JORGE PINTO GOMES

DETERMINAÇÃO DE DESNÍVEIS DE PRECISÃO UTILIZANDO ESTAÇÃO TOTAL

Dissertação apresentada como requisito parcial à obtenção do grau de Mestre em Ciências Geodésicas do Curso de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná

Orientador: Prof. Dr. Pedro Luis Faggion

CURITIBA

2006

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

"DETERMINAÇÃO DE DESNÍVEIS DE PRECISÃO UTILIZANDO ESTAÇÃO TOTAL"

POR

JORGE PINTO GOMES

Dissertação nº 189 aprovada como requisito parcial do grau de Mestre no Curso de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, pela Comissão formada pelos professores:

Curitiba, 23 de fevereiro de 2006.

Prof. Dr. Pedro Luis Faggion (UFPR) - Orientador e Presidente

Prof. Dr. Jucilei Cordini - Membro (UFSC)

Prof. Dr. Carlos Aurélio Nadal – Membro (UFPR)

A meus pais (in memorian)

A minha família: Denise, Juliana, Mariana e Jorge Henrique

AGRADECIMENTOS

Ao Curso de Pós-Graduação em Ciências Geodésicas, do Departamento de Geomática, do Setor de Ciências da Terra, pela nova oportunidade, em especial aos professores e funcionários que se dedicam ao engrandecimento do curso.

Ao Prof. Dr. Pedro Luis Faggion, pela orientação e, principalmente, pela atitude sempre positiva e motivadora.

Ao Prof. Dr. Luís Augusto Koenig Veiga, pelas discussões e fundamental indicação da literatura.

Ao Prof. MSc. Alex Soria Medina, pela valiosa colaboração nos experimentos.

Aos colegas Ernesto, Fabiani, Granemann, Karoline, Luisnei, Niarkios, Michele, Perozzo e Zocolotti pela prestimosa colaboração na obtenção dos dados.

Aos jovens Jorge Henrique (meu guri) e Ana Paula pela dedicada colaboração nos levantamentos de campo.

Ao convênio de cooperação técnica e pesquisa entre a ANEEL, COPEL, LACTEC, LAIG, pelos recursos oferecidos quando dos levantamentos em Salto Caxias.

A MANFRA, pela cessão, por empréstimo, dos prismas.

Aos amigos do "happy hour" por me ajudarem a manter a sanidade mental e procrastinar a decrepitude.

SUMÁRIO

LISTA DE FIGURAS	vii
LISTA DE TABELAS	ix
LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS	х
RESUMO	xiii
ABSTRACT	xiv
1 INTRODUÇÃO	01
1.1 HIPÓTESE DE TRABALHO	02
1.2 OBJETIVOS	02
1.2.1 Objetivo Geral	02
1.2.2 Objetivos Específicos	02
1.3 JUSTIFICATIVA	03
1.4 ESTRUTURAÇÃO DO TRABALHO	03
2 FUNDAMENTAÇÃO TEÓRICA	04
2.1 LEVANTAMENTOS ALTIMÉTRICOS	04
2.1.1 Levantamentos Altimétricos com GPS	04
2.2 NIVELAMENTO GEOMÉTRICO	07
2.2.1 Fontes de Erros no Nivelamento Geométrico	09
2.2.2 Recomendações Usuais nas Operações de Nivelamento Geométrico	12
2.3 REDE ALTIMÉTRICA	13
2.4 REDE ALTIMÉTRICA DO SISTEMA GEODÉSICO BRASILEIRO	16
2.5 NIVELAMENTO TRIGONOMÉTRICO	17
2.5.1 Equação Básica do Nivelamento Trigonométrico	18
2.5.2 Propagação dos Erros no Nivelamento Trigonométrico	19
2.5.3 Curvatura Terrestre e Efeito da Refração	20
2.5.3.1 Curvatura terrestre	20
2.5.3.2 Efeito da refração	21
2.5.4 Efeito Conjunto da Curvatura Terrestre e da Refração para Visadas	
Recíprocas e Simultâneas	22
2.5.5 Determinação do Coeficiente de Refração – k	23
2.6 ESTAÇÃO TOTAL	23

2.6.1 Erros Instrumentais	24
2.6.1.1 Erro de zênite instrumental	25
2.6.1.2 Erro de verticalidade do eixo principal	27
2.6.1.3 Erro de índice do compensador	28
2.6.1.4 Erros devidos a diferenças de temperaturas	28
2.6.2 Erro de Pontaria	29
2.6.3 Precisão Nominal da Estação Total	30
2.6.4 Precisão Esperada na Determinação da distância vertical (D _v)	
em uma Série PD-PI	31
2.6.5 Precisão Esperada da Estação Total com mais de uma Série PD-PI	32
2.6.5.1 Precisão esperada na determinação da distância inclinada(D' _v)	32
2.6.5.2 Precisão esperada na determinação do ângulo zenital (Z)	33
2.6.5.3 Precisão esperada na determinação da distância vertical (D _v)	33
2.6.6 Determinação do Número de Séries em Função da Precisão	
Estimada para o desnível (D _v)	34
2.7 MODELO DE TRANSFERÊNCIA DE TURBULÊNCIA NA	
DETERMINAÇÃO DA INFLUÊNCIA DA REFRAÇÃO NA MEDIÇÃO DO	
ÂNGULO ZENITAL	35
2.7.1 Relação Entre Curvatura e Gradiente de Temperatura	
(Dodson e Zaher, 1985)	36
2.7.2 Turbulência na Atmosfera	43
2.7.2.1 Temperatura Potencial - θ	43
2.7.2.2 Fluxo de Troca De Calor – F	44
2.7.2.3 Altura de Obukhov – L	44
2.7.3 Estados de Turbulência na Atmosfera	45
2.7.3.1 Estado instável	45
2.7.3.2 Estado estável	46
2.7.3.3 Estado neutro	46
2.8 DETERMINAÇÃO DO ÂNGULO DE REFRAÇÃO VERTICAL	
NOS ESTADOS DE TURBULÊNCIA	47
2.8.1 Estado de Turbulência Instável	47
2.8.2 Estado de Turbulência Estável	48
2.8.3 Atmosfera no Estado Neutro	49

3	METODOLOGIA	50
3.1	DETERMINAÇÃO DE DESNÍVEL COM ESTAÇÃO TOTAL	50
3.2	PRECISÃO ESPERADA NA DETERMINAÇÃO DO DESNÍVEL ΔΗ _{AB}	
	PARA VISADAS DE IGUAL COMPRIMENTO	53
3.3	DETERMINAÇÃO DO EFEITO DA REFRAÇÃO NA DISTÂNCIA MEDIDA	54
4	CALIBRAÇÃO DO CONJUNTO BASTÃO – PRISMA	56
4.1	SISTEMA INTERFEROMÉTRICO DISPONÍVEL NO LAIG	56
5	EXPERIMENTOS REALIZADOS E ANÁLISE DOS RESULTADOS	61
5.1	RESULTADOS DA CALIBRAÇÃO	61
5.2	VERIFICAÇÃO DA EXPESSURA DOS TRAÇOS DO BASTÃO	63
5.3	DEFINIÇÃO DOS LOCAIS DOS LEVANTAMENTOS	64
5.4	ESTAÇÕES TOTAIS UTILIZADAS NOS LEVANTAMENTOS	65
5.5	NIVELAMENTO GEOMÉTRICO NO CIRCUITO DO CENTRO	
	POLITÉCNICO	66
5.6	RESULTADOS OBTIDOS COM O NIVELAMENTO TRIGONOMÉTRICO	68
5.6.	.1 Método de Visadas Iguais	68
5.6.	2 Resultados Obtidos com a Estação Total TC2002	68
5.6.	.3 Resultados Obtidos com a Estação Total ELTA S20	70
5.6.	4 Resultados Obtidos com a Estação Total TC403L	72
5.6.	5 Contra Nivelamento com a Estação Total ELTA S20	74
5.6.	6 Levantamento com Visadas de Comprimentos Desiguais	76
5.7	LEVANTAMENTOS REALIZADOS NA BARRAGEM DE SALTO CAXIAS	77
5.7	.1 Medição do Desnível RN-50A para RN-51, em agosto de 2004,	
	dia de Elevada Insolação	78
5.7	.2 Medição do Desnível RN-50A para RN-51, em junho de 2005,	
	dia Nublado	81
6	CONCLUSÕES E RECOMENDAÇÕES	83
6.1	CONCLUSÕES	83
6.2	RECOMENDAÇÕES	84
APÉ	ÊNDICES	85
RFF	FERÊNCIAS	103

LISTA DE FIGURAS

FIGURA 2.1 – ALTITUDE GEOMÉTRICA E ORTOMÉTRICA	05
FIGURA 2.2 – MODELO GEOIDAL SIRGAS 2000	06
FIGURA 2.3 – NÍVEL E DETALHE DA MIRA	07
FIGURA 2.4 – NIVELAMENTO GEOMÉTRICO	08
FIGURA 2.5 – ESQUEMA DE DESNÍVEL EM MAIS DE UM LANCE	09
FIGURA 2.6 - SISTEMA DE EIXOS DOS NÍVEIS	10
FIGURA 2.7 - ERRO DE VERTICALIDADE	10
FIGURA 2.8 - ERRO DE COLIMAÇÃO (E)	11
FIGURA 2.9 – MIRA SOBRE A SAPATA	13
FIGURA 2.10 – REFERÊNCIA DE NÍVEL – RN	14
FIGURA 2.11 – CHAPA METÁLICA	14
FIGURA 2.12 – REDE ALTIMÉTRICA	15
FIGURA 2.13- REDE ALTIMÉTRICA BRASILEIRA	16
FIGURA 2.14 – OBTENÇÃO DO DESNÍVEL NO NIVELAMENTO	
TRIGONOMÉTRICO	18
FIGURA 2.15 – REPRESENTAÇÃO DA CURVATURA E DA REFRAÇÃO	20
FIGURA 2.16 - PARTES PRINCIPAIS DE UMA ESTAÇÃO TOTAL	24
FIGURA 2.17 - ERRO DE ZÊNITE INSTRUMENTAL (z_0)	25
FIGURA 2.18 – LEITURA DO ÂNGULO ZENITAL EM PD E EM PI	26
FIGURA 2.19 - ERRO DE VERTICALIDADE DO EIXO PRINCIPAL	27
FIGURA 2.20 - ESQUEMA DE UM COMPENSADOR	28
FIGURA 2.21 - COMPORTAMENTO DO COMPENSADOR	
DURANTE EQUILÍBRIO TÉRMICO COM O AMBIENTE	29
FIGURA 2.22 – CAMINHAMENTO DE UMA ONDA ELETROMAGNÉTICA	
NA ATMOSFERA IDEAL	37
FIGURA 3.1 – SISTEMA DE EIXOS DA ESTAÇÃO TOTAL	50
FIGURA 3.2 - NIVELAMENTO TRIGONOMÉTRICO MÉTODO DE VISADAS	
IGUAIS	51
FIGURA 4.1 – CONJUNTO BASTÃO-PRISMA APOIADO POR BIPÉ	56
FIGURA 4.2 - EMISSOR LASER E CONTADOR-MOSTRADOR	57
FIGURA 4.3 - INTERFERÔMETRO	58
FIGURA 4.4 – SISTEMA INTERFEROMÉTRICO	59

FIGURA 4.5 - CARRINHO E SEUS COMPONENTES	59
FIGURA 5.1 - ALTURA DO PRISMA	61
FIGURA 5.2 - FIXAÇÃO DA ALTURA DO BASTÃO	64
FIGURA 5.3 – LOCALIZAÇÃO DAS RRNN NO CENTRO POLITÉCNICO	65
FIGURA 5.4 – ESTAÇÕES TOTAIS UTILIZADAS NOS TRABALHOS	66
FIGURA 5.5 – NÍVEL: NA 3003, MIRA DE CÓDIGO DE BARRAS (DETALHE)	67
FIGURA 5.6 – RN-50A E RN-51 – BARRAGEM DE SALTO CAXIAS	78

LISTA DE TABELAS

TABELA 2.1 - EFEITO DA CURVATURA TERRESTRE (c) E TOLERÂNCIA	
PARA O NIVELAMENTO GEOMÉTRICO DE PRECISÃO	21
TABELA 2.2 - CLASSIFICAÇÃO DAS ESTAÇÕES TOTAIS DE ACORDO	
COM A PRECISÃO INTERNA (ABNT-NBR-13.133)	30
TABELA 2.3 - PRECISÃO ESPERADA σ_{Dv} (mm)	32
TABELA 2.4 – NÚMERO DE SÉRIES EM FUNÇÃO DA PRECISÃO	
NOMINAL E DO FECHAMENTO ESPERADO EM $3 mm\sqrt{k}$	35
TABELA 2.5 – EFEITO DA REFRAÇÃO PARA K=13	49
TABELA 5.1 - MEDIDAS DO BASTÃO 1 (em milímetros)	62
TABELA 5.2 - MEDIDAS DO BASTÃO 2 (em milímetros)	62
TABELA 5.3 - EXPESSURA DOS TRAÇOS DO BASTÃO	63
TABELA 5.4 – PRECISÃO NOMINAL DAS ESTAÇÕES TOTAIS	66
TABELA 5.5 – RESUMO DO NIVELAMENTO GEOMÉTRICO	67
TABELA 5.6 – ALTITUDES DO CIRCUITO NIVELADO	67
TABELA 5.7 - DESNÍVEIS OBTIDOS COM A ESTAÇÃO TOTAL TC2002	68
TABELA 5.8 – PRECISÃO (mm) TC2002 X ESPECIFICAÇÕES - $N_s = 3$	70
TABELA 5.9 - DESNÍVEIS OBTIDOS COM A ESTAÇÃO TOTAL ELTA S20	71
TABELA 5.10 – PRECISÃO (mm) ELTA S20 X ESPECIFICAÇÕES - $N_s = 3$	72
TABELA 5.11 - DESNÍVEIS OBTIDOS COM A ESTAÇÃO TOTAL TC 403L	73
TABELA 5.12 – PRECISÃO (mm) TC 403L X ESPECIFICAÇÕES - $N_s = 6$	74
TABELA 5.13 – CONTRA-NIVELAMENTO COM A ESTAÇÃO TOTAL	
ELTA S20	75
TABELA 5.14 - DESNÍVEIS OBTIDOS COM A ESTAÇÃO TOTAL ELTA S200	
EM COMPRIMENTOS DE VISADAS DESIGUAIS	76
TABELA 5.15 – DESNÍVEL RN-50A PARA RN-51 CALCULADO COM	
K= 0,13 E MODELO DE TURBULÊNCIA INSTÁVEL	78
TABELA 5.16 – DESNÍVEL RN-50A PARA RN-51 CALCULADO	
COM K= 0,13	81

LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS

β ângulo de refração vertical

c efeito da curvatura terrestre

CN contra-nivelamento

C_p calor específico

CPGCG CURSO DE PÓS-GRADUAÇÃO EM CIÊNCIAS GEODÉSICAS

c_r efeito da refração

ΔD' correção atmosférica para a distância observada (ppm)

 ΔH desnível entre dois pontos.

D distância horizontal
D' distância inclinada

DIN DEUTSCHER INSTITUT FÜR NORMUNG

D_v distância vertical

ε erro de colimação

e pressão parcial do vapor d'agua (mb)

E perda de calor devido à evaporação da água do solo

E_c ponto interseção dos eixos da Estação Total

EPUSP Escola Politécnica da Universidade de São Paulo

F fluxo de troca de calor (w/m²)
g aceleração da gravidade (m/s²)

G energia transferida ao solo

GPS GLOBAL POSITIONING SYSTEM

H altitude h altura

h_s altura do alvo

h_{av} altura do anemômetroh_i altura do instrumento

h_r umidade relativa

IBGE INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA
ISO INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

K distância em quilômetros, média de N e CN

k coeficiente de refração

L altura de Obukhov

LAIG LABORATÓRIO DE INSTRUMENTAÇÃO GEODÉSICA

LASER light amplification by stimulated emission of radiation

L_R leitura de ré

L_V leitura de vante

M ampliação do telescópio do instrumento

m massa molecular do gás (kg.mol)

N nivelamento

N_a índice de refratividade do ar

NAVSTAR NAVigation System with Time And Ranging

NG nivelamento geométrico

n_i índice de refração da camada i

N_p índice de refratividade nas condições padrão

N_s número de séries (PD-PI)

P pressão (mb)

PD posição direta de leitura

PI posição inversa de leitura

ρ densidade do gás

R constante universal dos gases [(kg.mol)⁻¹T⁻¹]

R raio da Terra

RN referência de nível

RRNN referências de nível

R_s radiação na superfície do solo

r_s rugosidade média da superfície do solo

σ desvio padrão

 σ^2 variância

σ_{D'} precisão nominal linear

σ_Z precisão nominal angular (refere-se ao circulo vertical)

s segundo

SGB SISTEMA GEODÉSICO BRASILEIRO

SIRGAS SISTEMA DE REFERÊNCIA GEOCÊNTRICO PARA AS AMÉRICAS

Θ temperatura potencial

T temperatura (°K)

t temperatura seca (°C)

u velocidade do vento na linha de visada (m/s)

u* velocidade de atrito do ar (m/s)

UFPR UNIVERSIDADE FEDERAL DO PARANÁ

V volume de um grama-mol do gás

Vk constante de Von Karmann

Z ângulo zenital

z₀ erro de zênite instrumental

RESUMO

Os avanços da microeletrônica aplicada ao instrumental utilizado em Topografia e Geodésia permitiram o desenvolvimento de equipamentos precisos, leves e de manuseio prático, como as Estações Totais, que vieram a facilitar, sobremaneira, os trabalhos de levantamento de campo. Com tais características, surge uma questão: a obtenção de desníveis de precisão utilizando o método de nivelamento trigonométrico com Estação Total. Neste trabalho, pesquisou-se a acurácia na determinação de desníveis empregando-se Estações Totais classificadas pela ABNT como de baixa, média e de alta precisão, em comparação com os desníveis obtidos pelo método do nivelamento geométrico de precisão estabelecido segundo as Especificações e Normas Gerais para Levantamentos Geodésicos do IBGE. Pesquisou-se, também, o efeito da refração na observação do ângulo vertical, bem como os procedimentos a serem adotados para minimizar tal efeito.

Palavras-chave: Desníveis, nivelamento geométrico, nivelamento trigonométrico, refração.

ABSTRACT

The advances of the microelectronics applied to the instruments used in Topography and Geodesy have led to the development of precise, light and easy handling equipments, as the Total Stations, which have enormously facilitated the field work. With such characteristics, an issue raises: the achievement of the precise difference in elevation when using the method of trigonometric leveling with Total Station. A research was carried out in order to find out the accuracy in the determination of elevation difference by trigonometric leveling using Total Stations classified by the ABNT as of low, medium and high precision - in comparison with the elevation difference obtained by the method of the differential leveling established in accordance with the General Specifications and Norms for Geodetic Surveys of the IBGE. Not only the effect of refraction in the vertical angle was researched but also the procedure to be adopted to minimize its effect.

Keywords: Difference in elevation, Differential leveling, Trigonometric leveling,

refraction.

1 INTRODUÇÃO

O nivelamento geométrico é a metodologia tradicionalmente utilizada quando se trata da determinação de desníveis de precisão, segundo a Resolução da Presidência do IBGE nº 22, de 21/07/1983, ainda em vigor, que aprovou as Especificações e Normas Gerais para Levantamentos Geodésicos.

Com o desenvolvimento da microeletrônica aplicada ao instrumental utilizado em Topografia e Geodésia, surgiram as Estações Totais: equipamentos precisos, leves, de manuseio prático e que facilitam, sobremaneira, os trabalhos de levantamento de campo. Com tais características, surge uma questão até então pouco pesquisada: obtenção de desníveis de precisão utilizando o método de nivelamento trigonométrico.

Faggion et al. (2003), objetivando atingir precisão, com alto rendimento e baixo custo, propõem o emprego do nivelamento trigonométrico com a minimização dos efeitos provocados pelas principais fontes de erro inerentes ao método, que são: medidas da altura do instrumento e da altura do sinal, tendo em vista que os procedimentos para determinação dessas variáveis são de baixa precisão.

A proposta deste trabalho é, com base no procedimento supracitado, utilizar estações totais: de alta, média e baixa precisão (ABNT-NBR 13133, 1994) com o objetivo de verificar a acurácia alcançada, bem como realizar estudos sobre o efeito da refração atmosférica na determinação dos ângulos zenitais, uma das principais limitações do método.

Para viabilizar o experimento proposto, selecionou-se 6 referências de nível - RRNN – da rede implantada no Campus III (Centro Politécnico) da UFPR, com desníveis determinados pelo método do nivelamento geométrico, visadas iguais, utilizando-se o nível digital NA-3003. Essas RRNN são as referências para este trabalho, servindo de base de comparação para os desníveis a serem determinados com as Estações Totais, com o objetivo de testar a metodologia proposta.

Para realização dos estudos sobre o efeito da refração atmosférica na determinação dos ângulos zenitais, foram programados dois levantamentos em épocas de distintas condições meteorológicas, na barragem de Salto Caxias, localizada no Município de Capitão Leônidas Marques/PR.

1.1 HIPÓTESE DE TRABALHO

Se os efeitos da incerteza na determinação das alturas do instrumento (Estação Total) e do sinal (prisma) forem eliminados com a utilização de bastões de mesma altura, o efeito da curvatura terrestre determinado e, além disso, se for minimizada a influência da refração no ângulo zenital, então é factível a obtenção de acurácia na determinação de desníveis com o nivelamento trigonométrico.

1.2 OBJETIVOS

1.2.1 Objetivo Geral

Determinar desníveis de precisão utilizando o método do nivelamento trigonométrico com Estação Total.

1.2.2 Objetivos Específicos

- Desenvolver uma metodologia visando à obtenção de desníveis classificados como de precisão, segundo as Especificações e Normas Gerais para Levantamentos Geodésicos do IBGE, utilizando-se Estações Totais de diferentes precisões nominais.
- Comparar desníveis obtidos pelo método do nivelamento trigonométrico, utilizando estações totais, com desníveis obtidos por nivelamento geométrico;
- Avaliar as limitações do método quando se utiliza visadas de igual comprimento e quando se utiliza visadas com comprimentos desiguais;
- Realizar uma pré-análise para determinar a precisão dos desníveis a serem obtidos em função da precisão nominal das estações totais;
- Avaliar as limitações do método quanto ao comprimento da visada e quanto a variação do ângulo zenital;
- Avaliar a influência do erro sistemático causado pela refração na observação do ângulo zenital.

1.3 JUSTIFICATIVA

Estabelecimento de uma metodologia alternativa na obtenção de desníveis de precisão com o emprego de Estações Totais existentes no mercado.

Atualmente as especificações e normas que regem os levantamentos no Brasil estabelecem que, na determinação de desníveis de precisão, deve ser utilizado o método do nivelamento geométrico, empregando-se equipamentos (níveis geodésicos, miras de ínvar) que só podem ser utilizados para esse fim. O Brasil, país de dimensões continentais, necessita de metodologias alternativas que viabilizem maior rendimento na densificação da rede altimétrica fundamental. A metodologia aqui proposta é ágil, envolve menos logística e tempo do que a metodologia que vem sendo aplicada até o momento.

1.4 ESTRUTURAÇÃO DO TRABALHO

No capítulo 2 é feita uma breve descrição do método do nivelamento geométrico, os erros inerentes ao método e as recomendações para obtenção de acurácia. Descreve-se também o método do nivelamento trigonométrico, o efeito da curvatura terrestre e o efeito da refração na medição do ângulo vertical. Apresentamse, também, os erros inerentes à estação total, uma descrição da precisão nominal do equipamento e, com base na teoria de propagação dos erros aleatórios, demonstra-se a precisão esperada em função da distância e do ângulo zenital medidos. Finalmente apresentam-se estudos de modelos de transferência de turbulência, desenvolvidos na área da micrometeorologia, que objetivam descrever os processos que governam o gradiente de temperatura na baixa atmosfera e sua relação com a refração do ângulo zenital.

No capítulo 3 descreve-se a metodologia empregada para a obtenção dos desníveis e do efeito da refração na distância medida.

No capítulo 4 apresenta-se a calibração do conjunto bastão – prisma, utilizando-se um interferômetro a LASER, disponível no Laboratório de Instrumentação Geodésica, da UFPR.

No capítulo 5 são apresentados os experimentos realizados e os resultados obtidos.

No capítulo 6 são apresentadas as conclusões e recomendações.

2 FUNDAMENTAÇÃO TEÓRICA

O propósito do nivelamento, em sua definição mais simples, é determinar desníveis de pontos selecionados. Há vários métodos para a obtenção de desníveis e que envolvem o emprego de vários tipos de instrumentação: barométrico, geométrico e trigonométrico.

2.1 LEVANTAMENTOS ALTIMÉTRICOS

Segundo IBGE (2005) a determinação de desníveis de precisão desenvolve-se na forma de circuitos, servindo por ramais às cidades, vilas e povoados às margens das mesmas e distantes até 20 km. Os demais levantamentos estarão referenciados ao de alta precisão. Os métodos utilizados para realizar os levantamentos podem ser assim classificados (IBGE, 2000):

- Nivelamento Geométrico: É o método usado nos levantamentos altimétricos de alta precisão que se desenvolvem ao longo de rodovias e ferrovias. No Sistema Geodésico Brasileiro - SGB, os pontos cujas altitudes foram determinadas a partir de nivelamento geométrico são denominados referências de nível (RRNN).
- Nivelamento Trigonométrico: Baseia-se em relações trigonométricas. É menos preciso que o geométrico, fornece apoio altimétrico para os trabalhos topográficos.
- Nivelamento Barométrico: Baseia-se na relação inversamente proporcional entre pressão atmosférica e altitude. É o de menor precisão, usado em regiões onde é impossível utilizar-se os métodos acima.

2.1.1 Levantamentos Altimétricos com GPS

O NAVSTAR GPS – NAVigation System with Time And Ranging Global Positioning System - como outras técnicas de geodésia espacial, fornece coordenadas X, Y e Z que podem ser transformadas em coordenadas elipsoidais: latitude, longitude e altitude geométrica – distância do ponto ao elipsóide contada ao longo da normal. Essa componente vertical é particularmente sensível à

configuração geométrica dos satélites GPS e aos efeitos da refração atmosférica (SEEBER, 2003).

A altitude geométrica é afetada pelo modo (técnica) de levantamento e pela observável utilizada no levantamento GPS. Utilizando-se de técnicas de levantamentos e de combinações de procedimentos de processamentos, a precisão da altitude geométrica esperada é de 1,5 a 2 vezes menos acurada que as componentes horizontais (FEATHERSTONE ET AL, 1998) apud (ARANA, 2005).

A altitude proporcionada pelo GPS (geométrica) tem apenas um significado matemático. Na maioria dos trabalhos de posicionamento, obras de engenharia, levantamentos geodésicos e topográficos, são utilizadas as altitudes ortométricas - referenciadas ao geóide, por possuírem um significado físico. Surge então a necessidade de transformar a altitude geométrica, obtida do GPS, em altitude ortométrica. Esta transformação, do ponto de vista matemático, constitui-se numa operação simples, envolvendo a altitude geométrica (h) e a altura geoidal (N) no ponto (ARANA, 2005). Conforme pode ser visto na figura 2.1, a altitude ortométrica (H) e a geométrica (h) estão relacionadas por: $H \cong h - N$



FIGURA 2.1 – ALTITUDE GEOMÉTRICA E ORTOMÉTRICA

FONTE: IBGE (2005)

O IBGE, por intermédio da Coordenação de Geodésia, e a Escola Politécnica da Universidade de São Paulo- EPUSP, geraram um Modelo de Ondulação Geoidal com uma resolução de 10' de arco e desenvolveram o Sistema de Interpolação de Ondulação Geoidal - MAPGEO2004. Através desse sistema, os usuários podem obter a ondulação geoidal (N) em um ponto, e/ou conjunto de pontos, referida aos sistemas SIRGAS2000 (Figura 2.2) e SAD69.

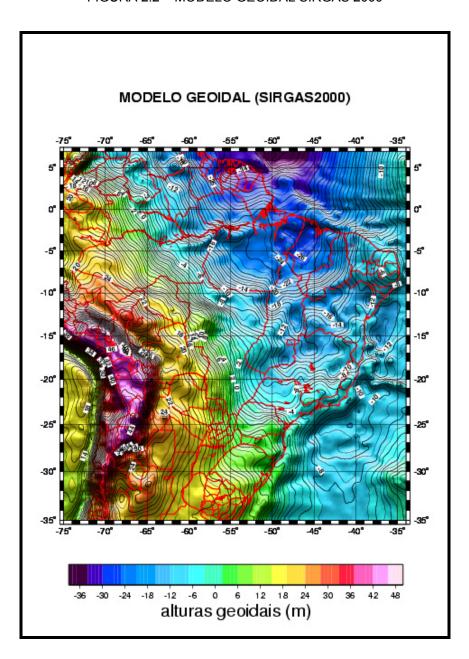


FIGURA 2.2 - MODELO GEOIDAL SIRGAS 2000

O erro médio padrão associado ao modelo MAPGEO2004 foi de +/- 0,5 metro, determinado a partir das comparações de altitudes GPS com altitudes de referências de nível (altitudes obtidas através de nivelamento geométrico) do IBGE. Isso significa que no Brasil, poderão ocorrer erros maiores que 0,5 metro, em regiões onde existe carência de informações para subsidiar a elaboração do modelo, como por exemplo, a Região Amazônica (IBGE, 2005).

A determinação da altitude a partir de $H \cong h - N$ é adequado para diversas aplicações onde o nível de precisão requerido é próximo ao proporcionado pelo modelo geoidal. No entanto, a determinação de altitudes ortométricas via GPS, visando substituir o nivelamento geométrico de precisão, ainda é um objetivo de longa duração (MONICO, 2000). Informações adicionais quanto a determinação de altitudes com GPS o leitor interessado pode encontrar em Arana (2005).e Castro (2002).

2.2 NIVELAMENTO GEOMÉTRICO

É o método de determinação de desníveis mediante visadas horizontais, obtidas com o instrumento de medição - nível topográfico, dirigidas a miras graduadas verticais (Figura 2.3).

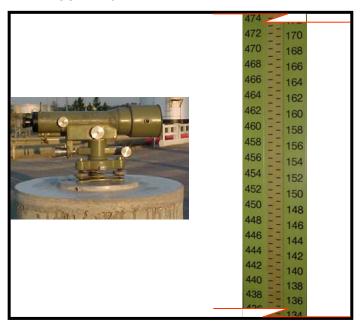


FIGURA 2.3 - NÍVEL E DETALHE DA MIRA

Os pontos a serem nivelados são ocupados pelas miras verticais, com o nível estacionado em posição equidistante entre os pontos (Figura 2.4).

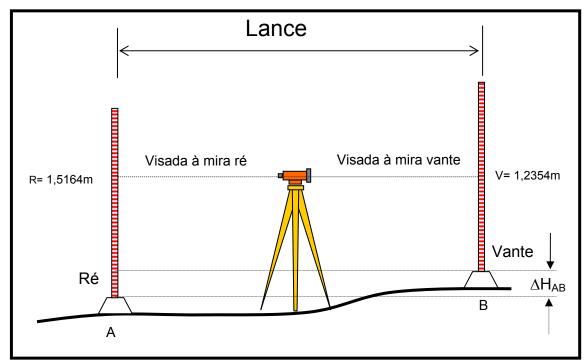


FIGURA 2.4 – NIVELAMENTO GEOMÉTRICO

O zero da graduação da mira está em seu ponto inferior, portanto a diferença de nível, ou desnível, obtém-se subtraindo a leitura da mira de ré pela leitura da mira de vante.

$$\Delta H = R - V = 1,5164m - 1,2354m = 0,2810m$$

A Figura 2.5 mostra um esquema simplificado de determinação de desnível, em mais de um lance, com nivelamento geométrico. Na figura estão registradas as leituras de ré e vante de cada mira.

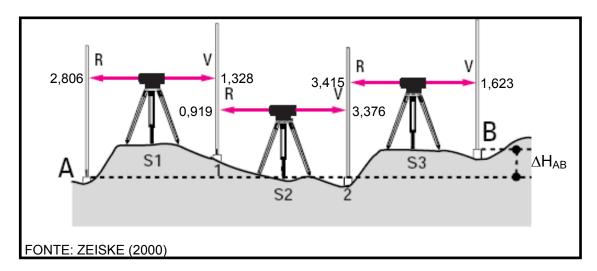


FIGURA 2.5 – ESQUEMA DE DESNÍVEL EM MAIS DE UM LANCE

A soma algébrica dos desníveis parciais, entre pontos consecutivos, resulta no desnível ΔH_{AB} entre os pontos A e B (Quadro 2.1).

QUADRO 2.1 - CÁLCULO DO DESNÍVEL

SOMA	7,140	6,327	$\Delta H_{AB} = 0.813$
S3	3,415	1,623	1,792
S2	0,919	3,376	-2,457
S1	2,806	1,328	1,478
ESTAÇÃO	RE	VANTE	ΔH do LANCE

2.2.1 Fontes de Erros no Nivelamento Geométrico.

Os erros instrumentais de um nível, estão relacionados com seu sistema de eixos (Figura 2.6). O eixo do nível tubular (LL) refere-se aos níveis mecânicos, os níveis automáticos utilizam um sistema de pêndulo.

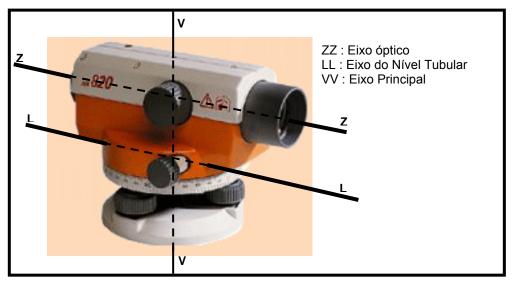


FIGURA 2.6 - SISTEMA DE EIXOS DOS NÍVEIS

FONTE: VEIGA; FAGGION, (2004)

 Erro de verticalidade do eixo principal (Figura 2.7): ocorre quando o nível tubular não está perfeitamente horizontalizado, então o eixo principal do instrumento não coincide com a vertical. Este erro impossibilita a obtenção da linha horizontal de visada.

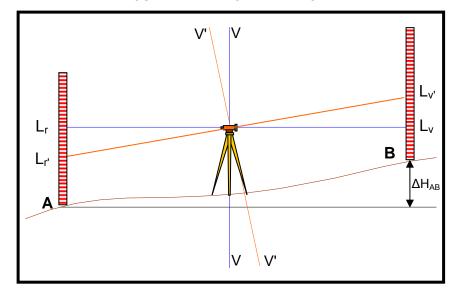


FIGURA 2.7 - ERRO DE VERTICALIDADE

onde: V'V'= eixo principal do nível

VV= vertical do lugar

 $L_{r'}$ e $L_{v'}$ = leituras de ré e vante, respectivamente, eivadas do erro de verticalidade.

 L_r e L_v = leituras de ré e vante, respectivamente, isentas do erro de verticalidade.

 Erro de colimação: ocorre quando a linha de visada não está paralela ao eixo óptico (Figura 2.8).

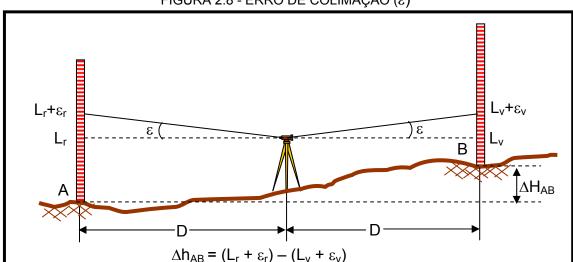


FIGURA 2.8 - ERRO DE COLIMAÇÃO (ϵ)

onde: L_r e L_v = leituras em ré e vante, respectivamente ϵ_r e ϵ_v = erro de colimação em ré e vante, respectivamente.

Como o erro de colimação é proporcional à distância e o nivelamento geométrico de precisão utiliza visadas iguais (distância da visada de ré igual a de vante), obtém-se:

$$\varepsilon_r = \varepsilon_v$$

$$\Delta h_{AB} = L_r + \varepsilon_r - (L_v + \varepsilon_v)$$

$$\Delta h_{AB} = L_r - L_v$$

- Erro de verticalidade da mira: ocorre quando o nível esférico, localizado na parte posterior da mira, não permite a coincidência da mira com a vertical.
 Verificação e correção encontram-se em Faggion (1993) e Alencar (1985).
- Erro de graduação da mira: ocorre na gravação da fita de ínvar quando de sua fabricação, ou devido discrepâncias em seu comprimento causadas pelo tempo e pelo uso. As miras de ínvar devem ser calibradas periodicamente e emitidos certificados de calibração (FAGGION, 1993).
- Erro de índice da mira: ocorre no processo de colocação da escala de ínvar no corpo da mira. Não se pode garantir que o zero da escala coincida rigorosamente com a base da mira (D' ALGE, 1986).

Considerações sobre efeitos da refração no nivelamento geométrico, reverberação, curvatura dos geopes e campos magnéticos, podem ser encontradas em D' Alge (1986).

2.2.2 Recomendações Usuais nas Operações de Nivelamento Geométrico

As seguintes recomendações são apresentadas em IBGE (2000) que objetivam minimizar os erros sistemáticos, comuns nas operações de nivelamento geométrico:

- Comprimento das visadas de ré e vante devem ser aproximadamente iguais, de modo a minimizar os efeitos de curvatura da Terra, da refração atmosférica e do não paralelismo do eixo óptico com o eixo do nível tubular – erro de colimação (Figura 2.8).
- Para se evitar os efeitos da reverberação, as leituras mínimas nas miras deverão situar-se acima de 50 cm (tolerando-se valores menores para visadas curtas).
- As miras deverão ser utilizadas aos pares, tomando-se o cuidado de alternálas a ré a vante, de modo que a mira posicionada no ponto de partida (lida a ré) seja posicionada no ponto de chegada (lida a vante). Com isso elimina-se o erro de índice das miras.

- As miras devem ser colocadas sobre as chapas ou pinos e, no caminhamento, sobre sapatas (Figura 2.9) nunca diretamente sobre o solo.
- Para evitar os efeitos do movimento da mira, causado pelo vento, as leituras devem ser realizadas no limite máximo de 2,5 metros

FIGURA 2.9 - MIRA SOBRE A SAPATA

Aos leitores interessados no assunto, encontrarão em Alencar (1985), IBGE (2000) e D' Alge (1986) completa descrição do método de nivelamento geométrico.

2.3 REDE ALTIMÉTRICA

É formada por estações altimétricas, denominadas referências de nível – RNNN (Figura 2.10) materializadas no terreno. A materialização se dá por marcos de concreto, com profundidade máxima de 80 cm abaixo do solo e altura máxima de 20 cm acima do solo, encimados por chapas metálicas circulares e convexas fixadas em seu topo (figura 2.11). Ou então por chapas cravadas em superfícies estáveis, como afloramentos rochosos, calçadas com espessura adequada, sapatas de sustentação de grandes estruturas de engenharia etc. (IBGE, 2000).

FIGURA 2.10 - REFERÊNCIA DE NÍVEL - RN

FIGURA 2.11 – CHAPA METÁLICA - REFERÊNCIA DE NÍVEL – RN 2053-D

As redes altimétricas são estabelecidas por intermédio do nivelamento geométrico que se desenvolve em forma de circuitos (Figura 2.12). Os elementos de um circuito são (IBGE, 2000):

- seção: trecho nivelado entre RRNN consecutivas.
- nó: Referência de nível RN pertencente a três ou mais seções (exceto RN de ramal).
- linha: seqüência de seções entre dois nós.
- circuito: perímetro fechado definido por uma sequência de linhas.

 ramal: seqüência de seções que não caracteriza uma linha, pois não há possibilidade de verificação do erro de fechamento.

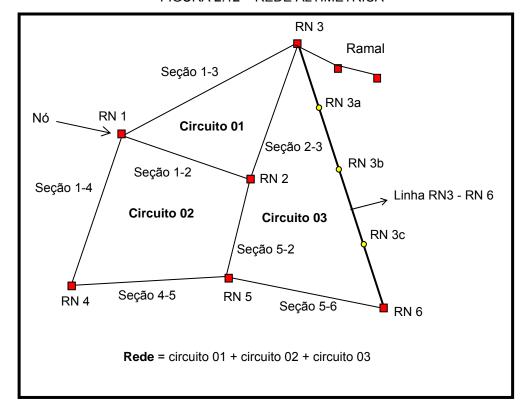


FIGURA 2.12 - REDE ALTIMÉTRICA

Outros elementos referentes aos levantamentos de campo:

- estações intermediárias: pontos ocupados pelas miras, definidos pelas sapatas ou pino removíveis, durante o levantamento de uma seção.
- linha de visada: percurso óptico entre o nível e a mira.
- posição do nível: ponto onde se instala o instrumento nivelador entre as miras.
- Lance: intervalo entre miras a ré e a vante.

A qualidade dos trabalhos deverá ser controlada pela diferença entre o nivelamento (N) e o contra-nivelamento (CN) de cada seção, observando-se os seguintes limites (IBGE, 1983):

 $3\text{mm}\sqrt{K}$ para os levantamentos de alta precisão.

 $6\text{mm}\sqrt{K}$ para os de precisão em áreas mais desenvolvidas.

 $8\text{mm}\sqrt{K}$ para áreas menos desenvolvidas.

Onde:

K = comprimento da seção em quilômetros (valor médio de N e CN).

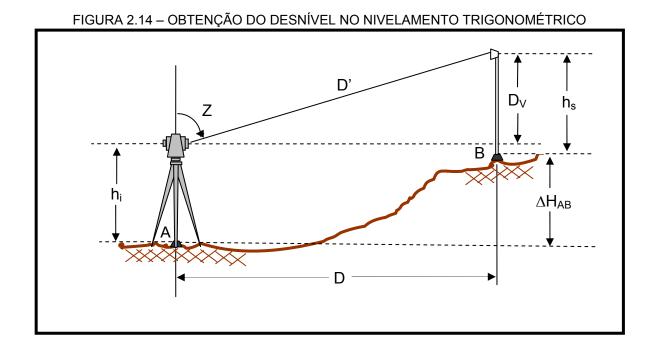
2.4 REDE ALTIMÉTRICA DO SISTEMA GEODÉSICO BRASILEIRO

Os trabalhos de Nivelamento Geométrico de Alta Precisão no Brasil (IBGE, 2005) iniciaram-se no Distrito de Cocal, Município de Urussanga, Santa Catarina, em 13 de Outubro de 1945, dando partida ao estabelecimento da Rede Altimétrica (Figura 2.13) do Sistema Geodésico Brasileiro (SGB), onde está localizada a Referência de Nível RN 1-A.

FIGURA 2.13- REDE ALTIMÉTRICA BRASILEIRA.

FONTE: IBGE (2000)

A conexão com a Estação Maregráfica de Torres, Rio Grande do Sul em dezembro de 1946, permitiu o cálculo das altitudes das Referências de Nível já implantadas. Iniciava-se, assim, a implantação de uma estrutura altimétrica fundamental, destinada a apoiar o mapeamento e servir de suporte às grandes obras de engenharia, sendo de vital importância para projetos de saneamento básico, irrigação, estradas e telecomunicações.


Em 1958, o Datum de Torres foi substituído pelo Datum de Imbituba, definido pela estação maregráfica do porto da cidade de mesmo nome, em Santa Catarina. Tal substituição ensejou uma sensível melhoria de definição do sistema de altitudes, uma vez que a estação de Imbituba contava na época com nove anos de observações, bem mais que o alcançado pela estação de Torres.

Internacionalmente os sistemas de referência altimétricos nacionais são definidos classicamente por intermédio de estações maregráficas e realizados pelas redes observadas por nivelamento geométrico. Com o desenvolvimento do projeto Sistema de Referência Geocêntrico para as Américas - SIRGAS - que compreende as atividades necessárias à adoção no continente de um sistema de referência de precisão compatível com as técnicas atuais de posicionamento, notadamente as associadas ao Sistema de Posicionamento Global (GPS), que, no futuro, estas redes sejam observadas por GPS e referidas diretamente ao geóide. Permitirá, além de garantir a homogeneização de resultados internamente ao continente, uma integração consistente com as redes dos demais continentes, contribuindo cada vez mais para o desenvolvimento de uma geodésia de caráter global".

Aos leitores interessados no assunto, a complementação deste conteúdo pode ser encontrada em IBGE (2005).

2.5 NIVELAMENTO TRIGONOMÉTRICO

Neste método a diferença de nível entre pontos é obtida por intermédio da resolução de triângulos retângulos, fundamentada na relação trigonométrica entre ângulos e distâncias. Na Figura 2.14 tem-se um exemplo de determinação de desnível com nivelamento trigonométrico.

Sendo:

Z= ângulo zenital

D'= distância inclinada do instrumento ao alvo

D= distância horizontal

h_i= altura do instrumento

h_s= altura do alvo

 ΔH_{AB} = desnível de A para B

D_v = distância vertical

2.5.1 Equação Básica do Nivelamento Trigonométrico

Para se determinar o desnível de A para B, por trigonometria (KAHMEN; FAIG, 1988), a distância D', o ângulo zenital Z, a altura do instrumento h_i e a altura do alvo h_s têm que ser medidos. As medições de Z e D' são de fácil determinação com uma Estação Total e estão referenciadas ao mesmo ponto: a interseção dos eixos: secundário, óptico e vertical.

Da figura 2.14, verifica-se que:

$$h_i + Dv = \Delta H + h_s \rightarrow \Delta H = h_i + Dv - h_s$$

sendo:
$$Dv = D'\cos Z$$
. (2.0)

Substituindo a segunda na primeira:

$$\Delta H = D'.\cos Z + h_i - h_s \tag{2.1}$$

Essa equação só é válida em pequenas distâncias, considerando o plano como referência, não se levando em conta a curvatura da Terra, nem o efeito da refração no ângulo zenital. Para lances longos, visadas com distâncias maiores de 100m entre a estação total e o alvo, devem ser considerados os efeitos supracitados (GEMAEL, 1987).

2.5.2 Propagação dos Erros no Nivelamento Trigonométrico

Da teoria de propagação dos erros acidentais (CHRZANOWSKI, 1977), ou propagação de covariâncias (GEMAEL, 1994), para variáveis independentes (não correlacionadas) que é o caso das medidas: D', Z, h_i e h_s e admitindo-se somente erros acidentais, a variância de ΔH ($\sigma_{\Delta H}^2$) é:

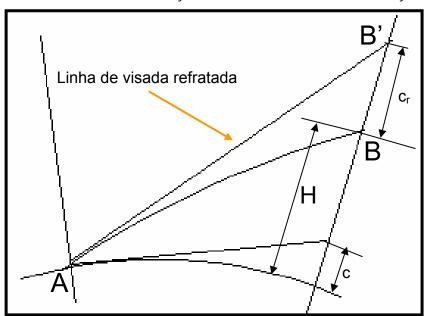
$$\sigma_{\Delta H}^{2} = \left(\frac{\partial \Delta H}{\partial D'}\right)^{2} \sigma_{D'}^{2} + \left(\frac{\partial \Delta H}{\partial Z}\right)^{2} \sigma_{Z}^{2} + \left(\frac{\partial \Delta H}{\partial h_{i}}\right)^{2} \sigma_{h_{i}}^{2} + \left(\frac{\partial \Delta H}{\partial h_{S}}\right)^{2} \sigma_{h_{s}}^{2}$$
(2.2)

onde:

 $\sigma_{D'}^2$, σ_{Z}^2 , $\sigma_{h_i}^2$, $\sigma_{h_s}^2$ são as variâncias de D', Z, h_i e h_s , respectivamente

Aplicando-se (2.2) em (2.1):

$$\sigma_{AH}^{2} = \cos^{2} Z \sigma_{D'}^{2} + D^{2} \sin^{2} Z \sigma_{Z}^{2} + \sigma_{h}^{2} + \sigma_{h}^{2}$$
 (2.3)


Na equação (2.3) têm-se as componentes da variância do desnível.

2.5.3 Curvatura Terrestre e Efeito da Refração

2.5.3.1 Curvatura terrestre

O efeito da curvatura (c) (Figura 2.15) é determinado pela equação 2.4 (KAHMEN; FAIG, 1988), demonstrada em Jordan (1974).

FIGURA 2.15 - REPRESENTAÇÃO DA CURVATURA E DA REFRAÇÃO

ADAPTADO DE JORDAN(1974)

$$c = \frac{D^2}{2R} \tag{2.4}$$

onde:

D= distância horizontal entre os pontos

R= raio médio da Terra

c= efeito da curvatura terrestre

c_r= efeito da refração

H= altitude de B

A TABELA 2.1 mostra o efeito da curvatura terrestre para algumas distâncias e compara com a tolerância admitida para o nivelamento de precisão e de alta precisão (IBGE, 1983), tomando R= 6.371 km.

GLC	NIL TIXICO L	L I NECIOAC				
distância (m)	100	200	300	400	500	1000
c (mm)	0,8	3,1	7,1	12,6	19,6	78,5
3mm√K	0,9	1,3	1,6	1,9	2,1	3,0
6mm√K	1,9	2,7	3,3	3,8	4,2	6,0
8mm√K	2,5	3,6	4,4	5,1	5,7	8,0

TABELA 2.1 - EFEITO DA CURVATURA TERRESTRE (c) E TOLERÂNCIA PARA O NIVELAMENTO GEOMÉTRICO DE PRECISÃO

Para se verificar a que distâncias a curvatura supera as tolerâncias especificadas pelo IBGE para o nivelamento geométrico, faz-se K=D e calcula-se D nas equações abaixo:

$$c = \frac{D^2}{2R} > 3mm\sqrt{D}$$
 ... $D > 113,5m$

$$c = \frac{D^2}{2R} > 6mm\sqrt{D}$$
 : $D > 180,1m$

$$c = \frac{D^2}{2R} > 8mm\sqrt{D}$$
 : $D > 218,2m$

Obtém-se, então, as distâncias limites onde, a partir daí, o efeito da curvatura da Terra é superior a tolerância mínima para cada classe de precisão do nivelamento.

2.5.3.2 Efeito da refração

O efeito da refração (c_r) (Figura 2.13), é dado pela equação (KAHMEN; FAIG 1988), também demonstrada em Jordan (1974).

$$c_r = \frac{kD^2}{2R} \tag{2.5}$$

onde:

D = distância entre os pontos

R = raio da Terra

k = coeficiente de refração. No Brasil adota-se o valor de 0,13(Brasil, 1975)

Aplicando os efeitos da curvatura e refração na equação (2.1), obtém-se:

$$\Delta H = D'\cos Z + h_i - h_s + c - c_r \tag{2.6}$$

$$\Delta H = D'\cos Z + h_i - h_s + \frac{D^2}{2R} - \frac{kD^2}{2R}$$

$$\Delta H = D'\cos Z + h_i - h_s + \frac{D^2}{2R}(1 - k)$$
 (2.7)

2.5.4 Efeito Conjunto da Curvatura Terrestre e da Refração para Visadas Recíprocas e Simultâneas

Quando se realiza determinação de desnível utilizando o método de visadas recíprocas e simultâneas, o desnível é obtido pela média dos desníveis calculados de A para B, e de B para A, utilizando-se sempre o sinal do desnível obtido de A para B; ou seja, no sentido do caminhamento.

Aplicando-se esse conceito na equação 2.6 , e considerando h_i = h_s e os ângulos zenitais Z_1 e Z_2 , obtém-se:

$$\Delta H_{AB} = D'\cos Z_1 + c - c_r \tag{2.8}$$

$$-\Delta H_{BA} = D'\cos Z_2 + c - c_r \tag{2.9}$$

subtraindo a equação (2.8) da equação (2.9):

$$2\Delta H = D'(\cos Z_1 - \cos Z_2)$$
 ...

$$\Delta H = \frac{D'}{2} \left(\cos Z_1 - \cos Z_2 \right) \tag{2.10}$$

A equação (2.10) permite o cálculo de ΔH , para visadas recíprocas e simultâneas na medição dos ângulos zenitais, eliminando-se algebricamente os efeitos da refração e da curvatura terrestre.

2.5.5 Determinação do Coeficiente de Refração – k

Conhecendo a distância entre dois pontos, bem como o desnível com precisão, e isolando-se k na equação (2.7), obtém-se:

$$k = \frac{2R}{D^2} (D'\cos Z - \Delta H + h_i - h_s) + 1$$
 (2.11)

Outro modo de determinar k, consiste em observar ângulos zenitais recíprocos e simultâneos entre dois pontos com distância conhecida. A equação a seguir permite o cálculo de k (KAHMEN; FAIG, 1988):

$$k = 1 - \frac{Z_1 + Z_2 - 180}{180 / \pi} \cdot \frac{R}{D}$$
 (2.12)

2.6 ESTAÇÃO TOTAL

A Estação Total conjuga em um único equipamento: teodolito eletrônico, distanciômetro e microcomputador (Figura 2.16).

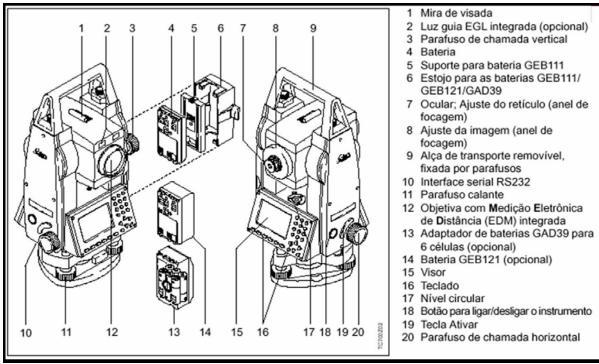


FIGURA 2.16 - PARTES PRINCIPAIS DE UMA ESTAÇÃO TOTAL

FONTE: LEICA TC 403L (1998)

A capacidade de armazenar os dados observados (o que elimina os erros de anotação) e a possibilidade de efetuar cálculos *in loco*, otimizam, sobremaneira, os trabalhos de campo. Contudo, para levantamentos que exigem acurácia, algumas questões têm que ser levadas em conta (DZIERZEGA; SCHERRER, 2003), a saber:

- Precisão nominal da Estação Total,
- diferença entre a leitura em uma posição e em duas posições (posição direta
 PD, posição inversa PI)
- influência dos erros instrumentais e como determiná-los
- influência da temperatura ambiente nas observações.

2.6.1 Erros Instrumentais

As observações com Estação Total constantes deste trabalho resumem-se a determinações de distâncias e ângulos zenitais, portanto serão apresentados apenas os erros inerentes a tais observações.

Os chamados erros instrumentais originam-se da fase de fabricação do equipamento. Alguns erros têm origem no longo tempo de uso e na falta de manutenção do equipamento. Informações mais completas sobre erros instrumentais podem ser encontradas, entre outros, em Kahmen; Faig (1988) e Medina (1998).

2.6.1.1 Erro de zênite instrumental

Esse erro ocorre (Figura 2.17) quando, na medição do ângulo zenital, o zero da escala não coincide com o zênite .

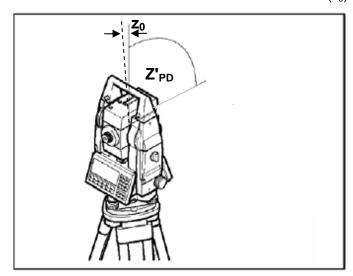
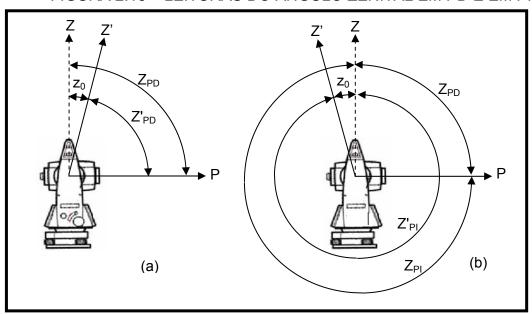


FIGURA 2.17 - ERRO DE ZÊNITE INSTRUMENTAL (z₀)


FONTE: ADAPTADO DE ZEISKE (2000)

Na medida do ângulo zenital é importante a realização das observações em posição direta e invertida da luneta para minimizar os efeitos do erro de zênite instrumental. Outra possibilidade de evitar a influência deste erro é determinar seu valor para posterior correção em todas as medições de distância zenital realizadas em somente uma posição da luneta.

A determinação do valor desse erro pode ser efetuada em laboratório ou em campo, procedendo-se da seguinte maneira:

• Com o teodolito na posição direta - PD, realiza-se a leitura do ângulo zenital (Z'_{PD}) em um ponto (P) definido (Figura 2.18).

FIGURA 2.18 – LEITURAS DO ÂNGULO ZENITAL EM PD E EM PI

Da Figura 2.18 (a), obtém-se que:

$$Z_{PD} = Z'_{PD} + z_0$$
 (2.13)

Onde:

Z_{PD} = Distância zenital em posição direta, isenta de erro;

Z'PD = Distância zenital em posição direta;

z₀ = Erro de zênite instrumental

 Repete-se a pontaria no ponto (P) na posição inversa (PI), procedendo-se a leitura do ângulo vertical (Z'PI) (Figura 2.18 (b)).

$$Z_{PD} = 360^{\circ} - Z'_{Pl} - Z_{0}$$
 (2.14)

Onde:

Z_{Pl} = Distância zenital em posição invertida, isenta de erro;

Z'_{Pl} = Distância zenital em posição invertida;

 Para obter o valor do erro de zênite instrumental, procede-se a subtração da equação (2.14) pela equação (2.13).

$$z_0 = \frac{360^{\circ} - Z'_{PI} - Z'_{PD}}{2} \tag{2.15}$$

 Já para a determinação da distância zenital isenta do erro, procede-se a soma da equações (2.13) com a equação (2.14).

$$Z = \frac{Z'_{PD} - Z'_{Pl}}{2} + 180 \tag{2.16}$$

2.6.1.2 Erro de verticalidade do eixo principal

Ocorre quando o eixo principal não coincide com a vertical (Figura 2.19). Não se trata de um erro instrumental, e sim da operação de nivelamento do instrumento que, se necessário, os níveis de calagem devem ser retificados. Tal erro não é minimizado com leituras em PD e PI (KAHMEN; FAIG, 1988).

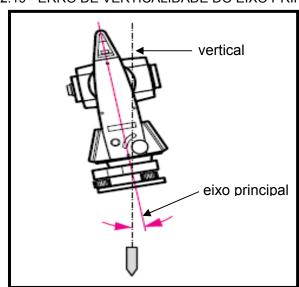


FIGURA 2.19 - ERRO DE VERTICALIDADE DO EIXO PRINCIPAL

FONTE: ZEISKE (2000)

As Estações Totais dispõem de compensadores eletrônicos que permitem a correção automática desse erro. Segundo Cintra (1995) apud Erba et Al (2005), o sistema é baseado na reflexão de uma luz sobre uma superfície líquida que permanece sempre horizontal e por isso pode ser usada como referencial. A luz gerada em **A** (Figura 2.20) é refletida na superfície líquida **B** e, após atravessar alguns componentes ópticos, atinge um fotodiodo **C**. O valor da corrente induzida neste permite determinar a posição da luz em relação ao ponto zero – **z**, o que permite determinar a inclinação longitudinal (direção da luneta) e a inclinação lateral (direção do eixo secundário). Dessa forma, leituras de ângulos verticais e direções horizontais são corrigidas automaticamente do erro de verticalidade.

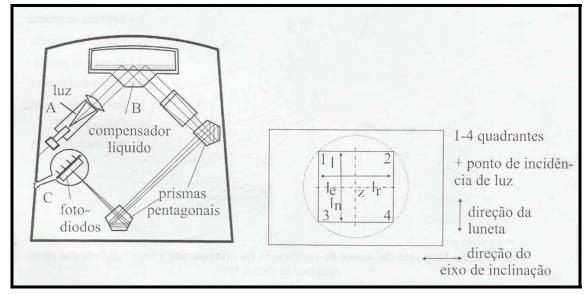


FIGURA 2.20 - ESQUEMA DE UM COMPENSADOR

FONTE: (KENNIE; PETRIE, 1993) APUD (ERBA et Al., 2005)

2.6.1.3 Erro de índice do compensador

Este erro ocorre quando o ponto zero do compensador não coincide com a vertical. Para minimizá-lo basta calcular a média das leituras na posição direta e na posição inversa da luneta (PD e PI).

2.6.1.4 Erros devidos a diferenças de temperaturas

Diferenças de temperatura entre o instrumento e o ambiente de trabalho resultam em mudanças na característica do instrumento, em particular do compensador. Logo, faz-se necessário o equilíbrio térmico entre o instrumento e o ambiente antes do ínicio das medições (DZIERZEGA; SCHERRER, 2003). O tempo necessário para esse equilíbrio é de aproximadamente 2 minutos por grau centígrado de diferença (Figura 2.21).

Deriva

A
M
P
L
I
T
U
D
E

~ 2 min/°C dif. temp.

FIGURA 2.21 - COMPORTAMENTO DO COMPENSADOR DURANTE EQUILÍBRIO TÉRMICO COM O AMBIENTE

FONTE: DZIERZEGA (2003).

2.6.2 Erro de Pontaria

Ocorre principalmente em face à limitação da resolução ótica do instrumento, das limitações visuais do observador, bem como das variações das condições atmosféricas.

Este erro é responsável pela não obtenção, em repetidas observações, do mesmo valor medido.

A grandeza deste erro está diretamente relacionada a ampliação do telescópio do instrumento (KUANG, 1996). Sob condições médias de visibilidade e de turbulência térmica, e com um alvo bem definido, o erro de pontaria, para uma única visada de comprimento de poucas centenas de metros, é estimado por (CHRZANOWSKI, 1977):

$$\sigma_{p} = \frac{30"}{M} \quad a \quad \sigma_{p} = \frac{60"}{M}$$
 (2.17)

onde:

M= ampliação do telescópio do instrumento

Sob baixa visibilidade ou elevada turbulência térmica, o erro de pontaria certamente será maior.

A expressão supracitada não leva em conta a prática e a habilidade individual de cada operador. Contudo, há que se levar em conta o efeito da equação pessoal na estimativa do erro de pontaria. Aos leitores interessados: mais informações acerca do assunto podem ser encontradas em Medina et al (1999).

2.6.3 Precisão Nominal da Estação Total

A especificação da precisão nominal angular de um instrumento é fornecida pelo fabricante. Refere-se ao desvio padrão de uma *direção* para uma série de PD e PI. Em geral o fabricante indica o método utilizado, DIN ou ISO, para a determinação do desvio padrão (precisão nominal).

A tabela 2.2 apresenta a classificação das Estações Totais de acordo com a NBR-13.133 (ABNT, 1994).

TABELA 2.2 - CLASSIFICAÇÃO DAS ESTAÇÕES TOTAIS DE ACORDO COM A PRECISÃO INTERNA.

CLASSES DE	DESVIO PADRÃO	DESVIO PADRÃO PRECISÃO LINEAR				
ESTAÇÕES TOTAIS	PRECISÃO ANGULAR					
PRECISÃO BAIXA	≤ ± 30"	± (5mm + 10ppm)				
PRECISÃO MÉDIA	≤ ± 07"	± (5mm + 5ppm)				
PRECISÃO ALTA	≤ ± 02"	± (3mm + 3ppm)				

Para a determinação da precisão esperada de um ângulo horizontal deve-se aplicar a teoria da propagação dos erros aleatórios (CHRZARNOWSKI,1977). Por exemplo: para um instrumento de precisão nominal 5" e observadas duas direções, a precisão do ângulo entre as direções é de: $\sqrt{2}$ 5" = 7".

Já a precisão de um levantamento depende da forma com que se utiliza o equipamento (PROFESSIONAL SURVEYOR MAGAZINE, 2002). Se em uma posição – PD, se em duas – PD-PI, se em um número maior de séries de PD-PI.

2.6.4 Precisão Esperada na Determinação da distância vertical (D_v) em uma Série PD-PI

A equação (2.0) permite o cálculo da distância medida (D_v) com uma Estação Total, entre E_c e o prisma, sendo observados: o ângulo zenital (Z) e a distância inclinada (D').

$$D_{v} = D'\cos Z \tag{2.0}$$

Aplicando-se a teoria da propagação dos erros, obtém-se:

$$\sigma_{D_v}^2 = \left(\frac{\partial D_v}{\partial D^t}\right)^2 \sigma_{D^v}^2 + \left(\frac{\partial D_v}{\partial Z}\right)^2 \sigma_{Z}^2$$

$$\sigma_{D_{v}} = \sqrt{\cos^{2} Z \sigma_{D'}^{2} + D'^{2} \sin^{2} Z \sigma_{Z}^{2}}$$
 (2.18)

onde:

Z= Ângulo zenital

D'= distância inclinada

σ_D:= precisão nominal linear da Estação Total

σ_Z= precisão nominal angular da Estação Total

A Tabela 2.3 apresenta a precisão esperada - $\sigma_{\rm Dv}$ (mm), na determinação da distância vertical ($D_{\rm v}$), utilizando uma Estação Total, variando Z(graus) e D'(metros), com precisão nominal ±3" e ±(2mm + 2ppm):

D'\Z **77 76** 75 89 88 87 85 83 80 **79 78** 86 84 82 81 0,2 0,2 0,2 0,3 0,3 0,4 0,4 0,4 0,5 0,5 0,5 10 0,1 0,2 0,3 0,3 0,3 0,3 20 0,3 0,3 0,3 0,4 0,4 0,4 0,4 0,5 0,5 0,5 0,5 0,6 0,6 30 0,4 0,4 0,4 0,5 0,5 0,5 0,5 0,5 0,5 0,6 0,6 0,6 0,6 0,6 0.7 40 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,7 0,7 0,7 0,7 0,7 0,7 8,0 **50** 0,7 0,7 0,7 0,7 0,7 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,9 0,9 60 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 1,0 1,0 1,0 1,0 70 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,2 1,2 80 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 90 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,4 1,4 1,4 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 100 110 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 120 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,9 1,9 1,9 1,9 1,9 130 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 1,9 2,0 2,0 2,0 140 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 150 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,3 2,3 2,3 2,3 2,3 160 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 170 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,4 2,4 2,5 2,6 180 2,6 2,6 2,6 2,6 2,6 2,6 2,6 2,6 2,6 2,6 2,6 2,6 2,6 2,6 190 2,8 2,8 2,8 2,7 2,7 2,7 2.8 2,8 2,8 2,8 2,8 2,7 2,7 2,7 2,7 200 2.9 2,9 2,9 2.9 2,9 2,9 2,9 2,9 2,9 2,9 2,9 2,9 2,9 2,9 2,9

TABELA 2.3 - PRECISÃO ESPERADA σ_{Dv} (mm)

FONTE: KOSLOWSKI (1998)

2.6.5 Precisão Esperada da Estação Total com mais de uma Série PD-PI

2.6.5.1 Precisão esperada na determinação da distância inclinada (D'_v)

Para N_s séries medidas de distâncias inclinadas com a Estação Total, considerando-se apenas uma medição de D' por série, em PD ou em PI, obtém-se para a média:

$$D' = \frac{1}{N_s} (D'_1 + D'_2 + \dots + D'_{N_s})$$

Aplicando-se a teoria de propagação dos erros, vem:

$$\sigma_{\text{D'}}^2 = \frac{1}{N_s^2} \, \sigma_{\text{D'}_1}^2 + \frac{1}{N_s^2} \, \sigma_{\text{D'}_2}^2 + \ldots + \frac{1}{N_s^2} \, \sigma_{\text{D'}_{N_s}}^2$$

 $Como: \sigma_{D'_1}^2 = \sigma_{D'_2}^2 = = \sigma_{D'_n}^2 = \sigma_{D'}^2 \,, \quad então \qquad a \qquad precisão \qquad esperada \qquad na$ determinação da distância., é dada por:

$$\sigma_{\overline{D'}}^2 = \frac{1}{N_s^2} \sigma_{D'}^2 \qquad \therefore$$

$$\sigma_{\overline{D'}} = \frac{\sigma_{D'}}{\sqrt{N_s}} \qquad (2.19)$$

onde: σ_D:= precisão nominal linear da Estação Total, fornecida pelo fabricante.

N_s = número de séries PD-PI

2.6.5.2 Precisão esperada na determinação do ângulo zenital (Z)

De forma análoga, demonstra-se que, para o ângulo zenital medido com mais de uma série de observações, o desvio padrão $(\sigma_{\overline{z}})$ é dado por:

$$\sigma_{\bar{z}} = \frac{\sigma_{z}}{\sqrt{N_{c}}} \tag{2.20}$$

onde: σ_Z = precisão nominal angular da Estação Total, fornecida pelo fabricante.

N_s = número de séries PD-PI

2.6.5.3 Precisão esperada na determinação da distância vertical (D_v)

Substituído as equações (2.19) e (2.20) na equação (2.18), vem:

$$\sigma_{Dv} = \sqrt{\cos^2 Z (\frac{\sigma_{D'}}{\sqrt{N_s}})^2 + D'^2 \operatorname{sen}^2 Z (\frac{\sigma_Z}{\sqrt{N_s}})^2} \quad ::$$

$$\sigma_{Dv} = \frac{1}{\sqrt{N_s}} \sqrt{\cos^2 Z \sigma_{D'}^2 + D'^2 \operatorname{sen}^2 Z \sigma_Z^2}$$
(2.21)

A equação 2.21 permite calcular a precisão esperada na determinação da distância vertical (D_v) com mais de uma série PD-PI.

2.6.6 Determinação do Número de Séries em Função da Precisão Estimada para o desnível (D_{v})

Isolando-se o número de séries (Ns) na equação 2.21, obtém-se:

$$N_{s} = \frac{\cos^{2} Z \sigma_{D'}^{2} + D'^{2} \operatorname{sen}^{2} Z \sigma_{Z}^{2}}{\sigma_{Dv}^{2}}$$
 (2.22)

A equação (2.22) permite, com base na teoria de propagação dos erros aleatórios, calcular o número mínimo de séries para se obter a precisão desejada σ_{Dv} para a distância (D_v).

Tomando $3 mm \sqrt{k}$ como limite para uma seção de nivelamento de alta precisão, e substituindo na equação (2.22), vem:

$$Ns = \frac{\cos^2 Z \sigma_{D'}^2 + D'^2 sen^2 Z \sigma_Z^2}{\left(3\sqrt{K}\right)^2}$$

onde: K= distância da visada em quilômetros

A Tabela 2.4 mostra o número mínimo de séries para, segundo a teoria de propagação de erros, obter-se a precisão de $3 \text{mm} \sqrt{k}$ na distância vertical (D_v), utilizando uma Estação Total de precisão nominal: ± 3 " e $\pm (2 \text{mm} + 2 \text{ppm})$.

TABELA 2.4 – NÚMERO DE SÉRIES EM FUNÇÃO DA PRECISÃO NOMINAL E DO FECHAMENTO ESPERADO EM $3 mm \sqrt{k}$

D'\Z	89	88	87	86	85	84	83	82	81	80	79	78	77	76	75
10	1	1	1	1	1	1	1	2	2	2	2	3	3	3	4
20	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2
30	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2
40	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2
50	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
60	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
70	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3
80	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3
90	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
100	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
110	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
120	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
130	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
140	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
150	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
160	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4

2.7 MODELO DE TRANSFERÊNCIA DE TURBULÊNCIA NA DETERMINAÇÃO DA INFLUÊNCIA DA REFRAÇÃO NA MEDIÇÃO DO ÂNGULO ZENITAL.

A refração atmosférica é a maior fonte de erros na determinação dos ângulos zenitais. Muitos trabalhos de pesquisa têm sido desenvolvidos com o objetivo de determinar a influência da refração nos MEDs — Medidores Eletrônicos de Distâncias, entretanto há pouca referência na literatura quando se trata dessa influência na obtenção do ângulo zenital.

O efeito da refração no ângulo zenital é usualmente calculado a partir de um modelo adiabático da atmosfera real. Modelo este que representa o estado da atmosfera numa média para todas as latitudes e estações do ano. Esse modelo apresenta valores fixos da temperatura e pressão do ar ao nível do mar e perfis verticais fixos de temperatura e pressão.

Nas determinações de desníveis utilizando nivelamento trigonométrico aplicase a subtração da equação (2.4) pela equação (2.5), para correção simultânea da curvatura da Terra e da refração atmosférica.

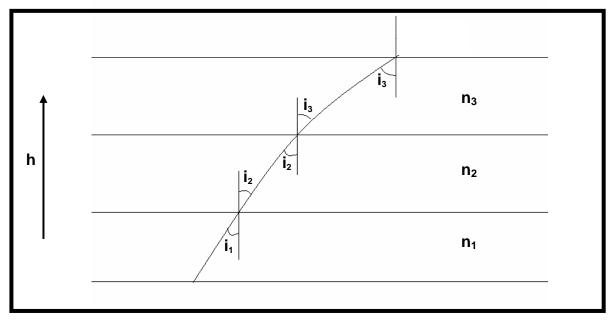
$$C = \frac{D^2}{2R} (1 - k) \tag{2.23}$$

onde: D= distância reduzida ao horizonte

R= raio da Terra ≅ 6400 km

k= coeficiente de refração.

Nos trabalhos desenvolvidos na micrometeorologia, ramo da meteorologia que trata das interações superfície-atmosfera, estabilidade atmosférica e fluxos de calor e massas, modelos de transferência de turbulência têm sido pesquisados para descrever os processos que governam o gradiente de temperatura na baixa atmosfera.


A seguir são apresentados modelos de turbulência (DODSON; ZAHER, 1985) para determinação da influência da refração nos ângulos zenitais em medições próximas ao solo.

2.7.1 Relação Entre Curvatura e Gradiente de Temperatura (DODSON; ZAHER, 1985)

Em uma atmosfera idealizada, somente sob ação da gravidade, o caminhamento da onda luminosa apresenta uma curvatura convexa quando ocorre variação crescente do ângulo i_j na direção da vertical ascendente (Figura 2.22):

$$i_3 > i_2 > i_1$$
 (2.24)

FIGURA 2.22 - CAMINHAMENTO DE UMA ONDA ELETROMAGNÉTICA NA ATMOSFERA IDEAL

FONTE: DODSON E ZAHER (1985)

A Lei básica da refração – Lei de Snell, é dada pela seguinte igualdade:

$$n_j$$
.seni $_j$ = const.

Onde:

n= índice de refração da camada j.

Então, de acordo com a expressão (2.24), e da igualdade supracitada, chegase a seguinte relação:

$$n_3 < n_2 < n_1 \tag{2.25}$$

onde: n_i representa o índice de refração da camada i.

Da relação (2.25) tem-se que o gradiente vertical do índice de refração $\frac{\partial n}{\partial h}$ é negativo.

$$\frac{\partial \mathbf{n}}{\partial \mathbf{h}} < \mathbf{0}$$

Esse gradiente determina a direção do raio de curvatura do caminhamento da onda luminosa (convexa ou côncava), bem como sua amplitude.

A lei de Lorentz-Lorentz fornece a relação entre o índice de refração e a densidade do ar por onde atravessa a linha de visada:

$$\frac{n^2 - 1}{\left(n^2 + 2\right)\rho} = \text{constante} \tag{2.26}$$

onde:

n= índice de refração do ar.ρ = densidade do ar.

O índice de refração do ar é muito próximo da unidade, então pode-se substituir pela soma da unidade com uma pequena fração decimal (n= 1+ ε). Substituindo esse termo na equação 2.26 e desprezando-se os termos em 2ª ordem de ε , obtém-se:

$$\frac{\varepsilon}{\left(\frac{3}{2} + \varepsilon\right)\rho} \cong \frac{n-1}{\frac{3}{2}\rho} = \text{const.}$$
 (2.27)

Logo, a variação do índice de refração é proporcional a variação da pressão. Então, derivando a Equação (2.27) em relação à altura, obtém-se que :

$$\frac{dn}{dh} \approx \frac{d\rho}{dh} \tag{2.28}$$

Isto implica que a curvatura da linha de visada é dependente do gradiente vertical da densidade do ar.

A Lei Universal dos Gases é definida por:

$$PV = \Re T \tag{2.29}$$

onde:

P= pressão do gás (mb).

T= temperatura absoluta do gás (°K).

V= volume de 1 grama-mol do gás.

 \Re = constante Universal dos Gases.

E a relação entre a densidade do gás e a massa molecular é dada pela equação:

$$P = \rho \frac{\Re T}{m} \tag{2.30}$$

onde:

 ρ = densidade do gás.

m= massa molecular do gás.

Sabe-se também que o gradiente da pressão atmosférica está relacionado com aceleração da gravidade da Terra por:

$$\frac{dP}{dh} = -\rho g \tag{2.31}$$

Diferenciando a Equação (2.30), em relação a h, tem-se:

$$\frac{\partial P}{\partial h} = \frac{\Re \rho}{m} \frac{\partial T}{\partial h} + \frac{RT}{m} \frac{\partial \rho}{\partial h} = -\rho g \tag{2.32}$$

Substituindo a Equação (2.30) na Equação (2.32) e simplificando:

$$\frac{\partial \rho}{\partial h} = -\frac{Pm}{\Re T^2} \left(\frac{gm}{\Re} + \frac{\partial T}{\partial h} \right) \tag{2.33}$$

Substituindo a equação (2.33) na equação (2.28):

$$\frac{dn}{dh} = -\frac{Pm}{\Re T^2} \left(\frac{gm}{\Re} + \frac{\partial T}{\partial h} \right)$$
 (2.34)

Com isso obtém-se que o gradiente do índice de refração é proporcional ao gradiente da temperatura do ar.

Observa-se que (equação 2.34) o gradiente do índice de refração $\frac{dn}{dh}$ será negativo – portanto curvatura convexa - quando o termo (Figura 2.21):

$$\left(\frac{gm}{\Re} + \frac{\partial T}{\partial h}\right) > 0 \quad \text{ou} \quad \frac{\partial T}{\partial h} > -\frac{gm}{\Re}$$
 (2.35)

Assumindo-se valores representativos próximos a superfície da Terra para m, g e \Re :

m = 28,96 kg mol
g = 9,807 m/s²

$$\Re$$
 = 8314,4 kJ(kg.mol)⁻¹.T⁻¹

E substituindo na equação (2.35), obtém-se:

$$\frac{\partial T}{\partial h} > -0.0342$$
°C/m \Rightarrow curvatura convexa

$$\frac{\partial T}{\partial h}$$
 < -0,0342°C/m \Rightarrow curvatura côncava

Para gradientes de temperatura maiores que -0,0342°C/m a curvatura da linha de visada é convexa (Figura 2.22), e côncava para valores inferiores.

Essa demonstração é confirmada ao se aplicar a equação de Barrel e Sears, que fornece o índice de refração do espectro visível no ar. Esta equação se vale da atmosfera padrão - um modelo da atmosfera real - que representa o estado da atmosfera numa média para todas as latitudes e estações do ano, com valores fixos da temperatura e pressão do ar ao nível do mar (15°C e 1013,25mb) e perfis verticais fixos de temperatura e pressão.

Segundo Dodson e Zaher (1985), o gradiente vertical da refratividade é dado por:

$$\frac{\partial N_a}{\partial h} = \frac{\partial N_a}{\partial T} \cdot \frac{\partial T}{\partial h} + \frac{\partial N_a}{\partial P} \cdot \frac{\partial P}{\partial h}$$
 (2.36)

E considerando o índice de refratividade do ar - $N_{\rm a}$, dado pela equação de Barrel e Sears:

$$N_{a} = N_{p} \left(\frac{273,16}{1013,25} \right) \frac{P}{T} - 15,02 \frac{e}{T}$$
 (2.37)

onde:

 N_p = índice de refratividade nas condições padrão.

T= temperatura (°K)

P= pressão (mb)

e= pressão parcial do vapor d'água (mb)

Sendo que N_a se relaciona com n, por: $N_a = (n-1).10^6$

Diferenciando a equação (2.37) com valores representativos de: N_p = 295, T= 288°K, P= 1013,25 mb, e= 10 mb; obtém-se o gradiente da refratividade em relação à pressão e o gradiente da refratividade em relação à temperatura:

$$\frac{\partial N_a}{\partial P} = +0,276 \, / \, mbar$$

$$\frac{\partial N_a}{\partial T} = -0.973\,/\,^{\circ}C$$

O gradiente vertical de pressão próximo à superfície é aproximadamente (BOMFORD, 1975) apud (DODSON E ZAHER, 1985):

$$\frac{\partial P}{\partial h} = -0.12 \text{mb/m}$$

Substituindo os valores dos gradientes: $\frac{\partial N_a}{\partial P}$, $\frac{\partial N_a}{\partial T}$ e $\frac{\partial P}{\partial h}$ na equação (2.36), resulta em:

$$\frac{\partial N_a}{\partial h} = -0.973 \frac{\partial T}{\partial h} - 0.0331$$

 $\frac{\partial N_a}{\partial h}$ é negativo (curvatura convexa) quando:

$$-0.973 \frac{\partial T}{\partial h} - 0.0331 < 0$$

O que resulta:

$$\frac{\partial T}{\partial h} > -0.0342$$
°C/m

Confirmando, então, a relação (2.35).

Fica claro, teoricamente, o porquê da trajetória da onda luminosa em visadas próximas ao solo apresentar um comportamento anômalo durante dias ensolarados (SCHAAL, 1995).

Para o coeficiente de refração k= 0,13, obtido segundo um modelo da atmosfera padrão, resulta, segundo (SCHAAL, 1995) em um gradiente de:

$$\frac{\partial T}{\partial h} > -0.012$$
°C/m

Portanto resultando em um gradiente de temperatura maior do que -0,034°C, acarretando uma curvatura de visada sempre convexa. Essa curvatura ocasiona uma subtração no desnível determinado por nivelamento trigonométrico. Esta conclusão é ratificada ao se analisar a equação (2.23) onde, para k= 0,13, a

correção do efeito da refração (subtrativa) representa 13% do efeito da curvatura terrestre.

2.7.2 Turbulência na Atmosfera

A turbulência é um estado de instabilidade das condições ambientais locais do ar próximo ao solo: pressão, temperatura e umidade. Ocorre, principalmente, devido a: fluxo de troca de calor entre o solo e o ar, velocidade do vento e presença de obstáculos sobre a superfície do solo (rugosidade).

Modelos simplificados da atmosfera, onde se considera a variação linear dos parâmetros em função da altura, não são suficientes para determinar com precisão os efeitos da refração. Enquanto as variações de pressão são linearmente dependentes da altura em grandes áreas, as variações de temperatura têm de ser consideradas em pequenas distâncias e, em face à turbulência, não variam linearmente com a altura na baixa atmosfera.

Dodson e Zaher (1985) destacam o modelo de transferência turbulenta de Priestley, que define três parâmetros básicos: temperatura potencial, fluxo de troca de calor e altura de Obukhov.

2.7.2.1 Temperatura Potencial - θ

A temperatura potencial θ de uma parcela de ar é definida como a temperatura que a parcela teria se fosse expandida ou comprimida adiabaticamente de seu estado real de pressão e temperatura para uma pressão padrão (geralmente 1000 mb). Se uma parcela de ar é submetida apenas a transformações adiabáticas, sua temperatura potencial permanece constante. Portanto, a temperatura potencial é uma quantidade conservativa para transformações adiabáticas.

$$\theta = T \left(\frac{1000}{P}\right)^{0.286} \tag{2.38}$$

Onde:

T= temperatura do ar (°K).

P= pressão do ar (mb).

2.7.2.2 Fluxo de Troca De Calor – F

O fluxo de troca de calor entre o ar e o solo é um processo complexo sendo que a sua medida direta requer uma instrumentação bem mais elaborada que a simples medida da temperatura em função da altura. O fluxo de calor, normalmente expresso em watts por metro quadrado, depende fundamentalmente da radiação solar e da absorção de calor do solo. Esse fluxo é expresso por uma equação de balanço energético que envolve três grandezas físicas:

$$F = R_s - G - E \tag{2.39}$$

onde:

F= fluxo de calor entre o ar e o solo.

R_s= radiação na superfície do solo.

G= energia transferida ao solo.

E= perda de calor devido à evaporação da água do solo.

2.7.2.3 Altura de Obukhov - L

O fluxo de calor influencia a temperatura do ar até uma certa altura. A partir deste nível se estabelece a condição adiabática, quando não há mais troca de calor entre as camadas de ar. Essa altura é denominada de Altura de Obukhov, dada por:

$$L = -87 \times 10^3 \, \frac{u_{\star}^3}{F} \tag{2.40}$$

sendo:

$$u_* = \frac{Vk.u}{ln\frac{h_{av}}{r_s}}$$

onde:

 U_* = velocidade de atrito do ar em m/s.

Vk= constante de Von Karmann: Vk = 0,4.

u= velocidade do vento na linha de visada (m/s).

h_{av}= altura do anemômetro para medir o vento (m).

r_s= rugosidade média da superfície do solo (m).

2.7.3 Estados de Turbulência na Atmosfera

2.7.3.1 Estado instável

Essa situação ocorre quando a temperatura potencial do ar nas camadas mais baixas é maior que a temperatura potencial das camadas mais elevadas, ou seja, o gradiente da temperatura potencial é negativo. O estado instável predomina durante o período diurno com elevada insolação. Este estado é dividido em três regiões:

Região I:

$$\frac{\delta\theta}{\delta h} = -\frac{F}{C_{p}\rho u_{*}Vk}h^{-1}$$
 (2.41)

para 0 < h < 0,03L

Onde:

 C_p e ρ são, respectivamente, calor específico e densidade do ar. h= altura a partir da superfície do solo.

Região II:

$$\frac{\delta\theta}{\delta h} = -0.027 F^{\frac{2}{3}} h^{-\frac{4}{3}}$$
 (2.42)

para 0,03L < h < L

Região III:

$$\frac{\delta\theta}{\delta h} = 0$$

2.7.3.2 Estado estável

Essa situação ocorre quando a temperatura potencial no ponto mais baixo é menor que no ponto mais alto, ou seja, o gradiente da temperatura potencial é positivo. O estado estável predomina durante o período noturno com céu claro.

$$\frac{\delta\theta}{\delta h} = -2x10^{-3} \frac{F}{u \cdot h} \left(1 + \frac{5h}{L} \right) \tag{2.43}$$

2.7.3.3 Estado neutro

Essa é uma situação onde a temperatura potencial do ponto mais baixo é igual à temperatura potencial do ponto mais elevado, ou seja, o gradiente vertical da temperatura potencial é nulo. O estado neutro predomina no amanhecer, anoitecer e por períodos prolongados de céu encoberto por nuvens.

$$\frac{\delta\theta}{\delta h} = 0$$
 para qualquer valor de h.

A teoria demonstra que para gradientes maiores do que -0,034°C/m ocasiona uma curvatura côncava da visada do ângulo zenital, situação inversa ao apresentado na Figura 2.22.

O coeficiente de refração k usualmente utilizado (k= 0,13), corresponde a condições adiabáticas da atmosfera, e não é, todavia, representativo para a maioria das observações geodésicas e topográficas próximas ao solo, onde os efeitos do calor predominam, como demonstram os modelos de transferência de turbulência.

2.8 DETERMINAÇÃO DO ÂNGULO DE REFRAÇÃO VERTICAL NOS ESTADOS DE TURBULÊNCIA

A partir das equações (2.38) a (2.43), Schaal (1995), deduziu as equações para determinação do ângulo de refração vertical β :

$$\beta^{"} = D \left[0,1 \left(\frac{P}{1000} \right)^{0,286} \left(\frac{\delta \theta}{\delta h} + 2,06 \frac{T}{P^{1,286}} \frac{\delta P}{\delta h} \right) + 0,0034 \right]$$
 (2.44)

A equação (2.44) permite o cálculo da refração, observada β (em segundos) por um teodolito estacionado próximo ao solo na altura h (\cong 1,5m), em função das condições ambientais e do estado de turbulência da atmosfera.

2.8.1 Estado de Turbulência Instável

O estado de turbulência instável, caracterizado pelo gradiente negativo da temperatura potencial que, para Região II (altura superior a 1m), é dado pela equação (2.42).

$$\frac{\delta\theta}{\delta h} = -0.027 F^{\frac{2}{3}} h^{-\frac{4}{3}}$$
 (2.42)

Substituindo na (2.44):

$$\beta^{"} = D \left[0,1 \left(\frac{P}{1000} \right)^{0,286} \left(-0,027 F^{\frac{2}{3}} h^{-\frac{4}{3}} + 2,06 \frac{T}{P^{1,286}} \frac{\delta P}{\delta h} \right) + 0,0034 \right]$$
 (2.45)

Os efeitos da refração, durante período diurno com alta insolação em uma observação próxima ao solo, são muito mais sentidos no ângulo vertical que na distância (SCHAAL, 1996).

Adotando condições ambientais representativas para a pressão, temperatura e gradiente da pressão, respectivamente 950 mb, 27 oC e -0,12 mb/m,

um lance de 1000 m, durante o dia com elevada insolação (F= 450 w/m2), na altura de 1,5 metro, a refração é -90", ou -1,5'. visada apresenta uma curvatura côncava acarretando um desnível aparente de -0,45 metros (SHAAL, 1995).

O gráfico 2.1 apresenta o efeito da refração no desnível medido, com ângulo zenital próximo a 90° e nas condições descritas acima, para distâncias até 200m.

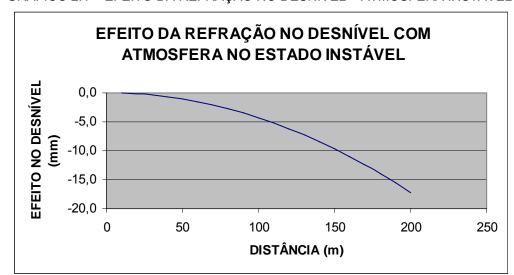


GRÁFICO 2.1 - EFEITO DA REFRAÇÃO NO DESNÍVEL - ATMOSFERA INSTÁVEL

2.8.2 Estado de Turbulência Estável

Já para o estado estável o gradiente da temperatura potencial é dado pela equação(2.43).

$$\frac{\delta\theta}{\delta h} = -2.10^{-3} \frac{F}{u_* h} \left(1 + \frac{5h}{L} \right) \tag{2.43}$$

Substituindo na equação (2.44):

$$\beta^{"} = D \left[0, 1 \left(\frac{P}{1000} \right)^{0,286} \left(-2.10^{-3} \frac{F}{u_* h} \left(1 + \frac{5h}{L} \right) + 2,06 \frac{T}{P^{1,286}} \frac{\delta P}{\delta h} \right) + 0,0034 \right]$$
 (2.46)

2.8.3 Atmosfera no Estado Neutro

No estado neutro o gradiente da temperatura potencial é nulo $\frac{\delta\theta}{\delta h}=0$, portanto a equação (2.5) é válida para a correção da refração.

$$c_r = \frac{kD^2}{2R} \tag{2.5}$$

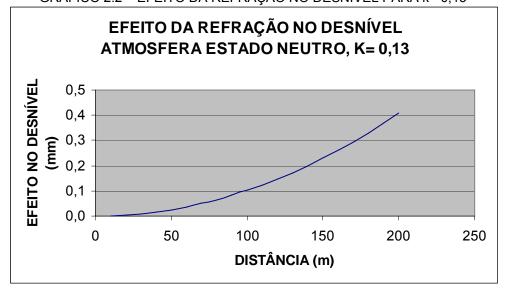

A Tabela 2.5 apresenta o efeito da refração (mm) em diferentes distâncias para k= 0,13 em comparação com as especificações para desníveis de precisão. , .

TABELA 2.5 – EFEITO DA REFRAÇÃO PARA k= 0,13

Distância(m)										
Cr	0,1	0,4	0,9	1,6	2,6	3,7	5,0	6,5	8,3	10,2
$3\text{mm}\sqrt{k}$	0,9	1,3	1,6	1,9	2,1	2,3	2,5	2,7	2,8	10,2 3,0 6,0
$6\text{mm}\sqrt{k}$	1,9	2,7	3,3	3,8	4,2	4,6	5,0	5,4	5,7	6,0
$8\text{mm}\sqrt{k}$	2,5	3,6	4,4	5,1	5,7	6,2	6,7	7,2	7,6	8,0

O gráfico 2.2 mostra o efeito da refração no desnível para k= 0,13; aplicandose a equação 2.5. Confrontando-se com o gráfico 2.1 observa-se sentido contrário do efeito da refração nos desníveis.

GRÁFICO 2.2 – EFEITO DA REFRAÇÃO NO DESNÍVEL PARA k= 0,13

3 METODOLOGIA

3.1 DETERMINAÇÃO DE DESNÍVEL COM ESTAÇÃO TOTAL

Trata-se de uma adaptação da metodologia tradicional (FAGGION ET AL, 2003), utilizando-se equipamento de última geração – Estação Total - e dois bastões graduados, apoiados por bipés, posicionados na mesma altura e instalados sobre os pontos entre os quais se deseja determinar o desnível. Estes sustentarão os prismas (refletores) que farão a devolução do sinal da medida de distância entre emissor (Estação Total) e prismas. Estes servirão também como alvo para a medida do ângulo zenital.

Essas medições, ângulos zenitais e distâncias, estão referidas a mesma origem (E_c) na Estação Total: a interseção entre o eixo principal, de visada e o eixo secundário (Figura 3.1), bem como aos centros dos prismas.

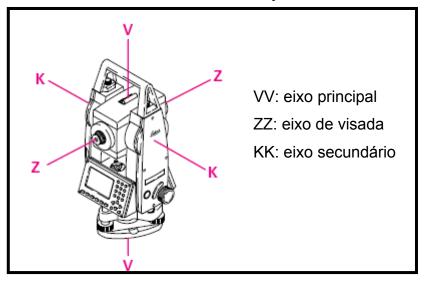


FIGURA 3.1 SISTEMA DE EIXOS DA ESTAÇÃO TOTAL

FONTE: ZEISKE (2000)

O método consiste em instalar a Estação Total em uma posição que seja possível visualizar os dois prismas posicionados em ré e vante. Atuando desta forma, será possível determinar o desnível entre os alvos sem considerar a altura dos centros dos prismas (já que os mesmos estão posicionados na mesma altura) e a altura do instrumento (uma vez que este é mantido na mesma posição para determinar o desnível de ré e de vante).

Com a Estação Total instalada equidistante dos prismas é possível também minimizar o efeito da curvatura da terra e o efeito da refração no ângulo zenital, uma vez que estes efeitos são proporcionais às distâncias.

A dedução da equação para o cálculo do desnível utilizando esta metodologia baseia-se na figura 3.2.

Sentido do nivelamento D'_B Z_{B} ΔD_{AB} D_VB D'_A h_s E_c RN B h_s H H_{PB} H_{PA} ΔH_{AB} RN A H_B 餔 $\overline{\mathsf{D}}$ D Superfície de referência

FIGURA 3.2 - NIVELAMENTO TRIGONOMÉTRICO MÉTODO DE VISADAS IGUAIS

Onde:

 E_c = ponto interseção entre os eixos da estação total. D_{VA} = distância vertical em A. D_{VB} = distância vertical em B.

h_s= altura do centro do prisma à RN (iguais, como preconiza o método).

D= distância horizontal: estação – prisma.

 ΔD_{AB} = diferença entre as distâncias verticais: D_{VB} - D_{VA}

 ΔH_{AB} = desnível da RN A para a RN B.

 D'_A e D'_B = distância inclinada de E_c para os centros dos prismas em A e B, respectivamente.

 Z_A e Z_B = angulo zenital para os centros dos prismas em A e B, respectivamente.

H_A e H_B= altitudes da RN A e RN B, respectivamente.

 H_{PA} e H_{PB} = altitudes dos centros dos prismas em A e B, respectivamente

Preliminarmente deve-se atentar que, o desnível da RN A para a RN B (ΔH_{AB}) é dado por:

$$\Delta H_{AB} = H_B - H_A \tag{3.1}$$

Assim como o desnível da RN B para a RN A (ΔH_{BA}) é dado por:

$$\Delta H_{BA} = H_A - H_B \tag{3.2}$$

Portanto:

$$\Delta H_{AB} = -\Delta H_{BA} \tag{3.3}$$

A equação 3.3 mostra que o sinal do desnível depende do sentido do caminhamento do nivelamento.

Da figura 3.2, verifica-se que a diferença entre as distâncias verticais (ΔD_{AB}) é dada por:

$$\Delta D_{AB} = D_{VB} - D_{VA} = H_{PB} - H_{PA}$$
 (3.4)

Da figura 3.2, tem-se também:

$$H_{PA} = H_A + h_p \tag{3.5}$$

$$H_{PB} = H_B + h_D \tag{3.6}$$

Substituindo as equações 3.5 e 3.6 na equação 3.4, vem:

$$\Delta D_{AB} = D_{VB} - D_{VA} = H_B + h_p - (H_A + h_p)$$
 ::
 $\Delta D_{AB} = D_{VB} - D_{VA} = H_B - H_A$ (3.7)

Substituindo a equação 3.2 na equação 3.7, finalmente tem-se:

$$\Delta H_{BA} = D_{VB} - D_{VA} \tag{3.8}$$

Onde (Figura 3.2):

$$D_{VA} = D'_{A} \cdot \cos Z_{A} \tag{3.9}$$

$$D_{VB} = D'_{B} \cdot \cos Z_{B} \tag{3.10}$$

Nas condições propostas no método, verifica-se pelas equações 3.9 e 3.10, que as únicas observações que influenciam na determinação do desnível da RN A para a RN B, são: as distâncias inclinadas D'_A e D'_B e os ângulos zenitais Z_A e Z_B .

Pode-se verificar também pela figura 3.2, que indica o sentido do nivelamento, e pela equação 3.8, que o desnível entre as RRNN (ΔH_{AB}) é dado pela distância vertical de *vante* (D_{VB}) menos a distância vertical de *ré* (D_{VA}).

3.2 PRECISÃO ESPERADA NA DETERMINAÇÃO DO DESNÍVEL (△HAB) PARA VISADAS DE IGUAL COMPRIMENTO

O desnível ΔH_{AB} é dado pela equação 3.8:

$$\Delta H_{AB} = D_{VB} - D_{VA} \tag{3.8}$$

Aplicando-se a teoria de propagação de erros aleatórios à equação 3.8, temse para o desvio padrão de ΔH_{AB} ($\sigma_{\Delta h}$):

$$\sigma_{\Delta HAB} = \sqrt{\sigma_{D_{VA}}^2 + \sigma_{D_{VB}}^2}$$
 (3.11)

Como consta no capítulo anterior, por intermédio da Tabela 2.3, para uma mesma distância, a precisão esperada para a distância vertical (D_V) pouco varia com o ângulo zenital. Portanto, para visadas de igual distância, pode-se considerar:

$$\sigma_{D_{VA}}^2 \cong \sigma_{D_{VB}}^2 \cong \sigma_D^2$$
 (3.12)

Substituíndo a equação (3.12) na equação (3.11) e simplificando a notação fazendo $\Delta H = \Delta H_{AB}$, vem:

$$\sigma_{\Delta H} = \sqrt{2\sigma_D^2}$$
 :.

$$\sigma_{\Delta H} = \sqrt{2} \sqrt{\sigma_D^2} \tag{3.13}$$

Considerando a equação 2.21, para mais de uma série de observações, obtém-se:

$$\sigma_{\Delta H} = \frac{\sqrt{2}}{\sqrt{N_s}} \sqrt{\cos^2 Z \sigma_{D'}^2 + D'^2 \operatorname{sen}^2 Z \sigma_Z^2}$$
(3.14)

3.3 DETERMINAÇÃO DO EFEITO DA REFRAÇÃO NA DISTÂNCIA MEDIDA

As variações nas condições atmosféricas alteram a velocidade de propagação das ondas eletromagnéticas e provocam, conseqüentemente, erros sistemáticos nas medidas da distância. As estações totais, em sua maioria, permitem a aplicação da correção desse erro sistemático em tempo real. A correção à distância medida pode ser obtida das seguintes maneiras (RÜEGER, 1996; FAGGION, 2001) apud (FAGGION ET AL, 2003), descritas abaixo:

- Utilizando o ábaco que acompanha o manual do equipamento. Neste caso as informações necessárias para a determinação da correção, em ppm (parte por milhão), são a temperatura e a pressão;
- Utilizando as fórmulas que acompanham o manual do equipamento. Além dos parâmetros citados no item anterior é necessária também à umidade relativa do ar;
- Utilizando as fórmulas adotadas pela UGGI (os mesmos parâmetros do item anterior);
- Utilizando as fórmulas apresentadas por RÜEGER (1996, p.80). Estas equações são recomendadas para a redução de medições obtidas em levantamentos de alta precisão.

Faggion et al. (2003) em testes realizados com um conjunto de observações de distâncias medidas sobre a base de calibração de medidores eletrônicos de distância da fazenda Cangüiri da Universidade Federal do Paraná- UFPR,

demonstra que a diferença entre os valores das correções obtidas com as fórmulas citadas anteriormente está na casa do centésimo do milímetro. A diferença só é significativa quando a correção determinada com o ábaco é comparada com o conjunto de fórmulas já citadas.

Tendo em vista este aspecto optou-se pela utilização do formulário constante no manual do equipamento (TRIMBLE ZEISS, 2001):

$$\Delta D' = 281,8 - \left[\frac{0,29065.P}{(1+\alpha.t)} - \frac{4,126.10^{-4}.h_r}{(1+\alpha.t)}.10^x \right]$$
(3.15)

Onde:

△D' = Correção das condições atmosféricas para a distância observada (ppm)

P= Pressão Atmosférica (mb)

t = Temperatura Ambiente (°C)

h_r = Umidade Relativa (%)

$$\alpha = \frac{1}{273.16}$$
; $x = \frac{7.5t}{237.3 + t} + 0.7857$

4 CALIBRAÇÃO DO CONJUNTO BASTÃO - PRISMA

Por calibração entende-se: conjunto de operações que estabelecem, em condições especificas, a correlação entre valores indicados por um instrumento de medida, ou sistema de medida, ou uma medida materializada e os verdadeiros convencionais da grandeza medida (FAGGION, 2001).

Com o objetivo de se verificar a acurácia na definição da altura do bastão graduado (Figura 4.1), foi realizada a calibração dos dois bastões utilizando-se o interferômetro a LASER, no Laboratório de Instrumentação Geodésica - LAIG, da UFPR.

FIGURA 4.1 – CONJUNTO BASTÃO-PRISMA APOIADO POR BIPÉ

4.1 SISTEMA INTERFEROMÉTRICO DISPONÍVEL NO LAIG

Em 1988, por intermédio de um convênio Brasil – Alemanha, montou-se no Curso de Pós-Graduação em Ciências Geodésicas um sistema para calibração de

miras de ínvar, utilizando-se um interferômetro a LASER para efetuar as medidas dos intervalos entre os traços gravados na fita de ínvar com precisão do mícron (FAGGION, 1993).

Esse sistema, além de calibrar miras de ínvar, também pode ser utilizado na verificação e retificação de outros equipamentos topográficos e geodésicos.

O sistema é composto de:

- 1- Emissor do LASER (light amplification by stimulated emission of radiation)(Figura 4.2): fonte de luz monocromática, muito intensa, coerente e colimada, na qual a emissão de radiação se faz pelo estímulo de um campo externo (Aurélio, 2005).
- 2- Contador e mostrador (Figura 4.2): consiste basicamente de um processador matemático que transforma a diferença de fase da onda eletromagnética em distância.

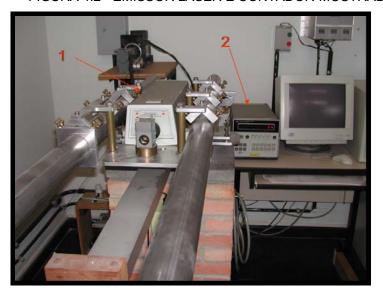


FIGURA 4.2 - EMISSOR LASER E CONTADOR-MOSTRADOR

3- Interferômetro (Figura 4.3): divide o feixe LASER em dois, desviando um para o refletor fixo e o outro para um refletor móvel, recombinando-os após a reflexão.

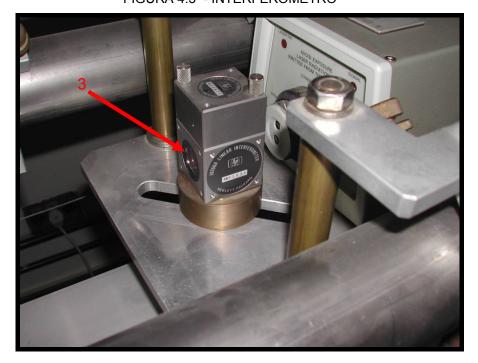


FIGURA 4.3 - INTERFERÔMETRO

- 4- Pilares (Figura 4.4): em número de 5, alinhados, afastados entre si de 1 metro e engastados na laje do piso. Sobre os pilares estão fixados os suportes dos tubos de aço.
- 5- Tubos de aço (Figura 4.4): são dois com 5 metros de comprimento e diâmetro de 6 centímetros cada um. Funcionam como trilhos para o deslocamento do carrinho.
- 6- Sistema de fixação dos tubos de aço (Figura 4.4): é constituído por peças de alumínio que possuem três parafusos calantes que permitem posicionar os tubos de aço na posição horizontal.
- 7- Suporte de apoio para os equipamentos a serem calibrados (Figura 4.4): consiste em uma barra vazada de alumínio de seção retangular apoiada sobre os pilares. Com dimensões: 5m de comprimento; 7,5cm de largura e 4cm de altura.

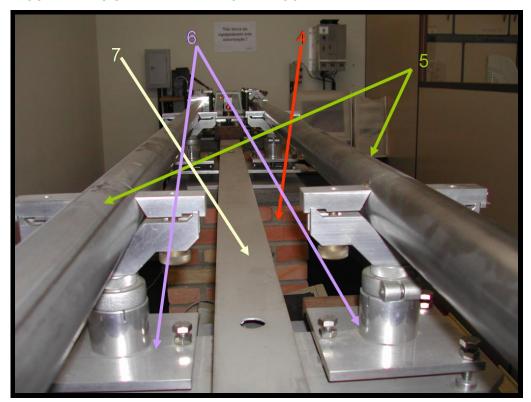


FIGURA 4.4 – SISTEMA INTERFEROMÉTRICO

8- Carrinho (Figura 4.5): apoiado em 3 rodas que se deslocam sobre os tubos de aço. No carrinho estão fixados: o refletor móvel do interferômetro, uma luneta para as pontarias e um nível de precisão para a verticalização da luneta.

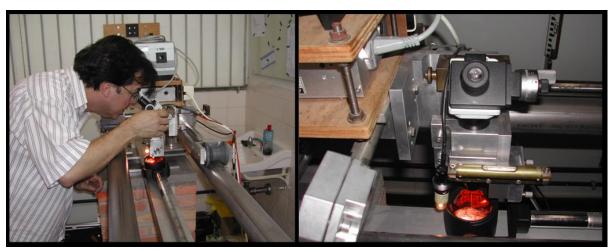


FIGURA 4.5 - CARRINHO E SEUS COMPONENTES

O interferômetro baseia-se no princípio da interferência ótica. Sua aplicação se dá na determinação de distâncias curtas com alta acurácia e na definição do metro (RÜEGER, 1996).

O primeiro interferômetro foi construído em 1880, por A. A. Michelson. Em 1889 foi realizada a primeira medida do metro utilizando uma fonte de luz. Por esse feito, Michelson recebeu o prêmio Nobel de Física (Rüeger, 1989).

Aos leitores interessados no assunto, notadamente no princípio do interferômetro, a complementação deste conteúdo pode ser encontrada em Faggion (1993).

5. EXPERIMENTOS REALIZADOS E ANÁLISE DOS RESULTADOS

5.1 RESULTADOS DA CALIBRAÇÃO

A graduação do bastão é centimétrica, variando de 1,30m a 2,10m, e é usada para a definição da altura do prisma: distância da extremidade inferior do bastão ao centro do prisma (Figura 5.1).

FIGURA 5.1 - ALTURA DO PRISMA

A calibração foi feita por amostragem, nas graduações de 1,30m, 1,70m e 2,00m. As Tabelas 5.1 e 5.2 apresentam os valores medidos em milímetros (três leituras) para cada graduação selecionada.

TABELA 5.1 - MEDIDAS DO BASTÃO 1 (em milímetros)

Marca de 2,00m		Marca	Marca de 1,70m		de 1,30m
	1999,845		1649,998		1299,885
	1999,839		1649,991		1299,884
	1999,841		1649,987		1299,883
média=	1999,842	média=	1649,992	média=	1299,884
dif. p/marca=	-0,158	dif. p/marca=	-0,008	dif. p/marca=	-0,116
desv. padrão=	0,003	desv. padrão=	0,006	desv. padrão=	0,001

TABELA 5.2 - MEDIDAS DO BASTÃO 2 (em milímetros)

Marca de 2,00m		Marca de 1	Marca de 1,70m		Marca de 1,30m	
	2000,276		1650,149		1300,013	
	2000,260		1650,157		1300,012	
	2000,265		1650,165		1300,013	
média=	2000,267	média=	1650,157	média=	1300,012	
dif. p/marca=	0,267	dif. p/marca=	0,157	dif. p/marca=	0,012	
desv. padrão=	0,008	desv. padrão=	0,008	desv. padrão=	0,001	

O maior desvio padrão é de 0,008mm, obtido das medições da marca 1,70m do Bastão 2. Os demais desvios também estão na ordem do mícron demonstrando alta precisão na obtenção dos dados.

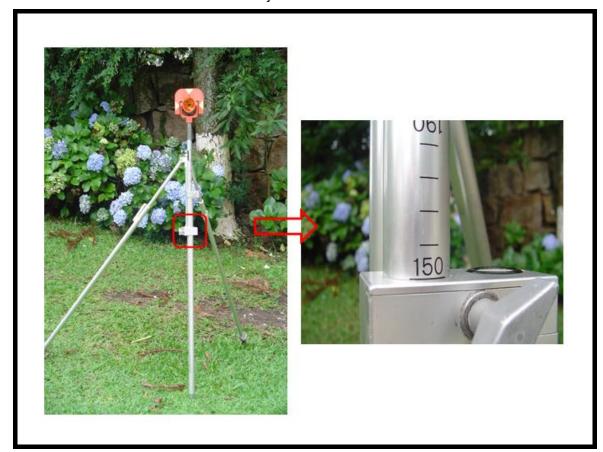
Verifica-se que a maior diferença entre a graduação definida pelo fabricante e o valor obtido pela calibração ocorreu no Bastão 2, na marca de 2 metros: essa diferença foi de 0,267mm.

Considerando apenas esse erro, excluindo-se os erros nas medidas da distância e do ângulo zenital, e considerando que a tolerância de uma seção para levantamentos de alta precisão $(3mm\sqrt{k})$ aplicada a uma distância de 8 metros é 0,268mm, verifica-se que o erro encontrado - 0,267mm - é significativo para visadas de comprimento menor do que 8 metros.

5.2 VERIFICAÇÃO DA ESPESSURA DOS TRAÇOS DO BASTÃO

O objetivo desta calibração foi verificar a influência da espessura do traço na determinação da altura do bastão.

TABELA 5.3 - EXPESSURA DOS TRAÇOS DO BASTÃO


	1,30m	σ	1,70m	σ	2,00m	σ
	0,448		0,475		0,455	
2	0,447		0,485		0,452	
3	0,447		0,489		0,453	
4	0,447		0,488		0,452	
5	0,449		0,489		0,453	
Médias	0,448	0,001	0,485	0,006	0,453	0,001
			Média dos três traços → → →			0,462 mm

A tabela 5.3 apresenta a medição da espessura dos traços do bastão, realizada por amostragem, nas graduações de 1,30m, 1,70m e 2,00m. Valores medidos em milímetros (três leituras) para cada traço selecionado.

Mais uma vez os resultados obtidos demonstram a qualidade do equipamento utilizado na realização deste experimento.

A espessura média dos traços é de 0,462 mm. Portanto, para minimizar sua influência na determinação do desnível, deve-se garantir a mesma posição no traço em cada um dos dois bastões.

Os testes realizados nesta pesquisa recomendam a utilização da borda inferior do traço, por ser mais fácil tangenciar essa borda com a base de fixação. (Figura 5.2).

FIGURA 5.2 FIXAÇÃO DA ALTURA DO BASTÃO

5.3 DEFINIÇÃO DOS LOCAIS DOS LEVANTAMENTOS

Estabeleceu-se um circuito de nivelamento no Centro Politécnico de aproximadamente 1km, composto por seis referências de nível. Três já existentes: RN-15, RN-2053D (implantada pelo IBGE) e RN-02; uma referência de nível materializada para possibilitar o fechamento do circuito: RN-PREFEITURA, e duas referências de nível materializadas para possibilitarem visadas de comprimentos iguais quando da utilização das Estações Totais: RN-CASA3 e RN-LAIG.

A figura 5.3 apresenta o circuito, bem como a posição das RRNN utilizadas no trabalho.

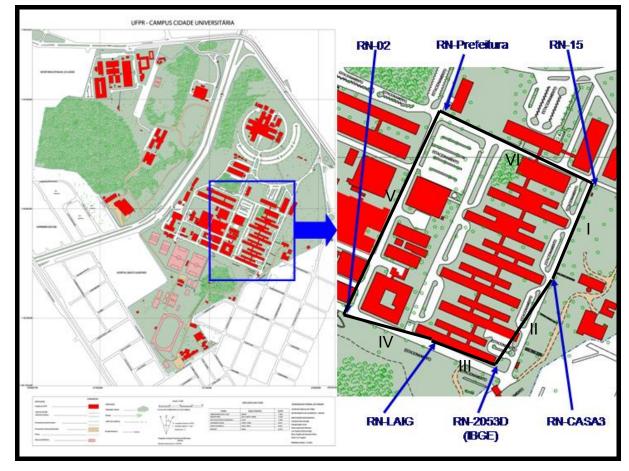


FIGURA 5.3 – LOCALIZAÇÃO DAS RRNN NO CENTRO POLITÉCNICO

Realizou-se também determinação de desníveis com Estações Totais na barragem de Salto Caxias, da COPEL, localizada no município de Capitão Leônidas Marques/PR. Esses experimentos foram realizados com o objetivo de avaliar o efeito da refração no ângulo zenital, em regiões onde a superfície é de concreto e ocorre elevada insolação.

As medições foram realizadas em referências de nível estabelecidas por um circuito de nivelamento geométrico, de precisão $1 \text{mm} \sqrt{\kappa}$, implantado pela UFPR na malha viária no entorno do reservatório de Salto Caxias, com o objetivo de avaliar a subsidência da região com a formação do reservatório

5.4 ESTAÇÕES TOTAIS UTILIZADAS NOS LEVANTAMENTOS

Na determinação dos desníveis, foram utilizadas Estações Totais (Figura 5.4) de alta, média e baixa precisão angular, segundo classificação da NBR 13333

(Tabela 5.4), pertencentes ao acervo patrimonial da UFPR, Departamento de Geomática, Curso de Pós-Graduação em Ciências Geodésicas – CPGCG.

FIGURA 5.4 ESTAÇÕES TOTAIS UTILIZADAS NOS TRABALHOS

TC 2002 ELTA S20 TC 403L

TABELA 5.4 - PRECISÃO NOMINAL DAS ESTAÇÕES TOTAIS

FABRICANTE	MODELO	PRECISÃO	PRECISÃO LINEAR	NBR-13133
LEICA	TC2002	0,5"	±(1mm + 1ppm)	precisão alta
TRIMBLE	ELTA S20	3"	± (2mm + 2ppm)	precisão média
LEICA	TC403L	10"	± (3mm + 3ppm)	precisão baixa

5.5 NIVELAMENTO GEOMÉTRICO DO CIRCUITO DO CENTRO POLITÉCNICO

Para o nivelamento geométrico utilizou-se o nível digital NA-3003 e miras com código de barras (Figura 5.5). As diferenças entre os comprimentos das visadas de ré e de vante ficaram abaixo de 1 metro. Todas as seções apresentaram fechamento melhor que $3 \text{mm} \sqrt{k}$. Buscando obedecer as recomendações do IBGE, a menor leitura da mira foi de 0,40600m e a maior de 2,43075m. Os cálculos foram realizados no programa Microsoft Excel.

A tabela 5.5 apresenta um resumo dos resultados do nivelamento geométrico.

FIGURA 5.5 – NÍVEL NA 3003, MIRA DE CÓDIGO DE BARRAS (DETALHE)

TABELA 5.5 – RESUMO DO NIVELAMENTO GEOMÉTRICO

SEÇÃO	RÉ → VANTE	DISTÂNCIA(m)	FECH. $(mm\sqrt{k})$	DESNÍVEL(m)
I	RN-15 → CASA3	131,61	2,12	2,6034
II	CASA3 → IBGE	139,18	0,38	3,5423
Ш	IBGE → LAIG	98,03	0,80	-0,2356
IV	LAIG → RN-02	122,76	1,03	-0,0999
V	RN-02 → PREFEITURA	293,97	2,64	-8,5109
VI	PREFEITURA → RN-15	220,58	0,64	2,7008

Fechamento do circuito: 0,0001m

A Tabela 5.6 apresenta as altitudes calculadas a partir da altitude da RN-2053D, que faz parte da rede altimétrica de precisão do Brasil, implantada pelo IBGE, cuja altitude é 914,3259m:

TABELA 5.6 – ALTITUDES DO CIRCUITO NIVELADO

RN	H(m)
RN-15	908,1803
RN-CASA3	910,7836
RN-IBGE	914,3259
RN-LAIG	914,0903
RN-02	913,9903
RN-PREFEITURA	905,4794

5.6 RESULTADOS OBTIDOS COM O NIVELAMENTO TRIGONOMÉTRICO

5.6.1 Método de Visadas Iguais

Visadas de comprimentos iguais, permitem minimizar os efeitos da refração e da curvatura terrestre, portanto não se fazem necessários os seus cálculos.

Além disso, conforme demonstrado no capítulo 3, o desnível é dado pela equação (3.8):

$$\Delta h_{AB} = D_{v2} - D_{v1}$$
 (3.8)

onde:
$$D_{V2} = D'_2 \cos Z_2$$
 (3.9)

$$D_{V1} = D'_1 \cdot \cos Z_1$$
 (3.10)

A correção do erro sistemático $\Delta D'$ (equação 3.15) para cada distância observada D'_1 e D'_2 , (equações 3.9 e 3.10) é determinada a partir das condições atmosféricas do local das observações. Como as condições meteorológicas são as mesmas e as distâncias medidas D'_1 e D'_2 são aproximadamente iguais com ângulos zenitais próximos a 90°, pode-se considerar que a influência dessa correção é igual para as duas distâncias observadas, portanto essa correção também não se faz necessária.

5.6.2 Resultados Obtidos com a Estação Total TC2002

Para a determinação dos desníveis as medições dos ângulos zenitais e distâncias foram realizadas em 3 séries completas (PD-PI) (Tabela 5.7).

				3	
SEÇÃO	D(m)	NG (m)	TC2002(m)	Dif. p/ NG(mm)	$mm\sqrt{k}$
I	128,691	2,6034	2,6023	-1,1	3
II	137,756	3,5423	3,5431	0,9	2
III	109,123	-0,2356	-0,2360	-0,4	1
IV	121,408	-0,0999	-0,0996	0,3	1
V	291,862	-8,5109	-8,5094	1,5	3
VI	218,055	2,7008	2,6994	1,4	3

TABELA 5.7 - DESNÍVEIS OBTIDOS COM A ESTAÇÃO TOTAL TC2002

Descrição da Tabela 5.7:

- Primeira coluna: seções conforme discriminado na Tabela 5.5.
- Segunda coluna: comprimento do lance medido com a Estação Total, distância de ré mais distância de vante.
- Terceira coluna: desníveis obtidos com nivelamento geométrico.
- Quarta coluna: desníveis obtidos com a Estação Total TC 2002.
- Quinta coluna: diferença entre os desníveis obtidos com a TC 2002 e o nivelamento geométrico.
- Sexta coluna: fechamento da seção em $mm\sqrt{k}$, tomando-se a diferença (quinta coluna) pelo comprimento do lance em quilômetros (segunda coluna),

ou seja:
$$\frac{\text{Dif.(mm)}}{\sqrt{\text{D(km)}}}$$

Comparando as diferenças entre os desníveis obtidos com a Estação Total TC 2002 e o nível digital NA 3003 (considerado padrão de referência para nosso trabalho)(Tabela 5.7). Observa-se que atendem a resolução para trabalhos de precisão .

A Tabela 5.8 apresenta a precisão esperada (em mm) para o desnível ΔH de uma seção, com a Estação Total TC 2002, conforme equação 3.14, e em comparação com as especificações para nivelamento de precisão, utilizando 3 séries de observações ($N_s = 3$).

A sexta coluna da Tabela 5.4 mostra que as diferenças dos desníveis obtidos entre a TC2002 e o nivelamento geométrico de todas as seções atendem a especificação para levantamentos de alta precisão: $3\text{mm}\sqrt{k}$, corroborando com a precisão esperada da Estação Total TC 2002 (Tabela 5.8).

D(m)	ESTAÇÃO TOTAL	ESPECIFICAÇÕES		
	TC 2002	3mm	6mm	8mm
20	0,1	0,4	0,8	1,1
40	0,1	0,6	1,2	1,6
60	0,2	0,7	1,5	2,0
80	0,2	0,8	1,7	2,3
100	0,2	0,9	1,9	2,5
120	0,2	1,0	2,1	2,8
140	0,2	1,1	2,2	3,0
160	0,2	1,2	2,4	3,2
180	0,2	1,3	2,5	3,4
200	0,2	1,3	2,7	3,6
220	0,3	1,4	2,8	3,8
240	0,3	1,5	2,9	3,9
260	0,3	1,5	3,1	4,1
280	0,3	1,6	3,2	4,2
300	0,3	1,6	3,3	4,4

Descrição da Tabela 5.8:

- Primeira coluna: distância em metros.
- Segunda coluna: precisão esperada (mm) em função da distância e do ângulo zenital no intervalo de 90° a 80°. As cores definem em qual especificação a precisão esperada se enquadra.

5.6.3 Resultados Obtidos com a Estação Total ELTA S20

Para a determinação dos desníveis as medições foram realizadas em 3 séries completas (PD-PI) (Tabela 5.9).

SEÇÃO	D(m)	NG (m)	ELTA S20	ET - NG(mm)	mm√k
1	128,691	2,6034	2,6044	1,0	3
II	137,756	3,5423	3,5433	1,1	3
III	109,123	-0,2356	-0,2357	0,0	1
IV	121,408	-0,0999	-0,1003	-0,3	1
V	291,862	-8,5109	-8,5075	3,4	6
VI	218,055	2,7008	2,6996	-1,2	3

TABELA 5.9 - DESNÍVEIS OBTIDOS COM A ESTAÇÃO TOTAL ELTA S20

Descrição da Tabela 5.9:

- Primeira coluna: seções conforme discriminado na Tabela 5.5
- Segunda coluna: comprimento do lance medido com a Estação Total, distância de ré mais distância de vante.
- Terceira coluna: desníveis obtidos com nivelamento geométrico.
- Quarta coluna: desníveis obtidos com a Estação Total ELTA S20.
- Quinta coluna: diferença entre os desníveis obtidos com a ELTA S20 e o nivelamento geométrico.
- Sexta coluna: fechamento da seção em $mm\sqrt{k}$, tomando-se a diferença (quinta coluna) pelo comprimento do lance em quilômetros (segunda coluna), ou seja: $\frac{Dif.(mm)}{\sqrt{D(km)}}$

A Tabela 5.10 apresenta a precisão esperada (em mm) para o desnível ΔH de uma seção, utilizando a Estação Total ELTA S20, em 3 séries completas de observações (N_s = 3), cálculo feito com a Equação 3.14, e as especificações do nivelamento de precisão (IBGE, 1986) para cada distância considerada.

A análise das duas últimas colunas da tabela 5.9 mostram que as diferenças dos desníveis obtidos entre a Estação Total ELTA S20 e o nivelamento geométrico estão coerentes com a precisão esperada (Tabela 5.10).

TABELA 5.10 – ELTA S20: COMPARAÇÃO ENTRE PRECISÃO ESPERADA VERSUS ESPECIFICAÇÕES DO IBGE - $N_s = 3$

D(m)	ESTAÇÃO TOTAL	ES	SPECIFICAÇ	ÕES
	ELTA S20	3mm	6mm	8mm
20	0,3	0,4	0,8	1,1
40	0,4	0,6	1,2	1,6
60	0,5	0,7	1,5	2,0
80	0,5	0,8	1,7	2,3
100	0,6	0,9	1,9	2,5
120	0,8	1,0	2,1	2,8
140	0,9	1,1	2,2	3,0
160	1,0	1,2	2,4	3,2
180	1,1	1,3	2,5	3,4
200	1,2	1,3	2,7	3,6
220	1,3	1,4	2,8	3,8
240	1,4	1,5	2,9	3,9
260	1,5	1,5	3,1	4,1
280	1,7	1,6	3,2	4,2
300	1,8	1,6	3,3	4,4

Descrição da Tabela 5.10:

- Primeira coluna: distância em metros.
- Segunda coluna: precisão esperada (mm) em função da distância e do ângulo zenital no intervalo de 90° a 80°. As cores definem em qual especificação a precisão esperada se enquadra.

A Tabela 5.10 mostra que a observação com 3 séries, limita em 240 metros a expectativa de especificação de alta precisão (3mm \sqrt{k}) para a ELTA S20, a partir desse comprimento até o limite da tabela, a expectativa passa a ser de 6mm \sqrt{k} .

5.6.4 Resultados Obtidos com a Estação Total TC403L

Para a determinação dos desníveis com este equipamento as medições foram realizadas em 6 séries completas (PD-PI). Os resultados obtidos são apresentados na Tabela 5.11.

•	SEÇÃO	D(m)	NG (m)	TC403L(m)	dif.403(mm)	$mm\sqrt{k}$	-
-	I	128,691	2,6034	2,6017	-1,7	5	-
	II	137,756	3,5423	3,5425	0,2	1	
	III	109,123	-0,2356	-0,2367	-1,1	3	
	IV	121,408	-0,0999	-0,0992	0,7	2	
	V	291,862	-8,5109	-8,5126	-1,7	3	
	VI	218,055	2,7008	2,6973	-3,5	7	

TABELA 5.11 - DESNÍVEIS OBTIDOS COM A ESTAÇÃO TOTAL TC 403L

Descrição da Tabela 5.11:

- Primeira coluna: seções conforme discriminado na Tabela 5.5.
- Segunda coluna: comprimento do lance medido com a Estação Total, distância de ré mais distância de vante.
- Terceira coluna: desníveis obtidos com nivelamento geométrico.
- Quarta coluna: desníveis obtidos com a Estação Total TC 403L.
- Quinta coluna: diferença entre os desníveis obtidos com a TC 403L e o nivelamento geométrico.
- Sexta coluna: fechamento da seção em $mm\sqrt{k}$, tomando-se a diferença (quinta coluna) pelo comprimento do lance em quilômetros (segunda coluna), ou seja: $\frac{\text{Dif.}(mm)}{\sqrt{D(km)}}$

A Tabela 5.12 apresenta a precisão esperada (em mm) para o desnível ΔH de uma seção, com a Estação Total TC 403L, conforme equação 3.14, e em comparação com as especificações para nivelamento de precisão, utilizando 6 séries completas de observações (N_s = 6). Por ser uma Estação Total de baixa precisão, o cálculo da precisão esperada indicou a necessidade de um número de séries maior, com o objetivo de obter precisão mais próxima das outras Estações utilizadas nos experimentos.

A análise das duas últimas colunas da tabela 5.11 mostram que as diferenças dos desníveis obtidos entre a TC403L e o nivelamento geométrico das seções I e VI, estão dentro do esperado (Tabela 5.12), os demais desníveis estão melhores do que a expectativa.

	ESTAÇÃO TOTAL	ES	SPECIFICAÇ	ÕES
	TC 403L	3mm	6mm	8mm
20	0,4	0,4	8,0	1,1
40	0,6	0,6	1,2	1,6
60	0,9	0,7	1,5	2,0
80	1,1	8,0	1,7	2,3
100	1,4	0,9	1,9	2,5
120	1,7	1,0	2,1	2,8
140	2,0	1,1	2,2	3,0
160	2,2	1,2	2,4	3,2
180	2,5	1,3	2,5	3,4
200	2,8	1,3	2,7	3,6
220	3,1	1,4	2,8	3,8
240	3,3	1,5	2,9	3,9
260	3,6	1,5	3,1	4,1
280	3,9	1,6	3,2	4,2
300	4,2	1,6	3,3	4,4

Observa-se na Tabela 5.12 que com seis séries completas (PD-PI) tem-se espectativa de alta precisão (3mm \sqrt{k}) até 20 metros de comprimento de seção. A partir daí, até o comprimento de 180 metros, tem-se a expectativa de precisão de áreas mais desenvolvidas (6mm \sqrt{k}). A partir de 200 metros, até o limite não determinado na tabela, a expectativa é de precisão para áreas menos desenvolvidas (8mm \sqrt{k})

5.6.5 Contra Nivelamento com a Estação Total ELTA S20

Foi realizado um contra-nivelamento com a Estação Total ELTA S20 e comparado com os resultados obtidos do nivelamento com a mesma Estação Total na Seção 5.6.3.

No contra-nivelamento não foram observadas as distâncias inclinadas (D') nem os ângulos zenitais (Z), e sim as distâncias verticais (D_v) fornecidas diretamente pelo equipamento. As distâncias verticais foram medidas em 3 séries PD-PI, para ré e para vante.

A Tabela 5.13 apresenta a comparação entre os nivelamento e contranivelamento da Estação Total ELTA S20, bem como com o nivelamento geométrico.

TABELA 5.13 – CONTRA-NIVELAMENTO COM A ESTAÇÃO TOTAL ELTA S20

SEÇÃO	NG(m)	D (m)	N	CN	N - CN	mm/K	(N+CN)/2	dif/NG	mm/K
	2,6034	128,8	2,6044	2,6042	0,0002	0,6	2,6043	0,0009	2,6
II	3,5423	137,8	3,5433	3,5424	0,0009	2,5	3,5428	0,0006	1,6
III	-0,2356	109,2	-0,2357	-0,2347	-0,0010	3,0	-0,2352	0,0005	1,4
IV	-0,0999	121,5	-0,1003	-0,1010	0,0007	2,0	-0,1006	0,0007	1,9
V	-8,5109	291,9	-8,5075	-8,5103	0,0028	5,1	-8,5089	0,0020	3,7
VI	2,7008	218,1	2,6996	2,7003	-0,0007	1,5	2,7000	0,0009	1,9

Descrição da Tabela 5.13:

- Primeira coluna: seções conforme discriminado na Tabela 5.5.
- Segunda coluna: desníveis obtidos com o nivelamento geométrico
- Terceira coluna: comprimento da seção.
- Quarta coluna: desníveis obtidos no nivelamento com a ELTA S20.
- Quinta coluna: desníveis obtidos no contra-nivelamento com a ELTA S20.
- Sexta coluna: diferença entre nivelamento e contra-nivelamento.
- Sétima coluna: fechamento entre N e CN da Seção.
- Oitava coluna: desnível médio do nivelamento e do contra-nivelamento.
- Nona coluna: diferença entre a média (oitava coluna) e o nivelamento geométrico.
- Décima coluna: fechamento do desnível médio comparado ao nivelamento geométrico.

Os fechamentos obtidos para cada seção, nivelamento e contranivelamento (sétima coluna), corroboram com a precisão esperada para o equipamento (Tabela 5.10), bem como quando se verifica o fechamento das médias do nivelamento e contra-nivelamento de cada seção (décima coluna) com o nivelamento geométrico.

5.6.6 Levantamento com Visadas de Comprimentos Desiguais

Os levantamentos foram realizados no mesmo circuito utilizando a estação Total ELTA S20 cuja precisão nominal é mais comum com as disponíveis nas empresas que desenvolvem projetos em topografia e geodésia. Como critério de observação utilizou-se 3 séries completas (Tabela 5.14). É importante salientar que a coleta dos dados ocorreu em dia nublado, o que caracteriza atmosfera em estado neutro, conforme descrito nas seções 2.7.3.3 e 2.8.3, Portanto sendo válida, para correção do efeito da refração, a equação 2.5.

$$c_r = \frac{kD^2}{2R} \tag{2.5}$$

Onde:

K = 0.13

R= 6371 km

D= distância horizontal

TABELA 5.14 - DESNÍVEIS OBTIDOS COM A ESTAÇÃO TOTAL ELTA S20 EM COMPRIMENTOS DE VISADAS DESIGUAIS

SEÇÃO	D(r)	D(v)	D(r+v)	σ_{D}	3√K	NG (m)	∆h(m)	∆h - NG	mm√k
	28,5	100,9	129,4	1,0	1,0	2,6034	2,6028	-0,6	2
II	40,7	96,7	137,4	0,9	1,1	3,5423	3,5416	-0,7	2
III	72,8	40,5	113,3	0,9	1,0	-0,2356	-0,2347	0,9	3
IV	32,0	89,2	121,2	0,9	1,0	-0,0999	-0,1007	-0,8	2
V	100,7	191,2	291,9	1,8	1,6	-8,5109	-8,5132	-2,3	4
VI	80,5	137,9	218,4	1,4	1,4	2,7008	2,7006	-0,3	1
VII	72,7	150,5	223,2	1,4	1,4	-0,3356	-0,3370	-1,4	3

Descrição da Tabela 5.14:

 Primeira coluna: seções conforme discriminado na Tabela 5.5, além de uma seção extra: VII= RN-IBGE → RN-02.

- Segunda coluna: comprimento da visada para ré.
- Terceira coluna: comprimento da visada para vante.
- Quarta coluna: comprimento total da seção: (segunda mais terceira colunas)
- Quinta coluna: precisão esperada, aplicando-se a equações 2.21 e 3.9.
- Sexta coluna: especificação para nivelamento de alta precisão (3mm \sqrt{k}).
- Sétima coluna: desníveis obtidos com nivelamento geométrico.
- Oitava coluna: desníveis obtidos com a Estação Total ELTA S20.
- Nona coluna: diferença entre os desníveis obtidos com a ELTA S20 e o nivelamento geométrico.
- Décima coluna: fechamento da seção em $mm\sqrt{k}$, tomando-se a diferença (nona coluna) pelo comprimento do lance em quilômetros (quarta coluna) (Dr+v), ou seja: $\frac{Dif.(mm)}{\sqrt{D_{ray}(km)}}$

A análise da precisão esperada (quinta coluna) com a especificação para nivelamento de alta precisão (sexta coluna), verifica-se que apenas na seção V a precisão esperada é maior que a especificação para nivelamento de alta precisão ($3\text{mm}\sqrt{k}$), justificando o fechamento da seção em $4\text{mm}\sqrt{k}$. Os resultados apresentam coerência entre as especificações e a precisão esperada da Estação Total Elta S20.

5.7 LEVANTAMENTOS REALIZADOS NA BARRAGEM DE SALTO CAXIAS.

Na rede altimétrica implantada pela UFPR em Salto Caxias, de precisão $1 \text{mm} \sqrt{\kappa}$, determinou-se o desnível com Estação Total entre as RN 50A e a RN 51 (Figura 5.6), com visadas de comprimentos diferentes, aproximadamente 470m para ré e 680m para vante, para avaliar o efeito da refração no ângulo zenital.



FIGURA 5.6 - RN-50A E RN-51 - BARRAGEM DE SALTO CAXIAS

A determinação do desnível entre as duas RRNN deu-se em duas épocas distintas:

- 17/08/2004: época de elevada insolação. Utilizou-se a Estação Total ELTAS20.
- 16/06/2005: nublado durante todo o dia. Utilizou-se a TC2002.

5.7.1 Medição do Desnível RN-50A para RN-51, no dia 17 de agosto de 2004, dia de elevada insolação

A tabelas 5.15 apresenta o desnível observado no dia 17/08/2004, utilizandose a Estação Total ELTA S20, com 3 séries de observação.

TABELA 5.15 – DESNÍVEL RN-50A PARA RN-51 CALCULADO COM K=0,13 E MODELO DE TURBULÊNCIA INSTÁVEL

ESTADO	Dr	Dv	D(r+v)	σD	NG(m)	Dh(m)	Dif p/ NG(mm)	$mm\sqrt{k}$
k= 0,13	470	680	1150	6,9	-0,0227	-0,0853	-62,6	58
INSTÁVEL	470	680	1150	6,9	-0,0227	-0,0170	-5,7	5

Descrição da Tabela 5.15:

- Segunda coluna: comprimento da visada para ré.
- Terceira coluna: comprimento da visada para vante.
- Quarta coluna: comprimento total da seção: (terceira mais quarta colunas)
- Quinta coluna: precisão esperada, aplicando-se as equações 2.21 e 3.9.
- Sexta coluna: desníveis obtidos com nivelamento geométrico.
- Sétima coluna: desníveis obtidos com a Estação Total ELTA S20.
- Oitava coluna: diferença entre os desníveis obtidos com a ELTA S20 e o nivelamento geométrico.
- Nona coluna: fechamento da seção em $mm\sqrt{k}$, tomando-se a diferença (oitava coluna) pelo comprimento do lance em quilômetros (quarta coluna)

(Dr+v), ou seja:
$$\frac{\text{Dif.(mm)}}{\sqrt{D_{r+v}(\text{km})}}$$

Na primeira linha da tabela 5.15, apresenta-se o cálculo do desnível utilizando-se k= 0,13 para determinar o efeito da refração. Observa-se uma discrepância de -62,6 mm no desnível em comparação com o nivelamento geométrico, diferindo em muito da precisão esperada de 6,9mm. Essa diferença acarreta um fechamento de $58\text{mm}\sqrt{k}$.

Os desvios padrão das séries de leituras zenitais para ré e para vante estão coerentes com a precisão nominal da estação total: 3,1" e 2,1", respectivamente, indicando boa precisão na medição dos ângulos verticais.

Outro aspecto importante a ser considerado é que o equipamento só realiza a medida da distância se houver retorno do sinal em qualquer ponto do prisma. O prima tem 60 milímetros de diâmetro, considerando o caso extremo de visada na borda inferior ou superior, o erro máximo seria de 30 milímetros. Portanto, a diferença encontrada de -62,6mm é o dobro do erro máximo supracitado. Conclui-se que a causa possível para tal diferença se deve ao efeito da refração no ângulo vertical, notadamente pelas condições meteorológicas do momento da observação, caracterizada como atmosfera em estado instável (seção 2.7.3.1).

Na segunda linha da tabela apresenta-se cálculo do desnível utilizando-se o modelo de estado de turbulência instável (equação 2.45) para determinar o efeito da refração no ângulo zenital.

$$\beta'' = D \left[0,1 \left(\frac{P}{1000} \right)^{0,286} \left(-0,027 F^{\frac{2}{3}} h^{-\frac{4}{3}} + 2,06 \frac{T}{P^{1,286}} \frac{\partial P}{\partial h} \right) + 0,0034 \right]$$
 (2.45)

As medições se deram em período de elevada insolação, conforme dados fornecidos pela estação meteorológica do SIMEPAR, na barragem de Salto Caxias, onde a radiação solar medida naquele horário foi de: R= 656w/m².

Na equação 2.45, adotou-se o gradiente médio vertical da pressão definido por Bomford (1975), dado por:

$$\frac{\partial P}{\partial h}$$
 = -0,12mb/m.

O termo F - fluxo de troca de calor entre o ar e o solo, da equação 2.45 - requer uma instrumentação bem mais elaborada que a simples medida da temperatura em função da altura. É expresso em watts por metro quadrado, depende fundamentalmente da radiação solar e da absorção de calor do solo, e é dado pela expressão 2.39.

$$F = R_s - G - E \tag{2.39}$$

onde:

F= fluxo de calor entre o ar e o solo.

R_s= radiação na superfície do solo.

G= energia transferida ao solo.

E= perda de calor devido à evaporação da água do solo.

Não sendo possível medir tal grandeza, adotou-se o valor máximo definido por Angus-Lepan (1980) apud Schaal (1995) que, para o período diurno, é de:

$$F = 450 \text{w/m}^2$$

Após o cálculo, observou-se uma diferença de 5,7mm em comparação com o nivelamento geométrico. Essa diferença acarreta um fechamento de $5\text{mm}\sqrt{k}$, coerente com precisão esperada para a ELTA S20 de 6,9mm.

As especificações de precisão para uma seção de 1150 metros, são:

 $3\text{mm}\sqrt{k}$ \rightarrow 3,2mm $6\text{mm}\sqrt{k}$ \rightarrow 6,4mm $8\text{mm}\sqrt{k}$ \rightarrow 8,6mm

Ao aplicar-se o modelo de turbulência instável, fecha-se a seção com precisão para áreas mais desenvolvidas (6mm \sqrt{k})

5.7.2 Medição do Desnível RN-50A para RN-51, no dia 16 de junho de 2005, dia nublado

A tabela 5.16 apresenta os resultados das observações do dia 16/06/2005, manhã e tarde utilizando-se a Estação Total TC2002, com 3 séries de observação PD-PI.

TABELA 5.16 - DESNÍVEL RN-50A PARA RN-51 CALCULADO COM K= 0.13

HORA	Dr	Dv	D(r+v)	σD	NG	Dif p/ NG	Dif p/ NG	$mm\sqrt{k}$
10:53	466	684	1150	1,2	-0,0227	-0,0243	-1,6	2
14:45	466	683	1149	1,2	-0,0227	-0,0221	0,6	1

Descrição da Tabela 5.16:

- Primeira coluna: Hora da observação
- Segunda coluna: comprimento da visada para ré.
- Terceira coluna: comprimento da visada para vante.
- Quarta coluna: comprimento total da seção: (terceira mais quarta colunas)
- Quinta: precisão esperada, aplicando-se as equações 2.21 e 3.9.
- Sexta coluna: desníveis obtidos com nivelamento geométrico.
- Sétima coluna: desníveis obtidos com a Estação Total ELTA S20.
- Oitava coluna: diferença entre os desníveis obtidos com a ELTA S20 e o nivelamento geométrico.

Nona coluna: fechamento da seção em $mm\sqrt{k}$, tomando-se a diferença (nona coluna) pelo comprimento do lance em quilômetros (quinta coluna) (Dr+v), ou seja: $\frac{\text{Dif.}(mm)}{\sqrt{D_{r+v}(km)}}$

As observações se deram em período nublado, característico de atmosfera no estado neutro (seções: 2.7.3.3 e 2.8.3), sendo utilizada a equação (2.5) para determinação do efeito da refração.

As determinações de desnível na parte da manhã e da tarde fecham em $2mm\sqrt{k}$ e $1mm\sqrt{k}$, respectivamente. Os resultados apresentam coerência entre a especificação para levantamentos de alta precisão e a precisão esperada da Estação Total TC 2002, calculada para o comprimento da seção.

6 CONCLUSÕES E RECOMENDAÇÕES

6.1 CONCLUSÕES

Os experimentos realizados neste trabalho demonstram, em face à metodologia adotada, a viabilidade de obtenção de desníveis de precisão com estação total, segundo as especificações e normas gerais para levantamentos geodésicos do IBGE.

Os desníveis obtidos com as estações totais de alta, média e baixa precisão, com visadas iguais, apresentam resultados compatíveis com a precisão nominal de cada estação total e o número de séries observadas, de acordo com a teoria de propagação dos erros, não ocorrendo, em nenhum dos experimentos, erro de fechamento superior a classe de $6\text{mm}\sqrt{k}$, correspondente a precisão do fechamento de uma seção para áreas mais desenvolvidas.

Nos experimentos com visadas de comprimentos desiguais na determinação de desníveis com estação total, além da determinação da curvatura terrestre (de simples solução algébrica), o efeito da refração no ângulo vertical tem que ser levado em conta. Duas situações se apresentam nos levantamentos em função das condições meteorológicas: estado neutro da atmosfera e estado instável de turbulência da atmosfera (considerando observações diurnas, mais comuns nos levantamentos). Os experimentos em condições de atmosfera neutra apresentam resultados bastante consistentes, compatíveis com os resultados obtidos para visadas de igual comprimento, verifica-se aí que a determinação do efeito da curvatura terrestre é o mais significativo para a obtenção de acurácia. Já na segunda situação a simples adoção de um índice de refração único não determina o efeito real da refração, podendo, inclusive, deteriorar o resultado. O experimento realizado em 17 de agosto de 2004, na barragem de Salto Caxias, apresenta melhor resultado ao ser utilizado um modelo de transferência de turbulência na determinação do efeito da refração no ângulo vertical.

Nos testes realizados, verificou-se que a maior influência na determinação de desníveis está na observação do ângulo zenital. A precisão nominal linear de qualquer estação total atual atende as necessidades para determinações de desníveis de precisão.

6.2 RECOMENDAÇÕES

Para obtenção de maior acurácia na fixação da altura do bastão graduado, recomenda-se tangenciar a borda inferior do traço.

Em determinações de desnível com visadas desiguais, fazer as medições em condições meteorológicas de atmosfera em estado neutro.

Fazer uma pré-análise para estabelecer o número de séries completas (PD-PI) necessárias, de acordo com a precisão nominal angular da estação total, visando a obtenção da precisão especificada e a otimização dos trabalhos de campo.

Os resultados alcançados neste trabalho, apontam para a aplicação no monitoramento tridimensional de obras.

Recomenda-se a continuidade da pesquisa para avaliar a influência da refração no ângulo vertical, aplicando-se modelos de transferência de turbulência.

APÊNDICES

1- DADOS E CÁLCULOS COM A ESTAÇÃO TOTAL TC 2002	86
2- DADOS E CÁLCULOS COM A ESTAÇÃO TOTAL ELTA S 20	88
3- DADOS E CÁLCULOS COM A ESTAÇÃO TOTAL TC 403L	90
4- DADOS E CÁLCULO DO CONTRA-NIVELAMENTO COM A ELTA S20	93
5- DADOS E CÁLCULOS COM A ESTAÇÃO TOTAL	
ELTA S20 – VISADAS DESIGUAIS	94
6- DADOS E CÁLCULOS COM A ESTAÇÃO TOTAL ELTA S20 EM	
SALTO CAXIAS – AGOSTO DE 2004	98
7- DADOS E CÁLCULOS COM A ESTAÇÃO TOTAL TC 2002 EM	
SALTO CAXIAS – JUNHO DE 2005	99
8- SIMEPAR – DADOS METEOROLÓGICOS DE SALTO CAXIAS	100
9- DADOS E CÁLCULOS DO NIVELAMENTO GEOMÉTRICO	102

ESTAÇ	ÃO TC	TAL			DATA			L	OC	AL DO L	EVA	ATA	MENT	0
TO	2002			04 a	08/12/2	005	5			Centro	Pol	itécni	СО	
						- 1								
RN	09:30	90		DE CA 3,9	AMPO 64,3790	CÁ	LCU	JLO						
	09.30	269			64,3790	90	54	7,7					Dv=	-1,0138
15	09:32				64,3790	50	07	,,,	7=	90	54	8.3	DV-	-1,0100
	00.02	269			64,3790	90	54	8.3	σ=		•	0,6		
	09:34				64,3790			-,-		64,3790		-,-		
П		269	5	47,8	64,3790	90	54	8,9						
] [
\vee	09:40	88		2,7										
		271			64,3120	88	35	5,1					Dv=	1,5885
CASA3	09:44									88	35	,		
	00.40	271			64,3120	88	35	4,3	σ=	0.4.0.4.00		0,5	_	
	09:49				64,3120	00	0.5	- 0	D'=	64,3120			Desn=	2,6023
		2/1	24	50,4	64,3120	88	35	5,2						
	11:06	91	25	35.6	68,9110									
	11.00				68,9110	91	25	36.5					Dv=	-1,7159
CASA3	11:08				68,9110	01	20	50,5	7=	91	25	36.7	DV-	-1,7 100
0, 10, 10	11.00				68,9110	91	25	36.2		0.		0,6		
	11:11				68,9110					68,9110		-,-		
					68,9110					·				
J L														
\checkmark	11:18	88	28	44,4	68,8450									
		271			68,8450	88	28	44,8					Dv=	1,8272
IBGE	11:20	88		43,1						88	28			
					68,8450	88	28	45,3	σ=			0,3		
	11:23				68,8450				D'=	68,8450			Desn=	3,5431
		271	31	12,9	68,8450	88	28	44,8						
	15.53	20	Δ۵	32 E	54,3470									
	15:55				54,3470	80	40	35 B					Dv=	0,1646
IBGE	15:57				54,3470	00	73	55,6	7=	89	49	35 1	DV-	0,1040
IDOL	15:58				54,3470	89	49	33.5		00	.0	1,4		
	16:01				54,3470		. •	00,0		54,3470		-,.		
					54,3470	89	49	36,1		, , ,				
]]				•	,			,						
\checkmark	15:38	90	4	27,9	54,7760									
	15:39	269			,	90	4	30,3					Dv=	-0,0714
LAIG	15:40	90		26,1						90	4			
	15:41				54,7760	90	4	28,3				1,5	_	
		90			54,7760			o= :	D'=	54,7760			Desn=	-0,2360
	15:45	269	55	29,6	54,7760	90	4	27,4						

ESTAÇÃO TOTAL	DATA	LOCAL DO LEVANTAMENTO
TC 2002	04 a 08/12/2005	Centro Politécnico

RN					AMPO	CÁ	LCL	JLO						
	17:46			6,9	60,6730	00	47	0.0					Б.	0.0000
1.410	47.50	270		49,2	60,6730	89	47	8,9	7_	00	47	0.0	DV=	0,2269
LAIG	17:53	89	47	4,6	60,6730	00	47	0.0	Z=	89	47	,		
	17.50	270		47,9	60,6730	89	47	8,3	σ=	60 6720		0,3		
_	17:59	89	47	6	60,6730	00	47	0.6	D'=	60,6730				
		270	12	48,8	60,6730	09	47	8,6						
1	18:03	89	52	45,4	60,7350									
	10.00	270	7	8,6	60,7350	80	52	48,4					Dv=	0,1273
02	18:09	89	52		60,7350	00	52	70,7	Z=	89	52	4 7 7	DV-	0,1270
02	10.00	270	7	8,9	60,7350	89	52	47,4		00	02	0,6		
	18:12	89		44,2	60,7350	00	02	71,7	D'=	60,7350			Desn=	-0,0996
	10.12	270	7		60,7350	89	52	47 2		00,7000			DCSII	0,0000
		2.0	•	0,0	00,7000	00	02	,_						
	13:40	88	46	2,7	145,8820									
	13:43	271		52,9	145,8820	88	46	7,4					Dv=	3,1362
02	13:45	88	46	3,5	145,8820	00	70	,,,	Z=	88	46	6,5	DV	0,1002
0=	13:45	271		51,5	145,8820	88	46	6.0	σ=	00	. 0	0,6		
	13:46	88		2,3	145,8820		. •	0,0		145,8820		0,0		
	13:47			52,1	145,8820	88	46	6,1		,				
				,	,			,						
~ >	13:26	92	6	31,6	145,9800									
	13:28	267	53	24	145,9800	92	6	33,8					Dv=	-5,3732
Prefeitura	13:31	92	6	34,2	145,9800				Z=	92	6	33,9		
	13:32	267	53	25,2	145,9800	92	6	34,5	σ=			0,6		
	13:34	92	6	32,1	145,9800				D'=	145,9800			Desn=	-8,5094
	13:35	267	53	25,4	145,9800	92	6	33,4						
	16:29	91	13	56,9	109,0440									
	16:30	268	45	56,9	109,0440	91	14	0,0					Dv=	-2,3470
Prefeitura	16:31	91	13	54,7	109,0440				Z=	91	13	59,9		
	16:32	268	45	54,7	109,0440	91	14	0,0	σ=			0,2		
	16:35	91	13	56,8	109,0440				D'=	109,0440				
П	16:34	268	45	57,6	109,0440	91	13	59,6						
ŢĹ														
\checkmark				49	109,0110									
	16:11				109,0110	89	48	57,8					Dv=	0,3524
15				51,4	109,0110					89	48			
	16:14	270			109,0110							2,6		
	16:15			49,9	109,0110				D'=	109,0110			Desn=	2,6994
	16:17	270	11	3,8	109,0110	89	48	53,0						

ESTA	ÇÃO TO	TAL	-		DATA			L	OC,	AL DO L	EV.	ANTA	MENT	0
El	TA S20)		04 a	a 08/12/2	2005	5			Centro	Pol	itécni	ico	
				1										
RN	HORA			DE CA	AMPO	CÁ	LCU	ILO						
	09:55	90	54		64,4122									
		269	5	58	64,4122	90	54	3,8	_				Dv=	-1,0129
15	10:00	90	54	4	64,4121		- 4	0.0	Z=		54	3,6		
	10.01	269	5 54		64,4123	90	54	2,9	σ= D'-	64 4400		0,6		
	10:04	90 269	54 5	6,5	64,4119 64,4123	00	51	4,1	D=	64,4122				
		209	5	50,4	04,4123	90	54	4, 1						
7	10:08	88	35	3,6	64,3468									
	10.00	271	25		64,3471	88	35	1,6					Dv=	1,5916
CASA3	10:11	88	35	3,5	64,3469			.,.	Z=	88	34	0,0		1,0010
		271	25	0,3	64,3469	88	35	1,6	σ=			0,5		
	10:13	88	35		64,3470			,	D'=	64,3970		,	Desn=	2,6044
		271	25	0,5	64,6472	88	35	1,6						
	11:30				68,9408									
		268		29	68,9406	91	25	31,3					Dv=	-1,7150
CASA3	11:33	91			68,9406				Z=	91	25	31,8		
		268			68,9406	91	25	32,2	σ=			0,5		
	11:35	91	25	33	68,9405				D'=	68,9406				
П		268	34	29	68,9405	91	25	32,0						
1	11:38	88	20	42.0	60 0000									
·	11.30	oo 271			68,8829 68,8829	00	20	112					Dv=	1,8283
IBGE	11:41	88			68,8829	00	20	44,3	Z=	88	28	11 Q	Dv-	1,0203
IDGL	11.41	271		,	68,8831	22	28	<i>1</i> 5 0		00		0,9		
	11:44	88	28	43	68,8832	00	20	75,5		68,8830			Desn=	3,5433
	11.77	271	31	14,7		88	28	44 2	D –	00,0000			DC3II-	0,0400
			٠.	,.	00,000	00		,_						
	16:20	89	49	28	54,3880									
	16:21	270	10	23	54,3879	89	49	32,5					Dv=	0,1654
IBGE	16:22	89	49	31	54,3877				Z=	89	49	32,8		
	16:23	270	10	23	54,3876	89	49	34,0	σ=			1,0		
	16:25	89	49	28	54,3880				D'=	54,3879				
П	16:27	270	10	24	54,3880	89	49	32,0						
٦Ļ	40.55			. .	=									
~	16:08	90	4	24	54,8113	00		00.0					_	0.0700
1 410	16:09	269			54,8113	90	4	23,6	-	22		04.5	Dv=	-0,0703
LAIG	16:12	90	4 55	25	54,8116	00	4	24.0	Z=	90	4	24,5		
	16:14	269			54,8115	90	4	24,9	σ= D'-	EA 044E		0,8	Dear-	0.0057
	16:16 16:18	90 269	4 55	24 34	54,8117 54,8117	00	1	25.0	= ט	54,8115			Desn=	-0,2357
	10.16	209	55	34	54,011/	90	4	25,0						

ESTAÇ	ÃO TO	IATC	_		DATA			I	OC	AL DO LI	EVA	ANTA	MENT	0
EL	TA S2	0		04	a 08/12/2	200	5			Centro	Poli	técni	СО	
RN	HORA	DAD	000		\MDO	CÁ	LCL	II ()						
IXIN		89			60,7087	CA	LCC	LO						
					60,7087	89	47	2,8					Dv=	0,2283
LAIG	17:19	89		2,6	60,7086				Z=	89	47	4,2		
		270	12	53,9	60,7086	89	47	4,3	σ=			1,4		
	17:26	89	47	3	60,7086				D'=	60,7086				
П		270	12	52	60,7086	89	47	5,5						
~ >	17:30	89	52	44,8	60,7680									
		270	7	14,8	60,7679	89	52	45,0					Dv=	0,1281
02	17:33	89	52	43	60,7677				Z=	89	52	45,3		
		270	7		60,7678	89	52	45,4	σ=			0,3		
	17:40	89			60,7681				D'=	60,7679			Desn=	-0,1003
		270	7	14,4	60,7679	89	52	45,5						
	12:23	88	46	8 Q	145,9045									
					145,9045	88	46	10 7					Dv=	3,1335
	12:27	88			145,9050	00	70	10,7	Z=	88	46	9,9	DV-	0,1000
02					145,9048	88	46	9,9		00		0,8		
	12:28	88		6,5	145,9048			0,0		145,9047		0,0		
					145,9048			9,2		-,				
П														
ŢĹ														
\checkmark	11:55	92			146,0269									
		267			146,0270	92	6	31,1	_		_		Dv=	-5,3741
D (''	12:05	92	6		146,0271	00	•	00.5	Z=	92	6	32,6		
Prefeitura	40.45	267			146,0273	92	6	32,5		440.0074		1,6	D	0 5075
	12:15	92	6 53		146,0270	02	6	24.2	= ט	146,0271			Desn=	-8,5075
		267	55	23	146,0272	92	O	34,3						
	15:45	91	13	57.3	109,1137									
	15:47				109,1139	91	13	57,1					Dv=	-2,3468
					109,1136			- ,	Z=	91	13	56,6		,
Prefeitura	15:52				109,1139	91	13	57,6	σ=			1,2		
	15:54	91	13	55,6	109,1137				D'=	109,1138				
	14:00	268	46	5,2	109,1139	91	13	55,2						
П														
٦Ļ	45.00	00	40	F0 7	400.0400									
~					109,0469	00	40	52.2					D	0.2520
	15:35 15:37	89		6,4 55	109,0469 109,0470	09	4ŏ	ეე,∠	7-	89	ΛQ	52.6	D۷≃	0,3529
15	15:39			9	109,0470	გი	4 8	53 N		09	40	0,9		
10		89		51	109,0473	09		55,0		109,0471		0,5	Desn=	2,6996
	15:42				109,0472			51,5	_	,			_ 55//	_,0000
		-		, -	, -	-	-	, -						

ESTA	ĄÇÃO T	ATC	_		DAT	Α			LO	CAL DO	LE	VAN	TAMEN	TO
	TC 403L	-		C	04 a 08/1	2/20	005			Centr	o P	olitéc	nico	
RN	HORA	DAD	200	DE (CAMPO	CÁ	LCU	II ()						
IXIN	08:40	90	54		64,3790		LCC	LO						
	00.40	269	5	56		00	EΛ	11,0					Dv=	-1,0149
	08:43	90	5 54	20	64,3790 64,3790	90	54	11,0	Z=	00	E1	11,7	Dv-	-1,0149
	00.43	269	5	56	64,3790	00	5 1	12,0	σ=	90	54	0,8		
	08:45	90	54	19	64,3790	90	54	12,0	D'=	64,3788		0,0		
15	00.45	269	5	55	64,3780	90	54	12,0	D –	04,3700				
15	08:50	90	54	19	64,3790	90	54	12,0						
	00.50	269	5	57	64,3790	QΛ	54	11,0						
	08:53	90	54	21	64,3780	30	J +	11,0						
	00.55	269	5	55	64,3790	٩n	54	13,0						
	08:58	90	54	19	64,3790	50	5 4	10,0						
	00.00	269	5	56	64,3780	90	54	11,5						
4	09:00	88	35	15	64,3110	00	0-1	11,0						
	00.00	271	24	52	64,3110	88	35	11,5					Dv=	1,5868
	09:08	88		15	64,3120	00	00	, 0	Z=	88	35	10,3	٥,	1,0000
		271	24	57	64,3110	88	35	9,0	_ σ=			0,8		
	09:12	88		15	64,3130			-,-	D'=	64,3113		-,-		
CASA3	••••	271		55	64,3110	88	35	10,0		.,			Desn=	2,6017
	09:17	88		19	64,3110			-,-						,
		271	24	59	64,3110	88	35	10,0						
	09:19	88	35	17	64,3110			,						
		271	24	56	64,3110	88	35	10,5						
	09:21	88	35	19	64,3120									
		271	24	58	64,3110	88	35	10,5						
	10.34	91	25	46	68,9080									
		268	34		68,9080	91	25	39,0					Dv=	-1,7165
	10.36	91	25		68,9080			•	Z=	91	25	38,5		,
		268	34		68,9080	91	25	38,0	σ=			0,9		
	10.37	91	25		68,9080			•	D'=	68,9078		,		
CASA3		268			68,9070	91	25	39,0		,				
	10.39							-						

	08:40	90	54	18	64,3790									
		269	5	56	64,3790	90	54	11,0					Dv=	-1,0149
	08:43	90	54	20	64,3790				Z=	90	54	11,7		
		269	5	56	64,3790	90	54	12,0	σ=			0,8		
	08:45	90	54	19	64,3790				D'=	64,3788				
15		269	5	55	64,3780	90	54	12,0		,				
	08:50	90	54	19	64,3790			,						
		269	5	57	64,3790	90	54	11,0						
	08:53	90	54	21	64,3780			,						
		269	5	55		90	54	13,0						
	08:58	90	54	19	64,3790			- , -						
		269	5	56	64,3780	90	54	11,5						
47	09:00	88	35	15	64,3110			, -						
		271	24	52	64,3110	88	35	11,5					Dv=	1,5868
	09:08	88	35	15	64,3120			, -	Z=	88	35	10,3		1,0000
		271	24	57		88	35	9,0				0,8		
	09:12	88	35	15	64,3130			0,0		64,3113		0,0		
CASA3		271	24			88	35	10,0	_	0 1,0 1 10			Desn=	2,6017
0, 10, 10	09:17	88	35	19	64,3110	00	00	. 0,0					200	2,0011
	00.11	271	24	59	64,3110	88	35	10,0						
	09:19	88	35	17	64,3110	00	00	. 0,0						
	00.10	271	24	56	64,3110	88	35	10,5						
	09:21	88	35	19	64,3120	00	00	. 0,0						
	00.2	271		58		88	35	10,5						
			- '		0 1,0 1 10	00	00	. 0,0						
	10.34	91	25	46	68,9080									
		268	34			91	25	39,0					Dv=	-1,7165
	10.36	91	25	46	68,9080	•		00,0	Z=	91	25	38,5		.,
		268	34	30		91	25	38,0	σ=			0,9		
	10.37	91	25	48	68,9080		_	,-	D'=	68,9078		-,-		
CASA3		268	34	30	68,9070	91	25	39,0		,				
	10.39	91		46	68,9080	_		, -						
		268	34		68,9080	91	25	38,5						
	10.42	91		43	68,9080			, -						
		268				91	25	37,0						
	10.45	91		45	68,9070			,						
		268		26		91	25	39,5						
₹ <u>`</u>	10:48	88	28	53	68,8470			,						
		271	31	17	68,8470	88	28	48,0					Dv=	1,8260
	10:50	88	28	56	68,8470				Z=	88	28	48,6		
		271	31	19		88	28	48,5	σ=			0,8		
	10:52	88	28	56	68,8470				D'=	68,8470				
IBGE		271	31	21	68,8470	88	28	47,5					Desn=	3,5425
	10:55	88	28	58	68,8470			,						·
		271	31	19	68,8470	88	28	49,5						
	10:58	88	29	0	68,8470			•						
		271	31	21	68,8470	88	28	49,5						
	11:00	88	29	0	68,8470			-						
		271		23		88	28	48,5						

91

ESTAÇÃO TOTAL					DATA				LOCAL DO LEVANTAMENTO							
TC 403L					04 a 08/12/2005				Centro Politécnico							
RN					CAMPO	CÁLCI		ILO								
	16:58	89	49		54,3490								_			
	16:59	270		25	54,3490	89	49	43,5	_				Dv=	0,1629		
	16:59	89		49	54,3490				Z=	89	49	41,8				
	17:01	270		22	54,3490	89	49	43,5	σ=			1,6				
	17:02	89		49	54,3490				D'=	54,3488						
IBGE	17:04	270		25		89	49	42,0								
	17:05	89		53	54,3490			40.0								
	17:06	270		29	54,3480	89	49	42,0								
	17:08	89		44	54,3480			40 =								
	17:10	270		23	54,3490	89	49	40,5								
	17:10	89		44	54,3490	00	40	00.5								
4,	17:12	270	10	25	54,3490	89	49	39,5								
·	16:35	90	4	45	54,7750	00	4	20.0					D	0.0720		
	16:36	269		27	54,7760	90	4	39,0	7-	00	4	20.0	Dv=	-0,0738		
	16:38	90	4 55	46	54,7760	00	1	20 E	Z=	90	4	38,0				
	16:40	269 90	55 4	27 45	54,7760	90	4	39,5	σ= D'-	E		2				
LAIG	16:41 16:42	269	4 55	45 27	54,7760	00	1	39,0	D'=	54,7757			Doon-	0 2267		
LAIG	16:42	90	4	27 45	54,7760 54,7760	90	4	39,0					Desn=	-0,2367		
	16:46	269	55	26		90	1	39,5								
	16:48	90	4	44	54,7760 54,7760	90	4	39,3								
	16:52	269	55	31	54,7750	90	1	36,5								
	16:55	90	4	39	54,7750	90	4	30,3								
	16:57	269		30	54,7750	90	1	34,5								
	10.57	203	55	30	J 4 ,7750	30	_	J T ,J								
	16:34	89	47	19	60,6740											
		270	12	44	60,6730	89	47	17,5					Dv=	0,2251		
	16:37	89	47	16	60,6740				Z=	89	47	14,8				
		270	12	53	60,6740	89	47	11,5	σ=			2,1				
	16:40	89	47	22	60,6730				D'=	60,6738						
LAIG		270			60,6740	89	47	13,5								
	16:43	89			60,6740											
			12			89	47	15,0								
	16:45	89	47		60,6740											
		270	12		60,6740	89	47	15,0								
П	16:48	89		22	60,6740											
٦Ļ		270		49		89	47	16,5								
~	16:50	89	53	1	60,7340								_			
		270	7	11		89	52	55,0	_				Dv=	0,1259		
	16:53	89	53	1	60,7340	00		50 5	Z=	89	52	52,6				
	40.55	270	7	16	60,7340	89	52	52,5	σ=	00 7000		1,8				
00	16:55	89	52	59	60,7340	00		50.0	D'=	60,7339			D	0.0000		
02	46.57	270	7	13	60,7340	89	52	53,0					Desn=	-0,0992		
	16:57	89 270		56 11	60,7340	00	5 0	50 F								
	16.50	270	7 52	11 55	60,7330	оя	52	52,5								
	16:59	89 270	52 7	55 9	60,7340 60,7340	ഉറ	52	53 N								
	17:01	89		9 55	60,7340	OS	IJΖ	55,0								
	17.01	270	7	16	60,7340	ga	52	49 5								
		210	'	.0	50,7040	55	02	70,0								

ESTAÇÃO TOTAL				DATA				LOCAL DO LEVANTAMENTO							
TC 403L			04 a 08/12/2005												
RN	HORA	DAD			CAMPO	CÁ	LCL	JLO							
	12:37	88		19	145,8980										
	12:39	271	14	1	145,8980	88	46	9,0					Dv=	3,1337	
	12:41	88	46	16	145,8980				Z=	88	46	9,3			
	12:42	271	14	2	145,8980	88	46	7,0	σ=			3,2			
	12:46	88	46		145,8980				D'=	145,8978					
02	12:48	271		50	145,8980	88	46	14,5							
	12:49	88			145,8980										
	12:51	271		50	145,8970	88	46	11,0							
	12:52	88	46		145,8980										
	12:54	271	14	2	145,8970	88	46	9,0							
П	12:56	88	46		145,8980										
ŢĻ	12:58	271	14	0	145,8980	88	46	5,5							
~	12:59	92	6	48	145,9630								_		
	13:03	267		22	145,9630	92	6	43,0	_				Dv=	-5,3789	
	13:06	92	6	44	145,9620				Z=	92	6	42,8			
	13:07	267		22	145,9630	92	6	41,0	σ=			1,5			
	13:08	92	6	47	145,9640		_		D'=	145,9629			_		
Prefeitura	13:10	267			145,9630	92	6	44,0					Desn=	-8,5126	
	13:13	92	6	50	145,9630		_	40 =							
	13:14	267			145,9630	92	6	42,5							
	13:16	92	6	45	145,9630		_	44.5							
	13:18	267		22	145,9620	92	6	41,5							
	13:19	92	6	50	145,9630	00	_	45.0							
	13:21	267	53	20	145,9630	92	6	45,0							
	15:10	91	14	7	109,0820										
	15:09	268	46	10	109,0820	91	13	58,9					Dv=	-2,3489	
	15:13	91	14	7	109,0830				Z=	91	14	1,9			
	15:11	268	46	3	109,0820	91	14	2,4	σ=			1,9			
	15:15	91	14	9	109,0830				D'=	109,0828					
Prefeitura	15:14	268	46	5	109,0830	91	14	2,4							
	15:17	91	14	9	109,0840										
	15:16	268	46	4	109,0830	91	14	2,9							
	15:21	91	14	9	109,0830										
	15:20	268	46	9	109,0830	91	14	0,4							
П	15:24	91	14	9	109,0830										
] [15:22	268	46	1	109,0830	91	14	4,4							
\checkmark	14:45	89	49	9	109,0080										
		270	11	8	109,0080	89	49	0,5					Dv=	0,3484	
	14:50	89	49	13	109,0060				Z=	89	49	0,7			
	14:51	270	11	7	109,0070	89	49	3,0	σ=			2,4			
	14:55	89	49	11	109,0080				D'=	109,0077					
15	14:57	270	11	5	109,0080	89	49	3,0					Desn=	2,6973	
	14:58	89	49	9	109,0080										
	14:59	270	11	6	109,0070	89	49	1,5							
	15:01	89	49	6	109,0080										
	15:02	270	11	6	109,0080	89	49	0,0							
	15:03	89	49	5	109,0080										
	15:04	270	11	12	109,0080	89	48	56,5							

ESTAÇÃO TOTAL	DATA	LOCAL DO LEVANTAMENTO
ELTA S20	29/12/2005	Centro Politécnico

CONTRA-NIVELAMENTO

HORA 15:38 15:44 15:46	RN- PD -1,0379 -1,0376 -1,0379	PI -1,0411 -1,0411 -1,0407 Dv=	-1,0395 -1,0393 -1,0393 -1,0394	HORA 15:51 15:52 15:55	CASA PD 1,5650 1,5653 1,5656	PI 1,5643 1,5646 1,5640 Dv= ΔH=	1,5646 1,5650 1,5648 1,5648 2,6042
	CAS				IBGE		
HORA	PD	PI	4 0004	HORA	PD	PI	4.0500
16:12 16:14	-1,6876 1,6873	-1,6887 1,6887	-1,6881 1,6880	16:18 16:19	1,8539	1,8539	1,8539
16:14	-1,6873 -1,6876	-1,6887 -1,6886	-1,6880 -1,6881	16:19	1,8546 1,8546	1,8542 1,8546	1,8544 1,8546
10.10	.,007.0	Dv=	-1,6881	10.21	1,0010	Dv=	1,8543
						$\Delta H=$	3,5424
	IBG	βE			LAIG	}	
HORA	PD	PI		HORA	PD	PI	
16:39	0,1933	0,1941	0,1937	16:44	-0,0405	-0,0413	-0,0409
16:40 16:42	0,1936 0,1936	0,1936 0,1941	0,1936 0,1938	16:46 16:48	-0,0407 -0,0405	-0,0413 -0,0415	-0,0410 -0,0410
10.42	0,1930	0,1941 Dv=	0,1937	10.40	-0,0403	-0,0413 Dv=	-0,0410
			-,			$\Delta H=$	-0,2347
	LAI	G			RN-0	2	
HORA	LAI PD	G Pl		HORA	RN-0 PD	2 Pl	
17:11	PD 0,4129	PI 0,4129	0,4129	17:16	PD 0,3110	PI 0,3125	0,3118
17:11 17:13	PD 0,4129 0,4129	PI 0,4129 0,4126	0,4127	17:16 17:17	PD 0,3110 0,3110	PI 0,3125 0,3125	0,3118
17:11	PD 0,4129	PI 0,4129 0,4126 0,4126	0,4127 0,4127	17:16	PD 0,3110	PI 0,3125 0,3125 0,3125	0,3118 0,3119
17:11 17:13	PD 0,4129 0,4129	PI 0,4129 0,4126	0,4127	17:16 17:17	PD 0,3110 0,3110	PI 0,3125 0,3125	0,3118
17:11 17:13	PD 0,4129 0,4129 0,4129	PI 0,4129 0,4126 0,4126 Dv=	0,4127 0,4127	17:16 17:17	PD 0,3110 0,3110 0,3113	PI 0,3125 0,3125 0,3125 Dv= ΔH=	0,3118 0,3119 0,3118
17:11 17:13	PD 0,4129 0,4129	PI 0,4129 0,4126 0,4126 Dv=	0,4127 0,4127	17:16 17:17	PD 0,3110 0,3110	PI 0,3125 0,3125 0,3125 Dv= ΔH=	0,3118 0,3119 0,3118
17:11 17:13 17:14	PD 0,4129 0,4129 0,4129 RN-	PI 0,4129 0,4126 0,4126 Dv=	0,4127 0,4127	17:16 17:17 17:19	PD 0,3110 0,3110 0,3113 Prefeit	PI 0,3125 0,3125 0,3125 Dv= ΔH=	0,3118 0,3119 0,3118
17:11 17:13 17:14 HORA 17:38 17:39	PD 0,4129 0,4129 0,4129 RN- PD 1,5137 1,5140	PI 0,4129 0,4126 0,4126 Dv= 02 PI 1,5136 1,5135	0,4127 0,4127 0,4128 1,5137 1,5138	17:16 17:17 17:19 HORA 17:47 17:49	PD 0,3110 0,3113 0,3113 Prefeite PD -6,9966 -6,9967	PI 0,3125 0,3125 0,3125 Dv= ΔH= ura PI -6,9968 -6,9973	0,3118 0,3119 0,3118 -0,1009 -6,9967 -6,9970
17:11 17:13 17:14 HORA 17:38	PD 0,4129 0,4129 0,4129 RN- PD 1,5137	PI 0,4129 0,4126 0,4126 Dv= 02 PI 1,5136 1,5135 1,5127	0,4127 0,4127 0,4128 1,5137 1,5138 1,5131	17:16 17:17 17:19 HORA 17:47	PD 0,3110 0,3110 0,3113 Prefeite PD -6,9966	PI 0,3125 0,3125 0,3125 Dv= ΔH= ura PI -6,9968 -6,9973 -6,9970	0,3118 0,3119 0,3118 -0,1009 -6,9967 -6,9967
17:11 17:13 17:14 HORA 17:38 17:39	PD 0,4129 0,4129 0,4129 RN- PD 1,5137 1,5140	PI 0,4129 0,4126 0,4126 Dv= 02 PI 1,5136 1,5135	0,4127 0,4127 0,4128 1,5137 1,5138	17:16 17:17 17:19 HORA 17:47 17:49	PD 0,3110 0,3113 0,3113 Prefeite PD -6,9966 -6,9967	PI 0,3125 0,3125 0,3125 Dv= ΔH= ura PI -6,9968 -6,9973	0,3118 0,3119 0,3118 -0,1009 -6,9967 -6,9970
17:11 17:13 17:14 HORA 17:38 17:39	PD 0,4129 0,4129 0,4129 RN- PD 1,5137 1,5140 1,5135	PI 0,4129 0,4126 0,4126 Dv= 02 PI 1,5136 1,5135 1,5127 Dv=	0,4127 0,4127 0,4128 1,5137 1,5138 1,5131	17:16 17:17 17:19 HORA 17:47 17:49	PD 0,3110 0,3113 0,3113 Prefeite PD -6,9966 -6,9967 -6,9963	PI 0,3125 0,3125 0,3125 Dv= ΔH= ura PI -6,9968 -6,9973 -6,9970 Dv= ΔH=	0,3118 0,3119 0,3118 -0,1009 -6,9967 -6,9967 -6,9968
17:11 17:13 17:14 HORA 17:38 17:39 17:40	PD 0,4129 0,4129 0,4129 RN- PD 1,5137 1,5140 1,5135	PI 0,4129 0,4126 0,4126 Dv= 02 PI 1,5136 1,5135 1,5127 Dv=	0,4127 0,4127 0,4128 1,5137 1,5138 1,5131	17:16 17:17 17:19 HORA 17:47 17:49 17:50	PD 0,3110 0,3113 0,3113 Prefeite PD -6,9966 -6,9967 -6,9963	PI 0,3125 0,3125 0,3125 Dv= ΔH= ura PI -6,9968 -6,9973 -6,9970 Dv= ΔH=	0,3118 0,3119 0,3118 -0,1009 -6,9967 -6,9967 -6,9968
17:11 17:13 17:14 HORA 17:38 17:39 17:40	PD 0,4129 0,4129 0,4129 RN- PD 1,5137 1,5140 1,5135 Prefei	PI 0,4129 0,4126 0,4126 Dv= 02 PI 1,5136 1,5135 1,5127 Dv=	0,4127 0,4127 0,4128 1,5137 1,5138 1,5131 1,5135	17:16 17:17 17:19 HORA 17:47 17:49 17:50	PD 0,3110 0,3113 0,3113 Prefeite PD -6,9966 -6,9967 -6,9963 RN-1	PI 0,3125 0,3125 0,3125 Dv= ΔH= ura PI -6,9968 -6,9973 -6,9970 Dv= ΔH=	0,3118 0,3119 0,3118 -0,1009 -6,9967 -6,9967 -6,9968 -8,5103
17:11 17:13 17:14 HORA 17:38 17:39 17:40	PD 0,4129 0,4129 0,4129 RN- PD 1,5137 1,5140 1,5135	PI 0,4129 0,4126 0,4126 Dv= 02 PI 1,5136 1,5135 1,5127 Dv=	0,4127 0,4127 0,4128 1,5137 1,5138 1,5131	17:16 17:17 17:19 HORA 17:47 17:49 17:50	PD 0,3110 0,3113 0,3113 Prefeite PD -6,9966 -6,9967 -6,9963	PI 0,3125 0,3125 0,3125 Dv= ΔH= ura PI -6,9968 -6,9973 -6,9970 Dv= ΔH=	0,3118 0,3119 0,3118 -0,1009 -6,9967 -6,9967 -6,9968
17:11 17:13 17:14 HORA 17:38 17:39 17:40 HORA 18:08	PD 0,4129 0,4129 0,4129 RN- PD 1,5137 1,5140 1,5135 Prefei PD -3,8062	PI 0,4129 0,4126 0,4126 Dv= 02 PI 1,5136 1,5135 1,5127 Dv= itura PI -3,8078 -3,8085 -3,8073	0,4127 0,4127 0,4128 1,5137 1,5138 1,5131 1,5135 -3,8070 -3,8074 -3,8074	17:16 17:17 17:19 HORA 17:47 17:49 17:50	PD 0,3110 0,3113 Prefeite PD -6,9966 -6,9967 -6,9963 RN-1 PD -1,1069	PI 0,3125 0,3125 0,3125 Dv= ΔH= ura PI -6,9968 -6,9973 -6,9970 Dv= ΔH= 5 PI -1,1067 -1,1064 -1,1065	0,3118 0,3119 0,3118 -0,1009 -6,9967 -6,9967 -6,9968 -8,5103 -1,1068 -1,1074 -1,1068
17:11 17:13 17:14 HORA 17:38 17:39 17:40 HORA 18:08 18:08	PD 0,4129 0,4129 0,4129 RN- PD 1,5137 1,5140 1,5135 Prefei PD -3,8062 -3,8063	PI 0,4129 0,4126 0,4126 Dv= 02 PI 1,5136 1,5135 1,5127 Dv= itura PI -3,8078 -3,8085	0,4127 0,4127 0,4128 1,5137 1,5138 1,5131 1,5135 -3,8070 -3,8074	17:16 17:17 17:19 HORA 17:47 17:49 17:50 HORA 18:14 18:15	PD 0,3110 0,3113 Prefeite PD -6,9966 -6,9967 -6,9963 RN-1 PD -1,1069 -1,1084	PI 0,3125 0,3125 0,3125 Dv= ΔH= ura PI -6,9968 -6,9973 -6,9970 Dv= ΔH= 5 PI -1,1067 -1,1064	0,3118 0,3119 0,3118 -0,1009 -6,9967 -6,9968 -8,5103 -1,1068 -1,1074

EXPERIMENTO COM VISADAS DESIGUAIS

ESTA	ÇÃO T	ОТА	L		DATA		LOCAL DO LEVANTAMENTO				NTAMENTO	
	ELTA S				26/12/200					Centro F		
RN	HORA	DAD	OS	DF	CAMPO							
	16:25				28,5190	90						
					28,5190		25	46,5				
15	16:26				28,5200			10,0	7=	90	25	45.8
10	16:27				28,5200		25	46 N		00	20	0,8
	16:28	90			28,5190			40,0		28,5193		0,0
	16:29				28,5190			45,0	D –	20,0100		
	10.23	200	04	10	20,5150	50	20	40,0				
₹,	16:31	22	38	30	100,9080	80						
	16:32				100,9080		38	38 N				
CASA3		88			100,9080		30	30,0	7-	88	38	38.2
CAGAS	16:34				100,9080		38	38.5		00	30	0,3
		88			100,9080			30,3		100,9080		0,5
	16:36				100,9080				D –	100,9000		
	10.30	2/ 1	۷ ۱	21	100,9060	00	30	30,0				
	16:50	01	20	11	40,6520	02						
							20	42 E				
CACAC					40,6520		30	42,5	7_	04	20	40.0
CASA3		91			40,6520		20	42.0		91	30	
	16:54				40,6520					40.0500		0,3
	16:55	91			40,6520			40.0	=יט	40,6520		
П	16:56	268	29	17	40,6520	91	30	42,0				
47	40.50	00	20	4.4	00 7000	00						
•	16:58	88			96,7020	89	00	440				
IDOE	16:59				96,7020		32	14,0	7	00	00	40.7
IBGE		88			96,7020	89	20	40.5		88	32	
	17:01				96,7020		32	13,5		00 7047		0,3
	17:01	88				89	00	40.5	D.=	96,7017		
	17:02	2/1	27	46	96,7010	88	32	13,5				
	47.45	00	40	2	70 7000	00						
					72,7830	90	40	2.5				
IDOE					72,7840		42	3,5	7	00	40	0.5
IBGE					72,7830	90	40	٥.	Z=	89	42	3,5
	17:20				72,7830		42	3,5	σ=	70 7000		0
	17:21	89	42		72,7830	90			D'=	72,7832		
П	17:21	270	17	56	72,7830	89	42	3,5				
۲ ٦	47.00	0.0	4-	<u> </u>	40 4=00							
~	17:23	89			40,4560	90		00-				
	17:24				40,4560		47	38,0	_			
LAIG					40,4560	90			<u>Z</u> =	89	47	38,7
							47	39,0				0,6
	17:27	89			40,4560	90			D'=	40,4562		
	17:28	270	12	20	40,4570	89	47	39,0				

EXPERIMENTO COM VISADAS DESIGUAIS

ESTAÇÃO TOTAL	DATA	LOCAL DO LEVANTAMENTO
ELTA S20	26/12/2005	Centro Politécnico

RN					CAMPO							
	17:44	90	2		32,0290	90	_					
	17:44				32,0290	90	2	25,0	_		_	o =
LAIG	17:46	90	2		32,0290	90	_	05.0		90	2	24,7
	17:46				32,0290	90	2	25,0		00 0000		0,6
	17:47	90	2		32,0290	90	_	04.0	D.=	32,0290		
П	17:47	269	57	38	32,0290	90	2	24,0				
1	17:40	00	1	46	00 2170	00						
•	17:48 17:50	90 269	4 55		89,2170 89,2170	90 90	1	45,5				
02	17:51	90	4	47		90	4	45,5	7-	90	4	45,8
02	17:52				89,2170	90	1	46,0	σ=	90	4	0,3
	17:53	90	4		89,2170	90	4	40,0	_	89,2168		0,3
	17:54				89,2170	90	1	46,0	D –	09,2100		
	17.54	209	55	14	09,2170	90	4	40,0				
	18:06	88	58	39	100,6850	89						
	18:08	271	1	25	100,6850		58	37,0				
02	18:08	88		38	100,6850		00	01,0	7=	88	58	36,7
02	18:09	271	1	25	100,6850		58	36.5		00	00	0,3
	18:10	88		39	100,6850		00	00,0		100,6848		0,0
	18:11	271	1	26	100,6840		58	36,5		100,0010		
	10.11		•		100,0010	00	00	00,0				
47	18:15	92	0	44	191,2420	92						
	18:17	267		10	191,2410	92	0	47,0				
Prefeitura	18:19	92	0	45	191,2420	92	•	11,0	7=	92	0	46,7
rioloitara	18:21	267		11	191,2420	92	0	47,0	σ=	02	•	0,6
	18:22	92	0		191,2410		Ū	,0	_	191,2417		0,0
	18:23				191,2420		0	46,0	_	,		
				-	,	-	·	, .				
	15:35	91	18	47	80,4880	91						
	15:37	268	41	7	80,4880	91	18	50,0				
Prefeitura	15:55	91	18	45	80,4880	91			Z=	91	18	49,8
	15:57	268		7	80,4880	91	18	49,0	σ=			0,8
	16:00	91	18	46	80,4870	91			D'=	80,4877		
П	16:02	268			80,4870	91	18	50,5				
\checkmark	16:05	89	38	43	137,9600	90						
	16:06	270	21	18	137,9600	89	38	42,5				
15	16:11	89		41	137,9600	90			Z=	89	38	42,7
	16:12	270	21	15	137,9600		38	43,0	σ=			0,3
	16:16	89	38	44	137,9600	90			D'=	137,9600		
	16:17	270	21	19	137,9600	89	38	42,5				

EXPERIMENTO COM VISADAS DESIGUAIS

ESTAÇÃO	ΓΟΤΑL		DATA		LOCAL DO LEVANTAMENTO						
ELTA S	20		26/12/200	05				Centro F	Centro Politécnico		
RN HORA	DADC	OS DE	CAMPO								
17:15	89 4	42 5	72,7830	90							
17:16	270 1	17 52	72,7840	89	42	6,5					
IBGE 17:18	89 4	42 6	72,7830	90			Z=	89	42	6,5	
17:20	270 1	17 53	72,7830	89	42	6,5	σ=			0	
17:21	89 4	42 7	72,7830	90			D'=	72,7832			
17:21	270 1	17 54	72,7830	89	42	6,5					
17:31	89 5	59 4	150,4640	90							
17:32	270 (0 55	150,4640	89	59	4,5					
02 17:34	89 5	59 4	150,4630	90			Z=	89	59	4,3	
17:35	270 (56	150,4640	89	59	4,0	σ=			0,3	
17:36	89 5	59 5	150,4640	90			D'=	150,4638			
17:36	270 (0 56	150,4640	89	59	4,5					

CÁLCULO DO DESNÍVEL SOMENTE COM OS VALORES MEDIDOS NÃO CONSIDERANDO OS EFEITOS DA CURVATURA TERRESTRE E DA REFRAÇÃO.

Zenital - Z	Dist. Incli. (m)	Dv	Δh
90,429398	28,5193	-0,2137	
88,643657	100,9080	2,3885	2,6023
	129,4		
91,511713	40,6520	-1,0725	
88,537130	96,7017	2,4687	3,5412
	137,4		
89,700972	72,7832	0,3799	
89,794074	40,4562	0,1454	-0,2345
	113,2		
90,040185	32,0290	-0,0225	
90,079398	89,2168	-0,1236	-0,1012
	121,2		
88,976852	100,6848	1,7979	
92,01296	191,2417	-6,7175	-8,5153
	291,9		
91,313843	80,4877	-1,8455	
89,645185	137,9600	0,8543	2,6998
	218,4		
89,701806	72,7832	0,3788	
89,984537	150,4638	0,0406	-0,3382
	223,2		
	90,429398 88,643657 91,511713 88,537130 89,700972 89,794074 90,040185 90,079398 88,976852 92,01296 91,313843 89,645185 89,701806	90,429398 28,5193 88,643657 100,9080 129,4 91,511713 40,6520 88,537130 96,7017 137,4 89,700972 72,7832 89,794074 40,4562 113,2 90,040185 32,0290 90,079398 89,2168 121,2 88,976852 100,6848 92,01296 191,2417 291,9 91,313843 80,4877 89,645185 137,9600 218,4 89,701806 72,7832 89,984537 150,4638	90,429398 28,5193 -0,2137 88,643657 100,9080 2,3885 129,4 -1,0725 91,511713 40,6520 -1,0725 88,537130 96,7017 2,4687 137,4 2,7832 0,3799 89,700972 72,7832 0,3799 89,794074 40,4562 0,1454 113,2 0,079398 89,2168 -0,1236 121,2 88,976852 100,6848 1,7979 92,01296 191,2417 -6,7175 291,9 91,313843 80,4877 -1,8455 89,645185 137,9600 0,8543 218,4 89,701806 72,7832 0,3788 89,984537 150,4638 0,0406

CÁLCULO DO DESNÍVEL CONSIDERANDO O EFEITO DA REFRAÇÃO NA DISTÂNCIA MEDIDA.

SEÇÃO	Ts °C	T úmida °C	Umid. Rel.	Pressão mbar	Corr.Atm.ppm	Di corr.	DV s/ corr. (m)	ΔH
I	22,4	18,5	69,35	913	37,2641	28,5183	-0,2137	
	22,4	18,5	69,35	913	37,2641	100,9042	2,3884	2,6022
П	21	17,5	71,40	913	36,0608	40,6505	-1,0724	
	21	17,5	71,40	913	36,0608	96,6982	2,4686	3,5410
Ш	21,5	17	64,02	913	36,4266	72,7805	0,3798	
	21,5	17	64,02	913	36,4266	40,4547	0,1454	-0,2344
IV	21,3	17	65,38	913	36,2654	32,0278	-0,0225	
	21,3	17	65,38	913	36,2654	89,2136	-0,1236	-0,1012
V	21	16,9	66,67	913	36,0157	100,6812	1,7978	
	21	16,9	66,67	913	36,0157	191,2348	-6,7172	-8,5150
VI	24	19	62,61	913	38,5767	80,4846	-1,8454	
	24	19	62,61	913	38,5767	137,9547	0,8543	2,6997
VII	21,5	17	64,02	913	36,4266	72,7805	0,3788	
	21,5	17	64,02	913	36,4266	150,4584	0,0406	-0,3382

CÁLCULO DO DESNÍVEL CONSIDERANDO OS EFEITOS DA REFRAÇÃO E CURVATURA TERRESTRE.

SEÇÃO I	Corr.Cur.(m) 0,0001	Corr. K 0,0000	Dv corr. (m) -0,2137	ΔН
	0,0008	0,0001	2,3891	2,6028
II	0,0001	0,0000	-1,0723	
	0,0007	0,0001	2,4693	3,5416
III	0,0004	0,0001	0,3802	
	0,0001	0,0000	0,1455	-0,2347
IV	0,0001	0,000	-0,0224	
	0,0006	0,0001	-0,1231	-0,1007
V	0,0008	0,0001	1,7985	
	0,0029	0,0004	-6,7148	-8,5132
VI	0,0005	0,0001	-1,8450	
	0,0015	0,0002	0,8556	2,7006
VII	0,0004	0,0001	0,3791	
	0,0018	0,0002	0,0421	-0,3370

ESTAÇÃO TOTAL	DATA	LOCAL DO LEVANTAMENTO
ELTA S20	17/08/2004	SALTO CAXIAS

		PD			Ы		Z	σ=	D'	Ts	Tu	Um	Pressão
	0	4	21,7	179	55	49,2	89,928819		469,799	29,4	19,0		980,0
RN 50A	0	4	18,7	179	55	52	89,929625		469,798	29,4	19,0		980,0
	0	4	16,2	179	55	56,1	89,930542		469,799	29,4	19,0		980,0
							89,929662	3,1"	469,798	29,4	19,0	37	980,0
	0	2	33,1	179	57	49,2	89,960569		679,793	29,4	19,0		980,0
RN 51	0	2	34,1	179	57	41,2	89,959319		679,793	29,4	19,0		980,0
	0	2	28	179	57	40	89,960000		679,794	29,4	19,0		980,0
							89,959963	2,3"	679,793	29,4	19,0	37	980,0

Operador: D. Granemann

Anotador: Luisnei

Hora: 14:00

CÁLCULO DO DESNÍVEL TOMANDO K= 0,13

RN	Corr. Atm	Di corr.(m)	DV s/ corr. (m)	Curv. (m)	Refr.	Dv corr. (m)	DH
RN 50A	25,201484	469,7865	0,5767	0,0172	0,0022	0,5917	(metros)
RN 51	25,201484	679,7760	0,4750	0,0361	0,0047	0,5064	-0,0853
						Dif. p/ NG:	-0,0626

CÁLCULO DO DESNÍVEL COM O MODELO DE TURBULÊNCIA INSTÁVEL (Equação 2.46)

RN	Beta instáv.	Z corrigido	Di corr.	Di corr.	Desnível
	em (")	de Beta	de Beta	c/ curv.	(metros)
RN 50A	-41,58	89,918112	0,6714	0,6542	
RN 51	-60,17	89,943250	0,6733	0,6372	-0,0170
				Dif. p/ NG:	0,0057

Obs.: A umidade relativa foi obtida indiretamente por observações de temperatura seca e úmida com um psicrômetro. Aplicou-se um polinômio de segundo grau apresentado por Schaal(1995).

ESTAÇÃO TOTAL [DAT	Α	LOCAL DO LEVANTAMENTO						
TC 2002 16/06/2005					5	SALTO CAXIAS						
RN	HORA			DAI	OOS D	E C	AMPO	Z	D'	Ts	Umid.	Pressão
RN 50A	10:53	89	56	10	270	3	47,9	89,936403	465,577	18,8	85	986,6
		89	56	11	270	3	48,6	89,936444	465,577	19,1	84	986,6
		89	56	9,8	270	3	49	89,936222	465,577	19,1	84	986,6
								89,936356	465,577	19,0	85	986,6
RN 51		89	57	35,2	270	2	23,4	89,959972	683,753	18,7	85	986,6
		89	57	38,5	270	2	23,1	89,960472	683,753	19,1	85	986,6
		89	57	36,1	270	2	24,5	89,959944	683,753	18,9	85	986,6
								89,960130	683,753	18,9	85	986,6
RN 50A	14:45	89	56	13,9	270	3	45,3	89,937306	466,368	19,2	87	983,0
		89	56	14,7	270	3	44	89,937597	466,367	19,2	87	983,0
								89,937451	466,368	19,2	87	983,0
RN 51		89	57	38,1	270	2	22,9	89,960444	682,937	19,4	87	983,0
		89	57	37,3	270	2	20,4	89,960681	682,938	19,4	87	983,0
								89,960563	682,938	19,4	87	983,0

Operador: Jorge Anotador: Magal

CÁLCULO DO DESNÍVEL TOMANDO K= 0,13

RN 50A 51	HORA 10:53	Corr. Atm 14,424264 14,328234	Di corr.(m) 465,5703 683,7432	DV s/ corr. (m) 0,5172 0,4758	Curv. (m) 0,0169 0,0365	Refr. 0,0022 0,0047	Dv corr. (m) 0,5319 0,5076 Dif. p/ NG	DH(m) -0,0243 -0,0016
50A 51	14:45	15,605540 15,796852	466,3602 682,9267	0,5091 0,4701	0,0170 0,0364	0,0022 0,0047	0,5239 0,5018 Dif. p/ NG	-0,0221 0,0006

SIMEPAR – SALTO CAXIAS

Salto Caxias: longitude= -53.4833, latitude= -25.5166

Data	Pressão Média (hPa)	Pressão Máxima (hPa)	Pressão Mínima (hPa)	Temperatura Média (C)	Temperatura Máxima (C)	Temperatura Mínima (C)
17/08/2004 00:00	967.9	968.0	967.8	18.9	19.2	18.1
17/08/2004 01:00	967.7	968.1	967.2	17.5	18.2	17.1
17/08/2004 02:00	967.1	967.3	966.9	17.4	17.8	17.1
17/08/2004 03:00	967.0	967.1	966.8	16.9	17.1	16.7
17/08/2004 04:00	966.8	966.9	966.6	16.2	16.7	15.4
17/08/2004 05:00	967.0	967.0	966.8	15.6	16.0	15.3
17/08/2004 06:00	966.7	966.9	966.6	15.6	16.1	15.3
17/08/2004 07:00	967.4	967.8	966.9	15.2	15.9	14.8
17/08/2004 08:00	968.0	968.2	967.7	14.9	15.3	14.5
17/08/2004 09:00	968.3	968.6	968.1	16.2	17.0	15.4
17/08/2004 10:00	968.8	969.1	968.6	18.1	19.4	17.0
17/08/2004 11:00	969.1	969.2	968.9	20.7	22.1	19.3
17/08/2004 12:00	968.7	969.0	968.3	23.3	24.7	22.1
17/08/2004 13:00	968.0	968.3	967.7	26.1	28.7	24.7
17/08/2004 14:00	967.2	967.7	966.9	29.4	29.7	28.7
17/08/2004 15:00	966.6	966.9	966.3	29.8	30.0	29.3
17/08/2004 16:00	966.1	966.4	965.9	30.0	30.3	29.6
17/08/2004 17:00	966.0	966.1	965.8	29.2	29.5	28.4
17/08/2004 18:00	966.2	966.2	966.1	27.3	28.3	26.6
17/08/2004 19:00	966.1	966.2	966.1	27.0	27.6	26.5
17/08/2004 20:00	966.5	966.7	966.2	26.3	26.6	25.4
17/08/2004 21:00	966.9	967.1	966.7	24.5	25.3	24.0
17/08/2004 22:00	967.3	967.6	967.1	23.4	24.0	22.6
17/08/2004 23:00	967.9	968.0	967.6	21.6	22.6	20.3
18/08/2004 00:00	968.1	968.2	968.0	19.9	20.2	19.5

SIMEPAR – SALTO CAXIAS

Salto Caxias: lon = -53.4833, lat = -25.5166

Data	Temperatura de Relva (°C)	Umidade Relativa (%)	Radiação Solar (W/m²)	Velocidade do Vento (m/s)
17/08/2004 00:00	15.4	62.3	0.0	3.9
17/08/2004 01:00	15.1	71.3	0.0	2.7
17/08/2004 02:00	14.9	69.4	0.0	3.0
17/08/2004 03:00	14.8	71.6	0.0	1.5
17/08/2004 04:00	14.7	78.3	0.0	2.1
17/08/2004 05:00	14.6	82.6	0.0	3.2
17/08/2004 06:00	14.3	79.0	1.0	5.3
17/08/2004 07:00	14.1	80.9	1.0	3.6
17/08/2004 08:00	14.0	84.2	70.0	2.4
17/08/2004 09:00	14.4	80.4	188.0	4.1
17/08/2004 10:00	15.0	72.9	385.0	2.4
17/08/2004 11:00	15.9	63.7	597.0	2.0
17/08/2004 12:00	17.4	56.0	682.0	1.5
17/08/2004 13:00	18.5	45.1	706.0	4.1
17/08/2004 14:00	19.8	30.7	656.0	1.6
17/08/2004 15:00	20.5	30.7	556.0	1.1
17/08/2004 16:00	19.2	30.8	352.0	3.4
17/08/2004 17:00	18.5	32.3	87.0	0.5
17/08/2004 18:00	17.6	40.2	37.0	2.0
17/08/2004 19:00	16.8	36.1	2.0	2.0
17/08/2004 20:00	16.5	37.0	0.0	1.1
17/08/2004 21:00	16.1	43.0	0.0	1.7
17/08/2004 22:00	15.9	48.9	0.0	1.0
17/08/2004 23:00	15.9	61.2	0.0	2.3
18/08/2004 00:00	15.8	72.0	0.0	2.8

RN15 -> C	,0003			Casa3 -> I	DN15				
23,36	1,60170	24,02	1,00657	22,31	0,97020	21,93	2,03418		
20,12	2,06889	19,97	1,12485	19,63	1,09615		2,03092	dif.=	-0,8
21,98	2,00003	22,30	1,02759	23,42	0,97458		1,57957	uii.—	0,0
65,46	5,76198	66,29	3,15901	65,36	3,04093		5,64467	D-	131,6
05,40	3,70130	00,23	2,60297	05,50	3,04033	00,11	-2,60374	D_	131,0
	Desn. Seçã	io=	2,60336	fech.=	2,1	$mm \sqrt{K}$	2,0007		
			_, -,		_, .	mm VIX			
Casa3 -> I	IBGE			IBGE -> C	asa3				
23,72	2,26452	23,75	1,06312	23,95	0,62195	23,88	1,96691		
22,00	2,08355	21,93	1,08736	24,16	1,00190	23,79	2,12562	dif.=	-0,1
23,97	1,95666	23,82	0,61207	21,42	1,16189	21,97	2,23553		
69,69	6,30473	69,50	2,76255	69,53	2,78574	69,64	6,32806	D=	139,2
			3,54218				-3,54232		
	Desn. Seçã	io=	3,54225	fech.=	0,4	$mm \sqrt{K}$			
	•								
IBGE -> L				LAIG -> IB					
23,95	1,17772	23,02	1,31565	27,51	1,62345	•	1,52578	dif.=	0,3
27,62	1,53957	27,38	1,63713	19,24	1,35279	•	1,21472		
51,57	2,71729	50,40	2,95278	46,75	2,97624	47,33	2,74050	D=	98,0
			-0,23549				0,23574		
	Desn. Seçã	io=	-0,23562	fech.=	0,8	$mm \sqrt{K}$			
LAIG -> R		07.00	4 00040	Rn02 -> L		22.00	4.04004		
27,13	1,63299	27,66	1,66210	34,00	1,41148		1,34061		0.4
34,06	1,35924	33,92	1,42989	27,59	1,68251		1,65326	dif.=	0,4
61,19	2,99223	61,58	3,09199	61,59	3,09399	61,15	2,99387	_	400.0
			-0,09976			_	0,10012	D=	122,8
	Desn. Seçã	10=	-0,09994	fech.=	1,0	$mm \sqrt{K}$			
RN02 -> P	Prefeitura			Prefeitura	-> RN02				
16,67	1,12414	16,44	1,48170	22,35	1,80173	22,07	0,75642		
21,70	1,04674	21,15	1,99537	22,73	2,36771	22,69	0,40719	dif.=	1,4
21,20	1,08650	20,85	1,95195	22,82	2,43075	•	0,40600	un.	.,.
20,33	0,97321	21,00	2,26073	20,70	2,26369	•		D=	294,0
20,04	0,50073	20,08	2,32901	21,22	1,93218		1,02646		201,0
19,44	0,55267	18,51	2,24644	20,42	2,00313		1,09729		
17,48	0,79966	18,85	1,98880	16,51	1,48364		1,12602		
10,29	1,19488	10,01	1,53473	10,01	1,40004	10,02	1,12002		
147,15	7,28	146,89	15,78873	146,75	14,28283	3 147,14	5,77120		
147,10	1,20	170,00	10,70070			, ,,,,,	0,77120		
			-8 51020	-, -	,	•	8 51163		
	Desn Secã	io=	-8,51020 -8,51092	·		$mm \sqrt{K}$	8,51163		
	Desn. Seçã	io=	-8,51020 -8,51092	fech.=	2,6	$mm \sqrt{K}$	8,51163		
Prefeitura	,	io=		·	2,6	$mm \sqrt{K}$	8,51163		
Prefeitura 17,49	,	io= 16,74		fech.=	2,6		1,49881		
	-> RN15		-8,51092	fech.= RN15 -> P	2,6 Prefeitura	22,21		dif.=	0,3
17,49	-> RN15 1,89813	16,74	-8,51092 1,10680	fech.= RN15 -> P 23,16	2,6 Prefeitura 1,36038	22,21	1,49881	dif.=	0,3
17,49 18,10	-> RN15 1,89813 1,82695	16,74 18,38	-8,51092 1,10680 1,17587	fech.= RN15 -> P 23,16 24,29	2,6 Prefeitura 1,36038 1,51691	22,21 24,41 20,12	1,49881 1,46626		0,3
17,49 18,10 17,84	-> RN15 1,89813 1,82695 1,91607	16,74 18,38 16,99	-8,51092 1,10680 1,17587 1,01148	fech.= RN15 -> P 23,16 24,29 20,55	2,6 Prefeitura 1,36038 1,51691 1,17601	22,21 24,41 20,12 19,80	1,49881 1,46626 1,78261		
17,49 18,10 17,84 17,80	-> RN15 1,89813 1,82695 1,91607 1,82114	16,74 18,38 16,99 17,65	-8,51092 1,10680 1,17587 1,01148 1,62672	fech.= RN15 -> P 23,16 24,29 20,55 19,21	2,6 Prefeitura 1,36038 1,51691 1,17601 0,97310	22,21 24,41 20,12 19,80	1,49881 1,46626 1,78261 1,91364		
17,49 18,10 17,84 17,80 18,36	-> RN15 1,89813 1,82695 1,91607 1,82114 1,55598	16,74 18,38 16,99 17,65 18,36	-8,51092 1,10680 1,17587 1,01148 1,62672 1,73352	fech.= RN15 -> P 23,16 24,29 20,55 19,21	2,6 Prefeitura 1,36038 1,51691 1,17601 0,97310	22,21 24,41 20,12 19,80 24,38	1,49881 1,46626 1,78261 1,91364		
17,49 18,10 17,84 17,80 18,36 21,35	-> RN15 1,89813 1,82695 1,91607 1,82114 1,55598 1,65625	16,74 18,38 16,99 17,65 18,36 20,66	-8,51092 1,10680 1,17587 1,01148 1,62672 1,73352 1,31915	fech.= RN15 -> P 23,16 24,29 20,55 19,21 23,31	2,6 Prefeitura 1,36038 1,51691 1,17601 0,97310 1,06341	22,21 24,41 20,12 19,80 24,38	1,49881 1,46626 1,78261 1,91364 2,12917		
17,49 18,10 17,84 17,80 18,36 21,35	-> RN15 1,89813 1,82695 1,91607 1,82114 1,55598 1,65625	16,74 18,38 16,99 17,65 18,36 20,66 108,78	-8,51092 1,10680 1,17587 1,01148 1,62672 1,73352 1,31915 7,97354	fech.= RN15 -> P 23,16 24,29 20,55 19,21 23,31	2,6 Prefeitura 1,36038 1,51691 1,17601 0,97310 1,06341	22,21 24,41 20,12 19,80 24,38	1,49881 1,46626 1,78261 1,91364 2,12917 8,79049		
17,49 18,10 17,84 17,80 18,36 21,35	-> RN15 1,89813 1,82695 1,91607 1,82114 1,55598 1,65625 10,67452	16,74 18,38 16,99 17,65 18,36 20,66 108,78	-8,51092 1,10680 1,17587 1,01148 1,62672 1,73352 1,31915 7,97354 2,70098	fech.= RN15 -> P 23,16 24,29 20,55 19,21 23,31 110,52	2,6 Prefeitura 1,36038 1,51691 1,17601 0,97310 1,06341 6,08981	22,21 24,41 20,12 19,80 24,38	1,49881 1,46626 1,78261 1,91364 2,12917 8,79049		

REFERÊNCIAS

ABNT NBR 13133 Execução de levantamentos geodésicos: procedimento. Rio de Janeiro, 1994.

ALENCAR, J. C. M. **Nivelamento geodésico – manual de instruções.** Distrito de Levantamentos Geodésicos – IBGE, 1985.

ANGUS-LEPAN, P. V.; WEBB, E. K. **Turbulent heat transfer and atmospheric refraction.** In: General Assembly of IAG, Proceedings, Moscow, 1971.

ARANA, J. M. **O uso do GPS nas determinações de altitudes ortométricas**. Geodésia online, UNESP, Presidente Prudente, 2005.

BOMFORD, G. Geodesy. Oxford: Oxford University Press, 1975.

BRASIL **Manual Técnico T 34-410 - Nivelamento Trigonométrico**, 1ª edição. Estado-Maior do Exército. Ministério do Exército - Diretoria de Serviço Geográfico, 1975.

CASTRO, A. L. P. **Nivelamento através do GPS: avaliação e proposição de estratégias.** Dissertação apresentada ao Programa de Pós-Graduação em Ciências Cartográficas da Faculdade de Ciências e Tecnologia da Universidade Estadual Paulista – UNESP, Presidente Prudente, 2002.

CHRZANOWSKI, A. **Design and error analysis of surveying projects**. University of New Brunswick, 1977.

CINTRA, J.P. **Teodolitos eletrônicos**. XVII Congresso Brasileiro de Cartografia, EPUSP – Escola Politécnica da Universidade de São Paulo, 1995.

D'ALGE, J. C. L. Estabelecimento de um sistema de altitudes a partir do nivelamento geométrico. Dissertação apresentada ao Curso de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, Curitiba, 1986.

DODSON, A. H.; ZAHER, M. Refraction effects on vertical angle measurements. Survey Review, v. 28, n. 217, julho de 1985.

DZIERZEGA, A.; SCHERRER, R. **Measuring with electronic total station**. Survey Review, v. 37, n. 287, janeiro de 2003.

ERBA, D. A.; THUM, A. B.; SILVA, C. A. U.; SOUZA, G. C.; VERONEZ, M. R.; LEANDRO, R. F.; MAIA, T. C. B. **Topografia**. Universidade do Vale do Rio dos Sinos, 2005.

FAGGION, P. L. Contribuição para implantação de um sistema de aferição de miras na Universidade Federal do Paraná. Dissertação apresentada ao Curso de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, Curitiba, 1993.

FAGGION, P. L. Obtenção dos elementos de calibração e certificação de medidores eletrônicos de distância em campo e laboratório. Tese apresentada ao Curso de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, Curitiba, 2001.

FAGGION, P. L.; VEIGA, L. A. K.; DE FREITAS, S. R. C.; DOS SANTOS, D. P. (2003). **Desníveis de primeira ordem com estação total**. Série em Ciências Geodésicas, v. 3.

FEATHERSTONE, W. E.; DENTITH, M. C.; KIRBY, J. F. Strategies for the accurate determination of orthometric heights from GPS. Survey Review, v. 34, n. 267, 1998.

GEMAEL, C. Introdução a Geodésia geométrica – Primeira parte - Curso de Pós-Graduação em Ciências Geodésicas, UFPR, Curitiba, 1987.

GEMAEL, C. Introdução ao ajustamento de observações – aplicações geodésicas. Curitiba: Editora da UFPR, 1994.

IBGE - FUNDAÇÃO INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA **Especificações e normas gerais para levantamentos geodésicos** R.PR nº 22/83, Boletim de Serviço nº 1602 (Suplemento), Rio de Janeiro, 1983.

IBGE - FUNDAÇÃO INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA **Manual para padronização de procedimentos de nivelamento geométrico**, Versão 1.b. Rio de Janeiro, 2000.

IBGE - FUNDAÇÃO INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA **Sistema geodésico brasileiro – rede altimétrica**. Disponível em: http://www.ibge.gov.br/home/geociencias/geodesia/altimetrica.shtm?c=3. Acesso em: maio de 2005.

JORDAN, D. W. **Tratado general de topografia. Volume I**. Barcelona: Editorial Gustavo Gili, S.A, 1974.

KENNIE, T. J. M.; PETRIE, G. **Enginnering surveying techonology**, 1^a edição. New York. Blackie Academic & Professional – USA, Halsted Press, 1993.

KAHMEN, H.; FAIG, W. **Surveying**. Berlin/New York: Walter de Gruyter, 1988.

KOSLOWSKI, J. **Electronic total stations are levels too**. Professional Surveyor Magazine, v. 18, n. 8, nov/dec 1998.

KUANG, S. Geodetic network analysis and optimal design: concepts and applications. Michigan: Ann Arbor Press, Inc., 1996.

LEICA TC 403L User manual. Heerbrugg, Switzerland, 1998.

LEICA WILD TC 2002 User manual. Heerbrugg, Switzerland, 1994.

MEDINA, A. S. Classificação de teodolitos e estações totais. Dissertação apresentada ao Curso de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, Curitiba, 1998.

MEDINA, A. S.; GRANEMANN, D. C.; MARTINS, M. A. R.; BARNECHE, R. S. **Efeito** da equação pessoal em levantamentos. Anais do XIX Congresso Brasileiro de Cartografia, CD-Rom, Recife, 1999.

MONICO, J. F. G. Posicionamento pelo NAVSTAR-GPS: descrição, fundamentos e aplicações. São Paulo: Editora UNESP, 2000.

PROFESSIONAL SURVEYOR MAGAZINE - DIN 18723 **Specification for theodolite accuracy**. Disponível em: www.prosurv.com. Acesso em: novembro de 2005.

RÜEGER, J. M. **Electronic distance measurement**. 3^a. Edição. Berlin: Springer-Verlag, 1996.

SCHAAL, R. E. Efeitos da refração na atmosfera em observações geodésicas próximas ao solo. Dissertação apresentada à Escola Politécnica da Universidade de São Paulo, São Paulo, 1996.

SEEBER, G. Satellite Geodesy: foundations, Methods, and applications. Berlin/New York: Walter de Gruyter, 2003.

TRIMBLE ZEISS, ELTA S. User Guide. Ohio, USA, 2001.

VEIGA, L. A. K.; FAGGION, P. L. **Introdução à topografia**. Universidade Federal do Paraná, Curitiba, 2004.

ZEISKE, K. **Surveying made easy.** Disponível em: http://www.leica-geosystems.com/se/surveying/Newspaper/Broschyrer/722510en.pdf. Acesso em: novembro de 2005.

Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

<u>Baixar</u>	livros	de	Adm	inis	tra	ção

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciência da Computação

Baixar livros de Ciência da Informação

Baixar livros de Ciência Política

Baixar livros de Ciências da Saúde

Baixar livros de Comunicação

Baixar livros do Conselho Nacional de Educação - CNE

Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos

Baixar livros de Economia

Baixar livros de Economia Doméstica

Baixar livros de Educação

Baixar livros de Educação - Trânsito

Baixar livros de Educação Física

Baixar livros de Engenharia Aeroespacial

Baixar livros de Farmácia

Baixar livros de Filosofia

Baixar livros de Física

Baixar livros de Geociências

Baixar livros de Geografia

Baixar livros de História

Baixar livros de Línguas

Baixar livros de Literatura

Baixar livros de Literatura de Cordel

Baixar livros de Literatura Infantil

Baixar livros de Matemática

Baixar livros de Medicina

Baixar livros de Medicina Veterinária

Baixar livros de Meio Ambiente

Baixar livros de Meteorologia

Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Música

Baixar livros de Psicologia

Baixar livros de Química

Baixar livros de Saúde Coletiva

Baixar livros de Serviço Social

Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo