
VINICIUS TAVARES PETRUCCI

A framework for supporting dynamic adaptation of

power-aware web server clusters

NITERÓI

2008

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

VINICIUS TAVARES PETRUCCI

A framework for supporting dynamic adaptation of

power-aware web server clusters

Dissertation submitted to the Graduate
School of Computation of Fluminense Fed-
eral University as a partial requirement for
the degree of Master in Science.
Topic Area: Parallel and Distributed Com-
puting.

Supervisor:

Prof. Orlando Gomes Loques Filho, Ph.D.

Universidade Federal Fluminense

NITERÓI

2008

A framework for supporting dynamic adaptation of

power-aware web server clusters

Vinicius Tavares Petrucci

Dissertation submitted to the Graduate

School of Computation of Fluminense Fed-

eral University as a partial requirement for

the degree of Master in Science.

Topic Area: Parallel and Distributed Com-

puting.

Approved by:

Prof. Orlando Gomes Loques Filho, Ph.D. (IC/UFF)

(Chair)

Prof. Célio Vinicius Neves de Albuquerque, Ph.D. (IC/UFF)

Prof. Claudio Luis de Amorim, Ph.D. (COPPE/UFRJ)

Niterói, December 2008.

If you want to make an apple pie from scratch, you must �rst create the universe.

� Carl Sagan (1934 - 1996)

Abstract

Modern software applications are increasingly being deployed in highly dynamic com-
puting environments, leading to frequent changes in their execution environment, such
as workload variation, changing resource availability, and component faults. In order to
e�ectively cope with dynamic scenarios and take advantage of available resources, appli-
cations need to be able to adapt their con�guration dynamically at run-time in response
to changes in their execution environment, preferably without requiring any external in-
tervention from administrators and developers. For instance, web applications in a cluster
experience large periods of low utilization and present an opportunity for using dynamic
adaptation techniques to reduce energy consumption with little impact on performance
and timeliness properties.

In recent years, many adaptive policies for web server cluster power management
have been investigated. The development of these adaptive policies may be complex
in itself, and the required support mechanisms for these policies are implemented in
an ad-hoc fashion, or by means of low level (built-in) operating system modules. As
a result, the adaptation logic and mechanisms are hard coded (and mixed) within the
application code, making it di�cult to reuse the basic implementation to experiment
with di�erent adaptation requirements. In the medium term, when the application goes
to a real operational environment, using these ad-hoc approaches substantially hinders
application maintenance and evolution activities.

In this work, we present a framework-based approach for dynamic adaptation of dis-
tributed applications. The proposed framework is used to introduce dynamic adaptation
capabilities, intended to address power and performance management, into a server cluster
infrastructure. Our approach consists of providing a reusable infrastructure with com-
mon elements to monitor and adapt running applications, and an adaptation language to
enable one to express high-level adaptation policies, both designed separately from the
target application. By using external adaptation mechanisms, our approach enables one
to modify and reason about application's adaptation logic with ease. In addition, it allows
to reuse the adaptation infrastructure across di�erent adaptation requirements, helping
to reduce the cost of engineering such adaptive applications.

Keywords: dynamic adaptation, autonomic computing, frameworks, software architec-
ture, server clusters, power management.

Contents

1 Introduction p. 7

2 Related work p. 11

2.1 CR-RIO . p. 11

2.2 CASA . p. 12

2.3 Rainbow . p. 13

2.4 JADE . p. 14

2.5 IBM autonomic systems . p. 15

2.6 Summary . p. 16

3 The framework p. 17

3.1 Software architecture model . p. 17

3.2 Contract-based adaptation language . p. 18

3.2.1 Utility-based adaptation negotiation p. 21

3.3 Adaptation support infrastructure . p. 22

3.3.1 Supporting multiple contracts p. 24

3.4 Implementation details . p. 25

3.5 Summary . p. 26

4 Application case p. 27

4.1 Architecture description . p. 27

4.2 Adaptation contracts . p. 28

4.2.1 Simple power management contract p. 29

Contents

4.2.2 Decision-based power management contract p. 32

4.2.3 Fault-tolerance contract . p. 35

4.3 Reusability and �exibility . p. 36

4.3.1 Contracts using di�erent quality metrics p. 37

4.4 The application-speci�c layer . p. 39

4.5 Summary . p. 40

5 Experimental evaluation p. 41

5.1 Server cluster setup . p. 41

5.2 Implementation issues . p. 43

5.3 Workload generation . p. 44

5.4 E�ectiveness and �exibility . p. 44

5.4.1 A comparison between adaptation policies p. 45

5.4.2 Using di�erent cluster quality metric p. 46

5.5 Composing multiple contracts . p. 47

5.6 Opportunity for anticipatory adaptation p. 48

5.7 Adaptation timing analysis . p. 49

5.8 Summary . p. 51

6 Conclusion p. 52

6.1 Contributions . p. 52

6.2 Future work . p. 52

References p. 55

7

1 Introduction

Many of today's applications execute in highly dynamic computing environments.

This leads to constant changes in their execution context, such as workload variation,

changing resource availability (including component faults). In cluster-based applications,

to anticipate load peaks or failures, hardware resources (e.g., servers) are often over-

dimensioned, meaning they are statically allocated for providing much higher processing

capacity than needed to run the application services [24, 59]. We use the term cluster to

refer to a group of coupled computers � commonly connected to each other through a fast

local area network � that work together and can be viewed as a single computer. Clusters

are usually deployed to improve performance and/or availability over that provided by a

single computer, while typically being much more cost-e�ective than single computers of

comparable speed or availability [11].

A common way to achieve high availability and desirable quality-of-service is to main-

tain a set of spare servers to assume control in case another server fails or to start pro-

cessing requests in parallel to deal with an increasing workload. The problem is that idle

servers (and over-provisioned performance capacity) means additional power and cooling

costs. Over the last years, server power costs have more than doubled [33]; thus, every

watt saved provides real cost savings. To e�ectively cope with dynamic scenarios and take

advantage of available resources, applications need to be able to adapt their con�guration

dynamically in response to changes in their execution environment, preferably without

requiring any external intervention from administrators and developers.

For example, web applications in a cluster experience large periods of low utilization

and present an opportunity for using dynamic adaptation techniques to reduce energy

consumption with little impact on performance and timeliness [59]. That is, during low

utilization some components may be completely idle, and thus could be turned o�, and

other components could be operated at reduced power [7, 43]. One main motivation for

using dynamic adaptation on server clusters is that power and energy accounts for large

fraction of their operating cost [7]. It means that power-e�ciency is a very important

8

requirement to make server clusters even more attractive for today's applications. Ba-

sically, power management for cluster-based systems can be divided into two categories:

inter-node and intra-node [24]. In general, intra-node techniques aim at reducing energy

consumption at CPU level, using CPU voltage/frequency scaling (DVFS), and inter-node

techniques try to save energy on a cluster level by turning on and o� machines, while

complying with additional quality-of-service requirements of the web application, such as

utilization or requests response time.

In recent years, many adaptive policies for cluster power management have been inten-

sively investigated [4, 5, 8, 24, 29, 53, 59, 65]. The development of these adaptive policies

may be complex in itself, and the required support mechanisms for these policies are im-

plemented in an ad-hoc fashion [4, 59, 65], or by means of low level (built-in) operating

system modules (e.g., the Linux On-Demand CPU Governor). While these approaches

may give to the developer complete control over how adaptations are accomplished, they

usually imply in high development costs. This happens because the adaptation logic and

mechanisms are hard coded (and mixed) within the application code, making di�cult

to reuse the basic implementation to experiment with di�erent adaptation requirements.

In the medium term, when the application goes to a real operational environment, us-

ing these ad-hoc approaches substantially hinders application maintenance and evolution

activities. According to [34], energy management is intrinsically about trading power

vs. performance, availability, and it is at the middleware/framework level that such

adaptation requirements (or SLAs � Service Level Agreement) should be expressed and

managed.

A recent branch of work adopts the feedback control loop (also termed autonomic

computing) paradigm as a basis to provide an engineering approach to dynamic adaptation

of applications [9, 15, 26, 32, 41, 46]. The key idea is to provide a run-time, external

closed loop infrastructure that monitors and collects system quality measures, processes

and evaluates them, executes a procedure to select the new con�guration and imposes

the chosen con�guration over the application (see Figure 1). The control loop approach

shows four essential phases of dynamic adaptation: monitor, analyze (or detection), plan

(or decision), and execute (or action). The knowledge element is shared between these

four phases and contains models, data, and scripts � the adaptation concerns which are

externalized from the managed application [16, 35].

In particular, it is recognized that framework-based approaches [16, 41, 46, 60] pro-

vide an important enabling technology (as a basic software infrastructure) to address the

9

Figure 1: Closed-loop control paradigm [32].

complex engineering issues in supporting dynamic adaptations of applications. In this

context, frameworks are designed with the intent of facilitating software development, by

allowing designers and developers to spend more time on meeting software adaptation

requirements rather than dealing with the low level details of providing the machinery

to support the software adaptation mechanisms. The primary goal is to develop and

implement software applications that can adapt themselves in accordance with high-level

guidance from administrators and developers.

In this work, we present a framework-based solution for dynamic adaptation of dis-

tributed applications. The proposed framework is used to introduce dynamic adaptation

capabilities into a web server cluster infrastructure, intended to address power and per-

formance management, and fault tolerance concerns. Our approach consists of a reusable

infrastructure with common elements to monitor and adapt running applications, and an

adaptation language to enable one to express high-level adaptation policies, both designed

separately from the target application. By using external adaptation mechanisms, our ap-

proach enables one to modify and reason about application's adaptation logic with ease.

In addition, it allows to reuse the adaptation infrastructure across di�erent adaptation

requirements, helping to reduce the cost of engineering new adaptive applications [16].

The proposed framework is intended to support dynamic adaptation in the devel-

opment process, through the use of high-level adaptation language, as well as in the

operational phase by providing a reusable adaptation infrastructure. The approach tar-

gets modularity, extensibility, and portability in providing adaptation capabilities for

applications, while presenting opportunities for systematic reuse. By enabling reuse of

signi�cant parts of the adaptation infrastructure, besides facilitating the evaluation of

di�erent adaptation policies, our framework demonstrates improvement in terms of re-

ducing the e�ort required for developing new adaptive applications. Also, it may help to

10

improve the quality of adaptive applications comparing with those developed manually

from scratch.

By adopting a high-level adaptation language, our approach allows developers to

abstract away complexities from low-level details of dynamic adaptation mechanisms and

to concentrate on the actual adaptation logic (or policy) to be elaborated. The adaptation

language further enables the adaptation policies to be changed at run-time, which is

suitable for customizing it for personal user's needs and preferences, as well as for evolving

the adaptation policy, e.g., for dealing with requirements unforeseen at the time of the

application development, or to add new adaptation capabilities to the application. Our

approach also provides support for multi-objective adaptations by composing multiple

adaptation contracts.

Although our framework is targeted at web server clusters, we believe that it could be

used in other infrastructures. For instance, one could use it to enable dynamic adaptation

capabilities for video/audio on-demand applications in an overlay network infrastructure,

as the application case shown in [68]. However, applying our framework to di�erent kinds

of adaptation contexts is outside of the scope of this work and requires further study.

The remainder of this dissertation is organized as follows: In Chapter 2 we present

some background information and a brief perspective of related works to our approach.

Chapter 3 covers the main elements of our proposal; speci�cally, the adaptation infras-

tructure and the adaptation language. In Chapter 4 we present an application case for

this dissertation in terms of a real cluster-based web application, which focus on power

and performance management concerns. In Chapter 5 we present an experimental evalu-

ation of our approach. Finally, Chapter 6 presents conclusions and outlines directions for

future work.

11

2 Related work

In the recent years, several approaches have been proposed for dynamic adaptation

of applications from di�erent perspectives [9, 10, 15, 19, 28, 30, 31, 46, 60]. In general,

similarly to our proposal, related works assume a control loop of some form to monitor

and adapt a target application. In this chapter we present and discuss some of the most

related ones to our approach.

2.1 CR-RIO

Many of the design concepts of our approach are based on the previous works pre-

sented on [21, 41] by members of our research team, where the CR-RIO framework was

proposed and developed. Originally, the adaptation language provided by CR-RIO has

been de�ned in terms of architectural contracts with features to specify the execution

context and resource requirements for self-adaptive applications. Also, these contracts

guide con�guration adaptations on the application's architecture, which are supported by

a middleware infrastructure [21]. However, these contracts only provide a set of generic

primitive architectural operators for adding and removing components and connections

(e.g., instantiate, remove, link, etc.). Although their approach may be a useful basis for

formal veri�cation capabilities of the contracts [68], it limits the ability to meet more com-

plex adaptation needs for applications. The problem is the large semantic gap between

what is described in the contract level and what will be applied during the execution of the

contracts. This way, expressing a more complex adaptation logic becomes impracticable,

or most of the important adaptation decisions are left exclusively to the implementation

stage.

For example, in the contracts, the di�erent con�guration options (or execution con-

texts) for an application are de�ned in terms of a state-based representation, where each

state represents an application con�guration. As in each con�guration option (or state)

we can only use architectural primitive operations, we need a vast number of states to

12

deal with complex adaptation needs such as specifying a decision/con�guration algorithm

for selecting heterogeneous components from a (possibly dynamic) set. As such, for each

choice option, we would need a state representation, leading to a state explosion problem.

For the particular problem above, where the point is to simply select a particular

component to be integrated or removed from the application's architecture, some advances

were made by our research group. Initially, a selection operator was described in [12]

as part of a resource monitoring and discovery proposal in the context of the CR-RIO

framework. Then, the work presented in [39, 40] carried out several experiments involving

the use of the selection operator (based on utility functions [27]) to choose the best access

point device in a wireless network for pervasive applications. In this sense, we have

presented a similar proposal in the context of Grids in terms of a general decision function

for selecting resources, which was proposed and integrated to the CR-RIO framework and

also based on utility functions [52]. We also made some progress to investigate and

generalize the two cases of selection: (a) individual components and (b) application's

architectural con�gurations. In [50], we proposed a general utility-based selection model.

As we shall see, the proposed utility-based model is used in our current approach to decide

between (con�icting) adaptation options (Chapter 3).

From another standpoint, our approach presents a contract-based adaptation lan-

guage, where higher-level adaptation operators can be de�ned by means of adaptation

scripts to exploit details from the intended implementation context (or style) of the ap-

plications (e.g., cluster-based client-server) [49, 51]. The design of our adaptation language

is intended to support application style-speci�c operations which allows representing the

adaptation logic at a higher granularity than primitive architectural operations, making

it easier to satisfy a wide range of adaptation requirements. In addition, it helps to cope

with bridging the gap between the architectural level to the implementation level. In other

words, the point is to provide means for reducing the distance between the adaptation

requirements and the code which actually implements these requirements.

2.2 CASA

The CASA approach [46] provides support for the development and management of

adaptive applications. In CASA, the adaptation policy of every application is de�ned in

a so-called application contract, which is stored externally to the adaptive application

and based on XML. The contract is intended to describe how the application should be

13

recon�gured according to changes in the executing environment. CASA includes a set

of adaptation mechanisms for di�erent adaptation perspectives: (1) change in lower-level

services, (2) weave and unweave of aspects in application code using AOP (aspect-oriented

programming) approaches, (3) recomposition of application components, and (4) change

of application attributes. We provide an extensible adaptation infrastructure, based on

re�exive facilities incorporated in dynamic/scripting languages, which allows advanced

users to develop new adaptation mechanisms and operators, and introduce them into

our framework. Thus, we believe that our approach is able to cover these adaptation

perspectives in a fairly uniform way.

2.3 Rainbow

Our proposal adopts similar elements to those described in the Rainbow framework

[16, 26]. Rainbow presents an architecture-based approach for dynamic adaptation, where

software architecture models are used for monitoring and e�ecting dynamic changes to

an application. The adaptation strategies are de�ned at the architecture level by means

of scripts written using a language called �Stitch�, which presents a formal declarative

way of stating adaptations. The Stitch language also provides an utility-based approach

to decide between di�erent options of adaptations, while considering multiple factors or

quality objectives of concern to the application [16, 18]. We adopt an analogous approach

in our contracts, where a negotiation construct can be used to choose the best adaptation

from a set of applicable ones (Chapter 3).

Also, our adaptation infrastructure has some similarities to Rainbow, which is divided

into di�erent layers: system, architecture, and translation. Run-time monitoring and

adaptation of applications are carried out at the system layer. The adaptation decisions

are taken at the architecture layer and are based on rules and invariants associated with

the adaptation strategies. These are, in essence, equivalents to the adaptation pro�les

and contracts in our approach (Chapter 3).

The system layer and the architecture layer operate at di�erent levels of abstraction,

thus the translation layer is provided to bridge the gap between these two di�erent ab-

straction levels by mapping the information exchanged between system and architecture

layers. We adopt the same basic principle of the overall Rainbow approach: to separate

the adaptation mechanisms, that are used to perform the dynamic adaptation work, from

the adaptation logic (or policy), which represents the instructions or steps that instruct

14

the adaptation mechanisms what to perform.

We di�er from their approach (and also from CR-RIO and CASA) in that we present

a lightweight adaptation infrastructure based on the dynamic/scripting language Python

(instead of the static language Java), which provides built-in re�exive mechanisms for

implementing dynamic adaptation capabilities. In addition, we design our adaptation

language based on these dynamic capabilities using Python scripts1. From the point of

view of adaptation script writer, Python is a well known, dynamic, easily learned, while

Stitch (Rainbow's adaptation language) is a new language, requiring the user/developer

to learn another language to express adaptation concerns. We argue that using highly

dynamic languages, we simplify the development of our adaptation infrastructure, while

providing proper abstractions and �exibility for our adaptation language.

2.4 JADE

JADE is a framework for the development of autonomic management systems, which

is based on the Fractal re�ective component model [9]. The controlled application is

described in terms of components provided with elementary management capabilities.

This description, in turn, is the base of the feedback control loops that implement various

self-management functions, e.g., to cater for quality-of-service requirements. Control loops

provide means to link probes (sensors) to recon�guration (actuators) mechanisms, in order

to implement autonomic behaviors. In Jade, legacy applications are managed by wrapping

them into components. For example, Jade has been initially used for the administration

of clustered J2EE applications [9].

A critical shortcoming of the Jade framework is the lack of an adaptation knowledge

representation in terms of a well-de�ned adaptation language, such as our contracts.

Also, besides catering for quality-of-service requirements, our framework facilitates the

support of power management techniques, such as those describe in [24, 59], using our

contract-based adaptation language. In particular, one of the contract examples used in

this dissertation (Chapter 4) is based on a decision and con�guration function which uses

power management optimization techniques similar to those presented in [5, 6].

1For example, our contracts are written in a Python-like language, which allows us to compile at
run-time the code of the adaptation scripts into a code object, and execute them, using Python's built-in
functions, such as compile and exec [44].

15

2.5 IBM autonomic systems

The IBM's Autonomic Computing initiative [35] envision autonomic computing sys-

tems to be able deal with increasing software and environment complexity, thanks to the

self-managing characteristic of these systems. Such self-managing systems (divided into

self-con�guring, self-healing, self-optimizing and self-protecting) are managed by auto-

nomic managers that monitors the element, analyzes it and its environment for potential

problems, plans actions, and executes changes in a control loop fashion [32].

In recent years, some approaches from the IBM group have been proposed to turn this

vision into reality, while coping with power management concerns. In [34], for instance,

the authors propose a middleware to exploit power management (in terms of a control

loop that allows the CPU frequency and voltage to be reduced) based on load balancing

at the level of entire server clusters. In [22], the authors demonstrate a prototype for

a power management solution integrated to a data center context. Their work employs

server management tools, appropriate sensors and monitors, and an agent-based approach

to achieve speci�ed power and performance objectives. For example, by turning o� servers

under low-load conditions, the proposed approach achieved over 25% power savings over

the case where the approach was not used, without incurring quality-of-service penalties

in web-server clusters.

According to [36, 69], adaptation policies are typically represented as �condition-

action� rules or high-level utility functions. Using the utility-based approach, an appli-

cation developer or administrator speci�es an utility function to determine the �desired�

states (or con�gurations) of the application. Then, the adaptation infrastructure auto-

matically adapts the application con�guration towards higher utility. This approach is

commonly used in the context of dynamic resource selection and allocation, where user's

preferences are encoded by those utility functions [40, 52, 58, 57, 69].

The problem with these proposals from IBM, however, is that they are based solely on

utility functions to represent the adaptation policies. Since our adaptation framework is

intended to be applicable in a broad scope, including scripting level adaptations, we argue

that basing only on the utility approach is not suitable to represent a wide range of adap-

tation requirements. Thus, we adopt a hybrid approach utilizing �condition-action� rules

and utility functions for representing the adaptation expertise in terms of an adaptation

language, as proposed in the work of [16, 18].

16

2.6 Summary

In this chapter we have summarized and discussed some of the works done by other

researchers that we consider the most related to our proposal. We have shown how our ap-

proach compares to these related works and contributes in the research context of system

adaptation. For example, our contract-based adaptation language has some similarities

with Rainbow's adaptation language, whereas the Jade approach lacks a well-de�ned

adaptation knowledge representation. In the next chapter, we shall describe the elements

of our proposal, which mainly consists of an adaptation infrastructure with reusable ele-

ments and an adaptation language to enable one to express high-level adaptation policies.

17

3 The framework

Our framework adopts an external control loop paradigm [15], which works on top

of an abstract architectural model. The framework provides mechanisms to (1) specify

and monitor run-time properties of an executing application, (2) evaluate the model for

application's requirements violation and (3) perform adaptations to maintain the appli-

cation within acceptable bounds of behavior. In our case, dynamic adaptations in the

applications are carried out in accordance with an external adaptation logic speci�ed in

terms of a high-level contract-based adaptation language [51].

3.1 Software architecture model

An architectural perspective shifts focus away from source code to coarse-grained

components and their interconnections. This allows designers to abstract away obscure

details and focus on the application structure and interactions among components [66].

In our approach, we adopt an architecture-oriented model that allows programming the

software con�guration of applications [21, 41]. In this model, components encapsulate

the application's functional aspects and represent the main computational elements and

data stores of the system: clients, servers, databases, etc. Components themselves may

represent complex systems (e.g., server clusters), which are represented hierarchically as

sub-architectures. Connectors are used in the architecture level to de�ne relationships

between components; in the operation level connectors mediate the interaction between

components. Ports identify access points through which components and connectors

provide or require services.

Furthermore, we assume that architectural elements may be annotated with various

important properties, as described in [16]. For example, properties associated with a

connector might de�ne its protocol of interaction (e.g., HTTP). Properties associated with

a component may de�ne its core functionality, some performance attributes (e.g., average

time to process a request, load, etc.), as well as cost attributes (e.g., power consumption).

18

Part of these properties needs to be monitored dynamically, thus our approach provides

a software infrastructure to monitor the target application and map run-time application

changes into architectural changes (cf. Section 3.3). The supporting infrastructure also

needs to maintain the model updated on each adaptation (change) performed in the target

application.

In this work, we adopt an abstract design for representing the application's software

architecture. We assume that the software architecture models � described in terms of

some architectural description language, e.g., CBabel [67] or Acme [63] � are translated

to an object-oriented model. From this model we are primarily interested in extracting

information about the components (and their connections) and properties of interest of

the application. This information is crucial to represent the abstract state and behav-

ior of the application at run-time, enabling to reason about policies of adaptation. We

assume that the initial con�guration for the application is given to our framework as a

meta-level data, which can also guide the deployment and evolution of the application.

Therefore, the adaptation contracts can reference the components, types, and properties

in the application's con�guration.

3.2 Contract-based adaptation language

In our approach, to express the application-speci�c adaptation knowledge, we can

de�ne contracts associated with the application's architecture model. The contract-based

adaptation language is de�ned by the following elements:

• Pro�les represent conditions (Boolean expressions) associated with architectural

properties and can be used to de�ne a predicate that determines whether one or

more architectural properties (e.g., server's utilization) are valid (e.g., above some

threshold). Typically, pro�les are used to identify application conditions for trig-

gering adaptations;

• A set of adaptation scripts captures the adaptation logic that needed to be performed

to restore the normal behavior of the application; that is, moving it away from an

undesirable condition. For example, a cluster-based web application may have a

performance pro�le (e.g., server's utilization above some threshold); upon validating

it, an adaptation script associated with this pro�le may increase the application's

performance by adding a new server in the cluster con�guration;

19

• Finally, a negotiation construct may be speci�ed to explicitly establish a particular

order (or priority) to deploy the adaptations scripts, which is de�ned by a transition

system (state machine) [41]. Alternatively, the transitions can be driven by utility

functions associated with the adaptation scripts [50]. The utility-based approach

provides support to choose the best adaptation script from a set of applicable ones,

while considering multiple factors or quality objectives for a particular domain of

concern to the application (Section 3.2.1).

The adaptation scripts in the contracts use abstract adaptation operators which are

mapped to application-speci�c operators at run-time (using the Actuator modules at

application layer, cf. Section 3.3). The idea is to describe a skeleton so that the adap-

tation policy is described in abstract terms, externalizing the adaptation logic from the

concrete actions to adapt a particular application. For example, the application-level

operators may be as primitive as operating system calls to stop and start processes, or

may be speci�cally built using APIs provided by the application support level (e.g., an

extension module for the Apache web server using its own API [70]). Also, for each ap-

plication quality attribute (e.g., load) used in the pro�les, an application-speci�c Sensor

module is assumed to be available or has to be developed in order to obtain (monitor)

the respective run-time values from the application execution environment.

The syntax 1 of the proposed adaptation language is de�ned as follows:

<statement> ::= (<pro�le_stmt> | <contract_stmt>)+

<pro�le_stmt> ::= pro�le `{' <expr> `}' <name> `;'

<policy_stmt> ::= contract `{' (<adapts>)+ `}' <name> [<adapt_period>] `;'

<adapts> ::= adaptation `{' <script> `}' <name> with <name> [<stl_time>] `;'

<adapt_period> ::= adapt_period <number>

<stl_time> ::= settling_time <number>

The <expr> can be any expression, like �server.load > 150�; <name> represents all

alphanumeric characters plus the underscore, like �response_high�; <number> represents

integer numbers, like �12�. The <script> represents the adaptation source code; prefer-

ably, written in some dynamic scripting language. Currently, it is written as Python

scripts (Section 3.4).

1The notation is the usual extended BNF, in which {a} means 0 or more a's, [a] means an optional
a, and (a)+ means one or more a's.

20

The execution semantics for the adaptation language is as follows. For each con-

tract, all the pro�les associated to it (speci�ed using the with operator) are tested every

adapt_period value (if not explicitly speci�ed, default is 5 seconds)2. This period value

expresses a trade-o� between responsiveness and overhead. As we shall see, in terms of

our experimental examples, values in the order of a few seconds were found suitable. Once

an adaptation option in the contract speci�cation is applicable to be triggered (that is, its

associated adaptation pro�le matches the system state), then its adaptation script code

is actually interpreted and executed. In cases where more than one adaptation option is

applicable to be selected and executed, our adaptation language support an utility-based

negotiation approach (Section 3.2.1).

Another issue addressed in our adaptation language semantics is related to the proper

time to perceive the adaptation e�ect to avoid oscillation between two (or more) compet-

ing adaptation options; for example, one adaptation to increase the capacity for a server

and another to decrease its capacity based on server load monitoring values. Speci�cally,

we assume that each adaptation statement can be speci�ed with a time window to indi-

cate how long to wait before we could expect to observe the stabilized conditions of the

executed adaptation (by using the settling_time operator). If the time window value for

the settling_time operator is well dimensioned, it would enable to achieve a bene�cial

lagging e�ect between triggering adaptations. In [17], a similar technique was adopted to

address this particular aspect. Note that we can also smooth out high short-term �uc-

tuations by increasing the adaptation periodicity (using the adapt_period operator).

Furthermore, as we shall see, our framework approach is designed to provide a �exible

and extensible support for developing and using di�erent Filter modules for the pro�les,

like exponential moving average and predictive-based ones.

In practice, each contract has one thread of control of the following form:

while contract.running:

for each a in contract.adaptations:

if a.profile is True:

execute adaptation code of �a�

sleep for �settling_time� interval

sleep for �adapt_period� interval

2Note that this period value should be greater or equal than the actual sampling period for the
variables that need to be monitored in the application-speci�c layer.

21

'

&

$

%

01 contract {

02 adaptation { ... } addServer with highResponseTime;
03 adaptation { ... } increaseFreq with highResponseTime;

04 } contractExample;

Figure 2: A contract example with similar adaptation alternatives.

3.2.1 Utility-based adaptation negotiation

In our approach, one contract represents the adaptation knowledge for a speci�c

domain of concern, such as power management or fault tolerance. Within one contract, we

can have multiple adaptation scripts that address a particular adaptation condition (e.g.,

high cluster load). When the adaptation scripts address the same concern, we use utility

functions to determine the most appropriate adaptation within a set of applicable ones

[50]. For di�erent domains of concern, such as power management vs. fault tolerance, our

approach provides the required support via interacting contracts (Section 3.3.1).

To illustrate the utility-based adaptation negotiation, consider an example of a cluster

infrastructure. In this example, when the server cluster quality is degraded (e.g., high

response time), we have the option to (1) turn on servers in the cluster, and (2) to

increase the operating frequency of the active processors3. These adaptations would help

in some way to improve the cluster's quality-of-service. A decision on the best adaptation

will depend on a negotiation speci�cation that explicitly describes the objectives and

expected e�ects on choice of each adaptation alternative. In Figure 2, we describe the

aforementioned adaptations in terms of a contract example.

To make a choice from a range of adaptation alternatives, several factors that in�uence

the choice are modeled in terms of quality dimensions over the adaptation alternatives.

In principle, a quality dimension is an attribute which is orthogonal to the application's

functionality. Examples of quality dimensions include cost, performance, security, and

scalability. We assume that domain experts can provide application-speci�c prioritization

for these quality dimensions. We denote A as the set of the adaptation alternatives

and D as the set of quality dimensions. In terms of our contract example, we de�ne

A = {addServer, increaseFreq} and D = {cost, performance}.

Speci�cally, using an utility-based approach, the preferences over the quality dimen-

sions are represented as a real number wd for each d ∈ D, such as
∑

∀d∈D wd = 1. In the

3Naturally, if the response time is low, the opposite adaptations could be de�ned: turn o� servers,
and decrease operating frequency of the active servers.

22

form of an utility function U(a), where a ∈ A, we denote

U(a) =
∑
∀d∈D

wd × ud(a)

For each quality dimension d ∈ D, we de�ne an utility function ud : a → [0, 1] to have

an explicit representation of the expected costs and e�ects of each adaptation alternative

a ∈ A. An utility function for a quality dimension can be de�ned by discrete values or by

means of analytical expressions such as linear, exponential, or logarithmic functions.

Suppose we have an utility function to represent the cost (e.g., power) for our adap-

tation alternatives that yields ucost(addServer) = 0.50 , ucost(increaseFreq) = 0.70.

Also, we have an utility function for performance (e.g., requests per second) that yields

uperf (addServer) = 0.90, uperf (increaseFreq) = 0.80. Considering the preferences wcost =

0.6 and wperf = 0.4, we can score the adaptation alternatives as follows:

U(addServer) = 0.6 × 0.5 + 0.4 × 0.9 = 0.66

U(increaseFreq) = 0.6 × 0.7 + 0.4 × 0.8 = 0.74

Therefore, the increaseFreq adaptation ranks higher by using the utility function score.

3.3 Adaptation support infrastructure

The supporting infrastructure of our approach is depicted in Figure 3. This infras-

tructure is composed by a standard set of entities:

• Contract Manager (CM) interprets the contracts and extracts from them the

information regarding the adaptations scripts, respective pro�les, and negotiation

speci�cation. Periodically, pro�les associated with adaptation scripts are evaluated

and an adaptation may be triggered if the actual system state matches the respective

pro�le. In the case of two or more con�icting adaptation options, the decision on

which adaptation script to use is guided by the negotiation speci�cation;

• Contractor manages and mediates the run-time monitoring process of the prop-

erties speci�ed in the pro�les. The Evaluator interacts with Sensors to obtain and

evaluate the measured values of the properties. Violations and validations of the

23

pro�les are noti�ed to the CM. To deal with transient or stochastic properties, we

rely on Filter modules attached to Contractor. For example, a particular �lter mod-

ule can either adopt an exponential moving-average (EMA), which is a well-known

technique to smooth out measurement readings, or use a predictive �ltering tech-

nique to identify trends in measurements. The latter intends to enable anticipatory

adaptations [55] (Section 5.6);

• Configurator is the element responsible for mapping adaptation scripts into ac-

tions that adapt the application architecture. The Con�gurator interacts with Actu-

ators that represent the individual mechanisms necessary to implement application-

speci�c adaptation actions, e.g., allocation of a new server in a cluster. Translators

entities (attached to Con�gurator) are used to help with the mapping of informa-

tion across the abstraction gap from the reusable layer to the application layer. For

example, to map an architectural-level element identi�er into a hostname or an IP

address.

Contract

Layer

Application

Layer

Filters

Application

Contract

Manager

APIActuators Sensors

ContractorConfigurator

Translators

notifications

profiles

adaptations

Contracts

Figure 3: Adaptation framework.

The adaptation infrastructure provides thus a set of reusable mechanisms to interpret

(Contract Manager), monitor (Contractor) and impose (Con�gurator) the adaptation

contracts. In our approach, each contract can represent a speci�c adaptation logic. How-

ever, they can share common monitoring functions and adaptation operators used in the

contracts. Once the application-level sensors and actuators have been developed, one

can reuse those entities in other adaptation contracts. For example, for the contracts

that use the same quality attributes (e.g., cluster load) in the pro�les, all the monitoring

24

mechanism can be reused. In the same way, the contract operators to adapt the target

application can be reused in other contracts that share the same concern (e.g., power

management), which means reusing common operators to turn on and o� machines, and

to adjust (i.e., increase or decrease) the CPU frequency of the servers. For the contracts

that use di�erent quality attributes (e.g., response time) or di�erent adaptation contexts

(e.g., multimedia application), only the new application level sensors or actuators would

have to be developed.

3.3.1 Supporting multiple contracts

Our approach provides support for multiple domains (or concerns) of adaptations

by composing multiple contracts. To achieve this, we rely on a concurrency model4

which is the key to the management of the contracts. In this model, each contract is

represented by an autonomous entity and the contracts (or threads) can access the shared

application/architecture model. To avoid adaptation interferences, we adopt a global

locking mechanism between the contracts; that is, each contract needs to obtain the

shared lock in order to begin its execution (which consists in a control loop). We need

this to ensure consistency across the architecture/application model.

By using the global locking mechanism, we can also resolve potential con�icts between

the contracts. The basic idea is analogous to the First-Come, First-Serve approach, which

is adopted for con�ict resolution among adaptation strategies, motivated by its agility (fast

responsiveness), in a similar distributed self-adapting framework [30].

For instance, suppose we have two adaptation policies: one contract for power man-

agement called PM , and another contract FT for fault tolerance. In the case of the

adaptation contract FT is ready to be executed when the contract PM is being executed,

the locking mechanism prevents the contract FT to execute. After �nishing the execution

of the contract PM , the blocked contract FT is released and retried immediately. It is

worth mentioning that the pro�les associated with the contract FT are constantly reeval-

uated (while it is blocked) by the Contractor module. We consider that the execution

time of the contract PM (including its settling time, cf. Section 3.2) is su�cient to enable

the Contractor module to monitor and update the system properties. In this way, the

conditions for adaptation (expressed in the pro�les) remain consistent with the current

system state.

4Actually, we adopt Python's threading module which is based on Java's thread model, with some
minor di�erences [44].

25

In the application example presented in Chapter 4, we de�ne two adaptation contracts

for di�erent concerns: (1) power and performance management and (2) fault tolerance in

the server cluster. By using our approach, we are able to compose these two contracts in

order to support adaptation for multiple concerns via interacting contracts. To evaluate

this ability of composition, we show an experiment using the two coordinating contracts

in Chapter 5.

3.4 Implementation details

We have implemented a prototype of our adaptation framework. The contract layer

of reusable elements were developed in the object-oriented dynamic language Python 2.4

[44]. The architecture models and the contracts are translated by our adaptation in-

frastructure and stored as meta-level data (object model) associated to the application.

In the current implementation, we have adopted the XML-RPC protocol as the stan-

dard transport infrastructure between the architecture/contract reusable layer and the

application-speci�c layer.

The bene�ts of using scripting/dynamic languages for coordinating applications while

maintaining their core in a compiled/static languages have long been discussed elsewhere

[64]. Usually, scripting languages are used for connecting software components together.

The Python language, for instance, o�ers support for integration with other languages

and tools. A wide variety of tools provided by the standard library, combined with the

ability to use a lower-level language such as C and C++, makes Python a powerful glue

language, which helps to bridge the gap between our reusable adaptation infrastructure

layer and application-speci�c layer (as illustrated in Figure 3).

As a dynamic language, Python provides means to evaluate expressions at run-time,

like eval(`cluster.load > T_HIGH'), which turns to be very useful to simplify the imple-

mentation of the Contractor module of our adaptation infrastructure. Also, the Python

language explicitly provides support for dynamic recon�guration of components, while

some other languages (e.g., Java) need to be extended (with new language constructs)

for supporting these dynamic capabilities. As an example, the work presented in [62]

have used Java technologies (e.g, Javassist [20], a class library to manipulate byte-codes

in Java) to support dynamic adaptations in the context of the CR-RIO framework.

The contracts are written in a Python-like language, which allows us to compile the

code of the adaptation scripts into a code object, and execute them, using Python's

26

built-in functions, such as compile and exec [44]. Moreover, Python's design philosophy

emphasizes developer productivity and code readability � its core syntax and semantics

are minimalist, while the standard library is large and comprehensive. We argue that

highly dynamic languages (as Python) provide proper abstractions and �exibility for

representing the adaptation logic to be performed on the applications.

3.5 Summary

In this chapter we have described our approach in terms of its contract-based adapta-

tion language and reusable infrastructure. The adaptation language is provided to enable

one to express application-speci�c adaptation policies, while the adaptation infrastructure

provides a set of reusable mechanisms to interpret, monitor and e�ect those adaptation

policies. In the next chapter, we present an application case for our approach in the

context of a real cluster-based web application, which focus on power and performance

management, and fault tolerance concerns.

27

4 Application case

In this chapter, we describe how the elements of our framework are used to support

dynamic adaptation capabilities for a cluster-based application, which needs to maintain

two correlated objectives. First, we aim to guarantee some quality-of-service requirements

for the cluster (e.g., by controlling average cluster load or request response time). Second,

in order to reduce costs, the set of currently active servers and their respective processor's

speeds should be con�gured to minimize the power consumption. We also present an

adaptation policy to achieve fault tolerance requirements in the cluster, intended to be

used in conjunction with other contracts representing di�erent adaptation concerns (e.g.,

power management).

4.1 Architecture description

The architecture (shown in Figure 4) consists of a cluster of replicated web servers.

The cluster presents a single view to the clients through a special component termed

ServerCluster (also called front-end or load balancer), which distributes incoming requests

among the actual Servers that process the requests (also known as back-ends or workers).

ServerCluster

Server 1

...

Server N

Client 1

...

Client N

Figure 4: Architecture of the web application.

The architecture description is translated to an abstract representation of the current

cluster con�guration. Speci�cally, a cluster con�guration is represented by a set of tuples,

where each tuple is de�ned by (i, j) ∈ conf , where i ∈ N represents a server component

28

reference, N is the number of total servers in the cluster, and j ∈ {−1, 0} ∪ Fi represents

the state of server i, where Fi is the set of discrete frequencies (steps) available in the server

processors (e.g., {1, 2, 3, 4}). If j is equal to zero, then server i is inactive, otherwise server

i is active and its processor is operating at frequency j. We also consider the special case

of server failure, when j is set to −1. We de�ne an auxiliary function maxFreq : i → |Fi|
to return the maximum frequency of server i, and function state : i → j to return

the current state of server i. One example of a cluster con�guration, where N = 3, is

conf = {(1, 0), (2, 3), (3, 2)}, which means that server 1 is turned o�, server 2 is operating

at frequency 3, and server 3 at frequency 2. In the architecture model, we represent

the current cluster con�guration as a property (termed currentConf) of ServerCluster

component.

4.2 Adaptation contracts

In order to guarantee the application's quality requirements, we specify a set of adap-

tation scripts to be performed in response to changes in the execution environment of the

application (e.g., workload variation). A simple and e�ective way to identify an unde-

sirable state in which adaptations should be carried out is to de�ne bounds for speci�c

application quality properties, such as cluster utilization above X% or requests response

time above Y seconds. The quality properties are de�ned using pro�les in the contract

speci�cation. Note that our framework is designed to enable one to describe in pro�les

any quality attribute for which bounds can be de�ned. Even for quality attributes that do

not have straightforward numeric measurements, it is often possible to derive a numeric

or discrete state representation (e.g., probability or percentage) for which bounds can be

de�ned, such as percentage of request deadlines met.

We measure the cluster quality in terms of the cluster utilization, which refers to the

ratio of the actual number of requests per second (req/s) received by the cluster to the

maximum number of requests that the current cluster con�guration is able to process per

second. In order to keep the cluster utilization within acceptable levels, we de�ne two

pro�les (shown in Figure 5) which uses two thresholds U_LOW and U_HIGH, corresponding

to the cluster under-utilization and over-utilization, respectively.

These pro�les are then monitored at run-time by the supporting infrastructure (Sec-

tion 3.3). Note that for each quality attribute (e.g., load or responseTime) used by the

pro�les, an application-speci�c Sensor module is assumed to be available or has to be

29

'

&

$

%

pro�le {
webcluster.load / webcluster.maxLoad() < U_LOW

} lowUtil;

pro�le {
webcluster.load / webcluster.maxLoad() > U_HIGH

} highUtil;

Figure 5: Pro�les expressing the quality bounds for the cluster utilization.

developed in order to obtain (monitor) the respective run-time values from the application

execution environment.

During the execution of the clustered web application, so as to respond to web requests

properly when the server cluster quality is degraded, we have the option to (1) turn on

servers in the cluster and (2) to increase the operating frequency of processors. As well,

to save energy, we can (3) turn o� servers in the cluster and (4) reduce the operating

frequency of the processors, in the case of the server cluster is providing a much higher-

quality service than that required by the applications.

A decision on the best adaptation will depend on a logic (or policy) that describes the

objectives and expected e�ects on choice of each adaptation alternative. In real server

clusters, as in our case, processors can be heterogeneous, adding to increase the number

of con�guration possibilities. For example, when the cluster utilization is high, we have

to decide the best choice between (a) turning on new servers or (b) increase the operating

frequency of the currently active servers, or (c) an optimized combination of adaptations

(e.g., turning o� a particular server and turning on another with a higher capacity, but

more energy e�cient). Next, we present two contract examples for power and performance

management in server clusters.

4.2.1 Simple power management contract

The �rst example of adaptation contract (described in Figure 6) adopts a simple idea

which attempts to increase (or decrease) the active servers frequencies up to a maximum

(or minimum) and only then turn servers on (or o�). It uses two adaptation scripts termed

increaseCapacity (lines 02-13) and decreaseCapacity (lines 15-25), which are associated

with pro�les highUtil (line 13) and lowUtil (line 25) to identify the precise conditions for

adaptations � in this example, the cluster utilization bounds.

According to this contract, the pro�les are evaluated at every adaptation_period (see

30

'

&

$

%

01 contract {

02 adaptation {
03 s = webcluster.nextServerToIncFreq()
04 if s != None:
05 curfreq = s.state
06 webcluster.adjustServerFreq(curfreq + 1)
07 else:
08 s = webcluster.nextServerToAdd()
09 if s != None:
10 webcluster.turnServerOn(s)
11 else:
12 log("no more servers to turn on")
13 } increaseCapacity with highUtil settling_time 3000/*ms*/;

14 adaptation {
15 s = webcluster.nextServerToDecFreq()
16 if s != None:
17 curfreq = s.state
18 webcluster.adjustServerFreq(curfreq � 1)
19 else:
20 s = webcluster.nextServerToRem()
21 if s != None:
22 webcluster.turnServerO�(s)
23 else:
24 log("no more servers to turn o�")
25 } decreaseCapacity with lowUtil settling_time 3000/*ms*/;

26 } simple adaptation_period 5000 /*ms*/;

Figure 6: A simple dynamic power management policy.

line 26) by the adaptation infrastructure to check if there are any adaptations to be

performed. The choice for the adaptation period value represents a trade-o� between

responsiveness and overhead � also in terms of intermittent disruptive recon�gurations

(Section 3.2). In our contract examples, values in the order of a few seconds were found

suitable.

For each adaptation option, we specify a time window to indicate how long to wait

before we could expect to observe the stabilized conditions of the executed adaptation

(see settling_time operators in Figure 6 � lines 13 and 25). If the time window value for

the settling_time operator is well dimensioned, it would enable to achieve the desirable

delay (lag) e�ect between triggering adaptations, avoiding oscillation between two (or

more) competing adaptation options. Note that the thresholds used in the pro�les should

be selected based on an appropriate range to help prevent oscillatory behavior.

This contract uses the following operations to query the state of the application ar-

31

chitecture model:

• nextServerToIncFreq() / nextServerToDecFreq(): These operations �nd and return

a server reference in the current cluster con�guration which has a frequency feasible

to be increased (or decreased) discretely. In the case of not �nding any server (i.e.,

all active servers are at maximum or minimum speed), None is returned. Below,

we show a possible implementation for these operations;

def nextServerToIncFreq():

for s in power_servers:

if 0 < s.state < s.maxFreq:

return s

else:

return None

def nextServerToDecFreq():

for s in reversed(power_servers):

if s.state > 1:

return s

else:

return None

• nextServerToAdd() / nextServerToRem(): These operations are used to �nd and

return a server reference in the current cluster con�guration available to be turned

on (or o�). In the case of not �nding any server, None is returned. Below, we show

an implementation for these operations.

def nextServerToAdd():

for s in power_servers:

if s.state == 0:

return s

else:

return None

def nextServerToRem():

for s in reversed(power_servers):

if s.state == 1:

return s

else:

return None

The above adaptation operators are based on a previously ordered list of servers

(power_servers). In particular, the servers are ordered by power e�ciency, which is

de�ned by the ratio of power consumption vs. performance, where power consumption is

measured in watt and performance in requests per second (req/s). That is, the servers are

increasingly ordered by those which consume less energy per request (i.e., joule / req).

The operation nextServerToIncFreq, for example, iterates over the power_servers list �

ordered in ascendent order � to �nd a server reference which is turned on and is not

operating at maximum frequency.

The next adaptation operators e�ect changes to the application architectural model:

32

• turnServerOn(server) / turnServerO�(server): These operations are used to turn

machines on and o� in the cluster. In practice, the load balancing mechanism must

be aware of the new state of the servers in the cluster (i.e., booting or shutdown)

so that it does not redirect requests to inoperable servers;

• adjustServerFreq(server, freq): This operation dynamically adjusts the frequencies

of servers in the cluster. As we can dynamically change the computational power of

servers, the load balancer must adopt a policy to e�ectively balance the load among

servers; for example, a dynamic weighted round robin (DWRR) scheme.

To implement those operations, our adaptation infrastructure relies on actuators entities

(cf. Section 3.3), which are application-speci�c modules, already available in the applica-

tion execution environment (in some form of an API) or speci�cally built for controlling

the target application. In our case, we have developed the actuators as an extension

module using the Apache web server module API [70], as we shall see in Section 4.4.

4.2.2 Decision-based power management contract

The second contract (shown in Figure 7) presents a more elaborated logic based

on a decision function to dynamically set up the best cluster con�guration. That is,

the adaptation contract decides which servers must be active and their operating fre-

quencies, while tackling the current workload demand and minimizing the cluster power

consumption. Di�erently from the simple contract previously presented, we de�ne an

adaptation script named adjustCapacity (lines 02-13), which joins the two adaptations

increase/decreaseCapacity concepts into one. The pro�les lowUtil and highUtil � used

to identify when to trigger the adaptation based on cluster utilization � are merged (by

operator "or") and associated with the respective adaptation script (see line 13).

In the speci�cation of the adjustCapacity adaptation (lines 02-12 in Figure 7), we use

the current cluster load to calculate the demand, while regulating it by a factor taking into

account the maximum cluster utilization threshold; speci�cally, we correct the demand

value by normalizing it to the U_HIGH preset limit to achieve the desired cluster utilization

bound (see line 04). Next, we execute the bestCon�g function (line 04) to select the best

cluster con�guration, according to the load demand and a con�guration model. Then,

a loop (lines 05-11) is used to impose the chosen con�guration over the application's

architecture.

33

'

&

$

%

01 contract {
02 adaptation {
03 demand = webcluster.load / U_HIGH
04 changeConf = webcluster.bestCon�g(demand)
05 for (server, freq) in changeConf:
06 if freq == 0:
07 webcluster.turnServerO�(server)
08 else:
09 if server.state == 0:
10 webcluster.turnServerOn(server)
11 webcluster.adjustServerFreq(server, freq)
12 } adjustCapacity with lowUtil or highUtil settling_time 6000/*ms*/;
13 } decision adapt_period 5000/*ms*/;

Figure 7: Decision-based policy for dynamic power management.

The bestCon�g adaptation operator is de�ned abstractly and speci�cally many opti-

mization algorithms or techniques could be used to solve the cluster con�guration problem.

For this particular contract, we have formulated the cluster con�guration problem as a

mixed integer program (MIP), which is expressed as follows:

Minimize
∑
i∈N

∑
j∈Fi

αij × p_busyij + βij × p_idleij (4.1)

Subject to αij + βij = Xij ∀i ∈ N, ∀j ∈ Fi (4.2)∑
j∈Fi

Xij ≤ 1 ∀i ∈ N (4.3)∑
i∈N

∑
j∈Fi

αij × perfij ≥ demand (4.4)

αij, βij ∈ [0, 1], Xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ Fi (4.5)

The values of p_idle and p_busy are related to the active and the baseline (or idle)

power consumption cost of each member of the set of servers and their respective fre-

quencies, whose information was extracted using a power measurement approach similar

to that presented in [6]. Speci�cally, we have built a Sensor entity in our framework,

deployed on a dedicated machine in the cluster, for power measurement using the Lab-

VIEW software environment [47], which relies on a USB based data acquisition (DAQ)

device (the USB-6009 from National Instruments [48]). The DAQ device was con�gured

to acquire the power measures � taken from the AC power � for the servers in the clus-

ter. The values of perf are based on the measured performance of the servers, for each

34

frequency, in terms of the maximum number of requests per second (req/s) that they can

handle at 100% CPU utilization, for each server i and respective frequency j. To generate

the benchmark, we used the httperf [45] tool. This power and performance information

is crucial for solving the problem of selecting the best cluster con�guration.

The goal of the objective function given by formula (4.1) is to �nd a cluster con�g-

uration that minimizes the overall power consumption, while dealing with the incoming

workload (given by the demand parameter in the constraint equation (4.4)), where αij

represents the utilization factor and βij represents the idle factor for a given server i and

respective frequency j. The solution is given by the decision variable Xij, as shown in

constraint (4.2), where i is a server reference and j is the server's status (i.e., its operating

frequency or inactive status, when j = 0). The constraint (4.3) is de�ned so that it can be

chosen only one frequency j on a given server i. Using this mathematical formulation, the

bestCon�g adaptation operator can thus be implemented by a wide variety of standard

optimization algorithms.

In this application example, we have implemented the bestCon�g operator using the

Python module PyGLPK [25]. This module encapsulates the functionality of the GNU

Linear Programming Kit (GLPK) [42]. The cluster con�guration model was written in the

GNU MathProg language, which is a subset of the AMPL language supported by GLPK.

After solving the MIP optimization problem, the bestCon�g operator returns a cluster

con�guration solution given by notation (server, freq) ∈ solutionConf , which represents

a con�guration of servers and their respective status (i.e., its operating frequency or in-

active). Actually, the cluster con�guration to be imposed is a di�erence between the two

sets: current cluster con�guration and the cluster con�guration solution. For example,

suppose the current con�guration is currentConf = {(1, 0), (2, 2), (3, 1)} and the solution
con�guration is solutionConf = {(1, 0), (2, 1), (3, 4)}. Thus, we need to impose a con�g-

uration change given by solutionConf − currentConf = changeConf = {(2, 1), (3, 4)}.
That is, we need to decrease the frequency of server 2 to 1, and increase the frequency of

server 3 to step 4.

During initial experiments using this decision-based contract, we observed a pecu-

liar transition between two cluster con�gurations: If the current cluster con�guration has

only one active server and a new con�guration performs a swap operation between servers,

which means to deactivate the current server and activate on a new one, a problematic

behavior may occur. That is, if the new con�guration shutdown the current server before

the new server is ready to respond the requests, as the server booting time is not instan-

35

taneous, the cluster will be in an unavailable state. To solve this problem, we simply need

to modify the new con�guration representation so that the operation to shutdown servers

is always performed at the end. This works because the operation to activate servers

blocks until receives an event that server is active, or an error occurs.

In fact, the cluster con�guration problem has exponential complexity with regard to

the number of servers. Thus, depending on the number of servers, more advanced op-

timization approaches (e.g., heuristics) or state-of-art commercial optimization packages

(e.g., CPLEX) would be necessary, in order to make decision at run-time. Another way

would be to solve the optimization problem o�ine and store the solution into a table to be

looked-up at run-time, as proposed in [59]. However, this approach is not �exible enough

for our further work, which is to be able to dynamically change (expand or shrink) the

set of servers in the cluster, in the context of a data center, where concurrently clusters

can share all the server's processors. For this case, we could specify a higher level adap-

tation contract that would manage the overall processor allocation, based on the cluster

con�guration problem formulation presented here.

4.2.3 Fault-tolerance contract

In a cluster-based system, when a server fails, the service remains available due to the

inherent replication. However, the quality-of-service might become noticeably degraded.

A solution is to replace the faulty server by a new one. To achieve this, we specify a

repair policy as a new contract for our cluster-based application (see Figure 8). First, we

identify which server is failed (line 03). Second, we use an operator to designate a new

server to be added in the cluster (line 04). Finally, we use an operator to actually replace

the failed server with the new one, if the new server is correctly assigned to the cluster.'

&

$

%

01 contract {
02 adaptation {
03 srv = webcluster.getFailedServer()
04 newsrv = webcluster.allocNewServer()
05 if newserv: webcluster.replaceServer(srv, newsrv)
07 else: webcluster.log(�could not allocate server�)
08 } replaceServer with serverFailure settling_time 1000/*ms*/;
09 } repairPolicy adapt_period 1000/*ms*/;

Figure 8: A contract for fault-tolerance.

This contract uses a new pro�le (shown in Figure 9) to identify when a server has

36

failed. Also, the failure property (when greater than zero) gives the identi�cation i of the

failed server (i.e., 0 < i < N , where N is number of servers in the cluster).¾

½

»

¼
pro�le {

webcluster.failure > 0
} serverFailure;

Figure 9: Pro�le for identifying a server failure.

In this application example, we intend to use this contract in composition with other

contracts representing di�erent adaptation concerns, e.g., the power management con-

tracts presented earlier in this chapter. Following the separation of concerns paradigm,

this would keep the power management and the fault management contracts independent,

which improves modularity and reusability. Notice that the adaptation period of the fault

tolerance contract (Figure 8) is shorter than, e.g., the power management contract (Sec-

tion 4.2.2). In practice, this means that we are interested into giving more �priority� to

the fault tolerance contract in order to detect failure much faster than to optimize energy

consumption.

4.3 Reusability and �exibility

In our approach, each contract represents a speci�c adaptation logic. However, given

an application domain they can share common monitoring functions and contract opera-

tors. Once the application-level sensors and actuators have been developed, one can reuse

those entities in other adaptation contracts. For example, for the contracts that use the

same quality attributes (e.g., cluster load) in the pro�les, all the monitoring mechanism

can be reused. In the application-layer, we reused the sensor employed to measure the

cluster load (hence, the utilization) property associated with webcluster component type.

In the same way, the contract operators to adapt the cluster con�guration can be

reused in other contracts that share the same concern (such as power management), which

means reusing the turnServerOn, turnServerOff , and adjustServerFreq operations.

For contracts that use di�erent quality attributes (e.g., cluster response time) or di�erent

adaptation concerns (e.g., multimedia stream application), only the new application level

sensors or actuators would have to be developed.

37

4.3.1 Contracts using di�erent quality metrics

In order to explore the �exibility of our approach, we de�ne another way to measure

the cluster quality, in terms of the average request response time, which refers to the time

interval measured between the instant of that the request arrives at the cluster and the

time that the associated response leaves the cluster. In order to keep this new quality

attribute within acceptable levels, we need to de�ne two pro�les (shown in Figure 10),

using the RT_LOW and RT_HIGH as the quality thresholds. We denote the high threshold as

the request deadline. '

&

$

%

pro�le {
webcluster.responseTime < RT_LOW

} lowRT;

pro�le {
webcluster.responseTime > RT_HIGH

} highRT;

Figure 10: Pro�les expressing the cluster response time limits.

Next, we de�ne two new contracts derived from the previous ones, which was: (1) the

simple contract, (2) the decision-based contract. We call these new adaptation contracts

as: simpleRT and decisionRT. These contracts shall use the same pro�les (i.e., highRT

and lowRT), so it means that the basic elements for monitoring can be reused for both

contracts. Also, in the application-speci�c layer, we can reuse the sensor used to e�ec-

tively measure the cluster responseTime, which is a property associated with webcluster

component type.

The simpleRT contract is shown in Figure 11. The only change we made in this

contract was to rename the pro�les, using now the highRT and lowRT pro�les (see lines

13 and 25).

On the other side, the decisionRT contract (shown in Figure 12), which relies on

current cluster load to calculate the demand for the bestCon�g operator (line 07), has now

also to be aware of the current average request response time. It means that some speci�c

code has to be written in the adaptation script to cope with the new quality requirement.

Speci�cally, in the case of the cluster response time rises above the prede�ned quality

bound (i.e., when pro�le highRT is valid), we still must guarantee that the response time

restriction is met (see line 04). Thus, we determine the tardiness (line 05) by the ratio

of current response time to the maximum acceptable response time (i.e. deadline), which

means �how far� we are from the request deadline. Then, we regulate the demand by

38

'

&

$

%

01 contract {

02 adaptation {
(...)

13 } increaseCapacity with highRT settling_time 3000/*ms*/;

14 adaptation {
(...)

25 } decreaseCapacity with lowRT settling_time 3000/*ms*/;

26 } simpleRT adaptation_period 5000 /*ms*/;

Figure 11: Simple contract using the request response time as the quality metric.

multiplying the current demand by the tardiness value in order to achieve the desired

response time bounds (see line 06).'

&

$

%

01 contract {
02 adaptation {
03 demand = webcluster.load
04 if highRT.valid:
05 tardiness = webcluster.responseTime / RT_HIGH
06 demand = demand * tardiness

(The code below is the same from the previous contract , but now using new pro�les)

07 changeConf = webcluster.bestCon�g(demand)
08 for (server, freq) in changeConf:
09 if freq == 0:
10 webcluster.turnServerO�(server)
11 else:
12 if server.state == 0:
13 webcluster.turnServerOn(server)
14 webcluster.adjustServerFreq(server, freq)
15 } adjustCapacity with lowRT or highRT settling_time 4000/*ms*/;
16 } decisionRT adapt_period 5000/*ms*/;

Figure 12: Decision-based contract using the request response time as quality requirement.

In order to improve even more the modularity between the original decision-based

contract and the new one (based on response time metric), we can de�ne a new adaptation

function (with the steps to adapt the cluster) to be used in both contracts, as shown in

Figure 13.

39

def adapt_cluster(demand):
changeConf = webcluster.bestCon�g(demand)
for (server, freq) in changeConf:
if freq == 0:

webcluster.turnServerO�(server)
else:

if server.state == 0:
webcluster.turnServerOn(server)

webcluster.adjustServerFreq(server, freq)

Figure 13: Example of a reusable adaptation function.

4.4 The application-speci�c layer

For the cluster-based web application case study, we have implemented an application-

speci�c layer using Apache 2.2.8 web servers and Linux Gentoo 2.6 operating system. The

servers members of the cluster (or back-end servers) are standard Apache web servers

that perform the same service (i.e., all servers can process all requests). The application-

speci�c entities for monitoring (Sensors) and for e�ecting adaptation (Actuators) were

developed in the Apache web server front-end based on its built-in proxy load balancer

module (named mod_proxy_balancer) [70]. The mod_proxy_balancer module has a

default request counting scheduler algorithm to distribute the HTTP requests among

the cluster servers and uses lbfactors (or weights) to assign the servers' work quota.

This is a normalized value representing their contribution to the amount of work to be

accomplished. If one server has lbfactor 2 while second has lbfactor 1, than the �rst server

will receive two times more requests than second one. If the lbfactor of an server is zero,

it is considered to be disabled. Once a server is disabled, it can be put into a low-power

state (e.g., suspended to RAM). Note that this sequence of actions is reversed if we plan

to turn on the servers.

More explicitly, we implemented the application-level sensors and actuators by means

of a new Apache module called mod_frontend, which uses the Apache proxy load balancer

module functionalities. For example, to enable (or disable) the servers in the cluster as

well as to dynamically assign weights (termed lbfactors) to the servers. In this module,

we expose a generic interface (through the XML-RPC protocol) to monitor the cluster

quality properties (e.g., load) and to manage the web clustered application (e.g., to turn

servers on/o� and to adjust servers frequencies). For example, to enable (or disable)

a server in the cluster (setting lbfactor = 0) as well as to dynamically assign weights

(lbfactor > 0) to a server. To monitor the failure property used in the fault-tolerant

40

contract (Section 4.2.3), we relied on the servers' status (termed lbstatus) available on a

shared data structure maintained by the Apache's load balancer module.

As we can dynamically change the computational power of servers, we calculate the

lbfactor of a server i as lbfactori = freqi × Ki/1000, where freq is given in MHz and

K is a constant related to the server hardware features. In our cluster, the servers are

heterogeneous with respect to di�erent numbers of available and maximum frequencies,

respectively. However, for a given frequency, they have the same performance, because

of their common hardware architecture characteristics. Thus, we simply de�ne K as the

number of CPU cores in the server, that is, K = 1 for single core processor, K = 2

for dual core, and so on. In practice, this lbfactors setting strategy, proportional to the

servers' performance, was found suitable to achieve a good load balancing for the incoming

requests among all active servers in our cluster. A very similar approach was adopted by

[6], which used the same server machines as that used in this work.

4.5 Summary

The application case described in this chapter is of crucial importance to understand

how the elements of our approach works. In essence, we have shown how the adaptation

contracts can be used to express dynamic adaptations capabilities for a cluster-based web

application, which includes power management and fault tolerance techniques. Based on

these adaptation contracts, we shall present in the next chapter an experimental evaluation

for our framework-based approach.

41

5 Experimental evaluation

In this chapter, we present an experimental evaluation of our framework. We carried

out several experiments on a dedicated cluster testbed consisting of 6 machines (one

front-end web server and �ve back-ends web servers) communicating over 1-gigabit-per-

second network switch (as illustrated in Figure 14). One extra client machine was used

to simulate request loads (web browser stateless sessions) from multiple clients. We have

simpli�ed our web cluster model in that we assume that there is no state information

to be maintaned for multiple requests within each section. Our adaptation software

infrastructure was deployed in the front-end machine. It included the code for monitoring

run-time properties and for performing adaptations on the cluster-based application.

ampere coulomb hertz joule ohm

watt

emulated

browsers

web

servers

web

front-end

camburi

Figure 14: Testbed network topology.

5.1 Server cluster setup

Table 1 shows a detailed speci�cation of the servers used to build our cluster1. The

processors of the servers are heterogeneous in terms of maximum performance and number

of frequencies available, and all servers have 2GB of main memory (RAM). The power

1The front-end machine (watt) has the same hardware characteristics as that of the joule server, except
its maximum frequency which is 2Ghz.

42

consumption of a server, for each available discrete frequency, varies linearly with its

CPU utilization, and we consider di�erent idle and busy power values for each frequency.

To collect the power measures for the machines in the cluster, we used a power Sensor

built in our framework using the LabVIEW software environment [47], which relies on

a USB based data acquisition (DAQ) device (the USB-6009 from National Instruments

[48]). We also measured the performance of the servers, for each frequency, in terms of

the maximum number of requests per second (req/s) that they can handle at 100% CPU

utilization, which is named perf ij, for each server i and respective operation frequency j.

To generate the benchmark workload, we used the httperf [45] tool.

In this work, we use the term load to refer to the actual number of requests that a

server is processing per second (req/s) and utilization to refer to the fraction of a server's

total capacity that is being used. That is, the utilization of a server i at frequency

j is given by the actual load divided by perf ij. We also de�ne cluster utilization as

the ratio of load divided by the sum of perfij such as i is an active server and j is its

operating frequency step. For example, suppose our cluster con�guration of active servers

is conf = {(1, 2), (5, 3)}, which means server 1 (ampere) at frequency 1800 MHz and server

5 (ohm) at frequency 2000 MHz. According to Table 1, if the incoming load is 290 req/s,

then our cluster has utilization of 290/(168.4 + 184.4) = 82%. Note that this de�nition

of cluster utilization assumes the web requests are CPU-bound, which is reasonable for

most servers because much of the required data are already in main memory [59].

Server 1: ampere

CPU: AMD Athlon(tm) 64 X2 3800+

(Req/s)Freq. (MHz) Pidle (W)Pbusy (W) Perf.

81.5
101.8

109.8

1000
1800

2000

66.3

70.5

72.7

94.7
168.4

187.6

Server 2: coulomb

CPU: AMD Athlon(tm) 64 3800+

(Req/s)Freq. (MHz) Pidle (W)Pbusy (W)

75.2
89.0
94.5

100.9

107.7

1000

1800
2000

2200
2400

67.4
70.9
72.4

73.8

75.2

47.5
84.6

94.0

102.8
111.5

Perf.

Server 3: hertz

CPU: AMD Athlon(tm) 64 3800+

(Req/s)Freq. (MHz) Pidle (W)Pbusy (W)

71.6
85.5

90.7
96.5

103.2

1000
1800

2000
2200
2400

63.9
67.2

68.7
69.9

71.6

47.0

83.9

93.0
102.3
110.5

Perf.

Server 4: joule

CPU: AMD Athlon(tm) 64 3500+

(Req/s)Freq. (MHz) Pidle (W)Pbusy (W)

74.7
95.7

103.1

110.6

1000
1800

2000

2200

66.6
73.8

76.9
80.0

47.1
84.0

93.5

102.0

Perf.

Server 5: ohm

CPU: AMD Athlon(tm) 64 X2 5000+

(Req/s)Freq. (MHz) Pidle (W)Pbusy (W)

82.5
99.2

107.3

116.6
127.2
140.1

1000
1800

2000
2200
2400

2600

65.8
68.5

70.6
72.3
74.3

76.9

92.9
165.9
184.4

201.0

218.1
235.3

Perf.

Table 1: Power and performance speci�cation of the servers in our cluster.

43

5.2 Implementation issues

To build our server cluster, we have used servers with Dynamic Voltage and Frequency

Scaling (DVFS). This is a technique that consists of varying the frequency and voltage

of the microprocessor in run-time according to processing needs. Also, we have used

machines that can suspend their execution to RAM (STR, Suspend-to-RAM) to save

power, commonly referred to as standby or sleep. In this state, main memory (RAM) is

still powered, although it is almost the only component that is [2]. As observed in [6], the

power consumption when suspended to RAM is about 5.5 watts. This is worth spending

because the boot time increases from ∼ 7s, when the server is suspended, to ∼ 30s, when

the server is halted. To resume from the suspended state, the servers support the Wake-

on-LAN mechanism, which allows a machine to be turned on (or woken up) remotely

when receiving a special network message.

Initial tests using our framework showed some practical issues when executing op-

erations to adapt the cluster-based application. The problem was that in the case of

servers running close to 100% CPU usage (although not meant to happen), the opera-

tions triggered to repair the servers (e.g., increase CPU frequency) were delayed for too

long. Thus, some quality metric of the web cluster (e.g., utilization or response time)

becomes noticeably degraded. The solution found for this problem was to run the process

which executes local adaptations with a higher priority than the main web server pro-

cess. Since our adaptation infrastructure is running under Linux operating system, we

were able to change the scheduling policy of the adaptation e�ector process to SCHED_RR

(Round Robin scheduling), which is intended for time-critical applications. By using this

technique, we could greatly reduce the response time of e�ecting adaptation operations

in our cluster infrastructure.

To help avoid false triggering adaptations, we have implemented in our framework a

�lter module (called ExpFilter) based on a single exponential moving-average [1], smooth-

ing out high short-term �uctuations in measurements readings. Speci�cally, the ExpFil-

ter computes the next value, St, by summing the product of the smoothing constant α

(0 < α < 1) with the new value (Xt), and the product of (1 − α) times the previous

average, as follows: St = α ∗ Xt + (1 − α) ∗ St−1. Values of α close to 1.0 have less

smoothing e�ect and give greater weight to recent changes in the data, while values of

α close to 0.0 have a greater smoothing e�ect and are less responsive to recent changes.

That is, the choice of α allows the engineer to control the speed at which the measures

are smoothed, without shifting the application reaction time too far from its intended

44

target. Simple exponential smoothing is easily applied, and produces a smoothed value

as soon as two observations are available. Sometimes the engineer's judgment is used to

choose an appropriate smoothing factor, or alternatively some techniques may be used to

optimize the value of α, such as using the Marquardt procedure to �nd the value of α

that minimizes the mean of the squared errors (MSE) [1]. In the ExpFilter module, we

have used α = 0.5 as the default smoothing factor. Based on preliminary experiments,

this value was found suitable.

5.3 Workload generation

In our experimental evaluation, all the workloads were generated using the httperf

tool [45], by starting successive sessions with a �xed rate, where each HTTP request is a

PHP script with an average execution time of 10.6 ms. This execution time was measured

while all servers were turned on at full speed. Speci�cally, the following command was

used: httperf --server=watt --port=81 --uri=/home.php --wsess=100,5100,0.14 --rate .15,

which causes httperf to generate a total of 100 sessions at a rate of .15 session per second

(1 session per approximately 6.6 seconds), each session consisting of 5100 calls that are

spaced out by 0.14 seconds. This produces a linear ramp up and then a linear ramp down

of requests, approximately 25 minutes in duration.

5.4 E�ectiveness and �exibility

In order to demonstrate the e�ectiveness of our adaptation framework, we performed

some experiments using the web application case study from Chapter 4. The �rst ex-

periment (shown in Figure 15) conducted dynamic adaptations on the clustered web

application in accordance with the decision-based contract description from Section 4.2.2.

As previously presented, this contract employs an adaptation logic based on a decision

function to dynamically choose the best cluster con�guration. That is, it decides which

processors should be active (or inactive) and their respective operating frequencies, while

handling the current workload and minimizing the overall power consumption of the clus-

ter.

In Figure 15, the upper plot shows the workload generated using the httperf tool

[45], following the shape of a linear ramp up and down of requests. The middle plot

demonstrates that our approach was e�ective in controlling the cluster quality metric (for

45

 0
 20
 40
 60
 80

 100

 0 200 400 600 800 1000 1200 1400 1600

Lo
ad

 (
%

)

 0
 20
 40
 60
 80

 100

 0 200 400 600 800 1000 1200 1400 1600

U
til

iz
at

io
n

(%
)

High
Low

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 0 200 400 600 800 1000 1200 1400 1600

S
er

ve
r

F
re

qu
en

cy
 (

M
H

z)

Time (s)

hertz
ampere

ohm
coulomb

joule

Figure 15: Execution of dynamic adaptations in accordance with the decision-based con-
tract.

this contract example, the cluster utilization), which has varied, for most of the time, in

between 70% and 85%. These values are, respectively, the quality thresholds U_LOW

and U_HIGH used for the pro�les of the contract speci�cation. In the bottom plot, we

can actually observe the con�guration changes (frequency switching) for all servers in the

cluster. If the operating frequency for a server is zero, it is considered to be turned o�.

In another experiment shown in Figure 16, we measured the e�ectiveness of our ap-

proach in terms of the percentage of energy consumption reduction in the cluster as com-

pared to not using our approach � that is, when all servers are turned on at full speed to

handle peak load and dynamic adaptations are not conducted. This experiment shows that

while using our approach, the energy consumption in the cluster is substantially reduced.

In the execution 1 (the control), a total energy consumed was 690, 650 J ≈ 191.85 Wh,

while in the execution 2 (using our approach) was 434, 508 J ≈ 120.69 Wh. It means an

energy consumption reduction of ≈ 37%.

5.4.1 A comparison between adaptation policies

Here we describe a comparison between the adaptation contracts. For this comparison,

we use the energy consumption and disruption as quality metrics. We de�ne disruption

46

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400

P
ow

er
 (

W
at

ts
)

Time (s)

No framework
Using framework

Figure 16: Energy saving in the cluster using the decision-based contract.

as the number of turning on (and o�) adaptations, which may involve a switching cost

that should be carefully considered in the cluster. Table 2 shows the measured values for

these two metrics. As we can see, the �none� policy is the one that consumes most energy

compared to �simple� (Section 4.2.1) or �decision-based� (Section 4.2.2), but it causes no

disruption at all. The �decision-based� contract presents a reduction of ≈ 12% over the

�simple� contract, but the disruption is 2.5 times greater.

policy/contract energy consumption disruption

none* 690, 650J 0
simple 493, 582J 8

decision-based 434, 508J 20

* all servers are turned on at full speed to handle peak load.

Table 2: A comparison between di�erent adaptation contracts.

In the Section 5.6, we discuss some reasons for these disruptions and outline a viable

solution which would be using prediction-based techniques. Although our work is not

meant to address this particular issue, the presented framework provides useful basis to

help reduce some of these disruptive scenarios.

5.4.2 Using di�erent cluster quality metric

In another experiment (shown in Figure 17), we demonstrate the �exibility of our

approach by enabling a di�erent cluster quality attribute to be controlled. Speci�cally,

47

we used the decision-based adaptation contract that controls the cluster response time

requirement (termed decisionRT, cf. Section 4.3.1). This example demonstrates how

easily a developer can apply a di�erent quality metric to be controlled using our approach.

 0
 20
 40
 60
 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

Lo
ad

 (
%

)

 0
 20
 40
 60
 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800R
es

po
ns

e
T

im
e

(m
s)

High
Low

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 0 200 400 600 800 1000 1200 1400 1600 1800

S
er

ve
r

F
re

qu
en

cy
 (

M
H

z)

Time (s)

hertz
ampere

ohm
coulomb

joule

Figure 17: Execution of a new contract using the request response time as quality re-
quirement.

In Figure 17, the upper plot shows the workload generated using the httperf tool.

Because of the request response time measure was shown to be much more unstable than

the cluster load measure (that was used in the previous experiments), we had to adjust

the smoothing factor of the ExpFilter to α = 0.2. Doing so, we could more e�ciently

control the response time quality requirement. As shown in the middle plot, the cluster

response time has varied, for most of the time, in between 20ms and 50ms. These

values are, respectively, the quality thresholds RT_LOW and RT_HIGH used for the

pro�les of the adaptation contract (as described in Section 4.3.1). In the bottom plot, we

can actually observe the cluster con�guration changes (frequency switching). When the

operating frequency for a server is zero, it is considered to be turned o�.

5.5 Composing multiple contracts

To evaluate the ability of our approach in composing multiple contracts, we carried

out an experiment using two contracts that address two di�erent domain of concern: one

48

for power management (Section 4.2.2) and another for fault tolerance (Section 4.2.3).

In this experiment, the cluster was composed by four servers (instead of �ve): ampere,

coulomb, hertz, joule, and the ohm server was con�gured to be the backup server (Table

1). We simulated a failure scenario by forcing the Apache process of the ampere server to

stop during the experiment execution. Note that this experiment involved stateless web

servers; that is, their internal state did not need to be preserved between failures.

In Figure 18, we can observe the power management and the failure tolerance contract

running concurrently. The upper plot shows the workload accepted by our server cluster,

where the failure was detected at time ≈ 433s and the system con�guration was restored

(at time ≈ 457s) to normal operation after replacing the ampere (faulty server) by a new

server one (ohm server) � see the bottom plot. Thus, the cluster repair phase took ≈ 24s.

Notice that the actual load (request rate) on the cluster depends on the cluster's

capacity. If it has capacity enough, the actual rate is the one imposed by the httperf tool.

However, if the cluster capacity is below that needed to cater for the imposed rate, the

cluster's processed response rate drops. This is what happens during the cluster repair

phase (upper plot, Figure 18).

In the middle plot, we observe that the cluster utilization shows an oscillatory behavior

(some peaks of ≈ 100% usage) during the repair phase. After the repair activity, a few

seconds were necessary to stabilize the system. In the sequel, after the system settles

down to its new con�guration, the cluster utilization is e�ectively controlled by the power

management contract, until the end of the experiment.

5.6 Opportunity for anticipatory adaptation

From 0s to 200s in the bottom plot of Figure 15, it may be observed that the hertz

server had to be turned o� for the ampere server to be turned on. In the sequel, the

ampere server had to be turned o� to allow the ohm server to be turned on. This is

an example of disruptive adaptations that are not desired because they mean waste of

processing time (and certainly energy), mainly in the medium/long term. Speci�cally,

these situations occur because the adaptation decisions are determined by an optimization

function (bestCon�g) in the contract speci�cation, which uses only instant snapshots of

the inputs (e.g., current load) to make a decision. The problem with this strategy is

that several locally optimal reactive adaptations may often be less than optimal over

time [55]. Here the opportunity arises to improve the global e�ciency of the adaptation

49

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

Lo
ad

 (
%

)

failure detected
failure resolved

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

U
til

iz
at

io
n

(%
)

High
Low

 0

 1

 2

 0 200 400 600 800 1000 1200 1400 1600 1800

S
er

ve
r

st
at

us

 o
ff=

0,
 o

n=
1

Time (s)

ampere
ohm

Figure 18: Concurrent execution of the contracts: power management and failure toler-
ance.

logic employed by the application; that is, using more suitable �lter modules in our

framework. One could implement new �lter modules with predictive capabilities in order

to cope with trends in measurements readings that indicate anticipatory conditions for

triggering adaptations, which may prevent undesirable oscillatory behavior. For instance,

the Holt forecasting procedure, a variant of exponential smoothing, could be used [1, 61].

This is a simple and widely used method that copes with trend and can be suitable for

producing short-term forecasts for demand time-series data, such as the incoming cluster

workload, although it does not deal with seasonality or periodicity, like Holt-Winters [14].

The design of these predictive �lters is outside of the scope of this dissertation. Our

framework, however, provides a customization point to cater for predictive approaches in

order to improve adaptation decisions [3, 23, 54].

5.7 Adaptation timing analysis

In order to evaluate a possible overhead impact incurred using our framework, we

identify two crucial parts of the whole adaptation process that would be interesting to

measure, which are: (1) to evaluate the pro�les (monitor) and (2) to execute the adapta-

tion scripts (adapt). To evaluate the pro�les, we rely on sensors to obtain the run-time

50

properties of an executing application; then, we apply a �lter procedure, and next we up-

date the object model with the evaluation result of the pro�les. To e�ect the adaptations,

we rely on the actuators which are associated with the adaptation operators used in the

contract description. We assume that the decision phase, between the monitor and adapt

phases, has a controllable and relatively short processing time which can be disregarded

in this analysis.

Based on the previous experiments, our measurements show that themonitoring phase

takes on average 1.27ms with standard deviation (stdev) of 0.67ms. For the worst case

execution, 6.06ms, most of the time was spent in the execution of the sensor modules,

4.08ms, which represents about 67% of the overall monitoring time. The adaptation phase

takes on average 876.57ms, with stdev of 2, 585.48ms. This high standard deviation is

due to the high di�erences among the times associated to the adaptation operators. For

instance, to actually turn on a server, it takes on average 7, 979.80ms, with stdev of

1, 550.26ms; to turn a server o� takes 1, 010.85ms, with stdev 3.03ms; and to adjust

server frequency takes 7.09ms, with stdev 1.63ms. Table 3 summarizes the execution

time of each adaptation step.

The worst case measured for the overall adaptation phase was 13, 045.78ms, while the

actual adaptation operations was: one turn_on, one turn_o�, and then two adjust_freq.;

these operations took respectively 12, 012ms + 1, 005ms + 7ms + 7ms = 13, 013ms in the

application-level. Thus, we observe that most of the time was spent during the actual

execution of the adaptation operators, and the net overhead of using the framework was

only 32.78ms. In the context of the typical adaptation period for server clusters (in the

order of seconds or few minutes), our approach uses a suitable adaptation time window,

while incurring small processing time overhead.

Adaptation steps exec. (#) min (ms) max (ms) mean (ms) stdev (ms)

(1) Evaluate pro�les 1,523 0.45 6.06 1.27 0.67

(2) E�ect adaptations 209 1.04 13,045.78 876.57 2,585.48

Sub-step from �Evaluate pro�les� (application-level):

(1.1) get remote values 1,524 0.28 4.08 0.76 0.44

Sub-steps from �E�ect adaptations� (application-level):

(2.1) turn server on 20 6,106.0 12,013.0 7,979.80 1,550.26

(2.2) turn server o� 20 1,005.0 1,018.0 1,010.85 3.03

(2.3) set server freq. 154 5.0 13.0 7.09 1.63

Table 3: Execution times of the adaptation steps.

51

5.8 Summary

To evaluate our approach, we have carried out several experiments on a dedicated

cluster testbed. These experimental results demonstrate that our approach is useful and

e�ective in providing the required support for describing and deploying typical power

management and fault tolerance contracts. Speci�cally, for the case of power optimization,

our approach allowed to achieve energy savings of 37%, while meeting the application's

quality-of-service requirements. Also, we have shown that the processing time overhead

of the framework is not signi�cant.

52

6 Conclusion

In this dissertation, we have presented a framework-based approach which was used

to support dynamic adaptation capabilities in a web server cluster environment. By ex-

perimental evaluation, we have demonstrated that our framework was useful and e�ective

in providing the required support to express typical adaptation policies for power man-

agement and fault tolerance, through the use of high-level adaptation language, as well

as to e�ciently deploy these adaptive policies using our adaptation infrastructure.

6.1 Contributions

The main contributions of this dissertation consist in providing a framework with a

reusable adaptation infrastructure and an adaptation language to support dynamic adap-

tation in the context of web server clusters. By using external adaptation infrastructure,

our approach enables one to modify and reason about di�erent application's adapta-

tion policies and quality-of-service requirements. Our approach also provides support

for multi-objective adaptations by composing multiple adaptation policies. The adapta-

tion infrastructure can be reused across di�erent adaptation requirements, which helps to

reduce the cost of engineering such adaptive applications.

6.2 Future work

Although we have focused on dynamic adaptations in a distributed server cluster

scenario, the implementation we have presented here is essentially centralized, with moni-

toring and adaptation being performed within a single adaptation infrastructure instance.

However, depending on the application needs, the components of the framework could be

deployed in a distributed setting (with replicated module instances) to deal with concerns

regarding scalability and single-point failure. By having distributed module instances,

the framework design should be aware of concurrent access to the same shared applica-

53

tion distributed model [16]. This is an issue that will need to be investigated in a future

project.

Taking advantage of our framework capabilities, we intend to use di�erent predic-

tion techniques [54, 56], implemented through �lter modules, which are themselves easily

changeable using the framework. This would enable our adaptation infrastructure to make

anticipatory decisions, helping to improve the overall behavior of the controlled applica-

tion. In the presented cluster application, unnecessary (power-consuming) switching of

processors, which may occur during a short low activity period, could be avoided, leading

to more energy savings and less application disruption.

We are also investigating the use of contracts to cater for additional requirements

of real server architectures, such as support of multi-layer servers [29], where each layer

can be managed by a speci�c contract, and more elaborate contracts for server fault

management, required to meet availability requirements.In a data center scenario [13],

several server clusters can be active at the same time, each one associated to a di�erent

service (and managed by its own individual contract). In this context, a higher level

contract can manage the overall processor allocation over the set of server clusters. This

would allow to expand or to shrink the set of processors of each cluster in order to attend

peak or low demand periods of activity. Assuming that resource demands vary along

time, this could lead to further performance and energy consumption optimizations.

Further, in the data center case, we see an interesting future investigation in exploiting

dynamic adaptation techniques in the context of server virtualization, which has been

successful at reducing the number of servers in server clusters and helping reduce their

power consumption [37]. For example, our framework would provide the basic software

infrastructure to monitor utilization (or any other quality metric) across the server clusters

and e�ect con�guration operations on the virtualized server environment, e.g., to power

o� unneeded physical servers without impacting applications and users.

The coordination, speci�cation and implementation of such autonomous adaptation

contracts (working concurrently), intended for attaining an overall adaptation goal, poses

a great challenge for future research. For example, for achieving consistent behavior,

con�icts for the use of the shared resources and on the execution of con�icting adaptation

policies have to be overcome. Based on initial investigations in this work on supporting

multiple contracts, we believe that the elements of our adaptation framework provides

the basis to help solve these issues.

In the experiments presented in this dissertation, we have used a simple workload

54

generation scheme using the httperf tool in order to the show the e�ectiveness of our

approach. For future experiments, we intend to use the web-log traces available at the

Internet Tra�c Archive [38], e.g. WorldCup98, which provides a more realistic web server

workload characterization to be investigated for our experiments.

55

References

[1] Introduction to time series analysis, Section 6.4, NIST/SEMATECH e-handbook of
statistical methods. http://www.itl.nist.gov/div898/handbook/, 2008.

[2] Advanced Configuration and Power Interface. ACPI Speci�cation.
http://www.acpi.info/, 2008.

[3] Baryshnikov, Y., Coffman, E. G., Pierre, G., Rubenstein, D., Squil-
lante, M., and Yimwadsana, T. Predictability of web-server tra�c congestion.
In Proceedings of the Tenth IEEE International Workshop on Web Content Caching
and Distribution (Sept. 2005), pp. 97�103.

[4] Bertini, L., Leite, J., and Mossé, D. Statistical QoS guarantee and energy-
e�ciency in web server clusters. In 19th Euromicro Conference on Real-Time Systems
(2007), pp. 83�92.

[5] Bertini, L., Leite, J., and Mossé, D. Dynamic con�guration of web server
clusters with QoS control. In WIP Session of the 20th Euromicro Conference on
Real-Time Systems (2008).

[6] Bertini, L., Leite, J., and Mossé, D. Optimal dynamic con�guration in web
server clusters. Tech. Rep. RT-1/08, Instituto de Computação � Universidade Fed-
eral Fluminense, 2008.

[7] Bianchini, R., and Rajamony, R. Power and energy management for server
systems. Computer 37, 11 (2004), 68�74.

[8] Bohrer, P., Elnozahy, E. N., Keller, T., Kistler, M., Lefurgy, C., Mc-
Dowell, C., and Rajamony, R. The case for power management in web servers.
261�289.

[9] Bouchenak, S., Palma, N. D., Hagimont, D., and Taton, C. Autonomic
management of clustered applications. In IEEE International Conference on Cluster
Computing (Barcelona, Spain, 2006), IEEE Computer Society.

[10] Capra, L., Zachariadis, S., and Mascolo, C. Q-cad: Qos and context aware
discovery framework for adaptive mobile systems. International Conference on Per-
vasive Services (ICPS '05) (2005), 453�456.

[11] Cardellini, V., Casalicchio, E., Colajanni, M., and Yu, P. S. The state of
the art in locally distributed web-server systems. ACM Comput. Surv. 34, 2 (2002),
263�311.

56

[12] Cardoso, L. Integração de serviços de monitoração e descoberta de recursos a
um suporte para arquiteturas adaptáveis de software. Master's thesis, Instituto de
Computação � Universidade Federal Fluminense, 2006.

[13] Chandra, A., Gong, W., and Shenoy, P. Dynamic resource allocation for shared
data centers using online measurements. In SIGMETRICS '03: Proceedings of the
2003 ACM SIGMETRICS international conference on Measurement and modeling of
computer systems (New York, NY, USA, 2003), ACM, pp. 300�301.

[14] Chatfield, C. The holt-winters forecasting procedure. Applied Statistics 27, 3
(1978), 264�279.

[15] Cheng, B. H., Giese, H., Inverardi, P., Magee, J., and de Lemos, R. 08031
� software engineering for self-adaptive systems: A research road map. In Software
Engineering for Self-Adaptive Systems (Dagstuhl, Germany, 2008), B. H. C. Cheng,
R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Eds., no. 08031 in Dagstuhl
Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[16] Cheng, S.-W. Rainbow: Cost-E�ective Software Architecture-Based Self-
Adaptation. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, May 2008.
Technical Report CMU-ISR-08-113.

[17] Cheng, S.-W., and Garlan, D. Handling uncertainty in autonomic systems. In
International Workshop on Living with Uncertainties (Atlanta, GA, USA, November
2007).

[18] Cheng, S.-W., Garlan, D., and Schmerl, B. Architecture-based self-
adaptation in the presence of multiple objectives. In SEAMS '06: Proceedings of
the 2006 international workshop on Self-adaptation and self-managing systems (New
York, NY, USA, 2006), ACM Press, pp. 2�8.

[19] Cheng, S.-W., Garlan, D., Schmerl, B. R., Sousa, J. P., Spitznagel, B.,
Steenkiste, P., and Hu, N. Software architecture-based adaptation for pervasive
systems. In ARCS '02: Proceedings of the International Conference on Architecture
of Computing Systems (London, UK, 2002), Springer-Verlag, pp. 67�82.

[20] Chiba, S. Javassist � a re�ection-based programming wizard for java. In Pro-
ceedings of OOPSLA'98 Workshop on Re�ective Programming in C++ and Java,
1998.

[21] Corradi, A. Um framework de suporte a requisitos não-funcionais para serviços
de nível alto. Master's thesis, Instituto de Computação � Universidade Federal
Fluminense, 2005.

[22] Das, R., Kephart, J. O., Lefurgy, C., Tesauro, G., Levine, D. W., and
Chan, H. Autonomic multi-agent management of power and performance in data
centers. In The Seventh International Conference of Autonomic Agents and Multia-
gent Systems (May 2008).

[23] Dinda, P. A., and O'Hallaron, D. R. Host load prediction using linear models.
Cluster Computing 3, 4 (2000), 265�280.

57

[24] Elnozahy, E. N., Kistler, M., and Rajamony, R. Energy-e�cient server
clusters. In Power-Aware Computer Systems (2003), vol. 2325 of Lecture Notes in
Computer Science, pp. 179�197.

[25] Finley, T. PyGLPK. http://www.cs.cornell.edu/∼tomf/pyglpk/, 2008.

[26] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste,
P. Rainbow: Architecture-based self adaptation with reusable infrastructure. IEEE
Computer 37, 10 (October 2004).

[27] Gomes, L. F. A. M., Gomes, C. F. S., and de Almeida, A. T. Tomada de
Decisão Gerencial � Enfoque Multicritério (2a edição). Editora Atlas S.A., São
Paulo, Brasil, 2006.

[28] Hillman, J., and Warren, I. An open framework for dynamic recon�guration. In
ICSE '04: Proceedings of the 26th International Conference on Software Engineering
(Washington, DC, USA, 2004), IEEE Computer Society, pp. 594�603.

[29] Horvath, T., Abdelzaher, T., Skadron, K., and Liu, X. Dynamic voltage
scaling in multitier web servers with end-to-end delay control. IEEE Transactions
on Computers 56, 4 (2007), 444�458.

[30] Huang, A.-C., and Steenkiste, P. Building self-adapting services using service-
speci�c knowledge. In HPDC '05: Proceedings of the High Performance Distributed
Computing (Washington, DC, USA, 2005), IEEE Computer Society, pp. 34�43.

[31] Huebscher, M. C., and McCann, J. A. An adaptive middleware framework for
context-aware applications. Personal Ubiquitous Computing 10, 1 (2005), 12�20.

[32] IBM. An architectural blueprint for autonomic computing.
http://www.ibm.com/developerworks/autonomic/library/ac-summary/ac-
blue.html, 2005.

[33] Jonathan G. Koomey. Estimating total power consumption by servers in the U.S.
and the world. http://enterprise.amd.com/Downloads/ svrpwrusecomplete�nal.pdf,
February 2007.

[34] Kephart, J. O., Chan, H., Das, R., Levine, D. W., Tesauro, G., Raw-
son, F., and Lefurgy, C. Coordinating multiple autonomic managers to achieve
speci�ed power-performance tradeo�s. In ICAC '07: Proceedings of the Fourth Inter-
national Conference on Autonomic Computing (Washington, DC, USA, 2007), IEEE
Computer Society, p. 24.

[35] Kephart, J. O., and Chess, D. M. The vision of autonomic computing. Computer
36, 1 (2003), 41�50.

[36] Kephart, J. O., and Das, R. Achieving self-management via utility functions.
IEEE Internet Computing 11, 1 (2007), 40�48.

[37] Kusic, D., Kephart, J. O., Hanson, J. E., Kandasamy, N., and Jiang,
G. Power and performance management of virtualized computing environments via
lookahead control. IEEE International Conference on Autonomic Computing (2008).

58

[38] Lawrence Berkeley National Laboratory. The internet tra�c archive.
http://ita.ee.lbl.gov/, April 2008.

[39] Leal, D. Suportando a adaptação de aplicações pervasivas pelo uso de funções utili-
dade. Master's thesis, Instituto de Computação � Universidade Federal Fluminense,
2007.

[40] Leal, D., and Loques, O. Selecionando o melhor ponto de acesso com base nas
preferencias do cliente e na disponibilidade dos recursos da rede sem-�o. In Simpósio
Brasileiro de Redes de Computadores (SBRC 2008) (May 2008).

[41] Loques, O., Sztajnberg, A., Cerqueira, R. C., and Ansaloni, S. A contract-
based approach to describe and deploy non-functional adaptations in software archi-
tectures. Journal of the Brazilian Computer Society 10, 1 (July 2004), 5�18.

[42] Makhorin, A. GLPK (GNU Linear Programming Kit) version 4.36.
http://www.gnu.org/software/glpk/, 2009.

[43] Mark Blackburn. Five ways to reduce data center server power consump-
tion. The Green Grid. http://www.thegreengrid.org/gg_content/White_Paper_7_-
_Five_Ways_to_Save_Power.pdf (February 2008), 2008.

[44] Martelli, A. Python in a Nutshell. O'Reilly & Associates, Inc., Sebastopol, CA,
USA, 2003.

[45] Mosberger, D., and Jin, T. httperf � a tool for measuring web server perfor-
mance. SIGMETRICS Perform. Eval. Rev. 26, 3 (1998), 31�37.

[46] Mukhija, A. CASA � A Framework for Dynamic Adaptive Applications. PhD
thesis, University of Zurich, Switzerland, 2007.

[47] National Instruments. Labview platform and development environment.
http://www.ni.com/labview/, July 2008.

[48] National Instruments Corporation. NI USB-6008/6009 user guide and spec-
i�cation. http://www.ni.com/pdf/manuals/371303e.pdf, July 2008.

[49] Petrucci, V. A framework for supporting dynamic adaptation of power-aware
web server clusters. Master's thesis, Institute of Computing, Fluminense Federal
University, 2008.

[50] Petrucci, V., and Loques, O. Suporte a adaptação dinâmica de aplicações us-
ando funções de utilidade. In 1st Workshop on Pervasive and Ubiquitous Computing,
WPUC 2007 (October 2007), SBAC-PAD 2007.

[51] Petrucci, V., Loques, O., and Mossé, D. A framework for dynamic adaptation
of power-aware server clusters. In SAC '09: Proceedings of the 24th ACM Symposium
on Applied Computing (2009), ACM.

[52] Petrucci, V., Loques, O., and Sztajnberg, A. Seleção de recursos em grades
computacionais usando funções de utilidade. In 4th Workshop on Computational
Grids and Applications (WCGA) (July 2007).

59

[53] Pinheiro, E., Bianchini, R., Carrera, E. V., and Heath, T. Dynamic cluster
recon�guration for power and performance. In Compilers and Operating Systems for
Low Power, L. Benini, M. Kandemir, and J. Ramanujam, Eds. Kluwer Academic
Publishers, 2002.

[54] Poladian, V. Tailoring Con�guration to User's Tasks under Uncertainty. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, April 2008. Technical Report
CMU-CS-08-121.

[55] Poladian, V., Garlan, D., Shaw, M., Schmerl, B., Sousa, J. P., and
Satyanarayanan, M. Leveraging resource prediction for anticipatory dynamic
con�guration. In First IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, SASO-2007 (July 2007), pp. 214�223.

[56] Poladian, V., Shaw, M., and Garlan, D. Modeling uncertainty of predictive
inputs in anticipatory dynamic con�guration. In Proceedings of the International
Workshop on Living with Uncertainties (IWLU'07), co-located with the 22nd Inter-
national Conference on Automated Software Engineering (ASE'07), (Atlanta, GA,
USA, 5 November 2007). http://godzilla.cs.toronto.edu/IWLU/program.html.

[57] Poladian, V., Sousa, J. P., Garlan, D., Schmerl, B., and Shaw, M. Task-
based adaptation for ubiquitous computing. IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews, Special Issue on Engineering
Autonomic Systems 36, 3 (May 2006).

[58] Poladian, V., Sousa, J. P., Garlan, D., and Shaw, M. Dynamic con�gura-
tion of resource-aware services. In ICSE '04: Proceedings of the 26th International
Conference on Software Engineering (Washington, DC, USA, 2004), IEEE Computer
Society, pp. 604�613.

[59] Rusu, C., Ferreira, A., Scordino, C., Watson, A., Melhem, R., and
Mossé, D. Energy-e�cient real-time heterogeneous server clusters. In IEEE Real
Time Technology and Applications Symposium (Washington, DC, USA, 2006), IEEE
Computer Society, pp. 418�428.

[60] Sallem, M. A. S., and da Silva e Silva, F. J. The adapta framework for
building self-adaptive distributed applications. In ICAS '07: Proceedings of the Third
International Conference on Autonomic and Autonomous Systems (Washington, DC,
USA, 2007), IEEE Computer Society, p. 46.

[61] Santana, C., Bertini, L., Leite, J., and Mossé, D. Applying forecasting
to interval based DVS. In 10th Brazillian Workshop on Real-Time and Embedded
Systems (WTR) (2008).

[62] Santos, A. L. G. Um suporte para adaptação dinâmica de arquiteturas. Master's
thesis, Instituto de Computação � Universidade Federal Fluminense, 2006.

[63] Schmerl, B., and Garlan, D. Acmestudio: Supporting style-centered architec-
ture development. In ICSE '04: Proceedings of the 26th International Conference
on Software Engineering (Washington, DC, USA, 2004), IEEE Computer Society,
pp. 704�705.

60

[64] Schneider, J.-G., and Nierstrasz, O. Components, scripts and glue. In Software
Architectures � Advances and Applications, L. Barroca, J. Hall, and P. Hall, Eds.
Springer-Verlag, 1999, pp. 13�25.

[65] Sharma, V., Thomas, A., Abdelzaher, T., Skadron, K., and Lu, Z. Power-
aware QoS management in web servers. In 24th IEEE Real-Time Systems Symposium
(2003), pp. 63�72.

[66] Shaw, M., and Garlan, D. Software architecture: perspectives on an emerging
discipline. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[67] Sztajnberg, A. Flexibilidade e Separação de Interesses para a Concepção e
Evolução de Aplicações Distribuídas. PhD thesis, COPPE/PEE/UFRJ, Maio 2002.

[68] Sztajnberg, A., and Loques, O. Describing and deploying self-adaptive ap-
plications. In 1st Latin American Autonomic Computing Symposium (July 2006),
pp. 14�20.

[69] Tesauro, G., and Kephart, J. O. Utility functions in autonomic systems. In
ICAC '04: Proceedings of the First International Conference on Autonomic Comput-
ing (Washington, DC, USA, 2004), IEEE Computer Society, pp. 70�77.

[70] The Apache Software Foundation. Apache HTTP server version 2.2.
http://httpd.apache.org/docs/2.2/, 2008.

Livros Grátis
(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas

http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1

Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo

http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1

