

Universidade Federal do Rio de Janeiro Centro de Ciências da Saúde Núcleo de Pesquisas de Produtos Naturais

"Avaliação de novos derivados 2-aril-1H-antra[1,2d]imidazo-6,11-diônicos como quimiossensores fluorescentes na detecção de íons fluoreto."

TIAGO TEIXEIRA GUIMARÃES

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Tiago Teixeira Guimarães

"Avaliação de novos derivados 2-aril-1H-antra[1,2d]imidazo-6,11-diônicos como quimiossensores fluorescentes na detecção de íons fluoreto."

> Dissertação de mestrado apresentada junto ao Programa de Pós-graduação em Química de Produtos Naturais, Núcleo de Pesquisas de Produtos Naturais (NPPN) da Universidade Federal do Rio de Janeiro (UFRJ), como parte dos requisitos necessários à obtenção do título de Mestre em Ciências.

Orientadores: Professor Doutor Antonio Ventura Pinto Professor Doutor Carlos Eduardo Martins Carvalho

> Rio de Janeiro Setembro de 2009

Guimarães, Tiago Teixeira.

Avaliação de novos derivados 2-aril-1*H*-antra[1,2-*d*]imidazo-6,11diônicos como quimiossensores fluorescentes na detecção de íons fluoreto/ Tiago Teixeira Guimarães. - Rio de Janeiro: UFRJ/ NPPN, 2009.

xxv, 230f.: il.; 29,7cm.

Orientadores: Antonio Ventura Pinto; Carlos Eduardo Martins Carvalho

Dissertação (mestrado) – UFRJ/ NPPN/ Programa de Pós-graduação em Química de Produtos Naturais, 2009.

Referências Bibliográficas: f. 126-129.

1. Fluorescência. 2. Quimiossensor. 3. Fluoreto. 4. Imidazóis. I. Pinto, Antonio Ventura; Carvalho, Carlos Eduardo Martins. II. Universidade Federal do Rio de Janeiro, Núcleo de Pesquisa de Produtos Naturais, Programa de Pós-graduação em Química de Produtos Naturais. III. Título.

NÚCLEO DE PESQUISAS DE PRODUTOS NATURAIS Bloco H, CCS, 21941-590, Ilha do Fundão, Rio de Janeiro, RJ Tel/Fax (021) 2562-6791 / 2562-6512 e-mail: posgrad@nppn.ufrj.br

"Avaliação de Novos Derivados 2-Aril-1H-Antra[1,2-d]Imidazo-6,11-Diônicos como Quimiossensores Fluorescentes na Detecção de Íons Fluoreto"

TIAGO TEIXEIRA GUIMARÃES (Autor)

Antonio Ventura Pinto e Carlos Eduardo Martins Carvalho (Orientadores)

Dissertação de Mestrado submetida ao Programa de Pós-graduação em Química de Produtos Naturais, do Núcleo de Pesquisas de Produtos Naturais, da Universidade Federal do Rio de Janeiro-UFRJ, como parte dos requisitos necessários à obtenção do título de Mestre em Ciências.

Aprovada por:

Presidente, Prof. Dr. Carlos Eduardo Martins Carvalho

Prof. Dr. Mauro Barbosa de Amorim

Prof. Dr. Rodrigo Jose Correa

Prof. Dr. Vitor Francisco Ferreira

Rio de Janeiro setembo/2009

Este trabalho foi desenvolvido sob as orientações dos Professores **Antônio Ventura Pinto** do Núcleo de Pesquisas em Produtos Naturais (NPPN) da Universidade Federal do Rio de Janeiro (UFRJ) e **Carlos Eduardo Martins Carvalho** da Universidade Estadual da Zona Oeste (UEZO). A Deus por, continuamente, iluminar minha jornada terrena....

v

Aos meus pais, que tanto lutaram pela minha formação, habilitando-me a caminhar sozinho em busca de meus próprios sonhos; e aos meus familiares, em especial, avó e irmã pelo carinho e conforto nos momentos difíceis...

À amada Camila Sousa Campos da Costa pelo incentivo e companheirismo sempre presentes nos momentos de adversidade, fundamentais para o meu não esmorecimento e minha contínua busca do aperfeiçoamento científico e pessoal: Minha eterna gratidão!

Agradecimentos

Ao Professor Dr. Antônio Ventura Pinto pela orientação, amizade e confiança fundamentais para meu aprimoramento acadêmico e pessoal.

Ao Professor Dr. Carlos Eduardo Martins Carvalho pela orientação e direcionamento no trabalho desenvolvido e pela de tranqüilidade transmitida durante os momentos difíceis.

À imprescindível amiga Maria do Carmo Freire Ribeiro Pinto pelo carinho e pronta disposição a ajudar fossem quaisquer as dificuldades encontradas ao longo de minha trajetória.

Aos amigos de laboratório Paula Fernandes Carneiro, Natalino Germano, em especial, Kelly Cristina Gallan de Moura e Raphael Salles Ferreira da Silva por toda ajuda e incentivo.

Ao amigo Eufrânio Nunes da Silva Junior, UnB, pela colaboração e discussões sempre produtivas e animadas.

Aos alunos de iniciação científica Caio Bruno R. Mendonça, Karina P. Del Rio, Rodrigo Bretas Ferreira e Tatiane S. C. Carvalho de relevada importância na realização deste trabalho.

À Central Analítica do NPPN nas pessoas do Prof. Dr. Antonio Jorge Ribeiro da Silva, Maria Cristina de Holanda Pereira Lima, Francisco de Assis Vieira dos Santos pela realização dos espectros de ressonância magnética nuclear, de massa.

Ao Professor Dr. Carlos Alberto de Simone do IQ/UFAL pelo trabalho de Cristalografia de Raios-X.

Aos alunos e professores do Laboratório de Fotoquímica – IQ/UFRJ nas pessoas dos Professores Dr. Rodrigo José Correa e Dr^a Nanci Câmara de Lucas Garden, pela hospitalidade e equipamentos cedidos para a realização deste trabalho.

Ao funcionário Eduardo Miguez, IMA/UFRJ, pela realização de espectros de ressonância magnética nuclear.

À Central Analítica do IQ/UFRJ, em especial à Leonice Coelho, pelos espectros de infravermelho.

À CAPES pela bolsa de estudo concedida.

À toda comunidade do NPPN.

A todas as pessoas que contribuíram direta ou indiretamente para a realização deste trabalho.

RESUMO

Este trabalho estuda o potencial quimiossensor de 2-aril-1H-antra-[1,2d]imidazo-6,11-dionas para a detecção de íons fluoreto.

Novos derivados 2-aril-1*H*-antra-[1,2-*d*]imidazo-6,11-diônicos foram sintetizados a partir da reação de condensação da 1,2-diaminoantraquinona com aldeídos aromáticos de diferentes padrões de substituição.

Os derivados fllúor-substituídos, 2-(2-fluorofenil)-1H-antra-[1,2d]imidazo-6,11-diona (22), 2-(3-fluorofenil)-1H-antra-[1,2-d]imidazo-6,11diona (23) e 2-(4-fluorofenil)-1H-antra-[1,2-d]imidazo-6,11-diona (24) exibiram comportamento semelhante a 2-fenil-1H-antra-[1,2-d]imidazo-6,11-diona (6), não substituído, revelando a inexistência de interações intra e/ou intermoleculares associadas ao flúor interno.

Dos quatorze derivados inéditos sintetizados, os derivados 2-(3-fluorofenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona **(23)** e 2-(4-cianofenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona **(25)** apresentaram valores de R_{max}/R_{min} maiores que apresentados por **6** quimiossensor de conhecida eficiência para FTBA.

A detecção de íons fluoreto pelas 2-aril-1H-antra-[1,2-d]imidazo-6,11dionas, associada a uma organização supramolecular desfeita na presença de água, inviabiliza o uso desta classe de quimiossensores em meio aquoso.

ABSTRACT

This work studies the chemosensor potential of 2-aryl-1*H*-anthra-[1,2-d] imidazo-6,11-diones for the detection of fluoride ions.

New derivatives 2-aryl-1*H*-anthra-[1,2-*d*]imidazo-6,11-diones were synthesized from the condensation reaction of 1,2-diaminoanthraquinone with aromatic aldehydes of different substitution patterns.

The fluor-substituted derivatives 2-(2-fluorphenyl)-1H-anthra-[1,2d]imidazo-6,11-dione (22), 2-(3-fluorphenyl)-1H-anthra-[1,2-d]imidazo-6,11dione (23) and 2-(4-fluorphenyl)-1H-anthra-[1,2-d]imidazo-6,11-dione (24) shown behavior similar to 2-aryl-1H-anthra-[1,2-d]imidazo-6,11-dione (6), unsubstituted, revealing the absence of intra and/or intermolecular interactions associated with the internal fluoride.

From the fourteen novel synthesized derivatives, 2-(3-fluorphenyl)-1*H*-anthra[1,2-*d*]imidazo-6,11-dione (23) and 2-(4-cyanophenyl)-1*H*-anthra[1,2-*d*]imidazo-6,11-dione (25) showed values of R_{max}/R_{min} larger than presented by 6, quimiossensor of known efficiency for TBAF.

The detection of fluoride ions by 2-aryl-1H-anthra[1,2-d]imidazo-6,11diones, associated with a supramolecular organization which is undone in the presence of water, preclude the use of this class of quimiossensores in aqueous medium.

SUMÁRIO

Resumo	X
Abstract	xi
Índice de figuras	xviii
Índice de esquemas	xxi
Índice de tabelas	xxiii
Lista de abreviaturas e acrônimos	xxiv
1. Introdução	
1.1. Considerações gerais	27
1.2. 2-aril-1 <i>H</i> -antra[1,2- <i>d</i>]imidazo-6,11-diona	29
1.2.1. Nova Classe de Quimiossensores	29
1.2.2. Síntese de 2-aril-1 <i>H</i> -antra[1,2- <i>d</i>]imidazo-6,11- dionas	31
1.3. Interação da luz com a matéria	34
1.3.1. Absorção UV-Visível (Transição eletrônica)	34
1.3.2. Processos de desexcitação	37
1.3.3. Transições entre estados eletrônicos	39
1.4. Sondas Fluorescentes	41
1.5. Espectrofotometria de fluorescência (fluorimetria)	43
1.5.1. Principais características da emissão de fluorescência	44
1.5.1.a. Intensidade de fluorescência (i _F):	44
1.5.1.b. Deslocamento de Stokes (Δv)	44

1.5.1.c. Rendimento quântico de fluorescência	
$(\Phi_{\rm F})$	46
1.5.1.d. Tempo de vida do estado excitado (τ):	47

2. Objetivos

2.1. Objetivos gerais	50
2.2. Objetivo específico I	50
2.3. Objetivo específico II	50
2.4. Objetivo específico III	50
2.5. Objetivo específico IV	50
2.6. Objetivo específico V	50

3. Resultados e Discussão

3.1. Síntese das 2-aril-1H-antra[1,2-d]imidazo-6,11-dionas	52
3.1.1. Síntese do 2-(4-nitrofenil)-1H-antra[1,2- d]imidazo-6,11-diona	56
3.1.2. Síntese da 2-(4-aliloxi-3-metoxifenil)-1H- antra[1,2-d] imidazo -6,11-diona	58
3.2. Isolamento e purificação dos derivados sintetizados	60
3.3. Copolimerização randômica: Incorporação do corante32 em polímero de estireno	61
3.4. Análise de dados físicos	62
3.5. Estudos fotofísicos e fotoquímicos	67
3.5.1. Influência de fluor interno	67
3.5.1.1. Efeito do solvente e momento dipolar	70
3.6. Detecção de fluoreto na forma de sal inorgânico (NaF)	75
3.7. Efeitos dos substituintes na fluorescência de derivados 2-aril-1H-antra[1,2-d]imidazo-6,11-diônicos na ausência de FTBA	79
3.8. Efeitos dos substituintes na fluorescência de derivados 2-aril-1H-antra[1,2-d]imidazo-6,11-diônicos na presença de FTBA	83

3.9. Influência do cátion tetrabutilamônio na fluorescência da banda TPES	93
4. Conclusões	98
5. Parte Experimental	
5.1. Materiais e Métodos	101
5.2. Reações	103
5.2.1. Preparação das 2-aril-1 <i>H</i> -antra[1,2- <i>d</i>]imidazo-6,11- dionas	103
5.2.1.1. Método 1: orto-diamina e aldeído	103
5.2.1.2. Método 2: orto-diamina e cloreto de ácido	120
5.2.2. O-alilação da 2-(4-hidroxi-3-metoxifenil)-1 <i>H</i> - antra[1,2- <i>d</i>]imidazo-6,11-diona	122
5.2.2.1. Formação do sal de sódio	122
5.2.3. Copolimerização em emulsão da 2-(4-aliloxi-3- metoxifenil)-1H-antra[1,2-d]imidazo-6,11-diona e estireno	124
6. Referências Bibliográficas	126
Apêndices	
Apêndice A – Espectros de absorção UV/visível na presença de FTBA	131
Apêndice B – Espectros de emissão de fluorescência na presença de FTBA	140
Apêndice C – Dados cristalográficos	149
Apêndice D – Nomenclatura oficial das substâncias sintetizadas neste trabalho	166
Apêndice E – Estruturas das substâncias sintetizadas neste trabalho	167
Apêndice F – Espectros	169

Espectro nº 1: I.V. da substância 6	169
Espectro nº 2: E.M. da substância 6	170
Espectro nº 3: RMN- ¹ H da substância 6	171
Espectro nº 4: RMN- ¹³ C da substância 6	172
Espectro nº 5: RMN- ¹³ C APT da substância 6	173
Espectro nº 6: I.V. da substância 14	174
Espectro nº 7: RMN- ¹ H da substância 14	175
Espectro nº 8: RMN- ¹ H expandido da substância 14	176
Espectro nº 9: RMN- ¹³ C da substância 14	177
Espectro nº 10: RMN- ¹³ C APT da substância 14	178
Espectro nº 11: I.V. da substância 15	179
Espectro nº 12: RMN- ¹ H da substância 15	180
Espectro nº 13: RMN- ¹ H expandido da substância 15	181
Espectro nº 15: RMN- ¹³ C da substância 15	182
Espectro nº 15: RMN- ¹³ C APT da substância 15	183
Espectro nº 16: I.V. da substância 16	184
Espectro nº 17: RMN- ¹ H da substância 16	185
Espectro nº 18: I.V. da substância 17	186
Espectro nº 19: RMN- ¹ H da substância 17	187
Espectro nº 20: I.V. da substância 18	188
Espectro nº 21: RMN- ¹ H da substância 18	189
Espectro nº 22: RMN- ¹³ C APT da substância 18	190
Espectro nº 23: RMN- ¹³ C APT expandido da	
substância 18	191
Espectro nº 24: I.V. da substância 19	192
Espectro nº 25: RMN- ¹ H da substância 19	193
Espectro nº 26: I.V. da substância 20	194
Espectro nº 27: RMN- ¹ H da substância 20	195
Espectro nº 28: I.V. da substância 21	196
Espectro nº 29: RMN- ¹ H da substância 21	197

Espectro nº 30: RMN- ¹³ C APT da substância 21	198
Espectro nº 31: I.V. da substância 22	199
Espectro n° 32: RMN- ¹ H da substância 22	200
Espectro n° 33: RMN- ¹ H, troca com D_2O , da substância 22	201
$\mathbf{F}_{\text{an estud}} = \mathbf{P} \mathbf{P} \mathbf{A} \mathbf{F} \mathbf{V} \mathbf{A} \mathbf{e} \text{ substâncie } \mathbf{P} \mathbf{A}$	201
Espectro nº 54: 1. V. da substancia 25	202
Espectro nº 35: RMN- H da substancia 23	203
Espectro nº 36: I.V. da substância 24	204
Espectro n° 37: RMN- ¹ H da substância 24	205
Espectro n° 38: RMN- ¹ H, troca com D ₂ O, da	
substância 24	206
Espectro nº 39: I.V. da substância 25	207
Espectro n° 40: RMN- ¹ H da substância 25	208
Espectro nº 41: I.V. da substância 26	209
Espectro n° 42: RMN- ¹ H da substância 26	210
Espectro n° 43: RMN- ¹ H expandido da substância 26	211
Espectro nº 44: RMN- ¹³ C da substância 26	212
Espectro nº 45: RMN- ¹³ C APT da substância 26	213
Espectro nº 46: I.V. da substância 27	214
Espectro n° 47: RMN- ¹ H da substância 27	215
Espectro n° 48: RMN- ¹ H expandido da substância 27	216
Espectro nº 49: RMN- ¹³ C da substância 27	217
Espectro nº 50: RMN- ¹³ C APT da substância 27	218
Espectro nº 51: I.V. da substância 28	219
Espectro nº 52: RMN- ¹ H da substância 28	220
Espectro n° 53: RMN- ¹ H expandido da substância 28	221
Espectro nº 54: RMN- ¹³ C da substância 28	222
Espectro nº 55: RMN- ¹³ C APT da substância 28	223
Espectro nº 56: I.V. da substância 29	224
Espectro n° 57: RMN- ¹ H da substância 29	225

Espectro nº 58: I.V. da substância 30	226
Espectro nº 59: RMN- ¹ H da substância 30	227
Espectro n° 60: RMN- ¹ H expandido da substância 30	228
Espectro nº 61: I.V. da substância 32	229
Espectro n° 62: RMN- ¹ H da substância 32	230

ÍNDICE DE FIGURAS

Figura 1:	Quimiossensores de ânions descritos na literatura	29
Figura 2:	Estrutura da 2-fenil-1 <i>H</i> -antra[1,2- <i>d</i>]imidazo- 6,11-diona (6)	30
Figura 3:	Registro fotográfico da emissão de fluorescência da 2-fenil-1 <i>H</i> -antra[1,2- <i>d</i>]imidazo-6,11-diona (6)	31
Figura 4:	Primeiros quimiossensores contendo o fluoróforo 2-fenil-1 <i>H</i> -antra[1,2- <i>d</i>]imidazo-6,11-diona (6)	31
Figura 5:	Ligação de hidrogênio intramolecular	32
Figura 6:	Possíveis processos de relaxação molecular no estado excitado	39
Figura 7:	Estrutura do triptofano (11)	43
Figura 8:	Poliestireno marcado com antraceno	43
Figura 9:	Estruturas do1,6-difenilhexatrieno (12) e da piranina (13)	44
Figura 10:	Relação entre os máximos de absorção e emissão: Deslocamento de Stokes	45
Figura 11:	Efeito do substituinte sobre a eletrofilicidade do carbono carbonílico.	54
Figura 12:	Fluorescência do filme de poliestireno incorporado com 32 excitado em 365 nm	60
Figura 13:	Assinalamentos de referência na ressonância magnética nuclear de ¹ H.	63
Figura 14:	Assinalamento de referência na ressonância magnética nuclear de ¹³ C	63
Figura 15:	Representação ORTEP da 2-fenil-1 <i>H</i> -antra[1,2- <i>d</i>]imidazo-6,11-diona hidratada	64
Figura 16:	Atribuição dos sinais de hidrogênio da substância 32	65

Figura 17:	Análogos flúor-substituídos 22, 23 e 24	67
Figura 18:	Espectro de absorção e fluorescência de 6 em acetonitrila 7,1x10 ⁻⁶ mol/L	67
Figura 19:	Espectro de absorção (1), excitação (2) e emissão de fluorescência (3) de 22 em acetonitrila 3,0x10 ⁻⁵ mol/L	68
Figura 20:	Espectro de absorção e emissão de fluorescência de 23 em acetonitrila 3,2x10 ⁻⁵ mol/L	68
Figura 21:	Espectro de absorção e emissão de fluorescência de 24 em acetonitrila 1,1x10 ⁻⁵ mol/L	69
Figura 22:	Gráfico $\Delta f \ge \Delta v$ da substância 6	72
Figura 23:	Gráfico $\Delta f \ge \Delta v$ da substância 22	72
Figura 24:	Gráfico $\Delta f \ge \Delta v$ da substância 23	73
Figura 25:	Gráfico $\Delta f \ge \Delta v$ da substância 24	73
Figura 26:	Espectro de emissão de fluorescência de 6 (1,5x10 ⁻⁵ mol/L) na presença de NaF em acetonitrila	75
Figura 27:	Espectros de emissão de fluorescência de 6 na presença de quantidade crescente de NaF aquoso e água	76
Figura 28:	Gráfico da adição de Na F_{aq} e H ₂ O x intensidade de fluorescência de 6	77
Figura 29:	Ligações hidrogênio entre 6 e água no empacotamento cristalino	78
Figura 30:	Coplanaridade dos orbitais π no estado excitado de 14	80
Figura 31:	Rotação proibida ao longo da ligação $C_2 - C_r$	81
Figura 32:	Mudança do espectro de absorção de 6 (2, $3x10^{-5}$ mol/L) em CH ₃ CN após adições de FTBA	83
Figura 33:	Mudança do espectro de absorção de 16 (2,2x10 ⁻⁵ mol/L) em CH ₃ CN após adições de FTBA	84

Figura 34:	Mudança do espectro de emissão (λ_{ex} 437 nm) de 26 (1,1x10 ⁻⁵ mol/L) em CH ₃ CN após adições de FTBA	86
Figura 35:	Mudança do espectro de emissão (λ_{ex} 459 nm) de 28 (1,0x10 ⁻⁵ mol/L) em CH ₃ CN após adições de FTBA	86
Figura 36:	Mudança do espectro de emissão (λ_{ex} 427 nm) de 27 (1,3x10 ⁻⁵ mol/L) em CH ₃ CN após adições de FTBA	87
Figura 37:	Mudança do espectro de emissão (λ_{ex} 423 nm) de 25 (1,6x10 ⁻⁵ mol/L) em CH ₃ CN após adições de FTBA	88
Figura 38:	Mudança do espectro de emissão (λ_{ex} 419 nm) de 31 (1,1x10 ⁻⁵ mol/L) em CH ₃ CN após adições de FTBA	88
Figura 39:	Mudança do espectro de emissão (λ_{ex} 421 nm) de 22 (2,7x10 ⁻⁵ mol/L) em CH ₃ CN após adições de FTBA	89
Figura 40:	Mudança do espectro de emissão (λ_{ex} 425 nm) de 24 (3,5x10 ⁻⁵ mol/L) em CH ₃ CN após adições de FTBA	90
Figura 41:	Mudança do espectro de emissão (λ_{ex} 421 nm) de 23 (2,0x10 ⁻⁵ mol/L) em CH ₃ CN após adições de FTBA	90
Figura 42:	Mudança do espectro de emissão (λ_{ex} 437 nm) de 14 (1,4x10 ⁻⁵ mol/L) em CH ₃ CN após adições de FTBA	91
Figura 43:	Mudança do espectro de emissão (λ_{ex} 428 nm) de 15 (1,5x10 ⁻⁵ mol/L) em CH ₃ CN após adições de FTBA	92
Figura 44:	Figura 44: Mudança do espectro de absorção de (6) $(2x10^{-5} \text{ mol/L})$ em CH ₃ CN após adições de FTBA e H ₂ O.	94
Figura 45:	Mudança do espectro de emissão (λ_{ex} 427 nm) de 6 (3,4x10 ⁻⁵ mol/L) em CH ₃ CN após adições de FTBA e H ₂ O	95

ÍNDICE DE ESQUEMAS

Esquema 1:	Estrutura dos isômeros 2-aril-1 <i>H</i> - antra[<i>d</i>]imidazo-6,11-diônicos	33
Esquema 2:	Rotas sintéticas para obtenção de imidazóis	33
Esquema 3:	Retrossíntese das 2-aril-antra[d] imidazo-6,11- dionas	34
Esquema 4:	2-aril-antra[1,2- <i>d</i>]imidazo-6,11-diona: Equilíbrio tautomérico	34
Esquema 5:	Representação esquemática dos possíveis tipos de transições eletrônicas	36
Esquema 6:	Representação gráfica dos estados singleto e tripleto	37
Esquema 7:	Possíveis processos de excitação eletrônica	37
Esquema 8:	Tipos de interação luz-matéria	39
Esquema 9:	Diagrama de Jablonski	42
Esquema 10:	Obtenção de derivados 2-aril-1 <i>H</i> -antra[1,2- <i>d</i>]imidazo-6,11-diônicos	52
Esquema 11:	Proposta mecanística para formação do núcleo imidazólico	53
Esquema 12:	Tentativa de obtenção de 2-heteroaril-1 <i>H</i> - antra[1,2- <i>d</i>]imidazo-6,11-dionas	54
Esquema 13:	Proposta mecanística da N-substituição	57
Esquema 14:	Proposta mecanística do fechamento do anel imidazólico	57
Esquema 15:	Proposta mecanística para síntese de 32	62
Esquema 16:	Fragmentações iniciais da 2-fenil-1 <i>H</i> -antra[1,2- <i>d</i>]imidazo-6,11-diona	82
Esquema 17:	Interação entre 2-aril-1 <i>H</i> -antra[1,2- <i>d</i>]imidazo- 6,11-dionas e fluoreto	103
Esquema 18:	Síntese da substância 6	104

Esquema 19:	Síntese da substancia 14	105
Esquema 20:	Síntese da substancia 15	106
Esquema 21:	Síntese da substancia 16	107
Esquema 22:	Síntese da substancia 17	108
Esquema 23:	Síntese da substancia 18	109
Esquema 24:	Síntese da substancia 19	110
Esquema 25:	Síntese da substancia 20	111
Esquema 26:	Síntese da substancia 21	112
Esquema 27:	Síntese da substancia 22	113
Esquema 28:	Síntese da substancia 23	114
Esquema 29:	Síntese da substancia 24	115
Esquema 30:	Síntese da substancia 25	116
Esquema 31:	Síntese da substancia 26	117
Esquema 32:	Síntese da substancia 27	118
Esquema 33:	Síntese da substancia 28	119
Esquema 34:	Síntese da substancia 29	120
Esquema 35:	Síntese da substancia 30	122
Esquema 36:	Síntese da substancia 32	123
Esquema 37:	Reação de copolimerização randômica	123

ÍNDICE DE TABELAS

Tabela 1:	Produtos obtidos, seus rendimentos e tempo de reação	55
Tabela 2:	Dados fotofísicos das substâncias 6, 22, 23, 24 em acetonitrila	69
Tabela 3:	Comprimentos de onda de absorção e emissão de 6 nos diferentes solventes	70
Tabela 4:	Comprimentos de onda de absorção e emissão de 22 nos diferentes solventes	70
Tabela 5:	Comprimentos de onda de absorção e emissão de 23 nos diferentes solventes	70
Tabela 6:	Comprimentos de onda de absorção e emissão de 24 nos diferentes solventes	70
Tabela 7:	Diferenças no momento dipolar das substâncias 6, 22, 23 e 24	74
Tabela 8:	Resultados fotofísicos em acetonitrila	79
Tabela 9:	Razão entre os rendimentos quânticos de fluorescência dos derivados substituídos e 6	79
Tabela 10:	Razão entre as intensidades de fluorescência antes e após TPES	85
Tabela 11:	Valores de R_r (R_{max}/R_{min}).	92
Tabela 12:	Razão entre concentrações de TBAF e 2-aril- 1 <i>H</i> -antra[1,2- <i>d</i>]imidazo-6,11-dionas	93

Lista de Abreviaturas e Acrônimos

δ	Deslocamento químico	
λ	Comprimento de onda	
ab	Absorção	
APT	"Attached Proton Test"	
C.C.F.	Cromatografia em camada fina	
CLAE	Cromatografia líquida de alta eficiência	
cm ⁻¹	Centímetro recíproco	
em	Emissão	
E.M.	Espectro n° de massa	
Esq.	Esquema	
exc	Excitação	
Fig.	Figura	
fl	Fluorescência	
FTBA	Fluoreto de tetrabutilamônio	
номо	"Highest occupied molecular orbital"	
HSCCC	Cromatografia contra-corrente de alta velocidade	
CI	Conversão interna	
CIS	Cruzamento intersistemas	
I.V.	Infravermelho	
J	Constante de acoplamento	
K _D	Constante de distribuição	
LUMO	"Lowest unoccupied molecular orbital"	
РЕТ	Transferência de elétron fotoinduzida	
p.f.	Ponto de fusão	
ppm	Parte por milhão	

RMN ¹³ C	Ressonância Magnética Nuclear de Carbono 13	
RMN ¹ H	Ressonância Magnética Nuclear de Hidrogênio	
rpm	Rotação por minuto	
Tab.	Tabela	
TC	Transferência de carga	
TCF	Transferência de carga fotoinduzida	
TBA	Tetrabutilamônio	
TPES	Transferência de próton no estado excitado	
U.V.	Ultravioleta	

<u>Introdução</u>

1. Introdução

1.1. Considerações gerais

Com o avanço da ciência e conhecimento dos processos químicos e biológicos, diversas espécies químicas carregadas negativamente passaram a ser empregadas nas mais diferentes áreas: fluoretos em tratamentos dentários, iodetos no tratamento da tireóide, cloretos na indústria têxtil, fosfatos etc. Recentemente, pesquisas vêm sendo realizadas no sentido de desenvolver sistemas capazes de identificar e gerar respostas a estas espécies aniônicas¹⁻⁵.

Dentre as ferramentas analíticas de pesquisa estão os quimiossensores, substâncias capazes de sinalizar a presença de matéria ou energia. O desenvolvimento de novos quimiossensores, buscando maiores especificidade e sensibilidade, se tornou um campo em expansão e de grande importância para a química analítica^{6,7}.

Diferente da química de coordenação de cátions, a química de coordenação de ânions apresenta desenvolvimento recente baseado em interações eletrostáticas e/ou dipolares entre receptor e substrato⁸. O início desta química pode ser atribuído a um trabalho pioneiro datado de 1968, onde Park e Simmons relatam ter encapsulado um íon halogeneto em um diazabiciclo^{9,10}.

Os estudos que envolvem o desenvolvimento de novos quimiossensores se apóiam nos conceitos de coordenação química de ânions através de interações dipolares, mais comumente as ligações hidrogênio. Dentre os grupos doadores de ligação hidrogênio mais encontrados nos quimiossensores para ânions, destacam-se pirróis, imidazóis, aminas, amidas, azofenóis, indocarbazóis, uréias, etc (Fig. 1)¹¹⁻¹⁵.

27

Figura 1: Quimiossensores de ânions descritos na literatura.

Em geral, espécies carregadas negativamente possuem ao menos um par de elétrons livre. Esta basicidade de Lewis é o principal motivo pelo qual os quimiossensores têm, em suas composições, hidrogênios capazes de fazer ligação hidrogênio. Concomitante a esta característica, a acidez do hidrogênio e a disposição espacial do sítio de ligação do quimiossensor, também podem ser moderados a fim de se encontrar melhores especificidades ^{16,17}.

Em um âmbito qualitativo, os quimiossensores irão detectar a presença de um analito, promovendo respostas perceptíveis no campo do visível, não sendo necessária a análise em equipamentos onerosos¹⁸.

Os quimiossensores colorimétricos e/ou fluorimétricos detectam o analito promovendo uma resposta nos seus respectivos padrões de absorção na região do ultravioleta/visível e/ou emissão de fluorescência. Estas respostas, quando analisadas em espectrofotômetros, podem ser revertidas em números, fornecendo informações passíveis de serem quantificadas. Sendo a fluorescência um fenômeno facilmente afetado, os quimiossensores fluorimétricos são mais sensíveis que os quimiossensores colorimétricos. Outro fator que confere valor aos quimiossensores fluorimétricos se dá pela utilização de dois comprimentos de onda, sendo um relacionado à absorção e o outro à emissão, agregando especificidade na análise¹⁹.

1.2. 2-aril-1H-antra[1,2-d]imidazo-6,11-diona

1.2.1. Nova Classe de Quimiossensores

Em busca de novas substâncias capazes de emitir fluorescência responsiva a estímulos externos, Yoshida e colaboradores descobriram que a substância 2fenil-1*H*-antra[1,2-*d*]imidazo-6,11-diona **(6)**, emitia fluorescência em torno de 515 nm (Figs. 2 e 3). Considerando a característica aceptora de elétrons deste fluoróforo, esta classe passou a ser usada no desenvolvimento de novos quimiossensores²⁰.

Figura 2: Estrutura da 2-fenil-1*H*-antra[1,2-*d*]imidazo-6,11-diona (6).

Figura 3: Registro fotográfico da emissão de fluorescência de **6** (λ_{exc} = 365nm).

Os primeiros quimiossensores desenvolvidos tendo como sonda fluorescente a substância **6**, foram os derivados *para*-substituídos com éteres de coroa nitrogenado, espaçados um metileno da fenila (Fig. 4).

Figura 4: Primeiros quimiossensores contendo o fluoróforo 6.

A capacidade do éter de coroa formar complexos com metais alcalinos e alcalino-terrosos, responde com o aumento da intensidade de fluorescência devido ao seqüestro do par de elétrons livre que é responsável por suprimir a fluorescência via transferência de elétrons fotoinduzida (PET)²¹.

Posteriormente, os derivados heteroarílicos e arílicos ligados na posição 2 ao esqueleto 1*H*-antra[1,2-*d*]imidazo-6,11-diônico (5 e 6) foram estudados frente à

detecção de ânions, utilizando-se da acidez do hidrogênio imidazólico como sítio de ligação. Considerando que a maior acidez do doador de ligação hidrogênio e a maior basicidade dos ânions acarretam em uma maior tendência à desprotonação, derivados 2-fenil-1*H*-antra[1,2-*d*]imidazo-6,11-diônicos, por possuírem ligação de hidrogênio intramolecular entre o NH (doador de ligação de hidrogênio) e o oxigênio da carbonila (receptor de ligação de hidrogênio) conferem uma menor acidez ao seu hidrogênio e uma condição mais específica para sua desprotonação, sendo estudados com intuito de avaliar sua capacidade de detecção de íons fluoreto(Fig. 5). Em resposta à desprotonação ou a uma ligação hidrogênio entre o fluoróforo e o analito, corantes com esta propriedade sofrem alterações em seus padrões de absorção e/ou fluorescência por processos de transferência de carga fotoinduzida (TCF) e/ou transferência de próton intermolecular no estado excitado (TPES)²²⁻²⁵.

Figura 5: Ligação de hidrogênio intramolecular nas 2-aril-1H-antra[1,2-d]imidazo-6,11-dionas.

1.2.2. Síntese de 2-aril-1H-antra[1,2-d]imidazo-6,11-dionas.

Estas substâncias são heterocíclos que possuem um núcleo imidazólico 2aril-substituído como anel base condensado a um anel antraquinoidal (Esq. 1).

Esquema 1: Estrutura dos isômeros 2-aril-1*H*-antra[*d*]imidazo-6,11-diônicos.

Os imidazóis são substâncias heterocíclicas do tipo 1,3-diazociclopenta-2,4dienônica de propriedades anfóteras cuja primeira síntese data de 1858^{26,27}.

Na química clássica, os imidazóis são sintetizados através da condensação de nucleófilos nitrogenados com haletos difuncionais ou com substâncias carboniladas de diversos padrões de substituição (Esq. 2). Dada a importância deste heterociclo para fins terapêuticos, inúmeras sínteses foram descritas na literatura de forma a contornar a dificuldade na obtenção de derivados polissubstituídos ²⁸⁻³¹.

Esquema 2: Rotas sintéticas para obtenção de imidazóis.

A síntese clássica de derivados 2-aril-antra[d]imidazodiônicos se dá via condensação de antraquinonas *orto*-diaminadas com um substrato carbonilado em meio ácido (Esq. 3).

Esquema 3: Retrossíntese das 2-aril-antra[d]imidazodionas.

Outra característica desta substância é a prevalência do tautômero 2-aril-1*H*antra[1,2-*d*]imidazo-6,11-diona em detrimento ao tautômero 2-aril-3*H*-antra[1,2*d*]imidazo-6,11-diona, conseqüência da capacidade do primeiro de formar ligação hidrogênio intramolecular entre o hidrogênio ligado ao nitrogênio imidazólico, doador, e o oxigênio da carbonila, aceptor (Esq. 4).

Esquema 4: 2-aril-antra[1,2-*d*]imidazo-6,11-diona: Equilíbrio tautomérico.

Embora os derivados 2-aril-1*H*-antra[2,3-*d*]imidazo-6,11-diônicos possam apresentar fluorescência, sua incapacidade de fazer ligação de hidrogênio intramolecular os tornam, no que concerne à acidez do hidrogênio, um quimiossensor menos eficiente que seus isômeros [1,2-*d*], visto que a acidez acentuada pode resultar em interações menos específicas com determinado analito.

1.3. Interação da luz com a matéria

1.3.1. Absorção UV-Visível (Transição eletrônica)

Os orbitais moleculares, σ ou π (orbitais ligantes) possuem seu correspondente de maior energia, $\sigma^* \in \pi^*$ (orbitais anti-ligantes). Após absorção de energia luminosa (fóton) por uma determinada molécula, pode-se haver uma promoção de um elétron de seu orbital menos energético π a um orbital mais energético π^* , transição $\pi \rightarrow \pi^*$. Moléculas com heteroátomos que possuem elétrons livres podem promover um elétron de seu orbital n para um orbital π^* , transição $n \rightarrow \pi^*$. Transições ao orbital σ^* são mais difíceis de ocorrer devido à grande diferença de energia (Esq. 5) ^{19,32,33}.
Esquema 5: Representação esquemática dos possíveis tipos de transições eletrônicas.

Em uma promoção de um dos dois elétrons de spins opostos, a princípio, o spin do elétron promovido deve permanecer igual, mantendo o número quântico de spin da molécula igual a zero. Desta forma a multiplicidade (M = 2S+1) de ambos os estados, fundamental e excitado, é igual a 1, denominado estado singleto, **S**. A diferenciação entre os estados fundamental e excitados se dá através de um índice, onde para o estado fundamental se tem S₀ e para os estados excitados subsequentes se têm S₁, S₂,... Há casos onde o spin do elétron promovido pode inverter. Nestes casos, o número quântico de spin passa a ser igual a 1; consequentemente a multiplicidade igual a 3, denominado estado tripleto, **T** (Esq. 6). Os estados singleto e tripleto de mesma configuração eletrônica apresentam energias distintas, onde a menor energia está associada ao estado de maior número quântico de spin³⁴⁻³⁶.

Esquema 6: Representação gráfica dos estados singleto e tripleto.

Cada estado eletrônico (E_{el}), fundamental, S_0 , ou excitado, S_1 , S_2 ..., é dividido em subníveis energéticos relacionados aos diferentes estados vibracionais (E_{vib}) de menor energia. A quantidade de energia a ser absorvida é responsável pela transição entre os diferentes níveis energéticos (Esq. 7).

Esquema 7: Possíveis processos de excitação eletrônica.

Os estados vibracionais são divididos, por sua vez em subníveis energéticos relacionados aos estados rotacionais (E_{rot}). Desta forma, a energia total (E_T) de cada nível é dada por $E_T=E_{el}+E_{vib}+E_{rot}$, onde $E_{el}>>E_{vib}>>E_{rot}$.

Experimentalmente, a eficiência da absorção de luz num determinado comprimento de onda λ é caracterizado pela *absorvância* (A) ou *transmitância* (*T*).

$$A(\lambda) = \log \frac{I_{\lambda}^{0}}{I_{\lambda}} = -\log T(\lambda) \qquad \qquad T(\lambda) = \frac{I_{\lambda}}{I_{\lambda}^{0}}$$

Onde I_{λ}^{0} e I_{λ} são as intensidades de luz dos feixes que entram e que saem do meio onde é absorvido; e A(λ) e T(λ) as eficiências de absorção e transmitância em um determinado comprimento de onda;

Na maioria dos casos a absorção de uma amostra segue a lei de Lambert-Beer, representada pela equação abaixo:

$$A(\lambda) = \log \frac{I_{\lambda}^{0}}{I_{\lambda}} = \varepsilon(\lambda) lc$$

→ Onde:

 $\epsilon(\lambda)$: coeficiente de absorção molar (L mol⁻¹ cm⁻¹), medida experimental equivalente à probabilidade de absorção somada sobre todas as freqüências de uma banda específica;

c: concentração (mol L⁻¹) das espécies que absorvem;

l: caminho óptico percorrido através da amostra (cm)¹⁹.

1.3.2. Processos de desexcitação.

Uma vez excitada, a molécula possui diversas vias para liberar energia e retornar ao estado fundamental. A desexcitação pode ocorrer através de processos intramoleculares de emissão luminosa (fluorescência, fosforescência e fluorescência retardada), conseqüência da tendência que o elétron tem de liberar o excesso de

energia buscando a permanência em seu estado mais estável, estado fundamental. Processos sem que haja emissão luminosa podem, também, contribuir com a desexcitação, são eles: conversão interna, transferência de carga intramolecular e mudança conformacional (Esq. 8)^{19,37-39}.

Esquema 8: Tipos de interação luz-matéria.

Processos intermoleculares no estado excitado podem ocorrer alterando o processo inicial de relaxação, são eles: transferência de elétron, transferência de próton, transferência de energia e formação de excímero³⁹⁻⁴²(Fig. 6).

Figura 6: Possíveis processos de desexcitação molecular no estado excitado

1.3.3. Transições entre estados eletrônicos

A absorção de energia pode promover um elétron do estado fundamental (S₀) para estados excitados de mesma multiplicidade (S₁, S₂,...), estas transições são conhecidas como transições permitidas. Transições que promovem elétrons do estado fundamental (S₀) para o estado excitado tripleto (T₁), multiplicidade diferente, são conhecidas como transições *spin* proibidas ^{19,34,43}.

Moléculas, quando excitadas a um nível de energia maior que o menor nível vibracional de um estado eletrônico, tendem a perder energia a fim de se estabilizar no menor nível vibracional do referido estado, em um espaço de tempo muito curto (10⁻¹²s). Moléculas perdem energia vibracional transferindo-as para moléculas de solvente, por exemplo.

A desexcitação entre estados eletrônicos diferentes pode se dar através deste processo, principalmente quando a diferença de energia entre os estados eletrônicos for pequena. Comumente associado à relaxação de S_2 à S_1 , este processo é chamado conversão interna (*CI*) e acontece somente em transições entre estados eletrônicos de mesma multiplicidade.

Embora a conversão interna aconteça mais rapidamente que a emissão de fluorescência (10^{-8} s), a diferença de energia entre S₁ e S₀ é grande o suficiente para que a desexcitação ocorra por transferência de energia vibracional. Desta forma, CI acontece até que a molécula atinja o menor nível de energia vibracional de S₁, em seguida, por emissão de fótons (fluorescência), completa sua relaxação até S₀.

Moléculas em S₁ podem sofrer uma conversão de spin e chegar ao primeiro estado excitado tripleto (T₁), num processo chamado de cruzamento intersistemas (C*IS*). Esta transição leva moléculas do menor nível de energia vibracional de S₁ à

39

níveis de energia vibracionais mais elevados de T_1 , em um processo isoenergético. Neste caso, a molécula pode, por CI, relaxar até o menor nível de energia vibracional de T_1 e emitir fótons, num processo denominado fosforescência. Moléculas no estado T_1 podem permanecer neste estado por 10⁻⁶ a 1s, aumentando, assim, a perda de energia vibracional. Em solução, a transferência de energia vibracional de moléculas excitadas para moléculas de solvente é muito expressiva, favorecendo a conversão interna e desfavorecendo a fosforescência. Em sistemas rígidos, a fosforescência é favorecida.

Há casos onde as energias de S_1 e T_1 são próximas, permitindo a molécula, quando no estado T_1 , retornar ao estado S_1 por CIS e emitir fótons para atingir S_0 . Tal processo é chamado de fluorescência retardada e só difere da fluorescência pelo tempo gasto, visto que a energia é a mesma.

Necessariamente, a emissão de fluorescência ou fosforescência não desexcita a molécula ao menor subnível vibracional contido em S₀. Quando isso ocorre, a molécula transfere energia vibracional até atingir o menor nível de energia vibracional do estado fundamental. Uma representação esquemática que ilustra estes principais processos fotofísicos, encontra-se descrita no diagrama de Jablonski⁴⁴ (Esq. 9).

40

Esquema 9: Diagrama de Jablonski.

1.4. Sondas fluorescentes

A fluorescência é um fenômeno que envolve transições eletrônicas, substâncias com elevado número de ligações π conjugadas são mais susceptíveis a absorver e, consequentemente, emitir fótons. As fluorescências mais importantes estão associadas a substâncias aromáticas por possuírem os orbitais π altamente conjugados. Moléculas alifáticas poliinsaturadas podem fluorescer porém nestas substâncias o fenômeno é menos comumente encontrados ¹⁹.

A fluorescência molecular, por ser um fenômeno facilmente influenciável, passou a ser empregada com intuito analítico. Moléculas fluorescentes passaram a ser construídas com sítios específicos capazes de detectar especificamente certas alterações, tais como pH, viscosidade, concentração de outras substâncias, etc; respondendo com alterações quantificáveis em sua fluorescência. Esta propriedade levou ao desenvolvimento de novas substâncias usadas como sondas capazes de fornecer importantes informações sobre os mais diversos sistemas: fisico-químico, bioquímico e biológico^{19,37}.

As sondas fluorescentes são classificadas de acordo com o tipo de associação que elas fazem com o meio:

i) <u>Sondas intrínsecas</u>: moléculas fluorescentes que fazem parte da constituição do alvo de interesse. Exemplo: triptofano (11) nas proteínas. (Fig. 7)

Figura 7: Estrutura do triptofano (11).

 ii) <u>Sondas extrínsecas ligadas covalentemente</u>: moléculas fluorescentes que são ligadas através de ligações covalentes ao alvo de interesse.
 Dependendo da sonda, há a inconveniência da perturbação do meio, o que pode alterar o comportamento do sistema fornecendo resultados não confiáveis. Exemplo: poliestireno marcado com antraceno (Fig. 8).

Figura 8: Poliestireno marcado com antraceno.

 iii) <u>Sondas extrínsecas associadas</u>: moléculas fluorescentes que se associam ao alvo. Diferentemente daquelas ligadas covalentemente, estas sondas possuem a desvantagem da incerteza do local específico de sua ancoragem. Exemplo: 1,6-difenilhexatrieno (12) e piranina(13) (Fig. 9).

Figura 9: Estruturas do 1,6-difenilhexatrieno (12) e da piranina (13).

1.5. Espectrofotometria de fluorescência (fluorimetria)

A partir de meados do século XX, o uso da fluorescência como ferramenta analítica aumentou vertiginosamente. Neste período, a técnica deixou de ser limitada a sistemas simples e passou a ser empregada nas mais diversas áreas da ciência: química analítica, bioquímica, física e físico-química⁴⁵.

Diferente das outras técnicas espectroscópicas, a fluorimetria se destaca pela alta sensibilidade e boa especificidade. A alta sensibilidade, mais de 1000 vezes mais sensível que outros métodos espectrofotométricos, está associada à detecção direta da energia emitida, podendo ser alterada aumentando ou diminuindo a intensidade da energia de excitação; enquanto que no outros métodos, a medição se dá indiretamente, pela diferença entre os feixes de luz emitidos e absorvidos, por exemplo. Das moléculas que absorvem energia na faixa UV-Visível, somente uma pequena parte emite fluorescência. Desta forma, a associação de uma molécula a dois comprimentos de onda (excitação e emissão), favorece a boa especificidade do método³⁴.

1.5.1. Principais Características da Emissão de Fluorescência

1.5.1.a. Intensidade de fluorescência (*i_F*):

Definida pela quantidade de fótons emitida (em mol ou equivalente em einstein; 1 mol de fótons = 1 einstein) por unidade de tempo (s) e por unidade de volume de solução (L).

$$i_F(t) = k_r^S[{}^{1}A^*] = k_r^S[{}^{1}A^*] \exp\left(-\frac{t}{\tau_S}\right)$$

→ Onde:

 k_r^s : constante de velocidade da transição $S_1 \rightarrow S_0$ através do processo radiativo de emissão de fluorescência;

[¹A*]: concentração de moléculas no estado excitado;

t: tempo;

 τ_{S} : tempo de vida de fluorescência.

1.5.1.b. Deslocamento de Stokes (Δv)

Diferença entre o máximo da primeira banda de absorção e o máximo do espectro de fluorescência, expresso em número de ondas ($v = 10^7/\lambda$, em cm⁻¹) (Fig. 10).

Figura 10: Relação entre os máximos de absorção e emissão: Deslocamento de Stokes

Em fase vapor, as transições 00, entre os níveis vibracionais de menor energia dos estados S₀ e S₁, de absorção e fluorescência teriam a mesma energia, logo $\Delta v = 0$. Porém as determinações são feitas, em sua maioria, em solução, deslocando, diferentemente, cada um dos parâmetros espectrais para energias mais baixas. Em solução, as transições 00 de absorção e fluorescência não são coincidentes resultando em $\Delta v > 0$.

Estas alterações são conseqüências, entre outras coisas, de interações entre o soluto e o solvente, devido à influência do último como meio dielétrico, dependente da constante dielétrica estática (ϵ) e da constante dielétrica óptica representado pelo quadrado do índice de refração (n^2), índices que correlacionados fornecem o parâmetro de solvatação Δf . A correlação entre as diferenças de absorção e emissão e Δf é capaz de fornecer informações sobre as diferenças dos momentos dipolares do estado fundamental e excitado^{46,47}.

$$\Delta \overline{\nu} = \overline{\nu}_a - \overline{\nu}_f = \frac{2(\Delta \mu)^2}{hca^3} [\Delta f], \text{ sendo: } \Delta f = \left[\frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}\right]$$

45

➔ Onde:

 Δv : Deslocamento de Stokes;

 $\Delta\mu$: Diferença de momento de dipolo nos estados excitado e fundamental;

∆f: Parâmetro de solvatação;

- h: Constante de Planck (6,63x10⁻²⁷erg.s);
- c: Velocidade da luz (3x10¹⁰cm/s);
- a: Raio da cavidade esférica ;
- ε: Constante dielétrica estática;
- n: Índice de refração.

Solventes de diferentes polaridades promovem alterações diferentes nos padrões espectrais de absorção e emissão, e a esta mudança de deslocamento e intensidade, dá-se o nome de solvatocromismo que pode ser positivo (deslocamento batocrômico) ou negativo (deslocamento hipsocrômico).

1.5.1.c. Rendimento quântico de fluorescência (Φ_F)

Fração de moléculas excitadas que retornam ao estado fundamental por emissão de fluorescência. Em outras palavras, é a razão entre a quantidade de fótons emitidos por fluorescência e a quantidade de fótons absorvidos.

$$\Phi_F = \frac{k_r^S}{k_r^S + k_{nr}^S} = k_r^S \tau_S$$

➔ Onde:

 k_r^s : constante de velocidade da transição $S_1 \rightarrow S_0$ através do processo radiativo de emissão de fluorescência;

 k_{nr}^{s} : constante de velocidade da transição $S_1 \rightarrow S_0$ através do processo não-radiativo, sem emissão de fluorescência;

 τ_{s} : tempo de vida de fluorescência.

Experimentalmente, o rendimento quântico pode ser medido indiretamente relacionando uma amostra de parâmetros conhecidos com uma segunda, desconhecida, segundo a seguinte equação⁴⁸.

 $\Phi_d = [(A_p F_d n^2)/(A_d F_p n_0^2)] \Phi_p$, onde:

➔ Onde:

: rendimento quântico de fluorescência,
A: absorvância no comprimento de onda de excitação,
F: área sob a banda de fluorescência,
n: índice de refração do solvente contendo a amostra,
n₀: índice de refração do solvente contendo o padrão,
índice p: relaciona à valores referentes ao padrão,
índice d: relaciona a valores referentes à amostra desconhecida.

1.5.1.d. Tempo de vida do estado excitado (τ):

É o tempo necessário para diminuir a concentração das entidades emissoras à 1/e do seu valor original.

Como na cinética química clássica, a taxa de desaparecimento de molécula no estado excitado pode ser expressa pela seguinte equação diferencial:

$$-\frac{d[^{1}A^{*}]}{dt} = (k_{r}^{S} + k_{mr}^{S})[^{1}A^{*}]$$

➔ Onde:

 k_r^s : constante de velocidade da transição $S_1 \rightarrow S_0$ através do processo radiativo de emissão de fluorescência;

 k_{nr}^{S} : constante de velocidade da transição $S_1 \rightarrow S_0$ através do processo não-radiativo, sem emissão de fluorescência;

[¹A*]: concentração de moléculas no estado excitado;

A integração desta equação fornece a evolução em função do tempo da concentração de moléculas no estado excitado [¹A^{*}]. Considerando [¹A^{*}]₀ como sendo a concentração de moléculas no estado excitado no tempo zero, tem-se:

$$[{}^{1}A^{*}] = [{}^{1}A^{*}]_{0} \exp\left(-\frac{t}{\tau_{s}}\right) \text{ onde } \tau_{s} \text{ é dado por } \tau_{s} = \frac{1}{k_{r}^{s} + k_{nr}^{s}}$$

<u>Objetivos</u>

2. Objetivos

2.1. Objetivo geral

Avaliar o comportamento de novos derivados 2-aril-1*H*-antra[1,2-*d*]imidazo-6,11-diônicos como quimiossensores fluorimétricos na detecção de íons fluoreto.

2.2. Objetivo específico I

Síntese de novos derivados 2-aril-1*H*-antra[1,2-*d*]imidazo-6,11-diônicos através da condensação do nucleófilo nitrogenado 1,2-diaminoantraquinona com aldeídos aromáticos de diversos padrões de substituição.

2.3. Objetivo específico II

Incorporar um derivado 2-aril-1*H*-antra[1,2-*d*]imidazo-6,11-diônico em uma matriz polimérica e avaliar seu potencial como quimiossensor fluorimétrico na detecção de íons fluoreto.

2.4. Objetivo específico III

Avaliar a possível autossensibilização de derivados 2-fluorofenill-1*H*-antra[1,2*d*]imidazo-6,11-diônicos através da ação do flúor interno.

2.5. Objetivo específico IV

Avaliar o potencial quimiossensor da 2-fenil-1*H*-antra[1,2-*d*]imidazo-6,11diona na detecção de íons fluoreto na forma de sal inorgânico.

2.6. Objetivo específico V

Avaliar a influência dos substituintes na fluorescência dos derivados 2-aril-1*H*antra[1,2-*d*]imidazo-6,11-diônicos quando na presença de íons fluoreto.

<u>Resultados e Discussão</u>

3. Resultados e Discussão

3.1. Síntese das 2-aril-1H-antra[1,2-d]imidazo-6,11-dionas

Estudos recentes demonstraram a capacidade de nucleófilos *orto*-diaminados como a 1,2-diaminoantraquinona (9) em se condensar com substâncias aromáticas carboniladas formando um núcleo imidazólico substituído na posição 2^{49,50}. Partindo desta premissa, os derivados 2-aril-1*H*-antra[1,2-*d*]imidazo-6,11-diônicos contidos neste trabalho foram sintetizadas através da condensação do nucleófilo (9) frente a uma série de aldeídos aromáticos na presença de acetato de sódio e ácido acético (pH 2-3) em refluxo, conforme poderá ser visto na parte experimental (Esq. 10).

Esquema 10: Obtenção de derivados 2-aril-1*H*-antra[1,2-*d*]imidazo-6,11-diônicos.

Propõe-se que o fechamento ao núcleo imidazólico ocorra através do ataque nucleofílico promovido pelo nitrogênio 1-antranílico à carbonila ativada do aldeído formando uma "base de Schiff", seguida de um segundo ataque nucleofílico, agora,

pelo outro nitrogênio ao carbono sp². O aquecimento favorece à aromatização do anel imidazolínico pela oxidação do oxigênio atmosférico, dando origem ao núcleo imidazólico (Esq. 11). A reação foi testada com outros solventes não ácidos com o intuito de aumentar a solubilidade do nucleófilo de partida, o que resultou em um padrão de reação bem inferior ao conseguido inicialmente, em ácido acético, verificando a necessidade da ativação da carbonila aldeídica para um melhor ataque nucleofílico.

Esquema 11: Proposta mecanística para formação do núcleo imidazólico.

Mediante o mecanismo proposto, padrões diferentes de substituição no anel aromático dos aldeídos produziriam alterações nos resultados esperados, tais como velocidade de reação e/ou rendimento, em consequência da modulação da eletrofilicidade do carbono carbonílico a ser atacado. Desta forma, a substituição do anel aromático com grupamentos retirantes de elétrons poderia favorecer a reação, devido à potencialização da carga parcial positiva no carbono carbonílico (Fig. 11).

Figura 11: Efeito do substituinte sobre a eletrofilicidade do carbono carbonílico.

Experimentalmente, a reação não se mostrou sensível ao efeito do substituinte nas condições empregadas. Benzaldeídos com diferentes substituições forneceram produtos em tempos inferiores a 25 minutos e rendimentos que não puderam ser relacionados à natureza doadora ou atratora de elétrons do substituinte. Desta forma pode-se supor que a posição da substituição nos benzaldeídos, assim como suas naturezas não apresentam influência direta apreciável nos controles cinéticos e/ou termodinâmicos da reação.

Aldeídos heteroaromáticos foram submetidos às mesmas condições reacionais, fornecendo uma mistura complexa de produtos instáveis que ao serem submetidos à cromatografia em coluna sofriam degradação tornado-as incapazes de serem isoladas. O não funcionamento da reação pode estar associado à presença do heteroátomo orientando o ataque nucleofílico em um outro carbono parcialmente carregado positivamente de uma das duplas-ligações conjugadas (Esq. 12).

Esquema 12: Tentativa de obtenção de 2-heteroaril-1*H*-antra[1,2-*d*]imidazo-6,11-dionas.

Na tabela abaixo estão representados os rendimentos e tempos de reação dos produtos obtidos pela condensação de **9** com os diversos aldeídos utilizados, sendo os produtos com numeração em vermelho inéditos na literatura (Tab. 1).

Tabela 1: Produtos obtidos, seus rendimentos e tempo de reação.

Produtos obtidos	Rendimento (%)	Tempo de reação (min)	Produtos obtidos	Rendimento (%)	Tempo de reação (min)
	79	16 – 20	$R = OCH_3$	66	16 – 20
(6)			(16)		
R = (14)	49	16 – 20	R= (17)	82	16 – 20
R = (15)	51	16 – 20	R = (18)	73	16 – 20

Produtos obtidos	Rendimento (%)	Tempo de reação (min)	Produtos obtidos $ \begin{array}{c} $	Rendimento (%)	Tempo de reação (min)
R = (19)	80	16 – 20	R = (25)	66	16 – 20
R = 100	74	16 – 20	R = OH	58	21 – 25
R = (21)	56	21 – 25	R = (27)	59	21 – 25
R = F (22)	61	16 – 20	R = (28)	62	21 – 25
R = ' (23)	52	16 – 20	R = (29)	77	21 – 25
R = (24)	66	16 – 20	R =	mistura	> 45

3.1.1. Síntese do 2-(4-nitrofenil)-1H-antra[1,2-d]imidazo-6,11-diona (30)

Em continuação ao nosso trabalho, mediante o insucesso na síntese da 2-(4-nitrofenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona **(30)** pela condensação da 1,2diaminoantraquinona **(9)** com o *p*-nitrobenzaldeído, uma segunda metodologia foi utilizada. Seguindo a mesma proposta da primeira, buscou-se o ataque nucleofílico de um dos grupos amino da 1,2-diaminoantraquinona a um carbono carbonílico que pudesse reagir de forma diferente tornando-o mais susceptível ao ataque e conseqüentemente à condensação.

Embora em rendimento inferior aos obtidos na primeira metodologia (47%), a reação entre um equivalente da 1,2-diaminoantraquinona e dois equivalentes do cloreto de *p*-nitrobenzoíla se mostrou uma alternativa à primeira metodologia. Nesta reação o produto de interesse é obtido em duas etapas. Condições de Schotten-Baumann levam a formação de uma α , β -diamida intermediária (**31**), na primeira etapa (Esq. 13).

Na segunda etapa, um grupamento amida sofre hidrólise promovendo o ataque nucleofílico à carbonila, o que leva à formação do intermediário imidazolínico **(31b)**. O aquecimento favorece à aromatização do anel através da desidratação, fornecendo o produto imidazólico de interesse (Esq. 14).

Esquema 14: Proposta mecanística do fechamento do anel imidazólico.

3.1.2. Síntese da 2-(4-aliloxi-3-metoxifenil)-1H-antra[1,2-d]imidazo-6,11diona (32)

A formação de alil éteres a partir de hidroxilas fenólicas é conhecida desde 1926^{51,52}. Nesse trabalho, Fieser promove uma o-alilação na hidroxila de uma naftoquinona em uma reação de duas etapas. Utilizando-se da característica ácida do hidrogênio fenólico, Fieser reagiu uma naftoquinona com uma base para formar um sal que, em presença de um haleto de alila reage via substituição nucleofílica, para formar o éter.

Tal procedimento foi realizado para promover a o-alilação da substância **29**. Ao agitar a substância **29** com hidróxido de sódio, a desprotonação acontece de forma imediata, podendo ser percebida pela alteração da coloração da solução que passa de um laranja-avermelhado para um azul índigo. Neste ponto, se fez necessária a confirmação de que o sal de sódio tivesse sido formado a partir da hidroxila fenólica e não da desprotonação do nitrogênio imidazólico, o que teoricamente não seria o produto preferencial. Para se ter uma idéia preliminar da quimioespecificidade da desprotonação, o mesmo procedimento foi realizado com a substância **18**, um derivado metoxilado. Nesta reação onde a desprotonação só seria possível no nitrogênio imidazólico, nada foi observado como produto. A agitação sob aquecimento não foi capaz de desprotonar o nitrogênio para a formação do sal.

De posse deste resultado, o sal de sódio foi então agitado em excesso de brometo de alila à temperatura ambiente, para se evitar um possível rearranjo de Claisen, gerando o subproduto aliloxi substituído (Esq 15).

Esquema 15: Proposta mecanística para síntese de 32

O aumento da nucleofilicidade do oxigênio pela formação do sal é etapa crucial para o ataque nucleofílico.

3.2. Isolamento e purificação dos derivados sintetizados

As substâncias sintetizadas são relativamente polares, porém possuem a peculiaridade de apresentar baixa solubilidade em solventes orgânicos usuais, tais como: acetato de etila, THF, dioxana, acetona, diclorometano, clorofórmio, metanol, etanol e DMSO. Tal comportamento contribuiu para dificultar não só o isolamento e purificação das substâncias como também sua identificação por métodos espectroscópicos de análise.

As primeiras tentativas de isolamento dos derivados sintetizados foram através de cromatografia em coluna de sílica gel, usando misturas hexano/acetato de etila de polaridade crescente como eluente. Após a cromatografia diversos produtos de degradação foram observados. O largo tempo gasto para a purificação somado a instabilidade da molécula frente à sílica foi determinante para a busca de uma nova metodologia para purificação.

Experimentos com cromatografia contra-corrente de alta velocidade (HSCCC) foram realizados como alternativa à cromatografia em coluna em sílica gel para purificação e isolamento dos produtos de interesse. Após diversos testes de sistema de solvente, a mistura hexano/etanol/água 3:2:2 v/v/v foi escolhida e procedeu-se a separação a 850rpm usando como fase móvel a fase inferior. O produto de interesse foi eluído entre as frações 6 a 15 ($K_D = 0.5$) em um total de 40 tubos. Embora o método apresentasse alta eficiência no isolamento do produto de interesse, a baixa solubilidade da amostra limitou o uso da referida técnica a pequenas quantidades.

Não havendo como evitar a coluna em sílica gel, buscou-se um eluente que fosse capaz de eluir rapidamente a amostra, independente da eficiência de separação. Uma mistura diclorometano/acetato de etila 5:1 foi utilizada para a

60

cromatografia. Embora a eficiência de separação não fosse satisfatória, a submissão das frações impuras a repetidas cromatografias levou ao acúmulo, em alto grau de pureza, das substâncias de interesse.

3.3. Copolimerização randômica: Incorporação do corante 32 em polímero de estireno

Entre os diversos quimiossensores poliméricos fluorescentes descritos na literatura, o principal mecanismo de sinalização se dá através da supressão da sua fluorescência. Poucos sistemas detectam um analito respondendo com aumento da fluorescência, e, geralmente, estão associados à detecção de moléculas neutras ou espécies carregadas positivamente ⁵³⁻⁵⁷.

A poliadição é o método mais simples empregado na síntese de polímeros. Reações radicalares em cadeia promovem a ligação entre os monômeros resultando em macromoléculas de diferentes tamanhos.

Com intuito de expandir o estudo das 2-aril-1*H*-antra[1,2-*d*]imidazo-6,11dionas como agentes de uso analítico, o corante **32** foi sintetizado com a finalidade de ser incorporado em um filme de poliestireno. O corante foi submetido junto aos monômeros de estireno ao processo de copolimerização.

Após o isolamento, o copolímero foi dissolvido em benzeno e vertido em placa de petri. Após a evaporação do solvente, um filme fluorescente foi obtido (Fig. 12).

61

Figura 12: Fluorescência do filme de poliestireno incorporado com **32** excitado em 365 nm.

Investigações em CCF mostraram que a tentativa de copolimerização não foi bem sucedida. A polimerização se deu apenas entre os monômeros de estireno, enquanto que o corante ficara apenas adsorvido como soluto entre a cadeia polimérica: solução sólida.

3.4. Análise de dados físicos

A estrutura do produto 2-fenil-1*H*-antra[1,2-*d*]imidazo-6,11-diona **(6)** foi elucidada por métodos de espectroscopia de ressonância magnética nuclear (RMN) de ¹H e ¹³C, espectroscopia de infravermelho e espectrometria de massa.

A espectrometria de massa forneceu o primeiro indício da identidade do produto. O íon base de relação m/z = 324 corresponde ao peso molecular do produto. Sucessivas perdas de fragmentos de m/z = 28 correspondem às eliminações das carbonilas na forma de CO (Esq. 16).

Devido às características estruturais da substância, somente **6** foi passível de ser eluída em cromatógrafo gasoso em coluna DB5. Outros derivados foram enviados à central analítica da USP com intuito de se obter espectros de massa em

espectrômetros equipados com sonda para inserção direta, porém quando injetadas no aparelho, fundiam com decomposição inviabilizando a obtenção dos espectros.

Esquema 16: Fragmentações iniciais da 2-fenil-1*H*-antra[1,2-*d*]imidazo-6,11-diona

No espectro de RMN de ¹H, foi possível observar para as substâncias sintetizadas, um sinal em campo baixo com deslocamento químico superior a 11ppm. Mediante sua integração para 1H, junto a sua capacidade de trocar com D_2O , pode-se atribuir ao hidrogênio imidazólico.

Dois sinais marcantes, apresentados na forma de dupletos, integrando para 1H cada, acoplam entre si com constantes de acoplamento próximas a 8Hz. Estes sinais foram atribuídos aos dois metinos vicinais do anel vizinho ao núcleo imidazólico.

Os diferentes deslocamentos químicos dos metinos vizinhos às carbonilas, concomitante com o deslocamento químico do hidrogênio imidazólico, corroboram a

hipótese de ligação de hidrogênio intramolecular, primeiro resultado experimental para a preferência do tautômero 1*H* em detrimento do 3*H* (Fig. 13).

Figura 13: Assinalamentos de referência na ressonância magnética nuclear de ¹H.

Na espectroscopia de RMN de ¹³C, um sinal com deslocamento químico entre 150 e 160 ppm, referente à ligação C=N do anel imidazólico, pode ser usado como um indicativo para confirmação da obtenção dos produtos desejáveis (Fig. 14).

Figura 14: Assinalamento de referência na ressonância magnética nuclear de ¹³C.

Após recristalização de **6** em diclorometano/hexano foi possível obter cristais adequados para realização de difração de raio X em mono cristal. Este resultado corrobora a estrutura proposta pelas espectroscopias de infravermelho e RMN de ¹H e ¹³C e espectrometria de massas para o referido produto (Fig. 15).

Figura 15: Representação ORTEP da 2-fenil-1*H*-antra[1,2-*d*]imidazo-6,11-diona hidratada.

Devido à baixa solubilidade das substâncias sintetizadas, poucos produtos obtidos submetidos à análise espectroscópica de RMN de ¹³C resultaram em espectros com picos bem definidos. Para certas substâncias, experimentos de até 7 horas em aparelhos de 300 MHz não forneceram resultados conclusivos. Mediante esta limitação analítica, a identificação dos derivados mais insolúveis foi baseada nos espectros de RMN de ¹H e IV, comparados aos espectros de **6**.

A identificação do derivado o-alilado 2-(4-aliloxi-3-metoxifenil)-1H-antra[1,2d]imidazo-6,11-diona **(32)**, foi possível através dos deslocamentos químicos de RMN de ¹H, onde se constatara a presença dos sinais característicos do radical. O metino olefínico do radical alila se apresenta como um multipleto com deslocamento químico entre 6,19-6,08 ppm. Os hidrogênios do metileno olefínico apresentam sinais duplo-dupleto com deslocamento químico de 5,48 e 5,37 ppm, podendo ser diferenciados através das constantes de acoplamento: o hidrogênio em 5,48 ppm possui um J=17,27 Hz, *trans*, e o hidrogênio em 5,37 ppm possui J=10,49 Hz, *cis*. O metileno alifático, vizinho ao oxigênio, se apresenta como um dupleto com deslocamento químico em 4,73 ppm integrando para 2H com J=5,4 Hz referente ao acoplamento com o metino (Fig. 16).

Figura 16: Atribuição dos sinais de hidrogênio da substância 32.

3.5. Estudos fotofísicos e fotoquímicos

A detecção de fluoretos pelos quimiossensores **6** e análogos é descrito como uma interação entre o ânion e o hidrogênio imidazólico forte o suficiente para promover sua desprotonação.

O quimiossensor **6**, em acetonitrila, na ausência de íons fluoreto absorve em λ^{ab}_{max} de 394 nm consequência da transição π - π^* . Conforme o quimiossensor entra em contato com os íons fluoreto, a banda em 394 nm perde intensidade e uma segunda banda surge em λ^{ab}_{max} de 477 nm resultado da transferência de carga intramolecular da substância desprotonada.

A emissão de fluorescência desta classe de quimiossensores também apresenta mudanças espectrais importantes. O quimiossensor **6** na ausência de íons fluoreto emite fluorescência em λ_{max}^{fl} de 535 nm enquanto que na presença dos íons fluoreto a emissão se dá em λ_{max}^{fl} de 600 nm.

3.5.1. Influência de flúor interno

A capacidade que organofluorados têm em fazer ligações hidrogênio é um tópico que gera dúvidas na literatura. Embora improváveis, as ligações hidrogênio em questão não podem ser consideradas inexistentes^{58,59}. Baseado nesta interação F-H-N, experimentos foram realizados para avaliar se um análogo de **6** contendo um átomo de flúor como substituinte no anel benzênico (Fig. 17) apresentaria comportamento distinto provocado por uma possível interação intra ou intermolecular.

Figura 17: Análogos flúor-substituídos 22, 23 e 24.

Espectros de absorção, excitação e emissão de fluorescência (λ^{ex} 380 nm) do corante 6 seus flúor-derivados **22**, **23** e **24**, foram obtidos em acetonitrila. Nenhum indício de auto-sensibilização ou formação de novas espécies no estado excitado foi observado, visto que todas as espécies mostraram comportamentos fotofísicos semelhantes. (Figs.18-21, Tab. 2).

Figura 18: Espectro de absorção e fluorescência de 6 em acetonitrila 7,1x10⁻⁶ mol/L.

Figura 19: Espectro de absorção e emissão de fluorescência de **22** em acetonitrila 3,0x10⁻⁵ mol/L.

Figura 20: Espectro de absorção e emissão de fluorescência de **23** em acetonitrila $3,2x10^{-5}$ mol/L.

Figura 21: Espectro de absorção e emissão de fluorescência de **24** em acetonitrila $1,1x10^{-5}$ mol/L.

Tabela 2: Dados fotofísicos das substâncias 6, 22, 23, 24 em acetonitrila.

Substância	λ ^{ab} _{max} (nm)	λ ^{fl} _{max} (nm)	<i>V</i> _a (cm⁻¹)	\overline{V}_{f} (cm ⁻¹)	$\Delta \overline{\nu}$ (cm ⁻¹)	ε (Lmol ⁻¹ cm ⁻¹)	Log ɛ	□f
6	396	538	25253	18587	6665	1,26x10 ⁴	4,10	8,65x10 ⁻³
22	393	528	25445	18947	6499	1,66x10 ⁴	4,22	8,35x10 ⁻³
23	393	529	25445	18904	6542	1,42x10 ⁴	4,15	7,15x10 ⁻³
24	394	538	25381	18587	6793	1,40x10 ⁴	4,15	1,07x10 ⁻²

3.5.1.1. Efeito do solvente e momento dipolar

A fim de avaliar o solvatocromismo das espécies em questão, espectros de absorção e emissão foram obtidos em uma série de solventes. As tabelas a seguir mostram os deslocamentos dos máximos de absorção e emissão nos diferentes solventes (Tabs. 3, 4, 5 e 6).
Tabela 3: Comprimentos de onda de absorção e emissão de **6** nos diferentes solventes.

Solventes	Δf	λ^{ab}_{max} (nm)	$\lambda^{\rm fl}_{\rm max}$ (nm)	$\overline{\nu}^{ab}$ (cm ⁻¹)	$\overline{\mathcal{V}}^{fl}$ (cm ⁻¹)	$\Delta \overline{\nu}$ (cm ⁻¹)
Tolueno	0,0134	408	527	24510	18990	5520
Dioxano	0,022	400	520	25000	19223	5777
Acetato de etila	0,199	395	524	25316	19099	6218
Acetonitrila	0,305	396	538	25253	18587	6665

Tabela 4: Comprimentos de onda de absorção e emissão de **22** nos diferentes solventes.

Solventes	Δf	λ^{ab}_{max} (nm)	$\lambda^{\rm fl}_{\rm max}$ (nm)	\overline{v}^{ab} (cm ⁻¹)	\overline{v}^{fl} (cm ⁻¹)	$\Delta \overline{\nu}$ (cm ⁻¹)
Tolueno	0,0134	397	503	25189	19897	5292
Dioxano	0,022	396	507	25253	19732	5521
Acetato de etila	0,199	394	514	25381	19463	5918
Acetonitrila	0,305	393	528	25445	18947	6499

 Tabela 5: Comprimentos de onda de absorção e emissão de 23 nos diferentes solventes.

Solventes	Δf	λ^{ab}_{max} (nm)	$\lambda^{\rm fl}_{\rm max}$ (nm)	\overline{v}^{ab} (cm ⁻¹)	\overline{v}^{fl} (cm ⁻¹)	$\Delta \overline{\nu}$ (cm ⁻¹)
Tolueno	0,0134	399	522	25063	19157	5906
Dioxano	0,022	395	514	25316	19455	5861
Acetato de etila	0,199	394	528	25381	18939	6441
Acetonitrila	0,305	393	529	25445	18904	6542

 Tabela 6: Comprimentos de onda de absorção e emissão de 24 nos diferentes solventes.

Solventes	Δf	λ^{ab}_{max} (nm)	$\lambda^{\rm fl}_{\rm max}$ (nm)	\overline{v}^{ab} (cm ⁻¹)	\overline{v}^{fl} (cm ⁻¹)	$\Delta \overline{\nu}$ (cm ⁻¹)
Tolueno	0,0134	405	524	24691	19084	5607
Dioxano	0,022	398	526	25126	19011	6114
Acetato de etila	0,199	395	520	25316	19231	6086
Acetonitrila	0,305	394	538	25381	18587	6793

Os espectros de absorção revelaram um efeito hipsocrômico com aumento da polaridade do solvente, um comportamento que é característico de transições n- π^* . Os valores elevados de ε , por sua vez caracterizam transições π - π^* . Desta forma os resultados sugerem que as transições eletrônicas n- π^* e π - π^* destas substâncias absorvem em comprimentos de onda próximos resultando em uma banda de absorção com características de ambas as transições. A ligação hidrogênio intramolecular destas substâncias conferem relativa estabilidade às mesmas, diminuindo a intensidade de suas interações com as moléculas de solvente^{60,61}.

As emissões de fluorescência apresentaram efeito batocrômico, o que contribuiu para que os deslocamentos de Stokes aumentassem consideravelmente nos solventes mais polares, apresentando-se deslocado para o vermelho: solvatocromismo positivo. Estas emissões em comprimentos de onda muito superiores aos comprimentos de onda de absorção são oriundas das espécies resultantes de transferências intramoleculares de cargas ou próton.

Os deslocamentos dos máximos apresentaram-se maiores nos espectros de emissão, o que indica um maior momento de dipolo no estado excitado em relação ao estado fundamental. As diferenças entre os momentos de dipolo do estado excitado e fundamental ($\Delta \mu = \mu_e - \mu_f$) das quatro substâncias puderam ser estimadas correlacionando os deslocamentos de Stokes (Δv) e os parâmetros de solvatação (Δf) obtidos nos diversos solventes através da equação de Lippert-Mataga^{46,47}.

De posse de $\Delta v \in \Delta f$, para cada substância, foi plotado um gráfico $\Delta f \ge \Delta v$ (Figs 22-25).

72

Figura 22: Gráfico $\Delta f \mathbf{x} \Delta v$ da substância 6.

Figura 23: Gráfico $\Delta f \times \Delta v$ da substância 22.

Figura 24: Gráfico $\Delta f x \Delta v$ da substância 23.

Figura 25: Gráfico $\Delta f \times \Delta v$ da substância 24.

Da equação de reta foi obtido o valor do coeficiente angular (m) que igualado

ao termo $\frac{2(\Delta\mu)^2}{hca^3}$ foi usado para a determinação de $\Delta\mu$ (Tab. 7).

Substâncias	Δμ
6	0,67D
22	0,70D
23	0,62D
24	0,53D

Tabela 7: Diferenças no momento dipolar das substâncias 6, 22, 23 e 24.

As diferenças no momento dipolar entre os estados excitado e fundamental de **22**, **23** e **24** quando comparadas à diferença do momento dipolar de **6** apresentaram alterações pequenas, indicando que se comportam de maneira semelhante quando no estado excitado. Alterações comportamentais no momento de dipolo apresentam variações na ordem de grandeza superior a 10. Este resultado confirma a inexistência de auto-sensibilização mediada pelo fluoreto interno.

3.6. Detecção de fluoreto na forma de sal inorgânico (NaF)

Buscando avaliar a aplicabilidade tecnológica desta classe de quimiossensor, o comportamento de **6** foi testado frente a NaF usando acetonitrila como solvente.

Ao acréscimo de alíquotas de 10µL de NaF em acetonitrila (0,02mol/L), uma ligeira supressão na fluorescência foi observada. Tal fenômeno pode estar associado à diluição da concentração de **6** e não devido a uma sensibilização causada pelo íon fluoreto (Fig. 26).

A não detecção de íons fluoreto, conforme descrito por Peng e colaboradores, neste caso poderia ser consequência da não dissociação dos sais de NaF em acetonitrila.

Observou-se que o comportamento de **6**, quando na presença de NaF aquoso (0,02mol/L), apresentava aumento na intensidade de fluorescência com um discreto deslocamento batocrômico.

A fim de avaliar qual a participação do solvente (água) na intensificação da fluorescência de **6**, espectros de emissão de fluorescência foram obtidos após adições sucessivas de alíquotas de NaF aquoso (0,02mol/L) e como ensaio branco, o mesmo procedimento foi realizado somente com adição de água (Fig. 27).

Figura 27: Espectros de emissão de fluorescência de **6** em acetonitrila na presença de quantidades crescentes de NaF aquoso e água.

Como observado anteriormente, a emissão de fluorescência de **6** apresenta solvatocromismo positivo. Adições sucessivas de água promovem um aumento gradual na polaridade do solvente, o que justifica o deslocamento batocrômico observado na emissão de **6**.

Ao comparar as emissões de **6**, observou-se que as alíquotas de solução aquosa de NaF resultaram em uma menor intensificação da fluorescência quando comparadas à intensificação mediada pela água (Fig. 28).

Figura 28: Gráfico da adição de NaF_{aq} e H₂O x intensidade de fluorescência de 6.

Diante deste resultado pode-se influir que a intensificação da fluorescência emitida por **6** está relacionada à estabilização do seu estado excitado devido a uma solvatação preferencial pelas moléculas de água.

Na presença de NaF, as moléculas de água que antes estabilizavam o estado S_1 de **6** são deslocadas de modo a solvatar, preferencialmente, os íons Na⁺ e F⁻. Esta diminuição de moléculas de água disponíveis na região cibotática compromete a estabilidade do estado S_1 resultando na supressão da fluorescência.

A forte interação entre **6** e moléculas de água pôde ser comprovada através de estudos cristalográficos, onde foi possível observar na cristalização de **6**, na forma de seu hidrato, as ligações hidrogênios existentes (Fig. 29).

Figura 29: Ligações hidrogênio entre 6 e água no empacotamento cristalino.

3.7. Efeitos dos Substituintes na Fluorescência de Derivados 2-aril-1*H*antra[1,2-*d*]imidazo-6,11-diônicos na Ausência de fluoreto de tatrabutilamonio (FTBA)

O método empregado na determinação do rendimento quântico de fluorescência apresenta 20% de incerteza. Desta forma, poucos derivados apresentaram alteração significativa em seus valores quando comparados ao derivado não substituído **6** (Tab. 8).

Substância	λ^{ab}_{max}	λ ^{fl} max (nm)	\overline{V}_{a}	\overline{V}_{fl} (cm ⁻¹)	$\Delta \overline{v}$ (cm ⁻¹)	\mathcal{E}	Log ɛ	Φ _f
6	396	538	25253	18587	6665	1,26x10 ⁴	4,10	8,65x10 ⁻³
14	406	561	24631	17825	6805	1,86x10 ⁴	4,27	1,85x10 ⁻²
15	398	574	25126	17422	7704	1,24x10 ⁴	4,09	7,45x10 ⁻³
16	406	551	24631	18149	6482	8,47x10 ³	3,93	6,92x10 ⁻²
17	398	529	25126	18904	6222	1,07x10 ⁴	4,03	6,23x10 ⁻³
18	413	566	24213	17668	6545	1,81x10 ⁴	4,26	1,2x10 ⁻²
19	389	538	25707	18587	7120	1,38x10 ⁴	4,14	6,89x10 ⁻³
20	396	544	25253	18382	6870	1,30x10 ⁴	4,12	1,0x10 ⁻²
21	403	552	24814	18116	6698	2,02x10 ⁴	4,31	1,18x10 ⁻²
22	393	528	25445	18947	6499	1,66x10 ⁴	4,22	8,35x10 ⁻³
23	393	529	25445	18904	6542	1,42x10 ⁴	4,15	7,15x10 ⁻³
24	394	538	25381	18587	6793	1,40x10 ⁴	4,15	1,07x10 ⁻²
25	391	519	25575	19268	6308	2,21x10 ⁴	4,34	1,14x10 ⁻³
26	404	555	24752	18018	6734	2,15x10 ⁴	4,33	4,44x10 ⁻³
27	396	558	25253	17921	7331	1,26x10 ⁴	4,10	1,8x10⁻³
28	418	581	23923	17212	6712	$1,57 \times 10^4$	4,20	6,78x10 ⁻³
30	390	506	25641	19763	5878	1,51x10 ⁴	4,18	2,1x10 ⁻³
32	424	560	23585	17857	5728	$1,34 \times 10^4$	4,13	6,29x10 ⁻³

Tabela 8: Resultados fotofísicos.

Dos seis derivados que apresentaram mudança significativa nos valores de Φ_f , dois derivados, **14** e **16** apresentaram aumento de rendimento quântico de fluorescência, enquanto que **25**, **26**, **27** e **30** apresentaram diminuição no rendimento quântico de fluorescência em relação à **6**(Tab. 9).

Tabela 9: Razão entre os rendimentos quânticos de fluorescência dos derivados substituídos e **6**.

Substâncias	Φ _d	Φ_d/Φ_6
14	1,85x10 ⁻²	2,14
16	6,92x10 ⁻²	8
25	1,14x10 ⁻³	0,13
26	4,44x10 ⁻³	0,51
27	1,8x10 ⁻³	0,21
30	2,1x10 ⁻³	0,24

 Φ_d : Rendimento quântico de fluorescência dos derivados substituídos; \Box_6 : Rendimento quântico de fluorescência do corante não substituído **6** (8,65x10⁻³).

O deslocamento para o vermelho de **14** está atribuído a uma maior conjugação das ligações π no estado excitado. No estado fundamental, a bifenila apresenta um ângulo torcional de aproximadamente 40° entre seus anéis aromáticos. Quando excitada, os anéis benzênicos adotam uma conformação coplanar que favorece a extensão da conjugação do sistema π ⁶². O aumento da intensidade da fluorescência de **14**, sugere que no estado excitado a coplanaridade dos anéis favoreça o "congelamento" da estrutura, desfavorecendo a desexcitação não-radiativa por processos vibracionais, aumentando assim a perda de energia através da fluorescência.

Figura 30: Coplanaridade dos orbitais π no estado excitado de **14**.

O aumento da intensidade de fluorescência de **16** sugere um favorecimento do processo de desexcitação radiativo em detrimento ao processo não-radiativo. Em geral, substâncias podem perder energia através do movimento de rotação, transição $S_1 \rightarrow S_0$ via CI. A incorporação de uma metoxila na posição *orto*, minimiza a capacidade de rotação do anel aromático, ao longo da ligação $C_2 - C_r$ (Fig. 31), por consequência do impedimento estéreo adquirido com esta substituição e

possibilidade de ligação hidrogênio intramolecular entre o oxigênio da metoxila e o hidrogênio imidazólico, favorecendo, assim, o processo de desexcitação radiativo, neste caso: fluorescência.

Figura 31: Rotação proibida ao longo da ligação C₂ – C_{r.}

A presença de grupamentos com pares de elétrons livres não alteram o padrão da transição $\pi \rightarrow \pi^*$, visto que estes elétrons participam da conjugação com o sistema aromático desde que a coplanaridade dos orbitais seja mantida. Em contrapartida, quando por razões estéricas há uma alteração nesta coplanaridade, uma diminuição da intensidade de fluorescência pode ser observada. Esta alteração justifica a diminuição do rendimento quântico de fluorescência das substâncias **26** e **27**, derivados hidroxilados nas posições *orto* e *meta* do anel aromático. O derivado **28**, hidroxilado na posição *para* não sofreu alteração significativa no rendimento quântico de fluorescência, indicando que nesta posição a coplanaridade se mantém.

Os baixos rendimentos quânticos de fluorescência de **25** e **30** em relação à **6** estão associados ao tipo de transição eletrônica, $n \rightarrow \pi^*$, que passa a ser favorecida na presença destes substituintes. Estas transições favorecem, entre outros

processos intermoleculares, a desexcitação via cruzamento intersistemas, tornandoos pouco fluorescentes⁶³.

3.8. Efeitos dos substituintes na fluorescência de derivados 2-aril-1*H*-antra[1,2*d*]imidazo-6,11-diônicos na presença de fluoreto de tetrabutilamônio (FTBA)

A detecção de íons fluoreto por derivados 2-aril-1*H*-antra[1,2-*d*]imidazo-6,11diônicos se dá através da razão entre as intensidades de fluorescência nos comprimentos de onda máximos de emissão da espécie protonada e desprotonada.

No estado fundamental, o hidrogênio ácido imidazólico se liga ao íon fluoreto através de ligação hidrogênio. Uma vez excitado, o próton é transferido do quimiossensor para o íon fluoreto, processo denominado de transferência de próton no estado excitado (TPES), gerando uma nova espécie com máximo de absorção deslocado para o vermelho (Esq. 17).

Esquema 17: Interação entre 2-aril-1*H*-antra[1,2-*d*]imidazo-6,11-dionas e fluoreto.

Substituições no anel aromático refletem em alterações na acidez do hidrogênio imidazólico²⁵. Concomitantemente, tais substituições podem influenciar

na estabilidade da espécie desprotonada refletindo em um aumento da intensidade de fluorescência.

Para cada derivado, quantidades crescentes de FTBA foram adicionadas e após cada adição espectros de absorção na região do UV/VIS foram obtidos.

Todas as substâncias, exceto a substância **16**, apresentaram em seus espectros de absorção, desaparecimento da banda inicial e surgimento de uma nova banda (via TC) deslocada para o vermelho (Fig. 32) (para os demais espectros de absorção UV/VIS, vide Apêndice A).

A substância **16** não apresentou alterações em seu espectro de absorção (Fig. 33). Este resultado corrobora a hipótese de que há ligação hidrogênio entre o hidrogênio imidazólico e o oxigênio da metoxila, o que impediria estericamente a aproximação do fluoreto ao sítio de ligação. O efeito doador de elétrons da metoxila,

próximo ao sítio reativo, age sinergicamente diminuindo a acidez do próton, tornado-o menos susceptível à interação com o fluoreto.

Figura 33: Mudança do espectro de absorção de **16** (2,2x10⁻⁵ mol/L) em CH₃CN após adições de FTBA.

À cada derivado foram obtidos, assim como na espectroscopia de absorção na região do UV/VIS, espectros de emissão de fluorescência após cada adição de FTBA. Com intuito de visualizar o comportamento das duas bandas envolvidas neste processo de detecção, a excitação das substâncias se deu no mesmo comprimento de onda do seu ponto isosbéstico.

Na tabela a seguir estão descritos os valores dos comprimentos de onda de excitação (λ^{ex}), os comprimentos de onda máximo de emissão das espécies protonada (λ_{LH}^{max}) e desprotonada (λ_{L}^{max}), assim como suas intensidades de fluorescência (I_{F}^{LH} e I_{F}^{L} , respectivamente), obtidas através da área sob a banda de emissão, e suas razões (I_{F}^{LH}/I_{F}^{L}) (Tab. 10).

Substâncias	$\lambda_{ex}(nm)$	$\lambda_{LH}^{max}(nm)$	I_{F}^{LH}	$\lambda_L^{max}(nm)$	I_F^L	IF ^{LH} / IF ^L
6	427	535	16601	599	9608	0,6
14	437	560	29895	602	12129	0,4
15	428	572	8428	609	3574	0,4
16	-	-	-	-	-	-
17	429	544	344	582	305	0,9
18	445	570	934	600	309	0,3
19	433	529	6120	596	4006	0,7
20	430	533	12686	590	5159	0,4
21	434	548	10794	593	3529	0,3
22	421	531	14412	596	9467	0,7
23	421	529	72771	591	8607	1,2
24	425	538	19848	595	11121	0,6
25	423	505	402	581	10201	25,4
26	437	560	361	-	-	-
27	427	552	134	596	209	1,6
28	459	570	292	-	-	-
30	419	504	2379	579	10923	4,6

Tabela 10: Razão entre as intensidades de fluorescência antes e após TPES.

Conforme esperado, o derivado **16**, inerte à presença de íons fluoreto, não apresentou qualquer alteração significativa no seu espectro de emissão. Seus isômeros *meta e para*-metoxilado **17** e **18** respectivamente, apresentaram bandas características de TPES com supressão da intensidade de fluorescência, sendo a maior supressão, observada no derivado **18**, atribuída à instabilidade adquirida numa possível doação de elétrons por ressonância que contribui negativamente para a deslocalização da densidade eletrônica (vide Apêndice II: espectros de emissão de fluorescência na presença de FTBA).

Dois derivados hidroxilados nas posições orto e para, 26 e 28 respectivamente, embora tenham apresentado bandas de TC deslocadas pro vermelho em seus espectros de absorção, não apresentaram, no espectro de emissão, as bandas de TPES correspondentes. Em ambos os casos, a banda em menor comprimento de onda é discretamente deslocada para o vermelho,

acompanhada da supressão da fluorescência. Tal fenômeno indica que há a sensibilização do quimiossensor pelo fluoreto gerando uma espécie não-fluorescente (Figs. 34 e 35).

Figura 34: Mudança do espectro de emissão (λ_{ex} 437 nm) de **26** (1,1x10⁻⁵ mol/L) em CH₃CN após adições de FTBA.

Figura 35: Mudança do espectro de emissão (λ_{ex} 459 nm) de **28** (1,0x10⁻⁵ mol/L) em CH₃CN após adições de FTBA.

Considerando a maior acidez de fenóis no estado excitado e analisando o comportamento dos espectros de emissão obtidos, pode-se afirmar que, diferente do esperado onde o próton imidazólico é transferido, nestes derivados, os prótons fenólicos são os preferencialmente transferidos ao íon fluoreto no estado excitado.

Diferente de seus isômeros, o derivado *meta*-hidroxilado **27** apresenta em seu espectro de emissão a banda de TPES com intensificação da fluorescência. A menor acidez do hidrogênio fenólico, neste caso, consequência da baixa estabilidade de sua base conjugada, o torna menos ácido que o hidrogênio imidazólico, sendo este o próton transferido ao íon fluoreto no estado excitado. Seu padrão de substituição *meta*, no entanto favorece a deslocalização da densidade eletrônica do anel por efeito de campo estabilizando a espécie desprotonada, esta pequena estabilização justifica o aumento de 1,6 vezes na emissão de **27** (Fig. 36).

Figura 36: Mudança do espectro de emissão (λ_{ex} 427 nm) de **27** (1,3x10⁻⁵ mol/L) em CH₃CN após adições de FTBA.

Os grupamentos retirantes de elétrons por ressonância apresentaram os maiores efeitos, são os casos das substituições em *para* por grupos $-CN e -NO_2$ nos derivados **25** e **31**, respectivamente (Figs. 37 e 38).

Figura 37: Mudança do espectro de emissão (λ_{ex} 423 nm) de **25** (1,6x10⁻⁵ mol/L) em CH₃CN após adições de FTBA.

Figura 38: Mudança do espectro de emissão (λ_{ex} 419 nm) de **(31)** (1,1x10⁻⁵ mol/L) em CH₃CN após adições de FTBA.

Os derivados flúor-substituídos também apresentaram comportamentos distintos. Nas substituições em *orto* e *para*, os derivados **22** e **24**, respectivamente, o efeito doador de elétrons por ressonância do flúor, aumenta a densidade eletrônica no anel, diminuindo a estabilidade da espécie negativa gerada após a transferência do próton ao íon fluoreto, podendo ocasionar a diminuição da fluorescência observada na banda da espécie desprotonada (Figs. 39 e 40). O derivado **23**, *meta*-fluor-substituído, quando na presença do FTBA dá lugar a uma nova banda deslocada para o vermelho resultado da TPES assim como seus isômeros, divergindo no fato de que a intensidade de fluorescência dessa banda encontra-se aumentada em relação à banda da espécie protonada. Na posição *meta*, a maior influência é dada não pela ressonância, mas sim pelo efeito indutivo atrator de elétrons capaz de deslocalizar a densidade eletrônica estabilizando o sistema (Fig **41**).

Figura 39: Mudança do espectro de emissão (λ_{ex} 421 nm) de **22** (2,7x10⁻⁵ mol/L) em CH₃CN após adições de FTBA.

Figura 40: Mudança do espectro de emissão (λ_{ex} 425 nm) de **24** (3,5x10⁻⁵ mol/L) em CH₃CN após adições de FTBA.

Figura 41: Mudança do espectro de emissão (λ_{ex} 421 nm) de **23** (2,0x10⁻⁵ mol/L) em CH₃CN após adições de FTBA.

A substituição com grupamento doador de elétrons (–CH₃) resultou em supressão da fluorescência independentemente da posição do substituinte (vide Apêndice II: espectros de emissão de fluorescência na presença de FTBA).

Os derivados com extensão da conjugação do sistema π , **14** e **15**, apresentaram uma diminuição da intensidade da fluorescência da banda de TPES, mostrando que o aumento da conjugação embora possa favorecer a deslocalização da densidade eletrônica, não seja refletido num ganho expressivo de estabilidade a ponto de intensificar a fluorescência (Figs. 42 e 43).

Figura 42: Mudança do espectro de emissão (λ_{ex} 437 nm) de **14** (1,4x10⁻⁵ mol/L) em CH₃CN após adições de FTBA.

Figura 43: Mudança do espectro de emissão (λ_{ex} 428 nm) de **15** (1,5x10⁻⁵ mol/L) em CH₃CN após adições de FTBA.

A relação entre as intensidades máxima e mínima de fluorescência na ausência e excesso do ânion fluoreto é um indicador de eficiência desta classe de quimiossensores. Maiores valores de R_{max}/R_{min} (R_r) significam quimiossensores mais eficientes, sendo R= I(λ_L^{max})/I(λ_{LH}^{max}).

Tabela 11:	Valores	de R _r ((R _{max} /R _{min})	-
------------	---------	---------------------	---------------------------------------	---

Subst.	6	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	30
R _r	59	7	4	-	5	2	38	35	7	25	60	23	95	-	8	-	303

3.9. Influência do cátion tetrabutilamônio na fluorescência da banda TPES

Peng e colaboradores, 2005, reportaram que para um próton do corante ser transferido no estado excitado, seriam necessários dois equivalentes de íon fluoreto. Tal afirmação, quando comparada às mudanças espectrais mediadas pela adição de fluoreto, não condiz com o observado.

Caso a estequiometria 2:1 (FTBA/corante) norteasse, sozinha, as mudanças na intensidade de fluorescência, uma vez atingida esta razão, o sistema saturaria não apresentando novas mudanças nos espectros de emissão. O que se observa é uma saturação atingida após a adição de excesso de FTBA. Na tabela a seguir, está descrito, para cada derivado, o excesso de FTBA necessário para levar o sistema à saturação (Tab. 11).

Substâncias	[Substância]	[FTBA]	[FTBA]/[Substância]
6	3,4x10 ⁻⁵ mol/L	2,03x10 ⁻⁴ mol/L	6,0
14	1,4x10 ⁻⁵ mol/L	9,45x10⁻⁵ mol/L	6,8
15	1,5x10 ⁻⁵ mol/L	9,45x10 ⁻⁵ mol/L	6,3
16	-	-	-
17	1,8x10 ⁻⁵ mol/L	1,15x10 ⁻⁴ mol/L	6,4
18	1,4x10 ⁻⁵ mol/L	>3,7x10 ⁻⁴ mol/L	>26,4
19	1,8x10 ⁻⁵ mol/L	5,74x10 ⁻⁴ mol/L	31,8
20	1,5x10 ⁻⁵ mol/L	2,03x10 ⁻⁴ mol/L	13,5
21	7,3x10 ⁻⁶ mol/L	2,70x10 ⁻⁴ mol/L	40,0
22	2,7x10 ⁻⁵ mol/L	2,70x10 ⁻⁴ mol/L	10,0
23	2,0x10 ⁻⁵ mol/L	1,01x10 ⁻⁴ mol/L	5,1
24	3,5x10 ⁻⁵ mol/L	1,35x10 ⁻⁴ mol/L	3,9
25	1,6x10 ⁻⁵ mol/L	5,40x10 ⁻⁵ mol/L	3,4
26	1,1x10 ⁻⁵ mol/L	2,03x10 ⁻⁴ mol/L	18,5
27	1,3x10 ⁻⁵ mol/L	6,75x10 ⁻⁵ mol/L	5,2
28	1,0x10 ⁻⁵ mol/L	5,40x10 ⁻⁵ mol/L	5,4
(31)	1.1x10 ⁻⁵ mol/L	5.40x10 ⁻⁵ mol/L	5.0

Tabela 12: Razão entre concentrações de FTBA e 2-aril-1*H*-antra[1,2-*d*]imidazo-6,11-dionas.

Sendo a fluorescência um processo facilmente influenciável, a região que circunda uma substância fluorescente pode causar alterações em seus espectros de fluorescência. Uma vez sendo formada, pela TPES, espécies negativas e tendo o cátion tetrabutilamônio (TBA) em solução, a interação entre essas espécies pode levar a alterações na fluorescência.

Considerando as substâncias testadas como esferas de área de superfície $4\pi r^2$, onde r = $(3PM/4\pi N\rho)^{1/3}$ ⁶⁴, cálculos realizados estimaram ser necessário quatro moléculas do cátion TBA para preencher o entorno do quimiossensor.

Experimentalmente, observa-se que a maioria das substâncias testadas apresenta ponto de saturação em relações superiores a este valor.

Ainda no estado fundamental, é possível observar mudanças no comportamento do corante como visto nos espectros de absorção UV/Vis quando na presença do FTBA. As observações sugerem que, diferente do descrito na literatura, as alterações nos padrões espectrais são decorrentes de uma organização supramolecular dependente do cátion TBA.

Um segundo indício de que a solvatação exerça papel fundamental no comportamento desta classe de quimiossensores é visto quando se adiciona pequena quantidade de água no sistema (Fig. 44 e 45).

Figura 44: Mudança do espectro de absorção de **6** ($2x10^{-5}$ mol/L) em CH₃CN após adições de FTBA e H₂O.

Figura 45: Mudança do espectro de emissão (λ_{ex} 427 nm) de **6** (3,4x10⁻⁵ mol/L) em CH₃CN após adições de FTBA e H₂O.

Nos espectros de absorção e emissão de **6**, observa-se que após adição de água todo o efeito causado pela adição de FTBA é revertido, assemelhando-se ao momento anterior à adição do sal. Tal fenômeno deve-se ao fato de que a água passa a solvatar preferencialmente os íons, desorganizando o sistema supramolecular, impedindo-os de promover seus efeitos frente ao quimiossensor, desqualificando assim, o emprego desta classe de quimiossensor para detecção de íons em meio aquoso.

Conclusões

4. Conclusões

- A condensação de aldeídos aromáticos com a 1,2-diaminoantraquinona (9) em ácido acético na presença de acetato de sódio mostrou-se eficiente, uma vez que 96% dos quimiossensores desejados foram sintetizados com rendimentos apreciáveis (49 a 80%), limitados pelo difícil isolamento e purificação.
- Diferentes padrões de substituição no benzaldeído não apresentaram influências direta nos controles cinético e/ou termodinâmico na reação de obtenção de 2-aril-1*H*-antra[1,2-*d*]imidazo-6,11-dionas nas condições analisadas.
- A incorporação de 32 em matriz polimérica, via copolimerização randômica com monômeros de estireno, não se mostrou eficiente, inviabilizando o estudo da detecção de íons fluoreto em matriz sólida.
- Os derivados flúor-substituídos (22, 23 e 24) não apresentaram alterações em seus padrões espectrais, mostrando que não há interações intra ou intermoleculares mediada pelo flúor interno.
- Na ausência de FTBA, 14 e 16 apresentaram aumento do rendimento quântico de fluorescência, enquanto que 25, 26, 27 e 30 apresentaram redução do mesmo.
- Na presença de FTBA, os derivados 25 e (31), substituídos com grupamentos retirantes de elétron por ressonância apresentaram maior intensidade de

fluorescência na banda TPES quando comparados a **6**, não-substituído. Os derivados **23** e **27**, substituídos na posição 3 da fenila por átomos eletronegativos apresentaram um discreto ganho de fluorescência na banda TPES, associado ao efeito indutivo retirante de elétron. Substituições com grupos doadores de elétrons por ressonância ou efeito indutivo acarretaram em diminuição da fluorescência.

- Os derivados 23 e 25 apresentaram valores de R_r maiores que 6 qualificandoos como eficientes quimiossensores de FTBA. Os derivados 19 e 20 apresentaram valores de R_r razoáveis entretanto pode ser um quimiossensor de FTBA mais específico devido a menor acidez de seus prótons.
- Os experimentos de detecção de fluoreto na presença de água mostraram a solvatação preferencial dos íons e do corante pelas moléculas de água, desqualificando os derivados 2-aril-1*H*-antra[1,2-*d*]imidazo-6,11-diônicos como quimiossensores de íons fluoreto em meio aquoso.

Parte Experimental

5. Parte Experimental

5.1. Materiais e Métodos

Os pontos de fusão foram determinados pelo método do capilar em aparelho Thomas Hoover e os valores descritos não estão corrigidos.

Os espectros na região do infravermelho (I.V.) foram obtidos em espectrofotômetro Perkin-Elmer 783 e Nicolet IRFT, usando pastilha de KBr anidro e filme em suporte de NaCI. Os valores de absorção estão expressos em número de ondas utilizando como unidade o centímetro recíproco (cm⁻¹) e os espectros calibrados com o filme de poliestireno de 0.07mm de espessura, nas absorções em 3027, 1601 e 1028 cm⁻¹.

Os espectros de absorção na região do ultravioleta/visível foram obtidos em um espectrofotômetro Shimadzu modelo UV-2450. Cubetas casadas de dimensões 12,5 x 45 mm e caminho ótico de 10 mm foram utilizadas para a obtenção dos espectros através do modo de duplo feixe com compensação pelo solvente. Os dados obtidos foram analisados no programa Origin 6.0.

Os espectros de emissão de fluorescência foram obtidos em um espectrofotômetro de fluorescência Hitachi modelo F-4500, equipado como uma lâmpada de xenônio 150W como fonte emissora de fótons. Os espectros foram obtidos numa geometria de ângulo reto com cubeta de quartzo com dimensões 12,5 x 45 mm, fendas de excitação e emissão de 5 nm, voltagem da fotomultiplicadora ajustada para 750V e caminho ótico de 10 mm de quartzo. Os rendimentos quânticos foram calculados usando como padrão o 9,10-difenilantraceno em ciclohexano⁴⁸. Os dados obtidos foram analisados no programa Origin 6.0.

101

Os espectros de massas de baixa resolução foram obtidos em um espectrômetro de massas acoplado a um cromatógrafo a gás Shimadzu-CG/EMQP5000, modelo CG17A, usando uma coluna capilar DB-5 e hélio ultrapuro (Tec Gás) como gás de arraste. Os fragmentos são descritos como relação entre as unidades de massa atômica e carga (m/z) e a abundancia relativa foi dada em percentagem (%).

Os espectros de RMN de ¹H foram obtidos nos aparelhos Varian Gemini 200, Varian Mercury plus (300 MHz) e Bruker AVANCE DRX-400 nos solventes indicados, utilizando-se tetrametilsilano (TMS) como referência interna. Os valores de deslocamento químico (δ) são dados em partes por milhão (ppm) e as constantes de acoplamento (J) em hertz (Hz). As áreas sob os sinais foram determinadas por integração eletrônica e suas multiplicidades descritas como: s-simpleto; d-dubleto; qquarteto; m-mutipleto; dd-duplo dubleto, ddd-duplo duplo dubleto e td-triplo dubleto.

Os espectros de RMN de ¹³C foram obtidos nos aparelhos Varian Gemini 200, Varian Mercury plus (300 MHz) e Bruker AVANCE DRX-400 nos solventes indicados, utilizando-se tetrametilsilano (TMS) como referência interna. Os valores de deslocamento químico são dados em ppm, o desacoplamento de hidrogênio foi feito em faixa larga.

O monitoramento das reações foi realizado através da cromatografia em camada fina (CCF), utilizando-se cromatofolhas AI de silicagel F_{204} nas dimenções de 2 x 5 cm.

Para a purificação das substâncias, cromatografias de adsorção em coluna foram realizadas utilizando-se sílicagel 60 (0,063-0,200/70-230 mesh) como fase estacionária adquiridas da indústria química Vetec.

102

A visualização das substâncias nas placas cromatográficas foi feita com lâmpada de ultravioleta (254 e 365nm).

A remoção dos solventes nos processos de isolamento e purificação foi realizada em evaporador rotatório Buchi, sob pressão reduzida (25 mmHg), sob banho-maria à 50°C. Quando necessário, um sistema alto vácuo (pressões de 10-0,1 mmHg) foi utilizado para remover completamente os solventes.

Todos os solventes utilizados neste trabalho foram destilados.

Os dados cristalográficos presentes nesta dissertação foram obtidos em um difratômetro Enraf-Nonius Kappa-CCD na Universidade Federal de Alagoas no Laboratório do Professor Carlos Alberto de Simone e tratados com as seguintes ferramentas: COLLECT para a coleta de dados, *HKL DENZO* e *SCALEPACK* para refinamento de células e redução de dados, SHELXS97 para resolução e refinamento de estrutura e ORTEP3 para Windows para representação gráfica⁶⁵⁻⁶⁸.

5.2. Reações

5.2.1. Preparação das 2-aril-1H-antra[1,2-d]imidazo-6,11-dionas

5.2.1.1. Método 1: orto-diamina e aldeído.

Em um balão foi adicionado uma suspensão de 1 mmol de **9** em 5 mL de ácido acético, seguido de 1,1 mmol do aldeído aromático e 1,3 mmol de acetato de sódio sob agitação e refluxo. O término da reação foi acompanhado por C.C.F. onde se observara o total consumo a antraquinona de partida. O meio reacional foi vertido em água gelada. O precipitado formado foi filtrado à vácuo e o produto obtido foi

purificado em coluna cromatográfica utilizando como eluente uma mistura diclorometano/acetato de etila em uma proporção 5:1 v/v.

Em alguns casos onde a filtração não se mostrara eficiente, o filtrado foi extraído com acetato de etila (3x50 mL) e a fase orgânica foi seca em Na_2SO_4 e concentrada em rota-evaporador.

Os dados espectrométricos e pontos de fusão das substâncias obtidas são mostrados em seguida.

• 2-fenil-1H-antra[1,2-d]imidazo-6,11-diona (6)

Esquema 18 : Síntese da substância 6

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao benzaldeído (117 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **6**, como um cristal amarelo (256 mg, 0,79 mmol, 79% de rendimento, p.f. 230°C).

✓ RMN de ¹H (400 MHz, CDCl₃) δ ppm: 13,02 (s,1H) 8.39-8.34 (m, 1H); 8.33-8.29 (m, 1H); 8.26 (d, *J* = 8.36 Hz, 1H); 8.22-8.17 (m, 2H); 8.15 (d, *J* = 8.36 Hz, 1H); 7.87-7.80 (m, 2H); 7.64-7.55 (m, 3H).

✓ RMN de ¹³C (400 MHz, DMSO-d₆) δ ppm: 118.0, 122.1, 125.7, 126.5, 127.2, 127.6, 128.6, 129.4, 131.6, 133.1, 133.3, 133.8, 133.9, 134.5, 136.2, 149.4, 156.7, 180.9, 182.6, 185.1.

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3364, 3303, 1665, 1647, 1593, 1582, 1529, 1477, 1488, 1454, 1438, 1327, 1290, 1245, 1213, 1185, 1147, 1059, 1007, 840, 778, 715, 690.

✓ Dados cristalográficos: Vide apêndice C

• 2-(4-fenilfenil)-1H-antra[1,2-d]imidazo-6,11-diona (14)

Esquema 19: Síntese da substancia 14

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao 4fenilbenzaldeído (200 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **14**, como um sólido amarelo (196 mg, 0,49 mmol, 49% de rendimento, p.f. 269°C).

✓ RMN de ¹H (300 MHz, DMSO-*d*₆) δ ppm: 13.1 (s, 1H); 8.50 (d, *J*=8.4Hz, 2H); 8.15-8.22 (m, 2H); 8.03-8.10 (dd, *J*=8,4Hz, 2H); 7.75-7.93 (m, 4H); 7.38-7.52 (m, 3H)

✓ RMN de ¹³C (300 MHz, DMSO-d₆) δ ppm: 120.6, 125.7, 126.3, 126.4, 127.6, 127.8, 128.3, 128.5, 129.4, 132.9, 133.7, 133.9, 138.9, 142.1, 156.9, 181.9, 182.7.

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3334, 1664, 1645, 1609, 1562, 1540, 1476, 1437, 1420, 1327, 1290,1214, 1199, 1153, 1060, 1008, 843, 772, 738, 717, 702, 667, 651, 596, 509.

• 2-(naftalen-1-il)-1H-antra[1,2-d]imidazo-6,11-diona (15)

Esquema 20: Síntese da substância 15

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao 1naftaldeído (172 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **15**, como um sólido amarelo (190 mg, 0,51 mmol, 51% de rendimento, p.f. 263-267°C).

✓ RMN de ¹H (300 MHz, CDCl₃) δ ppm: 8.86 (d, *J* = 8.23 Hz, 1H), 8.37 (dd, *J* = 7.17, 1.49 Hz, 1H), 8.30 (d, *J* = 8.38 Hz, 1H), 8.29-8.22 (m, 2H) 8.08-7.93 (m, 3H), 7.87-7.75 (m, 2H), 7.69-7.55 (m, 3H).

✓ RMN de 13 C (300 MHz, DMSO-d₆) δ ppm: 120.7, 124.9, 125.7, 126.1, 126.6, 127.1, 128.1, 128.3, 129.6, 130.7, 133.0, 133.2, 134.1, 134.3, 157.7, 182.4, 182.9
✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3600, 3487, 3443, 3420, 3060, 3010, 2923, 2853, 1670, 1606, 1583, 1519, 1504, 1488, 1475, 1438, 1329, 1294, 1214, 1182, 1154, 1063, 1003, 855, 804, 772, 715, 563, 488.

• 2-(2-metoxifenil)-1H-antra[1,2-d]imidazo-6,11-diona (16)

Esquema 21: Síntese da substância 16

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao 2metoxibenzaldeído (150 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **16**, como um sólido amarelo (226 mg, 0,66 mmol, 66% de rendimento, p.f. 262°C).

✓ RMN de ¹H (400 MHz, CDCl₃) δ ppm: 12.24 (s, 1H), 8.37-8.30 (m, 1H), 8.30-8.25 (m, 1H), 8.22 (d, J = 8.34 Hz, 1H), 8.09 (d, J = 8.39 Hz, 1H), 7.83-7.76 (m, 2H), 7.52 (m, 1H), 7.23-7.06 (m, 3H), 4.23 (s, 3H).

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3431, 1665, 1647, 1582, 1516, 1487, 1473, 1456, 1437, 1325, 1292, 1240, 1201, 1173, 1119, 1022, 1003, 839, 762, 750, 718, 656.

• 2-(3-metoxifenil)-1H-antra[1,2-d]imidazo-6,11-diona (17)

Esquema 22: Síntese da substância 17

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao 3metoxibenzaldeído (150 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **17**, como um sólido amarelo (289 mg, 0,82 mmol, 82% de rendimento, p.f. 230°C).

✓ RMN de ¹H (400 MHz, CDCl₃) δ ppm: 8.37-8.30 (m, 1H), 8.30-8.25 (m, 1H), 8.23 (d, *J* = 8.26 Hz, 1H), 8.12 (d, *J* = 8.26 Hz, 1H), 7.85-7.77 (m, 2H), 7.76-7.64 (m, 2H), 7.48 (t, *J* = 7.89 Hz, 1H), 7.10 (dd, *J* = 8.23, 2.32 Hz, 1H), 3.95 (m, 3H)

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3373, 1668, 1602, 1583, 1525, 1490, 1475, 1433, 1332, 1290, 1261, 1219, 1033, 873, 715, 680.

• 2-(4-metoxifenil)-1H-antra[1,2-d]imidazo-6,11-diona (18)

Esquema 23: Síntese da substância 18

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao 4metoxibenzaldeído (150 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **18**, como um sólido amarelo (258 mg, 0,73 mmol, 73% de rendimento, p.f. 240°C).

✓ RMN de ¹H (400 MHz, CDCl₃) δ ppm: 8.26-8.21 (m, 1H), 8.18 (d, *J* = 8.37 Hz, 1H), 8.33-8.29 (m, 1H), 8.09-8.02 (m, 3H), 7.81-7.75 (m, 2H), 7.09-7.02 (m, 2H), 3.90-3.90 (m, 3H)

✓ RMN de ¹³C (300 MHz, CDCl₃) δ ppm: 55.2, 113.9, 118.1, 119.8, 120.0, 124.3, 126.2, 126.8, 127.3, 130.1, 133.0, 133.1, 134.2, 134.4, 149.7, 157.2, 161.2, 183.2, 185.3

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3437, 1663, 1605, 1591, 1584, 1487, 1474, 1460, 1429, 1327, 1300, 1288, 1258, 1173, 1152, 1024, 1003, 845, 719

• 2-(2-metilfenil)-1H-antra[1,2-d]imidazo-6,11-diona (19)

Esquema 24: Síntese da substância 19

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao otoluilaldeído (132 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **19**, como um sólido amarelo (271 mg, 0,80 mmol, 80% de rendimento, p.f. 235 a 239°C).

✓ RMN de ¹H (300 MHz, CDCl₃) δ ppm: 8.27-8.19 (m, 1H), 8.17-8.10 (m, 2H), 8.04 (d, J = 8.38 Hz, 1H), 7.77 (d, J = 7.42 Hz, 1H), 7.72-7.66 (m, 2H), 7.38-7.23 (m, 3H), 2,63 (s, 3H)

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3346, 1666, 1649, 1575, 1519,1483, 1438, 1323, 1296, 1008, 840, 773, 727, 713, 648.

Esquema 25: Síntese da substância 20

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao mtoluilaldeído (132 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **20**, como um sólido amarelo (251 mg, 0,74 mmol, 74% de rendimento, p.f. 229°C).

✓ RMN de ¹H (300 MHz, CDCl₃) δ ppm: 8.34-8.29 (m, 1H), 8.28-8.23 (m, 1H), 8.21 (d, J = 8.37 Hz, 1H), 8.09 (d, J = 8.39 Hz, 1H), 7.98 (s, 1H), 7.92 (d, J = 7.65 Hz, 1H), 7.82-7.76 (m, 2H), 7.45 (t, J = 7.62 Hz, 1H), 7.37 (d, J = 7.60 Hz, 1H), 2.49 (s, 3H).

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3444, 1670, 1581, 1525, 1489, 1330, 1290, 713, 684, 354.

• 2-(4-metilfenil)-1H-antra[1,2-d]imidazo-6,11-diona (21)

Esquema 26: Síntese da substância 21

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao ptoluilaldeído (132 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **21**, como um sólido amarelo (191 mg, 0,56 mmol, 56% de rendimento, p.f. 249°C).

✓ RMN de ¹H (300 MHz, CDCl₃) δ ppm: 8.33-8.30 (m, 1H); 8.27-8.24 (m, 1H); 8.20 (d, *J* = 8.79 Hz, 1H); 8.08 (d, *J* = 7.91 Hz, 2H); 8.03 (d, *J* = 8.79 Hz, 1H); 7.83-7.75 (m, 2H); 7.37 (d, *J* = 7.91 Hz, 2H); 2.46 (s, 3H).

✓ RMN de ¹³C (300 MHz, CDCl₃) δ ppm: 21.8, 117.82, 121.87, 125.40, 125.74, 126.37, 126.79, 126.91, 127.48, 128.35, 129.91, 129.91, 133.14, 133.23, 133.63, 133.94, 134.29, 141.94, 149.53, 156.78, 183.1, 183.1

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3595, 3134, 1662, 1651, 1579, 1541, 1489, 1327, 1300,1288, 1211, 1184, 1147, 1118, 1058, 1008, 846, 827, 734, 717.

✓ Dados cristalográficos: Vide Apêndice C

• 2-(2-fluorofenil)-1H-antra[1,2-d]imidazo-6,11-diona (22)

Esquema 27: Síntese da substância 22

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao 2fluorobenzaldeído (136 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **22**, como um sólido amarelo (207 mg, 0,61 mmol, 61% de rendimento, p.f. 290°C).

✓ RMN de ¹H (400 MHz, CDCl₃) δ ppm: 11.81-11.64 (m, 1H), 8.54 (t, *J* = 7.79 Hz, 1H), 8.38-8.34 (m, 1H), 8.34-8.30 (m, 1H), 8.27 (d, *J* = 8.40 Hz, 1H), 8.16 (d, *J* = 8.39 Hz, 1H), 7.85-7.79 (m, 2H), 7.61-7.51 (m, 1H), 7.42-7.29 (m, 2H).

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3450, 1668, 1583, 1489, 1465, 1436, 1328, 1290, 1271, 765, 715, 605.

• 2-(3-fluorofenil)-1H-antra[1,2-d]imidazo-6,11-diona (23)

Esquema 28: Síntese da substância 23

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao 3fluorobenzaldeído (136 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **23**, como um sólido amarelo (177 mg, 0,52 mmol, 52% de rendimento, p.f. 250-255°C).

✓ RMN de ¹H (400 MHz, CDCl₃) δ ppm: 11.38-11.29 (m, 1H), 8.38-8.33 (m, 1H), 8.32-8.28 (m, 1H), 8.26 (d, *J* = 8.42 Hz, 1H), 8.14 (d, *J* = 8.37 Hz, 1H), 7.96-7.89 (m, 2H), 7.86-7.79 (m, 2H), 7.57 (dd, *J* = 13.61, 7.92 Hz, 1H), 7.31-7.27 (m, 1H)

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3414, 1670, 1647, 1587, 1577, 1529, 1485, 1458, 1328, 1294, 1274, 1188, 713.

• 2-(3-fluorofenil)-1H-antra[1,2-d]imidazo-6,11-diona (24)

Esquema 29: Síntese da substância 24

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao 4fluorobenzaldeído (136 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **24**, como um sólido amarelo (226 mg, 0,66 mmol, 66% de rendimento, p.f. 280-283°C).

✓ RMN de ¹H (400 MHz, CDCl₃) δ ppm: 11.38-11.24 (m, 1H), 8.39-8.33 (m, 1H), 8.32-8.28 (m, 1H), 8.26 (d, *J* = 8.36 Hz, 1H), 8.22-8.16 (m, 2H), 8.13 (d, *J* = 8.43 Hz, 1H), 7.86-7.80 (m, 2H), 7.32-7.28 (m, 2H)

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3429, 1670, 1589, 1489, 1330, 1301, 1290, 717.

• 2-(4-cianofenil)-1H-antra[1,2-d]imidazo-6,11-diona (25)

Esquema 30: Síntese da substância 25

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao 2hidroxibenzaldeído (150 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **25**, como um sólido amarelo (226 mg, 0,66 mmol, 66% de rendimento, p.f. > 300° C).

✓ RMN de ¹H (300 MHz, CDCl₃) δ ppm: 8.33-8.30 (m, 1H), 8.27-8.24 (m, 1H), 8.17 (d, *J* = 8.36 Hz, 1H), 8.01 (d, *J* = 8.36 Hz, 1H), 7.96 (d, *J* = 9 Hz, 2H), 7.80-7.76 (m, 2H), 7.73 (d, *J* = 9 Hz, 2H)

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3344, 2229, 1668, 1593, 1578, 1489, 1479, 1330, 1294, 1283, 1269, 1011, 845, 713

• 2-(2-hidroxifenil)-1H-antra[1,2-d]imidazo-6,11-diona (26)

Esquema 31: Síntese da substância 26

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao 2hidroxibenzaldeído (150 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **26**, como um sólido amarelo (174 mg, 0,51 mmol, 51% de rendimento, p.f. > 300° C).

✓ RMN de ¹H (300 MHz, DMSO- d_6) δ ppm: 12.68 (s, 1H), 12.11 (s, 1H), 8.32 (d, *J*=7.4Hz, 1H), 8.14-8.10 (m, 2H), 7.99 (s, 2H), 7.85-7.82 (m, 2H), 7.43-7.37 (ddd, *J*=7.4 e 1.7Hz, 1H), 7.07-6.97 (m, 2H)

✓ RMN de ¹³C (300 MHz, DMSO- d_6) δ ppm: 113.4, 117.2, 119.8, 121.4, 126.3, 126.9, 127.9, 128.8, 132.9, 133.1, 133.2, 134.3, 134.6, 156.3, 157.3, 182.3, 183.6,

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3352, 1664, 1589, 1521, 1487, 1327, 1290, 752, 713.

• 2-(3-hidroxifenil)-1H-antra[1,2-d]imidazo-6,11-diona (27)

Esquema 32: Síntese da substância 27

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao 3hidroxibenzaldeído (150 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **27**, como um sólido amarelo (200 mg, 0,59 mmol, 59% de rendimento, p.f. >300°C).

✓ RMN de ¹H (300 MHz, DMSO-*d*₆) δ ppm: 12.92 (s, 1H), 9.71 (s, 1H), 8.20-8.16 (m, 2H), 8.09-8.02 (m, 2H), 7.91-7.80 (m, 4H), 7.38 (t, *J*=7.8 Hz, 1H), 6.99 (dd, *J*=7.96 e 1.92 Hz, 1H)

✓ RMN de ¹³C (300 MHz, DMSO- d_6) δ ppm: 114.9, 118.2, 118.6, 119.1, 120.9, 124.9, 126.2, 126.7, 127.9, 129.8, 130.1, 132.8, 132.9, 133.0, 134.2, 134.4, 149.2, 157.6, 157.8, 182.3, 183.0

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3530, 3410, 3020, 1658, 1580, 1535, 1488, 1462, 1440, 1325, 1290, 1264, 1234, 1153, 890, 784, 714, 680, 595, 568.

• 2-(4-hidroxifenil)-1H-antra[1,2-d]imidazo-6,11-diona (28)

Esquema 33: Síntese da substância 28

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao 3hidroxibenzaldeído (150 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **28**, como um sólido amarelo (187 mg, 0,55 mmol, 55% de rendimento, p.f. > 300° C).

✓ RMN de ¹H (300 MHz, DMSO- d_6) δ ppm: 12.78 (s, 1H), 10.06 (s, 1H), 8.27 (d, *J*=8.37 Hz, 1H), 8.22-8.17 (m, 3H), 8.06-7.98 (m, 2H), 7.91-7.88 (m, 2H), 6.93 (d, *J*=8.78, 2H)

✓ RMN de ¹³C (300 MHz, DMSO- d_6) δ ppm: 115.6, 118.2, 119.8, 121.0, 124.2, 126.2, 126.8, 127.4, 103.1, 133.0, 133.2, 134.2, 134.4, 149.7, 158.2, 160.3, 182.3, 183.2

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3431, 3134, 1668, 1608,1585, 1490, 1475, 1458, 1440, 1328, 1295, 1246, 1174, 715.

• 2-(4-hidroxi-3-metoxifenil)-1H-antra[1,2-d]imidazo-6,11-diona (29)

Esquema 34: Síntese da substância 29

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao 4-hidroxi-3metoxibenzaldeído (167 mg, 1,1 mmol) na presença de AcONa (107 mg, 1,3 mmol) forneceu o produto **29**, como um sólido vermelho-alaranjado (285 mg, 0,77 mmol, 77% de rendimento, p.f. > 300° C).

✓ RMN de ¹H (400 MHz, CDCl₃) δ ppm: 11.25-11.25 (s, 1H), 8.37 (dd, *J* = 6.94, 2.11 Hz, 1H), 8.31 (dd, *J* = 6.88, 2.14 Hz, 1H), 8.25 (d, *J* = 8.38 Hz, 1H), 8.11 (d, *J* = 8.39 Hz, 1H), 7.85-7.80 (m, 3H), 7.62 (dd, *J* = 8.27, 1.98 Hz, 1H), 7.11 (d, *J* = 8.24 Hz, 1H), 6.04-6.03 (m, 1H), 4.09-4.07 (s, 3H)

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3431, 3331, 1662, 1589, 1490, 1438, 1327, 1290, 1270, 1188, 1165, 1026, 721.

5.2.1.2. Método 2: orto-diamina e cloreto de ácido

Em um balão foi adicionado uma suspensão de 1 mmol de 1,2diaminoantraquinona e 2,5 mmol de K_2CO_3 em 70 mL de THF, seguido de uma solução de 4 mmol do cloreto de arila em 10 mL de THF, sob agitação e refluxo. O termino da reação foi acompanhado por C.C.F. onde se observara o total consumo a antraquinona de partida. O solvente foi evaporado em rota-evaporador, o resíduo diluído em 20 mL de NaCO₃ 2N e extraído com CH_2CI_2 . A fase orgânica foi seca em Na_2SO_4 e concentrada em rota-evaporador. O intermediário obtido foi aquecido até refluxo na presença de 0,8 mmol de NaOH em 150 mL de etanol a 95%. Após o término da reação, o meio reacional foi resfriado até temperatura ambiente e neutralizado com HCl 1N. O solvente foi evaporado em rota-evaporador, o resíduo diluído em 20 mL de NaCO₃ 2N e extraído com CH_2CI_2 . A fase orgânica foi seca em Na_2SO_4 e concentrada em rota-evaporador. O intermediário até temperatura ambiente e neutralizado com HCl 1N. O solvente foi evaporado em rota-evaporador, o resíduo diluído em 20 mL de NaCO₃ 2N e extraído com CH_2CI_2 . A fase orgânica foi seca em Na_2SO_4 e concentrada em rota-evaporador. O produto obtido foi purificado em coluna cromatográfica utilizando como eluente uma mistura diclorometano/acetato de etila em uma proporção 5:1 v/v.

• 2-(4-nitrofenil)-1H-antra[1,2-d]imidazo-6,11-diona (30)

Esquema 35: Síntese da substância 30

A reação da 1,2-diaminoantraquinona (238 mg, 1 mmol) frente ao cloreto de 4-nitrobenzoíla (740 mg, 4 mmol) na presença de K_2CO_3 (345 mg, 2,5 mmol) e posterior fechamento do núcleo imidazólico forneceu o produto **30**, como um sólido amarelo (173 mg, 0,47 mmol, 47% de rendimento, p.f. > 300°C).

✓ RMN de ¹H (300 MHz, CDCl₃) δ ppm: 8.7 (d, 2H), 8.37-8.31 (m, 2H), 8.26 (d, *J* = 9 *Hz*, 2H), 8.18 (d, *J* = 8.1 Hz, 1H), 8.14 (d, *J* = 8.1 Hz, 1H), 7.96-7.92 (m, 2H)

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3331, 1667, 1589, 1530, 1491, 1333, 1308, 1294, 1260, 854, 712

5.2.2. <u>O-alilação da 2-(4-hidroxi-3-metoxifenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona (29)</u>

5.2.2.1. Formação do sal de sódio

Em um balão foram adicionados 55 mg (0,15 mmol) da **29** seguida da adição de uma solução de 30 mg (7,5 mmol) de NaOH em 5 mL de etanol P.A. sob agitação e aquecimento à 60°C. A fim de garantir a total conversão de **29** em seu sal de sódio, a agitação e aquecimento foram mantidos por 30 minutos.

5.2.2.2. Substituição nucleofílica: o-alilação

Sobre o sal de sódio de **29**, foram vertidos 3,5 mL de brometo de alila 99% e a reação foi mantida em agitação por 3 horas.

• 2-(4-aliloxi-3-metoxifenil)-1H-antra[1,2-d]imidazo-6,11-diona (32)

Esquema 36: Síntese da substância 32

A reação de o-alilação de **29** (50 mg, 0,15 mmol) forneceu o produto **32**, como um sólido amarelo (33 mg, 0,08 mmol, 54% de rendimento, p.f. 183°C).

✓ RMN de ¹H (400 MHz, CDCl₃) δ ppm: 11.22 (s, 1H), 8.37-8.32 (m, 1H), 8.30-8.26 (m, 1H), 8.23 (d, *J* = 8.36 Hz, 1H), 8.09 (d, *J* = 8.37 Hz, 1H), 7.84-7.79 (m, 2H), 7.77 (t, *J* = 3.47 Hz, 1H), 7.62 (dd, *J* = 8.35, 1.95 Hz, 1H), 7.03 (d, *J* = 8.42 Hz, 1H), 6.19-6.08 (m, 1H), 5.48 (dd, *J* = 17.27, 1.33 Hz, 1H), 5.37 (dd, *J* = 10.49, 1.14 Hz, 1H), 4.73 (d, *J* = 5.40 Hz, 2H), 4.07-4.04 (m, 3H)

✓ I.V. v_{max} cm⁻¹, pastilha de KBr: 3445, 2927, 1655, 1647, 1593, 1577, 1513, 1479, 1464, 1450, 1441, 1427, 1327, 1290, 1260, 1242, 1227, 1213, 1155, 1007, 730

<u>5.2.3. Copolimerização em emulsão da 2-(4-aliloxi-3-metoxifenil)-1H-antra[1,2-</u> <u>d]imidazo-6,11-diona e estireno</u>

Esquema 37: Reação de copolimerização randômica

Em um balão foram adicionados 10 mg de **32** solubilizados em 25 mL de uma solução de álcool polivinílico 3%, seguido da adição de 10 mL de (9,2 g) de estireno previamente destilado e 70 mg de peróxido de benzoíla. O balão foi arrolhado e mantido sob agitação por 30 minutos e, posteriormente, imergido em banho-maria à 80°C por 4 horas. Após o tempo de polimerização, o sistema foi deixado em repouso por 24 horas. Filtrou-se o polímero em funil de buchner, lavando com 50 mL de água e 50 mL de metanol.

Dissolveu-se 5g do polímero em benzeno até formação de uma solução límpida e viscosa. A solução foi vertida em placa de petri e deixada ao ar para que o solvente evaporasse formando um filme amarelo translúcido.

Referências Bibliográficas

6. Referências Bibliográficas

- 1. Schmidtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609-1646.
- 2. Martínez-Manêz, R.; Sancenón, F. J. Fluoresc. 2005, 15, 267-285.
- 3. Karim, M. M.; Das, A. K.; Lee, S. H. *Analytica Chimica Acta*, **2006**, 576, 37–42.
- 4. Jentsch, T. J. Curr. Opin. Neurobiol. **1996**, 6, 303-310.
- 5. Gale, P. A. Coord. Chem. Rev. 2001, 213, 79-128.
- 6. A. W. Czarnik, In Advances in Supramolecular Chemistry, ed. G. W. Gokel, JAI Press, Greenwich, Connecticut, **1993**, 3, 131–157.
- 7. Suksai, C.; Tuntulani, T. Chem. Soc. Rev. 2003, 32, 192–202.
- 8. Beer, P. D.; Gale, P. A. Angew. Chem. 2001, 40, 486-516.
- 9. Park, C. H.; Simmons, H. E. J. Am. Chem. Soc. 1968, 90, 2431.
- 10. Martínez-Manêz, R.; Sancenón, F. J. Chem. Rev. 2003, 103, 4419-4476.
- Batista, R. M. F.; Oliveira, E.; Costa, S. P. G.; Lodeiro, C.; Raposo, M. M. M. Org. Lett. 2007, 9, 3201-3204.
- 12. Bernardo, M. A.; Guerrero, J. A.; Garcia-Espanã, E.; Luis, S. V.; Llinares, J. M.; Pina, F.; Ramirez, J. A.; Soriano, C. *J. Chem. SOC: Perkin Trans.* 2, **1996**, 2335-2342.
- 13. Gunnlaugsson, T.; Davisab A. P.; Glynna, M. *Chem. Commun.*, **2001**, 2556–2557.
- 14. Szumna, A.; Jurczak J. *Eur. J. Org. Chem.* **2001**, 21, 4031-4039.
- 15. Gale P. A.; Camiolo, S.; Tizzard, G. J.; Chapman, C. P.; Light, M. E.; Coles, S. J.; Hursthouse, M. B. *J. Org. Chem.* **2001**, *66*, 7849-7853.
- 16. Gunnlaugsson, T., Ali, H.D.P., Glynn, M., Kruger, P.E., Hussey, G.M., Pfeffer, F.M., Dos Santos, C.M.G., Tierney, J. *Journal of Fluorescence*, **2005**, 15, 287-299.
- 17. Atwood, J. L.; Holman, K. T.; Steed, J. W. Chem. Commun. **1996**, 12, 1401-1407.
- 18. Yeo H. M.; Ryu, B. J.; Nam, K. C.; Org. Lett., 2008, 10, 2931–2934.
- 19. Valeur B.; Molecular Fluorescence: Principles and Aplications. Wiley-VCH Verlag GmbH, 2001.

- Yoshida, K.; Mori, T.; Watanabe, S.; Kawai, H.; Nagamura, T. J. Chem. Soc., Perkin Trans. 2, 1999, 393 – 398.
- Kawai, H.; Nagamura, T.; Mori, T.; Yoshida, K. J. Phys. Chem. A, 1999, 103, 660–664.
- 22. Boiocchi, M.; Del Boca, L.; Gómez, D. E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. J. Am. Chem. Soc. 2004, 126, 16507-16514.
- 23. Gómez, D. E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. Org. Biomol. Chem. 2005, 3, 1495-1500.
- 24. Flom, S. R.; Barbra, P. F. J. Phys. Chem. **1985**, 89, 4489-4494.
- 25. Peng, X.; Wu, Y.; Fan, J.; Tian, M.; Han, K. *J. Org. Chem.*, **2005**, 70, 10524-10531.
- 26. Debus, H.: Annalen der Chemie und Pharmacie, **1958**, 107, 199-208.
- 27. Chen, H.; Yan, T.; Voth, G. A. J. Phys. Chem. A. 2009, 113, 4507–4517.
- 28. Grimmett, M. R. In *Advances in Heterocyclic Chemistry*; Katritzky, A. R., Boulton, A. J., Eds.; Academic: New York, 1980; Vol. 27, p 241.
- 29. Grimmett, M. R. In *Advances in Heterocyclic Chemistry*; Katritzky, A. R., Boulton, A. J., Eds.; Academic: New York, 1970; Vol. 12, p 103.
- 30. Nunami, K.; Yamada, M.; Fukui, T.; Matsumoto, K. *J. Org. Chem.* **1994**, 59, 7635-7642.
- 31. Siddiqui, S. A.; Narkhede, U. C.; Palimkar, S. S.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. *Tetrahedron*, **2005**, 61, 3539-3546.
- 32. Riley, P. A.; Int. J. Biochem. Cell Biol., **1997**, 29, 1235-1239.
- 33. Hitchcock, A. P.; Fischer P. J. Phys. Chem., **1987**, 91, 531-540.
- 34. Guilbault, G. G.; Pure & Appl. Chem., **1985**, 57, 495-514.
- 35. Subramanian, N.; de Oliveira, S. F. Química Nova. **1997**, 20, 313-318.
- 36. Liu, S.; Langenaeker, W. Theor. Chem. Acc., 2003, 110, 338-344.
- 37. Strasburg G. M., Ludescher L. D.; *Trends in FoodScience & Technology*, **1995**, 6, 69-75.
- 38. Lorenz, M. R. Science. **1968**, 159, 1419-1423.
- 39. Martnez-Mez, R.; Sancenn, F. Chem. Rev., 2003, 103, 4419-4476.
- 40. Bright F. V.; Anal. Chem. **1988**, 60, 1031A-1039A.

- 41. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. *Chem. Rev.*, **1997**, 97, 1515-1566.
- 42. Birks, J. B. Rep. Prog. Phys. **1975**, 38, 903-974.
- 43. Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. *Appl. Phys. Lett.*, **1999**, 75, 4-6.
- 44. Lakovicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed.; Kluwer Academic/Plenum Publishers: New York, 1999.
- 45. Crosby, G. A.; Demas, J. N. J. Phys. Chem., **1971**, 75, 991-1024.
- Mataga, N.; Kayfu, Y.; Koizumi, M. Bull. Chem. Soc. Jap. 1956, 29, 465-470.
- 47. Lippert, E.; Lüder, W.; Moll, F.; Nägele, W., Boos, H.; Prigge, H.; Seibold, I. *Angew. Chem.* **1961**, 73,695-706.
- 48. Eaton, D.F. Pure & Appl. Chem., **1988**, 60, 1107-1114.
- 49. Chaudhuri, P.; Majumder, H. K.; Bhattacharya S. *J. Med. Chem.* **2007**, 50, 2536-2540.
- 50. Ooyama, Y.; Nakamura, T.; Yoshida, K. *New J. Chem.*, **2005**, 29, 447-456.
- 51. Fieser, L. F. J. Am. Chem. Soc. 1926, 48, 2922–2937.
- 52. Fieser, L. F. J. Am. Chem. Soc. 1926, 48, 3201–3214.
- 53. Kim, J. M. ; Chong, B. O.; Park, K. H.; Chang, T. E.; Han, D. K.; Choo, D. J.; Ahn, K. D. *Polymer Bulletin, 2000,* 44, 79–84.
- 54 Kim, J. M.; Chang, T. E.; Han, D. K.; Ahn, K. D. *J. Photopolym.* Sci. Technol. **2000**,13, 273-276.
- 55. Wang, J.; Wang, D.; Miller, E. K.; Moses, D.; Bazan, G. C.; Heeger, A. J. *Macromolecules.* **2000**, 33, 5153-5158.
- 56. Fan, C.; Plaxco, K. W.; Heeger, A. J. *J. Am. Chem. Soc.* **2002**, 124, 5642-5643
- 57. Tong, H.; Wang, L.; Jing, X.; Wang, F. *Macromolecules* **2003**, 36, 2584-2586.
- 58. ML llendal, H.; Leonov, B.; de Meijere, A. *J. Mol. Struc.* **2004,** 695-696, 163-169.
- 59. Remmers, K.; Meerts, W. L.; Zehnacker-Rentien, A.; Le Barbu, K.; Lahmani, F. *J. Chem. Phys.*, **2000**, 112, 6237-6244.

- 60. Sasirekha, V.; Vanelle, P.; Terme, T.; Ramakrishnan, V. *Spectrochimica Acta Part A.* **2008**, 71, 766-772.
- 61. Cho, S. H.; Huh, H.; Kim, H. M.; Kim, C. I.; Kim, N. J.; Kim, S. K. *J. Chem. Phys.* **2005**, 122, 034304-1 034304-9.
- 62. Imamura, A.; Hoffmann, R. J. Am. Chem. Soc., **1968**, 90, 5379–5385.
- 63. Sonoda, Y.; Kwok, W. M.; Petrasek, Z.; Ostler, R.; Matousek, P.; Towrie, M.; Parker, A. W.; Phillips, D. *J. Chem. Soc., Perkin Trans.* 2, 2001, 308-314.
- 64. Rosch, N.; Zerner, M.C. J. Phys. Chem. **1994**, 98, 5817-5823.
- 65. Nonius (1997–2000). Collect. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Macromolecular Crystallography, Part A, edited by C.W. Carter Jr & R. M. Sweet Vol. 276, 307-326, New York: Academic Press.
- 67. Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.
- 68. Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565.

<u>Apêndices</u>

APÊNDICE A

Espectros de absorção UV/visível na presença de FTBA em acetonitrila

Mudança do espectro de absorção de **6** ($2,3x10^{-5}$ mol/L).

Mudança do espectro de absorção de **14** (1,2x10⁻⁵ mol/L).

Mudança do espectro de absorção de **15** (1,6x10⁻⁵ mol/L).

Mudança do espectro de absorção de **16** (2,2x10⁻⁵ mol/L).

Mudança do espectro de absorção de **17** (1,8x10⁻⁵ mol/L).

Mudança do espectro de absorção de **18** (1,4x10⁻⁵ mol/L).

Mudança do espectro de absorção de **19** (1,8x10⁻⁵ mol/L).

Mudança do espectro de absorção de **20** (1,5x10⁻⁵ mol/L).

Mudança do espectro de absorção de **21** (7,3x10⁻⁶ mol/L).

Mudança do espectro de absorção de **22** (2,6x10⁻⁵ mol/L).

Mudança do espectro de absorção de **23** (3,2x10⁻⁵ mol/L).

Mudança do espectro de absorção de **24** (3,2x10⁻⁵ mol/L).

Mudança do espectro de absorção de **25** (1,6x10⁻⁵ mol/L).

Mudança do espectro de absorção de **26** (1,1x10⁻⁵ mol/L).

Mudança do espectro de absorção de **27** (1,3x10⁻⁵ mol/L).

Mudança do espectro de absorção de **28** (1,0x10⁻⁵ mol/L).

Mudança do espectro de absorção de **30** (1,6x10⁻⁵ mol/L).

Mudança do espectro de absorção de **32** (1,6x10⁻⁵ mol/L).

APÊNDICE B

Espectros de emissão de fluorescência na presença de FTBA em acetonitrila

Mudança do espectro de emissão (λ_{ex} 427 nm) de **6** (3,4x10⁻⁵ mol/L), λ_{ex}

Mudança do espectro de emissão (λ_{ex} 437 nm) de **14** (1,4x10⁻⁵ mol/L).

Mudança do espectro de emissão (λ_{ex} 428 nm) de **15** (1,5 x10⁻⁵ mol/L).

Mudança do espectro de emissão (λ_{ex} 380 nm) de **16** (2,7x10⁻⁵ mol/L).

Mudança do espectro de emissão (λ_{ex} 429 nm) de **17** (1,8x10⁻⁵ mol/L).

Mudança do espectro de emissão (λ_{ex} 445 nm) de **18** (1,4x10⁻⁵ mol/L).

Mudança do espectro de emissão (λ_{ex} 433 nm) de **19** (1,8x10⁻⁵ mol/L).

Mudança do espectro de emissão (λ_{ex} 430 nm) de **20** (1,5x10⁻⁵ mol/L).

Mudança do espectro de emissão (λ_{ex} 434 nm) de **21** (7,3x10⁻⁶ mol/L).

Mudança do espectro de emissão (λ_{ex} 421 nm) de **22** (2,7x10⁻⁵ mol/L).

Mudança do espectro de emissão (λ_{ex} 421 nm) de **23** (2,0x10⁻⁵ mol/L).

Mudança do espectro de emissão (λ_{ex} 425 nm) de **24** (3,6x10⁻⁵ mol/L).

Mudança do espectro de emissão (λ_{ex} 423 nm) de **25** (1,6x10⁻⁵ mol/L).

Mudança do espectro de emissão (λ_{ex} 437 nm) de **26** (1,1x10⁻⁵ mol/L).

Mudança do espectro de emissão (λ_{ex} 427 nm) de **27** (1,3x10⁻⁵ mol/L).

Mudança do espectro de emissão (λ_{ex} 459 nm) de **28** (1,0x10⁻⁵ mol/L).

Mudança do espectro de emissão (λ_{ex} 419 nm) de **30** (1,6x10⁻⁵ mol/L).

APÊNDICE C:

Dados Cristalográficos:

• 2-fenil-1*H*-antra[1,2-*d*]imidazo-6,11-diona

REPRESENTAÇÃO ORTEP-3

VISTA PARALELA EVIDENCIANDO A PLANARIDADE DA MOLÉCULA

INTERAÇÕES DE HIDROGÊNIO (PONTES) DA MOLÉCULA DE ÁGUA COM MOLÉCULAS GERADAS POR OPERAÇÕES DE SIMETRIA NO EMPACOTAMENTO CRISTALINO

DADOS CRISTALOGRÁFICOS

Crystal data

$\underline{C_{21}H_{14}N_2O_3}$	$D_{\rm x} = 1.480 {\rm Mg m}^{-3}$
$M_r = 342.34$	Melting point: <u>?</u> K
Monoclinic, <u>P2₁/c</u>	$\frac{Mo K\alpha}{\lambda = 0.71073} \text{ Å}$
Hall symbol: <u>?</u>	Cell parameters from 5623 reflections
a = 12.1660(5) Å	$\theta = \underline{2.9} - \underline{27.5}^{\circ}$
$b = \underline{8.0660(4)}$ Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 15.6880 (6) Å	T = 293 (2) K
$\beta = 93.310(3)^{\circ}$	Cell measurement pressure: ? kPa
$V = 1536.91 (12) \text{ Å}^3$	Prism, colorless
$Z = \underline{4}$	$\underline{0.37} \times \underline{0.21} \times \underline{0.20} \text{ mm}$
$F_{000} = \underline{712}$	

Data collection

<u>KappaCCD</u> <u>diffractometer</u>	<u>3203</u> independent reflections
Radiation source: Enraf Nonius FR590	<u>2367</u> reflections with $I > 2\sigma(I)$
Monochromator: <u>horizonally mounted</u> graphite crystal	$R_{\rm int} = \underline{0.048}$
Detector resolution: <u>9</u> pixels mm ⁻¹	$\theta_{\rm max} = \underline{26.6}^{\circ}$
$T = \underline{?} \mathbf{K}$	$\theta_{\min} = \underline{3.0}^{\circ}$
$P = \underline{?} kPa$	$h = -15 \ 15$
CCD rotation images, thick slices scans	$k = \underline{-10} \underline{8}$
Absorption correction: none	l = -19 19
10540 measured reflections	

Refinement

Refinement on $\underline{F^2}$	Secondary atom site location: <u>difference Fourier</u> <u>map</u>
Least-squares matrix: <u>full</u>	Hydrogen site location: <u>inferred from neighbouring</u> sites
$R[F^2 > 2\sigma(F^2)] = \underline{0.044}$	H-atom parameters constrained
$wR(F^2) = \underline{0.133}$	$w = 1/[\sigma^2(F_o^2) + (0.0733P)^2 + 0.1604P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{max} \leq 0.001$
<u>3203</u> reflections	$\Delta \rho_{\text{max}} = \underline{0.30} \text{ e } \text{\AA}^{-3}$
236 parameters	$\Delta \rho_{\rm min} = \underline{-0.25} \ e \ {\rm \AA}^{-3}$
? constraints	Extinction correction: none
Primary atom site location: structure	

Primary atom site location: <u>structure-</u> invariant direct methods

Fractional atomic coordinates and	isotropic or o	equivalent isotropic	displacement	parameters ($Å^2$	²)
				<u> </u>	

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
O1	1.42746 (10)	0.63644 (16)	0.45695 (7)	0.0415 (3)
N1	1.00602 (10)	0.25710 (16)	0.51316 (8)	0.0296 (3)
H1	0.9875	0.2559	0.5652	0.036*

02	1.11940 (10)	0.41115 (17)	0.65936 (7)	0.0470 (4)
N2	0.99915 (12)	0.20729 (18)	0.37227 (8)	0.0367 (4)
C6	1.35987 (13)	0.5788 (2)	0.50360 (10)	0.0314 (4)
C14	1.18462 (12)	0.42315 (19)	0.52183 (9)	0.0287 (4)
C2	1.09170 (14)	0.2988 (2)	0.39472 (10)	0.0331 (4)
C10	1.38977 (16)	0.6696 (2)	0.77128 (11)	0.0436 (5)
HC10	1.3966	0.6912	0.8296	0.052*
C13	1.19212 (13)	0.45634 (19)	0.61411 (10)	0.0302 (4)
C12	1.29034 (13)	0.5475 (2)	0.65030 (10)	0.0310 (4)
C11	1.30126 (14)	0.5788 (2)	0.73745 (10)	0.0386 (4)
HC11	1.2489	0.5386	0.7731	0.046*
C15	1.09777 (12)	0.33152 (19)	0.48312 (9)	0.0289 (4)
C1	0.94932 (13)	0.1849 (2)	0.44453 (9)	0.0306 (4)
C21	0.79628 (14)	0.0321 (2)	0.37248 (11)	0.0386 (4)
HC21	0.8297	0.0489	0.3213	0.046*
C4	1.25815 (14)	0.4462 (2)	0.38023 (10)	0.0383 (4)
HC4	1.3126	0.4863	0.3464	0.046*
C16	0.84535 (12)	0.0948 (2)	0.44840 (10)	0.0299 (4)
C18	0.69557 (14)	-0.0181 (2)	0.52293 (12)	0.0423 (4)
HC18	0.6615	-0.0349	0.5738	0.051*
C17	0.79327 (14)	0.0696 (2)	0.52362 (11)	0.0372 (4)
HC17	0.8241	0.1118	0.5747	0.045*
C7	1.36999 (13)	0.6070 (2)	0.59721 (10)	0.0317 (4)
C9	1.46798 (15)	0.7283 (2)	0.71868 (12)	0.0445 (5)
HC9	1.5273	0.7896	0.7417	0.053*
C20	0.69905 (15)	-0.0542 (2)	0.37286 (12)	0.0434 (4)
HC20	0.6672	-0.0952	0.3218	0.052*
C19	0.64802 (14)	-0.0810 (2)	0.44775 (11)	0.0419 (4)
HC19	0.5825	-0.1405	0.4477	0.050*
C8	1.45900 (14)	0.6969 (2)	0.63229 (11)	0.0401 (4)

HC8	1.5126	0.7359	0.5974	0.048*
C5	1.26494 (13)	0.4808 (2)	0.46820 (10)	0.0308 (4)
C3	1.17318 (15)	0.3549 (2)	0.34299 (10)	0.0412 (4)
HC3	1.1701	0.3312	0.2849	0.049*
OW	0.95162 (12)	0.15806 (18)	0.69013 (8)	0.0552 (4)
H2W	0.9647	0.2177	0.7409	0.177 (12)*
H1W	0.9579	0.0271	0.7044	0.177 (12)*

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0366 (7)	0.0496 (8)	0.0383 (6)	-0.0083 (5)	0.0024 (5)	0.0085 (5)
N1	0.0283 (7)	0.0337 (8)	0.0266 (6)	-0.0021 (6)	0.0005 (5)	-0.0013 (5)
02	0.0445 (7)	0.0628 (9)	0.0348 (7)	-0.0168 (6)	0.0103 (6)	-0.0080 (6)
N2	0.0363 (8)	0.0451 (9)	0.0280 (7)	-0.0082 (6)	-0.0026 (6)	-0.0002 (6)
C6	0.0292 (8)	0.0305 (9)	0.0343 (8)	0.0007 (7)	0.0013 (7)	0.0064 (7)
C14	0.0283 (8)	0.0293 (8)	0.0282 (8)	0.0023 (6)	-0.0006 (6)	0.0011 (6)
C2	0.0348 (9)	0.0362 (9)	0.0279 (8)	-0.0040 (7)	-0.0025 (6)	0.0008 (7)
C10	0.0477 (11)	0.0476 (11)	0.0344 (9)	0.0009 (9)	-0.0079 (8)	-0.0079 (8)
C13	0.0314 (8)	0.0293 (8)	0.0299 (8)	0.0004 (7)	0.0028 (6)	-0.0009 (6)
C12	0.0313 (8)	0.0309 (8)	0.0306 (8)	0.0020 (7)	-0.0012 (6)	-0.0016 (6)
C11	0.0392 (9)	0.0443 (10)	0.0319 (9)	-0.0015 (8)	0.0000 (7)	-0.0046 (7)
C15	0.0292 (8)	0.0298 (8)	0.0275 (8)	0.0016 (7)	0.0003 (6)	0.0017 (6)
C1	0.0308 (8)	0.0316 (9)	0.0289 (8)	0.0025 (7)	-0.0035 (6)	-0.0001 (6)
C21	0.0387 (9)	0.0448 (10)	0.0321 (9)	-0.0039 (8)	0.0001 (7)	-0.0059 (7)
C4	0.0383 (9)	0.0471 (11)	0.0298 (8)	-0.0081 (8)	0.0039 (7)	0.0062 (7)
C16	0.0286 (8)	0.0280 (8)	0.0326 (8)	0.0018 (6)	-0.0027 (6)	-0.0004 (6)
C18	0.0385 (10)	0.0469 (11)	0.0417 (10)	-0.0052 (8)	0.0046 (8)	0.0029 (8)
C17	0.0378 (9)	0.0412 (10)	0.0322 (8)	-0.0027 (8)	-0.0026 (7)	-0.0023 (7)
C7	0.0284 (8)	0.0320 (9)	0.0342 (8)	0.0021 (7)	-0.0021 (7)	0.0009 (7)
C9	0.0414 (10)	0.0439 (11)	0.0467 (10)	-0.0063 (8)	-0.0117 (8)	-0.0041 (8)

C20	0.0398 (9)	0.0484 (11)	0.0411 (10)	-0.0062 (8)	-0.0058 (8)	-0.0100 (8)
C19	0.0334 (9)	0.0407 (10)	0.0509 (11)	-0.0050 (8)	-0.0034 (8)	-0.0010 (8)
C8	0.0353 (9)	0.0408 (10)	0.0436 (10)	-0.0046 (8)	-0.0037 (7)	0.0030 (8)
C5	0.0317 (8)	0.0316 (8)	0.0290 (8)	0.0006 (7)	-0.0004 (6)	0.0038 (6)
C3	0.0457 (10)	0.0543 (11)	0.0232 (8)	-0.0100 (9)	0.0000 (7)	0.0025 (7)
OW	0.0584 (9)	0.0679 (10)	0.0390 (7)	-0.0160 (7)	-0.0007 (6)	0.0013 (6)

DISTÂNCIAS INTERATOMICAS

Geometric parameters (Å, °)

O1—C6	1.2236 (18)	C21—C20	1.373 (2)
N1—C1	1.374 (2)	C21—C16	1.396 (2)
N1—C15	1.374 (2)	C21—HC21	0.9300
N1—H1	0.8600	C4—C3	1.372 (2)
O2—C13	1.2215 (18)	C4—C5	1.406 (2)
N2—C1	1.328 (2)	C4—HC4	0.9300
N2—C2	1.375 (2)	C16—C17	1.386 (2)
C6—C5	1.481 (2)	C18—C19	1.380 (2)
С6—С7	1.484 (2)	C18—C17	1.383 (2)
C14—C15	1.399 (2)	C18—HC18	0.9300
C14—C5	1.405 (2)	С17—НС17	0.9300
C14—C13	1.470 (2)	С7—С8	1.390 (2)
C2—C3	1.393 (2)	С9—С8	1.377 (2)
C2—C15	1.409 (2)	С9—НС9	0.9300
С10—С9	1.379 (3)	C20—C19	1.377 (2)
C10-C11	1.383 (2)	С20—НС20	0.9300
С10—НС10	0.9300	С19—НС19	0.9300
C13—C12	1.487 (2)	C8—HC8	0.9300
C12—C11	1.389 (2)	С3—НС3	0.9300

C12—C7	1.399 (2)	OW—H2W	0.9362	(13)
C11—HC11	0.9300	OW—H1W	1.0815	(15)
C1—C16	1.463 (2)			

ÂNGULOS INTERATOMICOS

C1—N1—C15	107.30 (1	2)	N2—C1—N1	112.20	(14)
C1—N2—C2	105.16 (1	3)	N2—C1—C16	122.76	(14)
O1—C6—C5	120.99 (1	4)	N1—C1—C16	125.03	(13)
O1—C6—C7	120.90 (1	5)	C20—C21—C16	120.41	(15)
C5—C6—C7	118.11 (1	3)	C3—C4—C5	121.64	(15)
C15—C14—C5	116.67 (1	4)	C17—C16—C21	118.62	(15)
C15—C14—C13	121.74 (1	3)	C17—C16—C1	123.16	(14)
C5—C14—C13	121.58 (1	4)	C21—C16—C1	118.21	(14)
N2—C2—C3	128.69 (1	5)	C19—C18—C17	120.83	(16)
N2—C2—C15	110.38 (1	3)	C18—C17—C16	120.23	(16)
C3—C2—C15	120.92 (1	5)	C8—C7—C12	119.60	(15)
C9—C10—C11	120.07 (1	6)	С8—С7—С6	119.32	(15)
O2—C13—C14	120.81 (1	4)	С12—С7—С6	121.06	(14)
O2—C13—C12	121.23 (1	4)	C8—C9—C10	120.51	(17)
C14—C13—C12	117.96 (1	3)	C21—C20—C19	120.94	(16)
C11—C12—C7	119.56 (1	5)	C20—C19—C18	118.96	(16)
C11—C12—C13	119.65 (1	5)	С9—С8—С7	120.10	(16)
C7—C12—C13	120.75 (1	4)	C14—C5—C4	121.25	(15)
C10-C11-C12	120.15 (1	6)	C14—C5—C6	120.42	(14)
N1—C15—C14	133.62 (1	4)	C4—C5—C6	118.32	(14)
N1—C15—C2	104.95 (1	3)	C4—C3—C2	118.07	(15)
C14—C15—C2	121.43 (1	4)			

ÂNGULOS DE TORÇÃO

C1—N2—C2—C3	179.42 (18)	N1—C1—C16—C21	178.35 (15)
C1—N2—C2—C15	0.28 (19)	C19—C18—C17—C16	-0.4 (3)
C15—C14—C13—O2	-3.5 (2)	C21—C16—C17—C18	0.9 (3)
C5—C14—C13—O2	177.04 (15)	C1—C16—C17—C18	-179.38 (16)
C15-C14-C13-C12	176.93 (14)	C11—C12—C7—C8	-0.1 (2)
C5—C14—C13—C12	-2.5 (2)	C13—C12—C7—C8	177.72 (15)
O2—C13—C12—C11	1.5 (2)	C11—C12—C7—C6	-178.75 (15)
C14—C13—C12—C11	-178.96 (14)	С13—С12—С7—С6	-1.0 (2)
O2—C13—C12—C7	-176.29 (15)	O1—C6—C7—C8	-1.5 (2)
C14—C13—C12—C7	3.3 (2)	С5—С6—С7—С8	179.24 (15)
C9—C10—C11—C12	-0.5 (3)	O1—C6—C7—C12	177.20 (15)
C7—C12—C11—C10	0.6 (3)	C5—C6—C7—C12	-2.1 (2)
C13—C12—C11—C10	-177.19 (16)	С11—С10—С9—С8	-0.2 (3)
C1—N1—C15—C14	179.61 (17)	C16—C21—C20—C19	-0.1 (3)
C1—N1—C15—C2	-0.18 (17)	C21—C20—C19—C18	0.6 (3)
C5—C14—C15—N1	-179.65 (16)	C17—C18—C19—C20	-0.4 (3)
C13—C14—C15—N1	0.9 (3)	C10—C9—C8—C7	0.7 (3)
C5—C14—C15—C2	0.1 (2)	С12—С7—С8—С9	-0.6 (3)
C13—C14—C15—C2	-179.36 (14)	С6—С7—С8—С9	178.11 (16)
N2-C2-C15-N1	-0.05 (18)	C15—C14—C5—C4	-0.5 (2)
C3—C2—C15—N1	-179.28 (15)	C13—C14—C5—C4	178.94 (15)
N2-C2-C15-C14	-179.88 (14)	C15—C14—C5—C6	-179.99 (14)
C3—C2—C15—C14	0.9 (3)	C13—C14—C5—C6	-0.5 (2)
C2—N2—C1—N1	-0.40 (19)	C3—C4—C5—C14	-0.1 (3)
C2—N2—C1—C16	178.91 (15)	C3—C4—C5—C6	179.41 (16)
C15—N1—C1—N2	0.38 (18)	O1—C6—C5—C14	-176.45 (15)
C15—N1—C1—C16	-178.92 (15)	C7—C6—C5—C14	2.8 (2)
C20-C21-C16-C17	-0.7 (3)	O1—C6—C5—C4	4.1 (2)

C20-C21-C16-C1	179.59 (16)	C7—C6—C5—C4	-176.64 (14)
N2-C1-C16-C17	179.41 (16)	C5—C4—C3—C2	1.1 (3)
N1—C1—C16—C17	-1.4 (3)	N2—C2—C3—C4	179.46 (17)
N2-C1-C16-C21	-0.9 (2)	C15—C2—C3—C4	-1.5 (3)

• 2-(4-metilfenil)-1H-antra[1,2-d]imidazo-6,11-diona

REPRESENTAÇÃO ORTEP-3

VISTA LATERAL PARALELA AOS ANÉIS

DADOS CRISTALOGRÁFICOS

Crystal data

$\underline{C_{22}H_{14}N_2O_2}$	$D_{\rm x} = 1.415 {\rm Mg m}^{-3}$
$M_r = 338.35$	Melting point: ? K
Orthorhombic, Pbca	$\frac{Mo K\alpha}{\lambda = 0.71073} \text{ Å}$
Hall symbol: ?	Cell parameters from <u>14527</u> reflections
$a = \underline{7.38500(10)}$ Å	$\theta = \underline{2.9} - \underline{27.5}^{\circ}$
b = 14.0730 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 30.5630(9) Å	T = 293 (2) K
$V = \underline{3176.39(14)} \text{ Å}^3$	Cell measurement pressure: ? kPa
$Z = \underline{8}$	Prism, colorless
$F_{000} = \underline{1408}$	$\underline{0.14} \times \underline{0.14} \times \underline{0.07} \text{ mm}$

Data collection

<u>KappaCCD</u> diffractometer	3633 independent reflections
Radiation source: Enraf Nonius FR590	<u>2282</u> reflections with $\underline{I > 2\sigma(I)}$
Monochromator: <u>horizonally mounted</u> graphite crystal	$R_{\rm int} = \underline{0.066}$
Detector resolution: <u>9</u> pixels mm ⁻¹	$\theta_{\text{max}} = \underline{27.5}^{\circ}$
$T = \underline{?} \mathbf{K}$	$\theta_{\min} = \underline{3.0}^{\circ}$
$P = \underline{?} kPa$	$h = \underline{-9} \underline{7}$
CCD rotation images, thick slices scans	$k = \underline{-14} \underline{18}$
Absorption correction: none	l = -39 38
20847 measured reflections	

Refinement on $\underline{F^2}$	Secondary atom site location: <u>difference Fourier</u> <u>map</u>
Least-squares matrix: <u>full</u>	Hydrogen site location: <u>inferred from neighbouring</u> sites
$R[F^2 > 2\sigma(F^2)] = \underline{0.060}$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = \underline{0.155}$	$\frac{w = 1/[\sigma^2(F_0^2) + (0.0589P)^2 + 1.2992P]}{\text{where } P = (F_0^2 + 2F_c^2)/3}$
S = 1.05	$(\Delta/\sigma)_{max} \leq 0.001$
<u>3633</u> reflections	$\Delta \rho_{\rm max} = \underline{0.18} \ {\rm e} \ {\rm \AA}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = \underline{-0.19} \ e \ \text{\AA}^{-3}$
? constraints	Extinction correction: none

Primary atom site location: <u>structure-invariant</u> <u>direct methods</u>

Fractiona	l atomic coordina	ites and isotropic or e	quivalent isotropic dis	placement parameters (Å ²)
	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
01	0.7522 (2)	0.58890 (10)	0.24672 (5)	0.0540 (4)
02	0.4747 (2)	0.25829 (12)	0.30423 (6)	0.0629 (5)
N1	0.6679 (2)	0.53717 (12)	0.16050 (6)	0.0414 (4)
H1N	0.7066	0.5905	0.1706	0.050*
N2	0.5834 (2)	0.42639 (12)	0.11189 (6)	0.0457 (5)
C10A	0.6161 (3)	0.44295 (14)	0.22945 (7)	0.0380 (5)
C4A	0.5497 (3)	0.35432 (14)	0.24326 (7)	0.0407 (5)
C5	0.5309 (3)	0.33472 (15)	0.29069 (8)	0.0455 (5)
C15	0.7093 (3)	0.70833 (18)	0.01093 (8)	0.0527 (6)
C4	0.4966 (3)	0.28564 (15)	0.21262 (8)	0.0477 (6)
H4	0.4542	0.2273	0.2225	0.057*
C3	0.5056 (3)	0.30215 (15)	0.16828 (8)	0.0482 (6)
Н3	0.4712	0.2555	0.1484	0.058*
C11	0.6208 (3)	0.45915 (13)	0.18448 (7)	0.0383 (5)

C12	0.6718 (3)	0.58165 (15)	0.08134 (7)	0.0428 (5)
C2	0.5674 (3)	0.39067 (14)	0.15381 (7)	0.0419 (5)
C5A	0.5813 (3)	0.41207 (15)	0.32195 (7)	0.0439 (5)
C10	0.6807 (3)	0.51561 (14)	0.26035 (7)	0.0399 (5)
C1	0.6420 (3)	0.51465 (15)	0.11723 (7)	0.0418 (5)
C13	0.7050 (3)	0.67711 (16)	0.08841 (8)	0.0505 (6)
H13	0.7141	0.6998	0.1169	0.061*
С9	0.7076 (3)	0.56660 (16)	0.33755 (8)	0.0506 (6)
Н9	0.7607	0.6228	0.3280	0.061*
C17	0.6619 (3)	0.55007 (17)	0.03839 (8)	0.0561 (6)
H17	0.6432	0.4859	0.0327	0.067*
C9A	0.6569 (3)	0.49740 (15)	0.30742 (7)	0.0422 (5)
C6	0.5548 (3)	0.39814 (18)	0.36648 (8)	0.0566 (6)
Н6	0.5059	0.3413	0.3765	0.068*
C16	0.6796 (3)	0.61291 (18)	0.00392 (8)	0.0594 (7)
H16	0.6712	0.5903	-0.0246	0.071*
C14	0.7248 (3)	0.73938 (17)	0.05376 (8)	0.0562 (6)
H14	0.7489	0.8031	0.0593	0.067*
C7	0.6007 (3)	0.4685 (2)	0.39582 (9)	0.0627 (7)
H7	0.5787	0.4597	0.4255	0.075*
C8	0.6792 (3)	0.55200 (19)	0.38156 (9)	0.0623 (7)
H8	0.7128	0.5983	0.4017	0.075*
C18	0.7197 (4)	0.7767 (2)	-0.02708 (9)	0.0724 (8)
H18A	0.7407	0.8398	-0.0163	0.109*
H18B	0.6078	0.7752	-0.0430	0.109*
H18C	0.8173	0.7585	-0.0461	0.109*

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0692 (10)	0.0410 (8)	0.0517 (10)	-0.0083 (8)	-0.0042 (8)	-0.0006 (8)
O2	0.0766 (12)	0.0487 (10)	0.0635 (12)	-0.0067 (9)	0.0066 (9)	0.0101 (8)
N1	0.0466 (10)	0.0354 (9)	0.0422 (11)	-0.0030 (8)	-0.0014 (8)	-0.0029 (8)
N2	0.0499 (10)	0.0412 (10)	0.0459 (12)	0.0007 (8)	0.0006 (9)	-0.0061 (8)
C10A	0.0344 (10)	0.0368 (11)	0.0427 (13)	0.0052 (9)	0.0003 (9)	-0.0027 (9)
C4A	0.0376 (11)	0.0358 (11)	0.0486 (13)	0.0039 (9)	0.0019 (9)	0.0014 (10)
C5	0.0401 (11)	0.0418 (12)	0.0548 (15)	0.0045 (9)	0.0027 (10)	0.0069 (11)
C15	0.0450 (13)	0.0649 (15)	0.0482 (15)	-0.0047 (11)	0.0021 (10)	0.0060 (12)
C4	0.0490 (12)	0.0356 (11)	0.0586 (16)	-0.0020 (10)	0.0039 (11)	-0.0014 (11)
C3	0.0528 (13)	0.0362 (11)	0.0554 (15)	-0.0014 (10)	0.0012 (11)	-0.0091 (10)
C11	0.0372 (10)	0.0341 (10)	0.0436 (13)	0.0009 (8)	-0.0001 (9)	-0.0026 (10)
C12	0.0431 (11)	0.0438 (12)	0.0414 (13)	0.0003 (9)	0.0006 (9)	-0.0029 (10)
C2	0.0398 (11)	0.0398 (11)	0.0459 (13)	0.0029 (9)	-0.0004 (9)	-0.0050 (10)
C5A	0.0389 (11)	0.0482 (12)	0.0447 (13)	0.0075 (10)	-0.0029 (9)	0.0018 (10)
C10	0.0388 (11)	0.0340 (11)	0.0469 (14)	0.0043 (9)	-0.0035 (9)	0.0004 (9)
C1	0.0402 (11)	0.0424 (12)	0.0428 (13)	0.0034 (9)	-0.0026 (9)	-0.0055 (10)
C13	0.0604 (14)	0.0481 (13)	0.0431 (14)	-0.0033 (11)	-0.0024 (11)	-0.0048 (11)
C9	0.0552 (14)	0.0489 (13)	0.0478 (15)	0.0088 (11)	-0.0074 (11)	-0.0059 (11)
C17	0.0707 (16)	0.0508 (14)	0.0468 (15)	-0.0038 (12)	0.0007 (12)	-0.0081 (12)
C9A	0.0402 (11)	0.0427 (12)	0.0436 (13)	0.0096 (9)	-0.0037 (9)	-0.0006 (10)
C6	0.0532 (14)	0.0667 (16)	0.0499 (15)	0.0063 (12)	0.0009 (12)	0.0075 (13)
C16	0.0705 (16)	0.0694 (17)	0.0383 (14)	-0.0041 (13)	0.0017 (12)	-0.0030 (12)
C14	0.0665 (16)	0.0495 (13)	0.0525 (16)	-0.0102 (12)	-0.0032 (12)	0.0015 (12)
C7	0.0638 (16)	0.0831 (19)	0.0413 (14)	0.0111 (14)	-0.0016 (12)	0.0016 (14)
C8	0.0682 (16)	0.0665 (17)	0.0521 (16)	0.0108 (14)	-0.0109 (13)	-0.0149 (13)
C18	0.0723 (18)	0.087 (2)	0.0581 (17)	-0.0114 (15)	-0.0010 (14)	0.0206 (15)

DISTÂNCIAS E ÂNGULOS INTERATÔMICOS

Geometric parameters (Å, °)

O1—C10	1.231 (2)	C12—C17	1.388 (3)
O2—C5	1.225 (3)	C12—C1	1.463 (3)
N1—C11	1.365 (3)	C5A—C6	1.389 (3)
N1—C1	1.373 (3)	С5А—С9А	1.397 (3)
N1—H1N	0.8600	С10—С9А	1.472 (3)
N2—C1	1.325 (3)	C13—C14	1.382 (3)
N2—C2	1.381 (3)	С13—Н13	0.9300
C10A—C11	1.394 (3)	С9—С8	1.377 (3)
C10A—C4A	1.405 (3)	С9—С9А	1.392 (3)
C10A—C10	1.472 (3)	С9—Н9	0.9300
C4A—C4	1.401 (3)	C17—C16	1.382 (3)
C4A—C5	1.482 (3)	С17—Н17	0.9300
C5—C5A	1.495 (3)	C6—C7	1.379 (3)
C15—C16	1.377 (3)	С6—Н6	0.9300
C15—C14	1.385 (3)	С16—Н16	0.9300
C15—C18	1.510 (3)	C14—H14	0.9300
C4—C3	1.377 (3)	С7—С8	1.380 (4)
C4—H4	0.9300	С7—Н7	0.9300
C3—C2	1.399 (3)	С8—Н8	0.9300
С3—Н3	0.9300	C18—H18A	0.9600
C11—C2	1.401 (3)	C18—H18B	0.9600
C12—C13	1.383 (3)	C18—H18C	0.9600
C11—N1—C1	107.21 (17)	N2—C2—C11	110.26 (18)
C1—N2—C2	104.76 (18)	C3—C2—C11	119.5 (2)
C11—C10A—C4A	116.76 (19)	C6—C5A—C9A	119.3 (2)

C11-C10A-C10	120.73 (18)	C6—C5A—C5	119.2 (2)
C4A—C10A—C10	122.5 (2)	C9A—C5A—C5	121.5 (2)
C4—C4A—C10A	120.6 (2)	O1-C10-C10A	120.3 (2)
C4—C4A—C5	119.93 (19)	O1—C10—C9A	121.86 (19)
C10A—C4A—C5	119.45 (19)	C10A—C10—C9A	117.86 (18)
O2—C5—C4A	121.7 (2)	N2—C1—N1	112.35 (19)
O2—C5—C5A	120.5 (2)	N2—C1—C12	124.1 (2)
C4A—C5—C5A	117.78 (18)	N1—C1—C12	123.52 (19)
C16—C15—C14	117.9 (2)	C14—C13—C12	121.0 (2)
C16—C15—C18	120.6 (2)	С8—С9—С9А	120.1 (2)
C14—C15—C18	121.5 (2)	C16—C17—C12	120.7 (2)
C3—C4—C4A	121.9 (2)	C9—C9A—C5A	119.9 (2)
C4—C3—C2	118.5 (2)	C9—C9A—C10	119.5 (2)
N1-C11-C10A	131.87 (19)	C5A—C9A—C10	120.6 (2)
N1—C11—C2	105.41 (19)	C7—C6—C5A	120.1 (2)
C10A—C11—C2	122.70 (19)	C15—C16—C17	121.4 (2)
C13—C12—C17	117.9 (2)	C13—C14—C15	121.0 (2)
C13—C12—C1	122.4 (2)	С6—С7—С8	120.6 (2)
C17—C12—C1	119.7 (2)	C9—C8—C7	120.0 (2)
N2—C2—C3	130.2 (2)		

ÂNGULOS DE TORÇÃO

C11—C10A—C4A—C4	1.8 (3)	C2—N2—C1—N1	1.1 (2)
C10—C10A—C4A—C4	-177.27 (18)	C2—N2—C1—C12	-177.48 (19)
C11—C10A—C4A—C5	-176.42 (17)	C11—N1—C1—N2	-0.9 (2)
C10—C10A—C4A—C5	4.5 (3)	C11—N1—C1—C12	177.75 (18)
C4—C4A—C5—O2	2.2 (3)	C13—C12—C1—N2	169.4 (2)
C10A—C4A—C5—O2	-179.6 (2)	C17—C12—C1—N2	-8.7 (3)
C4—C4A—C5—C5A	-177.19 (18)	C13—C12—C1—N1	-9.0 (3)

C10A—C4A—C5—C5A	1.0 (3)	C17—C12—C1—N1	172.9 (2)
C10A—C4A—C4—C3	-0.6 (3)	C17—C12—C13—C14	1.0 (3)
C5—C4A—C4—C3	177.61 (19)	C1—C12—C13—C14	-177.2 (2)
C4A—C4—C3—C2	-0.8 (3)	C13—C12—C17—C16	-1.8 (3)
C1—N1—C11—C10A	-178.2 (2)	C1—C12—C17—C16	176.4 (2)
C1—N1—C11—C2	0.2 (2)	C8—C9—C9A—C5A	-1.6 (3)
C4A—C10A—C11—N1	176.4 (2)	C8—C9—C9A—C10	177.4 (2)
C10—C10A—C11—N1	-4.5 (3)	C6—C5A—C9A—C9	1.2 (3)
C4A—C10A—C11—C2	-1.7 (3)	C5—C5A—C9A—C9	-177.92 (19)
C10—C10A—C11—C2	177.41 (18)	C6—C5A—C9A—C10	-177.83 (19)
C1—N2—C2—C3	177.5 (2)	C5—C5A—C9A—C10	3.1 (3)
C1—N2—C2—C11	-1.0 (2)	O1—C10—C9A—C9	3.4 (3)
C4—C3—C2—N2	-177.5 (2)	C10A—C10—C9A—C9	-176.63 (18)
C4—C3—C2—C11	0.9 (3)	O1—C10—C9A—C5A	-177.63 (19)
N1—C11—C2—N2	0.5 (2)	C10A—C10—C9A—C5A	2.4 (3)
C10A—C11—C2—N2	179.04 (18)	C9A—C5A—C6—C7	0.8 (3)
N1-C11-C2-C3	-178.21 (18)	C5—C5A—C6—C7	179.9 (2)
C10A—C11—C2—C3	0.3 (3)	C14—C15—C16—C17	1.3 (4)
O2—C5—C5A—C6	-3.4 (3)	C18—C15—C16—C17	-177.2 (2)
C4A—C5—C5A—C6	176.05 (18)	C12—C17—C16—C15	0.7 (4)
O2—C5—C5A—C9A	175.7 (2)	C12—C13—C14—C15	1.0 (4)
C4A—C5—C5A—C9A	-4.9 (3)	C16—C15—C14—C13	-2.1 (4)
C11—C10A—C10—O1	-5.4 (3)	C18—C15—C14—C13	176.3 (2)
C4A—C10A—C10—O1	173.70 (19)	C5A—C6—C7—C8	-2.3 (4)
С11—С10А—С10—С9А	174.65 (18)	C9A—C9—C8—C7	0.2 (4)
C4A C10A C10 C9A	-63 (3)	C6-C7-C8-C9	18 (4)

APÊNDICE D

Nomenclatura oficial das substâncias sintetizadas neste trabalho

- **Substância 6:** 2-fenil-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- Substância 14: 2-(4-bifenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- Substância 15: 2-(4-naftalenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- Substância 16: 2-(2-metoxifenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- **Substância 17:** 2-(3-metoxifenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- **Substância 18:** 2-(4-metoxifenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- **Substância 19:** 2-(2-metilfenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- Substância 20: 2-(3-metilfenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- **Substância 21:** 2-(4-metilfenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- **Substância 22:** 2-(2-fluorofenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- **Substância 23:** 2-(3-fluorofenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- **Substância 24:** 2-(4-fluorofenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- Substância 25: 2-(4-cianofenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- **Substância 26:** 2-(2-hidroxifenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- Substância 27: 2-(3-hidroxifenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- Substância 28: 2-(4-hidroxifenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- Substância 29: 2-(4-hidroxi-3-metoxifenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- Substância 30: 2-(4-nitrofenil)-1*H*-antra[1,2-*d*]imidazo-6,11-diona
- **Substância 31:** N,N'-(antraceno-9,10-diona-1,2-il)bis(4-nitrobenzamida)
- Substância 32: 2-(4-aliloxi-3-metoxifenil)-1H-antra[1,2-d]imidazo-6,11-diona

Estrutura das substâncias sintetizadas neste trabalho:

16

F

<u>APÊNDICE F</u>

<u>Espectros.</u>

Espectro Nº 1: I.V. da substância 6

Espectro Nº 2: E.M. da substância 6

Espectro Nº 3: RMN de ¹H da substância 6

Espectro Nº 4: RMN de ¹³C da substância 6

Espectro Nº 6: I.V. da substância 14

Espectro Nº 8: RMN de ¹H expandido da substância 14

177

Espectro Nº 11: I.V. da substância 15

Espectro Nº 12: RMN de ¹H da substância **15**

Espectro Nº 16: I.V. da substância 16

Espectro Nº 17: RMN de ¹H da substância 16

Espectro Nº 18: I.V. da substância 17

Espectro Nº 19: RMN de ¹H da substância 17

Espectro Nº 20: I.V. da substância 18

Espectro Nº 21: RMN de ¹H da substância 18

Espectro Nº 22: APT da substância 18

Espectro Nº 24: I.V. da substância 19

Espectro Nº 26: I.V. da substância 20

Espectro Nº 28: I.V. da substância 21

Espectro Nº 30: APT da substância 21

Espectro Nº 31: I.V. da substância 22

Espectro Nº 32: RMN de ¹H da substância 22

Espectro Nº 33: RMN de ¹H troca com D₂O da substância **22**

1/cm -99'812 800 1000 1200 1188 96 \$121 15043 1328.96 1400 01.0241 5891 9'6294 -H'HEL 1600 ZV'199 12.7901 -90'0294 1800 2000 2400 2800 3072.60 Ŧ 3200 11.0525 91.7525 -09'1295 95'9955 95'9955 3600 TG 019 TT T 1 TTT 40 -10-0 ò 30 30 8 2 7% 8

Espectro Nº 34: I.V. da substância 23

Espectro Nº 35: RMN de ¹H da substância 23

Espectro Nº 36: I.V. da substância 24

Espectro Nº 37: RMN de ¹H da substância 24

Espectro Nº 38: RMN de ¹H troca com D₂O da substância **24**

Espectro Nº 39: IV da substância 25

Espectro Nº 40: RMN de ¹H da substância 25

Espectro Nº 41: I.V. da substância 26

Espectro Nº 42: RMN de ¹H da substância 26

Espectro Nº 45: APT da substância 26

Espectro Nº 46: I.V. da substância 27

udd 10 ¢ un 5 Þ. 897.8 그 P - 21 6.23 515.21 3

Espectro Nº 47: RMN de ¹H da substância 27

Espectro Nº 48: RMN de ¹H expandido da substância 27

Espectro Nº 49: RMN de ¹³C da substância 27

217

Espectro Nº 50: APT da substância 27

400 1/cm 600 -09'912 800 1000 1200 99.4711 1546.02 1338'02 1400 -81.8341 +0'52 1600 57'989 icosi 1663.4 1800 2000 2400 2800 9 3200 Ę 08.5748 3600 627.80 4000 19028 22.5 7.5 52.5 37.5 -15 7% 30 45

Espectro Nº 51: I.V. da substância 28

Espectro Nº 52: RMN de ¹H da substância **28**

Espectro Nº 54: RMN de ¹³C da substância 28

Espectro Nº 56: I.V. da substância 29

400 1/cm -8 EL.11 800 -11/198 1000 1200 1569.52 1332.81 1294,24 1294,24 1294,24 1400 Z. (5'05) 1959,666 1600 1288/34 -05'99991 1800 2000 2400 2800 N02 3200 3334,07 Ŧ 0 \cap 3600 4000 tg033 ò 8 45 8 12 7% 8 15

Espectro Nº 58: I.V. da substância 30

Espectro Nº 59: RMN de ¹H da substância 30

Espectro Nº 60: RMN de ¹H expandido da substância 30

Espectro Nº 61: IV da substância 32

Espectro Nº 62: RMN de ¹H da substância 32

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas

Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo