

__

UNIVERSIDADE FEDERAL FLUMINENSE

André Luiz Brazil

Path Relinking and AES Cryptography in Color Image Steganography

NITERÓI

- 2008 -

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

__

UNIVERSIDADE FEDERAL FLUMINENSE

André Luiz Brazil

Path Relinking and AES Cryptography in Color Image Steganography

A Dissertation submitted to the post graduate

program in Computing of Universidade Federal

Fluminense in partial fulfillment of the

requirements for the degree of Master in

Computing. Area: Computação Visual e

Interfaces (Visual Computing and Interfaces).

Supervisor: Aura Conci

NITERÓI

- 2008 -

__

Ficha Catalográfica elaborada pela Biblioteca da Escola de Engenharia e Instituto de Computação da UFF

B823 Brazil, André Luiz.
 Path relinking and AES cryptography in color image

steganography / André Luiz Brazil – Niterói, RJ : [s. n.], 2008.
 93 f.

 Orientador: Aura Conci
 Dissertação (Mestrado em Computação) – Universidade Federal

Fluminense, 2008.

 1. Segurança de dados on-line. 2. Esteganografia. 3. Algoritmo

genético. 4. Proteção de dados. I. Título.

 CDD 005.8

__

Path Relinking and AES Cryptography in Color Image Steganography

André Luiz Brazil

A Dissertation submitted to the post graduate

program in Computing of Universidade Federal

Fluminense in partial fulfillment of the

requirements for the degree of Master in

Computing. Area: Computação Visual e

Interfaces (Visual Computing and Interfaces).

Approved by Dissertation Examining Committee:

Profª. Aura Conci – IC/UFF (Supervisor)

Luis Satoru Ochi – IC/UFF

Profª. Célia Aparecida Zorzo Barcelos- CC/UFU

Niteroi, April 15th, 2008.

__

God, I am a lucky one;

To all my family and friends;

 i

__

Acknowledgments

I would like to thank mommy, Isa Soares, and especially my dear aunt, Elcy Silva Soares,

for providing everything at their reach to my former education and all emotional and particular

care that they always have with me, until ever.

Also at my right side, an untiring helper, my goodhearted wife, Lúcia Blondet Baruque,

always lighting my road and taking care of our child, so I have time and space to go on.

Another important little one is Allan, my son, for his humor and happiness, bringing back

my smile even on those times when the things look gray.

Aura Conci, my advisor and great friend, couldn´t be better and kind one, every time

giving me special attention and looking even at small details on our works together to make sure

that everything is going smooth, never letting me down.

I must thank my fellows and bosses of Fundação Getulio Vargas too, for the professional

development opportunities, everyday good life and excellent company, sometimes saving my

“skin”, and my chief Jean, for tolerance and flexibility on the clock so I could take small trips

from Botafogo to UFF and have the classes without worry.

Last but not least, all the staff of Computer Institute of UFF, specially the teachers, for

their share of knowledge, without these ones surely I would never have concluded that work.

Special thanks to Luis Satoru Ochi, for trusting and incentives to turn our discipline’s work into

an article, which finally resulted into this bigger one. I hope you like this one too.

Thank you all.

 ii

__

Resumo

O uso da Internet aumenta a cada dia, conectando mais pessoas e aumentando o fluxo de

informação e a necessidade de transmitir os dados de uma forma segura. Uma das formas de

proteger as informações enviadas pela rede é ocultando os dados importantes dentro de uma

imagem (o que é chamado de esteganografia), de forma a desviar a atenção e esconder essa

informação de possíveis interceptadores. Este trabalho apresenta uma heurística híbrida, que

combina duas técnicas de inteligência computacional: os algoritmos genéticos e a reconexão de

caminhos, para aperfeiçoar a busca de melhores soluções no processo de esteganografia. O

trabalho também incorpora o algoritmo de criptografia avançada AES, para aumentar a

segurança das informações escondidas. Os resultados computacionais mostram que o algoritmo

proposto supera em muito a técnica de substituição dos bits menos significativos (LSB) e

também os resultados obtidos em nove outros trabalhos, em relação à qualidade da imagem

stego. A incorporação da reconexão de caminhos e a possibilidade de esconder informações em

imagens coloridas pode melhorar significativamente o desempenho dos algoritmos genéticos na

esteganografia, ampliando o espaço disponível para ocultação em mais de três vezes quando

comparado com a esteganografia em imagens de tons de cinza, principalmente devido a uma

melhor utilização dos bits menos significativos. Outra grande vantagem em relação aos demais

algoritmos é que este está apto a esconder qualquer tipo de mídia, incluindo documentos,

arquivos-texto ou comprimidos, ou ainda um executável dentro da imagem de cobertura, o que

amplia razoavelmente a gama de aplicações desse trabalho.

Palavras-chave: esteganografia em imagens coloridas, substituição LSB, ocultação de

informações, sistema de criptografia avançado, algoritmo genético, reconexão de caminhos,

segurança da informação, proteção de dados.

 iii

__

Abstract

Each day the Internet use grows up and connects more people, increasing the information

flux and the need for transmitting data in a secure way. One of the ways to protect the data sent

over the web is to conceal the relevant information inside a typical image, diverting the attention

and hiding this data from intruders. This work proposes a hybrid heuristic, combining two

methods of computational intelligence: a genetic algorithm and the path relinking refinement, to

help solving an image processing issue. It also incorporates the AES advanced cryptography

algorithm, to improve the hidden data security. Computational results show that the proposed

algorithm outperforms the LSB (least significant bits) substitution technique and also the results

of other nine works reported on the literature, concerning the quality of stego image. The

inclusion of the path relinking procedure and the possibility to hide data inside colorful images

can significantly improve the performance of genetic algorithms in image steganography,

increasing the space available for information hiding by more than three times when compared

to steganography using grayscale cover images, mostly related to a better least significant bits

usage. Anything at all, including documents, text or compressed files, or yet an executable can

be hidden inside the cover image, which considerably widens the scope of appliances of this

work.

Keywords: color image steganography, LSB substitution, information hiding, advanced

encryption standard, genetic algorithm, path relinking, information security, data protection.

 iv

__

List of Figures

Figure 1 – Mona Lisa, by Da Vinci : Who is the person portrayed?................................ 1

Figure 2 - Expulsion of Heliodorus from the Temple, by Raphael : What the public
symbols inside the rooms means? .. 2

Figure 3 - Creation of Adam, by Michelangelo : Can you see the human brain? 2

Figure 4 – Image hiding example... 7

Figure 6 – Image hiding by least significant bits substitution.. 10

Figure 7 – Extraction of residual image (R) ... 12

Figure 8 – Generating the image to hide (E’)... 12

Figure 9 – Stego image (Z) generation by replacement of residual image (R) by image
to hide (E’) in cover image (C)... 13

Figure 10 – Image hiding using a substitution matrix .. 13

Figure 11 – A three bits substitution matrix sample (k=3)... 14

Figure 12 – A substitution matrix converting the color 0000 to 1111 and vice-versa ... 15

Figure 13 – Conversion of the solution S into an individual G...................................... 17

Figure 14 – Crossover of two individuals generating the offspring G1’ and G2’.......... 18

Figure 15 – Validation and fixing of invalid individuals G1’ and G2’ 18

Figure 16 – Mutation of an individual, exchanging the values of genes........................ 19

Figure 17 – The path relinking process .. 20

Figure 18 – State array, input and output ... 23

Figure 19 – Add Round Key step: Each byte of the state is combined with a byte of the
round sub-key, using the XOR operation ... 23

Figure 20 –Substitute Bytes step: Each byte in the state is replaced with its entry in a
fixed 8-bit lookup table (S)... 23

Figure 21 – Shift Rows step: Bytes in each row of the state are shifted cyclically to the
left. The number of places each byte is shifted differs for each row............................. 24

Figure 22 – Mix Columns step: Each column of the state is multiplied with a fixed
polynomial c(x). ... 24

Figure 23 – The complete image steganography process... 26

Figure 24 – The RGB cube, representing the color channels of the tri-dimensional
substitution matrix .. 36

Figure 25 – CxImageHider software with an open image of Lena 38

Figure 26 – Dialog window asking for a file to be embedded inside the cover image .. 38

Figure 27 – Dialog showing PSNR value, bits per pixel used, total of bytes hidden and
time elapsed in seconds after the image steganography... 39

Figure 28 – Dialog window asking for genetic algorithm and path relinking parameters,
and a stego key ... 39

 v

__

Figure 29 – Dialog window showing results after image steganography with path
relinking at each genetic algorithm generation.. 41

Figure 30 - Dialog window showing results after image steganography with path
relinking after the end of genetic algorithm .. 42

Figure 31 – Dialog window asking for parameters to undo image steganography 42

Figure 32 – Dialog window showing undo steganography success 43

Figure 33 – Dialog window presenting MSE value between the two compared images 43

Figure 34 – grayscale Lena 512x512 pixels, Figure 35 – grayscale Baboon 512x512
pixels... 49

Figure 36 – grayscale Text 512x512 pixels, Figure 37 – grayscale Jet 256x512 pixels,
Figure 38 – grayscale Sailboat 256x512 pixels .. 49

Figure 39 – grayscale Tiffany 256x512 pixels, Figure 40 – grayscale Text 256x512
pixels, Figure 41 – grayscale Splash 256x512 pixels,.. 49

Figure 42 – grayscale Fishing Boat 256x512 pixels, Figure 43 – grayscale Peepers
512x512 pixels.. 50

Figure 44 – grayscale Barbara 512x512 pixels, Figure 45 – grayscale Jet 512x512 pixels
.. 50

Figure 46 - grayscale Jet 256x512 pixels (squeezed), Figure 47 - grayscale Baboon
256x512 pixels (squeezed), Figure 48 - grayscale Peepers 256x512 pixels (squeezed),
Figure 49 - grayscale Lena 256x512 pixels (squeezed) ... 50

Figure 50 – color Lena 512x512 pixels, Figure 51 – color Baboon 512x512 pixels 51

Figure 52 – color Text 512x512 pixels, Figure 53 – color Peepers 512x512 pixels...... 51

Figure 54 – color Barbara 512x512 pixels, Figure 55 – color Jet 512x512 pixels......... 51

Figure 56 – color House 512x512 pixels, Figure 57 – color Sailboat 512x512 pixels .. 52

Figure 58 – color Zelda 512x512 pixels, Figure 59 – color Tiffany 512x512 pixels..... 52

Figure 60 – color Pacman3D 640x480 pixels .. 52

Figure 61 – Dhrystones Benchmark of first computer system using SiSoftware Sandra
Lite XI b ... 53

Figure 62 – Dhrystones Benchmark of second computer system using SiSoftware
Sandra Lite XII SP1.. 54

Figure 63 – Lena stego image produced by image hiding with LSB substitution (some
text appears in background).. 60

Figure 64 – Lena stego image obtained by image hiding with path relinking (no
background text and appears smoother) ... 61

Figure 67 – Baboon stego image produced by image hiding with genetic algorithm.... 66

Figure 68 – Baboon stego image obtained by image hiding with path relinking (not
much visually different from Figure 43) .. 67

 vi

__

List of Tables

Table 1 – Quality comparison (PSNR values) with our results and those presented on
reference [16].. 57

Table 2 – Time spent in seconds with our tests.. 58

Table 3 – Time spent in BI units (billions of instructions) with our tests 59

Table 4 – Quality comparison (PSNR values) with our results and those presented on
reference [13].. 63

Table 5 – Time spent in seconds with our tests.. 64

Table 6 – Time spent in BI units (billions of instructions) with our tests 65

Table 7 – Quality comparison (PSNR values) with our results and those presented on
reference [14].. 69

Table 8 – Time spent in seconds with our tests.. 70

Table 9 – Time spent in BI units (billions of instructions) with our tests 71

Table 10 – Quality comparison (PSNR values) with our results and those presented on
reference [17].. 73

Table 11 – Time spent in seconds with our tests.. 74

Table 12 – Time spent in BI units (billions of instructions) with our tests 75

Table 13 – Quality comparison (PSNR values) with our results and those presented on
reference [20].. 77

Table 14 – Time spent in seconds with our tests.. 78

Table 15 – Time spent in BI units (billions of instructions) with our tests 79

Table 16 – Quality comparison (PSNR values) with our results and those presented on
reference [37].. 80

Table 17 – Time spent in seconds with our tests.. 81

Table 18 – Time spent in BI units (billions of instructions) with our tests 81

Table 19 – Quality comparison (PSNR values) with our results and [38] 82

Table 20 – Time spent in seconds with our tests.. 82

Table 21 – Time spent in BI units (billions of instructions) with our tests 83

Table 22 – Quality comparison (PSNR values) with our results and those presented on
reference [39].. 84

Table 23 – Time comparisons in seconds between our results and [39] 84

Table 24 – Time spent in BI units (billions of instructions) with our tests 84

Table 25 – Quality results (PSNR values), after hiding the executable file
Pacman3D.exe inside Figure 60 ... 85

Table 26 – Time results in seconds, after hiding the executable file Pacman3D.exe
inside Figure 60 .. 85

Table 27 – Time spent in BI units (billions of instructions) with our tests 85

 vii

__

Contents

1. Introduction .. 1

1.1 Past uses and curiosities ... 3

1.2 Motivation .. 4

1.3 Goals... 5

1.4 Contribution.. 5

1.5 Work organization .. 6

2. Image Hiding and other concepts ... 7

2.1 Least significant bits (LSB) substitution .. 8

2.2 Image hiding by LSB substitution.. 9
2.2.1 Grayscale image hiding ... 9
2.2.2 Color image hiding .. 10

2.3. Substitution matrix .. 11

2.4 Genetic algorithm ... 16

2.5 Path relinking.. 19

2.6 Peak-to-signal noise ratio (PSNR).. 20

2.7 The AES cryptosystem ... 22

3. The complete image steganography proposal .. 25

3.1 Cover image preparation .. 27

3.2 Secret data preparation ... 27

3.3 Search for a good solution .. 27

3.4 Data hiding ... 29

4. The novel use of path relinking refinement in image steganography......................... 30

4.1 Path relinking use in grayscale image steganography.. 30

4.2 Path relinking use in color image steganography... 35
4.2.1 The RGB cube: an alternative structure for constructing solutions........................... 35

5. Implementation... 37

5.1 The CxImage Class... 37

5.2 The CxImageHider software .. 38

6. Experimental results ... 46

 viii

__

6.1 Previous works ... 47

6.2 The BI (billions of instructions) performance measurement concept 53

6.3 Comparison with simple LSB substitution and the genetic algorithm results...... 55

6.4 Comparison with modulus functions results .. 62

6.5 Comparison with dynamic programming strategy results 68

6.6 Comparison with cryptosystem and modulus operations results.......................... 71

6.7 Comparison with color quantization and DES cryptosystem............................... 75

6.8 Comparison with difference expansion .. 79

6.9 Comparison with lossless block truncation coding .. 81

6.10 Comparison with binary space partitioning tree... 83

6.11 Steganography of an executable file... 85

7. Conclusions and future works .. 86

7.1 Conclusions .. 86

7.2 Future works ... 88

References .. 89

 1

__

1. Introduction

Nowadays, at 21st century, the World Wide Web connects people all over the world for

data transmission and the frequent use of e-commerce shops and banks, and security is needed

more than never, to avoid the risk of information falling into wrong hands. In this scenario,

steganography, the art of secret communication, plays an important role, by supporting and

enhancing typical cryptography methods. Figures 1-3 show examples of historical paintings

“hiding” some kind of information.

Figure 1 – Mona Lisa, by Da Vinci : Who is the person portrayed?

A lot of effort has already been taken on behalf of data protection. The easier and most

common ways to do this are protect the data using passwords or data cryptography. These ways

are somehow efficient in denying an intruder from getting important information. However,

 2

__

they face some difficulties and vulnerabilities when trying to grant access to a new user on

sending him a password to access the information.

Figure 2 - Expulsion of Heliodorus from the Temple, by Raphael : What the public symbols inside the rooms means?

Figure 3 - Creation of Adam, by Michelangelo : Can you see the human brain?

Cryptography [1-4] can be used to transform the password into apparently meaningless

information, protecting the relevant data even if it becomes captured during the transmission

process. Many other forms of protection can be used, but most of them possess a significant

drawback: the invader easily perceives or detect there is something being hidden. The simple

 3

__

evidence of hiding may be sufficient for the grabbers to start trying to get the information. The

image hiding [5,6] process does not present this disadvantage.

People typically send pictures inside the electronic mail. If the important data can be

hidden inside a picture without degrading its quality in a perceivable level, crackers may not

even notice there is important information inside the message. So, steganography protects not

only the data, by encoding it inside the image [5], but it avoids also the risk of hackers catch the

message and try to unlock the protections. If the image sent is a common picture, like a photo or

something alike, the invader will probably not even notice there is hidden data inside and will

not even begin to analyze the picture, thus protecting the message too. As the proverb: “Out of

sight, out of mind”.

There are many schemes to hide data inside an image. This work focuses in the use of

genetic algorithm combined with the path relinking [7-10] refinement procedure to intensify the

search for better solutions on color image steganography.

1.1 Past uses and curiosities

Steganography is very ancient, having notable reports dating from 6th century BC. On that

epoch, according to Herodotus histories [11], Harpagus, a general from Median Empire sent a

message hidden inside a belly of a dead hare to warn Cyrus II about the coming of a revolt

against the current king of Media, Astyages. After receiving the message, Cyrus II united his

forces with Harpagus and they won the battle. This resulted in Cyrus II becoming known as

Cyrus the Great, the king of Persia, incorporating the Median Empire into the Persian Empire.

Some other noticeable historical feats can also be listed as acts of steganography [12]:

By the end of 6th century BC, in order to convince his allies that it was time to begin a

revolt against Medes and the Persians, the Greek Histaieus shaved the head of his most trusted

slave, tattooed the message on his head and waited until his hair grew back. After that, he sent

him along to Greece hoping to encourage the Ionian tyrant of Miletto, Aristagoras, resulting

later in the start of the Ionian Revolt against the Persians.

 4

__

In the fifth century BC, Demeratus, a Greek exiled in the Persian Court, struggled to find

a way of alerting Sparta that the Persian Great King Xerxes was gearing up to invade Greece.

Knowing that any overt message would be intercepted easily by the Persians, he scraped off the

wax surface of a wooden writing tablet and scratched his warning into the underlying wood.

Demeratus then re-coated the tablet with a fresh layer of wax, thus allowing the apparently

blank writing tablet to be carried off to Sparta without arousing suspicion.

Another famous case is the book Hypteronomachia Poliphili of 1499. Francesco Colonna,

a Dominican monk, decided to declare his love to a young lady named Polia by putting the

message “Brother Francesco Colonna passionately loves Polia” in the first letter of each chapter

of his supposed book.

Another well known steganography method is lemon ink. Invisible when used to write a

paper, it turns to brown after heating. Gallotanic acid, made from gall nuts, also becomes visible

when coming in contact with copper sulfate. Several other interesting methods of cryptography

and steganography were used along the time as well.

1.2 Motivation

Computer science is an interesting area of research because it provides help and support

to all other areas, organizing, automating and enhancing many aspects of them. It is also very

captivating to see the mutational aspect of this area, which never stays the same along the time,

always requiring a great effort of the students and professionals to sharpen their knowledge and

skills toward its constant evolution.

This dissertation can be considered hybrid, which makes this work yet more challenging,

integrating information and expertise from some diverse sub-areas of the Computer Science:

image processing, image analysis, computational intelligence, information security and

cryptography. The work presented here follows a specific branch of the Computer Science

called steganography, with several published papers, being the first dated from 1994 and

entitled “Data Hiding”. This branch is included in researches related to information hiding, and

is closely aligned with watermarking, being similar to it in several aspects.

 5

__

The majority of published works, like [13-17] focuses on using only gray images as cover

images. Other ones, as [15, 17-20] propose color image hiding, but use the outdated DES

cryptography algorithm. Another group, like [15, 18-19, 21-25] presents very good results but

works with lossy compression of hidden data, which limits its applications and turns unviable

message or file hiding. They are all good, but very specific and generally work on hiding only

one data type, like images or text messages inside the cover image. None of them is said to

allow the hiding of diverse medium inside the cover image, like a video, compressed file or yet

an executable. This work is more general and presents good results with many of them.

1.3 Goals

This work proposal is to amplify the scope of appliances for image steganography, to

allow the hiding of any digital media inside color cover images, typically used on the internet.

The steganography methods are based on three main aspects to characterize them. These aspects

are the capacity, security and robustness. Capacity is related to the quantity of data that can be

hidden inside the media without degrading the quality of the image to a visually perceivable

level. Security refers to the protection of data and the use of a cryptography algorithm to shield

it against detection and hacking. Robustness is the resistance of the method against alterations

done in the stego-media, preserving the secret content intact after media transformations.

This work focuses mainly on the aspects of capacity and security, once robustness always

affects negatively the capacity aspect, often replicating hidden data to increase its resistance

against transformations. Despite differing from watermarking, which generally focuses on

robustness, most of this work can effectively be adapted to improve the capacity or security

aspects of watermarking applications too. Others, like [26], focus on robust image hiding.

1.4 Contribution

The main contribution of this work relates to a novel adaptation of the general path

relinking procedure, from the computational intelligence, to the scope of steganography, in

image processing, to improve the results obtained with genetic algorithm. An interesting aspect

 6

__

is this adaptation could be easily used with almost all other computational intelligence methods,

like the GRASP [27] or Tabu Search [28, 29], for example. This gives a new way of

possibilities for future works on steganography and other related or similar image processing

areas.

Other contributions are the use of Advanced Encryption Standard (AES) cryptography

algorithm [30-32] in color image steganography and the creation of a benchmarking measure

called Billions of Instructions (BI) to allow the comparison of the speed and time results

between tests done on different computer systems. This facilitates comparisons of results of this

work with future ones, often running on faster computer systems with the quick evolution of

technology.

1.5 Work organization

This dissertation is organized as follows: The second chapter explains the image

steganography, outlining the typical applied methods to hide data inside an image: the LSB

(least significant bits) substitution and the use of genetic algorithm to improve the LSB

substitution performance and quality of final solutions. It also outlines the concepts of:

Substitution Matrix, Picture Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), Path

Relinking and the AES Cryptosystem. On chapter 3, a general approach for the adaptation of the

Path Relinking procedure to be used in conjunction with the genetic algorithm and the LSB

substitution techniques. On chapter 4, the novel refinement introduced on chapter 3 is described

in details, a step by step guide to the improvement. Chapter 5 presents implementation details,

describing the main classes and structures adopted to build a prototype. In chapter 6, the

Billions of Instructions (BI) concept is shown along with the comparisons with five papers,

demonstrating the quality and speed results and also showing the values for parameters and

configurations used in the tests. Is also includes some discussion about the image hiding

methods used in these works and presents some comments about a sixth paper. Finally, on

chapter 7, the conclusions and achievements to this study, and some future ideas are discussed.

 7

__

2. Image Hiding and other concepts

Image Hiding is a specific branch of Steganography and has the main goal of keeping the

communication process as a secret by concealing the information inside a digital picture. This is

different than other branches, like Cryptography, whose objective is to protect the information

by turning data unintelligible to the ones without permissions to access it.

Some definitions are typically used in an image hiding process. They are the secret data,

the cover image, the stego-image and the stego-key.

Secret data or embedding data is the message or information to be hidden.

Cover image is the image used to “cover” or conceal the secret data in an image hiding

process.

Stego image is the image containing the secret data after the image hiding process. The

word “stego” comes from steganography. It carries the secret data inside.

Stego key is the cryptography key when the cryptography process is applied in image

hiding, to increase the information security and protection of the embedded data.

The Figure 4 helps to illustrate the image hiding terminology:

Figure 4 – Image hiding example

 8

__

2.1 Least significant bits (LSB) substitution

The least significant bits (LSB) substitution is the process of replacing the values of the

less important bits composing each pixel of an image. It has many uses in image analysis. One

of his most common applications is the threshold of digital images, but can be used in

steganography as well.

Digital images are composed and represented by a 2D array of pixels. Each value of this

array is formed by a number of bits, usually eight bits for a grayscale or thirty two bits in a color

image. These values represent either the existing colors or intensities of gray. In eight bits

grayscale images, for example, the bits 00000000 represent the black color and the bits

11111111 represent the white color. Any other values ranging between black and white will be

shades of gray. It is important to note that the gray 00000001 is very different from 10000000.

In fact, 00000001 (20 = 1) is almost a black, while 10000000 (27 = 128) is a midrange gray. This

happens because the bits located at right are the least significant ones (LSBs), so their values

influences the pixel tone only a little. The bits located at left, otherwise, influence a lot more, so

one of these is sole sufficient to turn the pixel intensity to midrange gray. The Figure 5 helps to

illustrate the least significant bits concept.

Figure 5 – Binary representation of black, white and gray colors, evidencing its least significant bits position (rightmost bits)

For example, consider a pixel of a grayscale image, whose bits are 00000111, and replace

only its two least significant bits values to zero. The result will be the value (00000100) after

the LSB substitution, which for human eyes is almost the same color.

 9

__

2.2 Image hiding by LSB substitution

When applying LSB substitution in image hiding, the least significant bits in each pixel

of the cover image (C) are used to store the information to be hidden. The values of these bits

will be changed to store the information inside the cover image (C).

2.2.1 Grayscale image hiding

To hide information inside a grayscale image using LSB substitution, the following steps

must be considered:

Step 1: Determine how many least significant bits (k) will be needed to store the

information;

Step 2: Extract the least significant bits of the cover image (C) to generate a residual

image (R);

Step 3: Convert the information to be hidden (E) into an image to hide (E’);

Step 4: Replace of the residual image (R) by the image to hide (E’), producing the stego

image (Z).

To discover how many least significant bits (k) will be needed to store the information to

be hidden (E) inside a cover image (C) it is necessary to divide the size of the information to be

hidden (E) by the size of the cover image (C). The result obtained is a percentage of bits that

will be needed for embedding the information (E) into the cover image (C). For example, hiding

an information of 128 Kb inside a cover image of 512 Kb, will use 128/512 = ¼ = 25 % of the

bits in the cover image. Supposing the cover image is a grayscale (8 bits), such embedding

process will use only the two least significant bits to embed data (k=2). As a rule, the hidden

data size shall not exceed one half of the cover image (C) size, or the degradation level in the

cover image (C) will get too high.

In Step 2, each pixel of the cover image (C) must be analyzed, extracting from them only

a determined number of least significant bits (k), sufficient to hide the information. These least

significant bits extracted from the cover image (C) will be stored as pixels, composing a new

image, called the residual image (R). After the extraction, this residual image (R) will have the

 10

__

same number of pixels than the cover image (C), but fewer bits per pixel, once only the k least

significant bits will be extracted to form its pixels, as shown on Figure 6.

Figure 6 – Image hiding by least significant bits substitution

In Step 3, the information to be hidden (E) must be converted to the same depth (same

number of bits per pixel) than the residual image (R), producing an image to hide (E’). Each

pixel in the information to be hidden (E) will correspond to one or more pixels inside the image

to hide (E’), depending on the number of bits per pixel of the existing residual image (R). See

Figure 6.

In Step 4, after creating the image to hide (E’) on the same depth than the residual image

(R), it must be replaced by (E’) inside the cover image (C), producing the stego image (Z), as

shown on Figure 6.

On the threshold process, instead replacing the values of the bits, some specific bit

positions inside the image are normally reset (these values are set to zero). This shows details in

the image like contours or yet modifies its appearance.

For example, suppose grouping near black tones inside an image by resetting the four bits

most at right in a grayscale image, it turns all the pixels with near black to absolute black (ex.

00000111 turns to 00000000).

2.2.2 Color image hiding

The steganography using color images as cover images is similar to the process in

grayscale images, detailed in previous sub-section 2.2.1. The main difference is instead having

only one 8-bits grayscale intensity channel to hide data, as happens in grayscale images, a total

 11

__

of three 8-bits color intensity channels are available, each one for its corresponding color (red,

green and blue). So, the hidden information can be distributed among these three color channels,

increasing up to three times the capacity of data hidden inside the image.

The calculations of how many bits per pixel will be used to hide data remains the same.

However, these bits must be distributed most equally possible among the red, blue and green

color channels. For an example, if the calculations determine 5 bits of each pixel inside the color

image will be necessary to hide data, then we will use 2 of 8 bits from the red color channel, 2

of 8 bits from the blue channel and 1 of 8 bits from the green channel. The green channel is

always the last one to be used to hide data, because human sensibility to green color change is

higher that the other two colors. So, the order of bit usage in color channels will be first red,

then blue and finally green. The remaining of the process is the same, always considering three

color channels, instead of one grayscale channel.

2.3. Substitution matrix

By using only the LSB substitution, a good speed on image hiding is achieved, but it

cannot guarantee a good final image, that is without noticeable degradation. This can be seen

easily with the following example: Let us suppose an extreme case, where a completely black

image of 8 bits per pixel, with 512x 512 pixels (all of them 00000000 = true black) is used as

the cover image (C) and a completely white image (E) is the object for embedding. Consider E

composed of 8 bits per pixel and 256 x 512 pixels (all of them 11111111 = white). The main

objective is to hide the white image (E) inside the black cover image (C) without loosing too

much quality. By using the method explained in section 2, we must:

1) Determine how many least significant bits will be used from the cover image:

256 x 512 / 512 x 512 = ½ → 50% of 8 bits → 4 least significant bits used (k=4)

2) Extract the residual image (R) from the cover image (C):

Since all the pixels in the cover image (C) are true black (00000000), when the 4 least

significant bits of each pixel are extracted to construct the residual image (R), this will produce

 12

__

a residual image of 4 bits per pixel with 512x 512 pixels (all of them = 0000, so black too).

Figure 7 shows this.

Figure 7 – Extraction of residual image (R)

3) Convert the information to be hidden (E) into the same format of the residual image (4

bits per pixel), producing the image to hide (E’):

 Since all the pixels in the information to be hidden (E) are white (11111111), each 8 bits

pixel in (E) will generate two 4 bits pixels (1111) in the image to hide (E’). As a result, it will

produce an image to hide (E’) of 4 bits per pixel with 512 x 512 pixels (all of them = 1111, so

only white pixels). Figure 8 helps to illustrate this.

Figure 8 – Generating the image to hide (E’)

4) Replace the residual image (R) by image to hide (E’) in the cover image (C),

generating the stego image (Z):

 The pixels of the residual image (R) (all = 1111) must be replaced by the pixels of the

image to hide (E’) (all = 0000), substituting the values present in the 4 least significant bits

inside each pixel of the cover image (C). This will produce a stego image (Z) of 8 bits per pixel

with 512x 512 pixels, whose pixels are all 00001111 (gray). Here, a great difference can be seen

 13

__

between the cover image (C), composed of pixels 00000000 (black) and the stego image (Z),

constructed with 00001111 pixels (gray). That difference degrades significantly the quality of

the final result. This is shown on Figure 9.

Figure 9 – Stego image (Z) generation by replacement of residual image (R) by image to hide (E’) in cover image (C)

This problem can be overcome by using a substitution matrix. The substitution matrix is

used to convert some colors or intensities of the image to hide (E’) into other ones, producing a

converted image to hide (E’’). The idea is produce an image (E’’) most similar to the residual

image (R). So, the replacement of the residual image (R) by (E’’) instead of (E’) will be

smoother, improving the quality of the stego image (Z). The whole scheme is shown on Figure

10.

Figure 10 – Image hiding using a substitution matrix

 14

__

The structure of the substitution matrix is as follows:

Each row in the matrix is an original color;

Each column in the matrix is a resulting color;

Each value inside a coordinate [row, column] of the matrix can be a zero (0) or a one (1),

where the value one (1) indicates the row color that will be converted into the column color. A

one (1) value can never appear more than once for each given row or column of the matrix. (ex.

a single color can not be converted into other two different colors or vice-versa).

The number of rows and columns in the substitution matrix will always be 2k, where (k)

is the number of least significant bits substituted in the process. So when three least significant

bits are replaced (k = 3), this will produce a substitution matrix of size 23, an 8 x 8 substitution

matrix. An example can be viewed on Figure 11.

Figure 11 – A three bits substitution matrix sample (k=3)

Note that this substitution matrix must also be incorporated into the information to be

hidden (E), so the receptor of the stego image (Z) can revert the image hiding process

afterwards to obtain the desired information.

Now, coming back to the substitution problem, after a white image (E’) is hidden inside a

black image (H) resulting in a gray image (Z), a substitution matrix can be used to improve the

quality of the stego image (Z) in the following way: The 4 least significant bits will be

substituted (k=4), generating a 16 x 16 substitution matrix. This matrix can be something like

the one shown on Figure 12:

 15

__

 RESULTING COLOR

 0000 0001 ... 1110 1111

0000 0 0 0 0 1

0001 0 1 0 0 0

… 0 0 1 0 0

1110 0 0 0 1 0

O
R
I
G
I
N
A
L

C
O
L
O
R

1111 1 0 0 0 0

Figure 12 – A substitution matrix converting the color 0000 to 1111 and vice-versa

By applying this substitution matrix in the image to hide (E’), every color will be

maintained, except:

Color 0000 → will be converted to 1111

Color 1111 → will be converted to 0000

The image to hide (E’) has the color 1111 in all of its pixels, so after applying the

substitution matrix above, it will produce a converted image to hide (E’’) with all pixels of color

0000!

Following the process, the residual image (R) having its pixels values 0000 is replaced by

the converted image to hide (E’’), also composed only by pixels of values 0000, producing the

stego image (Z), full of pixels 00000000, and equal to the cover image (C), thus obtaining the

best possible quality!

Of course this situation only illustrates an extreme case where all pixels of the image to

hide (E’) had the same value (1111), thus making it possible.

In the problem above, the optimal substitution matrix to be used was easily found,

because both the entire image to hide (E’) and the cover image (C) were composed of only one

color. Typical cover images (C) and images to hide (E’) are composed of several colors or

intensities which leads to several possible substitution matrices, so the challenge is to choose a

good one. To be more exact, the total number of possible substitution matrices generated is 2k! ,

where k is the number of least substitution bits used to hide data in the cover image (C) and ! is

the factorial operation. So, if only two bits are used to hide data (k=2), there will be 22! = 4! = 4

 16

__

x 3 x 2 x 1 = 24 possible substitution matrices, so it is easy to determine which one is the best

by testing all of them. Otherwise, for greater k values, like k = 4, the number of possibilities

become huge, 24! = 16! (more than 2,000,000,000). For these cases (k ≥ 3), the wide range of

possibilities turns the time for determine the optimal substitution enormous, so the use of a

genetic algorithm becomes an interesting approach to help in choosing a near-optimal

substitution matrix.

2.4 Genetic algorithm

The image hiding by genetic algorithm [16] process, has an additional step over the

existing LSB substitution, that is the choice of a good substitution matrix to be applied into

converting the image to hide (E’), generating the converted image to hide (E’’) to replace the

residual image (R), and produce the stego image (Z).

In color image steganography, each individual or specific solution present in genetic

algorithm is composed by a total of three color substitution matrices, each one for its respective

RGB color channel (red, green and blue substitution matrices). In grayscale steganography, only

one substitution matrix composes the individual or solution.

To use a genetic algorithm it is necessary to convert the solutions (one or three

substitution matrices, one for grayscale or three for color cover images) into a format that can be

handled by the algorithm: an individual that is a gene vector. It is a simple process: given the

one (1) value appears only once for each given row/column in the solution, the substitution

matrix can be converted into a vector, where each position of the vector corresponding to a row

in the matrix and the values inside the vector positions (genes) represent each column index

used in the substitution matrix. This conversion is shown on Figure 13.

 17

__

Figure 13 – Conversion of the solution S into an individual G

The genetic algorithm can be detailed in the following steps:

Step 1: Generation of an initial population;

Step 2: Combination of fragments of existing individuals to produce new ones

(crossover);

Step 3: Mutation of existing individuals, generating new ones;

Step 4: Choice of the fittest individuals between all obtained in this generation, to form

the population for the next generation, until some stopping criterion apply (ex. maximum

number of generations, individuals or elapsed time).

The initial population to start the algorithm (step 1) can be obtained by several ways, like

a heuristic algorithm, or generating random individuals and so on. The genetic algorithm in [16]

generates a set of 10 random individuals to its initial population.

The crossover (step 2) is a well known method of combining individuals, where some

criterion splits two or more individuals into parts and one or more parts of each individual are

combined together to form new individuals.

In [16], the crossover adopted was a random choice of two individuals (parents) G1 and

G2 to be combined. Each individual is divided in two equal parts and the first part of G1 is

joined with the second part of G2 and vice-versa, composing two new individuals (offspring),

G1’ and G2’. Figure 14 shows this.

 18

__

Figure 14 – Crossover of two individuals generating the offspring G1’ and G2’

After the crossover, the offspring must be validated, because they may contain some

repeated genes and be missing others. In these cases, these repetitions must be fixed by

replacing the repeating genes by the missing ones. This validation/fix process occurs in the

following way (see Figure 15):

Check each gene of an offspring and form a list of found genes. If a repeated gene is

found (appears a second time in the individual) this value is substituted by -1 to mark a vacant

position in the individual;

Analyze the list of found genes, verifying which ones are missing and then put these

missing values in order in each vacant position in the individual (marked by value -1).

Figure 15 – Validation and fixing of invalid individuals G1’ and G2’

This crossover process was repeated 10 times, combining the 10 random chosen pairs of

individuals to form the offspring. Note the same individual can participate more than once in the

whole process (he can be chosen several times).

The mutation itself (step 3) is very interesting because it helps the genetic algorithm to

avoid falling into the local minima problem. It becomes more important when the crossover

process starts to combine very similar individuals, generating offspring almost equal to its

 19

__

parents and hanging the evolution/search of the genetic algorithm. However, the mutation

should be applied in a small rate, to not compromise what was found until then.

In [16], the mutation process is concluded with the following steps (see Figure 16):

Step 1: Application of a mutation rate of 0.1 into the population, so each individual in the

population has a 10% chance of being mutated;

Step 2: If the individual is chosen for mutation, two genes (g1 and g2) of this individual

are chosen to exchange their values, so the gene g1 stays with value of g2 and vice-versa. Note

that this process does not require any validation, since the values of the genes are permuted and

there is no chance of generating an invalid individual afterwards.

Figure 16 – Mutation of an individual, exchanging the values of genes

After concluding the steps above, producing a population of individual candidates, it is

necessary to choose some among them to continue the process. These choices can be done by

several ways, like adopting an elitist criterion of selecting only the best part of this population

(10% best individuals, for example) or giving a probability of survival to each individual based

on its fitness value.

In [16], an elitist criterion was utilized, selecting only the 10 best individuals to proceed

into the next generation, discarding the others. The fitness of each individual can be measured

by quantitative criterions, like the PSNR (Peak Signal-to-Noise Ratio). They adopted a stopping

criterion of 8 generations.

2.5 Path relinking

The path relinking, proposed by [8], is a very interesting method of local search, and can

be applied to a wide range of applications.

 20

__

Virtually, almost any method that works with an elite candidates list or a selection of best

solutions, like Greedy Randomized Adaptive Search Procedure (GRASP) [27], Tabu Search

[28, 29], Variable Neighborhood Search (VNS) [33, 34] and many others, like [35-36], may

benefit from this refinement step.

The Path Relinking starts by choosing two among the solutions present in the best

solutions list and electing one of them as the start solution (S1) and the other one as the guiding

solution (S2). Note the ideal condition is to choose two very different solutions from the list,

allowing a greater diversity on the solutions generated on the path relinking process and

providing a bigger chance to escape from local minima.

The next step is to verify the differences between S1 and S2, and gradually starting to

modify parts of S1 turning it more similar to S2 with each change, and “take a picture” of

S1 after each change is done to map these newly found solutions as intermediary solutions,

keeping only the ones that excel S1 and S2 in aptitude. The main idea is shown on Figure 17.

Figure 17 – The path relinking process

2.6 Peak-to-signal noise ratio (PSNR)

The PSNR is a simple way to evaluate loss of quality in image analysis and can be

calculated by comparing two instances of the same image: the cover image (C) and the stego

 21

__

image (Z). Alternatively, this value can also be calculated qualitatively by the comparison

between the residual image (R) and the converted image to hide (E’’).

Before calculating the PSNR value, it is necessary to obtain the MSE (mean square error)

between the two images. The MSE value can be obtained by taking each pixel of the first image

with its corresponding one in the second image, and subtracting their intensity values

(subtracting the image 1 pixel intensity value from the image 2 pixel intensity value). This result

is powered by 2 and added to the MSE total value, so the MSE is a summation of powered by 2

differences between the intensities of the pixels from both images.

The MSE equation is:

()∑∑
−

=

−

=

−=
1

0

1

0

2),(),(
1 m

i

n

j

jiKjiI
mn

MSE

Where m is the total of image rows, and n the total of image columns (m x n = total of

pixels in the image) and I, K are the compared images.

The PSNR formula is:









=

MSE

MAX
PSNR I

10log.20

Where MAXI is the maximum possible intensity or color value. In an image of 8 bit

pixels, the MAXI value would be 255, since the pixel values would range from 0 (00000000) to

255 (11111111). PSNR values typically range from 0 to 100. Minimum possible value is always

zero, while maximum value is correlated to the total number of pixels inside the image, being

102.3162 for an image with 512x512 pixels. A good target PSNR value could be the one

assuming an intensity difference of only 1 inside each pixel, which would result in a PSNR

value of 48.1308, for an image with 512x512 pixels.

For color images, according to [20], the MSE is the sum over all squared value

differences obtained from each color channel present in each pixel from the images. This sum is

then divided by the image size and by the number of color channels present. In RGB color

system, for instance, there are 3 color channels: red, green and blue.

 22

__

2.7 The AES cryptosystem

The Advanced Encryption Standard (AES) [30], also known as Rijndael [31], is a block

cipher adopted as an encryption standard by the U.S. government. It has been analyzed

extensively and is now used worldwide, as was the case with its predecessor, the Data

Encryption Standard (DES). AES was announced by National Institute of Standards and

Technology (NIST) as U.S. on 2001, after a 5-year standardization process, becoming effective

as a standard on 2002, being one of the most popular algorithms used in symmetric key

cryptography. It is available by choice in many different encryption packages.

The cipher was developed by two Belgian cryptographers, Joan Daemen and Vincent

Rijmen, and submitted to the AES selection process under the name "Rijndael", a portmanteau

of the names of the inventors.

The encryption process converts data to an unintelligible form called ciphertext.

Decrypting the ciphertext afterwards, converts the data back into its original form, called

plaintext. The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits

to encrypt and decrypt data in blocks of 128 bits. The number of rounds required to cipher or

decipher a data block is directly related to the crypt key size, being 10, 12 or 14 rounds.

Most mathematical operations of this algorithm use the finite field or Galois field GF (28)

concept, where a limited number of elements exist and all calculations performed inside the

field will result in an element within that field.

The simplified structure of the AES algorithm [32] to cipher a block can be depicted

below:

1) Key Expansion - Generate a series of cryptography keys (called Round Keys) to be

used in the following rounds, derived from the provided Cipher Key.

2) Initial Round:

2.1) Copy of bytes from the block to be encrypted to a matrix structure called State,

where the subsequent operations will work. Figure 18 shows this process.

 23

__

Figure 18 – State array, input and output

2.2) Add Round Key - The combination of the current Round Key with each byte

present inside the State. The combination is done by XOR

operations (see Figure 19).

Figure 19 – Add Round Key step: Each byte of the state is combined with a byte
of the round sub-key, using the XOR operation

3) Other subsequent Rounds:

3.1) Substitute Bytes - Transformation in the Cipher that processes the State using a

nonlinear byte substitution table called S-box, that operates on

each of the State bytes independently (see Figure 20);

Figure 20 –Substitute Bytes step: Each byte in the state is replaced with its entry in a fixed 8-bit lookup table (S)

 24

__

3.2) Shift Rows - Transformation in the Cipher that processes the State by

cyclically shifting the last three rows of the State by different

offsets (see Figure 21);

Figure 21 – Shift Rows step: Bytes in each row of the state are shifted cyclically to the left.
The number of places each byte is shifted differs for each row

3.3) Mix Columns - Transformation in the Cipher that takes all of the columns of the

State and mixes their data (independently of one another) to

produce new columns (see Figure 22);

Figure 22 – Mix Columns step: Each column of the state is multiplied with a fixed polynomial c(x).

3.4) Add Round Key - The combination of the current Round Key with each byte

present inside the State. The combination is done by XOR

operations (see Figure 19).

4) Final Round - similar to the other rounds, but without the Mix Columns step.

The structure to decipher an encrypted block is very similar, having the corresponding

inverse forms of Substitute bytes, Shift Rows and Mix Columns operations taking the place of

the original ones.

 25

__

3. The complete image steganography proposal

In order to improve the already known LSB substitution method, several additions were

incorporated to the process:

To improve the quality of the stego image (Z), the genetic algorithm and the path

relinking methods were included. These search for a good solution to convert the information to

be hidden, lessening the stego image (Z) degradation after the embedding of the information

inside the cover image (C).

To improve the security, the AES cryptosystem was implemented and a new step was

inserted immediately before the decomposition of information in bits. This ensures the

information being embedded into the cover image (C) is protected by a powerful cryptography

method, eliminating the chance of data recovery by unauthorized people.

To improve the embedding capacity, the genetic algorithm was improved to work on

three RGB color channels (red, green and blue), thus allowing the embedding of information

inside color images and tripling the total capacity of data hiding when compared to grayscale

image steganography.

To allow greater flexibility, a binary conversion of all information to be hidden was

added. This generalizes and amplifies the image steganography scope of appliances, presenting

the possibility to hide any kind of media inside the image.

Figure 23 helps to illustrate the complete process, by showing all the steps of complete

image steganography.

 26

__

Figure 23 – The complete image steganography process

The complete image steganography process can be subdivided in three main phases,

totalizing seven steps:

STEP 1 – Extraction of the significant bits from the Cover Image (C), generating the

Residual Image (R);

STEP 2 – Cryptography of the Secret data (D) using the AES algorithm;

STEP 3 – Decomposition of the Encrypted Secret data (D) in bits, producing the

Decomposed Image (E’);

STEP 4 – Use of genetic algorithm to search for a good solution to convert the

Decomposed Image (E’);

STEP 5 – Use of path relinking refinement to combine the best individuals (solutions)

found by each generation of genetic algorithm (step 4), in order to search for a better solution;

STEP 6 – Conversion of the Decomposed Image (E’) by the best solution found in step 5,

generating the Decomposed Image Converted by Substitution Matrices (E’’);

STEP 7 – Replacement of Residual Image (R) by Decomposed Image Converted by

Substitution Matrices (E’’) inside the Cover Image (C), producing the Stego image (Z).

 27

__

3.1 Cover image preparation

The first phase is responsible to prepare the cover image to receive the hidden data, by

extracting from the cover image the bytes that will be replaced. This phase is represented by the

green boxes in Figure 23 (two top boxes), and comprehends the STEP 1 from the complete

process.

The complete image steganography process starts by extraction of the least significant

bits of the cover image (C), in order to produce the residual image (R) (STEP 1). Before this, a

calculation of how many bits are necessary to hide the information (I) inside the cover image

(C) must be done. This process is detailed in sub-section 2.2.1, steps 1 and 2.

3.2 Secret data preparation

The second phase treats the data to be hidden, encrypting it to secure the information

against possible intruders and arranging the encrypted data in a format it can easily be hidden

inside the cover image.

It is necessary to protect the secret data (D) by the use of AES cryptosystem (STEP 2).

The secret data (D) can be any digital medium: an image, a text file, a compressed file, etcetera.

This information is copied to an array of bytes, the information vector (V). This vector is

submitted to the AES cryptosystem together with the cipher key, resulting in the encrypted

secret data (D), an array of the same size than (V). The cipher key size can be 128, 192 or 256

bits.

The encrypted secret data (D) must be decomposed to an image of the same depth than

the residual image (R) (STEP 3), producing the decomposed image (E’). This is similar to the

procedure outlined in sub-section 2.2.1, step 3.

3.3 Search for a good solution

The third phase of the process comprehends the use of several optimization methods to

search for a better solution to convert the data to be hidden, so it reduces the degradation level

of the stego image.

 28

__

It is necessary to use a genetic algorithm (STEP 4) to find a good solution, so the

decomposed image (E’) can be converted in order to improve the stego image (Z) quality. The

use of a genetic algorithm can be seen in details in section 2.4.

The parameters adopted for the genetic algorithm were the same suggested by [16],

considering a total of 8 generations. The initial population is composed of 10 individuals

generated randomly. The crossover process works by selecting copies of 10 pairs of individuals

chosen randomly among the initial population of the current generation, producing 10 crossed

individuals. The mutation process operates on copies of the individuals from initial population

of the current generation with a mutation rate of 0.1, checking a 10% of chance of each gene of

each individual suffering a random gene swapping, generating 10 mutated individuals. Finally, a

selection of the 10 best individuals among the 10 individuals from initial generation population,

the 20 produced by crossing and the 10 ones from mutation is done to compose the next

generation initial population. The selection process evaluates the quality of solutions by PSNR

(peak-to-signal noise ratio) comparison between the cover image (C) and a temporary stego

image obtained after applying each solution over a copy of the cover image (C). The solutions

presenting the higher PSNR values stay in elite group.

In order to improve yet more the search process, the elite group (10 best individuals

found in each generation of the genetic algorithm) is recombined by the path relinking process

(STEP 5) to produce superior individuals. The path relinking starts by selecting randomly a pair

of individuals among the elite group, designing one of them as the initial solution (S1) and the

other as the guiding solution (S2). The path relinking then slightly starts to alter the genes of

solution (S1) to transform it into the solution (S2). Each possible gene alteration in order to

change (S1) into (S2) is considered an individual step of the process, and produces several

intermediate solutions. These intermediate solutions found in each single step are compared

between themselves to find the best intermediate solution (higher PSNR) among them, which is

designated as (S1’). This solution (S1’) is then compared to the best solution found until now

(S*). If solution (S1’) is better than solution (S*), then (S*) is updated and (S1’) is incorporated

into the elite group for future combining with other elite group solutions. The path relinking

 29

__

process then continues, this time starting from solution (S1’) as the initial solution to achieve

(S2) and producing another best intermediate solution (S1’’) for this second step. This process

ends only when (S1) is turned into (S2) and after all solutions from elite group are selected. The

10 best individuals will form the initial population for the next generation of the genetic

algorithm. See section 2.5 for explanation about path relinking and section 4 for details

concerning the use of path relinking in image steganography.

3.4 Data hiding

After obtaining the solution (S*) which is the best solution found after the genetic

algorithm and path relinking processes, the decomposed image (E’) must be converted by using

(S*) (STEP 6). This produces the decomposed image converted by substitution matrices (E’’).

This procedure is explained in section 2.3.

Finally, a replacement of the residual image (R) by the decomposed image converted by

substitution matrices (E’’) inside the cover image (C), producing the stego image (Z) (STEP 7).

The process is done by replacing the least significant bits of the cover image (C) by those

contained in (E’’) for all pixels. This is considered in section 2.3, item 4.

 30

__

4. The novel use of path relinking refinement in image steganography

In most computational optimization applications, the path relinking can be applied to

improve the results obtained, combining the best solutions already found by another meta-

heuristic in a search for better ones.

The path relinking use described here is adapted to image steganography and was applied

after the end of each generation of the genetic algorithm described in section 2.4 and in step 4 of

section 3. It could be easily used together also with several other computational optimization

methods, like GRASP [27], Tabu Search [28, 29], or any other, in order to improve the quality

of the solutions obtained by them.

4.1 Path relinking use in grayscale image steganography

In grayscale steganography, each individual in genetic algorithm and path relinking

processes is composed by a single substitution matrix, constructed to replace the grayscale

intensities present in each pixel of the decomposed image (E’) (see Figure 23).

After each execution of the genetic algorithm, it returns a selection of the 10 best

individuals found. The path relinking groups these individuals randomly in pairs. Inside each

pair of individuals, one of them is designated as a starting solution (S1) and the other as a

guiding solution (S2). The representation row → column is used to indicate the color

conversions present in each individual and facilitate the understanding of the path relinking

process. To illustrate the process, let us suppose a simple grayscale steganography process,

where the solutions S1 and S2 below, each one composed by a single 2x2 substitution matrix,

have being chosen for path relinking:

 31

__

Now let us focus on how the start solution (S1) can be transformed into the guiding

solution (S2). The first step is to look at the guiding solution (S2) and identify which parts in S2

are different from S1 solution. In this case, none of the conversions in S2 (0 → 3, 1 → 0, 2 → 1

and 3 → 2) exist in S1, so it is possible to start transforming S1 into S2 by changing any of

these parts. In fact, all alternatives must be tried to see which one is the best. Starting with 0 →

3, for example: in order to transform S1 so it incorporates the 0 → 3 conversion, it is necessary

to find inside S1 the following conversions:

The conversion having 0 as original color: there is 0 → 1 in S1;

The conversion having 3 as resulting color: there is 1 → 3 in S1.

So, to achieve the conversion 0 → 3 in S1, the resulting colors present in the conversions

0 → 1 and 1 → 3 must be swapped:

Now, there is a possible intermediate solution P1’. This process must be repeated to every

other possible first step to turn the solution S1 into solution S2. The other possible first steps

 0 1 2 3
0 1
1 1
2 1
3 1

Solution P1’
(possible intermediate

from 0 → 3)

0 → 3
1 → 1
2 → 2
3 → 0

 0 1 2 3
0 1
1 1
2 1
3 1

Solution S1
(start)

 0 → 1 3
 1 → 3 1
 2 → 2
 3 → 0

 0 1 2 3
0 1
1 1
2 1
3 1

Solution S2
(guiding)

0 → 3
1 → 0
2 → 1
3 → 2

 0 1 2 3
0 1
1 1
2 1
3 1

Solution S1
(start)

0 → 1
1 → 3
2 → 2
3 → 0

 0 1 2 3
0 1
1 1
2 1
3 1

Solution S2
(guide)

0 → 3
1 → 0
2 → 1
3 → 2

 32

__

are: 1 → 0, 2 → 1 and 3 → 2. By trying the three other possible first steps, a total of four

possible intermediate solutions P1’, P2’, P3’ and P4’ will be available:

Now, it is necessary to elect one of them to be the definitive intermediate solution S1’.

This can be done by calculating the fitness value (PSNR) for each one of the four possible

solutions and then choosing the one presenting the highest PSNR value as definitive

intermediate solution S1’, so we can continue the process. Supposing the solution showing the

highest PSNR was P1’, so S1’ (definitive intermediate solution) = P1’ (possible intermediate

solution from 0 → 3).

The next step is to identify the possibilities available into turning the intermediate

solution S1’ into S2. For this next step, the options 1 → 0, 2 → 1 and 3 → 2 can be tried.

Analyzing the first try (1 → 0), in order to transform the intermediate solution S1’ so it

incorporates the (1 → 0) conversion, it is necessary to identify inside S1’ the conversion having

 0 1 2 3
0 1
1 1
2 1
3 1

Solution S1’
(intermediate)

0 → 3
1 → 1
2 → 2
3 → 0

 0 1 2 3
0 1
1 1
2 1
3 1

Solution S2
(guide)

0 → 3
1 → 0
2 → 1
3 → 2

 0 1 2 3
0 1
1 1
2 1
3 1

Solution P1’
(possible

intermediate

from 0 → 3)

0 → 3
1 → 1
2 → 2
3 → 0

 0 1 2 3
0 1
1 1
2 1
3 1

Solution P2’
(possible

intermediate

from 1 → 0)

0 → 1
1 → 0
2 → 2
3 → 3

 0 1 2 3
0 1
1 1
2 1
3 1

Solution P3’
(possible

intermediate

from 2 → 1)

0 → 2
1 → 3
2 → 1
3 → 0

 0 1 2 3
0 1
1 1
2 1
3 1

Solution P4’
(possible

intermediate

from 3 → 2)

0 → 1
1 → 3
2 → 0
3 → 2

 33

__

1 as original color (there is 1 → 1) and the conversion having 0 as resulting color (there is 3 →

0). To achieve the desired result, the values of the resulting colors must then be swapped.

The other two possibilities must also be tested: 2 → 1 and 3 → 2. As result, three possible

intermediate solutions arise: P1’’, P2’’ and P3’’.

Now, it is necessary to elect one of them to be the definitive intermediate solution S1’’.

This can be done by calculating the fitness value (PSNR) for each one of the three possible

solutions and then choosing the one presenting the highest PSNR value as definitive

intermediate solution S1’’, so we can continue the process. Supposing the solution showing the

highest PSNR was P2’’, so S1’’ (definitive intermediate solution) = P2’’ (possible intermediate

solution from 2 → 1).

The next step is to identify the possibilities available into turning the intermediate

solution S1’’ into S2. For this next step, there are two remaining options: 1 → 0 and 3 → 2.

 0 1 2 3
0 1
1 1
2 1
3 1

Solution S1’
(intermediate)

 0 → 3
 1 → 1 0
 2 → 2
 3 → 0 1

 0 1 2 3
0 1
1 1
2 1
3 1

Solution P1’’
(possible intermediate

from 1 → 0)

0 → 3
1 → 0
2 → 2
3 → 1

 0 1 2 3
0 1
1 1
2 1
3 1

Solution S2
(guiding)

0 → 3
1 → 0
2 → 1
3 → 2

 0 1 2 3
0 1
1 1
2 1
3 1

Solution P1’’
(possible intermediate

from 1 → 0)

0 → 3
1 → 0
2 → 2
3 → 1

 0 1 2 3
0 1
1 1
2 1
3 1

Solution P3’’
(possible intermediate

from 3 → 2)

0 → 3
1 → 1
2 → 0
3 → 2

 0 1 2 3
0 1
1 1
2 1
3 1

Solution P2’’
(possible intermediate

from 2 → 1)

0 → 3
1 → 2
2 → 1
3 → 0

 34

__

Analyzing the first try (1 → 0), in order to transform the intermediate solution S1’’ so it

incorporates the (1 → 0) conversion, it is necessary to identify inside S1’’ the conversion

having 1 as original color (we have 1 → 2) and the conversion with 0 as resulting color (we

found 3 → 0). To achieve the desired result, the values of the resulting colors must then be

swapped.

After the substitutions, the possible intermediate solution P1’’’ found is exactly the S2

solution, indicating the end of this path relinking. In this example, the path relinking method

showed two new intermediate solutions: S1’ and S1’’. If one of these solutions present fitness

value (PSNR) equal or higher than the best solution present in the best solutions list, this

solution will be added to the best solutions list, so it may be paired and then combined with

another solution afterwards by using the same method. The whole process ends when there will

be no more solutions on the list of best solutions to be combined.

 0 1 2 3
0 1
1 1
2 1
3 1

Solution P1’’’
(possible intermediate

from 1 → 2)

0 → 3
1 → 0
2 → 1
3 → 2

 0 1 2 3
0 1
1 1
2 1
3 1

Solution S2
(guiding)

0 → 3
1 → 0
2 → 1
3 → 2

 0 1 2 3
0 1
1 1
2 1
3 1

Solution S1’’
(intermediate)

 0 → 3
 1 → 2 0
 2 → 1
 3 → 0 2

 0 1 2 3
0 1
1 1
2 1
3 1

Solution S1’’
(intermediate)

0 → 3
1 → 2
2 → 1
3 → 0

 0 1 2 3
0 1
1 1
2 1
3 1

Solution S2
(guide)

0 → 3
1 → 0
2 → 1
3 → 2

 35

__

Interesting results also were found by applying the path relinking process in a reversal

way (reverse path relinking). After finishing the normal path relinking, from start solution S1 to

guiding solution S2, some experiments applying another path relinking starting from solution S2

to the guiding solution S1 were tried, thus obtaining more intermediate solutions, and several

times a better final result than only when applying a normal path relinking alone.

4.2 Path relinking use in color image steganography

Differing from grayscale images, which only use 8-bits for representing gray intensities

inside each pixel, the 32-bits color images pixels are composed of three color intensities of 8-

bits each: red, green and blue.

In color image steganography, each new individual or specific solution generated by

genetic algorithm or path relinking is composed by a total of three color substitution matrices,

each one for its respective RGB color channel (red, green and blue substitution matrices). Each

step of the path relinking process must then be executed three times, once for each 8-bits color

channel (red, green and blue), corresponding to the three color substitution matrices that

compose each solution. After these three executions, a step is concluded, producing a new

intermediate solution to be evaluated for aptitude, just like in grayscale path relinking. Aptitude

of each individual is measured by average PSNR values obtained by comparing each cover

image (H) color channel (red, green and blue) with the channels present in stego image (Z).

Regarding to time cost, using the path relinking in color images is three times slower than

grayscale path relinking, in average.

4.2.1 The RGB cube: an alternative structure for constructing solutions

As an alternative approach for color image steganography, we also present a different

way to construct the solutions used in genetic algorithms and path relinking. Instead

constructing the solution based on three substitution matrices (reg, green and blue), it is possible

to construct only one tri-dimensional substitution matrix. Each dimension in this substitution

matrix represents one of the RGB color channels. The Figure 24 helps to illustrate this concept.

 36

__

Figure 24 – The RGB cube, representing the color channels of the tri-dimensional substitution matrix

When using the tri-dimensional substitution matrix, each element of this matrix is an

initial RGB color represented by matrix [R, G, B] where R, G and B are the red, green and blue

intensities of this color. Inside each element of the matrix are the values representing the

converted color, a structure called RGBQuad. The RGBQuad is an array of four values: the red

intensity, the green intensity, the blue intensity and the opacity intensity (alpha channel). The

opacity intensity is not used in this case, since we are working only on color conversion.

Let us suppose there is a pure red color to be converted into a pure green color. By using

the tri-dimensional matrix, it would have the following element inside: [255][0][0] = [0,255, 0].

The use of tri-dimensional matrices has following advantages and drawbacks when

compared to the traditional method:

• With this approach, the number of possibilities and each solution complexity

increases significantly, slowing the performance of the genetic algorithms and

path relinking processes, but improving the quality results;

• The space required to store the tri-dimensional substitution matrix inside the

cover image is greater than traditional method, leaving a little less space to save

secret data.

 37

__

5. Implementation

5.1 The CxImage Class

CxImage is a C++ class that can load, save, display and transform images in a very

simple and fast way. It is open source and licensed under zlib. With more than 200 functions,

and with comprehensive working demos, CxImage offers all the tools to build simple image

processing applications on a fast learning way. Supported file formats are: BMP, GIF, ICO,

CUR, JBG, JPG, JPC, JP2, PCX, PGX, PNG, PNM, RAS, SKA, TGA, TIF, WBMP, WMF,

RAW, CRW, NEF, CR2, DNG, ORF, ARW, ERF, 3FR, DCR, X3F, MEF, RAF, MRW, PEF,

SR2. It is highly portable and has been tested with Visual C++ 6 / 2008, C++ Builder 3 / 6,

MinGW on Windows, and with gcc 3.3.2 on Linux. The library can be linked statically, or

through a DLL or an activex component. It is currently available for download in

http://www.xdp.it/cximage.htm.

The main reason for choosing CxImage as a base for development was the availability of

several functions that could easily convert all the pixel colors contained inside the image into a

matrix of bytes, facilitating further processing and conversion of that information to complete

the other steps of image steganography, including the genetic algorithm and path relinking. It

also presents an easy to use interface and good compatibility among several image formats. It

also allows the update and visualization of the image after the steganography and saving of

stego image (Z) into a PNG or TIFF file. The other image formats were not used for saving the

results after image steganography because they work with compression of image data, which

risks loosing the information embedded inside the image.

The CxImage is currently in version 6.00. The version adopted for image steganography

was 5.93c, the last available when this project started.

 38

__

5.2 The CxImageHider software

Several additions were included in CxImage project to achieve image steganography.

Therefore, after all the mods, it was denominated CxImageHider. Figure 25 shows a picture of

CxImageHider software under execution, with an open image of Lena.

Figure 25 – CxImageHider software with an open image of Lena

Figure 26 – Dialog window asking for a file to be embedded inside the cover image

 39

__

Figure 27 – Dialog showing PSNR value, bits per pixel used, total of bytes hidden and
time elapsed in seconds after the image steganography

Figure 28 – Dialog window asking for genetic algorithm and path relinking parameters, and a stego key

Inside CxImage menu, five new options were added. They only become available after

the user opens an image within the software, which is considered to be the cover image. The

options are:

• Steganography – LSB Substitution: When this option is selected, it opens a dialog

window as the one shown on the Figure 26, asking for a file to be embedded

inside the cover image. After the file is selected and the Open button is pressed,

 40

__

the CxImageHider applies the simple LSB substitution method to hide the file

inside the image. It also shows the PSNR value, bits per pixel used, total of bytes

hidden and time elapsed in seconds after concluding the process (see Figure 27).

Any kind of file can be chosen to be embedded into the cover image, including

text, image, compressed file or any other. The only limitation is the space

available inside the cover image, which limits the size of file being chosen.

• Steganography – Genetic Algorithm: Similar to the option “Steganography –

LSB Substitution”, after being selected, the CxImageHider software runs a

genetic algorithm in order to search for a good substitution matrix to improve the

stego image quality. The parameters for this genetic algorithm are the same

suggested by [16]: 8 generations, 10 random individuals as initial population, at

each generation a copy of the 10 individuals, plus 10 individuals resulting from

crossing and 10 resulting from mutation at 0.1 rate. At the end of each

generation, the selection takes only the best 10 individuals among these all to

continue to the next generation. This process is detailed in section 2.4 and section

3 under step 4. It also shows the PSNR value of the best solution found by the

genetic algorithm, bits per pixel used, total of bytes hidden and the time elapsed

in seconds (see Figure 27), updating the cover image with the embedded

information.

• Steganography – Path Relinking: Upon selection, a dialog window opens (see

Figure 28) asking for the several parameters. The genetic algorithm parameters

are: number of generations, population selected for each generation, population

generated by crossover, population generated by mutation and mutation rate. The

path relinking parameters are: maximum population generated by path relinking,

use of reversal path relinking, use of path relinking at the end of each genetic

algorithm generation, use of rapid reconnections (takes the first option that excel

the best solution instead of testing all options to see whichever is the best one).

The other two parameters are the stego key, whose length is 128, 192 or 256 bits

 41

__

and the number of executions or repetitions, so the software runs several times

and calculate and returns an average value from the final results of each

execution afterwards. After supplying these parameters and pressing the OK

button, it opens a second dialog window, as the one shown on the Figure 26,

asking for the file to be embedded inside the cover image. After the file is

selected and the Open button is pressed, the CxImageHider software applies the

steganography over the cover image, encrypting the file with the given stego key,

running the genetic algorithm and path relinking procedures and finally

embedding the encrypted file inside the cover image. It also shows the PSNR

value of the best solution found by the path relinking, bits per pixel used, total of

bytes hidden, the time elapsed in seconds and the size of the largest reconnection

elite group (see Figures 29 and 30), updating the cover image with the embedded

information.

Figure 29 – Dialog window showing results after image steganography with path relinking

at each genetic algorithm generation

 42

__

Figure 30 - Dialog window showing results after image steganography with path relinking
after the end of genetic algorithm

• Undo Steganography: After selected, that option brings a dialog window as the

one shown on Figure 31, asking for a stego key to undo the steganography

process on the image and a path to restore the embedded file. After pressing the

OK button, the software will start to undo the steganography by reconstructing

the embedded information and decrypting it with the use of a given stego key

afterwards. If everything is ok, a dialog window like the one presented in Figure

32 is shown, and the embedded file will be restored and saved in the specified

path.

Figure 31 – Dialog window asking for parameters to undo image steganography

 43

__

Figure 32 – Dialog window showing undo steganography success

• MSE between images: This option is used to compare 2 similar images and see

its diferences in terms of mean square error (MSE). After selected, it opens a

dialog window as the one shown on the Figure 26, asking for a second image file

to compare to the image already open within the software. After an image file is

selected and the Open button is pressed, the CxImageHider calculates and shows

the MSE value between the two images, as shown on Figure 33.

Figure 33 – Dialog window presenting MSE value between the two compared images

To implement those five new options, two classes were created: Hiding and

CryptographyAES.

The Hiding class incorporates all methods necessary for image steganography. The most

important ones are:

• Hiding: The construction method, responsible for creating a matrix of bytes with

the same size of the cover image (C) and copying all the pixel values to this

matrix. It also reads the information to be hidden converting it into an

information array (I) of bytes and calls the Encrypt method of the

CryptographyAES class to encrypt the information inside this array.

 44

__

• MSE: The method for calculating the mean square error between two given

images.

• LSBSubstitution: This method implements the least significant bits substitution,

embedding the information contained inside the encrypted information array

directly into the cover image (C).

• GeneticAlgorithm: This method implements the genetic algorithm to search for a

good substitution matrix to convert the encrypted information array (I) before it is

embedded inside the cover image (C). Afterwards, it calls the updateCoverImage

procedure to embed the converted information array into the cover image (C).

• PathRelinking: A method implementing the path relinking procedure by

combining the solutions already found after the end of the genetic algorithm

execution, in order to search for better solutions. Afterwards, it calls the

updateCoverImage procedure to embed the converted information array into the

cover image (C).

• GeneticRelinking: A method implementing the path relinking procedure by

combining the solutions already found at each generation of the genetic algorithm

execution, in order to search for better solutions. At the end of execution, it calls

the updateCoverImage procedure to convert the encrypted information array into

the cover image (C).

• UndoSteganography: This method is responsible for undoing the image

steganography. It reads the encrypted information from the cover image (C), calls

the Decrypt method of CryptographyAES class to decrypt the information and

saves the information on the path indicated, recovering the original hidden file.

• PSNR: This function compares two images and returns the peak-to-signal noise

ratio value between them, acting as measure of quality and aptitude for the

genetic algorithm and the path relinking selections of best individuals.

 45

__

The CryptographyAES class is an implementation of the Advanced Encryption Standard

(AES) algorithm. Its most important methods are:

• Encrypt: This method process the information array (I) and encrypts all the

information by using the given cipher key of 128, 192 or 256 bits, generating the

encrypted information array.

• Decrypt: This method process the encrypted information array and decrypts all

the information by using the given cipher key of 128, 192 or 256 bits,

reproducing the information array (I).

 46

__

6. Experimental results

Experimental results of the implemented schemes are presented in this section. The tests

with grayscale cover images ran on a first personal computer, equipped with an 850 MHz clock

Pentium III processor and 512 megabytes of RAM memory (DIMM) under the Microsoft

Windows 2000 operational system. The tests with color cover images ran on a second personal

computer, equipped with an AMD Athlon X2 5200+ (2 x 2.6 GHz) processor and 4 gigabytes of

RAM memory (DDR2-800Mhz) under the Microsoft Windows Vista 64 Business operational

system. The CxImageHider program was written in C++ language as described in chapter 5.

The images used for the tests are Figures 34-60. Figures 34-36, 43-45 and 50-59 are composed

of 512 x 512 pixels. Six of them (Figures 34-36 and 43-45) are 8-bit grayscale and the other

ones are 32-bits color. The Figures 37-42 and 46-50 are 8-bits grayscale, containing 256 x 512

pixels. The Figures 34-39, 41-51 and 53-59 were obtained in [44-45]. The Figure 40 was sent to

us by authors of [16] and the Figure 52 was part of a print screen containing a black text and

white background edited inside a text editor. Figure 60, the Pacman3D, is a 32-bits color image

of 640x480 pixels, obtained from [46]. All figures used are in TIFF file format.

In order to recover the data hidden by steganography process afterwards, the stego image

(Z) must be saved into PNG or TIFF file formats. Other file formats, like JPEG and PCX, are

not suitable for saving the results because they work with compression of image data, which

risks loosing the information embedded inside the image.

Nine works were selected for comparison of results [13-14, 16, 17, 20, 37-40], each one

showing a different strategy for image hiding. The comparisons are most similar as possible,

utilizing images of the same size and aspect than the ones presented by those papers. The results

presented by our method are average values of five executions for each compared instance of

secret data and cover image.

 47

__

6.1 Previous works

In [16], the main idea is to apply a genetic algorithm to speed up the search for a near

optimal solution, instead using simple LSB substitution. It has many benefits, allowing the work

with larger numbers of least significant bits (k ≥ 3), otherwise it would take too long to find an

optimal solution among all possibilities.

In [17], a DES-like cryptosystem is used in conjunction with modulus operations to

incorporate secret data into the cover image, improving the simple LSB substitution method. It

analyzes the hidden data security and is presented as an alternative image hiding strategy.

In [13], a modulus operation concept is used to accelerate the search for an optimal

solution to LSB substitution. It shows mathematical analysis of the pixel visual distortion range

and is presented as an optimization in quality and speed over [16], replacing the genetic

algorithm.

In [14], a dynamic programming strategy was used to optimize the calculations of the

MSE values from all possible solutions and then find an optimal solution for LSB substitution.

It presents a speed and quality optimization over [16] and replaces the genetic algorithm as well.

In [20], a color quantization process is adopted in order to generate a codebook and use

the Vector Quantization to compress the image, reducing the number of colors inside the image

to be embedded to 256. It also uses the DES (Data Encryption Standard) cryptography

algorithm to encrypt the image data.

In [37], the proposal is a lossless data embedding scheme that exploits the difference

expansion of the pixels to conceal large amount of message data in a digital image. The

proposed scheme takes into consideration the correlation between the pixel and its surrounding

pixels to determine the degree of the difference expansion for message data embedding.

In [38], a reversible steganography method is presented, which can reconstruct an original

image effectively after extracting the embedded secret data. The proposed reversible hiding

method aims at BTC (block truncation coding)-compressed color images, allowing

steganography on a great number of three and four bits secret patterns inside the cover images.

 48

__

It also uses a genetic algorithm to find the best blocks to be used in the block truncation coding

process.

In [39], a data hiding technique for color images using a BSP (Binary Space Partitioning)

tree is proposed. The RGB values at each pixel are treated as a three-dimensional (3D) virtual

point in the XYZ coordinates and a bounding volume is employed to enclose them. A BSP tree

is constructed by recursively decomposing this bounding volume into voxels containing one or

more 3D virtual points. These voxels are categorized into eight subspaces, each represented as

three-digit binary characters, furtherly used to embed the information accordingly, helping to

reduce the degradation level of the stego image.

In [40], a palette modification scheme is presented, which can iteratively embed one

message bit into each pixel in a palette-based image. In each iteration, both the cost of removing

an entry color in a palette and the benefit of generating a new one to replace it are calculated. If

the maximal benefit exceeds the minimal cost, the entry color is replaced, improving the quality

of stego images when compared to the LSB substitution method. Unfortunately comparisons

with this work were not possible because the images used inside [40] could not be found on

internet and we contacted the authors by e-mail, asking for the pictures “fruit” and “swimmer”,

but did not receive any answers.

We also found some other papers with superior quality results, like [15]. However, this

kind of approach only uses grayscale images, and never could hide critical data, like a secret

message or an executable file, since some information is always lost during the hiding process.

Its results were obtained by applying lossy compression of secret data and by creation of a

dictionary of common terms, which is a strategy that allows the hiding of much more data, even

more than one entire image of the same size as the cover image. Our work is much more

flexible, allowing a lossless steganography of any digital media. So, a comparison of results

would be pointless in that case.

 49

__

Figure 34 – grayscale Lena 512x512 pixels Figure 35 – grayscale Baboon 512x512 pixels

 Figure 36 – grayscale Text 512x512 pixels Figure 37 – grayscale Jet Figure 38 – grayscale Sailboat

 256x512 pixels 256x512 pixels

 Figure 39 – grayscale Tiffany Figure 40 – grayscale Text Figure 41 – grayscale Splash

 256x512 pixels 256x512 pixels 256x512 pixels

 50

__

 Figure 42 – grayscale Fishing Boat Figure 43 – grayscale Peepers 512x512 pixels
 256x512 pixels

 Figure 44 – grayscale Barbara 512x512 pixels Figure 45 – grayscale Jet 512x512 pixels

 Figure 46 - grayscale Jet Figure 47 - grayscale Baboon Figure 48 - grayscale Peepers Figure 49 - grayscale Lena

 256x512 pixels (squeezed) 256x512 pixels (squeezed) 256x512 pixels (squeezed) 256x512 pixels (squeezed)

 51

__

Figure 50 – color Lena 512x512 pixels Figure 51 – color Baboon 512x512 pixels

Figure 52 – color Text 512x512 pixels Figure 53 – color Peepers 512x512 pixels

Figure 54 – color Barbara 512x512 pixels Figure 55 – color Jet 512x512 pixels

 52

__

Figure 56 – color House 512x512 pixels Figure 57 – color Sailboat 512x512 pixels

Figure 58 – color Zelda 512x512 pixels Figure 59 – color Tiffany 512x512 pixels

Figure 60 – color Pacman3D 640x480 pixels

 53

__

6.2 The BI (billions of instructions) performance measurement concept

Considering facilitates future time comparisons between our results and others, we also

present a performance measurement concept, called BI, or “Billions of Instructions”. The

main idea consists into measuring the CPU speed in terms of instructions executed per second,

estimating how many BI (billions of instructions) will be required to execute an image hiding

task and then using this value to compare the performance among diverse computer systems. To

achieve this, a very popular benchmarking program called Dhrystone [41] was used.

The Dhrystone is a mixed set of instructions containing several operations involving

integer numbers, which the main purpose is to measure the CPU performance. This program

runs on a machine for some time (ex. several seconds) and the total number of instructions

executed by the CPU during this time is counted. This total is divided by the time elapsed and is

possible to calculate how many millions of instructions the CPU was capable to execute within

a second, which is called MIPS (millions of instructions per second). This allows us to measure

the CPU performance in terms of millions of instructions executed per second. The target

computer system can be compared with other computer systems by using MIPS results, so it is

possible to conclude about the capability of executing more instructions per second when

running the Dhrystone program.

Figure 61 – Dhrystones Benchmark of first computer system using SiSoftware Sandra Lite XI b

 54

__

To calculate how many billions of instructions will be required for executing an image

hiding task, the following steps must be executed:

Step 1: Obtain the Dhrystones benchmark result for the testing computer system: To

calculate this, very popular benchmarking software was used, the System Analyser, Diagnostic

and Reporting Assistant (SANDRA) [42] Version Lite XI b. After running the Processor

Arithmetic Test on our first computer system (Pentium III, 850 Mhz) (see Figure 61), it reported

a value of 2267 MIPS (millions of instructions per second) on the Dhrystones benchmark;

Step 2: Obtain the result of the image hiding task in seconds: To calculate this, simply

run your image hiding process and measure the total time elapsed in seconds. For this example,

the task of embedding the Jet image (Figure 37) into the Lena cover image (Figure 34) will be

used, applying only the genetic algorithm. In that case the value obtained for this task was

33.308 seconds;

Step 3: Calculate the total BI (billions of instructions): by multiplying the task result time

(in seconds) for the Dhrystone benchmark value in MIPS (millions of instructions per second)

and dividing by 1000. The final value is 33.308 seconds * 2267 MIPS / 1000, resulting in 75.51

BI (billions of instructions) executed for this task.

Figure 62 – Dhrystones Benchmark of second computer system using SiSoftware Sandra Lite XII SP1

 55

__

The Dhrystones benchmark result was also obtained for the second testing computer

system (AMD 5200+ processor): a score of 17413 MIPS in SANDRA Lite Version XII SP1

(See figure 62).

The higher the BI value obtained for a task, harder will be that specific image hiding task,

since it always will use more CPU time to execute a bigger number of instructions. So the faster

tasks are those presenting the lower BI values.

6.3 Comparison with simple LSB substitution and the genetic algorithm results

 In this section, our results are compared with those presented by [16]. The tests used the

same cover images and secret data than [16]. The cover images are the 8-bits grayscale 512x512

pixels images of Lena, Baboon and Text (Figures 34-36) and the 32-bits color versions of those

images (Figures 50-52). The secret data are the 8-bits grayscale 256x512 pixels images of Jet,

Sailboat, Tiffany and Text (Figures 37-40). The obtained and reported values for LSB [16] and

GEN [16] are the results presented with simple LSB substitution and the genetic algorithm

approaches, with exception of some strange results reported for cover image Text (Figure 36).

The authors of [16] were contacted and sent us updated correct data for these results.

LSB2 and GEN2 are the results achieved by our implementation of least significant bits

substitution and genetic algorithm proposed by [16]. GA+PR is our new proposal, an

implementation of the genetic algorithm with the path relinking approach, applied after the end

of each genetic algorithm generation, by combining the 10 better solutions found until then

(elite group). The program chooses random pairs of solutions among these ones to be combined,

taking one as the initial solution (S1) and other as the guiding solution (S2). After the normal

path relinking process, a reverse path relinking also is applied, considering solution S1 as the

guiding one and S2 as initial. During this process, all intermediate solutions found in the path

relinking process are immediately evaluated by the fitness function (PSNR) and the ones

presenting equal or better values than the best solution are added to the elite group so they can

be combined with the others not yet chosen solutions from the elite group too, until a maximum

of 10 new intermediate solutions for each genetic algorithm generation. Each solution is

 56

__

selected for combining only once. GA+PR’ is a modified version of GA+PR, using a simpler

and faster path relinking approach, by changing always the first different part between solutions

S1 and S2, instead to testing all the possible changes to see which one is the best. GA+PR’ is

also less selective, since it accepts any intermediate solution found that is better than the worse

solution present inside the population for the next generation (10 best individuals) until a

maximum of 30 new individuals, instead of accepting only intermediate solutions equal or

better the best solution among the next generation’s population, as GA+PR does.

 Quality comparisons are presented on table 1. The arrow symbol (→) was used to

indicate that the image before the symbol is being embedded inside the image after the symbol.

The word “zipped”, appearing before the arrow symbol, indicates the embedding image was

submitted to WinZip [43] compression application version 11.1, generating a lossless

compressed file to be hidden inside the cover image. The word “3x”, appearing before the arrow

symbol, indicates three identical embedded images, instead of only one, were compressed by

the WinZip application version 11.1, which also produces a lossless compressed file, of greater

size. The words “gray” and “color”, appearing after the arrow symbol, represent the use of 8-

bits grayscale or 32-bits color versions of the cover image. The time results of our executions

are shown on table 2, with cryptography time included for all tests with color cover images. The

AES cryptography was not applied on tests with grayscale cover images. Time comparisons

were not possible given the differences between the computer systems used in [16] and here.

Table 3 shows the time results converted to the BI unit values (billions of instructions), for

future comparisons. Each result of our implementations is an average value for five executions

with the same cover image and secret data.

The path relinking results (GA+PR and GA+PR’) presented when dealing with “zipped

3x” secret data being hidden inside color cover images were obtained by using the method

described in section 4.2 while all others color image steganography results used the section

4.2.1 alternative approach, which leads to better results when secret data is around one third or

less of cover image hiding capacity.

 57

__

Method (average PSNR result)

Secret data → cover image
Bytes

hidden
LSB
[16]

GEN
[16]

LSB2 GEN2 GA+PR GA+PR’

Jet → gray Lena 99888 32.04 32.71 32.08 32.69 32.79 32.71
Jet → color Lena 99888 - - 48.64 48.95 49.03 48.99

zipped Jet → color Lena 97280 - - 51.18 51.20 51.21 51.21

zipped 3x Jet → color Lena 291728 - - 37.94 37.97 37.99 37.97
Sailboat → gray Lena 120064 32.10 32.55 31.93 32.47 32.58 32.57

Sailboat → color Lena 120064 - - 47.62 48.15 48.22 48.20
zipped Sailboat → color Lena 116128 - - 47.99 48.02 48.03 48.02

zipped 3x Sailboat → color Lena 348256 - - 33.18 33.20 33.21 33.20
Tiffany → gray Lena 92336 31.21 32.90 31.96 32.71 32.90 32.87

Tiffany → color Lena 92336 - - 51.40 51.43 51.44 51.44

 zipped Tiffany → color Lena 90912 - - 51.49 51.50 51.50 51.50

 zipped 3x Tiffany → color Lena 272608 - - 38.25 38.26 38.27 38.26
Text → gray Lena 32560 29.51 34.27 29.21 34.61 34.61 34.36

Text → color Lena 32560 - - 55.94 55.94 55.94 55.94
zipped Text → color Lena 32528 - - 55.96 55.96 55.96 55.96

zipped 3x Text → color Lena 97536 - - 51.18 51.19 51.19 51.19

Jet → gray Baboon 99888 32.11 32.79 32.16 32.63 32.89 32.83
Jet → color Baboon 99888 - - 48.44 48.99 49.02 49.00

zipped Jet → color Baboon 97280 - - 51.18 51.20 51.20 51.20

Zipped 3x Jet → color Baboon 291728 - - 37.95 37.98 37.99 37.98
Sailboat → gray Baboon 120064 32.13 32.50 32.01 32.51 32.68 32.60

Sailboat → color Baboon 120064 - - 47.94 48.21 48.21 48.20
zipped Sailboat → color Baboon 116128 - - 47.98 48.02 48.03 48.02

zipped 3x Sailboat → color Baboon 348256 - - 33.23 33.25 33.26 33.25
Tiffany → gray Baboon 92336 31.31 32.95 32.06 32.82 33.02 33.01

Tiffany → color Baboon 92336 - - 51.42 51.42 51.42 51.42
zipped Tiffany → color Baboon 90912 - - 51.48 51.49 51.49 51.49

zipped 3x Tiffany → color Baboon 272608 - - 38.25 38.27 38.27 38.26
Text → gray Baboon 32560 29.60 34.38 29.25 34.83 34.83 34.76

Text → color Baboon 32560 - - 55.95 55.95 55.95 55.95
zipped Text → color Baboon 32528 - - 55.94 55.95 55.95 55.95

zipped 3x Text → color Baboon 97536 - - 51.18 51.19 51.19 51.19

Jet → gray Text 99888 30.51 30.87 29.64 30.55 30.77 30.66
Jet → color Text 99888 - - 46.85 48.25 48.39 48.33

zipped Jet → color Text 97280 - - 51.24 51.24 51.24 51.24
zipped 3x Jet → color Text 291728 - - 35.74 35.76 35.77 35.76

Sailboat → gray Text 120064 29.07 30.35 29.25 30.08 30.49 30.42
Sailboat → color Text 120064 - - 46.40 47.61 47.82 47.76

zipped Sailboat → color Text 116128 - - 47.26 47.27 47.28 47.28

zipped 3x Sailboat → color Text 348256 - - 31.21 31.23 31.24 31.23
Tiffany → gray Text 92336 30.75 30.90 29.84 30.87 30.95 30.74

Tiffany → color Text 92336 - - 51.10 51.75 51.76 51.74
zipped Tiffany → color Text 90912 - - 51.51 51.52 51.52 51.52

zipped 3x Tiffany → color Text 272608 - - 36.62 36.64 36.65 36.64
Text → gray Text 99888 30.81 33.43 28.52 33.78 33.91 33.85

Text → color Text 99888 - - 55.83 56.06 56.06 56.06

zipped Text → color Text 97280 - - 55.93 55.95 55.95 55.96

zipped 3x Text → color Text 291728 - - 51.15 51.19 51.19 51.19

Average quality 135492 30.93 32.55 43.13 43.72 43.78 43.75

Table 1 – Quality comparison (PSNR values) with our results and those presented on reference [16]

 58

__

Method (average time in seconds)

Secret data → cover image
LSB2 GEN2 GA+PR GA+PR’

Jet → gray Lena 1.592 33.308 474.26 88.257
Jet → color Lena 0.062 17.127 134.057 13.014

zipped Jet → color Lena 0.087 17.021 47.020 26.017
zipped 3x Jet → color Lena 0.109 20.467 178.542 20.514

Sailboat → gray Lena 1.542 34.439 468.84 90.830
Sailboat → color Lena 0.125 27.115 164.582 58.580

zipped Sailboat → color Lena 0.141 26.552 118.998 31.656
Zipped 3x Sailboat → color Lena 0.105 21.837 360.842 21.859

Tiffany → gray Lena 1.592 34.129 468.75 65.284
Tiffany → color Lena 0.086 16.501 51.754 25.142

zipped Tiffany → color Lena 0.079 16.344 65.692 42.803
zipped 3x Tiffany → color Lena 0.141 29.061 139.952 29.302

Text → gray Lena 1.622 33.408 1295.94 96.278
Text → color Lena 0.093 17.474 22.025 20.451

zipped Text → color Lena 0.094 17.536 22.071 20.467
zipped 3x Text → color Lena 0.124 26.187 72.108 40.418

Jet → gray Baboon 1.573 33.298 611.34 64.512
Jet → color Baboon 0.088 16.716 108.046 43.060

zipped Jet → color Baboon 0.083 16.531 41.445 24.896
Zipped 3x Jet → color Baboon 0.114 21.523 257.541 21.434

Sailboat → gray Baboon 1.602 34.159 376.67 77.631
Sailboat → color Baboon 0.094 17.815 111.650 34.398

zipped Sailboat → color Baboon 0.094 17.628 141.538 28.345
zipped 3x Sailboat → color Baboon 0.109 21.091 80.075 21.498

Tiffany → gray Baboon 1.622 33.898 504.84 81.657
Tiffany → color Baboon 0.078 13.681 26.426 13.588

zipped Tiffany → color Baboon 0.062 13.385 22.448 13.478
zipped 3x Tiffany → color Baboon 0.101 20.093 62.376 20.339

Text → gray Baboon 1.603 43.412 849.51 77.612
Text → color Baboon 0.067 12.584 15.997 13.739

zipped Text → color Baboon 0.071 12.927 15.831 13.690
zipped 3x Text → color Baboon 0.087 16.595 43.470 24.561

Jet → gray Text 1.542 36.630 536.39 80.816
Jet → color Text 0.083 16.050 118.456 33.159

zipped Jet → color Text 0.086 16.608 33.330 24.790
zipped 3x Jet → color Text 0.105 21.191 206.953 21.425

Sailboat → gray Text 1.572 34.129 552.13 83.611
Sailboat → color Text 0.091 17.583 96.795 34.407

zipped Sailboat → color Text 0.088 17.334 120.811 40.094
zipped 3x Sailboat → color Text 0.109 22.326 242.431 22.360

Tiffany → gray Text 1.542 33.979 384.85 93.174
Tiffany → color Text 0.085 16.173 39.039 23.690

zipped Tiffany → color Text 0.083 16.336 36.276 23.573
zipped 3x Tiffany → color Text 0.103 20.529 114.652 20.635

Text → gray Text 1.552 33.187 403.10 81.437
Text → color Text 0.071 12.861 14.913 13.946

zipped Text → color Text 0.072 13.569 16.965 14.841
zipped 3x Text → color Text 0.084 16.783 39.555 31.246

Average time in seconds 1.580 34.831 577,22 81.758

Table 2 – Time spent in seconds with our tests

 59

__

Method (billions of instructions value)

Secret data → cover image
LSB2 GEN2 GA+PR GA+PR’

Jet → gray Lena 3.61 75.51 1075.15 200.08
Jet → color Lena 1.08 298.23 2334.33 226.61

zipped Jet → color Lena 1.51 296.39 818.76 453.03
zipped 3x Jet → color Lena 1.90 356.39 3108.95 357.21

Sailboat → gray Lena 3.50 78.07 1062.86 205.91
Sailboat → color Lena 2.18 472.15 2865.87 1020.05

zipped Sailboat → color Lena 2.46 462.35 2072.11 551.23
Zipped 3x Sailboat → color Lena 1.83 380.25 6283.34 380.63

Tiffany → gray Lena 3.61 77.37 1062.66 148.00
Tiffany → color Lena 1.50 287.33 901.19 437.80

zipped Tiffany → color Lena 1.38 284.60 1143.89 745.33
zipped 3x Tiffany → color Lena 2.46 506.04 2436.98 510.24

Text → gray Lena 3.68 75.74 2937.90 218.26
Text → color Lena 1.62 304.27 383.52 356.11

zipped Text → color Lena 1.64 305.35 384.32 356.39
zipped 3x Text → color Lena 2.16 455.99 1255.62 703.80

Jet → gray Baboon 3.57 75.49 1385.91 146.25
Jet → color Baboon 1.53 291.08 1881.40 749.80

zipped Jet → color Baboon 1.45 287.85 721.68 433.51
Zipped 3x Jet → color Baboon 1.99 374.78 4484.56 373.23

Sailboat → gray Baboon 3.63 77.44 853.91 175.99
Sailboat → color Baboon 1.64 310.21 1944.16 598.97

zipped Sailboat → color Baboon 1.64 306.96 2464.60 493.57
zipped 3x Sailboat → color Baboon 1.90 367.26 1394.35 374.34

Tiffany → gray Baboon 3.68 76.85 1144.47 185.12
Tiffany → color Baboon 1.36 238.23 460.16 236.61

zipped Tiffany → color Baboon 1.08 233.07 390.89 234.69
zipped 3x Tiffany → color Baboon 1.76 349.88 1086.15 354.16

Text → gray Baboon 3.63 98.42 1925.84 175.95
Text → color Baboon 1.17 219.13 278.56 239.24

zipped Text → color Baboon 1.24 225.10 275.67 238.38
zipped 3x Text → color Baboon 1.51 288.97 756.94 427.68

Jet → gray Text 3.50 83.04 1216.00 183.21
Jet → color Text 1.45 279.48 2062.67 577.40

zipped Jet → color Text 1.50 289.20 580.38 431.67
zipped 3x Jet → color Text 1.83 369.00 3603.67 373.07

Sailboat → gray Text 3.56 77.37 1251.68 189.55
Sailboat → color Text 1.58 306.17 1685.49 599.13

zipped Sailboat → color Text 1.53 301.84 2103.68 698.16
zipped 3x Sailboat → color Text 1.90 388.76 4221.45 389.35

Tiffany → gray Text 3.50 77.03 872.45 211.23
Tiffany → color Text 1.48 281.62 679.79 412.51

zipped Tiffany → color Text 1.45 284.46 631.67 410.48
zipped 3x Tiffany → color Text 1.79 357.47 1996.44 359.32

Text → gray Text 3.52 75.23 913.83 184.62
Text → color Text 1.24 223.95 259.68 242.84

zipped Text → color Text 1.25 236.28 295.41 258.43
zipped 3x Text → color Text 1.46 292.24 688.77 544.09

Average billions of instructions 2.11 259.58 1555.00 382.78

Table 3 – Time spent in BI units (billions of instructions) with our tests

In Figures 63 and 64 some visual results of image hiding are shown for comparison: The

Lena (Figure 34) was used as cover image and the Text (Figure 40) was used as secret data.

The Figure 63 shows the final results using the LSB substitution, while Figure 64 presents the

results applying the path relinking approach. By examining Figure 63 carefully, it is possible to

 60

__

perceive some text “written” in the background of the picture, showing the lack of quality of the

LSB method. It does not happen in Figure 64. These differences are better seen in Figures 65

and 66, where two negative image difference maps are shown, each one presenting the

differences between the original Lena cover image (Figure 34) and the other Lena stego images

(Figures 63 and 64). Those image difference maps were scaled to 25x (all differences multiplied

by 25), with an offset of -150 (-150 on all intensities, to focus on the bigger differences) and

turned to negative, to show the differences in black (improving visual perception).

Figure 63 – Lena stego image produced by image hiding with LSB substitution (some text appears in background)

 61

__

Figure 64 – Lena stego image obtained by image hiding with path relinking (no background text and appears smoother)

 Figure 65 - The negative difference map between

Figures 34 and 63 (scale 25x with an offset of -150).

Note the text inside this difference map.

Figure 66 - The negative difference map between

Figures 34 and 64 (scale 25x with an offset of -150)

 62

__

6.4 Comparison with modulus functions results

In this section, our results are compared with those presented by [13], which use a

different strategy on image hiding process. The tests were applied with the same images than

[13]. The cover images are the 8-bits grayscale 512x512 pixels images of Lena and Baboon

(Figures 34-36) and the 32-bits color versions of those images (Figures 50-51). The secret data

are the 8-bits grayscale 256x512 pixels images of Jet, Sailboat, Tiffany and Splash (Figures 37-

39 and 41). LSB [13] and GEN [13] are the results shown by [13] for simple LSB substitution

and genetic algorithm. MOD [13] represents the results presented by [13] when using the

modulus function approach. LSB2 and GEN2 are the results achieved by our implementation of

least significant bits substitution and genetic algorithm, originally proposed by [16]. GA+PR is

our new proposal, an implementation of the genetic algorithm with the path relinking approach,

applied after the end of each genetic algorithm generation, by combining the 10 better solutions

found until then (elite group). The GA+PR process is detailed in the section 6.3. GA+PR’ is a

modified version of GA+PR, using a simpler and faster path relinking approach, also detailed in

the section 6.3.

Quality comparisons are presented on table 4. The arrow symbol (→) was used to indicate

that the image before the symbol is being embedded inside the image after the symbol. The

word “zipped”, appearing before the arrow symbol, indicates the embedding image was

submitted to WinZip compression application version 11.1, generating a lossless compressed

file to be hidden inside the cover image. The word “3x”, appearing before the arrow symbol,

indicates three identical embedded images, instead of only one, were compressed by the WinZip

application version 11.1, which also produces a lossless compressed file, of greater size. The

words “gray” and “color”, appearing after the arrow symbol, represent the use of 8-bits

grayscale or 32-bits color versions of the cover image. The time results of our executions are

shown on table 5, with cryptography time included for all tests with color cover images. The

AES cryptography was not applied on tests with grayscale cover images. Time comparisons

were not possible due to the differences between our computer system and the one used in [13].

 63

__

Table 6 shows the time results converted to the BI unit values (billions of instructions), for

future comparisons. Each result of our implementations is an average value for five executions

with the same cover image and secret data.

The path relinking results (GA+PR and GA+PR’) presented when dealing with “zipped

3x” secret data being hidden inside color cover images were obtained by using the method

described in section 4.2 while all others color image steganography results used the section

4.2.1 alternative approach, which leads to better results when secret data is around one third or

less of cover image hiding capacity.

Method (PSNR result)
Secret data → cover image

Bytes
hidden

LSB

[13]
LSB2

GEN

[13]
GEN2

MOD

[13]
GA+PR GA+PR’

Jet → gray Lena 99888 32.02 32.08 34.16 32.61 34.76 32.79 32.71
Jet → color Lena 99888 - 48.64 - 48.95 - 49.03 48.99

zipped Jet → color Lena 97280 - 51.18 - 51.20 - 51.21 51.21

zipped 3x Jet → color Lena 291728 - 37.94 - 37.97 - 37.99 37.97
Sailboat → gray Lena 120064 32.28 31.93 34.08 32.43 34.79 32.58 32.57

Sailboat → color Lena 120064 - 47.62 - 48.15 - 48.22 48.20
zipped Sailboat → color Lena 116128 - 47.99 - 48.02 - 48.03 48.02

zipped 3x Sailboat → color Lena 348256 - 33.18 - 33.20 - 33.21 33.20
Tiffany → gray Lena 92336 31.30 31.96 32.90 32.82 34.80 32.90 32.87

Tiffany → color Lena 92336 - 51.40 - 51.43 - 51.44 51.44

 zipped Tiffany → color Lena 90912 - 51.49 - 51.50 - 51.50 51.50

 zipped 3x Tiffany → color Lena 272608 - 38.25 - 38.26 - 38.27 38.26
Splash → gray Lena 82256 32.27 32.02 32.44 32.45 34.83 32.52 32.43

Splash → color Lena 82256 - 51.92 - 51.93 - 51.93 51.93

zipped Splash → color Lena 81456 - 51.97 - 51.97 - 51.97 51.97
zipped 3x Splash → color Lena 244240 - 39.48 - 39.51 - 39.51 39.51

Jet → gray Baboon 99888 32.08 32.16 34.28 32.63 34.81 32.89 32.83
Jet → color Baboon 99888 - 48.44 - 48.99 - 49.02 49.00

zipped Jet → color Baboon 97280 - 51.18 - 51.20 - 51.20 51.20

zipped 3x Jet → color Baboon 291728 - 37.95 - 37.98 - 37.99 37.98
Sailboat → gray Baboon 120064 32.31 32.01 33.99 32.51 34.82 32.68 32.60

Sailboat → color Baboon 120064 - 47.94 - 48.21 - 48.21 48.20
zipped Sailboat → color Baboon 116128 - 47.98 - 48.02 - 48.03 48.02
zip 3x Sailboat → color Baboon 348256 - 33.23 - 33.25 - 33.26 33.25

Tiffany → gray Baboon 92336 31.30 32.06 32.97 32.82 34.82 33.02 33.01
Tiffany → color Baboon 92336 - 51.10 - 51.75 - 51.76 51.74

zipped Tiffany → color Baboon 90912 - 51.51 - 51.52 - 51.52 51.52

zip 3x Tiffany → color Baboon 272608 - 36.62 - 36.64 - 36.65 36.64
Splash → gray Baboon 82256 32.27 32.11 32.42 32.48 34.79 32.57 32.52

Splash → color Baboon 82256 - 51.91 - 51.93 - 51.93 51.93

zipped Splash → color Baboon 81456 - 51.97 - 51.97 - 51.97 51.97
zip 3x Splash → color Baboon 244240 - 39.48 - 39.51 - 39.52 39.51

Average quality 145731 31.98 42.40 33.41 42.62 34.80 42.67 42.65

Table 4 – Quality comparison (PSNR values) with our results and those presented on reference [13]

 64

__

Method (average time in seconds)

Secret data → cover image
LSB2 GEN2 GA+PR GA+PR’

Jet → gray Lena 1.592 33.308 474.26 88.257
Jet → color Lena 0.062 17.127 134.057 13.014

zipped Jet → color Lena 0.087 17.021 47.020 26.017
zipped 3x Jet → color Lena 0.109 20.467 178.542 20.514

Sailboat → gray Lena 1.542 34.439 468.84 90.830
Sailboat → color Lena 0.125 27.115 164.582 58.580

zipped Sailboat → color Lena 0.141 26.552 118.998 31.656
Zipped 3x Sailboat → color Lena 0.105 21.837 360.842 21.859

Tiffany → gray Lena 1.592 34.129 468.75 65.284
Tiffany → color Lena 0.086 16.501 51.754 25.142

zipped Tiffany → color Lena 0.079 16.344 65.692 42.803
zipped 3x Tiffany → color Lena 0.141 29.061 133.273 22.872

Splash → gray Lena 1.632 34.199 383.08 59.063
Splash → color Lena 0.109 24.146 74.157 40.730

zipped Splash → color Lena 0.109 23.936 76.059 35.172
zipped 3x Splash → color Lena 0.140 28.193 137.874 28.152

Jet → gray Baboon 1.573 33.298 611.34 64.512
Jet → color Baboon 0.088 16.716 108.046 43.060

zipped Jet → color Baboon 0.083 16.531 41.445 24.896
Zipped 3x Jet → color Baboon 0.114 21.523 257.541 21.434

Sailboat → gray Baboon 1.602 34.159 376.67 77.631
Sailboat → color Baboon 0.094 17.815 111.650 34.398

zipped Sailboat → color Baboon 0.094 17.628 141.538 28.345
zipped 3x Sailboat → color Baboon 0.109 21.091 80.075 21.498

Tiffany → gray Baboon 1.622 33.898 504.84 81.657
Tiffany → color Baboon 0.078 13.681 26.426 13.588

zipped Tiffany → color Baboon 0.062 13.385 22.448 13.478
zipped 3x Tiffany → color Baboon 0.101 20.093 62.376 20.339

Splash → gray Baboon 1.572 34.049 316.800 72.424
Splash → color Baboon 0.099 20.041 36.964 19.988

zipped Splash → color Baboon 0.112 19.914 38.831 19.566
zip 3x Splash → color Baboon 0.151 28.132 213.346 29.756

Average time in seconds 0.475 23.948 196.504 39.266

Table 5 – Time spent in seconds with our tests

In Figures 67 and 68 some visual results of image hiding are shown for illustration: The

Baboon (Figure 35) was used as cover image and the Tiffany (Figure 39) was used as secret

data. The Figure 67 shows the stego image produced after steganography with genetic

algorithm, while Figure 68 presents the stego image obtained after steganography applying the

path relinking approach. The two pictures are very similar and is very hard to detect any visual

difference, given the small difference in PSNR quality values between both methods. This

difference is better seen in Figures 69 and 70, where two negative image difference maps are

presented, each one presenting the differences between the cover image Baboon (Figure 35) and

the other Baboon stego images (Figures 67 and 68). Those image difference maps were scaled

to 25x (all differences multiplied by 25), with an offset of -100 (-100 on all intensities, to focus

on the bigger differences) and turned to negative, to show the differences in black (improving

 65

__

visual perception). In fact, when the PSNR values differ only less than a single point between

the results obtained (32.82 for genetic algorithm only and 33.02 for genetic algorithm with path

relinking; in this case), it is really hard to perceive any visual difference without the help of

difference image maps.

Method (billions of instructions value)

Secret data → cover image
LSB2 GEN2 GA+PR GA+PR’

Jet → gray Lena 3.61 75.51 1075.15 200.08
Jet → color Lena 1.08 298.23 2334.33 226.61

zipped Jet → color Lena 1.51 296.39 818.76 453.03
zipped 3x Jet → color Lena 1.90 356.39 3108.95 357.21

Sailboat → gray Lena 3.50 78.07 1062.86 205.91
Sailboat → color Lena 2.18 472.15 2865.87 1020.05

zipped Sailboat → color Lena 2.46 462.35 2072.11 551.23
Zipped 3x Sailboat → color Lena 1.83 380.25 6283.34 380.63

Tiffany → gray Lena 3.61 77.37 1062.66 148.00
Tiffany → color Lena 1.50 287.33 901.19 437.80

zipped Tiffany → color Lena 1.38 284.60 1143.89 745.33
zipped 3x Tiffany → color Lena 2.46 506.04 2320.68 398.27

Splash → gray Lena 3.70 77.53 868.44 133.90
Splash → color Lena 1.90 420.45 1291.30 709.23

zipped Splash → color Lena 1.90 416.80 1324.42 612.45
zipped 3x Splash → color Lena 2.44 490.92 2400.80 490.21

Jet → gray Baboon 3.57 75.49 1385.91 146.25
Jet → color Baboon 1.53 291.08 1881.40 749.80

zipped Jet → color Baboon 1.45 287.85 721.68 433.51
Zipped 3x Jet → color Baboon 1.99 374.78 4484.56 373.23

Sailboat → gray Baboon 3.63 77.44 853.91 175.99
Sailboat → color Baboon 1.64 310.21 1944.16 598.97

zipped Sailboat → color Baboon 1.64 306.96 2464.60 493.57
zipped 3x Sailboat → color Baboon 1.90 367.26 1394.35 374.34

Tiffany → gray Baboon 3.68 76.85 1144.47 185.12
Tiffany → color Baboon 1.36 238.23 460.16 236.61

zipped Tiffany → color Baboon 1.08 233.07 390.89 234.69
zipped 3x Tiffany → color Baboon 1.76 349.88 1086.15 354.16

Splash → gray Baboon 3.56 77.19 718.19 164.19
Splash → color Baboon 1.72 348.97 643.65 348.05

zipped Splash → color Baboon 1.95 346.76 676.16 340.70
zip 3x Splash → color Baboon 2.63 489.86 3714.99 518.14

Average billions of instructions 2.25 288.51 1715.62 399.91

Table 6 – Time spent in BI units (billions of instructions) with our tests

 66

__

Figure 67 – Baboon stego image produced by image hiding with genetic algorithm

 67

__

Figure 68 – Baboon stego image obtained by image hiding with path relinking (not much visually different from Figure 43)

 Figure 69 - The negative difference map between

Figures 35 and 67 (scale 25x with an offset of -100).

Note this map is slightly “noisy” than Figure 70.

Figure 70 - The negative difference map between

Figures 35 and 68 (scale 25x with an offset of -100)

 68

__

6.5 Comparison with dynamic programming strategy results

In this section our results are also compared with those presented on [14], where another

approach to optimize the search for the best LSB substitution possible on image hiding process

is used. The tests were applied with the same images than [14]. The cover images are the 8-bits

grayscale 512x512 pixels images of Lena, Peppers and Barbara (Figures 34 and 43-44) and the

32-bits color versions of those images (Figures 50 and 53-54). The secret data are the 8-bits

grayscale 256x512 pixels images of Jet, Tiffany and Fishing Boat (Figures 37, 39 and 42). The

Fishing Boat image was not shown in [14] with its resized 256 x 512 pixels format. We

contacted the authors of [14] asking about this and they oriented us to use the upper half of the

512 x 512 Fishing Boat cover image from [44] to produce the 256 x 512 image (Figure 42).

GEN[14] are the results shown by [14] with genetic algorithm and DYN[14] are the results

presented by [14] using the optimal LSB substitution with dynamic programming strategy.

LSB2 and GEN2 are the results achieved by our implementation of least significant bits

substitution and genetic algorithm, originally proposed by [16]. GA+PR is our new proposal, an

implementation of the genetic algorithm with the path relinking approach, applied after the end

of each genetic algorithm generation, by combining the 10 better solutions found until then

(elite group). The GA+PR process is detailed in the section 6.3. GA+PR’ is a modified version

of GA+PR, using a simpler and faster path relinking approach, also detailed in the section 6.3.

Quality comparisons are presented on table 7. The results presented on [14] were

converted from MSE to PSNR to allow correct comparisons with our results. Again, the arrow

symbol (→) was used to indicate that the image before the symbol is being embedded inside the

image after the symbol. The word “zipped”, appearing before the arrow symbol, indicates the

embedding image was submitted to WinZip compression application version 11.1, generating a

lossless compressed file to be hidden inside the cover image. The word “3x”, appearing before

the arrow symbol, indicates three identical embedded images, instead of only one, were

compressed by the WinZip application version 11.1, which also produces a lossless compressed

file, of greater size. The words “gray” and “color”, appearing after the arrow symbol, represent

 69

__

the use of 8-bits grayscale or 32-bits color versions of the cover image. The time results of our

executions are shown on table 8, with cryptography time included for all tests with color cover

images. The AES cryptography was not applied on tests with grayscale cover images. Time

comparisons were not possible due to the differences between the computer systems used in

[14] and ours. Table 9 shows the time results converted to the BI unit values (billions of

instructions), for future comparisons. Each result of our implementations is an average value for

five executions with the same cover image and secret data.

Method (PSNR result)
Secret data → cover image

Bytes
hidden LSB2

GEN
[14]

GEN2
DYN
[14]

GA+PR GA+PR’

Jet → gray Lena 99888 32.08 32.79 32.63 32.90 32.76 32.71
Jet → color Lena 99888 48.64 - 48.95 - 49.03 48.99

zipped Jet → color Lena 97280 51.18 - 51.20 - 51.21 51.21

zipped 3x Jet → color Lena 291728 37.94 - 37.97 - 37.99 37.97
Tiffany → gray Lena 92336 31.96 32.73 32.84 32.92 32.93 32.87

Tiffany → color Lena 92336 51.40 - 51.43 - 51.44 51.44

 zipped Tiffany → color Lena 90912 51.49 - 51.50 - 51.50 51.50

 zipped 3x Tiffany → color Lena 272608 38.25 - 38.26 - 38.27 38.26
Fishing Boat → gray Lena 50736 31.83 32.55 33.78 32.71 34.08 33.66

Fishing Boat → color Lena 50736 54.00 - 54.03 - 54.03 54.03

zipped Fishing Boat → color Lena 50656 54.02 - 54.04 - 54.04 54.04

zipped 3x Fish Boat → color Lena 151856 45.81 - 45.83 - 45.83 45.83

Jet → gray Peepers 99888 32.17 32.72 32.76 32.91 32.95 32.89
Jet → color Peepers 99888 48.47 - 48.98 - 49.03 49.00

zipped Jet → color Peepers 97280 51.18 - 51.20 - 51.21 51.21

zipped 3x Jet → color Peepers 291728 37.85 - 37.86 - 37.86 37.86

Tiffany → gray Peepers 92336 32.09 32.75 32.96 32.93 33.08 33.01
Tiffany → color Peepers 92336 51.44 - 51.45 - 51.45 51.45

zipped Tiffany → color Peepers 90912 51.48 - 51.49 - 51.50 51.50

zipped 3x Tiffany → color Peepers 272608 38.13 - 38.14 - 38.15 38.15

Fishing Boat → gray Peepers 50736 32.02 32.50 33.67 32.72 34.25 33.51
Fishing Boat → color Peepers 50736 54.04 - 54.05 - 54.05 54.05

zipped Fish Boat → color Peepers 50656 54.02 - 54.04 - 54.04 54.04

zipped 3x FishBoat→ color Peepers 151856 45.75 - 45.76 - 45.77 45.77

Jet → gray Barbara 99888 32.10 32.73 32.63 32.90 32.81 32.73
Jet → color Barbara 99888 48.44 - 48.99 - 49.02 49.02

zipped Jet → color Barbara 97280 51.19 - 51.20 - 51.20 51.20

zipped 3x Jet → color Barbara 291728 37.96 - 37.98 - 37.99 37.98
Tiffany → gray Barbara 92336 31.99 32.67 32.81 32.92 32.96 32.88

Tiffany → color Barbara 92336 51.41 - 51.43 - 51.43 51.43

zipped Tiffany → color Barbara 90912 51.48 - 51.49 - 51.50 51.50

zipped 3x Tiffany → color Barbara 272608 38.25 - 38.27 - 38.28 38.27
Fishing Boat → gray Barbara 50736 31.94 32.52 33.92 32.71 34.15 33.68

Fishing Boat → color Barbara 50736 54.02 - 54.03 - 54.03 54.03

zipped Fishing Boat → color Barbara 50656 54.03 - 54.03 - 54.03 54.03
zipped 3x FishBoat→ color Barbara 151856 45.83 - 45.83 - 45.83 45.83

Average quality 120080 44.05 32.66 44.37 32.85 44.44 44.38

Table 7 – Quality comparison (PSNR values) with our results and those presented on reference [14]

The path relinking results (GA+PR and GA+PR’) presented when dealing with “zipped

3x” secret data being hidden inside color cover images were obtained by using the method

 70

__

described in section 4.2 while all others color image steganography results used the section

4.2.1 alternative approach, which leads to better results when secret data is around one third or

less of cover image hiding capacity.

Method (average time in seconds)
Secret data → cover image

LSB2 GEN2 GA+PR GA+PR’

Jet → gray Lena 1.572 33.728 367.809 88.257
Jet → color Lena 0.062 17.127 134.057 13.014

zipped Jet → color Lena 0.087 17.021 47.020 26.017
zipped 3x Jet → color Lena 0.109 20.467 178.542 20.514

Tiffany → gray Lena 1.672 42.751 492.278 65.284
Tiffany → color Lena 0.086 16.501 51.754 25.142

 zipped Tiffany → color Lena 0.079 16.344 65.692 42.803
 zipped 3x Tiffany → color Lena 0.141 29.061 133.273 22.872

Fishing Boat → gray Lena 1.732 33.779 298.149 86.975
Fishing Boat → color Lena 0.093 19.856 37.282 27.993

zipped Fishing Boat → color Lena 0.094 19.904 36.580 26.932
zipped 3x Fishing Boat → color Lena 0.125 24.780 63.373 24.545

Jet → gray Peepers 1.593 33.829 319.650 87.976
Jet → color Peepers 0.125 24.483 181.327 62.216

zipped Jet → color Peepers 0.125 26.126 81.410 43.005
zipped 3x Jet → color Peepers 0.156 31.272 357.352 32.665

Tiffany → gray Peepers 1.613 33.568 457.257 66.917
Tiffany → color Peepers 0.125 26.563 80.487 44.256

zipped Tiffany → color Peepers 0.141 26.359 74.761 45.227
zipped 3x Tiffany → color Peepers 0.141 29.629 259.171 30.521

Fishing Boat → gray Peepers 1.572 34.359 479.059 70.712
Fishing Boat → color Peepers 0.110 19.927 36.090 27.320

zipped Fishing Boat → color Peepers 0.094 19.907 39.328 27.594
zipped 3x Fishing Boat→ color Peepers 0.125 24.360 77.953 24.625

Jet → gray Barbara 1.572 33.919 378.224 67.667
Jet → color Barbara 0.125 24.253 158.733 56.576

zipped Jet → color Barbara 0.140 26.029 73.675 40.883
zipped 3x Jet → color Barbara 0.141 30.517 114.074 30.595

Tiffany → gray Barbara 1.582 34.399 465.469 75.648
Tiffany → color Barbara 0.125 25.343 80.206 38.311

zipped Tiffany → color Barbara 0.125 25.375 74.412 42.171
zipped 3x Tiffany → color Barbara 0.141 29.145 156.610 28.666

Fishing Boat → gray Barbara 1.573 33.759 431.120 72.955
Fishing Boat → color Barbara 0.092 19.768 37.593 27.016

zipped Fishing Boat → color Barbara 0.093 19.852 36.666 27.102
zipped 3x Fishing Boat→ color Barbara 0.124 24.423 75.652 24.361

Average time in seconds 0.489 26.347 178.669 43.481

Table 8 – Time spent in seconds with our tests

 71

__

Method (billions of instructions value)

Secret data → cover image
LSB2 GEN2 GA+PR GA+PR’

Jet → gray Lena 3.56 76.46 833.82 200.08
Jet → color Lena 1.08 298.23 2334.33 226.61

zipped Jet → color Lena 1.51 296.39 818.76 453.03
zipped 3x Jet → color Lena 1.90 356.39 3108.95 357.21

Tiffany → gray Lena 3.79 96.92 1115.99 148.00
Tiffany → color Lena 1.50 287.33 901.19 437.80

 zipped Tiffany → color Lena 1.38 284.60 1143.89 745.33
 zipped 3x Tiffany → color Lena 2.46 506.04 2320.68 398.27

Fishing Boat → gray Lena 3.93 76.58 675.90 197.17
Fishing Boat → color Lena 1.62 345.75 649.19 487.44

zipped Fishing Boat → color Lena 1.64 346.59 636.97 468.97
zipped 3x Fishing Boat → color Lena 2.18 431.49 1103.51 427.40

Jet → gray Peepers 3.61 76.69 724.65 199.44
Jet → color Peepers 2.18 426.32 3157.45 1083.37

zipped Jet → color Peepers 2.18 454.93 1417.59 748.85
zipped 3x Jet → color Peepers 2.72 544.54 6222.57 568.80

Tiffany → gray Peepers 3.66 76.10 1036.60 151.70
Tiffany → color Peepers 2.18 462.54 1401.52 770.63

zipped Tiffany → color Peepers 2.46 458.99 1301.81 787.54
zipped 3x Tiffany → color Peepers 2.46 515.93 4512.94 531.46

Fishing Boat → gray Peepers 3.56 77.89 1086.03 160.30
Fishing Boat → color Peepers 1.92 346.99 628.44 475.72

zipped Fishing Boat → color Peepers 1.64 346.64 684.82 480.49
zipped 3x Fishing Boat→ color Peepers 2.18 424.18 1357.40 428.80

Jet → gray Barbara 3.56 76.89 857.43 153.40
Jet → color Barbara 2.18 422.32 2764.02 985.16

zipped Jet → color Barbara 2.44 453.24 1282.90 711.90
zipped 3x Jet → color Barbara 2.46 531.39 1986.37 532.75

Tiffany → gray Barbara 3.59 77.98 1055.22 171.49
Tiffany → color Barbara 2.18 441.30 1396.63 667.11

zipped Tiffany → color Barbara 2.18 441.85 1295.74 734.32
zipped 3x Tiffany → color Barbara 2.46 507.50 2727.05 499.16

Fishing Boat → gray Barbara 3.57 76.53 977.35 165.39
Fishing Boat → color Barbara 1.60 344.22 654.61 470.43

zipped Fishing Boat → color Barbara 1.62 345.68 638.47 471.93
zipped 3x Fishing Boat→ color Barbara 2.16 425.28 1317.33 424.20

Average billions of instructions 2.42 326.63 1559.11 470.05

Table 9 – Time spent in BI units (billions of instructions) with our tests

6.6 Comparison with cryptosystem and modulus operations results

In this section, our results are compared with the ones presented on [17], that applies a

cryptosystem with modulus operations on steganography process. The tests were done with the

same images than [17]. The cover images are the 8-bits grayscale 512x512 pixels images of

Lena, Baboon, Peppers and Jet (Figures 34-35, 43 and 45) and the 32-bits color versions of

those images (Figures 50-51, 53 and 55). The secret data are the 8-bits grayscale squeezed

256x512 pixels images of Jet, Baboon, Peepers and Lena (Figures 46-49). Note that the Figure

46 (squeezed Jet) is slightly different from the Figure 37 (Jet). Both are 256x512 pixels images,

derived from the original 512x512 pixels Jet image (Figure 45). The main difference is that in

 72

__

[17], all the four images used as secret data were squeezed to attain the 256x512 size, while in

[13, 14, 16] those images were obtained by cutting a 256x512 part of the original picture.

STE[17] are the results presented by [17] with the cryptosystem and modulus operations

method. LSB2 and GEN2 are the results achieved by our implementation of least significant bits

substitution and genetic algorithm, originally proposed by [16]. GA+PR is our new proposal, an

implementation of the genetic algorithm with the path relinking approach, applied after the end

of each genetic algorithm generation, by combining the 10 better solutions found until then

(elite group). The GA+PR process is detailed in the section 6.3. GA+PR’ is a modified version

of GA+PR, using a simpler and faster path relinking approach, also detailed in the section 6.3.

Quality comparisons are presented on table 10. The arrow symbol (→) was used to

indicate that the image before the symbol is being embedded inside the image after the symbol.

The word “zipped”, appearing before the arrow symbol, indicates the embedding image was

submitted to WinZip compression application version 11.1, generating a lossless compressed

file to be hidden inside the cover image. The word “3x”, appearing before the arrow symbol,

indicates three identical embedded images, instead of only one, were compressed by the WinZip

application version 11.1, which also produces a lossless compressed file, of greater size. The

words “gray” and “color”, appearing after the arrow symbol, represent the use of 8-bits

grayscale or 32-bits color versions of the cover image. The time results of our executions are

shown on table 11, with cryptography time included for all tests with color cover images. The

AES cryptography was not applied on tests with grayscale cover images. Time comparisons

were not possible because the authors only commented some details about individual

mathematical operations time falling into microseconds and milliseconds range, but apparently

have not shown any total time results, so we will be presenting only ours. Table 12 shows the

time results converted to the BI unit values (billions of instructions), for future comparisons.

Each result of our implementations is an average value for five executions with the same cover

image and secret data.

The path relinking results (GA+PR and GA+PR’) presented when dealing with “zipped

3x” secret data being hidden inside color cover images were obtained by using the method

 73

__

described in section 4.2 while all others color image steganography results used the section

4.2.1 alternative approach, which leads to better results when secret data is around one third or

less of cover image hiding capacity.

Method (PSNR result)
Secret data → cover image

Bytes
hidden

LSB2 GEN2 STE

[17]

GA+PR GA+PR’

 squeezed Jet → gray Lena 112432 31.98 32.67 31.05 32.74 32.66
 squeezed Jet → color Lena 112432 47.93 48.46 - 48.52 48.48

squeezed Baboon → gray Lena 160944 31.77 32.36 31.28 32.49 32.44
squeezed Baboon → color Lena 160944 45.57 45.58 - 45.58 45.58

squeezed Peepers → gray Lena 119952 31.96 32.25 31.33 32.40 32.29
squeezed Peepers → color Lena 119952 47.63 48.21 - 48.24 48.22

squeezed Lena → gray Lena 125920 31.97 32.86 31.27 33.13 32.88
squeezed Lena → color Lena 125920 47.39 48.01 - 48.04 48.04

squeezed Jet → gray Baboon 112432 32.03 32.72 31.09 32.87 32.74
squeezed Jet → color Baboon 112432 47.93 48.49 - 48.52 48.50

squeezed Baboon → gray Baboon 160944 31.90 32.42 31.24 32.69 32.59
squeezed Baboon → color Baboon 160944 45.57 45.59 - 45.59 45.58
squeezed Peepers → gray Baboon 119952 32.02 32.36 31.28 32.45 32.39

squeezed Peepers → color Baboon 119952 47.63 48.17 - 48.24 48.20
squeezed Lena → gray Baboon 125920 31.99 32.38 31.25 32.52 32.51

squeezed Lena → color Baboon 125920 47.40 48.03 - 48.05 48.04
squeezed Jet → gray Peepers 112432 32.11 32.74 31.42 32.77 32.85

squeezed Jet → color Peepers 112432 47.97 48.48 - 48.52 48.49
squeezed Baboon → gray Peepers 160944 31.91 32.50 31.60 32.66 32.58

squeezed Baboon → color Peepers 160944 45.52 45.53 - 45.53 45.53

squeezed Peepers → gray Peepers 119952 32.19 32.50 31.65 32.60 32.58
squeezed Peepers → color Peepers 119952 47.66 48.20 - 48.24 48.22

squeezed Lena → gray Peepers 125920 32.02 32.44 31.61 32.58 32.50
squeezed Lena → color Peepers 125920 47.43 48.01 - 48.05 48.01

squeezed Jet → gray Jet 112432 32.04 33.18 30.24 33.84 33.59
squeezed Jet → color Jet 112432 47.94 48.44 - 48.52 48.49

squeezed Baboon → gray Jet 160944 31.84 32.38 30.23 32.66 32.60
squeezed Baboon → color Jet 160944 45.55 45.56 - 45.56 45.56

squeezed Peepers → gray Jet 119952 31.98 32.38 30.27 32.56 32.46
squeezed Peepers → color Jet 119952 47.64 48.18 - 48.24 48.22

squeezed Lena → gray Jet 125920 31.94 32.45 30.29 32.59 32.54
squeezed Lena → color Jet 125920 47.42 48.04 - 48.05 48.01

Average quality 129812 39.56 40.05 31.07 40.16 40.11

Table 10 – Quality comparison (PSNR values) with our results and those presented on reference [17]

 74

__

Method (average time in seconds)

Secret data → cover image
LSB2 GEN2 GA+PR GA+PR’

 squeezed Jet → gray Lena 1.552 34.219 477.32 88.627
 squeezed Jet → color Lena 0.093 16.489 86.222 31.403

squeezed Baboon → gray Lena 1.613 36.182 333.95 73.766
squeezed Baboon → color Lena 0.078 16.879 44.288 16.848
squeezed Peepers → gray Lena 1.572 35.151 420.10 63.302

squeezed Peepers → color Lena 0.078 16.801 103.577 30.435
squeezed Lena → gray Lena 1.583 39.898 408.02 55.790

squeezed Lena → color Lena 0.094 17.191 133.492 32.900
squeezed Jet → gray Baboon 1.562 34.170 378.40 73.676

squeezed Jet → color Baboon 0.093 16.318 108.576 36.520
squeezed Baboon → gray Baboon 1.583 34.149 382.15 99.102

squeezed Baboon → color Baboon 0.094 16.739 45.271 19.079
squeezed Peepers → gray Baboon 1.563 33.989 401.17 65.725

squeezed Peepers → color Baboon 0.094 16.988 104.186 30.904
squeezed Lena → gray Baboon 1.662 34.160 440.00 87.375

squeezed Lena → color Baboon 0.093 17.269 96.892 32.807
squeezed Jet → gray Peepers 1.763 33.989 552.68 72.144

squeezed Jet → color Peepers 0.093 16.427 109.527 33.337
squeezed Baboon → gray Peepers 1.542 34.109 434.10 78.523

squeezed Baboon → color Peepers 0.078 16.895 44.944 16.879
squeezed Peepers → gray Peepers 1.612 34.099 367.75 80.015

squeezed Peepers → color Peepers 0.093 17.051 114.862 33.868
squeezed Lena → gray Peepers 1.562 34.660 452.02 57.883

squeezed Lena → color Peepers 0.078 17.129 86.424 32.604
squeezed Jet → gray Jet 1.562 33.658 401.36 84.352

squeezed Jet → color Jet 0.094 16.349 111.369 32.136
squeezed Baboon → gray Jet 1.552 36.783 480.21 70.321

squeezed Baboon → color Jet 0.094 16.739 45.739 16.723
squeezed Peepers → gray Jet 1.572 34.419 414.84 67.046

squeezed Peepers → color Jet 0.078 16.895 86.612 32.963
squeezed Lena → gray Jet 1.613 34.049 449.23 98.682

squeezed Lena → color Jet 0.094 17.191 102.024 27.908
Average time 0.840 25.845 256.791 52.301

Table 11 – Time spent in seconds with our tests

 75

__

Method (billions of instructions value)

Secret data → cover image
LSB2 GEN2 GA+PR GA+PR’

 squeezed Jet → gray Lena 3.52 77.57 1082.08 200.92
 squeezed Jet → color Lena 1.62 287.12 1501.38 546.82

squeezed Baboon → gray Lena 3.66 82.02 757.06 167.23
squeezed Baboon → color Lena 1.36 293.91 771.19 293.37
squeezed Peepers → gray Lena 3.56 79.69 952.37 143.51

squeezed Peepers → color Lena 1.36 292.56 1803.59 529.96
squeezed Lena → gray Lena 3.59 90.45 924.98 126.48

squeezed Lena → color Lena 1.64 299.35 2324.50 572.89
squeezed Jet → gray Baboon 3.54 77.46 857.83 167.02

squeezed Jet → color Baboon 1.62 284.15 1890.63 635.92
Squeezed Baboon → gray Baboon 3.59 77.42 866.33 224.66

Squeezed Baboon → color Baboon 1.64 291.48 788.30 332.22
Squeezed Peepers → gray Baboon 3.54 77.05 909.45 149.00

Squeezed Peepers → color Baboon 1.64 295.81 1814.19 538.13
squeezed Lena → gray Baboon 3.77 77.44 997.48 198.08

squeezed Lena → color Baboon 1.62 300.71 1687.18 571.27
squeezed Jet → gray Peepers 4.00 77.05 1252.93 163.55

squeezed Jet → color Peepers 1.62 286.04 1907.19 580.50
Squeezed Baboon → gray Peepers 3.50 77.33 984.10 178.01

Squeezed Baboon → color Peepers 1.36 294.19 782.61 293.91
Squeezed Peepers → gray Peepers 3.65 77.30 833.69 181.39
squeezed Peepers → color Peepers 1.62 296.91 2000.09 589.74

squeezed Lena → gray Peepers 3.54 78.57 1024.73 131.22
squeezed Lena → color Peepers 1.36 298.27 1504.90 567.73

squeezed Jet → gray Jet 3.54 76.30 909.88 191.23
squeezed Jet → color Jet 1.64 284.69 1939.27 559.58

squeezed Baboon → gray Jet 3.52 83.39 1088.64 159.42
squeezed Baboon → color Jet 1.64 291.48 796.45 291.20
squeezed Peepers → gray Jet 3.56 78.03 940.44 151.99

squeezed Peepers → color Jet 1.36 294.19 1508.17 573.98
squeezed Lena → gray Jet 3.66 77.19 1018.40 223.71

squeezed Lena → color Jet 1.64 299.35 1776.54 485.96
Average billions of instructions 2.58 186.08 1256.14 335.02

Table 12 – Time spent in BI units (billions of instructions) with our tests

6.7 Comparison with color quantization and DES cryptosystem

In this section, our results are compared with the ones presented on Table 1 from [20],

that apply a color quantization process, reducing the number of colors inside the image to be

embedded to 256, using the DES cryptosystem thereafter. The tests were done with the same

images than [20] as cover images, with no exception. These cover images are the 32-bits color,

512x512 pixels images of Lena, Baboon, Peppers, Jet, House and Sailboat (Figures 50, 51, 54

and 55-57). The same figures were also used as embedded images, after being color quantized

to 256 colors. The 256-color quantization images were obtained by decreasing the bits per pixel

value to 8, reducing the maximum number of colors to 256 and converting the images files to

the portable network graphics format (png). CQ[20] are the results presented by [20] with the

color quantization and DES cryptosystem. LSB2 and GEN2 are the results achieved by our

 76

__

implementation of least significant bits substitution and genetic algorithm, originally proposed

by [16]. GA+PR is our new proposal, an implementation of the genetic algorithm with the path

relinking approach, applied after the end of each genetic algorithm generation, by combining the

10 better solutions found until then (elite group). The GA+PR process is detailed in the section

6.3. GA+PR’ is a modified version of GA+PR, using a simpler and faster path relinking

approach, also detailed in the section 6.3.

Quality comparisons are presented on table 13. The arrow symbol (→) was used to

indicate that the image before the symbol is being embedded inside the image after the symbol.

The word “zipped”, appearing before the arrow symbol, indicates the embedding image was

submitted to WinZip compression application version 11.1, generating a lossless compressed

file to be hidden inside the cover image. The word “2x”, appearing before the arrow symbol,

indicates two identical embedded images, instead of only one, were compressed by the WinZip

application version 11.1, which also produces a lossless compressed file, of greater size. The

time results of our executions are shown on table 14, with cryptography time included for all

tests. Time comparisons were not possible because the authors not commented details about

time results, so we will be presenting only ours. Table 15 shows the time results converted to

the BI unit values (billions of instructions), for future comparisons. Each result of our

implementations is an average value for five executions with the same cover image and secret

data.

The path relinking results (GA+PR and GA+PR’) presented when dealing with quantized

color Jet or quantized color House secret data being hidden inside cover images were obtained

by using the alternative approach described in section 4.2.1, which leads to better results when

secret data is around one third or less of cover image hiding capacity. The other results were

obtained by the method described on section 4.2.

 77

__

Method (PSNR result)

Secret data → cover image
Bytes

hidden LSB2 GEN2 CQ[20] GA+PR GA+PR’

quantized color Jet → color Jet 110704 48.15 48.26 41.84 48.28 48.27
zipped quantized color Jet 2x → color Jet 221680 41.09 41.10 - 41.11 41.11

quantized color Baboon → color Jet 212640 41.27 41.30 41.86 41.30 41.29
quantized color House → color Jet 119584 47.79 47.94 41.88 47.95 47.95

quantized color Lena → color Jet 179280 44.52 44.53 41.86 44.53 44.53

quantized color Peppers → color Jet 148400 45.91 45.91 41.86 45.91 45.91

quantized color Sailboat → color Jet 171072 44.72 44.73 41.87 44.73 44.73

quantized color Jet → color Baboon 117472 48.16 48.27 41.87 48.28 48.26
quantized color Baboon → color Baboon 212640 41.32 41.34 41.86 41.34 41.34

quantized color House → color Baboon 119584 47.80 47.93 41.87 47.96 47.95
quantized color Lena → color Baboon 156592 45.68 45.70 41.87 45.70 45.70

quantized color Peppers → color Baboon 132560 46.42 46.43 41.88 46.43 46.43

quantized color Sailboat → color Baboon 153472 45.78 45.79 41.87 45.79 45.79

quantized color Jet → color House 110704 48.15 48.26 41.83 48.28 48.27
quantized color Baboon → color House 186192 44.37 44.38 41.86 44.38 44.38

quantized color House → color House 119600 47.79 47.94 41.87 47.96 47.95
quantized color Lena → color House 156592 45.69 45.70 41.88 45.70 45.70

quantized color Peppers → color House 132560 46.39 46.41 41.88 46.41 46.41

quantized color Sailboat → color House 153472 45.78 45.78 41.86 45.78 45.78

quantized color Jet → color Lena 110704 48.13 48.25 41.87 48.28 48.27
quantized color Baboon → color Lena 186192 44.37 44.39 41.87 44.39 44.39

quantized color House → color Lena 119600 47.79 47.94 41.88 47.95 47.95

quantized color Lena → color Lena 156592 45.69 45.70 41.89 45.70 45.70

quantized color Peppers → color Lena 132560 46.41 46.42 41.87 46.42 46.42

quantized color Sailboat → color Lena 153472 45.78 45.79 41.87 45.79 45.79

quantized color Jet → color Peppers 110704 48.15 48.26 41.58 48.28 48.27
quantized color Baboon → color Peppers 186192 44.30 44.31 41.62 44.31 44.31

quantized color House → color Peppers 119600 47.81 47.94 41.60 47.95 47.95

quantized color Lena → color Peppers 156592 45.62 45.64 41.62 45.64 45.64

quantized color Peppers → color Peppers 132560 46.33 46.37 41.61 46.37 46.37

quantized color Sailboat → color Peppers 153472 45.71 45.73 41.61 45.73 45.73

quantized color Jet → color Sailboat 110704 48.14 48.25 41.88 48.27 48.26
quantized color Baboon → color Sailboat 186192 44.34 44.36 41.87 44.36 44.36

quantized color House → color Sailboat 119600 47.80 47.93 41.89 47.95 47.94
quantized color Lena → color Sailboat 156592 45.66 45.67 41.87 45.67 45.67

quantized color Peppers → color Sailboat 132560 46.38 46.41 41.86 46.41 46.41

quantized color Sailboat → color Sailboat 153472 45.75 45.77 41.87 45.77 45.77

Average quality 148437 45.97 46.02 41.83 46.03 46.03

Table 13 – Quality comparison (PSNR values) with our results and those presented on reference [20]

 78

__

Method (average time in seconds)

Secret data → cover image
LSB2 GEN2 GA+PR GA+PR’

quantized color Jet → color Jet 0.126 25.762 157.225 52.805
zipped quantized color Jet 2x → color Jet 0.125 28.136 100.193 28.340

quantized color Baboon → color Jet 0.125 27.147 109.683 27.199
quantized color House → color Jet 0.144 27.620 182.548 55.480

quantized color Lena → color Jet 0.125 26.031 73.676 25.204
quantized color Peppers → color Jet 0.123 23.738 63.262 24.951
quantized color Sailboat → color Jet 0.126 25.397 78.729 25.083
quantized color Jet → color Baboon 0.125 26.040 243.445 61.723

quantized color Baboon → color Baboon 0.140 27.192 100.170 27.195
quantized color House → color Baboon 0.125 26.979 188.981 51.917

quantized color Lena → color Baboon 0.125 25.017 64.841 24.944
quantized color Peppers → color Baboon 0.078 15.117 43.165 15.163
quantized color Sailboat → color Baboon 0.083 16.836 46.035 16.786

quantized color Jet → color House 0.083 16.830 103.392 34.173
quantized color Baboon → color House 0.088 18.019 55.057 18.115

quantized color House → color House 0.088 17.199 82.111 31.322
quantized color Lena → color House 0.083 17.023 44.371 18.024

quantized color Peppers → color House 0.080 15.430 35.024 15.942
quantized color Sailboat → color House 0.082 16.738 56.227 16.731

quantized color Jet → color Lena 0.085 16.715 104.952 33.322
quantized color Baboon → color Lena 0.087 17.968 56.011 18.101

quantized color House → color Lena 0.089 17.291 91.430 33.250
quantized color Lena → color Lena 0.082 16.928 44.909 18.363

Quantized color Peppers → color Lena 0.078 15.450 39.999 15.420
quantized color Sailboat → color Lena 0.083 17.021 43.706 17.018

quantized color Jet → color Peppers 0.088 16.684 110.545 36.122
quantized color Baboon → color Peppers 0.089 18.040 56.343 18.042

quantized color House → color Peppers 0.090 17.297 117.379 37.663
Quantized color Lena → color Peppers 0.082 16.972 47.016 16.676

quantized color Peppers → color Peppers 0.078 15.163 40.185 16.645
quantized color Sailboat → color Peppers 0.078 16.411 54.078 16.380

quantized color Jet → color Sailboat 0.094 16.333 73.227 37.315
quantized color Baboon → color Sailboat 0.094 17.737 55.286 17.722

quantized color House → color Sailboat 0.078 16.941 116.204 32.572
quantized color Lena → color Sailboat 0.078 16.660 52.151 16.848

quantized color Peppers → color Sailboat 0.062 15.038 36.410 15.038
quantized color Sailboat → color Sailboat 0.094 16.365 35.678 16.317

Average time 0.097 19.548 81.180 26.592

Table 14 – Time spent in seconds with our tests

 79

__

Method (billions of instructions value)

Secret data → cover image
LSB2 GEN2 GA+PR GA+PR’

quantized color Jet → color Jet 2.19 448.59 2737.76 919.49
zipped quantized color Jet 2x → color Jet 2.18 489.93 1744.66 493.48

quantized color Baboon → color Jet 2.18 472.71 1909.91 473.62
quantized color House → color Jet 2.51 480.95 3178.71 966.07

quantized color Lena → color Jet 2.18 453.28 1282.92 438.88
quantized color Peppers → color Jet 2.14 413.35 1101.58 434.47
quantized color Sailboat → color Jet 2.19 442.24 1370.91 436.77
quantized color Jet → color Baboon 2.18 453.43 4239.11 1074.78

quantized color Baboon → color Baboon 2.44 473.49 1744.26 473.55
quantized color House → color Baboon 2.18 469.79 3290.73 904.03
Quantized color Lena → color Baboon 2.18 435.62 1129.08 434.35

quantized color Peppers → color Baboon 1.36 263.23 751.63 264.03
quantized color Sailboat → color Baboon 1.45 293.17 801.61 292.29

quantized color Jet → color House 1.45 293.06 1800.36 595.05
quantized color Baboon → color House 1.53 313.76 958.71 315.44
Quantized color House → color House 1.53 299.49 1429.80 545.41

quantized color Lena → color House 1.45 296.42 772.63 313.85
quantized color Peppers → color House 1.39 268.68 609.87 277.60
quantized color Sailboat → color House 1.43 291.46 979.08 291.34

quantized color Jet → color Lena 1.48 291.06 1827.53 580.24
Quantized color Baboon → color Lena 1.51 312.88 975.32 315.19

quantized color House → color Lena 1.55 301.09 1592.07 578.98
quantized color Lena → color Lena 1.43 294.77 782.00 319.75

Quantized color Peppers → color Lena 1.36 269.03 696.50 268.51
quantized color Sailboat → color Lena 1.45 296.39 761.05 296.33

quantized color Jet → color Peppers 1.53 290.52 1924.92 628.99
quantized color Baboon → color Peppers 1.55 314.13 981.10 314.17

quantized color House → color Peppers 1.57 301.19 2043.92 655.83
Quantized color Lena → color Peppers 1.43 295.53 818.69 290.38

quantized color Peppers → color Peppers 1.36 264.03 699.74 289.84
quantized color Sailboat → color Peppers 1.36 285.76 941.66 285.22

quantized color Jet → color Sailboat 1.64 284.41 1275.10 649.77
quantized color Baboon → color Sailboat 1.64 308.85 962.70 308.59

quantized color House → color Sailboat 1.36 294.99 2023.46 567.18
quantized color Lena → color Sailboat 1.36 290.10 908.11 293.37

quantized color Peppers → color Sailboat 1.08 261.86 634.01 261.86
quantized color Sailboat → color Sailboat 1.64 284.96 621.26 284.13

Average billions of instructions 1.69 340.38 1413.58 463.05

Table 15 – Time spent in BI units (billions of instructions) with our tests

6.8 Comparison with difference expansion

In this section, our results are compared with the ones presented on section 4.1 from [37],

that introduces a lossless data embedding scheme that exploits the difference expansion of the

pixels to conceal large amount of message data in a digital image. The tests were done using the

32-bits color versions of the Lena, Baboon and Zelda images presented by [37] as cover images

of 512x512 pixels (Figures 50, 51 and 58). The secret data used were text messages extracted

from beginning of [47] and saved on unicode format using Windows notepad application, with

the same size in bits specified by [37]. The text message size on [47] is around 100 kilobytes, so

 80

__

it was repeated sometimes until achieve the desired amount of bytes hidden for each test. The

other nine images results unfortunately could not be compared with ours because the paper was

not clear about the exact amount of bits hidden inside them, referencing only a generic term

called payload, relative to the cover image size, which was not shown inside the article.

DEX[37] are the results presented by [37] with the difference expansion strategy. LSB2 and

GEN2 are the results achieved by our implementation of least significant bits substitution and

genetic algorithm, originally proposed by [16]. GA+PR is our new proposal, an implementation

of the genetic algorithm with the path relinking approach, applied after the end of each genetic

algorithm generation, by combining the 10 better solutions found until then (elite group). The

GA+PR process is detailed in the section 6.3. GA+PR’ is a modified version of GA+PR, using a

simpler and faster path relinking approach, also detailed in the section 6.3.

Quality comparisons are presented on table 16. The arrow symbol (→) was used to

indicate that the image before the symbol is being embedded inside the image after the symbol.

The time results of our executions are shown on table 17, with cryptography time included for

all tests. Time comparisons were not possible because the authors not commented any details

about time results, so we will be presenting only ours. Table 18 shows the time results

converted to the BI unit values (billions of instructions), for future comparisons. Each result of

our implementations is an average value for five executions with the same cover image and

secret data.

The path relinking results (GA+PR and GA+PR’) presented here were obtained by using

the method described in section 4.2.

Method (PSNR result)
Secret data → cover image Bytes

hidden LSB2 GEN2 DEX[37] GA+PR GA+PR’

message → color Lena 224552 41.07 41.09 34.79 41.09 41.09

message → color Lena 252059 39.35 39.36 30.52 39.37 39.36
message → color Baboon 141238 46.14 46.15 32.64 46.15 46.15

message → color Baboon 231657 39.72 39.74 24.91 39.75 39.74
message → color Zelda 255570 39.30 39.32 33.31 39.32 39.32

zipped message 5x → color Zelda 264720 38.38 38.40 - 38.41 38.40
Average quality 221015 41.12 41.13 31.23 41.14 41.13

Table 16 – Quality comparison (PSNR values) with our results and those presented on reference [37]

 81

__

Method (average time in seconds)

Secret data → cover image
LSB2 GEN2 GA+PR GA+PR’

message → color Lena 0.141 28.315 109.745 28.299
message → color Lena 0.140 29.084 141.930 28.877

message → color Baboon 0.109 23.301 62.777 23.640
message → color Baboon 0.141 27.143 109.199 27.238

message → color Zelda 0.140 29.199 124.698 24.468
zipped message 5x → color Zelda 0.141 28.533 119.286 28.517

Average time 0.134 27.408 109.670 26.504

Table 17 – Time spent in seconds with our tests

Method (billions of instructions value)
Secret data → cover image

LSB2 GEN2 GA+PR GA+PR’

message → color Lena 2.46 493.05 1910.99 492.77
message → color Lena 2.44 506.44 2471.43 502.84

message → color Baboon 1.90 405.74 1093.14 411.64
message → color Baboon 2.46 472.64 1901.48 474.30

message → color Zelda 2.44 508.44 2171.37 426.06
zipped message 5x → color Zelda 2.46 496.85 2077.13 496.57
Average billions of instructions 2.36 480.53 1937.59 467.36

Table 18 – Time spent in BI units (billions of instructions) with our tests

6.9 Comparison with lossless block truncation coding

In this section, our results are compared with the ones presented on Table 2 from [38],

that details a reversible hiding method that aims at block truncation coding (BTC) compressed

color images. In order to improve the compression rate, a genetic algorithm (GA) is applied.

The tests were done using the same six classical images presented by [38] as cover images,

which are the 32-bits color, 512x512 pixels images of Jet, Baboon, Lena, Peppers, Tifanny and

Sailboat (Figures 50-51, 53, 55, 57 and 59). The secret data used were text messages extracted

from beginning of [47] and saved on unicode format using Windows notepad application, with

the same size in bits specified by [38]. The text message size on [47] is around 100 kilobytes, so

it was capped sometimes until achieve the desired amount of bytes hidden for each test. The

other four common bitmaps images presented by [38], called Scene, Pillar, Snow and Plate

unfortunately could not be found in public domain inside internet, turning unviable the

comparisons with these ones. Time comparison was also not possible because the authors did

not specified the computational system used to obtain the time results reported by them.

LBT[38] are the results presented by [38] with the lossless block truncation coding strategy.

LSB2 and GEN2 are the results achieved by our implementation of least significant bits

substitution and genetic algorithm, originally proposed by [16]. GA+PR is our new proposal, an

 82

__

implementation of the genetic algorithm with the path relinking approach, applied after the end

of each genetic algorithm generation, by combining the 10 better solutions found until then

(elite group). The GA+PR process is detailed in the section 6.3. GA+PR’ is a modified version

of GA+PR, using a simpler and faster path relinking approach, also detailed in the section 6.3.

Quality comparisons are presented on table 19. The arrow symbol (→) was used to

indicate that the image before the symbol is being embedded inside the image after the symbol.

The results reported by [38] have a separate value for red, green and blue color channels. They

are presented here as an average value for these three channels. The time results of our

executions are shown on table 20, with cryptography time included for all tests. Table 21 shows

the time results converted to the BI unit values (billions of instructions), for future comparisons.

Each result of our implementations is an average value for five executions with the same cover

image and secret data.

All path relinking results (GA+PR and GA+PR’) presented here used the section 4.2.1

alternative approach, which leads to better results when secret data is around one third or less of

cover image hiding capacity.

Method (PSNR result)
Secret data → cover image Bytes

hidden LSB2 GEN2 LBT [38] GA+PR GA+PR’

message → color Jet 58572 53.41 53.41 31.87 53.41 53.41

message → color Baboon 58868 53.39 53.39 24.89 53.39 53.39

message → color Peepers 60044 53.36 53.37 29.49 53.37 53.37

message → color Lena 59984 53.26 53.31 31.97 53.31 53.31

message → color Tiffany 37170 54.65 56.23 29.66 56.23 56.23

message → color Sailboat 59938 53.31 53.31 27.59 53.31 53.31

Average quality 55763 53.56 53.84 29.25 53.84 53.84

Table 19 – Quality comparison (PSNR values) with our results and those presented on reference [38]

Method (average time in seconds)
Secret data → cover image

LSB2 GEN2 GA+PR GA+PR’

message → color Jet 0.074 14.150 26.042 19.942
message → Color Baboon 0.072 14.166 23.678 17.805
message → Color Peepers 0.072 14.181 26.475 18.229

message → color Lena 0.072 14.126 25.687 18.418
message → Color Tiffany 0.066 12.378 22.549 16.339

message → Color Sailboat 0.074 14.220 25.782 18.410
Average Time 0.072 13.870 25.036 18.191

Table 20 – Time spent in seconds with our tests

 83

__

Method (billions of instructions value)

Secret data → cover image
LSB2 GEN2 GA+PR GA+PR’

message → color Jet 1.29 246.39 453.47 347.25
message → color Baboon 1.25 246.67 412.31 310.04
message → color Peepers 1.25 246.93 461.01 317.42

message → color Lena 1.25 245.98 447.29 320.71
message → color Tiffany 1.15 215.54 392.65 284.51

message → color Sailboat 1.29 247.61 448.94 320.57
Average billions of instructions 1.25 241.52 435.94 316.75

Table 21 – Time spent in BI units (billions of instructions) with our tests

6.10 Comparison with binary space partitioning tree

In this section, our results are compared with the ones presented on Tables 2, 3 and 4

from [39], which explain a hiding technique for color images using a binary space partitioning

(BSP) tree. The tests were done using the same four images presented by [39] as cover images,

which are the 32-bits color, 512x512 pixels images of Jet, Baboon, Lena and Peppers (Figures

50-51, 53 and 57). The secret data used were text messages extracted from beginning of [47]

and saved on unicode format using Windows notepad application, with the same size in bits

specified by [39], always a sequence of 512 x 512 x 3 bits. The text message size on [47] is

around 100 kilobytes, so it was capped sometimes until achieve the desired amount of bytes

hidden for each test. BSP[39] are the results presented by [39] with the binary space partitioning

strategy. LSB2 and GEN2 are the results achieved by our implementation of least significant

bits substitution and genetic algorithm, originally proposed by [16]. GA+PR is our new

proposal, an implementation of the genetic algorithm with the path relinking approach, applied

after the end of each genetic algorithm generation, by combining the 10 better solutions found

until then (elite group). The GA+PR process is detailed in the section 6.3. GA+PR’ is a

modified version of GA+PR, using a simpler and faster path relinking approach, also detailed in

the section 6.3.

Quality comparisons are presented on table 22. The arrow symbol (→) was used to

indicate that the image before the symbol is being embedded inside the image after the symbol.

The word “zipped”, appearing before the arrow symbol, indicates the embedding image was

submitted to WinZip compression application version 11.1, generating a lossless compressed

file to be hidden inside the cover image. Our time results are shown on table 23, with

 84

__

cryptography time included for all tests. Table 24 shows a comparison of time results converted

to the BI unit values (billions of instructions), for future comparisons. According to [39], a

Pentium IV 2.4 GHz was used to process the results, which achieves a Drystone benchmark

result of 5234 MIPS in [47]. Each result of our implementations is an average value for five

executions with the same cover image and secret data.

All path relinking results (GA+PR and GA+PR’) presented on Table 22 used the section

4.2.1 alternative approach, which leads to better results when secret data is around one third or

less of cover image hiding capacity.

Method (PSNR result)
Secret data → cover image Bytes

hidden LSB2 GEN2 BSP[39] GA+PR GA+PR’

message → color Jet 98304 51.16 51.17 51.14 51.17 51.17

zipped message → color Jet 20432 57.95 57.99 - 57.99 57.99

message → color Baboon 98304 51.14 51.17 51.14 51.18 51.18

zipped message → color Baboon 20432 57.99 57.99 - 57.99 57.99
message → color Peepers 98304 51.24 51.25 51.14 51.25 51.25

zipped message → color Peepers 20432 57.96 57.98 - 57.98 57.98

message → color Lena 98304 51.10 51.19 51.14 51.19 51.19

zipped message → color Lena 20432 57.98 57.98 - 57.98 57.98
Average quality 98336 54.57 54.59 51.14 54.59 54.59

Table 22 – Quality comparison (PSNR values) with our results and those presented on reference [39]

Method (average time in seconds)
Secret data → cover image

LSB2 GEN2 GA+PR GA+PR’

message → color Jet 0.082 16.773 43.218 24.430
zipped message → color Jet 0.060 11.727 13.576 12.703

message → color Baboon 0.085 16.289 54.540 25.762
zipped message → color Baboon 0.060 11.667 14.378 12.530

message → color Peepers 0.086 16.375 44.345 24.003
zipped message → color Peepers 0.064 11.723 13.066 12.681

message → color Lena 0.083 16.082 52.697 25.342
zipped message → color Lena 0.061 11.766 13.954 12.676

Average time 0.073 14.050 31.222 18.766

Table 23 – Time comparisons in seconds between our results and those presented on reference [39]

Method (billions of instructions value)
Secret data → cover image

LSB2 GEN2 BSP[39] GA+PR GA+PR’

message → color Jet 1.43 292.07 4.33 752.56 425.40
zipped message → color Jet 1.04 204.20 - 236.40 221.20

message → color Baboon 1.48 283.64 7.77 949.71 448.59
zipped message → color Baboon 1.04 203.16 - 250.36 218.18

message → color Peepers 1.50 285.14 3.68 772.18 417.96
zipped message → color Peepers 1.11 204.13 - 227.52 220.81

message → color Lena 1.45 280.04 5.56 917.61 441.28
zipped message → color Lena 1.06 204.88 - 242.98 220.73

Average billions of instructions 1.26 244.66 5.34 543.66 326.77

Table 24 – Time spent in BI units (billions of instructions) with our tests

 85

__

6.11 Steganography of an executable file

In this section a different steganography act was tried: The hiding of an executable file

inside the cover image. The secret data, in that case, was a 3D version of a very popular game,

the famous Pacman, an executable file named PacMan3D.exe, obtained from [48]. The cover

image used was Figure 60, Pacman3D, 32-bits color with 640x480 pixels, obtained from [46].

Quality results are presented on table 25. The arrow symbol (→) was used to indicate that

the image before the symbol is being embedded inside the image after the symbol. The word

“zipped”, appearing before the arrow symbol, indicates the embedding image was submitted to

WinZip compression application version 11.1, generating a lossless compressed file to be

hidden inside the cover image. The word “5x”, appearing before the arrow symbol, indicates

five identical executable files, instead of only one, were compressed by the WinZip application

version 11.1, which also produces a lossless compressed file, of greater size. The time results

are shown on table 26, with cryptography time included for all tests. Table 27 shows the time

results converted to the BI unit values (billions of instructions), for future comparisons. Each

result of our implementations is an average value for five executions with the same cover image

and secret data.

The path relinking results (GA+PR and GA+PR’) presented here used the section 4.2.1

alternative approach, which leads to better results when secret data is around one third or less of

cover image hiding capacity.

Method (PSNR result)
Secret data → cover image Bytes

hidden LSB2 GEN2 GA+PR GA+PR’

Pacman3D game → Pacman3D 94224 51.99 52.04 52.04 52.04

zipped Pacman3D game 5x → Pacman3D 213424 44.47 44.49 44.49 44.49

Table 25 – Quality results (PSNR values), after hiding the executable file Pacman3D.exe inside Figure 60

Method (average time in seconds)
Secret data → cover image

LSB2 GEN2 GA+PR GA+PR’

Pacman3D game → Pacman3D 0.080 15.190 27.664 15.099
zipped Pacman3D game 5x → Pacman3D 0.141 30.454 83.004 30.470

Table 26 – Time results in seconds, after hiding the executable file Pacman3D.exe inside Figure 60

Method (billions of instructions value)
Secret data → cover image

LSB2 GEN2 GA+PR GA+PR’

Pacman3D game → Pacman3D 1.39 264.50 481.71 262.92
zipped Pacman3D game 5x → Pacman3D 2.46 530.30 1445.35 530.57

Table 27 – Time spent in BI units (billions of instructions) with our tests

 86

__

7. Conclusions and future works

After having concluded the comparisons among this work and many others analyzed, we

achieved a good degree of satisfaction. This work is the most flexible of them, being a complete

solution able to hide anything of considerable size inside the cover image with good quality

results.

An executable file, a zip file, an excel spreadsheet, a powerpoint presentation, a mp3

music, … any of these and any other one can be hidden safely inside a color image. A custom

stego key is provided to protect the hidden information by encrypting it with a reliable and high

security cryptography algorithm. After the encryption, the information is submitted to an

optimization path relinking routine to improve the final quality of the hiding process, turning the

information invisible to the human eyes. At the end, the image containing the hidden

information can be sent via electronic mail, cell phone or any other means to its destiny, without

worry. Afterwards, the receptor of the message activates the image decryption routine,

providing the stego key to quickly recover the critical information contained inside the image.

That is good.

7.1 Conclusions

In this work, the use of path relinking as an improvement over the existing method has

been shown itself relatively expensive when we look at the additional time elapsed in execution

compared to the increase on final image quality. Nevertheless, in an image hiding process, the

main objective is the concealment of the information, making it “invisible” to intruders, so the

quality gain is the main focus not only in this work.

The change from grayscale to color images on steganography process shows a great

difference on final image quality and expands the embedding capacity to a factor of three or

more times when compared to the original.

The addition of the AES cryptography algorithm incorporates a new security level over

the hidden information, opening paths for several futures uses of this application on the World

 87

__

Wide Web. The encryption and decryption execution times are also very cheap when compared

to the total time spent on steganography.

Several other configurations of the genetic algorithm implementation combined with the

path relinking refinement were also tried. For example, executing the path relinking refinement

only after the end of all genetic algorithm processing produced faster hiding but worse quality

results. Increasing the maximum number of generations in genetic algorithm to ten, instead

eight, resulted in a slower processing time, but showed noticeable enhancements on final

results. When doubling the population size at each generation of genetic algorithm, the

processing achieved slowest time but slightly better quality results. Applying the reversal path

relinking after the standard path relinking resulted in a two times slower processing but few

noticeable quality gains. The best configuration was obtained by executing the genetic

algorithm with a total of eight generations and applying only the standard path relinking

refinement at the end of each genetic algorithm generation, over the best individuals chosen to

form the next generation population, with a limit of forty individuals generated after the path

relinking process.

Considering all the improvements, after the tests, although still somewhat experimental,

the method shows itself more effective when discovering better solutions in the middle of the

best ones already existing, especially when the search space and the number of possibilities are

not too vast, presenting best time and quality performances when the hidden data occupies one

third of its maximum capacity. An interesting aspect of this method is its flexibility, allowing its

combination with several other nice approaches. In fact, the final quality of solutions obtained

through path relinking refinement is strongly influenced by the main method capacity to

generate several diverse and good solutions.

Another interesting aspect of this research is the development of a machine independent

time comparison unit, the BI, or billions of instructions value, in an expectance to allow

reasonable comparisons among diverse computers systems in the future.

 88

__

7.2 Future works

When working toward a good, or an objective, new ideas always arise. It could be

compared to a journey to a great horizon. The more steps you walk, more you see and discover

that needs to be completed. Here are some ideas that came up on the developing of this work:

1. Replace the genetic algorithm by another meta-heuristic, like GRASP or Tabu Search,

which may perform better;

2. Use other less costly local search methods instead of path relinking, such as Variable

Neighborhood Search (VNS) or Iterated Local Search, among others;

3. Create different time performance measures, possibly based on Standard Performance

Evaluation Corporation (SpecInt) benchmark or another one, in order to achieve better precision

of results for future comparisons;

4. Develop a similar color image steganography application optimized for use with cell

phones or on the Internet. It could also incorporate some video steganography features, for use

within multimedia messages.

 89

__

References

[1] Jinn-Ke Jan and Yuh-Min Tseng , On the security of image encryption method, Information

Processing Letters 60 (1996) 261-265.

[2] N. G. Bourbakis and C. Alexopoulos, Picture data encryption using scan patterns, Pattern

Recognition 25 (1992) 567-581.

[3] H. J. Highland, Data encryption: a non-mathematical approach, Computers and Security 16

(1997) 369-386.

[4] Man Young Rhee, Cryptography and secure communication (1994) ISBN 0071125027,

McGraw-Hill, Inc-New York.

[5] W. Bender, D. Gruhl, N. Morimoto and A. Lu, Techniques for data hiding, IBM Systems

Journal 35 (1996) 313-336.

[6] Z. Duric, M. Jacobs and S. Jajoolia, Information hiding: steganography and steganalysis,

Handbook of Statistics 24 (2005) 171-187.

[7] F. Glover, M. Laguna and R. Martí, Fundamentals of scatter search and path relinking,

Control and Cybernetics 29 (2000) 653-684.

[8] F. Glover, A Template for scatter search and path relinking in Lecture Notes in Computer

Science 1363 (1998) 1-51 ISBN 978-3-540-64169-8, Springer-Berlin/Heidelberg.

[9] G. C. Onwubolu and B. V. Babu, Scatter search and path relinking: foundations and

advanced designs in New Optimization Techniques in Engineering (2004) 87-99 ISBN

354020167X, Springer-Verlag.

[10] M. Laguna, Scatter search and path relinking: methodology and applications. Available at:

http://leeds-faculty.colorado.edu/laguna/ presentations/puebla.ppt.

[11] B. Norman, Secret warfare, the battle of codes and ciphers (1980) ISBN 0-87491-600-3,

Acropolis Books- Washington D.C.

[12] A. Rocha and S. Goldenstein, Steganography and steganalysis in digital multimedia: hype

or hallelujah?, Revista de Informática Teórica e Aplicada (2008).

 90

__

[13] Chih-Ching Thien and Ja-Chen Lin, A simple and high-hiding capacity method for hiding

digit-by-digit data in images based on modulus function, Pattern Recognition 36 (2003) 2875-

2881.

[14] Chin-Chen Chang, Ju-Yuan Hsiao and Chi-Shiang Chan, Finding optimal least-significant-

bit substitution in image hiding by dynamic programming strategy, Pattern Recognition 36

(2003) 1583-1595.

[15] Yu-Chen Hu, High-capacity image hiding scheme based on vector quantization, Pattern

Recognition 39 (2006) 1715-1724.

[16] Ran-Zan Wang, Chi-Fang Lin, Ja-Chen Lin, Image hiding by optimal LSB substitution and

genetic algorithm, Pattern Recognition 34 (2001) 671-683.

[17] Shiuh-Jeng Wang, Steganography of capacity required using modulo operator for

embedding secret image, Applied Mathematics and Computation 164 (2005) 99-116.

[18] Chi-Yuan Lina and Chin-Hsing Chenb, An invisible hybrid color image system using

spread vector quantization neural networks with penalized FCM, Pattern Recognition 40 (2007)

1685-1694.

[19] Yu-Chen Hu, Min-Hui Lin and Ji-Han Jiang, A Novel Color Image Hiding Scheme Using

block truncation coding, Fundamenta Informaticae 70 (2006) 317–331.

[20] Yuan-Hui Yu, Chin-Chen Chang and Iuon-Chang Lin , A new steganographic method for

color and grayscale image hiding, Computer Vision and Image Understanding 107 (2007) 183-

194.

[21] Wen-Yuan Chen, Color image steganography scheme using DFT, SPIHT codec, and

modified differential phase-shift keying techniques, Applied Mathematics and Computation,

196 (2008) 40-54.

[22] Ran-Zan Wang and Yao-De Tsai , An image-hiding method with high hiding capacity

based on best-block matching and k-means clustering, Pattern Recognition 40 (2007) 398-409.

[23] KokSheik Wong, Xiaojun Qi and Kiyoshi Tanaka, A DCT-based mod4 steganographic

method, Signal Processing 87 (2007) 1251-1263.

 91

__

[24] P. Campisi, D. Kundur, D. Hatzinakos and A. Neri, Compressive data hiding: an

unconventional approach for improved color image coding, EURASIP Journal on Applied

Signal Processing 2 (2002) 152–163.

[25] Wen-Yuan Chen, Color image steganography scheme using set partitioning in hierarchical

trees coding, digital fourier transform and adaptive phase modulation, Applied Mathematics and

Computation 185 (2007) 432-448.

[26] M. Ashourian, P. Moallem and Yo-Sung Ho, A robust method for data hiding in color

images, Lecture Notes in Computer Science 3768 (2005) 258-269 ISBN 3-540-30027-9,

Springer-Berlin.

[27] L. Pitsoulis and M.G.C. Resende, Greedy randomized adaptive search procedures,

Handbook of Applied Optimization (2002) 168-181 ISBN 0195125940, Oxford University

Press.

[28] F. Glover, Tabu search - Part I, ORSA Journal on Computing 1 (1989) 190-206.

[29] F. Glover, Tabu search - Part II, ORSA Journal on Computing 2 (1990) 4-32.

[30] Announcing the advanced encryption standard (AES), Federal Information Processing

Standards Publication 197 (2001). Available at: http://csrc.nist.gov/publications/

fips/fips197/fips-197.pdf.

[31] J. Daemen and V. Rijmen, AES proposal: Rijndael, AES Algorithm Submission (1999).

Available at: http://www.gel.ulaval.ca/~klein/maitrise/aes/rijndael.pdf.

[32] Advanced encryption standard, Wikipedia, the free encyclopedia. Available at:

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard.

[33] N. Mladenovic, and P. Hansen, Variable neighbourhood search. Computers and Operations

Research 24 (1997) 1097-1100.

[34] N. Mladenovic, and P. Hansen, Variable neighbourhood search: Principles and

Applications, European Journal of Operational Research 130 (2001) 449-467.

[35] Y. Rochat, É. D. Taillard, Probabilistic diversification and intensification in local search

for vehicle routing, Journal of Heuristics 1 (1995) 147-167. Available at:

http://ina2.eivd.ch/collaborateurs/etd/articles.dir/crt95_13.pdf

 92

__

[36] C. R. Reeves, Genetic algorithms, path relinking and the flow shop sequencing problem,

Evolutionary Computation Journal, 6 (1998) 230-234.

[37] Chin-Chen Chang and Tzu-Chuen Lu, A difference expansion oriented data hiding scheme

for restoring the original host images, The Journal of Systems and Software 79 (2006) 1754-

1766.

[38] Chin-Chen Changa, Chih-Yang Linb and Yi-Hsuan Fanb, Lossless data hiding for color

images based on block truncation coding, Pattern Recognition, in press, corrected proof.

Available at www.sciencedirect.com.

[39] Yuan-Yu Tsai and Chung-Ming Wang, A novel data hiding scheme for color images using

a BSP tree, The Journal of Systems and Software 80 (2007) 429–437.

[40] Mei-Yi Wu, Yu-Kun Ho and Jia-Hong Lee, An iterative method of palette-based image

steganography, Pattern Recognition Letters 25 (2004) 301–309.

[41] R. P. Weicker, Dhrystone: a synthetic systems programming benchmark, Communications

of the Association for Computing Machinery 27 (1984) 1013-1030.

[42] System Analyser, Diagnostic and Reporting Assistant (SANDRA), SiSoftware

Corporation, available at http://www.sisoftware.co.uk/.

[43] WinZip - The compression utility for windows, Corel Corporation, available at

www.winzip.com.

[44] Image database – volume 3: miscellaneous, Signal and Image Processing Institute of

University of Southern California (USC). Available at: http://sipi.usc.edu/database/

database.cgi?volume=misc

[45] Programming, video codecs and image processing resources. Available at:

http://www.hlevkin.com/

[46] The Trustees of Princeton University, Pacman simulator - an automantic synthesized

simulator for cycle-accurate multiprocessor simulation. Available at: http://www.ece.neu.edu/

~xzhu/pacman.html

 93

__

[47] N. Provos and P. Honeyman, Hide and seek: an introduction to steganography in IEEE

Security and Privacy 3 (2003) 32-44. Available at: http://www.citi.umich.edu/u/provos/papers/

practical.pdf.

[48] Brian Postma, Pacman 3D game. Available at: http://brianpostma.tweakdsl.nl/files/

PacMan3D.zip.

Livros Grátis
(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas

http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1

Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo

http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1

