

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA – CT

CENTRO DE CIÊNCIAS EXATAS E DA TERRA - CCET

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E ENGENHARIA DE PETRÓLEO – PPGCEP

DISSERTAÇÃO DE MESTRADO

INFLUÊNCIA DA ADIÇÃO DE GRES PORCELANATO NO COMPORTAMENTO MECÂNICO E MICROESTRUTURAL EM PASTAS DE CIMENTO PORTLAND PARA CIMENTAÇÃO DE POÇOS DE PETRÓLEO

Tiago Renovato dos Santos

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Tiago Renovato dos Santos

"Influência da Adição de Resíduo de GRES Porcelanato no Comportamento Mecânico e Microestrutural em Pastas de Cimento Portland para Cimentação de Poços de Petróleo "

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ciência e Engenharia de Petróleo PPGCEP, da Universidade Federal do Rio Grande do Norte, como parte dos requisitos para obtenção do título de Mestre em Ciência e Engenharia de Petróleo.

Aprovado em 02 de Junho de 2009.

Prof. Dra. Dulce Maria de Araújo Melo

Orientador - UFRN

Prof. Dr. Marcus Antônio de Freitas Melo

Membro Interno - UFRN

Prof. Dr. Marcos Alyssandro Soares dos Anjos

Membro Externo - IFRN

Divisão de Serviços Técnicos

Catalogação da Publicação na Fonte. UFRN / Biblioteca Central Zila Mamede

Santos, Tiago Renovato dos.

Influência da adição de gres porcelanato no comportamento mecânico e microestrutural em pastas de cimento Portland para cimentação de poços de petróleo / Tiago Renovato do Santos. – Natal, RN, 2009. 134 f.

Orientador: Dulce Maria de Araújo Melo.

Dissertação (Mestrado) – Universidade Federal do Rio Grande do Norte. Centro de Tecnologia. Centro de Ciências Exatas e da Terra. Progra ma de Pós-Graduação em Ciência e Engenharia de Petróleo.

1. Cimento portland – Dissertação. 2. Difração de raios x – Dissertação. 3. Pozolona – Dissertação. 4. Poços de petróleo – Dissertação. 5. Resistência – Dissertação. I. Melo, Dulce Maria de Araújo. II. Universidade Federal do Rio Grande do Norte. III. Título.

RN/UF/BCZM CDU 666.942(043.3)

TIAGO RENOVATO DOS SANTOS

INFLUÊNCIA DA ADIÇÃO DE GRES PORCELANATO NO COMPORTAMENTO MECÂNICO E MICROESTRUTURAL EM PASTAS DE CIMENTO PORTLAND PARA CIMENTAÇÃO DE POÇOS DE PETRÓLEO

> Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ciência e Engenharia de Petróleo PPGCEP, da Universidade Federal do Rio Grande do Norte, como parte dos requisitos para obtenção do título de Mestre em Ciência e Engenharia de Petróleo.

Orientador: Prof. Dr^a. Dulce Maria de Araújo Melo

Santos, Tiago Renovato - Influência da Adição de Gres Porcelanato no Comportamento Mecânico e Microestrutural em Pastas de Cimento Portland para Cimentação de Poços de Petróleo. Dissertação de Mestrado, UFRN, Programa de Pós-Graduação em Ciência e Engenharia de Petróleo. Área de Concentração: Pesquisa e Desenvolvimento em Ciência e Engenharia de Petróleo. Linha de Pesquisa: Engenharia e Geologia de Reservatórios e de Explotação de e Gás Natural, Natal – RN, Brasil.

Orientador: Prof. Dr^a. Dulce Maria de Araújo Melo

RESUMO

A operação de cimentação consiste em um trabalho de extrema importância para as fases de perfuração e completação de poços de petróleo e tem grande impacto sobre a produtividade do poço. Muitos problemas podem ocorrer com o cimento, tanto durante a cimentação primária do poço como também durante seu período produtivo. As operações para correção destes problemas são frequentes, porém onerosas e demandam tempo de produção. Além do custo direto da operação corretiva, devem ser contabilizados, ainda, prejuízos devidos à interrupção da produção de óleo e gás até que uma operação de correção seja realizada. Este trabalho tem como objetivo o desenvolvimento de pastas cimentantes alternativas, constituídas por cimento Portland e um resíduo de porcelanato produzido pela indústria cerâmica, a fim de obter características como baixa permeabilidade, alta tenacidade e alta resistência mecânica, capazes de suportar as diversas operações, tanto de produção como de recuperação de poços de petróleo. Foram avaliadas quatro concentrações diferentes de pastas hidratadas: uma pasta de referência e três pastas contendo resíduo cerâmico nas concentrações de 10%, 20% e 30%, em relação à massa do cimento. Foram encontradas, para as maiores concentrações de resíduo, maior resistência mecânica e menor permeabilidade, além de ser comprovada a reatividade pozolânica do resíduo com o cimento Portland. Esta foi caracterizada através dos ensaios de Difração de Raios X e Termogravimetria, ficando clara a diminuição do teor de hidróxido de cálcio, substituído pela formação de novos produtos hidratados à medida que se adicionava o resíduo cerâmico.

Palavras chave: cimento; difração de raios X; pozolana; poços de petróleo; resistência.

ABSTRACT

Cementation operation consists in an extremely important work for the phases of perforation and completion of oil wells, causing a great impact on the well productivity. Several problems can occur with the cement during the primary cementation, as well as throughout the productive period. The corrective operations are frequent, but they are expensive and demands production time. Besides the direct cost, prejudices from the interruption of oil and gas production till the implementation of a corrective operation must be also taken into account. The purpose of this work is the development of an alternative cement paste constituted of Portland cement and porcelainized stoneware residue produced by ceramic industry in order to achieve characteristics as low permeability, high tenacity, and high mechanical resistance, capable of supporting various operations as production or oil wells recuperation. Four different concentration measures of hydrated paste were evaluated: a reference paste, and three additional ones with ceramic residue in concentrations of the order of 10%, 20% and 30% in relation to cement dough. High resistance and low permeability were found in high concentration of residues, as well as it was proved the pozolanic reactivity of the residue in relation to Portland cement, which was characterized through x-ray and thermogravimetry assays. It was evident the decrease of calcium hydroxide content, once it was substituted by formation of new hydrated products as it was added ceramic residue.

Keywords: Cement. Oil Wells. Pozolane. Resistance. X-ray Diffraction.

"Um gênio criativo não pode ser treinado. Não existem escolas para criatividade. Um gênio é sempre um professor, nunca um aluno; ele é sempre feito por si mesmo." (Ludwig Von Mises)

AGRADECIMENTOS

Em primeiro lugar, e acima de tudo, a Deus. À minha família, que sempre depositou confiança no meu trabalho, pais, irmãos e minha esposa, que estiveram sempre ao meu lado até que o objetivo fosse alcançado.

À minha sempre compreensiva e esperançosa esposa, pois só ela para conseguir suportar todos os momentos de instabilidade e ter confiança que no final tudo seria possível, obrigado por tudo.

À minha orientadora, professora Dulce Melo, pela confiança depositada em mim para realizar este trabalho e pelo apoio nos momentos intelectuais.

Aos Professores Marcus Melo e Antônio Eduardo Martinelli, pela assessoria e apoio durante a realização do trabalho.

Aos professores, Djalma Ribeiro, Maria Gorete Cavalcante e Arim, que desde minha graduação estiveram me apoiando no que eu precisasse, muito obrigado.

À Petrobrás, pelo financiamento do Projeto Retrog ao qual está vinculada minha bolsa de mestrado, e financiamento de todos os custos para a realização deste trabalho, tendo como coordenador Romero Gomes.

À Industria de Porcelanato Elizabeth, pelo fornecimento do resíduo de porcelanato.

Ao Júlio Cesar, pela idéia precursora de inserir o resíduo de porcelanato como substituto da sílica flour e pelos esclarecimentos para realizações de teste laboratoriais.

Às amizades conquistadas durante o curso: Antônio Robson e Keyla Regina, nos momentos de estudo vocês sempre estiveram presentes. Aos novos amigos de laboratório, Danilo, Rodrigo, Ângelo, Pablo, Renan, Diego, Érica, Letícia, Flávia, Filipe e Juliana. Aos companheiros de Cimex, Eduardo e Andrea.

Ao professor Marcus Alyssandro que contribuiu muito com seu conhecimento em engenharia civil e de materiais cimentícios.

Ao grande Alberto que sempre que precisei estava pronto para resolver as broncas do laboratório e Severino também que sempre deu uma força.

Aos amigos Artejose, Caio e Érico Barreto do NEPGN, que realizaram alguns ensaios necessários para este trabalho, bem como pelas conversas e esclarecimentos sobre as análises.

Aos colegas do laboratório LABCIM, LABTAM, CATÁLISE E CARACTERIZAÇÃO, que não foram mencionados, mas estiveram presentes.

Ao Programa de Pós-Graduação em Ciência e Engenharia de Petróleo PPGCEP, por toda a estrutura cedida para realização deste trabalho.

Sumário

1.	Introdução	1
1.1.	Objetivo Principal	4
1.2.	Objetivos Específicos	4
2.	Aspectos Teóricos	6
2.1.	Operações de Cimentação na Completação	7
2.1.1.	Cimentação Primária	7
2.1.2.	Cimentação Secundária	8
2.2.	Objetivo das operações com cimento	9
2.2.1.	Correção da Cimentação Primária (CCR)	9
2.2.2.	Tamponamento de Canhoneados (RAO, RGO, ISZ)	10
2.2.3.	Reparo de Vazamentos no Revestimento	11
2.2.4.	Combate à Perda de Circulação em Zonas sem Interesse	11
2.3	Técnicas Operacionais	12
2.3.1.	Considerações Iniciais	12
2.3.2.	Compressão de Cimento à Baixa Pressão	13
2.3.3.	Compressão de Cimento à Alta Pressão	14
2.3.4	Tampão Balanceado	15
2.3.5.	Cálculo de Volumes para o Tampão Balanceado:	17
2.3.6	Injeção Direta	18
2.3.7	Recimentação	18
2.3.8	Determinação da Altura Máxima da Pasta	19
2.3.9	Aderência do Cimento	19
2.3.10	Tipos de aderência	19
2.3.11	Fatores que influenciam a aderência do cimento	20
2.3.12.	Microanular	20
2.4	Durabilidade ao longo da vida do poço	21
2.5	Cimento Portland	23
2.5.1.	Produção do cimento	23
2.5.2.	Composição química	24
2.5.3.	Tipos de cimento portland	27

2.5.4.	Cimentos para cimentação	30			
2.5.5.	Os cimentos utilizados para poços de petróleo e algumas peculiaridades				
2.6.	Aditivos para pasta de cimentos				
2.6.1	O uso de adições e aditivos				
2.6.2.	Histórico dos Aditivos	34			
2.6.3.	Interação entre os aditivos	35			
2.6.4.	Outros tipos de adições	36			
2.6.5.	Microestrutura da pasta de cimento Portland	36			
2.7.	Hidratação do cimento Portland	37			
2.7.1.	Hidratação dos Aluminatos	39			
2.7.2.	Hidratação da Etringita	39			
2.7.3.	Hidratação dos Silicatos	40			
2.7.4.	Influência dos álcalis	42			
2.7.5.	A função dos sulfatos	42			
2.7.6.	Estequiometria das reações de hidratação	44			
2.7.7.	Estrutura do C-S-H e da Portlandita (CH)	44			
2.8.	Materia is pozolânicos	47			
2.8.1	Fatores que influenciam a atividade pozolânica	49			
2.8.2	Área superficial	49			
2.8.3	Composição química das pozolanas	49			
2.8.4	Temperatura de reação	50			
2.8.5	Efeitos físicos das pozolanas	51			
2.8.6.	Métodos para medir a atividade pozolânica	51			
2.8.7.	Difração de raios X	52			
2.8.8.	Termogravimetria	53			
2.8.9.	Métodos indiretos: resistência mecânica	54			
2.8.10.	Mecanismos de ação da Pozolana Sílica Ativa	55			
2.9	Ensaios laboratoriais destinados à pastas de cimentos para cimentação de poços de petróleo.	56			
2.9.1	Mistura da pasta de cimento	56			
2.9.2	Reologia	57			
2.9.3	Tempo de espessamento	57			
2.9.4	Água livre e Filtrado	58			

2.9.5	Estabilidade	59
2.9.6	Resistência à Compressão	60
3.	Estado da Arte	61
4.	Metodologia Experimental	64
4.1	Materiais e métodos	64
4.1.2	Cálculos e formulações das pastas cimentantes	67
4.1.3	Mistura e homogeneização das pastas formuladas	68
4.1.4	Ensaios Reológicos das pastas formuladas	69
4.1.5.	Ensaio de Consistômetria	70
4.1.6.	Ensaio de Água Livre	71
4.1.7.	Ensaio de determinação de Filtrado	72
4.1.8.	Ensaio de avaliação da estabilidade	73
4.1.9.	Ensaio de permeabilidade	74
4.1.10	Ensaio de resistência à compressão	76
4.1.11.	Análise de ultra-som do cimento (UCA)	77
4.3	Análises e caracterização da mciroestrutura das pastas formuladas	78
4.3.1	Análise Térmica: TG/DTG e DSC	78
4.3.2	Análise de Fluorescência de Raio-X (FRX)	78
4.3.3	Difração de Raios-X (DRX)	78
4.3.4	Microscopia Eletrônica de Varredura	79
4.3.5	Área Superficial	79
4.3.6	Granulometria a Laser	79
5.	Resultados e discussão	80
5.1.	Resíduo Cerâmico	81
5.1.1.	Área Superficial	81
5.1.2.	Florescência de Raios X	81
5.1.3.	Análise Termogravimétrica	82

5.1.4.	Difração de Raios X	83
5.1.5.	Granulometria a Laser	83
5.1.6.	Massa específica	84
5.2	Determinações da atividade pozolânica (NBR-5752)	84
5.3	Caracterizações das pastas cimentantes a base de cimento portland	85
	e resíduo cerâmico	
5.3.1	Formulação das pastas	85
5.3.2	Difração de Raios X	86
5.3.3.	Microscopia eletrônica de varredura	94
5.3.4	Resistência Mecânica	94
5.3.6.	Termogravimetria	96
5.3.7.	Permeabilidade	99
5.4	Formulações da pasta aditivada com 30% de resíduo cerâmico	100
5.4.1.	Propriedades Reológicas	101
5.4.2.	Tempo de espessamento	102
5.4.3.	Teste de Água livre	102
5.4.4.	Controle de Filtrado	103
5.4.5.	Estabilidade das Pastas Formuladas	104
5.4.6.	Permeabilidade	104
5.4.7.	Ensaio Mecânico	105
5.4.8.	Análise da resistência mecânica através de ultra-som	106
6.	Conclusão	107
6.1.	Conclusões	108
	Revisão Bibliográfica	111

LISTA DE FIGURAS

Figura 2.1	Exemplo de como fica o poço a após uma cimentação primária		
Figura 2.2	Seqüência de uma cimentação primária	8	
Figura 2.3	Canhoneado preenchido por reboco de cimento 1		
Figura 2.4	Tampão de cimento		
Figura 2.4	Determinação da altura máxima da pasta	19	
Figura 2.5	Caminhos potenciais de vazamento existentes ao longo da vida de um poço: trajeto: (a) e (b) entre o cimento e o revestimento; c) através do cimento; (d) através do revestimento; (e) com as fraturas; (f) entre o cimento e a formação. (Celia & Bachu, 2003)		
Figura 2.6	Diagrama esquemático do desenvolvimento estrutural durante a hidratação do cimento - FONTE: SCRIVENER (1988)	27	
Figura 2.6.1	Tempo de pega do cimento	28	
Figura 2.7	Curvas Esquemáticas da Taxa de Liberação de Calor (A) e a Concentração do Ca ²⁺ em Solução (B) durante o Transcorrer do Processo de Hidratação do Cimento (LIMA, 2004).		
Figura 2.8	Ação do gesso e do hemidrato sobre o empo de início de pega da pasta de cimento Portland — FONTE: PAULON (1991)	43	
Figura 2.9	Morfologia do C-S-H e do hidróxido de cálcio	46	
Figura 2.10	Morfologia do hidróxido de cálcio	47	
Figura 2.11	Influência da temperatura na atividade pozolânica (ROJAS e CABRERA, 2002). 50		
Figura 2.12	Ação da sílica ativa no concreto 5		
Figura 4.1	(A) Esquema Ilustrativo do Misturador; (B) Misturador de Palheta Chandler Modelo 80-60, com Controlador de Velocidade	68	
	Consistômetro atmosférico Chandler, modelo 1250.	69	
Figura 4.2	Viscosímetro rotativo de cilindros coaxiais Chandler Modelo 3500.	69	
Figura 4.3	Viscosímetro rotativo de cilindros coaxiais Chandler Modelo 3500	69	
Figura 4.4	(a) Esquema Ilustrado da Câmara de Pressurização do Consistômetro; (b) Consistômetro Pressurizado Chandler Modelo 8240.	71	

Figura 4.5	Filtro Prensa Fann HPHT Série 387	72
Figura 4.6	Tubo decantador (LIMA, 2004).	73
Figura 4.7	Seccionamento da amostra de cimento curada: Topo (I); Intermediários (II) e (III); Fundo (IV) (Nascimento, 2006).	74
Figura 4.8	Esquema de funcionamento do permeabilímetro	
Figura 4.9	Banho Termostático Nova Ética Modelo 500/3DE	76
Figura 4.10	Corpo de prova rompido após o ensaio	77
Figura 4.11	UCA modelo 4260 Chandler	77
Figura 4.12	Máquina Universal de Ensaios Shimadzu Autograph Modelo AG-I	78
Figura 4.13	Vista da simulação de um trecho de poço cimentado (Freitas, 2007)	79
Figura 5.1	Análise Termogravimétrica do resíduo cerâmico	94
Figura 5.2	Difratograma de raios X do resíduo cerâmico	85
Figura 5.3	Distribuição de tamanho de partícula	86
Figura 5.4	Identificação dos principais picos nas pastas com 28 dias de cura e análise residual em relação aos picos identificados	89
Figura 5.5	Comparação entre as fases formadas após 28 dias de cura	91
Figura 5.6	Gráfico 3D intensidade relativa de todos das pastas referência, 10, 20 e 30% de RC aos 28 dias	92
Figura 5.7	Intensidade dos Picos de CH e CSH (A)pasta REF, (B)10%RC, (C) 20%RC e(D) 30%RC aos 28 dias respectivamente	93
Figura 5.8 –	Relação entre a diminuição dos picos de hidróxido de cálcio a) (CH18,04°); b) (CH 34,10°) e o aumento da intensidade dos picos de silicato de cálcio hidratado c) (CSH 29,4°); d) (CSH 50,02°)	94
Figura 5.9	Aumento do silicato de cálcio hidratado com CA/Si < 1 e diminuição do hidróxido de cálcio	95
Figura 5.9.1	Microscopia Eletrônica de Varredura formação e crescimento da fase C-S-H, a)10% RC; b) 30% RC, nas pastas curadas por 28 dias	96
Figura 5.10	Resistência mecânica pasta de referência, 10% RC, 20% RC e 30% RC; a) 24 horas; b) 7 dias e c) 28 dias	97
Fiura 5.11	Termogravimentria aos 28 dias de cura a) Referência; b) 10% RC; c) 20% RC e d) 30%	99
Figura 5.12	Teor de água quimicamente combinada com Ca(OH) ₂ e com os	100

Figura 5.13	Permeabilidade das pastas Referência, 10%RC, 20% RC e 30% RC aos 28 dias de cura	101
Figura 5.14.	Rresistência compressiva da pasta de cimento Portland aditivada com 30%RC curada a 24h e 28 dias	107
Figura 5.15	Análise da resistência mecânica por ultra-som da pasta de cimento Portland aditivada com 30%RC	108

LISTA DE TABELAS

Tabela 2.1	Componentes do Cimento Portland, expressos como compostos individuais dos óxidos do clínquer e suas abreviações.				
Tabela 2.2	Alguns tipos de Cimento Portland, as siglas que os denominam internacionalmente e no Brasil, e as normas brasileiras que os definem. ASTM C150. Todos os cimentos americanos exceto os tipos IV e V, podem ser encontrados com incorporador de ar, designado pela letra A				
Tabela 2.3	Composição dos compostos de vários tipos de cimentos Portland disponíveis nos Estados Unidos	29			
Tabela 2.4	Classificação de cimentos de acordo com as normas ASTM, ABNT e API	30			
Tabela 2.5	Tipos de cimento API e algumas características (Nelson, 1990)	31			
Tabela 2.6	Exigências Químicas para os cimentos (Anjos, 2009).	31			
Tabela 2.7	Marcos históricos na evolução dos aditivos	34			
Tabela 2.8	Calores de hidratação dos compostos do cimento portland	41			
Tabela 2.9	Exigências químicas para materiais pozolânicos	50			
Tabela 4.1	Análise química do Resíduo Cerâmico	65			
Tabela 4.2	Ensaios físicos e especificação para cimento Portland especial (CIMESA, 2008)	66			
Tabela 4.3	Ensaios químicos de cimento Portland especial e Especificações para cimento Classe G e Portland especial (CIMESA, 2008)	66			
Tabela 4.4	Valores de densidade e Volume específico dos materiais utilizados para a realização dos cálculos	67			
Tabela 5.1	Composição química do resíduo cerâmico	84			
Tabela 5.2	Pasta referência e concentração de resíduo em cada pasta	87			
Tabela5.3	Referência dos compostos identificados	89			
Tabela5.4	Picos identificados e cartas de referência	90			
Tabela 5.5	Relação entre o aumento da intensidade CPS dos picos de CSH e diminuição dos picos de CH com o aumento da porcentagem de RC	92			
Tabela 5.6	Quantificação de todas as fases identificadas após 28 dias de cura	95			

Tabela 5.7	Cálculo da perda de massa do hidróxido de cálcio para medir atividade pozolânica 28 dias de cura	98
Tabela 5.8	Cálculo da água quimicamente combinada para avaliar a atividade pozolânica 28 dias de cura	100
Tabela5.9	Materiais e suas concentrações utilizados para formulação da pasta de campo com 30 % de resíduo Cerâmico	102
Tabela 5.10	Reologia contendo 30 % RC aditivada	103
Tabela 5.11	Tempo de Espessamento contendo 30 % RC aditivada	104
Tabela 5.12	Resultados de Água livre contendo 30 % RC aditivada	105
Tabela 5.13	Controle de Filtrado contendo 30 % RC aditivada	105
Tabela 5.14	Medida de Estabilidade contendo 30 % RC aditivada	106
Tabela 5.15	Permeabilidade contendo 30 % RC aditivada	106

ABREVIATURA, SIGLAS E SÍMBOLOS

ABNT Associação Brasileira de Normas Técnicas

API American Petroleum Institute

BWOC By weight of cement

C₂S Silicato dicálcico (belita)

C₃A Aluminato tricálcico (celita)

C₃S Silicato tricálcico (alita)

C₄AF Ferroaluminato tetracálcico (ferrita)

Ca(OH)₂ Hidróxido de cálcio (Portlandita)

Ca/Si Relação cálcio/sílica

CH Hidróxido de cálcio (Portlandita)

Cp Centipoises

CPE Cimento Portland Especial

CPP Cimento Portland para Poços de Petróleo

C-S-H Silicato de cálcio hidratado

DRX Difração de Raios x

DTA Análise térmica diferencial

FAC Fator água/cimento

FRX Fluorescência de Raios X

IAP Índice de atividade pozolânica com o cimento

MEV Microscopia eletrônica de varredura

mD mili darcy

MPa Mega pascal

NBR Norma Brasileira Registrada

RC Resíduo Cerâmico proveniente do grés de porcelanato

RHC Teor de água quimicamente combinada com o hidróxido de cálcio

TG Termogravimetria

TH Teor de água quimicamente combinada com os hidratos

Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

<u>Baixar</u>	livros	de	Adm	inis	tra	ção

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciência da Computação

Baixar livros de Ciência da Informação

Baixar livros de Ciência Política

Baixar livros de Ciências da Saúde

Baixar livros de Comunicação

Baixar livros do Conselho Nacional de Educação - CNE

Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos

Baixar livros de Economia

Baixar livros de Economia Doméstica

Baixar livros de Educação

Baixar livros de Educação - Trânsito

Baixar livros de Educação Física

Baixar livros de Engenharia Aeroespacial

Baixar livros de Farmácia

Baixar livros de Filosofia

Baixar livros de Física

Baixar livros de Geociências

Baixar livros de Geografia

Baixar livros de História

Baixar livros de Línguas

Baixar livros de Literatura

Baixar livros de Literatura de Cordel

Baixar livros de Literatura Infantil

Baixar livros de Matemática

Baixar livros de Medicina

Baixar livros de Medicina Veterinária

Baixar livros de Meio Ambiente

Baixar livros de Meteorologia

Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Música

Baixar livros de Psicologia

Baixar livros de Química

Baixar livros de Saúde Coletiva

Baixar livros de Serviço Social

Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo