INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES Autarquia associada à Universidade de São Paulo

DOSIMETRIA DE FONTES DE IODO-125 APLICADAS EM BRAQUITERAPIA

CARLOS ALBERTO ZEITUNI

Tese apresentada como parte dos requisitos para obtenção do Grau de Doutor em Ciências na Área de Tecnologia Nuclear - Reatores.

Orientador: Dr. Luís Antônio Albiac Terremoto

São Paulo 2008

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Dedico este trabalho à Sandra, à Carol e ao Dani, pois tudo que faço hoje e sempre na minha vida é para vocês e por vocês.

Agradecimentos

Ao Dr. Luís Antônio Albiac Terremoto, pela orientação, preciosa ajuda nas discussões e leituras do trabalho, respeito profissional, incentivo e principalmente por me agüentar durante todos estes anos.

Ao Dr. José Eduardo Manzoli, pois quando o desânimo chegou, ele me mostrou uma luz e uma saída. Além da ajuda inestimável na adaptação do programa às necessidades do meu trabalho.

Ao amigo Eduardo Santana de Moura, por trazer de novo a vontade da "experimentação", item este fundamental na pesquisa científica.

À Dra. Maria Elisa C. M. Rostelato, por inicialmente aceitar meu tema antigo, mas principalmente por me apoiar no tema novo e "exigir" o término deste trabalho.

Meu muito obrigado aos colegas Vladimir Lepki e Anselmo Feher, e a todos os outros colegas do Centro de Tecnologia das Radiações pela inestimável colaboração na realização deste trabalho e principalmente pela amizade e companheirismo.

Ao Dr. Wilson A. P. Calvo, gerente do Centro de Tecnologia das Radiações do IPEN/CNEN-SP, pela infra-estrutura necessária à realização deste trabalho e amizade.

Ao Centro de Metrologia das Radiações do IPEN/CNEN-SP, pelo empréstimo das Leitoras e pelas discussões.

Ao Centro de Engenharia Nuclear do IPEN/CNEN-SP, pelo apoio, pela ajuda no experimento e, em especial, pelo empréstimo da Leitora.

A todo o pessoal da Oficina Mecânica do IPEN/CNEN-SP pelo pronto atendimento em todas as usinagens e peças necessárias ao trabalho.

À equipe de proteção radiológica pelo empenho na monitoração do laboratório.

À direção anterior do IPEN/CNEN-SP, especialmente Dr. Cláudio Rodrigues, Dr. Roberto Fulfaro e Sr. Edson Roman por me proporcionar esta oportunidade.

À direção atual do IPEN/CNEN-SP, especialmente ao Dr. Nilson Dias Vieira Jr., por me proporcionar esta oportunidade.

À CAPES pelo auxílio financeiro no início deste trabalho.

Ao Instituto de Pesquisas Energéticas e Nucleares da Comissão Nacional de Energia Nuclear (IPEN/CNEN-SP) pela minha formação profissional.

Agradeço a todos aqueles que, direta ou indiretamente, contribuíram para a realização deste trabalho.

E agradeço principalmente a todos aqueles que não atrapalharam e me deixaram trabalhar em paz.

DOSIMETRIA DE FONTES DE IODO-125 APLICADAS EM BRAQUITERAPIA

Carlos Alberto Zeituni

RESUMO

A demanda por sementes de iodo-125 para uso em braquiterapia tem crescido muito ao longo dos últimos anos, tanto no Brasil quanto no mundo. Toda semente de iodo-125 deve ter seus parâmetros operacionais medidos e/ou calculados todas as vezes que for efetuada alguma modificação na produção. Um levantamento dosimétrico completo custa bastante caro, e recomenda-se que seja refeito pelo menos uma vez por ano. Neste contexto, o presente trabalho desenvolveu uma metodologia para todo o processo dosimétrico. A metodologia desenvolvida está baseada nas poucas informações disponíveis na literatura, pois quase toda a metodologia utilizada nos grandes laboratórios é segredo industrial. Os testes da metodologia proposta foram realizados com sementes da Amersham-Oncura-Ge Healthcare, que é a mais vendida no mundo. Na nova metodologia utilizou-se uma Leitora automática para reduzir o tempo necessário no processo de escolha dos dosímetros TLD-100 empregados, bem como uma área de corte dos espectros obtidos na Leitora, ou seja, um pós-processamento nos espectros. Foram utilizados 142 cristais, sendo selecionados apenas 29 pela metodologia proposta. Nas medidas foram utilizadas placas de Solid Water RW1 com a finalidade de simular a medida na "água", empregando-se 3 arranjos experimentais diferentes e sendo repetidas as medidas pelo menos 3 vezes. Para a calibração dos cristais foi utilizado um Dermopan II da Siemens. Os valores experimentais dos parâmetros obtidos nos experimentos propostos apresentaram excelente concordância com os encontrados na literatura. Por fim, os valores medidos foram comparados com os valores calculados por um programa semi-empírico de simulação computacional, verificando-se boa concordância entre ambos, fato que demonstra a validade da metodologia proposta para cálculos dosimétricos.

DOSIMETRIC STUDY IN IODINE-125 SEEDS FOR BRACHYTHERAPY APPLICATION

Carlos Alberto Zeituni

ABSTRACT

The demand for iodine-125 seeds for use in brachytherapy treatments has experienced an increase along recent years in Brazil and all over the world. All iodine-125 seed must have its operational parameters measured and/or calculated every time changes in the production process are carried out. A complete dosimetric measurement is very expensive, and it is recommended that this procedure must be repeated at least once a year. Thus, this work developed a methodology for the entire dosimetric process. This methodology is based on the scarce information available in the literature, once almost all the methodology used in large industrial laboratories is commercial secret. The proposed methodology was tested using seeds of Amersham-Oncura-Ge Healthcare, which is the largest seed manufactory in the world. In this new methodology, an automatic reader was employed in order to reduce the time required in the selection process of the TLD-100 dosimeters used and a postprocessing of the obtained spectra was carried out. A total of 142 dosimeters were used and only 29 have been selected using the new methodology. Measurements were performed using slabs of Solid Water RW1 to simulate measuring in the "water", using three different experimental apparatus and each measurement was repeated at least three times. The TLD-100 calibration was performed using a Dermopan II - Siemens. The measured values showed a good agreement with the ones available in the literature. Finally, these measured values were compared with calculated ones obtained by a semiempirical simulation program, showing a good agreement and, therefore, demonstrating the validity of the proposed methodology regarding dosimetric calculations.

Anexo 1

Medida de pré-selecionamento dos 142 cristais TLD-100

Anexo 2

Planilha de pós-processamento do cristal TLD-100 na posição 1D5

Índice

1 – Considerações teóricas	
1.1 - Câncer	6
1.2 - A próstata e o câncer da próstata	8
1.3 - Formas de tratamento do câncer da próstata	14
1.4 - Sementes de iodo-125	17
1.5 - Situação atual	18
1.6 - Necessidade do País	18
1.7 - Braquiterapia	19
1.8 - Uso clínico de rotina de novas fontes intersticiais de braquiterapia	20
1.9 - Dosimetria termoluminescente	21
1.10 - Especificação da intensidade da fonte	23
1.11 - Taxa de exposição a uma distância de referência	25
1.12 - Protocolo TG-43	
1.12.1 - Ponto de referência para cálculo de dose	
1.12.2 - Intensidade do kerma-ar, S_k	
1.12.3 - Constante de taxa de dose, Λ	29
1.12.4 - Função de geometria, $G(r, \theta)$	30
1.12.5 - Função de dose radial, $g(r)$	
1.12.6 - Função de anisotropia. $F(r, \theta)$	
1.13 - Câmaras de ionização do tipo poco como dosímetro de transferência	32
1.14 - Fonte radioativa de iodo-125, IPEN / CNEN - SP	34
1.15 - Dosímetros termoluminescentes, TLD-100, LiF	
1.16 - Espectros dos dosímetros termoluminescentes, TLD-100, LiF	38
1.17 - Calibração dos dosímetros TLD-100	40
1.18 - Phantom de Solid Water RW1	40
1.19 - Simulação computacional	44
2 – Metodologia e resultados	
2.1 - Selecionamento dos detectores TLD-100	45
2.2 - Seleção da área de leitura dos espectros	47
2.3 - Calibração dos detectores TLD-100	50
2.4 - Medida na placa de Solid Water RW1	52
2.4.1 - Função de geometria, $G(r, \theta)$	61
2.4.2 - Função de anisotropia, $F(r, \theta)$	63
2.4.3 - Função de dose radial. $g(r)$ e constante de taxa de dose. A	
2.5 - Avaliação de incertezas	68
2.6 - Simulação computacional – simulação numérica semi-empírica da taxa de dose emitida	70
2.6.1 - Coeficientes de atenuação linear (u)	
2.6.2 - Parâmetros de entrada e saída do programa	
2.6.3 - Simulação completa do experimento	
2.6.4 - Comparação dos valores experimentais com os valores simulados	
3 – Conclusão	
4 – Trabalhos futuros	
5 – Referências bibliográficas	

Índice de Figuras

Figura 1 - Taxa bruta por 100.000, de incidência de câncer em homens, excetuando-se melanoma de
pele
Figura 2 – Estimativa para 2008 de tipos de câncer de maior incidência na população brasileira ⁹ 7
Figura 3 – Taxa bruta de mortalidade por câncer de algumas localizações primárias – Brasil – Homens,
1980-1996 ¹⁰
Figura 4 – Sistema urinário e detalhe da próstata 10
Figura 5 – Freqüência com que a doença é diagnosticada
Figura 6 – Estadiamento conforme a extensão tumoral ¹⁴
Figura 7 – Desenho esquemático de implante com sementes radioativas em câncer da próstata ²⁰ 16
Figura 8 – Implante com sementes radioativas em câncer da próstata ²⁰
Figura 9 – Diagrama esquemático das bandas de energia do material termoluminescente
Figura 10 – Diagrama esquemático da geometria para especificação da intensidade de uma fonte de
braquiterapia. A distância d deve ser suficientemente grande para que a fonte e o detector sejam
considerados como uma fonte pontual e um detector pontual
Figura 11 – Diagrama esquemático da fonte cilíndrica modelada como se fosse uma aproximação
linear. O ponto de referência é mostrado como 1 cm e 90° pelo eixo transverso da fonte
Figura 12 – Desenho esquemático da semente de iodo-125
Figura 13 – Diagrama esquemático do decaimento do iodo-125
Figura 14 – Curva característica de um dosímetro LiF:Mg. Ti. Esta curva foi obtida após o tratamento
térmico recomendado neste trabalho e sobre uma irradiação de 1 Gy de 137 Cs a temperatura ambiente 50 .
38
Figura 15 – Espectro de um dosímetro de LiF:Mg. Ti proveniente de 45 mGv de irradiação de 60 Co a
temperatura ambiente. O espectro mostra os picos componentes ajustados separadamente antes da
superposição de leitura. É importante deixar claro que o pico 1 já esvaneceu neste espectro. A parte de
cima da figura mostra os resíduos entre os valores medidos pelo equipamento e o ajustado
Figura 16 – Diagrama esquemático do <i>phantom</i> de <i>Solid Water</i> RW1 para os TLDs utilizados na
medida da função de anisotropia $F(r, \theta)$ 42
Figura 17 – Diagrama esquemático do <i>phantom</i> de <i>Solid Water</i> RW1 para os TLDs utilizados na
medida da função de dose radial $a(r, \theta)$ 43
Figura 18 – Diagrama esquemático do <i>phantom</i> de Solid Water RW1 para os TIDs utilizados pa
madida da constanta da tava da dosa. A
Figure 10 Place de estireno utilizada para la irradiação dos cristais. A place á composta de 8 linhas
rigura 19 – Flaca de estiteito utilizada para la inadiação dos cristais. A placa e composta de o initias
indicar o temenho, posicionou se uma mode com diâmetro aproximado de 22 mm
Figure 20 — Espectro do ponto control de comonte o 2 cm de distôncia. Medida efetuada em 20 de julho
de 2008 apés 14 horas de tempo de evenescôncie
Eigure 21 Espectre de ponte control de somente e 2 cm de distêncie mostrende es temperatures de
rigura 21 – Espectro do ponto central da semente a 2 cm de distancia, mostrando as temperaturas de
horas de tempo de evenescôncia
Figure 22 Eato de Dalace de Salid Water DW1 utilizado no irradição dos aristois TLD 100
$\frac{1}{22} = 100 ua piaca un solita waler Kwi i ultizada na infadiação dos cristais TLD-100 ampregedos pero a desimptria das somentos de indo 125 52$
Figure 23 — Foto do sistema de irradição montado com as 5 plaças do Solid Water DW1 - A plaças
control contám a semente de jodo 125 colibrada o os cristojo TLD 100
central content a semente de 1000-125 canorada e os cristais 1 LD-100.

Índice de Tabelas

Tabela 1 – Estimativas das taxas brutas de incidência por 100.000 e de número de casos novos por câncer, em homens, segundo localização primária⁹. A parte da tabela laranja é para homens e a parte Tabela 3 - Risco de câncer da próstata de acordo com os níveis de PSA e com o resultado do toque Tabela 6 - Composição elementar em fração de massa de materiais utilizados nos phatoms que Tabela 7 – Valores encontrados pela Leitora Victoreen na leitura dos dosímetros TLD-100 nas datas marcadas. Só estão apresentados os dosímetros que passaram nos dois testes de selecionamento escolhidos. A unidade da tabela é nC e a temperatura é dada em °C..... 48 Tabela 8 – Valores obtidos no Leitor Harshaw 2000 A/B para as medidas de *background*; a medida foi feita por 25 s e o valor abaixo é integrado em toda área do espectro encontrado...... 50 Tabela 9 - Valores obtidos no Leitor Harshaw 2000 para as medidas dos cristais irradiados no Tabela 10 – Atividade da semente de iodo-125 calibrada utilizada para a irradiação dos cristais na placa Tabela 12 – Datas e horários das irradiações, tempos de irradiação e tempo de evanescência...... 54 Tabela 13 – Valores medidos em cada cristal na medida efetuada dia 22 de julho de 2008 após 2 horas Tabela 14 – Valores medidos em cada cristal na medida efetuada dia 24 de julho de 2008 após 2 horas Tabela 15 – Valores medidos em cada cristal na medida efetuada dia 29 de julho de 2008 após 2 horas Tabela 17 – Valores calculados da média ponderada para as três medidas em cada cristal, já convertidos para miliGray (mGy) utilizando-se os valores da calibração efetuada no DERMOPAN II Tabela 18 – Valores calculados da média ponderada para as três medidas em cada cristal, já convertidos para miliGray (mGy) e organizados para melhor visualização nos ângulos de cada medida Tabela 19 – Valores calculados da média ponderada para as três medidas em cada cristal, já convertidos para miliGray (mGy) e organizados para melhor visualização nos ângulos de cada medida Tabela 20 – Função de geometria para 2,0 cm de distância, mostrando o valor de β (Beta) Tabela 21 – Função de geometria para 5,0 cm de distância, mostrando o valor de β (Beta) Tabela 22 – Função de geometria para 7,0 cm de distância, mostrando o valor de β (Beta)

Tabela 23 – Função de geometria para o ângulo de 90° e distâncias de 0,5 cm, a ser utilizada no cálculo Tabela 24 – Valores da função de anisotropia. A tabela mostra os valores calculados a partir dos Tabela 25 – Posição de cada cristal de acordo com a numeração do mesmo e as distâncias utilizadas nas Tabela 26 – Valores medidos em cada cristal no dia 26 de agosto de 2008 após 2 horas de irradiação Tabela 27 – Valores calculados das medidas em cada cristal, já convertidos para miliGray (mGy) Tabela 29 – Valores da função de dose radial. A tabela mostra os valores calculados a partir dos valores Tabela 31 - Coeficientes de atenuação linear dos materiais utilizados neste trabalho com seus Tabela 32 – Valores calculados da média ponderada já convertidos para Roentgen (R), e o valor médio da faixa de energia para cada ponto experimental simulado pelo programa MANZ07. São também apresentados os valores da diferença percentual de cada ponto, sendo considerados os valores

1 – Considerações teóricas

1.1 - Câncer

Segundo a Organização Mundial da Saúde (OMS) diagnosticam-se mais de 10 milhões de casos novos de câncer a cada ano. Estima-se para o ano 2020 o diagnóstico de 15 milhões de novos casos. O câncer é um problema de saúde pública em praticamente todo o mundo. Anualmente, encurta a existência de seis milhões de indivíduos, provocando 12% das mortes^{1,2}.

Na FIG.1 o mapa mostra um panorama mundial da incidência de câncer em homens³.

Câncer em Homens excetuando-se melanoma de pele Taxa Bruta de Incidência por 100.000

Figura 1 – Taxa bruta por 100.000, de incidência de câncer em homens, excetuando-se melanoma de pele. Fonte: Organização Mundial da Saúde – GLOBOCAN-2002.

Atualmente, o câncer é a segunda causa de morte por doença na maioria dos países, subseqüente às doenças cardiovasculares, quando não se consideram os óbitos por causas externas⁴.

Embora não sejam comumente discutidas, as repercussões de ordem econômica e social do câncer são de grande monta. As implicações para os doentes, a família e a sociedade em geral são a dor, o sofrimento, a incapacidade e a morte. Representam milhões de anos de vida perdidos, vasta

quantidade de recursos destinados à detecção, diagnóstico e tratamento e, ainda, recursos econômicos perdidos anualmente pela redução do potencial de trabalho humano⁵.

Câncer é o nome dado a um conjunto de mais de 100 doenças que têm em comum o crescimento desordenado (maligno) de células que invadem os tecidos e órgãos, podendo espalhar-se (metástase) para outras regiões do corpo⁶.

O tumor da próstata é o tipo de câncer mais comum entre os homens da América do Norte, excluindo-se os tumores de pele, segundo o *National Cancer Institute* dos Estados Unidos da América. Em 1998, foram estimados 184.000 casos novos e 39.200 óbitos por câncer da próstata. Ainda de acordo com esse Instituto, 19% dos homens com mais de 50 anos de idade serão vítimas dessa doença e nada faz crer que no Brasil estes números sejam diferentes^{6,7,8}.

Considerado um problema de saúde pública no Brasil, o câncer é a segunda causa de morte por doença, representando 13,2% de todos os óbitos do País. Para 2008, o Instituto Nacional de Câncer, do Ministério da Saúde, estima que, em todo o Brasil, serão registrados 466.730 casos novos de câncer, sendo para o sexo masculino 231.860 e para o sexo feminino 234.870. Como pode ser observado na FIG. 2 e na TAB. 1, estima-se que o principal câncer a acometer a população brasileira será o câncer de pele não melanoma (115.010 casos), seguido pelas neoplasias malignas da próstata (49.530 casos), mama feminina (49.400 casos), pulmão (27.270 casos) e estômago (21.800 casos)^{9,10}.

Observando-se os dados de mortalidade para o sexo masculino nota-se que, exceto pela taxa do câncer de estômago, com tendência de queda, as taxas são crescentes para os cânceres de cólon, reto, pulmão e próstata. Essa evolução é mostrada na FIG. 3¹⁰.

Fontes: Ministério da Saúde: DataSus, SIM, INCA; e IBGE: DEPE/DEPIS

A estimativa de novos casos de câncer para o ano de 2008, segundo localização primária para o sexo masculino e feminino, pode ser observada na TAB.1.

Na cidade de São Paulo, conforme dados da Faculdade de Saúde Pública da Universidade de São Paulo, o número de homens que sofrem de câncer da próstata subiu cinco vezes desde 1969¹⁰.

O número estimado de casos novos de câncer da próstata para o Brasil, em 2008, é de 49.530. Estes valores correspondem a um risco estimado de 52,43 casos novos a cada 100 mil homens.

1.2 - A próstata e o câncer da próstata

A próstata, glândula com as dimensões de uma noz, situa-se em torno do canal uretral, responsável pelo transporte de urina da bexiga para o exterior (FIG. 4). Após os 40 anos de idade, 80% a 90% dos homens apresentam um crescimento benigno da glândula, que estrangula a luz do canal uretral e cria graus variados de dificuldade para expelir a urina¹¹.

Tabela 1 – Estimativas das taxas brutas de incidência por 100.000 e de número de casos novos por câncer, em homens, segundo localização primária⁹. A parte da tabela laranja é para homens e a parte azul para mulheres.

	E	stimativa dos	s Casos Novo)S
Localização Primaria Neoplasia maligna	Estado		Capital	
	Casos	Taxa Bruta	Casos	Taxa Bruta
Próstata	49.530	52,43	13.990	67,81
Traquéia, Brônquio e Pulmão	17.810	18,86	5.150	24,91
Estômago	14.080	14,92	3.590	17,42
Cólon e Reto	12.490	13,23	4.360	20,99
Cavidade Oral	10.380	11,00	3.000	14,45
Esôfago	7.900	8,35	1.640	7,84
Leucemias	5.220	5,52	1.460	7,06
Pele Melanoma	2.950	3,09	830	3,80
Outras Localizações	55.610	58,87	17.010	82,32
Subtotal	175.970	186,29	51.030	246,97
Pele não Melanoma	55.890	59,16	13.230	64,02
Todas as Neoplasias	231.860	245,47	64.260	310,93

	Estimativa dos Casos Novos			
Localização Primária Neoplasia maligna	Estado		Capital	
	Casos	Taxa Bruta	Casos	Taxa Bruta
Mama Feminina	49.400	50,71	17.400	76,04
Colo do Útero	18.680	19,18	5.620	24,49
Cólon e Reto	14.500	14,88	5.450	23,80
Traquéia, Brônquio e Pulmão	9.460	9,72	3.070	13,49
Estômago	7.720	7,93	2.380	10,30
Leucemias	4.320	4,44	1.340	5,89
Cavidade Oral	3.780	3,88	1.140	4,83
Pele Melanoma	2.970	3,03	930	3,69
Esôfago	2.650	2,72	620	2,30
Outras Localizações	62.270	63,93	22.530	98,39
Subtotal	175.750	180,43	60.480	264,11
Pele não Melanoma	59.120	60,70	14.140	61,73
Todas as Neoplasias	234.870	241,09	74.620	325,77

Figura 4 – Sistema urinário e detalhe da próstata¹².

O outro problema que pode atingir a próstata é o câncer, sem relação com o crescimento benigno e que tem todas as implicações indesejáveis das doenças malignas. Além do constrangimento físico que impõe aos seus portadores, as doenças da próstata têm implicações socioeconômicas que não são desprezíveis. Somente para tratamento desses dois problemas são gastos anualmente nos Estados Unidos cerca de US\$ 6 bilhões, sem contar o fardo de vidas ceifadas pela doença¹³.

Com relação ao câncer da próstata o número de casos da doença triplicou nos últimos 15 anos. Três motivos explicam o aumento no número de casos da doença. O câncer da próstata atinge principalmente indivíduos com mais de 50 anos e a sua freqüência cresce com a idade (FIG. 5). Com o aumento da longevidade do homem, mais casos são gerados na população atingindo quase 50% dos indivíduos com 80 anos; este tumor, provavelmente, não poupará nenhum homem que viver até 100 anos (TAB. 2).

Em segundo lugar, a maior ilustração dos leigos sobre o problema e as constantes campanhas de detecção da doença permitiram identificar mais pacientes com câncer. Finalmente, ocorreu um aumento real na incidência desse tumor maligno¹³.

Figura 5 – Freqüência com que a doença é diagnosticada.

Idade	Na autópsia	No exame clínico
50 - 59	11%	4%
60 - 69	24%	11%
70 – 79	32%	23%
Mais de 80	44%	28%

Tabela 2 – Freqüência com que se descobre os casos de câncer da próstata¹³.

Influências ambientais, como baixa exposição ao sol, e alimentares, como ingestão excessiva de gordura animal, têm sido responsabilizadas pelo fenômeno e explicam, provavelmente, por que o câncer da próstata é 20 vezes mais comum em países escandinavos e nos Estados Unidos da América do que na China e Japão. Quando orientais passam a viver nos Estados Unidos da América, a

incidência da doença nestes homens passa a se igualar a dos norte-americanos, atestando a influência de agentes ambientais sobre o aparecimento do problema¹³.

A causa precisa do câncer da próstata não é conhecida, mas sabe-se que dois fatores aumentam os riscos da doença: raça e casos na família. Esse câncer é 50% mais freqüente em negros do que em brancos; também se manifesta de forma mais agressiva em negros, cuja chance de morrer pelo mal é o dobro da observada em brancos. Da mesma forma, os riscos de câncer da próstata dobram em homens que têm um parente de primeiro grau (pai ou irmão) com a doença e é cinco vezes maior quando dois parentes de primeiro grau são atingidos pelo tumor¹³.

A próstata elimina uma substância que é possível ser dosada na circulação e não é produzida por nenhum outro órgão. Seu nome é antígeno prostático específico, conhecido pelo termo PSA. O valor do PSA é correlacionado com a quantidade de tecido prostático, isto é, quanto maior a próstata, maior é o PSA. A célula cancerosa produz mais PSA do que uma célula prostática normal.

A identificação do câncer pode ser feita com precisão pelo especialista, por meio do toque da próstata e das dosagens no sangue do antígeno prostático específico (PSA). Esses dois exames devem ser realizados conjuntamente, já que se registram falhas na identificação pelo toque em 30% a 40% dos casos e, pelo PSA, em 20%.

O câncer da próstata tem um comportamento clínico único, comparado com outras doenças malignas. Quando se inspeciona a próstata de indivíduos com mais de 50 anos que faleceram por outros motivos, são encontrados focos cancerosos em 30% a 45% dos mesmos. Contudo, nessa mesma faixa etária, apenas 13% dos homens apresentam, em vida, manifestações do câncer e somente 3,5% morrem pelo mal¹³.

Para descrever a extensão do tumor, identificado como estadiamento, (FIG. 6) existem várias classificações, como classificação de Whitemore e TNM. Além da extensão tumoral, é importante saber que o câncer da próstata apresenta uma diversificação de células, mais ou menos malignas, que também sofrem um processo de classificação, conhecido por Classificação de Gleason¹³.

T1: Tumor localizado, pequeno e não identificado por toque retal. A sua identificação pode ser feita pelo nível de PSA no sangue.

T2: Tumor localizado, que já pode ser identificado por toque retal ou por ultra-som. Não há sintomas.

T3: O tumor espalha-se por áreas próximas a glândula. Observa-se dificuldade ao urinar.

T4: O tumor espalha-se com mais agressividade de forma a atingir outros órgãos, como a bexiga. Inicia-se um processo de metástase que pode culminar com o ataque ao reto e outros órgãos do corpo.

Figura 6 – Estadiamento conforme a extensão tumoral¹⁴.

Preocupados com o problema e auxiliados por recursos mais sofisticados de informática médica, os especialistas desenvolveram instrumentos denominados nomogramas que permitem saber como deve ser o tratamento. O mais utilizado, conhecido como nomograma de Partin, relaciona as taxas de PSA no sangue, a extensão da doença no organismo e o aspecto do tumor na biópsia (escala de Gleason)¹³.

O relatório da biópsia anátomo-patológica deve fornecer a graduação histológica do sistema de Gleason, cujo objetivo é informar sobre a provável taxa de crescimento do tumor e sua tendência à disseminação, além de ajudar na determinação do melhor tratamento para o paciente. Na graduação histológica, as células do câncer são comparadas às células prostáticas normais. Quanto mais diferentes

das células normais forem as células do câncer, mais agressivo será o tumor e mais rápida será sua disseminação¹³.

A classificação de Gleason varia de 2 a 10. Quanto mais baixo o escore de Gleason, melhor será o prognóstico do paciente:

Gleason de 2 a 4 – existe cerca de 25% de chance de o câncer disseminar-se para fora da próstata em 10 anos, com dano em outros órgãos, afetando a sobrevida;

Gleason de 5 a 7 - existe cerca de 50% de chance de o câncer disseminar-se para fora da próstata em 10 anos, com dano em outros órgãos, afetando a sobrevida;

Gleason de 8 a 10 - existe cerca de 75% de chance de o câncer disseminar-se para fora da próstata em 10 anos, com dano em outros órgãos, afetando a sobrevida.

Para o antígeno prostático específico (PSA) aceitam-se como valores limites normais até 4 ng/ml; porém podem existir tumores com PSA abaixo deste valor. Quando o PSA estiver acima de 10 ng/ml há indicação formal para biópsia. Para valores entre 4ng/ml a 10 ng/ml deve-se também levar em consideração a velocidade do PSA e a relação PSA livre/total¹³ (TAB. 3).

Níveis de	Risco de câncer		
PSA no sangue	Toque Normal	Toque Anormal	
Desconhecido	10%	40%	
Menor que 4	3%	15%	
Entre 4 e 10	15%	60%	
Maior que 10	50%	95%	

Tabela 3 – Risco de câncer da próstata de acordo com os níveis de PSA e com o resultado do toque digital¹³.

1.3 - Formas de tratamento do câncer da próstata

A escolha do tipo de tratamento para o câncer da próstata deve considerar vários fatores como: tamanho e extensão do tumor (estadiamento), agressividade aparente (características patológicas), PSA (antígeno prostático específico), idade, saúde e preferências do paciente^{14,15}. Entre as opções de tratamento estão a cirurgia e a radioterapia (teleterapia ou braquiterapia).

A primeira opção, prostatectomia radical, é um procedimento cirúrgico onde a próstata e os tecidos vizinhos são removidos enquanto o paciente está sob anestesia. Os principais efeitos colaterais

são a incontinência urinária, que atinge 35% dos pacientes, e a impotência sexual, que atinge de 65% a 90% dos pacientes¹⁶.

A segunda opção é a terapia com radiação, que pode ser de dois tipos. A teleterapia, tratamento mais utilizado, é feito com feixe de radiação externo. A próstata e os tecidos vizinhos são tratados por um feixe de radiação proveniente de um acelerador linear de elétrons. A outra modalidade de tratamento, chamada braquiterapia, é o método no qual fontes radioativas seladas são colocadas em contato com o tumor. A lesão é atingida por alta dose de radiação, reduzindo-se sensivelmente nos tecidos sadios das vizinhanças^{17,18}.

A braquiterapia intersticial permanente com sementes radioativas está indicada isoladamente aos pacientes com bom prognóstico (Estadiamento T1-T2a, PSA < 10ng/ml, Gleason < 7)¹².

Na braquiterapia, pequenas sementes contendo material radioativo são implantadas na próstata¹⁹ (FIG. 7 e 8). Como a ocorrência de efeitos colaterais é menor, 85% das pessoas que são potentes sexualmente antes do procedimento, entre os pacientes de até 70 anos de idade, não apresentam alteração da atividade sexual. Também a incontinência urinária raramente acomete esses pacientes²⁰.

As vantagens dos implantes com sementes radioativas, em comparação com os tratamentos convencionais, como a prostatectomia radical e o feixe de radiação externo, são a preservação de tecidos sadios e de órgãos próximos à próstata, a baixa taxa de impotência sexual e a pequena incidência de incontinência urinária^{21,22}.

Os implantes com sementes são procedimentos de baixo impacto e não cirúrgicos. A maioria dos pacientes pode retornar à atividade normal dentro de um a três dias, com pequena ou nenhuma dor. No caso da prostatectomia radical, os pacientes permanecem no hospital por três a cinco dias e, para recuperação, diversas semanas em casa. Os que se submetem ao feixe externo de radiação devem ir ao centro de tratamento diariamente, durante sete a oito semanas²³.

Os dois isótopos mais usados para as sementes radioativas são o iodo-125 e o paládio-103. O paládio-103 tem meia-vida curta de apenas 16,96 dias, quando comparado ao iodo-125, cuja meia-vida perfaz 59,408 dias, e por conseguinte sua dose é liberada a uma taxa mais rápida que a dose do iodo-125. Em razão das diferenças nas taxas de dose entre o iodo-125 e o paládio-103, tornou-se prática comum utilizar o primeiro para tumores de próstata de crescimento lento e grau baixo e o segundo para câncer da próstata de crescimento rápido e grau alto²⁴.

Utilizando-se exames de sangue com valor do PSA (antígeno prostático específico) e os escores de Gleason (grau patológico), os médicos são capazes de identificar os pacientes que são elegíveis para o procedimento²⁵.

Os implantes com sementes oferecem um tipo de terapia menos invasiva para tratamento de câncer da próstata em estágios iniciais, quando comparado com outros métodos. As fontes são implantadas durante um procedimento não cirúrgico, isto é, pequenas sementes são injetadas diretamente na próstata com a ajuda de uma agulha fina (diâmetro de 1,0 mm) através da pele, entre o reto e o escroto^{26,27}, usando um sistema de visualização do órgão e das sementes implantadas por ultrassonografia transretal. Uma dose de radiação relativamente alta é liberada no tumor, sem atingir tecidos circunvizinhos, pois o iodo-125 tem radiação de baixa energia (energia média igual a 29 keV) que é pouco penetrante²⁸.

Figura 7 – Desenho esquemático de implante com sementes radioativas em câncer da próstata²⁰.

Figura 8 – Implante com sementes radioativas em câncer da próstata²⁰.

1.4 - Sementes de iodo-125

O tratamento de câncer da próstata com o implante permanente de sementes de iodo-125 cresceu expressivamente nos Estados Unidos da América nos últimos anos^{29,30}.

A técnica também vem sendo utilizada por hospitais e clínicas particulares do Brasil. As sementes são importadas ao custo mínimo de US\$ 50,00 a unidade, preço que as torna proibitivas para uso em hospitais públicos, pois um implante requer pelos menos 80 unidades. Para diminuir custos financeiros e possibilitar a distribuição para entidades de saúde pública, aventou-se a hipótese de desenvolvimento da técnica de produção das sementes no País.

No mercado internacional, cada semente custa de 30 a 45 dólares americanos e a quantidade de sementes requerida por implante é de 80 a 120 unidades²⁷.

As sementes apresentam dimensões diminutas e todas são compostas de uma cápsula de titânio de 0,8 mm de diâmetro externo, 0,05 mm de espessura de parede e 4,5 mm de comprimento. A estrutura interna varia significativamente de modelo para modelo. Algumas têm a radioatividade distribuída em pequenas esferas de resina ou matriz cerâmica. Outras têm o material radioativo depositado em um substrato radio-opaco³¹. No caso das sementes utilizadas neste trabalho, da Amersham-Oncura-Ge Healthcare, e das sementes a serem produzidas no Brasil, utiliza-se um fio de

prata como substrato. A atividade típica das sementes é de 0,5 mCi (18,50 MBq) de iodo-125, com variação de no máximo \pm 5%, em um mesmo lote de sementes^{32,33}.

1.5 - Situação atual³⁴

A totalidade das sementes de iodo-125 utilizadas para braquiterapia é produzida nas dimensões 0,8 mm de diâmetro externo, 0,05 mm de espessura de parede e 4,5 mm de comprimento. Os dispositivos aplicadores para o implante das sementes existentes no mercado são apropriados para essas dimensões.

Todas as sementes são encapsuladas em titânio porque esse elemento é um material inerte, que não causa rejeição quando em contato direto com o tecido humano, sendo classificado como material biocompatível.

Os fabricantes de sementes existentes no mundo concentram-se no Reino Unido, Bélgica e Estados Unidos da América e as sementes por eles produzidas diferem quanto ao processo utilizado na fabricação, sendo exclusivos e protegidos por patentes, tornando a sua reprodução proibida ou bastante onerosa face aos "royalties" da propriedade industrial, inviabilizando comercialmente a sua industrialização em outros países.

As sementes de iodo-125 são classificadas como fontes radioativas seladas conforme a norma International Standard Organization. Radiation Protection – Sealed Radioactive Sources – General Requirements and Classification ISO-2919³⁵.

1.6 - Necessidade do País

A necessidade de produção no País de sementes de iodo-125 foi transmitida ao Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP) pela classe médica, representada por médicos e físicos da área de radioterapia dos hospitais Albert Einstein, Sírio-Libanês, A. C. Camargo, Santa Casa de Misericórdia de São Paulo, Clínica Ivo Roesler de Recife, Instituto do Radium de Campinas e Escola Paulista de Medicina - UNIFESP. A estimativa de demanda das sementes de iodo-125 é de 8.000 sementes/mês.

Uma vez que repetir as técnicas utilizadas pelos fabricantes atuais de sementes de iodo-125 é proibido ou inviável economicamente, e que a demanda do País para este tipo de produto terapêutico é muito grande, tendendo a aumentar nos próximos anos, faz-se necessária a produção local das sementes de modo a ser obtida pela pesquisa e desenvolvimento de novas técnicas.

Como a classe médica tem urgência no uso das sementes, o IPEN, em um primeiro momento, optou por comprar o iodo-125 no mercado e desenvolver novas técnicas de produção da semente. Posteriormente, a produção do radioisótopo iodo-125, utilizado na confecção da semente, será avaliada.

Para atender a solicitação da classe médica, o IPEN constituiu um projeto para viabilizar a produção local de sementes de iodo-125. O presente trabalho se insere nesse projeto e tem o propósito específico de estudar e desenvolver nova metodologia para caracterizar as sementes.

Sendo uma nova tecnologia, não estará sujeita aos mecanismos de proteção industrial dos fabricantes que produzem comercialmente as fontes seladas, isentando o IPEN e o País do pagamento de "royalties".

Do ponto de vista social, o domínio tecnológico permitirá que as sementes produzidas localmente tenham menor custo, possibilitando que as camadas mais carentes da nossa população tenham acesso à terapia com o implante permanente de sementes, que apresenta sensíveis vantagens em relação aos métodos tradicionais.

1.7 - Braquiterapia

Isótopos que emitem raios-gama ou partículas beta de energia baixa, principalmente, e que podem ser produzidos com atividade adequada, têm sido empregados em implantes permanentes de braquiterapia por décadas. Fontes radioativas de iodo-125, por exemplo, na forma de sementes, são usadas largamente em braquiterapia para muitas formas de câncer e em uma variedade de sítios anatômicos^{36, 37, 38, 39, 40}. A energia baixa dos fótons emitidos pelo iodo-125 fornece proteção relativa aos tecidos normais adjacentes e reduzem a exposição do pessoal envolvido, quando comparado com outros radioisótopos cujas emissões têm energias mais altas.

Recentemente, a demanda por fontes deste tipo para aplicação em tratamento de câncer de próstata tem levado à introdução de novos projetos de fontes de novos fabricantes. Antes de sua aplicação clínica, entretanto, é necessário analisar as características dosimétricas destas novas fontes, a fim de se obter dados confiáveis para serem usados no planejamento do tratamento e na prescrição da dose.

1.8 - Uso clínico de rotina de novas fontes intersticiais de braquiterapia

Medidas exatas da distribuição da dose em torno destas fontes em um meio simulador do tecido humano é complicado, pois existem requisitos estritos para o dosímetro e para a geometria da fonte e, também, pelo fato de ocorrer uma variação espectral significativa com a distância da fonte^{41, 42, 43}.

Os protocolos atuais de dosimetria em braquiterapia supõem que a fonte pode ser aproximada, fisicamente, por uma fonte pontual. As fontes de braquiterapia reais raramente são esféricas em estrutura e exibem anisotropia devido à auto-atenuação da radiação dentro da fonte, e, portanto, a aproximação de fonte pontual apresenta alguma inexatidão. A distribuição de dose produzida em um meio espalhador por uma fonte real pode ser obtida somente por medidas em um meio equivalente à água. Para modelar exatamente a distribuição da dose em torno de fontes de braquiterapia instituições, como por exemplo a Associação Americana de Físicos em Medicina (AAPM), têm desenvolvido formalismos de cálculo de dose que empregam novas funções numéricas derivadas de medidas em material simulador de tecido, em conjunto com uma geometria da fonte mais realística que a aproximação de fonte pontual⁴⁴. Estas funções variam com a estrutura e geometria da fonte, além do espectro primário de fótons e do meio, e, portanto, cada tipo de fonte requer uma caracterização individual.

De acordo com o protocolo *Task Group* 43 da AAPM^{45,45}, que será abordado melhor um pouco à frente neste trabalho, a taxa de dose em um ponto com coordenadas (r, θ) do centro de uma fonte de intensidade kerma-ar S_k pode ser expressa como:

$$D(r,\theta) = \Lambda t.S_k \frac{G(r,\theta)}{G(r_0,\theta_0)}.F(r,\theta).g(r)$$
(1)

em que *r* é a distância radial do centro da fonte, no plano contendo o eixo da fonte; θ denota o ângulo polar; Λ é a constante de taxa de dose (cGyh⁻¹U⁻¹ ou cm⁻²); *t* é o tempo de exposição; *S_k* é a intensidade de kerma-ar (expressa em unidades de cGycm²h⁻¹ ou U); *G*(*r*, θ) é o fator de geometria (cm⁻²), que considera a distribuição do material radioativo; *F*(*r*, θ) é a função de anisotropia (adimensional), que leva em conta a dependência angular da absorção e espalhamento dos fótons e *g*(*r*) é a função radial de dose (adimensional), que considera a dependência radial da absorção e espalhamento dos fótons no meio ao longo do eixo transversal ($\theta = \pi / 2$). O ponto de referência (*r*₀, θ_0) é *r*₀ = 1 cm e $\theta_0 = \pi / 2$. A unidade denotada por um símbolo U, intensidade kerma-ar, é considerada como sendo: 1 U = 1 unidade de intensidade de kerma-ar = 1 µGy.m².h⁻¹ = 1 cGy.cm².h⁻¹ Cada uma das funções ou fatores usados por este protocolo, exceto o fator de geometria e a intensidade de kerma-ar, devem ser determinados por medidas em simulador equivalente a água. O fator de geometria é determinado por cálculos aritméticos e a intensidade de kerma-ar é medida com uma câmara de ionização⁴⁶.

Dados relativos são escassos para medidas a distâncias menores que 1 cm do centro da fonte. Estes dados para distâncias curtas são particularmente importantes para a dosimetria de placas oculares em tratamentos de melanoma ocular. Também, o rápido decréscimo da dose com a distância torna as medidas a distâncias maiores que 5 cm difíceis e acarretam maiores incertezas nos resultados. Os dados para distâncias longas são necessários, principalmente, para se efetuar uma estimativa da dose em órgãos críticos.

1.9 - Dosimetria termoluminescente

Certos materiais cristalinos, quando aquecidos, emitem luz cuja intensidade é proporcional à quantidade de radiação previamente recebida. Este processo é chamado termoluminescência. O processo pelo qual a dose de radiação é calculada por meio da intensidade de luz emitida pelo cristal é chamado de dosimetria termoluminescente.

A explicação formal e teórica do processo termoluminescente é extensa e utiliza um formalismo de mecânica quântica, e não é o escopo deste trabalho. Assim, será dado aqui uma explicação superficial, útil somente para a compreensão dos aspectos dosimétricos deste trabalho.

Nos átomos individuais, os elétrons ocupam níveis discretos de energia, enquanto em uma rede cristalina os níveis energéticos surgem por interações entre os elétrons, núcleos atômicos e a rede, dando origem à estrutura de bandas de energia (proibida e permitida)^{47,48,49,50,51}.

O fenômeno da termoluminescência pode ser explicado qualitativamente com um esquema de bandas para os níveis de energia dos elétrons ou buracos, que constituem os portadores de carga nos sólidos. Os materiais utilizados são cristais isolantes iônicos, nos quais a banda de valência (BV) está repleta de elétrons e a banda de condução (BC) está vazia, ambas separadas por uma faixa de energia denominada banda proibida, onde não são permitidos estados energéticos, exceto os estados localizados devido aos "ativadores", chamados de "armadilhas". A teoria de bandas prevê a existência de elétrons "caminhantes" na BC e de "buracos" que são portadores de carga positiva que "caminham" na BV.

Quando o material é irradiado, são formados pares de elétron-buraco, onde os elétrons migram pelo cristal na BC e os buracos na BV até se recombinarem ou serem capturados pelas armadilhas.

Aquecendo-se posteriormente o material irradiado, os elétrons ou buracos (conforme o tipo de armadilha), podem absorver energia térmica suficiente para escaparem, sendo que os elétrons voltam para a banda de condução e os buracos para a banda de valência. Quando as armadilhas para elétrons são mais rasas, estes se libertam primeiro e podem movimentar-se livremente pelo cristal até se recombinarem com os buracos ainda armadilhados, eventualmente com emissão de luz. Pode haver também a liberação simultânea de portadores de carga negativos e positivos, ocorrendo então a recombinação nos centros de luminescência. Um esquema simplificado pode ser visualizado na FIG. 9.

Figura 9 – Diagrama esquemático das bandas de energia do material termoluminescente.

O volume sensível de um dosímetro termoluminescente (TLD) consiste de uma pequena massa de material dielétrico cristalino (de 1 a 100 mg), contendo "ativadores" que são imperfeições ou impurezas da rede cristalina cuja presença promove a termoluminescência.

A quantidade de luz emitida por estes cristais é mensurável por fotomultiplicadoras ou fotodiodos, aumentando sua intensidade com a população de elétrons ou buracos armadilhados, proporcionalmente à dose absorvida. A curva de emissão característica de um material termoluminescente representa a intensidade de luz emitida pelo cristal em função da temperatura ou do tempo de aquecimento. Esta curva pode ser constituída por vários picos. Cada um destes picos está associado de maneira complexa com os estados energéticos das "armadilhas", seja de elétron, ou de

buraco, e é caracterizado pela temperatura onde ocorre o máximo de emissão de luz. A formação do pico de emissão está relacionada à probabilidade de escape do portador de carga da armadilha correspondente. Portanto, quando a temperatura do material é menor que a temperatura do pico em questão, poucos portadores de carga são liberados e a intensidade da luz é baixa. Aumentando-se a temperatura do cristal, a probabilidade de escape aumenta, intensificando assim a emissão, que é máxima na temperatura de pico. A intensidade decresce em seguida devido à redução do número de armadilhas remanescentes, ainda preenchidas. A forma da curva de emissão depende dos tipos de armadilhas e dos centros de luminescências existentes no material termoluminescente, da taxa de aquecimento e do aparelho de "leitura TL" utilizado^{49,50,51}.

1.10 - Especificação da intensidade da fonte

Para se fazer qualquer avaliação de significado dos resultados clínicos de uma terapia com fonte selada, é necessário que haja uniformidade dos cálculos da dose absorvida, de acordo com o modo pelo qual a intensidade de uma fonte de braquiterapia encapsulada é especificada e com a rastreabilidade da calibração da fonte em relação a um padrão nacional.

Historicamente, a intensidade de uma fonte era definida em termos da massa de rádio encapsulado, junto com a espessura da parede de filtração. No uso em conjunto com a constante gama, ou seus substitutos, é possível calcular a taxa de exposição. Uma vez que a constante gama específica para o rádio-226 é definida em termos da filtração de 0,5 mm de platina, um fator de correção que leva em conta a diferença na espessura de filtração é empregado. A não aplicação deste fator causa um erro na dose da ordem de 7-17%, dependendo da espessura da parede, se a intensidade da fonte é dada em termos somente do número de miligramas de rádio.

Com a substituição do rádio por outros radioisótopos, tem-se considerado a melhor maneira de se especificar a intensidade de uma fonte, sem se perder de vista a experiência clínica obtida com o uso do rádio. Os métodos adotados têm incluído a especificação da intensidade da fonte em termos dos seguintes parâmetros:

a. a atividade da fonte (atividade contida);

b. a atividade aparente ou equivalente;

c. o equivalente de massa do rádio, em miligramas;

d. a taxa de exposição ou kerma-ar a uma distância especificada da fonte, tipicamente expressa em m.R. h^{-1} ou μ Gy. h^{-1} a 1 m.

A determinação da atividade e da constante da taxa de exposição resulta em vários problemas. A atividade de uma fonte, em desintegrações por segundo, não é uma medida fácil de se obter, uma vez que a fonte é encapsulada. Um método direto possível emprega técnicas de coincidência de contagens. A atividade é usualmente determinada a partir de medidas de exposição, mas para isto é necessário conhecer exatamente o valor da constante de taxa de exposição ou kerma-ar. Um estudo dos dados publicados revela que diferenças de 15 a 20% têm sido reportadas por diferentes autores para alguns radionuclídeos, como irídio-192 e tântalo-182. Este resultado não surpreende, em vista do esquema de decaimento complexo destes nuclídeos, os quais formam a base para a determinação das constantes de taxa de exposição devida aos raios-gamas da fonte e não inclui fótons dos raios-x característicos do elemento químico que constitui a fonte e o *Bremsstrahlung* interno. Portanto, a especificação de fontes somente em termos da atividade e da constante da taxa de exposição é uma fonte de incerteza de medição na dosimetria de braquiterapia.

Para solucionar estes problemas, o termo atividade equivalente ou aparente foi proposto (National Commission on Radiation Protection and Measurements – NCRP, 1974; Comite Français Measure des Rayonmements Ionisants - CFMRI, 1984; British Committee on Radiation Units and Measurements - CRU, 1985)^{52,53,54,55}. Isto define a atividade de uma fonte pontual do mesmo radionuclídeo que resultará na mesma taxa de exposição ou kerma-ar no ar à mesma distância do centro da fonte, esta distância sendo grande o suficiente para que a fonte real seja considerada uma fonte pontual. A atividade aparente não é a mesma atividade contida, que é uma medida da atividade real da fonte dentro do material de encapsulamento. Uma extensão desta abordagem é definir a intensidade da fonte em termos da equivalente de miligramas de rádio (mg Ra eq), como anteriormente mencionado. Isto é definido como aquela atividade de nuclídeo que libera a mesma exposição ou taxa de kerma-ar na mesma distância da fonte como uma fonte pontual de rádio filtrado por 0,5 mm de platina. Novamente, este método de especificação da intensidade da fonte apresenta problemas, pois a geometria da fonte nas duas situações pode diferir. Isto realça as diferenças na especificação da fonte pois, por exemplo, muito embora o mg Ra eq de 1 mm e de um tubo de rádio ginecológico de 2 mm possam ter efeitos biológicos iguais, o número real de miligramas de rádio contido no tubo e a atividade contida, será diferente. Deve-se enfatizar, também, que erros ocorrem se o mg Ra eq de um radionuclídeo for determinado tomando a razão das constantes de taxa de exposição ou constantes gamas específicas do rádio e do substituto, sem considerar a filtração.

Na tentativa de resolver este problema, o NCRP $(1974)^{51}$ propôs que a intensidade da fonte deveria ser especificada em termos da taxa de exposição a uma distância de 1 m da fonte encapsulada, perpendicular ao centro do eixo longo da fonte. Esta abordagem é um dos métodos recomendados para especificar a intensidade de uma fonte de braquiterapia.

A constante de taxa de exposição, Γ_x , para um radionuclídeo é definida por⁵¹:

$$\Gamma_x = \frac{l^2 \cdot \dot{X}}{A} \tag{2}$$

em mR.m².h⁻¹.mCi⁻¹, onde \dot{X} é a taxa de exposição a uma distância *l* de uma fonte pontual de atividade *A*. As unidades típicas são miliroentgen metro quadrado por hora por milicurie. Γ_x é definido somente para emissores de fótons. A constante de taxa de exposição é uma característica do radioisótopo e é definida para uma fonte pontual não blindada ideal, de tal forma que os efeitos do encapsulamento não são incluídos. Uma exceção para esta regra é o rádio-226, para o qual Γ_x depende da espessura da filtração de platina e tem unidades de mR.m².h⁻¹.mg⁻¹. Para a computação da dose em braquiterapia, a escolha correta da constante da taxa de exposição é, de maneira geral, ditada pela convenção, não pela exatidão física. Assim, para qualquer outro radioisótopo, calibra-se em mg Ra equivalente, ou seja, a quantidade em mg de rádio-226 que geraria o mesmo efeito da fonte sendo calibrada. Usualmente, a escolha apropriada da constante de taxa de exposição, Γ_x , para planejamento de tratamento, é quase sempre 0,825 mR.m².h⁻¹.mg⁻¹.

1.11 - Taxa de exposição a uma distância de referência

A grandeza física medida pelo laboratório padrão, mesmo para "miligrama de rádio" ou "atividade aparente" foi e ainda continua sendo a ionização no ar a uma distância da fonte, que é equivalente a uma medida de exposição, ou taxa de exposição. Assim, a intensidade das fontes de braquiterapia tem sempre sido determinada por taxa de exposição no eixo transversal a uma distância com unidades típicas de mR.m².h⁻¹. Entretanto, esta quantidade foi sempre convertida, seja por laboratórios padrão, seja pelo usuário, em quantidades tais como atividade aparente ou massa equivalente de rádio, para uso clínico.

A grandeza exposição para fótons foi inteiramente trocada pela grandeza kerma-ar, que nos leva às grandezas modernas, baseadas na taxa de kerma-ar a uma distância de referência. A quantidade recomendada para especificação da intensidade de uma fonte de braquiterapia é a intensidade de kerma-ar, S_k , definida por⁵²:

$$S_k = k(d).d^2 \tag{3}$$

onde k(d) é a taxa de kerma-ar no espaço livre à distância *d* da fonte no plano normal e bissetor do eixo maior da fonte, isto é, no plano transversal (FIG. 10). Embora existisse muita discussão se a quantidade deveria ser kerma-ar ou kerma-água e se ela deveria ser especificada no espaço livre ou no vácuo, atualmente existe um consenso segundo o qual deve-se usar o kerma-ar no espaço livre. As unidades recomendadas são μ Gy.m².h⁻¹. Estas unidades são convenientes, pois 1 μ Gy.m².h⁻¹ = 1 cGy.cm².h⁻¹. Assim, o conhecimento da intensidade da fonte permite uma boa aproximação da dose a distâncias de significado clínico.

Figura 10 – Diagrama esquemático da geometria para especificação da intensidade de uma fonte de braquiterapia. A distância *d* deve ser suficientemente grande para que a fonte e o detector sejam considerados como uma fonte pontual e um detector pontual.

Existem, atualmente, duas quantidades utilizadas: intensidade kerma-ar e taxa de kerma-ar de referência. A taxa de kerma-ar de referência é a taxa de kerma-ar no espaço livre a 1 m (distância de referência), medida ao longo do bissetor perpendicular. As unidades recomendadas são μ Gy.m².h⁻¹ e μ Gy.h⁻¹ (a 1 m) para a intensidade kerma-ar e a taxa de kerma-ar de referência, respectivamente³⁸.

1.12 - Protocolo TG-43

O protocolo recomendado para dosimetria de fontes intersticiais de braquiterapia *Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43*⁴⁵, TG-43, é baseado em medidas de um número de grandezas físicas inter-relacionadas. Este protocolo foi revisado em março de 2004 pelo Task Group 84⁴⁶, porém continua sendo referido na literatura e conhecido pelos médicos por TG-43, ou TG-43U, que será como referiremos este protocolo neste trabalho.

As mudanças fundamentais para o presente trabalho, ocorridas na revisão do protocolo, foram⁵⁶:

- a) Durante o processo de dosimetria de fontes de braquiterapia, percebeu-se que a simulação por Monte Carlo da função de anisotropia, $F(r, \theta)$, era enormemente sensível à espessura e à profundidade do encapsulamento da fonte. E este parâmetro não é sempre medido de forma precisa pelos fabricantes de sementes. Portanto, vários pesquisadores utilizaram a espessura medida experimentalmente para simular em Monte Carlo.
- b) Vários pesquisadores têm discutido que a função geométrica da fonte, $G(r, \theta)$, como definido no protocolo TG-43, não é aplicável para certos "designs" de fonte. Neste trabalho, não nos preocuparemos com estas discussões, pois a semente utilizada tem o "design" aceitável pelos protocolos. O que vários pesquisadores têm proposto é que o fator geométrico seja avaliado por Monte Carlo ao invés de calculado analiticamente como proposto pelo protocolo.

O método de Monte Carlo também permite o cálculo para a distribuição de dose bidimensional em torno de fontes intersticiais e que são importantes para alimentar os sistemas de planejamento em uso.

Os dados dosimétricos que endossam esse protocolo resultam na escolha de taxa de dose absoluta para os dados do plano de tratamento usados convencionalmente. Além disso, foi dispensada uma cuidadosa atenção para o impacto clínico de tais recomendações.

O formalismo para o cálculo de dose proposto neste protocolo, em contraste com os métodos tradicionais que usam constante de taxa de exposição e fatores de atenuação do tecido, requer dados consistindo de taxas de dose de uma fonte efetiva em um objeto simulador equivalente ao tecido.

Cada uma das grandezas utilizadas para o cálculo da taxa de dose absorvida é medida ou calculada para o tipo específico de fonte em questão e, além disso, depende da construção da fonte e da geometria do espectro primário e médio dos fótons existentes nesta mesma fonte. Em contraste, muitos dos dados inseridos em antigos modelos semi-analíticos incluem a constante da taxa de exposição e fatores de crescimento da taxa de dose absorvida, que são propriedades fundamentais do radionuclídeo.

Um dos problemas fundamentais com os protocolos anteriores ao TG-43 é que eles baseiam-se na fluência de fótons em torno das fontes em espaço livre, enquanto que as aplicações clínicas requerem a distribuição de dose em meio que simule as condições do paciente.

A distribuição de dose bi-dimensional em um espalhamento médio de uma fluência de fótons conhecida em espaço livre é facilmente determinada apenas para uma fonte isotrópica puntiforme. Uma fonte de braquiterapia real apresenta uma anisotropia considerável e, para fontes semelhantes, é impossível determinar com precisão sua distribuição de dose nas mesmas condições. O formalismo recomendado resolve este problema fundamental pelo uso direto de medidas ou distribuições de dose mensuráveis, produzidas por uma fonte em um meio equivalente à água.

A AAPM recomenda aos sistemas de planejamento que sigam os seus próprios formalismos. Conforme mostrado anteriormente neste trabalho, o TG-43 estabelece que a taxa de dose deve ser expressa por intermédio da equação (1), reapresentada abaixo, como:

$$D(r,\theta) = \Lambda t.S_k \frac{G(r,\theta)}{G(r_0,\theta_0)}.F(r,\theta).g(r)$$
⁽¹⁾

em que *r* é a distância radial do centro da fonte, no plano contendo o eixo da fonte; θ denota o ângulo polar; Λ é a constante de taxa de dose (cGyh⁻¹U⁻¹ ou cm⁻²); *t* é o tempo de exposição; *S_k* é a intensidade de kerma-ar (expressa em unidades de cGycm²h⁻¹ ou U); *G*(*r*, θ) é o fator de geometria (cm⁻²), que considera a distribuição do material radioativo; *F*(*r*, θ) é a função de anisotropia (adimensional), que leva em conta a dependência angular da absorção e espalhamento dos fótons e *g*(*r*) é a função radial de dose (adimensional), que considera a dependência radial da absorção e espalhamento dos fótons no meio ao longo do eixo transversal ($\theta = \pi / 2$). O ponto de referência (*r*₀, θ_0) é *r*₀ = 1 cm e $\theta_0 = \pi / 2$.

1.12.1 - Ponto de referência para cálculo de dose

O ponto de referência (r_0, θ_0) é escolhido neste protocolo no plano bissetor da fonte a uma distância de 1 cm do seu centro, isto é, $r_0 = 1$ cm e $\theta_0 = \pi/2$. Esta escolha do ponto de referência para o cálculo de dose em um meio é consistente com o uso da prática tradicional usando uma distância de 1 cm da fonte como ponto de referência.

1.12.2 - Intensidade do kerma-ar, S_k

A intensidade de kerma-ar é a medida da intensidade da fonte de braquiterapia, a qual é especificada em termos de taxa de kerma-ar em um ponto ao longo do eixo transverso da fonte em
espaço livre. Esta intensidade de kerma-ar é definida como sendo o produto da taxa de kerma-ar em uma calibração à distância, d, em espaço livre, k(d), medida ao longo do bissetor transverso da fonte, e o quadrado da distância d, ou seja,

$$S_k = k(d).d^2 \tag{3}$$

A distância *d* da calibração deve ser grande o suficiente para que a fonte possa ser tratada como um ponto matemático. Considerando que as medidas da calibração da intensidade da fonte podem ser feitas a qualquer distância, é usual especificar a intensidade de kerma-ar em termos de uma distância de calibração de referência, d_0 , a qual é normalmente escolhida como sendo 1,0 m. Deve ser observado que o usuário típico não faz a calibração no ar, a qual é feita primeiramente pelos laboratórios de padronização primária, *National Institute of Standards and Technology* (NIST) por exemplo, e por laboratórios de padronização secundária. Para a medição do S_k de maneira mais precisa, foi construída a WAFAC (*wide-angle free-air chamber*) no NIST, com a qual consegue-se os valores mais precisos da intensidade de kerma-ar, devido ao vácuo e à facilidade na rotação. Assim, o valor recomendado pelo NIST para o valor da intensidade de kerma-ar é de 0,897 ± 0,007 µGy.m².h⁻¹.

Entretanto, é de responsabilidade do usuário verificar a precisão da intensidade da fonte fornecida pelo fabricante. Normalmente cada usuário possui um tipo de câmara de ionização que tem uma calibração dentro dos padrões nacionais para cada tipo de fonte de braquiterapia.

Se o kerma-ar, o tempo e a distância têm unidades de μ Gy, h e m respectivamente, S_k terá unidades de μ Gy.m².h⁻¹ como recomendado pelo relatório TG-32⁵⁷. Neste protocolo, estas unidades são denotadas por um símbolo U, que é considerado como sendo:

1 U = 1 unidade de intensidade de kerma-ar = $1 \mu \text{Gy.m}^2 \text{.h}^{-1} = 1 \text{ cGy.cm}^2 \text{.h}^{-1}$

1.12.3 - Constante de taxa de dose, Λ

A constante de taxa de dose é definida como sendo a taxa de dose na água a uma distância de 1 cm no eixo transversal de uma unidade da intensidade kerma-ar da fonte em um *phantom* de água. Deve ser observado que Λ é uma grandeza absoluta, não como outros parâmetros descritos a seguir, os quais são grandezas normalizadas e, portanto, relativas. Para as especificações da constante da taxa de dose, bem como os parâmetros da distribuição de dose relativa, o protocolo TG-43U recomenda que a água líquida seja aceita como meio de referência. Logo, para a determinação do valor de Λ , a fonte física (maior que uma fonte pontual idealizada) será posicionada e a medida será efetuada a 1 cm de

distância ao longo do eixo transverso relativo ao centro geométrico da fonte. Matematicamente, a constante de taxa de dose, Λ , é definida pela seguinte relação⁴⁵:

$$\Lambda = \frac{D(r_0, \theta_0)}{S_k} \tag{4}$$

A constante de taxa de dose inclui os efeitos da geometria da fonte, a distribuição espacial da radioatividade dentro da fonte, encapsulamento, e autofiltração dentro da fonte e espalhamento na água ao redor da fonte. O valor numérico desta grandeza também depende da padronização das medidas para as quais a calibração da intensidade de kerma-ar da fonte é rastreada. Em outras palavras, se o padrão da intensidade de kerma-ar, que é um dado da fonte fornecido pelo NIST, for mudado no futuro, o valor de Λ também será alterado. O valor indicado pelo NIST e utilizado pela Amersham – Oncura – GE Healthcare, empresa produtora da semente utilizada neste trabalho, é Λ = 0,973 cGy.h⁻¹.U⁻¹ e 1 mCi = 1,27 U⁵⁸.

1.12.4 - Função de geometria, $G(r, \theta)$

O fator geométrico leva em consideração a variação da dose relativa devido somente à distribuição espacial da atividade dentro da fonte, ignorando a absorção dos fótons e o espalhamento na estrutura da fonte, sendo definido como:

$$G(r,\theta) = \frac{\int v \left[\frac{\rho(r') dV'}{|r'-r|^2} \right]}{\int v \rho(r') dV'}$$
(5)

onde $\rho(r')$ representa a densidade de atividade no ponto $\rho(r') = \rho(x', y', z')$ dentro da fonte, *V* denota a integração da fonte sobre seu núcleo e *V* representa a constante de deposição de energia. O dV' é um elemento de volume localizado em uma distância r' da fonte. Uma vez que a distribuição tridimensional de $\rho(r')$ é incerta para muitas fontes, assim como as de iodo-125, e devido ao fato de que a escolha de $G(r, \theta)$ influencia apenas a precisão da interpolação, a aproximação para uma fonte linear seria selecionada para uso no protocolo TG-43U. Quando a distribuição de atividade pode ser aproximada por uma fonte linear pontual ou por uma fonte linear de comprimento *L*, então $G(r, \theta)$ é reduzido à

$$G(r,\theta) = \begin{cases} r^{-2} & \text{para aproximação fonte pontual na origem} \\ \frac{\beta}{Lr.sen(\theta)} & \text{para aproximação fonte linear} \end{cases}$$
(6)

em que *L* é o comprimento ativo da fonte, e β é o ângulo sub-entendido pela fonte ativa com relação ao ponto (r, θ) ; isto é, $\beta = \theta_2 - \theta_1$. O fator geométrico $G(r, \theta)$ representa a distribuição de dose hipotética relativa apenas à distribuição espacial de radioatividade e despreza os efeitos da absorção e espalhamento na fonte ou no meio ao redor. A representação esquemática da aproximação linear é visualizada na FIG. 11.

Figura 11 – Diagrama esquemático da fonte cilíndrica modelada como se fosse uma aproximação linear. O ponto de referência é mostrado como 1 cm e 90º pelo eixo transverso da fonte.

Para a aproximação linear e para simplificar os cálculos, podemos escrever que o valor de β será dado pela fórmula:

$$\beta = \theta_2 - \theta_1 = \cos^{-1} \left\{ \frac{r^2 - \left(\frac{L}{2}\right)^2}{\sqrt{\left(r \cdot \cos\theta - \frac{L}{2}\right)^2 + (r \cdot \sin\theta)^2}} \sqrt{\left(r \cdot \cos\theta + \frac{L}{2}\right)^2 + (r \cdot \sin\theta)^2} \right\}$$
(7)

1.12.5 - Função de dose radial, g(r)

A função de dose radial, g(r), leva em conta os efeitos da absorção e espalhamento no meio ao longo do eixo transverso da fonte, sendo definida como:

$$g(r) = \frac{D(r,\theta_0).G(r_0,\theta_0)}{D(r_0,\theta_0).G(r,\theta_0)}$$
(8)

A função de dose radial refere-se somente ao eixo transverso, isto é, somente para pontos com um ângulo θ_0 , que é igual a $\pi/2$. Esta função define o decréscimo da taxa de dose ao longo do eixo transverso devido à absorção e espalhamento no meio. Tal função pode também ser influenciada pela filtração de fótons pelo material de encapsulamento da fonte.

A função g(r) é similar ao fator de atenuação do tecido no eixo transverso normalizado ou de dose absorvida para kerma-ar. É importante ressaltar que a definição da função de dose radial no TG-43 é diferente de definições anteriores^{54,59}.

1.12.6 - Função de anisotropia, $F(r, \theta)$

A função de anisotropia leva em consideração a anisotropia da distribuição da dose em torno da fonte, incluindo os efeitos de absorção e espalhamento no meio. É definida como sendo:

$$F(r,\theta) = \frac{D(r,\theta).G(r,\theta_0)}{D(r,\theta_0).G(r,\theta)}$$
(9)

Esta função bidimensional dá a variação angular da taxa de dose sobre a fonte em cada distância devido à autofiltração, à filtração oblíqua dos fótons primários pelo material de encapsulamento e ao espalhamento de fótons no meio. A influência do fator geométrico na função radial é para suprimir a influência da lei do inverso do quadrado da distância na distribuição da dose em torno da fonte.

Devido ao alto gradiente da taxa de dose encontrado próximo das fontes intersticiais, é difícil medir a taxa de dose precisamente em distâncias menores que 5 mm da fonte. Adicionalmente, a grande variação da taxa de dose, crescente com a lei do inverso do quadrado da distância, causa imprecisão na interpolação do valor intermediário da taxa de dose. Para compensação dos efeitos da lei do inverso do quadrado da distância, a extrapolação para pequenas distâncias do perfil da taxa de dose medida à distâncias de 5 à 10 mm, bem como a interpolação entre valores medidos da distribuição esparsa, são normalmente mais precisos.

1.13 - Câmaras de ionização do tipo poço como dosímetro de transferência

Câmaras de ionização do tipo poço com a geometria aproximada de 4π são crescentemente empregadas na calibração de fontes de braquiterapia⁴³. Câmaras de ionização deste tipo têm as vantagens de serem pequenas, leves e estáveis, tanto estrutural quanto eletricamente. Elas podem ser

usadas, no entanto, somente para fontes cujos tipos tenham sido calibradas. Na prática, o Laboratório de Dosimetria tem que fornecer uma calibração para as fontes do usuário.

O laboratório padrão primário dos EUA, *National Institute of Standards and Technology* (NIST), por exemplo, fornece padrão absoluto para fontes de césio-137 com vários encapsulamentos, de irídio-192 e para, pelo menos, um fio de irídio-192, e para vários modelos 6711 e 6702 de sementes de iodo-125⁶⁰.

Os padrões para o césio-137 e para o irídio-192 foram estabelecidos pelo NIST a partir de medidas de exposição a uma distância padrão usando uma câmara de ionização esférica de grafite de volume conhecido. Estas são calibrações absolutas similares às usadas para a calibração de feixes externos de cobalto-60, e são independentes do padrão do rádio.

Para o caso das fontes de iodo-125, para o qual as energias dos fótons emitidos estão na faixa de 27-35 keV (TAB. 4), uma câmara de ionização convencional de ar livre projetada para feixes de raios-x externos na faixa de 20-100 keV foi utilizada. Por causa da intensidade baixa de fótons e outros problemas, para o irídio-192 e para o iodo-125 precisa-se de um arranjo de fontes para as medidas. Atualmente, utiliza-se uma câmara de ionização de ângulo largo, projetada especificamente para fontes de braquiterapia emissoras de fótons de energia baixa para verificar ou estabelecer o padrão para iodo-125. Este sistema pode medir a taxa de exposição de uma fonte simples.

Uma vez que o NIST estabeleceu fontes de trabalho padrão com os métodos descritos, estes padrões podem ser transferidos para a fonte do usuário. Para o césio-137, a fonte do usuário é comparada à fonte de trabalho por medidas a uma distância de 1 m com uma câmara esférica de grande volume (2,7 litros). Para fontes de meia-vida curta (irídio-192 e iodo-125) uma câmara de ionização esférica do tipo poço é usada como detector de transferência. A câmara de ionização tipo poço é calibrada por medida do padrão de trabalho em uma orientação fixa na câmara poço. A calibração é transferida à fonte do usuário por medida na mesma orientação no poço. A calibração pode somente ser transferida para fontes essencialmente idênticas em construção, pois a câmara poço é sensível à anisotropia da distribuição da dose em torno da fonte.

	Espectro de Energia do Iodo-125						
Energia (keV)	Tipo	Número médio de fótons por desintegração	Fração do Total (%)				
35,4	γ	0,0666	4,54				
31,8	Х	0,0426	2,90				
30,9	Х	0,2056	14,02				
27,4	Х	0,7615	51,91				
27,2	Х	0,3906	26,63				
Total		1,4669	100				

Tabela 4 – Fótons emitidos no decaimento do radionuclídeo iodo-125^{61,62}.

Em suma, a calibração de fontes pode ser feita, adequadamente, por medidas com câmaras cilíndricas a uma certa distância. O dosímetro que é preferível como sistema de transferência para a calibração da intensidade da fonte é um sistema eletrômetro/câmara de ionização tipo poço, sendo que a maior limitação é sua baixa sensibilidade à fótons de energia baixa e o encapsulamento da fonte. Entretanto, câmaras apropriadas são disponíveis especificamente para fontes de braquiterapia e devem ser consideradas como parte do sistema de dosimetria padrão disponível em um serviço moderno de radioterapia.

1.14 - Fonte radioativa de iodo-125, IPEN / CNEN - SP

No Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), o projeto de desenvolvimento de uma fonte radioativa de iodo-125 na forma de semente se encontra em fase de conclusão.

O modelo de semente desenvolvido é mostrado no desenho esquemático da FIG. 12.

A semente é constituída de uma cápsula de titânio de 0,8 mm de diâmetro externo, 0,05 mm de espessura de parede e 4,5 mm de comprimento. A parte interna tem um fio de prata de 0,5 mm de diâmetro e 3 mm de comprimento, material no qual o iodo-125 está adsorvido. O invólucro é de titânio porque esse material é resistente à corrosão, leve e biocompatível.

Figura 12 – Desenho esquemático da semente de iodo-125.

O iodo-125 é produzido em reator nuclear a partir do xenônio-124, que constitui apenas 0,1% do xenônio natural, por intermédio da reação nuclear de captura radiativa 124 Xe(n, γ) $^{125(m+g)}$ Xe, cuja seção de choque para nêutrons térmicos (0,0253 eV) perfaz⁶³ σ = (165 ± 20) b. O núcleo-produto Xe-125m decai por transição isomérica (100%) com meia-vida de 57 segundos para Xe-125g o qual, por sua vez, decai por captura eletrônica (99,3%) e por emissão de pósitron (0,7%), com meia-vida de 16,9 horas, gerando o iodo-125⁶². Por fim, o iodo-125 decai por captura eletrônica (100%) para o Te-125⁶², conforme esquema de decaimento mostrado na FIG. 13. O decaimento do iodo-125 é acompanhado da emissão de fótons com energias de 27 keV, 31 keV e 35 keV (ver TAB. 4), sendo a energia média dos mesmos igual a 29 keV. Em virtude da baixa energia média de emissão, tais fótons têm pouco poder de penetração. O iodo-125 possui uma meia-vida de 59,408 dias⁶¹. A cápsula de titânio absorve elétrons e raios-x com energias abaixo de 5 keV. O modelo de semente utilizado neste trabalho emite dois fótons adicionais de energias 22,1 keV e 25,2 keV. Estes fótons são raios-x característicos produzidos pela interação dos fótons do iodo-125 com o fio de prata.

Figura 13 – Diagrama esquemático do decaimento do iodo-125⁶⁴.

1.15 - Dosímetros termoluminescentes, TLD-100, LiF

Os dosímetros termoluminescentes de fluoreto de lítio utilizados no trabalho têm dimensões de 1 mm x 1 mm x 1 mm, foram produzidos pela Thermo Electron Corporation, antiga Harshaw, e são do tipo micro TLD-100 – LiF. As propriedades dos TLDs encontram-se na TAB. 5.

~ -

Características					
Densidade	$2,64 \text{ g/cm}^3$				
Número atômico efetivo para absorção fotoelétrica	8,2				
Espectro de emissão termoluminescente	3500 a 6000 Å (max. em 4000 Å)				
Temperatura do pico dosimétrico	195 °C				
Resposta de energia (30 keV/ Co-60)	1,25				
Faixa de kerma-ar	10 µGy - 10 Gy				
Desvanecimento otimizado a 20 °C	5% ao ano				

Foi utilizado o Leitor de TLD Victoreen modelo 2800 do Centro de Engenharia Nuclear (CEN) do IPEN / CNEN – SP e o Leitor Harshaw 2000 A/B, com placa de aquisição individual por canal de leitura, do Centro de Metrologia das Radiações (CMR) do IPEN/CNEN – SP. Estes dosímetros podem ser utilizados inúmeras vezes, mas para se obter resultados reprodutíveis, o material termoluminescente requer tratamento térmico especial antes de ser reutilizado, denominado tratamento térmico pré-irradiação⁵⁰.

Esse tratamento tem por finalidade devolver ao TLD as propriedades que possuía antes de ser irradiado, eliminando tanto quanto possível a informação de dose anterior, e assegurando assim a reprodutibilidade de suas características. O micro TLD-100 tem seu desempenho fortemente relacionado com o tipo de tratamento térmico ao qual é submetido. Assim, os fornos destinados ao tratamento térmico devem ser de boa qualidade, ou seja, devem possuir uma grande estabilidade.

Pela literatura^{66,67,68} escolheu-se o tratamento térmico aplicado aos TLDs que compreendeu as duas fases descritas abaixo:

- a) Tratamento térmico pré-irradiação: tem por objetivo preparar o dosímetro para uso, apagando todas as informações (luminescência) existentes no TLD devido às irradiações passadas. Este procedimento foi feito em um forno da Eletrotérmica Industrial modelo ET-3239 com controle de temperatura por termopares da Thermadigit modelo TH-2020-2, do Centro de Tecnologia das Radiações do IPEN / CNEN SP. Foi realizado um tratamento térmico com temperatura homogênea de 400 °C durante 1 hora, e depois mais 2 horas de aquecimento a uma temperatura homogênea de 100 °C.
- b) Tratamento térmico leitura: os materiais termoluminescentes apresentam curvas de emissão com vários picos. Alguns desses picos estão localizados em baixas temperaturas e sujeitos a um decaimento térmico considerável à temperatura ambiente. Desta forma, antes de se efetuar a leitura da amostra termoluminescente, após sua irradiação, é conveniente aquecê-la à temperatura abaixo da temperatura de avaliação, com a finalidade de eliminar estes picos instáveis. Este procedimento foi também realizado utilizando-se o forno com uma temperatura de 100 °C. E a medida propriamente foi efetuada aquecendo-se o TLD continuamente até 400 °C para que a energia armazenada no cristal fosse liberada de forma contínua.

O ciclo dosimétrico para TLDs em cada medida consistiu de uma seqüência com as seguintes etapas:

- a) Aquecimento pré-irradiação;
- b) Irradiação;
- c) Aquecimento leitura;

 d) Leitura da energia armazenada, que é proporcional à carga elétrica, medida em Coulombs (C).

1.16 - Espectros dos dosímetros termoluminescentes, TLD-100, LiF

O espectro resultante da leitura de um dosímetro LiF:Mg,Ti (TLD-100) apresenta um grande número de picos provenientes de vários fatores como a forma de tratamento térmico utilizado na pré e na pós-irradiação, a dose recebida e o tipo de radiação a que o dosímetro será submetido. Nestas circunstâncias, uma curva característica resulta conforme mostrado na FIG. 14⁵⁰.

Para analisar esta curva, utilizaram-se os números correspondentes recomendados por McKeever *et. al^{50}* e mostrados na FIG. 15^{69} .

Figura 14 – Curva característica de um dosímetro LiF:Mg, Ti. Esta curva foi obtida após o tratamento térmico recomendado neste trabalho e sobre uma irradiação de 1 Gy de ¹³⁷Cs a temperatura ambiente⁵⁰.

Figura 15 – Espectro de um dosímetro de LiF:Mg, Ti proveniente de 45 mGy de irradiação de 60Co a temperatura ambiente. O espectro mostra os picos componentes ajustados separadamente antes da superposição de leitura. É importante deixar claro que o pico 1 já esvaneceu neste espectro. A parte de cima da figura mostra os resíduos entre os valores medidos pelo equipamento e o ajustado⁶⁹.

Pode-se perceber na FIG. 15 que o principal pico TL (também chamado de pico dosimétrico ou pico 5) tem um "ombro" de baixa temperatura (conhecido como pico 4). Devido ao fato destes dois picos serem difíceis de separar, recomenda-se que, durante uma análise de picos TLs, utilize-se o valor integrado destes dois picos.

Apesar de alguns trabalhos também utilizarem os picos de baixas (em especial os picos 2 e 3) e os de altas temperaturas, decidiu-se eliminá-los na metodologia proposta. Os picos de baixas temperaturas são extremamente sensíveis ao tempo de evanescência, à temperatura local no instante de medida do espectro e também bastante sensíveis à luminosidade incidente no cristal. Por outro lado, os picos de alta temperatura têm valores mensuráveis muito próximos da radiação de fundo natural, além de muitas vezes receberem contribuição do aquecimento da prancha de leitura do equipamento. Por este motivo, a eliminação dos picos de baixa e alta temperaturas deverá minimizar a sensibilidade das medidas ao longo de várias sessões de medição. Os picos de 1 a 3 aparecem entre 50 e 150°C e os picos 6 a 10 apareceram entre 250 e $400°C^{50}$.

Logo, neste trabalho integraremos os valores de medida dos picos 3 e 4, pós-processando todos os espectros obtidos desde a calibração dos dosímetros até as medidas obtidas nas placas de águasólida. Por pós-processamento, entende-se que só serão integrados os valores dos canais referentes às temperaturas correspondentes aos picos 3 e 4, ou seja, após a aquisição do espectro da medida no Leitor TLD, o arquivo numérico dos valores da carga por canal será posteriormente processado em computador.

É importante deixar claro que estes cortes serão feitos somente após o selecionamento dos cristais. Ou seja, as primeiras medidas dos cristais serão medidas integradas em todo o espectro e não somente leitura dos picos 3 e 4.

1.17 - Calibração dos dosímetros TLD-100

Cada um dos dosímetros deve passar pelo tratamento térmico pré-irradiação pelo menos cinco vezes antes de se analisar o uso ou não dele. Portanto, o selecionamento dos dosímetros é iniciado somente após 5 ciclos de irradiação e aquecimento.

Como a quantidade de dosímetros a ser utilizada neste trabalho é bastante grande, optou-se por irradiar todos os dosímetros e, após a medida individual de cada dosímetro, analisar somente os dosímetros que apresentassem melhor estabilidade durante as irradiações. Para isso, os mesmos foram medidos um a um e todos os que apresentaram boa reprodutibilidade entre as sucessivas irradiações e leituras foram selecionados⁷⁰. Após o selecionamento, cada dosímetro foi irradiado com raios-x próximos à energia dos fótons que foram utilizados no trabalho, ou seja, aproximadamente 29 keV. Este procedimento de irradiação e leitura foi repetido pelo menos 3 vezes e todos os que estavam dentro da faixa de 3,5% de erro puderam ser utilizados, enquanto todos os que apresentaram erros maiores foram descartados^{64,71,72}.

1.18 - Phantom de Solid Water RW1

Dos vários modelos de *phantoms* encontrados na literatura^{64,73,74,75}, decidiu-se pelo modelo de *phantom* mais utilizado, empregado pela Universidade de Kentucky, pois facilita a intercomparação entre os resultados obtidos com a metodologia adotada neste trabalho e os valores encontrados na literatura.

As sementes medidas no *phantom*, empregado pela Universidade de Kentucky, da forma que será medida neste trabalho, foram:

- a) Nycomed-Amersham modelo OncoSeed 6711⁴⁵
- b) Nycomed-Amersham modelo OncoSeed 6702⁴⁵
- c) North American Scientific modelo MED3631A/M⁷⁶
- d) IBT modelo InterSource125⁷⁷
- e) Implant Sciences Corp. modelo I-Plant model 3500⁷⁸
- f) Pharma Seed modelo BT-125-I⁷⁹
- g) Best modelo 2301^{23}
- h) IsoSTAR modelo 12501¹²⁵I⁸⁰
- i) IsoAid modelo Advantage⁸¹
- j) Draximage modelo LS-1 Brachyseed TM⁸²

O phantom foi feito de Solid Water RW1 produzido pela companhia alemã PTW-Freiburg.

A *Solid Water* RW1 é um poliestireno branco com óxido de magnésio, que possui a composição elementar média mostrada na TAB. 6.

Tabela 6 – Composição elementar em fração de massa de materiais utilizados nos *phatoms* que substituem a água. A densidade e o Z_{eff} também são mostrados.

	Н	С	0	Ca	Mg	Densidade	Z_{eff}
Água	0,119		0,881			1,0	6,6
RW1	0,1319	0,7941	0,0381	0,0268	0,0091	0,970	5,53

A *Solid Water* RW1 possui uma densidade⁸³ de 0,970 g/cm³ e seu número atômico efetivo é baixo ($Z_{eff} = 5,53$). O valor de Z_{eff} foi calculado por meio da expressão abaixo (ICRU 35)⁸⁴, utilizando-se os valores da TAB. 6:

$$Z_{eff} = \sum \left(\frac{p_i \cdot \frac{Z_i^2}{M_i}}{\sum p_j \cdot \frac{Z_j}{M_j}} \right)$$
(10)

onde p é a fração de massa de cada componente, Z seu número atômico e M seu peso molecular.

Alguns trabalhos, ao invés de utilizar a *Solid Water* RW1, utilizam a *Plastic Water*. Porém, este procedimento não é adequado, pois na literatura encontram-se trabalhos nos quais foi verificado que a atenuação e o espalhamento de fótons primários de baixa energia em *Solid Water* possuem valores próximos aos observados em água líquida, enquanto que em *Plastic Water*, para energias abaixo de 100 keV, existe uma diferença substancial (um fator de cerca de 5) entre a dose absorvida na *Plastic Water* e a dose obtida na água líquida⁸⁵. E como já mostrado na TAB. 4, a energia dos fótons do iodo-125 não ultrapassa os 40 keV, ou seja, bem abaixo do limite apresentado na literatura para o uso da *Plastic Water*.

Neste trabalho foram utilizadas 5 placas de *Solid Water* RW1 para a medida da distribuição de dose em torno da fonte de iodo-125. Um número de furos apropriado será feito na superfície das placas com o objetivo de acomodar os micro-dosímetros termoluminescentes. Foram utilizados neste trabalho 3 arranjos experimentais diferentes. A disposição dos micro-dosímetros termoluminescentes e da semente de iodo-125 pode ser observada nas FIG. 16, 17 e 18.

Figura 16 – Diagrama esquemático do *phantom* de *Solid Water* RW1 para os TLDs utilizados na medida da função de anisotropia, $F(r, \theta)$.

Figura 17 – Diagrama esquemático do *phantom* de *Solid Water* RW1 para os TLDs utilizados na medida da função de dose radial, $g(r, \theta)$.

Figura 18 – Diagrama esquemático do *phantom* de *Solid Water* RW1 para os TLDs utilizados na medida da constante de taxa de dose, Λ.

Durante as medidas, o *phantom* contendo a fonte e os micro-dosímetros termoluminescentes teve suas superfícies superior e inferior cercadas por placas, também de *Solid Water* RW1, para estabelecer uma condição de espalhamento adequada.

1.19 - Simulação computacional

A simulação de um sistema de fontes de radiação, assim como de absorvedores, envolve a seleção randômica de um evento (trajetória ou história de uma partícula ou fóton), dentre um conjunto de todos os possíveis eventos, regidos pela equação de transporte da radiação.

Porém, utilizaremos neste trabalho um código computacional escrito em linguagem FORTRAN que calcula a taxa de dose, levando-se em conta apenas a atenuação de cada feixe emitido a partir de cada "ponto" da semente. Ou seja, cada espaço emissor (contendo iodo-125 adsorvido) é considerado uma fonte pontual e a contribuição da radiação destes pontos é integrada. Assim, a simulação entende que cada fóton emitido em qualquer ponto da fonte contribui para a dose num ponto específico, levando-se em conta a atenuação pelos meios materiais em que a radiação passa. Neste contexto, se pensarmos na semente de iodo-125 como uma grande quantidade de fontes pontuais uma ao lado da outra, teremos uma grande quantidade de "pontos" emissores contribuindo para a dose em um ponto qualquer no espaço⁸⁶.

Embora não validada, esta simulação mostrou-se coerente pelos perfis de dose que simulou e será utilizada futuramente para estudar defeitos estruturais nas sementes a serem produzidas no Brasil.

Todas as simulações encontradas na literatura têm como base o método de Monte Carlo.

O método de Monte Carlo é uma técnica numérica que trata o transporte de radiação como um fenômeno probabilístico de interação da radiação com o meio⁸⁷. Ele pode vir a ser implementado no programa utilizado atualmente para simulação.

Ao longo dos últimos anos, o método de Monte Carlo tem sido usado para calcular valores de taxa de dose absoluta na água em torno de fontes encapsuladas, e permitindo também estimar seus erros estatísticos. Como estabelecido⁸⁸, a simulação por Monte Carlo não é limitada por nenhuma complexidade física da interação da radiação com a matéria, nem pela complexidade geométrica das fontes clínicas de braquiterapia e seus aplicadores, evitando, assim, erros de posicionamento e aumento de dose no volume detector.

2 – Metodologia e resultados

Conforme comentado nas considerações teóricas, o trabalho se divide em duas grandes áreas de atuação: a primeira, o experimento feito com *Solid Water* para definição dos parâmetros experimentais das sementes de iodo-125 medidos com detectores TLD-100; a segunda, as simulações computacionais que serão correlacionadas com os valores do experimento executado.

2.1 - Selecionamento dos detectores TLD-100

Os dosímetros TLD-100, por terem tamanhos muito reduzidos e serem facilmente "trincáveis", devem ser selecionados dentro da respectiva faixa de uso, pois uma trinca interna no dosímetro faz com que a luz resultante das interações da radiação com o dosímetro não seja tranferida para o Leitor TLD de forma proporcional, devendo portanto este dosímetro ter seu uso descartado.

Os 142 cristais TLD-100 disponíveis foram irradiados com uma dose de aproximadamente 5 Gy com um tempo de evanescência em torno de 15 horas. Após o término do tempo de evanescência, os cristais foram lidos individualmente no Leitor Victoreen modelo 2800. Esta sequência de irradiação e medida foi repetida 3 vezes.

Para se garantir a irradiação, utilizou-se a placa de estireno mostrada na FIG. 19. Esta placa tem 288 posições de irradiação dos TLDs-100 com lugar para 72 sementes. Cada conjunto de semente e 4 cristais tem a mesma distância, que foi definida como 0,5 mm no eixo X e 0,5 mm no eixo Y do ponto central da semente. O erro da CNC, equipamento de usinagem utilizado para manufaturar a placa de irradiação, é da ordem de 0,1%. Ou seja, o erro máximo de posicionamento dos cristais na placa de irradiação encontra-se na pior das hipóteses muito abaixo dos erros esperados para os equipamentos de leitura e fontes calibradas utilizadas. Ainda assim, os erros do processo serão analisados posteriormente.

	1									
ata ata ata ata ata ata ata ata ata ata										
					-					
		:1:	:1:	:1:	:1:	:1:	:1:	:1:	:]:	2/2
		:12 :12	:1: :1:	:1: :1:	:1: :1:	:): :):	:1: :1:	2]2 2]2	2]2 2]2	2/2
		:1: :1: :1:	:1: :1: :1:	:): :): :):	:1: :1: :1:	:): :): :):	212 212 212	2]2 2]2 2]2	2]2 2]2	2/2 2/2

Figura 19 – Placa de estireno utilizada para a irradiação dos cristais. A placa é composta de 8 linhas com 9 conjuntos contendo uma semente e 4 cristais, totalizando as 288 posições de irradiação. Para indicar o tamanho, posicionou-se uma moeda com diâmetro aproximado de 22 mm.

O Leitor utilizado, o Victoreen modelo 2800, mostra, para cada medida individual, o espectro resultante da leitura do cristal. Este espectro relaciona a carga encontrada com a temperatura de aquecimento do cristal no momento da leitura. Assim, escolhe-se somente a faixa do pico resultante da irradiação com iodo-125, ou seja, escolheu-se o par de picos (picos 4 e 5) formados no intervalo de temperaturas entre 100°C e 200°C.

Após o conjunto de três medidas calcula-se, da seguinte forma, os cristais que estão com as menores incertezas dentro da faixa de operação:

a) Calcula-se a média de cada sequência de medidas

$$M\acute{e}dia_{i} = \frac{\sum medidas}{142}$$
(11)

b) Divide-se cada medida pela média calculada

$$Medida a justada = \frac{Medida}{Média_i}$$
(12)

c) A partir das medidas ajustadas, calcula-se a média das três medidas ajustadas e o desvio padrão amostral destas três medidas

$$\begin{aligned} \text{M\acute{e}dia ajustada} &= \frac{\sum medida ajustada}{3} \end{aligned} \tag{13} \\ \text{Desvio padrão} &= \sqrt{\frac{\sum (x-\vec{x})^2}{(n-1)}} \end{aligned} \tag{14}$$

Após os dois cálculos efetuados, consideraram-se aceitáveis os dosímetros que apresentaram simultaneamente no máximo 15% de desvio-padrão e 15% de afastamento da média. Os valores de 15% foram selecionados arbitrariamente, somente para garantir um pré-selecionamento dos cristais com o intuito de minimizar a quantidade de cristais a serem utilizados, garantindo o uso dos "melhores" do lote adquirido pelo Instituto.

A rigor, o valor do desvio-padrão para dois graus de liberdade deve ser multiplicado por 1,32, o que não foi feito porque o valor de corte para o desvio-padrão foi fixado arbitrariamente.

Os dosímetros que estão dentro das faixas de incerteza aceitável foram colocados em uma caixa plástica, separando-os individualmente para poder rastreá-los.

No anexo 1 encontra-se uma tabela que mostra os valores encontrados para todos os 142 dosímetros. A medida efetuada em 3 de abril de 2008 no dosímetro número 12 apresentou falha de leitura, sendo portanto considerado o valor zero para o dosímetro, levando-o a ser descartado. A TAB. 7 apresenta somente os dosímetros que foram selecionados para a continuidade do trabalho.

2.2 - Seleção da área de leitura dos espectros

Na definição da metodologia, optou-se por se utilizar um Leitor Harshaw 2000 A/B com placa de aquisição individual por canal de leitura, para garantir um pós-processamento dos espectros obtidos de cada TLD medido.

Assim, cada um dos 29 cristais selecionados foi pós-processado utilizando-se somente a área do espectro que contém os dois picos dosimétricos (picos 4 e 5). A mesma quantidade de "canais" foi utilizada para cada uma das três medidas efetuadas e também para a medida da calibração de cada cristal. É importante definir, para cada medida individual, a área de contagem escolhida, pois pequenas variações de tensão ocorridas na rede elétrica durante a medida, ou pequenas variações de temperatura que podem ter ocorrido dentro do forno no pré ou no pós-tratamento térmico de leitura do cristal⁸⁹, são capazes de "mover" alguns canais no espectro de leitura. Portanto, optou-se por analisar individualmente cada espectro medido. Para efeito de visualização do corte efetuado na tese, a FIG. 20 mostra o espectro do ponto central da semente distante a 2 cm (posição no trabalho 1D5, esta codificação será melhor explicada quando o disco for discutido algumas páginas adiante). Adicionalmente, a FIG. 21 mostra o mesmo espectro com o corte feito. Todos os espectros analisados utilizam 75°C como corte, variando somente o valor inicial e o valor final da temperatura. No anexo 2 encontra-se a planilha completa de leitura do cristal 1D5.

Tabela 7 – Valores encontrados pela Leitora Victoreen na leitura dos dosímetros TLD-100
nas datas marcadas. Só estão apresentados os dosímetros que passaram nos dois testes de
selecionamento escolhidos. A unidade da tabela é nC e a temperatura é dada em ºC.

		1/abr	3/abr	10/abr	1/abr	3/abr	10/abr		
Num.	Num.	100º -	100º -	100º -	Medida	Medida	Medida	Desvio	Média
Nova	Antiga	200º	200º	200º	ajustada	ajustada	ajustada	Padrão	Ajustada
1	4	247	205	136	1,2476	1,1483	0,9583	0,1469	1,1181
2	8	208	191,3	117,2	1,0506	1,0715	0,8258	0,1362	0,9827
3	13	181,7	175,9	157,5	0,9178	0,9853	1,1098	0,0974	1,0043
4	14	162,7	166,4	149,6	0,8218	0,9320	1,0542	0,1162	0,9360
5	22	166,7	166,8	133,8	0,8420	0,9343	0,9428	0,0559	0,9064
6	25	165,5	177,9	118,6	0,8359	0,9965	0,8357	0,0927	0,8894
7	26	191,4	154,6	149	0,9668	0,8659	1,0499	0,0921	0,9609
8	29	165,1	145,6	150,1	0,8339	0,8155	1,0577	0,1348	0,9024
9	35	191,9	152,5	121,9	0,9693	0,8542	0,8590	0,0651	0,8941
10	55	219	194,5	144,1	1,1062	1,0894	1,0154	0,0483	1,0703
11	62	161,4	187,6	140,6	0,8152	1,0508	0,9907	0,1224	0,9523
12	67	218	177,7	138,6	1,1011	0,9953	0,9766	0,0671	1,0244
13	68	232	184,1	140,4	1,1718	1,0312	0,9893	0,0956	1,0641
14	71	233	176,6	131,5	1,1769	0,9892	0,9266	0,1302	1,0309
15	76	209	186,1	116,8	1,0557	1,0424	0,8230	0,1306	0,9737
16	80	231	202	131,6	1,1668	1,1315	0,9273	0,1292	1,0752
17	83	221	191,9	141,8	1,1163	1,0749	0,9992	0,0593	1,0635
18	99	254	182,9	154,6	1,2830	1,0245	1,0894	0,1344	1,1323
19	104	246	185,1	154,9	1,2426	1,0368	1,0915	0,1065	1,1236
20	108	243	190,9	163,1	1,2274	1,0693	1,1493	0,0790	1,1487
21	110	177,8	131	143,5	0,8981	0,7338	1,0112	0,1394	0,8810
22	111	211	204	146,2	1,0658	1,1427	1,0302	0,0574	1,0795
23	113	154,9	149,9	142,2	0,7824	0,8396	1,0020	0,1139	0,8747
24	116	234	188,1	139,2	1,1819	1,0536	0,9809	0,1018	1,0721
25	125	178,9	189,4	160,1	0,9036	1,060	1,1282	0,1152	1,0309
26	126	160,9	143,5	133,4	0,8127	0,8038	0,9400	0,0762	0,8522
27	127	234	182,3	130,2	1,1819	1,0211	0,9175	0,1332	1,0402
28	132	227	180,3	121,1	1,1466	1,0099	0,8533	0,1467	1,0033
29	139	210	166,4	131	1,0607	0,9320	0,9231	0,0769	0,9719
	Média	197,97	178,52	141,91					

Figura 20 – Espectro do ponto central da semente a 2 cm de distância. Medida efetuada em 29 de julho de 2008 após 14 horas de tempo de evanescência.

Figura 21 – Espectro do ponto central da semente a 2 cm de distância, mostrando as temperaturas de corte do espectro, que foram de 150 °C e 225 °C. Medida efetuada em 29 de julho de 2008 após 14 horas de tempo de evanescência.

2.3 - Calibração dos detectores TLD-100

Os 29 dosímetros TLD-100 selecionados devem ter um fator de calibração individual, pois como a relação entre a taxa de dose e a absorção da luz e/ou radiação para cada cristal é uma função complexa, optou-se por segurança medir individualmente cada dosímetro.

Outro ponto importante é a diferença entre a energia de calibração dos dosímetros e a energia do fotopico medida. Ou seja, caso exista uma diferença significativa entre as faixas de energia, deve-se calcular um fator de correlação entre a calibração e a medida que será efetuada.

Pelo motivo exposto acima, optou-se por utilizar um aparelho que produz raios-x Dermopan, modelo Dermopan II Siemens, da clínica de Radioterapia Santana, com um feixe calibrado com energia média de 29 keV, pois esta é a energia média dos fótons provenientes do iodo-125.

Os cristais foram irradiados com uma dose de 3 Gy. A irradiação no equipamento foi de 24 s com dose depositada de 675 µSv, utilizando-se um direcionador 6x6 a uma distância de 5 cm.

Em cada dia da leitura dos TLDs irradiados, foram efetuadas 3 medidas com o Leitor vazio, com intuito de se estabelecer o *background* do equipamento nas condições das medidas de leitura dos cristais. Os valores obtidos estão bem abaixo dos valores encontrados nas medidas de leitura dos cristais. Na TAB. 8 são apresentados os valores de *background*, enquanto na TAB. 9 são apresentados os valores obtidos nos cristais irradiados. Deve-se perceber que a numeração dos cristais segue a numeração nova após o selecionamento dos mesmos, sendo possível rastrear todas as medidas efetuadas com cada cristal.

Tabela 8 – Valores	obtidos no Le	itor Harshaw	2000 A/B pa	ara as medi	das de <i>bac</i>	<i>kground</i> ; a
medida foi feita por	25 s e o valor	abaixo é inte	egrado em to	oda área do	espectro e	ncontrado.

	1ª medida (nC)	2ª medida (nC)	3ª medida (nC)	Calibração
1	0,047	0,068	0,048	0,054
2	0,054	0,078	0,078	0,052
3	0,050	0,089	0,056	0,073

			Valor no foixo do
Número do cristal	Valor Integrado (nC)	Faixa de temperatura	valor na raixa de
		1	temperatura (nC)
1	421,827	150 – 225 °C	203,959
2	460,573	150 – 225 °С	211,827
3	555,403	150 – 225 °С	242,341
4	594,305	150 – 225 °C	244,202
5	585,001	145 − 220 °C	257,225
6	516,009	150 – 225 °С	227,458
7	538,777	150 – 225 °С	239,999
8	584,649	150 – 225 °С	271,835
9	482,042	150 – 225 °C	240,068
10	481,126	152 – 227 °С	233,177
11	457,758	160 − 235 °C	224,150
12	521,879	150 – 225 °С	249,785
13	533,805	153 – 228 °С	249,370
14	555,036	150 – 225 °C	264,601
15	618,698	155 – 230 °С	278,862
16	665,523	150 – 225 °C	309,596
17	557,949	150 – 225 °С	272,316
18	567,656	155 – 230 °С	263,358
19	594,740	158 – 233 °С	279,000
20	510,708	155 – 230 °С	244,201
21	541,887	150 – 225 °С	260,258
22	604,831	157 – 232 °С	287,476
23			
24	635,638	150 – 225 °C	304,566
25	629,398	152 – 227 °С	302,292
26	594,659	150 – 225 °С	278,381
27	598,572	145 – 220 °C	266,734
28	573,054	145 − 220 °C	269,768
29	588,098	145 – 220 °C	276,108

Tabela 9 – Valores obtidos no Leitor Harshaw 2000 para as medidas dos cristais irradiados no Dermopan-Siemens com 3 Gy após 19 horas de tempo de esvanecimento.

Na segunda medida do cristal de número 23, o cristal se partiu na retirada da caixa para o Leitor, pois ele escapou da pinça e caiu no chão. Como conseqüência, todas as medidas efetuadas com este cristal foram consideradas nulas. Portanto, para efeitos deste trabalho, este ponto não será computado. É interessante destacar que a quebra do cristal, aparentemente intacto, foi constatada durante medida efetuada após o dano, na qual houve uma diminuição acentuada das contagens tanto no espectro cortado quanto no espectro integrado. O cristal de número 23 foi então descartado definitivamente.

2.4 - Medida na placa de Solid Water RW1

A semente de iodo-125 utilizada na irradiação dos cristais na placa de *Solid Water* RW1 foi calibrada na data de referência de 04 de julho de 2008 com atividade de 1,197 mCi, tendo portanto nas datas das medidas as atividades mostradas na TAB. 10.

Data das medidas	Atividade no início da medida (µCi)
21 de Julho de 2008	982,3
23 de Julho de 2008	959,7
28 de Julho de 2008	905,5
26 de Agosto de 2008	646,2

Tabela 10 – Atividade da semente de iodo-125 calibrada utilizada para a irradiação dos cristais na placa de *Solid Water* RW1.

Os cristais foram posicionados conforme mostrado na FIG. 22 com a seguinte codificação de posição XDYY, onde X designa o disco de irradiação, sendo 1 o disco mais próximo (2 cm), 2 o disco do meio (5 cm) e 3 o disco mais distante da semente (7 cm). E sendo YY a posição de irradiação no disco, foi definido como 5 e 23 o centro do eixo perpendicular da semente e 14 e 32 os topos da semente. A correlação entre a posição e o disco encontra-se expressa na TAB. 11.

Figura 22 – Foto da placa de *Solid Water* RW1 utilizada na irradiação dos cristais TLD-100 empregados para a dosimetria das sementes de iodo-125.

Número do cristal	Posição de irradiação	Número do cristal	Posição de irradiação
1	1D5	16	1D34
2	1D6	17	1D35
3	1D7	18	2D15
4	1D8	19	2D16
5	1D9	20	2D17
6	1D10	21	2D18
7	1D11	22	2D19
8	1D12	23	2D20
9	1D13	24	2D21
10	1D14	25	2D22
11	1D29	26	2D23
12	1D30	27	3D2
13	1D31	28	3D3
14	1D32	29	3D4
15	1D33		

Tabela 11 – Posição dos cristais de acordo com a respectiva numeração.

A placa furada que contém os cristais e a semente de iodo-125 calibrada para irradiação foi posicionada no meio de outras quatro placas para que o eventual espalhamento entre fótons seja também atenuado pela *Solid Water* RW1, simulando melhor o que ocorre no corpo humano. O arranjo mostrado pode ser visualizado na FIG. 23.

Figura 23 – Foto do sistema de irradiação montado com as 5 placas de *Solid Water* RW1. A placa central contém a semente de iodo-125 calibrada e os cristais TLD-100.

Os cristais foram posicionados após o tratamento térmico e, depois de todos posicionados, a semente foi centralizada. Após o tempo de irradiação, a semente é retirada antes dos cristais para diminuir a chance de algum cristal receber mais tempo de irradiação que os outros. A data, os horários de colocação e retirada da semente, o tempo de irradiação e o tempo de evanescência é mostrado na TAB. 12. É importante notar que o tempo de evanescência é calculado do momento da retirada da semente até o início da medida do primeiro cristal. Sendo assim, o último cristal acaba tendo um tempo de evanescência um pouco maior, porém considerado desprezível, já que o tempo de todas as medidas dos cristais duram aproximadamente 45 minutos, e nas três medidas e na calibração demorou-se aproximadamente o mesmo tempo.

Data	Horário de posicionamento da semente	Horário de retirada da semente	Tempo de irradiação	Tempo de evanescência
21/07/2008	13:31	15:31	2 horas	18:03
23/07/2008	15:38	17:39	2 horas e 1 minuto	17:07
28/07/2008	16:41	18:41	2 horas	16:16
07/08/2008	17:25	17:25	24 segundos	16:52
26/08/2008	10:57	12:57	2 horas	16:29
26/08/2008	13:28	15:28	2 horas	19:00
26/08/2008	15:35	17:35	2 horas	21:07

Tabela 12 – Datas e horários das irradiações, tempos de irradiação e tempo de evanescência.

Para cada um dos pontos de medida na placa de *Solid Water* RW1 foi analisado o valor integrado do espectro e o valor do corte do espectro entre os picos 4 e 5. Os valores medidos são apresentados nas TAB. 13 a 15, a seguir.

Número do cristal e	Valor integrado (nC)	Faixa da tamparatura	Valor na faixa de
posição nos discos	valor integrado (IIC)	Faixa de temperatura	temperatura (nC)
1 – 1D5	3,734	150 – 225 °С	2,368
2 – 1D6	3,361	150 − 225 °C	2,141
3 – 1D7	3,511	150 − 225 °C	2,374
4 – 1D8	3,577	150 – 225 °С	2,200
5 – 1D9	3,463	145 − 220 °C	2,185
6 – 1D10	3,287	150 – 225 °С	1,724
7 – 1D11	3,002	150 – 225 °С	1,802
8 – 1D12	2,674	150 – 225 °С	1,753
9 – 1D13	2,011	150 – 225 °С	1,398
10 – 1D14	1,754	152 – 227 °С	1,045
11 – 1D29	3,176	160 − 235 °C	1,983
12 – 1D30	2,474	150 – 225 °С	1,596
13 – 1D31	1,945	153 – 228 °С	1,188
14 – 1D32	1,839	150 – 225 °С	1,092
15 – 1D33	2,088	155 – 230 °С	1,283
16 – 1D34	2,571	150 − 225 °C	1,617
17 – 1D35	2,876	150 – 225 °С	1,813
18 – 2D15	0,498	155 – 230 °С	0,202
19 – 2D16	0,582	158 − 233 °C	0,196
20 – 2D17	0,603	155 – 230 °С	0,211
21 – 2D18	0,585	150 – 225 °С	0,207
22 – 2D19	0,561	157 − 232 °C	0,232
23 - 2D20	0,545	150 − 225 °C	0,239
24 - 2D21	0,514	150 − 225 °C	0,234
25 – 2D22	0,522	152 – 227 °С	0,239
26 - 2D23	0,484	150 − 225 °C	0,214
27 – 3D2	0,465	145 − 220 °C	0,129
28 - 3D3	0,383	145 − 220 °C	0,107
29 - 3D4	0.352	145 – 220 °C	0.115

Tabela 13 – Valores medidos em cada cristal na medida efetuada dia 22 de julho de 2008 após 2 horas de irradiação com tempo de evanescência de 18 horas e 3 minutos.

Número do cristal e posição nos discos	Valor integrado (nC)	Faixa de temperatura	Valor na faixa de temperatura (nC)
1 – 1D5	4,359	150 – 225 °C	3,270
2 – 1D6	3,869	150 − 225 °C	2,828
3 – 1D7	4,242	150 − 225 °C	2,974
4 – 1D8	4,298	150 – 225 °С	2,828
5 – 1D9	4,168	145 − 220 °C	3,039
6 – 1D10	3,728	150 – 225 °С	2,714
7 – 1D11	3,373	150 – 225 °С	2,492
8 – 1D12	3,209	150 – 225 °С	2,367
9 – 1D13	2,270	150 – 225 °С	1,694
10 – 1D14	1,828	152 – 227 °С	1,281
11 – 1D29	3,695	160 − 235 °C	2,724
12 – 1D30	2,962	150 – 225 °С	1,735
13 – 1D31	2,186	153 – 228 °С	1,477
14 – 1D32	1,828	150 – 225 °С	1,358
15 – 1D33	2,229	155 – 230 °С	1,632
16 – 1D34	3,094	150 − 225 °C	2,300
17 – 1D35	3,135	150 − 225 °C	2,361
18 – 2D15	0,351	155 – 230 ℃	0,177
19 – 2D16	0,359	158 − 233 °C	0,186
20 – 2D17	0,432	155 − 230 °C	0,226
21 – 2D18	0,464	150 − 225 °C	0,215
22 – 2D19	0,471	157 − 232 °C	0,261
23 – 2D20	0,233	150 − 225 °C	0,055
24 – 2D21	0,490	150 − 225 °C	0,268
25 – 2D22	0,468	152 − 227 °C	0,259
26 - 2D23	0,480	150 – 225 °C	0,239
27 – 3D2	0,317	145 – 220 °C	0,111
28 – 3D3	0,266	145 – 220 °C	0,087
29 – 3D4	0,287	145 – 220 °C	0,092

Tabela 14 – Valores medidos em cada cristal na medida efetuada dia 24 de julho de 2008 após 2 horas e 1 minuto de irradiação com tempo de evanescência de 17 horas e 7 minutos.

Número do cristal e posição nos discos	Valor integrado (nC)	Faixa de temperatura	Valor na faixa de temperatura (nC)
1 – 1D5	3,299	150 – 225 °C	2,235
2 – 1D6	2,991	150 – 225 °С	2,012
3 – 1D7	3,111	150 – 225 °С	2,111
4 – 1D8	3,204	150 – 225 °С	2,163
5 – 1D9	2,958	145 – 220 °C	1,908
6 – 1D10	2,742	150 – 225 °С	1,875
7 – 1D11	2,509	150 – 225 °С	1,662
8 – 1D12	2,340	150 – 225 °С	1,591
9 – 1D13	1,609	150 – 225 °С	1,103
10 – 1D14	1,329	152 – 227 °С	0,852
11 – 1D29	2,947	160 − 235 °C	1,920
12 – 1D30	2,417	150 – 225 °С	1,590
13 – 1D31	1,841	153 – 228 °С	1,251
14 – 1D32	1,626	150 – 225 °С	1,073
15 – 1D33	1,964	155 – 230 °С	1,296
16 – 1D34	2,497	150 – 225 °С	1,695
17 – 1D35	2,502	150 – 225 °С	1,736
18 – 2D15	0,375	155 – 230 °С	0,155
19 – 2D16	0,359	158 – 233 °С	0,144
20 – 2D17	0,444	155 – 230 °С	0,185
21 – 2D18	0,414	150 – 225 °С	0,190
22 – 2D19	0,437	157 – 232 °С	0,186
23 – 2D20			
24 – 2D21	0,441	150 – 225 °С	0,207
25 – 2D22	0,444	152 – 227 °С	0,202
26 – 2D23	0,459	150 – 225 °C	0,170
27 – 3D2	0,272	145 – 220 °C	0,095
28 – 3D3	0,279	145 – 220 °C	0,079
29 - 3D4	0,249	145 – 220 °C	0,074

Tabela 15 – Valores medidos em cada cristal na medida efetuada dia 29 de julho de 2008 após 2 horas de irradiação com tempo de evanescência de 16 horas e 16 minutos.

Utilizando-se os valores encontrados de cada medida e com intuito de minimizar diferenças ocorridas pelos tempos de irradiação e valores de medidas de irradiação, calculou-se a média ponderada de cada ponto medido, ponderando-os pelo valor da média de todos os pontos de cada irradiação, ou seja:

a) Calcula-se a média de cada sequência de medidas

$$M\acute{e}dia_i = \frac{\Sigma Medida_i}{28}$$
(16)

b) Calcula-se a média ponderada

$$M\acute{e}dia \ ponderada = \frac{\sum Medida_i M\acute{e}dia_i}{\sum M\acute{e}dia_i}$$
(17)

c) A partir das médias ajustadas, calcula-se o desvio padrão amostral desta três medidas

Desvio padrão =
$$\sqrt{\frac{\sum (Medida_i - Média ponderada)^2}{(n-1)}}$$
 (18)

A TAB. 16 mostra o valor da média de cada ponto, que será utilizado no cálculo da dose de cada valor, tanto dos valores integrados como dos valores após o corte dos espectros.

		os da media por	laciada para as		
	Média dos	Desvio-nadrão		Média dos	Desvio-padrão
Número do	valores	dos valores	Faixa de	valores na	dos valores na
cristal e	integrados	integrados	temperatura	faixa de	faixa de
posição	(nC)	(nC)	temperatura	temperatura	temperatura
	(iiC)	(IIC)		(nC)	(nC)
1 – 1D5	3,840	0,535	150 – 225 °C	2,692	0,569
2 – 1D6	3,442	0,443	150 – 225 °C	2,379	0,443
3 – 1D7	3,667	0,576	150 – 225 °С	2,539	0,447
4 – 1D8	3,737	0,559	150 – 225 °С	2,441	0,378
5 – 1D9	3,579	0,611	145 – 220 °C	2,448	0,596
6 – 1D10	3,292	0,496	150 – 225 °С	2,165	0,539
7 – 1D11	2,996	0,436	150 – 225 °С	2,038	0,449
8 – 1D12	2,776	0,440	150 – 225 °С	1,953	0,414
9 – 1D13	1,990	0,335	150 – 225 °С	1,431	0,298
10 – 1D14	1,658	0,270	152 – 227 °С	1,084	0,217
11 – 1D29	3,303	0,385	160 − 235 °C	2,262	0,452
12 – 1D30	2,639	0,301	150 – 225 °C	1,650	0,083
13 – 1D31	2,005	0,178	153 – 228 °С	1,322	0,153
14 – 1D32	1,773	0,120	150 – 225 °C	1,193	0,161
15 – 1D33	2,104	0,133	155 – 230 °С	1,427	0,200
16 – 1D34	2,744	0,327	150 – 225 °C	1,914	0,378
17 – 1D35	2,863	0,320	150 – 225 °С	2,011	0,344
18 – 2D15	0,407	0,079	155 – 230 °С	0,178	0,024
19 – 2D16	0,434	0,129	158 – 233 °С	0,177	0,028
20 – 2D17	0,493	0,095	155 – 230 °С	0,209	0,021
21 – 2D18	0,490	0,088	150 – 225 °C	0,205	0,013
22 – 2D19	0,491	0,064	157 – 232 °С	0,230	0,038
23 - 2D20					
24 – 2D21	0,484	0,037	150 – 225 °C	0,240	0,031
25 – 2D22	0,479	0,040	152 – 227 °С	0,236	0,029
26 – 2D23	0,475	0,013	150 – 225 °C	0,211	0,035
27 – 3D2	0,353	0,101	145 – 220 °C	0,112	0,017
28 - 3D3	0,309	0,064	145 – 220 °C	0,091	0,014
29 - 3D4	0,298	0,052	145 – 220 °C	0,094	0,021

Tabela 16 – Valores calculados da média ponderada para as três medidas em cada cristal.

Assim, utilizando-se o valor da calibração, onde para cada cristal temos a relação entre nC e 3 Gy, podemos, por regra de três simples, definir os valores medidos em cada ponto. Os valores para cada TLD, medidos em miliGray (mGy), estão mostrados na TAB. 17.

Número do cristal e posição	Média dos valores integrados	Desvio-padrão dos valores integrados	Faixa de temperatura	Média dos valores na faixa de temperatura	Desvio-padrão dos valores na faixa de temperatura
1 – 1D5	27.311 mGv	3.808 mGv	150 – 225 ℃	39.590 mGy	8.371 mGv
2 - 1D6	22.423 mGy	2.885 mGy	150 – 225 °C	33.698 mGy	6.279 mGy
3 - 1D7	19.807 mGy	3.112 mGy	150 – 225 °C	31.426 mGy	5.533 mGy
4 – 1D8	18.864 mGv	2.821 mGy	150 – 225 °C	29,993 mGy	4.639 mGy
5 – 1D9	18,352 mGy	3,132 mGy	145 – 220 °C	28,545 mGy	6,948 mGy
6 – 1D10	19,142 mGy	2,886 mGy	150 – 225 °C	28,558 mGy	7,103 mGy
7 – 1D11	16,685 mGy	2,425 mGy	150 – 225 °C	25,480 mGy	5,613 mGy
8 – 1D12	14,245 mGy	2,260 mGy	150 – 225 °C	21,548 mGy	4,566 mGy
9 – 1D13	12,386 mGy	2,083 mGy	150 – 225 °C	17,886 mGy	3,727 mGy
10 – 1D14	10,335 mGy	1,686 mGy	152 – 227 °С	13,944 mGy	2,791 mGy
11 – 1D29	21,645 mGy	2,523 mGy	160 − 235 °C	30,278 mGy	6,047 mGy
12 – 1D30	15,172 mGy	1,729 mGy	150 – 225 °C	19,818 mGy	0,996 mGy
13 – 1D31	11,266 mGy	0,999 mGy	153 – 228 °С	15,908 mGy	1,845 mGy
14 – 1D32	9,582 mGy	0,651 mGy	150 – 225 °С	13,529 mGy	1,826 mGy
15 – 1D33	10,204 mGy	0,646 mGy	155 – 230 °С	15,351 mGy	2,150 mGy
16 – 1D34	12,371 mGy	1,473 mGy	150 – 225 °С	18,545 mGy	3,659 mGy
17 – 1D35	15,396 mGy	1,720 mGy	150 – 225 °С	22,151 mGy	3,794 mGy
18 – 2D15	2,152 mGy	0,417 mGy	155 – 230 °С	2,031 mGy	0,268 mGy
19 – 2D16	2,188 mGy	0,649 mGy	158 – 233 °С	1,902 mGy	0,297 mGy
20 – 2D17	2,895 mGy	0,561 mGy	155 – 230 °С	2,573 mGy	0,257 mGy
21 – 2D18	2,713 mGy	0,487 mGy	150 – 225 °С	2,366 mGy	0,148 mGy
22 – 2D19	2,437 mGy	0,318 mGy	157 – 232 °С	2,403 mGy	0,398 mGy
23 - 2D20					
24 – 2D21	2,283 mGy	0,176 mGy	150 – 225 °С	2,362 mGy	0,304 mGy
25 – 2D22	2,284 mGy	0,191 mGy	152 – 227 °С	2,345 mGy	0,289 mGy
26 – 2D23	2,397 mGy	0,068 mGy	150 – 225 °С	2,277 mGy	0,379 mGy
27 - 3D2	1,772 mGy	0,506 mGy	145 – 220 °C	1,259 mGy	0,191 mGy
28 - 3D3	1,618 mGy	0,336 mGy	145 – 220 °C	1,010 mGy	0,160 mGy
29 – 3D4	1,519 mGy	0,266 mGy	145 – 220 °C	1,020 mGy	0,223 mGy

Tabela 17 – Valores calculados da média ponderada para as três medidas em cada cristal já convertidos para miliGray (mGy), utilizando-se os valores da calibração efetuada no DERMOPAN II Siemens da Clínica de Radioterapia Santana.

A partir da TAB. 17 e sabendo-se as posições relativas de ângulos de cada posição em cada disco, torna-se possível resumir os valores medidos divididos em ângulos, conforme apresentado na TAB. 18. O sistema de referência é apresentado na FIG. 11, que mostra o padrão de ângulos utilizados neste trabalho, ou seja, 0° está localizado no eixo Z e na direção da semente, enquanto 90° representa o ponto ortogonal no centro da semente de iodo-125.

Tabela 18 – Valores calculados da média ponderada para as três medidas em cada cristal, já convertidos para miliGray (mGy) e organizados para melhor visualização nos ângulos de cada medida relativa ao ponto central da semente de iodo-125.

	Mádia dos	Doguio podrão		Média dos	Desvio-padrão
Ângulos e	valores	dos valores	Faixa de	valores na	dos valores na
distância	integrados	integrados	temperatura	faixa de	faixa de
uistancia	(mGy)	(mGy)	temperatura	temperatura	temperatura
	(IIIOy)	(IIIOy)		(mGy)	(mGy)
90° - 2 cm	27,311	3,808	150 – 225 °С	39,590	8,371
80° - 2 cm	22,423	2,885	150 – 225 °С	33,698	6,279
70° - 2 cm	19,807	3,112	150 – 225 °C	31,426	5,533
60° - 2 cm	18,864	2,821	150 – 225 °С	29,993	4,639
50° - 2 cm	18,352	3,132	145 − 220 °C	28,545	6,948
40° - 2 cm	19,142	2,886	150 – 225 °С	28,558	7,103
	16,685	2,425	150 – 225 °С	25,480	5,613
30° - 2 cm	21,645	2,523	160 − 235 °C	30,278	6,047
	15,396	1,720	150 – 225 °С	22,151	3,794
	14,245	2,260	150 – 225 °С	21,548	4,566
20° - 2 cm	15,172	1,729	150 – 225 °С	19,818	0,996
	12,371	1,473	150 – 225 °С	18,545	3,659
	12,386	2,083	150 – 225 °С	17,886	3,727
10° - 2 cm	11,266	0,999	153 – 228 °С	15,908	1,845
	10,204	0,646	155 – 230 °С	15,351	2,150
09 2	10,335	1,686	152 – 227 °С	13,944	2,791
$0^{2} - 2 \mathrm{cm}$	9,582	0,651	150 – 225 °С	13,529	1,826
90° - 5 cm	2,397	0,068	150 – 225 °С	2,277	0,379
80° - 5 cm	2,284	0,191	152 – 227 °С	2,345	0,289
70° - 5 cm	2,283	0,176	150 – 225 °С	2,362	0,304
50° - 5 cm	2,437	0,318	157 – 232 °С	2,403	0,398
40° - 5 cm	2,713	0,487	150 – 225 °С	2,366	0,148
30° - 5 cm	2,895	0,561	155 – 230 °С	2,573	0,257
20° - 5 cm	2,188	0,649	158 – 233 °С	1,902	0,297
10° - 5 cm	2,152	0,417	155 – 230 °C	2,031	0,268
80° - 7 cm	1,519	0,266	145 – 220 °C	1,020	0,223
70° - 7 cm	1,618	0,336	145 – 220 °C	1,010	0,160
60° - 7 cm	1,772	0,506	145 – 220 °C	1,259	0,191

Podemos reescrever a TAB. 18 calculando-se as médias ponderadas no desvio-padrão para os

pontos comuns das medidas efetuadas, obtendo-se os resultados mostrados na TAB. 19.

Tabela 19 – Valores calculados da média ponderada para as três medidas em cada cristal, já convertidos para miliGray (mGy) e organizados para melhor visualização nos ângulos de cada medida relativa ao ponto central da semente de iodo-125.

Ângulos e distância	Média dos valores integrados (mGy)	Desvio-padrão dos valores integrados (mGy)	Faixa de temperatura	Média dos valores na faixa de temperatura (mGy)	Desvio-padrão dos valores na faixa de temperatura (mGy)
90° - 2 cm	27,311	3,808	150 – 225 °С	39,590	8,371
80° - 2 cm	22,423	2,885	150 – 225 °С	33,698	6,279
70° - 2 cm	19,807	3,112	150 – 225 °С	31,426	5,533
60° - 2 cm	18,864	2,821	150 – 225 °С	29,993	4,639
50° - 2 cm	18,352	3,132	145 – 220 °C	28,545	6,948
40° - 2 cm	19,142	2,886	150 – 225 °С	28,558	7,103
30° - 2 cm	18,229	2,223		26,540	5,151
20° - 2 cm	14,033	1,821		20,170	3,074
10° - 2 cm	11,708	1,243		16,708	2,574
0° - 2 cm	10,125	1,169		13,780	2,309
90° - 5 cm	2,397	0,068	150 – 225 °С	2,277	0,379
80° - 5 cm	2,284	0,191	152 – 227 °С	2,345	0,289
70° - 5 cm	2,283	0,176	150 – 225 °С	2,362	0,304
50° - 5 cm	2,437	0,318	157 – 232 °С	2,403	0,398
40° - 5 cm	2,713	0,487	150 – 225 °C	2,366	0,148
30° - 5 cm	2,895	0,561	155 – 230 °C	2,573	0,257
20° - 5 cm	2,188	0,649	158 – 233 °С	1,902	0,297
10° - 5 cm	2,152	0,417	155 – 230 °C	2,031	0,268
80° - 7 cm	1,519	0,266	145 – 220 °C	1,020	0,223
70° - 7 cm	1,618	0,336	145 – 220 °C	1,010	0,160
60° - 7 cm	1,772	0,506	145 – 220 °C	1,259	0,191

2.4.1 - Função de geometria, $G(r, \theta)$

Utilizando-se as equações (6) e (7), os valores da função de geometria para as distâncias e ângulos necessários, estão calculados e mostrados nas TAB. 20 a 23.

θ (º)	r (cm)	θ (rad)	Beta	G (r, θ)
90	2,0	1,5708	1,8192	3,0321
80	2,0	1,3963	1,8202	3,0804
70	2,0	1,2217	1,8228	3,2330
60	2,0	1,0472	1,8269	3,5159
50	2,0	0,8727	1,8320	3,9858
40	2,0	0,6981	1,8375	4,7643
30	2,0	0,5236	1,8427	6,1423
20	2,0	0,3491	1,8470	9,0004
10	2,0	0,1745	1,8498	17,7546
0	2,0	0,0000	1,8508	-X-

Tabela 20 – Função de geometria para 2,0 cm de distância, mostrando o valor de β (Beta) correspondente.

Tabela 21 – Função de geometria para 5,0 cm de distância, mostrando o valor de β (Beta) correspondente.

θ (º)	r (cm)	θ (rad)	Beta	G (r, θ)
90	5,0	1,5708	1,8456	1,2304
80	5,0	1,3963	1,8458	1,2495
70	5,0	1,2217	1,8463	1,3098
60	5,0	1,0472	1,8469	1,4218
50	5,0	0,8727	1,8478	1,6081
40	5,0	0,6981	1,8487	1,9174
30	5,0	0,5236	1,8495	2,4660
20	5,0	0,3491	1,8502	3,6064
10	5,0	0,1745	1,8507	7,1050
0	5,0	0,0000	1,8508	-X-

Tabela 22 – Função de geometria para 7,0 cm de distância, mostrando o valor de β (Beta) correspondente.

θ (º)	r (cm)	θ (rad)	Beta	G (r, θ)
90	7,0	1,5708	1,8482	0,8801
80	7,0	1,3963	1,8483	0,8937
70	7,0	1,2217	1,8485	0,9367
60	7,0	1,0472	1,8488	1,0166
50	7,0	0,8727	1,8493	1,1495
40	7,0	0,6981	1,8497	1,3703
30	7,0	0,5236	1,8502	1,7621
20	7,0	0,3491	1,8505	2,5764
10	7,0	0,1745	1,8507	5,0752
0	7,0	0,0000	1,8508	-X-

θ (rad)	θ (º)	r (cm)	Beta	G (r, θ)
1,5708	90	0,5	1,4897	9,9313
1,5708	90	1,0	1,7337	5,7790
1,5708	90	1,5	1,7958	3,9906
1,5708	90	2,0	1,8192	3,0321
1,5708	90	2,5	1,8304	2,4405
1,5708	90	3,0	1,8366	2,0406
1,5708	90	3,5	1,8403	1,7527
1,5708	90	4,0	1,8428	1,5356
1,5708	90	4,5	1,8444	1,3663
1,5708	90	5,0	1,8456	1,2304
1,5708	90	5,5	1,8465	1,1191
1,5708	90	6,0	1,8472	1,0262
1,5708	90	6,5	1,8478	0,9476
1,5708	90	7,0	1,8482	0,8801

Tabela 23 – Função de geometria para o ângulo de 90º e distâncias de 0,5 cm, a ser utilizada no cálculo da função dose radial. Está sendo mostrado também o valor de β (Beta) correspondente.

2.4.2 - Função de anisotropia, $F(r, \theta)$

Utilizando os valores medidos e a equação (9), determina-se finalmente a função de anisotropia

 $F(r, \theta)$, cujos valores calculados são mostrados na TAB. 24.

Tabela 24 - Valores da função de anisotropia. A tabela mostra os valores calcula	dos a partir
dos valores integrados de dose e dos valores calculados na faixa de corte dos e	spectros.

Ângulos (°)	Distância (cm)	G (r, θ)	$F(r, \theta)$ para valor integrado	F (r, θ) na faixa de corte dos espectros
90	2,0	3,0321	1	1
80	2,0	3,0804	0,8081	0,8378
70	2,0	3,2330	0,6802	0,7445
60	2,0	3,5159	0,5957	0,6533
50	2,0	3,9858	0,5112	0,5485
40	2,0	4,7643	0,4461	0,4591
30	2,0	6,1423	0,3295	0,3309
20	2,0	9,0004	0,1731	0,1716
10	2,0	17,7546	0,0732	0,0721
90	5,0	1,2304	1	1
80	5,0	1,2495	0,9383	1,0141
70	5,0	1,3098	0,8947	0,9745
50	5,0	1,6080	0,7779	0,8075
40	5,0	1,9173	0,7263	0,6668
30	5,0	2,4660	0,6026	0,5638
20	5,0	3,6064	0,3114	0,2850
10	5,0	7,1050	0,1555	0,1545

2.4.3 - Função de dose radial, g(r) e constante de taxa de dose, A

Utilizando a mesma semente, porém a segunda e a terceira configurações das placas de *Solid Water* RW1, efetuou-se as medidas com os mesmos cristais anteriormente utilizados, nas distâncias e numerados conforme mostra a TAB. 25. É importante perceber que a medida efetuada nos 25 primeiros cristais foi realizada separadamente das outras duas medidas, ou seja, das medidas dos cristais 26 e 27 e dos cristais 28 e 29, porém todas foram feitas em seqüência no mesmo dia, com a mesma semente de iodo-125 calibrada utilizada neste trabalho. Logo na sequência, na TAB. 26 aparecem os valores medidos em cada cristal.

Tabela 25 – Posição de cada cristal de acordo com a numeração do mesmo e as distâncias utilizadas nas medidas.

Número do	Numeração	Distância à	Número do	Numeração	Distância à
cristal	utilizada	semente	cristal	utilizada	semente
1	05N	0,5 cm	15	05S	0,5 cm
2	10N	1,0 cm	16	10S	1,0 cm
3	15N	1,5 cm	17	15S	1,5 cm
4	20N	2,0 cm	18	20S	2,0 cm
5	25N	2,5 cm	19	25S	2,5 cm
6	30N	3,0 cm	20	30S	3,0 cm
7	35N	3,5 cm	21	40S	4,0 cm
8	40N	4,0 cm	22	50S	5,0 cm
9	45N	4,5 cm	24	60S	6,0 cm
10	50N	5,0 cm	25	70S	7,0 cm
11	55N	5,5 cm	26	10L1	1,0 cm
12	60N	6,0 cm	27	10L2	1,0 cm
13	65N	6,5 cm	28	10L3	1,0 cm
14	70N	7,0 cm	29	10L4	1,0 cm
Número do cristal e posição nos discos	Valor integrado (nC)	Faixa de temperatura	Valor na faixa de temperatura (nC)		
---	----------------------	----------------------	---------------------------------------		
1 - 05N	57,981	150 – 225 °C	47,048		
2 – 10N	12,048	150 – 225 °С	9,955		
3 – 15N	5,281	150 – 225 °С	4,372		
4 - 20N	2,649	150 − 225 °C	2,233		
5 – 25N	1,626	145 − 220 °C	1,289		
6 – 30N	0,881	150 – 225 °С	0,681		
7 – 35N	0,621	150 – 225 °С	0,455		
8 – 40N	0,510	150 – 225 °С	0,335		
9 – 45N	0,334	150 – 225 °С	0,217		
10 – 50N	0,306	152 – 227 °С	0,170		
11 – 55N	0,234	160 − 235 °C	0,116		
12 – 60N	0,219	150 − 225 °C	0,106		
13 – 65N	0,205	153 – 228 °С	0,087		
14 - 70N	0,190	150 − 225 °C	0,061		
15 - 05S	57,256	155 – 230 °С	48,811		
16 – 10S	13,995	150 – 225 °С	11,506		
17 – 15S	4,754	150 – 225 °С	3,919		
18 – 20S	2,614	155 – 230 °С	2,148		
19 – 25S	1,671	158 − 233 °C	1,326		
20 - 30S	0,991	155 – 230 °С	0,727		
21 - 40S	0,482	150 – 225 °С	0,301		
22 - 50S	0,334	157 – 232 °С	0,206		
24 - 60S	0,229	150 – 225 °С	0,102		
25 - 70S	0,171	152 – 227 °С	0,075		
26 - 10L1	15,001	150 – 225 °C	10,229		
27 – 10L2	15,140	145 – 220 °C	9,517		
28 - 10L3	18,155	145 − 220 °C	10,224		
29 – 10L4	17,652	145 – 220 °C	10,945		

Tabela 26 – Valores medidos em cada cristal no dia 26 de agosto de 2008 após 2 horas de irradiação com tempo de evanescência máximo de 21 horas e 7 minutos.

Assim, utilizando-se a calibração dos cristais efetuada no Dermopan II Siemens, torna-se possível escrever os valores da TAB. 26 em mGy, os quais são mostrados na TAB. 27.

Número do cristal e	Valores integrados	Faixa de temperatura	Valores na faixa de
	(IIIGy) 412.256	150 225 %	
1 - 05N	412,336	150 - 225 °C	140,000
2 - 10N	/8,4/6	150 – 225 °C	140,988
<u>3 – 15N</u>	28,525	150 – 225 °C	54,122
4 - 20N	13,372	150 – 225 °C	27,432
5 – 25N	8,338	145 – 220 °C	15,034
6 - 30 N	5,122	150 – 225 °С	8,982
7 – 35N	3,458	150 – 225 °С	5,688
8 - 40 N	2,617	150 – 225 °C	3,697
9-45N	2,079	150 – 225 °C	2,712
10 – 50N	1,908	152 – 227 °С	2,187
11 – 55N	1,534	160 – 235 °С	1,553
12 – 60N	1,259	150 – 225 °С	1,273
13 – 65N	1,152	153 – 228 °С	1,047
14 – 70N	1,027	150 – 225 °С	0,692
15 – 05S	277,628	155 – 230 °С	525,109
16 – 10S	63,086	150 – 225 °С	111,494
17 – 15S	25,561	150 – 225 °С	43,174
18 - 20S	13,815	155 – 230 °С	24,469
19 – 25S	8,429	158 – 233 °С	14,258
20 - 30S	5,821	155 – 230 °С	8,931
21 - 40S	2,668	150 – 225 °С	3,470
22 - 50S	1,657	157 – 232 °С	2,150
24 - 60S	1,081	150 – 225 °C	1,005
25 - 70S	0,815	152 – 227 °С	0,744
26 - 10L1	75,729	150 – 225 °С	110,234
27 – 10L2	75,881	145 – 220 °C	107,039
28 – 10L3	95,043	145 – 220 °C	113,698
29 - 10L4	90,046	145 – 220 °C	118,921

Tabela 27 – Valores calculados das medidas em cada cristal, já convertidos para miliGray (mGy), utilizando-se os valores da calibração efetuada no DERMOPAN II Siemens.

Assim, calculando-se a média dos valores mostrados na TAB. 27, obtém-se os valores de dose em cada um dos pontos medidos, conforme apresentado na TAB. 28.

Distância	Valores integrados (nC)	Valores integrados (mGy)	Valores na faixa de temperatura (nC)	Valores na faixa de temperatura (mGy)
0,5 cm	57,619	344,992	47,930	608,565
1,0 cm	13,022	70,781	10,731	126,241
1,5 cm	5,018	27,043	4,146	48,648
2,0 cm	2,632	13,593	2,191	25,950
2,5 cm	1,649	8,384	1,308	14,646
3,0 cm	0,936	5,472	0,704	8,957
3,5 cm	0,621	3,458	0,455	5,688
4,0 cm	0,496	2,643	0,318	3,583
4,5 cm	0,334	2,079	0,217	2,712
5,0 cm	0,320	1,782	0,188	2,168
5,5 cm	0,234	1,534	0,116	1,553
6,0 cm	0,224	1,170	0,104	1,139
6,5 cm	0,205	1,152	0,087	1,047
7,0 cm	0,181	0,921	0,068	0,718

Tabela 28 – Valores da média de mesmas distâncias e da dose radial para cada distância.

Com os valores apresentados na TAB. 28 e os valores apresentados na TAB. 23, torna-se possível finalmente calcular os valores da função dose radial, que estão apresentados na TAB. 29.

Tabela 29 – Valores da função de dose radial. A tabela mostra os valores calculados a partir dos valores integrados de dose e dos valores calculados na faixa de corte dos espectros.

r (cm)	G (r, θ)	g (r) pelos valores integrados	g (r) pelos valores na faixa de corte dos espectros
0,5 cm	9,9313	2,836	2,805
1,0 cm	5,7790	1,000	1,000
1,5 cm	3,9906	0,553	0,558
2,0 cm	3,0321	0,366	0,392
2,5 cm	2,4405	0,280	0,275
3,0 cm	2,0406	0,219	0,201
3,5 cm	1,7527	0,161	0,149
4,0 cm	1,5356	0,141	0,107
4,5 cm	1,3663	0,124	0,091
5,0 cm	1,2304	0,118	0,081
5,5 cm	1,1191	0,112	0,064
6,0 cm	1,0262	0,093	0,051
6,5 cm	0,9476	0,099	0,051
7,0 cm	0,8801	0,085	0,037

O terceiro arranjo experimental utilizado neste trabalho foi montado para calcular a constante de taxa de dose (Λ). Levando-se em conta que ela é definida como a taxa de dose na água a uma distância de 1 cm no eixo transversal, calculou-se a média dos 4 valores encontrados, que estão mostrados na TAB. 30.

r(om)	Valor integrado	Valor na faixa de	Valor integrado	Valor na faixa em
I (CIII)	valor integrado	temperatura	em mGy	mGy
1,0 cm	16,490	10,229	84,175	112,473

Tabela 30 – Valores médios do terceiro arranjo experimental efetuado.

Para o cálculo final da constante de taxa de dose, seriam utilizados os valores apresentados na TAB. 30 divididos pela intensidade do kerma-ar, S_k , mensurada com uma câmera esférica de grande volume, câmara esta, calibrada, não existente no momento no Brasil e que provavelmetne não terá interesse prático de se construir, já que na produção das sementes, utilizar-se-á o serviço de calibração do laboratório primário dos EUA (*National Institute of Standards and Technology* – NIST) para medir este parâmetro da nova fonte a ser produzida. Assim, para efeito de comparação, utilizou-se o valor padronizado fornecido pelo NIST para sementes de iodo-125, que é de 0,897 ± 0,007 μ Gy. m².h⁻¹.

Uma vez que a medida de S_k é um valor absoluto, calculou-se, somente a partir do valor integrado, o valor da constante de taxa de dose como sendo:

$$\Lambda = \frac{D(r_0, \theta_0)}{S_k} = \frac{84,175}{0,897} \cdot \frac{1}{100} = 0,9384 \text{ cGy.h}^{-1} \cdot \text{U}^{-1}$$
(19)

Este resultado, em comparação com o apresentado na literatura, possui uma diferença de 3,56%, já que o valor tabelado para a semente da Amersham–Oncura–GE Healthcare⁴⁵ é de 0,973 cGy.h⁻¹.U⁻¹.

2.5 - Avaliação de incertezas

Todo experimento efetuado só pode ser considerado válido se uma conveniente avaliação das incertezas for efetuada. Convém ressaltar que nem todo erro experimental pode ser plenamente conhecido, porém ele deve ser pelo menos estimado para que se possa afirmar que os resultados estão afetados por uma certa incerteza, que se for menor ou muito menor que o resultado encontrado, pode ser considerado confiável dentro do intervalo considerado.

As fontes de incerteza do tipo A levam em conta apenas fatores estatísticos; assim, para avaliar este tipo de incerteza deve-se executar uma série de repetições em iguais condições. Logo, o número de repetições deve ser (se possível) no mínimo 10. Porém, a termoluminescência é um ensaio destrutivo,

ou seja, uma vez lido, não pode ser relido. Logo, não é possível a repetibilidade no processo de medição. Portanto, para tentar avaliar a repetibilidade do processo, recomenda-se tentar minimizar os parâmetros de incertezas dentro do possível, e utilizar o desvio-padrão experimental.

As fontes de incerteza do tipo B são baseadas em meios não estatísticos, tais como certificações de calibração, padrão dos instrumentos, dados técnicos dos fabricantes dos equipamentos e estimativas efetuadas com base em dados anteriores, caso existam.

Assim, para a avaliação da incerteza padrão combinada do ensaio efetuado, seria necessário uma análise de todas as fontes de incerteza existentes na medição. Entretanto, não há necessidade de controle de alguns parâmetros do processo, como os listados abaixo, que apesar de não terem sido avaliados individualmente, foram aceitos como "estáveis" durante as várias seqüências de medidas efetuadas. Os parâmetros não considerados na avaliação de incerteza por serem considerados "estáveis" foram:

- a) Temperatura, pressão e umidade do ambiente nas salas das Leitoras;
- b) Rede elétrica estabilizada;
- c) Fluxo de gás que entra na Leitora no momento da medida;
- d) Desgate da Leitora;
- e) Variação do aquecimento do forno de pré-tratamento;
- f) Limite de detecção da Leitora;

Os parâmetros abaixo e sua incerteza máxima foram considerados para efeito da incerteza combinada, que são:

- a) Reprodutibilidade das medidas nos TLDs Tipo A $4,0\%^{79}$;
- b) Calibração da fonte de iodo-125 utilizada Tipo B 5,0%, pelos dados do fabricante;
- c) Correção da dependência energética do LiF Tipo B 5,0%, pelos dados do fabricante;
- d) Erro de posicionamento dos cristais nas medições Tipo B 0,1%, erro máximo da CNC de usinagem das placas;
- e) Erro de posicionamento dos cristais nas medições Tipo B 2,17%, erro máximo de posicionamento que pode ter ocorrido, já que esta é a folga máxima existente entre a semente e o espaço da placa para posicionamento da semente;
- f) Tempo de irradiação no Dermopan Tipo B 2,0%, pelos dados do fabricante.

Assim, o erro máximo possível, aceitando que todos os valores acima são independentes, o que não é totalmente verdade, mas por segurança experimental aceitando esta hipótese como verdade, teremos que a incerteza combinada é de 8,65%.

2.6 - Simulação computacional – simulação numérica semi-empírica da taxa de dose emitida

Como complemento às mensurações de dose emitida pela semente de iodo-125, foi realizada a simulação da taxa de exposição a fótons (posteriormente convertida para a grandeza taxa de dose absorvida) utilizando o programa MANZ07, de autoria do Dr. José Eduardo Manzoli. O cálculo considerou a geometria não puntiforme da distribuição do material radioativo e as atenuações do feixe de radiação ao passar pelos materiais ar atmosférico, titânio e/ou prata, até atingir o ponto onde se calcula esta taxa. Ao se calcular a taxa em diversos pontos, foi obtido o gráfico das curvas de iso-dose, mostradas no ítem 2.6.3.

O programa simula os valores de dose das sementes, utilizando como meio atenuador, fora da semente, o ar atmosférico, e os valores da taxa de exposição são fornecidos em R/h. Assim, os valores experimentais encontrados são convertidos para R/h com o objetivo de compará-los com os valores obtidos por intermédio da simulação computacional.

O algoritmo do MANZ07 utiliza elementos finitos^{90,91} regulares, mas não uniformes, em coordenadas cilíndricas, conforme ilustrado na FIG. 24.

Figura 24 – Esquema de dois elementos finitos usados na simulação. As ordenadas *r* e *z* foram discretizadas de forma não-homogênea ou não-uniforme.

A semente de iodo-125 e o espaço em redor foi discretizado por estes elementos finitos de maneira que a coordenada θ tinha 20 pontos, a coordenada *r* tinha 60 pontos e a coordenada *z* tinha 120 pontos, num total de 144.000 pontos. A semente em si tinha 32.000 pontos. Apenas a região superficial do fio de prata, numa espessura de 0,05 mm, foi considerada como contendo iodo-125 e, portanto, como fonte radioativa. Esta região, ou "capa" do fio de prata, continha 12.000 pontos e cada um destes pontos foi considerado uma fonte pontual com uma certa atividade para o cálculo da taxa de exposição numa posição desejada, usando a equação dada por⁹²:

$$\dot{X}(P) = \Gamma \frac{A}{d^2}$$
(20)

onde X é a taxa de exposição para fótons; Γ é a constante de taxa de exposição, peculiar da emissão do iodo-125; A é a atividade pontual e d é a distância da posição para a qual se deseja calcular esta taxa até o ponto-fonte de iodo-125.

A atividade de cada ponto da "capa" foi estabelecida de maneira que a soma total destas atividades fosse a atividade total do iodo-125 adsorvido. A soma das taxas de exposição numa certa posição, devida a todos os pontos desta "capa", já considerando a atenuação do feixe ao passar pelos materiais na trajetória deste feixe, resulta na taxa efetiva daquela posição.

A hipótese básica para o cálculo é que cada ponto na superfície da semente, tratado como *S*, será considerado como uma fonte pontual que contribui para a dose na posição a ser calculada, tratada como *P*. Assim, quanto maior for a quantidade de pontos na superfície da semente que for utilizada no cálculo, maior será a aproximação deste cálculo com a realidade.

Em termos matemáticos, podemos definir o ponto *S* da fonte e o ponto de medida de dose *P* como sendo:

$$\begin{cases} S = (\rho_s, \theta_s, z_s)_{Cil} = (x_s, y_s, z_s)_C \\ P = (\rho_p, \theta_p, z_p)_{Cil} = (x_p, y_p, z_p)_C \end{cases}$$
(21)

Assim, qualquer ponto pertencente ao segmento de reta que vai de S à P apresenta as seguintes coordenadas:

$$(x, y, z)_{c} = (x_{s}, y_{s}, z_{s})_{c} + \frac{\lambda (x_{p} - x_{s}, y_{p} - y_{s}, z_{p} - z_{s})_{c}}{\sqrt{(x_{p} - x_{s})^{2} + (y_{p} - y_{s})^{2} + (z_{p} - z_{s})^{2}}}$$
(22)

onde $0 \le \lambda \le 1$ e fazendo $d = \sqrt{(x_p - x_s)^2 + (y_p - y_s)^2 + (z_p - z_s)^2}$, torna-se possível escrever:

$$(x, y, z)_{\mathcal{C}} = \left[\left(x_s + \lambda \cdot \frac{(x_p - x_s)}{d} \right), \left(y_s + \lambda \cdot \frac{(y_p - y_s)}{d} \right), \left(z_s + \lambda \cdot \frac{(z_p - z_s)}{d} \right) \right]_{\mathcal{C}}$$
(23)

Para mudança de coordenadas, tem-se que:

$$\begin{cases} x_i = \rho_i \cdot \cos \theta_i \\ y_i = \rho_i \cdot \sin \theta_i \end{cases}$$
(24)

Então, é possível escrever:

$$d = \sqrt{\left(\rho_p \cdot \cos\theta_p - \rho_s \cdot \cos\theta_s\right)^2 + \left(\rho_p \cdot \sin\theta_p - \rho_s \cdot \sin\theta_s\right)^2 + \left(z_p - z_s\right)^2}$$
(25)

E como a coordenada θ pode assumir dois valores, podemos "testar":

 $\begin{cases} se \ x > 0 \ e \ y > 0 \implies \theta \ \acute{e} \ a \ saida \ do \ arctg \ e \ \acute{e} \ positivo \\ se \ x > 0 \ e \ y < 0 \implies \theta \ \acute{e} \ a \ saida \ do \ arctg \ e \ \acute{e} \ negativo \\ se \ x < 0 \ e \ y > 0 \implies (\theta + \pi) \ \acute{e} \ a \ saida \ do \ arctg \ e \ \acute{e} \ positivo \\ se \ x < 0 \ e \ y < 0 \implies (\theta - \pi) \ \acute{e} \ a \ saida \ do \ arctg \ e \ \acute{e} \ positivo \\ \end{cases}$

Assim, o segmento de reta entre S e P será, em coordenadas cilíndricas:

$$(\rho, \theta, z)_{cii} = \left(\sqrt{x^2 + y^2}, \operatorname{arctg}_{\overline{x}}^{\overline{y}}, z\right)_{cii}$$
(26)

2.6.1 - Coeficientes de atenuação linear (μ)

Os coeficientes de atenuação linear que foram utilizados na simulação computacional são calculados a partir dos valores médios encontrados na literatura, mediante uso da expressão⁹²:

$$\mu_t = \rho_t \cdot \left(\frac{\mu_i}{\rho_i}\right) \tag{27}$$

onde ρ_i é a densidade do i-ésimo material e $\left(\frac{\mu_l}{\rho_i}\right)$ é o coeficiente de atenuação de massa do i-ésimo material⁹². Os valores obtidos são mostrados na TAB. 31.

Material	$\rho_i (g/cm^3)$	$\left(\frac{\mu_i}{\rho_i}\right)$ (cm ² /g)	$\mu_i (\mathrm{mm}^{-1})$
Ar atmosférico	1,205.10-3	0,3738	4,4856.10-5
Titânio	4,54	5,485	2,49
Prata	10,5	39,73	41,7165
Água	1,0	0,3951	3,951.10 ⁻²

Tabela 31 – Coeficientes de atenuação linear dos materiais utilizados neste trabalho com seus respectivos parâmetros de entrada^{93,94}.

2.6.2 - Parâmetros de entrada e saída do programa

Como a quantidade de pontos na simulação é bastante extensa, os valores encontrados na simulação não foram inseridos neste trabalho. Porém, as curvas de iso-dose correspondentes aos pontos da simulação computacional são apresentadas em detalhe.

Para correlacionar esta simulação com os dados obtidos no experimento realizado, foram efetuados três conjuntos de simulação:

- a) Um conjunto de simulação completa, utilizando-se o tamanho total da placa de *Solid Water* RW1, com a finalidade de comparar com os valores encontrados no experimento da função de anisotropia.
- b) Para visualizar os valores da função de dose radial, simulou-se três conjuntos de dados, analisando-se nos quadrantes 1 e 2 a região axial da semente de iodo-125 simulada.
- c) Para verificar a invaginação da dose ocorrida por causa da espessura da solda da semente, simulou-se os quadrantes 1 e 4 com distâncias menores que 2 cm.

Nestes três conjuntos de simulação, os parâmetros de entrada do programa foram:

- dimensões da semente:
 - o diâmetro interno do tubo de titânio:..... 0,70 mm
 - o comprimento interno do tubo de titânio:.. 3,50 mm
 - o diâmetro externo do tubo de titânio:..... 0,80 mm
 - o comprimento externo do tubo de titânio:.. 4,50 mm
 - o diâmetro do fio de prata:.....0,50 mm
 - o comprimento do fio de prata:..... 3,00 mm
 - o espessura da camada de iodo-125:..... 0,05 mm

• atividade da semente:.... 1,00 mCi

2.6.3 - Simulação completa do experimento

Para efeito de visualização neste trabalho, está apresentado nas FIG. 25 a 28 o conjunto completo do experimento simulado mediante uso do código MANZ07, com vários tamanhos de simulação.

Note-se que as "iso-doses"são superfícies, e não curvas. Elas tem o aspecto toroidal e o que se vê nas figuras a seguir são cortes transversais destes toroides.

Figura 25 – Gráfico mostrando as curvas de iso-dose do programa de simulação MANZ07 de uma semente de iodo-125 nas dimensões de 7 cm X 7 cm. O centro da semente neste gráfico é o ponto (0,0).

Figura 26 – Gráfico mostrando as curvas de iso-dose do programa de simulação MANZ07 de uma semente de iodo-125 nas dimensões de 7 cm X 7 cm. Nas distâncias acima de 4 cm, as curvas de iso-dose são mostradas em detalhe para melhor visualização. O centro da semente neste gráfico é o ponto (0,0).

Figura 27 – Gráfico mostrando as curvas de iso-dose do programa de simulação MANZ07 de uma semente de iodo-125 nas dimensões de 3 cm X 3 cm. O centro da semente neste gráfico é o ponto (0,0).

Figura 28 – Gráfico mostrando o quadrante 1 do programa de simulação MANZ07 de uma semente de iodo-125 nas dimensões de 3 cm X 3 cm. O centro da semente neste gráfico é o ponto (0,0).

2.6.4 - Comparação dos valores experimentais com os valores simulados

Como comentado anteriormente, os valores experimentais foram expressos em mGy, enquanto que, nas simulações, os valores calculados foram expressos em R/h. Assim, convertendo-se as grandezas e para efeitos no ar, resulta⁹²:

$$\begin{array}{c} 1 \text{ R} = 2,58 \text{ x } 10^{-4} \text{ C/kg} \\ 1 \text{ C/kg} = 33,8 \text{ Gy} \end{array} \right\} 1 \text{ R} = 0,00872 \text{ Gy} = 8,72 \text{ mGy}$$
(28)

Portanto, utilizando-se os valores experimentais apresentados na TAB. 19, podemos reescrevêlos em Roentgen (R) conforme mostrado na TAB. 32. Tabela 32 – Valores calculados da média ponderada já convertidos para Roentgen (R), e o valor médio da faixa de energia para cada ponto experimental simulado pelo programa MANZ07. São também apresentados os valores da diferença percentual de cada ponto, sendo considerados os valores experimentais como o valor de referência.

Ângulos e distância	Média dos valores integrados (R)	Desvio-padrão dos valores integrados (R)	Valor médio da faixa de energia do programa MANZ07	Diferença porcentual entre o valor experimental e o valor simulado
90° - 2 cm	3,132	0,437	3,3	5,36%
80° - 2 cm	2,571	0,331	3	16,67%
70° - 2 cm	2,271	0,357	2,5	10,06%
60° - 2 cm	2,163	0,324	2,2	1,70%
50° - 2 cm	2,105	0,359	2	4,97%
40° - 2 cm	2,195	0,331	1,7	22,56%
30° - 2 cm	2,091	0,255	1,6	23,46%
20° - 2 cm	1,609	0,209	1,4	13,01%
10° - 2 cm	1,343	0,143	1,2	10,62%
0° - 2 cm	1,161	0,134	0,9	22,49%
90° - 5 cm	0,275	0,008	0,55	100,08%
80° - 5 cm	0,262	0,022	0,5	90,89%
70° - 5 cm	0,262	0,020	0,4	52,78%
50° - 5 cm	0,279	0,036	0,4	43,13%
40° - 5 cm	0,311	0,056	0,3	3,58%
30° - 5 cm	0,332	0,064	0,3	9,64%
20° - 5 cm	0,251	0,074	0,3	19,56%
10° - 5 cm	0,247	0,048	0,3	21,56%
80° - 7 cm	0,174	0,031	0,2	14,81%
70° - 7 cm	0,186	0,039	0,2	7,79%
60° - 7 cm	0,203	0,058	0,2	1,58%

Pode-se perceber uma boa concordância na distância de 2,0 cm. Entretanto, nas duas distâncias maiores, a proximidade do limite de detecção da Leitora utilizada explica em parte o motivo das discrepâncias encontradas.

Além disso, o código do programa e os valores dos parâmetros de entrada devem ser revistos para aumentar a confiabilidade da simulação. A espessura da solda nas sementes de iodo-125 é um dos parâmetros cujo valor deve ser medido com maior precisão, pois na simulação foi utilizado um valor estimado. A atividade da semente de iodo-125 é outro parâmetro de entrada importante que teve o valor estimado, pois os dados disponíveis referem-se à atividade aparente da semente, e não à atividade depositada no fio central de prata (valor este de entrada do programa).

3 – Conclusão

No presente trabalho foi desenvolvida e testada uma metodologia para efetuar a dosimetria de fontes seladas de iodo-125 que, sob a forma de sementes, serão produzidas no IPEN/CNEN-SP para utilização em braquiterapia. Esta metodologia consistiu na realização de um experimento empregando *Solid Water* RW1 para medir os parâmetros das sementes de iodo-125 com pequenos cristais de TLD-100 (dosímetros termoluminescentes de LiF:Mg, Ti). Adicionalmente, foram realizadas simulações numéricas semi-empíricas com a finalidade de calcular a taxa de dose emitida pelas sementes de iodo-125 e comparar o resultado do cálculo com os valores obtidos no experimento.

Em relação ao pré-selecionamento dos cristais, a metodologia proposta reduziu drasticamente o tempo de escolha dos "melhores" cristais a serem utilizados pois, pela literatura, recomenda-se uma medida completa para cada cristal a ser utilizado. Com uma Leitora comum, demora-se aproximadamente 2 dias por leitura completa, e como se recomenda pelo menos 4 repetições de medidas, mais o tempo de tratamento térmico e período de irradiação, teríamos aproximadamente 12 a 15 dias para se pré-selecionar os cristais. Utilizando-se um parâmetro de corte como proposto e uma Leitora automática, como a Harshaw 5500, pode-se reduzir o pré-selecionamento a pouco mais de 4 medidas de 1 hora cada. E contando-se com o tempo de "queima" térmica do cristal, mais a irradiação do mesmo, leva a medida completa a pouco mais de quatro dias de trabalho.

A utilização de um "corte" nos espectros mostrou uma grande discrepância nos valores absolutos de cada leitura TLD em relação ao valor medido integrado. Porém os valores finais dos parâmetros calculados encontrados foram muito próximos, mostrando que é necessário um estudo mais profundo sobre a necessidade ou não do "corte" dos espectros nas medidas dos TLDs. É importante ressaltar que quase todas as Leitoras TLDs comerciais fornecem somente o valor integrado de carga em todo o espectro, ou seja, para que se possa "cortar" o espectro, é necessário usar uma placa externa de aquisição de dados, placa esta raramente disponível nos equipamentos utilizados.

Um fato importante que foi constatado em relação ao corte dos espectros é a sensibilidade do mesmo em relação à modificação dos parâmetros. Assim, a primeira medida real do cristal 23 foi de 0,545 nC com valor de corte em 0,239 nC e, após o cristal ter sido danificado, valor de 0,233 nC e de 0,055 nC. Em resumo, enquanto no primeiro valor encontrou-se aproximadamente metade do valor integrado, na medida após a quebra foi obtido um valor de um quarto do valor integrado. Como isso só

ocorreu com um cristal, seria prematuro afirmar algo, mas é um fato que merece também uma nova investigação.

A calibração dos cristais utilizando-se o Dermopan II da Siemens minimizou uma correlação de energia na leitura dos espectros, pois a energia calibrada do Dermopan é igual à energia média das sementes mensuradas, ou seja 29 keV, eliminando uma possível fonte de erro experimental.

O valor encontrado para a constante de taxa de dose, foi bastante próximo do valor de referência da literatura, apresentando somente 3,56% de diferença. Tal fato mostra que, apesar das poucas medidas efetuadas, a metodologia proposta está bem próxima dos valores obtidos nos laboratórios de calibração primários e secundários que publicaram trabalhos sobre o assunto.

Pode-se perceber uma boa concordância dos valores simulados com valores experimentais no disco de 2 cm, enquanto que nos discos mais afastados observa-se uma certa discrepância entre os valores simulados e os valores experimentais. Como o objetivo principal do programa é simular defeitos na fabricação de sementes de iodo-125, e estes defeitos serão mais importantes nas distâncias próximas da semente, os valores encotrados mostraram-se satisfatórios, porém recomenda-se que seja revisto o código do programa de simulação para distâncias maiores. Igualmente necessária é a revisão de todos os parâmetros de entrada do programa de simulação, pois valores como espessura da solda e atividade depositada na semente de iodo-125 foram estimados e podem não condizer com a realidade.

4 – Trabalhos futuros

Apesar da metodologia proposta neste trabalho ser considerada suficiente para a dosimetria das sementes de iodo-125 a serem produzidas no Brasil, recomenda-se fortemente que novos testes com novos lotes de sementes da Amersham (a mais próxima da semente a ser produzida no IPEN/CNEN-SP) e, se possível, com outros modelos de sementes, sejam efetuados para verificar a confiabilidade da metodologia proposta.

Como comentado no trabalho, não se verificou diferença substancial no cálculo dos parâmetros dosimétricos devido ao corte dos espectros, porém seria interessante nas medidas propostas que se continuasse a verificar a necessidade e/ou vantagens de se mensurar somente os picos dosimétricos 4 e 5, ao invés dos valores integrados do espectro.

Neste trabalho, não se verificou a importância do tratamenteo químico dos cristais TLD-100 nas medidas efetuadas, pois os cristais eram novos e foram utilizados apenas para este trabalho. Porém, o próprio fabricante dos cristais recomenda que: "caso o cristal esteja 'sujo' se proceda a limpeza dos mesmos com tricloroetileno aquecido e depois um enxágüe com Metanol PA". Assim, é importante que se verifique a influência desta "limpeza" nos cristais TLD-100.

A utilização dos cristais TLD-100 é recomendada por todos os fabricantes de sementes e pelos laboratórios de dosimetria que trabalham com sementes de iodo-125. Porém, novos modelos de dosímetros são sempre propostos e pode-se futuramente analisar a viabilidade de outras formas de levantamento dosimétrico, já que uma premissa básica deste trabalho é que o diminuto tamanho do cristal não interfere ou pouco interfere na medida efetuada, hipótese esta cuja validade ainda não se pode conferir.

Está sendo proposto, e já foi aceito pela divisão de projetos do Centro de Tecnologia das Radiações (CTR) do IPEN/CNEN-SP, a aquisição de um Leitor TLD com placa de aquisição de dados por canal de leitura e a compra de mais 500 dosímetros TLD-100 para que se verifique os parâmetros recomendados acima.

O programa de simulação MANZ07 deverá ser revisto principalmente para distâncias maiores e propõe-se que, no futuro, implemente-se a forma de simulação pelo Método de Monte Carlo.

5 – Referências bibliográficas

¹ WORLD HEALTH ORGANIZATION – CANCER. Disponível em: http://www.who.int/cancer/en/, acesso em 20/01/2005.

² PIVETTA, M. Câncer, esperanças divididas. *Rev. Pesq. FAPESP*, 98: 46-53, maio, 2004

³ GLOBOCAN-2002. *Cancer map.* Disponível em: http://www-depdb.iarc.fr/globocan/GLOBOframe.htm Acesso em 20/01/2005.

⁴ ORGANIZAÇÃO MUNDIAL DA SAÚDE (OMS) apud MINISTÉRIO DA SAÚDE. INSTITUTO NACIONAL DE CÂNCER. *Estimativa da incidência e mortalidade por câncer no Brasil 1999*. Rio de Janeiro: 1999

⁵ RICE, D. P. ; HODGSON, T. A. Incidences sociales et economiques du cancer aux États-Unids d'Amerique. *World Health Stat.*, 33 (1): 56-100, 1980.

⁶ NATIONAL CANCER INSTITUTE apud LANDIS, S.H.; MURRAY, T.; BOLDEN, S.; MILLER, B. A.; RIES, L. A. Cancer Statistics, 1998. Ca-A Cancer *J. Clin.*, 48 (1): 6-29, 1998.

⁷ NATIONAL CANCER INSTITUTE. *Screening for Prostate Cancer*. USA: 1998.

⁸ NATIONAL CANCER INSTITUTE apud YU, Y.; ANDERSON, L. L.; LI, Z.; MELLENBERG, D. E.; NATH, R.; SCHELL, M. C.; WATERMAN, F.; WU, A.; BLASKO, J. Permanent prostate seeds brachytherapy. *Med. Phys.* 26 (10): 2054-2076, 1999.

⁹ BRASIL. MINISTÉRIO DA SAÚDE. INSTITUTO NACIONAL DE CÂNCER. *Estimativa da incidência de câncer no Brasil 2008.* Rio de Janeiro: 2008.

¹⁰ Estudo Aponta Aumento nos Casos de Câncer em São Paulo. *O Estado de São Paulo*, São Paulo, 07 de julho de 1999.

¹¹ SROUGI, M. A próstata como ela é. *Folha de São Paulo*, São Paulo, 03 de novembro de 2002. Caderno Cotidiano, p. 8.

¹² INSTITUTO DE UROLOGIA DR. ANOAR SAMAD. Disponível em: http://www.institutodeurologia-as.com.br/index/prostata.asp , acesso em 26/08/2008.

¹³ BRASIL. MINISTÉRIO DA SAÚDE. INSTITUTO NACIONAL DE CÂNCER. *Programa nacional do controle de câncer da próstata: documento de consenso.* p. 13-15 Rio de Janeiro: 2002

¹⁴ GRAY, J. R. *Prostate Brachytherapy: a new treatment option for prostate cancer patients.* Columbia: Galen Healthcare, 1998.

¹⁵ MATIZKIN, H.; KAVER, I.; BRAMANT-SCHEREIBER, L.; AGAI, R.; MERIMSKY, O.; INBAR, M. Comparison between two Iodine-125 brachytherapy implants techniques: pre-planning and intra-operative by various dosimetry quality indicators. *Radiother. and Oncol.* 68: 289-294, 2003.

¹⁶ AMERICAN CANCER SOCIETY, NCCN-ACS. *Prostate cancer treatment guidelines for patients.* USA: 1999.

¹⁷ KHAN, F. M. *The physics of radiation therapy.* 2. ed., Baltimore: Williams & Wilkins, 1994.

¹⁸ RADGE, H.; KORB, L. Brachytherapy for clinically localized prostate cancer. *Urology*, 18 (1): 45-51, 2000.

¹⁹ AMERICAN UROLOGICAL ASSOCIATION PROSTATE CANCER. Clinical Guidelines Panel "*The management of localized prostate cancer – a patient's guide*". USA: 1998.

²⁰ BLASKO, J. C. ; GRIMM, P. D. ; RAGDE, H. Brachytherapy and organ preservation in the management of carcinoma of the prostate. *Semin. Rad. Oncol.*, 3 (4): 240-249, 1993.

²¹ POLLACK, A.; ZAGARS, G. K.; ROSEN, I. I. Prostate cancer treatment with radiotherapy: maturing methods that minimize morbidity. *Semin. Oncol. M. D. Anderson Cancer Center*, 26 (2): 150-161, 1999.

²² MEIGOONI, A. S. ; GEARHEART, D. M. ; SOWARDS, K. Experimental determination of dosimetric characteristics of Best I-125 brachytherapy source. *Med. Phys.*, 27 (9), 2000.

²³ GRIMM, P. *Ultrasound-guided prostate permanent seed implant therapy*. Seattle: Swedish Medical Center's Seattle Prostate Institute, 1997.

²⁴ PESCHEL, R. ; CHEN, Z. ; ROBERTS, K. ; NATH, R. Long-term complications with prostate implants: Iodine-125 vs. Palladium-103. *Rad. Oncol. Inv.*, 7 (5), 1999.

²⁵ BATTERMANN, J. J.; BOON, T. A.; MOERLAND M. A. Results of permanent prostate brachytherapy – 13 years of experience at a single institution. *Radiother. and Oncol.*, 71: 23-28, 2004.

²⁶ STRUM, S. B.; SCHOLZ, M. C. *Implantation of prostate cancer with radioactive isotope – brachytherapy.* USA: 1996.

²⁷ BUTLER, W. M. Review of Modern Prostate Brachytherapy. In: WORLD CONGRESS ON MED. PHYSICS AND BIOMEDICAL ENGINEERING. July 23-28, 2000, Chicago. *Proceedings*... Chicago, 2000.

²⁸ MEIGOONI, A. S. Dosimetric Characterization of Low Energy Brachytherapy Sources: Measurements. In: WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, July 23-28, 2000, Chicago. *Proceedings*... Chicago, 2000.

²⁹ BALTER, P. A. ; AGUIRRE, J. F. ; HANSON, W. F. Practical considerations for the calibration of low energy/low activity seeds. In: WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, July 23-28, 2000, Chicago. *Proceedings*... Chicago, 2000.

³⁰ ZUOFENG, L. Monte Carlo calculations of dosimetry parameters of the Urocor Prostaseed I-125 source. *Med. Phys.*, 29 (6): 1029 – 1034, Jun., 2002.

³¹ WILLIAMSON, J. F. On the dosimetric influences of air-kerma strength calibration geometry and internal source structure for Pd-103 and I-125 brachytherapy sources. In: WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, July 23-28, 2000, Chicago. *Proceedings...* Chicago, 2000.

³² SHEARER, D. R. *Recent advances in brachytherapy physics*. USA: AAPM, 1981. N.7. (Medical Physics Monograph).

³³ BLASKO, J.; DATOLLI, M. J.; WALLNER, K. *Prostate brachytherapy*. Washington: Smart Medicine, 1997.

³⁴ ROSTELATO, M. E. C. M. Estudo e Desenvolvimento de uma Nova Metodologia para Confecção de Sementes de Iodo-125 para Aplicação em Braquiterapia, Tese de Doutorado. IPEN/CNEN-SP, 2005.

³⁵ INTERNATIONAL STANDARD ORGANIZATION. *Radiation protection of sealed radioactive sources – General requirements and classification.* Mar. 08, 1995. (ISO-2919).

³⁶ GUTIN, P. H.; PHILIPS, T. L.; HOSOBUCCHI, Y.; WARA, W. M.; MACKAY, A. R.; WEAVER, K. A.; LAMB, S. Permanent and removable implants for the brachytherapy of brain tumor. **Int. J. Radiat. Oncol. Biol. Phys.** 7: 1371, 1981.

³⁷ PACKER, S.; ROTMAN, M. Radiotherapy of choroidal melanoma with ¹²⁵I. **Ophthalmology** 87: 582, 1980.

³⁸ SHIPLEY, W. U.; NARDI, G. L.; COHEN, A. M.; LING, C. C. ¹²⁵I implant as boost therapy in patient irradiated for localized pancreatic carcinoma: a comparative study to surgical resection. **Cancer** 45: 709, 1980.

³⁹ SHIPLEY, W. U.; KOPLESON, G.; NOVACK, D. J.; LING, C. C.; DRETLER, S. P.; PROUT, Jr. G. R. Properative irradiation, lymphadenectomy, and ¹²⁵I implant for selected patients with localized prostatic carcinoma: a correlation of implant dosimetry with clinical results. **J. Urol.** 24: 639, 1981.

⁴⁰ WHITEMORE, W. F.; HILARIS, B. S.; GRABSTAD, H. Retropubic implantation of ¹²⁵I in the treatment of prostatic cancer. **J. Urol.** 108: 918, 1972.

⁴¹ RASHID, H.; BJARNGAR, B. E.; CHIN, L. M.; RICE, R. K. Dosimetry of ¹²⁵I in a low-density material using scaling. **Med. Phys.** 20: 765-768, 1993.

⁴² MEIGOONI, A. S.; SABMIS, S.; NATH, R. Dosimetry of ¹⁰³Pd brachytherapy sources for permanent implant. **Endocurietherapy Hypertherm. Oncol.** 6: 107-117, 1990.

⁴³ CHIU-TSAO, S. T.; ANDERSON, L. L. Thermoluminescent dosimetry for ¹⁰³Pd in solid water phantom. **Med. Phys.** 18: 449-452, 1991.

⁴⁴ NATH, R.; ANDERSON, L. L.; LUXTON, G.; WEAVER, K. A.; WILLIAMSOM, J. E.; MEIGOONI, A. S. Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43, **Med. Phys.** 22: 209-234, 1995.

⁴⁵ RIVARD, M. J.; COURSEY, B. M.; DEWERD, L. A.; HANSON, W. F.; HUQ, M. S.; IBBOTT, G. S.; MITCH, M. G.; NATH, R.; WILLIAMSOM, J. F.; Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations, **Med. Phys.** 31 (3): 633-674, 2004.

⁴⁶ INTERNATIONAL ATOMIC ENERGY AGENCY, Calibration of brachytherapy sources, **TECDOC**-1079, IAEA, Viena (1999).

⁴⁷ ANCTIL, J. C.; CLARK, B. G. Experimental determination of dosimetry functions of Ir-192 sources. **Med. Phys.** 25 (12): 2279-2287, 1998.

⁴⁸ JOHNS, E. F.; CUNNINGHAM, J. R. Phys. Radiol., 4Ed., University of Toronto, 1993.

⁴⁹ SILVA, M. A. Caracterização dosimétrica das fontes de braquiterapia na forma de fios de irídio-192 de baixa taxa de dose, produzidos pelo Laboratório de Fontes de Braquiterapia CTR / IPEN/CNEN-SP, Dissertação de Mestrado. IPEN/CNEN-SP, 2003.

⁵⁰ MCKEEVER, S. W. S.; MOSCOVITCH, M.; TOWNSEND, P. D. *Thermoluminescence dosimetry materials: properties and uses*, Nuclear Technology Publishing, England, 1995.

⁵¹ CAMERON, J. R.; SUNTHARALINGAM, N.; KENNEY, G. N.; *Thermoluminescent dosimetry*, University Wisconsin Press, Madison, 1968.

⁵² NATIONAL COMMISSION ON RADIATION PROTECTION AND MEASUREMENTS, Specification of Gamma-Ray Brachytherapy Sources. **NCRP Report** no. 41, Washington, DC, 1974.

⁵³ BRITISH COMMITTEE ON RADIATION UNITS AND MEASUREMENTS, Specification of Brachytherapy Source. **Br. J. Radiol.**: 941-942, 1984.

⁵⁴ COMITE FRANÇAIS MEASURE DES RAYONMEMENTS IONISANTS, Recommedations Pour La Determination des Doses Absorbees en Curietherapie. **CFMRI Report** no. 1 Bureau National de Metrologie, Paris, 1983.

⁵⁵ PAI, S.; REINSTEIN, L. Evaluation of a new sealed reentrant well chamber for HDR and LDR brachytherapy calibrations. **Med. Phys.** 25 (5): 719-721, 1998.

⁵⁶ MEIGOONI, A. S. Recent developments in brachytherapy source dosimetry. Iran. J. Radiat. Res. 2 (3): 97-105, Dezembro, 2004.

⁵⁷ AMERICAN ASSOCIATION OF PHYSICISTS IN MEDICE (AAPM) Report No. 21, Recommendations of AAPM Task Group 32: **Specification of Brachytherapy Source Strength**. American Institute of Physics, NY, 1987.

⁵⁸ AIRD, E. G.; FOLKARD, M.; MAYES, C. R.; BOWNES, P. J.; LAWSON, J. M.; JOINER, M. C. A purpose-built iodine-125 irradiation plaque for low dose rate low energy irradiation of cell lines in vitro. **Br. J. Radiol.**: 74:56-61, 2001.

⁵⁹ DALE, R. G. Revisions to radial dose function data for ¹²⁵I and ¹³⁷Cs. **Med. Phys.** 13: 963-964, 1986.

⁶⁰ HANSON, W. F. Brachytherapy source strength: quantities, units, and standards. **Brachytherapy Phys.**, ed. J.F. Williamson, B. R. Thomadsen & R. Nath (Madison, WI: Medical Physics): 69-85, 1995.

⁶¹ FIRESTONE, R. B.; SHIRLEY, V. S. (Editor) **Table of Isotopes – 8th Edition – Volume I: A = 1 – 150**, John Wiley & Sons Inc., New York, 1996.

⁶² REUS, U.; WESTMEIER, W. Atomic Data and Nuclear Data Tables. 29: 193-406, 1983.

⁶³ MUGHABGHAB, S. F.; DIVADEENAM, M.; HOLDEN, N. E. Neutron Cross Sections – Volume 1 – Neutron Resonance Parameters and Thermal Cross Sections – Part A: Z = 1 – 60, Academic Press, New York, 1981.

⁶⁴ LEGRAND, J. ; PEROLAT, J. ; LAGOUTINE, F. ; GALLIC, Y. **Table de radionucléides.** Commissariat à l'Energie Atomique Bureau National de Métrologie. França, 1975.

⁶⁵ HARSHAW TLD BICRON, Model 4500, Manual TLD Reader with winRems: Operator's Manual. Solon, Bicron, 2001.

⁶⁶ GHIASSI-NEJAD, M.; JAFARIZADEH, M.; AHMADIAN-POUR, M. R.; GHAHRAMANI, A. R. Dosimetric characteristics of ¹⁹²Ir sources used in interstitial brachytherapy. **Appl. Rad. Isot.** 55: 189-195, 2001.

⁶⁷ YU, C.; LUXTON, G. TLD dose measurement: a simplified accurate technique for the dose range from 0.5 cGy to 1000 cGy. **Med. Phys.** 26 (6): 1010-1016, 1999.

⁶⁸ FERREIRA, M. L. Estudo do colpostato tipo Fletcher utilizando o TLD-100 e o Código de Monte Carlo IRS 3.0. Dissertação de Mestrado. Instituto de Biologia – Universidade do Estado do Rio de Janeiro, 1998.

⁶⁹ BOS, A. J. J.; PITERS, T. M. Sucess and failure of the Randall-Wilkins model for thermoluminescence in LiF(TLD-100). **Radiat. Prot. Dosim.** 47 (1/4), 41-47, 1993.

⁷⁰ BANJADE, D. P.; ALOYSIUS RAJ, T.; NG, B. S.; XAVIER, S.; TAJUDDIN, A. A.; SHUKRI, A. Entrance Dose Measurement: A Simple and Reliable Technique. **Med. Dosim.** 28 (2): 73-78, 2003.

⁷¹ CHIU-TSAO, S. T.; ANDERSON, L. L.; O'BRIEN, K.; SANNA, R. Dose rate determination for ¹²⁵I seeds. **Med. Phys.** 17 (5): 815-825, 1990.

⁷² WILLIAMSON, J. F.; NATH, R. Clinical implementation of AAPM Task Group 32 recommendations on brachytherapy source strength specification. **Med. Phys.** 18 (3): 439-448, 1991.

⁷³ HUANG, D. Y. C.; SCHELL, M. C.; WEAVER, K. A.; LING, C. C. Dose distribution of ¹²⁵I sources in different tissues. **Med. Phys.** 17 (5): 826-832, 1990.

⁷⁴ ANAGNOSTOPOULOS, G.; BALTAS, D.; KARAISKOS, P.; SANDILOS, P.; PAPAGIANNIS, P.; SAKELLIOU, L. Thermoluminescent dosimetry of the SelectSeed ¹²⁵I interstitial brachytherapy seed. **Med. Phys.** 29 (5): 709-715, 2002.

⁷⁵ SLOBODA, R. S.; MENON, G. V. Experimental determination of the anisotropy function and anisotropy factor for model 6711 ¹²⁵I seeds. **Med. Phys.** 27 (8): 1789-1799, 2000.

⁷⁶ WALLACE, R. E.; FAN, J. J. Report on the dosimetry of a new design ¹²⁵Iodine brachytherapy source. **Med. Phys.** 26: 1925-1931, 1999.

⁷⁷ MEIGOONI, A. S.; YOE-SEIN, M. M.; AL-OTOOM, A. Y.; SOWARDS, K. T. Determination of the dosimetric characteristics of InterSource125 Iodine brachytherapy source. **Appl. Rad. Isot.** 56: 589-599, 2002.

⁷⁸ DUGGAN, D. M.; JOHNSON, B. L. Dosimetry of the I-Plant Model 3500 iodine-125 brachytherapy source. **Med. Phys.** 28 (4): 661-670, 2001.

⁷⁹ POPESCU, C. C.; WISE, J. W.; SOWARDS, K.; MEIGOONI, A. S.; IBBOTT, G. S. Dosimetric characteristics of the Pharma Seed model BT-125-I source. **Med. Phys.** 27 (9): 2174-2181, 2000.

⁸⁰ GEARHEART, D. M.; DROGIN, A., SOWARDS, K.; MEIGOONI, A. S.; IBBOTT, G. S. Dosimetric characteristics of a new ¹²⁵I brachytherapy source. **Med. Phys.** 27 (10): 2278-2285, 2000.

⁸¹ MEIGOONI, A. S.; HAYES, J. L.; ZHANG, H.; SOWARDS, K. Experimental and theoretical determination of dosimetric characteristics of IsoAid ADVANTAGE ¹²⁵I brachytherapy source. **Med. Phys.** 29 (9): 2152-2158, 2002.

⁸² NATH, R.; YUE, N. Dosimetric characterization of a newly design encapsulated interstitial brachytherapy source of iodine-125 – model LS-1 BrachyseedTM. **Appl. Rad. Isot.** 55: 813-821, 2001.

⁸³ MELI, J. A.; MEIGOONI, A. S.; NATH, R. On the choice of phantom material for the dosimetry of ¹⁹²Ir sources. Int. J. Radiat. Oncol. Biol. Phys. 14 (3): 587-594, 1988.

⁸⁴ INTERNATIONAL COMISSION OF RADIATION UNITS (ICRU) Report 35, Radiation Dosimetry Electron Beams with Energies Between 1 and 50 MeV. ICRU Publications, Bethesda. 1984.

⁸⁵ MEIGOONI, A. S.; WILLIAMSON, J. F. A comparative study of dosimetric properties of plastic water and solid water in brachytherapy applications. **Med. Phys.** 21 (12): 1983-1987, 1994.

⁸⁶ MANZOLI, J. E.; ROMERO, M. A.; HIPÓLITO, O. On the capacitance-voltage modeling of strained quantum-well MODFET's. **IEEE J. of Quantum Electronics**, v. 34, n. 12, p. 2314-2320, 1998. – Simulação.

⁸⁷ YORIAZ, H. **Desenvolvimento de uma metodologia computacional para cálculos em dosimetria interna**, Tese de Doutorado. IPEN/CNEN-SP, 2000.

⁸⁸ WILLIAMSON, J. F. Monte Carlo calculation of absorbed dose near ¹³⁷Cs intracabitary sources. **Int. J. Radiat. Oncol. Biol. Phys.** 15: 227-237, 1998.

⁸⁹ PITERS, T. M.; BOS, A. J. J. Thermoluminescence emission spectra of LiF (TLD-100) after different thermal treatments. **Radiat. Prot. Dosim.** 47 (1/4), 91-94, 1993.

⁹⁰ ALVES FILHO, A. Elementos Finitos - a Base da Tecnologia CAE, Editora Érica, São Paulo, 2000.

⁹¹ MILNE, L. M.; THOMSON, C. E. The Calculus of Finite Differences, New York, 1960.

⁹² KNOLL, G. F. Radiation Detection and Measurement, John Wiley & Sons Inc., New York, 1989.

⁹³ BOONE, J. M.; CHAVEZ, A. E. Comparison of x-ray cross sections for diagnostic and therapeutic medical physics. **Med. Phys.** 23 (12): 1997-2005, 1996.

⁹⁴ HUBBEL, J. H.; SELTZER, S. M.; **Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest.** NISTIR 5632, 1995 (also at: http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html).

Medidas				Medida	Medida	Medida	Desvio		Média			Dois
em nC	100º-200º	100º-200º	100º-200º	ajustada	ajustada	ajustada	Padrão		Ajustada		-	Testes
1	187,1	159,4	180,8	0,945084	0,892884	1,274073	0,206666	RUIM	1,037347	BOM		RUIM
2	153,5	128,2	170,1	0,775363	0,718116	1,198672	0,262489	RUIM	0,897384	BOM		RUIM
3	261	230	135,3	1,318369	1,288352	0,953441	0,202583	RUIM	1,186721	RUIM		RUIM
4	247	205	136	1,247652	1,148313	0,958374	0,146985	BOM	1,118113	BOM		BOM
5	195,8	128,1	166	0,98903	0,717556	1,16978	0,227624	RUIM	0,958788	BOM		RUIM
6	151,9	122,2	145,5	0,767281	0,684507	1,025319	0,177758	RUIM	0,825702	RUIM		RUIM
7	280	196,3	145,8	1,414343	1,09958	1,027433	0,205742	RUIM	1,180452	RUIM		RUIM
8	208	191,3	117,2	1,050655	1,071572	0,825893	0,136207	BOM	0,982707	BOM		BOM
9	127,4	167,8	164,1	0,643526	0,939937	1,156391	0,257469	RUIM	0,913284	BOM		RUIM
10	156	146,8	171,4	0,787991	0,822304	1,207833	0,233123	RUIM	0,939376	BOM		RUIM
11	241	231	109,8	1,217345	1,293953	0,773746	0,280851	RUIM	1,095015	BOM		RUIM
12	232		112,1	1,171884	0	0,789954	0,597663	RUIM	0,653946	RUIM		RUIM
13	181,7	175,9	157,5	0,917807	0,985309	1,109881	0,09744	BOM	1,004333	BOM		BOM
14	162,7	166,4	149,6	0,821834	0,932094	1,054211	0,116239	BOM	0,936047	BOM		BOM
15	218	191,3	115,4	1,101167	1,071572	0,813208	0,158402	RUIM	0,995316	BOM		RUIM
16	249	183,7	120,7	1,257755	1,029001	0,850557	0,204116	RUIM	1,045771	BOM		RUIM
17	170,3	130,1	158,1	0,860223	0,728759	1,11411	0,19589	RUIM	0,901031	BOM		RUIM
18	141,8	140	145,7	0,716264	0,784214	1,026728	0,163207	RUIM	0,842402	RUIM		RUIM
19	246	190,5	111,6	1,242601	1,067091	0,78643	0,230096	RUIM	1,032041	BOM		RUIM
20	211	201	102,9	1,065808	1,125907	0,725123	0,216143	RUIM	0,972279	BOM		RUIM
21	130,8	120,9	127,4	0,6607	0,677225	0,897771	0,132361	BOM	0,745232	RUIM		RUIM
22	166,7	166,8	133,8	0,842039	0,934335	0,942871	0,055914	BOM	0,906415	BOM		BOM
23	255	212	173,8	1,288062	1,187524	1,224745	0,05083	BOM	1,233444	RUIM		RUIM
24	260	220	157,5	1,313318	1,232336	1,109881	0,10242	BOM	1,218512	RUIM		RUIM
25	165,5	177,9	118,6	0,835978	0,996512	0,835758	0,092748	BOM	0,889416	BOM		BOM
26	191,4	154,6	149	0,966804	0,865996	1,049983	0,092134	BOM	0,960928	BOM		BOM
27	239	211	150,6	1,207242	1,181923	1,061258	0,078009	BOM	1,150141	RUIM		RUIM
28	255	173,6	181,4	1,288062	0,972425	1,278302	0,179482	RUIM	1,179596	RUIM		RUIM
29	165,1	145,6	150,1	 0,833957	0,815583	1,057735	0,134816	BOM	0,902425	BOM		BOM
30	161,2	154,2	166,1	0,814257	0,863756	1,170485	0,192973	RUIM	0,949499	BOM		RUIM

Medidas				Medida	Medida	Medida	Desvio		Média		Dois
em nC	100º-200º	100º-200º	100º-200º	ajustada	ajustada	ajustada	Padrão		Ajustada		Testes
31	225	207	122,9	1,136525	1,159516	0,86606	0,163196	RUIM	1,054034	BOM	RUIM
32	275	240	165,1	1,389087	1,344367	1,163438	0,11948	BOM	1,298964	RUIM	RUIM
33	132,7	126,3	131,2	0,670297	0,707473	0,924549	0,137324	BOM	0,76744	RUIM	RUIM
34	171,7	167,6	176,2	0,867295	0,938816	1,241658	0,198736	RUIM	1,015923	BOM	RUIM
35	191,9	152,5	121,9	0,96933	0,854233	0,859013	0,065115	BOM	0,894192	BOM	BOM
36	259	242	123	1,308267	1,35557	0,866765	0,269596	RUIM	1,176867	RUIM	RUIM
37	148,4	135,6	136,5	0,749602	0,759567	0,961897	0,119796	BOM	0,823689	RUIM	RUIM
38	171,4	129,3	178,6	0,86578	0,724278	1,25857	0,27682	RUIM	0,949543	BOM	RUIM
39	215	229	113,6	1,086013	1,28275	0,800524	0,24247	RUIM	1,056429	BOM	RUIM
40	260	172,6	135,2	1,313318	0,966824	0,952736	0,204237	RUIM	1,077626	BOM	RUIM
41	165,4	137,5	166,3	0,835472	0,77021	1,171894	0,215557	RUIM	0,925859	BOM	RUIM
42	138,8	146,6	168,5	0,70111	0,821184	1,187397	0,253313	RUIM	0,90323	BOM	RUIM
43	221	203	111,5	1,11632	1,13711	0,785726	0,197145	RUIM	1,013052	BOM	RUIM
44	228	226	117	1,151679	1,265945	0,824483	0,22913	RUIM	1,080703	BOM	RUIM
45	143,1	123,9	165,5	0,72283	0,694029	1,166256	0,264718	RUIM	0,861039	BOM	RUIM
46	157,6	128,8	180,5	0,796073	0,721477	1,271959	0,298626	RUIM	0,929836	BOM	RUIM
47	232	205	91,9	1,171884	1,148313	0,647607	0,296122	RUIM	0,989268	BOM	RUIM
48	209	167,4	94,1	1,055706	0,937696	0,66311	0,201434	RUIM	0,885504	BOM	RUIM
49	167,4	209	153,8	0,845575	1,170719	1,083808	0,168339	RUIM	1,033367	BOM	RUIM
50	148,6	143,6	153,9	0,750612	0,80438	1,084513	0,179283	RUIM	0,879835	BOM	RUIM
51	253	184,4	118,2	1,27796	1,032922	0,83294	0,22289	RUIM	1,04794	BOM	RUIM
52	245	119,4	102,1	1,23755	0,668823	0,719485	0,314751	RUIM	0,875286	BOM	RUIM
53	146,5	145,7	164,4	0,740004	0,816143	1,158505	0,222917	RUIM	0,904884	BOM	RUIM
54	161,5	136,7	159,1	0,815773	0,765729	1,121156	0,192394	RUIM	0,900886	BOM	RUIM
55	219	194,5	144,1	1,106218	1,089497	1,015453	0,048305	BOM	1,07039	BOM	BOM
56	249	188,5	129,9	1,257755	1,055888	0,915388	0,172098	RUIM	1,076344	BOM	RUIM
57	123,4	119	113,1	0,623321	0,666582	0,797001	0,090411	BOM	0,695635	RUIM	RUIM
58	157	154,5	177,9	0,793042	0,865436	1,253638	0,247686	RUIM	0,970705	BOM	RUIM
59	261	132,6	124,2	1,318369	0,742763	0,875221	0,301454	RUIM	0,978784	BOM	RUIM
60	274	230	157,4	1,384035	1,288352	1,109177	0,139527	BOM	1,260521	RUIM	RUIM
61	155,4	211	137,6	0,78496	1,181923	0,969649	0,198641	RUIM	0,978844	BOM	RUIM

Medidas				Medida	Medida	Medida	Desvio		Média			Dois
em nC	100º-200º	100º-200º	100º-200º	ajustada	ajustada	ajustada	Padrão		Ajustada			Testes
62	161,4	187,6	140,6	0,815268	1,050847	0,990789	0,122415	BOM	0,952301	BOM		BOM
63	257	173	142,5	1,298164	0,969064	1,004178	0,180724	RUIM	1,090469	BOM		RUIM
64	279	214	171,7	1,409291	1,198727	1,209947	0,118463	BOM	1,272655	RUIM		RUIM
65	125,3	122,5	123,1	0,632918	0,686187	0,867469	0,12296	BOM	0,728858	RUIM		RUIM
66	151,5	139,1	137,7	0,76526	0,779173	0,970354	0,114606	BOM	0,838262	RUIM		RUIM
67	218	177,7	138,6	1,101167	0,995392	0,976696	0,06712	BOM	1,024418	BOM		BOM
68	232	184,1	140,4	1,171884	1,031241	0,98938	0,095604	BOM	1,064168	BOM		BOM
69	137,2	120,6	131	0,693028	0,675544	0,92314	0,138179	BOM	0,763904	RUIM		RUIM
70	136,7	136,2	124,3	0,690502	0,762928	0,875926	0,093448	BOM	0,776452	RUIM		RUIM
71	233	176,6	131,5	1,176935	0,98923	0,926663	0,130246	BOM	1,030943	BOM		BOM
72	260	222	140,8	1,313318	1,243539	0,992199	0,168898	RUIM	1,183019	RUIM		RUIM
73	161,4	141,3	161,9	0,815268	0,791496	1,140888	0,195221	RUIM	0,915884	BOM		RUIM
74	146,8	119,8	151,4	0,74152	0,671063	1,066896	0,211154	RUIM	0,826493	RUIM		RUIM
75	262	188,1	133,2	1,323421	1,053648	0,938643	0,197509	RUIM	1,105237	BOM		RUIM
76	209	186,1	116,8	1,055706	1,042444	0,823074	0,13065	BOM	0,973741	BOM		BOM
77	160,6	124,1	146,4	0,811227	0,69515	1,031661	0,170931	RUIM	0,846013	RUIM		RUIM
78	144,9	110,5	128,5	0,731922	0,618969	0,905522	0,144342	BOM	0,752138	RUIM		RUIM
79	280	222	155,5	1,414343	1,243539	1,095788	0,159416	RUIM	1,251223	RUIM		RUIM
80	231	202	131,6	1,166833	1,131509	0,927368	0,12927	BOM	1,075236	BOM		BOM
81	125,5	110,3	125,6	0,633929	0,617849	0,885086	0,149864	BOM	0,712288	RUIM		RUIM
82	117,1	112	110,6	0,591498	0,627371	0,779383	0,099746	BOM	0,666084	RUIM		RUIM
83	221	191,9	141,8	1,11632	1,074933	0,999246	0,059369	BOM	1,0635	BOM		BOM
84	286	223	151	1,44465	1,249141	1,064077	0,19031	RUIM	1,252623	RUIM		RUIM
85	150,6	145,9	169,1	0,760714	0,817263	1,191625	0,234175	RUIM	0,923201	BOM		RUIM
86	158,4	120,5	143,3	0,800114	0,674984	1,009816	0,169187	RUIM	0,828305	RUIM		RUIM
87	226	241	144,4	1,141577	1,349968	1,017568	0,167976	RUIM	1,169704	RUIM		RUIM
88	258	207	121,6	1,303216	1,159516	0,856899	0,227825	RUIM	1,106544	BOM	T	RUIM
89	175	190,2	193,4	0,883964	1,065411	1,362864	0,24178	RUIM	1,10408	BOM		RUIM
90	182,1	170,3	170,5	0,919828	0,95394	1,201491	0,15372	RUIM	1,025086	BOM		RUIM
91	252	180,3	123,3	1,272908	1,009956	0,868879	0,205056	RUIM	1,050581	BOM		RUIM
92	223	181	105,2	1,126423	1,013877	0,74133	0,198009	RUIM	0,960543	BOM		RUIM

Medidas				Medida	Medida	Medida	Desvio		Média		Dois
em nC	100º-200º	100º-200º	100º-200º	ajustada	ajustada	ajustada	Padrão		Ajustada		Testes
93	140,7	130,1	150,4	0,710707	0,728759	1,059849	0,196573	RUIM	0,833105	RUIM	RUIM
94	167,7	111,3	145	0,84709	0,62345	1,021796	0,199673	RUIM	0,830779	RUIM	RUIM
95	233	219	132,5	1,176935	1,226735	0,93371	0,156792	RUIM	1,11246	BOM	RUIM
96	264	199,7	126,4	1,333523	1,118625	0,890724	0,221431	RUIM	1,114291	BOM	RUIM
97	257,6	147,9	147,4	1,301195	0,828466	1,038708	0,236845	RUIM	1,056123	BOM	RUIM
98	135,4	172,4	151,5	0,683936	0,965704	1,0676	0,198735	RUIM	0,905747	BOM	RUIM
99	254	182,9	154,6	1,283011	1,02452	1,089446	0,134475	BOM	1,132325	BOM	BOM
100	231	203	165,3	1,166833	1,13711	1,164847	0,016617	BOM	1,156263	RUIM	RUIM
101	144,5	147,5	114,4	0,729902	0,826225	0,806162	0,050821	BOM	0,78743	RUIM	RUIM
102	168	130,7	160,5	0,848606	0,73212	1,131022	0,205122	RUIM	0,903916	BOM	RUIM
103	245	184,9	129,1	1,23755	1,035723	0,90975	0,165356	RUIM	1,061008	BOM	RUIM
104	246	185,1	154,9	1,242601	1,036843	1,09156	0,106571	BOM	1,123668	BOM	BOM
105	148,5	215	145,1	0,750107	1,204329	1,0225	0,228611	RUIM	0,992312	BOM	RUIM
106	146,2	207	168	0,738489	1,159516	1,183874	0,250408	RUIM	1,027293	BOM	RUIM
107	261	180,1	157,3	1,318369	1,008835	1,108472	0,158006	RUIM	1,145226	BOM	RUIM
108	243	190,9	163,1	1,227447	1,069332	1,149344	0,07906	BOM	1,148708	BOM	BOM
109	138,7	1248	147,2	0,700605	6,990708	1,037299	3,538405	RUIM	2,909537	RUIM	RUIM
110	177,8	131	143,5	0,898108	0,7338	1,011225	0,139497	BOM	0,881044	BOM	BOM
111	211	204	146,2	1,065808	1,142712	1,030252	0,057483	BOM	1,079591	BOM	BOM
112	234	157,8	130,9	1,181986	0,883921	0,922435	0,162118	RUIM	0,996114	BOM	RUIM
113	154,9	149,9	142,2	0,782435	0,839669	1,002064	0,113934	BOM	0,874723	BOM	BOM
114	138,9	140,9	140	0,701615	0,789255	0,986561	0,145948	BOM	0,825811	RUIM	RUIM
115	240	204	128,2	1,212294	1,142712	0,903408	0,162028	RUIM	1,086138	BOM	RUIM
116	234	188,1	139,2	1,181986	1,053648	0,980924	0,101805	BOM	1,072186	BOM	BOM
117	139,8	150,2	160,4	0,706161	0,84135	1,130317	0,216674	RUIM	0,892609	BOM	RUIM
118	160,5	138	184,6	0,810721	0,773011	1,300852	0,294467	RUIM	0,961528	BOM	RUIM
119	226	213	92,5	1,141577	1,193126	0,651835	0,298747	RUIM	0,995512	BOM	RUIM
120	249	181,8	98,8	1,257755	1,018358	0,69623	0,281776	RUIM	0,990781	BOM	RUIM
121	145,7	154,7	157,5	0,735963	0,866556	1,109881	0,18977	RUIM	0,904134	BOM	RUIM
122	136,7	176,2	157,5	0,690502	0,986989	1,109881	0,215595	RUIM	0,929124	BOM	RUIM
123	285	223	138,1	1,439599	1,249141	0,973172	0,234516	RUIM	1,220637	RUIM	RUIM

Medidas				Medida	Medida	Medida	Desvio		Média		Dois
em nC	100º-200º	100º-200º	100º-200º	ajustada	ajustada	ajustada	Padrão		Ajustada		Testes
124	230	188,7	112,5	1,161781	1,057008	0,792772	0,19016	RUIM	1,003854	BOM	RUIM
125	178,9	189,4	160,1	0,903664	1,06093	1,128203	0,115236	BOM	1,030932	BOM	BOM
126	160,9	143,5	133,4	0,812742	0,803819	0,940052	0,076209	BOM	0,852204	BOM	BOM
127	234	182,3	130,2	1,181986	1,021159	0,917502	0,133268	BOM	1,040216	BOM	BOM
128	262	217	130,6	1,323421	1,215532	0,920321	0,208678	RUIM	1,153091	RUIM	RUIM
129	151,8	123,4	148,4	0,766776	0,691229	1,045755	0,186738	RUIM	0,834586	RUIM	RUIM
130	132,5	114,1	126,8	0,669287	0,639134	0,893543	0,138998	BOM	0,733988	RUIM	RUIM
131	259	215	139,3	1,308267	1,204329	0,981629	0,166879	RUIM	1,164741	RUIM	RUIM
132	227	180,3	121,1	1,146628	1,009956	0,853376	0,146739	BOM	1,00332	BOM	BOM
133	150,5	115	136,4	0,760209	0,644176	0,961193	0,160394	RUIM	0,788526	RUIM	RUIM
134	154	150	171,9	0,777888	0,840229	1,211356	0,234349	RUIM	0,943158	BOM	RUIM
135	233	168,5	121,2	1,176935	0,943858	0,85408	0,166644	RUIM	0,991624	BOM	RUIM
136	252	253	174,3	1,272908	1,417187	1,228269	0,098741	BOM	1,306121	RUIM	RUIM
137	134,9	114,1	137,2	0,68141	0,639134	0,96683	0,178249	RUIM	0,762458	RUIM	RUIM
138	142,7	125,6	130,9	0,72081	0,703552	0,922435	0,121697	BOM	0,782265	RUIM	RUIM
139	210	166,4	131	1,060757	0,932094	0,92314	0,076999	BOM	0,971997	BOM	BOM
140	265	227	146,6	1,338574	1,271547	1,033071	0,16057	RUIM	1,214397	RUIM	RUIM
141	131,4	132,3	130,7	0,663731	0,741082	0,921025	0,132012	BOM	0,77528	RUIM	RUIM
142	166,6	146,7	189,5	0,841534	0,821744	1,335381	0,291004	RUIM	0,999553	BOM	RUIM
Média	197,9718	178,5227	141,907								

t (s)	T ºC	l (nA)	Peso	dt (s)	Integrado	Carga	Peso corte	Corte
0,1	62,158432	0,006823	1	0,1	0,006823	0,000682	0	0
0,2	62,158432	0,005927	1	0,1	0,005927	0,000593	0	0
0,3	62,158432	0,005721	1	0,1	0,005721	0,000572	0	0
0,4	61,672817	0,006547	1	0,1	0,006547	0,000655	0	0
0,5	61,672817	0,005376	1	0,1	0,005376	0,000538	0	0
0,6	61,672817	0,007512	1	0,1	0,007512	0,000751	0	0
0,7	61,187206	0,007719	1	0,1	0,007719	0,000772	0	0
0,8	61,187206	0,007374	1	0,1	0,007374	0,000737	0	0
0,9	61,187206	0,006616	1	0,1	0,006616	0,000662	0	0
1	61,187206	0,005927	1	0,1	0,005927	0,000593	0	0
1,1	61,187206	0,005996	1	0,1	0,005996	0,0006	0	0
1,2	61,187206	0,004963	1	0,1	0,004963	0,000496	0	0
1,3	60,701591	0,004549	1	0,1	0,004549	0,000455	0	0
1,4	60,701591	0,00386	1	0,1	0,00386	0,000386	0	0
1,5	60,701591	0,003722	1	0,1	0,003722	0,000372	0	0
1,6	60,701591	0,00324	1	0,1	0,00324	0,000324	0	0
1,7	60,701591	0,003929	1	0,1	0,003929	0,000393	0	0
1,8	60,701591	0,003929	1	0,1	0,003929	0,000393	0	0
1,9	60,701591	0,002758	1	0,1	0,002758	0,000276	0	0
2	60,215981	0,001517	1	0,1	0,001517	0,000152	0	0
2,1	60,215981	0,000759	1	0,1	0,000759	7,59E-05	0	0
2,2	60,215981	0,000277	1	0,1	0,000277	2,77E-05	0	0
2,3	60,215981	0,001104	1	0,1	0,001104	0,00011	0	0
2,4	60,215981	0,006272	1	0,1	0,006272	0,000627	0	0
2,5	60,215981	0,00703	1	0,1	0,00703	0,000703	0	0
2,6	60,215981	0,007099	1	0,1	0,007099	0,00071	0	0
2,7	61,672817	0,00765	1	0,1	0,00765	0,000765	0	0
2,8	63,615269	0,007305	1	0,1	0,007305	0,00073	0	0
2,9	66,528946	0,00765	1	0,1	0,00765	0,000765	0	0
3	68,471397	0,009028	1	0,1	0,009028	0,000903	0	0
3,1	69,92823	0,011164	1	0,1	0,011164	0,001116	0	0
3,2	71,385071	0,010751	1	0,1	0,010751	0,001075	0	0
3,3	72,3563	0,009648	1	0,1	0,009648	0,000965	0	0
3,4	72,841911	0,007857	1	0,1	0,007857	0,000786	0	0
3,5	74,298752	0,006685	1	0,1	0,006685	0,000669	0	0

t (s)	T ºC	l (nA)	Peso	dt (s)	Integrado	Carga	Peso corte	Corte
3,6	76,241203	0,005789	1	0,1	0,005789	0,000579	0	0
3,7	78,669266	0,008063	1	0,1	0,008063	0,000806	0	0
3,8	80,126099	0,010062	1	0,1	0,010062	0,001006	0	0
3,9	81,097328	0,008615	1	0,1	0,008615	0,000862	0	0
4	82,06855	0,007788	1	0,1	0,007788	0,000779	0	0
4,1	83,525391	0,007788	1	0,1	0,007788	0,000779	0	0
4,2	84,982231	0,009166	1	0,1	0,009166	0,000917	0	0
4,3	86,924683	0,010751	1	0,1	0,010751	0,001075	0	0
4,4	88,867134	0,011509	1	0,1	0,011509	0,001151	0	0
4,5	90,323967	0,011233	1	0,1	0,011233	0,001123	0	0
4,6	91,295197	0,01082	1	0,1	0,01082	0,001082	0	0
4,7	92,266418	0,010269	1	0,1	0,010269	0,001027	0	0
4,8	93,723259	0,01144	1	0,1	0,01144	0,001144	0	0
4,9	95,66571	0,013369	1	0,1	0,013369	0,001337	0	0
5	97,608162	0,017159	1	0,1	0,017159	0,001716	0	0
5,1	99,064995	0,01647	1	0,1	0,01647	0,001647	0	0
5,2	100,036224	0,016195	1	0,1	0,016195	0,00162	0	0
5,3	101,493065	0,017159	1	0,1	0,017159	0,001716	0	0
5,4	102,949898	0,019227	1	0,1	0,019227	0,001923	0	0
5,5	104,892349	0,023706	1	0,1	0,023706	0,002371	0	0
5,6	106,34919	0,024119	1	0,1	0,024119	0,002412	0	0
5,7	107,80603	0,024601	1	0,1	0,024601	0,00246	0	0
5,8	108,777252	0,025704	1	0,1	0,025704	0,00257	0	0
5,9	110,234093	0,028943	1	0,1	0,028943	0,002894	0	0
6	111,690926	0,032319	1	0,1	0,032319	0,003232	0	0
6,1	113,633377	0,038383	1	0,1	0,038383	0,003838	0	0
6,2	115,575829	0,043827	1	0,1	0,043827	0,004383	0	0
6,3	117,032669	0,049202	1	0,1	0,049202	0,00492	0	0
6,4	118,48951	0,055679	1	0,1	0,055679	0,005568	0	0
6,5	119,946342	0,067256	1	0,1	0,067256	0,006726	0	0
6,6	121,888794	0,080762	1	0,1	0,080762	0,008076	0	0
6,7	123,345634	0,095164	1	0,1	0,095164	0,009516	0	0
6,8	124,802475	0,110737	1	0,1	0,110737	0,011074	0	0
6,9	125,773697	0,168039	1	0,1	0,168039	0,016804	0	0
7	127,230537	0,22534	1	0,1	0,22534	0,022534	0	0

t (s)	T ºC	l (nA)	Peso	dt (s)	Integrado	Carga	Peso corte	Corte
7,1	128,687378	0,282642	1	0,1	0,282642	0,028264	0	0
7,2	130,629822	0,310205	1	0,1	0,310205	0,031021	0	0
7,3	132,08667	0,330878	1	0,1	0,330878	0,033088	0	0
7,4	133,057892	0,337769	1	0,1	0,337769	0,033777	0	0
7,5	134,514725	0,34466	1	0,1	0,34466	0,034466	0	0
7,6	135,971573	0,34466	1	0,1	0,34466	0,034466	0	0
7,7	137,914017	0,337769	1	0,1	0,337769	0,033777	0	0
7,8	139,37085	0,337769	1	0,1	0,337769	0,033777	0	0
7,9	140,827698	0,303315	1	0,1	0,303315	0,030332	0	0
8	141,79892	0,255079	1	0,1	0,255079	0,025508	0	0
8,1	143,255753	0,234406	1	0,1	0,234406	0,023441	0	0
8,2	144,712601	0,206843	1	0,1	0,206843	0,020684	0	0
8,3	146,655045	0,193061	1	0,1	0,193061	0,019306	0	0
8,4	148,597504	0,193061	1	0,1	0,193061	0,019306	0	0
8,5	149,568726	0,18617	1	0,1	0,18617	0,018617	0	0
8,6	150,539948	0,18617	1	0,1	0,18617	0,018617	1	0,018617
8,7	151,99678	0,18617	1	0,1	0,18617	0,018617	1	0,018617
8,8	153,93924	0,193061	1	0,1	0,193061	0,019306	1	0,019306
8,9	155,881683	0,206843	1	0,1	0,206843	0,020684	1	0,020684
9	156,852921	0,234406	1	0,1	0,234406	0,023441	1	0,023441
9,1	157,824142	0,234406	1	0,1	0,234406	0,023441	1	0,023441
9,2	159,280975	0,248188	1	0,1	0,248188	0,024819	1	0,024819
9,3	161,223434	0,289533	1	0,1	0,289533	0,028953	1	0,028953
9,4	163,165878	0,289533	1	0,1	0,289533	0,028953	1	0,028953
9,5	164,622711	0,310205	1	0,1	0,310205	0,03102	1	0,03102
9,6	165,593948	0,317096	1	0,1	0,317096	0,03171	1	0,03171
9,7	166,56517	0,323987	1	0,1	0,323987	0,032399	1	0,032399
9,8	168,507614	0,351551	1	0,1	0,351551	0,035155	1	0,035155
9,9	170,450073	0,351551	1	0,1	0,351551	0,035155	1	0,035155
10	171,906906	0,392896	1	0,1	0,392896	0,03929	1	0,03929
10,1	172,878128	0,406677	1	0,1	0,406677	0,040668	1	0,040668
10,2	173,849365	0,413568	1	0,1	0,413568	0,041357	1	0,041357
10,3	175,306198	0,420459	1	0,1	0,420459	0,042046	1	0,042046
10,4	177,734268	0,420459	1	0,1	0,420459	0,042046	1	0,042046
10,5	179,676712	0,461804	1	0,1	0,461804	0,04618	1	0,04618

t (s)	T ºC	l (nA)	Peso	dt (s)	Integrado	Carga	Peso corte	Corte
10,6	180,647934	0,475586	1	0,1	0,475586	0,047559	1	0,047559
10,7	181,619156	0,482477	1	0,1	0,482477	0,048248	1	0,048248
10,8	182,590393	0,468695	1	0,1	0,468695	0,04687	1	0,04687
10,9	185,018448	0,503149	1	0,1	0,503149	0,050315	1	0,050315
11	186,960907	0,51004	1	0,1	0,51004	0,051004	1	0,051004
11,1	188,41774	0,516931	1	0,1	0,516931	0,051693	1	0,051693
11,2	188,903351	0,523822	1	0,1	0,523822	0,052382	1	0,052382
11,3	189,874573	0,516931	1	0,1	0,516931	0,051693	1	0,051693
11,4	191,817032	0,503149	1	0,1	0,503149	0,050315	1	0,050315
11,5	193,759476	0,551385	1	0,1	0,551385	0,055138	1	0,055138
11,6	196,187546	0,599621	1	0,1	0,599621	0,059962	1	0,059962
11,7	197,158768	0,634075	1	0,1	0,634075	0,063407	1	0,063407
11,8	197,644379	0,647857	1	0,1	0,647857	0,064786	1	0,064786
11,9	198,615616	0,682311	1	0,1	0,682311	0,068231	1	0,068231
12	201,043671	0,696093	1	0,1	0,696093	0,069609	1	0,069609
12,1	202,98613	0,696093	1	0,1	0,696093	0,069609	1	0,069609
12,2	204,928574	0,709874	1	0,1	0,709874	0,070987	1	0,070987
12,3	205,414185	0,744329	1	0,1	0,744329	0,074433	1	0,074433
12,4	206,385406	0,723656	1	0,1	0,723656	0,072366	1	0,072366
12,5	207,842255	0,723656	1	0,1	0,723656	0,072366	1	0,072366
12,6	209,784698	0,682311	1	0,1	0,682311	0,068231	1	0,068231
12,7	212,212769	0,682311	1	0,1	0,682311	0,068231	1	0,068231
12,8	213,669601	0,606512	1	0,1	0,606512	0,060651	1	0,060651
12,9	214,155212	0,503149	1	0,1	0,503149	0,050315	1	0,050315
13	214,640823	0,413568	1	0,1	0,413568	0,041357	1	0,041357
13,1	216,583282	0,351551	1	0,1	0,351551	0,035155	1	0,035155
13,2	219,011337	0,275751	1	0,1	0,275751	0,027575	1	0,027575
13,3	220,953796	0,227515	1	0,1	0,227515	0,022752	1	0,022752
13,4	221,925018	0,193061	1	0,1	0,193061	0,019306	1	0,019306
13,5	222,410629	0,144825	1	0,1	0,144825	0,014483	1	0,014483
13,6	223,381851	0,117262	1	0,1	0,117262	0,011726	1	0,011726
13,7	225,32431	0,110371	1	0,1	0,110371	0,011037	0	0
13,8	228,237991	0,10348	1	0,1	0,10348	0,010348	0	0
13,9	229,694824	0,089698	1	0,1	0,089698	0,00897	0	0
14	230,666046	0,082808	1	0,1	0,082808	0,008281	0	0

t (s)	T ºC	l (nA)	Peso	dt (s)	Integrado	Carga	Peso corte	Corte
14,1	231,151657	0,082808	1	0,1	0,082808	0,008281	0	0
14,2	232,122894	0,066529	1	0,1	0,066529	0,006653	0	0
14,3	234,550949	0,050251	1	0,1	0,050251	0,005025	0	0
14,4	236,979019	0,033973	1	0,1	0,033973	0,003397	0	0
14,5	238,921463	0,044861	1	0,1	0,044861	0,004486	0	0
14,6	239,407074	0,053612	1	0,1	0,053612	0,005361	0	0
14,7	239,892685	0,060158	1	0,1	0,060158	0,006016	0	0
14,8	241,349533	0,06574	1	0,1	0,06574	0,006574	0	0
14,9	243,777588	0,073595	1	0,1	0,073595	0,007359	0	0
15	246,205658	0,082485	1	0,1	0,082485	0,008248	0	0
15,1	247,662491	0,089789	1	0,1	0,089789	0,008979	0	0
15,2	248,148102	0,097093	1	0,1	0,097093	0,009709	0	0
15,3	248,633728	0,101159	1	0,1	0,101159	0,010116	0	0
15,4	250,576172	0,101228	1	0,1	0,101228	0,010123	0	0
15,5	252,518616	0,103226	1	0,1	0,103226	0,010323	0	0
15,6	254,946686	0,104673	1	0,1	0,104673	0,010467	0	0
15,7	255,917908	0,110668	1	0,1	0,110668	0,011067	0	0
15,8	256,403534	0,113838	1	0,1	0,113838	0,011384	0	0
15,9	257,374756	0,117972	1	0,1	0,117972	0,011797	0	0
16	259,3172	0,121693	1	0,1	0,121693	0,012169	0	0
16,1	262,230865	0,138592	1	0,1	0,138592	0,013859	0	0
16,200001	263,687714	0,15549	1	0,100001	0,15549	0,015549	0	0
16,299999	264,658936	0,172389	1	0,099998	0,172389	0,017239	0	0
16,4	265,144562	0,151716	1	0,100001	0,151716	0,015172	0	0
16,5	266,601379	0,158607	1	0,1	0,158607	0,015861	0	0
16,6	268,543854	0,151716	1	0,1	0,151716	0,015172	0	0
16,700001	270,971893	0,158607	1	0,100001	0,158607	0,015861	0	0
16,799999	272,428741	0,165498	1	0,099998	0,165498	0,016549	0	0
16,9	273,399963	0,158607	1	0,100001	0,158607	0,015861	0	0
17	273,88559	0,144825	1	0,1	0,144825	0,014483	0	0
17,1	275,342407	0,137934	1	0,1	0,137934	0,013793	0	0
17,200001	277,284882	0,124153	1	0,100001	0,124153	0,012415	0	0
17,299999	278,741699	0,10348	1	0,099998	0,10348	0,010348	0	0
17,4	278,741699	0,089698	1	0,100001	0,089698	0,00897	0	0
17,5	278,256104	0,06568	1	0,1	0,06568	0,006568	0	0

t (s)	T ºC	l (nA)	Peso	dt (s)	Integrado	Carga	Peso corte	Corte
17,6	277,284882	0,041661	1	0,1	0,041661	0,004166	0	0
17,700001	275,828033	0,017642	1	0,100001	0,017642	0,001764	0	0
17,799999	275,342407	0,02467	1	0,099998	0,02467	0,002467	0	0
17,9	275,828033	0,027909	1	0,100001	0,027909	0,002791	0	0
18	276,799255	0,03163	1	0,1	0,03163	0,003163	0	0
18,1	277,770477	0,035696	1	0,1	0,035696	0,00357	0	0
18,200001	277,770477	0,040037	1	0,100001	0,040037	0,004004	0	0
18,299999	276,799255	0,039279	1	0,099998	0,039279	0,003928	0	0
18,4	275,828033	0,037074	1	0,100001	0,037074	0,003707	0	0
18,5	275,342407	0,036385	1	0,1	0,036385	0,003639	0	0
18,6	276,31366	0,036385	1	0,1	0,036385	0,003639	0	0
18,700001	277,284882	0,035351	1	0,100001	0,035351	0,003535	0	0
18,799999	277,284882	0,034869	1	0,099998	0,034869	0,003487	0	0
18,9	276,799255	0,034249	1	0,100001	0,034249	0,003425	0	0
19	275,828033	0,031906	1	0,1	0,031906	0,003191	0	0
19,1	275,828033	0,03163	1	0,1	0,03163	0,003163	0	0
19,200001	276,31366	0,030665	1	0,100001	0,030665	0,003067	0	0
19,299999	277,284882	0,029701	1	0,099998	0,029701	0,00297	0	0
19,4	277,284882	0,030665	1	0,100001	0,030665	0,003067	0	0
19,5	276,31366	0,030321	1	0,1	0,030321	0,003032	0	0
19,6	275,828033	0,028598	1	0,1	0,028598	0,00286	0	0
19,700001	275,828033	0,027427	1	0,100001	0,027427	0,002743	0	0
19,799999	276,799255	0,026669	1	0,099998	0,026669	0,002667	0	0
19,9	277,284882	0,024877	1	0,100001	0,024877	0,002488	0	0
20	277,284882	0,02343	1	0,1	0,02343	0,002343	0	0
						Integrado	Á	rea escolhida
	Cristal	01				3,299276		2,234611

Cristal - Posição

01 1D5

Temperatura de corte

150 225

Cristal 01 - Posição 1D5

Livros Grátis

(<u>http://www.livrosgratis.com.br</u>)

Milhares de Livros para Download:

Baixar livros de Administração Baixar livros de Agronomia Baixar livros de Arquitetura Baixar livros de Artes Baixar livros de Astronomia Baixar livros de Biologia Geral Baixar livros de Ciência da Computação Baixar livros de Ciência da Informação Baixar livros de Ciência Política Baixar livros de Ciências da Saúde Baixar livros de Comunicação Baixar livros do Conselho Nacional de Educação - CNE Baixar livros de Defesa civil Baixar livros de Direito Baixar livros de Direitos humanos Baixar livros de Economia Baixar livros de Economia Doméstica Baixar livros de Educação Baixar livros de Educação - Trânsito Baixar livros de Educação Física Baixar livros de Engenharia Aeroespacial Baixar livros de Farmácia Baixar livros de Filosofia Baixar livros de Física Baixar livros de Geociências Baixar livros de Geografia Baixar livros de História Baixar livros de Línguas
Baixar livros de Literatura Baixar livros de Literatura de Cordel Baixar livros de Literatura Infantil Baixar livros de Matemática Baixar livros de Medicina Baixar livros de Medicina Veterinária Baixar livros de Meio Ambiente Baixar livros de Meteorologia Baixar Monografias e TCC Baixar livros Multidisciplinar Baixar livros de Música Baixar livros de Psicologia Baixar livros de Química Baixar livros de Saúde Coletiva Baixar livros de Servico Social Baixar livros de Sociologia Baixar livros de Teologia Baixar livros de Trabalho Baixar livros de Turismo