UNIVERSIDADE FEDERAL DE OURO PRETO – ESCOLA DE MINAS DEPARTAMENTO DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

ANÁLISE TEÓRICO-EXPERIMENTAL DE LIGAÇÕES PARAFUSADAS VIGA-PILAR EM PERFIS FORMADOS A FRIO

CASSIUS SOARES MORAIS

ORIENTADORES: Prof^a. Dr^a. Arlene Maria Sarmanho Freitas Prof. Dr. Luiz Fernando Loureiro Ribeiro

> Dissertação apresentada ao Programa de Pós-Graduação do Departamento de Engenharia Civil da Escola de Minas da Universidade Federal de Ouro Preto, como parte integrante dos requisitos para obtenção do título de Mestre em Engenharia Civil, área de concentração: Estruturas Metálicas.

Ouro Preto, Julho de 2003.

A minha família; A Luciana.

Agradecimentos

- A Deus por ter me dado força e saúde para concluir esse trabalho;
- Aos meus pais, Cláudio e Isabel Cristina, pelo incentivo e amor;
- Aos meus irmãos, Cláudio Jr. e Cinara, pelo apoio e amizade.
- A Luciana pela compreensão, amor, carinho, incentivo e paciência nos momentos difíceis;
- Aos professores Arlene e Luiz Fernando pela orientação, apoio e amizade;
- A todos os colegas e amigos de mestrado pelas horas incansáveis de estudos e de diversão;
- Aos professores do PROPEC, em especial aos professores João Batista, Francisco de Assis e Marcílio;
- A secretária do PROPEC Róvia e ao professor Dornelas pela ajuda constante;
- Aos funcionários do Laboratório de Estruturas do Departamento de engenharia Civil da UFOP, em especial João, Dequinha, Geraldo e Celso, pela disposição nos ensaios experimentais;
- Aos alunos bolsistas de Iniciação Científica Wellyson e William, pela ajuda no presente trabalho.
- Ao CNPQ pelo apoio financeiro;
- A empresa USIMINAS, pelo apoio e financiamento desse trabalho;
- A empresa Pórtico S.A., pela fabricação dos protótipos de ensaios;

Resumo

Neste presente trabalho são apresentados estudos teórico-experimentais para avaliar o comportamento de ligações viga-coluna parafusadas utilizando seções transversais em perfis formados a frio de duas edificações pertencentes ao projeto vencedor do 2º Prêmio Arquitetura em Aço, patrocinado pela USIMINAS, Projeto USIHAB. Este contém um projeto de dois pavimentos (Projeto 01) e um de quatro pavimentos (Projeto 02).

Foram realizadas análises estruturais e dimensionamentos de ambos os projetos. Em seguida, determinou-se um protótipo de ensaio (P01) formado por um conjunto viga-coluna de seção transversal tipo caixa mais representativo do Projeto 02 para o qual foi projetada uma ligação parafusada. Para esta ligação realizou-se o teste experimental e verificou-se que esse protótipo apresentava um modo de colapso bastante frágil, então fez-se novas análises que originou uma nova configuração para a ligação, Protótipo P01B. Os resultados desse teste não se apresentaram satisfatórios, pois para tal solução a ligação teria um peso em aço representativo do peso total da estrutura inviabilizando a sua execução.

Como para os protótipos referentes ao Projeto 02 não se obteve resultados satisfatórios, foi permitida uma flexibilização no Projeto 01 que passou pela mudança na arquitetura e alterações da seção transversal dos pilares para perfis de seção transversal tipo "I enrijecido" formado por dois perfis cartola.

Para as análises de ligações do Projeto 01, onde em sua concepção são utilizados pilares "I enrijecidos" e vigas tipo caixa, obteve-se melhores resultados. Foram realizados oito testes experimentais com três tipos de protótipos e, assim, obteve-se a curva momento-rotação e a rigidez da ligação, os momentos últimos, os modos de colapso, os campos de deslocamento e de deformação de cada ligação.

Em seguida fez-se uma segunda análise para o Projeto 01 utilizando as rigidezes das ligações obtidas nos testes experimentais e observou-se um aumento de 6,0 % na taxa (kg/m²) da estrutura nessa segunda análise em relação à primeira que não implicará necessariamente em gastos maiores para a edificação em função da utilização das ligações parafusadas.

Abstract

In this present work are introduced theoretician-experimental studies to evaluate the behavior of bolt beam-column connections using transversal sections in cold formed steel members of two buildings to the winner project of the 2th Prize Architecture in Steel, sponsored by USIMINAS, USIHAB Project. This contains a project of two floors (Project 01) and one of four floors (Project 02).

It accomplished structural analyses and designs from both projects. It determined a test prototype (P01) formed by a connection beam-column of transversal section more representative kind box of the Project 02 to which was projected a bolted connection.

For this connection it accomplished the experimental test and verified itself that prototype introduced a way of very fragile collapse, then new analyses were done originated a new configuration for the connection, Prototype P01B. The results of this test did not introduce satisfactory, because for such solution the connection would have a weight in representative steel of the total weight of the structure making unfeasible your execution.

As for the referring prototypes to the Project 02 did not obtain satisfactory results, it was allowed a flexibility in the Project 01 that passed by the change in the architecture and alterations of the transversal section of the pillars for members of transversal section kind "I" formed for double top hat back-to-back.

For the connections analyses of the Project 01, where in your conception are used pillars "T" and kind box beams, it obtained best results. They were done eight experimental tests with three kinds of prototypes and, therefore, it obtained the momentrotation curve and the stiffness of the connection, the last moments, the collapse manners, the displacement field and of deformation of each connection.

A second analysis was done for the Project 01 using the stiffness of the connections obtained in the experimental tests and an increase of 6,0 % was observed in the rate (kg/m^2) of the structure on second analysis regarding the first that necessarily will not imply in larger expenses for the construction in function of the utilization of the bolted connections.

Índice

Lista de Figuras	XI
Lista de Tabelas	XVII
1. INTRODUÇÃO	1
2. PROJETO USIHAB	9
2.1. GENERALIDADES	9
2.2. TIPOLOGIA DOS PROJETOS ARQUITETÔNICOS UTILIZADOS	13
2.2.1. Projeto 01 – 2 Pavimentos	13
2.2.2. Projeto 02 – 4 Pavimentos	16
2.3. MATERIAIS UTILIZADOS	17
2.3.1. Aços	17
2.3.2. Outros Materiais	19
2.4. PERFIS ADOTADOS	
3. ANÁLISE E DIMENSIONAMENTO DO PROJETO USIHAB	
3.1. INTRODUÇÃO	
3.2. ANÁLISE E DIMENSIONAMENTO DO PROJETO 01	
3.2.1. Levantamento de Ações do Projeto 01	
3.2.2. Combinação de Ações do Projeto 01	
3.2.3. Concepção Estrutural do Projeto 01	
3.2.4. Análise Estrutural 3D do Projeto 01	
3.3. ANÁLISE E DIMENSIONAMENTO DO PROJETO 02	
3.3.1. Levantamento de Ações do Projeto 02	
3.3.2. Combinação de Ações do Projeto 02	40
3.3.3. Concepção Estrutural do Projeto 02	41
3.3.4. Análise Estrutural 3D do Projeto 02	41

3.4. LIGAÇÕES VIGA-PILAR	53
3.4.1. Tipos de Ligações	54
3.4.2. Determinação da Rigidez de uma Ligação com a Utilização de Ensaios	
Experimentais	54

4. PROGRAMA EXPERIMENTAL DOS TESTES REALIZADOS PARA O

PROJETO 02	58
4.1. INTRODUÇÃO	58
4.2. ANÁLISES DOS TESTES DOS PROTÓTIPOS DE LIGAÇÕES5	;9
4.2.1. Protótipo P01	59
4.2.1.1. Sistema de Aplicação de Carga do Protótipo P016	52
4.2.1.2. Esquema de Montagem do Protótipo P016	52
4.2.1.3. Instrumentação6	56
4.2.1.4. Sistema de Aquisição de Dados6	58
4.2.1.5. Metodologia de Execução do Teste6	58
4.2.1.6. Apresentação e Análise dos Resultados Experimentais6	59
4.2.2. Protótipo P01B7	6
4.2.2.1. Sistema de Aplicação de Carga do Protótipo P01B	30
4.2.2.2. Esquema de Montagem do Protótipo P01B	31
4.2.2.3. Instrumentação	32
4.2.2.4. Sistema de Aquisição de Dados8	34
4.2.2.5. Metodologia de Execução do Teste	34
4.2.2.6. Apresentação e Análise dos Resultados Experimentais	34

5. PROGRAMA EXPERIMENTAL DOS TESTES REALIZADOS PARA O

PROJETO 01	94
5.1. INTRODUÇÃO	94
5.2. ANÁLISES DOS TESTES DOS PROTÓTIPOS DE LIGAÇÕES	95
5.2.1. Caracterização do Material dos Protótipos	102
5.2.2. Protótipos PCP1V1	104
5.2.2.1. Sistema de Aplicação de Carga do Protótipo PCP1V1	105
5.2.2.2. Esquema de Montagem do Protótipo PCP1V1	105

5.2.2.3. Instrumentação	107
5.2.2.4. Sistema de Aquisição de Dados	108
5.2.2.5. Metodologia de Execução dos Testes	108
5.2.2.6. Apresentação e Análise dos Resultados Experimentais	108
5.2.3. Protótipos PCP1Vc1	116
5.2.3.1. Sistema de Aplicação de Carga do Protótipo PCP1Vc1	116
5.2.3.2. Esquema de Montagem do Protótipo PCP1Vc1	117
5.2.3.3. Instrumentação	118
5.2.3.4. Sistema de Aquisição de Dados	119
5.2.3.5. Metodologia de Execução dos Testes	119
5.2.3.6. Apresentação e Análise dos Resultados Experimentais	120
5.2.4. Protótipos PEP2V1V2	120
5.2.4.1. Sistema de Aplicação de Carga do Protótipo PEP2V1V2	121
5.2.4.2. Esquema de Montagem do Protótipo PEP2V1V2	121
5.2.4.3. Instrumentação	124
5.2.4.4. Sistema de Aquisição de Dados	125
5.2.4.5. Metodologia de Execução dos Testes	125
5.2.4.6. Apresentação e Análise dos Resultados Experimentais	126
6. ANÁLISE DO PROJETO 01 CONSIDERANDO A SEMI-RIGIDEZ DA	
LIGAÇÃO	134
6.1. INTRODUÇÃO	134
6.2. ANÁLISE DO PROJETO 01	135
6.2.1. Análise Estrutural 3D do Projeto 01	135
7. CONSIDERAÇÕES FINAIS	150
Referências Bibliográficas	155

ANEXOS	158
ANEXO I. Esquema Estrutural em Planta do Projeto 02	159
ANEXO II. Dimensionamento das Ligações dos Protótipos	165

ANEXO III. Planilhas dos Testes Experimentais	195
ANEXO IV. Gráficos de Resultados dos Testes Experimentais	248

Lista de Figuras

CAPÍTULO 1

Figura 1.1 - Seções transversais usuais de perfis formados a frio	3
Figura 1.2 - Seções transversais usuais de painéis, decks e chapas corrugadas	3

CAPÍTULO 2

Figura 2.1 - Tipos de múltiplos gerados pela "célula mãe" (Usiminas, 2000)	10
Figura 2.2 – Planta de situação do Projeto 01 (Protótipo USIHAB, 2001)	14
Figura 2.3 – Plantas baixas do Projeto 01 (Protótipo USIHAB, 2001)	15
Figura 2.4 – Planta Baixa do 1°, 2° e 4° pavimentos do Projeto 02	
(Protótipo USIHAB, 2001)	16
Figura 2.5 – Planta baixa do 3º pavimento do Projeto 02 (Protótipo USIHAB, 2001)	17
Figura 2.6 – Seção transversal dos perfis utilizados	21

Figura 3.1 – Esquemas estruturais em planta	25
Figura 3.2 – Sistemas de estabilização do Projeto 01	28
Figura 3.3 – Modelagem da estrutura 3D do Projeto 01	29
Figura 3.4 – Carregamentos aplicados na estrutura (kN/m)	31
Figura 3.5 – Esforços nas barras devido à combinação "C1"	34
Figura 3.6 –Deslocamentos verticais dos elementos do Projeto 01 devido à	
combinação "C6"	36
Figura 3.7 –Deslocamentos horizontais na direção do eixo global "X" dos elementos	
devido à combinação "C7"	37
Figura 3.8 – Deslocamentos horizontais na direção do eixo global "Z" dos elementos	
devido à combinação "C8"	38
Figura 3.9 – Sistemas de estabilização do Projeto 02	42
Figura 3.10 – Modelagem da estrutura 3D do Projeto 02	43
Figura 3.11 – Carregamentos aplicados na estrutura (kN/m) do Projeto 02	44

Figura 3.12 – Momentos Fletores em relação ao eixo "Z" local de cada barra do
Projeto 02, devido à combinação "C1"
Figura 3.13 – Deslocamentos verticais dos elementos devido à combinação "C6" do
Projeto 02
Figura 3.14 – Deslocamentos horizontais na direção do eixo global "X" dos elementos
devido à combinação "C7" do Projeto 02 50
Figura 3.15 – Deslocamentos horizontais na direção do eixo global "Z" dos elementos
devido à combinação "C8" do Projeto 0251
Figura 3.16 – Exemplo de curva momento-rotação obtida de ensaio experimental 55
Figura 3.17 – Método da Inclinação Inicial56
Figura 3.18 – Método da Inclinação a 50 % do Momento Último de Ensaio (M_u) 57
Figura 3.19 – Método das Áreas Iguais57

Figura 4.1 – Seções transversais da viga e do pilar utilizados no Protótipo P0160
Figura 4.2 – Configuração da ligação viga-pilar proposta para o protótipo P0161
Figura 4.3 – Detalhe do sistema de aplicação de carga
Figura 4.4 – Detalhe do projeto dos acessórios de montagem
Figura 4.5 – Fotos das conexões entre o pilar P4 e os acessórios. a) Ligação entre o
pilar P4 e placa de base; b) Ligação entre o pilar P4 e pilar suporte
Figura 4.6 – Esquema geral de montagem do teste do Protótipo P01
Figura 4.7 – Foto do esquema de montagem do teste do Protótipo P01
Figura 4.8 – Detalhe do posicionamento dos LVDT's e dos defletômetros no
Protótipo P01
Protótipo P01
Protótipo P01
 Protótipo P01

Figura 4.15 – Curva momento-rotação da ligação do Protótipo P0173
Figura 4.16 – Aplicação do Método da Inclinação Inicial para o Protótipo P0174
Figura 4.17 – Foto que mostra o mecanismo de colapso da ligação do protótipo P0175
Figura 4.18 – Modelagem da nova configuração da ligação viga-pilar do protótipo de
teste
Figura 4.19 – Tensões (kPa) na direção do eixo global Z para a nova configuração da
ligação viga-pilar do protótipo de teste78
Figura 4.20 – Configuração da ligação viga-pilar proposta para o protótipo P01B 80
Figura 4.21 – Esquema de montagem do Protótipo P01B
Figura 4.22 – Foto do esquema de montagem do teste do Protótipo P01B
Figura 4.23 – Detalhe do posicionamento dos LVDT's e dos defletômetros no
Protótipo P01B
Figura 4.24 – Posicionamento dos extensômetros elétricos de resistência no
Protótipo P01B. a) Extensômetros na viga V3; b) Extensômetros na Placa Suporte 83
Figura 4.25 – Gráfico carga-deformação específica do Protótipo P01B
Figura 4.26 – Gráfico carga-deslocamento dos pontos analisados da viga do
Protótipo P01B
Figura 4.27 – Gráfico carga-deslocamento dos pontos analisados do pilar do
Protótipo P01B
Figura 4.28 – Representação do comportamento do pilar P4 durante o teste experimental
do Protótipo P01B
Figura 4.29 – Deformada da viga V3 para carga de 21,60 kN
Figura 4.30 – Curva momento-rotação da ligação do Protótipo P01B
Figura 4.31 – Aplicação do Método da Inclinação Inicial para o Protótipo P01B 89
Figura 4.32 – Foto que mostra o colapso da viga V3 por esmagamento da alma90
Figura 4.33 – Foto que mostra o colapso por rasgamento da solda entre a viga V3 e uma
das Cantoneiras de Ligação superiores
Figura 4.34 – Modelagem de um pilar de extremidade92
Figura 4.35 – Tensões (kPa) na direção de um dos eixos principais de um pilar de
extremidade

Figura 5.1 – Detalhes da ligação em estudo. a) U Suporte; b) Enrijecedores internos do
pilar; c) Esquema pilar, enrijecedores e U Suporte95
Figura 5.2 – Detalhe da viga do protótipo com as Cantoneiras de Ligação
Figura 5.3 – Configuração da ligação proposta para os pilares de extremidade da
edificação
Figura 5.4 – Modelagem da configuração da ligação viga-pilar proposta
Figura 5.5 – Tensões (kPa) na direção do eixo global Z da configuração da ligação viga-
pilar proposta
Figura 5.6 – Detalhes das dimensões das partes constituintes da ligação proposta99
Figura 5.7 – Detalhamento da ligação proposta aplicada no pilar P1 (Pilar de canto). 100
Figura 5.8 – Detalhamento da ligação proposta aplicada no pilar P2 (Pilar de
extremidade)
Figura 5.9 – Corpos de prova utilizados para caracterização do material de ensaio 103
Figura 5.10 – Fotos dos sistemas de fixação do pilar P1 do Protótipo PCP1V1. a) Placa
de base; b) Pilar suporte
Figura 5.11 – Foto do esquema de montagem do ensaio do Protótipo PCP1V1 106
Figura 5.12 – Detalhe do posicionamento dos LVDT's e dos defletômetros no
Protótipo PCP1V1
Figura 5.13 – Posicionamento dos extensômetros elétricos de resistência no
Protótipo PCP1V1
Figura 5.14 – Gráfico carga-deformação específica do Protótipo PCP1V1-2109
Figura 5.15 – Gráfico carga-deslocamento dos pontos analisados da viga do
Protótipo PCP1V1-2
Figura 5.16 – Gráfico carga-deslocamento dos pontos analisados do pilar do
Protótipo PCP1V1-2
Figura 5.17 – Representação do comportamento do pilar P1 durante o teste experimental
do Protótipo PCP1V1-2
Figura 5.18 – Deformada da viga V1 para carga de 21,12 kN 112
Figura 5.19 – Curva momento-rotação da ligação do Protótipo PCP1V1-2 113
Figura 5.20 – Aplicação do Método da Inclinação Inicial para o
Protótipo PCP1V1-2

Figura 5.21 – Foto que mostra o colapso por rasgamento da solda entre a viga V1 e uma
das Cantoneiras de Ligação superiores114
Figura 5.22 – Detalhe do sistema de aplicação de carga para o Protótipo PCP1Vc1116
Figura 5.23 – Esquema geral de montagem do teste do Protótipo PCP1Vc1117
Figura 5.24 – Detalhe do posicionamento dos LVDT's e dos defletômetros no
Protótipo PCP1Vc1
Figura 5.25 – Posicionamento dos extensômetros elétricos de resistência no
Protótipo PCP1Vc1
Figura 5.26 – Foto do sistema de aplicação de carga para o Protótipo PEP2V1V2 121
Figura 5.27 – Sistema de reação de apoio na viga V1 do Protótipo PEP2V1V2.
a) Esquema do sistema; b) Foto do sistema
Figura 5.28 – Esquema de montagem do ensaio do Protótipo PEP1V1V2123
Figura 5.29 – Foto do esquema de montagem do ensaio do Protótipo PEP2V1V2 123
Figura 5.30 – Detalhe do posicionamento dos LVDT's e dos defletômetros no
Protótipo PEP2V1V2
Figura 5.31 – Posicionamento dos extensômetros elétricos de resistência no
Protótipo PEP2V1V2
Figura 5.32 – Gráfico carga-deformação específica do Protótipo PEP2V1V2-2 127
Figura 5.33 – Gráfico carga-deslocamento dos pontos analisados da viga V2 do
Protótipo PEP2V1V2-2
Figura 5.34 – Gráfico carga-deslocamento dos pontos analisados do pilar P2 do
Protótipo PEP2V1V2-2
Figura 5.35 – Representação do comportamento do pilar P2 durante o ensaio
experimental do Protótipo PEP2V1V2-2
Figura 5.36 – Deformada da viga V2 para carga de 34,97 kN
Figura 5.37 – Curva momento-rotação da ligação do Protótipo PEP2V1V2-2131
Figura 5.38 – Aplicação do Método da Inclinação Inicial para o Protótipo
PEP2V1V2-2
Figura 5.39 – Foto que mostra o colapso por rasgamento da solda entre a viga V2 e uma
das Cantoneiras de Ligação inferiores

Figura 6.1 – Elemento COMBIN 14 (Ansys, 2001)
Figura 6.2 – Esforços nas barras devido à combinação "C1"140
Figura 6.3 – Comparação de esforços normais de cálculo entre as análises142
Figura 6.4 – Comparação de esforços cortantes de cálculo entre as análises
Figura 6.5 – Comparação de momentos fletores de cálculo entre as análises 143
Figura 6.6 – Deslocamentos verticais (m) dos elementos devido à combinação "C6". 145
Figura 6.7 – Deslocamentos horizontais (m) na direção do eixo global "X" dos
elementos devido à combinação "C7"
Figura 6.8 – Deslocamentos horizontais (m) na direção do eixo global "Z" dos elementos
devido à combinação "C8"146
Figura 6.9 – Comparação de deslocamentos máximos ocorridos na estrutura entre as
análises realizadas

Figura 7.1 – Comparação de curvas momento-rotação de ensaios experimentais de un	m
protótipo de ensaio do Projeto 01	151

Lista de Tabelas

CAPÍTULO 2

Tabela 2.1 – Composição Química do aço USI-SAC-250 em porcentagem	
(Usiminas, 2003)	18
Tabela 2.2 – Propriedades mecânicas do aço USI-SAC-250 (Usiminas, 2003)	18
Tabela 2.3 – Composição Química do aço USI-SAC-300 em porcentagem	
(Usiminas, 2003)	18
Tabela 2.4 – Propriedades mecânicas do aço USI-SAC-300 (Usiminas, 2003)	19
Tabela 2.5 – Propriedades mecânicas do aço ASTM A-325 (NBR 8800:1986)	19

CAPÍTULO 3

Tabela 3.1 - Coeficientes utilizados nas combinações de ações para os estados limites	3
últimos e para os estados limites de utilização	24
Tabela 3.2 – Elementos utilizados na análise estrutural do Projeto 01	27
Tabela 3.3 – Esforços solicitantes em cada barra do Projeto 01	35
Tabela 3.4 – Perfis utilizados como pilares, vigas e contraventamentos na análise de	
dimensionamento da estrutura em 3D do Projeto 01	36
Tabela 3.5 – Quantitativo de material utilizado no Projeto 01 referente aos pilares, vig	gas
e contraventamentos, considerando análise estrutural em 3D	39
Tabela 3.6 – Esforços solicitantes em cada barra do Projeto 02	46
Tabela 3.7 – Perfis utilizados como pilares, vigas e contraventamentos na análise de	
dimensionamento da estrutura em 3D do Projeto 02	48
Tabela 3.8 – Quantitativo de material utilizado no Projeto 02 referente aos pilares, vig	gas
e contraventamentos, considerando análise estrutural em 3D	52

Tabela 4.1 – Elementos utilizados na análise através de elementos finitos da
configuração do Protótipo P01B77

Tabela 5.1 – Resultados obtidos da caracterização do material dos protótipos do	
Projeto 01	104
Tabela 5.2 – Quadro comparativo 01 dos resultados obtidos dos ensaios dos	
Protótipos PCP1V1	115
Tabela 5.3 – Quadro comparativo 02 dos resultados obtidos dos ensaios dos	
Protótipos PCP1V1	115
Tabela 5.4 – Quadro comparativo dos resultados obtidos dos ensaios dos	
Protótipos PCP1Vc1	120
Tabela 5.5 – Quadro comparativo 01 dos resultados obtidos dos ensaios dos	
Protótipos PEP2V1V2	133
Tabela 5.6 – Quadro comparativo 02 dos resultados obtidos dos ensaios dos	
Protótipos PEP2V1V2	133

Tabela 6.1 – Valores das rigidezes (k_{med}) das ligações semi-rígidas utilizados na
segunda análise estrutural do Projeto 01137
Tabela 6.2 – Esforços solicitantes nas barras do Projeto 01 considerando ligações semi-
rígidas141
Tabela 6.3 – Valores de momento fletor obtidos nas extremidades das vigas
pertencentes à ligação parafusada em estudo142
Tabela 6.4 – Perfis utilizados como pilares, vigas e contraventamentos na segunda
análise de dimensionamento da estrutura em 3D do Projeto 01144
Tabela 6.5 – Quantitativo de material utilizado no Projeto 01 referente aos pilares, vigas
e contraventamentos, considerando a segunda análise estrutural em 3D 148
Tabela 6.6 – Quantitativo de material utilizado no Projeto 01 referente às ligações e a
taxa total de toda estrutura148

1. INTRODUÇÃO

A Moradia no Brasil é um dos direitos sociais assegurados pela Constituição Federal Brasileira. Embora esse direito esteja garantido por lei, para muitos brasileiros o acesso à moradia é muito difícil. Assim, a situação habitacional brasileira é muito precária, como revelada pelas estatísticas sociais.

É importante notar que o déficit está concentrado na população de baixa renda, o que o torna um grave problema social. A pesquisa da Fundação João Pinheiro estimou que do déficit urbano em 2000, cerca de 83% era relativo a famílias com renda de até três salários mínimos.

Uma das alternativas que surgem para combater essa carência habitacional são os sistemas construtivos industrializados utilizando estruturas metálicas em suas concepções. E dentro desse campo de estruturas metálicas estão as estruturas constituídas de perfis formados a frio.

Um exemplo é o Projeto USITETO (Usiminas, 2003) desenvolvido pela Usiminas que contém um projeto de quatro pavimentos e um projeto de casa popular. O primeiro, com dezesseis unidades por edificação, possui em cada unidade área total de $46,69 \text{ m}^2$ ($42,54 \text{ m}^2$ de área útil), divididos entre sala, dois quartos, uma pequena circulação, um banheiro, cozinha e área de serviço. Já a casa popular é composta por engradamento metálico, com ou sem pilares, que servem de guias para o alinhamento das alvenarias, com a vantagem de serem adequadas à auto-construção. Nesse sistema, destaca-se ainda a possibilidade de a casa ser construída em módulos, com um núcleo inicial formado por um quarto, cozinha e banheiro, totalizando uma residência de 36 m² de área construída.

As estruturas são compostas por perfis formados a frio a partir de chapas ou tiras metálicas finas e utilizando um processo mecânico de dobramento. As espessuras dessas chapas ou tiras variam de 1,2 mm a 8,0 mm (NBR 14762:2001).

As vantagens da utilização dos perfis formados a frio em relação às estruturas metálicas compostas de perfis laminados ou soldados e em relação às estruturas compostas por outros materiais são:

- Economia, elegância e leveza;
- Variabilidade de seções transversais;
- Flexibilidade (variação de produtos);
- Facilidade de obtenção, de produção em série e de montagem.

O uso de perfis formados a frio iniciou-se nos Estados Unidos e Grã Bretanha na década de 50 do século 19. Mas só a partir de 1940 que a utilização desses perfis foi ampliada para a construção civil. Em 1946, surgiram as primeiras especificações para projeto através do American Iron Steel Institute (AISI). Hoje, no Brasil, os perfis formados a frio são amplamente utilizados e recentemente foi publicada a norma brasileira NBR 14762:2001, Dimensionamento de Estruturas de Aço Constituídas de Perfis Formados a Frio.

Nas últimas décadas ocorreram grandes progressos no conhecimento do comportamento de estruturas em perfis formados a frio. Vários fatores como, conhecimento científico, aços mais resistentes, métodos modernos de fabricação e normas técnicas atualizadas, contribuíram para a evolução do conhecimento. Assim, o mercado de perfis formados a frio parece entrar com bastante confiança no novo milênio, (Rondal, 2000).

Perfis formados a frio são usados amplamente em muitos seguimentos como em veículos, racks de armazenagem e móveis. Aplicações comuns de perfis formados a frio em edificações são encontradas em painéis de fechamento, vigas de pisos com vãos modestos, coberturas, mezaninos e em construções agrícolas. As seções transversais podem ser do tipo perfil, figura 1.1, ou do tipo painel, figura 1.2.

Desde 1990 existe uma tendência de se estender a aplicação de perfis formados a frio em edificações de pequeno porte utilizando esses tipos de perfis em vigas e pilares pertencentes aos pórticos principais da edificação. As seções mais comuns usadas em perfis formados a frio são as seções "U", simples e enrijecido, e "Z" com espessuras variando de 1,2 a 3,0 mm. Geralmente, utilizam-se aços com tensão de escoamento de 280 e 350 MPa, e, recentemente, tem-se utilizado aços de alta resistência com tensão de escoamento de 450 MPa.

Figura 1.1 - Seções transversais usuais de perfis formados a frio.

Figura 1.2 - Seções transversais usuais de painéis, decks e chapas corrugadas.

No entanto, para compatibilizar economia, leveza e flexibilidade de montagem, a otimização da edificação do ponto de vista estrutural envolve a concepção e principalmente o tipo de ligação.

As ligações são todos os detalhes construtivos que promovem a união de partes da estrutura entre si ou sua união com elementos externos a ela, como exemplo pode-se citar as fundações. As ligações são compostas pelos elementos de ligação (enrijecedores, placas de base, cantoneiras, chapas de Gusset, etc) e pelos meios de ligação (soldas, parafusos, rebites, barras rosqueadas, etc).

A classificação das ligações pode ser feita segundo:

- à sua rigidez: flexível, rígida e semi-rígida;
- à sua resistência: flexível, de resistência parcial e de resistência total;

È usual em edificações que utilizam perfis formados a frio o uso de ligações soldadas entre seus membros. Mesmo sendo eficiente no comportamento estrutural, esse

tipo de ligação está suscetível a execução com baixa confiabilidade. As ligações parafusadas apresentam uma maior garantia de qualidade e rapidez na execução.

Vale ressaltar também a possibilidade de utilização de ligações mistas que são verificadas quando a laje de concreto participa da transmissão de momento fletor de uma viga mista para um pilar ou para outra viga mista no vão adjacente. Esse tipo de ligação é normalmente obtida a partir de uma ligação metálica flexível ou semi-rígida, aumentando substancialmente sua rigidez e sua resistência a momento. Assim, alguns manuais de projeto foram publicados pelo AISC (Leon, 1996) e pela ASCE (1998). De maneira geral, uma ligação mista tem grande rigidez inicial, mas não tem a mesma resistência a flexão da viga mista suportada pela mesma, sendo, portanto, uma ligação de resistência parcial (Queiroz, 2001).

No entanto, para que o comportamento estrutural vise um projeto mais econômico, utilizando a semi-rigidez da ligação, é necessária a determinação experimental do nível de rigidez do tipo de ligação em estudo, como por exemplo as ligações parafusadas.

Recentes trabalhos foram desenvolvidos nesse campo de pesquisa tanto de caráter experimental quanto analítico/numérico.

Chung (1999) realizaram uma investigação experimental em ligações parafusadas de bases de pilares e em ligações parafusadas viga-pilar. Os pilares e vigas dos protótipos eram constituídos de perfis I enrijecido formados por dois perfis U enrijecido unidos pelas almas através de parafusos. Na configuração dos tipos de ligação utilizava-se placas de Gusset somente parafusadas nas almas dos pilares e vigas. Nos ensaios foram determinados os modos de colapso, as rigidezes e os momentos resistentes das ligações em estudo. Com os resultados destes, concluíram que esses tipos de ligação entre perfis formados a frio são estruturalmente viáveis e, com a consideração de suas rigidezes, os projetos podem se tornar mais econômicos.

Shakourzadeh (1999) utilizaram uma formulação em elementos finitos para analisar pórticos espaciais. Um método numérico foi apresentado para explicar as deformações de ligações em análises linear, não-linear e de estabilidade em estruturas tridimensionais compostas de perfis formados a frio. Nessas análises foram considerados os efeitos de membrana, flexão e torção. Com isso, concluíram que o método numérico apresentado pode ser introduzido facilmente em um existente manual

4

de elementos finitos, que o comportamento da ligação é muito importante para a determinação da estabilidade e da resistência última das estruturas e que os pórticos analisados são sensíveis à flexibilidade da ligação.

Chung (2000) analisaram o comportamento de ligações em perfis formados a frio que resistiam somente ao esforço de cisalhamento. Essas ligações eram compostas de cantoneiras parafusadas nas vigas e nos pilares, formando ligações viga-viga e viga-pilar. O perfil das vigas e dos pilares era o U enrijecido. O programa experimental foi composto por 24 ensaios com quatro diferentes tipos de configurações da ligação. Nos ensaios foram determinados os modos de colapso e o comportamento dessas ligações. Após os ensaios concluiu-se que essas ligações são praticamente ligações resistentes somente aos esforços de cisalhamento. Assim, com os resultados dos ensaios juntamente com as prescrições da BS5950 parte 5 e Eurocode parte 1.3, um conjunto de regras de dimensionamento foi formulado.

Chung (2001) estabeleceram um modelo em elementos finitos, com elementos sólidos tridimensionais, para investigar os mecanismos de colapso de ligações parafusadas em perfis formados a frio sujeitas somente a esforços de cisalhamento. Um estudo paramétrico foi realizado, com diferentes configurações de ligações, para determinar as resistências de cálculo. Foi feita também uma comparação entre os resultados das modelagens e os dimensionamentos propostos em quatro normas técnicas. Concluíram que esses dimensionamentos propostos não eram aplicáveis para ligações parafusadas utilizando aços de alta resistência devido à redução de ductibilidade. Então, propuseram uma calibração das fórmulas semi-empíricas de dimensionamento em conjunto com os resultados obtidos nas análises com elementos finitos.

Wong (2002) fizeram 20 ensaios em ligações viga-pilar e em bases de pilares com diferentes configurações. Os objetivos visavam determinar os momentos resistentes e as rigidezes dessas ligações entre os perfis formados a frio. Conjuntamente com essas determinações, obtiveram os modos de colapso. Assim, concluíram que a utilização dessas ligações com suas respectivas rigidezes devem ser utilizadas com segurança tanto no comportamento estrutural quanto no dimensionamento das mesmas. Além de trabalhos realizados em ligações parafusadas de perfis formados a frio, foram desenvolvidos outros trabalhos em ligações parafusadas utilizando outros tipos de perfis, como os soldados e laminados.

Ribeiro (1998) apresentou resultados teóricos e experimentais sobre o comportamento estrutural de ligações parafusadas viga-pilar com chapa de topo. Essas ligações foram analisadas numericamente, via método dos elementos finitos, e por dois métodos tradicionais de dimensionamento. Esses resultados foram comparados com os obtidos em ensaios experimentais de 35 protótipos, onde também foram determinadas as rotações dos mesmos. Assim, concluiu que os resultados obtidos na análise numérica foram inferiores aos obtidos experimentalmente, sendo estes específicos para os casos estudados, e os métodos de dimensionamento se mostraram conservadores em relação ao observado nos ensaios experimentais.

Anant (1999) apresentaram uma aproximação através de formulações analíticas para a determinação do comportamento de curvas histereses momento-rotação de ligações compostas por duas cantoneiras parafusadas nas mesas inferior e superior da viga e parafusadas em uma das mesas do pilar. Foram realizados 12 ensaios experimentais para a obtenção de parâmetros para a determinação das equações. Os parâmetros determinados foram a rigidez inicial, momento resistente último, rotação última, momento de transição, momento característico e parâmetro de rigidez. Os resultados dos ensaios mostraram que esse tipo de ligação se comporta como uma ligação semi-rígida. Assim, concluíram que as equações desenvolvidas para quatro modelos de histereses foram aceitáveis quando comparadas com os resultados experimentais.

Lima (1999) realizaram ensaios experimentais em ligações viga-pilar, cuja viga era conectada ao eixo de menor inércia do pilar. O tipo de ligação estudada era composta de cantoneiras parafusadas na mesa inferior e na alma da viga que se conectavam na alma do pilar. Os principais parâmetros observados nos ensaios experimentais foram as espessuras da alma do pilar, das cantoneiras e da alma da viga. Concluíram que a resistência última desse tipo de ligação era limitada pela formação de rótula plástica na alma do pilar e dentre os tipos de configurações, desse tipo de ligação, ensaiadas obtiveram ligações flexíveis e semi-rígidas. Uma outra linha de pesquisa é a de utilização da semi-rigidez de ligações em estruturas via implementação computacional.

Pinheiro (2003) apresentou uma implementação computacional de formulações geometricamente não-lineares de elementos de treliças planas e espaciais e, além disso, fez análise estática não-linear, por meio de implementações computacionais, de pórticos planos com ligações semi-rígidas. Para o caso de elementos de treliça, as expressões para a matriz de rigidez e do vetor de forças internas para cada uma das formulações utilizadas são apresentadas, bem como o processo de obtenção das mesmas. Já para elementos de pórtico com ligações semi-rígidas, além da matriz de rigidez, foram apresentados métodos para modelar o comportamento não-linear das conexões. Assim, foram realizadas análises computacionais de sistemas estruturais rotulados e com ligações semi-rígidas, cujos resultados foram interpretados e comparados com os valores encontrados na literatura.

Assim, pode-se observar que um dos objetivos principais dos trabalhos citados acima era a determinação do comportamento de ligações parafusadas quanto a sua rigidez a rotação. Conjuntamente com essa determinação, foram avaliados os momentos últimos, os modos de colapso, os campos de deslocamento e comparações com análises numéricas, via método dos elementos finitos, e procedimentos normativos de dimensionamento.

Portanto, neste presente trabalho, foram desenvolvidos estudos teóricoexperimentais do comportamento de ligações viga-pilar parafusadas em perfis formados a frio, de modo a adequar o baixo custo da construção com a execução da mesma.

A edificação, cujo projeto foi utilizado nesse trabalho, foi a vencedora do 2° Prêmio Arquitetura em Aço, patrocinado pela USIMINAS, Projeto USIHAB.

Foram realizadas análises experimentais de ligações tipo do projeto em escala real. Através das análises dos ensaios foram obtidas as curvas momento-rotação das ligações e, consequentemente, as rigidezes das mesmas ressaltando que esses resultados das rigidezes devem ser verificados com uma maior série de ensaios. Foram determinados, também, os momentos últimos, os modos de colapso, os campos de deslocamento e os campos de deformação dos protótipos ensaiados. Além dessas determinações, foram apresentados pré-dimensionamentos desses tipos de ligações, com o intuito de estimar as dimensões das partes componentes das mesmas.

7

Com a obtenção dessas rigidezes nas análises experimentais, foi realizada uma segunda análise e dimensionamento do Projeto USIHAB de dois pavimentos, determinando-se, assim, uma concepção estrutural mais otimizada e eficiente. Esses estudos realizados foram de caráter qualitativo e para indicar a viabilidade de utilização da semi-rigidez das ligações, não devendo ser utilizada em projeto final.

A partir do descrito anteriormente, foi montada uma estrutura para o presente trabalho que será apresentada a seguir, através de uma descrição sucinta dos conteúdos dos capítulos.

No capítulo 2 é descrito todo o Projeto USIHAB. São apresentados os projetos arquitetônicos das edificações de dois e quatro pavimentos, os materiais utilizados nessas edificações e os perfis formados a frio adotados para as respectivas estruturas

No capítulo 3 são realizadas as análises estruturais e os dimensionamentos das edificações em estudo. Através da utilização dos softwares comerciais ANSYS Versão 6.0 (Ansys, 2001) e CFSLT Versão 3.5 (CFSLT, 2000), são realizadas as análises estruturais e os dimensionamentos, respectivamente. Nesse mesmo capítulo é apresentada, também, uma breve descrição dos tipos de ligações quanto a sua rigidez e alguns métodos de determinação dessa rigidez através das curvas momento-rotação das mesmas.

Nos capítulos 4 e 5 são apresentados os programas experimentais dos projetos de quatro e dois pavimentos, respectivamente, do Projeto USIHAB. Nesses programas são apresentados os esquemas de montagem, a instrumentação, a metodologia de ensaio e os resultados de todos os protótipos ensaiados nesse presente trabalho.

No capítulo 6 é realizada uma nova análise estrutural e um novo dimensionamento do projeto de dois pavimentos, considerando as rigidezes das ligações determinadas no programa experimental referente a esse mesmo projeto.

No capítulo 7 são apresentadas as conclusões e as considerações finais do trabalho desenvolvido.

Em relação aos anexos, no Anexo I é apresentado o esquema estrutural em planta do Projeto USIHAB de quatro pavimentos. No Anexo II são apresentados os dimensionamentos realizados para os tipos de ligações estudadas. Nos Anexos III e IV são apresentados, respectivamente, as planilhas dos ensaios e os gráficos de resultados dos protótipos ensaiados nesse presente trabalho.

2. PROJETO USIHAB

2.1. GENERALIDADES

As edificações referentes à habitação popular no Brasil são, em sua maioria, relacionadas a um produto de baixa qualidade e sem preocupação com o usuário. Isso se dá pelo fato dessas edificações serem abordadas considerando, principalmente, uma alta produtividade e economia.

Para implantação de edificações unifamiliares e/ou multifamiliares, com o objetivo de atingir uma edificação de baixo custo preservando a qualidade, é necessário viabilizar um produto acessível e de rápida execução. Para isso ocorrer, o projeto deve ser submetido a vários estudos visando-se o desenvolvimento dos seus sistemas estrutural e construtivo, com ênfase na simplificação do processo construtivo e minimização dos custos para, finalmente, analisar-se a viabilidade econômica para a finalidade a que o projeto destina-se.

Diante dessas definições, o 2º Prêmio Usiminas Arquitetura em Aço deu como vencedor o Projeto USIHAB. Esse projeto foi concebido pela equipe de arquitetos coordenados pelo arquiteto Sylvio Emrich de Podestá e que consiste em um sistema tipo "just in time" com possibilidades diversas de implantação, abrangendo desde unidades duplex unifamiliares até edifícios com 4 andares (Usiminas, 2000).

O sistema tipo "just in time" adotado considera que de um lado há uma estrutura base, repetível na horizontal e vertical, denominada "célula mãe", que estabelece de forma modular a edificação, sem condicionar totalmente sua dimensão. E de outro lado, define-se o conjunto de componentes de divisões internas e externas. Essa "célula mãe" consiste em um módulo básico que, agregado ou multiplicado, gera diversos tipos de múltiplos, conforme figura 2.1.

a) Exemplo de unidades unifamiliares.

b) Exemplo de edifício de 4 andares.

Figura 2.1 - Tipos de múltiplos gerados pela "célula mãe" (Usiminas, 2000).

Nesse tipo de sistema, enquanto a "célula mãe" tem modelo único, os painéis de fechamento internos e externos e até todo mobiliário são definidos livremente pelos usuários ou pela facilidade de encontrar esses produtos na região onde a edificação será instalada.

Têm-se como características básicas desse projeto os itens abaixo relacionados:

- utilização de um sistema "just in time";
- permite variações imediatas na escolha dos subprodutos ou componentes diversos;
- a unidade básica, "célula mãe", tem 37,2 m². Com a utilização de módulos de acoplagem, são geradas habitações de 46,2 m² e de 55,2 m²;
- fechamentos e divisões com qualidade industrial;
- possibilidade de transporte de peças acabadas para unidades individuais ou semi-acabadas no caso de verticalização;
- possibilidade de financiamento total da unidade ou por partes;
- custo controlado da unidade pretendida e garantia da sua qualidade por um longo período;
- qualidade da "célula mãe" pode vir através de uma cartilha que fornece as diversas formas de ocupar o imóvel;
- implantações coletivas não só verticais, mas também mais verticais e escalonadas (superposições sucessivas ou balanços);
- como a "célula mãe" é um produto de mercado e não de uma classe específica, ela deve permitir ser industrializada de forma a suprir demandas para todo tipo de faixa social, como por exemplo: hotéis, alojamentos, acampamentos, canteiro de obra, etc.;
- possibilidade de desmontagem, mesmo vertical.

A estrutura da "célula mãe" (pilares, vigas e contraventamentos) é formada por perfis metálicos formados a frio, USI-SAC-250, soldados ou parafusados. Essa estrutura pode ser transportada em partes, semi-montada, montada, montada e vedada, conforme a montagem a ser realizada.

As lajes podem ser de concreto armado, mista e painéis armados de concreto celular. Já as vedações podem ser em blocos ou painéis piso/teto de concreto celular, de gesso, compostos, de concreto, de isopor, etc.

Os acabamentos estão sujeitos ao tipo de usuário e/ou de utilização da "célula mãe" e seus componentes:

- a) Pisos → podem ser de cimento natado, concreto polido, cerâmico, melamílico, emborrachado, madeira flutuante, acabados pré ou pós-montagem;
- b) Vedações → painéis acabados recebendo pintura, revestimentos diversos aplicados pré ou pós-montagem;
- c) Esquadrias → perfis laminados, perfis formados a frio de aço e/ou de inox,
 PVC, madeira, etc.

Assim, considerando a flexibilidade de utilização tanto de materiais quanto da estrutura da "célula mãe", o Projeto USIHAB se torna muito versátil e maleável quanto a sua arquitetura final. Portanto, abaixo são citados alguns dos tipos de edifícios possíveis de serem instalados:

- casas duplex: dois andares com diversas possibilidades de elementos agregados;
- edifícios verticais de 2,3 e 4 andares;
- edifícios com balanço: 3 ou 4 andares;
- edifícios escalonados: com avanço de um módulo da "célula mãe" em declive ou aclive;
- edifícios múltiplos ou contínuos: acoplagem múltipla de "células mãe" e módulos básicos formando grandes estruturas contínuas;
- edifícios verticais de grande porte: em superposições simples, múltiplas ou superposições atirantadas.

Com isso, diante de todas essas possibilidades de tipos de edifícios, foram selecionados dois destes para fim de estudo neste presente trabalho. A seguir são descritos esses tipos selecionados do Projeto USIHAB.

2.2. TIPOLOGIA DOS PROJETOS ARQUITETÔNICOS UTILIZADOS

Dos tipos de projetos arquitetônicos possíveis do Projeto USIHAB, dois destes são analisados no presente trabalho. Os projetos em estudo são projetos habitacionais multifamiliares para pessoas de baixa renda. Um é composto de dois pavimentos, enquanto o outro contém quatro pavimentos (Protótipo USIHAB, 2001). A seguir são descritos ambos os projetos.

2.2.1. Projeto 01 – 2 Pavimentos

A figura 2.2 detalha a planta de situação e uma da arquitetura desse projeto utilizado no presente trabalho. Em cada edificação, há dois pavimentos e em cada um desses pavimentos há uma unidade habitacional. Assim, a figura 2.3 mostra as plantas baixas dos dois pavimentos, tendo cada unidade habitacional 36,90 m² de área interna útil. Essa figura mostra, também, a distribuição interna dos cômodos.

A circulação vertical da edificação se dá por uma escada localizada na parte posterior da edificação que dá acesso ao segundo pavimento. Já o primeiro pavimento, se localiza no térreo e seu acesso se faz pela parte frontal da edificação. Essa escada é constituída de uma parte em concreto armado (escada-base em concreto) e outra em aço, que se apóia nessa parte em concreto e na edificação propriamente dita.

As caixas d'água se localizam nas lajes da cobertura e no telhado são utilizadas telhas metálicas trapezoidais que são suportadas por uma estrutura metálica em perfis formados a frio. Essa estrutura se apóia nas vigas da cobertura.

Figura 2.2 – Planta de situação do Projeto 01 (Protótipo USIHAB, 2001).

b) Planta baixa do 2º pavimento.

2.2.2. Projeto 02 – 4 Pavimentos

Nesta edificação há quatro pavimentos e em cada um desses pavimentos há quatro unidades habitacionais. Essa edificação contém dois tipos diferentes de distribuição de unidades habitacionais. A figura 2.4 mostra a planta baixa do 1°, 2° e 4° pavimentos, enquanto que a figura 2.5 mostra a planta baixa do 3° pavimento. No 1°, 2° e 4° pavimentos, todas as unidades habitacionais têm 46,35 m² de área interna útil e nas unidades pertencentes ao 3° pavimento, duas destas têm 55,80 m² e as outras duas têm 36,90 m² de área interna útil. Essas figuras mostram, também, a distribuição interna dos cômodos de cada unidade habitacional.

A circulação vertical da edificação se dá por meio de lances de escada em estrutura metálica localizados na parte central de edificação. Cada um desses lances dá acesso a um hall central que se comunica com corredores que dão acesso às unidades habitacionais determinando, assim, a circulação horizontal da edificação. Esses lances de escada fazem parte de uma estrutura vertical que serve de suporte para as caixas d'água.

Em relação à cobertura, no telhado são utilizadas telhas metálicas trapezoidais que são suportadas por estruturas metálicas em perfis formados a frio em forma de arco. Essas estruturas se apóiam em algumas vigas da cobertura e em alguns pilares.

Figura 2.4 – Planta Baixa do 1°, 2° e 4° pavimentos do Projeto 02 (Protótipo USIHAB, 2001).

Figura 2.5 – Planta baixa do 3º pavimento do Projeto 02 (Protótipo USIHAB, 2001).

2.3. MATERIAIS UTILIZADOS

2.3.1. Aços

O aço utilizado em toda estrutura, exceto nas partes componentes das ligações, é o USI-SAC-250. Esse tipo de aço estrutural é resistente à corrosão atmosférica e é aplicado na construção civil em telhas, silos, tapamentos laterais, forros e peças estruturais. As principais vantagens da sua utilização são o aumento do tempo de vida útil e média resistência, além da ótima relação custo/benefício obtida em projetos da construção civil e indústria em geral.

A composição química e as propriedades mecânicas desse aço são descritas nas tabelas 2.1 e 2.2, respectivamente. Nessas tabelas, considera-se: C – carbono; Mn – manganês; Si – silício; P – fósforo; S – enxofre; Cu – cobre; Cr – cromo; LE – limite de escoamento; LR – limite de ruptura; BM – base de medida; e – espessura.

Tabela 2.1 – Composição Química do aço USI-SAC-250 em porcentagem (Usiminas, 2003).

Aço	С	Mn	Si	Р	S	Cu	Cr
USI-SAC-250	≤0,18	≤,20	≤0,35	≤0,035	≤0,035	0,25 a 0,50	0,40 a 0,65

Tabela 2.2 – Propriedades mecânicas do aço USI-SAC-250 (Usiminas, 2003).

Aço	LE (MPa)	LR (MPa)	Alongamento (%) (BM = 50 mm)	Dobramento 180°
USI-SAC 250	≥250	≥370	≥22	Ot

O aço utilizado nas partes componentes das ligações (placas, cantoneiras, etc) é o USI-SAC-300 (anteriormente denominado USI-SAC-41 Multi Grade). Esse é um aço estrutural patinável com elevada resistência à corrosão atmosférica aplicado pela construção civil em edifícios, pontes, viadutos, vagões e equipamentos.

A composição química e as propriedades mecânicas desse aço são descritas nas tabelas 2.3 e 2.4, respectivamente. Nessas tabelas, considera-se: C – carbono; Mn – manganês; Si – silício; P – fósforo; S – enxofre; Cu – cobre; Cr – cromo; Ni- níquel; Ti – titânio; Nb – nióbio; LE – limite de escoamento; LR – limite de ruptura; BM – base de medida; t – espessura.

Tabela 2.3 – Composição Química do aço USI-SAC-300 em porcentagem (Usiminas, 2003).

Aço	С	Mn	Si	Р	S	Cu	Cr	Ni	Ti	Nb
USI- SAC- 300	≤0,18	≤1,3	0,5~1,5	0,01~0,06	≤0,03	0,05~ 0,4	≤0,6	≤0,4	≤0,15	≤0,05

Aco	LF	LR (MPa)	Al	Dobramento		
Açu	(MPa)		t (mm)	BM	Valor 180°	
	(111 a)			(mm)	(%)	
USI-SAC 300	≥300	400~550	2,0~5,0	50	≥19	1,5t
051 5/10 500			5,0~12,7	200		

Tabela 2.4 – Propriedades mecânicas do aço USI-SAC-300 (Usiminas, 2003).

Já o aço utilizado nos parafusos dessas ligações é o ASTM A-325. As propriedades mecânicas desse aço estão mostradas na tabela 2.5. Nessa tabela, considera-se: LE – limite de escoamento; LR – limite de ruptura; d – diâmetro máximo do parafuso.

Tabela 2.5 – Propriedades mecânicas do aço ASTM A-325 (NBR 8800:1986).

A a a	LE	LR	D (mm)	Tipo de
Aço	(MPa) (MPa)		D (mm)	Material
ASTM A-325	635	825	$12,7 \le d \le 25,4$	Carbono,
	560	725	$25,4 < d \le 38,1$	Temperado

2.3.2. Outros Materiais

Como citado no item 2.1, o Projeto USIHAB tem grande flexibilidade em relação à utilização dos materiais. Portanto, para análise tanto do Projeto 01 quanto do Projeto 02, foram definidos materiais convencionais e de fácil obtenção no mercado brasileiro. Isso se dá pelo fato dessas edificações poderem ser instaladas em qualquer região do país. A seguir são mostrados os materiais utilizados nas respectivas edificações:

- Laje: maciça em concreto armado;
- Piso: cerâmico;
- Vedações internas e externas: tijolo cerâmico furado de 9,0 cm de espessura;
• Telha: telha de aço de seção transversal trapezoidal.

2.4. PERFIS ADOTADOS

Foram adotados perfis formados a frio no presente trabalho. Esses são obtidos através de processos de dobramento de chapas de aço, tanto por dobradeiras quanto por perfiladeiras. As dobradeiras geralmente trabalham com comprimentos de 3000 a 6000 mm e com uma capacidade de dobrar chapas de até 12,5 mm de espessura. As perfiladeiras, por sua vez, podem produzir perfis de qualquer comprimento, estando limitadas a perfis de chapas mais finas, geralmente até a espessura de 3,75 mm (Dias, 2002).

Como dito anteriormente nos itens 2.1 e 2.2, dois tipos de edificações são analisados no presente trabalho. Para o Projeto 01 (2 pavimentos) adotou-se os perfis tipo "caixa" para as vigas, perfis tipo "I enrijecido" para os pilares e perfis "U enrijecido" para os contraventamentos e pilares secundários. No Projeto 02, por sua vez, adotou-se os perfis tipo "caixa" para as vigas e pilares e perfis "U enrijecido" para os contraventamentos e pilares secundários.

Os perfis tipo "caixa" são perfis formados por dois perfis "U enrijecido" formados a frio, unidos através de soldagem intermitente, ao longo de seu comprimento, pelos seus enrijecedores, formando, assim, uma caixa.

Os perfis "I enrijecido" são formados por dois perfis tipo "cartola", unidos através de soldagem intermitente, ao longo de seu comprimento, pelas suas almas.

A seguir, na figura 2.6, são ilustrados esses tipos de perfis utilizados e suas respectivas dimensões.

b_w – largura nominal da alma;

D – largura nominal do enrijecedor de borda do perfil;

 b_f – largura nominal da mesa ou aba;

t – espessura da chapa do perfil.

Figura 2.6 – Seção transversal dos perfis utilizados.

3.1. INTRODUÇÃO

Como descrito no item 2.2, neste trabalho foram analisados dois tipos de projeto pertencentes ao Projeto USIHAB. As estruturas desses projetos, Projeto 01 e Projeto 02, são compostas por perfis formados a frio e os outros materiais utilizados, como de fechamento e revestimento, por exemplo, são de fácil obtenção e aplicação em qualquer região do país.

A análise estrutural e o dimensionamento das estruturas de ambos os projetos foram feitos através da utilização dos softwares comerciais ANSYS Versão 6.0 (Ansys, 2001) e CFSLT Versão 3.5 (CFSLT, 2000), respectivamente. Sendo este último baseado nas prescrições da norma americana AISI (1996).

Em relação à análise estrutural, os lançamentos estruturais foram baseados nos projetos arquitetônicos dos Projetos 01 e 02, na concepção de padronização das edificações e nos procedimentos de montagem de ambos os projetos. Foram realizadas análises tridimensionais (3D) em ambos os projetos no qual as ligações viga-pilar são admitidas como flexíveis. Essa hipótese estrutural foi utilizada, primeiramente, para a determinação das dimensões das seções transversais dos perfis (vigas e pilares). A partir dessa determinação, realizou-se a montagem dos projetos de execução dos ensaios experimentais das ligações propostas para o presente trabalho.

O dimensionamento de vigas, pilares e contraventamentos foram baseados nas prescrições da norma americana AISI (1996) (LRFD) e da norma brasileira NBR 14762:2001. A partir desse dimensionamento foram avaliadas as ligações mais significativas que serão analisadas experimentalmente neste trabalho.

Nos itens seguintes desse capítulo são desenvolvidas as análises estruturais e o dimensionamento de ambos os projetos em estudo, bem como a apresentação de tipos de ligações viga-pilar e de métodos para a determinação das rigidezes destas através da curva momento-rotação.

3.2. ANÁLISE E DIMENSIONAMENTO DO PROJETO 01

Nesse item são apresentados o levantamento de cargas, as análises tridimensional e bidimensional da estrutura e o dimensionamento do projeto de dois pavimentos.

3.2.1. Levantamento de Ações do Projeto 01

Os tipos de carregamento utilizados para o desenvolvimento desse projeto foram sobrecarga (Sc), carga permanente (CP) e ações devido ao esforço do vento (CV). Os carregamentos "Sc" e "CP" foram obtidos, respectivamente, através da NBR 6120:1980 e de catálogos de fabricantes. O carregamento "CV" foi obtido através da NBR 6123:1988. Esses tipos de carregamento foram aplicados na estrutura por área de influência, sendo o carregamento "CV" aplicado somente nos pórticos de estabilização das edificações.

Foram considerados quatro valores para "Sc":

- 1,50 kN/m², para lajes de piso convencionais;
- 2,00 kN/m², para lajes de piso onde se tem área de serviço;
- $0,50 \text{ kN/m}^2$, para lajes de cobertura;
- $2,50 \text{ kN/m}^2$, para escada.

Em relação ao carregamento "CP", foram considerados os seguintes itens, além do peso próprio da estrutura:

- lajes em concreto armado:
 - → para lajes de cobertura → espessura de 5 cm → 1,25 kN/m²;
 - para lajes de piso \rightarrow espessura de 7 cm \rightarrow 1,75 kN/m²;
- revestimento:
 - cerâmico no piso: 0,93 kN/m²;
 - da cobertura: $0,63 \text{ kN/m}^2$;
 - da escada: $0,3 \text{ kN/m}^2$.
- tijolo cerâmico furado de espessura 9 cm para paredes internas e externas: 5,85 kN/m;

- telha metálica trapezoidal de espessura 0,65 mm: 0,0637 kN/m²;
- estrutura do telhado: 0,15 kN/m²;
- estrutura da escada: 0,20 kN/m²;
- caixa d'água: são três caixas de 500 litros situadas nas lajes da cobertura.

3.2.2. Combinação de Ações do Projeto 01

Os carregamentos atuantes devem ser combinados devido ao fato dos mesmos poderem atuar simultaneamente. Com isso, são definidos dois tipos de combinações de ações de carregamento de acordo com a NBR 14762:2001:

- Combinações de ações para os estados limites últimos e;
- Combinações de ações para os estados limites de utilização.

Para o primeiro tipo, são definidas cinco combinações de ações para o Projeto 01. Os valores dos coeficientes utilizados nessas combinações são mostrados na tabela 3.1. Já para o segundo tipo, são definidas três combinações, cujos seus coeficientes são mostrados também na tabela 3.1.

Tabela 3.1 – Coeficientes utilizados nas combinações de ações para os estados limites
últimos e para os estados limites de utilização.

				Combi	nações			
Tipos de Carregamento		Estados	Limites	Estados Limites de Utilização				
	C1	C2	C3	C4	C5	C6	C7	C8
СР	1,4	1,4	1,4	1,4	1,4	1	-	-
Sc	1,4	0,56	1,4	1,4	0,56	1	0,3	0,3
CV na direção X (CVx)	0,84	1,4	-	-	-	-	1	-
CV na direção Z (CVz)	-	-	-	0,84	1,4	-	-	1

3.2.3. Concepção Estrutural do Projeto 01

O lançamento estrutural foi baseado no projeto arquitetônico do Projeto 01, na concepção de padronização da edificação e no procedimento de montagem. O esquema estrutural em planta é apresentado na figura 3.1, bem como a nomenclatura para identificação dos eixos de localização dos pórticos.

a) Esquema estrutural em planta do 2º pavimento.

b) Esquema estrutural em planta da cobertura.Figura 3.1 – Esquemas estruturais em planta.

Na concepção de padronização da edificação, visa-se um edifício com perfis padronizados e com alta produtividade na fábrica, diminuindo, assim, o preço final da edificação. Essa padronização também visa a construção desse edifício em qualquer localidade.

Em relação ao procedimento de montagem, os pórticos pertencentes aos eixos A01, A02, A03 e A04 serão soldados na fábrica. Estes são compostos por pilares contínuos e vigas que são soldadas nestes. Esses pórticos serão fixados no local da obra. A seguir, serão montadas os "pórticos treliçados soldados na fábrica" contidas nos eixos B01 e B02. Esses "pórticos" serão fixados nos pilares P2 através do tipo de ligação parafusada proposta neste trabalho. E por fim, serão montadas o restante das vigas, que também serão fixadas nos pilares P01 e P02 através do tipo de ligação parafusada proposta neste trabalho.

Outro parâmetro importante nessa concepção estrutural são os materiais de fechamento utilizados. A escolha desses materiais, citados no item 3.2.1, tem como intuito proporcionar facilidade de obtenção dos mesmos em qualquer localidade e por gerar uma estrutura mais pesada que aquela considerando outros materiais convencionais, como concreto celular e gesso acartonado. Desse modo tem-se uma concepção estrutural mais abrangente e que pode ser utilizada com maior variedade de materiais.

3.2.4. Análise Estrutural 3D do Projeto 01

Primeiramente, foi realizado um pré-dimensionamento de todos os perfis da edificação, cujo objetivo era determinar seções transversais iniciais de vigas e pilares para a análise inicial. Esse pré-dimensionamento foi desenvolvido através do software Mathcad (2001).

Para a realização da análise estrutural 3D do Projeto 01, foi utilizado o software ANSYS Versão 6.0 (Ansys, 2001). Nesse software as análises são realizadas através do Método dos Elementos Finitos (MEF). Este permite a visualização da estrutura em 3D original e deformada, os esquemas de carregamento e os diagramas de esforços normal, cortante e momento fletor. As cargas podem ser pontuais, uniformes, trapezoidais e de temperatura. Qualquer tipo de vinculação, flexível, rígida ou semi-rígida, pode ser considerada.

No Projeto 01 foi realizada análise linear da edificação. Os elementos utilizados na análise, mostrados na tabela 3.2, foram elementos de barra uniaxiais tridimensionais de dois nós, sendo o elemento LINK 180 para os contraventamentos e pilares P3 e o elemento BEAM 44 para as vigas e pilares P1 e P2. O primeiro é um elemento com três graus de liberdade por nó (translações em relação aos eixos "x", "y" e "z") e o segundo um elemento com seis graus de liberdade por nó (três translações e três rotações em relação aos eixos "x", "y" e "z").Os tipos de cargas utilizadas foram cargas pontuais e uniformemente distribuídas e as ligações foram consideradas flexíveis.

Tabela 3.2 - Elementos utilizados na análise estrutural do Projeto 01.

De acordo com o procedimento de montagem citado no item 3.2.3, as ligações entre vigas e pilares foram consideradas flexíveis. Isso se fez tanto para as ligações onde as vigas foram soldadas nas almas dos pilares, quanto para as ligações utilizando o tipo de ligação parafusada.

Como citado anteriormente no item 2.4, para o Projeto 01 foram adotados perfis tipo "caixa" para as vigas, perfis tipo "I enrijecido" para os pilares e perfis "U enrijecido" para os contraventamentos e pilares secundários "P3".

Os sistemas de estabilização longitudinal e transversal utilizados são sistemas indeslocáveis. Os pórticos pertencentes aos eixos A01 e A04, mostrados na figura 3.2, são responsáveis pela estabilização transversal. Já a estabilização longitudinal é garantida com os pórticos pertencentes aos eixos B01 e B02 contidos entre os eixos A02 e A03. Esses pórticos, que também são mostrados na figura 3.2, são compostos de uma "pórtico treliçado soldado na fábrica" e de dois pilares contínuos.

Figura 3.2 – Sistemas de estabilização do Projeto 01.

A análise estrutural 3D foi realizada com o objetivo de verificar o comportamento da estrutura em três dimensões. As vigas, pilares e contraventamentos da estrutura foram analisados trabalhando conjuntamente, inclusive as vigas e pilares que não pertenciam aos sistemas de estabilização. Assim, obteve-se uma análise mais próxima da realidade.

Primeiramente, toda a estrutura foi modelada em três dimensões no software ANSYS Versão 6.0 (Ansys, 2001) como apresentada na figura 3.3. Nesta modelagem foram utilizados 148 elementos, sendo 10 elementos LINK 180 e 138 elementos BEAM '44.

Figura 3.3 – Modelagem da estrutura 3D do Projeto 01.

Em seguida, os carregamentos "CP", "Sc", "CVx" e "CVz" foram aplicados na estrutura como mostrado na figura 3.4.

a) Carregamento "CP".

b) Carregamento "Sc".

d) Carregamento "CVz". Figura 3.4 – Carregamentos aplicados na estrutura (kN/m).

Após a aplicação dos tipos de carregamento, foram realizadas todas as combinações de ações para o Estado Limite Último, de acordo com a tabela 3.1 do

item 3.2.2. Na figura 3.5 são mostrados todos os esforços nas barras devido à combinação "C1", com o objetivo de exemplificar esse passo da análise.

a) Momento Fletor em relação ao eixo "Z" local (kNm) de cada barra.

b) Momento Fletor em relação ao eixo "Y" local (kNm) de cada barra.

c) Esforço cortante em relação ao eixo "Z" local (kN) de cada barra.

d) Esforço cortante em relação ao eixo "Y" local (kN) de cada barra.

e) Esforço normal (kN) de cada barra.Figura 3.5 –Esforços nas barras devido à combinação "C1".

Realizadas todas as combinações para o Estado Limite Último, foram determinados os esforços solicitantes de cálculo para cada barra. Esses esforços foram determinados verificando-se a pior situação de esforço atuante em cada barra, ou seja, a combinação de ação que mais solicitou cada barra. Assim, na tabela 3.3 são apresentados todos esses esforços com suas respectivas combinações de ações.

			Esforços Solicitantes de Cálculo					
			Momentos		Esforço		Esforço	
Elementos	Barras	Combinação	fletores		cortante		Normal ^{c)}	
		5	(kNm)		(kN)		(kN)	
			Mdz	Mdy	Vdx	Vdy	Nd	
	P1	C5	0,23	3,81	-	7,72	-88,34	
Pilares	P2	C1	2,66	0,03	1,52	-	-148,75	
	P3	C1	-	-	-	-	-23,77	
	V1	C1	29,80	0,05	37,84	-	-1,44	
	V2	C1	13,31	0,01	34,46	-	39,54	
	V3	C1	29,80	0,05	37,84	-	-1,44	
	V4	C5	10,37	0,20	13,17	-	-0,18	
Vigos	V5	C5	15,37	0,13	19,51	-	-19,85	
v igas	Vc1	C1	8,72	0,09	11,07	-	-0,66	
	Vc2	C1	5,7	0,10	11,68	-	-40,71	
	Vc3	C1	8,72	0,09	11,07	-	-0,66	
	Vc4	C5	10,37	0,20	13,17	-	-0,18	
	Vc5	C5	15,37	0,13	19,51	-	-19,85	
Contravantamentos	C1 ^{a)}	C1	-	-	-	-	71,18	
Contraventamentos	C2 ^{b)}	C5	-	-	-	-	-26,41	
a) Barras de contraver	ntamento	situadas nos no	órticos d	de estal	vilização	nerter	centes aos	

Tabela 3.3 – Esforços solicitantes em cada barra do Projeto 01.

a) Barras de contraventamento situadas nos pórticos de estabilização pertencentes aos eixos B01 e B02.

b) Barras de contraventamento situadas nos pórticos de estabilização pertencentes aos eixos A01 e A04.

c) Valores negativos representam esforço de compressão e valores positivos representam esforço de tração.

Com a obtenção dos esforços solicitantes de cálculo em cada barra, foi realizado o dimensionamento de pilares, vigas e contraventamentos de acordo com a AISI (1996) e com a NBR 14762:2001. A tabela 3.4 identifica os perfis determinados para os pilares, vigas e contraventamentos a partir das análises e do dimensionamento.

Elementos	Barras	Perfis
	P1	Ie 165x165x25x2,65
Pilares	P2	Ie 165x165x25x2,65
	P3	Ue 200x100x25x2
	V1	Caixa 200x150x25x3
	V2	Caixa 200x150x20x2
	V3	Caixa 200x150x25x3
	V4	Caixa 200x150x20x2
Vigos	V5	Caixa 200x150x20x2
v igas	Vc1	Caixa 200x150x20x2
	Vc2	Caixa 200x150x20x2
	Vc3	Caixa 200x150x20x2
	Vc4	Caixa 200x150x20x2
	Vc5	Caixa 200x150x20x2
Contravantamentos	C1	Eu 150x60x20x2
	C2	Ue 150x60x20x2,25

Tabela 3.4 – Perfis utilizados como pilares, vigas e contraventamentos na análise de dimensionamento da estrutura em 3D do Projeto 01.

Realizado todo o dimensionamento da estrutura da edificação, foram realizadas as combinações de ações para os Estados Limites de Utilização, de acordo com a tabela 3.1 do item 3.2.2. Na figura 3.6 são mostrados os deslocamentos verticais em metros dos elementos resultantes da aplicação da combinação "C6".

Figura 3.6 –Deslocamentos verticais dos elementos do Projeto 01 devido à combinação "C6".

O deslocamento vertical máximo admissível para as vigas da edificação é de L/350 (Tabela A.1 – Anexo A – NBR 14762:2001), onde "L" é o vão livre teórico da viga em estudo. Assim, tem-se um deslocamento vertical máximo admissível de 9 mm, para vigas de vão 3,15 m, e de 17,57 mm para vigas de vão 6,15 m. Portanto, como o maior deslocamento vertical da edificação foi de 8,27 mm, a edificação satisfaz a esse estado limite de utilização.

Os deslocamentos horizontais da estrutura nas direções dos eixos globais "X" e "Z" foram determinados com a aplicação das combinações "C7" e "C8", respectivamente. As figuras 3.7 e 3.8 ilustram, através de saída gráfica do software utilizado, os deslocamentos horizontais em metros dos elementos resultantes da aplicação dessas combinações.

Figura 3.7 –Deslocamentos horizontais na direção do eixo global "X" dos elementos devido à combinação "C7".

Figura 3.8 –Deslocamentos horizontais na direção do eixo global "Z" dos elementos devido à combinação "C8".

O deslocamento horizontal máximo admissível para a edificação é de H/400, onde "H" é a altura da edificação, e de h/300, onde "h" é a altura entre dois pisos consecutivos (Tabela A.1 – Anexo A – NBR 14762:2001). Assim, tem-se um deslocamento horizontal máximo admissível de 14,45 mm, referente à primeira verificação, e de 9,17 mm, referente à segunda. Portanto, como o maior deslocamento horizontal da edificação foi de 3,16 mm na direção "Z", a edificação satisfaz às duas verificações desse estado limite de utilização.

Após a verificação dos Estados Limites de Utilização, tem-se na tabela 3.5 o quantitativo de material utilizado no Projeto 01 referente aos pilares, vigas e contraventamentos, considerando análise estrutural em 3D.

Elementos	Barras	Perfis	Peso unitário (kg/m)	Quantida- de	L _{Total} (m)	Peso Total (kg)
	P1	Ie 165x165x25x2,65	14,80	4	23,12	342,18
Pilares	P2	Ie 165x165x25x2,65	14,80	4	23,12	342,18
	P3	Ue 200x100x25x2	6,70	2	5,46	36,58
	V1	Caixa 200x150x25x3	17,50	2	5,894	103,15
	V2	Caixa 200x150x20x2	11,60	2	11,894	137,97
	V3	Caixa 200x150x25x3	17,50	2	5,894	103,15
	V4	Caixa 200x150x20x2	11,60	2	6,262	72,64
Vigos	V5	Caixa 200x150x20x2	11,60	2	6,262	72,64
vigas	Vc1	Caixa 200x150x20x2	11,60	2	5,894	68,37
	Vc2	Caixa 200x150x20x2	11,60	2	11,894	137,97
	Vc3	Caixa 200x150x20x2	11,60	2	5,894	68,37
	Vc4	Caixa 200x150x20x2	11,60	2	6,262	72,64
	Vc5	Caixa 200x150x20x2	11,60	2	6,262	72,64
Contraven-	C1	Ue 150x60x20x2	4,60	4	12,12	55,75
tamentos	C2	Eu 150x60x20x2,25	5,10	4	14,84	75,68
		Peso Total (kg)		1761,91		
			Área T	otal (m ²)	94,	24
			Taxa	(kg/m^2)	18,	70

Tabela 3.5 – Quantitativo de material utilizado no Projeto 01 referente aos pilares, vigas e contraventamentos, considerando análise estrutural em 3D.

3.3. ANÁLISE E DIMENSIONAMENTO DO PROJETO 02

Neste item são tratados a análise tridimensional da estrutura e o dimensionamento da mesma para o Projeto 02 que contém quatro pavimentos. A seguir são descritas as etapas de desenvolvimento desse projeto.

3.3.1. Levantamento de Ações do Projeto 02

Os tipos de carregamento utilizados para o desenvolvimento desse projeto foram sobrecarga (Sc), carga permanente (CP) e cargas devido ao esforço do vento (CV). Esses tipos de carregamento foram aplicados na estrutura por área de influência, sendo o carregamento "CV" aplicado somente nos pórticos de estabilização das edificações..

Foram considerados quatro valores para "Sc":

- 1,50 kN/m², para lajes de piso convencionais;
- 2,00 kN/m², para lajes de piso onde se tem área de serviço;
- 0,50 kN/m², para lajes de cobertura;
- $2,50 \text{ kN/m}^2$, para escada.

Em relação ao carregamento "CP", foram considerados os seguintes itens, além do peso próprio da estrutura metálica:

- lajes em concreto armado:
 - para lajes de cobertura \rightarrow espessura de 5 cm \rightarrow 1,25 kN/m²;
 - para lajes de piso e para a laje de cobertura, onde se localizam as caixas d'água → espessura de 7 cm → 1,75 kN/m²;
- revestimento:
 - cerâmico no pisos dos apartamentos e dos corredores: 0,93 kN/m²;
 - da cobertura: $0,63 \text{ kN/m}^2$;
 - da escada: $0,3 \text{ kN/m}^2$.
- tijolo cerâmico furado de espessura 9 cm para paredes internas e externas: 5,85 kN/m;
- telha metálica trapezoidal de espessura 0,65 mm: 0,0637 kN/m²;
- estrutura do telhado: 0,15 kN/m²;
- estrutura da escada: 0,20 kN/m²;
- caixas d'água: 2,21 kN/m² na laje da cobertura situada acima da caixa de escadas.

3.3.2. Combinação de Ações do Projeto 02

As combinações de ações utilizadas nessa análise são as mesmas apresentadas na tabela 3.1. São oito tipos de combinação, sendo cinco para os Estados Limites Últimos e três para os Estados Limites de Utilização.

3.3.3. Concepção Estrutural do Projeto 02

O lançamento estrutural foi baseado no projeto arquitetônico do Projeto 02, na concepção de padronização da edificação e no procedimento de montagem. O esquema estrutural em planta é apresentado no Anexo I.

Em relação ao procedimento de montagem, todos os pilares são contínuos. Após serem montados, as vigas e os pórticos treliçados soldados na fábrica são parafusados nestes pilares.

Os materiais de fechamento utilizados seguem o mesmo conceito mostrado no item 3.2.3. A escolha desses materiais proporciona facilidade de obtenção dos mesmos em qualquer localidade e gera uma estrutura mais pesada que aquela considerando outros materiais convencionais, como concreto celular e gesso acartonado.

3.3.4. Análise Estrutural 3D do Projeto 02

O pré-dimensionamento de todos os perfis da edificação foi realizado e desenvolvido através do software Mathcad (2001).

Utilizou-se o software ANSYS Versão 6.0 (Ansys, 2001) para a realização da análise estrutural linear 3D do Projeto 02.

Os elementos utilizados na análise foram novamente elementos de barra uniaxiais tridimensionais de dois nós, sendo o elemento LINK 180 (tabela 3.2) para os contraventamentos e pilares P9 e o elemento BEAM 44 (tabela 3.2) para as vigas e o restante dos pilares. Os tipos de cargas utilizadas foram cargas pontuais e uniformemente distribuídas.

De acordo com o procedimento de montagem citado no item 3.3.3, como as ligações são parafusadas, foram consideradas ligações flexíveis para todas as ligações viga-pilar e para todas as ligações entre os pórticos treliçados soldadas na fábrica e os pilares.

Como citado no item 2.4, para o Projeto 02 são adotados perfis tipo "caixa" para vigas e pilares e perfis "U enrijecido" para os contraventamentos e pilares secundários "P9".

Os sistemas de estabilização longitudinal e transversal são sistemas indeslocáveis contraventados. Os pórticos pertencentes aos eixos A01 e A08, mostrados na figura 3.9, foram responsáveis pela estabilização transversal. Já a estabilização longitudinal foi garantida com os pórticos pertencentes aos eixos B01 e B04 contidos entre os eixos A02 e A03 e A06 e A07. Esses pórticos também são mostrados na figura 3.9.

c) Pórtico treliçado soldado na fábrica.

Figura 3.9 – Sistemas de estabilização do Projeto 02.

A estrutura foi modelada em três dimensões no software ANSYS Versão 6.0 (Ansys, 2001) como apresentada na figura 3.10. Nesta modelagem foram utilizados 1592 elementos, sendo 86 elementos LINK 180 e 1506 elementos BEAM '44.

Figura 3.10 – Modelagem da estrutura 3D do Projeto 02.

Após a modelagem, aplicou-se os carregamentos "CP", "Sc", "CVx" e "CVz". Para ilustrar essa etapa, a figura 3.11 apresenta a aplicação dos carregamentos "CP" e "CVz".

a) Carregamento "CP".

b) Carregamento "CVz".

Foram realizadas todas as combinações de ações para o Estado Limite Último, de acordo com a tabela 3.1 do item 3.2.2. Na figura 3.12 são mostrados os esforços de momento fletor em relação ao eixo "Z" local de cada barra devido à combinação "C1", com o objetivo de exemplificar essa etapa da análise.

Figura 3.12 – Momentos Fletores em relação ao eixo "Z" local de cada barra do Projeto 02, devido à combinação "C1".

Após a realização das combinações para o Estado Limite Último, foram determinados os esforços solicitantes de cálculo para cada barra. Na tabela 3.6 são apresentados todos esses esforços com suas respectivas combinações de ações

			Esforços Solicitantes de Cálculo				
			Momentos Esfor			orço	Esforço
Elementos	Barras	Combinação	flet	ores	cortante		Normal ^{c)}
		5	(kN	Vm)	(kN)		(kN)
			Mdz	Mdy	Vdx	Vdy	Nd
	P1	C5	70,20	0,72	44,15	-	-155,75
	P2	C5	45,13	1,47	21,88	-	-388,88
	P3	C2	25,95	0,42	14,67	-	-327,04
	P4	C1	0,19	0,38	0,15	-	-252,73
Pilares	P5	C4	2,60	2,75	-	1,10	-590,71
	P6	C1	2,23	0,11	0,90	-	-366,84
	P7	C4	0,48	0,29	0,20	-	-52,73
	P8	C4	0,10	0,43	-	0,17	-239,01
	P9	C1	-	-	-	-	-53,80
Vigas	V1	C1	26,71	0,20	33,91	-	-60,04
_	V2	C1	28,14	0,25	51,64	-	42,61
	V3	C1	26,71	0,20	33,91	-	-60,04
	V4	C1	26,71	0,20	33,91	-	-60,04
	V5	C1	30,55	0,45	55,14	-	61,00
	V6	C1	13,47	0,70	10,31	-	-0,67
	V7	C1	18,80	0,02	12,21	-	-0,28
	V8	C1	39,98	0,13	26,00	-	-0,20
	V9	C4	10,35	1,60	13,14	-	-2,02
	V10	C5	14,73	1,00	34,30	-	-54,28
	V11	C5	10,68	2,78	13,56	-	-32,67
	V12	C4	9,68	0,37	28,89	-	-35,78
	V13	C4	17,21	0,11	11,19	-	-0,21
	V14	C4	4,27	0,14	5,55	-	-0,10
	V15	C4	1,63	0,40	3,43	-	0,00
	V16	C4	28,64	0,15	30,57	-	-0,07
	V17	C1	28,11	0,60	35,70	-	-10,69
	V18	C1	19,91	0,28	32,58	-	-48,44
	V19	C1	26,71	0,20	33,91	-	-60,04
	V20	C1	26,71	0,20	33,91	-	-60,04
	V21	C1	18,55	0,23	33,28	-	-70,54
	V22	C1	11,60	0,39	30,33	-	32,03
	V23	C1	37,86	0,45	44,24	-	-20,62
	V24	C1	8,14	0,17	8,00	-	0,86
	V25	C1	13,47	0,70	10,31	-	-0,67
	V26	C1	21,28	0,26	13,08	-	-0,35
	V27	C1	39,98	0,13	26,00	_	-0,20
	V28	C5	10,68	0,44	13,56	-	-30,57
	V29	C5	22,52	0,37	34,52	-	-63,57
	V30	C4	10,35	1,60	13,14	-	-2,02

Tabela 3.6 – Esforços solicitantes em cada barra do Projeto 02.

	V31	C4	7,49	0,29	30,81	-	-35,15
	V32	C1	1,93	0,52	4,06	-	-
	V33	C4	28,64	0,15	30,57	-	-0,07
	V34	C1	7,90	0,50	9,76	-	-41,39
	Vc1	C1	6,69	0,40	8,49	-	-5,06
	Vc2	C1	7,08	0,51	8,90	-	-37,96
	Vc3	C1	6,69	0,40	8,49	-	-5,06
	Vc4	C1	11,68	0,63	11,47	-	-46,42
	Vc5	C5	0,80	2,30	1,01	-	-13,73
	Vc6	C4	5,44	0,74	9,32	-	-43,90
	Vc7	C4	0,57	1,47	0,73	-	-0,80
	Vc8	C4	7,59	0,50	9,21	-	-38,43
	Vc9	C1	32,83	-	21,35	-	-
	Vc10	C4	1,97	-	3,36	-	-
	Vcd1	C1	37,20	-	24,19	-	-
	Vcd2	C1	34,02	-	22,13	-	-
	Vcd3	C4	15,96	-	16,10	-	-
Contraventamentos	$C1^{a)}$	C4	-	-	-	-	91,74
Contraventamentos	$C2^{b)}$	C2	-		-	-	109,54

a) Barras de contraventamento situadas nos pórticos de estabilização pertencentes aos eixos B01 a B04.

b) Barras de contraventamento situadas nos pórticos de estabilização pertencentes aos eixos A01, A02, A07 e A08.

c) Valores negativos representam esforço de compressão e valores positivos representam esforço de tração.

Com a obtenção dos esforços solicitantes de cálculo em cada barra, o dimensionamento de pilares, vigas e contraventamentos foram realizados de acordo com a AISI (1996) e com a NBR 14762:2001. A tabela 3.7 identifica os perfis dimensionados.

Elementos	Barras	Perfis
	P1	Caixa 350x200x50x4,75
	P2	Caixa 300x200x50x4,75
	P3	Caixa 300x200x50x3,75
	P4	Caixa 170x170x25x2,25
Pilares	P5	Caixa 200x200x25x4.75
	P6	Caixa 200x200x40x2,65
	P7	Caixa 170x170x25x1,5
	P8	Caixa 170x170x25x2,25
	Р9	Ue 200x100x25x2
Vigas	V1	Caixa 300x140x25x2,25
	V2	Caixa 300x170x25x2.25
	V3	Caixa 300x140x25x2,25
	V4	Caixa 300x140x25x2,25
	V5	Caixa 250x150x25x2.65
	V6	Caixa 250x140x25x1,5
	V7	Caixa 250x140x25x2,25
	V8	Caixa 300x140x45x3
	V9	Caixa 300x170x25x2,65
	V10	Caixa 300x170x25x2,65
	V11	Caixa 200x140x25x1,5
	V12	Caixa 200x140x25x2
	V13	Caixa 250x150x25x3
	V14	Caixa 200x140x25x1,5
	V15	Caixa 200x140x25x1,5
	V16	Caixa 300x140x25x2,25
	V17	Caixa 300x140x25x2,25
	V18	Caixa 300x170x25x2
	V19	Caixa 300x140x25x2,25
	V20	Caixa 300x140x25x2,25
	V21	Caixa 250x150x25x2.25
	V22	Caixa 300x140x25x2
	V23	Caixa 300x140x25x2.65
	V24	Caixa 250x140x25x1,5
	V25	Caixa 250x140x25x1,5
	V26	Caixa 250x140x25x2,65
	V27	Caixa 300x140x45x3
	V28	Caixa 300x170x25x2,65
	V29	Caixa 300x170x25x2,65
	V30	Caixa 200x140x25x1,5
	V31	Caixa 250x140x25x1,5
	V32	Caixa 200x140x25x1,5
	V33	Caixa 300x140x25x2,25

Tabela 3.7 – Perfis utilizados como pilares, vigas e contraventamentos na análise de dimensionamento da estrutura em 3D do Projeto 02.

	V34	Caixa 200x140x25x2
	Vc1	Caixa 200x140x20x1,5
	Vc2	Caixa 300x170x40x2,25
	Vc3	Caixa 200x140x20x1,5
	Vc4	Caixa 200x170x25x2
	Vc5	Caixa 300x170x25x2
	Vc6	Caixa 300x170x25x2
	Vc7	Caixa 150x140x20x1,5
	Vc8	Caixa 200x140x25x2
	Vc9	Caixa 300x150x40x2,25
	Vc10	Caixa 150x140x20x1,5
	Vcd1	Caixa 300x140x45x3,00
	Vcd2	Caixa 300x140x45x3,00
	Vcd3	Caixa 300x140x25x2,25
Contraventa-	C1	Ue 150x60x20x1,5
mentos	C2	Ue 200x75x25x2,65

Realizado o dimensionamento da estrutura, aplicou-se as combinações de ações para os Estados Limites de Utilização, de acordo com a tabela 3.1 do item 3.2.2. Na figura 3.13 são mostrados todos os deslocamentos verticais em metros dos elementos resultantes da aplicação da combinação "C6".

Figura 3.13 –Deslocamentos verticais dos elementos devido à combinação "C6" do Projeto 02.

O deslocamento vertical máximo admissível para as vigas da edificação é de L/350 (Tabela A.1 – Anexo A – NBR 14762:2001). Assim, tem-se um deslocamento vertical máximo admissível de 9 mm, para vigas de vão 3,15 m, e de 17,57 mm para vigas de vão 6,15 m. Com isso, a edificação satisfez a esse estado limite de utilização.

Os deslocamentos horizontais em metros da estrutura nas direções dos eixos globais "X" e "Z" foram determinados com a aplicação das combinações "C7" e "C8", respectivamente. As figuras 3.14 e 3.15 mostram esses deslocamentos horizontais.

Figura 3.14 –Deslocamentos horizontais na direção do eixo global "X" dos elementos devido à combinação "C7" do Projeto 02.

Figura 3.15 –Deslocamentos horizontais na direção do eixo global "Z" dos elementos devido à combinação "C8" do Projeto 02.

O deslocamento horizontal máximo admissível para a edificação é de H/400, onde "H" é a altura da edificação, e de h/300, onde "h" é a altura entre dois pisos consecutivos (Tabela A.1 – Anexo A – NBR 14762:2001). Assim, tem-se um deslocamento horizontal máximo admissível de 27 mm, referente à primeira verificação, e de 9,17 mm, referente à segunda. Com isso, a edificação satisfez às duas verificações desse estado limite de utilização tanto para deslocamentos na direção do eixo global "X" quanto para o eixo global "Z".

Portanto, após a verificação dos Estados Limites de Utilização, na tabela 3.8 é detalhado o quantitativo de material utilizado no Projeto 02 referente aos pilares, vigas e contraventamentos, considerando análise estrutural em 3D.

			Peso	0	т	Peso
Elementos	Barras	Perfis	unitário	Quan-	L _{Total}	Total
			(kg/m)	uaaae	(m)	(kg)
	P1	Caixa 350x200x50x4,75	45,20	4	43,20	1952,64
	P2	Caixa 300x200x50x4,75	41,60	4	43,20	1797,12
	P3	Caixa 300x200x50x3,75	33,20	8	10,80	2868,48
	P4	Caixa 170x170x25x2,25	13,00	8	10,80	1123,20
Pilares	P5	Caixa 200x200x25x4.75	30,60	4	43,20	1321,92
	P6	Caixa 200x200x40x2,65	18,90	4	43,20	816,48
	P7	Caixa 170x170x25x1,5	8,80	4	43,20	380,16
	P8	Caixa 170x170x25x2,25	13,00	4	13,45	699,40
	P9	Ue 200x100x25x2	6,70	20	55,00	368,50
Vigas	V1	Caixa 300x140x25x2,25	16,40	8	25,20	413,28
	V2	Caixa 300x170x25x2.25	17,50	8	49,20	861,00
	V3	Caixa 300x140x25x2,25	16,40	16	50,40	826,56
	V4	Caixa 300x140x25x2,25	16,40	8	25,20	413,28
	V5	Caixa 250x150x25x2.65	17,60	8	49,20	865,92
	V6	Caixa 250x140x25x1,5	9,90	8	41,80	413,82
	V7	Caixa 250x140x25x2,25	14,70	4	24,60	361,62
	V8	Caixa 300x140x45x3	23,50	2	12,30	289,05
	V9	Caixa 300x170x25x2,65	20,50	8	25,20	516,60
	V10	Caixa 300x170x25x2,65	20,50	4	24,60	504,30
	V11	Caixa 200x140x25x1,5	8,80	24	75,60	665,28
	V12	Caixa 200x140x25x2	11,60	4	24,60	285,36
	V13	Caixa 250x150x25x3	19,90	4	24,60	489,54
	V14	Caixa 200x140x25x1,5	8,80	4	12,60	110,88
	V15	Caixa 200x140x25x1,5	8,80	4	7,60	66,88
	V16	Caixa 300x140x25x2,25	16,40	4	9,40	154,16
	V17	Caixa 300x140x25x2,25	16,40	2	6,30	103,32
	V18	Caixa 300x170x25x2	15,60	4	24,60	383,76
	V19	Caixa 300x140x25x2,25	16,40	4	12,60	206,64
	V20	Caixa 300x140x25x2,25	16,40	6	18,90	309,96
	V21	Caixa 250x150x25x2.25	15,10	4	24,60	371,46
	V22	Caixa 300x140x25x2	14,70	2	12,30	180,81
	V23	Caixa 300x140x25x2.65	19,30	2	12,30	237,39
	V24	Caixa 250x140x25x1,5	9,90	4	16,30	161,37
	V25	Caixa 250x140x25x1,5	9,90	4	20,90	206,91
	V26	Caixa 250x140x25x2,65	17,20	2	12,30	211,56
	V27	Caixa 300x140x45x3	23,50	1	6,15	144,53
	V28	Caixa 300x170x25x2,65	20,50	4	12,60	258,30
	V29	Caixa 300x170x25x2,65	20,50	2	12,30	252,15
	V30	Caixa 200x140x25x1,5	8,80	12	37,80	332,64
	V31	Caixa 250x140x25x1,5	9,90	2	12,30	121,77

Tabela 3.8 – Quantitativo de material utilizado no Projeto 02 referente aos pilares, vigas e contraventamentos, considerando análise estrutural em 3D.

	V32	Caixa 200x140x25x1,5	8,80	4	7,60	66,88
	V33	Caixa 300x140x25x2,25	16,40	2	4,70	77,08
	V34	Caixa 200x140x25x2	11,60	4	24,60	285,36
	Vc1	Caixa 200x140x20x1,5	8,50	8	25,20	214,20
	Vc2	Caixa 300x170x40x2,25	18,50	4	24,60	455,10
	Vc3	Caixa 200x140x20x1,5	8,50	8	25,20	214,20
	Vc4	Caixa 200x170x25x2	12,50	4	24,60	307,50
	Vc5	Caixa 300x170x25x2	15,60	4	12,60	196,56
	Vc6	Caixa 300x170x25x2	15,60	2	12,30	191,88
	Vc7	Caixa 150x140x20x1,5	7,40	12	37,80	279,72
	Vc8	Caixa 200x140x25x2	11,60	2	12,30	142,68
	Vc9	Caixa 300x150x40x2,25	17,80	2	12,30	218,94
	Vc10	Caixa 150x140x20x1,5	7,40	2	4,70	34,78
	Vcd1	Caixa 300x140x45x3,00	23,50	2	12,30	289,05
	Vcd2	Caixa 300x140x45x3,00	23,50	1	6,15	144,53
	Vcd3	Caixa 300x140x25x2,25	16,40	2	4,70	77,08
Contraven-	C1	Ue 150x60x20x1,5	3,50	50	171,50	600,25
mentos	C2	Ue 200x75x25x2,65	7,80	12	41,16	321,05
			Peso Tot	Peso Total (kg)		54,80
			Área Total (m ²)		154	6,29
			Taxa (kg/m ²)		16	,92

3.4. LIGAÇÕES VIGA-PILAR

O comportamento estrutural das construções metálicas está totalmente ligado ao tipo de ligação utilizada na análise. O grau de restrição de um tipo de ligação também influi diretamente no resultado final da taxa (kg/m²) da estrutura. As ligações são classificadas em três tipos: rígidas, semi-rígidas e flexíveis.

Como as ligações estudadas nesse presente trabalho não são padronizadas, a análise experimental avaliará o nível de rigidez dessas ligações parafusadas compostas de perfis formados a frio. A localização dos conjuntos viga-pilar que compõem os protótipos de ensaio, bem como as configurações das ligações propostas para estes, serão mostrados nos capítulos 4 e 5.

Neste item são apresentadas as características dos tipos de ligações e métodos utilizados para a determinação das rigidezes das ligações, definindo qual destes será utilizado para determinar as rigidezes das ligações em estudo no presente trabalho.

3.4.1. Tipos de Ligações

Como dito no item anterior, as ligações são classificadas em rígidas, semirígidas e flexíveis.

A ligação é considerada rígida, segundo AISC (1994), quando o ângulo original entre os membros conectados é mantido essencialmente constante durante o carregamento da estrutura, isto é, quando a restrição rotacional é da ordem de 90% ou mais daquela necessária para impedir essa rotação

Quando a restrição rotacional nas extremidades dos membros conectados é considerada baixa, a ligação é dita flexível. Essa consideração é caracterizada se a restrição rotacional for da ordem de 20% ou menos daquela necessária para impedir a rotação, AISC (1994). Nesse tipo de ligação o único esforço que é considerado transferido entre os membros é o esforço cortante.

Se a restrição rotacional necessária para impedir a rotação entre os membros conectados estiver contida na faixa entre 20% e 90%, a ligação é designada semi-rígida, segundo AISC (1994). Isso significa dizer que o esforço de momento fletor transmitido entre os membros não é zero, como considerado para as ligações flexíveis, nem total, como considerado para ligações rígidas.

Vários autores descreveram sobre o comportamento de ligações em estruturas metálicas, como Faella (1999) e Chen (1988). Outros publicaram trabalhos tendo como contexto a verificação do dimensionamento proposto por alguns órgãos normativos, como Maiola (2002).

3.4.2. Determinação da Rigidez de uma Ligação com a Utilização de Ensaios Experimentais

A determinação da rigidez se baseia na obtenção da curva momento-rotação característica da ligação em estudo, através de ensaios experimentais, como mostrada ilustrativamente na figura 3.16, e na utilização de um método de determinação dessa rigidez.

Figura 3.16 – Exemplo de curva momento-rotação obtida de ensaio experimental.

Existem vários métodos para determinação dessa rigidez (Godley, 1991). Um destes, denominado Método da Inclinação Inicial, que é utilizado no presente trabalho, consiste em traçar uma reta passando pela origem e interceptando a curva no seu trecho inicial. A inclinação dessa reta tangente é a rigidez da ligação. Esse método é ilustrado na figura 3.17 e é utilizado para determinar a rigidez de uma ligação na sua fase elástica, linear. Entretanto, esse método pode levar à determinação de valores de rigidez superestimados para o caso em que a ligação em estudo trabalhe na parte não-linear de sua curva momento-rotação. Assim, como será visto no capítulo 5, em curvas momento-rotação de um mesmo protótipo, as partes destas referentes à fase linear foram similares, enquanto as partes referentes à fase não-linear se divergiam consideravelmente. Por essa razão esse método é utilizado no presente trabalho.

Outra razão pela qual foi definido esse método para a determinação das rigidezes das ligações é que, de acordo com Radziminski (1988), em certos estágios não há necessidade de uma completa definição da curva momento-rotação, sendo suficiente uma estimativa da rigidez inicial da ligação. Por exemplo, sob cargas gravitacionais e variações da ação do vento, o uso de uma variação linear de rigidez das ligações pode ser adequada para a análise estrutural, correspondente à resposta nominal elástica da estrutura. Entretanto, sob condições extremas de solicitação, tais como as impostas por
eventos de natureza sísmica, a adoção do comportamento não-linear da curva momentorotação é exigida para avaliar o desempenho estrutural.

Figura 3.17 – Método da Inclinação Inicial.

Outro método é o Método da Inclinação a 50 % do Momento Último de Ensaio (M_u) (Godley, 1991). A rigidez da ligação é definida pela inclinação de uma reta que passa pela origem e pelo ponto da curva momento x rotação que corresponde à metade de M_u . Esse método é ilustrado na figura 3.18.

Figura 3.18 – Método da Inclinação a 50 % do Momento Último de Ensaio (Mu).

Um terceiro método, chamado Método das Áreas Iguais, desenvolvido por Godley (1991), determina a rigidez igualando as áreas A_1 e A_2 , conforme ilustrado na figura 3.19. Esse método não é muito utilizado em prescrições de normas devido a sua operacionalização (Oliveira, 2000).

Figura 3.19 – Método das Áreas Iguais.

4.1. INTRODUÇÃO

São apresentados, nesse capítulo, as configurações das ligações propostas para o Projeto USIHAB de quatro pavimentos, Projeto 02, bem como os procedimentos e os resultados dos testes experimentais. Iniciaram-se as análises através da determinação de protótipos de teste para esse projeto, no intuito de expandir esses resultados para o Projeto 01 de dois pavimentos. Esses testes foram realizados utilizando perfis com dimensões reais.

Os protótipos de teste, assim como os acessórios de montagem, foram fabricados pela empresa Pórtico S.A. Após o dimensionamento dos perfis das vigas e pilares do Projeto 02, a escolha dos protótipos foi baseada nos sistemas viga-pilar mais representativos quanto a frequência no sistema, nas espessuras de chapas dos perfis e no nível de solicitação do conjunto. A ligação escolhida para os protótipos foi dimensionada através das prescrições da norma americana AISI (1996) e da norma brasileira NBR 14762:2001.

Foram realizados testes em dois protótipos, denominados Protótipo P01 e P01B. Em cada teste experimental realizado, o objetivo principal era avaliar a viabilidade, a resistência e o comportamento das ligações propostas. Determinou-se também as rigidezes das ligações testadas através das curvas momento-rotação, as deformações e deslocamentos em alguns pontos previamente selecionados. Foram avaliados os modos de colapso da ligação que foram indispensáveis à avaliação do dimensionamento final e do comportamento estrutural do protótipo.

4.2. ANÁLISES DOS TESTES DOS PROTÓTIPOS DE LIGAÇÕES

Neste item são apresentadas as configurações das ligações estudadas para o Projeto 02, bem como todos os protótipos de teste analisados. Também são mostrados os dimensionamentos dessas ligações, através da AISI (1996) e NBR 14762:2001, e outras análises que foram necessárias para o desenvolvimento e obtenção dos resultados finais.

Em relação ao programa experimental, são apresentados os sistemas de aplicação de carga e de aquisição de dados, o esquema de montagem, a instrumentação, a metodologia e os resultados dos testes realizados.

Inicialmente, foi realizado um teste em um protótipo de ligação, denominado Protótipo P01. Os resultados indicaram que o tipo de ligação utilizado não atendia às solicitações necessárias. Assim, fez-se novas análises com esse protótipo, principalmente para atenuar os problemas ocorridos, chegando-se a uma nova configuração para a ligação em estudo, Protótipo P01B.

A seguir esses protótipos são apresentados, bem como suas análises e resultados.

4.2.1. Protótipo P01

Esse protótipo é composto pela viga V3 e pelo pilar P4, onde suas posições são mostradas no Anexo I. Conforme descrito na tabela 3.10 do item 3.3.4, a viga V3 é um perfil de seção transversal do tipo caixa 300x140x25x2,25 e o pilar P4 é caixa 170x170x25x2,25. As seções transversais desses perfis são apresentadas na figura 4.1.

A configuração proposta para a ligação do protótipo P01 é composta por parafusos, soldas e perfis formados a frio. Os parafusos utilizados são ASTM A-325 e o tipo de solda é de filete com eletrodos de classificação E60XX de acordo com AWS D1.1:2000. Com relação aos perfis formados a frio, tem-se um perfil U simples, chamado de U Suporte, e duas cantoneiras, denominadas Cantoneiras de Ligação. As duas Cantoneiras de Ligação foram soldadas aos flanges superiores da viga V3 e devidamente perfuradas para recebimento dos parafusos para conexão com o U Suporte que é soldado no pilar P4. A ligação viga-pilar do protótipo P01 é mostrada na figura 4.2 com suas dimensões reais de ensaio determinadas através de um dimensionamento inicial proposto para esse tipo de ligação, apresentado no Anexo II.

Figura 4.1 – Seções transversais da viga e do pilar utilizados no Protótipo P01.

a) U Suporte soldado ao pilar P4.

b) Cantoneiras de Ligação soldadas à viga V3.

Figura 4.2 – Configuração da ligação viga-pilar proposta para o protótipo P01.

4.2.1.1. Sistema de Aplicação de Carga do Protótipo P01

O sistema de aplicação de carga foi instalado no pórtico de reação PR02, composto por um atuador hidráulico, uma célula de carga, uma rótula de carga e acessórios. Dentre esses acessórios, utilizou-se uma placa, chamada Placa de Carga, que foi instalada entre a viga V3 e o sistema de aplicação de carga para distribuir o carregamento em uma maior região do flange e da alma diminuindo o nível de concentrações de tensões. A figura 4.3 mostra o sistema de aplicação de carga

O carregamento foi aplicado através do atuador hidráulico de 100 kN, fabricado pela ENERPAC, e foi registrado pela célula de carga de 100 kN, fabricada pela SODMEX com sensibilidade de 0,4817 kN.

Figura 4.3 – Detalhe do sistema de aplicação de carga.

4.2.1.2. Esquema de Montagem do Protótipo P01

Inicialmente, foram instalados, paralelamente, dois pórticos de reação, PR01 e PR02, com uma distância entre seus eixos de 1,0 m.

Em seguida, foram instalados dois acessórios de montagem dos testes, figuras 4.4 e 4.5, Placa de Base e Pilar Suporte. O primeiro foi parafusado na laje de

reação, enquanto o segundo foi parafusado no pórtico de reação PR01. O objetivo do uso desses acessórios é tornar o pilar P4 rigidamente ligado em suas extremidades. A conexão entre o pilar P4 e os acessórios foi feita através de chapas soldadas no pilar e parafusadas nesses acessórios.

b) Pilar Suporte.

Figura 4.4 – Detalhe do projeto dos acessórios de montagem.

Figura 4.5 – Fotos das conexões entre o pilar P4 e os acessórios. a) Ligação entre o pilar P4 e placa de base; b) Ligação entre o pilar P4 e pilar suporte.

Após a fixação do pilar P4, a viga V3 foi conectada através da ligação parafusada entre as Cantoneiras de Ligação e o U Suporte.

No pórtico de reação PR02 foi instalado o sistema de aplicação de carga descrito no item anterior.

As figuras 4.6 e 4.7 mostram o esquema geral de montagem do teste do Protótipo P01.

Figura 4.6 – Esquema geral de montagem do teste do Protótipo P01.

Figura 4.7 – Foto do esquema de montagem do teste do Protótipo P01.

4.2.1.3. Instrumentação

Na instrumentação desse teste, foram utilizados LVDT's (Load Variational Displacement Transducers) e defletômetros mecânicos, para medição de deslocamentos. Os LVDT's, fabricados pela SENSOTEC, têm sensibilidade de 0,0001 mm. Os defletômetros são do fabricante MITUTOYO com um campo de medida de até 10 mm e sensibilidade de 0,01 mm.

Com as medidas obtidas pelos LVDT's e defletômetros, foram determinados o campo de deslocamentos, as rotações da viga e do pilar do protótipo, obtendo-se as

rotações relativas da ligação. O posicionamento desses instrumentos são apresentados na figura 4.8.

Medidas em mm

Figura 4.8 – Detalhe do posicionamento dos LVDT's e dos defletômetros no Protótipo P01.

Para medição de deformações específicas, foram utilizados extensômetros elétricos de resistência do fabricantes KYOWA, cuja resistência é de 119,8 \pm 0,2 Ω . O posicionamento dos extensômetros são apresentados na figura 4.9. Os extensômetros E1 e E3 foram posicionados de modo a possibilitar a avaliação de pontos, de acordo com o dimensionamento do Anexo II, onde observou-se a possibilidade de rasgamento da chapa do U Suporte. Conjuntamente com esses extensômetros, o extensômetro E5 monitora as deformações da alma do U Suporte e os E2 e E4 o comportamento da viga do protótipo.

a)

b)

Figura 4.9 – Detalhe do posicionamento dos extensômetros elétricos de resistência. a) Extensômetros na viga V3; b) Extensômetros no U Suporte.

4.2.1.4. Sistema de Aquisição de Dados

Os dados provenientes da célula de carga e dos LVDT's para cada etapa de carregamento foram registrados através de aquisição de dados controlada por computador 486 DX4 dotado de placa de dados conversora A/D (LINX) e por software de aquisição e controle de dados, AQDADOS.

Em relação à aquisição de dados dos extensômetros elétricos de resistência, foram utilizados uma caixa comutadora modelo SB-10 do fabricante VISHAY e um indicador de deformações modelo P-3500 do mesmo fabricante.

4.2.1.5. Metodologia de Execução do Teste

O teste iniciou-se com um pré-ensaio, realizado dentro da fase elástica do material, para retirada das folgas existentes e para verificação do sistema de aquisição de dados e dos equipamentos utilizados. Em seguida, fez-se a aplicação de uma précarga para melhor ajuste dos parafusos da ligação em estudo e dos perfis que faziam parte do protótipo. Após essa pré-carga, aplicou-se carregamentos crescentes da ordem de 6% da carga de colapso, através do atuador hidráulico, até que o protótipo alcançasse o colapso. Durante cada etapa de carga foram medidas as deformações e deslocamentos e a partir desses resultados determinou-se o momento e a rotação. Com a obtenção dos momentos e das rotações, gerou-se a curva momento-rotação do protótipo em estudo.

As rotações obtidas foram rotações relativas, ou seja, rotações que levaram em consideração a influência da rotação do pilar na região da ligação e, não somente, a rotação da viga do protótipo. Então, a cada leitura de carga, foram determinadas as rotações das vigas e pilares e depois estas foram subtraídas, originando as rotações relativas que foram utilizadas na determinação da curva momento-rotação.

4.2.1.6. Apresentação e Análise dos Resultados Experimentais

A seguir são apresentados os resultados obtidos do teste experimental do Protótipo P01 quanto a extensometria e deslocamentos, bem como a determinação da curva momento-rotação, a rigidez da ligação e o mecanismo de colapso observado. A carga última verificada nesse teste foi de 15,36 kN. As planilhas de ensaio são apresentadas no Anexo III.

No gráfico da figura 4.10 tem-se as deformações medidas nos extensômetros colados como na figura 4.9.

Figura 4.10 – Gráfico carga-deformação específica do Protótipo P01.

Verificou-se que para a viga do protótipo foram obtidos valores de deformações específicas de tração nos flanges superiores, pois as leituras do extensômetro E4 foram positivas. Em contrapartida, deformações de compressão foram verificadas nos flanges inferiores da mesma, por apresentar valores de leitura negativos no extensômetro E2. Os valores máximos de deformação específica ocorridos na viga foram determinados para a carga de 15,36 kN, atingindo valores de 363 μ strain (tração) e de -309 μ strain (compressão). Assim, como a deformação específica de escoamento é de 1220 μ strain, obtida através da divisão da tensão de escoamento nominal considerada 250 MPa pelo módulo de elasticidade considerado 205000 MPa, a viga permaneceu na fase elástica.

Na análise da ligação proposta para o protótipo P01, em relação à extensometria, constatou-se que o extensômetro E3 apresentou valores de deformação específica maiores que os verificados nos extensômetros E1 e E5. O maior valor observado no extensômetro E3 foi de -339μ strain. O extensômetro E1, que em conjunto com E3, verificava a possibilidade de rasgamento da chapa do U Suporte, apresentou deformação máxima de -71μ strain. Para o extensômetro E5, o valor máximo de deformação foi de 238 μ strain. Com isso, verificou-se que os pontos analisados na ligação não atingiram o escoamento e que o efeito de rasgamento de chapa do U Suporte, na altura do parafuso, foi o predominante, como constatado no dimensionamento apresentado no Anexo II.

Tanto para a viga, quanto para o pilar do protótipo P01, foram mensurados os deslocamentos através da leitura dos LVDT's e dos defletômetros. As figuras 4.11 e 4.12 apresentam os deslocamentos ocorridos na viga e no pilar, respectivamente. Para a viga foram consideradas as leituras do defletômetro D4 e dos LVDT's L1, L3 e L4, pois o LVDT L2 apresentou problemas e não foi considerado nessa análise. No pilar, as leituras foram feitas através dos defletômetros D1, D2, D3 e D5.

Figura 4.11 – Gráfico carga-deslocamento da viga do Protótipo P01.

Figura 4.12 – Gráfico carga-deslocamento do pilar do Protótipo P01.

O comportamento observado no pilar P4, devido aos deslocamentos dos defletômetros, é esquematicamente mostrado na figura 4.13. Os valores de deslocamentos máximos obtidos no teste, para a carga de 15,36 kN, foram iguais a 2,96 mm para D1, 0,58 mm para D2, 2,75 mm para D3 e -1,81 mm para D5.

Figura 4.13 – Representação esquemática do comportamento do pilar P4 durante o teste experimental do Protótipo P01.

Para exemplificar o comportamento da viga V3 durante todo o teste, é ilustrativamente apresentada na figura 4.14 a sua deformada para carga de 12,48 kN. Essa deformada é obtida pelos deslocamentos do defletômetro D4 e dos LVDT's L1, L3 e L4. Os valores de deslocamentos obtidos no teste para a carga de 15,36 kN foram de 0,11 mm para D4, -1,592 mm para L1, -13,391 mm para L3 e –15,466 mm para L4.

Figura 4.14 – Deformada da viga V3 para carga de 12,48 kN.

Com a obtenção dos campos de deslocamentos da viga e do pilar, são determinadas as rotações de ambos.

A rotação do pilar (γ), para cada passo de carga, foi determinada através das leituras dos defletômetros D3 e D5. Como aos deslocamentos de D3 eram positivos e os de D5 eram negativos, a rotação foi determinada somando-se esses valores e dividindo pela distância entre esses defletômetros, d = 0,549 m.

Na viga, a sua rotação (β) foi determinada traçando-se uma reta tangente à sua deformada após a aplicação de cada carga. A inclinação dessa tangente, em relação ao eixo reto inicial da viga, resulta na rotação da mesma.

Com isso, para se obter a curva momento-rotação da ligação em estudo, conforme apresentada na figura 4.15, calculou-se o momento fletor para cada aplicação de carga, cujo braço é a distância entre o ponto de aplicação da carga e a face do pilar onde estão localizados os defletômetros D3 e D5. A rotação dessa curva é a rotação relativa (θ) da ligação e que é determinada pela equação 4.1. Os valores máximos de momento fletor e de rotação relativa observados no teste foram de 14,054 kNm e 0,01321 rad, respectivamente.

 $\theta = \beta - \gamma \tag{4.1}$

Figura 4.15 – Curva momento-rotação da ligação do Protótipo P01.

Para o cálculo da rigidez foi utilizado o Método da Inclinação Inicial, chegando a uma rigidez "k" igual a 3333 kNm/rad. A figura 4.16 ilustra a utilização desse método.

Figura 4.16 – Aplicação do Método da Inclinação Inicial para o Protótipo P01.

O mecanismo de colapso se deu por um esforço de compressão concentrado e em linha, aplicado ao pilar P4 do protótipo, na altura da alma do U Suporte. Esse esforço foi resultante do contato dos flanges inferiores da viga V3 com a alma do U Suporte e do braço de alavanca causado pelos esforços de tração que atuavam na região dos parafusos. Com isso, os flanges do pilar foram puncionados, verificando-se colapso por esmagamento das almas do pilar P4 do Protótipo P01. A figura 4.17 mostra o mecanismo de colapso.

Figura 4.17 – Foto que mostra o mecanismo de colapso da ligação do protótipo P01.

Comparando-se os resultados obtidos no teste com o dimensionamento proposto no Anexo II, vê-se que a carga última de teste foi bem inferior à utilizada para o dimensionamento da ligação, 48,61 kN (momento de 44,47 kNm). Isso se deu pelo fato da consideração da distribuição de tensões nas almas do pilar. Nos cálculos apresentados no Anexo II essa distribuição foi considerada linear ao longo dos flanges do U Suporte, o que não aconteceu no teste, onde o efeito concentrado localizado na região da alma do U Suporte foi predominante.

Portanto, esse tipo de ligação não foi utilizado para o desenvolvimento do Projeto 02, devido à fragilidade apresentada, como observado no mecanismo de colapso. Assim, fez-se um novo estudo, objetivando uma nova solução de ligação. No item seguinte é descrito esse estudo que originou na configuração do Protótipo P01B.

4.2.2. Protótipo P01B

As conclusões do teste do Protótipo P01 levaram a estudos adicionais para se avaliar uma nova configuração para a ligação entre a viga V3 e o pilar P4, originando, assim, o Protótipo P01B.

Primeiramente, o estudo focalizou o enrijecimento das almas do pilar para evitar o esmagamento das mesmas. Assim, o U Suporte foi substituído por duas placas, denominadas Placas Suporte, soldadas nas almas do pilar e estas receberam furação igual na parte inferior e superior. Essa nova configuração da ligação recebeu também um acréscimo de duas Cantoneiras de Ligação soldadas nos flanges inferiores da viga V3 do protótipo P01. Com isso, a viga é conectada agora no pilar P4 através de parafusos que ligam as Cantoneiras de Ligação superiores e inferiores com as Placas Suporte.

Em seguida, foi realizado o dimensionamento dessa nova configuração da ligação, que é apresentado no Anexo II desse trabalho. Conjuntamente com o dimensionamento, foi realizada uma análise através de elementos finitos, pelo software Ansys Versão 6.0 (Ansys (2001)), com o objetivo de verificar o comportamento dessa nova configuração. Foram utilizados na modelagem dois elementos: um elemento de casca tridimensional, denominado SHELL 43, e um elemento sólido tridimensional, denominado SOLID 45. O primeiro, utilizado na modelagem do pilar P4, é um elemento de quatro nós com seis graus de liberdade por nó (três translações e três rotações em relação aos eixos "x", "y" e "z") e o segundo, utilizado na modelagem das placas suporte, é um elemento de oito nós com três graus de liberdade por nó (três translações em relação aos eixos "x", "y" e "z"). Na tabela 4.1 são apresentados esquematicamente esses elementos.

A análise procedeu-se com a aplicação de binários de cargas na altura dos parafusos da ligação, representando a aplicação de momentos fletores localizados na ligação. Esses momentos foram aplicados em uma série crescente, até que a tensão de escoamento do aço do pilar ou da placa fosse atingida. Assim, chegou-se ao valor máximo de momento de 22,875 kNm e, conseqüentemente, aos valores máximos de tensões de 164,4 MPa e 309,2 MPa para o pilar e para a Placa Suporte, respectivamente.

Tabela 4.1 – Elementos utilizados na análise através de elementos finitos da configuração do Protótipo P01B.

Nas figuras 4.18 e 4.19 são caracterizadas a modelagem e um dos resultados de tensões dessa análise, respectivamente. Nesta modelagem, o pilar P4 foi modelado com um comprimento de 1,0 m e engastado nas extremidades. Em seguida, modelou-se as placas suporte em dimensões reais de projeto soldadas às almas do pilar P4 totalizando 2898 elementos em toda modelagem, sendo 2142 elementos SHELL 43 e 756 elementos SOLID 45.

Figura 4.18 – Modelagem da nova configuração da ligação viga-pilar do protótipo de

teste.

Figura 4.19 – Tensões (kPa) na direção do eixo global Z (longitudinal do pilar) para a nova configuração da ligação viga-pilar do protótipo de teste.

Portanto, de acordo com o dimensionamento e com as análises numéricas realizadas, é apresentada na figura 4.20 a nova configuração da ligação do protótipo de teste, denominado Protótipo P01B. O dimensionamento e as análises foram realizados considerando-se que, para a fabricação da viga e do pilar do protótipo, foi utilizado o aço USI-SAC-250, enquanto para os componentes da ligação o aço utilizado foi o USI-SAC-300.

a) Placas Suporte soldados ao pilar P4.

b) Cantoneiras de Ligação soldadas à viga V3.

4.2.2.1. Sistema de Aplicação de Carga do Protótipo P01B

O sistema de aplicação de carga foi similar ao utilizado no teste do Protótipo P01 e descrito no item 4.2.1.1.

4.2.2.2. Esquema de Montagem do Protótipo P01B

A montagem desse teste foi similar à apresentada no item 4.2.1.2, referente ao Protótipo P01. A diferença está no esquema da ligação onde, após a fixação do pilar P4, a viga V3 foi conectada ao mesmo através da ligação parafusada entre as Cantoneiras de Ligação inferiores e superiores e a Placa Suporte. As figuras 4.21 e 4.22 mostram o esquema de montagem do Protótipo P01B.

Figura 4.21 – Esquema de montagem do Protótipo P01B.

Figura 4.22 – Foto do esquema de montagem do teste do Protótipo P01B.

4.2.2.3. Instrumentação

A disposição dos LVDT's e defletômetros, para a obtenção dos deslocamentos e consequentemente das rotações relativas , está mostrada na figura 4.23. Vê-se que a disposição é similar à realizada para o Protótipo P01, com variação na distância entre os defletômetros instalados no pilar P4 em função da Placa Suporte.

O posicionamento dos extensômetros elétricos de resistência está ilustrado na figura 4.24. Os extensômetros E3 e E4 foram posicionados com o objetivo de verificar o rasgamento da chapa da Placa Suporte, como previsto no dimensionamento do Anexo II. Os extensômetros E5 e E6, que compõem uma roseta de 90°, monitoram o comportamento da Placa Suporte. A localização dessa roseta é baseada nas análises numéricas em que observou-se a possibilidade de escoamento nesses pontos. Para caracterizar o comportamento da viga V3 do Protótipo P01B, tem-se os extensômetros E1 e E2.

Figura 4.23 – Detalhe do posicionamento dos LVDT's e dos defletômetros no Protótipo P01B.

Figura 4.24 – Posicionamento dos extensômetros elétricos de resistência no Protótipo P01B. a) Extensômetros na viga V3; b) Extensômetros na Placa Suporte.

4.2.2.4. Sistema de Aquisição de Dados

O sistema de aquisição de dados foi similar ao utilizado no teste do Protótipo P01 e descrito no item 4.2.1.4.

4.2.2.5. Metodologia de Execução do Teste

A metodologia aplicada para o Protótipo P01B foi similar à realizada para o teste do Protótipo P01 e descrito no item 4.2.1.5.

4.2.2.6. Apresentação e Análise dos Resultados Experimentais

A seguir são apresentados os resultados obtidos no teste experimental do Protótipo P01B quanto a extensometria, os deslocamentos, a curva momento-rotação, a rigidez da ligação e o mecanismo de colapso observado. A carga última verificada nesse teste foi de 58,58 kN.

Na figura 4.25 são apresentadas as deformações dos pontos indicados na figura 4.24.

Figura 4.25 – Gráfico carga-deformação específica do Protótipo P01B.

Verificou-se para a viga do protótipo esforços de tração nos flanges superiores e de compressão nos flanges inferiores. Os valores máximos de deformação específica ocorridos na viga foram determinados para a carga de 58,58 kN, atingindo valores de 2054 μ strain (tração) e de -3569μ strain (compressão). Assim, como a deformação específica de escoamento devido a esses esforços foram atingidos, considerando-se uma tensão de escoamento nominal de 250 MPa, a viga atingiu o escoamento nos flanges inferiores com a carga de 32,65 kN, enquanto os flanges superiores atingiram o escoamento somente com a carga de 44,65 kN.

Na análise da Placa Suporte, constatou-se que o extensômetro E5 atingiu o maior valor de deformação específica, 2933 μ strain, para a carga de 58,58 kN. Os outros extensômetros, E3, E4 e E6, atingiram valores inferiores aos valores de deformação específica no escoamento, considerando-se uma tensão de escoamento nominal de 300 MPa. Com isso, verificou-se que os pontos analisados na Placa Suporte da ligação não atingiram o escoamento, exceto o ponto E5 que caracterizou o escoamento da placa com a carga de 32,65 kN, sendo o ponto crítico de concentração de tensões, como constatado na análise numérica. O valor da deformação nesse nível de carga foi de 1463 μ strain.

Analisando os campos de deslocamento da viga e do pilar do Protótipo P01B, tem-se para a viga as leituras do defletômetro D4 e dos LVDT's L3 e L4, pois durante o teste, os LVDT's L1 e L4 apresentaram problemas. Para o pilar, as leituras foram feitas através dos defletômetros D1, D2, D3 e D5. As figuras 4.26 e 4.27 apresentam os deslocamentos ocorridos nos pontos de análise da viga e do pilar, respectivamente.

Figura 4.26 – Gráfico carga-deslocamento dos pontos analisados da viga do Protótipo P01B.

Figura 4.27 – Gráfico carga-deslocamento dos pontos analisados do pilar do Protótipo P01B.

O comportamento esquemático observado no pilar P4, devido aos deslocamentos dos defletômetros D1, D2, D3 e D5 é mostrado na figura 4.28. Os valores de

deslocamentos máximos obtidos no teste, para a carga de 58,58 kN, foram de 7,52 mm para D1, 1,53 mm para D2, 8,33 mm para D3 e 1,70 mm para D5.

Figura 4.28 – Representação do comportamento do pilar P4 durante o teste experimental do Protótipo P01B.

Para exemplificar o comportamento da viga V3, é apresentada na figura 4.29 a sua deformada para carga de 21,60 kN. Os valores máximos de deslocamentos obtidos no teste para a carga de 58,58 kN foram de -7,37 mm para D4, -24,83 mm para L3 e -33,30 mm para L4.

Figura 4.29 – Deformada da viga V3 para carga de 21,60 kN.

Com a obtenção dos deslocamentos da viga e do pilar, foram determinadas as rotações de ambos.

A rotação do pilar (γ), para cada passo de carga, foi determinada através das leituras dos defletômetros D3 e D5. Como os deslocamentos de D3 e D5 foram positivos, a rotação foi determinada subtraindo-se esses valores e dividindo pela distância entre esses defletômetros, d = 0,620 m.

Na viga, a sua rotação (β) foi determinada da mesma maneira como descrita para Protótipo P01, traçando-se uma reta tangente à sua deformada. A inclinação dessa tangente, em relação ao eixo reto inicial da viga, resulta na rotação da mesma.

Para se obter a curva momento-rotação da ligação em estudo, conforme apresentada na figura 4.30, determinou-se os momentos fletores para cada passo de carga e as suas respectivas rotações relativas (θ), definidas pela equação 4.1. Os valores máximos de momento fletor e de rotação relativa observados no teste foram de 53,601 kNm e 0,04208 rad, respectivamente.

Figura 4.30 - Curva momento-rotação da ligação do Protótipo P01B.

Utilizando o Método da Inclinação Inicial, obteve-se 2646 kNm/rad para a rigidez "k" da ligação. A figura 4.31 mostra a utilização desse método.

Figura 4.31 – Aplicação do Método da Inclinação Inicial para o Protótipo P01B.

A carga máxima aplicada foi de 58,58 kN, mas o mecanismo de colapso se deu com uma carga inferior. Esse mecanismo foi caracterizado pelo colapso da viga V3 por esmagamento da alma na região da ligação, caracterizado, inicialmente, pelo escoamento do flange inferior da viga V3 para carga de 32,65 kN e, em sua fase final, por um abaulamento da alma da viga, como mostrado na figura 4.32, devido ao esforço concentrado nos flanges inferiores da viga, quando a carga aplicada era de 38,41 kN.

Conjuntamente com o mecanismo de colapso ocorreu o escoamento da Placa Suporte quando a leitura do extensômetro E5 atingiu o valor de 1463 µ strain, também para a carga de 32,65 kN, isto considerando uma tensão de escoamento nominal de 300 MPa. Assim, houve redistribuição de tensões e foi observado o rasgamento da solda que ligava uma das Cantoneiras de Ligação superiores à viga V3 caracterizado pelo rompimento da solda por cisalhamento normal ao cordão quando a carga de teste era de 48,01 kN. A figura 4.33 mostra este efeito.

Figura 4.32 – Foto que mostra o colapso da viga V3 por esmagamento da alma.

Figura 4.33 – Foto que mostra o colapso por rasgamento da solda entre a viga V3 e uma das Cantoneiras de Ligação superiores.

Comparando os resultados experimentais com o dimensionamento proposto no Anexo II, observou-se que no dimensionamento, a capacidade resistente da ligação foi superior à obtida nos resultados de ensaio. Isso pode ser explicado em função das hipóteses adotadas para o comportamento da ligação (Anexo II), tais como a determinação dos esforços solicitantes de cálculo nas soldas e parafusos da Cantoneira de Ligação, em cada Placa Suporte e alma do pilar.

A partir dessas conclusões iniciais, partiu-se para a verificação da viabilidade desse tipo de ligação em pilares de canto, intermediários e de extremidade do Projeto 02. Com isso, fez-se algumas análises através do Ansys Versão 6.0 (Ansys (2001)) no intuito de estudar os comportamentos desse tipo de ligação para as situações de projeto. Uma dessas análises foi de um pilar de extremidade onde na figura 4.34 é mostrada a modelagem de um pilar de extremidade, juntamente com a Placa Suporte e uma viga soldada nessa placa no sentido perpendicular à mesma. Os elementos utilizados na modelagem foram o SHELL 43 para o pilar e a viga e o SOLID 45 para a Placa Suporte (tabela 4.1). O pilar foi modelado com um comprimento de 1,0 m e engastado nas extremidades e as Placas Suporte soldadas às almas desse pilar totalizando 17542 elementos em toda modelagem, sendo 14278 elementos SHELL 43 e 3264 elementos SOLID 45. Os esforços utilizados nessa análise foram obtidos do dimensionamento do Projeto 02 apresentado no item 3.3.4 e a análise das tensões são mostradas na figura 4.35. Após as análises, verificou-se que a Placa Suporte não suportava os esforços oriundos dessas verificações.

Figura 4.34 – Modelagem de um pilar de extremidade.

Figura 4.35 – Tensões (kPa) na direção de um dos eixos principais de um pilar de extremidade.

Assim, a solução utilizando a Placa Suporte, como parte fundamental na ligação entre pilares e vigas do tipo caixa, não apresentou resultados satisfatórios e para tal solução ser adotada ter-se-ia que utilizar valores maiores de espessura para os elementos de ligação tornando a mesma mais pesada e portanto inviabilizando sua execução.

No caso das análises de ligações para o Projeto 01, onde em sua concepção são utilizados pilares "I enrijecidos", compostos por dois perfis cartola, e vigas tipo caixa obteve-se melhores resultados e as análises utilizando a semi-rigidez levaram a valores mais leves para a edificação.

No capítulo 5 são apresentadas as soluções encontradas para as ligações do Projeto 01, bem como o programa experimental realizado, os resultados obtidos e as análises dos mesmos.

5.1. INTRODUÇÃO

Neste capítulo são apresentadas as configurações das ligações propostas para o Projeto USIHAB de dois pavimentos, Projeto 01, bem como os procedimentos e os resultados dos testes experimentais. Os testes foram realizados utilizando perfis em dimensões reais e os protótipos destes foram fabricados pela empresa Pórtico S.A.

Com o dimensionamento dos perfis das vigas e pilares e com o procedimento de montagem adotado para o Projeto 01, foram determinados os protótipos de teste. Como os pórticos pertencentes aos eixos A01 a A04 e as treliças compreendidas entre os eixos B01, B02, A02 e A03, de acordo com as figuras 3.1 e 3.2, são soldados em fábrica, o restante das ligações viga-pilar parafusadas compreendem o grupo de protótipos de ensaio que são apresentados a seguir:

- Pilar P1 e viga V1 ou V3 (pilar de canto);
- Pilar P1 e viga Vc1 ou Vc3 (pilar de canto);
- Pilar P2 e vigas V1 e V2 (pilar de extremidade);
- Pilar P2 e viga Vc1 e Vc2 (pilar de extremidade).

Uma ligação padrão foi dimensionada para todos os protótipos através das prescrições da norma americana AISI (1996) e da norma brasileira NBR 14762:2001. Essa ligação definiu os protótipos que são detalhados no decorrer deste capítulo.

Foram realizados testes em três tipos de protótipos. Dois destes representavam ligações em pilar de canto e um em pilar de extremidade. Em cada teste experimental realizado, o objetivo principal era avaliar a viabilidade, a resistência e o comportamento das ligações propostas. Determinou-se também a rigidezes das ligações testadas, através das curvas momento-rotação, as deformações específicas em alguns pontos, o campo de deslocamento e o modos de colapso da ligação necessários à avaliação do dimensionamento final e do comportamento estrutural.

5.2. ANÁLISES DOS TESTES DOS PROTÓTIPOS DE LIGAÇÕES

Neste item são apresentadas as configurações das ligações estudadas para o Projeto 01, bem como os protótipos de teste analisados. Também são mostrados os dimensionamentos dessas ligações, através da AISI (1996) e NBR 14762:2001, e as análises que foram necessárias para o desenvolvimento e projeto dos protótipos.

O tipo de ligação utilizado para o Projeto 01 é composto por um "U Suporte", que é soldado em um dos flanges do pilar do protótipo e em seus enrijecedores. Esse U Suporte recebe uma furação nas partes superior e inferior de seus flanges, cujo objetivo é fazer a conexão com a viga do protótipo através de Cantoneiras de Ligação soldadas nessa viga. Essas cantoneiras também recebem a mesma furação do U Suporte, fazendo, assim, através de parafusos, a conexão de ambas as partes do protótipo. Outro componente desse tipo de ligação são enrijecedores internos em forma de "U simples" que são soldados na alma e no flange do pilar do protótipo. A figura 5.1 ilustra o U Suporte e a localização deste no pilar do protótipo em conjunto com os enrijecedores internos. Já a figura 5.2 mostra a viga do protótipo com as Cantoneiras de Ligação. Ambas as figuras referem-se aos protótipos representativos dos pilares de canto da edificação.

A figura 5.3 mostra a configuração da ligação nos protótipos de pilares de extremidade.

Figura 5.1 – Detalhes da ligação em estudo. a) U Suporte; b) Enrijecedores internos do pilar; c) Esquema pilar, enrijecedores e U Suporte.

Vista Lateral

Figura 5.2 – Detalhe da viga do protótipo com as Cantoneiras de Ligação.

Vista Lateral

Figura 5.3 – Configuração da ligação proposta para os pilares de extremidade da edificação.

Para a determinação das dimensões das partes componentes da ligação proposta, foi realizado um dimensionamento através da AISI (1996), NBR 14762:2001 e NBR 8800:1986. Esse dimensionamento é apresentado no Anexo II. Foram realizadas adicionalmente análises no software Ansys Versão 6.0 (Ansys, 2001) com o objetivo de determinar o comportamento da ligação e de auxiliar na determinação das dimensões das partes componentes da mesma. As figuras 5.4 e 5.5 mostram, respectivamente, a modelagem e uma das análises de tensões realizadas para esse tipo de ligação proposta. O pilar foi modelado com um comprimento de 1,0 m e engastado nas extremidades utilizando o elemento SHELL 43 (tabela 4.1). As almas do U Suporte e do U simples dos enrijecedores foram modeladas utilizando o elemento SOLID 45 (tabela 4.1). Utilizando também o elemento SHELL 43 foram modelados os flanges do U Suporte e dos U simples dos enrijecedores. Assim, totalizou-se 10340 elementos em toda modelagem, sendo 8676 elementos SHELL 43 e 1664 elementos SOLID 45.

O dimensionamento e as análises foram realizados para o conjunto viga-pilar mais solicitado da edificação e para a situação de pilar de canto. Assim, essa ligação foi repetida para todos os outros conjuntos viga-pilar da edificação em função da mesma ser de pequeno porte e a padronização é um fator importante na concepção final dessa edificação.

Figura 5.4 – Modelagem da configuração da ligação viga-pilar proposta.

Figura 5.5 – Tensões (kPa) na direção do eixo global Z da configuração da ligação vigapilar proposta.

Portanto, com as análises realizadas, determinou-se as dimensões dos componentes da ligação. Os parafusos utilizados são ASTM A325 de diâmetro igual 12,5 mm e solda tipo de filete de classificação E60XX de acordo com a AWS D1.1:2000.

A figura 5.6 mostra as dimensões da seção transversal dos pilares P1 e P2, do U Suporte e dos enrijecedores internos em perfil "U simples" para todos os protótipos de ensaio. Nota-se que as dimensões dos pilares P1 e P2 são diferentes das apresentadas na tabela 3.4 do item 3.2.4, pois com o novo dimensionamento considerou as análises através do Ansys (Ansys, 2001) e a nova configuração da ligação proposta.

Figura 5.6 – Detalhes das dimensões das partes constituintes da ligação proposta.

A figura 5.7 mostra o detalhamento de como é feita a união do pilar P1 com o U Suporte e os enrijecedores internos. Esse pilar é um pilar de canto com uma viga conectada através da ligação parafusada proposta e uma segunda viga é soldada em sua alma na fábrica.

Figura 5.7 – Detalhamento da ligação proposta aplicada no pilar P1 (Pilar de canto).

A figura 5.8 mostra o detalhamento da união do pilar P2 com os U Suporte e os enrijecedores. O pilar P2 recebe duas vigas através da ligação parafusada proposta e uma terceira viga soldada na alma do mesmo.

Figura 5.8 – Detalhamento da ligação proposta aplicada no pilar P2 (Pilar de extremidade).

Os protótipos confeccionados foram divididos em dois grupos. O primeiro inclui os pilares de canto, com dois tipos de protótipos, e o segundo os pilares de extremidade, composto por um tipo de protótipo. A nomenclatura utilizada para esses grupos de protótipos é descrita a seguir:

- PCP1V1 \rightarrow protótipo de pilar de canto entre o pilar P1 e a viga V1;
- PCP1Vc1 \rightarrow protótipo de pilar de canto entre o pilar P1 e a viga Vc1;
- PEP2V1V2 → protótipo de pilar de extremidade entre o pilar P1 e as vigas V1 e V2.

O programa experimental do Projeto 01 é composto de oito ensaios, sendo quatro para os protótipos tipo PCP1V1, dois para os protótipos PCP1Vc1 e dois para os protótipos PEP2V1V2. A seguir são apresentados os resultados dos ensaios de caracterização do material desses protótipos, os sistemas de aplicação de carga, a aquisição de dados, o esquema de montagem, a instrumentação, a metodologia e os resultados dos testes realizados.

5.2.1. Caracterização do Material dos Protótipos

Foram ensaiados um total de 24 corpos de prova à tração, de acordo com a NBR 6152:1992. Estes foram divididos em três grupos de oito corpos de prova, onde o primeiro era formado por corpos de prova retirados do U Suporte (CPUS). O segundo e terceiro grupos eram formados por corpos de prova retirados da viga V1 (CPV1) e V2 (CPV2), respectivamente. Os corpos de prova CPV1 representavam também o pilar P1, por apresentar mesma espessura da viga V1.

A figura 5.9 mostra as dimensões dos corpos de prova e a tabela 5.1 os resultados dos ensaios. Os resultados utilizados são aqueles referentes às médias entre os valores obtidos para cada corpo de prova para a tensão limite de escoamento (f_y) , a tensão limite de resistência à tração (f_u) e o alongamento residual após sua ruptura (A). Esses valores serão admitidos para avaliação de todos os ensaios do Projeto 01.

Medidas em mm

Figura 5.9 – Corpos de prova utilizados para caracterização do material de ensaio.

Designação	Corpos de Prova	f _y (MPa	f _u (MPa	A (%)
	CPUS1	399,14	-	23,33
	CPUS2	394,95	476,60	28,44
	CPUS3	393,36	-	24,70
	CPUS4	393,04	535,35	27,16
U Suporte	CPUS5	398,48	546,68	26,96
	CPUS6	392,02	536,10	26,69
	CPUS7	399,42	536,23	23,82
	CPUS8	387,21	528,34	29,64
	Média	394,70	526,55	26,34
	CPV1-1	368,70	487,83	21,53
	CPV1-2	329,57	447,16	19,71
	CPV1-3	365,33	486,11	24,97
Viga V1	CPV1-4	354,81	476,30	24,75
$(201 \times 2) (0 \times 15) (25 \times 3)$	CPV1-5	401,90	486,52	15,99
(Caixa 200x130x23x3)	CPV1-6	385,03	463,35	-
	CPV1-7	359,18	484,63	23,41
	CPV1-8	354,35	458,84	19,75
	Média	364,86	473,84	21,44
	CPV2-1	375,27	501,25	16,72
	CPV2-2	383,09	513,65	17,09
	CPV2-3	388,44	506,52	15,80
Viga V2	CPV2-4	365,28	496,50	19,69
$(200 \times 200 \times 150 \times 20 \times 2)$	CPV2-5	372,23	488,65	15,18
$\left(\operatorname{Callaa} 200 \times 130 \times 20 \times 2 \right)$	CPV2-6	369,83	491,61	15,55
	CPV2-7	364,64	489,07	20,95
	CPV2-8	368,57	497,51	16,49
	Média	373,42	498,10	17,18

Tabela 5.1 – Resultados obtidos da caracterização do material dos protótipos do Projeto 01.

5.2.2. Protótipos PCP1V1

Os Protótipos PCP1V1 são formados pelo pilar P1, que de acordo com a figura 5.6 é um perfil le 170x170x25x3,00, e pelas vigas V1 e V5, que de acordo com a tabela 3.4 são perfis Caixa 200x150x25x3,00 e Caixa 200x150x20x2,00, respectivamente. Os parafusos utilizados são ASTM A-325 de diâmetro 12,50 mm e solda tipo de filete de classificação E60XX de acordo com a AWS D1.1:2000.

Neste item são apresentados os sistemas de aplicação de carga e aquisição de dados, o esquema de montagem, a instrumentação, a metodologia e os resultados dos testes realizados de apenas um dos quatro ensaios realizados para esse protótipo, pois para os outros protótipos desse grupo esses passos se repetem. As planilhas e os gráficos de resultados desses ensaios são mostrados nos Anexos III e IV, respectivamente.

Assim, o ensaio apresentado é o do Protótipo PCP1V1-2, que é o segundo da série, e ao fim desse item, são apresentados dois quadros comparativos dos resultados dos quatro ensaios.

5.2.2.1. Sistema de Aplicação de Carga do Protótipo PCP1V1

O sistema de aplicação de carga foi similar ao utilizado no teste do Protótipo P01 e descrito no item 4.2.1.1.

5.2.2.2. Esquema de Montagem do Protótipo PCP1V1

A montagem desse ensaio foi similar à apresentada no item 4.2.1.2, com uma diferença na fixação do pilar no pórtico de reação PR01 e na laje de reação. Como o perfil do pilar é um I enrijecido, essa fixação foi feita através de perfis cartola soldados ao pilar e aparafusados nos sistemas da placa de base e do pilar suporte. As fotos apresentadas na figura 5.10 mostram esses detalhes.

Após a fixação do pilar P1, a viga V1 foi conectada ao mesmo através da ligação parafusada entre as Cantoneiras de Ligação inferiores e superiores e o U Suporte. Em seguida, o sistema de aplicação de carga foi instalado no pórtico de reação PR02. A foto da figura 5.11 mostra o esquema de montagem desse ensaio.

Nota-se que nestes protótipos há a presença da viga V5 que é soldada à alma do pilar P1 na fábrica. Isso se fez com o objetivo inicial de se instrumentar e aplicar carga nesta viga e na viga V1 caracterizando um pilar de canto em situação de serviço, mas optou-se pela não realização dessa configuração de ensaio. Assim, a instrumentação e o carregamento foram aplicados somente na viga V1.

Figura 5.10 – Fotos dos sistemas de fixação do pilar P1 do Protótipo PCP1V1. a) Placa de base; b) Pilar suporte.

Figura 5.11 – Foto do esquema de montagem do ensaio do Protótipo PCP1V1.

5.2.2.3. Instrumentação

A figura 5.12 mostra as disposições dos LVDT's e defletômetros, para a obtenção dos deslocamentos e consequentemente das rotações relativas da ligação em estudo.

Figura 5.12 – Detalhe do posicionamento dos LVDT's e dos defletômetros no Protótipo PCP1V1.

Os extensômetros elétricos de resistência estão posicionados de acordo com a figura 5.13. Para representar o comportamento da viga V1, foram instalados os extensômetros E1 e E2. Os extensômetros E3 e E4 foram posicionados na região de rasgamento da chapa do U Suporte identificada no dimensionamento do Anexo II. De acordo com as análises realizadas através da simulação numérica (item 5.2), foram instalados também extensômetros no flange do pilar próximo ao U Suporte (E5 e E6) e nos enrijecedores de borda do pilar (E7 e E8).

Figura 5.13 – Posicionamento dos extensômetros elétricos de resistência no Protótipo PCP1V1.

5.2.2.4. Sistema de Aquisição de Dados

O sistema de aquisição de dados foi similar ao utilizado no teste do Protótipo P01 e descrito no item 4.2.1.4.

5.2.2.5. Metodologia de Execução dos Testes

A metodologia aplicada para o Protótipo PCP1V1 foi similar à realizada para o teste do Protótipo P01 e descrito no item 4.2.1.5.

5.2.2.6. Apresentação e Análise dos Resultados Experimentais

Os resultados e as análises do teste experimental do Protótipo PCP1V1-2 são apresentados seguindo a mesma orientação mostrada para o Protótipo P01B no item 4.2.2.6. Os resultados apresentados são os de deformações, deslocamentos, curva momento-rotação, rigidez da ligação em estudo e o mecanismo de colapso. A carga última verificada neste teste foi de 35,046 kN e de acordo com a caracterização do material realizada no item 5.2.1, os valores de f_y e f_u para a viga, pilar e cantoneiras de ligação do Protótipo PCP1V1-2 são de 364,86 MPa e 473,84 MPa, respectivamente. Para o U Suporte da ligação, $f_y = 394,70$ MPa e $f_u = 526,55$ MPa.

Primeiramente, os resultados analisados foram os de deformações. Na figura 5.14 são apresentadas as deformações dos pontos indicados na figura 5.13.

Figura 5.14 – Gráfico carga-deformação específica do Protótipo PCP1V1-2.

Verificou-se na viga do protótipo esforços de tração nos flanges superiores e de compressão nos flanges inferiores da mesma. Os valores máximos de deformação específica ocorridos na viga foram determinados para a carga de 35,046 kN, atingindo valores de 854 μ strain (tração) e de –1173 μ strain (compressão). Assim, como a deformação específica de escoamento não foi atingida, a viga não escoou.

Na análise do U Suporte, constatou-se que os extensômetros E3 e E4 registraram os maiores valores para carga máxima de ensaio, mas não atingiram o escoamento do material. Esses valores foram de -193μ strain para E3 e de -115μ strain para E4.

Em relação às análises do pilar do protótipo em estudo, constatou-se que os extensômetros E5 e E6, localizados nos flanges do pilar próximo ao U Suporte, não atingiram valores de deformações específicas que caracterizassem o escoamento do material. Os valores máximos atingidos para a carga última de ensaio foram de 383 μ strain para E5 e de –1014 μ strain para E6. Os extensômetros E7 e E8 localizados em um dos enrijecedores de borda do pilar, caracterizaram o escoamento do material. O

extensômetro E7 atingiu o escoamento para carga de 29,76 kN com uma deformação específica de -1947μ strain, enquanto o extensômetro E8 o atingiu quando a carga de ensaio era de 27,84 kN com uma deformação de 1814 μ strain. Este efeito foi observado na análise através da simulação numérica.

Analisando agora os campos de deslocamento da viga e do pilar do Protótipo PCP1V1-2, tem-se para a viga as leituras do defletômetro D4 e dos LVDT's L1, L2, L3 e L4. Para o pilar, as leituras foram feitas através dos defletômetros D1, D2, D3 e D5. As figuras 5.15 e 5.16 apresentam os deslocamentos ocorridos nos referidos pontos de análise da viga e do pilar, respectivamente.

Figura 5.15 – Gráfico carga-deslocamento dos pontos analisados da viga do Protótipo PCP1V1-2.

Figura 5.16 – Gráfico carga-deslocamento dos pontos analisados do pilar do Protótipo PCP1V1-2.

Na figura 5.17 tem-se o comportamento esquemático observado no pilar P1 em função dos deslocamentos medidos através dos defletômetros D1, D2, D3 e D5. Os valores de deslocamentos máximos obtidos no ensaio para a carga de 35,046 kN foram de 3,28 mm para D1, 0,87 mm para D2, 3,74 mm para D3 e 0,90 mm para D5.

Figura 5.17 – Representação do comportamento do pilar P1 durante o teste experimental do Protótipo PCP1V1-2.

Para exemplificar o comportamento da viga V1 durante todo o ensaio é apresentada na figura 5.18 a sua deformada para carga de 21,12 kN. Os valores máximos de deslocamentos obtidos no teste para a carga de 35,046 kN foram de – 3,06 mm para D4, -7,66 mm para L1, -22,78 mm para L2, -37,73 mm para L3 e – 42,38 mm para L4.

Figura 5.18 – Deformada da viga V1 para carga de 21,12 kN.

Com a obtenção dos deslocamentos da viga e do pilar, foram determinadas as rotações de ambos.

A rotação do pilar (γ) para cada passo de carga foi determinada através das leituras dos defletômetros D3 e D5. Como esses deslocamentos eram positivos, a rotação foi determinada subtraindo-se esses valores e dividindo pela distância entre esses defletômetros, d = 0,520 m.

A rotação na viga (β) foi determinada como descrito para o Protótipo P01B, ou seja, através de uma reta tangente à sua deformada. A inclinação dessa tangente em relação ao eixo reto inicial da viga define a rotação da mesma.

A curva momento-rotação da ligação em estudo, conforme apresentada na figura 5.19, foi determinada através dos momentos fletores para cada passo de carga e as suas respectivas rotações relativas (θ), definidas pela equação 4.1. Os valores máximos de momento fletor e de rotação relativa observados no ensaio foram de 31,72 kNm e 0,04817 rad, respectivamente.

Figura 5.19 - Curva momento-rotação da ligação do Protótipo PCP1V1-2.

Utilizando o Método da Inclinação Inicial obteve-se 3591 kNm/rad para a rigidez "k" da ligação. A figura 5.20 mostra a utilização desse método.

Figura 5.20 - Aplicação do Método da Inclinação Inicial para o Protótipo PCP1V1-2.

A carga máxima aplicada foi de 35,046 kN, mas o mecanismo de colapso se deu com uma carga inferior. O mecanismo observado foi o colapso por rasgamento da solda que ligava uma das Cantoneiras de Ligação superiores à viga V1 (figura 5.21) e foi

caracterizado pelo rompimento da solda por cisalhamento normal ao cordão de solda quando a carga de ensaio era de 28,32 kN.

Observou-se também neste teste o escoamento dos enrijecedores de borda do pilar na direção das linhas de parafuso do U Suporte quando a leitura do extensômetro E8 atingiu o valor de 1814 μ de deformação específica para uma carga de ensaio de 27,84 kN e momento de 25,20 kNm.

Figura 5.21 – Foto que mostra o colapso por rasgamento da solda entre a viga V1 e uma das Cantoneiras de Ligação superiores.

Comparando os resultados experimentais com o dimensionamento proposto no Anexo II, observou-se que no dimensionamento, a capacidade resistente da ligação foi superior à obtida nos resultados de ensaio. Isso se deu em função das hipóteses adotadas para o comportamento da ligação (Anexo II), tais como a determinação dos esforços solicitantes de cálculo nas soldas e parafusos da Cantoneira de Ligação, no U Suporte, na alma e na mesa do pilar junto à ligação.

Estabelecidos, então, os resultados para o ensaio do Protótipo PCP1V1-2, a seguir são apresentados nas tabelas 5.2 e 5.3 dois quadros comparativos de todos os resultados dos ensaios dos protótipos PCP1V1. Nota-se que para o ensaio do

Protótipo PCP1V1-3, não se obteve a carga e o momento de colapso da ligação. Isso se fez, pela necessidade, primeiramente, da obtenção de mais um dado de rigidez e, consequentemente, para reutilização das partes componentes desse protótipo para a realização do ensaio do Protótipo PCP1V1-4. Como pode-se observar nos gráficos de resultados do Protótipo PCP1V1-3 presentes no Anexo IV, o nível de carregamento do ensaio não fez com que as tensões de escoamento dos componentes desse protótipo fossem atingidas, podendo, assim, reutilizar os mesmos. Vale ressaltar também a divergência dos valores de rigidezes encontradas para os protótipos, que se deu devido a imperfeições, folga e reajustes dos componentes que formam os mesmos.

Tabela 5.2 – Quadro comparativo 01 dos resultados obtidos dos ensaios dos

Protótipos	Carga máxima de Ensaio (kN)	Momento máximo (kNm)	Rotação máxima da viga (rad)	Rotação máxima do pilar (rad)	Rotação relativa máxima (rad)
PCP1V1-1	31,204	27,928	0,05123	0,00533	0,04590
PCP1V1-2	35,046	31,717	0,05363	0,00546	0,04817
PCP1V1-3	21,119	18,902	0,02158	0,00299	0,01859
PCP1V1-4	32,645	29,217	0,04410	0,00569	0,03841

Protótipos PCP1V1.

Tabela 5.3 – Quadro comparativo 02 dos resultados obtidos dos ensaios dos Protótipos PCP1V1.

Protótipos	Efeitos Observados	Carga de Colapso (kN)	Momento de Colapso (kNm)	Rigidez (kNm/rad)	
DCD1V1_1	escoamento dos enrijecedores	25,560	22,876	2600	
PCP1V1-1	rasgamento da solda	29,280	26,206	2009	
PCP1V1-2	escoamento dos enrijecedores	27,840	25,195	2501	
	rasgamento da solda	28,320	25,630	5591	
DCD1V1_2	escoamento dos enrijecedores	-	_	1076	
PCPTVI-5	rasgamento da solda	-	-	4070	
PCP1V1-4	escoamento dos enrijecedores	30,240	27,065	6149	
	rasgamento da solda	29,280	26,206	0140	

5.2.3. Protótipos PCP1Vc1

Os Protótipos PCP1Vc1 são formados pelo pilar P1, que de acordo com a figura 5.6 é um perfil Ie 170x170x25x3,00, e pelas vigas Vc1 e Vc5, que de acordo com a tabela 3.4 são perfis Caixa 200x150x20x2,00. Os parafusos utilizados são ASTM A325 de diâmetro 12,50 mm e solda tipo de filete de classificação E60XX de acordo com a AWS D1.1:2000.

Os testes desses protótipos seguem basicamente a mesma metodologia de ensaio utilizado para os Protótipos PCP1V1. As diferenças estão apresentadas a seguir e são oriundas das mudanças no projeto da ligação que geraram alterações na instrumentação, no esquema de montagem e no sistema de aplicação de carga do ensaio.

5.2.3.1. Sistema de Aplicação de Carga do Protótipo PCP1Vc1

O sistema de aplicação de carga foi instalado na parte inferior no pórtico de reação PR02. Neste foi utilizado um transdutor de pressão para medição do carregamento aplicado. A figura 5.22 mostra o sistema de aplicação de carga com a viga de reação do pórtico PR02.

Figura 5.22 – Detalhe do sistema de aplicação de carga para o Protótipo PCP1Vc1.

O carregamento foi aplicado através do atuador hidráulico de 100 kN fabricado pela ENERPAC e foi registrado pelo transdutor de pressão fabricado pela SODMEX com sensibilidade de 0,1576 kN.

5.2.3.2. Esquema de Montagem do Protótipo PCP1Vc1

O esquema de montagem desse ensaio foi similar ao apresentado no item 5.2.2.2. Após a fixação do conjunto pilar P1 e viga Vc5, a viga Vc1 foi conectada através da ligação parafusada entre as Cantoneiras de Ligação inferiores e superiores e o U Suporte. Em seguida, o sistema de aplicação de carga foi instalado no pórtico de reação PR02. A figura 5.23 mostra o esquema de montagem desse ensaio.

Medidas em mm

Figura 5.23 – Esquema geral de montagem do teste do Protótipo PCP1Vc1.

A figura 5.24 mostra as disposições dos LVDT's e defletômetros. Percebe-se que em relação à disposição no Protótipo PCP1V1 foram retirados dois LVDT's e que foi adicionado um defletômetro (D4) com campo de medida de 30 mm e precisão de 0,01 mm.

Medidas em mm

Figura 5.24 – Detalhe do posicionamento dos LVDT's e dos defletômetros no Protótipo PCP1Vc1.

Os extensômetros elétricos de resistência foram colados de acordo com as posições ilustradas na figura 5.25 que mostra a configuração e numeração dos seis extensômetros utilizados nestes testes. Nota-se que, em relação ao Protótipo PCP1V1, foram retirados quatro extensômetros, sendo dois posicionados no U Suporte e dois nos flanges do pilar P1, pois estes apresentaram valores de deformações específicas relativamente baixos e distantes do escoamento do material. Além disso, foram

adicionados dois extensômetros no enrijecedor de borda do pilar oposto totalizando seis extensômetros utilizados.

Figura 5.25 – Posicionamento dos extensômetros elétricos de resistência no Protótipo PCP1Vc1.

5.2.3.4. Sistema de Aquisição de Dados

O sistema de aquisição de dados foi similar ao utilizado no teste do Protótipo P01 e descrito no item 4.2.1.4, tendo como particularidade a obtenção dos dados provenientes do transdutor de pressão que foi feita através de aquisição de dados controlada por computador 486 DX4 dotado de placa de dados conversora A/D (LINX) e por software de aquisição e controle de dados, AQDADOS.

5.2.3.5. Metodologia de Execução dos Testes

A metodologia aplicada para o Protótipo PCP1Vc1 foi similar à realizada para o teste do Protótipo P01 e descrito no item 4.2.1.5.

5.2.3.6. Apresentação e Análise dos Resultados Experimentais

As planilhas e os gráficos de resultados dos testes do Protótipo PCP1Vc1 estão apresentados nos Anexos III e IV, respectivamente, e os resultados são resumidos na tabela 5.4.

Nota-se que para os dois ensaios desse grupo não foram determinados as cargas e os momentos de colapso da ligação e os valores de rigidez deram bastante próximos. Esses protótipos não atingiram esse estágio de carregamento pela necessidade da reutilização de todo o conjunto do protótipo na realização dos ensaios do grupo de protótipos PEP2V1V2, que é descrito no item 5.2.4. Essa reutilização somente pôde ser efetuada, porque o nível de carregamento dos testes foi abaixo das tensões de escoamento dos componentes desse protótipo, ou seja, na fase elástica do material.

Tabela 5.4 – Quadro comparativo dos resultados obtidos dos ensaios dos

Protóti	pos	P	CP	1	Vc	1.
~ ~ ~ ~ ~		_		_		_

Protótipos	Carga máxima de Ensaio (kN)	Momento máximo (kNm)	Rotação máxima da viga (rad)	Rotação máxima do pilar (rad)	Rotação relativa máxima (rad)	Rigidez (kNm/rad)
PCP1Vc1-1	10,023	8,970	0,00512	0,00115	0,00397	2506
PCP1Vc1-2	9,253	8,281	0,00538	0,00115	0,00423	2762

5.2.4. Protótipos PEP2V1V2

Os Protótipos PEP2V1V2 são formados pelo pilar de extremidade P2, que de acordo com a figura 5.6 é um perfil le 170x170x25x3,00, e pelas vigas V1, V2 e V4, Caixa 200x150x25x3,00, acordo com tabela 3.4 são perfis que de а Caixa 200x150x20x2,00 e Caixa 200x150x20x2,00, respectivamente. A viga V4 é soldada na alma do pilar P2, enquanto que as outras são conectadas a este através do tipo de ligação em estudo. Os parafusos utilizados são ASTM A-325 de diâmetro 12,50 mm e solda tipo de filete de classificação E60XX de acordo com a AWS D1.1:2000.

Neste item são mostrados os sistemas de aplicação de carga e aquisição de dados, o esquema de montagem, a instrumentação, a metodologia e os resultados dos

testes realizados de apenas um dos dois ensaios realizados para esse protótipo, pois para o outro protótipo desse grupo esses passos se repetem. As planilhas e os gráficos de resultados desses ensaios são mostrados nos Anexos III e IV, respectivamente.

O ensaio apresentado é o segundo da série, Protótipo PEP2V1V2-2, e ao fim desse item são apresentados dois quadros comparativos dos resultados dos dois ensaios.

5.2.4.1. Sistema de Aplicação de Carga do Protótipo PEP2V1V2

O sistema de aplicação de carga foi similar ao utilizado no teste do Protótipo PCP1Vc1 e descrito no item 5.2.3.1. A foto da figura 5.26 mostra esse sistema instalado, o qual aplica o carregamento na viga V2.

Figura 5.26 – Foto do sistema de aplicação de carga para o Protótipo PEP2V1V2.

5.2.4.2. Esquema de Montagem do Protótipo PEP2V1V2

A montagem desse ensaio inicia-se com a fixação do pilar do protótipo no pórtico de reação PR01 e na laje de reação, como mostrado nas fotos da figura 5.10.

Após a fixação do pilar P2, as vigas V1 e V2 foram conectadas ao mesmo através da ligação parafusada entre as Cantoneiras de Ligação inferiores e superiores de ambas e os respectivos U Suporte. Em seguida, foram instalados o sistema de aplicação de carga definido no item anterior e o sistema de reação de apoio. Neste foram utilizados um bloco de concreto, uma célula de carga, um apoio de 2º gênero, um sistema de fixação para esses dois últimos componentes e uma placa de carga. A figura 5.27 mostra esse sistema localizado na viga V1 a uma distância equivalente da distância do sistema de aplicação de carga ao centro do pilar P2.

Figura 5.27 – Sistema de reação de apoio na viga V1 do Protótipo PEP2V1V2. a) Esquema do sistema; b) Foto do sistema.

Nota-se que nestes protótipos há a presença da viga V4 que é soldada à alma do pilar P2 na fábrica. Isso se fez com o objetivo inicial de se instrumentar e aplicar carga nesta viga e na viga V2 e instrumentar a viga V1 caracterizando um pilar de extremidade em situação de serviço, mas optou-se pela não realização dessa configuração de ensaio. Assim, fez-se somente a instrumentação e a aplicação do carregamento na viga V2 e a instrumentação na viga V1.

A seguir, na figura 5.28 e na foto da figura 5.29, é mostrado todo o esquema de montagem desse ensaio.

Figura 5.28 – Esquema de montagem do ensaio do Protótipo PEP1V1V2.

Figura 5.29 – Foto do esquema de montagem do ensaio do Protótipo PEP2V1V2.

5.2.4.3. Instrumentação

A instrumentação foi composta por LVDT's, defletômetros e extensômetros elétricos de resistência.

A figura 5.30 mostra as disposições dos LVDT's e defletômetros utilizados para a obtenção do campo de deslocamentos e consequentemente das rotações relativas da ligação em estudo. Em cada viga do protótipo existem dois LVDT's e dois defletômetros e no pilar foram instalados quatro defletômetros.

Medidas em mm

Figura 5.30 – Detalhe do posicionamento dos LVDT's e dos defletômetros no Protótipo PEP2V1V2.

Os extensômetros elétricos de resistência estão posicionados de acordo com a figura 5.31. Para representar o comportamento da viga V1 foram instalados os extensômetros E3 e E4. Com os extensômetros E1 e E2 procura-se representar o comportamento da viga V2. Já os extensômetros E5, E6, E7 e E8 foram posicionados em dois enrijecedores de borda do pilar P2. Essa localização foi escolhida em função da alta concentração de tensões nesta região como verificado nos ensaios dos protótipos anteriores.

VISTA LATERAL

Figura 5.31 – Posicionamento dos extensômetros elétricos de resistência no Protótipo PEP2V1V2.

5.2.4.4. Sistema de Aquisição de Dados

O sistema de aquisição de dados foi similar ao utilizado no teste do Protótipo PCP1Vc1 e descrito no item 5.2.3.4.

5.2.4.5. <u>Metodologia de Execução dos Testes</u>

A metodologia iniciou-se com a realização de um pré-ensaio. Em seguida, foram aplicados carregamentos em passos de carga constantes através do atuador hidráulico até o colapso do protótipo. Esse carregamento foi aplicado na viga V2 no sentido de baixo para cima. Ao mesmo tempo que o carregamento era aplicado, o sistema de reação de apoio na viga V1 recebia cargas devido ao esquema de montagem utilizado. No entanto, isso foi feito para analisar a influência dos vãos subsequentes na ligação em estudo e também para caracterizar a situação de serviço do conjunto na edificação.

Conjuntamente com a aplicação de carga, obteve-se todos os dados de deslocamento através de LVDT's e defletômetros. Com os extensômetros elétricos de resistência obteve-se as deformações específicas e com o sistema de reação de apoio, as

cargas aplicadas na viga V1. Assim, determinou-se os resultados desse ensaio que são analisados no item seguinte.

5.2.4.6. Apresentação e Análise dos Resultados Experimentais

Os resultados e as análises do ensaio experimental do Protótipo PEP2V1V2-2 são apresentados seguindo a mesma abordagem do Protótipo PCP1V1-2 no item 5.2.2.6. Os resultados analisados são os de deformações, deslocamentos, curva momentorotação, rigidez da ligação em estudo e o mecanismo de colapso.

Neste item fez-se somente análises referentes à viga V2 cujas cargas foram medidas através do transdutor de pressão. Isso se explica em função dos defletômetros e LVDT's da viga V1 praticamente não se deslocarem e as cargas medidas pela célula de carga no sistema de reação de apoio serem relativamente baixas durante os ensaios. Assim, para a viga V1, somente as deformações foram analisadas nas análises dos resultados.

Ressalta-se ainda que, com a pouca influência da viga V1 nos resultados desse ensaio, um conjunto formado por uma viga e uma ligação correspondente trabalha praticamente independente de outro conjunto nesta situação de serviço.

A carga última verificada neste ensaio foi de 37,129 kN e de acordo com a caracterização do material realizada no item 5.2.1, os valores de f_y e f_u para a viga V1, pilar P2 e cantoneiras de ligação do Protótipo PEP2V1V2-2 são de 364,86 MPa e 473,84 MPa, respectivamente. Para o U Suporte da ligação, $f_y = 394,70$ MPa e $f_u = 526,55$ MPa, e para a viga V2, $f_y = 373,42$ MPa e $f_u = 498,10$ MPa

A figura 5.32 apresenta os resultados de deformações para os pontos indicados na figura 5.31.

Figura 5.32 - Gráfico carga-deformação específica do Protótipo PEP2V1V2-2.

Verificou-se na viga V1 do protótipo esforços de tração nos flanges inferiores, extensômetro E4, e de compressão nos flanges superiores da mesma, extensômetro E3. Os valores máximos de deformação específica ocorridos nessa viga foram determinados para a carga de 37,129 kN, atingindo valores de 68 μ strain (tração) e de -50 μ strain (compressão). Assim, como a deformação específica de escoamento não foi atingida, a viga V1 não escoou. Os flanges da viga atingiriam o escoamento para deformações específicas próximas a 1780 μ strain.

Para a viga V2, os valores máximos de deformação específica foram determinados para a carga de 37,129 kN, atingindo valores de 3503 μ strain (tração) nos flanges inferiores, extensômetro E2, e de -1822μ strain (compressão) nos flanges superiores, extensômetro E1. Assim, como as deformações específicas com valores próximos a 1822 μ strain caracterizavam o escoamento do material da viga, a mesma escoou primeiramente nos flanges inferiores quando a carga era de 28,20 kN, enquanto os superiores o atingiram somente para a carga de 37,129 kN, isso considerando um módulo de elasticidade igual a 205000 MPa.

Em relação às análises do pilar P2 do protótipo em estudo, constatou-se que os extensômetros E7 e E8, localizados no enrijecedor de borda do pilar próximo à viga V1, não atingiram valores de deformações específicas que caracterizassem o escoamento do material. Os valores máximos atingidos para a carga última de ensaio foram de
86 μ strain para E7 e de -127μ strain para E8. Os extensômetros E5 e E6 localizados no enrijecedor de borda do pilar próximo à viga V2, caracterizaram o escoamento do material. O extensômetro E5 atingiu o escoamento para carga de 23,42 kN com uma deformação específica de 1794 μ strain, enquanto o extensômetro E6 o atingiu para a carga de ensaio de 25,58 kN com uma deformação de -1788 μ strain.

Analisando agora os campos de deslocamento das vigas e do pilar do Protótipo PEP2V1V2-2, tem-se para a viga V1 as leituras dos defletômetros D6 e D8 e dos LVDT's L1 e L2. Para viga V2 tem-se os defletômetros D2 e D4 e os LVDT's L3 e L4. Para o pilar as leituras foram feitas através dos defletômetros D1, D3, D5 e D7.

Na figura 5.33 são apresentados somente os deslocamentos ocorridos na viga V2 em função dos deslocamentos praticamente nulos na viga V1. Isso de deu devido a não transmissibilidade de esforços entre as vigas V1 e V2 que, praticamente, se comportaram independentes uma da outra. Os deslocamentos ocorridos nos pontos de análise do pilar P2 são mostrados na figura 5.34.

Figura 5.33 – Gráfico carga-deslocamento dos pontos analisados da viga V2 do Protótipo PEP2V1V2-2.

Figura 5.34 – Gráfico carga-deslocamento dos pontos analisados do pilar P2 do Protótipo PEP2V1V2-2.

Na figura 5.35 tem-se o comportamento esquemático observado no pilar P2 em função dos deslocamentos medidos através dos defletômetros D1, D3, D5 e D7. Os valores de deslocamentos máximos obtidos no ensaio para a carga de 37,129 kN foram de 1,01 mm para D1, 3,28 mm para D3, 3,34 mm para D5 e 1,46 mm para D7.

Figura 5.35 – Representação do comportamento do pilar P2 durante o ensaio experimental do Protótipo PEP2V1V2-2.

Para exemplificar o comportamento da viga V2 durante todo o ensaio, é apresentada na figura 5.36 a deformada para carga de 34,97 kN. Essa deformada é caracterizada pelos deslocamentos dos defletômetros D2 e D4 e dos LVDT's L3 e L4. Os valores máximos de deslocamentos obtidos no ensaio para a carga de 37,129 kN foram de –3,40 mm para D2, -44,21 mm para D4, -5,86 mm para L3 e –24,32 mm para L4.

Comprimento da Viga V2 (m)

Figura 5.36 – Deformada da viga V2 para carga de 34,97 kN.

Com a obtenção dos campos de deslocamentos da viga V2 e do pilar P2, são determinadas as rotações de ambos. As rotações da viga V1 não foram determinadas.

A rotação do pilar P2 (γ) para cada passo de carga foi determinada através das leituras dos defletômetros D1 e D3. Como esses deslocamentos eram positivos, a rotação foi determinada subtraindo-se esses valores e dividindo pela distância entre esses defletômetros, d = 0,524 m.

A rotação na viga V2 (β) foi determinada como descrito para Protótipo PCP1V1-2 através de uma reta tangente à sua deformada.

A curva momento-rotação, figura 5.37, foi determinada através dos momentos fletores para cada passo de carga e as suas respectivas rotações relativas (θ) definidas pela equação 4.1. Os valores máximos de momento fletor e de rotação relativa observados no ensaio foram de 33,23 kNm e 0,03674 rad, respectivamente.

Figura 5.37 – Curva momento-rotação da ligação do Protótipo PEP2V1V2-2.

Utilizando o Método da Inclinação Inicial obteve-se 3497 kNm/rad para a rigidez "k" da ligação. A figura 5.38 ilustra a utilização desse método.

Figura 5.38 – Aplicação do Método da Inclinação Inicial para o Protótipo PEP2V1V2-2.

A carga máxima aplicada foi de 37,129 kN, mas o mecanismo de colapso se deu com uma carga inferior. O mecanismo observado, mostrado na figura 5.39, foi o rasgamento da solda que ligava uma das Cantoneiras de Ligação inferiores à viga V2 e

foi caracterizado pelo rompimento da solda por cisalhamento normal ao cordão de solda quando a carga de ensaio era de 32,20 kN.

Observou-se também neste teste o escoamento dos enrijecedores de borda do pilar na direção das linhas de parafuso do U Suporte e próximo à viga V2. Isso se deu quando a leitura do extensômetro E5 atingiu o valor de 1794 μ strain de deformação específica para uma carga de ensaio de 23,42 kN e momento de 20,96 kNm. Assim, houve redistribuição de tensões e, consequentemente, verificou-se o escoamento dos flanges inferiores tracionados da viga V2 caracterizado pela leitura do extensômetro E2 que atingiu o valor de 1905 μ strain de deformação específica para uma carga de ensaio de 28,20 kN e momento de 25,24 kNm.

Figura 5.39 – Foto que mostra o colapso por rasgamento da solda entre a viga V2 e uma das Cantoneiras de Ligação inferiores.

Comparando os resultados experimentais com o dimensionamento proposto no Anexo II, observou-se que no dimensionamento a capacidade resistente da ligação foi superior à obtida nos resultados de ensaio. Isso se deu em função da presença da viga V2 que tem seção transversal diferente da utilizada no dimensionamento e das hipóteses adotadas para o comportamento da ligação (Anexo II), tais como a determinação dos esforços solicitantes de cálculo nas soldas e parafusos da Cantoneira de Ligação, no U Suporte, na alma e na mesa do pilar junto à ligação.

Juntamente com os resultados do ensaio do Protótipo PEP2V1V2-2, são apresentados nas tabelas 5.5 e 5.6 dois quadros comparativos de todos os resultados dos ensaios dos protótipos PEP2V1V2, onde verificou-se mecanismo de colapso compatível e pouca divergência entre os valores de rigidezes e carga máxima de ensaio obtidos.

Tabela 5.5 - Quadro comparativo 01 dos resultados obtidos dos ensaios dos

Protótipos PEP2V1V2.

Protótipos	Carga máxima de Ensaio (kN)	Momento máximo (kNm)	Rotação máxima da viga (rad)	Rotação máxima do pilar (rad)	Rotação relativa máxima (rad)
PEP2V1V2-1	37,437	33,506	0,04918	0,00426	0,04492
PEP2V1V2-2	35,589	31,852	0,04098	0,00424	0,03674

Tabela 5.6 – Quadro comparativo 02 dos resultados obtidos dos ensaios dos

Protótipos	Efeitos Observados	Carga de Colapso (kN)	Momento de Colapso (kNm)	Rigidez (kNm/zad)
PEP2V1V2-1	escoamento dos enrijecedores	25,880	23,163	
	rasgamento da solda	34,050	30,475	3731
	escoamento dos flanges da viga V2	25,880	23,163	
	escoamento dos enrijecedores	23,420	20,961	
PEP2V1V2-2	rasgamento da solda 32,200 28,819		28,819	3497
	escoamento dos flanges da viga V2	28,200	25,239	

Protótipos PEP2V1V2.

6. ANÁLISE DO PROJETO 01 CONSIDERANDO A SEMI-RIGIDEZ DA LIGAÇÃO

6.1. INTRODUÇÃO

Neste capítulo é apresentada uma segunda análise estrutural e, consequentemente, um novo dimensionamento do Projeto 01 (edifício de dois pavimentos do Projeto USIHAB).

Nesta segunda análise foram considerados os valores de rigidez das ligações estudadas no capítulo 5. Ressalta-se que esses resultados das rigidezes devem ser verificados com uma maior série de ensaios e que os estudos realizados neste capítulo são de caráter qualitativo e para indicar a viabilidade de utilização da semi-rigidez das ligações, não devendo ser utilizada em projeto final.

Os valores de rigidez considerados, para cada ligação, foram obtidos através da média aritmética entre os valores determinados nos ensaios experimentais. Foi somente realizada a análise 3D da estrutura, pois esta foi a considerada para avaliação dos protótipos do programa experimental e por se aproximar melhor da estrutura real.

Novamente, utilizaram-se os softwares comerciais ANSYS Versão 6.0 (Ansys, 2001) e CFSLT Versão 3.5 (CFSLT, 2000), respectivamente, para a análise e dimensionamento da estrutura da edificação, sendo este último baseado nas prescrições da norma americana AISI/1996.

O objetivo dessa segunda análise foi avaliar o comportamento da estrutura, levando em consideração a influência das rigidezes das ligações, e comparar com a análise anterior realizada, para essa mesma edificação, sem a consideração das rigidezes das ligações. Os esforços em cada barra da estrutura e em cada ligação viga-pilar, bem como a estabilidade de todo sistema estrutural, foram avaliados.

6.2. ANÁLISE DO PROJETO 01

O levantamento de cargas utilizado foi o mesmo apresentado no item 3.2.1. Os tipos de carregamento foram sobrecarga (Sc), carga permanente (CP) e cargas devido ao esforço do vento (CV), sendo os dois primeiros obtidos através da NBR 6120:1980 e de catálogos de fabricantes e o terceiro através da NBR 6123:1988. Esses tipos de carregamento foram aplicados novamente na estrutura por área de influência.

As combinações de ações utilizadas nessa análise foram as mesmas apresentadas na tabela 3.1 do item 3.2.2. Foram aplicados oito tipos de combinações, sendo cinco para os Estados Limites Últimos e três para os Estados Limites de Utilização.

Em relação à concepção estrutural, como apresentado no item 3.2.3, o lançamento estrutural foi baseado no projeto arquitetônico do Projeto 01, na concepção de padronização da edificação e no procedimento de montagem. O esquema estrutural em planta foi o mesmo apresentado na figura 3.1.

6.2.1. Análise Estrutural 3D do Projeto 01

Nesta segunda análise estrutural 3D do Projeto 01, foi utilizado novamente o software ANSYS e análise linear da edificação. Os elementos utilizados na análise foram dois elementos de barra uniaxiais tridimensionais de dois nós (tabela 3.2), sendo o elemento LINK 180 para os contraventamentos e pilares P3 e o elemento BEAM 44 para as vigas e pilares P1 e P2. Outro elemento utilizado foi o COMBIN 14 que é um elemento de mola capaz de introduzir na análise rigidez rotacional ou de translação entre elementos, representando o comportamento de uma ligação viga-pilar por exemplo. Se a opção escolhida for a de rigidez rotacional, este elemento formado por dois nós tem três graus de liberdade por nó (três rotações em relação aos eixos "x", "y" e "z") e, se a opção for a de rigidez à translação, este também tem três graus de liberdade por nó (três translações em relação das ligações viga-pilar determinadas nos ensaios experimentais do capítulo 5. A figura 6.1 apresenta um desenho esquemático do elemento COMBIN 14.

Figura 6.1 – Elemento COMBIN 14 (Ansys, 2001).

Assim, seguindo o procedimento de montagem apresentado no item 3.2.3, as ligações viga-pilar, pertencentes aos eixos A01, A02, A03 e A04, foram consideradas flexíveis. Já o restante das ligações parafusadas viga-pilar de canto e de extremidade da estrutura, foram consideradas como ligações semi-rígidas.

A seguir, na tabela 6.1, são apresentadas as ligações viga-pilar semi-rígidas da estrutura. Nessa tabela também estão mostrados os conjuntos de vigas e pilares pertencentes a cada ligação, os grupos de protótipos de ensaio correspondentes às mesmas com seus respectivos valores de rigidez (k) e os valores médios de rigidez (k_{med}) de cada ligação, utilizados na análise estrutural. A nomenclatura das vigas e pilares utilizada nessa tabela é a mesma utilizada no esquema estrutural em planta da figura 3.1 e vale lembrar que os Protótipos PCP1V1 e PEP2V1V2 foram levados ao colapso em sua maioria, enquanto que o Protótipo PCP1Vc1 não foi.

Ligação	Docimpoño	Partes Componentes		Grupo de	k	k _{med}
Ligação	Designação	Pilar	Viga	Protótipos	(kNm/rad)	(kNm/rad)
		P1	V1	PCP1V1	2609	4106
T 01	Ligação viga-coluna	P1	V3		3591	
LUI	com pilar de canto	P2	V1		4076	
		P2	V3		6148	
1.02	Ligação viga-coluna	P1	Vc1	PCP1Vc1	2506	2634
L02	com pilar de canto	P1	Vc3		2762	
	Ligação viga-coluna com pilar de extremidade	P2	V2	PEP2V1V2	3731	
L03		P2	Vc1			2614
		P2	Vc2		2407	3014
		P2	Vc3		5497	

Tabela 6.1 – Valores das rigidezes (k_{med}) das ligações semi-rígidas utilizados na segunda análise estrutural do Projeto 01.

Como pode-se notar, a ligação L01 apresentou um valor médio de rigidez maior que as demais, onde a diferença foi de 55,9 % para a ligação L02 e de 13,6 % para L03. Já o valor médio de rigidez adotado para a ligação L03, foi 37,2 % maior do que para L02.

Nota-se também uma divergência entre os valores de rigidez determinados para os testes do Protótipo PCP1V1 podendo ser justificado pelo efeito das imperfeições de fabricação e montagem dos corpos de prova e ainda pelo posicionamento da instrumentação dos ensaios. Vale ressaltar ainda que para a realização do teste do quarto protótipo foram reutilizados os componentes do terceiro protótipo da série, gerando a maior divergência entre os valores de rigidez devido a folgas e reajustes dos componentes que formam os mesmos.

Como descrito no item 3.2.4, os pórticos pertencentes aos eixos A01 e A04 são responsáveis pela estabilização transversal, sendo a estabilização longitudinal garantida pelos pórticos pertencentes aos eixos B01 e B02 contidos entre os eixos A02 e A03. Nestes últimos foram introduzidas as rigidezes das ligações, enquanto nos primeiros as ligações foram mantidas flexíveis.

As seções transversais adotadas para vigas, contraventamentos e para o pilar P3 nessa análise foram as mesmas apresentadas na tabela 3.4. Já para os pilares P1 e P2, as seções foram alteradas, devido às análises realizadas nos protótipos de ensaio mostradas

no capítulo 5. Assim, tanto para o pilar P1 quanto para o P2 foi utilizado o perfil Ie 170x170x25x3,00.

A sequência utilizada para essa análise foi a mesma apresentada no item 3.2.4. Inicialmente, toda a estrutura foi modelada em três dimensões no software ANSYS Versão 6.0 (Ansys, 2001). Nesta modelagem foram utilizados 172 elementos, sendo 10 elementos LINK 180, 138 elementos BEAM 44 e 24 elementos COMBIN 14.

Em seguida, os carregamentos "CP", "Sc", "CVx" e "CVz" foram aplicados separadamente na estrutura.

Após a aplicação dos tipos de carregamento, foram realizadas todas as combinações de ações para o Estado Limite Último, de acordo com a tabela 3.1 do item 3.2.2. Na figura 6.2 são mostrados os esforços nas barras devido à combinação "C1", exemplificando esse passo da análise. Nota-se que houve aparecimento de esforços de momento fletor nas extremidades das vigas, em relação aos seus eixos locais "Z", que são ligadas aos pilares através do tipo de ligação em estudo. Isso se deu pela introdução das rigidezes das ligações nestes pontos da análise. Consequentemente, essa introdução das rigidezes causou um aumento de transmissão de momento fletor entre as vigas e os pilares, diminuindo esse tipo de esforço solicitante nas vigas e aumentando nos pilares.

a) Momento Fletor em relação ao eixo "Z" local (kNm) de cada barra.

b) Momento Fletor em relação ao eixo "Y" local (kNm) de cada barra.

c) Esforço cortante em relação ao eixo "Z" local (kN) de cada barra.

d) Esforço cortante em relação ao eixo "Y" local (kN) de cada barra.

e) Esforço normal (kN) de cada barra. Figura 6.2 –Esforços nas barras devido à combinação "C1".

Após a aplicação de todas as combinações para os Estados Limites Últimos, determinaram-se os esforços solicitantes máximos de cálculo para cada barra. Assim, na

tabela 6.2 são apresentados todos esses esforços com suas respectivas combinações de ações.

			Esforços Solicitantes de Cálculo				
		Combinação	Momentos fletores		Esforço cortante		Esforço
Elementos	Barras						Normal ^{c)}
		2	(kNm)		(kN)		(kN)
			Mdz	Mdy	Vdx	Vdy	Nd
	P1	C5	5,56	3,56	-	6,64	-89,55
Pilares	P2	C2	4,32	0,02	2,79	-	-147,39
	P3	C4	-	-	-	-	-18,78
	V1	C1	18,01	0,01	38,77	-	1,11
	V2	C1	12,47	0,01	31,92	-	37,10
	V3	C1	13,17	0,03	28,44	-	1,43
	V4	C5	10,37	0,11	13,16	-	-0,15
Vigos	V5	C5	15,37	0,16	19,51	-	-19,81
vigas	Vc1	C1	5,46	0,06	11,75	-	-3,61
	Vc2	C1	5,68	0,09	11,34	-	-38,36
	Vc3	C1	5,14	0,08	11,63	-	-3,41
	Vc4	C5	2,66	0,16	3,37	-	0,10
	Vc5	C5	4,55	0,10	5,78	-	-5,60
Controvontomontos	$C1^{a}$	C1	-	-	-	-	62,54
Contraventamentos	C2 ^{b)}	C5	-	-	-	-	-26,20
a) Barras de contraventamento situadas nos pórticos de estabilização pertencentes aos eixos B01 e B02							

Tabela 6.2 - Esforços solicitantes nas barras do Projeto 01 considerando ligações semi-

rígidas.

b) Barras de contraventamento situadas nos pórticos de estabilização pertencentes aos eixos A01 e A04.

c) Valores negativos representam esforço de compressão e valores positivos representam esforço de tração.

Com a aplicação das rigidezes nessa segunda análise surgiram nas extremidades das vigas pertencentes à ligação parafusada, esforços de momento fletor. Enquanto na análise realizada anteriormente no capítulo 3 esses valores de momento fletor foram nulos, a tabela 6.3 apresenta os valores verificados após a introdução das rigidezes reais.

Ligação	Partes Componentes		Momentos Fletores
Ligação	Pilar	Viga	Atuantes (kNm)
	P1	V1	12,88
T 01	P1	V3	9,83
LUI	P2	V1	12,88
	P2	V3	9,83
1.02	P1	Vc1	5,46
L02	P1	Vc3	5,14
	P2	V2	7,42
1.02	P2	Vc1	5,46
L03	P2	Vc2	5,68
	P2	Vc3	5,14

Tabela 6.3 – Valores de momento fletor obtidos nas extremidades das vigas pertencentes à ligação parafusada em estudo.

As figuras 6.3, 6.4 e 6.5 são gráficos comparativos de esforços entre essa segunda análise e aquela realizada no capítulo 3 deste trabalho. Estas mostram, respectivamente, as comparações entre os esforços solicitantes de cálculo de esforço normal, esforço cortante e momento fletor determinados em cada barra para ambas as análises.

Figura 6.3 – Comparação de esforços normais de cálculo entre as análises.

Figura 6.4 – Comparação de esforços cortantes de cálculo entre as análises.

b) Momentos Mdy.

Figura 6.5 – Comparação de momentos fletores de cálculo entre as análises.

Assim, verificou-se que os esforços de momento fletor de cálculo nos pilares aumentaram em relação à análise realizada sem a introdução das rigidezes das ligações. Isso se explica devido à maior transmissão de esforços entre as vigas e pilares conectados através da ligação proposta. Em contrapartida, os esforços de momento fletor de cálculo nas vigas diminuíram. Em relação aos esforços normal e cortante de cálculo nas barras, os valores foram bastante próximos entre as duas análises em função da utilização somente de rigidez rotacional nas extremidades das vigas, que faziam parte do conjunto da ligação parafusada, na segunda análise.

Com a obtenção dos esforços solicitantes de cálculo, realizou-se o dimensionamento das barras da estrutura. O dimensionamento de pilares, vigas e contraventamentos foram realizados de acordo com a AISI (1996) e com a NBR 14762:2001. A tabela 6.4 apresenta os perfis determinados para os pilares, vigas e contraventamentos devido às novas análises de dimensionamento.

Elementos	Barras	Perfis
	P1	Ie 170x170x25x3
Pilares	P2	Ie 170x170x25x3
	P3	Ue 200x100x25x2
	V1	Caixa 200x150x25x3
	V2	Caixa 200x150x20x2
	V3	Caixa 200x150x25x3
	V4	Caixa 200x150x20x2
Vigos	V5	Caixa 200x150x20x2
vigas	Vc1	Caixa 200x150x20x2
	Vc2	Caixa 200x150x20x2
	Vc3	Caixa 200x150x20x2
	Vc4	Caixa 200x150x20x2
	Vc5	Caixa 200x150x20x2
Controvontomontos	C1	Ue 150x60x20x2
Contraventamentos	C2	Ue 150x60x20x2,25

Tabela 6.4 – Perfis utilizados como pilares, vigas e contraventamentos na segunda

análise de dimensionamento da estrutura em 3D do Projeto 01.

Realizado todo o dimensionamento da estrutura da edificação, foram realizadas as análises para as combinações de ações relativas aos Estados Limites de Utilização, de acordo com a tabela 3.1 do item 3.2.2. Na figura 6.6 são mostrados os deslocamentos verticais em metros dos elementos resultantes da aplicação da combinação "C6".

Figura 6.6 – Deslocamentos verticais (m) dos elementos devido à combinação "C6".

O deslocamento vertical máximo admissível para as vigas da edificação é de L/350 (Tabela A.1 – Anexo A – NBR 14762:2001), sendo "L" o vão teórico da viga em estudo. Assim, tem-se um deslocamento vertical máximo admissível de 9 mm, para vigas de vão 3,15 m, e de 17,57 mm para vigas de vão 6,15 m. Portanto, como o maior deslocamento vertical da edificação é de 6,21 mm, a edificação satisfaz a esse estado limite de utilização.

Os deslocamentos horizontais da estrutura nas direções dos eixos globais "X" e "Z" foram determinados com a aplicação das combinações "C7" e "C8", respectivamente. As figuras 6.7 e 6.8 mostram os deslocamentos horizontais em metros dos elementos resultantes da aplicação dessas combinações.

Figura 6.7 –Deslocamentos horizontais (m) na direção do eixo global "X" dos elementos devido à combinação "C7".

Figura 6.8 – Deslocamentos horizontais (m) na direção do eixo global "Z" dos elementos devido à combinação "C8".

O deslocamento horizontal máximo admissível para a edificação é de H/400, onde "H" é a altura da edificação, e de h/300, onde "h" é a altura entre dois pisos consecutivos (Tabela A.1 – Anexo A – NBR 14762:2001). Assim, tem-se um deslocamento horizontal máximo admissível de 14,45 mm, referente à primeira verificação, e de 9,17 mm, referente à segunda. Portanto, como o maior deslocamento horizontal da edificação é de 3,16 mm na direção "Z", a edificação satisfaz às duas verificações desse estado limite de utilização.

Com a obtenção dos valores de deslocamentos máximos na estrutura da edificação para essa segunda análise, obtém-se a comparação, figura 6.9, desses deslocamentos entre essa análise e a apresentada no capítulo 3. Assim, concluiu-se que a estrutura se desloca menos quando se introduz as rigidezes das ligações na análise, exceto para o deslocamento máximo na direção global "Z" (Uz) que se manteve inalterado em função da não existência de ligações parafusadas nessa direção da estrutura, ou seja, não se introduziu rigidezes nas ligações viga-pilar nessa direção. Para o deslocamento máximo na direção global "X" (Ux) a diferença foi de 31,1 %, enquanto para Uy foi de 33,2 %. Isso de deu pela introdução das rigidezes das ligações na análise fazendo com que a estrutura ficasse mais rígida, ou seja, os conjuntos viga-pilar se tornaram mais solidários e começaram a trabalhar conjuntamente.

Figura 6.9 – Comparação de deslocamentos máximos ocorridos na estrutura entre as análises realizadas.

Após a verificação dos Estados Limites de Utilização, na tabela 6.5 é detalhado o quantitativo de material utilizado no Projeto 01 referente aos pilares, vigas e contraventamentos. Já na tabela 6.6 é detalhado o quantitativo de material referente às ligações da edificação e, consequentemente, a determinação da taxa total de toda estrutura da edificação.

Tabela 6.5 – Quantitativo de material utilizado no Projeto 01 referente aos pilares, vigas e contraventamentos, considerando a segunda análise estrutural em 3D.

Elementos	Barras	Perfis	Peso unitário (kg/m)	Quantida- de	L _{Total} (m)	Peso Total (kg)
	P1	Ie 170x170x25x3	17,10	4	23,12	395,35
Pilares	P2	Ie 170x170x25x3	17,10	4	23,12	395,35
	P3	Ue 200x100x25x2	6,70	2	5,46	36,58
	V1	Caixa 200x150x25x3	17,50	2	5,894	103,15
	V2	Caixa 200x150x20x2	11,60	2	11,894	137,97
	V3	Caixa 200x150x25x3	17,50	2	5,894	103,15
	V4	Caixa 200x150x20x2	11,60	2	6,262	72,64
Vigos	V5	Caixa 200x150x20x2	11,60	2	6,262	72,64
Vigas	Vc1	Caixa 200x150x20x2	11,60	2	5,894	68,37
	Vc2	Caixa 200x150x20x2	11,60	2	11,894	137,97
	Vc3	Caixa 200x150x20x2	11,60	2	5,894	68,37
	Vc4	Caixa 200x150x20x2	11,60	2	6,262	72,64
	Vc5	Caixa 200x150x20x2	11,60	2	6,262	72,64
Contraven-	C1	Ue 150x60x20x2	4,60	4	12,12	55,75
tamentos	C2	Eu 150x60x20x2,25	5,10	4	14,84	75,68
		Peso Total "A" (kg)		1868,25		
		Área Total (m ²)		94,24		
			Taxa	(kg/m^2)	19,	82

Tabela 6.6 – Quantitativo de material utilizado no Projeto 01 referente às ligações e a

Elementos	Descrição	Peso unitário (kg/m)	Quantida- de	L _{Total} (m)	Peso Total (kg)
U Suporte	U 163x186,35x6,35	25,14	24	7,68	193,08
Enrijecedores	U 163x76x6,35	14,36	32	10,24	147,05
Parafusos	φ 12,50 mm	0,05	288	-	14,40
		Peso Tot	otal "B" (kg) 354,		,53
		Peso Total "A + B" 2222 (kg)		2,78	
		Área Total (m ²)		94,	24
		Taxa To	tal (kg/m ²)	23,	60

taxa total de toda estrutura.

Com a utilização das rigidezes na segunda análise, ocorreu uma maior transmissão de esforços entre as vigas e os pilares ligados pelas ligações parafusadas, ocasionando um aumento nos esforços solicitantes de cálculo nos pilares, principalmente os esforços de momento fletor. Com isso, comparando as tabelas 6.5 e 3.4 (tabela de quantitativo de material para a análise realizada sem a utilização das rigidezes das ligações), verificou-se que para as vigas, contraventamentos e pilares P3 as seções transversais não se alteraram, enquanto para os pilares P1 e P2 isso ocorreu. A seção transversal determinada para os pilares P1 e P2 para essa segunda análise foi a Ie 170x170x25x3,00, igual à determinada no capítulo 5. Assim, com essa alteração de seção transversal dos pilares P1 e P2, observou-se um aumento de 6,0 % na taxa (kg/m²) nessa segunda análise em relação à primeira apresentada no capítulo 3 que não implicará necessariamente em gastos maiores para a edificação em função da utilização das ligações parafusadas que transmitem maior confiabilidade na sua execução e maior facilidade e rapidez na montagem da estrutura.

7. CONSIDERAÇÕES FINAIS

O principal objetivo desse trabalho foi avaliar o comportamento de ligações viga-pilar parafusadas em perfis formados a frio. Para isso, foram realizados estudos teórico-experimentais em duas edificações pertencentes ao projeto vencedor do 2º Prêmio Arquitetura em Aço, patrocinado pela USIMINAS, Projeto USIHAB. Esses estudos se basearam nas análises estruturais e dimensionamento de ambos os projetos (Projeto 01 de dois pavimentos e Projeto 02 de quatro pavimentos) e no programa experimental que visou principalmente a obtenção da curva momento-rotação das ligações tipo de projeto e, consequentemente, a determinação das respectivas rigidezes que foram introduzidas numa nova análise do Projeto 01.

Diversos parâmetros influenciaram nas análises estruturais e no dimensionamento, tais como: imposições inicias da arquitetura que compreendiam seções de vigas e pilares do tipo caixa, vigas de mesma altura visando um fechamento de dimensões padronizadas e tipos de materiais de fechamento utilizados. Outro parâmetro importante foi o esquema de montagem adotado, pois a partir deste se determinou o comportamento das estruturas e desenvolveu o programa experimental do apresentado neste trabalho.

As dimensões dos tipos de ligações estudadas foram obtidas de acordo com as prescrições da AISI (1996), NBR 14762:2001 e baseadas em hipóteses adotadas para o comportamento dessas ligações.

No programa experimental foram realizadas análises experimentais das ligações viga-pilar parafusadas em escala real, objetivando além da determinação das curvas momento-rotação e das rigidezes das mesmas, os momentos últimos, os modos de colapso, as deformações e o campo de deslocamento das ligações ensaiadas. Foram realizados dois ensaios para o Projeto 02, contendo dois diferentes protótipos e oito para o Projeto 01, contendo três diferentes protótipos.

Como para os protótipos referentes ao Projeto 02, que utiliza perfis de seção transversal tipo caixa para pilares e vigas, não se obteve resultados satisfatórios, foi permitida uma flexibilização no Projeto 01. Esta flexibilização passou pela mudança na

arquitetura e alterações da seção transversal dos pilares para perfis de seção transversal tipo "I enrijecido" formado por dois perfis cartola soldados intermitentemente através de suas almas. Assim, realizou-se os ensaios experimentais para o Projeto 01 e as rigidezes obtidas foram introduzidas na estrutura fazendo uma segunda análise desse projeto.

As rigidezes foram obtidas na fase linear da curva momento-rotação das ligações, onde observou-se um comportamento não-linear e divergente como mostra a figura 7.1 para um dos protótipos de ensaio do Projeto 01.

Figura 7.1 – Comparação de curvas momento-rotação de ensaios experimentais de um protótipo de ensaio do Projeto 01.

A seguir são mostradas as conclusões desses estudos.

As taxas (kg/m²) obtidas na primeira análise (sem a introdução das semirigidezes das ligações) para os Projetos 01 e 02 foram, respectivamente, de 18,70 kg/m² e 16,92 kg/m², sem considerar o peso dos componentes das ligações. Essa diferença de 10,5 % foi devido ao melhor comportamento da estrutura da edificação de quatro pavimentos com seções do tipo caixa para pilares e vigas e à distribuição da arquitetura em relação a área total construída. A ligação proposta no Protótipo P01, referente ao Projeto 02, não apresentou um comportamento satisfatório o que foi observado através do mecanismo de colapso e da resistência aos esforços não serem aqueles esperados através do dimensionamento. Chegou-se a uma carga última de teste de 15,36 kN, momento último de 14,054 kNm e valor de rigidez de 3333 kNm/rad.

No Protótipo P01B, cuja configuração objetivou uma nova solução mais resistente de ligação para o Projeto 02, chegou-se a uma carga última de teste de 58,58 kN, momento último de 53,601 kNm e o valor de rigidez de 2646 kNm/rad. Verificou-se que o mecanismo de colapso foi observado para a carga de ensaio de 32,65 kN. Essa configuração de ligação também não foi utilizada em função da utilização da Placa Suporte como parte fundamental na ligação entre pilares e vigas do tipo caixa.

O mecanismo de colapso observado foi o mesmo para ambos os protótipos de ensaio do Projeto 01, porém o Protótipo PCP1V1 apresentou um valor médio de carga de colapso maior que o observado para o Protótipo PEP2V1V2. O primeiro apresentou uma carga de 27,88 kN, enquanto o segundo 24,65 kN.

Em relação aos valores médios para carga última de teste e momento último, verificou-se valores maiores para o Protótipo PEP2V1V2 (36,51 kN e 32,68 kNm) que representa uma ligação em um pilar de extremidade. Isso é explicado em função da maior transmissão de esforços entre a viga e o pilar realizada pela ligação do Protótipo PCP1V1 que representa uma ligação em um pilar de canto.

No que diz respeito à determinação da rigidez da ligação nos protótipos do Projeto 01, concluiu-se que o Protótipo PCP1V1 foi o mais rígido do que os outros em função do conjunto viga-pilar, onde a viga de transmissão de esforços para o pilar tem seção transversal caixa 200x150x25x3,00, enquanto tem-se para os outros protótipos seção transversal caixa 200x150x20x2,00. Os valores médios de rigidez obtidos foram 4106 kNm/rad para o Protótipo PCP1V1, 2634 kNm/rad para o Protótipo PCP1Vc1 e 3614 kNm/rad para o Protótipo PEP2V1V2.

Após a realização da segunda análise considerando a rigidez das ligações no Projeto 01, verificou-se que os esforços de momento fletor de cálculo nos pilares aumentaram em relação à análise realizada sem a introdução das rigidezes das ligações. A maior transmissão de esforços entre as vigas e pilares conectados através da ligação proposta explica esse fato. Em contrapartida, os esforços de momento fletor solicitantes de cálculo nas vigas diminuíram. Em relação aos esforços normal e cortante de cálculo nas barras, os valores foram bastante próximos entre as duas análises em função da utilização somente de rigidez rotacional nas extremidades das vigas, que faziam parte do conjunto da ligação parafusada, na segunda análise.

Em relação aos deslocamentos máximos da estrutura, enquanto o valor na direção do eixo global "Z" (Uz) permaneceu igual entre as análises devido a não introdução de rigidezes nas ligações viga-pilar nessa direção, verificou-se que ocorreram valores menores tanto para os deslocamentos na direção do eixo global "X" (Ux) quanto para "Y" (Uy). Isso de deu pela introdução das rigidezes das ligações na análise fazendo com que a estrutura ficasse mais rígida, ou seja, os conjuntos viga-pilar se tornaram mais solidários e começaram a trabalhar conjuntamente.

Observou-se se um aumento de 6,0 % na taxa (kg/m²) na segunda análise em relação à primeira devido à alteração de seção transversal dos pilares P1 e P2, sem levar em consideração o peso dos componentes das ligações. Essa mudança de seção transversal foi em função da maior transmissão de esforços entre as vigas e os pilares ligados pelas ligações parafusadas, ocasionando um aumento nos esforços solicitantes de cálculo nos pilares, principalmente os esforços de momento fletor. Esse aumento não implicará necessariamente em gastos maiores para a edificação em função da utilização das ligações parafusadas que transmitem maior confiabilidade na sua execução e maior facilidade e rapidez na montagem da estrutura.

Como sugestões para trabalhos futuros, propõe-se a análise do Projeto 02 utilizando a configuração de ligação do Projeto 01, bem como a verificação de sua utilização em uma ligação mista através de estudos teórico-experimentais. Outra sugestão seria a utilização do conceito de viga mista aço-concreto na análise dos Projetos 01 e 02, utilizando esse tipo de ligação como mista ou não.

É válido enfatizar que há necessidade de uma melhor otimização da ligação e de seu dimensionamento, principalmente para combater o seu mecanismo de colapso que foi caracterizado pelo rasgamento da solda que ligava uma das Cantoneiras de Ligação à viga dos protótipos.

Ressalta-se ainda a importância de um programa experimental em função das expectativas geradas pelo dimensionamento, ou seja, novas soluções de ligações exigem

avaliações experimentais. Assim, com a realização de mais ensaios para um tipo de ligação, pode-se obter curvas mais precisas que possam ser utilizadas no dimensionamento da mesma, gerando, por exemplo, curvas paramétricas.

Referências Bibliográficas

AISC (1994). Manual of Steel Construction, Load and Resistance Factor Design. 2nd ed., Vol. 1 and 2. Chicago: American Institute of Steel Construction.

AISI (1996). Cold Formed Steel Design Manual. American Iron and Steel Institute, Washington, DC.

Anant, R. K. e Ali, S. A. (1999). Moment-rotation hysteresis behaviour of top and seat angle steel frame connections. Journal of Structural Engineering, v. 125, n^o 8,.p. 810-820.

Ansys (2001). User's Manual for Revision 6. Swanson Analysis Systems Inc., Houston, PA.

ASCE (1998). Task Committee on Design Criteria for Composite Structures in Steel and Concrete. "Design Guide for Partially Restrained Composite Connections". Journal of Structural Engineering, Oct., p. 1099-1114.

AWS D1.1:2000. American Welding Society. Structural Welding Code – Steel.

Chen, W. F. (1988). Steel Beam-to-Column building Connections. Ed. Chen, W. F. Elsevier Science Publishers LTD, New York, NY.

CFSLT (2000). RSG Software, Inc. http://www.rsgsoftware.com.

Chung, K. F. e Ip, K. H. (2001). Finite element investigation on the structural behaviour of cold-formed steel bolted connections. Engineering Structures, v. 23, p. 1115-1125.

Chung, K. F. e Lau, L. (1999). Experimental investigation on bolted moment connections among cold formed steel members. Engineering Structures, v. 21, p. 898-911.

Chung, K. F. e Lawson, R. M. (2000). Structural performance of shear resisting connections between cold-formed steel sections using web cleats of cold-formed steel strip. Engineering Structures, v. 22, p. 1350-1366.

Dias, L. A. M. (2002). Estruturas de aço: conceitos, técnicas e linguagem. Quarta edição, editora Zigurate, São Paulo, SP.

Faella, C.; Piluso, V. e Rizzano, G. (1999). Structural Steel Semirigid Connections: Theory, Design and Software. Primeira edição, editora CRC Press LLC, Boca Raton, Florida.

Godley, M. H. R. (1991). Storage Racking in Design of Cold Formed Steel Members, Chapter 11, Ed. Rhodes, J. Elsevier Aplied Science, Amsterdam, p. 361-399.

Leon, R. T.; Hoffman, J. J. e Teager, T. (1996). AISC - American Institute of Steel Construction. Steel Design Guide Series. "Design Guide #8 – Partially Restrained Composite Connections". Chicago, USA.

Lima, L. R. O.; Andrade, S. A. L. e Vellasco, P. C. G. (1999). Bolted semi-rigid connections in the column's minor axis. Eurosteel $99 - 2^{nd}$ European Conference on Steel Structures. Praha – Czech Republic (CD-rom).

Maiola, C. H.; Malite, M. e Munaiar Neto, J (2002). Análise Experimental do Comportamento Estrutural de Ligações Parafusadas em Chapas Finas e Perfis de Aço Formados a Frio. XXX Jornadas Sul-Americanas de Engenharia Estrutural, Brasília, DF.

Mathcad (2001). Mathcad User's Guide with Reference Manual 2001. Editora MathSoft Engineering & Education, Inc., Cambridge, USA.

NBR 6120:1980. Cargas para Cálculo de Estruturas de Edificações. ABNT – Associação Brasileira de Normas Técnicas. Brasil.

NBR 6123:1988. Forças Devido ao Vento em Edificações. ABNT – Associação Brasileira de Normas Técnicas. Brasil.

NBR 6152:1992. Materiais Metálicos – Ensaio de Tração à Temperatura Ambiente. ABNT – Associação Brasileira de Normas Técnicas. Brasil.

NBR 8800:1986. Projeto e Execução de Estruturas de Aço de Edifícios. ABNT – Associação Brasileira de Normas Técnicas. Brasil.

NBR 14762:2001. Dimensionamento de Estruturas de Aço Constituídas por Perfis Formados a Frio. ABNT – Associação Brasileira de Normas Técnicas. Brasil.

Oliveira, A. M. (2000). Análise Teórico-Experimental de Sistemas Industriais de Armazenagem ("Racks"). Dissertação de Mestrado. UFOP, Ouro Preto, MG.

Pinheiro, L. (2003). Análises Não-Lineares de Sistemas Estruturais Metálicos Rotulados e Semi-Rígidos. Dissertação de Mestrado. UFOP, Ouro Preto, MG.

Protótipo USIHAB (2001). Projetos Arquitetônicos do Projeto USIHAB. Belo Horizonte, MG.

Queiroz, G.; Pimenta, R. J. e da Mata, L. A. C. (2001). Elementos das Estruturas Mistas Aço-Concreto. Primeira edição, editora O Lutador, Belo Horizonte, MG.

Radziminsk, J. B. e Azizinamini, A. (1988). Prediction of Moment-Rotation Behavior of Semi-Rígid Beam-to-Column Connections. In: Bjorhovde, R.; Brozzetti, J.; Colson, A., ed. Connections in Steel Structures, London, Elsevier, p. 33-40.

Ribeiro, L. F. L. (1998). Estudo do Comportamento Estrutural de Ligações Parafusadas Viga-Coluna com Chapa de Topo: Análise Teórico-Experimental. Dissertação de Doutorado, vol. 1 e 2. USP, São Carlos, SP.

Rondal, J. (2000). Cold formed steel members and structures general report. Journal of Constructional Steel Research, v. 55, p. 155-158.

Shakourzadeh, H.; Guo, Y. Q. e Batoz, J. L. (1999). Modeling of connections in the analyses of thin-walled space frames. Computers and Structures, v. 71, p. 423-433.

Usiminas (2000). Revista Catálogo do 2º Prêmio Usiminas Arquitetura em Aço. Belo Horizonte, MG.

Usiminas (2003). Usinas Siderúrgicas de Minas Gerais - http://www.usiminas.com.br - 06/2003.

Wong, M. F. e Chung, K. F. (2002). Sttructural behaviour of bolted moment connections in cold-formed steel beam-column sub-frames. Journal of Constructional Steel Research, v. 58, p. 253-274.

Yu, W. W. (2000). Cold Formed Steel Design. Terceira edição, editora John Wiley & Sons, Inc., New York, New York.

ANEXOS

7. CONSIDERAÇÕES FINAIS

O principal objetivo desse trabalho foi avaliar o comportamento de ligações viga-pilar parafusadas em perfis formados a frio. Para isso, foram realizados estudos teórico-experimentais em duas edificações pertencentes ao projeto vencedor do 2º Prêmio Arquitetura em Aço, patrocinado pela USIMINAS, Projeto USIHAB. Esses estudos se basearam nas análises estruturais e dimensionamento de ambos os projetos (Projeto 01 de dois pavimentos e Projeto 02 de quatro pavimentos) e no programa experimental que visou principalmente a obtenção da curva momento-rotação das ligações tipo de projeto e, consequentemente, a determinação das respectivas rigidezes que foram introduzidas numa nova análise do Projeto 01.

Diversos parâmetros influenciaram nas análises estruturais e no dimensionamento, tais como: imposições inicias da arquitetura que compreendiam seções de vigas e pilares do tipo caixa, vigas de mesma altura visando um fechamento de dimensões padronizadas e tipos de materiais de fechamento utilizados. Outro parâmetro importante foi o esquema de montagem adotado, pois a partir deste se determinou o comportamento das estruturas e desenvolveu o programa experimental do apresentado neste trabalho.

As dimensões dos tipos de ligações estudadas foram obtidas de acordo com as prescrições da AISI (1996), NBR 14762:2001 e baseadas em hipóteses adotadas para o comportamento dessas ligações.

No programa experimental foram realizadas análises experimentais das ligações viga-pilar parafusadas em escala real, objetivando além da determinação das curvas momento-rotação e das rigidezes das mesmas, os momentos últimos, os modos de colapso, as deformações e o campo de deslocamento das ligações ensaiadas. Foram realizados dois ensaios para o Projeto 02, contendo dois diferentes protótipos e oito para o Projeto 01, contendo três diferentes protótipos.

Como para os protótipos referentes ao Projeto 02, que utiliza perfis de seção transversal tipo caixa para pilares e vigas, não se obteve resultados satisfatórios, foi permitida uma flexibilização no Projeto 01. Esta flexibilização passou pela mudança na

arquitetura e alterações da seção transversal dos pilares para perfis de seção transversal tipo "I enrijecido" formado por dois perfis cartola soldados intermitentemente através de suas almas. Assim, realizou-se os ensaios experimentais para o Projeto 01 e as rigidezes obtidas foram introduzidas na estrutura fazendo uma segunda análise desse projeto.

As rigidezes foram obtidas na fase linear da curva momento-rotação das ligações, onde observou-se um comportamento não-linear e divergente como mostra a figura 7.1 para um dos protótipos de ensaio do Projeto 01.

Figura 7.1 – Comparação de curvas momento-rotação de ensaios experimentais de um protótipo de ensaio do Projeto 01.

A seguir são mostradas as conclusões desses estudos.

As taxas (kg/m²) obtidas na primeira análise (sem a introdução das semirigidezes das ligações) para os Projetos 01 e 02 foram, respectivamente, de 18,70 kg/m² e 16,92 kg/m², sem considerar o peso dos componentes das ligações. Essa diferença de 10,5 % foi devido ao melhor comportamento da estrutura da edificação de quatro pavimentos com seções do tipo caixa para pilares e vigas e à distribuição da arquitetura em relação a área total construída. A ligação proposta no Protótipo P01, referente ao Projeto 02, não apresentou um comportamento satisfatório o que foi observado através do mecanismo de colapso e da resistência aos esforços não serem aqueles esperados através do dimensionamento. Chegou-se a uma carga última de teste de 15,36 kN, momento último de 14,054 kNm e valor de rigidez de 3333 kNm/rad.

No Protótipo P01B, cuja configuração objetivou uma nova solução mais resistente de ligação para o Projeto 02, chegou-se a uma carga última de teste de 58,58 kN, momento último de 53,601 kNm e o valor de rigidez de 2646 kNm/rad. Verificou-se que o mecanismo de colapso foi observado para a carga de ensaio de 32,65 kN. Essa configuração de ligação também não foi utilizada em função da utilização da Placa Suporte como parte fundamental na ligação entre pilares e vigas do tipo caixa.

O mecanismo de colapso observado foi o mesmo para ambos os protótipos de ensaio do Projeto 01, porém o Protótipo PCP1V1 apresentou um valor médio de carga de colapso maior que o observado para o Protótipo PEP2V1V2. O primeiro apresentou uma carga de 27,88 kN, enquanto o segundo 24,65 kN.

Em relação aos valores médios para carga última de teste e momento último, verificou-se valores maiores para o Protótipo PEP2V1V2 (36,51 kN e 32,68 kNm) que representa uma ligação em um pilar de extremidade. Isso é explicado em função da maior transmissão de esforços entre a viga e o pilar realizada pela ligação do Protótipo PCP1V1 que representa uma ligação em um pilar de canto.

No que diz respeito à determinação da rigidez da ligação nos protótipos do Projeto 01, concluiu-se que o Protótipo PCP1V1 foi o mais rígido do que os outros em função do conjunto viga-pilar, onde a viga de transmissão de esforços para o pilar tem seção transversal caixa 200x150x25x3,00, enquanto tem-se para os outros protótipos seção transversal caixa 200x150x20x2,00. Os valores médios de rigidez obtidos foram 4106 kNm/rad para o Protótipo PCP1V1, 2634 kNm/rad para o Protótipo PCP1Vc1 e 3614 kNm/rad para o Protótipo PEP2V1V2.

Após a realização da segunda análise considerando a rigidez das ligações no Projeto 01, verificou-se que os esforços de momento fletor de cálculo nos pilares aumentaram em relação à análise realizada sem a introdução das rigidezes das ligações. A maior transmissão de esforços entre as vigas e pilares conectados através da ligação proposta explica esse fato. Em contrapartida, os esforços de momento fletor solicitantes de cálculo nas vigas diminuíram. Em relação aos esforços normal e cortante de cálculo nas barras, os valores foram bastante próximos entre as duas análises em função da utilização somente de rigidez rotacional nas extremidades das vigas, que faziam parte do conjunto da ligação parafusada, na segunda análise.

Em relação aos deslocamentos máximos da estrutura, enquanto o valor na direção do eixo global "Z" (Uz) permaneceu igual entre as análises devido a não introdução de rigidezes nas ligações viga-pilar nessa direção, verificou-se que ocorreram valores menores tanto para os deslocamentos na direção do eixo global "X" (Ux) quanto para "Y" (Uy). Isso de deu pela introdução das rigidezes das ligações na análise fazendo com que a estrutura ficasse mais rígida, ou seja, os conjuntos viga-pilar se tornaram mais solidários e começaram a trabalhar conjuntamente.

Observou-se se um aumento de 6,0 % na taxa (kg/m²) na segunda análise em relação à primeira devido à alteração de seção transversal dos pilares P1 e P2, sem levar em consideração o peso dos componentes das ligações. Essa mudança de seção transversal foi em função da maior transmissão de esforços entre as vigas e os pilares ligados pelas ligações parafusadas, ocasionando um aumento nos esforços solicitantes de cálculo nos pilares, principalmente os esforços de momento fletor. Esse aumento não implicará necessariamente em gastos maiores para a edificação em função da utilização das ligações parafusadas que transmitem maior confiabilidade na sua execução e maior facilidade e rapidez na montagem da estrutura.

Como sugestões para trabalhos futuros, propõe-se a análise do Projeto 02 utilizando a configuração de ligação do Projeto 01, bem como a verificação de sua utilização em uma ligação mista através de estudos teórico-experimentais. Outra sugestão seria a utilização do conceito de viga mista aço-concreto na análise dos Projetos 01 e 02, utilizando esse tipo de ligação como mista ou não.

É válido enfatizar que há necessidade de uma melhor otimização da ligação e de seu dimensionamento, principalmente para combater o seu mecanismo de colapso que foi caracterizado pelo rasgamento da solda que ligava uma das Cantoneiras de Ligação à viga dos protótipos.

Ressalta-se ainda a importância de um programa experimental em função das expectativas geradas pelo dimensionamento, ou seja, novas soluções de ligações exigem

avaliações experimentais. Assim, com a realização de mais ensaios para um tipo de ligação, pode-se obter curvas mais precisas que possam ser utilizadas no dimensionamento da mesma, gerando, por exemplo, curvas paramétricas.
Referências Bibliográficas

AISC (1994). Manual of Steel Construction, Load and Resistance Factor Design. 2nd ed., Vol. 1 and 2. Chicago: American Institute of Steel Construction.

AISI (1996). Cold Formed Steel Design Manual. American Iron and Steel Institute, Washington, DC.

Anant, R. K. e Ali, S. A. (1999). Moment-rotation hysteresis behaviour of top and seat angle steel frame connections. Journal of Structural Engineering, v. 125, n^o 8,.p. 810-820.

Ansys (2001). User's Manual for Revision 6. Swanson Analysis Systems Inc., Houston, PA.

ASCE (1998). Task Committee on Design Criteria for Composite Structures in Steel and Concrete. "Design Guide for Partially Restrained Composite Connections". Journal of Structural Engineering, Oct., p. 1099-1114.

AWS D1.1:2000. American Welding Society. Structural Welding Code – Steel.

Chen, W. F. (1988). Steel Beam-to-Column building Connections. Ed. Chen, W. F. Elsevier Science Publishers LTD, New York, NY.

CFSLT (2000). RSG Software, Inc. http://www.rsgsoftware.com.

Chung, K. F. e Ip, K. H. (2001). Finite element investigation on the structural behaviour of cold-formed steel bolted connections. Engineering Structures, v. 23, p. 1115-1125.

Chung, K. F. e Lau, L. (1999). Experimental investigation on bolted moment connections among cold formed steel members. Engineering Structures, v. 21, p. 898-911.

Chung, K. F. e Lawson, R. M. (2000). Structural performance of shear resisting connections between cold-formed steel sections using web cleats of cold-formed steel strip. Engineering Structures, v. 22, p. 1350-1366.

Dias, L. A. M. (2002). Estruturas de aço: conceitos, técnicas e linguagem. Quarta edição, editora Zigurate, São Paulo, SP.

Faella, C.; Piluso, V. e Rizzano, G. (1999). Structural Steel Semirigid Connections: Theory, Design and Software. Primeira edição, editora CRC Press LLC, Boca Raton, Florida.

Godley, M. H. R. (1991). Storage Racking in Design of Cold Formed Steel Members, Chapter 11, Ed. Rhodes, J. Elsevier Aplied Science, Amsterdam, p. 361-399.

Leon, R. T.; Hoffman, J. J. e Teager, T. (1996). AISC - American Institute of Steel Construction. Steel Design Guide Series. "Design Guide #8 – Partially Restrained Composite Connections". Chicago, USA.

Lima, L. R. O.; Andrade, S. A. L. e Vellasco, P. C. G. (1999). Bolted semi-rigid connections in the column's minor axis. Eurosteel $99 - 2^{nd}$ European Conference on Steel Structures. Praha – Czech Republic (CD-rom).

Maiola, C. H.; Malite, M. e Munaiar Neto, J (2002). Análise Experimental do Comportamento Estrutural de Ligações Parafusadas em Chapas Finas e Perfis de Aço Formados a Frio. XXX Jornadas Sul-Americanas de Engenharia Estrutural, Brasília, DF.

Mathcad (2001). Mathcad User's Guide with Reference Manual 2001. Editora MathSoft Engineering & Education, Inc., Cambridge, USA.

NBR 6120:1980. Cargas para Cálculo de Estruturas de Edificações. ABNT – Associação Brasileira de Normas Técnicas. Brasil.

NBR 6123:1988. Forças Devido ao Vento em Edificações. ABNT – Associação Brasileira de Normas Técnicas. Brasil.

NBR 6152:1992. Materiais Metálicos – Ensaio de Tração à Temperatura Ambiente. ABNT – Associação Brasileira de Normas Técnicas. Brasil.

NBR 8800:1986. Projeto e Execução de Estruturas de Aço de Edifícios. ABNT – Associação Brasileira de Normas Técnicas. Brasil.

NBR 14762:2001. Dimensionamento de Estruturas de Aço Constituídas por Perfis Formados a Frio. ABNT – Associação Brasileira de Normas Técnicas. Brasil.

Oliveira, A. M. (2000). Análise Teórico-Experimental de Sistemas Industriais de Armazenagem ("Racks"). Dissertação de Mestrado. UFOP, Ouro Preto, MG.

Pinheiro, L. (2003). Análises Não-Lineares de Sistemas Estruturais Metálicos Rotulados e Semi-Rígidos. Dissertação de Mestrado. UFOP, Ouro Preto, MG.

Protótipo USIHAB (2001). Projetos Arquitetônicos do Projeto USIHAB. Belo Horizonte, MG.

Queiroz, G.; Pimenta, R. J. e da Mata, L. A. C. (2001). Elementos das Estruturas Mistas Aço-Concreto. Primeira edição, editora O Lutador, Belo Horizonte, MG.

Radziminsk, J. B. e Azizinamini, A. (1988). Prediction of Moment-Rotation Behavior of Semi-Rígid Beam-to-Column Connections. In: Bjorhovde, R.; Brozzetti, J.; Colson, A., ed. Connections in Steel Structures, London, Elsevier, p. 33-40.

Ribeiro, L. F. L. (1998). Estudo do Comportamento Estrutural de Ligações Parafusadas Viga-Coluna com Chapa de Topo: Análise Teórico-Experimental. Dissertação de Doutorado, vol. 1 e 2. USP, São Carlos, SP.

Rondal, J. (2000). Cold formed steel members and structures general report. Journal of Constructional Steel Research, v. 55, p. 155-158.

Shakourzadeh, H.; Guo, Y. Q. e Batoz, J. L. (1999). Modeling of connections in the analyses of thin-walled space frames. Computers and Structures, v. 71, p. 423-433.

Usiminas (2000). Revista Catálogo do 2º Prêmio Usiminas Arquitetura em Aço. Belo Horizonte, MG.

Usiminas (2003). Usinas Siderúrgicas de Minas Gerais - http://www.usiminas.com.br - 06/2003.

Wong, M. F. e Chung, K. F. (2002). Sttructural behaviour of bolted moment connections in cold-formed steel beam-column sub-frames. Journal of Constructional Steel Research, v. 58, p. 253-274.

Yu, W. W. (2000). Cold Formed Steel Design. Terceira edição, editora John Wiley & Sons, Inc., New York, New York.

ANEXOS

ANEXO I

Esquema Estrutural em Planta do Projeto 02

20 Pavimento

40 Pavimento

ANEXO II

Dimensionamento das Ligações dos Protótipos

II.1. Dimensionamento da Ligação do Protótipo P01

Dimensionamento da Ligação do Protótipo P01

1) Considerações Iniciais

Viga V3: Box 300x140x25x2,25 Pilar P4: Box 170x170x25x2,25 Cantoneira: 2L 60x2,65 Apoio: U 145,3x365,3x2,65 **∮** = 634 MPa Parafusos: A325 $f_{u} = 825 \text{ MPa}$

Solda de Filete: E60XX f = 415 MPa

 $f_y = 250 \text{ MPa}$ Aço: A36 $f_u = 400 \text{ MPa}$

2) Hipóteses de Configurações da Ligação

2.1) - Solda: $w_1 = w_2 = t = 2,25$ mm (tanto para cantoneira quanto para o apoio ''U'')

- Parafuso: d = 12,7 mm (3 parafusos) -Md = 42,25 kN.mVd = 69,17 kN

Md := 42.25 Mn := $\frac{Md}{0.95}$ Mn = 44.474 kNm Vd := 69.17 Vn := $\frac{Vd}{0.95}$ Vn = 72.811 kN

2.2) Esquema de Fabricação da Cantoneira

3) Determinação da Resistência da Solda em Cada Cantoneira

a) Metal Base: solicitação paralela ao eixo da solda

fu := 400 MPa
L := 166 mm
t := 2.25 mm
$$\frac{L}{t} = 73.778 \frac{L}{t} > 25$$

Frd := 0.75 ·t·L · $\frac{fu}{1.8 \cdot 1000}$ Frd = 62.25 kN

b) Metal Base: solicitação normal ao eixo da solda

fu := 400 MPa

$$L := 2 \cdot (60 - 2 \cdot t)$$
 $L = 111$ mm
 $t := 2.25$ mm

$$Frd := t \cdot L \cdot \frac{ru}{1.65 \cdot 1000}$$
 $Frd = 60.545$ kN

Portanto, tem-se:

$$Frd = 60,55 + 62,25 = 122,80 \text{ kN}$$

4) Determinação da Resistência dos Parafusos

a) Rasgamento entre Furos

fu := 400 MPa
e :=
$$48 - \frac{14.2}{2}$$
 e = 40.9 mm
t := 2.65 mm

$$Frd := t \cdot e \cdot \frac{fu}{1.35 \cdot 1000} \qquad Frd = 32.114 \text{ kN}$$

b) Rasgamento entre Furo e Borda

$$fu := 400 \text{ MPa}$$
 $t := 2.65 \text{ mm}$

e := 35 mm

$$Frd := t \cdot e \cdot \frac{fu}{1.35 \cdot 1000} \qquad Frd = 27.481 \text{ kN}$$

c) Pressão de Contato (Esmagamento)

fu := 400 MPa t := 2.65 mm
d := 12.7 mm
Frd :=
$$2.5t \cdot d \cdot \frac{fu}{1.35 \cdot 1000}$$
 Frd = 24.93 kN

d) Força Cortante nos Parafusos (plano de corte passa pela rosc

fup := 825 MPa
Ap := 126 mm²
Vrd :=
$$0.45$$
Ap $\cdot \frac{fup}{1.55 \cdot 1000}$ Vrd = 30.179 kN
Vrdt := $3 \cdot$ Vrd Vrdt = 90.537 kN

Portanto, tem-se:

5) Determinação dos Esforços Solicitantes na Solda de Cada Cantoneira

Mn := 44.474 kNm

h := 300 mm

Ft = Fc

Mn = h/2 (Ft + Fc)Mn = h/2 (2Ft)

$$Mn = h.Ft$$
 $Ft := \frac{1000 \cdot Mn}{h}$ $Ft = 148.247$ kN

$$Fl := \left\lfloor \left(\frac{Ft}{2}\right)^2 + \left(\frac{Vn}{2}\right)^2 \right\rfloor \qquad Fl = 82.581 \quad kN$$

Sendo Fl = Esforço total na solda de cada cantoneira

6) Verificação da Cantoneira

a) Solda:

Portanto, F1 < Frd

b) Parafusos:

Determinação dos esforços no conjunto de parafusos, sendo:

Fh = força cortante no conjunto de parafusos na direção horizontal.

ok!

Fv = força cortante em cada parafuso na direção vertical.

Ft = força cortante total em cada parafuso.

Portanto, tem-se:

- Ft < Vrd</th>ok!Ft é 2,4 % maior que Frdok!
- 7) Esquema de Fabricação do Apoio "U"

8) Determinação da Resistência da Solda no Apoio "U"

Admitiremos que só a solda presente nos flanges resistirá aos esforços solicitant a) Metal Base: solicitação paralela ao eixo da solda

fu := 400 MPa L := $2 \cdot (1 - 2 \cdot t)$ L = 720 mm $\frac{L}{t} = 271.698 \frac{L}{t} > 25$ Frd := $0.75 \cdot t \cdot L \cdot \frac{fu}{1.8 \cdot 1000}$ Frd = 318 kN b) Metal Base: solicitação normal ao eixo da solda

fu := 400 MPa

 $Frd := t \cdot L \cdot \frac{fu}{1.65 \cdot 1000}$

Frd = 462.545 kN

Portanto, tem-se

$$Frd = 318,00 \text{ kN}$$

9) Determinação dos Esforços Solicitantes no Apoio "U"

10) Verificação do Apoio "U"

a) Solda:

Portanto,

Ftw < Frd ok!

a) Tensão na Chapa:

$$T := \frac{Ftw \cdot 1000}{L \cdot t}$$
$$T = 74.349 MPa$$

Portanto, como o aço utilizado no apoio "U" é USI-SAC-250, tem-se

$$T < 250 MPa \qquad ok!$$

11) Verificação das Almas do Pilar

• Determinação dos Esforços Solicitantes nas Almas do Pilar:

Onde, Fca = força de compressão em cada alma

• Determinação da Área Efetiva de Compressão (Aec) em cada Alma do Pilar

$$w = Ft / Fc$$

$$w := -1.00$$

$$k := 4 + 2 \cdot (1 - w) + 2(1 - w)^{3}$$

$$k = 24$$

$$Ty := 250 \text{ MPa}$$

$$E := 205000 \text{ MPa}$$

t := 2.25 mm

$$Lp := \frac{\left(\frac{h}{t}\right)}{0.95 \left(k \cdot \frac{E}{Ty}\right)^{\frac{1}{2}}} \qquad Lp = 1.201$$

Assim, como Lp > 0,673, a placa flamba.

bc :=
$$\frac{h}{2}$$
 bc = 180 mm
bef := $\frac{bc \cdot \left(1 - \frac{0.22}{Lp}\right)}{Lp}$ bef = 122.456 mm

Aec := bef \cdot t Aec = 275.525 mm²

• Verificação de cada Alma do Pilar:

Tplaca :=
$$\frac{\text{Fca} \cdot 1000}{\text{Aec}}$$
 Tplaca = 224.188 Mpa

Portanto, tem-se:

II.2. Dimensionamento da Ligação do Protótipo P01B

Dimensionamento da Ligação do Protótipo P01B

1) Considerações Iniciais

Viga V3: Box 300x140x25x2,25

Pilar P4: Box 170x170x25x2,25

Cantoneira: 2L 75x60x2,65

Placa de Apoio: 420x345xCH 4,75 mm

Parafusos: A325 f = 634 MPa $f_u = 825$ MPa

Solda de Filete: E60XX $_{\rm w}$ f = 415 MPa

Aço: USI-SAC 41 E $f_y = 300 \text{ MPa}$ $f_u = 400 \text{ MPa}$

2) Hipóteses de Configurações da Ligação

2.1) - Solda: $w_1 = w_2 = t = 2,25$ mm (tanto para cantoneira quanto para a plac de apoio)

- Parafuso: d = 12,7 mm (3 parafusos)

- Devido à resistência da seção da viga V3, tem-se: Md = 53,98 kNm e Vd = 69,17 kN

- Verificação do esmagamento da alma na Viga V3, na região da ligação em estudo, de acordo com a AISI 1996. Esta verificação foi realizada com a utilização do software CFSLT Versão 3.5:

Web Crippling Check - 1996 AISI Specification-Supplement 1 (LRFD)

```
Load:
              28,900 kN on bottom flange
Moment:
Moment: 20,130 kN-
Bearing: 163,00 mm
             20,130 kN-m
Distance from edge of bearing to end of member: 0,00000 m
Distance from edge of bearing to edge of opposite load: 0,57000 m
Part Element Equation
PartElement Equation\phiPn (kN)\phiPny (kN)Left Channel3 AISI Eq. C3.4.1-114,48914,489Right Channel3 AISI Eq. C3.4.1-114,48914,489
                                                    Total
                                                                28,979
Web Crippling Check:
                                   28,900 kN <=
                                                         28,979 kN
                                   20,130 kN-m <= 53,979 kN-m
Moment Check:
Interaction Equations
AISI Eq. C3.5.2-1 (P, M) 1,067 + 0,373 = 1,440 <= 1.42
```

Portanto, como a resistência aoWeb Crippilingé menor, tem-se: Frd = 28,98 kN = Vd_{máx}

Vd := 28.98 Vn :=
$$\frac{Vd}{0.80}$$
 Vn = 36.225 kN
Mn := Vn 1 Mn = 36.225 kNm

2.2) Esquema de Fabricação da Cantoneira

3) Determinação da Resistência da Solda em Cada Cantoneira

a) Metal Base: solicitação paralela ao eixo da solda

fu := 400 MPa L := 163 mm t := 2.25 mm $\frac{L}{t} = 72.444$ $\frac{L}{t} > 25$ Frd := 0.75 ·t ·L · $\frac{fu}{1.8 \cdot 1000}$ Frd = 61.125 kN

b) Metal Base: solicitação normal ao eixo da solda

fu := 400 MPa

$$L := 2 \cdot (60 - 2 \cdot t)$$
 $L = 111$ mm
t := 2.25 mm

$$Frd := t \cdot L \cdot \frac{fu}{1.65 \cdot 1000} \qquad Frd = 60.545 \quad kN$$

Portanto, tem-se:

$$Frd = 61,125 + 60,545 = 121,67 \text{ kN}$$

4) Determinação da Resistência dos Parafusos

a) Rasgamento entre Furos

fu := 400 MPa
e :=
$$48 - \frac{14.2}{2}$$
 e = 40.9 mm
t := 2.65 mm

$$Frd := t \cdot e \cdot \frac{fu}{1.35 \cdot 1000} \qquad Frd = 32.114 \text{ kN}$$

b) Rasgamento entre Furo e Borda

$$fu := 400 \text{ MPa}$$
 $t := 2.65 \text{ mm}$

e := 32 mm

$$Frd := t \cdot e \cdot \frac{fu}{1.35 \cdot 1000} \qquad Frd = 25.126 \text{ kN}$$

c) Pressão de Contato (Esmagamento)

fu := 400 MPa t := 2.65 mm
d := 12.7 mm
Frd :=
$$2.5t \cdot d \cdot \frac{fu}{1.35 \cdot 1000}$$
 Frd = 24.93 kN

d) Força Cortante nos Parafusos (plano de corte passa pela rosc

fup := 825 MPa
Ap := 126 mm²
Vrd :=
$$0.45$$
Ap $\cdot \frac{\text{fup}}{1.55 \cdot 1000}$ Vrd = 30.179 kN
Vrdt := $3 \cdot$ Vrd Vrdt = 90.537 kN
Portanto, tem-se:
Frd = 24.93 kN e

$$Frd = 24,93 \text{ kN}$$

 $Vrd = 30,18 \text{ kN}$

5) Determinação dos Esforços Solicitantes na Solda de Cada Cantoneira

Sendo Fl = Esforço total na solda de cada cantoneira

6) Verificação da Cantoneira

a) Solda:

Como a resistência da solda é de 121,67 kN, tem-se: **Fl < Frd ok!**

b) Parafusos:

Determinação dos esforços no conjunto de parafusos, sendo:

Fh = força cortante no conjunto de parafusos na direção horizontal.

Fv = força cortante em cada parafuso na direção vertical.

Ft = força cortante total em cada parafuso.

Portanto, tem-se:

7) Placa Suporte

8) Determinação da Resistência da Solda em Cada Placa Suporte

8.1) Resistência da Solda 1

a) Metal Base: solicitação paralela ao eixo da solda

fu := 400 MPa t := 2.25 mm
L :=
$$d - 2 \cdot t$$
 L = 165.5 mm
 $\frac{L}{t} = 73.556$ $\frac{L}{t} > 25$
Frd := $0.75 \cdot t \cdot L \cdot \frac{fu}{1.8 \cdot 1000}$ Frd = 62.063 kN

b) Metal Base: solicitação normal ao eixo da solda

fu := 400 MPa t := 2.25 mm Frd := $t \cdot L \cdot \frac{fu}{1.65 \cdot 1000}$ Frd = 90.273 kN

c) Ruptura da Solda

fw := 415 MPa w := 2.25 mmtef := $0.7 \cdot w$ tef = 1.575 mm

 $Frd := 0.75 \cdot tef \cdot L \cdot \frac{fw}{1.65 \cdot 1000}$ Frd = 49.17 kN

Portanto, tem-se

8.2) Resistência da Solda 2

a) Metal Base: solicitação paralela ao eixo da solda

fu := 400 MPa t := 2.25 mm
L := 2.60 L = 120 mm

$$\frac{L}{t} = 53.333 \frac{L}{t} > 25$$

Frd := 0.75 ·t·L· $\frac{fu}{1.8 \cdot 1000}$ Frd = 45 kN

b) Metal Base: solicitação normal ao eixo da solda

fu := 400 MPa t := 2.25 mm

$$Frd := t \cdot L \cdot \frac{fu}{1.65 \cdot 1000}$$
 $Frd = 65.455$ kN

c) Ruptura da Solda

fw := 415 MPa
$$w := 2.25 \text{ mm}$$

tef := $0.7 \cdot w$ tef = 1.575 mm

 $Frd := 0.75 \cdot tef \cdot L \cdot \frac{fw}{1.65 \cdot 1000}$ Frd = 35.652 kN

Portanto, tem-se

8.3) Resistência Total da Solda em Cada Placa Suporte

Assim, tem-se

$$Frd = Frd + 2*Frd_2 = 120,47 \text{ kN}$$

9) Determinação dos Esforços Solicitantes em cada Placa Suporte

Vn := 36.225 kN	$Vp := \frac{Vn}{2}$		Vp = 18.113	kN
Mn := 36.225 kNm	$Mp := \frac{Mn}{2}$		Mp = 18.113	kNm
$Fc := \frac{-Mp \cdot 1000}{h'}$	Fc = -50.313	kN		
Ft := -Fc	Ft = 50.313	kN		

- Esforço solicitante na solda:

Ftw :=
$$\left[Ft^2 + \left(\frac{Vn}{2}\right)^2 \right]^{\frac{1}{2}}$$
 Ftw = 53.473 kN

10) Verificação da Placa Suporte

a) Solda:

Portanto,

11) Verificação das Almas do Pilar

- Determinação dos Esforços Solicitantes em cada alma do pilar:
 - Vn := 36.225 kN Va := $\frac{Vn}{2}$ Va = 18.113 kN Mn := 36.225 kNm Ma := $\frac{Mn}{2}$ Ma = 18.113 kNm
- Determinação da Área Efetiva de Compressão (Aec) em cada alma do pila

$$w = Ft / Fc$$

$$w := -1.00$$

$$k := 4 + 2 \cdot (1 - w) + 2 (1 - w)^{3}$$

$$k = 24$$

$$Ty := 300 \text{ MPa}$$

$$E := 205000 \text{ MPa}$$

$$t := 2.25 + 4.75$$

$$t = 7 \text{ mm}$$

$$Lp := \frac{\left(\frac{1}{t}\right)}{0.95 \left(k \cdot \frac{E}{Ty}\right)^{2}}$$

$$Lp = 0.493$$

Assim, como Lp < 0,673, a placa não flamba.

$$bc := \frac{1}{2} \qquad bc = 210 \quad mm$$

bef := bc
$$bef = 210$$
 mm

Aec := bef
$$\cdot$$
t Aec = 1.47×10^3 mm²

• Verificação de cada alma do pilar quanto ao momento fletor:

Ief :=
$$0.0000432 \text{ m}^4$$

Wef := $\frac{2 \cdot \text{Ief} \cdot 1000}{1}$ Wef = $2.057 \times 10^{-4} \text{ m}^3$
Mrd := Wef $\cdot \frac{\text{Ty} \cdot 1000}{1.1}$ Mrd = 56.104 Nm

Portanto, tem-se

• Verificação de cada alma do pilar quanto ao cisalhamento:

$$s := \frac{1}{t} \qquad s = 60 \qquad kv := 5.34$$

$$x := 1.08 \left(\frac{E \cdot kv}{Ty}\right)^{\frac{1}{2}} \qquad x = 65.24$$

$$y := 1.4 \left(\frac{E \cdot kv}{Ty}\right)^{\frac{1}{2}} \qquad y = 84.57$$

$$s < x \qquad Vrd := \frac{(0.6Ty \cdot l \cdot t)}{1.1 \cdot 1000} \qquad Vrd = 481.091 \text{ kN}$$

Portanto, tem-se

II.3. Dimensionamento da Ligação do Protótipo PCP1V1

Dimensionamento da Ligação do Protótipo PCP1V1

1) Considerações Iniciais

Viga V1: Box 200x150x25x3,00 Pilar P1: I 170x170x25x3,00 Cantoneira: 2L 60x60x3,00 U Suporte: 162,70x186,35x6,35 Parafusos: A325 f = 634 MPa $f_u = 825$ MPa Solda de Filete: E60XX f = 415 MPa Aço: USI-SAC 41 $f_y = 250$ MPa $f_u = 400$ MPa

2) Hipóteses de Configurações da Ligação

2.1) - Solda: para cantoneira w = 3,00 mm; para o U suporte w = 3,00 mm.
- Parafuso: d = 12,7 mm (3 parafusos)

- Determinação dos esforços de Cálculo:

a) Devido à resistência da seção da viga V1, tem-se: Md = 32,75 kNm e Vd = 167,99 kN

b) Devido à verificação do Web Crippiling na Viga V1, na região da ligação em estudo, de acordo com a AISI 1996.

Web Crippling Check - 1996 AISI Specification-Supplement 1 (LRFD) Load: 38.000 kN on bottom flange Moment: 0.000 kN-m 170.00 mm Bearing: Distance from edge of bearing to end of member: 0.00000 m Distance from edge of bearing to edge of opposite load: 0.59500 m ∮Pn (kN) Part Element Equation ∮Pny (kN) Left Channel 3 AISI Eq. C3.4.1-1 22.822 22.822 3 AISI Eq. C3.4.1-1 22.822 22.822 Right Channel Total 45.643 Web Crippling Check: 38.000 kN 45.643 kN <= Moment Check: 0.000 kN-m 32.749 kN-m <= Interaction Equations AISI Eq. C3.5.2-1 (P, M) 0.891 + 0.000 = 0.891 <= 1.42 c) Devido as cargas de projeto: Vd = 37,84 kNAssim, tem-se: Vd = 37,84 kNMd = 32,75 kNmVd := 37.84 Vn := VdVn = 37.84kN

Md := 32.75 Mn := $\frac{Md}{0.95}$ Mn = 34.474 kN

3) Determinação da Resistência da Solda em Cada Cantoneira

a) Metal Base: solicitação paralela ao eixo da solda

fu := 400 MPa
L := 167 mm
t := 3.00 mm
$$\frac{L}{t} = 55.667 \frac{L}{t} > 25$$

Frd := 0.75 ·t ·L · $\frac{fu}{1.8 \cdot 1000}$ Frd = 83.5 kN

b) Metal Base: solicitação normal ao eixo da solda

fu := 400 MPa
L :=
$$2 \cdot (60 - 2 \cdot t)$$
 L = 108 mm

t := 3.00 mm

 $Frd := t \cdot L \cdot \frac{fu}{1.65 \cdot 1000} \qquad Frd = 78.545 \quad kN$

Portanto, tem-se:

4) Determinação da Resistência dos Parafusos

a) Rasgamento entre Furos

fu := 400 MPa
e :=
$$50 - \frac{14.2}{2}$$
 e = 42.9 mm
t := 3.00 mm
Frd := t $\cdot e \cdot \frac{fu}{1.35 \cdot 1000}$ Frd = 38.133 kN

b) Rasgamento entre Furo e Borda

fu := 400 MPa t := 3.00 mm
e := 30 mm
Frd :=
$$t \cdot e \cdot \frac{fu}{1.35 \cdot 1000}$$
 Frd = 26.667 kN

c) Pressão de Contato (Esmagamento)

fu := 400 MPa t := 3.00 mm
d := 12.7 mm
Frd :=
$$2.5t \cdot d \cdot \frac{fu}{1.35 \cdot 1000}$$
 Frd = 28.222 kN

d) Força Cortante nos Parafusos (plano de corte passa pela rosca)

fup := 825 MPaAp := 126 mm²Vrd :=
$$0.45$$
Ap $\cdot \frac{fup}{1.55 \cdot 1000}$ Vrd = 30.179 kNVrdt := $3 \cdot$ VrdVrdt = 90.537 kN

Portanto, tem-se:

5) Determinação dos Esforços Solicitantes na Solda de Cada Cantoneii

Mn := 34.474 kNm

$$h := 200 \text{ mm}$$

$$Ft = Fc$$

$$Mn = h/2 (Ft + Fc)$$

$$Mn = h/2 (2Ft)$$

$$Mn = h.Ft$$

$$Ft := \frac{1000 \cdot Mn}{h}$$

$$Ft = 172.37 \quad kN$$

$$Fl := \left[\left(\frac{Ft}{2} \right)^2 + \left(\frac{Vn}{4} \right)^2 \right]^2$$

$$Fl = 86.703 \quad kN$$

Sendo Fl = Esforço total na solda de cada cantoneira

6) Verificação da Cantoneira

a) Solda:

Como a resistência da solda é de 162,05 kN, tem-se:

b) Parafusos:

Determinação dos esforços no conjunto de parafusos, sendo: Ft = força cortante total no parafuso mais solicitado.

$$Ft := \left[\left(\frac{Mn}{0.26 \cdot 2 \cdot 3} \right)^2 + \left(\frac{Vn}{12} \right)^2 \right]^{\frac{1}{2}} \qquad Ft = 22.323 \quad kN$$

Portanto, tem-se:

7) U Suporte

8) Determinação da Resistência da Solda do U Suporte

Consideraremos que as soldas 1 e 2 resistirão aos esforços.

8.1) Resistência da Solda 1

a) Metal Base: solicitação normal ao eixo da solda

$$L := b$$
 $L = 162.7$ mm

fu := 400 MPa t := 3.00 mm

 $Frd := t \cdot L \cdot \frac{fu}{1.65 \cdot 1000}$ Frd = 118.327 kN

Portanto, tem-se

8.2) Resistência da Solda 2

a) Metal Base: solicitação normal ao eixo da solda

$$L := 90 \qquad \qquad L = 90 \quad mm$$

fu := 400 MPa t := 3.00 mm

 $Frd := t \cdot L \cdot \frac{fu}{1.65 \cdot 1000} \qquad Frd = 65.455 \qquad kN$

Portanto, tem-se

8.3) Resistência Admitida da Solda do U Suporte para a Ligação P1 com V1

Assim, tem-se:

$$Frd = Frd + 2*Frd_2 = 249,25 \text{ kN}$$

9) Determinação dos Esforços Solicitantes no U Suporte

Ftw :=
$$\left[Ft^2 + \left(\frac{Vus}{2}\right)^2 \right]^{\frac{1}{2}}$$
 Ftw = 109.38 kN

10) Verificação do U Suporte

a) Solda:

Assim, tem-se: Ftw < Frd ok!

11) Verificação da Mesa e Alma do Pilar Junto à Ligação em Estudo

Para evitar esforços localizados na mesa e na alma do pilar, foi introduzido na configuração da ligação dois "U simples" de espessura 4,75 mm soldados às mesas e à alma, internamente ao mesmo. Assim, evitou-se a necessidade de utilização de enrijecedores transversais na alma do pilar.

A seguir são determinados os esforços de cálculo na mesa e na alma do pilar e suas verificações, de acordo com a NBR 8800 item 7.1.3.1.

• Determinação dos esforços solicitantes na alma do pilar:

Vn := 37.84 kN

• Determinação dos esforços solicitantes em cada mesa do pilar junto à ligação:

Mn := 34.474 kNm	L := 260 mm
$Pdt := \frac{Mn \cdot 1000}{L \cdot 2}$	Pdt = 66.296 kN
Pdc := -Pdt	Pdc = -66.296 kN

• Verificação da necessidade de utilização de enrijecedores transversais:

tp := 2.3.0tw := tp + 2.4.75tw = 15.5mmtb := 4.75mmk := 4.75 + $\frac{tp}{2}$ k = 7.75mmfy := 250MPafi := 0.90h := 145mmE := 205000MPaBr1 := firtw. $\frac{fy}{1000}$.(tb + 5.k)Br1 = 151.706kN

Br2 :=
$$22 \cdot fi \cdot tw^3 \cdot \frac{(E \cdot fy)^2}{1000 \cdot h}$$
 Br2 = 3.64×10^3 kN

Logo:

$$Br := Br1 \qquad Br = 151.706 \quad kN$$

Tr1 := Br1 Tr1 = 151.706 kN

$$Tr2 := 6 \cdot fi \cdot k^2 \cdot \frac{fy}{1000}$$
 $Tr2 = 81.084$ kN

Logo:

$$Tr := Tr2$$
 $Tr = 81.084$ kN

Portanto, tem-se:

Br > Pdc	ok!
Tr > Pdt	ok!

• Verificação da alma do pilarquanto ao cisalhamento:

h :=
$$170 - 2 \cdot (3 + 4.75)$$
 t := $2 \cdot (4.75 + 3)$
s := $\frac{h}{t}$ s = 9.968 kv := 5.34
x := $1.08 \left(\frac{E \cdot kv}{fy}\right)^{\frac{1}{2}}$ x = 71.466
y := $1.4 \left(\frac{E \cdot kv}{fy}\right)^{\frac{1}{2}}$ y = 92.642
s < x Vrd := $0.6 \cdot fy \cdot h \cdot \frac{t}{1.1 \cdot 1000}$ Vrd = 326.557 kN
Portanto, tem-se
Vrd > Vn ok!

Portanto, tem-se

ANEXO III

Planilhas dos Testes Experimentais

III.1. Planilhas do Teste Experimental do Protótipo P01

PLANILHA 01 - EXTENSOMETRIA										
PROTÓTIPO:	P01			DATA:	16/0	08/02	FOLHA: 1			
Detalhag	Carga	Deformações Específicas (µ)				Oha				
Detames	(kN)	E1	E ₂	E3	$\mathbf{E_4}$	\mathbf{E}_{5}	Obs.			
6 6 6 F1	0,000	2	-1	- 1	-1	2				
E3	0,469	4	-10	-7	14	7				
	5,270	1	-100	-85	130	59				
	9,590	-15	-188	-161	243	114				
	12,480	-27	-237	-203	291	150				
	13,440	-33	-256	-215	318	165				
	14,400	-47	-285	-256	340	192				
U SIMPLES	15,360	-54	-301	-295	347	214				
+ +	15,360	-71	-309	-339	363	238				
νίςτα ι Δτέραι										
CANTONEIRA										
VISTA SUPERIOR										
VIICA										
VIGA										
Obs.										

PLANILHA 02 - DEFLETÔMETROS D1 e D2									
PROTÓTIPO:	P01		DATA: 16/08/	02 FOLHA: 1					
Detelhes	Carga	Deslocar	ento (mm)	Obs					
Detaines	(kN)	D1	D ₂	0.05.					
/	0,000	0,00	0,00						
	0,469	0,05	0,01						
	5,270	1,67	0,15						
VIGA	9,590	2,26	0,28						
	12,480	2,58	0,37						
	13,440	2,72	0,42						
	14,400	2,85	0,49						
	15,360	2,96	0,58						
<u>_</u>									
V IST A LA TER AL				-					
Obs.									

PLAN	PLANILHA 03 - DEFLETÔMETROS D3, D4 e D5									
PROTÓTIPO:	P01		DATA:	16/08/02	FOLHA: 1					
Detalhes	Carga	D	eslocamento (n	ım)	Obs					
Detames	(kN)	D ₃	D ₄	D ₅	Obs.					
	0,000	0,00	0,00	0,00						
PILAR D3	0,469	0,09	-0,01	-0,01						
	5,270	1,06	-0,09	-0,19						
VIGA	9,590	1,95	-0,14	-0,40						
	12,480	2,42	-0,16	-0,57						
	13,440	2,59	-0,14	-0,79						
	14,400	2,68	-0,13	-1,47						
	15,360	2,75	-0,11	-1,81						
VISTA LATED AL										
VISTA LATERAL										
Obs.										
				<u>↓ </u>						
				<u>↓</u>						
				├────						
				<u>↓ </u>						
				<u>↓ </u>						

PLANILHA 04 - LVDT'S									
PROTÓTIPO:	P01						DATA:	16/08	FOLHA: 1
Detalhes	Carga (kN)	L ₁ (mm)	Carga (kN)	L ₂ (mm)	Carga (kN)	L ₃ (mm)	Carga (kN)	L ₄ (mm)	Obs.
	0,000	0,000			0,000	0,000	0,000	0,000	
↓ <u> </u>	0,469	0,178			0,469	0,167	0,469	0,282	
	0,949	0,178			0,949	0,525	0,949	0,844	
	1,430	0,178			1,430	0,703	1,430	1,125	
	1,910	0,178			2,390	1,061	2,870	2,109	
	2,390	0,178			3,351	1,329	3,831	2,531	
	2,870	0,178			3,831	1,686	4,791	2,812	
	3,351	0,178			4,311	1,865	5,272	3,234	
	3,831	0,178			4,791	2,044	5,752	3,375	
	4,311	0,178			5,272	2,312	6,232	3,796	
	4,791	0,178			6,232	2,580	6,712	4,218	
	5,272	0,178			6,712	2,937	7,192	4,499	
	5,752	0,178			7,192	3,116	7,673	4,921	
	6,232	0,380			7,673	3,295	8,153	5,062	
	6,712	0,380			8,153	3,384	8,633	5,483	
Eq.	7,192	0,380			8,633	3,741	9,113	5,765	
I III III IIII IIII IIII IIII IIII IIII IIII	7,673	0,380			9,113	3,920	10,074	6,186	
	8,153	0,380			9,594	4,277	10,554	6,608	
	8,633	0,380			10,554	4,724	11,034	6,889	
 ↓	9,113	0,380			11,034	4,814	11,515	7,311	
*	9,594	0,380			11,515	5,171	12,475	8,014	
	10,074	0,380			11,995	5,350	13,436	9,139	
Obs.	10,554	0,380			12,475	5,618	13,916	11,669	
	11,034	0,380			13,436	6,511	14,396	13,638	
	11,515	0,582			13,916	8,209	14,876	15,606	
	11,995	0,582			14,876	10,979	15,357	16,731	
	12,475	0,582			15,357	13,391			
	12,955	0,582							
	13,436	0,582							
	13,916	0,784							
	14,876	1,188							
	15,357	1,592							

III.2. Planilhas do Teste Experimental do Protótipo P01B

PLANILHA 01 - EXTENSOMETRIA										
PROTÓTIPO:	P01B			DATA:	23/1	0/02	FOLHA:	1		
Dotalhas	Carga		Deformações Específicas (µ)							
Detames	(kN)	E ₁	\mathbf{E}_2	E_3	$\mathbf{E_4}$	E_5	\mathbf{E}_{6}	Obs.		
	0,000	1	1	1	2	1	1			
	0,949	15	-11	5	3	20	2			
186 1	2,870	59	-54	0	2	85	1			
	4,311	87	-83	5	- 1	123	0			
	6,232	138	-131	-3	- 1	195	-1			
······	9,113	205	-216	1	-6	301	-3			
-фф- Е2	11,030	253	-274	-3	-13	379	-4			
	12,480	325	-318	-6	-3	433	-6			
VISIA LAIERAL	14,880	398	-406	-5	-14	540	-7			
	15,840	455	-448	-1	-15	602	-9			
	17,280	496	-514	-1	-15	673	-11			
	18,720	524	-574	5	-16	748	-6			
CANTONEIRA	21,600	587	-685	-1	-19	865	-4			
	23,040	615	-780	7	-13	965	-5			
VISTA SUPER IOR	24,960	649	-871	6	-16	1059	-8			
VIGA	26,400	650	-963	14	-22	1149	-9			
****	27,360	663	-1002	15	-23	1211	-7			
1⁸⁵.	29,280	679	-1079	20	-23	1294	-13			
E6 E3	30,240	677	-1137	21	-18	1347	-14			
	31,200	680	-1189	17	-22	1405	-15			
	32,650	692	-1264	17	-24	1463	-18			
	33,130	679	-1330	15	-27	1525	-5			
	34,570	706	-1393	16	-24	1586	-5			
- • •	35,530	706	-1459	23	-26	1633	-10			
	36,970	696	-1576	18	-30	1719	-13			
PLACA DE LIGAÇÃO	37,930	698	-1658	20	-29	1783	-14			
Obs.	38,410	694	-1685	22	-32	1799	-9			
	40,330	707	-1791	26	-29	1875	-53			
	40,810	756	-1880	23	-32	1933	-60			
	41,770	1072	-1979	19	-32	1967	-66			
	42,250	1112	-2001	16	-33	1971	-63			
	43,690	1163	-2059	14	-26	2016	-62			
	44,650	1294	-2115	12	-23	2052	-73			

PLANILHA 01 - EXTENSOMETRIA										
PROTÓTIPO:	P01B			DATA:	23/1	10/02	FOLHA:	2		
Dotalhas	Carga	Deformações Específicas (µ)				Obs				
Detanies	(kN)	$\mathbf{E_1}$	\mathbf{E}_2	E_3	\mathbf{E}_4	E_5	E ₆	0.05.		
	45,130	1299	-2178	5	-16	2079	-81			
······································	46,090	1307	-2233	1	-17	2116	-100			
186 1	46,570	1317	-2276	4	-23	2141	-108			
	47,530	1334	-2343	-1	-21	2187	-119			
	48,010	1331	-2391	-7	-20	2216	-128			
	49,450	1355	-2454	-8	-19	2279	-141			
- \$ \$+- E2	50,410	1392	-2513	-6	-14	2334	-154			
	50,890	1444	-2556	-9	-13	2387	-172			
VISTA LATERAL	51,850	1501	-2589	-13	-10	2422	-205			
	52,330	1531	-2612	-9	-9	2450	-207			
	53,300	1563	-2657	-15	-12	2508	-222			
	54,260	1628	-2746	-13	-13	2604	-246			
CANTONEIRA	55,220	1658	-2791	-14	-17	2650	-257			
	55,700	1772	-2895	-7	-18	2757	-290			
VISTA SUPERIOR	56,180	1806	-2954	-7	-13	2808	-296			
VIGA	57,140	1861	-3055	6	-13	2739	-304			
	58,140	1987	-3403	45	5	2874	-355			
∫ ^{#5_} •••-• ₹ E4	58,580	2054	-3569	21	11	2933	-375			
E6 E3										
- ф ф -										
PLACA DE LIGAÇÃO										
Obs.										

PLANILHA 02 - DEFLETÔMETROS D1 e D2									
PROTÓTIPO:	P01B		DATA: 23/	/10/02 FOLHA: 1					
Datalkas	Carga	Deslocam	Deslocamento (mm)						
Detaines	(kN)	D ₁	D_2	- Obs.					
/	0,000	0,000	0,000						
PILAR	0,949	0,070	0,000						
	2,870	0,310	0,040						
	4,311	0,450	0,070						
	6,232	0,710	0,110						
	9,113	1,060	0,170						
	11,030	1,290	0,210						
	12,480	1,450	0,240						
	14,880	1,760	0,290						
PLACA DE LIGAÇÃO	15,840	1,930	0,330						
	17,280	2,130	0,360						
VISTA LATERAL	18,720	2,320	0,390						
Obs.	21,600	2,640	0,440						
	23,040	2,910	0,490						
	24,960	3,160	0,530						
	26,400	3,410	0,570						
	27,360	3,590	0,610						
	29,280	3,820	0,640						
	30,240	3,970	0,670						
	31,200	_	0,700						
	32,650	_	0,730						
	33,130	-	0,760						
	34,570	-	0,780						
	35,530	-	0,810						
	36,970	-	0,850						
	37,930	4,060	0,890						
	38,410	4,210	0,910						
	40,330	4,450	0,950						
	40,810	4,630	0,980						
	41,770	4,780	1,010						
	42,250	4,850	1,020						

PLANILHA 02 - DEFLETÔMETROS D1 e D2								
PROTÓTIPO:	P01B		DATA:	23/10/02	FOLHA: 2			
Detalhes	Carga	Deslocam	ento (mm)	Obs				
Detaines	(kN)	D ₁	D ₂		Obs.			
	43,690	4,990	1,050					
y PILAR	44,650	5,090	1,070					
	45,130	5,240	1,090)				
	46,090	5,360	1,100)				
	46,570	5,450	1,120)				
	47,530	5,630	1,160)				
	48,010	5,750	1,180)				
	49,450	5,910	1,200)				
р2	50,410	6,080	1,230)				
PLACA DE LIGAÇÃO	50,890	6,230	1,250)				
	51,850	6,360	1,270)				
VISIALAIERAL	52,330	6,430	1,290)				
Obs.	53,300	6,570	1,300)				
	54,260	6,780	1,340)				
	55,220	6,850	1,350)				
	55,700	7,050	1,370)				
	56,180	7,110	1,380)				
	57,140	7,230	1,390)				
	58,140	7,260	1,400)				
	58,580	7,520	1,530)				

PLANI	PLANILHA 03 - DEFLETÔMETROS D3, D4 e D5									
PROTÓTIPO:	P01B	P01B DATA: 23/10/02 FOLHA:								
Deteller	Carga	D	eslocamento (n	ım)						
Detaines	(kN)	D ₃	D_4	D 5	Obs.					
	0,000	0,000	0	0,000						
PILAR	0,949	0,070	0,02	0,005						
	2,870	0,310	0,09	0,035						
	4,311	0,450	0,14	0,050						
	6,232	0,720	0,22	0,085						
	9,113	1,050	0,355	0,120						
	11,030	1,290	0,44	0,145						
	12,480	1,520	0,51	0,165						
PLACA DE LIGAÇÃO	14,880	1,820	0,62	0,195						
	15,840	2,000	0,69	0,215						
	17,280	2,190	0,77	0,235						
VISTALATERAL	18,720	2,390	0,86	0,255						
Obs.	21,600	2,680	1,02	0,280						
	23,040	2,940	1,13	0,310						
	24,960	3,180	1,25	0,340						
	26,400	3,410	1,365	0,365						
	27,360	3,600	1,455	0,395						
	29,280	3,800	1,58	0,420						
	30,240	3,950	1,66	0,440						
	31,200	4,090	1,75	0,455						
	32,650	4,250	1,86	0,480						
	33,130	4,410	1,94	0,505						
	34,570	4,580	2,04	0,525						
	35,530	4,710	2,12	0,545						
	36,970	4,950	2,28	0,575						
	37,930	5,115	2,42	0,605						
	38,410	5,220	2,46	0,625						
	40,330	5,430	2,63	0,655						
	40,810	5,600	2,76	0,685						
	41,770	5,760	2,93	0,715						
	42,250	5,885	2,97	0,725						

PLAN	PLANILHA 03 - DEFLETÔMETROS D3, D4 e D5									
PROTÓTIPO:	P01B		DATA:	23/10/02	FOLHA: 2					
D-4-11	Carga	D	eslocamento (m	m)						
Detaines	(kN)	D_3	D_4	D ₅	Obs.					
	43,690	6,025	3,060	0,745						
/ PILAR	44,650	6,145	3,150	0,755						
	45,130	6,255	3,260	0,775						
	46,090	6,375	3,360	0,785						
	46,570	6,465	3,440	0,795						
	47,530	6,625	3,600	0,815						
	48,010	6,735	3,740	0,835						
	49,450	6,895	3,895	0,855						
	50,410	7,055	4,100	0,875						
	50,890	7,185	4,270	0,905						
	51,850	7,275	4,410	0,925						
VISTALATERAL	52,330	7,375	4,520	0,940						
Obs.	53,300	7,515	4,740	0,975						
	54,260	7,695	5,060	1,035						
	55,220	7,775	5,240	1,070						
	55,700	7,945	5,550	1,165						
	56,180	7,995	5,720	1,215						
	57,140	8,125	6,010	1,305						
	58,140	8,205	6,950	1,505						
	58,580	8,325	7,370	1,695						
	58,580	8,325	7,370	1,695						

	PLANILHA 04 - LVDT'S									
PROTÓTIPO:	P01B						DATA:	23/10	0/02 FOLHA: 1	
Detalhes	Carga (kN)	L ₁ (mm)	Carga (kN)	L ₂ (mm)	Carga (kN)	L ₃ (mm)	Carga (kN)	L ₄ (mm)	Obs.	
					0,000	0,000	0,000	0,000		
					3,351	0,078	16,317	5,746		
					3,831	0,167	21,600	7,124		
					4,311	0,257	25,922	8,502		
					5,272	0,346	30,244	9,880		
L3					5,752	0,435	33,125	11,258		
					6,232	0,525	36,967	12,636		
					7,673	0,703	40,329	14,014		
					8,633	0,971	42,250	15,391		
					9,594	1,150	44,651	16,769		
					10,074	1,329	46,572	18,147		
					17,758	3,831	48,013	19,525		
los ção					19,198	4,188	50,414	20,903		
VO BET					20,639	4,456	51,855	22,281		
					21,600	4,724	53,295	23,659		
					23,040	5,171	54,256	25,036		
÷ ÷					24,961	5,618	56,177	29,170		
÷ +					25,922	5,796	58,098	30,548		
					28,803	6,601	58,578	33,304		
					29,283	6,779				
					30,244	7,137				
					31,204	7,405				
Obs.					32,645	7,673				
					34,566	8,388				
					35,527	8,745				
					36,967	9,192				
					37,928	9,639				
					38,408	10,175				
					39,368	10,532				
					40,329	10,621				
					40,809	11,068				
					42,250	11,694				
					43,691	12,587				

	PLANILHA 04 - LVDT'S										
PROTÓTIPO:	P01B						DATA:	23/10)/02	FOLHA:	2
Detalhes	Carga (kN)	L_1 (mm)	Carga (kN)	L ₂ (mm)	Carga (kN)	L ₃ (mm)	Carga (kN)	L ₄ (mm)		Obs.	
<u></u>					45,131	13,213					
AIGA					46,092	13,749					
					46,572	14,374					
					47,533	14,910					
					48,013	15,178					
13					49,453	16,072					
					50,414	16,340					
					51,855	17,502					
					52,335	17,859					
12					53,295	18,663					
					54,256	19,289					
					56,177	22,863					
niekój					58,098	23,935					
YOU DE					58,578	24,829					
÷ +											
÷											
Obs.											

III.3. Planilhas dos Testes Experimentais dos Protótipos PCP1V1

	PLANILHA 01 - EXTENSOMETRIA										
PROTÓTIPO:	PCP1V1-1			DATA:	12/0	3/03			FOLHA:	1	
Detalhag	Carga			Leit	ura dos E	xtensôme	etros			Oba	
Detames	(kN)	E_1	E_2	E ₃	E4	E_5	E ₆	E7	E ₈	Obs.	
- 	0,000	1	1	1	-2	1	-1	-2	1		
	0,949	12	-12	2	-2	6	-5	-21	21		
	2,390	54	-53	2	-5	16	-19	-83	86		
	4,791	104	-102	- 1	-8	28	-38	-160	167		
	7,192	152	-149	-6	-10	25	-56	-239	235		
•• •• •• E2	9,594	213	-212	-13	-12	12	-85	-362	314		
VISTA LATERAL	11,990	301	-301	-18	-9	-20	-119	-532	458		
CANTONEIRA	13,920	388	-399	-39	-11	-62	-128	-687	658		
	14,400	415	-437	-42	-14	-80	-125	-733	730		
	15,360	468	-503	-54	-16	-105	-140	-800	887		
CANTONEIRA	16,320	493	-540	-45	-13	-115	-146	-836	959		
VISTA SUPERIOR	17,280	533	-593	-42	-15	-130	-174	-899	1058		
VIGA	18,240	548	-624	-24	-14	-131	-190	-935	1083		
	19,200	577	-666	-17	-3	-152	-227	-1067	1139		
E3	20,160	609	-698	-25	-4	-162	-283	-1252	1204		
	21,120	632	-717	-37	1	-174	-324	-1421	1241		
	21,600	658	-738	-68	-9	-192	-374	-1682	1274		
	22,560	680	-759	-106	-35	-192	-418	-1894	1327		
	23,520	710	-787	-142	-56	-183	-482	-2185	1408		
- • • •	24,480	736	-811	-161	-65	-174	-526	-2420	1484		
USUPORTE	25,440	769	-845	-176	-77	-152	-574	-2611	1522		
	26,400	801	-872	-190	-82	-135	-625	-2866	1618		
	27,840	841	-908	-204	-85	-107	-681	-3193	1739		
E5¥	28,320	860	-924	-218	-90	-93	-714	-3369	1857		
■ E7	29,280	904	-960	-228	-97	-56	-775	-3670	2076		
	30,240	942	-992	-237	-103	-28	-830	-3984	2253		
	31,204	973	-1018	-243	-107	- 1	-875	-4778	2439		
								1			
VISTA FRONTAL VISTA LATERAL											

PI	ANILHA 02	2 - DEFLETÔMETRO	DS D1 e D2	
PROTÓTIPO:	PCP1V1-1		DATA: 1	2/03/03 FOLHA: 1
Deteller	Carga	Deslocar	nento (mm)	
Detaines	(kN)	D ₁	D ₂	- Obs.
	0,000	0,000	0,000	
D1 PILAR	0,949	0,050	-0,020	
VIGA	2,390	0,220	0,050	
	4,791	0,410	0,110	
	7,192	0,610	0,170	
	9,594	0,850	0,250	
	11,990	1,120	0,350	
	13,920	1,320	0,420	
	14,400	1,390	0,450	
-φφ-	15,360	1,510	0,490	
U SUPORTE	16,320	1,600	0,510	
	17,280	1,710	0,550	
	18,240	1,790	0,570	
	19,200	1,890	0,610	
VISTALATERAL	20,160	2,010	0,640	
Obs.	21,120	2,080	0,670	
	21,600	2,180	0,700	
	22,560	2,250	0,730	
	23,520	2,380	0,770	
	24,480	2,480	0,800	
	25,440	2,580	0,830	
	26,400	2,650	0,860	
	27,840	2,770	0,900	
	28,320	2,840	0,920	
	29,280	2,980	0,950	
	30,240	3,090	0,980	
	31,204	3,160	1,010	

PLANI	LHA 03 - D	EFLETÔME	ETROS D3, I	D4 e D5	
PROTÓTIPO:	PCP1V1-1		DATA:	12/03/03	FOLHA: 1
Datalhas	Carga	D	eslocamento (m	m)	Oha
Detames	(k N)	D ₃	D ₄	D ₅	Obs.
/	0,000	0,000	0,000	0,000	
	0,949	0,040	0,030	0,020	
PILAR VIGA	2,390	0,190	0,040	0,060	
	4,791	0,370	0,270	0,130	
	7,192	0,580	0,410	0,190	
	9,594	0,850	0,590	0,270	
	11,990	1,150	0,800	0,370	
	13,920	1,320	0,950	0,440	
	14,400	1,490	0,980	0,480	
φ φ φ	15,360	1,630	1,070	0,510	
USUPORTE	16,320	1,730	1,080	0,530	
	17,280	1,870	1,130	0,550	
	18,240	1,890	1,130	0,600	
	19,200	2,030	1,130	0,620	
VISTA LATERAL	20,160	2,160	1,130	0,660	
Obs.	21,120	2,230	1,130	0,690	
	21,600	2,330	1,160	0,730	
	22,560	2,520	1,230	0,770	
	23,520	2,700	1,320	0,800	
	24,480	2,830	1,400	0,830	
	25,440	2,970	1,510	0,870	
	26,400	3,110	1,630	0,900	
	27,840	3,220	1,780	0,940	
	28,320	3,360	1,870	0,960	
	29,280	3,540	2,060	1,000	
	30,240	3,700	2,230	1,030	
	31,204	3,830	2,390	1,060	

			P	LANILH	A 04 - LV	DT'S				
	PROTÓTIPO:	PCP1V1-1						DATA:	12/03	FOLHA: 1
	Detalhes	Carga (kN)	L_1 (mm)	Carga (kN)	L ₂ (mm)	Carga (kN)	L ₃ (mm)	Carga (kN)	L ₄ (mm)	Obs.
3A	L4	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
MARK NAME		0,469	0,000	0,949	0,000	0,469	0,114	0,469	0,280	
		2,870	0,178	1,910	0,140	0,949	0,252	1,430	0,726	
		5,752	0,380	2,870	0,281	1,430	0,528	2,390	1,173	
		8,153	0,582	4,311	0,562	1,910	0,665	3,351	1,709	
L3		10,074	0,784	5,272	0,702	2,390	0,803	3,831	1,977	
		11,515	0,986	6,232	0,984	3,351	1,217	4,791	2,335	
	,	12,475	1,188	6,712	1,124	3,831	1,354	5,272	2,513	
	VAL	13,436	1,390	7,192	1,265	4,311	1,492	5,752	2,781	
L2	LEF	13,916	1,592	7,673	1,405	4,791	1,630	6,232	3,228	
	[TA]	14,876	1,794	8,153	1,546	5,752	1,906	6,712	3,407	
	RTE TA	15,837	1,997	8,633	1,687	6,712	2,319	7,673	3,854	
T1		17,758	2,401	9,113	1,968	7,192	2,594	8,153	4,300	
		20,159	3,007	10,074	2,249	7,673	2,732	9,113	4,837	
· · ·		21,119	3,209	10,554	2,390	8,153	3,146	10,554	5,909	
↓ [↓] [∥]		22,560	3,613	11,515	2,811	8,633	3,421	11,515	7,160	
		23,521	4,018	11,995	3,092	9,113	3,559	11,995	7,517	
		24,961	4,220	12,475	3,233	10,554	4,386	12,475	8,232	
		25,442	4,422	13,436	3,655	11,515	5,212	13,916	10,108	
		26,402	4,624	13,916	4,077	11,995	5,488	14,396	11,717	
		26,882	4,826	14,876	5,201	12,475	5,901	14,876	12,432	
		27,362	5,028	15,357	5,482	13,436	6,590	15,357	13,057	
	Obs.	27,843	5,230	15,837	5,904	13,916	7,279	15,837	13,772	
		28,323	5,432	17,758	7,451	14,396	8,657	17,758	17,525	
		29,283	5,634	19,198	9,700	14,876	9,346	18,238	19,490	
		31,204	6,241	20,159	10,544	15,357	9,622	18,718	21,367	
				21,119	11,668	15,837	10,310	19,198	23,690	
				21,600	12,653	17,277	13,755	19,679	23,958	

	PLANILHA 04 - LVDT'S									
	PROTÓTIPO:	PCP1V1-1						DATA:	12/03	/03 FOLHA: 2
	Detalhes	Carga (kN)	L ₁ (mm)	Carga (kN)	L ₂ (mm)	Carga (kN)	L ₃ (mm)	Carga (kN)	L ₄ (mm)	Obs.
Y.	L4			22,560	13,496	18,718	16,235	21,119	25,298	
VIC				23,521	14,480	19,198	16,511	21,600	26,281	
				24,961	15,745	20,159	18,164	22,560	26,817	
				25,922	16,730	21,119	20,093	23,521	27,264	
				26,402	17,151	21,600	21,885	24,001	27,532	
L3				26,882	17,573	22,080	22,987	24,481	27,621	
				28,323	18,838	22,560	23,400	24,961	27,711	
				28,803	19,682	23,521	25,054	25,442	27,889	
	AL			29,283	20,104	24,481	26,294	25,922	28,348	
L2	ER			29,764	20,807	24,961	26,983	26,402	29,331	
	LA			30,724	21,791	25,442	27,672	26,882	30,314	
	IA I			31,204	22,072	25,922	28,360	27,362	31,475	
	Port Port					26,882	29,738	28,323	32,994	
						27,843	30,565	28,803	34,781	
						28,323	31,805	29,283	35,675	
						28,803	33,045	29,764	37,283	
φ.	·····					29,283	33,734	30,244	38,802	
						29,764	34,836	30,724	39,249	
						30,244	35,801	31,204	39,874	
						31,204	36,214			
	Obs.									

	PLANILHA 01 - EXTENSOMETRIA											
PROTÓTIPO:	PCP1V1-2			DATA:	18/0	3/03			FOLHA:	1		
Datalhaa	Carga			Leit	ura dos E	xtensôm	etros		-	Oha		
Detaines	(kN)	E ₁	E_2	E ₃	E_4	E_5	E ₆	E ₇	E ₈	Obs.		
-da -da -	0,000	1	- 1	2	2	2	0	1	0			
	0,469	18	-17	2	5	6	-10	-14	13			
	2,870	63	-63	6	- 1	20	-31	-50	45			
	4,791	113	-114	9	-3	37	-59	-90	82			
	6,712	158	-159	12	-2	43	-83	-136	113			
-φ- φ- Ε2	9,594	229	-235	17	-6	41	-120	-207	167			
VISTA LATERAL	11,510	285	-290	19	-8	34	-154	-270	215			
CANTONEIRA	13,440	324	-337	18	-14	30	-182	-314	254			
	14,400	347	-353	18	-12	26	-203	-337	279			
	15,360	375	-386	20	-21	24	-226	-373	323			
CANTONEIRA	16,320	404	-421	19	-22	21	-249	-414	380			
VISTA SUPERIOR	17,280	422	-442	23	-22	16	-251	-440	427			
VIGA	18,240	460	-484	17	-34	7	-261	-489	528			
- • • • • E4	18,720	490	-516	20	-30	0	-278	-535	628			
E3	19,680	519	-559	34	-36	-2	-311	-595	738			
	20,160	513	-588	35	-31	1	-355	-622	762			
	21,120	540	-622	35	-30	3	-382	-664	815			
	22,080	571	-651	28	-30	4	-421	-717	885			
	23,520	610	-694	17	-29	5	-475	-824	1038			
	24,480	640	-744	-30	-42	18	-535	-944	1220			
LI SLIPOR TE	24,960	637	-759	-79	-55	8	-560	-1053	1353			
	25,440	673	-796	-100	-65	24	-599	-1144	1465			
	26,880	702	-830	-109	-78	52	-646	-1296	1650			
ESU	27,840	718	-860	-116	-73	73	-683	-1412	1814			
E7	28,320	734	-886	-129	-82	94	-717	-1540	1935			
	29,280	746	-913	-153	-93	121	-759	-1731	2100			
	29,760	761	-945	-154	-95	153	-798	-1947	2262			
	30,720	781	-976	-154	-95	183	-835	-2078	2452			
	31,200	804	-1006	-159	-100	215	-867	-2400	2639			
	31,680	808	-1033	-164	-104	241	-896	-2607	2833			
	32,650	824	-1049	-165	-107	269	-924	-2839	3037			
	33,130	824	-1092	-169	-111	307	-956	-3138	3382			
	34,090	818	-1122	-179	-114	335	-979	-3356	3632			
VISTA FRONTAL VISTA LATERAL	34,570	843	-1152	-180	-111	379	-1014	-3740	4062			
PILAR	34,570	854	-1173	-193	-115	383	-1014	-3873	4184			

PL	ANILHA 02	- DEFLETÔMETRO	S D1 e D2	
PROTÓTIPO:	PCP1V1-2		DATA: 18/	FOLHA: 1
Detalhas	Carga	Deslocam	ento (mm)	Oha
Detaines	(kN)	D ₁	D ₂	Obs.
	0,000	0,000	0,000	
D1 PILAR	0,469	0,050	0,010	
VIGA	2,870	0,220	0,060	
	4,791	0,400	0,110	
	6,712	0,570	0,160	
	9,594	0,830	0,240	
	11,510	1,050	0,310	
	13,440	1,220	0,360	
	14,400	1,320	0,390	
φφ-	15,360	1,440	0,430	
U SUPORTE	16,320	1,560	0,460	
	17,280	1,590	0,480	
	18,240	1,670	0,500	
VISTALATERAL	18,720	1,760	0,520	
	19,680	1,870	0,550	
Obs.	20,160	1,960	0,570	
	21,120	2,020	0,590	
	22,080	2,100	0,600	
	23,520	2,230	0,620	
	24,480	2,340	0,650	
	24,960	2,370	0,660	
	25,440	2,440	0,680	
	26,880	2,540	0,700	
	27,840	2,600	0,720	
	28,320	2,670	0,740	
	29,280	2,750	0,770	
	29,760	2,820	0,770	
	30,720	2,870	0,790	
	31,200	2,960	0,800	
	31,080	3,020	0,820	
	32,030	3,070	0,830	
	33,130	3,140	0,840	
	34,090	3,200	0,850	
	34,570	3,260	0,860	
	34,570	3,280	0,870	

PLANI	LHA 03 - D	EFLETÔME	TROS D3, I	D4 e D5	
PROTÓTIPO:	PCP1V1-2		DATA:	18/03/03	FOLHA: 1
Detalles	Carga	D	eslocamento (m	m)	
Detaines	(kN)	D_3	D_4	D_5	Obs.
Λ	0,000	0,000	0,000	0,000	
	0,469	0,050	0,030	0,050	
PILAR VIGA	2,870	0,220	0,130	0,060	
	4,791	0,410	0,240	0,110	
	6,712	0,590	0,350	0,170	
	9,594	0,860	0,480	0,250	
	11,510	1,090	0,680	0,320	
	13,440	1,270	0,800	0,370	
	14,400	1,380	0,870	0,410	
φ φ φ	15,360	1,510	0,950	0,450	
USUPORTE	16,320	1,650	1,020	0,480	
	17,280	1,720	1,050	0,500	
	18,240	1,820	1,080	0,530	
	18,720	1,870	1,100	0,550	
VISTA LATERAL	19,680	1,980	1,120	0,570	
Obs.	20,160	2,120	1,220	0,600	
	21,120	2,240	1,270	0,620	
	22,080	2,260	1,350	0,620	
	23,520	2,400	1,480	0,640	
	24,480	2,530	1,600	0,670	
	24,960	2,580	1,660	0,690	
	25,440	2,670	1,730	0,710	
	26,880	2,790	1,830	0,730	
	27,840	2,880	1,930	0,750	
	28,320	2,960	2,010	0,770	
	29,280	3,060	2,090	0,790	
	29,760	3,140	2,200	0,800	
	30,720	3,230	2,320	0,820	
	31,200	3,320	2,420	0,840	
	31,680	3,380	2,520	0,850	
	32,650	3,460	2,610	0,860	
	33,130	3,560	2,750	0,870	
	34,090	3,630	2,850	0,890	
	34,570	3,720	3,010	0,900	
	34,570	3,740	3,060	0,900	

		Р	LANILH	A 04 - LV	DT'S				
PROTÓTIPO:	PCP1V1-2						DATA:	18/03	FOLHA: 1
Detalhes	Carga (kN)	L ₁ (mm)	Carga (kN)	L ₂ (mm)	Carga (kN)	L ₃ (mm)	Carga (kN)	L ₄ (mm)	Obs.
	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
× −−−	0,949	0,178	0,469	0,000	0,469	0,252	0,469	0,369	
	3,351	0,380	1,430	0,140	0,949	0,390	0,949	0,458	
	6,232	0,582	2,870	0,421	1,910	0,665	1,430	0,816	
	8,633	0,784	3,831	0,562	2,870	0,941	1,910	0,905	
L3	10,074	0,986	4,311	0,702	3,831	1,217	2,390	1,173	
	11,995	1,188	4,791	0,843	4,311	1,354	2,870	1,262	
AL I	13,436	1,390	6,232	1,124	4,791	1,630	3,351	1,530	
m K	14,876	1,592	6,712	1,265	5,272	1,906	3,831	1,799	
L2	16,317	1,794	8,153	1,546	5,752	2,043	4,311	2,156	
	17,277	1,997	8,633	1,687	6,232	2,181	4,791	2,245	
DRT DRT	17,758	2,199	9,113	1,827	6,712	2,319	5,272	2,603	
	18,718	2,401	9,594	1,968	7,673	2,732	5,752	2,960	
	19,679	2,603	10,074	2,108	8,153	3,008	6,232	3,049	
	20,639	3,007	10,554	2,249	8,633	3,283	6,712	3,407	
	21,119	3,209	11,995	2,671	9,594	3,697	7,192	3,675	
	21,600	3,411	12,475	2,811	10,074	3,972	7,673	3,943	
	22,560	3,613	12,955	2,952	10,554	4,110	8,153	4,211	
	23,040	3,815	13,436	3,092	11,515	4,523	8,633	4,658	
	24,481	4,220	13,916	3,374	11,995	4,799	9,113	4,747	
	25,922	4,624	14,396	3,514	12,475	5,075	9,594	5,105	
	27,843	5,230	14,876	3,795	12,955	5,212	11,034	5,998	
Obs.	29,283	5,634	15,357	3,936	13,436	5,488	11,995	6,534	
	29,764	5,836	16,317	4,358	14,396	6,039	12,955	7,249	
	30,724	6,039	17,277	5,342	14,876	6,728	13,436	7,696	
	31,204	6,241	18,718	6,467	15,357	7,004	14,396	8,500	
	31,685	6,443	19,679	7,451	16,317	7,693	14,876	9,394	
	33,125	6,847	20,159	8,154	17,277	8,657	15,357	9,751	
	33,606	7,049	20,639	8,716	18,718	11,137	16,317	10,644	
	34,086	7,251	21,119	9,560	19,198	12,377	16,797	11,985	
	34,566	7,453	21,600	9,981	19,679	12,791	17,277	12,968	
	35,046	7,655	22,560	10,825	20,159	14,582	18,718	15,469	
			23,040	11,247	21,119	16,373	19,198	17,257	

		Р	LANILH	A 04 - LV	DT'S				
PROTÓTIPO:	PCP1V1-2						DATA:	18/03	3/03 FOLHA: 2
Detalhes	Carga (kN)	L ₁ (mm)	Carga (kN)	L ₂ (mm)	Carga (kN)	L ₃ (mm)	Carga (kN)	L ₄ (mm)	Obs.
			23,521	11,809	22,080	17,751	19,679	17,703	
×			24,001	12,512	22,560	18,578	20,159	20,116	
			24,481	13,215	23,040	19,680	20,639	20,741	
			25,442	14,199	23,521	20,093	21,119	22,260	
			26,402	15,745	24,001	21,609	21,600	23,064	
L3			27,843	16,870	24,481	22,849	22,080	23,422	
			28,323	17,011	24,961	24,227	22,560	23,958	
AL			28,803	17,151	27,362	27,120	23,040	24,405	
ER			29,764	17,573	28,803	28,912	23,521	24,852	
			30,244	17,854	29,283	29,601	24,001	25,388	
			30,724	18,557	29,764	29,876	24,481	25,656	
OR1			31,204	19,401	30,244	30,565	24,961	26,192	
			31,685	19,541	30,724	31,254	25,442	26,371	
			32,165	19,682	31,204	32,632	25,922	26,460	
			32,645	20,666	31,685	32,907	28,803	29,420	
			33,125	20,947	32,165	33,596	29,283	30,135	
			33,606	21,088	32,645	34,561	29,764	31,386	
			34,086	22,213	33,125	34,974	30,244	32,011	
			34,566	22,494	33,606	35,801	30,724	32,905	
			35,046	22,775	34,086	36,490	31,204	34,245	
					35,046	37,730	31,685	34,870	
							32,165	35,496	
Obs.							32,645	37,640	
							33,125	38,266	
							33,606	39,606	
							34,086	40,946	
							34,566	41,661	
							35,046	42,376	

PLANILHA 01 - EXTENSOMETRIA											
P	ROTÓTIPO:	PCP1V1-3			DATA:	11/0	4/03			FOLHA:	1
Detalhag		Carga			Leit	ura dos E	xtensôme	etros			Oba
Det	ames	(kN)	E ₁	E_2	E ₃	E_4	E_5	E_6	E7	E ₈	Obs.
- -	E1 I	0,000	- 1	1	0	2	-2	-2	1	2	
186		1,910	25	-29	7	4	12	-14	-60	48	
		2,870	48	-52	14	2	20	-25	-105	84	
		4,311	73	-77	21	-2	26	-38	-152	122	
		5,272	96	-102	23	-3	30	-49	-192	156	
		6,232	114	-117	30	-7	27	-56	-221	179	
- \$ \$ \$ -	ES	7,192	137	-145	34	-13	27	-68	-270	219	
VISTA LAT	TERAL	8,153	158	-168	42	-20	26	-79	-311	250	
	CANTONEIRA	9,113	187	-198	46	-25	21	-93	-365	298	
	_	10,550	208	-221	52	-26	19	-103	-404	337	
	-1	11,510	239	-252	58	-28	10	-118	-462	388	
		11,990	259	-274	64	-32	4	-123	-486	420	
VISTA SU	CANTONEIRA	12,480	272	-284	64	-38	0	-124	-508	440	
VISTA SU	,	13,440	299	-318	69	-38	-8	-133	-546	487	
VIGA	4	13,920	329	-348	77	-42	-18	-144	-593	539	
	→	14,400	344	-361	78	-44	-24	-148	-612	563	
	, E3	15,360	362	-377	85	-44	-33	-151	-629	592	
		16,320	399	-417	85	-48	-40	-177	-675	666	
		17,280	424	-436	87	-52	-47	-200	-709	700	
		18,240	464	-466	91	-49	-56	-250	-764	754	
		19,200	478	-482	93	-51	-54	-278	-796	767	
	╞──╋─	21,119	499	-505	83	-49	-48	-318	-849	822	
ES											
	E7										
	╎╟╾╌┰╼╌╢╎										
	- E8										
E6,											
VISTA FRONTAL	VISTA LATERAL										
PI	LAR										

PLANILHA 02 - DEFLETÔMETROS D1 e D2										
PROTÓTIPO:	PCP1V1-3		DATA:	11/04/03 FOLHA: 1						
Datalhar	Carga	Deslocam	Deslocamento (mm)							
Detaines	(kN)	D ₁	D_2	Uds.						
	0,000	0,000	0,000							
D1 PILAR	1,910	0,140	0,040							
VIGA	2,870	0,250	0,080							
	4,311	0,360	0,120							
= = = = = = =	5,272	0,460	0,160							
	6,232	0,540	0,190							
	7,192	0,640	0,230							
	8,153	0,730	0,260							
	9,113	0,850	0,300							
-\$\$-	10,550	0,940	0,330							
USUPORTE	11,510	1,070	0,370							
	11,990	1,140	0,400							
	12,480	1,180	0,420							
	13,440	1,270	0,450							
VISTALATERAL	13,920	1,360	0,480							
Obs.	14,400	1,400	0,490							
	15,360	1,440	0,510							
	16,320	1,560	0,540							
	17,280	1,640	0,570							
	18,240	1,780	0,610							
	19,200	1,870	0,650							
	21,119	1,990	0,690							

PLANILHA 03 - DEFLETÔMETROS D3, D4 e D5											
PROTÓTIPO:	PCP1V1-3		DATA:	11/04/03	FOLHA: 1						
Datalhas	Carga	D	eslocamento (m	Oba							
Detailles	(kN)	D_3	D_4	D ₅	0.05.						
Λ	0,000	0,000	0,000	0,000							
D3	1,910	0,120	0,040	0,040							
PILAR VIGA	2,870	0,230	0,095	0,085							
	4,311	0,350	0,160	0,125							
	5,272	0,460	0,220	0,170							
	6,232	0,540	0,260	0,200							
	7,192	0,650	0,330	0,245							
	8,153	0,740	0,390	0,275							
	9,113	0,870	0,470	0,320							
+ + + +	10,550	0,970	0,525	0,355							
USUPORTE	11,510	1,120	0,610	0,395							
	11,990	1,215	0,650	0,430							
	12,480	1,260	0,660	0,445							
	13,440	1,355	0,720	0,475							
VISTA LATERAL	13,920	1,465	0,770	0,505							
Obs.	14,400	1,510	0,800	0,525							
	15,360	1,560	0,830	0,545							
	16,320	1,710	0,900	0,585							
	17,280	1,830	0,930	0,605							
	18,240	2,030	1,000	0,655							
	19,200	2,140	1,030	0,685							
	21,119	2,290	1,070	0,725							

PLANILHA 04 - LVDT'S									
PROTÓTIPO:	PCP1V1-3						DATA:	11/04	4/03 FOLHA: 1
Detalhes	Carga (kN)	L ₁ (mm)	Carga (kN)	L ₂ (mm)	Carga (kN)	L ₃ (mm)	Carga (kN)	L ₄ (mm)	Obs.
5 L4	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
	2,390	0,178	1,910	0,140	0,949	0,114	0,469	0,011	
	5,752	0,380	2,390	0,281	1,910	0,390	0,949	0,101	
	8,153	0,582	3,351	0,421	2,390	0,528	1,910	0,637	
	10,074	0,784	3,831	0,562	2,870	0,665	2,390	0,816	
L3	11,995	0,986	4,311	0,562	3,351	0,803	2,870	1,084	
	13,436	1,188	4,791	0,702	4,311	1,079	3,351	1,262	
R∧ R	14,396	1,390	6,232	0,984	5,272	1,354	3,831	1,530	
Ë	15,357	1,592	7,192	1,124	6,232	1,630	4,311	1,709	
L2	16,317	1,794	8,153	1,405	6,712	1,768	4,791	1,977	
	16,797	1,997	8,633	1,546	7,192	1,906	5,272	2,245	
ST ST	17,758	2,199	9,113	1,687	7,673	2,043	6,232	2,692	
	18,718	2,401	9,594	1,827	8,153	2,319	6,712	2,871	
	20,159	2,603	10,074	1,968	8,633	2,457	7,192	3,318	
	21,119	2,805	10,554	2,108	9,113	2,594	8,153	3,764	
· → " · → / ·			11,515	2,390	9,594	2,732	8,633	4,122	
			11,995	2,671	10,074	3,008	9,113	4,390	
			12,475	2,811	10,554	3,146	9,594	4,658	
			12,955	3,092	11,034	3,421	10,074	5,015	
			13,436	3,233	11,515	3,559	11,034	5,641	
			13,916	3,655	12,475	4,248	11,515	5,998	
			14,396	3,936	13,436	4,799	11,995	6,802	
Obs.			14,876	4,077	14,876	5,901	12,475	7,070	
			15,357	4,639	15,357	6,315	12,955	7,785	
			15,837	4,920	15,837	7,004	13,436	7,964	
			16,317	5,061	16,317	7,279	14,876	9,572	
			16,797	5,764	16,797	8,244	15,357	10,287	
			17,758	6,748	17,758	9,622	16,317	11,895	
			18,238	7,029	18,238	9,897	16,797	13,414	
			18,718	7,170	18,718	10,310	17,758	15,559	
			19,198	7,872	19,198	11,275	18,238	16,274	
			19,679	8,435	19,679	11,964	18,718	16,720	
			20,159	8,716	20,159	12,377	19,198	18,239	
			20,639	8,857	20,639	12,515	19,679	19,222	
			21,119	8,997	21,119	12,653	20,159	19,758	
							20,639	20,295	
							21,119	20,384	

PLANILHA 01 - EXTENSOMETRIA										
PROTÓTIPO:	PCP1V1-4			DATA:	14/0	4/03			FOLHA:	1
Deteller -	Carga			Leit	ura dos E	xtensôm	etros		-	Obs.
Detaines	(kN)	E ₁	\mathbf{E}_2	E_3	E_4	E_5	E ₆	E_7	E_8	
	0,000	1	0	2	2	1	1	2	0	
186	0,469	11	-13	4	7	10	- 1	-20	18	
	0,949	20	-20	8	7	14	-3	-37	32	
	1,910	47	-48	14	6	21	-14	-86	72	
	3,831	84	-83	23	6	29	-31	-149	125	
	4,311	98	-97	26	5	32	-37	-172	147	
-φφ- Ē2	5,272	118	-117	34	5	36	-45	-202	176	
VISTA LATERAL	6,232	136	-135	32	1	40	-53	-228	203	
CANTONEIRA	7,192	163	-162	37	-7	43	-64	-265	243	
	8,633	184	-182	43	-3	46	-72	-293	274	
	9,113	201	-199	44	-15	49	-80	-319	300	
	10,070	223	-222	47	-19	54	-88	-350	334	
CANTONEIRA	11,510	255	-255	53	-25	58	-96	-393	383	
	12,480	284	-284	54	-32	57	-96	-434	434	
	13,440	318	-318	60	-37	58	-96	-479	489	
	14,400	348	-350	63	-49	54	-87	-518	540	
	15,360	385	-386	66	-55	52	-78	-563	596	
	16,320	428	-428	64	-58	49	-74	-615	652	
	17,280	473	-458	63	-67	44	-83	-668	682	
	18,720	461	-445	69	-67	50	-146	-688	592	
	19,200	496	-476	51	-91	46	-171	-758	621	
	20,160	500	-485	22	-89	39	-184	-792	625	
	21,120	521	-508	-6	-97	38	-204	-840	653	
	22,080	547	-540	-46	-102	43	-249	-873	738	
	23,040	575	-575	-91	-116	49	-294	-926	847	
E7	24,000	593	-597	-134	-127	54	-324	-961	926	
	24,960	619	-632	-211	-142	64	-378	-1045	1048	
	25,440	636	-657	-261	-155	73	-418	-1115	1152	
	26,400	655	-682	-299	-163	83	-450	-1147	1244	
	27,360	670	-707	-358	-180	95	-493	-1226	1351	
E8	28,320	693	-736	-384	-188	115	-536	-1319	1487	
EG.	29,280	714	-770	-420	-203	145	-595	-1457	1676	
	30,240	741	-810	-471	-217	178	-658	-1600	1881	
VISTA FRONTAL VISTA LATERAL	31,200	758	-844	-824	-585	210	-714	-1714	2109	
PILAR	32,160	777	-873	-554	-246	238	-756	-1800	2317	
	32,65	784	-895	-601	-255	256	-787	-1877	2495	

PLANILHA 02 - DEFLETÔMETROS D1 e D2										
PROTÓTIPO:	PCP1V1-4	DATA:	FOLHA: 1							
Detalhes	Carga	Deslocam	Obs							
Detames	(kN)	D ₁	\mathbf{D}_2	Obs.						
	0,000	0,000	0,000							
DI	0,469	0,050	0,010							
VIGA	0,949	0,090	0,030							
	1,910	0,200	0,070							
	3,831	0,360	0,130							
	4,311	0,420	0,150							
	5,272	0,500	0,170							
	6,232	0,580	0,200							
	7,192	0,690	0,240							
	8,633	0,780	0,270							
USUPORTE	9,113	0,850	0,300							
	10,070	0,940	0,330							
	11,510	1,070	0,370							
	12,480	1,160	0,410							
VISTA LATERAL	13,440	1,270	0,440							
Obs.	14,400	1,340	0,470							
	15,360	1,420	0,490							
	16,320	1,530	0,530							
	17,280	1,650	0,570							
	18,720	1,760	0,600							
	19,200	1,900	0,650							
	20,160	1,930	0,660							
	21,120	2,020	0,690							
	22,080	2,120	0,720							
	23,040	2,220	0,750							
	24,000	2,300	0,770							
	24,960	2,390	0,810							
	25,440	2,460	0,830							
	26,400	2,540	0,860							
	27,360	2,620	0,880							
	28,320	2,700	0,900							
	29,280	2,780	0,930							
	30,240	2,900	0,960							
	31,200	2,990	0,990							
	32,160	3,070	1,010							
	32,650	3,100	1,010							
PLANI	LHA 03 - D	EFLETÔME	ETROS D3, I	D4 e D5						
--------------------	------------	----------	----------------	-----------------------	-----------------					
PROTÓTIPO:	PCP1V1-4		DATA:	14/04/03	FOLHA: 1					
D - 4- ll	Carga	D	eslocamento (m	m)						
Detaines	(kN)	D_3	D_4	D ₅	Obs.					
Λ	0,000	0,000	0,000	0,000						
	0,469	0,040	0,015	0,020						
PILAR VIGA	0,949	0,100	0,035	0,035						
	1,910	0,230	0,095	0,070						
	3,831	0,410	0,175	0,130						
	4,311	0,480	0,205	0,150						
	5,272	0,575	0,255	0,180						
	6,232	0,665	0,295	0,210						
	7,192	0,800	0,355	0,250						
φ φ φ	8,633	0,900	0,395	0,280						
USUPORTE	9,113	0,980	0,435	0,310						
	10,070	1,090	0,485	0,340						
	11,510	1,235	0,555	0,385						
	12,480	1,340	0,605	0,420						
VISTALATERAL	13,440	1,460	0,655	0,455						
Obs.	14,400	1,550	0,675	0,480						
	15,360	1,660	0,725	0,510						
	16,320	1,780	-	0,550						
	17,280	1,930	0,745	0,600						
	18,720	2,050	0,765	0,630						
	19,200	2,210	0,835	0,680						
	20,160	2,260	0,845	0,700						
	21,120	2,350	0,885	0,730						
	22,080	2,500	0,975	0,760						
	23,040	2,660	1,065	0,800						
	24,000	2,760	1,125	0,820						
	24,960	2,910	1,230	0,850						
	25,440	3,020	1,315	0,870						
	26,400	3,130	1,375	0,900						
	27,360	3,260	1,445	0,930						
	28,320	3,390	1,535	0,950						
	29,280	3,530	1,645	0,980						
	30,240	3,700	1,765	1,010						
	31,200	3,860	1,865	1,040						
	32,160	3,990	1,945	1,060						
	32,650	4,050	1,985	1,070						

	PLANILHA 04 - LVDT'S										
PROTÓTIPO:	PCP1V1-4	CP1V1-4							4/03 FOLHA: 1		
Detalhes	Carga (kN)	L ₁ (mm)	Carga (kN)	L ₂ (mm)	Carga (kN)	L ₃ (mm)	Carga (kN)	L ₄ (mm)	Obs.		
L4	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000			
×	2,390	0,178	1,910	0,140	0,469	0,114	0,469	0,280			
	5,272	0,380	2,870	0,281	0,949	0,252	0,949	0,458			
	8,153	0,582	3,351	0,421	1,430	0,528	1,430	0,637			
	10,554	0,784	4,311	0,562	1,910	0,665	2,390	0,994			
L3	12,475	0,986	4,791	0,702	3,351	1,079	2,870	1,352			
	13,916	1,188	5,752	0,843	3,831	1,217	3,351	1,530			
F F	15,357	1,390	6,232	0,984	4,311	1,354	4,311	1,799			
L R	16,317	1,592	7,192	1,124	4,791	1,492	4,791	2,067			
L2	17,277	1,794	7,673	1,265	5,752	1,768	5,752	2,513			
	18,238	1,997	8,633	1,405	6,232	2,043	6,232	2,871			
TTA TTA	20,159	2,401	9,113	1,546	6,712	2,181	7,192	3,318			
	21,119	2,603	9,594	1,687	7,192	2,319	7,673	3,586			
	22,080	2,805	10,554	1,827	7,673	2,594	8,633	4,032			
	23,040	3,007	11,034	1,968	8,153	2,732	9,594	4,390			
	24,001	3,209	11,515	2,108	8,633	2,870	10,554	4,926			
	24,961	3,411	12,955	2,530	9,113	3,146	11,034	5,373			
	25,442	3,613	13,436	2,811	9,594	3,283	11,515	5,730			
	26,402	3,815	14,396	3,233	10,074	3,559	12,475	6,445			
	27,362	4,018	14,876	3,514	11,515	4,110	12,955	6,802			
	27,843	4,220	15,357	3,655	11,995	4,523	13,436	7,160			
	28,803	4,422	15,837	3,936	12,475	4,661	14,396	8,232			
Obs.	29,283	4,624	16,317	4,498	12,955	4,937	14,876	8,768			
	29,764	4,826	17,277	5,201	13,436	5,212	15,357	9,125			
	30,724	5,028	18,718	6,748	13,916	5,350	15,837	9,840			
	31,204	5,230	19,198	7,310	14,396	6,039	16,317	11,002			
	32,165	5,432	20,159	8,154	14,876	6,452	16,797	12,163			
	32,645	5,634	21,119	8,716	15,357	6,728	17,277	12,521			
			22,080	9,419	15,837	7,141	17,758	15,112			
			23,040	9,981	16,317	8,106	18,238	15,559			
			24,001	10,544	16,797	9,070	18,718	16,452			
			24,481	10,825	17,277	9,346	19,198	16,988			
			24,961	11,247	17,758	10,724	19,679	17,346			

		P	LANILH	A 04 - LV	DT'S				
PROTÓTIPO:	PCP1V1-4	CP1V1-4						14/04	4/03 FOLHA: 2
Detalhes	Carga (kN)	L ₁ (mm)	Carga (kN)	L ₂ (mm)	Carga (kN)	L ₃ (mm)	Carga (kN)	L ₄ (mm)	Obs.
			25,922	12,090	18,238	11,551	20,159	18,865	
Ĭ Ž			26,402	12,371	18,718	11,826	21,119	20,026	
			27,362	13,215	19,198	12,653	22,080	21,635	
			27,843	13,496	19,679	13,066	24,001	23,779	
			28,323	13,637	20,159	14,168	24,481	24,226	
L3			28,803	14,340	21,119	14,995	24,961	24,673	
			29,283	14,621	21,600	15,960	25,922	25,298	
L J			30,244	15,324	22,560	16,373	26,402	25,745	
GR &			31,204	16,308	23,040	17,475	27,362	28,169	
L2			31,685	16,589	24,001	18,164	27,843	28,705	
			32,165	17,433	24,481	18,853	28,323	29,420	
LA LA			32,645	18,135	24,961	19,404	29,283	30,760	
VIS VIS					25,922	20,782	30,244	32,905	
					26,882	21,333	31,685	35,675	
					27,362	22,436	32,165	36,836	
					27,843	22,849	32,645	38,802	
					28,323	23,125			
					28,803	24,227			
					29,283	24,778			
					30,244	25,880			
					31,204	27,672			
					31,685	28,223			
Obs.					32,165	29,187			
					32,645	30,565			

III.4. Planilhas dos Testes Experimentais dos Protótipos PCP1Vc1

		I	PLANIL	HA 01	- EXTEN	SOMI	ETRIA				
PROTÓT	TPO:	PCP1Vc1-1			DATA:	25/0	04/03			FOLHA:	1
D - 4 - 11		Carga		Leitura dos Extensômetros							Oha
Detaines		(kN)	E ₁	\mathbf{E}_2			E ₅	E ₆	E ₇	$\mathbf{E_8}$	Obs.
Λ		0	1	2			0	1	2	2	
		0,01208	-7	12			11	-6	3	2	
		1,09	-58	65			61	-42	1	2	
IG		2,322	-109	120			110	-77	2	2	
>		3,246	-150	163			149	-104	0	3	
	ш	4,478	-199	216			195	-136	1	3	
		5,402	-242	261			237	-165	0	4	
l l l		6,173	-280	298			266	-190	0	4	
	در مر	7,097	-322	341			300	-220	- 1	4	
	/ >	8,021	-367	384			337	-252	- 1	4	
	.ф. /	9,099	-420	436			382	-291	- 1	4	
Υ " " "	Ψ / Ψ	10,02	-463	474			421	-326	- 1	5	
	- ↓ - ↓										
 ↓ μ	φ-										
Ň II II	Ň										
ں س	2										
>											
	<u>^</u>										
Obs.											

P	PLANILHA 02 - DEFLETÔMETROS D1 a D4											
PROTÓTIPO:	PCP1Vc1-1			DATA:	25/04/03	FOLHA: 1						
Detalhes	Carga		Deslocan	nento (mm)		Obs						
Detailes	(kN)	D ₁	\mathbf{D}_2	D ₃	\mathbf{D}_4	Obs.						
/	0,000	0,000	0,000	0,000	0,000							
D4	0,012	0,000	0,000	0,020	0,090							
	1,090	0,030	0,060	0,120	0,620							
	2,322	0,070	0,130	0,225	1,200							
	3,246	0,085	0,180	0,310	1,680							
4	4,478	0,130	0,240	0,410	2,250							
	5,402	0,160	0,300	0,500	2,760							
	6,173	0,190	0,350	0,570	3,230							
	7,097	0,220	0,410	0,650	3,760							
	8,021	0,250	0,470	0,740	4,340							
	9,099	0,290	0,550	0,840	5,060							
	10,020	0,320	0,600	0,920	5,880							
1 CT												
/ / / / / / / / / / / / / / / / / / /						-						
Obs.												
						4						
						4						
				ļ		-						
				ļ		4						

PLA	NILHA 03 -	DEFLETÔMETROS	D5 e D7	
PROTÓTIPO:	PCP1Vc1-1	DATA:	25/04/03	FOLHA: 1
Detelhog	Carga	Deslocam	ento (mm)	Oha
Detames	(kN)	D ₅	\mathbf{D}_7	Obs.
	0,000	0,000	0,000	
	0,012	0,010	0,010	
	1,090	0,110	0,040	
	2,322	0,210	0,080	
	3,246	0,300	0,110	
	4,478	0,400	0,140	
	5,402	0,490	0,180	
	6,173	0,570	0,200	
	7,097	0,650	0,230	
	8,021	0,740	0,270	
	9,099	0,840	0,310	
	10,020	0,930	0,340	
D5 0 D7				
Obs.				

PLANILHA 04 - LVDT'S											
PROTÓTIPO:	PCP1Vc1-1		DATA:	25/04/03	FOLHA: 1						
Detalhes	Carga (kN)	L ₃ (mm)	Carga (kN)	L ₄ (mm)	Obs.						
Λ	0,000	0,000	0,000	0,000							
	1,090	0,178	0,782	0,140							
4	2,322	0,380	1,398	0,281							
	3,246	0,380	2,014	0,421							
	5,402	0,582	3,246	0,843							
	7,097	0,784	4,324	1,124							
	9,099	0,986	5,556	1,405							
	10,023	1,188	6,019	1,546							
			6,481	1,687							
			6,943	1,827							
			7,405	1,968							
			8,021	2,249							
$\begin{array}{c c} \bullet \\ \bullet \\ \end{array}$			8,483	2,390							
			8,791	2,530							
			9,099	2,671							
			9,407	2,811							
			9,561	2,952							
			9,869	3,092							
			10,023	3,233							
- (次 - (の - - - - - - - - - -											
Щ.											
Obs.											

	I	HA 01	- EXTE	NSOME	TRIA	-				
PROTÓTIPO:	PCP1Vc1-2			DATA:	05/0	5/03			FOLHA:	1
Detalhas	Carga			Leit	ura dos E	xtensôme	etros			Obs
Detames	(k N)	$\mathbf{E_1}$	E ₂			E_5	E ₆	E ₇	E ₈	Obs.
Λ	0,000	- 1	1			1	- 1	1	1	
	0,474	-15	16			19	-19	2	2	
л Т	1,244	-38	37			45	-46	1	2	
Ŭ,	2,322	-70	70			85	-84	1	2	
> \	3,708	-111	112			137	-133	0	3	
Щ. Ц.	4,786	-142	143			177	-168	- 1	3	
LI L	5,865	-175	175			221	-209	- 1	3	
	6,481	-203	200			266	-247	0	3	
لت _ا	7,559	-237	232			321	-288	-2	3	
	8,329	-273	265			380	-335	-2	3	
	9,253	-312	300			426	-388	-2	3	
Ŭ II II Ŭ I										
Obs.										

PLANILHA 02 - DEFLETÔMETROS D1 a D4											
PROTÓTIPO:	PCP1Vc1-2			DATA:	05/05/03	FOLHA: 1					
Datalhag	Carga		Deslocan	nento (mm)		Oba					
Detailles	(k N)	D ₁	\mathbf{D}_2	D ₃	\mathbf{D}_4	Obs.					
Λ	0,000	0,000	0,000	0,000	0,000						
	0,474	0,010	0,020	0,040	0,230						
	1,244	0,040	0,060	0,110	0,590						
	2,322	0,070	0,120	0,200	1,130						
	3,708	0,110	0,200	0,320	1,830						
4	4,786	0,140	0,260	0,420	2,350						
	5,865	0,170	0,320	0,510	2,900						
	6,481	0,190	0,380	0,590	3,380						
	7,559	0,220	0,440	0,680	3,940						
	8,329	0,250	0,500	0,780	4,550						
	9,253	0,290	0,570	0,890	5,210						
L L L L L L L L L L L L L L L L L L L											
//////////////////////////////////////											
Obs.											
				ļ ļ							
				├ ────┤							
				├ ────┤							
				├ ────┤							
				├ ────							

PROTÓTIPO:	PCP1Vc1-2	DATA:	05/05/03	FOLHA: 1
	Carga	Deslocament	to (mm)	
Detaines	(kN)	D ₅	D ₇	Ubs.
	0,000	0,000	0,000	
/	0,474	0,040	0,010	
V	1,244	0,100	0,030	
	2,322	0,200	0,070	
IGA	3,708	0,320	0,110	
>	4,786	0,410	0,140	
	5,865	0,510	0,180	
	6,481	0,590	0,210	
	7,559	0,680	0,240	
	8,329	0,780	0,280	
	9,253	0,890	0,320	
	_			
۲ <u>۵</u>				
Obs.				

PLANILHA 04 - LVDT'S											
PROTÓTIPO:	PCP1Vc1-2		DATA:	05/05/03	FOLHA: 1						
Detalhes	Carga (kN)	L ₃ (mm)	Carga (kN)	L ₄ (mm)	Obs.						
Λ	0,000	0,000	0,000	0,000							
	0,474	0,000	0,474	0,140							
	3,708	0,202	0,936	0,281							
	6,481	0,404	1,244	0,421							
	8,329	0,606	2,168	0,562							
	9,407	0,808	3,246	0,843							
			3,708	0,984							
			4,786	1,265							
			5,556	1,405							
			5,865	1,546							
			6,173	1,687							
			6,481	1,827							
			7,559	2,108							
$ \phi \phi $			8,021	2,249							
			8,329	2,390							
			8,483	2,530							
			9,099	2,671							
			9,407	2,811							
21L											
Obs.											

III.5. Planilhas dos Testes Experimentais dos Protótipos PEP2V1V2

PLANILHA 01 - EXTENSOMETRIA												
	PROT	TÓTIPO:	PEP2V1V2-1			DATA:	28/0	4/03			FOLHA:	1
			Carga			Lei	tura dos I	Extensôm	etros			
	Detalhes	s	(kN)	$\mathbf{E_1}$	\mathbf{E}_2	E ₃	E_4	E_5	E ₆	E_7	E_8	Obs.
	1		0,000	0	1	1	- 1	-2	1	1	- 1	
	/L		0,320	-17	18	- 1	3	17	-13	2	-4	
< <	Y		2,322	-100	107	-4	7	100	-71	9	-19	
\triangleleft			4,170	-175	188	-8	11	165	-121	15	-30	
<1C	\searrow		4,940	-217	232	-12	15	209	-148	18	-37	
			6,327	-270	289	-14	19	256	-184	23	-45	
	Ξ,	, ü	7,559	-319	341	-16	22	303	-217	26	-54	
			8,637	-370	396	-19	24	352	-249	30	-62	
ſ			9,715	-411	441	-21	28	392	-278	33	-69	
	+	-↓-	10,480	-445	475	-23	29	425	-302	35	-74	
			11,410	-485	513	-24	32	452	-312	38	-78	
	Ψ	⊕	12,330	-541	574	-28	35	497	-324	44	-85	
	+	 ↓	13,100	-585	629	-33	39	560	-337	50	-90	
	Ť		14,180	-615	669	-36	36	616	-348	55	-95	
	N.	9	15,110	-655	736	-43	37	715	-360	64	-100	
	ш		16,340	-689	786	-46	38	759	-368	70	-105	
			17,420	-714	857	-54	41	873	-425	80	-114	
			18,490	-760	943	-57	41	959	-492	86	-124	
	<u>ш</u>	ů	19,570	-801	1019	-60	43	1044	-541	90	-133	
	<u> </u>		20,340	-835	1087	-61	47	1123	-585	92	-138	
	ф	 \ '	21,570	-889	1209	-64	47	1258	-632	95	-147	
	-	+ \A	22,500	-933	1333	-66	50	1381	-671	98	-154	
	Ť		23,270	-979	1508	-68	52	1530	-710	100	-162	
	Ф	♦ [₩]	23,880	-1116	1630	-70	54	1633	-744	103	-168	
			24,810	-1050	1785	-71	55	1751	-767	106	-174	
			25,880	-1088	1975	-75	62	1917	-791	107	-180	
	<u>e</u> '	4	26,810	-1143	2030	-70	66	2215	-821	111	-190	
	ш	L	27,890	-1171	2476	-75	63	2386	-842	113	-194	
5			28,810	-1206	2683	-77	65	2599	-862	117	-203	
			29,890	-1247	3012	-77	69	2891	-892	119	-214	
/10			30,810	-1264	3281	-81	70	3081	-899	121	-220	
		<u> </u>	31,890	-1261	3702	-81	73	3391	-909	123	-228	
	N		32,820	-1259	3949	-83	88	3564	-931	125	-235	
			34,050	-1192	4481	-88	80	3993	-998	128	-246	
			35,280	-1081	4931	-86	80	4372	-1061	130	-254	
			35,590	-930	5320	-90	81	4699	-1108	151	-259	
			36,670	-739	5751	-91	83	5076	-1229	134	-268	
			37,440	-570	6048	-94	86	5341	-1325	136	-275	

I	PLANILHA 02	- DEFLET	ÔMETROS	D1 a D4		
PROTÓTIPO:	PEP2V1V2-1			DATA:	28/04/02	3 1
	Carga		Deslocan	nento (mm)		
Detalhes	(kN)	\mathbf{D}_1	\mathbf{D}_2	D ₃	\mathbf{D}_4	Obs.
4	0,000	0,000	0,000	0,000	0,000	
	0,320	0,010	0,020	0,030	0,160	
	2,322	0,070	0,120	0,160	1,040	
Ŭ Ū	4,170	0,110	0,210	0,280	1,860	
	4,940	0,140	0,260	0,350	2,330	
5	6,327	0,170	0,330	0,450	2,930	
	7,559	0,190	0,390	0,530	3,490	
	8,637	0,220	0,460	0,620	4,090	
	9,715	0,250	0,510	0,700	4,630	
	10,480	0,280	0,560	0,770	5,290	
	11,410	0,310	0,590	0,830	5,980	
	12,330	0,350	0,610	0,920	7,430	
	13,100	0,390	0,640	1,020	9,190	
D^{3}	14,180	0,410	0,650	1,070	10,410	
	15,110	0,470	0,660	1,190	12,800	
	16,340	0,500	0,670	1,260	14,270	
	17,420	0,560	0,710	1,370	16,870	
	18,490	0,600	0,810	1,490	18,760	
	19,570	0,630	0,890	1,580	20,070	
	20,340	0,660	0,950	1,660	21,210	
	21,570	0,690	1,050	1,760	22,600	
	22,500	0,710	1,140	1,840	23,810	
	23,270	0,740	1,240	1,930	25,130	
	23,880	0,770	1,320	2,020	26,190	
Obs.	24,810	0,790	1,410	2,080	27,210	
	25,880	0,820	1,510	2,160	28,440	
	26,810	0,860	1,690	2,290	30,400	
	27,890	0,890	1,790	2,370	31,620	
	28,810	0,910	1,910	2,460	32,980	
	29,890	0,950	2,090	2,580	34,830	
	30,810	0,980	2,230	2,670	36,100	
	31,890	1,000	2,430	2,780	38,030	
	32,820	1,030	2,560	2,870	39,330	
	34,050	1,070	2,830	3,020	42,000	
	35,280	1,100	3,070	3,140	44,340	
	35,590	1,130	3,270	3,210	46,190	
	36,670	1,160	3,440	3,320	48,230	
	37,440	1,180	3,630	3,410	49,800	

	PLANILHA 03	- DEFLET	ÔMETROS	S D5 a D8		
PROTÓTIPO:	PEP2V1V2-1			DATA:	28/04/03	1
De telle e r	Carga		Desloca	mento (mm)		
Detaines	(k N)	D5	D6	D7	D8	Obs.
	0,000	0,000		0,000		
	0,320	0,020		0,000		
↓	2,322	0,150		0,050		
	4,170	0,270		0,090		
	4,940	0,340		0,120		
	6,327	0,440		0,150		
	7,559	0,520		0,180		
	8,637	0,610		0,220		
	9,715	0,690		0,250		
	10,480	0,770		0,280		
	11,410	0,840		0,300		
	12,330	0,930		0,340		
φ	13,100	1,020		0,380		
	14,180	1,080		0,400		
	15,110	1,180		0,450		
	16,340	1,270		0,480		
1	17,420	1,390		0,540		
	18,490	1,500		0,590		
	19,570	1,590		0,630		
	20,340	1,660		0,660		
	21,570	1,780		0,710		
	22,500	1,870		0,740		
	23,270	1,950		0,790		
N	23,880	2,030		0,830		
Obs.	24,810	2,100		0,850		
	25,880	2,180		0,890		
	26,810	2,310		0,950		
	27,890	2,380		0,990		
	28,810	2,480		1,030		
	29,890	2,620		1,080		
	30,810	2,700		1,120		
	31,890	2,820		1,180		
	32,820	2,910		1,210		
	34,050	3,050		1,280		
	35,280	3,170		1,340		
	35,590	3,240		1,380		
	36,670	3,350		1,430		
	37,440	3,440		1,470		

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
PROTÓTIPO:	PEP2V1V2-1				DATA:		28/04/03		FOLHA:	1
	Carga Trans.	L_3	Carga Trans.	L ₄	Carga Trans.	L_4	Carga Trans.	L_4		
Detaines	(kN)	(mm)	(k N)	(mm)	(kN)	(mm)	(kN)	(mm)	FOLHA: Obs.	
1	0,000	0,000	0,000	0,000	17,261	9,138	31,276	20,807		
	1,398	0,202	1,398	0,141	17,415	9,279	31,738	21,088		
× ·	3,554	0,404	1,860	0,281	17,569	9,419	32,046	21,510		
	7,713	0,606	2,476	0,422	18,031	9,841	32,354	21,932		
	9,715	0,808	3,400	0,703	18,493	10,122	32,662	22,213		
	11,255	1,011	4,016	0,844	18,801	10,544	33,278	22,916		
	12,333	1,213	4,324	0,984	19,263	10,825	33,432	23,197		
L3	14,181	1,415	5,248	1,125	20,188	11,669	33,895	23,478		
	15,105	1,617	5,710	1,265	21,266	12,372	34,973	24,603		
ф <u>ф</u>	16,337	1,819	6,327	1,406	21,574	12,512	35,127	24,744		
	17,415	2,021	7,251	1,687	21,728	12,653	35,435	25,165		
ψ	18,493	2,223	7,713	1,828	22,344	13,075	36,359	26,150		
	20,034	2,425	8,945	2,109	22,806	13,356	37,437	27,415		
	21,574	2,627	9,869	2,390	22,960	13,637	37,899	28,118		
	22,498	2,829	10,331	2,671	23,114	13,778	38,053	28,258		
	23,884	3,032	10,793	2,812	23,422	14,059	38,207	28,399		
	24,808	3,234	10,947	2,952	24,500	14,902				
	25,886	3,436	11,409	3,234	24,654	15,043				
$ \psi \psi _{\alpha}$	27,272	3,638	11,871	3,655	24,962	15,324				
	27,888	3,840	12,179	3,796	25,270	15,605				
□	29,428	4,042	12,487	3,936	25,732	16,027				
	30,198	4,244	12,641	4,077	26,040	16,308				
	30,814	4,446	12,795	4,499	26,348	16,449				
L1	31,892	4,648	13,103	4,639	26,656	16,730				
	32,816	4,850	13,411	4,921	27,118	17,152				
	33,586	5,053	13,565	5,342	27,580	17,433				
IG Å	34,357	5,255	14,335	6,186	27,888	17,855				
	35,281	5,457	14,951	6,748	28,350	18,277				
N N	36,359	5,659	15,105	7,029	28,812	18,698				
Obs.			15,567	7,451	29,736	19,401				
			16,029	7,592	30,044	19,682				
			16,183	7,873	30,506	20,104				
			16,645	8,576	30,814	20,385				

		I	PLANIL	HA 01 -	EXTEN	ISOME	TRIA				
	PROTÓTIPO:	PEP2V1V2-2			DATA:	05/0	5/03			FOLHA:	1
		Carga			Lei	tura dos I	Extensôm	etros			
	Detalhes	(kN)	E ₁	E_2	E ₃	\mathbf{E}_4	E_5	E ₆	E_7	E_8	Obs.
	4	0,000	- 1	0	1	1	2	0	2	1	
—	/L	0,320	-13	13	0	2	17	-16	2	0	
25	r	1,398	-44	44	0	1	53	-53	2	2	
<		2,630	-79	79	5	-2	93	-93	1	2	
		4,016	-122	121	2	-2	143	-140	2	0	
	01	5,402	-162	159	9	- 1	189	-183	6	-2	
Ē	L C	6,481	-197	193	1	5	229	-221	9	-5	
		7,771	-237	231	-7	3	274	-263	13	-9	
		8,791	-271	262	-9	7	310	-296	17	-11	
-	- - -	10,020	-317	306	-12	9	359	-349	21	-15	
		11,100	-362	346	-13	12	420	-419	24	-19	
Ф	-\$-	12,020	-402	384	-15	15	499	-477	28	-22	
+	-	13,260	-470	448	-16	19	611	-580	32	-28	
		14,490	-554	524	-19	20	744	-699	34	-34	
L. L.	• •	15,260	-599	566	-19	20	818	-761	35	-37	
ш	LL	15,880	-654	618	-19	20	923	-834	36	-43	
		16,950	-702	667	-19	23	1006	-911	38	-45	
		17,570	-748	716	-19	24	1089	-984	39	-49	
Li Li		18,650	-803	771	-19	26	1184	-1052	41	-52	
		19,420	-855	826	-22	27	1287	-1132	45	-54	
' +	- - \ '	20,190	-921	899	-22	30	1409	-1229	49	-59	
<u></u>	–	21,270	-967	962	-25	31	1520	-1311	52	-62	
Ψ		22,650	-1049	1098	-27	33	1718	-1479	57	-68	
+	 + [⊥]	23,420	-1086	1174	-27	36	1794	-1561	59	-72	
		24,500	-1128	1268	-30	39	1902	-1659	61	-76	
		25,580	-1172	1400	-28	45	2043	-1788	61	-82	
e î	4	26,500	-1211	1543	-29	46	2163	-1915	62	-87	
L	Li li	27,580	-1254	1692	-34	48	2296	-2069	64	-92	
5		28,200	-1285	1905	-30	53	2459	-2264	62	-97	
4		29,890	-1342	2061	-36	59	2540	-2374	65	-103	
,1C		31,120	-1397	2290	-40	60	2730	-2641	69	-108	
		31,740	-1426	2426	-41	64	2871	-2849	70	-110	
	N	32,200	-1465	2577	-39	64	3061	-3078	71	-114	
		33,280	-1530	2796	-43	67	3367	-3380	75	-117	
		34,050	-1579	2907	-48	66	3515	-3516	77	-120	
		34,970	-1641	3078	-48	68	3829	-3754	81	-123	
		35,590	-1729	3265	-50	67	4134	-3989	84	-124	
		35,900	-1822	3503	-50	68	4581	-4281	86	-127	

H	PLANILHA 02	- DEFLET	ÔMETROS	D1 a D4		
PROTÓTIPO:	PEP2V1V2-2			DATA:	05/05/03	FOLHA: 1
	Carga		Deslocan	nento (mm)		
Detaines	(kN)	\mathbf{D}_1	\mathbf{D}_2	D_3	$\mathbf{D_4}$	Obs.
Λ	0,000	0,000	0,000	0,000	0,000	
	0,320	0,010	0,010	0,040	0,180	
	1,398	0,040	0,070	0,120	0,680	
Ŭ	2,630	0,080	0,130	0,220	1,270	
	4,016	0,110	0,210	0,350	1,980	
Q U	5,402	0,140	0,280	0,450	2,610	
	6,481	0,180	0,350	0,540	3,180	
	7,771	0,210	0,420	0,650	3,830	
	8,791	0,240	0,470	0,730	4,350	
	10,020	0,270	0,560	0,840	5,120	
	11,100	0,300	0,640	0,930	5,910	
	12,020	0,320	0,690	1,000	6,620	
	13,260	0,360	0,790	1,110	7,880	
	14,490	0,400	0,860	1,220	9,490	
	15,260	0,430	0,900	1,290	10,400	
	15,880	0,460	0,940	1,360	11,540	
	16,950	0,480	1,000	1,440	12,460	
	17,570	0,500	1,040	1,510	13,470	
	18,650	0,530	1,120	1,590	14,480	
	19,420	0,550	1,190	1,660	15,470	
$ - + \rangle$	20,190	0,580	1,280	1,750	16,820	
	21,270	0,600	1,350	1,780	17,860	
 	22,650	0,630	1,480	1,950	19,890	
	23,420	0,660	1,550	2,020	21,020	
Obs.	24,500	0,690	1,650	2,110	22,410	
	25,580	0,720	1,780	2,220	24,060	
	26,500	0,750	1,890	2,320	25,590	
	27,580	0,780	2,020	2,420	27,270	
	28,200	0,810	2,150	2,520	29,430	
	29,890	0,850	2,300	2,640	31,060	
	31,120	0,880	2,480	2,760	33,120	
	31,740	0,890	2,580	2,830	34,340	
	32,200	0,910	2,710	2,910	35,760	
	33,280	0,940	2,890	3,010	37,810	
	34,050	0,960	2,980	3,070	38,890	
	34,970	0,970	3,090	3,160	40,510	
	35,590	0,990	3,240	3,210	42,220	
	35,900	1,010	3,400	3,280	44,210	

PLANILHA 03 - DEFLETÔMETROS D5 a D8											
PROTÓTIPO:	PEP2V1V2-2	V2-2 DATA: 05/05/03 FOLHA:				FOLHA: 1					
	Carga		Deslocan	nento (mm)							
Detaines	(k N)	D5	D6	D7	D8	Obs.					
	0,000	0,000		0,000							
	0,320	0,030		0,010							
Б, ф ф	1,398	0,120		0,040							
	2,630	0,220		0,070							
	4,016	0,340		0,110							
	5,402	0,450		0,150							
	6,481	0,540		0,180							
	7,771	0,640		0,220							
	8,791	0,730		0,250							
	10,020	0,840		0,300							
	11,100	0,930		0,330							
	12,020	1,010		0,360							
φ φ	13,260	1,120		0,410							
	14,490	1,250		0,470							
	15,260	1,310		0,500							
	15,880	1,380		0,540							
5	16,950	1,460		0,570							
Ìlea	17,570	1,530		0,610							
>	18,650	1,610		0,640							
	19,420	1,690		0,670							
	20,190	1,780		0,720							
D8 .	21,270	1,850		0,740							
	22,650	1,980		0,800							
N	23,420	2,060		0,840							
Obs.	24,500	2,150		0,880							
	25,580	2,260		0,930							
	26,500	2,360		0,980							
	27,580	2,470		1,030							
	28,200	2,560		1,080							
	29,890	2,680		1,130							
	31,120	2,810		1,190							
	31,740	2,870		1,220							
	32,200	2,950		1,270							
	33,280	3,060		1,320							
	34,050	3,130		1,360							
	34,970	3,210		1,400							
	35,590	3,270		1,430							
	35,900	3,340		1,460							

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
PROTÓTIPO:	PEP2V1V2-2				DATA:		05/05/03		FOLHA:	1
Detaller	Carga Trans.	L_3	Carga Trans.	L_4	Carga Trans.	L_4	Carga Trans.	L ₄	Oha	
Detaines	(k N)	(mm)	(kN)	(mm)	(k N)	(mm)	(kN)	(mm)	FOLHA: Obs.	
Λ	0,000	0,000	0,000	0,000	15,875	6,186	29,274	16,168		
	4,016	0,202	1,090	0,141	16,645	6,467	29,736	16,871		
>	7,713	0,404	1,398	0,281	16,953	6,608	29,890	17,152		
	10,023	0,606	2,630	0,562	17,261	6,889	30,814	17,995		
	11,101	0,808	3,092	0,703	17,569	7,170	31,122	18,277		
	12,025	1,011	3,708	0,844	18,339	7,592	31,584	18,698		
	14,027	1,213	4,016	0,984	18,647	7,732	31,738	18,979		
L3	15,259	1,415	4,940	1,125	19,109	8,154	32,508	19,823		
	15,875	1,617	5,402	1,265	19,417	8,295	33,124	20,385		
	17,569	1,819	6,019	1,406	19,880	8,717	33,586	20,948		
	18,647	2,021	6,481	1,546	20,188	9,138	34,203	21,510		
Ψ Ψ	19,417	2,223	7,559	1,828	20,958	9,419	34,511	21,932		
	20,188	2,425	7,713	1,968	21,266	9,701	34,973	22,494		
	21,266	2,627	8,483	2,109	21,574	9,841	35,281	22,916		
	22,652	2,829	8,791	2,249	21,882	9,982	35,589	23,338		
	23,422	3,032	9,715	2,531	22,036	10,263	36,359	23,760		
	24,500	3,234	10,023	2,671	22,498	10,544	36,513	24,041		
	25,578	3,436	10,793	2,812	22,652	10,825	36,821	24,181		
ψ ψ ω	26,502	3,638	10,947	2,952	23,422	11,388	37,129	24,322		
L2 ♥ ♥ ↓	27,580	3,840	11,101	3,093	24,038	11,950				
	29,428	4,244	11,717	3,234	24,500	12,231				
	29,890	4,446	12,025	3,374	24,962	12,653				
	31,122	4,648	12,641	3,796	25,116	12,794				
L1	31,738	4,850	12,795	3,655	25,270	12,934				
	33,278	5,053	13,103	3,936	25,578	13,215				
	34,203	5,255	13,257	4,077	25,886	13,497				
IGA	34,973	5,457	13,411	4,218	26,502	13,918				
<u> </u>	35,897	5,659	13,873	4,358	26,810	14,059				
N N	37,129	5,861	14,027	4,499	26,964	14,340		05/03 Fe Carga Trans. L4 (kN) (mm) 29,274 16,168 29,736 16,871 29,890 17,152 30,814 17,995 31,122 18,277 31,584 18,698 31,738 18,979 32,508 19,823 33,124 20,385 33,586 20,948 34,203 21,510 34,511 21,932 34,973 22,494 35,281 22,916 35,589 23,338 36,359 23,760 36,513 24,041 36,821 24,181 37,129 24,322 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 <tr< td=""><td></td><td></td></tr<>		
Obs.			14,335	4,780	27,272	14,481				
			14,489	5,061	27,426	14,621				
			15,259	5,342	27,734	14,902				
			15,721	6,045	27,888	15,043				

ANEXO IV

Gráficos de Resultados dos Testes Experimentais

IV.1. Protótipos PCP1V1

Deformação Específica (µɛ)

Gráfico Carga-Deslocamento da Viga do Protótipo PCP1V1-1

Extensometria do Protótipo PCP1VI-3

Gráfico Carga-Deslocamento da Viga do Protótipo PCP1V1-3

Gráfico Carga-Deslocamento do Pilar do Protótipo PCP1V1-3

Extensometria do Protótipo PCP1V1-4

Deformação Específica (µɛ)

Gráfico Carga-Deslocamento da Viga do Protótipo PCP1V1-4

IV..2. Protótipos PCP1Vc1
Extensometria do Protótipo PCP1Vc1-1

Gráfico Carga-Deslocamento da Viga do Protótipo PCP1Vc1-1

Gráfico Carga-Deslocamento do Pilar do Protótipo PCP1Vc1-1

Extensometria do Protótipo PCP1Vc1-2

Gráfico Carg-Deslocamento da Viga do Protótipo PCP1Vc1-2

IV.3. Protótipos PEP2V1V2

Extensometria do Protótipo PEP2V1V2-1

Gráfico Carga-Deslocamento da Viga V2 do Protótipo PEP2V1V2-1

