ eξ∗ξ eJ̄iξi+ξ∗i Ji

×
∫

dξ′dξ′∗ eξ′∗(ξ′−ξ)+ξ∗ξ′ U¯(ξ′∗, ξ′). (5.52)

The remaining integrals can be integrated analytically. First, let us perform the

integral over ξ′ and ξ′∗. The ordered form of the operator Û = e−βΩ̂0 can be

obtained as [34]

e−βΩ̂0 = e−β
∑

i
Eib

†
i bi =

∏

i

e−β Ei b†i bi

=
∏

i

[
1 +

(
e−β Ei − 1

)
b†ibi

]
=

∏

i

: e(e−β Ei−1)b†i bi :

= : exp

[∑

i

(
e−β Ei − 1

)
b†ibi

]
:, (5.53)

and U¯(ξ∗, ξ) is given by

U¯(ξ∗, ξ) = exp

[∑

i

(
e−β Ei − 1

)
ξ∗i ξi

]
. (5.54)

Therefore, from Eq. (3.152), one has
∫

dξ′dξ′∗ eξ′∗(ξ′−ξ)+ξ∗ξ′ U¯(ξ′∗, ξ′) =
∫

dξ′dξ′∗ eξ′∗D−1ξ′+ξ∗′(−ξ)+ξξ∗′

= − 1

Det D
eξ∗Dξ, (5.55)

where D is the diagonal matrix

Dij = eβEi δij. (5.56)

Inserting this result into the integral over ξ and ξ∗ and performing the integral, one

obtains

− 1

Det D

∫
dξdξ∗ eξ∗ξ eJ̄iξi+ξ∗i Ji eξ∗Dξ = − 1

Det D

∫
dξdξ∗ eξ∗(1+D)ξ+J̄iξi+ξ∗i Ji

=
Det (1 + D)

Det D
e−J̄ (1+D)−1J . (5.57)
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With this, we arrived at the well known result for the perturbative expansion of the

partition function

Z

Z0

= V¯
(

δ

δJi

,
δ

δJ̄i

)
e−

∑
i,j

J̄i (1+D)−1
i,j Ji . (5.58)

Plain perturbation theory would be simply to calculate physical quantities using

the partition function in Eq. (5.58) with D = eβEi where Ei the energy calculated as

in the previous section. A better perturbation theory corresponds to recalculate the

energy in a self-consistent way from the perturbed partition function, Eq. (5.58) – i.e.

D is to be determined from the partition function defined in terms of the unknown

D. Of course, in any practical sense, one would be able to do so by restricting the

expansion in Eq. (5.46) to lowest orders in δ.

5.4 Optimized perturbation theory

At this point it should be clear that one does not need the Niterói method to do

perturbation theory on a mean field approximation, since Eq. (5.58) is known from

other techniques. But, having shown how to derive the traditional perturbative

series, we will make use part of the material above to motivate a method that might

be more useful for practical results. The method we propose makes interchangeable

use of the path integral method and the direct calculation of the trace by the Niterói

method.

The basic idea of optimized perturbation theory in one of its simplest forms –

known as the optimized linear δ expansion – is the following [14]-[17]. Suppose the

Hamiltonian of the system is of the generic form

Ĥ = K̂ + V̂ (5.59)

where K̂ is quadratic in the field operators and V̂ contains more than two field

operators. Then, one adds and subtracts a a term for the Hamiltonian in the form

Ĥ =
(
K̂ + Ô(p1, p2, · · ·)

)
+ δ

(
V̂ − Ô(p1, ps, · · ·)

)
, (5.60)

where Ô(p1, p2, · · ·) is given in terms of field operators, p1, p2, · · · are functions of

the coordinates in general, and δ is a dimensionless parameter that is introduced for

bookkeeping purposes and is to be taken equal to 1 at the end of calculation. The

idea is to choose Ô judiciously so that the theory with
(
K̂ + Ô

)
is exactly soluble,

and corrections to this solution are calculated in perturbation theory in δ. If one

would be able to calculate in all orders of δ, we of course would have obtained the

exact solution and the result would be independent of p1, p2, · · ·. Since we are going
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to truncate the expansion in some power of δ, the results do depend on p1, p2, · · ·. In

order to minimize the sensitivity of the results on µ, we use the principle of minimal

sensitivity (PMS) [14], in that one requires that a physical quantity Q(p1, p2, · · ·)
satisfy

δQ(p1, ps, · · ·)
δpi

= 0. (5.61)

This physical quantity can be the grand canonical potential,

e−β Ξ = Z → Ξ = −β−1 ln Z. (5.62)

In order to explain the approach we propose in the perspective of the Fermi

gases in the unitarity limit discussed in the Introduction, we use for Ω̂ the following

expression [38]

Ω̂ =
∑
σ

∫
d3xψ†σ(x) K(x) ψσ(x)− g

∫
d3xψ†↑(x)ψ†↓(x) ψ↓(x)ψ↑(x), (5.63)

where

Kσ(x) = − 1

2m
∇2

x − µσ, (5.64)

and g is the coupling strength – the minus sign is used for later convenience. The idea

behind of the Hubbard-Stratonovich is to “linearize” the interaction term through

the introduction of auxiliary fields. This is done making use of the identity

1√
2π

∫ ∞

−∞
dφ e−φ2/2−a φ = ea2/2. (5.65)

In the present case, a would stand for the pairs of field operators ψ†↑(x)ψ↑(x),

ψ†↓(x)ψ↓(x), ψ†↑(x)ψ†↓(x) and ψ↑(x)ψ↓(x). For each of these pairings, one would intro-

duce one auxiliary field φ(x). There is, however, one slight complication because we

cannot use directly the formula of Eq. (5.65) with the Ω̂ given in Eq. (5.63), because

the kinetic and the interaction terms of this operator do not commute. One way to

proceed is to change to the interaction representation as done in Section 5.3 that

effectively factorizes the exponential into two exponentials in which one of them is

path ordered. For our purposes here however, for clarity of presentation the easiest

way to proceed is like Hubbard proceeded in Ref. [8], namely he used the ordering

label technique of Feynman [39]. This is simply a simplification on the notation, the

final result is not different from the traditional path-ordering used above – in Ap-

pendix F we have reviewed this technique. To further simplify the discussion and for

better exposition, we will perform the Hubbard-Stratonovich transformation using

only the “diagonal” pairings, i.e. we will linearize the interaction using only the

ψ†↑(x)ψ↑(x) and ψ†↓(x)ψ↓(x) pairs. In addition, we will take µ↑ = µ↓ = µ. This will
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simplify our discussion because we will need only one auxiliary field. In this case,

the partition function can be written as

Z = Tr e−βΩ̂

= Tr exp
∫ β

0
ds

[∑
σ

∫
dxψ†σ(x, s) K(x, s) ψσ(x, s)

− g
∫

dxψ†↑(x, s)ψ↑(x, s)ψ†↓(x, s)ψ↓(x, s)

]
, (5.66)

where now the kinetic and potential terms in the exponential can be taken as com-

muting – the integral over s is due to Feynman ordering technique, see Appendix F.

Now we introduce an auxiliary field ϕ through the Hubbard-Stratonovich transfor-

mation as

Z =
∫

[Dϕ(x, s)] exp

[
−1

2

∫ β

0

∫
dxϕ2(x, s)

]

× Tr exp
∫ β

0
ds

∫
dx

{∑
σ

ψ†σ(x, s) K(x, s) ψσ(x, s)

+ g1/2 ϕ(x, s)
[
ψ†↑(x, s)ψ↑(x, s) + ψ†↓(x, s)ψ↓(x, s)

]}
. (5.67)

At this point, since the exponential in the trace is diagonal in the Fermi fields,

the trace can be evaluated exactly. The result of the trace would be the square of

the determinant of the matrix K + g1/2ϕ and what remains is an integral over the

auxiliary field ϕ. Had we used µ↑ 6= µ↓, one would have obtained the product of two

determinants. It is here where the sign problem enters, since it is not guaranteed

that the product of the determinants is positive. Our aim is not to proceed this

route, we want to implement a mean field approximation and to use optimized

perturbation theory on the top of the mean field, as explained in the Introduction.

Why one would give up the possibility of obtaining an exact result in favor of an

approximate scheme? First, as said previously, it is important to understand how

corrections affect the zeroth-order mean field results. Second, the exact solution can

be very involved due to the sign problem and also requires intensive use of Monte

Carlo methods. It is hoped that through an expansion in a modified interaction one

can capture most of the physics relevant to the problem and that a milder or even

no sign problem arises – of course this we will only know with explicit calculations.

We implement the step indicated in Eq. (5.60) as follows. Let us define a c-

number mean field ϕ0(x) so that

ψ†↑(x)ψ↑(x)ψ†↓(x)ψ↓(x) = −ϕ2
0(x) + ϕ0(x) ψ†↑(x)ψ↑(x) + ϕ0(x) ψ†↓(x)ψ↓(x)

+
[
ψ†↑(x)ψ↑(x)− ϕ0(x)

][
ψ†↓(x)ψ↓(x)− ϕ0(x)

]
. (5.68)
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Note that this is an identity. Now we replace this into the expression for Z in

the following way, already using the Hubbard-Stratonovich transformation of the

four-field term

Z(ϕ0) = e−β g
∫

dxϕ2
0(x)

∫
[Dϕ(x, s)] e−

1
2

∫ β

0
ds

∫
dxϕ2(x,s)

× Tr e−
∫ β

0
ds

∫
dxK0(x,s,ϕ0) eδ

∫ β

0
ds

∫
dxV(x,s,ϕ0), (5.69)

where

K0(x, s, ϕ0) =
∑
σ

ψ†σ(x, s) [K(x, s)− g ϕ0(x)] ψσ(x, s), (5.70)

and

V(x, s, ϕ0) = g1/2
[
σ(x, s)− g1/2 ϕ0(x)

][
ψ†↑(x, s)ψ↑(x, s) + ψ†↓(x, s)ψ↓(x, s)

]

+ g ϕ2
0(x). (5.71)

Up to here, there have been no approximations and all expressions are exact. The

implementation of the optimized perturbation theory proceeds in the following way.

One expands the second exponential in the trace in Eq. (5.69) up some order of δ,

perform the trace using the Niterói method, then perform the path integral over

ϕ, and finally use the principle of minimal sensitivity to determine ϕ0. Since both

exponentials commute due to the Feynman ordering notation, and and since both

exponentials are quadratic, the trace should be easily evaluated.

One could think that it would be easier to evaluate the complete trace and then

expand the resulting determinant in powers of δ. Obviously this can be done in

some cases, but the Niterói method is of general applicability and would not require

the expansion of a complicated determinant.

Let us examine the O(δ0) approximation to the partition function. In this case,

one would have simply

Z0(ϕ0) ≡ e−β g
∫

dxϕ2
0(x)

∫
[Dϕ(x, s)] e−

1
2

∫ β

0
ds

∫
dxϕ2(x,s)

× Tr e−
∫ β

0
ds

∫
dxK0(x,s,ϕ0) (5.72)

Since the trace does not depend upon ϕ, the functional integral gives simply 1. Also,

the Feynman ordering becomes is trivial, and one would get for Z0(ϕ0)

Z0(ϕ0) ≡ e−β g
∫

dxϕ2
0(x) Tr e−β

∫
dxK(x,ϕ0) (5.73)

The mean field ϕ0 is determined from the grand canonical potential

Ξ(φ0) = −β−1 ln Z0(ϕ0)

= g
∫

dxϕ2
0(x)− β−1 ln Tr e−β

∫
dxK(x,ϕ0), (5.74)
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from the PMS condition of Eq. (5.61)

δ Ξ(ϕ0)

δϕ0(x)
= 0. (5.75)

Applying this to the result in Eq. (5.74), one obtains

2 g ϕ0(x)− β−1

Z0(φ0)
βg Tr e−β

∫
dxK(x,ϕ0)

∑
σ

ψ†σ(x)ψ†σ(x) = 0. (5.76)

That is, the mean field is determined by the gap equation

ϕ0(x) = 〈ψ†↑(x)ψ↑(x)〉ϕ0 = 〈ψ†↓(x)ψ↓(x)〉ϕ0 . (5.77)

This is a self-consistent equation for ϕ0.

The result is reassuring, in that it is the traditional mean field (Hartree) result

and it has been obtained in an elegant and relatively easy way. As explained,

corrections to this mean field solution are obtained by expanding in powers of δ

the complete partition function. We will not proceed to evaluate such corrections,

since the aim here was to set up the approach and an explicit evaluation of high

order corrections would require an specific model. In addition, for higher order

corrections, the functional integral over ϕ and Feynman ordering are not trivial as

for the O(δ0). The evaluation of the functional integral most likely will require a

Monte Carlo method when working at high orders in δ – an interesting question is to

see whether the sign problem is as severe as in the exact evaluation. Moreover, the

point-like interaction used here requires renormalization and further elaboration is

need to obtain numerical results. All this would extrapolate the scope of the present

dissertation and therefore we leave these issues for future work.

We finalize this Chapter mentioning that pairings of the type ψ†↑(x)ψ†↓(x) and

ψ↑(x)ψ↓(x) can be incorporated by introducing extra mean fields and extra Hubbard-

Stratonivich auxiliary fields. Although straightforward, the algebra is a little heavier

and more gap equations through the PMS condition would arise. Proceeding as

above, the traditional BCS solution would follow form the O(δ0) result. Corrections

would then be calculated in the same way as explained above.
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Caṕıtulo 6

Conclusions and perspectives

The primary aim of the present dissertation was to present a review on the use of

coherent states in the evaluation of the quantum grand canonical partition func-

tion of spin-1/2 fermions at finite temperature. There main motivation for studying

such systems is due to the recent experimental developments in the area of fermionic

atoms. These developments have created great excitement in the Physics community

in view of the possibility of exploring and manipulating matter composed of parti-

cles with no classical analogue. Contrary to bosons, fermions cannot be described

in terms of the dynamical dynamical variables like position and momentum, they

require new dynamical variables that are not familiar to the human experience, like

Grassmann variables. In addition, fermionic systems at the unitarity limit – when

the scattering length characterizing the interaction strength is much larger than the

inter-particle spacing – are encountered in different fields of physics, like in nuclear

physics, astro-particle physics and condensed matter physics. In view of this, this is

a fascinating subject and it is important to develop mathematical methods to study

such systems in different contexts.

The fundamental quantity in the mathematical treatment of many-body systems

at finite temperature is the grand canonical partition function. It can very seldom

be calculated in closed form and approximation schemes and numerical methods

have been developed to study this quantity. In particular, there is great activity

in the field of Monte Carlo simulations of the path integral representation of the

partition function. Path integral formulations of fermion fields involve the use of

anti-commuting Grassmann variables but tricks need to be employed for their nu-

merical evaluation, since Grassmann numbers cannot be generated directly in a

computer. Problems arise in implementing many of such tricks, like the sign prob-

lem, which arises when one formally integrates over such variables and re-express

the result in terms of path integrals over auxiliary fields.

In the present dissertation we have concentrated on an alternative to the path
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integral formulation of the grand canonical partition function, namely the Niterói

Method. This method is based on the direct evaluation of the trace over Grass-

mann variables using a high temperature expansion of the Boltzmann factor in

the partition function. The method makes use of the coherent-state representation

of the trace, and each term of the expansion is evaluated exactly exploiting the

anti-commuting nature of the Grassmann numbers. A good part of the present

dissertation has concentrated on the review of this novel method, the main results

are collected in Chapter 4. This was done after a brief discussion on the second

quantization formalism for many-particle systems and the Feynman path integral

in Chapter 2, and a short review in Chapter 3 on the use of coherent states for

calculating traces over fermionic variables and have also discussed the path integral

representation of the partition function using coherent states.

In addition to reviewing the Niterói method, we indicated further developments

beyond the high temperature expansion of the Boltzmann factor. In particular we

make the case for using the method in the context of improving mean field type

of approximations through the combined use of the Hubbard-Stratonovich transfor-

mation and the ideas of optimized perturbation theory. Our approach starts from

a mean field type of approximation and then corrections are implemented making

use of an expansion in powers of a modified interaction, where the effects of the

mean field have been subtracted from the original interaction. In Chapter 5, ini-

tially we have shown that known mean field type of approximations can be obtained

trivially within the Niteói method, and have also shown that one can reproduce stan-

dard formulas for perturbative corrections to the mean field approximations within

the same method. Since perturbative corrections to mean field approximations be-

come very involved when higher order corrections are needed, we have proposed an

alternative so that high order corrections can be calculated in the context of an opti-

mized perturbation theory, in that terms are added and subtracted from the original

Hamiltonian and re-arranged in way that a remaining interaction can be expanded

perturbatively. The results are optimized in the sense that parameters introduced

via the new terms in the Hamiltonian are fixed through a principle of minimal sensi-

tivity, i.e. they are fixed by requiring that the grand canonical potential is stationary

with respect to variations in these parameters.

As perspectives, we envisage application of the proposed method in different

fields. One immediate application is in the field of atomic fermionic gases, in which

a contemporary goal is to go beyond the framework of mean field physics to access

manifestations of strong interactions and correlations. Work in this direction has

been started. We also believe that our proposed method can be extended to strong

coupling lattice QCD. The strong coupling expansion of the QCD action resembles
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in many respects the high temperature expansion and as such the Niterói method

should be of direct applicability. Work in this direction is underway.
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Apêndice A

Two-body operators - Change of representation

Let a two body operator, see (2.37), such that every Ôij is diagonal in the basis

{|αk1 · · ·αkN
)}

Ôij|αk1 · · ·αkN
) = Okikj

|αk1 · · ·αkN
), (A.1)

and as we are going to consider identical particles again, all the Ôij are equal, but

acting specifically in its respective i, j-subspace.

On a general element of the symmetric basis

Ô|αk1 · · ·αkN
} =

N∑
i,j=1(i 6=j)

Ôij
1√
N !

∑
P

ςP |αPk1〉 ⊗ · · · ⊗ |αPkN
〉

=
1√
N !

∑
P

ςP
N∑

(i 6=j)
Ôij|αPk1〉 ⊗ · · · ⊗ |αPkN

〉

=
1√
N !

∑
P

ςP
N∑

(i 6=j)
OPkiPkj

|αPk1〉 ⊗ · · · ⊗ |αPkN
〉

=
1√
N !

∑
P

ςP
D∑

l,m=1
(nαl

nαm − δlmnl) Olm|αPk1〉 ⊗ · · · ⊗ |αPkN
〉

=
1√
N !

∑
P

ςP
D∑

l,m=1
(n̂αl

n̂αm − δlmn̂αl
) Olm|αPk1〉 ⊗ · · · ⊗ |αPkN

〉

=
D∑

l,m=1
Olm (n̂αl

n̂αm − δlmn̂αl
) |αk1 · · ·αkN

}. (A.2)

By linear independence

Ô =
D∑

l,m=1
Olm

(
a†αl

aαl
a†αm

aαm − δlma†αl
aαl

)

=
D∑

l,m=1
Olma†αl

(
aαl

a†αm
− δlm

)
aαm

=
D∑

l,m=1
Olma†αl

(
ςa†αm

aαl

)
aαm

=
D∑

l,m=1
Olma†αl

a†αm
aαmaαl

. (A.3)

67



Now to the M’ -dimensional basis {|λi〉}

Ô =
D∑

l,m,p,q=1
(αpαq|Ôij|αlαm)a†αp

a†αq
aαmaαl

=
D∑

l,m,p,q=1
(αpαq|

(
D′∑

r,s=1
|λrλs)(λrλs|

)
Ôij

×
(

D′∑
t,u=1

|λtλu)(λtλu|
)
|αlαm)a†αp

a†αq
aαmaαl

=
D′∑

r,s,t,u=1
(λrλs|Ôij|λtλu)

D∑
p,q=1

(αpαq|λrλs)a
†
αp

a†αq

D∑
l,m=1

(λtλu|αlαm)aαmaαl

=
D′∑

r,s,t,u=1
(λrλs|Ôij|λtλu)a

†
αr

a†αs
aαuaαt . (A.4)
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Apêndice B

Evaluation of U(rn+1, ε; rn, 0)

In the present Appendix we evaluate explicitly the matrix element U(rn+1, ε; rn, 0)

that we used in Sectiion 3.1.

Let us start from

U(rn+1, ε; rn, 0) = 〈rn+1| exp

[
−iε

h̄

(
p̂2

2m
+ V (r̂)

)]
|rn〉 (B.1)

=
∫ d3pn

(2πh̄)3/2
〈rn+1|pn〉〈pn| exp

[
−iε

h̄

(
p̂2

2m
+ V (r̂)

)]
|rn〉.(B.2)

We expand the exponential as

e−iεĤ/h̄ =
∞∑

j=0

1

j!

(
−iε

h̄

)j
(

p̂2

2m
+ V (r̂)

)j

(B.3)

= I − iε

h̄

(
p̂2

2m
+ V (r̂)

)

− ε2

2h̄2

(
p̂4

4m2
+

p̂2

2m
V (r̂) + V (r̂)

p̂2

2m
+ V 2(r̂)

)
+ · · · . (B.4)

Next, we order the operators in a symmetric way

(
e−iεĤ/h̄

)(Ord)

=
∞∑

j=0

1

j!

(
−iε

h̄

)j j∑

k=0

j!

k!(j − k)!

(
p̂2

2m

)j−k

[V (r̂)]k (B.5)

= I − iε

h̄

(
p̂2

2m
+ V (r̂)

)

− ε2

2h̄2

(
p̂4

4m2
+ 2

p̂2

2m
V (r̂) + V 2(r̂)

)
+ · · · . (B.6)

Therefore, one has that

e−iεĤ/h̄ =
(
e−iεĤ/h̄

)(Ord)

+ O(ε2). (B.7)

and neglecting terms of O(ε2), one obtains
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U(rn+1, ε; rn, 0) '
∫ d3pn

(2πh̄)3/2
〈rn+1|pn〉〈pn|e−iεĤ(Ord)/h̄|rn〉 (B.8)

'
∫ d3pn

(2πh̄)3/2

eirn+1·pn/h̄

(2πh̄)3/2

[
e−iεH(Ord)(pn,rn)/h̄

]
, (B.9)

where (
e−iεH(pn,rn)/h̄

)(Ord)
= e−iεH(pn,rn)/h̄. (B.10)

Then, finally

U(rn+1, ε; rn, 0) '
∫ d3pn

(2πh̄)3 exp

[
irn+1 · pn

h̄
− iε

h̄

(
p2

n

2m
+ V (rn)

)]
. (B.11)
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Apêndice C

Closure for bosonic coherent states

In the present Appendix we show the correctness of Eq. (3.36). We start from the

expression given in the main text,

1 =
1

N
∫ D∏

i=1

dφ∗i dφi exp

(
− D∑

j=1
φ∗jφj

)
|φ〉〈φ|

=
1

N
∫ D∏

i=1

dφ∗i dφi exp

(
− D∑

j=1
φ∗jφj

)

×
∞∑

{n}=0

D∏

i=1

(φi)
ni

√
ni!

|n1 · · ·nD〉
∞∑

{n′}=0

D∏
j=1

(
φ∗j

)n′j

√
n′j!

〈n′1 · · ·n′D|. (C.1)

Making the change of variables

φ =
√

ρ eiθ, (C.2)

with ρ and θ real, one has

ρ = φ∗φ, e2iθ =
φ

φ∗
⇒ θ = − i

2
ln

(
φ

φ∗

)
. (C.3)

To obtain the the Jacobian (J) of the transformation, we note that

∂ρ

∂φ
= φ∗,

∂ρ

∂φ∗
= φ, (C.4)

∂θ

∂φ
= − i

2

1
φ∗
φ
φ∗

= − i

2

1

φ
,

∂θ

∂φ∗
= − i

2

(
− φ

(φ∗)2

)

φ
φ∗

=
i

2

1

φ∗
, (C.5)

and then

J = φ∗
(

i

2

1

φ∗

)
−

(
− i

2

1

φ

)
φ = i. (C.6)

In terms of the new variables, one obtains

1 =
iD

N
∫ D∏

i=1

dρi dθi exp


−

D∑

j=1

ρj



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×
∞∑

{n}=0

D∏

k=1

(√
ρk eiθk

)nk

√
nk!

|n1 · · ·nD〉
∞∑

{n′}=0

D∏

j=1

(√
ρj e−iθj

)n′j

√
n′j!

〈n′1 · · ·n′D|

=
iD

N
∫ D∏

i=1

dρi dθi exp


−

D∑

j=1

ρj




∞∑

{n,n′}=0

D∏

j=1

√
ρj

nj+n′j eiθj(nj−n′j)
√

nj!n′j!

× |n1 · · ·nD〉〈n′1 · · ·n′D|. (C.7)

Using the results

2π∫

0

dθ ei(n−n′)θ = 2πδn,n′ ,

∞∫

0

dρ e−ρρn = n!, (C.8)

we get

1 =
(2πi)D

N
∫ D∏

i=1

dρi exp


−

D∑

j=1

ρj




∞∑

{n}=0

D∏

j=1

ρ
nj

j

nj!
|n1 · · ·nD〉〈n1 · · ·nD| (C.9)

=
(2iπ)D

N
∞∑

{n}=0

|n1 · · ·nD〉〈n1 · · ·nD| = (2iπ)D

N . (C.10)

Therefore, with N = (2πi)D given in Eq. (3.37), one has proven the completeness

relation.
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Apêndice D

Numerical values of the fundamental Grassmann

integrals

For simplicity the following argumentation will be for one generator only. We know

that the l.h.s. of (3.77) is

〈f |g〉 = f ∗0 g0 + f ∗1 g1, (D.1)

but the r.h.s. needs some work before, lets define it as

(f, g) ≡
∫

dη∗dη f ∗(η)k(η∗, η)g(η∗)

=
∫

dη∗dη(f ∗0 + f ∗1 η)(k0 + k1η
∗ + k2η + k3η

∗η)g(η∗)

=
∫

dη∗dη(f ∗0 k0 + f ∗0 k1η
∗ + f ∗0 k2η

+f ∗0 k3η
∗η + f ∗1 k0η + f ∗1 k1ηη∗)g(η∗). (D.2)

Because of we are working with anticommuting variables we are going to impose,

analogously to the derivative, that any variable has to be next to the integral before

to operate

(f, g) =
∫

dη∗dη(f ∗0 k0 + f ∗0 k1η
∗ + f ∗0 k2η − f ∗0 k3ηη∗ + f ∗1 k0η + f ∗1 k1ηη∗)g(η∗)

=
∫

dη∗(f ∗0 k0I0 + f ∗0 k1I0η
∗ + f ∗0 k2I1

−f ∗0 k3I1η
∗ + f ∗1 k0I1 + f ∗1 k1I1η

∗)g(η∗), (D.3)

where we have defined

I0(η) ≡
∫

dη and I1(η) ≡
∫

dη η, (D.4)

and beign functions of one generator the I’s are of the form

I(η) = a + bη. (D.5)
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Continuing

(f, g) =
∫

dη∗[(f ∗0 k0I0 + f ∗0 k2I1 + f ∗1 k0I1)

+(f ∗0 k1I0 − f ∗0 k3I1 + f ∗1 k1I1)η
∗](g0 + g1η

∗)

=
∫

dη∗[(f ∗0 k0I0 + f ∗0 k2I1 + f ∗1 k0I1)g0 + (f ∗0 k0I0 + f ∗0 k2I1 + f ∗1 k0I1)g1η
∗

+(f ∗0 k1I0 − f ∗0 k3I1 + f ∗1 k1I1)g0η
∗]

=
∫

dη∗{[f ∗0 k0I0(η) + f ∗0 k2I1(η) + f ∗1 k0I1(η)]g0

+η∗[f ∗0 k0I0(−η) + f ∗0 k2I1(−η) + f ∗1 k0I1(−η)]g1

+η∗[f ∗0 k1I0(−η)− f ∗0 k3I1(−η) + f ∗1 k1I1(−η)]g0}
= I0(η

∗)[f ∗0 k0I0(η) + f ∗0 k2I1(η) + f ∗1 k0I1(η)]g0

+I1(η
∗)[f ∗0 k0I0(−η) + f ∗0 k2I1(−η) + f ∗1 k0I1(−η)]g1

+I1(η
∗)[f ∗0 k1I0(−η)− f ∗0 k3I1(−η) + f ∗1 k1I1(−η)]g0, (D.6)

for simplicity

I ′0 ≡ I0(η
∗) and I ′1 ≡ I1(η

∗), (D.7)

replacing

(f, g) = f ∗0 g0 [k0I
′
0I0(η) + k2I

′
0I1(η) + k1I

′
1I0(−η)− k3I

′
1I1(−η)]

+f ∗1 g0 [k0I
′
0I1(η) + k1I

′
1I1(−η)] + f ∗0 g1 [k0I

′
1I0(−η) + k2I

′
1I1(−η)]

+f ∗1 g1 [k0I
′
1I1(−η)] . (D.8)

If we equate this to Eq. (D.1) we get four equations

k0I
′
0I0(η) + k2I

′
0I1(η) + k1I

′
1I0(−η)− k3I

′
1I1(−η) = 1, (D.9)

k0I
′
0I1(η) + k1I

′
1I1(−η) = 0, (D.10)

k0I
′
1I0(−η) + k2I

′
1I1(−η) = 0, (D.11)

k0I
′
1I1(−η) = 1. (D.12)

From the last one

k0 6= 0 (D.13)

and

I ′1, I1 ∈ C − {0} ⇒ I ′1 = I1. (D.14)

Rewriting the four equations considering those two last conditions

k0I
′
0I0(η) + k2I

′
0I1 + k1I1I0(−η)− k3I

2
1 = 1, (D.15)

k0I
′
0I1 + k1I

2
1 = 0, (D.16)

k0I1I0(−η) + k2I
2
1 = 0, (D.17)

k0I
′
1I1 = 1. (D.18)
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From the third one and because of k0 6= 0

I0 ∈ C ⇒ I ′0 = I0, (D.19)

so

I0(k0I0 + k2I1) + k1I1I0 − k3I
2
1 = 1, (D.20)

(k0I0 + k1I1)I1 = 0, (D.21)

I1(k0I0 + k2I1) = 0, (D.22)

k0I
2
1 = 1. (D.23)

As I1 6= 0 and using the third equation in the first one

I1(k2I0 − k3I1) = 1, (D.24)

(k0I0 + k1I1) = 0, (D.25)

(k0I0 + k2I1) = 0, (D.26)

k0I
2
1 = 1 (D.27)

we find

k0 =
1

I2
1

, (D.28)

k1 = k2 = − I0

I3
1

, (D.29)

k3 = − 1

I2
1

(
1 +

I2
0

I2
1

)
. (D.30)

So far we have found strong similarities beetwen all the Boson and Fermion equa-

tions, our third reason is related to this. We are going to fix these new parameters

in order to keep this symmetry. From the previous section we know the form of the

inner product of two functions in the Boson coherent representation (3.42), that tell

us to do

k0 ≡ 1, (D.31)

k1 = k2 ≡ 0, (D.32)

k3 ≡ −1. (D.33)

With those we find the original function k

k(η∗, η) = 1− η∗η

= e−η∗η; (D.34)
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the inner product

〈f |g〉 =
∫

dη∗dηf ∗(η)e−η∗ηg(η∗); (D.35)

and then, the closure

I =
∫

dη∗dη |η〉e−η∗η〈η|

=
∫

dη∗dηe−η∗η|η〉〈η|, (D.36)

it is worth notice that it doesn’t have any normalization factor. Now the integrals

are almost fixed

I0 = 0, (D.37)

I1 = ±1. (D.38)

We are going to choose

I0 =
∫

dξ1 = 0 and I1 ≡
∫

dξξ = 1, (D.39)

not only for simplicity, but in order to have the same numerical values than of the

derivatives too.
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Apêndice E

Symmetrical term for the exponential in the

partition function

In Section 3.5, Path Integral for bosons and fermions, we mentioned that one can

arrive at two choices for the calculation of the partition function in the ordering of

the Grassmann variables, the second choice is

〈ξm+1|e−εΩ(a†,a)|ξm〉 with m = 0, · · · ,M − 1. (E.1)

We are going to follow the exact same steps. After we introduce the M−1 identities

(3.119)

Z =
∫ D∏

i=1

M−1∏

k=0

(
dξ∗i,kdξi,k

N

)
exp


−

M−1∑

l=0

D∑

j=1

ξ∗j,lξj,l




0∏

m=M−1

〈ξm+1|e−εΩ(a†,a)|ξm〉, (E.2)

we simple order it, and use (3.121)

Z =
∫ M−1∏

k=0

D∏

i=1

(
dξ∗i,kdξi,k

N

)
exp


−

M−1∑

l=0

D∑

j=1

ξ∗j,lξj,l




0∏

m=M−1


exp




D∑

p=1

ξ∗p,m+1ξp,m


 e−εΩ¯(ξ∗m+1,ξm)


 . (E.3)

Putting together the exponentials, the argument would be

M−1∑

l=0




D∑

j=1

(
ξ∗j,l+1 − ξ∗j,l

)
ξj,l − εΩ¯(ξ∗l+1, ξl)




= −ε
M−1∑

l=0


−

D∑

j=1

(
ξ∗j,l+1 − ξ∗j,l

)

ε
ξj,l + Ω¯(ξ∗l+1, ξl)


 . (E.4)

Replacing it in the partition

Z =
∫ M−1∏

k=0

D∏

i=1

(
dξ∗i,kdξi,k

N

)
e−R(ξ∗,ξ), (E.5)
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with

R(ξ∗, ξ) ≡ ε
M−1∑

k=0


−

D∑

j=1

(
ξ∗j,k+1 − ξ∗j,k

)

ε
ξj,k + Ω¯(ξ∗k+1, ξk)


 . (E.6)

Taking the limit M →∞

lim
M→∞

Z =
∫ ξ(β)

ξ(0)
D[ξ∗(τ)ξ(τ)] e−R(ξ∗,ξ), (E.7)

where

∫ ξ(β)

ξ(0)
D[ξ∗(τ)ξ(τ)] ≡ lim

M→∞

∫ M−∞∏

‖=′

D∏

〉=∞

(dξ∗〉,‖dξ〉,‖
N

)
, (E.8)

and

R(ξ∗, ξ) ≡
∫ β

′
dτ


−

D∑

|=∞

(
∂ξ∗| (τ)

∂τ

)
ξ|(τ) +⊗¯(ξ∗(τ), ξ(τ))


 . (E.9)

In which

lim
M→∞

(
ε

M−1∑

l=0

)
→

∫ β

0
dτ, (E.10)

and

lim
ε→0

(
ξ∗j,l − ξ∗j,l−1

)

ε
→ ∂ξ∗j (τ)

∂τ
. (E.11)
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Apêndice F

The Feynman ordering label technique

In the present Appendix we will explain Feynman’s ordering label technique that

we used in Section 5.4. As remarked there, this technique provides a simplification

on the notation, the final result is not different from the traditional path-ordering

we used in section 5.3. The issue is in some sense trivial, but nevertheless we believe

it is instructive to have an Appendix to to clarify the notation. We shall follow the

original exposition of Feynman in Ref. [39].

The problem of ordering two operators Â and B̂ appears because their algebra

is noncommutative in general, that is ÂB̂ 6= ÂB̂. The rules of ordinary algebra and

analysis for ordinary numbers are not directly applicable. For a single operator α̂,

there is no problem in defining a function of α̂, like through its power series

Â = eα̂ ≡ 1 + α̂ +
1

2
α̂α̂ +

1

3!
α̂α̂α̂ + · · ·

= 1 + α̂ +
1

2
(α̂)2 +

1

3!
(α̂)3 + · · · . (F.1)

In these cases the rules of ordinary algebra and analysis apply as for ordinary

numbers. The situation complicates when functions of another operator β̂, with

α̂β̂ 6= β̂α̂, are considered. Suppose B̂ = exp β̂, then in general B̂Â 6= ÂB̂, i.e.

B̂Â = eβ̂ eα̂ 6= eβ̂+α̂ for α̂β̂ 6= β̂α̂. (F.2)

Let us suppose that β̂ small and expand the exponential to first order in β̂. The

zeroth order in β̂ is of course exp α̂, but the first order is neither (exp α̂)β̂ nor

β̂(exp α̂).

Feynman devised a method to indicate the order in which operators are to operate

so as to free them of their noncommutative aspects. Feynman proposed to attach

an index to the operator with the convention that the operator with higher index

operates later. For example, both B̂1Â0 and Â0B̂1 mean B̂Â, i.e. the order of the

indexed operators can be commuted freely as Â0 and B̂1 were ordinary numbers.
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Thus, if Â = exp α̂ and B̂ = exp β̂, one can safely write

B̂Â = eα̂0+β̂1 , (F.3)

since there is only one way to interpret the exponential, namely

eα̂0+β̂1 = 1 + α̂0 + β̂1 +
1

2

(
α̂0 + β̂1

)2
+ · · ·

(F.4)

= 1 + α̂0 + β̂1 +
1

2

(
α̂2

0 + 2α̂0β̂1 + β̂2
1

)

(F.5)

= 1 + α̂ + β̂ +
1

2

(
α̂2 + 2α̂β̂ + β̂2

)
+ · · · . (F.6)

This is the correct answer, since

eα̂ eβ̂ =
(
1 + α̂ +

1

2
α̂2 + · · ·

) (
1 + β̂ +

1

2
β̂2 + · · ·

)

(F.7)

= 1 + β̂ +
1

2
β̂2 + α̂ + α̂β̂ +

1

2
α̂2 + · · ·

(F.8)

= 1 + α̂ + β̂ +
1

2

(
α̂2 + 2α̂β̂ + β̂2

)
+ · · · . (F.9)

Let us write the exponential of the sum α̂ + β̂ as

exp(α̂ + β̂) = lim
n→∞

[
exp

1

n
(α̂ + β̂)

]n

= lim
n→∞

[
1 +

1

n
(α̂ + β̂)

]n

= lim
n→∞

[
1 +

1

n
(α̂ + β̂)

] [
1 +

1

n
(α̂ + β̂)

]
· · ·

[
1 +

1

n
(α̂ + β̂)

]

︸ ︷︷ ︸
n times

. (F.10)

In each factor 1+1/n (α̂+ β̂) we replace α̂+ β̂ by α̂i + β̂i, with 1 ≤ i ≤ n, and write

exp(α̂ + β̂) = lim
n→∞

[
1 +

1

n
(α̂n + β̂n)

] [
1 +

1

n
(α̂n−1 + β̂n−1)

]
· · ·

[
1 +

1

n
(α̂1 + β̂1)

]

= lim
n→∞

[
1 +

1

n
(α̂n + β̂n) +

1

n
(α̂n−1 + βn−1) + · · ·+ 1

n
(α̂1 + β̂1)

]

= lim
n→∞ exp

[
1

n

n∑

i=1

(α̂i + β̂i)

]
. (F.11)
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In the limit of n → ∞, the discrete index becomes continuous i/n → s, 0 ≤ s ≤ 1,

with 1/n → ds, α̂i → α̂(s), β̂i → β̂(s), and

exp(α̂ + β̂) = exp
∫ 1

0
ds [α̂(s) + β̂(s)]. (F.12)

As Feynman remarked, it is evident that this expression is correct: calling α̂(s) +

β̂(s) = γ(s), with γ a definite operator operating at order s, one has that

exp
[∫ 1

0
ds γ̂(s)

]
= exp

[∫ 1

0
ds γ̂

]
, (F.13)

since γ does not need to have the s dependence, it commutes with itself the integral,

and therefore ∫ 1

0
ds γ̂(s) = γ

∫ 1

0
ds = γ. (F.14)

The expression in Eq. (F.12) at itself is trivial, but its nontrivial feature is that

the r.h.s. can be manipulated as α̂(s) and β̂(s) were ordinary functions of s, since

the order of operations will always be automatically specified by the index. For

example, in particular

exp(α̂ + β̂) = exp
∫ 1

0
ds [α̂(s) + β̂(s)]

= exp
[∫ 1

0
ds1 α̂(s1) +

∫ 1

0
ds2 β̂(s2)

]

=
[
exp

∫ 1

0
ds1 α̂(s1)

] [∫ 1

0
ds2 β̂(s2)

]
. (F.15)

Let us check this for the lowest nontrivial order. The l.h.s. of this expression

gives

exp(α̂ + β̂) = 1 + α̂ + β̂ +
1

2

(
α̂2 + α̂β̂ + β̂α̂ + β̂2

)
+ · · · . (F.16)

The ordering issue here is with respect to the term (α̂β̂ + β̂α̂)/2 . Let us see how

this ordering appears with the integrals on the r.h.s. of Eq. (F.15). The ordering

comes from the product of integrals
∫ 1
0 ds1 α̂(s1)

∫ 1
0 ds2 β̂(s2), which can be written

as
∫ 1

0
ds1 α̂(s1)

∫ 1

0
ds2 β̂(s2) =

∫ 1

0
ds1 α̂(s1)

∫ s1

0
ds2 β̂(s2)

+
∫ 1

0
ds1 α̂(s1)

∫ s1

s1

ds2 β̂(s2). (F.17)

In the first integral on the r.h.s. one has s1 > s2, so that α̂(s1)β̂(s2) = α̂β̂ and the

value of the integral is
∫ 1

0
ds1 α̂(s1)

∫ s1

0
ds2 β̂(s2) = α̂β̂

∫ 1

0
ds1

∫ s1

0
ds2
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= α̂β̂
∫ 1

0
ds1s1

=
1

2
α̂β̂. (F.18)

In the second integral, one has s2 > s1, then α̂(s1)β̂(s2) = β̂α̂, and the value of the

integral is
∫ 1

0
ds1 α̂(s1)

∫ 0

s1

ds2 β̂(s2) = β̂α̂
∫ 1

0
ds1

∫ 1

s1

ds2

= β̂α̂
∫ 1

0
ds1(1− s1)

= α̂β̂
(
1− 1

2

)

=
1

2
α̂β̂. (F.19)

A case of interest to the present dissertation is when we want to expand exp(α̂+β̂)

for β̂ small. Let us consider the expansion to first order in β̂,

exp(α̂ + β̂) =
[
exp

∫ 1

0
ds1 α̂(s1)

] [∫ 1

0
ds2 β̂(s2)

]

≈
[
exp

∫ 1

0
ds1 α̂(s1)

] (
1 +

∫ 1

0
ds2 β̂(s2)

)

= exp
∫ 1

0
ds1 α̂(s1) +

[
exp

∫ 1

0
ds1 α̂(s1)

] ∫ 1

0
ds2 β̂(s2). (F.20)

The first term is trivial and gives exp α̂. In the second term, we break the integral

over s1 as
[
exp

∫ 1

0
ds1 α̂(s1)

]
=

[
exp

∫ 1

s2

ds1 α̂(s1)
] [

exp
∫ s2

0
ds1 α̂(s1)

]
. (F.21)

So, we have to consider the ordering of
[
exp

∫ 1

s2

ds1 α̂(s1)
] [

exp
∫ s2

0
ds1 α̂(s1)

]
β̂(s2). (F.22)

The α̂(s1) in the first factor acts after β̂(s2) and is for all effects independent of s1,

but α̂(s1) in the second term is to act before β̂(s2). So, if we write β̂(s2) between

both terms and imply the usual convention, the α̂(s1)’s become independent of s1

in the range from 0 to s2 and one may perform the integrals
[
exp

∫ 1

0
ds1 α̂(s1)

] ∫ 1

0
ds2 β̂(s2) = [exp α̂]

∫ 1

0
ds [exp(−s)α̂] β̂ [exp sα̂]

= eα̂
∫ 1

0
ds e−sα β̂ esα̂. (F.23)
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That is, we have obtained the result

eα̂+β̂ = eα̂
[
1 +

∫ 1

0
ds e−sα β̂ esα̂ + · · ·

]
, (F.24)

which coincides with Eq. (5.46) to first order.

It is important to note that in a practical calculation, an expression like
∫ 1
0 ds α̂(s)

standing alone is obviously equal to α, but it is far from trivial when multiplied by

factors involving
∫ 1
0 ds β̂(s). This means one must consider the complete expression

as a functional of α̂(s), β̂(s), etc.

One last remark: if one has

exp[−λ(α̂ + β̂)], (F.25)

where λ is an ordinary number, Feynman’s formula is

exp[−λ(α̂ + β̂)] = exp
∫ λ

0
ds [α̂(s) + β̂(s)]

=

[
exp

∫ λ

0
ds1 α̂(s1)

] [∫ λ

0
ds2 β̂(s2)

]
, (F.26)

as can be easily checked.
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